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Abstract	

Introduction:	 Tissue	 engineering	 and	 regenerative	 medicine	 techniques	 may	 offer	

improved	outcomes	for	patients	suffering	from	pelvic	organ	prolapse	(POP)	and	stress	

urinary	incontinence	(SUI)	compared	to	polypropylene	mesh,	which	is	associated	with	

significant	 complications.	 Complications	with	 polypropylene	 are	 purported	 to	 occur	

due	to	an	excessive	immunological	reaction	and	a	mismatch	of	mechanical	properties.	

Aim:	To	produce	scaffolds	with	improved	biomechanical	properties	using	electrospun	

degradable	 	 	 and	 	 	 non-degradable	 	 	 scaffolds	 	 	 	 and	 	 	 	 to	 	 	 	 produce	 	 	 	 oestradiol-	

releasing	scaffolds,	which	will	to	improve	tissue	integration.	

Methods:	Electrospinning	was	 used	 to	 produce	 poly-L-lactic	 acid	 and	 polyurethane	

scaffolds.	 Oestradiol-releasing	 poly-L-lactic	 acid	 scaffolds	 were	 produced	 by	

dissolving	 the	 drug	 in	 the	 polymer	 solution	 prior	 to	 electrospinning.	 Mechanical	

properties	 of	 these	materials	 	 were	 	measured	 	 using	 	 a	 	 BOSE	 	 tensiometer	 	 both	

before	 and	 after	 cyclical	 distension.	 Cell	 metabolic	 activity	 and	 total	 collagen	

production	 were	 measured	 using	 AlamarBlue	 assay	 	 and	 	 Sirius	 	 red	 	 assay	

respectively.	 Oestradiol	 was	 incorporated	 into	 scaffolds	 and	 its	 release	 measured	

fluorimetrically	 over	 a	 5	month	 period.	 The	 effects	 of	 oestradiol	 on	 cells	 in	 culture	

were	 measured	 (AlamarBlue	 and	 Sirius	 red),	 and	 differentiation	 assays	 were	

performed	 using	 specific	 induction	 media.	 Specific	 extracellular	 component	

production						was							assessed							using	immunohistochemistry.					Cell		penetration	

was	 assessed	 using	 confocal	 microscopy	 techniques.	 Poly-L-lactic	 acid	 and	

polyurethane	 	 scaffolds	 	 were	 	 implanted	 	 into	 	 	 abdominal	 	 	 wall	 	 	 defect	 	 	 rabbit	

models	 over	 a	 3	 month	 period,	 with	 histologial,	 mechanical	 and	 immunological	

outcomes	measured.	

Results:				Poly-L-lactic			acid			scaffolds				demonstrated			a			greater				ability			of			cells	

to	 	 penetrate	 	 and	 	 showed	 	 greater	 	 outcomes	 	 for	 	 cell	 	 	 viability	 	 	 assays	 	 	 and	

collagen	 production	 when	 stem	 cells	 were	 cultured	 on	 them.	 Meanwhile,	

polyurethanes				demonstrated						significantly						greater						elastic						properties,				 that	

remained		 unchanged	following	periods	of	cyclical	distension.	Commercially	available	
10
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polypropylene	 mesh	 became	 plastically	 deformed	 following	 even	 short	 periods	 of	

cyclical	 distension	 to	 25%	 displacement	 of	 the	 original	 length	 of	 the	 material.	

Oestradiol-releasing	 	scaffolds	were	produced,	that	released	the	drug	over	a	5-month	

period	in	a	dose	dependent	fashion.	Scaffolds	that	release	oestradiol	demonstrated	a	

significantly	 greater	 total	 collagen	 production,	 which	 resulted	 in	 a	 stronger	

biomaterial.	 Following	 implantation	 in	 animal	 models,	 polypropylene	 mesh	 was	

associated	 with	 tissue	 exposure.	 Poly-L-lactic	 acid	 scaffolds	 became	 well	 integrated	

into	 the	 host	 and	 became	 replaced	 	with	 	 host	 	 cells.	 	 Both	 	 poly-L-lactic	 	 acid	 	 and		

polyurethane	 scaffolds	 demonstrated	 a	 predominantly	 M2	 macrophage	 response,	

while	polypropylene	mesh	showed	an	M1	macrophage	phenotype.	The	biomechanical	

properties	of	tissues	that	were		repaired		by		either		of		poly-L-lactic		acid,	polyurethane,	

or	 polypropylene	 were	 stronger	 than	 tissues	 that	 were	 not	 reinforced	 with	 repair	

materials.	

Conclusions:	Poly-L-lactic	 acid	 scaffolds	 demonstrate	 	 excellent	 	 tissue	 	 integration	

and	 	 regeneration,	 	while	 	 polyurethanes	 	 offer	 	mechanical	 	 properties	 	 	 that	 	 	 are			

more	 closely	 related	 to	 healthy	 fascia.	 Oestradiol-releasing	 scaffolds	 can	 support	

greater	 proliferation	 and	 collagen	 production	 of	 cultured	 cells,	 which	 can	 be	

associated	 with	 	 better	 	 integration	 	 into	 	 the	 	 host	 	 following	 	 implantation.	

Meanwhile,	 polypropylene	 mesh	 exhibits	 plastic	 deformation	 following	 cyclical	

distension	 and	 is	 associated	with	 an	 excessive	 immunological	 reaction,	which	 could	

explain	the	complications	that	are	observed	with	this	material	in	patients	undergoing	

mesh	surgery.	
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Aims	and	objectives	

The	 overall	 aim	 is	 to	 undertake	 research	 into	 developing	 materials	 designed	 for	

supporting	tissues	 in	 the	pelvic	 floor	seeking	to	produce	materials	which	are	a	better	

biomechanical	match	for	the	patients	tissues	than	the	PPL	material	in	current	use	and	

to	develop	approaches	to	 improve	materials,	which	 integrate	readily	 into	the	patient.	

The	specific	objectives	are	as	follows:	

3 To	assess	the	current	treatments	for	stress	urinary	incontinence	and	pelvic	organ	

prolapse	and	to	critically	investigate	why	these	fail.			

4 To	improve	upon	the	mechanical	properties	of	current	materials	by	investigating	a	

range	of	novel	synthetic	materials.	

4.1 Optimise	electrospinning	protocols.	

4.2 Assess	morphology	of	these	scaffolds	using	scanning	electron	microscopy.	

4.3 Examine	cell	viability	and	collagen	production.	

4.4 Measure	mechanical	properties.	

4.5 Investigate	the	most	promising	of	these	materials	in	vivo.	

5 To	examine	methods	to	produce	scaffolds	that	release	oestradiol.	

5.1 Identify	methods	to	incorporate	oestradiol	into	scaffolds.	

5.2 Measure	the	release	of	oestradiol.	

5.3 Perform	cell	viability	assays	to	determine	appropriate	dosages.	

6 To	 investigate	 the	 response	 to	 candidate	 materials	 following	 implantation	 in	

animal	models.	

6.1 Assess	mechanical	response	to	implantation.	

6.2 Identify	 immunohistological	 outcomes	 of	 materials

following	implantation.	
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Hypotheses	

1. The	mechanical	properties	of	tissue	engineered	prostheses	can	be	made	to	more

closely	resemble	those	of	healthy	paravaginal	tissues.

2. Scaffolds	 can	 be	 produced	 to	 release	 certain	 drugs	 (oestradiol)	 that	 will

increase	local	collagen	production	and	improve	vasculogenesis.

3. Cell	penetration	into	materials	can	be	improved	through	modifying	the	fabrication

of	materials.

4. Novel	scaffolds	can	demonstrate	a	greater	constructive	remodeling	process	than

currently	used	polypropylene	mesh.

13
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Pelvic	 floor	 disorders	 in	 urology	 encompass	 the	 two	 conditions	 of	 stress	 urinary	

incontinence	 (SUI)	 and	 pelvic	 organ	 prolapse	 (POP).	 These	 common	 conditions	 can	

affect	women	 of	 any	 age	 but	 become	 proportionally	more	 prevalent	with	 advancing	

age	 and	 can	 account	 for	 significant	 physical,	 psychological	 and	 social	 debility	 to	 the	

patient.	Both	SUI	and	POP	occupy	a	 large	proportion	of	 the	NHS	healthcare	budget,	

with	1	 in	10	women	estimated	 to	undergo	operative	management	 for	either	of	 these	

conditions	during	the	course	of	their	lifetime	[1].	

The	 exact	 mechanism	 behind	 the	 development	 of	 these	 conditions	 is	 not	 yet	

completely	 understood,	 though	 it	 is	 likely	 that	 pelvic	 floor	 laxity,	 which	 can	 result	

from	childbirth,	hormone	deficiency,	obesity	and	a	genetic	predisposition	will	play	a	

part.	

These	 conditions	 are	 initially	 treated	 using	 conservative	 measures,	 however	 many	

patients	ultimately	undergo	surgery	to	achieve	a	cure.	

1.1 Stress	urinary	incontinence	

1.1.1 Definitions	

Stress	urinary	 incontinence	 (SUI)	 is	 defined	by	 the	 International	Continence	Society	

(ICS)	as	the	as	‘the	involuntary	leakage	of	urine	that	occurs	on	effort	or	exertion’	[2].	

Urinary	leakage	is	described	by	patients	and	can	occur	purely	in	the	context	of	effort	

or	 exertion,	 or	 can	 occur	 with	 urinary	 urgency,	 which	 is	 described	 as	 ‘the	 sudden	

compelling	desire	to	void	that	is	difficult	to	defer’	[2].		In	this	case,	the	patient	is	said	

to	 have	mixed	 urinary	 incontinence	 (MUI).	 The	 involuntary	 leakage	 of	 urine	 that	 is	

preceded	by	 urgency	 is	 termed	urgency	 urinary	 incontinence	 (UUI)	 and	 is	 a	 distinct	

problem.	

SUI	 can	 be	 demonstrated	 during	 routine	 clinical	 examination	 when	 the	 patient	 is	

asked	 	 to	 	 cough,	 	 or	 	 it	 	 is	 	 	 demonstrated	 	 	 during	 	 	 pad	 	 	 testing	 	 	 or	 	 	 filling	

cystometry.	 Cystometry	 is	 performed	 to	 exclude	 the	 presence	 of	 any	 other	

functional	 bladder	 condition,	 	 including		 detrusor	 	 overactivity	 	 (DO)	 	 that	 	 leads	 	 to	

UUI,	 or	 bladder	 outlet	 obstruction	 (BOO)	 that	 can	 cause	 an	 overflow	 type	 of	

incontinence.	
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During	 filling	 cystometry,	 the	 patient’s	 	 bladder	 	 is	 	 filled	 	 using	 	 a	 	 pressure	

transducing	 catheter	 	 and	 	 the	 	 detrusor	 	 pressure	 	 can	 	 be	 	 calculated.	 	 When	 	 a	

patient	 develops	 incontinence	 (usually	 during	 straining)	 in	 the	 absence	 of	 any	

significant	 rises	 in	 detrusor	 pressure,	 the	 patient	 is	 said	 to	 have	 urodynamic	 stress	

incontinence	 (USI).	 For	 those	 who	 demonstrate	 DO	 (non-volitional	 detrusor	

contractions)	 that	 is	 associated	 with	 	 urinary	 	 leakage,	 	 a	 	 different	 	 treatment	

algorithm	 is	 followed,	which	aims	 to	attenuate	 the	sensory	and	motor	pathways.	

1.1.2 Prevalence	

Currently,	depending	on	which	method	 is	used	to	quantify	urinary	 incontinence,	 the	

prevalence	of	the	condition	can	vary	widely.	At	present,	there	is	no	consistently	used	

standardised	epidemiological	definition	for	SUI.	The	majority	of	studies,	which	assess	

the	epidemiology	of	SUI	use	population-based	designs	and	use	questionnaires	 in	an	

attempt	 to	qualify	 the	patient’s	 self-assessment	of	 the	condition.	Few	of	 these	self-	

report	 surveys	 have	 been	 designed	 specifically	 for	 this	 context	 and	 therefore	 poor	

inter-study	reliability	exists.	More	recently,	other	devices	have	emerged	for	this	use,	

including	 	 	 the	 	 	 International	 	 	 Consultation	 	 	 on	 	 	 	 Incontinence	 	 	 	 Modular	

Questionnaire	 (ICIQ),	 which	 includes	 various	 patient	 reported	 outcome	 and	 health	

related	quality	of	 life	 (HRQoL)	domains	and	has	been	validated	 in	a	variety	of	study	

populations	[3].	

The	 5th	 International	 Consultation	 on	 Incontinence	 [4]	 provides	 the	 most	 robust	

review	in	this	area	and	demonstrates	that	25-45%	of	women	suffer	occasional	urinary	

leakage,	 	whereas	 	 10%	 	have	 	 incontinence	 	 at	 	 	 least	 	 	weekly.	 	 	 Furthermore,	 	 	 of	

those	with	incontinence,	SUI	accounted	for	50%	of	cases,	MUI	affected	between	7.5-

25%,	while	UUI	represented	1-7%.	Meanwhile,	results	of	the	population	survey	based	

Boston	Area	Community	Health	(BACH)	study,	 	 reported	 	the	 	prevalence	 	of	 	SUI	 in	

women	 to	 be	 26.4%	 [5],	 while	 SUI	 was	 reported	 in	 44%	 of	 women	 studied	 in	 	 the	

multinational	Epidemiology	of	Lower	Urinary	Tract	Symptoms	Study	(EpiLUTS)	[6].	
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1.1.3 Aetiology	

There	 are	 several	 factors,	 which	 correlate	 with	 the	 propensity	 to	 develop	 SUI	 in	

women.	However,	it	is	notable	that	the	majority	of	studies	responsible	for	these	data	

are	 cross-sectional	 in	 design	 and	 therefore	 provide	 limited	 evidence	 of	 causation.	

Longitudinal	studies	would	enable	temporal	associations	to	be	made,	however	there	

is	a	relative	paucity	of	such	study	designs	in	the	literature.	

1.1.3.1 Age	

There	is	a	steady	increase	in	the	development	of	urinary	incontinence	in	general	with	

age	 as	 demonstrated	 in	 figure	 1.1.1.	 A	 distinct	 peak	 exists	 at	 the	 time	 of	 the	

menopause,	 as	 demonstrated	 in	 the	 widely	 reported	 EPINCONT	 study	

(Epidemiology	of	Urinary	Incontinence	in	Nord-Trøndelag)	[7].	As	compared	with	the	

prevalence	of	UUI	and	MUI,	which	continue	to	rise	with	age,	SUI	tends	to	decrease	

beyond	the	5th	decade.	The	Nurses’	Health	Study	(NHS)	[8]	mirrored	these	findings,	

demonstrating	that	SUI	decreased	over	a	2	year	observation	period,	while	both	MUI	

and	 UUI	 increased.	 	 The	 decrease	 in	 prevalence	 seen	 for	 SUI	 is	 that	 UUI	 is	

proportionally	 more	 common	 in	 older	 age	 groups	 and	 this	 is	 more	 likely	 to	 be	

reported	as	a	bothersome	symptom	than	is	SUI	[7].		The	issues	associated	with	these	

cross-section	studies	is	that	confounding	factors,	such	as	childbirth,	obesity	and	age	

related	co-morbidities	can	also	contribute	to	the	propensity	to	develop	SUI.	
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Figure	1.1.1.		Prevalence	of	SUI,	UUI,	and	MUI	by	age	

Value	 estimates	 of	 pooled	 data	 from	 epidemiological	 studies	 [9]	 Figure	 re-drawn	 with	 permission	 from	

Reynolds,	 W.S.,	 R.R.	 Dmochowski,	 and	 D.F.	 Penson,	 Epidemiology	 of	 stress	 urinary	 incontinence	 in	

women.	Curr	Urol	Rep,	2011.	12(5):	p.	370-6.	

1.1.3.2 Parity	and	vaginal	delivery	

Stress	 urinary	 incontinence	 is	 estimated	 to	 affect	 40-59%	 of	 pregnant	 women;	 its	

prevalence	and	severity	 increase	during	the	term,	with	15-30%	of	women	report	SUI	

during	the	first	post-partum	year	[4].	The	results	of	the	EPICONT	study	show	that	the	

risk	 of	 developing	 SUI	 is	 greater	 for	 pregnant	 women	 aged	 20-30	 [7].	 Caesarean	

delivery	 seems	 to	 be	 protective	 against	 this	 problem	 (OR=0.56)	 [10].	 Following	

delivery,	Thom	et	al	[11]	found	the	mean	prevalence	of	SUI	during	the	initial	3	months	

was	 24.6%,	 while	 others	 have	 reported	 that	 the	 risk	 of	 women	 developing	 post-	

partum	SUI	 is	 greater	 in	women	with	 SUI	 during	 pregnancy,	 even	 after	 3	 years	 has	

lapsed	following	delivery	[12].	

While	many	early	studies	suggested	that	a	 threshold	exists	 for	parity,	beyond	which	

no	 further	 significant	 increased	 risk	 of	 developing	SUI	 occurs	 [13,	 14],	 results	 of	 the	

EPICONT	 study	 demonstrates	 that	 increasing	 parity	 is	 associated	with	 an	 increased	

risk	of	developing	incontinence,	particularly	in	younger	age	groups	(RR=3.3)	[15].			
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1.1.3.3 Obesity	

A	 raised	 body	 mass	 index	 (BMI)	 is	 a	 significant	 independent	 predictor	 of	 the	

propensity	 to	 develop	 incontinence.	 Systematic	 reviews	 of	 the	 contemporary	

literature	 consistently	 demonstrate	 positive	 correlation	 between	 BMI	 and	 urinary	

incontinence	 [16,	 17]	 and	 this	 evidence	 is	 based	 on	 both	 longitudinal	 and	 cross-	

sectional	 data.	 Data	 from	 the	 EPICONT	 study	 [15]	 also	 demonstrate	 that	 the	

prevalence	 of	 all	 forms	 of	 urinary	 incontinence	 rise;	 MUI	 showing	 the	 greatest		

increase	with	a	raised	BMI	(figure	1.1.2).		However,	it	is	important	to	note	that	age	is	

also	associated	with	a	raised	BMI	with	a	mean	increase	in	3	points	from	age	30	to	60	

[16].			

Obesity	 increases	 the	 intra-abdominal	 pressure,	 which	 predisposes	 the	 patient	 to	

develop	stress	 incontinence,	highlighted	by	urodynamic	data	within	the	 	context	 	of	

the	PRIDE	trial	 [18];	 the	same	trial	demonstrating	 improvement	or	resolution	of	SUI	

correlating	with	 the	 degree	 of	weight	 loss.	 This	 finding	 is	 supported	 by	 	 data	 from	

case	series,	including	patients	undergoing	surgical	weight	loss	regimens	[19].	
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Figure	1.1.2.		Grouped	odds	ratios	of	SUI,	UUI,	and	MUI	according	to	BMI	

Figure	re-drawn	with	permission	from	Rortveit,	G.,	Y.S.	Hannestad,	A.K.	Daltveit,	and	S.	Hunskaar,	Age-	

and	 type-dependent	 effects	 of	 parity	 on	 urinary	 incontinence:	 the	 Norwegian	 EPINCONT	 study.	 Obstet	

Gynecol	2001;98:1004-10.	
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1.1.3.4 Family	history	

The	results	of	the	EPICONT	study	suggests	that	genetic	factors	may	be	involved	in	the	

development	 of	 SUI.	 Daughters	 of	 mothers	 who	 have	 SUI	 had	 a	 greater	 risk	 of	

developing	SUI,	 as	 did	 siblings	 of	 those	 affected	 (RR=1.5	 and	 1.8	 respectively)	 [20].	

Although	environmental	factors	inherently	are	involved	in	this	context,	results	of	twin	

registry	 studies	 demonstrate	 strong	 evidence	 for	 genetic	 factors	 to	 play	 a	 part	 [21]	

and	several	genes,	which	are	associated	with	connective	tissue	remodeling	have	been	

identified	as	being	associated	with	the	condition	[22]	

1.1.4 Health	Economics	

SUI	is	responsible	for	a	large	proportion	of	health	care	spending.	As	a	consequence	of	

an	ageing	population,	these	costs	are	likely	to	rise	significantly	over	the	next	20	years	

[23].	The	management	costs	of	SUI	was	estimated	 to	occupy	0.3%	of	 the	entire	UK	

National	Health	Service	(NHS)	budget	[24],	while	in	the	United	states,	the	direct	costs	

of	 SUI	 was	 estimated	 at	 $13.1bn	 in	 1995,	 which	 is	 greater	 than	 that	 spent	 on	 the	

investigation	 and	 treatment	 of	 breast	 cancer	 [25],	 although	 the	 actual	 	 treatment	

costs	represent	less	than	10%;	the	remainder	relating	to	clinic	visits	and	containment	

products	[26].	

1.1.5 Quality	of	Life	(QoL)	

SUI	 is	 a	 common	 and	 debilitating	 condition.	 Although	 it	 is	 not	 a	 life	 threatening	

problem,	 it	 can	 significantly	 impact	 upon	 the	 patient’s	 QoL.	 Patients	 avoid	 certain	

physical	and	social	activities	in	order	to	minimise	leakage.	Health	questionnaires	also	

consistently	 demonstrate	 negative	 outcomes	 in	 the	 domains	 of	 psychological	

wellbeing	and	anxiety,	 such	as	 those	 included	 in	 the	EpiLUTS	 study	 [27].	 	Although		

SUI	 ranks	 highly	 as	 a	 frequent	 cause	of	 depression	 and	 anxiety,	 it	 is	 not	 associated	

with	mental	health	problems	to	the	same	degree	as	other	storage	symptoms,	such	as	

urinary	urgency,	nocturia	and	urgency	incontinence	[28].	This	is	almost	certainly	due	

to	the	unpredictable	nature	of	storage	symptoms	as	compared	to	SUI,	which	a	patient	

can	prevent	to	some	degree	by	avoiding	precipitating	situations.	
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1.2 Pelvic	organ	prolapse	

1.2.1 Definitions	

Pelvic	organ	prolapse	(POP)	 is	defined	by	the	 International	Continence	Society	(ICS)	

as	 “the	 symptomatic	 descent	 of	 one	 or	 more	 of:	 the	 anterior	 vaginal	 wall,	 the	

posterior	vaginal	wall,	and	the	apex	of	 the	vagina	 (cervix/uterus)	or	vault	 (cuff)	after	

hysterectomy”	[2].	Patients	with	the	condition	are	often	asymptomatic,	however	up	

to	6%	of	women	over	 the	age	of	20	 suffer	 from	symptomatic	pelvic	organ	prolapse	

[29].	 Furthermore,	 data	 has	 demonstrated	 that	 the	 relative	 prevalence	 of	 	 the	

disorder	 increases	 by	 up	 to	 40%	 per	 decade	 in	 a	 cross-sectional	 study	 of	 1004	 US	

women	[30].	Symptoms	usually	occur	when	the	level	of	the	prolapse	extends	beyond	

the	hymen	and	are	made	worse	with	gravity.	Symptoms	can	result	from	the	prolapse	

itself	 and	 patients	 complain	 of	 the	 feeling	 that	 ‘something	 is	 coming	 down’	 or	

experience	a	dragging	sensation.	Others	describe	backache	or	experience	bladder	or	

bowel	 	 symptoms	 	 and	 	POP	 	 frequently	 	 co-exists	 	with	 	SUI	 in	up	 to	 30%	of	 cases			

[34].	 Patients					 describe			dyspareunia			and			may			suffer			anxiety			as			a			result.	

Occasionally,	 patients	 describe	 having	 to	 manually	 reduce	 their	 prolapse,	 which	 is	

generally		encountered		in		the		elderly	 population.	

The	location	of	the	prolapse	has	previously	been	referred	to	as	 involving	a	particular	

organ,	 for	 example	 cystocele	 (bladder),	 rectocele	 (rectum),	 or	 enterocele	 (small	

bowel).	As	there	is	no	guarantee	that	these	structures	are	involved	in	the	prolapse,	it	

is	more	 appropriate	 to	 refer	 to	 the	 segment	 of	 the	 lower	 reproductive	 tract	 that	 is	

associated	with	weakness.		These	are	described	as	compartments	and	three	exist:	

• Anterior	vaginal	wall	–	which	commonly	involves	the	bladder	and/or	urethra.

• Posterior	vaginal	wall	–	which	commonly	involves	the	rectum	or	small	bowel.

• Apex	of	the	vagina	–	which	involves	the	cervix	or	uterus.

Vault	–	which	is	termed	following	a		hysterectomy.	
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1.2.2 Prolapse	classification	

The	patient	should	be	examined	in	an	appropriate	position,	which	best	demonstrates	

the	location	and	severity		of	the		prolapse.		This		is		best		observed	with	the	patient	in	

an	appropriate	position,	which	 replicates	 their	 symptoms.	The	hymen,	a	 fixed	point	

and	 acts	 as	 a	 reference	 point	 for	 descriptive	 purposes.	 A	 variety	 of	 classification	

systems	 have	 been	 used	 to	 describe	 POP.	 	 In	 	 contemporary	 	 practice,	 	 the	 	 pelvic	

organ	 prolapse	 quantification	 (POP-Q)	 system	 is	 used	 (figure	 	 1.2.1).	 	 The	 	 POP-Q	

score	 was	 developed	 to	 overcome	 the	 problems	 with	 validation	 and	 objectivity	

associated	with	other	forms	of	classification	systems	[31,	32].	The	POP-Q	system	was	

initially	 described	 by	 Bump	 et	 al	 [33],	 to	 describe	 defects	 relative	 to	 the	 hymenal	

remnants	 and	 are	 further	 staged	 by	 the	 location	 of	 the	 distal	 most	 portion	 of	 the	

defeac)t:	Stage	0	–	No	demonstrable	prolapse.	

b) Stage	I	–	Distal	most	portion	of	prolapse	is	>1cm	above	the	level	of	the	hymen.

c) Stage	II	–	Distal	most	portion	of	prolapse	is	<1cm	proximal	or	distal	to	the	level

of	the	hymen.

d) Stage	III	–	Distal	most	portion	of	prolapse	is	>1cm	below	the	level	of	the

hymen.

e) Stage	IV	–	Demonstrates	complete	eversion	of	the	total	length	of	the	lower

genital	tract.
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Figure	1.2.1.		Pelvic	Organ	Prolapse	Quantification	System	(POP-Q)	

Point	Aa:	Midline	of	vaginal	wall,	3cm	proximal	to	the	external	urethral	meatus	(EUM).	

Point	Ba:	Most	distal	position	of	any	part	of	the	upper	anterior	vaginal	wall	from	the	vaginal	cuff	or	

anterior	vaginal	fornix	to	point	Aa.	

Point	C:	Distal	most	edge	of	cervix	or	leading	edge	of	the	vaginal	cuff.	

Point	D:		Posterior	fornix	in	a	woman	with	a	cervix.	

Point	Bp:	Distal	most	position	of	any	part	of	the	upper	posterior	vaginal	wall	from	cuff/fornix	to	point	Ap.	

Point	Ap:	Point	located	in	midline	of	posterior	vaginal	wall	3cm	proximal	to	the	hymen.	

Genital	hiatus	(GH):	measured	from	middle	of	the	EUM	to	the	hymen	in	the	posterior	midline.	

Perineal	body	(PB):	Measured	from	posterior	margin	of	the	genital	hiatus	to	mid-anal	opening.	

Total	vaginal	length	(TVL):	greatest	depth	of	vagina	when	Point	C	or	D	is	reduced	to	its	normal	anatomical	

position.	
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1.2.3 Prevalence	

Many	cases	of	prolapse	are	completely	asymptomatic	and	therefore	estimates	of	the	

prevalence	 of	 the	 condition	 vary	 depending	 on	 whether	 diagnosis	 is	 made	 on	

symptoms	or	examination	findings.	Clearly,	age	is	an	important	factor	and	therefore	

studies	 that	 include	 a	 wider	 age	 range	 provide	 a	 more	 accurate	 estimate	 of	

prevalence.	For	studies	that	use	a	symptomatic	definition	of	POP,	such	as	a	feeling	of	

pressure	or	bulging	demonstrate	a	prevalence	of	between	5-10%	[34,	35].	Meanwhile,	

a	much	higher	 prevalence	 (30-50%)	 is	 estimated	 in	 studies	 that	 define	POP	using	 a	

pelvic	 examination	or	 the	POP-Q	 score	 [36-38].	 The	 anterior	 	 compartment	 	 is	 	 the	

most	 frequently	 affected	 by	 POP,	 followed	 by	 the	 posterior	 compartment	 	 as	

described	 by	 studies,	 which	 use	 the	 POP-Q	 system.	 The	 anterior	 compartment	 is	

affected	almost	twice	as	often	as	the	posterior	compartment	[36,	37].	

The	incidence	of	POP	has	been	estimated	in	the	context	of	the	WHI	Oestrogen	Plus	

Progestin	Trial	 [36],	whereby	412	women	underwent	 a	 standard	pelvic	 examination	

biannually	 over	 an	 8	 year	 period.	 The	 incidence	 of	 anterior,	 posterior	 and	 apical	

prolapse	over	 the	course	of	 the	 study	was	9%,	6%	and	2%	respectively.	The	annual	

rate	 of	 prolapse	 surgery	 in	 the	 UK	 is	 estimated	 at	 0.16%	 in	 longitudinal	 studies	 of	

patients	 <40	 years	 of	 age	 at	 baseline	 [39],	 while	 one	 US	 study	 reported	 an	 annual	

incidence	 of	 0.5%	 for	 patients	 aged	 between	 70-79,	 with	 an	 estimated	 lifetime	

cumulative	risk	of	surgery	for	prolapse	of	11%	[40].	

1.2.4 Aetiology	

1.2.4.1 Pelvic	surgery	

Hysterectomy	is	regarded	as	increasing	the	risk	for	the	development	of	POP,	however	

the	 lack	 of	 longitudinal	 studies	 to	 demonstrate	 a	 significant	 positive	 temporal	

association	 are	 few.	 A	 Swedish	 cohort	 study,	 Altman	 et	 al	 reported	 that	 3.2%	 of	

women	who	have	undergone	a	hysterectomy	underwent	POP	surgery,	compared	to	

2%	 of	 those	 who	 had	 not	 undergone	 a	 hysterectomy.	 This	 would	 correspond	 to	 a	

relative	 risk	 of	 1.7	 (95%	 CI,	 1.6-1.7).	 Furthermore,	 those	 who	 underwent	 a	 vaginal	

hysterectomy	were	 at	 a	 greater	 risk	 for	 subsequent	 POP	 surgery	 (hazard	 ratio	 3.8;	

95%	CI,	 3.1-4.8)	 compared	with	 non-hysterectomized	 controls.	Meanwhile,	 findings	
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from	Mant	 et	 al	 [39]	 in	 the	 longitudinal	 Oxford	 Family	 Planning	 Association	 Study	

corroborated	 these	 results	 and	 demonstrated	 that	 the	 relative	 risk	 for	 the	

development	of	POP	following	a	hysterectomy	was	5.5	(95%	CI,	3.1-9.7)	if	the	surgery	

was	 performed	 for	 prolapse	 compared	 with	 for	 other	 benign	 	 conditions.	

Furthermore,	 other	 forms	 of	 gynaecological	 surgery	 are	 associated	 with	 the	

subsequent	development	of	POP,	 including	rectopexy	for	rectal	prolapse	(odds	ratio	

3.1;	 95%	CI,	 1.4-6.9)	 [41],	 gynaecological	 surgery	 in	general	 (odds	 ratio	 3.9;	 95%	CI,	

1.8-8.8)	 [42],	 while	 the	 Burch	 colposuspension	 is	 associated	 with	 a	 30%	 risk	 of	

subsequent	 vault	 or	 posterior	 compartment	 prolapse	 [43].	 The	 risk	 of	 requiring	 a	

further	 operation	 in	 patients	 having	POP	 surgery	 following	 a	 failed	 repair	 has	 been	

estimated	 at	 17%,	 compared	 with	 a	 risk	 of	 12%	 for	 those	 undergoing	 an	 initial	

procedure	[44].	

1.2.4.2 Parity	and	vaginal	delivery	

The	Oxford	Family	Planning	Association	study	[39]	demonstrated	that	childbirth	was	

the	 single	 strongest	 risk	 factor	 for	 the	development	of	POP	 in	women	<59	years	of	

age;	a	risk	that	increased	with	each	subsequent	delivery.	Rortveit	and	co-workers	[34]	

demonstrated	 that	 the	odds	 ratio	 for	 the	development	of	POP	 for	women	with	one	

vaginal	delivery	was	2.8	(95%	CI,	1.1-7.2),	 two	deliveries	OR	4.1	 (95%	CI	1.8-9.5)	and	

three	or	more	deliveries	OR	5.3	(95%	CI,	2.3-12.3)	as	compared	to	nulliparous	women.	

Several	 studies	 suggest	 that	 caesarean	 section	 has	 a	 protective	 effect	 on	 the	

subsequent	development	of	POP.	Uma	and	co-workers	demonstrated	that	caesarean	

section	led	to	a	significant	risk	reduction	in	POP	surgery	compared	to	vaginal	delivery	

(odds	ratio	0.3;	95%	CI,	0.05-0.55),	findings,	which	are	supported	in	other	case-control	

studies	[45].	Meanwhile,	findings	from	other	studies	have	suggested	that	in	the	long-	

term,	 there	 is	 a	 negligible	 effect	 on	 the	 development	 of	 POP	 [46].	 In	 the	 largest		

cohort	 study	of	women	undergoing	delivery	by	caesarean	section	 (n=33,167)	and	an	

age	 matched	 control	 group	 undergoing	 vaginal	 delivery	 (n=63,229)	 over	 a	 10	 year	

study	period,	Leijonhufvud	found	an	increased	risk	of	subsequent	prolapse	surgery	for	

women	in	the	vaginal	delivery	cohort	(hazard	ratio	9.2;	95%	CI,	7.0-12.1)	compared	to	

the	caesarean	section	cohort	 (figure	1.2.2)	 [47].		 This	demonstrates	that	for	women	
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who	 delivered	 vaginally,	 the	 incidence	 for	 prolapse	 surgery	 steadily	 increased,	 to	

reach	a	peak	in	excess	of	25%	towards	the	third	decade,	while	women	who	delivered	

by	caesarean	section	demonstrated	only	a	slight	increase	in	incidence	of	POP	surgery	

over	the	same	time	frame.	As	compared	with	SUI,	the	pregnancy	itself	does	not	seem	

to	be	a	significant	risk	factor	in	the	development	of	POP	[48].	

Figure	1.2.2.		Rate	of	POP	surgery	by	mode	and	timing	of	delivery	

Re-drawn	with	permission	from	Leijonhufvud,	A.,	C.	Lundholm,	S.	Cnattingius,	F.	Granath,	E.	Andolf,	and	

D. Altman,	Risks	of	 stress	urinary	 incontinence	and	pelvic	organ	prolapse	 surgery	 in	 relation	 to	mode	of

childbirth.	Am	J	Obstet	Gynecol	2011;204:70	e1-7.	
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1.2.4.3 Obesity	

Despite	obesity	being	strongly	associated	with	the	development	of	SUI	(figure	1.1.2),	

there	is	a	much	weaker	correlation	with	POP.	Several	studies	have	demonstrated	an	

increase	in	the	symptoms,	which	obese	patients	with	POP	experience,	 including	one	

study	 by	Washington	 et	 al	 [49]	 in	 a	 cross-sectional	 assessment	 of	 obese	 and	 non-	

obese	women.	Obese	women	did	not	demonstrate	a	significantly	increased	incidence	

of	stage	II	or	greater	POP,	but	did	suffer	with	more	severe	symptoms.	

1.2.4.4 Connective	tissue	diseases	

Disorders	such	as	Ehlers-Danhlos	and	Marfans	syndrome	have	been	associated	with	a	

greater	propensity	towards	the	development	of	POP,	with	estimates	of	75%	and	33%	

for	each	disorder	respectively	in	a	study	of	8	patients	with	Ehlers-Danhlos	and	12	with	

Marfans	[50].	

1.2.4.5 Family	history	

The	Swedish	twin	registry	provided	heritability	estimates	of	43%	for	prolapse	surgery	

in	the	cross-sectional	survey	based	study	of	25,364	twins	aged	20-46	[21].	Meanwhile,	

other	 controlled	 studies	 have	 demonstrated	 that	 the	 unadjusted	 odds	 ratio	 is	

between	 2-3	 for	 first-degree	 relatives	 of	 POP	 and/or	 herniae	 sufferers	 [45,	 51,	 52].	

McLennan	 et	 al	 [51]	 demonstrated	 that	 those	 with	 a	 stage	 III-IV	 prolapse	 have	 a	

greater	 familial	 component	 than	 those	 with	 stage	 I-II	 POP.	 This	 is	 consistent	 with	

findings	of	other	studies,	which	suggest	an	earlier	onset	of	POP	in	familial	cases	[53].	

The	authors	 conclude	 that	 this	 risk	 is	 reduced	after	adjusting	 for	other	 confounding	

factors,	however	it	still	persists.	

1.2.5 Health	economics	

The	annual	treatment	cost	for	POP	surgery	in	the	US	was	estimated	at	$1,012million	

in	2001;	hospitalization	was	responsible	for	71%	of	this	cost,	while	physician	services	

formed	 the	 remainder	 [54].	 Subramanian	 and	 colleagues	 [55]	 estimated	 the	

admissions	 costs	 of	 POP	 surgery	 in	 Germany,	 France	 and	 England.	 In	 2009,	 the	

admissions		for		POP		surgery		accounted		for		10.4%,		16.7%		and		16.9%		of		all		female	
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genital			surgery			in			Germany,			France	and		England		 respectively.	 The			costs		were	

€144,236,557,	€83,067,825	and	€81,030,907	for	each	country	respectively,	highlighting	

a	significant	burden	for	the	disease	across	the	three	countries.	

1.2.6 Quality	of	life	(QoL)	

QoL	 questionnaire	 surveys	 of	 patients	with	 POP	 consistently	 demonstrate	 that	 the	

impact	of	the	disease	extends	beyond	the	symptoms	resulting	from	the	prolapse	itself	

and	can	affect	psychological,	social	and	sexual	function.	
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1.3 Pelvic	floor	anatomy	

The	reasons	behind	the	 laxity	of	pelvic	 floor	 tissues	 that	can	 lead	to	SUI	and	POP	 is	

still	 poorly	 understood.	 The	 pelvic	 floor	 itself	 is	 a	 supporting	 structure	 consisting	 of	

muscles,	 fascia	and	connective	 tissue	 (figure	1.3.1).	Appropriate	support	depends	on	

the	 complex	 function	 of	 these	 structures	 and	 their	 respective	 contributions	 are	

discussed	 below.	 There	 are	 significant	 inconsistencies	 in	 the	 terminology	 used	 to	

describe	 the	 vital	 pelvic	 floor	 components	 and	 consensus	 texts	 such	 as	 the	 5th

International	 Consultation	 on	 Incontinence	 (ICI)	 aim	 to	 avoid	 some	 of	 these	

discrepancies.		These	suggested	terminologies	by	the	ICI	are	used	herein.	

1.3.1 Levator	ani	muscle	complex	

The	 levator	 ani	 is	 formed	 by	 three	 separate	 components.	 This	 group	 of	muscles	 is	

responsible	for	the	greatest	level	of	pelvic	organ	support.	The	action	of	type	I	muscle	

fibres	 maintains	 the	 resting	 closure	 of	 the	 urogenital	 hiatus.	 The	 three	 different	

components	 are	 the	 pubococcygeus,	 the	 puborectalis,	 and	 the	 ileococcygeus.	 A	

dense	fibrous	line,	the	arcus	tendineus	levator	ani	(ATLA)	runs	from	the	pubic	ramus	

to	the	ischial	spine	and	provides	an	attachment	from	which	components	of	the	levator	

ani	arise.	

The	 pubococcygeus	 is	 formed	 at	 the	 inner	 surface	 of	 the	 pubic	 bones	 and	 is	 sub-	

divided	 into	 three	 components,	 which	 are	 described	 according	 to	 their	 respective	

attachment	 sites.	 The	 pubovaginalis	 terminates	 at	 the	 lateral	 vaginal	 wall,	 the	

puboperinealis	 attaches	 to	 the	 perineal	 body,	 while	 the	 puboanalis	 attaches	 to	 the	

anus.	

The	 puborectalis	 arises	 from	 the	 pubic	 bone	 and	 terminates	 just	 above	 the	 anal	

sphincter,	 passing	 behind	 the	 anorectal	 junction.	 The	 ileococcygeus	 arises	 from	 the	

ATLA	and	attaches	 to	 the	 iliococcygeal	 raphe	 in	 the	midline,	between	 the	anus	and	

the	 coccyx.	 It	 is	 the	 narrowest	 and	 most	 posterior	 of	 the	 levator	 ani	 muscle	

components	 and	 at	 its	midline	 attachments	 is	 referred	 to	 as	 the	 levator	 plate.	 This	

area	provides	support	to	the	rectum,	uterus	and	upper	vagina.	
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1.3.2 The	urogenital	diaphragm	

The	 urogenital	 diaphragm	 (or	 perineal	membrane)	 lies	 below	 the	 levator	 ani.	 It	 is	 a	

dense	fibrous	sheet,	which	spans	the	anterior	portion	of	the	pelvic	outlet.	The	dorsal	

component	of	the	urogenital	diaphragm	attached	to	the	perineal	body	and	distal	third	

of	 the	 vagina,	 for	 which	 it	 provides	 support.	 The	 ventral	 part	 surrounds	 the	

compressor	 urethrae	 and	 urethrovaginal	 sphincter	 and	 provides	 support	 to	 the	

urethra.	

1.3.3 The	perineal	body	

The	perineal	body	 lies	 in	 the	midline	between	the	vagina	and	anus,	 just	deep	to	 the	

skin.	 It	 is	 a	 mass	 of	 skeletal	 and	 smooth	 muscle	 components	 resulting	 from	 the	

converging	 fibres	 of	 the	 bulbospongiosus,	 urethrovaginal	 sphincter	 muscles,	

puboperinealis	 and	 external	 anal	 sphincter.	 Anteriorally,	 the	 	 perineal	 	 body	

converges	with	the	urogenital	diaphragm.	

1.3.4 Parietal	and	endopelvic	fascia	

The	 fascial	 covering	of	 the	 striated	muscle	of	 the	pelvic	 floor	 is	 termed	 the	parietal	

fascia	 and	 is	 responsible	 for	 the	 attachment	 of	 these	muscles	 to	 the	 pelvis	 and	 to	

provide	a	point	of	insertion	for	the	endopelvic	fascia.	

The	parietal	fascia	has	three	condensations:	

1. The	 arcus	 tendineus	 levator	 ani	 (ATLA)	 arising	 from	 the	 obturator	 internus

muscle.

2. The	arcus	 tendineus	 fascia	pelvis	 (ATFP)	arises	 from	the	 levator	ani	 from	the

ischial	spine	to	the	superior	pubic	ramus.

3. The	arcus	tendineus	rectovaginalis	(ATRV)	commences	at	the	midpoint	of	the

ATFP	and	attaches	to	the	perineal	body.

The	endopelvic	 fascia	 consists	 of	 loose	 areolar	 tissue,	which	 contains	blood	 vessels,	

nerves	 and	 lymphatics.	 The	 endopelvic	 fascia	 gives	 rise	 to	 several	

condensations/ligaments	that	provide	a	supportive	role	for	the	pelvic	organs.	
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Figure	1.3.1.	Gross	anatomy	of	the	female	pelvic	floor	musculo-ligamentous	attachments	

Reproduced	with	permission	from	Corton	MM.	Anatomy	of	pelvic	floor	dysfunction.	Obstetrics	and	

gynecology	clinics	of	North	America.		2009	Sep:	36:401-19.	

1.3.5 Ligaments	

• Uterosacral	 ligaments	–	condensations	of	 the	endopelvic	 fascia,	which	arise

from	the	upper	vagina/cervix	and	attach	to	the	sacrum.

• Cardinal	ligaments	–	condensations	of	the	endopelvic	fascia,	which	arise	from

the	upper	vagina/cervix	and	attach	to	the	pelvic	sidewall

• Round	ligament	–	extends	from	the	uterine	cornu	to	the	labia	majora,	via	the

inguinal	 canal.	 It	 consists	 predominantly	 of	 smooth	muscle	 and	has	minimal

supportive	function,	as	compared	to	the	uterosacral	and	cardinal	ligaments.
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1.3.6 Anterior	vaginal	wall	

A	 condensation	of	 loose	 connective	 tissue	 connects	 the	 anterior	 vaginal	wall	 to	 the	

arcus	tendineus	fascia	pelvis.	The	anterior	vaginal	 itself	wall	comprises	3	histological	

layers:	mucosa,	muscle	 and	 adventitia.	 During	 colporrhaphy,	 it	 is	 the	muscular	 and	

adventitial	layers	that	undergo	plication.	

1.3.7 Posterior	vaginal	wall	

A	condensation	of	 loose	connective	tissue	connects	the	posterior	vaginal	wall	 to	the	

arcus	tendineus	rectovaginalis.	The	upper	portion	of	the	posterior	vaginal	wall	itself	is	

attached	 to	 components	 of	 the	 uterosacral	 and	 cardinal	 ligaments,	 which	 provide	

structural	support.	

1.3.8 Levels	of	support	

Support	for	the	vagina	and	uterus	are	dependent	upon	the	structure	and	function	of	

the	 above	 connective	 tissues.	 	 	 A	 system	 to	 explain	 an	 anatomical	 basis	 for	 pelvic	

floor	 disorders	 based	 on	 the	 dysfunction	 of	 these	 connective	 tissue	 structures	 was	

proposed	by	DeLancey	[56].	Here,	the	uterus	and	cervix	attach	to	the	pelvic	sidewalls	

by	 connective	 tissue	 parametrium	 (uterosacral	 and	 cardinal	 ligaments)	 and	

paracolpium	respectively.		This	system	comprises	3	levels:	

ï Level	I	–	The	parametrium	and	paracolpium.	

o Defects	usually	result	in	apical	prolapse	or	enterocoele.

ï Level	II	–	The	attachments	of	the	anterior	and	posterior	vaginal	walls	to	the	

pelvic	sidewall.	

o Defects	usually	result	in	anterior	or	posterior	vaginal	wall	prolapse	or

SUI.

ï Level	III	–	The	attachments	of	the	lower	vagina,	urethra,	pubovaginalis,	

urogenital	diaphragm	and	perineal	body.	

o Defects	usually	result	in	descent	of	the	perineum,	a	low	rectocele	or

problems	defecating.
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1.3.9 Female	continence	structures	

Figure	 1.3.2	 demonstrates	 the	 structures	 that	 maintain	 continence	 in	 the	 female.	

Continence	 is	 a	 complex	 process	 and	 relies	 not	 only	 upon	 pelvic	 floor	 function,	 but	

intact	 central	 and	 autonomic	 nervous	 systems.	 A	 functioning	 urethral	 sphincter	

mechanism	must	maintain	 sufficient	 closing	 pressure	 to	 resist	 urinary	 leakage.	 The	

mechanism	 itself	consists	of	 striated,	 smooth	muscle	and	vascular	cushions,	each	of	

which	 contribute	 equally	 to	 the	 resting	 pressure	 of	 the	 urethra	 [57].	 The	 urethra	 is	

‘sphincter-active’	 along	 its	 entire	 length	 in	 the	 female,	 however	 it	 is	 thickest	

anteriorally	 and	 in	 the	 mid-portion.	 The	 striated	 muscle	 component,	 the	 extrinsic	

portion	 of	 the	 sphincter,	 is	 composed	 of	 predominantly	 slow	 twitch	 (type	 1)	 fibres,	

which	maintain	 the	 resting	 pressure	 tone	 of	 the	 urethra.	 Fast	 twitch	 (type	 2)	 fibres	

assist	 in	 maintaining	 continence	 during	 sudden	 increases	 in	 pressure.	 The	 striated	

component	 comprises	 three	 muscles;	 the	 sphincter	 urethrae,	 the	 compressor	

urethrae,	and	the	urethrovaginal	sphincter.	

The	sphincter	urethrae	 is	 the	 innermost	component	of	 the	sphincter	and	surrounds	

the	thickest	portions	of	the	urethra.	

The	compressor	urethrae	attaches	to	the	inferior	border	of	the	pubic	bone.	

The	urethrovaginal	 sphincter	encircles	 the	urethra	and	 lower	vagina.	 It	arches	over	

the	urethra	on	its	course	inferior	to	the	symphysis	pubis.	

The	sphincter	is	innervated	by	the	pudendal	nerve,	which	arises	from	the	S2,		S3	and	

S4	nerve	roots,	while	efferents	originate	from	Onuf’s	nucleus	in	the	sacral	cord,	which	

is	under	the	influence	of	the	pontine	micturition	centre	(PMC)	in	the	midbrain.	

Deep	to	the	extrinsic	sphincter	 lies	 the	urethral	smooth	muscle,	which	 is	continuous	

with	 the	 detrusor.	 The	 sphincteric	 smooth	 muscle	 component	 is	 under	 autonomic	

control	 and	 extends	 four-fifths	 of	 the	 entire	 urethral	 length.	 It	 comprises	 an	 inner	

longitudinal	and	outer	circular	layer.	

Deep	 to	 the	 smooth	 muscle,	 lies	 a	 plexus	 of	 mucosal	 and	 submucosal	 vascular	

cushions,	 which	 assist	 with	 coaption	 of	 the	 mucosal	 surfaces,	 thereby	 providing	 a	
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water-tight	seal.	

The	 function	 of	 the	 lower	 urinary	 tract	 is	 to	 convert	 a	 constant	 process	 of	 urine	

production	 (micturition)	 into	 an	 intermittent	 process	 of	 excretion	 (voiding)	 to	 be	

performed	 at	 an	 appropriate	 time	 and	 place.	 The	 urinary	 bladder	 possesses	

compliance	 (elasticity),	 such	 that	 the	 pressure	 inside	 the	 bladder	 does	 not	 rise	

significantly	 as	 the	 volume	 of	 urine	 contained	 within	 it	 increases.	 In	 health,	 the	

bladder	capacity	is	roughly	500-600	mls	and	an	initial	desire	to	void	is	usually	reached	

at	200-300mls.	Urine	storage	and	voiding	are	processes	controlled	by	reflex	centres	in	

the	spinal	cord	and	the	PMC,	involving	both	the	autonomic	and	somatic	components	

of	 the	 nervous	 system.	 The	 parasympathetic	 pathway	 results	 in	 bladder	 (detrusor	

muscle)	 contraction	 and	 involves	 nerve	 roots	 S2-S4.	 During	 normal	 bladder	 filling,	

there	 are	 no	 stimulatory	 impulses	 sent	 to	 the	 sacral	 micturition	 centre	 from	 the	

midbrain.	 The	 sympathetic	 nervous	 system	 inhibits	 detrusor	 contraction	 and	 is	

responsible	 for	 contraction	of	 the	 internal	 sphincter.	Therefore,	voiding	 requires	 the	

coordinated	 detrusor	 contraction	 and	 smooth	 muscle	 sphincteric	 relaxation,	 in	

addition	to	reduced	resistance	at	the	 level	of	the	striated	distal	 (voluntary)	sphincter	

mechanism.	 Any	 abnormalities	 of	 this	 process	 would	 lead	 to	 problems	 during	 the	

storage	(filling)	or	the	voiding	phase.	
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Figure	1.3.2.		Continence	structures	of	the	female	pelvic	floor	

Reproduced	with	permission	from	Thaker	H,	Sharma	AK.	Regenerative	medicine	based	applications	to	

combat	stress	urinary	incontinence.	World	Journal	of	Stem	Cells.	2013;5(4):112-123.	
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1.4 Pelvic	floor	dysfunction	

1.4.1 Mechanism	for	the	development	of	SUI	

Several	 factors	 are	 involved	 in	 continence.	 The	 exact	 mechanism	 behind	 this	 	 is	

related	to	the	connective	tissue	of	the	pelvic	floor,	urethral	sphincter	and	the	central	

and	 peripheral	 nervous	 system.	 The	 combined	 action	 of	 these	 mechanisms	 is	

responsible	for	the	prevention	of	urinary	leakage	during	effort	or	exertion.	Therefore,	

continence	relies	upon	the	following	factors:	

ï Striated	sphincter	under	pudendal	nerve	innervation	

ï Healthy	urethral	mucosa	and	sub-mucosa	

ï Intact	and	functioning	urethral	smooth	muscle	

ï Intact	vaginal	wall	support	

At	 present,	 there	 are	 two	 prevailing	 theories,	 which	 attempt	 to	 explain	 the	

development	of	SUI;	urethral	hypermobility,	and	intrinsic	sphincter	deficiency.	These	

two	 pathophysiological	 mechanisms	 are	 not	 completely	 dichotomous,	 rather	 they	

represent	a	spectrum	on	which	patients	may	have	features	of	both	[58].	

1.4.1.1 Urethral	hypermobility	

Enhorning	[59],	was	one	of	the	first	to	suggest	that	SUI	develops	due	to	the	urethra	

descending	 relative	 to	 the	 pelvic	 outlet,	 resulting	 in	 abnormal	 transmission	 of	 the	

raised	 intra-abdominal	 pressure	 during	 exertion	 (figure	 1.4.1).	 Elevation	 of	 the	

proximal	 urethra	 to	 a	 retropubic	 position	 as	 in	 a	 Burch	 colposuspension	 	 or	

pubovaginal	sling	utilizes	this	principle	in	the	treatment	of	SUI.	The	institution	of	this	

early	 theory	 in	 the	 1960’s	 has	 several	 criticisms;	 several	 studies	have	demonstrated	

that	in	fact	the	pressures	in	the	distal	urethra	are	greater	than	those	in	the	proximal	

urethra	 [60]	 and	 that	 patients	 with	 distally	 located	 proximal	 urethras	 can	 remain	

continent	[61].	This	suggests	that	continence	in	this	context	may	be	related	to	a	more	

complex	mechanism.	

Petros	and	Ulmsten	first	proposed	potential	mechanisms	for	the	development	of	SUI	

in	 the	 early	 1990’s.	 Their	 ‘integral	 theory’	 [62]	 involves	 laxity	 of	 the	 tissues	 of	 the	

pelvic		 floor		 that		are		 involved		 in		urethral		 ‘kinking’		and		compression		 in		order		 to	
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maintain	 continence.	The	muscles	 involved	 in	 	 this	process	are	 those	 	 that	 surround	

the	 urethra	 relative	 to	 the	 	 vagina;	 	 the	 	 pubococcygeus	 	 anteriorally,	 	 the	 	 levator	

plate	posteriorally	 	and	 	the	 	 longitudinal	 	muscle	 	 	of	 	 	the	 	 	anus	 	 	 inferiorly.	 	 	When	

this	 	mechanism	 	 fails,	 	 due	 	 to	 	 laxity	 	 of	 	 the	 	 anterior	 	 vaginal	 	 	 wall	 	 	 and	 	 	 the	

ligaments	 surrounding	 	 the	 	 urethra,	 	 for	 	which	 	 the	 	 	 pubococcygeus	 	 	muscle	 	 	 is	

unable			to	compensate,	the	urethra	is	unable	to	close	sufficiently.	

DeLancey	[56]	described	the	‘hammock	theory’,	hypothesizing	that	an	increase	in	the	

intra-abdominal	 pressure	 becomes	 translated	 to	 the	 urethra,	 which	 in	 	 health,	

becomes	 compressed	 against	 the	 endopelvic	 and	 pubocervical	 fascia	 (figure	 1.4.2).	

Therefore,	 it	 is	 this	 compression	 that	 leads	 to	 continence,	 rather	 than	 effective	

urethral	kinking.	

Figure	1.4.1.	Pressure	transmission	theory	of	stress	urinary	incontinence	

In	 health,	 the	 intra-abdominal	 portion	 of	 the	 urethra	 is	 compressed	 through	 effective	 pressure	

transmission,	 while	 the	 right	 image	 demonstrates	 loss	 of	 this	 pressure	 transmission,	 leading	 to	 urinary	

leakage.		
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Figure	1.4.2.		Hammock	theory	of	stress	urinary	incontinence	

Left	 image	 demonstrates	 strong	 fascial	 support	 that	 allows	 compression	 of	 the	 urethra.	 Right	 image	

demonstrates	poor	support,	which	does	not	facilitate	urethral	compression	against	the	ATFP.	

	
1.4.1.2 Intrinsic	sphincter	deficiency	

	
The	 striated	 muscle	 comprised	 of	 fibres	 of	 the	 compressor	 urethrae	 and	

urethrovaginal	 sphincter	 provides	 a	 degree	 of	 voluntary	 control,	 whereas	 the	 inner	

smooth	 muscle	 layer	 occupies	 the	 two-thirds	 of	 the	 proximal	 urethra.	 Intrinsic	

sphincter	 deficiency	 (ISD)	 is	 a	 mechanism	 for	 the	 development	 of	 urinary		

incontinence	 that	 was	 coined	 from	 the	 observations	 of	 voiding	 video-cystometry	

findings	 in	 patients	 who	 have	 previously	 undergone	 procedures	 aimed	 at	 the	

treatment	of	urethral	hypermobility	[63].	

	

The	concept	ISD	was	originally	described	by	Edward	McGuire	 in	the	1970’s	[64,	 	65].		

At	 the	 time,	Enhorning’s	 theory	 for	hypermobility	was	 the	prevailing	 theory	 for	 the	

development	 of	 SUI.	 Using	 video-urodynamics,	 McGuire	 identified	 a	 group	 of		

patients	who	had	stress	leakage	despite	having	a	non-mobile	bladder	neck.	This	type	

of	 incontinence	was	classified	as	Type	 III	 in	his	classification	system	which	was	 later	

modified	by	Blaivas	and	Olsson	[66].	Causes	of	ISD	include	childbirth	related	injuries,	

including	 ischaemia,	 neural	 injury,	 or	 other	 iatrogenic	 injury.	 ISD	 is	 commonly	

associated	 with	 previous	 surgery	 for	 stress	 incontinence,	 which	 has	 resulted	 in	

significant			peri-urethral			fibrosis			with			an			eroded			urethral			tape.	 Damage			to			the	
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sphincter	 through	 other	 forms	 of	 trauma	 including	 radiotherapy	 is	 an	 important	

cause.	 Causes	 of	 neurogenic	 related	 ISD	 include	 conus	 injuries	 of	 the	 spinal	 cord	

and/or	the	cauda	equina,	or	less	frequently	the	pelvic	nerves.	

	
ISD	 is	 associated	 with	 more	 pronounced	 symptoms	 and	 is	 considered	 more	

challenging	 to	 treat	 than	 urethral	 hypermobility.	Operations	 that	were	 designed	 to	

correct	 urethral	 hypermobility	 (e.g.	 Burch	 Colposuspension,	 Marshall-Marchetti-	

Krantz	 (MMK)	 procedure)	 are	 known	 to	 have	 a	 poor	 outcome	 in	 patients	 with	 low	

maximal	 urethral	 closure	 pressure	 (MUCP)	 (<20cm	 H2O)	 [63,	 67].	 The	 MUCP	 is	

produced	by	the	high-pressure	zone	of	 the	mid-urethra.	 If	 this	area	 is	deficient	 (and	

the	 pressure	 is	 below	 20cm	 H20),	 ISD	 is	 said	 to	 exist	 [67].	 The	 valsalva	 leak	 point	

pressure	 (VLPP)	 is	 commonly	 used	 as	 an	 indicator	 of	 ISD	 instead	of	 an	MUCP	 [68].	

VLPP	is	the	abdominal	pressure	at	which	the	patient	 leaks	urine	whilst	performing	a	

Valsalva	 maneuver.	 Despite	 evidence	 to	 suggest	 that	 MUCP	 and	 VLPP	 do	 not	

correlate,	a	MUCP	of	<20cm	H20	has	been	equated	with	a	VLPP	of	<60cm	H2O	[69].	

	

Various	 clinical	 tests	 are	 described	 to	 enable	 a	 diagnosis	 of	 urethral	 hypermobility,	

including	 the	 Q-tip	 test,	 the	 Marshall-Bonney	 or	 Ulmsten	 tests.	 More	 recently,	 a	

further	clinical	test	has	been	proposed	to	identify	ISD	in	women	without	the	need	for		

a	urodynamic	study.	The	posterior	vaginal	wall	pull	down	manoeuvre	 [70]	described		

by	Thubert	 	et	al	 is	 a	 	 simple	 clinical	 test	 that	 involves	gentle	downward	 traction	of				

the	 posterior	 vaginal	wall	 provided	by	 a	 split	 speculum	performed	with	 the	bladder	

filled	 with	 400mls	 of	 saline	 in	 a	 supine	 position.	 A	 positive	 test	 	 (leakage		

demonstrated		during			the			procedure)			was			shown			to			correlate			with			ISD		(MUCP	

<20cm	H2O)	with	a	positive	predictive	value	of		94.67%.	
	

1.4.2 Mechanism	for	the	development	of	POP	
	

While	tail	movement	 is	 the	main	function	of	 the	 levators	 in	animals,	 in	humans,	 the	

pelvic	 floor	 connective	 tissue	 provides	 support	 to	 the	 pelvic	 organs.	 The	 relative	

contribution	 of	 each	 individual	 component	 is	 a	matter	 of	 some	debate,	 however	 at	

rest,	 it	 is	 the	 action	 of	 tonic	 contraction,	 which	 occurs	 to	 effectively	 allow	 the	

urogenital	hiatus	to	close.	
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POP	 can	 develop	 as	 a	 result	 of	 the	 loss	 of	 levator	 tone,	 which	 manifests	 itself	

particularly	during	a	Valsalva	manoeuvre.	 	 	Loss	of	 levator	 tone	can	 result	either	 	as							

a	 	 consequence	 	 of	 	 direct	 	 injury	 	 to	 	 the	 	 muscles	 	 or	 	 ligaments,	 	 or	 	 indirectly		

following	denervation	 	of	 	 the	 	nerve	 	supply	 	 to	 	 the	 	pelvic	 	 floor.	 	The	 	 latter	 	 	can		

occur	during	prolonged	labour,	particularly	during	the	second	stage,	whereby	stretch	

compression	 of	 the	 sacral	 nerve	 roots	 can	 result	 in	 transient	 or	 permanent	

neurological	 impairment.	 Levator	 ani	 muscle	 biopsies	 of	 patients	 with	 POP	 do	

demonstrate	denervation	during	histological	examination	[71].	

	

The	mechanism	of	birth	 injury	has	been	demonstrated	through	magnetic	 resonance	

(MR)	 and	 more	 recently	 by	 3-D	 ultrasound	 imaging.	 Women	 with	 levator	 avulsion	

defects	as	shown	during	ultrasound	investigation	were	twice	as	likely	to	demonstrate	

POP	than	those	who	were	not	shown	to	possess	levator	defects	(RR	1.9;	95%	CI,	1.7-	

2.1)	 [72].	 Van	 Delft	 demonstrated	 that	 following	 the	 first	 vaginal	 delivery,	 21%	 of	

women	 demonstrated	 a	 levator	 avulsion,	 and	 this	was	 associated	with	 significantly	

worse	 outcomes	 for	 pelvic	 floor	 muscle	 strength	 than	 women	 without	 avulsion	

defects	[73];	findings,	which	were	supported	by	evidence	from	DeLancey	et	al	[74].	

	
Atrophy	of	 skeletal	muscle	 can	also	occur	with	advancing	age,	 and	although	higher	

POP	stages	are	often	seen	in	older	patients,	the	evidence	to	support	that	this	occurs	

as	a	direct	result	of	atrophy	of	the	levator	ani	is	lacking	in	the	literature	[75].	

	

Whatever	 the	 aetiology,	 it	 is	 clear	 that	 loss	 of	 the	 levator	 tone	 is	 associated	with	 a	

greater	size	of	the	levator	hiatus	and	this	correlates	with	POP	[76].	The	result	of	this	is	

that	 the	 vaginal	 axis	 is	 lost	 and	 the	 levator	 support	 is	 inadequate	 to	 resist	 the	

downward	 pressure	 on	 the	 pelvic	 organs	 that	 occurs	 during	 abdominal	 straining.	

Subsequently,	a	greater	stress	 is	placed	on	the	connective	tissue	components	of	the	

levator	 shelf	 and	 if	 this	 excessive	 strain	 is	 maintained	 over	 a	 long	 period	 of	 time,	

clinical	 features	of	POP	may	become	obvious	 (figure	1.4.3)	 [77].	Whether	or	not	 the	

connective	tissues	become	excessively	stretched	or	 indeed	tear,	 is	a	matter	of	some	

debate	and	it	is	likely	that	a	combination	of	the	two	occurs	(figure	1.4.4)	[78];	findings,	
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which	have	led	surgeons	to	re-approximate	the	fibromusclar	wall	of	the	vagina	to	the	

surrounding	supportive	structures	[79].	

A Sacrum	 S	
Cardinal	and	uterosacral	
ligaments	

R	
Vaginal	vault	

Levator	plate	

Rectum	

Symphysis	
V	 pubis	

Perineal	membrane	
B C	

Figure	1.4.3.		Mechanisms	for	the	development	of	pelvic	floor	dysfunction	

A) demonstrates	 normal	 pelvic	 floor	 structures.	 Pelvic	 organs	 are	 supported	 by	 the	 levator	 plate	 and

supportive	 ligaments.	 B)	 demonstrates	 loss	 of	 the	 levator	 axis,	 which	 leads	 	 to	 	 the	 	 downward	

displacement	 of	 pelvic	 organs.	 C)	 Further	 downward	 displacement	 and	 prolapse	 of	 the	 vagina	 due	 to	

weakening	of	supportive	ligaments.	S	=	Sacrum,	R	=	Rectum,	V	=	Vagina.	

53



54

Figure	1.4.4.		Paramore’s	theory	of	pelvic	floor	dysfunction	

A) demonstrates	 the	 pelvic	 organ	 structures	 (ship)	 supported	 by	 the	 levator	 group	 (water)	 and	 the

suspensory	 ligaments	 (ropes).	 B)	 demonstrates	 loss	 of	 the	 levator	 component,	 which	 leads	 to	 the	

downward	 displacement	 of	 pelvic	 organ	 structures	 and	 stress	 placed	 upon	 the	 cardinal	 and	 uterosacral	

ligaments.	 C)	 demonstrates	 further	 weakening	 and	 descent	 of	 the	 pelvic	 organs.	 Reproduced	 with	

permission	from	Wein	et	al.	Campbell-Walsh	urology	10th	edition,		Elsevier.	

A	 B	 C	
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1.5 Pathogenesis	of	pelvic	floor	dysfunction	

Weakness	of	 the	pelvic	 floor	connective	 tissues	 is	a	major	contributory	 factor	 in	 the	

development	 of	 SUI	 and	 POP.	While	 there	 are	 patients	 in	 whom	 SUI	 exists	 in	 the	

absence	of	pelvic	floor	weakness	(as	occurs	with	ISD),	the	majority	of	cases	of	SUI	are	

associated	with	connective	tissue	dysfunction.	Connective	tissue	weakness	can	occur	

as	a	result	of	changes	in	the	histologic	composition	of	the	vaginal	wall	itself,	musculo-	

ligamentous	 structural	 changes	 or	 alterations	 in	 the	 composition	 of	 extracellular	

matrix	proteins	and	the	associated	biochemical	components.	

1.5.1 The	vaginal	wall	

From	 inside	 to	 out,	 the	 vaginal	 wall	 itself	 is	 composed	 of	 3	 distinct	 layers	 (Figure	

1.5.1):	

1. Mucosa	–	composed	of	the	non-keratinized	stratified	squamous	epithelium

and	the	underlying	lamina	propria.

2. Muscularis	mucosa	–	composed	of	smooth	muscle.

3. Adventitia	–	comprising	of	loose	connective	tissue.

The	 outer	 adventitial	 layer	 is	 thinnest	 and	 therefore	 most	 of	 the	 strength	 of	 the	

vaginal	 wall	 is	 contributed	 by	 the	 inner	 two	 layers:	 the	 lamina	 propria	 and	 the	

muscularis.	 The	 blood	 supply	 to	 the	 vagina	 is	 provided	 by	 the	 vaginal	 and	 uterine	

arteries,	 both	 of	 which	 arise	 from	 the	 internal	 iliac	 arteries.	 Venous	 drainage	 is	

achieved	 from	 the	 rich	 vaginal	 plexus	 that	 lies	within	 the	 lamina	propria	 and	drains	

into	the	internal	iliac	veins.	
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Figure	1.5.1.		Histology	of	the	vaginal	wall	

Mu)		Mucosa.		LP)		Lamina	propria.		MM)		Muscularis	mucosa.		Ad)	Adventitia.	

1.5.2 Musculo-ligamentous	structural	changes	

The	 vaginal	wall	 and	 supporting	 structural	 components	 can	be	 affected	by	 atrophic	

changes,	 which	 can	 occur	 as	 consequence	 of	 	 the	 	 relative	 	 lack	 	 of	 	 oestradiol		

following	 the	 menopause	 [80].	 Studies	 have	 demonstrated	 a	 deficiency	 of	 non-	

vascular	 smooth	muscle	 in	 samples	 of	 vaginal	 tissue	 taken	 from	patients	with	 POP		

as	 compared	 to	 patients	 without	 POP	 [81-83],	 which	 authors	 proposed	 is	 due	 to	 a	

deficiency	of	the	particular	smooth	muscle	phenotype	in	these	patients,	while	Takacs	

et	al	[84]	suggest	that	it	is		increased		vaginal		smooth		muscle		apoptosis		that		leads		

to	 the	 	 muscular	 	 deficiency.	 	 Meanwhile,	 	 other	 	 authors	 	 have	 	 concluded	 	 that		

blinded	histological	analysis	of	the	vaginal	wall	in	patients	with	and	without	prolapse	

does	not	completely	explain	these	findings	[85].	

Mu	

LP	

MM	

Ad	
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1.5.3 Extracellular	matrix	proteins	

The	 connective	 tissues	 of	 the	 pelvic	 floor	 are	 composed	 of	 smooth	 muscle	 and	

extracellular	 matrix	 (ECM)	 components,	 including	 a	 ground	 substance	 and	 fibrillar	

proteins,	 collagen	 and	 elastin.	 Collagen	 and	 elastin	 contribute	 most	 to	 the	 tensile	

properties	of	the	pelvic	floor	connective	tissues	and	are	the	most	abundant	of	the		ECM	

components	(84%	and	13%	respectively	[86]).	Fibroblasts	produce	the	majority	of	ECM	

components	and	can	be	 recognized	morphologically	by	 their	branched	structure	and	

elliptical	 nucleus.	 Fibroblasts	 are	 involved	 in	 the	 remodeling	 	 of	 	 the	 pelvic	 floor	

connective	tissue	through	a	balance	between	ECM	synthesis	and	degradation.	

Proteoglycans	and	glycosaminoglycans	(GAGs)	comprise	the	ground	substance	of	the	

ECM	and	are	 involved	 in	 the	 remodeling	of	 the	matrix	 components.	The	 remodeling	

process	 involves	 cell	 migration,	 proliferation,	 cell	 adhesion	 and	 fibril	 organization.	

GAGs	 are	 long	 unbranched	 polysaccharide	 units	 and	 synthesized	 by	 the	 Golgi	

apparatus	(except	hyaluronan)	of	cells,	which	are	present	in	high	number		in	connective	

tissues,	particularly	fibroblasts.	The	GAG,	hyaluronan	(hyaluronic	acid),	is	perhaps	the	

most	 important	 in	 this	 context,	 and	 is	 responsible	 for	 cell	 transport	 and	 the	

inflammatory	 response	 of	 the	 ECM.	 Proteoglycans	 consist	 of	 GAGs,	 attached	 to	 a	

protein	 structure	 through	 a	 tetrasaccharide	 bridge	 at	 the	 serine	 residue.	 These	

molecules	 are	 strongly	 hydrophilic	 and	 can	 trap	 water	 in	 addition	 to	 lubricating	

collagen	fibres,	which	permits	them	to	glide	over	one	another.	

3	distinct	groups	of	proteoglycan	exist	in	the	body:	

• Hyalectans	(lecticans)	–	larger	proteoglycans.

• Small	leucine-rich	repeat	proteoglycans	(SLRPs).

• Heparan	sulphate	proteoglycans	–	mainly	involved	in	proliferation.

The	 degradation	 of	 ECM	 components	 occurs	 through	 the	 group	 of	 matrix	

metalloproteinase	 (MMP)	 enzymes,	 whose	 homeostasis	 is	 dependent	 upon	 signals	

from	 cytokines	 and	 growth	 factors.	 Therefore,	 collagen	 and	 elastin	 expression	 are	

tightly	controlled	in	these	tissues.	

Collagen	is	responsible	for	much	of	the	tensile	properties	of	tissues.	Collagen	is	a		triple	

helical	protein,	which	is	composed	of	two	identical	α-1	chains	and	a	unique	α-2	chain;	
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the	amino	acids	glycine	and	proline	are	most	prevalent	 [87]	 .	At	present,	28	 types	of	

collagen	have	been	described	[88].	

In	the	pelvic	floor,	fibrillar	collagens	are	abundant,	with	type	I	and	III		collagen	being	the	

most	common	 [89].	Type	 I	 collagen	 is	present	 in	 scar	 tissue	and	 is	 found	 in	 tendons,	

skin	and	muscle	 fibres,	while	 type	 III	 collagen	 is	 synthesized	by	 immature	 fibroblasts	

and	 is	 weaker	 than	 the	 type	 I	 collagen	 that	 is	 produced	 by	 mature	 fibroblast	 cells.	

Collagen	I	forms	thicker	fibrils	and	is	therefore	present	in	a	greater	proportion	in	those	

tissues	that	require	a	greater	tensile	strength	[90],	while	a	greater	proportion	of	type	III	

collagen	is	observed	in	tissues	requiring	flexibility.	Type	V	collagen	is	formed	by	the	co-

polymerisation	of	both	 type	 I	and	 III	 collagen	 to	 form	hybrid	 fibrils;	 the	properties	of	

which	depend	upon	the	ratio	of	type	I:type	III	collagen.	Fibrillar	collagen	is	synthesized	

through	 nuclear	 transcription,	 followed	 by	 translation	 in	 the	 ribosomal	 subunits	 and	

finally	modification	and	fibril	formation	[91].	

Figure	 1.5.2	 represents	 the	 steps	 in	 the	 formation	 of	 a	 collagen	 fibril.	 Collagen	

synthesis	begins	with	turning	on	the	genes,	which	are	associated	with	the	formation	of	

a	 particular	α subtype.	 Each	 codes	 for	 a	 specific	mRNA	 sequence,	 typically	with	 the	

‘COL’	prefix.	The	mRNA	enters	the	cytoplasm,	where	it	links	with	ribosomal	subunits	to	

begin	the	process	of	translation.	The	signal	sequence	of	the	new	peptide	is	recognized	

by	a	 signal	 recognition	particle	on	 the	endoplasmic	 reticulum	 (ER),	which	directs	 the	

pre-pro-peptide	 into	the	ER	itself	 for	post-translational	processing.	 Inside	the	ER,	the	

signal	 sequence	 on	 the	 N-terminal	 is	 removed	 (pro-peptide)	 and	 hydroxylation	 of	

selected	proline	and	lysine	residues	occurs	by	the	enzymes	prolyl	hydroxylase	and	lysyl	

hydroxylase	 to	 aid	 cross-linking.	 This	 step	 requires	 vitamin	 C	 as	 	 a	 co-factor	 and	 is	

followed	by	 the	glycosylation	of	hydroxyl	groups	 that	were	placed	on	 lysine	 residues	

with	either	glucose	or	galactose	monomers.	

Three	of	 the	hydroxylated	and	glycosylated	pro-peptides	twist	 together	beginning	at	

the	C	 terminus	 and	di-sulphide	bonds	 form	 to	make	 the	 triple	 helical	 structure,	 now	

termed	 pro-collagen.	 This	 is	 packaged	 into	 a	 transfer	 vesicle	 and	 transported	 to	 the	

golgi	apparatus	for	one	final	post-translational	modification,	whereby	oligosaccharides	

are	added	and	the	pro-collagen	 is	destined	for	the	extracellular	space.	Here,	collagen	
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peptidases	 cleave	 the	 N	 and	 C	 terminal	 peptides	 to	 form	 tropocollagen,	 which	 is	

assembled	 into	fibrils,	using	 lysyl	oxidase,	an	enzyme	that	 forms	aldehyde	groups	on	

lysine	 and	 hydroxylysine	 domains.	 These	 subsequently	 become	 covalently	 linked	

between	tropocollagen	molecules	to	form	the	mature	fibres	that	are	finally	organized	

into	bundles.	

SLRPs	 regulate	 collagen	 fibrillogenesis	 and	 Decorin	 deficient	 mice	 demonstrate	

significantly	 impaired	 fibrillogenesis	 with	 subsequently	 attenuated	 tissue	 tensile	

strength	[92],	which	is	purported	to	occur	due	to	the	impaired	ability	of	crosslinking	to	

occur	 at	 the	 lysyl	 residues	 in	 decorin	 deficiency.	 Meanwhile,	 deficiencies	 in	 other	

SLRPs,	 such	 as	 fibromodulin	 and	 lumican	 result	 in	 defective	 collagen	 fibrils	 [93]	 and	

gene	knock-out	mice	with	fragile	skin	[94]	respectively.	

The	 degradation	 of	 collagen	 occurs	 mainly	 through	 the	 action	 of	 MMPs,	 which	 are	

produced	 intra-cellularly	 and	 released	 as	 pro-peptides.	Over	 20	MMPs	 are	 described	

and	the	interstitial	collagenases	(MMP1,	MMP8,	MMP13,	MMP18	and	to	a	lesser	extent	

MMP2	and	MMP14)	cleave	fibrillar	collagen,	while	the	gelatinases	(MMP2	and	MMP9)	

breakdown	 the	 resultant	denatured	peptides	along	with	 type	 IV	collagen	and	gelatin	

[95].	 The	 stromelysins	 cleave	 ECM	 proteins,	 however	 are	 unable	 to	 cleave	 fibrillar	

collagens.	
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Figure	1.5.2.		Diagrammatic	representation	of	collagen	synthesis	

RER.	Rough	endoplasmic	reticulum.	ER.	Endoplasmic	reticulum.	Reproduced		with		permission	from		Alberts	

B,	 Johnson	A,	 Lewis	 J,	Raff	M,	Roberts	K,	Walter	P.	Molecular	Biology	of	 the	Cell,	 4th	 Ed.	 2002.	Garland	

Science.	Chapter	19.	Cell	Junctions,	Cell	Adhesion,	and	the	Extracellular		Matrix.	

MMPs	are	synthesized	as	pro-peptides	and	are	secreted	as	pro-enzymes,	which	require	

extracellular	activation.	MMPs	are	inhibited	by	endogenous	tissue-derived	inhibitors	of	

MMPs	(TIMPS),	of	which	there	exist	4	subtypes.	TIMPs	are	responsive	to	 	a	variety	of	

cytokine	and	hormonal	 influences	 and	 can	also	have	an	effect	on	apoptosis,	 platelet	

aggregation,	 cell	 proliferation	 and	 hormone	 regulation.	 Certain	 TIMPs	 demonstrate	

different	effects	on	different	MMPs.	

Elastin	 is	 the	 second	peptide	 responsible	 for	 the	 strength	and	elasticity	of	 the	pelvic	

floor.		Connective	tissues	that	express	a	greater	proportion	of	elastin	demonstrate	the	

ability	to	stretch	and	recoil	under	tensile	loading;	the	tissue	returning	to	a	near	normal	

configuration	after	distension	has	occurred	 [96].	Elastin	 fibres	are	 therefore	 found	 in	
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abundance	 in	 the	 ECM	 of	 tissues	 that	 are	 subject	 to	 long-standing	 repetitive	 strain,	

such	as	the	pelvic	floor,	arterial	walls,	the	lungs	and	skin.	The	elasticity	of	this	protein	is	

due	to	the	arrangement	of	alternating	hydrophobic	and	hydrophilic	elements,	 	which	

form	β-spirals	that	can	stretch	[97].	

Elastin	 fibres	 are	 synthesized	 during	 the	 gestational	 period,	 terminating	 shortly	

thereafter,	 whereby	 no	 further	 elastin	 is	 made	 except	 during	 the	 pelvic	 floor	

remodeling	processes	that	occur	following	pregnancy	[98].	

The	 ELN	 gene	 encodes	 proteins	 that	 are	 rich	 in	 hydrophobic	 amino	 acids,	 such	 as	

glycine	and	proline,	bounded	by	cross-linked	 lysine	 residues	 to	 form	the	precursor	of	

elastin,	 tropoelastin.	 Elastin	 is	 made	 through	 the	 linkage	 of	 multiple	 tropoelastin	

molecules,	 in	 a	 reaction	 catalyzed	 by	 lysyl	 oxidase.	 These	 combine	 with	 fibrillin,	 a	

glycoprotein	that	is	secreted	into	the	ECM	by	fibroblasts	and	provides	a	scaffold	for	the	

deposition	of	tropoelastin.	Elastic	fibres	are	created	from	the	extensively	cross-	linked	

elastin	and	fibillar	components	formed	by	the	crosslinking	of	lysine	residues.	

Owing	 to	 the	 extensive	 cross-linking	 that	 occurs	 between	 the	 lysine	 residues,	

degradation	 of	 elastic	 fibres	 is	 a	 slow	 process	 in	 health.	 Serine	 proteases,	 such	 as	

neutrophil	 elastase,	 cysteine	 proteases,	 such	 as	 cathepsins	 L,	 S	 and	 K	 and	 MMP2,	

MMP9,	MMP12	can	degrade	elastin.	

1.5.4 Clinical	significance	

The	findings	of	studies	that	assess	collagen	and	elastin	content	in	the	diseased	state	as	

compared	 to	 pelvic	 floor	 tissues	 are	 discussed	 herewith.	 The	 content	 of	 these	 ECM	

proteins	 are	 generally	 assessed	 during	 remedial	 surgery	 for	 POP	 and	 SUI.	 While	

deficiencies	 in	 total	 collagen	or	elastin	 content	 can	be	demonstrable,	 it	 is	difficult	 to	

attribute	 these	 biochemical	 changes	 to	 deficiencies	 in	 either	 their	 synthesis	 or	

degradation.		Therefore,	other	markers	can	be	used.	
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1.5.4.1 Collagen	content	in	the	diseased	state	

The	total	collagen	content	of	certain	pelvic	floor	tissues	in	patients	with	SUI	appears	to	

be	consistently	reduced	in	the	vaginal	wall	[99,	100],	periurethral	and	round	ligaments	

[101,	 102].	 These	 findings	 are	 consistent	 in	 those	 with	 POP,	 where	 total	 collagen	

content	 is	 reduced	 in	 the	 parametrium	 and	 vaginal	 apex	 [103]	 and	 	 uterosacral	

ligaments	 [104].	Meanwhile,	 other	 studies	 have	 demonstrated	 	 an	 	 increase	 in	 total	

collagen	 content	 of	 the	 cardinal	 and	 uterosacral	 ligaments	 [105]	 in	 those	 with	 POP	

and/or	SUI.	These	findings	however,	may	reflect	a	change	in	the	ratio	of	collagen	I	to	

collagen	 III,	 with	 a	 much	 greater	 proportion	 of	 collagen	 III	 deposited	 following	 the	

tissue	 remodeling	 processes	 that	 occur	 in	 disease	 [106]	 and	 signifies	 reparative	

processes	 in	 response	 to	 overstretching.	Many	 studies	 do	 demonstrate	 a	 significant	

increase	in	the	proportion	of	collagen	III	[100,	105,	107,	108]	and	a	greater	proportion	of	

collagen	III	has	been	associated	with	weaker	tissues	[109].	

However,	 the	 difficulty	 in	 differentiating	 between	 altered	 collagen	 synthesis	 versus	

increased	 degradation	 remains.	 Makinen	 et	 al	 [110]	 overcame	 this	 problem,	 by	

isolating	and	culturing	the	fibroblasts	taken	from	tissue	biopsies	of	patients	with	POP	

as	compared	to	those	without	POP	and	measuring	the	collagen	production	in	vitro.		No	

significant	 difference	 was	 demonstrated	 between	 those	 with	 POP	 and	 controls;	

findings	which	are	supported	by	Chen	et	al	[99],	who	compared	those	with	and	without	

SUI.	The	use	of	novel	biomarkers	 to	measure	collagen	metabolism,	 such	as	 carboxy-

terminal	telopeptide	of	type	I	collagen	(ICTP)	and	carboxy-terminal	propeptide	of	type	

I	 procollagen	 (PICP),	 which	 are	 markers	 of	 collagen	 I	 breakdown	 and	 synthesis	

respectively	have	demonstrated	increased	levels	of	both	in	those	with	SUI,	suggesting	

greater	 synthesis,	 following	 collagen	 degradation	 [111].	Other	 investigators	 however	

have	failed	to	replicate	these	findings	in	patients	with	POP	and	SUI	[112].	

MMP	 or	 pro-MMP	 levels	 can	 be	 measured	 to	 assess	 the	 degree	 of	 collagen	

degradation.	Jackson	et	al	[113]	demonstrated	a	significant	reduction	in	total	collagen	

content	and	up	to	four-times	higher	MMP-1	activity	 in	vaginal	epithelia	specimens	of	

patients	with	prolapse	versus	age	matched	controls.	Other	studies	have		demonstrated	

increased	 MMP9	 levels	 in	 those	 with	 POP	 [100],	 while	 Chen	 et	 al	 [99]	 found	 no	

significant	difference	in	MMP2	or	MMP9	level	in	patients	with	POP	and	SUI,	however	
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reduced	TIMP1	levels	were	present.	

The	altered	collagen	metabolism	that	is	seen	in	these	patients	could	also	result	form	a	

global	 collagen	 dysfunction.	 Those	 with	 Ehlers-Danlos,	 a	 genetic	 condition,	 which	

affects	the	synthesis	of	collagen	have	a	higher		incidence		of		SUI		and		POP		than		those	

without	this	collagenopathy	[50,	114].	Similarly,	women	with	POP	are	at	a	greater	risk	

of	requiring		hernia		surgery		[115]		and		also		chronic		obstructive	pulmonary			disease	

(COPD)			[116].				Ulmsten			et			al			demonstrated			that			the			skin	of	women	with	SUI	

contained	40%	less	collagen		than		those		without		SUI		[102],		while	Soderberg	showed	

a	30%	reduction	in	the	ability	of	skin	fibroblasts	to	produce	collagen	in	those	with	SUI	

as	compared	with	healthy	controls	[117].	

1.5.4.2 Elastin	content	in	the	diseased	state	

Disorders	 of	 elastin	 metabolism	 are	 associated	 with	 an	 increased	 risk	 of	 the	

development	of	both	POP	and	SUI.	Marfan’s	syndrome	is	a	genetic	condition,	caused	

by	 a	 mutation	 on	 chromosome	 15,	 which	 encodes	 the	 fibrillin;	 the	 glycoprotein	

required	for	the	synthesis	of	elastic	fibres.	A	similar	genetic	condition	called	cutis	laxa	

is	associated	with	mutations	in	the	genes	that	encode	elastin	translation.		The	result	of	

these	conditions	is	that	the	ECM	component	of	tissues	is	poorly	elastic.	 	This	is	 	most	

obvious	 in	 the	 skin,	 where	 once	 stretched	 inadequately	 recoils.	 These	 disorders	 are	

associated	with	 other	 systemic	 conditions	 that	 result	 as	 a	 consequence	 of	 defective	

elastic	fibre	metabolism,	such	as	aneurysmal	change,	cardio-pulmonary	disorders	and	

herniae.	Patients	with	either	condition	have	a	high	 incidence	of	POP	and/or	SUI	 [50].	

Other	 studies	 have	 demonstrated	 a	 clear	 reduction	 in	 elastin	 content	 of	 pelvic	 floor	

tissues	 for	 those	with	POP	and/or	SUI	 (Figure	1.5.3)	 [104,	107,	118].	While	 the	elastin	

content	 has	 been	 quantified	 using	 polymerase	 chain	 reaction	 [119].	 Although,	 the	

direct	measurement	of	mature	elastic	fibres	 is	difficult;	many	studies	measure	elastin	

at	 the	 mRNA	 level	 or	 quantify	 tropoelastin,	 which	 may	 not	 accurately	 reflect	 the	

complex	synthesis/degradation	of	these	ECM	proteins	 in	such	patients	and	therefore,	

immunohistochemistry	 is	 considered	 the	 most	 accurate	 measurement	 [120].	 Data	

from	 other	 studies	 suggest	 that	 elastin	 degradation	 is	 more	 important	 than	 elastin	

synthesis.	Systemic	elastase	activity	 in	patients	with	SUI	has	been	 shown	 to	be	over	

three	 times	 greater	 [121],	 while	 alpha-1-antitrypsin,	 a	 protease	 inhibitor,	 has	 been	
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shown	to	be	deficient	 in	peri-urethral	 tissue	specimens	of	patients	with	SUI	 [119].	At	

low	 levels,	 there	 is	 reduced	 inhibition	 of	 neutrophil	 elastase,	 which	 is	 free	 to	 break	

down	elastin	and	is	also	associated	with	pulmonary	vascular	disease	and	cirrhosis.	

In	conclusion,	the	available	evidence	would	suggest	that	the	total	collagen	content	of	

pelvic	 floor	 tissues	 in	 patients	with	SUI/POP	 is	 generally	 low/normal	 as	 compared	 to	

age	matched	patients.	Perhaps	more	important	than	the	total	collagen	content	is	the	

collagen	 I	 to	collagen	 III	 ratio	–	a	greater	proportion	of	 collagen	 III	 is	associated	with	

tissues	 that	 are	 remodeling.	 In	 this	 context,	 it	 is	more	 likely	 that	 increased	 collagen	

degradation	 is	 responsible	 rather	 than	defective	synthesis.	Elastin	content	of	disease	

pelvic	 floor	 tissues	 is	 reduced,	 however,	 whether	 this	 is	 due	 to	 defects	 along	 the	

complex	synthetic	pathway	or	due	 to	an	 increase	 in	 the	degradation	of	elastin	 is	not	

completely	clear	and	it	is	likely	that	both	contribute	to	this	process.	
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Figure	 1.5.3.	Representative	 immunohistochemistry	 images	of	uterosacral	 ligament	 specimens	of	pre	

and	post-menopausal	women	with	and	without	POP	

Cells	stained	blue,	ECM	proteins	stained	brown.	Collagen	I	expression	is	greater	in	pre-menopausal	women	

than	 in	 post-menopausal	 women	 without	 POP,	 which	 in	 turn	 is	 greater	 than	 those	 with	 POP.	 MMP-1	

expression	is	greater	in	post-menopausal	women	with	POP,	while	elastin	is	expressed	at	a	greater	quantity	

in	pre-menopausal	women.	Reproduced	with	permission	from	Aznal,	S.S.,	Meng,	F.G.,	Nalliah,	S,	Tay,	A.,	

Chinniah,	 K.,	 Jamil,	 M.F.	 ,	 Biochemical	 evaluation	 of	 the	 supporting	 structure	 of	 the	 pelvic	 organs	 	 in	

selected	numbers	of	premenopausal	and	postmenopausal	Malaysian	women.	 Indian	Journal	of	Pathology	

and	Microbiology	2012;55:450-455.	
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1.5.5 Function	of	fibroblasts	in	the	ECM	
	

Fibroblasts	 are	 an	 important	 component	 in	 the	 production	 of	 extracellular	 matrix	

component	production	 in	the	pelvic	floor.	These	cells	are	also	 involved	 in	a	variety	of	

other	 processes	 in	 this	 context.	 Fibroblasts	 express	 endothelin-1,	which	has	 a	 role	 in	

the	contractility	of	myofibroblasts.	Women	with	POP	demonstrate	a	reduction	 in	the	

contractility	of	 vaginal	myofibroblasts	 and	 lower	 levels	of	 endothelin-1	expression	as	

compared	 to	 those	 without	 POP	 [122].	 Furthermore,	 the	 vaginal	 myofibroblasts	 of	

primaparous	 pre-menopausal	women	 appear	 to	 demonstrate	 greater	 contractility	 as	

compared		to		multi-parous		women		with			POP,			as			measured			using			a			collagen			gel	

contraction	assay	 [123].	 	 Interestingly,	 	 in	 	 this	 	 study	 	pre-menopausal,	 	multiparous	

women	demonstrate	 similar	 values	 for	 cell	 contraction	as	post-	menopausal	 	women	

with	severe	POP.	

	

The			fibroblasts			that			are				found				in				patients				with				POP				demonstrate		increased	

proliferative	rates	and		an		altered		cytoskeleton		architecture		in		response		to	stretch,	

which	 disrupts	 the	 ligamentous	 integrity	 [124].	Women	 with	 POP	 also	 demonstrate	

reduced	expression	of	the	mRNA	for	p53	 in	the	 	cardinal	 	 ligaments	 	 [118].	 	Cells	 	are		

therefore		unable		to			enter			the			quiescence			phase			(G0			phase),	and	therefore	cells	

continue	to	divide,	reducing	the	production	of	ECM	components.	Fibroblasts	produce	

transforming	growth	factor	β1	(TGF-	β1),	a	polypeptide	with	important	roles	in	wound	

healing,	the	immune	system	in	apoptosis.	Women	with	SUI	demonstrate	a	reduction	in	

the	level	of	TGF-	β1	in	fibroblasts	taken	from	the	vaginal	wall	and	this	is	purported	to	

affect	the	stimulation	of	collagen	and	elastin	synthesis	[125].	

	
1.5.6 Effect	of	oestradiol	on	ECM	component	production	

	
The	sex	steroid	oestradiol	has	long	been	used	for	the		treatment		of		post-		menopausal	

women	with	SUI	and	POP.	Oestradiol	replacement	in	women	has	been	demonstrated	

to	increase	the	local	production	of	both	collagen	I	and	collagen	III	mRNA	[126]	and	also	

increase	 the	 collagen	 	 I/collagen	 	 III	 	 ratio	 	 in	 	 oophrectomized	 rats	 [127].	Oestradiol	

inhibits	MMPs	and	studies	have	demonstrated	reduction	in	the	levels	of	MMP	and	an	

increase	in	TIMPs	in	the				para-urethral				tissues	of	women	 with	POP	[128].	However,	

other	studies		have		demonstrated		that	 	oestradiol	 	may	stimulate	collagen	synthesis	

with	relatively	 immature	cross-linkages,	which	can	be	easily	degraded	by	MMPs.	This	
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leads	instead	to	a	total	reduction		in		functional	collagen	fibres	in	the	ECM	[129].	

Zong	 et	 al	 [130]	 demonstrated	 that	 effective	 inhibition	 of	 MMPs	 is	 achieved	 with	

oestradiol	 	 and	 	 progesterone	 	 in	 	 combination.	 	 The	 	 co-administration	 	 of	

progesterone	 and	 oestradiol	 in	 the	 media	 of	 cultured	 fibroblasts	 isolated	 from	 the	

arcus	tendineus	was	shown	to	reduce	MMP13	more	effectively	than		either		alone	[131].	

Furthermore,	Moalli	 [132]	 demonstrated	 a	 reduction	 in	 the	 collagen	 I	 to	 	 collagen	 III	

ratio	 in	 post-menopausal	 women,	 as	 compared	 to	 younger	 patients.	 Following	

treatment	with	both	oestradiol		and		progesterone,		the		total		collagen		I	and	therefore	

the	collagen	 I	 to	collagen	 III	 	 ratio	 	was	 	 increased.	 	Low	 	serum	 	oestradiol	 levels	are	

associated	with	urethral	hypermobility	in	post-menopausal	patients	[133]	
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1.6 Biomechanics	of	the	pelvic	floor	connective	tissue	

The	main	 function	of	 the	 pelvic	 floor	 connective	 tissue	 is	 to	 resist	 increases	 in	 intra-	

abdominal	 pressure	 and	 to	 effectively	 recoil	 following	 distension.	 Pressure	

transmission	 to	 the	 pelvic	 floor	 is	 affected	 by	 gravity	 from	 the	 abdominal	 viscera.	

Therefore,	a	patient’s	posture,	habitus	and	the	presence	of	additional	intra-abdominal	

mass	can	influence	the	forces	that	are	transmitted	to	the	pelvic	floor.	Intra-		abdominal	

pressure	can	also	 increase	suddenly	during	coughing,	sneezing	and	 laughing	due	to	a	

Valsalva	type	effect.	

However,	little	data	exists	in	the	contemporary	literature	to	describe	the	forces,	which	

occur	at	rest	and	during	routine	activities.	One	common	method	for	the	recording	the	

pressures	 experienced	 in	 the	 diseased	 state	 is	 during	 urodynamic	 (pressure-flow)	

assessment.	The	intra-vesical	pressure	can	be	calculated	using	a		pressure-		transducing	

catheter	and	is	commonly	measured	in	centimeters	of	water	(cmH2O).	DeLancey	[134]	

described	that	the	pressure	inside	the	bladder	during	standing	with	a	relaxed	bladder	is	

on	average	40cmH2O.	 It	 can	be	 surmised	 that	because	 the	bladder	 	 is	 located	within	

the	 pelvis,	 just	 superior	 to	 the	 pelvic	 floor	 connective	 tissue,	 that	 this	 pressure	 can	

equate	to	the	hydrostatic	load	placed	upon	the	pelvic	floor.	If	the	mean	contact	area	of	

the	 female	 pelvic	 floor	 is	 taken	 as	 94cm2	 [134],	 Delancey	 calculated	 that	 the	 forces	

which	act	on	the	pelvic	floor	in	the	standing	position,	supine	position,	during	coughing	

and	 straining	 were	 37	 Newtons	 (N),	 19N,	 129N	 and	 92N,	 respectively	 [135].	 This	

highlights	 the	 sudden	 and	 acute	 forces	 that	 are	 experienced	 during	 even	 routine	

activities	of	daily	living.	

1.6.1 Mechanical	testing	

Unlike	muscle,	the	pelvic	floor	connective	tissue	is	described	as	passive;	it	can	transfer	

and	resist	 force,	however	 it	 is	unable	to	generate	 it.	The	tensile	properties	of	passive	

materials	 are	 determined	 by	 several	 factors,	 in	 terms	 of	 the	 pelvic	 floor	 connective	

tissue,	 the	 ECM	 is	 important.	 Here,	 the	 exact	 composition	 of	 the	 ECM,	 the	 spatial	

relationships	and	organization.	

Biomechanics,	 is	 the	 application	 of	 mechanical	 testing	 to	 biological	 systems	 and	
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therefore,	 this	 term	 will	 be	 applied	 to	 biological	 tissue	 only,	 herein.	 There	 are	 two	

important	distinctions	to	be	made	during	mechanical	testing:	

1. Structural	 characteristics	–	 the	displacement	of	a	material/tissue	 in	 response

to	load.

2. Mechanical	 characteristics	 –	 the	 stress	 (calculated	 as	 force	 /	 cross-sectional

area)	 and	 strain	 (calculated	 as	 displacement	 relative	 to	 the	 initial	 length	 of	 a

material/tissue)	relationship.

Mechanical	 characteristics	 take	 into	 account	 the	 area	 of	 the	 material/tissue	 and	

therefore	use	 force	per	unit	 area	as	 a	measurement.	As	 such,	 the	 latter	 is	 perhaps	a	

more	accurate	representation	of	the	structure	and	composition	of	a	tested	sample.	

1.6.1.1 Tensile	testing	

A	variety	of	methods	can	be	used	to	 test	 the	mechanical	characteristics	of	a	sample.	

The	most	commonly	performed	is	the	uniaxial	tensile	test.	This	relies		on	applying	force	

to	a	sample	along	a	single	axis.	A	material/tissue	is	clamped	between	two	grips;	one	of	

which	 is	 connected	 to	 a	 load	 cell.	 The	 sample	 is	 then	 elongated	 at	 a	 set	 rate	 to	 the	

point	of	failure.	

The	 values	 for	 stress	 (N)	 and	 strain	 at	 corresponding	 time	 points	 can	 be	 plotted	

graphically	 to	 produce	 a	 stress-strain	 curve.	 Stress-strain	 curves	 are	 generally	 non-	

linear	 but	 commonly	 demonstrate	 a	 linear	 portion	 depending	 on	 the	 material	

properties.	 The	 initial	 phase	 of	 a	 stress-strain	 curve	 represents	 a	 material	 clamped	

between	the	grips	 in	either	a	 ‘flaccid’	or	 ‘crimped’	state,	where	the	degree	of	passive	

elongation	 does	 not	 correspond	 with	 significant	 levels	 of	 stress.	 A	 linear	 portion	

follows	this	initial	‘toe’	phase,	which	is	associated	with	a	relatively	elastic	elongation	of	

the	tested	sample.	At	the	elastic	limit,	the	sample	becomes	plastically	deformed	prior	

to	failure.	Schematic	representation	of	a	stress-strain	curve	 is	demonstrated	 in	figure	

1.6.1.	
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Strain	

A) Toe B) Linear C) Pre-failure D) Failure

Figure	 1.6.1.	Representation	 of	 stress-strain	 curve	 for	 connective	 tissues	 that	 behave	 in	 a	 non-linear	

mechanical	fashion	

Top	–	stress-strain	curve	of	a	typical	collagen	containing	connective	tissue,	which	exhibits	an	initial	‘toe’	phase	

(A) during	elongation,	followed	by	a	linear	region	(B),	at	which	point	the	Young’s	modulus	can	be	calculated.	A

pre-failure	(C)	phase	 is	the	point	at	which	the	tissue/material	undergoes	 irreversible	plastic	deformation	and	

the	maximal	point	of	stress	 is	 taken	as	the	ultimate	tensile	strength,	 following	which	the	material	 fails	 (D).	

Bottom	 –	 representative	 images	 of	 tissue	 fibres	 during	 elongation	 to	 demonstrate	 crimping-uncrimping,	

followed	by	‘fraying’	of	the	fibres	and	ultimate	failure	of	the	tissue.	

Several	 values	 can	 be	 derived	 from	 the	 stress-strain	 curve,	 used	 to	 describe	 the	

mechanical	 properties	 of	 the	 material/tissue	 itself.	 The	 Young’s	 modulus	 (YM)	 is	

calculated	 from	 the	 slope	 of	 the	 initial	 linear	 portion	 of	 the	 curve	 and	 represents	 the	

stiffness/elasticity	 of	 the	 sample.	 The	 ultimate	 tensile	 strength	 (UTS)	 represents	 the	

maximum	peak	of	 the	curve;	 the	point	at	which	the	maximal	stress	 is	 reached	prior	 to	

failure	and	is	measured	in	N/mm2	or	Megapascals	(MPa).	

In	 order	 to	 accurately	 record	 the	 mechanical	 characteristics	 of	 a	 sample,	 the	 cross-	

sectional	 area	must	 be	 calculated.	 This	 can	 also	 allow	 comparisons	 to	 be	made	 with	

samples		of		differing		size.				The		cross-sectional		area		can		be		calculated		using	contact	

or	non-contact	methods	[136,	137].	Contact	methods	are	commonly	performed	using	a	

micrometer,	 which	 can	 lead	 to	 compression	 of	 the	 sample	 and	 therefore	 inaccurate	
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recording.	Non-contact	methods,	such	as	laser	micrometery	are	more	accurate	but	less	

commonly	performed.	

1.6.1.2 Problems	with	tensile	testing	

The	uniaxial	test	 is	a	useful	and	rapid	method	for	providing	useful	and	representative	

data	about	a	particular	material/tissue.	However,	while	the	uniaxial	test	can	be		reliable	

for	 testing	 synthetic	materials	 that	 have	 a	 uniform	 dimensional	 structure,	 biological	

tissues	 rarely	 behave	 in	 this	 way.	 Testing	 biomaterials	 along	 one	 axis	may	 not	 be	 a	

representative	 test	 for	 a	 tissue	 that	 is	 designed	 to	 provide	 support	 in	 a	multi-	 axial	

fashion.	 Furthermore,	 taking	 a	 sample	 of	 tissue	 and	 testing	 it	 ex	 vivo	may	 not	 be	

representative	of	the	function	with	which	it	behaves	in	vivo.	

Axial	coupling	is	another	complicating	factor;	the	mechanical	properties	of	a	material	

in	one	axis	being	dependent	upon	 the	 force	applied	 to	 the	 same	material	 in	another	

axis	[138].	These	factors	argue	in	favour	of	multi-axial	tensiometery,	the	protocols	for	

which	are	increasingly	complex	and	more	difficult	to	standardize	[138].	

1.6.2 Biomechanical	properties	of	connective	tissues	

Connective	tissues	are	not		completely		elastic.		Instead,		they		demonstrate	viscoelastic	

behaviours,	possessing	features	of	both	a	viscous	fluid	and		an		elastic	solid	[139-141].	

After	 loading,	 the	 stress-strain	 curve	of	 connective	 tissues	does	not	 return	along	 the	

same	 course	 during	 relaxation.	 This	 property	 is	 termed	 hysteresis	 (Figure	 	 1.6.2A).	

Viscoelastic	 	 	 	 tissues	 	 	 	 demonstrate	 	 	 	 other	 	 	 	 behaviors,	 	 	 	 which	 result	 as	 	 a	

consequence	of	this	dissipation	of	energy.		‘Creep’	represents	elongation		of	a	material	

over	 time,	while	 being	 subjected	 to	 a	 constant	 load.	 ‘Stress-relaxation’	 refers	 to	 the	

reduction	 in	stress	that	occurs	when	a	material	 is	subjected	to	a	constant	elongation.	

Akin	to	this	 is	a	 	property,	 	whereby		following		repeated		cycles	 	of	constant	strain,	a	

reduction	in	stress	occurs	with	each	subsequent	cycle.	The	result	of	this	is	a	rightward	

shift	 in	 the	 loop	 on	 a	 stress-strain	 curve	 (figure	 1.6.3B).	 This	 behavior	 is	 termed	 the	

Mullins		effect		and		represents		a		material		that		becomes	easier			to			stretch		with	

successive	 stretches	 [142,	 143].	 However,	 after	 each	 successive	 cycle,	 the	 degree	 of	

hysteresis	reduces	and	the	loading/relaxation	curves	become	closer	together.	For	this	
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reason,	 a	 period	 of	 ‘warming	 up’	 can	 help	 to	 avoid	 muscle	 strain,	 associated	 with	

excessive	stress	during	initial	staining.	

Connective	 tissues	 contain	 elastin,	 collagen	 and	 proteoglycans	 that	 facilitate	 the	

trapping	of	water	molecules.	The	interplay	between	these	substances	is	responsible	for	

the	mechanical	behaviors	that	these	tissues	demonstrate.	

Strain	 Strain	

Figure	1.6.2.		Viscoelasticity	of	tissues	

A) Stress-strain	curve	to	demonstrate	hysteresis.	The	tissue/material	undergoes	cycles	of	elongation	and

relaxation;	the	curve	follows	two	separate	paths,	indicating	dissipation	of	energy.	B)		The		rightward	shift	

of	hysteresis	curves	that	occur	following	cycles	of	successive	strain.	

1.6.3 Review	of	the	biomechanical	properties	of	pelvic	floor	tissues	

The	majority	of	studies	that	assess	the	biomechanical	properties	of	pelvic	floor	tissues	

in	humans	use	vaginal	tissues	for	comparison	between	patients	with	POP	±	SUI	rather	

than	the	pelvic	ligaments	and	musculature.	These	tissues	are	primarily	obtained	during	

routine	 gynaecological	 surgery	 for	 the	 treatment	 of	 POP	 or	 SUI.	 Other	 tissues	 are	

obtained	 from	 cadaveric	 tissue.	 The	 majority	 of	 studies	 use	 uniaxial	 testing	 for	

comparison,	 describing	 the	 Young’s	 modulus	 and	 ultimate	 tensile	 strength	 values.	

Other	methods	for	comparison	are	not	described	herein.	

There	 is	 considerable	 variability	 in	 the	exact	 tissues	 that	 are	 tested	and	 the	YM/UTS	

results	 that	are	obtained	as	a	 result	 (Table	1.6).	 In	general,	all	 studies	demonstrate	a	

difference	between	the	values	for	both	Young’s	modulus	and	ultimate	tensile		strength	

for	 vaginal	 tissue	 associated	 with	 POP	 versus	 control	 tissue.	 Of	 studies	 that	

1st	cycle	

5thcycle	

10th	cycle	
Elonga	on	

Relaxa	on	
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demonstrate	the	YM	for	POP	versus	non-POP	tissues	[144-146],	both	Martins	and	Lei	

et	 al	 [144]	 demonstrate	 lower	 values	 for	 non-POP	 tissues	 as	 compared	 to	 POP	 In	

another	study,	Jean-Charles	et	al	[147]	used	mathematical	modeling	to		show		that	POP	

tissues	 have	 a	 higher	 YM.	 Zimmern	 [145],	 however	 showed	 that	 POP	 tissues	 had	 a	

lower	YM,	while	using	a	different	hydration	protocol	than	the	other	studies.	

For	UTS,	three	studies	demonstrated	higher	values	for	tissues	taken	from	women		with	

POP	 compared	 to	 controls	 [145,	 146,	 148].	Meanwhile,	 Lei	 et	 al	 [144]	 showed	 	 that	

tissues	 taken	 from	 control	 patients	 had	 a	 higher	 UTS;	 those	 taken	 from	 pre-	

menopausal	 patients	 being	 both	 stronger	 and	 less	 stiff	 than	 those	 from	 post-	

menopausal	women.	

In	summary,	the	data	relating	to	the	biomechanical	properties	of	pelvic	floor	tissues	in	

humans	 is	 relatively	 sparse.	 The	 generally	 accepted	 view	 is	 that	 tissues	 affected	 by	

POP	 and	 SUI	 are	 generally	 stiffer	 and	 weaker.	 However,	 the	 published	 evidence	 is	

conflicting.	 Several	 possible	 explanations	 for	 these	 findings	 exist.	 There	 are	 many	

confounding	 variables	 in	 these	 patient	 cohorts,	 aside	 from	 simply	 the	 presence	 or	

absence	 of	 POP/SUI.	 We	 have	 described	 that	 menopausal	 status	 [149],	 hormone	

replacement	 therapies	 [150],	 weight,	 parity,	 mode	 of	 delivery	 and	 race	 are	

confounding	factors	and	these	are	not	controlled	for	in	these	studies.	Furthermore,	the	

exact	method	of	tissue	sampling	and	testing	is	important,	as	anisotropy	exists	in	these	

tissues.	 Clearly,	 the	 biomechanical	 tissues	 are	 affected	 during	 storage	 and	 this	 can	

have	 implications	 on	 the	 results	 of	 cadaveric	 tissue.	Other	 factors,	 such	 	 as	 	 storage	

temperature,	hydration	 state	 [151]	 and	 thawing	conditions	 [144]	 can	have	an	 impact	

upon	the	mechanical	properties.	

Despite	 these	explanations,	 it	 is	difficult	 to	 reconcile	 those	 studies	 that	demonstrate	

stronger		and		stiffer		tissues		that		are		taken		from		patients		with		POP.			One	possible	

explanation	is	that	these	tissues	are	undergoing	constant	remodeling;	a	process	that		is	

associated	with	a	reduction	in	the	collagen	I/III	ratio,	despite	a	 ‘normal’	total	collagen	

content	[106].	Furthermore,	no	study	assessed	the	vital	role	that	the	pelvic	ligaments	

and	other	connective	tissues	play	in	the	clinical	findings	of	POP	and	these	tissues	may	

undertake	a	compensatory	 role.	However,	 the	metabolic	changes	seen	 in	 the	vaginal	
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tissues	are	likely	to	be	part	of	a	systemic	problem	and	other	connective	tissues	may	be	

affected	in	addition	to	the	vaginal	tissues.	

Table	1.6.	Published	literature	that	relates	to	uniaxial	biomechanical	testing	of	vaginal	tissues	

Study	 Tissue	 Comparators	 YM	 UTS	 Conclusions	

Goh	2002	

[149]	

Anterior	vaginal	

wall	

Living	donors	

Pre-menopausal	POP	

Vs	

Post-menopausal	POP	

11.5	

14.35	

-	

-	

Significantly	greater	

YM	in	post-	

menopausal	tissue.	

Lei	2007	

[144]	

Anterior	vaginal	

wall	

Living	donors	

Pre-menopausal	No	POP	(n=14)	

Pre-menopausal	POP	(n=9)	

Post-menopausal	No	POP	(n=14)	

Post-menopausal	POP	(n=9)	

6.65	

9.45	

10.26	

12.10	

0.79	

0.60	

0.42	

0.27	

Pre-menopausal	

tissues	significantly	

lower	YM	and	greater	

UTS	than	post-	

menopausal.	POP	

stiffer	and	weaker	

than	no	POP.	

Rubod	

2008	

[148]]	

Anterior	vaginal	

wall	

Living	donors	(POP)	

Cadaver	(no	POP)	

Post-menopausal	No	POP	(n=5)	

Post-menopausal	POP	(n=5)	

-	

-	

1.398	

3.82	

Significantly	greater	

UTS	for	POP.	

However,	issues	

normalizing	cross-	

sectional	area.	

Zimmern	

2009	

[145]	

Anterior	vaginal	

wall	

Living	donors	(POP)	

Cadaver	(no	POP)	

No	POP	(n=3)	

POP	(n=23)	

10.2	

8.4	

1.4	

2.1	

POP	tissues	more	

elastic	and	stronger	

than	No	POP.	

Jean-	

Charles	

2010	[147]	

Full-thickness	

vaginal	wall	

No	POP	(n=10)	

POP	(n=19)	

Assessed	using	

mathematical	modeling	to	

compare	YM	at	both	low	

and	high	deformation.	

POP	significantly	

greater	YM	(stiffer)	

than	controls.	

Martins	

2013	[146]	

Anterior	and	

posterior	vaginal	

wall	

Living	donors	(POP)	

Cadaver	(no	POP)	

No	POP	(n=15)	

Anterior	

Posterior	

POP	(n=40)	

Anterior	

Posterior	

6.9	

10.5	

13.1	

9.5	

2.6	

3.5	

5.3	

3.2	

POP	higher	YM	and	

UTS	(stiffer	and	

stronger).	

Ranges	 No	POP	

POP	

6.65-10.26	

8.40-14.35	

0.42-2.60	

0.27-5.30	

POP	=	Pelvic	organ	prolapse	

YM	=	Young’s	modulus	

UTS	=	Ultimate	tensile	strength	
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1.7 Treatments	for	POP/SUI	

In	the	UK,	the	costs	related	to	the	management	of	urinary	incontinence	occupies	0.3%	

of	the	entire	National	Health	Service	(NHS)	budget	[152],	while	 in	the	US,	the	annual	

direct	costs	of	SUI	was	estimated	at	$13.12bn	in	1995	[25].	In	England	alone,	prolapse	

surgery	 represented	 an	 estimated	 at	 28,959	 hospital	 admissions	 in	 2005,	 accruing	 a	

total	cost	of	€81.03	million	and	similar	findings	are	observed	in	other	European		nations	

including	Germany	 and	 France	 [55].	 In	 1997,	 the	 cost	 of	 POP	 surgery	 in	 the	US	was	

estimated	to	be	over	$1bn,	for	a	total	of	226,000	procedures	[54].	

Patients	 with	 POP	 or	 SUI	 are	 initially	 managed	 by	 identifying	 and	 adjusting	 any	

modifiable	 risk	 factors,	 such	 as	 obesity,	 chronic	 cough	 and	 constipation.	 Medical	

therapies	are	available,	however	 the	majority	of	patients	ultimately	undergo	 surgery	

for	the	treatment	of	their	condition.	

In	 the	 last	 20	 years,	 two	major	 advances	 in	 the	 field	 of	 reconstructive	 urology	 have	

come	 to	 the	 fore:	 The	 availability	 of	 biomaterials	 and	 the	 introduction	 of	minimally	

invasive	 techniques.	 One	 such	 advancement	 is	 the	 use	 of	 mesh	 materials	 for	 the	

treatment	 of	 SUI	 and	more	 recently	 for	POP.	Mesh	 tape	 surgery	 as	 the	 tension-free	

transvaginal	 tape	 (TVT)	 was	 developed	 by	 Petros	 and	 Ulmsten	 [153]	 in	 the	 1990’s	

based	upon	the	integral	theory	of	urinary	continence	[62].	The	aim	was	to		simplify		the	

pubo-vaginal	 sling	 procedure,	 which	 uses	 autologous	 fascia	 and	 was	 popularized	 by	

Edward	 McGuire	 in	 the	 1970’s	 [154].	 Mid-urethral	 tape	 (MUT)	 surgery	 using	

polypropylene	 mesh	 (PPL)	 gained	 popularity	 following	 large	 scale	 randomized	

controlled	 trial	 data	 demonstrating	 rapid	 recovery	 and	 comparable	 success	 rates	 to	

colposuspension	[155].	The	technique	has	evolved	rapidly	and	a	plethora		of	procedures	

and	 ‘kits’	 have	 subsequently	 emerged,	 including	 the	 transobturator	 tape	 (TOT)	 and	

single-incision	or	mini-sling	kits	in	an	attempt	to	overcome	the	blind	passage	of	trocars	

through	the	retropubic	space,	which	risks	bladder	and	bowel	injury.	Irrespective	of	the	

route	used,	 in	experienced	hands	 the	 success	 rates	of	mesh	surgery	 for	 incontinence	

are	 high	 in	 the	medium	 term	 [156]	 and	 are	 similar	 to	 those	 for	 pubo-vaginal	 slings	

using	autologous	rectus	fascia	[157]	and	avoids	the	need	for	a	further	lower	abdominal	

incision,	which	has	implications	on	cosmesis,	pain	and	infection.	 	The	artificial	urinary	

sphincter	(AUS)	device	has	been	used	for	almost	30	years,	with	very	little	change	to	the	
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underlying	 design.		 It	 is	 successfully	 used	 in	 the	 treatment	 of	 male	 stress	 urinary	

incontinence,	such	as	that	which	occurs	following	radical	prostatectomy	or	in	patients	

with	 neurological	 disease.		 It	 is	 less	 commonly	 used	 in	 women	 with	 stress	 urinary	

incontinence,	 where	 it’s	 role	 is	 limited	 to	 the	 treatment	 of	 intrinsic	 sphincter	

deficiency,	 a	more	 severe	 form	of	 SUI.		 The	outcomes	of	 the	AUS	are	 therefore	 not	

discussed	 further,	 as	 very	 little	 randomized	 trial	 data	 exists	 in	 the	 literature	 that	

directly	compares	AUS	with	conventional	anti-incontinence	surgery for the treatment 

of uncomplicated SUI.			

Following	 the	 early	 data	 in	 support	 of	 PPL	 mesh	 use	 for	 SUI,	 mesh	 has	 been	

increasingly	 used	 in	 prolapse	 surgery	 and	 its	 use	 to	 reinforce	 the	 repair	 of	 anterior	

compartment	prolapse	 is	associated	with	cure	 rates	of	91.8%	compared	 to	71.2%	 for	

standard	colporrhaphy	without	mesh	[158].	

We	discuss	the	treatment	strategies	employed	by	clinicians	for	the	treatment	of	both	

POP	and	SUI,	including	a	review	of	the	outcomes	of	contemporary	biomaterial	surgical	

techniques	versus	traditional	surgery.	

1.7.1 Conservative	treatment	of	pelvic	floor	disorders	

With	 the	 increasing	awareness	of	 the	FDA	 reports	on	 the	 safety	of	mesh	devices	 for	

use,	particularly	in	prolapse	surgery,	a	stepwise	treatment	protocol	is	important	in	the	

management	of	patients	with	pelvic	floor	disorders.	

Correction	 of	 identifiable	 risk	 factors,	 such	 as	 smoking	 and	 obesity	may	 be	 of	 some	

benefit	to	patients.	Patients	with	morbid	obesity	are	at	a	significantly	greater	chance	

of	 developing	 prolapse	 compared	 to	 age	 and	 parity	 matched	 controls	 [159].	 The	

International	 Continence	 Society	 recommendations	 suggest	 that	 patients	 with	

prolapse	should	undergo	supervised	pelvic	floor	muscle	training	[2].	Pelvic	floor	muscle	

training	was	 originally	 introduced	 by	 Kegel	 in	 the	 1940’s	 [160]	 and	 aims	 to	 improve	

contraction	and	tone	of	the	levator	ani	muscle	group.	Studies	have	demonstrated	that	

pelvic	 floor	 training	 is	associated	with	significant	 improvements		on	scores	of	patient	

reported	 outcome	measures	 [161],	 while	 other	 data	 shows	 that	 pelvic	 floor	 training	

slows	the	progression	of	anterior	prolapse	in	elderly	women	[162].			
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Morbidly	obese	patients	are	at	a	5	times	greater	risk	of	developing	incontinence	than	

patients	 with	 a	 body	 mass	 index	 of	 25.	 Furthermore,	 weight	 loss	 of	 10%	 in	 these	

patients	confers	a	50%	reduction	in	urinary	leakage	[163].	

1.7.2 Mechanical	devices	for	prolapse	

Pessaries	 have	 been	 used	 to	 treat	 prolapse	 for	 centuries.	 These	 devices	 work	 by	

providing	rigid	mechanical	support	inside	the	vagina	to	prevent	the	herniation		of	pelvic	

organs.	Such	treatments	are	regarded	as	safe	and	patient	satisfaction	is	generally	high	

and	 it	 is	 estimated	 that	 up	 to	 two	 thirds	 of	 patients	 with	 prolapse	 	 would	 opt	 for	

pessary	treatment	over	primary	surgery	[164].	Despite	this,	data	relating	to	the	 long-

term	outcomes	of	pessary	use	in	the	literature		is		lacking,	however,	77%	of	members	of	

the	 American	 Urogynecologic	 Society	 report	 using	 pessary	 treatments	 as	 first-line	

therapy	for	prolapse	[165].	These	devices	are	easy	to	insert,	should	be	comfortable	for	

the	 patient	 and	 should	 effectively	 reduce	 the	 prolapse.	 Wu	 et	 al	 report	 successful	

fitting	 of	 pessaries	 in	 74%	 of	 patients	 [166],	 with	 most	 failures	 or	 discontinuation	

occurring	within	one	month	of	initial	fitting	[167].	Many	types	of	pessary	are	available	

for	 treatment	 and	 can	 generally	 be	 classified	 into	 supportive	 (ring)	 or	 space-filling	

(Donut	or	Gellhorn).	

1.7.3 Medical	treatment	of	pelvic	floor	disorders	

There	 has	 been	 some	 interest	 in	 the	 use	 of	 several	 pharmacotherapies	 for	 the	

treatment	 of	 stress	 urinary	 incontinence.	 The	 group	 of	 tricyclic	 antidepressants	

including	imipramine,	are	thought	to	have	their	effect	by	reducing	the	contractility	of	

the	bladder	and	 improve	the	resistance	of	the	urethra	to	urinary	flow.	 	 	Duloxetine,	a	

dual	serotonin/noradrenaline	re-uptake	inhibitor,	also	increases	the	urethral	resistance	

to	 micturition	 by	 having	 it’s	 effect	 on	 the	 alpha-adrenoreceptors	 and	 gamma-

Aminobutyric	acid	receptors	of	the	urethral	sphincter	mechanism.	Both	of	these	drug	

therapies	demonstrate	poor	results	measured	by		pad		testing	patients		with	SUI	[168,	

169].	

It	 is	well	 documented	 that	 the	 incidence	of	 pelvic	 floor	 disorders	 increases	 following	

the	menopause,	which	is	likely		due		to		the		reduction		in		circulating		and		local		levels	

of	oestradiol.		It	is	thought	that	the	role	of	oestradiol	in	the	lower	genitourinary	tract		is	
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to	 increase	 the	 sensitivity	 of	 smooth	 muscle	 receptors	 of	 the	 urethra	 and	 to	 also	

reverse	the	atrophic	vaginitis	associated		with		urethral		resistance		[170].		While	studies	

have	 	 	 shown	 	 	 	 an	 	 	 	 increase	 	 	 	 in	 	 	 	 total	 	 	 	 collagen	 	 	 	 and	 	 	 	 reduction	 	 	 	 in	 	 	 	 the	

concentration		of		matrix		metalloproteinases		responsible		for		collagen			degradation	in	

subjects		treated		with		topical		oestradiol		for		6		weeks		in		a			randomized			trial	[171],	

others	have	 suggested	 that	 	 the	 	matrix	 	 component	 	differences	 	encountered	are	a	

result	 of	 the	prolapse	 itself,	 rather	 than	being	dependent	 upon	 the	 serum	oestradiol	

concentration	[172].	Other		data		has		demonstrated		a		significant		reduction	in	MMP-1	

from	 vaginal	 fibroblasts	 due	 to	 	 increased	 	 fragmentation	 	 of	 	 these	 collagenases	

resulting	 	 from	 	 treatment	 	 with	 	 oestradiol	 	 +/-	 	 progesterone	 [130].	 Furthermore,	

MMP-13,	 responsible	 for	 the	 activation	 of	 other	 metalloproteinases	 has	 been	

demonstrated	to	be	suppressed	with	hormone	treatment,	that	also	restores	the	pelvic	

floor	mechanical	 	 properties	 	 in	 	 ovariectomized	 rats	 as	 compared	with	 non-treated	

subjects	 	 [150].	 	Clinical	 	 trials	 	 have	 	 demonstrated	 	 the	 	 benefits	 	 of	 	 an	 	 oestradiol	

releasing	 	 vaginal	 	 	 ring	 	 	 in	 patients	with	 	 atrophic	 vaginitis	 without	 any	 significant	

adverse	events	[173].	

At	 present	 however,	 the	 results	 of	 systematic	 reviews	 conclude	 that	 there	 is	 no	

convincing	evidence	base	to	support	the	widespread	use	of	either	systemic	or	topical	

oestradiol	for	the	treatment	of	SUI	or	POP	in	isolation	[174]	and	that	caution	should	be	

exercised	due	to	the	risk	of	endometrial	or	breast	cancer.	

1.7.4 Biomaterials	for	SUI	and	POP	

The	 traditional	 surgical	 treatments	 of	 both	 SUI	 and	 POP	 rely	 upon	 the	 plication	 or	

anchorage	of	existing	tissues	using	sutures.	This	constitutes	what	is		known		as		a	native	

tissue	 repair	 (NTR).	 As	 either	 degradable	 or	 non-degradable	 sutures	 are	 used,	 the	

integrity	 of	 a	 repair	 depends	 upon	 scar	 tissue	 formation;	 a	 process,	 which	 involves	

collagen	 deposition	 and	 is	 associated	with	 a	 significantly	 lower	 proportion	 of	 elastin	

synthesis.	 The	 strength	 of	 the	 repair	 therefore	 relies	 upon	 the	 strength	 of	 the	

deposited	 unorganized	 collagen.	 However,	 these	 repaired	 tissues	 are	 inherently	

weaker	 than	 healthy	 connective	 tissues	 due	 to	 the	 lack	 of	 aligned	 collagen	 fibres,	

which	occur	along	the	longitudinal	axis	of	stress.	

78



79

Repair	 using	 biomaterials	 is	 a	 process,	 which	 aims	 to	 overcome	 this	 problem.	 A	

biomaterial	 is	 defined	 by	 the	 National	 Institutes	 of	 Health	 (NIH)	 as	 “any	 substance	

(other	than	a	drug)	or	combination	of	substances,	synthetic	or	natural	in	origin,	which	

can	 be	 used	 for	 any	 period	 of	 time,	 as	 a	whole	 or	 as	 part	 of	 a	 system	which	 treats,	

augments,	or	replaces	any	tissue,	organ,	or	function	of	the	body.”	[175].	

1.7.4.1 Injectable	materials	for	SUI	

While	surgical	tapes	or	slings	and	the	artificial	urinary	sphincter	are	used	effectively	to	

treat	this	condition,	not	all	patients	may	be	suitable.		Urethral		injection		therapies	were	

designed	to	effectively	augment	 the	 function	of	 the	urethral	 sphincter	mechanism	 in	

patients	with	ISD.	By	using	a	minimally	invasive	injection	technique,	this	treatment	can	

be	 potentially	 useful	 in	 those	 who	 are	 either	 too	 unfit	 or	 decline	 invasive	 surgical	

treatment	of	their	condition	(Figure	1.7.1).	

Urethral	 bulking	 agents	 have	 become	 more	 popular	 over	 the	 last	 five	 decades	 in	

response	 to	 improved	 materials	 design,	 the	 minimally	 invasive	 fashion	 with	 which	

treatments		can		be		administered		and		the		relatively		low		morbidity			associated	

with	injections		[176].	

In	 the	 1990s,	 a	 plethora	 of	 synthetic	 bulking	 agents	 emerged,	 including	

Macroplastique®	 ((silicone	 particles)	 Westborough,	 MA,	 USA),	 Coaptite®	 ((calcium	

hydroxylapatite)	 Bioform	Medical	 inc,	 San	Mateo,	 CA,	 USA),	 Durasphere®	 ((carbon-	

coated	 zirconium	 beads)	 Advanced	 UroScience	 inc,	 St	 Paul,	 MN,	 USA)	 and	 more	

recently	Bulkamid®	((polyacrylamide	hydrogel)	Contura,	Soeborg,	Denmark).	Each	of	

these	synthetic	agents	contain	microspheres	suspended	in	a	matrix	and	the	incidence	

of	migration	is	reduced	by	using	larger	diameter	spheres	(>100µm).	As		compared	with	

biological	agents,	whose	degradation	 is	unpredictable,	synthetic	 injectables	are	more	

durable	and	offer	potentially	tunable	mechanical	properties.	

1.7.4.1.1 Outcomes	

Using	autologous	fat	injections	compared	to	placebo,	Lee	et	al	[177]	demonstrated	no	

significant	improvements	in	continence	rates	3	months	following	injection	(22%	versus	

21%	respectively),	while	the	complications	were	significantly	greater	in	the	treatment	

group	 (32%	 versus	 11%	 respectively),	 including	 one	 death	 from	 a	 fat	 embolism.	

Contigen™	has	been	demonstrated	to	result	in	66%	subjective	continence	rates	when	
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injected	at	the	 level	of	the	mid-urethra	and	increases	the	MUCP	in	 	patients	with	ISD	

[178].	 Meanwhile,	 no	 significant	 differences	 in	 pad	 weight	 testing	 have	 been	

demonstrated	 for	 Contigen™	 versus	 Macroplastique®,	 while	 the	 	 latter	 does	

demonstrate	 better	 subjective	 cure	 rates	 [179].	Macroplastique®	 has,	 however	 been	

demonstrated	 to	 result	 in	 significantly	 poorer	 objective	 outcomes	 than	 Permacol™	

after	 6	weeks,	while	 the	effects	of	Permacol™	are	 sustained	beyond	6	months	 (41%	

versus	60%	dry	pad	test	respectively	for	Macroplastique®	versus	Permacol™)	[180].	

Of	 the	newer	 synthetic	 agents,	Anderson	demonstrated	 significant	 improvements	 in	

both	objective	 cure	 rates	 (pad	 testing)	and	 subjective	 cure	 (Stamey	grade)	beyond	2	

years			of			follow-up			for			Durasphere®			over			Contigen™			in			those			with			ISD	(VLPP	

<90cmH2O)	[181].	Coaptite®	has	been	shown	to	result	in	significantly	better	long-	term	

improvements	 in	Stamey	grade	than	Contigen™	and	also	requires	significantly	 fewer	

injections	over	 time	 (38%	of	 patients	 only	 required	one	 injection	over	 12	months	 for	

Coaptite®	versus	 	26%	 	 for	 	Contigen™)	 	 [182].	 	 	Similarly,	Durasphere®	 resulted	 	 	 in	

significant	 improvements	 in	 Stamey	 grade	 over	 12	 months	 than	 Contigen™	 (80%	

versus	 69%	 respectively)	 and	 required	 less	 material	 [183].	 Despite	 this,	 the	 rates	 of	

urinary	retention	in	the	immediate	setting	were	significantly	greater	for	Durasphere®	

over	 Contigen™	 (16.9%	 versus	 3.4%	 respectively)	 and	 similar	 findings	 have	 been	

demonstrated	for	a	discontinued	agent,	Zuidex™	((hyaluronic	acid	with	dextranomer)	

Q-Med	 AB,	 Uppsala,	 Sweden)	 as	 compared	 to	 Contigen™	 [184].	 Sokol	 et	 al	 [185]

demonstrated	 no	 significant	 objective	 improvements	 in	 patients	 injected	 with	

Bulkamid®	 over	 Contigen™,	 however	 77.1%	 and	 70%	 respectively	 considered	

themselves	 cured	 or	 improved.	 There	were	 no	 significant	 differences	 between	 these	

two	 agents	 and	 few	 overall	 adverse	 events	 were	 reported	 in	 this	 multicentre	

randomized	study.	
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Figure	1.7.1.	Technique	for	the	injection	of	urethral	bulking	agents	

Cystoscopic	guidance	is	used	to	direct	the	intramural	injection	of	agents	using	a	needle.	Reproduced	from	

EAU	patient	information	leaflets.	
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1.7.4.2 Synthetic	mesh	for	SUI/POP	

Synthetic	surgical	mesh	 is	 typically	composed	of	a	non-biodegradable,	 thermoplastic	

polymer.	4	different	types	of	synthetic	mesh	exist,	depending	upon	their	pore	size		and	

filamentous	structure	(Table	1.7.1)	[186].	In	this	context,	macroporous	mesh	is	defined	

as	a	pore	size	 in	excess	of	75µm,	while	microporous	mesh	contains	a	pore	size	below	

10µm.	 The	 filamentous	 structure	 refers	 to	 each	 individual	 fibre.	 	 Mono-	 	 filament	

meshes	are	composed	of	a	single	polymer	fibre	that	is	woven	into	the	mesh	structure,	

while	a	multi-filamentous	mesh	comprises	bundles	of	fibrils,	which	form	each	filament	

that	is	then	woven	into	the	mesh	structure	(Figure	1.7.2).	

Type	 I	 mesh	 is	 most	 commonly	 used	 in	 routine	 clinical	 practice,	 with	 a	 variety	 of	

applications	 in	 abdominal	 wall	 defect	 repair,	 for	 anti-incontinence	 surgery	 and	

prolapse	 repair.	 In	 this	 context,	 the	 mesh	 material	 usually	 contains	 a	 pore	 size	 of	

150µm,	with	a	mono-filamentous	structure	using	polypropylene	(PPL).	
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Table	1.7.1.		Classification	of	mesh	by	type	

Figure	1.7.2.		Microscopic	appearances	of	surgical	mesh	

A) Marlex	(CR	Bard,	Cranston	RI).	Monofilamentous	polypropylene	(Type	I	mesh).

B) Prolene	(Ethicon,	Somerville,	NJ).	Monofilamentous	polypropylene	(Type	I	mesh).

C) Gore-Tex	(WL	Gore,	Flagstaff,	AZ).	Monofilamentous	ePTFE	(Type	II	mesh).

D) Mersilene	(Ethicon,	Somerville,	NJ).	Multifilament	PET	(Type	III	mesh).

E) Surgipro	(Boston	Scientific,	Natick,	MA).	Multifilamentous	polypropylene	(Type	IV	mesh).

Reproduced	with	permission	from	Nelson,	E	et	al.	Influence	of	mesh	structure	on	surgical	healing	in	

abdominal	wall	hernia	repair.	10th	World	Biomaterials	Congress.	doi:	10.3389/conf.FBIOE.2016.01.01142	

Type	 Example	 Pore	size	 Filament	 Image	

I	 Polypropylene	

Marlex	

Macroporous	

>75µm

Mono-filamentous	 A/B	

II	 Expanded	

polytetrafluoroethane	
(PTFE)	

Microporous	

<10µm	

Mono	and	multi-
filamentous	

C	

III	 Polyethylene	terephthalate	 Macroporous	 Multi-filamentous	 D	

(PET)	

Polyglycolic	acid	(PGA)	

IV	 Polyatex	 Non-porous	 Mono-filamentous	 E	

 A	  B	

 C	  D	

 E	
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1.7.4.3 Biological	grafts	used	for	SUI/POP	
	

The	biological	materials	 that	 are	used	 for	 reconstructive	 surgical	 procedures	 can	be	

classified	as	either	autografts,	allografts	or	xenografts	(Table	1.7.2).	In	the	context	of	

pelvic	 floor	 reconstruction,	autografts	are	harvested	as	 fascia	 from	either	 the	 rectus	

sheath	 of	 the	 abdomen	 or	 fascia	 lata	 of	 the	 thigh.	 Autologous	 grafts	 are	 usually	

harvested	at	the	time	of	reconstructive	surgery,	however	they	depend	upon	the	tissue	

quality	 and	 availability,	which	 can	 become	 a	 problem	 following	 abdominal	 surgery.	

Furthermore,	several	complications	can	occur	at	the	site	of	harvest,	including	wound	

infection,	 chronic	 pain	 and	 hernia	 formation	 that	 results	 due	 to	 a	 deficiency	 of	 the	

fascial	layer	of	the	abdominal	wall.	

	
To	 avoid	 these	 local	 complications	 associated	 with	 autologous	 fascia	 harvest,	

allografts	can	be	used.	These	tissues	are	taken	from	cadaveric	donor	tissue	banks	and	

comprise	 dermis	 or	 cadaveric	 fascia.	 Tissues	 are	 decellularised	 and	 processed	 to	

render	them	non-immunogenic.	One	concern	with	this	 is	 that	these	grafts	are	often	

taken	 from	 elderly	 patients	 and	 therefore	 age	 related	 structural	 changes	 are	

associated	 with	 unpredictable	 tensile	 properties	 and	 ECM	 composition	 [187].	

Furthermore,	the	processing	techniques	that	allografts	undergo,	such	as	freeze	drying	

can	 further	 affect	 the	 biomechanical	 properties	 of	 these	 tissues;	 ice	 crystals	 form	

which	weaken	the	collagen	structure	in	the	ECM	[188].	The	rare	but	significant	risk	of	

disease	transmission	exists	with	allografts	taken	from	donor	tissue	banks,	in	particular	

prion	 diseases	 and	 human	 immunodeficiency	 virus	 (HIV).	 For	 this	 reason	 with	 all	

human	tissue	banks	in	the	UK,	robust	screening	processes	are	performed	and	there	is	

yet	to	be	a	case	of	disease	transmission	following	allograft	tissue	surgery.	

	

Xenografts,	 such	 as	 porcine	 dermis,	 porcine	 small	 intestinal	 submucosa	 (SIS)	 and	

bovine	 pericardium	 were	 introduced	 to	 overcome	 the	 problems	 associated	 with	

cadaveric	 tissue.	 These	 tissues	 undergo	 decellularisation	 and	 processing	 to	 remove	

the	cellular	 components	 that	are	 involved	 in	 the	 immune	 response.	Chemical	 cross-	

linking	 of	 xenografts	 is	 a	 recent	 advancement	 in	 an	 attempt	 to	 prevent	 enzymatic	

degradation	following	implantation.	

	

The	 decellularisation,	 processing	 and	 sterilization	 methods	 that	 allograft	 and	

84



85

xenograft	 materials	 undergo	 are	 associated	 with	 negative	 outcomes	 on	 the	

mechanical	properties.	While	newer	generation	grafts	undergo	less	robust	methods	

of	processing	in	order	to	preserve	the	ECM	components,	the	concern	is	that	DNA	is	

still	found	in	allografts	[189]	and	xenografts	[190].	

Table	1.7.2.		Biological	grafts	used	for	SUI/POP	surgery	

Graft	 Generic	

name	

Modification	 Sterilization	 Collagen	

content	

Elastin	content	 Clinical	

usage	

Autologous	fascia	 Nil	 Nil	 Nil	 High	 Moderate	 +++	

Cross-linked	 Pelvicol	 Cross-linked	with	 High	 High	 ++	

porcine	dermis	

Pelvilace	 hexamethylene-	

Gamma-	

irradation	

diisocyanate	(HMDI)	

Porcine	small	 Surgisis	 Nil	 Ethylene	oxide	 Moderate	 Low	 +	

intestinal	

submucosa	 Fortagen	 Cross-linked	with	 Gamma-	 Moderate	 Low	 -	

carbodimide	 irradiation	

Cadaveric	dermis	 Tutoplast	 Freeze	dried	 Gamma-	 Moderate	 High	 -	

Solvent	dehydration	 irradiation	

Cadaveric	fascia	 Tutoplast	 Freeze	dried	

Solvent	dehydration	

Gamma-	

irradiation	

Moderate	 High	 -	

Bovine	

pericardium	

Veritas	 Nil	 Gamma-	

irradiation	

Moderate	 Moderate	 -	

+++	Most	commonly	utilized	biological	graft	

- Infrequently	used
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1.7.5 Surgical	outcomes	in	SUI/POP	

Comparing	the	outcomes	between	different	studies	for	SUI/POP	surgery	is	difficult,	as	

different	 assessment	methods,	 surgical	 approaches,	 outcome	measures	 and	 follow-	

up	protocols	are	used	by	investigators.	

In	this	section,	studies	are	described	that	satisfy	the	following	criteria:	

1. Clearly	evaluate	separate	biomaterials

2. Define	objective	outcome	measures,	e.g	pad	weight	testing,	clinical

examination	and	not	just	subjective	outcomes.

3. Reported	complications	of	procedure/material.

4. Sufficient	follow-up	data	(>1	year).

5. Randomized	control	trial	and	meta	analysis	data	only,	case	series	are	not

included.

1.7.5.1 SUI	surgery	–	Native	tissue	repair	(NTR)	

Retropubic	 suspension	 procedures	 are	 used	 in	 patients	with	 urethral	 hypermobility.	

The	 original	 intention	 with	 this	 approach	 was	 to	 restore	 the	 urethra	 to	 the	 intra-	

abdominal	 position	 where	 it	 would	 receive	 equal	 pressure	 transmission	 as	 	 the	

bladder,	therefore	closing	effectively	during	stress.	

Four	variations	of	open	retropubic	susension	exist	that	differ	in	terms	of	the	degree	of	

elevation	 and	 support	 that	 they	 confer	 upon	 the	 urethra;	 the	 Marshall-	 Marchetti-

Krantz	 (MMK)	 procedure,	 the	Burch	 colposuspension	 (BC),	 vaginal-	 obturator	 	 shelf	

(VOS)	procedure	and	the	paravaginal	repair.	

1.7.5.1.1 The	Marshall-Marchetti-Krantz	(MMK)	procedure	

The	authors	 first	described	 this	 retropubic	 technique	 in	 1949	 [191].	Three	 individual	

suture	 bites	 are	 taken	 of	 the	 paraurethral	 fascia	 and	 the	 anterior	 vaginal	 wall	

(excluding	mucosa)	and	are	anchored	to	a	corresponding	cartilagenous	portion	of	the	

symphysis	pubis.	

Mainprize	 and	 Drutz	 [192]	 reviewed	 the	 outcomes	 of	 2712	 cases,	 demonstrating	

improvement	 rates	 of	 91%	 based	 on	 subjective	 criteria.	 Success	 rates	 of	 primary	

versus	 repeat	 procedures	were	 92.1%	 versus	 84.5%	 respectively.	 However,	 osteitis	
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pubis,	a	potentially	devastating	complication,	occurred	in	2.5%	of	patients.	The	MMK	

procedure	 is	 no	 longer	 recommended	 for	 the	 treatment	 of	 SUI	 by	 the	 4th

International	Consultation	of	Incontinence	[2].	

1.7.5.1.2 Burch	colposuspension	(BC)	

The	Burch		colposuspension		aims		to		elevate		the		paravesical		tissues		towards	

the	iliopectineal	line	of	the	pelvic	sidewall	(figure	1.7.3).	

Figure	1.7.3.		The	Burch	colposuspension	

Attaching	 the	 paravaginal	 tissues	 to	 Cooper’s	 ligament.	 Reproduced with permission from 

Turner-Warwick T and Chapple C.  Functional reconstruction of the female genito-urinary tract.  

Blackwell 2002. 

Meta	analyses	have	demonstrated	objective	continence	rates	with	the	Burch	of	84%	

in	 over	 1700	 patients	with	 follow-up	 between	 1	 and	 60	months	 [193].	 Lapitan	 [194]	

reviewed	53	trials	 including	5244	patients	and	demonstrated	overall	success	rates	of	

68.9%	to	88%	and	after	5	years,	approximately	70%	of	patients	can	expect	to	be	dry.	

Meanwhile,		whilst		previous		surgery		can		prevent		adequate		suspension,		Maher		et	

al	

[195] have	shown	subjective	cure	rates	of	89%	with	repeated	colposuspension	after	9 

months	of	follow-up.	

1.7.5.1.3 Paravaginal	repair	

As	 compared	 to	 the	 BC,	 the	 arcus	 tendineus	 (‘white	 line’	 of	 the	 pelvis)	 is	 used	 for	

attachment	 of	 the	 paravaginal	 tissues.	 Richardson	 et	 al	 [79]	 re-popularized	 an	

abdominal		approach		of		White’s		[196]		original		method		from		1909.				In	Richardson’s	

description,	 the	 bladder	 and	 urethra	 are	 not	 mobilised	 from	 their	 vaginal	

attachments.	
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1.7.5.1.4 Vaginal-obturator	shelf	repair	(VOS	repair)	

Turner-Warwick	 described	 this	 variant	 of	 the	 paravaginal	 repair,	 which	 aims	 	 to	

prevent	 the	urethral	 tethering	 that	 can	occur	 following	other	 retropubic	 suspension	

procedures.	The	vaginal	wall	and	endopelvic	 fascia	are	approximated	to	the	 internal	

obturator	muscle.	

Unfortunately,	 the	 lack	of	data	available	 for	 this	 technique	has	prevented	definitive	

conclusions				to				be				drawn				to				support				its				widespread				use.								German				et			al	

[197] randomized	 50	 patients	 to	 receive	 the	 vaginal-obturator	 shelf	 procedure	 or

needle	 suspension.	 Overall,	 70%	 of	 patients	 were	 continent	 following	 VOS	 repair,	

versus	57%	for	those	undergoing	needle	suspension.	

1.7.5.1.5 Laparoscopic	retropubic	suspension	

Laparoscopic	variations	of	the	BC,	MMK	and	paravaginal	repairs	have	been	performed	

using	 a	 trans-peritoneal	 or	 extra-peritoneal	 approach.	 The	 advantages	 of	 a	

laparoscopic	 approach	 over	 the	 open	 technique	 is	 improved	 intraoperative	

visualization,	reduced	post-operative	pain	and	hospital	length	of	stay.	Despite	this,	a	

steep	surgical	 learning	curve,	 increased	operating	times	and	higher	costs	makes	this	

technique	unfeasible	at	some	institutions.	

Two	 large	 scale	 RCTs	 comparing	 the	 outcomes	 of	 laparoscopic	 versus	 open	

colposuspension	 have	 demonstrated	 similar	 success	 rates.	 Carey	 et	 al	 [198]	

randomized	200	patients	and	described	similar	overall	objective	cure	rates	(USI)	at	6	

months	(75%)	and	subjective	cure	rates	at	2	years	of	follow-up	(66%).	The	operating	

time	 for	 laparoscopic	 colposuspension	 was	 double	 that	 of	 open	 colposuspension.	

These	findings	were	supported	by	Kitchener	et	al	[199],	who	reported	on	the	results	of	

the	COLPO	trial.	Objective	cure	rates	at	24	months	(negative	pad	testing)	were	79%	

for	 laparoscopic	 and	 70%	 for	 open	 colposuspension.	 Intraoperative	 	 complications	

were	 	 low	 	 in	 	 both	 	 arms,	 	 with	 	 more	 	 bladder	 	 and	 	 bowel	 	 injuries	 	 in	 	 the	

laparoscopicgroup,	 whereas	 median	 operating	 time	 was	 similar	 between	 the	 two	

groups	(65	and	51	minutes	respectively).	
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1.7.5.2 SUI	surgery	–	biomaterial	sling/tape	procedures	

In	 this	context,	 the	term	 ‘sling’	 relates	to	the	use	of	biological	 tissue,	whereas	 ‘tape’	

refers	 to	 synthetic	materials.	 The	 pubovaginal	 sling	 (PVS)	was	 introduced	 over	 100	

years	ago.	A	strip	of	fascia	is	placed	at	the	bladder	neck/proximal	urethra,	in	an	effort	

to	correct	urethral	hypermobility.	Using	this	technique,	Blaivas	et	al	[66]	were	able	to	

obtain	94%	cure	rates	at	a	follow-up	of	18	months.	In	the	1990’s	Petros	and	Ulmsten’s	

integral	 theory	 [62]	 led	 to	 the	 development	 of	 procedures	 such	 as	 the	 tension	 free	

vaginal	 tape	 that	 seek	 to	 provide	 support	 to	 the	mid-urethra,	 which	 facilitates	 the	

effective	kinking	during	increases	in	intra-abdominal	pressure.	

1.7.5.2.1 Pubovaginal	sling	(PVS)	

The	 original	 use	 of	 fascial	 slings	 was	 reported	 by	 Aldridge	 in	 1942.	 McGuire	

reintroduced	 the	 PVS	 in	 women	with	 failed	 retropubic	 procedures	 [154].	 Currently,	

indications	 for	 the	 pubovaginal	 sling	 include	SUI	 associated	with	 hypermobility	 and	

intrinsic	sphincter	deficiency	or	SUI	with	other	concomitant	defects.	

Figure	1.7.4	highlights	the	usual	donor	sites	for	harvest.	Allografts	and	xenografts	are	

associated	 with	 unpredictable	 degradation	 and	 the	 theoretical	 risk	 of	 disease	

transmission	 [200,	201],	whilst	 synthetic	materials	are	associated	with	a	high	 risk	of	

infection	 and	 erosion,	 due	 to	 the	 positioning	 of	 the	 graft	 at	 the	 bladder	 neck,	 and	

hence	are	no	longer	used.	

The	 full-length	 vaginal-suprapubic	 fascial	 sling	 is	 placed	 at	 	 the	 	 bladder	 	 neck/	

proximal	urethra	and	can	be	 inserted	via	a	 retropubic	approach	or	a	primary	vaginal	

approach	 with	 suprapubic	 abdominal	 wall	 suture-anchorage.	 The	 ‘sling-on-a-string’	

procedure	 (figure	1.7.5)	was	developed	because	 the	 fascial	 strip	 from	harvesting	 the	

rectus		fascia		is				relatively				short.				Although				initially					suture-dependent,					the	

strip				becomes	incorporated	during	healing.	
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Figure	1.7.4.		Donor	site	options	for	fascial	strips	–	rectus	fascia	and	fascia	lata	of	the	thigh.	

Reproduced	with	permission	from	Turner-Warwick	T	and	Chapple	C.	Functional	reconstruction	of	
the	female	genito-urinary	tract.		Blackwell	2002.	
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Figure	1.7.5.		Autologous	fascia	sling-on-a-string	procedure	

Reproduced with permission from Turner-Warwick T and Chapple C. Functional reconstruction of the 

female genito-urinary tract. Blackwell 2002. 

1.7.5.2.2 Mid-urethral	tape	(MUT)	

The	 integral	 theory	 highlighted	 the	 importance	 of	 the	 mid-urethral	 mechanism	

involved	 in	 continence	 and	 led	 to	 the	 introduction	 of	 the	 tension-free	 vaginal	 tape	

(TVT)	in	the	1990s	[153,	202].	This	minimally	invasive	approach	was	thought	to	work	

by	providing	a	physiological	‘backboard’	by	fixation	of	the	middle	part	of	the	urethra	

to	the	pubic	bone,	via	the	pubourethral	ligaments.	

The	 TVT	 procedure	 is	 illustrated	 in	 figure	 1.7.6.	 A	 synthetic	 polypropylene	

monofilament	mesh,	housed	 in	a	plastic	 sheath	 to	aid	 retropubic	passage,	 is	placed	
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using	trocars,	typically	performed	in	the	bottom-to-up	direction.	

Since	 the	 inception	 of	 the	 original	 TVT	 procedure,	 a	 plethora	 of	 commercially	

available	kits	have	been	developed	with	modifications	on	the	original	approach.	One	

such	modification	is	using	the	top-to-bottom	approach,	which	was	developed	to	allow	

better	control	of	the	trocar	through	the	retroperitoneal	space,	reducing	the	likelihood	

of	vascular	and	bowel	injury.	

The	 transobturator	 tape	 approach	 (TOT)	 was	 then	 introduced	 by	 Delorme	 [203].	

Although		originally		described		as		an		‘outside-in’		approach,		subsequently		De		Leval	

[204] modified	 it	 to	 having	 an	 ‘inside-out’	 approach	 (TVT-O).	 The	 transobturator

approach	avoids	the	passage	through	the	retropubic	space,	thereby	avoiding	injury	to	

bowel	 and	 bladder.	 The	 single	 incision	 sling	 was	 developed	 to	 further	 reduce	 the	

morbidity	 of	 the	 procedure,	 with	 the	 tape	 guided	 through	 a	 single	 incision	 in	 the	

anterior	 vaginal	 wall	 with	 trochars	 piercing	 the	 obturator	 fascia.	 	 The	 surgical	

outcomes	for	each	are	discussed	in	the	following	section.	
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Figure	1.7.6.		The	TVT	–	tension-free	vaginal	tape	procedure	

Reproduced	with	permission	from	Turner-Warwick	T	and	Chapple	C.	Functional	reconstruction	of	

the	female	genito-urinary	tract.		Blackwell	2002.	
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1.7.5.3 Comparative	data	–	Bulking	agents	versus	surgery	

Table		1.7.3		demonstrates		the		outcomes		of		bulking		agents		versus		surgery.			Corcos	

[205] compared	Contigen™	 injections	with	 surgery	 (needle	 suspension	 (n=6),	Burch

colposuspension	 (n=19)	 and	 PVS	 (n=29))	 and	 demonstrated	 significantly	 improved	

success	rates	as	defined	by	a	<2.5g	24	hour	pad	weight	test	for	surgery	over	bulking	

agents	 (72.2%	 versus	 53.1%	 respectively)	 after	 12	 months	 follow-up.	 Despite	 this,	

there	 was	 no	 significant	 difference	 in	 patient	 satisfaction	 scores	 or	 quality	 of	 life.	

Similarly,	 the	absence	of	urodynamic	 stress	 incontinence	has	been	demonstrated	 in	

81%	of	patients	following	a	pubovaginal	sling	over	9%	of	patients	at	6	months	follow-	

up	 following	 Macroplastique®;	 Macroplastique®	 was	 also	 more	 expensive	 but		

resulted	 in	 fewer	complications	 [206].	More	 recently,	Gaddi	 [207],	 in	a	 retrospective	

cohort	 study	 of	 patients	 with	 recurrent	 SUI	 following	 mid-urethral	 sling	 surgery,	

demonstrated	that	89%	undergoing	repeat	sling	surgery	demonstrated	an	absence	of	

urodynamic	stress	incontinence	as	compared	with	62%	of	those	who	received	urethral	

bulking	 agent	 injection	 (Coaptite®,	 Contigen™	 or	 Macroplastique®),	 without	 any	

significant	differences	in	complications	between	the	two	groups.	

1.7.5.4 Comparative	data	–	sling/tape	procedures	versus	NTR	

Table	1.7.4	demonstrates	the	outcomes	for	slings	versus	NTR.	The	SiSTER	trial	[208],	

a	 multicentre	 randomized	 study	 compared	 rectus	 fascial	 PVS	 to	 BC	 and	 found	

objective	 success	 was	 higher	 for	 the	 sling	 over	 colposuspension	 (66%	 versus	 49%	

respectively	 (p<0.001)).	 Despite	 this,	 the	 sling	 was	 also	 associated	 with	 a	 higher	

likelihood	 of	morbidity	 including	 urinary	 tract	 infections,	 voiding	 dysfunction	 (14%)	

and	de	novo	urinary	urgency	(3%).	Demerici	[209]	compared	autologous	rectus	fascial	

PVS	 to	 the	BC,	demonstrating	a	94%	versus	88%	objective	cure	 rate,	which	did	not	

reach	 statistical	 significance	 at	 12	 months	 follow	 up.	 Meanwhile,	 a	 further	 study	

showed	a	92.8%	versus	87.8%	objective	cure	rate	for	the	PVS	as	compared	to	the	BC	

(p<0.05),	while	retention	was	demonstrated	in	7.1%	of	the	PVS	cohort	[210].	

There	is	evidence	from	numerous	randomized	controlled	trials	and	systematic	reviews	

that		compare		the		efficacy		of		MUT		to		older		procedures.				Novara		et		al		[157],		in		a	
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systematic	review	of	39	randomized	controlled	trials,	concluded	that	patients	treated	

with	retropubic	MUT	experienced	slightly	higher	continence	rates	than	those	patients	

who	 had	 BC,	 despite	 a	 higher	 risk	 of	 bladder	 injury.	 	 In	 a	meta	 analysis	 of	 3	 RCTs,		

Ogah	[211]	demonstrated	a	79%	versus	77%	objective	cure	rate	for	MUT	versus	BC.	

1.7.5.5 Comparative	data	–	biomaterials	used	during	sling/tape	procedures	

Table	1.7.5	demonstrates	 the	outcomes	 for	a	variety	of	sling	procedures.	The	rectus	

fascial	PVS	has	been	effective	on	 long-term	 follow-up.	Bai	 [210]	demonstrated	 that	

objective	cure	 rates	 for	 the	autologous	 fascia	PVS	and	MUT	were	92.8%	and	90.3%	

respectively	at	12	months	follow	up.	Despite	this,	other	RCTs	have	demonstrated	no	

significant	difference	between	the	two	after	24	months	of	follow-up	[212-214].		Basok	

[215] compared	 cadaveric	 fascia	 lata	 PVS	 versus	 MUT	 and	 found	 a	 79%	 to	 70.8%

objective	cure	rate	in	favour	of	the	PVS,	which	was	not	significant.	

Paparella	 et	 al	 [216]	 compared	 transobturator	 porcine	 cross-linked	 collagen	 dermis	

slings	 with	 MUT.	 The	 group	 demonstrated	 objective	 cure	 rates	 of	 88.2%	 	 versus		

88.8%	for	the	sling	versus	MUT	respectively;	a	finding,	which	did	not	reach	statistical	

significance.	This	 finding	was	supported	by	data	 from	Ugurlucan	 [217],	however	 the	

patient	cohort	in	this	study	was	highly	heterogenous.	

Novara	[157]	found	that	retropubic	MUT	and	PVS	were	similarly	effective,	while	TVT	

had	 slightly	 higher	 objective	 cure	 rates	 compared	 to	 TOT.	 TOT	 had	 a	 lower	 risk	 of	

bladder	and	vaginal	perforations	and	storage	lower	urinary	tract	symptoms	(LUTS).	
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Table	1.7.3.		Bulking	agents	versus	surgery	

Contigen™	 Macroplastique®	

Success	rate	 53.1%	 9%	

Follow	up	(months)	 12	 6*	

Success		versus	NTR	and	sling	 Inferior	 Inferior	

Complications	 De	novo	urgency	12.6%	 De	novo	urgency	0%	

Voiding	dysfunction	5%	

Studies	 1	RCT	[205]	 1	RCT	[206]	

Table	1.7.4.			Slings/tapes	versus	NTR	

Autologous	fascia	PVS	 MUT	

Success	rate	 66-94% 79%	

Follow	up	(months)	 12-24 12-48

Success		versus	NTR	 Equivalent	 Equivalent	

Complications	 De	novo	urgency	3-5.9%	

Voiding	dysfunction	7.1-14%	

Voiding	dysfunction	5.5%	

De	novo	urgency	8.9%	

Mesh	exposure	3.2%	

Studies	 3	RCT	[208-210]	 1	meta	analysis	[211]	

Table	1.7.5.		Biomaterial	repair	versus	PPL	MUT	

Autologous	fascia	PVS	 Cadaveric	fascia	 Porcine	 cross-linked	

collagen	(TO)	

Success	rate	 47.6%-93.7%	 79%	 88.2%	

Follow	up	(months)	 12-24 12	 24	

Success		versus	MUT	 Equivalent	 Equivalent	 Equivalent	

Complications	 Not	reported	 De	novo	UUI	22%	 Not	reported	

Studies	 4	RCTs	[210,	212-214]	 1	RCT	[215]	 1	RCT	[216]	

PVS.	Pubovaginal	sling	

MUT.	Mid-urethral	tape	

NTR.	Natural	tissue	repair	

PPL.	Polypropylene	

RCT.	Randomized	controlled	trial	

TO.	Transobturator	

UUI.		Urgency	urinary	incontinence	
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1.7.5.6 Surgery	for	POP	–	Apical	compartment	

Uterovaginal	 and	 vault	 prolapse	 (after	 a	 hysterectomy)	 results	 from	 laxity	 of	 the	

uterosacral	 and	 endopelvic	 fascia	 [218].	 The	 levator	 ani	 group	 of	muscles	may	 also	

contribute	 towards	 the	 development	 of	 prolapse	 through	 damage	 resulting	 from	

childbirth.	 Apical	 prolapse	 rarely	 occurs	 without	 a	 concurrent	 anterior	 or	 posterior	

prolapse	and	 therefore,	 a	 combined	 repair	 is	 common.	For	patients	with	 a	uterus,	 a	

hysterectomy	 is	usually	performed	once	 reproduction	has	 finished	 [219].	Table	 1.7.6	

demonstrates	the	outcomes	for	apical	compartment	surgery.	

1.7.5.6.1 Native	tissue	repair	

The	native	tissue	repair	of	an	apical	prolapse	 is	similar	 to	the	suspension	procedures	

that	 are	 performed	 for	 SUI.	Utero-sacral	 ligament	 suspension	 (USLS)	 is	 a	 technique	

that	 aims	 to	 attach	 the	 vaginal	 wall	 to	 the	 utero-sacral	 ligaments	 using	 non-	

degradable	 sutures	 to	 restore	 the	 normal	 vaginal	 axis.	 This	 can	 be	 achieved	 using	

either	 a	 trans-vaginal	 or	 trans-abdominal	 approach.	 Various	 retrospective	 cohort	

studies	demonstrate	success	rates	in	the	range	of	48%-96%	(mean	85)	[220],	while	the	

rate	or	ureteric	injury	with	this	procedure	is	in	excess	of	10%	of	cases	[221].	A	similar	

procedure,	sacro-spinous	ligament	suspension	(SSLS)	attaches	the	vault	of	the	vagina	

to	 the	 sacro-spinous	 instead	 of	 the	 utero-sacral	 ligaments	 using	 a	 trans-vaginal	

approach.	 Success	 rates	 of	 between	 81%-97.6%	 are	 quoted	 in	 the	 literature,	 while	

recurrent	prolapse	commonly	affects	the	anterior	compartment	[220],	The	limitations	

of	 this	 procedure	 are	 that	 of	de	novo	anterior	 compartment	prolapse	 resulting	 from	

increased	 intra-abdominal	 pressure	 [222].	 This	 approach	 can	 avoid	 ureteric	 injury,	

however	 there	 is	a	 significant	 risk	 to	 the	pudendal	nerve.	Barber	et	al	demonstrated		

no	 significant	 difference	 in	 the	 outcomes	 between	USLS	 and	 SSLS	 at	 2	 years	 post-	

operatively	in	the	context	of	the	OPTIMAL	RCT	[223].	

1.7.5.6.2 Biomaterial	repair	

The	 treatment	of	 apical	 prolapse	using	biomaterials	 can	either	be	 achieved	 through	

the	 trans-vaginal	 or	 trans-abdominal	 route.	 Trans-vaginal	 mesh	 repair	 of	 apical	

prolapse	fixes	the		mesh		to		the		sacro-spinous	ligament,		while		the		abdominal		route	

(sacrocolpopexy	(SC)	fixes	the	vaginal	wall	to	the	longitudinal	ligament	overlying	the	

sacrum.	 SC	 is	 commonly	 performed	 for	 patients	 who	 have	 previously	 undergone	 a	
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hysterectomy	and	develop	apical	prolapse.	

The	 recurrence	 rates	 of	 the	 trans-vaginal	 mesh	 repair	 of	 an	 apical	 prolapse	 range	

between	0-13%,	the	major	complication	being	exposure	of	the	mesh	 in	up	to	15%	of	

cases	[220].	One	RCT	reported	significantly	lower	success	rates	after	2	years	of	follow-

up	 for	 trans-vaginal	 mesh	 repair	 versus	 SC	 (42%	 vs	 77%	 respectively)	 [224].	 In	 this	

study,	the	rate	of	mesh	exposure	was	13%	in	the	trans-vaginal	mesh	group,	compared	

with	2%	in	the	SC	group	(p=0.7)	

With	SC,	 the	mesh	 is	placed	without	 tension	and	 is	 located	outside	 the	peritoneum,	

which	 may	 explain	 the	 lower	 risk	 of	 developing	 mesh	 exposure.	 Recurrence	 of	 the	

apical	 prolapse	 has	 been	 reported	 to	 occur	 in	 between	 0%-22%	 of	 reported	 series	

[220].	In	a	Cochrane	review,	Maher	et	al	analysed	3	RCTs	that	compared	SSLS	to	SC,	

demonstrating	success	rates	of	84.7%	and	96.4%	respectively	over	a	mean	follow-up	

period	of	2	years	[225].	Given	the	limitations	of	trans-abdominal	surgery	as	compared	

to	 trans-vaginal	 surgery,	 it	 is	 not	 surprising	 that	 the	 complications	 following	 SC	 are	

more	severe,	 including	bladder	 injury	(3.1%),	bowel	 injury	(1.6%),	ureteric	 injury	(1%)	

and	a	transfusion	rate	of	4.4%	[226].	Therefore,	despite	a	higher	failure	rate,	the	trans-

vaginal	approach	is	a	preferred	option	for	patients	with	poor	general	health.	

Culligan	 et	 al	 [227]	 randomized	 patients	 to	 receive	 either	 cadaveric	 fascia	 lata	 or	

polypropylene	 mesh	 in	 SC.	 No	 apical	 recurrence	 occurred	 in	 either	 group	 after	 12	

months	 of	 follow-up,	 however,	 recurrence	 in	 either	 the	 anterior	 or	 posterior	

compartment	 were	 statistically	 more	 likely	 to	 occur	 with	 cadaveric	 fascia	 as	

compared	 to	 mesh	 (32%	 vs	 9%	 respectively).	 The	 authors	 described	 the	 5-year	

outcomes	of	this	RCT	in	2011	[228]	and	report	similar	recurrence	rates,	while	exposure	

of	the	mesh	occurred	in	3.7%	of	cases	and	none	in	the	cadaveric	fascia	group.	

1.7.5.7 Surgery	for	POP	–	Anterior	compartment	

The	 anterior	 vaginal	 wall	 is	 the	 most	 frequently	 affected	 vaginal	 compartment	 by	

prolapse.	Damage	to	the	levator	ani	of	the	pelvic	floor	leads	to	downward	pressure	of	

the	anterior	vaginal	wall	from	the	intra-abdominal	organs	[72].	A	repair	can	either	be	

performed	by	plication	of	the	vaginal	wall	only,	or	plication	followed	by	augmentation	
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using	biomaterials.	Table	1.7.7	demonstrates	the	outcomes	for	anterior	compartment	

surgery.	

1.7.5.7.1 Native	tissue	repair	

Prolapse	 of	 the	 anterior	 compartment	 is	 commonly	 treated	 using	 an	 anterior	

colporrhaphy.	 This	 involves	 dissection	 of	 the	 epithelium	 free	 of	 the	 vaginal	 wall	

(muscularis	 mucosa/adventitia),	 followed	 by	 plication	 of	 the	 paravaginal	 layers	 of	

tissue	 in	 the	 midline.	 Slowly	 degradable	 sutures	 are	 used	 for	 this	 and	 finally	 the	

vaginal	epithelium	is	closed	in	a	similar	fashion.	

Anterior	colporrhaphy	is	the	traditional	approach	to	repair	POP	affecting	the	anterior	

compartment.	Large	volume	case	series	demonstrate	the	long-term	success	of	these	

procedures	 in	 excess	 of	 80%	 [229].	 However,	Olsen	 [40]	 demonstrated	 that	 the	 re-	

operation	rate	 in	the	 long-term	is	 in	excess	of	29%	following	the	 index	surgery.	As	a	

result	of	this,	the	use	of	biomaterials	to	augment	the	repair	site	became	increasingly	

popular	amongst	clinicians.	

The	paravaginal	repair,	aims	to	reinforce	the	attachment	of	the	paravaginal	tissues	to	

the	attachments	along	the	ATFP.	While	no	RCTs	exist,	which	describe	the	outcomes	of	

paravaginal	 repair	 in	 isolation,	 several	 large	 case	 series	 describe	 success	 rates	 of	

between	67%-100%	for	a	vaginal	approach	and	75%-97%	[229].	

1.7.5.7.2 Biomaterial	repair	

A	 repair	 can	be	 reinforced	with	biomaterials,	either	as	an	on-lay	over	 the	site	of	 the	

colphorrhaphy,	 or	 as	 part	 of	 a	 guided	 mesh	 kit.	 A	 plethora	 of	 RCT	 data	 and	 meta	

analyses		exist		to		support		a		host		of		synthetic		and		biological		materials		over		the	

traditional	methods	of	colporrhaphy.	The	2013	Cochrane	review	by	Maher	et	al	[225]	

provides	 one	 of	 the	 most	 robust	 reviews	 in	 this	 area.	 10	 RCTs	 compared	

polypropylene	 trans-vaginal	 mesh	 repair	 to	 NTR	 in	 anterior	 prolapse	 and	

demonstrated	success	rates	of	86%	and	54%	respectively	(RR	3.3)	after	a	minimum	of	

12	 months	 follow-up	 (maximum	 36	 months).	 The	 mesh	 groups	 demonstrated	 a	

significantly	 greater	 proportion	 of	 complications,	 including	 chronic	 pain,	 bladder	

injury	(2.4%	versus	0.3%	in	NTR).	Mesh	exposure	was	found	in	11.4%	of	patients	and		
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as	a	whole,	6.8%	of	patients	required	remedial	surgery	for	this.	

Owing	 to	 the	 risks	 associated	 with	 non-biodegradable	 polypropylene	 mesh,	

degradable	mesh	materials	have	been	assessed.			The	meta-analysis	by	Maher	et	al	

[225] described	 the	 outcomes	 of	 two	 RCTs	 [230,	 231]	 that	 reported	 the	 use	 of

degradable	 polyglactin	mesh	materials	 compared	 with	 NTR	 over	 a	 12	 to	 24	month	

follow-up	period.	NTR	was	associated	with	a	greater	proportion	of	recurrent	anterior	

compartment	prolapse	than	the	polyglactin	mesh	(RR	1.39;	95%	CI,	1.02	–	1.90),	with	

only	one	case	of	mesh	exposure	reported	between	the	two	studies.	The	authors	also	

reported	 that	NTR	had	 a	 higher	 risk	 of	 recurrence	 than	 the	 use	 of	 a	 porcine	 dermis	

mesh	inlay	repair	(RR	2.08;	95%	CI,	1.08	–	4.01)	in	the	pooled	data	of	3	RCTs	[232-234],	

and	a	further	2	RCs	[235,	236]	that	demonstrated	success	rates	ranging	from	38%	to	

93%	 for	 porcine	 dermis	 repair.	 However	 there	 was	 no	 significant	 difference	 in	 the	

post-operative	 patient	 self-reporting	 of	 prolapse	 after	 either	 polyglactin	 mesh	 (RR	

0.96)	or	porcine	dermis	(RR	1.21).	

Other	biological	repair	materials	have	been	assessed	for	the	augmentation	of	a	repair	

in	 anterior	 compartment	 prolapse.	 Feldner	 [237]	 compared	 small	 intestinal	

submucosa	(SIS)	grafts	with	NTR	and	demonstrated	a	86.2%	anatomic	cure	compared	

to	 59.3%	 respectively	 (p=0.003)	 over	 a	 follow-up	 period	 of	 12	 months.	 No	 patients	

demonstrated	exposure	of	 the	graft	 and	 there	were	 similar	 episodes	of	dyspareunia	

between	 the	 two	 groups.	 Meanwhile,	 Gandhi	 [238]	 and	 co-workers	 randomized	

patients	to	receive	cadaveric	fascia	lata	augmentation	versus	NTR	and	demonstrated	

a	79%	versus	71%	anatomical	success	rate,	which	did	not	reach	statistical	significance.	

The		use		of		bovine		pericardium		as	a	repair		graft		was	studied		in		a	RCT		 by		Guerette	

[239].	 After	 2	 years	 of	 follow-up,	 the	 anatomical	 success	 rates	 were	 76.5%	 for	 the	

bovine	pericardium	graft	group	and	63%	for	NTR	(p=0.509).	

1.7.5.8 Surgery	for	POP	–	Posterior	compartment	

Rectocoeles	 are	 the	most	 common	posterior	 vaginal	wall	 defect.	 Posterior	 prolapse	

often	 occurs	 in	 combination	 with	 prolapse	 of	 other	 vaginal	 compartments	 and	 this	

defect	 is	 caused	 by	 divarication	 of	 the	 levator	 ani	 muscles.	 This	 can	 lead	 to	 bowel	

symptoms	as	 the	bowel	protrudes	 through	 the	 fascial	defect	of	 the	posterior	vagina	
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towards	 lower	 vagina	 or	 perineum.	 Table	 1.7.8	 demonstrates	 the	 outcomes	 for	

posterior	compartment	surgery.	

1.7.5.8.1 Native	tissue	repair	

The	 traditional	 repair	 techniques	 of	 colporrhaphy	 or	 plication	 in	 the	 midline	 are	

commonly	 used	 in	 the	 repair	 of	 posterior	 compartment	 prolapse.	 Site-specific	

posterior	 repair	 techniques	 are	 used	 for	 the	 approximation	 of	 the	 discrete	 fascial	

defects	 as	 described	 above,	 using	 interrupted	 sutures.	 The	 review	 by	 Karram	 and	

Maher	 [240]	 demonstrated	 similar	 outcomes	 for	 each	 of	 these	 procedures,	 with	

anatomical	 success	 rates	 of	 83%	 for	 both	 colporrhaphy	 and	 site-specific	 posterior	

repair,	with	identical	rates	of	dyspareunia	(18%).	

1.7.5.8.2 Biomaterial	repair	

The	procedure	for	augmenting	the	posterior	repair	site	with	biomaterials	is	similar	to	

that	used	for	the	treatment	of	anterior	compartment	prolapse.	However,	no	trial	data	

exists	 that	 independently	 compares	 the	 polypropylene	 mesh	 used	 in	 anterior	

compartment	 or	 apical	 prolapse	 with	 NTR.	 A	 modified	 version	 of	 the	 SC	 to	 repair	

apical	 prolapse	 with	 co-existing	 posterior	 compartment	 prolapse,	 using	

polypropylene	 mesh	 has	 demonstrated	 anatomic	 success	 rates	 of	 90%	 over	 12	

months,	in	the	largest	series	by	Su	et	al	[241].	

The	degradable	mesh,	polyglactin	has	not	demonstrated	a	significant	improvement	in	

success	 rates	 as	 compared	 to	 NTR	 alone	 in	 RCT	 data	 over	 12	 month	 follow-up.		

Success	rates	of	89.6%	and	91.8%	respectively	were	found	by	Sand	[230],	while	there	

were	no	significant	graft-related	complications	 in	this	study.	Furthermore,	the	meta-	

analysis	by	Maher	[225]	analysed	the	data	of	two	RCTs	that	compared	porcine	small	

intestinal	 submucosa	with	 follow-up	 in	 excess	 of	 12	months	 [242,	 243].	 Anatomical	

success	was	79%	and	90%	for	biomaterial	versus	NTR	respectively.	Meanwhile,	cross-	

linked	 porcine	 dermis	 augmented	 repair	 was	 compared	 with	 NTR	 in	 one	 RCT,	

demonstrating	 posterior	 compartment	 success	 rates	 as	 assessed	 with	 the	 POP-Q	

score	 of	 87%	 and	 60%	 respectively	 over	 a	 3	 year	 follow-up	 period;	 exposure	 was	

demonstrated	in	4.4%	of	cases	[244].	
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1.7.5.9		POP	surgery	-	Conclusions	

For	 apical	 prolapse,	 SC	 offers	 significantly	 superior	 success	 rates	 as	 compared	with	

NTR,	 with	 polypropylene	 mesh	 demonstrating	 fewer	 recurrences	 than	 	 cadaveric	

fascia	lata.	Furthermore,	SC	is	superior	to	trans-vaginal	mesh	repair	of	apical	defects	

and	 associated	 with	 significantly	 fewer	 episodes	 of	 mesh	 exposure.	 The	 anterior	

compartment	 is	 the	most	 frequently	affected	by	prolapse.	Here,	 augmentation	with	

polypropylene	 mesh	 demonstrates	 greater	 success	 rates	 than	 NTR,	 despite	 being	

associated	with	a	high	risk	of	mesh	exposure	(10%),	which	is	significantly	higher	than	

the	 use	 of	 other	 biomaterials,	 including	 degradable	mesh	 and	 porcine	 dermis.	 Both	

porcine	 dermis	 and	 small	 intestinal	 submucosa	 are	 associated	 with	 higher	 success	

rates	 than	 NTR	 alone,	 with	 comparable	 recurrence	 rates	 to	 polypropylene	mesh	 in	

anterior	 repair.	 However,	 there	 is	 no	 evidence	 to	 suggest	 a	 benefit	 for	 the	 use	 of	

biomaterials	in	posterior	compartment	prolapse,	where	rates	of	exposure	are	high.	
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Table	1.7.6.	Outcomes	of	biomaterials	used	in	apical	compartment	surgery	versus	NTR	and	SC	

Trans-vaginal	

PPL	

SC	

PPL	

SC	

cadaveric	fascia	

Success	rate	 42%	 84.7%-96.4%	 69%	

Follow	up	(months)	 24	 24-60 60	

Success		versus	NTR	 Equivalent	 Superior	 N/A	

Success		versus	SC	PPL	 Inferior	 N/A	 Inferior	

Complications	 Exposure	13%	 Exposure	5%	 None	reported	

Studies	 1	RCT	[224]	 1	Meta-analysis	(4	RCTs)	

[225]	

1	RCT	[227]	

1	follow-up	[228]	

Table	1.7.7.	Outcomes	of	biomaterials	used	in	anterior	compartment	surgery	versus	NTR	

PPL	mesh	 Degradable	

mesh	

Porcine	

dermis	

SIS	 Cadaveric	

fascia	

Bovine	

pericardium	

Success	rate	 86%	 42%-75%	 38%-93%	 86.2%	 79%	 76.5%-85.7%	

Follow	up	(months)	 12-36 12-24 12-60 12	 13	(median)	 12-24

Success		versus	NTR	 Superior	 Equivalent	-	

Superior	

Equivalent	

– Superior

Superior	 Equivalent	 Equivalent	

Complications	 Bladder	injury	 Erosion	2.8%	 Exposure	 No	 None	 None	reported	

2.4%	

Exposure	11.4%	

Dyspareunia	7%	

4.4%	 exposuse	

Dyspareuni	

a	17%	

reported	

Studies	 1	meta-analysis	 1	meta-	 1	meta-	 1	RCT	[237]	 1		RCT	[238]	 1	RCT	[239]	

(10	RCTs)	[225]	 analysis	[225]	

of	2	RCTs	

[230,	231]	

analysis	

[225]	and	2

RCTs	 [235,	

236]	

Table	1.7.8.	Outcomes	of	biomaterials	used	in	posterior	compartment	surgery	versus	NTR	

PPL	mesh*	 Degradable	

mesh	

SIS	 Porcine	dermis	

Success	rate	 89.6%	 54%-88%	 87%	

Follow	up	(months)	

Success	versus	NTR	

Complications	

12	 12	 36	

Equivalent	 Inferior	 Equivalent	

None	reported	 No	complications	 Exposure	4.4%	

Vaginal	stenosis	10%	

Studies	 1	RCT	[230]	 2	RCTs	[242,	243]	 1	RCT	[244]	

* Trans-vaginal	PPL	mesh	not	independently	assessed		for		posterior		compartment		prolapse

PPL.	Polypropylene	

NTR.	Native	tissue	repair	

SC.	Sacrocolpopexy	

SIS.		Small	intestinal	submucosa	

Data	pooled	from	findings	of	included	controlled	trial	and	cohort	study	data.	
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1.8 Complications	of	biomaterials	that	are	used	in	SUI/POP	

Autologous	fascia	is	a	common	repair	material.	Prior	to	the	advent	of	synthetic	mesh	

materials	 for	pelvic	 floor	 repair,	 these	 tissues	were	associated	with	high	anatomical	

and	functional	success	rates.	The	problem	with	these	tissues	are	those	of	donor	site	

morbidity	that	is	associated	with	a	significant	incision	on	the	abdominal	wall	or	thigh	

to	harvest	the	tissue	[245].	In	an	attempt	to	overcome	this	problem,	other	biological	

materials	 have	 been	 extensively	 investigated,	 including	 allografts	 and	 xenografts.	

Although	 these	 tissues	are	 readily	available,	widespread	use	 is	 limited	due	 to	 issues	

with	 infection	 and	 an	 unpredictable	 host	 response	 that	 is	 often	 associated	 with	 a	

varied	degree	of	altered	mechanical	behavior.	Synthetic	materials	gained	popularity	

in	 the	 surgical	 community,	 particularly	 for	 use	 in	hernia	 repairs	 and	 these	materials	

were	rapidly	adapted	for	use	in	pelvic	floor	reconstruction	

In	 2008,	 following	 a	 rise	 in	 the	 reports	 of	 serious	 complications	 received	 by	 the	US	

Manufacturer	 and	User	 Facility	Device	Experience	 (MAUDE)	database,	 the	US	Food	

and	 Drug	 Authority	 (FDA)	 issued	 the	 first	 of	 several	 notifications	 on	 the	 safety	 of	

these	devices	and	 ‘kits’	 [246].	 In	2011,	 the	FDA	 issued	a	second	notification	 [247]	 to	

warn	patients	of	 the	 risks	associated	with	 trans-vaginal	mesh,	which	 stimulated	 the	

first	of	many	class	action	lawsuits	in	the	US	and	has	led	to	the	eventual	withdrawal	of	

several	mesh	materials	from	the	market.	

The	exact	reason	behind	why	these	complications	occur	is	not	completely	understood	

and	 probably	 reflects	 our	 current	 appreciation	 of	 the	 mechanisms	 behind	 the	

development	of	POP/SUI	itself	and	the	determinants	of	a	successful	outcome.	

In	 this	 section,	 the	 host	 response	 and	 physical	 properties	 of	 biomaterials	 following	

their	implantation	into	the	body	are	discussed.	
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1.8.1 Defining	biomaterial	complications	

The	 joint	 International	 Urogynaecology	 Association	 (IUGA)	 and	 the	 International	

Continence	 Society	 (ICS)	 working	 group	 on	 complications	 terminology	 [248]	

proposed	 a	 new	 classification	 of	 complications	 in	 an	 attempt	 to	 standardize	 the	

reporting	of	such	events.	The	term	device	‘erosion’	(“state	of	being	worn	away,	as	by	

friction	 or	 pressure”),	 was	 replaced	 by	 terms	 with	 a	 more	 appropriate	 anatomical	

description,	 such	 as	 ‘exposure’	 (a	 condition	 of	 displaying,	 revealing,	 exhibiting,	 or	

making	 accessible)	 and	 ‘extrusion’	 (passage	 gradually	 out	 of	 a	 body	 structure	 or	

tissue).	 These	 complications	 can	 be	 associated	 with	 other	 post-operative	 problems	

following	 surgery	 that	 uses	 biomaterials,	 e.g	 infection,	 chronic	 pain,	 voiding	

dysfunction	 and	 dyspareunia.	 MUT	 placement	 can	 also	 exacerbate	 or	 develop		 de	

novo	urinary	urgency	or	urgency	urinary	incontinence	in	27.7%	and	13.7%	of	patients	

respectively	 at	 long-term	 follow-up	 [249].	Dyspareunia		 and	 chronic	 pain		 following	

SUI	 surgery	 can	 be	 the	 most	 distressing	 complication	 for	 patients	 [250]	 and	 is	

potentially	irreversible.	For	trans-vaginal	mesh	in	the	treatment	of	POP,	dyspareunia	

can	 occur	 in	 up	 to	 20%	 and	 64%	 of	 patients	 undergoing	 an	 anterior	 and	 posterior	

repair	respectively	[251].	

Mesh	 exposure/extrusion	 is	 estimated	 to	 occur	 in	 10%	 of	 patients	 undergoing	 POP	

repair	 with	mesh	 [252]	 and	 to	 a	 lesser	 extent	 following	 a	 trans-vaginal	 tape	 (TVT)	

insertion	for	SUI	[253].	These	findings	may	in	fact	be	underestimates	of	the	problem,	

given	that	the	duration	of	clinical	follow-up	in	many	reported	series	is	short	and	that	

mesh	exposure	can	take	years	to	occur	[254].	

Most	cases	of	vaginal	mesh	exposure	are	felt,	before	they	are	seen	and	often	present	

with	 pain	 and	 dyspareunia.	 It	 is	 important	 therefore	 to	 exclude	 mesh	 exposure	 in	

these	patients	using	a	combination	of	a	detailed	clinical	history	and	examination	with	

other	 radiological	 (ultrasound is more efficacious than MRI) or	 direct	 imaging	

methodologies.	 Clearly,	 patients	 with	 mesh	exposure	 may	 be	 asymptomatic	 and	

do	 not	 warrant	 surgical	 management,	 just	 as	small	 exposures	 (<1cm)	 without	

any	 complicating	 factors	 can	 be	 treated	conservatively with topical oestradiol 

alone.			Surgical		treatment		of	the		exposed		or		extruded	mesh		is		technically	difficult	

and	patients	should	be	appropriately	counseled	about	the	recurrence	of	SUI,	fistulae	

and	chronic	pain.	 105



106

MUT	 failure	 has	 been	 defined	 in	 4	 ways	 immediately	 after	 surgery	 and	 can	 also	 be	

applied	to	sling/tape	surgery	in	general	[255]:	

1. Failure	to	cure	SUI.

2. SUI	cured,	but	de	novo	overactive	bladder	(OAB)	symptoms.

3. SUI	not	cured,	and	de	novo	OAB	symptoms.

4. New	 symptoms	 or	 complications,	 e.g	 dyspareunia,	 exposure,	 chronic	 pain.

When	 there	 is	 recurrence	 of	 the	 original	 symptoms	 following	 a	 12	month	 period	 of	

symptomatic	improvement	following	MUT	insertion,	then	these	patients	are	regarded	

as	having	symptom	recurrence	rather	than	failure	[255].	

The	recent	report	by	IUGA	and	the	ICS	[248]	brought	standardization	to	terminology	

and	 classification	 related	 to	 mesh	 surgery,	 which	 includes	 an	 assessment	 of	 the	

category,			timing			and			site			of			mesh			 complications			(table			1.8.1).	 Standardized	

definitions,	such	as	the	IUGA/ICS	report	allow	inter-study	outcome	comparisons	to	be	

made,	 which	 at	 present	 is	 difficult.	 	 	 Despite	 this,	 the	 IUGA/ICS	 terminology	 is	

complex	and	does	not	form	part	of	routine	assessment.	
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Table	1.8.1.	IUGA/ICS	classification	of	complications	related	directly	to	insertion	of	prosthesis	or	grafts	in	

female	pelvic	floor	surgery	

Category	

General	Description	 A	(Asymptomatic)	 B	(Symptomatic)	 C	(Infection)	 D	(Abscess)	

1. Vaginal:	
No	epithelial	separation.

Includes	Prominence	or	

contraction	

1A:	Abnormal	

prosthesis	or	graft	

finding	on	clinical	

exam	

1B:	Symptomatic	

e.g.	unusual

discomfort/pain;	

dyspareunia;	

bleeding	

1C:	 Infection	

(suspected	or	

actual)	

1D:	Abscess	

2. Vaginal:	Smaller
exposure	(<1cm)	

2A:	Asymptomatic	 2B:	Symptomatic	 2C:	Infection	 2D:	Abscess	

3. Vaginal:	
Larger	exposure	(>1cm),	or

any	extrusion	

3A:	Asymptomatic.	

1-3Aa	if	no	prosthesis	

or	graft	related	pain	

3B:	Symptomatic.	

1-3B(b-e)	if

prosthesis	or	graft	

related	pain	

3C:	Infection.	1-	

3B(b-e)	if	prosthesis	

or	graft	related	pain	

3D:	Abscess.	1-	

3D(b-e)	if	

prosthesis	or	graft	

related	pain	

4. Urinary	tract:
Compromise	or	perforation	
including	prosthesis	
perforation,	fistula	and	
calculus	

4A:	Small	

intraoperative	defect.	

E.g	bladder

perforation	

4B:	Other	lower	

urinary	tract	

complication	or	

urinary	retention	

4C:	Ureteric	or	upper	urinary	tract	

complication	

5. Rectal	or	bowel:
Compromise	or	perforation	

including	prosthesis	

perforation	and	fistula	

5A:	Small	

intraoperative	defect	

(rectal	or	bowel)	

5B:	Rectal	injury	or	

compromise	

5C:	Small	or	large	

bowel	injury	or	

compromise	

5D:	Abscess	

6. Skin	and/or
musculoskeletal:	
Complications	including	
discharge,	pain,	lump	or	sinus	

6A:	Asymptomatic,	

abnormal	finding	on	

exam	

6B:	Symptomatic	

e.g	discharge,	pain

or	lump	

6C:	Infection	e.g	

sinus	

6D:	Abscess	

7. Patient:	
Compromise	including	
haematoma	or	systemic
compromise	

7A:	Bleeding	

complication	

including	haematoma	

7B:	Major	degrees	

of	resuscitation	or	

intensive	care	

7C:	Mortality	

(additional	

complication-no	

site	available	–	S0)	

Time	(Clinically	diagnosed)	

T1:		Intraoperative	–	48	hours	 T2:		48	hours	–	2	months	 T3:		2	–	12	months	 T4:		>12	months	

Site	

S1:	Vaginal:	

Area	of	suture	line	

S2:	Vaginal:	Away	

from	area	of	suture	

line	

S3:		Trocar	passage	

Exception:	intra-	

abdominal	(S5)	

S4:	Other	skin	or	

musculoskeletal	site	

S5:	Intra-abdominal	

Pain	

Grade	of	pain	 Symptoms	

a	 Asymptomatic	or	no	pain	

b	 Provoked	pain	only	(during	vaginal	examination)	

c	 Pain	during	intercourse	

d	 Pain	during	physical	activities	

e	 Spontaneous	pain	
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1.8.2 Mesh	complications	

1.8.2.1 Host	response	to	implantation	

Following	the	 implantation	of	any	non-absorbable	material,	the	host	response	takes	

the	following	time	course	[256]	:	

1. Initial	blood-material	interaction Minutes	to	hours	

2. Provisional	matrix	formation Hours	to	days	

3. Acute	inflammation Days	to	one	week	

4. Chronic	inflammation <	Two	weeks	

5. Granulation	tissue	development Weeks	to	months	

6. Foreign	body	reaction	(FBR). Weeks	to	months	

7. Fibrosis Months	to	years	

Immediately	 following	 implantation,	a	biofilm	 rich	 in	mitogens;	cytokines	and	other	

growth	 factors	surrounds	 the	mesh.	These	 factors	activate	cell	populations	 involved	

in	 the	 inflammatory	 and	 wound	 healing	 responses.	 Polymorphonuclear	 leucocytes	

indicate	 an	 acute	 inflammatory	 response,	 which	 usually	 subsides	 within	 a	 week,	

followed	by	a	chronic	inflammatory	response,	which	lasts	for	no	more	than	2	weeks	if	

a	material	is	biocompatible.	Granulation	tissue	forms	around	the	implanted	mesh	and	

neovascularization	 begins	 to	 occur	 followed	 by	macrophage	 infiltration	 and	 foreign	

body	giant	cells,	which	constitutes	the	FBR	and	indicates	the	end	of	the	inflammatory	

phase	 of	 healing.	 The	 granulation	 tissue	 is	 replaced	 by	 collagen,	 deposited	 by	

fibroblasts	and	fibrosis	ensues	[256].	

An	 initial	 inflammatory	 response	 allows	 host	 cell	 infiltration,	 however	 a	 prolonged	

chronic	 course	 is	 clearly	 undesirable.	 Polypropylene	mesh	 produces	 a	 vigorous	 FBR	

[257],	which	never	completely	abates.	The	FBR	is	associated	with	an	up-regulation	of	

matrix	 metalloproteinases	 and	 pro-inflammatory	 cytokines,	 which	 can	 lead	 to	

persistent	 remodeling	and	 inflammation	at	 the	mesh-host	 interface,	which	could	be	

one	 explanation	 for	 exposure	 [258].	 Furthermore,	 women	 who	 developed	 mesh	

exposure		were		found		to		have		cytokine		levels		3-times		greater		pre-operatively	than	
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women	without	mesh	exposure	 [259],	which	can	explain	why	some	women	develop	

the	complication	whereas	others	do	not	while	 the	contraction	of	collagen	over	 time	

can	lead	to	prominence	or	contraction	of	the	tape	[260].	

1.8.2.1.1 Mesh	structure	

Polypropylene	 is	 considered	 a	 relatively	 biocompatible	 thermoplastic	 polymer,	

however	 complications	 do	 occur	 in	 practice.	 Greater	 porosity	 is	 purported	 to	 be	

associated	with	 a	 greater	 degree	 of	 cell	 penetration,	 neovascularization	 and	matrix	

production	 [261].	 A	 smaller	 pore	 size	 on	 the	 other	 hand,	 is	 associated	with	 chronic	

inflammation	due	to	encapsulation,	which	can	lead	to	chronic	infection	and	exposure	

[262].	Filament	type	(monofilament	versus	multifilament)	has	been	demonstrated	to	

have	an	 impact	on	 rates	of	 complications,	 particularly	 the	observed	exposure	 	 rates	

when	multifilament	meshes	 are	used.	The	 concern	with	multifilamentous	meshes	 is	

that	micro-organisms	can	colonise	the	areas	between	fibres.	

1.8.2.1.2 Biomechanics	

The	mechanical	mismatch	 between	 the	 rigid	 PPL	mesh	 and	 the	 elastic	 paravaginal	

tissues,	which	are	under	constant	dynamic	distension	can	lead	to	plastic	deformation	

of	 the	 mesh	 [263],	 which	 can	 then	 gradually	 pass	 out	 of	 a	 body	 structure.	 This	 is	

highlighted	by	 recent	 in	 vivo	work	 that	 demonstrates	 exposure	 of	 PPL	mesh	over	 3	

months	when	 implanted	trans-vaginally	 in	sheep	models,	whereas	no	such	response	

occurs	when	this	material	is	implanted	abdominally	[264],	illustrating	the	site-specific	

response	to	this	material.	

Recently,	novel	devices	for	the	more	accurate	dynamic	measurement	of	intra-vaginal	

pressures	have	been	developed	[265]	and	highlight	the	importance	of	the	mechanical	

properties	of	the	mesh,	which	may	previously	have	been	under-appreciated.	

1.8.2.1.3 Material	degradation	

Synthetic	materials	are	selected	for	their	predictable	properties.	These	properties	are	

well	studied	in	vitro,	however	in	vivo	long-term	studies	are	lacking	in	the	literature.	In	

a	 study	 of	 100	 patients	 with	mesh	 related	 complications	 (infection	 and	 exposures),	

the	explanted	failed	meshes	were	examined.	Cracking	and	material	degradation	was	
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demonstrated	in	49.33%	of	these	[266].	

	
1.8.2.2 Clinical	complications	-	mesh	toxicity	

	
As	 a	 structure,	 polypropylene	 has	 the	 potential	 to	 degrade	 to	 form	 toxic	 aldehydes	

and	carboxylic	acids,	demonstrated	in	a	rat	model	following	prolonged	exposure	and	

extreme	 temperatures	 [267].	 Such	 conditions	 are	 unlikely	 to	 be	 encountered	 in		

human	 subjects,	 however	 these	 findings	 highlight	 the	 importance	 of	 avoiding	

autoclave	 or	 gamma	 radiation	 during	 the	 sterilization	 process.	 Carcinogenicity	 has	

also	been	 investigated	 in	animal	models,	demonstrating	potential	 for	polypropylene	

materials	to	be	associated	with	sarcoma	[268,	269],	however,	no	such	carcinogenicity	

has	been	ever	demonstrated	in	human	subjects	[270].	

	
1.8.2.3 Clinical	complications	-	infection	and	chronic	pain	

	
Infection	 following	 mesh	 implantation	 may	 be	 associated	 with	 mesh	 exposure.	 As	

previously	 discussed,	 infection	 is	 more	 likely	 to	 occur	 with	 microporous	 or	

multifilamentous	mesh	materials	and	can	result	 from	a	variety	of	Gram	positive	and	

negative,	aerobic	and	anaerobic	bacteria	with	an	incidence	of	0-8%	in	trial	data	[271].	

Methods	 to	 reduce	 levels	 of	mesh	 contamination	 include	 peri-operative	 antibiotics,	

skin	 antisepsis	 and	 limitation	 of	 tissue	 dissection	 [272].	 Mesh	 infection	 generally	

requires	excision	of	the	entire	mesh	material.	

	
Chronic	 pain	 in	 POP	 surgery	 is	 estimated	 to	 occur	 in	 1.9-24.4%	 of	 patients	 [273]	 ,	

whereas	 40%	 of	 patients	 experience	 some	 degree	 of	 thigh	 or	 groin	 pain	 with	mid-	

urethral	 slings	 [274].	 If	 conservative	 therapies	with	analgesics	 fail,	 treatment	 is	with	

mesh	excision	following	appropriate	counseling	regarding	the	inherent	risks	with	such	

a	procedure.	

	
Dyspareunia	 has	 been	 demonstrated	 to	 occur	 in	 9.1%	of	 patients	 undergoing	mesh	

surgery	 for	 anterior	 prolapse	 [275],	 with	 lower	 rates	 of	 dyspareunia	 resulting	 from	

mid-urethral	tapes.	One	mechanism	behind	the	development	of	de	novo	dyspareunia	

is	‘para-urethral	banding’,	that	can	result	from	the	bands	of	para-urethral	folds	of	the	

anterior	vagina	becoming	palpable.	The	exact	mechanism	of	this	is	as	yet	unreported	

[250].		Mesh	incision	or	excision	can	alleviate	symptoms	of	dyspareunia	[276].	
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1.8.2.4 Clinical	complications	-	voiding	dysfunction	

As	a	result	of	surgery	using	mesh	implants,	patients	can	develop	either	 incontinence	

or	 post-operative	 urinary	 retention.	De	 novo	 SUI	 can	 result	 following	 tran-svaginal	

mesh	 repair	 of	 prolapse	 and	 this	 has	 been	 demonstrated	 to	 be	 successfully	 treated	

either	 inter-operatively	 or	 post-operatively	with	mid-urethral	 slings	 [277].	 Following	

mid-urethral	tape	procedures	for	SUI,	it	is	well	recognized	that	acute	urinary	retention	

can	 occur	 in	 roughly	 3.1-32%	 of	 patients	 in	 the	 acute	 phase	 [278]	 and	 therefore	

patients	 are	 usually	 counseled	 that	 this	 could	 occur	 and	 are	 commonly	 taught	

intermittent	 self-catheterization	 pre-procedure.	 Urinary	 retention	 is	 thought	 to	

develop	 due	 to	 the	 tape	 being	 excessively	 tight	 and	 can	 be	 treated	 either	

conservatively	 with	 self-catheterization	 or	 with	 operative	 intervention.	 This	 can	

involve	 either	 sling	 incision	 [279,	 280]	 or	 formal	 urethrolysis	 [281].	 Furthermore,	

delayed	de	novo	overactive	bladder	type	symptoms	can	occur	following	treatment	for	

SUI,	which	may	be	related	to	a	degree	of	relative	bladder	outlet	obstruction	as	a	result	

of	mesh	 tension	 [282].	Such	patients	 require	exclusion	of	urinary	 tract	 infection	and	

mesh	exposure	as	a	cause	of	their	symptoms,	followed	by	urodynamic	assessment	to	

identify	whether	 detrusor	 overactivity	 or	 bladder	 outflow	 obstruction	 is	 	 the	 cause.		

For	 those	 patients	 with	 de	 novo	 detrusor	 overactivity,	 treatment	 options	 include	

anticholinergic	 therapies,	 beta-3	 adrenoreceptor	 agonsists	 (mirabegron),	 or	

intravesical	 botox	 with	 or	 without	 the	 need	 to	 perform	 clean	 intermittent	 self-	

catheterization	(CISC).	

1.8.3 Biomaterial	complications	

The	complications	that	are	observed	with	the	use	of	biological	grafts	for	use	in	pelvic	

floor	reconstruction		can		occur		as		a		consequence		of		several		factors.	 	The		tissues	

are	 processed	 and	 sterilized	 for	 use	 in	 order	 to	 prevent	 any	 transmission	 of	

contaminating	 bacteria	 or	 fungi.	 The	 sterilization	 can	 affect	 the	 structural	

components	 of	 the	 graft.	 Furthermore,	 the	 response	 of	 the	 host	 to	 	 biological	

materials	 	may	 	 involve	 	 chronic	 inflammation	 	and	macrophage	 infiltration	and	 this	

can	lead	to	complications.	In	this	section,	we	discuss	the		effect	of		these	steps		on	the	

integrity	 and	 properties	 of	 the	 graft	 and	 try	 to	 correlate	 these	 with	 the	 surgical	

outcomes.	
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1.8.3.1 Tissue	processing	

Allografts	and	xenografts	undergo	processing	to	remove	the	cellular	components	that	

are	associated	with	the	host	response.	Unfortunately,	this	can	denature	the	complex	

peptides	 and	 other	 molecules,	 such	 as	 cytokines	 and	 growth	 factors	 that	 play	 an	

important		role		in		the		integration		of		the		material.			Newer		biological			grafts,		such	

as	 cross	 linked	 porcine	 dermis	 and	 SIS,	 undergo	 much	 less	 robust	 processing	

techniques	and	therefore	retain	many	of	the	molecules,	such	as	glycosaminoglycans	

and	 fibrillar	 proteins	 than	 do	 cadaveric	 fascia.	 As	 a	 result,	 tissues	 such	 as	 cadaveric	

fascia	 undergo	 a	 degree	 of	 degradation,	 prior	 to	 implantation;	 following	 which	 a	

variable	 	 degree	 	 	 of	 	 	 chronic	 	 	 inflammation	 	 	 occurs	 	 	 with	 	 	 the	 	 	 subsequent	

formation	 of	 scar	 tissue.	 Meanwhile,	 tissues	 with	 a	 relatively	 retained	 	 ECM	

component	 are	 able	 to	 	 release	 	 certain	 	 bioactive	 	 molecules,	 	 such	 	 as	 	 platelet	

derived	 growth	 factor,	 growth	 factors	 and	 other	 cytokines	 to	 influence	 the	 initial	

healing	phase	of	a	wound	bed	 following	implantation	[283,	284]	

1.8.3.2 Integration	and	degradation	

While	 mesh	 material	 that	 is	 explanted	 from	 animal	 models	 demonstrates	

incorporation	into	scar	tissue,	cadaveric	fascia	becomes	extensively	thinned	or	is	even	

absent	altogether,	with	little	evident	cellular	infiltrate	[285].	

The	 technique	of	 collagen	 cross-linking,	 using	 chemicals	was	 introduced	 in	 order	 to	

overcome	 this	 problem.	 It	 is	 observed	 that	 these	 tissues	 retain	 their	 	 strength	 	 and	

resist	degradation	to	a	much	greater	degree.	The	disadvantage	to	this	method	is	that	

of	 poorer	 integration	 into	 the	 host	 and	 a	 FBR	 occurs	 [286],	 with	 resultant	

encapsulation,	 chronic	 inflammation	 and	 inherent	 degradation	 of	 the	 tissues	 [287].	

This	 factor	 may	 explain	 why	 cross-linked	 tissues	 result	 in	 higher	 rates	 of	 exposure	

than	cadaveric	tissues.	

Contemporary	 biological	 grafts	 undergo	 constructive	 remodeling	 [288];	 a	 	 process	

that		 results		 in		 organized		 tissue		 formation		 following		 controlled		 degradation	and	

cellular	 infiltration.	 Autologous	 fascial	 grafts	 also	 undergo	 constructive	 remodeling,	

as	the	cellular	component	of	these	tissues	has	not	been	removed.	While	an	initial	mild	

inflammatory	 response	 occurs,	 an	 FBR	 does	 not	 occur,	 thus	 cellular	 ingrowth	 and	
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neovascularization	 can	 occur	 [200]	 in	 addition	 to	 synthesizing	 an	 organized	matrix	

[289].	

The	 macrophage	 response	 is	 an	 important	 mechanism	 involved	 in	 the	 remodeling	

processes,	 which	 a	 biomaterial	 undergoes	 following	 implantation.	 Two	 distinct	

macrophage	 phenotypes	 exist:	 type	 1	 (M1)	 and	 type	 2	 (M2).	 M1	 macrophages	 are	

associated	with	a	 cytotoxic	 and	 inflammatory	 type	 response,	 the	aim	of	which	 is	 to	

destroy	 certain	pathogens	or	 tissues	 recognized	 as	 foreign	 [290].	M2	macrophages,	

however	 lead	 to	 the	 process	 of	 constructive	 remodeling	 as	 described	 earlier.	

Therefore,	 a	material	 that	 results	 in	 an	M1	macrophage	 response	 is	 associated	with	

chronic	inflammation	and	degradation,	while	one	that	leads	to	an	M2	response	results	

in	 an	 organized	 cellular	 structure.	 Tissues	 that	 fail	 to	 initiate	 either	 macrophage	

response	can	lead	to	encapsulation.	

The	exact	mechanism	that	leads	to	a	specific	macrophage	response	is	likely	to	be	due	

to	 the	 release	 of	 proliferative	 factors	 that	 occur	 following	 implantation	 into	 the	

wound	 bed.	 Therefore,	 tissues	 such	 as	 autologous	 fascia	 and	 grafts	 that	 have	

undergone	 minimal	 processing	 techniques	 will	 lead	 to	 an	 M2	 response.	 Chemical	

cross-linking	prevents	the	degradation	and	release	of	these	mediators	and	therefore	

an	M1	response	 is	 initiated	[291].	A	summary	of	the	key	features	of	each	material	 is	

presented	in	table	1.8.2.	

1.8.4 The	ideal	material	

In	 a	 search	 for	 the	 ideal	 material,	 several	 key	 components	 have	 been	 proposed.	

Although	 no	 current	 material	 possesses	 all	 of	 these	 properties,	 several	 	 repair	

materials	 are	 available	 that	 focus	 on	 certain	 specific	 areas	 of	 the	 host	 response.	

Karlovsky	 et	 al	 [292]	 suggested	 that	 an	 ideal	 material	 should	 be	 sterile,	 inert,	 not	

overly	 inflammatory,	 non-immunogenic,	 durable	 and	 easily	 accessible.	 Although	

those		materials		that		result		in		an		acute		inflammatory		response		that		persists		to		a	

chronic	 phase	 (M1	 macrophage	 response)	 may	 be	 associated	 with	 infection	 and	

exposure	[293],	one	that	does	not	initiate	an	inflammatory	response	at	all	may	lead	to	

encapsulation	[294].	
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Materials	 that	 are	 biodegradable	 are	 associated	 with	 lower	 levels	 of	 infection	 and	

chronic	pain	however,	these	must	undergo	controlled	degradation	over	a	period	that	

allows	 sufficient	 tissue	 remodeling	 (M2	 macrophage	 response)	 with	 production	 of	

ECM,	 angiogenesis	 and	 fibroblast	 ingrowth	 [291].	 Candidate	 materials	 for	

implantation	should	also	handle	well	and	have	an	ability	to	retain	sutures	in	order	to	

be	 adequately	 implanted	 surgically.	 	 Human	 fibrin	 glue	 devices,	 such	 as	 TiseelTM

(Baxter	 International)	 are	 composed	 of	 clotting	 agents,	 including	 factor	 XIII,	

fibronectin	and	thrombin	and	are	used	promote	haemostasis,	however,	activation	of	

the	 clotting	 cascade	 also	 results	 in	 tissue	 remodeling	 and	 fibrosis.	 	 The	 degree	 to	

which	 fibrosis	 and	 an	 inflammatory	 response	 occurs	 has	 not	 been	 established,	

however	 	 its	 application	 between	 a	 repair	 material	 and	 healthy	 tissues	 could	

theoretically	avoid	excessive	inflammation	at	the	mesh-tissue	interface.			

Table	1.8.2.	Comparison	of	biomaterials	used	in	pelvic	floor	reconstruction	

Class	 Types	 Degradation	 Advantages	 Disadvantages	

Autograft	 Fascia	 Months-years	 Minimal	inflammatory	response	

Constructive	remodeling	

Donor	site	morbidity.	

Insufficient	tissue	

Synthetic	 Polypropylene	 Many	years	 Durable	 High	number	of	complications	

Polyglactin	 Months	

Greatest	evidence	base	

Durable	

Degradable	

Poor	evidence	base	

Allograft	 Cadaveric	fascia	

Cadaveric	dermis	

Months	

Months	

Available	

No	donor	site	morbidity	

Chronic	inflammatory	response	

Infection	transmission	

Xenograft	 Porcine	dermis	

SIS	

Years	

Months	

Available	

Durable	

Constructive	remodeling	

Poor	integration	

FBR	

Poor	mechanical	strength	

SIS.	Small	intestinal	submucosa	

FBR.		Foreign	body	reaction	
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1.9 Regenerative	medicine	and	tissue	engineering	techniques	for	

pelvic	floor	reconstruction	

The	concept	of	tissue	engineering	is	used	interchangeably	with	the	term	‘regenerative	

medicine’.	 However,	 many	 experts	 would	 argue	 that	 these	 two	 fields	 are	 entirely	

different	entities.		Regenerative	medicine	is	defined	by	Daar	[295]	as:	

“An	 interdisciplinary	 field	 of	 research	 and	 clinical	 applications	 focused	 on	

the	repair,	replacement	or	regeneration	of	cells,	tissues	or	organs	to	restore	

impaired	 function	 resulting	 from	 any	 cause,	 including	 congenital	 defects,	

disease,	 trauma	 and	 ageing.	 It	 uses	 a	 combination	 of	 several	 converging	

technological	approaches,	both	existing	and	newly	emerging,	that	moves	it	

beyond	 traditional	 transplantation	 and	 replacement	 therapies.	 The	

approaches	 often	 stimulate	 and	 support	 the	 body’s	 own	 self-healing	

capacity.	These	approaches	may	include,	but	are	not	limited	to,	the	use	of	

soluble	molecules,	 gene	 therapy,	 stem	 and	 progenitor	 cell	 therapy,	 tissue	

engineering	and	the	reprogramming	of	cell	and	tissue	types.”	

Tissue	engineering	is	defined	by	Langer	[296]	as:	

“An	interdisciplinary	field	that	applies	the	principles	of	engineering	and	life	

sciences	 toward	 the	 development	 of	 biological	 substitutes	 that	 restore,	

maintain,	or	improve	[Biological	tissue]	function	or	a	whole	organ".	

Clearly,	there	are	many	similarities	between	these	two	fields,	however	it	is	generally	

accepted	that	tissue	engineering	places	an	emphasis	on	the	use	of	scaffold	materials	

combined	with	 cells,	while	 those	 involved	 in	 regenerative	medicine	 focus	on	 stem	

cells.	

1.9.1 Regenerative	medicine	approaches	

The	functional	urethral	sphincter	relies	upon	the	presence	of	both	striated	and	smooth	

muscle	 components,	 in	 addition	 to	 a	 functional	 nerve	 supply	 to	 effectively	 resist	

incontinence.	 Owing	 to	 the	 poorly	 sustained	 outcomes	 of	 urethral	 	 bulking	 agent	

injections,	 there	 is	 interest	 in	 the	 use	 of	 stem	 cells	 to	 functionally	 	 regenerate	 the	

urethral	sphincter	 in	 those	with	 ISD.	Cells	 from	different	sources	have	been	 injected	

into	 	 the	 	 urethral	 	 sphincter	 	 of	 	 small	 	 animals	 	 in	 	 pre-clinical	 s tud ies 	 and 	

demonstrate	promising	results.	The	mesenchymal	stem	cells	(MSCs),	which	are	used	
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as	the	cell	source	in	a	vast	majority	of	these	studies	are	commonly	derived	from	bone,	

muscle	 or	 adipose	 tissue.	 MSCs	 share	 several	 characteristics	 such	 as	 long-term	

replicative	 potential	 and	 self-renewal,	 maintenance	 of	 undifferentiated	 properties	

and	multi-lineage	differentiation	ability	[297].	

1.9.1.1 Bone	marrow	derived	stem	cells	

Bone	marrow-derived	 stem	 cells	 (BMDSCs)	 were	 the	 first	 MSCs	 to	 be	 studied	 in	 a	

urology	 context	 by	 Drost	 et	 al	 [298]	 studied	 the	 implantation	 of	 BMDSCs	 into	 the	

bladder	 musculature	 with	 5-azacitidine	 as	 a	 myogenic	 differentiation	 stimulator.	

Stem	cells	differentiated	 into	muscle	 cells	 verified	by	 the	expression	of	 striated	and	

smooth	muscles	antigens.	Kinebuchy	et	al	[299]	injected	BMDSC,	labelled	with	green	

fluorescent	 protein	 into	 the	 urethral	 sphincter	 of	 Sprague-Dawley	 rats,	 which	 were	

rendered	 incontinent	 by	 urethrolysis.	 After	 13	 weeks,	 fluorescent	 imaging	

demonstrated	 that	 the	 skeletal	 muscle	 component	 of	 the	 urethral	 sphincter	 was	

regenerated,	however	the	VLPP	of	the	urethra	was	not	improved.	Corocos	et	al	[300]	

found	 similar	 regenerative	 outcomes	 using	 BMDSCs	 injected	 into	 the	 urethral	

sphincter	of	rats	after	pudendal	nerve	transaction	and	showed	significantly	improved	

VLPP	 4	 weeks	 after	 injection.	 While	 BMDSC	 demonstrate	 promising	 regenerative	

properties	in	pre-clinical	studies,	the	biopsies	for	bone	marrow	that	would	be	required	

in	 women	 are	 painful,	 frequently	 requiring	 general	 or	 spinal	 anaesthesia	 and	 often	

only	a	low	number	of	BMDSCs	are	isolated	[301].	

1.9.1.2 Muscle	derived	stem	cells	

Muscle-derived	 stem	 cells	 (MDSCs)	 can	 be	 obtained	 under	 local	 anaesthesia.	 They	

can	 be	 isolated	 from	 different	 sources;	 those	 from	 striated	muscle	 have	 shown	 the	

greatest	 regenerative	 potential	 in	 novel	 disease	models.	 	 [302].	 	 In	 	 addition,	 these	

cells	 can	 be	 differentiated	 into	 all	 mesenchymal	 cell	 lines,	 including	 neuronal	 and	

endothelial	 lineages	 [303,	 304].	 This	 cell	 type	 is	 regarded	 as	 the	 most	 appropriate	

source	 for	 ISD	 injection	 therapies	 and	 several	 studies	 have	 found	 good	 tissue	

regeneration,	 improved	 VLPP	 and	 recovered	 contractile	 urethral	 sphincter	 function	

when	 injecting	these	cells	 into	the	urethral	sphincter	of	different	SUI	animal	models	

[305-310].	 In	 humans,	 Mitterberger	 et	 al	 [311]	 reported	 the	 outcomes	 of	 the	 dual	

injection	 of	 MDSCs	 into	 the	 rhabdosphincter	 and	 fibroblasts	 into	 the	 urethral	
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submucosa	of	123	women	with	SUI.	 79%	of	women	were	completely	continent	with	

significant	improvements	in	urodynamic	parameters,	including	MUCP,	flow	rates	and	

post-voiding	 residual	volumes	at	 the	end	of	 the	12	month	 follow-up.	Carr	et	al	 [312]	

reported	 that	 5	 out	 of	 8	women	who	underwent	 a	 peri-urethral	 injection	 of	MDSCs	

were	subjectively	dry	and	had	a	negative	pad	test	during	follow-up,	with	a	functional	

onset	following	injection	of	between	3	and	8	months	and	continence	was	sustained	in	

these	5	patients	at	 the	12	month	study	endpoint.	To	obtain	a	 reasonable	content	of	

MDSCs,	a	 large	biopsy	of	skeletal	muscle	(5-30g)	 is	needed,	which	can	be	associated	

with	 donor	 site	 pain	 and	 bleeding.	 Gras	 et	 al	 [313]	 demonstrated	 that	 of	 patients	

undergoing	open	vastus	lateralis	muscle	biopsy,	10/40	described	pain	lasting	2-3	days,	

1/40	had	 a	 superficial	 infection	 and	2/40	developed	a	 haematoma.	Despite	 this,	 the	

biopsy	 required	 to	 obtain	 muscle	 cells	 is	 rapid	 and	 less	 invasive	 than	 that	 used	 to	

obtain	 BMDSC.	 However,	MDSCs	 differentiate	 quickly	 without	 any	 stimulation	 and	

can	 differentiate	 into	 multinucleated	 fibres,	 which	 do	 not	 have	 the	 regenerative	

properties	of	MSCs,	nor	do	MDSC	release	paracrine	factors	(both	for	nerve	and	blood	

vessels	 regeneration).	 Furthermore,	 the	 slow	 proliferative	 potential	 of	 	 MDSC	

increases	the	cost	of	the	procedure	[314].	

1.9.1.3 Adipose	derived	stem	cells	

Adipose-derived	 stem	 cells	 (ADSCs)	 have	 the	 particular	 potential	 for	 mesodermal	

tissue	 differentiation	 [315,	 316],	 such	 as	 in	 regeneration	 and	 revascularization	 [317,	

318].	 Only	 40-60%	 of	 the	 adipose	 tissue	 is	 composed	 of	 mature	 adipocytes	 	 and	

ADSCs	can	easily	and	quickly	be	isolated	from	the	stromal	vascular	fraction	of	adipose	

tissue,	 which	 is	 also	 composed	 of	 fibroblasts,	 macrophages,	 endothelial	 cells	 and	

hematopoietic	cells	[314].	These	cells	proliferate	very	quickly	and	do	not	differentiate	

without	 stimulating	 differentiation	 medium.	 ADSCs	 can	 differentiate	 into	 striated	

muscle,		showing		specific	markers	(desmin,		myod1,		myogenin,		myosin		heavy	chain)	

[319] and	have	been	used	to	regenerate	damage	skeletal	muscle	in	rabbits,	restoring

volume	 and	 muscular	 contraction	 [320].	 ADSCs	 have	 also	 been	 used	 for	 urethral	

sphincter	 reconstruction	 to	 improve	 continence	 outcomes	 in	 SUI	 animal	 models,	

dueto	 their	 capacity	 to	 differentiate	 into	 smooth	muscle	 cells	 [316]	 and	 to	 contract	

and	 relax	 under	 pharmacological	 stimulation	 [319].	 In	 humans,	 Gotoh	 et	 al	 [321]	

reported	 the	 outcomes	 of	 the	 trans-urethral	 injection	 of	 ADSC	 into	 the	
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rhabdosphincter	 in	 11	 male	 patients	 with	 SUI	 following	 a	 radical	 prostatectomy.	

Follow-up	was	limited	to	12	months	and	significant	improvements	were	noted	for	pad	

weight	testing,	MUCP	and	for	 incontinence	frequency	episodes.	Furthermore,	250ml	

of	 adipose	 tissue	 was	 aspirated	 from	 the	 abdominal	 wall	 with	 minimal	 donor	 site	

morbidity	and	cells	were	rapidly	isolated	prior	to	injection.	

The	outcomes	for	5	female	patients	with	SUI	were	described	by	Kuismanen	et	al	[322]	

following	 the	 trans-urethral	 injection	 of	 ADSCs.	 Cells	 were	 harvested	 from	 the	

abdominal	 wall,	 isolated	 and	 expanded	 for	 3-4	 weeks	 and	 were	 suspended	 in	 a	

Contigen™	matrix	 prior	 to	 injection.	 At	 1	 year,	 3	 patients	 demonstrated	 a	 negative	

cough	 test	 with	 the	 bladder	 filled	 to	 500ml,	 while	 the	 further	 2	 patients	 were	

improved.	The	24	hour	pad	test	was	significantly	reduced	 in	2/5	patients;	those	with	

the	 greatest	 degree	 of	 urinary	 leakage	 pre-operatively.	 Furthermore,	 there	 were	

improvements	 in	 patient	 reported	 outcome	 measures	 and	 no	 significant	 morbidity	

resulted	following	the	cell	harvest.	

The	 approaches	 for	 the	 treatment	 of	 POP	 differ	 somewhat	 to	 the	 regenerative	

medicine	 techniques	 used	 in	 SUI.	 With	 POP,	 a	 scaffold	 is	 required	 not	 only	 for	

mechanical	support	but	also	to	facilitate	the	integration	and	proliferation	of	cells	that	

would	 usually	 perish	without	 an	 adequate	 substrate	 for	 attachment.	Unfortunately,	

PPL	 meshes	 seeded	 with	 stem	 cells	 or	 fibroblasts	 have	 demonstrated	 poor	

attachment	 and	 proliferation,	 which	 may	 be	 due	 to	 a	 persistent	 inflammatory	

response	in	the	host	tissues.	

At	present,	the	most	commonly	used	materials	for	POP	repair	are	non-biodegradable	

PPL	 meshes,	 however	 the	 rates	 of	 extrusion	 through	 patient’s	 tissues	 with	 this	

material	are	high.	Acellular	materials	such	as	cadaveric	allografts	and	xenografts	have	

been	used		to		reduce		this		particular		complication,		however		the		long-term		failure	

rates	compared	to	PPL	are	significantly	greater	and	their	degradation	is	unpredictable	

[200,	323].		

With	 high	 failure	 rates,	 donor	 site	 morbidity	 and	 unpredictable	 degradation	 using	

acellular	 matrices,	 tissue	 engineered	 synthetic	 bio-degradable	 polymers	 have	 been	
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investigated	 as	 potential	 repair	 materials	 for	 the	 treatment	 of	 SUI	 and	 POP.	 The	

rationale	 behind	 seeding	 cells	 on	 these	 scaffolds	 is	 to	 regenerate	 tissues	 using	 cells	

from	an	uninjured	area	of	the	body.	Autologous	cells	are	preferred	in	this	context	due	

to	 issues	 with	 immunogenicity	 and	 cross-infection.	 Classically,	 these	 cells	 are	

harvested	 from	 a	 patient,	 isolated	 and	 expanded	 in	 vitro	 prior	 to	 seeding	 scaffolds	

with	these	cells	 for	 implantation.	Cells	 that	are	utilized	 for	 regeneration	depends	on	

their	 availability,	 with	 stem	 cells	 and	 fibroblasts	 responsible	 for	 many	 of	 the	

biomaterials	investigated	in	the	current	literature.	

1.9.2 Tissue	engineering	approaches	

Scaffolds	seeded	with	cells	can	be	implanted	into	the	patient.	Commonly,	autologous	

cells	are	harvested	 from	the	patient	 to	overcome	cross-infection	and	host	 rejection.	

Cells	 are	 isolated	 and	 expanded	 in	 culture	 prior	 to	 seeding	 on	 the	 scaffold	 and	

subsequent	 implantation.	 Thus,	 the	 intention	 	 is	 for	 appropriate	 integration	 of	 the		

new	 cells	with	 the	host	 cells.	When	 the	 intention	of	 tissue	 engineering	 is	 to	 restore	

load	 bearing	 function,	 the	 tensile	 properties	 of	 the	 implanted	 biomaterial	 must	 be	

such	that	 the	mechanical	properties	of	 the	weakened	tissue	are	 restored,	while	new	

supportive	tissue	is	formed	to	correspond	with	degradation	of	the	implanted	scaffold.	

Given	the	complications	that	occur	with	the	use	of	PPL	mesh,	many	cell	sources	and	

scaffold	materials	 have	 been	 investigated.	 The	 benefits	 and	 complications	 of	 	 each	

are	 discussed	 herein.	 The	 majority	 of	 studies	 in	 this	 context	 have	 not	 progressed	

significantly	 beyond	 initial	 pre-clinical	 stages.	 A	 summary	 of	 the	 current	 tissue	

engineering	approaches	to	the	problem	is	presented	in	table	1.9.	

1.9.2.1 Cells	

Stem	cells	or	fibroblasts	do	seem	a	rational	source	of	cells	for	reconstructive	or	tissue	

engineered	repair,		due		to	their	relative	ease		of	harvest.			ADSC,		MDSC	or	fibroblasts	

can	be	obtained	through	 local	anaesthetic	biopsy	procedures	with	minimal	 reported	

donor	 site	 morbidity	 or	 following	 procedures	 to	 remove	 such	 tissue	 that	 would	

otherwise	 be	 discarded	 e.g	 abdominoplasties	 in	 which	 abdominal	 skin	 and	 fat	 is	

removed.	 Autologous	 cells	 offer	 the	 advantages	 of	 overcoming	 the	 host	 tissue	

response	 or	 concerns	 with	 disease	 transmission.	 BMDSC	 however,	 often	 require	

painful	procedures	to	obtain	sufficient	cells	for	expansion	and	culture	therefore	their	
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use	is	generally	limited.	

	

Of	 cells	 cultured	 in	 vitro	 on	 synthetic	 degradable	 scaffolds,	 Roman	 et	 al	 [324]	

demonstrated	 that	 both	 ADSC	 and	 oral	 fibroblasts	 (OF)	 perform	 similarly	 in	 either	

restrained	or	unrestrained	conditions	in	terms	of	ECM	component	production	and	cell	

proliferation.	 Furthermore,	 the	 mechanical	 properties	 of	 these	 scaffold	 	 materials	

were	improved	compared	to	cell	free	synthetic	materials.	Moreover,	MSCs	are	better	

defined,	 more	 proliferative	 and	 can	 resist	 and	 inhibit	 myofibroblast	 differentiation.	

They	can	be	anti-inflammatory	and	anti-fibrotic,	reducing	inflammation	and	scarring.	

Also	3D	culture	 increases	the	anti-inflammatory	properties	of	MSCs	and	this	may	be	

beneficial	to	the	scaffolds	[325].	

	
1.9.2.2 Scaffolds	

	
In	 vivo	 data	 has	 demonstrated	 the	 potential	 of	 tissue	 engineered	 biodegradable	

scaffolds	 in	 rat	 models	 rendered	 incontinent	 through	 bilateral	 sciatic	 nerve	

transection.	 Using	 woven	 silk	 scaffolds	 seeded	 with	 BMDSC,	 total	 local	 collagen	

production	was	 improved	and	 leak	point	pressures	were	similar	 to	continent	control	

subjects	 [326].	 Similar	 findings	 have	 been	 reported	 by	 Cannon	 et	 al	 using	 MDSC	

seeded	on	small	 intestinal	submucosa	 (SIS)	scaffolds	 that	were	cultured	 for	2	weeks	

prior	to	implantation	[327].	

	
Using	 poly-L-lactic	 acid	 (PLA)	 scaffolds	 seeded	 with	 OF,	 Mangera	 et	 al	 [328]	

demonstrated	 improved	 ECM	production	 and	 comparable	 biomechanical	 properties	

of	 cells	 cultured	on	 these	materials	 in	 vitro	compared	 to	native	 tissue.	Furthermore,	

synthetic	 scaffolds	 offer	 the	 advantage	 of	 a	 predictable	 degradation	 and	 tuning	 of	

mechanical	characteristics.	

	

Of	 synthetic	 matrices	 of	 methoxy	 polyethylene	 glycol-polylactide-co-glycolide	

(MPEG-PLGA),	 seeded	 with	 fresh	 muscle	 fiber	 fragments,	 Boennelycke	 et	 al	 [329]	

demonstrated	 new	 striated	muscle	 formation	 in	 explanted	 samples	 from	 rats	 after	

eight	 weeks.	 Furthermore,	 Polylactide-co-glycolide	 (PLGA)	 scaffolds	 seeded	 with	

human	 vaginal	 fibroblasts	 were	 implanted	 in	 mice	 and	 demonstrated	 a	 highly	

proliferative	neo-fascia	formation	in	samples	up	to	12	weeks	in	vivo	[330].	Autologous	

fibroblasts	 have	 also	 been	 combined	 with	 autologous	 de-epidermised	 dermis	 for	
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implantation	 into	human	male	urethra	 for	 substitution	urethroplasty,	with	 three	out	

of	five	patients	demonstrating	a	patent	urethra	following	the	procedure	[331].	

Polyurethanes	 have	 been	 investigated	 as	 potential	 graft	 materials,	 particularly	 in	

vascular	 and	 bone	 tissue	 engineering.	 The	 reason	 for	 this	 is	 due	 to	 the	 elasticity	 of	

these	 polyurethanes	 and	 their	 ability	 to	 support	 cells.	 Bergmeister	 et	 	 al		

demonstrated	 sufficient	 cell	proliferation	 that	 continued	post-implant.	Furthermore,	

these	 cylinder	 shaped	 scaffolds	 cultured	 with	 endothelial	 cells	 for	 1	 	 year	

demonstrated	100%	patency	at	this	point	[332].	The	Badylak	group	have	investigated	

the	 use	 of	 polyurethanes	 for	 repair	 of	 abdominal	 herniae	 and	 have	 shown	 that	

polyurethanes	 offer	 much	 improved	 mechanical	 profiles	 than	 polypropylene	 and		

other	potential	repair	materials,	but	that	they	can	also	be	fabricated	to	be	more	anti-	

inflammatory	[333].	

Materials	 that	 are	 biodegradable	 represent	 a	 greater	 promise	 than	 those	 repair	

materials	that	are	non-biodegradable.	The	reasons	for	this	are	due	to	a	persistence	of	

an	 inflammatory	 response	 in	 addition	 to	 these	 materials	 becoming	 a	 focus	 of	

infection.	Materials	 that	 include	natural	extracellular	matrix	possess	a	natural	ability		

to	 induce	 tissue	 remodeling.	 Small	 intestine	 submucosa	 is	 such	 a	 material,	 which	

retains	 factors	 including	 FGF-2	 and	 fibronectin	 for	 tissue	 induction	 even	 after	

sterilization	 [334-336].	 Whilst	 xenografts	 do	 correspond	 with	 potential	 	 cross-	

infection,	synthetic	biodegradable	scaffolds	seeded	with	autologous	cells	could		offer	

a	solution	to	this	problem.	
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Table	1.9.	Summary	of	pre-clinical	studies	that	investigate	tissue	engineering	for	pelvic	floor	repair	

Author	 Cell	type	 Repair	

material	

Study	summary	 Outcome	

Lu	et	al	[337]	 MDSC	 SIS	 In	vitro.		Cells	seeded	up	to	 Cells	produced	myotubes	with	

8	weeks.	 contractile	activity.	

Ho	et	al	[338]	 MDSC	 SIS	 In	vitro	and	in	vivo.	Cell	

seeded	SIS	used	to	repair	

rat	vaginal	wall	defects.	

Smooth	muscle	cell	

differentiation.	

No	fibrosis	seen.	

Cannon	et	al	[327]	 MDSC	 SIS	 In	vivo.	Cell	seeded	SIS	

implanted	in	rat	SUI	

model.	

Leak	point	pressures	equivalent	

to	sham	controls.	

Mangera	et	al	[328]	 OF	 7	scaffolds	 In	vitro.		7	seeded	

scaffolds.	Cell	

SIS	and	PLA	demonstrated	

greatest	cell	attachment,	ECM	

attachment,	ECM	

production	and	

mechanical	properties	

assessed	after	2	weeks.	

properties	and	had	mechanical	

properties	closest	to	native	

tissue.	

Zou	et	al	[326]	 BMDSC	 Silk	 In	vivo.	Cell	seeded	

scaffolds	implanted	in	rat	

SUI	model.	

Leak	point	pressures	equivalent	

to	sham	controls.	

Boennelycke	et	al	 MDSC	or	fresh	 MPEG-PLGA	 In	vivo.	Cell/muscle	 By	8	weeks,	MDSC	and	scaffolds	

[329]	 muscle	

fragments	

fragment	seeded	scaffolds	

implanted	subcutaneously	

in	rats	

could	not	be	identified,	while	

muscle	fragments	generated	

new	striated	muscle.	

Hung	et	al	[330]	 VF	 PLGA	 In	vivo.		Cell	seeded	 Well-organised	neo-fascia	

scaffold	implanted	

subcutaneously	in	mice	

formation,	traced	up	to	12	weeks	

following	implantation.	

OF.		Oral	fibroblasts	

SIS.		Small	intestinal	submucosa	

MDSC.		Muscle	derived	stem	cells	

BMDSC.		Bone	marrow	derived	stem	cells	

MPEG.		methoxy	polyethylene	glycol	

PLA.		Polylactic	acid	

ECM.		Extracellular	matrix	

PLGA.	polylactide-co-glycolide	

VF.		Vaginal	fibroblasts	
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1.10 Background	to	the	project	

1.10.1 Formation	of	matrices	–	Electrospinning	

Electrospinning	 (Figure	 1.10)	 involves	 the	 passage	 of	 a	 polymer	 solution	 through	 a	

capillary,	 at	 which	 point	 a	 high	 voltage	 is	 applied.	 As	 the	 electrostatic	 forces	 are	

overcome	at	 the	 tip	of	 the	 capillary,	 a	pendant	drop	of	polymer	 solution	 is	 formed,	

leading	 to	 the	 ejection	 of	 a	 fine	 jet	 of	 fibre	 that	 is	 attracted	 towards	 an	 earthed	

collector.	 During	 this	 process,	 the	 diameter	 of	 the	 fibre	 narrows	 sufficiently	 for	

solvent	 evaporation	 to	 occur,	 which	 leads	 to	 the	 deposition	 of	 polymer	 on	 the	

collector.	 Typically,	 this	 process	 is	 driven	 by	 various	 factors	 including	 viscosity,	

humidity,	voltage	and	capillary	to	collector	distance	that	can	influence	fibre	diameter,	

pore	 size	 and	 fibre	 orientation.	 However,	 this	 simple	 process	 can	 be	 used	 to	

reproducibly	produce	a	mat	of	polymer	fibres	that	can	be	used	as	scaffolds	for	cellular	

attachment.	

A	major	limitation	of	this	technique	involves	uncontrollable	factors	in	the	methods	of	

the	 process	 itself.	 Humidity	 and	 temperature	 in	 particular	 can	 affect	 the	 	 polymer	

fibres	that	are	produced,	however,	these	factors	can	often	be	controlled	to	a	degree	in	

a	laboratory	setting.	
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Figure	1.10.		Electrospinning	apparatus	

Charged	jet	of	polymer	fibre	attracted	to	earthed	collector.	

1.10.2 Chemo-stimulation	

A	 variety	 of	 pharmacological	 substances	 have	 been	 investigated	 to	 assess	whether	

these	confer	biomimetic	actions	upon	the	cells/host	response	following	implantation.	

Several	 key	 targets	 are	 of	 interest	 in	 the	 regeneration	 of	 tissues,	 particularly	 the	

inflammatory	 response,	 infection,	 ECM	 production	 (including	 collagen	 and	 	 elastin)	

and	 vasculogenesis.	 Incorporating	 such	 substances	 into	 degradable	 synthetic	

materials	 allows	 a	 controlled	 release	 of	 the	 investigated	 drug	 corresponding	 to	 the	

degradation	 of	 the	 repair	 material	 itself.	 Due	 to	 the	 controlled	 production	 of	

materials	with	tuned	fibre	and	pore	sizes,	not	to	mention	synthetic	fibres	that	can	be	

tuned	to	degrade	rapidly	or	more	slowly,	electrospun	fibres	have	been	investigated	as	

a	 vehicle	 for	 drug	 delivery	 to	 tissues	 [339-341].	 The	 high	 surface	 to	 volume	 ratio	 of	

electrospun	nanofibre	polymers	would	make	these	materials	ideal	vehicles	for	a	drug	

delivery	 system	 by	 enabling	 an	 adequate	 delivery	 of	 drug	 across	 a	 large	 area.	 The	

drawback	 to	 the	 simplest	 method	 of	 electrospinning	 (the	 co-electrospinning	 of	

solutions	 of	 polymer	 and	 drug)	 is	 that	 the	 investigated	 bioactive	 substance	 often	

undergoes	an	initial	burst	release,	which	may	lead	to	toxic	doses	in	the	acute	phase.	

Using	 electrospun	 polymer	 nanofibres	 that	 degrade	more	 slowly,	 a	 prolonged	 drug	

release	can	be	achieved.		Unfortunately	however,	the	hydrophobicity	of	such	matrices	

has	the	drawback	of	reduced	cell	attachment	and	integration	compared	to	hydrophilic	
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polymers	 such	 as	 PLA,	 poly-glycolic	 acid	 (PGA)	 and	 poly	 (hydroxybutyrate-co-	

hydroxyvalerate)	(PHBV).	

Those	rapidly	degrading	scaffolds,	which	release	drugs	over	a	period	of	weeks	would	

be	 ideal	 for	 conditions	 that	 would	 not	 require	 a	 drug	 delivery	 system	 to	 provide	

mechanical	 support.	 In	 the	 dynamic	 environment	 of	 the	 pelvic	 floor	 however,	

biodegradable	 synthetic	 materials	 would	 be	 required	 to	 persist	 at	 the	 site	 of	

implantation	 for	 at	 least	 a	 year.	 The	 reason	 for	 this	 is	 not	 only	 to	 provide	 initial	

mechanical	 support	 for	 the	 tissues,	but	also	 to	enable	 sufficient	 tissue	 regeneration	

for	an	appropriate	degree	of	strength	to	be	conferred	by	the	native	connective	tissues	

of	 the	 pelvic	 floor.	 Other	 techniques	 using	 slowly	 degrading	 polymer	 scaffolds	

utilizing	 a	 ‘sandwich’	 fabrication	 technique	 with	 the	 active	 ibuprofen	 drug	 as	 the	

‘filling’	produces	a	relatively	rapid	diffusion	of	the	drug,	while	the	nanofibre	scaffolds	

persist	in	vitro	[342].	

1.10.2.1 Antimicrobials	and	anti-inflammatories	

Using	 a	 co-electrospinning	 technique,	 PLA	 and	 Poly	 (ethylene-co-vinyl-acetate)	

matrices	 have	 been	 shown	 to	 release	 a	 controlled	 dose	 of	 the	 antimicrobial	 drug,	

tetracycline	 [343].	 Tetracycline	 has	 also	 been	 demonstrated	 to	 be	 released	 from	

PLGA/polyurethane	 co-polymers,	 with	 the	 tetracycline	 itself	 incorporated	 into	 the	

PLGA	fibres	only,	 to	correspond	with	a	controlled	release	[344].	PLA	scaffolds	 laden	

with	 the	 antimicrobial	 mupirocin	 has	 been	 demonstrated	 to	 inhibit	 staphylococcus	

aureus	 bacteria,	 responsible	 for	 certain	 post-operative	 wound	 infections	 [345].	 The	

non-steroidal	 anti-inflammatory	 drug	 ibuprofen	 has	 been	 incorporated	 into	 the	

polymer	 fibres	 of	 PLGA	 scaffolds	 and	 demonstrated	 a	 release	 over	 a	 suitable	

physiological	time-frame	[346].	In	addition	to	this,	the	dosages	of	ibuprofen	released	

were	demonstrated	to	reduce	the	response	of	cultured	OF	to	major	pro-inflammatory	

stimulators,	 without	 impacting	 on	 cell	 attachment	 and	 proliferation.	 Another	 non-	

steroidal	anti-inflammatory,	meloxicam	has	been	incorporated	into	electrospun	poly	

vinylacetate	 (PVA)	 scaffolds	 in	 order	 to	 test	 the	 transdermal	 delivery	 of	 the	 drug	

through	snakeskin	models	[347].			Diclofenac	loaded	poly-caprolactone	scaffolds	are	

purported	 to	 prevent	 abdominal	 wall	 adhesion	 by	 reducing	 the	 inflammatory	

response	[348].	
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1.10.2.2 Drug	releasing	scaffolds	that	improve	vasculogenesis	

Heparin	 immobilized	 electrospun	 scaffolds	 that	 release	VEGF	have	 been	 associated	

with	enhanced	endothelialization	for	potential	applications	as	a	vascular	graft	 [349].	

Furthermore,	 Luong-van	 et	 al	 [350]	 demonstrated	 retained	 bioactivity	 of	 released	

heparin	after	6	days	in	the	absence	of	a	significant	macrophage	response	to	the	drug-	

delivery	scaffolds.	

1.10.2.3 Oestradiol	

Following			implantation			of			any			material,			an				appropriate			initial				healing			phase	

is	 	 required,	 	 including	 	 host	 	 cell	 	 integration	 	 and	 	 neovascularisation.	 	 The	 	 sex			

steroid,	oestradiol	has		potent		effects		on		would		healing.		Oestradiol		is		an		inhibitor	

of	 the	MMPs	 	 that	 	 are	 	 responsible	 	 for	 	 collagen	 	degradation	 	 [130]	 	 and	 	 greater	

tissue	 	 strengths	 	 resulting	 	 from	 	 neo-collagen	 	 synthesis	 	 	 [113].	 	 	 Furthermore,	

patients	with	 	SUI	 	who	demonstrate	 	atrophic	 	vaginitis	 	 following	 	the	 	menopause	

are	 treated	 with	 topical	 	 oestradiol	 for	 up	 to	 two	months,	 	 as	 	 tissue	 	 strength	 	 is	

altered	 	 in	 	post-	menopausal	 	patients	 	as	 	a	 	 result	 	of	altered	collagen	metabolism	

[132].	

Oestrogens	 play	 an	 important	 physiological	 role	 in	 the	 cyclical	 	 uterine	

neovasculariation	 of	 the	 female	 reproductive	 tract	 and	 also	 in	 pathological	

angiogenesis	 [351].	Oestrogen	has	been	 investigated	as	 a	 therapeutic	 target	due	 to	

the	 pro-	 angiogenic	 properties	 in	 disease	 states	 characterized	 	 by	 	 poor	

vascularization	 in	 cardiac	 ischaemia	 [352]	 and	 wound	 healing.	 Oestrogen	 receptor	

blockage	 is	 also	 a	 strategy	 to	 	 inhibit	 	 pathological	 	 neovascularization	 	 in	 	 breast	

cancer	 and	 diabetic	 retinopathy.	 The	 effects	 of	 oestradiol	 involve	 the	 direct	

stimulation	 of	 vascular	 endothelial	 cells	 through	 the	 oestrogen	 receptor	 [353].	

Previously	 studies	 have	 demonstrated	 that	 oestradiol	 	 can	 	 be	 	 released	 	 from	

materials	 to	 result	 in	 beneficial	 	 effects	 	 on	 	 target	 	 tissues	 	 [354,	 	 355]	 	 and	 	 drug	

delivery			systems			using			oestradiol			have		been		used		as		contraceptive		vaginal	rings	

[356] and			using			electrospinning			techniques			as			coated			cardiovascular			stents			in

coronary	 artery	 disease	 [357].	 	 However,	 to	 the	 best	 of	 our	 knowledge	 the	 pro-

angiogenic	property	of		oestradiol,	which	is	released	from			a	scaffold	has	not	previously	

been	investigated.	
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1.10.2.4 Vitamin	C	

Vitamin	C	 is	 involved	in	the	synthesis	of	collagen.	Collagen	molecules	undergo	post-	

translational	 modifications,	 including	 hydroxylation	 of	 proline	 and	 lysyl	 residues,	

which	 is	 pertinent	 for	 the	 strength	 and	 structure	 of	 collagen	 owing	 to	 cross-link	

formation	 [358].	 Vitamin	 C	 is	 a	 cofactor	 involved	 in	 the	 activity	 of	 both	 enzymes	

involved	in	the	hydroxylation	of	these	residues	[359].	Studies	have	demonstrated	the	

benefit	of	the	addition	of	Vitamin	C	to	media	in	tissue	engineering	in	order	to	enhance	

collagen	production	[360],	whilst	type	1	collagen	production	increased	in	SIS	scaffolds	

treated	with	Vitamin	C	[361].	
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1.11 The	importance	of	biomechanical	properties	

Currently,	 there	 are	 no	 standardized	 protocols	 for	 the	 measurement	 of	 the	

biomechanical	properties	of	materials	prior	to	implantation.	Present	data	stems	from	

stress-strain	 curves	 calculated	 through	 uniaxial	 tensiometry.	 Furthermore,	 there	 is	

debate	as	to	the	exact	mechanical	forces	exhibited	in	paravaginal	tissues	of	subjects	

both	with	and	without	pelvic	floor	disorders.	A	systematic	review	by	Mangera	et	al	in	

2011	 revealed	 only	 one	 study	 comparing	 the	 mechanical	 properties	 of	 healthy	

patient’s	tissues	published	in	the	literature	[362].	Here,	postmenopausal	subjects	with	

prolapse	 demonstrated	 less	 elastic	 tissues,	 which	 failed	 at	 relatively	 low	 levels	 of	

strain.	 Furthermore,	 increasing	age	was	 related	 to	a	 lower	ultimate	 tensile	 strength	

(UTS)	[144].	Materials	that	are	therefore	too	elastic	or	weak	may	lead	to	recurrence,	

whereas	 materials	 that	 are	 too	 rigid	 may	 lead	 to	 exposure	 of	 the	 repair	 material.	

Therefore,	an	ideal	repair	material	should	have	mechanical	properties	comparable	to	

those	of	healthy	paravaginal	tissues.	
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1.12 Previous	work	at	our	institution	

In	2010,	our	group	investigated	7	different	synthetic	and	biological	candidate	scaffold	

materials,	 one	 of	 which	 was	 produced	 in	 house.	 	 Scaffolds	 were	 seeded	 with	 oral	

fibroblasts	 as	 potential	 repair	 materials	 for	 the	 pelvic	 floor.	 Of	 these	 candidate	

scaffolds,	 electrospun	 Poly-L-lactic	 acid	 (PLA)	 and	 commercial	 small	 intestine	

submucosa	 (SIS)	 performed	 the	 best	 during	 assessment	 of	 cell	 viability,	 matrix	

component	production	and	biomechanical	properties	[328].	Through	this	initial	work,	

PLA	was	 selected	 for	 further	 investigation	 in	 an	 attempt	 to	 overcome	 some	 of	 the	

limitations	 associated	 with	 non-biodegradable	 synthetic	 materials	 and	 biological	

tissues.	

In	 2012,	 PLA	 scaffolds	 were	 seeded	 with	 ADSC	 and	 implanted	 into	 a	 fascia	 defect	

immunocompetent	rat	model	for	7	days	prior	to	material	explantation.		Samples	were	

tested	 for	 histological	 and	 immunological	 outcomes.	 	 All	 cell	 seeded	 materials	

demonstrated	 evidence	 of	 constructive	 remodeling	 with	 demonstration	 of	

neovascularization,	cell	integration	and	matrix	component	production	[363].	

Of	 materials	 that	 release	 certain	 drugs,	 our	 group	 developed	 biodegradable	

electrospun	poly-lactide-co-glycolide	scaffolds	to	release	the	anti-inflammatory	drug	

ibuprofen	 [346].	 	 This	was	 demonstrated	 to	 release	 the	drug	 that	 corresponds	with	

the	 degradation	 of	 the	 polymer	material	 itself.	 The	 ibuprofen	 attenuated	 an	 acute	

inflammatory	 response	 over	 a	 seven	 day	 period,	 by	 which	 point	 the	 scaffold	 had	

degraded.	There	was	no	significant	impact	on	cell	viability	or	matrix	production.	This	

technology	is	patented	by	our	group	for	the	treatment	of	chronic	wounds.	
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Chapter	II:		Materials	and	Methods	
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2.1 Scaffolds	and	cells	

2.1.1 Polymer	preparation	

Three	 polymers	were	 used	 during	 this	 project,	 either	 in	 isolation	 or	 in	 combination	

(co-polymer	or	layers).	Poly-L-lactic	acid	((PLA)	Goodfellow,	Cambridge,	UK))	at	10%	

(wt/v)	 was	 dissolved	 in	 dichloromethane	 (DCM).	 Polyurethanes	 (PU)	 Z1	 and	 Z3	

(Biomer	 technologies,	 Cheshire,	 UK)	 were	 dissolved	 in	 50:50	

dimethylformide:tetrahydrofuran	(DMF:THF)	at	6%	(wt/v)	and	70:30	DMF:THF	at	10%	

(wt/v)	 respectively.	 For	 in	 vivo	 experiments,	 commercial	 PPL	 mesh	 (GynecareTM	 ,	

Johnson	&	Johnson)	was	used	as	supplied.	A	summary	of	these	polymers	is	presented	

in	table	2.1.	

Table	2.1.	Polymer	solutions	used	during	scaffold	electrospinning	

Polymer	 Source	 Solvent	 Concentration	

Poly-L-lactic	acid	 Goodfellow	 Dichloromethane	 10%	(wt/v)	

Polyurethane	Z1A1	 Biomer	technologies	 Dimethylformide/tetrahydrofuran	

50:50	

6%	(wt/v)	

Polyurethane	Z3A1	 Biomer	technologies	 Dimethylformide/tetrahydrofuran	

70:30	

10%	(wt/v)	

2.1.2 Electrospinning	

2.1.2.1 Basic	electrospinning	of	random	fibres	

Polymer	solutions	(20mls	total)	were	loaded	into	5ml	syringes	fitted	with	blunt	tipped	

21G	needles	(I	&	J	Fisnar,	Wayne,	New	Jersey),	placed	into	a	syringe	pump	(GenieTM	

Plus,	 Kent	 Scientific,	 USA),	 and	 delivered	 at	 40µl/min	 per	 syringe	 during	 the	

electrospinning	 process	 (figure	 1.10).	Microfibres	were	 created	with	 an	 accelerating	

voltage	 of	 17kV	 DC	 from	 a	 high	 voltage	 supply	 (Genvolt,	 UK)	 and	 collected	 on	 an	

aluminium	foil	covered	earthed	mandrel	(80mm	diameter,	160mm	length)	rotating	at	

300rpm,	 with	 a	 needle	 to	 collector	 distance	 of	 17cm	 at	 21°C	 and	 ~30%	 humidity.	

Scaffolds	were	dried	at	room	temperature	for	24	hours	prior	to	storage	at	-20°C.
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2.1.2.2 Electrospinning	two	separate	polymers	(co-polymers)	

Co-polymer	 scaffolds	 of	 Z1:PLA	 were	 formed	 by	 simultaneously	 delivering	 two	

individual	polymer	solutions	to	the	collector	from	polymer	delivery	equipment	placed	

either	side	of	the	mandrel	as	depicted	in	Figure	2.1.1.	These	co-polymers	consisted	of	

either	4	syringes	of	Z1	to	1	syringe	of	PLA	(4:1	Z1	to	PLA	termed	Z1	high	(20%)	PLA)		or	

10	syringes	of	Z1	to	1	syringe	of	PLA	(10:1—	Z1	low	(9%)	PLA).	

2.1.2.3 Electrospinning	layered	polymer	scaffolds	

Polyurethane	 layered	 scaffolds	were	 created	 by	 loading	 solutions	 of	 PU	 Z3	 into	 5ml	

syringes	fitted	with	blunt	tipped	21G	needles,	placed	into	a	syringe	pump	(GenieTMPlus,	

Kent	 Scientific,	 USA).	 Tri-layers	 consisted	 of	 random-aligned-random	 orientations	

(Figure	2.1.2).	Random	fibres	were	produced	by	delivering	polymer	solutions	at	a	rate	

of	40µl/min	per	 syringe	with	an	accelerating	voltage	of	 17kV	DC	 from	a	high	voltage	

supply	 (Genvolt,	 UK)	 and	 collected	 on	 an	 aluminium	 foil	 covered	 earthed	 mandrel	

(80mm	 diameter,	 160mm	 length)	 rotating	 at	 300rpm,	 with	 a	 needle	 to	 collector	

distance	 of	 17cm	at	 21oC	 and	 ~30%	humidity.	Aligned	 fibres	 	were	 produced	 using	 a	

voltage	 of	 21kV,	 a	 mandrel	 rotation	 speed	 of	 600rpm	 and	 a	 needle	 	 to	 collector	

distance	of	5cm.	

Interwoven	 random-aligned-random	 fibre	 morphologies	 were	 produced	 using	 two	

separate	 syringe	pumps.	Layers	were	produced	using	 15mls	 for	 each	outer	 randomly	

orientated	 fibres,	 with	 a	 2.5ml	 overlap	 for	 each	 layer	 (one	 syringe	 pump	 delivering	

random	 fibres,	 while	 the	 other	 pump	 delivered	 aligned	 fibres)	 and	 a	 5ml	 layer	 of	

aligned	fibres	to	comprise	the	central	layer.	
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Figure	2.1.1.		The	formation	of	random	electrospun	fibres	

Red	fibres	indicate	one	polymer	solution,	while	blue	fibres	indicate	another	polymer	solution.	

Figure	2.1.2.		The	formation	of	random-aligned	co-polymers	
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2.1.3 Isolation	and	culture	of	adipose	derived	stem	cells	

Human	subcutaneous	adipose	tissue	was	selected	as	a	source	of	ADSC.	These	tissues	

were	 obtained	 from	 specimens	 from	 abdmomioplasty	 procedures	 that	 would	

otherwise	have	been	discarded	following	surgery.	Procurement	was	performed	on	an	

anonymous	basis	under	research	tissue	bank	 license	(number	08/H1308/39)	under	the	

Human	 Tissue	 Authority.	 All	 isolation	 and	 culture	 procedures	 were	 undertaken	 in	

sterile	conditions	in	a	culture	hood	reserved	for	normal	human	cell	lines.	Samples	were	

mechanically	minced	 along	with	 0.1ml	 of	 100units/ml	 of	 penicillin	 and	 streptomycin.	

10ml	of	this	tissue	was	collected	separately	into	centrifugation	tubes,	prewashed	with	

penicillin/streptomycin	and	centrifuged	at	1300RPM	for	5	minutes.	

The	 tissue	 pellet	 was	 separated	 and	 a	 mixture	 of	 HANK	 solution,	 containing	 0.1%	

collagenase	A	(Roche	Diagnostics,	Germany),	0.1%	bovine	fetal	albumin	(BSA)	(Sigma-

Aldrich)	and	1%	penicillin/streptomycin	was	added.	Tissue	was	incubated	at	37oC	for	40	

minutes	 with	 interval	 agitation.	 Collagenase	 digested	 tissues	 were	 centrifuged	 at	

1300RPM	 for	 8	 minutes,	 with	 the	 pellet	 representing	 the	 stromal	 vascular	 fraction	

(SVF),	which	was	re-suspended	 in	Dulbecco’s	modified	eagles	medium	(DMEM).	Cells	

were	 further	 centrifuged	 at	 1300RPM	 for	 8	minutes	 with	 20ml	 of	 DMEM	 before	 the	

pellet	was	finally	cultured	in	one	T25	flask,	incubated	at	37oC	and	5%	CO2		for	24	hours.	

Non-adherent	 cells	 were	 removed	 with	 PBS	 washes	 and	 media	 was	 changed	 three	

times	 per	 week.	 Cells	 were	 passaged	 once	 at	 80-90%	 confluence	 using	 2ml	 of	

trypsin/EDTA	 (Sigma-Aldrich)	with	 100,000	 cells	 re-seeded	 in	 subsequent	 T75	 flasks.	

ADSC	 were	 characterized	 using	 flow	 cytometry,	 differentiation	 assays	 and	 antigen	

staining	as	previously	described	by	our	group	and	collaborators	in	Leuven	[363-365].	

Cells	were	seeded	at	between	passage	3-6	for	all	experiments.	
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2.2 Sample	preparation	and	cell	seeding	

Scaffolds	were	chemically	sterilized	for	15	minutes	using	70%	ethanol	(EToH),	following	

which,	 EToH	 was	 removed	 by	 washing	 with	 excess	 PBS.	 Autoclaved	 1cm	 diameter	

stainless	steel	cell	 seeding	 rings	were	placed	on	 the	surface	of	 the	sterilized	scaffold.	

Cells	were	detached	from	tissue	culture	flasks		using	2ml	of	trypsin/EDTA		and	counted.	

Passage	 3-6	 cells	were	 re-suspended	 in	 0.5ml	 of	DMEM	and	 seeded	 on	 the	 scaffold,	

with	a	further	2ml	of	DMEM	added	to	the	outside	of	the	ring	to	maintain	the	cells	in	the	

centre.	 Constructs	 were	 incubated	 at	 37oC	 at	 5%	 CO2	 for	 12	 hours	 before	 the	metal	

rings	were	 removed	 using	 sterile	 equipment	 and	 the	 scaffolds	were	 transferred	 to	 a	

new	 6	well	 plate	with	 a	 further	 2ml	 of	 DMEM	 added.	 Samples	were	 incubated	with	

media,	which	was	replaced	three	times	per	week.	
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2.3 Drug	releasing	scaffolds	

2.3.1 Drug	releasing	scaffolds	

17βEstradiol	(mW	272.38,	Sigma-Aldrich)	was	dissolved	in	the	PLA	solution	at	1%,	5%	

and	10%	by	mass	of	polymer	(1mg/ml,	5mg/ml,	10mg/ml	total).	The	gradual	addition	of	

the	 drug	 allowed	 colourless	 solutions	 of	 each	 concentration	 to	 be	 produced.	 The	

resulting	 polymer	 solutions	were	 then	 electrospun	 in	 a	 random	 fashion	 as	 above.	 	 A	

variety	of	oestradiol	concentrations	were	used,	as	 it	was	not	possible	to	calculate	the	

exact	 proportion	 of	 oestradiol	 that	 would	 be	 A)	 present	 in	 the	 final	 scaffold	 after	

electrospinning,	and	B)	released	from	the	scaffold	over	time.		It	was	hypothesized	that	

5%	of	the	total	oestradiol	added	to	the	pre-electrospinning	solution	would	be	present	

in	 the	 final	 scaffold;	 a	 value	 that	 was	 determined	 from	 previous	 drug-release	

experiments	using	hydrophobic	drugs	[346].		Our	previous	data	demonstrates	that	PLA	

degrades	over	a	6	month	period	when	submerged	 in	a	medium,	therefore	 if	 this	 final	

concentration	 of	 oestradiol	 would	 be	 released	 at	 a	 steady	 state,	 the	 actual	 dose	

delivered	would	equate	to	a	physiological	tissue	concentrations	of	oestradiol.		Clearly,	

the	topical	oestradiol	ointments	used	in	contemporary	clinical	practice	contain	supra-

physiological	 concentrations	 of	 the	 drug	 delivered	 intermittently	 to	 tissues,	 which	

avoid	 toxic	 effects.	 	 Therefore,	 this	 lower	 dose	 was	 selected,	 as	 this	 concentration	

would	 be	 delivered	 continuously	 to	 correspond	 with	 degradation	 of	 the	 polymer	

material.			

2.3.2 Measurement	of	oestradiol	release	

Scaffolds	were	cut	and	standardised	by	mass	to	equate	to	1%	of	the	entire		electrospun	

mat.	All	scaffolds	were	washed	and	incubated	in	1ml/well	of	Phosphate	buffered	saline	

(PBS)	in	a	12-well	tissue	culture	plate.	The	relative	fluorescence		of		PBS	was	measured	

intermittently	(Kontron	SFM	25	spectralflurometer)	at	λex277nm/λem310nm,	with	fresh	

PBS	 replaced	 following	 each	 sampling	 over	 a	 5-month	 period.	 Oestradiol	

concentrations	 were	 calculated	 by	 preparing	 standard	 solutions	 of	 known	

concentration	and	plotting	the	relative	fluorescence	on	a	standard	curve.	New	standard	

curves	were	prepared	at	each	sampling	time-point.	
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2.3.3 Calculation	of	viable	oestradiol	dose	

10,000	 ADSC	 were	 seeded	 per	 well	 on	 6	 well	 plates	 and	 incubated	 with	 DMEM	

supplemented	with	concentrations	of	oestradiol	determined	from	release		experiments	

as	above.		Cell		viability		assay		using		2.5ml		of		5µg/mL		of		AlamarBlue®	in		PBS		(AbD	

serotec,	Kiddlington,	UK)	was	performed	at	days	7	and	14.	

2.3.4 Cell	differentiation	assays	in	2-D	

100,000	human	ADSC	at	passage	3	were	seeded	per	well	in	a	6	well	plate	with	DMEM.	

Both	 oestradiol	 releasing	 and	 non-oestradiol	 releasing	 PLA	 scaffolds	 (15mm2	 and	

weight	 matched)	 were	 added	 to	 each	 well,	 supported	 by	 autoclaved	 stainless	 steel	

grids,	the	surface	of	which	was	covered	by	media.	DMEM	was	removed		after		24	hours	

and	replaced			with			specific			induction			medium,			changed			every			3			days		 for	

3	 weeks.	 Adipogenic	 induction	 medium	 consists	 of	 4.5	 mg/mL	 glucose-DMEM	

(GlutaMaxTM,	

Gibco	Invitrogen,	Paisley,	UK)	containing	10%	(v/v)	FBS,	5	mL	penicillin	(100units/mL)	

and	 streptomycin	 (100	 µg/mL),	 2.5	ml	 fungizone	 (630	 ng/mL),	 l	 µM	 dexamethasone	

(Sigma-Aldrich,	Dorset,	UK),	0.5	mM	methyl-isobutylxanthine	(Sigma-Aldrich,		Dorset,	

UK),	10	µg/mL	insulin	(Sigma-Aldrich,	Dorset,	UK),	and	l00	µM	indomethacin	(Sigma-

Aldrich,	Dorset,	UK).	Osteogenic	 induction	medium	contained	10	nM	dexamethasone	

(Sigma-Aldrich,	Dorset,	UK),	50	µg/mL	ascorbate-2-phosphate	(Sigma-Aldrich,	Dorset,	

UK),	and	2	mM	b-glycerophosphate	(Sigma-Aldrich,	Dorset,	UK)	in	4.5	mg/mL	glucose-

DMEM	(GlutaMaxTM,	Gibco	Invitrogen,	Paisley,	UK)	supplemented	with	10%	(v/v)	FBS,	

5	mL	 penicillin	 (100units/mL)	 and	 streptomycin	 	 (100	 µg/mL),	 and	 2.5	mL	 fungizone	

(630	ng/mL)	(Gibco	Invitrogen,	Paisley,	UK).	

Cells	 were	 fixed	 with	 3.7%	 (v/v)	 paraformaldehyde	 for	 20	minutes	 and	 washed	 with	

PBS.	 Fixed	 cells	 were	 stained	 for	 both	 adipogenic	 and	 osteogenic	 potential.	 For	

adipogenic	potential,	 fixed	cells	were	 incubated	with	0.3%	filtered	Oil	Red	O	 (Sigma-	

Aldrich,	Dorset,	UK)	in	60%	isopropanol	(Fisher	Scientific,	UK	Ltd)	(w/v)	for	20	minutes.	

After	excess	stain	was	removed	by	washing	with	PBS	samples	were	lightly	stained	with	

haematoxylin	 (Sigma-Aldrich,	 Dorset,	 UK)	 and	 light	microscopy	 was	 performed.	 For	
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osteogenic	 potential,	 fixed	 cells	were	 stained	with	 1	mg/mL	Alizarin	RedTM	 solution	

(Sigma-Aldrich,	 Dorset,	 UK)	 for	 10	 min.	 Light	 microscopy	 images	 were	 taken	 after	

removing	excess	stain	with	PBS.	
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2.4 Measurement	of	cell	response	

2.4.1 Metabolic	activity	

The	metabolic	response	of	cells	cultured	on	scaffolds	was	quantified	by	AlamarBlue™	

(Resazurin)	assay	at	7	and	14	days.	This	blue	dye	becomes	 irreversibly	reduced	to	the	

red	fluorescent	resorufin	in	the	presence	of	active	cells.	Media	was	removed		from	each	

well	 and	 scaffolds	were	washed	 three	 times	 in	PBS.	 1mL	per	well	 of	 sterile	 resazurin	

(5mg/ml)	was	added	and	cells	were	incubated	for	one	hour	(figure	2.4.1).	50μl	of	each	

sample	was	aspirated	with	the	optical	density	measured	at	570nm	using	a	plate	reading	

colorimeter.	

Figure	2.4.1.	Cell	metabolic	activity	of	cultured	cells	seeded	on	scaffolds	in	a	well-plate	

Top	–	non	cell	seeded	scaffolds.	Bottom	–	cell	seeded	scaffolds.		Blue	colour	indicates	no/little	activity.		Pink	

colour	indicates	cell	metabolic	activity.	

2.4.2 Staining	for	total	collagen	production	

After	 14	 days,	 total	 collagen	 production	 was	 measured	 of	 each	 scaffold.	 Following	

three	washes	with	PBS,	1ml	of	0.1%	solution	of	Sirius	Red	F3B	in	saturated	picric	acid	

was	added	and	samples	were	allowed	to	stain	for	18	hours.	Sirius	red	is	a	polyazo	dye	

and	stains	collagen	fibres	a	deep	red	colour.	Samples	were	washed	with	PBS	until	no	

further	 stain	 was	 eluted.	 Samples	 were	 then	weighed	 and	 photographed.	 Stain	 was	

eluted	using	1ml	per	well	of	0.2M	NaOH:MeOH	(1:1),	allowed	to	evaporate	over	10	

minutes.	50μl	of	each	sample	was	aspirated	with	the	optical	density	measured	at	490nm	
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using	a	plate	reading	colorimeter.	

2.4.3 Cell	attachment	and	matrix	production	–	immunofluorescence	

500,000	 human	 ADSC	 at	 passage	 3	 were	 seeded	 on	 all	 scaffolds	 and	 cultured	 for	 2	

weeks	as	above.	Cells	were	fixed	3.7%	paraformaldehyde	for	20	minutes,	 followed	by	

washing	 samples	 3	 times	 with	 PBS.	 1ml	 of	 1ng/ml	 of	 4′,6-diamidino-2-phenylindole	

dihydrochloride	((DAPI)	Gibco	Invitrogen,	Paisley,	UK)	was	added	to	cover	each	sample	

for	40	minutes.	Samples	were	washed	3	 times	 in	PBS,	 following	which,	1%	of	bovine	

serum	antigen	(BSA)	was	added	for	30	minutes	to	reduce	non-specific	binding.	Primary	

antibodies	 were	 added;	 goat	 anti-human	 collagen	 I,	 III	 and	 rabbit	 anti-human	 alpha	

elastin	(AbD	Serotec,	Oxford,	UK).	100µl	of	1:20	antibody	was	added	per		sample	for	30	

minutes	 prior	 to	washing	with	 PBS.	 100µl	 of	 1:50	 secondary	 antibodies	were	 added,	

including	FITC	labelled	anti-goat	IgG	and	anti-rabbit	IgG.	

The	location	of	DAPI	stained	nuclei	and	matrix	components	(fluorescein	isothiocyanate	

(FITC)	labelled)	were	determined	using	a	fluorescent	(Axon	ImageXpressTM,	Molecular	

Devices	 Limited,	 Union	 City,	 CA)	 by	 switching	 between	 filters	 for	 DAPI	

(λex385nm/λem461nm)	and	FITC	(λex495nm/λem515nm).	

2.4.4 Examination	of	cell	penetration	into	scaffolds	

For	 imaging	of	 live	cells	within	scaffolds,	 live	 staining	was	used	 to	 label	 the	cells	and	

second	 harmonic	 generation	 (SHG)	was	 used	 to	 image	 the	 scaffolds.	 500,000	 ADSC	

were	 seeded	per	 scaffold	 and	 incubated	with	DMEM	changed	 three	 times	per	week.	

Cell-scaffolds	were	cultured	for	3	weeks,	following	which,	0.5mls	of	serum	free	DMEM	

with	10µM	celltracker™	red	CMTPX	(Invitrogen,	Oregon	USA)	was	added	per	well	and	

incubated	 for	 one	 hour.	 Cells	were	 imaged	 live,	 using	 a	Zeiss	 LSM	510	Meta	 upright	

laser-scanning	confocal	microscope	(Carl	Zeiss	MicroImaging,	Germany)	using	a	40x	

1.3	 NA	 oil	 immersion	 objective	 attached	 to	 a	 tuneable	 (700–	 1060	 nm)	 Chameleon	

Ti:sapphire	 multiphoton	 laser	 (Coherent,	 CA,	 USA)	 for	 second	 harmonic	 generation	

signal.	 Red	 cell	 tracker	 signal	 was	 created	 by	 illuminating	 constructs	 at	 543nm	with	

30%			transmission			and			detected			between			565nm		and			615nm.					For			SHG	signal,	

constructs	were	illuminated	at	840nm	and	signals	were	detected	between	415nm	and	

426nm.	Images	(512	x	512),	with	a	pixel	dwell	time	of	6.39µs	were	captured	at	a	range	
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of	depths	by	moving	the	focal	plane	down	from	the	surface	of	the	scaffold,	where	there	

was	the	greatest	number	of	cells	present	and	without	any	polymer	fibres	visible,	at	1µm	

intervals	 until	 no	 further	 cells	were	 visible	 and	polymer	 fibres	dominated	 the	 field	of	

view.	

2.4.5 Mechanical	testing	under	static	and	dynamic	conditions	

Samples	of	all	materials	were	placed	in	a	tensiometer	(BOSE	Electroforce	instruments,	

Minnesota,	 USA)	 (Figure	 2.4.2).	Mechanical	 properties	 were	measured	 using	 a	 ramp	

test,	elongating	the	material	at	a	rate	of	0.1	mm/s	or	a	cyclic	test	with	a	rate	of	1mm/s	

up	to	25%	of	displacement	from	its	original	length	at	50	cycles.	Strain	was	normalized	

to	 the	 sample	 length,	 while	 stress	 was	 plotted	 according	 to	 sample	 area	 (width	 x	

thickness).	 The	 point	 at	 failure	was	 taken	 as	 the	UTS	 and	 the	 linear	 gradient	 of	 the	

initial	 linear	 portion	 of	 the	 stress-strain	 curve	 was	 taken	 as	 the	 YM	 (Figure	 2.4.3).		

Values	are	expressed	as	MPa	(N/mm2).	

For	 dynamic	 loading,	 samples	 measuring	 3cm	 x	 1cm	 were	 placed	 in	 a	 TC-3	 load	

bioreactor	 (EBERS	 Medical	 Technology	 SL,	 Zaragoza,	 Spain)	 (Figure	 2.4.4)	 and	

subjected	 to	 cyclic	 uniaxial	 distension	 using	 25%	 elongation,	 0.1mm/s	 rate	 and	 18	

cycles	per	minute	over	7	days	in	DMEM	at	37°C,	5%	CO2.	Samples	were	then	assessed	

for	mechanical	properties	as	above.	Data	was	plotted	as	stress	vs	strain	and	the	initial	

linear	 gradient	 of	 each	 curve	was	 taken	 as	 the	 Young’s	modulus	 (N/mm2),	while	 the	

point	at	maximal	 stress	was	 taken	as	 the	ultimate	 tensile	 strength.	Both	values	were	

compared	 to	 values	 published	 for	 paravaginal	 tissues	 of	 healthy	 premenopausal	

patients	[144]	
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Clamps	

Load	cell	

Material	

Tensiometer	

Figure	2.4.2.	Measuring	the	tensile	properties	of	tissues/materials	using	a	tensiometer	

Tested	material	is	gripped	between	two	clamps.	

Figure	2.4.3.	Calculation	of	Young’s	modulus	and	ultimate	tensile	strength	from	a	stress-strain	curve	

Young’s	modulus	 Ul		mate	tensile	strength	
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Figure	2.4.4.	Programmable	cyclical	distension	in	a	closed	incubator	bioreactor	

2.4.6 Scanning	electron	microscopy	

Scaffolds	 were	 fixed	 using	 3.7%	 paraformaldehyde	 and	 underwent	 drying	 using	

hexamethyldisilazine	(HMDS)	before	mounting	on	12.5mm	stubs.	These		samples	were	

sputter	 coated	 with	 approximately	 25nm	 of	 gold	 (Edwards	 sputter	 coater	 S150B,	

Crawley,	UK)	 and	 examined	 using	 a	 scanning	 electron	microscope	 (SEM)	 (Philips/FEI	

XL-20	SEM,	Cambridge,	UK)	using	an	accelerating	voltage	set	between	10-15kV.

2.4.7 Statistics	

Where	P	values	are	given,	these	were	calculated	using	a	two-tailed	student	T	test	with	

equal	variance	not	assumed.	

143



144

2.5 In	vivo	examination	of	scaffolds	

2.5.1 Polymers	

Electrospun	polymer	scaffolds	included	PLA	and	PU	Z3.	PPL	(Gynecare)	and	PVDF	

(DynaMesh)	meshes	were	used	as	supplied.	

2.5.2 Scaffold	production	

PU	Z3	and	PLA	scaffolds	were	electrospun	and	handled	in	a	sterile	laminar	flow		culture	

hood.	 PU	 Z3	 solutions	 (20mls	 total)	 were	 loaded	 into	 5ml	 syringes	 fitted	 with	 blunt	

tipped	21G	needles,	placed	into	a	syringe	pump,	and	delivered	at	40µl/min	per	syringe.	

Microfibres	were	created	with	an	accelerating	voltage	of	17kV	DC	from		a		high	voltage	

supply	and	collected	on	an	aluminium	foil	covered	earthed	mandrel	(80mm	diameter,	

160mm	length)	rotating	at	300rpm,	with	a	needle	to	collector	distance	of	17cm	at	21°C	

and	 ~30%	humidity.	 Scaffolds	were	 dried	 at	 room	 temperature	 for	 24	 hours	 prior	 to	

storage	at	-20°C.	

(figure	3.1.2).	

PLA	scaffolds	were	produced	using	a	novel	multi-channel	stainless	steel	delivery	tube	

that	was	produced	 in	house.	The	multi-channel	 tube	 incorporated	 12	delivery	needle	

tips	 and	 two	 tubes	 were	 used;	 each	 placed	 either	 side	 of	 the	 collector	 attached	 to	

separate	syringe	pumps.	One	driver	delivered	random	fibres,	while	the	other		delivered	

aligned	fibres	towards	the	collecting	mandrel.	For	random	and		aligned	fibers	29	and	15	

ml	PLA	solution,	respectively,	were	electrospun.	The	multichannel	needle	was	used	at	

28.8	ml	per	hour	with	an	accelerating	voltage	of	17	kV	and	at	17	cm	from	the	needle	tip	

to	collect	random	fibers,	and	at	21	kV	and	5	cm	from	the	tip	of	the	needles	for	aligned	

fibers	at	21C	and	approximately	30%	humidity.	The	collector	was	set	to	rotate	at	600	

rpm	for	aligned	fibers	and	300	rpm	for	random	fibers	(figure	2.5.1).	

Random	 fibers	 were	 electrospun	 15	 minutes	 before	 aligned	 fibers	 and	 finished	 15	

minutes	 later.	Scaffolds	(30	x	30	mm)	were	cut	and	packaged	in	pre-autoclaved	bags,	

which	were	transported	to	KU	Leuven	for	implantation.	
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Figure	2.5.1.	Formation	of	random-aligned	PLA	co-polymers	using	a	novel	multichannel	needle	

Reproduced	with	permission	from	Roman,	S.,	I.	Urbankova,	G.	Callewaert,	F.	Lesage,	C.	Hillary,	N.I.	Osman,	

C.R.	Chapple,	J.	Deprest,	and	S.	MacNeil,	Evaluating	Alternative	Materials	for	the	Treatment	of	Stress

Urinary	Incontinence	and	Pelvic	Organ	Prolapse:	A	Comparison	of	the	In	Vivo	Response	to	Meshes	

Implanted	in	Rabbits.	J	Urol	2016;196:261-9.	

2.5.3 Animals	

A	 total	 of	 40	New	Zealand	white	male	 rabbits	weighing	 between	 3.3	 and	 4	 kg	were	

divided	 into	 5	groups	of	 8	 each	according	 to	 the	 implant	 used	during	 surgery.	These	

included	 PLA,	 PU	 Z3,	 polyvinylidine	 fluoride	 (PVDF)	 or	 PPL,	with	 1	 group	 serving	 as	

sham	 operated	 controls.	 Four	 rabbits	 per	 group	 were	 sacrificed	 at	 30	 days	 and	 the	

remaining	 4	 per	 group	 were	 sacrificed	 at	 90	 days.	 Rabbits	 were	 housed	 in	 the	 KU	

Leuven	 animal	 facility	 and	 the	 experiment	 was	 approved	 by	 the	 KU	 Leuven	 ethical	

committee	 (No.	 P077-2013).	 Animals	 were	 treated	 according	 to	 the	 European	 Legal	

Framework	 for	 the	 use	 of	 animals	 established	 by	 European	 Union	 Directive	

86/609/EEC.	 	 Males	 animals	 were	 selected	 as	 subjects,	 as	 they	 are	 cheaper	 than	

females	and	because	they	were	housed	separately,	there	was	no	concern	over	fighting	

between	animals.	 	Clearly,	 female	 rabbits	would	be	a	more	appropriate	model	 in	 this	

context,	 however	 there	 are	 no	 significant	 differences	 in	 local	 tissue	 oestrogens	

between	male	and	female	rabbits	before	the	age	of	4	months,	furthermore	this	study	

assessed	 the	 host	 response	 to	 implantation	 rather	 than	 an	 accurate	 SUI	 model.	

Animal	experiments	were	performed	in	Leuven,	Belgium	for	two	reasons.			
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1. Our	group	has	a	long	history	of	collaboration	with	researchers	in	Belgium

2. The	 Belgian	 group	 already	 held	 appropriate	 animal	 licensing	 arrangements	 –

procedures	which	are	significantly	more	difficult	to	obtain	in	the	contemporary	UK

climate.

2.5.4 Implantation	

Animals	were	anaesthetized	using	inhaled	100%	isofluorane	(Isoba)	delivered	by	a	nose	

cone	and	the	abdomen	was	shaved.	A	60mm	longitudinal	 incision	was	made	superior	

to	the	umbilicus	and	skin	flaps	either	side	of	the	incision	were	raised	(Figure	2.5.2).	Two	

20	mm	incisions	were	made	through	fascia	and	peritoneum	in	each	of	 the	two	upper	

abdominal	quadrants,	parallel	 to	 the	midline.	Defects	were	closed	under	direct	vision	

using	4/0	polyglecaprone	 (Monocryl)	sutures.	For	each	of	 the	8	sham	control	defects,	

no	 further	 repair	 was	 performed	 and	 the	 superficial	 tissues	 were	 closed	 using	

interrupted	4/0	polyglacin	(Vicryl)	to	the	dermis	and	3/0	Monocryl	to	the	skin.	For	the	

experimental	arms	however,	the	repaired	defect	was	reinforced	with	an	on-lay	of	either	

PLA,	PU	Z3,	PVDF	or	PPL	materials	 (Figure2.5.3D),	 secured	 in	 a	 tension	 free	 fashion	

using	continuous	4/0	Monocryl	suture	bites.	The	orientation	of		the	repair	was	such	that	

the	 longitudinal	 axis	 of	 the	 repair	material	 ran	 perpendicular	 to	 the	 direction	 of	 the	

fascial	 incision.	 Implanted	materials	were	marked	with	a	4/0	polypropylene	 (Prolene)	

suture,	placed	at	each	corner	to	aid	 in	the	future	 identification	and	orientation	of	the	

material.	Thereafter,	the	superficial	tissues	were	closed	as	previously	described	(Figure	

2.5.3F).	 Following	 a	 period	 of	 recover,	 animals	were	 allowed	 to	move,	 eat	 and	 drink	

freely.	 Regular	 post-operative	 evaluation	 on	well-being	was	 performed	 daily	 for	 one	

week	and	weekly	thereafter.	
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Figure	3.5.2.	Diagrammatic	representation	of	implantation	technique	

Figure	2.5.3.	Representative	photographs	to	demonstrate	implantation	technique	

A) The	abdominal	wall	is	shaved	and	the	underlying	skin	sterilized.

B) A	skin	incision	through	the	dermis	is	created	and	full	thickness	fascial	and	peritoneal	incisions	are

created.

C) Fascia	and	peritoneum	are	closed.

D) Repair	material	is	sutured	to	fascia	in	experimental	arms	(PPL	in	this	case).

E) Dermis	closure.

F) Skin	closure.

  A	   B	   C	   D	   E	   F	

Repair	material	
Incision			
Suture	
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2.5.5 Animal	Sacrifice	

At	 30	 and	 90	 days	 following	 implantation,	 4	 rabbits	 per	 experimental	 arm	 were	

sacrificed	 at	 each	 time	 point.	 1ml	 of	 sodium	 pentobarbital	 (Nembutal)	 60mg/ml	

intravenously	 was	 used	 following	 sedation	 with	 1ml	 each	 of	 ketamine	 and	

intramuscular	 xylazine.	 At	 the	 point	 of	 explantation,	 implant	 dimensions	 were	

recorded,	in	addition	to	the	presence	of	local	complications,	which	included	herniation,	

adhesion	 formation,	exposure,	encapsulation	or	overt	 	 infection.	 Implanted	materials	

were	 dissected	 en	 bloc,	 to	 include	 15mm	 of	 surrounding	 tissue,	 termed	 the	 explant.	

Control	 samples	 included	 two	 healthy	 samples	 from	 virgin	 abdominal	 tissue.	 All	

explants	were	divided	longitudinally	into	two	separate	strips	with	the	defect	located	at	

the	centre	of	each	strip.	One	strip	of	each	explant	was	wrapped	in	0.9%	saline	soaked	

gauze	and	stored	at	-200C	for	biomechanical	testing.	The	other	strip	was	fixed	in	0.5%	

zinc	chloride,	0.5%	zinc	acetate	and	0.05%	calcium	acetate	in	0.1	M	tris	HCl,	pH	6.4	to	

6.7,	 for	 48	 hours,	 following	which,	 it	 was	washed	 in	 phosphate	 buffered	 saline	 for	 1	

hour	 and	 transferred	 to	 70%	 ethanol	 before	 paraffin	 embedding	 with	 a	 Chandon	

Citadel	1000	HVL	device.		All	samples	were	transported	tothe	University	of	Sheffield	for	

further	analysis.		As	discussed	preiously,	thawing	and	other	post	processing	techniques	

do	have	an	effect	on	the	mechanical	properties	of	materials,	however	this	was	the	only	

method	 available	 for	 testing	 these	materials;	 mechanical	 testing	methods	 were	 not	

available	in	Leuven.			

2.5.6 Biomechanical	Testing	

Explants	 were	 thawed	 at	 room	 temperature	 and	 cut	 in	 a	 longitudinal	 fashion.	 Two	

samples	per	explant	were	produced	20mm	x	5mm	for	mechanical	testing.	One	sample,	

including	 surrounding	 connective	 tissues	 was	 tested,	 while	 the	 second	 	 sample	 was	

dissected	to	isolate	the	implanted	material	only	for	testing	(Figure	2.5.4).	Control	(non-

implanted)	 materials	 that	 were	 produced	 from	 the	 same	 batch	 were	 tested.	

Dimensions	were	recorded	prior	to	testing	using	the	tensiometer,	with	an		8mm	clamp-

to-clamp	distance,	with	the	abdominal	wall	defect	located	at	the	centre	of	each	tested	

sample.	Biomechanical	properties	were	 tested	at	 room	 temperature,	 using	a	uniaxial	

tensile	 test,	 during	which,	 samples	were	 distended	 along	 their	 longitudinal	 axis	 at	 a	

rate	of	0.1mm/s.	Strain	was	normalized	to	the	sample	length,	while	stress	was	plotted	
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according	to	sample	area	(width	x	thickness).	The	point	at	failure	was	taken	as	the	UTS	

and	the	linear	gradient	of	the	initial	linear	portion	of	the	stress-strain	curve	was	taken	

as	the	YM.		Values	are	expressed	as	MPa	(N/mm2).	
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A	

B	

Figure	2.5.4.		Biomechanical	testing	of	explanted	samples	

A) Testing	of	the	material	en	bloc	with	surrounding	tissues

B) Testing	of	the	material	only,	following	dissection.

2.5.7 Histology	

6µm	 thick	 sections	 of	 paraffin	 embedded	 samples	 was	 performed	 using	 a	 Leica	 TP	

1020	Automatic	Tissue	Processor	microtome	and	sections	were	placed	on	Superfrost	

Plus	 slides	 (Menzel-Gläser,	Denmark).	Conventional	Haematoxylin	and	Eosin	 staining	

was	performed	by	deparaffinising	slides	with	100%	Xylene	(Fisher	Scientific,	UK	Ltd.)	

for	3	minutes,	 followed	by	rehydration	of	 the	sample	using	two	submersions	 in	100%	

industrial	 methylated	 spirit	 (IMS,	 Fisher	 Scientific,	 UK	 Ltd.)	 for	 3	 minutes	 each,	

followed	by	a	further	10	minutes	in	95%	IMS.	Slides	were	then	rinsed	with	pH	neutral	

distilled	 water	 (dH2O).	 Slides	 were	 then	 stained	 with	 Harris	 Haematoxylin	 (Sigma-	

Aldrich,	Dorset,	UK)	 for	8	minutes,	 followed	by	2	minutes	of	gentle	washing	with	pH	

neutral	 dH2O.	 Slides	were	 then	 stained	with	 Eosin	 (Sigma-Aldrich,	 Dorset,	 UK)	 for	 3	

minutes	followed	by	sample	dehydration	by	the	stepwise	submission	of	slides	 in	95%	

IMS	(1	minute)	and	100%	IMS	(5	minutes)	before	cleaning	in	70%	xylene	for	1	minute	

and	mounting	using	DPX	mounting	medium	(Fisher	Scientific,	UK	Ltd.).	 Imaging	was	

undertaken	using	a	conventional	light	microscope.	
150



151

For	 immunohistochemistry,	 6µm	 tissue	 sections	 were	 produced	 and	 staining	 was	

performed	 using	 the	mouse	 specific	 horseradish	 peroxidase/DAB	 (diaminobenzidine)	

(ABC)	Detection	IHC	Kit	(Abcam).	Sections	were	rehydrated	as	above	and	delineated.	A	

blocking	step	was	performed	by	incubating	samples	in	1%	BSA	(AbD	Serotec)	for	one	

hour.	Sections	were	then	incubated	with	one	of	six	monoclonal		antibodies		diluted	1:50	

with	 1%	BSA	 for	 one	 hour	 each.	 Table	 2.5	 provides	 detail	 of	 each	 primary	 antibody.	

Sections	were	 then	 incubated	with	 biotinylated	 secondary	 antibodies,	 which	 include	

anti-mouse	Ig	using	a	Detection	 IHC	Kit	 (Abcam)	and	anti-goat	 Ig,	 in	1%	BSA	(1:200).	

After	 incubation	 with	 avidin	 and	 biotinylated	 horseradish	 peroxidase	 the	 target	

proteins	 were	 visualized	 by	 incubation	 in	 peroxidase	 substrate	 and	 DAB	 chromogen	

(Abcam	 Detection	 IHC	 Kit).	 Samples	 were	 counterstained	 with	 hematoxylin	 for	 4	

minutes,	dehydrated	and	mounted	as	above.	

Control	 samples	 consisted	 of	 those	 incubated	 without	 primary	 and	 secondary	

antibodies	 or	 samples	 that	 were	 incubated	 only	 with	 secondary	 antibodies.	

Immunostaining	was	assessed	semi-quantitatively	on	a	blinded	observer	basis	using	a	

qualitative	grading	scale.	Values	 include	absent	 (0),	mild	presence	 (1),	 large	presence	

(2),	abundance	(3)	and	great	abundance	(4).	Three	representative	images	per	sample	at	

each	 time	 point	 were	 evaluated	 by	 4	 blinded	 researchers	 for	 a	 total	 of	 12	 samples.	

Example	micrographs	that	illustrate	scores	0,	1,	2,	3	and	4	were	provided	for	reference	

and	the	median	of	these	scores	was	used.	The	M1/M2	ratio	was	also	calculated	for	each	

group.	

2.5.8 Statistics	

Differences	 in	 biomechanical	 properties	 between	 materials	 and	 time	 points	 were	

tested	 for	 statistical	 significance	 by	 2-way	 ANOVA	 testing.	 Comparisons	 between	

individual	 groups	 were	 determined	 with	 the	 Tukey	 test.	 Detecting	 significance	 for	

immunostaining	 and	 the	 M1/M2	 ratio	 were	 calculated	 using	 the	 Kruskal-Wallis	 test,	

while	comparisons	between	individual	groups	were	determined	by	the	Dunn	test.	
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Table	2.5.		Primary	antibodies	and	their	description	

Antibody	 Description	 Rationale	 Manufacturer	

Mouse	anti-human	

CD31	

Surface	receptor	present	on	endothelial	cells	(used	to	

assess	neovascularization).	

Indicate	

neovascularisation	

DAKO,	Agilent	

Technologies	

Mouse	anti-rabbit	
RAM11	

Reacts	with	a	cytoplasmic	antigen	in	rabbit	

macrophages	(used	to	assess	the	presence	of	

macrophages).	

Assess	presence	of	

macrophages	

DAKO,	Agilent	

Technologies	

Mouse	anti-rabbit	

T-Lymphocytes

Clone	KEN-5;	thymocytes	and	mesenteric	lymph	node	

cells	(used	to	assess	the	presence	of	t-lymphocytes).	

Assess	presence	of	

T-lymphocytes

AbD	Serotec	

Mouse	anti-human	

HLA-DR	

Stains	antigen	presenting	cells	such	us	macrophages,	B-	

cells	and	dendritic	cells.	MHC	class	II	cell	surface	

receptor	that	presents	peptides	from	antigens	to	T-	

helper	cells	which	in	turn	stimulate	B-cell	proliferation	

an	antibody	production.	Receptor	involved	in	transplant	

rejection,	several	autoimmune	conditions	and	chronic	

wounds	(used	to	asses	M1	response)8.	

Assess	M1	response	 Abcam	

Mouse	anti-human	

CD206	

Macrophage	mannose	receptor	1	belonging	to	the	

group	of	pattern	recognition	receptors,	involved	in	

tissue	repair	(used	to	asses	M2	response)8.	

Assess	M2	response	 AbD	Serotec	

Goat	anti-human	

collagen	III	

Extracellular	matrix	protein	 Assess	matrix	

formation	

AbD	Serotec	
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Chapter	III:	The	production	and	characterization	of	electrospun	polymer	

scaffolds	
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3.1 Chapter	introduction	

There	 is	considerable	overlap	between	the	techniques	of	 regenerative	medicine	and	

tissue	 engineering.	 The	 principles	 of	 tissue	 engineering	 are	 based	 upon	 the	 use	 of	

scaffolds,	which	provide	an	appropriate	environment	for	the	penetration	and	growth	

of	host	cells	[366].	The	term	scaffold	encompasses	a	range	of	synthetic	and	biological	

biomaterials	and	can	be	pre-seeded	with	cells	prior	to	implantation	or	implanted	into	

the	body	cell-free.	The	benefit	of	cell-seeded	scaffolds	is	that	the	cellular	processes	of	

cytokine	production,	matrix	production,	angiogenesis	and	anti-inflammatory	effects	

can	optimize	the	integration	of	constructs	once	implanted	into	the	host.	Conversely,	

the	 implantation	 of	 cell-free	 scaffolds	 requires	 appropriate	 integration	 of	 host	 cells	

into	 the	 scaffolds	 without	 the	 recognized	 problem	 of	 rejection,	 inflammation	 or	

encapsulation.	 Here,	 the	 term	 scaffold	 is	 used	 to	 describe	 synthetic	 cell-free	

constructs,	 and	 several	 considerations	 exist,	 which	 dictate	 the	 fate	 of	 a	 scaffold	

following	implantation	[367]:	

1. Scaffold	 architecture.	 The	material	 itself,	 fibre	 diameter	 and	 porosity	 of	 the

scaffold	 can	 affect	 cell	 penetration,	 growth	 and	 integration	 of	 the	 cells

following	implantation.

2. Mechanical	 properties	 of	 the	 scaffold.	 Does	 the	 strength	 or	 elasticity	 of	 the

scaffold	 reflect	 those	 of	 the	 host?	 Does	 the	 scaffold	 have	 load-bearing

requirements?	What	will	happen	to	the	mechanical	properties	of	the	scaffold

over	time?

3. Host	compatibility.	Will	 the	scaffold	be	rejected?	Will	host	cells	 integrate	the

material?	Will	there	be	encapsulation	or	an	excessive/persistent	inflammatory

phase?
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3.2 Scaffold	morphology	

Synthetic	 scaffolds	 can	 be	 composed	 of	 either	 naturally	 occurring	 or	manufactured	

polymer	 materials	 [368].	 The	 benefit	 of	 synthetic	 scaffolds	 is	 that	 their	 physical	

properties	can	be	finely	tuned,	to	achieve	appropriate	degradation	rates,	mechanical	

properties	or	porosity.	They	do	not	usually	require	any	further	processing	procedures,	

unlike	biological	scaffolds	and	can	be	produced	en	masse	to	be	available	‘off	the	shelf’.	

Electrospinning	 has	 become	 an	 accepted	 method	 for	 the	 production	 of	 synthetic	

polymer	scaffolds	for	a	host	of	tissue	engineering	applications	[369].	The	production	

of	 interwoven	 fibres	 creates	 a	 3-D	 environment	 with	 a	 large	 surface	 area	 for	 the	

integration	and	growth	of	cells.	

In	 these	experiments	 two	classes	of	polymer	are	used.	The	FDA	approved	polymer,	

poly-L-lactic	acid	is	a	biodegradable	polymer	of	lactic	acid,	derived	from	corn	starch.	

Degradation	occurs	via	hydrolysis	into	lactic	acid,	which	is	metabolized	via	the	Krebs	

cycle.	 Implanted	PLA	degrades	over	a	period	of	months	 to	years,	depending	on	 the	

volume	of	material	that	is	present.	Polyurethanes	are	a	large	group	of	polymers	with	

diverse	 physical	 and	 chemical	 properties.	 Polyurethanes	 (PUs)	 are	 degraded	 by	

hydrolysis	 of	 the	 urethane	 bond,	 with	 oxidation	 and	 enzymatic	 degradation	 of	 the	

subsequent	 fragments.	 However,	 due	 to	 the	 slow	 nature	 of	 this	 degradation,	most	

contemporary	 polyurethanes	 are	 considered	 non-biodegradable	 [370].	 PUs	 	 have	

been	used	successfully	in	a	host	of	commercial	and	medical	applications,	due	to	their	

durability	 and	 stability	 [370].	 As	 a	 result	 of	 these	 physical	 characteristics,	 PUs	 have	

been	used	for	insulating	cardiac	pacing	wires,	urinary	catheters,	cardiovascular	grafts	

and	breast	 implants	 [371].	Degradable	 isoforms	exist,	 that	 are	 less	 stable	 yet	 retain	

similar	 physical	 properties	 to	 their	 non-biodegradable	 counterparts	 and	 have	 been	

used	in	several	tissue	engineering	applications	[372].	

We	 investigate	both	PLA	and	non-degradable	medical	grade	PUs	 (PU	Z1A1	and	PU	

Z3A1).	Scaffolds	are	produced	using	a	variety	of	techniques,	including	electrospinning	

single	polymers,	co-polymers	or	layered	polymers:	
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• Random	fibres	of	PLA	(PLA)	

• Random	fibres	of	PU	Z1A1	(Z1)	

• Random	fibres	of	PU	Z3A1	(Z3)	

• Co-polymer	of	PLA	and	Z1	with	a	high	proportion	of	PLA	(Z1	high	PLA)	

• Co-polymer	of	PLA	and	Z1	with	a	low	proportion	of	PLA	(Z1	low	PLA)	

	
3.2.1 Fibre	morphology	

	

Scanning	electron	microscopy	was	performed	on	all	scaffolds	to	confirm	morphology	

(figure	3.2.1).		This	allowed	the	subsequent	calculation	of	fibre	diameter	and	porosity.	

	
3.2.2 Fibre	diameter	

	

All	 scaffolds	demonstrated	a	mean	 fibre	diameter	 in	excess	of	 	0.5µm	(figure	3.2.2).		

Z1	 demonstrated	 the	 smallest	 mean	 fibre	 diameter	 of	 0.51µm,	 while	 PLA	 had	 the	

greatest	mean	fibre	diameter	of	0.67µm	(table	4.2).	

	
3.2.3 Pore	diameter	

	

Using	 scanning	 electron	microscopy	 images,	 pore	 size	was	 defined	 as	 the	 diameter	

bordered	by	overlapping	polymer	 fibres	and	was	 imaged	using	 ImageJ	 software.	All	

scaffolds	 had	 a	 mean	 pore	 diameter	 in	 excess	 of	 3.5µm	 (figure	 3.2.3),	 while	 Z3	

demonstrated	the	greatest	mean	pore	size	of	5.8µm.	Smaller	pores	were	observed	in	

Z1	(3.9µm)	(table	3.2).	
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Figure	3.2.1.	Fibre	morphology	as	demonstrated	by	scanning	electron	microscopy	

A) PLA.		B)		Z1.		C)		Z3.		D)		Z1	high	PLA.		E)		Z1	low	PLA.
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Figure	3.2.2.		Fibre	diameter	of	scaffolds	

Calculated	from	serial	scanning	electron	micrographs	and	ImageJ	software.	n=20±SEM.	

Figure	3.2.3.		Pore	diameter	of	scaffolds	

Calculated	from	serial	scanning	electron	micrographs	and	ImageJ	software.	n=20±SEM.	
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Table	3.2.		Summary	of	scaffold	morphological	properties	

Scaffold	 Fibre	diameter	(range)	(µm)	 Pore	diameter	(range)	(µm)	

PLA	 0.67	(0.49-0.88	 5.7	(4.7-7.7)	

Z1	 0.51	(0.24-0.69)	 3.9	(2.1-5.8)	

Z3	 0.66	(0.48-0.89)	 5.8	(4.4-8.1)	

Z1	high	PLA	 0.61	(0.45-0.81)	 5.2	(3.9-7.2)	

Z1	low	PLA	 0.52	(0.26-0.71)	 4.2	(2.9-5.9)	
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3.2.4 Section	discussion	

The	 structure	 of	 any	 scaffold	 has	 a	 significant	 impact	 upon	 the	 clinical	 outcomes	

that	result	following	implantation.	As	previously	discussed,	fibre	diameter	and	pore	

size	 can	 have	 implications	 on	 inflammatory	 response	 and	 implant	 encapsulation	

[186].	 Therefore,	 it	 is	 important	 to	 assess	 our	 scaffolds	 for	 their	 morphological	

properties	to	ensure	that	they	would	be	suitable	for	implantation.	

Our	produced	scaffolds	all	demonstrate	microfibrous,	microporous	structures;	 	the	

size	 of	 which	 can	 be	 tuned	 by	 altering	 the	 electrospinning	 parameters.	 These	

include	 the	 solution	 viscosity,	 the	 working	 distance	 between	 the	 syringe	 and	

collector,	the	voltage	and	rotator	speed	of	the	collector	[373].	Recent	studies	have	

demonstrated	 a	 benefit	 for	 using	 microfibrous	 scaffolds	 as	 compared	 to	 those	

composed	of	much	smaller	fibres	[374,	375].	

It	 is	also	clear	 that	a	 relationship	exists	between	fibre	diameter	and	porosity;	with	

greater	pore	sizes	found	in	scaffolds	that	exhibit	a	greater	fibre	diameter.	Pore	size	

is	 likely	to	be	a	more	clinically	significant	morphological	component,	dictating	the		

ability	 of	 cells	 to	 penetrate,	 nutrients	 to	 diffuse	 and	 macrophages	 to	 access	 the	

tissues	 [376].	 Some	 investigators	 utilize	 the	 pore	 size	 as	 an	 area	 (µm2)	 [377],	

however,	 we	measure	 the	 diameter	 between	 fibres,	 as	 there	 is	 a	 widely	 ranging	

shape	between	fibres	that	makes	accurate	area	measurement	difficult.	

Pore	diameter	 is	 in	excess	of	3.5µm;	 the	greater	of	which	are	 seen	 in	PLA	and	Z3	

scaffolds	 a	 relationship	 exists	 between	 the	 proportion	 of	 PLA	 and	 	 greater	 	 size.	

Clearly,	these	pore	sizes	would	fall	 into	a	microporous	category	(<10µm)	based	on	

the	Amid	classification	of	surgical	mesh.	This	classification	is	associated	with	poorer	

surgical	 outcomes,	 which	 is	 attributed	 to	 an	 inability	 of	 macrophages	 and	 other	

immune	 cells	 to	 sufficiently	 integrate	 the	much	 smaller	 pores	 of	 these	materials.	

Despite	this	theory,	we	have	demonstrated	in	several	in	vivo	models	that	both	PLA	

and	PU	 scaffolds	 are	 not	 associated	with	 any	 significant	 difference	 in	 histological	

outcomes		as		compared		with		polypropylene		mesh		[363,		378].				This		finding		may	

be	explained	by	the	electrospun	scaffolds	demonstrating	lightweight	and	non-	
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bonded	 fibres	 that	 may	 exhibit	 a	 degree	 of	 mobility	 to	 facilitate	 macrophage	

passage	 	between	 fibres.	While	Amid	 initially	described	a	75µm	pore	diameter	 for	

macrophages	to	 integrate	[186],	several	authors	have	demonstrated	that	this	may	

not	be	entirely	correct	[379]	and	that	macrophages	are	in	fact	observed	in	pores	of	

5µm	[380].	

Electrospinning	as	a	process	 is	a	method	that	can	reliably	produce	scaffold	sheets	

with	 tunable	morphologies	dependent	upon	 the	protocols	 that	 are	used.	 	Clearly,	

these	characteristics	will	have	bearing	on	the	mechanical	properties	of	the	scaffold	

material,	the	results	of	which	are	discussed	in	the	next	section.	
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3.3 Mechanical	properties	of	scaffolds	

A	 uniaxial	 tensile	 test	 was	 performed	 for	 each	 of	 the	 5	 scaffold	materials,	 which	

allowed	 the	 production	 of	 a	 stress-strain	 curve	 for	 each.	 From	 the	 stress-strain	

curve,	 the	 ultimate	 tensile	 strength	 (UTS)	 and	 Young’s	 modulus	 (YM)	 could	 be	

calculated.	The	values	are	compared	with	the	range	of	UTS	and	YM	of	healthy	(non-

POP)	tissue	taken	from	the	study	by	Lei	et	al	[144],	which	contains	the	largest	series	

of	 living	subjects.	The	intention	is	to	achieve	a	scaffold	that	is	stronger,	yet	just	as	

elastic	as	healthy	 tissue,	without	being	excessively	strong.	Commercially	available	

macroporous	 PPL	mesh	 (Gynemesh,	 Ethicon,	 NJ)	 was	 also	 tested	 in	 comparison.	

Dry	materials	also	underwent	10	cycles	up	to	25%	of	displacement,	with	subsequent	

curves	plotted	to	identify	early	deformation.	Of	these	experimental	materials,	PLA,	

Z1	 and	 Z3	 were	 taken	 forward	 to	 undergo	 7	 days	 of	 continuous	 distension	 a	

bioreactor	at	370	and	5%	humidity	with	media	at	1mm/s	and	up	to	25%	distension,	

with	a	repeat	tensile	test	following	this.	

3.3.1 Tensile	test	–	dry	materials	

Experimental	scaffolds	and	PPL	underwent	a	ramp	tensile	test	and	the	stress	strain	

curves	 both	 before	 and	 after	 10	 cycles	 of	 distension	 are	 demonstrated	 in	 figure	

3.3.1A	and	figure	3.3.1B	respectively.	All	materials,	except	for	Z1,	Z3	and	Z1	low	PLA	

fail	following	10	cycles	of	distension	(PPL	failure	indicated	by	red	arrow).	

3.3.2 Young’s	modulus	–	dry	materials	

Of	the	tested	materials,	only	Z3	demonstrates	a	YM	that	is	in	the	range	observed	for	

healthy	 tissue	 (indicated	 by	 dotted	 lines)	 before	 10	 cycles	 of	 distension	 (figure	

3.3.2A),	 while	 PLA	 has	 the	 lowest	 YM	 and	 Z1	 high	 PLA	 the	 highest	 YM	 before	

distension.	 Only	 Z1	 demonstrates	 no	 change	 in	 the	 YM	 following	 10	 cycles	 of	

cyclical	distension,	while	both	PPL	and	PLA	become	significantly	stiffer.	

3.3.3 Ultimate	tensile	strength	–	dry	materials	

Of	the	tested	materials,	PPL	had	the	highest	UTS,	while	PLA	had	the	 lowest	figure	

3.3.2B.		Only	Z1	low	PLA	had	a	UTS	that	was	in	range	(indicated	by	dotted	lines)	both	

before	 and	 after	 10	 cycles	 of	 distension.	Only	Z3,	 PLA	 and	PPL	demonstrated	 an	
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increase	 in	 UTS	 following	 10	 cycles	 of	 distension,	 while	 other	 scaffolds	 became	

weaker.	

3.3.4 Plastic	deformation	

Figure	 3.3.3	 demonstrates	 hysteresis	 loops	 for	 each	 of	 the	 dry	 experimental	

materials,	 plotted	over	 cycles	 1,	 2	 and	5.	Percentage	deformation	 is	 calculated	as	

the		percentage	of	change	in	strain	prior	to	stress	at	cycle	5.	This	demonstrates	that	

both	Z1,	Z3	and	Z1	low	PLA	showed	very	little	change,	while	Z1	high	PLA,	PPL	and	

PLA	underwent	significant	deformation.	

3.3.5 Effect	of	dynamic	loading	under	bioreactor	conditions	

PLA,	Z1,	Z3	and	PPL	were	assessed	before	and	after	7	days	of	dynamic	distension	in	

a	bioreactor.	Figure	3.3.4	demonstrates	 the	stress-strain	curves	before	and	after	7	

days	 of	 constant	 cyclical	 distension,	while	 figure	 3.3.5	 shows	 the	 YM	 and	UTS	 as	

compared	 to	 values	 of	 healthy	 tissues	 (indicated	 by	 dotted	 lines).	 Only	 Z1	

demonstrated	 no	 change	 in	 YM	 and	UTS	 after	 7	 days	 under	 dynamic	 loading.	 Z3	

became	 stiffer	 and	 stronger,	 PLA	 became	 stiffer	 and	 weaker,	 while	 PPL	 became	

stiffer.	
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Figure	3.3.1.		Stress	vs	strain	plots	of	6	different	materials	

Ramp	uniaxial	tensile	test	before	(A)	and	after	(B)	10	cycles	of	distension	at	25%	displacement.	
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Young’s	modulus	(A)	and	UTS	(B)	under	dry	conditions	(n=3).	
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Figure	3.3.3.		Hysteresis	loops	of	different	materials	over	5	cycles.	

Plastic	deformation	(%)	at	5th	cycle.	 	 	
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Figure	3.3.4.		Stress	vs	strain	plots	of	4	different	materials	

Ramp	uniaxial	tensile	test	before	(A)	and	after	(B)	7	days	of	distension	in	bioreactor.	Arrows	indicate	

mechanical	failure.	

A	

B	
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A	

Figure	3.3.5.	Values	for	mechanical	properties	before	and	after	7	days	of	dynamic	loading	

Young’s	modulus	(A)	and	UTS	(B)	calculated	from	stress	strain	curves	before	and	after	7	days	of	uniaxial	

distension	(n=3±SEM),	*p<0.05,	**p<0.001.	Dotted	lines	represent	values	of	healthy	native	tissue.	

B	
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3.3.6 Section	discussion	

The	 aim	 is	 to	 design	 synthetic	 materials,	 which	 have	 mechanical	 properties	 that	

mimic	those	of	healthy	fascia;	a	biomaterial	that	is	associated	with	high	cure	rates	and	

few	 complications	when	 used	 clinically.	 Any	materials	 that	 are	 designed	 to	 serve	 a	

load-bearing	 purpose	 must	 possess	 adequate	 mechanical	 properties	 that	 fulfill	 a	

supportive	 role	 of	 the	 weakened	 tissue,	 in	 addition	 to	 being	 biocompatible.	 The	

implantation	of	a	weak	material	could	lead	to	recurrence	of	SUI	or	POP,	while	a	strong	

but	 inelastic	material,	 such	as	PPL	will	provide	mechanical	 support	but	 is	ultimately	

incompatible	with	the	pelvic	floor	environment.	

Despite	 this,	 no	 simple	 correlation	 exists	 between	 the	 strength	 of	 implants	 and	

clinical	 success	 [362].	 It	was	 not	 appreciated	 that	 there	 are	 site-specific	 differences	

seen	with	‘soft’	tissues.	Recent	data	evidence	using	sheep	models	demonstrates	that	

while	 implanted	 PPL	 mesh	 performs	 well	 in	 the	 abdominal	 wall,	 it	 undergoes	

significant	contraction	and	exposure	when	 implanted	 in	the	vagina	[264].	 It	has	also	

been	 shown	 that	 although	PPL	mesh	 is	 strong,	 it	 is	 unsuited	 to	dynamic	distension	

with	irreversible	deformation	that	occurs	during	cyclical	loading	[263].	

While	 there	 is	 less	 concern	 over	 biocompatibility	 with	 degradable	 materials,	 the	

mechanical	deterioration	that	occurs	over	time	can	lead	to	recurrence	of	SUI	or	POP.	

With	 non-degradable	materials,	 the	 concern	 relates	 to	 sustained	 inflammation	 that	

can	 be	 associated	 with	 complications	 that	 develop	 even	 several	 years	 after	

implantation	 [381].	Therefore,	biomaterials	 for	 the	use	 in	pelvic	 floor	 reconstruction	

must	 not	 provoke	 sustained	 inflammation,	 while	 providing	 appropriate	mechanical	

properties.	Therefore,	polyurethanes	were	 investigated	as	 candidate	materials.	Two	

elastomeric	 poly-ester-urethranes	 were	 selected	 based	 upon	 their	 viscoelastic	

properties,	Z1	and	Z3.	Polyurethanes	have	become	popular	graft	materials	in	vascular	

tissue	engineering,	with	Bergmeister	[332]	demonstrating	100%	graft	patency	rates	at	

one	 year	 when	 cylindrical	 PU	 grafts	 were	 used	 as	 vascular	 conduits.	 Meanwhile,	

Takanari	et	al	[333]	investigated	PU	meshes	during	hernia	repair	and	demonstrated	

greater	elasticity	and	anti-inflammatory	properties	resulting	with	this	repair	material	

as	compared	to	conventional	PPL	mesh.	
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Using	 randomly	 orientated	 electrospun	 fibres,	 several	 candidate	 scaffolds	 were	

created,	with	mechanical	 properties	 closely	 related	 to	healthy	 fascia.	 PLA	has	been	

demonstrated	 to	 support	 cell	 growth	 both	 in	 vitro	 [382]	 and	 in	 vivo	 [363]	 and	 was	

therefore	 selected	 as	 a	 candidate	 scaffold.	 Co-polymers	 of	 polyurethanes	with	 PLA	

were	produced	to	mimic	the	mechanical	properties	of	the	polyurethane	group,	while	

possessing	 a	 suitable	 cell	 environment	 that	 is	 conferred	 by	 the	 PLA	 fibres.	 Despite	

this,	 these	 co-polymers	 demonstrated	 significant	 batch-to-batch	 variability	 in	 their	

mechanical	 properties	 and	 therefore	 their	 investigation	 was	 not	 taken	 further.	

Furthermore,	we	 demonstrate	 that	 PPL	 undergoes	 significant	 	 plastic	 	 deformation	

and	fails	to	appropriately	recoil	following	even	short	periods	of	distension.	
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3.4 Cellular	response	to	scaffolds	

ADSC	 were	 cultured	 on	 each	 of	 the	 5	 candidate	 scaffolds.	 70%	 EToH	 was	 used	 to	

sterilize	 all	 scaffolds.	 DMEM	 was	 changed	 every	 3	 days	 during	 the	 incubation	

protocol.	After	14	days,	cell-scaffolds	were	tested	for	cell	viability	as	measured	using	

AlamarBlue	assay	and	for	total	collagen	production	using	Sirius	red	staining	protocols.	

Scanning	electron	microscopy	was	used	to	classify	the	morphological	appearance	of	

matrix	surface	deposition,	while	the	mechanical	properties	of	scaffolds	were	retested	

following	two	weeks	of	cell	culture	to	identify	mechanical	failure.		The	ability	of	cells	

to	penetrate	scaffolds	was	tested	using	confocal	microscopy	to	detect	labeled	cells	at	

various	scaffold	depths	after	3	weeks	of	cell	culture.	

3.4.1 Cell	metabolic	activity	

Cell	viability	was	measured	at	day	7	and	14	of	culture.	Absorbance	was	measured	at	

570nm	 using	 a	 plate	 reading	 colourimeter,	 minus	 control	 scaffolds	 without	 cells.	

Change	 in	 absorbance	 from	 7	 to	 14	 days	 is	 demonstrated	 in	 figure	 3.4.1.	 This	

demonstrates	that	all	scaffolds	showed	an	increase	in	cell	metabolic	activity	from	day	

7	to	day	14,	however	the	most	significant	increase	was	seen	for	PLA,	Z1	high	PLA	and	

Z1	low	PLA.	

3.4.2 Total	collagen	production	

Total	collagen	production	of	ADSC	cultured	on	sterilized	scaffolds	was	tested	at	day	

14	using	the	methods	described	for	Sirius	red	assay	as	above.	Values	were	corrected	

for	 weight	 of	 scaffolds	 minus	 control	 scaffolds	 (without	 cells).	 These	 data	 are	

presented	in	figure	3.4.2,	which	demonstrates	a	significant	 increase	in	total	collagen	

production	for	PLA,	Z1	low	PLA	and	Z1	high	PLA.	

3.4.3 Matrix	deposition	on	scaffolds	

Scaffolds	 that	 underwent	 2	weeks	 of	 culture	were	 fixed	 and	 prepared	 for	 scanning	

electron	microscopy	as	previous.	These	 scaffolds	demonstrate	matrix	deposition	on	

the	 cell	 surface	 are	 shown	 in	 figure	 3.4.3,	 showing	 a	 dense	 surface	 coverage	 of	

extracellular	matrix	over	each	of	the	tested	scaffolds.	
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3.4.4 Mechanical	properties	

All	 scaffold	 materials	 underwent	 testing	 using	 the	 BOSE	 electroforce	 tensiometer	

before	 and	 after	 two	 weeks	 of	 cell	 culture.	 Figure	 	 3.4.4	 demonstrates	 the	 stress-		

strain	 curves	 for	 each	 of	 the	 tested	material	 to	 identify	 failure.	 	 This	 demonstrates		

that	only	the	two	polyurethanes	Z1	and	Z3	retain	their	mechanical	properties,	while	

PLA,	Z1	low	PLA	and	Z1	high	PLA	show	mechanical	failure.	

3.4.5 Investigation	of	cell	penetration	using	fluorescence	microscopy	

Unfixed	cell-scaffold	constructs	were	imaged	after	3	weeks	of	culture	at	1µm	intervals	

from	 the	 surface	 (point	 0).	 Red	 cell-tracker	 signals	 were	 combined	 with	 second	

harmonic	generation	(SHG)	signals	for	each	interval	and	the	results	at	4µm	intervals	

are	 presented	 in	 figure	 3.4.5.	 This	 demonstrates	 that	 cells	 were	 present	 within	 the	

PLA	fibre	pores	and	were	able	to	penetrate	this	scaffold	to	the	greatest	degree	of	all	

tested	 materials,	 followed	 by	 the	 Z3.	 Meanwhile,	 a	 dense	 collection	 of	 cells	 was	

located	 solely	 on	 the	 surface	 of	 Z1	 scaffolds	 without	 evidence	 of	 cells	 within	 the	

polymer	pores.	For	Z1	high	PLA	and	Z1	low	PLA	scaffolds,	cells	were	able	to	integrate	

within	the	pores	but	to	a	lesser	degree	than	PLA	scaffolds.	
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Figure	3.4.1.		Cell	metabolic	activity	of	candidate	scaffolds	

Measured	by	AlamarBlue	assay	with	absorbance	measured	at	570nm	using	plate	reading	colourimeter.	

(n=6	±SEM).		*p<0.05	**p<0.01.	

Figure	3.4.2.		Total	collagen	production	of	candidate	scaffolds	

Measured	by	Sirius	red	assay	with	absorbance	measured	at	490nm	using	plate	reading	colourimeter,	per	

gram	of	scaffold.		(n=6±SEM)	***p<0.001.	
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Figure	3.4.3.	Scanning	electron	microscopy	images	of	scaffolds	following	2	weeks	of	cell	culture	to	

demonstrate	matrix	deposition	on	scaffold	surface	

A) PLA,	B)	polyurethane	Z1A1,	C)	polyurethane	Z3A1,	D)	polyurethane	Z1A1:PLA	(4:1),	E)	polyurethane

Z1A1:PLA	(10:1).	
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Figure	3.4.4.		Stress	strain	curves	for	5	materials	using	the	BOSE	electroforce	tensiometer	

Before	(left)	and	after	(right)	2	weeks	of	cell	culture.	PPL	is	not	included	in	cell	culture	data	as	the	large	pore	size	of	this	material	makes	cell	culture	unfeasible.
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Figure	3.4.5.	Fluorescence	microscopy	and	scaffold	fibre	second	harmonic	generation	using	

confocal

microscopy	

Cells	(red)	and	fibre	SHG	signal	(green)	for	each	of	the	5	cell-scaffold	constructs,	imaged	from

the scaffold

surface	(0µm)	to	20µm	depth.		All	scale	bars	equivalent	to	50µm.		
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3.4.6 Section	Discussion	

Cells	 that	 are	 cultured	 on	 scaffolds	 that	 contain	 PLA,	 show	 a	 significantly	 greater	

metabolic	 activity	 and	 ability	 to	 produce	 collagen	 than	 those	 cultured	 	 on	

polyurethane	scaffolds.	Although	all	tested	materials	are	associated	with	an	increase	

in	 viability	 of	 cells	 during	 the	 14	 day	 period	 of	 culture,	 it	 is	 likely	 that	 the	 higher	

porosity	 of	 the	 PLA	 scaffolds	 is	 associated	 with	 an	 increased	 ability	 of	 cells	 to	

penetrate	 the	 scaffold	 and	 therefore	 the	 propensity	 of	 them	 to	 proliferate	 and	

produce	 matrix.	 This	 is	 demonstrated	 in	 figure	 3.4.5.	 This	 	 cell	 	 penetration	 	 data	

shows	that	even	for	microporous	materials,	cells	retain	their	ability	to	integrate.	The	

concern	 with	 microporous	 repair	 materials	 however,	 is	 with	 the	 ability	 	 of	

macrophages	and	other	inflammatory	cells	to	appropriately	penetrate	the	material	in	

order	to	resist	infection	and	this	issue	is	tested	and	discussed	in	chapter	VI.	

Human	 ADSC	 were	 used	 as	 a	 cell	 source	 for	 this	 study	 as	 these	 cells	 are	 more	

proliferative	and	better	defined	than	fibroblasts	and	they	are	capable	of	contributing	

to	wound	healing	in	several	ways	making	them	a	popular	cell	for	tissue	regeneration	

[325].	

The	reasons	for	mechanical	failure	of	PLA,	Z1	 low	PLA,	and	Z1	high	PLA	scaffolds	 is	

most	 likely	 due	 to	 the	 degradation	 of	 these	materials	 that	 occurs	when	 cultured	 in	

media	over	a	14	day	period,	and	not	necessarily	as	a	result	of	the	addition	of	cells	per	

se.	 In	 this	context,	 the	cell-scaffold	complex	becomes	proportionally	weaker	despite	

the	increase	in	total	collagen	and	other	matrix	proteins	that	are	produced	by	the	cells.	

Following	 implantation	 however,	 these	 scaffolds	 would	 be	 expected	 to	 become	

integrated	 into	the	host	and	after	a	period	of	remodeling,	the	strength	of	the	repair	

site	 would	 be	 conferred	 by	 the	 regenerating	 tissues	 rather	 than	 the	 presence	 of	 a	

repair	material	that	will	be	undergoing	degradation.	

Z1	 and	Z3	 undergo	 degradation	much	more	 slowly	 than	PLA	 and	 therefore	 it	 is	 no	

surprise	 that	 the	 mechanical	 properties	 of	 these	 materials	 remain	 relatively	

unchanged			following			cell			culture			over			14			days.						These			polyurethane	scaffolds	
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demonstrate	 an	 ability	 to	 support	 cell	 growth	 and	 matrix	 component	 production,	

albeit	 to	a	 lesser	extent	 than	PLA,	Z1	 low	PLA	and	Z1	high	PLA.	However,	 the	SEM	

data	does	demonstrate	 the	presence	of	a	dense	surface	matrix	covering	on	both	Z1	

and	Z3	scaffolds,	while	confocal	microscopy	shows	that	cells	are	able	to	penetrate	Z3	

scaffolds.	
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3.5 Chapter	discussion	
	

In	 these	 experiments,	 we	 investigate	 the	 structure	 and	 function	 of	 a	 variety	 of	

electrospun	scaffolds.	The	primary	aim	was	to	assess	the	ability	of	these	materials	to	

replicate	 the	mechanical	 properties	of	 healthy	 fascia	 and	 to	 identify	which	of	 these	

materials	possesses	the	greatest	ability	to	support	cell	growth,	integration	and	matrix	

component	 production	 in	 order	 to	 identify	 a	 leading	 candidates,	 which	 will	 be	

implanted	in	an	in	vivo	model.	

	

Ultimately,	 the	 mechanical	 outcomes	 of	 these	 tested	 materials	 were	 modeled	 on	

those	 of	 healthy	 paravaginal	 fascia	 for	 two	 reasons.	 Firstly,	 healthy	 paravaginal	

tissues	are	not	associated	with	SUI	or	POP	and	secondly,	healthy	autologous	fascia	is	

successfully	 used	 for	 the	 treatment	 of	 SUI	 as	 a	 sling	 material.	 The	 range	 of		

mechanical	values	for	healthy	fascia	are	identified	and	while	no	single	tested	material	

matched	the	YM	and	UTS	of	healthy	 fascia,	Z3	showed	the	closest	 resemblance.	Z3	

possessed	a	UTS	that	was	sufficiently	strong,	yet	not	excessively	so,	a	problem	that	

could	be	associated	with	a	 significant	discrepancy	with	native	 tissues.	 Furthermore,	

Z3	was	more	 elastic	 than	 PPL,	which	 enables	 this	material	 to	 appropriately	 stretch		

and	recoil	in	response	to	acute	distension,	without	undergoing	plastic	deformation.	

	

The	 pore	 size	 of	 PLA	 is	 greater	 than	 that	 of	 the	 two	 polyurethanes,	 Z1	 and	 Z3,	 a	

finding,	 which	 is	 associated	 with	 an	 increased	 ability	 of	 cells	 to	 penetrate	 this		

material.	 As	 a	 consequence,	 cell	 viability	 and	 total	 collagen	 production	 is	 much	

greater	for	cells	cultured	on	this	material	as	compared	to	any	other	tested	material	in	

these	 experiments.	 Despite	 this	 finding,	 PLA	 becomes	 weaker	 during	 repetitive	

distension	as	assessed	using	an	Ebers	bioreactor.	

	

The	 acquisition	of	 this	 bioreactor	model	was	 a	 key	 step	 in	 the	 assessment	 of	 these	

scaffold	materials,	as	any	 implanted	material	will	be	subjected	to	repetitive	stress	 in	

the	 body,	 a	 factor	 that	 has	 particular	 importance	 in	 the	 context	 of	 pelvic	 floor	

conditions,	where	gravity	and	sudden	repetitive	forces	can	lead	to	significant	strain	on	

tissues	[265].			Bioreactor	models,	such		as	that	used	in		this	study		comprises	complex	

components	 and	 a	 multitude	 of	 adjustable	 parameters,	 but	 provides	 an	 ability	 to	

model	 the	 basic	 biological	 and	 mechanical	 processes	 that	 occur	 in	 the	 body.	 The	
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particular	 mechanical	 parameters	 that	 were	 chosen	 for	 assessment	 with	 the	 Ebers	

bioreactor	reflect	the	abdominal	wall	stretch	requirements	that	are	close	to	20-30%	at	

maximal	 forces	 [383].	 However,	 there	 is	 no	 clear	 data	 on	 the	 percentage	

displacement	that	occurs	 in	pelvic	floor	tissues.	18	cycles	 	per	minute	was	chosen	as	

an	appropriate	distension	rate	to	reflect	the	normal	breathing	rate	of	humans.	Pelvic	

floor	 tissues	 do	 not	 simply	 undergo	 distension	 in	 a	 single	 orientation	 but	 are	

responsive	 to	 multiaxial	 forces.	 The	 Ebers	 bioreactor	 delivers	 uniaxial	 tension	 to	

biomaterials	 in	 a	 cyclical	 fashion	 and	 clearly	 a	 multiaxial	 delivery	 model	 would	 be	

more	appropriate,	however	this	would	necessitate	the	use	of	complex	programmable	

equipment	that	 is	beyond	the	scope	of	these	experiments.	Other	authors	have	used	

the	ball	 burst	 assessment	as	 a	measure	of	 a	biomaterial’s	 ability	 to	 resist	multiaxial	

distension	 [384],	 however	 these	 results	 are	 often	 presented	 as	 structural	 strength,	

which	 is	 independent	 of	 sample	 thickness	 and	 is	 therefore	 an	 unfair	 comparison	

between	materials	and	assumes	that	a	specific	material	thickness	is	known.	

The	 exposure	 of	 scaffolds	 to	 agents	 during	 the	 sterilization	 process	 can	 result	 in	

accelerated	degradation	processes.	PLA	undergoes	degradation	 through	hydrolysis,	

while	 polyurethanes	 predominantly	 degrade	 through	 oxidation.	 Exposing	 these	

polymers	 to	 ethanol	 can	 therefore	 accelerate	 these	 effects	 [385],	 although	

investigators	 have	 demonstrated	 that	 the	 mechanical	 outcomes	 of	 polyurethanes	

remain	relatively	unchanged	after	periods	of	ethanol	exposure	[386].	

Table	3.5	summarises	the	key	properties	of	the	tested	materials.	Z3	had	mechanical	

properties	 that	were	more	closely	 related	 to	healthy	 fascia	 than	any	other	material.	

By	 interweaving	the	fibres	of	Z1	with	PLA,	we	significantly	 improved	the	 interaction	

of	 cells	 with	 the	 polyurethane	 material,	 despite	 a	 manifest	 reduction	 in	 elasticity.	

Meanwhile,	PLA	demonstrated	the	greatest	ability	of	tested	materials	to	support	cell	

growth	 and	 matrix	 component	 production.	 Therefore,	 these	 two	 materials	 were	

selected	 as	 candidates	 to	 be	 taken	 forward	 for	 implantation	 in	 an	 abdominal	 wall	

defect	animal	model	to	assess	the	in	vivo	outcomes	over	a	3	month	period.	
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Table	3.5.		Summary	of	scaffold	properties	

Scaffold	 Ultimate	tensile	strength	 Rigidity	 Response	to	distension	 Cell	performance	 Overall	rank	

Cell viability Collagen	production	 Cell	penetration	

Z3	 ++	 ++	 ++	 +	 0	 +	 1	

PLA	 0	 0	 0	 ++	 ++	 ++	 2	

Z1	high	PLA	 0	 0	 N/A	 +	 ++	 +	 3	

Z1	 +	 +	 +	 0	 0	 0	 =4	

Z1	low	PLA	 0	 0	 N/A	 0	 ++	 +	 =4	

PPL	 0	 0	 0	 N/A	 N/A	 N/A	 5	

Ultimate	tensile	strength	=	0	(<1N/mm2	or	>5N/mm2),	+	(1-2N/mm2),	++	(2-4N/mm2).	
Rigidity	(YM	approximation	to	healthy	tissue)	=	0	(>200%),	+	(50-100%),	++	(<50%).	
Response	to	distension	(YM	approximation	to	healthy	tissue)	=	0	(>200%),	+	(50-100%),	++	(<50%).	
Cell	viability	(increase	from	7-14	days)	=	0	(<100%),	+	(100-200%),	++	(>200%).	
Collagen	production	(increase	compared	to	Z1)	=	0	(<100%),	+	(100-200%),	++	(>200%).	
Cell	penetration	(ability	of	cells	to	penetrate	scaffold	pores)	=	0	(no	penetration),	+	(cells	and	fibres	present),	++	(cells	present	within	fibre	pores)	
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Chapter	IV:		Biomimetic	scaffolds	
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4.1 Chapter	introduction	

The	 sex	 steroid,	 17-beta-oestradiol	 is	 the	 major	 oestrogen	 secreted	 by	

premenopausal	ovary	and	 it	plays	a	vital	 role	 in	 	maintenance	 	of	 	normal	 	 structure	

and	 	 function	 	 of	 	 pelvic	 	 tissues.	 	 It	 	 is	 	 an	 	 inhibitor	 	 of	 	 the	 	 MMPs	 	 	 that	 	 	 are	

responsible	 for	 collagen	 degradation	 	 [130]	 	 and	 	 leads	 	 to	 	 neo-collagen	 	 synthesis	

[113].	 Oestradiol	 directly	 	 stimulates	 	 vascular	 	 endothelial	 	 cells	 	 through	 	 the	

oestrogen	 receptor	 [387]	 and	 it	 has	 been	 investigated	 as	 a	 therapeutic	 target	 to	

modify	angiogenesis,	 its	pro-angiogenic	properties	are	used	 in	 	disease	 	states	 	such	

as	 cardiac	 ischaemia	 [352]	 and	wound	healing	whereas	 its	 blockage	 is	 a	 strategy	 to	

inhibit	pathological	neovascularization	in	breast	cancer	and	diabetic	retinopathy.	

The		overall		aim		is		to		assess		the		impact			that			oestradiol			has			on			cell			viability	

and	 extracellular	 matrix	 component	 production.	 To	 achieve	 this,	 there	 are	 three	

specific	objectives:	

• To	develop	an	oestradiol-releasing	scaffold	that	delivers	specific

concentrations	of	the	drug.

• To	assess	the	morphology	of	these	oestradiol	releasing	scaffolds.

• To		investigate		the		impact		that		oestradiol		has		on		extracellular

matrix	components.
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4.2 Structure	and	function	

Oestradiol	 	 is	poorly	soluble	 in	water	and	readily	dissolved	 	 in	 the	 	solvents	used	for	

the	formation		of		PLA		solutions.			These		colourless		solutions		were		electrospun		in	

an	 identical	 fashion	 to	 that	 used	 for	 the	 formation	 of	 other	 scaffolds.	 PLA	 was		

selected	as	 the	drug	delivery	vehicle,	as	 the	degradation	 rate	of	 this	polymer	would	

seem	to	deliver	an	appropriate	concentration	of	the	drug	at	an	appropriate	rate.	The	

concern	 with	 the	 use	 of	 any	 drug	 delivery	 system	 polymer	 is	 whether	 the	 drug	 is	

incorporated	 into	 the	 polymer	 itself	 or	 is	 it	 present	 outside	 of	 the	 polymer.	 	 	 I.e,	 in	

the	context	of	polymer	microfibres,	is	the	oestradiol	present	within	the	fibres,	on	the	

surface	or	in	the	pores?	

Ideally,	 for	 controlled	 release,	 the	 drug	 	 should	 	 be	 	 present	 	 within	 	 the	 	 polymer	

fibres,	 with	 release	 of	 oestradiol	 corresponding	 with	 degradation	 of	 the	 	 polymer	

itself.	 If	 the	drug	 is	present	solely	on	 	the	 	surface	 	of	 	 the	 	construct	 	or	 	within	 	the	

pores	 	of	 	 the	scaffold,	 then	an	 initial	burst	 release	of	 the	drug	will	occur,	with	 little	

if	 any	 further	 release	 occurring	 over	 time.	 To	 test	 this,	 release	 of	 the	 drug	 into	 a	

solvent	(PBS)	was	measured		at	 	 	set	 	 	 intervals,	 	 	with	 	 	new		 	solvent	 	 	added		 	after	

each	 time	 point.	 Furthermore,	 the	 addition	 of	 any	 further	 variation	 in	 the	

electrospinning	 parameters	 or	 composition	 of	 polymer	 solutions	 can	 affect	 the	

morphology	 of	 the	 produced	 scaffold	 [347]	 and	 therefore	 an	 assessment	 of	

morphology,		fibre		diameter	and	pore	size	were	performed.	

4.2.1 Fibre	morphology	

Scanning	electron	microscopy	was	performed	on	both	oestradiol	 releasing	and	non-

oestradiol	releasing	PLA	scaffolds	to	confirm	morphology	(figure	4.2.1).	The	addition	

of	oestradiol	into	the	electrospinning	parameters	did	not	impact	upon	the	microfibre	

appearances	 of	 the	 scaffolds	 	 under	 	 SEM.	 	 These	 	micrographs	 	 also	 allowed	 	 the	

subsequent	calculation	of	fibre	diameter	and	porosity.	

4.2.2 Fibre	size	and	porosity	

Figure	4.2.2	demonstrates	the	fibre	diameter	and	pore	size	as	calculated	from	serial	

scanning	 electron	 micrographs.	 This	 demonstrates	 that	 there	 is	 no	 significant	
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difference	 in	 fibre	 diameter	 or	 	 pore	 	 size	 	 between	 	 the	 	 oestradiol	 	 and	 	 non-		

oestradiol	releasing		PLA		scaffolds		(0.71±0.28µm		vs		0.65±0.30µm		[p=0.47]		and	4.25	

±2.04µm		vs	4.26±2.29µm	[p=	0.98]	respectively).	
	

4.2.3 Oestradiol	release	
	

Release	 of	 oestradiol	 from	 PLA	 scaffolds	 into	 PBS	 media	 was	 measured	

fluorimetrically	 at	 set	 intervals	 over	 a	 5-month	 period,	 with	 the	 concentration	 of	

oestradiol	 calculated	 using	 a	 standard	 curve.	 The	 cumulative	 release	 of	 oestradiol	

increased	 for	 each	 time-point,	 until	 no	 further	oestradiol	was	 released	 (at	 133	days)				

as	demonstrated	 in	Figure	4.2.3.	The	total	 	 released	 	oestradiol	 	 from	 	the	 	scaffolds	

was	 equivalent	 to	 2.5%,	 1.4%	 and	 2.45%	 of	 the	 oestradiol	 present	 in	 the	 polymer	

solution	 for	 the	10mg,	50mg	and	100mg	oestradiol	 	 scaffolds	 	 respectively	 	prior	 	 to	

the	 electrospinning	 	 process,	 	 while	 40%,	 50%	 and	 40%	 of	 oestradiol	 was	 released		

over	 the	 initial	 14	 days	 for	 each	 of	 the	 3	 scaffold	 groups	 respectively;	 the	 rate	 of	

release	 was	 proportional	 to	 the	 amount	 of	 oestradiol	 present	 in	 the	 scaffold	 at	

commencement	and	the	rate	reduced	over	time.	
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PLA	(no	oestradiol)	 PLA	(oestradiol)	

Figure	4.2.1.	Scanning	electron	microscopy	images	of	oestradiol	and	non-oestradiol	releasing	

scaffolds	(Top)	low	magnification,	(bottom)	high	magnification.	All	scale	bars	equivalent	to	10µm.	
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Figure	4.2.2.		Calculation	of	fibre	diameter	and	pore	size	
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Figure	4.2.3.	Release	of	oestradiol	from	PLA	scaffold	measured	using	a	spectralfluorometer	(n=6	

±SEM).	
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4.2.4 Section	discussion	

Oestradiol	 was	 successfully	 incorporated	 into	 PLA	 microfibre	 scaffolds	 with	 	 a	

resulting	 macroscopic	 appearance	 that	 was	 similar	 to	 that	 of	 non-oestradiol	

containing	 PLA	 scaffolds.	 SEM	 analysis	 demonstrates	 that	 the	 ultrastructural	

appearances	 of	 each	 scaffold	 were	 identical,	 with	 no	 significant	 differences	 in	 fibre	

diameter	or	pore	size.	

Oestradiol	 release	 was	 calculated	 fluorimetrically,	 the	 exact	 concentration	 of	 which	

was	 	 measured	 	 against	 	 pre-prepared	 	 standards	 	 of	 	 known	 	 concentration.	 	 	 The		

exact	 concentration	 released	 by	 each	 of	 	 the	 	 3	 	 different	 	 oestradiol-releasing		

scaffolds	 was	 below	 that	 of	 the	 physiological	 serum		 oestradiol		 concention		 (10-8M)	

and	 above	 known	 effective	 oestradiol	 concentrations	 (10-10M).	 Therefore,	 potential	

toxicity	effects	are	unlikely.	The	surprising	 finding	 is	 that	 the	actual	concentration	of	

oestradiol	 released	 is	 only	 2%	 of	 that	 which	 was	 prepared	 	 in	 	 the	 	 initial	 	 drug-		

polymer	concentration.	This	highlights	 the	sheer	volume		of		 solvent		 that		 is		 lost		 to	

the	 surroundings	 during	 the	 electrospinning	 process.	 The	 exact	 proportion	 of	 drug	

that	 is	 lost	 during	 this	 process	 and	 is	 actually	 present	 in	 the	 scaffold	 is	 difficult	 to	

calculate,	 as	 oestradiol	 is	 poorly	 soluble	 	 in	 	 water	 	 and	 	 conventional	 	 solvents		

interfere	 with	 the	 measurement	 of	 the	 drug	 using	 	 spectroscopy	 	 or	 	 other		

biochemical	 methods.	 Nevertheless,	 at	 low	 concentrations,	 the	 accurate	

measurement	of	oestradiol	can	be	performed	using	water	as	the	solvent.	

There	 is	a	significant	 increase	 in	the	concentration	of	oestradiol	that	 is	released	from	

the	 50mg	 oestradiol	 scaffold	 to	 the	 100mg	 material.	 	 The	 amount	 of	 released	

oestradiol	rises	exponentially	with	the	concentration	that	 is	 initially	present	 in	a	dose	

dependent	fashion.		Furthermore,	it	is	likely	that	the	presence	of	oestradiol	in	scaffold	

fibres	 causes	 them	 to	 degrade	 much	 more	 rapidly,	 which	 is	 reflected	 in	 the	

exponential	rise	in	released	oestradiol.			

The	rate	of	release	can	be	affected	by	altering	a	variety	of	variables.	The	polymer	that	

is	used	was	selected	for	its	predictable	and	slow	degradation.	More	rapidly	degrading	

polymers,	 such	 as	 polyglycolic	 acid	 (PGA)	or	 polyhydroxybutyric	 acid	 (PHBV)	would	
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degrade	 much	 faster	 and	 therefore	 result	 in	 a	 rapid	 	 release	 	 of	 	 oestradiol	 	 over	

weeks,	while	polycaprelactone	(PCL)	would	degrade	slower.	

Between	each	sampling	intervals,	the	solvent	(PBS)	was	discarded,	with	fresh	solvent	

added	 following	 each	measurement.	 	 This	 avoids	 the	 formation	 of	 precipitates	 and	

the		disruption		of		drug		release		that		can			occur			at			high			solute			concentrations.	

The	 accurate	 fluoroscopic	 measurement	 of	 oestradiol	 concentration	 was	 achieved	

with	the	production	of	fresh	standard	concentrations	at	each	time	point	and	regular	

calibration	of	the	equipment.	
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4.3 Cellular	and	mechanical	outcomes	

The	PLA	scaffold	that	contained	a	5%	w/v	concentration	of	oestradiol	was	selected	for	

further	assessment.	Cell	morphology	assays	were	performed	to	ensure	cultured	cells	

did		not		preferentially		differentiate		towards		a		fat		or		bony		lineage		in		response		to		

oestradiol.		Viability		assays		and		matrix		component			production			was	subsequently	

performed	on	cells	cultured	with	these	scaffolds,	in	addition	to	an	assessment	of	the	

mechanical	properties	of	the	oestradiol	releasing	constructs.	

4.3.1 Assessment	of	cellular	differentiation	in	response	to	oestradiol	

ADSC	were	cultured	in	the	presence	of	these	scaffolds	and	appropriate	differentiation	

media	for	3	weeks	to	give	an	opportunity	for	the	ADSC	to	differentiate	into	their	well-	

recognised	phenotypes	and	to	assess	whether	the	release	of	oestradiol	affected	this.	

There	were		no		significant		histological	 	differences		of	 	cells	 	cultured		in	 	DMEM		in	

the	 presence	 of	 either	 control	 scaffolds	 or	 oestradiol	 releasing	PLA	 scaffolds,	when	

stained	with	either	Oil	red	O	or	Alizarin	red,	as	demonstrated	in	figure	4.3.1.	Culturing	

ADSC	 in	 specific	 induction	 media	 resulted	 in	 cellular	 differentiation	 over	 3	 weeks,	

including	 the	 formation	 	 of	 	 lipidic	 	 vesicles	 	 for	 	 ADSC	 	 cultured	 	 in	 	 adipogenic	

medium	 and	 the	 presence	 of	 calcium	 for	 cells	 cultured	 in	 osteogenic	 medium.	

However,	 there	were	 no	 significant	 differences	 in	 cell	morphology,	 lipidic	 vesicle	 or	

calcium	 content	 between	 control	 and	 oestradiol-releasing	 scaffolds,	 as	 	 assessed	

using	blind	scoring.	

4.3.2 Cell	metabolic	activity	

Any	 scaffolds	 implanted	 in	 the	 body	 will	 	 become	 	 populated	 	 with	 	 cells.	 	 In	 	 this		

study,	we	 used	 	 adipose	 	 derived	 	MSCs	 	 as	 	 a	 	 representative	 	 cell	 	 population	 	 to	

assess		the	response	of	cells	to	the	oestradiol	loaded	scaffolds.	

Figure	4.3.2	demonstrates	an	increase	in	cell	metabolic	activity	from	7	to	14	days	for	

cells		cultured		on		both		PLA		scaffolds		and		those		that		release			oestradiol.		 	There	

is,	however	a	significantly	greater	increase		in		activity		at		day		14		for		cells		cultured	

on	scaffolds	that	release	oestradiol	(P<0.01).	
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4.3.3 Total	collagen	production	

Adipose	derived	stem	cells		cultured		on		PLA		scaffolds		that		released		oestradiol		for	

14	 days	 produced	 a	 greater	 proportion	 of	 collagen	 than	 scaffolds	 	 that	 	 did	 	 not		

release	oestradiol	(P<0.001)	as	demonstrated	in	figure	4.3.3.	

4.3.4 Matrix	component	production	

Figure	4.3.4	demonstrates	the	presence	of	a	greater	proportion	of	collagen	types	I	and	

III	 and	 elastin	 resulting	 from	 culture	 of	 ADSC	 	 on	 	 PLA	 	 scaffolds	 	 that	 	 release	

oestradiol	than	from	scaffolds	that	do	not.	

4.3.5 Mechanical	properties	

Figure	 4.3.5A	 demonstrates	 the	 Young’s	 	 modulus	 	 of	 	 oestradiol	 	 and	 	 control		

scaffolds	both	before	and	after	culture	with	ADSC.	After	2	weeks	of	cell	culture,	both	

scaffolds	 become	 more	 elastic,	 however	 PLA	 scaffolds	 that	 release	 oestradiol	 are	

significantly	 stiffer	 (P<0.01).	 Oestradiol	 scaffolds	 demonstrate	 a	 	 Young’s	 	Modulus	

that	is	closer	to	the	values	of	healthy	native	 fascia.	

Figure	 4.3.5B	 demonstrates	 that	 PLA	 scaffolds	 that	 release	 oestradiol	 	 are		

significantly	stronger	than	those	that	do	not	release	oestradiol,	both	before	and	after	

2	weeks	of	cell	culture.	Of	note,	the	UTS	of	control	scaffolds	decreases	after	14	days		

of	 cell	 culture,	while	 the	UTS	of	 oestradiol	 releasing	 scaffolds	 	 increases	 	 over	 	 this	

time.	 Furthermore,	 PLA	 scaffolds	 that	 release	 oestradiol	 have	 a	 higher	 UTS	 than	

healthy		native	fascia.	

192



196

Unsupplemented	
Oil	red	O	staining	

Unsupplemented	
Alizarin	red	staining	

Adipogenic	media	
Oil	red	O	staining	

Osteogenic	media	
Alizarin	red	staining	

Figure	4.3.1.	Cell	differentiation	assays	in	response	to	oestradiol	

ADSC	cultured	in	either	DMEM,	adipogenic	media	or	osteogenic	media.	Stained	with	haematoxylin	and	Oil	red	O	(for	lipidic	vesicles)	or	Alizarin	red	(for	Calcium).	Scale	

bar represents 50µm
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Figure	4.3.2.		Cell	metabolic	activity	of	ADSC	

Cultured	on	control	and	oestradiol		releasing		PLA		scaffolds		as		measured		by		AlamarBlue		assay 

with	absorbance	measured	at	570nm	using	plate	reading	colourimeter.	(n=6	±SEM).	**p<0.01 1.

ourimeter.

Figure	4.3.3.		Total	collagen	production	at	day	14	

As	measured	by	Sirius	red	assay	with	absorbance	measured	at	490nm	using	plate	reading	

colorimeter (n=6	±SEM).	***p<0.001.	

**	

***	
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Figure	4.3.4.	Representative	fluorescent	microscopy	images	of	extracellular	matrix	components	

produced	by	ADSC	after	14	days	of	culture	

Collagen	I	(green),	elastin	(red)	and	cells	(blue).	Scale	bar	represents	100µm.	
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Figure	4.3.5.			The	effect		of		oestradiol		of	the	strength	of	the	scaffolds	assessed	in	the	presence	

of	ADSCs	

A) Young’s	Modulus	of	control	and	oestradiol	releasing	PLA		scaffolds,	before	and		after	14	days	of

cell	culture	with	ADSC.			Area	between	dashed	 lines	 represents	values	 for	healthy	native	 fascia.			n=6	

±SEM,	**p<0.01.	B)	Ultimate	Tensile	Strength	of	control	and	oestradiol	releasing	PLA	scaffolds,	before	

and	after	14	days	of	cell	culture	with	ADSC.	Area	between	dashed	lines	represents	values	for	healthy	

native	fascia.		n=6±SEM,	***p<0.001.	

A	 **	

B	
*
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4.3.6 Section	discussion	

We		demonstrate	 	that	 	cells	 	cultured	 	on	 	scaffolds	 	that	 	release	 	 	oestradiol	 	show	

a	 significantly	 higher	metabolic	 	 activity	 	 and	 	 production	 	 of	 	 total	 	 collagen	 	 than	

those	 scaffolds	 that	 do	 not	 release	 oestradiol.	 There	 does	 not	 appear	 to	 be	 any	

apparent	 toxic	effects	 resulting	 from	the	oestradiol	 released	 from	the	 	 scaffold	over	

a	 two-week	 period.	 	 Furthermore,	 	 oestradiol	 	 does	 	 not	 	 stimulate	 	 cells	 	 to	

differentiate	 into	 an	 adipose	 or	 bone	morphology.	 The	most	 striking	 finding	 is	 that	

oestradiol	 is	 associated	 with	 a	 significant	 increase	 in	 the	 expression	 of	 collagen	 I,	

collagen	 III	 and	 also	 elastin.	 This	 increase	 in	 collagen	 could	 possibly	 explain	 the	

increase	 in	 tensile	 strength	 that	 is	 seen	 following	2	weeks	of	 cell	 culture,	while	also	

becoming	more	elastic.	Despite	this,	the	presence	of	oestradiol	 in	the	scaffold	fibres	

does	 lead	 to	 significant	 changes	 in	 the	 overall	 mechanical	 	 properties	 	 of	 	 the	

materials.	 	However,	 	when		 	compared		 	with	 	healthy	 	 	fascia,	 	 	oestradiol-releasing	

PLA			scaffolds			are			slightly			stronger,			yet	more	elastic.	
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4.4 Chapter	discussion	

The	aim	of	this	study	was	to	develop	an	oestradiol	releasing	electrospun	PLA	scaffold,	

which	was	 selected	 as	 an	 appropriate	 repair	material	 	 to	 	 support	 	 deficient	 	 pelvic	

floor	 tissues.	 Oestradiol	 has	 been	 	 shown	 	 to	 	 become	 	 incorporated	 	 into	 	 PLA	

scaffolds	 to	 be	 released	 over	 a	 five-month	 period.	 The	 timing	 of	 	 the	 	 oestradiol	

release	corresponds	with	fibre	degradation,	as	PLA	degrades	over	a	12-month	period.	

This	would	indicate	that	the	oestradiol	has	been	incorporated	into	the	polymer	fibres	

of	the	scaffold	itself,	otherwise,	an	initial	burst	release	of	the	drug	would	be	observed,	

followed	 by	 minimal	 release	 thereafter.	 The	 initial	 burst	 release	 of	 oestradiol	 is	

purported	 to	occur	 due	 to	 the	presence	of	 a	 drug	 	 outside	 	 the	 	 fibres	 	 of	 	 polymer	

when	a	blend	method	of	drug	delivery	 is	 	 used	 	 as	 	 in	 	 this	 	 case.	 	 This	 	 can	 	 be	 	 of	

concern		when		certain		drugs		are		used		that			can			create				problems				with				toxicity	

in				the				short-term				if				used				at	 high	concentrations.	

The	initial	burst	release	of	drug	seen	in	various	studies	owing	to	rapid	diffusion	of	the	

investigated	 system	 can	 be	 overcome	 by	 alternative	 methods	 of	 electrospinning	

technique.	 Core-shell	 electrospinning,	 whereby	 two	 separate	 polymers	 are	

electrospun	through	the	same	co-axial	nozzle	produces	a	central	core	of	drug-loaded	

polymer,	inside	an	outer	shell.	This	outer	shell	can	be	comprised	of	slowly	degrading	

hydrophobic	 polymers	 that	 would	 otherwise	 permit	 the	 simple	 diffusion	 of	 drug	

observed	 in	 an	 initial	 burst	 release	 [388].	 Other	 attempts	 at	 the	 control	 	 of	 	 drug	

release	from	electrospun	scaffolds	involves	covalent	coupling	of	drugs	to	the	polymer	

prior	to	the	electrospinning	process	or	by	coating	of	the	drug	releasing	polymer	fibres	

following	this	process	[389,	390].	

The	time	period	over	which	the	drug	 is	 released	would	coincide	with	the	short-term	

healing	 phase	 of	 a	 wound	 bed	 following	 implantation	 of	 a	material	 that	 releases	 a	

drug		such		 	as	 	 	oestradiol.	 	 	The		 	concentration		 	of	 	 	drug		 	that	 	 	 is	 	 	released		 	has	

been	demonstrated	over	a	two-week	period	to	have	 	no	 	significant	 	attenuation	 	of	

the	 cell	 metabolic	 activity	 and	 this	 dose	 corresponds	 to	 the	 physiological	

concentration	 in	 pre-menopausal	 females.	 By	 altering	 the	 polymer,	 it	 is	 postulated	

that	the	release	of	the	experimental	drug	could	be	made	more	rapid	by	using	glycolic	
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acid	[391]	or	more	sustained	by	altering	the	material’s	wettability	[392].	

This	 in	 vitro	work	demonstrates	 that	 oestradiol	 has	 	 no	 	 adverse	 	 effects	 	 on	 	 these		

cells	with	 respect	 to	 their	metabolic	 activity,	morphology	or	 ability	 to	 	 differentiate	

into	 a	 range	 of	 phenotypes	 when	 subjected	 to	 	 their	 	 appropriate	 	 media.		

Furthermore,	 ADSCs	 when	 grown	 on	 oestradiol	 releasing	 PLA	 scaffolds	 produced	

significantly	more	 extracellular	matrix	 including	 collagen	 I,	 III	 and	 elastin	 than	 non-	

oestradiol	 releasing	 PLA	 	 scaffolds.	 	 The	 	 introduction	 	 of	 	 oestradiol	 	 did	 	 slightly	

reduce	the	mechanical	properties	of	the	PLA	scaffolds	but	the	Young’s	Modulus	and	

UTS	remain	close	to	the	values	of	healthy	native	fascia.	

A	 limitation	 of	 this	 work	 is	 that	 a	 significant	 proportion	 of	 oestradiol	 is	 lost	 during	

the	 electrospinning	 process,	 which	 is	 therefore	 a	 relatively	 inefficient	 process	 to	

perform.	 Furthermore,	 the	 exact	 concentration	 of	 oestradiol	 that	 is	 present	 	 in	 the	

final	 scaffold	material	 is	 difficult	 to	 exactly	 determine	 and	 is	 calculated	based	upon	

assumptions.	Although	oestradiol	continues	to	be	released	from	the	PLA	scaffolds	at	

the	end	of	 the	5	month-release	experiment,	 the	 rate	at	which	 it	 is	 released	 reduces	

significantly.	 	 Only	 by	 	 completely	 	 degrading	 	 	 the	 	 	 polymer	 	 	 scaffold	 	 	 and	

measuring	 the	 oestradiol	 concentration	 that	 is	 present	 would	 a	 more	 accurate	

measurement	be	 feasible.	However,	PLA	 	has	 	been	 	demonstrated	 	 to	 	be	 	present	

and	 intact	after	one	year	 [393]	and	therefore	conducting	an	experiment	beyond	this	

point	 is	 beyond	 the	 timescale	 of	 this	 project.	 Solvent	 degradation	 of	 the	 	 scaffold	

would	 accelerate	 this	 process,	 however	 the	 chemicals	 that	 are	 used	 during	 this	

process		would		interfere		with	the	measurement	of	oestradiol.	

Surgeons	have	historically	used	healthy	native	fascial	slings	for	the	treatment	of	SUI	

prior	 to	 the	 development	 of	 contemporary	 mesh	 surgery	 using	 PPL,	 which	 was	

subsequently	repurposed	for	the	treatment	of	prolapse.	PPL	mesh	is	associated	with	

chronic	 inflammation	and	exposure	 in	a	small	proportion	of	patients,	a	complication	

that	 is	 not	 associated	with	 fascia	 and	 this	 is	 the	 basis	 for	 using	 healthy	 fascia	 as	 a	

reference	material.	

In	 conclusion,	 oestradiol	 when	 released	 from	 electrospun	 PLA	 can	 effectively	
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stimulate	 extracellular	 matrix	 production	 while	 keeping	 desired	 	 mechanical	

properties		which	predicts	a	better	tissue	integration	in	vivo.	
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Chapter	V:		in	vivo	assessment	of	repair	materials	
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5.1 Chapter	introduction	

Thus	 far,	 we	 have	 assessed	 several	 degradable	 and	 non-degradable	 electrospun	

scaffold	materials	 in	 vivo.	 The	morphology,	mechanical	 and	 cellular	 outcomes	 have	

been	assessed,	however	how	a	material	behaves	following	implantation	requires	the	

use	 of	 appropriate	 animal	 models.	 The	 most	 appropriate	 animal	 model	 	 to	 	 study	

repair	 materials	 for	 the	 treatment	 of	 pelvic	 floor	 conditions	 would	 be	 non-human	

primates,	however	 this	 is	clearly	not	a	 feasible	option	as	an	 initial	 in	vivo	study.	The	

main	aims	for	these	experiments	are:	

• To	identify	any	macroscopic	complications	that	occur	following	implantation.

• To	assess	the	mechanical	outcomes	of	implanted	materials	following

implantation.

• To	investigate	the	histological	properties	of	the	repair	material	following

implantation.

The	 key	 objective	 with	 any	 short	 term	 in	 vivo	 implantation	 model	 is	 to	 assess	 the	

integration	 of	 the	 repair	material	 into	 the	 host.	 This	 includes	 an	 assessment	 of	 the	

inflammatory	 response	 to	 the	 material,	 whether	 cells	 penetrate	 the	 material	 and	

whether	 these	cells	appropriately	stimulate	neomatrix	production	and	angiogenesis.	

In	small	animals,	it	is	likely	that	a	3-4	month	implantation	study	would	be	sufficient	to	

enable	the	assessment	of	these	factors	[363].	

Based	 on	 the	 outcome	data	 from	 the	 in	 vitro	work,	 PLA	 and	 polyurethane	Z3	were	

selected	 for	 implantation	 in	 this	 animal	 model.	 Several	 animal	 models	 have	 	 been	

used	in	this	context,	including	rats	[363,	394],	sheep	[264]	and	rabbits	[294].	Based	on	

the	outcomes	of	previous	 rabbit	experiments,	 if	adverse	outcomes	were	to	develop,	

these	 would	 be	 evident	 by	 60-90	 days.	 Therefore	 an	 abdominal	 wall	 defect	 rabbit	

model	 was	 selected,	 with	 an	 implantation	 phase	 of	 up	 to	 90	 	 days.	 	We	 purposely	

chose	the	rabbit	model	because:	(1)	rabbits	allow	a	long	follow-up	period;	(2)	size-wise	

simultaneous	implantation	of	several	meshes	within	the	same	host	is	possible;	(3)	this	

species	 may	 challenge	 the	 long-term	 stability	 of	 collagen	 matrices,	 as	 rabbits	 are	

known	to	have	a	high	collagenolytic	activity	[395].	

The	mechanical	properties	of	the	explanted	material	are	perhaps	not	as	important	as	
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the	 mechanical	 properties	 of	 the	 en	 bloc	 repair	 site	 itself,	 including	 material	 and	

surrounding	 tissue.	 This	 is	 particularly	 true	 of	 tissues	 that	 are	 repaired	 using	

degradable	 materials	 that	 would	 be	 expected	 to	 become	 weaker	 over	 time,	 the	

strength	 of	 the	 repair	 site	 being	 provided	 by	 the	 tissue	 remodeling	 that	 occurs	

following	implantation.	Therefore,	an	assessment	of	both	the	explanted	material	and	

surrounding	tissues	is	performed.	

An	 important	 factor	 in	 the	 integration	 of	 a	material	 is	 the	macrophage	 phenotype	

present.			An	M2	macrophage	response	is	indicative	of	constructive	tissue		remodeling	

[291] and	 is	 associated	 with	 cell	 infiltration,	 neovascularization	 and	 extracellular

matrix	production.	These	components	are	also	tested	in	this	study.	

5.1.1 Material	explantation	

All	 rabbits	 survived	 the	 implantation	 stage	of	 the	 study	and	 there	were	no	 cases	of	

overt	 infection	over	 the	course	of	 the	experiment.	8	 rabbits	per	experimental	group	

were	sacrificed	after	30	and	90	days,	with	the	repair	material	and	surrounding	tissue	

explanted.	 PU	 scaffolds,	 PVDF	 and	 PPL	 meshes	 were	 easily	 identified	 on	 the	

abdominal	 wall	 with	 neo-tissue	 covering	 all	 materials	 (figure	 5.1.1).	 PLA	 scaffolds	

however,	 were	 highly	 remodeled	 and	 became	 well-integrated	 into	 the	 host,	 which	

made	the	accurate	identification	of	this	material	 itself	difficult.	These	scaffolds	were	

identified	by	the	presence	of	a	non-absorbable	suture,	which	was	 located	at	each	of	

the	 four	 corners	 of	 the	 material.	 The	 main	 procedural	 complications	 were	 a	 small	

proportion	of	adhesions	between	the	omentum	and	suture	material	(figure	5.1.2	and	

table	 5.1),	 while	 mesh	 exposure	 was	 observed	 in	 two	 PVDF	 materials	 and	 3	 PPL	

meshes	by	30	days	(figure	5.1.3).	

It	 is	 more	 likely	 that	 adhesions	 formed	 because	 of	 the	 peritoneal	 defect	 and	 the	

subsequent	 repair	 rather	 than	 the	 use	 of	 repair	 material,	 which	 is	 reflected	 in	 the	

incidence	 of	 peritoneal	 adhesions	 spread	 amongst	 the	 different	 groups	 of	 repair	

material.			
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Sham	 PLA	 PU	

PVDF	 PPL	

Figure	5.1.1.	Macroscopic	appearance	of	the	materials	after	90	days	implantation	

  A	

Figure	5.1.2.	Adhesion	formation	between	repair	material	and	intra-abdominal	organs	at	30	days	

A) Sham	repair.		B)		Polyurethane.		C)	Polypropylene.

  B	

  C	
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Table	5.1.	Number	of	peritoneal	adhesions	occurring	of	8	implants	per	group	and	time	point	

Mate
rial	

Day	30	
(number)	

Day	90	(number)	

Sham	 2	 0	

PLA	 0	 5	

PU	 3	 0	

PVDF	 0	 0	

PPL	 1	 1	

Tot
al	

6	 6	

Figure	5.1.3.	Polypropylene	mesh	exposure	through	rabbit	abdominal	wall	

A) External	view.		B)		Internal	view.

 A	  B	
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5.2 Mechanical	outcomes	

Mechanical	properties	of	the	dissected	materials	at	30	and	90	days	were	compared	to	

the	 mechanical	 properties	 of	 the	 dry	 pre-implantation	 materials,	 which	 had	 a	

thickness	of	300µm	for	PU	and	100µm	for	PLA.	These	scaffolds	were	therefore	three	

times	thicker	than	those	used	during	in	vitro	testing.	The	mechanical	properties	of		the	

abdominal	 wall	 tissue	 that	 incorporated	 the	 implanted	material	 at	 30	 and	 90	 days	

were	compared	 to	control	 tissue	 taken	 from	non-operated	healthy	 rabbit	 fascia	and	

also	to	the	sham	repair	sites.	A	ramp	uniaxial	test	was	performed	for	all	samples,	with	

the	Young’s	modulus	and	ultimate	tensile	strength	normalized	to	material	thickness.	

5.2.1 Mechanical	properties	of	repair	materials	

To	assess	how	the	mechanical	properties	of	the	individual	material	behave	following	

implantation,	 scaffolds	 and	 meshes	 were	 carefully	 dissected	 free	 of	 surrounding	

tissue.	 The	 location	 of	 the	 defect	 was	 identified	 during	 this	 process	 and	 care	 was	

taken	to	ensure	that	the	portion	of	the	repair	material	that	was	overlying	the	defect	

was	tested.		Individual	statistical	differences	are	demonstrated	in	appendix	1.	

5.2.1.1 Young’s	modulus	

The	Young’s	modulus	of	dissected	repair	materials	 is	demonstrated	 in	 figure	5.2.1A.	

This	shows	that	between	30	and	90	days,	there	was	no	significant	change	in	Young’s	

modulus	for	any	of	the	tested	materials	(appendix	1).	Both	PLA	and	PPL	however	did	

demonstrate	significant	reductions	 in	the	Young’s	modulus	after	 implantation,	while	

the	values	for	PU	and	PVDF	remained	unchanged.	

5.2.1.2 Ultimate	tensile	strength	

The	ultimate	 tensile	strength	of	dissected	 repair	materials	 is	demonstrated	 in	 figure	

5.2.1B.	 This	 demonstrates	 that	 all	 materials	 show	 a	 reduction	 in	 UTS	 following	

implantation,	 however	 only	 PLA	 and	 PPL	 show	 a	 significant	 reduction	 in	 strength	

(appendix	1).	Between	30	and	90	days,	 the	UTS	 increased	for	all	materials,	a	 finding	

that	did	not	reach	statistical	significance.	
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5.2.2 Mechanical	properties	of	repair	site	

Biomechanical	 properties	 of	 the	 abdominal	 wall	 tissue	 incorporating	 the	 implant	

materials	were	 assessed	and	 compared	 to	 those	of	 the	 abdominal	wall	 in	 the	 sham	

group	 and	 in	 healthy	 controls.	Mechanical	 testing	 of	 these	 samples	was	 performed	

with	 the	 defect	 located	 at	 a	 central	 position.	 Controls	 include	 sham	 repairs	 (defect		

that	was	repaired	with	sutures	but	without	any	material)	and	healthy	abdominal	wall	

tissue.		Individual	statistical	differences	are	demonstrated	in	appendix	2.	

5.2.2.1 Youngs	modulus	

The	Young’s	modulus	of	the	repair	sites	for	each	of	the	tested	materials	at	30	and	90	

days	is	demonstrated	in	figure	5.2.2A.	The	use	of	all	materials	resulted	in	a	repair	site	

with	 a	 higher	Young’s	modulus	 than	 sham	operated	 controls.	While	 this	 finding	did	

not	 reach	 statistical	 significance,	 the	 Young’s	 modulus	 of	 healthy	 controls	 was	

significantly	 higher	 than	 any	 of	 the	 operated	 tissue	 at	 both	 30	 and	 90	 days.	 There		

were	no	significant	differences	between	the	experimental	groups	at	30	and	90	days	as	

demonstrated	by	the	Tukey	multiple	comparisons	test	(appendix	2).	

5.2.2.2 Ultimate	tensile	strength	

The	ultimate	tensile	strength	of	the	repair	sites	for	each	of	the	tested	materials	at	30	

and	90	days	is	demonstrated	in	figure	5.2.2B.	The	UTS	of	all	tested	samples	increased	

between	30	and	90	days,	without	any	significant	difference	between	any	of	the	four	

experimental	groups.	Healthy	controls	had	a	significantly	higher	UTS	than	any	of	the	

experimental	 groups	 at	 both	 30	 and	 90	 days.	 The	 Tukey	multiple	 comparisons	 test	

(appendix	2)	demonstrated	that	amongst	the	four	implant	groups,	the	only	significant	

finding	was	that	PPL	showed	a	higher	UTS	than	the	sham	group	at	day	90.	
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A	

B	

Figure	5.2.1.	Mechanical	properties	of	explanted	repair	materials	

A) Young’s	modulus	and	B)	ultimate	tensile	strength	of	4	different	materials	at	day	0,	30	and	90.	N=4,

mean	±	SEM.		**	p<0.01,	****	p<0.0001.	
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A	

B	

Figure	5.2.2.	Biomechanical	properties	of	explanted	repair	site	

A) Young’s	modulus	and	B)	ultimate	tensile	strength	of	4	different	sites	and	two	controls.

N=4,	mean	±	SEM.	
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5.2.3 Section	discussion	

The	contemporary	polypropylene	mesh	devices	 that	are	used	for	both	SUI	and	POP	

surgery	 demonstrate	 plastic	 deformation	 and	 mechanical	 failure	 during	 routine	

cyclical	 distension	 [263,	 382].	 This	 finding	 is	 reported	 to	 be	 associated	 with	 the	

complications	that	are	seen	with	the	 implantation	of	 these	devices	 [379,	 	396,	 	397].	

We	 therefore	 investigate	 the	mechanical	 properties	of	 two	alternative	materials	 for	

the	treatment	of	SUI	and	POP,	a	degradable	(PLA)	and	non-degradable	(polyurethane	

Z3)	electrospun	mesh.		PLA	demonstrates	excellent	cell	integration		and	proliferation	

in	 vitro,	 while	 PU	 shows	 an	 absence	 of	 plastic	 deformation	 when	 subjected	 to	

repetitive	 distension.	 We	 investigate	 the	 mechanical	 outcomes	 of	 these	

investigational	devices	following	implantation	in	an	abdominal	wall	defect	model	over	

a	90	day	period.	

Following	implantation,	PLA	becomes	significantly	more	elastic	but	weaker,	while	the	

mechanical	properties	of	PU	remain	unchanged.	This	is	an	important	finding,	which	is	

likely	to	reflect	the	nature	of	the	materials	themselves;	PLA	undergoes	degradation,	

while	PU	does	not.	Arguably	a	more	accurate	mechanical	assessment	is	the	testing	of	

the	 site	 of	 repair,	 which	 has	 been	 augmented	 by	 the	 implantation	 of	 these	

investigational	 devices.	While	 the	 use	 of	 these	 two	materials	 result	 in	 	 a	 repair	 site		

that	 has	 a	 small	 but	 non-significant	 increase	 in	 UTS,	 the	 strength	 of	 the	 tissues	 is	

weaker	than	healthy	controls.	The	interesting	finding	is	that	despite	PLA	undergoing	

degradation,	the	site	of	repair	becomes	stronger	from	30	to	90	days.	This	 is	 likely	to	

reflect	to	ability	of	this	scaffold	to	support	cell	proliferation	and	neomatrix	formation,	

which	replace	the	scaffold	as	it	degrades	over	time.	

Clearly,	an	abdominal	wall	defect	rabbit	model	does	not	accurately	mimic	the	human	

pelvic	floor	and	it	is	therefore	difficult	to	draw	conclusions	about	how	the	mechanical	

properties	of	these	materials	will	behave	following	their	implantation	in	humans	with	

SUI	 or	POP.	Despite	 this,	 it	 does	 not	 appear	 that	 any	 significant	 adverse	outcomes	

exist	 following	 the	 implantation	 of	 these	 materials	 in	 abdominal	 wall	 defect	 male	

rabbit	 models.	 These	 investigational	 devices	 therefore	 require	 further	 pre-clinical	

testing	and	we	currently	await	 the	 findings	of	a	6-month	assessment	of	PU	Z3	 that	

has	 been	 implanted	 into	 the	 vagina	 of	 sheep.	 	 It	 is	 difficult	 to	 seek	 central	 ethical	
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committee	approvals	to	experiment	on	larger	animals,	which	would	be	a	much	more	

accurate	model	 of	 this	 particular	 application,	 furthermore,	 it	 would	 be	 significantly	

more	 expensive.	 	 Testing	 the	 host	 response	 to	 these	 implantable	 materials	 is	 an	

important	 initial	 step	 towards	 seeking	 further	 funding	 and	 approvals	 for	 testing	 in	

larger	 animals.	 	 Sheep	 are	 notoriously	 highly	 sensitive	 to	 the	 implantation	 of	 any	

biomaterial	and	therefore,	this	model	was	viewed	to	be	a	highly	robust	and	sensitive	

measure	of	any	site	specific	responses,	such	as	inflammation	or	infection.			

A	further	limitation	of	this	experiment	is	that	the	mechanical	outcomes	are	not	tested	

at	 a	 time	 point	 that	 would	 correspond	 with	 further	 material	 degradation.	 We	

therefore	 cannot	make	 conclusions	on	 the	 strength	of	 the	 repair	 site	 once	PLA	has	

completely	 degraded.	 However,	 figure	 5.2.2	 shows	 that	 the	 UTS	 of	 the	 repair	 site	

treated	with	PLA	actually	increases	between	30	and	90	days,	which	corresponds	with	

histological	 evidence	of	 significant	 degradation	of	 the	material	 itself,	 a	 finding	 that	

will	be	further	discussed	in	the	following	section.	
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5.3 Immunohistological	outcomes	

Mesh	 related	 complications	 do	 not	 develop	 in	 most	 patients,	 but	 a	 significant		

minority	(currently	estimated	at	13%)	do	show	severe	complications,	which	suggests	

the	 importance	 of	 immune	 reactions,	 such	 as	 acute	 inflammation	 and	 other	 host	

processes,	 including	neovascularization	 [259].	 Indeed,	 the	 initial	animal	experiments	

performed	 for	 the	 assessment	 of	 PPL	 [398]	 demonstrated	 a	 wide	 range	 of	 host	

reactions,	 with	 some	 animals	 exhibiting	 integration	 of	 the	 material,	 while	 others	

showed	 a	 severe	 foreign	 body	 reaction.	 PPL	 mesh	 fibres	 ultimately	 become	

surrounded	by	areas	of	granulomatous	inflammation	that	is	triggered	by	macrophage	

infiltration,	 which	 are	 recruited	 to	 destroy	 the	 foreign	 body.	With	 PPL,	 	 the	 	mesh	

fibres	therefore	remain	chronically	inflamed.	PLA	is	biodegradable	and	will	therefore	

overcome	 this	 problem	 of	 ongoing	 chronic	 inflammation,	 becoming	 replaced	 with	

collagen	as	the	PLA	fibres	undergo	hydrolysis.	The	macrophage	phenotype	is	used	to	

identify	 whether	 an	 implanted	 foreign	 body	 is	 associated	 with	 ongoing	 chronic	

inflammation	or	 constructive	 remodeling	processes	with	 the	 formation	of	 structural	

neotissue.	

We	 therefore	 assess	 these	 outcomes	 following	 30	 and	 90	 days.	 Explanted	 samples	

underwent	fixation	and	immunohistological	analysis,	with	objective	values	calculated	

based	 on	 blind	 scoring	 systems.	 Separate	 representative	 images	 are	 demonstrated		

for	90	days	only.	Appendix	 3	demonstrates	all	 immunological	outcomes	at	 30	days,	

while	 appendix	 4	 shows	 the	 immunological	 outcomes	 at	 90	 days.	 Appendix	 5	

demonstrates	 the	mean	 blind	 scoring	 values	 for	 each	 immunological	 outcome,	 the	

significance	of	which	is	shown	in	appendix	6	and	7	for	30	and	90	days	respectively.	

5.3.1 Sample	integration	

Figure	5.3.1	demonstrates	H&E	stained	samples	at	30	and	90	days.	After	30	days,	all	

materials	 demonstrated	 some	 degree	 of	 cellular	 infiltration	 and	 blood	 vessel	

formation	 (indicated	by	arrows),	which	had	 increased	by	90	days.	PLA	became	well	

integrated	after	only	30	days	and	appeared	to	be	replaced	with	neotissue.	PU	showed	

cell	infiltration	from	the	deep	surface	of	the	scaffold	at	30	days,	which	demonstrated	

progression	by	90	days.	PVDF	and	PPL	fibres	were	surrounded	by	cellular	 infiltrates,	

however	these	fibres	were	also	surrounded	by	a	large	proportion	of	loose	connective	
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tissue.	 Sham	 operated	 controls	 demonstrated	 tissue	 remodeling,	 with	 appearances	

similar	to	healthy	tissue	by	90	days.	

5.3.2 Collagen	III	production	and	macrophage	infiltration	

Figure	5.3.2	shows	samples	stained	for	collagen	III	at	90	days.	This	demonstrates	that	

all	 samples	 show	 collagen	 III	 expression.	 Sham	 operated	 controls	 demonstrate	 a	

greater	 proportion	 of	 collagen	 III	 expression	 at	 the	 repair	 site,	 while	 for	 PPL	 	 and	

PVDF,	 there	 are	 small	 areas	 of	 darkly	 stained	 collagen	 around	 individual	 fibres	

surrounded	by	a	much	 larger	area	of	 collagenous	connective	 tissue.	Meanwhile,	 the	

PLA	scaffold	had	become	completely	 replaced	by	collagenous	 tissue	 that	has	 taken	

the	 appearance	 of	 bundles,	 similar	 to	 muscle.	 Individual	 PLA	 fibres	 are	 scarcely	

visible,	while	 the	PU	scaffold	 is	 still	 identifiable,	with	high	collagen	 III	expression	on	

the	top	and	bottom	surface	of	the	scaffold.	

Brown	 stained	 macrophages	 are	 present	 at	 the	 site	 of	 repair	 for	 sham	 operated	

controls	 (figure	 5.3.3),	 while	 the	 remainder	 of	 explanted	 tissues	 show	 abundant	

macrophage	 infiltrates	associated	solely	with	the	repair	material	 itself.	There	are	no	

macrophages	present	within	samples	of	healthy	tissue.	

5.3.3 New	blood	vessel	formation	and	lymphocyte	infiltration	

Figure	5.3.4	shows	brown-stained	endothelial	cells	 throughout	the	explanted	tissues	

at	90	days.	For	PU	scaffolds,	 a	much	greater	proportion	of	 stained	endothelial	 cells	

exists	on	the	lower	surface	of	the	material,	while	PLA	scaffolds	have	been	replaced	by	

tissue	with	endothelial	cells	present	within	it.	

T-lymphocytes	are	not	present	within	the	two	control	groups,	but	are	found	scattered

throughout	 all	 material	 repaired	 tissues	 (figure	 5.3.5).	 Lymphocytes	 are	 found	

predominantly	present	within	the	regenerated	PLA	scaffold,	while	for	PU,	PVDF	and	

PPL,	lymphocytes	are	located	surrounding	the	fibres	only.	

5.3.4 Macrophage	phenotype	

Figure	5.3.6	demonstrates	the	M1	(staining	for	HLA-DR)	and	M2	(staining	for	cd206)	

macrophage	phenotype	for	all	explanted	samples	at	90	days.	There	is	an	absence	of	
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HLA-DR	 stain	 for	 control	 samples	 and	 small	 area	 of	 staining	 only	 for	 PLA	 and	 PU	

samples.	 PVDF	 and	PPL	however,	 demonstrate	 a	much	 greater	 proportion	 of	HLA-		

DR	staining	surrounding	 individual	 fibres,	as	compared	to	CD206	staining.	 	PLA	and	

PU	meanwhile	demonstrate	a	much	greater	proportion	of	CD206	staining,	with	small	

areas	of	sham	operated	controls	stained	brown.	

	

Figure	5.3.7	demonstrates	 the	blind	 scoring	values	 for	 the	M2/M1	macrophage	 ratio	

taken		from		several		representative		immunohistochemistry		images		similar		to		figure	

5.3.6.	This	indicates	that	there	is	a	much	greater	M2	response	for	healthy,	sham,	PLA	

and	PU	samples,	with	an	equivocal	result	for	PVDF	and	a	predominantly	M1	profile	for	

PPL	 at	 90	 days.	 Based	 on	 these	 data,	 table	 5.3	 shows	 that	 PLA	 has	 a	 significantly	

greater	M2	profile	than	any	other	tested	material	(p<0.05).	
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Figure	5.3.1.		Histology	of	explanted	samples	

(Left)	at	30	days.	(Right)	at	90	days.		Haematoxyllin	and	eosin	staining.	Scale	bars	indicate	0.1mm	and	0.2mm	for	low	and	high	magnificantion	respectively
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Figure	5.3.2.	Immunohistochemistry	staining	for	collagen	III	at	day	90	

Collagen	stained	brown.		Representative	images	from	4	samples.	Scale	bars	represent	0.2mm

.

s represent

Figure	5.3.3.	Immunohistochemistry	staining	for	macrophages	at	day	90	

Macrophages	stained	brown	using	RAM	11.	Representative	images	from	4	samples.	Scale	

bars represent 0.2mm.	
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Figure	5.3.4.	Immunohistochemistry	staining	for	endothelial	cells	at	day	90	

Endothelial	cells	stained	brown	using	cd31.	Representative	images	from	4	samples.	Scale	bars	represent	

0.1mm.	

Figure	5.3.5.	Immunohistochemistry	staining	for	T	lymphocytes	at	day	90	

T	lymphocytes	stained	brown.	Representative	images	from	4	samples.	Scale	bars	represent		0.1mm.	
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Figure	5.3.6.	Immunohistochemistry	images	of	M1	and	M2	macrophage	phenotype	at	day	90	

M1	(HLA-DR)	and	M2	macrophages	(cd206)	stained	brown.		Representative	images	from	4	samples.	Scale	bars	represent	0.2mm.
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Figure	5.3.7.		M2/M1	ratio	for	explanted	materials	

12	representative	images	for	each	experimental	group	assessed	by	6	blinded	reviewers.	Mean

± SEM.

Table	5.3.	Dunn	multiple	comparisons	test	of	M2/M1	ratio	taken	from	figure	5.3.7	

Experimental	group	 p	value	

30	days	 90	days

Sham	versus:	 PLA,	PU,	PVDF,	healthy	control	 ns	

PPL	 ns	 <0.01

PLA	versus:	 PU,	PVDF	 <0.05	 ns	

PPL	 <0.05	

Healthy	control	 ns	

PU	versus:	 PVDF,	PPL,	healthy	control	 ns	

PVDF	versus:	 PPL,	healthy	control	 ns	

PPL	versus:	 Healthy	control	 ns	

ns.		Not	significant	

219



223

5.3.5 Section	discussion	

Immediately	 following	 the	 implantation	 of	 a	 material,	 a	 biofilm	 rich	 in	 mitogens;	

cytokines	 and	 other	 growth	 factors	 surrounds	 the	 device,	 which	 activates	 an	

inflammatory	response.	This	acute	phase	usually	resolves	within	a	week,	followed	by	

a	 chronic	 response	 that	 should	 not	 last	 more	 than	 a	 few	 weeks	 for	 biocompatible	

materials.	Granulation	 tissue	 associated	with	 neovascularization	 	 should	 	mark	 	 the	

final	process	of	the	healing	phase,	with	tissue	remodeling	as	a	result	[256].	However,	

this	is	simply	not	observed	in	practice	with	the	use	of	polypropylene.	

The	 intention	with	degradable	materials,	 such	as	PLA	 that	has	a	 favourable	 cellular	

response	 is	 that	 these	 processes	 can	 be	 overcome.	 With	 polyurethane,	 	 the	

mechanical	 properties	 are	 closer	 to	 those	 of	 the	 host	 tissue,	 and	 therefore,	 it	 is	

believed	 that	 the	 host	 response	 to	 that	 device	 will	 be	much	 less	 pronounced	 than	

occurs	with	polypropylene.	

Using	this	abdominal	defect	rabbit	model,	we	demonstrate	that	by	90	days	following	

implantation,	 both	 PLA	 and	 PU	 scaffolds	 become	 well	 integrated	 into	 the	 host	 as	

demonstrated	 by	 histology	 (figure	 6.3.1).	 PLA	 is	 associated	 with	 a	 	 significantly	

greater	 M2	 response	 that	 is	 indicative	 of	 constructive	 remodeling	 than	 any	 other	

tested	material,	while	PPL	 and	PVDF	are	 associated	with	 a	 significant	M1	 response	

that	would	suggest	on-going	chronic	 inflammation	to	these	materials.	Furthermore,	

in	 response	 to	 implanted	 PLA,	 host	 cells	 seem	 to	 express	 a	 significantly	 greater	

proportion	 of	 collagen	 III,	 an	 early	 indicator	 of	 tissue	 remodeling	 processes.	While,	

polyurethane	scaffolds	are	associated	with	constructive	remodeling	processes,	albeit	

to	a	 lesser	degree	than	PLA,	 it	does	not	seem	that	 the	material	 is	associated	with	a	

chronic	 inflammatory	 response	 to	 the	 same	 extent	 as	 PPL	 or	 PVDF.	 We	 also	

demonstrate	that	macrophages	are	able	to	gain	access	to	PLA,	which	is	likely	to	occur	

as	the	material	undergoes	controlled	degradation	over	the	course	of	the	experiment.	

All	materials	demonstrate	evidence	of	new	blood	vessel	formation,	however	only	PLA	

shows	that	neovascularization	that	occurs	within	the	area	of	the	implanted	material.	

In	 summary,	 despite	 a	 much	 smaller	 pore	 size,	 both	 PLA	 and	 PU	 scaffolds	
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demonstrate	 host	 integration,	 with	 cell	 proliferation	 and	matrix	 production	 in	 vivo,	

without	any	evidence	of	overt	infection.	
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5.4 Chapter	discussion	

Other	authors	have	described	the	use	Human	ADSC	as	a	cell	source	for	this	study	as	

these	 cells	 are	more	 proliferative	 and	 better	 defined	 than	 fibroblasts	 and	 they	 are	

capable	of	contributing	to	wound	healing	in	several	ways	making	them	a	popular	cell	

for	 tissue	 regeneration	 [325].	 This	 particular	 rabbit	 model	 was	 used	 for	 the		

assessment	 of	 repair	materials	 and	 report	 on	 the	mechanical	 and	 cellular	 outcome	

data	of	these	devices	[294].	Although	the	stresses	that	occur	 in	the	rabbit	abdomen	

clearly	 do	 not	 represent	 the	 pressure	 changes	 that	 occur	 within	 the	 female	 pelvic	

floor,	 this	 model	 provides	 an	 assessment	 of	 the	 mechanical	 behavior	 of	 tested	

materials	 in	response	to	host	processes	and	over	a	much	 longer	period	of	time	than	

can	be	feasibly	demonstrated	in	a	laboratory	setting.	Despite	this,	the	exact	pressure	

changes	within	 the	 rabbit	abdominal	cavity	are	not	known	and	 it	 is	 likely	 that	 there	

will	 be	 some	 degree	 of	 stress	 at	 the	 repair	 site.	What	 is	 clear,	 however	 is	 that	 full-	

thickness	defects	 that	 are	 repaired	with	 sutures	 alone	 are	 significantly	weaker	 than	

those	repaired	by	any	of	the	tested	materials,	which	in	turn	are	weaker	than	healthy	

rabbit	 abdominal	 wall.	 It	 is	 entirely	 feasible	 that	 if	 the	 experiment	 were	 to	 be	

conducted	 over	 a	 longer	 time	 period	 then	 the	 tissue	 strength	 of	 repaired	 	 defects	

would	 increase	 further	 towards	 the	 levels	 seen	 for	 non-operated	 controls,	 as	

remodeling	processes	occur	over	a	longer	duration	[399].	PLA	demonstrates	that	this	

process	occurs,	 showing	an	 increase	 in	UTS	 from	30	 to	90	days	despite	histological	

evidence	 of	 degradation	with	 a	 corresponding	 increase	 in	 collagen	 fibre	 expression	

throughout	the	remodeling	material.	

Both	 commercially	 available	 PPL	 and	 PVDF	 meshes	 were	 included	 as	 reference	

materials	in	these	experiments,	to	reflect	the	current	climate	of	the	market.	There	are	

many	variants	of	these	two	materials	available	that	differ	in	their	mesh	patterns	and	

orientation.	Essentially	we	are	comparing	two	new	microporous	mesh	devices	against	

two	established	non-degradable	Amid	type	I	mesh	devices.	

Areas	 of	 healthy	 abdominal	 wall	 were	 taken	 from	 all	 rabbits	 to	 ensure	 that	 the	

implantation	of	one	material	in	the	abdominal	wall	did	not	cause	systemic	effects,	i.e	

evidence	 of	 systemic	 inflammation	 or	 tissue	weakening.	 There	was	 no	 evidence	 to	

222



226

suggest	that	this	occurred	and	the	mechanical	properties	of	healthy	controls	actually	

increased	from	30	to	90	days.	

Polyurethane	Z3	 is	considered	to	be	a	non-biodegradable	polymer.	Despite	this,	 the	

manufacturer	claims	that	this	material	will	actually	degrade	over	a	10	year	period,	a	

process	that	may	occur	faster	when	the	material	 is	subjected	to	host	mechanisms	in	

the	body.	Clearly,	 as	neither	PLA	nor	PU	 scaffolds	degraded	over	 the	 course	of	 the	

study,	it	is	not	possible	to	draw	any	conclusions	on	the	relationship	between	material	

degradation	and	mechanical	outcomes	 from	these	studies.	 	Furthermore,	 there	was	

insufficient	 funding	 to	 extend	 this	 study	 beyond	 the	 90	 day	 time	 frame.	 	 Further	

studies	in	sheep	beyond	6	months	are	planned	for	the	future.			

Another	 limitation	 of	 this	 experiment	 is	 with	 the	 relatively	 short	 duration	 of	

implantation.	It	has	been	demonstrated	that	the	complications,	which	occur	with	non-

degradable	mesh	can	take	many	years	to	occur	[400]	[253]	and	therefore	a	3-	month	

model	may	not	show	evidence	of	this	phenomenon.	However,	of	those	patients	who	

do	develop	complications	after	many	years	following	implantation,	 it	 is	unlikely	that	

there	 is	 an	 initial	 period	 of	 resolution,	 rather	 there	 is	 the	 persistence	 of	 a	 chronic	

inflammatory	process	until	such	a	time	that	it	becomes	clinically	apparent.	

Clearly,	a	more	accurate	model	of	SUI	is	required	to	formally	assess	repair	materials	in	

this	 context.	 	 Due	 to	 the	 animal’s	 size,	 it	 is	 simply	 not	 feasible	 to	 perform	 anti-

incontinence	or	prolapse	surgery	in	rabbits.		The	female	rabbit	vagina	is	far	too	small	

to	 place	 a	 sample	 of	 sufficient	 size	 to	 allow	 adequate	 testing.	 	 Therefore,	 the	

abdominal	wall	was	a	selected	as	an	appropriate	site	to	asses	host	responses	and	the	

mechanical	outcomes	of	materials	following	implantation.			

Ultimately,	 with	 the	 implantation	 of	materials	 that	 the	 body	 is	 unable	 to	 remodel,	

such	 as	 PPL	mesh,	 although	macrophages	 and	 other	 inflammatory	 cells	 are	 better	

able	 to	 penetrate	 the	 material,	 the	 macrophage	 phenotype	 is	 associated	 with	 a	

persistent	 foreign	 body	 response	 and	 excessive	 fibrosis	 [401].	 Only	 by	 achieving	 a	

device	 that	mimics	 the	 host	 tissues	will	 this	 response	 to	 the	 implanted	material	 be	

more	desirable	[402].	We	therefore	selected	these	two	materials;	PLA	that	provides	a	
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suitable	 cellular	 environment	 and	 PU	 that	 closely	 resembles	 the	 mechanical	

properties	of	host	tissues	[382].	
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Chapter	VI:		Final	discussion	and	conclusions	
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6.1 Discussion	

Regenerative	medicine	and	tissue	engineering	approaches	to	the	treatment	of	pelvic	

floor	 disorders	 can	 offer	 a	 solution	 to	 many	 of	 the	 drawbacks	 of	 current	 repair	

materials.	With	 current	PPL	meshes,	 infection,	dyspareunia	and	pain	 can	 result	 and	

patients	may	ultimately	need	to	undergo	remedial	surgery.	Mesh	exposure,	seen	in	a	

small	but	significant	proportion	of	patients	can	result	from	a	persistent	inflammatory	

and	 fibrotic	 reaction	 in	 response	 to	 implanted	 foreign	 materials	 and	 occurs	 to	 a	

greater	 extent	 with	 POP	 surgery,	 where	 a	 much	 larger	 surface	 area	 of	 mesh	 is	

required	[1].	Furthermore,	it	seems	that	this	stiff	and	inelastic	material	may	not	be	as	

appropriate	 to	 the	 pelvic	 floor	 environment	 as	 it	 is	 for	 a	 hernia	 repair,	 where	 the	

material	works	well.	

Autologous	fascia,	taken	from	the	rectus	or	fasica	lata	of	the	thigh	has	been	used	for	

many	years	for	the	treatment	of	SUI.	The	benefit	with	autografts	is	that	the	excessive	

immune	reactions	that	occur	with	the	implantation	of	PPL	do	not	develop.	However,	

the	 harvest	 of	 autologous	 fascia	 adds	 additional	 time	 to	 the	 operation	 and	 can	

occasionally	 result	 in	donor	site	morbidity.	Mesh	 tape	surgery	was	developed	 in	 the	

mid-1990s	in	an	attempt	to	reduce	recovery	times.	

Electrospinning	is	a	relatively	simple	and	cheap	procedure	to	produce	scaffolds	for	cell	

attachment,	 growth	 and	 neomatrix	 formation.	 While	 a	 variety	 of	 syringe	 pumps,	

mandrels	and	voltage	devices	can	be	purchased	for	 this	purpose,	 the	cost	of	a	basic	

electrospinning	rig	such	as	that	used	in	these	experiments	is	the	equivalent	to	£2000.	

Various	conditions	can	influence	the	characteristics	of	produced	materials.	By	using	a	

rotating	collector,	aligned	polymer	fibres	can	be	formed	that	confer	material	strength	

in	 certain	 orientations,	 whereas	 randomly	 arranged	 fibres	 can	 allow	 greater	 cell	

penetration.	 Fibres	 of	 varying	 diameter	 can	 be	 achieved	 by	 altering	 the	 voltage	

applied	or	the	viscosity	of	the	polymer	solution.	This	can	subsequently	have	an	effect	

on		the		fibre		degradation	rates.	

Rapidly	 degrading	 polymers	 would	 seem	 ideal	 for	 use	 as	 drug	 delivery	 systems	 to	

cover	the	 initial	healing	phase	of	a	wound	bed	following	 implantation,	however,	 the	
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material	may	degrade	before	an	adequate	 regeneration	of	host	 tissues	 is	 complete,	

resulting	in	inadequate	support.	Slowly	degrading	polymers	(PU	or	polycaprolactone)	

can	 offer	 an	 improved	 mechanical	 profile,	 however,	 their	 hydrophobicity	 prevents	

adequate	cell	attachment	[403].	

The	 evidence	 suggests	 that	 both	 fibroblasts	 and	 mesenchymal	 stem	 cells	 perform	

similarly	when	cultured	on	scaffolds	in	terms	of	attachment	and	proliferation.	Vaginal	

fibroblasts	would	intuitively	seem	the	most	appropriate	cell	source,	however	research	

has	demonstrated	these	cells	to	be	deficient	in	structural	components	and	enzymatic	

pathways	 in	 patients	 with	 POP	 [128].	 To	 avoid	 the	 host	 response	 and	 potential	

disease	 transmission,	 autologous	 cells,	 particularly	 the	 relatively	 accessible	 ADSC	

would	seem	the	most	promising	cell	candidate.	

Mechanical	stimulation	of	produced	scaffolds	has	been	shown	to	lead	to	an	increase	

in	 the	 extracellular	 matrix	 production	 and	 a	 variety	 of	 techniques	 have	 been	

investigated	 in	 order	 to	 demonstrate	 this	 [404].	 We	 have	 demonstrated	 that	 the	

mechanical	 properties	 of	 polyurethanes	 remain	 unaltered	 following	 cycles	 of	

continuous	 mechanical	 stimulation,	 however,	 we	 have	 not	 yet	 examined	 whether	

proportions	 of	 the	 extracellular	 matrix	 components	 increase.	 Furthermore,	 as	 the	

demands	 exerted	 on	 scaffolds	 following	 implantation	 are	 not	 only	 in	 the	 uniaxial	

plane,	 testing	of	 these	materials	 solely	 in	 this	 fashion	does	not	 reflect	 the	demands	

that	will	be	placed	on	it	once	implanted	in	the	body.	

The	 role	of	electrospinning	 for	delivery	of	drugs	 to	 treat	SUI	and	POP	 is	a	 relatively	

recent	 advancement	 with	 several	 potential	 therapeutic	 targets.	 Oestrogen,	 an	

obvious	 trophic	 substance	 for	 release	 into	 the	 pelvic	 floor	 environment	 has	 been	

investigated	 in	 several	 studies	 showing	 improvements	 in	 local	 ECM	 component	

production.	There	 is	evidence	however	 that	oestrogen	can	 inhibit	elastin	expression	

and	 precipitate	 POP	 when	 administered	 	 parenterally	 	 [405].	 	 Several	 	 substances	

would	 be	 of	 benefit	 for	 	 release	 	 from	 	 scaffolds	 	 into	 	 a	 	 variety	 	 of	 	 tissues,	 	 for	

example	 	 non-steroidal	 	 anti-inflammatory	 	 drugs,	 	 antibiotics,	 	 anti-oxidants	 	 or	

growth	 factors.	 Although	 simple	 	 methods	 	 of	 	 drug	 	 incorporation	 	 are	 	 well	

established	 such	 as	 drug-blending	 and	 co-axial	 electrospinning,	 the	 exact	 surface	
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chemistry	and	specific	dose	delivery	of	drugs	is	difficult	to	control.	One	solution	is	to	

induce	 functional	 groups	 in/onto	 scaffolds,	 while	 another	 is	 to	 photo-cross-link	

substance-scaffolds	 in	 order	 to	 provide	 more	 material	 stability	 and	 assist	 in	 the	

binding	of	substances,	particularly	growth	factors.	

Appropriate	animal	models	to	simulate	POP	are	predominantly	limited	to	non-human	

primates,	which	many	European	groups	refrain	from	using	due	to	ethical	constraints.	

These	subjects	would	more	accurately	reflect	the	forces	experienced	in	women	due	to	

an	upright	posture	 and	 comparable	organ/tissue	dimensions.	Alternatively,	 immune	

responses	 are	 typically	 studied	 in	 subcutaneously	 implanted	 mice,	 with	 host	

integration	 in	 abdominal	 wall	 reconstruction	models	 using	 rats	 or	 rabbits,	 allowing	

passive	biomechanical	measurement.	

Animal	 models	 that	 mimic	 POP	 and	 SUI	 over	 a	 short	 period	 of	 time	 would	 be	

imperative	in	order	for	tissue	engineering	techniques	for	the	treatment	of	pelvic	floor	

disorders	 to	progress.	The	treatment	of	a	benign	and	non-life	 threatening	condition	

with	potentially	hazardous	 implants	 should	be	 carefully	 studied	before	 clinical	 trials	

can	be	considered	in	human	subjects.	

The	learning	curve	associated	with	conducting	and	performing	these	experiments	was	

roughly	six	months	 in	total.	 	The	majority	of	the	first	year	of	this	3	year	programme	

was	 spent	 developing	 new	 techniques	 and	 re-learning	 biological	 principles.	 	 I	 was	

fortunate	 to	have	 the	support	of	 two	post-doctoral	 researchers,	who	taught	me	the	

basic	 principles	of	 cell	 culture,	 cell	 seeding,	 along	with	 the	 routine	 tests	 involved	 in	

this	research.		The	techniques	of	electrospinning	were	already	well	established	in	our	

department,	 however	 it	 did	 take	 several	 months	 for	 me	 to	 reproducibly	 produce	

consistent	experimental	materials.			

Clearly,	as	with	any	cell	based	 research	 failed	experiments	do	occur.	 	Several	of	 the	

cell	 assessment	 methods	 take	 up	 to	 three	 weeks	 to	 achieve	 results	 and	 I	 rapidly	

realized	that	 in	order	 to	avoid	significant	delays,	 I	would	perform	all	experiments	at	

least	in	triplicate.		Cell	infection	was	the	leading	cause	of	such	delays	and	this	is	often	

difficult	 to	 avoid	 during	 incubation,	 where	 cells	 are	 stored	 along	 with	 the	 work	 of	
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many	other	junior	researchers	and	students.		When	this	did	occur,	experiments	were	

terminated.	 	 This	 often	 meant	 that	 a	 significant	 proportion	 of	 work	 required	

repeating;	a	problem	that	is	not	only	demoralizing,	but	impacts	upon	the	progress	of	

other	experiments	and	increases	the	cost	of	the	project.			

All	of	the	methods	performed	in	this	research	project	were	directly	performed	by	me,	

with	 the	 exception	 of	 the	 device	 implantation	 in	 animals,	 which	was	 conducted	 by	

colleagues	 in	 Belgium.	 	 The	mechanical	 and	 histological	 assessment	 of	 the	 animal	

experiment	outcomes	took	five	months	to	perform	and	therefore	this	was	performed	

with	collaboration	with	a	colleague.		Several	of	the	underlying	principles	of	this	work	

have	subsequently	been	used	in	other	student	projects,	such	as	the	use	of	oestradiol	

to	induce	neovascularization	and	the	use	of	polyurethane	scaffolds	as	vascular	grafts		

Overall,	 I	 developed	 a	 wealth	 of	 novel	 scientific	 knowledge	 relating	 to	 stem	 cell	

biology,	 engineering	 techniques	 and	 assessment	 methods,	 not	 to	 mention	 the	

multitude	 of	 assessment	 techniques	 that	 I	 learned	 over	 the	 course	 of	 this	 3	 year	

project.		This	programme	also	allowed	me	to	become	a	better	researcher	and	develop	

other	 transferable	 techniques,	 such	 as	 statistical	 analysis	 methods,	 information	

technology	skills	and	critical	thinking.				
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6.2 Conclusions	

Electrospun	 poly-L-lactic	 acid	 scaffolds	 are	 associated	 with	 a	 significantly	 better	

inflammatory	 profile	 than	 the	 currently	 used	 polypropylene	 mesh.	 Furthermore,	

following	implantation,	the	remodeled	tissues	assimilate	the	load	bearing	properties	

of	 the	 degrading	 polymer	 fibres.	 The	 use	 of	 polyurethanes	 as	 scaffolds	 for	 the	

treatment	of	stress	urinary	incontinence	and	pelvic	organ	prolapse	can	offer	improved	

biomechanical	properties	as	compared	to	other	potential	 synthetic	materials.	These	

new	materials	can	be	fabricated	in	order	to	tune	their	elasticity	and	strength,	and	be	

combined	with	other	materials	that	provide	a	better	material	for	cell	attachment	and	

proliferation.	Certain	biomimetic	substances	can	be	incorporated	into	these	polymer	

fibres,	which			are			then			released			corresponding			with			the				material				degradation.	

Oestradiol	 can	 lead	 to	 a	 significant	 increase	 	 in	 	 total	 	 collagen	 	 production	 of	 cells	

cultured	on	these	scaffolds,	yet	does	not	lead	to	any	toxic	effects	on	the	cells.	

Testing	 of	 the	 immunogenic	 	 response	 	 to	 	 these	 	 implants	 	 is	 	 crucial.	 	 The	

polyurethane	containing	scaffolds	are	planned	to	be	 implanted	 	 the	vagina	of	sheep	

to	 assess	 their	 mechanical	 properties	 following	 implantation	 along	 with	 the	

inflammatory	response	 (macrophage	response),	cell	 integration	and	rate	of	material	

degradation.	
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6.3 Future	directions	

It	 is	 very	 likely	 that	 there	 will	 be	 a	 continuing	 fall	 in	 the	 number	 of	 patients	 who	

undergo	vaginal	mesh	surgery.	This	may	be	associated	with	the	withdrawal	of	several	

implants	 from	 the	 market	 in	 response	 to	 class	 action	 lawsuits,	 a	 growing	 public	

awareness	of	the	complications	that	can	occur,	or	a	reluctance	amongst	surgeons	to	

implant	 these	 devices.	 Therefore,	 the	 development	 of	 a	 new	 pelvic	 floor	 repair	

material	could	offer	a	much	needed	benefit	to	patients.	

Prior	 to	 testing	 any	 new	material	 in	 human	 subjects,	 it	 is	 imperative	 to	 undertake	

animal	 testing	 in	 more	 appropriate	 models,	 over	 a	 much	 longer	 time	 period.	

Therefore,	 we	 have	 recently	 begun	 to	 implant	 polyurethane	 Z3	 scaffolds	 into	 the	

vagina	of	sheep,	over	a	6-month	period	and	we	currently	await	the	final	results	of	the	

mechanical	 and	 cellular	 outcomes	 from	 this	 experiment.	 Furthermore,	 we	 aim	 to	

conduct	an	assessment	on	sterilization	protocols	and	methods	for	packaging,	with	an	

investigation	 into	 the	 long-term	 stability	 of	 these	 devices.	Once	 appropriate	 safety	

studies	have	been	completed,	an	initial	feasibility	study	in	small	numbers	of	patients	

with	SUI	or	POP	can	be	contemplated.	
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Appendix	1	

Tukey’s	multiple	comparisons	test	for	significance.	Young’s	modulus	of	dissected	materials.	

YM	Dry	 Significance	 YM	30	days	 Significance	 YM	90	days	 Significance	
PLA	vs.	PU	 ****	 PLA	vs.	PU	 ns	 PLA	vs.	PU	 ns	
PLA	vs.	PVDF	 ****	 PLA	vs.	PVDF	 ns	 PLA	vs.	PVDF	 ns	
PLA	vs.	PPL	 ****	 PLA	vs.	PPL	 ns	 PLA	vs.	PPL	 ns	
PU	vs.	PVDF	 ns	 PU	vs.	PVDF	 ns	 PU	vs.	PVDF	 ns	
PU	vs.	PPL	 *	 PU	vs.	PPL	 ns	 PU	vs.	PPL	 ns	
PVDF	vs.	PPL	 **	 PVDF	vs.	PPL	 ns	 PVDF	vs.	PPL	 ns	
YM	from	dry	to	
30	days	

Significance	 YM	from	dry	to	
90	days	

Significance	 YM	from	30	to	
90	days	

Significance	

PLA	 ****	 PLA	 ****	 PLA	 ns	
PU	 ns	 PU	 ns	 PU	 ns	
PVDF	 ns	 PVDF	 ns	 PVDF	 ns	
PPL	 ns	 PPL	 **	 PPL	 ns	

Tukey’s	multiple	comparisons	test	for	significance.	UTS	of	dissected	materials.	

UTS	Dry	 Significance	 UTS	30	days	 Significance	 UTS	90	days	 Significance	
PLA	vs.	PU	 *	 PLA	vs.	PU	 ns	 PLA	vs.	PU	 ns	
PLA	vs.	PVDF	 **	 PLA	vs.	PVDF	 ns	 PLA	vs.	PVDF	 ns	
PLA	vs.	PPL	 ****	 PLA	vs.	PPL	 ns	 PLA	vs.	PPL	 ns	
PU	vs.	PVDF	 ns	 PU	vs.	PVDF	 ns	 PU	vs.	PVDF	 ns	
PU	vs.	PPL	 ****	 PU	vs.	PPL	 ns	 PU	vs.	PPL	 ns	
PVDF	vs.	PPL	 ****	 PVDF	vs.	PPL	 ns	 PVDF	vs.	PPL	 ns	
UTS	from	dry	to	
30	days	

Significance	 UTS	from	dry	to	
90	days	

Significance	 UTS	from	30	to	
90	days	

Significance	

PLA	 ****	 PLA	 ****	 PLA	 ns	
PU	 ns	 PU	 ns	 PU	 ns	
PVDF	 ns	 PVDF	 ns	 PVDF	 ns	
PPL	 ****	 PPL	 ****	 PPL	 ns	

ns	–	not	significant	

* - p<0.05

** - p<0.01

*** - p<0.001

**** - p<0.0001
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Appendix	2	

Tukey’s	multiple	comparisons	test	for	significance.	Young’s	modulus	of	entire	abdominal	wall	repair.	

YM	30	days	 Sig.	 YM	90	days	 Sig.	 YM	from	30	to	
90	days	

Sig.	

Sham	vs.	PLA	 ns	 Sham	vs.	PLA	 ns	 Sham	 ns	
Sham	vs.	PU	 *	 Sham	vs.	PU	 ns	 PLA	 ns	
Sham	vs.	PVDF	 ns	 Sham	vs.	PVDF	 ns	 PU	 ns	
Sham	vs.	PPL	 ns	 Sham	vs.	PPL	 ns	 PVDF	 ns	
Sham	vs.	 ****	 Sham	vs.	 ****	 PPL	 ns	
Healthy	 Healthy	
PLA	vs.	PU	 ns	 PLA	vs.	PU	 ns	 Healthy	 ns	
PLA	vs.	PVDF	 ns	 PLA	vs.	PVDF	 ns	
PLA	vs.	PPL	 ns	 PLA	vs.	PPL	 ns	
PLA	vs.	Healthy	 ****	 PLA	vs.	Healthy	 ****	
PU	vs.	PVDF	 ns	 PU	vs.	PVDF	 ns	
PU	vs.	PPL	 ns	 PU	vs.	PPL	 ns	
PU	vs.	Healthy	 ****	 PU	vs.	Healthy	 ****	

Tukey’s	multiple	comparisons	test	for	significance.		UTS	of	entire	abdominal	wall	repair.	

UTS	30	days	 Significance	 UTS	90	days	 Significance	 UTS	from	30	to	
90	days	

Significance	

Sham	vs.	PLA	 ns	 Sham	vs.	PLA	 ns	 Sham	 ns	
Sham	vs.	PU	 ns	 Sham	vs.	PU	 ns	 PLA	 ns	
Sham	vs.	PVDF	 ns	 Sham	vs.	PVDF	 ns	 PU	 ns	
Sham	vs.	PPL	 ns	 Sham	vs.	PPL	 *	 PVDF	 ns	
Sham	vs.	Healthy	 ****	 Sham	vs.	 ****	 PPL	 ns	

Healthy	
PLA	vs.	PU	 ns	 PLA	vs.	PU	 ns	 Healthy	 ns	
PLA	vs.	PVDF	 ns	 PLA	vs.	PVDF	 ns	
PLA	vs.	PPL	 ns	 PLA	vs.	PPL	 ns	
PLA	vs.	Healthy	 ****	 PLA	vs.	Healthy	 ****	
PU	vs.	PVDF	 ns	 PU	vs.	PVDF	 ns	
PU	vs.	PPL	 ns	 PU	vs.	PPL	 ns	
PU	vs.	Healthy	 ****	 PU	vs.	Healthy	 ****	
PVDF	vs.	PPL	 ns	 PVDF	vs.	PPL	 ns	
PVDF	vs.	Healthy	 ***	 PVDF	vs.	Healthy	 **	
PPL	vs.	Healthy	 ***	 PPL	vs.	Healthy	 *	

ns	–	not	significant	

* - p<0.05

** - p<0.01

*** - p<0.001

**** - p<0.0001
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Appendix	3	

Immunological	outcomes	at	30	days	
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Appendix	4	

Immunological	outcomes	at	90	days	
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Appendix	5	

Mean	blind	scoring	values	for	each	immunohistochemistry	data	at	0,	30	and	90	days.	Assessed	as	0	=	absence,	1	=	mild	presence,	2	=	large	presence,	3	=	abundance,	4	=	

great abundance. N=12, mean	±	SEM.
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Appendix	6	

Individual Dunn’s comparison test for blind scoring for immunohistochemistry data a t 30 days.
Collagen	III	 Significance	 Ram	11	 Significance	 T-lymphcytes Sign ificance
Sham	vs.	PLA	 ns	 Sham	vs.	PLA	 ****	 Sham	vs.	PLA	 ns	
Sham	vs.	PU	 ns	 Sham	vs.	PU	 ns	 Sham	vs.	PU	 *	
Sham	vs.	PVDF	 ns	 Sham	vs.	PVDF	 ***	 Sham	vs.	PVDF	 **	
Sham	vs.	PPL	 ns	 Sham	vs.	PPL	 ns	 Sham	vs.	PPL	 ns	
Sham	vs.	Healthy	 **	 Sham	vs.	Healthy	 ns	 Sham	vs.	Healthy	 ns	
PLA	vs.	PU	 ns	 PLA	vs.	PU	 ns	 PLA	vs.	PU	 **	
PLA	vs.	PVDF	 ns	 PLA	vs.	PVDF	 ns	 PLA	vs.	PVDF	 ****
PLA	vs.	PPL	 ns	 PLA	vs.	PPL	 *	 PLA	vs.	PPL	 ns	
PLA	vs.	Healthy	 **	 PLA	vs.	Healthy	 ****	 PLA	vs.	Healthy	 ns	
PU	vs.	PVDF	 ns	 PU	vs.	PVDF	 ns	 PU	vs.	PVDF	 ns	
PU	vs.	PPL	 *	 PU	vs.	PPL	 ns	 PU	vs.	PPL	 ns	
PU	vs.	Healthy	 ns	 PU	vs.	Healthy	 **	 PU	vs.	Healthy	 *	
PVDF	vs.	PPL	 ns	 PVDF	vs.	PPL	 ns	 PVDF	vs.	PPL	 ns	
PVDF	vs.	Healthy	 **	 PVDF	vs.	Healthy	 ****	 PVDF	vs.	Healthy	 **	
PPL	vs.	Healthy	 ****	 PPL	vs.	Healthy	 *	 PPL	vs.	Healthy	 ns	
HLA-DR	 Significance	 CD206	 Significance	 CD31	 Sign ificance
Sham	vs.	PLA	 ns	 Sham	vs.	PLA	 **	 Sham	vs.	PLA	 ns	
Sham	vs.	PU	 ns	 Sham	vs.	PU	 ns	 Sham	vs.	PU	 ns	
Sham	vs.	PVDF	 ***	 Sham	vs.	PVDF	 ns	 Sham	vs.	PVDF	 ns	
Sham	vs.	PPL	 **	 Sham	vs.	PPL	 ns	 Sham	vs.	PPL	 ns	
Sham	vs.	Healthy	 ns	 Sham	vs.	Healthy	 ns	 Sham	vs.	Healthy	 ***	
PLA	vs.	PU	 ****	 PLA	vs.	PU	 ****	 PLA	vs.	PU	 ns	
PLA	vs.	PVDF	 ****	 PLA	vs.	PVDF	 *	 PLA	vs.	PVDF	 ns	
PLA	vs.	PPL	 ****	 PLA	vs.	PPL	 **	 PLA	vs.	PPL	 ns	
PLA	vs.	Healthy	 *	 PLA	vs.	Healthy	 ****	 PLA	vs.	Healthy	 *	
PU	vs.	PVDF	 **	 PU	vs.	PVDF	 ns	 PU	vs.	PVDF	 ns	
PU	vs.	PPL	 **	 PU	vs.	PPL	 ns	 PU	vs.	PPL	 ns	
PU	vs.	Healthy	 ns	 PU	vs.	Healthy	 ns	 PU	vs.	Healthy	 ns	
PVDF	vs.	PPL	 ns	 PVDF	vs.	PPL	 ns	 PVDF	vs.	PPL	 ns	
PVDF	vs.	Healthy	 **	 PVDF	vs.	Healthy	 ns	 PVDF	vs.	Healthy	 ns	
PPL	vs.	Healthy	 **	 PPL	vs.	Healthy	 ns	 PPL	vs.	Healthy	 ns	

ns	–	not	significant	

* - p<0.05

** - p<0.01

*** - p<0.001

**** - p<0.0001
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Appendix	7	

Individual Dunn’s comparison test for blind scoring for immunohistochemistry data at 90 days. 
Collagen	III	 Significance	 Ram	11	 Significance	 T-lymphocytes Significance	
Sham	vs.	PLA	 ns	 Sham	vs.	PLA	 ****	 Sham	vs.	PLA	 ns	
Sham	vs.	PU	 ns	 Sham	vs.	PU	 ns	 Sham	vs.	PU	 ****	
Sham	vs.	PVDF	 ns	 Sham	vs.	PVDF	 * Sham	vs.	PVDF *	
Sham	vs.	PPL	 * Sham	vs.	PPL **	 Sham	vs.	PPL	 *	
Sham	vs.	Healthy	 ns	 Sham	vs.	Healthy	 ns	 Sham	vs.	Healthy	 ns	
PLA	vs.	PU	 ns	 PLA	vs.	PU	 * PLA	vs.	PU ns	
PLA	vs.	PVDF	 ns	 PLA	vs.	PVDF	 ns	 PLA	vs.	PVDF	 ns	
PLA	vs.	PPL	 **	 PLA	vs.	PPL	 ns	 PLA	vs.	PPL	 ns	
PLA	vs.	Healthy	 ns	 PLA	vs.	Healthy	 ****	 PLA	vs.	Healthy	 **	
PU	vs.	PVDF	 ns	 PU	vs.	PVDF	 ns	 PU	vs.	PVDF	 ns	
PU	vs.	PPL	 ns	 PU	vs.	PPL	 ns	 PU	vs.	PPL	 ns	
PU	vs.	Healthy	 **	 PU	vs.	Healthy	 * PU	vs.	Healthy ****	
PVDF	vs.	PPL	 ns	 PVDF	vs.	PPL	 ns	 PVDF	vs.	PPL	 ns	
PVDF	vs.	Healthy	 **	 PVDF	vs.	Healthy	 **	 PVDF	vs.	Healthy	 **	
PPL	vs.	Healthy	 ****	 PPL	vs.	Healthy	 ***	 PPL	vs.	Healthy	 **	
HLA-DR	 Significance	 CD206	 Significance	 CD31	 Significance	
Sham	vs.	PLA	 ns	 Sham	vs.	PLA	 ****	 Sham	vs.	PLA	 ****	
Sham	vs.	PU	 * Sham	vs.	PU * Sham	vs.	PU ns	
Sham	vs.	PVDF	 ****	 Sham	vs.	PVDF	 ns	 Sham	vs.	PVDF	 ns	
Sham	vs.	PPL	 ****	 Sham	vs.	PPL	 ns	 Sham	vs.	PPL	 ns	
Sham	vs.	Healthy	 ns	 Sham	vs.	Healthy	 ns	 Sham	vs.	Healthy	 ns	
PLA	vs.	PU	 ns	 PLA	vs.	PU	 ns	 PLA	vs.	PU	 ns	
PLA	vs.	PVDF	 ns	 PLA	vs.	PVDF	 * PLA	vs.	PVDF ns	
PLA	vs.	PPL	 **	 PLA	vs.	PPL	 ***	 PLA	vs.	PPL	 ns	
PLA	vs.	Healthy	 ns	 PLA	vs.	Healthy	 ****	 PLA	vs.	Healthy	 ****	
PU	vs.	PVDF	 ns	 PU	vs.	PVDF	 ns	 PU	vs.	PVDF	 ns	
PU	vs.	PPL	 ns	 PU	vs.	PPL	 ns	 PU	vs.	PPL	 ns	
PU	vs.	Healthy	 * PU	vs.	Healthy ****	 PU	vs.	Healthy	 ns	
PVDF	vs.	PPL	 ns	 PVDF	vs.	PPL	 ns	 PVDF	vs.	PPL	 ns	
PVDF	vs.	Healthy	 ****	 PVDF	vs.	Healthy	 * PVDF	vs.	Healthy ns	
PPL	vs.	Healthy	 ****	 PPL	vs.	Healthy	 ns	 PPL	vs.	Healthy	 ns	

ns	–	not	significant	

* - p<0.05

** - p<0.01

*** - p<0.001

**** - p<0.0001
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