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ABSTRACT 



An investigation has been carried out into the twist 

blockage which may occur when yarns pass over guides or other 

surfaces. 

The influence of primary physical parameters such as surface 

curvature, are and length of contact, yarn twist level and tension 

and yarn/surface friction have been investigated together with 

secondary parameters such as yarn surface, pressure, angle of approach 

etc. 

As a result of these investigations, three mechanisms of 

blockage have been identified. The first of these occurs especially 

with doubled yarn in which the components lie side by side on the 

guide surface and blocked twist builds up until sufficient torque is 

developed to turn the yarn over against the couple generated by the 

components of yarn tension and reaction on the guide surface. 

In the second mechanism blocking torque is generated by 

components of friction on the yarn surface at right angles to the yarn 

axis. These orthogonal friction components may arise from interaction 

between the topography of the twisted yarn surface and the guide 

surface or may be generated by forces arising from an angular orient- 

ation of yarn to guide. 

The third mechanism is intermediate between the other two 

where a singles yarn (or its equivalent) is flattened on the surface 

and resistance to twist transmission is generated partly by internal 

friction within the yarn and partly by yarn/guide frictional forces. 

The main circumstances under which these different mechanisms 

may operate, have been identified and suggestions made for minimising 

the blockage of twist. 
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MAJOR SYMBOLS USED 

T= local yarn tension (gf) 

Ti = initial yarn tension (gf) 

To = outgoing yarn tension (gf) 

P= local, normal force/unit length (gf/cm) 
(local pressure) 

Pi = initial, normal force/unit length (gf/cm) 
(initial pressure) 

Pm = mean linear pressure (gf/cm) 

Pf = maximum (final) linear pressure (gf/cm) 

F= frictional drag (gf) 

K= multi-coefficient of friction (m. c. f. ) 

n= friction index of yarn surface 

m= friction coefficient of contact surface 

R= guide radius (cm) 

D= guide diameter (cm) 

N = nominal yarn twist (t/m) 
o 

NB = twist before the contact surface (t/m) 

NA = twist after the contact surface (t/m) 

N= twist gain (NB-NA) (t/m) 

S = length of arc of contact (cm) 

L = length of one turn (cm) 
o 

C = torque (µ. N. m) 

= angle of orientation (degrees) 

= angle of friction (radian) 



GI = torsional stiffness (N/radian) 

8= angle of wrap (radian) 

Dy= yarn diameter (cm) 

r= yarn radius (cm) 



CHAPTER 1 

GUIDES AND TEXTILE MANUFACTURING 
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1.0 Introduction 

Textile guides are widely used in most textile manufacturing 

processes. The greater number are used as yarn guides. 

Yarn, after it is first produced by twisting staple fibre 

together in spinning or by extrusion, usually has to be processed 

through one or more further steps to convert it into a useful product. 

In yarn production and subsequent processes, the yarn may have 

to move through a relatively long machine path and usually will have 

to change its direction with the help of yarn guides. Plate 1.1, Figs. 

1.1,1.2,1.3,1.4 illustrate changes of direction of yarn path for 

several different yarn processes. 

Guides may be of two types: stationary or rotating. With 

stationary guides the most commonly used, the yarn simply slides over 

its surface. With rotating guides, there is no slip between yarn and 

guide as the latter rotate freely like a pulley wheel. Although the 

traveller in ring spinning or the sapphire pin in the twist tube of the 

false twisting process are in motion, the yarn slides on their surface 

so they may effectively operate as stationary guides. 

Obviously, the reaction of a yarn passing over guides may be 

sensitive to the guide surface finish, curvature, are of contact, yarn 

speed, initial tension, amount and viscosity of any lubricant and the 

yarn twist level. In addition to this, the properties of guide materials 

can be a very important factor governing the yarn quality. Friction 

between yarn and guides, for example, can cause either damage to the 

guide, or an abrasion to the yarn or may change the twist regularity 

of the yarn [1,2). 
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FIG. 1,1: Yarn path of Bentley's ST4 single 
jersey machine 
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From these observations and other examples discussed in 

the next chapter, it will be seen that when a yarn is drawn over a 

guide surface, a number of phenomena may occur. The tension ratio 

across the guide increases, heat is generated due to the friction, 

the guide may act as a barrier to twist, and damage may be caused to 

the fibres or filaments. 

In fact, much has been reported concerning the friction and 

wear aspects of yarn moving over guides, but most of these studies 

have been concerned with the effects of yarns on guides rather than 

the effect of guides on yarns. Thus in some of the most recent studies 

131 it has been shown that there is a significant relationship between 

the structure of geometry of the yarn and the wear patterns they 

generate on surfaces over which they pass. 

On the other hand, little attention has been devoted to the 

influence of contact with surfaces on the structure and properties 

of yarns. It is one aspect of this: the phenomenon of twist blockage 

or twist congestion which is the subject of this thesis. 

1.1 What is twist blockage? 

During the movement of twisted yarn over a guide surface it 

is frequently noticed that there is an accumulation of twist in front 

of the contact region due to the contact forces pushing the twist back, 

along the yarn, against the direction of yarn movement, Plate 1.2, This 

zone before the guide may be regarded as a false-twist region and the 

yarn rotates in this zone 
l. 
/ 

The direction of the false-twist depends, however, on the 

nominal twist in the incoming yarn. If the yarn twist is S twist, 
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the congested or blocked (false) twist will also be 'S' twist; if 

the twist is 'Z' the blocked twist will also be 'Z' twist 

Another type of twist blockage can occur when a deliberate 

real twisting or false twisting operation is carried out. In ring 

spinning or false-twist texturing, for example, a spindle rotates the 

yarn and twist is deliberately fed upstream against the flow of yarn. 

The upstream movement of this twist may also be blocked to a greater 

or lesser degree if the yarn passes over a guide or similar surface. 

Thus, according to the type of processing, twist in a yarn may be 

pushed either against the direction of yarn movement or may be 

prevented from moving in that direction along the threadline. /Down- 

stream blockage is defined as the prevention of the transmission of 

yarn twist in the same direction as the yarn flow; upstream blockage 

is defined as the prevention of twist propagation in a direction 

opposite to the yarn flow. / 

Figure 1.5 illustrates diagrammatically downstream twist 

blockage. In nonrotating threadlines(i. e. no positive false twist 

device), 'AB' is considered as the blocked zone where an additional 

false twist (twist congestion) is added to the initial twist. The 

additional false twist is generated or caused by guide 'B' which 

is acting as a passive false-twist element. It is obvious that the 

desired flow of twist is downstream with the direction of the yarn 

(indicated by the arrows). 

Figure 1.6 shows diagrammatically a rotating threadline: 6a 

where real twist is being generated e. g. ring spinning, 6b with a 

positive false twist device. The twist inserted in the yarn by the 
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twister is fed upstream from 'C' towards 'A' across the guide 'B'. 

Under such circumstances the desired movement of twist is upstream 

in the opposite direction of the yarn flow (indicated by the arrows). 

However, the twist movement may be inhibited by the guide 'B' rather 

than transmitted freely to the point 'A'. 

In both cases the magnitude of the blocked twist depends on 

the torque generated by the frictional or other forces over the 

contact region. Thus, the torque [2] values can be varied by changing 

the configuration and the position of the yarn over the contact surface, 

as well as by changing the levels of friction or tension and other 

yarn parameters. 

Some examples of twist blockage in industrial processes will 

be described in the next Chapter. 
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CHAPTER 2 

TWIST BLOCKAGE IN INDUSTRIAL 

YARN AND FABRIC PROCESSING 
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2.1 Yarn manufacturing 

2.1.1 Winding 

The winding of yarn packages of various types (cheeses, cones 

etc. ) either as a process in itself or as an integral part of other 

processes is found throughout yarn production and processing. Some 

winding processes operate at speeds up to 6000 m/min, in high speed 

extrusion for example, although speeds of up to 2000 m/min are more 

common in other processes. (Because of the high speed and the effect 

of the movement of the twisted yarn over the surface of the machine 

elements (tension devices, pigtail, traverse guide etc. ) twist 

blockage may occur either at random frequency or at the frequency of 

traverse/ 

Redistribution of the twist along the yarn will be inhibited 

because of the relatively short distances between machine elements. 

Thus in adverse circumstances, a significant twist variation (irregular 

or cyclic) along the yarn may take place. 

2.1.2 Ring spinning 

One preparatory process for spinning where twist blockage was 

reported is in the production of roving [4] from sliver. As the fibres 

are in the form of a loose rope, it is necessary to insert some twist 

to hold the fibres together adequately for the next process of spinning. 
At 

was observed that twist accumulation occurred at the region between 

the draft system and the flyer causing a higher level of twist than 

generated by the flyer rotation/ In fact periodic escape of this 

twist may lead to some twist variation in the wound roving and difficulty 

may then occur, in subsequent spinning processes, in the highly twisted 
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portions, with their lower drafting tendency. In practice, this 

may lead to a high breakage rate, with more waste of material and 

lower spinning efficiency 

In ring spinning, a similar observation was made. The yarn 

passes from the draft roller, through the balloon limiting ring. A 

twist variation [5,6] was observed within these regions. / /'It was 

claimed that this twist variation was due to the friction between 

the rotating yarn and the balloon limiting ring which causes twist 

reduction in the spinning zone/ Figure 2.1A shows diagrammatically 

the twist distribution in different portions of the spinning region 

in the absence of the limiting ring. The'C' and 'D' portions 

represent a higher and lower twist value respectively than portion 'A' 

(nominal twist). Figure 2.1B shows the twist distribution for the 

same regions, when the balloon limiting ring is used, whereby the 

lowest twist insertion is at the region between the nip point (d) and 

the guide eye (c). The highest twist (due to the additional false 

twist) is at portion 'B', in comparison with the nominal twist (portion 

A). It was stated [7] that the variation in twist has two undesirable 

effects. Firstly, the lower twist in the spinning zone produces a 

lower torsional stress, which may be insufficient under certain 

circumstances to pack the fibres closely together. This can lead to a 

lower strength in the yarn at the yarn formation point and the rate of 

end breaks may increase. Secondly, the twist propagation will 

effectively cause an irregular twist distribution to occur along the 

yarn between the nose and the shoulder of the yarn package during the 

building of the package. 
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Actually, the twist blockage poritons in the yarn wound on 

the package are due to a periodic change of the spinning tension, 

which permit the twist to move in a surge beyond the traveller. 

This fact is supported by De-Barr et al [6,8,9]; they have shown 

that there is a higher twist in the yarn balloon than in the spun yarn, 

also they pointed out that it is necessary to build up a torque in 

the yarn to overcome the friction between the yarn and traveller. 

It was mentioned elsewhere [7] that the thread guide and 

traveller contribute a friction resistance to the yarn movement through 

them and the tension of the yarn in the downstream region must be 

equal to or greater than in-the upstream region. However, as Fig. 2.2 

demonstrates, the twist flows through the traveller in the same 

direction as the yarn flow, while the yarn and twist are moving in 

opposite directions across the thread guide. 

Regarding the effect of spindle speed and spinning tension 

on the number of end-breaks, it was suggested [10,11] that the eyelet 

(yarn guide) in the lappet tends to act as a moderate twist barrier 

with the result that the twist generated by the rotating traveller 

rarely or never reaches its full amount in portion 'A' near the nip of 

the front roller. Consequently this small region has less twist and 

forms a weak place in the emerging thread. The instantaneous strength 

of the yarn at the roller nip is, therefore, affected by the twist. 

In fact these assumptions are in conflict with the reported observation 

[7] that the thread guide offers considerably lower resistance to the 

movement of twist than does the traveller. This is attributed to the 

radius of curvature of the thread guide and its angle of wrap being 
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greater and smaller respectively. However, twist blockage may be 

considered advantageous in relation to the strengthening of yarn in 

the spinning zone, as it helps to reduce the end breakage rate. 

This has been applied by Kampen [12], for the purpose of 

improving yarn breaks in the ring process; he tried to impart a 

false twist or reduce the friction against the yarn guide. 

2.1.3 Repco spinning 

In Repco or self-twist spinning [13] the twist distribution 

in the yarn was found to depend, not only on the condition of spinning 

or the actual level of the self-twist, but also to depend on the 

winding tension and twist-blockage at guides. The combined effects 

of these parameters modify the twist on the package. As the strands 

come from the twisting roller to lap over a pair of convergence guides, 

it was found that the length of the twist changeover was influenced 

by the shape and the form of these guides. However, Fig. 2.3 shows 

diagrammatically the effect of the overlapped convergence guide which 

in turn increased the angle and the length of contact. This type of 

guide gives a significantly shorter changeover than the simple form 

(a) of convergence guide. On the other hand, self-twisted yarn is not 

capable of withstanding the warping and weaving process [14,15] where, 

due to tension and drag over contact surfaces on the weaving machine, 

the ply tiwst is greatly reduced. 

2.1.4 Open-end spinning 

In rotor spinning, a higher twist factor than that normally 

used in ring spinning has to be employed. It is possible to use a low 
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twist multiplier as a result of true twist running back from the 

yarn and the presence of temporary additional twist in the yarn end 

[16,17]. This additional twist (false twist) arises from the effect 

of frictional contact of the rotating yarn with both the doffing tube 

and yarn guide of the winding system [18,19]. 

Table 2.1 shows that the direction of the additional twist 

(accumulated twist) is the same direction of the true twist [20] 

insertion (i. e. downstream blockage), whether the yarn is withdrawn 

from the front or back of the rotor, or with clockwise or anticlockwise 

rotation. 

However, the advantage of this false twist is, that the running 

back of the twist to the twistless portion of the peeling point tends 

to strengthen the fibre assembly which, in turn, enables it to with- 

stand the centrifugal forces and decreases the end breakage rate. 

It was also reported [21,22] that if deeply grooved navels are 

used, then there is a possibility of twist waves occurring. The nature 

of the fibre, the geometry of the navel and the condition of spinning, 

all affect the false twist developed inside the rotor. 

2.1.5 Two-for-one twister 
/In 

two-for-one twisting systems, the yarn passes from the 

stationary supply package (Fig. 1.2) down the package centre to the 

rotor situated underneath the packages, it then passes radially outwards 

and is caused to balloon around the package holders by the rotation of 

the rotor. Two turns of twist are inserted in the yarn for each 

revolution of the rotor, one in the centre tube and one in the balloon 
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TABLE 2.1 

Twist in yarn arm 

Rotor direction Yarn take-off Permanent Twist blockage 

Clockwise Front zZ 
Back SS 

Anti-clockwise Front SS 
Back zZ 
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During its passage, the yarn passes over a number of machine elements 

which may generate twist blockage, causing twist variation. These 

include the tensioning devices or entry guide at the top of the centre 

tube, the rotor exit orifice, the pigtail guide above the package, 

the take-up roller and the traverse guide. Due to the interaction 

between these elements and the twisted yarn, twist accumulation 

might occur. At the top of the centre tube, upstream blockage may 

occur, but at all other points the twist is inhibited from moving 

forward along with the yarn movement [23] and, therefore, downstream 

blockage occurs. 

The twist blockage phenomenon in the two-for-one process can 

be observed in the wound yarn package. Obviously, as there is 

insufficient length of twisted yarn between the friction drum and the 

package, any escaping accumulated twist is incapable of redistributing 

itself, thus resulting in twist waves in the yarn. However, not only 

the elements in contact with the yarn cause twist blockage but 

blockage may also arise from the tension variation during the yarn 

traversing motion. The tension increases as long as the traverse 

guide moves from the middle position to either of the two ends of its 

stroke, but reduces in its return to the centre. Intermittent twist 

blockage governed by the reversals thus might occur. 

When a conical take-up package is used, take-up speed will 

vary and again tension will not be constant. In these two cases. 

blockage may occur at single or double traverse frequency, 

respectively [24]. In accordance with this, it has been stated that 

streakiness [23] has been observed in woven fabric made from two-for- 

one doubled twisted yarn. This fault has been attributed to the 

twist irregularity in the yarn. It was also claimed [251 that the 
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cockling phenomenon in plain knitted single jersey fully fashioned 

garments is connected with twist variation in low doubling-twist, 

twisted yarn of a relatively high linear yarn density and that the 

form of twisting machine [26] (two-for-one, ring twister etc. ) used 

for plying and twisting the yarn can have a significant influence on 

the variation of the twist. 

2.1.6 False-twist texturing 

False-twist texturing is an example of a process where twist 

propagation is in the opposite direction to the yarn movement 
e,, - 

//In the modern false-twist texturing processes, the yarn 

has a relatively long path (Fig. 1.3) also, in most cases, changes 

its direction/ It was observed [27] that the deflection in the yarn 

path between the exit of the heater and the entrance to the cooling 

zone, before the false-twisting device, causes a twist reduction on 

the heater i. e. /iwist is blocked in front of the deflection point/ 

In addition, it is explained that the yarn tension between this point 

and (friction) false-twisting head was increased due to twist 

accumulation, while tension is reduced at the draw point. It has been 

thought that the threadline must run straight [28] with a minimum 

number of yarn guides between the draw point and the twister., /"Each 

of these between the draw region and twister is capable of preventing 

twist running upstream satisfactorily/ It is recognised, however, 

that the major problem in the primary zone [29,30,31] is that the path 

deflection acts as an obstacle to the transmission of twist upstream 

from the twister to the primary heater and the draw point. The twist 

accumulation not only depends on the existence of a guide in the 
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yarn path but also depends on the twist level, the tension and the 

angular deflection round the guide. Another factor influencing 

twist hold-back, is the type and diameter of guides around which the 

path changes direction. 

10f 
these factors, the last is probably the most important 

because on a guide of small radius, the yarn is forced to bend more 

on rolling, and the pressure on the yarn causing it to deform in 

cross-section is greater. The initial energy loss on dragging and 

bending is, therefore, increased. Twist loss may thus become critical 

when guide radii are very small. 

With the pin spindle [32,33] used on older texturing machines, 

it was reported that the nature of the eyelet guide (Fig. 2.4) may 

influence the twist formation; factors such as degree of polishing 

also have their effects. 

It is also expected that an increase of yarn tension makes 

it difficult for the twist in the yarn to pass through the eyelet guide 

and this hinders the inserted twist from moving forward with the yarn. 

An accumulation (or rolling) of the twist takes place which causes an 

overtwisting. On the other hand it was pointed out [34] that a high 

yarn twist level tends to develop high torque which is sufficient to 

overcome the frictional resistance in the pin spindle. The yarn is, 

therefore, able to slip over the pin. This behaviour causes a reduction 

of yarn tension as well as in the absolute twist in the yarn, and the 

effect is cumulative, leading to instability. Lower twist levels would 

produce a coarse and harsh crepe-like effect in fabric. The yarn 

strength may also decrease due to a draw ratio variation along the yarn 
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resulting from the tension variation, this results in an increase 

in end breakage rate and gives rise to variable dye affinity and other 

problems. 

2.2 Fabric manufacture and other processes 

2.2.1 Warping 

There is perhaps no part of the textile industry which requires 

more precise control, than that concerned with the processing of 

synthetic yarns. It is very important that the tension be controlled 

in manufacturing these types of yarns in such processes as spinning, 

in twisting and in winding. 

However, of all the processes encountered, the tension in 

warping is perhaps the most critical. It is essential therefore to 

control the warping tension by using adequate tensioning devices. It 

was observed that 135,36] variation in twist along the length of the 

yarn caused by the snubbing action of guides and the tension device 

affected the final tension in warping. 

It was also stated that 136], as the twist builds up in front 

of the guide (or tension device), the final tension increased. It 

was emphasised that low twisted yarn registered a higher final tension. 

It is therefore a basic necessity when applying tension for the purpose 

of successfully performing the warping process to choose the proper 

tension device with a yarn guide of suitable shape. Any variation in 

the average tension in warping will affect the density of the beam 

and will show up as ridges on the surface of the beam. 

Obviously, when this yarn is withdrawn from the beam to be 

woven, some of the ends will be tighter in fabric since a shorter 
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length of yarn has been wound in the valleys between the ridges than 

on the ridges. 

Actually this condition, if of sufficiently great magnitude, 

may cause stretching of the tight ends and under any circumstances it 

may cause warp streaks. 

Generally for the purpose of weaving and production of high 

quality fabric, the yarn path 1361 in beaming should be as simple as 

possible and the number of contact points kept to a minimum to minimize 

the effect of twist accumulation. 

2.2.2 Warp sizing 

In preparing yarn for sizing process, mills are using different 

systems [37] of beam creeling and methods of threading such as over- 

head, single beam with guide roller, over and under creeling. 

The passage of the yarn through these processes presents 

no difficulties, but the apparent problem occurs when the yarn moves 

under tension over the lease rods and the rollers of the size box. 

Although these rollers, which in some cases can be 1.5" in diameter, 

are rotating around their own axes, because the yarn is under strain, 

it is possible for it to flatten over the rollers. This is particularly 

true of low-twist yarn. Thus yarn flattenning [38] may force the 

yarn twist to run back and leave the yarn in a condition of twist 

deficiency. This problem can be amplified when the negative tension 

application method is used in which the tension should gradually decrease 

as the beam to be sized decreasesin diameter. With the existence of 

twist variation due to twist congestion the yarn will be weakened; 

this, in turn, might give rise to increases in the end breakage rate 

at the weaving process. 
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2.2.3 Weaving 

There are several points in weaving where either warp or 

weft yarn rubs on machine components, or machine parts rub along 

the surface of yarns. In either case, twist displacement is possible. 

For example [39], twist displacement may take place at the heald eye 

(particularly when the shed is open at the time of the beating up 

operation). Because the radius of curvature of the contact surface 

of the heald eye is comparatively small, and due to the sudden high 

tension during the beat up operation, the pressure on the yarn tends 

to be high over the contact surface. Consequently, thread strength 

might be decreased as a result of twist displacement. 

In conventional weaving during the period of picking (shuttle 

acceleration) the weft yarn could be under relatively high tension, 

passing through the shuttle eye[40]. It has been reported that twist 

accumulation occurred between the shuttle eye and the pirn [41]. This 

twist accumulation may appear as snarls resulting in weft slubs in 

cloth. 

Traditionally, shuttle manufacturers always tried to keep 

weft yarn unwinding under constant tension during the time of picking 

by fixing a pair of fur pieces inside the shuttle in the weft path, 

nevertheless, such snarls (loops) tend to appear at the time of the 

shuttle deceleration. The problem may be complicated by the snarls 

forming a knot at the loop base. 

Twist stopping is seen also in some unconventional looms, 

such as rapier and other similar looms [42]. The weft is supplied 

from a cone magazine, under a relatively high tension with a speed 
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of approximately 600 m/min through a guide eye and during the period 

of weft insertion, the weft slides over the edge of the two rapier 

heads. It was reported [43] that under these circumstances, either 

twist displacements or twist loss may occur. 

The twist may also be pushed back in front of the guide eye 

as well as in front of the edge of the rapier heads and thus cause 

downstream blockage at this point also. 

In view of these facts, twist congestion is greatly influenced 

by the nominal twist, the shape of the guide, the type of tension device, 

the initial yarn tension and angle of deflection. All factors have an 

influence on the twist regularity in the yarn which may affect the yarn 

strength and dyed appearance which in turn will reflect on the fabric 

properties. 

2.2.4 Sewing 

Threads of three folded yarn with a high level of twist are 

commonly used in sewing. In relation to this and because of 

1. The large number of points of deflection in the sewing threadline 

2. The relatively high value of tension 

3. The radius of curvature of the thread needle eye being not greater 

than 0.5 mm, 

twist holdback can easily occur. 

It was reported that [44] a significant loss in sewing yarn 

strength has been experienced during the sewing process. The loss of 

strength was attributed to the thread abrasion, and variation of 

twist. It was demonstrated [45] that the needle eye, in particular, tends 

to push the twist back. Figure 2.5A shows that the twist is accumulated 
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in the region between the yarn guide and the thread needle eye. 

The accumulation was very high at the moment of high tension, Fig. 

2.5B, which at the time of picking up of the thread by the rotary 

hook. The other guiding elements such as tension device and rotary 

hook itself may also cause twist holdback. These changes in twist 

considerably influence the sewing thread properties, leading to 

higher breakage rates. 

2.2.5 Tension measurement 

Measurement of threadline tensions are normally carried out 

by conventional means such as the Rothschild tensionmeter. The 

introduction of the measuring head does influence the threadline. 

It may act to an extent as a twist trap [46]. In a non-rotating 

Lireadline the twist is held back rather than moving forward with the 

yarn flow (downstream blockage)but in tension measurements on rotating 

yarns in spinning, twisting or false -twist texturing, a tensiometer 

may block twist in the upstream direction. 

2.3 Possible effect of twist blockage in finishing 

of woven fabric 

2.3.1 Effect of twist in yarns 

During the finishing of fabric, it was found that the amount 

of twist inserted in the yarn has an influence on the shrinking, 

felting and lustrous properties of the fabric whatever its constitution 

and type. The fibres of less twisted yarn have a better opportunity 

to shrink and felt than fibres of higher twisted yarn. 
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The apparent variation in the finished fabric is frequently 

attributed to the twist variation (twist surging) [47] in the yarn 

itself as well as to the mechanical processes of manufacturing the 

fabric itself. 

2.3.2 Scouring of fabric 

2.3.2.1 Rope scouring machine 

In this type of machine the fabric passes through an apparatus 

in the form of a loose rope. No attempt is made to keep the fabric in 

an open-width form and consequently it becomes irregularly folded [48]. 

In practice, whilst the rope is moving over the machine guide 

it tends to rotate around itself [491, some false twist is, therefore, 

added to it. 

During the scouring process, the rope moves through pressure 

rollers (squeeze rollers). The pressure rollers tend to run back any 

twist present in the rope, and this twist accumulates in front of the 

rollers. Unfortunately, the thickness of the fabric rope tends to 

increase at the accumulated-twist parts. Therefore the rope passing 

through the pressure rollers will be subjected to considerably more 

pressure at the twisted parts than the parts with less rope twist. 

Although these parts will have less liquor, dirty nipped suds will be 

trapped more effectively, and, also, the more effective the scouring, 

the more shrinkage will be developed. On the other hand, however, the 

greater the pressure the more the damage to the fabric. 

2.3.3 Mercerization 

Mercerized cotton is extensively employed in the production 

of woven fabrics either to give a general lustrous appearance or where 
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it is intended to show crimped blistered or crepon effects. The 

highest degree of lustre is obtained not only in yarns containing a 

certain specific number of turns, but also depends on the regularity 

of the twist along the yarn. In other words, the lustre is based on 

the inclination angle of the turns. 

Twist waves (twist congestion) will, therefore, give [491 

rise to different angles of inclination and consequently different 

degrees of lustre. Also during tensioning the yarn, the greater the 

angle of twist, the less the influence of the strain on the fibres in 

the yarn. 

The congested twist portions will have less tendency to 

shrink and felt than the non-congested portions, and may prevent the 

development of lustre. It was reported [50] that in an ordinary 

twisted warp, a certain degree of lustre may be developed during 

mercerization whereas, as the number of turns is increased, the lustre 

will decrease. 

During the manufacture of fabric the yarn undergoes a number 

of different processes which may disturb the twist in the yarn. Such 

fabric after mercerization will give an irregular lustre. 

2.3.4 Bleaching 

Yarn may be bleached in a variety of forms, such as cops, 

spools or cheeses, beamed wraps, skeins and warps in rope form. The 

efficiency of bleaching of cotton warps, for example, will depend upon 

the method selected for running the warps and the degree to which the 

yarn may become twisted, compressed, entangled etc. One of the methods 

of bleaching is to run the warps in rope form [48,51] through a machine 



36 

consisting of a series of tanks (boxes), provided with suitable 

guides to carry the material through the solution and also through 

guide pins and squeeze rollers. 

The problem of twist congestion arises from the inherent 

nature of the process involving moving a yarn or even rope over a 

guide. 

The tendency of the yarn (rope) to rotate around itself [49] 

will lead to the formation of a false twisting effect. The twist 

tends to run back and to accumulate in front of the guide. 

When the accumulated twist portions of the rope, which are 

often larger in diameter, pass through squeeze rollers, which have 

been adjusted so as to leave the proper amount of chemicals in the 

rope to facilitate the bleaching process, these twist portions will 

retain less of the chemicals and may become dry. 

It has been emphasised that [51] care must be taken to avoid 

drying of warps in spots, as this will lead to tender yarns and 

defective bleaching. 

Faults in fabric bleaching, due to uneven weaving, arise 

from the fact that twist waves (surging) in warp and weft yarn may 

be present due to the effect of twist congestion. This will show up 

as a slight difference in colour or surface appearance and will become 

more apparent when the fabric is held towards the light. 

2.4 Summary and discussion 

The foregoing short review of the effects of twist congestion 

in textile manufacture has confirmed that there are two types of 

twist congestion which can occur in textile processing. 
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Firstly twist congestion may occur in non-rotating thread 

line in such processes as winding, warping, weaving etc. where the 

twist transmission is moving with the direction of the yarn movement 

and is defined as downstream blockage. 

Secondly, twist congestion may occur in rotating threadlines, 

such as in ring spinning or false twist texturing where the twist 

transmission is moving against the direction of the movement of the 

yarn. The type of movement here is defined as upstream blockage. 

Twist congestion may be involved in many processes of 

converting textile fibres into finished materials. It is realised 

through the limited information available that the effect of the 

phenomenon on the yarn structure might influence some of the yarn 

physical properties. It is recognised, however, that twist congestion 

may be an advantage or a disadvantage, depending upon the nature of 

the process. 

Twist congestion can be usefully employed in rotating thread- 

lines in such processes as O. E. spinning. The running of the twist 

back inside the rotor will provide a greater cohesion of the fibrous 

assembly in the twistless portion at the peeling point. Twist 

congestion also strengthens the yarn temporarily in the rotating 

threadline of the ring spinning processes. 

In false twist draw-texturing, twist congestion may inhibit 

full generation of twist on the heater and may cause a periodic 

variation of the yarn tension in the draw zone, resulting in crimp 

level and draw ratio variations along the yarn length. This will 

affect the final fabric in the form barre (47J which is particularly 
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noticeable in dyed fabrics, in which it may have the form of dye 

shade or texture variation. 

In non-rotating threadlines (weaving, knitting etc. ) twist 

variation can be noticed in the fabric as structural or shade 

variation. In manufacturing of woven cloth from low twist filament 

yarns, twist congestion may affect the weft thread in the form of 

loops of yarn during weaving. These loops are sufficient to cause the 

yarn to snarl which in turn affects the appearance of the fabric. 

In the light of these observations, it is now firmly 

believed that a proper understanding of the effect of the various 

process parameters on twist congestion is of primary importance. 

Nevertheless, in order to facilitate a better interprepation 

of the experimental work, it was thought that a brief summary of the 

previous investigations in the twist blockage field would throw some 

light on the major parameters influencing this phenomenon. 

The research to be reported in this thesis is, however, 

restricted to an investigation of the problem of twist blockage in a 

non-rotating threadline i. e. downstream blockage. A practical 

approach towards minimizing or solving this problem is hoped for. 

The twist blockage phenomenon has been investigated in the 

light of factors already mentioned. The findings of this investigation 

initiated a basic approach to the study of the interaction of the 

structural characteristic of the yarn with the guide surface. This 

finally led to an improved understanding of the phenomenon. 
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CHAPTER 3 

SURVEY OF LITERATURE 

RELATING TO TWIST BLOCKAGE 
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3.1 Introduction 

In, the previous chapter, the types and sources of twist 

blockage have been considered. It is now pertinent to consider briefly 

the previously known effects of factors affecting twist blockage, 

in both rotating and non-rotating threadlines, as discussed in the 

published literature. 

Before reviewing the literature it is of importance to note 

that the terms twist blockage, twist congestion, twist runback, twist 

accumulation, twist displacement are generally synonymous. 

3.2 Factors affecting twist congestion 

3.2.1 Downstream twist congestion in non-rotating threadlines 

3.2.1.1 Introduction 

In considering this type of twist congestion, the Shirley 

Institute [40] found that the guide shape and size, the initial tension 

and angle of wrap, have a very marked effect. The desirability of a low 

initial yarn tension is appreciated whilst the final tension increases 

with the angle of wrap, this increase of tension will tend to compensate 

for the effect of a large angle of wrap on twist displacement. 

In reviewing the factors affecting the twist congestion it is logical 

however, to consider each factor separately as this may help to clarify 

how the various factors might influence the phenomenon. 

3.2.1.2 Effect of guide size (diameter) 

The Shirley Institute [40] in a preliminary investigation found 

that with a relatively small guide diameter, the accumulated twist in 

front of a contact region could be several times greater than the nominal 
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twist, but that even with guide diameter in excess of 25 mm, there is 

still some pushing back of twist. Figure 3.1 shows the effect of 

varying the guide diameter, on twist before the guide. In the same way 

a highly significant positive correlation between the guide diameter 

and twist accumulation was reported by Chan [52]. He studied this 

factor at an arbitrarily selected angle of wrap of 750, using 167 

decitex, 32 filament, 7.8 t. p. m. -continuous filament polyester yarn. 

Chan used six different guide diameters ranging from 2 to 16 mm. His 

conclusion indicated that the normal force or pressure which is expressed 
T 

in terms of force per unit length, R (where Ti is the initial tension 

and R is the guide radius), had a major influence. It will be seen that 

the pressure is highest with the smallest guide diameter. The twist 

displacement, therefore, reduces as the guide diameter is increased. 

The same findings have been reported by Trommer [53]. He derived a 

quite complicated theoretical analysis supported by experimental results 

showing that twist accumulation in front of the contact surface 

decreased as the guide diameter increased. He used a range of guide 

diameters with different levels of yarn twist. In agreement with the 

Shirley Institute's observations, he also observed that at the higher 

twist levels and large guide diameters there is still some twist 

accumulation in front of the contact region. These workers, however, 

neglected the factor of pressure over the guide surface. This factor 

may be considered as a major parameter influencing twist blockage 

behaviour. 
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3.2.1.3 Effect of guide shape 

Pavlov and Finkel'shtein [541 investigated the effect of 

guide shape on the twist blockage phenomenon. They used two types of 

guides, of a cylindrical and bracket form, with two methods of threading 

a twisted cord over the surfaces. During the cord movement over the 

contact surface, they found that it tends to rotate around its axis 

producing a false twist in front of the contact region. In further 

movement of the cord, the twist in front of the guide surface reversed 

its direction at its departure from the contact region. In addition 

to this, it was also demonstrated that the method of threading over 

the guide, had the effect of reversing the twist direction i. e. 'S' 

changed to 'Z' or vice versa. Pavlov [54] tried to establish a relationship 

between the developed torque (M) and the twist of the space curve (T) 

with an equation: 

M 2T 
iR2. T 

where 

Ti is the initial tension 

R is the cord radius. 
c 

Pavlov and Finkel'shtein proved that the magnitude of twist 

accumulation (false twist) and also the torque developed in the cord 

are dependent upon the configuration of the guide and the radius and 

position of the cord over the contact regions. When the cord is arranged 

over the contact region the twist accumulation and the developed torque 

along the cord may reach zero or maximum depending on the orientation of 

the yarn on the guide surface. 
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Pavlov [551 continued the same investigation with a 

complicated guide shape, trying to establish the relationship between 

the shape of the guide, the frictional properties of the cord/guide 

surfaces, the torque developed in the cord, and the twist over the 

contact surface. He used a hollow cylindrical guide with holes in 

its side and passed a twistless cord with a longitudinal coloured 

marked strand through the guide with a particular threading direction. 

He found that the results agreed with the earlier findings. 

An equation relating the elastic properties of the cord and 

the other parameters mentioned above was developed. It was claimed 

that if the frictional moment is equal to or greater than the torque 

developed in the cord, the cord will rotate in front of the guide and 

no rotation will occur over the contact surface. Thus twist 

accumulation will occur. 

In a further investigation, Pavlov [56] assumed a relationship 

between the torque developed in the cord (moment of torsional resistance) 

and the twist accumulated in front of the guide surface (A = twist/unit 

length) by an equation of the form 

M= 2AGIA 

where GI is the torsional stiffness of the cord. 

Relating to his theoretical analysis, he found the minimum 

length of are of contact to produce a stable twist in a thick product 

like cord (4 mm diameter) is greater than 1.7 mm. Of course, for a 

fine yarn it will be less. 

Possibly, it can be concluded from his observations and 

theoretical analysis that the factors which can affect twist blockage are: 
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1. Radius of curvature of the guide surface. 

2. Frictional force over the contact region. 

3. Guide shape and surface configuration. 

4. Yarn linear density. 

5. Yarn initial twist. 

6. Yarn torsional stiffness. 

7. Level of twist over the contact region. 

8. Length of arc of contact as a relationship between the guide 

diameter and angle of wrap. 

9. Angle of orientation. 

10. Method of yarn threading. 

3.2.1.4 Effect of angle of deflection 

It would be expected that the angle of deflection can have a 

major influence on the inhibition of twist transmission over a surface 

of contact if only because of its effect on the length of contact. The 

Shirley Institute [40] investigation, tested two types of yarn (140 

decitex, 26 filament, 2.5 t. p. i. Tricel and 140 decitex, 26 filament 

1.0 t. p. i. Dicel) at ten angles of wrap, ranging from zero to 900 at 

a speed 75 ft/min, using polished cylindrical steel pins as guides. The 

results show that any reduction in angle of wrap will only produce a 

significant reduction in twist accumulation, if the angle of wrap is 

reduced to less than approximately 450. It was suggested that for the 

purpose of avoidance or reduction of twist accumulation, the angle of 

wrap should be as small as possible. 

Trommer 153] experimentally illustrated that the twist 

accumulation increased as the angle of wrap increased from zero to 60. 0 
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However, a further increase from 60° to 120 0 
caused a rapid decrease 

in twist blockage. 

The above experimental results are, however, at variance with 

those of Chan [52], who reported that twist blockage decreases as the 

angle of wrap increases. Chan's results were obtained using different 

angles of wrap ranging from 300 to 1300 for each of six guides at 

different diameters. The yarn used was 167 decitex polyester at a 

transmission speed of 100 ft/min. 

The difference between the(Shirley, Trommer)and Chan 

observations may be due to the input tension being constant in the 

former and output tension being constant in the latter. 

It has been shown [571 that, when positive feed systems are 

used as in Chan's experiments, the effect of drag in a threadline is 

to lower the tension before the drag point, and not to increase the 

tension after the drag. Other factors influencing the differences 

in results of the above investigators may be the different yarns, the 

different twist levels or differences in the methods of carrying out 

the experiments. 

3.2.1.5 Effect of input twist 

Results reported by several investigators [2,40,53] indicated 

that the input twist in singles or in folded yarns is a very important 

factor influencing twist congestion. Dyer 136], in studying the warping 

process, used the phenomenon of the twist blockage as a means of 

measuring the variation of coefficient of friction of different surfaces 

with yarns of different twist. His idea was based on the assumption 

that twisted yarn may acquire a significant twist variation along the 
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yarn caused by the snubbing action of the guide surface (or tension 

device), which tends to push back the twist and permit it to move 

forward in surges. The resulting variation in twist might affect the 

frictional drag and hence the final tension. 

He used a yarn with three different levels of twist such as 

0.3,2.0 and 3.0 t. p. i. The yarn was passed over each of seven 

different tension devices at a constant tension input of 10 gf 

with a yarn speed of 300 ft/min. The final tension was recorded by 

means of a G. E. recorder. 

The results indicated that the higher twist congestion was 

recorded with the post, gate and disc tensioners. This was indicated 

by a higher final tension using the lower yarn twist of 0.3 t. p. i. 

Dyer claimed that the characteristic behaviour of these three tensioners 

is probably due to the snubbing action of the surface of the devices 

pushing the twist back while the yarn is passing with little or no 

twist. In gate tension devices, the yarn moves over a number of fingers 

(or posts), each of these fingers represents a small guide (with a small 

diameter). Thus the increase in tension caused by these fingers tends 

to increase the yarn pressure over the successive fingers surface, 

whilst the yarn pressure on the surfaces of plate, whorl and regulator 

tensioners tends to remain at a quite low value. The observations 

obtained from these types of tensioners had no significant variation 

of final tension as recorded. Probably the main conclusion from Dyer's 

work is that twist congestion can be. significantly influenced by 

1. A low level of yarn twist. 

2. The guide shape, size and type. 
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However, the observation of Dyer, that the twist accumulation 

decreases with increase of the input twist, does not agree with the 

results reported by Chan [52] who found that an increase of the input 

twist directly affects the twist accumulation, Fig. 3.2. 

The disagreement between Chan and Dyer may arise from their 

different techniques. 

3.2.1.6 Effect of the initial tension 

The influence of initial tension on twist congestion was also 

considered by the Shirley Institute [40]. The reported results were 

obtained using a guide diameter 0.24 cm (0.09") at a constant angle of 

wrap of 900, with the two types of yarn mentioned earlier, the tension 

applied to the yarn ranged from 5 to 909f - Actually in the experiments 

described, only a limited number of combinations of guide diameter with 

yarn initial tension were investigated. It was found, however, that at 

low tension values, the tensions had a very marked effect on twist 

congestion, but at higher values, the effect is very small and a large 

increase in tension causes only a slight increase in twist accumulation. 

A similar high correlation was found by Chan [52]. He used 

guides of different diameters at angle of wrap 750, and varied values 

of initial tension (from 5 to 80 gf )for each guide diameter. He 

stated that as the tension increases, the twist held back by the guide 

also increases. Chan proposed that the combination of curvature of the 

guides surface with tension has a striking effect on the twist blockage. 

He found a good correlation between the pressure over the guide surface 

and twist blockage, and subsequently suggested that the twist blockage 

is largely governed by this pressure. 
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The conclusion will be questioned in more detail when the 

effect of the pressure is again discussed in the course of this 

thesis. 

Baird et al [2J observed the twist blockage phenomenon during 

their investigation on the relationship between the degree of polishing 

of a yarn guide and the coefficient of friction. They used 30 denier, 

10 filament nylon yarn, with a very low level of yarn twist (i t"p"i. Z 

twist), and found that independently of the level of initial tension, 

the filaments behaved individually and moved over the guide surface 

(contact region) side by side, as if they were independent of each 

other. The twist was completely pushed back leaving the yarn flat over 

the contact surface. This flattening of filaments returned after the 

accumulated twist had reached a sufficient level so as to escape over 

the contact region. The phenomenon was not observed when a yarn with 

higher level of twist was used. Such behaviour was attributed to the 

interlocking between the geometry of the guide surface and the yarn 

surface and was considered as the prime factor causing twist accumulation 

in front of the contact surface. 

It can be concluded from the above observations that the twist 

blockage behaviour is directly affected by: 

1. The pressure over the contact region. 

2. The yarn and guide surface configuration. 

3. The relationship between yarn twist and the length of contact region. 

3.2.1.7 Twist congestion in the rope processing of fabric 

The investigation of Miura et al [58] of twist blockage in the 

rope treatment of fabric was mentioned in the previous chapter. They 
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tried to determine the factors that cause twist generation in 

fabric. They reported that when a fabric moves over a surface of 

guides such as poteyes, and changes its direction through angle 

(01,62,03 ...... etc. ) of deflection, it starts to take up a more 

tightly twisted rope formation. As long as this level of twist is 

low, it will be difficult for the twist to be transferred beyond the 

contact surface. They found that the average twist (6) generated in 

the fabric length (1) can follow the equation: 

le tim 
2ul 

where E0 = 01 +02+03 ... 

Using graphical methods, the same workers showed that increase 

of the fabric speed caused increased accumulation of twist. They also 

investigated the use of correctors [591 and developed equations relating 

the elastic properties of the rope to the level of twist accumulation. 

They concluded from this investigation that the parameters which influence 

twist congestion when processing fabricin rope form are: 

1. The diameter of the fabric rope. 

2. The total angle of deflection. 

3. Fabric tension. 

4. Initial twist in the fabric 

5. The time of the fabric movement 

6. The fabric velocity. 
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3.2.2 Upstream twist congestion in rotating threadlines 

3.2.2.1 Introduction 

It will be appreciated that the upstream twist blocking 

effect of yarn guides on a rotating yarn has a more complicated 

mechanism than the general situation of the non-rotating yarn [60] 

discussed previously. 

Invariably the twist will be generated by some device such 

as a ring spindle or false-twist spindle which causes the yarn to 

rotate and feeds twist upstream into the threadline against the 

direction of yarn longitudinal Tovement. 

The yarn bending angle around any guide prior to the twist 

generator, the tension in the yarn, the yarn's modulus, the yarn speed 

and twisting rate are again expected to exert a different degree of 

influence on twist congestion [61]. In addition, in processes such as 

false-twist texturing, where a heat setting is involved, the thermal 

condition may also influence twist blockage. 

Most studies of this type of twist congestion [28,29,62,63] 

have been concerned with the phenomenon at relatively high twist and 

speed levels such as occur in modern textile spinning, in the false- 

twist process and other continuous filament yarn processing where it 

may be commercially important. 

One of the investigators [64] has, however, carried out'some 

experimental studies at low speed in connection with a quite complicated 

theoretical analysis. This may help, nevertheless, in clarification 

of the nature of the parameters influencing this type of phenomenon at 

higher speed. 
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3.2.2.2 Effect of angle of deflection 

The major problem associated with path deflection in the 

primary zone in the false-twisting draw-texturing process is that 

the yarn deflection points tend to inhibit the transmission of the 

twist upstream from the spindle to the draw point on the primary 

heater [29,65,66]. The importance of this angle of deflection has 

attracted the attention of many researchers. 

Denton [28] investigated the effect of the yarn deflection 

on the twist congestion using angles of wrap of 90°, 1800 , 270°, 

360°, with different guide diameters, at constant draw ratio. He 

found that twist loss increased when the angle of wrap increased. 

At small guide diameters, (<5 mm) twist loss was found to be 15%. 

Bachkaniwala [62] in his study using angles of wrap 500 , 
760 and 820, did not reach the same conclusion as Denton. He found 

the twist loss at any size of guide diameter does not exceed 1%. 

The differences between the two investigators may be due to the 

technique, the level of the angle of wrap, or the draw ratio used. 

An attempt was made by A. R. C. T. [67] to minimise the effect 

of yarn deflection points in the false-twisting texturing process. 

The phenomenon was investigated using different types of yarn such 

as 150/30,50/25 polyester and 50/48 multilobal polyester and 

100/34 den. multilobal nylon yarn, at angles of wrap ranging from- 

zero-to 1800. It was found the twist before the yarn deflection point 

decreased when the angle of deflection increased. 

A. R. C. T. stated that angles in the yarn path between the exit 

of the heater and a friction twisting device influenced the twist 
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distribution and increased the yarn tension between the deflection 

points in the yarn path and the friction head. 

However, the above results are in agreement with those of 

Sasaki [68]. He established a simple model for the purpose of 

investigating the twist distribution in the false-twist texturing 

zone. Using two different coloured multifilaments 75 den. polyester 

yarns together, he measured the twist distribution in the heater from 

photographs. He observed that the apparent twist decreases as the 

yarn bending angle increases. He attributed the alteration of twist 

distribution to increase of the tension before the spindle and 

slippage occurring on the spindle. Because of this, the mode of 

twist insertion in the yarn will change and will effectively decrease 

as the yarn deflection increases. It was suggested that care is 

required in choosing the position of yarn guides. In many cases when 

such an angle of deflection exists in the yarn path, it is necessary 

to reduce the draw ratio in order to keep tension at a reasonable 

level. This in turn amplifies the influence of the deflection. 

Denton and others [57,67] reported that the path angular 

deviation not only affected the transmission of the twist upstream of 

the heater, but also causes irregular yarn drawing. This, consequently, 

influences the yarn properties such as tenacity and dye affinity and 

the Uster CV% and also causes a higher breakage rate. 

More recently, the influence of thread deflections in the 

texturing zone on the torsion in the threadline, was studied by 

Lünenschloss [69] et al. They measured the thread torsion with and 

without a deflected threadline under otherwise fixed texturing 
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conditions (spindle speed, draw ratio, heater temperature, texturing 

speed). They reported that the torque generated tends to decrease 

with threadline deflection. However, part of the torque reduction is 

explained by the lower torsion occurring in the heater zone with twist 

accumulation downstream of the deflection points. 

The results obtained by Heung [63] are in agreement with 

the results of the above investigators. By using nine different 

angles, ranging from 350 to 800 on 76/22 decitex polyester and 22/12 

decitex nylon yarn, with draw ratios of 1.507 and 1 respectively, and 

with theoretical twist levels of 3350 and 1950 t/m for a polyester and 

3150 for a nylon yarn, he confirmed that the twist blockage increased 

as the angle of wrap was increased. In these experiments he, too, 

observed that the smaller the guide diameter, the higher the twist 

blockage. Surprisingly even with a small guide diameter (1.26 mm), 

for angles of wrap from zero to 500, twist blockage was not significant. 

Above this level of angle of wrap, an opposite behaviour was observed. 

The twist blockage rapidly increased with the smaller guide diameter 

(1.26 mm), while it generally decreased to zero level with the larger 

guides (2 and 12 mm). 

Fischer [291 also has investigated the effect of the deflections 

and points of contact on twist transmission through the false-twist 

texturing threadline. He found that these points tend to brake the 

rotation of the yarn, and consequently a lower level of twist is 

transferred. He also found that with a straight yarn path (i. e. without 

deflection points), the twist is propagated uniformly as the yarn passes 

through the heating zone. Obviously, increase of the number of points 

of contact tend to increase the frictional effect over the contact 
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region, which in turn can disturb the twist uniformity along the 

yarn. 

Trommer [70] found through his investigation, a dramatic 

effect on twist loss with a smaller guide and higher angle of wrap. 

The twist loss was doubled when he used a 0.5 mm guide with a 1000 

angle of wrap compared with 2.5 mm guide radius with the same wrap. 

He found, in general, that the higher the angle of wrap, the higher 

the twist loss. 

3.2.2.3 Effect of guide diameter 

As already indicated, several researchers [33,71] have 

investigated the effect of guide diameter on twist congestion in the 

false-twist texturing process. 

Bachkaniwala [62] studied the deflect between the heating 

and cooling zones. He used seven guide diameters ranging from 1.26 

to 16 mm with two types of yarn. He concluded that there is a 

significant influence of the deflecting guide diameter on the percentage 

twist loss, and that twist loss was generally higher at lower twist 

levels (Fig. 3.31). Although curve (A) indicates a higher percentage 

loss than curve (B), the actual loss is lower because of its lower 

twist level (2575 t. p. m. and 5550 t. p. m. for A and B respectively). 

In addition, the value of the draw ratio for each of 'A' and 'B' is also 

different (1.9 and 1.6 respectively). It is, therefore, not possible 

to be sure that the difference was only due to the different twist 

levels; tension difference may also have made a contribution. 

The results are in agreement with the results obtained by 

Heung [63], who used seven guide diameters ranging from 1.26 to 16 mm 
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with two yarns of different linear density 22 decitex nylon and 76 

decitex polyester at a twist level 3350 t/m. He found that the twist 

blockage behaviour of 76 decitex is significantly influenced by the 

guide diameter. A high twist blockage reduction was observed by 

changing the diameter from 1.26 to 6 mm, but no significant further 

twist blockage reduction was noticed at larger diameters. Heung also 

found that the lower the yarn linear density the higher the twist 

blockage (Fig. ' 3.311) 

The above experimental results are however supported by 

Denton [28] who stated that a high correlation exists between the 

twist loss and diameter of the guide by which the yarn is deflected. 

Denton's conclusion was obtained from results based on experimental 

evidence, using guides of four diameters, namely 3,6,9 and 12 mm at 

various angles of wrap-. 

Trommer [70] in his investigation used five different guide 

radii, ranging from 1 to 5 mm. He found that the twist loss 

significantly decreased with increase of guide radius. At 1 mm guide 

radius, the twist loss was approximately 55%, whilst at 5 mm, the twist 

loss was only 15%. His theoretical analysis supported this relation- 

ship between twist loss and guide radius and predicted higher values 

than those found in the practical observation. 

3.2.2.4 Effect of input twist 

In texturing synthetic filament yarn, the twist level of the 

yarn in the processing zone is an important factor which significantly 

influences the characteristics and quality of the resulting yarn. 
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Bachkaniwala [62] prepared samples using seven ceramic 

guides of diameter ranging from 1.26 to 16 mm, when texturing 170/30 

decitex polyester POY at a draw of 1.9. He observed that, as the 

input twist increases, the twist loss decreases, but above a level 

of twist 1975 t/m it increases again. 

Denton [28] also reported an unexpected and curious 

observation. He found, below a twist level 1730 t/m, very little 

twist was transmitted upstream beyond a deflection point. He 

commented that low twist levels contribute a major problem in the 

false twisting process particularly on machines with substantial 

deflection along the threadline of the primary texturing zone. 

The conclusion is that, although the results showed that as 

the input twist increased, the percentage twist loss generally decreased 

slightly at any low values of input twist, the twist transmission over 

the surface of contact tends to change and losses are much greater. 

Heung extended Bachkaniwala's experiments to a finer range of 

yarn. He pointed out that at a given twist level, the surface helix 

angle of the filament is smaller for finer yarns, and thus that the 

lower twist level might have much more effect on the twist blockage 

behaviour. In general, however, Heung's conclusions were similar. 

It should be noted that the same twist sampling technique 

has been used by most of the researchers [62,63,72,73]; this involves 

a snatching of the yarn over the primary heater, either by hand or by 

an especially constructed device; the yarn is then transferred to a 

stiff card, and from thence to a twist tester. In this technique, the 

taking of samples should involve gripping the yarn at both ends at the 
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same time. However, if one end is gripped before the other, the 

sample might have more or less twist than in its running condition. 

In the case of draw texturing, there is also the possibility of 

twist movement through the (soft) draw region. These possible sources 

of error must be taken into account, and their effect minimized. 

However, Trommer [70], constructing a special means of 

rotating the yarn, demonstrated that twist blockage is considerably 

influenced by the level of yarn twist. He used five different levels 

of input twist (or helix angle) ranging from 400 to 2400 at constant 

yarn linear density and constant tension over a guide radius of 1.25 

mm. He found that the lower the yarn twist level, the higher the 

twist loss. Also his theoretical analysis has predicted the general 

pattern of twist loss behaviour, but with the practical measurements 

at a lower value. 

3.2.2.5 Effect of draw ratio (pre-tension) 

The required level of tension is contributed by the feed/ 

delivery speed ratio of the yarn. Piller [61] has reported that any 

increase of yarn tension in texturing can cause a congestion or rolling 

of twist in the region immediately before the twist tube, leading to 

overtwisting. 

However, Bachkaniwala [62] investigated the effect of initial 

tension on twist blockage under various draw ratios using a range of 

guide diameters. The results indicated that an increase of draw 

ratio from 1.45 to 1.6 gives a slight increase in percentage twist loss. 

These results are in agreement with the results of Sasaki [68] who 

also found that the twist blockage increased as the tension increased. 



61 

Trommer [70] in his research also demonstrated that the 

twist blockage is significantly affected by the initial tension. 

He used five different levels of yarn tension ranging from 20 to 

100 pond over a guide radius of 1.25 mm. He found that the higher 

the initial tension, the higher the twist loss. Again his theoretical 

analysis predicts a higher loss than is observed in practice. 

3.2.3 Downstream twist blockage in a rotating threadline 

3.2.3.1 Repco self-twisted yarn (STY) 

In self-twisted yarn, the number of turns of twist in two 

consecutive zones (i. e. S zone and Z zone) are nominally equal. 

Hassanian [741 has found practically that there is no relationship 

between the levels of 'S' twist and the values of 'Z' twist. He 

attributed this behaviour mainly to the effect of twist blockage on 

the formation of self-twisted yarn zones. As a result of the twisted 

yarn passing over guides, the twist can have two possible forms: 

1. If the twist is congested before the end of the stroke of the 

twisting roller, a higher twist density in one zone will occur. 

2. If the twist is congested at the end of the stroke, a lower twist 

density will occur in one particular cycle. 

However, Henshaw [14] in his testing of twist distribution 

in self-twisted yarn has confirmed that the twist variation along the 

yarn can be attributed to variation in the winding tension together 

with twist blockage at the convergence guides. He found that, even 

under normal tensions, the length of the zero twist zone was changed 

by varying the form of these guides (i. e. simple and overlapped guide 

Fig. 2.3). The overlapped convergence guides cause the two strands 
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to be combined together before self-twisting occurs. This increases 

the interlocking mechanism between the two strands. 

3.2.3.2 Open-end spinning 

Effect of friction over the guide 

In O. E. spinning processes, the centrifugal force of the 

rotating yarn end generates a relatively high tension. The development 

of frictional force between the rotating yarn and the outlet navel of 

the spinning pot causes the yarn to roll against the inner stationary 

surface. Thus either false twist may be created or twist blockage 

may occur; both will give rise to a higher twist level in the spinning 

pot than would be expected from its rate of rotation. The actual 

mechanism of this higher twist in O. E. has, however, not been fully 

explained. Some investigators [75,76,77,78,79] define it as false 

twist whilst others [80,81,82] define it as twist blockage. 

Singh and others [21,22,83] have reported that the twist inside 

the rotor increases with increase the frictional contact between yarn 

and navels. The introduction of notches over the navel-surface was 

found to increase the frictional contact between yarn and navel, and as 

a result, the false twisting effect was increased. Singh also demonstrated 

that the twist held back in the rotor tends to increase with lower yarn 

twist. Nevertheless he claimed that the level of blocked twist inside 

the rotor is more dependent on the frictional characteristics of the 

navel than on the level of the twist. 

3.2.4 Simultaneous upstream and downstream twist movement 

Finkel'shtein [4] examined twist formation in roving. He 

reported that a false-twist is generated in the roving between the 
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drafting system and the flyer head arising from the accumulation of 

the twist due to the dragging of the roving over the flyer head and 

when the twisting roving is pulled through the hole of the flyer head. 

Figure 3.4 shows twist accumulation resulting from two 

different ways of inserting the yarn through the hole of the flyer 

head (3.4a from left to right and 3.4b from left to the centre of the 

flyer). Arrows indicate the yarn and twist flows. It is obvious 

that the method of threading the roving created either of the two types 

of twist accumulation, downstream (3.4a) and upstream (3.4b) twist 

flow. Finkel'shtein reported that the twistless portions of the yarn 

(AB and BC Fig. 3.4) rotate in opposite directions. 

If the roving is pulled in the direction of the dotted arrow 

(D), the total number of turns increases in portion AB and decreases 

in portion BC or disappear altogether. In Fig. 3.4b the conditions 

will be reversed, i. e. higher twist in BC and lower or zero twist in AB. 

Subramanian [24] investigated the twist flow in ring spinning 

by measuring the twist distribution at two portions of take-up bobbin, 

such as the nose and shoulder. In addition measurements were carried 

out at the start, in the middle and on the full bobbin. The study 

showed that the angle of wrap between the yarn and the traveller (and 

the yarn guide) has a significant effect in generating resistance to 

the flow of twist across them. This is shown in Table 3.1 which 

illustrates the variation of twist at different positions. It is clear 

from these results that the deflection in the yarn path has an effect 

on the twist distribution along the yarn. 

Subramanian suggested that the smaller the angle of inclination 

of the spinning zone thread to the vertical, the better the twist flow 
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TABLE 3.1 

Measurement 
stage Nose Shoulder 

Start 38.5 31.7 

Middle 39.0 31.0 

End 38.5 32.0 

Number of turns in 24" 

Spun yarn 16s (37 tex) 

Mechanical twist 35.6/22" 

Average of 20 measurements 
(Subramanian) 
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to the spinning region. As the yarn tension at the maximum balloon 

height tends to be lower than at the minimum height, the twist is 

higher at the nose than at the shoulder because the contact pressure 

between the yarn and traveller increases from the shoulder to the 

nose. At the same time, as the balloon becomes more conical, the 

angle of wrap around the traveller becomes larger and around the 

thread guide becomes smaller at the nose than at the shoulder. The 

twist thus gradually increases from the shoulder to the nose. 

These results are in agreement with the results of Wegener 

and his colleague [84.85]. They used four different diameters of 

thread guide, 1.5,3,5,10 mm at different angles of inclination 

ranging from zero to 400. They found that the most significant effect 

of twist hold back is at the smaller guide diameter and with the 

highest value of the angle of inclination. 

3.3 Discussion 

It is evident from the above survey that the twist congestion 

phenomenon is very complicated. It has been explained that for both 

rotated and non-rotated threadlines, thread guides offer a resistance 

to the passage of the twist in the yarn which may prevent some or all 

of the twist from moving forward with or against the yarn flow over the 

contact region. 

In downstream twist blockage the rotation of the yarn resulting 

from the pushed-back twist will generate some false twist in the 

twisted yarn in the same direction as the yarn's original twist. With 

rotated threadlines, twist congestion at a guide surface may cause a 
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major problem in preventing upstream flow of twist. For example, 

in the primary zone of the false-twist texturing process, path 

deflections tend to inhibit the transmission of twist upstream from 

the spindle to draw point on the primary heater [28,29]. 

The precise mechanism by which the twist is pushed back is 

still somewhat obscure. However, it is generally accepted that twist- 

transmission is effectively governed by the contact configuration, 

and pressure between the guide and the yarn as well as their surface 

characteristics all of which may have a considerable effect on 

generating or preventing the rotational behaviour of the yarn around 

its axis [55,56]. 

Although the phenomenon is considerably affected by the 

nominal yarn twist and, in particular, yarns with a low twist, usually 

tend to generate a higher blockage twist, the study of the effect of 

input twist on twist congestion in rotated and non-rotated threadlines 

has yielded inconclusive evidence [49,56,60] and conflicting results 

[40,52] of twist congestion behaviour respectively. 

The effect of angle of wrap is another factor which has not 

yet been comprehensively investigated. The combined effect of 

variation in guide diameter with either angle of wrap or yarn tension 

will also give rise to changes in two factors, the length of the 

contact region and the pressure over the contact surface. The study 

of these two factors must, therefore, be made together. 

The yarn parameters will also play an important part. In 

particular, the internal energy loss which occurs when the rotating, 

twisted yarn is bent round a guide surface, and the interfibre 
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friction in low twist continuous filament yarns are especially 

expected to have a major influence. 

Unfortunately, observations made up to the present time do 

not fully explain the twist blockage phenomenon for either of the 

two types of blocking twist. 

The parameters influencing twist accumulation may be 

classified as follows: 

I. Guide factors 

A) The coefficient of friction will be influenced by 

1. Guide material. 

2. Guide surface topography (configuration), in relation to yarn 

material and structure. 

B) Geometrical and mechanical factors: 

1. Guide size. 

2. Shape and location of the guide. 

3. The relative and rotational movement between yarn and guide. 

II. Yarn factors 

1. Fibre composition. 

2. Number and linear density and cross-section of filaments or 

fibres. 

3. Yarn singles and folding twist. 

. Yarn density and rigidity. 

5. Yarn cross-section. 

6. Lubricant applied to the yarn. 

7. Yarn speed. 

8. Yarn tension. 



69 

9. Temperature of the yarn at the point of contact particularly 

with thermoplastic yarns. 

10. Yarn moisture content. 

III. Yarn/guide factors 

1. Angle of wrap. 

2. Contact length (a function of guide diameter and angle of Q 6- 

wrap). 

3. Yarn orientation relative to guide axis. 

4. Yarn/guide pressure (a function of yarn tension and guide 

surface curvature). 

5. Friction drag (a function of yarn/guide pressure and 

coefficient of friction). 

3.4 Scope and objective of the present work 

The summary of the published literature presented above 

reveals that only a small amount of data has been published on the 

fundamentals of twist congestion in rotating and non-rotating thread- 

lines. 

Such information as is available is more readily applicable 
M 

to Dill practice than to basic scientific investigation. The need 

for a more fundamental approach to understand the parameters affecting 

twist congestion in both types of yarn threadline and their influences 

on the mechanism is apparent. 

Earlier work performed on twist blockage has dealt super- 

ficially with the effect of guide radius, angle of wrap and initial 

tension whether of rotating or non-rotating threadlines. These 
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parameters are limited compared with what could be investigated. 

The study of the effect of, for example, number of 

filaments in the yarn, filament cross-section and yarn density on 

twist congestion are undoubtedly of great importance. 

The relation between twist congestion and other parameters 

such as yarn twist and number of turns over the contact region, 

represents an important field of investigation. 

As regards the effect of interaction parameters i. e. guide/ 

yarn factors, there is some limited information available, the 

effect of pressure [52,62] and the frictional force [21,22] over the 

contact surface on twist congestion. 

As far as has been found there is only report [55,56) of 

the relation between the angle of orientation (angle between the 

yarn axis and the guide axis) on twist blockage. 

However, no fully satisfactory model from which twist 

blockage behaviour can be predicted has been proposed. 

In view of these facts, it is the intention of this 

investigation to study in more detail twist accumulation in non- 

rotating threadlines and the effect of some variables such as guide 

size and angle of wrap. It has been suggested that the relation of 

the length of the arc of contact with the length of one turn of the 

yarn twist, over the surface of contact may be of significant 

importance. 

This factor will be investigated in some detail, followe+c6. 

by an investigation, on a wider scale, of the effect of the yarn 

directional movement over the contact region on the twist blockage 

phenomenon. 
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Generally, the purpose of the present work has been to 

study the reasons why, and under what conditions, twist blockage 

takes place, identifying and establishing the factors which 

contribute to this phenomenon. 
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CHAPTER 4 

APPARATUS AND TECHNIQUES 
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4.1 Description of the apparatus 

The apparatus as used in the present investigation is shown 

in Plate 4.1; this consists of: 

1. Two hysteresis tension devices. 

2. Two magentic gripper attachments. 

3. Four low-friction pulleys. 

4. Yarn guide and guide assembly. 

5. Take-off unit. 

6. Air-suction unit. 

4.1.1 Tension device 

The initial tension (Ti) was applied by running the yarn 

through an alumina (sintered aluminium oxide) disc tensioner and around 

the pulley of an hysteresis brake, where the torque exerted by the 

yarn tension is opposed by the torque between a ferromagnetic disc 

fixed to the pulley and two permanent magnets. 

A pair of magnetic hysteresis tension devices were used in 

order to minimise the effects of any fluctuations in tension in the 

yarn as it leaves the package and to avoid their transfer into the 

system. 

4.1.2 Magnetic gripper attachments 

Magnetic gripper attachments were fitted on either side of the 

guide in order to provide a rapid grip on the running yarn. 

These devices were found necessary for the following 

reasons: 

1. It was observed that the yarn does not stop immediately when 
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PLATE 4.1 

A Function command apparatus 
B Yarn tension indicator 
C Micro-processor voltmeter 
D Hysteresis tension device 
E Magnetic gripper attachments 
F Take-off unit 
G Yarn guide 
H Head transducer 
I Air suction unit 
J Voltage regulator (speed controller) 
K Low-friction pulley 
L On-off switch 
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power is switched off and some turns of blocked twist may, there- 

fore, escape to the other side of the contact region. 

2. The yarn tends to slacken and loose its tension. 

3. When tension is applied, the yarn becomes elongated and the twist 

distribution along the yarn might be different from that of an 

untensioned condition. 

4. It is desired to examine the samples in their running condition. 

Phil-trol, Solenoid-35, units, continuous duty (all time 

ON) were chosen for this purpose. The two jaws of the gripper were 

modified with two pieces of high resilient rubber bonded on the upper 

and lower surfaces of the two jaws of each of the two grippers. The 

electrical circuit of grippers is shown in Fig. 4.1. 

The unit works on 2x24 volts D. C. 1 amp. 

Both gripper units must operate immediately the yarn is 

stopped. This could be arranged by using a thin rod connected between 

the switches of the yarn motor and the grippers. On pressing the rod 

down, the motor turns off, and simultaneously the grippers close. By 

this method, "none of the turns in the threadline in front of the 

contact region is lost. 

4.1.3 Yarn guides 

Five steel capstans of 2,4,6,8 and 10 mm diameter were 

chosen to demonstrate the effect of yarn/guide surface contact on 

twist blockage. The rods were polished so that their surface was as 

smooth as possible (Plate 4.2). 
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240 

* 

S*- Switch 

it 

FIG. 1.1: Electrical circuit diagram of the 
magnetic gripper 
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PLATE 4.2 

Yarn guides 

1- 2 mm diameter 
2- 4 mm diameter 
3- 6 mm diameter 
4- 8 mm diameter 
5- 10 mm diameter 
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4.1.4 Guide assembly 

A guide assembly was designed to make it possible to examine 

the effect of angle of wrap on twist blockage. To achieve this, 

pulleys or guides could be adjusted in slots (S1, S2 and S3) to give 

the required deflection, (Fig. I. 2). The inclination of the guide 

under test could also be adjusted to examine the effects of this 

parameter. 

4.1.5 Low-friction pulleys 

Four low-friction pulleys (P1, P2, P3, P4) were fitted in 

slots (S2 and S3). Two of them (P1, P4) are fixed while the others 

are movable as required. It can be seen from the figure that the 

pulleys (P2 and P3) can move in a circular path, at the centre of which 

is the yarn guide. The reasons for these pulleys and their slots are: 

1. To vary easily and efficiently the value of the angle of wrap 

0 between zero to 360. 

2. To sustain a sufficient yarn length for testing. 

4.1.6 Measuring the angle of wrap 

After adjusting the angle of wrap by using the slots (S1, S2, 

S3), the angle of wrap around the yarn guide could be measured simply 

and accurately. Steel templates together with a mirror fixed on the 

apparatus frame were used. The required angle of wrap was set-up 

first on the templates, then one leg of the templates was placed along 

the incoming yarn (between the guide (G) and the pulley (P2)), the 

other leg along the outgoing yarn (between the guide (G) and the 

pulley (P3)). When the image of the templates, the templates themselves, 

and the yarn path appeared to coincide the required angle was achieved. 
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N\ ý, / S2 
S3 

P1,2,3, k - low-friction pulleys 
Sß, 

2,3 - slots 

G- yarn guide and guide assembly 
Y- yarn 

FIG. 4.2 
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4.1.7 Adjusting the angle of orientation 

It was found easier to incline the guide to the threadline 

(i. e. to turn the guide through an angle relative to the threadline 

rather than vice versa). The initial construction is shown in Fig. 

4.3. The guide was fixed into the assembly (B) by a small screw (C). 

It could move right or left around the axis (XX). A protractor (Pr 

was fixed on the centre of movement (i. e. XX). Any rotation of the 

guide could, therefore, be measured by means of the protractor. 

Unfortunately, it was observed that the protractor does not 

measure the actual angle of orientation. The reason is illustrated 

in Fig. 4.4. When the guide is oriented at an angle (ß)(i. e. the 

guide at the XG1 position) the yarn, instead of taking the position 

(YY) over the guide surface, took the position (YYY) where the actual 

angle of orientation is (ß), whereas the protractor measures the 

angle CO'). Because the guide deflected the yarn aside, in this way 

an angle was generated between the planes containing the old and new 

threadline. 

This difficulty arose because the guide does not rotate around 

the point of yarn/guide contact, and consequently, a wrong measurement 

of angle of orientation occurs. 

To achieve the correct measurement of angle of orientation, it 

was decided to design another guide assembly where the guide can rotate 

around the axis (XX) i. e. around the point of contact between the yarn 

and the guide. This axis can also be made to pass through the centre 

of the protractor. The correct angle of orientation can, therefore, be 

measured accurately. This second guide assembly is shown in Plate 4.3. 
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A 

Pr - protractor 

G- yarn guide 

XX - line of guide rotation 

B- guide assembly 

S1 - slot 

C- screw 

A- apparatus frame 

FIG. 4.3 
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Y 

-- Go 

Pr 

YY 

YYY - yarn path at ß angle of 
orientation 

XCo - guide axis at zero angle of 
orientation 

XG1 - guide axis at ß angle of 
orientation 

.Y 

FIG. 4.4: Schematic diagram of the actual 
angle of orientation 
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PLATE 4.3 

I 

Pr Protractor 

G Yarn guide 

Y Yarn 

X-X Line of guide rotation 
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4.1.8 Driving unit 

The yarn was driven by a variable speed motor. The motor is 

220 V AC, 50 watt (1/15 HP) DC shunt, 0.15 amp and 4000 r. p. m. maximum. 

For the purpose of reducing the speed a gear box was attached. Its 

maximum torque is 3 kg-cm at 960 r. p. m. Two rollers are attached to 

achieve a variable yarn speed from zero to 136 m/min. 

In order to facilitate observation of the yarn movement over 

the guide surface, the twist, the twist congestion and yarn rotation, 

a low speed of 4 m/min was used. It was necessary to increase the 

magnitude of the power supplied to the driving motor in order to sustain 

a constant speed when increasing yarn tension, otherwise the motor 

speed would decrease as the tension increases. The required speed was 

controlled by a voltage regulator (Variac type 42A). A constant check 

on the motor speed was carried out during the experiments. 

At high tension, the yarn tends to slip over the surface of 

the driving rollers. The yarn was, therefore, wound around the rollers 

as shown in Fig. 4.5. 

4.1.9 The yarn suction unit 

The yarn after passing over the test apparatus was removed by 

using an air suction device. It included 0.33 HP, AC motor driving a 

suction fan. Between the suction unit and driving motor, a yarn trap 

was placed in a container, which allowed only air to pass through a hose 

to the fan. The capacity of the fan was 0.15 m3/min. 
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yarn pressure roller 

i-h - 

to suc 

1-11 

sr 

FIG. 4.5: The yarn path over the yarn pulley 
roller unit 
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4.2 Yarn used in the experiments and twist insertion 

Yarn from two types of material was used. 30 tex acrylic 

worsted spun yarn (fawn and blue), and 16.7 tex, 30 filament, continuous 

filament textured yarn (beige and dark brown)of Polyester. 

The different colours of each yarn were doubled and twisted 

for different ranges of twist from 50 to 1000 t/m. 

The higher levels of twist were inserted by a Volkmann two-for- 

one machine whilst the lower level (under 100 t/m) was carried out 

by the universal ring twisting machine. 

Initially, sufficient information concerning the universal 

ring twisting machine was not available to facilitate, for example, the 

setting up of the spindle speed and the yarn delivery speed. This 

caused, difficulty in achieving the required twist. The twist was, 

therefore, set up by trial and error, changing the gears of the yarn 

delivery until the appropriate combination was found. This in 
N1N3 

accordance with the expression NXN= turns/cm. Figure 4.6 shows 
2u 

the gear layout; the N's are the gear wheel teeth numbers of the ring 

twister. 

Because of the significant twist variation occurring in the 

ring-twisted yarn and due to other variations produced by the rewinding 

of the twisted yarn from the spool of the ring twister onto cone, 

where the yarn passes over several guides under tension, the twist 

distribution through the yarn may vary. Such yarn was rejected. 

In order to minimise this problem a larger traveller than 

normal was used in ring twisting so that twist blockage at the 
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N3 

N_ .ý 

Ný = 38 
N2 = 601 

N3 = 44 

N4 = 72J 

N2 

FIG. 4.6: Schematic diagram of the gear 
layout 
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traveller was reduced. In addition, yarn was tested straight from 

the ring twister spool and there was no rewinding. Plate 4.5 

shows the two types of traveller. The first type (No. 19 steel 

21/32" RR) is the common type for this yarn count. The second one 

(No. 6 steel 21/32" RR) was used in the research. The radius of the 

curvature of the second type is nearly four times that of the first. 

In addition an attempt was made to use a plastic traveller (Temlon) 

of the same diameter because this is lighter than the steel traveller. 

Unfortunately, the twist regularity through the yarn was again found 

to be poor. This may be attributed to the high coefficient of friction 

between the Temlon traveller and the yarn. The traveller was tending 

to push the twist back along the yarn i. e. to cause twist blockage. 

4.3 Yarn testing technique 

4.3.1 Method of twist testing 

The commonly used methods of twist measurement rely on taking 

samples and untwisting until the twist practically reaches a zero 

level as indicated by the parallelism of the yarn components or fibres. 

To overcome the possibility of losing a few turns during the 

taking of the sample and transferring it to a twist tester, an ideal 

method could be where no untwisting is involved or where there is no 

other possibility of influencing twist by, for example, changes in 

parameters such as yarn tension. There are two possibilities: 

Firstly, the optical method, not involving any physical 

operation on the yarn for twist estimation. The twist in the yarn 

(Ny) may be expressed in terms of the twist angle ä as: 
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PLATE X4.5 

Types of traveller used 

321 

1. No. 19 steel 21/32" RR 

2. No. 6 steel 21/32" RR 

3. No. 6 Temlon 21/3211 RR 
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Ny = tann/ADy 

where Dy is the yarn diameter. 

If the twist angle ä is measured together with the corresponding 

diameter of the yarn with the help of an optical microscope, the 

absolute yarn twist may easily be calculated without actually 

untwisting the yarn. The main difficulty is in estimating the true 

twist angle and true yarn diameter. 

Secondly, samples can be taken directly from the yarn under 

test and mounted on glass slides with the help of adhesive tape 

such as Sellotape. The twist can be measured by means of a travelling 

microscope. 

The second method was adopted as being simpler and more 

accurate. 

A glass slide of 10 cm length was chosen, two black lines, 

8 cm apart being drawn on the slide. Two pieces of Sellotape were 

partially fixed on the slide beyond the 8 cm marking. The slide was 

placed in contact with the yarn and the sample fixed by pressing the 

Sellotape into place. The slide with the sample was then cut away 

from the threadline. The slides were mounted on a travelling micro- 

scope. The number of turns between the black lines was observed and 

the twist in turns/metre was calculated. 

4.3.2 Number of samples 

The sample size was calculated to give a precision of the 

mean of the test results of 4-5% at a probability of 95% using the 

relation [86] 
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U=0.154 02 

where U is the number of test specimens, and 0 the coefficient of 

variation of individual test results. 10 to 40 slides were 

prepared for each of the yarn samples according to this equation. 

The standard error also was observed to be not more than 3 t/m. 

4.4 Tension measurement 

The effect of tension on twist blockage during yarn processing 

has been a major point of attention of many investigators. 

Because of the importance of this parameter and its depend- 

encies such as frictional drag between the yarn and the contact surface, 

an accurate and reliable method for its measurement was very necessary. 

In the present experiments, the ingoing tension (Ti) and the 

outgoing tension (To) were measured with two separate transducer heads, 

one for Ti and the other for To, of a Rothschild Tensiometer (R-T) 

coupled with a Micro-Processor Volt meter (MPV). 

4.4.1 The measuring head (H) 

The measuring head (Rothschild type R-1095) illustrated in 

Plate 4. lmakes direct contact with the yarn. A central measuring pin 

and two yarn guides on either side of it protrude from one end, and 

a plug-type connection with the Rothschild indicator from the other end. 

The angle of wrap of yarn around the measuring pin is equal to 300 and 

the maximum deflection of its pin is 0.1 mm. The deflection of the 

centre pin is detected through a differential capacitor. Two different 

measuring heads were available which cover a total measuring range 

from 0-to-100 gf and from 0-to-400 gf. These have responses up to 
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300 and 200 Hertz respectively. 

When the measuring head is placed in the yarn path it is 

necessary to make sure that the path of the incoming and outgoing 

yarn is exactly in the same line otherwise the tension measurement 

may be affected. 

It was observed that the values of measurements changed 

slightly with time, and to obtain a precise reading it was necessary 

to calibrate the indicator meter (Rothschild device) regularly. 

4.4.2 The indicator apparatus (R-T) 

The Rothschild type R-1192 yarn tension indicator was designed 

in such a way that the most important control buttons and indicator 

units are on its front panel. This apparatus was used for direct 

indication of the measured yarn tension values in gram force. These 

measured values can be integrated for the desired times in seconds. 

This facility was not used, however, but a non-integrated signal was 

fed to the MPV for further processing, thus taking maximum 

advantage of the sensitivity of the MPV. The measured yarn tension 

values may be indicated on three different ranges, so that the reading 

on the apparatus scale corresponding to either the nominal value, half 

or the one-quarter of the measured tension may be shown. This yarn 

tension indicator was used as a useful part in the electronic yarn 

tensiometer device and was a means of transferring the input signal 

from the transducer to the MPV. This also gave a useful indication 

of tension level enabling the Rothschild output to be adjusted before 

making a permanent recording by means of the MPV. 
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4.4.3 The microprocessor voltmeter 

The MPV is able to make conventional [87] measurements and 

display them at the time of processing, or measurements may be 

recalled at the end of a run. The three programs used were as 

follows: 

1. Program 1 multiply A =E X 

where A= measurement, E= constant and X the value of the voltage 

transmitted to the MPV by the transducer head. 

Each measurement is multiplied by a constant (E) which is 

inserted into the instrument through the keyboard. A different value 

of e is required when the transducer head is changed. 

To enter the constant (E) into the MPV, the indicator of the 

Rothschild device is first set at say Ag tension, using either the 

zero adjustment of the function command unit or of the Rothschild. 

A display reading (B) will appear on the MPV. Thence E =-!. This 

ratio is then entered into the MPV. The resultant reading displayed 

is then equal to A=EX. 

2. Program 7 statistics 

This program has 5 options, option 101 display each measure- 

went, option 1 the average value, 2 the variance, 3 the standard 

deviation and option 4 root mean square deviation. 

Option 1 was used, but at the end of any run, other options 

can be recalled from the memory of the MPV. 

3. Program 9 time 

The MPV brings all measurement and processing under a 

comprehensive time control through the action of an internal clock. 
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The program has two options; option '0' was used to display 

at intervals of one minute. 

The average of 300 observations were displayed each minute 

and this provided one measurement. The process was repeated five 

times and the average calculated. 

4.4.4 Simultaneous tension measurement 

As previously indicated, in order to study the effect of 

tension and friction around a guide on twist blockage, a simultaneous 

reading of Ti and To is required. Difficulties in achieving this 

could be attributed to the following: 

1. Friction is generated by the tension transducer head at the input 

side of the threadline, which increases the value of the outgoing 

tension measurement by up to 30 9f. 

2. The MPV has only one channel and thus can measure only one of the 

two tension values. 

3. Owing to the different sensitivities of the head transducers, it 

is necessary to calibrate the indicator and change the insertion 

constant (E) of the MPV. 

Because of these difficulties it was decided to build an 

electronic circuit (function command circuit) which operated with the 

Rothschild (R-T) and MPV to achieve the required function. 

A schematic diagram for the measuring system is shown in 

Fig. 4.7 and Fig. 4.8. 
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4.4.5 Function command circuit 

As pointed out (Appendix I) the friction drag'(F) over the 

guide can be obtained from the tension difference (i. e. F= To-Ti) 

and the coefficient of friction (K) can be calculated from the 

logarithmic ratio of To and Ti, thus, the basic purpose of the function 

command circuit is to display the difference between two input signals 

as well as the logarithm of their ratio. The circuit consists of two 

parts. The first part consists of three similar ICs op-amps of type 

LM308. The first two of them take their input signals from the two 

head transducers'(H1 and H2), while the third is fed by the previous 

ICs. The output signal is connected to the input of Rothschild 

indicator (R-T) channel 1, via a diode (to isolate any negative signal 

that may exist) Fig. 4.7. 

The output response of this part is the difference between the 

input-tension and the output-tension (i. e. frictional drag over the 

contact surface) displayed on the MPV. 

The second part is a log-amplifier IC of type LM0094 which 

has been constructed to generate the logarithmic value of the ratio 

of the above two input signals. Scaling resistors are added to the 

output as shown in Fig. 4.8. 

As a matter of fact, the sensitivity difference between the 

two heads causes a practical problem of zero error, it was essential, 

therefore, to provide the circuit with a zero adjustment facility. This 

is achieved by shunting the amplifiers IC 1 and 2 by a suitable 

resistance R9. 

Because of the inclusion of the modified circuit, the meter 

of the Rothschild Tensiometer was deviated from the zero position. 
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H1 

H2 

R1 = 10 KA C1 =1 pf 

R2 = 100 Kn H1 and H2 = head 
transducer 

R3 = 1.0 Kn 
R-T = Rothschild 

R = 100 Kf2 4 tensiometer 
R = 150 Kn 5 MPV = Microprocessor 
R6 = 100 Kn voltmeter 

R7 = 100 KR 

R8 = 100 KS) 

R9 = 10 Kit 

FIG. 4.7: Electronic circuit diagram of 
friction unit 

R6 R5 R7 

+15 -15 V 
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FIG. 4.8: Electronic circuit diagram for 

measuring the coefficient of 
friction 

R1 - 4.397 KA for 0= 300 

R2 - 2.199 KA for 0= 600 

R - 1.466 K0 for 0= 900 
3 

R4 - 1.099 Kn for 0= 1200 

R5 - 0.8795 KA for 0 = 1509 

R6 - 0.732 Kfl for 0= 1800 

R - 0.45 K0 (Thermistor) 
7 

R8 -6.9 K0 

R9 - 10 KR 

R10 -1 K0 

H1 and H2 - Head transducer 

R-T - Rothschild tensiometer 

MPV - Micro-processor voltameter 

IC1 - LH 0094 

IC2 - LM 308 

C-1 pf 

R11 - 100 Ki! 

R12-250 K0 
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To remedy this, variable resistance (RU) and potentiometer 

(R5) were added. R 4is to control the signal response of the Rothschild 

indicator, while R5 acts as a zero adjustment for the system (Fig. 4.7), 

R12 for the system of Fig. 4.8. 

4.4.6 Power supply 

The power supply required for the operation of the function 

command circuit is shown in Fig. 4.9. An AC line voltage of 240 volt 

is supplied to a step-down power transformer. The output of the power 

transformer is applied to a full wave rectifier bridge type (261-328) 

and smoothed by condenser C1 and C2. To ensure more stable DC supplier, 

a voltage regulator IC LM325 was used. The output voltage of the 

regulator is ±15 VDC. 

4.4.7 Circuit operation 

The procedure of operating this circuit was as follows: 

1. After a proper adjustment of both Rothschild and MPV, the initial 

tension can be measured with a single head. 

2. By using two heads (H1 and H2) at a time, the difference between the 

simultaneous measurement of Ti and To which is the frictional force 

(F), can be obtained. 

3. As stated above, the frictional force F= To-Ti, thus the outgoing 

tension (To) can be deducted by the sum of F and Ti. 

1. After selecting the required angle of wrap (0) according to the 

scaling output resistance (Fig. 4.8), the simultaneous measurements 

of the coefficient of friction can be achieved by the aid of the 

logarithmic Op. Amp. 
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IC1 - LM 325 

IC2 - Rectifier bridge (261-328) 

Cý -1 pf 
c2 - 0.1 µf 

1 

FIG. 4.9: Power supply unit 

240 v 
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4.5 Simultaneous measurement of the coefficient 

.. f` f'-4-+4^n 

Ti, To and the angle of wrap are related exponentially with 

the coefficient of friction (K) as follows [88,89]: 

To KA Thus K=e 1n T e 
i1i 

R 11 -ry where K=m 
TiJ 

The coefficient of friction can be measured under three sets 

of conditions in which a different parameter is varied. 

1. Guide radius (R) and the angle of wrap (0) constant whilst input 

tension (Ti) is varied. 

2. R and Ti are constant while (0) is varied. 

3.0 and Ti are constant while R is varied. 

In the present investigation, the coefficient of friction 

was measured in accordance with the variables of the experiment, i. e. 

since most experiments involved variation of Ti and 0, methods (1) and 

(2) were used. These measurements are reported where appropriate. 
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CHAPTER 5 

EXPERIMENTAL OBSERVATION OF 

TWIST BLOCKAGE 
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5.1 Outline of the experimental work 

This section is intended to prepare the reader for the 

following two chapters in which experimental results are presented. 

In order that the results are presented in a logical 

sequence such that their full implications can be understood, they 

are given here in a different order to that in which they were 

obtained. Chapter 5 deals with the variables considered most likely 

to affect twist blockage in terms of the three parameters: pressure, 

length of one turn of twist and length of contact region. 

Based on the observations, different mechanisms are postulated 

and various interpretations are suggested and discussed. 

" The yarn used in the experiments described here was acrylic 

30x2 tex worsted with ring spun Z twist singles doubled with S twist. 

Six levels of low doubling twist were used from 50 t/m to 1000 t/m. 

Experiments were carried out using five different yarn guides of 

diameter 0.2 to 1.0 cm. 

There was a limited supply of the acrylic yarn first 

used. 

For this reason, this yarn has been used solely to examine 

the effects of twist on twist blockage rather than the effects of 

other less basic parameters such as pressure, are of contact etc. 

Chapter 6 examines the effect of the orientation of the 

direction of the yarn movement over the contact surface on the basis 

of the mechanisms postulated in the previous chapter. 

A continuous filament textured polyester yarn 16.7 tex singles 

was used as two flat singles doubled with different levels of twist. 

The singles also were twisted with S or Z twist up to 600 t/m, and 
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doubled with relatively low twist (up to 70 t/m) S and Z. In other 

words, yarns with S. S and Z. Z singles are doubled S or Z to obtain 

a total of four combinations of yarn twist direction at various twist 

levels i. e. (0+0)+S, (0+0)+Z, (S+S)+S, (S+S)+Z, (Z+Z)+S and (Z+Z)+Z. 

The guide diameter used in this chapter was 0.4 cm. 

From these results several conclusions are drawn and further 

explanations of the twist blockage phenomenon are proposed. 

5.2 Preliminary investigation 

Before examining the parameters affecting twist blockage it 

was considered desirable to check the effects of the length of the 

zone in which the blocked twist was to be accumulated. Although in 

certain industrial processes where twist blockage is important (such 

as the Repco process [13] and in ring twisting [7] it is known that 

the length of this zone has a considerable effect on twist levels; 

intuitively one would not expect this to be true here. In these 

other processes there is some intermediate factor which determines the 

effect of zone length: twist sharing in the case of the self-twist 

process and balloon tension in the case of ring twisting. 

5.3 Effect of length of yarn before contact 

surface on twist blockage 

As has been explained in Chapter 4, the yarn guide (G) of the 

apparatus can move up and down while the low friction pulleys (P2 and 

P3) on either side of the guide can move in curves centred at the 

guide (G). 
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However, the yarn path may be lengthened or shortened 

according to the desired wrap angle (i. e. the length between the 

pulleys and yarn guide). 

This length may vary between 10 to 25 cm, and the higher the 

angle of wrap the longer the length before the guide. 

A yarn of low twist (50 t/m) was used in order to more 

effectively demonstrate the influence of this factor. The angle of 

wrap was 1700 with a guide diameter 1.0 cm. The initial tension was 

75 gf. 

The length of yarn before and after the guide was the same. 

5.3.1 Observations 

Visual observation of yarn twist before and after the guide 

showed that the development of twist blockage had two phases. 

Initially the nominal twist before and after the guide is the same, 

then the yarn begins to rotate around its axis in such a way that 

the twist increases before the guide and decreases after the guide. 

This is due to the development of false-twist in the yarn and will 

continue until a maximum twist congestion is achieved. At this stage 

some of the congested twist before the guide may suddenly escape to 

give a reduced twist gain, i. e. the difference between the nominal 

twists before and after the guide. Twist again begins to build up 

to a new (but lower) maximum and the process is repeated. It was this 

lower blocked-twist level which was used here. 

In addition to this observation, it may be mentioned that 

during the experiments, the twist immediately after the guide was less 

than the original twist in the yarn. This was particularly noticeable 
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when the twist blockage was greatest and when a high degree of 

flattening of yarn on the guide had occurred. As the yarn moved 

away from the guide its original twist gradually recovered; except 

at fairly low twist, the yarn leaves the contact surface with a 

periodical accumulated twist i. e. it moves in surges. 

5.3.2 Results 

The results of experiments on the effects of zone lengths are 

reported in Table 5.1 and shown graphically in Fig. 5.1. Taking into 

account the errors in the observation, it will be seen that the twist 

blockage is not greatly influenced by the length of the zone. At most, 

an increase of 7% was observed with a doubling of the length (Y). 

The scatter in the points may be attributed to twist 

irregularity in the supply yarn or to the tension device which itself 

caused twist blockage in the yarn. In addition, the tension fluctuation 

also has a great influence on twist blockage behaviour. 

From the above results, it may be considered that the 

investigation of the variation of the angle of wrap and the other 

parameters would not be significantly influenced by the small variation 

of yarn length before the guide which occurred when these parameters 

were changed. 

5.4 Effect of angle of wrap on twist blockage 

5.4.1 Experiments and results 

Eleven angles of wrap were employed ranging from 100 to 1800. 

A twist level of 116 t/m (measured twist) has been used with a1 cm 

diameter yarn guide. Table 5.2 shows the results obtained and Fig. 5.2 
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TABLE 5.1 

YN 

12.5 125.0 

14.5 132.5 

16.5 135.0 

18.5 132.5 
20.5 132.0 

22.5 140.0 

Y= yarn length before guide'surface (cm) 
N= twist gain (t/m) 
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FIG. 5.1: Effect of yarn length before the 
guide surface on twist gain 
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TABLE 5.2 

0N 

10 23 

20 19 

30 17 

40 19 
50 13 

60 10 

80 25 
100 9 

120 9 

140 2 

180 10 

6ý = angle of wrap 
N twist gain (t/m) 



109 

FIG. 5.2: Effect of angle of wrap on twist gain, N, at 
constant initial tension and guide diameter 
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illustrates the effect of angle of wrap (0) vs twist gain (N) when 

this is a maximum i. e. just before escape. It will be seen that the 

twist gain decreases as the angle of wrap increases. The twist gain 

dropped until an angle of wrap of 800 is reached; above this angle 

of wrap the rate of decrease of twist gain is reduced. 

It was also observed that the apparent rate of yarn rotation 

before the guide is higher than that, in the opposite sense, after it. 

This is particularly noticeable when the angle of wrap is small, i. e. 

when the twist blockage is greatest and is in accordance with false 

twist theory. It was also observed that at small angles of wrap 

the yarn tends to be more flattened over the contact region, until a 

significant twist congestion has been reached. As the twist before 

the guide builds up, the yarn attempts to rotate over the contact region 

in order to move the accumulated twist forward with the yarn. But 

such a movement does not occur until a sufficient twist and associated 

torque have been developed. At the same time, the yarn will have 

become rounder and more compact because of the binding effect of the 

twist. 

5.4.2 Discussion 

The low yarn speed used in the experiment made it possible to 

observe the characteristic behaviour of the twist over the contact 

region clearly. It also provided the opportunity to observe the yarn 

twist helices during the pushing back of twist in the opposite 

direction to the yarn movement. This facilitated the taking of 

samples at the optimum (maximum) twist congestion. 
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It was surprising, however, that at large angles of wrap, 

the difference between the twist before and after the guide became 

insignificant, in other words, the twist congestion was minimal. 

The graph shows a consistent trend in that the points are 

rather scattered. Actually this feature may be attributed to external 

factors which are difficult to control, such as the initial twist 

variation in the yarn itself, or the twist disturbance occurring prior 

to the contact region due to the tension device and other yarn contact 

points upstream of the guide. 

However, a similar relation between twist gain and angle of 

wrap was reported by Chan [52]. He suggested that decrease of twist 

gain with the angle of wrap is due to decrease of the yarn tension in 

front of the guide. 

Chan, however, used a positive feed system, so his conditions 

were different in this respect to those in the present experiments. 

Chan's interpretation may be related to release of the stresses imposed 

on the yarn during twist build up in front of the guide. 

On the other hand, the above observations are at variance 

with the reported observation by The Shirley Institute [40], in which 

twist. accumulation was reported always to increase with increase of the 

angle of wrap. 

The decrease in twist blockage with increase of angle of wrap 

is difficult to explain, but the following factors will influence the 

twist gain: 

1. The bending induced in the yarn around the guide will change with 

angle of wrap and this would be expected to influence the yarn 

contact length and frictional force as well as the pressure. 
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2. As contact length increases, the greater the number of turns of 

twist in contact with the guide surface. This may also influence 

the magnitude of the normal force at the contact points over the 

contact region (see page 186). 

It is not possible to state with certainty that any one of the 

bending angle, the length of arc of contact or the pressure distribution 

is the main source of this unexpected behaviour. 

It is considered helpful to start with a study of the 

apparently more complex relationships between the pressure, length of 

arc of contact and yarn twist. The reason for this will become clear 

later in the investigation. 

5.5 The relation between the twist, tension 

and pressure 

In order to investigate the relation between the tension 

and pressure, on the twist congestion, all five guides were used. 

Using each of the guides, twist blockage tests were carried 

out using a yarn twist of 211 t/m. The initial tension was set at 

20,40,60 and 80 gf, but the angle of wrap was kept constant at 900 

for each of the guides. Thus, the state of contact between the yarn and 

the guides changes as both guide diameter and the initial tension change. 

Four levels of initial pressure (Pi) were thus investigated for'each 

of the five guides, where the pressure here depends on two factors, 

initial tension (Ti) and guide diameter (D). 

It was again observed that the yarn rotates around its axis 

in front of the guide especially when the tension is high and with a 

small guide diameter. 
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The tendency to push the twist back was, therefore, higher 

with small diameter guides than with those of large diameter [40,52]. 

5.5.1 Effect of initial pressure with variable guide 

diameter at various levels of initial tension 

Table 5.3 shows the relation between the initial pressure 
T 

(Pi =R) and twist gain and these results are plotted in Fig. 5.3. 

In this graph the pressure is varying according to the variation of the 

guide diameter with approximately constant initial tension (Ti). It 

was demonstrated in this experiment that the highest twist blockage was 

caused by the small diameter guide (0.2 cm), with a maximum initial 

tension. 

Approximately 50% of the twist was blocked and pushed back 

under these conditions. On the other hand, at the same initial tension 

with a large diameter guide (1.0 cm), the twist gain was found to be 

approximately only 7% of the nominal twist. 

The relationships between initial pressure, Pi, and twist 

blockage, N, appears to be roughly linear in most cases and to be 

independent of any other factors. This is shown in Table 5.4 where 

the linear regression equations between the initial pressure and the 

twist gain along with the values of the coefficient of correlation at 

given levels of initial tension, confirm the above observation. It 

should be borne in mind, of course, that although the regression 

equations show a small negative intercept on the N axis, the true curve 

must pass through (0,0) because twist gain will be zero at zero pressure. 
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TABLE 5.3: Effect of initial pressure, Pi, on twist blockage 

with respect to initial tension, Ti, 

and guide diameter, D 

T1 20 40 60 80 

D Pi N Pi N Pi N Pi N 

0.2' 200.0 28.6 400.0 67.5 600.0 80.0 800.0 105.6 

0.4 100.0 13.4 200.0 31.6 300.0 40.0 400.0 57.0 

0.6 66.6 4.5 133.3 13.0 200.0 20.0 266.7 27.6 

0.8 50.0 2.4 100.0 6.0 150.0 12.0 200.0 19.6 

1.0 40.0 2.5 80.0 5.0 120.0 7.4 160.0 19.0 

D= guide diameter (cm) 

Ti= initial tension (gf) 

P initial pressure (gf/cm) 

N= twist gain (t/m) 
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FIG 5.3: Effect of initial pressure on twist gain 
at various levels of initial tension 
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5.5.2 Effect of initial pressure with variable initial 

tension at various guide diameters 

It is now necessary to examine the effect of pressure on 

twist blockage behaviour when the pressure was changed by varying the 

initial tension. Figure 5.4 shows the same results as were plotted 

in Fig. 5.3 except that the twist blockage is plotted against the 

initial pressure for constant guide diameter conditions. In this case 

the points appear to lie in two groups. The first group are those 

relating to the 0.2 and 0.4 cm guides, the second group relate to the 

guides of 0.6,0.8 and 1.0 cm diameter. It can be seen from this 

graph that the first group (i. e. the two smaller diameters) introduce 

the most significant twist blockage behaviour whilst for the other 

group the contribution of twist gain appears to be roughly 30% less 

over the pressure range up to 300 gf/cm. 

It can be concluded, therefore, from the combined results, 

Figs. 5.3 and 5.4, that the main factor causing blockage in this 

experiment was pressure, but there is some evidence that there may be 

an independent contribution from guide diameter, the blockage 

increasing as diameter is reduced. 

Table 5.5 shows the linear regression equations between the 

twist gain (N) and initial pressure (Pi) along with the values of 

coefficient of correlation for the various guide diameters (D). The 

gradients in these equations do not appear to show the grouping of the 

results mentioned above. 

However, as the lines must once again pass through the origin, 

the validity of these regressions may be questioned. 
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FIG. 5.4: Effect of initial pressure on twist blockage 
at various guide diameters 
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TABLE 5.4 

Initial Coefficient of tension Linear regression equations 
correlation 0 

Ti 

20 N=0.17 Pi - 5.33 0.993 

40 N=0.20 Pi - 12.18 0.996 

60 N=0.15 Pi - 9.73 0.997 

80 N=0.14 Pi - 5.80 0.993 

N= twist gain (t/m) 

Pi = initial pressure (gf/cm) 

TABLE 5.5 

Guide 
Coefficient of diameter Linear regression equations 
Coefficient oy D (cm) 

0.2 N=0.122 Pi + 9.6 0.980 

0.4 N=0.140 Pi + 0.7 0.990 

0.6 N=0.144 Pi - 2.8 0.999 

0.8 N=0.155 Pi - 4.4 0.988 

1.0 N=0.130 Pi - 4.5 0.920 
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The combined effect of the input tension Ti and the variation 

of the guide diameter is demonstrated by the three dimensional repres- 

entation of Fig. 5.5. 
Ti 

The dotted lines are contours of equal initial pressure R 

The three dimensional representation confirms that the highest twist 

gain occurs at the highest pressure as derived from the highest tension 

and the smallest guide. It is also evident that guide diameter plays 

a more significant role than tension. 

Turning now to a general consideration of these results; it 

has been pointed out above that the relation between pressure and twist 

gain appears to be fairly linear but must pass through the origin. If 

straight lines are fitted to the points of Figs. 5.3 and 5.4, taking 

into account the following equation derived from Fig. 5.3 

N= 0.080 Pi for 20 gf initial tension 

N= 0.096 Pi 40 ++ ++ ++ 

N= 0.083 Pi 60 ++ ++ ++ 

N= 0.090 P1 80 ++ ++ ++ 

from Fig. 5.4 

N=0.147 Pi for guic 

N=0.148 Pi ºº ºº 

N=0.102 Pi ºº ºº 

N=0.083 Pi it it 

N= 0.088 Pi ºº ºº 

These equations have been used 

Tables 5.6 and 5.7 and plotted in Figs. 

le diameter 0.2 cm 

of 0.4 cm 

to 0.6 cm 

0.8 cm 

it 1 .0 cm 

to calculate the data again in 

5.6 and 5.7. 
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FIG. 5.5: Effect of input tension and the variation 
of guide diameter 

[The dotted lines are contours of equal initial pressure] 
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TABLE 5.6: Effect of initial tension on twist 

blockage at various initial pressures 

N 

Ti p1 50 100 150 200 300 

20 4. o 8.0 12.0 16.0 24.0 

40 5.0 9.6 14.0 19.0 29.0 

60 4.0 8.3 12.5 17.0 25.0 

80 4.5 8.3 12.5 17.0 27.0 

TABLE 5.7: Effect of guide diameter on twist 

blockage at various initial pressures 

N 

D 
Pi 50 100 150 200 300 

0.2 7.1 14.7 22.0 29.4 44.0 

0.4 7.4 14.8 22.0 29.6 44.4 

0.6 5.1 10.0 15.3 20.0 30.5 

0.8 4.2 8.3 12.5 16.7 (25.0) 

1.0 4.4 8.8 13.0 (17.6) (26.4) 

N= twist gain (t/m) 
Pi= initial pressure (gf/cm) 

Ti= initial tension (gf) 

D= guide diameter (cm) 

Figures in brackets have been calculated from an extrapolation 
outside the range of observation. 



122 

5.5.3 Effect of initial tension at various levels 

of initial pressure 

It can be seen from Fig. 5.6 that although the initial tension 

increases by a factor of four at constant initial pressure, there is 

no significant independent influence of tension on twist blockage. In 

other words at constant pressure twist blockage seems to be more or less 

constant with varying ingoing tension. Perhaps this is because both 

the couple generating twist blockage and the torque resisting the 

resulting increase in yarn twist both depend on tension in the same 

way. 

5.5.4 Effect of guide diameter on twist blockage 

at various levels of initial pressure 

It can be seen from Fig. 5.7 that the twist blockage decreases 

as the guide diameter increases. It is also clear that the reduction 

in twist gain is not a steady reduction but that there is a rapid 

change between guide diameters of 0.4 and 0.6 cm, the gain in each case 

being about 50% less with guides above 0.6 cm in diameter, than with 

the smaller guides. This confirms the grouping observed in Fig. 5.4. 

In the light of the results of the twist blockage experiments 

and with the aid of the regression analysis, the following general 

conclusions may be drawn: 

1. The relation between initial pressure and twist gain is substantially 

linear and the initial tension (with varied guide diameter) had only 

a minor influence. 

2. Although the pressure appears to be the dominant factor, there is 

some evidence that the guide diameter had some independent influence 
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FIG. 5.6: Effect of initial tension on twist gain 
at various levels of initial pressure, Pi 
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FIG. 5.7: Effect of guide diameter on twist blockage 
at various levels of initial pressure 
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on twist blockage at any given value of initial pressure. 

3. In the present experiment, the length of arc of contact increased 

as the guide diameter increased as the angle of wrap was constant. 

It is possible, therefore, that the independent effect of guide 

diameter may be due to the relation between the arc of contact and 

features of the yarn structure such as the length of one turn of 

twist. 

In the present experiment, it is not possible to make a 

complete interpretation of the effect of the guide diameters on the 

twist blockage behaviour, since the pressure and arc of contact are 

also both dependent on the guide diameter. 

It is, therefore, necessary to investigate the effects of 

each of the pressure, and length of are of contact separately. 

5.6 Relation between the are of contact and twist blockage 

The influence of are of contact (S) on twist blockage 

behaviour has not directly attracted the attention of previous investig- 

ators. They have examined the effect of angle of wrap (0) or guide 

diameter (2R) as separate factors. The length of are of contact (S = R6) 

is, in fact, a function of these two variables and can be changed by 

altering one or both of them. As suggested in the previous section, it 

is possible that the length of contact could have some influence on 

blockage through its relationship with the twist geometry of the yarn. 

An experiment was, therefore, carried out using, as previously, the five 

guides of different diameters with six different angles of wrap 30,60, 

90,120,150 and 1800; each of the angles of wrap and guide diameters 

being combined in turn. 
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Any given set of values of arc of contact (S) could, there- 

fore, be achieved in two different ways: firstly with a constant 

angle of wrap (0) and varying guide diameter (2R), and secondly with 

a constant guide diameter and a varying angle of wrap. 

The experiment was carried out at a constant initial pressure 

of 200 gf/cm . In order to achieve the constant initial pressure, the 

yarn initial tension, 20 gf for guide diameter 0.2 cm, was varied 

proportionally with the guide diameter. The yarn twist was 120 t/m(S) 

(0.83 cm/turn). 

5.6.1 Observations 

It was first observed that with small arcs of contact and 

small guide diameters, e. g. with a guide diameter 0.2 cm and angle of 

wrap 300, the yarn had a fairly high rate of rotation around its axis 

in front of the guide. On the other hand, the yarn rotation after the 

guide was negligible. 

It was again found that the direction of rotation was dependent 

upon the direction of the twist caused by blockage in the yarn, the 

rotation of the present yarn was in the S-twist direction. 

A most interesting observation was that the speed of the 

rotation of the yarn decreased as the length of the contact region 

increased. Also the rate of rotation appears greater at thin places 

than at thick places. An observation, surprising at first sight, was 

that the rate of rotation before the guide appeared greater at the 

beginning of the yarn running than when the yarn had been running for 

a while. Presumably this observation was made during the period of 

build-up of blocked twist. The results are shown in Table 5.8. 
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TABLE 5.8 

DgS Ti N 

0.2 30 0.05 20 77.0 
60 0.11 72.0 
90 0.16 72.0 

120 0.21 64.5 

150 0.26 67.5 
180 0.32 5.7 

0.4 30 0.11 40 76.0 
60 0.21 59.0 
90 0.32 59.5 

120 0.42 58.0 
150 0.52 56.7 
180 0.63 56.0 

0.6 30 0.16 60 71.3 
60 0.32 53.0 
90 0.47 52.0 

120 0.63 55.6 
150 0.79 48.6 
180 0.94 50.0 

0.8 30 0.21 80 61.5 
60 0.42 51.0 
90 0.63 52.0 

120 0.84 51.0 
150 1.10 46.7 
180 1.30 52.0 

1.0 30 0.26 100 60.0 
60 0.50 54.0 
90 0.79 53.0 

120 1.10 62.0 
150 1.30 41.6 
180 1.60 55.0 

D= guide diameter (cm) 

e° = angle of wrap 

S= length of arc of contact (cm) 

Ti = initial tension (gf) 

N= twist gain (t/m) 
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5.6.2 Arc of contact and twist blockage at various 

angles of wrap 

Figure 5.8 shows plots of twist gain N at constant initial 

pressure against are of contact, when the are of contact was adjusted 

by varying guide diameter, for different levels of angles of wrap. 

It may be observed that a rapid reduction in blocked twist occurred 

for smaller lengths of arc of contact up to 0.4 cm. Any further 

increase above this length, gives rise to much smaller reduction in 

twist blockage. 

5.6.3 Effect of arc of contact at various 

guide diameters 

In this case the are of contact was adjusted by changing 

angle of wrap at constant guide diameter. The results of the measure- 

ments are shown in Fig. 5.9. The graph is drawn in terms of twist gain 

against length of are of contact. As observed previously, it can be 

seen that, as, the length of arc of contact increases, the twist gain 

decreases. 

There is also some indication that, the smaller the guide 

diameter, the higher the twist gain. In fact these findings are in good 

agreement with the earlier observation [52] that the larger guide 

diameters (at constant initial pressure) give the lower twist gain. 

Generally, in both cases (i. e. constant angle of wrap or guide 

diameter), the outstanding observation is that, at short arcs of contact, 

the twist blockage is initially at a high level of more than 60% of 

nominal twist, but decreases rapidly until at an arc of contact of 

roughly O. 1 cm, it is at a level of approximately 40% of the initial 
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FIG. 5.8: Effect of are of contact at various 
angles of wrap (9 ) 
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FIG. 5.9: Effect of are of contact at various 
guide diameters 
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twist. The rate of decrease of blockage with further increase of 

length of contact is then much reduced and even with arcs as long as 

1.0 cm, the average blockage is not significantly less than 40% of 

supply twist. The scatter of results when the are length was varied 

by changing diameter was greater than those plotted with constant 

diameters and varying angles of wrap. 

However, the significance of the point at which the twist 

blockage curves flatten is a major matter of interest. It seems not 

impossible that this point may be determined by the relation between 

the length of one turn of twist in the yarn and the contact length. 

In fact 0.4 cm represents approximately the length of one-half turn of 

nominal twist. 

From a consideration of the mechanics of the system, one might 

expect the yarn to rotate less freely on the guide surface when contact 

length was less than half the twist length, because under these 

conditions, the yarn could be more effectively flattened. 

It should be remembered that, in all these experiments there 

was a considerable oscillation of build-up and escape of blocked twist 

and in each case the observations were of the maximum twist congestion. 

It may be concluded that at constant initial pressure, the 

twist gain decreases as the length of arc of contact increases. Any 

increase of length of are of contact above the length of one turn leads 

to no significant further reduction in twist gain. 

5.6)4 Conclusions 

It was found that under a constant initial pressure there is 

a significant indication that the twist gain may be governed by 
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interaction between twist of the yarn and the guide surface so that 

when more than one-half turn of twist is in contact with the guide, 

so that two or more high spots of the yarn (due to twist cross-over) 

generally support the yarn on the surface, the twist-blocking torque 

generated in the yarn is reduced. Increase of contact length will then 

have less influence on blockage. 

Previous experiments have examined the effect of contact 

pressure, but in these earlier experiments the contact length also 

varied. It would therefore be of interest to examine the effect of 

pressure with constant arc of contact, before carrying out further 

studies of the effect of contact length. 

In any event it is clear that the relationship between contact 

length and twist length merits further examination. 

5.7 Effect of pressure 

Earlier observations have shown that pressure has a considerable 

influence on twist blockage behaviour. In fact Subramanian et al [24] 

reported that the contact pressure between yarn and traveller or 

thread guide in ring spinning determines the resistance to the flow of 

twist across them. The Shirley Institute [40] also emphasised that at 

the same angle of wrap and initial tension, a small diameter guide 

displaces much more twist than a large one because it generates a 

higher pressure. Our earlier experiments have in general confirmed 

these observations, although there is some doubt whether the initial 

pressure, the mean pressure, or the final (maximum) pressure has the 

most influence on twist blockage. 
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5.7.1 Effect of initial pressure 

It is reasonable initially to examine the effect of the 

initial pressure (Pi), although it is recognised that other pressures, 

such as mean or final pressure, will be dependent on initial pressure. 
T 

In investigating the effect of initial pressure 
R 

on twist 

blockage, at constant arc of contact, it was hoped that the experiments 

could be carried out with a constant initial tension (Ti) using the 

guide diameters as in the earlier experiments. However, a sufficiently 

wide range of pressure could not be obtained with this restriction and, 

in order to allow a wider range of pressures, it was necessary to vary 

both guide diameter and initial tension. 

The trials were carried out for four different arcs of contact 

)f 0.26,0.63,0.84 and 1.0 cm respectively. As a result of using the 

°'Lve guide diameters, it was necessary, of course, to vary the angle 

of wrap in order to maintain a constant arc of contact. The yarn twist 

was 120 t/m, i. e. with a length of one turn of 0.83 cm. 

Table 5.9 gives the requisite angles of wrap corresponding 

to the stated guide diameters. The table shows also the four lengths 

of arc of contact in addition to the values of the initial tension from 

10 to 75 gf. The measured outgoing tension (To) is also reported. 

In Fig. 5.10 it will be seen that the twist gain rises steadily 

as initial pressure (Pi) increases, but the rate of increase of*twist 

gain (N) due to increase in the initial pressure is different for each 

of the four lengths of the arc of contact. The smallest are of contact 

gives higher values of twist gain. The most interesting observation in 

contrast to the earlier experiments is that there is no sudden large 

increase in twist gain when the length of one-half turn is less than the 
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TABLE 5.9 

D 6 S Ti T 
0 

0.2 150.0 15 24.0 
0.2 150.0 10 14.4 
0.4 75.0 25 30.0 
0.4 75.0 0.26 10 12.5 
0.6 50.0 20 23.5 
0.6 50.0 10 12.0 
0.8 37.5 10 16.0 
1.0 30.0 20 22.3 
1.0 30.0 10 11.5 

0.2 360.0 15 41.5 
0.2 360.0 10 25.0 
0.4 180.0 25 43.0 
0.4 180.0 0.63 10 16.5 
0.6 120.0 20 28.3 
0.6 120.0 10 13.5 
0.8 90.0 10 13.5 
1.0 72.2 20 24.0 
1.0 72.2 10 12.5 

0.4 240.0 20 41.0 
0.4 240.0 10 16.0 
0.6 160.5 45 75.0 
0.6 160.5 0.83 20 31.0 
0.6 160.5 10 15.0 
0.8 120.0 50 70.0 
0.8 120.0 10 21.5 
1.0 96.0 20 25.5 
1.0 96.0 10 11.8 

0.4 286.5 20 40.0 
0.4 286.5 10 20.5 

0.6 191.0 20 32.0 
0.8 143.0 1.00 50 86.0 
0.8 143.0 10 18.0 
1.0 115.0 75 120.0 
1.0 115.0 10 14.5 

D= guide diameter (cm) 

00= angle of wrap 

S= length of arc of contact (cm) 

Ti = initial tension (gf) 

T0= outgoing tension (gf) 
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FIG. 5.10: Effect of initial pressure on twist gain 
at various lengths of arc of contact 
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length of the are of contact. On the other hand, in agreement with 

earlier results, twist gain decreases as arc of contact increases. 

A surprising visual observation of the behaviour of the 

twisted yarn over the contact region is that, when the yarn had an 

angle of wrap 3600 or more, using a 0.2 cm guide, the behaviour of the 

yarn was different from its behaviour at smaller angles of wrap. 

Figure 5.11 A, B shows the expected position of the yarn over 

the guide surface for angles less than or equal to 3600 respectively, 

whilst Fig. 5.11 C, D shows the observed behaviour of the yarn at a 

3600 angle of wrap, depending on whether the incoming yarn was behind 

or in front of the outgoing yarn. 

It may be suggested that this deflection of the yarn path in 

the direction of the guide axis is due to the rolling of the yarn on the 

guide surface complicated by the effect of the yarn rolling on itself. 

An associated observation was reported [3] in relation to investigations 

of the wear of textile guide materials, in which it was found that the 

wear direction is directly dependent upon the direction of the yarn 

twist insertion (S or Z). In addition, the importance of the direction 

of threading of false-twist spindles in the texturing process is well 

known. 

5.7.1.1 Discussion 

In the experiments described in section 5.5.2, that as the 

initial tension increased, the twist congestion increased; but the 

twist blockage also depended on guide radius. 

The possibility has to be considered that blockage may be 

dependent on mean pressure (Pm) or final pressure (Pf) rather than 



137 

FIG. 5.11: Yarn behaviour over a contact surface 
at 3600 angle of wrap 
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initial pressure (Pi). The final tension (To) will of course depend 

on the angle of wrap which in turn depends on length of arc of 

contact and guide radius. 
T. 

The average and final pressure at constant value of 
IR 

varies, therefore, with angle of wrap, and the tension variation over the 

guide surface also has to be considered. 

5.7.2 Effect of mean and final pressure 

What interests us now is the relation between pressure and 

angle of wrap for given values of R and Ti, where the tension 

distribution along the contact surface is expressed by equation 8, 

Appendix I, where K, the coefficient of friction, may or may not be 

constant. As this is an exponential relation it cannot be expected 

that the relation between twist blockage and mean or final pressure 

will be linear as it was in the case of initial pressure. 

In order to calculate the mean and final pressures, it was 

necessary to investigate the dependence of coefficient of friction upon 

pressure. The coefficient of friction was, therefore, measured for 

every guide diameter and angle of wrap at the initial tension as shown 

in Table 5.10. 

The mean pressure (Pm) is calculated by substitution in 

equation 9, Appendix I, with the assumption that the angle (0) of the 

frictional force relative to the yarn axis is assumed to be zero. 

Assumption was made on the basis that the value of the friction angle 

does not have a major influence on the tension ratio over the guide 

and thus mean pressure is primarily dependent on input tension. 
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It is instructive to calculate the values of Pm by using 

the measured values of K over the contact surface. 
T 

On the basis of the above, the final pressure Pf =R 

also is calculated from To, the outgoing tension, and the guide 

radius R. The corresponding values of Pm and Pf are shown in Table 

5.10, in comparison with the values of the initial pressure, P. 

Figure 5.12 shows the relationship between the twist gain, 

N, and the mean pressure, Pm, and Fig. 5.13 shows the relation between 

twist gain and final pressure. 

It is interesting to compare the curves when the initial 

pressure, the mean pressure and the final pressure are used. 

The maximum initial pressure for all arcs of contact is 

150 gf/cm, but at the same initial tension and angle of wrap, the 

maximum mean pressure and final pressure are 260 and 415 gf/cm 

respectively. 

Figure 5.14 compares the effect on twist blockage of the three 

values of pressure at an are of contact equal to 0.63 cm. 

The curves are displaced somewhat along the pressure axis, 

but in other respects they show similar relationships with blockage. 

5.7.3 Conclusions 

It is quite clear from Figs. 5.11-5.14 that the twist gain is 

not uniquely determined by either the initial pressure, the mean 

pressure or even the final pressure, though as might be expected, there 

is a more rapid increase of twist gain with increase of initial pressure 

than with either of the mean and final pressures. 

It was clear, however, from visual observations that the twist 
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TABLE 5.10 

S K Pi PM PF N 

0.26 0.176 150.0 191.5 240.0 61.0 
0.139 125.0 127.6 144.0 52.2 
0.139 100.0 141.0 150.0 47.0 
0.185 66.7 56.4 62.5 34.4 
0.170 50.0 72.0 78.3 27.0 
0.200 40.0 42.0 44.5 26.4 
0.300 33.3 36.6 40.0 26.0 
0.270 25.0 32.0 44.5 27.0 
0.267 20.0 21.5 23.0 12.0 

0.63 0.162 150.0 260.0 415.0 54.0 
0.146 125.0 163.0 242.5 46.0 
0.173 100.0 166.0 215.0 35.6 
0.159 66.7 65.0 82.5 32.5 
0.496 50.0 59.0 94.0 26.0 
0.143 40.0 39.0 45.0 23.0 
0.144 33.3 29.0 34.0 23.0 
0.176 25.0 44.0 45.0 22.5 
0.177 20.0 22.4 15.0 15.0 

0.83 0.180 150.0 195.0 250.0 44.0 
0.160 125.0 149.0 175.0 39.0 
0.171 100.0 146.0 205.0 35.0 
0.156 66.7 83.7 103.0 28.0 
0.112 50.0 64.0 80.0 24.5 
0.145 40.0 45.0 51.0 26.0 
0.145 33.3 41.0 50.0 19.0 
0.360 25.0 37.6 54.0 19.4 
0.100 20.0 22.0 23.5 14.0 

1.00 0.234 150.0 192.0 240.0 36.0 
0.217 125.0 166.0 215.0 26.0 
0.138 100.0 144.0 200.0 28.0 
0.141 66.7 85.0 107.0 23.0 
0.143 50.0 73.0 102.5 21.0 
0.236 25.0 34.0 45.0 17.0 
0.185 20.0 24.0 29.0 8. '5 

S= length of are of contact (cm) 

K= coefficient of friction 

Pi = initial pressure (gf/cm) 

PM = mean pressure (gf/cm) 

PF = final pressure(gf/cm) 

N= twist gain (t/m) 
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FIG. 5.12: Effect of the mean pressure on twist gain 
at various levels of length of arc of 
contact (S) 
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FIG. 5.13: Effect of the final pressure on twist 
gain at various levels of length of are 
of contact (S) 
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FIG. 5.14: Effect of three levels of pressure (initial 
final, mean) on twist gain at constant length 
of arc of contact (0.63 cm) 

N= 120 (t/m) 
0 

60 

50 

40 

z 

bO 3a 

2C 

1( 

(ßf /cm) 

Levels of pressure (gf/cm) 

0 50 100 150 200 250 300 350 400 450 

P 



144 

blockage was generated at the front region of the contact surface 

rather than at the middle or the end region. 

In spite of this, it is not considered adequate to use only 

the initial pressure in investigating the pressure/blockage relation- 

ship as for a given input tension, initial pressure takes no account 

of angle of wrap. For this reason and because it takes into account 

the effect of yarn/surface coefficient of friction and the effect of 

length of arc of contact, S, the mean pressure is preferred as a 

parameter to be considered. It should also be remembered that there is 

evidence that the twist blockage over a contact region is also consider- 

ably influenced by the length of contact region on the one hand, and the 

length of one turn of twist on the other. 

In the experiments reported so far, investigating the 

relation between twist geometry and length of contact, the former has 

been kept constant and the latter varied. To test the hypothesis 

presented above in explanation of the results, it will be of interest 

to observe the effect of keeping the contact geometry fixed whilst 

varying the twist of the yarn. 

5.8 Effect of length of one turn 

Following the previous experiments, it was pointed out that 

among the testing parameters, the length of one turn interrelated with 

the length of the are of contact may affect the characteristic 

behaviour of twist congestion. 

Unfortunately, no previous study of this variable has been 

carried out from which it was possible to know whether this may be 

a significant factor or not. 
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In this experiment, investigation of the effect of the 

length of one turn is, therefore considered. 

Five yarns of different twists were used viz. 50,120, 

192,392 and 584 t/m. 

As yarns of different twist may behave differently over 

the contact region where their frictional properties are concerned 

[36,90] it was necessary to measure the coefficient of friction 

corresponding to the different yarn twists. In addition, the friction 

coefficient is itself likely to affect the magnitude of the pressure. 

Because of this, the initial tension required to maintain pressure 

constant also might change. 

As a compromise, the mean of the five values of the friction 

coefficient of the yarn, Table 5.11, was used. It was calculated 

that the tension change required to take account of the variation of 

K on either side of the mean was negligible, about ±0.01%. 

In any event, as has been mentioned [36], none of the 

available tension devices is capable of maintaining a uniform tension 

throughout the wide range of variation in the required input tension. 

It was decided, therefore, to keep the initial tension the same for 

the five yarns except where it was necessary to change tension to 

keep pressure constant as guide diameter changed. Three arcs of 

contact, 0.21,0.42 and 0.63 cm, were used with a constant angle of 

wrap 120° and using three guides of diameters 0.2,0.4 and 0.6 cm. 

For a constant mean pressure of 476 gf/cm, the initial tension 

was 40,80 and 120 gf for each of the above guide diameters 

respectively. 
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TABLE 5.11 

Length of 
one turn 2 0.83 0.474 0.26 0.17 
(cm/turn) 

Nominal 
twist 50 120 192 392 584 
(t/m) 

K* 0.15 0.19 0.152 0.143 0.166 

*The mean value of coefficient of friction 

K=0.16 
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5.8.1 Results 

It was observed that a higher value of twist blockage 

occurred when the length of one turn was long (low twist) and, as would 

be expected, the rotation of the yarn before the guide also increases. 

Because, in these circumstances, the incoming twist is low, a long time 

is required for the twist before the guide to build up to a level 

where it will escape over the surface. Conversely, higher twist yarn 

reaches a maximum blocking twist more rapidly. 

Twist blockage behaviour due to variation of length of one 

turn is recorded in Table 5.12. Using these results, graphs, 5.15, 

5.16 and 5.17 were produced. Examining Fig. 5.15 shows that the 

twist gain, N, increases as the length of one turn increases, whilst, 

as the arc of contact increases, it decreases. 

It is clearly demonstrated in this graph that the twist 

blockage is considerably influenced by a relationship between the 

length of are of contact S and length of one turn, Lo. Roughly the 

same gain is achieved when the length of one half-turn is the same as 

the are of contact. This is supported by Fig. 5.16, which shows a 

quite good linear relationship between the input twist, No, and twist 

gain, N. The corresponding linear regression equations are as 

follows: 

N= 97.95-0.096 No (1) 

N= 82.40-0.098 No (2) 

N= 71.00-0.094 No (3) 

giving the value of coefficient of correlation t_0.992,0.95 and 

0.99 for the arcs of contact s=0.21,0.42 and 0.63 cm respectively. 

t 
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TABLE 5.12 

Length of 
S-0.21 S=0.42 S=0.63 

Twist one turn 
(t/m) (cm) NNN 

50 2.00 95.0 88.0 70.0 

120 0.83 87.5 65.0 57.0 

192 0.52 75.0 59.0 50.0 

392 0.26 62.0 42.0 36.0 

584 0.17 42.0 29.0 16.0 

S= length of are of contact (cm) 

N= twist gain (t/m) 

Iz 
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FIG. 5.15: Effect of length of one turn of input yarn 
twist on twist gain at various levels of 
length of arc of contact (S) 
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FIG. 5.16: Effect of input twist on twist gain at 
various levels of length of are of 
contact 
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It is obvious that the negative sign indicates that as the 

input twist, No, increases, the twist gain, N, decreases. It would 

be unwise, however, to conclude that these lines can be extrapolated 

outside the range of observation. 

In particular there may be a rapid increase in N as No is 

reduced below 50 t/m. It can be said, however, that the amount of 

false-twist or the twist accumulated in front of the contact region 

can be as high as roughly 200% of the nominal yarn twist. Because of 

this high twist, supported by observation, it may be postulated that 

the yarn was moving over the contact region under the conditions of 

a flattened mechanism in which the twist is completely pushed back in 

front of the yarn guide. This maximum blockage in fact occurred at 

an input twist of 50 t/m with a fairly low length of arc of contact 

(0.21 cm). 

As previously, this mechanism continued until the twist reached 

a level at which it could transfer over the contact region. The process 

was then repeated. 

At this stage the way in which twist blockage is defined is of 

some interest and importance. Some previous investigators [62,63] 

always defined the amount of twist gain (false-twist) either as the 

difference between the accumulated twist before the contact surface, 

NB, and the nominal twist, No, or between the theoretical machine- 

inserted twist as in the O-E spinning process [21,231 and the measured 

twist, rather than taking the twist difference before(NB)and after 

(NA)the contact region. It is desirable to show the difference between 

the two methods of estimating twist gain. These are shown below. In 
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addition, the ratio (Q) between length of one turn of nominal twist, 

Lo, and length of arc of contact, S, is of interest. The three parameters 

are defined as follows: 

NB_NA 

1- NA 

NB-N0 

NI 2 
0 

L0 Qmm/ 
QS 

The observed relationships between Q and Al, A2 are shown in 

Table 5.13 and graphically illustrated in Fig. 5.17. 

A scattered relationship was found between Q and A1 and A2. 

However, the graph demonstrates that as Q increases, the percentage 

twist gain, A1 and A2, increases. The corresponding equations of 

linear regression for AI and A2 are: 

e1 = 29.7 Q+0.26 

n2 = 20.4 Q+1.32 

giving a good correlation of coefficient 0.913 and 0.882 for e, and A2 

respectively. The representation shows that there is a significant 

difference in magnitude of twist gain between the method of calculation 

used in the present investigation (i. e. Aj) and the method used by 

previous investigators (i. e. A2). 

It is obvious that at the same Q ratio, there is roughly a 30% 

difference between A, and 42 due to the twist after the guide being 
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TABLE 5.13 

Q N0 NB NA N A1 A2 

9.50 50 134.0 39.0 95.0 243.6 168.0 

4.80 50 127.0 39.0 88.0 225.6 154.0 

4.00 120 187.5 100.0 87.5 87.5 56.3 

3.20 50 116.0 46.0 70.0 152.2 132.0 

2.50 192 237.5 162.5 75.0 46.2 23.7 

2.00 120 168.0 101.0 67.0 66.3 40.0 

1.34 120 164.0 107.0 57.0 53.3 36.7 

1.24 392 450.0 387.5 62.5 16.0 15.0 

1.24 192 225.0 166.0 59.0 35.5 17.2 

0.83 192 220.0 170.0 50.0 29.4 14.6 

0.81 584 650.0 609.0 41.0 6.7 11.3 

0.62 392 425.0 383.0 42.0 11.0 8.4 

0.41 584 625.0 596.0 29.0 5.0 7.0 

0.41 392 417.5 390.0 38.5 7.0 6.5 

0.27 584 621.0 605.0 16.0 2.6 6.3 

Q= ratio between length of one turn of twist and length 
of are of contact 

N= nominal twist (t/m) 
0 

NB = twist before the contact surface (t/m) 

NA = twist after the contact surface (t/m) 

N= twist gain (=NB-NA)(t/m) 

A1 = percentage twist gain relative to twist after the 
contact surface 

A2 = percentage twist gain relative to the nominal twist 
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FIG. 5.17: Relation between twist gain (N) and the 
ratio of length of one turn of nominal 
yarn twist (Lo) and length of the contact 

region (S) 
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less than the nominal, in conditions of oscillating false-twist 

generation. 

However, when this effect is viewed in terms of the amount of 

twist gain (N) instead of (A) as shown in the graph, a quite different 

picture emerges. It may be seen that twist gain (N) is significantly 

dependent on Q when Q is small. For Q ratio of 2 or less, corresponding 

to a twist of 120 t/m, a rapid increase of twist gain occurs. Further 

increase of Q gives a much reduced rate of increase of N. 

5.8.2 Discussion 

It may be concluded from the results and graphical representations 

that the twist blockage behaviour is considerably influenced by the ratio 

of the length of one turn and the length of the contact region. A 

reasonably highly correlated relationship between the % twist blockage 
L 

and the ratio S confirms this belief. 

The behaviour of the twisted yarn over the contact region has, 

therefore, been clarified. to some extent. This study has confirmed the 

earlier finding that the twist blockage characteristic is not only 

significantly dependent on the length of one turn (yarn twist) but also 

is related to the length of arc of contact. Thus a detailed study in which 

length of arc of contact is a variable under constant mean pressure could 

provide an even more complete interpretation of the general conclusion 

reached earlier. 

The effect of frictional force and normal force arising 

from the physical interaction between the contact surface and the 

points of contact over the contact region can also be examined. Such 

experiments would depend to some extent upon different levels of 

angles of wrap. It is, therefore, necessary first to examine the 
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influence of the angle of wrap on twist blockage, taking into account 

the mean pressure and factors on which it depends. 

5.9 Effect of angle of wrap at constant mean 

pressure and arc of contact 

The experiments were set up at three levels of are of contact 

(S = R6) namely 0.15,0.22 and 0.32 cm at a constant mean pressure 

roughly equal to 500 gf/cm. 

Five different angles of wrap with the five guide diameters 

were used according to the length of arc of contact. In addition, to 

sustain the same mean value of pressure over the contact surface, the 

initial tension, Ti, was varied depending on both the guide diameter 

and the measured coefficient of friction (friction index n=0.991 

and friction coefficient m=0.151). Initial tension 40 gf with 

guide diameter 0.2 cm was chosen with a corresponding are of contact 

0.32 cm. 

The same yarn as in previous experiments, with twist 50 t/m, 

was used. Table 5.14 demonstrates these inter-related values and 

results are listed in Table 5.15. 

5.9.1 Results 

Figure 5.18 illustrates the effect of angle of wrap (6) on 

the twist gain (N) for the three levels of are of contact. It may 

be observed that the twist gain is not significantly changed with 

change of angle of wrap. 

As previously, any scatter of points may be attributed to the 

twist irregularity of the yarn or the input tension variation which 
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TABLE 5.14 

S R 0 Ti 

0.32 0.1 180.0 40 

0.2 90.0 90 

0.3 60.0 140 

0.4 45.0 190 

0.5 36.0 245 

0.22 0.1 125.0 43 

0.2 62.5 90 

0.3 41.7 140 

0.4 31.3 190 
0.5 25.0 245 

0.15 0.1 75.0 40 

0.2 37.5 90 
0.3 25.0 140 

0.4 18.8 190 

0.5 15.0 245 

S= length of are of contact (cm) 

R= guide radius (cm) 

9= angle of wrap (degrees) 

Ti = initial tension (gf) 

Multi-coefficient of friction = 0.143 

or= ,i 
yý 

. 

EU 
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TABLE 5.15 

-Arc of 
=0.32 S cm S2=0.22 cm S =0.15 cm 

crct 1 3 

R 0 F N 8 FN 0 F N 

0.1 180 22.7 80.5 125.0 14.8 92.0 75.0 8.3 92.0 

0.2 90 20.2 84.8 62.5 13.7 100.5 37.5 8.0 106.0 

0.3 60 19.2 80.0 41.7 13.3 82.0 25.0 7.8 89.5 

0.4 45 19.0 82.3 31.3 13.0 85.0 18.8 7.7 100.0 
0.5 36 19.0 75.0 25.0 13.0 81.0 15.0 7.7 89.5 

R= guide radiu s (cm) 

e= angle of wr ap (degrees) 

F= frictional force (gf) 

N= twist gain (t/m) 
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FIG. 5.18: Effect of angle of wrap on twist gain 
at various levels of length of arc 
of contact 
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was difficult to control. In addition, there may have been some 

variation in the surface characteristics of the guides. 

The observation of a roughly constant twist blockage at different 

angles of wrap may be due to the fact that in each case the length of 

the are of contact and mean pressure were unchanged, thus again confirming 

the prime dependence of blockage on these factors. 

5.9.2 Effect of frictional force over the 

contact region 

The magnitude of the frictional drag, calculated from tension 

change in the present experiment, is tabulated in Table 5.15. Figure 

5.19 represents the magnitude of the frictional force at the three 

levels of arc of contact at different angles of wrap. 

It is clearly seen that at constant are of contact the 

frictional force is roughly constant, but it changes its level when 

the contact angle is changed. 

It should be borne in mind that earlier observations have 

shown that twist blockage decreases as length of arc of contact increases, 

the input tension being constant. Under these conditions, frictional 

force would increase as length of contact increases. It appears, 

paradoxically, therefore, that twist blockage decreases as frictional 

force increases. This relationship between frictional force and twist 

blockage will be discussed more fully later. 

5.9.3 Conclusions 

Earlier investigations of the effect of angle of wrap have 

widely shown that the twist blockage is highly influenced by this 

parameter. In this respect the present investigation has produced 
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FIG. 5.19: Measured values of frictional force 
over the length of arc of contact at 
different angles of wrap 
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results which contradict those of earlier investigators [28,62,63]. 

In fact these earlier investigations were carried out under 

conditions of constant initial tension with very small guide diameters 

(i. e. with small length of contact) neglecting the change of pressure 

distribution over the contact region and the increase of the length 

of arc of contact caused by an increase of the angle of wrap. On the 

other hand, Chan [521 kept the final tension constant under the 

conditions where mean pressure over the contact region is reduced (due 

to a reduction of the initial tension) as the angle of wrap is increased; 

nevertheless, his observations were in agreement with our results. 

Generally, as has been indicated, the angle of wrap has no 

significant independent influence on twist blockage in the conditions 

of the present experiments. 

5.10 Effect of length of contact at constant 

mean pressure 

As discussed in section 5.7.3, it was considered that mean 

pressure over the guide surface rather than initial pressure should be 

used as a relevant parameter. This seems reasonable because it takes 

account of coefficient of friction as well as initial tension, guide 

diameter, and angle of wrap. 

In the present experiment, the same yarn with a twist level 

of 120 t/m and the usual guides were used as in the previous 

experiments, using wrap angles over the range 30 to 1800 in 300 steps. 

By this means, thirty different values of are of contact could be 

achieved. 
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The experiment was carried out at constant mean pressure 

equal to 208, gf/cm at different lengths of arc of contact (S). The 

variation of arc of contact was set either by altering the angle of 

wrap (0) or by changing the guide diameter (D). The mean pressure will, 

of course, change as a result of changing either 0 or D. The initial 

tension, Ti, was, therefore, changed in order to achieve a constant 

mean pressure, when D was varied. 

As Howell's formula was adopted, and since the multi- 

coefficient of friction (m. c. f. ) is a function of the ratio of the 

initial tension (Ti) and guide diameter (D) (Appendix I) 

Kcm R11-n 
TiJ 

The magnitude of K will remain constant as long as the ratio T is 

i 
unchanged. However, a change in Ti alone causes a change of the 

value of K. It was, therefore, difficult to adjust the initial tension 

to keep the mean pressure constant since the m. c. f. is not constant 

and is dependent on Ti. 

A small computer program was written to calculate the value 

of Ti to, compensate for the alteration of the angle of wrap. 

In an experiment to determine the mean value of the m. c. f. 

and, in turn, the friction coefficient, m, of the guide and the friction 

index, n, of the yarn, it was found that m and n are equal to 0.17 and 

0.97 respectively. 

The following values were chosen 

Initial tension Ti = 20 gf at guide diameter D=0.2 cm 

mean pressure = 208 gf /cm. 
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Table 5.16 shows the values of the initial tension used 

with the different angles of wrap. The table illustrates also the 

different arcs of contact (S) corresponding to the varied guide 

diameters, D. For guides of other diameters, the initial tension, Ti, 
D1 Ti1 

was calculated from the relation D Ti as shown in Fig. 5.20. 
22 

Referring to the above table, it is very obvious that the 

change in Ti due to changes in 0 is not very great; less than 5% for 

each 300 change in wrap angle. Obviously, the tension fluctuation 

may be greater than the required tension adjustment over the whole 

range from 30 0 to 180° wrap angle. This is especially true at a 

guide diameter of 0.2 cm where the total tension changes are relatively 

small. However, two options are available: 

1. To neglect the change of Ti due to the change of 0 or 

2. To attempt to make the small adjustment in average Ti required 

to compensate for altering 0. 

This is possible by using the M. P. V. where this device gives 

an accurate measurement of mean tension (see Chapter 4, section 4.4). 

The second option was, therefore, adopted. 

5.10.1 Results 

The results of the twist blockage experiments are shown in 

Table 5.16 and plotted in Fig. 5.21. 

A highly significant relationship is found between are of 

contact, S, and twist gain, N, where increase of arc of contact causes 

the twist gain to decrease irrespective of guide diameter. It is seen 

that the twist gain, N, is higher with very short length of S, but 

decreases rapidly as S is increased until at a length of approximately 
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TABLE 5.16 

DgS Ti 

0.2 30 
60 
90 

120 
150 
180 

0.05 
0.11 
0.16 
0.21 
0.26 
0.32 

20.0 
19.0 
18.6 
18.0 
17.0 
16.5 

0.4 30 0.11 40.0 
60 0.21 38.6 
90 0.32 37.0 

120 0.42 36.0 
150 0.52 34.0 
180 0.63 31.0 

0.6 30 0.16 60.0 
60 0.32 58.0 
90 0.47 55.6 

120 0.63 53.6 
150 0.79 51.5 
180 0.94 49.5 

0.8 30 0.21 80.0 
60 0.42 77.0 
90 0.63 74.0 

120 0.84 71.0 
150 1.10 68.4 
180 1.30 66.0 

1.0 30 0.26 100.0 
60 0.52 96.5 
90 0.79 93.0 

120 1.10 89.0 
150 1.30 86.0 
180 1.60 82.5 

D= guide diameter (cm) 
e= angle of wrap (degrees) 
S= length of are of contact (cm) 
Ti = initial tension (gf) 

Multi-coefficient of friction = 0.119 
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FIG. 5.20: Calculated values of initial tension 
dependent on the variation of angle of 
wrap for various guide diameters (D) 
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FIG. 5.21: Effect of contact length on the twist 
gain at constant mean pressure 
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0.4 cm, the rate of decrease of twist gain is much reduced. Of course, 

it is recognised that an anomoly occurs with zero are ofcontact 

taking into account the pre-condition of the experiment of constant 

pressure. Once again it may be significant that the change in slope 

of the curve occurs when S is roughly the length of one-half turn 

of the original yarn twist. 

The impression has been gained from these results that two 

mechanisms could contribute to the twist gain depending on the length 

of contact. 

The first mechanism is a flattening mechanism which applies 

when the length, S, is less than the length of one-half turn of 

nominal twist, No. 

It would be expected that the second mechanism (rotating 

mechanism) would apply when S is greater than one-half turn. This 

mechanism could arise from the friction generated by the orientation of 

the twisted yarn components relative to the direction of the movement. 

At this point the twist gain is reduced to approximately 20% of the 

maximum. 

It is evident that the rotating mechanism is thus capable 

of sustaining a much lower level of twist gain than the flattening 

mechanism. As discussed previously, this is because a greater torque 

can be generated when the yarn lies on the guide surface in a flattened 

condition, with the guide lying in a valley between two twist cross- 

overs of the yarn. When the contact length is increased, this 

condition is no longer possible, the yarn can rotate on the guide 

surface more freely, and the couple generating twist blockage becomes 

more dependent on yarn/guide frictional force. 
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However, there will not be a sudden transition from one 

mechanism to the other. 

5.10.2 Effect of angle of wrap and guide radius 

It is possible to show the combined influence of the variation 

of angle of wrap 0 and guide diameter, 2R, on the twist gain, N, in 

a three dimensional diagram as in Fig. 5.22. The three axes of the 

graph, 0,2R and N clearly show the effect of the two independent 

parameters on the twist gain. 

As observed previously, it is apparent that an increase of 

the angle of wrap gives rise to a decrease in the twist gain. Similarly, 

the twist gain decreases as the guide radius increases. The effect 

of any combination of R and 0 can easily be read from the graph. The 

effect of length of arc of contact S=R. 0 can also be illustrated by 

contours of equal values of S drawn on the surface (Fig. 5.23). These 

contours confirm the view that for constant pressure over a constant 

are of contact the twist gain remains roughly constant. 

However, though a relatively small angle of wrap over a very 

fine guide might contribute a very small are of contact, this condition 

might flatten the yarn and thus generate a very significant blockage 

of twist. It seems, therefore, a theoretical discontinuity may exist 

when the arc of contact is zero. 

However, the observational evidence has shown that the blocked 

twist is not capable of transferring over the contact region steadily, 

but, with either the flattening or rotating mechanism, reaches a 

maximum congestion level before escaping over the guide. This escape 

occurs more readily when there is one or more points of twist cross- 

over in contact with the guide surface. 
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For the purpose of justifying this latest assumption, the 

number of points of twist cross-over over the contact surface at the 

time of escape of blocked twist, should be examined. 

Unfortunately, because of the small lengths of arcs of 

contact (0.05-1.6 cm), it was very difficult to measure this, and 

impossible when the twist is fairly low. 

Trommer. [53] has estimated this factor by assuming that the 

twist over the contact zone is the sum of the nominal twist and twist 

gain. This gives the impression that the twist over the contact zone 

is less than the nominal twist. Although he measured this parameter, 

nevertheless, he did not mention the technique under which the 

experiment was carried out. 

Such cases, i. e. lower twist over the contact zone than the 

nominal twist, can only occur when a yarn with a fairly low twist is 

moving over a very short contact region: bearing in mind that, in the 

post contact zone, (at the equilibrium condition), the twist should be 

the same as the nominal twist of the original yarn. 

Generally, it would be expected that the twist over the 

contact zone would have an intermediate value between the value of the 

twists of pre- and post-contact zones. 

It was only possible, however, to consider that the accumulated 

twist before the contact zone at the time of escape is the twist existing 

over the contact region. In other words, the twist builds up until it 

reaches a level where the number of turns over the contact zone increases, 

and as a consequence the blocking torque reduces. The yarn torque in 

the blocked region then becomes greater than what is required to overcome 

the blocking torque, thus causing the yarn to rotate and the twist to escape. 
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In order to explain the effect of the number of points of 

contact (x factor), it is necessary to clarify the relationship 

between this factor, the pressure of the points of contact and the 

forces which may be generated to cause or prevent rotation. 

5.11 Effect of forces causing yarn rotation and 

yarn behaviour over the contact surface 

As reported in section 5.7.1, it was observed experimentally 

that the yarn is displaced from its central position over the guide 

surface to an equilibrium position as illustrated in Fig. 5.11. 

Observations of displacement are useful in determining the probable 

mechanism of twist blockage. Obviously, it is of interest to investigate 

whether the yarn is displaced due to a rolling effect or as a result of 

the interaction of the surface roughness of the guide with the yarn 

surface ridges. 

Experiments based on pulling a twisted yarn under constant 

load in two directions of movement over the contact surface have been 

carried out. The same yarn was used as in previous experiments, with 

different levels of twist: 0,200,400,600 and 1000 t/m with yarn of 

both S and Z twist, using the pulleys of the test apparatus to maintain 

the yarn path in the same plane. The yarn was dragged manually over 

the steel guide. 

The yarn could have been tensioned using a disc or hysteresis 

tensioner as in the main experiments, but, in this case, in order to 

minimise tension fluctuations, it was convenient to tension the yarn 

by a suspended weight of the required magnitude. The guide surface 

was cleaned carefully and using a marker pen, a mark was drawn on the 
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guide surface. This mark was rubbed off by the yarn and the extent 

of the yarn displacement could thus be clearly seen and could be 

measured by a vernier gauge. 

A guide of 0.4 cm diameter was used in this experiment with 

different levels of mean pressure of 14,72 and 147 g /cm (initial 

tension of 2,10,20 g at constant length of contact S=0.63 cm 

(angle of wrap 180 0 ). A second set of experiments was performed 

under mean pressure of 12,61 and 122 g /cm (initial tension of 2, 

10 and 20 g) at a constant length of are of contact 0.314 cm (angle 

of wrap 900). 

A total of 24 experiments were carried out. 

Figure 5.24 shows the displacement of the yarn over the 

contact surface. The arrows show the direction of the displacement 

corresponding to the type of twist (S and Z) and yarn movement 

direction (forward or backward). The mean value of four readings for 

each test was taken. 

Each table or graph recording the sets of experimental 

results indicates that the magnitude of yarn displacement for either 

S or Z twist is the same though in the opposite direction. Yarn of 

zero twist gave no displacement, and this was used to determine the 

zero line of measurement. 

5.11.1 Results 

Table 5.17 shows the data of the input twist (No) and the 

yarn displacement at various values of initial tension for the two 

arcs of contact. 
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FIG. 5.24: Yarn displacement over the contact surface 
at different directions of twist and yarn 
movement 

l*-190 mm- i 
$ twist ---ýi --- -- -- ý, Z-- 

Arrows indicate yarn direction 
movement and rotation 

V0= angle of displacement 

v--ý $ twist 

Z twist `--_-_ `^ 

Z twist 
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TABLE 5.17 

Displacement (mm) 

Are of contact Are of contact 
Input 6.3 (mm) 3.14 (mm) 
twist 
(t/m) Initial tension (gf) Initial tension (gf) 

2 10 20 2 10 20 

1000 7.60 4.35 4.35 4.55 3.35 2.10 

600 3.85 2.80 2.20 3.25 2.35 1.80 

400 3.30 1.95 1.95 3.60 2.40 1.25 

200 2.95 1.60 1.45 2.75 2.10 0.80 

00.0 000000 

Distance between pulleys and yarn guide = 190 mm 
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Figures 5.25 and 5.26 illustrate the relation. It will be 

seen that as the input twist increases, the displacement of the yarn 

over the contact surface increases. In addition, the higher the 

tension (mean pressure), the smaller the displacement. 

Figures 5.27,5.28 and 5.29 show the same relationship at 

an initial tension of 2,10 and 20 g respectively for the two levels 

of length of are of contact 0.3 and 0.63 cm. The values obtained in 

these graphs provide some evidence to suggest that the displacement 

of the yarn over the contact surface increases as the length of 

contact increases. It can be argued that at low levels of yarn twist 

(up to 600 t/m), the relative difference of the displacement between 

the two lengths of are of contact is not significant. After this 

level of yarn twist, some difference of displacement is observed. 

Thus it can be concluded from the relationships between the 

three parameters (twist, mean pressure and length of contact) that 

the displacement is a maximum for high twist and low yarn tension, 

probably in conjunction with a long length of contact. The pressure 

however, is itself generated by yarn tension, a component of which is 

the restoring force, which balances the lateral frictional force. 

It may be postulated that the larger number of points of 

contact round a long length of contact or with a higher twist, 

generated a greater lateral force over the surface, thus causing a 

larger yarn deflection. 

The question which arises is, what is the source of the 

forces causing yarn displacement? 
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FIG.. 5.25: Effect of input twist against yarn 
displacement at length of are of contact 
0.3 cm for various values of initial 
tension 
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FIG. 5.26: Effect of input twist against yarn displacement 
at length of arc of contact = 0.63 cm for various 
values of initial tension 
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FIG. 5.27: Effect of input twist on the yarn displacement 
at two different levels of are of contact for 
a constant initial tension (20 g) 
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FIG. 5.28: Effect of input twist on the yarn displacement 
at two different levels of are of contact for 
a constant initial tension (10 g) 

4/ 
(D / 

b 

a) 
.c/ 3 / 0 

Length of arc 
0 "0 of contact (cm) 
4) 

O 0.63 03 2 "'0 
ýe (Y " 0.3 
Cl- 
V3 
-i bo 

i. f. 
c 

N to 

0 
200 400 600 800 1000 

Input twist (t/m) 



182 

FIG. 5.29: Effect of input twist on the yarn displacement 
at two different levels of arc of contact for 
a constant initial tension (2 g) 
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5.12 Forces causing yarn displacement 

These forces will depend on the relative movement between 

the yarn and guide surface. 

Before discussing the mechanism of yarn displacement in 

connection with twist blockage it will be useful to compare two 

possible mechanisms of yarn displacement. 

The first possibility is that the yarn displacement is caused 

by a lateral frictional force generated by the helical surface 

structure of the yarn. It is postulated that, by the interaction of 

the surface asperities of the guide with the yarn surface(surface 

ridges due to twist) a lateral force can be generated. In this case, 

the total frictional force would not necessarily act in a direction 

opposite to the direction of the yarn surface movement. 

The second possibility is that the yarn displacement is 

caused by the rotation and rolling of the yarn arising from the false 

twist generated by the twist blockage i. e. due to the yarn rolling 

over the contact surface, there will be a component of relative 

velocity orthogonal to the yarn axis, and a lateral frictional force 

will operate. 

These two possibilities are illustrated in Fig. 5.3O, a 

and b. 

It is generally recognised that the direction of the yarn 

rotation over the contact surface is the same as the direction of yarn 

displacement. 

It is possible, therefore, by examining the direction of 

deflection to deduce that the second possibility is applicable to the 

present experiment. 
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FIG. 5.30: Two possible mechanisms of yarn 
displacement 
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As the second case is adopted, i. e. the yarn is rotating 

and rolling over the contact zone, two interactions have to be 

considered: 

1. The yarn has to slide axially over the contact zone in order to 

move forward, and obviously a dragging (frictional) force is 

generated. 

2. As the yarn rolls on the contact zone, it is displaced from the 

central position to an equilibrium location. As mentioned above, 

.a lateral frictional force is generated and its direction is in the 

same direction as the yarn displacement. 

The vector sum of the frictional forces determines the 

magnitude and inclination of the total force relative to the yarn 

axis. The yarn displacement over the contact surface from the central 

position is determined by the balance of this force with components 

of tension (restoring force). 

As stated earlier, the frictional force over the contact zone 

in any particular case will depend upon the twist level, tension and 

length of contact. A small length of contact is not desirable 

especially at low level of twist, as the distortion force will be 

very high, discouraging rolling, a large length of contact with a high 

level of twist will facilitate rolling. A rolling of yarn over the 

contact surface is required to facilitate the transmission of the 

blocked twist. 

f 
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5.13 Effect of number of contact points on 

reaction forces E 

Let us consider a few turns of twisted yarn in contact with 

the guide, Fig. 5.31. As the two components of the yarn cross-over 

due to the twist, they will alternately lie one on top of the other 

as at M1 and side by side as at M2. At point M1 there will be 

complete contact between yarn and guide, and reaction force, , 

will be maximum. 

At point M2 the contact force t will be probably lower 

as the points will, to some extent, be supported by the adjacent 

points M1. The degree to which this is true, of course, depends on 

the guide diameter, the arc of contact, the twist present on the 

guide surface and the resistance of the yarn components to compression. 

If no twist were present (or the length of one turn is greater 

than the length of contact region), the yarn would effectively be 

supported by a pressure (given by the ratio T/R as a local pressure) 

along its length. If the twist is present, this will be replaced by 

a number of reaction forces acting primarily around points M1. The 

greater the twist, therefore, the smaller the share of reaction force 

(contact force) borne by each point of contact. 

At first sight it seems probable that as the number of 

points of contact increases, this will facilitate the rotation and 

rolling of the yarn, allowing blocked twist to escape. However, the 

effectiveness of the forces resisting yarn rotation over the contact 

region will depend on two factors: 

1. Increase of number of points of contact (x) over the contact 

surface. 
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FIGURE 5.31 

Yarn guide 

M1 - contact points 

M2 = non-contact points 
E= load/turn 
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2. Reduction of the reaction force (contact force) dependent upon the 

increase in the points of contact, guide curvature etc. 

At the regions M2, however, the yarn components lie side 

by side and a greater couple is required to turn the yarn over, 

unless the pressure between yarn/surface is significantly lower at 

these points. This will generate a tendency for such points to slide 

axially along the yarn causing the yarn to rotate before the guide, 

thereby maintaining or increasing blocked twist. 

The twist flattened region at the input to the guide will be 

of particular interest in this respect and will be briefly considered 

in the next section. 

5.14 Relationship between twist accumulation and torque 

required to release blocked twist 

To examine the torque required to. [102] turn over the two 

components of doubled, twisted yarn moving along a contact surface,. 

consider a section of the yarn AB, Fig. 5.32, approaching and lying 

on a surface with a radius of curvature, RT, and angle of wrap-y. 

The yarn consists of two components, I and II. At A, 

component I is about to arrive on the surface and the two components 

I and II lie over each other at an angle 'V (Fig. 5.32 END). At B 

the components I and II lie side by side (as sketched in Fig. 5.32 END). 

As a result of twist accumulation, a torque is developed in the yarn 

prior to the guide surface, when this torque reaches a critical level, 

it will rotate the yarn on the contact zone, thus relieving the 

accumulation process. 
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FIG. 5.32: Schematic diagram of a twisted yarn moving 
over a surface with a radius of curvature, RT, 
and angle of wrap (Y) 
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The torque generated due to twist accumulation tends to 

riase the section AB (Fig. 5.32) of one component of the yarn against 

a couple generated by the tensile force. 

One component of the yarn, I, is tangential to the guide 

surface at A. The second component, II, is tangential at B. Yarn 

paths in the section AB cannot be constant-angle helices because of 

the requirements for the tangential approach of II. 

It is evident that, to a first approximation, the axis of 

II may be regarded as following a shortest path on the surface of a 

(distorted) toriod of major radius RT+r and minor radius 2r. This 

is determined by II wrapping around I in a helix of varying angle. 

The flattened toriod surface is sketched in Fig. 5.33. 

RT is the radius of the yarn guide while 2r is the yarn 

radius. ' is the deflection at A of one component over the other. 

The value of ' is estimated as follows: 

From Figs. 5.33,5.34 

0203 = 2rß (1) 

From Fig. 5.33 

2 
0103.0302 =0304 (2) 

0103 = 0102+0203 

= 2(RT+r) + 2r'V (3) 

Substituting in equation 2, assuming RT>>r and (r) is small. 
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FIG. 5.33: Sketch of the flattened toriod surface 
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FIG. 5.34: Yarn components cross-section over the 
contact surface showing the angle of 
deflection ' 
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2 
030 = (2RT+2rI). 2r T= R2 

2 

:" 4rRTý = 
4? 2 

T 

At the point 02 where the yarn leaves the guide surface, the 

axis of II is seen to make an angle of I with the axis of I. The 

effective instantaneous helix angle of I and II at this point may, 

therefore, be regarded as (2) approximately. 

If it is now assumed that the lateral friction on the guide 

is small and that the reaction on the surface generates a torque 

which tends to flatten the yarn at AB, then: 

Couple C resisting rotation of AB is given by the moment of the lateral 

force, Tr, around point 01, Fig. 5.34 , plus a couple MG due to the 

torsional rigidity of the yarn, thus: 

C=22 cos T. L + MC (5) 

where T is the total yarn tension. 

L is the torque lnegth (010) and equal to 

2r cos V (6) 

From equations 4 and 6 substituting in equation 5, thus: 

T+ Mý ý-2T 
[ý] ý"2r 

cos2 

For the small deflections involved, it is assumed that the torsional 

rigidity components will be small and may be ignored in the analysis. 
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Equation 7 will, therefore, become: 

C= Ti R 

The above equation can be written in the form: 

C= Ri 
[r3RT'] 

cos2Y' (9) 
T 

T 
where R represents the values of the initial pressure, Pi. 

This torque increases until the torque generated by blocked twist equals 

the torque generated by the tensile force. The maximum value of the 

twist blockage torque can be found by differentiating equation 8 with respect 

to T and equating to zero. We get: 

cost Y'1= o dd 

14, 

differentiating equation 8 gives 

2 Yý - . cos2'Y - 2YIcos T. sin 'Y =0 

which reduces to 

4 tan '=1 (1o) 
This maximum occurs at approximately T= 27.5° as in Table 5.18 ahd 

as shown graphically in Fig. 5.35. 

On the basis of this simple model, therefore, twist and torque 

would build up before the guide until sufficient torque is developed to 

generate an angle '= 300 at A. -After this value is achieved, the yarn 

flips over and loss of blocked twist commences. 

It is noted that, on the basis of this simple theory, the 

critical value of T is independent of both T and the radii r and R. 

S 
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TABLE 5.18 

1lo Cos'Y 

1 0.13 

2 0.19 

4 0.26 
6 0.32 
8 0.37 

10 0.41 

20 0.52 

30 0.54 

40 0.49 

50 0.39 
60 0.26 

70 0.13 

80 0.04 

85 0.009 

=a deflection angle at A of one 
component about the other 
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FIG. 5.35: Effect of deflection angle on torque 
required to rotate yarn 
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For any given value of tension, however, the torque depends 

inversely on �R; a small radius of guide thus gives rise to a higher 

torque requirement and hence to greater twist blockage. The importance 

of yarn component diameter will also be noted. 

In principle, it should be possible to calculate the level 

of blocked twist by balancing the torque generated in the yarn by blocked 

twist against the torque, analysed above, required to turn the yarn over 

on the guide surface. This is complex, however, as the yarn torque will 

depend on a combination of torsional, bending and tensional stresses in 

the twisted structure, the precise contributions depending on the moduli, 

the setting conditions of the yarn (intended or inadvertent), internal 

friction and other factors. 

The dependence of these types of stress on the twist angle (E) 

will be given by expression of the form [91,92] 

Torsional, sin cR COs 
2E 

(11) 

Bending, sin3e 

r (12) 

Tensional, T. r tan c (13) 

It is interesting to note that in circumstances when torsional 

and bending forces are negligible, the twist blockage would be independent 

of tension. This situation is rarely, if ever, likely to arise. 

5.14.1 Effect of 1/�R and Ti on twist accumulation 

and the theoretical torque required 

According to equation 8, the torque required to overcome twist 

blockage is proportional to 1/lR and it is of interest to record the 

influence of 1 /�R and of the initial tension on twist accumulated 
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in front of the guide surface, NB. At the same time the torque can be 

calculated from a knowledge of guide and yarn radius (0.0123 cm 

measured) and tension. 

An experiment similar to the experiment of section 5.5 

was carried out with a yarn of 116 t/m. 

Table 5.19 shows the results of the effect of the initial 

tension and 114R with the corresponding values of the accumulated 

twist in front of the guide surface. Figure 5.36 illustrates the 

relationship between 1/4R and the twist before the guide at various 

levels of initial tension. Figure 5.37 also shows the same relation- 

ship for the effect of the initial tension at various values of the 

guide radius. It can be seen from the two figures that the twist 

accumulation increases due to either increase of the initial tension 

or 1/'IR, but not proportionally as yarn torque is itself not 

proportional to twist. To explain this more clearly, Table 5.20 and 

Fig. 5.38 were produced. The values of the tensile force, Ti, and 

guide radius were substituted in equation 8 and the calculated 

required torque was plotted against the experimental values of the 

twist accumulation in front of the guide surface. It can be seen 

that as the torque required to overturn the yarn increases, the 

twist accumulated also increases when the guide radius is reduced but 

is, in most cases, relatively independent of tension. 

5.14.2 Initial input twist and twist blockage 

torque relationship 

As pointed out earlier, the twist blocking torque generated 

by the guide surface is dependent on both the initial tension and the 
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TABLE 5.19: Effect of both the initial tension 
and guide radius on twist before the 
guide surface for the yarn 116 t/m 
at angle of wrap 900 

T1 20 40 60 80 

1 /'VR NB NB NB NB 

3.16 162.5 188.0 196.0 205.0 

2.24 145.0 154.0 158.0 160.0 

1.83 129.0 136.0 138.0 144.0 

1.58 127.5 137.0 136.5 142.5 

1.41 123.0 125.0 129.0 132.0 

Ti = initial tension (gf) 

NB = twist before the guide (t/m) 

R= guide radius (cm) 
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FIG. 5.36: Effect of guide radius, R, on twist 
accumulation before the guide surface 
at constant angle of wrap with various 
levels of initial tension 
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FIG. 5.37: Effect of input tension on twist blockage 
at constant angle of wrap (900) with various 
values of guide radius 
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TABLE 5.20 

R 0.1 0.2 0.3 0.4 0.5 

Ti C NB C NB C NB C NB C NB 

20 0.81 162.5 0.57 145.0 0.47 129.0 0.40 127.5 0.36 123.0 

40 1.62 188.0 1.14 154.0 0.93 136.0 0.81.137.0 0.72 125.0 

60 2.43 196.0 1.72 158.0 1.40 138.0 1.21 136.5 1.10 129.0 

80 3.24 205.0 2.30 160.0 1.87 144.0 1.62 142.5 1.45 132.0 

R= guide radius (cm) 

Ti = initial tension (gf) 

C= theoretical torque required (iN. m) 

NB = twist before the guide (t/m) 

The above values were estimated at To = 300 
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FIG. 5.38: The relationship between the torque required 
and the twist before the guide surface at 
various initial tensions with various levels 
of guide radius 
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guide radius and, depending on the mechanism of blocking, may 

depend on the length of contact also. The foregoing analysis did 

not show the effect of the initial twist on the-required torque 

but a situation could be envisaged where the deflection angles of 

the initial twist could help to generate a value of 'F greater 

than the critical value. However, Table 5.21 and Fig. 5.39 illustrate 

the practical effect of initial tension on twist blockage at various 

twist levels. The graph shows the twist accumulated before the 

guide surface (0.2 cm diameter) for three levels of twist: 50,116 

and 210 t/m, relative to an increase of the initial tension 20 to 

80 gf" It can be seen from the graph that due to the increase in 

initial tension, the theoretical twist blocking torque rapidly 

increases whilst the accumulated twist increases by a relatively 

small amount. This occurs particularly at the two higher twist 

levels where the increase is about 14% rather than at the lower level 

(50 t/m) where the increase is over 30%. In addition, at the higher 

twist levels, the average blocked twist is about 25% above the 

initial twist whereas at the lower twist it is roughly 31 times the 

initial twist. 

5.14.3 Discussion 

Equation 8 together with'Fig. 5.39 implies that the 

theoretical torque required to overturn the yarn components on the 

contact surface increases proportionally as the initial tension 

increases. However, the observations show that at high levels of 

input twist (210,116 t/m), the twist accumulation behaviour shows 

less sensitivity to the input tension. It also appears from the 
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TABLE 5.21 

3.16 

Initial twist (t/m) 

210' 116 50 C 
Ti 

NB NB NB 

20 225.0 162.5 137.5 0.81 

40 262.0 188.0 1116.0 1.62 

60 251.0 196.0 184.4 2.43 
80 264.0 205.0 192.0 3.24 

R= guide radius (cm) 

NB = twist vefore guide (t/m) 

C= torque (u N. m)(calculated) 

Ti = initial tension (gf) 
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FIG. 5.39: Effect of initial tension on both twist 
accumulation and theoretical twist blockage 
torque at various initial twist levels 
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present experiment that the initial tension has a different effect 

on twist accumulation for different twist levels. * This'may be 

attributed to the fact that the yarns will have different elastic 

properties or might have been subjected to different stresses 

during processing, or might have different levels of stress relaxation. 

In addition to this, different levels of torsional stiffness exist 

at different initial twist levels. 

Furthermore, when the highly twisted single yarns are 

doubled, the magnitude of the force holding the two singles component 

together, will depend to a great extent upon the twist level. The 

pressure on the contact surface tends to spread out the two singles and 

to separate them from one another. This is more likely to occur at 

low levels of twist when the bending forces are lower. In such a 

case, the twist is more likely to be pushed back. 

Conversely, at higher levels of twist, the tendency of the 

twist to be held back will be reduced and there will be a minimum 

twist accumulation. 

In summary, when the yarn comes in contact with the guide 

Rurface two conditions may exist: 

1. At high levels of doubling twist, it may have a deflection angle 

equal to or greater than required to generate the critical angle 

required to overcome the suggested mechanism of twist accumulation 

(i. e. Y >300), in these circumstances twist blockage can only occur 

*by other mechanisms. 

2. At a lower level of doubling twist, this situation may not be 
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achieved (i. e. ' <30° until a significant level of blockage has 

occurred), and therefore, the twist blockage process will 

continue until the level of this angle if reached. 
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CHAPTER 6 

YARN ORIENTATION OVER THE CONTACT SURFACE 
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6.1 Introduction 

The present chapter is concerned with a further aspect of 

the yarn/guide interaction and describes an investigation of the 

effect of the direction of the yarn movement over the contact 

region relative to the axis of the guide. 

The effect of the surface topology and surface direction 

(i. e. S or Z) of the twisted yarn on the degree of twist blockage 

are investigated, together with the effects, relative to yarn/ 

guide orientation of the relative mobility of the yarn components 

or fibres within the yarn. 

6.2 Effect of yarn orientation on twist blockage 

It was indicated in sections 5.7.1 and 5.11 that the twisted 

yarn tends to be deflected laterally over the contact surface, and 

this deflection was found to be dependent, to a great extent, upon 

the direction and magnitude of the yarn twist as well as the manner 

of threading the yarn around the guide [54,55]. 

Further evidence for the generation of torque when a yarn is 

inclined to a surface is provided by one method of measuring the 

level of false-twist in the twisted zone of the false-twist texturing 

process. An instrument is used [93,94] in which a freely rotatable 

cylinder is held against the running yarn and the cylinder rotates 

unless its axis is exactly parallel to the direction of the yarn 

surface movement. 

Furthermore, Pavlov [56] found that torque and twist were 

produced when a yarn was pulled at an angle over a cylindrical 
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surface, the twist developed depending on the dimensions of the 

surface of the cylinder and the angle of threading the yarn along 

the surface (angle of orientation). 

6.2.1 Definition of angle of orientation 

The angle of orientation (or approach angle) may be defined 

as the angle between the plane of the incoming and outgoing yarn 

axis and the plane drawn perpendicular to the guide axis. 

Figure 6.1A, B shows the position of the yarn over the yarn 

guide at zero and ß angle of orientation. The guide may be moved 

from the 0=0 position in two ways, clockwise and anti-clockwise. 

These will be expected to have different effects because of their 

relations to the yarn twist direction, S or Z. 

For convenience the term positive angle of orientation (or 
AA 

ß positive) and the negative angle of orientation (or ß negative) 

will be used in referring to the cases of the clockwise and anti- 

clockwise deflection respectively. 

This factor does not appear to have been investigated in 

any depth by previous workers. Pavlov [55] is the only investigator 

known to have examined the generation of false twist by an especially 

shaped guide (Fig. 6.1C) where the yarn orientation was deliberately 

oblique. In his experiments the twist was changed from S to Z or 

vice-versa, on passing through the guide, but he did not show the 

influence of the angle on the twist accumulation. 

It is difficult to decide from Pavlov's work whether the 

reversing of the twist is as a result of the yarn orientation or 

due to the unusual shape of his yarn guide. 
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FIGURE 6.1 
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6.2.2 Preliminary observation 

It was observed in preliminary tests that twist transmission 

over the guide was influenced by the orientation factor regardless 

of the length of the arc of contact. In the earlier experiments it 

was observed that the yarn invariably rotated about its axis on the 

guide. In the present experiments, no rotation was observed for 

some angles of orientation, i. e. there was no twist blockage. It 

was felt therefore, that the angle of orientation might play an 

important part in controlling the phenomenon or even eliminating it. 

For these experiments a doubled, textured polyester yarn 

2x16.7 tex - 30 filaments with 50 t/m was used. 

6.2.3 General observation 

Due to the very low twist of the yarn, together with the 

zero twist in the singles yarn, the yarn tends to flatten over the 

guide surface. This is particularly true at the highest extension 

of 80 gf (i. e. about 440 gf/cm mean pressure). 

Due to the high degree of interfibre mobility, it was 

obvious that as the yarn moved in a ribbon over the contact surface, 

instead of rotating freely and circularly around its axis, the rotation 

was achieved by the layers of-filaments sliding over each other in a 

lateral movement as the yarn moved forward. This type of behaviour 

may be attributed to the low interfibre pressure which in a yarn 

with more highly twisted singles tends to hold the fibres together 

[951. For this reason significant differences of behaviour would, 

therefore, be expected from an easily flattened yarn but with 
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mobile fibre components, as compared with a yarn with highly 

twisted, compact and circular singles components. 

Considering this situation, the doubled textured polyester 

yarn made from zero twist singles was relatively easily rotated on 

the guide surface and consequently, the twist blockage is quite 

low. 

The surprising observation was that this type of "ribbon" 

movement was completely different from that observed in the doubled 

yarn made from twisted singles, or even the spun yarn used 

previously. 

With the spun yarn, the twist in front of the contact 

surface built up to a certain level without twist transfer over the 

contact region, and then suddenly the accumulated twist escaped; 

the accumulation cycle was then repeated. With the flat polyester 

textured yarn a certain level of equilibrium twist accumulation 

occurs in front of the guide, whilst there is a steady leakage of 

blocked twist transferred over the contact region. Of course the 

above observations were made at similar levels of pressure, are of 

contact and length of one turn for the two types of yarn used. 

It has already been mentioned, that as the angle of 

orientation ß increased positively, the twist accumulation decreased, 

whilst as the angle of orientation increased negatively the twist 

accumulation increased. 

6.2.4 Effect of angle of orientation on twist blockage 

The initial experiment was carried out under the condition 

of angle of wrap 0= 300, with a guide diameter 0.4 cm and initial 
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tension 80 gf (i. e. mean pressure 440 gf/cm). 

The results are tabulated in Table 6.1 and plotted in 

Fig. 6.2. The figure shows two curves, the upper curve represents 

the twist level before the contact region. The lower curve 

represents the difference in twist before and after the contact 

region (i. e. twist gain, N). 

It is clear, however, from the graph that the twist accum- 

ulation is greatly influenced by the direction of the guide surface 

relative to the yarn twist, and, therefore by, the angle between the 

surface twist helix and the guide axis at the points of contact. 

This pair of curves provides full information on the twist 

before and after the guide over the range of orientations used in 

the experiment. It should be made clear that the observed twist 

after the guide was usually less than the original nominal doubling 

twist of the supply yarn. It is seen, therefore, that the twist gain 

curve (the lower curve) did not indicate the net twist gain relative 

to the original twist. The reason for this apparent anomaly may be either 

because a twist disturbance is caused by the next component down- 

stream in the yarn path, i. e. one of the pulleys guiding the yarn, or 

because the twist immediately after the guide does not reach its 

equilibrium level of the original twist. The best representation 

of the behaviour of the twist accumulation is, therefore, probably 

the lower curve. 

In fact this experiment investigates a combination of two 

parameters which were discussed in detail in the earlier experiments. 

The two parameters are the pressure and the length of the contact 

region (arc of contact). 



216 

TABLE 6.1 

Bo Pi NB NA N 

70 51.5 53.0 44.5 8.5 
60 110.0 53.0 45.0 8.0 

50 182.0 58.0 49.0 9.0 

40 258.0 55.0 48.0 7.0 

30 330.0 55.6 48.0 7.6 
20 388.5 63.0 52.5 10.5 
10 427.0 70.0 49.0 21.0 

0 440.0 73.0 52.5 20.5 

-10 427.0 75.0 49.0 26.0 

-20 388.5 77.5 48.0 29.5 

-30 330.0 87.0 47.5 39.5 

-40 258.0 88.0 41.0 47.0 

-50 182.0 89.0 49.0 40.0 

-60 110.0 85.0 40.0 45.0 

-70 51.5 84.0 39.0 45.0 

NB twist befor e the contact surface (t/m) 

NA = twist after the contact surface (t/m) 

N twist gain (t/m) 

Pi = mean pressure (gf/cm) 

ß= angle of orientation (degrees) 
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FIG. 6.2: Effect of angles of orientation on twist 
gain at constant input twist (50 t/m) 
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In the present experiment the first parameter is decreasing 

according to the increase of the radius of curvature of the yarn path 

as a function of the angle of orientation $, i. e. Pc<cos2S. 

(Appendix I) 

The second parameter, the length of contact region increases 

as the angle of orientation increases, i. e. S O(sec2ß. 

As previously shown, the influence of the pressure on twist 

blockage is that decrease of the pressure over the contact region 

tends to decrease the twist blockage. In the present experiment, 

the pressure has the same effect when the direction of ß is positive 

but an increase of blocked twist occurs when the direction of ß is 

negative. Figure 6.3 shows for constant Ti the variation of the 

pressure due to the variation of the angle of orientation in both 

positive and ngative directions, taking into account the change in 

To. The maximum value of the pressure is achieved at zero angle of 

orientation when the curvature is a maximum, whilst the pressure 

was a minimum when the angle 0 was the maximum achievable with the 

apparatus, i. e. 700. 

Zero mean pressure is of course achieved when 0= 900 but 

there is no means of achieving this in practice. 

6.2.4.1 Effect of the mean pressure on twist gain 

For the purpose of comparison of the twist gain at the two 

equal values of the mean pressure due to 0 positive and negative, 

graph 6.4 shows the relationship between the mean pressure Pm and 

the twist gain, N. It is clear that as the mean pressure increases 

as a consequence of the decrease of 0 positive, the twist gain 
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FIG. 6.3: Effect of angles of orientation on the 
mean pressure at positive and negative O 
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FIG. 6.4: Mean pressure and twist gain 
at positive and negative angles of 
orientation 
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increases, whilst as the mean pressure increases as a consequence 

of decrease of 0 negative, the twist gain decreases. The inter- 

pretation of this observation will be considered with the discussion 

of the effect of the length of the contact region. 

6.2.4.2 Effect of length of contact 

The twist gain N, Table 6.2, is plotted in graph 6.5 

against the length of the arc of contact S for both positive and 

negative value of B. The graph shows an opposite behaviour for the 

same length of the are of contact depending whether ß is positive 

or negative. For ß positive as the arc of contact increases, the 

twist gain decreases, but for 8 negative, as the arc of contact 

increases, the twist gain increases. This contrary behaviour of 

the twist gain with respect to both mean pressure and the length of 

are of contact indicates that a third factor must be involved, possibly 

the frictional force F over the contact region. 

6.2.4.3 Effect of frictional force 

As pointed out in Chapter 3, work by previous investigators 

[21,52,56] in the field of twist blockage showed that friction is an 

important parameter influencing twist blockage particularly if 

'flattening' mechanism does not apply. The importance of the nature 

and direction of the frictional force can not be emphasized too-often 

as it is very dependent on the surface textures or both the yarn and 

the guide. When two surfaces are moving over each other it is impossible 

for there to be slipping in one direction and gripping in another 
direction at the point of contact. When the two surfaces are slipping 
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TABLE 6.2 

0 S F N 

70 0.310 23.3 8.5 
60 0.210 22.3 8.0 

50 0.163 23.8 9.0 

40 0.137 19.7 7.0 
30 0.121 22.0 7.6 

20 0.112 18.3 10.5 

10 0.106 17.4 21.0 

0 0.105 16.0 20.5 

-10 0.106 17.2 26.0 

-20 0.112 16.9 29.5 

-30 0.121 23.8 39.5 

-40 0.137 23.8 47.0 

-50 0.163 19.9 40.0 

-60 0.210 18.8 45.0 

-70 0.310 24.8 45.0 

0= 
angle of orientation (degrees) 

S= length of arc of contact (cm) 

F= frictional drag (gf) 

N= twist gain (t/m) 
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FIG. 6.5: Effect of arc of contact on twist gain 
at positive and negative angles of 
orientation 
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over one another, the frictional force will have a more or less 

constant magnitude but may change in direction so as to oppose the 

relative motion. Many investigators set out to determine the 

magnitude of the frictional force but make the mistake of not 

considering its direction. 

However, Hearle [60] points out that as the relative 

direction of the movement of two surfaces in contact changes, the 

problem of the frictional behaviour becomes more complex, and a 

good example of this is the frictional behaviour between yarn and 

surfaces causing twist blockage. 

It is of most interest in the present experiment to examine 

the relation between the frictional behaviour over the contact 

surface and the twist blockage. The frictional force was measured 

as a difference'between simultaneous measurements of Ti and To made 

by an electronic circuit attached to the Rothschild tension meter 

and read directly by the M. P. V. (see section 4.6). 

The apparent frictional force (Table 6.2) was plotted in 

graph 6.6 vs the twist gain. It will be seen from the graph that an 

increasing frictional force when $ is positive is associated with a 

reduction of the twist accumulation in front of the guide. Conversely, 

as the frictional force increases when ß is negative, the twist gain 

increased rapidly to a level of about 100% greater than that observed 

with zero angle of orientation ß. 

As mentioned earlier, when the yarn is inclined over the 

contact surface with the direction of 0 positive, the direction of 

the surface helices at the points of contact is more orthogonal to 
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FIG. 6.6: Frictional drag and twist gain at 
both positive and negative angles of 
orientation 
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the guide axis and, therefore, the frictional force is less likely 

to generate a twisting couple. The twist accumulation, therefore, 

tends to be minimized. 

When 0 is negative, however, the direction of the twist 

helices will be less inclined to the axis of the guide, so, the ridge 

of the guide surface over which the yarn runs, tend to lie between 

the surface ridges of the yarn. The frictional force at the point 

of contact is, therefore, more likely to generate blocked twist. 

Figure 6.7 illustrates this point, (a) shows the guide axis 

with $ positive, whilst (b) shows guide axis with ß negative. 

If this is a correct explanation of the observation, then 

the opposite effect should be observed when using a yarn with Z 

twist instead of S twist. 

6.3 Effect of angle of orientation on twist blockage 

for S and Z yarn twist 

To confirm this, the same singles yarns were twisted on the 

universal ring twisting machine into doubled yarns with both Z and 

S twist. These S and Z twist yarns were produced simultaneously 

with 50 t/m at the same tension and machine speed. 

Two experiments similar to those described above, were 

carried out except the angles of wrap were 900 and 1200. 

The results are shown in Table 6.3 and illustrated by 

graphs 6.8 and 6.9 for both S and Z twisted yarn. The general features 

of the graphs are as expected, the Z twist behaviour is generally 

opposite in direction to S twist behaviour. As with the S twist, the 
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FIG. 6.7: View, through the guide, of yarn surface 
ridges relative to guide orientation 
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TABLE 6.3 

Doubled 
twist 50 t/m 

6 900 120° 
Twist 
direction S Z S Z 

N N N N 

70 9.0 48.5 23.0 47.0 

60 5.6 52.0 16.6 59.4 

50 10.0 61.0 24.0 63.4 

40 8.4 64.4 15.0 74.0 
30 12.5 65.0 21.0 86.0 

20 10.6 64.0 27.0 60.0 

10 16.6 56.6 21.3 58.0 

0 21.0 55.6 30.6 54.7 

-10 26.0 54.0 26.0 68.4 

-20 33.0 47.0 29.0 66.6 

-30 41.3 45.0 34.0 64.0 

-40 36.8 38.0 40.6 48.0 

-50 44.7 24.0 41.3 61.0 

-60 49.0 20.0 42.5 49.4 

-70 46.6 20.0 42.2 54.0 

6= angle of wrap (degrees) 

ß= angle of orientation (degrees) 

N= twist gain (t/m) 
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FIG. 6.8: Effect of angles of orientation on twist 
gain for Z and S yarn twist direction, at 
angle of wrap 900 
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FIG. 6.9: Effect of angles of orientation on twist 
gain for S and Z yarn twist direction at 
1200 angle *of wrap 
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Z twist shows that the twist accumulation increases as ß increases 

positively, whilst the twist accumulation decreases as ß increases 

negatively. It will be noted, however, that the S and Z twist yarns 

do not give the same twist blockage when 0= 00, but this occurred 

at ß= -40° approximately when the angle of wrap was 90° (Fig. 6.8), 

or at an angle of orientation more than 700 negative when the angle 

of wrap was 120° (Fig. 6.9). 

Since any unsymmetricallity must be associated with the 

yarn, it can only be assumed that the relatively small S singles 

of 16 t/m (measured) was exerting an exaggerated influence on the 

twist blockage behaviour, either because of its effect on the surface 

structure of the doubled yarn or, more probably, because of residual 

torque instability in the S on S yarn'as compared with the Z on Z 

yarns. Nevertheless, when the angle of wrap 0 exceeds 900 the 

accurate setting of angle of ß is difficult because the yarn has a 

tendency to roll on the guide which distorts the yarn path on the 

guide surface into a partially-crossed position where it is twisted 

around the horizontal plane in which the incoming and outgoing yarn 

path are contained. This situation, unfortunately, may give rise to 

a longer contact surface than the change in ß would be expected to 

generate. 

To show the percentage difference between the two character- 

istics of twist accumulation of S and Z twist, graph 6.10 was produced. 

The graph represents the same results of graph 6.8, as a percentage 

relationship between the twist before and after the guide against the 

OS variation. This percentage difference is given by 
NN 

A %, where 
A 
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FIG. 6.10: The relationship between the variation 
of the angle of orientation and the 
percentage differences between twist 
before and after the guide surface for 
both S and Z twist 
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NB and NA are the twist before and after the guide respectively. 

Of course, the curves on this graph have a similar form to 

those of graph 6.8 although the point of intersection appears to 

be transferred from 0= -400 to 0= -300 approximately. Graph 6.8 

shows a difference of 35 t/m twist gain between S and Z twist at 

13 = 00, which is equivalent to a 52% difference as on graph 6.10. 

6.3.1 Discussion 
n_ 

" 

From the two preyious experiments it can be concluded, in 
., rte 

agreement with Hearle [56,, that to a certain extent', the direction 

of the frictional force developed over the contact surface influences 

the twist blockage. 

Unfortunately, the yarn surface/guide surface interaction 

is very complex, not only because of the unsymmetrical nature of 

the yarn surface due to twist, but also because the relative size of 

the surface roughnesses of the yarn and the guide, and the coefficients 

of friction associated with their interaction will considerably 

influence both the magnitude and direction of the resulting frictional 

force. Both of these will be very difficult to determine, but in 

order to completely confirm both Hearle's and the present assumption 

further work in this area is desirable. 

It can be stated with certainty that, the drag of the yarn 

on a surface or vice-versa, will not be the same at all orientations 

to the yarn axis but will probably be different in a direction along 

the surface helices compared with that applying in a direction at 

right angles to the surface helices. 
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The need for greater understanding of the effect of 

frictional direction on the twist blockage phenomenon can not be 

stressed strongly enough. However, an examination of the data 

available in the literature suggests that the surface topography 

of the yarn determines the frictional direction behaviour [60]. 

However, as yet, no explicit reference has been found on the effect 

of friction force direction on twist blockage. 

It has been generally recognised that both the flat ribbon- 

like shape of the yarn pulled over the curved surface of a guide 

or the change of the fibres or filaments orientation on the yarn 

surface due to twist may govern the mechanism of twist blockage. 

In one investigation [96], in which the variation of the 

frictional force developed along a convoluted fibre surface was shown 

to be primarily responsible for determining their frictional 

behaviour, it was observed that the frictional force developed when 

a fibre was forced to slide over the edge of a probe was related 

to the angle of the surface convolutions or ridges and, therefore, 

to the frequency of ridges on the fibre surface. The undulations 

on the guide surface interlock with the surface convolutions of the 

fibres, thus contributing a higher frictional drag. 

By analogy it is clear that the orientation of the fibres or 

filaments relative to the axis of a yarn can play an important 

part in cyclic changes in the value of the directional force and 

thus, in turn, affect the generation of twist blockage. 

Since the twist blockage mechanism during yarn/guide contact 

tends to change as the surface topography of the yarn changes, it is 
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of interest to investigate different yarn surfaces generated by 

inserting different values of twist in the singles of the S or Z- 

twisted, doubled yarn. 

6.4 The effect of singles twist 

In the investigation previously described (section 6.2.3) 

using a twistless singles in the two-fold polyester yarn, it was 

found that the twist blockage was relatively low, even though the 

pressure over the contact surface was quite high (440 gf /cm). 

This may be due to the relatively low (near zero) singles twist not 

providing the situation described above and, therefore, not 

generating a large twist-blocking torque. To investigate this, 

singles twist was increased to values of 203 and 570 t/m i. e. 830 

and 2329 metric twist factor respectively. 

Twisting of the singles polyester yarn was carried out on 

the two-for-one machine. Unfortunately during the subsequent 

doubling of the twisted singles yarn using the ring twister, some 

difficulty was experienced due to snarling of the singles. This 

occurred particularly at the higher twist of 570 t/m. This behaviour 

occurred when the path length of the singles yarn between the package 

and first guide of the machine was short. This length was extended 

by moving the supply package further away and also more tension was 

added to minimise the snarls. 

It was also found to be difficult to carry out experimental 

work with this yarn on the twist blockage test apparatus. It was 

thus concluded that by setting the twist in the yarn, one might 
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facilitate the experimental work. In order to achieve this, the 

package of the doubled twisted yarn was steamed in an autoclave, 

thus reducing the effect of any residual torque inside the yarn. 

Steaming was carried out at 20 p. s. i. and 1200C for a period of 

20 minutes. Although this overcame the snarling problems, it was 

found that the twist distribution along the yarn was very irregular 

and varied between 30 t/m and 70 t/m. It was decided therefore to 

set the twist before the process of doubling. 

By doing this and by using a steel No. 6 (see section 4.2) 

traveller, one could achieve a very high twist regularity with no 

snarling in the twisting machine. 

The twist blockage experiment was carried out at angle 

of wrap of 300 and initial tension of 80 gf. 

The results are recorded in Table 6.4 and plotted in Fig. 6.11 

together with those of the previous experiment (6.2.4) using low-twist 

singles. This graph shows the relationship between the twist gain 

and angle of orientation, 0, for the three levels of the twist 

inserted in the singles of the doubled yarn, zero twist, 203 and 

570 t/m. 

It can be seen that the effect of increasing the twist of 

the singles over this range is to increase the twist gain by up to 

four times. It was observed that the additional twist imparted-to 

the singles increased its circularity, and as the twist of the singles 

of the doubled yarn was increased, the twist blockage increased. 

However, in all three cases the twisted singles yarn tends to show 

only a very small twist gain at 0= 700 positive. 
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TABLE 6.4 

Doubled 50 t/m (ZZ)S 
twist 

Singles 
zero 200 t/m 570 t/m 

twist 

ß N N N 

70 8.5 3.6 5.0 
60 8.0 13.5 16.3 
50 9.0 16.0 28.0 

40 7.0 23.4 40.3 

30 7.6 37.2 60.0 

20 10.5 40.3 79.5 
10 20.6 52.5 97.5 

0 20.4 52.5 95.6 

-10 26.0 61.0 110.3 

-20 29.5 65.0 104.0 

-30 39.5 72.0 119.0 

-40 47.0 78.0 105.3 

-50 40.0 63.4 91.0 

-60 54.0 46.0 73.0 

-70 45.0 24.4 51.6 

0= angle of orientation (degrees) 

N= twist gain (t/m) 
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FIG. 6.11: Doubled yarn: effect of angle of 
orientation on twist gain at different 
levels of singles twist 
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One significant point of interest concerned the manner in 

which the twist accumulated in front of the guide. As mentioned 

previously, the nature of the twist accumulation of the doubled yarn 

made from twistless singles was that, the twist accumulates in front 

of the guide surface with a steady leakage of congested twist. In 

contrast to this, the twist blockage behaviour of the doubled filament 

yarn made from twisted singles yarn was more like than of the 

previously studied spun acrylic yarn, in so far as the twist accumulation 

and leakage of twist were cyclic: a build-up of blocked twist being 

followed by a sudden loss past the guide, followed by a further 

build-up, and so on. 

6.4.1 Discussion 

As the graph shows, all the yarns give little or no twist 

blockage at 0= +700. As 0 was decreased to zero, there was a gradual 

increase in twist blockage, the yarn with the highly twisted singles 

showing the greatest increase, its blocked twist being nearly four 

times as great as that of the yarn with zero-twist singles. 

As the value of B was further decreased, the blockage 

continued to increase until ß was between -350 and -400. Beyond this 

point, the yarns with twisted singles showed a rapid decrease in 

blockage with further negative increase in ß, whereas the yarn with 

zero-twist singles showed no further significant change in twist 

blockage. 

It may be expected that the value of the frictional force 

would tend to decrease [90] as the singles twist in the yarn was 

increased and the yarn components consequently changed from a flattened 
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to a circular shape. The magnitude of the yarn surface friction also 

may vary due to the processing conditions such as twist, steaming 

or the direction of the twist insertion. 

6.5 Effect of the relative surface direction of the 

singles relative to the yarn axis 

The present experiment was designed to demonstrate the 

relationship between the twist blockage and the two different types 

of yarn surface topology resulting from S and Z twist at different 

angles of orientation. 

The orientation of the undulations of the yarn surface, which 

will be twist dependent, will, in effect, determine the extent of actual 

yarn/guide contact and thus the frictional drag between the two. 

Two singles yarns were twisted to 200 t/m Z using the two-for- 

one machine and doubled by-the universal twister to give doubled yarns 

with 50 t/m Z twist and yarn 50 t/m S twist. 

For simplicity, the first yarn will be designated by (ZZ)Z 

and the second by (ZZ)S, i. e. two singles Z with either Z or S 

doubling twist. 

Other experimental conditions were the same as in the previous 

experiment. 

6.5.1 Results and discussion 

The results are recorded in Table 6.5 whilst Fig. 6.12 shows 

the relationship between the angle of orientation, ß, and the twist 

gain N for the samples (ZZ)Z and (ZZ)S. 
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TABLE 6.5 

Plied 50 t/m 
twist 

Twist (ZZ)S (ZZ)Z 
direction 

ßý NN 

70 3.6 52.0 

60 13.5 88.0 

50 16.0 97.0 

40 23.4 102.0 

30 37.0 87.5 

20 40.0 99.4 

10 52.5 101.0 

0 52.5 110.6 

-10 61.0 83.0 

-20 65-. 0 92.0 

-30 72.0 76.0 

-40 78.9 57.0 

-50 63.4 50.0 

-60 46.0 29.4 

-70 24.4 16.0 

ß angle of orientation (degrees) 

N= twist gain (t/m) 

(ZZ)S 

(ZZ)Z 
I 

twist direction 
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FIG. 6.12: The relationship between the twist gain 
and B factor for yarns with (ZZ)Z and 
(ZZ)S twist 
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The magnitude of the differences of the twist blockage 

between the two samples is considerably greater than one would might 

have anticipated as a result of simply reversing the yarn twist 

direction. 

As observed in the previous experiments, when the yarn 

moves over the contact surface with an angle of orientation nearly 

equal to the doubled yarn helix angle, the twist accumulation in 

front of the contact surface is very small. 

Although the behaviour of the twist blockage (ZZ)Z yarn 

resulting from the variation of the angle of orientation is, to some 

extent, symmetrical with that of (ZZ)S yarn, it is also observed that 

the contribution of twist gain for (ZZ)Z at ß=0 is twice that of 

the (ZZ)S. 

It has been established that the twist in doubled yarns, to 

some degree, influences the singles twist. A doubled yarn obtained 

by twisting singles of the same twist direction (i. e. Z on ZZ or S on 

SS) will have a higher torque than a doubled yarn of the same level of 

twist obtained by using a doubling twist of the opposite direction 

(i. e. Z on SS or S on ZZ). Therefore, the latter should accept more 

twist (or twist accumulation) than the former which is in conflict 

with the experimental results. 

On the other hand, an increase in twist due to twist blockage 

in, for example, a (ZZ)Z yarn, would tend to increase the coherence 

of the singles, whereas in a (ZZ)S the decrease in singles. twist would 

loosen the single components and perhaps reduce the twist blocking 

tendency. 
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As expected from experiment 6.3, the twist blockage (ZZ)Z 

tends to increase positively with increase of the angle of orientation. 

However, in the present experiment, a significant difference within 

the region ß=0o up to 0- +300 is found. The corresponding twist 

blockage for this region tends to decrease in comparison with the 

same region for the (ZZ)S yarn, hence the (ZZ)Z started to show some 

flattening of the curve, perhaps as a result of sustaining the 

higher value of the twist blockage. Figure 6.134 in which the Z 

twist curve has been reversed, shows clearly the differences between 

the behaviour of the two yarns. 

6.6 Conclusions 

Previous work on twist blockage has examined the effect 

of mechanical parameters including the influence of axial tension 

and compression, bending behaviour etc. and surface properties, such 

as roughness, friction and resistance to stress concentration. 

Unfortunately, adequate data on the relation between twist 

blockage and surface structure of twisted yarns is not available 

in the published literature. 

Any comparison with the data obtained from these other 

publications is not always justified as in the present study, a 

different range of parameters has been considered. 

In this respect, it is difficult to favour any particular 

previously described mechanism that may be held responsible for the 

observed increase in twist blockage resulting from different Config- 

urations of yarn cross-section derived as a consequence of different 

ranges of singles twist. 
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FIG. 6.13: Relationship between twist gain and 
ß factor for yarns with (ZZ)Z and (ZZ)S 
twist. 
[The ß scale for the (ZZ)Z curve is 
reversed] 
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At zero angle of orientation, it can be said that, since 

the singles yarn configuration changes from semi-elliptical to 

circular as the twist is increased, there could be a significant 

reduction in the magnitude of the internal frictional force over the 

contact region. This is associated with the behaviour changing from 

one of lateral movement of the filament layers to one of rotation of 

the yarn as a whole. Yarn rotation occurs both over and before the 

contact region, but it is more easily observed when the singles twist 

is high as the components of the yarn are then more easily distinguished. 

As discussed elsewhere (section 6.12. ) it may be possible for the 

yarn not to rotate over most of the contact area, this is more likely 

to occur when the singles bundles are more compact. 

Increase in the singles twist tends to cause an increase 

in the torque generation over the contact region and to force the yarn 

to rotate, the twist blockage consequently increases. This occurs 

especially with a higher twist singles and a lower-twist of the plied 

yarn. 

6.6.1 Mephazlical interpretation 

When the twistless singles yarn first contacts the guide 

surface, it would collapse to a ribbon shape and a lateral movement 

of the twistless singles within the yarn over the contact region 

occurs. In-other*words, the surface layer of the filaments in contact 

with the guide changes frequently as the bundle rotates. The 

subsequent relative positions of the two filament components as the 

ribbon rotates are drawn diagrammatically step by step at A, B, C, D 
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FIG. 6.15: Lateral movement of flat singles 
components in a doubled yarn 
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and E respectively in Fig. 6.15. In the twisted-singles doubled 

yarn (especially for low doubling twist), the singles initially lie 

side-by-side in the yarn during its passage over the contact region, 

accumulating the twist, whilst the yarn is rotating in front of the 

guide. 

Baird et al [2] stated that the application of twist may 

decrease the area of contact but, at the same time, the interlocking' 

of the irregularities of the guide surface with the undulations of 

the multifilament yarn surface may be the predominant factor. 

In this event, the twist blockage behaviour may depend 

originally on the filament inclination relative to the singles axis 

and in turn relative to both the yarn axis and the guide axis. 

With flat yarn (zero twist-singles) the filaments in the 

singles are parallel to each other, whereas in the twisted-singles 

the filaments are inclined with a helix angle corresponding to the 

twist insertion. The higher the singles twist, therefore, the more 

inclined the filament helices. As a corollary to this deduction, the 

number of transverse ridges on the surface structure of the doubled 

yarn increases as the twist of the singles increases provided the 

single and doubling twist are in the same direction or the singles 

twist is much greater than the doubling twist. 

The conclusion which also can be reached as a consequence 

of the above explanation and the experimental work is that the relative 

increase of the twist accumulation with singles twist (Fig. 6.11) at 

g 00, may be influenced by both the inclination of the singles yarn 
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to the axis of the doubled yarn and the inclination of the filaments 

in the singles yarn relative to the axis of the singles yarn. These 

two helix angles will in turn influence the twist blockage behaviour 

associated with the relative angular position of the yarn guide axis, 

i. e. the angles, at the point of contact, between the surface filaments 

and the line of contact on the guide. 

Eventually, as the angle of the guide is increased until 

the angle of orientation is nearly equal to the helix angle of the 

doubled yarn, the effect of the helical orientation of both the yarn 

components and the filaments within the yarn will be a minimum and the 

blocking torque reduces to approach zero, as shown in Fig. 6.11 at 

+700 . 

A further factor which might influence twist blockage is 

the variation of the singles diameters due to twist insertion. The 

variation of diameter is, however, very small and is therefore, not 

expected to influence the twist blockage significantly, at least in 

the present experiments. 

However, it is also necessary to consider whether these 

suggested mechanisms can explain the unsymmetrical behaviour for the 

three different yarn structures. 

At'this point it is relevant to return to the interesting 

observation concerning the different twist blockage of the (ZZ)2 and 

(ZZ)S yarns. 

Stable or torque free yarn, may be achieved by stress 

relaxation or setting treatments. A balanced structure is also 

commonly produced by plying two or more singles yarns together 
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in the opposite direction to the initial yarn twist, until torsional 

stresses are reduced to zero, i. e. by using such structures as 

(ZZ)S yarn. Obviously the insertion of the same continuous uni- 

directional twist as that of the singles component into a doubled 

yarn (i. e. structure such as (ZZ)Z yarn), generates a higher torsional 

stress, and has a considerable effect on the stability and the 

mechanical performance of the yarn. 

It would be expected that the combined twist directions and 

associated yarn properties would influence significantly the 

characteristic twist blockage behaviour. 

Originally, it was expected that the balanced yarn would 

accept more twist in the doubling7 directions at the same level of 

torque. However, it was surprisingly found that the (ZZ)Z yarn showed 

a higher acceptance of twist in the twist blockage situation. This 

different behaviour may, therefore, depend on not only the torsional 

properties, but also on the surface structure of the two yarns. 

It is clear that the twist blockage process will continue 

until the torque required for further twisting becomes greater than 

the torque generated as a result of the geometrical configuration 

at the yarn/guide surface. It was observed that a high twist variation 

could occur in some circumstances as the twist in the supply yarn was some- 

what irregular even though the yarn may be subjected to a constant torque 

during its passage over the contact region. As a consequence, twist 

was found to be blocked and generated in the portion of the lower 

twist whilst in the more highly twisted portions, the original twist 

moved forward with the yarn. 
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One could observe, therefore, two types of twist movement 

in front of the guide, one a backward propagation with lower twist 

regions and the other a forward movement with the yarn movement in 

regions where the twist was high. 

Thus, on the basis of the ability of the yarn to accept 

twist, it was expected that the (ZZ)Z yarn would give a lower twist 

blockage, but in fact a higher blockage was observed. It can only 

be concluded that, because of the different interface characteristics 

of the two yarns, the torque generated by the surface contact of (ZZ)Z 

is greater than that of the (ZZ)S by an amount which overcomes the 

greater twist-resisting torque generated in the (ZZ)Z. 

6.7 Effect of the single's twist with the same and 

opposite doubling twists 

To try to confirm the above suggestion and to provide more 

complete experimental evidence concerning the symmetricality behaviour, 

it was decided to carry out further experiments with oppositely 

twisted yarns. 

Two singles were twisted in the S and Z directions. To obtain 

additional information, 300 t/m was selected instead of the previous 

200 t/m for the singles twist. The two singles were doubled at 54 t/m 

(measured) in the (SS)S, (ZZ)Z, (SS)Z and (ZZ)S configuration. The 

method for producing these yarns was the same as discussed for the 

previous experiments. It was hoped to verify that the yarn will 

behave symmetrically and the same but opposite magnitude of twist 

blockage would occur under the influence of the yarn orientation 
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over the contact region, when the twist directions were reversed. 

6.7.1 Results for(ZZ)Z and (SS)S-yarns 

Table 6.6 shows the relationship between the angle of 

orientation and the twist gain for the (ZZ)Z and (SS)S yarns 

respectively. 

Graph 6.16 shows the effect of 0 on the twist gain for the 
, 

(ZZ)Z and (SS)S yarns. Overall, the graph appears fairly symmetrical 

about the N axis, but there is some deviation. 

To test the symmetricality one of the curves has been 

reversed in Fig. 6.17 which confirms that the behaviour is reasonably 

symmetrical. Furthermore, it is possible to compare these results 

with the results shown previously in Fig. 6.12 which indicate a much 

greater difference between the (ZZ)Z and (ZZ)S than between the (ZZ)S 

and (SS)S of the present experiments. It should be remembered, however, 

that the singles twist of Fig. 6.12 was 200 t/m instead of 300 t/m. 

Because of the expected lower torque resistance of (SS)Z 

and (ZZ)S yarns, it was expected that their twist blockage would be 

greater. The opposite effect had, in fact, been observed previously. 

In order to give a complete picture of the influence of 

singles and doubling twist, yarns with a (ZZ)S structure and (SS)Z 

structure were tested, the twist levels being the same as those of 

the (SS)S and (ZZ)Z yarns of the previous experiment i. e. 300 t/m 

singles, 54 t/m doubled. 
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TABLE 6.6 

Doubled 54 t/m 
twist 

Single 300 t/m 
twist 

Twist gain (t/m) 
4ngle of 
orientation (ZZ)Z (SS)S (ZZ)S (SS)Z 

70 58.0 15.0 1.3 55.6 

60 57.0 20.0 16.0 77.0 

50 88.4 27.0 23.4 86.0 

40 100.0 47.5 34.0 94.4 

30 99.0 54.0 56.6 110.0 
20 96.0 67.5 66.4 110.0 

10 99.0 73.0 79.4 113.0 
0 97.5 83.0 81.6 85.0 

-10 94.4 84.4 99.0 77.0 

-20 74.4 92.0 105.0 75.0 

-30 66.0 83.4 87.0 65.0 

-40 56.0 80.0 105.6 51.0 

-50 47.5 92.0 86.0 38.0 

-60 26.0 64.4 75.0 23.0 

-70 14.0 51.0 63.0 7.5 

(ZZ)Z, (SS)S, (ZZ)S and (SS)Z = twist direction 
of (singles) and double d structure 
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FIG. 6.16: Effect of angle of orientation on twist 
gain at (SS)S and (ZZ)Z yarn twist 
direction for positive and negative 
angle 0 
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FIG. 6.17: Effect of positive and negative angles of 
orientation on twist gain for (SS)S and (ZZ)Z 
yarn twist direction. The (ZZ)Z is inversely 
plotted 
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6.7.2 Results for (SS)Z and (ZZ)S yarns 

The results are tabulated in Table 6.6 and illustrated in 

graph 6.18. This shows a great agreement with the conclusion which 

has been reached earlier that any two yarns of opposite twists will 

behave symmetrically. It is further to be expected that the doubled 

yarn twist blockage behaviour might be influenced by the filaments 

inclination relative to the singles axis. 

6.7.3 Discussion 

A comparison between the various results indicates that the 

unidirectionally twisted and doubled structures (ZZ)Z or (SS)S do not 

reach zero twist blockage at ß= 700 whilst those with singles twist 

opposite to the doubling twist (ZZ)S or (SS)Z do generate zero 

blockage at this angle of orientation. The blockage in the former 

case is not large, however, and may not be significant. 

Referring to Fig. 6.18, the twist blockage decreases to zero 

as ß, the angle of orientation, increases positively for the yarn (ZZ)S 

whilst for the (SS)Z yarn, it decreases to zero as ß increases 

negatively. On the other hand, as ß increases positively, twist 

blockage for the (SS)Z falls to approximately 40% of the maximum at 

ß 700, the (ZZ)S yarn again showing a symmetrical behaviour. . The 

close symmetricality for these structures which appears better than 

that for the (SS)S and (ZZ)Z yarns, may be related to the stability 

of the yarn structure. 

Figure 6.19 illustrates the same results except the data 

for the (SS)Z yarn has been reversed. It is clearly demonstrated 
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FIG. 6.18: Effect of positive and negative angle 
of orientation on twist gain for (ZZ)S 
and (SS)S yarn twist direction 
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FIG. 6.19: Effect of angle of orientation on 
twist gain for (ZZ)S and (SS)Z yarn 
twist direction. The (SS)Z is inversely 

plotted 

Twist gain Twist direction 
(t/m) 
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in this graph that the two behaviours are closely symmetrical. 

A comparison of all these results indicates that it is the 

doubling twist which has the major influence on the twist blockage 

ß curves, but in order to try to accentuate the differences between 

the blockage figures for the yarns with the same singles and doubling 

twist and those with opposite singles and doubling twist, Table 6.7 

and Fig. 6.20 illustrate the mean value of the twist gain N for the 

two doubled structures [(ZZ)Z and (SS)S] and [(ZZ)S and (SS)Z]. 

The graph demonstrates, taking account of the symmetrical 

reversals, that there is no significant difference between the two 

sets of results. In both cases, the twist gain decreases linearly 

as 0 increases in one direction, but for the other direction, the 

relations seem to be slightly different. As ß increases, there is 

a small increase in twist blockage up to a maximum at ß= -250. It 

then drops about 60% of the peak value at ß= -700. 

In general it may be concluded that the singles twist 

direction has had little or no influence on the blockage. 

6.8 Conclusions 

Generally speaking, the influence of the angle of orientation 

on twist blockage behaviour for both of the two directions of the yarn 

twist remains unchanged (i. e. twist blockage decreased as ß increased 

positively). 

When the yarn moves over the contact region with 0>0, the 

torque generating mechanism may change or the direction of the 

frictional force may change relative to the yarn axis, and, therefore, 
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TABLE 6.7 

Mean value of twist gain N 
Angle of 
orientation (ZZ)S and (ZZ)Z and 

ß (SS)Z (SS)S 

70 4.4 54.4 

60 20.0 61.0 

50 37.4 90.0 
40 42.0 90.0 

30 61.0 92.0 

20 70.5 93.6 
10 78.0 92.0 

0 83.0 90.0 

-10 106.0 84.0 

-20 107.5 73.0 

-30 98.4 60.0 

-40 100.0 52.0 

-50 86.0 37.0 

-60 76.0 22.5 

-70 59.0 14.5 

(ZZ)Z 
(SS)Z 

yarn twist direction (ZZ)S 
(SS)S 
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FIG. 6.20: The relation between angle of orientation 
and the mean value of (ZZ)Z and (SS)S and 
(ZZ)S and (SS)Z'twist gain 
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the perpendicular component may change too. 

To a certain extent, if a flat-singles doubled yarn is 

considered as one singles yarn twisted to a fairly low twist (e. g. 

50 t/m), the filaments will act as an array parallel to the axis 

of the yarn. This type of twist yarn was shown to generate a low 

twist blockage in comparison with the twisted-singles doubled 

structure. 

Because of the greater rigidity of the cross-section of the 

latter or because of the greater inclination of the filaments 

relative to the singles axis, the twist blockage behaviour may depend 

on both the singles and doubled twist level. 

6.9 Twist blockage mechanism in terms of the 

angle of orientation 

Section 6.2.4.3 has already briefly discussed this subject 

which will now be considered in greater detail. 

In order to try to explain satisfactorily the mechanism of 

the behaviour of twisted yarns over the contact region under the 

influence of the angle of orientation. It is advantageous to consider 

three positions of the 'edge' of the guide relative to one turn of 

twist in the yarn for the cases of S and Z twist direction as follows: 

When the yarn lies at an angle to the guide axis other 

than 900 (ß = 00) the interaction of the yarn surface geometry with 

the guide surface will be different depending on whether the angle of 

orientation, 0, is positive or negative, Fig. 6.21 attempts to illustrate 

this. In each case, the line Go represents the edge of the guide 
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positive) 

Gý (zero) 

negative) 

FIG. 6.21: Interaction of the yarn surface 
geometry with the guide generator 
for positive and negative angles 
of orientation 
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surface, G1 and G2 are two successive positions of this edge 

relative to the axis of the yarn. In the case of G2, the guide 

edge can lie in the valley formed between the twisted singles 

components of the doubled yarn whereas in the case of G1, the guide 

edge lies on the peaks of the doubled structure. A greater twist 

blockage torque is therefore likely to be generated in the former 

case (i. e. G2). This illustrates why the twist blockage observed 

in Fig. 6.8 is seen to be nonsymmetrical about 8= 00, but to 

increase when 8 is negative and decrease when 8 is positive; the 

twist in the yarn is more likely to be pushed back in the former 

case. When 8 is large and positive, a situation may exist where the 

yarn is almost always supported on the guide by the peaks of one or 

other of the singles components. In these circumstances, the torque 

will be a minimum and the twist blockage will be very small. In the 

example shown, this occurs at about 8= 700. 

It thus may be postulated that the undulation of the twist 

on the surface of the doubled structure yarns acts as a series of 

ridges. When the ridges interlock with the edge of the guide (as 

G2), motion of the yarn surface over the contact surface would be 

strongly resisted, since it would involve deformation of these ridges 

or lifting the yarn over the intersecting edge. In order to overcome 

this effect the guide must try to push the yarn ridges back. This is also 

true when the edge of the guide is perpendicular to the yarn axis 

(position Go). On the other hand, when the edge of the guide is more 

perpendicular to the axis of the singles component on the surface, 

there is less opposition to yarn movement and, therefore, less 
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obstruction of twist and twist will transfer over the guide edge 

without accumulation (as Gý). 

The above mechanism verifies the effect of increase in 

ß positive. As seen from the experimental results, a low level of 

blockage can be achieved by a large ß negative. This may occur when 

the angle of orientation of the yarn to the guide is such that this 

approaches the helix angle of the singles in the doubled yarn. The 

yarn is, therefore, supported along significant lengths of its 

singles. 

This suggested mechanism, although supported by the earlier 

experiments, requires further experimental confirmation. It was 

suggested, however, that the surface structure of the continuous 

filament yarn played a significant role in determining the 

characteristic twist blockage behaviour. 

It is useful to compare these results with results obtained 

using a spun yarn such as the yarn used in the preliminary experiments 

(i. e. acrylic yarn 30 tex worsted, Chapter 5). 

A comparison of observations gained from these two very 

different types of yarn should be useful in predicting the level of 

twist blockage and in improving process control where twist blockage 

may be a problem. 

6.10 Comparison of twist blockage behaviour of spun 

staple and continuous filament yarn 

The previous experiments on the effects of the single yarn 
twist demonstrated that the twist blockage behaviour considerably depends 
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on the degree of flatness of the yarn cross-section. Similarly, it 

is expected that the nature of the surface topography of the yarn due 

to the type of processing and/or material, may also have its own 

effect. Such a difference, however, would be found between a spun and 

a continuous filament yarn. The latter is also likely to develop a 

higher friction than the equivalent spun yarn. 

The following experiment was intended to test the effect of 

the difference between continuous filament and spun yarns on the 

twist blockage phenomenon. 

6.10.1 Effect of singles twist factor 

Some evidence of the effect of singles twist can be obtained 

by comparing a doubled yarn made from the twistless singles textured 

polyester with the doubled acrylic spun yarn. The doubling twist 

factor of the polyester being roughly the same as that of the acrylic. 

Table 6.8 lists the results, and it shows the ratio of the 

twist gain N to the nominal twist inserted in the yarn, No, against the 

angle of orientation 0 for both acrylic and polyester yarn. 

Figure 6.22 illustrates this relation, and it shows, generally, 

a considerable reduction in the level of corresponding twist blockage 

values while the behaviour with regard to the effect of B shows the 

previous general pattern, i. e. the twist blockage increases as 0 decreases 

from 0= +700 up to 0= 00. On the other hand, as ß increases, the 

blockage takes a constant value up to 0 equal -500 and then there is a 

large reduction up to 0= -70. 
0 

The twist blockage differences between the twisted singles 

spun yarn, the twisted singles polyester yarn, and the flat-singles 

polyester yarn (about 66% at 0= 00) indicates again that the most 
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TABLE 6.8 

Twist factor 355.7 (metric) 

Twist ratio N/No 

Angle of 
orientation 

0 

Type 

Acrylic 
ST 

of yarn 

Polyester 
CF 

70 0.07 0.00 

60 0.15 0.04 

50 0.26 0.28 

40 0.36 0.50 

30 0.42 0.79 
20 0.53 1.10 

10 0.57 1.54 

0 0.64 1.74 

-10 0.78 1.60 

-20 0.79 1.71 

-30 0.86 1.61 

-40 0.84 1.56 

-50 0.83 1.57 

-60 0.65 1.57 

-70 0.24 0.97 

N= twist gain (t/m) 

No = nominal twist (t/m) 

ST = spun stable yarn 

CF = continuous filament yarn 
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FIG. 6.22: Effect of angle of orientation on the 
ratio of twist gain and nominal twist 
for acrylic and polyester yarns at the 
same plied twist factor 
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effective parameter influencing the twist blockage in addition to the 

doubling helix angle is the singles twist through its effect on the 

degree of circularity of the singles yarn. 

This conclusion is supported by the previous experiments 

in which the singles twist was varied, described in section 6.4. 

Obviously the singles twist has a major influence on the capability 

of the yarn to form a cross-section that behaves as one bundle of 

fibres or filaments as compared with two separate bundles, as in a 

doubled yarn with high singles twist. 

6.10.2 Effect of plied twist factor 

In order to make the comparison as close as possible, the 

two types of yarn already examined using the same singles twist factors 

were now doubled with the same twist factor in doubling. As previously, 

the continuous filament yarn was a 16.7 tex textured polyester and the 

spun yarn was a 30 tex acrylic. To attain the same twist factor, 50 

t/m and 63 t/m (the measured twist was found to be 65 t/m) were added 

to the acrylic and polyester yarn respectively in the doubling process. 

During the doubling and twisting, twist variation occurred 

with both yarns,, particularly at low twist. The same precautionary 

steps were taken, therefore, as when processing the previous textured 

polyester yarn. Twist blockage experiments were then carried out using, 

where possible, the same conditions as with the previous experiment, 

i. e. initial tension of the yarn 80 gf, a guide diameter 4 mm with 

300 an angle of wrap. 
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TABLE 6.9 

(1) (2) (3) 

Twist ratio N/No NB/No 

Angle of Type of yarn 
orientation 

acrylic polyester acrylic polyester 
ST CF ST CF 

70 1.22 1.11 1.22 1.12 

60 1.31 1.23 1.31 1.27 

50 1.64 1.60 1.64 1.38 
40 1.83 2.00 1.83 1.47 
30 2.13 2.30 2.13 1.40 

20 2.44 2.40 2.44 1.54 
10 2.74 2.60 2.74 1.60 

0 2.94 2.80 2.94 1.84 

-10 2.78 2.70 2.78 1.85 

-20 2.78 3.00 2.78 1.75 

-30 2.74 2.88 2.74 2.10 

-40 2.71 2.75 2.71 2.00 

-50 2.62 2.53 2.62 1.85 

-60 2.32 2.19 1.73 2.32 

-70 2.11 2.02 2.11 1.58 

N= twist gain (t/m) 

No = nominal twist (t/m) 

NB = twist before the contact surface (t/m) 

ST = spun staple yarn 

CF = continuous filament yarn 
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6.10.3 Results 

Table 6.9 lists the results; column 2 shows the ratio of 

the twist gain N to the nominal twist No against the angle of orientation 

0 for both the acrylic and polyester yarns. Figure 6.23 plots this 

relation. 

The general features of the graphs indicate that the 

behaviour of the two yarns is very close for both positive and negative 

angle of orientation. Obviously there is a slight difference between 

the two twist blockage performances. This could be attributed to the 

difference in the yarn structure or to differences in between yarn 

count. Nevertheless, the differences reverse their direction at extreme 

positive and negative values of 0 the angle of orientation. 

As previously found when 0 is positive, a decreasing linear 

relationship is found between N and the angle of orientation. On 
0 

the other hand, when 0 is negative the twist remains roughly constant 

until at 0= -500, a rapid decrease occurs. 

The closely similar twist blockage behaviour for the two 

different yarns is demonstrated even more clearly in Fig. 6.24. The 

graph shows the effect of angle of orientation against the ratio of 

the twist accumulation, NB, before the guide, to the nominal twist, No, 

for the two yarns. 

6.11 Discussion , 

From this limited result it may be concluded that the most 

important parameter may be the twist factor rather than the type of 

processing or type of yarn material. 
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FIG. 6.23: Effect of angles of orientation on 
twist gain for the spun and continuous 
filament yarn at the same twist factor 
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FIG. 6.24: Effect of angle of orientation on twist 
accumulation in front of the guide surface 
in terms of the ratio of twist before the 
guide to the nominal twist 
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Furthermore, a conclusion can. be built up from these and 

previous results concerning the symmetricality of the two twist'blockage 

behaviours. It appears that an equal but opposite twist blockage is 

generated when, for example, (ZZ)S yarn is compared with (SS)Z and 

the behaviour of (SS)S and (ZZ)Z is similar to the above. 

In the light of this evidence and because the supply of 

the spun yarn was limited, it was felt to be unnecessary to repeat 

the previous experiments in order to further verify the results. 

6.12 An interpretation of visual obversation 

Visual observation of the yarn behaviour with respect to 

guide orientation has shown that there are three possible modes of 

behaviour of yarn passing over a guide surface and perhaps generating 

twist blockage. 

1. The twisted yarn is only rotating in front of the guide, not over 

the contact region where it is flattened, as in the case of the 

twisted-singles doubled yarn. 

2. The twisted yarn is rotating in front of the contact region while 

simultaneously rotating over the contact region itself, i. e. the 

leakage mechanism as observed in the case of flat-singles-doubled 

yarn. 

3. The yarn is sliding over the contact region with no rotation 

anywhere (i. e. zero twist accumulation) as in the case of yarns 

at very high twist and of most yarns at ß= 700. 
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In some cases, as the positive angle of orientation increases, 

the mode has been observed to change from the 'flattened' mechanism 

(1) to leakage (2) to the 'sliding' mechanism (3). 

Figure 6.25 illustrates these three modes. For convenience 

the terms of flattened, leakage and sliding mode will refer to the 

three different twist blockage or transmission behaviours respectively. 

The arrows illustrate that the magnitude of the rotation 

(f higher and 
t lower) of the yarn depends on the type of twist 

blockage mode. 

6.13 Conclusions 

As has already been stated, both of the doubled yarns with 

singles twist exhibited the flattened mode at ß= 00. The reason why 

the doubled yarn with flat singles components operated with the 

leakage mode is probably associated with the relative ease with which 

the filaments could roll around each other as discussed in section 

6.12. In this case, the frictional forces generating twist blockage 

are distributed over the whole contact surface whereas in the case of 

the rotating mode sufficient frictional torque is generated over a 

relatively short distance when the yarn first comes into contact with 

the guide. 

Especially in the case of the leakage mechanism, the 

transmission of the yarn twist over the contact surface may thus 

depend, to some extent, on the deflection of the yarn path and the 

I,, 
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FIG. 6.25: Modes of the behaviour of yarns 
passing over a guide surface 
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(high rotation) 
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length of contact. The greater the yarn deflection and contact length 

the greater the torque required in the yarn before the guide to generate 

twist transmission and consequently, the higher the twist hold-back. 

It is of interest, therefore, to investigate the effect of 

the yarn orientation over the contact surface under different levels 

of angular deflection and contact length. Initially, however, an 

experiment was set up to investigate the effect of deflection angle 

9 on twist blockage at constant mean pressure, length of arc of contact 

S, and fixed angle of orientation ß. 

6.14 Effect of deflection angle 6o on twist blockage at 

constant arc of contact, mean pressure and angle 

of orientation 

Five different deflection angles 90,45,30,22.5 and 180 

were used with five different guide diameters 2,4,6,8 and 10 mm. 

The arc of contact was kept constant at 1.57 mm. 

In order to maintain constant mean pressure, it was 

necessary to know the coefficient of friction so that the initial 

tension Ti would be adjusted correctly. The coefficient of friction 

of the polyester 570/71 t/m yarn against the guide was measured by 

the procedure previously described (section 4.5) and was found to be 

roughly constant and of average value = 0.211. The pressure was 

kept constant at 130 gf/cm. 

6.14.1 Results and discussion 

Table 6.10 shows the magnitude of the initial tension Ti 

for the values of the angle of wrap 0 and guide diameter D, together 
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TABLE 6.10 

Angle of 
wrap Guide diameter Initial tension Twist gain 

0 D(cm) Ti (gf) N (t/m) 

18.0 1.0 63 48.5 

22.5 0.8 50 34.7 

30.0 0.6 37 49.4 

45.0 0.4 24 36.6 

90.0 0.2 11 41.0 

Mean pressure = 130 (gf/cm) 

Length of arc of contact = 1.57 (cm) 

Measured coefficient of friction K=0.211 

CLOTtit 
..;. 

4... ý, . 
UNIV Rv,, 
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with corresponding values of twist gain N. Figure 6.26 Ulustrates 

the relation between the deflection angle 0 and the twist gain N, and 

shows that there is no significant effect of deflection angle on the 

twist gain behaviour. 

Earlier observations have shown that the twist blockage 

behaviour is greatly influenced by the major parameters such as the 

length of arc of contact, the pressure over the contact surface, the 

level of angle of orientation etc. 

In the present experiment, as a result of keeping the 

above parameters constant, the frictional force generated over the 

contact region was also kept almost constant and when the angle of 

deflection was increased from 150 to 900 (i. e. 5 times) the mean value 

of the twist blockage was found to be roughly constant. 

In fact, the torque generated over the contact region is 

greatly dependent on the yarn/guide interaction over the contact 

surface. Hence, if the frictional force is constant, the torque 

generated might not have changed. The 'twist blockage behaviour would 

then be constant, as observed. 

This result, however, relates to the similar experiment 

which was carried out on the acrylic yarn and which was discussed in 

detail in the previous chapter (section 5.9). 

6.15 Effect of 0 on twist blockage at different 

levels--of angle of wrap 0 

Early studies in the present thesis suggested that there is 

a correlation between the twist blockage and the ratio of the length of the 

contact region to the length of one turn of twist in the yarn. 
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FIG. 6.26: Effect of angle of wrap on twist 
gain at constant arc of contact, 
mean pressure and angle of orientation 
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It was suggested, therefore, that the increasing are of contact, 

as angle of wrap increases, may affect the twist blockage in the case of 

continuous filament yarn also. It is necessary, therefore, at this 

stage to determine experimentally the combined effect of varying the 

angle of wrap (deflection angle) and the angle of orientation ß on 

twist blockage since they both affect arc of contact and their separate 

effects have been studied earlier. 

A flat doubled 50 t/m continuous filament yarn (textured 

polyester) was used. The procedure was the same as in the previous 

experiments. 

It was easy to vary ß within ±70° with 15 settings. For 

0 the angles 30,60 and 90 ° were chosen. This brings the total number 

of observations to 45. 

6.15.1 Results 

Table 6.11 shows the relation between the three levels or 

angle of wrap 0 and the twist gain N with different angles of 

orientation ß. 

The results are plotted in Fig. 6.27. The general features 

of the graph show that 0 has only a minor effect on twist blockage 

behaviour. 

As seen in the previous section, the effect of 0 seems to be 

insignificant at 0= 00, and for positive values of 0. On the other 

hand, with 0 negative, a lower twist blockage was observed for 0= 

60°, the blockage at 0= 30° and 90° being similar. This lower 

blockage at 0= 600 cannot be explained. However, the pressure will 
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TABLE 6.11 

e° 30 60 90 

0 S N S N S N 

70 0.90 6.0 1.84 10.6 2.70 9.0 

60 0.42 8.0 0.84 7.5 1.26 5.6 
50 0.25 9.0 0.51 9.0 0.76 10.0 

40 0.18 7.0 0.36 11.0 0.54 8.4 

30 0.14 7.0 0.28 8.0 0.42 12.5 

20 0.12 11.0 0.24 16.6 0.36 10.6 

10 0.11 21.0 0.22 18.4 0.31 16.6 

0 0.11 20.0 0.21 20.6 0.31 21.0 

-10 0.11 25.0 0.22 23.0 0.32 26.0 

-20 0.12 30.0 0.24 28.5 0.36 33.0 

-30 0.14 40.0 0.28 31.0 0.42 41.0 

-40 0.18 47.0 0.36 25.0 0.54 37.0 

-50 0.25 41.0 0.51 39.0 0.76 45.0 

-60 0.42 45.0 0.84 34.4 1.26 49.0 

-70 0.90 44.0 1.80 40.0 2.70 46.6 

0= angle of wrap (degrees) 

ß= angle of orien tation (d egrees) 

S= length of arc of contac t (cm) 

N= twist gain (t/ m) 
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FIG. 6.27: Effect of positive and negative angles 
of orientation on twist gain at various 
levels of angle of wrap 
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vary over the contact region corresponding to the variation in the 

factors: ß (the angle of orientation), 0 (the deflection angle) 

and S (the are of contact) [Appendix I]. Thus, the magnitude of the 

twist blockage will be influenced by these factors. 

6.15.1.1 Effect of 0 on twist blockage in terms 

of length of arc of contact 

Table 6.11 shows also the relation between the length of 

arc of contact and twist gain N for the three levels of the deflection 

angle. Figure 6.28 demonstrates this relation. The graph shows that 

at ß positive there is a little difference between the twist blockage 

values for the three levels of deflection angle provided the length 

of contact is greater than 0.6 cm, but the arc of contact has a 

significant effect where S is shorter than this. 

On the other hand, for 0 negative, although the difference 

between the blockage levels for 0= 300 and 0= 90o is small for 

S>0.6 cm, a lower blockage is again observed when 0= 600. 

Table 6.12 shows the relation between the angle of 

orientation and the mean pressure for the three levels of bending 

angle together with the corresponding values of the twist gain. 

In fact, the pressure differences between the 300 

and 900 deflection angle is about 10% throughout the observation. 

A further result is, however, of particular interest. This 

concerns the isolation of the influence of the frictional force as it 

develops over the contact region corresponding to the variation of the 

length of arc of contact. 
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FIG. 6.28: Effect of positive and negative angles 
of orientation on twist gain in terms of 
the length of arc of contact at various 
levels of angle of wrap 
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TABLE 6.12 

e 30 60 90 

ß Pm N Pm N Pm N 

70 49.0 6.0 52.0 10.6 54.0 9.0 
60 105.0 8.0 110.0 7.5 116.0 5.6 

50 137.5 9.0 182.0 9.0 191.5 10.0 

40 246.0 7.0 259.0 11.0 272.0 8.4 

30 315.0 7.0 331.0 7.8 348.0 12.5 
20 371.0 11.0 389.0 16.6 409.0 10.6 

10 407.0 21.0 428.0 18.4 450.0 16.6 

0 420.0 20.0 441.0 20.6 463.0 21.0 

-10 407.0 25.0 428.0 23.0 450.0 26.0 

-20 371.0 30.0 389.0 28.5 409.0 33.0 

-30 315.0 40.0 331.0 31.3 348.0 44.3 

-40 246.0 47.0 259.0 24.7 272.0 36.8 

-50 137.5 41.0 182.0 38.8 191.5 44.7 

-60 105.0 45.0 110.0 34.4 116.0 49.0 

-70 49.0 44.4 52.0 40.3 54.0 46.6 

9= angle of wrap(degrees) 

ß= angle of orientation (degrees) 

Pm = mean pressure (gf/cm) 

N= twist gain (t/m) 
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6.16 Effect of angle of orientation on twist blockage 

at constant frictional force over the 

contact region 

In some of the previous experiments it had been thought 

that the effect of angle of orientation on twist blockage might have 

been influenced by variation in friction force arising from the change 

in 0. An experiment was, therefore, set up in which an effort was 

made to keep the frictional force. constant (=11 gf) whilst ß was 

varied. In order to do this it was necessary to adjust Ti and 

o as ß was changed. 

Eight values of Ti and 0 were chosen for the eight values 

of ß based on a subsidiary experiment to measure the coefficient 

of friction (Chapter 4, section 4.5). The yarn was 570/61 t/m singles 

and ply twist respectively (PET). 

Results are shown in Table 6.13 and in graphical form in 

Fig. 6.29. The figure shows the mean pressure Pm and the length of 

arc of contact S plotted against the angle of orientation 0 and 

corresponding angle of wrap 0 (equation 17, Appendix I). The graph 

illustrates the reduction of the mean pressure Pm and the increase 

in the length of arc of contact S respectively, as ß is increased 

negatively or positively. 

The curves were used to set up the appropriate values of 

Ti and 0 for the investigation of the effect of ß at constant 

frictional force. 

From Table 6.13, Fig. 6.30 is produced. 
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TABLE 6.13 

SN J3 RB Ti 0 P. 

70 1.70 245 10.0 147 0.31 6.6 

60 0.80 164 15.0 212 0.21 13.4 

50 0.48 125 19.0 270 0.16 32.5 
40 0.34 103 23.0 318 0.14 44.0 

30 0.27 90 26.0 358 0.12 57.2 

20 0.23 82 28.5 387 0.11 62.0 

10 0.21 78 29.5 403 0.11 97.2 

0 0.20 77 30.0 409 0.11 97.0 

-10 0.21 78 29.5 403 0.11 102.0 

-20 0.23 82 28.5 387 0.11 87.2 

-30 0.27 90 26.0 358 0.12 97.0 

-40 0.34 103 23.0 318 0.14 109.0 

-50 0.48 125 19.0 270 0.16 105.3 

-60 0.80 164 15.0 212 0.21 77.8 

-70 1.70 245 10.0 147 0.31 49.7 

O= angle of orientation (degrees) 

RB = radius of curvature (cm) 

Ti = initial tension (gf) 

6= angle of wrap (degrees) 

Pm = mean pressure (gf/cm) 

S= length of arc of contact (cm) 

N= twist gain (t/m) 
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FIG. 6.29: The relationship between the angle of 
orientation, the are of contact and mean 
pressure with varied angle of wrap at 
constant frictional force (11 gf measured) 
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FIG. 6.30: Effect of angle of orientation on twist 
gain and the relationship between the 
initial tension and angle of wrap at 
constant frictional force over the 
contact region 
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The experimental results indicate that the general 

characteristic behaviour of the twist blockage has been insignificantly 

changed from that observed previously. 

The change of the initial tension Ti is also plotted against 

ß and 0, and it is also of interest to note that the alteration of 

the yarn tension Ti as 0 has been changed, has had no effect on the 

twist blockage behaviour. In fact the lowest value of twist gain N 

is at the highest value of the initial tension i. e. at 0 equal 

to +700- 

6.17 Discussion 

On the evidence of this experimental data, the highest and 

lowest values of twist gain N were always at 0>0>30° and ß= +70 
0 

respectively in most of the previous experiments. It may be concluded, 

therefore, that the variation of the frictional force was not a major 

factor in determining the effect of 0 on twist blockage in the previous 

experiments. 

However, at this stage it may be also argued that the pressure 

reduction and/or the increase in lengths of are of contact Fig. 6.29 

may also have had an influence. In order to eliminate the effects 

of these two parameters, it was decided to extend the investigation 

with a constant mean pressure and length of are of contact. 

6.18 Effect of angle of orientation at constant mean 

pressure and constant length of arc of contact 

To carry out this experiment two levels of pressure had been 

set up at P -- 130 and 195 gf /cm, at a constant arc of contact equal 
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to 0.157 cm. 

The yarn used was the textured polyester (16.7 tex) 

570/2/71 t/m as previously. The values of the angle of wrap were 

calculated, according to the values of the angle of orientation, 

in order to keep the arc of contact constant (Appendix I). 

From values of 0 and ß, the value of the initial tension 

to keep the mean pressure over the contact region constant was 

calculated, assuming the coefficient of friction to be 0.211. 

6.18.1 Results and discussion 

The results are tabulated in Tables 6.14 and 6.15 where 

the initial tension Ti and twist gain N were plotted in Fig. 6.31 

against the angle of orientation ß. 

The graph shows that the twist gain decreases with positive 

increase of ß. On the other hand, the twist gain increases as 0 is 

increased negatively up to roughly 0= -400, and -500 for the lower 

and higher levels of the pressures respectively. This is followed by 

a rapid decrease of twist gain of about 60% and 70% for the lower 

and higher levels of pressure respectively. These relatively small 

differences between the sets of results for the two pressure levels 

are not regarded as significant. 

The data obtained from this experiment indicates that the 

reduction of the twist blockage is significantly dependent on 

neither the pressure nor the length of are of contact. It is, in 

fact, considerably dependent on the effect of angle of orientation, 

in other words, it is primarily influenced by the yarn's direction 
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TABLE 6.14 

B e Ti N 

70 
" 

5.3 330 12.5 
60 11.3 153 22.2 

50 18.6 91 33.2 
40 26.4 63 35.4 

30 33.8 49 43.8 

20 39.7 41 55.6 
10 43.7 37 59.0 

0 45.0 36 73.0 

-10 43.7 37 74.7 

-20 39.7 41 85.3 

-30 33.8 49 85.6 

-40 26.4 63 86.6 

-50 18.6 91 86.6 

-60 11.3 153 71.0 

-70 5.3 330 53.0 

Mean pressure Pm = 195 (gf/cm) 

Length of arc of contact S=0.157 (cm) 

Frictional force (measured) F=6.5 (gf) 
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I 

TABLE 6.15 

08 RB Ti NB N 

70 5.3 1.70 218.5 102.2 16.0 

60 11.3 0.80 101.4 113.0 30.6 

50 18.6 0.48 60.7 116.6 35.6 
40 26.4 0.34 42.0 120.3 37.0 

30 33.8 0.27 32.5 121.3 40.3 

20 39.7 0.23 27.4 125.6 45.3 

10 43.7 0.21 24.7 127.8 51.6 

0 45.0 0.20 24.0 130.0 66.6 

-10 43.7 0.21 24.7 142.5 68.5 

-20 39.7 0.23 27.4 149.0 80.0 

-30 33.8 0.27 32.5 145.6 74.4 

-40 26.4 0.34 42.0 151.3 85.6 

-50 18.6 0.48 60.7 151.3 77.8 

-60 11.3 0.80 101.4 141.0 72.0 

-70 5.3 1.70 218.5 126.0 41.6 

Length of arc of contact S=0.157 (cm) 

Mean pressure Pm = 130 (gf/cm) 

Mean frictional force 
(measured) F=4.3 (gf) 
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FIG. 6.31: Effect of angle of orientation on twist gain 
and relationship between the initial tension, 
angle of wrap and angle of orientation at 
constant value of length of arc of contact 
(0.157 cm) with two levels of mean pressure 
( 195 and 130 gf /cm) 
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of movement relative to the contact region. 

The graph obviously shows that the initial tension has 

increased roughly about nine times from 0=0o up to 700 in order 

to maintain constant pressure, but the twist gain still decreases 

as 0 positive increases. 

It was not possible to choose a higher value of the pressure 

because the values of the initial tension at 0= 700 would then 

be very high, possibly causing yarn or filament breaks. Lower 

values of tension could not be used at 0= 00, the initial tension 

would be too small to generate consistent twist blockage. 

6.19 Final conclusion 

The major factor influencing thg twist blockage behaviour 

is the angle of orientation (i. e. the yarn's directional movement 

over the contact region); the lowest twist blockage always occurred 

at 0= 700 under the conditions discussed before. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 
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7.1 Summary and conclusions 

In processes of yarn and fabric production, twist blockage 

is one of the important factors that may affect the quality of 

production for, in most such processes, yarn will have to change its 

direction around guides. This is increasingly true in modern yarn 

production for, with the increase of machine speeds, the yarn must 

change its direction, perhaps several times. if machine dimensions 

are to contain the necessarily longer processing zones. 

The work described in this thesis has been designed to 

investigate and to consider the interaction between threadline para- 

meters and different guide variables and their influence on twist 

blockage. The investigation can be divided into two parts. Firstly, 

the more basic parameters influencing the twist blockage over a 

contact surface have been considered. These have included angle of 

wrap, guide diameter, yarn tension and twist, but also combined 

parameters such as contact length, pressure over the contact region 

associated with the length of one turn of twist, and the frictional 

drag generated over the contact surface. 

Secondly, the interaction of yarn twist and direction (S or Z) 

with its orientation to the guide surface has been examined. 

These investigations have provided possible means for minimising 

or even overcoming the twist blockage problem. 

An apparatus was especially constructed to enable easy changes 

to be made in the process variables. 

Magnetic grippers were attached to the apparatus to achieve an 

accurate collection of twist samples before and after the contact 

I 
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region. Snatched samples were transferred to glass plates and twist 

was directly measured using a travelling microscope. Means were 

provided for simultaneous measurement of input and output tensions. 

The investigation was carried out at a fairly low speed which 

helped in the observation of yarn rotation and the behaviour of the 

twist before and after the contact surface. Wherever possible, samples 

were taken as the blocked twist reached its maximum level. 

It was recognised in a preliminary investigation that the length 

of the yarn in the testing zone might change according to the required 

testing conditions. With this in mind, the effect of variation of the 

length in the testing zone was examined. It was confirmed that there 

was no significant influence of test zone length on twist blockage 

behaviour. 

Earlier workers have suggested that the angle of wrap has the 

major influence on the twist blockage characteristic and that blockage 

increases with angle of wrap. In the present investigation, a different 

behaviour has been found, which contrasted with the previous data 

published in the literature. The results showed that the higher the 

angle of wrap, the lower the twist blockage. In fact, the combined 

effect of the angle of wrap (0) and guide radius (R) on increasing the 

length of contact, S=R. 6, consistently showed a lower tendency to 

generate twist blockage provided contact pressure was not increased. 

Most significantly, it was found that a marked twist blockage 

reduction was achieved when the length of arc of contact was greater 

than the length of one-half turn of the twist of the yarn under test, 

with a reduction of accumulation to approximately 50% of the highest 
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value. In effect the twist blockage was dependent on the 

comparative length of the contact zone and one half-turn of twist 

almost irrespective of the angle of wrap or guide diameter. 

It was considered that the prime factor was probably the 

number of contacts (cross-overs) arising from the interchange of 

yarn components due to twist over the contact surface. 

Before examining this factor in greater detail, however, it 

was necessary first to examine the effect of threadline tension, 

because tension influences the pressure forces between yarn and 

guide. Observation confirmed that the higher the initial tension, 

the higher the twist accumulation, especially with small-diameter 

guides, and the same tension with a guide of larger diameter gives 

a lower magnitude of twist accumulation. Thus, twist blockage 

is not only initial-tension dependent, but also depends on the size 

of the guide (R). The combination of the two factors determines 

the pressure (P) over the contact surface through the relation 

P=R. By varying the guide diameter with constant initial tension 

or vice versa, it was clearly demonstrated that the highest values 

of twist blockage occurred with the highest initial tension and 

smallest guide diameter; i. e., at highest initial pressure. In 

fact, the pressure over the contact surface is not constant and 

dependent only upon the initial tension and guide size but also 

varies with the tension distribution over the contact surface which 

is influenced by the guide/yarn friction. This is a function of the 

angle of wrap and the coefficient of friction. 
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The "mean pressure" was chosen as the realistic and 

convenient parameter since it takes into account the effect of the 

yarn/surface coefficient of friction in addition to the effect of 

the length of arc of contact. 

Following the information gained from investigation of the 

effects of mean pressure and length of arc of contact, the effect 

of angle of wrap was again examined. 

The mistake of previous investigators [40,54,55,62,63,65] 

was to investigate this parameter without regard to the other 

factors, such as the mean pressure and the length of contact region. 

A most interesting result was obtained when this factor was examined 

separately as it was confirmed that there was no significant 

independent effect of wrap angle on twist blockage behaviour. This 

result was obtained, of course, with the length of arc of contact 

and mean pressure as well as the frictional force over the contact 

surface held constant. 

The movement of twist in a yarn over a surface was found to 

be governed by two separate mechanisms. These were designated as 

the flattened and rotating or leakage mechanisms. 

The first mechanism occurs with low twisted yarn where the 

twist is insufficient to maintain a round cross-section, or with 

doubled structures. In this case, the movement of the twist, across 

the contact surface with the yarn flow, was hindered by the yarn 

flattening and consequent difficulty of interchange of yarn components. 

It was noticed, however, that because of the way in which the twist 

is pushed back upstream along the yarn, the yarn rotates rapidly before 
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the contact surface. The yarn moves substantially flat over the 

contact region. This behaviour was thus designated as the flattened 

mechanism. 

At medium or high pre-twist levels, in singles yarn, there 

will be a reduced tendency towards flattening and it will be easier 

for some twist to move forward with the flow of yarn. It was found 

that twist blockage levels were generally lower and, as a consequence, 

the yarn rotation in front of the contact region is less than at a 

lower pre-twist. Twist is more likely to be transferred with the yarn 

flow. The twist blockage forces appeared to be developed gradually 

over the contact surface and there was some yarn rotation on the 

surface and often a steady loss of blocked twist. The mechanism here 

was defined as the rotating or leakage mechanism. 

As the twist level in the yarn increases, the yarn will develop 

a more circular cross-sectional shape and the helical orientation of 

the surface fibres to the yarn axis will increase. Thus, the surface 

of the yarn appears to be a series of ridges at an angle to the 

direction of movement. In these circumstances, the yarn will be 

supported by these ridges and they will prevent the yarn components 

from lying side by side in contact with the surface, but it is 

postulated that lateral friction force may be generated causing the 

yarn to rotate. At this stage, the mechanism of blockage described 

as the rotating mechanism will exist., As mentioned above, it has been 

observed that when the length of are of contact was more than the 

length of one-half turn, flattening was less likely to occur, and the 

twist transfers with the yarn flow with a reduced twist congestion. 
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The two mechanisms, however, depend on a balance between the blocking 

torque generated on the guide surface and the torque required to 

rotate the yarn over the contact region. This rotating torque can 

only be generated by the accumulated twist. The flattened 

mechanism requires a greater generated torque to turn the yarn over. 

With the idea of better understanding the effect of the number 

of points of contact and helical surface structure on twist blockage 

mechanisms, a twisted yarn was pulled manually over a guide under a 

very low load. The yarn was found to displace laterally over the 

contact surface. This lateral movement of the yarn could be 

attributed to two possible but conflicting mechanisms. 

First, -because of the interaction of the surface asperities 

of the guide with the helical yarn structure, a lateral frictional 

force might be generated as described above. 

Secondly, if the yarn is rolling and rotating over the contact 

surface due to the false-twist effect of blocked twist, a component 

of frictional force orthogonal to the yarn axis could be generated. 

Only the second possibility was found to be compatible with the 

direction of forces and movements involved. To some extent, this 

throws into doubt the possibility of what has been described as the 

'rotating mechanism' of twist blockage. 

In order to study the torque required within the yarn to 

transfer the twist in the flattened mechanism a simple theory was 

developed to describe how an ideal two-fold yarn might rotate on a 

curved surface. The analysis revealed the existence of a critical 

deflection angle between the two yarn components, required to turn 
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the yarn over on the surface, of approximately 300. This angle is 

independent pf tension, yarn radius and guide radius. On the other 

hand, the torque required depends inversely on the square root of 

the guide radius. On the basis of this simple model, yarn with a 

high level of doubling twist may already generate an angle equal to 

or greater than required to overcome this mechanism of accumulation. 

At low levels of twist, however, the twist may be less than is 

required, then the blocking process will proceed until it reaches 

a sufficient value to generate this angle. 

It was discovered that another important feature of the twist 

blockage phenomenon is that, the twist blockage behaviour is highly 

sensitive to the relative orientation of the guide axis to the yarn, 

and to the direction of the yarn twist helix (S or Z). When these 

parameters were investigated at constant initial tension, guide 

diameter and angle of wrap, surprising results were found. When the 

angle of orientation ß was increased positively, the twist blockage 

steadily decreased to zero in most cases, whilst when the angle was 

increased negatively, the twist blockage increased at first prior to 

a rapid decrease, but never reached zero over the range studied. 

When the angle of orientation ß, is increased, the pressure 

decreases and length of arc of contact increases. In addition, the 

frictional force generated over the contact surface increases as the 

contact length increases. It was expected, therefore, that as the 

pressure decreases and the arc of contact increases, the twist blockage 

would decrease with increase of the angle of orientation whether 

positive or negative. 
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However, the data indicated that the reduction of twist 

blockage is substantially independent of either the pressure or the 

length of contact. 

When the 0 factor was investigated using S and Z doubled yarn, 

it was found that the twist blockage behaviour of z twisted yarn 

is generally opposite in direction to S twist. Although the twist 

blockage behaviour of S compared with Z doubled structures made from 

twistless singles was not fully symmetrical, symmetricality was 

achieved when the singles were twisted. 

After investigating various combinations of singles and doubling 

twist C(SS)S, (SS)Z, (ZZ)S and (ZZ)Z], it was concluded that the 

doubling twist is the dominant factor influencing the relationship 

between twist blockage and ß, regardless of whether the singles twist 

was in the same or opposite sense to the direction of the doubling 

twist. 

Mechanisms have been postulated to explain the effect of yarn/ 

guide orientation on blockage behaviour based on the interaction of 

the generators of the cylindrical guide with the twist of the yarn. 

When the guide generators lie in the valleys between the twisted 

singles components, a greater twist blockage is generated, but when 

the yarn is supported on the peaks of the twisted structure, blockage 

is reduced. 

To complete the picture of twist blockage behaviour under the 

influence of the ß factor, a comparison of a spun yarn and continuous 

filament yarn was made. The data obtained indicated that as long as 

the two yarns have the same twist factors in their singles and the 
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same doubling twist factors, the twist blockage behaviour will be 

the same. 

7.2 Final summary 

1. Twist blockage in a yarn depends on the generation of a torque 

due to contact between the yarn and guide surface. 

2. The level of blockage is determined by a balance between this 

torque and the torque generated within the yarn due to the 

increased twist. 

3" Two main mechanisms of blockage have been identified: 

(a) A flattening of the yarn on the guide surface pushes back 

twist until sufficient torque is generated within the yarn 

to rotate the yarn on the guide surface. 
I 

-, 
( 

(b) Lateral frictional forces may be generated due to interaction 

between the helical yarn surface structure and the guide 

surface generators or its surface roughness. These give rise 

to a twist blocking couple. 

4. In some cases the two mechanisms may be combined. 

5. The important basic parameters governing blockage are the angle of 

wrap, guide diameter, yarn tension and twist and orientation of 

yarn to guide. 

6. Although some of these parameters may have little independent effect, 

their combined effect in determining, for example, pressure between 

yarn and guide and length of yarn to guide contact are important. 

7. The orientation of yarn to guide has been shown to have a major 

influence and blockage can be minimised by choosing a suitable 

sense and angle of orientation. 
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7.3 Future work 

Although the present investigation has led to a greatly 

improved understanding of some of the mechanisms of twist blockage, 

its scope has necessarily been restricted both in respect of the 

yarns and the guide geometries and surfaces used in the 

experiments. 

Where the yarns are concerned, although one was a staple 

and the other a continuous filament material, both were of a 

relatively fine decitex value. The types and linear densities of 

the yarns used in the experiments could be usefully extended in any 

future investigation. 

The set of polished steel guides used in the experiments 

(from 2 mm to 10 mm in diameter) made it possible to study the 

effects of surface pressure and contact length over a relatively wide 

range. Their surface characteristics were, however, relatively 

unvarying. In contrast, the wide variety of size and surfaces of 

guides used in industrial practice will, almost certainly, have 

an equally wide range of surface finishes and frictional properties. 

Although one of the blockage mechanisms identified in the experiments 

is probably friction-independent to a substantial degree, yarn/guide 

friction played an important part in the other, both inherently, 

through the coefficient of friction Iand also through the interaction 

of yarn surface texture with guide-surface asperities. An investigation 

of the effects of guide surface material and finish would, therefore, 

be of great value. Allied to this, a study of the effects of yarn 

lubricants could be considered. 
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Industrial guides are rarely cylindrical in shape. In 

its passage over the surface of, for example, a grooved or 

flanged guide the orientation of the yarn to the surface could be 

continually varying. The experiments have shown the importance 

of the orientation of the yarn to the guide surface. It would be 

of great interest and practical value to establish whether the 

principles revealed in the experiments could be shown to apply to 

commercial guides of complicated shapes. 

The effect of yarn speed on twist blockage has only been 

investigated at speeds well below those commonly used in modern 

yarn processing. This was necessary in order to study the 

phenomenon adequately. Speeds closer to those used in modern 

processing could be usefully investigated, in spite of the apparent 

practical difficulties of experimentation. 

There are, however, two further major areas for future 

academic study. The first of these is to confirm that the forces 

and associated mechanisms of blockage, which have been postulated in 

the present study, operate quantitatively in the manner described. 

This can only be done by simultaneous measurement of the twist- 

blockage torque generated on the guide surface and the torque present 

in the twisted yarn itself. It has been pointed out that there is 

significant doubt as to the nature of the 'rotating' mechanism, in 

particular. 

The second, and more important area, concerns the dynamics 

of the process or the manner in which the blocking couples generate 

a gradual build-up of twist in the yarn to the point where the twist 
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begins to escape, perhaps suddenly, across the guide surface, and 

an oscillation may develop. On the one hand, during the blocking 

stage a gradual increase in yarn twist may, depending on yarn feed 

9 
condtions, be accompanied by a gradual increase in tension and, as 

the blocked twist escapes, by a rapid decrease in tension, with 

associated change in yarn length, pressure on the surface etc. 

These dynamic considerations will play an important part in 

determining the amplitude and frequency of twist irregularity in 

any yarns which have been subjected to blocked twist. This, in turn, 

could have an important influence on yarn processability and on 

final fabric appearance and acceptability. 
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APPENDIX I 

1. A derivation of capstan friction with reference 

to the frictional angle over the contact surface 

Figure I. 1 shows an element of yarn (ds) with a total angle 

of-wrap 9o around a cylinder of radius R. The tension at the ends of 

ds being T and T+OT. Due to the twist helix on the yarn surface, a 

frictional force F per unit length is assumed to be generated at an 

angle « to the yarn axis in a direction opposite to the direction of 

the yarn movement. This frictional force may be resolved into two 

components, one opposite to the yarn movement direction and the other 

in a direction perpendicular to the yarn movement. If P is the normal 

(pressure) force/unit length, then the usual equilibrium equations 

can be written. 

Fcose = 
dT 

_1 
dT 

ds R d6 

p= R 
(2) 

writing F= m[ 
nl (3) 

then F=mMn (q) 

from equation (1) 

lrdTl 
Ld-gj = mRRIncoso (5) 
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FIG. I. 1: Schematic diagram illustrating the 
direction of the frictional force over 
the contact surface 

T+AT 

guic 

V 

As 

\T 

F= frictional force (gf /u. L) 
w 

i= angle between the yarn axis and frictional force (radian) 

ds = unit length of the yarn (cm) 

T= tension (gf ) 

0= angle of wrap (radian) 
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Thus dT/Tn =m R1-ncos@dO 

e To 
(ýodT=mR1 _ncoso dA 

J Tn 

j 

Ti 0 

11n 
(To)1-n- (Ti)1-n _m R1-ncoso. 6o 

To1-n - Ti1-n = m(1-n)R1-nco5'. O0 

(5.1) 

or 
To 1_n R 1-n 

+ (1-n)m 
1 

coso. 6o Ti IT, ] 

In the limit as n approaches unity the equation can take [84,85] 

the form of 

] 
To _ Ti exp mT 

1-neosO"90 

T 
or 

0 
2 exp K6ocosO 

i 

which is similar to the usual capstan equation, where 

K_m 
R 1-n 
Ti (7) 

If the effective normal force (pressure/unit length) over the contact 
T 

surface is assumed to be equal to[ 1] 
R where Tm is the mean value of 

the total tension over the guide surface then: 
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6o 00 

Tý Td6 r d8 = 
fTiexP K. cosO. 6. d9 

/ 
90 

JJ 
000 

A 
T i 

exp K cos0.6 K6 
0 cosh 

0 

thus 

KO cost 
Tice 0 

-1' 
Tm K. 6 cost' 

0 

and 

(8) 

T T[eK 
9ocost 

-1 _F (9) 
m R"K"O. cosO R. K. O. cosm 

where F= the frictional force over the contact surface 

2. Estimation of the radius of curvature at angle 

of orientation 5t900 

Assume that the yarn is moving over the guide surface with a 
A 

helical path and with a (helix) angle (6) between the yarn axis and 

guide axis [103]. 

In Fig. I. 2a, AB is an intermediate section of yarn of length 

ds lying on the guide. The radius of curvature of the yarn path is 

derived as follows: 

MOQN is the axis of the yarn guide and ACD describes a 

circle of radius R and centre 0 in a plane perpendicular to the axis. 
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FIG. 1.2: A geometrical representation of the yarn 
helical path over a contact surface with an 
angle of orientation # 900 
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ds dh 
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dh/sin 6 
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r----- ds sin 6 
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open shape of the helical path 
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A parallel circle of radius R and centre Q passes through B. Rs is 

the radius of curvature of the coil, where the centre of curvature at A 

is at P and at B is at U; from Fig. I. 2b 

Rs 
AD (10 ) 7 AC 

From Fig. I. 2c 

AD = ds. csc 6 and AC = dS. sin6 

R 
"'" 

s csc26 R 
sin26 

then Rs = R. csc 
26 

(11) 

The angle of orientation which is experimentally measured is equal 

o to 0, where 6= 90-ß (12) 

Then substituting from (12) in (11) 

Rs = R. csc (90-0) =R sec 
2ß 

(13) 

Now consider the relationship 

S=R6 
0 

S= length of are of contact 

(14) 

However, when the yarn is inclined over the contact surface at angle ß, 

the angle of wrap will no longer be 00, but will be 6. This is 

because the angle of wrap is a function of the angle of orientation 
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As long as the angle of orientation increases, the radius of 

curvature R 
sincreases. 

If the length of contact increases, due to 

increase of radius of curvature, the arc will, therefore, be: 

R9 
30 

(15) 

If however, the length of arc of contact is constant and 0 is varying, 

the angle of wrap will vary as well as the radius of curvature, i. e. 

6<O and R<R 
09 

When S= then S=R6 
s 

(16) 

Substituting from (13) in (16) and equating with (14) then we get 

S= Rsec 2 ß"Ä = R8o 

"*" 8=0 /sec 2ß 

or 0=0 
ocos 

2B 
(17) 
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APPENDIX II 

A brief outline of a theory of twist blockage 

The purpose of this section is to review basic mechanics 

through which a theory of twist blockage might be developed. 

Basic problem 

A twisted yarn moves over a contact surface such as a guide, 

under tension. The twist tends to accumulate in front of the contact 

region leaving the yarn with a redistributed twist such that the twist 

over or after the contact surface is a minimum, whilst in front of the 

contact surface is a maximum. 

For the twist to move forward with the yarn movement without 

accumulation the yarn has to overcome the forces generated over the 

contact surface which are pushing back-the twist. This can be under- 

stood by studying the torsional-stresses over the contact surface 

which might affect the twist transfer, balanced against the stresses 

developed in the yarn by the twist accumulation in front of the 

contact surface. 

Theory 

It is convenient to divide the stresses acting on the yarn in 

contact with the surface into two contributions. 

The first contribution involves the tensile force and its 

dependencies over the contact surface, such as the normal force (pressure/ 

unit length), and the frictional force generated between the yarn and 

the contact region. 
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Generally speaking, the frictional drag over the contact 

surface has shown [90] a reduction in its magnitude as twist increases. 

During the measuring by other workers of frictional force generated 

between fibres, it was found [971 that the value of the frictional 

force was significantly influenced by the angle of inclination formed 

between the axes of fibres or bundles of fibres. 

In the present research, the total frictional force (F) 

generated by the sliding and rolling actions of the yarn over the 

contact surface was observed to be dependent upon the interaction 

between the yarn and contact surface geometry, (see section 5.11). 

In other words, the direction and level of the resultant frictional 

force is a function of the type (S or Z) and the level of the yarn 

twist (A) 

i. e. F= f(a) (1) 

In the calculation of the normal force (appendix I), instead of 

supposing the normal force to be applied to the total length of contact 

region, the normal force can be assumed to be distributed over the 

number of points or regions of contact of the twisted yarn over the contact 

length. In other words, the reaction force (contact force) over the 

number of points of contact (cross-ovens) may decrease as the. twist 

increases. 

i. e. P= f(a) (2) 

In addition, the geometrical cross-section of the yarn over the contact 

region will be different from the cross-section in front of it. 
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In fact, because of the pressure between the yarn and guide 

surface, the yarn cross-section may be assumed to be flattened to a more 

or less elliptical or race track section in the case of singles or a 

compressed side-by-side configuration in the case of two-fold. 

In the case of this distortion of the cross-section it-will 

tend to inhibit yarn rotation because of the internal friction which 

would be generated over the contact surface. In two-fold, the main 

mechanism may relate more closely to the components lying side-by-side 

on the guide surface but distortion may also play a part. 

In considering the stresses which will exist in the twisted 

yarn in front of the contact region a model of yarn structure must be 

used. Most investigators have considered the textile yarn as a uniform 

rod subjected to the laws of classical mechanics. 

The most appropriate equation which can be applied to the yarn 

subjected to tensile stresses has been derived by both Biot [98] and 

Goodier [991. 

The equation is concerning the torsional stiffness of a thin 

rod under an axial stress. The change of torque in a uniform elastic 

rod of twist (X) when subjected to a twist change (da) may be expressed 

as: 

dM = (GJ + 6I)dX (3) 

where G= the shear modulus of material 

J= the torsional stiffness factor 

6= the axial stress 

I= the polar moment of inertia of rod 
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In the case of a pre-twisted yarn, Chu[1001 has shown that 

the torsional stiffness (J) could be a function of the twist and may 

be expressed as follows: 

If the torsional stiffness factor of untwisted rod is J, 

then J is the torsional stiffness factor with a pretwist (X0). 

For a circular cross-section rod, the equation may be written 

as follows: 

r2X 
J=J1+ \S o 

02 
(4) 

It is assumed that under the tensile forces, the yarn will act as a 

thin solid rod, and in the case of plied yarn (n ply) the torque 

generated is shared equally between the number of singles twisted yarn. 

Bennett [92] and his colleague calculated the torques generated 

in the single and plied yarn by the two following equations: 

1. The torque generated in the single yarn is equal to 

dM 2 
Isis 

dT 3a r 
ss 

2. The torque generated in the plied yarn is equal to 

dM 2 IpXp 

dT 3 An rs p 

Then the total torque generated in the plied yarn will be: 

dM 2 +_ 
IPIP 

d- 3xr Isis 
n s 
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where Ts and Tp are the tension in the single and plied yarn 

respectively. 

Ip and I. are the polar moment of inertia of the plied and 

single yarn respectively. 

ap and As are the twist in the plied and single yarn 

respectively. 

rs is the single yarn radius. 

When Bennett and his colleague considered the condition at 

which the torsion in the plied yarn becomes insensitive to changes 

in tension i. e. for which 

dM 
dT 

The relationship between the polar moment of inertia of the single 

and plied yarn was deduced as follows: 

By equating equation (7) with zero, then 

IA 
sp 

I= -n ý 
ps 

(8) 

The negative sign depends on the direction of the ply yarn twist 

relative to the single yarn twist. 

By substituting equations (4,8) in equation (3), it can be 

written as: 

r21 IPA ) dM = 
{GJ0 (1 + s2°g+ (na )} dA(9 ) 

s 111 

where Xos is the pretwist of the single yarn 
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If Ap is the cross-section area of the plied yarn, the 

tensile stress (a) will be equal to: 

T 
o- ý1 (10) 

P 

where Ti is the initial tension. 

By substituting equation (10) in equation (9) we get: 

1+r2X TIA) 
dM = 

{GJ 
o(2 

os) 
+ (-n 

AP 
P) dXs (11) `J 

ApsI 

The torque in any real yarn will be the sum of the three 

torque components, i. e. due to torsion, shear and bending. The first 

two are given in equation (11). The third component (bending) can be 

considered to be negligible with respect to other torque components. 

This is because torsion is the major contributor [1013, especially at 

low helix angles. 

Depending on the situation over the contact surface, a 

torque Mo is generated which tends to prevent the twist from moving 

forward with the yarn movement. Nevertheless, the torque generated 

within the twisted yarn in front of the contact region, given by 

equation (11), tends to push the twist forward with the yarn. 

In principle, by equating these two moments it should be possible 

to predict the twist blockage behaviour. 

However, there are so many 'unknowns' that this is not possible 

in practice. 


