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Abstract 

 

Little quantitative assessment of health inequality impacts occurs in the economic 

evaluation of health care. Distributional cost-effectiveness analysis (DCEA) offers an 

extension to cost-effectiveness analysis, estimating health inequality changes 

alongside population health. 

 

This thesis addresses two important methodological and empirical challenges for 

DCEAs. First, in order to measure inequality change, a baseline level distribution of 

health needs to be estimated. In chapter 2 we do this for England using health survey 

and national mortality data to predict lifetime health. We estimate a gap between the 

most and least healthy fifths of 10.97 QALYs.  

 

Second, we estimate how the health effects of health care budget changes in England 

are allocated between social groups. We estimate the socioeconomic distribution of 

health care utilisation by disease, age and gender, which are used to disaggregate 

results from a previous study that estimated effects of expenditure by disease area. 

We find a substantial gradient in health effects, with 27% and 13% incurred by the 

most and least deprived fifths of the population, respectively.  

 

We apply the findings of the previous chapters to two different types of DCEA. In 

chapter 4, we propose a simplified version of DCEA, in which intervention health 

benefits follow the gender and socioeconomic patterns of health care utilisation. We 

apply this approach to 27 technology appraisals conducted by NICE, and find five 

interventions increase population health and worsen inequality; all still increase 

social welfare even when inequality aversion is high.  

 

In Chapter 5 we conduct a full DCEA to evaluate smoking cessation interventions. 

We adapt a decision model to incorporate a wide range of key model inputs varied by 

socioeconomic status. As effectiveness and uptake are greater in the least deprived 

groups, all interventions increase health inequality, despite the greater number of 

smokers in the more deprived groups.  
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Introduction  

 

Governments and health care organizations throughout the world are faced with 

inequalities in health in their populations. There is a strongly held view amongst the 

organisations faced with these problems that inequalities should be reduced in the 

interests of fairness (DH 2013; PHAA 2012; Raphael 2000). The UK is no different: 

health inequalities have been on the public agenda for decades (DHSS 1980; Lowdell 

et al. 1999), although they have, by some measures at least, remained relatively 

constant or increased (ONS 2013; Asthana et al. 2013). Health inequalities can be 

tackled by addressing their ‘social determinants’, such as income and education 

level, which are associated with better health production capabilities and healthier 

lifestyle choices (Grossman 1972; Currie 2009). Decision-makers can and do 

influence these determinants through policies in the education sector, the labour 

market, or through a redistributive tax system (Sen 2002; Graham and Kelly 2004; 

Marmot et al. 2010). However, the extent to which they can wield each policy is 

limited politically. An alternative lever that can be used by social decision-makers 

for reducing health inequalities is through the provision of health care itself. This 

thesis aims to provide methodological and empirical foundations for the assessment 

of the health inequality impacts of interventions that directly target health as a 

primary outcome (including health care and public health), so that decision-makers 

can be routinely presented with quantitative evidence on this key social objective. 

 

Over recent decades, a large number of health technology assessment (HTA) bodies 

have been established to assist decision-makers on health-related funding decisions 

through evidence-based techniques (Mathes et al. 2013). The body responsible for 

this function in the England is the National Institute for Health and Care Excellence 

(NICE), which in addition to evaluating medical technologies, pharmaceuticals and 

devices, also develops guidelines for clinical practice and public health. The 

principal quantitative analysis that is routinely conducted within the assessment 

process adopted by NICE has been cost-effectiveness analysis. The objective 

underpinning this analytical method, which prioritizes those technologies with the 

lowest cost-per-unit of health gain, is to maximise total population health. HTA 

bodies now define cost-effectiveness as being synonymous with health maximisation 
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and explicitly adopt it as their primary evaluative criterion. However, many studies 

have suggested that both decision-makers and the general public feel that other 

important criteria should also be considered, including the impacts on the distribution 

of health (Nord et al. 1995; Dolan et al. 2005; Dolan et al. 2008; Dolan & Tsuchiya 

2005; Guindo et al. 2012; Mirelman et al. 2012; Tanios et al. 2013). This has led to 

repeated calls for an alternative decision framework that quantitatively incorporates 

concerns for health inequalities (Wagstaff 1991; Powers & Faden 2000; Sassi et al. 

2001; Cookson et al. 2009).  

 

The objective of reducing inequalities can sometimes conflict with maximizing 

health, creating an equity-efficiency trade-off problem (Wagstaff 1991; Williams & 

Cookson 2006). For example, a policy intervention may maximise total health but 

increase health inequality, or reduce health inequality but not maximise health. In 

such cases, a simple decision rule like health maximisation will be insufficient. A 

recently developed framework that can incorporate equity-efficiency trade-offs is 

distributional cost-effectiveness analysis (DCEA) (Asaria et al. 2015). DCEA is an 

extension of the existing process of cost-effectiveness analysis in which the expected 

health benefits and opportunity costs are estimated for equity-relevant subgroups and 

modelled onto a distribution of lifetime health. Pre- and post-intervention 

distributions are evaluated using a health-related social welfare function that is 

‘equity-regarding’ (Adler 2013), meaning they embody concern for the distribution 

of health as well as the sum total. These allow for the explicit analysis of trade-offs 

between equity and efficiency.   

 

In a typical cost-effectiveness analysis, a decision model is developed to estimate the 

incremental costs and benefits of a new treatment compared to current practice. A 

superficial distributional analysis may go beyond the average patient by conducting 

subgroup analysis for equity-relevant groups such as socioeconomic status or 

ethnicity, and calculating cost-effectiveness statistics for each group. A truly robust 

analysis of the health inequality impacts of a new intervention requires additional 

data and stages of analysis, however. One essential component is to account for how 

the health opportunity costs of funding a new intervention are distributed between 

groups; only then can the net health impact of an intervention be estimated. Since the 

funding for a new intervention will be generated from displacing services across the 
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health sector, the distribution of health opportunity costs should also relate to the 

entire health care budget. 

 

A second key consideration relates to the measurement of health inequality impacts. 

Intuitively, the inequality impact will be determined by whether an intervention 

increases or reduces the level of health inequality in the population. Regardless of 

whether the measure of inequality is absolute or relative, a baseline distribution of 

health is required upon which to model the distributional impacts of the intervention 

(Cookson et al. 2017). Given that opportunity costs fall across the population, this 

baseline distribution also needs to be estimated for the whole population.  

 

The objective of this thesis is to conduct methodical and empirical work that 

addresses both of these challenges. Methods are presented for estimating the baseline 

health and the distribution of health opportunity costs, and are applied to the case of 

the NHS in England. Two different approaches to conducting DCEA are then 

presented that utilise these results. 

 

Chapter 1 is made up of two distinct literature reviews. The first section describes the 

current policy environment in the English NHS with respect to health inequality. 

Through this, we explore the implicit and explicit attitudes towards inequality 

present in the decision making processes of the NHS and NICE. The second section 

reviews the existing alternative and supplementary approaches to cost-effectiveness 

analysis that have been proposed in the literature. The feasibility and methodological 

validity of each approach is then critically appraised. 

 

Chapter 2 demonstrates a technique for estimating quality-adjusted life expectancy 

by age, gender and socioeconomic status, which can be used to construct a baseline 

distribution of health. In adopting the quality-adjusted life year metric used in cost-

effectiveness analysis, health impacts from these analyses can be modelled directly 

onto the distribution in order to measure health inequality impacts. This study 

contributes to the literature by: 

 Being the first to estimate health inequality in England in terms of quality-

adjusted life years; 
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 Providing an estimate of inequality that is sensitive to morbidity differences 

but goes beyond binary measures of ill-health (such as disability-free life 

expectancy) 

 Using whole-population mortality data and health-related quality of life data 

from a random sample of over 25,000 people and capturing the uncertainty in 

these estimates through Monte Carlo simulation; 

 Estimating a univariate distribution of quality-adjusted life expectancy at 

birth based on inequalities by gender and deprivation groups, in which the 

whole population is ranked from least to most healthy. 

 

Chapter 3 investigates how the health effects from marginal changes in health system 

expenditure are distributed across social groups of interest. This chapter uses recent 

data published on the statistical relationship between health and expenditure in the 

English NHS by Claxton et al. (2015), which estimates how much and what type of 

health is lost when health care expenditure is reduced at the margin. We estimate 

how these health losses are distributed across society in the case of a single payer 

health care system with a fixed budget: the English NHS. Health care utilisation 

statistics by age, gender and disease are used to determine the distribution of health 

effects. This study provides three main contributions to existing knowledge on this 

topic: 

 It is the first to provide an empirical estimate of the social distribution of 

health effects from marginal NHS budget changes that accounts for length 

and quality of life; 

 As reductions in expenditure are analogous to the reallocation of existing 

funds to a newly approved intervention, the results also provide an estimate 

of the distribution of health opportunity costs; 

 As the distribution also estimates how marginal increases to the budget are 

distributed, the findings represent the opportunity cost of alternative 

interventions when new funds are allocated to the health sector. 

 

Chapters 4 and 5 demonstrate how the results of chapters 2 and 3 can be 

implemented in a distributional cost-effectiveness analysis framework. In chapter 4, 

a simplified version of DCEA is proposed to estimate and evaluate the health 
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inequality impacts of 27 health technologies approved by NICE between 2012 and 

2014. This simplified method takes into account social variation in condition-specific 

health care utilisation, for which data are readily available, but not social variation in 

technology-specific uptake and efficacy, for which relevant data are often harder to 

find. For example, the approach allows for the inequality-reducing impact of 

hepatitis C therapies that relate to the higher proportion of patients in more deprived 

areas, but not the countervailing impact of therapies that relate to the better 

adherence and health outcomes of patients in less deprived areas. Health benefits are 

estimated using the distribution of hospital utilisation for the relevant condition, and 

combined with the health opportunity cost estimates from chapter 3 to obtain the 

‘net’ health impact for each equity-relevant subgroup. These are modelled onto the 

baseline distribution from chapter 2. Inequality and social welfare measures are used 

to estimate the social impacts of each technology. This work makes the following 

contributions to the literature: 

 Offers a new and simplified technique for estimating health inequality 

impacts that utilises widely available data on health care utilisation; 

 Demonstrates the impact of accounting for the distribution of opportunity 

costs when analysing changes to health inequality; 

 Provides approximate estimates of the health inequality impacts of a wide 

range of health technologies approved by NICE. 

 

In chapter 5 we conduct a full DCEA to evaluate the health inequality impacts of 21 

smoking cessation interventions, including both behavioural interventions and 

pharmacotherapies. A decision model developed to support a NICE public health 

guideline is retrospectively adapted to estimate cost-effectiveness results by 

socioeconomic group, the results of which are then used to conduct the DCEA. The 

objective is to demonstrate that by using a traditional decision model, a robust DCEA 

can be conducted with limited additional resources through pragmatic literature 

reviews that identify data on how decision model inputs vary by social group. This 

analysis also allows us to explore the impact of including additional sources of 

socioeconomic variation by comparing our results to those yielded by the simplified 

DCEA approach outlined in chapter 4. These results are estimated using the average 

estimates of incremental costs and health and the socioeconomic and gender 
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distribution of smokers in the population. This chapter makes the following 

contributions to the literature: 

 Outlines how decision analytic models can be adapted to estimate the 

incremental costs and health effects of new interventions by equity-relevant 

subgroups; 

 Estimates to what extent the simplified approach to DCEA overestimates 

health inequality impacts by not accounting for differential efficacy and 

uptake; 

 Provides quantitative evidence on how funding smoking cessation 

interventions might affect health inequalities in England. 

  



23 

Chapter 1: Literature review 

 

 

Allocating resources in health care in an equitable way is an immensely complex 

process. Potential recipients all have competing moral and clinical claims to 

resources, yet finite resources mean it is impossible to treat them all. Williams and 

Cookson (2006) identify the lack of clarity around the concept of equity as one of the 

principal reasons that HTA has failed to formally incorporate criteria other than 

efficiency. Johri and Norheim (2012) support this claim, citing the multifaceted 

nature of equity as the principal constraint on methodological progress. Equity can be 

defined in terms of the characteristics of patients and their illnesses. For example, 

many studies have argued that greater priority should be given to those with more 

severe illnesses (Dolan 1998; Ubel 1999; Nord 1993; Nord 2005; Brazier et al. 

2013). Another concern has been that a health maximisation approach may 

discriminate against those who have relatively limited capacity to benefit from 

treatment, such as the elderly, the co-morbid and the disabled, since treatments 

directed at them are likely to be comparatively less effective (Nord et al. 1999; 

Kamm 2013).  

 

The focus of this thesis is on a different aspect of equity - inequalities in lifetime 

health. An equitable distribution of health does not imply equality of health, 

however. Differences in health are the consequence of a complex web of causes that 

occur throughout the life course, some of which can be judged fair, others unfair. 

However, discussions on the specific set of social value judgements that determine if 

causes are fair or unfair will be left to others (Fleurbaey & Schokkaert 2009). 

Instead, this thesis provides methodological and empirical contributions to an 

evaluative framework that formally incorporates concerns for health inequality, 

howsoever it be defined. The methods adopted in the following chapters can 

therefore be adapted to whatever set of social characteristics are deemed unfair and 

are not specific to those that are used in the applications presented (which are gender 

and socioeconomic status). 
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This chapter reviews the existing approach in the UK health system to addressing 

health inequalities and the efforts made in the academic literature to develop 

evaluative frameworks that incorporate concerns for them.  

 

1.1 Current institutional arrangements 

 

1.1.1 Health inequalities and the NHS 

 

The NHS has a clear mandate to provide equitable health care and to reduce health 

inequalities (Department of Health 2013). Highly publicized government-

commissioned reports such as the Black Report (DHSS 1980) and the Acheson 

Report (Lowdell et al. 1999) have advocated for impacts on inequalities to be 

considered in the provision of health care and in public health interventions. In 

another NHS report, Graham and Kelly (2004) highlight some of the major 

determinants of social inequalities in health and make several recommendations with 

respect to monitoring and reducing them. In 2009, a parliamentary report lamented 

the magnitude of inequalities and the lack of rigorous evaluation studies looking at 

the health inequality impacts of policies, concluding that more needs to be done in 

health care (with specific reference to the NICE model) and public health (House of 

Commons Health Committee 2009, p.48). 

 

Since 2002, the NHS has used its resource allocation procedures to reduce health 

inequalities by funnelling additional funds to regions with higher levels of ‘unmet 

need.’ The resource allocation formula estimates health care utilisation as a function 

of patient population characteristics that affect regional need. It is used to guide the 

budget apportioned to regional commissioning bodies, which up until 2012 were 

Primary Care Trusts (PCTs) and are now Clinical Commissioning Groups (CCGs). 

Following the introduction of the AREA formula (Sutton et al. 2002) and its 

replacement, the CARAN formula (Morris et al. 2007), the deprivation level of 

commissioning bodies has had a much greater effect on its budget allocation due to 

the inclusion of variables designed to represent levels of ‘unmet need’.  

 

Unmet need reflects the belief that those in groups with higher levels of deprivation 

are more likely to have undiagnosed disease, less likely to utilise preventive health 
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care services and less likely to secure high quality co-ordinated care for long-term 

conditions for a variety of complex reasons, described in more detail in Cookson et 

al. (2016). In terms of the allocation formula, this creates the effect of biasing the 

impact of deprivation downwards because of a correlation between deprivation levels 

and unobserved health variables (Morris et al. 2007, p.17). By creating morbidity 

indices that reflect the unmet needs of the population and controlling for them in the 

analysis, the authors argue that effects of deprivation are more adequately captured.  

 

The inclusion of unmet need in the resource allocation formula has increased the 

resources provided to more deprived areas of the UK, meaning that significant 

portions of the NHS budget are dedicated to reducing these avoidable health 

inequalities. However some, including Asthana et al. (2013), have pointed out that 

health inequalities have not been noticeably reduced and  have actually grown larger 

in some respects. The reason for this lies in the prevailing view that social and 

economic determinants of health, such as income and education, have a far greater 

impact than health care (Shiell 2009; Marmot et al. 2008; Powers & Faden 2000) and 

have consequently overridden any beneficial effects of resource allocation policy. In 

this sense, policies from outside of the health sector that focus on these social 

determinants can be just as valuable as the efforts made within it towards reducing 

health inequalities (Barr et al. 2017). However, cross-sectoral evaluation is currently 

a Pandora’s box of methodological and empirical issues made even more 

complicated when considering distributional impacts. We therefore leave the 

discussion of its use to others (for example, see Claxton et al. (2010) and Adler 

(2011)). 

 

1.1.2 Health inequalities and NICE 

 

Increasing the level of resources to more deprived areas does not automatically help 

to reduce health inequalities, since CCGs may not be funding health care towards 

those with the worst health or greatest need. The body tasked with performing 

economic evaluations and informing the purchasing decisions of CCGs is NICE. 

However, the formal evaluation model used by NICE, which will be reviewed in this 

section, does not estimate distributional impacts quantitatively, meaning that we 
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ultimately do not know whether the resource allocation policies are improving health 

inequalities.  

 

A typical quantitative analysis employed by NICE examines the costs of the 

intervention that fall on the NHS budget and the health benefits created, measured in 

quality-adjusted life years (QALYs) (NICE 2013). Since the budget is fixed, all of 

the costs used to fund the new technology displace other services currently provided 

somewhere within the NHS. Costs can therefore, in principle, be converted into 

health opportunity costs using an estimate of how much health is displaced per 

monetary unit, which are then compared with the health benefits to see if there would 

be a positive net health effect of approving the technology. Net health benefit (NHB) 

can be written: 

 

NHB = ∆H − ∆C
k⁄  

 

Where ∆H  is the change in health over the best available comparator; ∆C  is the 

change in costs; and k represents the health opportunity cost: the cost-per-QALY of 

the displaced services. Recent empirical work has estimated k at around £13,000 per 

QALY (Claxton et al. 2015). Whilst k is conceived of as health opportunity cost in 

principle (Drummond et al. 2005; McCabe et al. 2008), NICE itself uses a cost-

effectiveness ‘threshold’ range of between £20,000 and £30,000. This means that 

technologies will be approved when the net benefit is positive for all k ≤ 20,000, 

and rejected when the net benefit is negative for all k ≥ 30,000, unless there is (i) 

strong evidence of significant additional non-health benefit or (ii) the they treat 

patients at the end of life, both of which are expanded upon below. Rather than to 

reflect health opportunity costs, NICE adopts this threshold range to achieve a 

“reasonable compromise between ensuring everyone has fair and equitable access to 

the NHS and enabling access to new and innovative treatments” (Dillon 2015). 

McCabe et al. (2008) argue that whilst these other attributes of benefit should not be 

excluded from the decision-making process, the threshold should, however, reflect 

health opportunity cost and that cost-effectiveness should be a necessary but not 

sufficient condition for approval. 
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The principle of health maximisation that follows from cost-effectiveness analysis is 

a special form of utilitarianism that uses QALYs as the maximand rather than 

individual utility (Wagstaff 1991; Bleichrodt 1997). The distributional principle 

underlying health maximization is that every QALY is equal and no recipient is more 

or less deserving than any other (Drummond 1989; Wagstaff 1991). This principle of 

‘a QALY is a QALY is a QALY’ (Dolan & Tsuchiya 2006) is problematic on ethical 

and empirical grounds. Health maximisation is not the sole professed goal of 

decision-makers in the UK and elsewhere, as evidenced by the threshold range 

adopted by NICE and the continued desire to improve the health of the worst-off and 

dedicate more resources to them (NICE 2008a). Numerous studies of decision-

makers and the general public have also demonstrated that there are many other 

attributes of benefit considered socially important (see Guindo et al. (2012) for a 

review). It is for these reasons that the continued exclusive use of cost-effectiveness 

analysis as the quantitative evaluative tool in HTA has motivated the development of 

a number of alternative methodologies that are reviewed later in this chapter.  

 

Despite concerns for inequality not being represented in the quantitative aspects of 

HTA, they do appear in other stages of the process. This first occurs when assessors 

define the remit of the appraisal (‘scoping’) where issues of interest are identified. 

These include ‘the disease or health condition and the population(s) affected’ (NICE 

2013, p.16) and ‘issues relating to advancing equality of opportunity’ (NICE 2013, 

p.17). Inequality concerns are also deemed relevant in the assessment process when 

technologies have an incremental cost-effectiveness ratio above £20,000. Rawlins et 

al. (2010) note that in these circumstances, where stronger evidence is required for 

approval, the impact of technologies on disadvantaged populations likely to be in 

worse health (such as those on low incomes or ethnic minorities) must be taken into 

account by the Technology Appraisal Committees (TACs).  

 

At the same time, TACs must also consider the principles outlined in NICE Social 

Value Guidance (NICE 2008a) when making an approval decision. One such 

principle is that recommendations that restrict the recipient population in terms of 

their characteristics, including age, race, gender, disability or socioeconomic status, 

can only be made in special circumstances (NICE 2008a, p.25). Thus, NICE 

committees must look more favourably upon group-level interventions benefitting 
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the disadvantaged without discriminating against them in the delivery of individual 

services. Another aspect that is missing from the current approach is how health 

inequality impacts are reflected in the health opportunity costs of approval decisions. 

TACs are instructed to look kindly on interventions that benefit those likely to be in 

poor health without consideration or knowledge of how those populations are 

affected by the displacement of other services. Without knowledge of how the 

opportunity costs are distributed, the net effect of interventions on reducing health 

inequalities will remain unknown. 

 

This somewhat incomplete and informal approach toward incorporating inequality 

concerns in NICE processes has been labelled unsatisfactory by commentators 

(Lindholm & Rosen 1998; Williams 1997; Cookson et al. 2009). Greater focus has 

generally been placed on other equity characteristics related to clinical need such as 

access to care, severity of illness (Shah 2009; Green 2009; Brazier et al. 2013) and 

treatments at the end of life (NICE 2009; Collins & Latimer 2013; Shah et al. 2014). 

Only the latter are given formal weighting during NICE appraisals: if a treatment 

increases mean overall survival by more than three months to patients with mean life 

expectancy of less than six months, a higher cost-effectiveness threshold of £50,000 

per QALY is used. Consideration of other equity aspects may therefore be ad hoc, 

inconsistent and opaque (Baltussen & Niessen 2006; Goetghebeur et al. 2008). This 

is contrary to its commitment to the ‘Accountability for Reasonableness’ framework 

(Daniels 2000) that demands complete transparency for legitimacy, leading Shah to 

conclude that there is little guidance to TACs about how to approach potential trade-

offs between equity and efficiency (Shah et al. 2011, p.11), despite the clear 

importance of the former. 

 

1.1.3 Public Health 

 

In addition to the provision of health care, NICE has since 2005 also played a role in 

public health by providing guidance on cost-effective interventions (NICE 2012b). 

These include programmes intended to change lifestyle factors, such as smoking 

cessation and increased physical activity, which come closer to the more ‘upstream’ 

factors that can potentially have a significant role in reducing health inequalities 

(Weatherly et al. 2009; Whitehead & Ali 2010; Shah et al. 2011). This is reflected in 
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public health agencies across the world placing great emphasis on this objective 

(Raphael 2000; Norwegian Ministry of Health and Care Services 2007; PHAA 

2012), with the Department of Health in the UK making it a key indicator in its 

Public Health Outcomes Framework (DH 2013). As with health care however, no 

efforts are made to precisely estimate the potential impacts on the level of health 

inequality. Weatherly et al. (2009) find that empirical literature on public health 

interventions rarely mentions inequality impacts, whilst health inequality audits (DH 

2006) and impact assessments (Taylor & Blair-Stevens 2002), recommended by 

NICE in its inequality guidance to local authorities (NICE 2012a), are not 

quantitative, making it difficult to ascertain the consequences of policies.  

 

The methodological challenges for the evaluation of public health interventions are 

different to those for health care, since the public health budgets are allocated to local 

authorities rather than CCGs. This raises issues similar to education or tax policies 

that impact on health inequality, which are beyond the scope of the current 

methodology and indeed this review. Regardless, public health is an important tool in 

tackling unfair health inequality and more research is needed on how it can be best 

utilised.  

  

1.1.4 Discussion 

 

This section summarises how the UK approaches the problem of unfair health 

inequality. Whilst the topic of this thesis is how this can be done through health care 

provision, it is acknowledged that policies implemented from outside the health 

sector that target education or income can be equally, if not more effective at 

reducing disparities. Public health is another avenue that could be explored, but both 

require different methodological approaches due to how they are financed. 

 

Given that NICE guidance could potentially ensure the provision of inequality-

reducing technologies, economic evaluation remains an under-utilised resource for 

combating inequality. This is not a phenomenon limited to the UK, with HTA 

guidance in both Australia and Canada avoiding any formal implementation of 

inequality concern in the evaluation process (Department of Health and Ageing 

2009; CADTH 2006). The reluctance to do so likely stems from contentious issues 
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related to distributive justice. Introducing a framework that is explicit and transparent 

with regard to inequality concerns requires a commitment to certain social value 

judgements about what sources of inequality are unfair. 

 

The effect of these issues is that the distributional impacts of health technologies, 

despite their importance to decision-makers, remain unclear. In order for the 

additional resources allocated to more deprived areas to have the desired effect, 

decision-makers require an alternative evaluative process that informs them as 

accurately as possible as to how treatments affect the distribution of health.   

 

1.2 Frameworks for evaluating inequality effects in the health sector 

 

Inequality concerns, along with other aspects of equity, have been at the heart of the 

development of alternative methodologies in health economic evaluation. This 

section reviews the frameworks that have been proposed to address the deficiencies 

of CEA along with limitations and potential for practical use. These are (i) dashboard 

approaches; (ii) equity weighting; and (iii) social welfare analysis.  

 

These frameworks can be applied using linear programming techniques as well as 

through decision analytic modelling. Linear programming employs optimization 

algorithms to maximise an objective function, which under a health maximisation 

approach would be the sum of QALYs subject to a budget constraint. Equity can be 

incorporated either as a constraint on this function or incorporated in to it directly. 

Examples of constraints include providing equal treatment for similar patients 

(Epstein et al. 2007) or providing a minimum health benefit to all patients (Cleary et 

al. 2010; Earnshaw et al. 2002). 

 

1.2.1 ‘Dashboard’ approaches 

 

Dashboard approaches to evaluation reflect the reality that numerous criteria are 

important in the decision-making process. The three methods that fall under this 

banner differ in the methods they use to estimate each criterion and whether they are 

synthesized into an overall score. 
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1.2.1.1 Cost-consequence analysis 

Cost-consequence analysis (CCA) is the methodologically simplest framework. 

Coast (2004) argues that this is a strength of CCA when compared to the complex 

‘black box’ methods used in cost-effectiveness analysis. In a CCA, the effects of a 

new intervention on a range of qualitative and quantitative criteria are estimated by 

researchers and presented to the decision-maker, who implicitly weights each 

criterion. Mauskopf et al. (1998) acknowledge that this process is potentially 

vulnerable to personal biases due to the imprecise nature of the criteria and opacity 

over how criteria are weighted.  

 

Distributional impacts can potentially be incorporated into CCA, and are put forward 

as a criterion by Trueman and Anokye (2013). Burger et al. (2010) do so in their 

evaluation of outreach strategies for pregnant women, noting the programmes 

targeted and improved outcomes for those with low incomes or in ethnic minorities.  

 

However, reducing the complexity of the process inherently reduces the strength of 

the evidence for or against the adoption of a technology. Furthermore, given the 

qualitative nature of any equity criteria and the lack of opportunity costs in the 

analyses, net distributional impacts are likely to be imprecise and uncertain. 

However, when a decision-maker wishes to consider additional aspects of benefit, 

and data to support them are limited, a CCA may present as the most feasible option. 

 

1.2.1.2 Multicriteria decision analysis 

Multicriteria decision analysis (MCDA) is an extension of the CCA framework that 

utilises multi-attribute utility theory to analyse trade-offs between different measures 

and objectives. The first stage involves the selection of a set of relevant, 

comprehensive and independent criteria, using either the theoretical literature or 

focus groups. Next, interventions are modelled on the criteria, and in the third stage 

they are scored to create a ‘performance matrix’, then combined into an overall 

intervention score using a function that applies elicited weights to each criterion (for 

a more thorough explanation of MCDA processes, see Baltussen and Niessen (2006), 

Goetghebeur (2008) and Thokala and Duenas (2012)).  
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Johri and Norheim (2012) recommend MCDA as the most promising avenue for 

incorporating equity concerns into economic evaluation. As with CCA, a criterion 

can be included to reflect how the intervention impacts upon disadvantaged 

populations, as recommended by Baltussen et al. (2013) and included by Peacock et 

al. (2007). Thus far however, measurement of distributional impacts has been 

simplistic or qualitative.  

 

MCDA is presently a framework in development. Many issues remain over the 

selection of criteria, as a recent review by Guindo et al. (2012) highlights. Thokala 

and Duenas (2012) point to several more unresolved problems. It is not clear whether 

a consistent set of criteria ought to be applied across interventions, and there are no 

accepted methods for scoring criteria on appropriate scales. Even the most widely 

applied MCDA framework, EVIDEM (Goetghebeur et al. 2010; Tony et al. 2011; 

Goetghebeur et al. 2012; Miot et al. 2012), uses a simple stated preference method to 

elicit weights and scores. This increases the likelihood of personal biases when 

compared to more robust experimental methods such as discrete choice experiments. 

Lastly, opportunity costs would need to be estimated for every criterion when applied 

to health systems with fixed budgets – a challenge not yet undertaken by any study. 

 

1.2.1.3 Extended cost-effectiveness 

The final ‘dashboard’ approach is extended cost-effectiveness analysis (ECEA). 

Formulated by Verguet et al. (2013), ECEA is specifically intended for evaluating 

health interventions for developing countries. Interventions are evaluated not only in 

terms of health outcomes (i.e. number of deaths) but also on the level of financial 

risk protection afforded and the household expenditures avoided. Furthermore, the 

impact on each criterion is presented by wealth quintile, providing clear and explicit 

information on the distributional impacts. For example, in an analysis of providing 

UHC for tuberculosis in India, the authors find that 80% of deaths averted are in the 

bottom two income quintiles (Verguet et al. 2014).  

 

As ECEA is applied to developing countries where there is no fixed budgetary 

constraint, consideration of opportunity costs is not restricted to health. Whilst the 

funding of new interventions will displace some public and private health care, 

opportunity costs will also fall on other public services and private consumption. 
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Each of these facets of opportunity cost will have distributional consequences for 

health and income that should be taken into account. For example, the analysis of 

tobacco taxation policy in Lebanon by Salti et al. (2016) quantifies the tax revenue 

by income quintile, but does not calculate the net effect by estimating the distribution 

of benefit (health or otherwise) from any consequent public service provision. 

Another potential problem is that ECEA does not offer any way in which to trade off 

between criteria. Nevertheless, given its recent creation, ECEA is a promising 

framework that uses sophisticated techniques to model distributional impacts. 

 

1.2.2 Equity weighting 

 

The idea of weighting the benefits of an intervention according to the characteristics 

of the recipients is the most intuitive way to reflect the principle that the social value 

of those benefits differs between individuals. It is an approach that has long been 

suggested in relation to both cost-benefit analysis (Harberger 1978) and cost-

effectiveness analysis (Bleichrodt 1997; Bleichrodt et al. 2004), and weights have 

been applied a range of characteristics. The UK Treasury, for example, advocate 

weights on technical grounds, to reflect diminishing marginal utility (HM Treasury 

2011). Other studies, including Nord (1993), Nord et al. (1999) and Brazier et al. 

(2013) have formulated weights to reflect severity of disease. A thorough discussion 

of all the arguments and principles that justify weighting certain characteristics, as 

well as the empirical evidence that supports them, is beyond the scope of this review 

but can be found in Sassi et al. (2001). 

 

Two types of weights can potentially reduce unfair inequalities, each resting on 

different ethical arguments. The first is to differentiate between social groups such as 

socioeconomic classes, as suggested by Williams (1997), or occupational groups as 

advocated by Lindholm et al. (1998). Giving greater weight to the benefits accruing 

to the least-healthy groups will then reduce unfair health inequalities, given that such 

differences are unjust to start with (see Marmot (1997)). The second type is 

weighting benefits by age. This requires that the health variable we are trying to 

reduce inequality in is lifetime health, and has come to be known as the ‘fair innings’ 

argument (Williams 1997). Williams (2001), supported by Dolan and Olsen (2001) 

and Tsuchiya (2000), argues that priority should be given to the young so that they 
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are given the best opportunity to have a ‘fair innings’ (for example, 70 QALYs). 

Implementation of age weights would thereby reduce these inequalities in lifetime 

health. Bleichrodt et al. (2004) advocate a different ethical position, proposing a 

system of weights that depend only on the rank of the individual in the distribution of 

health. 

 

The implementation of equity weights is far from simple. First, as Johri and Norheim 

(2012) acknowledge, studies that attempt to elicit weights from a sample of the 

population, such as those by Nord (1999), Bleichrodt et al. (2005) and Maestad and 

Norheim (2009) can be subject to a number of experimental biases. Nord notes that 

the complexity of questions posed in the studies may also lead to inauthentic 

responses. Morton (2014), when analysing the equity impacts of treatment strategies 

for depression, avoids specifying a particular set of weights by conducting sensitivity 

analysis using a range of different weights using mathematical programming 

techniques. By running an optimisation over different combinations of group 

weights, he determines how frequently an intervention is the simulated optimal 

solution. 

 

Numerous other problems are also identified by Wailoo et al. (2009). The authors 

point out that equity characteristics can change over the time horizon used in cost-

effectiveness modelling, complicating matters significantly. Another issue relates to 

the multitude of equity characteristics and how weights can reflect interactions 

between them. Most importantly, equity weights are not reflected in the health 

services displaced when funding interventions under a fixed budget, since the 

characteristics of patients using the displaced services are unknown. These criticisms 

are echoed by Bobinac et al. (2012) and Paulden et al. (2014), the latter with respect 

to the weights applied by NICE to end-of-life treatments. Recent work by Claxton et 

al. (2015) did account for opportunity costs by estimating a series of equity-weighted 

thresholds based on the burden of illness and wider social benefits of diseases that 

are related to health services displaced at the margin. These weights were not, 

however, adopted by NICE, which maintains that a QALY has the same weight for 

all population groups (NICE 2014). 
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1.2.3 The social welfare function approach and distributional cost-effectiveness 

analysis 

 

The idea of using social welfare functions, usually applied in the income distribution 

literature, to health distributions was first proposed by Wagstaff (1991) and later 

developed by Dolan (1998) and Bleichrodt (2004). Health-related social welfare 

functions (HRSWFs), as they came to be known, are a particularly relevant tool for 

analysing health inequalities due to their ability to trade off between equity and 

efficiency concerns through a parameter that reflects the level of inequality aversion. 

As Johri and Norheim (2012) state, HRSWFs evaluate health distributions by 

multiplying average health by a measure of inequality, such as the Atkinson index 

(Atkinson 1970) advocated by Lindholm and Rosen (1998) and Norheim (2013).  

 

An example of the HRSWFs being applied to economic evaluation in health care was 

performed by Robberstad and Norheim (2011). Their study looked at two competing 

interventions: vaccinations for infants and hypertensive drugs for adults with reduced 

life expectancy. The impacts on lifetime health expectancy were modelled for each 

treatment option and the distributions were evaluated using HRSWF with inequality 

aversion.  

 

Distributional cost-effectiveness analysis (DCEA), a framework proposed by Asaria 

et al. (2015), further developed this idea of modelling health distributions and 

evaluating them using HRSWFs. The evaluation process in DCEA involves five 

steps. First, a baseline distribution of health that reflects unfair inequalities in health 

is estimated using a metric consistent with economic evaluation such as the QALY or 

disability-adjusted life years (DALYs). Second, the effects of the intervention are 

modelled for each of the population groups used to construct the baseline 

distribution. The opportunity costs of the intervention are then estimated for each of 

the relevant population groups. Fourth, the effects and opportunity costs are 

modelled onto the baseline distribution to generate a post-intervention distribution 

that reflects the net health effects. Lastly, the post-intervention distributions can be 

evaluated using a HRSWF. 
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A problematic aspect of DCEA is the determination of the level of inequality 

aversion. As with the elicitation of equity weights and criteria weights in MCDA, 

normative judgements or empirical evidence could form the basis of the social value 

judgements required to trade off between equity and efficiency. The latter approach 

is exemplified by Robson et al. (2016), who conducted face-to-face and online 

elicitation exercises on the UK general population and found that health gains for the 

poorest fifth of the population were weighted between six and seven times more 

highly than the richest fifth. However, despite re-weighting the samples to reflect the 

makeup of the general population, studies of this type may not accurately reflect the 

true population preference. First, the level of inequality aversion expressed by 

individuals may be influenced by the way in which the exercise is conducted or the 

phrasing of the questions. Ali et al. (2017) conclude that these ‘framing’ effects can 

considerably alter the level of inequality aversion but do not eliminate it altogether. 

Second, selection bias may still be present if there is a systematic difference between 

participants and non-participants with otherwise similar characteristics. 

 

At present, DCEA provides a more robust methodological basis for incorporating 

inequality concerns than the alternative frameworks included in this review. Utilising 

heath expectancy techniques to estimate a baseline distribution of health could 

provide a quantitative, evidence-based picture of health inequalities and a means of 

evaluating changes in inequality expected from funding an intervention. To enable 

these analyses, DCEAs do require a lot of data on the variation of model inputs by 

equity-relevant variables that may be not be widely available if patient-level data are 

not used. However, unlike some of the other methodologies looked at in this review, 

it also provides a mechanism for incorporating the opportunity costs of any 

purchasing decision, an essential component of ascertaining the net distributional 

effect.  

 

1.2.4 Discussion 

  

This review identifies three principal approaches to incorporating inequality concerns 

into health economic evaluations: dashboard approaches, equity weighting and social 

welfare analysis. Whilst these have been presented independently, many aspects of 

the approaches are interlinked and rely on similar assumptions. 
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Multi-criteria decision analysis represents a decision-making framework that 

encompasses most of the approaches described. ECEA, for instance, is a form of 

MCDA in which the separate criterion are not weighted and formally traded-off. 

DCEA is also a form of MCDA in which a distributional criterion is added to cost-

effectiveness results, and where the weights between these criteria are determined by 

the inequality aversion parameter.  

 

DCEA and equity weighting are similarly related. Whilst the former has the 

additional steps of modelling net health impacts onto health distributions, the way in 

which these distributions are evaluated is determined by applying differential 

weights to individuals. The principal difference is that the social welfare functions 

used in DCEA, such as the Atkinson or Kolm indices, weight individuals on their 

rank in the health distribution rather than on another socially relevant criterion. 

 

Two key considerations emerge across the discussions of all frameworks. The first is 

the role of health opportunity costs, which are not dealt with in any methodological 

rigour in any of the frameworks, with the exception of DCEA. This is a crucial 

shortcoming that must be addressed in order for a framework to adequately evaluate 

whether interventions will improve or exacerbate health inequality. This importance 

can be shown in a simple example in which society has two groups, healthy and 

unhealthy. An intervention imposes health opportunity costs of 50 and 100 QALYs 

and health benefits of 100 and 125 QALYs to the healthy and unhealthy groups, 

respectively. This intervention, despite having a pro-poor distribution of benefit, 

would still increase health inequality. Thus, the distribution of opportunity costs is a 

necessary requirement to determining health inequality impacts. 

 

The second common consideration is that each framework, with the exception of 

ECEA (where inequality and total gain are not formally traded off), includes at least 

one normative parameter that cannot be scientifically determined. In DCEA this is 

the inequality aversion parameter used to conduct social welfare analysis, whilst in 

MCDA it is the weights assigned to the competing criteria. This reflects the nature of 

incorporating an aspect of equity into a quantitative framework. The defensibility of 

multiple reasonable positions on issues of equity have so far inhibited the progress of 
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alternative frameworks to CEA emerging in health technology assessment. However, 

the act of making them explicit is also an appealing argument for adopting such 

frameworks, as they make the value judgements underpinning decisions more 

transparent than the ad hoc deliberations currently in place. 
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Chapter 2: Estimating the social distribution of health in England 

 

 

2.1 Introduction 

 

The prevalence of many diseases and illnesses differ by income, gender and race. 

While some of these will shorten lifespan, others will limit our ability to function and 

flourish in life. Both aspects are central to our health experience, and it is therefore 

crucial that when we estimate inequalities of health between social groups, the 

differences in both quality and quantity of life are accounted for. There are various 

ways of summarising a population’s overall lifetime experience of health by 

combining information on both mortality and morbidity into a single figure, 

generating an estimate of ‘health expectancy’. Perhaps the best known metric is 

disability-free life expectancy (DFLE), which subtracts years from life expectancy 

using a binary indicator of ill-health or disability.1  

 

Quality-adjusted life expectancy (QALE) is a more recent approach to estimating 

health expectancy that uses a continuous ratio scale variable to measure morbidity, 

thus enabling it to incorporate detailed multi-attribute data on health-related quality 

of life. The rising popularity of the quality-adjusted life year (QALY) metric, 

through its use in health technology assessment, has led to the inclusion of 

preference-based heath-related quality of life (HRQL) questionnaires in national 

health surveys, affording researchers the opportunity to estimate QALY weights for a 

wide range of population subgroups using large, nationally representative datasets. 

However, implementation of the QALE metric in health inequality research has been 

limited to regional analyses (Collins 2013; Collins 2017), despite widespread 

application of other health expectancy indicators to inequality measurement (Bajekal 

2005; Wood et al. 2006).  

 

                                                 
1
 The term health-adjusted life expectancy (HALE) is also widely used in the literature but has been 

applied to DFLE (Collins 2013), disability-adjusted life expectancy (Mathers et al. 2001) and QALE 

(Manuel & Schultz 2004). To avoid such ambiguities, this paper will not use the term HALE in 

describing health expectancy measures. 
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As well as health inequality measurement, the baseline social distribution of health 

that is estimated in this chapter can be used to model the distributional impacts of 

new health care and public health interventions in distributional cost-effectiveness 

analysis (Asaria, Griffin, Cookson, et al. 2015; Asaria, Griffin & Cookson 2015; 

Cookson et al. 2017). Doing so will enable decision-makers to (i) gauge how health 

inequality is expected to change if the intervention was funded; (ii) determine 

whether a trade-off might exist between maximising population health gain and 

reducing health inequality; and (iii) evaluate, if a trade-off does occur and there is a 

degree of inequality aversion, the joint impacts through social welfare analysis.  

 

The aim of this study is to generate predictions of QALE for age, gender and 

socioeconomic groups using nationally representative survey data and mortality 

rates. By combining these with their respective population estimates, we then create 

a rank ordering of the population by QALE that reflects social inequalities in health, 

from which we can calculate social welfare indices. The merits of this analysis are 

three-fold. First, a QALE distribution will allow for the effects of health care and 

public health interventions on population health to be modelled directly using 

methods and metrics consistent with cost-effectiveness analysis.  Second, using the 

QALY in population health measurement provides a richer measure of inequality by 

reflecting differences in both mortality and morbidity, which are both shown to be 

worse in lower socioeconomic groups (Cookson, Asaria, et al. 2016). Third, the 

social welfare results indicate, for a given level of inequality aversion, the amount of 

average health that society would be willing to give up in order to obtain an equal 

distribution. 

 

2.2 Overview of health expectancy 

 

Health expectancy metrics all follow a similar methodology and differ in terms of the 

way that morbidity is incorporated. They can be divided into five principal types, 

which are listed in Table 2.1.  

 

The first stage common to all health expectancy metrics is to construct life tables 

using national age-specific mortality rates to generate predictions of life expectancy 

(Chiang 1972). The life tables are then adjusted by whatever measure of morbidity is 
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employed, using a method originally proposed by Sullivan (1971). For DFLE, 

morbidity is a binary measure indicating the presence or absence of disability or 

limiting long-standing illness, estimated at the population level through prevalence 

rates estimated from survey or administrative data.  

 

Developments in HRQL measurement have provided more sensitive instruments to 

quantify individuals’ health status. Disability-adjusted life years (DALY), developed 

by Murray (1994), attach pre-determined weights to each life year associated with a 

particular disability; combining the weights of each disease and their prevalence rates 

with life tables using the Sullivan’s method creates an estimate of disability-adjusted 

life expectancy (DALE). In doing so, each life year lived with a disability or chronic 

disease is adjusted for severity rather than being excluded entirely as with DFLE.  

 

Table 2.1: Taxonomy of health expectancy metrics 

Metric Morbidity measure Example 

Life expectancy None White & Butt (2015) 

Disability-free life expectancy Disabled/limiting illness – yes/no (2 states) ONS (2013) 

Healthy life expectancy 
Self-assessed good health – yes/no (2 

states) 
Wood et al. (2006) 

Disability-adjusted life 

expectancy 

Prevalence of a disease or disability and 

associated disability weights to generate 

DALYs (220 states + sequelae) 

Salomon et al. (2012) 

Quality-adjusted life-

expectancy 

Generic multi-dimensional self-reported 

health questionnaire and associated quality 

weights to generate QALYs (EQ-5D-3L – 

245 states, SF-6D – 18,000, HUI3 – 

972,000
2
) 

Collins (2013) 

 

 

In this study we adopt an alternative morbidity measure that has been developed for 

the economic evaluation of health technologies and public health interventions: the 

quality-adjusted life year (NICE 2014). Health-related quality of life weights are 

constructed from patients presenting illness and receiving treatment, who complete 

multi-item questionnaires on their own health at different points in time. The 

questionnaires cover a range of dimensions important to individual health, each with 

a range of severity levels, and are known as generic instruments as they are not 

specific to any particular clinical area, enabling the effectiveness of treatments in 

                                                 
2 See Rabin & de Charrao (2001) for more information on EQ-5D-3L, Brazier et al. (2002) for SF-6D 

and Feeny et al. (2002) for the HUI3. 
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different clinical areas to be compared (Drummond et al. 2005). Each permutation of 

responses represents a health state and is assigned a pre-determined utility score from 

a tariff elicited from the general population, which are anchored at zero (for health 

states as bad as death) with an upper limit of 1 (for full health with no problems in 

any dimension of health). Using a variation on Sullivan’s method outlined in Roset 

& Gaminde (1999), health-related quality of life (HRQL) weights are used to adjust 

life years for morbidity.  

 

The application of health expectancy measures to socioeconomic inequalities in 

health has been highlighted as potentially one of its most promising and fruitful uses 

(Robine et al. 1999; Roset & Gaminde 1999). In Valkonen et al. (1997), Finnish life 

tables are constructed by level of education by linking death records to census data. 

Using several different definitions of disability and illness, the authors estimate gaps 

ranging from 7.3 to 13.1 healthy life years between high and low education groups. 

Bajekal (2005) compares healthy life expectancy (see Table 2.1) and DFLE between 

socioeconomic groups using mortality rates and deprivation scores for 8,595 

electoral wards in the UK. The disparities between the least and most deprived decile 

groups were estimated at 16.9 healthy years (based on prevalence of self-assessed 

good health) and 12.4 disability-free years (based on prevalence of disability/long-

standing illness) for males, and 16.8 and 9.9 for females, respectively. Wood et al. 

(2006) also look at both DFLE and healthy life expectancy between deprivation 

groups, this time in Scotland, using self-reported long-standing illness statistics from 

census data. They estimate a difference of 13.6 healthy years of life between the least 

and most deprived groups. 

 

The extension of these methods to QALE is scarce. Jia et al. (2011) analyse gender 

and racial differences in QALE at age 18 in the US. White women had the highest 

QALE of 54.1 QALYs, compared with black men at 46.1 QALYs. Only Collins 

(2013) has focused specifically on QALE differences between socioeconomic 

groups. Using EQ-5D data from a special one-off regional survey, the author 

estimates QALE for the least and most deprived areas of the Wirral area in England 

(judged by national area-level deprivation score) and compares them with HLE 

estimates based on a binary self-assessed health variable. The study emphasizes the 

importance of evaluating morbidity and mortality together using a robust morbidity 
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indicator. A gap of 12.7 QALYs between those falling in the most and least deprived 

national quintile groups is estimated, compared with 8.1 life years and 14.1 healthy 

years, which under-estimate and over-estimate morbidity effects respectively.  

 

2.3 Methods 

 

Our analysis consists of five stages. First, using data in the Health Survey for 

England (HSE), we predict HRQL weights as a function of age, gender and 

socioeconomic status. Second, predictions of life expectancy are generated from 

national mortality data for age, gender and socioeconomic groups using life tables. 

The life tables are then adjusted using the HRQL estimates to create respective 

predictions of QALE. After the population estimates for each group are combined 

with their respective QALE to create the social distribution of health, we compute 

indices that evaluate social welfare in terms of both total health and health inequality. 

A worked example demonstrating stages one to four is shown in Figure 2.1. 

 

2.3.1 Data and variables 

 

The analysis uses pooled data from the three recent rounds of the Health Survey for 

England (HSE) in 2010, 2011 and 2012, with a combined sample size of 35,062. The 

HSE is an annual series that monitors a range of health conditions and risk factors for 

the non-institutionalised population. It uses a multi-stage stratified probability 

sampling design with a sampling frame of Postcode Address File that tries to ensure 

every member of the population has an equal chance of being selected. Details of the 

sampling methodology are in Boniface et al. (2012).  

 

Health status is measured using the EQ-5D questionnaire (Rabin et al. 2011), a 

generic instrument used in HTA around the world to assess the treatment effects of 

interventions for a wide range of different health conditions (NICE 2004; Rabin & de 

Charrao 2001). The EQ-5D is a questionnaire that asks respondents to rate their own 

health in five dimensions: pain, mobility, anxiety/depression, self-care and usual 

activities.  In the original EQ-5D-3L version used in this study, subjects rate their 

health on each dimension using one of three possible levels: no problems, some 

problems, or severe problems.  This generates a possible 245 health states when 
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including the two additional states ‘unconscious’ and ‘dead’. A single index figure is 

then given to each health state based on a country-specific tariff. The standard UK 

value set estimated by Dolan et al. (1995) was applied to our data.3 This analysis is 

restricted to adults aged 16 and over, leaving a sample size of 25,320. This is due to 

the fact that EQ-5D is not responsive to the HRQL for children under this age, for 

whom there are other more appropriate instruments (Wille et al. 2010). 

 

The socioeconomic variable we use is the Index of Multiple Deprivation (IMD) from 

2010. This is a weighted area deprivation index of 38 variables covering seven 

dimensions of deprivation (employment, income, education, health, crime, living 

environment and housing/services) that is given to each of the 32,482 Lower Layer 

Super Output Areas (LSOAs) in England4. In 2010, the median LSOA population 

was 1,551 with an inter-quartile range of 1,429 to 1,708 and 99% had fewer than 

2,731 residents. More information on the methods used to construct the IMD can be 

found in McLennan et al. (2011). The raw IMD score is not reported in the HSE, thus 

the variable used in the regression analysis is population IMD quintile group, with 

the first quintile group representing the most deprived and those in the fifth having 

the lowest deprivation.  

 

We focus on age, gender and socioeconomic status as covariates, as these are often 

of interest in public health campaigns and are associated with large inequalities in 

population health. An additional advantage of using this set of variables is that they 

can potentially be collected in clinical trials. Whilst age and gender are routinely 

collected in most studies and surveys, there is now increasing interest in collecting 

equity-relevant data such as socioeconomic status (Mbuagbaw et al. 2017; Jull et al. 

2017). Doing so will improve the feasibility of DCEA by enabling more routine 

estimation of equity-informative cost-effectiveness evidence. 

 

                                                 
3 This value set, although nearly twenty years old, remains the largest and most representative source 

of UK survey data for estimating EQ-5D weights. The authors used the time trade-off method on a 

random sample of 3395 people from the adult UK population to elicit the value weights for 45 states 

and using econometric modelling to predict the rest. 

4 Assignment of domain weights were “driven by theoretical considerations and responses to the 

consultation processes” (McLennan et al. 2011, p.17). 
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Figure 2.1: Calculation of quality-adjusted life expectancy of females in the highest 

deprivation group 

 

Note: IMD = Index of Multiple Deprivation; OLS = ordinary least squares; QALYs = 

quality-adjusted life years; QALE = quality-adjusted life expectancy 

 

 

2.3.2 Regression Analysis 

 

The distribution of EQ-5D utility score is heavily skewed: the proportion of 

individuals reporting severe problems on any of the dimensions is rare, ranging from 

0.18% for mobility to 4.29% for pain; whilst the number reporting perfect health is 

over half, at 52.72%. Additionally, the utility data have an upper ceiling of 1. Whilst 

these properties suggest that a linear regression model may not be appropriate, we 

employ Ordinary Least Squares (OLS) as our estimator for two principal reasons. 

First, previous studies have shown OLS to perform well in comparison with other 
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types of estimator when used to model HRQL, particularly when using large sample 

sizes like those in the HSE (Petrou & Kupek 2008; Maheswaran et al. 2013; Vogl et 

al. 2012). Second, the principal diagnostic instrument for judging accurate HRQL 

prediction is accurate mean EQ-5D scores for age-sex-socioeconomic groups, since it 

is these that are used to adjust the life tables in the QALE process described below. 

This means that any potential imprecision of individual predicted scores caused by 

applying a linear model is not a cause for concern, so long as the mean group scores 

exhibit good fit.  

 

Using OLS also has an additional benefit, in that the estimated coefficients can be 

directly interpreted and utilised to predict EQ-5D (and therefore QALE) for different 

populations than the one used in this study. Alternative models are run to determine 

the model specification, one with age-socioeconomic status and age-gender 

interaction terms and a second with a quadratic age term to test for non-linearity with 

respect to utility. We also perform sensitivity analysis using alternative two-part and 

Tobit models, described in section 2.3.7. 

 

All statistical analyses are performed in Stata 12. Standard survey data analysis tools 

are used to (i) incorporate the probability weights supplied in the data that reflect 

imbalances between the sample population and the general population; and (ii) to 

account for the fact that scores within households – the primary sampling unit – can 

be correlated. Not accounting for the latter can distort statistical inference by 

reducing the standard errors.  

 

Another issue was missing HRQL data, with significant item non-response occurring 

within the sample. A total of 3,177 (12.6%) observations were missing a utility score, 

with these individuals on average tending to be older, male, non-white and living in 

more deprived areas than the complete cases. A logit model regressing the 

probability of missingness on our variables of interest was used to determine whether 

the data are Missing Completely at Random (MCAR) – that missingness is not 

systematic or related to individual characteristics (Little & Rubin, 2002). This found 

that age, race, gender and deprivation level are all statistically significant predictors 

of missingness (P<0.01), correctly predicting 86% of cases with missing values. 

These results are summarised in Table 2.2. 
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Table 2.2: Results from logistic regression estimating the effect of social 

characteristics on the probability of EQ-5D score being missing 

  Logit coeff Odds ratio 

Variables miss_eq5d miss_eq5d 

  

  Age 0.0142*** 1.014*** 

 

(0.00106) (0.00108) 

Sex 

  Male Ref Ref 

Female -0.0863** 0.917** 

 

(0.0388) (0.0356) 

Race 

  Non-white 

  White -0.574*** 0.563*** 

 

(0.0581) (0.0327) 

IMD Quintile Group 

  1 (most deprived) Ref Ref 

2 -0.156*** 0.856*** 

 

(0.0576) (0.0493) 

3 -0.469*** 0.626*** 

 

(0.0608) (0.0380) 

4 -0.552*** 0.576*** 

 

(0.0616) (0.0355) 

5 (least deprived) -0.644*** 0.525*** 

 

(0.0621) (0.0326) 

Constant -1.779*** 0.169*** 

 

(0.0745) (0.0126) 

   Observations 25,230 25,230 

Notes: 

1. *** p<0.01, ** p<0.05, * p<0.1. Standard errors are in parentheses. 

2. IMD = Index of Multiple Deprivation 

3. Of the 35,062 in the original sample, 25,320 were 16 and over and could be included in the 

analysis. 

 

 

2.3.3 Life tables 

 

2.3.3.1 Life expectancy 

Mortality data are acquired from a bespoke data extraction from the Office for 

National Statistics. This dataset contains, for 2012, population estimates and number 

of deaths by age (5 year bands), gender and IMD quintile group. Crude mortality 

rates for then calculated for each group, which are then used to construct ten 

abridged life tables using the Chiang II method (Chiang 1972) to obtain estimates of 

life expectancy for each of the 180 age-gender-socioeconomic groups (two genders, 
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five IMD groups, 18 age intervals). Crucially the mortality rates are used to calculate 

the probability that, conditional on them surviving up to the start of an age interval, 

an individual will die during it. This quantity, 𝑞𝑥, is given by the formula: 

 

𝑞𝑥 =
𝑛𝑥𝑚𝑥

1 + (1 − 𝑎𝑥)𝑛𝑥𝑚𝑥
 

 

Where 𝑛𝑥 is the number of years in age interval 𝑥, 𝑚𝑥 is the mortality rate and 𝑎𝑥 is 

the proportion of the age interval that individuals who die during the interval are 

assumed to have survived. The latter is set at 0.5 for all intervals. Life expectancy at 

the start of an age interval is estimated by dividing the number of years lived in that 

and all successive intervals by the number of people alive at the beginning of the 

interval:  

 

𝑒𝑥𝑑𝑠 =
∑ 𝐿𝑥𝑑𝑠

𝑧
𝑥

𝐼𝑥𝑑𝑠
 

 

Where 𝑒𝑥𝑑𝑠 is life expectancy at the start of age interval 𝑥 for deprivation quintile 

group 𝑑 and gender 𝑠; z is the last age interval; 𝐿𝑥𝑑𝑠  is the total number of years 

lived by the surviving cohort in interval 𝑥; and 𝐼𝑥𝑑𝑠 is the surviving cohort at the start 

of the interval. The life tables provide a snapshot of health for a given year for each 

social group (the “period” approach) rather than a prediction of lifetime health 

experience (the “cohort” approach). This means that our results do not account for 

the fact that individuals’ socioeconomic status may change over the life course.  

 

2.3.3.2 HRQL adjustment 

Life expectancy is then adjusted for HRQL using the predicted utility scores for each 

age-sex-socioeconomic group, via the Sullivan method (Sullivan 1971). Since we are 

unable to estimate HRQL for people aged 0-15, we assume that they experience the 

same average HRQL as those in the youngest age group for which they could be 

estimated (16-19 years). Obtaining the QALE estimate is nearly the same as for life 

expectancy; the difference being that we multiply the years lived in each age interval 

by the associated HRQL weight, 𝑢𝑥𝑑𝑠:  
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𝑄𝐴𝐿𝐸𝑥𝑑𝑠 =
∑ 𝐿𝑥𝑑𝑠 ∗ 𝑢𝑥𝑑𝑠

𝑧
𝑥

𝐼𝑥𝑑𝑠
 

 

Additional life tables are constructed for further analyses: by IMD quintile group for 

each gender to enable comparisons with previous health expectancy studies, and by 

IMD quintile group combining genders to enable a non-gender-specific 

socioeconomic inequality estimate. 

 

2.3.4 QALE 

 

We analyse inequalities in QALE in three ways. First, bivariate distributions of 

QALE by socioeconomic status and gender are generated so that these inequalities 

can be analysed separately from the supplementary life tables just described. Second, 

an overall univariate distribution of health is constructed that reflects both types of 

disparities. This is done by first assuming that the prediction of QALE at birth is the 

same for all individuals within a gender-socioeconomic group (regardless of their 

age).  We can then multiply each of the 20 gender-socioeconomic group QALE 

predictions by the number of people in the group, taken from ONS population 

estimates, and rank the whole population from lowest to highest QALE. The 

additional benefit of this distribution is that we account for the relative sizes of the 

gender-socioeconomic groups as well as the magnitude of the inequalities between 

them. Third, we compute the distribution of quality-adjusted age at death (QAD). 

This metric, as advocated by Gakidou et al. (2000), shows the distribution of 

expected lifetime QALYs experienced by the population. Assuming that individuals 

die at the midpoint of the age interval we calculate QAD for each age-gender-

socioeconomic group by summing the QALYs in each age interval: 

 

𝑄𝐴𝐷𝑥𝑑𝑠 = ∑ 𝑢𝑦𝑑𝑠

𝑥−1

𝑦=1
𝑛𝑦 + 𝑢𝑥𝑑𝑠𝑛𝑥𝑎𝑥 

 

2.3.5 Social welfare analysis 

 

We can combine the amount of total population health and health inequality into a 

single index measure of health related social welfare by using a social welfare 
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function that describes the amount by which the least healthy should be prioritised 

for health improvement. An inequality aversion parameter assigns an implicit weight 

to individuals based on their health level relative to the mean. The level of inequality 

aversion determines the trade-off between improvements in total health and 

reductions in inequality, and allows the calculation of a social welfare index to 

summarise whether an intervention improves social welfare. We use the Atkinson 

and Kolm indices to measure social welfare using the univariate distribution of 

health. The Atkinson index, 𝐴𝜀, measures inequality relatively and is given by: 

 

𝐴𝜀 = 1 − [
1

𝑁
∑ (

𝑄𝑖

�̅�
)

1−𝜀𝑁

𝑖=1

]

1
1−𝜀

 

 

Where 𝑁 is the total population, 𝑄𝑖 is the QALE estimate of the 𝑖th individual, �̅� is 

the mean QALE and 𝜀  is the inequality aversion parameter that quantifies the 

concern for relative inequality. Alternatively, the Kolm index, 𝐾𝛼 , incorporates 

inequality on an absolute scale, where absolute inequality aversion is represented by 

the parameter 𝛼: 

 

𝐾𝛼 = (
1

𝛼
) log (

1

𝑁
∑ 𝑒𝛼[�̅�−𝑄𝑖]

𝑁

𝑖=1

) 

 

For both indices, a higher inequality aversion parameter indicates greater concern for 

the less healthy. Our analysis uses estimates of 10.95 for 𝜀 and 0.15 for 𝛼, based on a 

survey of the general public in England by Robson et al (2016). In this survey they 

asked the general public to choose between two interventions, where one increased 

total health more and the other offered less health but provided the greatest benefits 

to the poor.  They varied the amount of difference in total health provided by the two 

interventions, and the extent by which the poor benefited relative to the rich, to 

identify the point where members of the public thought the interventions were 

equivalent in value.  The results showed that the general public preferred an 

intervention with less total health but that reduced the health gap between the poor 

and the rich, allowing the inequality aversion to be estimated.  Social welfare is 
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calculated by combining each index with the mean level of health in the distribution 

to obtain the ‘equally distributed equivalent’ (EDE) level of health: 

 

𝐸𝐷𝐸𝐴,𝜀 = (1 − 𝐴𝜀)�̅� 

𝐸𝐷𝐸𝐾,𝛼 = (�̅� − 𝐾𝛼) 

 

Where 𝐸𝐷𝐸𝐴,𝜀 and 𝐸𝐷𝐸𝐾,𝛼 are the Atkinson and Kolm welfare scores, respectively. 

The equally distributed equivalent is the level of mean health (expressed in QALYs) 

in a completely equal distribution that yields an equivalent amount of social welfare 

to the distribution being evaluated. The difference between the EDE and �̅� therefore 

indicates the amount of average health that society would be willing to trade-off in 

order to obtain a perfectly equal distribution. 

 

2.3.6 Uncertainty 

 

A Monte Carlo simulation is performed to account for uncertainty over the two sets 

of parameters in the model: probability of death and utility scores. Standard errors 

for the former, 𝜎𝑞𝑥𝑑𝑠
, are calculated using the following formula proposed by Chiang 

(1983): 

 

𝜎𝑞𝑥𝑑𝑠
= √(𝑞𝑥𝑑𝑠

2 (1 − 𝑞𝑥𝑑𝑠) 𝐷𝑥𝑑𝑠⁄  

 

Where is 𝐷𝑥𝑑𝑠  is the number of observed deaths in the respective age-gender-

socioeconomic subgroup. A Cholesky decomposition is used to take correlated 

random draws from the regression coefficient distributions when simulating utility 

scores. 1,000 simulations are performed, from which standard errors and 95% CIs are 

constructed for QALE at birth for both genders. Subgroup distributions can also be 

estimated by reconfiguring the base year, from at birth to any point at life, depending 

on the population of interest. We re-estimate the distribution at 25, 40 and 65 to 

demonstrate this. 
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2.3.7 Sensitivity Analysis 

 

Two alternative types of estimator are adopted to check the robustness of the OLS 

findings. These more complex model specifications allow for the skewed and 

bounded nature of the outcome variable. Two-part models (2PM) and tobit 

estimators (Tobin 1958) were selected as both have previously been advocated in 

favour of OLS when handling HRQL data (Austin et al. 2000; Basu & Manca 2012).  

 

Both estimators calculate the expected value of HRQL using a similar underlying 

hypothesis. The tobit model assumes that the observed health status score, 𝑦, has 

been censored and that an underlying latent variable, 𝑦∗, is the true health status 

score, such that: 

 

𝑦 = {
1
𝑦∗

𝑖𝑓 𝑦∗ > 1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

It then uses an indicator function to determine the probability that an observation has 

been censored and uses maximum likelihood to estimate health status conditional 

upon not being censored. Both parts are estimated using the same covariates: age, sex 

and socioeconomic status. By comparison, the two stages of the 2PM can be 

specified separately. The first part is a binomial logit regression that regresses a 

dummy variable indicating whether EQ-5D equals one on a set of covariates 

including smoking status, employment status and whether a long-standing illness is 

reported. The second part is the OLS regression model used in the base case analysis, 

but now performed on the subset of observations where utility is less than one. Thus 

both the tobit and the 2PM estimate the probability of being in perfect health and the 

conditional expectation of HRQL given imperfect health. These are then combined in 

the same way to get the expected value of utility: 

 

𝐸(𝑦|𝑥) = [𝑃(𝑦 = 1). 1] + [𝑃(𝑦 < 1). 𝐸(𝑦|𝑦 < 1)] 

 

Judgement on the suitability of the estimators is based on several diagnostic 

measures. Mean-squared error (MSE) and mean absolute error (MAE) are computed 
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for each estimator, with MAE also reported for the mean group scores and for the 

360 QALE predictions. Whilst these might not be conclusive as to which estimator is 

the most appropriate, they should give some indication as to how well they model 

EQ-5D and QALE for the purposes of this study. We performed these estimations on 

the complete case data. This enables us to compare their relative performance with 

OLS without the additional complications of using the imputed dataset, particularly 

for the 2PM. A complete list of variables used in each regression model is reported in 

Table 2.3. 

 

As a further sensitivity analysis, we change the socioeconomic variable used in the 

regression analysis predicting EQ-5D to NS-SEC category, which classifies 

individuals into 8 groups based on their occupation (Class I being the highest 

socioeconomic group and VIII the lowest). This is to validate the legitimacy of using 

IMD as our socioeconomic variable. Since the age-specific mortality data is by IMD 

quintile groups and not NS-SEC group, it is necessary to create a mapping between 

the two so that the mean EQ-5D scores by the latter (8 categories) could be applied 

to the life tables partitioned by the former (5 and 10 categories). This mapping, along 

with descriptions of the NS-SEC occupation categories, is reported in Table A2.9. 

 

Table 2.3: Variables used within each regression model 

Model Variables 

OLS & Tobit Age (C), Gender (B), IMD Quintile (M5) 

OLS (NS-SEC) Age (C), Gender (B), NS-SEC (M8) 

2PM – Part 1 

(logit) 

Age (C), Gender (B), IMD Quintile (M5), Recorded Heart Attack (B), Diabetic 

(B), Long-standing Illness (B), Smoker (B), Obese (B), Unemployed (B) 

2PM – Part 2 

(OLS) 
Age (C), Gender (B), IMD Quintile (M5) 

Note:  

1. Variable type in parentheses: C = Continuous, B = Binary, Mn = Categorical with n 

categories 

2. IMD = Index of Multiple Deprivation; NS-SEC = National Statistics Socioeconomic 

Classification; OLS = Ordinary Least Sqaures; 2PM = Two-part model 
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2.4 Results 

 

2.4.1 Descriptive statistics 

 

Descriptive statistics for a number of relevant subgroups are shown in Table 2.4. 

HRQL is correlated with age, gender and socioeconomic status, supporting our 

variable selection. EQ-5D scores declined with age; are higher for men; and decrease 

in a linear fashion as deprivation increased. The mean scores in the least and most 

deprived quintile groups are 0.88 in the least deprived quintile group to 0.79 in the 

most deprived. 

 

2.4.2 EQ-5D prediction 

 

Regression results using the imputed datasets are reported in Table 2.5. Compared 

with the complete case regressions, there is a smaller constant and smaller effect size 

for all covariates. Prediction performance also improves following imputation, with 

lower MAE for individual and group mean utility scores. Interactions between age, 

gender and socioeconomic status are not statistically significant and are excluded 

from the model. All other covariates are statistically significant (P<0.01). The signs 

on all coefficients are consistent with the descriptive relationships: lower deprivation 

is associated with higher HRQL, whilst ageing and being female are associated with 

lower HRQL. The quadratic age term is also negative, indicating larger HRQL 

decrements for each additional year. Mean group scores ranged from 0.98 (16-19 

year-old males in IMD quintile group 5) to 0.68 (85+ females in quintile group 1). 

The full distribution of EQ-5D scores is provided in Table A2.10. 

 

2.4.3 QALE 

 

Adjusting life expectancy for HRQL has substantial impacts on inequality, shown in 

Table 2.6 and Table 2.7. The direction of this impact depends on which dimension of 

inequality we focus on. Adjusting for HRQL increases the absolute difference 

between the least and most deprived quintile groups from 6.5 years to 11.9 QALYs. 

Conversely, gender inequality is reduced, as the lower mortality for females is 
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partially offset by higher morbidity. Inequality at birth between genders drops from 

3.6 years to 1 QALY. The standard errors generated from the simulation are also 

reported in Table 2.6 and Table 2.7. These average 0.06 life years and 0.29 QALYs 

across IMD and gender groups. The full range of QALE predictions are provided in 

Table 2.8. 

 

Table 2.4: Sample statistics with average EQ-5D scores 

Variable N % Sample Utility Variable N % Sample Utility 

Total  35,062  - 0.842 IMD Quintile 

   Age 

   

1st (most)  6,665  19% 0.793 

0-15  9,742  28% - 2nd  6,763  19% 0.826 

16-24  2,555  7% 0.928 3rd  6,935  20% 0.839 

25-34  3,642  10% 0.915 4th  7,060  20% 0.860 

35-44  4,340  12% 0.877 5th (least)  7,639  22% 0.880 

45-54  4,423  13% 0.844 NS-SEC 

   55-64  4,077  12% 0.799 I  2,886  8% 0.905 

65-74  3,434  10% 0.795 II  5,556  16% 0.871 

75+  2,849  8% 0.723 III  3,580  10% 0.847 

Gender 

   

IV  2,160  6% 0.839 

Male  16,204  46% 0.856 V  1,791  5% 0.814 

Female  18,858  54% 0.832 VI  4,440  13% 0.810 

Race 

   

VII  3,270  9% 0.784 

White  30,617  87% 0.870 VIII  484  1% 0.792 

Non-white  4,334  12% 0.840 Not available  10,895  31% - 

Not available  111  0% - 

    Note:  

1. IMD = Index of Multiple Deprivation; NS-SEC = National Statistics Socioeconomic 

Classification 

2. Percentages are rounded and may not exactly sum to 100. 

3. Those aged 0-15 were assumed to have utility equal to those aged 16-19. 
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Table 2.5: Results of regressions predicting EQ-5D scores  

 Variables 

OLS 

(Imputed) 

OLS 

(Complete) Tobit 2PM 

OLS (NS-

SEC) 

          

 IMD Quintile Group 
    1 (most deprived) Ref Ref Ref Ref 

 2 0.0341*** 0.0372*** 0.0652*** 0.0425*** 

 

 

(0.00650) (0.00598) (0.0117) (0.00874) 

 3 0.0475*** 0.0512*** 0.0881*** 0.0629*** 

 

 

(0.00631) (0.00585) (0.0116) (0.00855) 

 4 0.0747*** 0.0802*** 0.148*** 0.0954*** 

 

 

(0.00579) (0.00549) (0.0112) (0.00806) 

 5 (least deprived) 0.0857*** 0.0937*** 0.175*** 0.108*** 

 

 

(0.00563) (0.00539) (0.0114) (0.00782) 

 Age -0.00219*** -0.00200*** -0.00751*** -0.00477*** -0.00333*** 

 

(0.000472) (0.000416) (0.000962) (0.000654) (0.000494) 

Age-squared -7.98e-06* -1.55e-05*** 2.87e-07 2.28e-05*** -9.13e-07 

 

(4.79e-06) (4.29e-06) (8.91e-06) (6.24e-06) (4.94e-06) 

NS-SEC 

     I 

    

Ref 

II 

    

-0.0285*** 

     

(0.00414) 

III 

    

-0.0457*** 

     

(0.00519) 

IV 

    

-0.0550*** 

     

(0.00645) 

V 

    

-0.0801*** 

     

(0.00728) 

VI 

    

-0.0868*** 

     

(0.00532) 

VII 

    

-0.106*** 

     

(0.00628) 

VIII 

    

-0.146*** 

     

(0.0176) 

Gender 

     Male Ref Ref Ref Ref Ref 

Female -0.0210*** -0.0253*** -0.0590*** -0.0148*** -0.0199*** 

 

(0.00324) (0.00286) (0.00629) (0.00466) (0.00316) 

Constant 0.935*** 0.943*** 1.327*** 0.798*** 1.079*** 

 

(0.0115) (0.00947) (0.0252) (0.0164) (0.0119) 

      

      Observations 25,320 22,143 22,143 10,469 21,252 

MAE 0.156 0.155 0.155 0.135 0.155 

Group MAE 0.0273 0.0245 0.0212 0.0213 0.025 

QALE MAE 0.541 0.399 0.351 0.434 0.660 

1. *** p<0.01, ** p<0.05, * p<0.1. Standard errors are in parentheses 

2. IMD = Index of Multiple Deprivation; NS-SEC = National Statistics Socioeconomic 

Classification; OLS = Ordinary Least Sqaures; 2PM = Two-part model; MAE = Mean 

absolute error 

3. 25,320 are 16 and over. 22,143 had complete EQ-5D responses. 21,252 had complete NS-

SEC data. 10,469 had EQ-5D less than one 

4. MAE is the mean absolute distance across observations between the predicted and observed 

values 
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Table 2.6: Comparisons of absolute and relative inequality in life expectancy by 

Index of Multiple Deprivation (IMD) quintile group and gender 

Life expectancy 

     IMD quintile group Male Female Combined 

1 (most deprived) 75.2 (0.061) 79.9 (0.060) 77.5 (0.044) 

2 78.0 (0.061) 81.9 (0.056) 80.0 (0.041) 

3 79.8 (0.058) 83.3 (0.054) 81.6 (0.040) 

4 81.3 (0.056) 84.3 (0.052) 82.8 (0.038) 

5 (least deprived) 82.6 (0.058) 85.4 (0.055) 84.0 (0.040) 

Mean 79.4 

 

83.0 

 

81.2 

 Absolute IMD gap 7.4 (0.084) 5.5 (0.082) 6.5 (0.060) 

Relative IMD gap 0.10 (0.001) 0.07 (0.001) 0.08 (0.001) 

Absolute gender gap 3.60 

     Relative gender gap 0.05 

     Note:  

1. Standard errors are given in parentheses 

2. Absolute gap is Q5-Q1. Relative gap is (Q5/Q1)-1 

 

 

Table 2.7: Comparisons of absolute and relative inequality in quality-adjusted life 

expectancy by Index of Multiple Deprivation (IMD) quintile group and gender 

Quality-adjusted life expectancy 

     IMD quintile group Male 

 

Female Combined 

1 (least deprived) 62.3 (0.348) 64.1 (0.375) 63.2 (0.343) 

2 67.0 (0.327) 68.2 (0.330) 67.7 (0.306) 

3 69.5 (0.309) 70.4 (0.317) 70.0 (0.289) 

4 72.8 (0.264) 73.4 (0.267) 73.2 (0.236) 

5 (most deprived) 74.8 (0.183) 75.2 (0.181) 75.1 (0.134) 

Mean 69.5 

 

70.3 

 

70.3 

 Absolute IMD gap 12.5 (0.323) 11.2 (0.339) 11.9 (0.328) 

Relative IMD gap 0.20 (0.006) 0.17 (0.006) 0.19 (0.006) 

Absolute gender gap 0.74 

     Relative gender gap 0.01 

     Note:  

1. Standard errors are given in parentheses. 

2. Absolute gap is Q5-Q1. Relative gap is (Q5/Q1)-1 
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Table 2.8: Predicted quality-adjusted life expectancy by 5-year age group, gender 

and Index of Multiple Deprivation quintile group 

 

IMD Quintile Group (Males) IMD Quintile Group (Females) 

Age 1 2 3 4 5 Mean 1 2 3 4 5 Mean 

0-4 62.3 67.0 69.5 72.8 74.8 69.3 64.1 68.2 70.4 73.4 75.2 70.5 

5-9 58.3 62.7 65.1 68.2 70.2 64.9 60.1 64.0 66.1 68.9 70.7 66.2 

10-14 53.8 58.1 60.4 63.4 65.3 60.3 55.7 59.5 61.5 64.2 65.9 61.6 

15-19 49.4 53.5 55.7 58.6 60.4 55.6 51.4 55.0 56.9 59.5 61.1 57.0 

20-24 45.0 49.0 51.1 53.9 55.6 50.9 47.1 50.5 52.3 54.8 56.4 52.5 

25-29 40.7 44.5 46.6 49.2 50.8 46.4 42.8 46.1 47.9 50.2 51.7 48.0 

30-34 36.5 40.1 42.1 44.6 46.1 42.0 38.6 41.7 43.4 45.6 47.1 43.6 

35-39 32.4 35.8 37.7 40.0 41.5 37.6 34.5 37.4 39.1 41.1 42.5 39.3 

40-44 28.5 31.6 33.4 35.6 37.0 33.4 30.6 33.3 34.8 36.7 38.1 35.1 

45-49 24.7 27.6 29.3 31.2 32.6 29.3 26.8 29.2 30.7 32.5 33.7 31.0 

50-54 21.2 23.7 25.2 27.0 28.3 25.3 23.1 25.4 26.7 28.3 29.5 27.0 

55-59 17.8 20.0 21.4 23.0 24.1 21.5 19.6 21.6 22.9 24.3 25.4 23.1 

60-64 14.6 16.5 17.7 19.2 20.2 17.9 16.4 18.1 19.2 20.5 21.5 19.5 

65-69 11.8 13.4 14.4 15.6 16.5 14.5 13.3 14.8 15.8 16.8 17.7 16.0 

70-74 9.3 10.5 11.3 12.2 13.0 11.5 10.6 11.7 12.5 13.4 14.2 12.8 

75-79 7.1 8.0 8.6 9.3 9.9 8.8 8.2 9.0 9.6 10.2 10.9 9.9 

80-84 5.3 5.9 6.2 6.8 7.3 6.5 6.1 6.6 7.0 7.4 8.0 7.3 

85+ 3.9 4.3 4.4 4.8 5.2 4.7 4.4 4.7 4.9 5.2 5.6 5.3 

Note: The predictions apply to the first year of each group. 

 

 

The population distribution of life expectancy and QALE at birth, which reflects both 

types of inequality and the relative group sizes, is shown in Figure 2.2 and Table 

A2.11. The quality-adjusted years of life lost from life expectancy due to morbidity 

increases from 10.29 for the most healthy to 13.99 for the least healthy. This means 

that the expected lifetime quality-adjusted health of the top quintile is equivalent to 

88% of life expectancy in full health, compared to 82% for the bottom quintile. The 

gap between the top and bottom quintiles is 11 QALYs. The population distribution 

at 25, 40 and 60 (Table A2.12) shows that relative inequality between the least and 

most healthy increases with age, from 0.17 at birth to 0.32 at 65.  
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Figure 2.2: Social distribution of life expectancy and quality-adjusted life expectancy 

(QALE) in England 

 

Note: Individuals are ranked from least to most healthy based on socioeconomic-gender sub-group, 

and divided into quintile groups. The total height of each bar is the LE estimate, which can be divided 

into QALE and the quality-adjusted years of life lost (QAYLL) due to morbidity over an individual’s 

lifetime. 

 

 

Figure 2.3: Mean equally distributed equivalent (EDE) health by degree of inequality 

aversion. EDE at the inequality aversion level elicited from the general population in 

Robson et al. (2016) is signified by a black triangle 

 

Note: QALE = quality-adjusted life expectancy 
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The results from the social welfare analysis are shown in Figure 2.3. The mean 

QALE in the population (in which there is no inequality aversion) is 69.7 QALYs. At 

the general population values of inequality aversion for the Atkinson and Kolm 

indices, EDE QALE is 68.3 and 68.4 QALYs, respectively. As inequality aversion 

increases, a social decision-maker is willing to trade-off more average health to 

eradicate inequality. When using the Atkinson index, EDE decreases from 69.1 

QALYs for 𝜀=5 to 65.4 QALYs for 𝜀=40. 

 

The cumulative distribution of QAD is shown in Figure 2.4. The curve for males lies 

above that for females up to QADs of approximately 77 QALYs. The median QAD, 

for instance, is 68 for males and 72.8 for females. Males have the higher maximum 

quality-adjusted lifespan at 82.7, however. Approximately 9% experience more 

lifetime QALYs than the female maximum of 80.8. 

 

 

Figure 2.4: Cumulative distribution of quality-adjusted age at death in England 

 

 

 

2.4.4 Sensitivity analysis 

 

Regression output when using the alternative estimators is reported in Table 2.5. In 

terms of predicting the mean subgroup EQ-5D scores, all estimators perform 

similarly. These differences are shown in Figure A2.6 in the appendix, where it is 
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seen that the observed scores for those in IMD 1 are more unstable than those in 

IMD 5, for which prediction is more accurate. In terms of QALE, OLS, tobit and 

2PM again all yield comparable results, with none substantially outperforming the 

others. Mean absolute deviations in QALE prediction from those using observed 

scores, shown in Table 2.5, were all comfortably under 0.5 QALYs; the imputed 

scores fared best with an MAE of 0.327 QALYs, whilst the 2PM had the highest at 

0.434 QALYs. 

 

QALE predictions do not markedly change when NS-SEC replaces IMD quintile 

groups as the socioeconomic variable in the HRQL regression. All of the coefficients 

in the regression analysis were statistically significant (P<0.01). The average 

difference in predicted QALE across population quintile groups between mapped and 

non-mapped estimates is 0.7 QALYs. One statistic that was noticeably different was 

absolute inequality between the least and most healthy population quintile groups, 

which increased from 11.0 to 14.0 QALYs.  

 

2.5 Discussion 

 

2.5.1 Principal findings 

 

Adjustment for morbidity using detailed patient reported data on HRQL substantially 

increased the size of socioeconomic health inequality when compared with life 

expectancy alone. Figure 2.5, using additional numbers from the ONS (2013), 

compares estimates of life expectancy, QALE and DFLE at birth for males in the 

least and most deprived quintile groups. A male in quintile group 1 is expected to 

experience 83 years, 75 QALYs or 70 disability-free life years. The discrepancies 

between these figures clearly demonstrate the impact of using the QALY, rather than 

a binary disability indicator, to measure morbidity. The increased sensitivity of the 

former to states of illness and disability creates a more realistic picture of health 

experience and a more accurate measure of health inequalities. Consequently, the 

inequality between those in the least and most deprived quintile groups for QALE of 

12.5 QALYs sits between those predicted for life expectancy and DFLE, at 7.4 and 

14.7, respectively. These estimates of socioeconomic inequality are consistent with 
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the figure of 12.7 QALYs that is estimated in an analysis of QALE disparities in one 

region of England (Collins 2013).  

 

Figure 2.5: Inequalities in life expectancy, quality-adjusted life expectancy (QALE) 

and disability-free life expectancy (DFLE) for males at birth in the most and least 

deprived quintile groups 

 

Note:  

3. QALY = quality-adjusted life year; DFLY = disability-free life years 

4. DFLE estimates are estimates for 2007-10 and taken from the ONS (2013). Life expectancy 

and QALE estimates are for 2010-12 

 

 

The univariate distribution of health estimated in Figure 2.2, the principal use of 

which is in distributional analyses of new health interventions (see Section 2.5.3), 

estimates inequality between the most and least healthy at 11 QALYs. Although no 

direct comparisons could be found for this estimate, it is consistent with estimates 

from Marmot et al. (2010), who calculate DFLE for all small areas in England and 

find disparities of 13 DFLYs between the most and least healthy neighbourhoods.  

 

Our social welfare analysis helps to quantify the social value lost through inequality. 

At the general population values of inequality aversion, we would be willing to 

sacrifice approximately 1.4 QALYs from the average lifespan in order to obtain a 

perfectly equal distribution. The distribution of quality-adjusted age at death also 

provides a different perspective on inequality. The influence of premature death on 
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QALE is clearly shown: nearly 25% of men experience in excess of 75 QALYs in 

their lifetime, despite the highest mean estimate of QALE being 74.8. We also see 

the lower mortality of women driving the differences in lifetime health and a small 

proportion of men who survive to old age experiencing greater life time QALYs due 

to lower average morbidity. 

 

Causal inference is not required or attained in the regression framework used in this 

study, since we only aim to describe how expected lifetime health varies by age, sex, 

and socioeconomic status. Nevertheless, the selected covariates do exhibit strong 

associations with utility scores, justifying the measurement of inequality with respect 

to them.  

 

Results are robust to a wide range of differing assumptions and estimation methods. 

The OLS predictions did not differ drastically from the 2PM or the tobit, performing 

similarly on diagnostic measures. Interestingly, despite the 2PM performing better 

and displaying lower MAE than both OLS and tobit for EQ-5D prediction, we find a 

greater MAE when estimating QALE. This is explained by the fact that the 2PM 

predicts the EQ-5D with larger error for the youngest age group, who have the 

largest impact on QALE estimates. 

 

The anticipated difficulties in mapping IMD quintile groups to NS-SEC category are 

also surprisingly small. Despite the seemingly crude method of the mapping of mean 

IMD-specific EQ-5D scores (Table A2.10), the resulting QALE estimates are not 

substantially different than when mean EQ-5D scores are estimated for IMD quintile 

groups (Table 2.5). Multiple imputation of the missing data had a marginal influence, 

with a mean difference of 0.3 QALYs across the 360 predictions when using the 

imputed and non-imputed scores. Thus, despite tests indicating that the MCAR 

assumption was violated, assuming that missing values were Missing At Random 

(MAR) had little impact on the final results.  

 

2.5.2 Strengths and limitations 

 

This study utilised mortality data for the entire population of England and HRQL 

data for a large and representative sample of over 25,320 individuals. The validity of 
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the results is further substantiated by the robustness of the findings to alternative 

socioeconomic variables, regression estimators and ways of handling missing data.  

 

The limitations of the analysis are largely over the estimates of HRQL. First, mean 

EQ-5D scores for the groups of interest are likely to be overestimates since the HSE 

is only representative of the non-institutionalised population. Those who reside in 

institutions such as nursing homes or prisons are on average likely to be unhealthier 

than the HSE sample. Since they are also likely to be in lower deprivation groups, 

this implies that our estimates of inequality are likely to be conservative 

underestimates. 

 

Second, the subjective nature of EQ-5D reporting must be acknowledged. As noted 

elsewhere in the literature (Minet Kinge & Morris 2010, p.1869), there may be a 

systematic reporting bias associated with an individual’s socioeconomic status. For 

example, those in higher socioeconomic groups who are in more sedentary work may 

have their usual activities inhibited less by illness or injury, resulting in a higher 

utility score. Conversely, people in low socioeconomic groups may have relatively 

low health expectations and so self-report feeling in relatively good health in 

particular dimensions, resulting in a higher utility score than people in high 

socioeconomic groups whilst experiencing the same level of health from an external 

clinical perspective. This again will have the effect of under-estimating the true 

degree of health inequality related to socioeconomic status. 

 

Third, the assumption that those under 16 have HRQL equal to those in the 16-19 

age group is unavoidable but improbable. This is verified by the fact that in the HSE 

sample, 95% of those under 16 reported ‘Very Good’ or ‘Good’ health, compared 

with only 90% in the 16-19 group, suggesting that our assumption may lead us to 

underestimate HRQL for the former, thereby again providing a conservative under-

estimate of inequality.  

 

2.5.3 Implications and conclusions 

 

This study is the first to estimate the social distribution of QALE in England. 

Compared with previous estimates based on simple binary measures of morbidity, 
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our estimates, based on more detailed data on health-related quality of life, provide 

more accurate and credible estimates to inform policy-makers about the overall 

extent of health inequalities. The Marmot Review (Marmot et al. 2010) and the 

Department of Health’s Public Health Outcomes Framework (DH 2013), which 

respectively use DFLE and HLE as indicators, are two examples of prominent public 

initiatives using crude binary indicators of morbidity.   

 

Our results are also of interest in health technology assessment. First, the individual 

predictions of EQ-5D and QALE in Table A2.10 and Table 2.8 can be used as 

reference values within decision models. Second, as discussed in Chapter 1, the use 

of the QALE population distribution is an important empirical step in monitoring the 

health inequality impacts of health interventions in distributional cost-effectiveness 

analysis (Cookson et al. 2017). These types of evaluations would model the health 

benefits by IMD and gender, and use a distribution of health opportunity costs 

(estimated in Chapter 3) over the same groups to acquire an estimate of the net 

impact. These impacts can be modelled on the estimates presented here and can be 

examined, using a range of inequality measures, to see how health inequality has 

changed (Asaria, Griffin & Cookson 2015; Asaria et al. 2015). This process is 

exemplified in Chapters 4 and 5.  

 

Future work could develop our model to introduce additional variables, such as race, 

into the analysis, paving the way for a more nuanced distribution that reflects 

stakeholder judgements on fair and unfair determinants of inequality. The techniques 

we describe can also be applied to other countries and settings where health 

inequalities are of concern. The accuracy of the inequality estimates could also be 

improved by incorporating more granular data on EQ-5D and mortality, for example 

by small area rather than IMD quintile. This would naturally place greater demands 

on subgroup evidence when evaluating new interventions. At present, however, this 

study brings us a step closer to explicit analysis of the equity-efficiency trade-offs 

involved in health care resource allocation.  
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Appendix 2 

 

Table A2.9: Mapping process outlining how predicted utility scores for NS-SEC 

categories were combined with mortality rates for IMD quintile groups as part of a 

sensitivity analysis. The objective was to match group sizes as closely as possible 

Social Class (NS-SEC) Deprivation (IMD quintile group) 

I (Higher managerial / Professional) 5 (Least deprived) 

II (Lower managerial / Professional) 5 

III (Intermediate occupations) 4 

IV (Small employers / Own account holders) 3 

V (Lower supervisory / Technical occupations) 3 

VI (Semi-routine occupations) 2 

VII (Routine occupations) 1 

VIII (Never worked and long-term unemployed) 1 (Most deprived) 

 

 

Table A2.10: Predicted EQ-5D scores by age, gender and IMD quintile group 

  IMD Quintile Group (Males) 

 

IMD Quintile Group (Females) 

 Age 1 2 3 4 5 Mean 1 2 3 4 5 Mean 

15-19 0.89 0.93 0.94 0.97 0.98 0.94 0.87 0.91 0.92 0.95 0.96 0.92 

20-24 0.88 0.92 0.93 0.96 0.97 0.92 0.86 0.90 0.91 0.94 0.95 0.90 

25-29 0.87 0.90 0.92 0.95 0.96 0.91 0.85 0.88 0.90 0.92 0.93 0.89 

25-29 0.86 0.89 0.90 0.93 0.94 0.90 0.84 0.87 0.88 0.91 0.92 0.88 

35-39 0.84 0.88 0.89 0.92 0.93 0.89 0.82 0.86 0.87 0.90 0.91 0.87 

40-44 0.83 0.86 0.88 0.90 0.91 0.88 0.81 0.84 0.86 0.88 0.89 0.86 

45-49 0.81 0.85 0.86 0.89 0.90 0.86 0.79 0.83 0.84 0.87 0.88 0.84 

50-54 0.80 0.83 0.85 0.87 0.89 0.85 0.78 0.81 0.83 0.85 0.86 0.83 

55-59 0.78 0.82 0.83 0.86 0.87 0.84 0.76 0.80 0.81 0.84 0.85 0.82 

60-64 0.77 0.80 0.82 0.84 0.85 0.82 0.75 0.78 0.79 0.82 0.83 0.80 

65-69 0.75 0.79 0.80 0.83 0.84 0.81 0.73 0.77 0.78 0.81 0.82 0.79 

70-74 0.74 0.77 0.78 0.81 0.82 0.79 0.72 0.75 0.76 0.79 0.80 0.77 

75-79 0.72 0.75 0.77 0.79 0.80 0.77 0.70 0.73 0.75 0.77 0.78 0.75 

80-84 0.70 0.74 0.75 0.78 0.79 0.76 0.68 0.72 0.73 0.76 0.77 0.73 

85+ 0.68 0.72 0.73 0.76 0.77 0.74 0.66 0.69 0.70 0.73 0.74 0.71 

Note:  

1. Since EQ-5D is not estimable for individuals aged 0-14, their predicted scores are assumed to 

be equal to those aged 15-19. 
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Table A2.11: Life expectancy and quality-adjusted life expectancy estimates by 

population quintile group. The univariate distribution from which these are estimated 

ranks the entire population from least to most healthy, based on socioeconomic-

gender sub-groups. Standard errors are in parentheses 

Population quintile Life Expectancy 

Quality-adjusted Life 

Expectancy 

Ratio of QALE 

to LE 

1 (least healthy) 78.6 (0.084) 64.66 (0.060) 0.82 

2 80.7 (0.078) 68.55 (0.059) 0.85 

3 82.0 (0.072) 70.58 (0.055) 0.86 

4 83.5 (0.074) 73.57 (0.058) 0.88 

5 (most healthy) 85.9 (0.074) 75.63 (0.058) 0.88 

      Absolute gap (5-1) 7.3 

 

11.0 

  Relative gap (5/1)-1 0.093 

 

0.170 

  Note: QALE = quality-adjusted life expectancy; LE = life expectancy 

 

 

Table A2.12: The social distribution of health as the baseline year is increased 

 Population quintile group   

 1 2 3 4 5 Absolute Gap Relative Gap 

At birth 64.7 68.5 70.6 73.6 75.6 11.0 0.170 

At 25 43.4 46.3 48.0 50.3 52.1 8.7 0.200 

At 40 31.1 33.5 34.9 36.6 38.4 7.3 0.236 

At 65 13.7 14.6 15.8 16.7 18.0 4.4 0.320 

Note: Absolute gap is Q5-Q1. Relative gap is (Q5/Q1)-1. 
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Figure A2.6: Observed and predicted EQ-5D scores over age groups. Plots for the 

highest and lowest index of multiple deprivation (IMD) quintile groups are shown 

for each gender 

 

 

Note: IMD 1=most deprived, IMD 5 = least deprived 
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Chapter 3: Estimating the social distribution of health impacts from 

changes in English NHS expenditure 

 

 

3.1 Introduction 

Two central objectives of public health care systems are to help improve population 

health and to help reduce health inequality. In England, for example, the leaders of 

the universal, publicly funded National Health Service (NHS) have a legal obligation 

to consider reducing inequalities between the people of England in the health 

benefits they obtain from health care services (NHS Health and Social Care Act 

2012).  Whilst many studies have examined the impact of public health care 

expenditure on population health (Cochrane et al. 1978; Crémieux et al. 1999; Nixon 

& Ulmann 2006; Martin et al. 2008; Marton et al. 2015; Singh 2014), much less is 

known about the impact on health inequality. If policy makers wish to reduce health 

inequality, they need to know whether investment in health care will deliver a larger 

health inequality reduction than other social programmes, such as education and 

social protection, and which kinds of health care expenditure deliver the largest 

health inequality reductions. In this chapter we provide an empirical estimate of the 

distribution of health impacts resulting from changes in NHS expenditure by 

socioeconomic status, age, gender and disease area. 

 

To date only one study has examined the health inequality impacts of health care 

expenditure in the UK. Barr et al. (2014) used longitudinal data for local authorities 

in England to analyse associations between changes in NHS spending and changes in  

mortality considered amenable to influence by health care. They found greater 

reductions in amenable mortality in more deprived local authorities, which they 

attribute to i) larger increases in health expenditure per head in higher-deprivation 

areas and ii) higher productivity with respect to mortality reduction for every £1 

spent in the higher deprivation areas. 

 

In contrast, our study explores how health impacts from expenditure changes are 

distributed by age, gender and disease area as well as socioeconomic status, and 

utilises existing evidence that carefully attempts to identify causation using an 
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instrumental variables approach. We develop the results of a recent study (Claxton, 

Martin, et al. 2015) that explores the relationship between health care spending  and 

mortality in 152 different sub-national administrative areas of the English NHS, 

adjusting for quality of life differentials. It estimates the cost of producing a quality-

adjusted life year (QALY) through additional health care expenditure, accounting for 

differences between broad clinical areas of expenditure (e.g. respiratory disease, 

circulatory disease and so on), controlling for potential endogeneity bias in the 

estimation of the mortality effects of expenditure using an instrumental variables 

approach. This evidence provides a benchmark cost-per-QALY value for appraising 

new NHS expenditure programmes, because it can be interpreted as the health 

opportunity cost to the English NHS of displacing alternative health care services 

that could have been funded instead. 

 

However, this benchmark is not sufficient where policy makers are also concerned 

about the health inequality impacts of public expenditure.  By extending the results 

of Claxton and colleagues, we provide the first evidence on how the health effects of 

changes in NHS expenditure are distributed between social groups in terms of both 

quality and length of life. Our findings can therefore show how health opportunity 

costs at the margin are distributed socially when introducing a new, cost-increasing 

programme.  When combined with an estimate of who gains most from the new 

health programme, for example in distributional cost-effectiveness analysis (Asaria, 

Griffin, Cookson, et al. 2015), this allows the net health inequality impact to be 

evaluated, as we demonstrate in chapters 4 and 5 of this thesis. 

 

3.2 Background 

 

3.2.1 Overview 

 

We estimate the socioeconomic distribution of health effects arising from marginal 

changes in health care expenditure in the English NHS. We use underpinning 

evidence from previous work by Claxton and colleagues on the causal link between 

health outcomes and health care expenditure by disease area. By adding information 

about the socioeconomic distribution of health care utilisation, we provide (i) the link 

between socioeconomic characteristics and health outcomes; and (ii) measures for 
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summarising the impact on socioeconomic inequality in the distribution of health.  

Since this evidence is the foundation on which we build in the present study, it is 

important to understand the nature and limitations of that evidence.  Sections 3.2.2 to 

3.2.4 describe the complex methods and data used in this previous study, with 

section 3.3 describing the approach, methods and data undertaken in the present 

analysis. 

 

3.2.2 Effect of expenditure on mortality 

 

Since 2003, each regional spending body of the English NHS (formerly Primary Care 

Trusts, now Clinical Commissioning Groups) has been required to categorise all 

expenditure into one of 23 programme budgeting categories (PBC). Each PBC 

covers a broad clinical area such as cancer or infectious disease, and is defined by a 

subset of International Classification of Disease (ICD) Version 10 codes.  Martin et 

al. showed how observations on expenditure could be linked to mortality using 

routine Primary Care Trust level data within each PBC (Martin et al. 2008; Martin et 

al. 2012).  Claxton and colleagues built on this analysis using more recent data that 

included all 152 Primary Care Trusts and covered all programmes of care.   

 

Analysis of cross-sectional data can potentially suffer from endogeneity bias; for 

example, reverse causality if poor health outcomes motivate decision-makers to 

increase health expenditure. These and other problems (Gravelle & Backhouse 1987) 

may account for the substantial variation in published estimates of the magnitude of 

the health effect of additional health care expenditure (Crémieux et al. 1999; Or 

2001; Nixon & Ulmann 2006; Gallet & Doucouliagos 2015; Vallejo-Torres et al. 

2016). Claxton and colleagues therefore use a two-stage least squares instrumental 

variables approach to account for endogeneity.  Two equations are estimated for each 

PBC: an expenditure equation linking the NHS budget to PBC expenditure and an 

outcome equation linking PBC mortality to PBC expenditure in a particular year. The 

equations control for need by including the Department of Health’s formula for 

regional need (Morris et al. 2007) and/or programme-specific variables (such as 

diabetes prevalence rates). Three-year averages of mortality are used to account for 

temporal fluctuations, the first year of which aligns with that of the expenditure data, 

thereby allowing for a lagged effect of the latter on the former to be captured. Since 
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mortality data are only available for eleven PBCs, the productivity of the remainder 

are assumed to be equal to the average of those where health effects could be 

estimated (with the exception of PBC 23, 'other', which is assumed to have zero 

health gain). The expenditure and outcome equations, respectively, are as follows: 

 

𝑥𝑖 = 𝛼 + 𝛽𝑛𝑖 + 𝛾𝑚𝑖 + 𝜃𝑦𝑖 + 𝜀𝑖 for 𝑖 = 1, … ,152 

 

ℎ𝑖 = 𝜌 + 𝛿𝑛𝑖 + 𝜋𝑥𝑖 + 𝜀𝑖 for 𝑖 = 1, … ,152 

 

where 𝑥𝑖 is expenditure; 𝑛𝑖 is the own programme need for care; 𝑚𝑖 is the need for 

care in other programmes; 𝑦𝑖 is the total budget and ℎ𝑖 is the health gain in PCT 𝑖. 

The variables are log-transformed such that the coefficients of interest, 𝜃  and 𝜋 , 

represent elasticities: 𝜃 is the percentage change of a PBC budget with respect to a 

percentage change in the overall NHS budget; 𝜋 is the percentage change in health 

for a percentage change in a PBC budget. 

 

To account for the endogeneity in both equations, a large number of instruments are 

acquired from census data and tailored to each PBC.  A battery of tests, including the 

Hansen–Sargen test, the Kleibergen–Paap Lagrange multiplier test and the 

Kleibergen–Paap F-statistic, are performed; where instruments are weak or invalid, a 

combination of other census-derived variables are used instead. A full list of all the 

instruments considered by the authors is given in Table 92 of their report (Claxton, 

Martin, et al. 2015, p.347). This strategy ensured that, even though endogeneity is 

indeed found to be present in many of the expenditure and outcome equations, the 

instrument set used for each is valid and sufficiently strong, thereby giving 

consistently estimated coefficients.5 

  

                                                 
5 The instruments included for each expenditure and outcome equation and their performance in the 

tests are detailed in the section “Analysis of programme budgeting expenditure for 2008/9 and 

mortality data for 2008/9/10” in Appendix 2 of Claxton et al’s report (Claxton, Martin, et al. 2015, 

p.314). 



73 

 

3.2.3 Extending outcome to QALYs 

 

To estimate the effect of spending on QALYs, mortality effects are first converted 

into ‘net’ years of life lost by disease area using data on age of death by PBC from 

the Office for National Statistics (ONS). This accounts for counterfactual deaths that 

would have occurred in the at-risk populations; Chapter 4 of their report provides full 

details of the calculations (Claxton, Martin, et al. 2015, p.45). When the elasticities 

from the mortality equations are applied to net years of life lost, they provide an 

estimate of life years gained from additional expenditure, as shown in the third tier of 

Figure 3.1.  

 

Claxton and colleagues then translate these into QALYs by adding the health lost due 

to reduced quality of life whilst living with a disease to the health lost due to 

premature death, using data at the ICD code level. The process is described in 

Chapter 4 of their report (Claxton, Martin, et al. 2015, p.56) and involves weighting 

years of life lived with, and lost to, each disease by combining evidence on net years 

of life lost, incidence, duration of disease, age and gender with quality of life scores 

by disease. The QALY burdens for each ICD code within a PBC are then summed to 

generate a PBC level QALY burden. The change in QALYs for a change in 

expenditure is then yielded by applying the proportionate effect of spend on 

mortality (i.e. the spend elasticity multiplied by the outcome elasticity) to the QALY 

burden for a given PBC, as shown in the fourth tier of Figure 3.1.  This implies that 

the ratio of PBC-level health effects of life extension to quality of life gains is 

identical to that in the respective QALY burden. We hereafter refer to the notional 

marginal QALY from a change in expenditure as an additional QALY brought about 

by an expenditure increase, although it is equally legitimate to conceive of it as a 

forgone QALY brought about by a budgetary reduction. 
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Figure 3.1: How a £50m National Health Service (NHS) budget increase is translated 

into quality-adjusted life year (QALY) effects for the respiratory disease programme 

budgeting category (PBC) 

 

Notes:  

1. ICD = International Classification of Disease; GBD = Global Burden of Disease. 

2. Proportionate effect of spend on mortality for PBC 11 is calculated by multiplying the respective 

elasticities from the outcome and spend equations. 

3. Net years of life lost for each PBC are calculated using a method described in Chapter 4: 

Translating mortality effects into life-years and quality-adjusted life-years in Claxton et al. (2015) 

 

 

3.2.4 Disaggregating health effects by age, gender and disease 

 

The main work by Claxton and colleagues only requires health effects at the PBC 

level, but a subsequent publication (Claxton, Sculpher, et al. 2015) provides more 

detailed ICD level breakdowns. These are published online in “Appendix A 
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(Displacement by ICD Code)”6.  These data can be re-aggregated back to PBC level 

to get the proportion of an additional QALY attributable to that PBC (in line with the 

original analysis), denoted 𝑝𝑘. Since ∑ 𝑝𝑘𝑘 = 1, these proportions are analogous to 

the probability that a QALY falls in PBC 𝑘 at the margin, denoted 𝑃(𝑄𝑘). This is 

based on the assumption that QALY gains are distributed within a PBC population 

according to the age and gender distribution of the incident population, using 

disease-specific estimates from the World Health Organization’s Global Burden of 

Disease Study (WHO, 2015). This provides the probability an additional QALY falls 

on an individual of gender 𝑔 and in age group 𝑎 and PBC 𝑘, denoted 𝑃(𝑄𝑎.𝑔,𝑘) and 

represented in the fifth tier of Figure 3.1. These data are the starting point for our 

analysis of the social distribution of health effects.    

 

3.3 Methods 

 

3.3.1 Analytical framework 

 

Our aim is to disaggregate each additional QALY by social groups of interest. We 

focus on three characteristics: (i) socioeconomic status, due to its political 

importance and strong correlation with health outcomes, which is commonly viewed 

as inequitable, (ii) age and (iii) gender. We start with data on the probability the 

additional QALY affects an individual in socioeconomic group 𝑑 given that it falls 

on a specific age-gender-PBC group, given by 𝑃(𝑄𝑑|𝑄𝑎,𝑔,𝑘). We then multiply this 

by the age-gender-PBC probabilities,  𝑃(𝑄𝑎.𝑔,𝑘)  to obtain the probability that an 

additional QALY falls on a particular age, gender, PBC and socioeconomic group: 

 

𝑃(𝑄𝑑|𝑄𝑎,𝑔,𝑘)𝑃(𝑄𝑎,𝑔,𝑘) = 𝑃(𝑄𝑎,𝑔,𝑘,𝑑) 

 

We then sum over PBCs to describe the social distribution of an additional QALY 

from NHS expenditure, represented by the sixth tier in Figure 3.1: 

 

∑ 𝑃(𝑄𝑎,𝑔,𝑘,𝑑)

𝑘

= 𝑃(𝑄𝑎,𝑔,𝑑) 

                                                 
6 Available at http://www.york.ac.uk/che/research/teehta/thresholds/ 

http://www.york.ac.uk/che/research/teehta/thresholds/
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In the absence of direct observations of the socioeconomic characteristics of those 

whose health services are actually affected following budget changes, we require a 

data source that acts as an appropriate proxy.  

 

3.3.2 Data and variables 

 

Hospital Episode Statistics (HES) is a database containing information on all NHS 

funded activity in public and private hospitals. The primary unit of measurement is 

the ‘consultant episode’; patients whose care is transferred between consultants 

during a single stay in hospital may have multiple episodes.  The HES data include a 

wide range of personal and geographical variables for each patient, including a 

unique patient identifier code, age at the beginning of the episode, gender and 

postcode.  We used HES data from 2013/14, the most recent data available at the 

time the analysis was conducted.  Whilst these data do not temporally align with 

those used in Claxton et al (mortality data for 2008-10 and expenditure 2008/9), they 

provide a more up-to-date estimate of the socioeconomic distributions. The HES 

inpatient dataset includes both day cases and overnight stays, encompassing a total of 

19,578,568 unique episodes.  

 

The Index of Multiple Deprivation (IMD) is used as our measure of socioeconomic 

status. The IMD is a weighted index of 38 variables covering seven dimensions of 

deprivation (employment, income, education, health, crime, living environment, and 

housing/services) that is given to each of the 32,482 lower layer super output areas 

(LSOA) in England. Each postcode belongs to an LSOA, giving each patient a 

deprivation score. The 2004 version of the IMD is provided in HES for the financial 

year 2013/14 (Noble et al. 2004), which uses LSOA boundaries from the 2001 

census. Newer versions of the IMD are available and can be attributed by postcode. 

Differences in the IMD score will mean that the areas of some individuals will have 

changed in deprivation level between 2004 (the time the score was attributed) and 

2014 (when entered secondary care). However, the proportion of patients 

transitioning between quintiles is expected to be minimal: the number of areas 

remaining in the most deprived decile group between 2004 and 2010, for example, 

was 82.7% (McLennan et al. 2011). As less movement is expected between quintiles 
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groups due to their larger size, the pre-coded 2004 variable is used in our analysis. 

This gathers the LSOAs (and their populations) into equally sized quintile groups to 

obtain a five-level socioeconomic status variable. 

 

ICD codes are included as diagnosis variables, of which up to twenty 4-digit codes 

can be recorded for each episode. These are converted to 3-digit codes, providing 

1,562 diagnostic categories that are mapped to the 23 PBCs. The comprehensive and 

nationally representative nature of the data justifies the use of HES in our analysis. 

No other source containing the age, gender and socioeconomic information of 

patients for all disease areas could be identified.  

 

We anticipate that the proportion of episodes with missing data would be small. It is 

also thought that the reasons would be largely administrative and due to data entry 

errors, and therefore we assume that data are missing completely at random and 

removed observations with missing age, gender IMD quintile values, or at least one 

diagnosis code from the sample. We further remove observations with gender 

unspecified. Age is grouped using the eight age bands used in the GBD study, 

containing a mixture of 5-, 10-, and 15-year bands.7  

 

An episode is deemed related to an ICD code if the latter appeared in any of the 20 

diagnosis codes. Consequently, episodes with multiple diagnosis codes will be 

‘counted’ multiple times. We then construct a matrix containing the episode counts 

for each age, gender, ICD and IMD group. 

 

3.3.3 Calculating QALY probabilities 

 

Although eight age groups, both genders and the 23 PBCs would generate 368 

subgroups, we analyse 320 since three PBCs are not allocated any health effects by 

Claxton and colleagues for reasons detailed in their report (Claxton, Martin, et al. 

2015, p.103): Trauma and Injuries (PBC 16), Social Care (PBC 22) and General 

Medical Services (PBC 23). For each group we count the number of episodes in each 

                                                 
7 These age groups are 0-4, 5-14, 15-29, 30-44, 45-59, 60-69, 70-79, 80 and over. 
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of the five IMD quintile groups. The count matrices are produced using Stata 12, 

with all subsequent analyses performed in R.  

 

Figure 3.2: Calculation of the proportion of the overall health effect from a change in 

overall health care expenditure attributed to 30-44 year old females in the highest 

deprivation group 

 

Note: PBC = programme budgeting category; QALY = quality-adjusted life year; ICD = International 

Classification of Disease. 
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The counts are converted into proportions for each row to obtain the socioeconomic 

distribution of each age, gender and PBC group. These proportions are considered 

proxies for the probability that an additional QALY falls on deprivation group 𝑑 

given that it falls on a particular age, gender and PBC group, 𝑃(𝑄𝑑|𝑄𝑎,𝑔,𝑘) . 

Multiplying these by the probability of a QALY change falling on an age-gender-

PBC group, 𝑃(𝑄𝑎,𝑔,𝑘) yields the probabilities that the new NHS QALY will fall on a 

particular age-gender-PBC-socioeconomic group, or 𝑃(𝑄𝑎,𝑔,𝑘,𝑑). Only one group, 0-

5 males in PBC 18, had no episodes associated with it. We assumed a flat 

socioeconomic distribution for this group, which accounts for less than 0.001 of the 

total QALY probability.  

 

3.3.4 Analysing social inequalities  

 

To analyse the social distribution of an additional QALY, we firstly sum over PBCs 

to obtain the distribution of probabilities of receiving the marginal QALY by age, 

gender and socioeconomic status. From here we investigate socioeconomic 

inequality by age, gender and socioeconomic status: (i) summing over age groups 

and genders yields an aggregate socioeconomic distribution; (ii) summing over 

genders yields the socioeconomic distribution of probabilities by age group; (iii) 

summing over age groups yields the socioeconomic distribution of probabilities by 

gender. 

 

In order to present the results and distributions by 5-year age group we split the 

probabilities of 10- and 15-year age groups from the GBD study into 5-year bands, 

using the respective population proportions of the 5-year bands from which they are 

composed, obtained from the ONS (2014). For example, the probability associated 

with 70-79 year-old men was disaggregated into the 70-74 and 75-79 bands 

according to their proportions within the 70-79 band, which are 0.56 and 0.44, 

respectively. These are general population estimates and are thus not specific to each 

disease area. 
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3.3.5 Inequality measures 

 

To compare socioeconomic distributions, we compute two summary measures of 

inequality: the slope index of inequality (SII) and the relative index of inequality 

(RII) for IMD quintile groups. 

 

The SII measures absolute inequality using Ordinary Least Squares regression to 

estimate the effect of IMD on the probability of gaining the marginal QALY. Rather 

than using an ordinal socioeconomic variable in the regression equations, we convert 

each IMD level into a ridit score, a continuous variable on a 0-1 scale. Although 

IMD quintile groups are equally sized in the whole population, we also analyse 

inequality by age group, where the distribution over IMD groups differs. Ridit scores 

resolve this issue by accounting for the relative size of each socioeconomic group: 

the ridit score of each group represents the mid-point of the cumulative distribution 

of a subgroup population by IMD. For example, as IMD quintile 1 represents 20% of 

the population, the ridit score would be 0.2/2=0.1 (for further details see Beder and 

Heim (1990)). SII is then estimated using the following model: 

 

𝑞𝑖 = 𝛼 + 𝛽𝑆𝐼𝐼𝑟𝑖 + 𝜀𝑖 

 

Where 𝛽𝑆𝐼𝐼 is the SII value, 𝑞𝑖 is the probability of the QALY accruing to deprivation 

quintile 𝑖, 𝑟𝑖  is deprivation quintile ridit score, 𝜀𝑖 is the idiosyncratic error, 𝛼 is the 

constant term. 𝛽𝑆𝐼𝐼  is the slope parameter of 𝑟𝑖  on 𝑞𝑖  and represents the SII. It is 

interpreted as the absolute change in probability of moving from the highest to the 

lowest deprivation groups.  

 

A greater negative SII value indicates a steeper ‘pro-poor’ gradient and means that 

low socioeconomic status has a higher absolute probability of receiving the QALY.  

For example, an SII of -0.02 in PBC 2 (Cancer) would mean that cancer patients in 

the poorest fifth of neighbourhoods would be 2 percentage points more likely to 

receive an additional NHS QALY than the richest fifth. RII uses the same 

information to calculate the relative difference in moving from the most to least 

deprived quintile group. An RII of -0.5, for instance, would imply that cancer 
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patients in the most deprived fifth of neighbourhoods are twice as likely to receive an 

additional NHS QALY relative to the least deprived. To obtain RII, we simply divide 

the SII by the mean probability across socioeconomic groups, 𝑞�̅�, such that 𝛽𝑅𝐼𝐼 =

𝛽𝑆𝐼𝐼 𝑞�̅�⁄ . The SII is analogous to risk difference and describes the inequality on the 

same scale as the outcome being analysed. The RII may be more useful when 

comparing inequality across multiple distributions where the mean of the outcome is 

different (such as comparing inequality over PBCs), and is akin to a risk ratio.  

 

3.3.6 Social welfare analysis 

 

The gender and socioeconomic distribution of health effects can be used to calculate 

an ‘equity-adjusted’ threshold, which in turn can be used to evaluate the social 

welfare impacts of new interventions. We first assume that a £12,937 expenditure 

reduction will impose a loss of one QALY on the health system, as estimated by 

Claxton and colleagues. This QALY loss for each gender and socioeconomic group 

is then modelled on to the baseline distribution of health estimated in chapter 2 (a 

process described in more detail in section 4.2.3.2 of chapter 4. We can then 

calculate the change in social welfare by evaluating both health distributions using 

the functions described in section 2.3.5 of chapter 2. The difference in the equally 

distributed equivalent (EDE) mean health at baseline and after the QALY loss is 

multiplied by the population size to obtain the change in population EDE QALYs: 

 

∆𝑃𝑜𝑝𝐸𝐷𝐸𝐴,𝜀 = (𝑃𝑜𝑠𝑡𝐸𝐷𝐸𝐴,𝜀 − 𝐵𝑎𝑠𝑒𝐸𝐷𝐸𝐴,𝜀)𝑃𝑜𝑝 

   

Where 𝐸𝐷𝐸𝐴,𝜀 is the EDE mean health for the distribution when using the Atkinson 

inequality index (Atkinson 1970) and an inequality aversion parameter 𝜀. Thus, if the 

more deprived groups bear a greater share of the health opportunity costs, the social 

value of displacing one QALY will be greater than one and the cost-per-QALY 

threshold should be reduced. The size of this adjustment will depend upon the 

inequality aversion parameter: we therefore calculate the adjusted thresholds for a 

range of parameters. 
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The adjusted threshold is calculated by finding the reduction in expenditure that 

yields a loss of one EDE QALY. We do this by multiplying the distribution of one 

QALY by an adjustment factor and calculating ∆𝑃𝑜𝑝𝐸𝐷𝐸𝐴,𝜀 . An optimisation 

algorithm is run to obtain the factor that yields a value of minus one, which can then 

be applied to the cost-per-QALY threshold of £12,937 to obtain the cost-per-EDE 

QALY threshold. 

 

3.3.7 Sensitivity analysis 

 

3.3.7.1 Unique patient counts 

Using episode counts to infer the socioeconomic distribution of the QALY assumes 

that every episode within each age, gender, and ICD group is associated with an 

equal probability of generating a QALY regardless of socioeconomic group. To 

demonstrate, consider two diabetic patients, A and B, who have four and two 

recorded episodes, respectively. An episode tally assumes that A has twice the 

probability of generating a QALY, whilst a patient tally supposes that A requires 

twice the number of episodes as B in order to achieve the same QALY-generating 

probability. To determine whether this assumption is influential, we estimate our 

results using an alternative set of socioeconomic distributions calculated using the 

distributions of unique patients. 

 

To account for the fact that some patients’ age and IMD quintile group changed 

across episodes, these values are fixed to their values in the first episode (when listed 

chronologically). We wanted to capture all ICD codes associated with each patient 

across their episodes. However, with some patients associated with in excess of 200 

episodes this becomes computationally unfeasible. We therefore count a patient in 

the matrix if an ICD code appears in the diagnosis codes of any of their ten most 

coded episodes (where most coded means the highest number of diagnosis codes 

entered). 

 

3.3.7.2 Previous years of data 

A second sensitivity analysis is conducted by repeating our analysis using HES data 

from the previous two years to test whether there are any noticeable differences in 

inequality over time. 
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3.3.7.3 Primary care data 

Whilst Hospital Episode Statistics (HES) provides comprehensive coverage of 

inpatient secondary care utilisation by age, gender, socioeconomic status and disease 

(measured by International Classification of Disease (ICD) code), it may not be the 

most appropriate data source from which to estimate socioeconomic distributions for 

some clinical areas. The socioeconomic patterns observed in inpatient secondary care 

might not be reliable proxies for how the health benefits accruing to each disease 

area are distributed, especially for disease areas where the proportion of total health 

care activity taking place in inpatient secondary care is small. 

 

We therefore sought data that provides information on diseases and conditions 

typically treated in primary care by socioeconomic status (preferably Index of 

Multiple Deprivation (IMD)). One such source is the Quality and Outcomes 

Framework (QOF) dataset, which includes information on the socioeconomic (but 

not age or gender) distribution of diseases at the level of general practitioner (GP) 

clinic. QOF is an incentive scheme for NHS GPs in the UK that provides financial 

rewards to each practice for achieving specific clinical goals within their patient 

population, known as ‘indicators’. Many of the indicators involve ensuring that a 

sufficient proportion of the practice population with a certain condition receive a test 

or treatment (for example, the proportion of patients with coronary heart disease who 

have received an influenza immunisation). This necessitates having an estimate of 

the at-risk population for each condition of interest for each practice so their 

achievement can be measured, from which a practice-level prevalence rate can be 

calculated. These are provided for all conditions relating to the indicators and are 

published annually (Health and Social Care Information Centre 2015).  

 

The Quality and Outcomes Framework (QOF) primary care data provides prevalence 

rates by disease for each GP practice in England. However, the practices do not align 

with LSOAs that are used to calculate local area deprivation scores using the Index 

of Multiple Deprivation, as some practices straddle multiple LSOAs.  Therefore we 

use the Attribution Dataset on GP Registered Populations, which disaggregates each 

practice population by LSOA.  
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With these data, we can calculate prevalence by IMD using the following process for 

each condition: 

i. Apply the practice-level prevalence rate to each postcode portion of the 

practice population, giving the expected number of cases of a condition 

by practice, disaggregated by postcode; 

ii. Add the number of expected cases for each postcode (which is split 

between multiple practices). Each postcode is assigned its IMD score and 

IMD quintile group; 

iii. Add up the number of cases for each IMD quintile group and divide by 

the total number of cases to obtain the relative proportions over IMD (i.e. 

the socioeconomic distribution); 

 

The prevalence rates from QOF reflect differences in the utilisation of services, and 

therefore do not capture the differences in the likelihood of certain groups receiving 

the health benefits from treatment. Nor are the rates by QOF condition direct 

substitutes for the HES dataset, as they are not defined by ICD code or IMD quintile. 

We therefore mapped the conditions to their ICD codes (or subset of codes), shown 

in Table A3.6. The QOF distributions are then used to replace the episode 

distributions extracted from HES, and are applied to all the age-gender-ICD groups 

that constitute each condition. To investigate the impact of using this alternative 

source of data, we compared the socioeconomic distribution of the QALY 

proportions using only the ICD codes covered by the QOF dataset. These 54 codes 

relate to 37.4% of the health effects that result from a change in expenditure; 0.37 of 

each additional QALY therefore goes to patients that are covered by QOF. 

 

3.4 Results 

 

3.4.1 Descriptive statistics 

 

Descriptive statistics for HES are reported in Table 3.1. In total, 119,569 (0.006%) 

observations are excluded from the sample. Another 51,344 are deleted as suspected 

duplicates, leaving a remaining sample size of 19,407,655 episodes covering a total 

patient population of 8,882,110.   
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Females accounted for a larger proportion of patients (56.1%) than males. Whilst this 

is also true for episodes, the proportion was slightly lower (54.5%), implying fewer 

episodes per female patient. A near-identical socioeconomic gradient in both episode 

and patient counts is found. For patients, 23.5% are in the most deprived IMD 

quintile group and 17.4% in the least deprived. The respective statistics using 

episodes are 23.3% and 16.9%. The number of episodes attributed to each PBC and 

IMD quintile group are provided in Table A3.5 in the appendix.  The ratio of counts 

in the most deprived to least deprived groups ranges from 0.95 for PBC 2 (Cancers 

and Tumours) to 2.87 for PBC 19 (Neonates).  

 

Table 3.1: Descriptive statistics for Hospital Episode Statistics 2012/13.  

Variable Patients % Sample Episodes % Sample 

Total 8,882,110 100% 19,407,655 100% 

Age 

    0-4 999,334 11.3% 1,463,253 7.5% 

5-14 363,592 4.1% 564,144 2.9% 

15-29 1,183,033 13.3% 2,141,345 11.0% 

30-44 1,427,015 16.1% 2,642,378 13.6% 

45-59 1,520,374 17.1% 3,297,482 17.0% 

60-69 1,204,898 13.6% 2,983,189 15.4% 

70-79 1,143,281 12.9% 3,201,919 16.5% 

80+ 1,040,583 11.7% 3,113,945 16.0% 

Gender 

    Male 3,896,899 43.9% 8,826,364 45.5% 

Female 4,985,211 56.1% 10,581,291 54.5% 

IMD 

    1 (most deprived) 2,090,295 23.5% 4,530,436 23.3% 

2 1,799,620 20.3% 3,998,631 20.6% 

3 1,804,243 20.3% 4,018,339 20.7% 

4 1,641,355 18.5% 3,571,730 18.4% 

5 (least deprived) 1,546,597 17.4% 3,288,519 16.9% 

Note: IMD = index of multiple deprivation 
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Table 3.2: Distribution of quality-adjusted life years by age and index of multiple 

deprivation (IMD) quintile group for a £50m change in the English National Health 

Service budget 

   
IMD Quintile Group 

  Age band 1 2 3 4 5 Total 

0-4 135 103 101 65 59 463 

5-9 47 39 39 27 27 180 

10-14 46 38 38 27 26 176 

15-19 78 62 61 40 33 274 

20-24 86 68 68 44 37 303 

25-29 87 69 69 44 37 307 

30-34 49 39 39 24 20 172 

35-39 47 37 37 23 19 163 

40-44 52 42 41 26 21 183 

45-49 69 57 57 40 34 257 

50-54 62 51 51 36 30 231 

55-59 54 45 44 31 26 200 

60-64 53 46 47 40 34 221 

65-69 49 43 43 38 32 204 

70-74 41 38 38 36 31 183 

75-79 34 31 31 30 26 152 

80-84 20 20 20 21 19 100 

85+ 20 20 19 20 18 96 

Total 1029 850 844 612 530 3865 

Note:  

1. IMD1=most deprived, IMD5=least deprived 

2. A cost-per-QALY estimate of £12,937 from Claxton et al. (2015) is used to predict the 

expected number of QALYs 

 

 

3.4.2 Main findings 

 

Table 3.2 demonstrates how the health benefits of a £50 million budget increase 

would be distributed between age, gender and socioeconomic subgroups using 

Claxton and colleagues’ estimate that the cost of each additional QALY is £12,937. 

Of the 3,865 QALYs generated from the increase, nearly twice as many accrue to the 

most deprived fifth (1,029) as to the least deprived (530), whilst 45% of the gains go 

to those under 30. 
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The likelihood of each deprivation quintile group receiving the QALY is given in  

Figure 3.3. The most deprived fifth are the most likely to be affected with a 

probability of 0.27, a value that decreases with deprivation up to the least deprived 

fifth who have an associated probability of 0.14. This disparity is summarised with a 

negative SII of -0.08. For each IMD quintile group, females had a higher probability 

of being affected than males. However, the relative differences between deprivation 

groups were greater for men, with a RII of -0.85, compared to -0.82 for women.   

 

Figure 3.3: How the socioeconomic distribution of quality-adjusted life year gains 

varies by age group 

 

Note: Socioeconomic status is measured by Index of Multiple Deprivation (IMD) quintile (1=most 

deprived, 5=least deprived) 

 

 

3.4.2.1 Inequality by age band 

Figure 3.4 shows how the likelihood of receiving the additional QALY is distributed 

between socioeconomic quintiles for each age group. Inequality is most pronounced 

in young age bands, with a large social gradient clear from birth until the 40-44 band. 

RII values are consistently around -1.0 up to this group, indicating that the QALY 

probability for the most deprived group is twice that of the least deprived group. 

Thereafter disparities reduce to a minimal level, with an RII of -0.08 for the 85+ 

band. 
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Figure 3.4: Probability distribution of an additional quality-adjusted life year 

(QALY) over age and Index of Multiple Deprivation (IMD) quintile group 

 

Notes:  

1. IMD1 = most deprived group, IMD5 = least deprived 

2. The differences in QALY effects between genders should be treated with caution. This is 

because the larger effects for women reflect their levels of health care utilisation rather than 

any systematic differences in the health care services being affected by expenditure changes 

 

 

1.1.1 Inequality by Programme Budgeting Category 

Table 3.3 shows how the social gradient in the probability of receiving an additional 

QALY differs by PBC. The respiratory programme, within which nearly 30% of 

effects accrue, exhibits average levels of inequality, with an RII of -0.89, with the 

gastro-intestinal programme being one of the most unequal with a score of -1.43. The 

cancer PBC distributes its gains most equally, yielding an RII of -0.05. 

 

1.1.2 Social welfare analysis 

The cost-per-EDE thresholds, which adjust the cost-per-QALY threshold based on (i) 

the gender and socioeconomic distribution of a displaced QALY and (ii) the level of 

inequality aversion, are shown in Figure 3.5. At the base case level of inequality 

aversion of 10.95 (estimated by Robson et al. (2016)), the adjustment factor is 0.867, 

yielding an adjusted threshold of £11,220. As inequality aversion increases, the 

added societal cost of displacing more health in poorer groups increases the 



89 

opportunity cost and reduces the threshold: when 𝜀 =30, the threshold drops to 

£10,097. 

 

Table 3.3: Inequality in quality-adjusted life year (QALY) gains by Programme 

Budgeting Category (PBC) 

PBC 
QALY 

probability 

QALYs from £50m 

spend increase 
SII RII 

Total 1 3865 -0.0848 -0.85 

Respiratory 0.297 1146 -0.0263 -0.89 

Neurological 0.141 545 -0.0127 -0.90 

Circulatory 0.139 539 -0.0096 -0.68 

Mental health 0.123 476 -0.0159 -1.29 

Endocrine 0.078 303 -0.0074 -0.95 

Gastro-intestinal 0.057 219 -0.0081 -1.43 

Cancer 0.034 132 -0.0002 -0.05 

Muscuoskeletal 0.030 116 -0.0008 -0.27 

Blood disorders 0.028 109 -0.0030 -1.06 

Infectious diseases 0.020 78 -0.0017 -0.85 

Problems of hearing 0.018 70 -0.0008 -0.42 

Genito-urinary 0.014 53 -0.0005 -0.39 

Dental problems 0.009 34 -0.0007 -0.80 

Problems of eye and vision 0.005 21 -0.0002 -0.30 

Skin 0.003 10 -0.0001 -0.35 

Poisoning and A&E 0.001 4 -0.0001 -0.91 

Learning 0.001 3 -0.0001 -1.30 

Healthy Individuals 0.001 3 -0.0002 -1.93 

Maternity + Neonate 0.001 2 0.0000 -0.89 

Note:  

1. SII = slope index of inequality; RII = relative index of inequality; A&E = accident & 

emergency 

2. PBCs 16, 22 and 23 were not associated with any health effects of additional expenditure 
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Figure 3.5: Cost-per-EDE QALY threshold as inequality aversion increases. The 

base case inequality aversion parameter of 10.95 from Robson et al. (2016) is shown 

by the black triangle 

 

Note: EDE = equally distributed equivalent; QALY = quality-adjusted life year 

 

 

3.4.3 Sensitivity Analysis 

 

The impact of using unique patient counts was negligible. Compared to the episode 

count distribution, RII slightly fell from -0.848 to -0.787, with a mean absolute 

difference over IMD quintile groups of 0.004. Similarly, no differences were found 

when using the HES datasets from 2011 or 2012, with the probability of QALY gain 

for each IMD quintile group staying consistent over time. These analyses are all 

summarised in Table 3.4.  

 

The comparison of the QALY distributions derived from the prevalence rates from 

QOF with those derived from the utilisation statistics from HES is shown in Figure 

3.6. The gradient in the health effects, which for this analysis covers 0.37 of each 

additional QALY, is marginally more even when using QOF than when using HES; 

RII and SII decreased from -0.968 and -0.036 for HES to -0.913 and -0.034 for QOF, 

respectively. Stated alternatively, when analysing only the diseases included in QOF, 

the health changes accruing to the most deprived are 91% higher than those for the 

least deprived when using QOF, compared with 97% when using HES. 
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Table 3.4: Probability of receiving the additional quality-adjusted life year by Index 

of Multiple Deprivation (IMD) group using alternative data sources to estimate 

socioeconomic distributions, along with absolute (SII) and relative (RII) inequality 

measures 

  
IMD Quintile Group 

   Data Source 1 2 3 4 5 SII RII 

Episodes 
       

2013 0.2663 0.2199 0.2184 0.1583 0.1370 -0.085 -0.848 

2012 0.2677 0.2197 0.2180 0.1583 0.1363 -0.086 -0.857 

2011 0.2686 0.2192 0.2186 0.1576 0.1360 -0.086 -0.865 

Patients 
       

2013 0.2642 0.2167 0.2140 0.1619 0.1432 -0.079 -0.787 

Note: IMD 1 = most deprived, IMD 5 = least deprived. 

 

 

Figure 3.6: Socioeconomic distribution of the proportion of an additional quality 

adjusted life year (QALY) attributable to disease covered by the Quality and 

Outcomes Framework (QOF) dataset when using disease-specific socioeconomic 

patterns from Hospital Episode Statistics (HES) and QOF 

 

Note: Includes only health effects attributable to diseases covered by the QOF dataset. These cover 

approximately 37% of the total. 
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3.5 Discussion 

 

3.5.1 Main findings 

 

Our analysis provides the first empirical estimate of the social distribution of health 

effects from marginal NHS budget changes. We find that such changes 

disproportionately affect the most socioeconomically deprived and are concentrated 

in younger age groups, where socioeconomic gradients are most pronounced.  

 

Our results suggest that the real increases in NHS funding in recent years (Crawford 

& Emmerson 2012) have likely contributed to a reduction in socioeconomic health 

inequalities. This supports the conclusions of both Asaria et al. in their analysis of 

primary care access and outcomes and Barr et al., who found that proportionately 

larger budgetary increases for higher deprivation local authorities reduced the 

disparity in mortality rates to less deprived ones (Barr et al. 2014; Asaria et al. 2016).  

 

We also provide breakdowns by broad disease area, known as “programme 

budgeting category” (PBC).  The overall gradient is primarily driven by a small 

number of “influential” disease areas, where expenditure is particularly elastic with 

respect to overall budget changes. A key example of this is respiratory disease (PBC 

3), which accounts for 30% of the change in health for a change in overall spend. 

Our analysis of inequality by PBC demonstrates how the aggregate socioeconomic 

gradient is driven by high levels of inequality in respiratory conditions such as 

asthma and chronic obstructive pulmonary disease. 

 

Through sensitivity analyses, we find that the social distribution of an additional 

QALY is almost identical when using episode distributions from 2011 and 2012, and 

very similar when using primary care data on disease prevalence rather than 

secondary care data on health care utilisation. We can thus be satisfied that our 

results are not sensitive to quirks in health care utilisation specific to 2013, or to the 

use of secondary care utilisation data rather than prevalence data, and reflect 

consistent socioeconomic patterns by disease.  
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The social welfare analysis we conduct demonstrates an innovative application of the 

results by calculating equity-adjusted cost-effectiveness thresholds that reflect the 

size and distribution of health opportunity costs. Since opportunity costs fall more 

prominently on lower socioeconomic groups, we calculate adjustment factors for the 

cost-effectiveness threshold that are flexible to the level of inequality aversion of the 

social decision-maker. These thresholds can be utilised in economic evaluation as 

equity-informative benchmarks by which to judge the population health and health 

inequality impacts. For example, an intervention that costs £5m would need to 

generate 445 EDE QALYs instead of 386 QALYs in order to be cost-effective, as it 

must also account for the health inequality increases that come with displacing 

services that benefit those at the bottom of the health distribution. 

 

3.5.2 Limitations and assumptions 

 

This study is underpinned by evidence produced by Claxton and colleagues on the 

relationship between local expenditure and mortality, which they combined with 

other data to estimate the marginal effects of NHS expenditure on population 

QALYs. The complexity of the problem Claxton and colleagues faced, and the 

limited availability of data, especially in extending analyses from life years to 

QALYs, meant that several assumptions were made. A full list of these assumptions 

is given in Table 32 of their report (Claxton, Martin, et al. 2015, p.83). Other 

critiques and responses have subsequently been published (Barnsley et al. 2013; 

Claxton & Sculpher 2015; Raftery 2014). However, our analysis depends not on the 

absolute health effects of expenditure changes but on the relative contribution of 

each PBC to the overall health effect, as our focus is on distribution. Importantly, 

none of the critiques published to date question the plausibility of the results in this 

specific respect.  

 

Additionally, our analyses assume that the effectiveness of health spending in terms 

of health production is the same for each socioeconomic, age and gender group 

conditional on PBC. Whilst it would have been desirable to estimate outcome-

expenditure elasticities by socioeconomic group, this would have required 

expenditure and health outcome data by socioeconomic status as well as by region 
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and clinical area that are not currently available. Although empirical work suggests 

that the health outcomes from health care are generally better for less deprived 

groups (Cookson, Propper, et al. 2016), little work has been conducted on the direct 

link between health care inputs and health outputs by socioeconomic group. The 

impact on our results is thus unknown: the affluent may be more effective at 

producing health, but those in more deprived areas may only seek care when sicker, 

thereby obtaining more benefit.  

 

We did not fully characterise the uncertainty around the probabilities of receiving the 

additional QALY. In their analysis, Claxton and colleagues propagate parameter 

uncertainty through their model using Monte Carlo simulation (as detailed in Chapter 

5 of their report). Whilst we investigated uncertainty over episode counts from HES, 

we did not combine this with the uncertainty from the original analysis, thereby 

generating unrealistically small standard errors. 

 

The socioeconomic episode distribution of particular diseases estimated from HES 

may also not be a reliable proxy for how health gains might actually be distributed 

following an expenditure increase. This is because the patterns observed in hospital 

activity might be different to those observed in other forms of health care. This is 

true for conditions principally treated in primary care, such as asthma, or in specialist 

facilities, such as schizophrenia or other mental health conditions. We are not able to 

obtain primary care utilisation data that could test this hypothesis. The sensitivity 

analysis we perform with primary care data from QOF indicates that results were 

marginally more evenly distributed and largely comparable to secondary care 

utilisation. However, as these are prevalence data, they do not account for patterns of 

utilisation and would not capture the additional health benefits that sicker patients in 

more deprived groups obtain from multiple visits to primary care, for example. 

Without evidence to inform how the patterns in these data sources might differ to 

those we estimate from HES, we are unable to speculate as to what direction of bias 

this might have on our results. 

 

Last, the methods used to expand the eight age bands into 18 by using the population 

densities of 5-year bands within the 10- and 15-year ones likely oversimplify the SES 
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distribution by age. This can be seen in Figure 3.3, where small step changes can be 

seen every two or three bands. 

   

3.5.3 Implications and further research 

 

An important application of our results is their use in health technology assessment. 

For a universal health system like the NHS, the decision to fund a new technology 

will entail marginal reductions in existing services. The numbers in Table 3.2 can 

thus be considered as the distribution of health losses resulting from a decision to 

approve a new intervention costing £50 million. Our results therefore provide the 

first quantitative assessment of how health opportunity cost is distributed 

socioeconomically, and can help to inform decision-makers on what impact future 

interventions have on health inequality. This could be through informal consideration 

or a distributional cost-effectiveness model (Asaria, Griffin, Cookson, et al. 2015; 

Cookson et al. 2017), in which our estimates can be combined with an intervention’s 

expected health benefits by age, gender and socioeconomic status to generate a 

distribution of net health effects. When these are modelled on to expected lifetime 

health (such as the estimates from chapter 2), decision makers can be offered 

evidence on how a decision might affect health inequalities. Our methods and 

estimates may be also be a useful building block in future work on developing 

resource allocation formula based on equity of outcomes rather than utilisation.  

However, several further theoretical and empirical challenges would need to be 

overcome before a robust formula of this kind could be operationalized. 

 

There is scope to improve our estimates by using better data with which to estimate 

the socioeconomic distributions of age-gender-ICD subgroups. For example, linking 

in other datasets such as the Clinical Practice Research Datalink and the Mental 

Health Minimum Dataset could provide socioeconomic distributions of relevant 

conditions by age and gender in primary care and specialist mental health centres, 

respectively. Future research should also investigate the differences in health benefit 

achieved from receiving health care, which our analysis has assumed is the same for 

all socioeconomic groups. Lastly, similar analyses to this should be conducted for 

social care expenditure, as a comparison between the marginal effects of 
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expenditures of health and social care can help inform resource allocation priorities 

with respect to health inequalities. 

 

However, this study demonstrates how insights into the distribution of health gains 

from expenditure can be made, whilst also providing an important contribution 

toward the role of public health care expenditure in reducing health inequalities. 
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Appendix 3 

 

Table A3.5: Number of episodes from Hospital Episode Statistics by Index of 

Multiple Deprivation (IMD) quintile group and Programme Budgeting Category 

(PBC) 

        IMD Quintile Group     

  PBC 1 2 3 4 5 
Ratio 

1/5 

1 
Infectious 

disease 
73,206 65,773 65,792 55,640 51,106 1.43 

2 
Cancers and 

tumours 
798,965 769,636 790,868 875,026 838,692 0.95 

3 Blood disorders 288,574 260,946 266,963 218,611 193,114 1.49 

4 
Endocrine, 

nutritional 
977,489 888,327 880,756 738,236 623,516 1.57 

5 Mental health 1,182,758 935,190 917,735 603,987 466,905 2.53 

6 
Learning 

disability 
55,110 44,280 43,390 28,797 21,897 2.52 

7 Neurological 389,763 343,101 339,122 293,529 262,108 1.49 

8 Vision problems 259,087 246,621 248,643 255,468 233,922 1.11 

9 
Hearing 

problems 
75,419 69,193 69,268 63,735 57,986 1.30 

10 
Circulatory 

disease 
2,625,616 2,415,341 2,422,808 2,299,099 2,023,139 1.30 

11 
Respiratory 

disease 
1,215,577 1,050,923 1,046,605 840,736 710,081 1.71 

12 Dental problems 79,505 74,205 72,900 50,626 43,713 1.82 

13 
Gastrointestinal 

system 
1,288,223 1,160,694 1,170,376 1,051,384 954,478 1.35 

14 Skin problems 287,882 255,144 251,871 213,796 186,235 1.55 

15 
Musculoskeletal 

system 
894,024 827,430 829,136 784,789 712,146 1.26 

17 
Genitourinary 

system 
1,086,429 1,001,856 1,001,596 860,605 740,267 1.47 

18 Maternity 534,888 474,522 461,860 309,722 279,065 1.92 

19 Neonate 227,315 129,349 124,651 87,885 79,231 2.87 

20 Poisoning 21,984 18,753 19,307 15,167 13,946 1.58 

21 
Healthy 

individuals 
340,182 313,719 305,312 242,280 209,867 1.62 

  Total 12,701,996 11,345,003 11,328,959 9,889,118 8,701,414 1.46 

Notes: 

1. IMD 1 = most deprived; IMD 5 = least deprived 

2. Episodes are attributed to a PBC/IMD group if they appear in any of its respective diagnosis 

codes. Counts therefore exceed the episode total of 19,407,655 
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Table A3.6: ICD codes covered by the disease included in the Quality and Outcomes 

Framework dataset 

Disease ICD Codes 

Asthma J45 

Atrial Fibrillation I48 

CHD I20-25 

CKD N18 

COPD J40-44, J47 

Dementia F00-F07 

Depression F32 

Diabetes E10-14 

Epilepsy G40-41 

Heart Failure I50 

Hypertension I10-15 

Learning disability F82 

Obesity E66 

Osteoperosis M81-82 

PAD I73 

Rheumatoid Arthritis M05-06 

Stroke I61-64, G45 

Hypothyroidism E00-07 
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Chapter 4: Simplified distributional cost-effectiveness analysis: an 

application to 27 health technologies approved in England 

 

 

4.1 Introduction 

 

Health systems around the world have increasingly turned to health technology 

assessment (HTA) as a process for systematically evaluating new health 

interventions and prioritising existing ones. The principal quantitative component of 

HTA has been cost-effectiveness analysis, which assesses technologies in terms of 

their ability to maximise health benefits relative to cost for the average patient 

(Mathes et al. 2013). 

 

Health care decision-makers must also consider other aspects of benefit when 

evaluating treatments. Chief amongst these are how health gains are distributed and 

how health inequality will be affected (Marmot et al. 2010; Turrell et al. 2006; 

Canadian Institute for Health Information 2015; CDC 2013). However, the health 

inequality impacts of new interventions are not quantitatively analysed by HTA 

agencies. In the UK, for example, the National Institute for Health and Clinical 

Excellence’s (NICE) methods guidance describes commitments to considering health 

inequalities, but does not routinely consider whether they will be improved, or by 

how much (NICE 2014).  

 

Distributional cost-effectiveness analysis (DCEA) is a framework that has sought to 

address this shortcoming by using and extending the results of a traditional cost-

effectiveness analysis (Asaria, Griffin, Cookson, et al. 2015). Health benefits and 

losses are disaggregated by social groups of interest (i.e. by socioeconomic status or 

gender), which are then combined to calculate a gradient of net effects. These can 

then be modelled on to a distribution of expected lifetime health to understand how 

health inequality might change as a result of a recommendation. 

  

DCEAs require the estimation of the distribution of health benefits from an extended 

or adapted decision analytic model, such as using socioeconomic subgroup-specific 
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epidemiology, quality of life scores or treatment effects. This approach is 

exemplified in chapter 5 with respect to smoking cessation interventions. This paper 

outlines a simplified version that does not adapt or extend the decision model itself, 

but takes the average cost-effectiveness results and scales them up using patient 

population numbers.  The population-level benefits are then disaggregated according 

to aggregate data on gender and socioeconomic patterns observed for the relevant 

disease, such as health care utilisation data. The method we propose for conducting 

quantitative inequality impact assessment, therefore, requires only the standard 

outputs of a cost-effectiveness analysis. 

 

We apply this simplified approach to a sample of 27 NICE single technology 

appraisals (TAs), where one new treatment is compared against existing standard 

care, conducted between 2012 and 2014. We show how the net health benefits are 

distributed between gender and socioeconomic groups for each intervention, as well 

as how their implementation affects lifetime health inequality in the English 

population.  

 

This new and simple way of calculating the health inequality impacts of health 

technologies can thus provide NHS decision-makers and stakeholders with an 

evidence-based technique for evaluating whether new interventions can help address 

the important social objective of reducing health inequalities. 

 

4.2 Methods 

 

4.2.1 Overview 

 

The method for estimating the net health impacts by gender and socioeconomic 

group is shown in Figure 4.1. Incremental costs and benefits are extracted from the 

manufacturer’s submission to NICE, along with patient population estimates to 

calculate population-level effects. Benefits are distributed according to healthcare 

utilisation patterns observed in Hospital Episode Statistics (HES) for the relevant 

disease, identified by a 3-digit International Classification of Disease (ICD) code. 

HES is selected as it is a convenient, consistent data source that provides information 

on all ICD codes. Costs are converted into health losses using a recent estimate of the 
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cost-effectiveness threshold by Claxton et al. (2015), which are disaggregated by 

gender and socioeconomic groups using the results from chapter 3. The difference 

between the health benefits and health opportunity costs provides net health effect 

for each group. These can then be modelled, both by individual TA and collectively, 

onto a baseline distribution of lifetime health, such as the one estimated in chapter 2, 

in order to assess the impact upon health inequality. 

 

4.2.2 Data and variables 

 

4.2.2.1 NICE Technology Appraisal Data 

Information on population health benefits and costs is taken from cost-effectiveness 

evidence and associated reimbursement decisions for NICE single TAs issued 

between January 2012 and November 2014. Information is extracted from guidance 

documents, manufacturers’ submissions and costing templates (CTs), all obtained 

from the NICE website. Where multiple treatments for the same condition are 

appraised separately, these are treated as independent and no attempt is made to 

combine the results. This may occur, for example, where one treatment has been 

recommended and subsequently another treatment has been appraised and found to 

be superior. 

 

For each TA, we extract information on the expected lifetime costs and health 

benefits of both the new treatment and the comparator treatment (or treatments). 

Health benefits are expressed in quality-adjusted life years (QALYs). All costs and 

health benefits had been discounted at a rate of 3.5% in line with NICE’s methods 

guidance. The task of identifying the most plausible set of estimates is often 

complicated by the reluctance of the appraisal committee to specify the exact 

estimates used to inform their decision. For the purposes of this study, we use the 

expected costs and benefits put forward by the manufacturers in its base case 

scenario, since these were available for all TAs. 
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Figure 4.1: Influence diagram demonstrating how our data sources are combined to 

estimate the net distributional effect of interventions 

 

Note: NICE = National Institute of Health and Care Excellence; ICD = International Classification of 

Disease; QALY = Quality-adjusted life year  

1 Costs are converted into health losses using the cost-effectiveness threshold of £12,937 estimated by 

Claxton et al. (2015) 

 

 

Information on the number of patients in England who would be eligible for 

treatment is extracted from the costing templates provided by NICE, covering 

incident cases and, where appropriate, prevalent cases. Thus, the proceeding 

calculation of population net health benefits assumes that the intervention will be 

provided to all eligible patients. For appraisals involving multiple comparator 

treatments, we calculate a ‘blended’ estimate of incremental costs and QALYs. First, 
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the incremental data are extracted for each comparator from the manufacturer’s 

submission; each was then assigned a weight according to the proportion of its 

current market share, the data on which is provided in the TA costing template. The 

blended estimates of incremental costs and QALYs are then calculated as the 

weighted average over the comparators. 

 

We exclude TAs from our analysis if (i) the appraisal committee did not recommend 

the treatment for adoption into the NHS, (ii) it was an update of a previous appraisal 

that did not change the adoption decision, or (iii) relevant information was withheld 

on the grounds of it being commercial in confidence. The latter is typically the case 

when manufacturers negotiated a patient access scheme with the Department of 

Health that allowed patients access to the new treatment at a reduced price. We also 

exclude multiple technology appraisals that compared a number of new technologies 

on the ground that the detailed manufacturer’s submissions were not made publicly 

available on the NICE website.  

 

4.2.2.2 Hospital Episode Statistics 

HES is a database containing extensive information on all NHS funded activity in 

public and private hospitals in England. The primary unit of measurement is the 

‘finished consultant episode’; patients whose care is transferred between consultants 

during a single stay in hospital may have multiple episodes. The HES data include a 

wide range of socio-demographic and geographical variables for each patient, 

including a unique patient identifier code, age, gender and postcode. The latter is 

used to assign the patient a deprivation score using the 2004 Index of Multiple 

Deprivation (IMD). The IMD is a weighted index of 38 variables covering seven 

dimensions of deprivation and is described in full in section 3.3.2 of chapter 3. We 

again use the 2004 version of IMD because it is the one provided in the years of HES 

we analyse. 

 

HES are used here to calculate the socioeconomic and gender distribution of health 

benefits. We take two years of HES data (financial years 2011 and 2012) and count 

the number of episodes associated with each of the 1562 3-digit ICD codes that make 

up NHS spending, then disaggregate them by gender and IMD group. 
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4.2.2.3 Health opportunity costs 

Costs are first converted into health losses using a value representing the cost-per-

QALY of likely displaced NHS services at the margin. We use the best available 

estimate of £12,937 derived by Claxton et al (2015). The details of this approach are 

detailed in section 3.2 of chapter 3. Each QALY that comprises this health 

opportunity cost is distributed over gender and socioeconomic groups using the 

results from chapter 3. These are shown in Table 4.1. A pro-poor distribution is 

observed, with 27% of health losses incurred by the IMD1 compared with 13% for 

IMD5. Health losses also fall more heavily on females (55%) than males (45%). 

 

Table 4.1: Estimate of the gender and socioeconomic distribution of health 

opportunity costs in the English NHS 

Gender IMD1 IMD2 IMD3 IMD4 IMD5 

Males 0.12 0.10 0.10 0.07 0.06 

Females 0.14 0.12 0.12 0.09 0.08 

Note: Socioeconomic status measured by Index of Multiple Deprivation quintile group (IMD1=most 

deprived) 

 

 

4.2.3 Analysis 

 

4.2.3.1 Modelling net health changes 

The NICE TA data are used to calculate the population benefits and costs for each 

TA. The incremental costs and QALYs are multiplied by the population using each 

comparator included in the TA. By summing over each of the 𝐽 comparators in TA 𝑡, 

we can calculate 𝑁𝑃𝐵𝑡, the net population benefit of that TA: 

 

𝑁𝑃𝐵𝑡 = ∑ ℎ𝑡𝑗𝑝𝑡𝑗

𝐽

𝑗=1
− ∑

1

𝑘
(𝑐𝑡𝑗𝑝𝑡𝑗

𝐽

𝑗=1
) = 𝑃𝐵𝑡 − 𝑃𝐶𝑡 

 

Where ℎ𝑡𝑗 is the incremental QALYs, 𝑝𝑡𝑗 the patient population, 𝑐𝑡𝑗 the incremental 

costs, 𝑘 the cost-effectiveness threshold and 𝑃𝐵𝑡 and 𝑃𝐶𝑡 the population benefits and 

costs, respectively. By dividing through 𝑃𝐵𝑡  and 𝑃𝐶𝑡  by ∑ 𝑝𝑡𝑗𝑗 , we obtain the 

‘blended’ incremental health and costs for each technology.  
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Two additional TAs are excluded at this stage: TA308 because costs and QALYs 

could not be identified for the recommended subgroups, and TA311 due to a 

mismatch between the comparators in the submission and the costing template.  

Mismatches also occur for comparators in other TAs. Where the comparator appears 

in the submission but not the costing template. This is deemed acceptable since the 

latter represents current practice and so no net health change is expected. Where 

comparators are included in the costing template but not the submission, we are 

unable to model the net health impacts of switching those patients onto the new 

treatment, thereby reducing the patient population. 

 

The next step involves estimating the health benefits likely to be accrued for different 

genders and socioeconomic groups in each appraisal. In order to do this, we seek to 

extract the socioeconomic and gender distribution of health care utilisation from the 

HES data for each of the relevant disease areas. Each TA is first allocated to a 3-digit 

ICD code (or group of codes) via its respective disease area. These mappings are 

given in Table 4.2. The gender and socioeconomic distributions relating to the 

disease for each TA are then extracted from HES, and are used as a proxy for the 

distribution of benefit. 

 

We then obtain the net benefits from implementing each technology by subgroup: 

 

𝑁𝑃𝐵𝑡𝑑𝑠 = 𝑃𝐵𝑡𝑧𝑡𝑑𝑠 − 𝑃𝐶𝑡𝑢𝑑𝑠 

 

Where 𝑁𝑃𝐵𝑡𝑑𝑠  is the net population benefit accruing to deprivation group 𝑑  and 

gender 𝑠 from TA 𝑡, 𝑧𝑡𝑑𝑠 are the proportions estimated from HES described above 

and 𝑢𝑑𝑠 are the proportions health opportunity costs accruing to each subgroup.  

 

4.2.3.2 Inequality impacts 

To model changes in lifetime health inequality, we first extract estimates of quality-

adjusted life expectancy (QALE) at birth by gender and IMD quintile group provided 

in chapter 2. Post-intervention QALE is estimated by adding the net QALY benefits 

for each TA to the lifetime QALYs for each respective subgroup: 
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𝑄`𝑡𝑑𝑠 =
𝑄𝑑𝑠𝑛𝑑𝑠 + 𝑁𝑃𝐵𝑡𝑑𝑠

𝑛𝑑𝑠
 

 

Where 𝑄𝑑𝑠 and 𝑄`𝑡𝑑𝑠 are baseline and post-intervention QALE, respectively, and 𝑛𝑑𝑠 

is the population of the deprivation-gender subgroup. Combining each subgroup’s 

QALE estimate with its respective population figure and ordering the whole 

population from least to most healthy yields univariate distributions of pre- and post-

intervention health.  

 

4.2.3.3 Inequality measures 

Applying inequality measures to these respective distributions informs us how health 

inequality may change as a result of the intervention. We choose two inequality 

measures for this analysis: (1) the slope index of inequality (SII), which is an 

absolute measure of inequality, changes in which are only sensitive to absolute 

changes in health and not baseline levels of health, and (2) the relative inequality 

index (RII), which is a relative measure of inequality, changes in which are sensitive 

to baseline levels of health as well as changes. The SII measures absolute inequality 

using Ordinary Least Squares regression to estimate the difference in QALE between 

the least and most healthy population quintile groups. SII is estimated using the 

following regression model: 

 

𝑄𝑟 = 𝛼 + 𝛽𝑆𝐼𝐼𝑟 + 𝜀𝑟 

 

Where 𝑄𝑟 is the QALE estimate of population quintile group 𝑟, 𝛽𝑆𝐼𝐼 is the SII value, 

𝜀𝑟 is the idiosyncratic error and 𝛼 is the constant term. 𝛽𝑆𝐼𝐼 is interpreted as the fitted 

difference in QALE when moving from the least to most healthy population quintile; 

an SII of 10 would mean the healthiest fifth of the population experience 10 more 

lifetime QALYs than the least healthy fifth. RII, our relative measure, can be 

interpreted as the relative change in QALE when moving from the least to most 

healthy population quintile. For example, a RII value of 0.1 would mean that the 

healthiest experience 10% more lifetime QALYs than the poorest. RII is obtained by 

dividing the SII by the mean QALE in the population, �̅�, such that 𝛽𝑅𝐼𝐼 = 𝛽𝑆𝐼𝐼 �̅�⁄ . 

The inequality impact is the difference between SII values pre- and post-intervention: 
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we report the reduction in SII/RII so that a positive value means health inequality has 

reduced.  

 

To represent the impact of interventions on health inequalities and total population 

health, we plot SII reductions against the per person net health benefits on the health 

equity impact plane. Interventions that have a positive incremental net health benefit 

increase total health and fall in the north of the plane. Interventions that reduce 

inequality as measured by the slope index of inequality fall in the east of the plane. 

Interventions that fall in the northwest and southeast quadrants are those for which 

some trade-off between the objectives of inequality reduction and total health 

improvement exists. This orientation of the plane is used in line with guidance 

provided by Cookson et al. (2017). 

 

Figure 4.2: Equity impact plane 

 

Note: SII = slope index of inequality 

 

 

The impacts of each intervention on health-related social welfare is analysed using 

social welfare functions, as described in chapter 2 (section 2.3.5). We use the 

Atkinson and Kolm indices to measure social welfare changes solely as a function of 

Increases population 

health, increases health 

inequality 

Reduces population 

health, increases health 

inequality 

Reduces population 

health, reduces health 

inequality 

Increases population 

health, reduces health 

inequality 
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changes in the population distribution of health. The Atkinson index, 𝐴𝜀, measures 

inequality relatively and is given by: 

𝐴𝜀 = 1 − [
1

𝑁
∑ (

𝑄𝑖

�̅�
)

1−𝜀𝑁

𝑖=1

]

1
1−𝜀

 

 

Where 𝑁 is the total population, 𝑄𝑖 is the QALE estimate of the 𝑖th individual, �̅� is 

the mean QALE and 𝜀 the inequality aversion parameter that quantifies the concern 

for relative inequality. Alternatively, the Kolm index, 𝐾𝛼, incorporates inequality on 

an absolute scale, where absolute inequality aversion is represented by the parameter 

𝛼: 

 

𝐾𝛼 = (
1

𝛼
) log (

1

𝑁
∑ 𝑒𝛼[�̅�−𝑄𝑖]

𝑁

𝑖=1

) 

 

For both indices, we again use base case inequality aversion estimates of 10.95 for 𝜀 

and 0.15 for 𝛼, which are estimated from a survey of the general public in England 

by Robson et al (2016). These values implicitly weight health gains for the least 

healthy fifth of the population six to seven times more highly than gains for the 

healthiest. Social welfare is calculated by combining each index with the mean level 

of health in the distribution to obtain the ‘equally distributed equivalent’ (EDE) level 

of health: 

 

𝐸𝐷𝐸𝐴,𝜀 = (1 − 𝐴𝜀)�̅� 

𝐸𝐷𝐸𝐾,𝛼 = (�̅� − 𝐾𝛼) 

 

Where 𝐸𝐷𝐸𝐴,𝜀 and 𝐸𝐷𝐸𝐾,𝛼 are the Atkinson and Kolm welfare scores, respectively. 

The population equally distributed equivalent multiplies these values by the 

population size, and is the level of population health (expressed in QALYs) in a 

completely equal distribution that yields an equivalent amount of social welfare to 

the distribution being evaluated. We calculate the population EDEs pre- and post-

intervention; with the difference indicating the change in health-related social 

welfare. Positive values indicate that health-related social welfare has increased: for 
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example, if an intervention is estimated to increase net population health by 100,000 

QALYs and to reduce health inequality such that the Atkinson index fell by 0.01, the 

population equally distributed equivalent change in QALE would be (1-(-

0.01))*100,000 = 101,000.  The increase in social welfare associated with the 

inequality reduction would therefore be equivalent to 1,000 QALYs. 

 

4.2.3.4 Sensitivity analysis 

We investigate the possibility that the incremental costs and QALYs cited in the 

manufacturer submissions may be biased in favour of the new treatment. To do this, 

we use a recent study by Versoza et al. (2015) that found that manufacturer 

incremental cost-effectiveness ratios (ICER) were £6,200 lower on average than 

those found by the Evidence Review Groups (ERGs) employed to independently 

evaluate the manufacturer’s analyses. Assuming that the latter estimates are closer to 

the ‘true’ ICER, we use this number to adjust our data. However, this ICER increase 

does not inform us as to how much of the change is due to higher incremental costs 

or lower incremental health. We therefore calculate two new datasets: (i) one where 

the incremental costs are adjusted such that the ICER change is solely due to 

underestimated costs (health remains constant) and (ii) one where the incremental 

benefits are adjusted such that the ICER change is solely due to overestimated 

benefits (costs remain constant). The cost adjustment is given by ∆𝑐 = (𝑐 ℎ⁄ +

6200)ℎ and the health adjustment is given by ∆ℎ = 𝑐 (𝑐 ℎ⁄ + 6200)⁄ , Where ∆𝑐 and 

∆ℎ are the respective incremental cost and QALY adjustments required in order for 

the ICER to increase by £6,200 and 𝑐 and ℎ are the respective baseline incremental 

cost and health. 

 

Some interventions are health improving and cost saving (known as dominant); these 

result in negative ICERs that are difficult to interpret and cannot be adjusted using 

the figure from Versoza et al. (2015). We predict the adjustments for both of the 

analyses described above from a linear regression analysis. We regress the 

cost/QALY change (due to the £6,200 adjustment) on baseline costs/QALYs for the 

sample of non-dominant interventions. The following equations are therefore 

estimated: 
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∆𝑐𝑡 = 𝛽0 + 𝛽1𝑐𝑡 + 𝛽2𝑐𝑡
2 + 𝜀𝑡 

∆ℎ𝑡 = 𝛼0 + 𝛼1ℎ𝑡 + 𝜇𝑡 

 

Where 𝜀𝑖 and 𝜇𝑡 are the idiosyncratic error terms. The equations are used to predict 

the cost/QALY changes for the dominant interventions so that the full sample of 

technologies can be included in the sensitivity analysis.8 

 

Two further sensitivity analyses are conducted. First, in order to explore the impact 

of the distribution of health opportunity costs on our results, we assume they are 

distributed evenly over gender and socioeconomic groups, rather than falling more 

heavily on females and those with low socioeconomic status. We also explore the 

effects of the inequality aversion parameter and the value of the cost-effectiveness 

threshold on results. 

 

4.3 Results 

 

4.3.1 Descriptive statistics 

 

Details on the incremental health, costs and cost-effectiveness for each technology, 

blended over their respective comparators, are reported in Table 4.2. Incremental 

health ranges from 0.01 to 1.57 QALYs per person and incremental costs range from 

savings of £6,200 to costs of £46,935. In terms of cost-effectiveness, these blended 

estimates yield ten dominant interventions, whilst the highest ICER of £133,523 is 

reported for dimethyl fumarate for multiple sclerosis. 

 

As several TAs covered the same disease area, 18 health benefit distributions were 

extracted from HES. 14 of these distributions are pro-poor, with the steepest 

gradients seen for hepatitis C and alcohol dependence. The remaining four had 

roughly uniform distributions and included multiple sclerosis and atrial fibrillation. 

These are shown in full in Table A4.5 in the appendix. The net population benefits 

                                                 
8 Where baseline incremental costs were negative, the absolute value is used so that a 

positive adjustment is made (i.e. incremental costs become less negative or positive). 
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are shown in Table 4.3. 19 interventions had a positive net health impact, the highest 

of which was apixaban for atrial fibrillation, with 62,745 population QALYs. 

 

Table 4.2: Sample of technology appraisals (TAs) used in the analysis 

TA Technology Disease Area (ICD code) 
Inc. 

Health 

Inc. 

Costs 
ICER Patients 

245 Apixaban Thromboembolism (I82) 0.04 -£244 Dominant 91,100 

248 Exenatide Type 2 Diabetes (E11) 0.08 -£282 Dominant 39,765 

249 
Dabigatran 

etexilate 
Atrial Fibrillation (I48) 0.19 £1,410 £7,501 137,124 

252 Telaprevir Hepatitis C (B18) 0.97 £10,930 £11,226 17,456 

253 Boceprevir Hepatitis C (B18) 1.35 £8,508 £6,296 17,456 

254 Fingolimod Multiple Sclerosis (G35) 0.69 £19,012 £27,429 2,449 

256 Rivaroxaban Atrial Fibrillation (I48) 0.04 £740 £18,974 137,124 

260 Botulinum Migraine (G43) 0.09 £543 £6,033 35,180 

261 Rivaroxoban 
Deep vein thrombosis/ 

Pulmonary embolism (I26) 
0.02 -£258 Dominant 39,828 

265 Denosumab Bone Cancer (C40, C41) 0.01 -£1,351 Dominant 86,656 

266 Mannitol Cystic Fibrosis (E84) 1.57 £46,935 £29,895 200 

267 Ivabradine Coronary Heart Disease (I50) 0.28 £2,376 £8,486 10,466 

275 Apixaban Atrial Fibrillation (I48) 0.24 £1,326 £5,498 452,463 

283 Ranibizumab Macular Oedema (H35) 0.24 £1,581 £6,457 10,663 

287 Rivaroxoban Thromboembolism (I82) 0.06 £591 £9,821 18,497 

288 Dapagliflozin Type 2 Diabetes (E11) 0.25 -£99 Dominant 155,086 

292 Aripriprazole Bipolar I Disorder (F31) 0.01 -£686 Dominant 20 

297 Ocriplasmin 
Vitreomacular Traction 

(H43) 
0.09 £1,781 £20,777 954 

303 Teriflunomide Multiple Sclerosis (G35) 0.30 -£6,200 Dominant 9,780 

306 Pixantrone B-cell Lymphoma (C85) 0.20 £4,759 £23,796 1,650 

312 Alemtuzumab Multiple Sclerosis (G35) 1.10 -£3,424 Dominant 6,906 

315 Canagliflozin Type 2 Diabetes (E11) 0.11 £547 £4,939 711,444 

318 Lubiprostone 
Chronic idiopathic 

constipation (K59) 
0.00 -£20 Dominant 25,500 

320 
Dimethyl 

fumarate 
Multiple Sclerosis (G35) 0.24 £31,979 £133,523 4,891 

322 Lenalidomide 
Myelodysplastic syndrome 

(D46) 
0.72 £17,677 £24,551 200 

325 Nalmefene Alcohol dependence (F10) 0.07 -£397 Dominant 57,820 

326 Imatinib 
Gastrointestinal Stromal 

Tumours (D37) 
1.43 £22,931 £16,036 170 

Notes:  

1. Inc. = incremental; ICER = incremental cost-effectiveness ratio; ICD = International 

Classification of Disease 

2. The incremental costs, benefits are ‘blended’ estimates, calculated by combining the 

estimates for each technology over their relevant comparators and combining them into one 

figure, weighted by their respective patient populations. 
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4.3.2 Health inequality impacts 

14 technologies had a lower post-intervention SII compared with pre-intervention, 

indicating that health inequality has been reduced. The changes in SII are shown in 

Table 4.3. The largest inequality reduction of 0.00048 is found for canagliflozin for 

type 2 diabetes. Of the 13 technologies that increased inequality, the largest increase 

in SII of 0.00053 is found for apixaban for atrial fibrillation.  

 

When the change in SII is plotted against per person net benefit on the health equity 

impact plane in Figure 4.3, we see that all 14 inequality reducing interventions are 

also health improving. However, of the 13 inequality increasing interventions, eight 

also reduce population health. This leaves five interventions which involve a trade-

off between health gain and equity, as they increase health but also inequality. 

 

The analysis of social welfare is also shown in Table 4.3. Taking into account both 

health improvement and the change in inequality, 19 have a positive impact on social 

welfare – the same 19 that provide net health improvements. The additional social 

value of reducing inequality, as defined by the difference between population NHB 

and EDE, is largest for canagliflozin for type 2 diabetes. The inequality reductions 

for this intervention are, when using the Atkinson index (and an inequality aversion 

parameter of 10.95), equivalent to 5,981 additional QALYs. 

 

The impact of inequality aversion on the ranking of interventions is shown in Figure 

4.4. When we place a greater concern on inequality, apixaban is replaced as the most 

valuable intervention by canagliflozin. Pro-poor interventions, such as those for 

hepatitis C (252) and coronary heart disease (267) also rise in rank, whilst others for 

atrial fibrillation (275, 249) are demoted due to their negative health inequality 

impacts. 
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Table 4.3: Health, inequality and social welfare impact of each technology  

      Inequality measures Social welfare measures 

TA Technology 

Population 

NHB 
ΔSII ΔRII ΔEDEK,α ΔEDEA,ε 

245 Apixaban 4,917 0.00004 0.0000008 5,658 5,845 

248 Exenatide 4,230 0.00005 0.0000010 4,684 4,815 

249 Dabigatran etexilate 10,834 -0.00019 -0.0000022 9,169 9,286 

252 Telaprevir 2,248 0.00013 0.0000019 4,722 5,021 

253 Boceprevir 12,109 0.00031 0.0000050 16,635 17,334 

254 Fingolimod -1,902 -0.00006 -0.0000009 -2,347 -2,426 

256 Rivaroxaban -2,496 -0.00011 -0.0000017 -3,417 -3,542 

260 Botulinum 1,690 0.00001 0.0000003 1,672 1,701 

261 Rivaroxoban 1,541 0.00002 0.0000003 1,670 1,714 

265 Denosumab 9,661 0.00015 0.0000026 10,821 11,124 

266 Mannitol -412 -0.00001 -0.0000002 -475 -488 

267 Ivabradine 1,008 -0.00001 -0.0000001 971 991 

275 Apixaban 62,745 -0.00053 -0.0000050 57,747 58,778 

283 Ranibizumab 1,308 -0.00002 -0.0000002 1,085 1,091 

287 Rivaroxoban 268 -0.00001 -0.0000001 351 371 

288 Dapagliflozin 39,436 0.00047 0.0000085 43,548 44,757 

292 Aripriprazole 1 0.00000 0.0000000 1 1 

297 Ocriplasmin -50 0.00000 0.0000000 -57 -58 

303 Teriflunomide 7,667 0.00007 0.0000014 8,222 8,430 

306 Pixantrone -277 -0.00001 -0.0000001 -301 -308 

312 Alemtuzumab 9,435 0.00002 0.0000008 9,619 9,830 

315 Canagliflozin 48,668 0.00048 0.0000087 53,185 54,649 

318 Lubiprostone 60 0.00000 0.0000000 66 67 

320 Dimethyl fumarate -10,919 -0.00018 -0.0000032 -12,393 -12,750 

322 Lenalidomide -129 0.00000 -0.0000001 -167 -173 

325 Nalmefene 5,880 0.00006 0.0000010 7,086 7,349 

326 Imatinib -58 0.00000 -0.0000001 -82 -85 

Note: 

1. SII = slope index of inequality; RII = relative index of inequality; EDE = equally distributed 

equivalent 

2. Inequality aversion parameters of 10.95 and 0.15 are used to calculate the Atkinson and 

Kolm EDEs. 
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Figure 4.3: Equity impact plane showing the change in net QALYs generated by a 

treatment and the impact on lifetime health inequality  

 

Note: SII = slope index of inequality 

 

 

Figure 4.4: Change in Atkinson social welfare ranking of sample technologies when 

moving from no inequality aversion (ε=0) to high inequality aversion (ε=20) 
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4.3.3 Sensitivity analysis 

 

The results from the linear regressions that are used to predict the adjusted 

incremental costs and QALYs for the interventions with negative ICERs are given in 

Table A4.6. The effects of changing base case assumptions on the location of 

interventions on the equity impact plane are shown in Figure A4.7 to Figure A4.9. 

The changes in the numbers of interventions in each quadrant are summarised in 

Table 4.4. When the ICER increase of £6,300 is attributed to higher costs, 11 

interventions moved to a new quadrant in the equity impact plane, with a majority 

moving from being health increasing and inequality reducing (‘win-win’) to vice 

versa (‘lose-lose’). When the ICER increase is attributed to lower QALYs, the 

corresponding number is seven. For both scenarios, one intervention (TA252) 

became inequality moved from the north to south east quadrant. When equal 

opportunity costs over gender and socioeconomic status are assumed, most 

interventions shift horizontally to the right: the number increasing health and 

reducing inequality rose from 14 to 16 and the number reducing health and inequality 

rose from zero to eight. 

 

Table 4.4: Total health and health inequality impacts of the 27 technologies for each 

scenario analysis 

Health / inequality 

impact 

Manufacturer 

estimates 

ERG-adjusted 

costs 

ERG-adjusted 

QALYs 

Uniform 

HOC 

Increase health, reduce 

inequality 
14 6 10 16 

Increase health, increase 

inequality 
5 5 4 3 

Reduce health, reduce 

inequality 
0 1 1 8 

Reduce health, increase 

inequality 
8 15 12 0 

Note: ERG = evidence review group; QALYs = quality-adjusted life years; HOC = health opportunity 

costs 

 

 

The joint impact of the cost-effectiveness threshold and inequality aversion 

parameter are shown in Figure 4.5. The cumulative social welfare impact of the 27 

interventions becomes positive between threshold values of £5,000 and £6,000. At a 
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threshold of £30,000, the change in population EDE ranges from 280,000 QALYs for 

ε=0 and 340,000 for ε=30. 

 

 

Figure 4.5: Effect of the cost-effectiveness threshold and inequality aversion 

parameter on the cumulative net health impact of 27 health technologies  

 

 

 

4.4 Discussion 

 

4.4.1 Principal findings 

This study proposes a simple method to quantitatively analyse the expected health 

inequality impacts of new health technologies, and applies this simplified form of 

DCEA to retrospectively estimate distributional impacts for a wide range of 

recommended interventions. Five interventions in our sample involve a trade-off 

between health inequality and health improvement. However, when these effects are 

combined using the Atkinson and Kolm social welfare indices incorporating general 

population estimates of inequality aversion, a positive change in EDE is still 

observed, indicating that the increases in health inequality are compensated for by 

the total health improvements.  

 

Although the data on NICE TAs is systematically extracted from published 

documentation, our results do not constitute a health inequality impact analysis of 

NICE decisions over the time period. The assumption that treatments will acquire 
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100% market share is highly optimistic in calculating population net benefit, which 

will thus be overestimated. Using the incremental costs and QALYs cited by the 

manufacturer is similarly optimistic as we expect them to be biased towards the new 

treatment. When the manufacturer estimates are adjusted to reflect the average 

difference in cost-effectiveness with the ERG analyses, the number of interventions 

involving trade-offs remained relatively constant, as interventions moved from the 

‘win-win’ quadrant to the ‘lose-lose’. Our results are more sensitive when costs were 

underestimated, as opposed to when health gains were overestimated. This is 

explained by the fact that higher costs impose additional health opportunity costs, for 

which there is a strong socioeconomic gradient. When we assume that health 

opportunity costs are uniformly distributed, cost-increasing interventions shift toward 

the east of the plane whilst cost saving interventions move west. The overall impact 

is to move interventions into the trade-off quadrants, and illustrates how the 

distribution of opportunity costs plays an important role in the distributional impact 

and has contrary effects depending on the cost impact on the health sector. 

 

4.4.2 Limitations and strengths 

A number of assumptions that we adopt, along with some limitations in the available 

data, point to aspects that future work should focus upon to improve the robustness 

of this approach. 

 

The main limitation of this type of simplified analysis is that the health benefits are 

distributed based only on the patterns observed in secondary care utilisation. 

Although the technologies included in our sample are largely administered in 

secondary care, our results do not reflect other factors influencing the heterogeneity 

in health gains, such as treatment effectiveness and uptake. As evidence suggests that 

treatment uptake and adherence is improved in higher socioeconomic groups 

(Cookson et  al. 2016), we would expect that including these factors would reduce 

the pro-poor socioeconomic gradient in health benefits and shift interventions to the 

left on the health equity impact plane. This greater productivity from health care 

inputs in more educated groups is also supported by the theory of health production 

(Grossman 1972), although these effects may be smaller with the interventions in our 

sample when compared with behaviour change interventions, for example. Although 

we do not model uptake in this analysis, it can be easily incorporated in this 
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simplified approach. A comparison between the simplified approach (both with 

uniform and differential uptake included) and a full DCEA is made in chapter 5. 

 

It is also the case that HES may not be an appropriate proxy for distributing the 

expected benefits of a new technology for some diseases. For many chronic 

conditions such as asthma or diabetes the majority of activity will take place in 

primary care, whilst mental health treatment primarily takes place in specialist 

centres not included in HES. If the socioeconomic distribution of activity recorded in 

these settings were systematically different to that seen in hospitals then net 

distributional effect estimated using our current approach would be incorrect. The 

sensitivity analysis conducted in chapter 3 (section 3.4.3) suggests that the 

socioeconomic distributions observed in the Quality and Outcomes Framework 

primary care dataset, which relate to prevalence rather than utilisation, do not 

markedly differ, however. 

 

There are also a number of intervention comparators not included in the 

manufacturer’s submissions, even though the costing template indicated their usage 

in clinical practice. For example, the costing templates for TAs 249 and 256 suggest 

that nearly 1.4 million patients receive either no treatment or aspirin. Since the 

incremental benefits of switching patients on these regimens to the new treatment are 

not captured, they cannot be factored in to any inequality impact analysis presented 

to a decision-maker. How these exclusions affect our results depends on the 

socioeconomic gradient of the disease area, whilst the magnitude of the health 

inequality impact, whether the intervention increases or reduces disparities, will be 

greater if more patients are included in the population health change. 

 

Another feature of our data was the lack of recommended oncology-related 

interventions, with only two of the 27 in our sample intended for cancer patients. 

This may be due to (i) the confidential discounts agreed for patient access schemes 

and (ii) the operation of the Cancer Drugs Fund (CDF) over this period. How this 

impacts upon our results is uncertain, since the gradient of any net health benefits 

depends upon the type of cancer. Incidence ranges from highly pro-poor for 

laryngeal and lung cancer, to pro-rich for the likes of breast cancer and malignant 

melanoma (Public Health England 2014). 
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The mapping of ICD codes to some of the disease areas is also inexact, with the 3-

digit codes occasionally too broad for the indication for which the intervention is 

intended. An example of this is for TAs 252 and 253 for Hepatitis C patients. The 

most appropriate 3-digit code for this disease is B18; however this counts all chronic 

hepatitis patients including Hepatitis B, potentially distorting the socioeconomic 

pattern we extract. 

 

Last, we do not account for parameter uncertainty in our analysis. Ideally we would 

like to jointly simulate from the probability distributions of benefit and cost 

proportions as well as the incremental costs and QALYs themselves. However, 

informative standard errors for any of these quantities were not available to us and 

this could not therefore be reflected in our results.  

 

This study does, however, provide decision-makers with unique information on a 

decision criterion important to the NHS and society, and requires only limited 

information on socioeconomic variation. A large sample of interventions using 

systematically extracted data is utilised to analyse past NICE recommendations and 

the best available data on the distribution of health opportunity costs are used to 

calculate the net impact of decisions.  

 

4.4.3 Conclusion 

Our analysis presents a novel way of quantitatively examining health inequality 

impacts and demonstrates the potential utility of the DCEA framework in aiding 

decisions to allocate funding to new treatments in the English NHS. The approach 

we propose is highly flexible and can be easily applied to any disease type. 

 

However, additional research will greatly improve the validity of the approach. 

Future work should focus on refining the data sources used to make these simple 

DCEAs. Appropriate sources could be obtained that more realistically reflect the 

expected distribution of benefits, such as the Clinical Practice Research Datalink for 

diseases treated mostly in primary care, or the Mental Health Minimum Dataset for 

mental health conditions. Empirical work can help inform adjustments that could be 

made to benefit distributions to account for factors outside utilisation, such as uptake 
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and adherence. Work can also be done to allow for parameter uncertainty to be 

included in analyses since many inputs will be highly uncertain. Of particular interest 

would be work that could validate the seemingly high inequality aversion estimates 

from Robson et al. (2016), which implicitly weight gains for least healthy between 

six and seven times more highly the most healthy. 

 

Quantifying the distributional impact of new technologies, despite the importance of 

health inequality to policy-makers and the general public, has not been undertaken in 

health technology assessment. This study and the proposed method can help to 

rectify this omission from the decision-making process. 
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Appendix 4 

 

Table A4.5: Socioeconomic distribution of an additional quality-adjusted life year 

(QALY) for each of the disease areas in our sample 

 
% of each incremental QALY by IMD quintile 

Disease Area (ICD Code) IMD 1 IMD 2 IMD 3 IMD 4 IMD 5 

Thromboembolism (I82) 25% 22% 21% 17% 16% 

Type 2 Diabetes (E11) 24% 22% 22% 18% 14% 

Atrial Fibrillation (I48) 21% 20% 20% 21% 19% 

Hepatitis C (B18) 32% 24% 23% 12% 10% 

Multiple Sclerosis (G35) 20% 21% 20% 20% 19% 

Migraine (G43) 24% 22% 21% 18% 16% 

Deep vein thrombosis/Pulmonary embolism (I26) 22% 21% 20% 20% 17% 

Bone Cancer (C40, C41) 26% 22% 22% 16% 14% 

Cystic Fibrosis (E84) 22% 20% 20% 20% 18% 

Coronary Heart Disease (I50) 23% 21% 21% 19% 16% 

Macular Oedema (H35) 20% 19% 20% 22% 19% 

Bipolar I Disorder (F31) 27% 22% 23% 16% 12% 

Vitreomacular Traction (H43) 23% 20% 20% 19% 18% 

B-cell Lymphoma (C85) 25% 21% 21% 17% 15% 

Chronic idiopathic constipation (K59) 23% 21% 21% 18% 16% 

Myelodysplastic syndrome (D46) 19% 19% 21% 21% 20% 

Alcohol dependence (F10) 29% 22% 22% 15% 13% 

Gastrointestinal Stromal Tumours (D37) 23% 20% 20% 19% 18% 

Note:  

1. Treatments are linked to a disease area by three-digit International Classification of Disease 

(ICD) code. This is used to extract the distribution of health utilisation by Index of Multiple 

Deprivation (IMD) quintile group.  
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Table A4.6: Output for linear regressions of per person health (and cost) change on 

baseline health (and cost) 

 
(1) (2) 

Variable Δcost Δhealth 

   
Cost 0.3* 

 

 
(0.136) 

 
Cost2 -3.31 x 10-6 

 

 
(3.22 x 10-6) 

 
QALYs 

 
-0.286*** 

  
(0.0458) 

Constant 948.8 -0.011 

 
(856.7) (0.0326) 

   
Observations 17 17 

Prob > F 0.006 < 0.001 

Adj. R-squared 0.451 0.704 

Notes:  

1. Standard errors in parentheses 

2. *** p<0.01, ** p<0.05, * p<0.1 
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Figure A4.6: Cumulative distribution of net quality-adjusted life year gains by Index 

of Multiple Deprivation quintile groups, broken down by gender 

 

Note: IMD1 = most deprived, IMD5 = least deprived 

 

 

Figure A4.7: Change in equity impact plane location of each technology when a 

£6,200 increase in the ICER is attributed to an increase in incremental cost 

 

Note: SII = slope index of inequality 
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Figure A4.8: Change in equity impact plane location of each technology when a 

£6,200 increase in the ICER is attributed to a reduction in incremental health 

 

Note: SII = slope index of inequality 

  

 

Figure A4.9: Change in equity impact plane location of each technology when health 

opportunity costs are distributed uniformly over gender and socioeconomic groups 

 

Note: SII = slope index of inequality; HOC = health opportunity costs 
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Chapter 5: Distributional cost-effectiveness analysis of smoking 

cessation interventions: a decision model adaptation 

 

 

5.1 Introduction 

 

Addressing inequalities in the social determinants of health, such as lifestyle and 

education, is considered a key tool in the quest to reduce health inequalities (Graham 

& Kelly 2004; Marmot et al. 2008). Tackling health inequalities has become one of 

the primary goals of public health campaigns, where interventions, such as those 

promoting healthy diet and exercise, focus on prevention.  

 

The health inequality impacts of new public health interventions are not routinely 

estimated. In England, for example, The National Institute for Health and Care 

Excellence (NICE) produces evidence-based guidance for public health 

commissioners, with the aim of improving population health and reducing unfair 

health inequalities (NICE 2014).  As in the case of health care interventions, the 

quantitative component of the guidance centres principally on cost-effectiveness 

analysis, leaving the consideration of health inequalities as a qualitative exercise for 

decision-making committees. Yet, health inequality impact analysis is arguably more 

important in public health than for health care, because interventions can be prone to 

generate inequalities, such as through differences in uptake (Lorenc et al. 2013). 

 

The objective of this work is to demonstrate how distributional cost-effectiveness 

(DCEA) can be used to directly model the health inequality impacts of public health 

interventions by extending decision models used to estimate cost-effectiveness, and 

can be achieved with limited additional resources by using evidence readily available 

in the literature. Conducting an in-depth analysis that incorporates numerous sources 

of socioeconomic variation also provides an opportunity to compare the full DCEA 

approach (Asaria, Griffin, Cookson, et al. 2015) with the simplified version proposed 

in chapter 4. This allows us examine the strengths and limitations of that approach 

when evaluating health inequality impacts.  
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Although DCEA models can be developed alongside a traditional decision analytic 

model, in this pilot study we retrospectively adapt an existing model developed for 

NICE to evaluate the cost-effectiveness of behavioural and pharmacological 

interventions to improve smoking cessation. Smoking remains a significant cause of 

ill health and death in England. It was estimated in 2014/15 that 19 per cent of adults 

in England were smokers, despite substantial public health efforts and increases in 

taxation. As a result, approximately 4 per cent of hospital admissions and 17 per cent 

of deaths in England were related to smoking (HSCIC 2016). Smoking prevalence is 

also strongly correlated with a number of important social variables. Those with low 

incomes, less qualifications and living in poor neighbourhoods are more likely to 

smoke, as are men. Smoking, therefore, represents a key determinant of both health 

inequality and population health, providing an ideal case study with which to pilot 

the DCEA framework. 

 

5.2 Methods  

 

5.2.1 Overview 

 

The DCEA analysis we present consists of four stages. First, we retrospectively 

adapt the decision model for smoking cessation interventions. The adaptation 

incorporates the socioeconomic variation in key parameters and does not alter the 

model structure. This is done through literature searches that identify data on these 

variations for six sets of model inputs (see Table 5.1). Next, the model is rerun to 

estimate the incremental costs and health benefits for recipients of each intervention 

in each of the five socioeconomic groups. After adjusting for the relative uptake 

across groups, we then calculate costs and health benefits at the population level. 

This is done because (i) health opportunity costs fall across the whole population and 

(ii) health inequality is estimated at population level. Using the same process 

described in chapter 4, we then model these impacts on to the baseline distribution of 

health and evaluate the change in health inequality using inequality and social 

welfare measures.  
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5.2.2 Decision model adaptation  

 

The existing economic model adapted in this study was created to help inform 

recommendations for an ongoing update of NICE public health guidance on smoking 

cessation, and is an update of previous NICE guidelines on brief advice, referral and 

services for smoking cessation (NICE 2006; NICE 2008b). Our analysis adopts the 

same scope as the original model, and evaluates a wide range of interventions (listed 

in Table 5.4), including brief advice, behavioural support, pharmacotherapies and e-

cigarettes from the perspective of the NHS and personal social services over a 

lifetime horizon.  The principal health outcome is quality-adjusted life years 

(QALYs), with cost-effectiveness summarised using the incremental cost-

effectiveness ratio: the cost-per-QALY gained over the comparator intervention. We 

determined that this was a suitable case study because smoking prevalence and the 

success of smoking cessation interventions are known to vary systematically 

according to socioeconomic status (Hiscock et al. 2015).  

 

Figure 5.1: Model structure for smoking cessation interventions 

 

 

Note: LC = lung cancer; CHD = coronary heart disease; MI = myocardial infarction; COPD = chronic 

obstructive pulmonary disease; asthma = asthma exacerbation. 

 

 

The model adopts a Markov structure, shown in Figure 5.1. A cohort of smokers 

enters the model, with a proportion transitioning to the ‘former smoker’ state based 
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on the effectiveness of an intervention. The effectiveness outcome used in the model 

is the probability of quit success after one year. The cohort faces mortality and 

disease risks specific to age and smoking status, with former smokers facing 

uniformly lower risks and higher health-related quality of life. The model includes 

six smoking-related comorbidities: lung cancer, coronary heart disease, chronic 

obstructive pulmonary disease, myocardial infarction, stroke and asthma. Those who 

receive no intervention have a ‘background’ quit rate of 2%, which represents the 

proportion of current smokers who naturally quit each year (West 2006). To account 

for age-based heterogeneity, the model is run for each year of age from 16 to 100. 

Results are calculated using a weighted average, in which each weight is the relative 

density of smokers for the respective year of age. 

 

The model is run separately for five equity-relevant subgroups defined by their 

socioeconomic status. The socioeconomic variable used is the Index of Multiple 

Deprivation (IMD), a weighted index measure based on seven dimensions of 

deprivation: employment, income, education, crime, living environment and 

housing/services. A unique score is assigned to each of the 32,482 small areas in 

England, which are then grouped into fifths. Each individual is therefore associated 

with an IMD quintile group according to the score given to their place of residence.  

 

Subgroup analysis is conducted by varying a number of key model inputs by 

socioeconomic status that relate to (i) baseline levels of health and (ii) intervention 

impacts. A pragmatic literature review identified six inputs, shown in Table 5.1. 

 

5.2.2.1 Baseline levels of health 

Four aspects of baseline health disaggregated by socioeconomic status are identified 

in the literature. First, a bespoke data extraction from the ONS from 2013 provided 

mortality rates specific to each IMD quintile group, shown in Figure A5.7. As these 

data are only available by 5-year age bands, the rates are converted into one-year 

probabilities for use in the adapted model using standard techniques (Fleurence & 

Hollenbeak 2007).  

 

Table 5.1: Summary of model inputs and data sources disaggregated by index of 

multiple deprivation (IMD) quintile group 
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Model input Disaggregation source 

Mortality rates by age and gender 
Deaths and population estimates by IMD quintile 

group 2012. 

Health-related quality of life by smoking status 
Health Survey for England (pooled data from 

2012 and 2014) 

Proportion of smokers, former smokers and non-

smokers within each age and gender group 

Health Survey for England (pooled data from 

2012 and 2014) 

Relative risk of developing smoking-related 

diseases 
Eberth et al. (2013) 

Intervention quit rate Dobbie et al. (2015) 

Intervention uptake rate NHS Stop Smoking Services Statistics (2014-15) 

 

 

Secondly, EQ-5D estimates disaggregated by smoking status and IMD quintile group 

are obtained from the most recent Health Survey for England datasets that included 

the EQ-5D questionnaire (2012 and 2014). These included a collective sample size of 

20,413, of which 6,076 were excluded due to missing values for EQ-5D, age, IMD or 

smoking status, and 6,298 excluded as they were neither current nor former smokers. 

To avoid double counting the impact of comorbidities included in the model, we 

excluded a further 2,592 individuals with self-reported respiratory or circulatory 

conditions, leaving a sample size of 5,447. Linear regression analysis is used to 

predict EQ-5D scores for smokers and former smokers by IMD quintile, regressing 

EQ-5D score on age, smoking status and IMD quintile. Interaction terms are initially 

included, but removed as none are statistically significant. The regression output 

used to predict the EQ-5D scores used in the economic model is reported in Table 

A5.8. The resultant health-related quality of life values are shown in Table 5.2.  

 

A third set of inputs expected to vary by socioeconomic status are the baseline 

prevalence of comorbidities. Although some of the observed variation will be 

explained by differences in smoking prevalence, evidence from a Scottish study is 

also found on the independent impact of deprivation level on the probability of 

smoking-related disease (Eberth et al. 2014).  The regression coefficients and 

baseline characteristics of the study sample are used to estimate the relative risk of a 

smoking-related event for each Scottish IMD quintile relative to quintile 3, shown in 

Table 5.2.  Assuming that the population prevalence of each smoking related disease 

in the existing model is equivalent to Scottish IMD quintile 3, our calculated relative 

risks are used to estimate prevalence for the remaining quintiles.   
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Table 5.2: Model inputs disaggregated by socioeconomic status 

  IMD quintile group 

Model input 1 2 3 4 5 

Smoking population 
   

Number of smokers 2,531,937 2,021,674 1,679,300 1,346,821 1,062,170 

Proportion of male smokers 55% 56% 56% 55% 57% 

EQ-5D scores 
    

Smokers 0.786 0.835 0.830 0.858 0.877 

Former smokers 0.803 0.845 0.839 0.863 0.887 

Comorbidity risk 
    

Relative risk of smoking-related 

illness 
1.03 0.99 1.00 0.95 0.84 

Odds of quit success 
   

All intervention types 1.00 1.58 1.34 1.43 1.61 

One-to-one 1.00 1.04 1.06 1.08 1.07 

Drop-in clinic 1.00 1.05 1.07 1.08 1.07 

Open group 1.00 1.27 1.33 1.37 1.35 

Closed group 1.00 1.15 1.24 1.44 1.49 

Utilisation of NHS stop smoking services 
  

Any service 4.03% 6.48% 6.62% 10.14% 9.92% 

One-to-one 3.39% 5.36% 5.34% 7.24% 8.01% 

Drop-in clinic 0.32% 0.43% 0.65% 1.35% 1.14% 

Open group 0.03% 0.12% 0.14% 0.54% 0.08% 

Closed group 0.14% 0.10% 0.07% 0.13% 0.13% 

Notes:  

1. IMD = index of multiple deprivation. 1 = most deprived and 5 = least deprived 

2. EQ-5D score and smoking prevalence by deprivation level and gender are estimated from the 

Health Survey for England. Comorbidity relative risk is estimated for Scottish IMD quintiles 

and applied to the English population. Quit success and utilisation are estimated from NHS 

stop smoking services data. 

3. The list of stop smoking services categories is not exhaustive, thus the sum of the four 

service types does not equal the ‘Any service’ percentage. 

4. ‘All intervention’ quit odds are taken from Dobbie et al. (2015), whilst the intervention-

specific odds are from Hiscock et al. (2013) 

 

 

Lastly, we estimate smoking prevalence by age and socioeconomic status using the 

same pooled Health Survey for England data used in the EQ-5D regression. The 

resultant rates are shown in Figure 5.2. A number of other parameters are assumed 

constant over socioeconomic groups as no data are identified to estimate any 

variation. Notable amongst these are the relative risks of a successful quit attempt on 

all-cause mortality and smoking-related disease; the disutility associated with each 

disease; and annual disease costs. 
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Figure 5.2: Prevalence of smoking by age and index of multiple deprivation (IMD) 

 

 

 

5.2.2.2 Socioeconomic variation in intervention impacts 

A pragmatic review was undertaken to identify evidence on how quit attempts from 

specific smoking cessation interventions vary by socioeconomic status. Several 

publications from the ELONS study investigated whether the quit rates for smoking 

cessation interventions differ according to socioeconomic status (Hiscock et al. 2013; 

Hiscock et al. 2015; Dobbie et al. 2015). Of these, one by Dobbie et al. (2015)  

provided odds ratios for cessation for those using NHS stop smoking services by 

IMD quintile. These data do not allow us to differentiate between the various types 

of interventions, and are only available for the probability of quitting at four weeks, 

rather than for the 52-week quit rates used in the existing cost-effectiveness model. 

While odd ratios of cessation at 52 weeks are estimated from a separate prospective 

study, the binary measure of socioeconomic status used in this analysis could not be 

mapped to IMD quintiles and are not used. We therefore assume that the 

socioeconomic pattern observed for four week quit rate is reflective of the pattern in 

52-week quit rate.  

 

We sought additional evidence that could inform how quit success varies by 

intervention type as well as socioeconomic status. However, we are only able to 

identify one study that provided data on these patterns (Hiscock et al. 2013). 
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Although this study, which used the same English NHS stop smoking service data as 

Dobbie et al., explores interactions between cessation and socioeconomic status, it 

does so only for selected behavioural intervention types. Their results in principle 

allow us to characterise up to four different socioeconomic patterns in quit rates for 

behavioural interventions.  However, only 11 of the 21 interventions included in the 

model mapped to these intervention types (nine ‘one-to-one’ and two ‘closed group’ 

interventions). Furthermore, the measure of socioeconomic status is an NS-SEC 

occupation-based measure, thereby requiring the odds ratios to be mapped to IMD 

using a cross-tabulation of NS-SEC and IMD quintile group estimated from the 

Health Survey for England. Our base case analysis therefore applies the same 

socioeconomic pattern in treatment efficacy across all intervention types estimated 

by Dobbie et al., with the results of Hiscock et al. adopted in a sensitivity analysis. 

Both sets of odds ratios are shown in Table 5.2. 

 

The socioeconomic distribution of uptake was another expected critical determinant 

of net benefit (Brown et al. 2014; Bell et al. 2007). To estimate this, we used NHS 

stop smoking services statistics from 2014/2015, which supply information on the 

number of interventions provided within each local authority (HSCIC 2014; HSCIC 

2016). By mapping local authorities to an IMD quintile group (using the average 

score of the small areas that comprise them) and summing the number of provided 

interventions, we calculated the rate by socioeconomic group. However, rather than 

uptake, these data are more akin to utilisation because the availability of services 

varies between local authorities. These utilisation rates are summarised in Table 5.2 

and show that a greater proportion of smokers in the least deprived quintile groups 

are utilising services. However, in terms of the absolute numbers of smokers utilising 

services, a slight pro-poor gradient is observed due to smoking prevalence being 

much greater in more deprived groups. As a sensitivity analysis, we re-estimate our 

results using a uniform uptake rate of 6.8% for all quintiles, this being the average 

value for the smoking population. These results indicate the potential inequality 

impact of equalising the utilisation of services across socioeconomic groups. 
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5.2.3 Modelling health inequality impact 

 

5.2.3.1 Health benefits 

The adapted cost-effectiveness model is run for all 21 interventions and each of the 

five IMD groups. The model estimates the incremental costs and QALYs for an 

individual receiving each intervention, weighted by gender. We translate these per 

recipient estimates into population level costs and QALYs by multiplying the 

estimates for each IMD quintile by its respective uptake rate and smoking 

population. The QALY benefits of smoking cessation interventions in the existing 

model are specific to smokers, and are a weighted gender average.  We disaggregate 

these QALY benefits by gender using the ratio of male to female smokers for each 

IMD quintile group, shown in Table 5.2. 

 

5.2.3.2 Opportunity cost of displaced activities 

The additional costs of implementing an intervention represent health opportunity 

costs; which from an NHS perspective equates to the health losses that are associated 

with withdrawing funding from existing services to pay for the new one. The 

population costs we estimate for each intervention are therefore converted into health 

opportunity costs at a rate of £20,000 per QALY. This is the lower bound of the cost-

effectiveness threshold range that NICE uses to decide whether an intervention is 

cost-effective. As well as health opportunity costs, NICE states that the threshold 

factors in criteria such as severity of illness and innovative value (Dillon 2015). The 

health opportunity costs can fall to any individual in the population regardless of 

smoking status, as changes in NHS spend affect the level of general NHS activities, 

which are not solely for smokers. We therefore distribute the health opportunity costs 

to gender and socioeconomic groups using the results from Chapter 3, shown in 

Table 5.3.  

 

The results indicate that new interventions that impose additional costs on the NHS 

will increase inequality and interventions that save costs will reduce inequality. This 

distribution of opportunity cost is directly relevant to any changes in health care 

resource use as a consequence of smoking cessation interventions (e.g. cost savings 

from avoided smoking-related disease) but may not match the opportunity cost of 
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other public sector funding sources used to provide smoking cessation services (e.g. 

intervention costs funded by local authorities).  However, changes in NHS and health 

sector resource use form the biggest component of cost changes attributed to 

smoking cessation, with intervention implementation costs smaller by comparison.  

In the absence of an estimate of the distribution of the health impact of displaced 

wider public sector spending, we therefore assume the same gradient as estimated for 

NHS services.   

 

Table 5.3: Estimate of the gender and socioeconomic distribution of health 

opportunity costs in the English NHS.  

Gender IMD1 IMD2 IMD3 IMD4 IMD5 

Males 0.14 0.12 0.12 0.09 0.08 

Females 0.12 0.10 0.10 0.07 0.06 

Note: IMD = Index of multiple deprivation, an area-level measure of socioeconomic status. IMD1 = 

most deprived, IMD5 = least deprived 

 

 

5.2.3.3 Net health inequality impact 

Taking the difference between the QALY gains and the health opportunity cost 

provides the net health impact by gender and IMD for each intervention. We add 

these net QALY impacts on to a baseline distribution of health estimated in chapter 

2. The subsequent distribution of health provides a picture of health inequality 

following the implementation of the intervention or guideline.  

 

For example, if an intervention cost £100 million and generated 5000 QALYs for 

males in the least deprived quintile group, their health opportunity costs would be:  

 

(1,000,000 × 0.14) 20,000⁄ = 700 

 

The net health benefit for this group is therefore 4300 QALYs. With a baseline 

quality adjusted life expectancy of 62.3 per person and a population size of 

5,393,565, we can therefore work out the post-intervention quality-adjusted life 

expectancy for this subgroup: 
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((62.3 × 5,393,565) + 4300) 5,393,565 = 62.3008⁄  

 

Giving an increase of 0.008 lifetime QALYs per person in this subgroup. Repeating 

this for each sex and IMD group will yield a new quality adjusted life expectancy for 

every subgroup defined by gender and IMD quintile in the population. Ordering the 

whole population from least to most healthy then provides a univariate distribution of 

health that can be compared against the baseline distribution.  

 

5.2.3.4 Inequality impact measures 

The analysis of the pre- and post-intervention health distributions follows the same 

procedure as described in section 4.2.3.3 chapter 4. The slope index of inequality 

(SII) and the relative index of inequality (RII) are calculated to measure absolute and 

relative inequality, respectively, whilst the Kolm and Atkinson indices are estimated 

to measure social welfare.  

 

The slope index of inequality is calculated as the slope coefficient estimated from a 

linear regression of QALE on population health quintile that uses the following 

specification: 

 

𝑄𝑟 = 𝛿 + 𝛽𝑆𝐼𝐼𝑟 + 𝛾𝑟 

 

Where 𝑄𝑟 is the QALE estimate of population quintile 𝑟, 𝛽𝑆𝐼𝐼 is the slope index of 

inequality value, 𝛾𝑟  is the idiosyncratic error and 𝛿  is the constant term. 𝛽𝑆𝐼𝐼  is 

interpreted as the fitted difference in QALE between the least to most healthy 

population quintile. 

 

The relative index of inequality is interpreted as the relative change in QALE when 

moving from the least to most healthy population quintile. RII is obtained by 

dividing the slope index of inequality by the mean QALE in the population, �̅�, such 

that 𝛽𝑅𝐼𝐼 = 𝛽𝑆𝐼𝐼 �̅�⁄ . The inequality impact of interventions is calculated by taking the 

difference between SII and RII values pre- and post-intervention. Reduction in SII 

and RII is reported; a positive value means that they are lower post-intervention and 

health inequality has reduced.   
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The net health benefit per person (for the average smoker) and change in SII are 

plotted simultaneously on the health equity impact plane, as shown in Figure 4.2. 

Interventions that have a positive incremental net health benefit increase total health 

and fall in the north of the plane.  Interventions that reduce inequality fall in the east 

of the plane.  

 

Health-related social welfare is summarised by absolute and relative social welfare 

indices.  These include an inequality aversion parameter, which indicates the amount 

by which the least healthy should be prioritised for health improvement. We use the 

Atkinson and Kolm indices to measure social welfare changes solely as a function of 

changes in the population distribution of health. The Atkinson index, 𝐴𝜀, measures 

inequality relatively and is given by: 

 

𝐴𝜀 = 1 − [
1

𝑁
∑ (

𝑄𝑖

�̅�
)

1−𝜀𝑁

𝑖=1

]

1
1−𝜀

 

 

Where 𝑁 is the total population, 𝑄𝑖 is the QALE estimate of the 𝑖th individual, �̅� is 

the mean QALE and 𝜀 the inequality aversion parameter that quantifies the concern 

for relative inequality. Alternatively, the Kolm index, 𝐾𝛼, incorporates inequality on 

an absolute scale, where absolute inequality aversion is represented by the parameter 

𝛼: 

 

𝐾𝛼 = (
1

𝛼
) log (

1

𝑁
∑ 𝑒𝛼[�̅�−𝑄𝑖]

𝑁

𝑖=1

) 

 

Increases in the inequality aversion parameter reflect a greater societal concern for 

the less healthy. A base case value of 10.95 for 𝜀 and 0.15 for 𝛼 are again used, 

based on the results from Robson et al. (2016). Social welfare is calculated by 

combining each index with the mean level of health in the distribution to obtain the 

‘equally distributed equivalent’ (EDE) level of health: 
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𝐸𝐷𝐸𝐴,𝜀 = (1 − 𝐴𝜀)�̅� 

𝐸𝐷𝐸𝐾,𝛼 = (�̅� − 𝐾𝛼) 

 

Where 𝐸𝐷𝐸𝐴,𝜀 and 𝐸𝐷𝐸𝐾,𝛼 are the Atkinson and Kolm welfare scores, respectively. 

The equally distributed equivalent is the level of average health (expressed in 

QALYs) in a completely equal distribution that yields an equivalent amount of social 

welfare to the distribution being evaluated.  

 

We calculate the population-level 𝐸𝐷𝐸𝐴,𝜀 and 𝐸𝐷𝐸𝐾,𝛼 pre- and post-intervention by 

multiplying the change by the population size. A positive difference indicates that 

health-related social welfare has increased. The difference between the equally 

distributed equivalent and the net population health impact directly describes the 

extent of the change in health inequality and the strength of inequality aversion in 

terms of the trade-off between total population health and health inequality 

reduction. Conversely, interventions that increase health inequality would have an 

equally distributed equivalent lower than their net population health impact, with the 

difference showing the loss of social welfare in terms of QALYs.   

 

5.2.3.5 Sensitivity analysis 

Four key inputs are varied in sensitivity analysis. The first are the relative odds of 

successful cessation by IMD group, for which we use the set of intervention-specific 

quit odds provided in Hiscock et al. (2013), described in Section 5.2.2.2. To do this, 

we map interventions to the behavioural support categories (one-to-one support, 

closed group, open group and drop-in clinic) where possible and rerun the analysis 

using the odds ratios by IMD given in Table 5.2. 

 

Second, we assume that, instead of the utilisation rate being substantially higher 

amongst the least deprived groups, it is uniform across gender and socioeconomic 

groups at the population average of 6.8%. Third, we look at the effect of the 

distribution of health opportunity costs on our results by reanalysing inequality and 

social welfare impacts. Again, this is done by assuming that the distribution is 

uniform over gender and socioeconomic status. Last, the value of the cost-
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effectiveness threshold is varied to show how inequality impact is affected by the 

marginal productivity of competing health (and other local authority) services. 

 

Our results can also be used to compare different DCEA modelling approaches. To 

do this, we produce two further sets of results. We first conduct the same type of 

simplified DCEA that was outlined in chapter 4, which calculates population health 

benefits and costs using (i) the whole population of smokers and (ii) the incremental 

costs and QALYs of the average participant and apportions benefits using the 

socioeconomic and gender distribution of smokers. As the patient populations used 

in chapter 4 are for those receiving treatment (extracted from the costing templates), 

we adjust the population health benefits using the population utilisation rate of 6.8% 

to account for intervention uptake. Comparing these results with our base case 

analysis measures the extent by which health inequality reductions are overestimated 

when additional socioeconomic variation is not accounted for. We next look at how 

incorporating differential uptake by socioeconomic analysis can be combined and 

incorporated into the simplified approach, adjusting the health benefits using the 

IMD-specific utilisation rates reported in Table 5.2 rather than a uniform rate. 

 

To demonstrate the impact of not accounting for uptake at all, we conduct an 

additional simplified analysis that makes the highly optimistic assumption that all 

smokers receive the intervention.  

 

5.3 Results 

 

5.3.1 Descriptive statistics 

 

The characteristics of the 21 interventions are reported in Table 5.4 (J. Brown et al. 

2014; Chengappa et al. 2014; Rigotti et al. 2010; Jorenby et al. 2006; Heydari et al. 

2012; Williams et al. 2006; Issa et al. 2013; Tranvåg et al. 2013; Wittchen et al. 

2011; Blondal et al. 1999; Smith et al. 2009; Caponnetto et al. 2013). The net health 

benefits in Table 5.4 are for each recipient of the intervention, weighted across IMD 

groups according to the number of smokers. The quit success rate at 12-months is 

estimated to range from 7% for counselling to 40% for a combination of varenicline, 

bupropion and selective serotonin reuptake inhibitors (SSRI).  Excluding over the 
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counter nicotine replacement therapy (for which there are only private costs), the 

intervention costs range from £19 for brief advice to £764 for nicotine patches and 

nasal spray. All interventions are estimated to have positive net health benefits, 

indicating that they would be associated with incremental cost-effectiveness ratios of 

less than £20,000 per QALY gained. Twenty out of the 21 save costs when we 

account for the fact that interventions avert lifetime health care costs by reducing the 

risks of smoking-related diseases, but patch and nasal spray is estimated to increase 

costs. The most and least effective interventions are also the most and least cost-

effective; the combination of varenicline, bupropion and SSRI has an incremental net 

health benefit of 0.446 per recipient, the respective figure for counselling is 0.045.  

 

Table 5.4: Intervention characteristics for the general smoking population 

Intervention Study 

12-month 

quit rate Cost NHB Abbreviation 

NRT OTC Brown et al. (2014) 10% £0 0.080 NTC OTC 

Placebo + counselling 
Chengappa et al. 

(2014) 
7% £29 0.045 Co (1) 

Varenicline 
Chengappa et al. 

(2014) 
19% £220 0.164 Var 

Placebo + counselling Rigotti et al. (2010) 18% £343 0.150 Co (2) 

Varenicline + 

counselling 
Rigotti et al. (2010) 32% £507 0.286 Var, Co (1) 

Placebo + counselling Jorenby et al. (2006) 20% £189 0.174 Co (3) 

Varenicline + 

counselling 
Jorenby et al. (2006) 34% £353 0.325 Var, Co (2) 

Brief advice Heydari et al. (2011) 8% £19 0.054 Brief Advice 

Varenicline + brief 

advice 
Heydari et al. (2011) 29% £194 0.266 

Var, Brief 

Advice 

Self-determination 

intervention 
Williams et al. (2006) 12% £199 0.087 SDI 

Sequence (var, bup, 

SSRI) 
Issa et al. (2013) 45% £269 0.446 Var, Bup 

Minimal intervention Wittchen et al. (2010) 34% £43 0.329 MI 

CBT + MI Wittchen et al. (2010) 33% £268 0.311 CBT, MI 

Bupropion + CBT + 

MI 
Wittchen et al. (2010) 24% £352 0.209 Bup, CBT, MI 

NRT + CBT + MI Wittchen et al. (2010) 34% £116 0.326 NRT, CBT, MI 

Patch and nasal spray Blondal et al. (1999) 31% £764 0.262 
Patch, nasal 

spray 

Patch Blondal et al. (1999) 13% £120 0.102 Patch 

Bupropion and lozenge Smith et al. (2009) 29% £79 0.279 Bup, Loz 

Lozenge Smith et al. (2009) 17% £78 0.145 Loz 

7.2mg e-cigarette Caponetto et al. (2013) 15% £42 0.130 E-cig 

7.2mg then 5.4mg e-

cig 
Caponetto et al. (2013) 11% £42 0.082 E-cig (2) 

Note: NRT = nicotine replacement therapy; OTC = over the counter; Var = varenicline; Bup = 

bupropion; SSRI = selective serotonin reuptake inhibitors; MI = minimal intervention; CBT = 

cognitive behavioural therapy 
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Table 5.5: Population quality-adjusted life year (row 1) and cost (row 2) impacts by 

intervention and index of multiple deprivation quintile (IMD) group 

  IMD Quintile Group 

Intervention 1 2 3 4 5 

NTC OTC 
4,813 9,330 6,567 8,526 7,820 

-£12,035,533 -£26,989,667 -£23,203,684 -£30,891,515 -£25,330,582 

Co (1) 
2,809 5,511 3,860 5,020 4,621 

-£4,070,424 -£12,147,848 -£10,421,129 -£14,239,515 -£11,918,903 

Var 
10,798 20,218 14,428 18,634 16,916 

-£4,539,964 -£29,637,393 -£26,529,953 -£37,466,621 -£31,601,871 

Co (2) 
10,256 19,261 13,729 17,739 16,117 

£9,414,201 -£10,694,829 -£10,344,796 -£17,368,459 -£16,010,019 

Var, Co (1) 
19,738 35,161 25,585 32,797 29,350 

£2,425,484 -£35,216,898 -£34,035,168 -£49,558,358 -£41,608,735 

Co (3) 
11,329 21,147 15,110 19,505 17,690 

-£9,002,030 -£36,349,813 -£32,350,339 -£44,814,483 -£37,348,760 

Var, Co (2) 
21,872 38,516 28,151 36,024 32,134 

-£18,643,989 -£65,122,677 -£60,228,971 -£82,297,207 -£66,873,062 

Brief Advice 
3,314 6,481 4,545 5,909 5,434 

-£6,335,375 -£16,243,693 -£13,936,342 -£18,802,375 -£15,589,117 

Var, Brief Advice 
17,386 31,372 22,715 29,174 26,203 

-£23,693,403 -£65,341,032 -£58,730,047 -£79,239,421 -£64,454,312 

SDI 
5,887 11,341 8,002 10,379 9,502 

£5,577,546 -£6,737,468 -£6,175,773 -£10,446,062 -£9,818,743 

Var, Bup 
30,214 50,928 37,841 48,115 42,408 

-£48,079,046 -£112,027,260 -£103,804,361 -£137,572,991 -£109,003,021 

MI 
21,132 37,362 27,265 34,912 31,177 

-£48,417,236 -£102,382,623 -£91,528,010 -£120,570,495 -£96,420,748 

CBT, MI 
20,639 36,587 26,673 34,166 30,534 

-£24,210,428 -£70,647,681 -£64,423,567 -£87,137,476 -£70,618,340 

Bup, CBT, MI 
14,129 25,960 18,664 24,036 21,700 

£597,162 -£28,956,482 -£26,838,462 -£39,022,080 -£33,199,645 

NRT, CBT, MI 
21,132 37,362 27,265 34,912 31,177 

-£41,032,487 -£92,901,245 -£83,488,530 -£110,691,157 -£88,795,937 

Patch, nasal spray 
19,005 33,991 24,695 31,675 28,378 

£30,448,875 £1,794,680 -£2,378,809 -£10,453,775 -£11,419,619 

Patch 
6,554 12,575 8,887 11,520 10,534 

-£4,174,306 -£20,691,179 -£18,105,141 -£25,400,766 -£21,511,453 

Bup, Loz 
17,871 32,161 23,311 29,927 26,859 

-£36,640,833 -£82,692,093 -£73,610,252 -£97,664,368 -£78,694,552 

Loz 
9,098 17,201 12,228 15,816 14,398 

-£14,813,840 -£39,561,941 -£34,568,457 -£46,687,779 -£38,447,668 

E-cig 
8,051 15,313 10,860 14,059 12,822 

-£15,796,282 -£38,726,846 -£33,654,720 -£45,138,536 -£37,059,126 

E-cig (2) 
5,071 9,814 6,911 8,971 8,225 

-£8,342,852 -£22,820,270 -£19,702,784 -£26,702,723 -£22,166,258 

Notes:  

1. NRT = nicotine replacement therapy; OTC = over the counter; Var = varenicline; Bup = 

bupropion; SSRI = selective serotonin reuptake inhibitors; SDI = self-determination 

intervention; MI = minimal intervention; CBT = cognitive behavioural therapy 

2. Full intervention names and associated studies are provided in Table 5.4 

3. IMD1 = most deprived; IMD5 = least deprived 
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The population health costs and health effects for each intervention by IMD quintile 

group are presented in Table 5.5. As these account for smoking population size and 

service utilisation rate, a pro-rich socioeconomic gradient in health benefits is 

observed. For the most deprived group, five interventions impose additional sector 

costs; the ICERs for these groups are all under £2,000 per QALY and lie well below 

the £20,000 cost-effectiveness threshold used by NICE. 

 

5.3.2 Health inequality impact 

 

The four alternative measures summarising the impacts of the interventions on 

population health and health inequality are shown in Table 5.6.  These evaluate the 

change in the distribution of health for the general population in England, which 

includes non-smokers, former smokers and current smokers (as health opportunity 

costs also fall on non-smokers). In the base case analysis, all interventions 

marginally increase absolute health inequality across the whole population in 

England, as indicated by negative values for the slope index of inequality. The 

picture was more mixed in terms of relative inequality, for which 13/21 (62%) 

generated a reduction. 

 

Social welfare effects are also reported in Table 5.6. All interventions increased 

relative and absolute social welfare. The amount by which the net health benefit 

exceeds the equally distributed equivalent shows the welfare loss of the health 

inequality increases in terms of population QALYs. For example, the varenicline, 

bupropion and SSRI intervention was estimated to add 241,659 QALYs to the 

population, but when the associated health inequality increase is accounted for, this 

is equivalent in value to 232,705 equally distributed QALYs (when using the 

Atkinson index).  Thus an increase in SII of 0.0005 is therefore equivalent in value to 

a loss of 8,953 QALYs at the given level of health inequality aversion. 

 

The reduction in the slope index of inequality is plotted against population net health 

benefit on the equity impact plane in Figure 5.3. The interventions all lie in the 

northwest quadrant of the plane, indicating that all interventions increase both 

population health and health inequality compared to no smoking cessation service.  
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The interventions would have the same rank order based on net health benefit alone 

or the change in social welfare as measured by the equally distributed equivalent 

health.  That is, the intervention that is estimated to produce the biggest gain in total 

population health is also estimated to produce the biggest improvement in social 

welfare. 

 

 Table 5.6: Change in inequality indices from implementing each intervention 

    
Inequality reduction 

  

Social welfare impact 

  

Intervention Population NHB ΔSII  ΔRII ΔEDEK,α ΔEDEA,ε 

NTC OTC 44,149 -0.00012 0.0000004 41,318 41,875 

Co (1) 25,149 -0.00009 0.0000000 23,341 23,638 

Var 90,042 -0.00033 -0.0000005 83,491 84,557 

Co (2) 81,788 -0.00037 -0.0000016 75,039 75,926 

Var, Co (1) 155,039 -0.00055 -0.0000007 144,171 146,072 

Co (3) 95,453 -0.00032 -0.0000001 88,781 89,939 

Var, Co (2) 176,310 -0.00049 0.0000011 165,381 167,693 

Brief Advice 30,040 -0.00009 0.0000001 27,976 28,340 

Var, Brief Advice 145,432 -0.00039 0.0000011 136,428 138,325 

SDI 47,916 -0.00023 -0.0000011 43,804 44,303 

Var, Bup 241,659 -0.00047 0.0000046 229,245 232,705 

MI 179,616 -0.00035 0.0000033 169,993 172,499 

CBT, MI 169,149 -0.00045 0.0000014 158,866 161,101 

Bup, CBT, MI 114,162 -0.00043 -0.0000009 105,768 107,118 

NRT, CBT, MI 177,496 -0.00039 0.0000028 167,616 170,054 

Patch, nasal spray 141,699 -0.00066 -0.0000029 130,142 131,714 

Patch 56,145 -0.00021 -0.0000004 51,970 52,622 

Bup, Loz 152,707 -0.00035 0.0000022 143,951 146,015 

Loz 79,617 -0.00024 0.0000003 74,344 75,338 

E-cig 71,553 -0.00020 0.0000005 66,906 67,807 

E-cig (2) 45,210 -0.00014 0.0000001 42,089 42,637 

      Notes:  

1. ∆SII = change in slope index of inequality; ∆RII = change in relative index of inequality; 

EDE = equally distributed equivalent; ∆EDEK,α = change in Kolm Index EDE; ∆EDEA,ε = 

change in Atkinson Index EDE; NHB = population net health benefit 

2. Full intervention names and associated studies are provided in Table 5.4 

3. SII and RII are reported as reduction, meaning that a positive value indicates a health 

inequality reduction Kolm and Atkinson Indices used inequality aversion parameters of 0.15 

and 10.95, respectively 
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Figure 5.3: Equity impact plane showing the net health and health inequality impact 

of each intervention 

 

Note: Intervention abbreviations are provided in Table 5.4 

 

 

5.3.3 Sensitivity analysis 

 

Figure 5.4 shows, for the most and least cost-effective interventions, the effect of 

adjusting the cost-effectiveness threshold on the health inequality impact. When the 

threshold is £2,000 per QALY (which indicates that health opportunity costs are very 

high), we see an SII reduction of 0.003 from funding the varenicline, bupropion and 

SSRI intervention. As the cost-effectiveness threshold increases, SII reductions 

become smaller and become SII increases at a threshold of approximately £9,000. At 

£50,000 per QALY, the intervention causes an SII increase of 0.0007. For the 

counselling intervention, a similar trend is observed at a greatly reduced magnitude. 

The SII ranges from a reduction of 0.0003 to an increase of 0.0001 as the threshold 

goes from £2,000 to £50,000.   
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Figure 5.4: Impact of the cost-effectiveness threshold on the inequality impact of the 

most and least cost-effective interventions 

 

Note: “Co (1)” = placebo + counselling; “Var, Bup” = varenicline and bupropion 

 

 

Table 5.7: Reduction in slope index of inequality (SII) when using the quit odds 

ratios by index of multiple deprivation quintile group from (1) Dobbie et al. (2015) 

or (2) the intervention-specific odds Hiscock et al. (2013) 

Intervention Study 
Intervention 

type 
ΔSII (1) ΔSII (2) Difference 

Placebo + counselling Chengappa et al. One-to-one -0.00009 0.00004 0.00012 

Placebo + counselling Rigotti et al. One-to-one -0.00037 -0.00007 0.00031 

Varenicline + 

counselling 
Rigotti et al. One-to-one -0.00055 -0.00008 0.00047 

Placebo + counselling Jorenby et al. One-to-one -0.00032 0.00001 0.00033 

Varenicline + 

counselling 
Jorenby et al.  One-to-one -0.00049 0.00000 0.00050 

Brief advice Heydari et al.  Closed group -0.00009 -0.00018 -0.00009 

Varenicline + brief 

advice 
Heydari et al.  Closed group -0.00039 -0.00063 -0.00024 

Minimal intervention  Wittchen et al.  One-to-one -0.00035 0.00013 0.00049 

CBT + MI Wittchen et al.  One-to-one -0.00045 0.00003 0.00048 

Bupropion + CBT + MI Wittchen et al.  One-to-one -0.00043 -0.00005 0.00038 

NRT + CBT + MI Wittchen et al.  One-to-one -0.00039 0.00010 0.00049 

Note:  

4. NRT = nicotine replacement therapy; Var = varenicline; MI = minimal intervention; CBT = 

cognitive behavioural therapy 

5. The quit odds informing both sets of estimates are provided in Table 5.2 
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The effect of using the intervention-specific odds of quitting by socioeconomic status 

on the expected reduction in health inequality is summarised in Table 5.7. Of the 11 

interventions that could be mapped to the behavioural support categories, a majority 

(82%) are one-to-one interventions. For these, the discrepancy between IMD 

quintiles in terms of successful quit attempts is lower and they were estimated to be 

more successful in the most deprived groups compared to the base case.  This has the 

effect of moving six interventions from health inequality increasing to reducing. For 

example, the SII reduction for a ‘minimal intervention’ changed from -0.0004 to 

0.0001. The remaining two interventions are mapped to the closed group type. These 

are marginally less successful in the most deprived groups compared to our base 

case, which translated to a very small decrease in inequality reduction.  

 

Figure 5.5: Effect on equity impact position of interventions of applying (i) uniform 

health opportunity costs over gender and socioeconomic groups and (ii) uniform 

uptake rates over socioeconomic groups 

 

Note: HOC = health opportunity costs; SII = slope index of inequality 

 

 

The sensitivity of an intervention’s position on the health equity impact plane to the 

distribution of health opportunity cost is shown in Figure 5.5. If the health 

opportunity cost is equally distributed across all socioeconomic groups, each 

intervention shifts to the left, indicating a lesser reduction in health inequality. This 

effect is larger as per person net health benefit increases. All interventions remain in 

the northwest quadrant of the health equity impact plane. The effect of utilisation rate 
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on equity impact plane position is also shown in Figure 5.5, assuming an equal 

probability of uptake per eligible smoker of 6.8%. The interventions all move from 

the northwest to the northeast quadrant, with the extent of the shift again larger as net 

health benefit increases.  

 

Figure 5.6: Equity impact position of smoking cessation interventions when 

conducting full and simplified DCEAs 

 

Notes:  

1. Full = base case analysis; Simp. = simplified analysis; Simp. (diff. uptake) = simplified 

analysis with socioeconomic variation in uptake; Simp. (unif. uptake) = simplified analysis 

with uniform uptake over socioeconomic status 

2. SII = slope index of inequality 

 

 

Figure 5.6 compares the results of our base case with those yielded from the 

simplified approach of chapter 4. When we assume uniform uptake over 

socioeconomic groups, all interventions lie in the northeast quadrant, improving 

population health and reducing inequality. The inequality reductions are greater than 

when uniform uptake is applied in the full DCEA analysis. When differential uptake 

is incorporated, the results are much closer to those of the base case, although only 

four (19%) move to the northwest quadrant. The direction of the health inequality 

impact is therefore incorrectly estimated for a vast majority of interventions when 

using the simplified approach, even when additional socioeconomic variation is 

accounted for. When no data on uptake is incorporated, the health inequality impacts 
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are substantially biased. The change in SII for the varenicline, bupropion and SSRI 

intervention, for example, goes from an increase of 0.004 to a reduction of 0.06. 

These differences are shown in Figure A5.9. 

 

5.4 Discussion 

 

5.4.1 Main findings 

 

Our results show that smoking cessation interventions are expected to increase both 

population health and health inequalities, despite the much higher proportion of the 

smoking population coming from lower socioeconomic groups. This is driven by the 

lower expected net health benefits per smoker in more deprived groups, which are in 

turn driven by the socioeconomic variation captured in the adapted decision model: 

individuals with lower socioeconomic status have a lower probability of quit success, 

a lower probability of utilising cessation services, higher mortality and lower health-

related quality of life.  

 

These factors also compensated for the fact that all interventions are cost-saving, 

meaning that, in theory, resources would be freed up to be allocated to additional 

health services. As the results from chapter 3 indicate that additional funding at the 

margin would benefit the most disadvantaged more, these cost savings help to reduce 

health inequality in the population. This effect is demonstrated when we assume that 

the distribution of health opportunity costs is assumed to be equal over IMD groups, 

which generates greater inequality increases for all interventions. 

 

A crucial factor in determining the magnitude and direction of the results is the 

differential probability of uptake of interventions per smoker by socioeconomic 

group. Our base case analysis bases probability of uptake by IMD quintile group on 

the proportion of eligible smokers utilising NHS stop smoking services, which 

indicate that smokers in the least deprived areas are more than twice as likely to use 

interventions than those in the most deprived areas (10% versus 4%, respectively).  

Assuming that the probability of uptake is equal for all smokers at the national 

average of 6.8% changes all interventions from inequality increasing to reducing. 

Our findings therefore demonstrate the value of eliminating socioeconomic variation 
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in service uptake, and offer further support for the targeting of interventions to more 

deprived areas, even though on a per recipient basis they are the least cost-effective.  

 

An expected yet important methodological finding is that the simplified approach to 

DCEA outlined in chapter 4 overestimates the health inequality reductions of an 

intervention and, in this instance, does not estimate the same direction of effect. 

Accounting for differential uptake by socioeconomic group, which can be easily 

incorporated into the simplified analysis, corrected for a substantial proportion of this 

bias and, for several interventions, corrected the direction of effect. Since smoking is 

a health-related behaviour with a large socioeconomic gradient in terms of treatment 

effects, it is plausible to conclude that the differences we observe between simplified 

and full DCEA might not be so pronounced for other intervention areas. However, it 

clearly exemplifies the importance of accounting for socioeconomic variation in 

treatment efficacy and uptake where possible. 

 

The process of retrospectively adapting a decision model to conduct a DCEA raises 

some important considerations for future studies. First, we show that it is possible to 

identify data with which to adapt the model and conduct a full DCEA within a short 

timeframe and with limited resource. However, it must also be noted that the 

socioeconomic variation in smoking behaviours and outcomes are a well-researched 

public health issue, and that data for other health and disease areas might not be so 

widely available.  

 

The principal approach for considering health inequalities in economic evaluations in 

public health has been cost-consequence analysis (Trueman & Anokye 2013), which 

may have provided the ‘dashboard’ of results presented in Table 5.5. However, 

presenting only the distribution of QALY impacts for each intervention could be 

misleading as this would ignore the inequality in the distribution of health 

opportunity costs, which fall more substantially on the most deprived. The analysis 

we present also provides a way to model and evaluate the changes in population 

health inequalities. The health inequality impacts we observe are also highly 

correlated with cost-effectiveness. This is in part due to the similar pattern of uptake 

and efficacy over socioeconomic groups that we assume across all interventions.  
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5.4.2 Limitations 

 

In addition to the assumptions made in this analysis when adapting the existing 

decision model, our results also reflect the modelling uncertainties and concerns 

about heterogeneity in the evidence base affecting the latter. Of those made in this 

study, a number are influential and require further discussion. 

 

The first are the limitations in the evidence base that prevent us from systematically 

varying parameters by socioeconomic status. For a number of these parameters, 

capturing this socioeconomic variation would have favoured health inequality 

reductions and potentially influenced the direction of our results. For example, we 

may expect the relative risk reduction of all-cause mortality to be greater for more 

deprived groups, as evidence indicates that they are heavier smokers (ONS 2016). 

An exception to this is the socioeconomic variation in odds of a successful quit 

attempt at four weeks to represent quit rates at 52 weeks. A larger gradient may have 

been expected over time, generating higher relative benefits for the least deprived. A 

comparison of short- and long-term quit rates in the analysis by Dobbie and 

colleagues suggest that this bias does exist but is not substantial (Dobbie et al. 2015, 

p.68).   

 

Another important factor is the ability to differentiate between different types of 

intervention in terms of uptake and efficacy.  We sought intervention-specific 

evidence of socioeconomic variation in quit rates, but located only one study that 

described certain types of behavioural intervention. Further studies of smoking 

cessation interventions should therefore seek to report results by socioeconomic 

status, so that over time these estimates could be improved (Bravin et al. 2015). 

Likewise, data on uptake by intervention are only available for broad intervention 

type, and are contaminated by systematic variation in the availability of services in 

each local authority. The influence this has on our results depends on whether the 

equal provision of services across authorities would increase or decrease the pro-rich 

gradient currently observed.  

 

We also use a cost-effectiveness threshold and health opportunity cost distribution 

that is appropriate for an analysis conducted from a health sector perspective.  For 
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this particular case study that might be reasonable given the predominance of health 

sector cost savings in determining the intervention results.  Furthermore, the results 

of our analysis are not sensitive to alternative assumptions about the size and 

distribution of the health opportunity costs.  For public health interventions with a 

greater proportion of non-health sector costs, the lack of a measure of health 

opportunity cost specific to public health sector funding may be more important, but 

this is also true with respect to routine cost-effectiveness analysis. 

 

We are not able to estimate the independent effects of socioeconomic status on a 

number of model inputs. For example, as we were unable to adjust mortality rates by 

socioeconomic status for smoking prevalence, lower socioeconomic groups have 

higher baseline mortality that is in part due to a higher proportion of smokers. 

Baseline mortality is then adjusted again for smoking status when a higher relative 

risk of mortality is applied to those in the smoker state of the model. This generates 

higher absolute mortality risk reductions from quitting for high deprivation groups 

and has likely led to smaller inequality increases being estimated in our base case 

analysis. 

 

5.4.3 Conclusions 

 

Although quantifying health inequality impacts did not affect the rank order of the 

smoking cessation interventions included in this study when compared to population 

health gain alone, our results demonstrate that the negative health inequality impact 

can be reversed through improved uptake in lower socioeconomic groups. It is 

shown, with limited additional resources, how the standard tools of economic 

evaluations can be adapted to provide useful quantitative information on aspects of 

benefit other than total health gain. Last, an informative DCEA should incorporate, 

where possible, evidence on the socioeconomic patterns of efficacy and uptake 

across the set of interventions being compared, as shown by the large differences in 

inequality impact when compared to the simplified DCEA approach.     
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Appendix 5 

 

Table A5.8: Output from regression of health-related quality of life on age, smoking 

status and index of multiple deprivation (IMD) quintile group 

Variable Coefficient Standard error 

Constant 0.887*** (0.0131) 

Age group 

 16 to 24 Ref 

 25 to 34 -0.00843 (0.0130) 

35 to 44 -0.0565*** (0.0127) 

45 to 54 -0.0817*** (0.0128) 

55 to 64 -0.121*** (0.0130) 

65 to 74 -0.130*** (0.0136) 

75+ -0.171*** (0.0151) 

Smoking status 

 Former Ref 

 Current -0.0423*** (0.00640) 

IMD Quintile 

 1 (Most deprived) Ref 

 2 0.0482*** (0.00905) 

3 0.0486*** (0.00926) 

4 0.0788*** (0.00938) 

5 (Least deprived) 0.0994*** (0.00945) 

   N 5,447 

 Adjusted R-Squared 0.048 

 Notes: 

3. p<0.05  ** p<0.01  *** p<0.001 

6. IMD quintiles 1 to 5 relate to the following IMD score ranges, respectively: 34.17 to 87.80; 21.35 

to 34.17; 13.79 to 21.35; 8.49 to 13.79; 0.53 to 8.49. 
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Figure A5.7: Annual mortality rate by age and index of multiple deprivation (IMD) 

quintile group 

 

Note: IMD1 = most deprived, IMD5 = least deprived 

 

 

Figure A5.8: Change in the Atkinson social welfare ranking of interventions when 

there is (i) no inequality aversion (ε=0) and (ii) high inequality aversion (ε=20) 

 

Note: Social welfare ranking is determined by the change in the equally distributed equivalent health 

of the population 
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Figure A5.9: Comparison of equity impact plane locations of smoking cessation 

interventions when conducting full and simplified DCEA. This includes a simplified 

analysis in which interventions have 100% uptake across smokers 

 

Notes:  

1. Full = base case analysis; Simp. = simplified analysis; Simp. (diff. uptake) = simplified 

analysis with socioeconomic variation in uptake; Simp. (unif. uptake) = simplified analysis 

with uniform uptake over socioeconomic status 

2. SII = slope index of inequality 
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Chapter 6: Conclusion 

 

 

The objective of this thesis is to make empirical and methodological contributions to 

health economic evaluations that consider health inequality impacts. Throughout the 

preceding chapters, health inequalities are examined through disparities in lifetime 

health between gender and socioeconomic groups, which are both reflected in the 

univariate distribution of health. Although this is a limited definition, the techniques 

that are developed and presented in this thesis are flexible to any normative 

formulation of what constitutes unfair health inequality, and can therefore be 

redefined using any combination of social groups important to a decision-maker. 

Equally, they can be applied to alternative measures of health, such as quality-

adjusted age at death or disability-adjusted life years. An opportunity for further 

research is to include additional social variables by which to stratify the population, 

such as ethnicity, to allow for more sources of inequality to be incorporated into 

distributional evaluations. However, there is a clear trade-off between greater 

stratification and practicality. Any increase in the number of social groups will have 

to be reflected at all stages of analysis: from the baseline distribution to the health 

opportunity costs and subgroup analysis of new treatments. Doing so would increase 

the data requirements and computational burden of conducting DCEAs. 

 

In chapter 2, inequalities in quality-adjusted life expectancy are estimated for 

England. The distribution is designed to meet three important criteria: (i) to use a 

health metric consistent with cost-effectiveness analyses; (ii) to measure lifetime 

health; and (iii) to obtain estimates by equity-relevant subgroups. Differences 

between the most and least deprived fifths of the population are 11.9 QALYs. The 

univariate distribution, which incorporates gender as well as socioeconomic 

disparities, shows differences between the most and least healthy fifths of 11 

QALYs.  

 

The analysis makes several key contributions to the literature. It is the first to 

estimate health inequalities in terms of QALYs for the whole of the English 

population, using official national mortality statistics and a representative dataset of 
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over 25,000 observations to estimate quality of life weights. Unlike previous 

analyses (Collins 2013), this work also estimates the uncertainty around our 

estimates using Monte Carlo simulation. Furthermore, national inequality is 

estimated using a measure of morbidity that incorporates 245 health states, rather 

than the binary measures often used in health expectancy studies.  This chapter also 

extends the traditional health expectancy analysis beyond measures of health 

inequality to estimate health-related social welfare. The equally distributed 

equivalent quality-adjusted life expectancy we estimate provides a measure of the 

social value of inequality expressed in terms of health. 

 

The approach we outline has a number of uses in public policy and health technology 

assessment, and opens up avenues for further research. The methods we describe can 

be easily applied to new data and estimated for future years, generating a picture of 

health inequalities over time that more accurately reflects health experience than 

some other health indicators (ONS 2013). As is shown in subsequent chapters, the 

results can also be used as a baseline distribution of health, upon which health 

inequality impacts can be modelled. Due to the methods utilised, our results are 

likely to be more accurate than the approximations of QALE used in an earlier 

DCEA analysis (Asaria, Griffin, Cookson, et al. 2015). For example, our estimates 

are derived from Sullivan’s method, a methodologically sound technique for 

estimating healthy life expectancy (Salomon et al. 2012), use IMD-specific mortality 

rates (rather than mapped rates from other socioeconomic measures) and estimate up-

to-date health-related quality of life estimates from nationally representative data. 

 

Chapter 3 addresses the other central methodological and empirical challenge 

associated with DCEA: the distribution of health opportunity costs. We utilise results 

from a major study (Claxton, Martin, et al. 2015) on the health effects of health care 

expenditure at the margin, which estimates the effects for each major disease area. 

We disaggregate these results by the age, gender and socioeconomic patterns 

observed in health care utilisation data. We find that the health of the poorest fifth is 

affected twice as much as the richest fifth by these marginal budget changes. Since 

expenditure reductions at the margin are a direct consequence of approving more 

costly new treatments, our findings represent the first estimates of the distribution of 
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health opportunity costs across social groups, and can feed directly into the 

evaluation of new technologies. 

 

The results of this analysis are a novel contribution to the literature, since no study 

has looked at how health, by social group and in terms of both morbidity and 

mortality, is affected by national health care expenditures. The study is not without 

limitations, however. We make the strong assumption that an episode of health care 

generates the same health gain regardless of socioeconomic status. It is not clear 

what direction of bias this assumption will have on our results: the richer may be 

more effective at producing health from health care, but the poor are likely to be 

sicker before going to receive it. Another possibility for further research lies in 

estimating how the relationship between health and spending by disease area varies 

by deprivation level. The econometric models proposed by Claxton et al. (2015) 

offer a methodologically sound basis upon which to estimate interactions between 

mortality effects of expenditure and socioeconomic status, provided good quality 

data can be identified.  

 

 

As the distribution we estimate relates to marginal expenditure changes, it can be 

applied to budget increases as well as the decreases. The results can effectively act as 

an ‘equity benchmark’ against which new interventions funded from expenditure 

increases can be judged in terms of their distributional consequences. The cost-per-

EDE QALY thresholds we estimate offer an innovative way to adapt decision rules 

in economic evaluation to account for equity considerations. Previous work 

evaluating weighted or EDE QALYs in terms of benefits have not reflected these 

considerations in terms of health opportunity costs (Baeten et al. 2010; Lee et al. 

2017). However, more work is needed on the practicality of summarising results in 

this way, in terms of both (i) communicating the intuition and meaning behind 

adjusted ICERs and thresholds, and (ii) presenting results in such a way so as not to 

embed a particular normative view about inequalities (through the inequality 

aversion parameter) into the decision making process. 

 

In chapter 4 we propose an alternative way to conduct DCEAs that uses only the 

standard published estimates of mean per person incremental health benefits and 
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costs. The method is applied to 27 health technologies that have been approved by 

NICE. Five interventions increase population health and inequality, although in each 

case social welfare improves, indicating that the total health gains compensate for the 

inequality increases. We use manufacturer estimates of benefit and cost in our base 

case analysis. When a scenario analysis adjusts for potential bias in these values, we 

find the inequality impacts considerably less optimistic, with many more trade-offs 

occurring between the objectives of health maximisation and inequality reduction.  

 

First and foremost, the simplified approach to DCEA offers a much less burdensome 

method of estimating inequality impacts, both in terms of development and 

computational time. This is clearly demonstrated through our being able to conduct 

27 analyses in one study. The added value of the approach is that distributional 

analyses can be conducted in circumstances where (i) access to the original decision 

model is not available and (ii) data on how model inputs vary by equity-relevant 

groups.  

 

A number of assumptions mean that our results cannot be interpreted as the health 

inequality impacts of NICE decisions. As mentioned, our base case analysis results 

use manufacturer estimates that regularly overstate health benefits and understate 

costs (Versoza et al. 2015). The adjustments we make in scenario analysis are 

through crude absolute changes to the ICER, which, although indicative, do not 

provide a robust and realistic alternative scenario. Second, a plethora of cancer drugs 

appraised by NICE over the timeframe of our analysis are not included in the sample 

due to the high volume of (i) therapies priced through confidential patient access 

schemes and (ii) Cancer Drugs Fund applications in that period for therapies that 

were rejected by NICE appraisal committees. A more complete picture would have 

to include such treatments, as they cover a substantial proportion of NICE appraisals 

and are more likely to have pro-rich distributions of patients. 

 

The simplicity of the approach raises concerns over its validity. By not modelling 

differential mortality, quality of life, comorbidity risk or treatment efficacy, we do 

not account for a wide range of factors that can influence the distribution of costs and 

benefits. One aspect that we do not model but could be easily accommodated in the 

approach is variation in uptake. We make the optimistic assumption that new 
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interventions achieve 100% uptake in the relevant patient population. However, 

analyses adopting the simplified approach to evaluate single interventions could 

straightforwardly incorporate evidence or more realistic assumptions about market 

share and the associated socioeconomic variation. Doing so, as we show in chapter 5, 

leads to inequality impacts that are far closer to those yielded by a full DCEA.  

 

Ultimately, the effect of limiting the sources of socioeconomic variation when 

estimating health inequality impacts is a priori uncertain. This is because treatment 

efficacy will likely benefit the affluent more, but relative mortality and comorbidity 

reductions will confer higher absolute benefits to the most deprived. We are able to 

examine these interactions in chapter 5, where a full DCEA is conducted on smoking 

cessation interventions. We find, despite substantially higher numbers of smokers 

coming from more deprived groups, that net health benefits are higher for more 

affluent groups and that smoking cessation interventions increase health inequalities. 

Differential uptake proves to be influential in these results: health inequality 

reductions are to be found by improving uptake across groups. All interventions 

generated population health benefits that again compensated for any increases to 

health inequality.  

 

The simplified DCEA we conduct alongside this evaluation estimates an inequality 

impact in the opposite direction to the full analysis. We find that accounting for 

uptake was essential in order to have realistic estimates of the distributional effect. 

Ideally, analyses should also reflect differential uptake over socioeconomic groups. 

Doing so in our study substantially reduces the difference in inequality impact, and 

in several cases corrected the direction of effect. Furthermore, it should be noted that 

smoking cessation interventions are likely to involve larger socioeconomic variation 

in treatment efficacy than other types of treatments, with one study estimating that 

the least deprived have a 61% higher rate of quit success than the most deprived 

(Dobbie et al. 2015). As such large disparities in efficacy might not be common, we 

would not expect the disparity between the full and simplified approaches to be so 

great on average, particularly for interventions that do not require behaviour change.  

 

Chapter 5 also demonstrates that it is possible to conduct full DCEAs using only a 

standard decision model and limited additional resource. We identified published and 
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freely available data on the socioeconomic variation of multiple key model inputs 

through pragmatic literature reviews. Given that smoking is health behaviour with 

strong associations with socioeconomic status, this could potentially be more 

challenging when analysing other interventions. To best identify heterogeneous 

treatment effects and other model inputs (including costs), however, individual 

patient-level data from UK-centred clinical trials is required, which can be linked to 

deprivation level through postcode. In this sense, the ‘gold standard’ of a randomised 

controlled trial holds true for DCEAs as well. 

 

Uncertainty is a consideration that has not been feasible to explore in this thesis; only 

in the results for chapter 2 has it been appropriately characterised. For example, in 

chapter 3 the standard errors we calculate for the health opportunity cost distribution 

were negligible and only accounted for the uncertainty in the socioeconomic 

distributions of disease by age and gender. A full analysis would propagate the 

uncertainty quantified in the original analysis of Claxton et al. (2015) through Monte 

Carlo simulation. Doing so would require feeding each simulation iteration from 

their analysis into our own. Extensions and updates to this work should seek to 

address this technical challenge to show the impact of uncertainty in the distribution 

on the results of DCEAs of new interventions. Incorporating this and other sources of 

uncertainty into DCEAs represents an important area of future research, which 

should not only quantify uncertainty but also explore ways to present it to decision 

makers and develop appropriate graphical tools for visualisation.  

 

Certain inputs have been shown to be more influential than others, and for which 

further research will invariably improve the robustness of DCEAs in future. In 

chapter 3, for example, we note how our estimates of health opportunity cost are 

quite dependent on the socioeconomic distribution of health care utilisation in 

respiratory disease, which accounts for over 30% of the health effects when the 

health sector budget is changed. As noted above, the uptake rates of interventions by 

socioeconomic status are also influential. Changes in the magnitude and distribution 

of uptake have a large influence in determining the health inequality impacts, which 

are intrinsically linked to the size of the recipient population. The analysis in chapter 

4 highlights how crucial reliable estimates of incremental health and cost are when 

conducting a simplified DCEA. When making a simple adjustment to correct for 



160 

potential manufacturer bias, a substantial number of technologies change from being 

inequality reducing to increasing. Last, the analysis of chapters 4 and 5 show how the 

value of the cost-effectiveness threshold determines our results. At lower values, 

greater health opportunity costs are imposed, making the distribution we estimate in 

chapter 3 more influential in the overall inequality impact. The value of the threshold 

is even more influential when comparing cost-saving and cost-increasing 

interventions, which will have contrasting health inequality impacts.  

 

Another issue common to all DCEAs that has yet to be addressed is what value to 

place on inequality reductions. Fundamentally this is a purely normative judgement 

as to what constitutes a sufficiently ‘large’ health inequality reduction. The health 

inequality impacts we estimate in chapters 4 and 5, in terms of the slope index of 

inequality, are mostly less than a hundredth of a QALY. This magnitude is a 

consequence of analysing the population as a whole and is prima facie difficult to 

weight relative to total health gain. However, a logical approach is to present unit 

changes in health inequality, such as changes in the SII, relative to cost, as is done 

for total health gain with the ICER. We also propose two alternative approaches to 

summarising inequality changes, though both involve specifying a normative 

judgement about inequality aversion. First, the change in EDE QALYs presents 

decision makers with direct comparison with population QALY impact; the societal 

value of the inequality change (the difference between the two) is therefore on same 

scale as total health gain. Second, the change in population EDE can be divided by 

total cost to obtain the cost-per-EDE QALY, a metric that integrates inequality 

reduction and health gain. Both of these statistics should, however, be presented for 

ranges of inequality aversion in order to prevent a specific value from being 

embedded in decision-making. How this is presented is another challenge for future 

research; throughout this thesis we present our base case results using an inequality 

aversion parameter elicited from the study of the general population in the UK 

(Robson et al. 2016).  

 

Whilst these are all important aspects of DCEA that require attention in order to 

improve the robustness of the approach, this thesis provides a solid methodological 

and, in the case of the UK, empirical foundation that enables health inequality 

impacts to be explored in the quantitative analysis of health care. 
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Abbreviations 

 

2PM Two-part model 

CCA Cost-consequence analysis 

CCG Clinical Commissioning Group 

DALE Disability-adjusted life expectancy 

DALY Disability-adjusted life year 

DCEA Distributional cost-effectiveness analysis 

DFLE Disability-free life expectancy 

DFLY Disability-free life year 

ECEA Extended cost-effectiveness analysis 

EDE Equally distributed equivalent 

GBD Global Burden of Disease 

HES Hospital Episode Statistics 

HLE Healthy life expectancy 

HSE Health Survey for England 

HRQL Health-related quality of life 

HRSWF Health-related social welfare function 

HTA Health technology assessment 

ICD International Classification of Disease 

ICER Incremental cost-effectiveness ratio 

IMD Index of Multiple Deprivation 

MAE Mean absolute error 

MAR Missing at random 

MCAR Missing completely at random 

MCDA Multi-criteria decision analysis 

MNAR Missing not at random 

MSE Mean squared error 

NICE National Institute of Health and Care Excellence 

NHB Net health benefit 

NHS National Health Service 

NS-SEC National Statistics Socioeconomic Classification 

OLS Ordinary least squares 

ONS Office for National Statistics 

PBC Programme budgeting category 

PCT Primary Care Trust 

QOF Quality and Outcomes Framework 

QAD Quality-adjusted age at death 

QALE Quality-adjusted life expectancy 

QALY Quality-adjusted life year 

RII Relative index of inequality 

SII Slope index of inequality 

SSRI Selective serotonin reuptake inhibitors 

TAC Technology Appraisal Committee 

WHO World Health Organization 
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