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Abstract

Mechanical waves are ubiquitous within solar plasmas, coming in the form of Mag-
netohydrodynamic (MHD) waves. The Sun and its atmosphere are not a single
homogeneous medium and, rather, have complex structures stratified by gravity,
temperature gradients, complex magnetic field structures, subject to bulk flows and
even partial ionisation, with all of these affecting how oscillations propagate within
the plasma.

Magneto-acoustic gravity (MAG) waves have been investigated extensively within
solar physics, with three popular choices of analytical modelling for a Cartesian
coordinate system: a magnetic field parallel, perpendicular, or at an angle to the
gravitational field. Firstly we study the eigen-modes of bounded solar plasmas
embedded in a magnetic field perpendicular to the gravitational field and their energy
distribution in both single and two-layer models. We show that, indeed, modes can
still be split into fast and slow MAG with stratification decreasing the magnetic
energy with height and, thus, only waves with predominantly internal energy are
more evenly distributed in the atmosphere. A discontinuity in temperature between
layers also reflects waves but we show there is an inherent coupling between waves in
both layers. Secondly we investigate the effect of a bulk flow on MAG surface waves,
with the magnetic field parallel to the surface and a gravitational field perpendicular
to this. We find that waves along the penumbra, where Evershed flows are present
can change their direction of propagation and even the Kelvin-Helmholtz instability
can occur.

Waves within solar plasmas have generally been studied in fully ionised or
completely neutral media extensively and, as such, partial ionisation has not been
covered much until fairly recently, meaning there is great scope for exciting studies
in this sub-set of solar physics. Using single and multi-fluid methods we investigate
the stability of partially ionised plasma slabs with bulk flows. We find that in the
single fluid approximation that dissipative instabilities can occur for flow speeds
of the internal tube speed, with a neutrals providing stability. In the two-fluid
approximation our analysis confirms the existence of a mode that arises due to
the shear in flow in the neutral fluid and that, in a highly collisional plasma, has a
semi-resonant interaction between itself and the classical modes of incompressible or
compressible magnetic slabs.
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Chapter 1

Introduction

1.1 Introduction

The Sun has been a mainstay throughout our solar system’s expansive history,
forming the keystone that holds it together with its massive gravitational pull on
the planets and other extra-terrestrial objects. Without its energy, life as we know
it would surely not exist.

In comparison to the Sun’s age of 4.6 Billion years, humanity’s time on this
earth is but a mere moment, transcending our existence. The Sun was a great source
of mythology for early humans and many ancient civilizations. Amongst many of
these, in Ancient Egyptian religion, Ra/Re was believed to be the god of the Sun.
With the head of a falcon and a cobra laced Sun-disk atop it, he would sail his solar
barge across the ocean, beginning his journey with sunrise and ending it with sunset.
In Ancient Greek mythology Helios (from which the term heliosphere derives) was
the avatar of the Sun. A handsome son of the Titan Hyperion crowned with the
shining aureole of the Sun, he rode a chariot across the sky, bringing the Sun’s light
to all. Many other cultures with multiple deities also worshipped Sun gods, such as
the Hindu Sun god Surya and Bila, an Australian Aboriginal cannibal Sun goddess,
to name but a few of the extensive list. This prevalence for mankind to explain
the origin of the Sun throughout human history shows just how mysterious and
wonderful it has been to humans since the beginning of sentient thought.

The Sun is comprised of a state of matter, the so called fourth state of matter,
known as plasma. Plasma itself is a super hot gas in which most, if not all, the
particles within it are fully ionised, that is the negatively charged electrons have
separated from the positively charged nuclei and move freely. Plasma is, however, still
considered globally electrically neutral. It is the most abundant state of non-exotic
matter in our universe and, as such, should be considered the most ‘normal’ form
of matter. The fact that electrons and ions can move freely means that plasma
can also support currents, and therefore electric fields, as well as magnetic fields,
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can be present. Due to the charged nature of the ions and electrons the magnetic
field readily affects the dynamics of the plasma. Plasma, however, can be made
up of a mixture of ions, electrons and neutrals, depending on the temperature and
the species of atom present within it. For example, this can occur in some parts
of the solar chromosphere. The neutrals within the system will not be affected by
electromagnetic fields that permeate the plasma. This can lead to more interesting,
but complicated, physics within the plasma. Due to this inherent complexity and
rich physics, astrophysics is an astoundingly interesting area of study.

The Sun as our nearest star has always been visible to humans. Being so close
means that far more detailed observations can be made of it than any other star in
the universe, from Earth’s perspective. Throughout the millennia, many civilizations
have observed the Sun. In 2000 B.C. solar eclipses were first recorded by the Chinese.
Sunspots, which are dark spots on the surface of the Sun, were first recorded by the
ancient Chinese in 800 B.C. and were being observed and documented systematically
by 23 B.C. so that the emperor’s busy coital schedule could be organised properly.
It was not until the development of the telescope that the Sun could be observed in
greater detail. With this exciting new development in optics in the mid 17th century,
scientists such as Galileo rediscovered and started to document sunspots again. This
lead to the observation of the Maunder minimum, where very few sunspots were
present. Nowadays, large ground based telescopes (e.g. the Swedish 1-metre Solar
Telescope (SST)) can view the sun in very fine detail and space based telescopes
can view the sun without interference from the Earth’s atmosphere. The STEREO
mission can now view objects on the Sun in three dimensions by the use of two
satellites working in synchronisation to create, for the first time in solar research, a
3D picture.

Observations of the Sun are only able to tell half of the story. To interpret these
observations, a sound theoretical framework is needed. The observations can be
used to infer the actual physics occuring within the Sun, using theory, and thus gain
insight into the physical characteristics e.g. Temperature, densities etc. It is this
interplay between observations and theory that can make solar physics an exciting
area of study, with collaborations between theorists and observational experts vital
to gain a full picture of the Sun.

1.2 Structure and Dynamics of the Sun

The Sun is a large spherical object, however it is hardly homogeneous. It can be
split into two main regions: the solar interior and solar atmosphere. Fig. 1.1 shows
a schematic representation of the Sun.
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1.2.1 Solar Interior

The solar interior is, as the name suggests, within the Sun and it cannot be viewed
directly through the surface layers. To study the interior of the Sun a branch of
astrophysics called helioseismology has been developed to probe within it and gain
insight into the physical parameters. The interior can be divided into three separate
and distinct sections. Going from the centre to the surface these are: the core, the
radiative zone and the convection zone. There is a fourth very thin layer in between
the radiative zone and convection zone, called the tacholine, where the solar magnetic
field is thought to be generated through the solar dynamo.

The solar core is where the Sun’s energy is generated by the process of nuclear
fusion. It uses a fairly inefficient form of fusion compared to the fusion used in
tokamaks. It combines Hydrogen nuclei together to produce Helium; some mass is
lost in this process and is released as energy, which can be explained by Einstein’s
equation relating mass and energy (E = mc2). The temperature of the core is about
1.5 × 107 Kelvin with an approximate density of about 1.6 × 105 kg m−3 and extends
0.25 solar radii within the Sun. The core is so dense that it is difficult for acoustic
waves to be used to probe it by helioseismology. However gravity modes, called
g-modes, could theoretically be used to probe the core (very low spherical degree
surface gravity modes, f -modes, can also theoretically penetrate into the core), yet
they are evanescent near the surface layers of the Sun, with amplitudes so small that
they have not as of yet been reliably observed.

The radiative zone is the region of the Sun in which radiative transfer of energy
takes place. It extends out to approximately 0.7 solar radii, starting from the edge of
the core. The energy generated in the core is slowly leaked out through the radiative
zone, with photons taking years to pass through it, being absorbed and emitted
countless times.

The convection zone is just below the surface layer and is the region where the
largest amount of energy transfer happens. As the name suggests, the process of
energy transfer is convection. At the base of the convection zone the temperature
gradient of the plasma is too large and it becomes convectively unstable. Large blobs
of hot plasma rise to just below the surface of the sun where they are then able to
radiate their heat once more and thus lose buoyancy and descend. This happens over
and over again, creating large convection cells where bulk flows of huge amounts of
plasma occur.

1.2.2 Solar Atmosphere

The solar atmosphere is the outer most region of the Sun and is far less dense than
the interior. It is comprised of four separate regions: the photosphere, chromosphere,
transition region and corona.
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Fig. 1.2 The VAL (Vernazza et al., 1981) model for the lower solar atmosphere,
showing the variation of temperature and density with height above the top of the
photosphere.

The photosphere is the visible surface of the Sun and is approximately 500 km in
thickness, so relative to the solar radius (695,500 km) it is quite thin. Apparent on
this layer are granules. They are the roofs of convective cells and make up a large
interconnected network across the surface of the Sun, constantly changing shape and
disappearing. The plasma beta (the ratio of kinetic plasma pressure to the pressure
force exerted by the magnetic field) value is greater than one in the photosphere, as a
whole (some intense magnetic structures will have a low plasma beta), and therefore
the motions within the plasma are dominated by kinetic forces. The temperature
at the base of the photosphere is around 10,000 Kelvin and slowly decreases to
a minimum of about 4,400 Kelvin at the interface between the photosphere and
chromosphere. The photosphere, being relatively isothermal and stratified by gravity
has an almost exponential density gradient with a relatively small scale height, and
decreases from about 10−4 kg m−3 to 10−6 kg m−3. This is all according to the VAL
(Vernazza et al., 1981) model (shown in Fig. 1.2) which assumes thermodynamic
quantities only vary with height and are stationary. In reality, the photosphere
is a very dynamical region with flows, varying magnetic fields and can be highly
inhomogeneous. The chromosphere sits on top of the photosphere and is around 1.5-
2.5 Mm in height. It can be split into two regions; the first is the quiet chromosphere
that is essentially non-magnetic and, conversely, a highly magnetic chromosphere
above active regions. Magnetic structures can be very varied, with horizontal and
vertical fields among many forms. The temperature rises slowly in the chromosphere
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from the temperature minimum of 4,400 Kelvin at the base to 25,000 Kelvin at it’s
top, i.e. the base of the transition region. These relatively low temperatures and
the propensity of the plasma to consist mainly of Hydrogen atoms means that, for a
reasonable amount of the chromosphere, the plasma may not be fully ionised. The
plasma density decreases rapidly with height (at essentially the same rate as in the
photosphere) from about 10−6 kg m−3 to 10−10 kg m−3 at 2,000 km above the solar
surface.

The transition region is a very small layer in the solar atmosphere, where the
temperature rises dramatically from about 25,000 K to over 106 K in the space of
approximately a few hundred km, with the density falling by two orders of magnitude
at the same time. In theoretical models it can be approximated as a jump region
for physical quantities.

The corona is an incredibly hot (> 106 K) plasma with a very low density. It’s
temperature, with a large positive gradient that exists in the transition region, is
one of the major unexplained problems of solar physics. It is thought to be due to
a combination of wave heating and magnetic reconnection, both of these processes
dumping energy in the upper atmosphere (for comprehensive reviews on coronal
heating see e.g. Klimchuk, 2006, Reale, 2010 and Parnell and De Moortel, 2012).
The corona extends a massive distance from the Sun and by all accounts reaches
far beyond the Earth. The magnetic field is mainly radial at this height, extending
far into the solar system and accelerates charged particles - causing the solar wind.
However, the magnetic field can also be horizontal, for example in large coronal loops
connecting regions of opposite magnetic polarity together.

1.2.3 Prominences

As a significant portion of this thesis focusses on oscillations in solar prominences, a
brief introduction to prominences is given here.

Prominences are large magnetic structures suspended within the coronal plasma.
The plasma contained within the prominence, however, is more akin to chromospheric
plasma, with densities and temperatures (7500-9000 K) at least two orders of
magnitude smaller than that of the surrounding corona (see e.g. Engvold, 1998,
Lin et al., 2005a, Okamoto et al., 2007). Prominences can be split into two main
types: quiescent and active region prominences. Quiescent prominences are the more
common type and are widespread over solar latitudes, with relatively long lifetimes
of around 3 to 300 days (Parenti, 2014) compared to active region prominences’
rather shorter lifetimes of hours to a day. Their magnetic field structure is mainly
horizontal (relative to the surface of the Sun), which is required to support against
the action of gravity which would try and push the dense and cool plasma back down.
Quiescent prominences’ average magnetic field strength is about 8 to 15 G but can



1.3 Solar Oscillations 7

be as large as 80 G in some cases. The magnetic field in active region prominences
is typically larger, averaging 20-70 G, although it has been reported to be as high
as 600 to 700 G in some cases. The magnetic field structure is more complicated
above active regions, where it is twisted into flux ropes. They are composed of
dynamical fibril threads that have an average width of 200 km and heights ranging
between 3500-28000 km. The sizes of prominences can vary quite a lot. For quiescent
prominences their lengths range from 60-600 Mm, widths of 3 to 10 Mm and heights
of 10 to 100 Mm. Active region prominences tend to be far smaller, with lengths of
10 Mm and heights of approximately 3 Mm (e.g. Heinzel and Anzer, 2006 or Lin,
2011 for comprehensive reviews). Due to a chromospheric origin, their temperatures
at around 7500-9000 K would imply that the plasma is not fully ionised, with the
ratio of ions to neutrals of Hydrogen atoms in the range of 0.2-0.9 (Ruzdjak and
Tandberg-Hanssen, 1990). This could have important effects on the dynamics of the
plasma, due to the interaction between the ions and neutral atoms and the fact that
the neutrals are not affected by the force of the magnetic field.

Within quiescent prominences, turbulent plume structures have also been observed.
These appear as dark plumes in the visible band spectra, compared to the brighter
surrounding prominence plasma and are hotter as well. They are thought to be
triggered by the Rayleigh-Taylor instability (see e.g. Hillier et al., 2012). The initial
up-flow speed is around 20-30 km s−1 and an average flow speed is around 13-17 km
s−1, with life times of 300 to 1000 s (Berger et al., 2010). They exhibit turbulent
profiles and even Kelvin-Helmholtz instabilities, with widths usually around 0.5-1
Mm.

Prominences are observed to be surrounded by hot (1-2 MK) elliptical coronal
cavities that are much less dense than the surrounding corona (see Gibson et al., 2010
and references therein). Recent observations by Schmit and Gibson (2013), viewed
in extreme ultraviolet (EUV) along the filament line at the solar limb, have shown
prominence horns that emanate into this coronal cavity. Recent simulations by Xia
et al. (2014) gave the first model of prominences as thermally and gravitationally
stratified magnetic flux ropes. The investigation confirmed the appearance of these
horns.

1.3 Solar Oscillations

Oscillations are ubiquitous within the Sun and are observed constantly by ground
and spaced based instruments. Oscillations have been used for many years in the
branch of solar physics, Helioseismology (for extensive notes on stellar oscillations see
e.g. Christensen-Dalsgaard, 1997 and for recent reviews linking global to atmospheric
oscillations see e.g. Erdélyi, 2006a, Erdélyi, 2006b and Pintér and Erdélyi, 2011),
to probe the interior of the Sun and find physical parameters such as density and



8 Introduction

temperature etc. Cowling (1941) considered the Sun as a spherically symmetric body
that was stratified by a gravitational force pointing toward the centre. He found that
two types of mode can exist in such configuration namely p- and g-modes. These
two types of oscillation have different properties. p-modes are acoustic, pressure
driven waves modified a small amount by the strong gravitational nature of the Sun.
They are essentially sound waves that one would perceive here on Earth, when one
speaks, for example. On the other hand, g-modes are oscillations that are mainly
driven by the buoyancy force; a perturbation displaces plasma downward from its
equilibrium position which then rises back under the force of buoyancy. However,
only the p-modes can readily be observed on the surface of the Sun, g-modes are
evanescent within the convection zone and therefore their amplitudes are much
smaller than the p-modes. p-modes were first categorically observed on the surface
of the Sun by Leighton (1960). The amplitudes of the velocity are around 15 cm s−1

and are observed by measuring the Doppler-shift of spectral lines, with the dominant
period being the familiar 5-minute oscillations.

These are, however, not the only oscillations present in the Sun. Due to its
dynamo that produces large scale and long lived magnetic fields and associated
structures, the Sun also exhibits magnetohydrodynamic (MHD) oscillations. An
extensive theory of MHD waves has developed since the ground breaking paper that
earned Hannes Alfvén his Nobel prize (Alfvén, 1942). In this one-page paper the
Alfvén wave was discovered, an incompressible wave that is produced by the tension
in the magnetic field lines. However, due to their incompressible nature they do
not perturb the density of the plasma and have been very hard to categorically
observe in the Sun, directly or indirectly (Erdélyi and Fedun, 2007a, Jess et al., 2009,
Mathioudakis et al., 2013). Along with the Alfvén wave, electrically conducting
homogeneous fluids can also support two other waves: the slow and fast magneto-
acoustic (MA) waves. The fast magneto-acoustic wave is driven by a combination of
the pressure from the magnetic field and the internal pressure of the plasma itself,
with both of these acting in phase. A fast wave can propagate in any direction in the
plasma, much like a sound wave in a gas. The slow magneto-acoustic wave is also
driven by the magnetic and internal pressure but in this case they act out of phase.
The slow wave propagates most of its energy only along magnetic field lines, and
struggles to propagate perpendicular to the magnetic field. As their names suggest
these waves move at different speeds, the fast wave being the fastest, the Alfvén
being the second fastest and the slow wave the slowest (for general theory on MA
waves refer to the textbooks Goedbloed and Poedts, 2004, Priest, 2014 or Chapter 5:
‘Magnetohydrodynamic Waves ’ in Hasan and Banerjee, 2007).

When there is inhomogeneity in a system, the dynamics of these waves can become
more complicated. For example, when a plasma is stratified by gravity, magneto-
acoustic gravity (MAG) waves are possible. This is a very important addition with
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regards to solar theory, as the Sun is highly stratified by gravity. Many studies have
dealt with the problem of MAG waves, with two main geometries being extensively
studied: the case when the magnetic field is parallel to the gravitational field and the
other where they are perpendicular to one another. The first study of its kind was
undertaken by Ferraro and Plumpton (1958). The magnetic field was taken to be
parallel to the gravitational field and the plasma was approximated to be isothermal.
In this study it was found that the Alfvén waves decoupled and could be studied
alone but the slow and fast MAG waves were inherently coupled, with solutions to
a fourth order ODE being found in terms of a Fröbenius series. Zhugzhda (1979),
again, studied this same problem but found solutions in terms of the more general
Meijer-G functions. With some simple asymptotic analysis it was found that, in
low-beta environments, the slow waves degenerate to vertically propagating sound
waves and the fast wave is evanescent. This geometry turns out to be very difficult
to study due to the complexity of the functions that arise from solving the equations.

The case where the magnetic field is perpendicular to the gravitational field has
been studied in far more depth (Miles and Roberts, 1992, Miles et al., 1992). In
this case the Alfvén wave does not decouple from the system but a second order
differential equation can be found for arbitrary stratification of magnetic field and
density. Without a magnetic field, the gravitational field gives rise to a background
frequency of buoyant oscillations, the Brunt-Väisäla frequency. In the case of a
perpendicular field with a stratified magnetic field, it has been found that there can
be a magnetic modification to this, with the magnetic field supporting against the
gravitational field (see e.g. Goedbloed and Poedts, 2004). The stratification also
gives rise to a continuous spectra of MHD oscillations due to the singular behaviour
of frequencies (see e.g. Trehan and Uberoi, 1972 for an example of the continuous
spectra of Alfvén waves or Cirigliano et al., 2004 for an in depth exposition of
continuous spectra). This singular behaviour can also lead to resonant absorption,
phase mixing and then the possible dissipative processes associated with this (see
e.g. Goossens et al., 1995, Erdelyi and Goossens, 1995 for examples of resonant
absorption, see also Goossens et al., 2011 for a recent review and Heyvaerts and
Priest, 1983 or Priest, 2014 for examples of phase mixing).

Inhomogeneity does not always have to be a continuous transition in mathematical
modelling, it can also come in the form of a sharp transition at a surface between two
layers. For example, Roberts (1981b) investigated the case of waves both body and
surface in a magnetic slab in a non-magnetic environment. It was found that two
decoupled modes of oscillations existed: the symmetric sausage and asymmetric kink
modes. Changing the coordinate system to that of a magnetic flux tube in cylindrical
coordinates, the same modes were found by Edwin and Roberts (1983) as well higher
order fluting harmonics. A cylindrical and slab environment are fairly good physical
models of study as they appear (to an approximate extent) in the form of many solar
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structures, such as coronal loops or sunspots, both of which are concentrated areas
of magnetic flux. Both sausage and kink modes have been observed within the solar
atmosphere, i.e as coronal loop oscillations and in small scale magnetic structures in
the photosphere (see e.g. Verwichte, E. et al., 2005 for transverse kink oscillations
and Dorotovic et al., 2014 for sausage mode observations).

Recently, there have been models formulated to describe longitudinal oscillations
observed in prominence filaments (see e.g. Luna et al., 2014). Luna et al. (2012)
modelled a prominence filament as single flux tube surrounded by a hot corona.
The main restoring force for the oscillation of the tube as a whole was found to be
gravity, with a small correction due to pressure. A conclusion was drawn that large
amplitude oscillations seen in prominences are due to the projected gravitational
force on the flux tube, with the relatively strong curvature, due to the gravitational
dips, the main contributing factor. Luna and Karpen (2012) investigated multiple
prominence threads under the force of gravity, reaching a similar conclusion, whereby
the projected gravity on the curved prominence threads was the main restoring force
for large amplitude longitudinal oscillations.

1.4 Flows and Associated Instabilities

Flows within the Sun and its atmosphere are widespread. The solar interior is not
just a spherical ball of static plasma, it is in fact highly dynamic. For one there are
large scale flows at the surface of the Sun, due to e.g. its differential rotation. The
Sun does not rotate like a solid spherical ball but rotates differentially, with some
parts rotating at different speeds. The fastest rotation is at the equator with one
full rotation every 26.24 days at a speed of 1.9 km s−1. The poles rotate once every
36 or 37 days, therefore with much lower speeds. There is a much weaker meridional
flow of about 20 m s−1 that flows directed toward the poles of the Sun.

In the penumbra of sunspots, along the magnetic field lines pointing radially out
of the centre, Evershed outflow exists (Evershed, 1909). These outflows stream away
from the sunspot and can be around 2.5-6 km s−1 in velocity (see e.g. Montesinos
and Thomas, 1997 or Schlichenmaier and Schmidt, 2000). However, there is a much
stronger Evershed inflow that exists higher up in the chromosphere (St. John, 1913).
This flow is still associated with sunspots and their magnetic field but is much farther
out from the sunspot and flows back toward it along the magnetic field lines at flow
speeds of around 20 km s−1, although flows can be up to 50 km s−1.

Bulk flows are generally present in prominences too, due to their dynamical
nature. Flows of around 10-70 km s−1 (Schmieder et al., 1984) are observed within
quiescent prominences but flows of up to 200 km s−1 have been observed within active
region prominences. Berger et al. (2008) observed, in both the Ca II H-line and
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Hα band passes of Solar Orbiter Telescope (SOT), turbulent up-flows in quiescent
prominences of an approximately constant speed of 20 km s−1.

Bulk flows of plasma can have a dramatic effect on the propagation of waves in
fluids. Generally, from the point of an observer, the flows can either increase the speed
of propagation of a wave within that medium or decrease its speed, depending on
the direction of propagation relative to the flow. This phenomenon is called Doppler
shift. When there is a shear in flow velocity between fluid layers,there are more
dramatic effects on wave oscillations, with instabilities such as the Kelvin-Helmholtz
and negative energy wave (NEW) instabilities occurring.

1.4.1 Kelvin-Helmholtz

The Kelvin-Helmholtz instability (Thomson, 1871) has a long history in the study
of fluid dynamics. When a fluid exhibits a shear flow, that is two separate layers of
fluid are moving at different relative speeds to one another, a surface of vortices can
rapidly build up between the interface. For example, these vortices may be seen in
clouds called fluctus which form between two shear flow layers of the atmosphere.

The Kelvin-Helmholtz instability can also occur in plasmas, again with shear
flows between plasma layers necessary. However, if there is a magnetic field present,
this can stabilise the surface and inhibit the Kelvin-Helmholtz instability, with the
centrifugal force due to the shear flow having to overcome the stabilising magnetic
tension (Ruderman et al., 1996). The effect of the magnetic field is to act as somewhat
analogous to that of a surface tension term in the hydrodynamic case and therefore
can prevent the instability from occurring in a similar sense. In the case of a magnetic
field that is parallel to the direction of the shear flow, the instability only occurs when
the relative speeds of the two fluids exceeds the root mean square of the Alfvén speeds
(in a uniform plasma) in the two plasma layers (Chandrasekhar, 1961). Therefore,
in most solar cases, this instability can only occur at shear velocities greater than
the Alfvén speed, which in the atmosphere is of a very large magnitude. It must
be mentioned that, if the shear in flow is perpendicular to the magnetic field, the
magnetic tension does not inhibit the Kelvin-Helmholtz instability (Chandrasekhar,
1961). However, due to the charged nature of plasmas, most background flow fields
are likely parallel with the magnetic field.

1.4.2 Negative Energy Waves

The velocities required for the Kelvin-Helmholtz instability are rather large for a solar
atmospheric context and flows of these magnitude are generally not observed apart
from explosive events such as, for example, coronal mass ejections. Thus another
explanation may be required to explain the instabilities observed, for example at the
interfaces of prominences.
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Negative Energy Waves (NEW) have been studied in both hydrodynamics and
plasma physics extensively. These instabilities also occur in the presence of a shear
flow but require a sink of energy from the system to exist. The reduction in the
energy of the system leads to the increase in the amplitude of the wave over time.
These type of waves are intimately linked to the so called dissipative instabilities,
which occur when there is a reduction in the energy of the system (see e.g. Ruderman
et al., 1996, Tirry et al., 1998, Andries et al., 2000, Andries and Goossens, 2001,
Taroyan and Erdélyi, 2002).

Cairns (1979) formulated a simple relation for the energy density of linear waves
by discussing the linear dispersion relation and the work done in the formation of
the wave, given by the following expression:

E =
1

4
ω
∂D
∂ω

|A0 |
2, (1.1)

where E is the wave energy, ω is the frequency of the wave, D is the linear dispersion
relation and A0 is the amplitude of the wave. D is chosen so that when there is
no flow present, all waves are of positive energy so that E is positive. With this in
mind, one can see from Eq. (1.1) that the quantity E will change sign when either:
ω changes sign, that is when the flow is strong enough that it reverses the direction
of the wave; or when the derivative of D changes sign, which is related to infinite
group velocity of the wave (Cairns, 1979), when two waves couple together. When E

is negative, a decrease in energy of the system relates to an increase in the amplitude
of the wave, holding the frequency constant.

Negative energy waves were first studied in an MHD context by Ryutova (1988).
Many other authors have followed suite. For example, Ruderman and Wright (1998)
studied the role of negative energy surface waves in the excitation of resonant Alfvén
waves at the interface between the magnetosheath and magnetosphere of the Earth
(i.e. the magnetopause). It was found that backward propagating waves could
become negative energy waves at shear flow speeds lower than those required for the
Kelvin-Helmholtz instability (for another example of NEW related to resonant flow
instabilities see e.g. Taroyan and Erdélyi, 2002).

The fact that negative energy waves can occur for flow speeds lower than those
required for the Kelvin-Helmholtz instability in MHD and their link to dissipative
instabilities makes them an interesting area of study in astrophysical plasmas and a
possible explanation for the instabilities observed.

1.5 Fully ionised magnetohydrodynamics

A set of non-linear equations can be formed that relate the equations of gas dynamics
and the Navier-Stokes equations of fluid dynamics to Maxwell’s equations of electro-
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dynamics through Ohm’s law. These equations govern the dynamics of the plasma;
its evolution through space and time. These equations are (in the order they will be
presented): the equation of mass conservation, the equation of motion, the energy
equation and the induction equation.

The mass conservation equation physically means that the changes to the density
at a point in the plasma over time are due exclusively to the mass-flow in and out of
that point.

∂ρ

∂t
+ ∇ · (ρv) = 0, (1.2)

where ρ is the plasma density, v is the plasma velocity in 3-dimensional space and ∇

is the gradient-operator in 3-dimensional space.
The equation of motion governed by Newton’s laws of motion state that the forces

acting on a plasma are equal to the acceleration of the plasma. In what follows,
the plasma motion is subject to a force due to the pressure gradient, the Lorentz
force (a combination of the pressure and tension of the magnetic field), a constant
gravitational acceleration acting on the mass and a viscous force due to the friction
between the particles:

ρ

(
∂

∂t
+ v · ∇

)
v = −∇p + j × B + ρg + ρν

[
∇2v +

1

3
∇(∇ · v)

]
, (1.3)

where p is the kinetic plasma pressure, B is the magnetic field direction and magnitude,
j is the current density, ν is the kinematic coefficient of viscosity and g is the
acceleration due to gravity.

The energy equation describes how the rate of increase in heat is due to the sum
of all energy sinks and sources. It can be written in many forms, we opt for the
following concise form:

ργ

γ − 1

(
∂

∂t
+ v · ∇

) (
p
ργ

)
= −L, (1.4)

where L is the energy loss function and γ is the ratio of specific heats at constant
volume and pressure respectively.

The final equation governs the evolution of the magnetic field and is called the
induction equation. We present this with the solenoidal condition that states that
there are no sinks or sources of magnetic field, so that the only generation of magnetic
field is through the induction equation and it must be true at all times.

∂B

∂t
= ∇ × (v × B) + ηm∇

2B, ∇ · B = 0, (1.5)

where ηm is the magnetic diffusivity, which is assumed constant here.
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1.5.1 Ideal Form

Eqs. (1.2)-(1.5) form a complex system of partial differential equations relating the
magnetohydrodynamic variables together. To solve these fully analytically is beyond
the scope of our well-developed mathematics. The diffusive terms caused by viscosity
and resistivity can often be neglected for many astrophysical objects, particularly in
the Sun, where magnetic and viscous Reynolds numbers are for the most part very
high.

The Reynolds number, Re, is defined as

Re =
l0V0
ν
, (1.6)

where l0 is a typical length scale and V0 is a typical velocity. Eq. (1.6) gives the ratio
of magnitudes of the inertial and viscous terms in Eq. (1.3). If Re ≫ 1 then inertial
terms dominate the viscous terms. If Re ≪ 1, then viscous forces dominate inertial
forces. For the solar cases described in chapters 2-4, Re ≫ 1 and thus viscous forces
are neglected. Eq. (1.3) can then be written:

ρ

(
∂

∂t
+ v · ∇

)
v = −∇p + (∇ × B) ×

B

µ
+ ρg. (1.7)

Here, we have used the fact that

µ0j = ∇ × B, (1.8)

using Maxwell’s equations and assuming non-relativistic speeds. That is, V0 ≪ c,
where c is the speed of light in a vacuum. Here, µ0 is the magnetic permeability in a
vacuum.

The magnetic Reynolds number, Rm is defined as

Rm =
l0V0
ηm

. (1.9)

Eq. (1.9) describes how much the magnetic lines of force are tied to the movement of
the plasma. If Rm ≫ 1, the magnetic field is highly coupled to the plasma and moves
with the flow of the plasma. If Rm ≪ 1, the magnetic field is weakly coupled and
diffuses away on a time-scale, τd = l20/ηm. Again, for many astrophysical plasmas,
Rm ≫ 1 and magnetic diffusivity can be neglected from Eq. (1.5):

∂B

∂t
= ∇ × (v × B) , ∇ · B = 0. (1.10)

Within this thesis we will also suppose that sinks and sources of energy are
very small or happen on a very large time-scale compared to the variations of the
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plasma quantities. With this in mind, we can say that the energy loss function
is approximately negligible, i.e. L ≈ 0, and thus Eq. (1.4) can be written in the
following form (using Eq. (1.2)):

∂p
∂t
+ v · ∇p + γp∇ · v = 0. (1.11)

Eqs. (1.7)-(1.11) combined with the unchanged continuity equation, Eq. (1.2),
form a closed system of non-linear partial differential equations that relate v, ρ, p

and B to one another.

1.5.2 Ideal Linearised MHD

The non-linear ideal MHD equations above can describe the dynamics of most
astrophysical plasmas fully. They are, however, still incredibly difficult to solve
analytically. A simple and reasonably accurate next approximation is to assume
that solar structures have a background that varies slowly in time and assume
that the amplitudes of perturbations to this background are much smaller than the
background quantities themselves.:

f (r, t) = f (r) + f ′(r, t), (1.12)

where f (r, t) denotes any of the MHD quantities, with f (r) a background quantity and
f ′(r, t) a small perturbation around the background with | f ′(r, t)| ≪ | f (r)|. Inserting
this approximation into Eq. (1.2) and Eqs. (1.7)-(1.11) and neglecting square and
cross terms both with perturbations the following set of linear MHD equations can
be formed:

∂ρ′

∂t
+ v · ∇ρ + ρ∇ · v′ = 0, (1.13)

ρ

(
∂

∂t
+ v · ∇

)
v′ = −∇p′ + (∇ × B) ×

B′

µ0
+ (∇ × B′) ×

B

µ0
+ ρ′g, (1.14)

∂p′

∂t
+ v · ∇p′ + v′ · ∇p + γp (∇ · v′) = 0, (1.15)

∂B′

∂t
= (B · ∇) v′ − B (∇ · v′) − (v′ · ∇)B − (v · ∇)B′ + (B′ · ∇) v, (1.16)

∇ · B′ = 0. (1.17)
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In this formulation we have assumed that both the background magnetic field
and background flow are orientated in the same direction, with the direction of
stratification perpendicular to both. The solenoidal condition still holds for the
background magnetic field also. We must also maintain background momentum
balance such that

∇

(
p +

B2

2µ0

)
= ρg. (1.18)

Here B = |B| is just the magnitude of the magnetic field. A convenient definition at
this point is the plasma beta (β) given by β = 2µ0p/B2. This quantity is a measure
of the relative importance of kinetic pressure compared to the magnetic pressure. A
large value indicates kinetic forces are dominating the motions of the plasma and a
low value indicates that magnetic forces are dominating the plasma motions.

1.6 Non-Ideal (Dissipative) MHD

It was stated in 1.5.1 that within solar plasmas most non-ideal effects can be ignored
due to very large viscous and magnetic Reynolds numbers. This is true in most
cases, yet it is interesting to study cases where its contribution is not so small as it
can lead to damping and instabilities. The forms of the Reynolds numbers suggest
this occurs on reasonably small (comparatively) length scales. Within this thesis,
the cases where we include dissipation are those with a low plasma beta, β ≪ 1 i.e.
where magnetic forces dominate kinetic forces of the particles.

Due to the large (relative) difference in mass of protons and electrons the viscous
frictional forces in a plasma are due mainly to the collisions between the protons
themselves. Braginskii (1965) developed a well known representation of the viscous
stress tensor. The tensor is composed of five coefficients κ0, ..., κ4 (see also Erdelyi
and Goossens, 1995). We consider a fully ionized hydrogen plasma where the protons
gyrate around the magnetic field with angular frequency ωp = |qpB|/mp, where qp is
the charge of the Hydrogen ion, B is the magnetic field strength and mp is the mass
of the Hydrogen ion (proton). The period of Coulomb collisions is given by τp. For
our purposes we shall be considering a coronal plasma so that ωpτp ≫ 1 will hold
true, that is the frequency of Coulomb collisions is much smaller than the gyration
frequency of the protons . The stress tensor for protons, πi j (where i, j = x, y, z are



1.6 Non-Ideal (Dissipative) MHD 17

the coordinate axes), is given by its components (Braginskii, 1965):

πzz = −κ0Wzz, (1.19)

πxx = −
κ0
2

(
Wxx +Wyy

)
−
κ1
2

(
Wxx − Wyy

)
− κ3Wxy, (1.20)

πyy −
κ0
2

(
Wxx +Wyy

)
−
κ1
2

(
Wyy − Wxx

)
+ κ3Wxy, (1.21)

πxy = πyx = −κ1Wxy +
κ3
2

(
Wxx − Wyy

)
, (1.22)

πxz = πzx = −κ2Wxz − κ4Wyz, (1.23)

πyz = πzy = −κ2Wyz − κ4Wxz, (1.24)

where

Wi j =
∂vi

∂x j
+
∂v j

∂xi
−
2δi j

3
∇ · v, (1.25)

where the coefficients of viscosity are given by:

κ0 = 0.96npTpτp, (1.26)

κ1 =
3

10

npTp

ω2
pτp

, κ2 = 4κ1, (1.27)

κ3 =
npTp

2ωp
, κ4 = 2κ3. (1.28)

Here, Tp is the proton temperature, np is the proton number density, δi j is the usual
Kronecker-delta function and i, j = x, y or z indicate the orthogonal directions in a
Cartesian coordinate. It is also assumed here that the z- axis is aligned with the
magnetic field.

What is immediately evident from this formulation is that κ0 is at least an order of
ωpτp larger than all the other coefficients κ1, ..., κ4. These can therefore be neglected
in comparison (we note that in a non-uniform plasmas at resonance locations these
can, in fact, be large). The momentum equation thus has the following form

ρ

(
∂

∂t
+ v · ∇

)
v = − ∇p + j × B + ρg

+ ρν

{
b(b · ∇) −

1

3
∇

}
{3b · ∇(b · v) − ∇ · v} ,

(1.29)

where b is the unit vector in the direction of the magnetic field.
Within this thesis we only consider viscosity as the main dissipative effect. We

neglect the energy loss function of Eq. (3.7) and neglect the resistive term of Eq.
(1.5).
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1.7 Partially Ionised Plasmas

The solar atmosphere is made up of many different species of atom but a great per-
centage of these are Hydrogen. The temperature and density of the solar atmosphere
is by no means homogeneous either and, as has been stated, it can range from the
temperature minimum of 4,300 K to around the ∼ 106 K mark and higher in the solar
corona. The temperature of a hydrogen plasma has consequences on how ionised it is.
The ionisation fraction can be described using the Saha equation (see e.g. Goedbloed
and Poedts (2004)) which gives the ratio of the number of atoms in ionisation stage
i + 1 (Ni+1) to those in stage i (Ni):

Ni+1

Ni
=

1

ne

(
2πmekT

h2

)3/2
exp

(
−

χi

kBT

)
, (1.30)

where ne is the number density of electrons not attached to an atom, me is the
mass of an electron, kB is the Boltzmann constant, T is the temperature of the
gas, h is Planck’s constant and χi is the energy required to ionise an atom in
ground state of stage i to ground state of stage i + 1. Fig. 1.3a plots the ionisation
fraction of hydrogen given by ni/nT , where ni is the number of ionised hydrogen
atoms and nT is the total number of neutral and ionised hydrogen atoms. Four
values of the mass density, ρT , have been chosen to simulate the range of values
that may occur in solar atmospheric phenomena, starting at ρT = 10−6 kg m−3 at
the base of the chromosphere and with a final value of ρT = 10−9 kg m−3 at the top
of the chromosphere (Vernazza et al., 1981). It is evident from Fig. 1.3a that at
the temperature minimum region, where the temperature is around 4,400 K and
ρT ≈ 10−6 kg m−3, there will be almost no ionisation of the plasma at all, with
ni/nT ≈ 0.05. However, as we climb further into the chromosphere, the temperature
steadily rises but the plasma density falls dramatically and thus the ionisation of
the plasma will quickly rise. At ρT = 10−9 kg m−3 almost all the hydrogen plasma
is ionised above 8000 K. Fig. 1.3b plots the ionisation fraction of the lower solar
atmosphere (i.e. the photosphere and chromosphere) for the VAL model. What can
be noted is that in the lower solar atmosphere, the ionisation fraction is quite low,
that is until the high chromosphere, where the ionisation fraction starts to increase in
conjunction with the rapidly increasing temperature. Therefore in the chromosphere
it can be argued both that the hydrogen plasma is fully or partially ionised. Clearly,
in the corona, at the ∼ 106 K temperatures the Hydrogen gas is fully ionised and
only a single fluid description of the plasma is necessary.

When considering partially ionised plasmas, many different approximations can
be taken. Usually one starts from the Boltzmann equations for each species within
the plasma, and how these interact with the other species in the fluid. However in
this thesis we will be concerned with hydrogen plasmas that are partially ionised
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(b) The ionisation fraction of the solar atmosphere using the VAL (Vernazza et al., 1981)
model (for temperature and density plotted in Fig. 1.2) and the Saha-Boltzman equation,
Eq. (1.30) for Hydrogen.
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and contain the three species: hydrogen ions, neutral hydrogen atoms and electrons.
We then split these into two subcategories for the purpose of this thesis: Two fluid
equations and partially ionised single fluid equations.

1.7.1 Two Fluid Approximation

The Boltzmann kinetic equations (see e.g. Braginskii, 1965 or Goedbloed and Poedts,
2004) can be used to derive ultimately as many equations as there are species of
particles within a plasma. However, as a first insight that still captures the physics
reasonably well, just three species are used: ions, neutrals and electrons (denoted
by the subscripts i, n and e, respectively). We would therefore have equations for
all these species. For the purposes of this thesis, the equations of the electrons
and ions are combined so that only a two fluid plasma is considered (for a more in
depth reasoning of this see e.g. Zaqarashvili et al., 2011). Presented below are the
continuity equation, momentum equation and energy equations for the ions/electrons
and neutrals respectively, the induction equation follows these:

∂ni

∂t
+ ∇ · (nivi) = 0, (1.31)

∂nn

∂t
+ ∇ · (nnvn) = 0, (1.32)

mini

(
∂vi

∂t
+ (vi · ∇) vi

)
= −∇pie +

1

c
j × B +

αen

ene
j − (αin + αen) (vi − vn) , (1.33)

mnnn

(
∂vn

∂t
+ (vn · ∇) vn

)
= −∇pn −

αen

ene
j + (αin + αen) (vi − vn) , (1.34)

∂pie

∂t
+ (vi · ∇) pie + γpie∇ · vi = (γ − 1)

αei

e2n2e
j2

+ (γ − 1)αin (vi − vn) · vi + (γ − 1)αen (ve − vn) · ve

+
(j · ∇) pe

ene
+ γpe∇ ·

j

ene
− (γ − 1) ∇ · (qi + qe) ,

(1.35)

∂pn

∂t
+ (vn · ∇) pn + γpn∇ · vn = − (γ − 1)αin (vi − vn) · vn + (γ − 1)αen (vn − ve) · vn

− (γ − 1) ∇ · qn,

(1.36)
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∂B

∂t
=∇ × (vi × B) + ∇ ×

(
c∇pe

ene

)
− ∇ × (η∇ × B)

− ∇ ×

(
j × B

ene

)
+ ∇ ×

(
cαen(vi − vn)

ene

)
.

(1.37)

Here, nk is the number density, mk is the particle mass, vk is the velocity and pk

is the kinetic pressure all for particle species k, j is the current density, B is the
magnetic field, αkl is the coefficient of friction between two particle species k and
l (see Braginskii, 1965), e is the electron charge, qk is the heat flux density of the
particle k, c is the speed of light in a vacuum and η is the coefficient of magnetic
diffusion given by

η =
c2 (αei + αen)

4πe2n2e
. (1.38)

We neglect to present Ohm’s law as it forms part of the induction equation given
by Eq. (1.37). These equations describe fully the dynamics of a two fluid collisional
plasma.

1.7.2 Single Fluid approximation

In chapter 5, we approximate the two fluid equations as a single fluid plasma,
assuming the frequency of collisions between the species to be larger enough than the
frequency of the wave motions within the plasma. This is a very good approximation
for wave modes with periods of 3 to 5 minutes which are the most notable for solar
oscillations. The ionisation fraction is accounted for in the Cowling resistive term.
We introduce the centre of mass velocity of the ions and the neutrals as

v =
ρivi + ρnvn

ρi + ρn
, (1.39)

and the total density

ρ = ρi + ρn. (1.40)

The continuity, momentum, and energy equations are the same as in the fully ionized
case. The induction equation is where the difference lies. The plasma considered
has a low plasma-beta value and we shall approximate the processes as relatively
slow, we can therefore approximate the induction equation as (see e.g. Khodachenko
et al., 2004)

∂B

∂t
= ∇ × [v × B] + η∇2B + (ηC − η)

∇ × ([∇ × B] × B × B)

B2
, (1.41)



22 Introduction

where η =
c2

4πσ
and ηC =

c2

4πσC
classical Coulomb and Cowling resistivities and

σ =
nee

me (νei + νen)
and σC =

σ

1 + ξ2n B2

αnc2 σ
are the Coulomb and Cowling conductivities.

Here, νei and νen are the effective collisional frequencies between electrons and ions
and electrons and neutrals, ne is the electron number density ,e is the electron charge,
me is the mass of an electron, ξn =

ρi + ρn

ρ
is the fraction of neutrals, αn = ρeνen+ρiνin,

where νen is the collisional frequency between electrons and neutrals and νin is the
collisional frequency between ions and neutrals. B2 is just the magnitude of the
background magnetic field.

1.8 Outline of Thesis

The main aim of this thesis is to investigate the modes of oscillation of the solar
atmosphere. The thesis can be split into two parts: the first concerns itself with the
effect of gravity on magneto-acoustic waves with and without a bulk flow and the
second partial ionisation of the plasma and its effect on flow instabilities; focussing
mainly on prominence plasmas.

Chapter 2 is concerned with developing the theory behind magneto-acoustic
waves in both fully ionised and partially ionised plasmas. The linear oscillations of
homogeneous backgrounds of both single fluid and two-fluid plasmas are investigated.

In Chapter 3, we develop a single layer bounded model for MAG waves embedded
in a vertical field and study the energy density and all of its components, particularly
focussing on the identification of MAG waves in a stratified medium. This leads on to
Chapter 4 in which we generalise the work from Chapter 3 into a two-layer bounded
model and investigate the distribution of wave energy density in two separate two-
layer models of trapped waves that approximate the solar atmosphere. In Chapter 5,
we study the effect of a constant bulk flow on the MAG surface waves at an interface
between a magnetic and non-magnetic plasma stratified by gravity, a generalisation
of previous studies.

The next chapters are focussed on instabilities arising from background flows in
partially ionised plasmas. Chapter 6 investigates the effect of the Cowling resistivity
in a partially ionised prominence plasma on the dissipative instability caused by
a viscous corona and a constant bulk flow, modelling the prominence in a slab
geometry. Chapter 7 introduces a two-fluid collisional plasma in a slab geometry
with constant background flow. Instabilities due to this flow are investigated in
the highly collisional case in the incompressible and compressible limits. The last
Chapter summarises the work in this thesis.



Chapter 2

Magneto-acoustic Oscillations in
Homogeneous Media

2.1 Introduction

The Sun is a highly dynamic, structured and stratified plasma. Its interior and
atmosphere are composed mainly of Hydrogen but it does contain heavier elements
such as Helium or Calcium and Iron (which can be used for observing the Sun).
These elements in their base forms are neutral, but due to the large temperatures of
the Sun they may be ionised such that some plasmas of the Sun can be composed of
ions, electrons and neutrals.

The effects of stratification can be profound in fluids. For example, within a
neutral fluid, sound waves may propagate due to a disturbance within the medium.
Variations in temperature within the fluid can lead to the changing of the phase
speed of the sound wave that can cause the wave to refract and eventually reflected.
Stratification due to gravity leads to a buoyancy force that can modify the phase
speed of acoustic waves i.e. p-modes.

However, when oscillations are considered more locally, for example in the WKB
approximation (see e.g. Bender and Orszag, 1978) or when the wavelength (λ) is much
smaller than the scale on which background quantities vary, one can approximate the
fluid to be homogeneous. In this chapter we introduce the linearised magneto-acoustic
waves in homogeneous media. In Section 2, the case of a fully ionised plasma is
considered. In Section 3, a two-fluid collisional plasma is studied. In Section 4, the
results are summarised.

2.2 Fully Ionised

We begin from the linearised MHD equations given by Eqs. (1.13)-(1.17). However,
we assume that there is no background flow so that v = 0 and that the gravitational
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force is negligible i.e. g = 0. As we are assuming homogeneous media, all background
parameters are considered constant functions in space and time and only small
perturbations around these vary. With these assumptions the linearised MHD
equations are (we do not present the mass conservation equation as the sysis fully
determined by the following):

ρ
∂v′

∂t
= −∇p′ + (∇ × B′) ×

B

µ0
, (2.1)

∂p′

∂t
+ γp (∇ · v′) = 0, (2.2)

∂B′

∂t
= (B · ∇) v′ − B (∇ · v′) , (2.3)

∇ · B′ = 0. (2.4)

For simplicity, we now use a Cartesian coordinate system and assume that
the background magnetic field is given by B = (0, 0, B). As the system is infinite
and homogeneous in all directions, we can therefore Fourier decompose assuming
harmonic perturbations so that: f ′(x, y, z, t) = f̂ exp

(
i
(
kx x + kyy + kzz − ωt

) )
, where

kx, ky, kz are the wave numbers in the x-, y- and z-directions respectively and ω

is the frequency of the oscillation. However, as our only preferred direction is the
directions in which the magnetic field points, we can rotate our coordinate system,
without loss of generality, so that ky = 0, i.e. we choose the x-direction as the
direction in which the wave propagates perpendicular to the magnetic field. Inserting
this approximation into Eqs. (2.1)-(2.4) and eliminating B′ and p′ we obtain three
equations for v̂x, v̂y and v̂z:

ρω2v̂x = γpkx (kx v̂x + kz v̂z) +
B2

µ

(
k2x + k2z

)
v̂x, (2.5)

ρω2v̂y =
B2

µ
k2z v̂y, (2.6)

ρω2v̂z = γpkz (kx v̂x + kz v̂z) . (2.7)

2.2.1 Alfvén Waves

What can be noticed immediately from Eqs. (2.5)-(2.7) is that the velocity component
in the y-direction is decoupled from the velocity components in the x- and z-directions.
Eq. (2.6) describes the Alfvén wave (Alfvén, 1942). For non-trivial solutions (̂vy , 0)
we have the dispersion relation for Alfvén waves and corresponding solutions given as

ω2 = k2z v
2
A, ω = ±kzvA, (2.8)
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where we have introduced the Alfvén speed, vA =
(
B2/ρµ

)1/2, which is the speed at
which an Alfvén wave propagates along the magnetic field lines.

The Alfvén wave is an incompressible wave that owes its existence to the tension
in the magnetic fields lines, which oscillate analogously to a plucked string on a
guitar. Being incompressible, they do not perturb the density of the plasma as
∇ · v′ = 0 i.e. the velocity does not diverge. To confirm the incompressibility of the
wave, we note that, for an incompressible plasma, the divergence of the velocity field
is equal to zero: ∇ · v′ = 0, so that kx v̂x + kz v̂z = 0. Next, we substitute this into Eqs.
(2.5)-(2.7). This results in the following set of equations:

ρω2v̂x =
B2

µ

(
k2x + k2z

)
vx, (2.9)

ρω2v̂y =
B2

µ
k2z v̂y, (2.10)

ω2vz = 0. (2.11)

Unless ω = 0, it must be the case that v̂z = 0. Therefore, due to ∇ · v′ = 0 or
kx v̂x = −kz v̂z, we must have v̂x = 0 and as such Eqs. (2.9) and (2.11) are the trivial
solution. Thus the only equation left is that for the incompressible Alfvén wave given
by Eq. (2.10).

Fig. 2.1 plots the variation of the the slow and fast magneto-acoustic waves
(see Section 2.2.2) and the Alfvén wave with respect to propagation angle, θ. For
now, we only refer to the Alfvén wave (green lines). Fig. 2.1a is plotted for a low
plasma-beta with cs/vA = 0.5, Fig. 2.1b is plotted for the degenerate case cs/vA = 1.0

and Fig. 2.1c is plotted for a high plasma-beta with cs/vA = 2.0. The plasma-beta
value has no effect on the Alfvén wave, which always propagates at the Alfvén speed
for parallel propagation. For angles of propagation further away from the magnetic
field (θ > 0) direction the Alfvén wave decreases in phase speed until the angle of
propagation is perpendicular (θ = π/2), where the Alfvén wave cannot propagate.

2.2.2 Magneto-acoustic waves

We now return to Eqs. (2.5) and (2.7) that relate v̂x and v̂z and describe the slow
and fast magneto-acoustic waves. By eliminating v̂z we find:(

ω4 − ω2k2
(
v2A + c2s

)
+ k2k2z c2s v

2
A

)
v̂x = 0, v̂z =

c2s kx kz

ω2 − k2z c2s
v̂x . (2.12)

Here we have introduced the sound speed, cs = (γp/ρ)1/2, and the wave number
magnitude, k =

(
k2x + k2z

)1/2. For non-trivial solutions, the bracketed term on the
left hand side of Eq. (2.12) must be equal to zero, giving the dispersion relation for
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Fig. 2.1 Variation of the phase speed for the Alfvén wave given by Eq. (2.8) (green
lines) and the slow (red) and fast (blue) magneto-acoustic waves given by Eqs. (2.13)
with respect to the propagation angle θ (a) is calculated for a low-beta plasma,
cs/vA = 0.5 (b) for the degenerate case of cs/vA = 1 and (c) for a high-beta plasma,
cs/vA = 2.0. The black dashed lines correspond to the phase speed of the fast wave
for perpendicular propagation denoted v f⊥.

magneto-acoustic waves. Eq. (2.12) can be solved for ω to obtain:

ω = ±ω f ,±ωs, ω f ,s = k ©«
(v2A + c2s )

2

©«1 ±
(
1 −

4 cos2(θ)c2T(
v2A + c2s

) )1/2ª®¬ª®¬
1/2

, (2.13)

where we have defined the tube speed as cT = vAcs/(v
2
A + c2s )

1/2 and introduced the
propagation angle θ with kz = k cos(θ) and kx = k sin(θ). The plus sign within the
square root refers to the fast magneto-acoustic wave. The minus sign within the
square root refers to the slow magneto-acoustic wave.

Some simple limits can be taken with regards to propagation angle, θ. First, for
approximately parallel propagation, θ → 0, the slow and fast wave frequency can be
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approximated by

ωs ≈ ±kcs

(
1 −

θ2v2A

v2A − c2s

)
, (2.14)

ω f ≈ ±kvA

(
1 +

θ2c2s
v2A − c2s

)
, (2.15)

if vA > cs, and

ωs ≈ ±kvA

(
1 −

θ2c2s
c2s − v2A

)
, (2.16)

ω f ≈ ±kcs

(
1 +

θ2v2A

c2s − v2A

)
, (2.17)

if cs > vA. The degenerate case in which vA = cs needs more care, as a singularity
appears in the perturbation methods used to derive Eqs. (2.14)-(2.17). In this case,
the frequencies of the slow and the fast wave are approximated by

ω f ,s ≈ kvA

(
1 ±

θ

2

)
. (2.18)

The approximations given by Eqs. (2.14)-(2.18) are very good approximations when
compared to Fig. 2.1. Indeed, in the low-beta case of Fig. 2.1a and Eqs. (2.14) and
(2.15), the phase speed of the slow wave is ωs/k = cs and the phase speed of the fast
wave is ω f /k = vA, when θ = 0. In the degenerate case, shown in Fig. 2.1b and given
in Eq. (2.18), the slow and fast wave have equal phase speed ωs, f /k = vA or cs when
θ = 0. In the high-beta case of Fig. 2.1c and Eqs. (2.16) and (2.17) the phase speed
of the slow wave is ωs/k = vA and the phase speed of the fast wave is ω f /k = cs.

For approximately perpendicular propagation, θ → π/2, the slow wave frequency
becomes

ωs ≈ ±kcT

(
θ −

π

2

)
.

≈ ±kzcT

(2.19)

The fast wave frequency is approximated as

ω f ≈ k(v2A + c2s )
1/2

(
1 −

(
θ −

π

2

)2 c2T
v2A + c2s

)
. (2.20)

Again, the approximations given by Eqs. (2.19) and (2.20) are excellent when
compared to Figs. 2.1a-c when θ = π/2. We must first note from Eq. (2.19) that,
for an almost perpendicular propagation vector, the slow wave degenerates to an
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oscillation travelling only vertically at the tube speed, cT . When the propagation
vector is perpendicular to the magnetic field (θ = π/2), both Eq. (2.20) and Fig. 2.1
have a good agreement. The fast mode tends to a higher value than both the Alfvén
and sound speeds, which is expected.

The plasma-beta indicates to what extent the kinetic pressure or magnetic field
are influencing the motions of the plasma. We can rewrite the plasma-beta as
β = 2c2s /γv

2
A. In the low plasma-beta limit, β ≪ 1, where the magnetic field is

dominating the motions of the plasma, v2A ≫ c2s so that the frequency of the slow
wave, ωs, can be approximated as

ωs ≈ ±k cos(θ)c2s , (2.21)

and the frequency of the fast wave, ω f , can be approximated as

ω f ≈ ±kvA. (2.22)

The slow wave has deteriorated into a sound wave propagating along the magnetic
field lines, whilst the fast wave propagates in any direction at the Alfvén speed.

In the high plasma beta limit, β → ∞, where the motions of the plasma are
dominated by kinetic effects, the frequency of the slow wave can be approximated as

ωs ≈ ±k cos(θ)vA, (2.23)

and the frequency of the fast wave is approximately

ω f ≈ ±kcs . (2.24)

The slow wave again propagates along the magnetic field lines but at the Alfvén
speed. The fast wave is essentially just a sound wave that can propagate in any
direction as kinetic effects are dominant. The reason for this behaviour is that for
the fast wave the magnetic pressure and kinetic pressure are acting in phase but for
the slow wave they are out of phase so that the slow wave is just a remnant of both.

To further illustrate the effect of plasma-beta on the slow and fast magneto-
acoustic modes, we introduce the wave energy density, ET , (see e.g. Bray and
Loughhead, 1974) that consists of the kinetic energy density, KE , magnetic energy
density, ME, internal energy density, IE, and gravitational energy density, GE.
However, as there is no gravitational force acting within the homogeneous system we
neglect GE . Therefore, we write:

ET = KE + IE + ME, KE =
1

2
ρ(̂v2x + v̂

2
z ), IE =

p̂2

2ρc2s
, ME =

1

2µ
(B̂2

x + B̂2
z ). (2.25)
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Fig. 2.2 The variation of the proportion of internal energy IEP with respect to the
parameter cs/vA for the slow (red) and fast (blue) waves with almost parallel (θ ≈ 0,
solid lines), oblique (θ = π/4, dashed lines) and almost perpendicular (θ ≈ π/2,
dotted lines) propagation.

We now define the quantity,

IEP =
IE

IE + ME
, (2.26)

to study whether the mode is of an acoustic nature or magnetic nature.
Fig. 2.2 plots the variation of IEP with respect to cs/vA for almost parallel (θ ≈ 0),

oblique (θ = π/4) and almost perpendicular (θ ≈ π/2) propagation. As cs/vA → 0

the slow mode is essentially driven by the internal energy whereas the fast mode is
driven by the magnetic energy. On the other hand, as cs/vA → ∞, the fast wave is
driven by the internal energy and the slow wave is driven by the magnetic energy.
When cs/vA → 1, from either side, we see that the slow and fast wave both have an
equal share of internal and magnetic energy driving them, in agreement with Fig.
2.1 and Eq. (2.18). As the propagation angle departs further from parallel to the
magnetic field, there is a greater share of magnetic and internal energy for both the
slow and fast modes.

2.3 Two-fluid

We now consider a two-fluid collisional plasma in which we only study the effects of
collisions between ion and neutral fluids. We once again use a Cartesian coordinate
system where the background fluids are infinite and homogeneous, permeated by a
magnetic field that is chosen in the z-direction i.e. B = (0, 0, B). We linearise Eqs.
(1.31)-(1.37) around this background plasma and neglect magnetic diffusion in the
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induction equations for simplicity, as well as collisions between electrons and neutrals
in the momentum equations and any heating terms in the energy equations (see
Zaqarashvili et al., 2011 for more details):

ρi
∂v′i
∂t
= −∇p′i + (∇ × B′)

B
µ
− ρnνin(v

′
i − v′n), (2.27)

ρn
∂v′n
∂t
= −∇p′n + ρnνin(v

′
i − v′n), (2.28)

∂p′i
∂t
+ γpi∇ · v′i = 0, (2.29)

∂p′n
∂t
+ γpn∇ · v′n = 0, (2.30)

∂B′

∂t
= ∇ ×

(
v′i × B

)
. (2.31)

Here, we have introduced the collisional frequency, νin between two species when
both species have the same temperature (Soler et al., 2012):

νin =
αin

ρn
, (2.32)

where αin is the coefficient of friction between ions and neutrals given by (Braginskii,
1965):

αin = ninnminσin
4

3

√
8kT
πmin

. (2.33)

Here, ni and nn are the number densities of the ion and neutral species mi and mn

are the masses of the ion and neutral molecules, min = mimn/(mi +mn) is the reduced
mass and σin = π(ri + rn)

2 = 4πr2i is the collisional cross section between ions and
neutrals assuming the same radius, ri = rn, of the molecules.

Like the fully ionised case we now Fourier decompose in space and time assuming
harmonic perturbations of the form f ′(x, y, z, t) = f̂ exp

(
i
(
kx x + kyy + kzz − ωt

) )
.

Again, as the only preferred direction in the system is in the direction of the magnetic
field, we can rotate our coordinate system so that ky = 0, without loss of generality.
Inserting these assumptions into Eqs. (2.27)-(2.28) we form a set of equations for
the components of both the ion and neutral velocities in the x, y and z-directions,
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respectively:

ρiω
2v̂xi = γpi kx (kx v̂xi + kz v̂zi) +

B2

µ

(
k2x + k2z

)
v̂xi − iωρnνin (̂vxi − v̂xn) , (2.34)

ρiω
2v̂yi =

B2

µ
k2z v̂yi − iωρnνin

(̂
vyi − v̂yn

)
, (2.35)

ρiω
2v̂zi = γpkz (kx v̂xi + kz v̂zi) − iωρnνin (̂vzi − v̂zn) . (2.36)

ρnω
2v̂xn = γpnkx (kx v̂xn + kz v̂zn) + iωρnνin (̂vxi − v̂xn) , (2.37)

ρnω
2v̂yn = iωρnνin

(̂
vyi − v̂yn

)
, (2.38)

ρnω
2v̂zn = γpnkz (kx v̂xn + kz v̂zn) + iωρnνin (̂vzi − v̂zn) . (2.39)

Immediately evident is the number of equations in comparison to the fully ionised
case, six in total compared to three. The ion and neutral velocity components are
only coupled to one another through the collisions between them in the momentum
equation

2.3.1 Alfvén waves

Just as in the fully ionised case, the velocity perturbations in the y-direction have
decoupled from the other perturbations. By eliminating v̂yn between Eqs. (2.35) and
(2.38) we find (

ω̃2 − k2z v
2
A

)
vyi = 0, ω̃2 = ω2

(
1 +

iχνin

ω + iνin

)
. (2.40)

Here, we have introduced the parameter ω̃2 as in Kumar and Roberts (2003) and
χ = ρn/ρi that measures the ionisation of the plasma. If χ → 0 the fluid is almost
fully ionised, if χ → ∞ the fluid is almost completely neutral and an intermediate
value e.g. χ = 1 means the plasma consists of an even amount of neutrals and ions.

The bracketed term on the left hand side of Eq. (2.40) gives the dispersion
relation for Alfvén waves in a two fluid plasma. The formulation in Eq. (2.40)
is useful as we can see the physics very nicely. For example, if νin ≪ ω, i.e. the
collision-less limit, the solution is approximately

ω ≈ kzvA, (2.41)

just like the fully ionised case because the ionised fluid is not interacting with the
neutral fluid. On the other hand, if ω ≪ νin, the highly collisional limit, the solution
is approximately

ω ≈ kz ṽA, ṽA =

(
B2

(ρi + ρn) µ

)1/2
(2.42)
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where ṽA is the Alfvén speed with the ion and neutral fluid acting as a single fluid,
due to the high amount of collisions between them.

In reality Eq. (2.40) is a third order polynomial

ω3 + iνin (1 + χ)ω
2 − k2z v

2
Aω + iνink2z v

2
A = 0 (2.43)

The analytical expression for the roots of Eq. (2.43) are reasonably cumbersome. We
therefore follow the same procedure as in Soler et al. (2013) and study the discriminant
of this third order polynomial to see what type of solutions are produced. Firstly, a
more convenient dimensionless form for this study appears to be

φ̂3 + φ̂2 +
s2

1 + χ
φ̂ +

s2

(1 + χ)2
= 0. (2.44)

Here, we have introduced the dimensionless variables

φ̂ =
ω

iνin(1 + χ)
, s =

kz ṽA

νin
. (2.45)

Eq. (2.44) is a third-order polynomial with real coefficients and thus its discriminant,
∆, is given by

∆ = −
s2

(1 + χ)4

[
4s4(1 + χ) − s2

(
χ2 + 20χ − 8

)
+ 4 (1 + χ)2

]
(2.46)

We have three cases for the discriminant ∆:

• If ∆ > 0, there are thee distinct imaginary roots of Eq. (2.43).

• If ∆ = 0, Eq. (2.43) has multiple purely imaginary roots.

• If ∆ < 0, Eq. (2.43) has one purely imaginary root and two complex roots.

For propagating waves, we require that ∆ < 0. We set ∆ = 0 to see at what values of
s there is a change in behaviour.

s =

[
χ2 + 20χ − 8

8(1 + χ)
±
χ1/2 (χ − 8)3/2

8(1 + χ)

]1/2
. (2.47)

We specify that s must be real. With this in mind, when χ < 8, we have that s

would be complex and thus only complex solutions of s satisfy ∆ = 0 and, therefore,
all solutions are oscillatory. If χ > 8 we have to consider positive and negative signs
of Eq. (2.47). For χ > 8 all solutions to Eq. (2.47) are positive, which we denote r1
and r2, where r1 > r2. Within the interval r2 < s < r1 the discriminant changes sign
and is positive and thus oscillatory solutions are not possible in that region.
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Fig. 2.3 The variation of the real part of the phase speed, ω/kz, and imaginary parts
of the dimensionless frequency, ω/kz ṽA, with respect to the dimensionless paramter
s given by solutions to Eq. (2.43). Panels (a) and (b) are plotted for χ = 0.1, (c)
and (d) are for χ = 1.0 and (e) and (f) are for χ = 10.0. The grey regions indicate
the cut-off regions given by Eq. (2.47).
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Figs. 2.3a-f plot the solutions, ω/k ṽA, of Eq. (2.43) for χ = 0.5, 4 and 100

with respect to to the dimensionless quantity, s, that measures the size of the
collisional frequency compared to the external Alfvén frequency, ṽA; a large value of
s corresponds to a low collisional frequency (periods of oscillations are shorter than
the time-scale that collisions between neutrals and ions occur on) and a low value
of s to a high collisional frequency (periods of oscillations are far longer than the
time-scale that collisions between neutrals and ions occur on).

Figs. 2.3a, c and e plot the real parts of the solution and Figs. 2.3b, d and f
plot the imaginary parts of the solution. In all cases, for a high collisional frequency,
the real part of the dimensionless phase speed, ω/kz = ṽA, which is expected, as in
that limit the phase speed tends to ṽA i.e. the total Alfvén speed defined previously.
However, when s ≈ 1, the real part of the frequency starts to be affected. In Fig.
2.3a when χ = 0.5, i.e. there are twice as many ions and neutrals, we see that as
s → ∞, that is in the collision-less limit, |ω/kz | tends to the ion Alfvén speed, vA.
Again, in Fig. 2.3c, when χ = 4.0, i.e. there are 4 times as many neutrals as ions,
we see that ω/kz tends to the ion Alfvén speed once more.

In Fig. 2.3e there is a slight difference to the the previous figures. We see that,
somewhere between s = 1 and 10, ℜ(ω/kz) = 0, and we reach the cut-off region
described in Eq. (2.47). However, when the cut-off region indicated by the grey area
is navigated, as s → ∞ again, we see ω/kz tends to vA again.

The more interesting behaviour is largely for the imaginary parts of the solutions.
In Figs. 2.3b,d and f, in the limit as s → 0, the imaginary part of the frequency
tends to 0 and, in the limit as s → ∞, again, the imaginary part of the frequency
tends to 0. This is expected for the highly collisional limit and collision-less limit.
When s ≈ 1, the imaginary part of the frequency becomes more negative (i.e. the
modes are damped more), peaking around this value. In Fig. 2.3b, χ = 0.5, the peak
value is around ℑ(ω/kz ṽA) ≈ 0.15 whereas, when χ = 4.0 in Fig. 2.3d the peak is
even higher at around ℑ(ω/kz ṽA) ≈ 1. When χ = 100 in Fig. 2.3f, the peak value is
around ℑ(ω/kz ṽA) ≈ 10.

Clearly very interesting behaviour can occur for Alfvén waves in a two-fluid
plasma. If the collisional frequency between ions and neutrals is much larger than
the frequency of the waves, we may as well consider the single fluid approximation.
However, if the collisional frequency is much smaller than the frequency of Alfvén
waves, we can consider the ion and neutral fluids to not interact at all.
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2.3.2 Magneto-acoustic waves

By rewriting Eqs. (2.34), (2.36), (2.37) and (2.39) we can write the following set of
equations: (

ω2 − k2x c2i − k2v2A + iωχνin

)
v̂xi = c2i kx kz v̂zi + iωχνinv̂xn, (2.48)(

ω2 − k2z c2i + iωχνin

)
v̂zi = c2i kx kz v̂xi + iωχνinv̂zn, (2.49)(

ω2 − k2x c2n + iωνin

)
v̂xn = c2n kx kz v̂zn + iωνinv̂xi, (2.50)(

ω2 − k2z c2n + iωνin

)
v̂zn = c2n kx kz v̂xn + iωνinv̂zi . (2.51)

Here, we have defined the ion sound speed as ci = (γpi/ρi)
1/2 and the neutral sound

speed as cn = (γpn/ρn)
1/2. The system of equations given by Eqs. (2.48)-(2.51) can

be written as a matrix, the determinant of which, after some algebra, provides the
dispersion relation (Zaqarashvili et al., 2011):(

ω2 − ω2
f

) (
ω2 − ω2

s

)
ω

(
ω2 − k2c2n

)
+ iνin

[
ω4(1 + χ)

(
ω2 − k2c̃2i

)
+

(
ω2 − k2c2n

) ((
ω2 − ω2

s

) (
ω2 − ω2

f

)
+ χω2

(
ω2 − k2(c2i + v

2
A)

)) ]
− ν2inω (1 + χ)2

(
ω2 − ω̃2

f

) (
ω2 − ω̃2

s

)
= 0.

(2.52)

Here, we have defined the total sound speed, c̃i = γ(pi + pn)/(ρi + ρn) and total fast
(subscript f ) and slow (subscript s) frequencies

ω̃ f ,s = k ©«
(ṽ2A + c̃2i )

2

©«1 ±
(
1 −

4k2z c̃2T
k2

(
ṽ2A + c̃2i

) )1/2ª®¬ª®¬
1/2

, (2.53)

where the total tube speed is c̃T = ṽAc̃i/(ṽ
2
A + c̃2i )

1/2.
Again, Eq. (2.52) has been written in a useful form so that limits may be taken

easily. Firstly, taking the collision-less limit (ω ≫ νin), Eq. (2.52) reduces to(
ω2 − ω2

f

) (
ω2 − ω2

s

) (
ω2 − k2c2n

)
= 0, (2.54)

which has solutions

ω ≈ ±kcn, ω ≈ ±ω f ,s . (2.55)
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ṽ
A

)

fast

neutral

slow

vphf

vphs

(b)

Fig. 2.4 Variation of the real part of the phase speed (upper panels), ℜ(ω/k) and
imaginary part of the dimensionless frequency (lower panels), ℑ(ω/k ṽA), with respect
to the dimensionless parameter s̄ for the slow (red dotted), fast (blue dashed) and
neutral (green dot-dashed) solutions of Eq. 2.52 for approximately perpendicular
propagation (θ ≈ 0) (a) for a low-beta plasma (cs/ṽA = 0.5) (b) for a high-beta
plasma (cs/ṽA = 2). Noted on the right hand axes of the top panels are the phase
speeds of the slow (vph f ) and fast (vphs) waves in the collision-less limit (Eq.) and
on the left hand axis the phase speeds of the slow (ṽph f ) and fast (ṽphs) waves in the
highly collisional limit. Both (a) and (b) are evaluated for χ = 1.

It is clear from these solutions that, due to the weak interaction between the ion and
neutral fluids, the ion and neutral fluids oscillate alone so that in the neutral fluid
there are just sound waves propagating at the neutral sound speed and in the ion
fluid the slow and fast magneto-acoustic waves propagate.

Next, we may take the highly collisional limit (ω ≪ νin) of Eq. (2.52), which
then reduces to (

ω2 − ω̃2
f

) (
ω2 − ω̃2

s

)
= 0, ω ≈ ±ω̃ f ,s . (2.56)

Eq. (2.56) has solutions given by Eq. (2.53). The collisions between the neutral and
ion fluids are so regular that they effectively behave as a single fluid with density
ρ = ρi + ρn, and pressure, p = pi + pn.

Figs. 2.4-2.6 plot the variation of the real part (upper panel) of the phase speed,
ω/k, and the imaginary part (lower panel) of the dimensionless frequency, ω/k ṽA,
with respect to the dimensionless parameter, s̄ = k ṽA/νin (this measures the size of
the collisional frequency in comparison to the mode frequency) for the solutions of
Eq. (2.52).

Figs. 2.4a and b are plotted for almost parallel propagation (parallel to the
magnetic field) with θ = 0.1, Figs. 2.5a and b for oblique propagation, θ = π/4, and
Figs. 2.6a and b for almost perpendicular propagation, θ = π/2− 0.1. Figs. 2.4a-2.6a
are plotted for a moderately low plasma-beta, cs/ṽA = 0.5, and Figs. 2.4b-2.6b are
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ṽphs
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Fig. 2.5 Same as Fig. 2.4 but for oblique propagation (θ = π/4).
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θ ≈ π/2, cs/ṽA = 2.0, χ = 1

10−2 10−1 100 101 102

s̄

−0.2

−0.1

0.0

=
( ω
/
k
ṽ
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Fig. 2.6 Same as Fig. 2.4 but for approximately perpendicular propagation (θ ≈ π/2).

plotted for a moderately high plasma-beta, cs/ṽA = 2.0. Noted on the panels showing
the real part of the phase speed, are the phase speeds of the slow and fast wave
in the highly collisional limit (ṽph f ,s = ω̃ f ,s/k) on the left hand side and the phase
speeds of the slow and fast wave in the collision-less limit (vph f ,s = ω f ,s/k) on the
right-hand side. All have an equal amount of neutral and ionised fluids i.e. χ = 1.

In the highly collisional limit are two modes that tend toward the slow and
fast phase speeds solutions given by Eq. (2.53), in the highly collisional limit i.e.
when s̄ → 0. Conversely, in the collision-less limit (s̄ → ∞), we now pick out three
modes, two that tend towards the slow and the fast phase speeds of the ionised
fluid, given by Eq. (2.13) and another that propagates at the sound speed of the
neutral fluid (the dotted black line indicates this speed). In the low-beta plasma
(Figs. 2.4a-2.6a) the slow phase speed and neutral sound speed are approximately the
same for approximately parallel propagation (Fig. 2.4a) for oblique propagation (Fig.
2.5a) the phase speed of the slow mode is lowered even more and becomes much lower
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for almost perpendicular propagation (Fig. 2.6a). In the high beta plasma (Figs.
2.4b-2.6b), the fast phase speed and the neutral sound speed are almost the same for
approximately parallel propagation (Fig. 2.4b) but for oblique and perpendicular
propagation it is slightly higher (Figs. 2.5b and 2.6b, respectively). Departing from
the limits, we can see that the greatest damping rates for the slow and fast modes
occur when s̄ ≈ 1 and the greatest difference to the phase speeds of the highly
collisional and collision-less limits occurs here. As mentioned in Zaqarashvili et al.
(2011), there is a new neutral acoustic mode that appears with the phase speed of
the neutral sound speed as s̄ → ∞. However, when s̄ gets to a low enough value, the
neutral acoustic mode frequency becomes a non-oscillatory, completely imaginary
and damped vortex mode (see Zaqarashvili et al., 2011).

It is evident from Figs. 2.4-2.6 that if the frequency of the oscillation is much
lower than the frequency of collisions between the ions and neutrals, we may use
single fluid theory and if the frequency of the oscillations is much larger than the
frequency of collisions, we may consider the fully ionised plasma and neutral plasmas
to be decoupled. The main effect of partial ionisation comes when the frequency of
the waves and the collisions are approximately of the same order.

2.4 Summary and Discussion

In this chapter, we have introduced the magneto-acoustic waves in homogeneous
media, in both fully ionised and two-fluid plasmas.

In a fully ionised homogeneous plasma, three waves exist: the slow and fast
magneto-acoustic waves and Alfvén wave. The Alfvén wave owes its presence to
the tension in the magnetic field lines and only propagates along magnetic field
lines. The slow wave propagates mainly along magnetic field lines but in a low beta
atmosphere it propagates with the sound speed and in a high beta atmosphere with
the Alfvén speed. The propagation angle has important effects on the Alfvén and
slow waves, for example if the propagation angle is completely perpendicular, neither
will propagate. On the other hand, the fast wave was found to propagate in any
direction, with greatest phase speed when the propagation angle was perpendicular
to the magnetic field. In the degenerate case, when cs = vA, the phase speeds of the
slow, fast and Alfvén waves were the same when the propagation angle was parallel
to the magnetic field.

In a two-fluid plasma, matters are complicated more due to the collisions between
the ion and neutral fluids. The slow and fast magneto-acoustic and Alfvén waves
still appear, but are modified somewhat. The collisional frequency, as compared to
the frequency of the oscillation, profoundly affects the behaviours of these waves.
For all of these waves, if the frequency of the oscillation is much smaller than the
collisional frequency, the neutral and ion fluids essentially act as a single fluid and
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behave like the fully ionised magneto-acoustic waves. However, if the frequency of
the oscillation is much greater than the frequency of collisions between ions and
neutrals, the ion and neutral fluids act as separate fluids, where the magneto-acoustic
waves propagate in the ion fluid and sound waves propagate in the neutral fluid.
The greatest divergence from this is when the oscillation and collision frequency
are of similar sizes, in which the modes see the greatest damping due to collisions.
The appearance of a cut-off region, where no propagation can occur, is also seen for
Alfvén waves when enough neutrals are present in the system.





Chapter 3

Magneto-Acoustic Gravity Waves in
a Vertical Field: Single Layer

3.1 Introduction

Magnetic fields within the solar atmosphere are incredibly varied. The field may
be collected in tubular-like magnetic flux structures such as coronal loops, which
appear from the photosphere and extend high into the corona connecting two regions
of opposite polarity. On a more global scale, the magnetic field may be grouped
into two main categories: a vertical field (radially pointing out of the Sun) and a
horizontal field perpendicular to the radial direction, although magnetic fields of
the Sun are generally far more complex than these two situations. Within the solar
atmosphere the stratification of the plasma, caused by the gravitational field, can
be very important, with the pressure and density scale heights being in the region
of 400 km. This means that the medium is clearly inhomogeneous and, therefore,
inhomogeneity of the plasma must be considered as a next approximation. In this
chapter we consider the case of a background magnetic field that is parallel to the
gravitational field, considering also the plasma to be isothermal for simplicity. This
case happens to be a far harder analytical study in comparison to the horizontal case
due to the complexities of the solutions.

As was already mentioned in the introduction, Ferraro and Plumpton (1958) were
the first authors to study the case of a vertical field aligned parallel with gravity in
an isothermal atmosphere, assuming a static background Zhugzhda (1979) extended
this work to find the solutions for the horizontal velocity component in terms of the
more general Meijer-G functions. Performing some simple asymptotic analysis it was
found, for propagating waves, that the fast waves are evanescent in a low-beta plasma,
whilst the slow waves degenerate to sound waves travelling along the magnetic field
line. Wang (1986) found hypergeometric solutions for the horizontal as well as
vertical velocity components. Cally (2001) extended these studies further. Using
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simple asymptotic expansions for these hypergeometric functions (for asymptotic
limits of many generalized hypergeometric functions see e.g. Luke, 1975) in the high
plasma-beta regime, it was found that the solutions naturally contained the acoustic-
gravity modes of an un-magnetized plasma, with also a magnetic contribution that
represented the slow mode.

The solar atmosphere is highly and complexly structured. For example, the lower
solar atmosphere can be approximated to be one continuous isothermal layer (see
e.g. 1.2) with a lower boundary the solar interior and an upper reflection point the
transition region. Abdelatif (1990) studied the case of a plasma that was bounded
above and below by perfectly reflecting boundaries i.e. line-tying. For various
different cases the wave energy density distribution of the solutions were studied,
mainly around the so-called avoided crossings where two solution paths of the ω − k

dispersion graph come very close to meeting and then separate each mode swapping
behaviour. Hasan and Christensen-Dalsgaard (1992) studied the same case of a
one layer system with perfectly reflecting boundaries but considered the asymptotic
expansion of their derived governing equation in the high plasma-beta limit. This
expansion was used to find the first-order corrections to the p- and g-modes and
the magnetic mode. Banerjee et al. (1995) studied the same case but with different
boundary conditions in which a gravity-Lamb mode also occurred.

In this chapter we study the effect of a vertical magnetic field on the modes of
oscillations in an isothermal stratified plasma. We derive a new governing equation
for the new variable Θ = p′/ρ, where p′ is the kinetic pressure perturbation and ρ is
the background density function. This new formulation is used to find the vertical
velocity component, v′z, in terms of hypergeometric functions as well as the horizontal
velocity component. A dispersion relation is then derived for the case of two perfectly
reflecting boundaries and asymptotic limits for the small wavelength limit and a
high-beta plasma are calculated. The dispersion relation is then solved numerically
for the cases of a low-beta coronal plasma and secondly for a plasma mimicking the
transition from high to low plasma-beta in the lower solar atmosphere. The wave
energy density of the wave modes is considered, to aid in their classification as well
as giving a brief consideration of avoided crossings. We note that the work in this
chapter is based on the work completed in Mather and Erdélyi (2016).

3.2 Background Equilibrium

We consider an ideal plasma that is perfectly conducting and acts as an ideal gas.
By assuming relatively small wavelengths in comparison to the curvature of the
Sun, we may use a Cartesian coordinate system. There are no sources or sinks of
heating and the plasma is considered to be adiabatic and isothermal and therefore
has a constant temperature, T , throughout the equilibrium plasma. Background
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flows are supposed small compared to the characteristic background speeds of waves
in the plasma i.e. v = 0. The variation of background quantities compared to the
characteristic wave motions is considered to be negligible so that the time derivative
of background quantities is also negligible as a consequence i.e.

∂

∂t
∼ 0.

The medium is infinite and homogeneous in the x- and y-directions, parallel to
the solar surface. The background magnetic field is vertical (perpendicular to the
solar surface), z-direction, and is given as B = Bẑ, where ẑ is the unit vector in the
z-direction. The plasma is stratified by a constant gravitational force in the negative
z−direction and takes the form g = −gẑ. Background momentum conservation gives
the following relationship between kinetic pressure and density

dp
dz
= −ρg. (3.1)

Density, pressure and temperature are also linked by the ideal gas law:

p = ρRT . (3.2)

The gas constant for fully ionized Hydrogen plasma is R = R0/µ̃, where R0 = 8.3143

J K−1 mol−1 is the universal molar gas constant and µ̃ is the mean molar mass of
a fully ionised Hydrogen plasma. Equations (3.1) and (3.2) lead to the conclusion
that both the density and pressure are only functions of z i.e. p = p(z) and ρ = ρ(z).
The background pressure can be eliminated between Eqs. (3.1) and (3.2) to give the
following differential equation for ρ(z):

−ρg =
dρ
dz

RT . (3.3)

Equation (3.3) can be solved using separation of variables to give the following
exponential form for density and, in turn, the same exponential distribution for
pressure (see e.g. Figure 3.1):

ρ(z) = ρ(0) exp
(
−

z
H

)
, p(z) = p(0) exp

(
−

z
H

)
, H =

c2s
γg
. (3.4)

Here, H is the pressure and density scale height (the characteristic length for the
density and pressure to decrease by a factor of e ≈ 2.718, Euler’s number), γ is the
adiabatic index and cs is the background speed of a sound wave in the medium. Two



44 Magneto-Acoustic Gravity Waves in a Vertical Field: Single Layer

gB

T (z) = T

ρ(z) = ρ(0)e−z/H

p(z) = p(0)e−z/H

z

1

Fig. 3.1 The equilibrium background plasma analysed in this section. The greyscale
depicts the density and pressure decrease with increasing height.

characteristic speeds that often appear for wave motions are:

c2s =
γp
ρ
= const, v2A =

B2

µ0ρ
= v2A0ez/H . (3.5)

Here, µ0 is the magnetic permeability of free space and vA is the Alfvén speed. The
linearised ideal MHD equations are assumed to hold if one takes small perturbations
around this background plasma. These governing equations are presented below:

∂ρ′

∂t
+ (v′ · ∇)ρ + ρ(∇ · v′) = 0, (3.6)

∂p′

∂t
+ (v′ · ∇)p + γp(∇ · v′) = 0, (3.7)

ρ
∂v′

∂t
= −∇p′ + (∇ × B′) ×

B

µ
− ρ′gẑ, (3.8)

∂B′

∂t
= ∇ × (v′ × B), ∇ · B′ = 0. (3.9)
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3.3 Governing Equations

3.3.1 Previous Work

Because the background is homogeneous in the x- and y-directions, the perturbed
variables can, therefore, be Fourier decomposed and written in the form f ′(x, y, z, t) =

f̂ (z)ei(kx x+ky y−ωt). Since the only preferred direction in the system is the z-direction,
the co-ordinate system can be rotated such that ky = 0 (without loss of generality),
then f ′(x, z, t) = f̂ (z)ei(kx x−ωt). The linearised MHD equations take the form of three
equations for the variables v̂x, v̂y and v̂z, respectively:

v2A(z)
d2v̂x

dz2
+ (ω2 − k2x (c

2
s + v

2
A(z)))̂vx = ikxgv̂z − ikxc2s

dv̂z

dz
, (3.10)

v2A(z)
d2v̂y

dz2
+ ω2v̂y = 0, (3.11)

c2s
d2v̂z

dz2
− γg

dv̂z

dz
+ ω2v̂z = i(γ − 1)gkx v̂x − ic2s kx

dv̂x

dz
. (3.12)

Taking the limit kx = 0, Eq. (3.10) and Eq. (3.12) form the well-known equations
(see e.g., Hasan and Christensen-Dalsgaard, 1992),

v2A(z)
d2v̂x

dz2
+ ω2v̂x = 0, (3.13)

c2s
d2v̂z

dz2
− γg

dv̂z

dz
+ ω2v̂z = 0. (3.14)

It is easy to see that Eq. (3.13) governs a ‘magnetic’ wave and Eq. (3.14) governs an
‘acoustic’ wave. In addition, the velocity components, v̂x and v̂z have been decoupled
from one another. Eqs. (3.13) and (3.14) permit the following solutions for v̂x and
v̂z, respectively:

v̂x = C1J0(2ψ) + C2Y0(2ψ), (3.15)

v̂z = C3ψ
−1+2i

√
σ̂2/γ−1/4 + C4ψ

−1−2i
√
σ̂2/γ−1/4, (3.16)
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where J0 and Y0 are Bessel’s functions of the first and second kind of zeroth order,
respectively. Here, dimensionless variables have been introduced and are given below:

ψ =
ωH
vA(z)

, σ̂ =
ωH

√
γ

cs
, K = kH.

In the limit kx → ∞, Eqs. (3.10) and (3.12) reduce to a second-order differential
equation governing the propagation of vertically propagating slow magneto-acoustic
waves (see e.g. Hasan and Christensen-Dalsgaard, 1992, Roberts, 2006 or Hague and
Erdélyi, 2016):

d2v̂z

dz2
−

1

H
c2T
c2s

dv̂z

dz
+

1

H2

c2s
c2T

(
σ̂2 −

c2T
vA(z)2

(
N̂2 +

c2T
γc2s

))
v̂z = 0. (3.17)

Considering the more general case for arbitrary values of kx, Eq. (3.10) and Eq. (3.12)
can be used to derive a dimensionless differential equation for v̂x (see e.g. Zhugzhda,
1979):

ψ4 d4v̂x

dψ4
+ 4ψ3 d3v̂x

dψ3
+ ψ2

[
ψ2 + 1 + 4

(
σ̂2

γ
− K2

)]
d2v̂x

dψ2

+ ψ

[
3ψ2 − 1 + 4

(
σ̂2

γ
+ K2

)]
dv̂x

dψ

+ 16

[(
σ̂2

γ
+ K2

(
N̂
σ̂2

− 1

))
ψ2 −

4K2σ̂2

γ

]
v̂x = 0.

(3.18)

Eq. (3.18) can be solved with hypergeometric solutions, see e.g. Eq. (8) in Cally
(2001). The solution to Eq. (3.18) is given below as

v̂x = A1ψ
2K

2F3

[
1
2 − iqz + K, 12 + iqz + K;

1 + 2K, 12 − iq0 + K, 12 + iq0 + K

����� −ψ2

]

+ A2ψ
−2K

2F3

[
1
2 + iqz − K, 12 − iqz − K;

1 − 2K, 12 − iq0 − K, 12 + iq0 − K

����� −ψ2

]

+ A3ψ
1+i2q0

2F3

[
1 + iq0 − iqz, 1 + iq0 + iqz;

1 + 2iq0, 32 + iq0 + K, 32 + iq0 − K

����� −ψ2

]

+ A4ψ
1−i2q0

2F3

[
1 − iqz − iq0, 1 + iqz − iq0;

1 − 2iq0, 32 − iq0 + K, 32 − iq0 − K

����� −ψ2

]
.

(3.19)
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The quantities qz and q0 are defined as

qz =

√
σ̂2

γ
−
(σ̂2 − N̂2)K2

σ̂2
−
1

4
, q0 =

√
σ̂2

γ
−
1

4
, N̂2 =

γ − 1

γ
.

Here, N̂ is the dimensionless Brunt-Väisälä frequency in an isothermal plasma (the
frequency at which a fluid parcel would oscillate around its equilibrium position).

3.3.2 New Solutions for Θ = p̂/ρ

It has already been stated that solutions have been found for v̂x. Next, the vertical
velocity component can be written in terms of derivatives of v̂x up to third order
in ψ. In this article, we aim to show that, by defining a new and suitably chosen
auxiliary variable, a single hypergeometric function solution can be derived for v̂z as
was found in Wang (1986). Let us introduce Θ = p̂/ρ, as the equations connecting
v̂x and Θ, as well as v̂z and Θ, will be substantially simpler. By eliminating the
divergence between Eqs. (3.6) and (3.7) we obtain:

ρ̂

ρ
=
Θ

c2s
−

N2

g

v̂z

iω
, (3.20)

where N =
(
(γ−1)g2

c2s

)1/2
is the Brunt-Väisälla frequency of an isothermal plasma. Eq.

(3.20) is then substituted into the vertical component of Eq. (3.8) to obtain

(ω2 − N2)̂vz = −iω
(

dΘ
dz

−
N2

g
Θ

)
. (3.21)

The vertical velocity component, v̂z, is eliminated from Eq. (3.7), using Eq. (3.21),
to obtain a relation for v̂x in terms of derivatives of Θ:

c2s (ω
2 − N2)kx v̂x = ω

(
c2s

d2Θ

dz2
−

c2s
H

dΘ
dz
+ ω2
Θ

)
, (3.22)

Finally, from the horizontal component of Eq. (3.8), an equation relating Θ to
derivatives of v̂x is found:

kxωΘ = v2A
d2v̂x

dz2
+ (ω2 − v2Ak2x )̂vx, (3.23)



48 Magneto-Acoustic Gravity Waves in a Vertical Field: Single Layer

By eliminating v̂x between Eq. (3.22) and Eq. (3.23), a fourth order differential
equation for Θ is acquired:

c2s v
2
A

d4Θ

dz4
−
v2Ac2s

H
d3Θ

dz3
+

[
(v2A + c2s )ω

2 − k2xv
2
Ac2s

] d2Θ

dz2

−
c2s
H

[
ω2 − v2Ak2x

] dΘ
dz
+

[
ω4 − k2x (v

2
A + c2s )ω

2 + k2x c2s N2
]
Θ = 0.

(3.24)

Eq. (3.24) can be transformed, with ψ as a new independent variable, to:

ψ4 d4Θ

dψ4
+ 8ψ3 d3Θ

dψ3
+ ψ2

[
4ψ2 + 13 + 4

(
σ̂2

γ
− K2

)]
d2Θ

dψ2

+ ψ

[
12ψ2 + 3 + 4

σ̂2

γ
− 12K2

]
dΘ
dψ
+ 16

[(
σ̂2

γ
+ K2

(
N̂2

σ̂2
− 1

))
ψ2 −

K2σ̂2

γ

]
Θ = 0.

(3.25)

This is clearly very similar to (3.18). However, as can be seen by Eqs. (3.21) and
(3.22),the expressions for v̂x and v̂z are simple and are found by taking up to second
order derivatives in z of Θ, whereas the relationship between v̂x and v̂z is a third order
z derivative expression. Using the Fröbenius method, solutions to Eq. (3.25) can be
written as infinite series. These series solutions can then be written as hypergeometric
functions :

Θ = C1ψ
2K

2F3

[
a11, a12;

b11, b12, b13

����� −ψ2

]
+ C2ψ

−2K
2F3

[
a21, a22;

b21, b22, b23

����� −ψ2

]

+ C3ψ
−1+i2q0

2F3

[
a31, a32;

b31, b32, b33

����� −ψ2

]
+ C4ψ

−1−i2q0
2F3

[
a41, a42;

b41, b42, b43

����� −ψ2

]
.

(3.26)

We note an arbitrary hypergeometric function of the variable −ψ2 can be written as

pFq

[
a1, ..., ap;

b1, ..., bq

����� −ψ2

]
=

∞∑
n=0

(a1)n...(ap)n(−ψ
2)n

(b1)n...(bq)nn!
,

where the Pochammer symbol, (a)n, is defined as

(a)n = (a)(a + 1)...(a + (n − 1)), (a)0 = 1, ∀a ∈ C,
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with C denoting the set of complex numbers. Solutions for both v̂x and v̂z can then
be found in a straightforward way using the relationships between Θ, v̂x and v̂z,
respectively. Detailed derivations and definitions of ai j, bi j (i, j = 1, ..4) can be found
in Appendix A. The solutions for v̂x and v̂z are presented below:

v̂x =C1ψ
2K S(1)

2F3

[
a11, a12;

b11, b12 − 1, b13 − 1

����� −ψ2

]

+ C2ψ
−2K S(2)

2F3

[
a21, a22;

b21, b22 − 1, b23 − 1

����� −ψ2

]

− C3ψ
1+2iq0S(3)

2F3

[
a31 + 1, a32 + 1;

b31, b32 + 1, b33 + 1

����� −ψ2

]

− C4ψ
1−2iq0S(4)

2F3

[
a41 + 1, a42 + 1;

b41, b42 + 1, b43 + 1

����� −ψ2

]
,

(3.27)

v̂z = iK



C1ψ
2K R(1)

3F4

[
a11, a12, a13;

b11, b12, b13, b14

����� −ψ2

]

+C2ψ
−2K R(2)

3F4

[
a21, a22, a23;

b21, b22, b23, b24

����� −ψ2

]

+C3ψ
−1+2iq0R(3)

3F4

[
a31, a32, a33;

b31, b32, b33, b34

����� −ψ2

]

+C4ψ
−1−2iq0R(4)

3F4

[
a41, a42, a43;

b41, b42, b43, b44

����� −ψ2

]



. (3.28)

Note that S(i), R(i), ai j and bi j are given in Appendix A. Eq. (3.27) is none other
than the solution given by Eq. (3.19). The solution for v̂z, given by Eq. (3.28), does
not differ in essence from the solution given in Leroy and Schwartz (1982) and is
the same as in Wang (1986). Generalised hypergeometric functions have been well
studied and various asymptotic expansions have been derived for large and small
arguments (see e.g. Luke, 1975). With these asymptotic relations we can see the
physics of the problem more readily than could be seen solely with the Fröbenius
series.
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3.4 Single Layer

A single atmospheric plasma layer model, for a vertical magnetic field, has been
addressed in several different ways by e.g. Hasan and Christensen-Dalsgaard (1992)
or Abdelatif (1990). The boundary conditions that are imposed are line-tying at
the boundaries (perfect reflection), i.e. v̂x = v̂z = 0 at z = 0, L. These ensure that
no magnetic energy nor kinetic energy passes through the boundaries. The four
boundary conditions permit four linearly independent equations that may be written
as a matrix equation to determine the coefficients C1, C2, C3 and C4:

©«

v̂
(1)
x(0) v̂

(2)
x(0) v̂

(3)
x(0) v̂

(4)
x(0)

v̂
(1)
x(L) v̂

(2)
x(L) v̂

(3)
x(L) v̂

(4)
x(L)

v̂
(1)
z(0) v̂

(2)
z(0) v̂

(3)
z(0) v̂

(4)
z(0)

v̂
(1)
z(L) v̂

(2)
z(L) v̂

(3)
z(L) v̂

(4)
z(L)

ª®®®®®®®®®®®®®¬

©«

C1

C2

C3

C4

ª®®®®®®®®®®®®®¬
= 0. (3.29)

Note that, here, v̂
( j)
x(a) and v̂

( j)
z(a) (a = 0, L and j = 1, 2, 3, 4) refer to the functions

multiplying the constants of integration, Cj . Here, L is the height of the upper
boundary of the atmosphere. To obtain non-trivial solutions, the determinant of the
matrix on the left is taken to obtain the full dispersion relation for standing waves
in a bounded plasma with a vertical field that is stratified by a vertical gravitational
force. Before studying dispersion relation (3.29) numerically, certain limits can be
taken to obtain analytic information.

3.4.1 Small Wavelength Limit (K → ∞)

Taking the limit of the determinant of Eq. (3.29) as K → ∞, where we assume also
that H ≫ L does not hold true. To take the limits of the hypergeometric functions
as K → ∞ we use the general limit:

lim
|r |→∞

(r)n
rn → 1, r ∈ C.

With this limit the functions v̂
(3)
z(0,L) and v̂

(4)
z(0,L) can be written as

v̂
(3)
z(0,L) = ψ

−1+2iq0
(0,L) R(3)

1F2

[
a33;

b31, b34

����� −
(σ̂2−N̂2)ψ2

(0,L)

σ̂2

]
, (3.30)

v̂
(4)
z(0,L) = ψ

−1−2iq0
(0,L) R(4)

1F2

[
a43;

b41, b44

����� −
(σ̂2−N̂2)ψ2

(0,L)

σ̂2

]
. (3.31)
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Next, the determinant of Eq. (3.29) is expanded and the largest term as K → ∞ is
found and given by:

K4 exp(KL/H)

(̂
v
(3)
z(0)v̂

(4)
z(L) − v̂

(3)
z(L)v̂

(4)
z(0)

)
= 0 (3.32)

The term outside the brackets in Eq.(3.32) cannot be equal to zero, therefore the
dispersion relation is given by the terms within the brackets:

v̂
(3)
z(0)v̂

(4)
z(L) − v̂

(3)
z(L)v̂

(4)
z(0) = 0. (3.33)

It is well known that taking this limit in Eqs. (3.10) and (3.12) removes the fast
mode (see e.g. Moreno-Insertis and Spruit, 1989, Roberts, 2006 or Hague and Erdélyi,
2016). To study this further we take the limit of both high and low plasma-beta
separately of Eq. (3.33).

3.4.1.1 Low plasma-beta

For a small plasma-beta value, that is β ≪ 1, the parameter ψ2 ≪ 1. Therefore, the

hypergeometric function 1F2

[
;−

(σ̂2−N̂2)ψ2
(0,L)

σ̂2

]
≈ 1, and Eq. (3.33) becomes

sin(q0L/H) = 0,
q0L
H
= mπ, m ∈ N. (3.34)

Transforming back to dimensional quantities,

ω2

c2s
=

m2π2

L2
+

1

4H2
. (3.35)

Dispersion relation (3.35) shows that the slow mode has degenerated to a vertically
propagating sound wave, along the field lines. Eq. (3.35) also reveals that the
atmosphere has a cut-off frequency of ω2

ac = c2s /4H2, otherwise called the acoustic
cut-off frequency. Any frequencies below this threshold are evanescent and therefore
cannot satisfy the dispersion relation given by Eq. (3.35).

3.4.1.2 High plasma-beta

The limit of large plasma-beta (β ≫ 1) is suitable as an approximation of the lower
solar atmosphere. Therefore, taking the limit of large plasma-beta in Eq. (3.33)
(assuming L = −D2, where D ∈ R), the asymptotic expansions of the hypergeometric
functions are taken as ψ2 → ∞ (Luke, 1975). Therefore, to lowest order in ψ−1,
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Eq. (3.31) can be written,

v
(3)
(0,L) =

Γ(1 + 2iq0)
2
√
π

ψ
(−1/2)
(0,L)


e−i π4 eq0e−2i

√
(σ̂2−N̂2)/σ̂2ψ(0,L)

+ei π4 e−q0e2i
√
(σ̂2−N̂2)/σ̂2ψ(0,L)

 ,

v
(4)
(0,L) =

Γ(1 − 2iq0)
2
√
π

ψ
(−1/2)
(0,L)


e−i π4 e−q0e−2i

√
(σ̂2−N̂2)/σ̂2ψ(0,L)

+ei π4 eq0e2i
√
(σ̂2−N̂2)/σ̂2ψ(0,L)

 ,
Here, Γ(x) is the well-known gamma-function. Substituting these expressions into
Eq. (3.33) the dispersion relation reduces to

sin

(
2ψ̂

√
(σ̂2 − N̂2)/σ̂2

)
= 0, ψ̂ = ψL − ψ0. (3.36)

Clearly, for this to be zero, we require,

2ψ̂

√
(σ̂2 − N̂2)/σ̂2 = mπ, m ∈ N,

σ̂2 = N̂2 +
m2π2

2s2β
, s = 1 − e−D2/2.

(3.37)

It is interesting to note that Eq. (3.37) agrees with the counterpart derived, in
a completely different way, by Hasan and Christensen-Dalsgaard (1992). These
authors took the limit kx → ∞ of the wave equations and the high-beta limit,
directly implemented in the governing equation. From there, they applied boundary
conditions on the solutions and again found asymptotic expansions for β ≫ 1.
The solution in Eq. (3.37) has two different interpretations: the first being for low
harmonics, where the solutions are the g-modes modified by the magnetic field.
However, for larger harmonics, the contribution from the Brunt-Väisälä frequency
becomes negligible, thus the modes are of a far more magnetic nature. Also noting
the completely hydrodynamic limit, β → ∞, we see that all modes tend to the
Brunt-Väisälä frequency, i.e, the limit of g-modes as kx → ∞ in an isothermal
bounded plasma (see e.g. Goedbloed and Poedts, 2004).

3.4.2 Solar Atmospheric Models

In this section, Eq. (3.29) is numerically solved for dimensionless parameters that
approximate the physical parameters of the solar atmosphere. We investigate two
models: the first being analogous to a plasma that describes the solar corona and
the other approximates the transition from the solar photosphere to the upper
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chromosphere. Both these models are important to consider as the models will be
connected together across a discontinuity in Chapter 3.

In what follows, we use the useful relation for the wave energy density of MAG
waves derived in Bray and Loughhead (1974) (the relation can also be found in
Goedbloed and Poedts, 2004). The total wave energy density is comprised of the
kinetic energy density (KE) and the potential energy density (PE). The potential
energy density can be split into gravitational potential (GE), internal (IE) and
magnetic energy (ME) density. The total energy density is given as:

ET = KE + ME + IE + GE, (3.38)

where,

KE =
1

2
ρ(̂v2x + v̂

2
z ), IE =

p̂2

2ρc2s
, GE =

ρN2v̂2z

2ω2
, ME =

1

2µ
(B̂2

x + B̂2
z ).

3.4.2.1 Coronal Plasma

The first model corresponds to a low-beta plasma which decreases further with
increasing height. The representative parameters for the first model are:

z = [0,D2],
D2

H
= 3, β |z=0 = 0.1.

The scale height, H, is approximately 50 Mm so that D2 = 150 Mm. In a low-beta
homogeneous plasma, the phase speed, ω/kx, of the slow wave is approximately equal
to the sound speed of the background plasma i.e. ω/kx ≈ cs. In an opposite manner,
the phase speed of the fast wave is approximately equal to the background Alfvén
speed of the plasma i.e. ω/kx ≈ vA. This leads to the conclusion that the main
component of the ‘slow’ waves’ energy density will be due to the internal energy
density (IE) and the main component of the fast waves’ energy density will be due
to the magnetic energy density (ME). This will help us characterise the modes given
in this model.

For a given mode that satisfies Eq. (3.29) we calculate the internal energy density
and magnetic energy density integrated from z = 0 to z = D2

IET =

D2∫
0

IE(z, σ̂,K)dz, MET =

D2∫
0

ME(z, σ̂,K)dz. (3.39)
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To investigate the proportion of magnetic and internal energy in a mode we define
the quantity

IEP =
IET

IET + MET
, (3.40)

as the proportion of the total internal energy of the mode compared to the total
internal and magnetic energy of the mode. If IEP > 0.5 then the mode is pressure
dominated and if IEP < 0.5 the mode is magnetically dominated.

Fig. 3.2 plots the dispersion diagram for the model described here, with σ̂

against K. The colour bar shows the value of IEP for each solution. From both
Figs. 3.2a and c one can see that there are, almost, two distinct modes. One mode
has a very large proportion of magnetic energy and as such the solution line is blue.
We thus characterise this as the ‘fast’ mode. One can see that the fast mode is
largely non-dispersive with respect to the dimensionless wave number, K, as would
be expected in an homogeneous medium also. The second distinct mode has a large
proportion of internal energy, as can be noted from the solution lines’ deep red colour.
We therefore can characterise this mode as the ‘slow’ wave. Due to the frequency, σ̂,
of the wave staying relatively constant with respect to K, the slow wave is clearly
quite dispersive with respect to the horizontal wave number. However, each harmonic
of the slow wave is, approximately, a set frequency apart. We conclude, that the
slow wave is not dispersive due to the vertical wave number, i.e. the wave number in
the direction of the magnetic field. Again, these are all characteristics of the slow
wave in a homogeneous medium.

Although there are two distinct modes in one sense, on a closer inspection of
Figs. 3.2a and c one can see that the two solution paths do not cross and instead
actually ‘avoid’ one another. These phenomena are referred to as ‘avoided-crossings’
(see e.g. Abdelatif, 1990). Figs. 3.2b and d show zoomed in portions of Figs. 3.2a
and c (indicated by the rectangles) respectively. The solution paths do not actually
cross but avoid each other smoothly, with both lines changing their initial path to
the path of the other. What is noticeable is that the proportion of internal energy
changes rapidly around these avoided crossings. So, for example, in Fig. 3.2b the
solution path that starts off with a high proportion of internal energy, i.e. a slow
wave, then becomes closer to the avoided crossing where the proportion of internal
energy then drops quickly and the solution path then continues on the path of the
fast-mode, with IEP ≈ 0. Oppositely the fast mode, that had a high proportion of
magnetic energy, reaches the avoided crossing and then takes on the path of the
slow mode. The proportion of internal energy of the mode then increases rapidly
and IEP ≈ 1. Comparing Figs. 3.2b and d and looking at Figs. 3.2, it may then
also be noted that, as K increases, the transition of the internal energy proportion is
more smooth. The fast mode has a higher proportion of internal energy for a larger
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Fig. 3.2 Variation of the dimensionless frequency, σ̂, with respect to the dimension-
less wave number, K, (a value of K = 1 relates to a horizontal wavelength, λ, of
approximately 50 Mm with a scale height of 50 Mm) for the model of a low beta
coronal plasma. Panel (a) is the dispersion graph for σ̂ = 0 - 20 (this gives an
angular frequency range of 0 - 3 × 10−3 s−1), with panel (b) is the zoomed-in portion
represented by the outline of a box in panel (a). Panel (c) is the dispersion graph for
σ̂ = 20 - 40 (this gives an angular frequency range of 3 × 10−3 - 6 × 10−3 s−1), with
panel (d) is the zoomed-in portion represented by the outline of a box in panel (c).
The lines are given colours that correspond to the colour bar which indicates the
proportion of internal energy density compared to the sum of this and the magnetic
energy density, IEP.
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Fig. 3.3 Variation of σ̂ (σ̂ = 1 corresponds to an angular frequency, ω, of 6.4 × 10−2

s−1) with respect to K (K = 1 corresponsd to a horizontal wavelength, λ, of 125 km)
for the photosphere/chromosphere model. Again, the lines are coloured, using the
colourbar on the right, to represent IGP. The black dashed line represents the
horizontal σ̂ = N̂.

interval of K values. This supports the asymptotic analysis resulting in Eq. (3.35)
for a low beta atmosphere, where there are only vertically propagating sound waves
i.e. slow-modes; the fast wave is decoupled.

3.4.2.2 Photosphere-Chromosphere

The second solar atmospheric model is one transitioning from a high-beta plasma to
a low-beta plasma as height increases, analogous to a basic model of the real solar
atmosphere. Typical parameters for this particular model are:

z = [−D1, 0],
D1

H
= 7, β |z=0 = 0.1.

In this model, it is harder to separate the modes, as there are modes near the
Brunt-Väisäla frequency that have a more gravitational character, along with the
magnetic and acoustic modes. We therefore opt to use the full compliment of the
potential energy density, that is IE, ME and GE. For a given mode that satisfies
Eq. (3.29) we calculate the internal energy density, magnetic energy density and
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gravitational energy density integrated (numerically) over z = −D1 to z = 0:

IET =

0∫
−D1

IE(z, σ̂,K)dz, MET =

0∫
−D1

ME(z, σ̂,K)dz,

GET =

0∫
−D1

GE(z, σ̂,K)dz.

(3.41)

To investigate the proportion of magnetic and internal energy in a mode we define
the quantity

IGP =
IET + GET

IET + MET + GET
, (3.42)

Fig. 3.3 plots the dispersion diagram for the model described above i.e for σ̂ against
K. We first consider the modes around the dimensionless Brunt-Väisäla frequency,
N̂ . The modes below N̂ are either: predominantly magnetic in nature hence the blue
colouring or gravitational in nature, hence the red colouring. One can note as K is
increased, that the modes around N̂ are highly gravitational in nature. However,
staying at K ≈ 5, the higher harmonics start to become far more magnetic in nature.
This can be explained, somewhat, by Eq. (3.37) in the limit as K → ∞ and β → ∞.
The equation shows that the first modes would be around the Brunt-Väisäla frequency
and would therefore have most potential energy due to gravitational potential energy.
However as the harmonics increase and N̂2 ≪ m2π2/2s2β, i.e. the frequencies become
noticeably larger than the Brunt-Väisäla frequency, the modes are now far more
magnetic in nature and as such would have a higher proportion of magnetic potential
energy. This is evident in Fig. 3.3 for the higher harmonics for frequencies becoming
much larger than the Brunt-Väisäla frequency.

3.5 Summary and Discussion

In this chapter, we have presented the basic static background equilibrium for an
isothermal fully ionised plasma in a magnetic field parallel to a constant gravitational
field. The fully ionized MHD equations from chapter 1 were then used to linearise
around this background plasma. Eqs. (3.23)-(3.21) were used to form a fourth order
differential equation given by Eq. (3.25) for the variable Θ = p̂/ρ. The Fröbenius
method was used to find four linearly independent solutions for Θ. Equation (3.25)
is the first governing equation found for the variable Θ, in this regime.

The simple relation between v̂z and Θ was used to find the solutions for v̂z which
was in the form of an infinite series solution which then was found to actually be
4 linearly independent hypergeometric functions as in Wang (1986). Schwartz and
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Leroy (1982) found solutions for v̂z as well but these were described as an infinite
series and not as the well defined and fairly well studied hypergeometric functions.
These new solutions were then used to study the single plasma layer case (bounded
above and below). A dispersion relation was found that was fairly complicated. Using
well known asymptotic expansions of the hypergeometic functions, we were able to
study the short wavelength limit, taking high-beta and low beta approximations.
It was found, as expected, the modes degenerate into the slow modes, which is
well known (see e.g. Erdélyi and Fedun, 2006 or Hague and Erdélyi, 2016). In the
high-beta case, the modes had, for low harmonics, more of a gravitational nature but
for higher harmonics they were simply magnetic modes. This was in full agreement
with the relation given in Hasan and Christensen-Dalsgaard (1992) which was found
by taking the small wavelength limit on the governing equation. The low beta limit
of this equation shows that the slow modes are essentially vertically propagating
sound waves.

The next part of this chapter concerned itself with the numerical solutions to Eq.
(3.29). The first case considered was a coronal type low beta plasma. The expected
behaviour using the homogeneous theory (see e.g. Goedbloed and Poedts, 2004)
was that the fast modes would be of a highly magnetic nature, propagating at the
Alfvén speed in any direction. On the other hand, the slow modes were expected to
be driven by internal pressure variations, propagating at approximately the sound
speed but mainly along the magnetic fields lines. It was found that this was just the
case, as the modes shown in Figs. 3.2a-d were shown to have their potential energy
density either being magnetic or internal energy density. However, this was shown to
not hold around avoided crossings, where the modes changed nature and had more
of an even composition of both the energies. These avoided crossings were very small
and sharp indeed though.

Fig. 3.3 plotted the dispersion graph for a solar atmospheric model transitioning
from a high to a low plasma-beta plasma. In this case the slow modes were now
of a magnetic nature, but near the Brunt-Väisäla frequency they also had a strong
gravitational potential energy component. The fast modes were pressure driven
acoustic modes. Around the avoided crossings the modes had a more reasonable
share of magnetic and internal pressure energy.



Chapter 4

Magneto-Acoustic Gravity Waves in
a Vertical Field: Two-Layer

4.1 Introduction

As discussed in the introduction the solar atmosphere can be split into separate
regions, on a global scale. One could treat the lower solar atmosphere as a single
layer with perfectly reflecting boundaries at the lower and upper limits due to the
rapidly changing densities at these points. However, sharp discontinuities still do
not trap all energy within their bounds. It is therefore important to see how MAG
waves react to these discontinuities and how the energy of these waves is distributed
in multilayer models.

Scheuer and Thomas (1981) considered a three layer model of a sunspot, extending
down into the convection zone of the Sun, modelling this using a poly-tropic
temperature profile and with an interface at the photosphere. The next layer was
considered isothermal to approximate the lower solar atmosphere with another
interface at the boundary between the corona and lower solar atmosphere. Solving
this system numerically it was found that, for both forced and free oscillations, a
resonant ‘fast’ mode was possible with a period of around 153 seconds, with most
of the wave energy reflected before even reaching the transition region. Leroy and
Schwartz (1982) studied a two layer atmosphere, a photospheric/chromospheric
plasma layer with a semi-infinite homogeneous coronal plasma above this. Boundary
conditions were derived for the case of a contact discontinuity which were then
solved numerically for the case of sunspots and coronal holes in the companion
paper Schwartz and Leroy (1982). The wave energy density of forced oscillations was
considered and it was concluded that along with the effects of stratification, causing
the Alfvén speed to increase, and that there would be partial transverse propagation,
it was unlikely that MAG waves would transmit significant energy into the coronal
plasma. Yelles Chaouche and Abdelatif (2005) studied a two layer atmosphere, again
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Fig. 4.1 The VAL (Vernazza et al., 1981) model of temperature distibrution in the
solar atmosphere. Image credit to Athay (1976)

for a lower solar atmosphere and coronal two-layer model. The emphasis in this
study was on the damping of the waves as they propagated across the magnetic field.

In this chapter, a two layer bounded atmosphere is considered, with perfectly
reflecting boundaries at the base and the top. Using the solutions formulated in
Chapter 3, two models are studied: one that represents the jump from the lower
chromosphere to the upper chromosphere bounded above by the corona. The second
represents a model of the lower solar atmosphere and the corona, with the interface
between representing the sharp change due to the transition region. We explore the
numerical solutions to the dispersion relations and study the distributions of the
wave energy density, along with their components. This chapter is based on work
completed in our published paper Mather and Erdélyi (2016).

4.2 Background Equilibrium

Let us now consider a two-layer, gravitationally stratified plasma embedded in a
uniform vertical magnetic field. The ideal forms of the linearised MHD equations are
used i.e. Eqs. (3.6)-(3.9). We also neglect the spherical shape of the Sun that gives
an upper limit of the horizontal wavelength. The model is outlined in Fig. 4.2. The
lower layer is bounded by z ∈ [−D1, 0]. The top layer is described within the bounds
z ∈ [0,D2]. Both layers are isothermal and, as such, have constant temperature in
both the upper (subscript ‘0’) and lower (subscript ‘e’) layers given, respectively,
by T0 and Te. In general there is a temperature discontinuity between the two media
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z

1

Fig. 4.2 The background: A two-layer gravitationally stratified model of the global
solar atmosphere.

and, therefore, a density discontinuity. The lighter plasma is on top (upper) and
the relatively heavy plasma in the bottom (lower) and as such the Rayleigh-Taylor
instability is not studied. The plasma-beta (β) is continuous across the discontinuity
at z = 0. We introduce the quantity ρr = ρ0/ρe to denote the density ratio between
the lower and upper layers. The solutions in the two separate layers are only different
due to the difference in the parameters:

Ke = K0ρr, σ̂e = σ̂0ρr, ψe(z) =
ωHe

vAe(0)
e−z/He,

ψ0(z) =
ωH0

vA0(0)
e−z/H0,

He

H0
= ρr,

(4.1)

where,

Kl = kxHl, σ̂l =
ωHl

√
γ

csl
, v2Al(0) =

B2
0

µρl
, csl =

γpl

ρl
, l := 0, e. (4.2)
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4.3 Solutions and Dispersion Relation

To study global standing waves we use the boundary conditions vz = vx = 0 at the
heights z = −D1,D2. The solutions must also be connected across the discontinuity.
Schwartz and Leroy (1982) derived the boundary conditions for a magnetic field
across an interface by studying the stress across the boundary and continuity of
the magnetic flux across the interface. These led to the conditions that: v̂x, v̂z and
their derivatives are continuous across the boundary at z = 0. We define the velocity
perturbations, v̂x and v̂z below:

v̂z(z) =
4,8∑

j=1,5

Cjv
( j)
z (z), v̂

( j)
z (z) = A(z)

j , v̂x(z) =
4,8∑

j=1,5

Cj v̂
( j)
x (z), v̂

( j)
x (z) = B(z)

j . (4.3)

Note that when j ∈ {1, 2, 3, 4}, all parameters are given by the values in the lower
layer and when j ∈ {5, 6, 7, 8}, all parameters are given by their corresponding values
for the upper layer. The derivatives of v̂x and v̂z are denoted with a dash e.g. A

′(z)
j ,

B
′(z)
j . Evaluating v̂x, v̂z and their derivatives using the boundary and continuity

conditions, eight equations are obtained that can be cast as a matrix equation as
below,

©«

A(−D1)
1 A(−D1)

2 A(−D1)
3 A(−D1)

4 0 0 0 0

B(−D1)
1 B(−D1)

2 B(−D1)
3 B(−D1)

4 0 0 0 0

0 0 0 0 A(D2)

5 A(D2)

6 A(D2)

7 A(D2)

8

0 0 0 0 B(D2)

5 B(D2)

6 B(D2)

7 B(D2)

8

A(0)
1 A(0)

2 A(0)
3 A(0)

4 −A(0)
5 −A(0)

6 −A(0)
7 −A(0)

8

B(0)
1 B(0)

2 B(0)
3 B(0)

4 −B(0)
5 −B(0)

6 −B(0)
7 −B(0)

8

A
′(0)
1 A

′(0)
2 A

′(0)
3 A

′(0)
4 −A

′(0)
5 −A

′(0)
6 −A

′(0)
7 −A

′(0)
8

B
′(0)
1 B

′(0)
2 B

′(0)
3 B

′(0)
4 −B

′(0)
5 −B

′(0)
6 −B

′(0)
7 −B

′(0)
8

ª®®®®®®®®®®®®®®®¬

©«

C1

C2

C3

C4

C5

C6

C7

C8

ª®®®®®®®®®®®®®®®¬

= 0.

(4.4)
For non-trivial solutions to this equation, the determinant must be equal to

zero. The determinant of the matrix on the left-hand side of Eq. (4.4) is regarded
from now on as a function of ω and kx, say g(ω, kx). We, therefore, look for the
roots of g(ω, kx) = 0 numerically. In what follows, we now introduce, and use, the
dimensionless frequency, ω̂ and wave-number, k̂x,

ω̂ =
ω (D1 + D2)

cs0
, k̂x = kx (D1 + D2) , (4.5)
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along with the dimensionless Brunt-Väisäla frequencies in the lower and upper layers,
respectively:

N̂2
e =

γ − 1

γ2ρr

(
ρr

D1

He
+

D2

H0

)2
, N̂2

0 =
γ − 1

γ2

(
ρr

D1

H1
+

D2

H0

)2
. (4.6)

4.4 Model 1: Photosphere to Upper Chromosphere

We now solve Equation (4.4) for a solar atmospheric model that is analogous to the
transition from photosphere/lower-mid chromosphere to the high chromosphere. We
choose a model similar to the jump in temperature from the mid chromosphere to the
high chromosphere, shown in Fig. 4.1. However, both the lower and upper regions
are considered isothermal due to the constraints caused by the analytic solutions,
we therefore flatten the temperature profile of the lower region and consider this
constant without a temperature minimum region. The plasma is bounded below, at
z = −D1, by the solar interior and above, at z = D2 by the large jump in temperature
of the transition region. The discontinuity in temperature occurs at z = 0. The
typical values of the parameters can be given as:

D1

He
= 8,

D2

H0
= 2, β |z=D2 = 0.1, ρr =

1

2
.

The sound speed in the lower layer is taken to be 7.9 km s−1 and thus the sound
speed in the upper layer is approximately 11.17 km s−1, due to the temperature
increase of a factor of 2. The gravitational acceleration in the solar atmosphere
is approximately 274 m s−2. This gives the lower layer scale height, He = 137 km.
The scale height in the upper layer is, H0 = 300 km. Therefore D1 ≈ 1.1 Mm and
D2 ≈ 0.6 Mm.

Fig. 4.3 shows the dispersion relation for this model with the dimensionless
frequency, ω̂ plotted against the dimensionless wave-number, k̂x. Noted in the
diagram are the frequencies corresponding to the 3-minute and 5-minute oscillation
periods that are ubiquitous in the Sun. Again, as in Chapter 3, avoided-crossings
between modes are present. A zoomed-in section is noted to emphasise that these
solution paths do not cross. The same approach, that of studying the components of
the wave energy, is used as in Chapter 3.

ET = KE + ME + IE + GE, (4.7)

where,

KE =
1

2
ρ0(v

2
x + v

2
z ), IE =

p21
2ρ0v

2
s
, GE =

ρ0N2v2z

2ω2
, ME =

1

2µ
(B2

x + B2
z ).
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Fig. 4.3 Variation of dimensionless frequency, ω̂ (ω̂ = 1 corresponds to an angular
frequency of ω = 6.9 × 10−3 s−1), and wave-number, k̂x (k̂x = 10 corresponds to a
wavelength, λ = 1.07 Mm) for the solution of Eq. (4.4) for model one. The red
dotted lines indicate the five-minute, ω̂5, and three-minute ω̂3 periods of waves. A
zoomed-in box indicates that the solution paths do not cross, even they may seem
like they do on a larger scale. 1, 2, 3 and 4 annotate the wave solution points that
correspond to the eigenfunctions plotted in Figs. 4.6-4.9

Abdelatif (1990) studied the components of the wave energy for a bounded one-layer
plasma. He showed that close to the avoided crossing the two solutions took on
similar characteristics, slowly changing their character as the avoided crossing was
traversed. To study the wave energy distribution in each layer, the integral of the
total wave energy over the whole cavity and the integral of the total wave energy in
the upper layer are introduced:

ETI =

D2∫
−D1

ET (z, ω̂, k̂x)dz, ETL =

0∫
−D1

ET (z, ω̂, k̂x)dz. (4.8)

Here, ETI is the total wave energy integrated across both layers. ET is the total wave
energy as a function of height, frequency and horizontal wave number and ETL is the
total wave energy integrated from z = −D1 to z = 0.

Fig. 4.4a plots the dispersion graph again but in the interval 0 ≤ ω̂ ≤ 10. However,
the solution paths use a colourmap to describe the proportion of the total wave
energy density integrated over the lower plasma layer, ETL , compared to the total
wave energy density integrated over both layers, ETI . The lower plasma layer’s Brunt-
Väisäla frequency is plotted as the red-dashed line. Firstly, it can be immediately
noted that for almost all modes the largest proportion of the wave energy density is
within the lower plasma layer. The modes that lie below the Brunt-Väisäla frequency
have almost no energy within the upper plasma layer, which can be seen by the dark
black shade of the line, where ETL/ETI ≈ 1. Figs. 4.4b,c and d plot the proportion of
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Fig. 4.4 Variation of the dimensionless frequency, ω̂, with respect to the dimensionless
wave-number, k̂x, for model 1. Panel (a) shows the proportion of ETL to ETI in the
colorbar. Panel (b) depicts the proportion of GL to LT in the colorbar. Panel (c) is
the proportion of IL to LT . Panel (d) shows the proportion of ML in LT . The red
dashed line represents the dimensionless Brunt-Väisäla frequency of the lower layer,
N̂e. The plasma-beta value at the interface has a value of 0.1. From the interface
the lower layer descends by eight scale-heights and the upper layer ascends by two
scale-heights.
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Fig. 4.5 Variation of the components of the potential energy density, IE (red dashed),
ME (blue dash-dot) and GE (green dotted) and the total energy density, ET with
height z. Panel (a) is evaluated for the point 1 (ω = 0.046 s−1 and wavelength,
λ = 4.3 Mm) Fig. 4.3, (b) for point 2 (ω = 0.047 s−1 and wavelength, λ = 4.3 Mm),
(c) for point 3 (ω = 0.048 s−1 and wavelength, λ = 2.0 Mm) and (d) for point 4
(ω = 0.049 s−1 and wavelength, λ = 2.0 Mm).
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Fig. 4.6 For point 1 in Fig. 4.3, panel (a) the variation of vx (red line) and vz (blue
line), normalised against themselves, with respect to z and (b) the variation of the
horizontal kinetic energy density (KEx in red) and vertical kinetic energy density
(KEz in blue) with height.
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Fig. 4.7 Same as Fig. 4.6 but for point 2 of Fig. 4.3.
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Fig. 4.8 Same as Fig. 4.6 but for point 3 of Fig. 4.3.

the total gravitational (GL), internal (IL) and magnetic (ML) energy density in the
lower layer, respectively, as compared to the sum of all three, LT all of which are
given below:

GL =

∫ 0

−D1

GE(z, ω̂, k̂x)dz, IL =

∫ 0

−D1

IE(z, ω̂, k̂x)dz, ML =

∫ 0

−D1

ME(z, ω̂, k̂x)dz,

(4.9)

LT = GL + IL + ML . (4.10)

The modes below the Brunt-Väisäla frequency have very little energy trapped in
the upper layer. These modes are comprised mainly of gravitational and magnetic
energy density. It is well known g-modes become evanescent as the height within the
atmosphere increases. There is also the fact that the Alfvén speed of the system is
increasing with height, which will act to reflect the propagating waves that form the
standing waves of our system and thus energy will be trapped further down in the
cavity. This remark also holds well for all the modes comprised mainly of magnetic
energy density. Referring to Fig. 4.4c we can see that the ‘fast’ (acoustic) modes are
comprised primarily of internal energy density and comparing this to Fig. 4.4a the
modes that have energy within the upper layer (signified by their aqua hue on the
diagram) are these modes but only for low wave-numbers, k̂x. These ‘acoustic’ modes
still will have reflection of energy at the interface between the lower and upper layers
due to the discontinuity in density and, therefore, temperature (as a consequence of
maintaining pressure balance).

To further illustrate this, Figs. 4.5a-d show the components of the potential and
total wave energy densities as a function of height, z, for the points 1, 2, 3 and 4,
respectively, indicated on Fig. 4.3. These four points are chosen purposefully near
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Fig. 4.9 Same as Fig. 4.6 but for point 4 of Fig. 4.3.

to an avoided crossing to show how a solution curve transitions from one mode to
another. The eigen-functions for v̂x and v̂z (normalised against themselves) for these
points are shown shown in Figs. 4.6a-4.9a along with their normalised kinetic energy
density components in the x- and z-directions in Figs. 4.6b-4.9b.

Figs. 4.5a and b plot the potential energy densities for the solution line that
passes through the points 1 and 3 in Fig. 4.3. Comparing Figs. 4.5a and b, it is
evident that the behaviour of the solution has changed along the solution line. In
Fig. 4.5a point 1 is an acoustic gravity mode, however when the solution line gets to
point 3 the mode is clearly a purely magnetic mode. The transition of the modes
is further evident from Figs. 4.6a and 4.7a in which the eigen-modes appear very
different and the kinetic energy density has switched from mainly being vertical in
Fig. 4.6b, to being almost purely horizontal in Fig. 4.7b. Figs. 4.5c and d plot the
potential energy densities for the solution line that passes through the points 2 and
4 in Fig. 4.3. If these are compared, it is observed that point 2 is essentially a purely
magnetic mode, however as the solution line is traversed to point 4 it is seen that the
mode has become an acoustic gravity mode. Again, analysing the eigen-modes and
kinetic energy densities of the modes in Figs. 4.8 and 4.9, respectively, we see, that,
from being dominated by horizontal motions for point 3 shown in Fig. 4.8, when the
solution line lies on point 4 in Fig. 4.9, the mode is dominated by vertical motions.

Another important point to note is whether the previous solutions are preserved
along the line. We compare the potential energy densities of the points 1 and 4
by comparing Figs. 4.5a and 4.5d. The modes are very similar in terms of their
potential energy structure. Indeed, in the lower layer, below the line z = 0, we see
very many similarities in the structure of the gravitational energy (GE) and the
internal energy (IE). The main difference between the modes is the amount of total
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Fig. 4.10 The variation of the dimensionless frequency, ω̂, with respect to the
dimensionless wave-number, k̂x. The dimensionless frequency lies in the range, ω = 0
to 5. The red dashed line indicates the dimensionless Brunt-Väisäla frequency of the
lower layer, N̂e. The points ‘5’ and ‘6’ have been indicated on one of the solution
curves.

energy trapped in the upper layer. Less total energy is trapped for the mode of
Fig. 4.5d than for the mode of Fig. 4.5a. This is probably due to the increase in
horizontal wave-number in which an incident wave would be reflected more at the
surface. If the points 2 and 3 are compared using Figs. 4.5b and c, one can see that
both modes are purely magnetic modes. These modes lose energy very quickly with
height and hardly any energy is trapped in the upper layer. Evidently, from our
analysis, we see that, when avoided crossings are traversed, modes maintain a fairly
similar structure, as if there was no avoided crossing there.

Fig. 4.10 shows the dispersion diagram for hatω = 0 to 5. The points ‘5’ and
‘6’ are indicated as selected modes. Both these points lie below the Brunt-Väisäla
frequency of the lower atmosphere. Point ‘5’ has a larger proportion of magnetic
potential energy, whereas point ‘6’ has a larger proportion of gravitational potential
energy, which can be evidenced in Fig. 4.5. Figs. 4.11a and b plot the potential
energy of the points ‘5’ and ‘6’ respectively. By studying Figs. 4.11a and b it is
evident that the mode at point ‘5’ is mainly of magnetic in nature, whereas ‘6’ is
gravitational. From both of these we can see that all the energy is mostly trapped in
the lower layers of chromosphere. Our results agree well with those found in Vigeesh
et al. (2017) in which the internal gravity modes are coupled to the slow MA waves
and all energy is trapped in the lower chromosphere and photosphere.
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Fig. 4.11 Variation of the total wave energy density, ET , along with the components
of the potential energy density, IE , ME , GE , with respect to height, z for the points
(a)‘5’ and (b) ‘6’ shown in Fig. 4.10.
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Fig. 4.12 For point ‘5’ in Fig. 4.10 panel (a) the variation of vx and vz normalised
against themselves with respect to height, z (b) the variation of the horizontal, KEx,
and vertical, KEz, components of the kinetic energy density, KE , with respect to z.
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Fig. 4.13 Same as Fig. 4.12 but for point ‘6’ in Fig. 4.10.
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Fig. 4.14 The dispersion diagram, ω̂ − k̂x, for model 2. The colour bar represents the
proportion of the total energy density in the lower layer, ETL compared to the total
energy density integrated over both layers, ETI . The plasma beta at the interface
has a value of 0.1. From the interface, the lower layer descends by 7 scale heights
and the upper layer ascends by 3 scale heights. The black dashed lines indicate
the dimensionless Brunt-Väisäla frequencies of the upper (N̂0) and lower (N̂e) layers
respectively, with the lower frequency being the upper layer and the larger the lower
layer.
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4.5 Model 2: Lower Solar Atmosphere to Corona

The second model is analogous to the temperature jump from the lower atmosphere
to the corona. The upper turning point is, physically, considered to be when the
solar wind flow speed growth is greater than the local Alfvén speed. The parameters
for this model are given below:

D1

He
= 7,

D2

H0
= 3, β |z=0 = 0.1, ρr =

1

400
.

The lower layer sound speed is taken as 7.9 km s−1 again with the sound speed in
the upper coronal plasma 158 km s−1. Assuming a gravitational acceleration, again,
of 274 m s−2 gives He = 137 km and H0 = 54.7 Mm. Therefore D1 ≈ 0.96 Mm and
D2 ≈ 164.1 Mm.

Fig. 4.14 plots the dispersion diagram of ω̂ against k̂x for the model described
above. Again, as in Fig. 4.3, there is a colormap that is represented by the colorbar
of Fig. 4.14 showing the propotion of total wave energy density within the bottom
layer ETL as compared to the total wave energy density integrated in both the layers,
ETI . Extremely evident in this plot is that the modes either only have energy trapped
within the top layer i.e. when the line is blue or conversely energy trapped within
the bottom layer i.e when the line is red. The only ‘sharing’ of energy is around the
avoided crossings between the modes indicated by the change of color of the mode
smoothly around these points, as one mode takes on the characteristics of the other.
To accentuate this point, we have plotted in Figs. 4.15a-d the lower layer and upper
layer solutions given in Chapter 3 for the photosphere to chromosphere and coronal
models over the the solutions of the corresponding two-layer dispersion diagram. We
have also plotted the change in the total wave energy density for the bottom layer as
a proportion of the total wave energy integrated over both layers.

One can see from Figs. 4.15 a-d that the large density discontinuity acts as a
physical barrier that traps the wave energy. This is evidenced in both Figs. 4.15c
and d where the energy is mainly trapped in either the upper or lower layer. The
dispersion relation is therefore rather similar to that of a single-layer plasma. However,
at an avoided crossing, the nature of each mode switches; the modes are inherently
coupled together. It is also possible to see from Fig. 4.15a and b that the lower
layer solutions are shifted slightly in frequency for k̂x up to approximately a value
of 200 which corresponds to a small Ke value, the discontinuity seems to lower the
frequency of these modes slightly. It is possible to find an approximation for this
frequency shift analytically for k̂x = 0. Using the solutions of Eqs. (3.13) and (3.14)
and applying the boundary conditions as described before, two distinct dispersion
relations can be found for v̂x and v̂z respectively. The dispersion relation for v̂x

is highly transcendental and analytic study is to our best knowledge not possible.
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Fig. 4.15 Panels (a) and (b) show the dispersion diagrams for model 2 with the
dispersion diagrams from models 1 and 2 of Chapter 3 plotted as well, indicated by
the red dotted line for the lower layer and by the ‘star’ (⋆) markers for the upper
layer. Panels (c) and (d) show the ratio of total energy density in the lower layer,
ETL , to total energy density in both layers, ETI , for the lines A, B, C, D, E, F, G and
H from panels (a) and (b).
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However, the dispersion relation for v̂z is much simpler and is presented below:

sin(q0eD̂1) sin(q00D̂2) (1 − ρr) + 2 sin(q0eD̂1) cos(q00D̂2)q00ρr

+2 sin(q00D̂1) cos(q0eD̂1)q0e = 0.
(4.11)

Here, D̂1 = D1/He and D̂2 = D2/H0. Due to the very large temperature increase
between the two layers, ρr is a small parameter so that the approximation, ρ1/2r ≪ 1,
can be made. Therefore any terms of order (ρr)

1/2 or higher order can be neglected
resulting in the following dispersion relation

sin(q00D̂2)

(
tan(q0eD̂1) + 2q0e

)
≈ 0. (4.12)

The first term just refers to sound waves trapped in the upper layer, reflected by
the temperature discontinuity. The second term refers to sound waves in the lower
layer with a correction due to the discontinuity. If we denote δ = 2/D̂1 and suggest
that this is a small quantity, it is possible to use a perturbation method to find an
approximation of the frequencies

ω̂2 ≈
(ρr D̂1 + D̂2)

2

ρr

(
1

4
+

m2π2

D̂2
1

(
1 − δ + δ2 +O(δ3)

)2)
(4.13)

Taking the lowest order approximation in δ of Eq. (4.13), it can be seen that the
frequencies are slightly lower when compared to that of the single layer (SL) which
is shown below as a comparison

ω̂2
SL =

(ρr D̂1 + D̂2)
2

ρr

(
1

4
+

m2π2

D̂2
1

)
. (4.14)

Therefore, to the lowest order in δ, the frequency shift, ∆ω̂2, is given by

∆ω̂2 = −4
(ρr D̂1 + D̂2)

2

ρr

m2π2

D̂3
1

. (4.15)

This result agrees with those plotted Fig. 4.15a and b that the frequency of the lower
layer is reduced (for small wave-numbers) due to having some continuity across the
layer, while the frequency of the upper layer solution seems to be almost identical.
Physically, due to the huge discontinuity in density, almost all the energy of an
incident wave will be reflected however, some will be transmitted as the boundary
does let energy through, regardless of how small that is. This changes the exact
location of the node and in turn lowers the frequency.
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4.6 Summary and Discussion

In this section we considered two-layer bounded models. A two-layer model was
suggested by Yelles Chaouche and Abdelatif (2005) but with an upper boundary
condition of finite energy density as z → ∞. The wavenumber was found to have
an imaginary component. In a two-layer bounded atmosphere this was not seen to
occur. Two different model atmospheres were considered. The first was analogous
to the temperature jump between the photosphere/low chromosphere to the high
chromosphere. Eigen-frequencies were found within the band of 3-minute and 5-
minute oscillations for viable physical parameters. The larger the wave-number, k̂x,
the less energy of the wave was contained in the upper layer. The energy of the
so-called ‘magnetic’ modes was found to decrease rapidly with height. This physically
is caused by the change in the Alfvén speed with height and therefore the wave is
reflected. However, it was shown for certain modes e.g. as a typical example, for point
1 of Fig. 4.3 when ω = 0.046 s−1 and λ = 4.3 Mm, an ‘acoustic-gravity’ mode was
seen to share wave energy relatively equally between the lower atmosphere and the
upper atmosphere (with a small drop in total wave energy across the discontinuity).
This distribution of wave energy, along with dissipative processes, could lead to
heating in the higher solar atmosphere.

The second model considered a transition in temperature reminiscent of that
between the lower solar atmosphere and the corona; a factor of 400 increase in
temperature was implemented in the equilibrium. It was found that solutions to
the dispersion relation were practically those of the upper and lower single layer
atmospheres. Physically, this just shows that the large density discontinuity acts as a
physical barrier to reflect waves incident on this surface. However, it was also found
that around the avoided crossings there would always be some inherent coupling
where the solutions change character between the upper and lower layer solutions,
with the transition sometimes smooth. This coupling is important as it allows wave
energy to leak from one layer to another. Given the huge change (i.e. drop) in
inertia of going from the chromosphere to the corona, even a small leakage may have
considerable effects on the oscillations in the corona.



Chapter 5

Effect of Steady Flow on
Magneto-Acoustic Gravity Surface
Waves

5.1 Introduction

Surface waves are ubiquitous in nature, the most obvious example being the waves
seen on the surface of the ocean. Surface waves have been explored to a large extent
in a solar physics/MHD context. The classic paper by Roberts (1981a) studied the
surface waves at a magnetic interface, with non-dispersive slow and fast MA surface
waves present. Roberts (1981b) then studied surface waves in a symmetrical magnetic
slab, showing that the famous sausage and kink modes existed in this context, along
with dispersion being present due to the thickness of the slab compared to the wave
number of the oscillation. This case was extended to a slab in a magnetic environment
(Edwin and Roberts, 1982) and to cylindrical co-ordinate system (Edwin and Roberts,
1983).

However, none of these cases considered the effect of gravitational stratification
on the propagation of surface modes which leads to dispersion. Miles and Roberts
(1992) considered the case of an isothermal, stratified plasma with an exponentially
decreasing magnetic field above a non magnetic isothermal plasma of higher density.
The exponentially decreasing magnetic field led to a constant Alfvén speed. The
stratification was not only responsible for the introduction of dispersion but also
led to cut-off curves where modes with finite energy density could not exist. In
some cases, the fast-mode does not exist regardless of the wave-number combination.
Miles et al. (1992) extended this work to the case of a uniform magnetic field, so that
now the Alfvén speed was not constant. This would lead to singularities at which
resonance can occur, however, their study did not consider this. Due to the varying
Alfvén speed not only surface modes are present but also body modes.
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The Sun does not only have different surface structures but also can exhibit
flows on both small and large scales, as was discussed in Chapter 1. The differential
rotation of the Sun can act as a shear flow situation between the solar atmosphere
and the solar interior, although the shear is rather low in comparison to the phase
speeds of the waves. The Evershed flow, found above sunspots flowing away from
them or further away towards them, is another situation where shear flows occur in
the solar atmosphere, however the flow velocities in this situation can be much larger
(Evershed, 1909). Flows, in wave theory, can lead to Doppler shifts in the frequencies
of the waves in a single uniform medium. In systems with interfaces and shear flows
it is possible that waves are decelerated or accelerated, depending on the direction of
wave propagation relative to the flow. It can even reverse wave directions, leading
to phenomena such as negative energy wave instabilities or the Kelvin-Helmholtz
instability.

The work in this chapter is the natural extension to and generalisation of the
work in Miles and Roberts (1992) with the addition of a uniform flow in the lower
non-magnetic region and is taken from the work in Erdélyi and Mather (2017). A
governing equation is derived for both separate regions. A dispersion relation for
wave propagation is then derived and the limiting case of small wavelength is taken,
along with the case of a small density ratio and small flow velocity. The cut-off
curves of wave propagation are considered along with how the flow affects these. The
dispersion relation is then solved numerically and dispersion diagrams are plotted.

5.2 Governing Equation

Consider a plane-parallel background plasma stratified by gravity in the negative
z-direction i.e. g = −gẑ, where ẑ is the unit vector in the z-direction. A magnetic
field, perpendicular to the gravitational field (the z-axis), is embedded within the
plasma, and arbitrarily varies in the z-direction i.e B(z) = (B(z), 0, 0). The kinetic
pressure, p(z) and plasma density, ρ(z), are both in general functions of z along
with a horizontal equilibrium flow v = (u(z), 0, 0). For magneto-hydrostatic balance,
from the momentum equation given by Eq. (1.7), the following condition must be
satisfied:

d
dz

(
p(z) +

B2(z)
2µ0

)
= −gρ(z). (5.1)

Considering small perturbations (denoted by subscript 1 throughout this chapter)
around this background equilibrium, the Equations (1.13)-(1.17) reduce to the
following

∂ρ′

∂t
+ (v(z) · ∇) ρ′ + (v′ · ∇)ρ(z) + ρ(z)(∇ · v′) = 0, (5.2)

∂p′

∂t
+ (v(z) · ∇) p′ + (v′ · ∇)p(z) + γp(z)(∇ · v′) = 0, (5.3)
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ρ(z)
(
∂v′

∂t
+ (v(z) · ∇) v′

)
= − ∇p′ + (∇ × B′) ×

B(z)
µ0
+ (∇ × B(z)) ×

B′

µ0
− ρ′gẑ, (5.4)

∂B′

∂t
= (B(z) · ∇) v′ − B(z) (∇ · v′) − (v′ · ∇)B(z)

− (v(z) · ∇)B′ + (B′ · ∇) v(z),
(5.5)

∇ · B′ = 0. (5.6)

In a compressible ideal plasma, two-dimensional, linear, isentropic disturbances about
the equilibrium take the form

ξξξ(x, z, t) = (ξ̂x(z), 0, ξ̂z(z))ei(kx x−ωt). (5.7)

Here the Lagrangian displacement, ξξξ, has been introduced and is given by the relation

ξξξ =
iv′

Ω(z)
, (5.8)

where,
Ω(z) = ω − u(z)kx, (5.9)

is the Doppler-shifted wave frequency. The Alfvén wave has been decoupled (pertur-
bations lying solely in the y-direction) and, as such, two coupled equations relating
ξ̂z and the divergence of the velocity perturbation, ∆ = ∇ · v′, can be formed

i∆(z)
Ω(z)

=
ξ̂z(z)′Ω2(z) − ξ̂z(z)k2xg
Ω2(z) − k2c2s (z)

, (5.10)

−ρ(z)
(
Ω
2(z) − k2xv

2
A(z)

)
ξ̂z =

(
ξ̂zp(z)′ −

∆c2s (z)ρ(z)
iΩ(z)

)′
+

(
B(z)
µ

(ξz(z)B(z))′
)′

+
iρ(z)∆(z)
Ω(z)

g + ξ̂z(z)ρ(z)′g.
(5.11)

The divergence can then be eliminated between Equations (5.10) and (5.11) to obtain
a second-order ordinary differential for ξ̂z that governs MAG waves in an arbitrarily
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stratified medium with an incompressible flow:

d
dz

[
ρ(z)(c2s (z) + v

2
A(z))(Ω

2(z) − c2T (z)k
2
x )

Ω2(z) − c2s (z)k2x

dξ̂z(z)
dz

]

+

⌈
ρ(z)(Ω2(z) − v2A(z)k

2
x )

−
g2k2x ρ(z)

Ω2(z) − c2s (z)k2
−

d
dz

(
gk2x ρ(z)c

2
s (z)

Ω2(z) − c2s (z)k2

) ⌋
ξ̂z(z) = 0,

(5.12)

where γ = 5/3 is the adiabatic index, and µ0 is the magnetic permeability of free-space.
Here,

vA(z) =
B(z)

(µ0ρ(z))1/2
(5.13)

is the Alfvén speed, and

cT (z) =
cs(z)vA(z)

(c2s (z) + v2A(z))
1/2

(5.14)

is the tube speed. Equation (5.12) can in essence be derived from the more general
differential equation, given in Goedbloed et al. (2010), by setting ky = 0 and By = 0.

5.3 Equlibrium Model and Governing Equations

In this section, we describe the equilibrium of a two layer system of plasmas, connected
across an interface between them at z = 0, stratified by gravity. The upper region
(z > 0) is approximated to be isothermal, with temperature, T0. An exponentially
decreasing (with height) magnetic field, B0(z), is embedded within the plasma, with
the requirement that the Alfvén speed (vA) is constant. The lower plasma region
(z < 0) is also approximated to be isothermal, with temperature, Te. From now
on, quantities above the interface (in z > 0) are denoted by the subscript ‘0’, and
quantities below (in z < 0) by the subscript ‘e’ (see Figure 5.1). The ideal gas law
relates the temperature, pressure and density together and is given by

p(z) =
kB

mav
ρ(z)T(z), (5.15)

where kB is Boltzmann’s constant, and mav the mean particle mass of the plasma.
Eq. (5.15), along with the assumptions that both plasmas are isothermal and the
background momentum balance, given by Eq. (5.4), leads to exponential pressure,



5.3 Equlibrium Model and Governing Equations 81

Te , c ,se (z),eρ p (z)e

B0(z)

T0 , c s0 , vA, ρ0(z), p0(z)

eu

g

z

z=0 x

Fig. 5.1 Equilibrium model of a single magnetic interface at z = 0 in a gravitationally
stratified atmosphere, with an exponentially decreasing horizontal magnetic field,
B0(z), in z > 0 and a horizontal constant equilibrium flow, ue, in z < 0. The
temperatures T0 and Te either side of the interface are approximated as isothermal.

density and magnetic field (for the upper region, z > 0) profiles

p(z), ρ(z), B(z) =

{
p0e−z/HB, ρ0e−z/HB, B0e−z/2HB, z > 0,

pee−z/He, ρee−z/He, 0, z < 0.
(5.16)

Here, HB = c2s0/Γg and He = c2se/γg are the isothermal density/pressure scale-heights
above and below the interface, respectively, and

Γ =
2γβ

γ + 2β
. (5.17)

is the magnetically modified adiabatic exponent with β = c2s0/v
2
A. We note that in

the limit of zero magnetic field Γ = γ and HB = H0 = c2s0/γg. Here, cs0 = (γp0/ρ0)1/2

and vA = B0/(µ0ρ0)
1/2 are the sound and Alfvén speeds in the magnetic atmosphere,

respectively, and cse = (γpe/ρe)
1/2 is the sound speed in the field-free region. The

following notations have been made: ρ0 = ρ0(0+), ρe = ρe(0−), p0 = p0(0+), pe =

pe(0−), and B0 = B0(0+). The exponential profiles for the density, pressure and
magnetic field lead to constant sound and Alfvén speeds above and below the interface.
The profiles for the temperature, sound speed, Alfvén speed and background flow
speed are given below:

T(z), cs(z), vA(z), u(z) =

{
T0, cs0, vA, 0, z > 0,

Te, cse, 0, ue, z < 0,
(5.18)
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where T0, Te, cs0, cse, vA and ue are all constants.

5.3.1 Region with Magnetic Field

Using Eq. (5.12) and inserting background equilibrium of the upper region (z > 0)
into this returns a second-order homogeneous ODE:

d2ξ̂z(z)
dz2

−
1

HB

dξ̂z(z)
dz

+ AB ξ̂z(z) = 0, z > 0, (5.19)

where

AB =
(Γ − 1)g2k2x + (ω

2 − k2x c2s0)(ω
2 − k2xv

2
A)

(c2s0 + v
2
A)(ω

2 − k2x c2T )
. (5.20)

Eq. (5.19) has constant coefficients and possesses the general solution:

ξ̂z(z) = d1e
(

1
2HB
+M0

)
z
+ d2e

(
1

2HB
−M0

)
z
, z > 0, (5.21)

where

M0 =

√
1 − 4ABH2

B

2HB
, (5.22)

and d1 and d2 are arbitrary constants.

5.3.2 Non-Magnetic Region with Background Flow

Using background equilibrium quantities in the lower region (z < 0) with the bulk
flow and inserting these into Eq. (5.12) gives the following second-order homogeneous
ODE

d2ξ̂z(z)
dz2

−
1

He

dξ̂z(z)
dz

+ Aeξ̂z(z) = 0, z < 0, (5.23)

where

Ae =
(γ − 1)g2k2x +Ω

2(Ω2 − k2x c2se)

Ω2c2se
, (5.24)

with
Ω = ω − kxue. (5.25)

Equation (5.23) possesses the general solution

ξ̂z(z) = d3 exp
(

1

2He
+ Me

)
z + d4 exp

(
1

2He
− Me

)
z, z < 0, (5.26)

where

Me =

√
1 − 4AeH2

e

2He
, (5.27)

and d3 and d4 are arbitrary constants.
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5.4 Deriving Dispersion Relation

There are four solutions to Eqs. (5.19) and (5.23), given by Eqs. (5.21) and (5.26),
therefore there are four unknown constant of integration: d1, d2, d3, and d4. This
requires four physical boundary conditions, needed to derive a dispersion relation for
this model and eliminate the constants.

The first two of these boundary conditions are that the total of the kinetic
[ρ(z)̂v2z (z)] and magnetic [B0(z)B′

0(z)̂vz(z) +B2
0(z)dv̂z(z)/dz] energy density remains

finite as |z | → ∞. It is also assumed that the conditions 4ABH2
B < 1 and 4AeH2

e < 1

are held so that only MAG surface waves are studied here, as M0 and Me are then
both real and the eigenfunctions do not oscillate in space, this will be discussed in
more detail in Section 5.5.1. Here,

v̂1z(z) =
iξ̂z(z)
Ω(z)

. (5.28)

Application of these boundary conditions reveal that for physically meaningful
solutions, d1 = d4 = 0. The eigenfunction, ξ̂z(z) can then be written for the upper
and lower plasma regions as

ξ̂z(z) =


d2 exp
(

1
2HB

− M0

)
z, z > 0,

d3 exp
(

1
2He
+ Me

)
z, z < 0.

(5.29)

It is simple to see from Eq. (5.29) that ξ̂z(z) → 0 as z → −∞. However, for z > 0 ξ̂z(z)

is exponentially decreasing with height only if AB < 0 (Eq. 5.22) and is otherwise
exponentially increasing with height. The total kinetic and magnetic energy density
still remains finite, even for this case.

The remaining solutions must be connected across the interface at z = 0, this
requires two extra boundary conditions. The first is the continuity of the Lagrangian
displacement across the interface. The second is the continuity of the total (gas plus
magnetic) Lagrangian pressure perturbation across the interface at z = 0:{

ξ̂z(z)
}

z=0
= 0, (5.30){

p̂T1(z) − ρ(z)gξ̂z(z)
}

z=0
= 0, (5.31)

where

p̂T1(z) = −ρ(z)
(c2s (z) + v

2
A(z))(Ω

2(z) − k2x c2T (z))

Ω2(z) − k2x c2s (z)
dξ̂z(z)

dz

+
Ω2(z)gρ(z)
Ω2(z) − k2x c2s (z)

ξ̂z(z), (5.32)
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is the Eulerian perturbation of total pressure. The two boundary conditions, Eqs.
(5.30) and (5.31), are applied to the solutions given by Eq. (5.29). This results in
the dispersion relation:

ρ0(c2s0 + v
2
A)(ω

2 − c2T k2x )

ω2 − c2s0k2x

(
M0 −

1

2HB

)
+

ρ0gk2x c2s0
ω2 − c2s0k2x

=
ρec2se

Ω2 − c2sek2x

[
gk2x −

(
1

2He
+ Me

)
Ω
2

]
,

(5.33)

where cT = cs0vA/(c2s0 + v2A)
1/2 is the tube speed in the magnetic atmosphere. Eq.

(5.33) governs the parallel (to magnetic field) propagation of MAG surface waves
at a magnetic interface in a gravitationally stratified atmosphere, with an upper
isothermal magnetic region and a lower non-magnetic isothermal region moving
under a constant bulk motion.

5.4.1 Incompressible Limit

To explore the effect of the flow on the surface waves given by Eq. (5.33) we take
the incompressible limit of the dispersion relation. To illuminate the derivation of
the incompressible limit, Eq. (5.33) can be written in a form similar to that found
in Miles and Roberts (1992):

ω2

k2x
=

ρ0

ρ0 + ρe
(Me + 1/2He)m0

(M0 − 1/2HB)me

v2A

− g

ρ0c2s0(
ω2 − c2s0k2x

) −
ρec2se(

Ω2 − c2sek2x
)

ρ0
(M0 − 1/2HB)

m0
+ ρe

(Me + 1/2He)

me

,

(5.34)

where

m0 =

(
ω2 − v2Ak2x

) (
ω2 − c2s0k2x

)(
c2s0 + v

2
A

) (
ω2 − c2T k2x

) , (5.35)

and

me =

(
Ω2 − c2sek2x

)
ω2

c2seΩ
2

. (5.36)

The incompressible limit of Eq. (5.34) is taken, in which we assume that the sound
speeds in both regions tend to infinity compared to the phase speed (ω/kx) of the
waves i.e. cse, cs0 → ∞. For further analytic progress it is assumed that ρ0(z) = ρ0
and ρe(z) = ρe. Therefore me → −k2xω

2/Ω2, m0 → −k2x and Me, M0 → kx. Eq. (5.34)
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then reduces to the following second order polynomial for the phase speed, ω/kx:(
ω

kx

)2
−

2ue

1 + ρr

ω

kx
+

(
u2e

1 + ρr
−

v2Aρr

1 + ρr
+

g

kx

(
1 − ρr

1 + ρr

))
= 0. (5.37)

Here, ρr = ρ0/ρe. When we solve Equation (5.37), the solution for the phase speed
can be written as

ω

kx
=

ue

1 + ρr


1 ±


ρr

©«
(1 + ρr)

(
v2Aρr +

g

kx
(1 − ρr)

)
ρru2e

− 1

ª®®®®¬

1/2

. (5.38)

Immediately, it is evident from Eq. (5.38) that, when the quantity within the square
root is less than zero, there is a damped wave as well as an amplified wave. This can
be written in the form of an inequality,

(1 + ρr)

(
v2A +

g

kx

(1 − ρr)

ρr

)
< u2e . (5.39)

The critical wave number (denoted kc) for the Kelvin-Helmholtz instability is given
by

kc =
(1 − ρr)(1 + ρr)g

ρr
(
u2e − v2A(1 + ρr)

) . (5.40)

The Rayleigh-Taylor instability is not studied here, the density of the upper plasma,
ρ0, is lower than the density in the lower plasma, ρe, so that kc is always a positive
number. We can conclude from Eq. (5.39) that the presence of gravity acts to
increase the threshold for the Kelvin-Helmholtz instability. We introduce the following
notation

k̄ =
kxv

2
A

g
, ūe =

ue

vA
. (5.41)

Here, k̄ is a dimensionless wave number and ūe is the dimensionless flow speed. The
critical flow speed, ue,c, is when Eq. (5.39) is taken as an equality. Fig. 5.2 plots the
variation ūe,c against k̄. It is immediately evident from Fig. 5.2 that as k̄ increases
ue,c decreases, although this reaches a limit as k̄ → ∞, which is essentially the limit
of zero gravity. The limit taking k̄ → 0 results in ūe,c → ∞. There are two separate
effects of increasing ρr . The first is for small k̄ where the increase appears to decrease
ūe,c. However, the second effect is for large k̄. The increase of ρr increases ūe,c.
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Fig. 5.2 Variation of the dimensionless critical flow speed, ūe,c, with respect to the
dimensionless wave number, k̄,.

5.4.2 Small Wavelength (kxHe → ∞) and Cold Plasma (β = 0)

Limit

We take the limit as kxHe → ∞ of Equation (5.33). This reduces to the following
equation:

ρ2r

(
ω2 − k2xv

2
A

) (
ω2 − k2x c2T

) (
c2s0 + v

2
A

)
ω2 − k2x c2s0

=
Ω4

Ω2 − k2x c2se
. (5.42)

We note that Eq. (5.42) may have spurious roots as it is derived by squaring terms.
Clearly, Eq. (5.42) is still insoluble, as it is essentially a sixth order polynomial that
has no analytic solution. Therefore, for further analytic progress the cold plasma
limit (β = 0) is taken. This is equivalent to setting cs0 = 0 in Eq. (5.42) and so the
slow surface mode is not present in this limit and only the fast surface mode can be
studied. Eq. (5.42) then reduces to the following fourth-order polynomial in Ω̂:

Ω̂
4

(
1 −

2ρr

γ

)
−
4ρr ûe

γ
Ω̂
3 − Ω̂2

(
2ρr

γ
û2e −

4

γ2
−
2ρr

γ

)

+
4ρr ûe

γ
Ω̂ +

(
2ρr û2e
γ

−
4

γ2

)
= 0.

(5.43)

Here, we have introduced the two following dimensionless quantities

Ω̂ =
Ω

kxcse
, ûe =

ue

cse
. (5.44)
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Due to background pressure balance, along with the cold plasma approximation
(where essentially p0 = 0) the following relation is found: v2A = 2c2se/ρrγ. Eq. (5.43) is
a fourth-order polynomial and does possess a completely analytic solution. H owever
these solutions are large and unwieldy and we therefore opt to use a perturbation
method to find approximate solutions to it. The two approximations are:

1. the limit of small flow i.e. ûe = ϵ , where ϵ ≪ 1;

2. a large discontinuity in density i.e. ρr = ϵ , where ϵ ≪ 1.

5.4.2.1 Limit of Small Flow

In this limit, we assume a regular perturbation series for Ω̂ of the form (with ûe = ϵ)

Ω̂ = Ω̂0 + ϵΩ̂1 + ... (5.45)

Inserting this approximation into Eq. (5.43) we obtain for the order ϵ0 balance:

Ω̂
4
0

(
1 −

2ρr

γ

)
+ Ω̂2

0

(
4

γ2
+
2ρr

γ

)
−

4

γ2
= 0. (5.46)

The balance for ϵ1 gives the following equation:

Ω̂1 =
ρr

(
Ω̂2
0 − 1

)
γ

(
Ω̂2
0

(
1 −

2ρr

γ

)
+

2

γ2
+
ρr

γ2

) . (5.47)

Eq. (5.46) is a quadratic in Ω̂2
0 and can thus be easily solved by conventional means

to obtain a solution for Ω̂0

Ω̂
2
0 =

2 + ρrγ

γ (2ρr − γ)

(
1 −

(
1 +

4γ (γ − 2ρr)

(2 + ρrγ)
2

)1/2)
. (5.48)

In general, there should be four solutions to a fourth order polynomial, two of the
solutions have been discarded as they are purely imaginary and have been introduced
by squaring the dispersion relation. The frequency is then approximated as

ω

kxcse
= ±Ω̂0 +

ue

cse

γ
(
Ω̂2
0 (γ − ρr) + ρr

)
(
(γρr − 2)2 + 4γ2

)1/2 +O(û2e ), (5.49)

Equation (5.49) must satisfy the following conditions for surface waves to exist:

(1) ω2 < k2xv
2
A, (2) Ω2 < k2x c2se.
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Since there is gravity in the system, the density ratio is constrained between the
values of zero and one, i.e. 0 ≤ ρr ≤ 1, so that we do not study the Rayleigh-Taylor
instability. We, therefore, have a minimum value of the Alfvén speed v2A = 2c2se/γ.
Therefore vA > cse (taking the value of the adiabatic index, γ, to be 5/3), and
therefore we only need to fulfil condition (2) above when ue = 0. We find that
solutions do not exist for Ω̂2

0 = 1 (i.e. Ω2 = k2x c2se) and that the function Ω̂2
0(ρr), from

Equation (5.48), is continuous (this is confirmed by considering the Taylor expansion
around the point γ − 2ρr = 0). If a value for Ω̂2

0 can be found that is lower than one,
then all values of Ω̂2

0 must be lower than one. In the limit ρr → 0,

Ω̂
2
0 = −

2

γ2

(
1 − (1 + γ2)1/2

)
≈ 0.68.

(5.50)

Therefore Ω2 < k2x c2se and surface waves exist in this limit, and therefore surface
waves must exist everywhere for ûe = 0. As is expected, Eq. (5.50) agrees with the
work of Roberts (1981a) in which MA surface waves were studied with vA ≫ cse, cs0

and no background flow, which is the situation here as: kxHe → ∞, we study the
cold plasma approximation (vA ≫ cs0), ρr → 0 (vA ≫ cse) and to zeroth order there
is no background flow.

Eq. (5.48) shows that Ω̂0 is a function of ρr . We find that the derivative of Ω̂(ρr)

with respect to ρr is negative when ρr = 0. We also find that there are no turning
points of this function. Therefore, the dimensionless frequency is bounded above by
0.86 at ρr = 0, so that the phase speed of the wave is at most 0.82 times the sound
speed in the lower layer, cse.

The upper panel of Fig. 5.3 plots the dimensionless frequencies for the backward
propagating waves, given by Eq. (5.49), as ρr varies. The lower panel shows the
dimensionless frequency shift, ∆ω/kxue, computed from Eq. (5.47). The upper panel
is plotted for dimensionless flow speeds of ûe = 0.0, 0.01, and 0.1. One can see from
the upper panel that increasing the dimensionless flow speed increases the frequency
shift. The lower panel shows that the frequency shift is largest for ρr = 1. We
therefore conclude that, the closer the densities, the larger the frequency shift is
when flow is present.

5.4.2.2 Limit of Small Density Ratio

In the limit of a small density ratio, we now take as the small parameter, ϵ = ρr ,
where ϵ ≪ 1. We, again, use the perturbations series of the form

Ω̂ = Ω̂0 + ϵΩ̂1 + ... (5.51)
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Fig. 5.3 Upper panel: the dimensionless frequency, ω/kxcse computed from Eq. (5.49)
varying with respect to the density ratio ρr . Lower panel: the dimensionless frequency
shift, ∆ω/kxue, computed from Eq. (5.47), varying with respect to ρr once again.
The legend indicates the solutions that correspond to the values ûe = 0.0, 0.01, and
0.1. The adiabatic index, γ, is taken to be 5/3.

If this approximation is inserted into Eq. (5.43) and powers of ϵ are collected, we
have for the ϵ0 balance the equation

Ω̂
4
0 + Ω̂

2
0

4

γ2
−

4

γ2
= 0. (5.52)

Eq. (5.52) is a quadratic in Ω̂2
0 and can be solved easily with solutions given by

Ω̂
2
0 =

2
(
−1 ±

(
1 + γ2

)1/2)
γ2

. (5.53)

It is interesting to note that this equation agrees with that derived by Roberts
(1981a) for vA ≫ cs0, cse which is in essence the cold plasma approximation here
with a low density ratio. In that paper the frequency was derived for surface waves
at a magnetic interface, without stratification or flow. Here, we take the limit of
Eq. (5.33) as kxHe → ∞, which is equivalent to approximating that there is no
gravitational force, as the wavelengths of the waves are small compared to the change
in background quantities, meaning that the stratification has little effect on the
waves. Therefore, the case considered here and the one considered in Roberts (1981a)
are the same and thus it is natural they produce the same answer.
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Fig. 5.4 Variation of the dimensionless frequency, ω/kxcse, against dimensionless flow
speed, ûe, for the backward-propagating solution for ρr = 0 (blue dotted line) and
0.1 (orange dash-dotted line).

The balance for the next order term (ϵ1) results in the following equation:

Ω̂1 =

(
Ω̂2
0 − 1

) (
Ω̂0 + ûe

)2
2Ω̂0

(
2Ω̂2

0 + ρ
2
r v̂

4
A

) . (5.54)

Using both Eqs. (5.53) and (5.54) the dimensionless frequency can be written as

ω

kxcse
=

(
±Ω̂0 + ûe

) ©«1 ± ρr

γ
(
Ω̂2
0 − 1

) (
±Ω̂0 + ûe

)
4Ω̂0

(
±

(
1 + γ2

)1/2) ª®®¬ . (5.55)

Eq. (5.55) shows that the change in frequency is due overwhelmingly to the change
in the flow speed and increases linearly with an increase in flow. Considering the
zeroth order solution, Ω̂0, which is the Doppler shifted frequency, we find that

Ω̂
2
0 ≈ 0.68, (5.56)

and thus the surface wave condition Ω̂ < 1 is satisfied in the zeroth order approxima-
tion. Now the other condition is that ω2 < kxv

2
A. This is always satisfied because as

ρr → 0, vA/cse → ∞ and to zeroth order ω/kxcse ≈ ±0.82 + ûe which, unless the flow
speed is of the order of the Alfvén speed, will satisfy the surface wave condition.

Fig. 5.4 plots the variation of the dimensionless frequency, ω/kxcse for the
backward propagating solutions given by Eq. (5.55) for ρr = 0 and 0.1. Clearly
there is a linear increase in ω/kxcse with respect to ûe. The gradient is unaffected
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by a small increase in ρr . If the flow is greater than the phase speed of the wave in
the static atmosphere, the direction of propagation is switched and the oscillation
transitions from a backward to a forward propagating wave.

5.5 Numerical Solution of the Dispersion Relation

5.5.1 Cut off Curves

The dispersion relation, Equation (5.33) is to be solved subject to the constraints
that ω , ±kxcs0, ω , kx(ue ± cse) and that

1 − 4ABH2
B > 0 and 1 − 4AeH2

e > 0. (5.57)

These two latter constraints are required for surface wave solutions, i.e. evanescent
(non-propagating) modes in the z direction. This means that in the ω − kx plane
these constraints (where both are fulfilled) determine those permitted regions of the
(ω, kx) parameter space of propagation where magnetoacoustic-gravity surface modes
given by Equation (5.33) may propagate. The boundary curves to these regions
represent cut-off curves (cut-off frequencies) for the modes. Outside these regions,
where either (1− 4ABH2

B) or (1− 4AeH2
e ) is negative, spatially oscillating leaky-modes

arise in which we are not interested.
The condition 1 − 4AeH2

e > 0 gives rise to the cut-off curves R1, R2, R3 and R4

given by
R1,2 = ue/cse + P1,2, R3,4 = ue/cse − P2,1, (5.58)

where

P2
1,2 =

1 + 4k2x H2
e ∓

√
(1 + 4k2x H2

e )
2 − 64γ−1

γ2
k2x H2

e

8k2x H2
e

. (5.59)

We note that P2 > P1 > 0. The regions where 1 − 4AeH2
e > 0 is satisfied are defined

by either
R1 <

ω

kxcse
< R2 (5.60)

or
R3 <

ω

kxcse
< R4. (5.61)

The other condition, 1− 4ABH2
B > 0, generates the cut-off curves R5, R6, which satisfy

the equation

4
c4
s0

c4se

Γ2


Γ − 1 + γ2k2x H2

e

(
R2
5,6 −

c2
s0

c2se

) (
R2
5,6 −

v2
A

c2se

)
(

c2
s0

c2se
+

v2
A

c2se

) (
R2
5,6 −

c2T
c2se

)

= 1, (5.62)
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(note that R6 > R5 > 0) and the regions where 1 − 4ABH2
B > 0 is met are either

R6 <
ω

kxcse
<

cT

cse
, (5.63)

−
cT

cse
<

ω

kxcse
< −R6, (5.64)

max
(
−

cT

cse
,−R5

)
<

ω

kxcse
< min

(
cT

cse
, R5

)
, (5.65)

max
(

cT

cse
, R5

)
<

ω

kxcse
< R6, (5.66)

or
− R6 <

ω

kxcse
< min

(
−

cT

cse
,−R5

)
. (5.67)

We note that both positive and negative phase speed (ω/kx) solutions of the dispersion
relation are allowed. Now, considering the phase speed regions determined by
Equations (5.60)-(5.61) and (5.63)-(5.67), we can easily deduce the permitted regions
where the two constraints written in Equation (5.57) are fulfilled.

In the limit kxHe → ∞ (which is equivalent to g → 0), we obtain

R1 →
ue

cse
, R2 →

ue

cse
+ 1, (5.68)

R3 →
ue

cse
− 1, R4 →

ue

cse
, (5.69)

R5 → min
(
cs0

cse
,
vA

cse

)
, R6 → max

(
cs0

cse
,
vA

cse

)
. (5.70)

The cut-off curves are illustrated in the next section.

5.5.2 Numerical Results

We now solve the dispersion relation, Eq. (5.33), numerically and study the modes
that are found. The goal is to examine the results of increasing the background flow,
ue, on the surface modes.

A magnetic interface may support one or two surface modes, when it is static
and gravity is neglected (depending on the relative strengths of the magnetic fields
and the temperatures on either side). These modes are the slow and fast MA surface
waves (Roberts, 1981a). The fast mode only occurs when when both vA > cs0 and
cse > cs0 (i.e. the field-free region is hotter than the magnetic region). Both the slow
and fast waves have sub Alfvénic phase speeds if these conditions are met.

When gravity is included in the system, MAG surface modes arise. They are the
modification of the fast and slow MA surface waves by gravity (see e.g. Miles and
Roberts, 1992). However when the upper, magnetic region is cooler than the lower
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Fig. 5.6 The dimensionless phase speed of MAG surface waves versus dimensionless
horizontal wavenumber for cs0/cse = 0.9, vA/cse = 1.0 and (a) ue/cse = 0.0, (b)
ue/cse = 0.2, (c) ue/cse = 0.8, (d) ue/cse = 1.12. The permitted regions of propagation
for surface waves are shaded grey. The effect of increasing flow on the fast and slow
magnetoacoustic-gravity modes can be seen.

field free plasma, (cse > cs0), the f -mode, modified by the magnetic field, may also
propagate, although for a limited range of the dimensionless horizontal wave-number,
kxHe. It was shown by Miles and Roberts (1992) that the f -mode becomes the fast
mode as the strength of the magnetic field is increased. In addition, the fast MAG
surface mode merges with the fast MA wave of the non-stratified (g = 0) medium
when kxHe → ∞ and vA > cs0. If the field-free region is cooler than the upper
magnetic region, the f -mode is replaced by a surface gravity wave.

In what follows, we investigate the influence of increasing the background equilib-
rium flow on the modes considered above. We solve the dispersion relation, Eq. (5.33),
numerically and plot the dimensionless horizontal phase speed, ω/kxcse, as a function
of the dimensionless horizontal wavenumber, kxHe. We set γ = 5/3 throughout.

Figure 5.5 is plotted for cse > cs0 (specifically cs0/cse = 0.9), and vA < cs0

(specifically vA/cse = 0.5), for six different values of the dimensionless flow speed,
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Fig. 5.7 The dimensionless phase speed of surface MAG waves as a function of
the dimensionless horizontal wavenumber for cs0/cse = 1.4, vA/cse = 0.75 and (a)
ue/cse = 0.0, (b) ue/cse = 0.5, (c) ue/cse = 0.83, (d) ue/cse = 0.9. The permitted
regions of propagation for surface waves are shaded grey. The effect of increasing
flow on the slow magnetoacoustic-gravity mode can be seen.

ue/cse, ascending from zero (Figures 5.5a-f). The plasma-beta value is approximately
0.98, with a density ratio (ρ0/ρe) of 0.98. These parameters can approximate the
temperature minimum region in the solar photosphere embedded in an overlying
horizontal magnetic field (e.g. in the higher parts of the penumbra).

The permitted regions of propagation for surface modes (see Section 5.5.1)
bounded by the cut-off curves R1, R2, R3, R4, ±R5, and ±R6 (shown as dashed lines)
are shaded grey. The dot-dashed line represents the curve AB = 0 (see Equation (5.20))
and divides the region of evanescence in the upper medium (z > 0) into a region
(shaded dark grey) where the vertical velocity component is exponentially growing
with height, z, (here AB > 0), from a region (shaded light grey) where it decreases
with height (here AB < 0). We note again that in the lower region, z < 0, the vertical
velocity component always becomes smaller with height.
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Fig. 5.8 The variation of the dimensionless phase speed of surface MAG waves as a
function of the dimensionless flow velocity at a given wavenumber for cs0/cse = 0.9,
vA/cse = 1.0. Cases are: (a) kxHe = 1.0, (b) kxHe = 5.0 and (c) kxHe = ∞. The
permitted regions of propagation for surface waves are shaded grey. The effect of
increasing the overall magnitude of the flow on the fast and slow magnetoacoustic-
gravity modes can be seen. The modes shown here are the same fast and slow MAG
surface modes as those displayed in Figure 5.6.

The dot-dashed horizontal lines in Figure 5.5 correspond to ω = ±kxcT and the
dotted horizontal lines correspond to the asymptotes to which the MAG surface
modes tend as kxHe → ∞. The limit kxHe → ∞ is equivalent to g → 0, where the
asymptotes can be determined by solving the non-gravity dispersion relation that is
obtained from the dispersion relation (5.33) in the limit of zero gravity.

We note that with the parameters chosen as cs0/cse = 0.9 and vA/cse = 0.5, only
the slow surface mode can propagate in the zero-gravity limit and therefore for large
kxHe. Thus, in Figure 5.5a (which corresponds to the static background case) we
show that the slow MAG mode (the fast mode is absent) is only present within the
light grey region (AB < 0). At lower wave numbers (for a limited range of wave
numbers) the f -mode (modified by the magnetic field) is visible. It lies entirely
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within the dark grey region (AB > 0) and therefore has a growing vertical velocity in
the upper medium (z > 0).

Modes with negative phase speeds correspond to waves propagating in the opposite,
backwards, direction. Here, in the static case, forward- (positive phase speed) and
backward-propagating (negative phase speed) waves are symmetrical counterparts to
the ω/(kxcse) = 0 axis. In the remaining figures, we examine the effect of increasing
the equilibrium flow on the symmetrical modes of the static equilibrium.

The cut-off curves R1, R2, R3, and R4 are shifted upwards as the flow increases
(see Equation (5.58)), but the curves ±R5,±R6 (Equation (5.62)) and AB = 0 (Equa-
tion (5.20)) do not change their position. This results in a similar upward shift of
the permitted regions of wave propagation as well as in the deformation of their
shape. We may observe that permitted regions may disappear together with the
modes propagating in them as, for example, in Figures 5.5b,c where the f -modes
vanish. New permitted regions may also appear but it does not necessarily follow
that new modes also appear (see Figure 5.5c where the permitted regions bounded
by the curves R1 and R6 and R5 and R4 appear without new modes).

The flow also modifies the frequency (and the phase speed) of the modes. However,
frequency shifts of various modes may differ in magnitude. In the series of panels
from Figure 5.5a-f, the backward-propagating slow mode shifts together with the flow
and even changes its direction of propagation, thus becoming a forward-propagating
(in the same direction as the flow) mode (see Figure 5.5c).

On the other hand, the forward-propagating slow mode mainly retains its position
(i.e. its phase speed), while the permitted regions “pass through” it as the flow
changes. The permitted region that originally contains this mode (bounded by the
curves R1 and cT/cse) gradually disappears as the flow increases (see Figures 5.5a,b),
and in the end, the mode is transferred to the permitted region containing the other
slow mode “travelling upward” with the flow (Figure 5.5c).

In what follows, the slow mode with lower phase speed continuously approaches
the upper slow mode as the flow increases, and finally, when the flow reaches a critical
value, it couples to the upper mode. The coupled slow modes form two branches,
and the gap between them continues to expand with further growing equilibrium
flows (Figures 5.5d and e). Meanwhile, the two asymptotes to which the slow modes
tend become closer until they merge with each other and cancel out, leaving behind
only the lower branch of the coupled modes (Figure 5.5f). A further increase of the
flow gradually causes this mode to disappear.

Figure 5.6 shows solutions of the dispersion relation (5.33), still taking cs0/cse = 0.9

but with vA/cse = 1.0, for four increasing values of the flow, ue/cse starting from zero
(Figures 5.6a-d). These parameters again describe a plasma that is slightly hotter in
the lower region similar to the case in Figure 5.5. However, the difference here is that
the plasma-beta value is approximately 0.98 and the density ratio between the layers
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is 0.61. This situation is applicable to the region of the upper chromosphere. In case
of these parameters, both the fast and slow MAG surface modes can propagate as is
visible in Figure 5.6a (which corresponds to the static case), both lying entirely within
the light grey region (AB < 0) where the modes have declining vertical velocities in
the upper medium (z > 0).

The upward shift of the permitted regions and of the modes (as a result of the
increasing flow) results in the disappearance of the backward-propagating fast mode
(Figure 5.6b). The upper permitted region containing the forward-propagating fast
mode is deformed as a result of the upward shift of the curve R2. This causes the
lower part of the mode to be transferred to a region (shaded dark grey) where the
mode has a growing vertical velocity with height z (Figure 5.6b). Next, at higher
flow values, the mode, while slowly shifting upward together with the asymptote to
which it tends, can only propagate at increasing wavenumbers (as shown by their
absence in the range 0 ≤ kxHe ≤ 6 in Figures 5.6c and d).

The forward- and backward-propagating slow modes behave similarly to the
case depicted in Figure 5.5. The forward propagating slow mode, whilst keeping its
relatively constant position, is transferred to the permitted region containing the
other slow mode (Figure 5.6c). Meanwhile, the backward-propagating slow mode
carried away by the flow continues to shift upwards, and thus changes its direction
of propagation (Figure 5.6c) and approaches the upper slow mode. Just before the
asymptotes - to which the slow modes tend - reach each other, the slow modes couple
and form two branches like in Figures 5.5d and e (this is not visible here). After the
connection and cancellation of the asymptotes, only the lower branch of the coupled
modes remains (Figure 5.6d), which gradually disappears as the flow increases.

Finally, in Figure 5.7 we show solutions of the dispersion relation (5.33) taking
cs0/cse = 1.4 and vA/cse = 0.75. These parameters may model a situation where the
upper plasma is hotter than the lower plasma. The plasma-beta value is approximately
4.18 and the density ratio it 0.41. We use these parameters for a direct comparison
to the model used in Miles et al. (1992). For these parameters only the slow MA
mode may propagate in the limit of no gravity (kxHe → ∞). Thus, in Figure 5.7a
(the static case), the slow MAG mode is visible. The mode is split into two parts,
the upper curve (in the dark grey region) has a growing vertical velocity, while the
lower part (in the light grey region) has a velocity decreasing in the z > 0 region.

Taking the case when the equilibrium flow increases, the modes in the dark grey
regions behave differently: the backward-propagating mode disappears, while its
forward-propagating counterpart slips out from the dark grey region into the light
grey region (Figure 5.7b) and later (at higher flow velocities) is transferred to the
permitted region bounded by the cut-off curves R4 and R5 (Figures 5.7c and d). The
slow modes behave similarly to the previous cases: the backward-propagating slow
mode shifts together with the flow (Figure 5.7b), changes its direction of propagation
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(Figure 5.7c), and finally reaches and couples to the forward propagating slow mode
(Figure 5.7d). The coupled modes gradually disappear as the flow increases further.
It is of interest to deduce how the phase speed of a mode varies with the increasing
flow magnitude at a specific wavenumber.

In Figure 5.8 we show the variation of the dimensionless phase speed, ω/kxcse,
of surface MAG waves as a function of the dimensionless flow velocity, ue/cse. The
parameters were set to cs0/cse = 0.9, vA/cse = 1.0, and we chose three different
values for the dimensionless wavenumber: (a) kxHe = 1.0, where the horizontal
wavelength and the scale on which the (lower) equilibrium changes are comparable,
(b) kxHe = 5.0, where the equilibrium varies on a scale lower than the wavelength and
c) kxHe = ∞, where the length of a wave is far smaller than the change in equilibrium
conditions, i.e. stratification is unimportant. From the choice of parameters the
modes shown here are the same fast and slow MAG surface modes as those displayed
in Figure 5.6. The permitted regions of propagation for surface waves are shaded grey.
The kxHe = ∞ case is equivalent to the gravity-free case and therefore Figure 5.8c
shows the behaviour of the fast and slow MAG surface modes that correspond to the
asymptotes of the modes in Figure 5.6.

It is visible in all three figures that as the flow starts to increase from zero the
phase speeds of all modes increase. The backward-propagating fast mode vanishes in
all three cases. A forbidden gap where surface modes are not allowed to propagate,
bounded by the R1 and R4 cut-off curves. This causes the forward-propagating fast
and slow modes to exist in two separate flow intervals below and above the gap
(Figures 5.8a,b). However, with increasing wavenumber the width of the gap decreases,
eventually disappearing in the kxHe → ∞ limit (Figure 5.8c). See Equations (5.68)-
(5.70) for the asymptotic values of the cut-off curves R1, R2, R3, R4, R5, and R6.

The phase speeds of the forward-propagating fast and slow modes clearly change
little with flow speed. For lower flow velocities they increase, and for higher flow
velocities they decrease with growing flow. On the other hand, the phase speed of
the backward-propagating slow mode changes substantially with flow speed, being
carried away by the flow (see the parts in Figure 5.8 where the phase speed increases
together with the flow with unit slope). It is also easily observable that the backward-
propagating slow mode changes the direction of propagation and couples to the other
slow mode.

For flows in the negative direction, the opposite behaviour occurs. The forward-
propagating slow modes are decelerated by this counter-flow and even reverse their
direction of propagation. The backward-propagating fast and slow mode phase
speeds are barely changed by the increase in the magnitude of the negative flow.
This is due to the property of the dispersion relation (5.33) that it is symmetric for
the Doppler shifted frequency (Ω) in the lower layer.
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5.6 Summary and Discussion

In this chapter, we studied the effect of a steady uniform flow on the MAG surface
waves described in Miles and Roberts (1992). With respect to the solar atmosphere
this situation can model the Evershed flow seen in sunspot canopies or, for lower
shear flow velocities, the meridional flows of the interior of the Sun compared to the
overlying solar atmosphere.

The addition of flow to this problem was shown to have some fairly distinct effects,
on the propagation of the surface waves. Firstly the regions, where surface modes
were allowed to propagate were shifted, this was especially evident in Eqs. (5.68)
and (5.69). This can be held responsible for the fact that the fast wave disappears
(see e.g. Fig. 5.6). It was also shown that the background flow would affect the
propagation of the surface waves. In Figs. 5.5-5.7 we plotted the backward and
forward propagating waves and increased the flow steadily. It was seen (for the
slow mode) in all of the graphs that increasing the flow decelerated the backward
propagating wave, whilst leaving the forward propagating wave relatively untouched.
Eventually, if the flow was large enough the direction of propagation could be
changed. This may have implications for observations of waves. A wave that
is observed may seem to have a relatively slow phase speed when, in fact, if the
coordinate system is transformed so that the flow is static the wave has the expected
phase speed. For shear flow velocities larger than the Alfvén speed, the Kelvin-
Helmholtz instability also occurred. However, the effect of gravity is important, as
kxHe becomes smaller, larger flow velocities are required to change the direction
of propagation and, therefore, this also inhibits the Kelvin-Helmholtz instability.
The effect of flow on the forward propagating wave was more apparent when fixing
the dimensionless wave number, kxHe. In Figs. 5.8a-c it was seen that the forward
propagating mode, upon increasing the flow, would be accelerated slightly but then
remain fairly constant and eventually be decelerated, finally coupling to the backward
propagating wave for the Kelvin-Helmholtz instability.

The modes of oscillation that have changed their direction can possibly be unstable
to the Negative energy wave instability. This is of interest as their is a possibility that
energy can transfer between a positive and negative energy wave (Ryutova, 1988),
resonant absorption (Ruderman and Wright, 1998, Tirry et al., 1998 and Erdélyi and
Taroyan, 2003) or explosive instabilities (Joarder et al., 1997).

Meridional flows of the interior of the Sun are very slow, up to 0.2 km s−1. We
take this value as ue and the sound speed as 7 km s−1 such that ue/cse = 0.03 for the
model proposed for Figure 5.5. It is clear from this value that this type of velocity
shear will only have a modest effect on the propagation of MAG surface waves in the
proposed model. However, this type of velocity shear is not the only possible shear for
the model described in Figure 5.5. Velocity shears between the two layers could also
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be attributed to differential rotation of the Sun. If we take a high differential rotation
velocity of 2.0 km s−1 i.e. ue/cse = 0.29, then the ratio is higher, but as shown in
Figure 5.5, the flow speed is not high enough for backward-propagating waves to
reverse their direction. Therefore no negative energy waves nor the Kelvin-Helmholtz
instability will occur.

Evershed flows in sunspots can reach up to 6 km s−1. Applying this to Figure 5.6
and taking cse = 7 km s−1 and ue = 6 km s−1 and thus ue/cse = 0.86, it can be
seen from Figures 5.6 and 5.8 that this flow speed is high enough for the backward-
propagating waves to reverse their direction of propagation. Thus, some running
penumbral waves (RPW) may become negative energy waves. This could also have
implications for interpreting the observations of RPW, as some may have very slow
phase speed because they are backward-propagating waves.





Chapter 6

Dissipative Instability in a
Prominence Plasma

6.1 Introduction

The fully ionised description of plasmas can be appropriate for many cases within
the Sun and the solar atmosphere. However, as was stated in the introduction, at
chromospheric temperatures or below the plasma may not be fully ionised. Promi-
nences are magnetic structures, supported against gravity by the magnetic field,
made up of chromospheric material at around 7500-9000 K (Engvold, 1998, Lin et al.,
2005b) suspended within a surrounding coronal plasma. Therefore a partially ionised
description of them may be more appropriate.

Being such dynamic objects, prominences also exhibit plasma flows. Bulk flows
of around 10-70 km s−1 are observed within quiescent prominences (Schmieder et al.,
1984). Berger et al. (2008) observed turbulent up-flows of arouns 20 km s−1 in both
the Ca II H-line and Hα band passes of the Solar Orbiter Telescope (SOT). Flows
of up to 200 km s−1 have even been observed in active region prominences, most
probably due to their formation.

Given that flows are so abundant, flow instabilities are likely to occur within
prominences. For instance, at the region of transition between the corona and
prominence turbulent eddies have been observed (Ryutova et al., 2010, Berger et al.,
2010). There could be various reasons for these instabilities. One obvious example
would be the Kelvin-Helmholtz instability (see e.g. Soler et al. (2012)), however,
flows of the velocities required for the Kelvin-Helmholtz instability are not regularly
observed. Therefore, another description is probably required to explain these
instabilities. Negative energy wave (NEW) instabilities, linked to the dissipative
instability, are a possible candidate as they occur at flow speeds generally lower than
the Kelvin-Helmholtz instability.
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In terms of structure, prominences have been modelled in slab, cylindrical and
interface geometries. Soler et al. (2012) studied the Kelvin-Helmholtz instability in
a two fluid incompressible plasma in the cylindrical coordinate system. Soler et al.
(2012) modelled a prominence as a cylinder using a two fluid description of the plasma,
studying mainly the kink mode and how it was effected by changing the collisional
frequency between ions and neutrals. Ballai et al. (2015) modelled the interface
between a coronal and prominence plasma using the single fluid incompressible
description, studying the effect of a viscous corona and a partially ionised prominence
plasma (through the Cowling resistivity) on wave modes. It was found that the
viscosity could cause a NEW dissipative instability but the introduction of neutrals
caused the Cowling resistivity to have more importance and would eventually stabilise
the plasma. Ballai et al. (2017b) studied the same idea but this time modelling the
plasma as a slab, coming to the same conclusion as Ballai et al. (2015). The work in
this chapter is the natural extension and generalisation to Ballai et al. (2017b), but
considering a compressible plasma, the dissipative instability caused by the effect
of a viscous corona, and, how that is affected by the partially ionised prominence
plasma.

In this chapter, we first present the background equilibrium and then the governing
equations for both the coronal and prominence plasmas. Solutions to these are
connected via appropriate boundary conditions and a dispersion relation is formed,
considering weak non-ideal effects. The slender slab limit is used to investigate the
onset of the dissipative instability. For a complete study, numerical solutions of the
dispersion relation are taken and the variation of the dimensionless wave-number is
taken into account. This work has been submitted to Astronomy and Astrophysics
and is currently in the last stages of review.

6.2 Equilibrium and Governing Equations

We consider a magnetised plasma slab of width 2z0 with boundaries at z = −z0 and
z = z0 (see Figure 1), situated between to semi-infinite planes. The magnetic field in
the three regions is uniform and parallel with the x-axis such that, B = Bx̂, where x̂

is the unit vector in the x-direction. A uniform background flow is present within the
slab environment, parallel to the x-axis, i.e. v = u0x̂. The equilibrium temperatures,
densities and pressures are assumed to vary on a scale that is much larger than the
wavelength of the waves studied and are therefore considered constant functions in z,
i.e.
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B0

ρe ηCν

vAe

ρ0

z = −z0

u0

z = z0

ρeν

cse vA0 cs0 vAe cse

Be Be

x

z

1

Fig. 6.1 The equlibrium configuration for the magnetic slab and its surrounding
magnetic environment.

T(z), cs(z),

vA(z), cT (z), u(z)
=



Te, cse |z | > z0,

vAe, cTe, 0,

T0, cs0, |z | < z0,

vA0, cT0, u0,

(6.1)

where the indices 0 and e denote internal and external quantities of the slab, respec-
tively, and Tl , csl , vAl , cTl , ul (l = 0, e) are the temperature, sound speed, Alfvén
speed, tube speed (cTl = cslvAl/(c2sl + v

2
Al)

1/2), and background equilibrium bulk-flow
speed inside the slab.

In our model, we approximate the entire prominence by a slab and, therefore, the
solar corona constitutes the external environment. Given the high probability that
prominences are of chromospheric origin (although they may be cooling material
from the corona Xia et al., 2014), we assume that their temperature does not reach
the threshold where hydrogen is fully ionised. In contrast, the surrounding corona,
with its million degree temperature, is fully ionised. In partially ionised plasmas, the
concept of transport mechanisms has to be treated differently, as the way momentum
and energy is transported and dissipated is distinct from the formalism used in fully
ionised plasmas. The reason for this is that the presence of neutrals and the collisions
between heavy particles may change the nature and magnitude of these mechanisms
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(for a detailed discussion on the possible transport mechanisms in partially ionised
plasmas see e.g. Khodachenko et al., 2004 or Zaqarashvili et al., 2011). Here, we
assume that the ion-neutral collisional frequency is much larger than the harmonic
motions of waves. Therefore the dynamics in the partially ionised plasma can be
described within the framework of a single-fluid MHD. In addition, we assume that
there is strong thermal coupling between the ions, electrons a neutrals. Among all
possible dissipative mechanisms, we concentrate on the processes that appear in
the generalised Ohm’s law, in particular, we deal with the classical and Cowling
resistivity. The effects of these two resistivities are very different. The classical
Spitzer resistivity is due to electrons and generates the dissipation of currents along
magnetic field. Contrastingly, the Cowling resistivity is due to ions and creates a
magnetic resistivity of currents that flow perpendicular to the ambient magnetic
field.

With these considerations, the dynamics in the partially ionised prominence is
given by the system of linearised MHD equations

∂p′

∂t
+ (v · ∇) p′ + γp(∇ · v′) = 0, (6.2)

ρ

(
∂v′

∂t
+ (v · ∇) v′

)
= − ∇p′ + (∇ × B′) ×

B

µ0
, (6.3)

∂B′

∂t
+ (v · ∇)B′ = (B · ∇) v′ − B (∇ · v′) + η∇2B′

+
ηC − η

|B|2
∇ × {[(∇ × B′) × B] × B} ,

(6.4)

∇ · B′ = 0, (6.5)

where all quantities with subscript 1 denote small perturbations of background
quantities. Note that the diamagnetic current that would be present in Eq. (6.4) is
neglected due to the plasma that we consider having a low plasma-beta value with a
strong magnetic field (Khodachenko et al., 2004). Here, ρ = ρi + ρn so that the total
background density, ρ, is always constant, with the ion density ρi and the neutral
density changing, depending on how ionised the plasma is. For a completely ionised
plasma ρi = ρ and for a fully neutral plasma ρn = ρ.

We assume all perturbations to be of the form

f ′ = f̂ (z) exp[i(k x − ωt)],
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where f̂ (z) is the amplitude of perturbations and the frequency, ω, may be a complex
quantity. Since the plasma is unbounded in the x direction, we Fourier analyse
the perturbations. In addition, instead of velocity components in the momentum
equation (6.3), we use the Lagrangian displacement,

v′ =

(
∂

∂t
+ v · ∇

)
ξ .

Here, ξ = (ξ̂x(z), ξ̂y(z), ξ̂z(z)) exp[i(k x,−ωt)]. Equations (6.2)-(6.5) along with Eq.
(6.1) can be then reduced to a second order differential equation governing the
Lagrangian displacement in the z-direction

d2ξ̂z(z)
dz2

− M̄2
0 ξ̂z(z) = 0, M̄2

0 = −

(
Ω2 − k2c2s0

) (
Ω2 − k2v̄2A0

)
(c2s0 + v̄

2
A0)(Ω

2 − k2c̄2T0)
, (6.6)

where the quantity M̄0 is the magnetoacoustic parameter, v̄2A0 = v2A0
(
1 − iηC k2/Ω

)
is the modified Alfvén speed, while c̄2T0 = c2s0v̄

2
A0/(c

2
s0 + v̄

2
A0)

2 is the associated cusp
speed. Here, vA0 = (B2

0/µ0ρ0)
1/2 is the Alfvén speed and cs0 = (γp0/ρ0)1/2 is the

sound speed of the internal medium, where γ = 5/3 is the adiabatic index and µ0 is
the magnetic permeability of free space. In the above equation, Ω = ω − ku0 is the
Doppler-shifted frequency.

The solutions inside the slab must be matched, at the boundaries of the slab with
the solutions outside the slab. These boundaries must be stable to perturbations,
i.e. any displaced fluid element on (or near) the boundary will not be advected by
perturbations. This can be achieved only by assuming that the transversal component
of the Lagrangian displacement is continuous and any other stresses that act in the
perpendicular direction of the boundaries are matched by stresses on the other side
of the boundary. That is why it is essential to use the Reynolds-Maxwell stress tensor
to calculate the transversal stress component that is given by

Sz = −ρ0

(
v̄2A0 + c2s0

) (
Ω2 − k2c̄2T0

)
Ω2 − k2c2s0

dξ̂z(z)
dz

. (6.7)

Let us now consider the dynamics in the surrounding coronal plasma. Due to the
high temperatures of the corona (> 106K), the plasma is fully ionised. Following on
from the work by Ballai et al. (2017b), we consider that the dominant dissipative
mechanism acting upon modifying the amplitude of waves is the viscosity. Given
that the dynamics in the solar corona are driven mainly by magnetic forces, the
viscosity is anisotropic and its value is given by the Braginskii’s tensor present in the
momentum equation. This tensor has five components, but by far the leading term
(by about five orders of magnitude) is the first component (also called compressional
viscosity) that is due to ions (see, e.g. Braginskii, 1965, Erdelyi and Goossens, 1995,
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Erdélyi, 1996, Ruderman et al., 1996). Therefore, the dynamics in the solar corona
is described with the help of the linearised MHD equations

∂p′

∂t
+ γpe(∇ · v′) = 0, (6.8)

ρe
∂v′

∂t
= − ∇p′ + (∇ × B′) ×

Be

µ0

+ ρeν

{
b(b · ∇) −

1

3
∇

}
{3b · ∇(b · v′) − ∇ · v′} ,

(6.9)

∂B′

∂t
= (Be · ∇) v

′ − Be (∇ · v′) , ∇ · B′ = 0, (6.10)

where b = Be/Be is the unit vector in the direction of the equilibrium magnetic
field, ν = κ0/ρe is the kinematic viscosity, and κ0 is the viscosity coefficient and its
approximative value is given by

κ0 =
ρekBTeτp

mp
,

where Te is the temperature of the external medium, kB is the Boltzmann constant,
τp is the proton-proton collision time, and mp is the proton mass. For typical
coronal values we can obtain that κ0 ≈ 5 × 10−2 kg m−1 s−1 (see, e.g. Hollweg, 1985
or Erdélyi, 1996).

In a similar way to the prominence plasma derivation, the MHD equations can be
reduced to a single equation that describes the evolution of the transverse component
of the Lagrangian displacement as

d2ξ̂z(z)
dz2

− M2
e N2

e ξ̂z(z) = 0, with M2
e = −

(
ω2 − k2c2se

) (
ω2 − k2v2Ae

)
(c2se + v

2
Ae)(ω

2 − k2c2Te)
, (6.11)

and

N2
e = 1 +

iνω
3

(
ω2 − 3k2c2se

)2
(c2se + v

2
Ae)

(
ω2 − k2c2Te

) (
ω2 − k2c2se

) . (6.12)

Here, vAe = (B2
e/µ0ρe)

1/2 is the Alfvén speed, cse = (γpe/ρe)
1/2 is the sound speed

of the external medium and c2Te = c2sev
2
Ae/(c

2
se + v

2
Ae)

2 is the external tube speed. In
order to ensure that the interface between various regions is stable, the stress across
the interfaces must be continuous, which now in the external region takes the form

Sz = −ρe

(
v2Ae + c2se

) (
ω2 − k2c2Te

)
ω2 − k2c2se

dξ̂z(z)
dz

+ ρe
iων
3

(
ω2 − 3k2c2se

)2(
ω2 − k2c2se

)2 dξ̂z(z)
dz

, (6.13)
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where ξ̂z(z) is the solution of Eq. (6.11).

6.3 Dispersion Relation

To study the waves and how the viscosity and Cowling resistivity affect the propaga-
tion of linear MA waves we derive a dispersion relation. We, first, require that ξ̂z(z)

is finite as |z | → ∞. Therefore the general solutions inside and outside of the slab are

ξ̂z(z) =



C1 exp (−MeNe(z − z0)) z > z0,

C2 sinh(M̄0z) + C3 cosh(M̄0z) |z | < z0,

C4 exp (MeNe(z + z0)) z < −z0.

(6.14)

The solutions in the regions z < −z0 and z > z0 must be connected to the solutions
within the slab, |z | < z0. The constants of integration C1...C4 can be found by four
boundary conditions these are:

• ξ̂z(z) is continuous at z = −z0 and z = z0;

• The stress on the boundary is continuous at z = −z0 and z = z0.

Applying these boundary conditions to the solutions given in Eq. (6.14) we recover
two distinct and separate solutions. One describes the symmetric sausage modes and
the other describes the antisymmetric kink modes (see e.g. Roberts, 1981b). There
are two roots: the kink mode, described by the coth function; and the sausage mode,
decribed by the tanh function. The dispersion relation is given below:

ρeMeNe

(
DAe

M2
e
− i

νω

3

D2
3se

D2
se

) {
coth(M0z0)

tanh(M0z0)

}
+ ρ0

D̄A0

M̄0
= 0. (6.15)

Below we introduce for ease of use (l = 0, e):

Dsl = Ω
2
l − c2sl k

2, DAl = Ω
2
l − v2Al k

2,

DTl =
(
c2sl + v

2
Al

) (
Ω
2
l − c2Tl k

2
)
,

D3sl = Ω
2
l − 3c2sl k

2, Dml = Ω
4
l − 2k2DTl,

Ω = ω − ku0

(6.16)

We note that the bar in Eq. (6.15) refers to the fact that the Alfvén speed is of the form
v̄2A0 = v2A0

(
1 − iηC k2/Ω

)
as opposed to just v2A0. Even though Eq. (6.15) describes

these waves fully, we now use a perturbation method so that the dispersion relation
can be written in terms of a real part for the ideal effects and an imaginary part



110 Dissipative Instability in a Prominence Plasma

for the non-ideal effects. We therefore consider ηC k2/Ω ≪ 1 and
iνω
3

D2
3se

DTeDse
≪ 1.

These assumptions are essentially the same as saying R ≫ 1 and Rm ≫ 1. With these
assumption we derive the following dispersion relations

F(ω, k) = F0(ω, k) + iF1(ω, k) = 0, (6.17)

where

F0(ω, k) = ρe
DAe

Me

{
coth

tanh

}
(M0z0) + ρ0

DA0

M0
, (6.18)

is the real part of the dispersion relation, while the imaginary part is written as

F1 =ρeMe
νω

6

D2
3se

D2
se

{
coth

tanh

}
(M0z0)

+ ηC
k2v2A0
2Ω

[
ρ0M0

Dm0

Ds0DA0
+ ρe

DAe

Me

Ω4

DA0DT0

(
1 −

{
coth2

tanh2

}
(M0z0)

)
M0z0

]
.

(6.19)

Due to the high viscous and magnetic Reynolds numbers the imaginary part of Eq.
(6.17) is considered to be far smaller than the real part i.e. F0 ≫ F1 for both the
kink and sausage modes. Eq. (6.18) is identical to the dispersion relation derived
by Nakariakov and Roberts (1995). To find an approximate solution to dispersion
relation (6.17) we expand the dispersion relation around the solution to

F0(ω0, k) = 0, (6.20)

where ω0 is the frequency solution to the ideal part of the dispersion relation. We
now assume that ω ≈ ω0 + iω′, where ω0 ≫ ω′ and use the Taylor expansion of Eq.
(6.17) around ω0

F(ω, k) ≈ F0(ω0, k) + iF1(ω0, k) +
∂F(ω0, k)

∂ω
(ω − ω0). (6.21)

Since both F(ω, k) = 0 and F0(ω0, k) = 0 and ω − ω0 = iω′

ω′ ≈ −
F1(ω0, k)

∂F(ω0, k)∂ω
, (6.22)

ω′ ≈ −
F1(ω0, k)

∂F0(ω0, k)∂ω
. (6.23)
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Here,

∂F0(ω, k)
∂ω

= − ρ0
Ω3

(
Ω2 − 2k2c2T0

)
Ds0(Ω

2 − k2c2T0)M0

©«
M0z0

1 −

{
tanh2

coth2

}
(M0z0){

tanh

coth

}
(M0z0)

ª®®®®®®¬
,

− ρ0
ΩDmc0

DT0Ds0M0
− ρe

ωDmce

MeDTeDse

{
coth

tanh

}
(M0z0) ,

(6.24)

and

Dmcl = (c2sl + v
2
Al)Ω

4
l − 2k2c2sl DTl . (6.25)

The assumption was that amplitudes of waves vary in time like ∼ exp(−iωt). This
can be split up into a real exponential that either increases or decreases with time
multiplied by another that varied harmonically in time i.e ∼ exp(−iω0t) exp(ω′t). It
is therefore simple to see that if ω′ < 0 waves decrease exponentially in time i.e. they
are damped. If ω′ > 0 waves increase exponentially in time i.e. the wave is unstable.

Both Eqs.(6.19) and (6.24) can be re-written due to the zeroth order relation of
Eq. (6.20). We therefore have

F1(ω0, k) = −
ρ0DA0

M0

M2
e νω0D2

3se

6DAeD2
se

−
ρ0DA0

M0

ηck2v2A0
DA0DT02Ω0

©«
Dm0 +Ω

4
0

©«
M0z0

1 −

{
tanh2

coth2

}
(M0z0){

tanh

coth

}
(M0z0)

ª®®®®®®¬
ª®®®®®®¬
,

(6.26)

and

∂F0(ω0, k)
∂ω

= − ρ0
Ω3
0

(
Ω2
0 − 2k2c2T0

)
Ds0(Ω

2
0 − k2c2T0)M0

©«
M0z0

1 −

{
tanh2

coth2

}
(M0z0){

tanh

coth

}
(M0z0)

ª®®®®®®¬
− ρ0

Ω0Dmc0

DT0Ds0M0
+ ρ0

ω0DmceDA0

M0DTeDseDAe
.

(6.27)

Eq. (6.18) is cannot be solved analytically. It is therefore necessary to find approxi-
mate solutions.
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6.3.1 Slender Slab Limit

The slender slab limit is a relatively simple approximation to take such that analytic
progress can be made. We take the limit of Eq. (6.18) as kz0 → 0 and find an
approximate solutions. Key to this approximation is supposing M0z0 → 0 as kz0 → 0

(see e.g. Edwin and Roberts, 1982 or Nakariakov and Roberts, 1995). Eq. (6.18)
then reduces to the following equation for the sausage modes

ρeDAeM2
0 z0 + ρ0DA0Me = 0. (6.28)

We use the method of dominant balance (we compare and balance orders of kz0) on
Eq. (6.28) to find a regular perturbation series representation of the solution. In
this limit, the real part of the dispersion relation admits wave solutions that can, in
general, be either surface (M0 > 0) or body (M0 < 0) modes depending on values of
background quantities (Edwin and Roberts, 1982). In our study, we use the term
pseudo-body for one of the modes that has a peculiar behaviour inside the slab, in
the sense it does not have a spatially oscillatory structure in the z-direction but is
a body mode as it satisfies the condition: M0 < 0 (for more information on these
modes see e.g. Zhugzhda and Goossens, 2001, Ruderman, 2005, Erdélyi and Fedun,
2006 or Erdélyi and Fedun, 2007b). In addition, there are also spatially oscillating
body-modes inside the slab which we term n = 1, 2.. body modes. The real solutions
of the dispersion relation are

ω0 ≈ ±kcse

1 +
ρ2e

ρ20

c2se
(
v2Ae − c2se

) [
(cse − u0)2 − c2s0

]2
2
(
c2s0 + v

2
A0

)2 [
(cse − u0)2 − c2T0

]2 (kz0)2
 , (6.29)

ω0 ≈ u0k ± kcT0

1 +
ρe

ρ0

[
v2Ae − (±cT0 + u0)2

] (
c2s0 − c2T0

)
M̂e

(
c2s0 + v

2
A0

)
c2T0

kz0

 , (6.30)

where the upper signs describe the forward propagating waves, while the lower ones
describe the backward propagating waves. In the above relation the parameter M̂e is
defined as

M̂2
e = −

[
(±cT0 + u0)2 − c2se

] [
(±cT0 + u0)2 − v2Ae

]
(c2se + v

2
Ae)

[
(±cT0 + u0)2 − c2Te

] . (6.31)

The quantity M̂2
e must be positive for non-leaky modes and this will impose a

restriction on the domain of flows where our study is valid. A simple analysis would
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reveal that waves will be able to propagate in the slab provided |u0 ± cT0 | < cTe or

min(cse, vAe) < |u0 ± cT0 | < max(cse, vAe).

We now apply the same limit kz0 → 0 to the kink mode solution of Eq. (6.18) which
then reduces to

ρeDAe + ρ0DA0Mez0 = 0. (6.32)

Again, using the method of dominant balance we find two surface wave solutions
which are given as

ω0 ≈ ±kvAe
©«1 −

(
ρ0
ρe

)2 ( (
±v2Ae − u0

)2
− v2A0

)2 (
v2Ae − c2se

)
2v6Ae

(kz0)2
ª®®¬ , (6.33)

and

ω0 ≈ ±kcTe
©«1 −

(
ρ0
ρe

)2 ( (
±c2Te − u0

)2
− v2Ae

)2 (
c2Te − c2se

)
2c2Tev

4
Ae

(kz0)2
ª®®¬ . (6.34)

We now apply the slender slab limit to Eq. (6.26). We first find for the sausage
mode

F1(ω0, k) ≈ −
ρ0DA0

M0

(
M2

e νω0D2
3se

6DAeD2
se
+
ηck2v2A0Ds0

DT0Ω0

)
, (6.35)

and secondly for the kink mode

F1(ω0, k) ≈ −
ρ0DA0

M0

(
M2

e νω0D2
3se

6DAeD2
se

−
ηck4v2A0
DA0Ω0

)
. (6.36)

Next, we apply the slender slab limit to Eq. (6.27). Again, we first find for the
sausage mode

∂F0(ω0, k)
∂ω

= − 2ρ0
Ω0k2c4s0DA0

DT0Ds0M0
+ ρ0

ω0DmceDA0

M0DTeDseDAe
. (6.37)

and then for the kink mode

∂F0(ω0, k)
∂ω

= − 2ρ0
Ω0

M0
+ ρ0

ω0DmceDA0

M0DTeDseDAe
. (6.38)



114 Dissipative Instability in a Prominence Plasma

6.3.2 Wide Slab Limit

The wide slab limit assumes that kz0 ≫ 1, that is the width of the slab is far greater
than the wavelength (see e.g. Roberts, 1981b). There are two ways to look at the
problem. By assuming M0z0 → ∞ as kz0 → ∞ Eq. (6.18) becomes:

ρe
DAe

Me
+ ρ0

DA0

M0
. (6.39)

Eq. (6.39) represents the dispersion relation of a single interface (Roberts, 1981a).
However, as there can also be body modes, assuming that M0z0 → ∞ as kz0 → ∞ is
incorrect. We follow the steps in Roberts (1981b) but assume that vA0 > cs0. By
assuming a perturbation expansion of ω0, we find for the sausage body modes:

ω0 ≈ (u0 ± cs0)k ∓ cs0k
c2s0π

2

(
j −

1

2

)2
(
v2A0 − c2s0

)
(kz0)2

©«
1

2
− ρr

(
v2Ae − (u0 ± c2s0)

2
)(

v2A0 − c2s0
)

M̂ekz0

ª®®¬ . (6.40)

Here, j = 1, 2, 3..., represents the separate harmonics. We note, that, the factor
π( j − 1/2)/kz0 must be of a sufficiently low value for the perturbation expansion to
be valid. If we take u0 = 0 and assume that there is no external magnetic field so
that vAe = 0, Eq. (6.40) agrees with the result in Roberts (1981b) up to first order.
The next order in the perturbation series has been added, as it is needed to calculate
the imaginary part of the solution.

We now wish to approximate the imaginary part of the solution. Inserting the
approximation given by Eq. (6.40) into Eq. (6.23), we find after some algebra and
retaining only the lowest order terms

ω′ ≈ ∓

kc30π
2

(
j −

1

2

)2
(
v2A0 − c2s0

)2
(kz0)2

(
ρr

kν (u0 ± cs0)
(
(u0 ± cs0)

2 − 3c2se
)2

6M̂e
(
(u0 ± cs0)

2 − c2se
)2 kz0

±
ηC kv2A0
2c2s0

)
. (6.41)

From Eq. (6.41), it is evident that ω′ ∝ 1/(kz0)2 if ηC , 0 and ω′ ∝ 1/(kz0)3 if
ηC = 0.

6.4 Dissipative Instability

In this section, we wish to focus on the dissipative instability due to the presence
of a shear flow. It is well known that the Kelvin-Helmholtz instability can occur
in astrophysical plasmas. The flow speeds required usually exceed the maximum
Alfvén speed for the system; this is usually greater than the flow speeds observed
in solar plasmas. The concept of negative energy waves has been used to find flow
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speeds lower than those required for the onset of the Kelvin-Helmholtz instability.
According to Cairns (1979), NEW’s can occur in the presence of a flow, when the
sign of the frequency, ω, changes i.e. when the direction of propagation of a wave
changes. Negative energy waves are characterised by the fact that the energy of the
system must be decreased and this reduction of energy leads the amplitude of the
wave to increase. This leads nicely onto the dissipative instability that is studied
here. Clearly if there is some form of dissipation this leads to the energy of the
system decreasing. In our system we have two forms of dissipation: viscous forces in
the external part of the slab for the loss of energy due to collisions between ions and
the Cowling resistivity within the slab, which takes into account how the ratio of
neutrals to ions affects the magnitude. We use Eq. (6.23) to study the sign of the
imaginary part of the frequency.

6.4.1 Negative Energy Waves

Before we investigate how the addition of neutrals to the system affects the stability
of the interface, we make a quick note on how NEW’s are related to the dissipative
instability. The criteria from Cairns (1979) for negative energy waves to occur is
given when the quantity E given below changes sign:

E = αω0
∂F0(ω0, k)

∂ω
. (6.42)

Here, α is chosen to be positive or negative so that E is positive when there is no
flow present. It is fairly evident that this quantity will change sign when either
ω0 changes sign or ∂F0(ω0, k)/∂ω changes sign. To relate this to the dissipative
instability we look to the sign of the imaginary part of the frequency given by Eq.
(6.23). We know that a negative energy wave is possible if there is dissipation in the
system but the wave is growing in amplitude. As was discussed in Ruderman et al.
(1996), when there is dissipation on both sides of an interface it is extremely hard to
determine the choice of coordinate system so that the sign of E can be determined.
We therefore set ηC = 0 so that we only consider the viscous effects in relation to
negative energy waves.

Considering the sign of Eq. (6.23) now, we only need to find when F1(ω0, k)

changes sign. When ηC = 0 Eq. (6.19) becomes

F1(ω0, k) = ρeMe
νω0

6

D2
3se

D2
se

{
coth

tanh

}
(M0z0) . (6.43)

It is obvious that Eq. (6.43) changes sign when ω0 changes sign. All waves, when
there is no flow, are damped so that the negative energy wave occurs when the flow
is strong enough to change the direction of propagation of the surface wave. One can
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Fig. 6.2 (a) Variation of the phase speed, ω/k, for forward (upper panel) and
backward (lower panel) propagating body waves in the bounds cT0 < |ω/k | < cs0
with respect to kz0 (b) variation of ω/k with respect to u0/cT0 for the mode indicated
in red in panel (a) for kz0 = 0.1, 1.0 and 20.0. The background speeds satisfy:
vAe > cse > cT0 > vA0 > cs0 > cT0.

see from the slender slab limits given by Eqs. (6.29)-(6.34) that only the solution for
the sausage mode, given by Eq. (6.30), can change sign and does so when u0 ≈ cT0

for the backward propagating wave and u0 ≈ −cT0 for the forward propagating wave.
In Fig 6.2a we have plotted the slow body wave solutions, both backward and forward
propagating. Taking the backward propagating body mode highlighted in red, Fig.
6.2b plots the variation of ω/k for kz0 = 0.1, 1, 20 with respect to u0/cT0. There is
clearly a linear relationship and the sign of ω/k changes at approximately u0 = cT0.
Having noted this, when the sign of the frequency does change, we then have a
positive value for ω′ and the wave grows in amplitude. We can therefore see that in
this case the dissipative instability is in fact a negative energy wave instability, with
the dissipation caused by viscosity.

6.4.2 The slender-slab limit (kz0 ≪ 1)

The slender slab limit is a useful tool to analyse the modes and the dissipative
instabilities that occur in our system. Referring to Eqs. (6.29), (6.30), (6.33) and
(6.34), it can be noted that only the mode described by Eq. (6.30) is affected by
the background flow and is thus the only mode that is likely to change its direction
of propagation as the magnitude of the flow is increased. We therefore focus our
attention on this mode as it is the only candidate for which the dissipative instability
may be present, in the slender slab limit. Inserting the approximate root given by
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Eq. (6.30) into Eq. (6.23), whilst using the approximate forms given by Eqs. (6.35)
and (6.37), we find an approximate equation for ω′:

ω′ = ∓

ρr
c4s0k2ν (±cT0 + u0)

[
(±cT0 + u0)2 − 3c2se

]2
12

[
(±cT0 + u0)2 − c2se

]2
cT0

(
v2A0 + c2s0

)2 M̂ekz0

±
ηCv

2
A0c4s0k2

2c2T0
(
v2A0 + c2s0

)2  .
(6.44)

Here, ρr = ρe/ρ0 is the relative density of our equilibrium and the Cowling resistivity,
ηC, is given by

ηC =
v2A0mn(2µ − 1)

2ρ0(1 − µ)Σin

√
πmp

kBT0
, (6.45)

where mn is the mass of neutral atom, Σin = 5 × 10−15 cm2 is the ion-neutral collisional
cross section and µ is the ionisation degree of the plasma given by:

µ =
ρ0

2ρi + ρn
,

with µ = 0.5 corresponding to a fully ionised plasma and µ = 1.0 a completely
neutral plasma. In our calculations, we assume that ρ0 = 5 × 10−11 kg m−3. Using
prominence parameters we can estimate the Magnetic Reynolds number, Rm for this
particular set up. We define

η̂C =
v2A0mn

2ρ0Σin

√
πmp

kBT0
, ηC = η̂C

2µ − 1

1 − µ
. (6.46)

We then have, using a length scale of approximately 107 m and typical prominence
wave speeds of 104 m s−1,

Rm ≈ 104
1 − µ

2µ − 1
. (6.47)

The sign of the imaginary part of the frequency will determine whether a wave will
be damped or amplified due to instabilities. According to the ansatz used in the
present paper, ω′ > 0 would mean that the wave is amplified, while waves will be
damped in the opposite case i.e. when ω′ < 0.

Eq. (6.44) can be used to find the critical flow speed required for the dissipative
instability to occur, although it would result in finding a solution to a sixth order
polynomial which cannot be done analytically. The case we study is that of a relatively
cold chromospheric slab surrounded by hot coronal material with similar magnetic
fields and, as such, the density ratio is small i.e ρr ≪ 1. All the characteristic
background speeds within the slab are therefore much smaller than outside the
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slab. In this limit, the imaginary part of the frequency given by Eq. (6.44) can be
approximated as

ω′ ≈ ∓

c4s0k2
[
3

2
ρrν(±cT0 + u0)kz0 ±

ηCv
2
A0

cT0

]
2cT0

(
v2A0 + c2s0

)2 , (6.48)

where the two signs denote the forward and backward propagating wave. The
straight-foward result that is obvious from Eq. (6.48) is that ω′ for the forward
propagating wave (corresponding to the upper sign) is always negative, and, therefore,
the forward propagating wave is always subject to damping. In contrast, the backward
propagating wave (corresponding to the lower sign) is damped only for a particular
combination of values, but it may become positive for flows that are larger than the
critical value

u0c = cT0 +
2ηCv

2
A0

3νρr kz0cT0
. (6.49)

In the absence of Cowling resitivity (ηC = 0, i.e. the plasma is fully ionised), the
instability occurs at flows speeds equal to cT0. When neutrals are present in the
system (i.e. ηC , 0) and the plasma is less ionised, the Cowling resistivity tends to
stabilise the system by increasing the threshold where instability can appear. In the
limit of an incompressible plasma, (i.e. cs0 → ∞), the critical flow speed becomes

u0c = vA0 +
2ηCvA0

3νρr kz0
, (6.50)

and, therefore, modes might become unstable for super-Alfvénic flows. This result
suggests that once compressibility is taken into account, the plasma can become
unstable at lower flow speeds (cT0 < vA0) (a lower critical flow speed is needed for the
dissipative instability to occur), so compressibility tends to destabilise the plasma.

As specified earlier, the whole partially ionised prominence is modelled here
by a slab that is surrounded by the fully ionised corona. In general, the width of
prominences varies between approximately 1-30 Mm (Lin, 2011). Observations of
waves in prominences show that typical wave-numbers are between 10−8 and 10−6

m−1, meaning that the slender slab limit is justified to a large extent. However, this
does not cover the whole spectrum of possible values.

We consider a slab width of ≈ 1 Mm, so that the set value of kz0 = 0.01 cor-
responds to a wave-number of k = 2 × 10−7 m−1, while the dimensionless quantity
kz0 = 0.02, corresponds to the wave-number k = 4 × 10−7 m−1. We assume that the
temperature of the prominence is Ti = 104 K that corresponds to a sound speed speed
of cs0 = 11.7 km s−1. Assuming an Alfvén speed of vA0 = 28.0 km s−1 results in a
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Fig. 6.3 The variation of the critical flow speed with respect to ionisation degree, µ,
for the compressible case (blue lines), given by Eq. (6.49), and the incompressible
case (red lines), given by Eq. (6.50): (a) and (b) both with ν = 109 m2s−1 but with
ρr = 0.01 and ρr = 0.02 respectively and (c) and (d) both with ν = 1010 m2s−1 but
with ρr = 0.01 and ρr = 0.02 respectively. In each the solid lines (—–) indicate
kz0 = 0.1 and the dashed lines (- - -) indicate kz0 = 0.2. The regions under the
curves correspond to the stable regime.
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tube speed of cT0 = 10.8 km s−1. When ρr = 0.02 the coronal characteristic speed
are (assuming the same magnetic field strength in all regions): vAe = 198.0 km s−1,
cse = 83.0 km s−1 and cTe = 76.5 km s−1. When ρr = 0.01 the coronal characteristic
speeds become vAe = 280.0 km s−1, cse = 117.0 km s−1 and cTe = 108.0 km s−1.

The variation of the critical flow speed with the ionisation degree for a compressible
(based on Eq. 6.49) and incompressible (based on Eq. 6.50) plasma is shown in
Figure 6.3. The top two panels correspond to a viscosity coefficient of ν = 109 m2s−1

that leads to a viscous Reynolds number of R ≈ 104 with typical length scales
of 107 Mm and typical velocities of 105-106 m s−1. The variation of the critical
speed is studied for two distinct values of the density ratio between the corona and
chromosphere (ρr = 0.01 and ρr = 0.02). The bottom two panels show the variation
of the critical flow speed for a viscosity coefficient of ν = 1010 m2s−1 (corresponding
to a Reynolds number of R ≈ 103), for the same density ratios as before. In these
plots, the ionisation degree, µ, varies between 0.5 (fully ionised plasma) to 1 (fully
neutral fluid) and for different values of the dimensionless quantity kz0.

These figures clearly show that, in the case of a fully ionised plasma, the instability
occurs at flows speeds that have realistic values and the critical value of the flow for
compressional plasma (u0c = cT0) is approximately half of the flow necessary to induce
an instability in an incompressible plasma (u0c = vA0). When the concentration of
neutrals is increased, there is a critical value of this ionisation degree after which the
critical flow corresponding to the incompressible plasma is lower. At this point the
curves representing the critical flows intersect. When either kz0 or ρr are increased
the value of µ at which the solutions cross is increased and the gradients of the flow
with respect to µ decrease. It is possible to find the critical value, µc, when the
solution paths cross, by equating Eqs. (6.49) and (6.50)

µc =

1 +
2η̂C

3νρr kz0

vA0

cT0

1 +
4η̂C

3νρr kz0

vA0

cT0

. (6.51)

It has to be borne in mind that this relation only applies for the plasma stated above
and only sausage modes and is not a universal relation.

It is evident from Figs. 6.3a-d that viscosity has a destabilising effect for the
backward propagating waves when the plasma is not completely ionised. Conversely,
as we have explained above, the neutrals present in the plasma serve to stabilise
the prominence. Comparing Figs. 6.3a and c, one can see that the steepness of
the curves is reduced when the viscosity coefficient is increased from ν = 109 m2s−1

to ν = 1010 m2s−1. This is also evident when comparing Figs. 6.3b and d. This
can be explained easily from Eqs. (6.49) and (6.50) as when the viscous coefficient
is increased in comparison to ηC this will reduce u0c for both the incompressible
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and compressible cases. Comparing Figs. 6.3a and b and Figs. 6.3c and d, the
increase in the density ratio, ρr serves to decrease u0c for both the compressible and
incompressible cases as well, again obvious from Eqs. (6.49) (6.50). Interesting also
is that the increase in kz0 decreases u0c, this motivates using the numerical solutions
to Eq. (6.23) to study the effect of increasing kz0 on this threshold for u0c.

Figs. 6.4a-d show a contour plot for the variation of the imaginary part of
the frequency, ω′ with respect to the background flow, ui, and the ionisation de-
gree, µ. Figs. 6.4a and b are plotted for the values ρr = 0.01, kz0 = 0.1 and
k = 2 × 10−7 m−1 but with ν = 109 m2s−1 and ν = 1010 m2s−1 respectively. Figs. 6.4c
and d we used ρr = 0.02, kz0 = 0.2 and k = 4 × 10−7 m−1 along with ν = 109 m2s−1

and ν = 1010 m2s−1 respectively. Again, it is evident from the ω′ = 0 contour and
by comparing Figs. 6.4a and c and Figs. 6.4b and d that increasing kz0 and ρr

decreases the speed u0 at which the imaginary part of the frequency, ω′, changes
sign and instability ensues. We can also see from this how the neutrals play a role.
By increasing µ, which is equivalent to increasing the number of neutrals in the
system, and holding every other variable constant, ω′ decreases in line with this.
Comparing Figs. 6.4a and b and Figs. 6.4c and d we can see that increasing the
value of the kinematic viscosity coefficient, ν, serves to increase the value of ω′ and
thus increases the magnitude of ω′. The increase in ν also decreases the threshold
at which the instability occurs as has been discussed. What must be noted is that
this is the slender slab limit and is therefore very restrictive and as such the actual
time-scales shown for the amplification and damping rates are very large, on the order
of 106 − 107 s. The slender slab limit only gives a guide as to when the instability
occurs and the physics involved. This is why a numerical approach must be taken
to ascertain whether this instability can occur on the time-scale of the life time of
prominences.

6.4.3 Wide Slab

Having studied the slender slab limit, we make a mention of the wide slab limit.
Exactly as in the slender slab limit, we are considering an interface between two
plasmas in which ρr ≪ 1, with equal magnetic fields in and outside the slab.
Therefore, all the characteristic background speeds within the slab are much smaller
than outside the slab. We can thus further approximate ω′ from Eq. (6.41) to

ω′ ≈ ∓

k2c30π
2

(
j −

1

2

)2
2
(
v2A0 − c2s0

)2
(kz0)2

(
ρr
3ν(u0 ± cs0)

kz0
±
ηCv

2
A0

cs0

)
. (6.52)
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Fig. 6.4 Contour plots showing the variation of ω′ with respect to the internal
background flow speed, u0, and the ionisation degree µ. Red indicates a positive
value of ω′ (amplification) and blue indicates a negative value of ω′ (damping). The
color bar shows the numerical value of ω′ and the contour labelled ω′ = 0 indicates
the transition between amplification and damping of the wave. Panels (a) and (b) are
both constructed by using the parameters ρr = 0.01, kz0 = 0.1 and k = 2 × 10−7 m−1

but with ν = 109 m2s−1 and ν = 1010 m2s−1, respectively. In panels (c) and (d)
we used ρr = 0.02, kz0 = 0.2 and k = 4 × 10−7 m−1 along with ν = 109 m2s−1 and
ν = 1010 m2s−1, respectively.
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For amplification to occur ω′ > 0. As in the slender slab limit, it is possible to find
an approximate speed at which amplification occurs. We therefore set the numerator
of Eq. (6.52) to zero to find the critical flow speed, u0c, for marginal stability.

|u0c | = cs0

(
1 +

ηC kz0v2A0
3νρr c2s0

)
. (6.53)

We have used a modulus sign here as, if the wave is forward propagating, the critical
flow speed will be negative and positive for a backward propagating wave. From Eq.
(6.53) it is clear that the wider the prominence the more stable it is when neutrals
are present.

The slender and wide slab limits only gives a guide as to if an instability occurs, as
well as the physics involved. This is why a numerical approach must be undertaken
to ascertain whether this instability can occur on the time-scale of prominence
life-times.

6.4.4 Numerical solutions

The analysis using the slender slab limit is very useful as a guide towards understand-
ing the nature and behaviour of the modes present in the system. However, this limit
is restrictive due to the size of prominences, for which the condition kz0 ≪ 1 is not
satisfied. Therefore, it is instructive to solve numerically Eq. (6.18) and approximate
the imaginary part of the frequency using Eq. (6.23) for the sausage waves i.e.
the tanh solution. Figures 6.5 and 6.8 show the variation of the imaginary part of
the frequency (ω′), with respect to the dimensionless wave-number, kz0, for three
different values of the ionisation degree and the same viscosity coefficient. In both
figures, the top panels correspond to a density ratio of ρr = 0.01, while the bottom
panels were obtained for ρr = 0.02. The value of the background flow was chosen
to be u0 = 16 km s−1 (just above the internal tube speed, cT0, in the left-hand side
panels) and u0 = 28 km s−1 (close to the internal Alfvén speed, vA0, in right-hand
side panels), respectively. The variation of the damping/amplification rate is plotted
against the dimensionless quantity kz0, keeping k = 5 × 10−6 m−1 and allowing the
width of the slab 2z0, to vary , see Fig. 6.5). In Fig. 6.8, we plot the same quantity,
but now the width of the slab is maintained constant at 2z0 = 4 Mm (Fig. 6.5) and
k is allowed to vary. In all cases, a horizontal line is drawn at the ω′ = 0 level in
order to clearly identify the behaviour of the rate of change of the amplitude.

Figure 6.5 shows that at flow speeds just above the internal tube speed of the
prominence, the pseudo-body mode and the n = 1 body modes are unstable when
µ = 0.5, i.e. when the prominence is fully ionised. Increasing the ionisation fraction
(i.e. more neutrals are taken into account), all modes become stable and their
amplitudes are damped, with the pseudo-body mode being the most damped. This
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Fig. 6.5 Variation of the imaginary part of the frequency, ω′, for pseudo-body (—)
and n = 1 (· ·) body mode with respect to dimensionless wave-number, kz0. We fix
the wavenumber at k = 5 × 10−6 m−1 with the slabwidth varying. For each separate
diagram, the background flow speed has been taken to be u0 = 16.0 km s−1 and
u0 = 28.0 km s−1, respectively. Panels (a) and (b) correspond to ρr = 0.01, while
panels (c) and (d) to ρr = 0.02. All panels (a)-(d) use a viscosity coefficient of
ν = 1010 m2s−1. Black lines denote an ionisation degree of µ = 0.5, red and blue lines
correspond to µ = 0.75 and µ = 0.95, respectively.



6.4 Dissipative Instability 125

0.00 0.02 0.04 0.06 0.08 0.10
kz0

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

ω
′
×

1
0
−

4
(s
−

1
)

ν = 1010 m2 s−1, u0 = 16.0 km s−1, ρr = 0.01

µ = 0.5

µ = 0.75

µ = 0.95

(a)

0.00 0.02 0.04 0.06 0.08 0.10
kz0

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

ω
′
×

1
0
−

4
(s
−

1
)

ν = 1010 m2 s−1, u0 = 28.0 km s−1, ρr = 0.01

µ = 0.5

µ = 0.75

µ = 0.95

(b)

0.00 0.02 0.04 0.06 0.08 0.10
kz0

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

ω
′
×

1
0
−

4
(s
−

1
)

ν = 1010 m2 s−1, u0 = 16.0 km s−1, ρr = 0.02

µ = 0.5

µ = 0.75

µ = 0.95

(c)

0.00 0.02 0.04 0.06 0.08 0.10
kz0

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

ω
′
×

1
0
−

4
(s
−

1
)

ν = 1010 m2 s−1, u0 = 28.0 km s−1, ρr = 0.02

µ = 0.5

µ = 0.75

µ = 0.95

(d)

Fig. 6.6 Comparison of the variation of the imaginary part of the frequency, ω′, with
respect to dimensionless wave-number, kz0, for the approximate analytical solution
given by Eq. (6.48), shown as square markers, as compared to the numerical solution
given by Eq. (6.19), shown as solid lines. All parameter values are identical to Fig.
6.5. The colours black, red and blue used for markers and lines refer to µ = 0.5, 0.75
and 0.95, respectively.
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Fig. 6.7 Same as Fig. 6.6 but for the wide slab limit given by Eq. (6.52) and variation
of kz0 from 10 to 100.

results confirms earlier findings that neutrals have a stabilising effect. As kz0 is
increased (i.e. for larger slab sizes) both the damping and amplification of modes
is reduced. When the equilibrium flow is increased to u0 = 28 km s−1 (Fig. 6.5b)
modes will use the increased flow speed for additional energy and waves will become
unstable much more easily. Now, the increased amount of neutrals is not enough
to completely stabilise the body mode; the body mode corresponding to µ = 0.75

is stable only for very a thin slab. For an even larger concentration of neutrals
(µ = 0.95), both the body and pseudo-body mode are damped. Comparing the
results obtained for the two flow values we can observe that the amplification rate
increases with the value of the equilibrium flow.

When the density contrast between the prominence and corona is increased the
qualitative behaviour of modes in the fully ionised case does not change, however,



6.4 Dissipative Instability 127

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

kz0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

ω
′
×

1
0
−

6
(s
−

1
)

ν =1.00× 1010 m2 s−1, ui = 16.0 km s−1, ρr = 0.01

µ = 0.5

µ = 0.75

µ = 0.95

psuedo-body

n = 1 body

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

kz0

−4

−2

0

2

4

ω
′ ×

1
0
−

6
(s
−

1
)

ν =1.00× 1010 m2 s−1, ui = 28.0 km s−1, ρr = 0.01

µ = 0.5

µ = 0.75

µ = 0.95

psuedo-body

n = 1 body

(b)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

kz0

−4

−2

0

2

4

ω
′ ×

1
0
−

6
(s
−

1
)

ν =1.00× 1010 m2 s−1, ui = 16.0 km s−1, ρr = 0.02

µ = 0.5

µ = 0.75

µ = 0.95

psuedo-body

n = 1 body

(c)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

kz0

−4

−2

0

2

4

ω
′ ×

1
0
−

6
(s
−

1
)

ν =1.00× 1010 m2 s−1, ui = 28.0 km s−1, ρr = 0.02

µ = 0.5

µ = 0.75

µ = 0.95

psuedo-body

n = 1 body

(d)

Fig. 6.8 Same as Fig. 6.5, but with the width of the slab fixed at z0 = 4 Mm and the
wavenumber now the varying quantity.

significant variations occur in the behaviour of the pseudo mode corresponding to
µ = 0.75. At this concentration of neutrals, the pseudo-body mode remains stable
only for large wavelengths after which it becomes unstable. For a value of kz0 ≈ 4,
the mode becomes stable again (see Fig. 6.5c). This latter effect is attributed to
both dispersion and the density ratio. We can see in the wide slab limit the critical
flow speed given by Eq. (6.53) is proportional to kz0/ρr . If we use this limit as a
guide we find by inputting the parameters of ρr = 0.02, µ = 0.75 and kz0 = 10 that
the critical flow speed is u0c = 23.1 km s−1. Therefore with a flow velocity of u0 = 16

km s−1, the flow velocity is not large enough for instability in the wide slab limit.
Finally, when the equilibrium flow is increased the pseudo-body mode correspond-

ing to an ionisation degree of 0.75 stays stable only for very large wavelengths. The
n = 1 body modes becomes unstable for a given value of kz0. These results confirms
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our finding that an increased flow speed is generating instability in modes. The
peak amplification rate is seen to be at around kz0 ≈ 1 in Fig. 6.5d for µ = 0.5

(fully ionised) in which ω′ ≈ 0.3 × 10−4 s−1 that gives an amplification time-scale of
∼ 3 × 104 s.

When the magnetic slab width is kept constant (Fig. 6.8) the variation of the
imaginary part of frequency is investigated between the limits of long and short
wavelength. All figures reveal that the most unstable/damped regime appears in the
short wavelength approximation, although these will eventually tend to zero. The
body mode appears to be the most affected by this increase in the wave-number.
This is most likely due to the fact that the length scale on which dissipation acts
becomes smaller and therefore dissipation becomes more important. For short
wavelengths, all rates tend to zero. Mathematically this is expected, as in wide slab
limit (kz0 ≫ 1) given by Eq. (6.41), ω′ ∝ 1/(kz0)2, and therefore will decrease to
zero as kz0 → ∞. Similar to the previous case, the amplification rate for µ = 0.5

increases by a factor of two when the flow speed is increased. The maximum of the
amplification rate occurs at larger wavelengths, once the concentration of neutrals is
increased. Similar enhancement of the damping/amplification rate can be observed
when the density contrast is increased. However, the time-scales of the instabilities
seem to be far too large, being approximately ∼ 106 s. The damping rate can be
of at least an order of magnitude larger for µ = 0.95 and, as such, the neutrals can
cause damping of waves on realistic time-scales.

6.5 Summary and Discussion

In this chapter, we studied the effect of partial ionisation on the dissipative instability
(negative energy wave) that occurs for surface waves within a magnetic prominence
slab suspended in a viscous corona.

We derived the dispersion relation for this model and were able to find an
approximate form for the imaginary part of the frequency using a Taylor expansion
around the ideal solution, due to our assumption that both the viscous and magnetic
Reynolds numbers were large. We, then, took the slender slab limit of Eq. (6.18) to
find approximate frequencies for the slow sausage wave. This in turn was then used
top find the critical flow speed, u0c, given by Eq. (6.49), at which modes would no
longer be damped but actually grow in amplitude. It was found that in this case
the instability could occur for the backward propagating slow sausage wave at the
tube speed, which in the prominence plasma we considered was about 14 km s−1.
If, however, the Cowling resistivity was included this would increase the threshold
for instability. The threshold was found to increase further still if more neutral
atoms were present in the prominence, this is due to the increasing importance of
the Cowling resistivity when more neutrals are present. Plotting the imaginary part
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of the frequency as a function of both the flow speed and the ionisation fraction µ,
it was found, however, that the damping and amplification rate would mean the
time-scale of these processes would be on the order of ∼ 106 s.

The slender slab limit is rather restrictive, however, so a numerical solution to
Eq. (6.18) was required so that the sign and value of the imaginary part of the
frequency could be attained for a greater range of kz0. The full numerical solution
was plotted in both Figs. 6.5 and 6.8 holding the wave number, k, constant and
then the slab width, 2z0 constant, respectively. It was found that ω′ could indeed
be larger than 10−7 s−1 and even on the order of 10−5 s−1 for a completely ionised
plasma at kz0 ≈ 2.0. On increasing the ionisation degree the peak amplification rate
was lowered and with µ = 0.95 no amplification would occur.





Chapter 7

Resonant Flow Instabilities in the
Two-Fluid Slab

7.1 Introduction

The temperature of the solar atmosphere can vary from around 4000 K in the
photosphere and chromosphere to over 1 MK in the corona. The plasma is mainly
composed of Hydrogen and, as such, the corona will almost certainly be a fully
ionised plasma. However, in photospheric and chromospheric structures where the
temperatures are much lower the plasma may be partially ionised. In chapter 5 we
considered a partially ionised prominence plasma but in the single fluid approximation
where the frequency of the collisions between the ions and neutrals was assumed to
be much larger than the frequency of the waves. The main contribution from the
neutrals was assumed to be in the Cowling resistivity term in the induction equation.
The single fluid approximation clearly does not account for the collisions between
the neutrals and ions in the momentum equations of the respective species.

The Sun is a highly dynamical object and for that reason it is in a continual state
of flux. Many phenomena in the solar atmosphere exhibit flows. Flows in a fully
ionised plasma can lead to the Kelvin-Helmholtz instability, however, flows must
usually be higher than the mean square of the Alfvén speed for the instability to
occur, when the flow is parallel to the magnetic field (see e.g. Chandrasekhar, 1961).
However, the situation can be slightly different in a multi-fluid plasma. The neutrals
cannot feel the force exerted by the magnetic field and as such different physics is at
play.

Watson et al. (2004) studied the Kelvin-Helmholtz instability at the interface
between two incompressible and weakly ionised plasma layers. It was found that the
ion-neutral collisions do not inhibit the instability of the neutrals for velocity shears
below the Alfvén speed. Soler et al. (2012) studied the Kelvin-Helmholtz instability
at the interface of two compressible plasma layers. In contrast to the incompressible
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case, it was found that the Kelvin-Helmholtz instability in the neutrals was rather
dependent on the plasma parameters, finding that if the density contrast was high
between the two layers the neutrals were more unstable and the KHI was present
for velocity shears below the Alfvén speed. Hendrix and Keppens (2014) studied
the KHI in in a numerical model of a fluid with both neutral and dust particles as
constituents. It was found that the dust particles reduced the growth rate of the
instability, especially for small-wavelengths.

Many chromospheric structures can be modelled as in a slab or cylindrical
geometry. Soler et al. (2013) considered the case of a fully collisional two fluid
plasma, modelled in a cylindrical coordinate system. They studied the propagation
of the waves in such a system, finding the appearance of cut-off regions for specific
collision frequencies and ion and neutral density ratios. Soler et al. (2013) studied
the KHI in an incompressible flux tube, finding again that the KHI would occur
for any flow shear and for a high collisions between ions and neutrals. Ballai et al.
(2017b) studied the KHI in an incompressible prominence plume modelled as a two
fluid plasma slab. It was found that the neutrals would always be unstable, if a low
collisional frequency was taken.

None of these cases above (or otherwise) have studied a compressible plasma slab.
In this section we investigate the effect of flow and collisions between neutrals on
the stability of the ion and neutral plasma. We derive the governing equations and
and a dispersion relation for this case. We firstly take the incompressible limit of
the dispersion relation and then consider the limit of a highly collisional plasma to
first order and the sign of the imaginary part of the frequency. We then take the
collision-less limit and finally the highly collisional limit.

7.2 Linearised Two Fluid MHD Equations and Gov-

erning Equation

We consider a collisional two-fluid plasma consisting of both ion and neutral species
in a Cartesian coordinate system, governed by Eqs. (1.31)-(1.37). The equilibrium
background plasma is embedded within a constant magnetic field in the x-direction
i.e. B = (B0, 0, 0). There are equal constant background flows for both the ions and
neutrals. i.e. vi0 = (u, 0, 0) and vn0 = (u, 0, 0) and we neglect any form of dissipation.
The background pressure for both the ion and neutral species is considered to be
constant in all directions, as is the density and thus the temperature due to the
ideal gas law. We linearise Eqs. (1.31)-(1.37) around this background plasma and
from now on denote neutral and ion quantities with subscript ‘n’ and ‘i’ respectively,
and use ′ to denote perturbed quantities and conversely quantities without this are
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background quantities (Soler et al., 2012):

Dρ′i
Dt
+ ρi0∇ · v′i = 0, (7.1)

Dρ′n
Dt
+ ρn∇ · v′n = 0, (7.2)

ρi
Dv′i
Dt
= −∇P′

T +
1

µ
(B · ∇)B′ − ρnνin(v

′
i − v′n), (7.3)

ρn
Dv′n
Dt
= −∇p′n + ρnνin(v

′
i − v′n), (7.4)

DB′

Dt
= (B · ∇)v′i − B(∇ · v′i), (7.5)

DP′
T

Dt
+ γpi(∇ · v′i) −

1

µ

D(B · B′)

Dt
= 0, (7.6)

Dp′n
Dt
+ γpn(∇ · v′n) = 0. (7.7)

Here, νin is the collisional frequency between ions and neutrals, ρ′l , p′l and v′l =

(v′xl, v
′
yl, v

′
zl) are the perturbed density, pressure and velocity field, ρl , pl and vl are

the background density, pressure and velocity field, where l = n, i, B′ = (Bx, By, Bz)

and B = (B0, 0, 0) are the perturbed and background magnetic field. We have also
introduced the total pressure (ion gas plus magnetic), P′

T = p′i + B′ · B/µ and the
material derivative (this is the same when the background velocity fields are identical),

D
Dt
=
∂

∂t
+ u

∂

∂x
.

We now assume that perturbations have the form f ′ = f̂ (z) exp(i(k x −ωt)), where we
have assumed there is no variation in the y-direction and so the Alfvén wave decouples
from the system and we therefore do not study the perturbations in the y-direction.
Eqs. (7.1)-(7.7) then form two coupled second order differential equations for P′

T

and p′n. Detailed derivations of these are left for Appendix B.

d2P̂T (z)
dz2

− M2
i P̂T (z) = qi p̂n(z), (7.8)
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where

M2
i = −

(
Ω2 − k2xv

2
A + iΩχνin

)
D̃T (c2si + v

2
A)

(
Ω̃
2 − k2c2si

Ω̃2 − k2v2A(
Ω2 − k2xv2A + iΩχνin

) ) , (7.9)

and

qi =
iΩνin

Dnc2sn

(
Dn −

c2snk2v2A
(c2si + v

2
A)D̃T

(
Ω̃
2 −
Ω2χν2in

Dn

))
. (7.10)

d2 p̂n(z)
dz2

− M2
n p̂n(z) = qnP̂T (z), (7.11)

M2
n = −

(
Ω2 + iΩνin − c2snk2

(
1 −

Ω2χν2inv
2
A

D̃T Dn(c2si + v
2
A)

))
c2sn

, qn = iΩ
χνinΩ̃

2

(c2si + v
2
A)D̃T

. (7.12)

Here we have defined the Doppler shifted frequency, Ω = ω − ku, the ion sound speed,
csi = (γpi/ρi)

1/2, the neutral sound speed, csn = (γpn/ρn)
1/2 and the Alfvén speed,

vA = (B2
0/µ0ρi), along with :

D̃A = Ω̃
2 − k2v2A, D̃si = Ω̃

2 − k2c2si, D̃T = Ω̃
2 − k2c2T, Dn = Ω

2 + iΩνin, (7.13)

where cT = csivA/(c2si + v
2
A)

1/2 is the tube speed and

Ω̃
2 = Ω2

(
1 +

iχνin

Ω + iνin

)
, (7.14)

is the modified frequency (Kumar and Roberts, 2003 or Soler et al., 2013). We
now have obtained two coupled second order ODEs for P̂T (z) and p̂n(z), respectively.
These govern the dynamics of plane linear waves in a homogeneous two fluid system.

For completeness we also present the equations in their Hein-Lust form. We use
the fact that

ξξξi =
v′i
−iΩ

, ξξξn =
v′n
−iΩ

,

where, ξξξ l = (ξ̂xl(z), ξ̂yl(z), ξ̂zl(z)) exp(i(k x −ωt)), where l = n, i. We then use equations
(B.17) and (B.16) to form the two following equations

dP̂T (z)
dz

= ρi

(
Ω
2 − k2xv

2
A + iΩχνin

)
ξ̂zi(z) − iΩρnνinξ̂zn(z), (7.15)
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dp̂n(z)
dz

= ρnΩ (Ω + iνin) ξ̂zn(z) − iρnνinΩξ̂zi(z). (7.16)

Using equations (B.23) and (B.26) we find

ρi(c2si + v
2
A)D̃T

dξ̂zi(z)
dz

= −D̃si P̂T (z) +
iνin

Ω + iνin
c2si k

2 p̂n(z), (7.17)

ρnρic2snD̃T (c2si + v
2
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dξ̂zn(z)
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=
iνin
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ρnc2snc2si k
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Dn

)
+ ρn

k2c2snν
2
in

(Ω + iνin)
2

)
.

(7.18)

7.3 Differential Equations and Solutions

Eqs. (7.8) and (7.11) can be combined together to form a fourth order differential
equation for pn:

d4 p̂n(z)
dz4

−

(
M2

i + M2
n

) d2 p̂n(z)
dz2

+ (M2
i M2

n − qiqn)p̂n(z) = 0. (7.19)

Eq. (7.19) has constant coefficients and, as such, has exponential solutions in general,
which are:

p̂n(z) = C1eR1z + C2e−R1z + C3eR2z + C4e−R2z . (7.20)

Here,
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©«
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, (7.21)

R2 =
©«
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( (
M2

i + M2
n
)2

− 4(M2
i M2

n − qiqn)

)1/2
2
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, (7.22)

P̂T (z) = N1

(
C1eR1z + C2e−R1z

)
+ N2

(
C3eR2z + C4e−R2z

)
. (7.23)
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Fig. 7.1 The equlibrium configuration for the magnetic slab and its surrounding
magnetic environment.

To apply boundary conditions we also need to obtain the velocity components (for
ions and neutrals) perpendicular to the interface, which are given by

v̂zi(z)
−iΩ

= Ψ1(C1eR1z − C2e−R1z) + Ψ2(C3eR2z − C4e−R2z), (7.24)

v̂zn(z)
−iΩ

= Φ1(C1eR1z − C2e−R1z) + Φ2(C3eR2z − C4e−R2z). (7.25)

Here,

N1,2 =
R2
1,2 − M2

n

qn
, Ψ1,2 =

R1,2

(
N1,2 +

iΩνin

Dn

)
ρiD̃A

, (7.26)

Φ1,2 =

R1,2

(
iΩχνinN1,2

D̃A
+ 1 −

Ω2χν2in

D̃ADn

)
ρnDn

. (7.27)

7.4 Derivation of Dispersion Relation

We now wish to derive the dispersion relation for a slab environment. The slab
environment (shown in Fig. 7.1) is set up as follows:

• Slab width is 2z0.
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• Slab boundaries within −z0 < z < z0.

• Background characteristic speeds and temperatures for ions,

Ti(z), csi(z), vA(z), cT (z), ui(z) =


Tie, cie, vAe, cTe, ue z > z0,

Ti0, ci0, vA0, cT0, u0, z0 > z > −z0,

Tie, cie, vAe, cTe, ue z < −z0,
(7.28)

• Background typical speeds and temperatures for the neutrals,

Tn(z), csn(z), vA(z), cT (z), un(z) =


Tne, cne, 0, 0, ue, z > z0,

Tn0, cn0, 0, 0, u0, z0 > z > −z0,

Tne, cne, 0, 0, ue z < −z0,
(7.29)

• We have boundary conditions that perturbations are finite as z → ±∞, thus
the solutions outside the slab become, for z < −z0

p̂n(z) = A1eR1e(z+z0) + A3eR3e(z+z0), (7.30)

for z > z0

p̂n(z) = A10e−R1e(z−z0) + A12e−R3e(z−z0), (7.31)

for z0 > z > −z0

p̂n(z) = A5 cosh (R10z) + A6 sinh (R10z) + A7 cosh (R30z) + A8 sinh (R30z) .

(7.32)

• The next boundary conditions are the continuity of P′
T , p′n, v′zi/iΩ and v′zn/iΩ

at z = −z0, z0. The first of these two boundary conditions can be found by
integrating Eqs. (7.3) and (7.4) across both interfaces at z = −z0 and z = z0,
respectively (see e.g. Díaz et al., 2012). The second two boundary conditions
come from the kinematic condition.
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Using these boundary conditions, we can now write an 8 × 8 matrix that gives us the
dispersion relation for the problem:

©«

1 1 C1 −S1 C2 −S2 0 0

0 0 C1 S1 C2 S2 1 1

N1e N2e N10C1 −N10S1 N20C2 −N20S2 0 0

0 0 N10C1 N10S1 N20C2 N20S2 N1e N2e

Ψ1e Ψ2e −Ψ10S1 Ψ10C1 −Ψ20S2 Ψ20C2 0 0

0 0 Ψ10S1 Ψ10C1 Ψ20S2 Ψ20C2 −Ψ1e −Ψ2e

Φ1e Φ2e −Φ10S1 Φ10C1 −Φ20S2 Φ20C2 0 0

0 0 Φ10S1 Φ10C1 Φ20S2 Φ20C2 −Φ1e −Φ2e

ª®®®®®®®®®®®®®®®¬

©«

A1

A3

A5

A6

A7

A8

A10

A12

ª®®®®®®®®®®®®®®®¬

= 0, (7.33)

Performing two simple row operations, we have

©«

1 1 2C1 0 2C2 0 1 1

−1 −1 0 2S1 0 2S2 1 1

N1e N2e 2N10C1 0 2N20C2 0 N1e N2e

−N1e −N2e 0 2N10S1 0 2N20S2 N1e N2e

Ψ1e Ψ2e 0 2Ψ10C1 0 2Ψ20C2 −Ψ1e −Ψ2e

−Ψ1e −Ψ2e 2Ψ10S1 0 2Ψ20S2 0 −Ψ1e −Ψ2e

Φ1e Φ2e 0 2Φ10C1 0 2Φ20C2 −Φ1e −Φ2e

−Φ1e −Φ2e 2Φ10S1 0 2Φ20S2 0 −Φ1e −Φ2e

ª®®®®®®®®®®®®®®®¬

©«

A1

A3

A5

A6

A7

A8

A10

A12

ª®®®®®®®®®®®®®®®¬

= 0, (7.34)

We now add Columns 7 and 8 to columns 1 and 2, respectively

©«

2 2 2C1 0 2C2 0 1 1

0 0 0 2S1 0 2S2 1 1

2N1e 2N2e 2N10C1 0 2N20C2 0 N1e N2e

0 0 0 2N10S1 0 2N20S2 N1e N2e

0 0 0 2Ψ10C1 0 2Ψ20C2 −Ψ1e −Ψ2e

−2Ψ1e −2Ψ2e 2Ψ10S1 0 2Ψ20S2 0 −Ψ1e −Ψ2e

0 0 0 2Φ10C1 0 2Φ20C2 −Φ1e −Φ2e

−2Φ1e −2Φ2e 2Φ10S1 0 2Φ20S2 0 −Φ1e −Φ2e

ª®®®®®®®®®®®®®®®¬

©«

A1

A3

A5

A6

A7

A8

A10

A12

ª®®®®®®®®®®®®®®®¬

= 0. (7.35)

We now minus columns 1 and 2 from columns 7 and 8 multiplied by two, respectively,
resulting in:

©«

2 2 2C1 0 2C2 0 0 0

0 0 0 2S1 0 2S3 2 2

2N1e 2N2e 2N10C1 0 2N20C2 0 0 0

0 0 0 2N10S1 0 2N20S2 2N1e 2N2e

0 0 0 2Ψ10C1 0 2Ψ20C2 −2Ψ1e −2Ψ2e

−2Ψ1e −2Ψ2e 2Ψ10S1 0 2Ψ20S2 0 0 0

0 0 0 2Φ10C1 0 2Φ20C2 −2Φ1e −2Φ2e

−2Φ1e −2Φ2e 2Φ10S1 0 2Φ20S2 0 0 0

ª®®®®®®®®®®®®®®®¬

©«

A1

A3

A5

A6

A7

A8

A10

A12

ª®®®®®®®®®®®®®®®¬

= 0. (7.36)
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Factoring out all the multiples of 2 and then switching columns 4 and 5

©«

1 1 C1 C2 0 0 0 0

0 0 0 0 S1 S2 1 1

N1e N2e N10C1 N20C2 0 0 0 0

0 0 0 0 N10S1 N20S2 N1e N2e

0 0 0 0 Ψ10C1 Ψ20C2 −Ψ1e −Ψ2e

−Ψ1e −Ψ2e Ψ10S1 Ψ20S2 0 0 0 0

0 0 0 0 Φ10C1 Φ20C2 −Φ1e −Φ2e

−Φ1e −Φ2e Φ10S1 Φ20S2 0 0 0 0

ª®®®®®®®®®®®®®®®¬

©«

A1

A3

A5

A6

A7

A8

A10

A12

ª®®®®®®®®®®®®®®®¬

= 0. (7.37)

We now swap rows to find

©«

1 1 C1 C2 0 0 0 0

N1e N2e N10C1 N20C2 0 0 0 0

−Ψ1e −Ψ2e Ψ10S1 Ψ20S2 0 0 0 0

−Φ1e −Φ2e Φ10S1 Φ20S2 0 0 0 0

0 0 0 0 S1 S2 1 1

0 0 0 0 N10S1 N20S2 N1e N2e

0 0 0 0 Ψ10C1 Ψ20C2 −Ψ1e −Ψ2e

0 0 0 0 Φ10C1 Φ20C2 −Φ1e −Φ2e

ª®®®®®®®®®®®®®®®¬

©«

A1

A3

A5

A6

A7

A8

A10

A12

ª®®®®®®®®®®®®®®®¬

= 0. (7.38)

Here,

S1,2 ≡ sinh
(
R1,20z0

)
, C1,2 ≡ cosh

(
R1,20z0

)
. (7.39)

For non-trivial solutions the determinant of this matrix must be equal to zero also.
However, due to its structure the determinant of Eq. 7.38 is just the determinant of
the two following matrices multiplied together and, therefore, must also be equated
to zero: ����������

1 1 C1 C2

N1e N2e N10C1 N20C2

−Ψ1e −Ψ2e Ψ10S1 Ψ20S2
−Φ1e −Φ2e Φ10S1 Φ20S2

���������� = 0, (7.40)

and ����������
S1 S2 1 1

N10S1 N20S2 N1e N2e

Ψ10C1 Ψ20C2 −Ψ1e −Ψ2e

Φ10C1 Φ20C2 −Φ1e −Φ2e

���������� = 0. (7.41)

Eq. (7.40) represents the symmetric sausage oscillations of the slab and Eq. (7.41)
represents asymmetric kink oscillation of the magnetic slab. When Eqs. (7.40) and
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(7.41) are expanded out, we find that{
tanh(R20z0)

coth(R20z0)

} {
tanh(R10z0)

coth(R10z0)

}
(Ψ20Φ10 − Ψ10Φ20) (N1e − N2e)

+

{
tanh(R10z0)

coth(R10z0)

}
[N1e (Ψ2eΦ10 − Ψ10Φ2e) + N2e (Ψ10Φ1e − Ψ1eΦ10)

+N20 (Φ10 (Ψ1e − Ψ2e) − Ψ10 (Φ1e − Φ2e))]

+

{
tanh(R20z0)

coth(R20z0)

}
[N1e (Ψ20Φ2e − Ψ2eΦ20) + N2e (Ψ1eΦ20 − Φ1eΨ20)

+N10 (Ψ20 (Φ1e − Φ2e) − Φ20 (Ψ1e − Ψ2e))]

+ (N10 − N20) (Ψ2eΦ1e − Φ2eΨ1e) = 0.

(7.42)

7.5 Incompressible Limit

We now study the incompressible limit applied to the two fluid slab dispersion relation
(7.42), that is ci0 → ∞, cie → ∞, cn0 → ∞ and cne → ∞. After a significant amount
of algebra the dispersion relation for the incompressible limit is given for both the
sausage and kink mode is obtained

©«

{
tanh(kz0)

coth(kz0)

}
ρi0D̃A0

+
1

ρieD̃Ae

ª®®®®®®¬
©«

{
tanh(kz0)

coth(kz0)

}
ρn0Dn0

+
1

ρneDne

ª®®®®®®¬
+

{
tanh(kz0)

coth(kz0)

}
ρi0ρieD̃A0D̃Ae

(
iΩ0νin0

Dn0
−

iΩeνine

Dne

)2
= 0.

(7.43)

Here, the subscripts e and 0 refer to quantities evaluated in either the external or
internal plasma, for example Ωe = ω − kue etc. Eq. (7.43) is essentially the same as
the equation derived for the incompressible two fluid slab in Ballai et al. (2017b) and,
indeed, very similar to the dispersion relation derived in Martínez-Gómez et al. (2015)
for the incompressible two fluid cylinder. We write Eq. (7.43) slightly differently to
Ballai et al. (2017b), however, as it is more useful for the highly collisional limit that
follows.

7.5.1 Highly Collisional Limit

Eq. (7.43) is transcendental and can only be solved, to the best of our knowledge,
numerically. We can, however, take the physically appropriate limit of high collisional
frequency, where we assume Ω0/νin0 ≪ 1 and Ωe/νine ≪ 1 and both these quantities
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are of approximately the same order. This can be justified by using the approximation
for νin given by Eq. (2.32). Using parameters taken from Zaqarashvili et al. (2011)
for the mass of neutron and proton and typical values for a chromospheric plasma
with T = 104 K and hydrogen ion and neutral number densities of 2.3×1010 cm−3 and
1.2 × 1010 cm−3 gives a collisional frequency of νin ∼ 11 s−1. Wave periods observed
in the solar atmosphere can range from 1000 s to 10 s so that taking Ω/νin ≪ 1 is
clearly justified here.

Applying this limit to Eq. (7.43) and neglecting terms of order (Ω/νin)
2 and

higher we find the dispersion relation can be approximated as

D(ω, k) = D0(ω, k) + iD1(ω, k) = 0, (7.44)

where

D0(ω, k) = D01D02, (7.45)

with

D01 =

(
ρie

{
tanh(kz0)

coth(kz0)

}
D̃Ae + ρi0D̃A0

)
, (7.46)

D02 =

©«

{
tanh(kz0)

coth(kz0)

}
ρn0Ω

2
0

+
1

ρneΩ
2
e

Ωeνin0

Ω0νine

ª®®®®®®¬
, (7.47)

and

D1(ω, k) = −
Ω0

νin0
D02D11 −

Ωe

νine
D01D12 −

Ω0

νin0

{
tanh(kz0)

coth(kz0)

} (
1 −
Ωeνin0

Ω0νine

)2
, (7.48)

with

D11 =ρie

{
tanh(kz0)

coth(kz0)

}
ĎAe + ρi0DA0

+
Ωeνin0

Ω0νine

(
ρie

{
tanh(kz0)

coth(kz0)

}
DAe + ρi0ĎA0

)
,

(7.49)
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D12 =

©«

{
tanh(kz0)

coth(kz0)

}
ρn0Ω

2
0

+
1

ρneΩ
2
e

ª®®®®®®¬
. (7.50)

Here,

ĎAl = Ω
2
l (1 + χl) − k2v2Al, DAl = Ω

2
l − k2v2Al, l = 0, e. (7.51)

The purpose of this expansion is to find both the damping rates of the modes due
to the collisions between the neutrals and ions and whether there is a possibility of
instabilities arising due to the presence of the background flow. We therefore suppose
that ω = ω0 + iω′, where ω′ ≪ ω0. Next, we expand Eq. (7.44) around ω0, where
ω0 is the solution to D0(ω0, k) = 0 so that the imaginary part of the frequency can
be approximated as

ω′ = −
D1(ω0, k)

∂D0(ω0, k)/∂ω
. (7.52)

We note that we can also use other simple perturbation methods to find ω′ as the
next order correction.

We now study the two separate roots of the equation D0(ω0, k) = 0, independently,
to determine the value of ω′. Studying the root given by D01(ω0, k) = 0 we have the
solution

ω0 =

ue ρ̃e

{
tanh(kz0)

coth(kz0)

}
+ ρ̃0u0

ρ̃e

{
tanh(kz0)

coth(kz0)

}
+ ρ̃0

k ± k

(
ρ̃e ρ̃0

{
tanh(kz0)

coth(kz0)

} (
v2KH − u2D

))1/2
ρ̃e

{
tanh(kz0)

coth(kz0)

}
+ ρ̃0

. (7.53)

Here, ρ̃l = ρil + ρnl (l = 0, e) and

v2KH =

(
ρ̃e

{
tanh(kz0)

coth(kz0)

}
ṽ2Ae + ρ̃0ṽ

2
A0

) (
ρ̃e

{
tanh(kz0)

coth(kz0)

}
+ ρ̃0

)
ρ̃e ρ̃0

{
tanh(kz0)

coth(kz0)

} . (7.54)

Here vAl = vAl/(1 + χl)
1/2 is the total Alfvén speed (the Alfvén speed given by

B2
l /µ0(ρ̃l)). The imaginary part of the frequency, ω′, can then be written (using the
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fact D01(ω0, k) = 0), i.e.

ω′ = −
1

νine

({
tanh(kz0)

coth(kz0)

}
ρneΩ

2
e0 + ρn0Ω

2
00

)2
2

(
ρ̃e

{
tanh(kz0)

coth(kz0)

}
Ωe0 + ρ̃0Ω00

)
D020

, (7.55)

Here,

D020 =

({
tanh(kz0)

coth(kz0)

}
ρneΩe0 + ρn0Ω00

νin0

νine

)
. (7.56)

The numerator of Eq. (7.55) is always positive and we are thus left to determine the
sign of the denominator. We, firstly, have

ρ̃e

{
tanh(kz0)

coth(kz0)

}
Ωe0 + ρ̃0Ω00 = ±k

(
ρ̃e ρ̃0

{
tanh(kz0)

coth(kz0)

} (
v2KH − u2D

))1/2
, (7.57)

and secondly,

D020 =
kνin0ρn0

νine

({
tanh(kz0)

coth(kz0)

}
+ ρ̃r

) [
uD

(
κ ρ̃r −

{
tanh(kz0)

coth(kz0)

})

± (1 + κ)

(
ρ̃r

{
tanh(kz0)

coth(kz0)

} (
v2KH − u2D

))1/2 ]
,

(7.58)

where we have defined

κ =

{
tanh(kz0)

coth(kz0)

}
ρneνine

ρn0νin0
, uD = u0 − ue. (7.59)

The first term in the denominator is just dependent on whether the wave is a
backward or forward propagating wave, so therefore has the sign that complements
that, i.e. negative for backward and positive for forward propagation. The second
term is not so simple. When there is no shearing flow i.e. uD = 0, the sign of the
second term is negative and therefore waves are damped. However, there will be a
flow speed when Eq. (7.56) does change sign, and thus so does the sign of Eq. (7.55).
The fact that Eq. (7.56) equals to zero is interesting as it indicates that D02 = 0 (Eq.
(7.47)) and this therefore shows a resonant interaction between the modes given by
Eq. (7.47) and Eq. (7.46). Equating Eq. (7.58) to zero, we find the critical flow
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speed is given by:

u2D = v2KHΞ
2, Ξ

2 =

(1 + κ)2 ρ̃r

{
tanh(kz0)

coth(kz0)

}
(
ρ̃r +

{
tanh(kz0)

coth(kz0)

}) ({
tanh(kz0)

coth(kz0)

}
+ κ2 ρ̃r

) . (7.60)

Here, ρr = ρ̃0/ρ̃e. A requirement for this sign change to happen for flow values less
than that of the Kelvin-Helmholtz instability requires that Ξ < 1. With some simple
algebra we can prove that this is exactly the case:

Ξ
2 = 1 − Γ, (7.61)

Γ =

({
tanh(kz0)

coth(kz0)

}
− ρ̃r κ

)2
(
ρ̃r +

{
tanh(kz0)

coth(kz0)

}) (
ρ̃r κ +

{
tanh(kz0)

coth(kz0)

}) . (7.62)

Here, we have used the definition of κ defined by Eq. (7.59). Thus, Γ is a completely
positive quantity and therefore Ξ ≤ 1. The speed at which this sign change occurs is
given as a fraction of the Kelvin-Helmholtz threshold velocity:

uD = ±vKHΞ. (7.63)

As the perturbation method actually breaks down around these points, we leave
analysis until the next numerical solutions sub-section. We have in fact found the
flow speeds required in which the frequencies for the eigen-frequencies of both Eqs.
(7.46) and (7.47) are equal.

We now consider the case for the second root of Eq. (7.45), that is D02(ω0, k) = 0.
Again, expanding the dispersion relation around ω0 we find that the real part is
given as

ω0 = k
ueκ + u0
1 + κ

. (7.64)

The imaginary part of the frequency can then be approximated as

ω′ =

u2Dk2κ
(
κνine

νin0
+ 1

) (
u2DΥ − v2KHΞ

2
)

νine (1 + κ)
3 (

u2D − v2KHΞ
2
) . (7.65)
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Here,

Υ =

©«
1 −

{
tanh(kz0)

coth(kz0)

} (
κνine

νin0
+ 1

)
χe

(1 + χe)

({
tanh(kz0)

coth(kz0)

}
+ ρ̃r κ2

) ª®®®®®®¬
. (7.66)

The sign of ω′, given by Eq. (7.65), is clearly positive when there is a flow present
and therefore this mode of oscillation is always unstable. This agrees well with the
result given in Soler et al. (2013) that an instability in the plasma occurs due to the
shear flow and the presence of the neutrals.

7.5.2 Numerical solutions

Figs. 7.2-7.5 plot the variation of the real and imaginary parts of the dimensionless
frequency, ω/kvK , with respect to the dimensionless flow parameter, u0/vKH, for
the approximations given by Eqs. (7.53), (7.55), (7.65) and (7.65) where the kink
frequency, kvK , is given as,

vK =

(
ρ̃eṽ

2
Ae + ρ̃0ṽ

2
A0

ρ̃e + ρ̃0

)1/2
.

Also plotted in the same figures as solid (kz0 = 0.1) and dashed (kz0 = 1) black
lines are the numerical solutions to Eq. (7.43) that correspond to the specific
approximation. The blue circles correspond to the approximation when kz0 = 1 and
the orange squares the approximation when kz0 = 0.1. In the the lower right hand
panels only the full numerical solutions are plotted, to demonstrate the avoided
crossings and the resonance that occurs around these points.

Fig. 7.2 is plotted for a situation in which the external plasma is cooler and less
dense than the internal plasma. Using Eq. (1.30) as a rough guide for ionisation
fractions, we choose χe = 3 so that there are three times as many neutral atoms than
there are ions. As the internal plasma is hotter, we choose χ0 = 0.1 so that, for this
plasma, there are ten times as many ions as there are neutrals meaning the plasma is
almost completely ionised. The dimensionless collisional frequency, νin0/kvK = 100,
is chosen so the effective collision time, 1/νin0, between the ion and neutral species is
100 times less than the kink period, 1/kvK .

Fig. 7.2a plots the solution of the kink approximation given by Eqs. (7.64) and
(7.65), whilst Figs. 7.2b and c are plotted for the forward (positive sign) and backward
(negative sign) propagating kink approximations given by Eqs. (7.53) and (7.55),
respectively. The green lines represent the the dimensionless speeds u0/vKH = Ξ

at which a singularity occurs in our perturbation methods, the solutions are not
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Fig. 7.2 Variation of the real, ℜ(ω/kvK)), and imaginary, ℑ(ω/kvK), parts of the
dimensionless frequency, ω/kvK , for the kink mode (coth) with respect to the
dimensionless flow parameter, u0/vKH, for the parameters Te/T0 = 0.33, χe = 3,
χ0 = 0.1 and νin0/kvK = 100 (a) the approximation given by Eqs. (7.64) and
(7.65) with the corresponding kink solution of Eq. (7.43) as a comparison (b) the
approximation given by the positive sign of Eq. (7.53) and Eq. (7.55) with the
corresponding kink solution (7.43) (c) the same as (b) but for the negative solution of
Eq. (7.53). The blue circles and orange boxes correspond to the approximation when
kz0 = 0.1 and kz0 = 1, respectively, and the black solid and dashed lines correspond
to the full numerical solutions whenkz0 = 0.1 and kz0 = 1, respectively (d) the full
numerical solutions of Eq. (7.43) for the backward (orange lines) and forward (blue)
propagating kink and the neutral (red) modes for with solid lines for kz0 = 0.1 and
dashed lines for kz0 = 1. In all panels the green solid and dashed lines indicate the
speed u0/vKH = Ξ when kz0 = 0.1 and kz0 = 1, respectively.



7.5 Incompressible Limit 147

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

<
(
ω
k
v
K

)

Te/T0 = 0.33, χe = 3.0, χ0 = 0.1, νin0/kvK = 100.0

kz0 = 0.1

kz0 = 1.0

0.0 0.2 0.4 0.6 0.8 1.0

u0/vKH

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

=
(
ω
k
v
K

)

(a)

0.0 0.2 0.4 0.6 0.8 1.0

1.5

2.0

2.5

<
(
ω
k
v
K

)

Te/T0 = 0.33, χe = 3.0, χ0 = 0.1, νin0/kvK = 100.0

kz0 = 0.1

kz0 = 1.0

0.0 0.2 0.4 0.6 0.8 1.0

u0/vKH

−0.04

−0.03

−0.02

−0.01

0.00

=
(
ω
k
v
K

)

(b)

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

<
(
ω
k
v
K

)

Te/T0 = 0.33, χe = 3.0, χ0 = 0.1, νin0/kvK = 100.0

kz0 = 0.1

kz0 = 1.0

0.0 0.2 0.4 0.6 0.8 1.0

u0/vKH

−0.010

−0.005

0.000

0.005

0.010

=
(
ω
k
v
K

)

(c)

0.0 0.2 0.4 0.6 0.8 1.0
-2.00

-1.00

0.00

1.00

2.00

3.00

<
(
ω
k
v
K

)

Te/T0 = 0.33, χe = 3.0, χ0 = 0.1, νin0/kvK = 100.0

0.0 0.2 0.4 0.6 0.8 1.0

u0/vKH

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

=
(
ω
k
v
K

)

kz0 = 0.1

kz0 = 1.0

(d)

Fig. 7.3 Same as Fig. 7.2 but for the sausage (tanh) mode.

computed any further after this point. Also noted are regions, blue for kz0 = 0.1

and orange for kz0 = 1, where the approximation has a larger than 10% total error
compared to the numerical solution. Evidently, by studying Figs. 7.2a-c we see that
the approximations are very good, particularly for the real part of the solution, up
until u0/vKH ≈ Ξ. The approximation for the forward (positive sign) propagating
kink mode (shown in Fig. 7.2b) never has a higher than 10% error, as there is no
singularity in the perturbation method for this particular mode. The modes shown
in Figs. 7.2a and c reach exactly the same real dimensionless frequency value when
u0/vKH = Ξ, at which point the singularity is reached and the approximation breaks
down.

In Fig. 7.2d we plot only the full numerical solutions. The red lines correspond to
the neutral mode of Fig. 7.2a, the blue lines the forward propagating kink mode of
Fig. 7.2b and the orange lines the backward propagating mode of Fig. 7.2. Plotted
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Fig. 7.4 Same as Fig. 7.2 but for the dimensionless parameters Te/T0 = 3, χe = 0.1,
χ0 = 3 and νin0/kvK = 100.

in green are the vertical lines where u0/vKH = Ξ, solid for kz0 = 0.1 and dashed for
kz0 = 1. At these vertical lines, the real parts of the dimensionless frequency of
neutral mode and backward propagating kink mode approach and avoid each other.
The imaginary part of the frequency for the solution coloured orange then reaches a
positive peak. When kz0 = 0.1, the time-scale of amplification is approximately 16
times greater than the kink mode period as ℑ(ω/kvK) ≈ 0.06. When kz0 = 1, the
time-scale of amplification is slightly larger, being approximately 50 times greater
than the kink period, as ℑ(ω/kvK) ≈ 0.02.

Fig. 7.3 is plotted for the same parameters as Fig. 7.2 but for the sausage
solutions of Eqs. (7.43), (7.53), (7.55), (7.64) and (7.65). Figs. 7.3a-c confirm that
the approximations given by Eqs. (7.53), (7.55), (7.64) and (7.65) are indeed very
good. The green vertical lines show that the dimensionless flow speed at which the
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Fig. 7.5 Same as Fig. 7.3 but for the dimensionless parameters Te/T0 = 3, χe = 0.1,
χ0 = 3 and νin0/kvK = 100.

perturbation method breaks down (u0/vKH = Ξ) has increased for both kz0 = 0.1

and kz0 = 1. When kz0 = 1, we have Ξ ≈ 1 so that the instability practically occurs
at the Kelvin-Helmholtz threshold velocity, as confirmed by Fig. 7.3d. When kz0 = 1

the value of Ξ is decreased, and when u0/vKH = Ξ the real parts of the dimensionless
frequencies of the neutral (red) and forward propagating (blue) modes come very
close and avoid each. At their closest approach there is a positive peak in the
imaginary part of the dimensionless frequency of the forward propagating sausage
mode. The time-scale of amplification is approximately 100 times greater than the
sausage mode period, as ℑ(ω/kvK) ≈ 0.01.

Fig. 7.4 is evaluated for a situation in which the external plasma is three times
hotter than the plasma within the slab. We, therefore choose, χe = 0.1 and χ0 = 3.
Again the internal collisional time-scale is 100 times less than the kink period, 1/vK .
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Fig. 7.4a is plotted for the kink approximation given by Eq. (7.64) and (7.65),
whilst Figs. 7.2b and c are plotted for the forward (positive sign) and backward
(negative sign) propagating kink approximations, respectively, given by Eqs. (7.53)
and (7.55). As compared to Fig. 7.2 we see, by comparing the positions of the green
vertical lines in each figure, that the solution breaks down for lower fractions of the
Kelvin-Helmholtz threshold, as Ξ is less in this situation. Interestingly, the green
vertical lines are in the same position as for sausage modes shown in Fig. 7.3. We
again see a very good agreement between the analytical approximations and the
numerical solutions by studying Figs. 7.4a-c. Again, in Fig. 7.4, at the vertical green
lines where the analytical solutions breaks down, the real part of the dimensionless
frequencies of the neutral (red) and forward propagating kink (blue) modes approach
and avoid one another. At their closest approach, there a large peaks and troughs
in the dimensionless imaginary part of the frequency. When kz0 = 0.1, the shortest
time-scale of amplification is approximately 25 times greater than the kink mode
period i.e. ℑ(ω/kvK) ≈ 0.04. When kz0 = 1, the shortest time-scale of amplification
is slightly greater, being approximately 100 times greater than the kink period i.e.
ℑ(ω/kvK) ≈ 0.01.

Fig. 7.5 is plotted for the same parameters as in Fig. 7.4 but for the sausage
solutions of Eqs. (7.43), (7.53), (7.55), (7.64) and (7.65). By studying Figs. 7.5a-c,
it is, again, confirmed that the analytical approximations are quite accurate. The
speeds at which the approximations break down are identical to those in Fig. 7.2,
and are quite close to the Kelvin-Helmholtz threshold, particularly when kz0 = 0.1.
When kz0 = 1 the real part of the dimensionless frequencies of the neutral (red) and
forward propagating kink (blue) modes approach and avoid one another. At their
closest approach, there are large peaks and troughs in the dimensionless imaginary
part of the frequencies, respectively. The shortest time-scale of the amplification is
approximately 100 times greater than the kink period i.e. ℑ(ω/kvK) ≈ 0.01.

The evidence from Figs. 7.2-7.5 indicates that there is a resonant interaction
between the neutral mode and either the backward or forward propagating modes of
the single fluid incompressible slab. This resonant interaction can lead to reasonable
time-scales for the amplification of the modes. For example, the lowest amplification
period was found for the sausage mode shown in Fig. 7.3. The period was only 16
times longer than the kink period i.e. a wave with a period of 10 seconds would
increase in magnitude by a factor of exp(1) in 160 seconds. This is a very reasonable
time-scale for most solar phenomena.

7.6 Collision-less limit

In this section, we study the collision-less limit, that is νin ≪ Ω. This is a fairly
restrictive limit as it assumes that the waves musty be of a high frequency, given
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that the collisional frequency is about ∼ 11 s−1 in the Chromosphere, as stated
before. However, it is useful as it gives a physical insight into the problem. We
must also note that this approximation will only be valid as long as the frequencies
of the oscillations are still much larger than the frequency of the collisions between
electrons and ions, if not we can no longer treat the electrons and ions as a single
fluid (see e.g. Zaqarashvili et al., 2011).

We start by expanding both M2
i and M2

n around the small parameter νin/Ω ≪ 1.

M2
i ≈ M̂2

i −
iΩνinχΩ

2
(
Ω2 − 2k2c2T

)
(c2i + v

2
A)D̂

2
T

+O(ν2in), (7.67)

M2
n = M̂2

n −
iΩνin

c2n
+O(ν2in). (7.68)

Here,

M̂2
i = −

D̂AD̂si

(c2i + v
2
A)D̂T

, D̂A = Ω
2 − k2v2A, D̂si = Ω

2 − k2c2i , (7.69)

D̂T = Ω
2 − k2c2T, M̂2

n = −
(Ω2 − k2c2n)

c2n
. (7.70)

We can now expand R1 and R2 using Eqs. (7.67) and (7.68) and as such we obtain

R1 ≈ M̂i −
iΩνinχΩ

2
(
Ω2 − 2k2c2T

)
2(c2i + v

2
A)D̂

2
T M̂2

i

+O(ν2in) (7.71)

and

R2 ≈ M̂n −
iΩνin

2c2n M̂2
n
. (7.72)

Now, we assess the orders of N1 and N2

N1 ≈
M2

i − M2
n

qn
= O(Ω/νin), N2 ≈ O(νin/Ω). (7.73)

This means that, in Eq. (7.42), any terms multiplied by N2 can be neglected as they
are two orders of magnitude smaller. The parameters Ψ1, Ψ2, Φ1 and Φ2 are also
expanded and their orders calculated

Ψ1 = O(Ω/νin), Ψ2 = O(νin/Ω), Φ1 = O(1), Φ2 = O(1). (7.74)
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These are only comparisons in order between each of the quantities. We neglect
terms that are O(ν2in) different in size and obtain(

N10Ψ1e +

{
T1
C1

}
N1eΨ10

) (
Φ2e +

{
T2
C2

}
Φ20

)
≈ 0, (7.75)

M2
i0 − M2

n0

qn0

M2
ie − M2

ne

qne

(
R1e

ρieDAe
+

R10

ρi0DA0

{
T1
C1

}) (
R2e

ρneDne
+

R20

ρn0Dn0

{
T2
C2

})
≈ 0.

(7.76)

We now expand around νin to find

F(ω, k) ≈ FR(ω, k) + FI(ω, k) = 0, (7.77)

where

FR(ω, k) = FR1(ω, k)FR2(ω, k), FI(ω, k) = FR1(ω, k)FI2(ω, k) + FR2(ω, k)FI1(ω, k).

(7.78)

Here,

FR1 =

({
tanh

coth

}
(M̂i0z0)

M̂i0

ρi0D̂A0
+

M̂ie

ρieD̂Ae

)
(7.79)

FR2 =

(
M̂neΩ

2
0

ρne
+

{
tanh

coth

} (
M̂n0z0

) M̂n0Ω
2
e

ρn0

)
(7.80)

and

FI1 =
iΩ0χ0νin0

2ρi0D̂T0D̂2
A0D̂si0

(
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tanh2

coth2
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2D̂AeD̂TeD̂sie

M̂ie

ρieD̂Ae

(7.81)
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and

FI2 =

{
tanh

coth

} (
M̂n0z0

) (
iΩeνine +

iΩ2
eΩ0νin0

2D̂sn0

)
M̂n0

ρn0
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(
1 −
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tanh2

coth2
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iΩ0νin0
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e
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M̂ne
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iΩ2
0Ωeνine
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(7.82)

We can see from Equations (7.79)-(7.82), we have two separate branches of this
dispersion relation. If we set νin0 = νine = 0 we see that these two branches correspond
to the dispersion relation of waves in the ion fluid (Eq. 7.79) and another dispersion
relation governing the waves in the neutral fluid (Eq. 7.80) decoupled from each
other due to there being no collisions between the ions and neutrals, thus they behave
as two separate fluids.

The first solution considered is the case where FR1(ω1, k) = 0. The solutions to
this are interpreted as the kink and sausage modes in a medium where the ions and
neutrals do not collide. Eq. (7.79) is the dispersion relation derived in Nakariakov
and Roberts (1995) and, as such, this case has been studied extensively and we
therefore do not discuss it here. We next consider the neutral root of Eq. (7.78),
given by FR2 = 0

M̂neΩ
2
0

ρne
+

{
tanh

coth

} (
M̂n0z0

) M̂n0Ω
2
e

ρn0
= 0. (7.83)

Eq. (7.83) describes the modes of oscillation of neutrals in a slab geometry with
steady flows within and outside of the slab. If we take the incompressible limit of
Eq. (7.83), we simplify to the dispersion relation in the collision-less limit given by
Ballai et al. (2017a) which has solutions for the frequency given as

ω =

u0ρn0 + ue

{
tanh

coth

}
(kz0)ρne

ρn0 +

{
tanh

coth

}
(kz0)ρne

k ± ikuD

({
tanh

coth

}
(kz0)

ρne

ρn0

)1/2
1 +

{
tanh

coth

}
(kz0)

ρne

ρn0

. (7.84)

Clearly, in the incompressible limit, the modes described in Eq. (7.84) are unstable
as long as a shear flow exists between the slab and its environment. It must be noted
that this result was found in Ballai et al. (2017b) and has been discussed there. A
similar result was, again, shown for the case of a shear flow at a single interface in
Soler et al. (2012). The incompressible case has been fully discussed so it is neglected
here and we prefer to acknowledge it.
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Returning to Eq. (7.83), we can of course see there are two branches, the kink
and sausage modes. Immediately evident is that neither branch has solutions unless
a shear flow is present. To study the modes that arise from this root analytically, we
take the slender slab limit (kz0 → 0) of both the sausage and kink modes, respectively.
In this limit, the sausage mode branch tends to

M̂neΩ
2
0

ρne
+

M̂2
n0z0Ω2

e

ρn0
= 0. (7.85)

Following a simple perturbation procedure, we find that the solution to Eq. (7.85)
for the frequency ω can be approximated as

ω ≈ u0k ± iuDk(kz0)1/2
(
ρne

ρn0

)1/2 (
cne(

c2ne − u2D
)1/2 )1/2 . (7.86)

In the same limit, the kink mode reduces to

M̂neΩ
2
0

ρne
z0 +

Ω2
e

ρn0
= 0. (7.87)

Again, following a simple perturbation procedure, we find that the solution to Eq.
(7.87) can be approximated in this limit as

ω ≈ uek ± iuDk(kz0)1/2
(
ρn0

ρne

)1/2
. (7.88)

Firstly, it is obvious from Eqs. (7.86) and (7.88) that both the solutions cannot exist
without a background flow present within the system. Secondly, both modes are
unstable if there is a shear flow between the layers i.e. uD , 0. This result agrees
with the conclusions of Soler et al. (2012) and Ballai et al. (2017b), where it was
found that in the collision-less limit the neutral species are always Kelvin-Helmholtz
unstable. We could, in fact, take the incompressible limit of the neutral root of Eq.
(7.78) but we choose not to as it has been sufficiently studied in the aforementioned
investigations.

7.7 Highly Collisional Limit

Many of the cases considered in the previous sections are good indicators of the
physics present in the study of these partially ionised plasmas, however they are
fairly restrictive and are not what is generally observed in prominence plasmas. We
therefore opt for the limit of high collisional frequency again, that is Ωl ≪ νinl .
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Applying this limit to Eq. (7.42), we obtain two separate branches

f (ω, k) = f0(ω, k) f1(ω, k) = 0, (7.89)

f0(ω, k) =

{
tanh

coth

} (
M̆0z0

) M̆0

D̆A0 ρ̃0
+

M̆e

D̆Ae ρ̃e
, (7.90)

f1(ω, k) =
ζ0

νin0Ω0ρn0
+

ζe

νineΩeρne
. (7.91)

Here,

ζ2l = −
iΩlνinl(1 + χl)

2(c̃2l + ṽ
2
Al)D̆Tl

c2nl(c
2
il + v

2
Al)ĎTl

, (7.92)

where,

D̆Al = Ω
2
l − k2ṽ2Al, D̆sl = Ω

2
l − k2c̃2l , c̃2l =

c2nl χl + c2il
1 + χl

, (7.93)

D̆Tl = Ω
2
l − k2c̃2Tl, c̃2Tl =

c̃2l ṽ
2
Al(

c̃2l + ṽ
2
Al

) , (7.94)

M̆2
l = −

D̆Al D̆sl

(c̃2l + ṽ
2
Al)D̆Tl

, ĎTl = Ω
2
l (1 + χl) − k2c2Tl . (7.95)

The first root given by Eq. (7.90) portrays the fact that the neutrals and ions are
colliding so often that they just behave as one fluid and so we recover the classic
case of a single fluid plasma slab derived in Edwin and Roberts (1982) as is expected.
However, the next root, given by Eq. (7.91), is more interesting. It is similar in
structure to Eq. (7.47) and arises due solely to the presence of the flow, as with
no flow shear this equation has no solutions. We therefore suspect that similar to
incompressible case where we have shown there is an instability associated with the
flow that occurs for lower flow shears than those required for the Kelvin-Helmholtz
instability. To show its similarity in structure to Eq. (7.47) we rewrite Eq. (7.91) in
the following form

ω =
u0 + τue

1 + τ
k, τ =

ζ0νineρne

ζeνin0ρn0
. (7.96)

This has a very similar structure to Eq. (7.47), however the terms ζ0 and ζe occur
due to the compressibility of the plasma. Both Eqs. (7.91) and (7.96) show some
interesting features. Firstly, for a real solution to Eq. (7.91), Ω0 and Ωe must have
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different signs, otherwise no solution can exist. For real solutions we also require
that

sign
(
ΩeD̆TeĎT0

)
= sign

(
Ω0D̆T0ĎTe

)
. (7.97)

Eq. (7.91) can be expanded to form a fifth order polynomial for the frequency:
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(7.99)

This polynomial is still generally insoluble being a fifth order polynomial but is
easy to solve numerically. The roots of this polynomial must be substituted back
into Eq. (7.91) to validate whether they satisfy it, as spurious roots may have been
introduced by squaring terms. In Figs. 7.6a-d, we have plotted the solution to Eq.
(7.91) as well as the solution to Eq. (7.38), both in the limit as kz0 → ∞, to compare
the validity of the approximation. Also plotted are the bounds c̃Te, cTe/

√
1 + χe,

R1 = (u0 − c̃T0)/ṽA0 and R2 = (u0 − cT0/
√
1 + χ0)/ṽA0, to which the modes asymptote

or cannot exist beyond. This has been plotted for several different values of the
temperature ratio, Te/T0 and ionisation ratios χe and χ0 that would mimic plasmas
in the chromosphere. We also take a value of νin0/k ṽA0 = 1000, in this case the
Alfvén frequency k ṽA0 is 1000 times larger than the collisional frequency νin0. The
plasma-beta value is set at β = 0.1 to model the solar atmosphere. Immediately it is
evident that there exist unstable modes for flow speeds that lie below the single fluid
Alfvén speed, ṽA0. Also interesting are the magnitudes of the positive imaginary part
of the frequencies. The imaginary parts are only one order of magnitude smaller
than the dimensionless frequency, meaning the time scale of the instability will only
be one order of magnitude larger than the period of the wave, which is a realistic
time-scale. The instability appears to occur within the region where the real part of
the phase speed of the wave is

max

(
u0 − c̃T0,

cTe
√
1 + χe

)
<
ω

k
< min

(
u0 −

cT0
√
1 + χ0

, c̃Te

)
,

and exists when the two permitted solutions couple to one another for the solution
Eq. (7.90).
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Fig. 7.6 The real and imaginary parts of the solution of Eq. (7.91), plotted as
black solid lines, for increasing dimensionless flow speed, u0/ṽA0 on the x-axis. The
red dashed lines are the solutions to Eq. (7.41) but with kz0 → ∞ i.e. a single
interface. The two black lines not within the grey regions represent the line of
ℜ(ω/k ṽA0) = u0/ṽA0 and 0, where solutions to Eq. (7.91) do not exist. Noted
are the lines firstly, in blue, c̃Te/ṽA0 and cTe/ṽA0

√
1 + χe and secondly, in green,

u0/ṽA0 − c̃T0/ṽA0 and u0/ṽA0 − cT0/ṽA0
√
1 + χ0, where the grey regions are the only

regions where real solutions can exist.
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7.8 Turbulent plumes

Soler et al. (2012) studied the Kelvin-Helmholtz instability in turbulent plumes. In
the article, they only considered the geometry of a single interface and neglected to
study the effect of the plume width. By varying the mode’s wavelength in comparison
to the slab width (kz0) and flow speed, we study the flow speeds an instability
can occur in a turbulent plume by solving Eqs. (7.40) and (7.41) numerically. For
our model of the plume we first of all assume that both the internal and external
plasmas are thermally coupled (Tne = Tie, Tn0 = Ti0) so that, by the ideal gas law,
both have the same ion and neutral sound speeds i.e. cne = cie and cn0 = ci0. We
also assume that the magnetic fields within the slab and outside the slab are equal
that is B0 = Be, the temperature ratio between the external and interior medium is
T0/Te = 10.0 and the total density ratio is ρ̃e/ρ̃0 = 10. The ratio of the sound speed
to the total Alfvén speed (the Alfvén speed calculated with the density of both the
ion and neutral fluids), ṽAe, in the external medium is cie/ṽAe =

√
0.1, and this ratio

is the same in the internal medium c̃e/ṽAe =
√
0.1. The width of the slab is taken

to be 2z0 = 5 × 105 m and we take νinez0/ṽAe = 1000 as we are not changing the
slab width but are, rather, changing the wavelength/wave-number. For the ratio
of neutrals to ions, we take χe = 1.0 so that there are the same number of ions as
neutrals and we take χ0 = 0.05 so that the internal hotter plasma is almost fully
ionised.

Fig. 7.7 plots the backward propagating slow-wave solutions for dimensionless
frequency, ω/k ṽAe, of Eq. (7.41) varying with dimensionless wave-number, kz0, for
the parameters given above (as the slab width is kept constant we are actually
varying the wave-number, k). Figs. 7.7a,b and c are plotted for u0/ṽAe = 0, 0.6 and
1.2 respectively. The black lines correspond to the solutions to Eq. (7.41), whereas
the red lines are the solutions obtained by solving the ‘coth’ solution of Eq. (7.90),
i.e. the case where the ion and neutral plasma act as one medium. Fig. 7.7a is the
solution for the static case, u0/ṽAe = 0. Due to the high collisional frequency we can
see how similar the real parts of the solutions to Eq. (7.41) are to the solution of Eq.
(7.90). However, for low values of kz0, the solutions do not match and the full two
fluid solutions pass through the line −c̃T0, the maximum value of the solutions of
Eq. (7.90). Interestingly we see far more significant damping for the full two fluid
solutions as they pass this value, dropping as kz0 tends toward zero.

Fig. 7.7b is plotted for u0/ṽAe = 0.6. In this figure, three panels have been
included; the middle panel shows the real part of the solution to Eq. (7.41) with the
same modes as considered in Fig. 7.7a, again it is clear that the single fluid model
represents these modes well, except when kz0 nears zero. The upper panel shows
another solution exist when a flow is introduced to the system, with dimensionless
frequency just above cTe/vAe

√
1 + χe. This mode is a result of the highly collisional
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Fig. 7.7 The dimensionless solutions (real and imaginary parts) of Eq. (7.41),
ω/k ṽAe, for varying dimensionless horizonatal wave-number, kz0, for parameters:
νinez0/ṽAe = 1000, χe = 1.0, χ0 = 0.05, c̃2e/ṽ

2
Ae = 0.1, T0/Te = 10.0, 2z0 = 5 × 105 km.

To explore the effect of flow on the modes the dimensionless flow paramter is set
at u0/ṽAe = 0.0, 0.6 and 1.2 in panels (a), (b) and (c). Also, plotted are two of the
solutions to Eq. (7.90), for the kink mode, which are red-dashed lines. Note the lines
u0/ṽAe − c̃T0/ṽAe and u0/ṽAe − c̃0/ṽAe. In panel (b) the real part of the solution has
been split into to two regions to demonstrate that another mode exists that is solely
due to the shear in flow.
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u0/ṽAe=0.6, χe =1.0

u0
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ṽAe

cTe
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Fig. 7.8 Same as Fig. 7.7 but for the solution to Eq. (7.40). The red dashed lines
are the three solutions to Eq. (7.90) but for the sausage mode.
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limit given by Eq. (7.91) and, again, only exists due to the presence of the shear in
flow and is somewhat akin to the neutral mode discussed for the incompressible case.
Fig. 7.7c is plotted similarly but for u0/ṽAe = 1.2. We can see in the upper panel
that, again, the single fluid solution is a very good approximation for the modes
but again, as kz0 nears zero, the modes cross the ℜ(ω/k ṽAe) = u0/ṽAe − c̃T0/ṽAe line.
However, there is also the same mode, due to the flow, that was seen in Fig. 7.7b and
one observes that this mode cuts through the two slow modes mentioned previously.
What actually is seen are the two solution paths avoiding each other and we can
see a large peak in the positive imaginary part of one of the modes, indicated by
the black solid line. Further on, as kz0 increases, this interaction occurs once again
but with the second slow mode and there is a peak in the positive imaginary part
of the dimensionless frequency again. This can viewed as similar to the instability
considered in the incompressible case, where it was found that the crossings (the real
parts of the frequencies became very close) of the modes, that existed because of the
flow, caused a large peak in the positive imaginary part of the frequency, akin to
resonance.

Fig. 7.8 is for the exact same parameters as Fig. 7.7 but for the solution of Eq.
(7.40) instead i.e. the symmetric sausage modes. Fig. 7.8a is plotted for u0/ṽAe = 0,
for three of the backward propagating slow body waves. Firstly we note that the
‘pseudo-body’ mode (black solid line) that was mentioned in Chapter 5 is present
here, as well as two of the proper slow sausage body modes. What we note about
this mode is that, as kz0 → 0, the fully ionised solution, given by the sausage mode
solution to Eq. (7.90), is practically the same. However, for the two proper body
modes, just as for the kink mode in Fig. 7.7, the approximation by Eq. (7.90)
becomes worse as kz0 → 0 and the solutions pass through the line −c̃T0/ṽAe.

Fig. 7.8b is plotted for u0/ṽAe = 0.6. The modes of Fig. 7.8a are pushed up the
ℜ(ω/k ṽAe) axis by 0.6. The upper panel shows the mode that exists due to the shear
flow, just as in Fig. 7.7b. None of the modes here are unstable and are only damped,
again with greatest damping for the body modes as they pass through and beyond
the line u0/ṽAe − c̃T0/ṽAe line. Fig. 7.8c is plotted for u0/ṽAe = 1.2. One can see that
again the mode that exist due to the flow interacts with all the slow body modes
and at these points there are peaks in the positive imaginary part of the frequency.

7.9 Summary and Discussion

In this Chapter, we have studied the effect of flow on the oscillations in a two fluid
collisional plasma slab. We derived two second order ODE’s that coupled the total
(magnetic + ion-gas) pressure, PT , to the neutral pressure, pn, Eqs. (7.8) and (7.11),
respectively. Combining these two equations resulted in a fourth order differential
equation for p′n, given by Eq. (7.19). Using appropriate boundary conditions and
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the solutions to Eq. (7.19) we derived the full dispersion relation for a two fluid
collisional plasma slab with constant background flows, which was found to be split
into separate modes: the kink and sausage waves.

Firstly, in Section 6.5, the incompressible limit was analysed, along with the
highly collisional limit. It was found that two distinct solutions existed: the first was
the solution for an incompressible plasma slab, where the two fluids were acting as
one fluid due to the the neutrals and ions colliding so frequently; the second was a
mode that was due solely to the presence of the flow and neutral fluid. The second,
neutral mode, was found to always be growing in amplitude over time regardless of
the flow velocity, which agreed with the results in Soler et al. (2012). It was found
that the magnitude of this instability grew with increasing velocity shear and, for
lower collisional frequencies, the time-scale of this instability could be one order of
magnitude longer than the time-scale of the perturbation. However, it must be noted
that increasing the collisional frequency with respect to the perturbation frequency
would make the time-scale larger and potentially insignificant. It was also found
that there are flow speeds at which the approximation for the correction to the
frequency breaks down. These are always below the Kelvin-Helmholtz threshold
velocity of the single fluid dispersion relation, Eq. (7.46). Solving the full Eq.
(7.43), it was also found that the flow speeds at which the approximation breaks
down occurred, matched the flow speeds when the ‘neutral flow mode’, given by
Eq. (7.47), resonantly interacted with the mode given by Eq. (7.46) and a large
peak in the positive imaginary part of the frequency was found. This resonance
between the two modes appears not to have been documented in other studies of
the incompressible two-fluid slab or cylinder with a background flow and could be
responsible for instabilities that occur for background flows lower than the Kelvin-
Helmholtz threshold velocity, in the parts of the solar atmosphere where the plasma
is partially ionised.

Next the collision-less limit was taken and it was found that the dispersion relation
reduced to two separate roots, one governing the neutral fluid and one governing
waves in the ion plasma. It was confirmed that, by taking the slender slab limit of
the neutral root, the neutral fluid was always KHI unstable to a shear flow (see e.g.
Soler et al., 2013 or Martínez-Gómez et al., 2015).

The last part of the chapter was concerned with the more realistic situation
of highly collisional plasmas which are more likely for the wave periods observed.
The highly collisional limit of Eq. (7.42) was taken and two separate roots were
found: the first being the case where the ions and neutrals act as one single fluid and
returned the dispersion relation derived in Edwin and Roberts (1982); the second
was a root that only has solutions when there is a flow shear and was shown to be
very similar to the mode given by Eq. (7.47). Using this limit it was found that one
solution could not exist until u0 = cTe/

√
1 + χe and the other until u0 = cT0/

√
1 + χ0.
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These modes two modes could then couple together and an instability was found to
occur. Significantly the flow speeds required are sub-Alfvénic.

Finally, the full Eqs. (7.41) and (7.40) were solved numerically for parameters
similar to that of turbulent plumes. It was found that the single fluid dispersion
relation was a very good approximation for the slow body modes in both the kink
and sausage cases apart from when the dimensionless wave-number was low. One of
the modes given by Eq. (7.91) was shown to exist when a flow was introduced and
a semi-resonant interaction between this mode and the body modes was found to
occur when the real parts of the frequency neared became close, with the imaginary
part becoming orders of magnitude larger around these crossings. This occurred for
flow speeds 1.2 times larger than the single fluid Alfvén speed of the interior of the
plasma slab, ṽA0, which may be too fast as compared to turbulent plumes flow speeds
of around 30 km s−1. However, in both the sausage and kink modes the growth rate
of the instability was approximately two to three orders of magnitude lower than the
frequency of the perturbation. Therefore this would only be significant for higher
frequency perturbations in the sense of turbulent plumes which have a life time of
∼ 870 s.





Chapter 8

Conclusion

8.1 Overview of the thesis

The over-arching study in this thesis was of oscillations in the solar atmosphere. The
thesis was split into two main parts: the first studying magneto-acoustic gravity
oscillations in the stratified solar atmosphere and then, secondly, flow instabilities in
partially ionised plasmas in the solar atmosphere, where special attention was given
to prominence plasmas.

Chapter 3 was based on work from the published paper Mather and Erdélyi
(2016). In Chapter 3, the equilibrium background for a plasma stratified by gravity,
with a constant embedded magnetic field parallel with the gravitational field, was
introduced. Solutions were found for a new variable not yet considered, Θ = p1/ρ,
namely the pressure perturbation divided by the background density. A dispersion
relation for standing waves was derived with the limiting case of small wavelength
taken also. The dispersion relation was then solved for two distinct models of the
solar atmosphere i.e. the lower solar atmosphere and the corona, respectively.

Chapter 4 was based on the second part of the published paper Mather and
Erdélyi (2016). Chapter 4 extended the investigation of Chapter 3 by connecting
two separate plasmas across a discontinuity in density/pressure, where a highly
transcendental dispersion relation for standing modes was found. Two different
solar atmospheric situations were studied: a transition from the photosphere/low
chromosphere to the high chromosphere; a sharp transition from the lower solar
atmosphere to the corona where the discontinuity was used to model the jump in the
density and temperature of the transition region. The energy density of the waves
was studied in both layers to determine their properties and where the energy was
trapped. The conclusion for the first model was that energy was trapped mostly in
the the lower region and only for the acoustic modes was there any energy distributed
in the upper layer. For the second model, all the energy was seen to be trapped
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in on of the separate layers, with some sharing of total energy between the layers
around the avoided crossings.

Chapter 5 took the study of MAG waves in a slightly different direction, the
effect of a constant flow on MAG waves at a tangential magnetic interface was
investigated, with a dispersion relation governing the propagation of waves derived.
The cold plasma and small wavelength limits were taken of this dispersion relation.
Cut-off regions where waves cannot propagate were found and these regions changed
depending on the value of the flow parameter. The dispersion relation was solved
numerically for specific background parameters chosen to model the solar atmosphere
and interior. The cut-off curves led to the disappearance of the fast wave as the
value of the bulk flow was increased. The flow was also found to lead to the reversal
in direction of surface waves which could lead to negative energy wave instabilities.

Chapter 6 introduced the next part of the thesis, the study of partially ionised
plasmas. In this chapter, a background equilibrium was established for a magnetic
plasma slab embedded in an external magnetised plasma. The external plasma was
considered as the fully ionised corona but non-ideal as Braginskii’s viscosity tensor
Braginskii (1965) was included for dissipation. The internal plasma was partially
ionised prominence plasma, with Cowling’s resistive term in the induction equation.
Perturbing around this background a dispersion relation was found and the dissipative
instability was studied. It was found that negative energy wave instabilities existed
in the fully ionised prominence and only flow speeds of approximately 10 km s−1

were required, although the time-scales for these were possibly too large to be
relevant. When there were more neutrals the instability could only occur at higher
flow velocities.

Chapter 7, just like Chapter 6, considered a partially ionised plasma slab but both
internal and external plasmas were fully collisional, although other two fluid effects
were neglected. The basic governing equations and dispersion relations were derived
and limits such as the incompressible, collision-less and highly collisional limits were
taken. It was confirmed, as in previous studies, the neutrals are always KHI unstable
when there is a flow shear between separate layers, in both the incompressible and
collision-less limits. This is not the case when the plasma is compressible. Also,
confirmed in both the incompressible and compressible cases (turbulent plumes),
were the existence of resonant interactions between neutral flow modes and the modes
when both the neutral and ion fluids were acting as one fluid, in the highly collisional
limit.
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8.2 Summary of Results

8.2.1 Chapter 3

Chapter 3 introduced the basic equilibrium and governing equations for a plasma
stratified by gravity embedded with a magnetic field parallel to the gravitational
field, the so-called vertical field model. A new variable, never before considered, was
introduced, Θ = p1/ρ0, that was used to derive a fourth order differential equation,
Eq. (3.25), that was then solved by the Fröbenius method in terms of Fröbenius
series solutions. Ultimately, these were written in terms of hypergeometric functions.
With the simple algebraic relations of the horizontal and vertical velocities with
respect to Θ, these two velocity components were written in terms of hypergeometric
functions as in the previous works of Zhugzhda (1979), Wang (1986). The importance
of the hypergeometric functions are that they have been well studied and have well
defined asymptotic expansions, most of which can be found in Luke (1975).

Using the derived solutions for vz and vx a single-layer model was derived, using
perfectly reflecting boundary conditions at the base and ceiling. The result was a
highly transcendental dispersion equation given only as the determinant of a matrix
by Eq. (3.29). However, a simple short horizontal wavelength limit was able to be
taken, using well known properties of the Pochammer function. This resulted in the
disappearance of the fast mode (see e.g. Roberts, 2006 or Hague and Erdélyi, 2016).
The dispersion relation, Eq. (3.33), acquired was also transcendental, comprised
of hypergeometric functions. By using well known asymptotic expansions of these
functions, the low and high beta limits were taken. It was found for the low beta
limit that the slow mode degenerates into a vertically propagating sound wave
trapped, as harmonics, within the cavity. The high plasma-beta limit revealed that
at low frequencies, i.e. the low harmonics, the modes were of a more gravitational
nature but for the higher harmonics, with higher frequencies, became essentially
magnetic slow modes. The dispersion relation, Eq. (3.37) was found to be in full
agreement with that obtained in Hasan and Christensen-Dalsgaard (1992), however,
their equation was derived directly from the governing equation, not from the full
dispersion relation.

Having investigated the analytic limiting forms of the dispersion relation, two
separate single layer models, approximating different models and regions of the solar
atmosphere, were studied. Eq. (3.29) was numerically solved with dimensionless
parameters for both models. The first model considered approximated a coronal
plasma, with a low plasma beta value at the base decreasing with height. By solving
the dispersion relation the dispersion diagram was plotted in Figs. 3.2a-d. The
internal and magnetic energy densities of the modes were compared, making use
of the colour bar, and it was found that the slow and fast mode were distinct
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and separated. However, at avoided crossings, the notion of fast or slow modes
does not make sense due to the equal distribution of internal and magnetic energy
densities of the mode. The second model described a plasma changing from the
high plasma-beta of the photosphere to the low plasma-beta of the chromosphere.
Solutions were plotted in Fig. 3.3 with a colour bar representing the proportion of
internal and gravitational energy densities compared to the magnetic energy density.
The plasma at the base had, initially, a very high plasma-beta value so that modes
were separated into acoustic ‘fast’ modes and magnetic/gravity ‘slow’ modes. Near
the Brunt-Väisäla frequency, the slow modes were more gravitational in nature
but for higher frequencies the slow modes were mostly magnetic, mimicking the
small-wavelength results. Again, around avoided crossings, the modes could not be
distinguished due to the equal distribution of the separate energy densities.

8.2.2 Chapter 4

Chapter 4 followed on from the study of the single layer plasma of Chapter 3. Using
the solutions derived in Chapter 3, a general two layer model was initialised in which
there was a jump in temperature across a discontinuity between the lower and upper
layers, which were bounded by perfectly reflecting barriers at the bottom and top
respectively. The dispersion relation, Eq. (4.4), was given by the determinant of an
8 × 8 matrix and thus it was numerically solved. Several models have considered
multilayer models before in this geometry (see e.g. Scheuer and Thomas, 1981, Yelles
Chaouche and Abdelatif, 2005). The model considered here was bounded above so
that acoustic modes would be trapped, not just magnetic modes.

The first numerical model was analogous to the temperature jump between the
photosphere/low chromosphere and the high chromosphere, bounded above and
below by the solar interior and transition region respectively. With a typical value of
7.9 km s−1 for the sound speed in the photosphere, it was found that eigen-frequencies
lay within the 3-minute and 5-minute oscillation range, as shown by Fig. 4.3. By
studying the wave energy density it was found that the wave energy would be
trapped mainly in the photosphere/chromosphere (see Fig. 4.4d). This is due to the
increasing Alfvén speed of the system that acts to reflect the magnetic energy, as
could be seen in Figs. 4.5b and c. However, for the modes of acoustic nature, the
energy distribution was shared more evenly between the layers. This is due to the
sound speed being constant as well as the temperature discontinuity only being fairly
small and as such waves incident on this surface are not so readily reflected. This can
be noted in Figs. 4.5a and d. Modes with frequencies near/under the Brunt-Vaisala
frequency were found to have most energy trapped within the lower layer.

The second numerical model considered a two layer plasma: the upper layer a
coronal plasma and the lower layer a lower solar atmospheric plasma. The discontinu-
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ity between the layers was considered as a factor of 400 increase in the temperature
i.e. a transition to coronal temperatures. By plotting the dispersion diagram in Fig.
4.14 and the proportion of energy in the lower layer compared to the total energy in
both layers, it was found that modes were either trapped within the upper or lower
layers (see Fig. 4.15). This is obvious physically as the large density discontinuity
acts as a physical barrier to reflect waves incident on the surface. There could,
however, be an even amount of energy between both layers at avoided crossings,
showing the inherent coupling between them. This coupling is important as it would
allow wave energy to leak from one layer to another.

8.2.3 Chapter 5

The focus of Chapter 5 shifted away from the two layer model of the vertical field,
to the study of the effect of flow on MAG surface waves (see Miles and Roberts,
1992) at a tangential magnetic discontinuity. The situation described in this chapter
is important for situations such as the meridional flow of the solar surface or the
stronger flow regions of Evershed flow above sunspot canopies.

The dispersion relation derived was highly transcendental so was solved numer-
ically but some interesting limits were taken. The incompressible limit permitted
a very simple second order polynomial for the phase speed of the wave that had
solutions given by Eq. (5.38). In this situation, the Kelvin-Helmholtz was possible
but for flow speeds greater than the Alfvén speed. Fig. 5.2 showed that the critical
flow speed for the instability was increased by the inclusion of gravity.

By taking the limit of small wavelength, gravity was essentially neglected and
returned Eq. (5.42) as the dispersion relation. This was highly transcendental and
as such the cold plasma limit was taken to remove the fast wave, which resulted in a
fourth order polynomial for the Doppler shifted frequency, Eq. (5.43). However, two
further approximations were taken using a perturbation method, the limit of small
flow and small density ratio. The first approximation showed that the slow wave phase
speed was just below the sound speed of the lower medium and the correction due
to the flow increased the phase speed of both the forward and backward propagating
waves. Thus, a meridional flow of 0.2 km s−1, with a sound speed of ∼ 7 km s−1 giving
ue/cse ≈ 0.03, would likely have little effect on the wave propagation of the slow
surface wave. The small density ratio approximation allowed the analysis to cover
larger flow speeds. Fig. 5.4 showed that both the backward and forward propagating
slow modes were affected linearly by the flow, with the backward propagating mode
actually changing direction for flow speeds near the sound speed. This could be
interesting for the observation of waves in Evershed flows as the observed phase
speeds may not correlate to the actual phase speed of the wave.
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Finally, the dispersion relation, Eq. (5.33), was solved numerically and plotted
in Figs. 5.5-5.8. The backward and forward propagating modes were plotted in
all these figures. With the flow parameter set to zero, the modes found in Miles
and Roberts (1992) were returned. By steadily increasing the flow parameter the
forward propagating modes were seen to barely increase in phase speed and could
exist for only a small range of dimensionless wavelengths. The backward propagating
modes, whilst existing for a smaller set of dimensionless wavelengths than previously,
were accelerated and even changed their direction of propagation. This change in
direction could be important for stability due to the negative energy wave instability
being able to occur if dissipative processes are present or the interaction between
positive and negative energy waves of the system (Ryutova, 1988). The fast modes
from Fig. 5.6 were also seen not to exist if the flow parameter was too large and
did not propagate. Evidenced in all the figures was the coupling of backward and
forward propagating modes at which point the Kelvin-Helmholtz instability occurs.
This instability always occurs for super Alfvénic speeds as can be seen in all of Figs.
5.5-5.8.

Evershed flows in sunspots can reach up to 6 km s−1. Applying this to Figure 5.6
and taking cse = 7 km s−1 and ue = 6 km s−1 and thus ue/cse = 0.86, it can be seen from
Figures 5.6 and 5.8 that this flow speed is high enough for the backward-propagating
waves to reverse their direction of propagation. Thus, some running penumbral waves
(RPW) may become negative energy waves. This change in direction of propagation
may also have implications on the interpretation of observations of RPWs, as some
may have very slow phase speed because they may be backward-propagating surface
waves, affected by a flow.

8.2.4 Chapter 6

Chapter 6 shifted the focus from fully ionised plasmas towards partially ionised
plasmas. The main focus of this chapter was the study of the dissipative instability
due to a constant background flow, closely related to the negative energy wave
instability, in a partially ionised prominence plasma slab surrounded by a viscous
corona.

Firstly the background equilibrium was introduced. The external coronal plasma
was static but viscous, using the approximation for a strong magnetic field derived
by Braginskii (1965) (see also Hollweg, 1985). The internal prominence plasma had
a constant background flow and was treated as a single fluid with partial ionisation
in the Cowling resistive term. Perturbing around these backgrounds resulted in the
dispersion relation given by Eq. (6.15). The slender slab limit was then taken, which
revealed that two surface modes were possible for the sausage modes one propagating
at the external sound speed and the other propagating at the internal tube speed
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but modified linearly by the background flow. Two modes were revealed for the kink
modes, one propagating at the external Alfvén speed and another at the external
tube speed.

Taking into consideration the slender-slab limit, the dissipative instability was
now investigated. The negative energy wave instability was considered first. When
the sign of the frequency of a wave changes that wave can become unstable to a
negative energy wave instability. The Cowling resistivity was therefore neglected
and it was found that the sausage mode propagating at the internal tube speed,
in the slender slab limit, would be the only mode that would likely change from
a backward to forward propagating wave for flow speeds that were not too large.
The other modes, having approximately coronal background phase speeds, would
likely have phase speeds too large for actual physical flows to reverse the direction of
propagation.

The dissipative instability was then considered for the case of a prominence
plasma slab, surrounded by a coronal plasma. As the coronal plasma was much
hotter and much less dense an approximation for the imaginary part of the frequency
was taken, given by Eq. (6.48). It was found that this changed sign for flow speeds
greater than the internal tube speed, shown by Eq. (6.49), and at the tube speed
if the resistive term was neglected. As the resistive term became larger due to the
increase in the proportion of neutrals, the speed at which the dissipative instability
occurred became larger (see Fig. 6.3). The incompressible case was also compared
to the compressible case. In the incompressible case the flow required would have
to be larger than the Alfvén speed (Eq. (6.50)). However, there were values of the
ionisation degree which were large enough for the onset of the instability to be lower
for the incompressible case than the compressible case. The value for the growth
rate of the instability was very small, however, with a time-scale of ∼ 106 s.

Due to the large time-scale of this instability in the slender slab limit, the
dispersion relation, Eq. (6.15), was solved numerically and plotted in Figs. 6.5-6.8,
for varying wave number, k, and varying slab width, 2z0, respectively, to see how these
affected the time-scales of the instability. When holding the wave-number constant
at k = 5 × 10−6 m−1, it was found that the largest amplification rate occurred for the
pseudo-body mode at around kz0 ≈ 1 with an amplification rate of approximately
5×10−5 s−1 seen for u0 = 28 km s−1 and ρr = 0.02. The addition of neutrals served to
inhibit this negative energy wave instability and, indeed, by progressively increasing
the ionisation degree, µ, the magnitude of the damping rate increased. When the
slab width was held constant, the body mode experienced the highest amplification
rate, with a maximum in Fig. 6.8d of approximately ω′ ≈ 5 × 10−6 s−1.
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8.2.5 Chapter 7

After approximating a partially ionised plasma as a single fluid in Chapter 6, Chapter
7 sought to investigate the effect of the collisions between ion and neutral species on
the stability of a two fluid magnetic slab with a constant background flow.

Firstly, two coupled second order ODE’s were derived for the neutral pressure,
pn, and the total pressure, PT , given by Eqs. (7.11) and (7.8) respectively. These
were found to be very similar to the equations derived by Soler et al. (2013) but for
a Cartesian coordinate system rather than a cylindrical one and with a constant
background flow. These equations were then formed into a fourth order differential
equation that governed the two fluid system given by Eq. (7.19). With the appropriate
boundary conditions a dispersion relation was found, Eq. (7.38). This was shown
to reduce down into the sausage and kink branches given by Eqs. (7.40) and (7.41),
respectively.

The next part of the chapter studied the incompressible limit of Eq. (7.42), which
was found to reduce to Eq. (7.43) in agreement with Ballai et al. (2017a) and similar
to the equation derived for a cylindrical coordinate system in Martínez-Gómez et al.
(2015). The highly collisional limit of Eq. (7.43) (ω/νin ≪ 1) was taken and as a
result, two separate branches were found in the zeroth order approximation. The first
branch corresponded to the solution when the neutral and ion fluids are acting as a
single fluid. The second branch existed due to the neutral fluid and the background
flow. By studying the correction to the frequency of the mode, the neutral flow
was confirmed to be unstable regardless of how high the collisional frequency was.
The corrections to both Eqs. (7.46) and (7.47) showed the interesting feature that
at certain flow speeds the frequencies of the zeroth order approximations would be
equal. The flow speeds for this to occur were found to always be lower than those
for the Kelvin-Helmholtz instability of Eq. (7.46)

To investigate the case where the two branches had equal frequency, Eq. (7.43)
was solved numerically for both the sausage and kink modes for a dimensionless
model in which the external plasma was cooler than the internal plasma and another
in which the internal plasma was cooler than the external plasma. The dimensionless
phase speed was plotted as a function of the dimensionless flow parameter, u0/vKH ,
in Fig. 7.4d. At the flow speeds where the frequencies of the two branches were equal,
the real parts of the phase speeds avoided one another and there was a sharp rise in
the magnitude of the imaginary part of the dimensionless frequency, suggesting a
resonant interaction between the neutral flow mode and the ‘single fluid’ kink mode.
This suggests that instabilities with realistic growth time-scales can exist for flow
speeds less than those required for the Kelvin-Helmholtz instability. For example,
for the case of a cooler interior shown in Fig. 7.4d it was found, for the kink mode,
that this instability would occur at u0 ≈ 0.8vKH for kz0 = 0.1 or u0 ≈ 0.93vKH for
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kz0 = 1.0, although we must bear in mind the Kelvin-Helmholtz threshold velocity
becomes very large for thinner slabs. The smallest amplification time-scale was found
to be approximately only 16 times longer than the kink period.

Moving on from the incompressible limit, the collision-less limit of Eq. (7.42)
was taken. The zeroth order approximation resulted in two separate branches where
the ion and neutral fluids do not collide and, as such, are treated as separate fluids,
given by Eqs. (7.79) and (7.80) respectively. By taking the slender slab limit of Eq.
(7.80), the neutral fluid was found to always be unstable to the Kelvin-Helmholtz
instability, mimicking the results of Martínez-Gómez et al. (2015) and Ballai et al.
(2017b) for the incompressible case and Soler et al. (2012) for the compressible case.
The importance of this is that it shows that the presence of neutrals may cause
partially ionised plasmas to be more unstable to flow instabilities as they are not
affected by the magnetic field and as such it cannot inhibit the KHI in the neutrals.

The collision-less limit is a good means of easily seeing the physics of the problem.
However, as the collisional frequency between ions and neutrals is usually much
higher than the frequencies of waves usually observed on the Sun, it is not a very
useful limit for actual physical quantities. Therefore the highly collisional limit was
taken next. Two separate branches were found, much like for the incompressible case.
The first branch portrayed the case in which the two fluids are acting as a single
fluid and is exactly the same as for the single fluid case given in Nakariakov and
Roberts (1995). The second branch was found to exist only when a flow and neutrals
are included in the system, much like Eq. (7.47). It was found that for real solutions
to Eq. (7.91) that cut-offs existed bounded given by the condition of Eq. (7.97).
The modes satisfying Eq. (7.91) were found and plotted varying with increasing flow
parameter, u0/ṽA0, in Fig. 7.6 with the solutions to Eq. (7.42) as kz0 → 0 plotted
over these. Both solutions showed great agreement. An instability was even seen to
occur when the flow was large enough that they coupled together. The growth rate
of this instability was only an one order of magnitude less than the frequency of the
perturbation, suggesting that it would likely occur on a realistic time-scale. This,
however, needs further investigation.

The last part of the chapter focussed on turbulent plumes within prominences.
The plasma chosen to be studied was cooler in the external plasma and hotter in
the internal plasma. The modes studied in both the kink and sausage cases were
the backward propagating body modes that propagate at phase speeds between
the internal tube speed and internal sound speed. It was found that for both the
kink and sausage branches, that the body modes were almost identical to those
if the plasma was fully ionised, however there was a difference if the modes were
near the phase speed of −c̃T0, where the two fluid modes passed through this and
tended towards the value −cT0/

√
1 + χ0, where there occurred significant damping

near this point (shown by Figs. 7.8a and 7.8a). However, one of the sausage modes,
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that related to the pseudo body mode mentioned in Chapter 6, tended toward the
−c̃T0. The flow was then increased and a new mode appeared with phase speed in
between cTe/

√
1 + χe and c̃Te (see Figs. 7.7b and 7.8b). When the flow was sufficient

that the body modes passed through this mode, there was a resonant interaction
between them, in which the imaginary part of the frequency increased to around
ω/k ṽAe ≈ 0.001 at its peak (see Figs. 7.7c and 7.8c).

8.3 Further Work

This thesis covered a wide range of different topics and as such there are still many
unanswered questions.

Chapters 3 and 4 investigated the MAG modes in a vertical field, with the two
separate models of an interface between the low chromosphere and high chromosphere
and an interface between the lower solar atmosphere and the corona. A further
study would be a three-layer model in which the lower layer is the photosphere/low
chromosphere, the middle layer is the high chromosphere and the upper layer as the
coronal plasma. The benefit of this model would be the lower temperature jump
from the chromosphere to the corona and as such more wave energy may be able
to penetrate through the interface. The possibility of standing modes developing in
this intermediate layer may also be an interesting consequence of the model. The
other issue with this model is that the magnetic field does not decrease with height
(preserving the solenoidal condition). Realistically as one moves out further from the
Sun the magnetic field strength decreases and as such the corona transitions from a
low beta plasma to high beta plasma. Therefore a spherical model may be a more
physical representation.

The models investigated in Chapter 5 approximated different regions of the lower
solar atmosphere, specifically the lower solar chromosphere and photospheric plasmas.
An interesting study, in keeping with the theme of partially ionised plasmas of the
last two chapters, would be to consider the two layers as partially ionised themselves.
This would obviously complicate the situation but the stability of the MAG surface
waves could be studied. Chapter 7 established that flows in collisional plasmas can
cause instabilities and it would be interesting to see what the effect of gravity was
on either stabilising or destabilising the two fluid modes, if there is any effect at all

Eq. (5.12) is completely general for an arbitrary flow that varies in the vertical
direction, therefore one could investigate a situation where the flow speed decreases
descending in the lower layer. This would bring the possibility of resonant absorption
and could also lead to the trapping of waves.

In Chapter 6 we found evidence of a negative energy type dissipative instability
that may occur in a prominence slab situation, with the presence of neutrals acting
to stabilise this situation in the Cowling resistive term. In the analysis, only waves
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propagating parallel to the magnetic field were considered. Therefore it would be
interesting to investigate the effect of a non-zero wave-number in the y- direction,
which would then lead naturally on to the investigation in cylindrical co-ordinates.

Another consideration would be to investigate the kink slow body modes of the
same situation, and find whether the instability is more pronounced. This could
then lead onto the cylindrical situation, in which the sausage, kink and even the
fluting modes could be considered.

Chapter 7, specifically, opened up many questions. It was found that in both the
incompressible and compressible cases, there were modes that were solely due to the
presence of neutrals and the background flow and that a semi-resonant interaction
could occur between these modes and the usual modes of oscillation of a magnetic
slab. There was only a brief analysis of these, particularly in the compressible case. A
more complete study could be undertaken, in which the collisional frequency between
the neutrals and ions is lowered, for example, which would likely result in higher
growth rates for the instability.

Another solar situation that could be studied would be the case of solar prominence
threads, much like the study in the incompressible case investigated by Martínez-
Gómez et al. (2015).

The direction of propagation of the waves would be another interesting avenue
to proceed down. By having a non-zero ky value, the effect of the angle between
the wave vector and the magnetic field on the instabilities as well as the modes
themselves could be investigated. This would then lead nicely on to the cylindrical
coordinate system, following on from the work in Soler et al. (2013).
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Appendix A

Chapter 3 Derivations

The hypergeometric functions that comprise the solution of Eq. (3.25) are written
in the following form, for ease of use,

2F3

[
1
2 − iqz + K, 12 + iqz + K;

1 + 2K, 32 − iq0 + K, 32 + iq0 + K

����� −ψ2

]
= 2F3

[
a11, a12;

b11, b12, b13

����� −ψ2

]
,

2F3

[
1
2 + iqz − K, 12 − iqz − K;

1 − 2K, 32 − iq0 − K, 32 + iq0 − K

����� −ψ2

]
= 2F3

[
a21, a22;

b21, b22, b23

����� −ψ2

]
,

2F3

[
iq0 − iqz, iq0 + iqz;

1 + 2iq0, 12 + iq0 + K, 12 + iq0 − K

����� −ψ2

]
= 2F3

[
a31, a32;

b31, b32, b33

����� −ψ2

]
,

2F3

[
−iqz − iq0, iqz − iq0;

1 − 2iq0, 12 − iq0 + K, 12 − iq0 − K

����� −ψ2

]
= 2F3

[
a41, a42;

b41, b42, b43

����� −ψ2

]
.

The derivation of the solutions of v̂x and v̂z follows below.
The derivative (with respect to ψ2) of an arbitrary hypergeometric function (2F3)

multiplied by a power function is given as:

d
dψ2

(
ψ
µ
j

∞∑
n=0

(a)n(b)n(−ψ2)n

(c)n(d)n(e)nn!

)
= ψµj−2

∞∑
n=0

(a)n(b)n(−ψ2)n

(c)n(d)n(e)nn!
(
µ j

2
+ n),

d2

d(ψ2)2

(
ψµj

∞∑
n=0

(a)n(b)n(−ψ2)n

(c)n(d)n(e)nn!

)
= ψµj−4

∞∑
n=0

(a)n(b)n(−ψ2)n

(c)n(d)n(e)nn!

( µ j

2
+ n

) ( µ j

2
+ n − 1

)
,

where j = 1, 2, 3 or 4 and

µ1 = 2K, µ2 = −2K, µ3 = −1 + i2q0, µ4 = −1 − i2q0.

The derivatives of z can be written in terms of derivatives of ψ2,

d
dz
=
∂ψ2

∂z
d

dψ2
= −

ψ2

H
d

dψ2
,

d2

dz2
=
ψ2

H2

d
dψ2
+
ψ4

H2

d2

d(ψ2)2
.
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Eq. (3.22) shows v̂x in terms of derivatives of Θ. Writing this in terms of derivatives
with respect to ψ2 and some dimensionless variables,

v̂x =
ω

kx(ω2 − N2)

1

H2

(
ψ4 d2

d(ψ2)2
+ 2ψ2 d

dψ2
+
σ̂2

γ
Θ

)
. (A.1)

For the solutions corresponding to µ(1,2) = ±2K (1 refers to positive sign and 2 refers
to negative sign, respectively), v̂x can be written,

v̂
(1,2)
x = ψ±2K

∞∑
n=0

(a(1,2)1)n(a(1,2)2)n(−ψ2)n

(b(1,2)1)n(b(1,2)2)n(b(1,2)3)nn!

(
σ̂2

γ
+ (n ± K)(n + 1 ± K)

)
.

In both cases the n-th term of the Pochammer symbols (b(1,2)2)n and (b(1,2)3)n are
such that their product is

(b(1,2)2 + (n − 1))(b(1,2)3 + (n − 1)) =

(
1

2
− iq0 ± K + n

) (
1

2
+ iq0 ± K + n

)

=

(
σ̂2

γ
+ (n ± K)(n + 1 ± K)

)
.

It is then clear that the numerator and denominators of the n-th terms cancel and
the result is,

v̂
(1,2)
x =

(
K2 ± K +

σ̂2

γ

)
ψ±2K

∞∑
n=0

(a(1,2)1)n(a(1,2)2)n(−ψ2)n

(b(1,2)1)n(b(1,2)2 − 1)n(b(1,2)3 − 1)nn!
.

Therefore, the type the type 1 and 2 solutions, for v̂x, can be written as single
hypergeometric functions. Considering now the solutions corresponding to µ(3,4) =

−1 ± i2q0 (3 refers to positive sign and 4 refers to negative sign respectively), v̂x can
be written,

v̂
(3,4)
x = ψ−1±2iq0

∞∑
n=0

(a(3,4)1)n(a(3,4)2)n(−ψ2)n

(b(3,4)1)n(b(3,4)2)n(b(3,4)3)nn!

(
σ̂2

γ
+

(
n −

1

2
± iq0

) (
n +

1

2
± iq0

))
= ψ−1±2iq0

∞∑
n=0

(a(3,4)1)n(a(3,4)2)n(−ψ2)n

(b(3,4)1)n(b(3,4)2)n(b(3,4)3)nn!
(n ± 2iq0)

= ψ1±2iq0
(−a(3,4)1a(3,4)2)

(b(3,4)1b(3,4)2b(3,4)3)
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n=0

(a(3,4)1 + 1)n(a(3,4)2 + 1)n(−ψ2)n(n + 1)
(b(3,4)1 + 1)n(b(3,4)2 + 1)n(b(3,4)3 + 1)n(n + 1)!

(n + 1 ± 2iq0)

= ψ1±2iq0
(−a(3,4)1a(3,4)2)

(b(3,4)1b(3,4)2b(3,4)3)
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n=0

(a(3,4)1 + 1)n(a(3,4)2 + 1)n(−ψ2)n

(b(3,4)1 + 1)n(b(3,4)2 + 1)n(b(3,4)3 + 1)nn!
(n + 1 ± 2iq0)

As the n-th term of the Pochammer symbol (b(3,4)1 + 1)n is given as (1± 2iq0 + n) and
this is the same as the numerator, it is therefore possible to write,

v̂
(3,4)
x = ψ1±2iq0

(−a(3,4)1a(3,4)2)
(b(3,4)2b(3,4)3)
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n=0

(a(3,4)1 + 1)n(a(3,4)2 + 1)n(−ψ2)n

(b(3,4)1 + 1)n(b(3,4)2 + 1)n(b(3,4)3 + 1)nn!
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Again, the type 3 and 4 solutions, for v̂x, can be written as single hypergeometric
functions multiplied by a power function. It is interesting to note that these solutions
for the type 1,2,3 and 4 solutions are exactly the same as derived in Zhugzhda (1979).
We can therefore write,

v̂x = C1ψ
2K S(1)

2F3

[
a11, a12;

b11, b12 − 1, b13 − 1

����� −ψ2

]
+ C2ψ

−2K S(2)
2F3

[
a21, a22;

b21, b22 − 1, b23 − 1

����� −ψ2

]

− C3ψ
1+2iq0S(3)

2F3

[
a31 + 1, a32 + 1;

b31, b32 + 1, b33 + 1

����� −ψ2

]
− C4ψ

1−2iq0S(4)
2F3

[
a41 + 1, a42 + 1;

b41, b42 + 1, b43 + 1

����� −ψ2

]

=

4∑
j=1

Cj v̂
( j)
x ,

(A.2)

noting the factor
ω

kx(ω2 − N2)

1

H2

has been merged into the constants of integration and that,

S(1) = K2 + K +
σ̂2

γ
, S(2) = K2 − K +

σ̂2

γ
, S(3) =

a31a32
b32b33

, S(4) =
a41a42
b42b43

.

These solutions correspond to exactly to those derived in Zhugzhda (1979) and
Cally (2001). Having found the solution for v̂x completely it is prudent to find the
solution for v̂z in the simplest possible terms. Transforming to the variable ψ2 and
dimensionless quantities, Eq. (3.21) becomes,

v̂z =
iω

ω2 − N2

1

H

(
ψ2
Θ
′ + N2

Θ

)
. (A.3)

It is then possible to write for each µ j ,

v̂
( j)
z = ψ

µj

∞∑
n=0

(a j)n(b j)n(−ψ
2)n

(c j)n(d j)n(e j)nn!

( µ j

2
+ n + N̂2

)
=

( µ j

2
+ N̂2

)
ψµj

∞∑
n=0

(a j)n(b j)n(
µj
2 + N̂2 + 1)n(−ψ

2)n

(c j)n(d j)n(e j)n(
µj
2 + N̂2)nn!
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The solutions for v̂z in terms of hypergeometric functions is then,

v̂z = iK



C1ψ
2K R(1)

3F4

[
a11, a12, a13;

b11, b12, b13, b14

����� −ψ2

]

+C2ψ
−2K R(2)

3F4

[
a21, a22, a23;

b21, b22, b23, b24

����� −ψ2

]

+C3ψ
−1+2iq0R(3)

3F4

[
a31, a32, a33;

b31, b32, b33, b34

����� −ψ2

]

+C4ψ
−1−2iq0R(4)

3F4

[
a41, a42, a43;

b41, b42, b43, b44

����� −ψ2

]



(A.4)

where,

R(1) = N̂2 + K, R(2) = N̂2 − K, R(3) = N̂2 −
1

2
+ iq0, R(4) = N̂2 −

1

2
− iq0,

a13 = R(1) + 1, a23 = R(2) + 1, a33 = R(3) + 1, a23 = R(4) + 1,

b13 = R(1), b23 = R(2), b33 = R(3), b43 = R(4).



Appendix B

Chapter 7 Derivations

We fourier decompose in the x-direction and in time, t, for Eq. (7.1)-(7.7) and 6
equations are formed (in fact there are eight but the mass continuity equations
decouple from the other equations):

−iρiΩv̂xi = −ik P̂T + ik
B0

µ
Bx − ρnνin(̂vxi − v̂xn), (B.1)

−iρnΩv̂xn = −ik p̂n + ρnνin(̂vxi − v̂xn), (B.2)

−iρiΩv̂zi = −
dP̂T

dz
+ ik

B0

µ
Bz − ρnνin(̂vzi − v̂zn), (B.3)

−iρnΩv̂zn = −
dp̂n

dz
+ ρnνin(̂vzi − v̂zn), (B.4)

−iΩBx = −B0
dv̂zi

dz
, (B.5)

−iΩBz = ikB0v̂zi, (B.6)

−iΩP̂T + ρi

(
c2si + v

2
A

) dv̂zi

dz
= −ikρic2si v̂xi, (B.7)

−iΩp̂n + ρnc2snv̂zn = −ikρnc2snv̂xn. (B.8)
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Where we have defined the Doppler shifted frequency as Ω = ω − ku.

Ω

kc2si

(
−iΩP̂T + ρi

(
c2si + v

2
A

) dv̂zi

dz

)
= − ikP̂T + ρi

v2Ak
Ω

dv̂zi

dz

− i
χνin

kcsi2

(
−iΩP̂T + ρi

(
c2si + v

2
A

) dv̂zi

dz

)
+ ρnνinv̂xn,

(B.9)

Where we have defined the ratio of neutrals to ions as χ = ρn/ρi. Rearranging Eq.
(B.9) results in the following relation:

−iΩP̂T

(
Ω
2 − k2c2si + iΩχνin

)
= − ρi

(
c2si + v

2
A

) dv̂zi

dz

(
Ω
2 − k2c2T + iΩχνin

)
+ ρnv̂xnνinΩkc2si .

(B.10)

We now define:

D́si = Ω
2 − k2c2si + iΩχνin, D́T = Ω

2 − k2c2T + iΩχνin, (B.11)

and thus rewrite Eq. (B.10) as

− iΩP̂T D́si = −ρi(c2si + v
2
A)D́T

dv̂zi

dz
+ ρnv̂xnνinΩkc2si . (B.12)

Using Eq. (B.8) we finally rewrite Eq. (B.12) as:

− iΩP̂T D́si = −ρi(c2si + v
2
A)D́T

dv̂zi

dz
+ iΩνin

c2si

c2sn

(
−iΩp̂n + ρnc2snv̂zn

)
. (B.13)

By symmetry of the problem we have

−iΩp̂nDsn = −ρnc2snDnv̂zn + iΩχνin
c2sn

c2si

(
−iΩP̂T + ρi

(
c2si + v

2
A

) dv̂zi

dz

)
, (B.14)

in which we have defined

Dn = Ω
2 + iΩνin, Dsn = Ω

2 − k2c2sn + iΩνin. (B.15)

From Eqs. (B.3) and (B.4), respectively, we have:

ρi

(
Ω
2 − k2xv

2
A + iΩχνin

)
v̂zi = −iΩ

dP̂T

dz
+ iΩρnνinv̂zn, (B.16)

ρnDnv̂zn = −iΩ
dp̂n

dz
+ iΩρnνinv̂zi . (B.17)
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We substitute Eq. (B.14) into Eq. (B.13) to obtain

−iΩP̂T D́si = − ρi(c2si + v
2
A)D́T

dv̂zi

dz

+ iΩνin
c2si

Dnc2sn

(
− iΩp̂nDn + iΩp̂nDsn

+ iΩχνin
c2sn

c2si

(
−iΩP̂T + ρi

(
c2si + v

2
A

) dv̂zi

dz

) ) (B.18)

−iΩP̂T D́siDn = − ρi(c2si + v
2
A)D́T Dn

dv̂zi

dz

+ iΩνin
c2si

c2sn

(
−iΩp̂nk2c2sn + iΩχνin

c2sn

c2si

(
−iΩP̂T + ρi

(
c2si + v

2
A

) dv̂zi
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))
,

(B.19)

−iΩP̂T

(
D́siDn +Ω

2χν2in

)
= −ρi(c2si + v

2
A)

(
D́T Dn +Ω

2χν2in

) dv̂zi

dz
− iΩp̂niΩνinc2si k

2.

(B.20)

Now

D́siDn +Ω
2χν2in =

(
Ω
2 − k2c2si + iΩχνin

) (
Ω
2 + iΩνin

)
+Ω2χν2in

= Ω2 (Dn + iΩχνin) − k2c2siDn,
(B.21)

and

D́T Dn +Ω
2χν2in =

(
Ω
2 − k2c2T + iΩχνin

) (
Ω
2 + iΩνin

)
+Ω2χν2in

= Ω2 (Dn + iΩχνin) − k2c2T Dn.
(B.22)

We can then write Equation (B.20) as (divding through by Dn)

−iΩP̂T D̃si = −ρi

(
c2si + v

2
A

)
D̃T

dv̂zi

dz
− iΩp̂n

iΩνinc2si k
2

Dn
(B.23)

We now redefine,

D̃si = Ω̃
2 − k2c2si, D̃T = Ω̃

2 − k2c2T, (B.24)
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as well as defining,

Ω̃
2 = Ω2

(
1 +

iχνin

Ω + iνin

)
. (B.25)

We can now substitute the relation for
dv̂zi

dz
from equation (B.23) into Equation

(B.14) to obtain

p̂n

(
Dsn +

Ω2χν2inc2snk2

D̃T Dn

)
= −ρnc2snDnv̂zn − iΩP̂T

iΩχνinc2snc2si k
2(

c2si + v
2
A

)
D̃T

. (B.26)

We now eliminate v̂zn from equation (B.16)

ρiD̃Av̂zi = −iΩ
dP̂T

dz
− iΩ

dp̂n

dz
iΩνin

Dn
. (B.27)

Where we define

D̃A = Ω̃
2 − k2v2A. (B.28)

We now eliminate v̂zi from equation (B.17)

ρnDnv̂zn = −iΩ
dp̂n

dz

(
1 −
Ω2χν2in

D̃ADn

)
− iΩ

dP̂T

dz
iΩχνin

D̃A
. (B.29)

We now differentiate and substitute Equation (B.16) in equation (B.23) to obtain

−iΩP̂T D̃si = −

(
c2si + v

2
A

)
D̃T

©«
−iΩ

d2P̂T

dz2
+ iΩρnνinv̂zn(

Ω2 − k2xv2A + iΩχνin
) ª®®®®¬

− iΩp̂n
iΩνinc2si k

2

Dn
. (B.30)

Substituting Eq. (B.26) into Eq. (B.30) and performing some simple algebraic
manipulations we find a second order ODE for the variable P̂T that is couple to p̂n:

d2P̂T

dz2
− M2

i P̂T = qi p̂n, (B.31)

where

M2
i = −

(
Ω2 − k2xv

2
A + iΩχνin

)
D̃T (c2si + v

2
A)

(
Ω̃
2 − k2c2i

Ω̃2 − k2v2A(
Ω2 − k2xv2A + iΩχνin

) ) (B.32)
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and

qi =
iΩνin

Dnc2sn

(
Dn −

c2snk2v2A
(c2si + v

2
A)D̃T

(
Ω̃
2 −
Ω2χν2in

Dn

))
. (B.33)

We now find an equation for p̂n. We substitute Eq. (B.17) into Eq. (B.26) to obtain

−iΩp̂n

(
Dsn +

Ω2χν2inc2snk2

D̃T Dn

)
= − c2sn

(
−iΩ

d2 p̂n

dz2
+ iΩρnνin

dv̂zi

dz

)
− iΩP̂T

iΩχνinc2snc2si k
2(

c2si + v
2
A

)
D̃T

.

(B.34)

Substituting Eq. (B.23) for
dv̂zi

dz
into Eq. (B.34) and performing some simple algebra

a second order ODE with respect to p̂n that couples to P̂T is found:

d2 p̂n

dz2
− p̂nM2

n = qnP̂T, (B.35)

M2
n = −

(
Ω2 + iΩνin − c2snk2

(
1 −

Ω2χν2inv
2
A

D̃T Dn(c2si + v
2
A)

))
c2sn

, qn = iΩ
χνinΩ̃

2

(c2si + v
2
A)D̃T

. (B.36)

We now have obtained two coupled Second order ODE’s for P̂T and p̂n respectively.
These govern the dynamics of plane waves in such a system.
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