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Abstract 

Surgical interventions for the treatment of chronic neck pain, which affects 330 

million people globally, include fusion and cervical total disc replacement 

(CTDR). Most of the currently clinically available CTDRs designs include a metal-

on-polymer (MoP) bearing. Numerous studies suggest that MoP CTDRs are 

associated with issues similar to those affecting other MoP joint replacement 

devices, including excessive wear and wear particle-related inflammation and 

osteolysis.  

The aim of this study was to investigate the biotribology of a novel metal-on-

metal (MoM) design of cervical total disc replacement device in its pristine form 

and coated with chromium nitride or silicon nitride, in order to understand the 

influence of loading conditions upon the tribological performance of the implant, 

and to investigate biological effects of the wear debris produced by the implants. 

To achieve this, a series of studies were carried out.  

Chromium nitride and silicon nitride coatings have been characterised for their 

mechanical properties, chemical composition and surface finish. Whilst some of 

the experiments showed minor differences between the mechanical properties 

and adhesion of the coatings, there was no indication of significant differences 

between the chromium nitride and silicon nitride coated samples. 

Functional testing in the six-station spine wear simulator showed that MoM 

CTDRs produced wear volumes significantly lower than those of the 

commercially available MoP devices. The wear volumes were reduced further by 

three-fold, following testing under altered ISO-18192-1:2011 kinematics, 

whereby, reduced ranges of motions were applied. Whilst the silicon nitride 

coated CTDRs failed catastrophically early in the test, chromium nitride coated 

CTDRs produced an eight-fold reduction in wear volumes, when compared to 

the pristine devices tested under the same conditions. 

Investigation of potential biological effects of the particles generated in wear 

testing showed that that high concentrations (5-50µm3 per cell) of CoCrMo 

particles resulted in significant reduction of cell viability of the L929 fibroblast 

cells, but not the dural fibroblasts, which were used in this study. No ceramic 
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coating particles, at any concentrations, caused significant reduction of cell 

viability. 

In summary, results presented in this thesis showed that whilst the MoM CTDR 

device exhibited significantly lower wear rates than those of the commercially 

available MoP devices, the cytotoxic wear particles could potentially lead to 

adverse biological reactions, particularly in patients with metal hypersensitivity, 

and lead to devastating consequences similar to those of failed MoM THRs. 

Currently, the consequences of similar failure, leading to metalosis or 

pseudotumour formation in the vicinity of the spinal cord are unknown. During 

the investigation of the ceramic coatings, it was also found that chromium nitride 

ceramic coating could not only lower wear rates further, but it also has the 

potential  to reduce the cytotoxic potential of the wear particles. 
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Chapter 1 : Background and literature review 

1.1 Introduction 

There is extensive variation in the anatomical definition of ‘neck pain’ in the 

literature, with over 300 case definitions used [1]. Typically, the definition of 

‘neck pain’ includes or excludes the shoulder. Similarly, there are a plethora of 

potential causes, determinants and risk factors related to neck pain. The 

following sections will introduce the most common causes of neck pain, 

incidence and prevalence, risk and prognostic factors, and finally, the global 

impact of neck pain. 

Neck pain is a common health problem and most people will experience some 

degree of neck pain in their lifetime. Vos et al. [2] estimated that in 2010 about 

330 million people globally (4.9% of the population) were affected by neck pain. 

The overall one year prevalence ranged from 4.8% to 79.5% in studies 

documented by Hoy et al. [3]. While in many cases the episodes of pain are 

acute in nature, most run a chronic and impairing episodic course and 50% to 

85% of patients will report recurring neck pain in the period of 1 to 5 years [4]. 

A study by Hill et al. [5] found that 48% of the general population who 

experienced neck pain at some point, reported pain of at least the same 

frequency one year later. Similar findings were reported by Côté et al. [6], 

whereby 37.4% of their cohort of patients experienced no change in pain over 

a 12 month period.  It is important to highlight, that it is almost impossible to 

determine the proportion of patients who experienced persistent vs. recurrent 

neck pain, due to variable pain levels and patient perception of pain. 

Additionally, it is extremely challenging to compare prevalence between 

populations and time due to the heterogeneity of methodologies applied in 

studies.  

There is a common agreement that many factors can influence the onset and 

course of neck pain. Both risk and prognostic factors can be environmental and 
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personal in nature. There is a widespread consensus about the risk of neck pain 

being increased with age, with the number of incidents reported peaking at ages 

35 to 49 years old [7]. Additionally, there is also consistent evidence that a 

younger age is prognostic for a better recovery. Results regarding gender as a 

risk factor often vary, however some studies suggest that men are more likely 

to have complete resolution of neck pain than women [8]. History of prior pain, 

its intensity and duration [9], prior neck injury [5], predominantly whiplash injury 

[10], co-morbid low back pain and other musculoskeletal problems, chronic 

headaches and general self-assessed poor health [11] have also been found to 

increase the risk of neck pain onset. A study by Kelsey et al. [12] suggested 

that smoking may also increase the risk of neck pain. Consistent evidence 

shows that occupation may play an important role in the likelihood of neck pain 

onset. Computer and office workers have the highest incidence of neck 

disorders with an annual prevalence of neck pain of 57% in the US, 36% in 

Sweden and 34% in Finland [6]. However, relatively high prevalence was also 

found among construction workers, nurses and armed services members in the 

UK [13].  

Neck pain has a substantial personal and societal impact on affected 

individuals, their families, carers, the healthcare systems and businesses [14]. 

The pain can often limit the ability to perform many activities, which can result 

in their reduced ability to participate at work and in social endeavours [15]. With 

relatively high percentages of prevalence and recurrence, neck pain is one of 

the most common causes of work absenteeism [6,13]. Martin et al. [16] reported 

that the annual costs of healthcare related to spine problems increased between 

the years 1997 and 2005, however this was not reflected in improvements in 

health. Similarly to low back pain, chronic neck pain is often unresponsive to 

treatment and patients repeatedly receive inappropriate or ineffective care, 

which results in high direct and indirect costs of the burden of disability related 

to neck pain [17]. The annual direct costs of spine related problems in the US 

were estimated to be 193.9 billion USD between 2002 and 2004 [18]. However, 

neck pain was also associated with additional annual indirect costs of lost 
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earnings (14 billion USD) [18] and worker insurance compensation claims (7 

billion USD) [19].   

The majority of the direct costs are related to treatment and patient aftercare. 

Currently, pathways of treatment include conservative methods (analgesics, 

physical therapy etc.) and surgical interventions (fusion, cervical total disc 

replacement). While fusion is the current gold standard, the cervical total disc 

replacement (CTDR) becomes a more popular approach in managing neck 

pain, which is otherwise non-responsive to conservative methods. Cervical TDR 

show promising short-term clinical performance results; however, long-term 

safety and efficacy of the technology is yet to be determined. Cervical TDR, its 

performance, tribology and wear in particular, will be the focus of this research.  

The following sections ahead will guide the reader through the anatomy of 

spine, neck pain and currently available treatments, introduce CTDR, examine 

the biotribological considerations of such devices and introduce surface coating 

technologies in biomedical applications. 

1.2 The spine 

1.2.1 The vertebral column 

The human spine is a complex mechanical structure which serves three main 

biomechanical functions. It protects the spinal cord and nerve roots from 

potential damaging forces resulting from physiological motions and trauma. 

Secondly, it has a weight bearing function; it transmits weight of the upper body 

to the pelvis. Moreover, it delivers a stable, upright torso. Additionally, it allows 

motion between the head, trunk and pelvis.  

The vertebral column (Figure 1.1) is made up of 33 vertebrae, where 9 of the 

vertebrae are fused together forming a solid base in the pelvic region. The five 

regions of the spine and the vertebrae numbers in each of the regions are: 
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1. Seven cervical  

2. Twelve thoracic 

3. Five lumbar  

4.  Five fused sacral  

5. Three to four fused coccyx 

 

Figure 1.1: Lateral view of the macroscopic bony anatomy of the 
vertebral column with cervical, thoracic, lumbar, sacral and 
coccygeal sections and the spinal curvatures indicated [20]. 

 

Each section consists of vertebrae which are joined by ligaments, controlled by 

muscles and separated by intervertebral discs, and articulating (facet) joints. 

The spine has four curves (in the sagittal plane); the cervical and lumbar regions 

are convex anteriorly (lordotic), and the thoracic and sacral regions are convex 

Lordosis 

Lordosis 

Kyphosis 

Kyphosis 
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posteriorly (kyphotic). The junctions between adjacent spinal regions are often 

sites of degeneration, due to the changes in the curvature of the spine, and high 

stresses being exerted at these junctions [21]. The spine can be divided into 

smaller motion units - functional spinal units (FSU), which consist of two 

adjacent vertebrae, the intervertebral disc between them, plus the adjoining 

ligaments but are devoid of the musculature.  

1.2.2 The cervical spine  

The cervical spine comprises of 7 vertebrae which begin at the base of the skull 

and connect to the thoracic vertebra T1. The cervical vertebrae, together with 

the ligaments, muscles, tendons and joints are responsible for the structure, 

support and stabilisation of the neck. The cervical spine maintains several 

crucial roles: 

- Protects the spinal cord 

- Provides stable support of the head 

- Allows rotational and flexion/extension movements of the head 

- Facilitates brain blood flow  

1.2.3 Cervical vertebrae 

Each of the vertebrae have similar morphologic characteristics, except for the 

two upper vertebrae - the atlas (C1) and axis (C2) which exhibit different 

morphology due to their specific function. Each vertebra consists of the anterior 

vertebral body (centrum) and the posterior arch (neural arch) (Figure 1.2). The 

neural arch consists of a pair of pedicles, a pair of laminae, and supports seven 

processes: four articular processes, which fit with adjacent vertebrae creating 

articular facets (facet joints), two transverse processes, which serve as the 

attachment site for muscles and ligaments, and one spinous process that also 

serves as a muscle and ligaments attachment site. The facet joints are synovial 

joints which during motion guide and limit motion of a FSU, in order to protect 

the segment from excessive flexion, extension or rotation, as well as anterior 

shear forces [22]. The vertebral body is the primary weight bearing area and 

provides the attachment site to the intervertebral disc. The facet joints allow and 
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limit motion between adjacent vertebrae, and transmit compressive stresses 

resulting from bending and rotating motions.  

Although the general morphology of the vertebrae is similar across the spinal 

column (with the exception of C1 and C2, Figure 1.3) there are regional 

differences with respect to the shape and size of the vertebra. Cervical 

vertebrae have large spinal canals, oval shaped vertebral bodies, obliquely 

orientated articular facets, and bifid spinous processes (with an exception of 

C7, which has a long spinous process similar to thoracic vertebrae, which does 

not bifurcate). 

Figure 1.2: Typical cervical vertebra, A – cranial view, B – lateral view [23]. 

Additionally, the lower cervical vertebrae have uncinate processes, which are 

upward projections of the lateral edges of the vertebral body on each side. 

These processes create a unique connection between the vertebrae, whereby 

the uncinate processes contact the disc and bevelled inferolateral surface of the 

superior vertebra and are called uncovertebral joints or joints of Luschka (Figure 

1.4). These joints can undergo degeneration and hypertrophy, which often can 

cause nerve root impingement [24] .The uncinate processes may or may not be 

removed during a total disc replacement procedure [25] (uncinatectomy). 

However, both finite element analysis [26] and cadaveric [27] studies showed 

that unilateral or bilateral uncinatectomy substantially increase level motion, 

load and ligament strain, especially in extension, therefore it is beneficial to 

preserve the uncinate joints. The vertebral bodies of cervical vertebrae are not 

flat; rather they form a lip that hangs downwards and forwards (Figure 1.5) in 
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the sagittal plane. Consequently, the plane of the intervertebral discs of the 

cervical spine is positioned somewhat oblique to the long axis of the vertebral 

bodies [28].   

The two most cranial vertebrae, C1 (atlas) and C2 (axis), both shown in Figure 

1.3, have a unique structure and role in articulation between the head and the 

cervical spine. The C1 vertebra, together with the occipital bone of the skull 

forms the atlanto-occipital joint (AOJ) and is an additional functional part of the 

cervical spine. The entire occiput-C1-C2 complex is responsible for 

approximately 40% of cervical flexion and 60% of cervical rotation [21].  

 

Figure 1.3: Anatomy of C1 (atlas) and C2 (axis) vertebrae; A- Cranial view 
of the atlas, B – Caudal view of the atlas; C – Cranial view of the 

axis, D – Anterior view of the axis [23]. 
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The outside layer of bone tissue of the vertebral body – the vertebral shell, 

surrounds the cancellous bone found inside of a vertebra. The inferior and 

superior surfaces of a vertebral body create an endplate which creates a 

junction with an intervertebral disc. There are substantial regional differences in 

mineralisation of endplates, which result in variations of their mechanical 

properties [29].  

 

 

Figure 1.4: Uncovertebral joints (joints of Luschka) in the cervical spine 
are formed largely by the lateral uncinate processes which prevent 

posterolateral disc protrusions [23].  

 

Figure 1.5: Saddle shape of cervical intervertebral joints in the sagittal 
plane (s). The vertebral body forms a lip; the superior surface of the 
lower vertebral body is concave upwards in the transverse plane (t) 

[28]. 

  

Posterior side 

Anterior side 
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1.2.4 Musculature and ligaments of the cervical spine  

The muscular system of the spine is complex, and its primary function is to 

support and stabilise the spine as well as provide movement. The muscles 

associated with the cervical and upper thoracic spine support movements and 

stability of the neck and head, allowing for all rotational and translational 

movement to be executed. Spinal muscles can often be a source of pain, 

however; muscles spasms can occur secondary to inflammation of other tissues 

in close vicinity, e.g. facet joints. There are 3 major groups of muscles affecting 

the vertebral column: a group of muscles in the anterior aspect of the torso; 

muscles in the posterior aspect of the torso; and the psoas and iliacus muscles, 

which are joined together and often called the iliopsoas muscle. In the head and 

neck area there are 4 major groups of muscles (some shown in Figure 1.6). 

- Cervical– responsible for the movement of the hyoid bone and larynx 

during swallowing and speech 

- Vertebral, attaching to the skull – the group comprises of several muscles 

responsible for the motion and stability of the head i.e. flexion, extension, 

rotation and bending 

- Vertebral, attaching adjacent vertebrae – (obliquus capitis inferior 

muscle) connects C1 and C2 vertebrae and allows rotational movement of 

the head 

- Vertebral, attaching to ribs/scapula – groups of muscles originating 

mainly at the lower cervical vertebrae, which help with elevating the scapula 

or the first and second ribs to aid breathing 
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Figure 1.6: A - Anterior and lateral vertebral muscles; B – Deep layer of 
deep dorsal cervical muscles [30]. 

 

Each FSU in the spine (including the lower cervical spine) is connected by 

spinal ligaments which provide structural stability and protect the neural 

structures through motion restriction. Additionally, the ligaments absorb energy 

and thus prevent injury. The ligaments are mainly made of collagen fibres, with 

an exception of the ligamentum flavum (LF), which is primarily comprised of 

elastin, which prevents buckling of the ligament into the spinal canal during 

extension, which could result in canal compression. Spinal ligaments are 

viscoelastic and exhibit non-linear elastic responses. There are two main 

systems of ligaments in the spine: the intrasegmental and the intersegmental. 

The role of the intrasegmental ligaments is to connect individual vertebrae 

together. The intrasegmental system includes the ligamentum flavum, 

interspinous (ISL) and intertransverse (ITL) ligaments. The intersegmental 

system connects and holds together several vertebrae, and includes the 

anterior (ALL) and posterior (PLL) longitudinal ligaments and the supraspinous 
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ligaments (SSL). Additionally, each facet joint is surrounded by the capsular 

ligaments (CL). Ivancic et al. [31] measured dynamic mechanical properties of 

cervical spine ligaments. Peak forces at high elongation rates (723 mm/s) of the 

following ligaments were found to be: ALL (138 N), PLL (163N), CL (220 N), LF 

(244N), ISS+SSL (85N). 

1.2.5 The spinal cord 

 The spinal cord is a long, thin bundle of nervous tissue and support cells that 

extends from the medulla oblongata (lower part of the brainstem) to the 

vertebral foramina. The lower end of the spinal cord (conus medullaris) is 

located at levels L1-L2. Morphology of the spinal cord changes at different 

levels; it enlarges at the cervical and lumbar levels, mainly due to the increased 

number of exiting nerves at these levels supplying the regions and limbs of the 

respective levels [32]. The spinal cord and the exiting nerve roots are covered 

in 3 layers (meninges) – the dura mater, the arachnoid mater and the pia mater. 

The most superficial layer, the dura mater extends from the foramen magnum 

to the S2 vertebra and has tubular prolongations along the nerve roots and the 

spinal nerves as they pass through the intervertebral foramina to leave the 

spine. The space between the dura and the periosteum (epidural space) 

contains veins, loose fat and areolar tissue. Beneath the dura is the arachnoid 

which is connected to the dura and surrounds the entering and exiting nerves 

and blood vessels. The most intrinsic layer, the pia mater envelops the spinal 

cord and the spinal nerve roots. The space between the arachnoid and pia 

mater – the subarachnoid space, contains cerebrospinal fluid.                                                                                                                                                                                 

1.2.6 The intervertebral disc  

The intervertebral discs (IVDs) lie between two adjacent vertebrae linking their 

vertebral bodies together (with the exception of C1/C2 joint, as due to atypical 

anatomy of atlas there is no IVD between the two vertebrae). The main role of 

a disc is to transmit loads which arise in the spinal column through body weight 

and muscle activity. The intervertebral discs allow flexion, bending and torsion 

of the spinal column. It is commonly believed that IVDs have shock absorption 
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abilities coming from their viscoelastic structure. However, limited numbers of 

experimental studies support the idea that these shock absorption capabilities 

exist. Combined with vertebrae and facet joints, each FSU has 6 degrees of 

freedom and can undergo translational and rotational motion.  Size and 

thickness of the intervertebral discs varies depending on the location – they are 

approximately 3mm thick in the cervical spine and approximately 7-10mm thick 

in the lumbar spine [33,34]. There are three main anatomic zones in each of the 

intervertebral discs: the outer annulus fibrosus, the central nucleus pulposus, 

and the cartilage endplates located inferiorly and superiorly to the annulus and 

nucleus (Figure 1.7). 

The annulus forms the outer boundary of the discs and consists of two regions: 

the outer collagenous area and the inner transitional area and there are gradual 

changes in composition between the two areas. The annulus consists of a 

series of 15 to 25 concentric lamellae [34] with collagen fibres highly orientated 

into parallel bundles within each lamella.  The outer area comprises mainly 

collagen type I, while the inner area is a mixture of collagen type I and II.  With 

disc degeneration, collagen type II will disappear in the nucleus and be 

gradually replaced with collagen type I [30,35] .  

The nucleus pulposus is located in the centre the disc. Its extracellular matrix 

comprises randomly orientated collagen type II fibres [35], elastin fibres which 

are arranged radially [36], a proteoglycan-water gel, and some non-collagenous 

proteins. High concentrations of proteoglycans (which are hydrophilic) attract 

water and result in the swelling capacity of the nucleus [37]. The nucleus 

consists of 70%-90% water and the percentage decreases with age [38]. The 

collagen fibres are interconnected with the inner annulus fibre network, as well 

as the endplate. 
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Figure 1.7:Anatomy of the intervertebral disc and its position between 
vertebrae [39]. 

The endplates are located on the superior and inferior aspect of each 

intervertebral disc.  The endplates are cartilaginous and comprise mainly 

hyaline cartilage which is about 1mm thick and interfaces with the disc and 

vertebral body. The collagen fibres in the endplates are organised horizontally 

and parallel to the disc and vertebral body, and some of the fibres are 

interconnected with the disc. The endplates serve as a semipermeable 

membrane, which plays a role in the diffusion of nutrients from the vertebral 

body to the disc, prevent bulging of the nucleus into the adjacent vertebral body 

as well as absorbing the hydrostatic pressure present in the spine. Moreover, it 

has been shown that bony part of the endplates can resist substantial axial 

loading [40,41], up to 1550 N [40] and its mechanical properties depend on the 

loading rate [42]. The intervertebral disc has few blood vessels which branch 

from the longitudinal ligaments adjacent to the disc. Such poor vascularisation 

of the disc results in poor nutrient supply to the cells present in the disc, which 

subsequently results in the low regenerative capabilities of the disc.  

Some of the nerves present in the spinal column branch and innervate the disc. 

The nerves are mainly restricted to the outer lamellae of the annulus fibrosus. 



 
Chapter 1 

 

39 

 

It has been found that branches of the sinuvertebral nerve (branch of the spinal 

nerve) enter the annulus fibrosus [43].  

1.2.7 Spine biomechanics  

The spine is subjected to large compressive forces which can be of internal and 

external origin. The loads in the cervical spine are typically 3 times the weight 

of the head and associated soft tissues – approximately 200 N, however, 

depending on activity these loads can reach up to 1200 N [44]. The static loads 

exerted on the cervical spine arise mainly from the weight of the head and 

associated soft tissues, which is approximately 4.5-5 kg (~7% of body weight). 

The strength and load carrying capacity of the cervical spine comes only 

partially from the mechanical strength of the vertebrae, intervertebral discs and 

it is largely determined and supported by the mechanical properties of the 

ligaments and muscles. The weight of the body segment carried by the cervical 

spine is approximately 50 N [45]. In their study, Panjabi et al. [46] found that the 

average critical axial loading of the osteoligamentous cervical spine (C1-T1) 

was 10.5 N. It was therefore shown, that the osteoligamentous spine contributes 

approximately 20% of the mechanical stability, while the remaining 80% is 

provided by the neck muscles. 

The spine is under constant compression, even in the supine position. The 

intervertebral disc exhibits viscoelastic behaviour, similar to many other 

biological tissues. The disc’s response to loading is dependent on the rate of 

loading and its time history. Any vertical load exerted on the FSU is distributed 

horizontally from one vertebra to the next through the intervertebral discs. 

Applied compressive loads create intradiscal pressure inside the nucleus. This 

hydrostatic pressure is distributed evenly in all directions across the nucleus 

which subsequently pushes on the surrounding annulus. As a result, the 

laminae of the annulus are under tensile stress. Due to disc degeneration, 

stress distribution in the disc changes [47]; as the hydration of the disc 

decreases the stresses in the collagen fibres on the annulus become 

compressive. 
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1.2.8 Spine kinematics 

Each spinal unit has 6 degrees of freedom and can undergo axial, lateral and 

sagittal rotations, and translations. The spine can perform movements of 

flexion/extension, lateral bending and axial rotation (torsion). Another 

parameter which can characterise the kinematics is the  instantaneous axis of 

rotation (IAR). It is an axis about which a vertebra rotates at some instance of 

time. In a healthy spinal unit the IAR is confined to a small area within the spinal 

unit. In degenerated spines the locations of the IAR can shift outside the 

physical space, and thus alter the biomechanics of the unit. The overall range 

of motion (ROM) of the cervical spine is 120° in flexion/extension, 80° in lateral 

bending and 140° in axial rotation [48]. While these values represent passive 

ROM of the segments, Cobian et al. [49] estimated that the majority of 

movements during daily activities are between 5° and 15° in flexion-extension, 

and less than 3% and 15% of movements exceed 50° in lateral bending, and 

axial rotation, respectively. Similar findings were reported by Bennet et al. [50], 

who measured active ROM during daily activities. The majority of the activities 

resulted in an average active ROM of 4.2°, 16.5° and 19.5° in the lateral 

bending, axial rotation and flexion-extension, respectively. It was also found that 

the majority of the tasks required a combination of movements, which shows 

the multidirectional nature of motions in the cervical spine. A summary of 

passive ROMs measured at different levels of the cervical spine is shown in 

Table 1.1. All the investigators works in this table analysed a single FSU or joint 

(AOJ or AAJ), whereas Lysell et al. [51] studied the entire cervical spine, hence 

the substantial difference in ROM reported. 

The cervical spine has a unique anatomy and provides a highly mobile, 

functional support to the skull, while protecting the spinal cord. The vertebral 

motions are capable of up to six degrees freedom and their patterns are often 

a combination of flexion-extension, bending and axial rotation. The mechanical 

strength of the cervical spine comes from a combination of mechanical strength 

of the vertebrae, intervertebral discs and associated ligaments and 

musculature. Appreciation of the biomechanics and kinematics of the cervical 
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spine is important in understanding injury and degeneration mechanisms 

occurring in that region of the spine. Moreover, one of the primary aims of neck 

pain treatments is not only to reduce the pain, but to maintain or restore the 

normal biomechanics and kinematics of the neck. 

Table 1.1: Passive ROMs measured at different levels of the cervical 
spine; AOJ – atlantooccipital joint; AAJ- atlantoaxial joint. 

Author Level 

ROM 

Flexion/Extension 
Axial 

Rotation 
Lateral 

Bending 

Panjabi et al. [52] AOJ 23° 7° - 

Steinmetz et al. [53] 
AOJ 27° 7° - 

AAJ 10°-22° 23°-38° - 

Lysell et al. [51] C2-C7 64° 90° ±45° - 

Goel et al. [54] 
C4/C5 7.3° 3.6° 5.4° 

C5/C6 10.1° 2.8° 4.6° 

1.3 Causes of neck pain 

The perception of pain in the spine is related to the stimulation of pain-sensitive 

tissues i.e. nerves and nerve roots. However, it is often extremely difficult to 

clearly determine the exact origin of pain, especially with the presence of 

radicular pain. Additionally, many problems can manifest similar symptoms. For 

example, numbness in hands can be caused by both carpal tunnel syndrome, 

as well as cervical myelopathy [55]. The majority of pain causes are related to 

congenital or acquired conditions, which affect the vertebrae, intervertebral 

discs, ligaments, joints and paraspinal muscles. Most of the problems in the 

cervical spine are caused by wear and degeneration of tissues, broadly defined 

as spondylosis. The condition often affects the intervertebral discs, facet joints 

and uncovertebral joints. While the exact pathogenesis of such degeneration is 

still unknown, it has been suggested that it occurs due to aging or is caused by 

abnormal loading conditions (overloading and immobilisation).   



 
Chapter 1 

 

42 

 

Degeneration of the intervertebral disc is a cascade process which causes 

changes in the composition of the tissue, and thus its mechanical properties. 

The annulus can develop tears, fissures, clefts and bulges. Degeneration of the 

nucleus occurs due to water loss, change of structure into more collagenous 

and shrinkage, which in turn results in changes to the elastic modulus of the 

nucleus and thus altered ability to absorb and transmit posture-related changes 

in the pressure. Disc tears accompanied by localised displacement of disc 

material, which occurs beyond the limits of the intervertebral disc space are 

termed as disc herniation and can often cause nerve root compression and 

result in pain.  

Degenerative changes at the intervertebral disc can also affect bones and 

joints. As an effect of disc bulging, the vertebrae can develop bony spurs on 

both superior and inferior aspects as well as on the sides. The zygapophyseal 

(facet) and uncovertebral joints can undergo arthritic degeneration and well as 

hypertrophic changes, which result in a nerve impingement. Moreover, facet 

joints can be affected by rheumatoid arthritis (RA), which is the most common 

inflammatory disorder of the cervical spine [56], and osteoarthritis (OA), which 

causes degeneration of the affected bones and joints.  

Often whiplash injury can lead to chronic neck pain. The definition of whiplash 

was coined by the 1995 Quebec Task Force on Whiplash Associated Disorders 

(an international team of whiplash experts consisting of 18 members) as an 

‘acceleration-deceleration mechanism of energy transfer to the neck which 

often results from rear-end or side-impact motor vehicle collision’ [57]. The 

impact can often result in bony or soft tissue injuries (whiplash associated 

disorder – WAD) with clinical manifestations including acute neck pain and 

stiffness, but may also encompass various neurological deficits and chronic 

problems such as disc protrusions and nerve root impingement [58].  
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1.3.1 Pathways of treatment of neck pain 

1.3.2 Non-surgical approaches 

Most patients with acute neck pain show improvement following a course of 

comfort control treatment i.e. over-the-counter analgesics, heat, cold, muscle 

relaxants and prescription analgesics. Patients with chronic and recurrent pain 

which may be caused by spondylosis should initially be considered for on-going 

physical therapy. Pharmacology treatments of chronic neck pain include non-

steroidal anti-inflammatory drugs (NSAIDs), and neuromodulating medications. 

Injection therapies, including epidural corticosteroid injections provide little or 

no benefit to most patients, as the pain is mostly myofascial in nature. However, 

injections directed at the facet joints can provide both short and long term 

improvements. Another non-invasive method, associated with relatively good 

outcomes and low complication rates, is radiofrequency lesioning of nerves. 

The procedure interrupts nerve conduction on a semi-permanent basis. For 

some patients with chronic pain and pain associated problems, a combination 

of different therapies is more likely to be effective than one. In cases where the 

conservative treatment options have been exhausted, or the type and duration 

of symptoms match indications for surgery, such treatment routes should be 

followed.  

1.3.3 Surgical approaches 

Surgical procedures are rarely performed for neck pain alone. The pain itself 

results from radiculopathy, where the nerves are compressed, or myelopathy, 

where the spinal cord is impeded by the narrowing of the spinal canal, 

spondylosis or disc herniation. There are several different surgical procedures 

that can be performed, depending on the cause and location of the source of 

the pain. Based on these factors, the procedure can be performed using either 

on anterior or posterior approach. The posterior techniques include 

foraminotomy (removal of bone tissue from the intervertebral foramina), 

discectomy (removal of the IVD), decompressive laminectomy (removal of the 

disc and/or a bony spur without fusion) and fusion with various grafting materials 

and instrumentation. The anterior techniques include corpectomy (removal of 
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part of the vertebral body), discectomy and fusion with bone grafting and 

instrumentation. One of the most common and successful surgical procedures 

performed in the cervical spine is anterior cervical discectomy and fusion 

(ACDF) [59,60], which removes a herniated or degenerated intervertebral disc 

and fuses the segment, restricting the motion at the affected level. 

1.3.3.1 Anterior Cervical Discectomy and Fusion (ACDF) 

Anterior cervical discectomy and fusion Is the current ‘gold standard’ in surgical 

treatments of cervical spine disorders. It is typically performed in conjunction 

with instrumentation systems (screws, plates, rods) and grafting materials (bone 

graft, bone substitute graft, cages), used to improve to the stability of the 

segment. The main goal of ACDF is to maintain disc height and to restrict motion 

by fusing the affected level, without creating further deformities. When cages, 

fusion plates and screws are used in conjunction with ACDF, there is a risk of 

stress shielding of the bone, caused by an inadequate loading of the bone 

required to assure bone healing (Wolff’s Law). Stress shielding may result in 

bone resorption causing poor bone healing at the fusion site, leading to non-

union and onset of pseudo-arthrosis [61]. In order to compensate for eliminated 

motion at one segment, increased motions are transferred through the adjacent 

levels. These motions exerted on adjacent spinal units are hypothesised to 

accelerate the onset of degeneration in other spinal units. The phenomenon is 

known as adjacent segment degeneration (ASD) and can affect IVDs, facet and 

uncovertebral joints (Figure 1.8). 
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Figure 1.8: Fusion restricts motion at the affected level, which results in 
greater strains being exerted on the adjacent segments. 

 

There are three distinct causes of ASD identified in the literature: the natural 

history and progression of the disease; altered biomechanical stresses on the 

adjacent level caused by fusion; and disruption of the anatomy of the adjacent 

level during surgery[62,63]. Goffin et al. [64] reported that at >5 year follow up, 

ASD was found in 92% of their 180 cohort patients who were treated by ACDF. 

The study has also shown that similar rates of degeneration were found in 

younger trauma-related and older non-trauma-related patients, suggesting that 

biomechanical impact of the interbody and the natural progression of the pre-

existing degeneration may act as triggering factors [64]. While ACDF is claimed 

to be one of the most successful surgical procedures performed in the cervical 

spine [59], Hillibrand et al. [65] reported that in a span of 10 years, 25.6% of 

patients treated with ACDF developed new symptoms at the index level, and 

approximately 2.9% of annual reoperation rates are due to ASD. Other authors 

reported a 32.6% pseudoarthritis occurrence rate 1 year post operatively 

following treatment with an ACDF device [66]. 

The potential complications and the difficulties associated with the surgical 

procedure alone, were the primary reasons for developing an alternative 

Level of fusion 

Added strain on 

adjacent segments 
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treatment to ACDF. Driven by the success in motion restoration observed in 

total hip replacement (THR) and total knee replacement (TKR), spinal motion-

retaining technologies began to emerge. The main goal of the alternative device 

was to maintain kinematics of the normal FSU as closely as possible, and thus 

to avoid the risk of adjacent level degeneration.  

1.3.3.2 Total Disc Replacement  

Total disc replacement (TDR) is an alternative surgical treatment to the anterior 

discectomy and fusion, and it is available for both the lumbar (LTDR) and 

cervical (CTDR) levels. The procedure removes the diseased disc and replaces 

it with an artificial device. TDR devices are designed to retain disc height and 

maintain physiological segment motion and kinematics. Currently, TDR 

devices, especially for use in the cervical spine, are still evolving, and therefore, 

the indications and contradictions for their use are not clearly defined. To date, 

it has been suggested that patients with radiographic instabilities, rheumatoid 

arthritis, osteoporosis and recent infections or osteomyelitis, should not be 

treated with CTDR [67]. CTDR is recommended for single level treatment at 

levels C3-C7. Indications for surgery are broad in the cervical spine, mainly 

because access is the same as with ACDF, and the procedure is considered to 

be less risky than at the lumbar level. However, complications, due to close the 

proximity of the spinal cord and oesophagus, may be of higher impact. 

The surgical procedure involves a removal of the degenerated disc through a 

small incision in patient’s neck. Once the disc material has been removed, the 

intervertebral space is prepared by milling or shaping the endplates to 

incorporate the CTDR device. It must be ensured that as much of the disc tissue 

as possible is removed and the endplates are prepared in such way that the 

metal endplates of the disc replacement device have as much contact with the 

bone as possible. Once the device is placed in the disc space the otherwise 

retracted vertebral bodies are released, so that the disc can be firmly held in 

place. Improper endplate preparation, alongside poor bone quality or 

inadequate load distribution, can be a cause of device subsidence, which 

occurs in 3-10% of the cases [68]. It is also crucial that the device used has a 
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matching endplate footprint, as under-sizing of prosthetic device may cause 

subsidence, loosening, heterotopic ossification and biomechanical failure 

resulting from an incorrect centre of rotation and load distribution [68,69]. 

TDR devices do not provide a shock absorbing role and introduce articulating 

surfaces to the spinal unit.  Moreover, the natural disc exhibits non-linear 

resistance to torque, which depends on the angle of rotation. Such non-linear 

resistance to rotation is not provided by the articulating disc. It has been 

suggested that viscoelastic devices may replicate the natural behaviour of the 

disc and retain physiologic kinematics of the FSU. However, to date only two 

viscoelastic TDR devices have been approved for use in the European Union. 

The Cervical and Lumbar Freedom® Discs received their CE mark in 2009 and 

2012, respectively; however the clinical outcomes evidence data is currently 

limited. The majority of currently approved TDRs are of the articulating bearing 

type, and rely on a technology based on the total hip and knee replacement, 

and are subject to tribological problems. 

1.4 Tribology theory 

Tribology is defined as the study of friction, wear and lubrication of interacting 

surfaces in relative motion.  Friction is the resisting force to the relative motion 

of two surfaces which arises from fundamental electromagnetic forces between 

the charged particles constituting the two contacting surfaces. In all bearing 

systems, including total joint replacement devices, friction is undesirable as it 

may be indicative of wear, which results in material removal. The vast majority 

of problems encountered in the TJR design are tribological in nature. The 

design of a TJR must ensure sufficiently low wear to enable the prosthesis to 

operate safely and efficiently. Moreover, the friction force between the 

articulating surfaces should be minimised to limit potential implant fixation 

problems [70]. Friction and wear can be reduced by introducing a lubricant into 

the bearing system; however, under in vivo conditions the supply of the 

lubricant, i.e., the synovial fluid is limited.   
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In the natural spine, the joint connection between two vertebrae and the 

intervertebral disc is not a synovial joint (unlike the facet joints, which are 

synovial joints). There are no bearing surfaces articulating against each other 

enclosed within a synovial capsule. However, the design of an artificial disc 

replacement introduces such articulating surfaces (one or two, depending on 

the design) and the artificial disc is assumed to be lubricated by interstitial fluid 

[71,72]; therefore the following sections on biotribology, lubrication regimes, 

friction and wear are relevant to this research. Moreover, the TDR uses 

materials of much higher hardness than the natural tissues, which has an effect 

on the biotribology, lubrication and wear of the vertebra-disc connection. 

1.5 Biotribology in Total Joint Replacement 

The term biotribology was first used in 1973 by Dowson and Wright and refers 

to tribological phenomena occurring in the human body [73]. It encompasses 

the tribological processes occurring naturally in the tissues and organs, as well 

as the processes that may occur following implantation of an artificial device 

such as an orthopaedic implant. An important part of biotribology in total joint 

replacement relates to wear debris - their generation mechanisms, potential 

negative effects on an implant performance due to changes in surface 

morphology, and potential adverse biological reactions to wear debris and/or 

released ions [74,75]. 

Natural synovial joints are contained within a synovial membrane and the 

bearing surfaces (cartilage) are lubricated by synovial fluid. Following an 

implantation of a joint replacement blood and interstitial fluids act as a lubricant 

and are later replaced by synovial fluid if the synovial membrane is intact. Total 

joint replacement devices are passive, i.e,. there are no additional components 

which pump the lubricant into the system. Therefore, the bearing design of a 

device must allow the lubricant to freely entrain between the bearing surfaces 

in order to separate the surfaces, reduce asperity contact and thus reduce wear. 
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1.6 Lubrication regimes 

Lubrication is a technique seeking to reduce wear between two surfaces sliding 

against each other in close proximity, by introducing a lubricant between the 

surfaces. The lubricant separates the materials and helps carrying load 

generated at the interface of two surfaces. The ratio (λ ratio) between the film 

thickness (hmin) and average surface roughness (Ra) helps to determine 

lubrication regime. There are three main regimes of lubrication upon which an 

engineering system can work: boundary, mixed and hydrodynamic (fluid film). 

A graphical representation characterising different lubrication regimes was 

introduced in the first half of the 20th century by Richard Stribeck. The plot 

(shown in Figure 1.9) is defined as the relationship (in logarithmic scale) 

between the coefficient of friction (µ) and so-called Sommerfeld number (z), 

which is defined as (Equation1.1): 

𝑧 =  
ƞ𝑢𝑅

𝑊
 

          Equation1.1  

where: 

ƞ – lubricant viscosity  R – radius 

u – entraining speed W - load 

 

Figure 1.9: Idealised Stribeck curve. Coefficient of friction (µ), 
Sommerfeld number (z). 
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There is still no clear agreement on which mechanism is the primary one within 

natural synovial joints. It has been suggested that modifications or combinations 

of the main three regimes take place. 

1.6.1 Hydrodynamic lubrication 

In hydrodynamic (fluid film) lubrication regimes, the fluid film fully separates two 

surfaces and the λ ratio values are higher than 3. Usually a thick and continuous 

film is observed and the friction is determined by the rheological properties of 

the lubricant. The relative motion of two surfaces causes the lubricant to enter 

into the space between them and keeps them apart, by generating a sufficient 

amount of pressure within the fluid in order to sustain the load across the 

bearing. 

Elastohydrodynamic Lubrication (EHL) 

Elastohydrodynamic lubrication (EHL) is a modification of the fluid film 

lubrication regime which occurs in bearings of low geometrical conformities and 

materials which deform elastically. Due to high local pressure of the fluid, one 

or two of the surfaces deform, thus increasing conformity and resulting in a 

localised fluid film separation of the surfaces. The EHL lubrication regime has 

been theorised in order to explain the very low friction and wear of articular 

cartilage [76]. 

Micro Elastohydrodynamic Lubrication (mEHL)  

The micro EHL lubrication model was theorised to exist in the natural articular 

cartilage [77].  It has been proposed that the mEHL lubrication results in the 

smoothing of relatively rough cartilage surfaces allowing a sufficiently thick fluid 

film separation.  

Squeeze Film Lubrication 

It has been postulated that the natural synovial joints are lubricated with the 

squeeze film which is replenished by the hydrodynamic action [78]. A temporary 

increase in pressure in the lubricant generated by two approaching surfaces, 

keeps the two surfaces apart. Artificial joints may also operate under squeeze-
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film lubrication, where a finite amount of time is required to expel fluid from 

between the two bearings [79]. 

Boosted Lubrication 

The boosted lubrication mechanism, first suggested by Walker et al. [80] occurs 

when a low molecular fraction of the synovial fluid is forced into the cartilage, 

leaving a highly viscous, high molecular weight protein gel which protects the 

surfaces and is capable of carrying greater loads for a longer period of time than 

normal synovial fluid.  

Weeping Lubrication 

Investigations by Lewis and McCutchen [81] suggest that natural joints may 

operate under so called weeping lubrication regime, where the synovial fluid is 

squeezed in and out of the articular cartilage during a load bearing activity. 

1.6.2 Boundary lubrication 

In boundary lubrication, the film thickness is similar to the height of asperities 

within the surfaces which causes direct contact between the two materials. It is 

characterised by the absence of hydrodynamic pressure or fluid pressure. The 

λ ratio in the boundary regime is smaller than 1. Generally high friction and wear 

rates are produced under boundary lubrication conditions. 

1.6.3 Mixed lubrication 

The mixed lubrication regime promotes a thin and discontinuous lubrication film. 

Both boundary and hydrodynamic conditions may be present i.e. both direct 

contact and full fluid film separation of the surfaces may occur. The λ ratio 

values are between 1 and 3 in the mixed lubrication conditions. 

1.7 Friction  

The first experimental work around friction was conducted by Leonardo da Vinci 

in 16th century, who observed that friction is not a function of the contact area 

and that it is proportional to object weight. The first two laws of friction, however, 
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were enunciated by Amonton in 1699, and eighty two years later in 1781, 

Coulomb proposed the third law: 

1.      The force of friction is directly proportional to the applied load (Amonton’s 

1st Law). 

2.   The force of friction is independent of the apparent area of contact 

(Amonton’s 2nd Law). 

3.      Kinetic friction is independent of the sliding velocity (Coulomb's Law). 

The three laws are attributed to dry or boundary lubricated conditions with low 

relative motion speeds. While it has been well known since ancient times that 

introduction of a lubricant can significantly alter the tribological properties of a 

relative motion of two objects, it was not studied pragmatically until the later 

years of 19th century.  

1.8 Wear  

Wear is outlined as a progressive loss of material from the articulating surface 

of a body occurring as a result of relative motion of the surfaces. It is a 

consequence of two sliding surfaces under an applied load. Archard’s wear 

equation [82]) shows the proportional relationship between the sliding distance 

(x), the load (W), the wear factor (K) and the produced wear volume (V) 

(Equation 1.2). The wear factor K is an experimental constant related to the 

hardness of the surfaces and other tribological factors such as surface 

roughness and type of lubricant used. 

𝑽 = 𝑲𝑾𝒙 

Equation 1.2 

 Wear is a complex mechanism which can be dependent on chemical, thermal, 

mechanical and physical properties of materials. Useful trends with toughness, 

ductility, modulus, strength properties, and hardness of material have been 

discovered [83]. Wear tends to decrease with increased hardness of a material. 

Wear is a critical issue in medical implantable devices, as it leads to a significant 
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loss of material. Moreover, produced debris may cause adverse tissue reaction 

around the implant, followed by osteolysis, which in turn will lead to failure of 

the device through loosening [84].  

There are several classifications of wear mechanisms. These are based on the 

physical mechanism of damage, the appearance of the damage and the 

conditions surrounding the damage process, such as presence of lubrication, 

temperature etc. [83].  In many implantable devices damage occurs mainly by 

means of adhesive wear, abrasive wear, corrosive wear, and fatigue wear [85]. 

1.8.1 Fatigue wear 

Fatigue wear occurs under conditions of repeated, cyclic loading and unloading. 

High stresses cause particles to be removed from the surface as a result of 

formation of surface or sub-surface cracks. These cracks are formed at weak 

and imperfect areas of the surface, where the shear stresses are at their 

highest, depending upon the geometry of the materials. As the cyclic motion 

continues, cracks grow and propagate through the material, causing it to 

fracture and wear debris to be formed. Fatigue wear can be a serious problem 

in polymer components used in total joint replacement [86]. 

 

Figure 1.10: Edge view of an ultra-high molecular weight polyethylene 
(UHMWPE) core from a lumbar total disc replacement component. 

Radial cracks of the rim were caused by fatigue [86].  
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1.8.2 Corrosive wear 

Corrosive wear is observed when chemical or electrochemical interaction 

occurs between the environment and one or both of the surfaces.  The wear 

rate depends upon the environmental conditions affecting the chemical 

reactivity of the surfaces [87,88]. This type of wear is important for biomaterials 

and the extremely harsh environment of the human body in which they are 

functioning. Surface oxidation is the most common corrosion process. This type 

of wear can be reduced by decreasing the oxidation rate, increasing the critical 

oxide thickness, raising the fracture toughness and microhardness of the oxide, 

or by coating a metal with an inert substance that does not undergo oxidation.  

1.8.3 Adhesive wear 

Adhesive wear occurs when two surfaces are brought together and slide against 

each other under a load. During the relative movement asperities of the two 

surfaces are in contact and undergo deformation. The number of such asperity-

to-asperity junctions is determined by the surface roughness of both surfaces. 

A bond may be formed between the surfaces in contact, which is stronger than 

the intrinsic strength of the weaker material. When the relative motion between 

two surfaces continues, the weaker of the materials fails and material is 

transferred to the contacting surface. It is recognised that this occurs due to a 

fatigue process on a microscopic scale. During the relative motion the 

deformation of asperities goes from elastic to plastic when the shear stress 

exceeds the yield strength of the asperities. Adhesive wear damage is mainly 

caused by the fracture transfer of material at the asperitiy contact junctions 

(Figure 1.11). When two dissimilar materials (with regards to hardness) are in 

contact, it is usually the material of lower hardness which generates wear debris  

– in total joint replacement, adhesive wear debris is generated mainly from 

polyethylene bearings [89]. Adhesive wear can be reduced by increasing 

hardness or work hardenability, introducing a low coefficient of friction coating, 

reducing the tendency of the surfaces to cold weld, providing sufficient 

lubrication, or by providing a smoother surface finish.   
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Figure 1.11: Schematic representation of adhesive wear [90]. 

 

1.8.4 Abrasive wear 

Abrasive wear is result of hard particles and protuberances indenting or cutting 

a groove in a softer material. Abrasive wear can be divided into two-body and 

three-body wear mechanisms. In two-body wear asperities or particles which 

are attached to one of mating surfaces are the source of wear damage. Three-

body wear is caused by hard particles that can freely move between two mating 

surfaces, as they are not fixed on to either of the surfaces. Differences between 

the two and three body wear is shown in Figure 1.12. In total joint replacement, 

surgery generated particles of bone, bone cement or metal, can be a source of 

three-body wear.  

Abrasive wear can be subdivided into low and high stress. Low-stress abrasion 

occurs due to relatively light rubbing of abrasive particles on the surface of the 

material. The criterion for low-stress abrasion is that the forces must not exhibit 

the level in which the abradant particles are damaged. Wear scars will show 

scratches and a minimal deformation of the subsurface. High-stress abrasion 

occurs under a level of stress that is high enough to crush the abrasive. Another 

type of abrasive wear is polishing wear. This form of abrasion is extremely mild 

and surfaces which have been subjected to polishing are usually smoothed and 

brightened. The hardness of the material is one of the major factors in the 

resistance to abrasive wear; however, other properties such as yield strength, 

elastic modulus, fracture toughness, composition and microstructure play an 

important role in improving abrasive wear resistance. 
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Figure 1.12: Differences between two- and three-body abrasive wear [91]. 

1.9 Cervical Total Disc Replacement 

The success of total joint arthroplasty and complications associated with the 

ACDF, such as adjacent segment degeneration, has led to research and 

development of an alternative surgical treatment for degeneration in the cervical 

spine, which preserves motion in the affected segment – cervical total disc 

replacement (CTDR). The first ball-in-socket CTDR device was designed in 

1980s by Cummins et al. [92]. Since then, a number of devices have evolved 

and undergone several design iterations. The cervical disc replacement is a 

relatively new technology; constant progress is being made in an effort to 

improve the safety and efficacy of the new devices. At the time of writing, seven 

CTDR devices have received approval by the Food and Drug Administration 

(FDA) for marketing in the U.S in one-level applications. A summary of the main 

design features and characteristics of the FDA approved CTDRs can be found 

in Appendix I. While the Bryan (Medtronic Sofamor Danek USA Inc.), Mobi-C 

(LDR Spine USA Inc.), PCM (NuVasive Inc.), Prestige LP and Prestige ST 

cervical discs (Medtronic Sofamor Danek), ProDisc-C total disc replacement 

device (Synthes Spine), and Secure-C (Globus Medical Inc) have been 

approved for single-level arthroplasty, the Prestige LP and Mobi-C have also 

gained approval for use at 2 levels.  
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1.9.1 Materials design considerations 

The main goal of the CTDR is to retain disc height and to maintain motion in the 

FSU as close as possible to that observed in the natural joint. Hallab et al. [93] 

identified material optimisation criteria for use in CTDRs. These included 

preservation of kinematics and biomechanics, disc height retention, 

biocompatibility, reliability and durability of the materials.  

Stainless steel is the most inexpensive and readily available biomaterial. 

Medical grade stainless steel (316L) has a long, successful record of use in a 

variety of orthopaedic implants. While its ductility is superior to other metals 

used in orthopaedic instrumentation, stainless steel is less corrosion resistant 

than comparative metals, which has a negative impact on the overall 

biocompatibility of the material [94]. The Prestige ST device is constructed of 

two articulating stainless steel components. 

Cobalt-chromium medical alloy (CoCr) is one of the most commonly used 

biomaterial in total joint replacement, due to its superior mechanical properties. 

Wear properties of cobalt-chrome are superior to those of both titanium and 

stainless steel, however it has been shown that the wear particles generated by 

cobalt-chrome bearings can have  cytotoxic effects on cells in the tissues in 

close proximity to the implant [95]. Cobalt chrome endplates, coated with 

titanium porous coatings, are used in the ProDisc-C total disc replacement 

device. 

Titanium alloys are prominent as dental and orthopaedic materials due to their 

strength-to-weight ratio, relatively low elastic modulus, excellent corrosion and 

fatigue resistance and biocompatibility. The major drawback of titanium alloys 

is their poor wear resistance; therefore, they are not widely used as bearing 

components. Titanium ceramic composites (Ti6Al4V + 10% TiC), were 

introduced as bearing materials in the design of the Prestige-LP. Moreover, 

titanium has been widely used as a porous coating, as it promotes bone 

ingrowth (e.g. the Bryan, Prodisc-C, Prestige LP and Secure-C discs). Titanium 

endplates are also used in the Bryan cervical disc prosthesis implants. 
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Ultra-high molecular weight polyethylene (UHMWPE) is broadly used in total 

joint arthroplasty as a bearing material. It exhibits low friction when coupled with 

suitable metal alloy and can be easily machined or moulded into desirable 

shapes. There are major concerns associated with the use of UHMWPE 

bearings related to relatively high concentrations of wear particles produced by 

the material. Wear debris generated by UHMWPE is considered to be the main 

cause of osteolysis-induced implant loosening [96]. The design of the ProDisc-

C, PCM, Secure-C and Mobi-C devices include a UHMWPE core, which allows 

articulation of the CoCr endplates. The Bryan cervical prosthesis design 

incorporates a polycarbonate-polyurethane (PCU) core articulating against 

titanium endplates. PCU is widely used in medical applications and has 

excellent biocompatibility. Its viscoelastic properties are superior to those of 

UHMWPE, and for this reason, it is used in lumbar dynamic pedicle screw 

devices, as well as in cervical arthroplasty. 

1.9.2 Biomechanical design considerations 

The biomechanics of CTDR devices are complex due to the multidirectional 

nature of the motions in the cervical spine, 6 degrees of freedom motion and 

the interaction between other spinal level via the muscular, facet and 

ligamentous systems. The main goal of a CTDR device is to preserve motion at 

the index level, and prevent the development of ASD. Critical design factors, 

such as the position of the centre of rotation, level of constraint and bearing 

surface geometry, must be taken into consideration during the design and 

development of a CTDR implant.  

The instantaneous axis of rotation (IAR) is not a fixed point, rather its position 

changes throughout the physiologic range of motion (ROM). In the lower 

cervical spine (C5-7) the position of the IAR can be estimated to lie just posterior 

and inferior to the centre of the caudal vertebral end plate. In the middle cervical 

segments (C4-5), however, the mean IAR deviates more posteriorly and 

caudally, relative to the disc space (Figure 1.13-A). This is caused by more 

variable physiologic characteristics of the facets in the upper cervical spine. 

While the segmental arc of motion in the upper cervical spine is flatter, due to 
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the facets being positioned more horizontally, in the lower cervical segments 

the more vertical nature of the facets results in a sharper arc of motion. By 

superimposing radiographic tracings of a vertebra moving from full extension to 

full flexion the position of the IAR can be determined (Figure 1.13-B). Restoring 

the centre of rotation is extremely important in maintaining natural joint 

kinematics. It has been found that abnormal positioning of the IAR following the 

lumbar TDR, may result in increased stress exerted on the ligaments and facet 

joints, which in turn can cause pain and degeneration of said joints [97].  

Constraint in the CTDRs can be defined as the limitation of pure A-P or lateral 

translational intervertebral motion [98]. While an unconstrained device allows 

for unrestricted multidirectional motions, a fully constrained device permits 

purely uniplanar motions (i.e. rotation), without any translation. Less 

constrained devices (e.g. the Bryan cervical disc) result in the restoration of the 

position of the natural IAR during motion and thus closely mimic physiologic 

motion. On the other hand, more constrained designs (e.g. the ProDisc-C and 

PrestigeST) were found to reduce shear strain transmission to the facets, which 

is hypothesised to reduce or even prevent the development of ASD [98]. 

The geometry design of the articulating surfaces determines the degree of 

constraint and centre of rotation of the device. The ball-and-socket designs (e.g. 

the ProDisc-C) have a predetermined centre of rotation, positioned at the centre 

of the conceptual sphere of the convex surface. Designs incorporating a mobile 

core (e.g. the Bryan cervical disc) have a variable position of the centre of 

rotation. The latter are considered to be more forgiving of surgical errors and 

less precision in the placement of the device is necessary, in order to replicate 

the physiologic centre of rotation. A ball-and-trough design (e.g. the PrestigeST) 

features a greater radius of curvature in the sagittal place and thus allows for 

some translational motion during the extremes of flexion and extension. 
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A                                                             B        

Figure 1.13: A - Mean instantaneous axes of rotation for each motion 
segment of the cervical spine depicted with a dot. Two standard 

deviation range of distribution is located within the enclosed circles 
shown. B -  The position of IAR can change position during motion 
and can be determined by superimposing tracing of a vertebrae in 

full ROM [28]. 

 

1.9.3 Clinical results  

A review of reports of FDA IDE trials for each of 7 available devices, showed 

that CTDRs are becoming a safe and effective alternative to ACDF in selected 

patients [99–116]. Each study followed strict inclusion and exclusion criteria and 

was based on the primary hypothesis of noninferiority, i.e., that the overall 

success rate of the investigated device was statistically noninferior to the rate 

of the control group (ACDF). The secondary hypothesis investigated superiority, 

i.e., that the overall success rate of the investigational group was statistically 

superior when compared to the ACDF group.  A summary of the results can be 

found in Table 1.2. Overall, the results of the trials were assessed based on the 

improvement of the neck disability index (NDI); neurological success, defined 

as a maintenance or improvement of 3 neurological parameters – motor, 

sensory and reflexes, rate of secondary surgeries; and overall success, defined 

as absence of adverse events related to the treatment, improvement of NDI by 

at least 20% or 15 points; improvement or maintenance of neurological 

parameters; and no removals, reoperations or additional fixation required to 

modify the implant. 

The Prestige-ST cervical disc system was the first CTDR implant to be 

approved by the FDA (July 2007), and it is also marketed in Europe via a CE 
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Mark (approved since 2006). The design of the device comprises a stainless-

steel metal-on-metal (MoM) bearing couple. A prospective, randomised, 

nonblinded study was conducted under an approved IDE trial [99–101]. 

Additionally, a multicentre, randomised trial was carried out across 4 sites in 

Europe and Australia [102]. The most recently published, 7 year follow-up 

results of the FDA IDE trial reported by Burkus et al. [101], which was conducted 

at 32 investigational sites and involved 541 patients randomly assigned to 

CTDR group (276 patients) and ACDF (265 patients), showed that the NDI 

scores were noninferior, when compared to the control group, whilst the 

remainder of the parameters showed superiority of the investigational group.  

The ProDisc-C, comprising of a metal-on-polyethylene (MoP) bearing (CoCr 

and UHMWPE), received its FDA approval for marketing in the U.S in 2007. In 

2005 the implant was also cleared for marketing in Europe, after receiving the 

CE Mark. The device has undergone a randomised, multicentre IDE trial [103–

105] prior to FDA approval, in which the clinical outcomes were compared 

against the ACDF control. Patients in the study were randomised and blinded 

to the treatment they received, until shortly after the surgery. A total of 209 

patients (103 ProDisc-C and 106 ACDF) were enrolled at 13 investigational 

sites. Only the occurrence rate of secondary surgeries was found to be 

significantly lower than in the ACDF group, whilst the remaining outcomes – 

NDI score, neurological success and overall success were found to be 

noninferior in the CTDR patient group. 

The Bryan cervical disc obtaine the CE mark registration in September 2000 

and was later approved by the FDA for marketing in the U.S in May 2009. The 

device is made from a titanium endplates and polycarbonate uretahne nucleus. 

A prospective, randomised, multicentre study of surgical treatment with the 

Bryan and ACDF was conducted under an approved IDE trial [106,107,117]. A 

total of 263 patients (242 patients treated with Bryan disc and 221 with ACDF) 

treated at 30 investigational centres were assessed. The IDE study was initially 

designed to last 48 months (however additional follow up was requested by the 

FDA); as a result, not all centres participated in the 4 year follow up. Patients 
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were nonblinded and randomised prior to the surgery, which resulted in several 

patients withdrawing from the study, mainly in the ACDF group.  

The Secure-C MoP (CoCr and UHMWPE) cervical disc obtained FDA 

Premarket Approval (PMA) in 2012, following a successful IDE clinical trial 

[108,109], which included 380 patients from 18 investigational sites. Of the 

cohort, 89 nonrandomised and 151 randomised patients were treated with 

Secure-C disc and 140 patients received an ACDF device.  

The Porous Coated Motion (PCM) received the CE Mark in 2002 and was also 

approved by the FDA in 2012. The device design incorporates a MoP (CoCr 

and UHMWPE) bearing. A total of 416 patients were recruited for a prospective, 

randomised, multicentre study conducted under an IDE trial [110,111], however 

only 403 were treated (218 patients received the PCM disc and 185 were 

treated with ACDF). The 5-year follow up study reported on 163 PCM-treated 

and 130 ACDF-treated patients. 

The Mobi-C is the first device to receive CE Mark (in 2004) and FDA market 

approval (in 2013) for two-level treatment of radiculopathy or myeloradiculpathy 

that is unresponsive to non-surgical treatment. The device incorporates a 

mobile, MoP (CoCr and UHMWPE) bearing. A controlled, randomised FDA IDE 

trial was conducted across 23 clinical sites and involved 245 patients, who were 

randomised into two treatment groups and remained blinded to the treatment 

until after the surgery [112–114]. At the five year follow up the results of 164 

patients who received the Mobi-C disc and 81who were treated with an ACDF 

device, were reported.  

The Prestige LP device consists of a MoM (titanium ceramic composite). It 

received its FDA approval in 2014. A prospective multicentre, nonrandomised 

IDE trial [115,116] followed 280 patients who were treated with the Prestige LP 

disc and 265 control patients, who received ACDF treatment. The treatment 

group achieved superior neurological and overall success scores and 

noninferior NDI scores. 
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Table 1.2: A summary of main outcome characteristics of the 7 FDA-
approved CTDR devices for a single-level treatment compared to 

ACDF control groups; NDI – neck disability index; RCT – 
randomised controlled trial 

 

Device 
(approved in) 

Study 
design 

NDI Neurological 
success 

Secondary 
surgery 

Overall 
success 

Prestige ST 
(2007) 

RCT Noninferior Superior Superior Superior 

ProDisc-C (2007) RCT Noninferior Noninferior Superior Noninferior 

Bryan      (2009) RCT Superior Noninferior Noninferior Superior 

Secure-C (2012) RCT Noninferior Noninferior Superior Superior 

PCM       (2012) RCT Superior Noninferior Noninferior Noninferior 

Mobi-C    (2013) RCT Noninferior Noninferior Superior Noninferior 

Prestige LP 
(2014) 

Non-RCT Noninferior Superior Noninferior Superior 

 

1.9.4 Wear in total disc replacement 

Similarly to total hip and knee replacements [118], wear and wear debris are 

hypothsised to play a key role in the long term success outcomes of TDR. The 

numbers of  long term outcome reports and studies documenting wear 

characteristics of the CTDRs (in vivo) are limited. For this reason, cases and 

studies covering wear in lumbar TDR will also be included in this section. 

A number of  studies have conducted analyses of failed devices retrieved from 

patients, in effort to study potential reasons of failure. Seven explanted lumbar 

MoM (CoCr) devices (Maverick™) examined by Kurtz et al. [119] were found 

with  scratches; however no macroscopic evidence of plastic deformation, 3rd 

body wear, burnishing, pitting or fracture was found. The primary wear 

mechanism was microabrasion. Consistely across all 7 devices, smokey, hazy 

discolouration, which was determined to be carbo- and oxygen-rich films, were 
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noted. Similar discolourations have been found previously in CoCr MoM hip 

implants [120]. Tissue analysis found no tissue discolouration; however necrotic 

bone, bone marrow and dense fibrous connective tissues were found. Focal 

microscopic metallic debris was infrequently observed. Metallic debris was not 

found in a uniform distribution throughout the samples, unlike in the Prestige-

ST CTDRs, which are made from stainless steel [121].  

Similar surface damage on disc replacement devices were reported by other 

authors [122,123].  Out of 29 analysed ProDisc-C implants (MoP), 96% had 

signs of impingement, 86% burnishing of the CoCr endplate and 17% on the 

UHMWPE insert. Mild burnishing, scratching and pitting of the insert were also 

reported. Wear patterns on the insert were asymmetrical; dome regions of the 

inserts showed some wear and slight deformation, while the rims were largerly 

unremarkable.  Out of all investigated devices, 21% of the implants had signs 

of 3rd body wear. Twenty Prestige-ST explants were examined by Kurtz et al. 

[119] and found to have signs of microabrasion on their surface. Slight 

discolouration and evidence of anterior impingement were found in 69% of the 

examined samples, which despite different device design, is similar to the 

findings reported by Lebl et al. [122,123]. 

In THR and TKR it is not uncommon for wear and wear debris to induce 

osteolytic processes of the bone in the vicitnity of the implant [84]. Despite 

limited numbers of long-term results of the TDR devices, several cases and 

studies report similar reactions.  A case of cervical osteolysis following 

implantation of the ProDisc-C, revised at 15 months postoperatively, was 

documented by Tumialan et al. [124]. Signs of progressive osteolysis around 

the keel of the superior endplate were found. Product examination did not show 

implant damage. The osteolytic processes were stopped after explantation, and 

the  authors hypothesised that an immune-mediated osteolytic process was the 

most likely cause. Additional case studies of wear-related osteolysis found in 

the lumbar TDR are reported in the literature [125,126]. A study by Cunningham  

et al.[127], which included an animal model and some retrievals, showed that 

very small quantities of titanium wear particles (comercially available titanium 
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powder, 1-5µm dia.) elicted osteolytic type responses in the vicinity of the 

implant. Following the experience of THR and TKR technologies, it can be 

expected that as more patients receive treatment involving TDR devices and 

the currently existing data will become of long-term significance, more cases of 

osteolysis will be reported. 

Several reports documented abnormal inflammatory reactions and 

pseudotumours formations due to reactions to metal on metal (MoM) TDR. 

Guyer et al. [128] reported on three case reports and one case series involving 

one CTDR and three LTDR devices. Upon revision, thick soft tissue extending 

into epidural space was found. Histology revealed avascular hyaline tissue with 

lymphocytes and macrophages and eosinophilic granules. The cervical device 

was found with visible blackening of the tissue; however no third-body metal 

debris were observed on the surfaces of the implant.  Similar findings were 

reported by Cavanaugh et al. [129]. Upon revision of a failed cervical MoM 

deivce, a large, yellowish necrotic tissue, extending into the epidural space was 

found. Histology revealed necrotic hyaline tissue with lymphatic predominant 

chronic inflammation. No intra- or extracellular metal wear debris found despite 

electron microscopy used in the analysis; nonetheless cellular patterns were 

found to be similar to those surrounding failed MoM hip devices. Kurtz et al. 

[119] have also found characteristics of inflammatory respose in their 

histological analysis of tissue samples found around failed cervical MoM 

devices. Lagier et al. [130] reported a case of delayed hypersensitivity and 

allergic reaction in an individual implated with a  Mobi-C device, however no 

detailed histology analysis was performed.  

Further issues with MoM TDR devices (Maverick) were reported by Berry et al. 

[131]. A case of an iliac vein occlusion and epidural cauda equina compression 

was documented. Histology revealed a granulomatous mass with diffuse 

metallic wear debris particles. Another failed Maverick device reported by 

Francois et al. [132] caused gross metalosis. The device was removed 12 

months postoperatively due to persistent pain. Presence of metal debris in the 

periprosthetic tissue generated by a cervical MoM device was also reported by 
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Kurtz et al. [119]. Additionally, focal metalosis, uniform tissue discolouration and 

fibrous tissue were found. 

To date the numbers of case reports documenting in vivo wear, and wear-

related failures are limited. However, it is expected that as the number of 

patients treated with CTDRs will continuously increase and more long-term 

studies will be published over time. Longer term follow up of TJR has highlighted 

the role of wear particles in the failure process of both metal-on-polyethylene 

[133] and metal-on-metal prostheses [74,134]. Therefore, it is necessary to 

assess the wear of TDR devices in vitro in order to compare wear rates and the 

volume of debris to those found in the clinical setting.  

1.10 Wear testing of CTDRs 

Two internationally recognised testing protocols have emerged for wear 

assessment of cervical disc replacement: ISO 18192-1 [135] and ASTM F2423-

11 [136]. The kinetic motions adopted by both the ISO and ASTM standards are 

a sinusoidal approximation of the loads exerted in the spine. The ISO 18192-1 

input motions run concurrently, those in the ASTM standard allow the user to 

input the test motions sequentially, or in any chosen combination. 

The two standards specify suggested ROM and total annual excursion to be 

applied during testing. A summary of those inputs is shown in Table 1.3. The 

motions defined by the ISO standard lead to cross-path motion for both lumbar 

and cervical test conditions [137]. Both standards recommend regular 

assessment of the bearing surfaces and produced wear debris at each million 

cycle over a continued testing period of 10x106 cycles. It is believed that 106 

cycles are an equivalent of one year in vivo wear [49], and similar conversion is 

widely used in THR wear assessment testing. 
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Table 1.3: Range of motion and total excursion after 106 cycles as 
specified per the ISO 18192-1 and ASTM F2423-11. 

Standard 
 Flexion-

extension 
(FE) 

Lateral 
bending  

(LB)  

Axial rotation 
(AR) 

Load 
(N) 

ISO 18192-1 
ROM (°) ±7.5 ±6.0 ±4.0 

±150 Annual excursion  
( x106 cycles) 

30 24 16 

ASTM 
F2423-11 

ROM (°) ±7.5 ±6.0 ±6.0 
+150/-

50 
Annual excursion 

 ( x106 cycles) 
30 24 24 

 

A comparative study of the ISO 18192-1, ASTM F2423-11 and observed daily 

motions in the cervical spine [49] determined that the annual excursion was 

higher than those specified in the ISO standard; the observed-to-standard ratios 

were 1.22, 1.09 and 1.04 for the FE, LB and AR respectively. Motions are more 

frequent than the million cycles per year specified. The amplitudes of motions 

were smaller than specified in the ISO standard. In vivo movements were found 

to be more frequent but of lower amplitude. It has been suggested that for the 

wear assessment in the cervical spine to be clinically relevant, the number of 

cycles should be 3x106 to 5x106 times per year in each axis [49]. Simulator tests 

of the Bryan cervical disc [121] produced significantly more wear; the reported 

wear rate of 0.57mm3/million cycles was approximately 5 to 10 fold higher than 

those found in explants. Such differences are likely to be caused by differences 

in the implantation time of the retrieved components. Kurtz et al. compared 

Prestige-ST components tested in the spine simulator (non-standard test 

protocol) to retrievals [138]. The main wear mechanism in vivo was found to be 

abrasive wear, with components worn more posteriorly than anteriorly. Wear 

scars and mechanisms were similar to those tested in the simulator; however, 

retrieval wear was not as severe as in vitro tested samples. The average surface 

roughness for in vivo components was measured to be 0.12±0.1µm, whereas 

in the simulator tested samples it was 1.4±1.0µm. Similarly, the waviness within 

the wear scar was significantly greater in the simulator tested components. 

Higher wear rates were reported during the coupled AR/LB sequence of the 

test. It was hypothesised that due to the ball-in-trough design of the bearing, 

which is more conforming in the coronal plane than in the sagittal plane, higher 
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wear rates during the AR/LB coupled motions are due to the predominance of 

sliding, whereas during the FE motion rolling contact dominates. Anderson et 

al. [121] who also tested the Prestige-ST implant reported the wear rate of 

0.18mm3/million cycles. Additionally, they found that components tested for only 

0.3 million cycles produced much higher wear than in a device explanted from 

a patient after 39 months i.e. an equivalent of 3.25 million cycles of simulator 

tests. Such findings are consistent with those reported on the Bryan cervical 

disc device [121], despite minor differences in test conditions. The loads and 

ROMs applied in the testing of both of the devices were within the range 

specified by both ISO 18192-1 and ASTM F2423-11, which may suggest that 

such test inputs are not clinically relevant, probably significantly overestimate 

wear in vivo and require further investigation and possible revision.   

Comparison between in vitro simulator studies and retrievals [139,140] found 

that  abrasion on the simulator tested samples was more severe than those 

observed in vivo. Like Anderson et al. [121] Kurtz et al.[139] and Siskey et al. 

[140] hypothesised this was due to short implantation times. Siskey et al. [140] 

tested metal-on-metal Prestige-ST devices only over 1 million cycles, and found 

that the wear results were very similar to those found in vivo. Surface roughness 

of simulator tested samples was also comparable to those of explants i.e. 

0.16±0.07µm and 0.12±0.08µm, respectively. The wear scar area was greater 

in the simulator tested components, which suggested that the ROMs applied in 

the ISO standard are more extensive than those experienced in vivo. The wear 

tracks on the PrestigeST implants suggested a curvilinear motion pattern, unlike 

the asymmetrical pattern found in the ball in socket design of the ProDisc-C 

[141].  

To date, there are a few reports in the literature investigating the size of 

UHMWPE particles produced in simulator-tested TDR device and no studies 

report on the characteristics generated from MoM TDRs. ProDisc-C implants 

tested for 10 million cycles and under conditions specified by ISO 18192-1 were 

found to produce particles of mean particle size ranging between 0.17 and 0.35 

µm [142]. Similar findings were reported by Bushelow et al. [143], whereby 90% 
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of the particles generated by simulator-tested ProDisc-C devices were of 

submicron size and the mean size ranged from 0.22 to 0.37µm. Hyde et al. [144] 

found that all UHMWPE particles generated from a lumbar disc replacement 

device, (Prodisc-L) tested under the ISO protocol, were submicron in size. 

These particles were of similar size to those previously found in THR and TKR 

[145] and  within the range of 0.1-1.0µm, which are the most biologically active, 

in terms of production osteolytic cytokines [133,146].  

In vitro simulator studies published in the literature often do not use testing 

protocols that comply with the ISO or ASTM standards. This may be due to 

questionable clinical relevance of the test parameters specified by the 

standards. Increased guidance on testing protocols is required; these include 

standard and adverse conditions. It is important to validate clinical relevancy of 

the testing protocols against in vivo evidence. So far, some discrepancies 

between in vivo and in vitro results have been reported. These differences may 

be caused by selection bias, in that the explanted devices are from failed 

arthroplasties which display features such as high wear that form a part of the 

failure scenario.  

1.11  Tribological coatings 

Tribological coatings are defined as coatings of sufficiently thin thickness, so 

that the properties of the substrate material play a role in the tribological and 

friction performance. Typical thickness of tribological coatings ranges between 

0.1 and 10 µm [147]. Tribological coatings are used to modify the physical and 

chemical properties and morphology of a surface, and are used in diverse 

technological applications, orthopaedic implants being one of them. Surface 

properties of biomedical implants are critical not only to the lifetime, but most 

importantly, to the safety, efficacy and biocompatibility of a medical device. As 

a result, biocompatible coatings of high hardness, resulting in low friction, 

improved wear and corrosion resistance have obvious applications in 

orthopaedics.  
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A tribological coating is expected to meet certain design requirements, including 

the following: 

1) The lifetime of the coating must be longer than the required implant 

lifetime and estimated with certain probability. 

2) The wear of the coated surface and the counterface must not exceed 

certain values specified by the design. 

3) The initial coefficient of friction, steady-state coefficient of friction and 

the friction instability must not exceed certain values specified by the 

design. 

1.11.1 Deposition processes 

A wide variety of deposition techniques are currently available and used across 

different industries, however, there are many that are at a developmental stage 

and not available commercially. Matthews [148] proposed a general 

classification of deposition techniques, dividing the processes into four 

categories, depending on the state of the depositing phase: 

1) Gaseous state processes 

2) Solution state processes  

3) Molten or semi-molten state processes 

4) Solid state processes 

The gaseous state processes include techniques in which the target material 

passes through a gaseous or vapour phase prior to being deposited on to the 

substrate. The main generic classification of gaseous state processes include 

ion implantation (II) and beam assisted deposition (BAD), which by applying a 

high-energy beam energy the ions to a sufficient energy level to become 

embedded within the surface; chemical vapour deposition (CVD), in which the 

source of coating species comes from gaseous reagents; and physical vapour 

deposition (PVD), whereby at least one of the coating species is evaporated 

from a solid target within the coating chamber. The PVD process is often utilised 

to deposit coatings used in orthopaedic applications, therefore the following 

sections will cover this subject in more detail.  
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1.11.1.1 Physical Vapour Deposition  

Physical vapour deposition (PVD) processes form coatings through evaporation 

or atomisation of a material from a solid source. Historically PVD was used for 

metallic coatings only; however, with technology developments, ceramic 

materials can also now be deposited by using ceramic sources or a combination 

of metal sources and reactive gases in the deposition chambers. In general, 

PVD methods are categorised into three groups, based on whether the target 

material is removed through the transfer of kinetic energy (sputtering group), by 

input of thermal energy (evaporation group) or in a hybrid process of thermal 

evaporation and sputtering (ion plating group). Several different variants of the 

three methods of atomisation methods exist. The various PVD techniques can 

be altered by the addition of plasma within the deposition chamber, which 

results in improved film nucleation and growth kinetics of the process.  

The basic plasma assisted (PA) PVD processes include reactive sputtering 

(RS) and activated reactive evaporation (ARE). In the ARE technique the metal 

ions are produced when the source evaporates after being heated up by 

thermionic electron beam, a plasma electron beam, resistance heating or arc 

heating. Rapid development of plasma-assisted thin film coatings in recent 

years has been caused largely due to the availability of new deposition methods 

and processes, which can provide enhancements to morphology, structure, 

composition, adhesion, and cohesion of a coating. Several new or advanced 

PVD technologies have emerged in recent years, including atomic layer 

deposition (ALD), glancing angle deposition (GLAD), filtered cathodic arc 

deposition, vacuum polymer deposition (VPD) and high-power impulse 

magnetron sputtering (HiPIMS). While the principles of most of these processes 

have been known for over 70 years, their development and scaling up have 

been limited and delayed, due to slow advances of technologies involved in the 

processes, such as high-current and high-voltage power supply technology, 

process control and related electronic technologies, plasma physics and 

chemistry and vacuum technology.  
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1.11.1.2 High Power Impulse Magnetron Sputtering 

Magnetron sputtering, a type of PVD deposition method, is a plasma based 

technique, in which a magnetic field is applied to trap electrons in the vicinity of 

the target, in order to increase the degree of ionisation. The number of sputtered 

atoms depends upon the amount of inert gas ions which bombard the target 

surface. The supply of the inert gas can be increased by increasing ionising 

collisions of neutral gas atoms with electrons. Such increased ionisation 

confined within the region near the target surface can be promoted using the 

magnetic field. The concept of a magnetron is shown in Figure 1.14, while a 

schematic diagram of a HiPIMS deposition chamber is shown in Figure 1.15. 

The confined electrons continually create ions out of the inert gas, and 

subsequently bombard the target surface, consequently increasing the 

sputtering rate. In magnetron sputtering the degree of ionisation of the plasma 

particles is relatively low [149], which results in a low total flux of ions involved 

in film growth on the substrate. The degree of ionisation can be increased by 

applying high bias voltage (up to the magnitude of several thousands of volts).  

 

Figure 1.14: Basic concept of a magnetron; S and N relate to the South 
and North poles of the magnets, respectively. 
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Figure 1.15: Schematic diagram of a simple HiPIMS deposition chamber 
(adapted from [150]). 

In 1999 Kouznetsov et al. [151] proposed a high power pulsed operation of the 

sputtered target, showing an increased total ion flux and a sputtered material 

ionisation of approximately 70%. The new deposition method was called High-

Power Impulse Magnetron Sputtering (HiPIMS) and was patented in the US in 

2001. The HiPIMS method utilises high power density (500 – 2000 W/cm2), 

short impulses (in the order of microseconds) at low duty cycles (0.5 – 5%) 

[152], which allows the target material to cool down during the ‘off’ period and 

for the process to maintain stability. The plasma in HiPIMS is generated by glow 

discharge, while the discharge voltage is maintained at several hundred volts. 

The main advantages of HiPIMS are high density plasma and high ionisation 

fraction of the sputtered vapour, which results in better control of film growth. 

The coating deposited by HiPIMS has high density morphology, has a potential 

to produce defect-free films and has an increased ratio of hardness to Young’s 

modulus, which is a measure of the toughness properties of the coating. 

1.11.2 Tribological coatings for biomedical applications  

In vivo wear performance of medical implantable devices is paramount to their 

longevity. Wear particles generated in vivo may cause an adverse tissue 

reaction around the implant, followed by osteolysis, which in turn will lead to 
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failure of the device through loosening. Wear and wear related damage is a 

common failure cause of total joint replacement prostheses 

[153,154].Therefore, low friction and wear rates are desirable for articulating 

surfaces for load-bearing implants. With the decrease of popularity of MoM 

devices, tribological coatings may provide favourable combination of material 

durability and wear performance and without having a negative impact on the 

biocompatibility of the device. The tribological performance of medical alloys 

can be improved using surface engineering treatments such as nitrogen ion 

implantation, ceramic coating deposition or diamond-like carbon film formation. 

Moreover, delamination resistance and coating adhesion of the tribological 

coatings are very important. The following section will give a brief overview of 

several tribological coatings proposed for joint replacement implant 

applications. 

Diamond-like Carbon coatings  

Diamond-like carbon (DLC) coatings can consist of different forms of 

amorphous carbon, which display some of the characteristics of diamond. They 

can be deposited by using different coating technologies and various process 

parameters can be optimised in order to produce the most suitable coating for 

a given application. The coating can be deposited with and without hydrogen, 

alloyed and doped with additional compounds, and with a variable sp2/sp3 ratio 

(ratio of different types of atoms hybridisation). It has been shown that 

properties like electrical conductivity [155,156]; mechanical hardness and 

ductility, surface energy [157] and bacterial suppression [158] of the coating, 

can be altered by alloying or doping with various elements. As a result of its 

improved tribological and mechanical properties [159], good corrosion 

resistance, bio- and haemocompatibility [160,161], DLC coatings have emerged 

as a promising material for medical applications. To date, several 

cardiovascular, dental and orthopaedic devices coated with DLC are available 

on the market. The load bearing joint replacement devices include hip, knee, 

metatarsophalangeal, and spinal disc (both lumbar and cervical) implants. The 

in vitro simulator tests of the hip, knee and spinal disc implants have shown 



 
Chapter 1 

 

75 

 

promising, significant decrease in wear volumes, when compared to other, 

commercially available material combinations, such as uncoated CoCr and 

alumina[158,162–167]. Although the tests showed superior tribological 

performance of the DLC coated implants, the test approaches and protocols 

applied in the studies differ from one another, and rarely comply with any of the 

internationally recognised standards (ISO, ASTM). Additionally, any in vitro 

results require in vivo validation, which, particularly for the orthopaedic devices, 

are sparse. A limited number of publications on in vivo performance of DLC 

coated implants are available. Maestretti et al. [168] and Benmekhbi et al. [169] 

published studies on the development of cervical disc replacement devices 

(BAGUERA® and DiscMaxxC®, respectively), both coated with commercially 

available coating - Diamolith™. Nonetheless, no detailed medical follow-up 

studies involving these implants are available in the literature. A series of DLC 

coated titanium femoral heads articulating against UHMWPE cups [170], and 

DLC coated CoCrMo metatarsophalangeal prostheses [171] were found to 

have high failure rates. The failure of both devices was associated with delayed 

delamination of the coating caused by crevice corrosion of the silicon interlayer 

[172,173].  

Ceramic coatings 

Titanium nitride (TiN) ceramic coatings are extremely hard and often used to 

harden and protect cutting and sliding surfaces. In the biomedical industry, TiN 

coatings are often deposited on medical grade titanium alloy (Ti6Al4V), in 

attempt to improve its poor wear performance, which is the major disadvantage 

of the material. Another common ceramic coating used in biomedical 

applications is chromium nitride (CrN), which is extremely hard and corrosion 

resistant. Both coatings are typically deposited by various PVD techniques. 

Titanium nitride achieved promising results in in vitro tests, including hip 

simulator tests when articulating against UHMWPE inserts [174], however some 

in vivo failures occurred [175]. Explant analyses of failed TiN coated femoral 

heads showed discolouration and delamination of the coating [175,176]. 

Moreover, voids in the coating and TiN wear fragments in the periprosthetic 
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tissues were found. Clinical studies conducted by Massoud et al. [177] showed 

increased numbers of femoral head loosening in the TiN-coated group than in 

the CoCr control group at a 26 months follow-up.  

Commercially, CrN coatings deposited via PVD are used to enhance the 

mechanical and tribological properties of forming and machining tools made 

from high speed steels and cemented tungsten carbide [178] . When CrN was 

compared with TiN and DLC coatings, it was shown that the CrN and DLC 

coatings had superior tribological properties and exhibited significantly lower 

wear rates [179–181]. Application of CrN coatings for carpometacarpal joint 

replacement application showed significant reduction of mean volumetric wear, 

as well as the amount of metallic debris produced [182]. Moreover, it was shown 

that CrN-coated THR implants exhibited superior wear properties when 

compared to uncoated devices [183]. However, it was noted that adverse 

testing conditions (edge loading) of MoM implants, as well as insufficient 

adhesion and coating defects, such as droplets, can affect the performance of 

ceramic coatings [184]. When CrN was used in MoP hip design, significant 

reduction of volumetric wear and metal ion release was shown [185], under both 

standard and adverse conditions where 3rd body wear particles were 

introduced. 

Recently a new ceramic material (in both bulk and coating form) has been 

proposed for load bearing joint implants. Owning to its superior mechanical 

properties, excellent biocompatibility and low wear rates, silicon nitride has 

recently been introduced into the biomedical field. Synthetic silicon nitride 

(Si3N4) was first developed in 1895; however it was not used commercially until 

the 1980’s, when it was introduced for use in internal combustion engines and 

high-temperature gas turbines.  Current uses of Si3N4 include high-performance 

bearings, turbine blades, ball bearings and glow plugs; these applications 

require a material with a high fracture toughness, strength and low wear 

properties. The Si3N4 ceramics present a favourable combination of 

mechanical, tribological, chemical and thermal properties that make them 

suitable for components requiring high performance in severe environments. As 
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a consequence, silicon nitride ceramics have been proposed as an alternative 

structural material [186,187] or as tribological coatings [188–190] for joint 

replacement load bearing components. Furthermore, silicon nitride and its 

particles have been shown to dissolve in polar solvents, such as water 

[191,192], phosphate buffered saline, blood, serum [193] and gastric acid [194]. 

As a result, it has been suggested that wear debris produced by Si3N4 bearings 

may dissolve over time in vivo, and thus reduce the adverse biological 

responses in periprosthetic tissues, and consequently increase longevity of 

implants. Recent assessments of the tribological properties of silicon nitride 

coatings resulted in similar to bulk Si3N4 coefficients of friction. Ball on disc 

testing of different silicon nitride coatings [188,190] resulted in a coefficient of 

friction which ranges between 0.12 and 0.22, as reported by Olofsson et al. 

[188] and 0.1 and 0.3 as reported by Pettersson et al.[190]. One of the coatings 

tested by Olofsson et al. [188] demonstrated coefficient of friction of 0.45; 

however the sample had high surface roughness, which, most likely, was a 

result of high target power used in the deposition process of this sample. 

Olofsson et al. [188] also assessed the coating adhesion properties, utilising 

scratch testing. The results showed poor coating adhesion, with all but one 

samples failing upon the tip engagement, resulting in zero coating adhesion 

results were found by Pettersson et al. [190]; all the coating samples 

delaminated during friction testing. Low wear rates and coefficients of friction 

demonstrated by both bulk and coating forms of silicon nitride, among other 

favourable features of the material, such as mechanical properties and 

biocompatibility, suggest the potential of the material for use in bearing surfaces 

of total joint replacements. Current biomedical applications of bulk Si3N4 include 

cervical spacers and spinal fusion devices, which achieve successful short-term 

results [195]. Moreover, silicon nitride fixation plates and screws, as well as 

bearings for spine disc surgery, total hip and knee replacement have also been 

developed [196,197].  

Clearly, biotribological performance of cervical total disc replacement devices 

is still not fully understood. Moreover, the wear debris produced by the devices 

has not been fully characterised and biological responses to the debris has not 
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been studied in detail. With early reports on wear-induced inflammatory 

responses and metalosis [119,121,128,132], there is a clear need for further 

investigations. Additionally, as new biomaterials and coatings become 

available, and their potential for improving tribological performance and 

biocompatibility of the wear require further studies. This literature review has 

provided the background for the studies performed within this thesis. 

1.12  Aims and Objectives 

In total joint replacement, the assessment and understanding of the 

biotribological performance of a device can help predict and gain insight into its 

performance in vivo. In the current work, a MoM CTDR design was developed 

and tested in vitro. Both chromium nitride and silicon nitride coatings were 

proposed for CTDRs applications, as an alternative to the currently available 

MoP devices and as a comparison group to the MoM design. 

The primary aim of this study was to investigate the biotribology of a novel 

design of cervical total disc replacement device in its pristine form and coated 

with chromium nitride or silicon nitride, in order to understand the influence of 

loading conditions upon the tribological performance of the implant, and to 

investigate biological effects of the wear debris produced by the implants. These 

aims will be achieved via a number of objectives: 

• To investigate the effect of disc design on the theoretical maximum 

pressure and predicated lubrication regime of CTDRs, by applying the 

Hertzian contact model. All theoretical calculations and subsequent 

physical testing to be conducted based on and using a generic CTDR 

device designed by the author. 

 

• To investigate the mechanical properties of the chromium nitride and 

silicon nitride coatings deposited on flat coupons through series of bench 

tests evaluating Young’s modulus, hardness, surface roughness, scratch 

resistance, chemical composition and thickness of the coatings. 
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• To determine the effect of bearing material on the tribological 

performance of coated and uncoated CTDR devices by performing an in 

vitro wear study in the six-station spine simulator and assessing wear 

rates produced by pristine and coated CTDRs. 

 

• To investigate the effect of loading and kinematic conditions applied on 

the tribological performance and wear modes and patterns exhibited by 

the CTDR devices through application of different loading regimes used 

in simulator testing: as per standard ISO-18192-1:2011 [135] and a 

modified version of the standard protocol. 

 

• To characterise the wear debris and to determine the biological 

responses of primary porcine dural fibroblasts and murine fibroblast cell 

lines to the wear debris generated from uncoated and coated devices, 

and assess the dose-dependent effects on the cell viability to the debris, 

by co-culturing cells and wear particles and employing ATP Lite assays 

over a period of 6 days to evaluate cell viability. 

 

The following chapters of this thesis will take the reader through the work 

undertaken by the author in order to fulfil the aims outlined above. The studies 

(as shown in Figure 1.16) were divided into themes: theoretical prediction of 

maximum contact stress and lubrication regime; coating characterisation; wear 

performance; and biological consequences of wear. It was considered that 

potential clinical success of the device proposed in this study would be 

multifactorial and mainly comprise of these four aspects. 
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Figure 1.16: Summary of the studies performed in each chapter. The 
experimental work has been divided into 4 parts which investigated 

coating properties, theoretical analysis of maximum stress and 
lubrication regime, in vitro wear performance and potential 

biological consequences of wear. 
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Chapter 2 : Design of a generic cervical metal-on-metal Total 

Disc Replacement 

2.1 Rationale and aims 

One of the aims of this project was to investigate wear and wear debris 

produced by metal-on-metal (MoM) and ceramic-coated (silicon nitride and 

chromium nitride) cervical disc replacement systems. To ensure a high level of 

validity and comparable results, it was deemed necessary to design a generic 

CTDR device that could be used across all tribological testing methodologies.  

Overall, the design of the generic CTDR device was based on other implants 

available commercially (Appendix 1). Ranges of sizes, bearing geometries and 

clearances have been reviewed and considered by the author (Chapter 1, 

section 1.9). The final geometry design has been closely based on a mid-size 

ProDisc-C device, which has shown successful clinical performance. The MoP 

bearing has been replaced by a MoM bearing or a ceramic-coated surface.   

All devices were designed and manufactured to ensure identical size, shape 

and surface finish. The first section of this chapter will guide the reader through 

the design of the novel MoM CTDR, the initial inspection of the machined 

devices. The following sections will investigate the design and bearing material 

implications on the theoretical lubrication regime and theoretical maximum 

contact stress exhibited by the device. 

2.1.1 Material selection 

The main goal of the CTDR is to retain disc height and to maintain motion in the 

affected segment as closely as possible to the natural joint. Hallab et al. [93] 

identified materials optimisation criteria for use in CTDR design. These included 

the ability to preserve kinematics, biomechanics and height of the disc, 

biocompatibility, reliability and durability of the materials. The majority of the 

currently available CTDRs are based on metal-on-polyethylene bearing 

material combination, with the metal components primarily being made of 

cobalt-chromium alloys, while the polymeric portion is made of ultra-high 
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molecular weight polyethylene (UHMWPE). While such a combination exhibits 

low friction [93] there are major concerns associated with the use of UHMWPE, 

which are related to relatively high concentrations of wear particles produced 

by the material. Wear debris generated by UHMWPE is considered to be the 

main cause of osteolysis-induced implant loosening [198]. Recent studies, 

including CTDR [124] and LTDR [125,126] devices have reported signs of 

osteolysis following implantation of metal-on-polyethylene artificial disc devices. 

While to date the number of similar reports documenting in vivo wear, and wear-

related failures are limited, it is expected that as the number of patients treated 

with CTDRs continues to increase, more long-term studies will be published 

over time.  

Cobalt chromium molybdenum (CoCrMo) alloy is one of the most commonly 

used biomaterials in TJR, due to its superior mechanical properties [199]. Wear 

properties of CoCr are superior to those of other metal biomaterials (stainless 

steel and titanium) [199], however, a growing body of evidence suggests that 

wear particles and ions generated by cobalt chromium bearings can have 

cytotoxic effects on cells in tissues in close proximity to the implants, which can 

lead to hypersensitivity and pseudotumour formation [95].  

While excessive wear can be prevented with adequate material selection and 

operating lubrication regime, another method of decreasing wear is the use of 

tribological coatings. In the past, CoCr substrates, used in TJR applications, 

have been successfully coated with DLC, CrN as well as Si3N4 and have shown 

superior tribological properties, when compared to uncoated controls or the 

same coatings deposited on titanium substrates [180,181,187,200]. 

The current study investigated an all metal CTDR device comprised of two 

cobalt chromium endplates; two variants of the device were investigated – 

pristine and coated with one of two tribological coatings – chromium nitride or 

silicon nitride. For the purpose of tribological assessment, two sets of 

components were manufactured – uncoated cobalt chromium components 

acting as control group and coated components acting as the investigative  

group. Both coated and uncoated components were based on the same generic 

CTDR design. 
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2.1.2 Endplate size and shape 

The endplate shape and size were considered not to be an important factor in 

the design in this study, as this was not expected to have an effect on the wear 

performance of the device. While the effects of mismatch in endplate footprint 

and vertebral body size have been previously highlighted in the literature 

[68,201], investigation of potential subsidence or fixation issues were not 

considered as objectives of this project. For this reason, the endplates were 

designed to have a simple rectangular shape. The endplate dimensions and 

bearing radius chosen for the device used in this study were based on 

medium/large size equivalents of other CTDR devices currently approved by 

the FDA. The comparison of the main design features of the FDA approved 

devices and the one designed for the purpose of this study is shown in Table 

2.1. 

2.1.3 Fixation 

The fixation method was not considered an important factor of the design as 

component fixation was not part of any of the investigations conducted in this 

study. The primary investigations revolved around the bearing surfaces and 

their tribological performance. For this reason, a simple tapered keel has been 

designed to assist in device fixation and removal (for measurements timepoints) 

from fixtures made from Erthacetal®H resin. 

2.1.4 Bearing surface 

The bearing surfaces of the device were designed as a simple ball-in-cup type 

of articulation, similar to the one seen in ProDisc-C device. The convex side of 

the bearing was placed on the caudal endplate, while the concave on the cranial 

endplate. The radii used in the design were selected such that the height of the 

device was similar to those found in other CTDR devices (Table 2.1). The 

design of bearing surfaces of the device specified a surface finish of Ra 0.01-

0.05μm. Such surface roughness is in accordance with requirements for metal-

on-metal hip replacement implants specified by ISO-7206-2:2011 – ‘Implants 

for surgery -- Partial and total hip joint prostheses -- Part 2: Articulating surfaces 

made of metallic, ceramic and plastics materials’ [202] . 
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Table 2.1: Main design characteristics, including sizes and range of motion of the currently FDA-approved CTDR 
devices. 

 

 

Brand name Endplate size Disc height 

Range of motion 

Flexion/Extension Lateral Bending Axial rotation 

Bryan 14-18mm dia 6mm ±11° ±11° 7° 

PrestigeST 12x17.8mm 6mm ±10° ±10° Unconstrained 

ProDisc-C 12x15mm,14x15mm, 
14x17mm,16x17mm,   
16x19mm,18x19mm 

5-7mm ±20° ±20° Unconstrained 

Secure-C 11x12mm,13x14mm, 
14x16mm,15x18mm 

6-11mm anterior side 

7-12mm posterior side 

±15° ±10° Unconstrained 

Mobi-C 13x15mm,13x17mm,1
4x15mm,14x17mm,15
x15mm,15x17mm 

5-7mm Information unavailable Information 
unavailable 

Unconstrained 

Generic CTDR design 
(this study) 

14x17mm 7mm ±17° ±17° Unconstrained 
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2.1.5 Radial clearance and bearing radius 

The radii of the convex and concave components were chosen such that the 

radial clearance was in the range of 0.150 and 0.175 mm. The radii of the 

convex and concave components were design to be 6.45 and 6.30 mm, 

respectively. Clearances ranging between 0.05 mm and 0.2 mm have 

previously been used in studies investigating lumbar total disc replacement 

devices, such as ProDisc-L [71,203,204]. Moreover, clearances of 0.1 mm and 

0.15 mm have been used for hip and wrist implants [205,206].  

2.1.6 Contact stress analysis 

Investigation of the maximum contact stress and lubrication regimes for MoM 

and ceramic-coated CoCr cervical total disc replacement devices was carried 

out. The analyses provided an additional rationale for the design of the device, 

as well as determined likely lubrication operation conditions of the devices. 

Additional insight into how the theoretical lubrication regime and maximum 

contact stress can be affected by changes in the radial clearance and type of 

the surface material, was investigated.  

Contact mechanics investigates deformation of solid bodies, which contact 

each other at one or more points. The theoretical calculations allow determining 

stress-strain state near the contact region, which depends upon the shape of 

the body, material properties and loading conditions applied. 

The Hertzian theory, used in the current analysis, focuses mainly on non-

adhesive, fully elastic sphere-sphere contact geometry and its main 

assumptions were: 

• Each body can be considered an elastic half-space 

• The surfaces are frictionless 

• The contacting bodies are made of isotropic and homogenous materials 

• The strains are small and within the elastic limit 

• The surfaces are continuous and non-conforming i.e. the contact radius 

is significantly smaller than the radii of curvature of the contacting bodies 
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The theoretical lubrication regime prediction used in this chapter was based on 

the determination of the lambda ratio (λ ratio), which is based upon the 

relationship between the film thickness and the average surface roughness. 

There are three main regimes of lubrication upon which an engineering system 

can work: boundary (indicated by λ<1), mixed (true for 1<λ<3) and 

hydrodynamic (determined by λ<3) (see section 1.6). 

2.2 Materials 

2.2.1 Machining and component inspection 

Total disc replacement components, convex and concave plates, were 

machined from a low carbon < 0.14% (w/w) CoCr alloy (ASTM-F1537) supplied 

by Peter Brehm GmbH (Weisendorf, Germany). Eighteen convex and eighteen 

concave parts were machined. The dimensions and geometrical tolerances of 

the components are shown in Figure 2.1 and Figure 2.2. All components were 

later polished by Mrs. Jane Cardie (Technician, School of Mechanical 

Engineering) and finished to an Ra of <0.05μm. Once polished, 12 convex and 

12 concave components were shipped to IonBond Ltd. (Olten, Switzerland), 

where they have undergone physical vapour deposition (PVD) coating process; 

six were coated with silicon nitride (using HiPIMS PVD) and the other six with 

chromium nitride (n=6). Following the coating process, samples were re-

polished manually at IonBond. 

All components (coated and uncoated) were inspected for their geometry, 

bearing surface radius, radial clearance and surface roughness. The bearing 

radii, as well as the width and length of the endplates, of both convex and 

concave components were determined using Legex 322 Coordinate-Measuring 

Machine (CMM) (Mituyoto, Andover, UK). The CMM was fitted with PH6M probe 

head (Mituyoto, Andover, UK) and TP7M probe module (Mituyoto, Andover, 

UK). Measurements were taken using a 1mm diameter stylus (A-5000-3551) 

(Mituyoto, Andover, UK). A two-dimensional contacting profilometer, (Talysurf 

PGI 800) used in surface roughness assessment was supplied by Taylor 

Hobson (Leicester, UK). The methodology and results of the surface roughness 

inspection of the pristine and coated CTDRs is presented in Chapter 4. 
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Figure 2.1: Dimensions and geometrical tolerances speficied for the concave components of the CTDR device. 
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Figure 2.2: Dimensions and geometrical tolerances speficied for the convex components of the CTDR device.
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2.2.2 Contact stress analysis 

The analyses investigated a range of different parameters (Table 2.2), which 

allowed assessment of the potential effects of the radial clearance (i.e. 

dimensional deviations from the design) on the maximum contact pressure and 

determination of the theoretical lubrication regime under which the CTDR 

components may operate. 

The baseline radius used in the analysis remained as specified by the design – 

6.3 mm, however, a range of radial clearances were analysed, in order to 

include those measured during component inspection. For uncoated CoCr, the 

Young’s modulus and Poisson’s ratio were chosen to be 210 GPa and 0.3, 

respectively (as per datasheet supplied by the manufacturer, which met the 

ASTM-1537-11 requirements) [207]. For the coated devices, Young’s moduli 

and Poisson’s ratios of a bulk material were used – for silicon nitride 250GPa 

and 0.2 [208], and for chromium nitride 201GPa and 0.2 [209]. However, it must 

be pointed out, that the values of Young’s modulus and Poisson’s ratio of 

coatings reported in the literature vary with coating deposition parameters and 

deposition methods. The maximum load used in the analysis corresponds to 

the maximum load used in the standard spine simulator testing protocol for 

cervical components, as per ISO-18192-1:2001. Similarly, the angular velocity 

corresponds to the flexion/extension motion used in the standard ISO protocol 

i.e. ±7.5° at 1Hz. The viscosity used in the analysis corresponded to that of 25% 

(v/v) foetal bovine serum, which was used as a lubricant in spine simulator 

37±0.1° [210–212]. Average surface roughness values measured in the pre-test 

component inspection have been used in the analysis (reported in Chapter 4 

Section 4.5.1.1.2).  
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Table 2.2: Parameters used in the Hertzian theoretical contact stress 
prediction model. 

*25% (v/v) bovine serum at 37±0.1° [210–212] 

2.3 Methods 

2.3.1 Component inspection 

A coordinate measuring machine was used to determine the critical dimensions 

of the cervical disc components – the length and width of the endplates, as well 

as the radii of the concave and convex bearing surfaces.  

Five measurement points were taken on two edges of each endplate and used 

to create the X and the Y planes. An additional 4 points were taken on each 

corner of the superior flat surface of each endplate (Figure 2.3) and these were 

used to create the Z plane. Distances between those points in the X and Y 

direction were assumed to be equal to the length and width of each endplate. 

Twenty-five measurement points were taken on convex or concave surface of 

each component. One point was taken at the pole, following by 3 rings of 8 

equally spaced points (intervals of 45°) at approximately ¼, ½, and ¾ of the 

convex/concave bearing height. The clearances were determined by 

Parameter Constant Variable 

Radius [mm] 6.30  

Clearance [mm]  0.13; 0.15; 0.17;  

Elastic modulus [GPa]  210, 250, 200 

Poisson’s ratio  0.3, 0.2, 0.2 

Load [N]  0-150 

Angular velocity [rad/s]  0-0.3 

Viscosity [mPas]  0.9* 

Surface roughness [μm] 0.025; 0.015  
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subtracting the diameter of the convex surface from the diameter of the concave 

surface. All measurements were repeated three times on the same component 

and average values were presented in this work. 

 

Figure 2.3: A: Five, approximately equally spaced points (marked red) 
were used to create XY planes. In addition, four points, taken on the 

superior flat surface of each endplate, were used to create the Z 
plane.  B: Twenty-five measurement points were taken on each 

component, one point on the pole, followed by 3 sets of 8 equally 
spaced points at 1/4, 1/2 and 3/4 of the bearing height. 

 

2.3.2 Contact stress analysis and lubrication regime prediction 

2.3.2.1 Maximum contact stress 

The cervical disc replacement is a semi-constrained design, which attempts to 

retain motion of the disease-affected spinal segment by adopting a ball-on-

socket articulation. It is equivalent to a ball-and-socket joint, with the ball having 

a radius R1 and socket having a radius of R2 (as shown in Figure 2.4). The 

Young’s modulus and Poisson’s ratio for both the ball and socket were E and ν, 

respectively. The radial clearance c between the ball and socket was defined 

as:  

                                                    𝒄 = 𝑹𝟐 − 𝑹𝟏 

Equation 2.1 
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Figure 2.4:  Schematic diagraph showing the geometry of the ball-and-
socket joint 

The Hertzian contact model was employed to analyse the surface contact 

stresses between the bearing surfaces. The maximum contact stress (Pmax) was 

determined from [203,213,214]:   

𝑷𝒎𝒂𝒙 = [
𝟔𝑭𝑬′

𝟐

𝝅𝟑𝑹′𝟐
]

𝟏
𝟑

 

Equation 2.2 

 

 where F is the applied force, E′ is the equivalent elastic modulus for the two 

bearing materials and R’ is the equivalent radius for the ball and socket. These 

two parameters were calculated from: 

𝑬′ = 
𝑬

𝟐(𝟏 − 𝝂𝟐)
 

Equation 2.3 

and 

𝑹′ =
𝑹𝟏(𝑹𝟏 + 𝒄) 

  𝒄
  

Equation 2.4 

2.3.2.2 Lubrication 

The lubrication regime was predicted by calculating the corresponding lambda 

ratio (λ) and given as:  

𝝀 =
𝒉𝒎𝒊𝒏
𝝈
  

Equation 2.5 

R1 

R2 
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where hmin is the minimum effective film thickness and 𝜎 is the compound 

surface roughness given by:  

𝝈 =  √𝑹𝒂𝟏
𝟐 + 𝑹𝒂𝟐

𝟐    

 Equation 2.6 

where Ra1 and Ra2 are the mean surface roughness of the bearing surfaces for 

the ball and socket, respectively. These were measured during component 

inspection and were Ra1=0.015±0.02μm and Ra2= 0.023±0.03μm.  

2.3.2.3 Minimum effective film thickness  

The minimum film thickness between the bearing surfaces was calculated using 

the formula below, proposed by Hamrock & Dowson [215]. This equation has 

been used by in many studies of joint replacement, such as hip joint [210] and 

lumbar TDR [71]. 

𝒉𝒎𝒊𝒏 = 𝟐. 𝟖𝑹′ (
𝜼𝒖

𝑬′𝑹′
)
𝟎.𝟔𝟓

(
𝑭

𝑬′𝑹′𝟐
)
−𝟎.𝟐𝟏

 

Equation 2.7 

where, η is the lubricant viscosity, E’ is the equivalent modulus of elasticity and 

u is the entraining velocity. The latter two parameters were calculated from: 

𝑬′ = 
𝑬

(𝟏 − 𝝂𝟐)
 

Equation 2.8 

and 

𝒖 =  
𝝎𝑹𝟏
𝟐

 

Equation 2.9 

where ω is the angular velocity in radians per second. 
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2.4 Results 

2.4.1 Component inspection 

2.4.1.1 Uncoated CTDRs 

Data gathered during the component dimensional inspection of the uncoated 

CTDRs is shown in Table 2.3 and Table 2.4. The dimensional inspection 

showed that the control of width and length of the endplates, which were 

machined on a CNC machine, was better, when compared to the bearing 

radius, which has undergone manual polishing process.  Following the radius 

inspection, the components were paired, so that the radial clearance remained 

as consistent as possible across all pairs. Subsequently, the paired components 

were numbered 1-6, correlating with the station number of the spine simulator 

they were to be fitted in. The resultant radial clearances of all pairs are shown 

in Table 2.3. The endplate and bearing radii dimensions as well as assigned 

station IDs are listed in Table 2.4. 

Table 2.3: Radial clearances of paired uncoated devices measured using 
the CMM. 

Component ID Radial clearance [mm] 

1 0.157 

2 0.162 

3 0.162 

4 0.166 

5 0.166 

6 0.163 

Mean±SD 0.163±0.003 
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Table 2.4: Dimensional inspection of the bearing surface radii and 
endplates of the uncoated CTDRs. 

Station ID Radius±SD  [mm] Width±SD [mm] Length±SD 
[mm] 

1 

Concave 6.430±0.002 14.03±0.01 17.00±0.02 

Convex 6.273±0.001 14.06±0.01 17.00±0.01 

2 

Concave 6.447±0.001 14.02±0.02 17.00±0.03 

Convex 6.285±0.001 14.03±0.01 17.00±0.01 

3 

Concave 6.455±0.001 14.02±0.03 17.00±0.04 

Convex 6.292±0.002 14.06±0.01 16.99±0.02 

4 

Concave 6.440±0.003 14.01±0.03 17.00±0.03 

Convex 6.278±0.001 14.06±0.03 16.99±0.01 

5 

Concave 6.452±0.001 14.02±0.02 17.00±0.01 

Convex 6.286±0.004 14.05±0.03 16.99±0.02 

6 

Concave 6.455±0.001 14.03±0.01 16.99±0.03 

Convex 6.298±0.001 14.04±0.03 16.99±0.04 

2.4.1.2 Coated CTDRs 

Data gathered during the component dimensional inspection of the coated 

CTDRs is shown in Table 2.5 and Table 2.6. Similarly, to the uncoated parts, 

following the radius inspection, the components were paired so that the radial 

clearance remained as consistent as possible across all pairs. Subsequently, 

the paired components were numbered 1-6, correlating with the station number 

of the spine simulator they were to be fitted in. To address the possibility of the 

coatings were inability to withstand the initial testing and becoming damaged, 

spare six devices were also prepared. Inspection results of these additional 

components are also included in Table 2.5 and Table 2.6. The resultant radial 
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clearances of all pairs are shown in Table 2.5. The endplate and bearing radii 

dimensions, as well as assigned station IDs are listed in Table 2.6. 

Table 2.5: Radial clearances of paired coated components measured 
using the CMM. Devices corresponding with Stations 1, 3 and 5 

were coated with chromium nitride, whilst devices from stations 2, 4 
and 6 were coated with silicon nitride. The additional six sets of 
components were also inspected and are detailed here with the 

annotation ‘a’. 

Station ID (coating) Radial clearance [mm] 

1 (CrN) 0.128 

2 (Si3N4) 0.135 

3 (CrN) 0.130 

4 (Si3N4) 0.135 

5 (CrN) 0.129 

6 (Si3N4) 0.126 

1a (CrN) 0.124 

2a (Si3N4) 0.159 

3a (CrN) 0.124 

4a (Si3N4) 0.100 

5a (CrN) 0.116 

6a (Si3N4) 0.100 

Mean±SD 0.125±0.016 
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Table 2.6: Dimensional inspection of the bearing surface radii and 
endplates. Additional components were annotated with ‘a’. 

Station ID Radius±SD   [mm] Width±SD [mm] Length±SD [mm] 

1 
Concave 6.430±0.003 14.03±0.01 17.00±0.03 

Convex 6.302±0.001 14.06±0.02 17.00±0.01 

2 
Concave 6.437±0.002 14.02±0.02 17.00±0.03 

Convex 6.304±0.001 14.06±0.01 17.00±0.01 

3 
Concave 6.432±0.001 14.02±0.02 17.00±0.03 

Convex 6.302±0.003 14.06±0.01 16.99±0.01 

4 
Concave 6.438±0.001 14.03±0.01 17.01±0.01 

Convex 6.303±0.001 14.03±0.01 16.99±0.04 

5 
Concave 6.433±0.002 14.03±0.01 17.00±0.02 

Convex 6.304±0.005 14.04±0.01 17.00±0.01 

6 
Concave 6.424±0.001 14.02±0.03 17.00±0.04 

Convex 6.304±0.003 14.06±0.01 16.99±0.02 

1a 
Concave 6.421±0.002 14.01±0.02 17.00±0.02 

Convex 6.297±0.004 14.02±0.01 17.00±0.01 

2a 
Concave 6.457±0.002 14.03±0.03 17.00±0.01 

Convex 6.300±0.003 14.06±0.03 16.99±0.02 

3a 
Concave 6.421±0.003 14.02±0.02 17.01±0.01 

Convex 6.297±0.003 14.01±0.03 16.99±0.02 

4a 

Concave 6.396±0.004 14.03±0.01 16.99±0.03 

Convex 6.300±0.001 14.06±0.03 16.99±0.04 

5a 

Concave 6.425±0.002 14.03±0.01 17.00±0.02 

Convex 6.309±0.001 14.03±0.01 17.00±0.01 

6a 

Concave 6.390±0.002 14.03±0.03 17.00±0.03 

Convex 6.293±0.005 14.05±0.03 16.99±0.01 
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2.4.2 Contact stress analysis 

2.4.2.1 Maximum contact pressure 

The relationship between radial clearance and maximum contact pressure is 

shown inFigure 2.5. For the MoM combination, under a load of 150 N the 

maximum contact pressure was found to be 159 MPa, 174 MPa and 189 MPa 

for clearances of 0.13 mm, 0.15 mm and 0.17 mm, respectively. Under the same 

conditions, the maximum contact pressure for silicon nitride-coated devices was 

found to be 172 MPa, 189 MPa and 205 MPa for clearances of 0.13 mm, 0.15 

mm and 0.17 mm, respectively. Chromium nitride-coated devices were found 

to produce maximum contact pressures of 149 MPa, 163 MPa and 177 MPa, 

for clearances 0.13 mm, 0.15 mm and 0.17 mm, respectively. 

 

Figure 2.5: Variation of maximum contact pressure depending on radial 
clearance, under loads ranging from 0 to 150 N. The worst-case 
clearance (c=0.17mm) resulted in maximum contact pressure of 

189MPa, 205MPa and 177MPa for CoCr-CoCr, Si3N4-Si3N4 and CrN-
CrN bearing combinations, respectively.  
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2.4.2.2 Lubrication 

The effect of radial clearance on predicted minimum film thickness and lambda 

ratio are shown in Figure 2.6 and Figure 2.7, respectively. For the same angular 

velocities, the theoretical minimum film thickness and lambda ratio were 

increasing with smaller radial clearances. At the same time, higher values of the 

minimum film thickness and lambda ratio were observed at for higher angular 

velocities. The same relationship between the angular velocities, radial 

clearance and minimum film thickness, and lambda ratio were found for all three 

bearing material combinations.  

Results of the minimum film predictions at the highest angular velocities at 

constant load of 150N (Table 2.7) show that chromium nitride bearing 

combination resulted in the highest minimum film thickness values, for all 

bearing clearances investigated. Predictions of the lambda ratio at the highest 

angular velocities at a constant load are shown in Table 2.8. These results show 

that for each clearance tested, chromium nitride achieved the highest values of 

lambda ratio. Changes in minimum film thickness and λ ratio under changing 

loads for different bearing combinations are shown Figure 2.8 and Figure 2.9, 

respectively. There results show that both minimum film thickness and lambda 

ratio had the highest values at lower loads and highest entraining velocities. 

The same relationship between the load, entraining velocity and minimum film 

thickness, and lambda ration were found for all bearing material combination 

investigated. However, it was found that when tested with the same loads and 

entraining velocities chromium nitride bearing material achieved the highest 

values of minimum film thickness and lambda ratio.  
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Table 2.7: Results of minimum film thickness prediction for different 
bearing materials, at maximum angular velocities and a constant 

load of 150 N. 

 

Bearing Minimum film thickness [µm] 

 c = 0.13 mm c = 0.15 mm c = 0.17 mm 

CoCr 0.055 0.048 0.043 

Si3N4 0.053 0.047 0.042 

CrN 0.058 0.051 0.045 

 

Table 2.8: Results of lambda ratio for different bearing materials, at 
maximum angular velocities and a constant load of 150N 

 

Bearing Lambda ratio 

 c = 0.13 mm c = 0.15 mm c = 0.17 mm 

CoCr 1.89 1.69 1.49 

Si3N4 1.82 1.63 1.44 

CrN 2.00 1.74 1.54 
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Figure 2.6: Variation of minimum film thickness with angular velocity for 
different radial clearances and different bearing material 

combinations. The figure shows prediction for a CDTR under 150 N 
load. 
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Figure 2.7: Variation of lambda ratio with angular velocity for different 
radial clearances and different bearing material combinations. The 

figure shows prediction for a CDTR under 150 N load.  
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Figure 2.8: Variation of minimum film thickness under load range 0-150 
N and for different angular velocities for different bearing 

combinations. A constant radial clearance of c=0.15 mm was used. 



Chapter 2 

 

104 

 

Figure 2.9: Variation of lambda ratio under load range 0-150N and for 
different angular velocities for different bearing combinations. A 
constant radial clearance of c=0.15 mm was used. At lower loads 

and higher entraining velocities the λ ratio for each bearing 
combination can reach approximately λ=3. 
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2.5 Discussion 

2.5.1 Design of the CTDR device 

The concave and convex radii were (per design) 6.45mm (+0.025/-0.00) and 

6.30mm (+0.025/-0.000), respectively. The radial clearance was therefore 

designed to be in the range between 0.150 and 0.175mm. The component 

dimensional inspection has showed that some of the components did not meet 

the dimensional design specification. The dimensional deviations of the bearing 

radii were most likely caused by the manual polishing process, during which the 

control over material removal across the surface was limited and depended on 

the user’s experience. Despite these small dimensional deviations, the radial 

clearances of the MoM CTDRs remained within the specified range. The 

average clearance of the uncoated components was 0.163±0.003mm, whilst 

the average clearance of the coated components was 0.126±0.016mm, which 

was significantly lower (p<0.05, CI 95%). Such average clearances were 

outside (lower) the design specification. The main reason for this difference was 

the additional layer of coating added to the coated components. At the CTDR 

design stage of the project, the exact thickness of the coating was unknown and 

yet to be determined. It was later found that each coating was approximately 

5µm, and thus the coating layer resulted in a decrease in the radial clearance 

of approximately 10µm. Additionally, the CTDRs components, which 

subsequently coated, were polished at a different timepoint in the project, at 

which stage the process of manual polishing may have been improved with 

time, with improved user experience. The importance and effect of radial 

clearance on maximum contact pressure and relationship between operating 

lubrication regime and surface roughness are discussed in the following section. 

Moreover, a difference in the predicted maximum contract pressure between 

coated and uncoated components was investigated. 

2.5.2 Contact stress analysis and lubrication regime prediction 

The Hertzian contact model for cobalt-chromium on cobalt-chromium cervical 

total disc replacement predicted the maximum contact pressure, under a 150 N 

load, to be in the range of 159-189 MPa, depending on the radial clearance 

used in the prediction model. The same model applied to ceramic-coated 
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devices predicted that for the chromium nitride coated devices the maximum 

contact pressure was in the range of 149-177 MPa, whilst for silicon nitride 

coated devices the maximum contact pressure was in the range of 172-205 

MPa. Based on the results of the model, it can be concluded that under the 

same testing conditions and the same radial clearance chromium nitride has 

the most favourable mechanical properties, which, under those particular 

conditions, results in the lowest contact pressure.  

In their study, Xin, Shepherd and Dearn [216], found that the maximum contact 

pressure of a PEEK CTDR, under a load of 150 N, was in the range of 5.9-32.1 

MPa. Such difference is a result of a different material combination and much 

lower contact pressures found in materials with lower elastic moduli. Similarly, 

applying a Hertzian model to lumbar TDRs, the maximum contact pressure was 

found to be in the range of 3-6 MPa and 63-130 MPa for metal-on-polyethylene 

and metal-on-metal combinations, respectively [203]. However, it must be 

pointed out that lumbar TDR devices have larger bearing radii, which results in 

lower values of maximum contact pressure.  Despite relatively high values of 

the maximum contact pressure found for the metal-on-metal CTDR device in 

this study, as compared to other joint replacement devices, the theoretical 

maximum contact stress was below the fatigue strength of CoCr alloy – reported 

as 610MPa at >106 cycles [217]. Similarly, the maximum contact pressure for 

both coatings was found to be below the fatigue strength of the CrN coating – 

reported as 750MPa at 107
 cycles [218] and silicon nitride 600MPa at 105 cycles 

[219]. However, the results of the CrN coating fatigue strength presented by 

Costa et al. [218] were based on the coating deposited on Ti6Al4V substrate. 

The operating lubrication regime prediction model showed the λ ratio for MoM 

bearings to be in the range of 1.49-1.89, for different clearances. The chromium 

nitride coated CTDRs were found to generate a λ ratio range of 1.54 to 2.0, 

whilst the silicon nitride coated CTDRs 1.44-1.82. These are also reflected by 

the minimum film thicknesses achieved by different bearings – at the smallest 

tested clearance (0.13mm), the results were 0.055mm, 0.053mm and 0.058mm 

for MoM, silicon nitride and chromium nitride, respectively. For all bearing 

combinations, the λ ratio indicated that devices would operate in a mixed 

lubrication regime. Whilst, under lower loads (<50N) and higher angular 
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velocities, the λ ratio achieved by all bearings were as high as 3.2, indicating 

full film separation between the concave and convex components, such 

conditions are unlikely in vivo. To the author’s knowledge, at the time of writing, 

no studies on lubrication regime of MoM or ceramic-coated CTDRs have been 

published. Xin, Shepherd and Dearn [216] predicted PEEK-PEEK CTDR 

devices to operate under boundary conditions. Similarly, Shaheen and 

Shepherd, as well as Bushelow et al. predicted MoP and MoM lumbar TDRs to 

operate under boundary conditions [71,220]. While direct comparison between 

the lumbar and cervical TDRs cannot be made, due to differences in material 

combination, motions and loads, it can be speculated that similar lubrication 

conditions can be found in MoM hip implants. 

It has previously been shown, both theoretically [221] and experimentally [222], 

that MoM hip implants operate in mixed elastohydrodynamic lubrication (EHL) 

regime. Under this lubrication regime a large portion of the applied load is 

supported by films created through an elastohydrodynamic action [223]. During 

dynamic loading pressure in the converging film between two surfaces is 

produced. This pressure is sufficient to cause a local elastic deformation of 

either of the surfaces and keep them separated. Additionally, Dowson [224] 

reported on a localised micro-elastohydrodynamic effect occurring in MoM hip 

implants, where pressure perturbations in the film can cause a substantial 

flattening of surface asperities. This flattening increases conformity of two 

surfaces and assists in maintaining the lubrication film. 

When investigated, ceramic-on-ceramic (CoC) hip implants were found to 

operate in mixed-to-fluid film lubrication regime, depending on the exact 

conditions [210,225]. This is somewhat in line with the current study, whereby 

particularly the chromium nitride-coated devices were found to have higher 

predicted film thicknesses and lambda ratios compared to the other bearings 

tested. High Young’s modulus of silicon nitride meant that the predicted film 

thickness and lambda ratio were the lowest out of all bearing combinations 

investigated. 

While the method of predicting lubrication regime is widely used in the literature, 

it has some limitations. The prediction model assumes that the lubricant used 
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is Newtonian. In case of simulator testing, foetal bovine serum is used, which is 

a non-Newtonian fluid and shows shear thinning characteristics under relatively 

low shear rates [226]. Moreover, the analysis is limited to steady-state motion, 

which is not likely to be clinically relevant. In order to produce more clinically 

relevant prediction of the lubrication regime, experimental measurements of the 

frictional torque and plotting the Stribeck curve are necessary. The application 

of this simplified model, however, can be justified in the current study, where it 

was used merely to highlight the effect of radial clearance, material selection, 

loading on the operating lubricating regime. Observations made by Jin, Dowson 

and Fisher [223] and Dowson [227] advocated the importance of the clearance 

in the design of joint replacement implants. These authors stated that while the 

diameter of the bearing should be as large as possible, it is important for the 

radial clearance to be as small as practicable. Another important factor, which 

can have an effect on the lubrication regime, is surface roughness. It has been 

reported that alongside the radial clearance, the surface finish is the most 

important factor in lubrication mode determination [221]. Surface roughness is 

extremely important for maximising the λ ratio, especially during the running-in 

phase of wear. During the running-in phase, the implant operates in the 

boundary lubrication regime, the entire applied load is carried directly by the 

bearing interface and wear rates are up to 20 times higher as compared to the 

steady state wear phase operated in the mixed EHL [228]. 

By applying the Hamrock-Dawson elasto-hydrodynamic lubrication theory to a 

cervical total disc replacement and modelling in vivo operating conditions 

(loading, surface finish, motion profile and lubricant viscosity), it was shown that 

formation of a full film separation between the two CTDR components is 

unlikely. In fact, the lubrication was shown to be mainly governed by mixed or 

boundary lubrication, which indicates potential direct contact between the 

bearing surfaces.  

The Hertzian contact model, used in this thesis, assumes that the contact 

surface is smooth and frictionless and adhesion forces between the two 

contacting surfaces are not considered. Other elastic-smooth contact models, 

such as Johnson-Kandall-Roberts (JKR), take adhesion forces into 

consideration. Whereas in the work by Xin, Shepherd and Dearn [216], the two 
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contact models were compared and no difference in the maximum contact 

stress exhibited by PEEK-PEEK interface was found, this was mainly due to the 

relatively low surface energy of PEEK (0.044 J.m-2) [229]. Surface energy of 

CrN coating was found to be close to this of PEEK (0.045 J.m-2) 
 [230]; however 

silicon nitride surface energy can be as low as 0.008 J.m-2, when unoxidized 

[231], and thus surface adhesion of the two ceramic coatings would be assumed 

to be negligible. Moreover, the lambda ratio for the two coatings found in this 

thesis, was between 1 and 2, which suggested that, theoretically, mixed 

operating lubrication condition can be found in the CDTRs. Consequently, this 

suggested that the two bearing surfaces would often be separated by the 

lubricant, minimising the potential for adhesion and adhesive wear. CoCrMo 

alloy has much higher surface energy (56 J.m-2) [232] and therefore could 

(potentially) result in increased potential for adhesion between the two surfaces. 

Moreover, the theoretical lubrication operating conditions for MoM CTDRs was 

found to be ranging from boundary to mixed, and thus potential of direct contact 

between the two CoCr surfaces could be assumed. On the other hand, JKR 

contact model assumes that the two surfaces in contact are pristine and clean, 

which is not the case in neither the in vitro testing, as confirmed by the findings 

in this thesis i.e. presence of deposit on the surface of tested CTDRs, nor in 

vivo, where formation of tribofilm on MoM explants has been reported [138,233]. 

2.6 Conclusions 

A novel MoM CTDR device was designed for the purpose of this thesis. The 

design comprised of two CoCrMo endplates, sizes of which were based on 

other devices currently available clinically. Pristine and ceramic-coated variants 

were produced for further tribological investigations. The inspection of the 

components found that the radial clearance of the components varied between 

the components, particularly between the pristine and coated CTDRs, which 

were found to have smaller radial clearance, due to the additional 5µm of 

coating on each of the convex and concave components. Some variation of the 

bearing radii was likely to have been caused during the manual polishing 

process the components underwent. 
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The maximum contact stress exerted on the CTDR devices was calculated 

using the Hertzian model. It was found that, in comparison to MoP bearings, 

MoM and ceramic-coated devices would exhibit significantly higher contact 

stress, due to the mechanical properties of the materials. However, it was found 

that these stresses would not exceed fatigue strength of the raw materials used 

in the prediction model. The theoretical operating lubrication regime was also 

calculated, it was predicted that the CTDRs would operate mainly in the mixed 

conditions, however a variation of all three regimes could be observed, 

depending on the bearing material, radial clearance, load and entraining 

velocity of the lubricant. Whilst the results obtained in the current study are 

theoretical, it is known that lubrication regime can significantly influence wear 

performance of an artificial joint device, and thus MoM CTDR implant design 

parameters must be optimised in order, to achieve improved wear behaviour, 

similar to those seen in total hip replacement. In vitro investigation of the 

tribological performance of the uncoated and ceramic-coated CTDRs is 

reported in the next chapter.
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Chapter 3 : Coating characterisation 

3.1 Introduction 

The biomedical sector is one example of an industry, where surface properties 

of an implant are critical to their lifetime, safety, efficacy and biocompatibility. 

As such, one of the main requirements of a biomaterial is its resistance to the 

environment found in the human body. Corrosion resistance is one of the crucial 

design considerations of any implantable material. Body fluids consist of 

inorganic ions (Na+ , Cl- , Ca2+, HxPO4
n- etc.), aminoacids, proteins and organic 

acids, and are essentially  oxygenated saline solutions with a  salt content of 

about 0.9% (w/v), pH of 7.4 and temperature of 37±1 °C, which together 

generate a relatively harsh operating environment. High corrosion resistance, 

resulting in low or negligible ion release, is a requirement for metal implants. 

Whilst cobalt-chromium based alloys have excellent corrosion resistance [234], 

biocorrosion of modular junctions and wear particles generated from the 

orthopaedic implants manufactured out of this alloy has been one of the major 

issues dealt with in the orthopaedic industry in recent years [235–238]. 

Corrosion of metal implants and nano-sized wear particles generated in those 

devices [239] may cause ion release into the body and result in local cytotoxity, 

genotoxicity and hypersensitivity, which affect the morphology and structure of 

the tissue, and may lead to systemic cytotoxity, carcinogenesis [240], allergic 

reactions, and even pseudotumour formation [241]. Wear is another critical 

issue in medical implantable devices often determining the longevity of the 

implant. Micron-sized wear particles, mainly of polyethylene origin, generated 

in vivo may cause adverse tissue reactions around the implant, followed by 

osteolysis, which in turn will lead to failure of the device through loosening 

[242,243]. Wear and wear-related damage is a common cause of failure of total 

joint replacement prostheses [131,154].Therefore, corrosion resistance and low 

wear rates are desirable for articulating surfaces for load bearing implants. The 

tribological performance of medical alloys can be improved using surface 
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engineering treatments such as nitrogen ion implantation, ceramic coating 

deposition or diamond-like carbon film formation.  

Ceramic coatings, such as titanium nitride (TiN), chromium nitride (CrN) and 

silicon nitride (Si3N4), are often used to harden, and protect cutting and sliding 

surfaces, such as cutting tools. They also have wide range of applications in the 

biomedical sector - TiN coatings are often deposited on medical grade titanium 

alloy (Ti6Al4V), in attempt to improve the poor wear performance of the latter, 

which is the major disadvantage of this material. Whilst TiN was found to have 

favourable effect on the biocompatibility and tribological properties of surfaces, 

reports of third body wear, pitting, delamination, fretting and coating 

breakthrough have been reported in the literature [244]. Another common 

ceramic coating used in biomedical applications is chromium nitride (CrN), 

which is extremely hard and corrosion resistant, often used in metal forming and 

on surgical tools. When THR application of TiN was compared with CrN, it was 

shown that the CrN coating had superior tribological properties and exhibited 

significantly lower wear rates [179–181]. However, in all the cases insufficient 

adhesion and coating artefacts, such as droplets, were reported as major 

concerns for these coatings. Recently a new ceramic material (in both bulk and 

coating form) has been proposed for load bearing joint implants. Silicon nitride 

exhibits superior mechanical properties, excellent biocompatibility and low wear 

rates and has recently been introduced into the biomedical field. First developed 

in 1895, when it was introduced for use in internal combustion engines and high-

temperature gas turbines. Current uses of bulk Si3N4 include high-performance 

bearings, turbine blades, ball bearings and glow plugs; these applications 

require a material with a high fracture toughness, strength and low wear 

properties. The Si3N4 ceramics present a favourable combination of 

mechanical, tribological, chemical and thermal properties that make them 

suitable for components requiring high performance in severe environments. 

Consequently, silicon nitride ceramics have been proposed as an alternative 

structural material [186,187] or as tribological coatings [189,190,245] for joint 

replacement load bearing components. Current biomedical applications of bulk 

Si3N4 include cervical spacers and spinal fusion devices, which have achieved 

successful short-term results [195]. Moreover, silicon nitride fixation plates and 
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screws, as well as bearings for spine disc surgery, total hip and knee 

replacements have also been developed [197,246,247]. In 2011, the first silicon 

nitride femoral head was implanted [248]; however, to date, no clinical follow up 

data has been published.  

In the current study, two ceramic coatings were investigated for their potential 

to improve the tribological and biocompatibility performance of MoM CTDRs. 

Chromium nitride and silicon nitride coatings were deposited on coupons, and 

their mechanical properties and chemical composition were investigated. The 

following section will describe the samples and methods used in these 

investigations, as well as report and discuss the results obtained. 

3.2 Materials 

3.2.1 Test samples 

Eighteen disc coupons were machined from a low carbon <0.05 (w/w) CoCr 

alloy (ASTM-F1537) supplied by Peter Brehm GmbH (Weisendorf, Germany). 

The discs were polished by Mrs. Jane Cardie (technician, School of Mechanical 

Engineering) and finished to a Ra of <0.01µm. The discs had a radius of 16mm 

and thickness of 3mm. Once polished, the coupons were shipped to IonBond 

(Olten, Switzerland), where they were subjected to a physical vapour deposition 

(PVD) coating process; nine coupons were coated with a chromium nitride 

coating (via PVD) and the remaining nine coupons were coated with a silicon 

nitride coating (via HiPIMS). Following the coating process, the coupons were 

cleaned and re-polished at IonBond. Samples to be used in SEM coating 

thickness evaluation were partially wire eroded in the mid-section) and fractured 

inwards (as shown in Figure 3.1).  
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Figure 3.1: Method of wire cutting and fracturing of the coated samples. 
The cuts were made through the mid-section of the sample, leaving 

approximately 0.5 mm of the material uncut. The sample was 
subsequently fractured inwards in order to avoid buckling and 

delamination of the coating. 

3.2.2 Equipment for coating characterisation 

The coated coupons were polished using a Forcipool polishing system, supplied 

by Kemet International (Maidstone, UK). A Calotester and a scratch-tester 

(Millennium 200), used for measuring coating thickness and coating adhesion 

measurements, respectively, were purchased from Tribotechnic (Clichy, 

France). The scratch-tester was fitted with a Rockwell type C diamond tip 

(r=0.2mm). Coating nano-hardness and Young’s modulus were evaluated using 

a NanoTest nanoindenter manufactured by NTX Micromaterials (Wrexam, UK), 

fitted with a Berkovich diamond tip. A two-dimensional contacting profilometer, 

used for surface roughness measurements, (Talysurf PGI 800) was supplied by 

Taylor Hobson (Leicester, UK). Al k-alpha XPS system was manufactured by 

ThermoScientific (Loughborough, UK). Microscopic evaluation of samples was 

conducted using a Leica DM 6000M optical microscope, supplied by Leica 

Microsystems Inc. (Buffalo Grove, IL, USA), as well as Carl Zeiss EVO MA15 

Scanning Electron Microscope (SEM) in conjunction with the Oxford 

Instruments AZtecEnergy EDX analysis system (Oxford, UK). An automatic 

mounting press SimipliMet™ 3000 was supplied by Buehler (Coventry, UK). 

3.2.3 General lab consumables 

Ethanol and isopropanol, at a concentration of 99.8+% (v/v) were supplied by 

Fisher Scientific UK (Leicestershire, UK), diamond paste and waterproof 
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abrasive discs were supplied by Kemet International (Maidstone, UK), hot 

mounting compound was supplied by MetPrep (Coventry, UK). 

3.2.4 Computer Software 

Numerical data collected in the coating characterisation investigations was 

collated in Excel v.2013 (Microsoft Office). Coating cross-section thickness was 

measured digitally in ImageJ v.1.48 software (National Institutes of Health). 

Raw XPS data was exported and analysed in CasaXPS v.2.3.16 software (Casa 

Software Ltd.). The EDX spectra were acquired using AZtec computer software, 

purchased from Oxford Instruments AZtecEnergy EDX system (Oxford, UK). 

3.2.5 Statistical analysis 

All statistical analysis of data was performed using SPSS for Windows (v.21.0, 

SPSS Inc., Chicago, IL, USA). One-way analysis of variance (ANOVA) was 

used to analyse obtained data with α=0.05 for differences between data sets 

obtained from different coating characterisation experiments. 

3.3 Methods 

3.3.1 Sample allocation 

Eighteen metal coupons were machined and coated with ceramic coatings 

either chromium nitride or silicon nitride, 9 of each coating. The coupons were 

marked with an ID number and coating type, and allocated for coating 

characterisation tests, as shown in Table 3.1. Where possible, i.e. where non-

destructive methods were applied or where only a small surface area was used, 

the same samples were used in multiple investigations. 

Table 3.1: Allocation of ceramic coating test coupons for coating 
characterisation testing. 

Characterisation test Chromium nitride sample 
ID 

Silicon nitride  
sample ID 

XPS 1,2,3 1,2,3 

Surface roughness 4,5,6,7 4,5,6,7 

Calo test 4,5,6 4,5,6 

Cross-section SEM 4,5,6 4,5,6 

Nanoindentation 7,8,9 7,8,9 

Scratch test 7,8,9 7,8,9 
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3.3.2 X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) is a quantitative technique widely used 

in surface analysis of the elemental composition of surfaces. The method is 

based on photo-ionisation and analysis of the kinetic energy spectrum of the 

emitted photoelectrons. In principle, XPS utilises photons of a known energy 

typically to excite and eject atoms below the surface of a sample, a process 

during which energy is created, all within the boundaries of the conservation of 

energy requirements (Equation 3.1). Energy created by emitted photoelectrons 

is filtered via a hemispherical analyser (HSA), before the intensity is recorded 

by a detector. 

𝐾𝐸 = ℎ𝜈 − 𝐵𝐸 

Equation 3.1 

where: 

KE – kinetic energy of electrons 

h – Planck’s constsnt 

ν– frequency of the radiation 

BE – binding energy of photoelectrons  

The binding energy of emitted photoelectrons represents the difference in 

energy between the ionised and neutral atoms. Each element has a 

characteristic binding energy, which is used to characterise surface chemical 

composition; as a result, the presence of peaks in the spectrum at particular 

energies indicates the presence of a specific element in the surface of a test 

sample. Moreover, since the number of electrons recorded by the detector is 

proportional to the numbers of atoms present in the surface, the intensity of 

those peaks represents the concentration of elements within the sample. The 

most commonly used source of electrons are mono-energetic Al Kα (hν=1486.6 

eV) x-rays. Kα x-rays which are generated when an electron transitions to the 

innermost ‘K’ shell from a 2p orbital of the second or ‘L’ shell and typically 

generate the strongest x-rays. Al Kα x-rays are produced by diffracting and 
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focussing a beam of non-monochromatic x-rays off of a thin disc of natural, 

crystalline quartz. 

In the current study, the XPS analysis was performed at the National EPSRC 

XPS User’s Service (NEXUS) at Newcastle University (Newcastle, UK). The 

chemical composition and bonding within coatings were determined using XPS 

with a monochromatic Al-Kα source, applying electron and ion neutraliser 

during measurements. Three samples of each coating were investigated using 

this analysis. Each coupon was subjected to survey spectrum analysis 

combined with a depth profile. During such analysis, the surface of a sample is 

sputtered with 4keV Ar+ ions for different time durations and at each specified 

timepoint, a full spectrum of elements present on the sample was obtained. In 

this analysis, survey spectra were obtained after 0, 100, 200, 300, 400, 500 and 

600 seconds of Ar+ ion sputtering. In this way, any potential changes in chemical 

composition of the coating with depth were detected. Data analysis was 

performed using CasaXPS software. All spectra were referenced to the C1s line 

of hydrocarbon-type carbon. The most common position of the C1s line found 

in the literature value was 284.8 eV [18]. 

3.3.3 Surface roughness 

A two-dimensional contacting profilometer fitted with a diamond tip was used to 

assess the surface roughness of coated coupons. In contact profilometry, the 

diamond tip is traced across the surface of a sample; any small deviations of 

the surface are projected by a laser onto a sensitive screen and converted into 

a mathematical value. Different algorithms can be used by the software to 

generate values of surface parameters, such as average roughness (Ra). Ra is 

universally recognised parameter for surface roughness and it is the arithmetic 

average of the absolute deviations of the roughness profile from the mean line. 

It does not differentiate between peaks and valleys and therefore does not 

provide much information about the surface profile as a standalone parameter. 

Rsk values give information on the morphology of the surface texture and the 

symmetry of the profile. Rp and Rv are measures of height of the highest peaks 

and deepest valleys, respectively. High values of those two parameters indicate 

the presence of deep scratches in investigated surface. 



Chapter 3 

 

118 

 

Four samples of each coating were used in this investigation. On each 

component, two 10 mm long traces were taken across the surface, as shown in 

Figure 3.2. The traces were positioned approximately at the equators of each 

coupon, in order to collect the greatest amount of data as was feasibly possible, 

in a repeatable manner. Parameters such as surface roughness (Ra), skewness 

(Rsk), maximum peak height (Rp) and maximum valley depth (Rv) were 

recorded. 

 

 

 

 

 

Figure 3.2: Schematic representation of the two traces taken across the 
surface of each coated coupon. 

 

Collected data was analysed using least squares line with a Gaussian filter and 

appropriate cut-off, which uses a mathematical or electronic means to reduce 

or remove unwanted data, in order to focus on the wavelength in the region of 

interest. An appropriate long-wave cut-off wavelength, dependent on the Ra 

values and an appropriate bandwidth, based on the long-wave to short-wave 

cut off wavelength ratio (λc/ λs), were used, as shown in Table 3.2. The cut off 

values and bandwidth ratios were specified by ISO-4288:1996 (‘Geometric 

product specification (GPS). Surface texture. Profile method: Rules and 

procedures for the assessment of surface texture’) [249] and ISO-3274:1998 

(‘Geometrical Product Specifications (GPS) -- Surface texture: Profile method -

- Nominal characteristics of contact (stylus) instruments’) [250], respectively.  

  

 

 P2 

P1 
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Table 3.2: Values of cut-off depending on Ra values as stipulated by                 
ISO-4288-1996. Relationship of λc/ λs i.e. bandwidth is based on   

ISO-3247:1998 

Ra (µm) Cut off λs (mm) Cut off λc (mm) Bandwidth (λc/ λs) 

≤ 0.02 2.5 0.08 30 

0.02 < Ra ≤ 0.1 2.5 0.25 100 

0.1 < Ra ≤ 2 2.5 0.8 300 

2 < Ra ≤ 10 8 2.5 300 

10< Ra ≤ 80 25 8 300 

 

3.3.4 Coating thickness 

The coating thickness of the silicon nitride and chromium nitride coatings was 

assessed using two methods – a Calo test and SEM analysis of a cross-section 

of each sample.  

3.3.4.1 Calo test 

A Calo test was used determine coating thickness. In principle, a hardened steel 

ball was placed against the surface of a sample and rotated on a spindle. A 

diamond paste suspension was added between the two surfaces, to aid 

abrasion of the coating. Once the film layer was abraded off, the surface of each 

sample was evaluated, as shown in Figure 3.3.  

 

Figure 3.3: Typical projection seen on a surface following coating 
abrasion in Calo test. 

 

Three samples of each coating were analysed using the Calo test, with three 

measurements taken from each sample. The hardened steel ball had a 

diameter of 25mm was rotated at a speed of 250rad/s for a duration of 240s. 

                  x       y 

 

 coating                           substrate 
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Following coating abrasion using the Calo tester, a Leica microscope and its 

integrated software were used to take x and y measurements, which were 

collated in an Excel spreadsheet; the coating thickness was calculated using 

Equation 1.2. The calculation method for a flat sample (ball/plane model) was 

based on the BS EN ISO-26423:2016 standard [251] and shown in Figure 3.4 

and was derived as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Schematic representation of the Calo test and dimensions 
used in calculating coating thickness. 

 

where s is the thickness of the coating: 

 

𝑠 =  𝑇 −  𝑡 

Equation 3.2 
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and T is the total depth of penetration: 

 

𝑇 = 𝑅 − (1 2⁄
√4𝑅2 − 𝐷2) 

Equation 3.3 

and t is the depth of penetration in the substrate, given by: 

 

𝑇 = 𝑅 − (1 2⁄
√4𝑅2 − 𝑑2) 

Equation 3.4 

 

Thus, Equation 3.2 becomes: 

𝑠 = 1 2⁄ − ( √4𝑅2 − 𝑑2 − √4𝑅2 − 𝐷2) 

Equation 3.5 

 

For thin films, the penetration depth is small in comparison to the radius R of 

the ball. Therefore, Equation 3.5 can be simplified to: 

𝑆 =  
𝐷2 − 𝑑2

8𝑅
 

Equation 3.6 

 
Assuming that  𝐷 = 𝑥 + 𝑦 and 𝑑 = 𝑥 − 𝑦, the measurements of 𝑥 and 𝑦 were 

used to calculate the coating thicknesses.  

3.3.4.2 SEM cross-section analysis 

Three samples of each coating were prepared by wire cutting and fracturing, as 

described in Section 3.2.1. The samples were fractured in a particular direction 

(inwards, as shown in Figure 3.1), in order to avoid coating buckling and 

delamination, as well as avoiding any potential heat damage from wire cutting 

directly through the coating layer. The fractured components were embedded 

in Bakelite resin, so that the fracture site was facing up, as shown in Figure 3.5. 

Samples were then polished manually using grit polishing paper in grades of 
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1200, 800, 400, 200 and 100. Subsequently, the samples were polished to a 

mirror finish using a cloth and diamond paste. Samples were then analysed 

using SEM at 20kV with the electron backscatter function on, and images of the 

coating cross-sections were taken (1-5 kX magnification range); the coating 

thickness was measured at 18 different locations (from a multiple number of 

images) using ImageJ software. Additionally, EDX analysis was used to confirm 

chemical spectra of the coating and the substrate.  

 

 Figure 3.5: Fractured silicon nitride-coated sample embedded in the 
Bakelite resin.  

3.3.5 Nanoindentation 

In a nanoindentation test, a hard tip of known shape and mechanical properties 

is pressed onto a surface of a test sample, allowing the tip to penetrate the 

surface. Throughout the test, the load and tip displacement (i.e. depth) were 

reordered and the area of the indent is determined using the known geometry 

of the tip. During each measurement, a complete track of deformations 

occurring during the test was recorded and represented in a load (P) – 

displacement (h) curve (Figure 3.6). Such load-displacement curves consist of 

a loading and unloading curve; the loading curve is a representation of a 

material resistance against tip penetration and reflects the elastic and plastic 

properties of material. The unloading curve represents elastic recovery of the 

indented material. 
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Figure 3.6: Typical load-displacement curve (indentation depth) obtained 
from the nanoindentation measurements. 

Using the Oliver-Pharr method (built into the software) nanohardness of the 

ceramic coatings was determined. The method was originally derived from 

Sneddon’s work, who established the relationship between load, displacement 

and contact area [252]. The Oliver-Pharr method determines contact stiffness 

and projected contact area at the maximum load from the unloading curve 

(obtained during the nanoindentation test).  The contact stiffness was 

determined in two steps:  

 

1) Fraction of the unloading curve was fitted with Equation 3.7. 

𝑷 =  𝜶(𝒉 − 𝒉𝒇)
𝒎                          

Equation 3.7 

Where: 

P – applied force [N] 

(h  - hf) – elastic displacement of the indenter 

m, α – fitting parameters 

2) The unloading curve fit was differentiated to determine the slope at 

maximum load.  

 
The projected contact area at maximum load was determined by the depth of 

contact (hc). From Sneddon’s analysis, the depth of contact was given by 

Equation 3.8: 
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𝒉𝒄 = 𝒉𝒎𝒂𝒙 − 𝜺(𝒉𝒎𝒂𝒙 − 𝒉𝒊)                   

Equation 3.8 

where: 

ε - an indenter geometry factor (0.75 for a Berkovich indenter) 

hi - an intercept of the initial unloading slope with displacement 

axis.                                              

The relationship between depth of contact (hc), residual contact depth (hf), and 

the maximum displacement (hmax) is shown in Figure 3.7. 

 

Figure 3.7: Schematic representation of the section through an 
indentation; Ac is the projected contact area. Reproduced based on 

Oliver and Pharr [253]. 

 

The relationship between contact depth and projected contact area was given 

by tip shape area function Ac = f(hc). It should be noted that the measured 

contact displacement consists of three factors:  

1) Elastic and/or plastic deformation of a sample;  

2) Elastic deformation of the indenter;  

3) Elastic deformation of the measuring frame.  

The elastic deformation of the indenter has been accounted for by introducing 

a reduced Young’s modulus Er. This reduced modulus accounted for the fact 

that the indenter was not ideally rigid and this assumption was especially useful 

when measuring stiff materials (e.g. ceramics). The elastic deformation of the 

measuring frame i.e. compliance of the frame was determined by modelling the 

sample/loading frame as a system of two springs in series, and determined in 

several calculation steps. Once the loading frame compliance was determined, 
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the tip shape/area function was calculated. To do so, several indents under 

different loads were made on fused quartz. The projected contact areas for each 

indentation was determined by Equation 3.9. 

𝑨𝒄 =
𝝅

𝟒
×

𝟏

𝑬𝒓𝟐 × (𝒄𝒕 − 𝒄𝒇)𝟐
 

 Equation 3.9 

where: 

Er – reduced Young’s modulus 

ct – total compliance  

cf – loading frame compliance 

Once determined, the projected contact areas were plotted against the contact 

depth. Finally, the tip shape area function was obtained by fitting Ac and hc data 

to a polynomial equation: 

𝑨𝒄 =  𝒂𝟎𝒉𝒄
𝟐 + 𝒂𝟏𝒉𝒄 + 𝒂𝟐𝒉𝒄

𝟏/𝟐
+ 𝒂𝟑𝒉𝒄

𝟏/𝟒
+ 𝒂𝟒𝒉𝒄

𝟏/𝟖
+ 𝒂𝟓𝒉𝒄

𝟏/𝟏𝟔
 

Equation 3.10 

where: 

ai - fitting constants.  

Such tip shape area function can be used for any particular indentation by 

inserting hc of a measurement. Finally, to determine hardness, the contact area 

value of an indent was fitted into Equation 3.10. 

                                           𝑯 =
𝑷𝒎𝒂𝒙

𝑨𝒄
                             

Equation 3.11 

where: 

H – material hardness 

Pmax – applied force 

Ac – projected contact area 
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The nanoindentation equipment used in this test applied an electromagnetic 

force application and capacitive depth measurement to determine elastic and 

plastic properties of the ceramic coatings. The testing instrument incorporated 

a three-plate capacitive force/displacement transducer, which assured high 

sensitivity and a linear force/displacement output. Three coupons of each 

coating were subjected to this analysis; each sample underwent 10 

indentations. The indentations were made at 10 random locations across the 

surface of each sample. The measurements were made at a constant maximum 

load of 20mN and at a loading/unloading rate of 1000μN/ minute. Results were 

collated in Excel. Statistical analysis of the results was determined using one-

way ANOVA (α=0.05) in SPSS for Windows software.  

3.3.6 Scratch testing 

The scratch test for coating adhesion evaluation was first developed in 1950 by 

Heavens [254]. Later, Benjamin and Weaver have proposed the critical load (Lc) 

as a quantitative value to evaluate coating adhesion [255]. In this test, a sphero-

conical diamond tip was pressed against the surface of a sample and drawn 

across the surface at a constant speed and with a progressive load applied at 

a constant loading rate. The current study followed BS EN 1071-3:2005 

standard (‘Advanced technical ceramics – Methods of test for ceramic coatings 

– Part 3: Determination of adhesion and other mechanical failure modes by a 

scratch test’) [256]. During scratching, the critical loads were detected as 

acoustic emissions. The acoustic sensor elastic waves were generated as a 

result of formation and propagation of microcracks. Typically, three critical loads 

were detected - Lc1 – where the first plastic deformation cracking occurred, Lc2 

– where spallation occurred (i.e. the coating started to flake off the substrate, 

typically at the edges on the scratch) and Lc3 – where the tip penetrated the 

coating through to the substrate at the centre of the crack (as show in Figure 

3.8). Additionally, the scratches were inspected visually under a light 

microscope and coating failures characteristics along with critical load 

characteristics were detected. The critical loads depend on the mechanical 

strength (cohesion and adhesion) of a coating-substrate composite. 
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Figure 3.8: Schematic representation of a scratch produced on a surface 
of a coated sample. Position of the L1 is associated with chevron-

line cracks at the edges of the scratch; L2 associated with spallation 
of the coating at the edges of the scratch and L3 with complete 
failure of the coating, whereby the tip penetrates through the 

coating in the middle of the scratch [256]. 

 

Three samples of each coating were subjected to this investigation; five 

scratches were made on the surface of each coupon. A Rockwell type C 

diamond tip with a radius of r=0.2mm was used in the test. Each scratch yielded 

a maximum tip load of 100N at a loading rate of 200N/min, resulting in 5mm 

long scratches. While the machine used in this test was fitted with acoustic 

emission detector, it was found that the values of critical loads recorded as 

acoustic emissions were not accurate, and the signal often carried signal noise 

artefacts. As a result, following the scratch testing, each scratch was inspected 

using a light microscope and positions of coating mechanical failures, which can 

be associated with each critical load, were marked and used to calculate the 

critical load values in Excel. As the scratch distance and loading rates were 

known, it was possible to calculate the load (in this case the critical load) at any 

particular position within the scratch. 
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3.4 Results 

3.4.1 X-ray photoelectron spectroscopy (XPS) analysis 

3.4.1.1 Chromium nitride coated coupons 

The surfaces of three chromium nitride coated coupons were analysed using 

XPS. Survey spectra were obtained following Ar+
 ion sputtering for different 

times (0-600s), thus a depth profile of the coating was obtained. The effects of 

sputtering time on the peaks detected from survey spectra are shown in Figure 

3.9; the cascaded view of the spectra revealed that sputtering with Ar+ ions 

resulted in additional elements being detected in the spectra. For all three 

coupons, an overlaid view of the same spectra, showing labels of peak position 

correlated with particular elements (Figure 3.10), revealed that in spectra 

obtained without Ar+ ion sputtering peaks correlating with carbon C1s (~284.8 

eV) and oxygen O1s (~532 eV) were smaller than those from the post-sputtering 

spectra peaks. Conversely, peaks correlating with N1s (~399 eV) and Cr 2p1/2, 

Cr2p and Cr2p3/2 (~584 eV), whilst present, were smaller in the spectra 

obtained without sputtering. The overlaid view (Figure 3.10) also revealed that 

the length of the sputtering process did not make a substantial difference to the 

signal strengths obtained from the survey spectra, as long as the sample had 

been sputtered for at least 100s. 

These results are supported by the chemical composition, calculated from the 

obtained survey spectra, depending on the sputtering time, as shown in Table 

3.3. Once a sample had undergone at least 100s of Ar+ ion sputtering, the 

chemical composition of the chromium nitride coating did not change 

significantly.  
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Figure 3.9: Cascaded views of survey spectra of coupons 1 (top), 2 
(middle) and 3 (bottom) at different sputtering times, as indicated 

on the right side of each graph. The locations of peaks 
corresponding with different elements are the same for spectra 

obtained following sputtering. Only small variations in peak 
presence were noted for spectra obtained following no sputtering. 
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Table 3.3: Chemical composition of the surface region of CrN films 
deposited on three coupons, represented in atomic percent (at.%). 

 

 Sputtering time 

Spectra Pristine 100s 200s 300s 400s 500s 600s 

Coupon 1        

C1s 41.6 3.3 2.2 1.6 1.2 1.6 1.0 

O1s 22.2 16.8 15.7 15.7 16.3 15.9 16.4 

N1s 18.8 34.7 35.4 35.0 35.4 36.1 34.5 

Cr2p 17.5 45.2 46.7 47.7 47.1 46.4 48.1 

Coupon 2        

C1s 47.6 4.2 3.3 2.7 2.2 2.2 2.0 

O1s 16.7 12.4 12.7 13.0 12.9 13.2 13.3 

N1s 20.3 38.4 37.8 37.7 37.8 37.7 37.5 

Cr2p 15.4 45.1 46.2 46.7 47.1 47.0 47.3 

Coupon 3        

C1s 68.2 7.7 5.2 7.2 7.2 7.1 7.0 

O1s 12.0 7.2 7.1 3.7 3.3 2.4 2.0 

N1s 12.8 31.5 32.1 32.5 33.2 33.0 32.9 

Cr2p 6.9 53.6 55.6 56.7 56.3 57.5 58.2 
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Figure 3.10: Overlaid survey spectra of three CrN coated coupons, with 
peaks correlating with specific elements identified. Carbon C1s and 
oxygen O1s peaks were stronger in samples that did not undergo 

any Ar+ ion sputtering (red spectra line), whilst signals of chromium 
Cr2p and nitrogen N1s were stronger once the samples were 

sputtered with argon ions for at least 100s (other colours).  

 

3.4.1.2 Silicon nitride coated coupons 

The surfaces of three silicon nitride coated coupons were analysed using XPS. 

Survey spectra were obtained following sputtering for different times i.e. 0-600s. 

The effects of the sputtering on peaks detected from survey spectra can be 

seen in Figure 3.11; the cascaded view of the spectra reveals that those 

obtained with no Ar+ ion sputtering had a slightly different shape i.e. the same 

peaks were not detected in the non-sputtered spectra.  
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Figure 3.11: Cascaded views of survey spectra of coupons 1 (top), 2 
(middle) and 3 (bottom) at different sputtering times, as indicated 

on the right side of each graph. The locations of peaks 
corresponding with different elements are the same for spectra 

obtained following sputtering. Only small variations in peak 
presence were noted for spectra obtained following no-sputtering. 

 

For instance, the non-sputtered spectra show much stronger C1s (~284 eV) 

and O1s (~532 eV) peaks, whilst the survey spectra of samples which had 

undergone sputtering show these peaks were of much lower intensity (as also 

shown in Figure 3.12). Conversely, peaks correlating with N1s (~399 eV) and 

Si2p (~100 eV), whilst present, were smaller in the spectra obtained without 
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sputtering. The overlaid view shown in Figure 3.12 also revealed that the length 

of the sputtering process did not make a substantial difference in signal 

strengths obtained from the survey spectra, as long as the sample has been 

sputtered for at least 100s. Those findings were supported by the chemical 

composition, calculated from the obtained survey spectra, depending on the 

sputtering time, as shown in Table 3.4. Once a sample has undergone at least 

100s of Ar+ ion sputtering, chemical composition of the silicon nitride coated 

samples did not change substantially.  

 
Figure 3.12: Overlaid survey spectra of three Si3N4 coated coupons, with 

peaks correlating with specific elements identified. Red survey line 
– non-sputtered, remaining colours – post sputtering. 
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Table 3.4: Chemical composition of the surface region of Si3N4 films 
deposited on three coupons, represented in atomic percent (at.%). 

 

  

 Sputtering time 

Spectra Pristine 100s 200s 300s 400s 500s 600s 

Coupon 1        

C1s 19.3 3.3 2.1 1.5 1.25 0.9 0.9 

O1s 25.4 9.5 7.2 6.5 6.0 5.8 5.6 

N1s 24.0 39.5 41.3 42.1 42.5 43.1 43.0 

Si2p 31.3 47.7 49.5 49.4 50.2 50.2 50.5 

Coupon 2        

C1s 22.2 4.3 2.4 1.6 1.3 1.4 1.0 

O1s 22.6 5.9 5.3 5.1 5.34 5.2 5.3 

N1s 23.6 39.8 41.2 47.7 41.8 41.7 41.8 

Si2p 31.5 49.9 51.0 51.5 51.6 51.7 51.9 

Coupon 3        

C1s 19.3 3.8 2.2 1.3 1.4 1.0 0.9 

O1s 23.8 6.4 5.6 5.5 5.4 5.5 5.6 

N1s 24.0 39.8 41.0 41.5 41.5 41.7 41.6 

SI2p 32.9 50.0 51.2 51.7 51.7 51.8 51.9 



Chapter 3 

 

135 

 

3.4.2 Surface roughness 

The surface roughness of coated coupons was measured using contacting 

profilometry; Ra, Rp, Rv and Rsk parameters were recorded. A summary of the 

surface roughness of chromium nitride coupons can be found in Table 3.5, 

whilst the results for silicon nitride coated coupons are summarised in Table 

3.6. Statistical analysis of the results (one-way ANOVA, α=0.05) did not show 

statistical differences in Ra, Rp or Rv (p>0.05, CI 95%) values of the two coatings. 

Only the skewness was found to be statistically different (p<0.05, CI 95%) 

between the two coatings; the average skewness of the silicon nitride coatings 

was Rsk = 3.3113 whilst the average surface skewness of the chromium nitride 

coatings was Rsk = 0.6236.  

Table 3.5: Summary of surface roughness results of chromium nitride 
coated coupons. 

 Trace Ra [µm] Rp [µm] Rv [µm] Rsk 

Coupon 4 P1 0.0196 0.0540 0.0585 -0.4530 
 P2 0.0190 0.0531 0.0554 0.5308 

Coupon 5 P1 0.0571 0.2802 0.1326 1.6390 
 P2 0.0621 0.2779 0.1397 1.3782 

Coupon 6 P1 0.0261 0.1233 0.0875 0.8581 
 P2 0.0322 0.1626 0.1138 1.0899 

Coupon 7 P1 0.0257 0.1025 0.0973 -0.0613 
 P2 0.0252 0.1008 0.0948 0.0071 

Average  0.0334 0.1443 0.0975 0.6236 

St-dev  0.0166 0.0904 0.0309 0.7454 
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Table 3.6: Summary of surface roughness results of silicon nitride 
coated coupons. 

 Ra [µm] Rp [µm] Rv [µm] Rsk 

Coupon 4 0.0242 0.1183 0.0756 3.4570 

 0.0263 0.1182 0.0916 4.8350 

Coupon 5 0.0251 0.1459 0.0861 6.7027 

 0.0203 0.0866 0.0799 2.5632 

Coupon 6 0.0288 0.1496 0.1283 -3.7067 

 0.0269 0.1452 0.0817 5.4169 

Coupon 7 0.0235 0.0865 0.0932 2.4577 

 0.0259 0.1196 0.0882 4.7649 

Average 0.0251 0.1212 0.0906 3.3113 

St-dev 0.0026 0.0251 0.0164 3.1833 

 

3.4.3 Coating thickness 

3.4.3.1 Calo test 

A calo test was employed to assess the thickness of the coatings on the 

coupons. Once craters were abraded by the Calo tester, the surfaces were 

analysed using a light microscope and the sizes of the abraded crater scars 

were measured and fitted into Equation 1.2. As such, coating thicknesses were 

calculated. An example of a sample measurement is shown in Figure 3.13. The 

results of chromium nitride coating thicknesses are summarised in Table 3.7, 

while the results for the silicon nitride coating are summarised in Table 3.8. The 

average thickness of chromium nitride coatings was found to be 4.9±0.8µm, 

while the average thickness of silicon nitride coating was 5.1±0.3µm. Statistical 

analysis of the results (one-way ANOVA, α=0.05) did not show statistical 

differences in coating thickness between the two ceramic coatings (p>0.05, CI 

95%). 



Chapter 3 

 

137 

 

 

Figure 3.13: Projection on the surface of silicon nitride-coated coupon. 
For each sample, the x and y dimensions were measured using the 
Leica microscope software. Data was collated in a spreadsheet and 

coating thickness was determined.  

 

Table 3.7: Summary of chromium nitride coating thickness results, as 
obtained with a Calo tester. The average coating thickness of 

chromium nitride was found to be 4.9±0.8µm. 

Sample 
 

Scratch 
 

x [µm] 
 

y [µm] 
 

Coating 
thickness [µm] 

 

Coupon 4 a 612.5 240.4 5.9 
 

b 641.8 237.2 6.1 
 

c 637.1 238.6 6.1 

Coupon 5 a 672.7 149.5 4.0 
 

b 674.3 164.1 4.4 
 

c 732.8 149.5 4.4 

Coupon 6 a 825.3 133.2 4.4 
 

b 773.3 151.1 4.7 
 

c 830.2 136.5 4.5 

Average  711.1 533.3 4.9 

St-dev.  82.5 123.8 0.8 

 

  

X                            Y 
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Table 3.8: Summary of silicon nitride coating thickness results, as 
obtained with Calo tester. The average coating thickness of silicon 

nitride was found to be 5.1±0.3µm. 

Sample 
 

Scratch 
 

x [µm] 
 

y [µm] 
 

Coating 
thickness [µm] 

 

Coupon 4 a 646.6 194.9 5.1 
 

b 500.4 256.7 5.1 
 

c 458.2 313.6 5.7 

Coupon 5 a 697 164.1 4.6 
 

b 802.6 149.5 4.8 
 

c 567 220.9 5.0 

Coupon 6 a 786.5 157.7 4.9 
 

b 651.7 187 4.9 
 

c 643.4 203.1 5.2 

Average  639.3 205.3 5.1 

St-dev.  116.8 52.6 0.3 

 

3.4.3.2 SEM cross-section analysis 

Cross sections of coupons coated with ceramic coatings, fixed in Bakelite resin, 

were analysed under SEM; EDX analysis was used to confirm the location of 

the coating and substrate. Example of an SEM image of coating cross-section 

is shown in Figure 3.14. Examples of EDX analysis of sample cross sections 

are shown in Figure 3.15 and Figure 3.16.Coating thicknesses were measured 

using SEM-obtained images and ImageJ software. The summary of coating 

thickness results for chromium nitride coatings can be found in Table 3.9, while 

the results for silicon nitride coatings are summarised in Table 3.10. The 

average coating thicknesses were found to be 4.6±0.4µm and 5.1±0.3µm for 

the chromium nitride and silicon nitride coatings, respectively. Statistical 

analysis of the results (one-way ANOVA, α=0.05) showed significant 

differences in thickness between the two ceramic coatings (p<0.05, CI 95%). 

When the two methods were compared, no statistical difference was found in 

the thickness of the chromium nitride (p>0.05, CI 95%) or silicon nitride coatings 

(p>0.05, CI 95%).  
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Figure 3.14 SEM image of a cross section of a silicon nitride-coated 
coupon. Clear layers of the substrate, coating and Bakelite resin 

can be distinguished. 

 

  

Bakelite resin 

Substrate 

Coating 



Chapter 3 

 

140 

 

 

 

 

Figure 3.15: EDX analysis of a chromium nitride coated sample. The SEM 
image (A) was used to visually identify, whilst the EDX was 

employed to confirm regions of substrate (B) and coating (C) 
locations. 

A 

B 
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Figure 3.16: EDX analysis of a silicon nitride coated sample. The SEM 
image (A) was used to visually identify, whilst the EDX was 

employed to confirm regions of substrate (B) and coating (C) 
locations. 

A 
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Table 3.9: Summary of coating thickness of chromium nitride coated 
coupons, as measured in ImageJ using images obtained from SEM. 

 

 
Coating thickness 

[µm] 
Average [µm] St-dev. [µm] 

Coupon 4 4.349, 4.270, 4.430, 3.795, 

4.348, 4.428, 4.357, 4.461, 

4.476, 4.402, 4.417, 4.188, 

4.224, 4.301, 4.167, 4.834, 

5.037, 4.839 

4.407 0.279 

Coupon 5 4.356, 4.237, 4.148, 4.150, 

4.000, 4.030, 4.474, 4.572, 

4.803, 4.704, 4.639, 4.441, 

4.507, 4.441, 4.638, 4.628, 

4.592, 4.555 

4.440 0.237 

Coupon 6 4.532, 4.606, 4.082, 4.284, 

5.833, 4.103, 5.781, 5.893, 

5.939, 4.780, 4.650, 4.393, 

4.589, 4.523, 4.841, 4.268, 

4.523, 4.902 

4.807 0.622 

Average  4.551 0.448 

Table 3.10: Summary of coating thickness of silicon nitride coated 
coupons, as measured in ImageJ using images obtained from SEM. 

 

 Coating thickness 
[µm] 

Average [µm] St-dev. [µm] 

Coupon 4 5.000, 4.871, 4.978, 5.210, 

4.832, 4.935, 5.091, 4.944, 

4.814, 4.878, 4.644, 4.814, 

4.972, 4.917, 5.011, 5.020, 

4.994, 5.134 

4.976 0.147 

Coupon 5 4.888, 4.826, 4.862, 4.857, 

4.961, 4.834, 4.708, 4.933, 

4.834, 5.245, 5.182, 5.888, 

5.616, 4.887, 5.766, 5.645, 

5.391, 5.258 

5.118 0.361 

Coupon 6 5.194, 5.175, 5.133, 5.215, 

5.133, 5.429, 5.337, 5.271, 

5.111, 5.143, 5.048, 5.398, 

5.529, 5.575, 5.297, 5.227, 

5.296, 5.251 

5.250 0.169 

Average  5.115 0.267 
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3.4.4 Nanoindentation 

Three coupons coated with each coating – chromium nitride and silicon nitride, 

were analysed using nanoindentation. Each was subjected to 10 indentations, 

during which load and displacement were recorded. Indentation load-depth 

hystereses for each chromium nitride coated coupon are shown in Figure 3.17. 

The resulting hardness and Young’s moduli of the chromium nitride coating are 

listed in Table 3.11. The average hardness and Young’s modulus of chromium 

nitride coatings were found to be 23.69±1.18 GPa and 247.51±40.09 GPa, 

respectively. Similarly, the indentation load-depth hystereses for each silicon 

nitride sample are shown in Figure 3.18, while the hardness and Young’s 

modulus values of the silicon nitride coatings are summarised in Table 3.12. 

The average hardness and Young’s modulus of silicon nitride coating were 

found to be 19.07±0.68GPa and 213.39±6.83 GPa, respectively. Statistical 

analysis of the results (one-way ANOVA, α=0.05) showed that the chromium 

nitride coatings had a significantly higher hardness (p<0.05, CI 95%) and 

Young’s modulus (p<0.05, CI 95%) than the silicon nitride coatings. Both of the 

coatings showed a substantially higher hardness than the substrate material 

(CoCr), which under its ASTM-F1537-11 specification has a hardness of 

1.1GPa [207]. The mean H/E ratio of the chromium nitride coating was 

significantly higher (p<0.05, CI 95%) than these of silicon nitride coated 

samples; 0.10±0.02 and 0.09±0.01, respectively. The H/E ratio of the CoCr 

substrate, assuming E=210GPa, was 0.01. 
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Figure 3.17: Indentation depth-loading hystereses for chromium nitride 
coated coupons. Each of 10 indentations has been recorded. 

 

Table 3.11: Summary of the nanoindentation results of chromium nitride 
coated coupons, showing average hardness and Young’s modulus 

of the coating. 

  

Hardness 
[GPa] 

Young's modulus 
[GPa] 

H/E ratio 

Coupon 7 22.47 201.24 
0.11 

 8 24.83 272.07 
0.09 

 9 23.78 269.20 
0.09 

Average  23.69 247.51 0.10 

St-dev.  1.18 40.09 0.02 
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Figure 3.18: Indentation depth-loading hystereses for silicon nitride 
coated coupons. Each of 10 indentations has been recorded.  

 

Table 3.12: Summary of nanoindentation results of silicon nitride coated 
coupons, showing average hardness and Young’s modulus of the 

coating. 

  

Hardness 
[GPa] 

Young's modulus 
[GPa] 

H/E ratio 

Coupon 7 19.63 220.42 0.09 

 8 18.32 206.79 0.09 

 9 19.27 212.96 0.09 

Average  19.07 213.39 0.09 

St-dev.  0.68 6.83 0.01 
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3.4.5 Scratch testing 

Three coupons coated with either chromium nitride or silicon nitride were 

subjected to scratch tests; each sample was scratched 5 times (Figure 3.19). 

Scratches were inspected under using the light microscope (Figure 3.20) and 

visually, locations of the critical failures were marked. From known scratch 

lengths and loading rates, the loads applied at these locations were calculated. 

A summary of critical load calculations for chromium nitride and silicon nitride 

coatings can be found in Table 3.13 and Table 3.14, respectively. The average 

critical loads Lc1, Lc2 and Lc3 for chromium nitride coatings were 10.42±0.74 N, 

16.24±0.7 4N and 73.92±3.56 N, respectively. The same critical load values for 

the silicon nitride coatings were 4.48±0.80 N, 22.85±2.70 N and 63.06±6.40 N. 

Statistical analysis of the results (ANOVA, α=0.05) showed significant 

differences in the values of all three Lc (p<0.05, CI 95%) critical loads between 

the two coatings. It was found that the Lc1 and Lc3 values were higher for the 

chromium nitride coating, whilst the Lc2 value was higher for the silicon nitride-

coated samples. 

 

Figure 3.19: A silicon nitride coated coupon following scratch testing; 
five scratches were made on each coupon, which were 

subsequently analysed using a light microscope to identify 
locations of failures associated with critical loads.  
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Figure 3.20: Micrograph of scratches generated with the scratch testing 
on coupons coated with CrN (left) and Si3N4 (right) coatings. 
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 Table 3.13: Summary of values of critical loads measured during 
scratch testing of chromium nitride coated coupons. The average 

load at which the scratch tip penetrated through the chromium 
nitride coating was 73.92±3.56 N. 

Coupon Scratch Lc1 [N] Lc2 [N] Lc3 [N] 
 1 11.87 16.65 80.56 
 2 9.75 17.40 74.51 

7 3 10.77 14.92 78.78 
 4 10.61 16.34 77.01 
 5 9.91 15.95 77.05 
 1 10.35 17.20 71.64 
 2 9.59 16.08 70.23 

8 3 9.34 17.55 69.57 
 4 9.47 16.47 70.31 
 5 11.71 15.92 68.38 
 1 11.09 15.84 76.68 
 2 10.61 15.12 74.53 

9 3 10.00 16.67 72.76 
 4 10.37 15.76 71.01 
 5 10.83 15.66 75.70 

Average  10.42 16.24 73.92 
St-dev.  0.74 0.74  3.56 

     
 

Table 3.14: Summary of values of critical loads measured during scratch 
testing of silicon nitride coated coupons. The average load at which 

the scratch tip penetrated through the silicon nitride coating was 
63.06±6.40 N. 

Coupon Scratch Lc1 [N] Lc2 [N] Lc3 [N] 
 1 4.95 21.24 69.00 
 2 4.18 21.94 49.89 

7 3 3.37 19.96 53.48 
 4 5.09 24.91 58.83 
 5 4.19 18.08 60.11 
 1 3.74 20.96 70.45 
 2 4.27 20.49 67.81 

8 3 4.59 23.83 68.52 
 4 4.71 26.39 62.90 
 5 4.27 21.56 63.70 
 1 4.97 27.36 72.42 
 2 3.16 20.79 67.08 

9 3 6.68 23.37 64.21 
 4 4.65 25.02 54.43 
 5 4.40 26.92 63.03 

Average  4.48 22.85 63.06 
St-dev.  0.80 2.70 6.40 
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3.5 Discussion 

Historically, surgical interventions involving total joint replacement were aimed 

at older and less active individuals. Currently, the recipients of artificial joints 

are younger and more active, thus longevity of such devices is paramount. 

Ceramic coatings have the potential to reduce the risks associated with wear-

related implant failure by improving surface properties of the bearings. The 

optimal ceramic coating for total joint applications must have appropriate 

mechanical properties (hardness, elastic modulus), adhesion to the substrate, 

smooth surface, high resistance to wear as well as be biocompatible [257]. The 

work presented in this chapter aimed to characterise two coatings proposed for 

the improvement of the tribological performance of total disc replacements – 

chromium nitride and silicon nitride. The coatings were deposited on CoCr 

coupons and their surface roughness, coating thickness, adhesion, 

composition, hardness and Young’s modulus were assessed. These analyses 

were considered as a simple comparison assessment between the two 

coatings, as well as an indication of their fitness for purpose for use in CTDR 

applications. All the coating characterisation investigations in this chapter were 

conducted on flat samples and some differences in coating quality and 

thickness may have taken place in the CTDR components, as PVD is a line-of-

sight deposition technique. The chromium nitride coatings were deposited using 

PVD method, whilst the silicon nitride coatings were deposited via HiPIMS. The 

samples tested in the current study were coated by an industrial collaborator 

(IonBond) and thus the exact deposition parameters and coating formulae were 

proprietary. Therefore, it was not possible to discuss the potential relationships 

between the coatings characterisation results and deposition method and 

parameters. Moreover, this study did not investigate different batches of the 

coatings, rather established the chemical composition, mechanical and surface 

properties of the available samples. Direct comparison of the two coatings was 

somewhat limited, as the methods of coating deposition were different to one 

another. It has been previously shown that coatings deposited via HiPIMS 

deposition can exhibit superior hardness, microstructure, droplet and defect-

free, low-friction surfaces [258–260]. It has been recognised that any 
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differences between the two coatings’ characteristics may have been a result 

of the different deposition methods. 

3.5.1 X-ray photoelectron spectroscopy 

The X-ray photoelectron spectroscopy analysis of the silicon nitride and 

chromium nitride coatings was used to confirm chemical composition of the 

coatings and to establish potential depth profiles of the deposited coatings. This 

method confirmed that pristine samples i.e. not pre-sputtered with Ar+ ions had 

a high concentration of oxygen and carbon contamination; the chromium nitride 

coated samples showed an average content of C1s, O1s, N1s and Cr2p as 

53%, 17% 17% and 13%, respectively, while the pristine silicon nitride coated 

samples had a composition of C1s, O1s, N1s and Si2p of 20%, 24%, 24% and 

32%, respectively. Once sputtered for at least 100s the composition of the 

chromium nitride coating changed to C1s (3%), O1s (11%), N1s (35%) and 

Cr2p (51%), which indicated that the coating was likely to be composed mainly 

of Cr2N (575.3-576.1 eV) [20],. The relatively high oxygen content and 3% 

carbon content were a likely result of a presence of chromium oxides and 

carbides in the coating. This hypothesis was also supported by the hardness 

values of the chromium nitride coatings measured in the current study (H= 23.7 

GPa), which was similar to those measured by Hones et al. [261]. Their study 

found that stoichiometric Cr2N films exhibited a hardness of 29GPa, whilst bulk 

CrN had a hardness of 11GPa. Varying compositions of chromium nitride 

coatings i.e. mixtures of CrN and Cr2N are dependent on the nitrogen content 

and pressure in the deposition chamber, as well as the substrate temperature 

[261–263]. The silicon nitride coatings, once sputtered with Ar+ ions, had a 

composition of C1s (1%), O1s (6%), N1s (42%) and Si2p (51%), which indicated 

that the coating was composed mainly of Si3N4 (397.4 eV) [30-32] and a small 

proportion of silicon oxides (532.8 eV) [35, 36]. Similar composition i.e. a 

mixture of Si3N4 and SiO2 of silicon nitride coatings were observed by Diéguez 

et al. [264], however the coatings in their study were deposited by r.f. magnetron 

sputtering. The N/Si in the current study was 1.24 compared to stoichiometric 

Si3N4 (1.33). The N/Si ratio can be controlled by Si target power and deposition 

temperature [189]. It was found that higher N/Si ratios, along with increased 



Chapter 3 

 

151 

 

numbers of Si-N and decreased numbers of Si-Si bonds yield higher hardness 

of the coating [190]. Moreover, work by Pettersson et al. [190] found that coating 

composition, controlled by deposition parameters, affects the structure and 

mechanical properties of silicon nitride coatings.  

3.5.2 Surface characterisation 

The surface of the coatings was analysed using contacting profilometry, a 

method which is widely used by many industries. Contact profilometry is 

generally recognised for its ease of use and capability of application on a range 

of materials, including reflective and opaque materials. Contact profilometry can 

be affected by the stylus wear, however this can be avoided by performing a 

thorough inspection of the stylus prior to taking measurements. Moreover, 

contact profilometry only provides information gathered from the traces used in 

the measurements, which, depending on the condition of the surface, may not 

be representative of the whole surface. In the present study, the coated 

coupons were in pristine state, therefore it was assumed that the characteristics 

of the surface will be the same across the whole sample. In the present study, 

the coupons were polished both prior to and following coating deposition. In 

total joint replacement, surface roughness influences tribological performance 

and operating lubrication conditions [226], thus it was important for the coatings 

to be as smooth as possible. It was found that the chromium nitride and silicon 

nitride coatings had an average surface roughness (Ra) of 0.03±0.02µm and 

0.03±0.01µm, respectively, and were not statistically significantly different from 

each other (p>0.05, CI 95%). Significant differences in surface skewness (Rsk) 

(p<0.05, CI 95%), whereby the skewness of the chromium nitride and silicon 

nitride were found to be Rsk=0.62±0.74 and Rsk=3.31±3.18, respectively, 

indicated that the overall topography of the silicon nitride coating consisted 

predominantly of peaks and asperities, which were significantly larger than 

those found on the surface of chromium nitride coated coupons. Surfaces, that 

are predominantly made of peaks and asperities may have a negative influence 

on the wear performance, as they may result in direct contact of the asperities 

of the articulating surfaces and thus increased wear rates, particularly in hard-

on-hard bearing combinations used in total joint replacement [227]. The surface 
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roughness of both coatings was within the range specified for metal-on-metal 

THR devices (<0.05µm) [265], however it was above the required value for 

ceramic-on-ceramic devices (<0.02 µm) [265], which indicated sufficient 

surface finish of the coatings for potential total joint applications. Similar surface 

roughness of both coatings were previously reported in the literature 

[178,184,200,266], however, in general, surface characteristics are highly 

dependent on the coating deposition method and parameters, as well as the 

substrate material used [178,267].  

3.5.3 Coating thickness  

The thickness of the coatings was assessed using the Calo test and by 

measuring SEM images of the cross-sections of the coated samples. Both 

methods rely on manual measurements of microscopic images (light and 

scanning electron microscopy), which may lead to a level of user error and bias 

in the results. The average coating thickness of the chromium nitride coatings 

and silicon nitride coatings measured by the Calo test was 4.9±0.8µm and 

5.1±0.3µm, respectively. Similar average coating thickness was found by 

measuring cross-sections of the samples by using SEM; the average thickness 

of chromium nitride and silicon nitride coatings was 4.6±0.4µm and 5.1±0.3µm, 

respectively. Statistical analysis of the thickness results (one-way ANOVA, 

α=0.05) obtained from the Calo test did not show statistically significant 

differences between the two coatings (p>0.05, CI 95%). On the contrary, 

thickness results from the analysis of the SEM images of the cross-sections of 

the coupons showed that the silicon nitride coatings were significantly thicker 

than chromium nitride (p<0.05, CI 95%). This difference was most likely caused 

by high variability in chromium nitride coating thickness measurements taken 

using the Calo test. It appeared that the chromium nitride coating on one of the 

three coupons used in the analysis was thicker that the others. This may have 

been a result of varying position of the coupons in the coater chamber during 

the coating deposition process [268]. Whilst appropriate coating properties, 

such as hardness and adhesion, tend to prevent excessive wear and coating 

delamination, some degree of wear will always occur in TJR bearings.  When 

considered for CTDR applications, coating thickness, in isolation, must be 
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sufficient to prevent wearing through of the coating. Typically, in clinical 

applications ceramic coating thicknesses of 3.5-6µm have been used 

[164,269,270].  This design input i.e. appropriate coating thickness, is 

particularly important in the case of the silicon nitride coating, since particles 

have been reported to be soluble in polar solvents [193,245]. Whist this property 

of the silicon nitride coating may have positive implications in the aspect of 

biocompatibility and harmful ion release prevention from cobalt chromium, it 

must be assured that appropriate coating thickness can be sustained 

throughout the in vivo implantation time.  

3.5.4 Mechanical properties of coatings 

High hardness of ceramic coatings used in TJR application is a desirable 

property due to the risk of potential third body wear. Bone, porous coating and 

cement particles may become entrapped in the bearing causing abrasion 

[271,272]. The chromium nitride and silicon nitride coatings were assessed for 

their hardness and Young’s modulus using nanoindentation. The results 

showed that the chromium nitride coatings were significantly harder (p<0.05, CI 

95%) (H=23.7±1.2 GPa) and stiffer (E=247.5±40.1 GPa) than silicon nitride 

coatings (H=19.1±0.7; E=213.4±6.8 GPa). This indicated that, when subjected 

to third-body wear, the chromium nitride coating was expected to present higher 

resistance to abrasion. The silicon nitride coating hardness was similar to that 

of its bulk, sintered form (~16GPa) [273]. Elastic modulus of both coatings was 

close to that of the cobalt chromium substrate (~200GPa) [207]. Similar 

mechanical properties of both coatings were previously reported in the literature 

[3,190,245,274,275], however, as with other coating properties, the hardness 

and Young’s modulus are often highly dependent on the coating deposition 

method, parameters and substrate material the coatings are applied on. 

Moreover, the hardness-to-Young’s modulus (H/E) ratios of the chromium 

nitride-coated samples (H/E= 0.1±0.02) were found to be significantly higher ( 

p<0.05, CI 95%) than those of the silicon nitride coating (H/E=0.09±0.01) and 

the substrate material (H/E=0.01) [207]. Leyland and Matthews [276] 

highlighted the importance of the H/E ratio, relating elastic strain to fracture, and 

fracture toughness in predicting the wear performance of materials, including 
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coatings, than hardness and Young’s modulus alone. Their work suggested that 

high H/E ratio of a coating was often an indicator of good wear resistance. 

Further, work conducted by Recco et al. [277] suggested that coating adhesion 

may be improved by optimising and matching H/E ratios of the coating and 

substrate, they found that adhesion of the film to the substrate was greater when 

the H/E ratio of the film and of the substrate were similar. However, this work 

was conducted on titanium films and steel substrates, thus such conclusion may 

not be relevant to the current work. 

To date, successful coating adhesion has been one of the most challenging 

coating characteristics to be achieved in total joint replacement applications 

[278] and has frequently been a cause of failure of coated devices 

[167,170,279,280]. The current study investigated coating adhesion using 

scratch testing. The method, combined with visual assessment of the scratches 

generated during testing, established three critical loads. On average, the Lc1 

values, i.e. load at which the initial plastic deformation occurred, were higher for 

the chromium nitride coating (10.4±0.7N) than for the silicon nitride coatings 

(4.5±0.8N). This is likely a result of significantly higher hardness of the 

chromium nitride coatings. At these lower loads both coatings showed brittle 

tensile cracking – chevron cracking opening in the direction of scratch. The 

initial plastic deformation of the coatings was followed by cohesive failure 

demonstrated by chipping and spallation on the edges of the scratches, initial 

occurrence of which defined the values of Lc2. The Lc2 critical load was found to 

be higher in the silicon nitride coatings (22.9±2.7N), when compared to the 

chromium nitride coatings (16.24±0.7N), which suggested higher cohesive 

strength of the silicon nitride coatings. On the other hand, Lc3 critical loads, 

which were determined by locations at which the coatings were fully penetrated 

by the stylus, were significantly higher for the chromium nitride coatings 

(73.9±3.6N) than the silicon nitride coatings (63.1±6.4N). Overall, the results 

presented in the current study indicated relatively good adhesion of both 

coatings. The results of the chromium nitride coated samples were in line with 

previously published results  [178,281]. Results of the silicon nitride coatings 

investigated in the current study were significantly better than those previously 

reported by Olofsson et al. [245] whereby the majority of the coatings failed at 
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the tip engagement step. Similar results were reported by Pettersson et al., 

where all the coating samples delaminated during friction testing, indicating 

insufficient adhesion [190]. It has previously been found that coating adhesion 

is highly dependent on coating deposition methods and parameters [178], as 

well as coating thickness [281,282]. Fuentes et al. found that cathodic arc 

deposition resulted in more adherent coating [178] when compared to other 

PVD methods (electron beam, or magnetron sputtering). Heinke et al. [281], as 

well as Ollendorf and Schneider [282] reported that coatings deposited via PVD 

(titanium nitride and chromium nitride)  exhibited improved adhesion with 

increasing coating thickness. However, it has been shown in the past that 

different adhesion measuring methods do not yield consistent results and often 

the same samples evaluated by different methods can lead to contradictory 

results [282]. For that reason, it was difficult, if not impossible to directly 

compare the current results to the present literature. Some methods of 

improving coating adhesion of PVD coatings have been proposed and 

application of interlayers have shown promising results; improved coating 

adhesion and corrosion resistance of CrN coatings with Al2O3 or Cr interlayers, 

deposited via HiPIMS PVD, were reported in the literature  [283,284], however 

it was found that the effectiveness of interlayer application depended of the 

substrate surface roughness and  interlayer thickness [284]. Moreover, it has 

been shown that substrates with rougher surfaces yield superior coating 

adhesion [285]. Ollendorf and Schneider [282] reported that pre-sputtering of 

substrate material, prior to coating, can result in improved coating adhesion by 

removing any potential contaminants on the surface which may affect the 

coating adhesion [286]. The test coupons, as well as the pristine CTDR devices 

described in Chapter 3, were polished to mirror finish (~Ra=0.02µm), which may 

have potentially reduced the coating adhesion of the chromium nitride and 

silicon nitride. Moreover, introduction of sample pre-coating sputtering could 

potentially improve the adhesion further.  
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3.6 Conclusions 

Characterisation of the silicon nitride and chromium nitride coatings showed 

their surface and mechanical properties were adequate for total joint 

replacement applications. The surface roughness of both coatings was within 

the ISO specification for MoM THR (ISO-7206–2:2011) [265], the hardness of 

both coatings was superior to the substrate material and the adhesion of the 

coatings was found to be good overall. The thickness of both coatings was 

found to be similar (~5µm). All studies carried out in this chapter were indicative 

that the chromium nitride coating exhibited superior mechanical and adhesion 

properties to those of the silicon nitride coating. Such coating characterisation 

tests are a useful tool in assessing the initial differences between the coatings. 

However, functional testing, such as simulator wear testing is required, 

particularly when investigating coatings for specific applications, in order to test 

the coated devices under relevant operating loads, motions and environmental 

conditions. For that reason, CTDR devices were coated with the chromium 

nitride and silicon nitride coatings and tested in six-station spine simulator.
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Chapter 4 : Wear assessment of CTDR 

In total joint replacement, the assessment and understanding of the 

biotribological performance of a device can help predict and gain insight into its 

performance in vivo. To date, in vitro testing of other total joint replacement 

implants, such as hip or knee, is at a mature level, where the ISO standards 

and a large body of evidence have been produced, particularly for hip and knee 

replacement devices. Recently total disc replacement testing also achieved 

standardisation of testing input parameters, however, extensive practical 

experience of its application, expected wear performance of devices and clinical 

relevancy of the standard are yet to be established.  

This chapter gives an overview of the testing methodologies used in this thesis 

for in vitro wear testing of metal-on-metal and ceramic-coated cervical disc 

replacement devices. Both variants of devices (coated or uncoated) were tested 

in six-station spine simulator under standard ISO-18192-1:2011 conditions for 

a duration of 4 million cycles. Further, the testing protocol was altered, whereby 

the applied ranges of motion were reduced, whilst the load and frequency 

remained the same as the standard protocol. This chapter outlines the wear 

performance of metal-on-metal and ceramic coated CTDRs tested under the 

standard and altered testing conditions.  

4.1 Introduction to spine simulator testing 

4.1.1 Leeds six-station spine simulator 

The spine simulator was developed as part of collaboration between the 

Institute of Medical and Biological Engineering (IMBE), University of Leeds and 

Simulation Solutions Ltd (SimSol), Manchester, UK. The technical specification 

of the simulator was drawn up by IMBE and the subsequent simulator design 

and manufacture was undertaken by SimSol. The specification took many of its 

key points from ISO 18192-1:2008 – ‘Wear of total intervertebral spinal disc 

prostheses -- Part 1: Loading and displacement parameters for wear testing and 

corresponding environmental conditions for test’ [135], with additional features 
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that allow for more demanding and physiologically representative simulation. 

Moreover, at the time of development, the simulator was new in concept, 

applying five active degrees of freedom (rotation in three planes, translation in 

anterior-posterior plane and axial loading) in contrast to other spine wear 

simulators which applied only four active degrees of freedom and did not 

incorporate translation motion. In addition, all loads and motions are applied 

exclusively by electro-mechanical actuators, as opposed to hydraulics or 

pneumatics, which improves the accuracy and control of the loads and motions. 

The simulator contains two banks of three stations (Figure 4.1), allowing six 

stations to be tested with one additional soak control station, which can apply 

cyclic axial loading. Axial loading (AF) and axial rotation (AR) are applied to the 

inferior fixture, whilst flexion-extension (FE), lateral bending (LB) and anterior-

posterior shear (AP) (under load or displacement control) are applied to the 

superior fixture (Figure 4.2). The details of how different loads and motions were 

applied in the simulator can be found in Appendix II. 

 

Figure 4.1: Leeds Spine Simulator A showing Banks 1 and 2 with 
stations 1-6 and a soak station 

Bank 1 Bank 2 

Soak station 

Stations 4 5 6 

Stations 1 2 3 
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Figure 4.2: Fully assembled test cell. The axial force and rotations are 
applied to the inferior fixture, whilst the anterior shear, 

flexion/extension and lateral bending motions are applied to the 
superior fixture. 

4.1.2 Testing protocol 

There are two internationally recognised documents prescribing methods of in 

vitro wear simulation of cervical total disc replacement devices - ISO-18192-1, 

and ASTM F2423-11. A comparison study of the ISO-18192-1, ASTM F2423-

11 and observed daily motions in the cervical spine found that motions in the 

cervical spine are more frequent than the million cycles per year specified by 

standards [49]. Moreover, the authors have suggested that the amplitudes of 

motions were much smaller than those stipulated by the ISO-18192-1:2011; 

most daily activities investigated by the study resulted in ROMs of 2-3°, 

compared to the 4-7.5° specified by the ISO standard. 

Simulator testing of the Bryan cervical disc (CTDR, MoP bearing, titanium and 

polyurethane) [121] produced significantly more wear when compared to 

retrieved devices; the reported wear rate of 0.57mm3/million cycles was higher 

by approximately 5 to 10 fold than those found in explants.  

Kurtz et al. [138] compared Prestige-ST (CTDR, MoM bearing, stainless steel) 

components tested in a spine simulator to retrievals. However, the in vitro 

testing was conducted under a non-standard test protocol: coupled lateral 

A
F

 

AR 

LB 

FE 

AP 

Superior fixture 

Inferior fixture 
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bending (±4.7°) and axial rotation (±3.8°) with a 49N axial load for 5 million 

cycles followed by 10 million cycles of flexion-extension (±9.7°) with 148N axial 

load. It was not possible to establish the exact wear rates of the explants and 

compare them directly to the in vitro test results (range of 0.03 - 0.74mm3/MC, 

depending on testing conditions). Wear scars and mechanisms of explants were 

similar to those found in samples tested in the simulator; however, retrieval wear 

was not as severe as in vitro tested samples. It was observed that the simulator 

tested samples had deeper scratches and higher surface roughness, when 

compared to explanted devices. Anderson et al. [121], who also tested Prestige-

ST implant, reported a wear rate of 0.18mm3/million cycles. Additionally, those 

authors found that components tested for only 0.3 million cycles produced much 

higher wear than in a device explanted from a patient after 39 months in vivo 

i.e. an equivalent of 3.25 million cycles of simulator tests. Findings suggesting 

exaggeration of wear rates found in in vitro studies are consistent with those 

reported for the Bryan cervical disc device [121], even though there were minor 

differences in test conditions (ranges of motion, loads and duration) and 

fundamental differences in device designs (bearing type and material 

combination). Comparison between in vitro simulator studies and retrievals, 

[139,140] found that  abrasion found in the simulator tested samples was more 

severe than that observed in vivo. Similarly to Anderson et al. [121] these 

authors hypothesised this was due to short implantation times. Siskey et al. 

[140] tested metal-on-metal Prestige-ST devices and found that the wear scar 

area was greater in the simulator tested components, which suggested that the 

ROMs applied in the ISO standard are more extensive than those experienced 

in vivo.  

The loads and ROMs applied in the testing of both of the Bryan and Prestige-

ST devices were within the range specified by ISO 18192-1, which may suggest 

that such test inputs are not fully representative of conditions in vivo and 

significantly overestimate wear rates, and thus require further investigation and 

possible revision. For that reason, a variant of the standard testing protocol, 

whereby the ranges of motion were decreased, has been investigated in this 

thesis. The choice of the altered ROMs (±2-3°), whilst higher than those 

suggested by Cobian et al., [49], was rationalised by the feasibility of the error 
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margins used in the testing. Decreasing ROMs further would result in the 

tolerances accounting for a larger proportion of the ROM applied. The frequency 

of all motions remained at 1Hz. 

4.2 Materials 

4.2.1 CTDR samples 

For all testing conducted in this thesis, generic CTDR devices were designed 

and manufactured. A detailed rationale, materials and methods used in disc 

design, manufacturing and inspection are provided in Chapter 3. 

Six pristine (un-coated) MoM devices as well as 12 coated devices (six coated 

with silicon nitride and six coated with chromium nitride coatings) were used in 

simulator testing. The convex and concave components were paired based on 

their radial clearance, to ensure clearance was similar and close to the specified 

0.15 mm, across all devices.  

Samples were securely mounted in the simulator fixtures using bespoke holders 

made from Erthacetal®H resin (Quadrant EPP UK Ltd., Todmorden, UK) 

(Appendix III). The design assured interference fit between the holders and 

CTDR components, which provided a secure fit without the necessity of using 

PMMA cement.  

4.2.2 Wear testing lubricant 

Newborn bovine serum (Sera Labs, Loughborough, United Kingdom) was used 

as a lubricant, diluted to 25% (v/v) using de-ionised water and supplemented 

with 0.03% (w/v) Sodium Azide solution (Sigma-Aldrich, Gillingham, Dorset, 

UK) to minimise bacterial growth, resulting in a protein content in the lubricant 

of approximately 15 g/L.  

4.2.3 Laboratory consumables and chemicals 

Fairy soap detergent (Procter & Gamble, London UK) was used in the cleaning 

protocol of the CTDR components, as well as the spine simulator stations and 

fixtures. Trigene disinfectant solution was supplied by Scientific Laboratory 

Supplies Ltd. (Nottingham, UK). Isopropanol, at a concentration of 99.8+% (v/v) 

(10090320) was supplied by Fisher Scientific UK (Leicestershire, UK). 



Chapter 4 

 

162 

4.2.4 Gravimetric analysis 

Each component, convex and concave parts separately, were weighed prior to 

wear testing, as well as at each measurement timepoint of 1x106 cycles, using 

a Mettler Toledo XP26 microbalance (Mettler-Toledo Safeline, Salford, UK).  

4.2.5 Surface topography analysis 

A two-dimensional contacting profilometer, (Talysurf PGI 800) was supplied by 

Taylor Hobson (Leicester, UK). Components were mounted in a specially 

designed fixture made from Erthacetal®H resin (Quadrant EPP UK Ltd., 

Todmorden, UK), which ensured repeatability of sample fixation and 

measurements at each timepoint (Appendix IV). 

4.2.6 Post-test dimensional inspection 

The radii of the convex and concave components, and the resultant radial 

clearances, were measured using a Legex 322 CMM (Mituyoto, Andover, UK) 

fitted with a PH6M probe head (Mituyoto, Andover, UK) and a TP7M probe 

module (Mituyoto, Andover, UK). Measurements were taken using a 1mm 

diameter stylus (A-5000-3551) (Mituyoto, Andover, UK). 

4.2.7 Microscopy 

Micrographs of each component were taken at each measurement timepoint of 

1x106 cycles using the Nikon SMZ800 microscope (Nikon Instruments, 

Amesterdam, Netherlands) fitted with a Pixelink camera (Pixelink Ottawa, 

Canada) in conjunction with a Photonic PL 2000 light source (Photonic, Vienna, 

Austria). The size of wear area was measured using ImageJ software (National 

Instruments of Health, Bethesdam Naryland, USA). 

4.2.8 Scanning Electron Microscopy 

Detailed images of the component surfaces were taken using a Carl Zeiss EVO 

MA15 Scanning Electron Microscope (SEM), fitted with EDX system, in 

conjunction with an Oxford Instruments AZtecEnergy system (Oxford, UK). 
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4.3 Methods 

4.3.1 Spine simulator calibration 

4.3.1.1 Axial load verification 

The axial loading of the spine simulator was calibrated using an external load 

cell (Sensotec 4.5kN, Honeywell International Inc., Columbus, OH, USA) 

mounted in a bespoke fixture allowing stable positioning of the load cell in the 

horizontal and vertical plane, perpendicular to the applied force (Figure 4.3). 

 

Figure 4.3: Set up for axial loading calibration using an independent load 
cell and bespoke jig. 

Software controlling the simulator, allowing independent motor control, was 

used to move the axial force motor in incremental positions of 5°. The resulting 

loading at each station load cell was recorded and compared with readings from 

the external load cell. 

Values of the simulator and external load cells were compared in a specially 

designed spreadsheet, which was used to calculate the correction factors of the 

axial load motors. In an ideal case, where the recorded values were identical, a 

plot of those values would show a gradient equal to the current gain and 

intercept at zero. Stations where this was not the case were recalibrated. 

LOAD CELL FIXTURE 
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To recalibrate, values of offset and gain of the axial load motor had to be 

calculated using an Equation 4.1. 

𝐹 = 𝐶𝐺 +  𝑂 

Equation 4.1 

where:  

F - axial force 

C – motor count (feature of the motor control unit) 

G – gain (amplification of the motor input signal) 

O – offset (nominal position control) 

The values of gain and offset, as well as the recorded values of axial loading 

from the external and simulator load cells were used in re-calibration of the 

simulator axial loading. To achieve this, the gain and offset parameters were 

adjusted so that the load output values were within the tolerance bands 

specified by the ISO standard (±5% of the maximum load). 

The revised gain and offset values were inputted in the source file (_default.ssp) 

controlling the axial loading motors. The loads were checked again and results 

plotted. The revised plot should be within the tolerance bands. Other outcomes 

indicated potential external errors such as operator error, incorrect placement 

of the external load cell or non-zero positions of flexion-extension or lateral 

bending inputs. The calibration process was applied to each station (1-7). As a 

standard operating procedure, the calibration process is repeated every 6 

months or before each test. The load cell was calibrated to within 5% of the 

applied load. 

4.3.1.2 Flexion-extension 

The motors controlling flexion-extension (FE) inputs do not have encoders built 

in and thus a table of motor positions and corresponding outputs must be 

completed. The simulator software uses a calibration table to compute a linear 

motor input table, so that the FE motion is accurate and linear. 

The spine simulator has two motors controlling FE motion – one responsible for 

stations 1-3 and a second for stations 4-6. Station 7 is a soak station and has 

no kinematic input or output. Each motor controlling FE is connected to its 3 
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corresponding stations via connecting bars. As a result of this linkage, the FE 

motion has to only be calibrated for one station per bank. However, the other 

two stations should be checked for congruity with the calibrated station. For this 

purpose, a measurement error of ±0.1° was chosen as the smallest practicable 

tolerance. 

The FE input angles of motions were measured using an independent digital 

inclinometer (Pro 360 digital inclinometer, SmartTool Tech Inc., Oklahoma City, 

OK, USA) with a resolution of 0.1° placed on one station and fixed using tape 

(Figure 4.4). Software controlling the simulator, allowing independent motor 

control, was used to move the FE motors in incremental positions of ±2° within 

the range of ±10°. The resulting angle of motion was measured, recorded and 

compared with the current output of the simulator. If the values specified by the 

simulator were different to those measured by the inclinometer, recalibration 

was required. This was achieved by simply readjusting the linearisation table. 

In order, to check if the recalibration was successful, the software had to be 

restarted and the calibration procedure repeated. 

 

Figure 4.4: Set up for flexion-extension calibration using a digital 
inclinometer.  

Digital inclinometer 

Superior fixture 

Inferior fixture 

Dummy device 
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4.3.1.3 Lateral bending 

The lateral bending (LB) motion of the spine simulator is controlled by two 

independent motors, which control stations 1-3 and 4-6 separately. The 

connection between the motors and its corresponding stations is achieved via 

a gimbal system, which provides a rigid connection. As a result, only one 

calibration procedure for each motor had to be carried out and it was not 

necessary to check each separate station for congruity.  

The calibration process was similar to the procedure applied for the calibration 

of flexion-extension motions. An independent digital inclinometer was used to 

measure the motion angle corresponding with the motor angle controlled by the 

simulator software. Incremental positions of ±2° within the range of ±10° were 

used. If the values specified by the simulator were different to those measured 

by the inclinometer, recalibration was required. This was achieved by simply 

readjusting the linearisation table. In order, to check if the recalibration was 

successful, the software had to be restarted and the calibration procedure 

repeated. 

4.3.1.4 Axial rotation 

The calibration process of the motor controlling the axial rotation (AR) was 

similar to the one for FE and LB calibration. However, the AR motor angle 

corresponds directly to the specimen angle and thus no calibration table was 

required. To verify the motor accuracy the use of a rotational scale was 

required. For that purpose, the angular increments of 2° were converted into a 

distance using the formula for an arc length of a circle (S=rθ). The radius of the 

test station was 45 mm; therefore, the corresponding rotation distance was 

1.57mm. Software controlling the simulator, allowing independent motor 

control, was used to move the AR motors in incremental positions of ±2° within 

the range of ±10°. The resulting angle of motion was measured, recorded, 

compared with the motor position and adjusted if necessary by editing the 

calibration file. 

4.3.1.5 Phase calibration 

The frequency of motions performed by the simulator was checked with a stop 

watch; the number of cycles performed within a given time duration was 
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recorded. Such checks were carried out periodically throughout the tests. The 

phases between the demand and output profiles were checked at the start of 

each test.  

4.3.1.6 Temperature calibration 

As per ISO 18192:1, the test cells were heated to body temperature (37±2ºC) 

in order to produce clinically relevant conditions. The spine simulator was fitted 

with heating elements and thermocouples at each station. Calibration of the 

temperature was conducted using an independent thermocouple (Fluke 51 K/J, 

John Fluke Manufacturing Co. Inc, Everett, WA, USA). The temperature of each 

station was measured using the independent thermocouple and if necessary, 

the simulator thermocouples were adjusted accordingly. 

4.3.2 Altered testing conditions 

With findings in the literature suggesting that the testing protocol specified by 

ISO-18192-1 may result in overestimated wear rates, additional test with altered 

parameters (range of motion) was conducted in the present study. The 

amended inputs (highlighted) of the test are listed in Table 4.1. The revised 

input curves for load and displacement are shown in Figure 4.5. No changes 

were made to relative phasing of the inputs and these remained in line with ISO-

18192-1:2011. This altered testing protocol was used in testing for a duration of 

2x106 cycles. 

Table 4.1: Testing protocol inputs for spine simulator test under altered 
ISO-18192-1:2011 protocol, changes to the protocol were 

highlighted. Range of all motions were decreased, loads and 
phasing of the motions remained in line with the ISO standard. 

Test ID Duration Input Value Tolerance 

  Load 50-150 N ±5% of maximum load 

  Flexion/Extension ±3.0° ±0.5° 

2 2x106  Lateral bending ±2.0° ±0.5° 

 cycles Axial rotation ±2.0° ±0.5° 

  Frequency 1 Hz 2% of cycle time 
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Figure 4.5: Revised phasing of the displacement and load curves applied 
in Test 2. The frequencies of all motions and AF (axial loading) 
remained at 1 Hz; ROMs are reduced to ±3°, ±2° and ±2° for FE 
(flexion/extension), LB (lateral bending) and AR (axial rotation), 

respectively. 

4.3.3 Standard ISO simulator testing conditions  

The initial simulator testing of CTDR components was conducted under 

conditions adhering to ISO 18192-1:2011. The kinetic inputs and tolerances 

applied in the standard tests are listed in Table 4.2, below. While the Leeds 

Spine Simulator (A) has the capability to apply AP shear in force and 

displacement control, it was not required by the ISO 18192-1:2011 testing 

protocol and was therefore not used in the testing.  

The kinetic inputs of the ISO standard are a sinusoidal approximation of the 

loads exerted in the spine, running concurrently, as shown in Figure 4.6. The 

axial force input stipulated by ISO-18192-1 ranged between 50 and 150 N, 

which aimed to represent in vivo conditions. It is believed that the cervical spine 

is subjected to loads equal to 3 times the weight of the head and associated 

soft tissues – approximately 200 N [44].  
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Table 4.2: Standard ISO-18192-1:2011 testing inputs and error margins 

Test ID Duration Input Value Tolerance 

  Load 50-150 N ±5% of maximum load 

  Flexion/Extension ±7.5° ±0.5° 

1 4x106  Lateral bending ±6.0° ±0.5° 

 cycles Axial rotation ±4.0° ±0.5° 

  Frequency 1 Hz 2% of cycle time 

 

The static loads exerted on the cervical spine arise mainly from the weight of 

the head and associated soft tissues, which are approximately 4.5-5 kg (~7% 

of body weight). The strength and load carrying capacity of the cervical spine 

comes only partially from the mechanical strength of vertebrae and 

intervertebral discs and it is largely determined and supported by the 

mechanical properties of the ligaments and muscles. The weight of the body 

segment carried by the cervical spine is approximately 50N [45].  

 

Figure 4.6: Phasing of the displacement and load curves for CTDRs 
specified by ISO-18192-1:2011; AF- axial force, LB – lateral bending, 

FE – flexion/extension, AR – axial rotation.  
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The kinematic inputs specified by ISO-18192-1:2011 lie within the typical 

ranges of in vivo motions of the neck found in the literature [49,50,52], however, 

they are unlikely to represent single index level motion, as the range of motion 

of the neck is a combination of a motion occurring at several segments at the 

same time.  Thus, it can be argued that the current ISO standard requirements 

may exaggerate the conditions found in vivo; and such extended motions can 

lead to overestimated wear rates. For that reason, additional test applying 

alternative testing conditions was carried out. This further testing investigated 

altered ranges of motion applied during wear testing. 

4.3.4 Spine simulator testing 

Prior to testing, components were thoroughly cleaned with detergent and 

ethanol (as described below) and all pre-test measurements (surface 

profilometry and weighing) were performed (sections 4.2.4 and 4.2.5).  

Components were then mounted in bespoke resin fixtures, which subsequently 

were placed in the lower and upper holders and secured with screws. The resin 

fixtures were designed such, that the height at which the superior and inferior 

components were placed at, and the resultant centre of rotation (CoR), matched 

the CoR of the simulator. Once assembled into a test cell (Figure 4.7) 

components were securely enclosed in a silicon gaiter, allowing full submersion 

in the lubricant. 
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Figure 4.7: Fully assembled test cell showing the superior and inferior 
fixtures and placement of a sample in an enclosed gaiter. 

Two silicone tubes were connected to the upper and lower holder, allowing 

lubricant filling and draining. The two pipes were then connected creating a 

sealed environment for each test cell, which reduced the potential of airborne 

contamination of the lubricant. Following each 3.3x105 cycles, the lubricant was 

drained and stored at -20°C for further particle characterisation and cyototxicity 

analyses (Chapter 5). Each station was then rinsed out with diluted soap 

detergent, soaked in the Trigene disinfectant solution for 20 minutes at room 

temperature, after which each station was rinsed out twice with tap water and 

once with deionised water. The waste liquid generated during the cleaning was 

discarded and cleaned, empty station gaiters were refilled with fresh lubricant. 

At measurement points, i.e., following every 1x106 cycles of testing, the test 

cells were disassembled and components removed from the resin fixtures. The 

components of test cells (resin fixtures, holders, jubilee clips, silicon gaiters and 

tubes) were scrubbed and washed with soap detergent, soaked in the Trigene 

disinfectant solution for 20 minutes in room temperature and rinsed with tap and 

deionised water, as described above. The components were gently cleaned 

(avoiding any abrasion to the articulating surfaces) with soap detergent and a 

sponge, sonicated in ultrasonication bath soap detergent dilute for 15 minutes, 

Superior 
holder 

Inferior 
holder 

Sample immersed 

in serum  
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rinsed with tap and deionised water, sonicated in 70% (v/v) isopropanol for 15 

minutes and left to dry in air for 10 minutes. Prior to any measurements, the 

components were placed in a temperature and humidity controlled room for 24 

hours.  

4.3.5 Gravimetric analysis 

Each component, convex and concave parts separately, were weighed prior to 

the wear testing, as well as at each measurement timepoint of 1x106 cycles to 

determine mass loss. Subsequently, volume loss was calculated using the 

material density (CoCr=8.3g/cm3, Si3N4=3.44g/cm3 and CrN=5.9g/cm3). Before 

taking measurements, it was ensured that the balance was stable and read 

zero. At least 5 measurements of each component were completed, ensuring 

that all the readings for each component were within ±0.01 mg of each other.  

4.3.6 Surface profile analysis 

A two-dimensional contacting profilometer fitted with a diamond tip was used to 

assess bearing surfaces of the cervical disc components, prior to wear testing, 

as well as at each measurement timepoint of 1x106 cycles. Detailed 

methodology of surface profilometry has previously been discussed in Chapter 

2 section 2.3.2. 

On each component, six 11 mm long traces across the bearing surface were 

taken, as shown in Figure 4.8A. The traces were positioned in order to collect 

the greatest amount of data as possible. Parameters such as surface roughness 

(Ra), skweness (Rsk), maximum peak height (Rp) and maximum valley depth (Rv) 

were recorded. Traces P2 and P5 were normal to each other and passed through 

the pole. In order to find the pole (highest point of the convex surface and lowest 

point of the concave surface) the stylus was crested before each measurement 

i.e. adjusted in the horizontal plane until the maximum (convex surface) or a 

minimum (concave surface) vertical values were reached. 

Traces P1 and P2 were approximately 3 mm away from the position of the P1 

trace, while traces P5 and P6 were 3 mm away from the position of the P4 trace. 

In instances where the traces included the flat portion of the endplate, those 

areas were excluded from the analyses, as shown in Figure 4.8B. 
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Figure 4.8: A: top view showing the schematic representation of six 
traces taken across the surface of each CTDR component for the 

measurement of surface roughness; B: side view showing the 
measured area included only the bearing surface and excluded the 

flat endplate areas. 

Collected data was analysed using least squares arc with a Gaussian filter and 

appropriate cut-off, which uses mathematical or electronic means to reduce or 

remove unwanted data, in order, to focus on wavelength in the region of 

interest. An appropriate long-wave cut-off wavelength, dependent on the Ra 

values and an appropriate bandwidth, based on the long-wave to short-wave 

cut off wavelength ratio (λc/ λs), were used, as shown in Table 4.3 The cut off 

values and bandwidth ratios are specified by ISO-4288:1998 (‘Geometric 

product specification (GPS). Surface texture. Profile method: Rules and 

procedures for the assessment of surface texture’) and ISO-3274:1996 

(‘Geometrical Product Specifications (GPS) -- Surface texture: Profile method -

- Nominal characteristics of contact (stylus) instruments’), respectively.  
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Table 4.3: Values of cut-off depending on Ra values as stipulated by                 
ISO-4288-1998. Relationship of λc/ λs i.e. bandwidth is based on ISO-

3247-1998 

Ra (µm) Cut off λs (mm) Cut off λc (mm) Bandwidth (λc/ λs) 

≤ 0.02 2.5 0.08 30 

0.02 < Ra ≤ 0.1 2.5 0.25 100 

0.1 < Ra ≤ 2 2.5 0.8 300 

2 < Ra ≤ 10 8 2.5 300 

10< Ra ≤ 80 25 8 300 

 

4.3.7 Post-test component dimensional inspection 

After completion of each spine simulator test, radial clearance of the 

components was measured. In order, to measure the radial clearance, radii of 

the convex and concave components were measured using the CMM and the 

method described in Chapter 2 Section 2.2.2. 

4.3.8 Light microscopy of CTDR components 

At each measurement timepoint, micrographs of all components were taken. 

The images were taken at x1 magnification, allowing the entire articulating 

surface to be viewed and analysed. The scale of all images was set using a 

calibrated graticule. The set scale (170.71px/mm) was later used in ImageJ 

image processing software. The wear scar on the CTDRs appeared to be darker 

and using the freehand selection tool in ImageJ, the size of the area was 

measured, as shown in Figure 4.9. Further images at higher magnifications 

were taken to assess wear tracks and surface damage of the components.  
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Figure 4.9: Example of wear area measurement using ImageJ software. 

4.3.9 Scanning Electron Microscopy analysis of CTDR 

components 

A Carl Zeiss EVO MA15 SEM fitted with an EDX system was used for all SEM 

image capture. Components were fixed in a specially made fixture (Appendix 

IV) mounted on stubs using a carbon sticker. Carbon paint was used around 

the edges of components and the fixture to ensure sufficient conductivity and 

reduce chances of static surface charge accumulation. Images were taken at a 

range of magnitfications and working distances, at 20kV accelerating voltages. 

Images of components were taken prior to testing and at each measurement 

timepoint. 

4.3.10 Statistical analysis 

All statistical analysis of data was performed using SPPS for Windows (v.21.0, 

SPSS Inc., Chicago, IL, USA). One-way analysis of variance (ANOVA) was 

used to analyse obtained data with α=0.05 for difference between data sets. 

4.4 Results 

4.4.1 Pristine CoCr-CoCr CTDRs 

4.4.1.1 Standard ISO simulator testing conditions 

The initial test consisted of 4MC of standard ISO-18192:2011 input. This test 

(referred to as Phase 1 testing) was to act as a benchmark for further testing of 
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altered ISO inputs (Phase 2 testing) as well as the same ISO testing of CTDR 

components coated with CrN and Si3N4. 

4.4.1.1.1 Wear rates 

The overall mean volume loss was 0.98±0.1mm3 over 4MC, ranging from 

0.81mm3 (Stn.3) to 1.08mm3 (Stn.6). The mean volumetric wear rate was 

0.24mm3/MC, ranging from 0.20mm3/MC (Stn.3) to 0.27mm3/MC (Stn.6). On 

average, the volume loss from the convex components was 0.12mm3/MC and 

0.13mm3/MC from concave components, as shown in Figure 4.10 . No 

significant differences between the mass loss from the two component groups 

was found (p>0.05, CI 95%, convex vs. concave components). Throughout the 

test, the volumetric wear was linear; no significant bedding-in period was 

observed. Therefore, at 4MC it was decided that further testing was unlikely to 

show dramatic changes in wear rates and patterns and thus further testing was 

conducted under the altered ISO-18192-1:2011 testing protocol (section 4.3.2). 

 

Figure 4.10: Cumulative volume loss from CoCr-CoCr CTDR components 
tested under the ISO-18192-1:2011 protocol. There was no 

significant difference in convex and concave component volume 
loss across 4MC of simulator testing. Error bars represent 95% 

confidence limits. 

There was some inter-station variability across the duration of the test, as 

shown in Figure 4.11. Station 3 produced the lowest volume losses from 2MC 

until the end of the Phase 1 testing. At 4MC station 6 produced the highest 
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volume loss. For the first 3MC of the test, station 2 produced the highest volume 

loss.   

 

Figure 4.11: Station variability in volume loss across 4MC of testing 
under ISO-18192-1:2011 protocol of CoCr-CoCr CTDR devices. 

4.4.1.1.2 Surface roughness  

Prior to testing, the convex and concave components had mean Ra values of 

0.023±0.003µm (SD) and 0.015±0.002µm (SD), respectively. These were 

calculated as an average value of all 6 traces across the surface of each 

component. It has been noted in the pre-test measurements that the traces 

taken across the pole of each component (traces P1 and P4) showed lower Ra 

values, as shown in Table 4.4. After 4MC of standard ISO testing (Test 1) 

surfaces of all components were analysed using the same method. Following 

testing the mean Ra values of convex and concave components were 

0.012±0.002µm and 0.012±0.002µm, respectively. This reduction in the Ra 

parameters was found statistically significant for both the convex (p<0.05, CI 

95%) and concave (p<0.05, CI 95%) components. As with the pre-test results, 

measurements taken across the pole of each component (traces P1 and P4) 

showed the lowest values of Ra, as summarised in Table 4.5. Following the 4CM 

of standard ISO-18192-1:2011 protocol testing, the mean Ra values for the 

convex and concave components decreased by 48% and 14%, respectively. 

The most notable decrease in Ra values was seen in the off-pole traces (P2, P3, 

P5 and P6) of the convex components, which decreased by 60%, 46%, 53% and 

51%, respectively. 
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Table 4.4: Mean pre-test Ra, Rp, Rv and Rsk values for different traces 
taken across the surfaces of convex and concave components of 

CoCr-CoCr CTDR devices; the traces with lowest values are 
highlighted in green. One-way ANOVA analysis (α0.05) of the pre-
test surface finish parameters showed that the Ra, Rp and Rsk of 

concave components were significantly lower (p<0.05) than those of 
the convex components. Values of the Rv parameter were not found 

to be significantly different between the two component groups. 

Component Trace number  

 

P1 P2 P3 P4 P5 P6 Average(SD) p-value* 

Ra [µm]  

Convex 0.019 0.026 0.026 0.014 0.026 0.030 0.023(0.003) 

<0.05 

Concave 0.011 0.015 0.016 0.011 0.015 0.017 0.015(0.002) 

 Trace Rp [µm]  

Convex 0.046 0.063 0.072 0.032 0.068 0.078 0.060(0.005) 

<0.05 

Concave 0.027 0.043 0.040 0.026 0.040 0.043 0.036(0.004) 

 Trace Rv [µm]  

Convex 0.076 0.113 0.106 0.063 0.101 0.077 0.089(0.007) 

>0.05 

Concave 0.046 0.075 0.085 0.044 0.071 0.091 0.069(0.012) 

 Trace Rsk [µm]  

Convex -1.026 -1.319 -1.079 -1.109 -1.108 -1.108 -1.108(0.111) 

<0.05 

Concave -1.683 -1.715 -2.247 -1.550 -2.068 -1.957 -1.870(0.265) 

*comparison between convex and concave components 
 

A similar trend was observed for Rp and Rv parameters, where values 

decreased following testing, with the lowest values found for traces P1 and P4. 

Prior to testing the mean Rp values were 0.060±0.005µm (SD) and 

0.036±0.004µm (SD) for the convex and concave components, respectively 

(Table 4.4). After 4MC of standard ISO testing the mean Rp values decreased 

to 0.032±0.006µm (SD) and 0.035±0.004µm (SD), for convex and concave 

components, respectively, which was statistically significant for the convex 

(p<0.05, CI 95%) but not for the concave components (p>0.05, CI 95%) (Table 
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4.5). Prior to testing, the mean Rv values were 0.090±0.007µm (SD) and 

0.067±0.012µm (SD) for the convex and concave components, respectively 

(Table 4.4). Following 4MC of standard ISO testing the mean Rv values 

decreased to 0.056±0.037µm (SD) and 0.050±0.010µm (SD), for convex and 

concave components, respectively (Table 4.5). Such reduction in the Rv 

parameter was found significant (p<0.05, CI 95%) for both component groups. 

Table 4.5 Mean Ra, Rp, Rv and Rsk values of CoCr-CoCr CTDRs 
following 4MC of ISO-18192-1:2011 testing for different traces taken 
across the surfaces of convex and concave components; the traces 

with lowest values are highlighted in green. One-way ANOVA 
analysis (α=0.05) of the post-test results showed that the changes 

in parameters following the testing were statistically significant 
(p<0.05) only in convex components. 

Component Trace  

 

P1 P2 P3 P4 P5 P6 Average(SD) p-value* 

Ra [µm]  

Convex 0.010 0.011 0.014 0.010 0.012 0.015 0.012(0.002) <0.05 

Concave 0.010 0.015 0.011 0.010 0.015 0.012 0.012(0.002) >0.05 

 Rp [µm]  

Convex 0.026 0.029 0.038 0.028 0.031 0.041 0.032(0.006) <0.05 

Concave 0.028 0.041 0.033 0.027 0.044 0.034 0.035(0.004) >0.05 

 Rv [µm]  

Convex 0.045 0.048 0.066 0.050 0.062 0.066 0.056(0.037) <0.05 

Concave 0.039 0.060 0.046 0.040 0.059 0.056 0.050(0.010) >0.05 

 Rsk [µm]  

Convex -4.039 -2.879 -1.974 -3.129 -3.886 -2.109 -3.000(0.865) <0.05 

Concave -4.489 -1.439 -2.274 -3.139 -1.664 -3.592 -2.766(1.183) >0.05 

*comparison between the pre- and post-test data, standard ISO-18192-1 protocol 

The mean values of the skewness parameter (Rsk) before testing were                                  

-1.108±0.111µm (SD) and -1.870±0.265 (SD) for convex and concave 
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components, respectively (Table 4.4). Following the testing, the values have 

decreased significantly to -3.000±0.865µm (SD) (p<0.05, CI 95%) and -

2.766±1.183µm (p>0.05, CI 95%) for convex and concave components, 

respectively (Table 4.5). Only the Rv parameter was not found significantly 

different (p>0.05, CI 95%) between the two component groups (Table 4.4). It 

may indicate that the manual polishing method applied in the preparation 

method of the CTDR devices, did not achieve the same surface finish results 

for the different components. 

4.4.1.1.3 Surface damage 

At each measurement timepoint light micrographs of the surfaces of all 

components were captured, to inspect the changes of the surfaces and in an 

attempt to identify wear modes, mechanisms, types of damage and any surface 

features. Moreover, ImageJ software was used in order to track changes in the 

size of the wear area.  

Damage to the surface was similar across all stations at each measurement 

timepoint. There was evidence of surface discolouration on all the components, 

which appeared to be related to the main wear area; there was a clear difference 

between the discoloured (worn) and un-worn area (Figure 4.12). 

Multidirectional, criss-crossing scratches on the wear surfaces were observed 

(Figure 4.12). In some cases, deep, circular wear scars were observed, as 

shown in Figure 4.13. 

Despite the cleaning protocol being followed diligently at every 1MC 

measurement timepoint, some components showed evidence of a dark brown 

deposit build-up on the surfaces (Figure 4.14). With additional scrubbing with 

acetone-soaked tissue, it was possible to remove some of these deposits. 

However, in the case of the concave components, this remained difficult to 

achieve.  

High magnification images showed evidence of micropitting, particularly in the 

pole areas of the concave and convex components (Figure 4.15). 
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Figure 4.12: High magnification light micrograph depicting the 
noticeable discolouration of the surface area, associated with wear. 

Multidirectional, criss-crossing scratches were also present 
(convex component, 3MC under ISO-18192-1:2011 conditions). 

 

Figure 4.13: Deep wear marks found on some surfaces (concave 
component, 2MC under ISO-18192-1:2011 conditions). 

Multidirectional scratches 

Discoloured wear area 

Pristine, unworn area 
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Figure 4.14: Example of deposit build-up on the surfaces at the edges of 
the wear area (concave component, 4MC under ISO-18192-1:2011 

conditions). 

 

 

Figure 4.15: Example of surface damage at the pole of a convex 
component, at 4MC under ISO-18192-1:2011 conditions, showing 

signs of micropitting. 

Deposit build-up  

Micropits  
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High resolution, high magnification images captured using SEM showed similar 

findings to the light micrographs. Surface damage characteristics were similar across 

all components. Evidence of multidirectional and criss-crossing scratches in the wear 

area was found (Figure 4.16) along with clear difference in the surface morphology in 

the wear area, when compared to the unworn surface (Figure 4.17). In some cases, 

components were present with a layer of deposit, which most commonly occurred at 

the outside edges of the wear area as well as in deep wear scars (Figure 4.18). 

Evidence of micropitting was also observed using the SEM (Figure 4.19).  

   

Figure 4.16: SEM micrographs of multidirectional and criss-crossing 
scratches on the surface of a CoCr CTDR component (convex 

component, 3MC under ISO-18192-1:2011 conditions) 
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Figure 4.17: SEM micrograph of morphological difference between worn 
(right) and unworn (left) surface (convex component, 3MC under 

ISO-18192-1:2011 conditions). 

Polishing marks in the 
unworn area 

Worn area with visible wear 
scratches  
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Figure 4.18: SEM micrographs of deposit found surfaces, most 
commonly found on the outside edges of the wear area (top), as 
well as in deeper wear scratches (bottom) (concave component, 

2MC under ISO-18192-1:2011 conditions 

Worn area 

Unworn area with visible 
polishing marks 

Deposit found on the edge of 
worn area 

Deposit found in deeper wear 
scratches 
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Figure 4.19: Example of micro-pits found on the surfaces of uncoated, 
metal CTDR components, following 2MC of standard ISO testing. 

 

The size of the visible wear area was assessed at each measurement timepoint 

using the light micrographs and ImageJ software. A summary of the results is 

shown in Table 4.6. The mean value of the visible wear area for convex 

components increased from 22.1±2.9mm2 at the 1MC timepoint, to 

35.1±1.0mm2 at the 4MC timepoint. Similarly, the mean value for concave 

components increased from 27.8±2.3mm2 at 1MC timepoint to 43.1±1.1mm2 at 

4MC timepoint. Throughout the entire duration of standard ISO-18192-1:2011 

protocol, the visible wear area was larger on the concave components. 

Assuming, that the bearing area was flat (i.e. as observed through the light 

microscope), the bearing surface of the convex and concave components were 

76.4mm2 and 57.2mm2, respectively. Thus, the wear area observed at the 

convex components increased from 38.6% of the total bearing surface at 1MC 

to 45.9% at 4MC. Similarly, the wear area on the concave components 

progressed from 48.6% of the total bearing area at 1MC to 75.3% at 4MC. At 

each timepoint the wear scars observed on the concave components were 

significantly larger (p<0.05, CI 95%) and accounted for a larger proportion of 

the total bearing area, than those observed on the convex components.  
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Table 4.6: Summary of mean values of the visible wear area on the CoCr 
CTDR components, measured throughout the 4MC of standard ISO 
testing (ISO-18192-1:2011). One-way ANOVA (α=0.05) was used to 

calculate p-values. 

 Visible wear area ± SD [mm2]  

No. of 
cycles 

1 2 3 4 Mean 

Convex 22.1±2.9 31.0±1.8 33.4±1.4 35.1±1.0 30.4±5.5 

Concave 27.8±2.3 34.8±2.5 36.6±1.8 43.1±1.1 36.2±6.3 

p-value p<0.05 p<0.05 p<0.05 p<0.05 p<0.05 
 

4.4.1.1.4 Post-test dimensional inspection 

The radius of each component was measured as described in Chapter 3 section 

1.2.2 and the resulting radial clearance of each test station was calculated. The 

same process was repeated after the completion of Test 1 i.e. after 4MC of 

standard ISO-18192-1:2011 testing conditions (Table 4.7). The mean value of 

the radial clearance prior to testing (0.162±0.004mm) decreased, following 4MC 

of standard ISO testing conditions, to 0.048±0.019mm, which was statistically 

significantly lower (p<0.05, CI 95%). 

Table 4.7: Summary of pre- and post-test values of radial clearances of 
each test station. 

Station ID Pre-test radial clearance ±SD 
[mm] 

Post-test radial clearance ±SD [mm] 

1 0.157±0.014 0.043±0.026 

2 0.162±0.011 0.058±0.019 

3 0.163±0.014 0.070±0.012 

4 0.162±0.016 0.049±0.013 

5 0.162±0.013 0.055±0.006 

6 0.157±0.011 0.013±0.023 

Mean 0.162±0.004 0.048±0.019 
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4.4.1.2 Altered ISO simulator testing conditions 

Since the pristine CoCr-CoCr CTDRs did not sustain significant surface damage 

following the 4MC of standard ISO-18192-1:2011 testing protocol, it was 

decided continue wear testing under the altered ISO protocol (section 4.3.2) 

with the same CTDR devices. 

4.4.1.2.1 Wear rates 

The initial test consisted of 4MC of standard ISO-18192-1:2011 input (Test 1). 

Subsequently, 2MC of altered ISO inputs (Test 2) were applied. The overall 

mean volume loss in Test 2 was 0.08±0.0.06mm3 following 2MC of testing, 

ranging from 0.05mm3 (Stn.1) to 0.14mm3 (Stn.4). The mean volumetric wear 

rate was 0.039mm3/MC, ranging from 0.02mm3/MC (Stn.1) to 0.07mm3/MC 

(Stn.4). On average, the volume loss was 0.03mm3/MC and 0.05mm3/MC for 

the convex and concave components, respectively (Figure 4.20). No significant 

difference between the volume loss of the two component groups was found 

(p>0.05, CI 95%). The altered ISO testing showed a linear wear behaviour, 

same as in Phase 1 testing. However, there was a significant (p<0.05, CI 95%) 

reduction in wear of CTDRs when tested under the altered ISO conditions, 

showing that tribological performance of CTDRs was strongly influenced by the 

reduction in ROMs used in the testing protocol.  
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Figure 4.20: Cumulative volume loss of CTDR components following 
4MC of standard ISO testing protocol and 2MC of modified ISO 

testing protocol. There was a significant reduction in mass loss i.e. 
wear in the second phase of the testing whereby the modified ISO 
testing protocol was employed (4-6MC). Error bars represent 95% 

confidence limits. 

4.4.1.2.2 Surface roughness 

The surface topography parameters measured following 4MC of standard ISO 

protocol were now considered as pre-test values of the non-ISO protocol test. 

These have previously been reported in Section 4.4.1.1.2,Table 4.5. 

Following 2MC of altered ISO testing, the surface topography of the MoM 

components was measured again. A summary of those measurements is listed 

in Table 4.8. 

Prior to the Test 2 part of the study, the convex and concave components had 

mean Ra values 0.012±0.002µm and 0.012±0.002µm (±SD), for the convex and 

concave components, respectively (Table 4.5). These were calculated as an 

average value of all 6 traces across the surface of each component. Following 

2MC of the altered ISO testing protocol, the mean values of Ra changed to 

0.015±0.001µm and 0.018±0.001µm for convex and concave components, 

respectively. The increase of surface roughness (Ra) following the altered ISO 

testing, was not statistically significant for either the convex (p>0.05, CI 95%) 

or the concave components (p>0.05, CI 95%).  
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Measurements taken across the pole of each component (traces P1 and P4), 

following 2 MC of the altered ISO test protocol, showed the lowest values of Ra, 

as summarised in Table 4.8. Some changes in the Rp, Rv and Rsk was also 

noted, following the 2MC of the altered protocol testing. In most cases the mean 

values increased following the altered testing, however, none of the changes 

were statistically significant. A summary of the one-way ANOVA tests (p-values) 

are listed in Table 4.8. 

Table 4.8: Summary of contact profilometry results of the CTDR 
components following 2MC of altered ISO testing protocol. Mean Ra, 

Rp, Rv and Rsk values different traces taken across the surfaces of 
convex and concave components; highlighted in green are the 

traces with lowest values. One-way ANOVA analysis (α=0.05) of the 
results showed that the changes in all parameters, in comparison to 

the pre-test condition, were not statistically significant. 

Component Trace  

 

P1 P2 P3 P4 P5 P6 Average p-value* 

Ra [µm]  

Convex 0.009 0.014 0.017 0.010 0.016 0.022 0.015 >0.05 

Concave 0.009 0.045 0.012 0.011 0.018 0.015 0.018 >0.05 

 Rp [µm]  

Convex 0.022 0.037 0.048 0.027 0.042 0.063 0.046 >0.05 

Concave 0.025 0.048 0.033 0.030 0.044 0.034 0.035 >0.05 

 Rv [µm]  

Convex 0.04 0.059 0.081 0.079 0.083 0.131 0.092 >0.05 

Concave 0.033 0.063 0.053 0.044 0.081 0.060 0.056 >0.05 

 Rsk [µm]  

Convex -3.085 -1.454 -1.914 -4.936 -2.568 -1.539 -3.012 >0.05 

Concave -2.203 -1.880 -1.519 -3.472 -1.997 -1.784 -2.142 >0.05 

*comparison of pre- and post-test data, altered ISO-18192-1 testing protocol 
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4.4.1.2.3 Surface damage 

At each measurement timepoint light micrographs of the surfaces of all 

components were captured, in order, to inspect the changes of the surfaces and 

in an attempt to identify wear modes, mechanisms, types damage and any 

surface features. Moreover, ImageJ software was used in order, to track 

changes in the size of the wear area.  

Similarly, to the components tested under the ISO protocol, damage to the 

surface was similar across all stations at each measurement timepoint. There 

was evidence of surface discolouration on all the components, which appeared 

to be related to the main wear area; there was a clear difference between the 

discoloured (worn) and un-worn area (Figure 4.21). Multidirectional, criss-

crossing scratches on the wear surfaces were observed (Figure 4.12), some of 

which were generated in the first phase of testing (ISO protocol) and some when 

components were tested under the altered ISO testing protocol. Significant 

difference in wear marks (scratches) size was observed – the wear marks 

generated following the altered ISO testing protocol were smaller, when 

compared to those generated under the ISO-18192-1:2011 protocol. In some 

cases, deep, circular wear scars were found, as shown in Figure 4.13. 

Despite the cleaning protocol that was followed diligently at each measurement 

timepoint, some components showed evidence of dark brown deposit build-up 

on the surfaces (Figure 4.22). With additional scrubbing with acetone-soaked 

tissue, it was possible to remove some of these deposits. High magnification 

images showed evidence of micropitting, particularly in the pole areas of the 

concave and convex components (Figure 4.23), however, some of this damage 

might have occurred during the ISO protocol testing.  
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Figure 4.21: Example of high magnification micrograph showing the 
noticeable discolouration of the surface area, associated with wear. 

Multidirectional, criss-crossing scratches were also present. 
(convex component, 5MC i.e. 4MC ISO-18192-1:2011 + 1MC altered 

ISO). 

 

Figure 4.22: High magnification image of deep wear marks found on 
some surfaces (concave component, 5CM i.e. 4MC ISO-18192-
1:2011 + 1MC altered ISO). Some deposit build-up around the 

scratches were also observed. 

Multidirectional 

scratches of different 

sizes 

Discoloured wear area 
Microscope lens reflection 
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Figure 4.23: Surface damage at the pole of a convex component, at 5MC 
(4MC ISO-18192-1:2011 + 1MC altered ISO), showing signs of 

micropitting. 

 

Following 6MC of testing, which included 4MC of ISO-18192-1:2011 protocol 

testing and 2MC of altered ISO testing, high resolution, high magnification 

images were captured using SEM. The images showed similar type of damage 

as those observed in the light micrographs. Surface damage characteristics 

were similar across all components. Evidence of multidirectional and criss-

crossing scratches in the wear area was found (Figure 4.24); some of the scars 

were larger – generated under the ISO-protocol testing conditions, and some 

were smaller – generated under the ISO-altered testing protocol. Some 

evidence of deposits (Figure 4.25) and micropitting (Figure 4.26) was also 

observed on the surfaces, following 6CM of testing. It was not possible to 

determine at which point of testing i.e. under which testing conditions the 

micropitting occurred. 

No assessment of the visible wear area was performed following the 2MC of 

altered ISO protocol, as it was not possible to establish the exact area of wear, 

which was generated during the second phase of testing (altered ISO 

protocol).  

Micropitting  
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Figure 4.24: High magnification, high resolution image of 
multidirectional and criss-crossing scratches on the surface of a 

metal CTDR component. 

 

Figure 4.25: Deposit found inside the grooves of the wear scratches of 
CoCr CTDRs tested under altered ISO-18192-1:2011 protocol. 
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Figure 4.26: SEM micrograph (mag=1.66K) of micro-pits found on the 
surfaces of CoCr CTDR components, following 2MC of standard ISO 

testing. 

4.4.1.2.4 Post-test dimensional inspection 

The radius of each component was measured as described in Chapter 3 section 

1.2.2 and the resulting radial clearance of each test station was calculated. The 

same process was repeated after the completion of Test 2 i.e. the 2MC of 

altered ISO-18192-1:2011 testing protocol (section 4.3.2). A summary of the 

measurements and a comparison to thee pre-test (as of 4MC) radial clearance 

is shown in Table 4.9 . The mean value of radial clearance prior to testing of 

0.048±0.019mm has decreased, following 2MC of the altered ISO testing 

conditions to 0.028±0.010mm, which was statistically significant (p<0.05, CI 

95%). 
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Table 4.9: Summary of pre- and post-test values of radial clearances of 
each test station i.e. prior to and following 2MC of testing following 

the altered ISO protocol. 

Station ID Pre-test radial clearance ±SD 
[mm] 

Post-test radial clearance   ±SD 
[mm] 

1 0.043±0.026 0.024±0.003 

2 0.058±0.019 0.034±0.007 

3 0.070±0.012 0.034±0.007 

4 0.049±0.013 0.030±0.008 

5 0.055±0.006 0.037±0.009 

6 0.013±0.023 0.010±0.016 

Average 0.048±0.019 0.028±0.010 

 

4.4.2 Coated CTDRs 

4.4.2.1 Pre-test coating inspection 

Prior to in vitro wear testing, SEM images of the silicon nitride and chromium 

nitride-coated CTDRs were taken, in order, to inspect the quality of the coatings. 

Some coating defects – holes, pits and splashing defects were observed on the 

surfaces, as shown in Figure 4.27 and Figure 4.28. 
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Figure 4.27: SEM image of silicon nitride-coated CTDR device. A large 
hole in the coating was observed – substrate material, with 

polishing marks visible, was seen. Moreover, small splashing defect 
(marked with an arrow) was found. 

 

Figure 4.28: SEM image of chromium nitride-coated CTDR device. 
Portion of coating was missing from the surface, substrate material 

with polishing marks was observed underneath. Numerous 
holes/pits, as well as portions of coating protruding out of the 

coating were observed. 
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4.4.2.2 Standard simulator testing conditions 

Silicon nitride- and chromium nitride-coated CTDRs were fitted into the six-

station spine simulator and tested under standard ISO-18192-1:2011 testing 

conditions. The aim of this study was to assess the wear performance of the 

coated devices, in comparison to the pristine (MoM) CTDRs, which were tested 

under the same testing conditions for 4x106 cycles and exhibited an average 

wear rate of 0.24mm3/MC (4.4.1.1.1).  

Following 71,000 cycles, it was noted that the silicon nitride-coated components 

had sustained damage and delamination of the coating. Thus, the testing of 

those components was not continued further. At the same number of cycles, 

the chromium nitride coating remained intact, and thus the testing under the 

standard ISO-18192-1:2011 testing conditions was continued. The chromium 

nitride-coated components were inspected for coating failure following 1x106 

cycles, when no coating delamination was discovered. Testing of CrN CTDRs 

was continued for further 1x106 cycles, until 2x106 cycles was reached. 

4.4.2.2.1 Wear rates 

The preliminary results of the wear performance of chromium nitride-coated 

CTDRs, following 2MC of testing in the six-station spine simulator, under the 

standard ISO-18192-1:2011 showed an overall mean volume loss of        

0.06±0.02mm3 over 2MC of testing, ranging from 0.034mm3 (Stn.1) to 0.07mm3 

(Stn.2). The mean volumetric wear rate was 0.03±0.01mm3/MC, ranging from 

0.02mm3/MC (Stn.1) to 0.04mm3/MC (Stn.3) On average, the overall volume 

loss from the convex components was 0.05±0.01mm3 and 0.06±0.03mm3 from 

the concave components, as shown in Figure 4.29. No significant differences 

between the two component groups was found (p>0.05, CI 95%). 
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Figure 4.29: Cumulative volume loss from CrN-CrN CTDR components 
tested under the ISO-18192-1:2011 protocol. There was no 

significant difference in convex and concave component volume 
loss across 2MC of simulator testing. Error bars represent 95% 

confidence interval limits. 

The silicon nitride coated components did not reach 1MC of testing. The overall 

mean volume loss at 71, 000 cycles was 0.21±0.06mm3, ranging from        

0.14mm3 (Stn. 6) to 0.25mm3 (Stn.2). By linearly extrapolating the data, the 

theoretical mean volumetric wear rate of the silicon nitride-coated components 

was 2.92±0.88mm3/MC. On average, at 71,000 cycles, the volume loss from 

the convex components was 0.10mm3 and 0.11mm3 from the concave 

components, as shown in Figure 4.30. There was no statistically significant 

difference between the volume loss exhibited by the convex and concave 

components (p>0.05, CI 95%).  
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Figure 4.30: Cumulative volume loss from Si3N4-Si3N4 CTDR components 
tested under the ISO-18192-1:2011 protocol. Following coating 
failure and delamination at 71,000 cycles, the data was linearly 

extrapolated to 1MC. There was no significant difference in convex 
and concave component volume loss across 4MC of simulator 

testing. Error bars represent 95% confidence interval limits. 

 

Using the linearly extrapolated data for Si3N4 coating, the difference in 

volumetric wear rates between the silicon nitride- (2.92±0.88mm3/MC) and 

chromium nitride-coated CTDRs (0.03±0.01mm3/MC) was found to be 

statistically significant (p<0.05, CI 95%). 

4.4.2.2.2 Surface roughness 

Prior to testing, surface roughness of the convex and concave components of 

both silicon nitride- and chromium nitride-coated devices was measured. The 

results of the pre-test surface measurements of the chromium nitride-coated 

components are summarised in Table 4.10. The mean Ra values of the convex 

and concave components were 0.065±0.023µm (SD) and 0.087±0.012µm (SD), 

respectively. These were calculated as an average value of all six traces across 

the surface of each component. It was observed that in the pre-test 

measurements the traces taken across the pole of each component (traces P1 

and P4) showed lower Ra values. As shown in Table 4.10, convex components 
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exhibited significantly lower values of the Ra, Rp and Rsk values, when compared 

to the concave components (p<0.05, CI 95%). There were no significant 

differences of the Rv parameter between the two component groups (p>0.05, 

CI 95%). Following 2MC of standard ISO testing surfaces of all chromium 

nitride-coated components were analysed using the same method. Following 

the wear testing the mean Ra values of the convex and concave components 

decreased by 56% to a value of 0.037±0.024µm (SD) and by 62% to a value of 

0.054±0.035µm (SD), respectively (Table 4.11). The predominant reduction of 

the Ra parameter occurred at the pole area of the components, correlating with 

P1 and P4 traces, which value were reduced by 8-fold on average following the 

in vitro wear testing under the ISO-18192-1:2011 testing protocol. There were 

no statistically significant differences between the convex and concave 

component surface profile parameters following the wear testing. The results 

obtained after the wear testing showed that the Ra, Rv and Rp parameters 

decreased significantly (p<0.05, CI 95%) after 2MC of wear testing under the 

ISO-18192-1:2011 protocol. The Rsk parameter did not change significantly 

(p>0.05, CI 95%). 
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Table 4.10: Mean pre-test Ra, Rp, Rv and Rsk values for different traces 
taken across the surfaces of convex and concave components of 

CrN-CrN CTDR devices; the traces with lowest values are 
highlighted in green. One-way ANOVA analysis (α=0.05) of the pre-

test surface finish parameters showed that the Ra, Rp and Rsk of 
convex components were significantly lower (p<0.05) than those of 
the convex components. Values of the Rv parameter were not found 

to be significantly different between the two component groups. 

Component Trace  

 

P1 P2 P3 P4 P5 P6 Average(SD) p-value* 

Ra [µm]  

Convex 0.045 0.062 0.091 0.049 0.056 0.088 0.065(0.023) 

<0.05 

Concave 0.083 0.104 0.077 0.081 0.086 0.088 0.087(0.012) 

 Trace Rp [µm]  

Convex 0.110 0.173 0.233 0.117 0.152 0.267 0.175(0.065) 

<0.05 

Concave 0.489 0.672 0.536 0.488 0.598 0.557 0.554(0.106) 

 Trace Rv [µm]  

Convex 0.225 0.287 0.437 0.208 0.235 0.407 0.299(0.118) 

>0.05 

Concave 0.278 0.390 0.295 0.255 0.345 0.278 0.307(0.056) 

 Trace Rsk [µm]  

Convex -1.738 -0.928 -1.092 -1.599 -0.625 -0.681 -1.111(0.566) 

<0.05 

Concave 1.6814 1.493 1.967 2.755 0.964 2.579 1.907(0.923) 

*comparison between convex and concave data 
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Table 4.11: Mean Ra, Rp, Rv and Rsk values of CrN-CrN CTDRs following 
2MC of ISO-18192-1:2011 testing for different traces taken across 
the surfaces of convex and concave components; the traces with 
lowest values are highlighted in green. One-way ANOVA analysis 

(α=0.05) of the post-test results showed that only the changes in Rp 
and Rv of the concave components were statistically significant 

(p<0.05). 

Component Trace  

 

P1 P2 P3 P4 P5 P6 Average(SD) p-value* 

Ra [µm]  

Convex 0.008 0.051 0.058 0.005 0.053 0.055 0.037(0.024) >0.05 

Concave 0.010 0.094 0.072 0.011 0.077 0.062 0.054(0.035) >0.05 

 Rp [µm]  

Convex 0.012 0.138 0.142 0.010 0.145 0.131 0.093(0.063) >0.05 

Concave 0.018 0.294 0.384 0.203 0.335 0.315 0.228(0.190) <0.05 

 Rv [µm]  

Convex 0.046 0.259 0.168 0.011 0.287 0.231 0.167(0.119) >0.05 

Concave 0.061 0.157 0.208 0.067 0.261 0.179 0.156(0.897) <0.05 

 Rsk [µm]  

Convex -5.448 -1.663 -1.114 -1.979 -1.370 -0.936 -1.962(2.864) >0.05 

Concave -1.939 1.309 3.100 -3.206 0.495 2.569 0.388(2.679) >0.05 

*comparison of pre- and post-test data, standard ISO-18192-1 

The results of the pre-test surface measurements of the silicon nitride-coated 

components were summarised in Table 4.12. The mean Ra values of the convex 

and concave components were 0.030±0.008 (SD) and 0.037±0.005 (SD), 

respectively. These were calculated as an average value of all six traces across 

the surface of each component. It was noted in the pre-test measurements that 

the traces taken across the pole of each component (traces P1 and P4) showed 

lower Ra values, as shown in Table 4.12. Convex components exhibited 

significantly lower values of Rp and Rsk parameters (p<0.05, CI 95%), whilst Ra 

and Rv parameters were not statistically different (p>0.05, CI 95%).  The pre-
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test results showed that silicon nitride coating was significantly smoother (Ra) 

than chromium nitride (p<0.05, 95%). Due to substantial coating damage and 

delamination sustained following 71,000 cycles of the standard ISO-18192-

1:2011, no post-test surface roughness measurements of the silicon nitride-

coated devices were obtained. 

Table 4.12: Mean pre-test Ra, Rp, Rv and Rsk values of Si3N4- Si3N4 CTDRs 
for different traces taken across the surfaces of convex and 

concave components; the traces with lowest values are highlighted 
in green. One-way ANOVA analysis (α=0.05) of the pre-test surface 

finish parameters showed that the Rp and Rsk of convex 
components were significantly lower (p<0.05) than those of the 

concave components. Values of the Ra and Rv parameter were not 
found to be significantly different between the two component 

groups. 

Component Trace  

 

P1 P2 P3 P4 P5 P6 Average(SD) p-value* 

Ra [µm]  

Convex 0.025 0.031 0.029 0.019 0.038 0.039 0.030(0.008) 

>0.05 

Concave 0.034 0.036 0.038 0.032 0.046 0.033 0.037(0.005) 

 Trace Rp [µm]  

Convex 0.066 0.068 0.105 0.049 0.135 0.124 0.091(0.035) 

<0.05 

Concave 0.342 0.416 0.415 0.423 0.509 0.514 0.437(0.065) 

 Trace Rv [µm]  

Convex 0.171 0.255 0.195 0.269 0.313 0.377 0.263(0.076) 

>0.05 

Concave 0.217 0.218 0.238 0.194 0.256 0.219 0.224(0.021) 

 Trace Rsk [µm]  

Convex -13.913 -7.467 -1.916 -8.049 -5.856 -2.877 -6.679(4.304) 

<0.05 

Concave -0.379 3.889 3.136 0.657 4.359 3.239 2.483(1.898) 

*comparison between concave and convex components 
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4.4.2.2.3 Surface damage 

Following 71,000 cycles of the ISO-18192-1:2011 testing protocol, all three, 

silicon nitride-coated CTDRs sustained catastrophic coating damage and 

delamination. Light micrographs of the damage surfaces (Figure 4.31 and 

Figure 4.32) showed multidirectional scratches on the surfaces and 

delamination of the coating (substrate material showing through). No further 

wear testing of the silicon nitride-coated CTDRs was conducted. 

 

Figure 4.31: Silicon nitride-coated concave component showing 
catastrophic damage and delamination of the coating following 

71,000 cycles under the standard ISO-18192-1:2011 protocol. 
Substrate material showing through( indicated by the arrows) and 

multidirectional scratches were discovered on the surface. 

Scratches 

Coating delamination 
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Figure 4.32: Higher magnification image of a convex component, 
showing damage of the silicon nitride coating sustained following 
71,000 cycles of the standard ISO-18192-1:2011 testing protocol. 

Multidirectional scratches and substrate material (coating 
delamination) were observed on the surface. 

 

 

Figure 4.33: High magnification, high resolution SEM image of the 
silicon nitride coating delamination damage.  

  

Scratches 

Substrate material 
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High resolution, high magnification images of the silicon nitride-coated CTDRs, 

taken using the cold field emission SEM, showed similar findings to the light 

micrographs. Catastrophic damage of the silicon nitride coating was observed, 

as shown in Figure 4.33. Through-wear (delamination of the coating) was 

confirmed by EDX spectra (Figure 4.34), the area of coating delamination 

showed strong peaks of cobalt (Co), chromium (Cr) and molybdenum (Mo). 

 

 

Figure 4.34: EDX of the area of suspected silicon nitride coating 
delamination, confirming the catastrophic damage of the coating. 
Spectrum 3 (A), taken from the area where the coating remained 
intact confirmed the chemical composition of the coating (strong 

silicon and nitride peaks). Spectrum 5 (B), taken from the area 
where the coating appeared delaminated, confirmed the chemical 
composition of the substrate material, showing strong peaks of 

cobalt (Co), chromium (Cr) and molybdenum (Mo).  

 

The chromium nitride-coated CTDRs did not sustain significant coating damage 

following 71,000 cycles and were thus tested for a total of 2MC, under the 

standard ISO-18192-1:2011 testing protocol. Light micrographs of the surfaces 

A 

B 
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were completed following each 106 cycles, to inspect the changes of the 

surfaces and in an attempt to identify wear modes, mechanisms, types of 

damage and any surface features.  

The pole areas of the bearing surfaces of the components appeared more 

polished than the outside areas of the bearing surfaces, as shown in Figure 

4.35 and Figure 4.36. It is most likely that those polished areas represented the 

main contact area and the wear area of the devices. Some dark deposits on the 

border between the worn and un-worn areas were noted. The surfaces of the 

un-worn areas appeared rough, were not reflecting light well, and some micro-

pitting was apparent. These micropits were most likely coating defects 

introduced during the coating deposition process. Unlike the CoCr CTDRs, no 

apparent circular wear tracks were observed on the bearing surfaces. 

 

Figure 4.35: Light micrograph showing a CrN-coated concave 
component following 2MC of standard ISO-18192-1:2011 testing 

protocol. Polished area at the pole of the component was observed, 
with a dark deposit collected at the edge of this area. The un-worn 

area appeared rougher with some micropitting present.  

Coating defects 

Deposit 
Worn area 
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Figure 4.36: Higher magnification light micrograph of the bearing 
surface of a CrN-coated convex component tested for 2MC under 

the standard ISO-18192-1:2011 protocol. Highly polished, wear area 
at the pole of the component was observed. Unworn area appeared 

rougher and polishing marks were observed. 

The high magnification, high resolution images, captured using cold field 

emission SEM, taken in the areas which appeared unworn and rough in the light 

micrographs showed numerous micropits and defects protruding out of the 

coating surface, as shown in Figure 4.37. On the other hand, as shown in Figure 

4.38, SEM images taken in the areas which, under the light microscope, 

appeared polished and worn, showed much smoother surfaces than that shown 

in Figure 4.37. Moreover, it appeared that the micropits were larger in the worn 

area, suggesting that some of the defects protruding from the bearing surface 

were removed during the wear test. Some post-testing images of the chromium 

nitride-coated components (Figure 4.39) showed relatively large portions of the 

coating missing from the surface, which may indicate cohesive defects of the 

coating. No through-wear or coating, however, was observed. 

Tissue fibre 

Polished, worn area 

Unworn area 
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Figure 4.37: SEM image of the un-worn area of the chromium-nitride 
coated CTDR component following 2MC of standard ISO-18192-

1:2011 protocol testing. Numerous coating defects (micropits and 
protrusions) and rough appearance of the coating were observed. 

 

Figure 4.38: SEM image of the worn area of the chromium-nitride coated 
CTDR component following 2MC of standard ISO-18192-1:2011 

protocol testing. Smoother appearance, larger micropits and lack of 
protrusions were observed. 
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Figure 4.39: SEM image of the bearing surface of a chromium nitride-
coated CTDR component following 2MC of standard ISO-18192-
1:2011 testing protocol. Relatively large portions of the coating 

appeared to have worn out/flaked off from the surface, however, no 
coating delamination was observed. Some micropitting on the 

surface was noted. 

 

Due to extensive damage sustained by the silicon nitride-coated devices and 

substantially low wear rates generated by the chromium nitride-coated CTDRs 

during the 2MC of standard ISO-18192-1:2011 testing, it was decided not to 

conduct any further testing of the coated CTDR devices under the standard 

ISO-18192-1:2011 testing protocol (section 4.3.3) or the modified ISO testing 

protocol (section 4.3.2). It was determined that silicon nitride coating sustained 

adhesive failure and thus, at the time of writing, the coating was deemed 

unsuitable for use in MoM CoCr CTDR devices.  

The aim of altering the ISO-18192-1:2011 protocol, by reducing applied ROMs, 

was to study the effects of the testing method on wear rates of the MoM CTDRs 

(section 0) and to investigate potential higher clinical relevance of sucha  

protocol, when compared to the ISO predicate, as previously discussed in 

Coating wear 



Chapter 4 

 

212 

section 4.3.2. The wear rates generated by CoCr CTDRs tested under the 

altered protocol were reduced by three-fold, when compared to those generated 

under the standard ISO-18192-1:2011. It was thus hypothesised that the 

chromium nitride-coated CTDRs will follow the same pattern and the wear rates 

generated under the altered ISO protocol will be reduced in comparison to those 

generated under the standard ISO-18192-1:2011 protocol. However, under the 

standard ISO protocol, chromium nitride-coated CTDRs generated wear rates 

reduced by six-fold to those of CoCr devices tested under the same conditions. 

With the possibility of further reduction of wear rates generated by chromium 

nitride-coated devices, it was decided not to carry out further in vitro wear 

testing of these devices under the altered ISO-18192-1:2011 protocol due to 

the limitation of the measuring capacity of the microbalance used in the 

gravimetric analysis.  

4.5 Discussion 

Cervical total disc replacement is becoming an increasingly popular alternative 

treatment to anterior cervical discectomy and fusion - the current gold standard 

procedure used in late stages of degenerative disc disease requiring surgical 

intervention. To date, a limited number of in vitro wear studies on CTDRs have 

been conducted and the published literature predominantly concerns designs 

utilising metal-on-polymer bearings. At the time of writing, limited number of 

studies on the wear performance and wear rates of metal-on-metal CTDRs 

have been published. Concerns remain regarding long-term wear and potential 

effects of wear products generated by CTDRs, particularly in light of the 

evidence of devastating effects of excessive wear and wear products released 

from MoM THR, such as pseudotumour formation, hypersensitivity or metalosis 

and tissue necrosis [241,287,288]. A number of studies of surface engineered 

total joint replacement devices showed promising results and potential 

improvement of wear performance and biocompatibility of coated MoM TJR, 

when compared to un-coated devices [200,289,290]. The present study 

investigated the wear of pristine MoM and coated (silicon nitride and chromium 

nitride) CTDRs, in order, to establish short-to-mid-term wear performance of 

such devices. Furthermore, changes to surface topography were studied. 
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Moreover, the effect of different testing protocols on wear performance of MoM 

CTDRs has been investigated. 

Employment of in vitro wear simulation has been well established in THRs and 

TKRs, as a valid method of generating clinically relevant wear rates [291,292] 

and particles [145,293,294]. As the CTDR technology is relatively novel, in 

comparison to THR and TKR, so is the application of in vitro wear simulation of 

such devices. Thus, there is a sparse number of published studies reporting on 

in vitro wear rates generated by CTDR devices. Most the published wear data 

reports wear performance of metal-on-polyethylene bearing cervical devices.  

4.5.1 Wear assessment 

The current study, which tested MoM bearings, showed a linear wear rate (no 

bedding-in period was observed) of 0.24±0.03mm3/MC for CoCr-CoCr CTDR 

devices tested under the standard ISO-18192-1:2011 testing protocol. The 

current study applied one deviation from the standard, whereby the protein 

content of the lubricant was lower than that prescribed by ISO. Whilst the protein 

content specified by ISO 18192-1:2011 (20g/L) is higher than the one used here 

in the tests described in this thesis, the 15g/L protein content was within the 

range of concentrations used in studies showing clinically relevant wear data in 

total hip replacement [295]. The choice of lubricant protein concentration 

followed the Standard Operating Procedures used for Spine Wear Simulator 

Studies, which allowed direct comparison of results from previous total disc 

replacement studies conducted at University of Leeds. Whilst reduction of the 

protein content was shown to affect the viscosity of the lubricant [296–298] and 

thus results in harsher wear environment, this in turn provided more stringent 

testing conditions and it can be argued that the nature and composition of 

interstitial fluid, providing lubrication in vivo [299] is different to the natural 

lubricant (synovial fluid) found in articulating joints such as hip or knee [299].  

To date, only one group of authors have investigated in vitro wear performance 

of a MoM CTDR – the PrestigeST, which is made from stainless steel. Kurtz et 

al. [138] tested the device under varying testing conditions, whereby the first 

phase of testing included lateral bending (±4.7°) and axial rotation (±3.8°) 

motions coupled with a static load of 49N for 5MC and this was followed by 
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10MC of flexion-extension motion (±9.7°), axially loaded at 148N. The first 

phase of testing generated a wear rate of 0.74±0.3mm3/MC, whilst the second 

phase of testing a wear rate of 0.03±0.03mm3/MC. Whilst the approach of 

testing applied by Kurtz et al., i.e. separating motions, may be crucial in 

identifying of the motions which contribute to the wear performance the most, it 

may not fully represent in vivo conditions, as most of the clinical MoM retrievals 

(both cervical and lumbar) showed multidirectional abrasive wear, strongly 

suggesting that simultaneous motions and loading take place in vivo. 

Furthermore, one study, which tested a generic MoM lumbar TDR device 

(CoCr-CoCr) under the standard ISO-18192-1:2011 testing protocol (for lumbar 

devices), reported a wear rate of 0.76±0.02mm3/MC [300]. Predictably, this 

wear rate was higher than the one reported in the current study, as the devices 

were tested under different loading and motion conditions. Whilst the ISO-

18192-1:2011 testing protocol suggests axial loading range of 50-150N, the 

standard for lumbar devices prescribes loads of 600-2000N. Similarly, the 

ROMs in the protocol for the cervical devices are much smaller when compared 

to the lumbar protocol [135].  

Wear rates generated by MoP CTDRs reported in the literature varied slightly 

depending on the testing protocol and device design used in the investigations. 

Devices with MoP bearings made from UHMWPE, tested under the standard 

ISO-18192-1:2011 testing protocol, were reported to generate wear rates of 

1.07±0.01mm3/MC, 2.53±0.7mm3/MC, 2.13±0.16mm3/MC, 1.95±0.18mm3/MC 

and 2.1±0.2mm3/MC [142,143,301,302]. Even higher mean volumetric wear 

rates of UHMWPE-on-metal bearings were reported by authors conducting 

wear tests of lumbar TDRs tested under the ISO-18192-1:2011 conditions. The 

Charité LTDR generated mean volumetric wear rates of 13.1±1.1mm3/MC, 

12.8±1.2mm3/MC and 12.9±2.5mm3/MC, as reported by Vicars et al. [303],  

Mohgadas et al. [304] and Prokopovich et al. [305], respectively. A different 

LTDR device (ProDisc-L), with a semi-constrained, UHMWPE-on-metal bearing 

design, was reported to generate a mean volumetric wear rate of 

17.2±1.5mm3/MC, when tested under the standard    ISO-18192-1:2011 lumbar 

protocol. Both cervical and lumbar TDR devices with MoP bearing design 

produce significantly higher wear rates than those reported in the current study, 
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as well as those of other MoM CTDR [138] and LTDR [300] reported in the 

literature. Similar findings were reported in THR, whereby the MoM bearings 

produce significantly lower volumetric wear rates (0.1-0.5mm3/MC) than those 

of MoP designs  (36-180mm3/MC) [293,306–308].  

The comparison of in vitro and in vivo wear measurements should be performed 

with caution. Firstly, the in vitro reports, such as the current study, use 

gravimetric wear analysis as a method of estimating wear rates generated by 

CTDRs, while the retrieval studies lack the zero-reference point, which makes 

accurate wear rate assessment impossible. Moreover, the in vitro studies apply 

testing methods that utilise pre-set, repetitive motions of the same magnitude. 

As such, the clinical relevance of these testing methods may be questioned, 

due to more varied sets of motions and combination of motions executed by 

individuals during day-to-day activities [49,121,138,139,309].  Indeed, it has 

been reported that the surface damage (i.e. surface roughness, wear area and 

depth of scratches) sustained by retrieved CTDRs were less severe 

(approximately 5-10 fold), when compared to devices tested in spine simulators 

[119,121,138]. Additionally, it has been reported that components tested for 

only 0.3 million cycles produced much higher wear than in device explanted 

from a patient after 39 months in vivo i.e. an equivalent of 3.25 million cycles of 

simulator tests [121]. Another study suggested that the current testing protocol 

prescribed by ISO-18192-1:2011 may only be relevant for predicting short-term 

wear performance (up to 1MC) [140]. Siskey et al. [140] found that implants 

explanted shortly after the surgery (approximately 12 months post-op) carried 

similar signs of wear and tear to those tested for 1MC. At the same time devices 

which were explanted following a longer period of time in situ showed less 

severe surface damage than the devices tested in vitro for an equivalent period 

of time. Based on these findings and hypotheses reported in the literature, the 

current study investigated the role of reduced ROMs applied in in vitro 

simulation and the potentially higher clinical relevance of the wear rates 

generated by MoM devices tested under such a regime. The mean volumetric 

wear rate produced by the CTDRs tested under the altered ISO-18192-1:2011 

conditions was significantly lower than that produced by the same devices 

tested under the standard ISO conditions (p<0.05, CI 95%). A three-fold 
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reduction of the mean volumetric wear rate (0.08±0.06mm3/MC) was in line with 

the predictions published by other authors [121]. It is possible, that the current 

ISO protocol for CTDR wear testing (ISO-18192-1:2011) may require further 

development to include a wider range of more clinically relevant physiological 

conditions and motions, in order to achieve longer lasting implants that meet 

the demands of patients. The wear areas observed on the components tested 

in this study, which appeared as a dark/hazy discolouration of the bearing 

surface, were measured following each 1x106 of in vitro testing, using ImageJ 

software. Wear scars observed on the concave components were significantly 

larger (p<0.05, CI 95%), and accounted for a larger proportion of the total 

bearing area, than those observed on the convex components. Similar 

progressive increases in the wear area, though measured over a shorter testing 

period (up to 1MC), were observed by Siskey et al. [140]. The progressive 

increase of the wear areas observed on the components of the CoCr-CoCr 

CTDRs can be correlated with the progressive material loss sustained by the 

CTDRs.  

The types of surface damage following 4MC of standard ISO-18192-1:2011 

testing and 2MC of the altered testing protocol of MoM CTDR observed in the 

current study, were similar to those previously reported in the literature. 

Damage found on the surfaces of the CTDR devices tested in the current study 

was consistent with characteristics of abrasive wear i.e. wear tracks and 

microabrasive scratches were noted. The curvilinear shape of the wear tracks 

as well as microabrasion of the bearing surfaces has previously been observed 

in explanted metal-on-metal CTDR [119,138,140] devices and in vitro  tested 

metal-on-metal [138,140] and metal-on-polyethylene CTDRs [119,301]. 

Moreover, component discolouration and surface film formation reported in this 

study, has also been observed by other authors in both in vitro tested and 

explanted MoM CTDRs [119,138,140]. Similar material deposit formation has 

previously been observed in MoM hip replacement devices [120]. Micropitting 

damage observed in some of the CTDRs in the current study has previously 

been found in MoM THR devices [310,311]. Micropitting originates from the 

local contact of asperities and is produced by insufficient lubrication. Wang et 

al. [312] have also shown that the occurrence of micropitting in CoCr alloys used 
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in THRs may be related the pre-existing carbides in the surfaces and sub-

surfaces of the bearings. Moreover, as with to the current study, Wang et al. 

[312] observed the micropitting to be confined mainly to the apex of the 

implants, where the contact stress was the greatest. These authors also 

hypothesised that the generation of micropitting, more prominent in the later 

stages of their study (6MC) was a result of a fatigue mechanism, resulting from 

cyclic loading of the CoCr implants. 

4.5.2 Surface topography  

The surface roughness of the CoCr devices changed significantly following the 

initial 4MC of testing under the standard ISO-18192-1:2011 protocol. The mean 

Ra parameter of the devices decreased significantly from 0.019±0.007µm to 

0.012±0.002µm following the testing (p<0.05, CI 95%) indicating smoothing of 

the surface in the worn areas. Moreover, the average skewness of the surface 

profiles decreased significantly from -1.49±0.43 to -2.88±0.99 (p<0.05,  CI 

95%), indicating more pronounced domination of valleys over peaks in the 

surface structure. It is thought that the change of surface skewness may play a 

role in the reduction of wear and a level of improvement of lubrication regime in 

the steady-state wear. The change of those two parameters strongly suggests 

that the surfaces of the MoM CTDRs have undergone a ‘self-polishing’ 

phenomenon, which has previously been observed in MoM THRSs and 

reported by numerous authors [236,307,313–315]. The self-polishing has been 

attributed with the running-in period observed in MoM THRs, whereby during 

the initial million cycles of in vitro testing (and years in vivo), asperities are worn 

and removed, resulting in smoother and more conforming surfaces [316]. The 

self-polishing of MoM bearings has also been hypothesised to be a result of 

nanoscale particles generated during motions acting as a polishing or solid 

phase self-lubricating mechanism [317]. As observed in the current study, the 

clearance of CTDRs indeed decreased following the in vitro testing, resulting in 

more conforming bearings. Whilst an obvious running-in period was not 

observed in the current study, it may be possible that due to overall low 

volumetric wear rates and small wear areas, the running-in period took place in 

the first million of cycles, when the gravimetric analysis was not conducted. 

Furthermore, the light micrographs and SEM images of the CoCr bearing 
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surfaces showed a distinguishable difference between the worn and un-worn 

areas; particularly the SEM images revealed a difference in surface appearance 

between the two areas – the un-worn parts were still carrying polishing marks, 

whilst the worn parts appeared smooth.  

4.5.3 Ceramic coatings in CTDR applications 

Application of surface engineering solutions, such as ceramic coatings, has 

been proposed by numerous authors as a method of improving wear 

performance and biocompatibility of TJR devices. The current study 

investigated two ceramic coatings, developed and deposited by IonBond Ltd. 

(Olten, Switzerland). The CrN coatings were deposited using a PVD method, 

whilst the Si3N4 coatings were deposited utilising the HiPIMS method. Both 

types of coatings were deposited on CoCr CTDR substrates, which 

subsequently were tested in the six-station spine simulator, under the standard 

ISO-18192-1:2011 testing regime. Following the initial 71,000 cycles of the 

testing, the silicon nitride coating sustained a catastrophic damage and 

delamination of portions of the coating was observed on all three silicon nitride-

coated devices tested. Complete delamination of coating, where the coating 

separated from the substrate material, was indicative of adhesive failure of the 

coating. A total volume of 0.207±0.06mm3 of material was lost from the surface 

of the silicon nitride-coated devices. It was assumed that 100% of the mass loss 

which occurred at 71,000 cycles constituted of the silicon nitride coating, 

however this could not be confirmed. By linearly extrapolating the wear data 

obtained at 71,000 cycles, it was estimated that a mean volumetric wear rate 

for the silicon nitride-coated components was 2.922±0.884mm3/MC. The 

theoretical mean volumetric wear rate of silicon nitride-coated CTRDs was 

significantly lower than the CoCr-CoCr CTDRs, however, functionally the silicon 

nitride coating failed in this application. At the time of writing, no direct 

comparisons for Si3N4-coated, or CTDRs and LTDRs coated by a ceramic 

coating were available in the literature. 

Two other investigational assessments of tribological properties of silicon nitride 

coatings reported in the literature, resulted in coefficients of friction similar to 

those of bulk Si3N4. Ball on disc testing of different silicon nitride coatings, as 
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per ASTM-F732-00:2006, resulted in a coefficient of friction ranging between 

0.12 and 0.22, as reported by Olofsson et al., [245] and 0.1 and 0.3, as reported 

by Pettersson et al. [190]. One of the coatings tested by Olofsson et al. 

demonstrated a coefficient of friction of 0.45; however, the sample had high 

surface roughness, which, most likely, was a result of high target power used in 

the deposition process of this sample. Olofsson et al. [245] also assessed the 

coating adhesion properties, utilising scratch testing. The results showed poor 

coating adhesion, with all, but one of the samples failing upon the tip 

engagement, resulting from coating adhesion of 0N. Similar results were found 

by Pettersson et al. [190], where all the coating samples delaminated during 

friction testing. Both studies highlighted low coefficients of friction exhibited by 

silicon nitride coating, however silicon nitride coating adhesion required further 

development, which was in line with the results obtained from the current study. 

Whilst the scratch testing of the silicon nitride coatings investigated in this work 

showed superior adhesion to the CoCr substrate, in comparison to the 

published reports, the functional testing i.e. spine wear simulator testing, 

revealed adhesive failure and coating delamination. 

Several publications investigated the wear properties of bulk Si3N4 and reported 

low coefficients of friction and extremely low wear rates. However, none of the 

publications investigated CTDR applications. Mazzocchi et al, [186,187] 

investigated the friction of bulk silicon nitride, using a ball-on-disc tribometer. 

Very low and constant friction coefficients (~0.1) were found. Other authors 

reported friction coefficient of bulk Si3N4 articulating against itself to be 0.002 

[318], 0.005 [319], 0.6 [320] and 0.8 [321]. Olofsson et al. [245]   investigated 

the coefficient of friction of Si3N4- Si3N4 in both PBS and serum, obtaining results 

of 0.01 and 0.2, respectively. Such wide ranges of coefficient of friction results 

can be related to different specimen preparation and testing protocols used in 

studies. Bal et al. [208, 218] investigated the tribological behaviour of 28mm 

Si3N4 femoral heads articulating against Si3N4 and CoCr cups. The components 

were tested in a hip simulator for duration of 1 million cycles, under standard 

gait cycle conditions (ISO-14242-1). The Si3N4-Si3N4 and Si3N4-CoCr couples 

produced wear volumes of 0.2 mm3 and 0.18 mm3, respectively. The results 

were then extrapolated to 10 million cycles, on the assumption that hard-on-



Chapter 4 

 

220 

hard bearings follow a biphasic pattern with high wear in the early run-in period 

(to approximately 0.5 million cycles), followed by a lower, linear wear pattern 

[322–324]. This extrapolation resulted in wear rates approximation of 0.47 mm3 

and 0.65 mm3 for the Si3N4-Si3N4 and Si3N4-CoCr bearings, respectively. In 

comparison to results obtained for Al2O3-Al2O3 (0.35-0.6 mm3) and CoCr-CoCr 

bearings (6.5 mm3) [323], silicon nitride bearings demonstrated significantly 

lower wear rates. Moreover, McEntire et al. [325] tested 28mm Si3N4 and CoCr 

femoral heads under the standard gait cycle (ISO-14242-1, 5MC), articulating 

against UHMWPE liners. Further, self-mated Si3N4 and Al2O3 bearings were 

tested under the standard gait cycle (ISO-14242-3, 3MC) followed by stop-

dwell-start protocol (2MC). The authors found that self-mated bulk silicon nitride 

hip replacement generated ultra-low, near zero wear rates under the standard 

walking cycle testing protocol; these wear rates and were comparable to those 

of alumina bearings tested under the same conditions (ISO-14242-3). 

Introduction of the stop-dwell-start protocol resulted in wear rates of 

7.99mm3/MC generated by the Si3N4 bearings, whilst the wear rates of the 

alumina remained near-zero [325]. 

There is a general consensus, that Si3N4 demonstrates friction properties 

required for self-articulation, even when water is the only lubricant 

[186,325,326]. This has been related to the presence of two wear modes Si3N4 

can undergo: mechanical and tribochemical. Mechanical wear is exhibited 

under high loads, low speeds and stop-start conditions, while tribochemical 

wear occurs through the dissolution of the Si3N4, and is operative at lower loads, 

higher speeds and continuous motion [321,325]. Silicon nitride can react with 

water, resulting in the creation of a silicon oxide lubricated film between the 

articulating surfaces. The predominance of the tribochemical wear mode may 

be the main reason for the extremely low wear volumes and coefficient of friction 

obtained in in vitro tests of Si3N4, tested both as a bulk and coating material 

[186,187,196,325,326]. The interruption of the high-speed/low-load continuous 

motion pattern can result in higher wear rates exhibited by Si3N4-Si3N4 bearings, 

as reported by McEntire et al., [325]. In their hip simulator studies, the silicon 

nitride bearings tested under standard ISO-14242-3 gait cycle testing protocol 

showed extremely low wear rates, and were found to be comparable to those 
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generated by alumina ceramics. However, introduction of a stop-dwell-start 

protocol, which caused disruption of the gelatinous silicic acid tribochemical 

film, resulted in wear rate increases. 

At 71,000 and further timepoints no adhesive failure of the CrN coating was 

observed, thus 2x106 cycles, under the standard ISO-18192-1:2011 protocol, 

were completed for the CrN-coated devices. Following 2MC of wear testing, the 

CrN-coated CTDRs generated a mean volumetric wear rate of 

0.03±0.01mm3/MC, which was significantly lower than the wear rate of CoCr-

CoCr CTDR bearing combination tested under the same test conditions. The 

superior (to MoM) wear performance of CrN CTDR bearings was most likely an 

effect of increased H/E ratio, mainly a result of increased hardness (23GPa 

compared to 2.1GPa of CoCr), which in turn increased resistance to abrasive 

wear. In agreement with the CoCr CTDR devices, signs of abrasive wear were 

observed on the surfaces of the CrN-coated devices, however, they were not 

as severe. Surface roughness (Ra) of the CrN-CrN CTDRs reduced significantly 

from 0.076µm to 0.045µm (p<0.05, CI 95%) following the 2MC of altered ISO 

testing protocol, showing a degree of self-polishing exhibited by the coated 

devices. 

The in vitro testing of the CrN-coated CTDRs employed in the current study 

could be considered as short-term (2MC). It has been shown by another author 

[184] that bedding-in period of CrN coatings may be as long as 3MC. It was 

suggested that due to low bedding-in wear rates, longer periods of time may be 

required to achieve component conformity required to reduce the contact 

pressure and allow improved lubrication [327]. No literature on the wear of CrN 

coated CTDR devices was available at the time of writing. Whilst no direct 

comparison could be made, several authors have reported significantly lower 

wear rates of in vitro tested CrN-coated hip replacement devices, in comparison 

to their CoCr-CoCr equivalents [179,180,184]. Tested under the standard 

walking cycle protocol (ISO-14242-1), mean volumetric wear rates of CrN-CrN 

hips were reported to be 0.02mm3/MC for 28mm bearings (compared to 

0.05mm3/MC generated by CoCr-CoCr bearings) [179,180], 0.09mm3/MC and 
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0.12mm3/MC for 39mm and 55mm bearings, respectively (in comparison to 

5.2mm3/MC and 2.8mm3/MC, respectively) [184] 

The application of surface coatings in total joint replacement has been a 

research subject for several years. A number of studies have shown different 

levels of success of in vitro performance of titanium nitride [174,179], titanium 

niobium nitride [269], DLC [164] and chromium nitride 

[179,180,185,289,328,329] ceramic coatings deposited on total hip devices. 

However, limited number of coated devices have been used in patients. Whilst 

insightful, reports of explant analyses of such devices are sparse and limited to 

failed devices [175,279,330–333]. The majority of the studies, in vitro or in vivo, 

investigated metal-coated on polyethylene bearings, in which the polyethylene 

surface was expected to be the main source of wear. The chief problem 

associated with unsuccessful application of ceramic coatings in TJR was 

through wear and adhesive failure of the coatings. Coating impurities and 

defects, such as those observed in the SEM images taken prior to in vitro 

testing, were often associated with poor coating adhesion. Moreover, is has 

been suggested that better adhesion can be achieved by coatings deposited on 

rougher substrates [334–336], as well as on those of similar H/E ratios [277] as 

the coating. 

4.6 Conclusion 

Standard protocol (ISO-18192-1:2011) of in vitro wear testing was used in the 

wear assessment of MoM CTDR devices and showed low volumetric wear rate 

of 0.24±0.03mm3/MC following 4MC of testing. This wear rate was lower than 

previously reported wear rates of MoP CTDRs and LTDRs tested under the 

same ISO conditions. Self-polishing of the metal components and 

predominance of abrasive wear were observed. Alteration of the ISO-18192-

1:2011 testing protocol, by reducing the ROMs applied during testing, showed 

significant, 3-fold reduction of volumetric wear generated by MoM CTDRs 

(0.08±0.06mm3/MC), which supported the hypothesis that the testing 

parameters currently prescribed by the ISO protocol, may be exaggerated. 

Application of chromium nitride coatings on CoCr CTDRs showed significant 

reduction of volumetric wear rate. When tested under the standard testing 
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protocol (ISO-18192-1:2011), the wear rate generated by the coated devices 

was reduced 10-fold compared to MoM bearings. Further long-term testing of 

CrN-CrN CTDR bearings is required to fully assess wear performance and their 

potential use in CTDR applications. 

Silicon nitride coating deposited on CTDRs and tested in vitro showed 

catastrophic delamination and failure at early stages of testing. At the current 

stage of development, the silicon nitride coating was not suitable for the CTDR 

application.  

Long term clinical success of TJR is a synergy of several factors, and favourable 

wear performance of a device is only one of its aspects. Often devices which 

performed well in in vitro setting, failed clinically due to local and systemic 

responses to wear and wear products. Therefore, characterisation of wear 

particles generated by MoM and coated CTDRs, as well as potential biological 

responses elicited by those wear particles require further investigation. 
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Chapter 5 : Biological effects of wear particles generated in 

wear simulation 

 

5.1 Introduction 

While most total joint replacements perform well, up to 10% of the devices 

require revision after 10 years in vivo [337]. In their most recently published 

yearly reports (2011-2016), the National Joint Registry (NJR) for England, 

Wales, Northern Ireland and the Isle of Man showed a consistent trend of 

aseptic loosening being the chief contributor to implant failure, followed by 

dislocation and infection. It has been shown that wear and biological responses 

to wear products can lead to osteolysis and aseptic loosening of total joint 

replacement., particularly in devises with MoP bearings [74,84,338,339]. 

Moreover, there is gross evidence suggesting that the volume of wear 

produced, as well as particle size and morphology (of both polyethylene and 

metal origin) can affect the inflammatory responses elicited [74,340–342]. It is 

generally accepted that the majority of UHMWPE particles generated in total 

joint replacements range between 0.1 and 10µm, whilst the particles between 

0.1 and 1µm are considered the most biologically active [89,145]. These 

particles are phagocytosed by macrophages, which unable to digest the 

particles, release inflammatory cytokines and chemokines, including tumour 

necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β), IL-6, and IL-8. In turn, 

these cytokines stimulate the release of other mediators, which lead to an 

inflammatory cascade and a periprosthetic granulomatous tissue reaction, 

resulting in bone resorption and implant loosening [343].  

Metal wear particles generated in total joint replacements are reported to be in 

the size range of 10 – 400nm, with the majority of produced particles in the 

range of 15-25nm [236]. Although wear volumes produced by MoM implants 

are generally lower than MoP, it cannot be assumed that numbers of biologically 

active particles produced are low, due to the reactive size of the metal wear 

debris. The small size of metal wear debris sustains formation of particle 
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agglomerates. Once released to the joint space, singular and accumulated 

metal wear particles attract macrophages to the site, which attempt to digest 

the wear debris and this can lead to a similar responses to these elicited by 

polyethylene particles, as well as aseptic lymphocyte-dominated vasculitis-

associated lesions (ALVAL), hypersensitivity, genotoxicity or pseudotumour 

formation [74,241,287,344–347]. 

In this study, the in vitro wear results of CTDRs (Chapter 4) have shown MoM 

and ceramic-coated CTDRs to produce lower wear rates than MoP devices of 

similar design. However, it is important to establish and understand particle 

characteristics and to investigate potential biological consequences of wear 

particles produced by these devices. From clinical experience, large diameter 

MoM hips (36-54mm), despite their favourable tribological performance in vitro, 

were associated with severe patient complications, including pseudotumour 

formation, hypersensitivity reactions and metallosis [241,348]. In addition, aside 

a number of isolated incidences of ceramic wear-induced osteolysis reported, 

failure of such devices was mainl associated with severe implant 

malpositioning, leading to high wear [134,349].  

Similarly to total hip and knee replacements, wear and wear debris are 

hypothesised to play the key role in successful long term outcomes of CTDRs. 

However, currently the number of long term outcome reports and studies 

documenting wear and wear debris produced by CTDRs in vivo are limited. 

There have, however, been a small number of studies reporting on wear 

induced osteolysis, pseudotumour formation and implant failure in patients 

implanted with a CTDR device [124,128,129,350]. Consequently, despite 

enhanced tribological in vitro performance of MoM and ceramic coated CTDRs 

over MoP designs, the potential biological responses of wear and wear debris 

must be studied. 

The aim of this chapter was to investigate the biological effects of wear particles 

generated by metal-on-metal CTDRs, as well as wear particles generated by 

CTDRs coated with ceramic coatings – chromium nitride and silicon nitride. The 

studies presented here investigated metal (CoCr) wear particles generated in a 

six-station pin-on-plate wear rig, by evaluating biological responses of primary 

cells and cell lines elicited by the wear particles. The pin-on-plate method has 
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previously been validated to produce clinically relevant wear particles 

[228,293,317,351], and thus was used as a baseline in this study. Further, 

particles (both of metal and ceramic origin) generated in a six-station spine 

simulator were investigated in the same manner, by evaluating potential 

cytotoxic effects of the wear particles on primary dural fibroblasts and L929 

murine fibroblasts cell line. The L929 murine fibroblasts cell line has been 

suggested by ISO-10993-5:2009 ‘Biological evaluation of medical devices -- 

Part 5: Tests for in vitro cytotoxicity’ for in vitro cytotoxicity testing [352]. Primary 

dural fibroblasts, isolated from meningeal membranes, were considered as 

clinically relevant in testing cytotoxic potential of CDTR-generated wear 

particles, due to the close vicinity of the meninges to the spinal discs, which 

may have undergone replacement. In the experiments, both sterile water and 

foetal bovine serum were used as lubricants; particles generated in foetal 

bovine serum were isolated from the lubricant using an adaptation of a novel 

particle isolation method [353]. The particle morphology and size distribution of 

metal and ceramic coating particles was determined. Investigations into the 

effects of these particles on cell viability of L929 murine fibroblasts and primary 

porcine dural fibroblasts were performed. The role of particle size, origin and 

dose, generation method, as well as use of different lubricants in particle 

generation, on cell viability was determined.  

5.2 Materials 

5.2.1 Cobalt-chromium pins and plates 

Six CoCr pins were machined in house from a low carbon <0.05% (w/w) CoCr 

alloy (ASTM F1537) [207] bar stock supplied by Peter Brehm GmbH 

(Weisendorf, Germany). The pins were polished in house by Mrs. Jane Cardie 

(Technician, School of Mechanical Engineering) to have a radius of 100° and 

were finished to a Ra of 0.02 – 0.04µm. Six smooth CoCr plates were also 

machined from the same bar stock supplied by Peter Brehm GmbH 

(Weisendorf, Germany), and polished to have Ra of <0.01µm. The dimensions 

and geometrical tolerances of the pins and plates are shown in Figure 5.1. 
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Figure 5.1 Schematic of a wear pin (A) and plate (B) used in the           
six-station pin-on-plate wear test. 

 

5.2.2 Cobalt chromium CTDRs 

Six CoCr CTDRs machined from low carbon <0.05% (w/w) CoCr alloy (ASTM 

F1537) [207] bar stock supplied by Peter Brehm GmbH (Weisendorf, Germany), 

were used in CoCr particle generation in the spine simulator. The CTDRs were 

polished in house by Mrs. Jane Cardie (Technician, School of Mechanical 

Engineering) to have an Ra of 0.02 – 0.04µm. Detailed design specifications for 

the CTDRs were included in Chapter 3.  

5.2.3 Coated CTDRs 

Six CoCr CTDRs machined from low carbon <0.05% (w/w) CoCr alloy (ASTM 

F1537) [207] bar stock supplied by Peter Brehm GmbH (Weisendorf, Germany), 

were used in CoCr particle generation in the spine simulator. The CTDRs were 

polished in house by Mrs. Jane Cardie (Technician, School of Mechanical 

Engineering) to have an Ra of 0.02 – 0.04µm. The CTDRs were then coated 

with ceramic coatings – chromium nitride (CrN) and silicon nitride (Si3N4) by 

IonBond (Olten, Switzerland), three devices of each coating. Detailed 

information on the composition of ceramic coatings is included in Chapter 2. 
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5.2.4 Model silicon nitride (Si3N4) particles 

Submicron silicon nitride powder (<1µm) (33410-3) and nano-sized (<50nm) 

silicon nitride powder (636703), were supplied by Sigma-Aldrich (Irvine, UK). 

5.2.5 Fibroblast cell line 

The L929 murine fibroblast cell line (ECACC 85011425) was supplied by the 

European Collection of Animal Cell Culture, Porton Down (Salisbury, U.K). 

5.2.6 Primary fibroblast cells 

Primary porcine fibroblast cells were isolated from porcine dural membrane by 

explant culture by Dr Iraklis Papageorgiou [354]. 

5.2.7 Cell culture medium and supplements 

Dulbecco’s modified Eagles medium (DMEM), without L-glutamine (D6546) 

was supplied by Sigma-Aldrich (Irvine, UK). The DMEM was stored at 4°C until 

required. Penicillin (5000 U) and streptomycin (5000 U) (DE17-603E) were 

supplied by Lonza Biologics (Cambridge, UK) and stored at -20°C until required. 

L-glutamine at a concentration of 200mM in 0.85% (w/v) of sodium chloride 

(NaCl) (25030-024) was purchased from Invitrogen Ltd. (Paisley, UK) and 

stored at -20°C. Foetal Calf Serum (FCS) (A101112-2177) was purchased from 

GE Healthcare (Buckinghamshire, UK) and stored at -20°C. 

5.2.8 Carbon dioxide and liquid nitrogen 

Carbon dioxide (CO2) in air (5% v/v) and liquid nitrogen were supplied by the 

British Oxygen Company Ltd. (Manchester, UK). 

5.2.9 ATP-Lite luminescence assay detection kit 

Cell viability was measured using adenosine triphosphate (ATP) luminescence 

detection kit (ATP Lite) supplied by Perkin-Elmer (Cambridge, UK). The 

contents of the kit (mammalian cell lysis solution, buffer and lyophilised 

substrate) were stored at 4°C until required. The reconstituted lyophilised 

substrate was stored at -20°C. 
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5.2.10 Chemicals 

Trypsin-ethylenediaminetetraacetic (EDTA) (T3924), Dulbecco’s phosphate 

buffered saline (DPBS) without calcium chloride (CaCl2) and magnesium 

chloride (MgCl2) (D8537), Camptothecin powder and Trypan Blue solution 

(0.4%) (T8154) were supplied by Sigma-Aldrich (Irvine, UK). Sterile, distilled 

water (UKF7114) was purchased from Baxter (Newbury, UK). Ethanol, at a 

concentration of 96% (v/v) was supplied by Fisher Scientific (Loughborough, 

UK). Trigene disinfectant solution was supplied by Scientific Laboratory 

Supplies Ltd. (Nottingham, UK). Isopropanol, at a concentration of 99.8+% (v/v) 

(10090320) was supplied by Fisher Scientific UK (Leicestershire, UK). 

Surfasil™ siliconizing fluid was supplied by ThermoScientific (Loughborough, 

UK). Methanol was supplied by Atom Scientific LTD (Manchester, UK). 

Proteinase-K powder was supplied by Fisher Scientific (Loughborough, UK). 

HEPES (acid free), at a concentration of >99.5% was purchased from Melford 

Laboratories Ltd. (Ipswich, UK). Sodium dodecyl sulphate (SDS), sodium 

polytungstate solution (85% w/v), Lysozyme powder (from chicken egg white), 

Trizma® hydrochloride (Tris-HCl) and calcium chloride were supplied by Sigma-

Aldrich (Irvine, UK). Sodium chloride-TRIS-EDTA-Triton (STET) buffer was 

purchased from Alfa Aesar (Heysham, UK). Fairy soap detergent was supplied 

by Proctor&Gamble (London, UK). 

5.2.11 Laboratory consumables and glassware 

Filter pipette tips were purchased from Starlab (Helsinki, Finland). Individually 

wrapped, sterile pipettes and cryovials were supplied by Sarstedt Ltd. 

(Leicester, UK). Disposable, plastic syringes were purchased from Terumo® 

(Leuven, Belgium). White 96-well Opti-Plates® and transparent seals were 

purchased from Perkin-Elmer (Cambridge, UK). Tissue culture flasks and 96-

well plates plus lids (167008) were supplied by Fisher Scientific UK 

(Leicestershire, UK). Sterile universal containers and bijous were purchased 

from Bibby Sterilin (Staffordshire, UK). Millipore glass filtration unit with 

stainless steel support was supplied by Milipore (Consett, UK). Nucleopore 

polycarbonate filter membranes (0.015µm and 0.02µm pore size) were 

purchased from Whatman (Maidstone, UK). Polypropylene centrifuge tubes 

(14ml and 32ml) were supplied by Beckman Coulter Ltd. (High Wycombe, UK).  
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5.2.12 Equipment for particle characterisation 

A microbalance (XP26) was purchased from Mettler Toledo (Leicester, UK). 

Polycarbonate filter membranes were coated with a High-Resolution Sputter 

coater with a carbon target, manufactured by Agar Scientific (Stansted, Essex, 

UK). Filtered particles were analysed using a Hitachi SU8230 cold field 

emission (CFE) scanning electron microscope (SEM) (Hitachi, Maidenhead, 

UK), fitted with an Oxford Instruments Aztec Energy EDX system (AZtecEnergy, 

Oxford, UK). SEM specimen stubs, carbon adhesive discs and conducting 

carbon cement (Leit-C) were purchased from Agar Scientific (Stanstead, UK) 

5.2.13 Equipment for cell culture maintenance and cell viability 

assays 

The light microscope in the Faculty of Biological Sciences (University of Leeds, 

UK) (CK40) was supplied by the Olympus Optical Company (London, UK). The 

plate shaker (Vari-Shaker®) was supplied by Dynatech Ltd. (Billinghurst, UK). 

The Chameleon™V luminescence plate reader was manufactured by Hidex 

(Turku, Finalnd). The Multiscan Spectrum plate reader used for the MTT assay 

was manufactured by Thermo Labsystems (Helsinki, Finland). The class II cell 

culture hood (Herasafe) was purchased from Heraeus Instruments (Hanau, 

Germany), The 37°C, 5% (v/v) CO2 incubator (MCO0-20AIC) was supplied by 

Sanyo (Watford, UK).  

5.2.14 Equipment for particle isolation  

Ultracentrifuge Optima L80, rotors SW40Ti and SW32Ti with their 

corresponding swing buckets were supplied by Beckman Coulter Ltd. (High 

Wycombe, UK). The 37° incubator (MIR262) was purchased from Panasonic 

Healthcare Co., Ltd. (Gunma, Japan). The balance (GR-200) was supplied by 

A&D Jencons Plc. (Bedfodshire, UK). Lint free cotton wipes were purchased 

from RS Components (Corby, UK). The class I cabinet (Airone-R) was 

purchased from SafeLab (Weston-super-Mare, UK). The vortex mixer (SA8) 

was supplied by Bibby Scientific Ltd. (Staffordshire, UK) The Ika orbital shaker 

was supplied by Sigma Aldrich (Irvine, UK). The ultrasonic water bath was 

purchased from VWR International Ltd. (Leicestershire, UK). A freeze dryer 

(Savant™ ModulyoD) was supplied by ThermoScientific (Loughborough, UK) 
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5.2.15 Computer software 

Computer software, MikroWin used to measure luminescence readings from 

the ATP assay was purchased from MikroTek Laborsysteme GmbH. The EDX 

spectra were acquired using AZtec computer software, purchased from Oxford 

Instruments AZtecEnergy EDX system (Oxford, UK). ImageJ software (National 

Instruments of Health, Bethesdam Naryland, USA) was used in particle sizing. 

5.3 Methods 

5.3.1 Particle generation using six-station pin-on-plate wear rig 

Cobalt chromium wear particles were generated using a six-station pin-on-plate 

wear rig, which was designed and manufactured in house by the School of 

Mechanical Engineering, University of Leeds. Smooth (Ra <0.04µm) cobalt 

chromium pins and plates were machined and polished as described in section 

5.2.1. All test components were cleaned following the protocol in accordance 

with the SOP.01.3 rev.6 (Appendix V). All the test components were sonicated 

in a household detergent solution for 5 minutes. The components were then 

rinsed with tap water and deionised water, sonicated for 10 minutes in 70% (v/v) 

isopropanol solution and left to dry in air for 15 minutes. All rig components 

(Figure 5.2) were washed in a soap detergent solution and soaked in 1% (v/v) 

Trigene solution for twenty minutes. Subsequently, all the parts were rinsed in 

tap and deionised water, and dried for use. All rig components were then 

assembled appropriately, following the instructions listed in SOP.01.03 rev.6 

(Appendix V). 
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Figure 5.2: Six-station pin-on-plate wear rig components, prior to 
assembly: 1 – bridges securing pin holders, 2 – racks, 3 – outer 

baths, 4 - miscellaneous screws, 5 – ball bearings, 6 – connecting 
rods, 7 – pin holders, 8 – inner baths, 9 – plastic covers, 10 – pin 

holder bore, 11 – pinions and ratchets 

Prior to the start of the test the rig was calibrated – the positions of the weights 

on the cantilever arms were set to exert load of 80N. The calibration setup is 

shown below (Figure 5.3) and the calibration protocol followed was specified in 

the SOP.01.03 rev.6 (Appendix V). The calibration process ensured that the 

loads applied by the weights placed on the cantilever matched the desired 

specification. Using an external load cell (Sensotec 4.5kN, Honeywell 

International Inc., Columbus, OH, USA), the position of the weights was 

adjusted accordingly. 

The test was conducted at a frequency of 1Hz. The cantilever arm was loaded 

to generate a load of 80N and the stroke length was set to 28mm (±30° rotation). 

Deionised water was used as a lubricant. The cobalt chromium test components 

were labelled with numbers, which corresponded with the number of the station 

they were fitted into. This arrangement was constant over the entire duration of 

the test. The orientation of the plate in the bath also remained constant. Prior to 

the start, approximately 30 ml of lubricant was added to each bath. The cycle 

counter was set to zero and the motor was turned on. The speed was gradually 

increased and adjusted so that the frequency of the stroke was 1Hz (60 cycles 
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per minute). Once the speed was adjusted, the weights were placed on the 

cantilever arms, at positions corresponding to 80N.  

 

Figure 5.3: Calibration set-up of the six-station pin-on-plate wear 
simulator, as per SOP 01.03, Appendix V. 

 

The rig was inspected and the lubricant was topped up twice each day. The test 

was stopped for weekends, when the rig was disassembled and cleaned. Upon 

the completion of each week of testing, the number of cycles was recorded and 

the test components were cleaned, following the same protocol described 

earlier in this section. The lubricant containing the debris from each station was 

collected into appropriately labelled plastic containers (test number, material, 

station number, date) and stored at -20°C. The rig operated for 2 weeks, 5 days 

a week. 

5.3.2 Particle generation using a six-station spine simulator 

Clinically-relevant particles were generated using a six-station spine simulator. 

A standard ISO protocol (ISO-18192-1:2011) was applied. Detailed 

methodology applied in the particle generation has previously been described 

in Chapter 3 section 3.4.1. 
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5.3.2.1 Cobalt chromium particles 

5.3.2.1.1 Particle generation in foetal bovine serum 

Six cobalt chromium CTDR devices were fitted in the spine simulator and tested 

under standard testing conditions, as per ISO-18192-1:2011. The devices were 

tested for a total of 4x106 cycles. Foetal bovine serum (25% v/v) was used as 

the lubricant, which was collected and stored at-20°C, until required, at every 

3.3x105 cycles of the first 1x106 cycles, and at every 1x106 cycles in the 

remaining stages of the test. When collected, the lubricant from all six stations 

was pooled into one container, prior to freezing. 

5.3.2.1.2 Particle generation in sterile water 

Six CTDR devices were fitted in the spine simulator and tested under standard 

testing conditions, as per ISO-18192-1:2011. The devices were tested for a total 

of 1x106 cycles. Sterile water was used as a lubricant, which was collected and 

stored at -20°C, until required, at every 3.3x105 cycles. When collected, the 

lubricant from all six stations was pooled into one container, prior to freezing. 

5.3.2.2 Chromium nitride and silicon nitride coating particles 

One chromium nitride-coated and one silicon nitride-coated CTDR device were 

fitted in the spine simulator and tested under standard test conditions, as per 

ISO- ISO-18192-1:2011, with sterile water used as a lubricant. Initially, the 

devices were tested for 3.6x103 cycles (1 hour) and checked for coating 

damage.  

Following one hour of testing, it was determined that the silicon nitride coating 

sustained delamination damage and thus no further testing of this coated 

sample was conducted. The lubricant was collected and stored at -20°C, until 

required. 

The chromium nitride coating did not sustain any damage following one hour of 

testing and therefore this test was extended to 6.6x105 cycles, in order to 

maximise the volume of coating particles generated. The lubricant was the then 

collected and stored at -20°C, until required.  
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5.3.3 Particle isolation  

5.3.3.1 Particle sedimentation 

All centrifugation times and speeds were calculated based on the particle 

sedimentation equations described by Lu et al. [355] and Ohlendieck [356]. As 

such, the terminal velocity of particles was calculated using Equation 5.1, whilst 

the terminal velocity was obtained from Equation 5.2. 

 

𝑽 =
𝒈 × 𝑫𝟐 × (𝒅𝒑 − 𝒅𝒎)

𝟏𝟖 ×  𝝂
 

Equation 5.1 

where: 

V – terminal velocity 

g – gravitational acceleration 

D – particle diameter 

dp – particle density 

dm – medium density 

ν – medium viscosity 

 

𝒕 =  
𝒍

𝑽
 

Equation 5.2 

where: 

t – centrifugation time 

l – length of centrifuge tube 

V – terminal velocity. 

 

5.3.3.2 Surfasil™ coating 

All ultracentrifuge tubes used in particle isolation were coated with Surfacil™ 

siliconizing fluid, which is a polymeric silicone fluid consisting primarily of 

dichlorooctamethyltetrasiloxane. The coating reduces sample loss caused by 

nonspecific interactions with reaction vessels and containers for approximately 

5 minutes. 
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Once placed inside a class II cabinet, tubes were coated using a Surfasil™ 

soaked cotton wipe handled with a pair of tweezers. Any excess fluid was wiped 

away with a clean cotton wipe. Subsequently, tubes were rinsed once with 

methanol and twice with sterile water. After removing the sterile water, the tubes 

were left to dry in air, inside the class II cabinet for approximately 5 minutes. 

5.3.3.3 Preparation of Proteinase-K stock solution 

In order to prepare the required proteinase-K stock solution (20 mg.ml-1), 500mg 

of proteinase-K powder was weighed out in a sterile universal tube. 

Subsequently, 22.35ml of sterile water, 150µl of 0.5M CaCl2 and 2.5ml of 1M 

HEPES buffer were added and the tube vortexed, until the powder dissolved. 

The 25ml of stock solution was divided into 1ml aliquots and stored at -20°C. 

5.3.3.4 Preparation of Lysozyme stock solution 

In order to prepare the required Lysozyme stock solution (20mg.ml-1), 140mg of 

Lysozyme powder was weighed out in a sterile bijou. Subsequently, 7ml of Tris-

HCl (pH=8.0) was added and the tube vortexed until the powder has dissolved. 

The bijou was kept on ice until required. 

5.3.3.5 Serum concentration 

Frozen foetal bovine serum collected during particle generation tests (section 

5.3.2.1.1) was thawed at room temperature for approximately 2 hours. Once 

defrosted, 180ml of the serum was sonicated for 5 minutes and transferred into 

six 30ml thin-walled ultracentrifuge tubes. The tubes were placed into swing 

buckets with lids placed on top of the buckets. Buckets in opposing positions in 

the rotor (i.e. 1 and 4, 2 and 5, and 3 and 6) were balanced using a 

microbalance; in instances when buckets required the weight to be adjusted, 

sterile water was added into the tubes. Once balanced, the buckets were 

carefully placed in a rotor (SW32), which was placed in the ultracentrifuge 

(Ultra1). The serum was centrifuged at 125,755g at 25°C, for 3 hours. Following 

the centrifugation, the tubes were removed from the buckets. A visible pellet of 

particles and proteins was observed; supernatants were removed and 

discarded. 
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5.3.3.6 Protein and bacterial digestion 

Immediately after serum concentration and removal of supernatants, 4ml of 

sterile water was added to each tube. Subsequently, 500µl of 1M HEPES and 

250µl of 10% (v/v) SDS was added to each tube. The tubes were then sonicated 

manually, until the pellets detached from the bottom of the tubes and 

disintegrated. Subsequently, 250µl of proteinase-K (20mg.ml-1 stock 

concentration) was added to each tube. The tubes were then individually placed 

in falcon tubes and placed in an incubator set at 50°C on an orbital shaker at 

4.83g for 18 hours.  

Following 18 hours of incubation at 50°, the particle suspension inside the tubes 

was semi-transparent. The tubes were topped up with sterile water (up to 30ml), 

placed in buckets, balanced and placed in a rotor (SW32). The suspension was 

then centrifuged at 125,755g at 25°C for 1.5 hours. Following centrifugation, the 

tubes were removed from the buckets. A visible pellet of particles and partially 

digested proteins was observed; supernatants were removed and discarded. 

Using a pipette, 1750µl of STET buffer, containing 100mM NaCl, 10mM Tris-

HCl (pH 8.0), 1mM EDTA and 5% (v/v) Triton X-100, was added to each tube. 

The tubes were then sonicated manually, until the pellets have detached from 

the bottom of the tubes and disintegrated. Subsequently 1ml of 20mg.ml-1 

Lysozyme solution was added to each tube. The tubes were individually placed 

in falcon tubes and placed in the incubator set at 37°C on an orbital shaker at 

4.83g for 1 hour. Lysozyme damages bacterial cell walls by catalysing 

hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-

glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine 

residues in chitodextrins, thus destroying bacterial cell walls. Following the 

bacterial digestion, the tubes were topped up with sterile (up to 30ml), placed in 

buckets, balanced and placed in a rotor (SW32). The suspension was then 

centrifuged at 125,755g at 25°C for 1.5 hours. Following centrifugation, the 

tubes were removed from the buckets. A visible pellet was observed; 

supernatants were removed and discarded. 

Subsequently, 4ml of sterile water were added to each tube. Following this, 

500µl of HEPES and 250µl of 10% (w/v) SDS was added to each tube. The 

tubes were then placed in the ultrasonicating bath, until the pellets detached 
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from the bottom of the tubes and disintegrated. Subsequently, 250µl of 

proteinase-K (20mg.ml-1) was added to each tube. The tubes were then 

individually placed in falcon tubes and placed in the incubator set at 50°C on an 

orbital shaker at 4.83g for 22 hours. 

5.3.3.7 Density gradient centrifugation 

Six clean 14ml tubes were coated with Surfasil™ (section 5.3.3.1). Filtered 

sodium polytungstate solution (85%, w/v) was prepared diluted with sterile 

water into 1.2, 1.6 and 2.0 g/cm3 density gradients. Subsequently, 2ml of each 

gradient was added dropwise to each tube, starting from the lowest to highest 

dilution. Subsequently, tubes containing the digested particle suspension 

(section 5.3.3.6) were sonicated for 10 minutes. The contents were then layered 

carefully on top of the polytungstage gradients. Subsequently, the tubes were 

placed into swing buckets with lids placed on top of the buckets. Buckets in 

opposing positions in the rotor (i.e. 1 and 4, 2 and 5, and 3 and 6) were 

balanced; in instances when the buckets required the weight to be adjusted 

sterile water was added into the tubes. Once balanced, the buckets were 

carefully placed in a rotor (SW40), which was placed in the ultracentrifuge. The 

density gradient was centrifuged at 202,048g at 25°C, for 4 hours. Following 

centrifugation, the tubes were carefully removed from the buckets. The sodium 

polytungstate and protein bands were removed from the tube leaving behind 

the particles which had formed a pellet at the bottom of the tube. Subsequently, 

2 ml of sterile water was added to each tube and the samples were frozen at -

20°C, until required. The particle isolation process is depicted in Figure 5.4.  
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Figure 5.4: Particle isolation process used in this study, based on Lal et 
al. [353]. 

5.3.3.8 Washes  

Samples thawed in room temperature for approximately 2 hours (section 

5.3.3.7) were topped up with sterile water, placed in swing buckets and 

balanced. The buckets were placed in a rotor (SW40) and centrifuged at 

202,048g at 25°C, for 1 hours. At this time, a black pellet of particles was visible 

and supernatants were removed. This step was repeated 3 times; in the final 

step, after removing supernatants, 2ml of sterile water was added to each tube, 

which were stored at -20°C until required. 
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5.3.4 Freeze drying of water generated particle solution 

Frozen samples of particles generated in water (sections 5.3.1, 5.3.2.1.2 and 

5.3.2.2) were placed in the freeze dryer (-50°C, under vacuum), in order to 

reduce the volume of water from 500ml to approximately 10ml. The volume-

reduced samples were stored at -20°C until required. 

5.3.5 Preparation of endotoxin-free wear particles and model 

silicon nitride particles for cell culture experiments 

Ten sterile glass vials, acclimatised for >24 hours in the measurements 

laboratory (temperature and humidity controlled room) were covered with foil 

and weighed on the Mettler Toledo XP26 balance (0.001mg readability). An 

additional glass vial covered with foil was used as a reference. Each vial was 

weighed at least five times, such that all consecutive measurements were within 

0.001mg of each other. Cobalt chromium, chromium nitride and silicon nitride 

coating wear debris, generated in water (sections 5.3.1, 5.3.2.1.2 and 5.3.2.2) 

and those generated and isolated from bovine serum (section 5.3.3) were 

thawed, and a small amount (approx. 5 ml) was pipetted into pre-weighed vials; 

2 vials of wear particles for each material were prepared. Similarly, four vials of 

model silicon nitride particles of each size (section 5.2.4) were prepared. All the 

vials (covered with foil) were then sterilised for 4 hours at 190°C to evaporate 

the water and remove and destroy any endotoxin. The bottles were then placed 

in the measurements laboratory for >24 hours in order to acclimatise to room 

temperature. The bottles were re-weighed and the mass of the particles was 

calculated. Particles in each vial were then re-suspended with the appropriate 

volume of sterile water to produce a stock concentration of 1mg.ml-1, which were 

stored at -20°C until required. 

5.3.6 Characterisation of cobalt chromium, chromium nitride and 

silicon nitride wear particles and silicon nitride model 

particles 

Small volumes (200µl) of the thawed particle stocks (section 5.3.5) were diluted 

in 5ml of sterile water and placed in universals vials. The samples were 

sonicated for 30 minutes, in order to disaggregate the particles. A Millipore glass 

filtration unit was prepared by washing in soap detergent and rinsing with tap 
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and deionised water, and left to dry inside a class I cabinet. Finally, the particle 

suspension was filtered through a polycarbonate membranes with 0.015µm 

pore size. Following filtration, the membranes were dried under an infrared lamp 

for a duration of 4 hours.  

Each polycarbonate membrane was mounted on a 2.5cm aluminium short stub 

using an adhesive carbon tab. The edges of the membrane were coated with 

carbon paste. The filter membranes were then sputter coated with Iridium to a 

thickness of 5nm. Application of iridium coating reduced sample charging by 

increasing thermal conduction, sample beam penetration by improving edge 

resolution. The filters were inspected using a Hitachi SU8230 cold field 

scanning electron microscope at a working distance of 4-15 mm and at 2kV. 

Images were taken using decelerated backscattered electrons at 1kV, which 

yielded improved visualisation of topographical detail of the particles. Images 

were taken at magnifications of 30 K, 40 K, 60 K and 90 K. Particle composition 

was confirmed using EDX. The images were then analysed using ImageJ 

software to measure the diameter and area of the particles. A minimum of 150 

particles per material were measured, as suggested by ISO-13322-1:2014 – 

‘Particle size analysis – Image analysis methods. Part 1: Static image analysis 

methods’ [357].  

Table 5.1 shows the summary of all types of particles used in this study, their 

generation and preparation methods. 
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Table 5.1: Summary of materials, generation and preparation methods 
for all particles used. 

Material Generation 
method 

Lubricant 
used 

Storage 
method 

Preparation 
method 

Characterisation 

Cobalt 
chromium 

Pin on plate Sterile 
water 

-20°C Freeze dried 
and sterilised 

Yes 

 Spine 
Simulator 

Sterile 
water 

-20°C Freeze dried 
and sterilised 

Yes 

  Foetal 
bovine 
serum 

-20°C Isolated and 
sterilised 

Attempted* 

Chromium 
nitride 

Spine 
simulator 

Sterile 
water 

-20°C Freeze dried 
and sterilised 

Yes 

Silicon 
nitride 

Model 
particles, 

submicron 

NA Room 
temperature 

Sterilised Yes 

 Model 
particles, 
nanoscale 

NA Room 
temperature 

Sterilised Yes 

 Spine 
simulator 

Sterile 
water 

-20°C Freeze dried 
and sterilised 

Yes 

*Particle characterisation attempted, however this was unsuccessful due to high levels of 
protein contamination 

5.3.7 Cell resurrection and cell culture  

5.3.7.1 Resurrection of L929 murine fibroblast cell line and primary 

porcine dural fibroblasts cells 

Cell culture medium was prepared using 500 ml of Dulbecco’s Modified Eagle’s 

Medium (DMEM), supplemented with 10% (v/v) foetal calf serum (FCS), 2mM 

L-glutamine, 100 U penicillin, and 100µg.ml-1 streptomycin. This will 

subsequently be referred to as cell culture medium (CCM). One cryovial of L929 

cells and one of primary porcine dural fibroblasts were removed from liquid 

nitrogen and thawed at 37°C. The cells were then transferred to separate sterile 

tubes containing 10ml of fresh cell culture medium. The cell suspensions were 

centrifuged at 150 RCF for 10 minutes, at room temperature, after which the 

supernatant was removed from above the cell pellet. The pellets were re-

suspended in 5ml of fresh CCM. The cells were added to their respective sterile 

culture flasks (75cm3) containing 15ml of fresh CCM and incubated at 37°C in 

5% (v/v) CO2 in air until 80% confluent. 
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5.3.7.2 Cell culture maintenance of L929 murine fibroblast cell line and 

primary porcine dural fibroblasts cells 

Once approximately 80% confluent, cells were washed with Dulbecco's 

Phosphate-Buffered Saline (DPBS) (without calcium and magnesium chloride). 

The cells were treated with 5ml of tripsin-EDTA for 10 minutes at 37°C, to 

detach cells from the flask. A volume of 10ml of fresh CCM was added to the 

flask to inhibit the tripsin-EDTA. The contents of the flask were transferred to a 

universal tube and centrifuged at 150 RCF for 10 minutes, at room temperature, 

after which the supernatant was removed. The pellet was re-suspended in 10ml 

of fresh CCM. A total cell count in 1ml of the cell suspension was determined 

using the method described in section 5.3.8. If cells were needed in further 

experiments, the remaining cell suspension was added to a 175cm3 sterile flask 

containing 20ml of fresh CCM. The cells were incubated at 37°C in 5% (v/v) 

CO2 in air until 80% confluent.  

5.3.8 Cell count using the trypan blue exclusion assay 

The number of viable cells present in 1ml of cell suspension was determined by 

diluting 80µl of the cell suspension (section 5.3.7.2) with 80µl of trypan blue. 

From the 160µl of the suspension mixture, 20µl was placed on a Neubauer 

haemocytometer (Figure 5.5) and viewed under a light microscope. The number 

of viable cells was counted within the 25 squares, counting at least 100 and 

maximum of 300 cells. The number of viable cells present in 1ml of cell 

suspension was calculated using Equation 5.3. 

 

𝑵 = 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒆𝒍𝒍𝒔 𝒄𝒐𝒖𝒏𝒕𝒆𝒅 ×  𝟐 × 𝟏𝟎𝟒 

Equation 5.3 

where: 

N – number of viable cells present in 1ml of cell suspension 

2 - dilution factor of the cell suspension within the 10µl of trypan blue  

104 – dilution factor per 1ml 
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Figure 5.5: Schematic representation of a magnified view the Neubauer 
haemocytometer grid used in cell counting. At least 100 cells within 

all 25 squares (selected in red) had to be counted per cell 
suspension sample. Cells on the left and bottom edge of the grid 
were not counted; cells on the top and right edge of the grid were 

counted. 

5.3.9 Growth curves for L929 murine fibroblasts and primary 

porcine dural fibroblasts 

5.3.9.1 Seeding 96-well plates 

To assess the optimal seeding density for the L929 cell line and primary porcine 

dural fibroblasts over the duration of experiments, cells were seeded at different 

seeding densities and the growth followed for up to six days. Following one 

passage, cells were transferred into 3 larger, (175cm3) sterile flasks, in order to 

expand the cell population. Once the cells were confluent (>80% confluence) 

they were treated with trypsin-EDTA (section 5.3.7.2) and a cell count was 

performed (section 5.3.8). Cells were seeded at concentrations of 5x102.ml-1; 

1x103.ml-1; 5x103.ml-1; 1x104.ml-1 and 5x104.ml-1 for each well. Equal volumes 

(100µl) of fresh CCM were added to each well of a sterile, clear, flat-bottomed 

96-well plate. Equal volumes (100µl) of cell suspensions at the required cell 
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concentrations were added to appropriate wells. Each cell seeding density was 

repeated six times. Four plates, corresponding to four time-points (days 0, 1, 3 

and 6), were seeded following the layout described in Figure 5.6.  The plates 

were incubated at 37°C in 5% (v/v) CO2 in air for at least 2 hours to allow cell 

attachment. 

 

Figure 5.6: Layout of the 96-well plate used in the growth curve studies 
of L929 murine fibroblasts and primary porcine dural fibroblasts. 

 

5.3.9.2 Determining cell viability using the ATP-Lite assay 

Cell viability was determined using the ATP-Lite™ assay. The assay solution 

consisted of Luciferase and D-Luciferin which interact with adenosine-

triphosphate (ATP) released from the cells under investigation to emit light. The 

luminescence counter detected and measured bioluminescence which was 

proportional to the ATP concentration within the solution. The amount of ATP 

produced in a sample was directly proportional to the number of viable cells 

present; therefore ATP is used as an indicator of cell viability in the ATP-Lite 

Assay. The principle of the ATP-Lite assay is outlined in the reaction below: 

𝑨𝑻𝑷 + D-Luciferin + 𝑶𝟐
𝑳𝒖𝒄𝒊𝒇𝒆𝒓𝒂𝒔𝒆+𝑴𝒈𝟐+

→              𝑶𝒙𝒚𝒍𝒖𝒄𝒊𝒇𝒆𝒓𝒊𝒏 + 𝑨𝑴𝑷+ 𝑷𝑷𝒊 + 𝑪𝑶𝟐 + 𝑳𝒊𝒈𝒉𝒕 

The ATP substrate solution was prepared using the contents of the ATP-Lite 

kit. The contents of a bottle of the lyophilised substrate were mixed with 25ml 

of substrate buffer solution. The reconstituted ATP substrate solution was then 

split into small (5ml), sterile glass universal vials and covered with foil. The vials 

were stored at -20°C until required. 
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Following the required incubation time, the supernatants (200µl) were removed 

from each well and replaced with 100µl of fresh CCM. The mammalian cell lysis 

solution was added to each well (50µl) and the plate was placed on the orbital 

plate shaker for 4 minutes at 280rpm. Previously thawed, reconstituted 

lyophilised substrate was then added to each well (50µl) and the plate was 

covered in foil and placed on the orbital plate shaker for 4 minutes at 280rpm. 

With the lights switched off in the class II cabinet, 100µl of the contents of each 

well were transferred to corresponding positions in a 96-well Optiplate® and an 

adhesive clear film was placed over the plate. The plate was read using the 

Chameleon™V luminescence reader, following dark-adaptation of the plate for 

10 minutes. The luminescence of each well was read for 5 seconds and the 

output was presented as counts per second (CPS) and exported to Excel.  

5.3.10 Culture of L929 and primary dural fibroblasts cells with cobalt 

chromium wear particles 

5.3.10.1 Seeding 96-well plates with L929 fibroblasts 

A flask of cells (confluence >80%) was treated with trypsin-EDTA (section 

5.3.7.2) and the number of viable cells was determined (section 5.3.8). Cells 

were seeded in a sterile, clear, flat-bottomed 96-well plate, at the density of 

1x103/ml for each well. A volume of 100µl of cell suspension containing required 

number of cells was added to each well. Plates seeded with cells were 

incubated at 37°C in 5% (v/v) CO2 in air for at least 12 hours to allow cell 

attachment. 

5.3.10.2 Seeding 96-well plates with primary porcine dural fibroblasts 

Flasks of cells (confluence >80%) were treated with trypsin-EDTA (section 

5.3.7.2) and the number of viable cells was determined (section 5.3.8). Cells 

were seeded in sterile, clear, flat-bottomed 96-well plates at the density of    

5x102/ml. A volume of 100µl of cell suspension containing the required number 

of cells was added to each well. Plates seeded with cells were incubated at 

37°C in 5% (v/v) CO2 in air for at least 12 hours to allow cell attachment. 
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5.3.10.3 Culturing L929 and primary dural fibroblasts in the presence of 

cobalt chromium wear particles 

The L929 and primary dural fibroblasts cell were cultured with cobalt chromium 

generated in the six-station pin-on-plate wear simulator (section 5.3.1),            

six-station spine simulator in water (section 5.3.2.1.2) and foetal bovine serum 

(5.3.2.1.1). The sterile wear particles (section 5.3.5) were added to the cells at 

particle volumes per cell of 50µm3, 5µm3 and 0.5µm3 using the 1mg.ml-1 particle 

suspension (section 5.3.5). Each particle suspension was vortexed and 

sonicated for 30 minutes immediately prior to culturing with the cells. Negative 

controls consisted of particles only, containing 100µl of the 50µm3 particles per 

cell suspension and 100µl of fresh CCM (no cells), cells only, containing 100µl 

of the cell suspension solution and 100µl of fresh CCM, and the positive control 

was camptothecin, which induces cell death via apoptosis. The stock solution 

of the camptothecin was prepared at a concentration of 4µg.ml-1. One hundred 

microliters of the camptothecin stock was added to corresponding wells and 

supplemented with 100µl of fresh CCM. Each treatment was repeated six times 

and the cells were cultured with the particles at 37°C in 5% (v/v) CO2 in air. The 

complete layout of the 96-well plates used in this study is shown in Figure 5.7. 

Cell viability was determined over 6 days using the ATP-Lite assay, at specific 

time-points (day 0, 1, 3 and 6). 
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Figure 5.7: Layout of 96-well plates used for culturing cells with the 
cobalt chromium wear particles. Plate A (top) included particles 
generated in the six-station pin-on-plate wear simulator and the    
six-station spine simulator in water. Plate B (bottom) included 
particles generated in the six-station spine simulator in foetal 

bovine serum. The same plate layouts were used for both L929 and 
primary dural fibroblasts cells. 

 

5.3.11 Culture of L929 and primary dural fibroblasts cells with model 

silicon nitride particles and chromium nitride and silicon 

nitride wear particles  

5.3.11.1 Seeding 96-well plate with L929 fibroblasts 

The same method of cell seeding was followed as described in section 5.3.10.1. 

5.3.11.2 Seeding 96-well plate with primary porcine dural fibroblasts 

The same method of cell seeding was followed as described in section 5.3.10.2. 
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5.3.11.3 Culturing L929 and primary dural fibroblasts in the presence of 

model silicon nitride model particles (submicron and nanoscale 

particles) 

The L929 and primary dural fibroblasts cells were cultured with the micron- and 

nanoscale size silicon nitride particles (section 5.2.4). Commercially available 

model particles of submicron and nanoscale size were used in this experiment. 

Due to the catastrophic failure of the silicon nitride particles generated in the in 

vitro wear simulation (Chapter 4) were not deemed clinically relevant. For that 

reason, readily available particles were used in the cytotoxicity studies as a 

replacement, as well as a comparison to the silicon nitride coating particles 

collected from the wear study. The model particles of each size (submicron and 

nanoscale) were added to the cells at particle volumes per cell of 500µm3, 

50µm3 and 5µm3 using the 1mg.ml-1 particle suspension (section 5.2.4). Each 

particle suspension was vortexed and sonicated immediately prior to culturing 

with the cells. A negative control of particles only, containing 100µl of the 

500µm3 particles per cell and 100µl of fresh CCM (no cells), was added to each 

plate. The particles were investigated following the layout shown in Figure 5.8. 

The negative control of cells only contained 100µl of the cell suspension solution 

and 100µl of fresh CCM, and the positive control was camptothecin (4µg.ml-1). 

The stock solution of the camptothecin was as described in section 5.3.10.3. 

Each treatment was repeated six times and the cells were cultured with the 

particles at 37°C in 5% (v/v) CO2 in air. The cell viability was determined over 6 

days at the specific time-points (day 0, 1, 3 and 6). 
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Figure 5.8: Layout of a 96-well plate used for culturing the L929 cells 
with the submicron- and nanoscale silicon nitride powder particles. 

 

5.3.11.4 Culturing L929 and primary dural fibroblasts in the presence of 

ceramic coating wear particles (chromium nitride and silicon 

nitride) 

The L929 and primary dural fibroblasts cells were cultured with chromium nitride 

and silicon nitride coating wear particles generated in the six-station spine 

simulator (section5.3.2.2). The particles of each coating were added to the cells 

at particle volume per cell of 50µm3, 5µm3 and 0.5µm3 using the 1mg.ml-1 

particle suspension, in the arrangement shown in Figure 5.9. Each particle 

suspension was vortexed and sonicated immediately prior to culturing with the 

cells. A negative control of particles only, containing 100µl of the 50µm3 

particles per cell suspension and 100µl of fresh CCM (no cells), was added to 

each plate. The particles were cultured following the layout shown in Figure 5.8. 

The negative control with cells only contained 100µl of the cell suspension 

solution and 100µl of fresh CCM, and the positive control was camptothecin 

(4µg.ml-1). The stock solution of the camptothecin was as described in section 

5.3.10.3. Each treatment was repeated six times and the cells were cultured 

with the particles at 37°C in 5% (v/v) CO2 in air. The cell viability was determined 

over 6 days at specific time-points of day 0, 1, 3 and 6. 
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Figure 5.9: Layout of a 96-well plate used for culturing cells with the 
chromium nitride and silicon nitride coating particles generated in 

six-station spine simulator. The same plate layout was used for 
L929 murine fibroblasts and primary porcine dural fibroblasts. 

 

5.3.12 Determining changes in cell viability using the ATP-Lite 

assay 

The cell viability of the cells seeded with cobalt chrome wear particles (section 

5.3.10.3), model silicon nitride particles (section 5.3.11.35.3.11.2) and ceramic 

coatings wear particles (section 5.3.11.4) was determined using the ATP-Lite 

assay (section 5.3.9.2). The changes in viability of cells cultured with different 

particles were determined by assessing changes relative to the cells only 

control cell viability at each timepoint. The data obtained from the cell viability 

assay was analysed by one-way analysis of variance (ANOVA, α=0.05) and 

individual differences between the means were determined using the T-method 

to calculate the minimum significant difference (MSD).  

5.4 Results 

5.4.1 Particle generation using a six-station pin-on-plate wear rig 

The six-station wear simulator fitted with CoCr pins and plates was stopped 

following 613,615 cycles. Images of the damage sustained to the surfaces of 

plates and pins, following the tests are shown in Figure 5.10. Wear debris 

produced in the test were collected and stored at -20°C. Gravimetric analysis of 

wear was completed. A summary of the results is shown in Figure 5.11. Results 
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of the gravimetric analysis of wear produced by each component in each station 

are detailed in Table 5.2. The results showed that the plates produced 

significantly higher wear volumes (p<0.05, CI 95%), when compared to their 

corresponding pins. The mean wear volume produced by the plates was 

2.43±0.47mm3, whilst the mean wear volume produced by the pins was 

0.77±0.26mm3. The wear factor was derived Equation 5.4 (Archard’s equation 

[358]) and is defined as a function of the wear volume (V), produced under a 

given load (W) and over a certain sliding distance (x) travelled by a pin on the 

surface of a plate: 

 

Figure 5.10: Cobalt chrome plates (left) and pins (right) components 
following 613,615 cycles of testing on the six-station pin-on-plate 

wear rig. The components shown are arranged in order 
corresponding to stations 6-1, respectively. 
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Figure 5.11: Wear factors produced by the cobalt chromium pin and 
plate by each station, 1-6. Across all the stations, both pins and 

plates produced relatively similar wear factors, with only station 3 
components resulting in a slightly lower wear factors. Identification 

numbers of pins and plates are marked in each stacked bar. 

 

𝐾 =  
𝑉

𝑊𝑥
 

Equation 5.4 

Table 5.2: Summary of wear volumes and factors produced in the 6 
station pin on plate wear simulator fitted with cobalt chromium wear 

test components. Red and black colours distinguish between the 
pins (red) and plates (black). 

Station Pin/Plate ID 
Wear volume  

[mm3] 

Wear factor 

 [mm3/Nm] 

Total wear 
volume per 

station [mm3] 

1 
3 0.66 2.39 

3.16 
13 2.5 9.10 

2 
6 0.73 2.67 

3.48 
14 2.75 9.99 

3 
12 0.44 1.61 

2.04 
15 1.6 5.81 

4 
16 0.62 2.24 

2.82 
16 2.2 7.99 

5 
27 1.18 10.03 

4.03 
17 2.85 2.07 

6 
28 1.00 9.87 

3.72 
18 2.71 1.97 

 

3 
6

 

12

 

16

 

27

 

28

 

13 14 

15 

16 

17 18 
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5.4.2 Particle generation using a six-station spine simulator 

Six MoM CTDR devices were tested in the six-station spine simulator, under 

standard ISO testing protocol. The components were tested for 4x106 cycles in 

foetal bovine serum. An additional 1x106 cycles in sterile water was also 

completed. The results of the wear rates exhibited in the spine simulator testing 

have previously been reported in Chapter 4; a summary of these results is 

detailed in Table 5.3. 

Table 5.3: Summary of wear rates exhibited by different bearing 
materials of CTDRs tested in the current study. 

Bearing  Test protocol Wear rate±SD  

CoCr-CoCr ISO-18192-1:2011 0.24±0.03 mm3/MC 

CoCr-CoCr altered ISO-18192-1:2011* 0.08±0.06 mm3/MC 

CrN-CrN ISO-18192-1:2011 0.03±0.01 mm3/MC 

Si3N4- Si3N4 ISO-18192-1:2011 2.92±0.88 mm3/MC** 

*for details see Chapter 4 section 4.4.2 
**wear rate based on linear extrapolation of results obtained at 71,000 cycles 
 

5.4.3 Characterisation of cobalt chromium wear particles 

5.4.3.1 CoCr particles generated in the six-station pin-on-plate wear rig 

Particles generated in the six-station pin-on-plate wear rig in water lubricant 

(section 5.3.1) were investigated using cold field emission SEM. Once collected, 

the particles were freeze dried (section 5.3.4) and sterilised (section 5.3.5). 

Subsequently, the particles were filtered through a polycarbonate membranes 

with 0.015µm pore size. The filter membranes were later mounted onto carbon 

tabs and sputter coated with iridium, prior to SEM analysis (section 5.3.6). The 

particles exhibited a tendency to agglomerate, as shown in Figure 5.12. Most 

particles were round to oval morphology with relatively smooth edges. The 

particle size distribution showed the mean size to be 51nm, with the sizes of 

particles ranging from 20 to 120nm, as shown in Figure 5.13. The majority of 
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the particles (~60%) were within the range of 30-60nm. The EDX spectra, as 

shown in Figure 5.14 confirmed the chemical composition of the particles, 

detecting chromium and cobalt peaks. Peaks of iridium were also detected in 

the EDX spectroscopy – prior to imaging each sample was coated with 

approximately 5nm of iridium coating (section 5.3.6).  

 

Figure 5.12: Cobalt chromium particles generated in the six-station pin-
on-plate wear rig in water. The submicron sized particles showed a 

tendency to agglomerate. 

 

Figure 5.13: Particle volume distribution of cobalt chromium particles 
generated in a six-station pin-on-plate wear rig in water. The mean 

particle size was 51nm. 
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Figure 5.14: EDX spectra of cobalt chromium particles generated in the 
six-station pin-on-plate wear rig in sterile water. Chromium (Cr) and 
cobalt (Co) were confirmed in the spectroscopy. Iridium peaks were 

detected due to the iridium coating the samples were coated with 
prior to observation. 

 

5.4.3.2 CoCr particles generated in foetal bovine serum 

The particles were generated during in vivo wear testing of CoCrMo CTDRs 

(section 5.3.2.1.1). Once collected, the lubricant has undergone protein and 

bacteria digestion and particles were isolated from the serum (section 5.3.3). 

Next, particles were freeze dried (section 5.3.4) and sterilised (section 5.3.5). 

Subsequently, the particles were filtered through a polycarbonate membranes 

with 0.015µm pore size. The filter membranes were later mounted onto carbon 

tabs and sputter coated with iridium, prior to SEM analysis (section 5.3.6). 

The SEM images of cobalt chromium wear particles isolated from foetal bovine 

serum highlight the strong agglomeration tendencies of the particles, as shown 

in Figure 5.15. Moreover, the particles were embedded in proteins and sodium 

polytungstate residues, which was confirmed by the EDX spectra (Figure 5.16). 

As a result, particle sizing was not attempted for particles isolated from bovine 

serum lubricants. 
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Figure 5.15: Cobalt chromium particles generated in a six-station spine 
simulator in foetal bovine serum. 

 

Figure 5.16: EDX spectra of an agglomerate of cobalt chromium wear 
particles. Only chromium (Cr) was detected (11.5%wt), alongside a 
similar amount of tungsten (W) (13.9%wt), which was likely to be a 

residue from the isolation process. High amounts of carbon (C) and 
oxygen (O) (46.9%wt and 19.6%wt) suggest protein contamination 

around the particles. 
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5.4.3.2.1 CoCr particles generated in sterile water 

Particles generated in the in vitro wear simulation of the MoM in water lubricant 

(section 5.3.2.1.2) were investigated using cold field emission SEM. Once 

collected, the particles were freeze dried (section 5.3.4) and sterilised (section 

5.3.5). Subsequently, the particles were filtered through a polycarbonate 

membranes with 0.015µm pore size. The filter membranes were later mounted 

onto carbon tabs and sputter coated with iridium, prior to SEM analysis (section 

5.3.6). The particles exhibited tendency to agglomerate, as shown in Figure 

5.17. Most particles were round with irregular edges. Particle volume 

distribution shown a mean size of 154nm, with the sizes particles ranging from 

50 to 650nm, as shown in Figure 5.18. The majority of the particles (~60%) were 

within the range of 80-180nm, some particles were as large as 650nm, however 

these represented a small proportion of all the particles generated (2%). The 

EDX spectra, as shown in Figure 5.19, confirmed the chemical composition of 

the particles, detecting chromium and cobalt peaks.  

 

Figure 5.17: Cobalt chromium particles generated in a six-station spine 
simulator in sterile water. 
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Figure 5.18: Particle volume distribution of cobalt chromium particles 
generated in a six-station spine simulator in sterile water. The mean 

particle size was 154nm. 

 

Figure 5.19: EDX spectra of cobalt chromium particles generated in the 
six-station spine simulator in sterile water. Chromium (Cr), cobalt 
(Co) and molybdenum (Mo) were confirmed in the spectroscopy. 
Iridium peaks were detected due to the iridium coating samples 

were coated with. 
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5.4.4 Characterisation of ceramic coating wear particles 

generated in the six-station spine simulator 

5.4.4.1 Chromium nitride coating 

Particles of the chromium nitride coating generated in the six-station spine 

simulator in sterile water (section 5.3.2.2) were investigated using the cold field 

emission SEM. Once collected from the lubricant, the particles were freeze 

dried (section 5.3.4) and sterilised (section 5.3.5). Subsequently, the particles 

were filtered through a polycarbonate membranes with 0.015µm pore size. The 

filter membranes were later mounted onto carbon tabs and sputter coated with 

iridium, prior to SEM analysis (section 5.3.6).  The particles were sporadically 

found on the polycarbonate filter membrane. Morphologically, the particles were 

large, and often flake-like and some particles were found to have sharp edges, 

as shown Figure 5.20. Some of the particles were found to have topographical 

features such as pitting. The EDX spectra of the chromium nitride coating 

particle confirmed that the particles detected were of chromium origin, as shown 

in Figure 5.21. 

 

Figure 5.20: A chromium nitride coating particle generated in a             
six-station spine simulator in sterile water, filtered through a 
0.015µm polycarbonate filter membrane. The particles were 

relatively large with sharp edges and flake-like morphology. Some 
pitting observed on the surface of the flake-like particles was 

observed, as indicated by the arrows. 
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Figure 5.21: EDX spectra of chromium nitride particle generated in the 
six-station spine simulator in sterile water. Strong peaks and a large 

quantity (44.3%) of Chromium (Cr) were confirmed in the 
spectroscopy.  

5.4.4.2 Silicon nitride coating 

Particles of the silicon nitride coating generated in the six-station spine simulator 

in sterile water (section 5.3.2.2) were investigated using the cold field emission 

SEM. Once collected from the lubricant, the particles were freeze dried (section 

5.3.4) and sterilised (section 5.3.5). Subsequently, the particles were filtered 

through a polycarbonate membranes with 0.015µm pore size. The filter 

membranes were later mounted onto carbon tabs and sputter coated with 

iridium, prior to SEM analysis (section 5.3.6). The particles were sporadically 

found on the polycarbonate filter membrane. Morphologically, the particles were 

large, flake-like and some particles were found to have sharp edges but a 

smooth surface, as shown in Figure 5.22. The EDX spectra confirmed that the 

particles found were of silicon origin (Figure 5.23). 
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Figure 5.22: Silicon nitride coating particle generated in a six-station 
spine simulator in sterile water, filtered through a 0.1µm 

polycarbonate filter membrane. The particles were relatively large 
with sharp edges and flake-like morphology. Some nano-sized 
particles can also be observed, however it was not possible to 

confirm their origin with EDX. 

 

Figure 5.23: EDX spectra of a silicon nitride coating particle generated in 
the six-station spine simulator in sterile water. Strong peaks and 

large quantity (30%) of Silicon (Si) were confirmed in the 
spectroscopy. 
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5.4.5 Characterisation of model silicon nitride particles 

5.4.5.1 Submicron silicon nitride particles 

Commercially available submicron silicon nitride particles were investigated 

using cold field emission SEM. The particles sterilised (section 5.3.5) and 

suspended in sterile water. Next, the particles were filtered through a 

polycarbonate membranes with 0.015µm pore size. The filter membranes were 

later mounted onto carbon tabs and sputter coated with iridium, prior to SEM 

analysis (section 5.3.6).  While the majority of the particles were clustered in 

large aggregates of particles, some, as shown in Figure 5.24, individual 

particles were irregular but with smooth edges and round in shape. Once sized, 

it was revealed mean size of the particles was 138nm (Figure 5.25). However, 

particles as large as 550 nm were also found. The EDX analysis confirmed the 

chemical composition of the particles, showing strong silicon and nitride peaks 

(Figure 5.26). 

 

Figure 5.24: Submicron silicon nitride particles aggregated together. The 
particles were mostly irregular in shape, with some round particles 

also observed.  
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Figure 5.25: Particle size distribution of model silicon nitride particles of 
submicron size. The mean particle size was 138nm. 

 

 

Figure 5.26: EDX spectra of the commercially available submicron 
silicon nitride particles. Strong Silicon (Si) and Nitrogen (N) peaks 
were detected in the analysis. Iridium peaks were detected due to 

the iridium coating samples were coated with. 
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5.4.5.2 Nanoscale silicon nitride particles 

Commercially available nanoscale silicon nitride particles were investigated 

using cold field emission SEM. The particles sterilised (section 5.3.5) and 

suspended in sterile water. Next, the particles were filtered through a 

polycarbonate membranes with 0.015µm pore size. The filter membranes were 

later mounted onto carbon tabs and sputter coated with iridium, prior to SEM 

analysis (section 5.3.6).  The analysis (Figure 5.27) revealed a strong tendency 

of the particles to agglomerate, as well as their smooth, regular edges and 

round shape. Sizing of the particles showed a mean particle size of 43nm. Sized 

particles ranged from 20 to 120 nm, as shown in Figure 5.27. EDX analysis of 

the nanoscale silicon nitride particles, shown in Figure 5.28, confirmed their 

chemical composition, showing strong silicon and nitrogen peaks in the 

spectrum.  

 

Figure 5.27: Nanoscale silicon nitride model particles agglomerated 
together. High magnification (x150k) images revealed that the particles 

were predominantly round and had smooth edges. 
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Figure 5.28: Particle size distribution of model silicon nitride particles of 
nanoscale size. The mean particle size was 43nm. 

 

 

Figure 5.29: EDX spectra of the commercially available nanoscale silicon 
nitride particles. Strong Silicon (Si) and Nitrogen (N) peaks were 
detected in the analysis. Iridium peaks were detected due to the 

iridium coating samples were coated with. 
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5.4.6 Growth curve of L929 murine fibroblasts and primary 

porcine dural fibroblasts 

The study assessed viability of the L929 cell line seeded at different densities 

(section 5.3.9), in order to determine the optimum cell seeding density, to 

ensure cells remained viable and did not exhaust nutrients present in medium 

over 6 days of culture. Cell viability was measured at days 0, 1, 3 and 6 using 

the ATPLite assay. The result were expressed as counts per second.  

The ATPLite results demonstrated that the seeding density of L929 cells 

influenced their viability, when measured over a 6-day period. The highest cell 

seeding density (5x105 cells. well-1) showed a steady decrease in cell viability 

from day 1 onwards. The cells seeded at densities 5x103.ml-1, 1x104.ml-1, 

5x104.ml-1 and 5x104.ml-1 for each well showed a steady exponential increase 

in cell viability over the duration of the experiment, as shown in Figure 5.30. 

However, at the day 1 and day 3 timepoints the cell numbers appeared to 

increase at a slower rate for 5x104 and 1x105 cells.ml-1 test groups. As such, it 

was determined that the most optimum cell seeding density of L929 murine 

fibroblasts was 1x104 cells per well.  

 

Figure 5.30: Cell viability of L929 murine fibroblasts seeded at different 
cell seeding densities determined using the ATPLite assay. The 

error bars represent 95% confidence limits. 
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Cell viability of primary dural fibroblasts was also affected by the seeding 

density of cells (Figure 5.31). The two lowest seeding densities – 5x102 and 

1x103 cells.well-1 resulted in relatively low counts per second, whilst the two 

highest seeding densities – 1x104 and 5x104 cells.well-1 showed a plateau in 

cell growth after day 1 and reduced cell viability at day 6 (relative to the day 3 

timepoint), indicating that nutrients were insufficient to sustain cell growth over 

a 6-day period for these seeding densities. The cell seeding density of 5x103 

cells.well-1 showed a steady increase in cell viability over the 6-day period, and 

thus was selected as the optimum cell seeding density for further experiments 

using primary porcine dural fibroblasts. 

 

 

Figure 5.31: Cell viability of primary porcine dural fibroblasts seeded at 
different cell seeding densities determined using the ATPLite assay. 

The error bars represent 95% confidence limits. 
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5.4.7 Investigation of the cytotoxic effects of cobalt chromium 

wear particles on L929 murine fibroblasts and primary 

porcine dural fibroblasts 

5.4.7.1 L929 murine fibroblasts 

The effects of cobalt chromium wear particles generated using a six-station      

pin-on-plate wear rig and six-station spine simulator on cell viability of L929 

murine fibroblasts was investigated using the ATP-Lite assay. The L929 cells 

were seeded at a concentration of 1x104 cells.well-1. For 6 days the cells were 

cultured in the presence of particle volumes per cell of 50µm3 to 0.05µm3 (n=6). 

The results were expressed as a percentage of the cells only negative control. 

Descriptive statistics were performed on the raw data using the one-way 

ANOVA (α=0.05) and individual differences between the means were 

determined using the T-method to calculate the MSD. Significant adverse 

effects on the cell viability were identified (p<0.05, CI 95%).  

Overall, the ATPLite assay demonstrated that cobalt chromium wear particles 

significantly reduced the cell viability of L929 murine fibroblasts. The particle 

only control generated low counts per second and therefore indicated that the 

particles did not interfere with the assay. The highest volume of particles per 

cell (50µm3) of the CoCr particles generated in the six-station pin-on-plate wear 

rig significantly reduced cell viability (p<0.05, CI 95%) from day 1 (Figure 5.32), 

reaching as low as 10% viability relative to the cells-only negative control at day 

6. Such reduction of cell viability was on par with the positive control 

(Camptothecin). Particle volume of 5µm3 per cell was also found to significantly 

reduce cell viability of L929 fibroblasts at days 1 and 6. The lowest dose of pin-

on-plate generated particles (0.5µm3 per cell) did not have a significant effect 

on L929 cell viability.  
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Figure 5.32: Effects of cobalt chromium wear particles generated in the 
six-station pin-on-plate wear rig on L929 murine fibroblasts cell 

viability. Data was analysed using ANOVA test (α=0.05) and the T-
method. Significantly (p<0.05) reduced cell viability was indicated 

with an asterisk (*) 

Similar findings were observed for the L929 fibroblasts cultured with cobalt 

chromium particles generated in the six-station spine simulator, with sterile 

water used as a lubricant (Figure 5.33). The two highest particle volumes per 

cell (50 and 5µm3) were found to significantly reduce cell viability. The particle 

dose of 50µm3 particles per cell significantly decreased the viability of L929 cells 

from day 1, reaching as low as 30% of the viability relative to the cells only 

negative control at day 6. The particle volume of 5µm3 per cell was also found 

to significantly reduce cell viability of L929 fibroblasts at days 1 and 6. The 

lowest dose of particles generated in the simulator (0.5µm3 per cell) did not have 

a significant effect on the cell viability at point. The particles only control 

achieved low counts per second results, and indicated that the particles did not 

interfere with the assay. The positive control (Camptothecin) had the desired 

effect of significantly reducing the cell viability of L929 fibroblasts from day 1. 

Pin on plate 
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Figure 5.33: Effects of cobalt chromium wear particles generated in the 
six-station spine simulator in water on L929 murine fibroblasts cell 
viability. Data was analysed using ANOVA test (α=0.05) and the T-
method. Significantly (p<0.05) reduced cell viability was indicated 

with an asterisk (*) 

High doses of cobalt chromium wear particles generated in the six-station spine 

simulator with foetal bovine serum used as a lubricant showed adverse effects 

on the cell viability of L929 murine fibroblasts, as shown in Figure 5.34. The 

highest volume concentration (50µm3 particles per cell) significantly reduced 

the cell viability of L929 cells from day 1, reaching 60% viability relative to the 

cells-only control at day 6. The remaining particle concentrations (5 and 0.5µm3 

particles per cell) also reduced the cell viability from day 1, however these 

changes were not found to be statistically significant at any timepoint. No 

interference was detected in the particles only control. The positive control 

significantly reduced the cell viability of L929 fibroblasts from day 1. 

Simulator generated in water 
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Figure 5.34: Effects of cobalt chromium wear particles generated in the 
six-station spine simulator in foetal bovine serum on L929 murine 

fibroblasts cell viability. Data was analysed using ANOVA test 
(α=0.05) and T-method. Significantly (p<0.05) reduced cell viability 

was indicated with an asterisk (*) 

5.4.7.2 Primary porcine dural fibroblasts 

The effects of cobalt chromium wear particles generated using the six-station 

pin-on-plate wear rig and six-station spine simulator on cell viability of primary 

porcine dural fibroblasts was investigated using the ATP-Lite assay. The dural 

fibroblast cells were seeded at a concentration of 5x103 cells.well-1.  For 6 days, 

the cells were cultured in the presence of particles volumes per cell of 50μm3 to 

0.05μm3 (n=6).  The results were expressed as a percentage of the cells only 

negative control. Descriptive statistics were performed on the raw data using 

the one-way ANOVA and individual differences between the means were 

determined using the T-method. 

In general, the ATPLite assay showed that cobalt chromium wear particles 

generated in the six-station pin on plate wear rig and the six-station spine 

simulator had little or no effect on the viability of the primary dural fibroblasts. 

The particles only control achieved low counts per second results, and therefore 

indicated that the particles did not interfere with the assay. The positive control 

Simulator generated in serum 



Chapter 5 

 

273 

 

significantly reduced the cell viability of the primary porcine dural fibroblasts 

from day 1. 

5.4.7.3 Primary porcine dural fibroblasts 

None of the particle concentrations, of particles generated in sterile water in the 

six-station pin-on-plate wear rig, caused a significant decrease in cell viability 

of the porcine dural fibroblasts at any of the timepoints tested, as shown in 

Figure 5.35. On day 6, cells cultured with the lowest particle density per cell 

(0.5µm3/cell) achieved a relative cell viability of 110%.  

 

Figure 5.35: Effects of cobalt chromium wear particles generated in 
sterile water in six-station pin-on-plate wear rig on primary porcine 
dural fibroblasts cell viability. Data was analysed using ANOVA test 

(α=0.05) and the T-method. Significantly (p<0.05) reduced cell 
viability was indicated with an asterisk (*) 

Similarly to the pin-on-plate-generated particles, those particles generated in 

sterile water in the spine simulator had no significant effect on the cell viability 

of primary dural fibroblasts (Figure 5.36). None of the particle concentrations 

significantly decreased the cell viability. Throughout the 6 days period the 

highest particle volume (50µm3/cell) has slightly reduced the cell viability to 90-

95%, relative to the cells-only control, whilst the cells cultured with lower particle 

Pin on plate 
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doses (0.5-5µm3/cell) achieved viability between 98% and 110%, relative to the 

cells-only control.  

 

Figure 5.36: Effects of cobalt chromium wear particles generated in 
sterile water in six-station spine simulator on primary porcine dural 

fibroblasts cell viability. Data was analysed using ANOVA test 
(α=0.05) and the T-method. Significantly (p<0.05) reduced cell 

viability was indicated with an asterisk (*) 

 

When cultured with cobalt chromium particles generated in foetal bovine serum 

in the six-station spine simulator, the viability of primary porcine fibroblasts was 

not significantly reduced. At all timepoints, relative to the cells-only control, the 

cells cultured with all particle doses (0.5-50µm3/cell) ranged between 95% and 

110%, as shown in Figure 5.37. 

 

Simulator in water 
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Figure 5.37: Effects of cobalt chromium wear particles generated in 
foetal bovine serum in the six-station spine simulator on primary 
porcine dural fibroblasts cell viability. Data was analysed using 
ANOVA test (α=0.05) and the T-method. Significantly (p<0.05) 

reduced cell viability was indicated with an asterisk (*) 

 

5.4.8 Investigation of the cytotoxic effects of model silicon nitride 

particles (submicron and nanoscale) on L929 murine 

fibroblasts and primary porcine dural fibroblasts 

5.4.8.1 L929 murine fibroblasts 

The effects of commercially available silicon nitride particles (submicron and 

nanoscale) on cell viability of L929 murine fibroblasts was investigated using 

ATP-Lite assay.  The L929 cells were seeded at a concentration of 1x104 

cells.well-1.  For 6 days the cells  were  cultured  in the  presence  of  particles  

volumes  per  cell  of  500μm3  to  5μm3  (n=6).  The results were  expressed  

as  a  percentage  of  the  cells  only  negative  control.  Descriptive statistics  

were performed  on  the raw  data  using  the  one-way  ANOVA  and  individual 

differences between the means were determined using the T-method.   

Simulator in serum 
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When cultured with submicron silicon nitride particles, the viability of L929 

fibroblasts was not significantly reduced at any timepoint, as shown in Figure 

5.38. Up to day 3, the viability of cells cultured with all particle doses (500-

5µm3/cell) was found to be within the range of 100-110%, relative to the cells-

only control. At day 6, all test groups were found to have their cell viability 

reduced to approximately 80%, however, this reduction was not found to be 

statistically significant (p>0.05, CI 95%). The particles only control achieved low 

counts per second results, indicating that the particles did not interfere with the 

assay. The positive control significantly reduced the cell viability of the L929 

fibroblasts from day 1. 

 

Figure 5.38: Effects of commercially available submicron silicon nitride 
particles on L929 murine fibroblasts. Data was analysed using 
ANOVA test (α=0.05) and the T-method. Significantly (p<0.05) 

reduced cell viability was indicated with an asterisk (*) 

The highest dose of nanoscale silicon nitride particles (500µm3/cell) caused a 

reduction in the cell viability of the L929 fibroblasts (Figure 5.39). Only on day 

1, the reduction in the cell viability was found to be statistically significant 

(p<0.05, CI 95%); at each subsequent timepoint it was not. Other particle 

concentrations (5-50µm3/cell) did not have a significant effect on the cell viability 

of L929 fibroblasts. In fact, both doses of 5 and 50µm3 particles per cell resulted 

Si
3
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in a cell viability between 100% and 110%, relative to cells-only control. No 

interference between the assay and the particles were detected in the particles-

only negative control. The positive control significantly reduced the cell viability 

of L929 fibroblasts from day 1. 

 

Figure 5.39: Effects of commercially available nanoscale silicon nitride 
particles on L929 murine fibroblasts. Data was analysed using 

ANOVA test (α=0.05) the T-method. Significantly (p<0.05) reduced 
cell viability was indicated with an asterisk (*) 

 

5.4.8.2 Primary porcine dural fibroblasts 

The effects of commercially available silicon nitride particles (submicron and 

nanoscale) on the cell viability of primary porcine dural fibroblasts was 

investigated using the ATP-Lite assay.  The dural fibroblast cells were seeded 

at a concentration of 5x103 cells/well.  For 6 days the cells were cultured  in the  

presence  of  particles  volumes  per  cell  of  500μm3  to  5μm3  (n=6).  The 

results were expressed as a percentage of the cells only negative control.  

Descriptive statistics were performed on the raw data using the one-way 

ANOVA and individual differences between the means were determined using 

the T-method to calculate the MSD. Significant (p<0.05, CI 95%) adverse 

effects on the cell viability were identified.   
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Only on day 1 the highest particle doses (50-500µm3/cell) caused a significant 

reduction in cell viability (p<0.05, CI 95%). At each subsequent timepoint cells 

cultured with those particle concentrations had higher counts per seconds and 

have increased the cell viability, relative to cells-only control. The lowest particle 

dose (5µm3/cell) did not cause a reduction in cell viability at any timepoint and 

reached approximately 110% of relative cell viability on day 6. Camptothecin 

significantly reduced the cell viability of dural fibroblasts from day 1, reaching 

as low as 35%, relative to cells-only control, on day 6. Measurements of the 

particles only control group did not detect any interference with the assay. 

 

Figure 5.40: Effects of commercially available submicron silicon nitride 
particles on primary porcine dural fibroblasts. Data was analysed 
using ANOVA test (α=0.05) and T-method. Significantly (p<0.05) 

reduced cell viability was indicated with an asterisk (*) 

 

Similar results were observed for the primary dural fibroblasts cultured with 

nanoscale silicon nitride particles, whereby only the highest dose (500µm3/cell) 

caused a significant reduction of cell viability, relative to cells-only control, but 

only at the day 1 timepoint. As shown in Figure 5.41, cell viability of cells 

cultured with the remaining particle concentrations, at all timepoints, ranged 

between 105% and 130%. At all timepoints, a significant reduction in cell 

Si
4
N

4
 submicron particles 



Chapter 5 

 

279 

 

viability was observed for the positive control (Camptothecin) and no 

interference with the assay, caused by the particles-only, was detected. 

 

Figure 5.41: Effects of commercially available nanoscale silicon nitride 
particles on primary porcine dural fibroblasts. Data was analysed 

using ANOVA test (α=0.05) and the T-method. Significantly (p<0.05) 
reduced cell viability was indicated with an asterisk (*) 

 

5.4.9 Investigation of the cytotoxic effects of ceramic coatings 

wear particles (chromium nitride and silicon nitride) on L929 

murine fibroblasts and primary porcine dural fibroblasts 

5.4.9.1 L929 murine fibroblasts 

The effects of ceramic coating wear particles – chromium nitride and silicon 

nitride, generated using the six-station spine simulator on cell viability of L929 

murine fibroblasts was investigated using the ATP-Lite assay. The L929 cells 

were seeded at a concentration of 1x104 cells.well-1. For 6 days the cells were 

cultured in the presence of particles volumes per cell of 50µm3 to 0.05µm3 (n=6). 

The results were expressed as a percentage of the cells only negative control. 

Descriptive statistics were performed on the raw data using the one-way 

ANOVA and individual differences between the means were determined using 
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the T-method. Significant (p<0.05, CI 95%) adverse effects on the cell viability 

were identified.  

 

Figure 5.42: Effects of chromium nitride coating particles generated in 
sterile water in the six-station spine simulator on L929 murine 

fibroblasts. Data was analysed using ANOVA test (α=0.05) and the 
T-method. Significantly (p<0.05) reduced cell viability was indicated 

with an asterisk (*). 

 

Figure 5.43: Effects of silicon nitride coating particles generated in 
sterile water in the six-station spine simulator on L929 murine 

fibroblasts. Data was analysed using ANOVA test (α=0.05) and the 
T-method. Significantly (p<0.05) reduced cell viability was indicated 

with an asterisk (*). 

CrN coating 
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The study showed that neither chromium nitride (Figure 5.42), nor silicon nitride 

(Figure 5.43) coating wear particles caused a significant reduction of cell 

viability of L929 fibroblasts. In both groups, the cell viability, relative to cells-only 

control, ranged between 90% and 110% across the 6-day duration of the study. 

At all timepoints, a significant reduction in cell viability was observed for the 

positive control (Camptothecin) and no interference with the assay, caused by 

the particles-only negative control, was detected. 

5.4.9.2 Primary porcine dural fibroblasts 

The effects of ceramic coating (chromium nitride and silicon nitride) wear 

particles generated using the six-station spine simulator, on cell viability of 

primary porcine dural fibroblasts was investigated using the ATP-Lite assay. 

The dural fibroblast cells were seeded at a concentration of 5x103 cells.well-1. 

For 6-days the cells were cultured in the presence of particles volumes per cell 

of 50µm3 to 0.05µm3 (n=6). The results were expressed as a percentage of the 

cells only negative control. Descriptive statistics were performed on the raw 

data using the one-way ANOVA and individual differences between the means 

were determined using the T-method. Significant (p<0.05, CI 95%) adverse 

effects on the cell viability were identified.  

Similarly to L929 cells, primary dural fibroblasts showed resistance to both 

chromium nitride (Figure 5.44) and silicon nitride (Figure 5.45) coating wear 

particles, and no significant reduction of cell viability of the dural fibroblasts was 

observed. In both groups, the cell viability, relative to the cells-only negative 

control, ranged between 90% and 110% across the 6 day duration of the study. 

At all timepoints, a significant reduction in cell viability was observed for the 

positive control (Camptothecin) and no interference with the assay, caused by 

the particles-only negative control, was detected. 
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Figure 5.44: Effects of chromium nitride coating particles generated in 
sterile water in the six-station spine simulator on primary porcine dural 

fibroblasts. Data was analysed using ANOVA test (α=0.05) and the T-
method. Significantly (p<0.05) reduced cell viability was indicated with 

an asterisk (*). 

 
Figure 5.45: Effects of silicon nitride coating particles generated in 

sterile water in the six-station spine simulator on primary porcine 
dural fibroblasts. Data was analysed using ANOVA test (α=0.05) and 

the T-method. Significantly (p<0.05) reduced cell viability was 
indicated with an asterisk (*). 

CrN coating 

Si3N4 coating 
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5.5 Discussion 

Long term clinical success of TJR is multifactorial and driven not only by how 

well the device performs mechanically and tribologically, but often more 

importantly, by how the human body responds to its wear products. Indeed, as 

indicated by the National Joint Registry, osteolysis and loosening, both directly 

associated with biological responses to wear, are currently the chief reasons for 

revision of THR and TKR. A small number of studies have also reported wear-

related failure of CTDRs and LTDRs.  

The current study characterised the wear particles generated by CoCr MoM 

CTDRs tested in six-station spine simulator under the kinematics prescribed by 

the standard ISO-18192-1:2011 protocol. Initially, attempts were made to 

isolate the particles generated during wear studies, whereby foetal bovine 

serum was used as lubricant, however the particle isolation method used 

(adaptation of the method developed by Lal et al [353]), was not fully successful 

in removing serum proteins and sodium polytungsten (SPT) contaminates. As 

a result, particles contaminated with proteins and SPT were not characterised. 

It is likely the isolation method requires further development and adjustment to 

fully digest bovine serum protein adhering to the particles and remove SPT 

contaminants. The original method [353] has been developed for isolation of 

ceramic wear particles, which have substantially different surface chemistry. It 

has been shown that surface chemistry may influence the interaction and 

adsorption of the bovine serum proteins onto particles [359] and thus the 

particle isolation method may be different for ceramic and metal particles. 

Moreover, the mean wear rate generated by the MoM CTDRs was very low 

(0.24mm3/MC), thus the number of particles, most of which were nano-size, 

found in each lubricant sample (500ml collected at each 0.33MC) was likely to 

be extremely low. As a result, the particle isolation method may not be sensitive 

enough for this particular application. 

To circumvent the issues related to particle isolation method, CTDRs were 

further tested under the loads and ROMs specified by the ISO-18192-1 

standard and with deionised water used as a lubricant, simplifying the particle 

isolation process. The diameter of particles generated in the six-station spine 

simulator ranged from 45nm to 658nm, with a mean particle size of 154±88nm. 
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The particles were mainly round and oval, and had a strong tendency to 

agglomerate, due to their small size and high surface energy. At the time of 

writing, no other studies have reported on the characteristics of wear particles 

generated by MoM CTDRs. The particles generated by the MoM CTDRs were 

much smaller than polyethylene particles generated by MoP bearings, tested 

under the same conditions. As previously reported, UHMWPE particles 

released by MoP CTDRs reached sizes of 0.17-0.33µm [142], 0.22-0.37µm 

[143] and 0.1-10µm [144]; round and flake-like particle shapes were reported 

[142–144]. 

Both the size range and shape of the particles generated in the current study 

were comparable to previously reported results of particles generated by MoM 

THRs. Typically, round and oval nanoscale particles were observed both in vitro 

[293,360–362] and in vivo [95,363,364]. The mean particle size generated by 

MoM THRs were typically reported to be ~50nm, thus much smaller than those 

generated in the current study, however it has previously been indicated by 

Bowsher et al., [365] that larger diameter bearings generate smaller particles. 

The bearing diameter of CTDRs tested in the current study was 12.6mm and 

significantly smaller than MoM THRs tested by other authors (28mm-56mm), 

therefore larger particle size reported by the current study was in line with the 

hypothesis outlined by Bowsher et al. [365]. Moreover, loads and ranges of 

motion, under which the CTDRs were tested in the current study, were 

dramatically different to those applied in THR testing, which likely influenced the 

particle size, as they resulted in different contact stresses exerted on the 

bearing. Indeed, the current study found that the particles generated in six-

station pin-on-plate rig, which has been validated to generate contact stress and 

operating conditions relevant to THR [351], generated particles of a mean size 

diameter of 51±21nm and size range of 18-118nm. It has previously been 

reported for MoM pin-on-plate-generated particles to have a mean diameter of 

~40nm [184].   

It is not uncommon for nanoparticles to agglomerate in in vitro studies and both 

singular particles and agglomerates have previously been observed in vivo [95]. 

However, due to agglomeration of the particles, the manual sizing method used 

in the current study was likely to be subjective and may have been associated 
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with a user bias. On the other hand, whist an automated particle sizing method, 

such as Nanosight, could potentially remove the user bias. The system allows 

for live tracking of particles, whereby laser beam is shined at a fluid containing 

particles. The beam is scattered, once it shines over a particle and the scattered 

light is captured by the camera. The system, however, was unable to distinguish 

between the single nano-particles and agglomerates studied in the present 

study. 

Commercially available silicon nitride particles of two size ranges (nano- and 

submicron scale), used in cytotoxicity studies, were also characterised. The 

nanoscale particles were found to be mainly round and with a strong tendency 

to agglomerate, due to their high surface energy. The mean particle size was 

found to be 43±16nm. The submicron particles had a similar morphology to the 

nano-scale particles and a mean particle size of 137±84µm. It was not possible 

to compare the commercially available silicon nitride particles generated in the 

six-station spine simulator due to a catastrophic failure of the coating during the 

testing. As a result, predominantly large (~1-10µm) flakes of the coating, often 

with sharp edges, were observed under the SEM. Moreover, only a small 

number of particles were observed, therefore it was not possible to generate a 

size distribution for the silicon nitride coating particles. Similarly, only sparse 

numbers of chromium nitride coating particles were observed using the SEM. 

The particles were large (~1-10µm) and flake-like. Previously, studies of CrN-

coated THR reported the mean size of particles to be in the rage of 40-70nm 

[180,184]. It was not possible to establish whether there were smaller particles 

generated by CrN-coated CTDRs, they may have been lost in particle 

preparation or the current study did not image them suitably under the SEM due 

to the magnification and resolution limitations.   

The use of continuous cell lines, such as the murine fibroblasts (L929), is widely 

applied in biomedical research. Its main advantage is the ease of cell expansion 

and ability to propagate continuously in culture. Cell lines are a cost-effective 

way of conducting research on cells that can serve as a simple model of more 

complex biological systems or for use in simple screening studies, such as 

cytotoxicity investigations. Moreover, L929 cell line has been suggested by the 

ISO-10993-5:2009 for in vitro cytotoxicity testing [352].Nevertheless, the 
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adequacy of cell lines, as clinically relevant source of results can be questioned 

[366–368]. For that reason, primary porcine dural fibroblasts were also used in 

the current study, as a more clinically relevant cell model for investigating the 

biological responses to wear particles generated by CTDRs. It has been shown 

that the pig immune system resembles the one of humans for more than 80% 

parameters examined, and thus was found suitable for use in the study of 

human disease processes [369]. Moreover, as the cells have been isolated from 

porcine meningeal layers, it was considered that for the application of the 

present study, such cells were highly relevant. Should a CTDR device produce 

an excessive number of particles, these would likely come in contact with 

meningeal layers and the ability of the meninges to protect the spinal cord from 

the particles penetrating thought would be tested. 

The current study employed ATP-Lite® assay to quantify the level of cytotoxicity 

elicited by particles co-cultured with cells. The ATP-detection based assays has 

been widely used in cytotoxicity studies. The ATP-Lite® assay relies on the 

reaction of luciferin with the ATP released from lysed cells, which results in the 

generation of stable form of luciferase, that generates measurable numbers of 

photos of light. The method can detect as few as 10 cells, however, the results 

of luminescence can be affected by the mere presence of air bubbles or other 

contaminants in the wells. For that reason, the current study included a negative 

control of particles-only, which ensured that the results were not influenced by 

any artefacts caused by the particles. In none of the experiments reported by 

the current study the particle-only controls produce counts per second results 

high enough to be considered as interaction between the particles and the 

reagents of the assay.  

The investigation of potential cytotoxicity of metal particles showed that high 

doses (5-50µm3 per cell) of cobalt chrome particles generated in water, 

regardless of whether six-station pin-on-plate wear rig or six-station spine was 

used, resulted in significant reduction of cell viability of L929 cells by day 6 of 

the study. Interestingly, only the highest dose (50µm3 per cell) of the particles 

generated in wear assessment of CTDRs (generated in the six-station spine 

simulator) and isolated from foetal bovine serum caused a significant reduction 

of the cell viability. As observed in the SEM, the particles isolated from the 
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serum were not completely free adhered proteins. Those proteins may have 

acted as an additional source of nutrients for the L929 cells, resulting in the 

reduction of cytotoxic effects elicited by the CoCr particles. At the same time, 

the proteins may have created a corona around the particles, reducing the 

cytotoxic potential of the particles. These results indicated a cytotoxic potential 

of clinically relevant cobalt chrome particles in L929 cells, which has been 

reported previously [134,180,184,354,370]. It has been observed in vivo, that 

the particles and their degradation products (such as ions) released from MoM 

joint replacement can cause hypersensitivity, inflammation and pseudotumour 

formation [128,131,241]. Such reactions are likely a combination of metal ion 

toxicity and patient-specific reactions, the reasons of which are still not fully 

understood. The most common oxidation states of chromium observed in vivo 

are Cr(III) and Cr(VI) [371]. Whilst the latter has been classified as group 1 

carcinogen by the International Agency for Research on Cancer (IARC), the 

mechanisms related to cytotoxicity of Cr(III) are still unknown [372]. Cobalt, on 

the other hand, is mostly observed in its Co(II) and Co(III) oxidation states [373], 

both of which have been classified as 2B carcinogens (possibly carcinogenic to 

humans) by the IARD. Indeed, patients who required revision surgeries of MoM 

THR were found with elevated levels of Cr(III) [374,375] and Co(II) ions [376–

378]. 

The same CoCr particles (generated under the same conditions) did not elicit 

significant reductions in the cell viability of the primary dural fibroblast cells. In 

fact, the lower doses of CoCr particles (0.5-5µm3 per cell), regardless of their 

generation method, appeared to increase the relative-to-cells-only cell viability. 

As living organisms require a small amount of Cr and Co microelements to 

sustain their metabolic functions, it may be that presence of lower doses of 

CoCr particles played a role in the elevated cell viability of the primary porcine 

dural fibroblasts. The lack of cytotoxic responses on primary dural fibroblasts, 

caused by CoCr particles, has previously been reported [354]. Behl et al. [354] 

used a pin-on-plate generated CoCr nano-particles and seeded them with 

primary porcine dural fibroblasts at seeding densities as high as 121µm3.cell 

and evaluated the cytotoxicity over the duration of 4 days using the ATP-Lite 

assay. The authors showed that only the positive control (Camptothecin) 

resulted in a significantly reduction of cell viability of the dural fibroblast at day 



Chapter 5 

 

288 

 

4. At the time of writing, it was not possible to explain fully the differences in cell 

responses caused by the same CoCr particles. However, there is a general 

consensus, that types of cells, depending on their type and source, can present 

levels of sensitivity and reactivity to different metal particles doses [379]. 

Potential cytotoxic effects of model silicon nitride particles, available in nano-

scale and sub-micron variants, have also been investigated in the current study. 

At the time of writing, the clinical relevance of the commercially available 

particles was not known, however, their use allowed the investigator to establish 

both dose- and size-dependent response profiles for L929 fibroblasts and 

primary porcine dural fibroblasts. It was found that the submicron silicon nitride 

particles did not cause reduction of cell viability of neither the L929 fibroblasts 

nor the primary dural fibroblast cells. Whilst the nano-scale Si3N4 particles did 

not influence the viability of the dural fibroblasts, the highest dose (500µm3 per 

cell) of particles caused reduction of cell viability of the L929 fibroblasts. At the 

day one of the assay, the reduction was found to be significant (p<0.05, CI 

95%). On subsequent days, the viability of L929 fibroblasts remained reduced 

(70-80% relative to cells-only control); however, it was not found to be 

statistically significant. However, the dose of the particles, which resulted in 

reduction of the cell viability of L929 fibroblasts (500µm3 per cell) was 

excessively high and unlikely to be observed in vivo in low wearing ceramic 

coatings or bulk ceramics. Silicon nitride, as a ceramic material, has high 

hardness and abrasive wear resistance, thus very low wear rates of the material 

should be expected in vivo. Whilst the current study observed catastrophic 

delamination of the silicon nitride coating, it was accepted that, at the time of 

writing, the coating was at early stages of development and coating adhesion 

was expected to be subject of further advancement. The results of the current 

study showed that the responses elicited by the commercially available silicon 

nitride particles varied with size, dose and type of cells used in the investigation. 

Previously, Cappi et al [380] reported that co-culture of silicon nitride particles 

with L929 fibroblasts did not cause cytotoxic responses. The authors, however, 

did not indicate the size and dose of the particles used, and employed a different 

cell viability assay, therefore direct comparison of the results was not possible. 

Other authors also reported no cytotoxic effects caused by silicon nitride on the 
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viability of  L929 fibroblast cells [381], however, in their study bulk material 

(1x10mm discs), not particles, was investigated. Overall, it was reported that 

silicon nitride, as a bulk material, is biocompatible [382–387]. 

The silicon nitride coating particles generated in six-station spine simulator did 

not reduce the cell viability of either the L929 fibroblasts, or the primary porcine 

dural fibroblasts. This was in line with the results achieved by the model particle 

presented in the current study, however there were some differences in the 

study setup. Due to limited volumes of particles collected from the six-station 

simulator, the highest dose of Si3N4 coating particles, to which the cells were 

subjected to, was 50µm3 per cell. Moreover, it appeared that the majority of the 

particles generated by the delaminated coating were relatively large (~1-10µm) 

in comparison to the model particles. There is a general consensus, that 

particles of sizes 0.1-1µm are the most reactive, therefore large particles, as 

those generated by the failed coating (generated from a material considered as 

biocompatible), were unlikely to elicit a cytotoxic response. 

The chromium nitride coating particles, produced in the six-station spine 

simulator, did not impact the cell viability of the L929 murine fibroblasts or 

primary porcine dural fibroblasts significantly. Previous results reported by 

Williams et al. [180] showed significant reduction of cell viability of L929 cells 

caused by a high dose (50µm3 per cell) of CrN coating particles generated by 

THRs. Similar results were found by another author (Leslie, 2008), whereby the 

high dose of CrN coating particles caused a 16% reduction in cell viability of 

L929 fibroblasts [184]. However, the particles used by both Williams et al. and 

Leslie were significantly smaller than the particles generated by the CrN-coated 

CTDRs (mean size of 40nm and 70nm, respectively vs, 1-10µm), therefore 

there may be a particle size-dependency in cytotoxic responses of L929 

fibroblast cells. Moreover, as with the silicon nitride coating particles, it was 

expected that such large particles (1-10µm) would not to cause a significant 

reduction in cell viability. However, it has been previously shown that cytotoxic 

responses to particles can be multifactorial and dependent on shape and 

composition [388], size [389–391] and dose [392]. 
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5.6 Conclusions 

The particles generated by MoM CTDRs tested in the six-station spine simulator 

were found to be predominantly round and nanoscale, similarly to those 

generated by MoM THR. Both chromium nitride and silicon nitride coatings 

appeared to produce low numbers of large, flake-like particles. 

Previously, cell line models, such as L929 fibroblasts, have shown good 

correlation to in vivo assays, however, they can only be used as initial step in 

biocompatibility and cytotoxicity testing. The current study used porcine primary 

cells, as they were considered more clinically relevant in assessing 

biocompatibility of CTDR-generated wear particles. 

High doses (5-50µm3 per cell) of CoCr particles significantly reduced the cell 

viability of the L929 fibroblasts, but had no negative effect on the primary dural 

fibroblasts. It is likely that the cytotoxic effect of the CoCrMo particles was due 

to the release of Cr ions, previously shown by other authors. 

Model particles, of two size groups, were used to determine potential 

cytotoxicity, as well as size and dose dependency of silicon nitride. Whilst the 

highest dose (500µm3 per cell) of the nano-sized particles reduced the cell 

viability of L929 fibroblasts, it was determined, that the such dose was unlikely 

to be clinically relevant. No other doses of either sizes of model silicon nitride 

particles significantly impacted the cell viability of the cells used in the current 

study. As expected, due to large size of the particles generated by the ceramic 

coated CTDRs (1-10µm), neither the chromium nitride nor the silicon nitride 

coating particles caused a significant reduction in cell viability of L929 murine 

fibroblasts and primary porcine dural fibroblasts. Whilst the silicon nitride has 

been shown to have good biocompatibility properties in both bulk and 

particulate forms, conflicting results on nano-scale chromium nitride cytotoxic 

potential have been published in the past.
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Chapter 6 : Summary review 

 

6.1 Overall discussion and main findings 

Chronic neck pain, often a result of degenerative disc disease, can be a 

debilitating condition, which can exert a significant personal and socioeconomic 

toll. As a result, chronic neck pain is  ranked as the fourth leading cause of 

disability globally [393]. Traditionally, anterior cervical discectomy and fusion 

(ACDF) have been the gold standard in providing pain relief in patients with 

chronic degenerative disc disease. However, over the years, it has been 

discovered that ACDF can be associated with an array of complications such as 

adjacent segment disease or degeneration and pseudoarthrosis [394]. Fusion of 

the affected segment often results in increased loads and intradiscal pressure 

applied on the adjacent levels, leading to degeneration. The principle of motion 

retention at the affected segment was at the heart of design intent of cervical 

total disc replacement (CTDR) devices, which is becoming an increasingly 

popular alternative to ACDF.  

The CTDR technology is relatively new – first FDA-approved device entered the 

commercial market in 2007 (Prestige-ST), and thus the interest in researching 

potential improvements, causes of failure and general understanding of 

biomechanical implications of a device, so far has been limited.  As such, 

published literature (Figure 6.1) and FDA approved devices started to emerge 

only in the last 15 years and the numbers are still sparse, when compared to 

other joint replacement technologies such as the hip or knee. The limited number 

of studies, particularly clinical, and the lack of long term follow-up patient data 

may result in a skewed perception of the benefits presented by the CTDRs and 

their potential superiority over ACDF. So far it has been established that, 

statistical noninferiority of CTRDs, when compared to ACDF approach, can be 

achieved by all of the commercially available devices, however, statistical 
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superiority is met only by some devices and only in certain aspects of 

establishing clinical success of a devices (Chapter 1). Moreover, in line with other 

joint replacement device, the MoP CTDRs were found to be associated with 

failures resulting from excessive wear, such as osteoarthritis [124,128,129] 

peudoarthrosis have also been reported [395].  

 

Figure 6.1: Pubmed literature search results for ‘cervical total disc 
replacement’ or ‘cervical total disc arthroplasty’ showing the limited 

numbers of publications around CTDR technology.  

 

This study was initiated following interest in a novel design of CTDR device, 

which comprised of metal-on-metal (MoM) bearing endplates made from the 

medical grade cobalt chromium molybdenum (CoCrMo) alloy. The literature 

review, conducted in Chapter 1 of this thesis, identified lack of availability of a 

similar device in clinical use. The Prestige ST and the recently launched Prestige 

LP, whilst comprising of a MoM bearing, are made from a medical grade stainless 

steel and titanium alloy (Ti6Al4V), respectively. However, titanium, in particular, 

is more susceptible to wear than CoCrMo  when used in TJR applications, and 

thus represents a less favourable material of choice for bearing surfaces. It has 

0

10

20

30

40

50

60

70

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

N
u

m
b

er
 o

f 
p

u
b

lic
at

io
n

s

Year



Chapter 7 
 

 

293 

 

been identified that a lumbar CoCrMo MoM lumbar device has been available 

commercially for some time (Maverick, Medtronic). Whilst, relatively good 2-10 

year patient outcomes of this device were reported [396–399], some 

complications were also identified and these include focal metalosis and soft 

tissue necrosis [400], release of metal ions [401] and subsidence [402]. As a 

result, this study proposed the use of ceramic coatings for potential improved 

tribological performance and to decrease metal ions generated by the bearing. 

Ion release, along the wear particles, have previously been associated with 

necrosis and pseudotumour formation around the hip joint following failed MoM 

THR [241,287,288,403]. Chromium nitride was selected as one of coatings, as it 

is relatively well established in various industries, and medical implants 

applications  of the coating have previously been studied [182,183,185].The 

coating has favourable mechanical and tribological properties. The second 

coating, silicon nitride, was proposed for this investigation as a novel solution to 

the potential problem of excessive wear and metal ion release exhibited by MoM 

CTDRs. Moreover, it has been reported that silicon nitride particles can dissolve 

in polar solvents [191,193]. Consequently, it has been suggested that wear 

debris produced by silicon nitride coatings may dissolve over time in vivo, and 

therefore have the potential reduce the adverse biological responses in 

periprosthetic tissues, increasing the longevity of implants.  

To date, there have been no previous data published on the potential wear rates 

or the potential biological responses elicited by the wear products, generated by 

a MoM CTDR device. Moreover, no body of work around the proposed use of 

ceramic coatings in CTDR devices has been published, to date. In order to gather 

basic but comprehensive data, a series of studies were carried out. The studies 

in this thesis were divided into themes: theoretical prediction of maximum contact 

stress and lubrication regime, coating characterisation, wear performance and 

biological consequences of wear, as it was considered that potential clinical 

success of the device proposed in this study would be multifactorial and mainly 

comprise of these four aspects. 
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The primary aim of this study was to investigate the biotribology of a novel design 

of cervical total disc replacement device in its pristine form and coated with 

chromium nitride or silicon nitride, in order to understand the influence of loading 

conditions upon the tribological performance of the implant, and to investigate 

biological effects of the wear debris produced by the implants. 

The exact design of the proposed novel CTDR device was presented in Chapter 

2. Moreover, a Hertzian contact model and Hammrock & Dowson formula were 

used to establish the theoretical maximum contact stress and operating 

lubrication regime, respectively. It determined that, compared to previously 

reported theoretical maximum stress exhibited by PEEK-PEEK CTDR devices 

[216], the MoM or ceramic coated CTDRs would experience relatively high 

maximum stress, however the fatigue strength of the materials would not be 

exceeded. From the three material combinations investigated (CoCr-CoCr, CrN-

CrN and Si3N4-Si3N4) , it was predicted that the chromium nitride coated device 

would exhibit the lowest maximum contact stress and would operate under the 

most favourable lubricating conditions. These theoretical models are not a 

perfect simulation of reality, but they allowed for an initial and simple design 

verification and comparison of the materials chosen for the device substrate and 

coatings proposed in this thesis.  

Results of physical characterisation of the chromium nitride and silicon nitride 

coatings were presented out in Chapter 3. Whilst some differences in the 

mechanical properties (Young’s modulus, hardness) and coating adhesion 

between the two coatings were identified, they were considered suitable for the 

CTDR application, as they showed equivalent or better surface finish, coating 

hardness or bench-tested coating adhesion, than some coatings previously 

applied onto  medical implants. 

Wear assessment of the proposed CTDR devices was carried out in Chapter 4. 

A six-station spine simulator was used to conduct in vitro simulation of wear 

performance of MoM and ceramic-coated CTDR devices and provided new 

knowledge around the tribological performance of such devices, in comparison 
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to the currently available devices with MoP bearings. It was found that MoM 

CTDR devices tested under standard ISO-18192-1:2011 protocols produced 

significantly lower volumetric wear rates than those of various MoP or PEEK-

PEEK devices tested under the same conditions [142,143,301,404] . Application 

of a chromium nitride coating on the CoCrMo substrate reduced the wear rates 

further to as low as 0.03±0.01mm3/MC. The silicon nitride coating failed 

catastrophically resulting in coating delamination. It was suspected that 

inadequate coating adhesion was the reason for failure. To author’s knowledge, 

this thesis is the first published body of work, which has investigated wear rates 

of a CoCrMo MoM CTDR device tested under ISO-18192-1:2011. Based on the 

findings reported by Kurtz et al. [119], where explanted devices were found to 

exhibit substantially less severe surface damage, when compared to in vitro 

tested devices of the same design and supported by further evidence gathered 

by Cobian et al. [49], which showed that the majority or motions executed on 

daily basis do not exceed a range of motion (ROM) of ±2-3°, the author has 

challenged the current ISO-18192-1 standard and hypothesised that wear testing 

conducted as recommended by the current version of the standard may 

exaggerate wear rates and provide overestimated predictions of wear in CTDRs. 

Consequently a further 2MC of testing of the MoM CTDRs, with reduced ROMs, 

showed that the change of the test kinematic inputs resulted in significantly lower 

wear rates and smaller wear tracks observed on the surface of the devices, which 

was in line with the findings gathered by Kurtz et al. [119] and observations made 

from explanted MoM TDRs. 

As determined from other TJR devices and recent findings from TDRs, wear and 

wear products can lead to adverse biological reactions and result in implant 

failure. Particles characterisation and investigation of potential adverse biological 

reactions to the particles generated by the CTDR devices were carried out in 

Chapter 5. The particles generated by the MoM CTDRs tested in the six-station 

spine simulator, under the loading and kinematics regime of ISO-18192-1:2011, 

were found to be primarily smooth, round and prone to agglomeration. The mean 

size was significantly smaller (154nm) than those previously reported for MoP 
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CTDRs (ranging from 0.1 to 10µm) [142–144]. At the time of writing, no previous 

data on the characteristics of wear particles generated from a MoM CTDR or 

LTDR devices has been published. Despite the substantial differences in loading 

and kinematics applied in the testing of CTDRs and THRs, the two types of 

devices followed the same bearing material-dependent pattern of the sizes of 

particles generated by different bearings i.e. polyethylene particles are typically 

significantly larger than those generated from MoM or ceramic-on-ceramic (CoC) 

bearings. It was found that mean particle size dependent on the conditions under 

which they were generated; particles generated in a six-station pin-on-plate wear 

rig were smaller (mean size of 51nm) than those generated in the spine simulator 

– a likely result of the differences in contact stress applied on the components in 

the two rigs. Particles generated from the two ceramic coatings were few in 

numbers and full characterisation was not possible. The particles observed were 

mainly flake-like, some with sharp edges and were relatively large 

(approximately 10-15µm). No data on particles generated from silicon nitride 

coated TJR devices was available at the time of writing, therefore comparison to 

previously published data was not possible. Chromium nitride coatings for THR 

applications have previously been tested by Williams et al. [405] and Leslie et al. 

[184], who reported particles to be in the nanometre scale, which is was 

significantly smaller than those observed in the current study. With the 

information and observations made in the current study, it was not possible to 

establish the root cause of such differences in particle sizes. It has been 

hypothesised by the author that different loading and kinematic conditions 

applied in the testing may have been one of the causes, alongside the potential 

differences  in coating deposition methods.  

One of the objectives of this thesis was to apply the modified particle isolation 

method, originally developed by Lal et al. [353], to the wear particles generated 

in the six-station spine simulator, in foetal bovine serum, and once fully isolated 

from protein and bacterial contamination, use the particles in biological 

evaluation of the wear products. Whilst the isolation of wear particles from serum 

was not fully successful, and a level of protein contamination remained, the 
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particles generated in the in vitro wear test were still used in the cytotoxicity 

assay studies, alongside CoCrMo particles generated in the spine simulator (in 

sterile water), particles generated in the six-station pin-on-plate wear rig, as well 

as coating particles generated in the spine simulator, in water. Two types of cells 

– murine fibroblasts (L929 cell line) and primary porcine dural fibroblasts (DFs) 

were used in the ATPLite assays. The use of DFs was considered to be more 

relevant in this application, as they were isolated from meningeal membranes, 

which in vivo, would be in close proximity to the CTDR device and create the 

natural protective barrier of the spinal cord. It was found that high concentrations 

(5-50µm3 per cell) of CoCrMo particles resulted in significant reduction of cell 

viability of the L929 fibroblast cells, but not the DFs. These findings were in line 

with previously published data [354], which showed reduction in primary porcine 

dural fibroblast viability  caused by CoCrMo wear particles. No ceramic coating 

particles, at any concentrations, caused significant reduction of cell viability, 

which has previously been observed by other authors, whereby ceramic coatings 

were applied onto joint replacement devices [184,381,384,405]. 

6.2 Limitations of studies 

Some of the studies presented in this thesis were conducted with certain 

limitations, which may have influenced the interpretation of the results: 

• The values of Young’s moduli used in theoretical predictions of the 

lubrication regime and maximum contact stress found in silicon nitride- 

and chromium nitride-coated CTDR assumed the surfaces were made 

from bulk silicon nitride and chromium nitride. Instead, the surfaces of 

ceramic-coated CTDRs should have been assumed as composite 

materials. However, overall, the values of Young’s moduli of the three 

investigated materials (CoCr, Si3N4 and CrN) were not too dissimilar 

(210GPa, 250GPa and 200GPa, respectively) and thus it was not 

expected for the simplified calculation approach to skew the results 

significantly. 
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• The second part of the spine simulator studies, which investigated the 

altered ISO-18192-1 protocol, was not conducted on pristine (‘unused’) 

components, rather the same components, previously used in the first part 

of the spine simulator studies, were used. Whilst the loss of material 

experienced by the components was significantly reduced when CTDRs 

were tested using the altered ISO-181921-1 protocol, it can be argued 

that following 4MC of standard testing the components have already gone 

through the bedding-in phase and the surfaces were more conforming 

when the altered-ISO protocol was investigated. As a result, the reduction 

of the wear results observed in the second part of simulator testing may 

have been exaggerated by the use of bedded-in components. 

• The results of wear studies conducted on the ceramic-coated CTDRs 

showed significant reduction in wear rates produced by the CrN-coated 

CTDRs, when compared to the pristine MoM devices. Whilst the 

theoretical calculations conducted in Chapter 2, supported the results, 

showing reduced maximum contract stress and more favourable 

theoretical lubrication regime exhibited by the CrN-coated implants, the 

coated devices had smaller radial clearance, in comparison to the MoM 

components, by approximately 10µm (thickness of the coating). The 

design of the metal substrate devices (subsequently coated) did not 

account for coating thickness, as at the time of device design, the coating 

thickness was not decided upon. As shown by the theoretical lubrication 

regime calculations, smaller radial clearance can lead to more favourable 

lubrication between the bearing surfaces, and thus, the reduced wear 

rates of the CrN device may have been influenced by this reduced radial 

clearance.  It can be argued that a like-for-like comparison between MoM 

and CrN-coated CTDRs cannot be made, as the design of the devices 

was not identical. However, considering the magnitude of clearance 

difference (~10µm) and significant difference in wear rates, it is unlikely 

that the overall results were substantially affected by this limitation. 
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• The cytotoxicity studies, employing the ATP Lite assay, were designed so 

that only one plate, including six repeats of each group, was assessed at 

each timepoint. Whilst both positive and negative controls were included 

in each plate, the overall results may have been affected by plate-to-plate 

variability caused by slight variations in the laboratory techniques applied 

during the experiment. To fully validate the results, additional plates, at 

each timepoint, should be added. 

6.3 Future work 

The current work carried out investigations into a novel MoM CTDR device in its 

pristine and ceramic-coated variants, and provided comprehensive insight into 

the wear behaviour of the implants, as well as potential cytotoxic effects of the 

wear particles generated by these devices. This initial investigative work, whilst 

answering some of the research questions, opened further avenues of research 

that have scope for additional investigations. Future work should focus on: 

• Machining and polishing of the device used in this research has been 

carried out in-house at University of Leeds. Improved control and 

validation of the polishing process could lead to enhanced wear 

performance, as less variability in the radial clearance and improved 

surface finish could be ensured. 

• There is an obvious need for improvement of coating deposition 

parameters of the silicon nitride coating on CoCrMo substrate resulting in 

enhanced coating adhesion, which could withstand the frictional forces 

applied in in vitro wear testing. At the same time, investigation of different 

substrate materials, such as titanium, which could provide improved 

adherence between the substrate and the coating. 

• Extended duration of wear testing, particularly of coated devices. It has 

been previously observed for THR devices in vivo that coatings fail and 

wear-through over prolonged period of time, thus extended wear testing 

is necessary to fully verify the application of ceramic coatings for CTDRs. 
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The current ISO standard for in vitro wear testing of TDR devices suggest 

a maximum test duration of 1x107 cycles, unless otherwise rationalised. 

Standards for THR  and TKR in vitro wear testing recommend testing 

duration of 5x106, up to 1x107 for TKR designs incorporating thin (<6mm) 

polyethylene inserts. Therefore extending the testing of CTDRs (coated 

and uncoated) to at least 5x106 seem sensible. This testing should 

incorporate both the standard and reduced range of motion protocols.  

• Adverse biological reactions in vivo are not solely caused by metal wear 

particles, but also by ion release. The ion concentrations in serum can be 

measured throughout the wear testing using Inductively coupled plasma 

mass spectroscopy (ICP-MS). Measurements from samples of lubricants 

from testing of MoM and ceramic coated CTDRs could verify the potential 

of coatings to reduce the level of toxic ion release. 

• New wear testing protocol for lumbar TDRs, including adverse loading 

conditions and extension impingement inputs (Figure 6.2), have recently 

been published [406]. The standard suggests an application of a 7.5Nm 

moment to the device during the impingement. The maximum duration of 

the impingement protocol testing is specified as 1x106 cycles. Similar 

inputs, adjusted to CTDR kinematics and loadings, could be applied into 

the in vitro wear testing of cervical implants. Assessment of explants made 

by Kurtz et al. [119] reported evidence of impingement found not only in 

the LTDR devices, but also in the CTDRs. 
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Figure 6.2: Load and displacement profile for lumbar spine extension 
impingement wear test, as per ISO-18192-3:2017 [406]. 

6.4 Conclusions 

The current version of the ISO-18192-1 (2011) has been challenged in the 

current study. Unlike the testing protocols for other TJR devices, ISO-18192-1 is 

available in its second version and it is expected that the standard will continue 

developing and changing over time. As  some of the explanted LTDR were 

previously reported to provide evidence of impingement [119], a new part to the 

standard (ISO-18192-3:2017 – ‘Wear of total intervertebral spinal disc 

prostheses -- Part 3: Impingement-wear testing and corresponding 

environmental conditions for test of lumbar prostheses under adverse kinematic 

conditions’ [406]) has recently developed and published. However, at the time of 

publication no CTDR counterpart has been developed. Adoption of adverse 

conditions for testing of TJR devices is considered the way forward, as they often 

represent more  realistic conditions TJR exhibit in vivo.  As in vitro  simulation 

has been considered as one of a key factors in determining the likelihood of 

clinical success, factoring in adverse loading regimes or potential device 
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malposition allows prediction of implant behaviour in sub-optimal clinical 

conditions.  

Whilst the limitations of the methods employed in the studies presented in the 

current thesis, the results indicated that whilst the CoCrMo MoM CTDR device 

exhibited significantly lower wear rates than those of the commercially available 

MoP devices, the cytotoxic wear particles could potentially lead to adverse 

biological reactions, particularly in patients with metal hypersensitivity, and lead 

to devastating consequences similar to those of failed MoM THRs. Currently, the 

consequences of similar failure, leading to metalosis or pseudotumour formation 

in the vicinity of the spinal cord are unknown. Whilst it is not known whether metal 

nanoparticles could potentially cross the blood-brain-barrier (BBB), other 

nanoparticles, used in drug-delivery, have been shown capable of successfully 

crossing the BBB [407–409]. Published in 2016 the FDA guidance document on 

the ISO-10993-1 -‘Biological evaluation of medical devices - Part 1: Evaluation 

and testing within a risk management process’, suggested that, if mechanical 

failure of a device could alter the biological response to the device (such as 

production of wear debris), biocompatibility evaluations should be considered. 

The FDA recommendations show that the awareness of potential cytotoxic 

effects caused by wear particles is growing. At the same time, it suggests more 

stringent approval requirements for TJR devices manufacturers may be faced 

with. During the investigation of the ceramic coatings, it was also found that 

chromium nitride ceramic coating could not only lower wear rates further, but 

could potentially lead to reduce the cytotoxic effects caused by wear particles. 

Whilst the wear results of the silicon nitride coated CTDRs were less than ideal, 

the cytotoxicity study showed that particles generated from such devices, 

independent from particle size and concentrations, could potentially reduce the 

risk of adverse biological reactions. Adding the particle solubility  of silicon nitride, 

the coating could have further advantage of minimising the risk of ion release 

from particles. 
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Chapter 7 : Appendices 

7.1.1 Appendix I - Summary of the main design features of the 

CTDR devices cleared by the FDA
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Implant Bryan Prestige ST ProDisc-C Prestige-LP 

 

    

Manufacturer Medtronic Medtronic DePuy Synthes Medtronic 

Bearing surface 

materials 

MoP; titanium endplates, 

polycarbonate urethane nucleus 
MoM; stainless steel MoP; CoCr, UHMWPE MoM; Ti ceramic composite 

Bearing surface 

geometry 

Biconvex nucleus articulating with 

upper and lower end plates 
Ball-and-through design 

Ball-and-socket design, 

insert fixed to the bottom 

endplate 

Ball-and-through design 

Primary fixation Press fit Anterior flanges with screws Keels Dual serrated keel 

Secondary fixation Titanium porous coating N/A Titanium plasma sprayed Titanium plasma spray coating 

Degree of 

constraint 
Unconstrained Semiconstrained Semiconstrained Unconstrained 

Implant centre of 

rotation 

Variable; at the centre of the mobile 

nucleus 
Variable; superior to disc space Fixed; inferior to disc space Variable; superior to disc space 
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Implant Secure-C PCM Mobi-C 

 

 
 

 

Manufacturer Globus Medical NuVasive LDR Spine 

Bearing surface materials MoP; CoCr, UHMWPE MoP; CoCr, UHMWPE MoP; CoCr, UHMWPE 

Bearing surface geometry 

Semi-mobile bearing, spherical 

articulation at the top endplate 

(rotation), cylindrical articulation at 

the bottom endplate (translation)  

Convex insert fixed to bottom 

endplate, concave upper endplate 

articulating with the insert 

Mobile bearing; Insert slides and 

twists on the bottom plate, two keels 

restrict the movement of the insert, 

top plate moves over the insert 

Primary fixation Press fit, teethed keel Press fit and V-teeth Press fit, teethed keel 

Secondary fixation Titanium plasma spray coating 
Titanium Calcium Phosphate porous 

coating 

Hydroxyapatite+titanium porous 

coating 

Degree of constraint Semiconstrained Semiconstrained Semiconstrained 

Implant centre of rotation Variable Variable; inferior to disc space Variable 
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7.1.2 Appendix II – Leeds Spine Simulator 

The axial and anterior-posterior loads are applied to each station by the 

compression of a spring, which is driven by a cam mechanism from the motor 

(Figure 7.1 and Figure 7.2). This means the two loads (axial and anterior-

posterior) are applied via indirect control, which uses Hook’s Law principles to 

allow the application of a load by use of a compressed spring. 

 The flexion extension, lateral bending, axial rotation and anterior-posterior 

displacement motions are operated via direct motor control, in which a simple 

arrangement of connecting rods to the motors is applied, as shown in Figure 7.3, 

Figure 7.4 and Figure 7.5, respectively. Before carrying out any experimental 

studies using the wear simulator, it was necessary to calibrate all the motions 

and loads. Detailed methodology applied in the calibration process of the spine 

simulator is described in the following section. 

 

 

Figure 7.1: Axial loading mechanism showing how the cam compresses 
the spring, and the load is applied to the sample. 
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Figure 7.2: Anterior-posterior shear mechanism, showing the connection 
of the motor to the individual station, and how this transfers 

movement to the sample 
 

 

Figure 7.3: Flexion-extension mechanism for one group of three stations, 
showing application of Flexion (F) and Extension (E) 
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Figure 7.4: Lateral bending mechanism showing the lateral bending motor 
and gearbox, the linkages that attach to the gimbal and the counter-
weight needed to stabilise the motion, applying left (L) and right (R) 

lateral bending 

 

 

Figure 7.5: Axial rotation mechanism showing right (R) and left (L) axial 
rotation applied to one group of three stations via linkages 
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7.1.3 Appendix III – Spine simulator CTDR component fixtures 

a) Top fixture holder: 

 

 

 



Chapter 7 
 

 

310 

 

b) Bottom fixture holder: 
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7.1.4 Appendix IV - Talysurf CTDR component fixture 
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7.1.5 Appendix V - SOP 01.03 rev. 6 
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