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Abstract 

Complex environmental effects, combined with little temporal replication in most data sets, 

make investigating the ecological consequences of rapid climate change difficult with current 

tools. Structured population models are widely used to explore population responses to 

environmental variation. I develop and apply new statistical methods to parameterise such 

models. 

First I describe a structural equation model (SEM) approach for capturing temporal 

covariation among demographic rates via latent variable(s). When rates are positively correlated 

the latent variable(s) act as axes of ‘environmental quality’. This provides a simpler target for 

identifying the drivers of variation, than treating each process independently. Where drivers 

cannot be identified perturbing the latent variable(s) may represent the best alternative for 

exploring population-level responses to environmental change. 

Quantifying the effects of underlying drivers allows population viability under different 

management strategies to be predicted. Such studies frequently assume a stationary 

environment, despite rapid climate change. Where climatic drivers are included, single temporal 

windows of influence are typically chosen a priori. I show forecasted climate change alters 

predicted population viability under different management regimes in a rare fire-adapted herb. I 

illustrate that the effect of a single climatic variable may differ over time, suggesting a priori 

selection of single temporal windows can decrease predictive performance. 

I use the SEM approach to show that most (co)variation in survival and fecundity across 

different age-sex classes in a Soay sheep population is driven by a single environmental axis. I 

show climatic conditions during the energetically expensive autumn rut are nearly as important 

for overwinter mortality as the winter periods focused on in previous studies. I explore how 

density dependence, a temporal trend, population structure, and environmental variation interact 

to drive dynamics in this population. 

Throughout this thesis I apply novel methods that increase our ability to accurately 

forecast population dynamics under environmental change.  
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Chapter 1: General Introduction  

 

Introduction 

The environments that populations inhabit are inherently variable in time, with variation in 

inter- and intra-specific densities, as well as abiotic factors, such as the weather. Temporal 

variation in the environment causes variability in individuals’ vital rates, such as survival, 

growth, and fecundity. This has widespread consequences for population dynamics (Boyce et al. 

2006), species’ distributions (Gauzere, Prince & Devictor 2017), life history evolution (Metcalf 

& Pavard 2007; Pelletier et al. 2007), species interactions (Alarcon, Waser & Ollerton 2008), 

and community composition (Boersma et al. 2016; Stuble et al. 2017). Recent rapid global 

climate change has increased interest in predicting the ecological consequences of 

environmental variation (Stenseth et al. 2002; Evans 2012; Jenouvrier 2013; Wolkovich et al. 

2014). This has broad applications, including in the management of endangered (Oppel et al. 

2014) and economically important species (Shelton & Mangel 2011), the control of invasive 

species (Ruffell et al. 2015), and the spread of disease (Ewing et al. 2016). As experimental 

approaches to such problems are generally impractical in natural populations, structured 

demographic models parameterised with individual-level, longitudinal data sets are often used 

to assess the impact of environmental variation (Clutton-Brock & Sheldon 2010a; Clutton-

Brock & Sheldon 2010b; Coulson 2012). However, parameterisation can be challenging, due to 

the complexity of environmental effects on the vital rates (Grosbois et al. 2008; Ehrlen et al. 

2016) and the short extent of temporal and spatial replication in most demographic data sets 

(Salguero-Gomez et al. 2015; Salguero-Gomez et al. 2016). 

In this chapter I start by considering the ecological impacts of climate change. I then 

provide an overview on stochastic structured population models. Next, I discuss how structured 

population models can be used to predict population responses to environmental change and the 

challenges with parameterising environmentally explicit models. I move on to review the 

statistical methods available to deal with such challenges. I conclude this chapter with a 

summary and an outline of the aims of the remaining thesis chapters.  

 

Climate as a driver of ecological change 

Climate change is expected to be one of the primary drivers of changes in biodiversity this 

century, with widespread extinctions predicted (Thomas et al. 2004; Maclean & Wilson 2011). 

Recent rates of climate change are unprecedented; average global temperatures increased by 

approximately 0.72°C between 1951 and 2012 (IPCC 2013) and are predicted to be 0.3-4.8°C 

higher by the end of the 21st century than in 1986-2005 (IPCC 2014). Recent emissions indicate 

that the higher end of this range is more likely (Peters et al. 2013). Furthermore, temperature 

increases are not uniform across the globe; in some areas warming is expected to be much more 

rapid (IPCC 2014). Temperature is not the only climatic variable that is changing, with for 
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example higher precipitation levels in the Northern Hemisphere (IPCC 2014). The wider 

impacts of temperature increases include decreasing snow cover and increasing sea levels 

(IPCC 2014). An increase in the variability of many climatic variables is also predicted, with 

higher frequencies of extreme weather events, such as heat waves and droughts, expected 

(Easterling et al. 2000; Jentsch, Kreyling & Beierkuhnlein 2007).  

Ecological responses to climate change are widely recorded, and include poleward 

shifts in distribution, phenological change such as the advancing of spring events, changes in 

abundance, (local) extinctions, and adaptive evolution (Sparks & Yates 1997; Parmesan et al. 

1999; Hickling et al. 2006; Cahill et al. 2013). Such changes do not occur in isolation from each 

other; for example, the ability of species to track suitable climatic conditions is expected to be a 

key determinant of future extinction risk (Thomas et al. 2004). The response of a species to 

climate change may be constrained by many factors, including habitat availability, dispersal 

ability, and interactions among species. For example, increasing temperatures have increased 

the area of climatically suitable land in Britain for many butterfly species, however they have 

generally decreased in abundance and distribution due to habitat loss and degradation (Warren 

et al. 2001). Species in isolated habitats, such as mountain tops, are at high risk as their 

immediate ranges contract (Thomas 2011). Disparate shifts in distribution and changes in 

abundance across different species will result in changes in community composition (Warren et 

al. 2001) and species interactions (Olsen et al. 2016). Where species are reliant on interactions 

with specific other species, this may constrain their ability to track climate change, unless they 

are able to adapt to interact with other species (e.g. Pateman et al. 2012). Local extinctions 

attributed to climate change have generally been mediated through the indirect effects of 

changes to species interactions, rather than direct physiological tolerances to new climatic 

conditions (Cahill et al. 2013). Interactions among species may be disturbed by shifts in 

temporal as well as spatial distributions (Parmesan 2007), if changes in phenology result in a 

lack of temporal synchronisation (Kellermann & van Riper 2015).  

At the local scale, a population’s response to environmental change is ultimately driven 

by variation in individuals’ vital rates. This may be driven by fluctuations around the average 

environment, temporal trends in the average environment, or a combination of both (Stenseth et 

al. 2002; Lawson et al. 2015). The expected increase in climatic variability under climate 

change may be as biologically significant as changes to the average climatic conditions (Benton 

& Grant 1996; Benton & Grant 1999; Boyce et al. 2006; Garcia-Carreras & Reuman 2013). For 

example, extreme weather events may increase the rate of local population extinctions (Tinsley 

et al. 2015). Organisms are adapted in various ways to cope with temporal variation in the 

environment, for example through demographic buffering, where the vital rates to which the 

population growth rate is most sensitive are the least variable over time (Pfister 1998;  though 

see Jongejans et al. 2010). Bet hedging strategies, whereby a decrease in average fitness is 

compensated for by a decrease in the temporal variation of fitness provide another mechanism 
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for coping with unpredictable environments (Slatkin 1974; Philippi & Seger 1989; Childs, 

Metcalf & Rees 2010; Simons 2011). For example, seed banks in annual plants allow seeds 

from the same plant to germinate in different years, reducing the risk of all of that individual’s 

offspring emerging in a year with harsh environmental conditions and high mortality risk 

(Childs, Metcalf & Rees 2010). As demographic buffering and bet hedging strategies evolve as 

a result of environmental unpredictability, selection for such strategies may be expected to 

increase as levels of environmental variation increase (Simons 2011).  

Overall the ecological effects of climate change are thus expected to be widespread, but 

will differ among taxonomic groups and locations, depending on a range of factors including 

habitat, species interactions, and species’ life history strategies (Walther et al. 2002; Parmesan 

2006). The risk of extinction for many species will be high without appropriate conservation 

measures (Thomas et al. 2004; Maclean & Wilson 2011). Effective species management 

requires the underlying drivers of variation in population performance to be identified (Thomas, 

Simcox & Hovestadt 2011; Froidevaux et al. 2017). Quantifying the effects of climatic drivers 

on the vital rates allows population responses to anticipated environmental change to be 

predicted (Hunter et al. 2010; Jenouvrier et al. 2014). Such projections are necessary to identify 

which species are most at risk under changing climates and design appropriate conservation 

measures to ameliorate the effects of drivers causing a decrease in population performance 

(Jenouvrier 2013).  

 

Structured population models 

In stochastic environments population dynamics are dependent on the mean and temporal 

(co)variance of vital rates across the life cycle (Levy et al. 2015). Both the mean and the 

variance of such rates may differ according to individual state variables, such as age (Descamps 

et al. 2008; Sharp & Clutton-Brock 2010), stage (Menges & Quintana-Ascencio 2004), sex (e.g. 

Owen-Smith 1993; Tavecchia et al. 2001), and size (Walters & Reich 2000). For example, in 

large herbivores prime adult survival is generally high and relatively constant across years, 

whilst juvenile and senescent individuals exhibit low and temporally variable survival (Gaillard, 

Festa-Bianchet & Yoccoz 1998; Gaillard et al. 2000; Gaillard & Yoccoz 2003). Such 

differences among individuals across the life cycle mean the structure of the population can 

have important consequences for population dynamics (Coulson et al. 2001); populations of the 

same size undergoing the same environmental conditions will exhibit different dynamics, if they 

differ in population structure (Coulson et al. 2001; Benton & Beckerman 2005).  

Structured population models are necessary to explore population level responses to 

environmental variation in the presence of such state-dependent variation in performance 

(Coulson 2012). Structured models estimate state-fate relationships using either discrete states, 

such as stage (leading to a matrix population model (MPM); Caswell 2001), or continuous 

states, such as size or individual quality (resulting in an integral projection model (IPM); 
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Easterling, Ellner & Dixon 2000; Ellner, Childs & Rees 2016). Such models have been 

extended to include species with complex traits (e.g. Ellner & Rees 2006; Rees et al. 2006), 

spatial structure (e.g. Adler, Ellner & Levine 2010; Jongejans et al. 2011), interspecific 

interactions (e.g. Rose, Louda & Rees 2005; Hegland, Jongejans & Rydgren 2010), and 

demographic stochasticity (e.g. Vindenes, Engen & Saether 2011; Vindenes, Saether & Engen 

2012). A range of tools have been developed to explore population responses to changing 

conditions using a structured population modelling framework (Caswell 2001; Ellner, Childs & 

Rees 2016). For example, prospective sensitivity analyses allow predictions of how metrics 

such as the population growth rate will be affected by changes to the different vital rates and 

thus have been widely used to determine which demographic processes management strategies 

should target (Morris, Shertzer & Rice 2011; Bentzen & Powell 2012; Chiquet et al. 2013; 

Rand, Richmond & Dougherty 2017). 

Environmental stochasticity can be introduced into structured population models by 

allowing the vital rates to vary temporally. Stochastic demographic models have been widely 

used to explore population dynamics and life history evolution in stationary stochastic 

environments (e.g. Childs et al. 2004; Jaffre & Le Galliard 2016). Stochastic structured 

population models typically use one of two main approaches for incorporating temporal 

variation (Rees & Ellner 2009; Metcalf et al. 2015). In a matrix (MPM) or kernel (IPM) 

selection approach, a matrix or kernel is estimated for each year and these are randomly 

sampled from at each time step in the simulation (e.g. Childs et al. 2004). Alternatively, using a 

parameter selection approach, the temporally varying parameters are sampled from their joint 

probability distribution at each iteration (e.g. Vindenes et al. 2014). The predictive accuracy of 

kernel selection and parameter selection approaches are similar, providing that covariances 

among the temporally variable parameters are appropriately accounted for (Metcalf et al. 2015). 

Using a kernel selection approach the covariances are automatically preserved, whilst under a 

parameter selection approach a covariance matrix is estimated.  

Accounting for temporal covariances is important as they can have substantial effects 

on population dynamics (Doak et al. 2005; Tuljapurkar, Gaillard & Coulson 2009; Tomimatsu 

& Ohara 2010). For example, covariance terms explained between one third and one half of the 

variation in population growth rate in three ungulate populations (Coulson, Gaillard & Festa-

Bianchet 2005). Positive covariances increase variation in the population growth rate, while 

negative associations among vital rates reduce this variation. Temporal covariances may be 

driven by a number of different processes. Positive covariances may occur if different vital rates 

or age classes are affected by the same environmental variables (Jongejans et al. 2010). On the 

other hand, negative covariances may arise from tradeoffs between the rates or if a single 

environmental variable has opposing effects on different rates (Jongejans & De Kroon 2005). 

For example, in California oaks increased rainfall is associated with an increase in growth but a 

decrease in fecundity (Knops, Koenig & Carmen 2007).  
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Challenges of parameterising environmentally explicit demographic models 

To predict the effects of environmental change on species’ population dynamics their vital rates 

are typically estimated as functions of environmental drivers (Gotelli & Ellison 2006; Ehrlen et 

al. 2016), such as climatic variables (e.g. Hunter et al. 2010), disturbance regimes (e.g. Menges 

& Quintana-Ascencio 2004), and biotic factors (e.g. Hegland, Jongejans & Rydgren 2010; 

Adler, Dalgleish & Ellner 2012). Perturbation analyses then allow predictions of population 

responses to altered environmental conditions to be made. This approach is widely used to 

understand the potential impacts of different management strategies (e.g. Menges & Quintana-

Ascencio 2004; Sletvold et al. 2013) or anticipated climate change (e.g. Gotelli & Ellison 2006; 

Hunter et al. 2010; Salguero-Gomez et al. 2012). Environmentally explicit demographic models 

may be parameterised using experimental data (e.g. Sletvold et al. 2013) or by correlating 

observed demographic and environmental data (e.g. Dahlgren & Ehrlen 2009). Parameterising 

such models is challenging, as there may be a large number of putative environmental drivers 

(Grosbois et al. 2008) and the effects of such drivers are often complex. Drivers are unlikely to 

act in isolation on the vital rates. For example, the magnitude of temperature effects on the 

alpine plant, Dracocephalum austriacum, is dependent on the steepness of the slope on which it 

is located (Nicole et al. 2011). Environmental variables are also often correlated with each 

other; such that it can be difficult to determine which are causally related to the vital rates and 

which are simply correlated with causal drivers (Grosbois et al. 2008). Moreover, the low 

spatial and temporal replication present in most demographic data sets (Salguero-Gomez et al. 

2015; Salguero-Gomez et al. 2016) restricts the number of possible effects that can be estimated, 

whilst funding and time constraints may limit the amount of data available on possible 

environmental drivers (Ehrlen et al. 2016).  

In addition to identifying the drivers of vital rate variation, the temporal windows over 

which the vital rates are sensitive to each driver must be determined. Demographic data are 

typically collected annually, but the effects of many environmental variables, such as climatic 

variables, may vary over much finer timescales (Altwegg & Anderson 2009; Foster, Schmalzer 

& Fox 2014; Kruuk, Osmond & Cockburn 2015; Pearce-Higgins et al. 2015). For example, in 

the blue crane, Anthropoides paradiseus, population growth rate can be positively or negatively 

affected by increased variation in rainfall during the breeding season, depending on the timing 

(Altwegg & Anderson 2009). Moreover, time lags may exist between an environmental event 

occurring and the response in demographic performance to that event. Carry over effects, where 

the past environment affected the condition of an individual, with knock-on effects for its 

current vital rates are one cause of such lags (Harrison et al. 2011; Gardner et al. 2017). 

Alternatively lagged effects may be due to indirect effects, where an environmental driver 

affects interacting species, such as prey, predators, or competitors (Hedd et al. 2006; Cahill et al. 

2013; Lord, Barry & Graves 2017). The indirect effects of climatic variables are sometimes 

more biologically significant than direct effects (Brown 2011; Cahill et al. 2013; Davis, 
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Stephens & Kjellander 2016). Effects that occur over different temporal windows must thus be 

considered, otherwise predictions of future population dynamics under climate change may be 

biased (van de Pol & Cockburn 2011). 

The spatial scale of environmental drivers must also be considered. Large-scale climatic 

indices, such as North Atlantic Oscillation (NAO), have often outperformed local variables as 

predictors of vital rates (Post & Stenseth 1999; Hallett et al. 2004; Sandvik, Coulson & Saether 

2008). However, mechanistically, it is changes to the local weather conditions that the vital rates 

will be sensitive to (Sandvik, Coulson & Saether 2008). The difference in predictive 

performance is likely to be due to a lack of understanding of which local covariates are 

important, the critical windows over which they act, and how these variables interact with each 

other and with other variables such as intraspecific density (Stenseth et al. 2003; Hallett et al. 

2004; Stenseth & Mysterud 2005). The degree to which vital rates are driven by different 

environmental drivers may differ over a species’ range (Saether et al. 2003; Anders & Post 

2006). However, where studies attempting to determine how climatic sensitivity varies spatially 

use large-scale climatic indices, reported differences in sensitivities may be explained by spatial 

variation in the relationship between the large-scale index and the local climatic variables that 

actually drive variation in the vital rates (Anders & Post 2006). The relationship between large-

scale indices and local conditions may vary even on relatively small scales, with for example 

correlations between NAO and snow depth found to be positive at high altitudes and negative at 

low altitudes at a study area in Norway (Mysterud et al. 2000). Such relationships may also vary 

temporally (Ottersen et al. 2001; Stenseth et al. 2003). Thus, despite the apparently high 

predictive performance of such large-scale climatic indices they may provide misleading results 

if extrapolated to wider temporal or spatial scales (Stenseth et al. 2003).  

In most species the vital rates are affected by a combination of biotic and abiotic 

variables (Coulson et al. 2001; Sletvold et al. 2013; Dahlgren, Ostergard & Ehrlen 2014). Thus 

to accurately predict long term population dynamics under changing abiotic conditions the 

effects of biotic drivers such as intraspecific density must also be quantified (Barbraud & 

Weimerskirch 2003; Coulson et al. 2004). Where data are spatially replicated, correlations 

between abiotic environmental variables and carrying capacities may make it impossible to 

accurately quantify abiotic effects without simultaneously estimating the effects of intraspecific 

density (Ehrlen et al. 2016). Where the vital rates are influenced by conspecific density, 

individuals may be sensitive to different components of the population (Mysterud, Coulson & 

Stenseth 2002). For example, in red deer, Cervus elaphus, there is little habitat overlap between 

the males and females except during the rut, suggesting survival is more likely to be a function 

of the number of individuals of the focal sex than total population size (Coulson et al. 1997; 

Conradt, Clutton-Brock & Thomson 1999). 

Moreover, it may be necessary to incorporate interactions between population density 

and abiotic drivers, as the strength of negative density dependence is likely to vary according to 
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the abiotic environment (Jacquemyn, Brys & Honnay 2009; Wang et al. 2009). During years 

with favourable environments (e.g. high resource availability) the effect of a high intraspecific 

density is likely to be relatively low. Conversely in years with a harsh abiotic environment the 

impact of a high population density would be expected to be higher as individuals compete over 

more limited resources. For example, winter survival in the blue petrel, Halobaena caerulea, 

shows dramatic decreases under harsh weather conditions and high densities (Barbraud & 

Weimerskirch 2003), whilst improving climatic conditions led to outbreaks of the cotton 

bollworm, Helicoverpa armigera, through the weakening of density dependence effects 

(Ouyang et al. 2014).  

 

Statistical tools for identifying and quantifying the effects of environmental drivers 

The challenges associated with identifying causal drivers and accurately quantifying their 

effects mean that a small number of candidate drivers are often chosen (Ehrlen et al. 2016; Van 

der Pol et al. 2016). Each putative driver is typically assumed to act over a single temporal 

window, which is chosen a priori (Van der Pol et al. 2016). These decisions are usually made 

based on expert knowledge of the focal species or closely related taxa (Frederiksen et al. 2014). 

Such studies have typically focused on the most obvious drivers (Ehrlen et al. 2016), such as 

time since fire in fire-adapted populations (Menges & Quintana-Ascencio 2004) and water 

availability in arid areas (Martorell 2007). There is likely to be a focus on direct effects that 

occur with little time lag between the driver and the vital rate response, as these responses will 

be most obvious in the field. This limits our ability to learn about novel ways in which species 

might respond to their environment. Additionally, as environmental effects are often complex, 

studies focusing on single drivers are likely to retain a lot of unexplained temporal variation 

(Altwegg & Anderson 2009; Trauernicht et al. 2016). The predictive performance of such 

models may therefore be low if unidentified drivers are important determinants of the vital rates 

(Ehrlen et al. 2016).  

 Including many putative drivers, each with multiple possible temporal windows, leads 

to a rapid increase in the number of parameters to estimate. This can increase the risk of 

spurious relationships being detected, particularly if the number of independent observations is 

limited (Frederiksen et al. 2014). Thus, effective statistical methods are needed to select causal 

drivers from a potentially large number of possibilities. Sliding window approaches have 

frequently been used to determine the temporal windows over which environmental variables 

drive variation in the vital rates (Husby et al. 2010; Stopher et al. 2014; Kruuk, Osmond & 

Cockburn 2015; Van der Pol et al. 2016). For each putative driver, the fit of models using a 

range of start and end dates for the temporal window are compared. A single temporal window 

is typically chosen for each driver (Husby et al. 2010; Stopher et al. 2014; though see Kruuk, 

Osmond & Cockburn 2015), thus ignoring the possibility of temporal lags of different lengths. 

Once the window of influence has been identified for each driver, models containing different 
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combinations of the possible drivers can be compared to select the final model. Different 

methods have been used to compare the model fit, including Akaike Information Criteria (AIC; 

Stopher et al. 2014; Kruuk, Osmond & Cockburn 2015) or R2 (Husby et al. 2010; Phillimore et 

al. 2012). Information theoretic (IT) approaches, such as AIC, have been widely advocated as 

an alternative to null hypothesis testing (Johnson & Omland 2004; Rushton, Ormerod & Kerby 

2004). AIC penalises more complex models, using the number of parameters to be estimated 

(K) as a measure of complexity, as follows: AIC = −2!! + 2!, where LL is the log-likelihood. 

However, several studies have suggested that problems such as overfitting may be common to 

both null hypothesis testing and IT approaches (Raffalovich et al. 2008; Murtaugh 2009; 

Dahlgren 2010). The large number of models typically compared using a sliding window 

approach may result in overfitting, especially at low sample sizes (Van der Pol et al. 2016).  

 Overfitting can be reduced by using shrinkage methods such as ridge regression (Hoerl 

& Kennard 1970), where a penalty is applied to the magnitude of the parameter coefficients  via 

penalized likelihood. In ridge regression the penalty term is given by ! !!!,!
!!!  where !! are 

the parameter estimates and ! controls the degree of shrinkage (where ! is equal to zero no 

shrinkage is applied). ! can be estimated as part of the model fitting process, for example using 

cross validation. Alternatively, in least absolute shrinkage and selection operator (LASSO) 

regression the penalty is applied to the sum of the absolute parameter estimates, as follows: 

! !!!
!!! . Under this approach the coefficients for some covariates may be shrunk to exactly 

zero (Tibshirani 1996; Tibshirani 2011), allowing for shrinkage and variable selection 

simultaneously. The elastic net combines a penalty on the absolute coefficients and the square 

of the coefficients, as follows: !( !!!! + (1 − !) !! )!
!!!  (Zou & Hastie 2005), where 

0 ≤ ! ≤ 1. Ridge regression and LASSO are thus special cases of the elastic net, where !=1 

and !=0 respectively. The elastic net tends to perform better than LASSO when the number of 

predictors per observation is high or where the predictors are correlated (Zou & Hastie 2005). In 

a Bayesian framework shrinkage and model selection can be applied through the coefficient 

priors (O'Hara & Sillanpaa 2009; Li & Lin 2010). For example, estimating coefficients using a 

double exponential prior is equivalent to a LASSO regression (Park & Casella 2008). These 

shrinkage methods have a higher predictive accuracy than traditional variable selection methods 

when the number of observations per predictor is low (Reineking & Schroder 2006; Dahlgren 

2010), which is often the case when parameterising environmentally explicit structured 

population models. Thus shrinkage approaches are increasingly being used to estimate 

environmental effects on vital rates (Gerber et al. 2015; Butler, Metzger & Harris 2017; 

Tredennick, Hooten & Adler 2017).  

These shrinkage methods however do not account for the fact that the effects of a 

climatic variable over a small interval in time are likely to be similar (Sims et al. 2007). A 

difference penalty regression offers one solution to this problem. This approach introduces a 

penalty on the difference between neighbouring coefficients over the time series of the putative 
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environmental driver (Sims et al. 2007). For example, where the penalty is on the difference 

between adjacent parameter estimates, the penalty term is given by ! (Δ!!)!!
!!! , where 

Δ!! = !! − !!!!. Alternatively, a functional linear model (FLM) may be used to estimate the 

demographic response to drivers that vary over fine scales as a smooth function over time (or 

space; Roberts 2008; Teller et al. 2016). Such models assume that the effect of an 

environmental variable is likely to be similar at adjacent time intervals; the direction and 

magnitude of the coefficients are allowed to differ smoothly over time using a penalized spline. 

For example, a climatic variable (!) may be included at regular time intervals ! = 1, 2,…! 

(e.g. using weekly or monthly means) over year !. The probability of individual i in state s 

surviving (y) from year t to t+1 may then be given by  

 !"#$%(!!") = ! +  !!!!" +  !!(!)!!"!
!!! +  !!,   (eqn 1)  

where ! is an intercept, !! is a slope term for state variable s (e.g. size), !!" is the value of 

climatic variable ! in time interval (e.g. week) ! of year t, !!(!) is a smooth function over time, 

and !! is a random year effect. The smooth function, !!(!), is parameterised by spline basis 

expansion. A quadratic smoothing penalty, that controls the degree of smoothing, is estimated 

as part of the model fitting procedure (Wood 2016; Wood 2017). 

When identifying environmental drivers, different vital rates across the lifecycle are 

typically treated as independent processes, with for example separate models constructed for 

juvenile and adult survival and reproduction (e.g. Coulson et al. 2001; Pokallus & Pauli 2015). 

However, such processes rarely respond independently to environmental variation. Where 

positive correlations exist among different demographic processes the variation in these rates is 

likely to be driven by common environmental drivers (Nur & Sydeman 1999; Altwegg et al. 

2006; Jongejans et al. 2010; Rotella et al. 2012). For example, in a barn owl population, Tyto 

alba, harsh winter weather was associated with a decrease in both juvenile and adult survival 

(Altwegg et al. 2006). Demographic structured equation models (SEMs) offer an alternative 

parameterisation. SEMs are widely used in ecological studies, for example to predict the joint 

responses of multiple species to environmental change (Warton et al. 2015). However, they are 

rarely used to parameterise single species demographic models, despite demographic rates often 

being temporally correlated (Jongejans et al. 2010) and such correlations having important 

effects on population dynamics (Coulson, Gaillard & Festa-Bianchet 2005). Here, latent 

variable(s) are introduced to capture the covariances among the disparate demographic 

processes (Evans, Holsinger & Menges 2010; Elderd & Miller 2016). This allows the joint 

responses to environmental variation across different rates and age-sex classes to be explored. 

Where the data are sufficiently replicated a higher-level model can be introduced, decomposing 

the variation in the latent variable(s) into the effects of environmental drivers and residual 

variation.  
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Conclusions and thesis outline 

Rapid levels of environmental change have necessitated the development of suitable methods 

for investigating its ecological consequences. Structured population models, underpinned by 

empirically derived estimates of environment-demography relationships, may be used to 

explore population responses to such change (Coulson 2012). However, the complexity of 

environmental effects coupled with the small degree of temporal replication in most 

demographic data sets (Salguero-Gomez et al. 2015; Salguero-Gomez et al. 2016), makes the 

parameterisation of such models challenging. Here, I develop and apply novel statistical 

methods to allow the efficient use of the relatively limited data available to increase our 

understanding of how populations respond to environmental variation.  

 First, I describe a method that allows population responses to environmental change to 

be explored, while accounting for the fact that multiple demographic processes respond in 

concert to changing conditions (Chapter 2). Under this demographic structural equation (SEM) 

approach one or more latent variable(s) are introduced to capture the temporal covariation 

among the demographic rates. Where the rates are positively correlated the latent variable(s) 

may be conceived as axes of environmental quality. I use simulation studies to compare the 

accuracy of population growth rate estimates under this approach to the traditional parameter 

selection method of estimating an unstructured covariance matrix. I use two case studies to 

illustrate that, by perturbing the latent variable introduced by our model, I can make predictions 

about likely population level responses to environmental change. First, I predict the effects of 

different environmental conditions on bet hedging reproductive strategies in the monocarp 

Carduus nutans. Then I demonstrate how, with the addition of a single parameter, the effects of 

an environmental driver can be estimated, using a demographic model of the fire-adapted herb 

Eryngium cuneifolium. I use perturbation analyses to explore population level responses to 

different management strategies in this rare endemic.   

Identifying the climatic drivers of vital rates allows population responses to anticipated 

environmental change to be predicted (Hunter et al. 2010; Salguero-Gomez et al. 2012). 

However, when population viability analyses are used to determine optimal management 

strategies the environment is often assumed to be stationary (though see e.g. Bernardo, Albrecht 

& Knight 2016). Moreover, where climatic drivers have been incorporated these have typically 

been assumed to act over single temporal windows, which are selected a priori (Van der Pol et 

al. 2016). I explore the effects of forecasted climate change on population viability in E. 

cuneifolium, under a range of management regimes (Chapter 3). I use functional linear models 

(FLMs) to determine the critical windows over which E. cuneifolium’s vital rates are sensitive 

to climatic variation, whilst allowing the effect of a single climatic variable to vary in both 

magnitude and direction over the year (Chapter 3; Teller et al. 2016). 

Despite strong positive correlations among demographic processes in a population of 

Soay sheep, Ovis aries, previous studies have treated each process (i.e. survival and fecundity of 
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each age-sex class) independently when identifying the underlying drivers (Coulson et al. 2001). 

Additionally, whilst many previous studies have quantified the effects of climatic drivers of 

dynamics in this population (e.g. Milner, Elston & Albon 1999; Catchpole et al. 2000; Coulson 

et al. 2001; Stenseth et al. 2004) they have tended to focus on the winter period, when most of 

the mortality occurs. The demographic SEM approach described above (Chapter 2) can provide 

a simpler target for the challenging task of identifying the underlying drivers of demographic 

rates. I use this approach to explore how many axes of environmental variation drive the 

temporal variation in survival, reproduction, and twinning across six age-sex classes in this 

population (Chapter 4). I then decompose the variation in the primary environmental axis into 

the effects of instraspecific density and abiotic drivers. I use the FLM approach to explore 

whether there is evidence of lagged climatic effects in this population, for example due to carry 

over or indirect vegetation effects. I compare the predictive performance of the FLM approach 

to using the large-scale NAO climatic index and to choosing the temporal window of influence 

a priori for a local climatic variable (Chapter 4).  

 Finally, I use the SEM framework to construct a demographic projection model to 

explore how density dependence, population structure, and environmental variation interact to 

drive population dynamics in the Soay sheep population (Chapter 5). The dynamics in the Soay 

sheep population appear to have changed over the course of the study period, from unstable 

overcompensatory density dependence to more stable population dynamics towards the end of 

the study period. I use a variant of the demographic SEM from Chapter 4 to parameterise an age 

and sex structured MPM and use this to explore possible causes of the temporal shift in the 

dynamics of this population (Chapter 5).  
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Abstract  

1. Temporal variability in the environment drives variation in individuals’ vital rates, with 

consequences for population dynamics and life history evolution. Integral projection models 

(IPMs) are data-driven models widely used to study population dynamics and life history 

evolution of structured populations in temporally variable environments. However, many data 

sets have insufficient temporal replication for the environmental drivers of vital rates to be 

identified with confidence, limiting their use for evaluating population level responses to 

environmental change. 

2. Parameter selection, where the kernel is constructed at each time step by randomly selecting 

the time-varying parameters from their joint probability distribution, is one approach to 

including stochasticity in IPMs. We consider a structural equation modeling (SEM) approach 

for modelling the covariance matrix of time-varying parameters, whereby latent variable(s) 

describe the covariance among vital rate parameters. This decreases the number of parameters 

to estimate and, where the covariance is positive, the latent variable can be interpreted as a 

measure of environmental quality. We demonstrate this using simulation studies and two case 

studies. 

3. The simulation studies suggest the SEM approach provides similarly accurate estimates of 

stochastic population growth rate to estimating an unstructured covariance matrix. We 

demonstrate how the latent parameter can be perturbed to show how selection on reproductive 

delays in the monocarp Carduus nutans changes under different environmental conditions. We 

develop a demographic model of the fire dependent herb Eryngium cuneifolium to show how a 

causal indicator (i.e. a driver of the changes in the environmental quality) can be incorporated 

with the addition of a single parameter. Using perturbation analyses we determine optimal 

management strategies for this species.  

4. This approach estimates fewer parameters than previous approaches and allows novel eco-

evolutionary insights. Predictions on population dynamics and life history evolution under 

different environmental conditions can be made without necessarily identifying causal factors. 

Environmental drivers can be incorporated with relatively few parameters, allowing for 

predictions on how populations will be affected by changes to these drivers. 

 

Keywords 

Carduus nutans; covariation; environmental variation; Eryngium cuneifolium; integral 

projection model; life history; population dynamics; structural equation model  
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Introduction 

Environmental variation causes individuals’ vital rates to vary, affecting population dynamics 

and life history evolution (Benton & Grant 1996; Boyce et al. 2006). Interest in understanding 

the ecological consequences of environmental variation has increased rapidly as a consequence 

of global climate change (Stenseth et al. 2002; Evans 2012). As experimental approaches to 

determining how natural populations are affected by environmental variation are frequently 

impractical, structured demographic models are often used to understand the population level 

effects of environmental change (Coulson 2012). Environmental effects on vital rates can be 

complex, with nonlinear effects, multiple interacting drivers, indirect effects, and correlations 

between the drivers (Darling & Cote 2008; Parmesan et al. 2013; Ehrlen et al. 2016). These 

challenges, and the relatively short length of many demographic data sets (Salguero-Gomez et 

al. 2015; Salguero-Gomez et al. 2016), mean it is often difficult to identify explicit 

environmental drivers of vital rates. This restricts the ability of models to predict how 

populations will respond environmental change (Crone et al. 2013).  

Environmental variation can drive covariation amongst vital rates (Doak et al. 2005; 

Tomimatsu & Ohara 2010). All else equal, failing to account for this covariation will bias 

model outputs (Fieberg & Ellner 2001; Metcalf et al. 2015). Positive covariance among vital 

rates, occurring when multiple vital rates are affected by the same environmental drivers 

(Jongejans et al. 2010), increases the variance of the stochastic population growth rate. Negative 

covariance can also occur as a result of tradeoffs between rates or from opposing effects of 

environmental variables on different rates (Jongejans & De Kroon 2005; Knops, Koenig & 

Carmen 2007). However, in plants covariation is predominantly positive (Jongejans et al. 2010), 

and positive covariance appears widespread among other taxa including mammals (e.g. Rotella 

et al. 2012) and birds (e.g. Jenkins, Watson & Miller 1963; Nur & Sydeman 1999).  

Stochastic demographic models, such as matrix population models (MPMs; see Caswell 

2001) and integral projection models (IPMs; see Ellner, Childs & Rees 2016), are widely used 

to study population dynamics under temporally variable environments (e.g. Inchausti & 

Weimerskirch 2001; Vindenes et al. 2014). IPMs are usually parameterised by estimating state-

fate relationships. Stochastic models allow these relationships to vary temporally using one of 

two main methods (Metcalf et al. 2015). Under a kernel selection approach, a projection kernel 

is estimated for each year and these are resampled (Rees et al. 2006; Williams et al. 2015) to 

preserve the covariance amongst the vital rates. Using a parameter selection approach, a unique 

kernel is constructed at each time step by randomly selecting the time-varying parameters from 

their joint probability distribution (Morris & Doak 2002; Vindenes et al. 2014). A potential 

limitation of the parameter selection approach is that an unstructured covariance matrix must be 

estimated for the set of time varying parameters, often from relatively few temporal replicates. 

An alternative to estimating an unstructured covariance matrix is to use a structured 

model for the temporal parameters (co)variances. Hierarchical structural equation models 
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(SEMs), whereby one or more latent variables are introduced to capture the covariance among 

vital rate parameters, are a promising candidate. The latent variable(s) represent the underlying 

causes of covariation among observed variables, allowing complex multivariate relationships to 

be described in a simple way. Moreover, these models effectively capture hypotheses about 

causal variables that cannot be directly measured (Grace & Bollen 2008; Grace et al. 2010). The 

underlying drivers of variation in the latent variables can be included as causal indicators, which 

allows covariances to be partitioned into explained and unexplained sources of variation. 

However, despite the broad use of SEM approaches in ecological research (e.g. Zuur et al. 

2003; Thorson et al. 2015; Ohlberger, Scheuerell & Schindler 2016) they are rarely used to 

parameterise demographic models. 

This approach has two potential advantages. First, fewer parameters need to be 

estimated relative to an unstructured covariance matrix. Second, a small number of latent 

variables (often just one) may account for the covariation among the vital rates. When this 

covariance is positive, the latent variable(s) can be interpreted as axes of environmental quality 

or suitability, where positive values of a single latent variable correspond to environments in 

which survival, growth and reproduction are all higher than average. The latent term(s) then 

represent a target for further analysis. For example, perturbing the latent parameter allows 

predictions to be made on the effects of environmental change on population dynamics or life 

history selection. Where the degree of temporal replication in the data is insufficient for causal 

environmental drivers to be identified this may represent the best alternative for exploring how 

changes in the stochastic part of the environment affect such processes. This method is not 

dissimilar to the use of broad scale climate indices, such as the North Atlantic Oscillation, as 

proxies for local environmental conditions (Ottersen et al. 2001). Such indices do not directly 

influence the vital rates, but as they provide an index of the overall climate conditions, 

incorporating multiple local climate variables, they are often better predictors of the vital rates 

than local climate variables (Post & Stenseth 1999; Stenseth & Mysterud 2005).  

We conduct simulation studies to compare the accuracy of the SEM approach to a 

standard parameter selection approach, with different numbers of temporally varying parameters. 

We then apply the approach in two case studies. We construct a demographic model of the 

monocarpic perennial Carduus nutans, and show how the latent parameter can be perturbed to 

make predictions about optimal life history strategies under changing environments. We explore 

how selection for strategies to delay reproduction differs as the mean and variance of 

environmental quality changes. Finally, we develop a demographic model of the rare herb 

Eryngium cuneifolium to show how a known environmental driver (time since fire) can be 

included as a causal indicator, i.e. an observed variable that influences the latent variable. We 

use perturbation analyses to determine the optimal fire return interval (FRI) for managing this 

species. 
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Simulation study: comparing structural equation modelling and unstructured approaches 

We compared the accuracy of population growth estimates from the SEM approach to those 

derived using an unstructured covariance matrix. We considered two scenarios: a relatively 

simple life history with four temporally variable vital rates (the ‘simple model’), typical of 

many published IPMs, and a two-stage (juvenile and adult) life history with a total of seven 

temporally variable vital rates (the ‘complex model’). Demographic rate functions in both 

settings were parameterised using data from a long-term study of the St Kilda Soay sheep 

(Clutton-Brock & Pemberton 2004). These were used to construct a pair of density independent 

individual-based models (IBMs; Appendix A1), from which simulated data sets could be 

generated. Only the correlation coefficients for the temporally varying parameters were allowed 

to vary in each simulation, such that on each occasion, a correlation matrix was drawn at 

random from a uniform distribution over the space of positive definite matrices (using 

rcorrmatrix from the clusterGeneration package in R; Qiu & Joe 2015). 

One hundred simulated data sets of 8,000 years were generated from each of the two 

IBMs. A range of realistic data set lengths were sampled: 12, 25, and 50 years (see Appendix 

A1 for details). To account for the covariance among vital rates, multivariate demographic 

models were then parameterised using an unstructured covariance matrix (UCM approach) and 

a latent variable (SEM approach) parameterisation (Fig. 1). In the simple model, 10 parameters 

(4 variance and 6 covariances) account for the temporal variation using the UCM approach, 

whilst the SEM approach estimates 8 parameters. In the complex model 28 parameters are 

required for the UCM approach and 14 for the SEM approach. The demographic models were 

fitted using Bayesian methods, implemented in JAGS (Plummer 2003) and run using the 

runjags package (Denwood in review) in R (R Core Team 2016).  

IPMs were constructed from each set of posterior samples (Fig. 1; Appendix A1). The 

stochastic population growth rate was estimated after excluding the first 2,000 years of a 10,000 

year simulation. This was repeated with 1,000 samples from the posterior. The true stochastic 

population growth rate was estimated using an IPM parameterised with the true parameter 

values used in the IBM. 

The results of the simulation study are summarised in Fig. 2. The UCM approach led to 

marginally less diffuse estimates of stochastic population growth rate than the SEM approach. 

This was true for both the simple (Fig. 2a) and complex (Fig. 2b) models. However, even with 

12 years of temporal replication the differences between the performance of the two methods 

was small, and with 25 years of replication both methods performed well.  
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Figure 1: Structure of the i) vital rate models and ii) IPMs for the a) simple and b) complex life 
history simulation models. In the SEM approach factor-loading terms (!!)  allowed the 
direction and magnitude of the latent parameter (!) to differ among the vital rates. Submodel 
specific year effects (!) accounted for any additional variation among years. In the UCM 
approach a fully unstructured covariance matrix (Σ) was estimated by sampling the year effects 
(!) from a multivariate normal distribution. !! parameters are the intercepts and !! are slopes 
with respect to size. aii) is the structure of the IPM for the simple life history model, where 
!(!, !) is the size distribution of individuals at time !, !! ! !! !!, !  is a survival growth kernel 
and 0.5!! ! !! ! !!!"! !!, !  gives the size distribution of new recruits. The superscript ! 
denotes stochastic terms. bii) is the structure of the IPM for the complex model. The size 
distribution of juveniles at time t, !!(!, !), is given by the survival and growth of juveniles at 
! − 1 that do not mature that year, !! ! !! !!, ! (1 −!! ! , and the reproduction of adults, 
0.5!! ! !! ! !!!"! !!, ! , and juveniles that have matured that year, 
0.5!! ! !! ! !! ! !!!! !!, ! . The size distribution of adults at time !, !!(!, !), is given by 
the survival-growth function of maturing juveniles, !! ! !! !!, ! !! ! , and the survival 
growth function of adults, !! ! !! !!, ! . In both a) and b) the functions in the IPMs 
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Figure 2: Ratio between the true (!!) and estimated  (!!) stochastic population growth rates for 
the structural equation modelling (SEM) and unstructured covariance matrix (UCM) approaches 
for the a) simple and b) complex models. Points are the median and lines show the 0.025 and 
0.975 quantiles across 1000 samples from the posteriors for each simulation. The dashed line is 
at one, where the estimated growth rate equals the true growth rate. 

 

Case study 1: The effect of environmental quality on reproductive delays in Carduus 

nutans 

Background and methods 

Carduus nutans is a monocarpic thistle with a persistent seedbank and short-lived rosettes 

(Popay & Medd 1990; Wardle, Nicholson & Rahman 1992). We use a SEM model to explore 

how environmental change may affect selection for reproductive delays in this species. 

Reproductive delays can act as a form of diversified bet hedging, spreading a cohort across 

multiple years and therefore decreasing the effect of a bad year on the cohort as a whole (Cohen 

1966; Tuljapurkar 1990; Rees et al. 2006; Childs, Metcalf & Rees 2010). In monocarpic 

perennial plants, reproduction may be deferred pre-establishment, through a seedbank, or post-

establishment, through a delay in flowering (Childs et al. 2004; Rees et al. 2006). Post-

establishment delays have the additional benefit of higher fecundity as individuals may grow 

larger, producing more seeds (Rees et al. 2006).  

We define the fittest strategy to be the evolutionary stable strategy (ESS). The predicted 

ESS for the study population is substantial seed dormancy and the majority of plants to flower 

in their first year, with a flowering probability of ~0.75 for an average sized individual (Rees et 

al. 2006). Using our framework we predict how changes to the average or variability of the 

environment affect the ESS germination and flowering strategy. We re-parameterised the IPM 

of Rees et al (2006; Fig. 3a, Appendix A2). The model is structured by the natural logarithm of 

rosette area (!), a measure of plant size that predicts individual performance. Four stochastic 

vital rate functions, with temporally variable intercepts, were estimated; survival, growth, 

recruitment, and recruit size (Fig. 3).  

The vital rate parameters (Fig. 3b) were estimated using MCMC sampling in JAGS 

through runjags (Denwood in review). The prior distributions were weakly informative (i.e. 

within biologically reasonable ranges) to improve mixing (Appendix A2; see Appendix A3 for 
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comparison with more informative priors). The vital rates were integrated into the IPM (Fig. 3) 

using the posterior means as parameter estimates. At each year in the simulation the latent 

parameter (!) was sampled from a normal distribution with a mean of zero and a standard 

deviation of one. The submodel specific year effects (!) were drawn from normal distributions 

with means of zero and the standard deviations (!!") estimated in the vital rates model. 

Posterior checks suggested the latent parameter (!)  accounted for the covariation 

among the vital rates (Fig. S1). The 95% credible intervals of many parameters were relatively 

wide (Fig. 3c), as a result of the short temporal extent (eight years) of this data set. The positive 

covariance among the vital rates (Fig. 3 & S2) means the latent parameter (!) can be assumed 

to be a measure of environmental quality. The highest levels of temporal variation were in 

survival and recruitment (Fig. S2). The joint flowering intercept and germination probability 

ESS were predicted using numerical invasion analysis (Childs et al. 2004) and were similar to 

those produced using a fixed effects, kernel selection approach (Appendix A4; Rees et al. 2006).  

 
Figure 3: a) Carduus IPM kernel (see Appendix A2), where !(!) is the number of seeds in the 
seedbank and ! !′, ! !" is the size distribution of rosettes in year !. The first term in the 
seedbank equation equates to seeds present in the seedbank at time ! that have not died (with 
probability of seed mortality !) or germinated (with probability of germination !). The second 
term is seeds produced by rosettes, where !! !  is a seed production function. The rosette 
equation can be split into three terms, describing seeds germinating from the seedbank (!!! !! ), 
rosette survival and growth (!! !!, ! ) and seeds produced that year that germinate immediately 
(!! !!, ! ). The superscript ! denotes stochastic terms. b) Structure of the stochastic vital rates 
model, including equations for each submodel, and c) posterior distributions for (i) fixed 
parameters and (ii) parameters for incorporating temporal variation. The [!] subscripts indicate 
stochastic terms. !! parameters are the intercepts, !! and !! parameters are slopes with respect 
to size (!) and the latent parameter (!) respectively and ! are submodel specific year effects. 
!!"! ,!!"!" and !!"!  are the standard deviations of the submodel specific year effects for survival, 
recruit size and growth respectively. Recruitment refers to the number of seedlings at the annual 
census; as this is a single number each year an additional year effect is not included here. c) 
shows the mean (points) and 95% credible interval (horizontal lines) for each parameter. 
Vertical dashed lines are at 0.  
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Figure 4: Effect of changing the mean (a & b) and variability (c & d) of the environmental 
quality (!) on the joint ESS flowering intercept and germination strategies at different levels of 
seed mortality (!) in Carduus. Changes to the environmental quality here are shown through 
the impact on survival of an averaged sized individual (log size 1.95, which is the mode of the 
study population). Threshold flowering size is calculated as − !!! !!! (Childs et al. 2003). 
Dashed lines show the mean survival probability (a and b) and standard deviation of the 
survival probability (c and d) for the average sized individual in the environment experienced 
by the study population.  
 
Perturbation analyses 

A prospective sensitivity analysis was used to determine how selection on delayed flowering 

and germination may change as the mean and variance of environmental quality (!) changes. 

The mean and standard deviations of ! were varied on a fixed grid and the ESS were predicted 

at each value. This was repeated for a range of seed mortalities (d=0.01, 0.1, 0.2…0.9, 0.99; 

Rees et al. 2006).  

As the quality of the environment deteriorates there is selection for earlier flowering 

and reduced germination, whilst improving the quality of the environment leads to the opposite 

response, i.e. selection for a perennial life history dominates in higher quality environments 

(Figs 4 & S3). In lower quality environments selection acts on the germination probability, 

delaying reproduction pre-establishment by increasing the chance of seeds entering the 

seedbank. The estimated survival probability increases from 0.04 to 0.73 with an increase in ! 

from 0 to 2 for a rosette of log size 1.95 (mode of the study population). With a mean ! of 2 

there is an advantage in delaying reproduction, as the risk of mortality is relatively small and 

larger plants can produce more seeds; here, selection acts on the flowering size, increasing the 
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size at which plants reproduce. The ESS threshold flowering size, on a log scale, doubles from 

3.36 to 7.10 with an increase in mean ! from 0 to 2, resulting in a 9-fold increase in the 

estimated number of seeds produced. Increasing levels of environmental variability generally 

caused selection for earlier flowering and a lower germination probability (Fig. 4).  

 

Case study 2: Incorporating an environmental driver: the effect of fire on the demography 

of Eryngium cuneifolium  

Background and methods 

Eryngium is a fire-adapted perennial herb with a persistent seedbank (Menges & Kimmich 

1996; Menges & Quintana-Ascencio 2004) found in Florida rosemary scrub, in recently burned 

or other disturbed areas (Menges & Kimmich 1996). Fire kills the majority of rosettes and the 

population recovers through the seedbank (Menges & Kohfeldt 1995). We used demographic 

data from a single population that forms part of a well-studied meta-population at the Archbold 

Biological Station, Florida (Appendix A2; Menges & Quintana-Ascencio 2004). 

Altering the frequency of fires is one possible management strategy for this endangered 

species. The recommended fire return interval (FRI) for this species of <15 years (Menges & 

Quintana-Ascencio 2004) differs from the 15-30 year recommendations for its Florida 

scrubland habitat (Menges 2007). Alternative management strategies may therefore be required 

for Eryngium. We use perturbation analyses to determine how altering FRIs and the effect of 

fire on the vital rates affects population growth. 

The Eryngium IPM (Fig. 5a; Appendix A2) was structured by the natural logarithm of 

rosette diameter (Menges & Quintana-Ascencio 2004). We assume density independent 

dynamics to investigate the persistence of the population (Menges & Quintana-Ascencio 2004, 

see Appendix A5 for model with density dependent recruitment). The intercepts of four vital 

rates were assumed to be temporally variable (Fig. 5b): survival, growth, flowering probability, 

and fecundity (the number of flowering stems; Appendix A2). As the demography of Eryngium 

is strongly affected by fire, we modelled the mean of the latent parameter (!) as a linear 

function of time since fire (!"#; Figs 5b & S4). Flowering and fecundity were highly correlated, 

so the flowering (!!) and fecundity (!!") year effects were sampled from a bivariate normal 

distribution. Sampling these parameters from univariate distributions results in the latent 

variable failing to fully account for the covariation among the vital rates (Fig. S5). Posterior 

samples were again drawn using MCMC sampling in JAGS, using runjags (Denwood in review). 

Weakly informative priors were used (Appendix A2; see Appendix A3 for a comparison with 

more informative priors). The vital rates were negatively related with TSF, with survival 

particularly strongly affected (Figs 5b & S6).  

The posterior means were used to parameterise an IPM. At each iteration the latent 

parameter (!) was randomly sampled from a normal distribution with mean !!"#×!"# and 

standard deviation of one. Sub-model specific year effects were drawn from normal 
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distributions (bivariate normal for flowering and fecundity), with means of zero and the 

estimated (co)variances. Estimates of germination probability range from 0 to 0.1 and 0.005 to 

0.04 for first !!  and second year germination !!"  respectively (Quintana-Ascencio & 

Menges 2000; Menges & Quintana-Ascencio 2004). To select a fertility scenario for the 

perturbation analyses predicted dynamics using a range of these estimates and of seed mortality 

probabilities (0.5, 0.7, 0.9) were compared to those observed in the field (Appendix A2). A 

model with low first year germination (0.0), high germination from the seedbank (0.04) and low 

seed mortality (0.5) was selected as it was consistent with observed changes in aboveground 

population growth (Fig. 6a). That is, aboveground populations were predicted to increase 

immediately following a fire, but not beyond ten years postfire (Menges & Quintana-Ascencio 

2004). 

 
Figure 5: a) Eryngium IPM kernel (see Appendix A2). The first term of the seedbank (!) 
equation is those seeds that remain in the seedbank from ! to ! + 1; they do not die, with 
probability 1 − !, and do not germinate, with probability 1 − !!". The second term refers to 
seeds produced that year that enter the seedbank. The size distribution of rosettes at ! + 1 is 
given by those seeds germinating from the seedbank !!! !! , a survival-growth function, 
!! !!, ! , of rosettes at ! and fecundity function, !! !!, ! . b) Structure of Eryngium stochastic 
vital rates model, including equations for each submodel and b) posteriors for this model for (i) 
fixed effects and (ii) year effects. !! parameters are intercepts, !! and !! parameters are slopes 
with respect to size (!) and the latent parmeter (!) respectively and ! are submodel specific 
year effects. !! and !! are the standard deviation for the growth and recruitment functions 
respectively and !!" is the dispersion parameter for the fecundity function. !!" parameters are 
the standard deviations of the submodel specific year effects; !!"!"! is the covariance between 
the fecundity and flowering year effects. In b) the points show the means and horizontal lines 
show the 95% credible intervals for each parameter; the vertical dashed line is at 0.  
 

Perturbation analyses 

The effects of different fire regimes were explored using a range of constant fire return intervals 

(FRIs) from two to 30 years. Stochastic population growth rates were estimated by iterating 100 

populations for 1,000 years; the first 200 years were excluded as transient dynamics. We found 
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populations were likely to decline where the time between fires was too short (c.<4 years), 

because plants do not produce enough seeds to replenish the seedbank, or too long (c.>15 years; 

Fig. 6b), as they are outcompeted. This is in accordance with a previous study, using a matrix 

selection approach, which found an optimal FRI of less than 15 years (Menges & Quintana-

Ascencio 2004). 

To determine how altering the effect of fire on the vital rates affected population growth 

the !!"# parameter was perturbed. This is a measure of how quickly the environment decays as 

TSF increases; more negative values of this parameter indicate the quality of the environment 

decreases more quickly following a fire. Stochastic population growth rates were estimated as 

before, but the fire regimes were varied randomly throughout the simulations (with the same 

chance of each FRI occurring), either between 1 and 15 years (optimum for Eryngium) or 

between 15 and 30 years (optimum for Florida scrub habitat). Decreasing !!"# by around 1/3 

could make a 15:30 year FRI strategy sustainable for Eryngium (Fig. 6c). The effect of altering 

the temporal decay of the environment is much higher when the FRI is higher, to the extent that 

decreasing !!"# sufficiently can make longer FRIs preferable for Eryngium (Fig. 6c).  

 

 

Figure 6: (a) Aboveground population growth rate ! = !"# !!
!!!!

 estimated from 1000 

simulations of 22 years each for Eryngium. Red points are the observed growth rates and mean 
sizes for the study population and three other populations (site numbers 45, 57 and 91) with 
similar FRIs. (b) Log !! under different burning regimes, (c) effect of changing value of !!"# on 
log !! under two different FRIs. In all four plots !! = 0.0,!!" = 0.04, and ! = 0.5. Points 
show the median, thicker bars and thinner bars show interquartile range and 95% quantiles 
respectively. Dotted vertical line in (c) shows the estimated value of !!"#.  
 

Discussion 

Identifying the environmental drivers of variation in demographic performance is challenging. 

A variety of approaches have been proposed (e.g. Teller et al. 2016; Van der Pol et al. 2016), 

but the performance of any method is limited by the degree of temporal replication available. 

The mean length for a demographic data set is six years in plants and eleven in animals 

(Salguero-Gomez et al. 2015; Salguero-Gomez et al. 2016). Yet, simulations suggest 20-25 

years of data are needed to identify environmental drivers, determine the temporal window over 

which they act and reliably estimate the magnitude of their effects (Teller et al. 2016; Van der 
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Pol et al. 2016). Efforts to identify drivers in many of these populations will not succeed, 

forcing population ecologists to assess the likely effects of environmental change using indirect 

methods. The observation that, in natural populations, different components of demographic 

performance covary, often positively, (Nur & Sydeman 1999; Jongejans et al. 2010; Rotella et 

al. 2012) implies different demographic processes respond (at least in part) to the same drivers. 

We have demonstrated how a structural equation modelling (SEM) framework can be used to 

incorporate a temporal axis of environmental variation into a demographic model. The resulting 

multi-process model—coupled via a latent ‘environmental quality’ variable—requires fewer 

parameters than its unstructured (UCM) counterpart. In principle, SEM models may yield more 

precise estimates of population growth, though this comes at a potential cost of increased bias 

when the model is insufficiently flexible. In practice, in our simulation study the UCM and 

SEM approaches yielded comparable estimates of population growth rate. Thus, the main 

advantage of the SEM approach is that it identifies the main axes of demographic variation, 

which provide a basis for understanding how populations may respond to environmental change. 

When it is not possible to explicitly identify environmental drivers of demographic 

variation, local perturbation analysis of model parameters can be used to explore the potential 

response of a population to environmental change (Rees & Ellner 2009). These analyses 

typically consider each parameter in turn, assessing its effect on metrics such as population 

growth rate while holding all else constant. However, the existence of (positive) temporal 

correlations among demographic processes suggests multiple processes respond in a 

coordinated manner to environmental change. A SEM model allows us to identify the potential 

axis of change and, by focusing perturbation analyses on this axis, makes population level 

predictions under different environmental conditions possible. For example, this allowed us to 

make predictions on how life histories may evolve under putative environmental conditions. We 

identified how the environmental quality would have to change for Carduus to alter its 

flowering strategy; showing that increases in its average vital rates, in particular survival, will 

lead to selection for a perennial life history. Whilst we focus here on temporal variation this 

approach could also be used to predict joint demographic responses to spatial variation (Elderd 

& Miller 2016). 

The key limitation is that this interpretation of the model assumes temporal covariances 

are largely environmentally driven. This may not be true if individuals substantially adjust their 

allocation strategy in response to environmental conditions. Negative correlations among the 

vital rates may exist due to life history trade-offs between vital rates, where for example 

resources are invested in survival or reproduction to the detriment of growth (Koenig & Knops 

1998). Negative correlations appear relatively rare however (Jongejans et al. 2010), and where 

they do exist are sometimes attributable to opposing responses to environmental drivers (e.g. 

Knops, Koenig & Carmen 2007). This suggests the magnitude of trade-off effects is generally 
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small compared to that of environmental effects, though life history trade-offs may still 

attenuate environmental driver(s) of covariation.  

Explicitly incorporating environmental drivers allows population responses to 

management strategies or anticipated environmental change to be predicted (e.g. Gotelli & 

Ellison 2006; Isaza et al. 2016). The SEM approach can simplify the process of incorporating 

such drivers, as they can be included into a single model of the shared environmental axis. 

Where explicit environmental drivers (e.g. population density or temperature) can be identified, 

these are typically considered on a process-specific basis, by constructing separate models for 

survival, reproduction, growth, and recruitment (e.g. Dahlgren, Ostergard & Ehrlen 2014; 

Williams et al. 2015). This would require the addition of four time-since-fire slope parameters 

in our Eryngium case study, one for each temporally variable vital rate (e.g. Evans, Holsinger & 

Menges 2010). Instead, we introduced a higher-level model, decomposing the shared axis of 

environmental variation into explained and residual components of variation. Thus the effects of 

time since fire on all four vital rates were incorporated with the addition of a single parameter. 

This allowed us to evaluate the population level effects of two alternative management 

strategies; that is altering the disturbance regime or ameliorating the environment to decrease 

the rate of decay in environmental quality following a disturbance. We found that whilst the 

optimum FRI for Eryngium is less than 15 years, decreasing the rate of environmental decay 

could lead to persistent populations under 15-30 year fire regimes (the recommended FRI for 

the Florida scrub habitat; Menges 2007). 

Similar approaches to our analysis have been used previously (Evans, Holsinger & 

Menges 2010; Evans & Holsinger 2012; Elderd & Miller 2016). However, in previous models 

the slope terms for the environmental quality parameter !!  were constrained to a value of +1 

or -1 among a set of demographic models. These usually operate on different scales, for 

example probabilities, such as survival and flowering, are typically estimated on a logit scale, 

whereas fecundity is generally estimated on a log scale; a unit change on these two scales 

cannot be meaningfully compared. Moreover, differences in the magnitude of the effect of 

temporal variation among the vital rates were accounted for by the process specific year effects 

(!). Thus the main advantage of the SEM approach is lost, as the latent variable cannot be 

conceived as a simple measure of overall environmental quality.  

Adopting a Bayesian approach has a number of benefits (Elderd & Miller 2016), for 

example allowing the effects of difference sources of uncertainty to be quantified (Evans, 

Holsinger & Menges 2010). Uncertainty is likely to be very high for most data sets (Metcalf et 

al. 2015). Parameter uncertainty can have important ecological implications, for example failing 

to account for it may underestimate the risk of extinction (Ludwig 1996). Using a Bayesian 

approach also allows for posterior predictive checks (Gelman et al. 2004). These are particularly 

important when fitting very constrained models, for example when assuming the temporal 

covariation in the vital rates may be explained by a single environmental axis. Sometimes, as in 
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the Eryngium case study, additional axes may be necessary to fully account for the covariation 

in the vital rates. We recommend starting with a simple model structure and slowly adding in 

complexity.  

 Rapid levels of environmental change have increased interest in determining how 

population processes respond to environmental stochasticity (Stenseth et al. 2002; Evans 2012). 

However, the long-term individual level data needed to accurately quantify such responses are 

often lacking, especially for rare species. Where positive covariances exist among vital rates 

these can be exploited under a SEM approach to allow predictions on the joint responses of vital 

rates to environmental variation. Where insufficient data exist to identify environmental drivers 

the SEM approach may offer the best alternative for predicting population responses to 

environmental change.  
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Supplementary Figures 

 
Figure S1: Covariance between the submodel specific year effects in the Carduus model for (a) 
survival and growth, (b) survival and recruit size, (c) growth and recruit size. Dotted line is at 
zero. Solid line is covariance between random year effects from the corresponding mixed 
models. The correlations between the random year effects were not significant 0.13 ≤ ! ≤
0.37 . If a single latent parameter was insufficient to account for the covariation amongst the 
vital rates, for example if two vital rates were particularly closely correlated (see Fig. S5), the 
estimates of the submodel specific year effects for those vital rates would be expected to covary. 
The modes of the distributions are at zero, suggesting that the latent parameter is able to account 
for the covariation between the vital rates. 
 
 

Figure S2:  Vital rate functions: (a) recruitment (b) survival (c) growth, and (d) recruit size for 
the Carduus model. The means of the posterior distributions are used as the parameter estimates. 
The mean function is plotted along with -2, -1, +1 and +2 standard deviations of the latent 
parameter (!). The minimum and maximum rosette area seen in the study population are, on a 
log scale, -1.63 and 7.42 respectively.  
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Figure S3: Fitness landscapes for environments with a mean quality of (a) -2, (b) -1, (c) 0, (d) 1 
and (e) 2, with a seed mortality (!) of 0.2, assuming that the resident strategy is at the joint 
flowering intercept and germination probability ESS. The resident strategy is marked by a black 
point.  
 
 

Figure S4: Estimates of the latent year parameter with time since fire. Points are the mean 
estimate for each year where data were available. The density independent model is described in 
the main text and Appendix A2; the density dependent model is described in Appendix A5. 
Including a linear effect of !"# led to better model fit than !"#(!"#); more complicated 
models could not be supported due to the lack of replication of !"# (Evans, Holsinger & 
Menges 2010) and were not evaluated. Previous analyses have shown nonlinear relationships 
with time since fire, with higher rates of decay in ! when fires were more recent (Menges & 
Quintana-Ascencio 2004). Data on the period immediately following a fire were not available 
for this population and a linear decay was consistent within the range of the data used.  
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Figure S5: Covariance between submodel specific year effects for the Eryngium models 
excluding i) and including ii) bivariate distribution between flowering and fecundity year effects 
for a) survival and growth, b) survival and flowering, c) survival and fecundity, d) growth and 
flowering, e) growth and fecundity, f) fecundity and flowering. Dotted lines are at zero and 
solid lines show covariance between year effects for mixed models. In i) the mode in plot a) is 
not at zero, suggesting that the latent parameter is not accounting for the covariation between 
survival and growth in this model. Allowing the fecundity and flowering year effects to be 
modelled using a bivariate distribution corrects for this as can be seen in ii).  
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Figure S6: Mean vital rate functions for the Eryngium a) density dependent and b) density 
independent models: i) growth, ii) survival, iii) flowering, iv) fecundity and v) recruitment for 
one to 25 years since fire (TSF). The plots are created using the means from the posterior 
distributions as the parameter estimates. See Appendix A5 for details on the density dependent 
model. 
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Appendix A1: Structure and parameterisation of simulation IBMs and IPMs 

Simple model (with 4 temporally stochastic parameters): 

The IBM is parameterised using data from the Soay sheep population on St Kilda from 1985 to 

2013 (Clutton-Brock & Pemberton 2004). For the sake of simplicity the IBM is one sex 

(female) and each ewe can produce a maximum of one lamb each year (twinning does occur in 

the study population; Clutton-Brock & Pemberton 2004)).  

At every year (!) in the simulation whether each individual survives is decided by 

sampling randomly from a binomial distribution with a size dependent probability given by 

logit !!(!) = 3.44 +  −0.62! + ![!]! , where ![!]!  is a random year effect and ! is a measure of 

size (natural log of the individuals mass). We assume that the effect of size on the vital rates 

does not vary between years (i.e. only the intercepts vary). The size of surviving individuals in 

the following time step was sampled randomly from a normal distribution with a mean of 

![!,!]
! =  2.38 +  0.24! +  ![!]

!  and a standard deviation of 0.14. Surviving individuals reproduce 

with probability logit !!(!) =  −7.37 +  2.88! +  ![!]! .  The new recruit is female with 

probability 0.5 (i.e. assuming equal sex ratio) and survives to the next time step with probability 

logit !!) = 1.36. The size of the new recruits is dependent on maternal size; they are sampled 

from a normal distribution, with a mean of ![!!!]!"  =  1.22 +  0.41! +  ![!]!"  and a standard 

deviation of 0.20. 

The year effects (![!]! , ![!]
! , ![!]!  and ![!]!") were sampled from a covariance matrix at each 

year in the simulation. The standard deviations (1.05, 0.04, 0.46 and 0.07 for survival, growth, 

reproduction and recruit size respectively) were parameterised from the data. The correlation 

matrix was randomly drawn for each simulation from a uniform distribution over the space of 

positive definite matrices (using rcorrmatrix from the clusterGeneration package in R; Qiu & 

Joe 2015) 

Each of 100 simulations started with a population of 500 recruits and ran for 10,000 

years. As the population sizes fluctuated 500 individuals were selected at random, with 

replacement, after each year and these were used as the starting population for the following 

year (Metcalf et al. 2015). A realistic range of dataset lengths was used (12, 25, and 50 years). 

One data set of each length was selected at random from the last 8,000 years of each simulation. 

For each year in the dataset a random number of individuals (between 20 and 150; reflecting the 

magnitude of numbers of individuals often seen in demographic studies (e.g. Childs et al. 2003) 

and a similar range to that used in (Metcalf et al. 2015)) was selected. These were used to 

parameterise two sets of demographic models; with either an unstructured covariance matrix 

(UCM approach) or a latent parameter (!; structural equation modelling (SEM) approach) 

accounting for the covariance amongst the vital rates (Fig. 1). In the SEM approach the factor 

loading terms (!!) allowed the direction and magnitude of the model wide year effect to differ 

between vital rates. Each vital rate also contained additional sub-model specific random year 
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effects, (!), which accounted for any additional variation among years specific to that vital rate. 

The standard deviation of the latent year parameter (!) in the SEM was constrained to 

equal one and the factor loading term in the survival submodel was constrained to be positive so 

that the model was properly identifiable. The signs of the slope terms in the remaining 

submodels therefore denote whether the remaining vital rates are positively or negatively 

correlated with survival. Parameters were estimated in JAGS, using runjags (Denwood in 

review). Prior distributions are show in Table S1. Two chains were run for each model, each 

with a burn in period of 8x105. The chains were thinned, selecting every 500th sample. The IPM 

was parameterised by sampling from the joint posterior distribution of the parameters. As the 

sample standard deviation of the latent year parameter differed from one, the !! parameters 

were scaled by the sample standard deviation of the latent year parameters.  

The structure of the IPM kernel is shown in Fig. 1. The temporally varying vital rates 

(survival (!! ! ), growth !! ! ′, ! , reproduction (!! ! ), and recruit size (!"! ! )) are 

parameterised using either the SEM approach or the UCM approach (Fig. 1). Where the UCM 

approach was used a covariance matrix was estimated from the posterior distributions of the 

year effects. The probability of a lamb recruiting (!!) was assumed to be constant among years; 

this was estimated as the proportion of recruiting individuals across all years. The IPM was 

iterated for 10,000 years using 100 meshpoints. The stochastic growth rate was estimated, 

excluding the first 2,000 years of data as log !! = !
!!! ln(!!!! !!)!!!

!!! . This was repeated 

with 1,000 samples from the posterior for each simulation. The “true” stochastic growth rate 

was estimated for each simulation by parameterising the IPM using the known parameter values.
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Table S1: Prior distributions for the simple simulation study. For normal distributions parameter 1 and 2 are the mean and standard deviation respectively, for 
uniform distributions they are the minimum and maximum, for multivariate normal distributions (MVN) they are the mean and covariance matrix, for the inverse 
Wishart distribution they are the scale matrix and degrees of freedom. See Fig. 1 for parameter definitions. A scaled inverse Wishart distribution (Gelman & Hill 
2007) is used for the covariance matrix (Σ), where ! is a vector of scaling parameters, ! is a vector of unscaled intercepts and ! is the unscaled covariance matrix. 

  UCM approach SEM approach 
Parameter Submodel Distribution Parameter 1 Parameter 2 Distribution P        Parameter 1 Parameter 2 

!!! Survival - !!!! - Normal 0 100 
!!! Survival Normal 0 100 Normal 0 100 
!!!  Survival - - - Uniform 0 10 
!!"!  Survival MVN 0 Σ = Diag ! !Diag(!) Normal 0 Uniform(0, 10) 
!!! Growth - !!!! - Normal 0 100 
!!! Growth Normal 0 100 Normal 0 100 
!!
! Growth - - - Normal 0 10 

!!"!  Growth MVN 0 Σ = Diag ! !Diag(!) Normal 0 Uniform(0, 10) 
!! Growth Uniform 0 10 Uniform 0 10 
!!!" Recruit size - !!"!!"  Normal 0 100 
!!!"	 Recruit size Normal 0 100 Normal 0 100 
!!!" Recruit size - - - Normal 0 10 
!!"!"  Recruit size MVN 0 Σ = Diag ! !Diag(!) Normal 0 Uniform(0, 10) 
!!" Recruit size Uniform 0 10 Uniform 0 10 
!!! Reproduction - !!!!  Normal 0 100 
!!! 	 Reproduction Normal 0 100 Normal 0 100 
!!!  Reproduction - - - Uniform 0 10 
!!"! 	 Reproduction MVN 0 Σ = Diag ! !Diag(!) Normal 0 Uniform(0, 10) 
! All - - - Normal 0 1 
V	 All Inverse Wishart I(4) 5 - - - 
!	 All Normal 0 100 - - - 
!	 All Uniform 0 1 - - - 
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Complex model (with seven temporally stochastic parameters): 

The IBM is based on data from the Soay sheep population on St Kilda from 1985 to 2013 

(Clutton-Brock & Pemberton 2004). As in the simple model above the IBM is one sex (female) 

and each ewe can produce a maximum of one lamb each year (twinning does occur in the study 

population; Clutton-Brock & Pemberton 2004)). The IBM contains seven temporally variable 

vital rates; we assume that the effect of size on the vital rates does not vary between years (i.e. 

only the intercepts vary), giving a total of seven stochastic parameters. The population is split 

into two stage classes; juveniles and adults. 

 At each year (!) in the simulation whether each juvenile in the population survives is 

decided by sampling randomly from a binomial distribution, with a size (!)  dependent 

probability given by logit !!(!) = −15.16 +  6.39! + ![!]! , where ![!]!  is a random year effect 

and ! is a measure of size (natural log of the individuals mass). The size of the surviving 

juveniles in the following time step was sampled randomly from a normal distribution with a 

mean of ![!,!]
! =  1.24 +  0.63! +  ![!]

!  and a standard deviation of 0.08. Surviving juveniles 

may mature to adults with probability logit !!(!) = −10 +  4! + ![!]! . Adults at time ! 
survive with probability logit !!(!) = −4.38 +  2.12! + ![!]! . The size of surviving adults at 

t+1 was sampled randomly from a normal distribution with a mean of ![!,!]! =  0.69 +  0.78! +
 ![!]!  and a standard deviation of 0.06. 

 Surviving adults and juveniles that have transitioned to the adult stage that year may 

reproduce with probability logit !!(!) = −7.37 +  2.88! +  ![!]! . The new recruit is female 

with probability 0.5 (i.e. assuming equal sex ratio) and survives to the next time step with 

probability 0.75 (this is not temporally variable). The size of the new recruits is dependent on 

maternal size; they are sampled from a normal distribution, with a mean of ![!!!]!  =  1.22 +
 0.41! +  ![!]!  and a standard deviation of 0.20. 

The year effects (![!]! , ![!]!  , ![!]
! , ![!]! , ![!]! , ![!]! , and ![!]! ) were sampled from a covariance 

matrix at each year in the simulation. The standard deviations for the year effects were 2.3, 1.14, 

0.04, 0.04, 0.5, 0.46 and 0.07 for juvenile survival, adult survival, juvenile growth, adult growth, 

maturation, reproduction and recruit size respectively. The correlation matrix was randomly 

drawn for each simulation from a distribution that is uniform over the space of positive definite 

matrices (using rcorrmatrix from the clusterGeneration package in R; Qiu & Joe 2015) 

Each simulation was started with a population of 500 juveniles and was run for 10,000 

years. As above 500 individuals were selected at random, with replacement, after each year and 

these were used as the starting population for the following year (Metcalf et al. 2015). The first 

2,000 years of the simulation were discarded as transient dynamics. 

A realistic range of dataset lengths was used (12, 25, and 50 years). One dataset of each 

length was selected at random from the last 8,000 years of each simulation. For each year in the 

dataset a random number of individuals (between 20 and 150; reflecting the magnitude of 
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numbers of individuals often seen in demographic studies) was selected. These were used to 

parameterise two sets of demographic models; the first consists of separate mixed effects 

models (GLMM approach), whilst in the second a latent variable (!) describes the covariance 

amongst the vital rates (structural equation modelling (SEM) approach). The factor loading 

terms (!!) allow the direction and magnitude of the model wide year effect to differ between 

vital rates. The submodels also contain additional year effects, (!), which account for any 

additional variation between years. 

The standard deviation of the latent year parameter (!)  of the SEM model was 

constrained to equal one so that the model was properly identified. Additionally, the factor 

loading term in the juvenile survival submodel (!!!) was constrained to be positive; the signs of 

the slope terms in the remaining submodels therefore denote whether the remaining vital rates 

are positively or negatively correlated with survival.  

The models were run in JAGS, using runjags (Denwood in review). Prior distributions 

are show in Table S2. Two chains were run for each model. The models were run with a burn in 

period of 4 x105 for the SEM models and 5x105 for the unstructured approach. Each chain was 

then run for a further 1.25x106 iterations and thinned, selecting every 500th sample, to give a 

total posterior sample of 5,000 across the two chains. Convergence was assessed using the 

multivariate psrf score; those models with a psrf>1.05, and a randomly selected 10% of all 

models were assessed visually. Models that hadn’t converged were rerun with a longer burn in 

and more thinning. 

The structure of the IPM is shown in Fig. 1. The temporally variable vital rates are 

parameterised using either the SEM approach or the GLMM approach described above. The 

probability of a lamb recruiting (!!) was assumed to be constant among years; this was 

estimated as the proportion of recruiting individuals across all years. As the sample standard 

deviation of the latent year parameter differed from one, the !! parameters were scaled by the 

sample standard deviation of the latent year parameters. 

 The IPM was iterated for 10,000 years using 100 meshpoints. The stochastic growth 

rate was estimated, excluding the first 2,000 years of data, as log !! = !
!!! ln(!!!! !!)!!!

!!! . 

This was repeated with 1,000 samples from the posterior for each simulation. The “true” 

stochastic growth rate was estimated for each simulation by iterating the IPM using the known 

parameter values. 
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Table S2: Prior distributions for the complex simulation study. For normal distributions parameter 1 and 2 are the mean and standard deviation respectively, for 
uniform distributions they are the minimum and maximum, for multivariate normal distributions (MVN) they are the mean and covariance matrix, for the inverse 
Wishart distribution they are the scale matrix and degrees of freedom. See Fig. 1 for parameter definitions. A scaled inverse Wishart distribution (Gelman & Hill 
2007) is used for the covariance matrix (Σ), where ! is a vector of scaling parameters, ! is a vector of unscaled intercepts and ! is the unscaled covariance matrix.  

  UCM approach                     SEM approach 
Parameter Submodel Distribution Parameter 1 Parameter 2 Distribution Parameter 1 Parameter 2 

!!! Juvenile survival - !!!! - Uniform -50 50 
!!! Juvenile survival Normal 0 50 Uniform -50 50 
!!!  Juvenile survival - - - Uniform 0 10 
!!"!  Juvenile survival MVN 0 Σ = Diag ! !Diag(!) Normal 0 Uniform(0, 10) 
!!!	 Adult survival - !!!! - Uniform -50 50 
!!!	 Adult survival Normal 0 50 Uniform -50 50 
!!!	 Adult survival - - - Uniform -10 10 
!!"! 	 Adult survival MVN 0 Σ = Diag ! !Diag(!) Normal 0 Uniform(0, 10) 
!!! Juvenile growth - !!!! - Uniform -50 50 
!!! Juvenile growth Normal 0 50 Uniform -50 50 
!!
! Juvenile growth - - - Uniform -10 10 

!!"!  Juvenile growth MVN 0 Σ = Diag ! !Diag(!) Normal 0 Uniform(0, 10) 
!! Juvenile growth Uniform 0 10 Uniform 0 10 
!!!	 Adult growth - !!!! - Uniform -50 50 
!!!	 Adult growth Normal 0 50 Uniform -50 50 
!!!	 Adult growth - - - Uniform -10 10 
!!"! 	 Adult growth MVN 0 Σ = Diag ! !Diag(!) Normal 0 Uniform(0, 10) 
!!!	 Maturation - !!!! - Uniform -50 50 
!!!	 Maturation Normal 0 50 Uniform -50 50 
!!!	 Maturation - - - Uniform -10 10 
!!"! 	 Maturation MVN 0 Σ = Diag ! !Diag(!) Normal 0 Uniform(0, 10) 
!!!" Recruit size - !!"!!" - Uniform -50 50 
!!!"	 Recruit size Normal 0 50 Uniform -50 50 
!!!" Recruit size Uniform - - Uniform -10 10 
!!"!"  Recruit size MVN 0 Σ = Diag ! !Diag(!) Normal 0 Uniform(0, 10) 

 



 27 

  UCM approach SEM approach 
Parameter Submodel Distribution Parameter 1 Parameter 2 Distribution Parameter 1 Parameter 2 

!!" Recruit size Uniform 0 10 Uniform 0 10 
!!! Reproduction - !!!! - Uniform -50 50 
!!! Reproduction Normal 0 50 Uniform -50 50 
!!!  Reproduction Uniform - - Uniform -10 10 
!!"!  Reproduction MVN 0 Σ = Diag ! !Diag(!) Normal 0 Uniform(0, 10) 
V All Inverse Wishart I(7) 8 - - - 
! All Normal 0 100 - - - 
! All Uniform 0 1 - - - 
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Appendix A2: Parameterisation of the case study integral projection models 

Carduus IPM: 

Carduus nutans is native to Europe, Asia Minor, Siberia and North Africa and has been 

introduced in Australia, New Zealand, the United States, and Canada. Demographic data were 

collected on 2,371 Carduus rosettes from 1988 to 1996 in Kybeyan, New South Wales, 

Australia (Rees et al. 2006). The majority of individuals in this population (85%) acted as 

annuals, flowering in their first year (Rees et al. 2006). 

The Carduus IPM is structurally identical to that used by Rees et al (2006), differing 

only in the way in which temporal variation in the vital rates is modelled (Rees et al. 2006 use a 

kernel selection approach). The structuring variable is the natural logarithm of rosette area (!), 
a measure of plant size (Rees et al. 2006) that predicts individual performance. Rosette area was 

estimated using the mean of two measurements of the radius and assuming that the plants were 

circular. The structure of the IPM is shown in Fig. 3a. 

The seed production function (!! ! ) is given by !! ! !"(!)!!(!), where, for a plant of 

size !, !!(!) is the probability of survival in year !, !" !  is the flowering probability and !!(!) 
is the expected number of seeds produced. The latter two terms are assumed to be constant 

between years (Rees et al. 2006). The probability of flowering was assumed to be size 

dependent and follow a binomial distribution; the intercept (!!!) and slope (!!!) were estimated 

from a generalised linear model as -5.31 and 1.66 respectively. The expected number of seeds, 

!!(!) was given by exp (! + !log size ), where ! = 3.28 and ! = 0.58 (Rees et al. 2006).  

The distribution of seedlings recruiting from the seedbank (!!!) is given by !(1 −
!)!!(!)!"!(!!), where !! !  is the probability of establishment and !"! ! ′  is the probability 

distribution of recruit sizes. Recruit size was assumed to be independent of parental size as data 

were not available and studies on similar species (e.g. Sletvold 2002) have suggested recruit 

size is mainly determined by the environment (Rees et al. 2006). The survival growth function, 

!! !′, ! , is given by !!(!)(1 − !" ! )!!(!′, !), where !!(!′, !) is a probability density function 

giving the probability of an individual of size ! growing to size !′. The flowering probability is 

included in the survival growth function as flowering is fatal. The fecundity function, !! !′, ! , 

is given by !!!!!(!)!"!(!′).  
Recruitment was assumed not to be related to seed production (Rees et al. 2006); 

therefore the probability of seeds establishing in year !, !!(!), was assumed to be density 

dependent and was given by 

 !!(!) =  !(!!!)
![(!!!)! ! ! !! ! ! !,! !"]Ω

.     (eqn A1)        

!(! + 1) is the number of recruits in year ! + 1, whilst the denominator gives the total number 

of germinating seeds, consisting of those from the seedbank and those produced in year !.  
 Posterior distributions for the stochastic vital rates model (Fig. 3b) were estimated using 

Markov Chain Monte Carlo (MCMC) simulations in JAGS, using runjags (Denwood in review). 
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An initial burnin period of 1.5x105 iterations was discarded for each of three chains; which were 

then run for a further 2x106 iterations. The chains were thinned to reduce autocorrelation, with 

every 100th iteration saved, giving a posterior sample of 60,000. The prior distributions were 

weakly informative (i.e. within biologically reasonable ranges) to improve mixing (Table S3; 

see Appendix A3 for comparison with more informative priors). The vital rates were integrated 

into the IPM using the posterior means as the parameter estimates. As the sample standard 

deviation of the latent parameter (!) differed from one, the !! factor loading parameters were 

scaled by the sample standard deviation of the latent parameters.  

The IPM was solved using the midpoint rule (Easterling, Ellner & Dixon 2000), using 

50 meshpoints. Increasing the number of meshpoints from 50 to 200 did not affect the model 

output. As the minimum and maximum sizes used were broad and the effect of size at time ! on 

size at time ! + 1 was relatively small, there was very minimal eviction from the model 

(Williams, Miller & Ellner 2012). The maximum size used was however much larger than seen 

in the study population. Most individuals in the study population flowered, and therefore died, 

in their first year, so there was very limited data available on the growth of larger individuals or 

maximum size that individuals could reach; ideally this could be supplemented with data from 

another population or experimental data.  

Note that here we used the mean of the posterior distributions as the parameter 

estimates. By drawing samples randomly from the posterior it would be possible to give a 

measure of parameter uncertainty and the impacts of this on the results (e.g. Evans, Holsinger & 

Menges 2010; Diez et al. 2014). 

 
Table S3: Prior distributions for the parameters for Carduus. For normal distributions parameter 
1 and 2 are the mean and standard deviation respectively, for uniform distributions they are the 
minimum and maximum. The mean values for the !! and !! prior distributions were based on 
general linear mixed models (using lme4 in R; Evans, Holsinger & Menges 2010). See Fig. 3 
for parameter definitions. 
Parameter Submodel Distribution Parameter 1 Parameter 2 

!!! Survival Normal -5.16 5 
!!! Survival Normal 1.03 5 
!!!  Survival Uniform 0.00 100 
!!"!  Survival Normal 0.00 Uniform(0,5) 
!!! Growth Normal 3.84 5 
!!! Growth Normal 0.12 5 
!!
! Growth Normal 0.00 5 

!!"!  Growth Normal 0.00 Uniform(0,5) 
!! Growth Uniform 0.00 5 
!!!" Recruit size Normal 1.45 5 
!!!" Recruit size Normal 0.00 5 
!!"!"  Recruit size Normal 0.00 Uniform(0,5) 
!!" Recruit size Uniform 0.00 5 
!!! Recruitment Normal 4.62 5 
!!!  Recruitment Normal 0.00 5 
!! Recruitment Uniform 0.00 8 
! All  Normal 0.00 1 
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Eryngium IPM: 

Demographic data collected from 1990 to 2007  (covering a period of between four and 21 

years since fire) on a single population (site number 85) at the Archbold Biological Station 

(Florida) were used in this study (data from 1988-9 were excluded due to quality concerns 

Menges & Quintana-Ascencio 2004). The IPM was structured by the natural logarithm of 

rosette diameter (Menges & Quintana-Ascencio 2004). The structure of the IPM is given by Fig. 

5a. 

The seed production function, !! ! , is given by !"!(!)!"! !  !!(!), where, for a plant 

of size !, !"!(!) is the flowering probability, !"! !  is the number of flowering stems and !!(!) 
is the expected number of seeds produced per flowering stem. The size distribution of plants 

recruiting from the seedbank (!!! !! ) is given by !!"!!!!"! ! ′ , where !!! is seedling survival 

and !!! !′  is the distribution of recruit sizes. The second term is composed of the survival 

growth function, and seeds produced that year that germinate immediately. The survival growth 

function, !! !′, !  is given by !!(!)!!(!′, !) , where !!(!)  is the survival probability and 

!!(!′, !) gives the probability of an individual of size ! growing to size !′. The fecundity 

function, !! !′, ! , is !!!!!!! !  !"! !′  . 

Posterior distributions for the stochastic vital rate model were estimated using Markov 

Chain Monte Carlo (MCMC) simulations in JAGS, using runjags (Denwood in review). An 

initial burnin period of 3x105 iterations was discarded for three chains. Each chain was then run 

for a further 4x106 iterations. The chains were thinned to reduce autocorrelation, with every 

200th iteration saved, resulting in a posterior sample of 60,000. Weakly informative priors were 

used (Table S4; see Appendix A3 for a comparison with more informative priors). The posterior 

means were used as the parameter estimates for the vital rates from the vital rates model. As 

above the !! factor loading parameters were scaled by the sample standard deviation of the 

latent year parameter estimates. 

The seedling survival term (!!!) accounts for the period between emergence in January-

May and the annual census in October/November. Yearly data were not available on seedling 

survival for the duration of the study period, so this was not included in the stochastic vital rates 

model. Instead four years of data were used, from a total of seven populations (Menges & 

Quintana-Ascencio 2004). A mixed effect model on seedling survival against time since fire, 

with year included as a random effect, suggested that seedling survival decreased with time 

since fire. This was included in the IPM using the following equation, logit(!!) = −1.84 +
 −0.03!"# +  !!"!! , where !!"!!  is given by a normal distribution with mean 0 and standard 

deviation 1.1.  

Estimates of germination probability range from 0 to 0.1 and 0.005 to 0.04 for first year 

germination !!  and second year germination !!"  respectively (Quintana-Ascencio & 

Menges 2000; Menges & Quintana-Ascencio 2004). The model was run using the lowest (0 and 

0.005) and highest (0.1 and 0.04) estimates of each, as well as with a range of seed mortality 
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probabilities (0.5, 0.7, 0.9, Menges & Quintana-Ascencio 2004) as data were not available on 

seedbank mortality.  

The fecundity term in the SEM was the number of flowering branches. The true 

fecundity is given by the product of this and the number of stems per flowering stem. The mean 

number of seeds per stem (!!(!)) across populations (183, Menges & Quintana-Ascencio 2004) 

was used (Fig. S7a). Neither this nor recruit size were allowed to vary among years due to a 

lack of data for the study population. Recruit size was assumed to be independent of parental 

size. As with Carduus, the IPM was solved using the midpoint rule (Easterling, Ellner & Dixon 

2000), using 50 meshpoints. Increasing the number of meshpoints from 50 to 200 did not affect 

the model output. 

For each scenario 1000 populations were simulated for 22 years (as the study 

population dataset runs to 21 years since fire), starting with a fire year and with no further fires 

during that period. At each iteration the latent parameter (!) was randomly sampled from a 

normal distribution with mean !!"#×!"# and a standard deviation of one (Fig. S8). This allows 

the model outputs to be compared to observed population dynamics. Each simulation started 

with an initial population of 7000 seeds and no aboveground plants (Menges & Quintana-

Ascencio 2004).  

Fire usually causes the death of all plants, with the population replenishing from the 

seedbank in the following year (Menges & Quintana-Ascencio 2004), therefore rosette survival 

is assumed to be zero in years of fire.  As reproduction occurs immediately following the census 

rosettes are allowed to reproduce before the fire occurs, however only seeds entering the 

seedbank will survive i.e. seedling survival is, like adult survival, assumed to be zero. 

All of the fertility scenarios produce population sizes that first increase then decrease 

with time since fire, which is the trend seen in the observed populations (Fig. S9). Several of the 

fertility scenarios produce population dynamics similar to those seen in the observed 

populations (Fig. S10). The mean rosette size generally increases then decreases with increasing 

time since fire, as seen in the observed populations (Fig. S11). However, in the fertility 

scenarios with higher germination probabilities the mean size tends to be underestimated, 

possibly because there is too much recruitment into the population (Appendix A5). 

We selected the model with low first year germination (0.0), high germination from the 

seedbank (0.04) and low seed mortality (0.5) as it was consistent with the change in 

aboveground population growth observed in the field (Fig. 6a). That is, aboveground 

populations were predicted to increase immediately following a fire, but not beyond ten years 

postfire (Menges & Quintana-Ascencio 2004). Additionally the mean rosette size increased then 

decreased with increasing time since fire, as seen in the observed populations (Fig. S11). The 

low levels of germination in the first year are in accordance with field observations for this 

species (Menges & Quintana-Ascencio 2004). The low seedbank mortality is consistent with 

experiments on a similar species, Hypericum cumulicola, (Quintana-Ascencio, Dolan & Menges 
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1998) and the observed recruitment of Eryngium seedlings in a patch after seven years without 

flowering individuals (Menges & Quintana-Ascencio 2004) would seem unlikely under the 

highest seed mortality scenario.  

Using the selected scenario mean plant size is underestimated in the early years postfire; 

scenarios with the lowest germination rates produced more realistic mean rosette sizes, however 

the growth rates were below zero even after a recent fire, which is unrealistic. The study 

population did not experience a fire during the study period. Previous work suggests the rate of 

environmental decay may be most rapid immediately postfire (Menges & Quintana-Ascencio 

2004), however this was not possible to explore using this population. This may help to explain 

the inconsistencies between the observed and predicted populations. 

Assuming that recruit size was not affected by time since fire may be unrealistic (Fig. 

S12) and could help to explain why the models tend to underestimate rosette size in the first few 

years after fire, where the actual recruit sizes may be larger than allowed for in the model (Fig. 

S11). We only used data from one population in this case study to keep the model simple; it 

would be preferable to include data from across all of the study populations (Menges & 

Quintana-Ascencio 2004). This is particularly the case as the study population was not subject 

to a fire during the study period (Fig. S4).  

Population responses to different fire regimes were explored using a range of constant 

fire return intervals (FRI) from two to 30 years. Note that in reality constant FRIs may be 

unlikely to occur; fire intervals may be more realistically modelled using for example a Weibull 

distribution, which allows the probability of fire to increase as TSF increases (e.g. Evans, 

Holsinger & Menges 2010). Stochastic population growth rates were estimated by iterating 

populations for 1,000 years and excluding the first 200 years as transient dynamics, for 100 

simulations. Populations are likely to decline where the time between fires is too short (c.<4 

years), presumably as plants do not produce enough seeds to replenish the seedbank, or too long 

(c.>15 years; Fig. 6b), as they are outcompeted. This is in accordance with a previous study, 

using a matrix selection approach, that found an optimal FRI of less than 15 years (Menges & 

Quintana-Ascencio 2004). 

We then perturbed the !!"#  parameter, which is a measure of how quickly the 

environment decays as TSF increases. More negative values of this parameter are found where 

the quality of the environment decreases more quickly following a fire. Stochastic population 

growth rates were estimated as before, but the fire regimes were varied randomly throughout the 

simulations (with the same chance of each FRI occurring), either between 1 and 15 years 

(optimum for Eryngium) or between 15 and 30 years (optimum for Florida scrub habitat). 

Decreasing !!"# by around 1/3 could make a 15:30 year FRI strategy sustainable for Eryngium 

(Fig. 6c). The effect of altering the temporal decay of the environment is much higher when the 

FRI is higher, to the extent that decreasing !!"# sufficiently can make longer FRIs preferable for 

Eryngium (Fig. 6c). As TSF increases typically the soil moisture decreases (Weekley et al. 
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2007) and the amount of bare ground decreases as leaf litter builds up and ground lichen cover 

increases (Menges et al. 2008) and Florida rosemary, Ceratiola ericoides, which can suppress 

Eryngium germination (Hunter & Menges 2002) dominates. It may be possible to decrease the 

negative effects of time since fire, for example, through the removal of C. ericoides (Menges & 

Kimmich 1996; Hunter & Menges 2002). Eryngium is found in firelanes as well as recently 

burnt areas (Menges & Kimmich 1996); comparing the rate of environmental decay between 

populations following mechanical disturbance and fires could help to determine whether 

mechanical disturbance is a possible alternative to fire as a management tool for this species. 
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Table S4: Prior distributions for the density independent Eryngium model. For normal distributions parameter 1 and 2 are the mean and standard deviation, for 
uniform distributions they are the minimum and maximum and for multivariate normal distributions they are the vector of the mean and the covariance matrix 
respectively. The mean values for the !! and !! prior distributions were taken from general linear mixed models (using lmer in R; Evans, Holsinger & Menges 
2010). See Fig. 5 for parameter definitions. 

Parameter Submodel Distribution Parameter 1 Parameter 2 
!!! Survival Normal 0.43 1 
!!! Survival Normal 0.26 1 
!!!  Survival Uniform 0 100 
!!"!  Survival Normal 0 Uniform(0,5) 
!!! Growth Normal 0.69 1 
!!! Growth Normal 0.69 1 
!!
! Growth Normal 0 5 

!!"!  Growth Normal 0 Uniform(0,5) 
!! Growth Uniform 0 5 
!!! Flowering Normal -5.11 1 

!!! Flowering Normal 2.77 1 

!!
! Flowering Normal 0 5 

!!"! , !!"!" Flowering & Fecundity Multivariate normal (0,0) (!!"! )!
(!!"

! ×!!"
!"×!!!")

(!!"! ×!!"!"×!!!")
(!!"

!")!  

!!"!  Flowering Uniform 0 5 

!!"!" Fecundity Uniform 0 5 
!!!" Flowering & Fecundity Uniform -1 1 
!!!" Fecundity Normal -2.14 1 

!!!" Fecundity Normal 1.50 1 

!!
!" Fecundity Normal 0 5 

log(!!") Fecundity Normal 0 0.0001 
! All  Normal !!"#×!"# 1 
!!"# All Normal 0 10 
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Figure S7: Available data on the effect of time since fire on (a) seeds per stem and (b) seedling 
survival from emergence in January until the annual census in October/November. Each point is 
a separate population and year combination. Note that Menges and Quintana-Ascencio (2004) 
found an effect of time since fire on seedling survival, when March precipitation was also 
included in a regression.  
 
 

Figure S8: Distribution of the latent parameter (!) when simulated for 10,000 years with a fire 
return interval of 22 years. At each time step the latent parameter is sampled from a normal 
distribution with a mean of !!"#×!"# (where TSF is the number of years since fire) and a 
standard deviation of one. 
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Figure S9: Scaled population size against time since fire for the density dependent (DD) and 
density independent (DI) models and observed populations for the twelve different fertility 
scenarios. The fertility scenarios are characterised by seed mortality (!), first year germination 
(!!) and germination from the seedbank (!!"). The predicted population sizes are the means 
for 1000 simulations. The population sizes are scaled by dividing by the maximum population 
size seen in that population or simulation. See Appendix A5 for details on the density dependent 
model. 
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Figure S10: Above ground population growth rate (!"# !!

!!!!
) against time since fire for the 

density dependent (DD) and density independent (DI) models and observed populations for the 
twelve different fertility scenarios. The fertility scenarios are characterised by seed mortality 
(!), first year germination (!!) and germination from the seedbank (!!"). The predicted 
growth rates are the means for 1000 simulations. See Appendix A5 for details on the density 
dependent model. 
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Figure S11: Mean rosette diameter (on a log scale) for the density dependent (DD) and density 
independent (DI) models and observed populations for the twelve different fertility scenarios. 
The fertility scenarios are characterised by seed mortality (!), first year germination (!!) and 
germination from the seedbank (!!"). The predicted sizes are the means of the mean population 
size for 1000 simulations. See Appendix A5 for details on the density dependent model. 
 
 
 

Figure S12: Mean seedling size (log scale) at the annual census over time since fire for four 
observed populations (each symbol is a different population). Each point is a different time 
since fire and population combination. Dotted line shows the mean recruit size from the study 
population, which is used in the IPMs.  
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Appendix A3: Prior sensitivity 

One possible advantage of a Bayesian approach is the ability to include prior information when 

estimating parameters (e.g. Hobbs et al. 2015). This may be useful for example for rare species, 

where data availability may be low, but expert knowledge or data from different study sites or 

from closely related species could be included into the priors (e.g. HilleRisLambers, Clark & 

Lavine 2005).  

 Where more informative priors are used sensitivity analyses can determine how robust 

the posterior distributions are to changes in the priors. Here we compare posteriors using our 

initial fairly broad priors to those using more informative priors where we assume that 50% of 

the temporal variation in the vital rates can be accounted for by the latent parameter. The 

magnitude of the standard deviation of the submodel specific year effects is therefore 

constrained to equal the factor loading terms (!!"). The use of more informative priors has little 

effect on most of the fixed effect parameters in the Carduus model (Fig. S13a), but decreases 

the credible intervals and affects the posterior means for the random effects (Fig. S13b). The 

means of the factor loading parameters for survival (!!"! ) and recruitment (!!"! ) increase, whilst 

those for recruit size (!!"!") and growth (!!"! ) decrease. Including more informative priors leads 

to slightly higher mean estimates of the !!" parameters in the survival, flowering and fecundity 

Eryngium submodels (Fig. S14), as well as decreasing the credible intervals. 
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Figure S13: Joint parameter posteriors for the Carduus base model and a model with more 
informative priors; (a) fixed effect parameters (b) year effect parameters. Points show the means 
and horizontal lines show the 95% credible intervals for each parameter. Vertical dashed line is 
at 0 in both plots.  
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Figure S14:  Joint parameter posteriors for the Eryngium base model and a model with more 
informative priors; (a) fixed effect parameters (b) year effect parameters. Both models include 
the recruitment function (Appendix A5). Points show the means and horizontal lines show the 
95% credible intervals for each parameter. Vertical dashed line is at 0 in both plots. See Table 5 
for parameter definitions. 
 

Appendix A4: Calculating Evolutionary Stable Strategies 

As this population exhibits density dependence, fitness depends on the presence of other life 

history strategies and was therefore measured using an invasion exponent (Childs et al. 2004). 

The invasion exponent is defined as  

 ! =  lim! →∞ !!!! ln !! ,      (eqn A2)                             

where !! is the total population size at time t (Tuljapurkar 1990; Metz, Nisbet & Geritz 1992). 

! is the stochastic growth rate of a rare invader; the maximum likelihood estimator of ! is given 

by  

 ! =  !" !! !!" (!!)
!!!        (eqn A3) 

Posterior estimate

−5 0 5 10 15

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

β0
g

β0
s

β0
f

β0
fe
β0

r
βz

g
βz

s
βz

f
βz

fe
σg
σr
αfe

Pa
ra

m
et

er
a)

●

●

Base model
Inform priors

Posterior estimate

−2 −1 0 1 2 3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

βYr
g

βYr
s

βYr
f

βYr
fe

βYr
r

βtsf
Yr

σYr
g

σYr
s

σYr
f

σYr
fe

σYr
fef

Pa
ra

m
et

er

b)



 42 

The estimated flowering intercept (-5.31) and a germination probability of 0.2 were used to 

generate a resident time series of 5,000 years. Simulations were started with an initial 

population of 1000 seeds. The invader inhabits the same 5,000 year time series as the resident; 

i.e. it uses the same latent year effect and submodel specific year effects at each year of the 

simulation. As the invader is assumed to be rare, its density does not affect the population 

growth rate and as such the probability of establishment for the invader is assumed to be equal 

to that of the resident. The invasion exponent is maximised using a Nelder-Mead algorithm, 

resulting in new reproductive parameters (flowering intercept and germination probability). 

These are used to generate a new resident environment; again the invasion exponent is 

maximised and this process is repeated until the reproductive parameters converge to a specified 

tolerance (0.001). As the germination probability must lie between 0 and 1 this was modelled 

using a logistic function. The probability of seed mortality (!) was not known and therefore the 

model was run multiple times with a wide range of seed mortalities (d=0.01, 0.1, 0.2,...,0.9, 0.99, 

Rees et al. 2006).  

The ESS flowering intercept remains roughly constant under changing seed mortalities, 

and remains within the 95% credible interval of the parameter estimate (Fig. S15a), whilst the 

ESS germination probability increases linearly with an increasing probability of seed mortality 

(Fig. S15b). With a flowering intercept of around -5 most plants will flower in their first year. 

The ESS are generally well characterised, as a relatively small range of strategies have a fitness 

of over 0.99 (Fig. S15).  

 

 
Figure S15: Joint ESS flowering (a) and germination strategies (b) under differing seed 
mortalities, d. Vertical lines show strategies with fitness over 0.99. In (a) the solid horizontal 
line shows the estimated flowering intercept and dashed horizontal lines show the 95% credible 
interval. 
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Appendix A5: Eryngium IPM with density dependent recruitment 

To check whether the assumption of density independence affected the model output we also 

built an IPM with density dependent recruitment. The density independent seedling survival 

term (!!!; Appendix A2) was replaced by a density dependent probability of recruitment, !!(!). 
This was calculated as in the Carduus model (Appendix A2) by dividing the number of recruits 

each year by the total number of germinating seeds.  

Recruitment was included in the stochastic vital rates model using a poisson lognormal 

distribution as follows:  

 ! ! + 1  ~ Poisson(!!)      (eqn A4) 

 !!  ~ Lognormal(!! ,!!) 
 !! =  !!! +   !!"! !"[!], 
where !(!) is the number of recruits in year !. Using a Poisson lognormal distribution to 

estimate recruit numbers is necessary to allow for overdispersion, however using this 

distribution results in some unrealistically high recruit numbers. As such the number of recruits 

is restricted to be less than 300 in the IPM. The mean number of recruits seen in the study 

population is 12 and the maximum is 94; the largest number of rosettes in one year is 219. 

 There appears to be a relatively small effect of TSF on recruitment in this population 

(Figs S6 & S13); this is contradictory to previous studies that found that seedling survival was 

negatively affected by time since fire (Menges & Quintana-Ascencio 2004). This is possibly 

because the population is not subject to a fire during the study period; if the effect is strongest 

immediately following a fire this will not be apparent from our dataset.  

The addition of the recruitment function had little effect on the distributions of the 

remaining parameters (Fig. S16). As such there is little difference in the remaining vital rate 

functions between the density dependent and independent models (Fig. S6). 

 The density dependent models produce similar patterns of population size with time 

since fire as the density independent models; all of the models show population sizes first 

increasing then decreasing as time since fire increases (Fig. S11). The density dependent models 

do not underestimate mean size to the same extent as the density independent models (Fig. S13). 

This suggests that the underestimation may be caused by too much recruitment into the 

population as recruitment is limited in the density dependent, but not the density independent 

model.  
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Figure S16: Joint parameter posteriors for Eryngium for (a) fixed effects and (b) year effects for 
models including (for density dependent model) and excluding (for density independent model) 
recruitment. Points show the means and horizontal lines show the 95% credible intervals for 
each parameter. Vertical dashed line is at 0 in both plots.  
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Abstract 

1. The frequency of ecological disturbances, such as fires, is changing due to shifting 

habitat use and climatic conditions. Disturbance regimes may be manipulated to 

promote the persistence of disturbance-adapted species. Population viability analyses 

are often used to predict the range of disturbance regimes under which species may 

persist. However, longer-term nonlinear effects of time since the disturbance are rarely 

considered. Additionally, the effects of changes in other abiotic factors, such as climate, 

are usually disregarded.  

2. The effects of some environmental drivers, such as climate, may vary at finer time 

scales than demographic data are collected. Many studies choose single temporal 

windows for these drivers a priori. 

3. We compare population persistence using different fire return intervals (FRIs) under 

past and predicted future climatic conditions for the rare fire dependent herb Eryngium 

cuneifolium. Nonlinear effects of individual size and time since fire were identified 

using generalised additive models (GAMs). Functional linear models (FLMs) were used 

to estimate the cumulative effect of climatic variables across the annual cycle, allowing 

the strength and direction of the climatic effects to differ over the year. Extinction 

probabilities and minimum population sizes were estimated under past and forecasted 

future climatic conditions and a range of FRIs, using an integral projection model.  

4. The fastest rate of decay in the vital rates occurs in the first ten years post fire. Under 

forecasted climate change E.cuneifolium is predicted to persist under a much broader 

range of FRIs, as increasing temperatures increase individual growth. Climatic effects 

on survival and fecundity do not result in temporal trends in these vital rates due to 

antagonistic within year effects, for example higher winter temperatures increase 

fecundity whilst higher summer temperatures are associated with reduced fecundity. 

5. Climate is a widespread driver of ecological change. Including responses to predicted 

climate change can affect predictions of future population viability and therefore 

management decisions. Antagonistic within year climatic effects highlight the risk of 

picking temporal windows of influence for climatic drivers a priori. Instead FLMs may 

be used to allow the strength and direction of estimated climatic effects to vary over the 

annual cycle. 

 

Keywords: Eryngium cuneifolium; extinction probability; fire; functional linear model; 

generalised additive model; integral projection model; nonlinear; non-stationary 
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Introduction 

Disturbances, such as fires or floods, can alter biodiversity and community structure, and may 

drive patterns of local population extinctions (Turner 2010; Velle et al. 2014; Thom & Seidl 

2016). The frequency of such events has been altered over recent time scales, due to 

anthropogenic effects including land use modifications and climate change (Bayley 1995; 

Restrepo et al. 2009; Knorr et al. 2014). Many species are adapted to live in frequently 

disturbed habitats, for example fire-adapted plants may have persistent seed banks, with 

extreme heat required for germination (e.g. Davies et al. 2013). Such species are often 

outcompeted when disturbance regimes are suboptimal and have therefore often declined as 

these regimes have changed (O'Connor et al. 2017). Management strategies that restore natural 

disturbance regimes may be used to aid the persistence of these species (Swetnam, Allen & 

Betancourt 1999; Allen et al. 2002; Menges 2007). However, disturbance frequency is not the 

only environmental factor that will influence population viability. Weather, habitat quality, and 

biotic interactions are all likely to have important roles (Tschope & Tielborger 2010; Bucharova, 

Brabec & Munzbergova 2012; Sletvold et al. 2013; Bernardo, Albrecht & Knight 2016). 

Anticipated directional changes in such variables, for example due to climate change (IPCC 

2014), may alter population persistence under different disturbance regimes (Harris et al. 2006; 

Flatley & Fule 2016). Population responses to environmental change should therefore be taken 

into account when planning future management strategies (Hannah, Midgley & Millar 2002; 

Bernardo, Albrecht & Knight 2016).  

Population viability analyses (PVAs) use population models to simulate future 

dynamics and calculate metrics of performance such as population size, growth rate, and 

extinction risk (Menges 2000). PVAs have been widely adopted to determine the conservation 

status of populations and identify appropriate management strategies (e.g. Ryan, Root & Mayer 

1993; Lindenmayer & Possingham 1996; Thompson et al. 2000; Jaffre & Le Galliard 2016). 

One quarter of environmentally explicit demographic models in plants have considered the role 

of disturbance (Ehrlen et al. 2016), often with the goal of determining how disturbance regimes 

can be optimised to maximise the probability of future persistence (e.g. Sanchez-Velasquez et al. 

2002; Brys et al. 2004) or to eradicate invasive species (e.g. Emery & Gross 2005). Most of 

these studies have assumed that, with the exception of disturbance frequency, populations will 

continue to experience the same environmental conditions present during the period of 

observation (though see e.g. Bucharova, Brabec & Munzbergova 2012; Bernardo, Albrecht & 

Knight 2016). Changing environmental conditions may drastically alter demographic rates; 

ignoring such effects can therefore produce inaccurate future population predictions (Coulson et 

al. 2001; Crone et al. 2013). Climate change has already been implicated in local population 

extinctions (Wiens 2016) and is predicted to become a large driver of future extinction 

dynamics (van Vuuren, Sala & Pereira 2006). However, studies of climatic impacts on plant 

demography are relatively rare (Selwood, McGeoch & Nally 2015; Ehrlen et al. 2016). 



	 3 

Incorporating the effects of climate change may provide more accurate predictions of future 

dynamics (Fieberg & Ellner 2001; Crone et al. 2013), allowing the development of management 

strategies that are appropriate for future environmental conditions (Bucharova, Brabec & 

Munzbergova 2012; Bernardo, Albrecht & Knight 2016).   

Demographic responses to disturbance are often estimated as a function of discrete 

categories of disturbance events, such as whether or not a fire has recently occurred (e.g. 

Canales et al. 1994; Stevens & Latimer 2015). However, the effect of a disturbance is unlikely 

to be restricted to the year it occurs and is likely to decrease as time since the disturbance 

increases (Fieberg & Ellner 2001). For example, community composition may change slowly in 

the years following a fire as species re-establish at different rates (Menges & Hawkes 1998). 

Under these circumstances time since disturbance should be included as a predictor of the vital 

rates (e.g. Evans, Holsinger & Menges 2010; Merow et al. 2014), though the response to 

environmental perturbations may not change linearly with time (Doak & Morris 2010). 

Generalised additive models (GAMs) are a flexible form of model that allow nonlinear effects 

to be captured (Wood 2017) and as such may be used to capture nonlinear demographic 

responses to environmental covariates among years (e.g. Scanga 2014) 

Most environmental drivers, such as climatic variables, vary at much finer time scales 

than the annual time steps at which demographic data are typically collected. The impact of 

such drivers on the vital rates may play out over long periods, or during a short critical window, 

and both the magnitude and direction of their effects may vary over the annual cycle (Foster, 

Schmalzer & Fox 2014; Kruuk, Osmond & Cockburn 2015). This necessitates methods to 

quantify environmental effects that differ in timing, magnitude, and direction. Vital rate 

responses to environmental variables are likely to be more similar at closer time points, for 

example the effect of high temperatures in July is likely to be relatively similar to the effect of 

high temperatures in August, but may be considerably different to high temperatures in 

February (Sims et al. 2007). Functional linear models allow the response to a climatic covariate 

to be estimated as a smooth function, allowing the effects to differ in magnitude and direction 

over time (Roberts 2008; Teller et al. 2016).  

Here, we explore how forecasted climate change affects population viability under a 

range of disturbance regimes in the fire-adapted species, Eryngium cuneifolium. We used 

GAMs to capture nonlinear responses to individual size and time since fire. By using FLMs to 

estimate the climatic responses we allowed the effects to differ in magnitude and direction over 

the year. E.cuneifolium is a rare perennial herb, endemic to Florida rosemary scrub (Menges & 

Kimmich 1996; Menges & Quintana-Ascencio 2004). Its vital rates are negatively affected by 

time since fire, as it is outcompeted by shrubs such as Ceratoila ericoides (Menges & Kimmich 

1996; Quintana-Ascencio & Menges 2000). Previous studies have suggested that fire return 

intervals (FRIs) of less than 15 years are necessary for its persistence (Menges & Quintana-

Ascencio 2004; Menges 2007). While the response of this endemic to differing FRIs has been 
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well studied, little is known about the effects of climatic variation on its demography. We 

consider whether future forecasted climate change will affect population viability in this species 

under a broad range of FRIs. Extinction probabilities and minimum population sizes were 

estimated by using the vital rate models to parameterise an integral projection model (IPM). 

Populations were simulated under a range of FRIs using past and future predicted climatic 

conditions. 

 

Methods 

Study system 

We used demographic data from twelve populations found in burned areas, from 1990 to 2014, 

at the Archbold Biological Station, Florida (Menges & Quintana-Ascencio 2004). This included 

over 10,000 observations of more than 4,000 individual plants. Individual measurements were 

recorded annually at the end of October/beginning of November. Across all populations and the 

whole study period time since fire varied from zero to 42 years. The square root of rosette 

diameter was used as a measure of plant size. The vital rates were assumed to be density 

independent as E.cuneifolium is a rare species and interspecific interactions are more limiting 

than intraspecific competition (Menges & Kimmich 1996).  

The study site undergoes cold, dry winters and hot, wet summers, with the highest 

monthly temperatures in August and the majority of the precipitation falling between June and 

September (Fig. 1). Daily weather data were recorded onsite at the Archbold Biological Station. 

Four climatic covariates were considered; minimum temperature (°C), maximum temperature 

(°C), precipitation (mm) and the Keetch-Byram drought index (KBDI), which is a function of 

mean annual precipitation, daily maximum temperature and daily precipitation (Appendix A1; 

Keetch & Byram 1968). The means of each of the daily climatic variables was calculated every 

fortnight from the beginning of November in year ! until the end October in year ! + 1, i.e. for 

the twelve months between each annual census.  

Predicted climatic data were available from the Meteorological Research Institute 

atmospheric general circulation model, version 3.2 (MRI-AGCM3.2), with a 60 km grid size 

(Mizuta et al. 2012). Climatic data were simulated from 1979-2099 (Kusunoki & Mizuta 2013) 

assuming the moderate emissions scenario, A1B (IPCC 2007). Predicted climatic data from 

general circulation models (GCMs) often differs from that recorded at local weather stations due 

to model biases or differences in spatial scale between the predicted and observed data, with 

forecasted climatic data usually at a broader spatial scale than that required for ecological 

studies (Ekstrom, Grose & Whetton 2015; Baker et al. 2017). A cumulative distribution 

function transform (CDF-t) approach was therefore used to downscale predictions from the 

GCM (Appendix A1; Michelangeli, Vrac & Loukos 2009; Lavaysse et al. 2012). Temperatures 

were generally predicted to increase, with particularly strong effects over spring and summer 

(Fig. 1c and e). Whilst precipitation does not appear to undergo a directional change over the 
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forecast period (Fig. 1g) the increase in maximum temperatures causes an increase in the KBDI 

(Fig. 1a). There are no clear trends in the among year variability of the climatic predictors over 

this period (Fig. 1).  

 

Figure 1: Intra-annual change in the mean (a, c, e, and g) and standard deviation (b, d, f, and h) 
of the KBDI (a and b), maximum temperature (c and d), minimum temperature (e and f), and 
precipitation (g and h). Data shown over the 25-year study period (1990-2014) and 85 year 
forecast period (2015-2099). Each line is the mean (left column) or standard deviation (right 
column) over a five year period. The letters at the top of the plot indicate the month of the year; 
the annual census takes place at the end of October or beginning of November. KBDI is on a 
scale from zero (soil fully saturated) to 800 (maximum possible drought). 
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Structure of the IPM  

As E.cuneifolium has a persistent seed bank (Navarra et al. 2011) we constructed a two stage 

stochastic IPM to simulate population dynamics: 

 ! ! + 1 = 1 − ! 1 − !! ! ! + (1 − !) 1 − !! !• ! ! !, ! !",!     

 ! !′, ! + 1 =  !• !! ! ! +  [!• !!, ! + !• !!, !  ]! !, ! !" ! ,         (eqn 1) 

where !(!) is the number of seeds in the seed bank at time ! and !(!, !)!" is the number of 

individuals in the size range (!, ! + !") . The •  subscripts indicate functions that vary 

temporally and spatially, i.e. that are a function of time since fire, climatic variables, and 

random year and population effects. The first term in the seed bank equation refers to seeds that 

remain in the seed bank from ! to ! + 1; these are seeds that survive, with probability 1 − !, 

and do not germinate, with probability 1 − !!. The second term refers to seeds produced during 

year ! that enter the seed bank. The probability of seeds germinating immediately !!  differs 

to that of those germinating from the seed bank in later years !!  (Quintana-Ascencio & 

Menges 2000; Menges & Quintana-Ascencio 2004). The seed production function, !• ! , is 

given by ℎ• !  !, where, for a plant of size !, ℎ• !  is the number of flowering stems and ! is 

the number of seeds per flowering stem.  

In the rosette equation the size distribution of plants recruiting from the seed bank 

(!• !! ) is given by !!!•!• !! , where !•  is the probability of a seedling surviving from 

emergence (January-March) until the annual census and !• !′  is the distribution of recruit sizes 

at the annual census. The survival growth function, !• !′, ! , is given by !•(!)!•(!′, !), where 

!•(!) is the survival probability and !•(!′, !) gives the probability of an individual of size ! 

growing to size !′. The size distribution of recruits from seeds produced that year, !• !′, ! , is 

given by !!!•ℎ• !  !"• !′ . The IPM was implemented using the quadrature midpoint rule 

with 100 meshpoints; doubling the number of meshpoints did not affect the results. 

 

Parameterisation of the IPM 

A model with no climatic drivers was fitted first for each vital rate; these acted as baselines to 

evaluate the predictive performance of the climatic models. For example, the probability of 

survival (!• ! ) for individual i in year t was estimated as a function of size (z) and time since 

fire (l) as follows: 

 !"#$% !•(!!" ) =  !! + !!(!!") +  !!(!!") +   !!!  +  !!"! .               (eqn 2) 

!!  is an intercept and !!  and !!  are smooth functions of size (!), where !!"  is the size of 

individual ! in year !, and time since fire (!), where !!" is the number of years since a fire 

occurred in year !  for population p. !!!~!(0,!!) and !!"! ~!(0,!!) are random effects for 

population and year respectively. The random year effects (!!) were estimated separately for 

each year-population combination (tp), but these were drawn from the same distribution, i.e. the 
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standard deviation of the random year effects (!!) did not differ among populations. The 

smooth functions (!!  and !! ) are parameterised by spline basis expansion, for example 

!! ! =  !!!!!!(!)!
!!! , where !!!  are coefficients, !!!(!)  are basis functions and K is the 

dimension of the spline basis (Wood 2017).  

 Four climatic models were fitted for each vital rate, each containing a single climatic 

variable. The cumulative effect of the climatic variables over the twelve-month period prior to 

the annual census was estimated using FLMs. The FLMs incorporated the mean of the climatic 

variable every fortnight (w) from the beginning of November (w=1) to the end of October 

(w=26) as covariates. For example, the probability of survival was given by  

 !"#$% !•(!!" ) =  !! + !!(!!") +  !! !!" +  !!(!)!!"!
!!! +  !!!  +  !!"! ,   (eqn 3) 

where !!" is climatic variable ! in year ! and fortnight ! and !!(!) is a smooth function over 

time. The remaining parameters are defined above (equation 2). The smooth function !!(!) is 

parameterised using spline basis expansion, as above. 

The growth and fecundity models are structurally analogous to the survival models 

(equations 2 & 3), differing only in the assumed distribution and link function (Gaussian for the 

growth model and negative binomial with a log link for the fecundity model). A Gaussian 

distribution was assumed for the recruit size model, which also did not include the size spline. 

Models were fitted in R (R Core Team 2016) using the gam function from the mgcv package 

and a cubic regression spline basis (Wood 2017). Six knots were used for the size and time 

since fire splines and eight for the climatic splines. Quadratic smoothing penalties, !!!!!!!! , 

control the degree of smoothing in the splines, where !! are known smoothing penalty matrices 

and !! are smoothing parameters (Wood 2017). The smoothing parameters (!) were estimated 

using restricted maximum likelihood (REML), as this is less prone to overfitting than 

generalised cross validation (GCV; Appendix A2; Reiss & Ogden 2009; Wood 2011). 

Cluster cross validation was used to assess the predictive performance of each climatic 

model relative to the base model. The models were refitted excluding each year of data in turn 

and used to predict the vital rates for all excluded individuals. The individual’s observed size at 

! − 1, the observed time since fire, and the estimated population random effects for the 

individual’s population were used for the predictions. The random year effects were 

marginalized out using a Monte Carlo approach, and the RMSE was calculated for that year as 

follows 

 !"#$! =  !
!!!

(!!" − !!"#)!!
!!!

!!
!!! ,                      (eqn 4) 

where for year !, !! is the number of individuals observed and !!" and !!"# are the observed 

and predicted vital rate respectively for individual ! and sample ! from the distribution of the 

random year effect. 500 random samples from the random year effect distribution were used. As 

sample size differed between years the overall score for each year was given by summing the 

yearly RMSE scores, weighted by the number of individuals observed in that year, that is 
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overall !"#$ =  !"#$!!!!
!!! . Where, for a single vital rate, two climatic models had a 

better predictive performance than the base model, the cross validation procedure was repeated 

with a model including both climatic covariates.  

As the data available to parameterise the remaining IPM functions were more limited 

(Menges & Quintana-Ascencio 2004) these were assumed not to be driven by climatic variation. 

Early seedling survival (!) was estimated using a logistic mixed effects model with a fixed 

effect of time since fire and a random year effect. The number of seeds per flowering stem (!) 
was set to the mean observed number (183; Menges & Quintana-Ascencio 2004). Estimates of 

germination range from 0 to 0.1 in the first year (!!) and 0.005 to 0.04 from the seed bank (!!) 
(Quintana-Ascencio & Menges 2000; Menges & Quintana-Ascencio 2004), whilst seed 

mortality (!) was unknown. Populations were simulated using a range of the germination 

estimates and a wide range of seed mortality estimates (0.1, 0.3,…,0.9) and compared to 

observed aboveground population dynamics (Appendix A3, Menges & Quintana-Ascencio 

2004). The selected fertility scenario had low germination (!! = 0,!! = 0.005) and low seed 

bank mortality (! = 0.3 ; see Appendix A3 for effects of uncertainty in the seed bank 

parameters on extinction probabilities). 

 

Population viability in a changing climate 

We explored how climate change may affect population viability under a range of FRIs, by 

simulating populations under the observed climatic conditions during the study period (1990-

2014; ‘past climate’) and forecasted future climate (2015-2099; ‘future climate’). The 

downscaled GCM climatic data were used for both the past and future climate simulations. 

Populations were simulated for 85 years, starting with a fire year. Temporal variation due to 

time since fire, climatic effects, and random year effects were incorporated independently of 

one another. The forecasted climate projections from 2015-2099 were used (in sequence) for the 

future climate simulations. For the past climate simulations, one year of climatic covariates was 

randomly selected from the 25 observed years at each iteration. FRIs were simulated using a 

Weibull cumulative distribution function (e.g. Evans, Holsinger & Menges 2010) with a range 

of medians (3, 6, 9…, 30; Fig. S1). The FRIs were therefore stochastic, with the probability of 

fire increasing as time since the last fire increased. Fire was assumed to kill all rosettes (Menges 

& Kohfeldt 1995). The random year and population effects were incorporated using a kernel 

selection approach to preserve correlations (Rees & Ellner 2009; Metcalf et al. 2015). A 

population was selected for each simulation from each of eleven populations and all of the vital 

rates were estimated conditional on the population random effects throughout the simulation 

(one population with no recruits during the study period was excluded, as a random effect could 

not be estimated for recruit size). At each iteration a year-population combination was selected 

at random and used for the random year effects across all of the vital rates.  
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 Three sets of simulations were run, to explore the effects of initial population size, 

variability in the FRI, and differences among the populations. Unless otherwise stated 1,000 

simulations were run for each parameter combination. First, a range of initial population sizes 

were used (1,000, 7,000, 15,000, or 30,000 seeds). Here, the shape parameter (!) of the Weibull 

distribution for the FRIs was set to 64, resulting in little variation around the median FRI (Fig. 

S1). Second, we explored how differences in the variability of fire occurrence affected 

extinction risk. Here, using an initial population size of 7,000 seeds, four values of ! (2, 8, 32, 

and 64; Fig. S1) were used to simulate the FRIs. Third, to determine how extinction 

probabilities differed among populations, 500 simulations were run for each of the eleven 

populations, with !  set to 64 and an initial population size of 7,000. Quasi-extinction 

probabilities were given by the proportion of simulations falling below one individual 

(including seeds). Minimum population sizes were calculated as the mean of the minimum 

number of individuals in each simulation. 

 

Figure 2: Time since fire models for a) growth, b) survival, c) fecundity, and d) recruit size. 
Lines show predictions for a median sized individual on a square root scale (2.45) in an average 
population and year. Points show average for each vital rate across all individuals. 
 

Results  

Response of vital rates to time since fire and climatic conditions  

The vital rates responded nonlinearly to individual plant size (Fig. S2) and time since fire (Fig. 

2). The rates were generally negatively affected by increasing time since fire, with the fastest 
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decreases in the first ten years post fire. Survival, growth and recruit size appeared to increase 

slightly after 20 years since fire. However, sample sizes decreased with time since fire (Fig. S3), 

dropping to an average of 13 individuals per population 25 years postfire. There was also weak 

evidence of senescence in survival, which decreases in very large (i.e. older) individuals (Fig. 

S2). 

The vital rates responded more to variability in temperature than precipitation. Higher 

temperatures, particularly over winter and spring, increased growth (Fig. 3a; Table 1). 

Maximum temperatures were a better predictor of growth than minimum temperatures; 

including both covariates did not improve the predictive performance beyond that of the 

maximum temperature model (Table 1). Higher temperatures during summer, when 

temperatures were at their peak, had a small positive effect on growth compared to the rest of 

the year (Fig. 3a). Including KBDI as a covariate improved the predictive performance of the 

survival model. Reduced moisture over winter and spring and increased moisture over summer 

and autumn were associated with increased survival (Fig. 3c; Table 1). Higher minimum 

temperatures over winter and spring increased fecundity, whilst higher temperatures during 

summer decreased fecundity (Fig. 3e, Table 1). Recruits emerge between January and March 

(Menges & Quintana-Ascencio 2004). Higher maximum temperatures shortly after this period 

increased recruit size (Fig. 3g; Table 1).  

The forecasted temperature increases over the next 85 years (Fig. 1) appear likely to 

increase growth (Fig. 3b) and recruit size (Fig. 3h). Despite climatic effects being identified in 

the survival and fecundity models (Fig. 3c and e) these vital rates are not predicted to undergo 

temporal trends (Fig. 3d and f). Over the annual cycle the climatic effects on these two vital 

rates are antagonistic, with positive effects over some seasons and negative over others, 

effectively cancelling each other out (Fig. 3c and e).  
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Figure 3: Climatic coefficients over the year preceding the census (left column) and the average 
annual vital rates estimated using the downscaled climate predictions from 1990 to 2099 (right 
column). Only the climatic variables with the highest predictive performance are plotted and 
included in the IPM (Table 1). The coefficients are scaled by the standard deviation of the 
respective climatic covariate for plotting. Letters at the top of the plot indicate the month of the 
year. In the right column each point is the prediction for a median sized individual on a square 
root scale (2.45) ten years post fire and in an average population and year. Increasing the 
number of knots did not change the pattern in any of the FLMs. 
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Table 1: Cross validation results comparing the predictive performance of the models. Lower 
values indicate better predictive performance. Climatic models with a better predictive 
performance than the base model (with no climatic effects) are highlighted in bold. * denotes 
the model with the best predictive performance for each vital rate; these are used to 
parameterise the IPM. 

Climate Model Growth Survival Fecundity Recruit size 

Base  3956.3 5039.7 29919.2 988.4 

Min temperature 3905.6 5055.2 29888.2* 1003.9 

Max temperature 3854.8* 5071.0 29981.1 964.4* 

Drought 3961.1 5023.2* 30156.4 997.6 

Precipitation 3967.5 5048.7 30102.5 1001.5 

Min + max temperature 3854.9 - - - 

 

Optimal FRIs under a changing climate  

In all scenarios the predicted extinction probabilities were lower and minimum population sizes 

higher under future climatic conditions than past. Under past climatic conditions optimal 

median FRIs were between nine and fifteen years, with extinction probabilities less than 5% for 

all initial population conditions over 1,000 individuals, and below 20% with an initial 

population size of 1,000 seeds (Fig. 4a). Outside of this optimal range mean minimum 

population sizes were less than 600 individuals, even with an initial population size of 30,000 

individuals (Fig. 4b). In the future climate simulations extinction probabilities were below 5% 

for all median FRIs above three years (Fig. 4b). The largest minimum population sizes were still 

seen with FRIs between nine and fifteen years. Mean minimum population sizes under these 

FRIs were between five and eight times as large as those predicted for the same FRIs under past 

climate (Fig. 4b).  

High variability in the FRI (! = 2) decreased the extinction probability when the 

median FRI was very small (<9) or very high (>25) and increased it outside of this range (Fig. 

4c and d). There was little difference in the metrics of population performance among the 

remaining values of ! (8, 32, and 64). Extinction risk among populations was very variable. 

Under past climates the probability of extinction with a median FRI of 30 years varied from 

25% to nearly 100% (Fig. 4e). With a median FRI of 15 years the mean minimum population 

size varied from 10 to over 850 and from 1,500 to over 3,000 among populations under past and 

future climates respectively (Fig. 4f). Altering the fertility scenario estimates (!! ,!!, and !) 

affected the absolute predictions of extinction risk and minimum population size, but not the 

pattern with respect to FRI or climate (Appendix A3). The probability of extinction remained 

less than 5% under future climate when the FRI median was over six years (Appendix A3). 
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Figure 4: Quasi-extinction probabilities (left column) and minimum population sizes (right 
column) across a range of FRIs and under past and future climatic conditions. a) and b) show 
different initial population sizes (number of seeds in seed bank). c) and d) show the effect of 
changing the level of variability in the FRI, where increasing the shape parameter (!) decreases 
the variability. In e) and f) each line is a different population. Points show mean of 1,000 
simulations (500 in e and f). Error bars in the right column show bootstrapped 95% confidence 
intervals for the mean. Points were jittered to minimise overplotting. 
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Discussion  

Climate change is likely to substantially alter population viability across a broad range of 

taxonomic groups and geographical locations (Thomas et al. 2004; Maclean & Wilson 2011), 

with implications for the design of appropriate conservation strategies (Bucharova, Brabec & 

Munzbergova 2012). We found that the range of FRIs under which E.cuneifolium is able to 

persist is likely to increase under forecasted climate change. Optimal disturbance regimes will 

differ among species within a community, necessitating compromises when determining 

optimal regimes for the community as a whole (Menges 2007). Under past climatic conditions 

the probability of persistence for E.cuneifolium was low at the upper end of the recommended 

FRI for Florida rosemary scrub (15-30 years; Menges & Quintana-Ascencio 2004; Menges 

2007). Our model predicts that temperature increases towards the end of the 21st century are 

likely to allow E.cuneifolium to persist even with FRIs of 30 years, largely as a result of 

increasing individual growth. To determine whether the optimal regime for the whole 

community should be altered due to future environmental change will necessitate predictions of 

population viability for a range of different species. Under past environmental conditions the 

performance of E.cuneifolium has been limited by the presence of shrubs such as C. ericoides 

(Menges & Kimmich 1996; Menges & Quintana-Ascencio 2004). Thus future optimal FRIs for 

E.cuneifolium are likely to depend on how C.ericoides responds to the changing abiotic 

environment. The climatic effects uncovered in this study may be direct physiological effects or 

indirect effects, mediated through changes to the competitive ability of C.ericoides. Further 

studies on the influence of climatic conditions on C.ericoides and its competitive effects on 

E.cuneifolium are needed to determine the direct and indirect climatic effects operating (e.g. 

Adler, Dalgleish & Ellner 2012).  

 Demographic data are often collected annually, yet the vital rates may respond to 

environmental variation at finer temporal scales (Foster, Schmalzer & Fox 2014; Kruuk, 

Osmond & Cockburn 2015). Where this occurs, failure to capture effects over the entire annual 

cycle may lead to inaccurate future predictions at the population level. Demographic studies 

typically make a priori assumptions about the temporal windows over which climatic covariates 

influence the vital rates, usually selecting a single window (Ehrlen et al. 2016; Van der Pol et al. 

2016). This choice will impact on population predictions. For example, in the case of 

E.cuneifolium, fecundity would be predicted to increase under future temperatures if a winter 

period was selected, but decrease if a summer period were selected. By capturing the effect of 

climatic variables over the whole year we found that these effects cancel one another out, 

resulting in very little net change in predicted future performance. Whilst this method captures 

nonlinear climatic effects within years, the effects are assumed to be linear among years (Fig. 4). 

Simultaneously estimating nonlinear effects both within and among years is challenging and 

likely to require a large degree of temporal replication, with simulations suggesting 20-25 years 
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of demographic data are necessary even to accurately identify effects that are linear across years 

(Teller et al. 2016).  

 Relationships between environmental drivers and the vital rates are often nonlinear, 

with, for example, physiological performance reduced when temperatures are too low or too 

high (Angert, Sheth & Paul 2011). Where the vital rates are recorded on the same temporal 

scale at which putative environmental drivers vary, such as years since disturbance, nonlinear 

relationships may be estimated using GAMs (Scanga 2014). The effects of time since fire on the 

vital rates in E.cuneifolium are clearly nonlinear, with the fastest decay in the vital rates seen in 

the first ten years postfire (Menges & Quintana-Ascencio 2004). Estimating nonlinear 

relationships usually requires estimates of the vital rates across a broad range of environmental 

conditions (e.g. Doak & Morris 2010; Diez et al. 2014). With a smaller range of observed time 

since fires, linear relationships would have fitted well. However, this would have led to the vital 

rate estimates continuing the initial rapid decrease with time since fire and therefore higher 

predicted extinction probabilities if extrapolated to longer FRIs. Many studies are forced to 

quantify responses using relatively short time periods following disturbances (Yates & Ladd 

2010; Gornish 2013), which may produce inaccurate predictions of future dynamics.   

The ability of PVAs to accurately forecast population dynamics has been extensively 

debated, with many authors cautioning against the literal interpretation of their results (Taylor 

1995; Beissinger & Westphal 1998; Brook et al. 2000; Menges 2000; Coulson et al. 2001; 

Fieberg & Ellner 2001; Ellner et al. 2002). Accurately quantifying future extinction risk is only 

possible where sufficient data are available to reliably estimate the vital rates and their 

responses to environmental drivers (Coulson et al. 2001; Fieberg & Ellner 2001). Whilst 

including the effects of environmental drivers may increase the accuracy of future population 

projections (Bakker et al. 2009), uncertainty in the future state of the environment must be 

acknowledged. In the case of climatic variables this arises from forecast error of the GCM and 

the downscaling approach. Repeating the analysis using a range of different GCMs, emissions 

scenarios, and methods for downscaling the GCM data would allow the uncertainty in 

population viability due to that in the future climate forecasts to be quantified (Baker et al. 

2017).  

Parameter uncertainty in the vital rates may differ across the life cycle. Though this 

study system is data rich relative to many others (Menges 2000; Crone et al. 2011) data 

describing the seed bank dynamics are relatively limited. Seed banks are often the least well 

characterised part of the life cycle (Menges 2000; Paniw et al. 2017). We found that extinction 

probabilities under forecasted climate change remained low under two possible scenarios of 

seed bank dynamics (Appendix A3). However, we did not consider how the seed bank 

dynamics themselves may be affected by environmental change. Seed banks serve to buffer 

populations against adverse environmental conditions (Kalisz & McPeek 1992; Venable 2007), 

yet studies on population level effects of environmental change mediated through seed bank 
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dynamics are rare. Germination and seed mortality may respond to environmental conditions 

(e.g. Hawkes 2004; Plue et al. 2013; Mackenzie et al. 2016), with consequences for future seed 

bank persistence (Ooi, Auld & Denham 2012) and therefore population responses to future 

environmental change. Further studies quantifying the effect of drivers of such underground 

dynamics under a broad range of environmental conditions are necessary to fully understand 

population responses to future change (Menges 2000). 

Due to the intensive effort required to collect demographic data many studies are based 

on single populations (Menges 2000; Crone et al. 2011); where multiple populations are studied 

the distances between them are often small (Coutts et al. 2016). This often leads to local 

population data being extrapolated to larger spatial scales (Menges 2000). Differences among 

populations may lead to erroneous predictions of viability for some populations (Johnson et al. 

2010; Hernandez-Camacho et al. 2015). To accurately predict population dynamics for novel 

populations the causal drivers of differences among populations would have to be identified, 

their effects quantified, and their levels measured at the new site. This level of data collection is 

often impractical, especially for rare species of conservation concern, where few populations 

may exist. However, by studying multiple populations, it is possible to quantify the degree of 

uncertainty in viability due to population differences and take account of such uncertainty when 

making management decisions (Ellner & Fieberg 2003). We found large differences in 

predicted population dynamics among populations, despite relatively small distances among 

populations, with all populations located at a single site.  

We have shown how forecasted climate change may broaden the range of management 

strategies under which a rare endemic is able to persist, decreasing the intensity of management 

needed. Climate change is expected to drive widespread population change (Parmesan & Yohe 

2003; Maclean & Wilson 2011). Failure to account for these effects may lead to suboptimal 

conservation planning (Hannah, Midgley & Millar 2002; Hulme 2005; Ibanez et al. 2013), yet 

many population level studies continue to determine optimal management assuming stationary 

environments (though see Bucharova, Brabec & Munzbergova 2012; Sletvold et al. 2013; 

Bernardo, Albrecht & Knight 2016). Where climatic effects are included in demographic 

models single temporal periods of influence are often chosen a priori (Van der Pol et al. 2016), 

which may lead to inaccurate predictions of future population responses. Statistical tools such as 

FLMs now provide more biologically realistic frameworks for identifying and quantifying the 

effects of environmental drivers on the vital rates (Teller et al. 2016). The widespread use of 

such methods is necessary to understand population responses to future change and determine 

appropriate management strategies for conserving species under future environmental 

conditions. 
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Supplementary Figures 

Figure S1: Cumulative probability of a fire occurring under the Weibull distribution with 
different medians (3, 6, 15, or 30) and shape parameters (2, 8, 32, or 64). 
 

Figure S2: Effect of size on a) survival, b) growth, and c) fecundity. Red lines show the fitted 
splines, points show raw data, which are split into size bins for the survival data. Predictions 
were made assuming a time since fire of 15 years and with the random year and population 
effects set to zero. The square root of rosette diameter was used as the measure of plant size. 
Raw data is from all twelve populations. Survival decreases at large sizes, presumably due to 
senescence. Plants either do not flower or produce very few flowering stems until they are 
sufficiently large.  
  

Figure S3: Total number of individuals with survival data, across all twelve populations, against 
the number of years since fire. 
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Appendices 

Appendix A1: Downscaling of the predicted climate covariates 

Predicted climate data from general circulation models (GCMs) may differ from that recorded at 

local weather stations due to model biases or differences in spatial scale between the predicted 

and observed data, with forecasted climate data often on a broader spatial scale than that 

required for ecological studies (Ekstrom, Grose & Whetton 2015; Baker et al. 2017). This has 

necessitated the development of methods to downscale GCM data to a suitable scale for 

ecological predictions to be made. The MRI-AGCM3.2 (Mizuta et al. 2012; Kusunoki & 

Mizuta 2013) simulations for the study period (1990-2014) predicted higher minimum and 

lower maximum temperatures than those observed at the study site during this time period (Fig. 

A1).  

GCM predictions for the study site were calculated by averaging across predictions of 

the four closest grid points to the GPS coordinates of the study site. We used a cumulative 

distribution function – transform method (CDF-t) to downscale the climate predictions from 

MRI-AGCM3.2 (Michelangeli, Vrac & Loukos 2009). The transformations were carried out 

using the CDFt package (Michelangeli, Vrac & Loukos 2009) in R (R Core Team 2016). The 

CDF of a climate variable (!) at the local scale during the study period (i.e. 1990-2014) is given 

by !!! and the CDF during the same period from the GCM is given by !!!. A transformation ! 

exists whereby ! !!! ! =  !!! ! . ! can be found as follows, where ! belongs to [0,1], 
!(!) =  !!!(!!!!! ! ). By assuming that T is stationary the CDF of the local climate variable 

over a future period (!!" ! ) can be estimated from the predicted GCM data over the future 

period (!!") as !!" ! = ! !!" ! =  !!! !!!!!(!!" ! ) .  

Cross validation was used to validate the CDF-t approach, by splitting the observed data 

into a calibration (1990-2004) and evaluation period (2005-2014). ! was fitted for each climatic 

variable using the data from the calibration period. Kolmogorov-Smirnov scores were 

calculated to compare the fortnightly CDFs of the GCM output and the downscaled data to the 

fortnightly CDFs of the observed data for the evaluation period (Michelangeli, Vrac & Loukos 

2009; Lavaysse et al. 2012). The CDF-t was applied directly to the temperature data. To model 

the strictly positive precipitation data the GCM data was used only above a threshold (!) that 

was set so that the number of days with rain>0 was the same in the GCM as in the observed data, 

that is !!! ! =  !!!(0) (Lavaysse et al. 2012). The downscaling approach improves the fit of 

all three climatic variables, with the best models for both minimum and maximum temperature 

given by the CDF-t of minimum temperature from the GCM (Fig. A2).  

The Keetch-Byram drought index (KBDI) is calculated from the downscaled 

temperature and precipitation data. The daily difference between moisture deficiencies is 

calculated as  
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!" =  !""!! !.!"# !"# !.!"#$! !!.! !
!!!".!! !"# !!.!!"#$%! ,      (eqn A1) 

where ! is yesterday’s KBDI reduced by the daily net precipitation, ! is the daily maximum 

temperature, ! is the mean annual precipitation, and ! is the time increment (Keetch & Byram 

1968; Alexander 1990).  

 To check whether differences between the observed and predicted climatic variables 

affected the population dynamics populations were simulated using the observed climate data 

and the downscaled data over the same time period (1990-2014). Simulations were run for 85 

years over a range of median FRIs as in the main text, with an initial population size of 7,000 

and a shape parameter of 64 for the FRI distribution. The downscaled climate data slightly 

overpredicted the risk of extinction relative to the observed data. However, a similar pattern 

with increasing FRI is seen using both data types and the differences in magnitude are small 

relative to those between the past and future climatic data (Fig. A3).  

 

Figure A1: Fortnightly data over the year for a) minimum temperature, b) maximum 
temperature, and c) precipitation from beginning of November to end of October. Points show 
medians, thicker lines the interquartile range and thinner lines the 95% quantiles. Both the 
minimum and maximum temperature downscaled data were corrected by transforming the 
predicted minimum temperature from the GCM (see Fig. A2).   
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Figure A2: Kolmogorov-Smirnov (KS) scores comparing the CDF of the observed data at 
Archbold and the GCM, the GCM downscaled using the predicted climatic variable (CDF-t1) 
and the GCM downscaled using an alternative climatic variable (CDF-t2; i.e. using maximum 
temperature to predict minimum temperature and minimum temperature to predict maximum 
temperature). Lower KS scores indicate less difference between the CDF of the observed and 
predicted data. Points show medians, thick lines interquartile range and thin lines 95% quantiles 
of the KS scores calculated for each fortnight.   

Figure A3: Extinction probabilities (left column) and minimum population sizes (right column) 
across a range of FRIs and under the observed climatic conditions and those predicted from the 
downscaled GCM data over the same stud period.  
 

Appendix A2: Simulation study comparing spline bases and methods of estimating 

smoothing parameters 
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with mean of 0 and standard deviation of 0, 0.1, 0.5, 1, or 1.5). Ten replicates were used for 

each combination of study length and temporal stochasticity. Survival data were simulated for a 

random number, between 30 and 250, of individuals each year. Survival in year t !!  was 

simulated as a function of precipitation and a random year effect as follows 

logit !! =  !! + !!!!!!!
!!! + !!,              (eqn A2) 

where !! is the intercept, !!! is the mean precipitation in year ! and fortnight !, !! are known 

coefficients (given either by a linear or a sine function; see Fig. A3) and the random year effect 

(![!]) is sampled randomly from a normal distribution with a mean of zero and a standard 

deviation !!. The climatic data were centered. !! was set to 0.5, giving a mean survival of 0.6.  

Using the mgcv package in R (Wood 2017) GAMs were fitted, using spline basis 

expansion (see main text), to the simulated data to determine whether it was possible to recover 

the known climate signals. For each replicate a GAM was fitted using both REML and GCV. In 

the case of GCV the degrees of freedom were inflated by 40% to decrease overfitting (Kim & 

Gu 2004). In both cases a “cs” spline basis was used with eight knots (Teller et al. 2016). The 

“cs” spline basis is a shrinkage version of a cubic regression spline basis that favours setting the 

coefficients to zero where there is no effect (Wood 2017). 

As previously shown the GCV approach was more prone to overfitting than REML (Fig. 

A4; Reiss & Ogden 2009; Wood 2011). With 15 years of data the GCV approach occasionally 

produced complicated and spurious effects even with relatively little stochasticity present (Fig. 

A4). However, using REML particularly, there was evidence of the models failing to pick up 

the “true” climatic effects. The chance of this happening appeared to increase as the degree of 

temporal stochasticity increased. The study was therefore repeated using a non-shrinkage 

version of the cubic regression spline (“cr” spline basis). This approach seemed to perform 

better with REML and was able to pick out the true climatic effects even with high degrees of 

stochasticity (Fig. A5). There was some occasional evidence of overfitting, particularly where 

the true effect was linear (Fig. A5b). In the main study the “cr” spline basis was used with 

REML and cross validation was used to prevent overfitting by only selecting climate variables 

that increased the predictive ability of the model on out of sample data. 
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Figure A4: The true (thick black line) and estimated (thin coloured lines) functions for 
precipitation using a) a sine function and b) a linear function estimated using a “cs” spline basis. 
The standard deviation of the random year effect is given above each plot and increases from 
left to right. The colour indicates the number of years of survival data used to estimate the 
climate coefficients. Each line is the estimated coefficients over time for a single simulation. 
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Figure A5: The true (thick black line) and estimated (thin coloured lines) functions for 
precipitation using a) a sine function and b) a linear function estimated using a “cr” spline basis. 
The standard deviation of the random year effect is given above each plot and increases from 
left to right. The colour indicates the number of years of survival data used to estimate the 
climate coefficients. Each line is the estimated coefficients over time for a single simulation. 
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7,000 seeds (Menges & Quintana-Ascencio 2004) and was iterated forward for 30 years without 

a further fire. Temporal variation in these vital rates was incorporated using a kernel selection 

approach (Metcalf et al. 2015). A population was selected at random for each simulation and all 

of the vital rates were estimated using the respective population random effect throughout the 

simulation. At each step a single year worth of climatic data was sampled randomly from the 25 

years of the study (i.e. 1990-2014) and the year effects were sampled randomly from every 

year-population combination across all of the vital rates.  

The two fertility scenarios which produced dynamics best fitting to the observed 

population dynamics were low first year germination (!! = 0), low germination from the seed 

bank (!! = 0.005), and low seed mortality (! = 0.3) and low first year germination (!! = 0), 

high germination from the seed bank (!! = 0.04), and relatively high seed mortality (! = 0.7; 

Fig. A6). Both scenarios fitted the observed above ground population growth rates well, with 

generally positive growth rates seen in the first ten years postfire and negative growth rates after 

this (Fig. A6a). The mean rosette size from the simulations is within the observed range (Fig. 

A6b). There is more variation in mean rosette size in the observed data than captured in the 

simulations, possibly as a result of the lack of demographic stochasticity in the model. 

Additionally as kernel selection was used to preserve the covariance amongst the vital rates only 

those year and population combinations for which data were available for all of the vital rates 

were included. The seed bank parameters (!! ,!!, and !) may also differ among populations or 

years, according to the environmental conditions. The degree of temporal stochasticity included 

in the model may therefore be less than that observed. The lack of germination in the first year 

in these scenarios is consistent with field studies, although first year germination has been seen 

in laboratory trials (Quintana-Ascencio & Menges 2000; Menges & Quintana-Ascencio 2004). 

Estimates of seed mortality in Hypericum cumulicola (Quintana-Ascencio, Dolan & 

Menges 1998), which has a similar life history to E.cuneifolium, along with the presence of 

Eryngium seeds in patches that have not been burned for nearly 70 years (Navarra et al. 2011), 

suggest the fertility scenario with lower seed mortality may be more likely. This scenario is 

therefore used in the main text. Here, to determine the effects of uncertainty in the seed bank 

dynamics on future population dynamics, we compare extinction probabilities and minimum 

population sizes using the two selected fertility scenarios shown in Fig. A6. 1,000 simulations 

were run for the two fertility scenarios under the past and future climatic conditions as in the 

main text, using an initial population size of 7,000 seeds and a shape parameter for the Weibull 

distribution of fire occurrence of 64. The second fertility scenario (!! = 0, !! = 0.04,! = 0.7) 

produced higher predicted extinction probabilities than the scenario used in the main text (Fig. 

A7). The optimal FRI remains between ten and fifteen years (Fig. A7). The probability of 

populations going to extinction under the future climatic conditions remained very small in all 

but the shortest FRIs (<9 years; Fig. A7). Uncertainty in the seed bank parameter affects 
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absolute predictions of extinction risk in this population, but not the relative risk between FRIs 

and climatic conditions.  

 

Figure A6: Comparing observed to predicted population dynamics under the two selected 
fertility scenarios: a) above ground one-step population growth rate and b) mean rosette size. 
Black points show median, thick grey lines interquartile range and thin grey lines the range 
across 500 simulations, observed data are shown in blue with each point a different population-
year combination.  

 
Figure A7: a) Extinction probabilities and b) minimum population sizes across a range of FRIs 
under two fertility scenarios. Fertility scenarios A and B correspond to ! = 0.3,!! = 0,!! =
0.005 and ! = 0.7,!! = 0,!! = 0.04 respectively, where scenario A is that used in the main 
text. Points show mean of 1000 simulations and error bars on b) show bootstrapped 95% 
confidence intervals for the mean. 
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Abstract 

Identifying the drivers of variation in vital rates is necessary to predict population responses to 

future climate change. Environmental drivers are usually identified for separate vital rates and 

age-sex classes. However, vital rates often exhibit positive temporal covariance, suggesting they 

respond to common axes of variation. Moreover, environmentally explicit models often use 

average weather conditions during a single time window, chosen a priori. Mismatches between 

these windows and the periods when vital rates are sensitive to the driver decrease predictive 

performance. Using a demographic structural equation model we show a single axis drives the 

majority of (co)variation in survival and fecundity across six age-sex classes in a Soay sheep 

population. This axis provides a simpler target for identifying environmental drivers than 

treating each process independently. We demonstrate that using functional linear models to 

determine temporal windows of influence can uncover previously unseen climatic effects, thus 

increasing the model’s predictive performance.  

 

Keywords: climate, covariation, density, environmental variation, functional linear model, 

North Atlantic Oscillation, Ovis aries, reproduction, structural equation model, survival 
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Introduction 

Rapid climate change has led to increased interest in the responses of species and ecosystems to 

environmental variation (Sutherland 2006). Identifying the underlying environmental drivers of 

vital rates is crucial for predicting how species abundances and distributions will be affected by 

future climate change (Grosbois et al. 2008; Ehrlen & Morris 2015). Environmentally explicit 

demographic models are widely used to forecast population responses to such change (Altwegg 

& Anderson 2009; Jenouvrier et al. 2012). Identifying the relevant drivers is challenging, 

because there may be a large number of possibilities (Grosbois et al. 2008) and any given 

variable may have both direct and indirect effects, due to interactions among species (Boggs & 

Inouye 2012). Moreover, time lags between environmental events and demographic responses 

can occur (Forchhammer et al. 1998), with the effect of a single driver potentially varying in 

magnitude and direction over time (Kruuk, Osmond & Cockburn 2015). Given the short 

temporal and spatial extent of most demographic data sets (Salguero-Gomez et al. 2016) the 

number of possible effects can easily exceed the degree of temporal or spatial replication 

(Ehrlen et al. 2016). Methods that make efficient use of available data are necessary to identify 

causal drivers and the temporal windows over which they act, and to accurately estimate the 

magnitude of their effects (Dahlgren 2010; Teller et al. 2016).  

The challenges associated with identifying causal climatic drivers mean that large-scale 

climatic phenomena, such as the North Atlantic Oscillation (NAO), have often been used as a 

proxy for, and have frequently outperformed, local weather variables (Post & Stenseth 1999; 

Hallett et al. 2004). However, the relationship between these large-scale indices and local 

weather may be temporally and/or spatially variable (Stenseth et al. 2003; Anders & Post 2006). 

Thus large-scale indices may provide inaccurate future predictions of population dynamics, 

whilst using such indices to compare the sensitivity of populations to climatic conditions across 

large spatial scales may simply recover patterns in the strength of the relationship between the 

index and local weather variables (Anders & Post 2006; van de Pol et al. 2013). The relatively 

poor predictive performance of local weather variables may partly be caused by a lack of 

knowledge of when vital rates are sensitive to such variables (Stenseth & Mysterud 2005). 

Whilst demographic data are typically collected annually the effect of a single climatic variable 

may differ in magnitude and direction over the year (Kruuk, Osmond & Cockburn 2015). 

Additionally, time lags between environmental events and demographic responses are common 

(Terraube et al. 2015; Wells et al. 2016). They may be caused by indirect effects, mediated 

through interactions with other species (Brown 2011), or carry-over effects (Norris 2005), 

where the environment affects individual condition, resulting in delayed consequences for 

demographic rates such as survival. Indirect effects, through plant productivity, may have a 

larger effect on herbivore vital rates than the direct effects of changing climatic conditions 

(Davis, Stephens & Kjellander 2016). 

Most studies consider a small number of putative climatic drivers, each acting at a 
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single time period (e.g. monthly means), chosen a priori based on expert knowledge of the focal 

species or closely related taxa (Fig. 1a; Van der Pol et al. 2016). Mismatches between these 

time periods and the critical windows during which the vital rates are sensitive to variation in 

the weather will lead to poorly performing models. Sliding window approaches, where an 

appropriate window is chosen by comparing the fit of models with different intervals, provide a 

partial resolution to this problem (Fig. 1a; Van der Pol et al. 2016). However, a single window 

is usually selected (Husby et al. 2010; Stopher et al. 2014; though see Kruuk, Osmond & 

Cockburn 2015), which does not allow the effect of a single variable to differ over time despite 

evidence of this occurring in natural populations (Kruuk, Osmond & Cockburn 2015). 

Ecological responses to environmental factors are likely to be more similar at adjacent time 

points (Sims et al. 2007). For example, the effect of high precipitation in February is likely to be 

more similar to that of high precipitation in March than August. Functional linear models 

(FLMs) allow the effect of environmental variables to be estimated as smooth, additive 

functions over time (Fig. 1b; Roberts 2008; Teller et al. 2016). This provides a biologically 

realistic framework for estimating climatic effects, allowing them to differ in magnitude and 

direction over the year. 

The influence of climatic effects also varies according to individual state variables, such 

as age and sex (Gaillard et al. 2000). Consequently, structured population models are widely 

used to predict population responses to future change (e.g. Jenouvrier et al. 2012). Stochastic 

structured models consider the means and variances of vital rates (Rees & Ellner 2009). These 

rates often exhibit positive temporal correlations, with higher reproductive rates in years with 

high survival and/or growth (Nur & Sydeman 1999; Jongejans et al. 2010). Positive correlations 

among the vital rates of different age-sex classes are also common. For example, years of high 

juvenile survival occur simultaneously with high adult survival and years that favour female 

survival also favour males (Saether & Bakke 2000; Rotella et al. 2012). These positive 

covariances suggest the influence of common environmental drivers, yet these processes are 

typically considered independently (e.g. Coulson et al. 2001; Pokallus & Pauli 2015). 

Multilevel demographic structural equation models (SEMs) allow the joint response of disparate 

vital rates and/or different age-sex classes to environmental variation to be captured using a 

biologically meaningful model (Hindle et al. 2017). Demographic SEMs introduce latent 

variable(s) to capture the covariation amongst the vital rates. These can be conceived as axes of 

common environmental variation, each of which may be driven by a combination of biotic and 

abiotic variables. The variation in each axis may thus be decomposed into the effects of 

different drivers, providing a simpler target for the challenging task of determining the 

underlying drivers of temporal variation than treating each demographic process independently. 

SEMs have been widely adopted in ecology, for example to model the joint responses of 

multiple species to environmental change (e.g. Warton et al. 2015; Ovaskainen et al. 2016). 

Their use is rare in single species demographic studies (though see Evans, Holsinger & Menges 
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2010; Hindle et al. 2017). 

Variation in the vital rates is likely to be driven by a combination of abiotic and biotic 

variables (Coulson et al. 2001; Dahlgren, Ostergard & Ehrlen 2014). Accurately quantifying 

both sources of variation is necessary to predict long-term population dynamics (Coulson, 

Rohani & Pascual 2004). For example, the effect of density is unlikely to be independent of the 

abiotic environment (Wang et al. 2009); the negative influence of a high population density 

may be greater in years with harsh abiotic conditions, as individuals compete over more limited 

resources (Barbraud & Weimerskirch 2003). In a SEM framework modelling an environmental 

axis as a function of density and climatic variables allows the effect of density on the vital rates 

to be modified by the abiotic environment.  

 

Figure 1: Schematic of a) window based approaches and b) FLM approach to identifying 
climatic effects. Points show means of raw temperature data calculated every fortnight over a 
single year. Grey lines show an example of the climatic coefficients that could be generated 
under either type of approach. The red dashed line is at zero i.e. where temperature has no 
effect; the effect of temperature is positive above this line and negative below it. Within each 
subplot the size of the points demonstrates their weight. Open points in a) indicate where 
temperature is assumed to have no effect. In a) the magnitude or direction of the temperature 
coefficients cannot differ within the chosen window (although multiple windows could be 
included), whereas in b) both the magnitude and direction of the temperature coefficients can 
vary over the year. If the climatic window is chosen a priori the position of the vertical grey 
lines in a) is fixed, whereas under a sliding window approach the start and end of the window 
are estimated. The FLM can be estimated using spline basis expansion (see equation 6). 

 

In this paper, we investigated the dimensionality of the environment and decomposed 

the environmental variation into the effects of underlying drivers in a population of Soay sheep, 

Ovis aries (Clutton-Brock & Pemberton 2004). This population exhibits pronounced density 
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dependent fluctuations, with high survival and fecundity at low densities and population crashes 

often occurring at high densities (Clutton-Brock et al. 1991; Clutton-Brock et al. 1992). 

However, high densities do not always result in crashes, suggesting the population responds to 

an interaction between density and the abiotic environment (Coulson et al. 2001; Clutton-Brock 

& Pemberton 2004). Previous studies have found that harsh winter weather conditions, such as 

wet and windy weather, decrease survival and fecundity (Grenfell et al. 1998; Milner, Elston & 

Albon 1999; Catchpole et al. 2000; Coulson et al. 2001; Stenseth et al. 2004; Berryman & Lima 

2006; Coulson et al. 2008). These studies have typically either used a large-scale index (winter 

NAO; e.g. Stenseth et al. 2004; Berryman & Lima 2006) or have chosen the temporal windows 

of putative local drivers a priori (Catchpole et al. 2000; Coulson et al. 2001), focusing on the 

winter period, when the vast majority of mortality occurs (Hallett et al. 2004). Longer-term 

effects, for example through changes in plant productivity or the condition of individuals 

entering winter have generally not been considered. Moreover, there are strong temporal 

correlations among the different vital rates, across sex and age classes, with years of high lamb, 

yearling, and adult survival occurring simultaneously with years of high reproduction (Fig. 2; 

Coulson et al. 1999). Despite this previous studies have identified the drivers of survival and 

fecundity separately for each age-sex class (e.g. Coulson et al. 2001; Coulson et al. 2008). We 

used a demographic SEM to show that just two axes of environmental variation are required to 

explain the temporal variation in survival, reproduction, and twinning across six age-sex classes. 

We then decomposed the first axis of environmental variation into the effects of density, a 

temporal trend, and climatic covariates, using FLMs to determine the critical window over 

which three local weather variables and NAO acted. We compared the predictive performance 

of the FLMs to using a large-scale climate index and to selecting the critical window for a local 

weather variable a priori. 

 

Study System 

We used thirty years of demographic data (1985-2014) on a population of Soay sheep in the 

Village Bay area of Hirta, in the St Kilda archipelago off the North-West of Scotland (Clutton-

Brock & Pemberton 2004). Nearly 100% of newborn lambs are tagged within days of birth. 

Population censuses are carried out three times a year (spring, summer, and autumn) and 

mortality searches ensure the fate of most individuals is known. The lack of large herbivorous 

competitors and predators of the adults mean the population dynamics are largely driven by 

intra-specific competition for food (Clutton-Brock & Pemberton 2004).  

 



 6 

Figure 2: Observed proportion of individuals of individuals a) reproducing (ewes only) and b) 
surviving over the study period, separated by age-sex class. 
 

For the FLMs we considered NAO and three local weather variables; minimum 

temperature, precipitation, and maximum wind speed. Cold, wet, and windy conditions may 

increase heat loss (Webster & Park 1967; Webb & King 1984; McArthur & Ousey 1996) and 

reduce grazing due to increased time spent sheltering (Stevenson 1994). Cold, wet weather may 

also have indirect effects through spring-summer vegetation growth and subsequent food 

availability. The predictive performance of the FLMs was compared to two reference models; 

using a large-scale climate index (December-March NAO, referred to herein as winter NAO; 

Coulson et al. 2001; Stenseth et al. 2004) and a local weather variable with the critical window 

selected a priori (March precipitation; Catchpole et al. 2000; Coulson et al. 2001). High winter 

NAO values are associated with warm, wet, and windy weather in northern Europe (Hurrell & 

VanLoon 1997), thus capturing harsh environmental conditions during the mortality period. 

Between January and March the body weight of the sheep can decline by as much as 30% 

(Clutton-Brock et al. 1997); high precipitation at the end of this period, before the onset of rapid 

new vegetation growth, thus appears likely to decrease survival. The winter NAO model differs 

from the NAO FLM, where monthly NAO values were included over a 19-month period. 

NAO data were obtained from the National Center for Atmospheric Research 

(https://climatedataguide.ucar.edu/climate-data; Hurrell 1995). Daily local weather data were 

acquired from Stornoway meteorological office, the closest weather station open for the entire 

study period (approximately 140km from St Kilda; data available from badc.nerc.ac.uk). These 

data were closely correlated with those from St Kilda from 1999 onwards (when weather 

stations were set up on site; temperature, r=0.97, precipitation, r=0.85, wind speed, r=0.93; Fig. 

S1). Missing data (<1% of temperature and precipitation and 6% of wind data) were 
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interpolated using the forecast package (Hyndman & Khandakar 2008) in R (R Core Team 

2016).  

 

Structural equation model 

Demographic SEMs excluding climatic drivers were constructed to explore the number of axes 

required to account for the temporal covariation among the vital rates and provide a baseline to 

evaluate the predictive performance of the climatic models. The population was split into three 

age classes: lambs (0-1 year), yearlings (1-2 years), and adults (>2 years). Female reproduction 

is not limited by male availability. A small proportion of yearling and adult ewes produce twins 

each year (Clutton-Brock & Pemberton 2004). The demographic SEMs therefore included 11 

sub-models: August (t) to August (t+1) survival of each age-sex class (6 sub-models, s 

superscript), spring reproduction of ewes in each age class (3 sub-models, r superscript), and 

twinning of yearling and adult ewes (2 sub-models, t superscript).  

We initially fitted a highly constrained model that assumes temporal variation in the 

vital rates is driven by a single time-varying environmental axis (e) common to all 11 sub-

models (the single-axis model). At low densities differences in the abiotic environment have 

little effect on survival, as resource availability remains high (Fig. 3a; Grenfell et al. 1998). The 

probability of survival (S) for each age-sex class (except ram lambs - see below) was therefore 

estimated using threshold models (Fig. 3a), assuming a binomial distribution:  

!"#$% !•,! =  !•
!,! +  !•!,!!   if  ! ! < !•                                  

!•!,! +  !•!,!! −  !•!,!(!(!) − !•)  if  !(!) ≥ !•,
   (eqn 1) 

where β0 are intercepts, βt and βe are slope terms for a temporal trend and the first environmental 

axis (e) respectively, and θ are thresholds. The • subscript indicates parameters estimated 

separately for each age-sex class. There was no evidence of a threshold in the fecundity 

(reproduction or twinning) or ram lamb survival sub-models (Fig. S2). The probability of 

reproduction (R) was estimated using a simple logistic regression: 

!"#$% !•,! =  !•!,! +  !•!,!! −  !•!,!! ! ,      (eqn 2) 

with the parameters defined as above (equation 1). The twinning and ram lamb survival sub-

models were structurally analogous to equation 2. 

As the vital rates are highly density dependent and population sizes have generally 

increased over the study period (Fig. S3; Coulson et al. 2008) the environmental axis (e) was 

modelled as a function of density (Dt; the log10 number of sheep in the population in August of 

year t) and the study year (t): 

!(!) = !! −  !!! −  !!!,        (eqn 3) 

where !! is a slope term for the temporal trend. The random year effects (εt
e) account for 

residual covariation among the vital rates and were sampled from a normal distribution with 

mean zero and standard deviation σe. Including a temporal trend (αtt) here allows for an 

interaction between density and time across the vital rates, whilst the vital rate specific temporal 
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trends (given by βtt in equations 1-2) allow for temporal trends in the mean vital rates (Fig. S4). 

We used a Bayesian framework for inference. Parameter estimates were obtained using 

Markov Chain Monte Carlo (MCMC) simulation in JAGS (Plummer 2003), using the R 

package runjags (Denwood in review). Weakly informative priors were used to aid convergence 

(Table S1). The models were run using two chains, each with a discarded burn-in period of 

1x105 iterations. The chains were run for a further 6x106 iterations, and thinned, keeping every 

2,000th sample to produce a total posterior sample of 6,000 across both chains. Posterior 

predictive checks were used to determine whether the temporal variation in the vital rates was 

well explained by the initial model (Gelman et al. 2004). 

 

 
Figure 3: a) Proportion of individuals i) reproducing, ii) surviving, and iii) twinning against 
population density, separated by age-sex class. Points show observed data. Lines show fitted 
baseline sub-models (equation 3) for the two-axis model for the midyear of the study, with the 
random year effect at zero, using the posterior medians. b) Path diagram for the two-axis model. 
Colours denote the age class and match those used in a). The vital rates are given by equations 
1-4. Note that the structure of the single-axis model is the same, excluding the second 
environmental axis. 
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Model development 

Survival across the six age-sex classes was well predicted by the single-axis model (Fig. 4a). 

However, posterior predictive checks revealed evidence of unexplained variation in the 

fecundity sub-models (Fig. 4a; Appendix A1). Independent, sub-model specific random year 

effects were introduced into the fecundity sub-models to explore this unexplained variation 

(Appendix A1). The posterior distributions of the corresponding variance terms were 

concentrated at zero for the yearling reproduction and twinning sub-models. However, the 

variances of the remaining fecundity components were non-zero, and the associated year effects 

were positively correlated (Appendix A1). Consequently, we constructed a two-axis model (Fig. 

3b), by introducing a second latent variable affecting lamb reproduction, adult reproduction, and 

adult twinning only. The probability of lamb or adult reproduction was then given by: 

!"#$% !•,! =  !•!,! +  !•!,!! −  !•!,!! ! +  !•!,!!!! ,    (eqn 4) 

 where βf is the slope for the second environmental axis, εtf. The adult twinning sub-model is 

structurally analogous to equation 4. εtf and εte (equation 3) were sampled from a multivariate 

normal distribution with means of zero and covariance matrix Σ.  

 

 
Figure 4: Observed and predicted vital rates using a) the single-axis and b) two-axis model. 
Black borders around the points indicate those processes partially driven by the second axis (Fig. 
3b). The addition of the second axis increases the correlation between observed and predicted 
vital rates from 0.47 to 0.74 for adult reproduction, 0.58 to 0.81 for adult twinning, and 0.84 to 
0.94 for lamb reproduction. Vital rates were predicted using the posterior medians as the 
parameter estimates, the observed density from ! − 1 and including the estimated random effect 
for each year. Dashed lines shows a 1:1 correlation.  
 

The vital rates were well predicted using the two-axis model (Fig. 4b). Adding the 

second environmental axis improved the fit of the lamb reproduction, adult reproduction, and 
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variation in the vital rates across the lifecycle. The 95% credible intervals of the βe slope terms 

overlap zero in only two of eleven sub-models (adult reproduction and yearling twinning; 

Appendix A1), indicating the first axis drove variation in survival and fecundity in nearly all 

age-sex classes. Variation in survival across the age-sex classes and the majority of variation in 

the most variable fecundity rate (lamb reproduction) was captured by the first axis (Fig. 4). 

Variation in yearling twinning was not captured by either axis, however this remains low 

throughout the study period (the maximum number of yearlings twinning in one year was three 

and no yearlings twinned in 19 out of the 30 years). There was no evidence of correlations 

between the yearly estimates of the second environmental axis (εt
f ) and density (Dt) or year (t; 

Appendix A1), indicating these effects were captured by the first axis. There was also no 

evidence of a correlation with the sex ratio (Appendix A1), suggesting female fecundity was not 

limited by male availability. 

 

Identifying climatic drivers 

We used the two-axis model for further analysis of environmental effects. Here we consider the 

first environmental axis (e), which drives the majority of the covariation in the vital rates (Fig. 

4). We found no evidence of weather conditions driving variation in the second axis (Appendix 

A2). In the reference models, the first environmental axis was given by: 

!(!) = !! −  !!!! − !!! −  !!!,       (eqn 5) 

where Mt is the climatic variable (winter NAO or mean March precipitation) in year t and βm is a 

slope term. For the local weather FLMs the means of the daily variables every fortnight (w) 

from the beginning of January in t-1 (w=1) until the end of July in t (w=42), were used as 

covariates (Fig. S5). Monthly NAO data over the same time period were used for the NAO 

FLM (! = 1, 2…, 19). Seasonality was removed from the weather data by centering (Fig. S5). 

Each covariate was included in a separate model, with the first environmental axis (e) given by:  

!(!) = !! − !!(!)!!"!
!=1  − !!! −  !!!,     (eqn 6) 

where !!" is climate variable ! in year ! and time interval ! (fortnight for the local variables 

and month for NAO) and !!(!) is a smooth function that allows the effect of the climate 

covariates to vary smoothly over the 19 month period. The smooth function is parameterised 

using spline basis expansion, as !! ! = !!
!!!(!)!

!=1 , where βc are coefficients, bk(w) are 

basis functions, and K is the dimension of the spline basis. The FLM was estimated using eight 

knots and a cubic regression (“cr”) spline basis. The degree of smoothing is controlled by a 

quadratic smoothing penalty, ΣjλjβTSjβ, where Sj are known smoothing penalty matrices and λj 

are smoothing parameters (Wood 2016; Wood 2017). In a Bayesian framework the FLM 

coefficients (βc) can be estimated using a multivariate normal distribution prior, with precision 

matrix ΣjλjSj (Wood 2016; Wood 2017). The smoothing parameters, λj, were estimated as 

parameters in the model using vague log-uniform priors (Table S1). The jagam function in the 



 11 

mgcv package (Wood 2016) was used to generate the smoothing penalty matrices (S) and the 

spline bases (bk).  

The out of sample predictive performance and the proportion of variance (R2) in e 

explained for each of the FLMs (equation 6) was compared to the base model (equation 3), and 

the reference models (equation 5). Leave one out cluster cross validation was used to assess 

predictive performance. The models were refitted thirty times, leaving out each year of data in 

turn. The predictive performance of each model was estimated using the expected logwise 

predictive density (elpd) (Vehtari, Gelman & Gabry 2016). Since ignoring the random year 

effects (εe and εf) may lead to overly optimistic estimates of a model’s predictive performance 

(Skrondal & Rabe-Hesketh 2009; Pavlou et al. 2015), a Monte-Carlo approach was used to 

calculate the marginal predictive density. The elpd was then  

elpd =  log( !
!"

!
!!! !(!!|!!,!)!

!!!
!
!!! ,      (eqn 7) 

where S is the number of draws from the posterior, M is the number of samples from the 

random year effect distributions and n is the number of years of data (Vehtari, Gelman & Gabry 

2016). The likelihood p(yi|θs,m) is calculated as the product of the likelihoods for each of the 

eleven sub-models; yi is the observed data in year i and θs,m is draw s from the posterior of the 

model that excluded the data from year i, with sample m from the random effects. Posterior 

samples were obtained using MCMC sampling in JAGS as above and the elpd was estimated 

using the whole posterior sample of 6,000 for each year. εe and εf were sampled from a 

multivariate normal distribution 1,000 times for each posterior sample. The difference in the 

predictive ability of two models (A and B) on the deviance scale was given by −2(elpd!-

elpd!) (Vehtari, Gelman & Gabry 2016). 

 

Climatic model results 

The strongest weather effects were over winter, when the vast majority of the mortality occurs, 

but there was also evidence of longer-term effects, especially during autumn (Fig. 5). The vital 

rates were driven by the cumulative effect of precipitation from summer t-1 until winter in year 

t. Over this time period increased precipitation decreased survival and fecundity, with the 

strongest effects in autumn and winter (Fig. 5a). High wind speeds had a positive effect in 

winter and spring t-1 and a negative effect over autumn and winter in t (Fig. 5b). Higher NAO 

values from spring in t-1 were associated with decreased survival and fecundity, with 

particularly strong effects over winter in year t (Fig. 5d).  

Cross validation was not carried out on the temperature FLM, as there was no evidence 

of an effect on the vital rates (Fig. 5c). The remaining climatic models had a better predictive 

performance than the baseline model (Table 1), however the gain was marginal in the case of 

March precipitation. Wind speed was the best performing of the FLMs; wind speed and 

precipitation both outperformed the monthly NAO FLM (Table 1). However, the winter NAO 
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model had a better predictive performance than any of the FLMs, with higher winter NAO 

values associated with decreased survival and fecundity (Table 1). Using an additive framework 

to include both precipitation and wind speed in a single model did not improve the predictive 

performance beyond the wind speed FLM (Appendix A2). Models including the precipitation or 

wind speed FLM as well as winter NAO had marginally better predictive performance than the 

winter NAO model (Appendix A2).  

 

Figure 5: FLMs for a) temperature, b) precipitation, c) wind speed and d) NAO. Thick black 
lines show the posterior medians, thinner grey lines show 100 simulations from the posterior. 
The horizontal dashed red line is at 0. Dashed vertical lines and letters at the top of the plot 
indicate the seasons. Coefficients above the line indicate that higher values of the weather 
variable during that time period were associated with an increase in survival and fecundity. The 
rut occurs during autumn and mortality occurs during winter and early spring. 

 

Table 1: Performance of the climatic models. Relative predictive performance is the difference 
in out of sample predictive performance (equation 7) between the baseline model (with no 
climate effects; equation 3) and each climate model, on the deviance scale. More negative 
values indicate models with a better predictive performance. R2 is the proportion of variation in 
the first environmental axis (e) explained by the fixed effects (i.e. density, the temporal trend, 
and the relevant climatic variables). Values are the median and 95% quantiles, calculated by 
sampling from the posterior distribution. R2 for the base model is 0.68 (0.57-0.74). 
 

Model Relative predictive performance R2 

March precipitation -0.67 0.68 (0.58-0.74) 
Monthly NAO FLM -1.96 0.77 (0.63-0.84) 
Fortnightly precipitation FLM -3.82 0.77 (0.65-0.84) 
Fortnightly wind speed FLM -5.73 0.81 (0.69-0.87) 
Winter NAO -13.57 0.86 (0.79-0.90) 
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Discussion 

The environment may comprise considerably fewer dimensions than the number of vital rate-

age-sex combinations to be estimated. Using a demographic SEM to estimate the vital rates 

simultaneously can thus provide a simpler target for the challenging task of decomposing the 

variation in the vital rates into the effects of different intrinsic (e.g. density) and extrinsic (e.g. 

climatic) covariates. In the Soay population a simple demographic SEM with a single axis 

captured most of the variation in survival, reproduction, and twinning across six age-sex classes, 

with all vital rates well predicted by two environmental axes. Age and sex differences in mean 

vital rates and their variability (Gaillard, Festa-Bianchet & Yoccoz 1998; Gaillard et al. 2000), 

have led to vital rates for different age-sex classes being treated independently (e.g. Coulson et 

al. 2001). Positive covariances amongst the vital rates across age-sex classes suggest that, 

despite differences in the magnitude of environmental effects, common axes of environmental 

variation drive the variation in vital rates across age-sex classes. Such positive covariances are 

widespread in natural populations, including in plants (Jongejans et al. 2010), birds (Nur & 

Sydeman 1999), and mammals (Rotella et al. 2012), suggesting the SEM approach is widely 

applicable.  

The demographic SEM approach can also provide insights into interactions among the 

vital rates. Positive correlations among the vital rates may be caused by common environmental 

drivers acting on disparate vital rates (Nur & Sydeman 1999) or by interactions among the vital 

rates, such as the selective mortality of reproductive individuals in harsh environmental 

conditions (Rotella, Clark & Afron 2003). In the Soay population, the first environmental axis 

affects survival and fecundity, with evidence of strong weather effects over winter, after the rut 

has occurred. This axis probably reflects over-winter mortality and the selective mortality of 

reproductive individuals. Much of the mortality in this population occurs late in winter (Hallett 

et al. 2004), with starvation the main cause (Gulland 1991; Gulland 1992). The last two months 

of pregnancy, which are energetically costly as foetal weight increases quickly, occur before the 

onset of rapid spring vegetation growth (Robbins 1983). Temporal variation in fecundity in this 

population occurs predominantly through lamb reproduction (Fig. 3). The effects of a harsh 

environment are likely to be more extreme in pregnant lambs, undergoing relatively high 

reproductive costs, leading to increased mortality in this group. As the second environmental 

axis only drives variation in fecundity sub-models this may act through the probability of 

individuals conceiving. We do not decompose variation in the second axis, as it accounts for 

little variation in the vital rates, however there was no evidence of density dependence in this 

axis or of it being driven by male availability. This is unsurprising as a single male may fertilise 

multiple females each year (Coltman et al. 1999), suggesting males are unlikely to limit female 

reproduction. Instead it could be driven by body condition entering the rut, as heavier ewes are 

more likely to conceive (Clutton-Brock et al. 1996). 
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Despite this population being well studied, with multiple previous studies attempting to 

determine underlying drivers (e.g. Clutton-Brock et al. 1991; Clutton-Brock et al. 1992; 

Grenfell et al. 1998; Milner, Elston & Albon 1999; Catchpole et al. 2000; Coulson et al. 2001; 

Stenseth et al. 2004), previously unseen weather effects were identified using the FLMs, with 

the vital rates affected by cumulative effects from up to twelve months prior to the mortality 

period. The choice of possible environmental drivers, and the periods over which they are 

assumed to act, are important modeling decisions yet many studies provide little justification for 

their chosen variables (Ehrlen et al. 2016; Van der Pol et al. 2016). Previous results, that 

increased wind speeds and precipitation over winter increase mortality (Milner, Elston & Albon 

1999; Coulson et al. 2001) were supported by the FLMs. However, high precipitation and wind 

speeds during the autumn rut appear nearly as costly as during winter. Rutting is energetically 

costly, with decreased foraging time and increased energy expenditure (Stevenson & Bancroft 

1995); environmental conditions during this period may therefore have substantial effects on 

body condition and subsequent survival (Barboza et al. 2004).  

Indirect effects can cause lags between the critical window over which a climatic 

variable acts and the demographic response (Terraube et al. 2015). The magnitude of indirect 

climatic effects on population dynamics, mediated through interactions with other species, can 

be larger than direct effects (Cahill et al. 2013; Davis, Stephens & Kjellander 2016). In the 

Soays higher maximum wind speeds in winter and spring t-1 appear to increase survival in year 

t, independently of any density effects. The weight of individuals in summer is not affected by 

density during the previous winter (Clutton-Brock et al. 1991), indicating that by summer 

individuals are able to regain their condition following harsh winters. Possibly these lagged 

weather effects may occur indirectly by influencing vegetation growth. Although wind speed 

seems unlikely to directly influence plant productivity it may be correlated with other 

environmental variables that do; as climatic covariates often covary it can be difficult to isolate 

causal drivers (Grosbois et al. 2008; Ehrlen et al. 2016).  

Large-scale climate phenomena are often better predictors of vital rates than local 

weather variables (Post & Stenseth 1999; Hallett et al. 2004). However, such indices cannot 

improve the mechanistic understanding of how populations respond to environmental variation 

(Stenseth et al. 2003), without also considering the associations between such indices and local 

weather conditions (e.g. Almaraz & Amat 2004; Anders & Post 2006). The relationship 

between large-scale drivers and local weather conditions may not be temporally (Stenseth et al. 

2003) or spatially (van de Pol et al. 2013) stationary, decreasing the ability of large-scale 

drivers to accurately predict population dynamics into the future or to extrapolate results beyond 

the population level. We show that the use of sophisticated statistical tools to determine the 

temporal windows over which local variables act can improve their predictive performance. 

Thus a lack of knowledge of such windows is one reason for the disparity in predictive 

performance between local and large-scale climatic variables (Stenseth & Mysterud 2005). 



 15 

However, the local variables were still outperformed by a large-scale climatic index (winter 

NAO). A likely reason for the relatively high predictive performance of such large-scale indices 

is that they incorporate the effects of multiple local variables. Although in reality interactions 

between local variables are likely to be important (Stenseth & Mysterud 2005; Ehrlen et al. 

2016), including multiple variables is not simple due to correlations among them (Grosbois et al. 

2008). More mechanistic approaches to combining the effects of multiple interacting local 

covariates may therefore improve the predictive performance of local models and be more 

useful for predicting the effects of future change than a reliance on large-scale indices (Stenseth 

& Mysterud 2005).  

 Rapid climate change has increased interest in predicting ecological responses to 

environmental variation, with structured population models widely used to predict population 

responses to future change (e.g. Hunter et al. 2010; Salguero-Gomez et al. 2012). For accurate 

predictions relevant drivers and their temporal windows of influence must be identified and 

their effects must be accurately quantified. We have demonstrated that the dimensionality of the 

environment can be remarkably low, suggesting the influence of common environmental drivers 

across the vital rates and life cycle, and thus providing a simpler target for identifying such 

drivers. By incorporating climatic drivers over extended temporal periods FLMs can increase 

the predictive performance of local variables. Including interactions among climatic variables 

may further increase the predictive performance of local models, beyond that of large-scale 

indices (Stenseth & Mysterud 2005).   
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Supplementary Figures 

 
Figure S1: Correlation between minimum temperature, mean precipitation, and maximum 
windspeed on St Kilda and from the meteorological office station at Stornoway airport (150km 
away). Dashed lines show 1:1 lines. 
 

 
Figure S2: Posterior distributions (mode and 95% credible intervals) for model using threshold 
models for all of the vital rate sub-models (see equation 1 in main text). Subscripts show the sex 
and stage class (i.e. EA is ewe adult) and superscripts show the vital rate (survival, reproduction 
or twinning). Colours denote whether or not the threshold parameter is retained in that sub-
model. The posteriors of the threshold parameters for the survival sub-models (with the 
exception of ram lamb survival) are well defined, whilst those of the fecundity models and ram 
lamb survival are broader and often focused at either end of the prior (see Qian 2014). 
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Figure S3: Total population size in the Village Bay area of Hirta over the study period. Whilst 
highly variable the number of individuals has generally increased over time.  
 
 
 

 
Figure S4: Bivariate plot of the posterior distributions for the two types of temporal trend 
included in the structural equation model (SEM). Including the shared temporal trend (!!!; see 
equation 3) in the first environmental axis (!) allows for an interaction between density and 
time across the vital rates, whilst the submodel specific temporal trends (given by !!!; see 
equations 1-2 & 4) allow for temporal trends in the vital rate means. Both trends were retained 
as the parameters were not strongly correlated. 
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Figure S5: Mean (points) and standard deviation (error bars) of a) temperature (°C), c) 
precipitation (mm), e) wind speed (knots) and g) NAO. b), d), f) and h) show the mean and 
standard deviation of the centered climate covariates. The covariates were centered to remove 
seasonality from the data. 
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Supplementary Tables 
 
Table S1: Priors for the structural equation models. For the uniform distributions (U) and log-
uniform distribution (LU) the first and second parameters refer to the minimum and maximum, 
for the normal distribution (N) they are the mean and standard deviation. For parameter 
definitions see equations 1-4 for parameters in all models and equations 5-6 for additional 
parameters in climate models. Note that • is used when referring to parameters for each of the 
demographic classes, otherwise subscripts indicate which classes are referred to with E for ewes, 
R for rams, L for lambs, Y for yearlings, and A for adults. Weakly informative priors are used 
to aid convergence of the threshold models, for example by restricting the threshold parameters 
to the range of observed densities. 
Parameter Model Submodel(s) Prior 

!•!,! All Reproduction N(0, 100) 
!•!,! All Reproduction N(0, 1) 
!•!,! All Reproduction N(0, 100) 
!•!,! All Lamb and adult reproduction U(0, 100) 
!•!,! All Twinning N(0, 100) 
!•!,! All Twinning N(0, 1) 
!•!,! All Twinning N(0, 100) 
!•!,! All Adult twinning U(0, 100) 
![!]!,!	 All Ewe survival U(-5, 5) 

![!]!,!	 All Ram yearling and adult survival U(-10, 10) 

![!"]!,! 	 All Ram lamb survival N(0, 100) 
!•!,!	 All Survival (except ram lambs) U(-1, 1) 
![!"]!,! 	 All Ram lamb survival N(0, 1) 
!•!,!	 All Survival (except ram lambs) U(0, 50) 
![!"]!,! 	 All Ram lamb survival N(0,100) 
![!"]	 All Ewe lamb survival U(2.2, 2.8) 
!•	 All Survival (except lambs) U(2.4, 2.8) 
!! 	 All All  U(0, 0.2) 
!! 	 All All  1 
!!" 	 All Adult and lamb reproduction and 

adult twinning 
U(-1, 1) 

!!	 All All U(-0.05, 0.05) 
!!	 Climate All U(-0.5, 0.5) 
!	 Climate All LU(-10, 20) 

 

Appendices 

Appendix A1: Exploring the dimensionality of the environment 

Posterior predictive checks from the model with a single axis of environmental variation (see 

main text, equations 1-3) showed that the variation in survival across the six age-sex classes was 

well explained using a single axis of environmental variation (Fig. 4a). There was some 

unexplained variation in the fecundity (reproduction and twinning) sub-models (Fig. 4a). Vital 

rate specific temporal error terms (!•,!! ) were included into the fecundity models with the 

probability of reproduction now given by  

!"#$% !•,! =  !•!,! +  !•!,!! −  !•!,!! ! +  !•,!!,! .     (eqn A1) 
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See main text (equations 1-4) for parameter definitions. The twinning models are not shown but 

were structurally analogous to the reproduction models. The posterior distributions of the !•,!!  

terms suggest that there was residual variation in the lamb reproduction, adult reproduction, and 

adult twinning sub-models (Fig. A1). The posterior distributions for the standard deviations of 

the error terms in yearling reproduction and twinning are concentrated at zero and these terms 

were therefore excluded. As the estimates of the vital rate specific error terms were positively 

correlated the sub-model specific temporal error terms were replaced by a second environmental 

axis. This accounted for any covariance among lamb reproduction, adult reproduction, and adult 

twinning not accounted for by the first axis (!). The probability of lamb or adult reproduction 

therefore becomes  

!"#$% !•,! =  !•!,! +  !•!,!! −  !•!,!! ! +  !•!,!!!! ,     (eqn A2) 

where !! is the slope for the second latent environmental axis (!!) and !! and  !! are sampled 

from a multivariate normal distribution with means of zero and a covariance matrix Σ =

 !!!! !!!!!!"
!!!!!!" !!!! . !! was constrained to equal one for make the model identifiable. The 

structure of the adult twinning model is analogous to the lamb and adult reproduction models. 

Including the second environmental axis increased the agreement between the observed and 

predicted fecundity vital rates (Fig. 4b). The first axis of environmental variation affects nine of 

the vital rates, with the posteriors of the !!  terms only overlapping zero for yearling 

reproduction and yearling twinning (Fig. A2). There was no evidence of correlation between the 

yearly estimates of the second environmental axis and density or the year of study (Fig. A3), 

suggesting the effects of these variables were accounted for by the first environmental axis (!). 
There was also no evidence of a correlation with the sex ratio, suggesting the availability of 

males did not limit female reproduction. This is unsurprising as a single male can fertilise 

multiple females in any given year (Pemberton et al. 1996; Coltman et al. 1999).  
 

Figure A1: Posterior distributions of the standard deviations of the additional error terms !! in 
the fecundity models (see equation A1).   
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Figure A2: Posterior estimates (modes and 95% credible intervals) for the slope terms for a) the 
first and b) the second axes of environmental variation. The superscripts s, r, and t refer to 
whether the parameter is in a survival, reproduction or twinning sub-model. The subscripts give 
the demographic class, with the first letter referring to the sex (i.e. E for ewe and R for ram) and 
the second letter the stage class (i.e Lamb, Yearling or Adult).  
 
 
 

Figure A3: Correlation between a) the year of the study, b) population size (log 10 number of 
individuals in August of year t), and c) the proportion of rams in the population and the 
reproductive latent effect (!!). 
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Appendix A2: The effects of multiple climatic covariates 
Incorporating multiple local climatic covariates in the first axis of environmental variation 

The predictive performance of both the wind speed and precipitation FLMs was better than the 

baseline model (Table 1). As such we modelled the first temporal axis of variation (!) as a 

function of both wind speed (!) and precipitation (!) as follows  

!(!) = !! − !!(!)!!"!
!=1 − !!(!)!!"!

!=1  − !!! −  !!! .    (eqn A3) 

where !! is the density in year !, !! is a temporal trend, !!" and !!" are the mean wind speed 

and precipitation respectively in fortnight w and year t, and !!(!) and !!(!) are smooth 

functions for how the effects of wind speed and precipitation vary over the year. These smooth 

functions are estimated by spline basis expansion, as in the main text (equation 6). !!! accounts 

for any residual temporal covariation in the vital rates. Cluster cross validation was performed 

as in the main text (equation 7) and the predictive performance of this model was compared to 

the single climatic covariate wind speed and precipitation models. 

Figure A4: FLM with two climatic covariates; a) wind speed and b) precipitation (see equation 
A3). Thick black lines show the posterior medians, thinner grey lines show 100 simulations 
from the posterior. Thin dashed black lines show the medians from the respective single 
climatic variable FLMs. The horizontal dashed red line is at 0. Dashed vertical lines and letters 
at the top of the plot indicate the seasons. Coefficients above the line indicate that higher values 
of the climatic covariate during that time period were associated with an increase in fecundity. 
 
Table A1: Difference in the predictive performance of the FLM with the highest predictive 
performance (wind speed) and the other models on a deviance scale. Lower values indicate 
models with a higher predictive performance. 

Model Relative predictive ability R2 

Precipitation 1.91 0.77 (0.65-0.84) 

Precipitation and wind speed 1.56 0.81 (0.70-0.88) 

Wind speed 0.00 0.81 (0.69-0.87) 

 

 Similar effects are seen for each climatic covariate when wind speed and precipitation 

are included in the same model as when these are modelled separately (Fig. A4). Higher 

precipitation generally has a negative effect on the vital rates whilst higher wind speeds have a 

positive effect in Spring year ! − 1 and negative over autumn and winter in year !. However, the 
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effect sizes are decreased for both climatic covariates in the joint model, relative to including 

each climatic covariate in a separate model (Fig. A4). This is unsurprising as the wind speed 

and precipitation are correlated (r=0.71, p<0.01). Climatic covariates are often correlated with 

each other (Grosbois et al. 2008), sometimes making it difficult to determine variables are 

drivers and which are simply correlated with drivers (Ehrlen et al. 2016). Including both 

variables does not improve the predictive ability of the model beyond that of the wind speed 

only model (Table A1). Here an additive relationship between the climatic covariates was 

assumed. In reality it is often an interaction between climatic covariates that affects the vital 

rates (Stenseth & Mysterud 2005), for example here wet and windy weather may be a lot worse 

thermodynamically than the additive effect would suggest.  

 

Incorporating broadscale and local climatic covariates 

Including winter NAO and the local weather variables in a single model can determine whether 

the FLMs are able to identify effects beyond those seen in the winter NAO model. Here the first 

axis of environmental variation is given by  

!(!) = !! − !!!"#! − !!(!)!!"!
!=1   − !!! −  !!! ,     (eqn A4) 

where !"#! is winter NAO in year !, !! is a slope term and the remaining parameters are 

defined in equation 6 and details on fitting the model are the same as those provided in the main 

text. This was repeated using both precipitation and wind speed as the local variable (!).  
 Including the winter NAO term decreases the magnitude of the coefficients for both 

precipitation and wind speed (Fig. A5). The largest decreases are during winter, as would be 

expected given that high winter NAO values are associated with wet and windy winters. 

However, it is not only the magnitude of the coefficients during winter that is altered, possibly 

because weather may be correlated within years and changes in the winter NAO term may also 

therefore be correlated with changes in the weather outside of winter. Including the local 

weather variables does not change the magnitude of the !! slope term in either model (Fig. A5). 

The models including the local covariates in addition to the winter NAO term have a better 

predictive performance than the model with just the winter NAO term, however this is marginal, 

especially in the case of the precipitation model (Table A2).  
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Table A2: Difference in the predictive performance of model with the highest predictive 
performance (wind speed and winter NAO) and the other models on a deviance scale. Lower 
values indicate models with a better predictive performance. R2 is the proportion of variation in 
the first environmental axis (e) explained by the fixed effects (i.e. density, the temporal trend, 
and the relevant climatic variables). Values are the median and 95% quantiles, calculated by 
sampling from the posterior distribution. R2 for the base model is 0.68 (0.57-0.74). 

Model Relative predictive ability R2 

Precipitation 11.00 0.77 (0.65-0.84) 

Wind speed 9.09 0.81 (0.69-0.87) 

Winter NAO 1.24 0.86 (0.79-0.90) 

Precipitation + Winter NAO 1.17 0.86 (0.79-0.91) 

Wind speed + Winter NAO 0.00 0.87 (0.80-0.91) 

 

Figure A5: Estimates of climatic coefficients for the wind speed and winter NAO model (top 
row) and the precipitation and winter NAO model (bottom row). a) and c) show the FLMs for 
windspeed and precipitation respectively. Thick black lines show the posterior medians, thinner 
grey lines show 100 simulations from the posterior. Thin dashed black lines show the medians 
from the respective single weather variable FLMs. The horizontal dashed red line is at 0. 
Dashed vertical lines and letters at the top of the plot indicate the seasons. Coefficients above 
the line indicate that higher values of the weather variable during that time period were 
associated with an increase in survival and fecundity. b) and d) show the posterior distribution 
for !!. The vertical red line shows the equivalent parameter from the model with winter NAO 
only (i.e. without a local covariate). 
 
Climatic effects in the reproductive latent effect 

As the first axis of environmental variation affected both survival and fecundity (Fig. A2) we 
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of reproductive individuals. That is we assume that for example a lamb that is pregnant has a 

higher mortality risk in a ‘bad’ winter than a lamb that is not pregnant and therefore the 

proportion of lambs reproducing is lower in ‘bad’ winters as a higher proportion of pregnant 

lambs have died. As the second environmental axis only affects reproduction (Fig. A3) we 

assume that this affects the probability of individuals conceiving, for example by affecting the 

condition of the sheep entering the rutting period. Climatic covariates were therefore included 

from January ! − 1 until November in year !, when the rut occurs. The same local variables 

were included as in the first environmental axis (minimum temperature, precipitation, and 

maximum wind speed).  

 The probability of lamb reproduction or adult reproduction is now given by  

!"#$% !•,! =  !•!,! +  !•!,!! −  !•!,!! ! +  !•!,!!(!),     (eqn A5) 

where !(!) = !!(!)!!"!
!=1 +  !!! and !•!,! is a slope parameter. The remaining parameters 

are defined in equation 6 and details on fitting the model are the same as those provided in the 

main text. The adult twinning model is structurally the same as equation A5 so is not shown. Six 

knots were used for the spline. Weather variables were not included in the first axis of 

environmental variation (i.e. ! is given by equation 3 in the main text). 

Precipitation, wind speed, and monthly NAO did not appear to act on the second axis of 

environmental variation (Fig. A6). There was some evidence that increased temperatures over 

the spring and summer preceding the rut may increase fecundity (Fig. A6a). Higher 

temperatures over this period may increase vegetation growth, therefore increasing resource 

availability and the condition in which the ewes enter the rut. However cross validation (see 

equation 7) showed that including the temperature FLM did not improve the predictive 

performance of the base model (!"#$ =  −864.4 for temperature model and !"#$ =  −863.9 

for base model).  
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Figure A6: Functional linear models for the second axis of environmental variation with a) 
temperature, b) precipitation, c) wind speed, and d) NAO. Thick black lines show the posterior 
medians, thinner grey lines show 100 simulations from the posterior. The horizontal dashed red 
line is at 0. Dashed vertical lines and letters at the top of the plot indicate the seasons. 
Coefficients above the line indicate that higher values of the climatic covariate during that time 
period were associated with an increase in fecundity. 
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Abstract 

1. Temporal shifts in population dynamics, such as the loss of population cycling, occur 

frequently. As the dynamical behaviour of a system can have important consequences 

for processes such as extinction, understanding the causes of such shifts is important for 

species management. This is challenging in natural populations, where the dynamics 

may be driven by complex interactions between intrinsic and extrinsic factors. 

2. As vital rates typically vary according to individual state variables (e.g. age) structured 

population models are frequently used to explore population dynamics. Demographic 

rates are often temporally correlated, which may have significant impacts on population 

dynamics. By introducing latent variables to account for the covariation among the vital 

rates a demographic structural equation modelling (SEM) approach allows the joint 

responses of drivers on disparate vital rates to be explored.  

3. The dynamics in a well-studied population of Soay sheep appear to have undergone a 

temporal shift, from unstable overcompensatory dynamics, with regular population 

crashes, to relatively stable population sizes. We explored possible causes of this shift 

using an age and sex structured matrix population model (MPM), parameterised using a 

demographic SEM.  

4. A single axis of environmental variation explained the variation in population sizes in 

this population, providing a simple target for perturbation analyses. The MPM 

accurately predicted one-step ahead population sizes. However, despite incorporating a 

range of possible factors including density dependence, population structure, non-

linearities in the demographic rates, environmental and demographic stochasticity, and 

temporal trends in the vital rates the MPM did not capture the observed dynamical 

behaviour. Simulated populations did not exhibit the period three cycling observed at 

the start of the study period, nor the observed shift in stability.  

5. Population models are rarely validated based on their dynamical behaviour. Here, we 

have shown the importance of such validation, as a model with good one-step ahead 

predictive performance was unable to capture the dynamics of the system. Putative 

drivers not explored here that warrant further consideration include the role of parasites 

and asymmetric competition.  

 

Keywords: age structure, demographic stochasticity, density, dynamical behaviour, 

environmental variation, matrix population model, population dynamics, Soay sheep, stability, 

structural equation model 
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Introduction 

The mechanisms driving population cycles have interested ecologists for decades (Kendall et al. 

1999; Barraquand et al. 2017). Many putative drivers have been explored, such as host-enemy 

interactions (e.g. predators and parasites; Cattadori, Haydon & Hudson 2005; Vik et al. 2008) 

and overcompensatory intraspecific density dependence (Grenfell et al. 1992; Barraquand et al. 

2014). Strict, consistent cycling is rare. Instead, temporal shifts in a population’s dynamics are 

frequently observed. For example, many previously cycling populations in northern Europe, 

including mammals (Lindstrom & Hornfeldt 1994), birds (Ludwig et al. 2006), and insects 

(Esper et al. 2007), have collapsed to steady states in recent years (Ims, Henden & Killengreen 

2008; Cornulier et al. 2013). Understanding the causes of temporal shifts in population 

dynamics is important for species and ecosystem management (Cornulier et al. 2013; 

Barraquand et al. 2017). The loss and gain of cyclical dynamics may have important 

consequences for population persistence, with smaller and more variable populations generally 

at higher risk of extinction (Inchausti & Halley 2003). Moreover, shifts in the dynamics of one 

species may have knock-on effects for interacting species and ecosystem processes (Ims & 

Fuglei 2005; Rydgren et al. 2007; Ecke et al. 2017). Identifying the drivers of dynamics in 

natural populations is challenging, as there may be complex interactions between intrinsic (e.g. 

density dependence and population structure) and extrinsic (e.g. climatic conditions, predator 

densities, and presence of parasites) factors (Bjornstad & Grenfell 2001; Coulson, Rohani & 

Pascual 2004; Radchuk, Ims & Andreassen 2016; Barraquand et al. 2017; Gamelon et al. 2017).  

 The mechanisms driving population dynamics have traditionally been identified using 

time series analyses, commonly using autoregressive models on logged population sizes 

(Grenfell et al. 1998; Coulson, Milner-Gulland & Clutton-Brock 2000; Bjornstad & Grenfell 

2001). However, populations that differ in structure will exhibit different dynamics (Benton, 

Plaistow & Coulson 2006; Pelletier et al. 2012), even if the populations are the same initial size 

and subject to the same environmental conditions (Coulson et al. 2001; Benton & Beckerman 

2005). At a local scale variation in population size is driven by temporal variation in vital rates, 

such as survival and reproduction. Population structure has important consequences for the 

dynamics, because the mean and variability of such rates typically differ according to individual 

state variables, such as age, sex, and size (Gaillard, Festa-Bianchet & Yoccoz 1998; Gaillard et 

al. 2000; Coulson et al. 2001). For example, the survival of prime aged individuals is generally 

higher and less temporally variable than that of juveniles or senescent individuals (Gaillard, 

Festa-Bianchet & Yoccoz 1998; Gaillard et al. 2000). Moreover, correlations between density 

and the proportion of individuals in different age classes can lead to spurious density effects 

being identified, if population structure is not taken into account (Festa-Bianchet, Gaillard & 

Cote 2003). 

A recognition of the importance of population structure for dynamics has led to the 

widespread use of structured population models, such as matrix population models (MPMs; 
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Caswell 2001) and integral projection models (IPMs; Easterling, Ellner & Dixon 2000; Ellner, 

Childs & Rees 2016). Such models are constructed from longitudinal, individual-based data 

(Coulson 2012) and are typically structured by variables such as age (Pardo et al. 2017), stage 

(Menges & Quintana-Ascencio 2004), or size (Dahlgren, Bengtsson & Ehrlen 2016). Structured 

population models are frequently parameterised solely based on female demographic rates 

(though see e.g. Jenouvrier et al. 2010; Gerber & White 2014; Tsai et al. 2015), despite the 

widespread observation that the mean and variability of demographic rates frequently differ 

between the sexes (Owen-Smith 1993; Tavecchia et al. 2001; Clutton-Brock et al. 2002; 

Gaskin, Futerman & Chapman 2002; Toigo & Gaillard 2003). Single sex models may thus 

produce biased predictions of population dynamics, if the demographic rates are density 

dependent and differ between the sexes, or if male availability limits female reproduction 

(Mysterud, Coulson & Stenseth 2002; Rankin & Kokko 2007).  

Whilst demographic rates frequently differ according to such individual state variables, 

such as age, size, and sex, it does not necessarily follow that they will respond independently to 

environmental change. Covariances among demographic processes are frequently observed in 

natural populations and may be driven by common environmental drivers across vital rates 

(Jongejans et al. 2010; Rotella et al. 2012) or due to tradeoffs between different vital rates 

(Koenig & Knops 1998). These covariances may have important implications for the stability 

and dynamics of the population (Coulson, Gaillard & Festa-Bianchet 2005). For example, 

positive or negative covariances typically increase or decrease the variability in population 

growth rate respectively. One of two approaches for parameterising stochastic structured 

population models, matrix selection, where stochasticity is introduced by resampling annual 

matrices or kernels (Rees & Ellner 2009), automatically preserves covariances. In an element 

selection approach, temporally variable parameters are sampled at each iteration from their 

estimated joint probability distributions (Rees & Ellner 2009; Vindenes et al. 2014). However, 

it is difficult to predict population responses to changes in the temporal co(variances) using 

matrix or traditional element selection methods.  

An alternative approach is to parameterise a demographic structural equation model 

(SEM; Chapters 2 and 4). Here, one or more latent variable(s) are introduced to account for the 

covariation among the rates. Where demographic processes positively covary, as is often the 

case in natural populations (Nur & Sydeman 1999; Jongejans et al. 2010; Rotella et al. 2012), 

the latent variable can be conceived as a measure of environmental quality (Chapter 2). 

Variation in the latent variable may be decomposed into the effects of known drivers and 

residual variation (Chapters 2 and 4). Perturbing such drivers and the amount of residual 

variation allows the effect of such drivers and environmental stochasticity respectively on the 

population dynamics to be explored, whilst accounting for covariations among the demographic 

processes.  
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Figure 1: ai) Observed population sizes over the study period. ii) Wavelet power spectrum and 
iii) average wavelet power over the time series for the observed population sizes. In ii) dashed 
black lines denote significant periodicity (at the p<0.05 level, assessed using white noise 
simulation algorithms) and faded areas show the cone of influence, where edge effects may 
affect the reliability of the results. In ii) and iii) the y-axis is on a log scale. b) Simulated 
dynamics under the stochastic model for years at the i) start (t=1), ii) middle (t=15), and iii) end 
(t=30) of the study period. 

 

The Soay sheep, Ovis aries, population on Hirta has been the subject of a detailed 

demographic study since 1985 (Clutton-Brock & Pemberton 2004). The first twenty years of the 

study period were characterised by unstable, overcompensatory population dynamics. The most 

frequent pattern during this period was two years of increasing population sizes followed by a 

crash, where population sizes decreased by up to 60% (Fig. 1; Clutton-Brock et al. 1991; 

Grenfell et al. 1992; Clutton-Brock et al. 1997; Coulson et al. 2008). Towards the end of the 

study period population sizes have appeared relatively stable however, with only one crash in 

the latter ten years (Fig. 1). Here, we consider the possible causes of this apparent shift in 

stability. We use a MPM, parameterised by a demographic SEM, to explore the population 

dynamics. As the Soay population has no large herbivorous competitors or adult predators the 
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demographic rates are largely driven by intraspecific density dependence and winter weather 

conditions (Chapter 4; Coulson et al. 2001). Population size has increased over the course of the 

study period (Coulson et al. 2008), due to a positive temporal trend in the survival of smaller 

sheep (Ozgul et al. 2009). Thus, we consider first whether the shift can be explained by 

temporal trends in the vital rates, using the deterministic backbone of the MPM to explore 

changes to the dynamics over the study period. We then explore the effects of variation on the 

dynamics by introducing both environmental and demographic stochasticity. As the vital rates 

differ between the sexes (Chapter 4; Coulson et al. 2001), resulting in fluctuations in the sex 

ratio (Stevenson & Bancroft 1995), we also consider whether males significantly impact 

population dynamics by comparing projected dynamics under single and two-sex models. 

 

 
Figure 2: a) Structure of the two-sex age structured matrix population model (MPM). Squares 
represent rams (R) and circles are ewes (E). !!" and !!" are survival (solid lines) and fecundity 
(dashed lines) respectively for sex s and age a. Note that in the case of fecundity sex (s) refers to 
that of the newborn lamb, whilst age (a) is that of the mother. The fecundity functions are given 
by !!" =  !!"!!"!!" 0.5 1 − !!" + !!"!!" + !!"(1 − !!") , where !!" and !!" are the 
probability of a ewe of age class a reproducing and twinning respectively. !!" is the probability 
of a newborn lamb of sex !, and with a mother in age class !, surviving from its birth in spring 
until the summer census. The sex ratio at birth is assumed to be 1:1. All of the functions are 
temporally variable. Colour denotes age class and are given by the legend in Fig. 1b. b) Fitted 
sub-models for i) survival, ii) reproduction, iii) twinning, and iv) recruitment. Points show 
observed data. Lines show fitted models for the midyear of the study (t=15) and the random 
year effects at zero using the posterior medians.  
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Methods 

Structure of the matrix population model 

The study population is located in the Village Bay area of Hirta, in the St Kilda archipelago off 

the North-West coast of Scotland (Clutton-Brock & Pemberton 2004). Thirty years of 

demographic data (1985-2014) were used. During this period close to 100% of newborn lambs 

were tagged within days of birth. Population censuses were carried out three times a year 

(spring, summer, and autumn) and mortality searches ensured the fate of most individuals is 

known.  

 A matrix population model (MPM; Fig. 2a), structured by sex and age, was constructed 

to explore the population dynamics. The ewes were split into five age classes: lambs (0-1 years), 

yearlings (1-2 years), and prime (2-6 years), mature (7-9 years), and senescent adults (9< years). 

The same classes were used for rams, except all individuals over six years were grouped into a 

single (mature) class, as few rams survive above six. Male availability is unlikely to limit 

female reproduction, as males can sire multiple lambs in a single year (Pemberton et al. 1996; 

Coltman et al. 1999) and female reproduction in yearlings and adults is unrelated to relative 

male density. As such male reproduction was not included. Females of one year or older may 

produce twins (Clutton-Brock & Pemberton 2004). The vital rates were estimated using a 

demographic SEM (Chapters 2 and 4) with 26 sub-models: August (t) to August (t+1) survival 

of each age-sex class (9 sub-models, s superscript), spring reproduction of ewes in each age 

class (5 sub-models, r superscript), twinning of ewes aged at least one year old (4 sub-models, t 

superscript), and the spring-August recruitment of newborn lambs of each sex with mother in 

each age-class (8 sub-models, l superscript, as few lambs are born to older ewes mature and 

senescent ewes are categorised together here).  

The demographic SEM had three environmental axes that drove the variation in the 

demographic rates (Fig. 3). The first axis (e) was included in all 26 sub-models and represents 

the decline in condition over winter, which in harsh years results in high overwinter mortality, 

reduced fecundity due to the higher mortality of reproducing individuals (Chapter 4), and lower 

recruitment due to the poor condition of surviving ewes in spring (Clutton-Brock et al. 1992). 

As the demographic rates in this population are strongly density dependent this primary axis 

was assumed to be a function of density (!!; log total number of individuals in August of year 

t). To allow the effect of density to be modified by the environmental conditions the first axis 

was thus given by  

!(!) = !! −  !!! −  !!!,       (eqn 1) 

where !!! is a temporal trend, accounting for the general increase in demographic rates seen 

over the study period  (Coulson et al. 2008; Ozgul et al. 2009), and !! is a random year effect, 

accounting for any remaining covariation among the vital rates. A second axis (!!) accounts for 

remaining covariation amongst the fecundity models only (excluding yearling reproduction and 

twinning; see Chapter 4). A third axis (!!) was incorporated to account for the remaining 
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variation in recruitment; this axis is likely to be driven by variation in the abiotic environment 

during the spring lambing period.  

Survival was estimated using threshold models (with the exception of ram lambs and 

senescent ewes, see below), as at low densities food is plentiful and the environmental 

conditions thus have little effect on survival (Fig. 2b; Chapter 4; Grenfell et al. 1998). The 

probability of survival was therefore given by 

 !"#$% !•,! =  !•
!,! +  !•!,!!   if  ! ! < !•                                  
!•!,! +  !•!,!! −  !•!,! ! ! − !•  if  ! ! ≥ !•,

   (eqn 2) 

where !•!,! are intercepts, !•!,! and !•!,! are slopes for a temporal trend and the first 

environmental axis (!) respectively and  !• are threshold parameters. The • subscript indicates 

parameters that differ as a function of age-sex class. The temporal trends here (!•!!) allow for 

trends in the mean of each demographic rate, whilst that in the first environmental axis (!!!) 
allows for an interaction between density and time across the rates (Chapter 4). 

The reproduction, twinning, ram lamb survival, and senescent ewe survival models 

were estimated using simple logistic regressions as there was no evidence of thresholds in these 

models (Fig. 2b; Chapter 4). The probability of reproduction was given by 

 !"#$% !•,! =  !•!,! +  !•!,!! −  !•!,!! ! +  !•!,!!!! ,   (eqn 3) 

where !!! is the second environmental axis and !•!,! is the slope term for this axis. The 

remaining parameters are defined as in the survival sub-models above (equation 2). The 

twinning and ram lamb and senescent ewe survival sub-models are not shown as they are 

structurally analogous to the reproduction sub-models (excluding the second environmental axis 

in the case of the survival sub-models). Note that the second environmental axis (!!!) is not 

included in the yearling reproduction or yearling twinning models, as there was no evidence of 

unexplained variation in these processes (Chapter 4).  

 The probability of recruitment was estimated using a simple logistic regression (Fig. 2b) 

as follows: 

 !"#$% !•,! =  !•!,! −  !•!,!! ! +  !•!,!!!! ,     (eqn 4) 

where !! is the third environmental axis, sampled from a normal distribution, with mean zero 

and standard deviation !!, and !•!,! is the slope term for this axis. The remaining parameters are 

defined as above (equation two). Note that here the parameters differ according to the sex of the 

lamb and age class of the mother.  

Markov Chain Monte Carlo (MCMC) simulation in JAGS (Plummer 2003), using the R 

(R Core Team 2016) package runjags (Denwood in review), was used to obtain parameter 

estimates. Weakly informative priors were used (Table S1). Three chains were burned in for 

4x105 iterations, run for 2x106 iterations and thinned, keeping every 1,000th sample to give a 

total posterior sample of 6,000 iterations across the three chains. The posterior medians were 

used as parameter estimates in the following analyses. 
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We validated the model by comparing one-step ahead predictions of a) the vital rates for 

each age-sex class and b) the number of individuals in each age-sex class to the observed 

values. In both cases the demographic rates were estimated for each year using the observed 

density in year t, the observed year t, and the estimated values of the random year effects for 

each axis. The number of individuals (N) at ! + 1 was then predicted as follows: 

 !!!! = !!(!!) !!,       (eqn 5) 

where !! is the observed vector of population sizes in year t and At is the matrix of transitions 

shown by Fig. 2a.  

 

 
Figure 3: Path diagram for the two-axis model. Colours denote the age class and match those 
used in Fig. 2. The demographic rates are given by equations 1-4. The single-sex model is 
structurally analogous, excluding the ram age classes. In the case of recruitment the sex refers to 
that of the newborn lamb, whilst age is that of its mother.  
 

Simulating model dynamics 

First, we considered whether the deterministic model produces intrinsic population cycles and 

whether those dynamics change over the study period, according to the temporal trend (t). If 

improving conditions, represented in the model by the temporal trends (!!! and !!!), are 

responsible for the temporal shift in stability this would be captured by the deterministic model. 

Thus, we simulated populations (using equation 5) assuming no environmental stochasticity (i.e. 

by setting the latent variables, !!, !!, and !!, to zero) until the simulated population reached a 

steady state. This was repeated for each year of the study (i.e. ! =  1, 2, 3,… , 30) and the steady 

states were compared across the study period. To compare the dynamical behaviour of the 

stochastic model to that observed, populations were simulated for 100 years, following a 500-

year run-in period. At each year of the simulation the latent variables were sampled from their 

estimated distributions. This was repeated three times, fixing the temporal trend variable to t=1, 

t=15, and t=30, and the simulated population sizes were compared to those observed. 

 Next, we explored how increasing environmental variability affected population 

stability. 1,000 populations were simulated for 500 years, starting at the equilibrium population 

size. At each iteration the random year effect (!!) for the first environmental axis was sampled 

from a normal distribution with mean of zero and a standard deviation that increased linearly 
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across the 500-year simulation from zero to double that estimated in the model (!! = 2!!, 

where !! is the value estimated from the observed data). Here, we only considered variation in 

the first environmental axis (!), as this explains the majority of the variation in the vital rates; 

the second (!!) and third environmental axes (!!) were set to zero (see Appendix A1 for the 

effects of perturbing the other axes). Additionally, we only considered the effects of 

environmental stochasticity (see Appendix A2 for effects of demographic stochasticity). This 

was carried out for a year at the beginning and end of the study period (! = 1 and 30 

respectively). Two measures of persistence were calculated; the mean population size and the 

coefficient of variation (CV). To explore how the different demographic processes were 

affected by increasing levels of environmental variation each rate was predicted at each of the 

500 time steps, setting D (equation 1) to the mean total density estimated during the above 

simulations for that time step, and sampling the random year effect for the first environmental 

axis (!!) 1,000 times, from the distribution used for each time step above (i.e. increasing !! 

linearly across the 500 time steps).  

 

Sex-differences 

We then constructed a one-sex MPM that was structurally analogous to the two-sex model, 

without the ram classes (Fig. 2a). It was parameterised using a demographic SEM with three 

environmental axes (equations 1-4; Fig. 3). The log of the total number of ewes was used as the 

measure of density (D; equation 1). The above analyses were repeated using the single sex 

model and the estimates of population size were compared to those produced by the two sex 

model.  

 

Wavelet analyses 

We used wavelet analyses (Torrence & Compo 1998; Cazelles et al. 2008) to determine whether 

there was evidence of population cycles in the dynamics simulated using the MPM, whether 

these corresponded to the periodicity of those observed, and whether either the temporal trends 

or the degree of environmental variation affected the presence or period of the cycles. We 

conducted wavelet analyses with the Morlet wavelet (Grenfell, Bjornstad & Kappey 2001; 

Kausrud et al. 2008), using the R package WaveletComp (Roesch & Harald 2014). We applied 

the wavelet analysis first to the observed time series of total population sizes. The temporal 

trend in the observed time series was removed using local polynomial regression (Roesch & 

Harald 2014) and population size was standardised to have zero mean and unit variance 

(Grenfell, Bjornstad & Kappey 2001). 

We then used the MPM to simulate nine populations (using equation 5), with every 

pairwise combination of a) low (!! = 0.5!!), medium (!! =  !!), and high (!! = 2!!) 

environmental variation and b) setting the temporal trend variable (t) to 1, 15, and 30. Each 

population was simulated for 100,000 years, following a 1,000 year run in period. At each year 
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of each simulation the random year effect in the first environmental axis was sampled from a 

normal distribution with the respective standard deviations given above. The second and third 

environmental axes were set to zero as these axes had little effect on the population dynamics 

(Appendix A1). Wavelet analyses were carried out as above for each of the nine simulated time 

series of total population size.  

Figure 4: a) Observed and predicted population sizes for each age class for i) ewes and ii) rams. 
Predictions are made using the observed density at t and the estimated random year effects for 
each year. Dashed line is at 1:1, where predicted values are equal to those observed. The slight 
overprediction in the number of ram lambs may be explained by yearly deviations in the sex 
ratio of newborns (assumed to be 1:1 here; see Fig. S3). b) Steady states predicted by simulating 
using the deterministic MPM. i) and ii) show the number of ewes and rams respectively in each 
age class. 
 

Results 

The observed vital rates (Fig. S1) and population sizes (Fig. 4a) for each age-sex class were 

well predicted by the model (Fig. 4a), suggesting three axes of environmental variation were 

sufficient to capture the variation in survival, fecundity, and recruitment across the lifecycle. 

The first environmental axis drove most of the variation in the vital rates (Fig. S2; Chapter 4), 

with the 95% confidence intervals of the slope terms only overlapping zero for five of the 26 

sub-models. 

Equilibrium population sizes were predicted to increase over the study period (Fig. 4b), 

as observed (Fig. 1ai). However, unlike in the observed population, the degree of instability 

appeared to increase over the study period, with the deterministic model undergoing a period 

doubling bifurcation at year thirteen (Fig. 4b). The deterministic model also predicted a change 

the population structure over time, with the number of prime rams increasing more rapidly than 

the number of prime ewes (Fig. 4b).  
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Environmentally stochastic simulations produced population sizes in a similar range to 

those observed and exhibited large population crashes (Fig. 1b) similar to those seen in the 

observed dynamics (Fig. 1ai). However, the simulations show more successive years of 

population increase than are observed in the population. Whilst observed crashes typically 

occurred after 2 years of population increase (Fig. 1a), the simulated populations undergo 4-5 

years of successive population increase (Fig. 1b). The simulated populations showed no 

evidence of an increase in stability over the study period, with larger crashes observed under 

higher values of the temporal trend effect, t (Fig. 1b). Incorporating demographic stochasticity 

into the model had little effect on the simulations of population dynamics (Appendix A2). 

Figure 5: a) Mean and b) coefficient of variation (CV) for the number of individuals in each 
age-sex class, from 1,000 simulations over 500 years. The degree of variation in the first axis of 
environmental variation was increased linearly from zero to twice that estimated in the model. 
Simulations are shown from a year at the start (! = 1; transparent points) and the end (! = 30; 
opaque points) of the study period. Note that the y-axis scales in a) differ between the total sub-
plots and the separate age-sex class sub-plots. The vertical dashed line indicates where the 
variability in the first environmental axis is equal to that estimated in the model. 
 

Increasing the level of environmental stochasticity in the model generally decreased 

population sizes (Fig. 5a). However, the effects differed among age-sex classes, resulting in 

differences in the projected population structure. Noticeably, at low levels of environmental 

variation, the number of yearlings of both sexes actually increased with increasing 

environmental variation (Fig. 5a). Populations are generally larger and slightly more variable 
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towards the end of the study period (Fig. 5). These responses to increasing the degree of 

environmental variation differ little over the study period (Fig. 5). 

Figure 6: Predicted lamb and prime adult survival under increasing levels of environmental 
variation for a) ewes and b) rams in the i) first (! = 1) and last (! = 30) years of the study 
period. Plots show the median and 95% quantiles (faded points) for each demographic rate. 
Each demographic rate is estimated 1,000 times using the mean density at that timestep from 
fig. 5 and sampling the random year effect for the first environmental axis from a normal 
distribution, where the standard deviation increases linearly from zero to twice that estimates in 
the model over the 500 time steps. See Fig. S4 for the remaining demographic rates. The 
vertical dashed line indicates where the variability in the first environmental axis is equal to that 
estimated in the model. 

 

As the degree of environmental variation increases the average total population sizes 

decrease (Fig. 5a), resulting in an increase in the average demographic rates (Figs 6 and S4). 

Nonlinearities in the relationship between the first environmental axis and each demographic 

process mean that the distribution of, for example, survival probabilities at a specific population 

density may be skewed (Figs 6 and S4). Survival of lambs is particularly sensitive to the 

environmental conditions (Figs 2b and 6). For example, at low levels of environmental variation 

ram lamb survival is positively skewed (Fig. 6bi), thus increasing the degree of environmental 

variation generally increases survival. This results in the initial increase in the number of 

yearlings (Fig. 5a). As the average ram lamb survival increases over the time series, due to the 

decrease in total density, it becomes negatively skewed and increasing the degree of 

environmental variation causes an overall decrease in survival. Conversely prime adult survival 

quickly reaches its threshold value and is negatively skewed. Increasing the degree of 

environmental variation increases the degree of negative skew, causing a general decrease in 

survival (Fig. 6). As the temporal trend effect (t) increases the demographic rates increase, but 
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there is little difference in the pattern in how they respond to increasing environmental variation 

(Fig. 6). 

Despite survival differing between the sexes, with for example ram survival generally 

lower and more temporally variable than ewe survival (Fig. 2b) there was little difference in the 

simulated population dynamics under the single and two sex models (Fig. 5). Moreover, 

increasing the level of stochasticity in all three environmental axes simultaneously produces 

very similar dynamics to only perturbing the first environmental axis (Appendix A1). Thus 

suggesting that the population dynamics are effectively driven by the reduction in the condition 

of ewes overwinter.  

Figure 7: Average wavelet power for simulated population sizes with the year of study 
increasing from top to bottom (a) ! = 1, b) ! = 15, c) ! =  30) and the amount of variation in 
the first environmental axis increasing from left to right (!! = i) 0.5!!, ii) !!, iii) 2!!). For 
each plot a population is simulated for 100,000 years and the wavelet power is averaged across 
the time series. Note that the y-axis is on a log scale. See Fig. 1b for examples of the simulated 
population dynamics for each year under the observed level of environmental variation (i.e. 
!! =  !!). 
 

The wavelet analysis on the observed time series shows clear evidence of 3-year 

periodicity (Fig. 1aiii), though the cycles are not constant over time, with cycling regimes 

observed in the years 1-7 and 15-20. There is little evidence of any cycling in the last ten years 

of the time series (Fig. 1aii). There was no evidence of periodic regimes of three or more years 

in any of the model simulations (Figs 1b and 7). With low levels of environmental variation 

there was evidence of cycling with a periodicity just over two, but this is lost as the degree of 
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environmental variation increases (Fig. 7). The temporal trend had little effect on the periodicity 

of population size (Fig. 7). 

 
Discussion 

Using a demographic SEM to parameterise an age and sex structured MPM, we have 

demonstrated that a single axis of environmental variation drives most of the variation in 

population sizes in a population of Soay sheep. Our model effectively captures the different 

responses of each sex-age class to increasing environmental variation. However, simulations 

showed that, while it has very good short term predictive performance, the MPM fails to capture 

the observed dynamical behaviour of the study system. Neither deterministic nor stochastic 

simulated populations exhibited the period three cycling observed at the start of the study 

period, or the apparent shift in stability towards the end of the study period.  

The demographic SEM approach demonstrates that the environment may be of 

considerably lower dimension than is typically assumed. Three axes of environmental variation 

were sufficient to explain the variation in survival, fecundity, and recruitment across nine age-

sex classes. Moreover, the first axis is sufficient to explain short-term variation in population 

size. In the Soay population, the first environmental axis captures variation in body condition 

over the winter period, which results in higher mean mortality, selective mortality of 

reproductive individuals (Chapter 4), and lower recruitment among the offspring of surviving 

ewes (Clutton-Brock et al. 1992). Thus, even demographic processes that occur at different time 

periods may be governed by the same environmental axis. For example, newborn lamb survival 

to the summer is negatively correlated with overwinter mortality, presumably as a result of 

reduced body condition of ewes following high mortality winter periods. A similar effect has 

been seen in other herbivores. For example, in reindeer the overwinter condition of the females 

is more important than the abiotic spring conditions for early offspring survival (Veiberg et al. 

2017).  

A combination of intrinsic and extrinsic factors can drive shifts in dynamical behaviour 

(Barraquand et al. 2017). Many previous studies have considered the drivers of demographic 

variation and population dynamics in the Soay population (Clutton-Brock et al. 1991; Clutton-

Brock et al. 1992; Grenfell et al. 1992; Milner, Elston & Albon 1999; Catchpole et al. 2000; 

Coulson et al. 2001; Stenseth et al. 2004; Berryman & Lima 2006; Hone & Clutton-Brock 

2007; Coulson et al. 2008). These have demonstrated that the demographic rates exhibit strong 

intra-specific density dependence, with high densities combined with harsh abiotic conditions 

resulting in large population crashes (Chapter 4; Coulson, Milner-Gulland & Clutton-Brock 

2000; Coulson et al. 2001; Coulson et al. 2008). The relationship between density and the 

demographic rates is thought to be nonlinear, with little effect at low densities as food is 

plentiful (Grenfell et al. 1998; Stenseth et al. 2004). As the demographic rates vary across age 

classes in the Soay sheep incorporating age structure increases the amount of variation in 

population size explained by a population model (Coulson et al. 2001; Coulson et al. 2008). 
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Increases in survival over the study period, the cause of which is unknown, have resulted in an 

increase in population sizes over time (Berryman & Lima 2006). However, these effects (age 

structure, nonlinear effects of density dependence, a temporal trend in the demographic rates, 

and interactions between density and the abiotic environmental conditions) were not sufficient 

to capture the observed dynamical behaviour of this study system. 

The MPM had a high one-step ahead predictive performance. However, neither the 

deterministic nor stochastic simulations could replicate the observed dynamical behaviour. 

Simulations using a previous age structured model showed similar behaviour to that predicted 

here (Coulson et al. 2001). The performance of population models is often validated using 

measures such as the proportion of explained variation in population size, population growth 

rate, and/or size or age distributions (Coulson et al. 2008; Dahlgren & Ehrlen 2009; Simmonds 

& Coulson 2015). Such measures have clear limitations. Coulson et al. (2008) show that a 

population model with a high r2 (0.85; Berryman & Lima 2006) uses a functional form for 

density dependence that is inconsistent with demographic data. Comparisons between the 

observed dynamical behaviour and that predicted by a population model are used to validate 

model performance relatively rarely, and often only when the initial aim of parameterising the 

model is to explain specific dynamical behaviour, such as population cycles (e.g. Williams et al. 

2004; Radchuk, Ims & Andreassen 2016). The dynamical behaviour of a system has important 

consequences for processes such as extinction (Inchausti & Halley 2003). Thus we suggest that 

population models should more widely be validated based on their dynamical behaviour, before 

for example, being used to predict future population dynamics or extinction risk.  

Demographic stochasticity arises from the stochastic nature of birth and death processes 

in finite populations (Engen, Bakke & Islam 1998). Failing to account for demographic 

stochasticity can result in an underestimation of extinction risk and population instability, 

particularly in small populations (Benson et al. 2016; White et al. 2017). The size of the Soay 

sheep population has increased by about 60% over the study period, reducing the role of 

demographic stochasticity in the population. In principle, a combination of improving 

conditions and the reduced impact of demographic stochasticity might have been responsible for 

the observed shift in dynamics. However, demographic stochasticity had little effect on the 

simulated dynamics in this population, suggesting that even at the beginning of the study period 

population sizes were sufficiently large for demographic stochasticity to have little effect on the 

dynamics.  

Demographic rates are strongly positively correlated in this population, though the 

mean and variance of these rates differ among age-sex classes (Coulson et al. 2001). Thus, 

shifting environmental conditions lead to changes to population structure. Such changes are 

common in natural populations. For example in a population of black-browed albatross, 

Thalassarche melanophris, climate change is causing the population to be increasingly 

dominated by young individuals (Pardo et al. 2017). In a population of reindeer, Rangifer 
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tarandus, the sex ratio has become increasing female biased as male survival is more strongly 

affected by increasing winter precipitation (Peeters et al. 2017). Our model suggests that, in the 

Soay population, improving environmental conditions are leading to a less female-biased sex 

ratio among adults. Our perturbation analysis indicates that increasing environmental variation 

has a similar effect. Changes to population structure may have important consequences 

(Schmickl & Karsai 2010; Hultine et al. 2016; Petry et al. 2016). For example, increasingly 

male biased sex ratios might increase male aggression towards females or increase competition 

for food, leading to decreased female survival (Mysterud, Coulson & Stenseth 2002; Le Galliard 

et al. 2005; Rankin & Kokko 2007).  

In the Soay population, including males had little effect on the predicted population 

dynamics and thus did not help to explain the observed dynamical behaviour. Whether variation 

in individual vital rates is driven by variation in the total population size or a particular subset of 

the population depends on whether resource use and spatial distributions differ according to 

individual state variables such as sex (Mysterud, Coulson & Stenseth 2002). Yet many studies 

fail to justify their choice of measure of density (Mysterud, Coulson & Stenseth 2002). As the 

Soays compete over the same food sources and the sexes are not spatially segregated, it seems 

likely that the total number of individuals in the population is a reasonable proxy for the 

competitive environment experienced by individuals of every class. However, the strong 

correlation between the number of rams and ewes (!! = 0.86) and the ewe biased sex ratio 

means that ewe vital rates are well explained by the density of ewes alone and projections of 

total population size follow the trajectory of female population size. The ability of a single male 

to fertilise multiple females in this population (Pemberton et al. 1996; Coltman et al. 1999) also 

contributes to the lack of importance of males in this population, as they do not appear to limit 

female reproduction.  

However, we used a simplistic measure of density (total population size), which 

assumes the effect each individual has on its conspecifics is the same regardless of whether the 

individual is a lamb or an adult ram. In reality, the effect that an individual has on its 

conspecifics is likely to differ according to individual state variables such as age and size 

(Gamelon et al. 2016), as larger individuals are expected to have greater energy requirements 

and therefore use more resources (Peters 1983). Recently developed methods allow asymmetric 

interactions to be incorporated into structured population models, allowing the effect an 

individual has on its conspecifics to vary according to state variables such as size (Bassar et al. 

2016). The assumption that each individual had the same effect on its conspecifics may be one 

reason for the failure of the model to capture the observed dynamics.  

Interspecific interactions are important drivers of unstable population dynamics 

(Cattadori, Haydon & Hudson 2005; Vik et al. 2008). However, plant-herbivore dynamics are 

generally thought to be insufficient to drive population cycles, due to a lack of 

overcompensatory or time-delayed feedback (Reynolds et al. 2012). The biomass of grass in 
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August on Hirta is correlated with current population density and not with density over the 

previous winter (Clutton-Brock & Pemberton 2004), which suggests the absence of delayed 

density dependence. However, there is the possibility of more subtle interactions between 

herbivores and vegetation. For example delayed herbivore induced defences (Hartley & 

DeGabriel 2016) or transient changes in community composition may be sufficient to 

destabilise population dynamics (Reynolds et al. 2012). We have also not considered the role of 

parasites, which have been found to be important drivers of population cycles in other 

herbivores (Townsend et al. 2011). Strongyle nematodes are thought to compound the effects of 

low food availability in the Soay population, contributing to overwinter mortality rates (Gulland 

1992; Gulland et al. 1993; Milner, Elston & Albon 1999). Thus temporal variation in parasite 

loads (Hance et al. 2007; Molnar, Dobson & Kutz 2013) is another putative driver of the 

dynamics of the Soay population that warrants further consideration.  

By constructing a structured population model, parameterised with a demographic 

SEM, we were able to demonstrate that most variation in population size is driven by a single 

environmental axis in the Soay sheep population. Though our model predicted one-step ahead 

population sizes well, it failed to reproduce the 3-year population cycles observed early in the 

study, or to provide an explanation for the apparent shift from unstable, overcompensatory 

dynamics to a relatively stable regime. These results emphasise the need to evaluate the full 

dynamical behaviour of population models when validating their predictive performance. 
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Supplementary Figures 

Figure S1: Observed and predicted proportions of individuals a) surviving, b) reproducing, and 
c) twinning and d) of newborn individuals surviving from spring to summer. Vital rates were 
predicted using the posterior medians as the parameter estimates, the observed density from 
! − 1 and including the estimated random effect for each year. Dashed lines show a 1:1 
correlation. Note that in d) age refers to the age of the newborn’s mother, whilst sex is that of 
the newborn itself. In the remaining plots both age and sex are those of the focal individual.  
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Figure S2: Posteriors of the slope terms for a) first, b) second, c) third environmental axes. 
Dashed vertical lines are at zero. Points and error bars show median and 95% credible intervals 
respectively. See equations 1-4 in main text for parameter definitions. Subscripts refer to sex 
and age (i.e. EL is a ewe lamb). Superscripts refer to environmental axis and vital rate.  
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Figure S3: Error in the predicted number of a) ram and b) ewe lambs for each year against the 
observed sex ratio at birth. No and Np are the observed and predicted number of individuals 
respectively. A sex ratio of 0.5 is assumed in the model (vertical dashed line). The horizontal 
dashed line is at zero, where the observed number of lambs equals that observed. The degree by 
which the number of ram and ewe lambs are overpredicted increases and decreases respectively 
with the observed proportion of females at birth. 

Figure S4: Predicted demographic rates under increasing levels of environmental variation for 
a) ewe survival, b) ram survival, c) reproduction, d) twinning, e) recruitment of ewes, and f) 
recruitment of rams. Plots show the median and 95% quantiles (faded points) for each 
demographic rate. Each demographic rate is estimated 1,000 times using the mean density at 
that timestep from fig. 4, setting t to 1, and sampling the random year effect for the first 
environmental axis from a normal distribution, where the standard deviation increases linearly 
from zero to twice that estimates in the model over the 500 time steps. The dashed line indicates 
where the variability in the first environmental axis is equal to that estimated in the model. 

−0.2

0.0

0.2

0.4

0.6

0.50 0.55 0.60
Proportion ewes at birth

(N
P−

N O
)/N

O

a)

−0.2

0.0

0.2

0.4

0.6

0.50 0.55 0.60
Proportion ewes at birth

(N
P−

N O
)/N

O

b)



 25 

Table S1: Priors for the structural equation models. For the uniform distributions (U) the first 
and second parameters refer to the minimum and maximum, for the normal distribution (N) they 
are the mean and standard deviation. Where distributions are truncated (t) the first and second 
parameters refer to the lower and upper limits respectively. For parameter definitions see eqn 1-
3. Note that • is used when referring to parameters for each of the demographic classes, 
otherwise subscripts indicate which classes are referred to with E for ewes, R for rams, L for 
lambs, Y for yearlings, P for prime, M for mature, S for senescent. Weakly informative priors 
are used to aid convergence of the threshold models, for example by restricting the threshold 
parameters to the range of observed densities. 

Parameter Submodel(s) Prior 
!•!,! Reproduction N(0, 100) 
!•!,! Reproduction U(-1, 1) 
!•!,! Reproduction N(0, 100) 
!•!,! Reproduction (excluding yearlings) N(0, 100) t(0,) 
!•!,! Twinning N(0, 100) 
!•!,! Twinning U(-1, 1) 
!•!,! Twinning N(0, 100) 
!•!,! Twinning (excluding lambs/yearlings) N(0, 100)t(0,) 
!•!,!	 Survival (excluding ram lamb & senescent ewe) U(-10, 10) 
![!"]!,! 	 Ram lamb & senescent ewe survival N(0, 100) 
!•!,!	 Survival  U(-0.3, 0.3) 
!•!,!	 Survival (excluding ram lambs & senescent ewes) U(0, 50) 
![!"]!,! 	 Ram lamb & senescent ewe survival N(0,100) t(0,) 
!•	 Survival  U(2.3, 2.8) 
!! 	 All  U(0, 0.2) 
!! 	 Reproduction and twinning  1 
!! 	 Newborn spring survival 1 
!!" 	 All U(-1, 1) 
!!	 All U(-0.05, 0.05) 

 

Appendices 

Appendix A1: Perturbing different axes of environmental variation 

The demographic structural equation model contains three axes of environmental variation; the 

first drives variation in all of the vital rates, the second in fecundity, and the third in the spring 

survival of newborn lambs (Fig. 3). As the majority of the variation in the vital rates is well 

explained using the primary axis however, in the main text we focus on the effects of increasing 

variation in that axis only. Here, we consider the effects of environmental variation in the 

second and third axes. As in the main text, we simulate 1,000 populations for 500 iterations, 

whilst increasing the degree of variability in the environment. In the first group of simulations, 

we increase the standard deviation of the second temporal axis (!!) linearly from zero to two 

(as this is set to one in the model), whilst setting the standard deviations for the first (!!) and 

third (!!) axes to zero. Next we increase (!!) linearly from zero to two whilst setting (!!) and 

(!!) to zero. Finally we simultaneously increase all three parameters (!! ,!! and !!) to double 

their values estimated in the model. We compare the estimated population sizes across the age-



 26 

sex classes from these two sets of simulations to those where (!!) was perturbed in the main 

text.  

Increasing the degree of variability in the second and third environmental axes has 

relatively little effect on predicted population sizes (Figure A1). Predicted population dynamics 

when all three axes are perturbed are very similar to those when only the first axis is perturbed 

(Figure A1). As the first environmental axis drives the majority of the variation in the vital rates 

(Chapter 4) this is unsurprising and suggests that the population dynamics are primarily driven 

by over winter mortality. 

Figure A1: a) Mean and b) coefficient of variation (CV) of number of individuals in each age-
sex class 1000 simulations, whilst increasing the degree of variation in each axis of 
environmental variation. Dashed vertical line indicates where the standard deviation of the 
perturbed axis (or axes) is equal to that estimated in the model.  

 
Appendix A2: The effects of demographic stochasticity 

Here, we consider the effect of demographic stochasticity as well as environmental 

stochasticity. In the main text we assume that environmental variation drives all of the variation 

in the vital rates, with all individuals experiencing the same environment each year. 

Demographic stochasticity refers to the effect of stochastic realisations of the vital rate 

probabilities with finite populations and as such has larger impacts on the population dynamics 

of small populations (Caswell 2001).  

As population sizes increased over the study period we explore whether the effects of 

demographic stochasticity decrease over this period. Demographic stochasticity was 

incorporated into the models by randomly sampling the demographic processes from binomial 
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distributions. The probabilities of survival, fecundity, and recruitment were estimated for each 

age-sex class as in the main text (equations 1-4). We compare the dynamics of simulated 

populations including and excluding demographic stochasticity, first by simulating populations 

under the observed conditions (i.e. by setting the standard deviations of the latent variables to 

those estimated in the model). There appears to be little variation in the projected dynamics 

between the models with and without demographic stochasticity (Fig. A2). Population crashes 

are seen both with and without demographic stochasticity, the average population sizes are 

similar, and there are still sequences of 4-5 years of population increases without a decrease 

(Fig. A2).  

 

Figure A2: Simulated population dynamics a) excluding and b) including demographic 
stochasticity for a year at the i) start (t=1), ii) middle (t=15), and iii) end (t=30) of the study 
period. 

 

Next we consider how the effect of demographic stochasticity varies according to the 

degree of environmental stochasticity. As in the main text 1,000 populations were simulated for 

500 time steps, whilst slowly increasing the standard deviation of the random effect in the first 

environmental axis from zero to twice that estimated in the model. This was repeated using the 

models including and excluding demographic stochasticity for years at the start and end of the 

study period (t=1 and t=30 respectively).  

Under the model incorporating demographic stochasticity population sizes are more 

variable at very low and very high levels of environmental variability (i.e. when !! is very 

small or large) than in the model with only environmental stochasticity (Figure A3). Where 

there is little environmental variability (i.e. !! is small) the degree of variability in population 
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sizes is higher in the model with demographic stochasticity. However, differences in mean 

population size appear relatively small and only occur at high levels of environmental variation 

(Figure A3). Total population sizes decrease as the degree of environmental stochasticity 

increases, thus the effect of demographic stochasticity increases as its effects are larger in small 

populations.  

Figure A3: a) Mean and b) CV of number of individuals in each age-sex class 1000 simulations, 
whilst increasing the degree of variation in the first axis of environmental variation. Dashed 
vertical line indicates where the standard deviation of the perturbed axis is equal to that 
estimated in the model. Colours indicate models including (true) and excluding (false) 
demographic stochasticity, whilst transparency of the points indicates study year.  
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Chapter 6: General Discussion 

 

Synthesis  

Climate change is predicted to cause widespread ecological change, driving variation in species’ 

abundances, spatial distributions, and risk of extinction and community composition (Walther et 

al. 2002; Parmesan & Yohe 2003; Parmesan 2006; Maclean & Wilson 2011). Accounting for 

population responses to such change is therefore necessary in order to design appropriate 

management strategies for future environmental conditions (Bernardo, Albrecht & Knight 

2016). Structured population models are widely used to explore population responses to 

environmental variation (Ehrlen et al. 2016). Such models are parameterised by using individual 

longitudinal data to estimate demographic rates, such as survival and reproduction (Coulson 

2012). Estimating such rates as a function of environmental drivers thus allows population 

responses to environmental change to be predicted by perturbing the drivers (Gotelli & Ellison 

2006; Hunter et al. 2010). Identifying the drivers of variation in the demographic rates is 

challenging however, as environmental effects are often complex (Grosbois et al. 2008; Ehrlen 

et al. 2016) and the degree of temporal replication in many demographic data sets is relatively 

small (Salguero-Gomez et al. 2015; Salguero-Gomez et al. 2016). Throughout this thesis I have 

applied novel statistical techniques to explore population responses to environmental variation.  

First, I describe a methodology for capturing temporal covariation among demographic 

rates, via one or more latent variable(s) (Chapters 2, 4, and 5). This provides a structured 

method for modelling a temporal covariance matrix, allowing hypotheses about how the 

environment drives the joint response of disparate demographic processes to be explored. For 

example, in a population of Soay sheep, variation in demographic rates is largely driven by a 

single environmental axis, which impacts on survival, fecundity, and recruitment across the 

lifecycle (Chapters 4 and 5). This demographic structural equation model (SEM) may be 

applied wherever it is feasible to construct a stochastic, demographic projection model. Where 

demographic processes are positively correlated the latent variable(s) can be conceived as axes 

of ‘environmental quality’, which can provide the basis for further analyses (see below; 

Chapters 2, 4, and 5). Positive covariances among demographic processes are widespread in 

natural populations, suggesting this approach should be widely applicable (Nur & Sydeman 

1999; Altwegg et al. 2006; Jongejans et al. 2010; Rotella et al. 2012; though see Compagnoni et 

al. 2016). In this thesis I have used relatively simple SEMs, only accounting for temporal 

variation among demographic processes and using a maximum of three environmental axes. 

However, this general approach would also be applicable in more complicated situations, such 

as accounting for spatio-temporal covariation in demographic rates.  

Perturbation analyses of the environmental axes introduced under the demographic 

SEM allow population responses to environmental change to be predicted (Chapters 2 and 5). 

Ideally, to predict how a population might respond to environmental change, the explicit drivers 
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of variation in the demographic rates should be identified (e.g. Chapter 3; Gotelli & Ellison 

2006). However, there is a substantial mismatch between the temporal extent of many 

demographic data sets (mean of six and eleven years in plants and animals respectively; 

Salguero-Gomez et al. 2015; Salguero-Gomez et al. 2016) and the number of years of data 

required to accurately identify environmental drivers, determine their temporal periods of 

influence, and quantify their effects (20-25 years; Teller et al. 2016; Van der Pol et al. 2016). 

Many studies have thus resorted to indirect methods of determining population responses to 

environmental change. For example, prospective sensitivity analyses may be used to determine 

how variation in different demographic processes affects the population growth rate (Morris, 

Shertzer & Rice 2011; Bentzen & Powell 2012; Chiquet et al. 2013). However, as covariations 

among the vital rates can have significant impacts on population growth, considering each vital 

rate separately may lead to erroneous conclusions (Aiello-Lammens & Akcakaya 2017). Thus, 

as perturbing the environmental axes in the demographic SEM approach accounts for the fact 

that multiple demographic processes typically respond in concert to environmental change, this 

may represent the best alternative for exploring possible population-level responses to 

environmental change, where causal drivers cannot be identified (Chapter 2).  

 Where data are sufficiently replicated the demographic SEM approach can provide a 

simpler target for identifying underlying environmental drivers (Chapters 2 and 4). As the mean 

and variability of different vital rates differ across the life cycle (Gaillard, Festa-Bianchet & 

Yoccoz 1998; Gaillard et al. 2000) drivers are typically identified separately for each process 

(Coulson et al. 2001; Pokallus & Pauli 2015). However, where demographic processes are 

positively correlated (Nur & Sydeman 1999; Altwegg et al. 2006; Jongejans et al. 2010; Rotella 

et al. 2012) variation in these disparate processes is likely to be driven by common underlying 

variables. Identifying the common axes of environmental variation that drive such covariation 

can thus provide a much simpler target for the challenging task of identifying the underlying 

drivers than treating each demographic process independently (Chapter 4). For example, in a 

population of Soay sheep I decompose the variation in a single environmental axis rather than 

treating the 11 demographic processes independently (Chapter 4).  

 One reason that decomposing temporal variation in the demographic rates is 

challenging is that demographic data are typically collected annually, whereas the effects of 

such drivers may occur at much finer time scales (Foster, Schmalzer & Fox 2014; Kruuk, 

Osmond & Cockburn 2015). This necessitates methods that can not only accurately identify 

causal drivers and quantify their effects, but also determine the temporal windows over which 

they act (Teller et al. 2016; Van der Pol et al. 2016). These windows are usually chosen a 

priori, typically with little justification provided (Ehrlen et al. 2016; Van der Pol et al. 2016). I 

have shown how functional linear models (FLMs) may be combined with a demographic SEM 

to allow the demographic response to a climatic variable to be estimated as a cumulative effect 

over a year, whilst allowing the effects to differ in magnitude and direction over time (Chapter 
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4; Roberts 2008; Teller et al. 2016). Temporal differences in both the magnitude and direction 

of the effect of a single climatic variable suggest that the choice of such windows can have 

significant implications for population predictions (Chapters 3 and 4; Kruuk, Osmond & 

Cockburn 2015). For example, survival of E.cuneifolium can be positively (winter) or 

negatively (summer) affected by increased levels of drought, depending on the time of year 

(Chapter 3). Overall these antagonistic effects appear to cancel each other out, leading to the 

prediction that the increase in drought expected under climate change will have little effect on 

survival in this species (Chapter 3). However, if a single temporal window was adopted, either 

positive or negative trends may have appeared likely depending on the period chosen. Using the 

FLM approach can uncover previously unknown climatic effects, even in well studied 

populations, and thus can increase the predictive performance of demographic models, relative 

to selecting windows a priori (Chapter 4).   

 

Statistical considerations  

One of the main challenges with identifying climatic drivers of demographic variation is that 

there can be a large number of putative drivers, which increases the risk of overfitting, 

especially if the data set contains limited temporal replication (Frederiksen et al. 2014). In this 

thesis I used leave-one-out cluster cross validation to select climatic variables that increased out 

of sample predictive performance (Chapters 3 and 4). Cross validation is rarely used in studies 

of the environmental drivers of demographic rates (Grosbois et al. 2008), probably partly 

because it can be computer intensive. When identifying environmental drivers the aim is often 

to predict population responses to a future change in those drivers (e.g. Chapter 3; Gotelli & 

Ellison 2006); thus out-of-sample predictive performance is important (Wenger & Olden 2012). 

It is impossible to test the predictive performance of the model over the future temporal period 

over which predictions are to be made. However, cluster cross validation, where the data are 

split into training and validation sets according to a grouping variable, such as year of study, has 

the advantage of at least testing the predictive performance under a year of environmental 

conditions that was not used to train the model (Wenger & Olden 2012). Many studies instead 

rely on within sample measures, such as Akaike Information Criteria (AIC), which may be 

subject to overfitting (Raffalovich et al. 2008; Murtaugh 2009; Dahlgren 2010; Van der Pol et 

al. 2016). Moreover, the use of measures such as AIC is not straightforward for hierarchical 

models, which are typically necessary for dependent demographic data clustered in time or 

space (Vaida & Blanchard 2005). 

In addition to choosing appropriate measures of predictive performance, methods to 

reduce overfitting by ‘regularising’ estimated climatic effects should also be more widely 

adopted in ecology (Dahlgren 2010; Teller et al. 2016). The FLM provides one example of such 

an approach (Roberts 2008; Teller et al. 2016). Here, the coefficients for a single variable, such 

as temperature, can be estimated as a smooth function over time or space (Teller et al. 2016). 



4 
 

Alternative methods to reduce overfitting, which I did not explore in this thesis, include the use 

of shrinkage techniques, such as the elastic net, where penalties are introduced on the size of 

coefficient estimates (Hoerl & Kennard 1970; Tibshirani 1996; Zou & Hastie 2005). In a 

Bayesian framework such shrinkage may be applied by altering the priors on the slope 

coefficients (Park & Casella 2008; Li & Lin 2010).  

 In addition to methods for testing whether particular covariates drive variation in 

demographic processes, it is important to validate whether population models adequately 

capture the observed dynamics at the population level (Chapter 5). Many studies using 

structured population models provide little or no detail of whether attempts have been made to 

validate model performance at the population level. In the case of structured population models 

this may be partly driven by the short temporal periods over which demographic data are 

collected (Salguero-Gomez et al. 2015; Salguero-Gomez et al. 2016); it is difficult to validate 

model predictions against the observed dynamics when these only extend over a few years. 

Where validation takes place methods typically include comparing observed and predicted 

population growth rates, size or age distributions, or either average or one-step ahead 

predictions of population size (Dahlgren & Ehrlen 2009; Simmonds & Coulson 2015). 

Relatively few studies compare the dynamical behaviour of the model to that of the observed 

population. However, even where a model appears to have a good one-step ahead predictive 

performance it may not capture the observed dynamical behaviour (Chapter 5). Poor model 

performance may suggest important processes have been excluded (Chapter 5), decreasing the 

reliability of any future predictions. Moreover, processes such as extinction may be influenced 

by the dynamical behaviour of the system (Inchausti & Halley 2003). Thus, a range of methods, 

including an evaluation of the dynamical behaviour, is necessary to validate the predictive 

performance of population models (Chapter 5).  

 

Future directions 

Understudied elements of the life cycle 

Accurately predicting population responses to environmental change requires quantifying the 

effects of the environment across the entire life cycle (Radchuk, Turlure & Schtickzelle 2013). 

Yet, even in relatively well-studied species, with decades of demographic data on marked 

individuals, there are often gaps in the data, for example on cryptic stages, such as dormant 

plants and seed banks (Lesica & Steele 1994; Menges 2000; Alahuhta et al. 2017; Paniw et al. 

2017). Where data are scarce or unavailable population dynamics may be compared over a 

range of different values for the missing demographic rate (e.g. Chapters 2 and 3; Menges & 

Quintana-Ascencio 2004; Rees et al. 2006) or where limited data exist a Bayesian approach 

may be used to quantify the effect of uncertainty in such estimates at the population level 

(Paniw et al. 2017). Whilst using a range of values provides a measure of the uncertainty in 

population responses due to missing parameters, it does not allow for environmental effects in 
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the unknown processes. For example, environmental conditions, such as temperature and soil 

moisture, are known to influence several elements of seed bank dynamics, including seed 

mortality and germination (e.g. Mickelson & Grey 2006; Navarra et al. 2011; Cochrane 2017; 

Rezvani & Zaefarian 2017). Thus variation in seed bank dynamics, driven by environmental 

variation, may have implications for how populations respond to future environmental change. 

Further studies on the effect of environmental variation in cryptic life stages such as seed banks 

are thus needed in natural populations (e.g. Paniw et al. 2017).  

 

The role of density dependence 

Density dependence is prevalent throughout natural populations (e.g. Coulson, Milner-Gulland 

& Clutton-Brock 2000; Dahlgren, Ostergard & Ehrlen 2014) and has important consequences 

for species management, including in the success of translocations (Abeli et al. 2016), 

harvesting strategies (Freckleton et al. 2003), and biological control measures (Halpern & 

Underwood 2006). Thus accurate predictions of population responses to future environmental 

change necessitate the effect of density dependence on demographic rates to be accurately 

quantified, in addition to those of abiotic variables (Ehrlen & Morris 2015; Ehrlen et al. 2016).  

Density dependent feedbacks may be complicated, with the effect an individual has on a 

conspecific likely to depend on the abiotic environment (Jacquemyn, Brys & Honnay 2009; 

Wang et al. 2009), the age and states of interacting individuals (Myrvold & Kennedy 2015; 

Bassar et al. 2016; Gamelon et al. 2016), and the degree of spatial and temporal overlap 

between the individuals (Coulson et al. 1997).  

However, simplistic measures of density are typically used in population models, such 

as the total number of individuals or the number of individuals in a specific age or sex class, 

usually with little justification provided (Mysterud, Coulson & Stenseth 2002). In the Soay 

sheep population, my age and sex structured model failed to capture the observed population 

cycles or the shift from apparent overcompensatory dynamics to relatively stable population 

sizes (Chapter 5). This population is food limited, with nearly all mortality occurring over the 

winter period, mainly caused by starvation (Clutton-Brock et al. 1991). Mortality is likely to be 

a function of the per capita food availability, rather than density per se. I used total population 

size as a measure of density and allowed the effects of density on individuals to differ according 

to age-sex class and according to the abiotic environment (Chapter 5). However, by using total 

population size I effectively assumed that the influence an individual had on its conspecifics 

was identical, regardless of whether it was a 13kg lamb or a 40kg adult ram. This is biologically 

unrealistic; larger individuals, with larger energy requirements, would typically be expected to 

have a greater effect, via resource consumption, on other individuals (Peters 1983). Allowing 

the effect of each individual to differ according to state variables, such as size or age, may be 

necessary to capture the observed dynamical behaviour. 
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Interactions among environmental drivers  

I focused on the additive effects of environmental variables in this thesis (Chapters 3 and 4). In 

the Soay sheep population, I found that a model including the additive effects of multiple 

climatic variables (wind speed and precipitation) exhibited worse predictive performance than a 

model with a single climatic variable (Chapter 4). However, I did not consider an interaction 

between the two variables. In reality interactions between drivers are likely to occur (Nicole et 

al. 2011), for example high levels of precipitation may decrease an animal’s thermal tolerance, 

exacerbating the effect of low temperatures or high wind speeds (Webb & King 1984). The 

better predictive performance of large-scale climatic indices, such as the North Atlantic 

Oscillation (NAO), relative to local weather variables, is likely to be partly due to our failure to 

include interactions between local variables (Chapter 4; Hallett et al. 2004; Stenseth & 

Mysterud 2005). 

Including the effects of multiple climatic variables and the interactions between them is 

challenging because such variables are often correlated (Grosbois et al. 2008) and the 

interactions may be lagged. Using functional linear models (FLMs) to determine the temporal 

periods of influence for environmental drivers can increase the predictive performance of local 

climate models (Chapter 4), though the approach requires a high degree of temporal replication, 

and including interactions in such models would further increase the sample size requirements. 

Simulation studies suggest 20-25 years of demographic data are necessary to accurately identify 

the temporal periods of influence and quantify the effects of additive climatic drivers (Teller et 

al. 2016). Thus very few demographic data sets are likely to be sufficiently replicated to 

accurately quantify interactive effects. A possible alternative may be to use FLMs to identify the 

temporal periods over which climatic variables act and the shapes of the relationships, which 

could then be used to parameterise parametric models (Yee & Mitchell 1991). 

 

Beyond the population 

The predicted effects of future climate change are diverse, including changes to abundance, 

spatial distributions, phenology, and evolutionary change (Parmesan et al. 1999; Walther et al. 

2002; Parmesan 2006). Such responses will not occur independently from each other, for 

example, range expansions may be more likely where species have also increased in abundance 

(Gaston et al. 2000). Despite this, environmentally explicit population models have typically 

been used to predict the effects of environmental change at the population level, using measures 

such as population growth rate (Hunter et al. 2010; Salguero-Gomez et al. 2012). Conversely, 

predictions of the effect of climate change on species distributions have typically been made 

using species distribution models (SDMs), often on continental or global scales (Guisan & 

Zimmermann 2000; Guisan & Thuiller 2005; Elith & Leathwick 2009). Here, environmental 

covariates are linked to species presence data. Future predictions of such environmental 

covariates may thus be used to predict where species will be able to exist under anticipated 
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future conditions. Thus such approaches do not typically take into account abundance or 

population dynamics, instead assuming that species are at equilibrium; that is populations are 

only present where the environmental conditions are suitable, and they are present in all 

locations where that is the case (Guisan & Zimmermann 2000; Guisan & Thuiller 2005; Araujo 

& Guisan 2006). 

 Extending demographic approaches to predict population dynamics at wider spatial 

scales (Merow et al. 2014; Swab et al. 2015; Evans et al. 2016) may allow for more biologically 

realistic and useful future predictions, incorporating effects on abundance and distributions 

(Ehrlen & Morris 2015). A major constraint however is the lack of longitudinal individual data 

at broad spatial scales (Menges 2000; Coutts et al. 2016). Large differences in population 

dynamics among geographically nearby populations suggests that extrapolating results based on 

demographic data from a single, or a few closely located, study population(s) to wider spatial 

scales is risky (Chapter 3; Johnson et al. 2010; Hernandez-Camacho et al. 2015; Coutts et al. 

2016). However, there have been concerted recent efforts to address the limited spatial scale of 

most demographic data sets. For example, the deposition of matrices from matrix population 

models (MPM)s for hundreds of plant and animal species into open online repositories has 

facilitated studies at broader scales than are usually possible (Salguero-Gomez et al. 2015; 

Salguero-Gomez et al. 2016). Similarly projects, such as PlantPopNet, are attempting to collect 

demographic data on a specific species at much wider spatial scales than previous demographic 

studies have typically focused (Wardle et al. 2014). Such efforts will allow responses to 

environmental change at wider spatial scales to be predicted using a demographic framework.   

 

Conclusions 

Rapid rates of environmental change necessitate accurate methods for predicting ecological 

responses (Stenseth et al. 2002; Maclean & Wilson 2011). However, environmental effects on 

demographic performance can be complex, and the degree of temporal replication in most data 

sets is limited (Salguero-Gomez et al. 2015; Salguero-Gomez et al. 2016). Throughout this 

thesis I have used sophisticated statistical methods to enable such limited data to be used 

efficiently. I demonstrate how SEM approaches provide a biologically informed way to explore 

joint demographic responses to environmental change, allowing for predictions even when the 

explicit underlying drivers cannot be identified, or providing a simpler target for the effects of 

such drivers to be quantified. Furthermore, I illustrate the importance of considering the 

temporal windows of influence of environmental predictors. The complexity of population 

responses to environmental variation has resulted in many studies making necessary simplifying 

assumptions, for example selecting from a small sample of putative drivers, each acting over 

single a priori chosen temporal windows (Ehrlen et al. 2016; Van der Pol et al. 2016). My 

results suggest that the use of such assumptions may negatively affect the reliability of 

predictions of future population dynamics. Statistical tools that can deal with the challenges of 
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identifying drivers and their windows of influence, while quantifying their effects are relatively 

rarely used in this context (Dahlgren 2010; Teller et al. 2016). I demonstrate that the use of such 

methods can provide novel insights into population responses to environmental variation, even 

in well-studied populations, and improve our ability to predict future population dynamics under 

environmental change. 
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