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Abstract

We study combinatorial questions for the wreath product S, 7, (properly, S, 7n)
and related semigroups, where S is a monoid and 7, is the full transformation
monoid on n = {1,2,...,n}. It is well known that S, 7, is isomorphic to the
endomorphism monoid of a free S-act F,,(S) on n generators and if S is a group,
F,(S) is an example of an independence algebra. We determine the number of
idempotents of S ¢, 7,, first in the more straightforward case where S is a group.

We investigate the monoid of partial endomorphisms P7T o of an independence
algebra A, focussing on the special case where A is F,(G). We determine Green’s
relations and Green’s pre-orders on PTg,g). We also obtain formulae for the
number of idempotents and the number of nilpotents in PT g, (q).

We specialise Lavers’ technique in order to construct a presentation for M™ x T,
from presentations of M"™ and 7,.

Finally, we find monoid presentations for some special subsemigroups of semidi-
rect products. We suppose M and T are monoids such that M is a left T-act by
endomorphisms and G and H are the groups of units of M and T', respectively. In
addition, we suppose N = M \ G and S = T\ H are ideals of M and T, with
N and G left S-acts, respectively. We then establish a monoid presentation for

C=(N'x{1})u (M xS).
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Preface

Wreath products are particular kinds of semidirect products, and provide a pow-
erful tool within both semigroup and group theory. For historical use of wreath
products in groups see, for example, Loewy [29] and Polya [36]. The use of wreath
products was extended to semigroups by B.H. Neumann [35] in 1960 and they are
now widely used in this context.

Semigroups of transformations are fundamental mathematical objects in semi-
group theory, since every semigroup S embeds into a full transformation semigroup,
with this embedding being monoidal in the case S is a monoid. Among all trans-
formation semigroups one can distinguish: the symmetric group Sx of all bijective
transformations of a set X, the full transformation semigroup Tx of all transforma-
tions of a set X and the partial transformation semigroup PT x of all partial trans-
formations of a set X. Moreover, some of the most natural examples of monoids
arise as the (partial) endomorphism monoids of various mathematical structures,
including independence algebras. If X is a set with n elements, then it will be
convenient to denote the set X as n or X,, = {1,2,--- ;n}. If X = X, we will
write S, for Sx, T, for Tx and PT,, for PT x. Note that the set Sing, = 7, \ S,
is a subsemigroup (indeed, an ideal) of 7,, and consists of all non-invertible (i.e.,
singular) transformations on X,,. Howie [24] first investigated Sing,, and his famous
result states that Sing, is generated by its non-invertible idempotents.

Let A be an alphabet, a semigroup presentation is an ordered pair (A : R),
where R C At x AT. For R C A x AT, we denote by R the smallest congruence
on AT generated by R. To say that a semigroup S has presentation (A : R) is to
say that S = A*/RF or, equivalently, there is a semigroup epimorphism ¢ : A* — S
with Ker o = R*. If such an epimorphism exists, then we say that S has presentation
(A : R) via . Presentations have been obtained for certain singular semigroups
of transformations and related structures [10, 11, 12, 13] and [31]. Specifically, a

presentation for Sing,, is given in [11] in terms of the generating set consisting of all
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idempotents of rank n — 1. Furthermore, a presentation for M 1, Sing,, is given in

[14] in terms of a particularly natural idempotent generating set.
This thesis is organised as follows:

Chapter 1: We recall the basic definitions and results of semigroup theory,
needed for full understanding of the subsequent work in this thesis. In particular we

give some details of presentations in the context of semigroups, monoids and groups.

Chapter 2: We give an account of the notions of universal algebra that we
require. We recall some facts concerning independence algebras (also known as v*-

algebras) and their endomorphism monoids.

Chapter 3: We recall some basic definitions concerning transformations semi-
groups Sx, Tx, PT x and Singy. We recall that PT,, is isomorphic to 7, o, which
is a submonoid of the full transformation semigroup 7, on X, o ={0,1,2,--- ,n}.

Clearly, 7, is isomorphic to 7,41, the full transformation semigroup on X, =

(1,2,-- ,n+1}.

Chapter 4: The aim of this chapter is to study free (left) S-acts (where S is
a monoid) and their endomorphism monoids. We recall that the endomorphism
monoid of a free left S-act F,,(S) on n generators is isomorphic to a wreath product
S Tn- Our first new result is to count the number of idempotents in End F,(.S)

where S is finite monoid.

Chapter 5: This chapter is devoted to the study of the partial endomorphism
monoid P7T A, where A is an independence algebra. This extends the consideration
of the local automorphism monoid L(A) by L. Lima [28] of all isomorphisms o : B —
C, where B and C are subalgebras of A. Indeed, £(A) is an inverse subsemigroup

of Z(A), the symmetric inverse semigroup on the set A (see, [28] Chapter 2), and

viil



PT a is a left restriction monoid (see, [16]).

In particular, we consider the monoid P7 g, (g), which consists of all morphisms
a : B — C, where B and C are subalgebras of F,(G). If G is trivial clearly
PTr,(c) is isomorphic to PT,. If G is non-trivial, we prove that PT,(q) is
isomorphic to End F,(G)?, the endomorphism monoid of the left G-act given by
F.(G)" = F,(G)U{0}, where {0} is a trivial left G-act. Also, we show that PT,(q)
is embedded via ¢ in G°, 41 Tp0, where G? is the group G with 0 adjoined and Im ¢

is the monoid K, (G)?, where

Kn(G)O ={(0,91," ,gn,) :ia =0 if and only if ¢; =0

where 1<i<n and o€ 7,0}

Furthermore, where G is a finite group we find formulae to count the number of

idempotents and nilpotents in PT g, ().

Chapter 6: In this chapter we give presentations for certain subsemigroups of
semidirect products. We find a monoid presentation for M™ x7,, from a presentation
of M™ and T, by using Lavers’ technique [27]. We give a general presentation for
a semidirect product M x S which allows us to find a number of presentations
for M, Sing,. In the case where M 1, Sing,, is idempotent generated, we give a
presentation in terms of a particularly natural idempotent generating set: these
results are taken from the joint paper [14], to which I contributed in small part. We
find a monoid presentation for (N' ¢, {1,}) U (M 1, Sing,,) where M is a monoid, G
is a group of units of M and N = M\ G is an ideal of M; this is a minor adjustment
of a known result [14]. Finally, we suppose M and T are monoids such that M is
a left T-act by endomorphisms and G and H are the groups of units of M and T,
respectively. In addition, we suppose N = M \ G and S = T\ H are ideals of M
and T, respectively, with N and G are left S-acts. Then a monoid presentation for

(N' % {1}) U (M x S) is obtained.

1X
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Chapter 1

Preliminaries I: Semigroup

fundamentals

In this chapter we present the necessary background on semigroups for full under-
standing of the subsequent work. All of the definitions and results presented here
are standard and can be found in [9], [25] and [33].

Throughout this thesis, mappings are written on the right of their arguments,

which means composition of mappings is from left to right.

1.1 Semigroups, binary relations and equivalences

1.1.1 Semigroups

A semigroup is a pair (S, ) where S is non-empty set and g : .S x S — S is a binary

operation satisfying the associative law:

(2, ), 2)p = (7, (y, 2) )

for all z,y,z € S. We usually write (z,y)u as x - y or even more simply as zy, so
the associative law can be expressed as (zy)z = x(yz) for all x,y,z € S. We refer

to the binary operation p as multiplication on S. Where p is clear, we write simply



S rather than (S, i) or (S, -).
A semigroup S is commutative if ab = ba for all a,b € S.

If a semigroup S contains an element 1 with property that for all x € S

zl =1z = x,

we say that 1 is an identity element of S, and that S is a semigroup with identity
or monoid.
Notice that every semigroup has at most one identity, since if 1" also has property

that 1 = 1’z = x for all z € S, then

/

1'=11" (as1lis an identity)

=1 (as1'is an identity).

Therefore, if S is a monoid we may refer to the identity of S.
If S has no identity element, then it is easy to adjoin an extra element 1 to S to
form a monoid SU {1} with 1s=sl=sforalls€ S,and 11 = 1.

We define

. S if S has a identity element;
gl —

SU{1l} otherwise.
We say that S! is the monoid obtained from S by adjoining an identity if necessary.
Thus every semigroup S may be embedded into a monoid, S*.
We call a semigroup S with at least two elements a semigroup with zero if there

exists an element 0 in .S such that for all x € S, we have

Oz =20=0.

We say that 0 is a zero element of S. Note that every semigroup S has at most

one zero element. For any semigroup S, we may adjoin an extra element 0 to S to



give S U {0} and define 0s = s0 =00 = 0 for all s in S. We refer to S° as the
semigroup with zero obtained from S by adjoining a zero. Thus every semigroup S
can be embedded into a semigroup with zero, S°.

If A and B are subsets of a semigroup .S, then we define the product of A and
B to be the set {ab: a € A, b € B}. It is easy to check the associativity survives
to give (AB)C = A(BC) for all A, B,C C S. Note that, A> = {ajay : ay, ay € A}
rather than {a® : a € A}. In the special case of singleton subsets A = {a} or
B = {b}, we write aB or Ab rather than {a}B or A{b}.

An idempotent in a semigroup S is an element e € S such that e = e. We
denote by E(S) the set of all idempotents in .S and often use E if S is clear.

A non-empty subset T of a semigroup S is called a subsemigroup of S if it is
closed with respect to the multiplication, which means that for all x, y € T, we
have xy € T'. Precisely, a non-empty subset 7" of S is a subsemigroup if and only if
T? CT. If S is a monoid, then T is a submonoid of S if T is a subsemigroup and
1eT.

Let S be a semigroup and {T; : i € I} be an indexed set of subsemigroups of
S. Then if the set (,.; T; is non-empty, it is a subsemigroup of S. Particularly, for
any non-empty subset A of S the intersection of all the subsemigroups of S that
contains A is non-empty and it is a subsemigroup of S. We use (A) to denote this
subsemigroup, and note it consists of all elements of S that can be expressed as a
finite products of elements in A. Further, if (A) = S we say that A is a set of
generators, or a generating set, of .S.

A non-empty subsemigroup 7" of a semigroup S is a left (right) ideal of S if and
only if ST C T (T'S CT), and T is (two-sided) ideal if and only if T'S C T and
ST C T. Notice that, if S is a monoid with identity 1, then an ideal T" of S is equal
to S if and only if 1 € T

If a is an element of a semigroup S, then Sa = {sa: s € S}, aS = {as: s € S}

and SaS = {sas: s € S} are left, right and two sided ideals, respectively, but they



might not contain a. Notice that

S'a = Sau{a},

so a € S*a. Also, S'a is a subset of S (it does not contain any adjoined identity).
In particular, S'a is the smallest left ideal of S containing a, known as the principal
left ideal of S generated by a. Dually, aS* = aS U {a} is the smallest right ideal of

S containing a, known as the principal right ideal of S generated by a. Moreover,

StaS' = SaSuU SaUaSU{a},

is the smallest two sided ideal of S containing a, known as the principal ideal gen-
erated by a. If S is a monoid, then S'a = Sa, aS' = aS and S'aS' = SaS. In fact,
other conditions (such as a being idempotent) will also give S'a = Sa,aS' = aS
and S'aS! = SaS. Further conditions will be mentioned later.

A semigroup S has M, if there are no infinite chains

Slal D) Slag D) SICL3 IDIERE

of principal left ideals; M, is the descending chain condition (d.c.c) on principal left
ideals. The left-right dual of M}, is denoted by Mg.
Let S and T be semigroups. Then the map 0 : S — T is called a (semigroup)

morphism if for all z,y € S,

(zy)0 = (20)(y0).

If S and T are monoids, with 1g and 17, respectively, then 6 will be called a
(monoid) morphism if 6 is a semigroup morphism and 1¢0 = 1r. On the other
hand, if # is one-one then we call it a monomorphism, and if 6 is onto, then we
say that 6 an epimorphism. Finally, 6 is called an isomorphism if it is bijective

homomorphism.



A morphism 6 from a semigroup S into itself is called an endomorphism of S,
and an isomorphism from S onto S is called an automorphism of S. We denote by
End S and Aut S , respectively, the set of all endomorphisms of S and the set of
all automorphisms of S. In fact, End S and Aut S are closed under composition.
As the identity map Ig : S — S belongs to each of those sets, hence the set of all
endomorphisms of S, End S, under composition of maps, forms a monoid, which
called the endomorphism monoid of S. The set of all automorphisms of S, Aut .S,
under composition of maps forms a group called the automorphism group of S.
Clearly, Aut S is the set of elements « of End S such that there is a § € End S with
aff = fa = Ig, that is, Aut S is the the group of units of End S.

In fact, any algebraic structure A has a monoid of endomorphisms End A, with
group of units Aut A, as we will explain in Chapter 5. Moreover, we also be consid-

ering P7¥,(a), the monoid of partial endomorphisms of A.

1.1.2 Binary relations

A (binary) relation on a set X is a subset p of the cartesian product X x X, i.e., a
set of ordered pairs (z,y) € X x X, we say that z and y are p-related if (x,y) € p.

For a binary relation p C X x X, we usually prefer to write x py instead of
(x,y) € p. Notice that, every binary relation on X includes the empty subset () of
X x X, and the whole set wx = X x X includes every binary relation on X. The
relation is called universal relation on X, in which x € X is related to every y € X.

The equality relation on a set X is defined as the set

tx ={(z,x): x € X}

which is also known as the diagonal relation. Obviously, here two elements of X

are related if and only if they are equal. Usually, Bx denotes the set of all binary



relations on X. Define a multiplication o on Bx by the rule that for all p,o € By,

poo={(zr,y) e X xX: (FJz€ X)(x,2) € pand (z,y) € 0}.

As it is easy to check that the multiplication o on By is associative, we have the

following proposition.

Proposition 1.1.1. [25] Let Bx be the set of all binary relations on a set X, then

(Bx,o0) is a semigroup.

It is easy to show tx o p = p = porx for all p € By, hence By is a monoid with
identity ¢x.

For each p € By, we define the domain Dom p by

Domp={re X: (Jy € X)(x,y) € p}

and the image Im p by

Imp={ye X: (Ir € X)(z,y) € p}.

We remark that p C ¢ implies Dom p C Dom o and Im p C Imo, for all p,o €
Bx.

For each p € By, we define p~! € By, the converse of p, by

p={z.y) € X xX: (y,2) € p}.

A binary relation « of By is called a partial map of X if |zra] = 1 for all

x € Dom . This means that for all x,y;,ys € X,

(z,y1) € a and (z,12) € @ = Y1 = Yo.

The above condition is fulfilled by the empty relation (), which is therefore in-



cluded among the partial maps.
Let o« : U — V be amap and Z C U. The restriction of « to the set Z is the
map

aly : Z =V, z— zaforall z € Z.

Sometimes we treat the restriction |z as a map with domain Z and codomain
Za.
If «a, B are partial maps of X, then « is a restriction of § if Doma C Dom j3,

and @ = B|poma-

Let PT x be the set of all partial maps of X.

Proposition 1.1.2. [25] The subset PT x of Bx consisting of all partial maps of X

s a subsemigroup of Bx.

We remark that the converse a~! of a partial map a need not be a partial map.
For example, if X = {1,3}, then a = {(1, 1), (3, 1)} is a partial map, but a~! is
not.

We will later discuss in more details the partial transformation semigroup P7T x
in Chapter 3.

A binary relation < on a set X is called a partial order relation if
(i) < is reflezive, i.e., for all x € X, = < x;
(i) < is anti-symmetric, i.e., forall z,y € X,z < y, y < z imply = = y;
(i) < is transitive, i.e., for all z,y,z € X,z < y,y < zimply z < z.

A binary relation < on a set X is called a total order relation if < is a partial
order relation having an extra property, that if for all z,y € X, 2 < yory < x.
We call a pair (X, <) with < a partial order on X a partially ordered set, and with
< a total order on X a totally ordered set.

A pre-order (quasi-order) on a set X is defined to be a reflexive and transitive
relation < on X. Furthermore, there exist standard way of obtaining an equivalence

relation = from a pre-order <, where we define a = b if and only if a < b and b < a.
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1.1.3 Equivalences

An equivalence (relation) on a set X is defined to be a binary relation p which is
reflexive, symmetric and transitive. Traditionally, if p is an equivalence relation on
a set X, we write z py or x = y (mod p) instead of (z,y) € p, for all z,y € X.

The set

zp={y € X: (v,y) € p},

for all x € X, called p-classes, or equivalence classes of x.

Let Q(X) ={B;: i € I} be a family of non-empty subsets B; of a set X, then
Q(X) is a partition of X, if for all i € I the subsets B; are pairwise disjoint, i.e.,
B; N B; = () for all # # j, and the union of all the subsets B; in the partition is X,
ie., X = |JB;. It is known that an equivalence relation p on a set X partitions
X into eqlﬁxlfalence classes. Conversely, corresponding to any partition of X, there

exists an equivalence relation p on X where two elements of X are p-related if and

only if they belong to the same block of partition, which means

$py<:>$,y€Bz,

for some ¢+ € I and z,y € X.
We call a set

X/p=A{zxp: z € X}

the quotient set of X by p.
The following proposition presents an important connection between maps and

equivalences.

Proposition 1.1.3. [25] If ¢ : X — Y is a map, then ¢p o ¢~ is an equivalence.



We usually call the equivalence relation

podp t={(z,y) €EX xX: 3z X)(x,2) €, (y,2) € ¢}

={(z,y) € X x X,: ¢ = yo},

the kernel of ¢, i.e., po ¢! = Ker ¢. Hence Ker ¢ is an equivalence relation defined

on X by the rule

xKeroy &z =yo

for all x,y € X.

It is important to emphasize that the Ker ¢ classes partition X into disjoint
subsets, and for any z,y € X, x, y lie in the same class if and only if they have the
same image under ¢.

If p: X — Y is a map, then ¢ is one-one if and only if Ker ¢ = 1x, and constant
if and only if Ker ¢ = wy.

Let {p; : i € I} be a non-empty family of equivalence relations on the set X.
Then it is easy to check that (1),.; pi, the intersection of all p;, ¢ € I, is also an
equivalence relation on X. Moreover, for any given relation p on X, the family of all
equivalence relations containing p is a non-empty set as we certainly have p C X x X
hence the intersection of these equivalence relations is again an equivalence relation,
which is the smallest equivalence relation containing p. We call it the equivalence
relation generated by p, and denoted it by p°.

However, this foregoing general description is not particularly useful, therefore,
it is necessary to develop an alternative description to find the equivalence relation
p¢ generated by a given binary relation p on a set X.

Let p be an arbitrary reflexive relation on X. For any m € N, we define

m le) e e 0 .
p"=pop---op

m times



Then we say that

P =" in>1)

is the transitive closure of the relation p. According to Howie [25], p°° is the smallest

transitive relation on X containing p. Moreover, we have

Proposition 1.1.4. [25] Let p be any fized binary relation on X. Then the smallest

equivalence relation on X containing p is given by

pf=(pUptUix)”.

We can rewrite the Proposition 1.1.4 as follows:-

Proposition 1.1.5. [25] If p is a relation on a set X and p° is the smallest equiv-
alence on X containing p, then (x,y) € p° if and only if either x =y or, for some

n € N, there is a sequence of transitions
T=21—>2 7 "7 2,=1
in which, for each i € {1,2,--- n— 1}, either (z;, zi41) € p or (241, 2:) € p.

1.2 Congruences

For a semigroup S, homomorphic images (monogenic acts) are not determined by
subsemigroups, but rather by congruences (one-sided congruences).
Let p be a binary relation on a semigroup S. We say that p is left compatible

(with the operation on S) if

(Vs,t,a € S) (s,t) € p=(as,at) € p
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and right compatible if

(Vs,t,a € S)(s,t) € p= (sa,ta) € p

and p is said to be compatible if

(Vs,t,s',t' € S)[(s,t) € pand (§,t') € p] = (ss',tt') € p.

Remark: a left (right) compatible equivalence is called a left (right) congruence,

and a compatible equivalence relation is called a congruence.

Proposition 1.2.1. [25] A relation p on a semigroup S is a congruence if and only

if it is both a left and right congruence.

The following theorem is the Fundamental Theorem of Morphisms for Semi-

groups.

Theorem 1.2.2. [25] Let p be a congruence on a semigroup S. Then the set

S/p={ap: a €S}

together with the multiplication defined by the rule that (ap) (bp) = (ab)p forms a

semigroup, and the mapping p* defined by

PSS —S/pa—ap

s morphism.

Now let ¢ be a morphism from S to T'. Then the relation

Ker¢ = {(a,b) € S x S: ap = bp}

is a congruence on S, Im¢ is a subsemigroup of T, and S/Ker¢ is isomorphic to

Ima.

11



It is clear that the intersection of non-empty family of congruences on a semi-
group S is a congruence on S and any relation p is contained in some congruence
namely X x X. Hence we can deduce that for every relation p on S there is a unique
smallest congruence p? on S containing p, namely the intersection of the family of
all congruences on S containing p.

The following proposition is an analogous result for congruences to Proposition

1.1.4, and gives us a usable description of p*.
Proposition 1.2.3. [25] For any fized binary relation p on a semigroup S, the

smallest congruence pf containing p is defined by p* = (p°)¢, where

p° = {(zay,aby) : x,y € S*, (a,b) € p},

and p© is the smallest left and right compatible relation containing p.

Now, if p is any relation on a semigroup S, and if ¢,d € S are such that

c=uzxay, d=xby,

for some z,y € S*, where either (a, b) or (b, a) belongs to p, we say that c is connected
to d by an elementary p-transition.
Then we have the following proposition as an analogous result for congruences

of Proposition 1.1.5.

Proposition 1.2.4. [25] Let p be a relation on a semigroup S, and let a,b € S.

Then (a,b) € p* if and only if either a = b or, for some n € N, there is a sequence

a=2z 29— —>2,=0

of elementary p-transitions connecting a to b.

The following lemma has another property for the congruence on a semigroup S:
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Lemma 1.2.5. [25] Let p, o be congruences on a semigroup S, then
(pUo)=p°Uc®=pUo.

Where p and o are congruences on a semigroup S, we denote (p U )* by pV 0.

Hence from Proposition 1.2.3 and Lemma 1.2.5 we obtain
(pU0) =[(pU0)) = (pU0) =pVo.

So (pU o) is the smallest congruence on S containing p U o.

A useful result is provided by the following lemma:

Lemma 1.2.6. [25] Let p, o be congruences on a semigroup S such that poo = gop.

Then pV o =poo.

1.3 Free semigroups, monoids and free groups

1.3.1 Free semigroups and monoids

An alphabet is a non-empty finite set A. A letter is an element of A and a word (or
string) over A is a finite sequence ajas - - - a, of elements a;, 1 < i < n of A.

If ay,a9, -+ ,a,,ay, -+ ,al, € A, then
a1, a, =ay---a, < n=m and a; =a, for 1 <i<n.

Let AT = {a1as---a, : n € Nya; € A;1 < i < n} be the set of all finite

non-empty words over A. A binary operation is defined on A" by juxtaposition
(arag - am)(biba - - - by) = arag - - - Ambiby - - - by,

with respect to this operation, A is a semigroup, called the free semigroup on A.

It is clear that the set A is a generating set of AT. As A = A"\ (AT)?, the set A is
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a unique minimum generating set for A™.
Notice that A* = AT U {e}, where € is the empty word (containing no letter at

all). So A* with the following binary operation

(Gla2 s am)(blbz s bn) = a1a2 - Ayb1by - - - by,

cew=w=we forall weA*

is a monoid called free monoid on A.

An abstract way to define a free semigroup on A can be given as follows: A

semigroup F' is called a free semigroup on a set A if
(F1) thereis a map a: A — F;

(F2) for every semigroup S and every map ¢ : A — S there exists a unique mor-

phism ¢ : F' — S such that the diagram

Figure 1.1: The commutative diagram of free semigroups.

commutes.

The uniqueness property guarantees that any two free semigroups on base sets

of equal order are isomorphic.

It is easy to see the free semigroup A" as defined above does have the properties
(F1) and (Fy). We refer to the map o : A — AT that associated each a € A with
the corresponding one-letter word in A' as the standard embedding of A in A*.

Now, where « is standard embedding map and ¢ : A — S any given map with any
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semigroup S, we define ¢ : AT — S by

(@102 - am)p = (@10)(a20) - - - (am¢)

for all ajas - -a,, € AT. It is easy to see that v is a unique morphism and a1 = ¢.
If S is a semigroup and A is a generating set for S then the property (F») gives
us a morphism ¢ from A' onto S. Hence S ~ A" /Kert. As we can always find a

generating set for S, even S itself we have the following lemma:

Lemma 1.3.1. [25] Every semigroup may be expressed up to an isomorphism as a

quotient of a free semigroup by a congruence.

Corollary 1.3.2. Every (finitely generated) semigroup S is a homomorphic image

of a (finitely generated) free semigroup .
By replacing A" by A*, Corollary 1.3.2 becomes:

Corollary 1.3.3. Every (finitely generated) monoid M is a homomorphic image of

a (finitely generated) free monoid.

1.3.2 Free groups

An abstract definition of a free group on a set X can be given as follows:

A group FG(X) is said to be free on a non-empty set X C FG(X) if for every
group G and map 0 : X — G, there exists a unique homomorphism ¢ : FG(X) — G
such that x6 = xv, for all x € X.

As X C FG(X), let the map ¢ : X — FG(X) be the inclusion map, hence the
following diagram commutes.

L

FG(X)
e

Figure 1.2: The commutative diagram of free groups.

7

G
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To construct a concrete description of a free group on a set of generators, there
are two approaches, which both begin in the same way by consideration of free
monoids.

If X is the set of generators, let X~! = {x7! : x € X} be a set in one-one
correspondence with X, then we consider the free monoid (X U X ~')*. Notice that
at this point the two approaches diverge.

One approach by letting p be the monoid congruence on (X U X ~1)* generated
by H, where

H={(zx '), (x 7 2, ¢): 2 € X},

such that € is the empty word in (X U X~')*. Then consider
GX)=(XUX Y /p={wp:we (XUXH}

It is easy to see that G(X) is a group under the binary operation (wp)(w'p) = (ww')p,
where w,w’ € (XUX1)* with identity ep and (25" - - 2$0)"1p = (xS, a7,
where z; € X, ¢; € {1,—1}. We only need to check that (z ¢ ---27")p is the in-

verse of (z5' - - 2$)p as follows:

= (2§ era )
= (2§21 )p
= ep.

We claim that G(X) is free group on a set X in the sense of the abstract definition
of free group. We take the inclusion map ¢ : X — G(X) such that z — xzp,

which represents the standard embedding of X into G(X) associating each x in X
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with the corresponding one-letter word in G(X). Then for any given group G and
an arbitrary map 6 : X — G, we extend 0 to have domain X U X! by putting
r7'0 = (x6)7'. Now, as (X U X H* is free on X U X! we have a well-define
morphism ¢ : (X U X~ 1)* — G given by

(@ o) = (@) (2.0,

n

where z; € X, ; € {1,—1}.

Now, for any (zz~!,€) € H we have (zx~')y) = (20)(20)~' = 1 = et this implies
(xz~',€) € Kere. Similarly, (z7'x,€) € Kert), so H C Kert and hence p C Ker 1.
Therefore, there exists ¥ : G(X) = (X U X H*/p — G given by (wp)y = wi.
Moreover, for any x € X, zup = (zp)) = 29 = 26, so 1) = 0.

Now, we check that v is unique morphism such that the following diagram com-

mutes.

Figure 1.3: The commutative diagram of free group G(X).

Suppose that ¢ : G(X) = (X U X 1)*/p — G is such that t¢ = 0 then for any

zp € G(X) where x € X we have

(zp)p = 10 = 20 = 29 = (vp).

Now, we are going to describe another approach to construct a free group.

If X is a subset of the free group on X, then different words of (X U X~ 1)* can
give rise to the same element of the free group. For example, if X = {x,y} then
ry and zx~'zy must be equal in the free group. To overcome this, we consider the

concept of a reduced word as follows:
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A word w =z - 2™ € (X UXH* where z; € X and n; € {1, —1}, is reduced
if it contains no subword xz~! or 7 lz.
Examples of group-reduced words can easily given. Let X = {z,y}; then xy,

1

r lyzyr—t, a7 lyyaxy ! are group-reduced words. However, yryzxz~! and 2~ tyzyy

are not.

Proposition 1.3.4. [4] Letw € (XUXY)*. Thenwpw" for a unique reduced word

w”.

Now, define

with binary operation
w-v=(wv), forany w,ve(XUXH"

Clearly, the identity element of the set R(X) is the empty word € € (X U X1)*,
as € = ¢ Ifw = 2% -..2% € R(X) then 2% .- 27" € R(X) and 25* - - - 26 -
g = (2§ xS g 2] = € = e. Hence, to show the set R(X)
is group with the above binary operation we only check that the associativity holds
for all w € R(X). To prove that, let w,v,k € R(X), we need to show that
((wv)"k)" p(w(vk)")". By Proposition 1.3.4, we have ((wv) k)" p (wv)"k p (wv)k, and
as (wr)k = w(vk), we obtain w(vk) pw(vk)" p(w(vk)")". As ((wv)"k)" and (w(vk)")"
are both reduced words, then ((wv)"k)" = (w(vk)")". Hence, (w-v) -k =w- (V- K),
so that R(X) is a group.

Now, define a map ¢ : G(X) — R(X) by (wp)p = w". It is easy to show that
¢ is an isomorphism map and then we deduce G(X) = R(X). Hence, R(X) is free

group on a set of generators X.
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1.4 Green’s relations and regular semigroups

1.4.1 Green’s relations

Green’s relations are equivalence relations that characterize the elements of semi-
group S in terms of the principal ideals they generate, and they were first introduced
by J.A. Green in 1951 [20].

We define relations <,, <z and <7 on a semigroup S by the rules:

a<;b < S'aC S
a<rb < aS'CbS!
a<s;b < SltaS'CS'HSL
Remark that these relations are all quasi-orders; they are not, in general, partial

orders.

If e, f € E(S), then we have
e<pf<=ef=e and e<p f<= fe=ce.

Furthermore, if a,b € S then ab <7 a, b. Thus the product always lies below its
factors with respect to <.

Note that <, is right compatible, as if a,b,c € S and a <, b, then S'a C S'b,
and so Stac C S'be, that is, ac <, be. Dually, <g is left compatible.

We now let £, R and J be the equivalence relations associated with <., <g

and <7, respectively. Thus for any a,b € S

alb < S'a= S
aRb <= aS'=0bS!
aJb <— S'aS'=S8'pSh
So, a and b are L-related if they generate the same principal left ideal, a and b

are R-related if they generate the same principal right ideal, in addition a and b are
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J-related if they generate the same principal two-sided ideal.
The next proposition gives an alternative characterisation of the relations £, R

and J.
Proposition 1.4.1. [25] Let S be a semigroup and a,b € S. Then
(1) aLb if and only if there exist x,y € S* such that xa = b, yb = a;
(i1) aRb if and only if there exist u,v € S* such that au = b, bv = a;
(111) a J b if and only if there exist x,y,u,v € S* such that xay = b, ubv = a.

Now, if a Lb and ¢ € S, then S'a = S'b, so Stac = S'bc and hence ac L be, i.e.,
L is right compatible. Dually, R is a left compatible.
The following lemma gives an important property of £ and R follows from the

observation concerning the compatibility properties of <z and <.

Lemma 1.4.2. [25] Let S be a semigroup. The relation L is a right congruence and

R is a left congruence.

As the intersection of two equivalences is again an equivalence, hence the inter-
section of the equivalence relations £ and R on a semigroup S is again an equivalence
relation on S, and we denote it by H such that LNR = H.

We denote the equivalence relation £V R by D. We use L,, R,, H,, J, and D,
to be denote the L-class, the R-class, the H-class, the J-class and the D-class of

an element a € S, respectively.
Proposition 1.4.3. [25] The relations £ and R commute, i.e., Lo R =R o L.

By Lemma 1.2.6, we have D = Lo R =RoL=LV R. It is clear L C J and
R C J, and as D is the smallest equivalence relation containing £ and R, we have
DCJ.

Observe that in certain classes of semigroups some of Green’s relations coincide.

For example, in a group G we have

Gla =G = G' and aG' = G = bG!
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for all a,b € G. So a Lb and aR b for all a, b € GG. Therefore, we have

L=R=H=D=J=GCxG=uw.

Another example, if S is a commutative semigroup then we have

L=R=H=D=J.

It is worth to mention that in every finite semigroup S, we have D = 7, as follows:
Proposition 1.4.4. [25] If a semigroup S is a finite, then D = J.

In the following theorem we will consider some semigroups for which D = 7:
Theorem 1.4.5. [25] let S be a semigroup. If S has My, Mg, then D = J.

Observe that each D-class in a semigroup S is a union of £-class and also a union
of R-class. Further, the intersection of an £-class and R-class is either empty or is an
‘H-class. However, it follows from the definition of D and the fact D = Lo R = Ro L
that

an@RaﬂLb#@(:)LaﬂRb#w.

It is often useful to visualize a D-class of a semigroup S using a so called egg-
box diagram, which is a grid depicted by the figure below, whose columns represent
L-class of D, rows represent R-class of D, and the intersections of the columns and

rows, that is the cells of the grid, represent the H-class of D.

Figure 1.4: The egg-box of a typical D-class.
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The structure of D-classes helps to determine the properties of a semigroups. The
following important lemma, known as Green’s Lemma, tells us that every L-class
and every R-class in a D-class has the same size.

We first explain the maps restricted to particular domains used in this lemma,
known as right translations and left translations. A right translation of a semigroup
is a map ps : S — S define by

Tps = TS

for all x € S. Dually, a left translation of a semigroup S is a map A\; : S — S such

that

YA =ty
for all y € S.

Lemma 1.4.6. Green’s Lemma: [25] Let S be a semigroup and a,b € S.

Suppose a Db

(i) IfaRb, let s, s € S* such that

I

as=0b, bs =a.

Then the right translations ps : L, — Ly and py : L, — L, are mutu-
ally inverse R-class preserving bijections from L, onto L, and L, onto L,,

respectively.

(i) If a Lb, lett, t € S* be such that

/

ta=0, tb=a.

Then the left translations N\, : R, — Ry and Ay : Ry, — R, are mutu-
ally inverse L-class preserving bijections from R, onto Ry and Ry onto R,,

respectively.
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A consequence of Green’s Lemma is that if a, b are any D-equivalent elements in a
semigroup S then there exists a bijection from H, onto H,, which means |H,| = |Hy|.

We have the following result, usually called Green’s Theorem:

Theorem 1.4.7. Green’s Theorem: 25] If H is an H-class in a semigroup S
then either H* N H = () or H?> = H and H is a subgroup of S.

We now immediately deduce:

Corollary 1.4.8. [25] If H is an H-class in a semigroup S, then H is a subgroup
of S if and only if H contains an idempotent of S. No H-class in S can contain

more than one idempotent.

Given an idempotent e € E(S), and let G be a subgroup of a semigroup S
containing e. For any a € G, we know aHe in G, so aHe in S, and hence G C
H., thus, the elements of G are all H-related, where H, is the H-class of e in S.
Therefore, we have H, is a maximal subgroup of S containing e.

We end this subsection with the following result:

Proposition 1.4.9. [25] Let a, b be elements in a D-class of a semigroup S. Then

ab € R, N Ly if and only iof L, N Ry contains an idempotent.

1.4.2 Regular semigroups

An element a of a semigroup S is called regular if there exists x in S such that
axra = a. The semigroup S is called regular if all its elements are regular.

If b € R,, there exist u,v € S! such that au = b, bv = a, this gives

b= au = arau = axb = b(vx)b

means b is also regular. Similarly, if ¢ € L; so c is regular, and we have a’ Rb L c

and this implies a D ¢, so we have the following lemma:

Lemma 1.4.10. [25] If a is a regular element of a semigroup S, then every element

of D, is regular.
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Consequently, if D is a D-class of a semigroup S then either every element of
D is regular or no element of D is regular. We call the D-class regular if all it is
elements are regular.

If S is a regular semigroup then for each a € S, a = axa € aS, Sa and SaS.
Hence, Green’s relations can be expressed in terms of S rather than S'. Note also
that if a is regular then S'a = Sa, aS! = aS and S'aS* = SaS.

Notice that any idempotents e in a semigroup S are regular (as e = eee), it
follows that every D-class containing an idempotent is regular. Moreover, every

regular D-class must contain at least one idempotent, as if a = axa, then

? = (ax)(az) = (aza)r = az,

(az)

so ax € E(S) and dually, xa € E(S). Moreover,

a=axra, ar=ar—> aRazx

a=ara, xa=zxa=—>alxa.

Hence ax R a L xa, which has the following diagram

Tra

Figure 1.5: The egg-box diagram of D,.

Lemma 1.4.11. [25] In a regular D-class, each L-class and R-class contains an

tdempotent.
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From the above lemma we deduce that a semigroup S is regular if and only if
each L-class and each R-class contains an idempotent.
We remark that every idempotent e in a semigroup S is a left identity for R,

and a right identity for L..

1.5 Presentations

1.5.1 Semigroup presentations

Let A be an alphabet. A semigroup presentation is an ordered pair (A : R),
where R C A%t x AT, A relation (u,v) € R will usually written as an equa-
tion u = v. If A = {a1,--,an} and R = {(uy,v1), -+, (Un,v,)}, we write
(@1, @y @ up = vy, ,u, = vy,) instead of (A : R). The elements of A and R
are called generator symbols and defining relations, respectively. For R C AT x A*,
we denote by R* the smallest congruence on A* generated by R. To say that a semi-
group S has presentation (A : R) is to say that S = A*/R* or, equivalently there
is a semigroup epimorphism ¢ : AT — S with Ker p = R*. If such an epimorphism

exists, then S has presentation (A : R) via .

1.5.2 Monoid presentations

In the definition of the semigroup presentations if replace AT by A*, we obtain a
monoid presentation for a semigroup S.

The difference between these types of presentations is that monoid presentations
may contain relations of the form u = 1.

If S is a semigroup and has a semigroup presentation (A : R) via ¢ : AT — S,
then S' = SU{1} has a monoid presentation (A : R) via ¢* : A* — S'. This means
if S is not a monoid, then w¢* = 1 if and only if w = ¢ (the empty word in A*). If S
is a monoid, then w¢* = w¢p = 1, for some w € A" (as S has semigroup presentation

(A : R) via ¢). So, from every semigroup presentation of a semigroup S we may
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obtain a monoid presentation of the monoid S*.

If M is a monoid and has a monoid presentation (Y : Q) via ¢ : Y* — M, then
we may not be able to regard (Y : @) as a semigroup presentation, as it may contain
relations of the form u = 1. Even if @ has no relations of this kind, ¢|y+ : YT — M
may not be onto. However, (Z : P) is a semigroup presentation for M via 1), where

Z =Y U{e} and

P={u=v:u=veQ,uveY }U{u=c:u=1€Q}

Uflex=x,ze=x:x€ 7},

and

1.5.3 Group presentations

To construct a group presentation for a group G, first we define the normal closure
of any subset K of a group G to be the intersection of all normal subgroups of G
containing K. Clearly the normal closure of K is a smallest normal subgroup of G
containing K. Hence, the normal closure of K is often called the normal subgroup
generated by K.

Let v : G — H be a group homomorphism. The kernel of ¢ is the normal

subgroup of G defined by

keryp ={x € G: xp =ep}.

The above definition of ker ¢ is related to the definition of Ker ¢ as a relation, since
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uker) = vkery < uvt € kervp
& (w Y =ey
& (w1 )Y =ey  (astis a group homomorphism)
& () ()™ = ep
& uh = vip
& uKeripv

< uKery = vKer (as Ker1) is a congruence).

A group presentation for a group G is usually defined to be a pair (X : R),
where X is a free set of generators of a free group FG(X) and R = {uv; ' : i €
I} € FG(X). To say that a group G has presentation (X : R) is to say that
G = FG(X)/R*, where R* is the smallest normal subgroup of FG(X) generated by
R or, equivalently there is a group epimorphism ¢ : FG(X) — G where R* generates
Ker, i.e., Kervp = R!. If such an epimorphism exists, then G has presentation
(X : R) via v.

If a group G has a group presentation (X : R) then G has a monoid presentation

(XUX~1: R, where X! is defined in page 16,

R=RU{rz'=c=a'0:2¢cX}

and € is the empty word in F'G(X). Now, as a group G has a monoid presentation
(XUX~!: R') we know from Subsection 1.5.2 that we can construct a semigroup
presentation for G. On the other hand each semigroup presentation (monoid pre-

sentation) for G yields a group presentation for G.
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1.6 Semidirect products of semigroups, monoids
and groups

Definition 1.6.1. Let S and T be semigroups, then
SxT={(st): se€ S, teT},
with the binary operation

(s1,t1)(82,t2) = (5152, t1t2)

is a semigroup, called a direct product of semigroups S and T

If S and T are monoids, then S x 7" is a monoid with identity (1g,17). And

S x T is a direct product of monoids S and T'.

If G and H are groups, then G x H with the above binary operation is a group
called the external direct product of groups G and H. The inverse of an element

(g,h) € G x His (¢!, h71).

Definition 1.6.2. Let (S, ) be a semigroup. We define (S°P, %) to be the opposite
semigroup of (., -) such that

axb=1">-a.

Hence, if S is a semigroup of mappings, as we see later the semigroup S consists

of the same mappings, composed in the opposite order.

Definition 1.6.3. Let T" be semigroup and X be a set. Then T acts on X on the left

if there exists amap T'x X — X, (¢, x) +— t-x, such that for all x € X, and t1,t, € T,

(S1) t - (ta-2) = (tits) - =
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This is equivalent to saying that there is a semigroup morphism A : T — T

such that for any ¢ € T and operation A; : X — X given by M\(x) =t -z, and

t)\ - )\t,

where Ty is the full transformation monoid on X under composition from left to
right. We give an explicit description for Tx later on in Chapter 3.

We only need to prove A is a semigroup morphism, which means (st)\ = (s\)(tA),
for all s,t € T. Notice that, (st)A = Ay and (sA)(t\) = AN, for all s,¢ € T. By

using (S1) we obtain for any z € X

((sA) () (@) = AsA) (@) = As(Mi(@)) = As(t-2) = s-(t-2) = (st)-2 = Aa(2) = (st) M),

so that (st)\ = (sA)(tA).

If T is a monoid (or, indeed, a group) and acts on a set X, then for a monoid

action we insist that for all z € X

(52) 1p-z=ux.

This is equivalent to saying that A : T — T as above is a monoid morphism,
ie.,

1pA = Ix.

Conversely, if T is a semigroup such that 6 : T'— T is a semigroup morphism,
define
t-xz=(t0)(x),

then T acts X on left.
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To show that, first we check (S1) holds. Then for all s,t € T and x € X

(st) -z = ((st)0) ()
= ((s0)(t0))(x) (as 6 is a semigroup morphism)
= (s0)((t0)(x))
= (s0)(t - )

=s-(t-z).

Further, if 7" is a monoid and 6 is a monoid morphism, we need to prove that (S2)

holds. Hence, for all z € X

lp -z = (170)(z) = x.

Therefore, T acts X on left as required.

Just to mention, where convenient we will omit “-” in expression such as s - x

and write this simply as sx.

Definition 1.6.4. Let T be semigroup (monoid) and S be a semigroup, such that
T acts on S on the left. Then 7" acts S on the left by endomorphisms, if for all

t,e T and s, s9 € S we have

(S3) t- (s182) = (t-s1)(t - s2).

This is equivalent to saying that there is a semigroup (monoid) morphism
0 :T — (End S)?, where End S is the endomorphism monoid of semigroup mor-
phisms. Recall that in EndS C 7g we compose from left to right, so that in
(End S)°PP we compose from right to left, so that for 6,1 € (End .S)°?, to compute

01 we first do 1 then 6.

30



If T is a monoid (semigroup) and if S is a monoid then we insist

(S4) t-1g = 1g,

so that the action of T"is by monoid morphisms of S.

If T"and S are monoids, then 7" acts on .S by endomorphisms if 6 : 7" — (End 5)°P?
is a monoid morphism, in this case (End S)°” is the endomorphism monoid of

monoid morphisms, such that

0(t))(1lg) =1g forall teT.

This translates tot-1g = 1g for all t € T.

Remark, the restriction of 6 to the group of units, H; of T, is such that

9|H1 ZHl — Aut S.

The semidirect product of two semigroups was used for the first time by Neumann

[35] to construct wreath products of semigroups.

Definition 1.6.5. Suppose that T" and S are semigroups such that 7" acts on the

left of S' by endomorphisms. Define a binary operation on S x T" by

(s,8)(s',t) = (s(t- &), tt").

Then S x T" with the above binary operation is a semigroup, called a semidirect

product of S by T, and denoted by S x T.

If T"and S are monoids and 7" acts on the left of S by endomorphisms satisfying

(S1), (S2), (S3) and (S4), then S x T' is a monoid with identity (1g, 17).
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This is because

(15, 1T>(S,t) = (15'(]-T : S), ].Tt)
= (1gs, 11t) (by using (S2))

= (5,1),

and

(5,8)(1s, 17) = (s(t - 1g), t17)

= (slg,tlr) (by using (S4))

= (s,1).

Let S and T' be semigroups and S xT" be the semidirect product of S by T'. If U
is a subsemigroup of 7', then U acts S on left by endomorphisms, and clearly S x U
is a subsemigroup of S x T

Now, let M and K be monoids and M x K be the semidirect product of M by
K. If H is a submonoid of K, then H acts M on left by endomorphisms, and it is

clear that M x H is a submonoid of M x K with identity (1, 1x).

Lemma 1.6.6. Let G and H be groups, such that G acts on the left of H by endo-

morphisms. Then G acts on the left of H by automorphisms.

Proof. Let 6, : H — H given by 04(h) = g-hforallg € Gand h € H. As G
acts on the left of H by endomorphisms, this means ¢ - (hihs) = (g h1)(g - he) and
g-1g = 1y by (S3) and (S4), respectively. To prove G acts on the left of H by
automorphism we only need to prove that ¢, is bijection.

To prove 6, is one to one. Let h,k € H and suppose 6,(h) = 0,(k), that implies
g-h=g-k AsGisagroup then ¢g-' € G and hence g7'- (g-h) =g~ (g k), and
then (¢g7'g) - h = (g7 'g) - k by using (S1), this implies 15 - h = 1¢ - k, and by using

(S2) we obtain h = k. Hence, 6, is one to one.
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To prove 6, is onto. Let k € H, then there exist g~' - k € H such that

g - k)y=g-(97" k)

=(997") -k by (S1)

—k by (S2).

So, 6, is onto. N

Notice that, if G and H are groups such that G acts on the left of H by auto-
morphisms, then H x G with the binary operation that defined in Definition 1.6.5
is a group, called an external semidirect product of H by G, and denoted by H x G.

The inverse of an element (h,g) € H x G is (g7' - h™1, g71h).

This is because

(hog) g™ -h™ g7 ) = (h(g- (97" - h71)), 997")
= (h((99™") - "), 1¢)  (by using (S1))
= (h(lg-h™"),16)
= (hh71¢) (by using (S2))

= (1H7 1G>

and

(g -h g g =g -h g -h)g"g)
= (97" - (h'h),1g)  (by using (S3))
= (g_l 1m, 1G)

= (1y,1g) (by using (S4)).
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Chapter 2

Preliminaries II: Universal
algebras and independence

algebras

This chapter is devoted to the study of universal algebras and independence algebras.
The formal definition of a (universal) algebra will be given in Section 2.1. In Section
2.2 we define independence algebras, the special class of algebras in which we are
interested.

We recommend [2], [3],[5],[7], [17],[18], [19], [32] and [34] as references for this

chapter.

2.1 Universal algebras

We need some basic ideas from the field of universal algebra. Specially, the notion

of algebra, subalgebra and homomorphism.

Definition 2.1.1. [7, 32] An algebra A is an ordered pair A=(A, F') such that A
is a non-empty set and F' = (F; :i € I) where F; is a finitary operation on A for
each i € I. The set A is called the universe of A, F; is referred to as a fundamental

or basic operation of A for each ¢ € I, and [ is called the index set or the set of
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operation symbols of A.

Algebras are usually denoted by bold face letters, while the underlying universes

are denoted by the corresponding standard face letters.

We now explain the notion of the rank of an operation on A. Let A be a non-
empty set and n € N°, where N = {0,1,2,---}. An n-ary operation or (an operation
of rank n) on A is a function

A" — A

We have some special terminology for n-ary operation where n € {0,1,2,3}. The

operation of rank 0 on A is a function

A’ — A,

as A% is a singleton this takes one value and we call this operation a nullary
operation. We often associate a nullary operation with the single element in its

image. An operation of rank 1 on A is a called a unary operation and it is a function

A — A.

An operation of rank 2 on A is called a binary operation and it is a function

A% 5 A,

Similarly, a ternary operation is an operation of rank 3 and it is a function

A% — A

By a finitary operation on A we mean n-ary operation on A of some n € N°.

The rank function or similarity type of A where A=(A, F) and F = (F;:i € I)

35



is the function

p: I —N°

given by p(i) = rank of F;. A partial operation of rank n on A is a function from a
subset of A™ into A.

We will use Q# to stand for the fundamental operation of A indexed by @, where
@ is an operation symbol of A, and we will say that Q# is the interpretation of Q
in A.

Moreover, where () is an operation symbol of the algebra A with rankr, and

ai, -+ ,a, € A, we often use the expression

QA(ala e )ar)a

and sometimes we replace it by Q* (@), where @ stands for the a tuple of elements

of A of the correct length.

Definition 2.1.2. [7, 32] Let A=(A, F;) be an algebra and let F; be an operation
of rank r on the non-empty set A, and let X be a subset of A. We say that X is
closed with respect to F; (also that F; preserves X and that X is invariant under

F;) if and only if

E(ao,al,--- ,ar_l) € X for all Qg, " ,Qpr—1 € X.

Remark 2.1.3. [7, 32] If F; is constant (F; an operation of rank 0), this means that
X is closed with respect to Fj if and only if F; € X. Hence the empty set () is closed
with respect to every operation on A of positive rank, however it is not closed with

respect to any operation of rank 0.

Algebras A and B are said to be similar if and only if they have the same rank
function. The similarity relation between algebras is an equivalence relation whose

equivalence classes will be called similarity classes.
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Definition 2.1.4. [7, 32] Let A be an algebra. A subset of the universe A of
A, which is closed with respect to each fundamental operation of A, is called a
subuniverse of A. The algebra B is said to be a subalgebra of A if and only if A and
B are similar, the universe B of B is a subuniverse of A, and QB is the restriction
to B of Q*, for each operation symbol @) of A.

The set SubA denotes the set of all subuniverses of A.

Remark 2.1.5. [7, 32] The empty set () is a subuniverse of A if and only if A does

not contain a constant (i.e., there are no operations of rank 0 on A).

If A does not contain a constant, we will consider the empty set () to be a
subalgebra of A, although the empty set () is not the universe of any algebra and

operations are not defined.

Definition 2.1.6. [7, 32] Let A and B be similar algebras and @) be an operation

symbol of rank r. A function v from A to B is said to respect () if and only if

(QA(aO, ag,--- ,ar,l)) ¥ =QB ((a), -, (ar_1)) forall ag,---,a,_, €A

Definition 2.1.7. [7, 32] Let A and B be similar algebras. A function ¢ from A
to B is called a homomorphism from A to B if and only if ¢ respects every basic
operation symbol of A.

Hom(A, B) denotes the set of all homomorphisms from A to B.
Let A and B be similar algebras. Each of
h:A—B

ALNB

h € Hom(A, B)

denotes that h is a homomorphism from A to B.
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Both
h:A— B

and

h
A— B

denote that A is a one-to-one homomorphism from A into B. We call such homo-

morphisms embeddings. Likewise, both
h:A—B

and

h
A —- B

denote that h is a homomorphism from A onto B, and in this case we say that B is
the homomorphic image of A under h. Further, A é B denotes that h is a one-to-
one homomorphism from A onto B. We call such homomorphisms isomorphisms.
The algebras A and B are said to be isomorphic, which we denote by A = B, if
and only if there is an isomorphism from A onto B.

Isomorphism is an equivalence relation between algebras, and is a finer equiva-
lence relation than similarity, in the sense that if two algebras are isomorphic, then

they are also similar.

Definition 2.1.8. [7, 32] Let n, k € N° the composition of operations is the con-
struction of an n-ary operation h from k given n-ary operations fi, fo, -+, fr and a

k-ary operation g, by the rule

h(T) = g(f1(T),- -, fi(T)).

All of these must be operations on the same set A.

Definition 2.1.9. [7, 32] For any k,n € N such that k < n, the k-th projection

operations on a set A is an n-ary operations pi(z1, -+, T,) = Ty.
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Definition 2.1.10. [7, 32] A clone on a non-empty set A is set of operations on A
that contains the projection operations and is closed under all compositions. The
clone of all operations on A will be denoted by Clo A, while the set of all n-ary

operations on A, where n € N° will be written as Clo, A.

Definition 2.1.11. [7, 32] The clone of term operations of an algebra A, denoted
by Clo A, is the smallest clone on the base set A that contains the basic operations
of A. The set of n-ary operations in Clo A is denoted by Clo, A. The member of

Clo A are called term operations of the algebra A.

In the following lemma we describe how the map in any universal algebra pre-

serves all the term operations:

Lemma 2.1.12. [7, 32] Let A=(A, F') be an algebra with F = (F; :i € I). Then

a: A — A preserves each F; if and only if o : A — A preserves all term operations.

Proof. By mathematical induction on n, suppose

Fy = Proj(A) ={py" : Kk <m, m € N},
Foyy=F,U{f(g1, - ,gx) : either f = Proj(A)or, f € F,, rank f =k,

and gy, -+, g € F, where rank g; = s}.

Let f € F, be an m-ary operation. If n = 0, then f is a projection, so f = pJ"
where k < m and f(xy, - ,zp)a = xra = f(ria, -+ Tp0).

Suppose n € N? and « preserves all operations in F,. Let h € Fy, 11 \ F,. Then
either h is a projection or, h = f(g1,- -+, gx) where f € F,, and g1, -+, gx € F,, with
rank g; = s. The first case has already been considered. In the second as « preserves

each operation F;, we have
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h(xb'" 71:8)05: f(gl(xh"' 7x8)7'-. 7gk(x17"' ,.Z‘s>)06
= f(gl(xlv"' 71;8)057"' 7gk<x17"' ,.TS)OC)
= f(fh(mlaa"' 7;5304)7"' >gk(x1057"' ,.ZESOK))

= h(l‘laa T ,ZL’SOZ),

as required.

]

Theorem 2.1.13. [7, 32] Let A be an algebra and let S be any non-empty collection

of subuniverses of A. Then NS is a subuniverse of A.

Proof. Evidently NS is a subset of A. Let F' be any basic operation of A and suppose
that r is the rank of F'. To see that NS is closed under F', pick any ag, - -+ ,a,_1 € NS.
For all B € S we know that ag,--- ,a,_1 € B but then F'(ag, -+ ,a,_1) € B, since

B is a subuniverse. Therefore F' (ag, -+ ,a,_1) € NS and NS is closed under F. [

Definition 2.1.14. [7, 32] Let A be an algebra and let X C A. The subuniverse of
A generated by X is the set (J{B : X C Band B is a subuniverse of A}.

The set SgA(X) denotes the subuniverse of A generated by X.

Since X C A and A is a subuniverse of A, Theorem 2.1.13 justifies calling
Sg”(X) a subuniverse of A.

Lemma 2.1.15. The subuniverses of A are precisely those subsets X of A such that
X = SghA(X).

Theorem 2.1.16. Let v : A — B be a homomorphism. The image and inverse

image under v of subuniverses are subuniverses.
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Proof. Let C' be a subuniverse of A, and D be a subuniverse of B. Suppose that for
all i =1,--- ,n we have a; € C' so that a;7v,asv,- - ,a,y elements of Cy. Let ) be
an operation symbol of rank n, then QB(ayy,--- ,a,7) = (Q4(ay, -+ ,a,))y € C,
since all a; € C' and C' is subuniverse of A. So, Cy is a subuniverse of B.
Conversely, where D be a subuniverse of B, then the inverse image of D un-
der vis Dy' = {a € C : ay € D}. If ay, -+ ,a, € Dvy7', then a;v € D
for all i = 1,2,---,n. As = is a homomorphism and taking () as before, we
get (Q%(ay, -+ ,a,))y = QB(ary, -+ ,a,y) € D, since D is a subuniverse. So

Q*(ay,-+- ,a,) € Dy~!. Hence Dy~! is a subuniverse of A. O

2.2 Independence algebras

2.2.1 Basic definitions

Let V be a vector space over a field, and let End (V') be the monoid of all linear
maps « : V — V with multiplication being composition of mappings. Then we say
that End (V') is the full linear monoid over V. Let X,, = {1,2,---,n}. The full
transformation monoid under the semigroup operation of composition is denoted by
T,.. We give an explicit description for 7, later on in Chapter 3.

If V' is a vector space of dimn, then End (V') and 7,, are each a union of finitely
many ideals I, (0 < k < n for End (V) and 1 < k < n for 7,) such that the Rees
quotients I /I are completely O-simple, and I consists of all elements of rank

< k. For € End (V), rank « is dim(Im «) and for a € T,,, rank v is |[Im a].

This led Gould to ask [17]

“What do vector spaces and sets have in common which forces End (V') and T,
to support a similar pleasing structure?”

To answer the above, Gould [17] investigated the endomorphism monoid of a

class of universal algebras, called an independence algebras previously known as
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v*-algebras [34].
Let A be a set and C' : P(A) — P(A) be a function, where P(A) is the set of all
subsets of A. Then C'is a closure operator on A if for all X, Y € P(A):

(i) X € CX);

(i) if X CY then C(X) C C(Y);

For any universal algebra A the function
Sgh : P(A) — P(A),

where

X SgA(X) = (X)

is a closure operator.
Note that, Sg”(#) = 0 if and only if A has no constants.

A closure operator C' on a set B is algebraic if for all X C B
C(X)=|J{c(v): Y C X, |Y| < oo}

Also, for any universal algebra A is , Sg® is an algebraic closure operator. We

can write this as

YCX
Y| <oo

We need only to show (X) C | (Y). Let a € (X) this implies a = t(z1, -+ ,z,)

YCX
Yi<oo
where {z1,--- ,z,} € X. So, a € {z1,--- ,2,}), which meansa € J (Y).
YCX
Y [<oo

Definition 2.2.1. [17] The Exchange Property (EP) for a closure operator C' on a

set A is defined as follows:
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(EP) For all X C A and z,y € A, if 2 ¢ C(X) but x € C(X U {y}), then
y e C(XU{z}).
Definition 2.2.2. [17] Let C' be a closure operator on a set A, and X C A. Then

X is C-independent if for all z € X, = ¢ C(X \ {z}).

If A is an algebra then we refer to Sg”-independent sets more simply as inde-
pendent sets.

It is obvious if A is any algebra such that every subset of A is a subuniverse,
then every subset of A is independent. This is because, where A is any algebra then
Sg is a closure operator such that C(X) = Sg” = (X) = X. So, if X C Ais a
subuniverse of A, then for all x € X = (X) we have z ¢ X \ {z} = (X \ {z}).

Therefore, X is independent.

Definition 2.2.3. [17] Let A be an algebra, and X C A, then X is a basis of A if

X generates A and is independent.

We remark that any algebra satisfying (EP) has a basis, and in such an algebra
a subset X is a basis if and only if X is a minimal generating set if and only if X is
the maximal independent set. All basis of A have the same cardinality, called the

rank of A. Furthermore, any independent subset X can be extended to be a basis

of A.

Definition 2.2.4. [17] An algebra A has the Free basis property (F) if:
(F) For any basis X of A and function @ : X — A, «a can be extended to an

element of End A.

Definition 2.2.5. [17] An algebra A satisfying (EP) and (F) is called an indepen-

dence algebra.

2.2.2 Endomorphism monoids of independence algebras

Let A be an independence algebra. From Chapter 1, End A is the endomorphism
monoid of A and Aut A is the automorphism group of A. Clearly Aut A is the

group of units of End A.
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If « € End A then Keraw = {(z,y) € A X A : xza = ya} is a subalgebra of
A x A and a congruence on A, and Ima = {aa : a € A} is a subalgebra of A.

The rank of !, written as p(«), is defined to be p(Ima). If o, 3 € End A
with Ima = Im f3, then p(a) = p(5). On the other hand, if Kera = Ker 8 then
Ima= A/Kera=A/Kerf =1Imp. So, p(a) = p(B).

In [17] Gould, obtained explicit descriptions of Green’s relations on End A, where

A is an independence algebra.

Lemma 2.2.6. [17] Let A be an independence algebra. For all a, f € End A, we

have the following:
(i) a <c B if and only if Ima C ImB;
(ii) a <z B if and only if KerB C Kera;
(iii) D § if and only if p(a) = p(B);
(iv) a <z B if and only if p(a) < p(B);
(v) D=J.

Corollary 2.2.7. [17] Let A be an independence algebra. For all a, f € EndA,

then;
(i) o £ B if and only if Ima = Im B3;

(i) a R B if and only if Kera = Ker §;

(iii) o J B if and only if p(er) = p(B) if and only if & D B.

An example of an independence algebra is the free G-act on n free generators

over a group GG, which will be the main goal of Chapter 4.

IPlease note, this is a different notion of rank to that of the rank of an operation as given earlier
in this chapter.
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Chapter 3

Transformation semigroups

The symmetric groups Sx, the full transformation semigroups Tx and the partial
transformation semigroups PT x are amongst the most interesting semigroups in
semigroup theory. We consider these semigroups (which are, in fact, all monoids),
in this chapter. If X is a set with n elements, then it will be convenient to denote
the set X as the set X,, = {1,2,--- ,n}. If X = X,, we will write S, for Sx, 7, for
Tx and PT,, for PT x. The set Sing,, = 7, \ S, is a subsemigroup (indeed, an ideal)
of T,, which consists of all non-invertible (i.e., singular) transformations on X,,.

Transformation semigroups are found everywhere in semigroup theory: Cayley’s
Theorem states that every semigroup S embeds in some transformation semigroup
Tx. If S is a group, the Cayley representation maps S into the symmetric group
Sx C Tx, which is the group of units of Tx, and consists of all permutations on X.
In the case S does not have an identity element, the Cayley representation maps S
into Singy = Tx \ Sx.

The aim of this chapter is to give basic definitions for S,,, T,, PT, and Sing,,.
In Section 3.1 we recall the basic concepts for S,,. In Section 3.2 we define the
basic concepts for 7,, and some of its general properties such as Green’s relations
and idempotents. Section 3.3 is devoted to the study of the P7T,. Also, we verify
that PT,, is isomorphic to T, which is the submonoid of the full transformation

semigroup 7,0 on X, 0 = {0,1,2,--- ,n}. Finally, the definition of the semigroup of
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all singular selfmaps Sing,, is given in Section 3.4. Howie’s famous result [24], tells
us that Sing, is generated by its idempotents of rank n — 1.

Further material can be found in [15], [24] and [39].

3.1 Symmetric groups Sy and S,

The symmetric groups Sx on a non-empty set X is the group of all bijections from
X into itself under composition of functions.

If « € §,, we can describe « in a general way

la 2a¢ -+ na

The elements of S,, can be specified in various ways, such as, if g € Sy, we either
give an explicit description for 8 by stating 15 =2, 26 =1, 38 =4 and 45 = 3 or,

write 8 by using “two row” notation,

1 2 3 4
214 3

As [ is one-one, that is, the entries of the second row is a re-arrangement or

permutation of the first row.
Lemma 3.1.1. The group S,, contains n! elements.

Denoting the order of a semigroup S by |S|, by Lemma 3.1.1, we have |S,,| = n!.
For simplicity, the operation of composition o is replaced by the operation of

multiplication i.e., for any «, 8 € Sx

z(aof) =z(apf) = (za)s forall ze X.
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If 0 € S, such that

1 2 3 4
o= ,
2 4 31
then
1 2 3 4
ol = ,
4 1 3 2
is the inverse of o, such that
. 1 2 3 4
oo = = 1y,
1 2 3 4

where I, is the identity function of Sy.
The following definition explains the cycle notation concept that helps us study

the behaviour of elements of S,,.

Definition 3.1.2. Let aj,aq, -+ ,am € X, = {1,2,--- ,n} be distinct. Then

<a1a2 . e am)

is cycle and represents the function

a1 > Qo> = Q1 > Ay — Q1

rz—ax forall z¢ {a,a -, an}.

Further, the length of any cycle is coinciding with its order, such that the order of

a cycle of length m is m.

For example, if

1 2 3 4 1 23 45
o= =(124) and 7= = (1324),

2 4 31 34215
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then o and 7 are cycles, and the order of ¢ and 7 is 3 and 4, respectively.

Note that, there are various ways to write ¢ and 7, such as

o=(124)=(241)=(412) and 7= (1324)=(3241)=(2413) = (4132).

Two cycles are disjoint, if they have no elements in common.

Not every elements of S,, is a cycle, for example 5 above.
Lemma 3.1.3. Fvery element of S, is a product of disjoint cycles.

So by this lemma and § as above we have g = (12)(34).

1 23 4 -+ n
Moreover, the identity function of S, is I,, = . We think

1234 - n
of I,, as being empty product.

The decomposition of an element as a product of disjoint cycles is called cycle

decomposition and is unique except for the order in which the cycles are written.
Proposition 3.1.4. Let a, 8 be disjoint cycles in S,,. Then aff = Ba.

The order of an element in S, is the least common multiple (l.c.m.) of the
lengths of the cycles in its cycle decomposition.

For example,

1 23 45 6 7
)= — (12) (345),
21 45 36 7

the order of v is l.c.m. of 2 and 3, i.e., 6.
Definition 3.1.5. A transposition is a cycle of length 2.

Remark here that, for any transposition ¢ = (uv), o has order 2, 0% = I,,, and
o=0"

Any cycle is a product of transposition for

(araz - apy) = (a1a2)(araz) - - - (a1a,y,).
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As (S, 0) is a semigroup, so our composition of functions starts from (ajas) and
compose from left to right, therefore, the last function we do is (aja,,).

In general functions do not commute. Notice that, these transposition are not
disjoint.

We define the rank of an element « of S, to be the cardinality of Im«, (i.e.,
|Im o] = rank «v), and as S, is the group of all bijection maps then |Im | = rank a =

n.

3.2 Full transformation semigroups 7y and 7,

An important example of a semigroup is the full transformation semigroup Tx on
a non-empty set X, which is the set of all transformations on X, (i.e., all functions
X — X), under the semigroup operation of composition. As before, we often write

the operation of composition as a multiplication, i.e., for any «, 5 € Tx,
z(aof) =z(af) = (za)p forall ze X.

The transformation Iy : X — X is the identity transformation on X, so that for
any « € Tx we have Ixa = aly. Hence Tx with the operation of composition is a
monoid.

If & € Tx, o can be written as

laa 20 -+ na

Observe that not every element in the full transformation monoid 7, is one-one,

hence the second row in « above is not a permutation of the first row.
Lemma 3.2.1. [25] The full transformation monoid T, contains n" elements.

We define the rank of an element « of Tx to be the cardinality of Im«, (i.e.,

|Im o] = rank «v).
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Observe

S,={a€T,: [lmal =n}.

The next lemma describes Green’s relations for the full transformation monoid

Tx.

Lemma 3.2.2. [25] Let Tx be the full transformation monoid on a non-empty set

X. For all o, 8 € Tx, we have the following:
(i) a LB if and only if Ima = Im B,
(i) aR B if and only if Kerao = Ker[3;
(ii) aD S if and only if ranka = rank3;

(iv) D=J.

3.2.1 Idempotents in Ty and 7,

The following lemma gives a rather useful characterization of the idempotents of a

transformation monoid.
Lemma 3.2.3 (The E(7x) Lemma). An element ¢ € Tx is idempotent if and only
Z.fgllmzf = [Ims-

Proof. Since €|y e = I, that is, ye = y for all y € Ime. Of course, for each z € X,

ze € Ime. Then

e€ B(Tx) & e =c¢,
& xe? = xe for all x € X,
& (ve)e = ze for all z € X,
Sye =1y for all y € Ime,

= 6‘111’15 = IImE-
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The following corollary is folklore, [15]. The result may also be obtained by
using generating functions see [24]. We also show how generating functions may be
used when enumerating the number of idempotents in certain wreath products (see

underneath Lemma 4.3.2).

Corollary 3.2.4. [15] The number E(T,) of idempotents in the semigroup T, equals

E(T,) = nl (Z) k.

k=

Proof. There exist (Z) possible images for an idempotent p with [Im u| = k. Sup-

pose those images are Yi,Ys, - - ,Y(n), for each of those images there exist k"%
k

idempotents with this image. This is true since for any Y; = {i1,--- ,i;} where

1 < iy < -+ < i <mn, p= p? has image Y; if and only if 4u = 4, for all

l € {1,---,k}. Any values for ipp € Yj, i ¢ Y; will give a suitable idempotent.
There are therefore k choices for each i ¢ Y; and so k"% possible choices for u = p?
with Im p =Y. Hence we have (Z) k"% idempotents of 7, with k elements in the

image. By using the sum rule the proof will be complete. ]

3.3 Partial transformation semigroups P7 x and

PT,

Let PTx ={a: a:Y — Z whereY,Z C X}. Then PT x under composition of
partial functions is a monoid, called the partial transformation monoid on X . Notice
that Tx C PTx. If a: X — Y is any map, then the preimage or inverse image of

a set B CY under « is the subset of X defined by
(B)a™! ={r € X : (v)a € B}.

We know from Chapter 1 it is not necessary a~! to be a partial map. Therefore,

a~! does not necessarily exist.
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Lemma 3.3.1. [25] Let X be a non-empty set. If a € PT x, then ™ € PTx if

and only if « is one-one.

If a, B € PT x, then

DomafB = [Ima N Dom Bla™?,

Imaf = [Ima N Dom S]8,

and for all z € Dom a3, then z(af) = (za)p.

If X, ={1,--,n}, we usually write PT,, for PT x. The element o € PT,, can

be illustrate in the following form:

1 2 n
o= ,
Y1 Yo Yn
where
— 1 ¢ Doma;
Yi =

ta 1 € Doma.

Notice that, PT x has a zero, “ the empty map”, and in case X, = {1,--- ,n}, this

element is

0=

For example, if X, = {1,2}, then we can list the elements of P75 as follows:

The first row of the above list consists of total transformations and lists all

52



elements in 75. The above example demonstrates Tx C P7T x.

Lemma 3.3.2. [15] The partial transformation monoid PT,, contains (n+ 1)" ele-

ments.

3.3.1 Green’s relations on P7T x

It is well-known that when A and B are algebras (of the same type), and « : A — B
is a homomorphism, then Ima = {ac : @ € A} is a subalgebra of B.
Also,

Kera={(z,y) € A X A: za = ya},
is a subalgebra of A x A and a congruence on A.
Definition 3.3.3. Let o € PT x. Define binary relations Ker @ on Dom « and 7,
on X by the rules:
x Keray if and only if z,y € Doma and xa = ya,
and

xm,y if and only if z,y € Doma and za = ya or,z,y € X \ Dom a.

Notice that Ker « is the usual kernel relation on the domain of «, and , is
Ker o U wx\poma, Where wr is the universal relation on a set T". Clearly, Ker v and
T, are equivalence relations on Dom o and X, respectively.

The proof of the following is given in the case of finite X in [15]; ours is essentially

the same.

Lemma 3.3.4. [15] For all a, 8 € PT x, we have the following:
(i) a < B if and only if Ima C Im f3;
(1) a <g B if and only if Doma C Domf3 and mg C 7.
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Proof. (i) If a <, f then a = 7 for some v € PT x; hence Ima = Im~f C Im f.

Conversely, suppose that Ima C Im 3. For each a € Ima we have a € Im 3 so
a =y, for some y, € Dom 3. Define v € PT x by Domy = Dom«a and 27 = Y.,
for each x € Dom . Then Im~y C Dom 3, and so Dom v = Dom v = Dom «, and

for any x € Doma, 70 = y.of8 = xa so, a = yf.

(i) If « <g Bin PT x then a = B~ for some v € PT x. For arbitrary z € Dom «,

we have xa = x(v, thus € Dom 3. Hence Dom o C Dom f5.

Let (z,y) € mg.

Case (1) If 2 € Doma then x € Dom f so as (x,y) € mg, we must have y € Dom f.
Then as 8 = yfB, xa = xfvy = yBy = ya so y € Dom « also; and xa = ya so

(x,y) € T,
Case (2) If z, y ¢ Dom«, so (z,y) € 7,.

Hence, w3 C 7.

Conversely, suppose that Doma € Dom 8 and 73 C 7,. Let U = (Doma)f
and define v : U — Ima by (af)y = aa for any aff € U with a € Doma. If
a, @ € Doma and aff = o'f then as m3 C 7, we have aa = d'a, so vy is well-
defined. As Dom~y = U = (Doma«)s, v € PTx. Certainly Dom~y C Imf. Let
¢ € Dom (37, so that ¢ € Dom 8 and ¢ € Dom~. It follows that ¢ = af for some
a € Doma. Thus (a,c) € m3 C 7, so that as a € Doma we have ¢ € Doma.
Hence Dom 8y C Dom « and clearly the converse is true by definition of . Thus

Dom o = Dom v and then it is immediate that 8y = . Thus a <z 8 in PT x.

Corollary 3.3.5. For all o, 8 € PT x, we have:
(i) a L if and only if Ima = Im [3;
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(i) aR B if and only if Doma = Dom 8 and Kera = Ker[3;
(ii1) aH B if and only if Ima = Im 3, Doma = Dom 3 and Kera = Ker[5.

Proof. (i) This follows immediately from Lemma 3.3.4.

(7) From Lemma 3.3.4, o R f if and only if Dom o = Dom f and 7, = 73.

This gives

Ker o = m, N (Dom v x Dom ) = w5 N (Dom 8 x Dom ) = Ker 3.

Conversely, if Dom o = Dom 8 and Ker o = Ker 3, then

o = Kera U ((X \ Doma) x (X \ Dom «))

= Ker U ((X \ Dom ) x (X \ Dom f3))

—7Tg.

(éi1) This follows immediately from (i) and ().

3.3.2 Idempotents in P7T x and PT,

The following theorem describes the idempotents elements in PTy.

Theorem 3.3.6. [15] An a € PT x is an idempotent if and only if Ima C Doma

and the restriction &|me = Ima-

Proof. Let a@ € PT x such that a®> = a. Let z € Doma then as o? = « so
r € Doma? and xa = za? = (za)a so xa € Dom a therefore, Im o € Dom ¢, and
for each y € Im a we have ya = y. Conversely, if a acts as the identity on Im o and
Ima € Dom a then for x € Dom a, zoo € Ima € Dom . Then we have € Dom o?
and so as Dom o? C Dom « always, we have Dom a? = Dom «. Further, (za)a = za

2

which means ra? = za for any x € Dom « so that o? = a. O]
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Corollary 3.3.7. [15] The number E(PT,) of idempotents in the semigroup PT,

equals

E(PT,) = Xn: (Z) (k+ 1)

k=0
Proof. There exist ( ) possible images for an idempotent « with |Im | = k. Suppose

those images are 7, Zs, - - - ,Z<n); for each of those images there exist (k + 1)"7*

k
idempotents with this image. This is true since for any Z; = {i,--- ,ix} where
1 <ip < -+ < i, <n, a=a® has image Zj it and only if 4o = 4; for all
leA{l,--- Kk}, and for all i € Doma \ Z;, i € Z;. Let i € {1,--- ,n}\ Z;. Either
i ¢ Doma or, i € Doma and there are k possibilities iy, - - - ,i; for ia. There are
therefore, k + 1 choices for each i ¢ Z; and so (k+1)"~* possible choices for a = o
with Ima = Z;. Hence we have (})(k + 1)"~* idempotents of PT,, with k elements

in the image. By using the sum rule the proof will be complete. ]

Consider the finite set X, o = {0,1,2,--- ,n}, and
Tno = {a : a is a transformation on X,, o}

be the full transformation semigroup on X, o. Notice that 7, ¢ = T,41
Let
Tno={a € Tho: 0a =0},

Lemma 3.3.8. The subset m 18 a submonoid of T, o

Proof. Let o, B € Too 50 @, B € Tno, O = 0, and 03 = 0. We want a8 € T,
that is, a8 € T,po and 0(af) = 0. Under usual composition a5 € T, and since
0(aB) = (0a)B = 08 = 0, we obtain a8 € T, . It is clear that I,,o € T, is such that

01,0 = 0, therefore, I, o € ’T . Hence 7;70 is a submonoid of 7, o as required. [

For completeness we give the proof of the following result. The key idea is to
add an extra element 0 to the domain, such that for any o € PT,, we extend the

domain of « in such a way that o sends any elements for which o was not previously
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defined to 0, and 0 maps to 0.

Lemma 3.3.9. Forn € N, PT,, is isomorphic to m.

Proof. Define ¢ : PT,, = Tp0 by

ay =a
such that )
0 if 1=0;
= <o if 1 € Dom q;

0 if €{1,2,---,n}\Doma.

To prove 9 is bijection. Let at) = §1, this implies that i(a)) = ()
for all 4. For all ¢ with ¢ # 0, we have i € {1,2,--- ,n} \ Dom« if and only if
i(ap) = 0 if and only if i(81) = 0 if and only if i € {1,2,--- ,n} \ Dom . Hence,
Doma = Dom 3. Moreover, if i € Doma = Dom /3 that implies i« = i(ay)) =
i(BY) =if, so that « = 8 and, therefore, ¢ is one to one.

To prove v is onto let p € m. Define i’ € PT,, by

Dom ' = {i € {1, ,n} :iu# 0},

and for all i € Dom ', iy’ = ip.

To show ') = . We have




Fori € {1,2,--- ,n} \ Dom ', we have by definition of Dom s that iy = 0.

Therefore,

0 if i=0;

() =’ = o if i € Domy';

i if i€ {1,2,---,n}\ Domyu .

So for all value of 4, i(u't)) = iy’ = iy, hence p'tp = p, so that 9 is onto.

To show that v is homomorphism it is enough to prove that (af)y = ap5y.
Let o, B € PT . For all ¢

0 if =0
i(aB)y =iaf = i(aB) if i€ Domaf;

0 it ie{l,2,---,n}\ Domagp.

0 it i=0;

= (ia)B if i € Dom « and i« € Dom f3;

0 if ie{l,2,--- ,n}\ Domap.

On the other hand, i(a1By) = i(aB). For all 4, if i = 0, we get 0(@B) = (0a)s

(8% =
08 = 0. If i € Domaf3, then i € Doma and i € Dom j3, so that we get i(af) =

(ia)B = (ia)B = (ia)B = i(aB) = iaf. Otherwise, i ¢ DomafB. So i ¢ Doma or

i € Dom « and i ¢ Dom f3, and then

_ _ 03 if  i¢ Doma;
i(ap) = (i) =

(ta)p if i€ Doma and i ¢ Dom f5.
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0 if i¢ Doma;

0 if ¢€Doma and ia ¢ Dom f.

Therefore,
)
0 if =0
i(ap) = i(aB) if i€ Domaf;
\O if i€ {l,2,--- ,n}\ Domaf.
Hence, (af)y = app1), as required. O

3.4 Semigroup of all singular selfmaps Sing,

As mentioned before, that transformation semigroups are ubiquitous in semigroup
theory is due to the Cayley’s Theorem, that states that every semigroup S embeds
in some transformation semigroup 7x. However, in case that S does not possess an
identity element, the Cayley representation maps into Singy = Tx \ Sx, the set of
all non-invertible transformation on X.

If X, ={1,2,---,n}, then
To\ S, =Sing, ={aeT,: [Ima| <n-1}

is a subsemigroup (indeed, an ideal) of 7,,, which called the semigroup of all singular
selfmaps of X,,.
Howie proved in [24] if X is finite then every element of Tx that is not bijective

is expressible as a product of idempotents.

Theorem 3.4.1. [24] Let X,, = {1,2,--- ,n}, and let T,, be the full transformation
monoid on X,. Then the subsemigroup of T, generated by its non-identity idempo-
tents is Sing,, = T, \ S,. In fact, every element of Sing,, is a product of idempotent

with rank n — 1.
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The defect of an element o € 7T, is defined as n — |Im«|. From the above
theorem we deduce that Howie’s famous result that states Sing,, is generated by its
idempotent of rank n — 1 (of defect 1).

The later are precisely the maps ¢;; € 7, (for i, j € X,, with i # j) defined by

k if k # j;
kEij =
o if k=7.
These idempotent may be represented diagrammatically, for 1 < ¢ # j < n, by

1 ) Ji n

and

We write X' = {e;; : i, j € X,,, i # j} for the set of all rank n — 1 idempotents
from 7,. By using the property of Green’s relations, which follows from the fact
that

aR B < Kera = Ker and alpB < Ima=Impg,

it is easy to check that for all i, j, k, [ € X,, with ¢ # j and k # [,

cijRew < {i, 7y ={k, [} and gijLen & Jj=1

Theorem 3.4.1 can be rewrite as follows:

Theorem 3.4.2. [24] If n > 2, then Sing,, = (X).
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In Chapter 6, we find a presentations for M xS and M, S products, where S is
a subsemigroup of the full transformation semigroup 7,. In particular, we interested

in the case that S = Sing,,.

61



Chapter 4

Free (left) S-acts and their

endomorphism monoids

Our aim is to study free (left) S-acts for a monoid S, and their endomorphism
monoids. In Section 4.1 we address the fundamental concepts and definitions of
the endomorphism monoid of a free S-act on n free generators. In Section 4.2 we
describe Green’s relations on G, T,,. Thus far the work in this chapter is re-working
known results. In Section 4.3 we count the number of idempotents in End F,(5)
where S is finite: this is new. We first consider the case where S is a finite group
and then move on to the general case where S is a finite monoid.

We recommend [26] as a references for Chapter 4.

4.1 S, 7, is the endomorphism monoid of a free
S-act of rank n

We are already defined the following concept in Chapter 1, towards the end of
Definition 1.6.3.

Definition 4.1.1. A non-empty set A is a (left) S-act if there exists a map

SxA—= A (s,a) — sa
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such that for all a € A, and s,t € S

s(ta) = (st)a and lga = a.

Definition 4.1.2. Let A and B be two left S-acts. A mapping o : A — B is called
a homomorphism of left S-acts or just an S-morphism if (sa)a = s(aa) for all a € A,

seS.

By using the same technique in Chapter 1, in the next definition defines a free

S-act.
Definition 4.1.3. [25] Let X be a non-empty set, Fx(S5) is a free S-act on X if
(i) thereis a map a: X — Fx(95);

(i) for every S-act A and every map ¢ : X — A there exists a unique morphism

Y Fx(S) — A such that the diagram commutes.

«

Fx(S)

A

We say that X is the set of (free) generators of Fix(S). From standard universal

¢

A

algebra we know that Fx(.S) exists. We now show how to give an explicit construc-

tion.

Lemma 4.1.4. [26] Let ) # X be a set. We make S x X into left S-act by defining
an action of S on S x X by s(t,x) = (st,x). Clearly S x X is a left S-act. Further
S x X 1s the free left S-act on X.

Proof. Let a : X — S x X be given by za = (1g,z). Let A be a left S-act and

v: X — A be a function. Define 6 : S x X — A by (s,z)0 = s(xv). Then 0 is
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an S-morphism since for any s € S and =z € X,

(t(s,x))0 = (ts, x)0
= (ts)(av)
= t(s(xv))

=t((s,z)0).

For any x € X, zaf = (1g,2)0 = 1g(2v) = zv and so o = v and the diagram

X

S x X

e

commutes. It can be check that # is unique S-morphism from S x X to A such that

v

A

the above diagram commutes. Suppose that ¢ : S x X — A is such that ay) = v.

Then for any (s,z) € S x X,

(s, 2)¢ = (s(ls, )Y = s((Ls, 2)¢) = s(x(ay)) = s(zv) = (s, 2)0.

]

It is convenient to use the following equivalent formulation for the free S-act on
X.

Let Tx(S) be the set of all expression of the form sz, z € X,s € S, where
sr = §'a' for 5,8 € S,x,2’ € X if and only if x = 2’ and s = §'. We make Tx(5) a
left S-act by putting t(sz) = (ts)z, and identify 1gz with 2. Clearly S x X = Tx(S)

where (s, 1) — sx.

From now take Fx(S) = T'x(S). Notice



where

Sz = {sx:s €S}

If | X| = n, we usually write F,(S) for Fx(S). If |X| = 1, say X = {z}, then

Fy(S) = Sz and it is clear that Sz = S, where S is regarded as a left ideal of S.

Let a € End F,,(S). Notice that, each a € End F,,(S) depends only on its action

on the free generators {x; : i € {1,2,--- ,n}} and it is therefore convenient to write
;o = wfxxi@

where i € {1,2,---,n}, @ € T, and (w),---,w") € S". For s € S and i €
{1a27"'an}7

(s7;)a = s(x;0) = sw' Tig.

We now define the “ wreath product” multiplication S™ x 7T, by putting

(817"' >5n77])(t17"' 7tn7/'6) = (sltlna"' 75ntnn7nﬂ)7

under this multiplication, S™ x 7T, becomes a monoid with identity (1,1,---,1,1,)
where [, is the identity transformation in 7,, and it is denoted S, 7,. This is a
special case of a more general notion of a wreath product (see for example [42]).
According to the next lemma it is easy to show that the wreath product multi-
plication is associative, which also will be shown in Chapter 6.
We remind the reader that if & € End F,,(S), and u, v lie in the same indecom-
posable component, then uca, va also lie in the same component. Thus « produces

a mapping from {z;5 : 1 <i < n} to itself, which corresponds to a.

Lemma 4.1.5. Forn € N, EndF,(S) is isomorphic to S ¢, Ty.
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Proof. Define ¢ : End F,,(S) — S™ x T, by

To prove that 1) is bijection. Let ar) = [, so,

(w Wes =7t JWZ)E) = (Wé, 7(")276)

)

where z;0 = Wi, Tim, ;0 = whzz. Therefore, for any sx; € F,(S) we have,

(s2;)a = s(x;0) = s(W' i) = s(wégg) = s(x;8) = (sx;)8

so that, a = 8 and 1 is one to one.
To prove © is onto let (s1,- -, $,,n) € S™ X T, and define o : F,(S) — F,(5)

by z;a = s;x;). Remark, w!, = s;, ia =in, for all i, so@=rmn, and

so that ¢ is onto.

Now, to prove v is homomorphism. Let «, 5 € End F,(S). It is enough to show
that (af)y = (aw)(By). For any i € {1,--- ,n}

o = (Wéfia)ﬁ = fo(%aﬁ) = Wéw?%aﬁ-

So (Oéﬁ)i/) = (w(iwéa7 e 7wzwgaaag> = (Wé, T >wg7a)<wé7 T 7("-)}3’173) = (O“p)(ﬁ?ﬁ)a
as required.

[]

Lemma 4.1.6. Let A = (s1, -+ ,8,,7) be an element in S, T,. Then A is idem-

potent if and only if T is idempotent and s; = s;8;; for alli € {1,2,--- n}.
Proof. Let A= (s1,--+,8,,7). Then A% = (81817, , SuSnr, T2), s0 that A = A? if
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and only if S; = S8;Sir, 1 S 7 S n, and T = 7-2. ]

4.2 Green’s relations on G, 7,

Independence algebras are a class of universal algebras having sets of free generators
including free G-acts over any group G. In [17], Gould obtained results characterising
Green’s relations on End A, where A is an independence algebra. In this subsection
we prove explicitly the description of [17] for <;, <z, <7, L, R, H, D and J in
the special case of End F,(G).

To proceed, we describe the subalgebras of F,,(G), as these will be the images of

endomorphisms of F,,(G).

Lemma 4.2.1. A subset A is a subalgebra of F,,(G) if and only if

A:GZE“UGC(]Z2UUGZEZm,
forsome 1<i;<ig<---<ipyp<nand0<m<n.

Proof. Let A be a subalgebra of F,(G). We claim A = Gx;, |JGai, - UG, ,
where 1 <11 <ip < -+ <1y, <nmand 0 < m <n. Let gr;, € A; as A is a subalgebra
we obtain (hg~')(gx;) € A for all h € G, hence hxy, € A, which proves one direction
of our claim.

The converse is clear. O

For a subalgebra
A= G.CEil UG:CZQ U T UGxima
where 1 < iy <y < -+ < iy <nand 0 < m < n, we say that rank of A, p(A), is

m. For a € End F,(G) we define p(a) to be p(Im ).
Lemma 4.2.2. For all o, € EndF,(G), we have the following:

(i) a <g B if and only if Ima C Im f;
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(1) o <g B if and only if Ker3 C Kera;

(1) p(aB) < pla), p(B).

Proof. (i) It is clear that if a <, 8 in End F,(G) then o <, 8 in T, () and this im-

plies a = 7 for some v € End F,,(G) and from this we obtain Im o = Im~f C Im .

Conversely, suppose Ima C Im 3, for each i € {1,--- ,n} we have r;a € Ima C
Im B, so we choose a; € F,(G) such that z;a = ;6. Now define v € End F,(G)
by z;v = a; for i € {1,--- ,n}. Then clearly z;vf = a;5 = x;a. Hence we obtain

v3 = a which means o <, 3.

(7) If o <g Bin End F,(G) then o <z § in T, () and this implies that o = 3,
for some v € End F,(G).
Let (z,y) € Ker 8 so 8 = yB. Then

ra = x(By) = (zB)y = (yB)y = y(B7) = ya.

Hence, (z,y) € Ker a so that Ker 5 C Ker «, as required.

Conversely, suppose Ker 5 C Ker«. Define v : F,,(G) — F,(G) by let Im 3 =
Gz, U e U Gz;,, and then define z;,7 = wja, where w;8 = w;;, and x;y = x;, for
all i & {iy, - ,im}.

Now, if w;f = w;ﬂ = x;,, then (wj,w;-) € Ker § C Ker a so that wja = w;a, and
hence v is well-defined.

As F,(G) is free on X, = {z1,--- ,x,}, 7 must be a G-morphism. Let w € F,(G)
be such that w = gz and let 7,8 = hx;,, then we have wf = g(xx8) = g(hx;,) =
gh(w;B) = (ghw;)B. Now, wBy = (ghz;,)y = (gh)(zi,7) = (9h)(w;e) = (ghw;)ov.
As wp = (ghw;)f, and Ker f C Ker«, we have wa = (ghw;)a = wpy. Hence,

a = [By.
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(#ii) We claim that for any 7,k € End F,,(G) that

p(rr) < p(k) and p(Tr) < p(7T).

Recall, p(1) = p(Im7) and let Im7 = |, ., Gy, where Y C X, so that p(7) = |Y].

yey
Since Im (7x) = Im (7)k = (UyeyGy)/ﬁ = UyeyG(ym) this implies that p(7k) <
Y| = p(1). Now, p(k7) = p(Imk7) = p((Imk)7). As Imkx7 C Im7 then we have

p(Im k7) < p(Im7) this implies that p(k7) < p(7). So that p(af) < p(a), p(5).

Lemma 4.2.3. For all o, 8 € End F,(G), we have the following:
(i) o £ B if and only if Ima = Im j3;
(i) a R B if and only if Kera = Ker 3;
(iii) o H B if and only if Ima = Im 3 and Kero = Ker 3;
() a D B if and only if p(a) = p(B);
(v) a <z B if and only if p(a) < p(B);
(vi) o J B if and only if p(a) = p(B);
(vi)) D= J.

Proof. 1t is easy to prove (i) and (i) by using the previous Lemma.
(éi7) This is an immediate consequence of (i) and (7).
pla) = p(ppv) < p(pB) < p(B) and p(B) = p(yad) < p(ya) < p(), so that

pla) = p(B).
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(iv) First to prove if p(a) = p(B) then a D B. Let p(a) = p(B), then Ima =
UyeyGy, Img = UzGZGZ for some Y, Z C X, with |Y| = |Z] = p(a) = p(B).
Suppose T : Y — Z is a bijection and define 7 : Ima — Im 8 by (gy)7 = g(y7)
forallge Gandy €Y.

It is clear that 7 is one to one since if (gy)7 = (hy )7 this implies that g(y7) =
h(y'7) for all g,h € G and y,y € Y. So, this forces yr = 3’7 and g = h. Since
T is a bijection we obtain y = y'. Moreover, 7 is onto since from the definition of
7 we have (gy)T = g(y7) for all g € G,y € Y and since 7 is bijection so for all
gz € Im 3, pick y € Y with y7 = z, then gy € Im « and that gz = g(y)7 = (gy)7T.
Let v = a7 so that v € End F,,(G). Note that Imy = Im (a7) = (Ima)7 = Im 3, so
that 8 L . Now let u,v € F,,(G), it is clear ua = va if and only if (ua)7 = (va)T,
as T is one-one, so that Ker a = Ker a7 = Ker~, therefore, @« R 7. Hence a D (.

Conversely, suppose a D 3; then « R v L 3 for some v € End F,,(G). It is clear
from (i) and (i) Kera = Kery and Im~vy = Im 5. Now Ima = F,(G)/Kera =
F.(G)/Kery = Im~ and since p(a) = p(Ima) = p(Im~y) = p(y) we obtain
p(a) = p(v), moreover, p(y) = p(Imvy) = p(ImB) = p(B) so that we obtain
plar) = p(B).

(v) If a <7 B then a = /34, so that by Lemma 4.2.2 (i) we obtain

p(a) = p(v86) < p(vB) < p(B).

Conversely, suppose p(a) < p(f) and let Ima = |, .Gy and Im § = UzeZGz

yey
for some Y, Z C X,; so that p(a) = |Y| and p(5) = |Z]. As p(a) < p(B) so that
there isa one toonemap ¢ : Y — Z, nowlet W =Im ¢, so W C Z and |Y| = |W|.

Fix wy € W and define k : Z — W by

zk =2, forall zeW,
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zk =wy, forall ze€ Z\W,

so that Imx = W. Now define v : Imf8 = UzeZGZ — UweWGw by zy = zk.

Clearly v extends to a G-act morphism so gy € End F,(G). Since Imfgy =

(ImpB)y = (UzeZGzM = UZGZG27 = UzeZGZIi = Upew Gw we have p(fy) =
[W|=1Y| = p(a) and hence p(57y) = p(a), so by (iv) we obtain 8y D a so vy J «

as D C J, and hence a <5 f.
(vi) If p(o) = p(B) then by (iv) a D 5 so that « J fasD C J.

Conversely, suppose o J (, then o = ppfv, § = ~ad, for some u,v,v,0 €
End F,(G). By using Lemma 4.2.2 (i17) we obtain p(a) = p(ufr) < p(us) < p(B)

and p(B8) = p(yad) < p(ya) < p(a), so that p(a) = p(B).

(vii) This is an immediate consequence of (iv) and (vi).

4.3 Idempotents in wreath products

In this section, our aim is to count the the number of idempotents for the endomor-
phism monoid of a free S-act of rankn. We first consider the case where S is a finite
group and move on to the general case where S is a finite monoid.

For A € S, T,, we define rank A = rank o, where A = (s1, 59, , 8y, ). In
the case where G is a group, this coincides with the usual notation of rank of an

endomorphism of the independence algebra F,(G).

4.3.1 Idempotents in G, 7T,

Consider the special case where G is a group.
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Corollary 4.3.1. Let G be a group and let A = (g1, , gn, pt) be an element in

G4 Tn. Then A is idempotent if and only if p = p* and g; =1 for all j € Imp.

Proof. From Lemma4.1.6, A is idempotent if and only if u = p? and g; = ¢:giu,
i € {1,2,---,n}. As G is group, the latter is equivalent to g;, = 1 for all i €
{1,2,--- ,n}, that is, g; = 1 for all j € Im p.

O

Lemma 4.3.2. Let G be a group. The number E(n,G) of idempotents in G, T,

equals

E(n,G) = zn: (Z) adteliad

k=1
Proof. Let A € G, T, such that A = (g1, , gn, 1) = A% and |Im pu| = k where, k €
{1,2,--+ ,n}. There exist (}) possible images for an idempotent p with [Im p| = k.
Suppose those images are Y7, Y5, - - - ’Y(Z)’ for each of those images there exist k"%
idempotents of 7, with this image. In virtue of Corollary 3.2.4, we obtain (Z) kn—k
idempotents of 7, with k& elements in the image. By using Corollary 4.3.1, A = A2
if and only if u = p? and g; = 1 for all i € Im u. However, g; is arbitrary elements
in G, for all j ¢ Imp, so for any fixed u = p? € T, where |[Im pu| = k there exist
|G|"™* choices for (g1, , gn, 1), and then we obtain (})k"*|G|""* idempotents in

G, Tr, and by using the sum rule the proof will be complete. n

We remark that the technique of [24] may be used to show that the exponential
generating function of E(n,G) is

E(n,G)

Z'n
n! '

$(z) = explze7) = 3

n=0

The next example explain how the previous corollary works:

Example 4.3.3. Let G = {1,a,a®} be a finite group, and n = 3. To count the
number of idempotent in G 3 T3 (recall that if A € G i3 T3 means A = (g1, go, g3, ),

where g1, g2,93 € G and p € T3).
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It is clear that

G3 ={(1,1,1),(a,a,a), (a2, a?, az), (1,a, az), (a,1, a2), (a, a?, 1),(1,1,a),
(1,a,1),(a,1,1),(1,1,a%), (1,a% 1), (a* 1,1), (a,a,1), (a,1,a),
2 2 2 2 2

(1,a, a),(a,a,aQ),(a,a ,a), (a%,a,a),(a® a ,a),(aQ,a,az),(a,a ,a2),

(a2, a?, 1), (a2, 1, a2), (1, a?, a2), (a2, a, 1), (aQ, 1,a), (1, a?, a)},

so, |G| =27 = |G? = 3.

Since n = 3 we have 3 cases to find an idempotent in G {3 7T3;

Case 1 If € T3 and rank pp = 1 (|Im p| = 1). There are 3 idempotent elements in

T3 having rank 1:

1 2 3 1 2 3 1 2 3
C1 = Cy = C3
1 11 2 2 2 3 3 3

Now, if (g1, g2, g3, ¢1) is idempotent, then by using Corollary 4.3.1, we obtain
g1 = 1, and in this case it is obvious that there are 3 choices for g, and for gs,
and they are either 1, a or a®?. Therefore, we have 9 idempotent elements in

G U3 T3 of the form (g1, g2, g3, ¢1):

(17 17 1a Cl)7 (17 a, CLQ, Cl)a <1a ]-7 a, Cl)7 (17 a, 17 cl)v
(17 17 (12, Cl)7 (17 GQ, ]-7 Cl)7 (17 a27 a, cl)7 (]-a a,a, Cl)7

(1, a?,a?, ).

Similarly if g = ¢y or c3. Hence, if rank 1 = 1 there are 27 idempotent elements

in GZg 73

Case 2 If € T3 and rank 4 = 2 (|Im p| = 2). There are 6 idempotent elements in
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73 having rank 2:

1 2 3 1 2 3 1 2 3
a1 = Q9 = 3 =

2 2 3 3 2 3 1 21

1 2 3 1 2 3 1 2 3

1 2 2 1 3 3 113

If p = oy this implies Im . = {2,3} so, by Corollary 4.3.1, we obtain gy =
g3 = 1. Hence, there are 3 choices for g;. So, there are 3 idempotent elements

in G i3 T3 of the form (g1, g2, g3, 1):

(17 17 17 al)) (CL, 17 1a al)v (QQ, 1a ]-7 041).

Similarly there are 3 idempotent elements (g1, g2, g3, i) for any u = p? € T3
with rank u = 2. Hence, if rank 4 = 2 there are 18 idempotent elements in

GiTs.

Case 3 If p € T3 and rankpy = 3 (|Impu| = 3). There is only one idempotent

element in 73 has rank = 3, and it is

1 2 3
I =

12 3
Now, if g = I this yields Im . = {1, 2,3} and so that, by using Corollary 4.3.1,
we will obtain only one idempotent element in G 3 T3, which is (1,1, 1, u).

In order to count all idempotent elements in G 3 T3, we must count all idem-
potent elements in three cases together to obtain (3 x 9) + (6 x 3) +1 =
27T+ 18 4+ 1 = 46.

Using the formula in Lemma 4.3.2, we obtain the same result.
In the case |G| = 1, that implies G ¢, T, = T, and Lemma 4.3.2 reduced to the
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formula in Corollary 3.2.4.

4.3.2 Idempotents in S, 7,

We now proceed to count the number of idempotent elements in S, 7, , where S
is a finite monoid.

Let E(S) be the set of all idempotent elements in S. For A € S, Ty, recall that
rank A = rank 7, where A = (sq, -, s, 7). Using Lemma 4.1.6, A is idempotent if
and only if 7 = 72 and s; = s;8, for alli € {1,2,--- ,n}. Consequently, for i € Im 7,
it follows s; € E(S5).

The next result calculates the number of idempotents in S, 7,.

Theorem 4.3.4. Let S be a finite monoid. Let f € E(S) and put
P(f)=KseS:sf=s}
Now define

P ={P(e): ec E(S)},

and forl € P let
m(l) = |{e € E(S): P(e) =1}].

The number I (n,S) of idempotents in S, T, equals

I(n,8)=Y" (Z) S mll) om0 )T

Proof. Suppose that I (n,S) be the number of idempotents in S, T,, and I (n,r,S)

be the number of idempotents of rank r.
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Then

Let

I'(n,r,S)=|{A=(s1, - ,8p,7): A= A% and Im7 = {1,2,--- ,r}}|

be the number of idempotents A = (s1,- -+, S,,7) where Im7 = {1,--- | r}.
Note that, 7 = 7% so j7 € {1,--- ,r} forr +1 < j < n.
Claim,

I(n,r,8) = (n

r

) I' (n,r,S).

Clearly, for any subset 7' C {1,2,---  n}, with |T| = r, we have
I'(n,r,8)=|{A=(sy, - 80, k) : A= A% Imk = T}|.

Since there are (7:) possible images for idempotent k with Imx = T', we have

n

I(n,r,S)= ( ) I' (n,r,S).

r

Our first aim is to show how many A = A2 such that

123 71 r+l - n
A: €1, 6, Sr41,7 0 S, T =

123 - r (r+)r -+ nr
where Im7 = {1,2,--- ;r} and ey, - - , e, are fixed idempotents.

Let eq,eq, -+ e, € E(S), and

’

I (617627"' ,€T,TL,7",S) = |{A: (617627"' y €ry Sp41, 00 asnaT): A:Aza

Im7={1,---,r}}.
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Recall that
P(e;) = |{s € S :se; = s}|.

We are going to prove that

‘[/ (617627 T, C, LT S) = (P(el) + P(62) +oeee P(eT))n_T'

Note that any idempotent 7 € 7, with Im 7 = {1,2,--- ,r} determines and is
determined by a labelled partition of {r 4+ 1,--- ,n} into subsets Ny,--- , N, with
IN;| =k; and by + -+ k. =n—r.

Notice that, we say “partition” but we allow some k; to be 0, i.e., some N; to be

empty. The labelled partition corresponds to Ker 7 where

Kerr = {1} UN, {2} U N, -+, {r} UN,},

so that N;7 = j if N; # 0.

Given any ky, -+, k, > 0 with k1 +- - - +k, = n—r, there are -2="" labelled par-

Tex ko]
titions of {r +1,--- ,n}, each corresponding to 7 = 72 where N;7 =i and |N;| = k;,
1 <i<r,|[21, 37]. For each T there are P(e;)* --- P(e,)* choices of 8,41, , $p.
Thus
]I(e e e e an): Z MP(e)kl_P(e)kr
1,62, y Cry Ty 1y kllk/}' 1 r .

ki+-+kr=n—r

From the “multinomial Formula”, [21, 37],

/

I (e1,e9, - ,em,n,r,S)=(Pler)+---Ple))" . (*)

For illustration, we now present an alternative way of counting idempotents, to
verify directly the formula (*).

We again ask ourselves how to count the number of idempotents
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123 - r r+1 - n
A=(e1, - ,€r,Sr41, " ,Sn, T), Where 7 =

123 - r (r+0)7 - nr
and eq,--- ,e, are fixed idempotents.

For j € {r+1,---,n}, j7 € {1,---,r}. Given j7, we know that s; must be
chosen such that s; = s;s;,, and this is the only constraint on the choice of s; and

grforr+1 <5 <n.

Thus
I' (e1, €z, ,ep,m,r,S) = number of ways of choosing the pairs (sj,77);
= H (number of ways of choosing (s;,j7)).
r+1<5<n

Now for any j € {r+1,--- ,n}, if j7 = [ we have P(e;) choices for s;.

So there are P(e;) + - -- + P(e,) choices for (s, j7).

Thus

I (617627"' 76T>n>ras) = (P(61)+"'+P(€7”))n_r

as required.

Now, returning to the main argument

I' (n,r,8) = Z I'(e1,e9, -+ ,ep,m,1,5)

e1,e2, erEE(S)

= Z (P(el)+"'+P(6r))”_T_

(e1,e2,,er)EE(S)T

P={P(e): ec E(S)},
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and for [ € P let
m(l) = |{e € E(S): P(e) =1}].

Then

I'(nr,S)= > mly)-m) L+ +1)"

(I, ,lr)EPT

From the above, the formula for I(n,S) can be written as

1@,5)2(2)( > m(ll)-----m(lr)(ll+-~~+lr)"7").
(l1,

-l )EPT

O
Theorem 4.3.4 simplifies substantially in the case that S is a finite group.
In this case, E(S) = {f} where f is the idempotent of S,
P(fy={seS:sf=s}=]|9],
P ={P(e): e E(S)} ={[S]},
m(l) = |{e € E(S): P(e) =1} = 1.
Now in the formula
I'(nr,S)= > ml)-ml) i+ +1)"
(1, lr)EPT
we have first one element (|S|,---,|S|) € P" and, m(|S|) = 1, so I' (n,r,S) reduce

to

I (n,r,S) = (r|S|)""

— TTL*T‘S|’H*T‘
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Hence,

108 =3 (1)rrls,

r=1

which exactly what we got in Lemma 4.3.2.

4.3.3 Example

To implement the formula, we need only identify the idempotents E(S) of S, and
for each e € E(S), calculate P(e). This immediately gives us P and m(l) for each
leP.

We will demonstrate the formula of counting the number of idempotents S ¢, 7,

by the following worked example:

Example 4.3.5. Let S = {0,1,a}, where a®> = 1, and n = 3. We want to count the

number of idempotents in S 13 7.

We know that for e € E(S5),

P(e) =|{s € S : se = s},

Pley) =P(1)=|{s€S:s-1=s1} =3,
and
Ple) = P(0) = [{s € S:s5-0=s} =1.
Also, since
P ={P(e): e € B(S)}.
and

m(l) = [{e € E(5) : P(e) = 1},
we obtain P = {3, 1}, where [y = 3 and Iy = 1, and m(l;) = 1, m(ls) = 1.
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Now we have the parameters P, [y, lo, m(l;) and m(ly), we apply the formula to

give

1(3,5) = (?)(32+12)+ (3)((1+1)+(1+3)+(3+1)+(3+3))+ @)(8)
=30+48 +8

= &0.

For the last summand, notice we are merely counting the choices for (p,q,r) € P3.
For the illustrations, we now give a detailed verification.

Since n = 3 we have 3 cases to find an idempotent in S 3 73:

Case 1 If 7 € T3 and rank 7 = 1 = r. There are 3 idempotent elements in 73 having

rank 1: ¢, ¢, and c3.

By using the formula to count the number of idempotent where n = 3, and

r = 1, we have the following:

1(3,1,8) = G’) I'(3,1,9),

where

I'(3,1,8)=> m@I’=1-3+1-1>=10.
lept

This is because if A = (s1, 82, 83,¢1), then s; = s2, 55 = s951, and s3 = s35;.
We have two choices for s;, which are 0 and 1. When s; = 0 there is one
choice for sy and for s3, which is 0. When s; = 1 there are 3 choices for sy and
for s3 and they are either 0,1, a. Therefor, we have 9 idempotent elements in
S 3 Ts of the form (1, s9, s3,¢1). Hence we will have 10 idempotent elements
in S5 T3 of the form (s, sq, $3,¢1).

Similarly, for 7 = ¢ or cs.
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Therefore,

1(3,1,8) = (i’) 1'(3,1,8) = 30,

is the number of idempotent in S¢,, 7, when rank 7 = 1.

Case 2 If 7 € T3 and rank 7 = 2 = r. There are 6 idempotent elements in 73 having

rank 2. By using the formula we will obtain

1(3,2,9) = <‘;’> (3,2, 9).

where
1'(3,2,5) = m(l)m(ly) (1, + 15)*~2
(ll,lg)EPQ
= m(ll)m(ll)(ll + ll) + m(ll)m(lg)(h + lz)
+ m(lg)m(ll)(lg + ll) + m(lg)m(lg)(lg + lg)
= 16.
1 2 3
Because if A = (s, 82,83,7) and 7 = for instance, then s; = 52,
1 21

sy = s2 and s3 = s3s;. So, there are two choices for s; and for sy, which are
0 and 1. When s; = 0, s, will be either 0 or 1, and in each case s3 will be
0. If s;=1, sy will be either 0 or 1 and in each case s3 will be either 0,1 or a.
Therefore, we will obtain 8 idempotent elements in this situation. Now, since
there are two idempotents in 73 have the same image which is {1,2}, so we

have 16 idempotent elements for them together.

The total number of idempotents in S 3 73 where rank 7 = 2 = r is

1(3,2,5) = (;) 1'(3,2,5) =48.
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Case 3 If 7 € T3 and rank 7 = 3 = r. There is only one idempotent element in T3

has rank 3, and it is

1 2 3
I =

1 2 3

By using the formula we will obtain

1(3,3,9) = (g) 1(3,3,9),

where

I'3,3,8 = > ml)ml)m(ls)(li +1+15)°° =8.

(I1,l2,l3)€P3

As A = (sq1, 89,53, 1), such that s; = s?, s = s2 and s3 = s2. Hence, there
) ) ) ) 1 2 3 )
are two choices for each of s1, sy and s3 which are either 0 or 1. Hence we will

obtain 8 idempotent elements in this situation.

So, the total number of idempotents in S 3 T3 where rank 7 =3 = r is

1(3,3,9) = @) 1(3,2,5)=S8.

Now, since
3

I(3,8)=) 1(3,r,5) =30+48+8=286

r=1

idempotents in S 3 T3.

We can find the number of idempotents in S 3 73 in another way.

We know that,

n

I(n,8)=> I(nr5)

r=1

where

I(n,r,S)= (”

r

) I'(n,r,S)
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and

I'(n,7,8) = (P(er) +---+ Pley)" "

(e1,e2,,er)EE(S)"

So, if 7 € T3 and rank7 = 1 = r we have

I'(3,1,8)= ) Ple,)*' =3 +1"=10.
er€E(S)

So, the number of idempotents in S 3 73 where rank 7 =1 = r is

1(3,1,5) = G’) I'(3,1,5) = 30.

Now, if 7 € T3 and rank 7 = 2 = r, this implies that

I'(3,2,8)= > (P(er) + P(ey))*

(e1,e2)€E(S)2
= P(e1) + P(e1) + P(e1) + Ples)
+ P(ey) + P(ey) + P(e2) + P(e2)

=16
and the number of idempotents in S 3 73 where rank7 =2 = r is
3\
1(3,2,8) = (2) I'(3,2,5) = 48.

Also, where 7 € T3 and rank 7 = 3 = r, we will have

I'(3,3,8) = Y  (Pler)+Plea) + Ples))** =38

(e1,e2,e3)€E(S)3

and the number of idempotents in S 3 T3 where rank7 =3 = r is

1(3,3,8) = @) I(3,3,5)=8

and so
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3
I(3,8)=>) 1I(3,r,5)=30+48+8= 86,

r=1

verifying our earlier result for the number of idempotents in S 3 73.
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Chapter 5

Monoids of partial endomorphisms

The aim of this chapter is to study the monoid P7T o of partial endomorphisms of
an independence algebra A. In the first section we define the monoid PT o, and
verify that the monoid PT A is a submonoid of PT 4.

In Section 5.2 we focus on the special case where A is the free left G-act F,(G) =
U:;lGxi of rankn. If G is trivial then clearly P7 g, (q) is isomorphic to PT . In the
case where G is non-trivial, we prove that PT,(g) is isomorphic to End F,,(G)°,
the endomorphism monoid of the left G-act given by F,(G)° = F,(G)U{0}, where
{0} is a trivial left G-act. As an alternative description, we show that PT g, () is
embedded via ¢ in G° 1 T 0, where G is the group G with 0 adjoined and Im ¢

is the monoid

K.(G)Y ={(0,g1," + ,gn,) ricc =0 if and only if g¢; =0

where 1<i<n and «o€ 7,0}

In Subsection, 5.2.1 the formula to count the number of idempotents in P7T g, (q)
is found. In Subsection 5.2.2 we describe Green’s relations on P7T g, (g). In Subsec-
tion 5.2.3 we describe some of the ideals of K, (G)? in terms of the ideals of 7, .

Finally, the formula to count the number of nilpotents in P7T g, (g) is given in
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Section 5.3.

The recommend references of this chapter are [15], [17], [22], [23], [25] and [40].

5.1 Semigroups P74 and PT A

Let A be an algebra and A the universe of A. The semigroup of all partial maps
from A to A is denoted by PT 4, and the semigroup of all morphisms B — C, where
B, C are subalgebras of A is denoted by PT a.

The following lemma shows that PT o is a submonoid of PT 4.
Lemma 5.1.1. The semigroup PT a is a submonoid of PT 4.

Proof. Let a, p € PTa such that « : B — C and § : D — W be morphisms.
Since Im a and Dom 8 are subuniverses of C and D, respectively, and by using
Theorem 2.1.13 and Theorem 2.1.16, we get Domaf = [Ima N Dom Sla™!, and
Imaf = [Ima N Dom )5 are subuniverses of B and W, respectively. We define
the composition of a and 8 as z(af) = (za)p for all x € Domaf. Thus af is a
map between two subuniverses.

Now to show that af € PT o, which means for all by,---,b, € Domaf and

terms t(by, - -+, by),

(t<b1’ T 7bn))<04ﬁ) = t(bl(aﬁ)f” ,bn(Oé/B)).

Notice that,

(t(bh e ’bn»(aﬂ) = (t(bl’ T 7bn)a>6

=t(ho, -+ b)) (as avis morphism)
=t((b)B,- -, (bp)P) (as is morphism)

=t((bi(af), - ,ba(af)).

Clearly, the identity I4 of PT 4 is an automorphism, so I4 € PT 4.
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]

It is worth mentioning that P7T o has the empty map if and only if the empty

set () is a subalgebra if and only if A has no constants.

5.2 Semigroups P7Ty,q)

The semigroup of all morphisms B — C, where B, C are subalgebras of F,(G), is
denoted by PT ¥, (c)-

Let o € PTr,(c)- Then o can be represented by

xil DR ’I’Lk
o= ,
o o
g’hxili T g’ikxikﬁ
where @ € PT,, g5, .95 € G, and ;0 = giw;,. Moreover, every choice of

B € PT, with DomfB = {ji,---,j;}, where 1 < j; < --- < j, < n,t > 0 and

B B :
hi - by, € G, gives
Ly T Ljq
B = 5 5 S PTFn(G)-
h]lx]].E A hjtl'JtE

It is obvious that, if G is trivial, then in this case End F,,(G) will be isomorphic
to 7, and PT g, () to PT,.

Consider the G-act F,(G)° = F,(G)U{0}, where G is non-trivial and {0} is
a trivial G-act. As each a € End F,,(G)? depends only on its action on the free

generators {x; : i € {1,2,--- n}}, therefore,

o
T = g; Tia,

for some gf* € G, where ¢¢ is uniquely defined if i@ # 0 for all ¢, where 1 < i < n.
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Note, 0o = 0 so @ € T, 0. Moreover, for a, 3 € End F,(G)°, a = 3 if and only if
ria = ;0 for all i € {1,--- n}.
Remark 5.2.1. Let G # {e}. If a € End F,(G)°, we can not have O = gz;, for some

g€ Gandie€{1,2,---,n}, which means any a € End F,,(G)° must fix 0.

Proof. Let h € G, h # e. If 0o = gx;, then h(gz;) = h(0a) = (h.0)a = Ocx = gy, sO

we will get hg = g, giving h = e, and that is a contradiction. O]

The proof of the following is similar to the proof of Lemma 3.3.9.
Lemma 5.2.2. Let G # {e}. Forn € N, PTy,g) is isomorphic to End F,,(G)".

Proof. Define v : PT g, ) — End F,(G)° by

and

(ge)a (9z;)a if  gx; € Domay
gTi)ox =
0 if  gx; € F,,(G) \ Doma.

We show that @ is a G-act morphism, that means we need g(a@) = (ga)a for all
g € Gand a € F,(G)°.

If a = 0, then g(0@) = 9.0 = 0 = (¢.0)@, since @ fixes 0.

Now consider a = hx;. Observe that x; € Dom « if and only if hx; € Dom « for

all h € G. If hx; € Dom «, then for any g € G, ghx; € Dom «a and so

(ghwi)a = (ghi)a
= g((hz;)a) (as « is morphism)

= g((hx;)@). (as hz; € Dom «)

On the other hand, if hz; ¢ Dom «, then ghz; ¢ Dom « for all g € G, and we have

(ghx;)a =0 = g0 = g((hz;)a@).

89



To prove 7 is bijection. Let ary = 3y, we know that @ and 8 fix 0. For an element
gx;, ay = By implies that (gx;)ay = (gz;) 87, for all i. We have gzx; € F,(G)\Dom «
if and only if (gz;)@ = 0 if and only if (gz;)8 = 0 if and only if gx; € F,,(G)\ Dom 3
for all 7. Hence, Dom o = Dom (3. Moreover, if gx; € Dom a = Dom 3 this implies

that (ga;)a = (9o;)a = (g5)B = (ga;)3, so that a = § and, therefore, 7 is one to

one.

To prove 7 is onto. Let n € End F,(G)°. Define ' € PT¥.) by

Domn = {gz; € F(G) : (gzi)n # 0},

and for all gx; € Domn', (gz;)n" = (g;)n. To show Dom 7’ is a subalgebra of Fy(G),
we claim Domn' = thUGx,»QU--- UGa:im where 1 < ¢ < iy < +++ < 4y, < 1.
Let gz, € Domn for some 1 < k < n, so that by the definition of Domn we
have (gzz)n # 0 and (gzr)n = (gax)n. Where h € G we want hgzr, € Domo .
We have (hgxy)n = h((gzx)n), since n € End F,,(G)°, therefore, h((gzy)n) # 0 as
(gzr)n # 0. So hgzy € Domn'. Hence Domn is a subalgebra of Fy,(G). It is

obvious that i is a G-act morphism, as for any gx; € Dom7 and h € G we have

h((gzi)n') = h((gzi)n) = (hgz:)n = (hgz:)n .

Now,

) — if gz; € Domn';
(gzi)ny = (gi)n’ =
0 if  gx; € Fy(G)\ Domp'.

(gz:)n if  gx; € Domn';

0 if gz € F,(G)\ Domn'.

For gx; € F,(G)\ Dom1’, we must have by the definition of Dom 7" that (gz;)n = 0.
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Therefore,

) _ (gz:)n if  gx; € Domn';
(gzi)n~y = (gz:)n’ =
(gxi)n if  gx; € Fy(G)\ Domn'.
Moreover, since 1, ' € End F,,(G)°, so 1, ' must fix 0, which means 0 = 0n = 07’

So for all elements of F,(G)%, n and 7 agree, hence n'y = 7, so that ~ is onto.

To show v is homomorphism. Let o, 8 € PTg,g). We want to prove that

(af)y = ayfy. We have for all i,

L (gz;)ap if gx; € Dom af,;
(g9zi)(aB)y = (gzi)aBB =
0 if gzr; € F,(G) \ Dom af3;

(gz;))af if  gx; € Doma and (gx;)a € Dom f3;

0 if gz, € F,(G) \ Domaf.
Furthermore, since a8 € End F,(G)°, we have 0 = 0af. On the other hand,
(gz:)(ayBy) = (gx;)aB. It is clear that @, € End F,(G)°, hence we get 0(af) =
(0@)B = 08 = 0 = 0aB. If ga; € Domaf, then gr; € Dom«a and (g;)ar € Dom f3,
so that we get (g2:)aB = ((g92:)a)B = ((92:)a)B = ((gz:))B = (g2:)a = (ga;)ap.
Otherwise, gz; ¢ Domaf. So gzr; ¢ Doma or gx; € Doma and (gx;)a ¢ Dom f.

Then

058 if gz; ¢ Dom «;

((gzi)a)B if  gx; € Doma and (gx;)o ¢ Dom f3.
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0 if gx; ¢ Dom q;

0 if  gx; € Doma and (gx;)a ¢ Dom S.

Therefore,
_ | (gzi)aB if  gx; € Domaf;
(gzi)aB =
0 if gx; ¢ Dom af,
and so (af)y = ayfy, as required. ]

As we explained in Chapter 4, it has long been known that the endomorphism
monoid of a free G-act on n free generators is isomorphic to a wreath product G, 7,,.
By the wreath product G°,11 7,0 we mean G°Q, 41 T, 1, where we are using the set
{0,1,--- ,n} rather than {1,--- ;n+1}. So G° 4,11 T, is the monoid consisting of
elements of the form (go, g1, , gn, @), such that go, g1, -+, g, € G° and a € Ty, 0.
We know from Chapter 3 that the subset 7, is a submonoid of 7, ¢, from which
we obtain that G® 4,41 Tno = {(90, 91, ,gn,@) : @ € Too} is a submonoid of the

wreath product G° 3,11 Tho-
Lemma 5.2.3. Let G # {e}. Forn € N, PTp,(q) is embedded in G° 411 Tpp.

Proof. Let o € PTg,(q), where @ € PT,,, we described a by
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First, let o’ € Tno be given by, for 0 <i < n,

;

ia if i€ Doma (i.e., z; € Dom«a);
i@ =40 if i¢Doma (i.e., z; ¢ Dom«);

0 if 1 =0.

\

Notice that, g5 is defined and lies in G for all 7 such that ia’ # 0, and we put g =20
for all i such that ia’ = 0.

Let ¢ : PTr.c) — G lo Tn0 be given by

/

ap = (gg’g?’___ 797?704)'

To prove ¢ is an embedding, we have to show that ¢ is homomorphism and one

to one. To prove ¢ is homomorphism let o, 3 € PTg,(q), with the aim to show

(aB)p = apBep.
Note that,
apBo = (gogh 1 989 . gng’ .0 B)
and

(@B)p = (957,977, 927, (aB)).

Observe that a'8" = (af) follows from the proof below, together with the fact
that @ — o in the standard embedding of PT, in m.
For o, 8 € PT ¥, (), we want to show that @B = aff. Bach side of the equality

has domain a subalgebra, so we first need to check

i € Domaf < i € Domaf,

and in this case iaf = iaf.
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Now,

i € Domaf < i € Doma@ and i@ € Dom 3
& r; € Doma and x; € Dom 3
& x; € Doma and z;o0 € Dom 3 (as Dom fis a subact)
< x; € Domaf

& i € Dom af.

If i € Domaf, then z;08 = (¢fza)8 = gf“g;%xiag and ;a8 = gf‘ﬁxi@, SO
iaB =iaf, gives al = ap.

Clearly, gggga, = 0=g3" Let 1<i<n,then

.

g =0 or;
G =0&
g¢#0 and g7, =0
\
(
z; ¢ Doma  or;
<~
zr; € Doma and z;z ¢ Dom 3
\
.
x; ¢ Doma  or;
~
x; € Doma and x;a ¢ Dom 3

\

& ;¢ Domaf < ¢ = 0.
If ¢*” # 0, then

9255 = miaB = (2:0)8 = (40%ia) B = 6 9on 5
From this we obtain

97 = gtgl,.
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Hence ¢ is homomorphism. It is obvious ¢ is one to one. Therefore, ¢ is an
embedding.
Note that ¢ is not a monoid embedding as if I is the identity of P7T g, (g) then

Ip=(0,e,--- e, 1), where I, ¢ is the identity of m. O

5.2.1 Idempotents in PTp, )

In this subsection our aim is to count the number of idempotents in P7T o where A
is Fu(G) and where G is group.

Let

Kn(G)O ={(0,91,"* ,gn,) :ia =0 if and only if ¢; =0

where 1<i<n and o€ 7,0}

Observe that K,(G)" = Im ¢ in Lemma 5.2.3, so that K,(G)" is a monoid with

identity (0,e,--- ,e, I,0) and the multiplication given by

(kala"' ,k?n,Oé>(07U1,"' 7un76) = (07]{31’&10“"' 7knuna7a/8)‘

Since ¢ is an embedding, we have PTp,(q) = K,(G)? = End F,(G)°.

Corollary 5.2.4. Let G° be G with a 0 adjoined, and A = (0,1, , gn, ) be an

element in K,(G)°. The following statements are equivalent:

(i) A is idempotent;

(i) « is idempotent and for all i, where i € {1,--- n}, with ia # 0, ¢;Gia = Gi;
(@ii) for all i, where 1 € {1,--- ,n}, with ia # 0, gio = 1.

Proof. Let A = (0,g1,+* ,gn, ) € K,(G)?, so that A% = (0, 91910, " » InGna, &2).
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By using the fact g; = 0 if and only if 1 = 0, we have

A=A*ea=ca*and forallic {1,---,n}, g = GiGia,
& a=a’and foralli € {1,---,n} with ia # 0, ¢;i = GiGia,

& a=ca’and foralli € {1,---,n} with ia # 0, gin = 1.

]

It is worth mentioning that in P7 g, (q) if Im a and Dom 3 are disjoint then o3
(under composition of partial functions in PT g, (q)) is 0, (where 0 represents the

empty map).

Let (0,91, ,n,c0) € Kn(G)°, where ¢y € T, is the zero of Ty, i.e., the
constant map with image 0. Then by definition of K,(G)° we have g; = 0 for all
i € {1,---,n}. Thus (0,---,0,¢c) is the only element of K,(G)° with final co-
ordinate cq. Notice that (0,---,0,¢y) € E (K,(G)°) (the set of idempotent elements
in K,(G)%). Remark here that (0,---,0,c) is the zero of K, (G)°, to show that let

(0,hy,- -+, by, ) be any element in K,(G)?, then
(O7h17"' 7hn7a)(07"' 70760) = (07 70760)7

and

(07 70700)<0ah17“' 7hn705) = (07 70700)'
This implies (0, -+ ,0,cp) is the zero of K,(G)°.

Corollary 5.2.5. Let G # {e}. The number I(n,G) of idempotents in K,(G)°
equals

I(n,G) = + 1.

22 (D)) e

k=1 =k

Proof. We count the possibilities for A = (0,91, , gn, @) € K,(G)?, where a €

PT, and @ € T, is defined in Lemma 3.3.9, to be idempotent.
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If Ima| = 0, then a« = 0, so that @ = ¢y and we already remarked that
(0,--+,0,¢0) € E(K,(G)?).

We now count the possibilities for A = A% where |[Ima| =k € {1,--- ,n}. We
know that this entails @ = a2 and hence a = o*>. Thus Ima € Dom « and ia = 4
for all i € Ima. We therefore count the choices for A = A? where [Ima| =k > 0
and |Dom a| = [, where k <[ < n.

l

There are (?) choices for Dom a. For each of those there are (k) choices for

Im a. For each of these, ia = i for all i € Im «, and there are k choices for ia for
i € Doma\Ima, ie., () (li) K'=* choices for a. For each of these possibilities for o,
we know from Corollary 5.2.4 that the only further condition is that g; = 1 for all
J € Im . By definition of K,(G)°, w have g; = 0 for all i ¢ Dom a. Thus there are
|G|'~* choices for the remaining g;s.

We conclude, there are (1) (,i) k'=k|G|'"=* choices for A = A% where [Ima| =k > 0
and |Dom a| = [. Thus the total number of idempotents in K,(G)° is

I(n,G) = +1.

22 (D)) ters

k=1 l=k

]

Now let us consider the following example which explains how the formula in the

Corollary 5.2.5 works:

Example 5.2.6. Let G = {1,a}. We want to count the numbers of idempotents in
K4 (G)°.

Recall that if A € K4(G)° means A = (0, g1, g2, g3, g4, @), where g1, g2, g3, g1 € G°
and @ € Ty, and by the definition of K, (G)° we have g; = 0 if and only if iad = 0
where 1 < i < n. Furthermore, we know from Lemma 3.3.9 that P7T, is isomorphic

to Tu0, hence where o € PT 4 we have a <> @.

For a € PT 4 suppose that k = [Im «|, and | = |[Dom a.
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We have 5 cases to find the numbers of idempotents in K4(G)° all of them

corresponds to k.

Case (1) If k = |Ima| = 1. In this case we have 4 cases for [ = |Dom «|, which are

either [ = 1,2,3 or, 4.

Case (i) If [ = |[Dom«| = 1. There are 4 idempotents in P74 having k = 1

and [ = 1, which are as follows:

1 2 3 4 1 2 3 4
] = Qo =

1 - - - -2 - -

1 2 3 4 1 2 3 4
3 = ay =

- - 3 - - — — 4

Observe that, there are 4 ways to choose Im «, for each of these there
is only one way to choose Dom .. Now, if (0, g1, 9o, g3, g1, 1) € K4(G)°
then by using Corollary 5.2.4, we obtain g; = 1, and by the definition of
K4(G)° we have g = g3 = g4 = 0 as 2,3,4 ¢ Dom «;. Therefor, we have

only one idempotent in K;(G)° of the form (0, g1, g, g3, g4, ;) which is
(0,1,0,0,0,a7).

Similarly, if we have idempotents of the form (0, g1, g2, 93, g4, @%3),
(07 g1, 92, 93, g4, 06_3) or, (07 g1, 92, 93, g4, 05_4)

Case (ii) If | = |Doma| = 2. There are 12 idempotents in P74 having

k= |lma| =1 and | = |Dom «| = 2 which are as follows:

a5 = Qg =
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1 2 3 4 1 2 3 4

a7 = ag —
1 - — 1 - 2 - 2
1 2 3 4 1 2 3 4

Qg = 1o =
2 2 - — - 2 2 -
1 2 3 4 1 2 3 4

Q11 = Qo =
- — 3 3 -3 3 -
1 2 3 4 1 2 3 4

Q13 = Q14 =
3 — 3 — — — 4 4
1 2 3 4 1 2 3 4

Q15 = 16 =
— 4 — 4 4 — — 4

Observe that, there are 4 ways to choose Im «, for each of these there are
3 ways to choose Doma. If Ima = {1}, suppose (0, g1, 92, g3, g1, 05) €
K4(G)° then by using Corollary 5.2.4, g; = 1, and as 2 € Domas there
are 2 choices for go, which are either 1 or, a. Further by the definition of
K,(G)? we have g3 = g4 = 0, as 3,4 ¢ Doma;. We deduce there are 2

idempotents in K4(G) of the form (0, g1, g2, g3, g4, @) as follows:

(07 17 1707 O7a_5)7 (07 17a7 O? 07a_5)'

Similarly, if we have idempotent of the form

(07917927937g4va_ﬁ) or, (0791792793,94,06_7)-

So, we have 6 idempotents in K4(G)? if k=1, =2 and Ima = {1}. As
we have 4 ways to choose Im v we deduce there are 4 x6 = 24 idempotents

in K;(G)° in this case.

Case (iii) If [ = [Doma| = 3.
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There are 4 ways to choose Im «, for each of these there are 3 ways to
choose Dom «. In each way of choosing Dom « there are 4 idempotents in
K4(G)° of the form (0, g1, g2, g3, g4, @) such that by using Corollary 5.2.4,
g; = 1 where j € Im«, and by the definition of K4(G)? we have g; = 0
for all i ¢ Dom a. We obtain there are 4 x 3 = 12 idempotents in K4(G)°
in each way of choosing Im . As there are 4 ways to choose Im « there

are 4 x 12 = 48 idempotent in K4(G)? in this case.

Case (iv) If [ = |[Doma| = 4. There are 4 ways to choose Im «, for each of
these there is only one way to choose Dom . In each way of choosing
Im « there are 8 idempotents in K4(G)° of the form (0, g1, g2, g3, g1, @)
such that by using Corollary 5.2.4, g; = 1 where j € Im«, and by the
definition of K4(G)? we have g; = 0 for all i ¢ Doma. As there are 4
ways to choose Im «v there are 4 x 8 = 32 idempotents in K4(G)? in this

case.

We put everything together to obtain 4 + 24 4 48 + 32 = 108 idempotents in

K4(G)° corresponding to k = 1.

Case 2 If k = |Ima| = 2. In this case we have 3 cases for | = |Dom «|, which are

either [ = 2,3 or, 4.

Case (i) If I = |Doma| = 2. There are 6 ways to choose Im «, for each of
these there is only one way to choose Dom «.. In each way of choosing Im «
there is only one idempotent in K4(G)° of the form (0, g1, go, g3, 94, @)
such that by using Corollary 5.2.4, g; = 1 where j € Ima, and by the
definition of K4(G)? we have g; = 0 for all i ¢ Doma. As there are 6
ways to choose Im « there are 6 x 1 = 6 idempotents in K4(G)? in this

case.
Case (ii) If [ = [Domal = 3.

There are 6 ways to choose Im «, for each of these there are 4 ways to
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choose Dom a. In each way of choosing Dom « there are 2 idempotents in
K4(G)° of the form (0, g1, g2, g3, g4, @) such that by using Corollary 5.2.4,
g; = 1 where j € Im«, and by the definition of K4(G)? we have g; = 0
for all i ¢ Dom . We obtain there are 4 x 2 = 8 idempotents in K4(G)°
in each way of choosing Im . As there are 6 ways to choose Im « there

are 6 X 8 = 48 idempotent in K;(G)° in this case.

Case (iii) If [ = |Doma| = 4. There are 6 ways to choose Im «, for each
of these there are 4 ways to choose Doma. In each way of choosing
Dom « there are 4 idempotents in K4(G)° of the form (0, g1, go, g3, 94, @)
such that by using Corollary 5.2.4, g; = 1 where j € Im«, and by the
definition of K4(G)° we have g; = 0 for all 7 ¢ Dom . We obtain there
are 4 X 4 = 16 idempotents in K4(G)" in each way of choosing Im . As
there are 6 ways to choose Im « there are 6 x 16 = 96 idempotent in

K4(G) in this case.

We put everything together to obtain 6+ 48+ 96 = 150 idempotents in K,(G)°

corresponding to k = 2.

Case 3 If k = |Ima| = 3. In this case we have 2 cases for [ = |Dom «/|, which are

either [ = 3 or, | = 4.

Case (i) If [ = |Doma| = 3.
There are 4 ways to choose Im«, for each of these there is only one
way to choose Doma. In each way of choosing Im « there is only one
idempotent in K4(G)° of the form (0, g1, g, g3, g1, @) such that by using
Corollary 5.2.4, g; = 1 where j € Im«, and by the definition of K4(G)°
we have g; = 0 for all i ¢ Dom . As there are 4 ways to choose Im «

there are 4 x 1 = 4 idempotents in K;(G)° in this case.

Case (ii) If [ = |Doma| = 4. There are 4 ways to choose Im «, for each

of these there are 3 ways to choose Doma. In each way of choosing
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Dom « there are 2 idempotents in K4(G)° of the form (0, g1, go, g3, 94, @)
such that by using Corollary 5.2.4, g; = 1 where j € Ima, and by the
definition of K4(G)" we have g; = 0 for all : ¢ Dom a. We obtain there
are 3 X 2 = 6 idempotents in K4(G)° in each way of choosing Im . As
there are 4 ways to choose Im « there are 4x 6 = 24 idempotent in K4(G)°

in this case.

We put everything together to obtain 4 + 24 = 28 idempotents in K, (G)°

corresponding to k = 3.

Case 4 If k = [Ima| = 4. In this case there is just one case for [ = [Dom «, which

isl =4.

There is only one idempotent element in P74 having k, [ = 4 and which is

1 2 3 4
I =

1 2 3 4

In this case Im I = {1,2,3,4} and Dom«a = {1,2,3,4}. From that we obtain
only one idempotent in K4(G)° of the form (0, g1, g2, 93, g4, Ino). By using

Corollary 5.2.4, g; = 1 where j € Ima, we obtain only one idempotent in

K4(G)°, which is (0,1,1,1,1, I,,0) € K4(G)°.

Case 5 If k£ = [Ima| = 0. In this case there is just one case for | = [Dom «| which

isl=0.

There is one idempotent element in P74 having k, [ = 0 and which is

In this case Im0 = ) and Dom 0 = ). By using the definition of K4(G)° we
have g; = 0 for all : ¢ Dom a. Hence we have only one idempotent in K;(G)°,

which is (0,0,0,0,0,c) € K4(G)°.
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In order to count all idempotents element in K;(G)° we must count all idempotent
elements in five cases together to obtain 108 + 150 + 28 + 1 + 1 = 288 idempotents
in K4(G)°.

Notice that by using the formula in Corollary 5.2.5, the same result can be

obtained.

5.2.2 Green’s relations on PTy, (q)

In [17], Gould obtained results characterising Green’s relations on End A, where
A is an independence algebra. In this section, we prove the corresponding results
for PT a, where A is F,(G) and G is group. These results we present here are
new, although whilst this thesis was under construction, the characterisation of
Green’s relations in P77y, (q) presented here were extended to the case of PT 4 for
an arbitrary independence algebra A and appeared in [43].

Let F(G) = Ga1 |JGzz |- - - |J Gz Recall that, for a subalgebra B of Fyu(G),
we say that rank of B, p(B) is m, where B = Gz, U Gx;, U e U Gz;,,, and where

1<ip<ig < - <ip<nand 0<m < n. If a € PTy, () we define p(a) to be

p(Im o).

Lemma 5.2.7. For all a, B € PTg,q), we have the following:
(i) a <, B if and only if Ima C Im f3;
(14) a <g B if and only if Doma C Dom 3 and g C my;

(u2) p(aB) < pla) and p(af) < p(B).

Proof. (i) If @ <, B in PTg,(c), then a = 3 for some v € PTg,(c). It follows
that a <, 8 in PT g, (q) so that Ima C Im 8 by (i) Lemma 3.3.4.

Conversely, suppose that Dom o = UjGJmej and Im o C Im . For each j € J
pick a; € Dom 8 with xzja = a;8. Define v € PTy, () by Domy = Doma and
xjy = a; for all j € J. Then Im~y C Dom 3, so Dom v = Dom~ = Dom «, and for

all j € J, ;78 = a;8 = xja. Hence a = yf and o <, f in PT g, (q).
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(7) If @ <g B in PTw,(c), then a = v for some v € PT g, (). It follows that
a <z B in PT g, and then by (ii) Lemma 3.3.4 we obtain Doma C Dom /3 and
g C T,

Conversely, suppose Doma C Dom 8 and 73 C 7m,. Let U = (Doma«)f and
define v by Dom~ = U and for any a8 € U with a € Dom«, (af3)y = aa. Notice
that if a,a’ € Doma and af = o' then as T3 C m, we have aa = a o, so that
v is well-defined. If a8 € U with a € Doma and g € G, then ag € Dom« and
((aB)g)y = (ag)By = ((ag)B)y = (ag)a = (acr)g = ((aB)7)g, so that v € PTr,(q)-
Certainly Dom~y C Im . Let ¢ € Dom 37, so that ¢ € Dom 3 and ¢ € Dom .
It follows that ¢f = af for some a € Doma. Thus (a,¢) € 73 C 7, so that as
a € Doma we have ¢ € Dom a. Hence Dom v C Dom « and clearly the converse
is true by definition of . Thus Doma = Dom v and then it is immediate that

By =a. Thus a <z fin PTFn(G)'

(711) We claim for any 7,k € PTp,(q) that

p(Tk) < p(k) and p(TK) < p(7).

Recall, p(7) = p(Im7) and let Im 7 = UyeyGy, where Y C {zy, -+ ,x,}, so that

p(1) =|Y|. Since Im (7x) = (Im 1)k = (UyeyGy)m = UyeyG(yli) this implies that

p(tr) < Y| = p(1). Now, p(k7) = p(Imk7) = p((Imk)7). As Im k7 C Im 7 then
<

we have p(Im k7) < p(Im 7) this implies that p(k7) < p(7).

Lemma 5.2.8. For all o, f € PTr, (), we have:
(i) a LB if and only if Ima = Im B;
(i) aR B if and only if Doma = Dom 5 and Kera = Ker[3;

(ii) aH B if and only if Ima = Im 3, Doma = Dom 3 and Kera = Kerp;
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() aD B if and only if p(a) = p(B);

(v) <z B if and only if p(ar) < p(B);
(vi) a J B if and only if p(a) = p(B);
(vii) D = J.

Proof. (i) This follows immediately from Lemma 5.2.7.

(%) From Lemma 5.2.7, R § if and only if Dom o = Dom 8 and 7,= 7.

This gives
Ker o = m, N (Dom v x Dom ) = w5 N (Dom 8 x Dom ) = Ker 3.
Conversely, if Dom o = Dom f and Ker o = Ker 3, then

To = Kera U ((Fu(G) \ Doma) x (Fu(G) \ Dom«))
= Ker fU ((Fa(G) \ Dom ) x (Fa(G) \ Dom f3))

= Tg.
(#ii) This follows immediately from () and (7).

(i) Suppose that a D 3, so that there exists v € PTg, () with « R v L S.
From (i) Imy = Im § and from (4) Doma = Dom~ and Kera = Kery. By the

Fundamental Theorem of Monomorphisms we have
Im a = Dom a/Ker « = Domy/Kery = Im~ = Im 3,

so that p(a) = p(B).
Conversely, suppose that p(a) = p(8). Let Ima = UyeyGy and Im f§ = UzEZGZ
for some Y, Z C X,, with |Y| = |Z] = p(a) = p(B) and let 7 : Y — Z be a bijection.
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Then 7 lifts to an isomorphism 7 : Im o« — Im /3 given by (gy)7 = g(y7).
We have Dom a7 = Doma and as T is a bijection, Ker a7 = Ker «, so that

a R a7. On the other hand, Im a7 = Imf so that a7 £ 5. Hence a D 3 as required.

(v) If & <7 B then by Lemma 5.2.7 (ii7), p(a) < p(5).

Conversely, suppose that p(a) < p(f) and let Ima = UyeyGy and Imf =
UZEZGZ for some for some Y,Z C X, with |Y| = p(a) < p(8) = |Z]. Then
Z = Y'\JZ where [Y'| = |Y|. Now fix y;, € Y’ and define 7 : Z — Y’ by
y'r =1y forall y € Y’ and 2/t =y for all 2’ € Z'. Clearly 7 lifts to a morphism
7:Imp — Uy,ey,Gy’. Then p(a) = p(B7) so that « D 7 and o J BT <7 .

(vi) This follows from (v).

(vit) This is an immediate consequence of (iv) and (v).

5.2.3 Ideals of PTg (g

This subsection devoted to considering the ideals of K,(G)° in terms of the ideals
of Tno-

The following definition have already been defined in Chapter 1.

Definition 5.2.9. [25] A non-empty subset I of a semigroup S is called left ideal
(right ideal) of S it ST C I (IS C 1), i.e., if forall s € S and a € I we have sa € [
(as € I). A subset [ is called a (two-sided) ideal of S or simply an ideal provided
that it is both a left and right ideal of S, i.e., ISUSIT C I.

Lemma 5.2.10. Let I be an ideal of K,(G)° and
I'={a: 30,91, ,gn,) € I}.

Then I' is an ideal of T, .
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Conversely, if J is an ideal of T, o, then putting

J = {(07917"' 7gn7a) S Kn(G)O a e J},

we have J' is an ideal of K,(G)°.

Proof. Let I be an ideal of K,,(G)°. Let a € I, so there exist (0, g1, , gn, ) € I.

Let 8 € Tho, put h; = 0 for all 4 with ¢ = 0 and h; = e else. Then,
(0,h1,++ , hy, B) € Ku(G)° and

(Oahla"' 7hn75>(07917"' 7gn>a)7 (07917"' 7gn7a)<oah17"' 7hn75> el

So af3, Ba € I'. Hence I' is an ideal of Ty, 0.

Conversely, suppose J is an ideal of 7, . Let (0,01, -, gn, @) € J and
(07 hla e 7hna 6) S Kn(G>O Then

(ngla"' 7gn7a)(07h17”' ah’rmﬁ) = (07glh1aa"' 7gnhna7aﬂ)'

As oo € J and J is an ideal of 7, , we obtain a8 € J. Hence,

(Ouglhlom T 7gnhna7 O‘ﬁ) S Jl‘

Also,

(07 hla"' 7hn76)(07g17"' ,gn,Oé) = (07 hlglﬁa'“ 7hngnﬁaﬁa)

and as o € J and J is an ideal of 7,, o, we obtain Sa € J. Hence,

(0; h19157 Ty hngnﬁ7 605) S J/‘

Observe that Lemma 5.2.10 works for 1-sided ideal.
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Lemma 5.2.11. Let I be a left ideal of K,,(G)°, then (0,91, ,gn, ) € I if and
only if (0,4}, ,q,,a) €I for any g: € G° with g = 0 if and only if ia = 0.

Proof. Let (0,¢1,--- ,gn, ) € I. Let € € T, o such that

¢ for all ¢ such that ia # 0;
1€ =
0 else.

Let ¢}, -+ ,g, € G° be as given. Then (0,¢}g; ", ,d.9.",¢) € K,(G)°, where

07! =0, and as I is a left ideal of K, (G)° we obtain

(0’ gigl_la e 79297:17 5)(07 g1, y9n, CY) = <0a gigl_lglﬁ e ag:zg'r:lgn& 80().

Now, if ia # 0 we have g; # 0 and ic = i, s0 ¢.g; ' gic = g}, and if ia = 0 we will

have ¢/ = 0 = g}g; 'gi.. Hence,

(079/191_17 797/1977175)(07917"' 7gn7a) = (079,17 79;705) el

]

Notice that, Lemma 5.2.11 does not appear to hold for right or two-sided ideals
of K,(G)°.

5.3 Nilpotents in P77y, q)

In this section we compile the necessary background information for graph theory.
We start by providing brief accounts of the basic ideas on graphs, trees, rooted trees
and labelled rooted trees. We explain how Cayley’s theorem be used to count the
number of labelled forest on m nodes which has k labelled rooted trees. The final
subsection of this section is devoted to count the number of nilpotents in PT 4,

where A is F,(G) and G is a group.
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5.3.1 Graphs

Definition 5.3.1. [22, 23] A Graph G of order v consists of a finite non-empty set
V = V(G) of v vertices together with a prescribed set E of ¢ unordered pairs of

distinct vertices of V.

A pair e = {x,y} of vertices in E is called an edge of G and e is said to join z
and y. We write e = xy and say that = and y are adjacent vertices; the vertex x
and edge e are incident with each other, as are y and e. If two distinct edges e, e’
are incident with a common vertex, then they are adjacent edges. A graph with v

vertices and ¢ edges is called a (p,q) graph. The (1,0) graph is trivial.

Y

e/

Figure 5.1: Figure G

Remark 5.3.2. [22, 23]

(i) A graph G is labelled when the v vertices are distinguished by names such as

a, b, c, d, e as an example below:

d e

Figure 5.2: Unlabelled graph (left) and labelled graph (right)

(ii) Two labelled graphs G and G5 are considered the same and called isomorphic
if and only if there is a one to one map from V' (G;) onto V(G2) which preserves

not only adjacency but also the labelling.

(iii)) A walk of a graph G is a sequence of vertices vy, vy, -+ ,v, such that v; is

adjacent to v;;, for each 1.
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(iv) A closed walk is a walk such that vy = v,,, and is open otherwise.

(v) A cycle is a closed walk where none of the vertices repeat except for the first

and the last (i.e., i # j = v; # v; except when (4, j) = (0,k)).

(vi) A graph is connected if for all pairs of vertices (v;,v;) there exist a walk that

begins at v; and ends at v;.

(vii) The degree of a vertex v; is the number of edges incident with v; (i.e., the

number of edges attached to it).

Figure 5.3: The graph of the vertex = with degree 4, denoted by d(z) =4

(viii) The complete graph is a graph has every pair of its v vertices adjacent.
(ix) A graph is acyclic if it has no cycles.

Definition 5.3.3. [22, 23] A tree is a connected acyclic graph. Every non-trivial

trees has at least two endpoints of degree 1.

Observe that the last graph is a typical example for the tree.

Definition 5.3.4. [22, 23] Any graph without cycles is a forest, which means the

components of a forest are trees.

Definition 5.3.5. [22, 23] A branch at a vertex v of a tree is a maximal subtree

containing v as an endpoint.

Definition 5.3.6. [22, 23] A rooted tree is a tree has one vertex which has been

distinguished from the other vertices to be a root.
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It is clear that all trees whose roots have degree n can be formed from a collection
of n rooted trees by joining them by one new point, such that the new point, which

will form the new root, is adjacent to each of the roots of the n given rooted trees.

N L |

(a) (b)

Figure 5.4: Four rooted trees and the corresponding tree whose root has degree 4.

Observe that, in our work we consider labelled rooted trees. Despite, there is
only one tree of order 3 if the tree is unlabelled, however in the sense of labelled
trees, there are 3 different labelled trees obtaining by marking the inner vertex a, b

and c. This can be shown by using Cayley’s formula.

Theorem 5.3.7. (Cayley)|[22, 23] There are n™*~? different labelled trees on n ver-

tices.

Cayley’s formula shows us how many different labelled trees we can construct
on n vertices. Moreover, in the concept of labelled trees it is easily to observe that
any node in a tree can be considered as a root. Hence we can find the number of

labelled rooted trees on n nodes by using the following theorem:
Theorem 5.3.8. [40] The number of labelled rooted trees on n nodes is n"~!.

Therefore, there are 9 labelled rooted trees can be obtained from the 3 different
labelled trees when we consider the nodes a, b or ¢ as a root respectively, which can

be shown in the following figure:
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Unlabelled tree 3 different labelled trees

a a a b b b c c c
b b b c c c a a a
b b b

9 different labelled rooted trees

Figure 5.5: Three different types of trees.

In order to determine the number of forests that have n labelled nodes of which
k have been designated as roots, we need the following generalization of Cayley’s

formula:

Theorem 5.3.9. [40] Given n labelled nodes of which k are designated as roots, the

number of forests of k rooted trees that can be formed on these nodes is kn™ *~1.

From the above theorem one can be deduce that Cayley’s formula is a special

case follows from the case k = 1.

5.3.2 Nilpotents

In this subsection we explain how to count the number of nilpotents of PT,, through

some examples.
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Definition 5.3.10. [15] An element a of a semigroup S with zero 0 is called nilpotent
or nilelement provided that a™ = 0 for some n € N. The minimal n for which a™ = 0

is called the nilpotency degree or nilpotency class of the element a and is denoted

by nd(a).

Proposition 5.3.11. [15] An element o € PT,, is nilpotent if and only if the graph

of a does not contain cycles.

An example for the graph of a € PT,, can be shown in any of the examples at

the end of this subsection.

Proposition 5.3.12. [15] The nilpotency degree of a nilpotent element o € PT,

equals the length of the longest trajectory in the graph of c.

From the above proposition we deduce that the trajectory of each vertex a in
the graph of @ must break at some vertex, if « is nilpotent.

s=1 which represents the number of labelled forests

Suppose that Ny(n,s) = sn™"
with s designated roots. Notice that, s also represents number of elements not in
Dom a.

The formula to count the number of nilpotents in the semigroup P7T, has been

found in [15]. In the following corollary we found our formula to count the number

of nilpotents in the semigroup PT,,.

Corollary 5.3.13. The number N(n,s) of nilpotents in the semigroup PT,, equals

N(n,s) = zn: (Z) Ni(n, 5).

s=0

Proof. Suppose that [Dom «| = [, where 0 <[ < n. Now let s = n — |Dom «|, where
0 < s < n, be the number of elements not in Dom a.

We know that the graph of the elements of a € PT, will be a forest and a
forest is a disjoint union of trees, and the number of trees will be the number of

elements not in Dom a. So there are (Z) choices for s = n — |Dom «/|, hence we have
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(’;) Ni(n, s) nilpotents of & € PT,, with s elements not in Dom «. By using the sum

rule the proof will be complete. n

Let us have the following examples for a € PT,, such that a has one element

not in Dom «:

Example 5.3.14. Let o € PT 4 be

1 2 3 4

This has the following graph

It is obvious that every vertex in the graph of o has unique trajectory and it is
break at some vertex. Hence by Propositions 5.3.11 and 5.3.12, « is nilpotent and

ot =0.

From the above example we deduced that the graph of « is a labelled rooted tree,
which rooted at the vertex 1. Furthermore, as & € PT, so we obtain 1 ¢ Dom «,
and then we have one labelled rooted tree, which labelled at the vertex 1. This

means, the number of labelled roots equals to the number of elements not in Dom .

Example 5.3.15. Let a € P74 be



This has the following labelled rooted tree:

1 \\5/ 4
2
We have just one element not in Dom o which is 2, this means we have just one

labelled rooted tree which is rooted at 2. By Propositions 5.3.11 and 5.3.12, « is

nilpotent and a? = 0.

Since any vertex of the tree can be considered as a root, therefore, for any new
root we have a new nilpotent in P7T,, which has one element not in Dom «.. Hence,
if a € PT4, such that a has one element not in Dom a we will obtain the following

labelled rooted trees:
" v %/3 K@f’ 1\\%/%
4 4 4 4
It is clear that by using Theorem 5.3.9 there are 1 -4*171 = 16 forests of

which has one rooted tree. Moreover, by using Corollary 5.3.13 we will obtain

(1) -1+ 4*71=! = 64 nilpotents in PT, having one element not in Dom .

Now consider the following example where o € PT 4 which has two elements not

in Dom «.

Example 5.3.16. Take o € P74 to be

1 2 3 4
2 — = 2

This has the following labelled rooted trees:
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o

2

Clearly, there are two distinct labelled trees rooted at 2 and 3, since 2 and 3 are

not in Dom . By Propositions 5.3.11 and 5.3.12, « is nilpotent and o? = 0.

Since any nodes in any tree can be considered as a root, hence at any new root
we could obtain a new nilpotent has two elements not in Dom a.

By using Theorem 5.3.9, the number of forests which has two rooted trees is
2. 4*271 — 8 and then the number of nilpotents in P74 having two elements not

in Dom « is (;1) 22 44271—-5.8 = 48.

In case there are three elements not in Dom «, we have the following example:

Example 5.3.17. We take an element o € P74 to be

1 2 3 4

its graph will be as follows:

1

é ®2 @4
3

It is obvious that o has three elements not in Dom «, which are 2,3 and 4.
Hence, we have three distinct labelled rooted trees which rooted at 2,3 and 4. By

Propositions 5.3.11 and 5.3.12, « is nilpotent and a? = 0.

Since any vertex in any tree can be considered as a root, this means at any new

root we could obtain a new distinct nilpotent in P7, has three elements not in
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Dom a. By using Theorem 5.3.9, the number of forests which has three rooted trees
is 3- 4*73-1! = 3 and then the number of nilpotents in P74 have three elements not

in Dom « is (3) 23447371 =12,

The following example explain the case where a € P74 such that there are no
elements in Dom o which means Dom « = ) (the empty set). In other words, where

« is the zero element in P74 and we call it o = 0.

Example 5.3.18. Let a € P74 such that

1 2 3 4

this has graph as follows:

It is clear that we have four labelled rooted tree, since there are four elements
not in Dom . By Proposition 5.3.11 and Proposition 5.3.12, « is nilpotent and
a! = 0. By using Theorem 5.3.9, the number of forest which has four rooted trees
is 4-4%4"1 = 1, so we have just one forest that has 4 distinct rooted trees. Further

the number of nilpotent in 74 having no elements in Doma is (}) -4- 4441 = 1.

5.3.3 Number of Nilpotent in PTy )

This subsection is devoted to finding the number of nilpotents in P7 g, (q) where G
is a group.

We know from Subsection 5.2.1 that

K,(G)Y ={(0,g1, -, gn, @) :ia = 0 if and only if g; = 0

where 1 <i<nand o € 72,0}7
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and (0,--- ,0,cp) is the only element of K,,(G)® with final co-ordinate ¢y and (0, - - - , 0, ¢g)
is the zero of K,,(G)°. Notice that (0,---,0,cq) € N (K,(G)°) (the set of the nilpo-

tent elements in K,(G)°).

Lemma 5.3.19. Let G° be G with a 0 adjoined, and A = (0,1, , gn, ) be an
element in K,(G)°. Then A is nilpotent if and only if o* = cq (the constant map

with image 0 of Tpno) for some k > 1, that is, if and only if « is nilpotent in Ty .

Proof. Suppose that A = (0, g1, -+ , gn, @) is nilpotent, then A* = (0,---,0,a*). As
(0,--+,0,cp) is the zero of K, (G)°, then we have a¥ = ¢y, so « is nilpotent in 7, .

Conversely, if a € T, ¢ is nilpotent then o = ¢;. Then A% = (0, hy, -+ , hy,a¥) =
(0,71, s hy,co) € K,(G)°. As the only element of K, (G)° with final co-ordinate

co is (0,-++,0,¢cp). Hence, A¥ = (0,---,0,cp) as required. ]

Corollary 5.3.20. Let G # {e}. The number N(n,G) of nilpotents in K,(G)°

equals

N (Ea.(G)') =) (”) Ni(n,s)|G["™,

s=0

where Ny(n,s) = sn" 571

Proof. We count the possibilities for A = (0, g1, , gn, @) € K,(G)°, where @ € m
and o € PT,, is defined in Lemma 3.3.9, to be nilpotent.

To count the possibilities for A™ = (0,---,0,a™) for some m € N, suppose that
|Doma| = [, where 0 < [ < n, be the number of elements in Dom«a. Now let
s =n — |Dom a|, where 0 < s < n, be the number of elements in not Dom a.

In virtue of Corollary 5.3.13, we obtain there are (Z) Ni(n, s) nilpotents of PT,
with s elements not in Dom«a. By definition of K, (G)? we have g; = 0 for all
i ¢ Doma. Thus there are |G|"* choices for the remaining g¢;’s and then we will
obtain (") Ni(n, s)|G|"~* nilpotents in K,(G)°. By using the sum rule the proof

will be complete. O

From the above Corollary one can deduce that Corollary 5.3.13 is a special case

follows from the case G = {e}.
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Example 5.3.21. Let G = {l,a}. We want to count the numbers of nilpo-
tent in K4(Q)°, (recall that if A € K4(G)° means A = (0, g1, g2, g3, g4, @), where

g1, ,94 €GO and @ € Typ).

In this example we consider @ € 7.

Since n = 4, therefore, we have 4 cases to find the number of nilpotent in K4(G)°.

Case 1 If @ € T, such that @ has one element not in Dom@. Via Examples 5.3.14
and 5.3.15 the number of nilpotents in 73 having one element not in Dom @ is
64 elements. By definition of K,,(G)? we have g; = 0 for all i ¢ Dom a. Thus
there are |G|*~! choices for the remaining g;’s. So we have 512 nilpotents in

K4(G)° where there is one element not in Dom @.

Case 2 If @ € T, such that @ has two elements not in Dom@. We know from
Example 5.3.16 that the number of nilpotents in m having two elements not
in Doma is 48 elements. By definition of K;(G)° we have g; = 0 for all
i ¢ Doma. Thus there are |G|*~? choices for the remaining g;’s. Therefore,

we have 192 nilpotents in K;(G)° where there are two elements not in Dom @.

Case 3 If @ € T, such that @ has three elements not in Dom@. By Example
5.3.17, the number of nilpotents in m having three elements not in Dom @ is
12 elements. By definition of K4(G)? we have g; = 0 for all i ¢ Dom «. There
0

are |G|173 choices for the remaining g;’s. So we obtain 24 nilpotents in K,(G)

where there are three elements not in Dom .

Case 4 If @ € Ty such that @ has four elements not in Dom@. We know from
Example 5.3.18 that the number of nilpotents in 71, having four elements
not in Dom@ is 1 element. By definition of K4(G)°? we have g; = 0 for all
i ¢ Doma. So there are |G|*™ choices for the remaining g;’s. This means we

have 1 nilpotent in K4(G)® where there are four elements not in Dom @.
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In order to count out all nilpotent elements in K;(G)° we must count all nilpotent
elements in four cases together to get 5124192+24+41=729.

Notice that by using the formula in Corollary 5.3.20 we get the same result.
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Chapter 6

Presentations of certain
subsemigroups of semidirect

products

This chapter is devoted to finding presentations for certain subsemigroups of semidi-
rect products.

In the first section we define for a monoid M and for the full transformation
semigroup 7,, the wreath product M, 7, to be the semidirect product M"™ x T,
with the coordinatewise action of 7, on M™. (Recall we defined the wreath product
in Chapter 4).

We find a monoid presentation for M"™ x 7,, from a presentation of M" and 7,
by using Lavers’ technique [27]. We give a general presentation for a semidirect
product M x S which allows us to find a number of presentations for M ¢, Sing,.
In the case where M 1, Sing, is idempotent generated, we give a presentation in
terms of a particularly natural idempotent generating set: these results are taken
from the joint paper [14], to which I contributed in small part. We find a monoid
presentation for (N', {1,}) U (M 1, Sing,,) where M is a monoid, G is a group of
units of M and N = M \ G is an ideal of M; this is a minor adjustment of a known

result [14]. Finally, we suppose M and T" are monoids such that M is a left T-act by
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endomorphisms and G and H are the groups of units of M and T, respectively. In
addition, we suppose N = M\ G and S = T'\ H are ideals of M and T, respectively,
with N and G are left S-acts. Then a monoid presentation for (N x {1})U(M x S)
is obtained.

We have seen in Chapter 1 that presentations are a means of defining semigroups
as homomorphic images of free semigroups. The main motivation for studying semi-
group presentations is that they allow us to study certain classes of semigroups in
terms of efficient sets of data which are nevertheless sufficient to encode the semi-
group operation. This approach includes finite presentations for infinite semigroups,
and presentations of semigroups in terms of presentations of constituent parts having

an already better understood structure.

6.1 Presentations for semidirect product M x S

The aim of this section is to construct a presentation for M"™ x 7, from a presentation
of M™ and 7T,.
Recall from page 65 that, if M is a monoid and 7, is the full transformation

monoid, we define the “wreath product” multiplication on M™ x 7,, by putting

(ml7“' y My, CY)<h’17' o 7hn7 5) = (mlhla7 e 7mnhna7 Oéﬂ)

Under this multiplication, M™ x 7T, becomes a monoid with identity (1,---,1, I,,),
where [, is the identity transformation of 7,. The set M™ x 7T,, with the wreath

product multiplication, is denoted by M 2, T,.

Any wreath product is a special kind of semidirect product. In this special case
we now show this directly.
It is easy to prove that if M is a monoid with identity 1, then a wreath product

M, Ty, is a semidirect product of M"™ by 7T,, which will be shown in the following
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lemma:

Lemma 6.1.1. Let M be a monoid with identity 1, then M, T, = M™ x T,,.

Proof. Define a left action of 7, on M™ by ac- (mq,--+ ,my,) = (Mg, -

Then we shall prove that

(i) In-(my, - ,my) = (mq, -+ ,my);
(i) a-(1,---,1)=(1,---,1);

(lll) Q- (B(mla 7mn)) :aﬁ'(mla"' 7mn);

(iV) - ((ml’... ’mn)(hh... 7hn)) = (a.(ml’... ’mn)) (Oz-(hl,---

for all m;, h; € M,i € {1,--- ,n} and o, 8 € T,,.

(i) and (ii) are straightforward.

(iii) As a- (my, -+ ,my) = (Mg, ,Mpa), We have

a- (B (my,-,my)) =a(mg, -, Mng)

7mna)-

=a- (hy, -+ ,h,) (letting h; = mys forall i € {1,--- ,n})

= (hla; T 7hna)-

a.(ﬁ.(mb... 7mn)):(h1m... ,hna>:<m1aﬁ,“‘ 7mna5):aﬁ'(m17“' 77nn)_
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(iv) Here we have

a-((my,-- ,myp) (b, hy)) =a- (mihy, - myhy)

=a- (v, - ,v,) (letting v; = m;h; for all @)
= (Ula, ... 7/Una)

— (mlahla; - 7mnahna)

= (mm, . 7mna)(h1m .. 7hna)

:(a.(mb... ’mn))<a.(h17... 7hn))

We have shown in (iv) that 7, acts on M™ by endomorphisms, hence we form the
semidirect product semigroup M™ x T,. Clearly My, T, = M™ x 7T, as defined

earlier. O

6.1.1 Presentation for S,

The following two propositions state the first two presentations for S,,, which were

discovered in 1897 by Moore; see also Coxeter and Moser 1980 [8].

Proposition 6.1.2. [38] The presentation
(a,bla®=b" = (ba)" ' = (b"'ab)’ = (ab7ab/)* =1 (2< j <n—2))

defines S,, in terms of generators (12) and (12---n).

In the next proposition we will consider the larger set (12),(23),---,(n — 1 n)

of generators:

Proposition 6.1.3. [38] The presentation

(a1, -+ s an-1 |6} = (aja;11)° = (arar)® =1

(1<i<n-1,1<j<n-2 1<k<I-2<n-3))
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defines S,, in terms of generators (12),(23),---,(n — 1 n).

6.1.2 Presentation for 7,

The first presentation for the full transformation semigroup 7, was given in 1958 by

Aizenshtat [1], as follows:

Proposition 6.1.4. [1, 38] Assume that (a, b| R) is any semigroup presentation for
the symmetric group S, in terms of generators o = (12) and B = (12---n). Then

the presentation

(a, b, t|at = b *ab’tb*ab® = bab~'abtb " abab~" = (tbab™")* = t,

(b "abt)? = tb~'abt = (tb~"ab)?, (tbab~*ab)® = (bab~>abt)*)
defines the full transformation semigroup T, in terms of generators o, 5 and

123 -+ n
113 -+ n

Remark 6.1.5. As T, has the above presentation, there exist an epimorphism
Y {a,b,t}t — T, defined by ayp = «, by =  and t¢p = 7 where o« = (12) and
B=(12-n).

6.1.3 Presentation for M" and for M" x {1,} = M, {1,}

This subsection is devoted to finding the presentation of the monoid M™, where M
is a monoid and has a monoid presentation (K : W).

The following lemma is already known and can be found in [30] and [41].

Lemma 6.1.6. Let M be a monoid which has a monoid presentation (K : W).
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Then M™ has a monoid presentation (H : R) where

H={n;:1<i<nkeK}

and R = Ry U Ry where

Ry = A{7igTjn = TjnTig : 1 < 0,5 <n,i # j},

and

R2 — {W(Ti,kla e )Ti,k:r) - V<Ti,k17 T 7Ti,kr) : (A)(kl, T 7kT) - V(kla e 7kr) S W}

We specialise Lemma 6.1.6 to standard presentation for the monoid M as follows:

Corollary 6.1.7. Let M be a monoid which has a monoid presentation <M : W>,
where

M={m: meM}

and

W={mn=mn:mncM?}

Then M™ has a monoid presentation <ﬁ : }_%> where

S

={rm:1<i<nme M}

and R = R, U Ry where

R, = {rimTin=TjaTim: 1 <i,7 <n,i#j},

E = {Ti,mTz‘,ﬁ = Ti,;mn - 1< < n}
In order to find a presentation for M"™ x T,, we will utilize T.G. Lavers’s [27]
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technique, which allows us to find a presentation for the semidirect product of two

monoids, and is presented in the following lemma:

Lemma 6.1.8. [27, Corollary 2| Let S and T be monoids. If S = (A : Z) and

T = (B : Q) via Y and p, respectively, and a semidirect product S x T exists, then

SXT=(AUB : ZUQU {(ba, (b-a)b) :a € A, be B}),

where b - a is a representation in A* of by - ai.

Proposition 6.1.9. The monoid M™ x T, has presentation

(HU{a,b,t} : RUPUT),

where R represents the set of relations in the presentation for M™, P represents the

set of relations in the presentation for T, and T is the set of relations:

(@ T1ms Tom@), (@ Tom, Tim) where me M (T1a)
(@ Tim, Tim@) where >3, meM (T1b)
(bTim, Ti—1.mb) where 1<i<n—-1,meM (T2a)
(b Ty TLmb) where i=mn, meM (T2b)
(t T1ms T1m Tomt), (ET2m, T) where meM (T3a)
(t Tim, Timt) where 1>3,me M. (T3b)

Proof. We know from Lemma 6.1.6 that M™ has presentation (H : R) via

o :H* = M":Tjpm— (1,---,1 -, 1)

) moo, 1,
i-th place

and from Proposition 6.1.4 that 7, has presentation ({a,b,t} : P) via

v:{a, bt} - Tp:a— a, b Band t — 7.
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Hence, by using Lemma 6.1.8 we obtain

M"xT, = (HU{a,b,t} : RUPU{(cTim,(c-Tim)c): c€{a,bt},1<i<n,meM}).

It remains to prove that the relation

{(cTim, (c-Tim)c): c € {a,b,t}, 1 <i<n,me M}

corresponds to the relation 7'.

For ¢« > 3, a - 7,,, is chosen to be an element of H* such that

Now

ay-(1,---,1, m ,1,--- 1)=(1,---,1

’ 7i—thplace’ ’

'71)7

). m Y )
i-th place

so we can take a - 7;,, to be 7;,,. This gives the identities (T'1b). By using the same

technique we can complete the proof.

6.1.4 Presentation for Sing,

Recall that Sing, = T, \ S, is the singular part of T,, which consists of all non-
invertible (i.e., singular) transformation on X,, = {1,--- ,n}, where n > 0.

Where X = {e;; : 1, j € X,,, 7 # j}, we already have the following result in
Chapter 3.

Theorem 6.1.10. [24, Theorem I| If n > 2, then Sing,, = (X).

A presentation for Sing,, was given in [11], in terms of generating set X. Define

an alphabet

X:{62]Z7j€Xn7l7é]}v
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an epimorphism

¢: X" = Sing,, :e;; — &,

and let R be the set of relations

€5 = eij = ejicy; for distinct 4, j (R1)
€ijerl = €ki€ij for distinct i, j, k, [ (R2)

€ikEjk = €ik for distinct 4, j, k (R3)

€ij€ik = €ik€ij = €;LEij for distinct i, j, k (R4)
€ki€ij€jk = €ik€h;€jiCik for distinct 4, 7, k (R5)
€ki€ijEjkCkl = €ikEkICLiEij €5l for distinct 7, j, k, [. (R6)

Theorem 6.1.11. [11, Theorem 6] Forn > 2, the semigroup Sing,, has presentation

(X : R) via ¢.

6.2 Presentation for semidirect product M xS and
singular wreath product M (, Sing,,

We recall that the main motivation for studying semigroup presentations is that
they allow us to study certain classes of semigroups in terms of efficient sets of data
which are nevertheless sufficient to encode the semigroup operation.

A general presentation for the endomorphism monoid End A of an arbitrary in-
dependence algebra A is not currently known. But a presentation for a special
subclass of algebras, like the endomorphism monoid of a free G-act of finite rank
can be described using result of Lavers [27] on general product of monoids, since we
know these endomorphism monoids are isomorphic to wreath products of the form
G, T,. In this section we are interested in the more general problem of finding

presentations for wreath products M, Sing,,. To achieve our aim of finding presen-
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tations for wreath products M2, Sing,,, we first prove general results on presentations
for arbitrary semidirect products M x S where M is a monoid and S a semigroup.
From these we are able to deduce a number of presentations for M , Sing, that
extend the presentations for Sing,. These results are taken from the joint paper
[14]; T do not give proofs, since I am not presenting them as mine, but rather to set

the scene for what follows in the next section.

6.2.1 Presentation for semidirect product M x S

Let S be a semigroup and M a monoid with identity 1. (Observe that S might also be
a monoid). Suppose S has a left action on M by monoid endomorphisms. Recall that
the semidirect product M xS has the underlying set M xS = {(a,s): a € M, s € S},

and product defined by

(a,s)(b, t) = (a(s - b), st) forall s, t € S and a, b € M.

Now, suppose that S has presentation (X : R) via ¢ : Xt — S. Define an
alphabet Xy, = {z, : © € X, a € M}. We regard X as a subset of X,; by
identifying x € X with ;1 € Xy;. For a word w = z1---2, € X, and for an
element a € M, we define the word w, = (21),22- -z, € X;;. Consider the set

Ry = R}, U R%, of relations over X, where R}, and R%, are defined by

RY; = {(ua, vo) : (u, v) € R, a € M}

and

R%/I = {(%ym xa(x¢~b)y) TS X, a, b e M}

Notice that as X C Xy, we also have R C Ry, via (u, v) = (uy, v1). Define a

map

S Xip = M xS by z.0n = (a, z¢) forallz € X and a € M.
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It easy to show that w,¢y = (a, we) for all @ € M and w € X*. Also from
the surjectivity of ¢ : XT — S, one can prove that ¢, is surjective. Indeed, let
(b,z) € M x S where b € M, z € S. As ¢ is surjective, z = w¢ for some w € XT.

Hence, we have

(W)pdnr = (b,wo) = (b, 2).

Theorem 6.2.1. [14, Theorem 3.1] With the above notation, M xS has a semigroup

presentation (Xyr : Ryr) via ¢y

Proof. Let &) be the congruence on X, generated by the relation Ry;. We showed
above that ¢,; is surjective, so we just need to show that Ker ¢, ==);. First
note that for any (u,v) € R and a € M, u,dp = (a,up) = (a,vd) = vappr, while
for any x,y € X and a,b € M, (z.y5)0m = (a,20)(b,yp) = (a(z¢ - b), (zy)p) =
(a(zd - D), 20)(1,yd) = (Ta(wst)y)Pu, showing that ~ C Ker @y

Conversely, suppose u = (21)a, = * (Tr)ay, v = (Y1)p, - - - (v1)p, € X, are such that

ugyr = vdyy. Using relations from R3,, we have

and

vy (Y2 y = (1 u)e

for some a,b € M. Since =~,;C Ker ¢, we have

(a,(z1---2p)P) = (21 2h)adrr = udrr = vOxr = (Y1 Y)pdar = (b, (Y1 - Y1) ).

It follows that a = b and (z1---xk)p = (y1 -+ y1)P. Let ~ be the congruence on X *
generated by the relation R. Since Ker ¢ ==, it follows that there is a sequence
of words z1-- -2, = wo, w1, -+ ,w, = Y1 ---y such that, for each 0 < 7 < r — 1,
w; = wiuw, and wiy; = wvw, for some w;,w; € X* and (u,v) € R. But then we

see that (w;)a ~ar (Wis1)a, using either (u,v) € R C Ry (if w; is non-empty) or
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(g, va) € Ryr (if w; is empty). But then

uy (T k) = (Wo)a =p (W1)a = R (Wr)a = (W1 U)o = (Y1 U)o = 0,

completing the proof.

The next Corollary follows directly from Theorem 6.2.1.

Corollary 6.2.2. If S s finitely presented and M is finite, then M x S s finitely

presented.

We remark here that since M, S = M™ x S is a semidirect product, Theorem
6.2.1 leads to a general presentation for M Y, S, modulo a presentation (X : R) for
S, but in this subsection we will not state this explicitly, and this will be the subject

of the next subsection.

6.2.2 Presentation for M, Sing,

A motivating example of a semidirect product is that of a wreath product, the subject
of the current subsection. The main topic of this subsection is to find the presen-
tation for the singular wreath product M 1, Sing,. The results are taken from [14];
we do not present the proofs or indicate that they are part of this thesis, rather we
state them here as a guide, since we will be following a similar pattern in the next
subsection.

Let S be a subsemigroup of the full transformation semigroup 7,, and let M
be an arbitrary monoid. Recall that S has a natural left action on M™ (the direct

product of n copies of M) given by

a-(ar, - a,) = (Q1a, 5 Ana) fora € S and ay,--- ,a, € M.

For i, j € X,, = {1,---,n} with i # j, and for a € M", we define ¢;j., =
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(a,e;;) € M, Sing,. As a special case, for a, b € M, we define

Eijiab = Eijia where a € M"is defined by ap = ¢ p if k=j

1 otherwise.

\

As a special case of the latter, we define €;;.,, = €514, for a € M. We gather these

elements into the sets

Xn:{sij;a:i,jGXn,i%j,aeM”},
ng{éij;abii,jEXn,i%j, CL,bEM},

Xlz{éfl'j;ai’i,jGXn,i#j,CLGM}.

Remark here that, we identify ¢;; € Sing, with €;;,; € M, Sing,. Therefore, we
have X C X} C A, C A,.

As we mentioned before, since M, Sing,, = M™ x Sing,, is a semidirect product,
Theorem 6.2.1 allows us to write down a presentation for M ¢, Sing, in terms of the
presentation (X : R) for Sing,, from Theorem 6.1.11. To state this presentation, let

us define an alphabet

Xn:{eij;a:iajEXmi#ja aeMn}’

an epimorphism

an . X: — M ln Singn P €ijia —> Eijias

and let R, be the set of relations (identifying a letter e;; € X with e;;,1,... 1) € X5,)
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€ij;:a€ij = €ij:a = €ji;aCij for a € M" and for distinct 1, J ((Rn)l)

€ijiaCki = Cki;aCij for a € M" and for distinct 4, j, k, [
((Rn)2)
Cik:aCik = Cik:a for a € M" and for distinct i, j, k
(Rn)3)
€ijiaCik = Cik:aCij = €jk:aCij for a € M" and for distinct ¢, j, k
(Rn)4)
€ki:aCijCjk = Cik:aCkjCjiCik for a € M" and for distinct 7, j, k
((Rn)5)
Chi;aCij€jkCkl = Cik;aCklCliCijCjl for a € M" and for distinct 7, j, k, [
((Rn)6)
€ij:aChl:b = €ij:cChl for a, b€ M" and any i, j, k, [, ((Rn)7)
where in (Rn)7, ¢ = a(g;; - b) = (¢1,- -+ ,¢p,) satisfies ¢; = a;b; and ¢, = agby, for

k # j. Notice that i, j, k, [ are not assumed to be distinct (apart from i # j and
k#1)in (Rn)7.

Obviously, the identities (Rn)1 ,---, (Rn)6 come from the relation R}, in The-
orem 6.2.1, because we can find (u4,v,) € Rn such that (u,v) € R (where R rep-
resents the relations in Theorem 6.1.11). Whilst the relation (Rn)7 can be obtain
from relation R3, in Theorem 6.2.1 by replacing z,y, a, b, a(x¢ - b) by €;;, e, a, b, ¢,

respectively. Hence, the next corollary is special case of Theorem 6.2.1.

Corollary 6.2.3. [14, Corollary 5.1 The semigroup M, Sing,, has presentation
(X : Ry) via ¢,.

As the presentation (X, : R,) utilises the large generating set X,,, in order to

simplify this presentation we will use the smaller generating set Xy C A,,. For this
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define an alphabet

X2 = {eij;ab : ’i, j c Xn, 1 #]7 a, be Mn},

an epimorphism

¢2 . X2+ — M n Singn D €ijab — €ij;abs

and let Ry be the set of relations

€ij:abCijicd = Cij:ac,bc = €jibaCijsde for a, b, ¢, d € M and distinct i, j

((R2)1)
€ijiabChlsed = ChlscdCij:ab for a, b, ¢, d € M and distinct i, j, k, [
((R2)2)
Cik;abCjkilc = Ciksab for a, b, c € M and distinct i, j, k
((R2)3a)
Cik;abCjkicl = ChizbaCjizcl Ciks11 for a, b, c € M and distinct 7, j, k
((R2)3D)

Cik:aaCikbl = €ik:11€jk:b1€ikia1  fOT a, b, € M and distinct ¢, j, £ ((R2)3c)

€ij;abCiksed = Ciksac, dCij;1,bc = €jk;be, dCijiac, 1 for a, b; G, d € M and distinct (2R k

((R2)4a)
Cijic, adCiks;1,bd = Ciksc,bdCij:1,ad = €jk;abCijscd for a, b, ¢, d € M and distinct i, j, k
((R2)4b)
€ki€ij€jk = €ikChjCjiCik for distinct 4, j, k ((R2)5)
€ki€ij€ikCkl = CikC€kICLi€ij€jl for distinct 4, j, k, [. ((R2)6)

Theorem 6.2.4. [14, Theorem 5.2] The semigroup M, Sing, has presentation
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<X2 . R2> V1a ¢2.
Proof. See [14]. O
Recall that, X C X} C &, C &), C M, Sing,,. Also recall that in Chapter 1 we
defined the Green’s pre-orders as follows: for a, b € S
a <g b= aS' CbS', a <, be S'aC S, a<;be StasStCShS
and the Green’s relations as follows: for any a, b € S

aRb<=aS'=bS",a Lb<= S'a= 8", a J b+ S'aS' = S'bS".

Remark here that, if M is a monoid and M/L is the partially ordered set of all

L-classes, then

M/L is a chain < the principal left ideals of M form a chain under inclusion

< all finitely generated left ideals of M are principal.

In the next theorem we re-prove a classical result of Bulman-Fleming [6] that
M, Sing,, is idempotent generated if and only if the set M/L of L-classes of M
form a chain under the usual ordering of £-classes. We denote § = {(3, i) : i € X,,},

the diagonal equivalence relation.
Theorem 6.2.5. [14, Theorem 4.7] If M is any monoid, then
(i) M, Sing, = (X,) = (Xs);

(i) (E(M2,Sing,)) = (X1) = {(a, a) € MY, Sing,, : a; <. a; for some (i, j) €
Kera\ 0};

(#i) M, Sing,, is idempotent generated if and only if M/L is a chain.
Proof. See [14]. O
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From Theorem 6.2.5, we deduced that where M is a monoid and M/L is a chain,

then the singular wreath product M, Sing,, is generated by its idempotents from

the set X;. Hence our aim is to obtain a presentation for M, Sing,, in terms of the

idempotent generating set Xj.

With this in mind, define an alphabet

an epimorphism

Xl:{eij;a:iajEXnvi%.ﬁaeM}?

and let R; be the set of relations

€ij:a€ij;b = Cija

€ij:1€44i;aCij;b

eji;aeij;c

= €5i;1€ij;ab

= €5i;bCijic

€ijip€jicCijil =

€4i;1€i5;1

eij;aekl;b

Cik;aCjk;b

€i§:1€jk;aCkj;1

€i5:1€5i:aCik;b

€ij:bCik;ab = Cik;abCij;b

€Li€ijCik

€ki€ij€jkCEI

€ji;aCij;be

= €ij1

= €k1;bCij:a

= €ik;a

= €4i;1€ik;aCki;1€i5;:1

= €54;1€ik;bCkj;:aCjk;1

= €jk;aCij;b

= €ikCLjCj iCik

€ikCLICIiCijC;l

¢1 . Xf_ - M n Sll’lgn P €ija — Eijsas

for a, b € M and distinct ¢, 7 ((R1)1a)
for a, b € M and distinct 7, 7 ((R1)1b)
for a, b, ¢ € M and distinct 7, j with ac = be

((R1)1c)
for a, b, c € M and distinct i, 7 with abc = ¢

((R1)1d)
for distinct i, j ((R1)le)
for a, b € M and distinct 7, j, k, [

((R1)2)
for a, b € M and distinct 7, j, & ((R1)3a)
for a € M and distinct 4, j, & ((R1)3b)
for a, b € M and distinct ¢, 7, £ ((R1)3c)
for a, b € M and distinct 7, 7, & ((R1)4)
for distinct 4, j, k ((R1)5)

for distinct 14, j, k, [. ((R1)6)
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Note that in relations ((R1)5) and ((R1)6) we have identified X with a subset
of Xi. It is important to note that some of the relations above (such as ((R1)1b))
involve a letter in of the form e;;.4, from X;, where “ab” denotes a single subscript
(the product of @ and b in M): in particular, e;;.,;, does not represent the letter from

X, where a and b are separate subscripts.

Theorem 6.2.6. [14, Theorem 5.9] If M /L is a chain, then the semigroup M,Sing,,

has presentation (X; : Ry) via ¢;.
Proof. See [14]. O
The next Theorem is a special case of Theorem 6.2.6, where M is a group.

Theorem 6.2.7. [14, Theorem 5.12] If M is a group, then M, Sing, has pre-
sentation <X1 : R/1> via ¢1, where R/l is obtained from relation Ry by replacing

((R1)1a)—((R1)1le) by

€ij:aCijib = €ijia = €jia—1€ijia fora, b€ M and distinct i, j ((R'1)la)
€ij:1€ji:a€ijib = €ji:1€ijsab fora, b € M and distinct i, j. ((R'1)1b)
Proof. See [14]. O

6.3 Presentations for (N, {1,})U (M2, Sing,) and
(Nt x {1} u (M« S)

Let M, T be monoids such that M is a left T-act by endomorphisms, and let G
and H be the group of units of M and T, respectively. Suppose N = M \ G and
S =T\ H are ideals of M and T, respectively.
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Figure 6.1: The left action of T on M.

In this section, we will write A = B U C' to indicate that A is the disjoint union
of B and C, and to avoid confusion, we will write 1 and 1,, for the identity of M
and 7T, respectively.

This section is devoted to finding the monoid presentation for
(N' % {1})U (M x S). We will start with a special case by finding presentation for
(NY, {1,}) U (M, Sing,).

Lemma 6.3.1. Suppose M, T, G,H, N and S as before. Let W = M x T, and let
K be the group of units of W. Then

(i) K={(m,t): me G, te H},
(ii) V. =W\ K is an ideal of W;
(i) Vp={(m,t): me M, te S} =M xS is an ideal of W;
(iv) Vg ={(m,t): me N, t €T} =N xT is an ideal of W;
(v) Var UVip = V;
(vi) N' % {1} is a submonoid of W;
(vid) (N* x {1}) U (M x S) is a subsemigroup of W ;

(viti) M x S = (N'x {1})(G = 9).
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Proof. (i) Suppose Z = {(m,t) : m € G, t € H}. We defined K to be the group
of units of W. We have to show that Z = K. Let (m,t) € Z. As G and H are
the group of units of M and T respectively, so there exist m~! € G and t~! € H.
In order to prove (m,t) € K, we have to show that (m, t)(u, t7') = (157, 17) and

(u, t7Y)(m,t) = (1p, 17) for some u € G. Set u =t~ -m~!. Then

(m, ) (u, t71) = (m(t - ), tt™)
= (m(t- (¢ -m™), ¢t
= (m((tt™")-m™ ), tt7")  (as M is a left T-act)
= (m(ly -m™ 1), ¢t (as M is a left T-act)

= (].M, 1T)

Also,

(u, ™ (m,t) = (u(t™'-m),t7't)

= (- m (" m)), 1)

=@t (m™tm),t71t) (as T acts by monoid endomorphisms)
=t 1yt
= (1ar, 17) (as T acts by monoid endomorphisms).

Therefore, (m,t) € K, which implies Z C K.

Now, let (m,t) € K. As K is the group of units of W, there exist (u,n) € K
such that (m,t)(u,n) = (m(t-u),tn) = (1, 17), which means m(¢ - u) = 1,7, and
tn = 1r. If m ¢ G, then m € N \ G, which is an ideal, but then m(t-u) € N\ G,
and this is a contradiction, as m(t - u) = 1p;. Then m € G. By the same manner

we obtain t € H. So K = Z, as required.

(i) Let (m,s) € V and let (n,t) € W. If t € S or, s € S, then (m,s)(n,t),
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(n,t)(m,s) € V as st, ts € S, since S is an ideal. Suppose now that ¢, s € H. Then
m € N and (m,s)(n,t) = (m(s-n),st) € Vas m(s-n) € N, since N is an ideal.
Also (n,t)(m,s) = (n(t-m),ts) € V. Indeed, if n(t-m) € G then t-m € G, and as
G is the group of units of M, there exist k € G such that (t-m)k =1. Ast € H

and H is the group of units of T', we have t~' € H and

L=t 1=t"1-((t-m)k)
=(tt-m)(t k) (as T acts by monoid endomorphisms)

=m(t ' k),

which forces m € G, and this is a contradiction. Thus n(f-m) € N, which means

(n,t)(m,s) = (n(t-m),ts) € V, as required.

(#ii) Let (m,t) € Vp and (n,s) € W, so that (m,t)(n,s) = (m(t - n),ts).
As t € S, this gives ts € S as S is an ideal, so (m,t)(n,s) € Vp. Similarly,
(n,s)(m,t) = (n(s-m),st), and as t € S this gives st € S as S is an ideal. Hence,

(n,s)(m,t) € Vp, which means Vr is an ideal.

(iv) Let (m, t) € Vy and (n, s) € W, so that (m, t)(n, s) = (m(t-n), ts). As
m € N, this forces m(t -n) € N, hence (m, t)(n, s) € Vy,. Similarly, (n, s)(m, t) =
(n(s-m),st), and as s € T,m € N, this gives s-m € N, which means (n, s)(m, t) €

Vs, so Vi is an ideal.

(v) Clear.

(vi) To prove N' x {1} is a submonoid of W, let (m, 1), (n,1) € N* x {1}. Then
(m,1)(n,1) = (m(1-n),1) = (mn,1). Since m,n € N, and N is an ideal of M, we
have mn € N. Hence, (m,1)(n,1) € N*x {1}, and as (1,1) € N' x {1}, so N* x {1}

is a submonoid of W.
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(vii) To prove (N* x {1}) U (M x S) is a subsemigroup of W, let (n, 1), (m,s) €
(N' % {1}) U(M % S), such that n € N',m € M, and s € S. Then (n,1)(m,s) =
(n(1-m),1s) = (nm,s). As s € S, then (nm,s) € (N' x {1}) U (M x S).

(viii) Tt is clear that (N x {1})(Gx S) C M x S.

Conversely, let (m,s) € M x S. Then if m € G, we have (m,s) = (1,1)(m, s) €
(N' x {1})(G x S). If m € N, then (m,s) = (m,1)(1,s) € (N' x {1})(G = S).
Hence, M x S = (N* x {1})(G x S), as required. O

6.3.1 Presentation for (N!), {1,}) U (M 1, Sing,,)

Our goal in this subsection is to finding a monoid presentation for
(N' 3, {1,,}) U (M, Sing,). We suppose M is a monoid, G is a group of units of M
and N = M \ G is an ideal of M. Now, if we let B = (N', {1,}) U (M ¢, Sing,,),
it is clear that N, {1,} is a submonoid of B and M 1, Sing, is an ideal of B. We
follow the argument for [14, Theorem 6.3], making minor adjustments.

The general result [13, Theorem 7.1] provides a way to “stitch together” a monoid
presentation for A = C'U D (where C' is a submonoid of A and D is an ideal) from

presentations for C' and D.

Lemma 6.3.2. Suppose M is a monoid, with group of units G such that N = M\ G
is an ideal. Then MY, Sing,, = (N, {1,})(G 1, Sing,,).

Proof. Notice that, if (a, 1,) € N1,,{1,} and (b, «) € G,Sing,,, then (a, 1,,)(b, a) =
(ab, o) € M, Sing,,, so (N, {1,})(G 1, Sing,,) € M, Sing,,.

Conversely, assume (c, ) € M, Sing,,. For each i € X,, = {1,--- ,n}, define

1 if c e c; if ¢ €G
a; = and b =

c; 1if c €N 1 if c; €N.
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Since a;b; = ¢; for each i, it follows that (c, v) = (a, 1,)(b, 7). It is clear that
(b, v) € G, Sing,, while (a, 1,) € N', {1,} follows from N! = {1} UN =
{1} U (M \ G), and this completes the proof. O

Suppose now that N' has a monoid presentation (Z : P) via ¢ : Z* — N :
ztp — Z for all z € Z. As this is a monoid presentation, it is important to assume
z1p # 1 for all z € Z in what follows.

Define new alphabets Z;) = {z; : z € Z} for each i € X,,, and put
Z = ZyU---UZy). Forawordw = 2---2, € Z%, and for ¢« € X,,, define
wii) = (21)@) -+ (2) ) € Zfj)- For each t € X, write Py = {(u), v) : (u, v) € P}

and put P = Py U---U Py,). We also define

For a € M and i € X,,, write a; = (1,---,1,a,1,---,1, 1,,), where the a is in the
1th position.

Define an epimorphism
U:.Z*— N! n {1n} D 2G) (ZZD)(Z-) = 2@)-

Remark here that any subsemigroup S of 7, leads to a wreath product K ¢, S,
for any monoid K. In particular, when S = {1,,} C 7, consists of only the identity
transformation, K,{1,} is isomorphic to the direct product of n copies of K. Hence
the next result follows from an obvious result on presentation for direct products of

monoids, which is represented in Lemma 6.1.6.

Lemma 6.3.3. With the above notation, the monoid N'1,{1,} has monoid presen-

tation (Z : P U R*) via V.

We know from Theorem 6.2.7 that G 1, Sing,, has a semigroup presentation
<X1 ; R’1> via ¢1 : X{" — G, Sing,,, where X; = {e;j0 : i, j € X,,, 1 # j, a € G}.

We will stitch this together with the monoid presentation (Z : P U R*) for N3, {1,,}
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in order to find a monoid presentation for B = (N', {1}) U (M 1, Sing,,). From

Lemma 6.3.2, and as B = (N', {1}) U (M, Sing,,), we may define an epimorphism
0:(ZUX)" = B: 2(i) 7 Z(i)s Cijia 7 Eijia-

Now, we will choose a set of words {h, : a € N'} C Z* such that h,i) = a
for all @ € N'. For a € N! and i € X,,, define hai = (ha)@) € Z(*Z.), noting that
hae;i© = hq; ¥ = a(;). Remark here if a = 1 we choose h, = ¢, where € is the empty
word in Z*.

Notice here that as h,;© = a;, = (L,--+,1,a,1,---,1, 1), then

)

hal;l@ = al(l) = (alla 17 o 717 1n)
ha2;2® = CL2(2) = (17 a22a ]-7 T 7]-a 1n)

hay;30 = a3q) = (1,1, a3, 1,--- 1, 1,,)
3

hapn® = an,, = (1, -+, 1, n; 1,,).
So
hal;l@' : 'han;n@ = (ab 17 e 717 1n) e (17 Tty 17 Ap, ln)
1 n
— (ala y On,y 1n)
= (hay1 -+ Papin)© (as © is an epimorphism).
Therefore, if w € Z* is such that w® = (a1, -+ , a,, 1,) € N, {1,}, this means w

could be transformed into hg,.1 - - - Ry, using relations P U R* by Lemma 6.3.3.

Now let () denote the set of relations
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(
z(i)hag;jeij;l if k=1

eij?“’z(k) = €ija if k :] (Ql)
2(k)Cijsa otherwise
\
Z(j)€ijia = hzaj€iji (Q2)
2(i)€jiaCijip = Nzabii€ijib, (Q3)

where z € Z in each relation, and ¢, 7, k, a, b range over all allowable values, subject
to the stated constraints.

Remark here that, as N = M\ G, where G is the group of units of M, and M\ G
is an ideal, and as we assumed z = z¢) # 1 for all z € Z, we have az, Zza € M \ G
for all z € Z and a € G. Hence the words hgs, hz,, hze appearing in the above
relations are well defined.

Our main goal is to provide a proof of the following theorem:

Theorem 6.3.4. Let M be a monoid with group of units G such that N = M \ G
is an ideal. With the above notation B = (N1, {1,}) U (M 1, Sing,,) has a monoid

presentation <Z UX, : PUR*UR, U Q> wa O.

We will write ~¢ = (PUR*UR;UQ)* for the congruence on (ZUX,)* generated
by the relations P U R* U R, U Q.

To prove Theorem 6.3.4, we need to show that ~¢ = Ker ©, and some prelimi-
nary lemmas are therefore required.

The next result follows by simple diagrammatic check that the relations @) are

preserved by ©.
Lemma 6.3.5. We have ~oC Ker©.

Proof. Notice that we only need to check © preserve the relation @), as © already

contains ¥ and ¢, which preserve the relations P U R* and R}, respectively.
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We will exam the left hand side and the right hand side are equal of the relation

Q.
For relation (Qla), we have e;j.,2()

that

(€ijiaz(k)© = (2(i)haz;j€iji1)O-

For the left hand side we have

(€ijiaz(x))© = (€i:a)O (2x))O

(as © is a morphism)

EijiaZ(i) (as k = i)
:(17 :17?717"'71781']')(17"'717'?717 '71>1n)
:(17 ,1,&2,1, 'a17271a"'a5ij)
J 7
For the right hand side we have
(2()azj€i5:1)O = (2())O (haz;)© (€ij;1)O
= 2 (aZ(j))€ijn
- (17 ) ]" 27 17 ) ]" 1”)(17 ) ]'7 az? ]‘7 ) 17 1n)<17
7 J
= (17 ) 17 27 17 ) 1; CLZ, ) gij)-
i J

For relation (Q1b), we have e€;;,,2) = €ij;q, if & = j. We have to prove that

(€ij:a2(j))© = (€ij;a)O-
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For the left hand side we have

(€ij:a2(j))© = (€ij:a)© (2(;))O (as © is a morphism)

= Cijia?(j)

- (17 ) 17 a, 17 ) 17 5ij)(17 ) 17 27 17 ) 17 1n)
J J

=1 a1 1 ey)

For the right hand side we have
(€ij:a)© = €ijia = (1, - -+, 1, g_L, Lo, 1, 65).
For relation (Qlc), we have €;5,02(x) = Z(k)€ij;a- We want to show that
(€ijia2k)O = (2(1)€ijsa) O-
For the left hand side we have

(€ij:a2(k))© = (€ij:a)© (2(1))© (as © is a morphism)

= CijiaZ(k)

= (17 ) 17 a, 17 3 17 gij)(L ) 17 57 17 ; 17 1n)
J

= (17 ) 17 ?7 17 ) 17 %7 17 717 52])

For the right hand side we have

(2(k)€ij:a)© = (2(k))© (€4j:0)© (as © is a morphism)

= Z(k)€ijia
= (17 ) 17 %a 17 ) 17 ]-n)(17 ) 17 lea 1a ) ]-7 52])
= (17 ’ ]-7 'Za 17 ) 17 ?7 ]-7' o 717 52])
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For relation (Q2), we have z(;j)€ij.a = Rzq;5€55;1. We want to prove that

(2)€ijia)© = (hzasj€iji)O.

For the left hand side we have

(2(j)€ij:a)© = (2(;))O (€4j:0) O (as © is a morphism)

= Z(j)€ijia
:<17 ) 17 ?7 17 Tt 17 1n>(17 ) 17 S,La 17 T 17 51’]’)
= (L y 17 za, 17 5 1a 57,])

For the right hand side we have

(hia;jeij;l)@ = (héa;j)@ (eij;l)@ (as Ois a HlOI‘phiSHl)

:(17"'717 2@7 ]-7"'717 ]-TL)<]-771>€ZJ)

:(17"'717 ZCL, 17”'71761'_7')-

For relation (Q3), we have z(;)€jiq€ijp = hzani€ijp. We have to prove

(2(1)€jisaCijin) © = (Pzabsi€ijn)©.
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For the left hand side we have

(z(i)eji;aeij;b)@ = (Z(z))@ (eji;a)@ (eij;b)g (as @ 1S a morphism)

= Z(i)Eji;afij,b

= (1, , 1 ?, 1, 1, 1,)(1, , 1, a, 1, 1, €5)
(1, 1, ?, 1, 1, ei5)

= (1, 1, za, 1, 1, e5)(1, 1, é), 1, .1, €45)

:(1’ e 1 5?5, 1, ---,1, .-, 1, ?’ 1, -, 1761.].).

For the right hand side we have

(hzabi€ij)© = (hzapi)© (€i5:)O (as © is a morphism)

= (zab) i
:<17 T ]-7 Z?bv ]-) ) 17 ]-n)(]-a ) 17 ?7 ]-7 ) ]-) 61])
:<17 T 17 E?ba 17 Ty 17 T ]-7 ?7 17 ) ]-7 523)
Hence, ~oC Ker © as required. O

To prove the reverse we need to prove the following two lemmas:

Lemma 6.3.6. Ifw € (ZU X1)*, then w =g wiws for some wy; € Z* and wy € X;.

If w ¢ Z*, then wy € X"

Proof. For a word u € (Z U X;)*, we write y(u) for the number of letters from
X, appearing in u. We prove the lemma by induction on y(w). If y(w) = 0, then
we are already done (with w; = w and wy = 1), so suppose 7y(w) > 1, and write
W = U€;j;qv, where u € (ZUX;)* and v € Z*, so y(u) = y(w) — 1. By (Q1), we have
€ij.alV Ro ze;p for some z € Z* and some b € G. Since y(uz) = y(u) = y(w) — 1,
the induction hypothesis gives uz ~g ujuy for some u; € Z* and ups € Xj. So

W = UV o UZeip R UiUgep, and we are done (with wy = uy € Z* and
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wy = uze;p € X;). Now, to prove the final assertion in the lemma, suppose
w € (ZU Xq)"\ Z*, such that w ~g wiwe, where wy € Z* and wy € X7. If wy = ¢,
(the empty word in X7), this means w ~g wie = wy. As w; € Z* this gives w € Z*,

a contradiction. Hence, wy € X" [l

In the case that w ¢ Z*, the two words wy, we can be chosen to have a very

specific form, and that can be shown only if Lemma 6.3.6 improved as follows:

Lemma 6.3.7. Let w € (ZU X,)*\ Z*, and write wO = (a, ). Fori € X, define

1 if CLZ'EG a; if (ZZ'GG

a; 1if a; € N 1 if a; € N.

Then w =g wiws for some w; € Z* and wy € X with w,© = (b, 1,)) and w.© =

(c, a).

Proof. By Lemma 6.3.6, the set A = {(w;, wy) € Z* x X{ : w ~g wywy} is non-

empty. We define ¢ : A — N as follows. Let (w;, wy) € A, and write
w10 = (p, 1,) and woO = (q, a),

where p = (p1, -+, pn) € (NY)" and q = (q1, -+, ¢.) € G". Notice that, as
wy € Z*, the last coordinate of wy© must be 1,,, it implies the last coordinate of w,©®

must be a. We then define ((w;, wy) to be the cardinality of the set Y(wy, we) =
{ie Xo: (i @) # (bi, ci) }-

Now choose a pair (w;, we) € A for which ((w;, ws) is minimal. We claim that
((w1, wy) = 0. Indeed, suppose to the contrary that ((w, we) > 1. As above, write

w10 = (p, 1,) and wy©® = (q, ), noting that
(a, @) =wO = (w10)(w20) = (pq, ).

This gives p;q; = a; for all 4. Since ws € X, and a € Sing,, so we may fix some
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(1, j) € Kerao with i # j. By relabelling the elements of X,,, if necessary, we may

assume that (i, 7) = (1, 2). Define words

up = (621;q1q;1€12;q2) ~(€23,5€32:1) * * * (€209, €n2;1)

and

Uz = (612;q2q;1621;1h) “(e13i5€311) * +* (€1ngn€ni;n),

and let v be any word over X (regarded as a subset of X; as usual) with vO =
(1,---,1, ). It easy to check (diagrammatically) that u1© = (q, €12) and us©®© =

(q, €21). In particular, since a = e1pa0 = €97, we have
(u10)(vO) = (u20)(vO) = (q, @) = w9O.

Now as wsy, u1v, usv all belong to Xfr, Theorem 6.2.7 then gives wy ~g U1V g UV.
Moreover, Lemma 6.3.3 gives w1 =g hp,.1 -+ Ny, -

Since ((wy, wz) > 1, we may fix some r € Y(wy, wy). Notice that if p, = 1,
this would imply a, = p,q. € G, which would give (b, ¢,) = (1, a,) = (pr, @),
contradicting our assumption that r € Y(wy, we). In particular, h, .. # 1, so we
may write Ay . = (21)@) - - (2) () 2(r), Where 2y, ---, 2, 2 € Z. Hence we obtain
(1)) - (2) 1) 2())© = hyp,:w© = (pr)(r), Which gives Z; - - - Z,Z = p,. Note that R*
gives wy ~g wily, ., where wg = hy - hy _1hp g1 oo By, Note also that,
pr # 1 implies p, € N = M \ G, and as N is an ideal of M, we have a, = p.q. € N,
so (b, ¢;) = (ay, 1).

We now consider separate cases, depending on the value of r.
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Case 1. Suppose that r > 3. Note that

psrun = (21) ) -+ (26) (1) 20) (€21,4,051€12:00) * (€23105€321) -+ - (€2, 136, Er—1,2:1)
X (€arig €r21) (€2, +15, 11 €r+1,211) * * * (€205, €n2:1)
~e (21) @)+ (2) (1) (€g150,471€12102)  (€23ig5€320) - -+ (€2, 130, Er—1,21)
X 2(r)(€2r,€r2:1) (€2, + 15,11 €r+1,2:1) * * * (€239, €n21) (DY (Q1))
~e (21) () (2) (1) (€2154,471€12102) * (€23105€320) -+ + (€2, 130, Er-1,211)
X thT;r(62r;1€r2;1)(62,7'+1;q7.+16r+1,2;1) e (eQn;qnen2;1> (by (Q2))
~e (21) )+ (2) (1) zgrir (€a1,,071 €12i02) + (€23505€3211) -+ (€2, 150, Er—1,231)

X (627";167"2;1)(62,T+1;qr+167’+1,2;1) e (62n;qn€n2;1> (by (Ql))

(In the last step of the previous calculation, recall that hz,.. involves only letters

from Z)). Note also that

((z21)) - (2) (1) hzg,0)© = (21 - 2200 ) ) = (Pr @) () = (@r) (1)

Notice here that as a, € N, and as we know that (h,,;)© = (a,)(), so Lemma 6.3.3

giVGS (Zl)(r) e (Zk)(r)hiqr;r o har;r'
Now put

U = (€91,4,471€12102) * (€23105€3201) - -+ (€2, 130, Er—1.211) (€201 €721)

(€2, 413041 €rr1,2:1) * * * (C2ni0, En2:1)-
The above calculations show that hy, .,u; =g hq,.,us, and it follows that
w Rg Wiws Ne (Wahy, ) (u1v) e (Waha,r)(usv) = viv2,
where v; = w3h,,., € Z* and vy = ugv € X;". Tt follows that (v, v2) € A, and it is
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easy to check that

Ul@ = (pb oy Pr—1, Qry Prydy 0y Py 1n)

and

UQ@ = (qb oty Gr-1, 17 Qr+1," " 5 dn, Oé)

Since (b, ¢,) = (a,, 1), it follows that ((v1, v9) = ((w1, wa) — 1, contradicting the

minimality of {(w;, wy), and completing the proof of the claim in this case.

Case 2. Suppose r = 1.
In this case we have w; =g wshy,.1, where w3 = hy,.0- -+ hy,, ., and we also have

hpii = (21) @) - - (21) 1)2(1)- Note that by using (Q3) we have

hpiiur = (21) 1) -+ (26) (1) 201) (€150, 672 €12102) * (€23505€3211) - -+ (€2mig, En2i1)

~o (21)) (21) (1) hzgri1€12igs * (€23:45€32:1) ** * (€2mig, n2;1)-

As in the previous case we have (21)q) - (2r)1)Pzq1 R han- It quickly follows
that hpl;lul ~o ha1;1U4, where Ug = €12;¢5 ° (623;(13832;1) cee (Gzn;qnenz;l).

As wy =g wshy,.1 and wy ~e uv, we have
w g wiws o (Wihy,.1)(u1v) e (Waha,:1)(uav) = v102,
where v = w3hg,1 € Z* and vy = ugv € Xfr. This time we obtain
01O = (a1, p2, -+, Pn, L) and 0O = (1, g2, , qn, @),

and again we have ((v1, v9) = ((wy, we) — 1, a contradiction.

Case 3. Suppose r = 2.

This case is almost identical to previous case, but we use the word u, (defined
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above) instead of u;. Hence now we have wy ~g wshy,.0, where ws = hy1hpe3 - - By,

and we also have hy,,.0 = (21)2) - - - (2k)(2)2(2)- Note that by using (Q3) we have

hpapuz = (21)(2) -+ (20) 2)22) (€1250001 €21:01) * (€13105€311) =+ * (€1mig, En131)

~e (Zl)(Q) T (Zk)(Q)h5q2;2621;q1 : (613;613631;1) T (61”§Qn6n1§1)‘

Moreover,

((21) @)« (20) @) hzge:2)© = (21 ZkZq2) 2) = (P242) (2) = (a2)(2),

as Z1---Z,Z = po. Hence, we have (21)2) - (2k)2) P22 R0 Nag2- S0 hpyiotls e
ha2;2u5, where here we have Us = €21;q; ° (613;(13631;1) e (eln;qnenl;l) S X+. As W1 e

wshy,.2 and wy g ugv, we have
W N Wi o (W3hp2;2)<lb21)) e (W3ha2;2)(U5’U) = V1V2,
where v; = w3hg,2 € Z* and vy = usv € Xi". Tt easy to check that

vl@ = (p17 a2, P3, *** , Pn, 1n) and U2@ = (Q17 17 g3, * 5y qn, Oé),

and again we have ((vq, v2) = ((w1, we) — 1, a contradiction. This completes the
proof of the claim that {(w;, wy) = 0. And this of course, complete the proof of the

lemma. O]
Now, we are ready to prove Theorem 6.3.4.

Proof. In order to prove Theorem 6.3.4, we need to prove Ker© C=g. Let u, v €
(ZU X,)* be such that u® = vO. Notice that, if u € Z*, this means u® € N1 {1,},
and as u® = 00O, this will imply v € Z*, so in this case u ~g v follows from
Lemma 6.3.3. Now, if u ¢ Z*, this means v ¢ Z* as well (as u® = v0), so we have

u € (ZUX))" and v ¢ Z*. Lemma 6.3.7 then gives u ~g ujuy and v =g v1v, for
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some u1, v; € Z* and uy, vo € X;" with u10 = 1,0 and 1,0 = v,0. Lemma 6.3.3
and Theorem 6.2.7, respectively, then give u; ~g v; and uy ~g vy. Putting this all

together we obtain u ~g ujus Xg V12 Rg V. O

6.3.2 Presentation for (N! x {1})U (M x S)

In this subsection we will suppose the monoids M and T are as in the beginning of
this section, and we will suppose N and G are left S-acts.
This subsection is devoted to finding a presentation for C' = (N'x{1})U(M x S).
By using Lemma 6.3.1 (viéi) we may write C' = (N! x {1}) U (N x {1})(G % S).
Suppose S has a semigroup presentation (X : R) via ¢ : X — S. From
Subsection 6.2.1, we immediately have semigroup presentation for M xS and G % S.
Then G x S has a semigroup presentation (Xg : Rg) via ¢g : X = G xS 12, —

(g, ), such that Xg = {x,: v € X, g € G} and Rg = R U R% where
Rg; = {(ug,vg) : (u,v) € R,g € G}

and

R2 - {(xayb’ xa(xqﬁ,b)y) Ty € X7 a, b € G}

Clearly X C X and R C Rg.

To find a presentation for C' = (N x {1}) U (M x S), we will use the same
technique that we used in the previous subsection to find the presentation for B =
(N, {1,}) U (M, Sing,). Tt is very important to mention that there are some
differences between the presentation of B and the presentation of C, as in the
presentation of B we have N'{, {1,} = (N')" x {1,,}, but in a presentation of C' we
have N' x {1}. Remark here that N! = (M \ G)! but (N!)" # (M™\ G)!, where G
is the group of units of M™. For example, if n =2, g € G, g # 1 and m € N, then
(9.m) € (M?\G)' but (g,m) ¢ (N')?,

Suppose that N has a semigroup presentation (Y : P) via {. Then N = (y&),

155



which means the generating set of N will be Y = {y¢ : y € Y}. We will write
~¢= P* for the congruence on Y+ generated by the relation P. Moreover, since
N = NU{1}, we have that N! has a monoid presentation (Y : P) via&*: Y* — N,
with the same set of generators of N and the same relations.

We will write ~s«= P* for the congruence on Y* generated by the relation P.
Now, we only want to prove Ker {* =~-.

Let w, w € Y* be such that wé* = w'é*. Tt is clear that as wé* = w'é* € N' =
N U {1}, either w&* = w'¢* = 1, which means w = w’ = ¢ (the empty word in Y*),
and so w R w or, wE* = wé* € N, so that w, w € Y+ and wé = w'é. Hence
W g W', as Ker & =rve.

Now, as w ~¢ w', and by using Proposition 1.2.4, we have either w = w’, which

. ’ .
gives w ~%¢« w or, for some n € N, there is a sequence

’
w = crardy, cibidy = ceaedy, -+, cybyd, = w

of elementary P-transition connecting w to w/, where ¢;, d; € N' and (a;, b;) € P
or (b;, a;) € P for all i, which will give w ~%- w’. So we obtain Ker &* C =

Conversely, suppose u, v € Y* are such that u ~¢ v. If uw = v = € then
u* = v&* = 1, which gives ~¢C Ker{*. If neither u nor v is the empty word e,
then u, v € Y*, so u = v€ and u ~¢ v as N has presentation (Y : P) via . From
this we obtain u{* = v€*, and so ~¢C Ker £*.

Note that, if U is a semigroup (monoid), then there exists a map U x {1} — U,
where (u, 1) — u, and (u, 1)(v, 1) = (uv, 1). So it is easy to show that N! x {1}
has a monoid presentation (Y : P) via & : Y* — N' x {1} :y — y€ = (v, 1).

As C is generated by y¢ U T40G, we have that

Q:(YUXg) = C ry— (¥€, 1), zy— (g, x¢)

is an epimorphism, where ® extends ¢ and ¢g.
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For each y € Y,z € X, g € G choose w, , € Y such that

(Wg,x,y)q) = (g(x¢ : yg)g_lv 1)'

Note that

(0,)® = (2,)® (1)@ (as®is a morphism)
= (g, 29)(¥€, 1)
= (9(z¢ - y§), z¢)
= (9(z¢ - y&)g™'g, ©9)
= (9(z¢ - y€)g~". 1)(g, v¢)
= (Wg,a,4) @ (zg)®

= (Wg, 2,y Tg)P (as @ is a morphism).

For each y € Y, g € G choose v, , € Y such that

vy, ® = ((¥§)g,1).

Then for any = € X,

(vy47)® = v, ,® =P (as @ is a morphism)
= ((¥€)g. 1)(1, 2¢)
= ((¥€)g, z¢)
= (¥€, 1)(g, 29)
— YOz,

= (yz,)® (as ®is a morphism).

Let Q@ = {xyy = Wy 4 yTg, Uy gt = YTy Wy 2.4, Vyg €Y T,z € XyeY, ge G}

Our aim is to prove the following theorem:
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Theorem 6.3.8. Let M and T be monoids such that M s a left T-act by en-
domorphism, and let G and H be the groups of units of M and T, respectively.
Suppose N = M\ G and S = T \ H are ideals of M and T, respectively. If N
and G are left S-acts, then with above notation C = (N' x {1}) U (M % S) =
(Nt {1H)U(N' % {1})(G % S) has a monoid presentation (Y UXg : PURgU Q)

via D.

We will write ~p= (P U Rg U Q)* for the congruence on (Y U X¢)* generated
by PU Rg U Q.

To prove Theorem 6.3.8, we need to show that ~ = Ker ®, and for this we
require preliminary lemmas.

The next result follows immediately from the above discussions.
Lemma 6.3.9. =~ C Kerd.
To prove the reverse containment, we need the following lemma:

Lemma 6.3.10. Ifw € (YUXg)*, then w =g wiws for somew; € Y* and wy € X(.

Ifwe (YUXg) \Y*, then w ~g wiwa, where wy € Y* and wy € X}

Proof. For a word u € (Y U X¢g)*, we write I'(u) for the number of letters from
X¢ appearing in u. We prove the lemma by induction on I'(w). If I'(w) = 0, then
we are already done (with w; = w and wy = 1), so suppose I'(w) > 1, and write
w = uzyv, where u € (Y U Xg)* and v € Y™, so I'(u) = I'(w) — 1. By repeated
applications of the relations from Q, we have z v ~g 2z, for some z € Y*. Since
[(uz) = I'(u) = T'(w) — 1, an induction hypothesis gives uz ~g ujus for some

u; € Y* and uy € X§. So

W= UT 0 Rp ULy R UIUT,

and we are done (with wy = u; € Y* and wy = ugzy).
If we (YUXg)*\ Y* then w contains at least one symbol x,. If w ~g w for

any w € (Y U Xg)*, then notice that w' contains at least one symbol from X for
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at any step w’ — w” in the deduction of w’' from w, applying a relation from R,
always leaves at least one symbol z, (as R is a set of semigroups identities) and any
application of an identities from R% or Q leaves the number of symbols from Xg

fixed.

We are now ready to prove Theorem 6.3.8.

Proof. In order to prove Theorem 6.3.8, it suffices to show that Ker ® C ~¢. Suppose
w,w € (Y UXg)* are such that w® = w'®. If w € Y*, then wd € N' x {1}, which
also gives w' € Y*. Hence in this case w ~g w', as N x {1} has presentation
(Y : P) via £. So suppose w ¢ Y*, noting that this also forces w ¢ Y*. Lemma
6.3.10 then gives w ~¢ wv and W ~g v'v’ for some u, v’ € Y* and v, v’ € X4 By
Lemma 6.3.9, we obtain u®v® = v v’ ®.

Let u® = (n,1) and «'® = (n',1), where n,n" € N'. Let v® = (g,s) and
v'® = (¢g',s), where g,g € G and s,s € S. Hence (ng,s) = (n'g’,s),song=n'g
and s = 5.

Note also that v = € if and only if u' = e. Suppose first u =y, - -y, u' = 2 - - - 2,
where t,r > 1,y;,2; € Y. Let 7 = za'---2', where [ > 0, 2,2 € X. Then
ULy = Y1+ Yy R Y1*** Yi—1Vy, ¢ and u’xg/ =21 Ty R 21t 21U, X and

as

(W1 Y110y g) 2 = (Y1) P - -+ (Y1-1)P(vy, )@ (as s a morphism)
= (&) (W& D(Wel) g, 1)
= ((118) -~ W)y, 1)
= ((u€)g,1)
= (ng,1)

— (n/g/’ 1)
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= ((W'€&)g,1)
= ((218) -+ (2:6)g’, 1)
= (Zlga 1) e (erlgv 1)((21“5)9/7 1)

=(21)P - (20-1)P(v, )P

’
Zr,9

=(z1 - z,qv, )P (as ®is a morphism),

/
Zr,g

we have y; - Y10y, g B 21+ Zp_1V

Also,

/.
Zr,9

v® = (g,2¢)(1,2'9) -~ (1,2'9)
= (g,29)(L,x'¢---a'9)
= (g,20)(1, (z'---2")¢)  (as¢is a morphism)
=z,0(z" - 2)®

= (v 2t ---2)® (as ®is a morphism),

1 1 l

. . . . /
giving v ~g z 2! - - 2! and similarly v’ &g Tyx T

Finally,
~ 1 I~ 1 l
UL Ty yl...ytxgx T R yl"'ytflvyt,gxx e

l

/
xxl---x %<1>U£L'gll’1"'xl

7
~p 21 ZT,ﬂ}zT’g/ p UV .

. ’ / / !
On the other hand, if u = u = € then clearly u ~¢ v and g =g, s = s, so as
! ’ 17
v® = v P we have v ~p v and uv =g u v .

Putting this all together, we obtain that w ~¢ uv ~g uv e W
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