
Child Prime Label Approaches to
Evaluate XML Structured Queries

Shtwai Abdullah Alsubai

Department of Computer Science

the University of Sheffield

This thesis is submitted for the degree of

Doctor of Philosophy

March 2018

I would like to dedicate this thesis to my beloved father, mother, wife and son.

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this thesis are original and have not been submitted in whole or in part for
consideration for any other degree or qualification in this, or any other university. This
thesis is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text. This thesis contains fewer than
130,000 words including appendices, bibliography, footnotes, tables and equations and has
fewer than 150 Figures.

Shtwai Abdullah Alsubai
March 2018

Acknowledgements

First and foremost, all praises to ALLAH for the strengths and blessing in completing this
research.

At the completion of this work I would like to acknowledge my supervisor Dr. Siobhán
North for her guidance and continuous support in overcoming numerous obstacles I have
been facing through my research. I am also grateful to the members of my committee for
their valuable guidance during our meetings the last three years.

I would like to express my very profound gratitude to my parents and wife for providing
me with unfailing support and continuous encouragement throughout my years of study
and through the process of researching and writing this thesis. Their unconditional love,
patience and consistent support enable me to complete this research. A special thank is
due to the joy of my life, my son Abdullah who has given me much happiness and keeps
me hopping.

Last but not least, many thanks for brothers and sisters for supporting me spiritually
throughout writing this thesis and my life in general.

Abstract

The adoption of the eXtensible Markup Language (XML) as the standard format to store
and exchange semi-structure data has been gaining momentum. The growing number of
XML documents leads to the need for appropriate XML querying algorithms which are
able to retrieve XML data efficiently. Due to the importance of twig pattern matching

in XML retrieval systems, finding all matching occurrences of a tree pattern query in an
XML document is often considered as a specific task for XML databases as well as a core
operation in XML query processing.

This thesis presents a design and implementation of a new indexing technique, called
the Child Prime Label (CPL) which exploits the property of prime numbers to identify
Parent-Child (P-C) edges in twig pattern queries (TPQs) during query evaluation. The CPL
approach can be incorporated efficiently within the existing labelling schemes. The major
contributions of this thesis can be seen as a set of novel twig matching algorithms which
apply the CPL approach and focus on reducing the overhead of storing useless elements
and performing unnecessary computations during the output enumeration. The research
presented here is the first to provide an efficient and general solution for TPQs containing
ordering constraints and positional predicates specified by the XML query languages.

To evaluate the CPL approaches, the holistic model was implemented as an experi-
mental prototype in which the approaches proposed are compared against state-of-the-art
holistic twig algorithms. Extensive performance studies on various real-world and arti-
ficial datasets were conducted to demonstrate the significant improvement of the CPL
approaches over the previous indexing and querying methods. The experimental results
demonstrate the validity and improvements of the new algorithms over other related meth-
ods on common various subclasses of TPQs. Moreover, the scalability tests reveal that the
new algorithms are more suitable for processing large XML datasets.

Table of Contents

List of Figures xvii

List of Tables xxv

1 Introduction 1
1.1 Introduction . 1
1.2 Thesis Outline . 2
1.3 Publications . 3

1.3.1 Poster . 3
1.3.2 Peer Reviewed Papers . 3

1.4 Conclusion . 4

2 XML Databases’ Background 5
2.1 Introduction . 5
2.2 The Concepts of XML Databases . 5

2.2.1 XML Enabled Databases (XED) 6
2.2.2 Native XML Databases (NXD) 7
2.2.3 XML Syntax . 7

2.2.3.1 XML Elements . 8
2.2.3.2 XML Attributes . 9

2.2.4 XML Tree Structure . 9
2.2.5 XML Schema . 11
2.2.6 Summary . 11

2.3 XML Parsing . 12
2.4 XML Query . 14

2.4.1 XPath . 15
2.4.2 XQuery . 18

2.5 Conclusion . 19

3 Related Work on XML Query Processing 21
3.1 Introduction . 21
3.2 XML Query Processing . 21

3.2.1 XML Indexing . 23

xii Table of Contents

3.2.2 XML Keyword Search . 28
3.3 Tree Matching . 29

3.3.1 Approximate Matching . 30
3.3.2 Exact Matching . 31

3.3.2.1 Binary Structural Join Approaches 32
3.3.2.2 Holistic Structural Join Approaches 35
3.3.2.3 Sequence-Based Approaches 50

3.4 Conclusion . 51

4 Research Hypothesis and Methodology 53
4.1 Introduction . 53
4.2 Research Problems and Motivation . 54

4.2.1 Determination of the Basic Structural Axes 56
4.2.2 Ordered Twig Pattern Query and Positional Predicates 64
4.2.3 Combination of Different Filtering Strategies 72

4.3 Research Methodology . 77
4.3.1 Research Questions . 79
4.3.2 Research Hypothesis . 81

4.4 The Scope of the Research . 82
4.5 The Main Objectives for the Solution 82

4.5.1 Extending the Existing Labelling Schemes 83
4.5.2 Improving the Structural Match of TPQ 83

4.6 Conclusion . 83

5 Experimental Framework 85
5.1 Introduction . 85
5.2 Holistic Model Overview . 86

5.2.1 Storage Model . 88
5.2.1.1 The XML Parser . 88
5.2.1.2 Node Labelling Scheme 89
5.2.1.3 Data Partitioning Scheme 92
5.2.1.4 Tag Indexing . 95

5.2.2 Execution Model . 95
5.2.2.1 Query Constructor . 95
5.2.2.2 Query Processor . 97
5.2.2.3 Basic Two-Phase Approach 97
5.2.2.4 Ordered Two-Phase Approach 97
5.2.2.5 Basic One-Phase Approach 98
5.2.2.6 Ordered One-Phase Approach 98
5.2.2.7 Positional One-Phase Approach 99

5.3 The Implementation of the Experimental Framework and Testing Platform 99

Table of Contents xiii

5.3.1 The Storage Model . 99
5.3.2 The Execution Model . 99
5.3.3 Platform Setup . 100
5.3.4 Testing the Holistic Model . 100

5.4 An Overview of XML Datasets . 101
5.4.1 Real-World Datasets . 101

5.4.1.1 DBLP Dataset . 101
5.4.1.2 TreeBank Dataset . 102
5.4.1.3 Protein Sequence Dataset 102
5.4.1.4 NASA Dataset . 102
5.4.1.5 SwissProt Dataset . 102
5.4.1.6 SIGMOD Record Dataset 103
5.4.1.7 Mondial Dataset . 103

5.4.2 Benchmark Datasets . 106
5.4.2.1 XMark Benchmark 106
5.4.2.2 XOO7 Benchmark . 106
5.4.2.3 TPoX Benchmark . 106
5.4.2.4 XBench Benchmark 107
5.4.2.5 XMach-1 Benchmark 107
5.4.2.6 The Michigan Benchmark 107

5.4.3 Synthetic Datasets . 108
5.4.3.1 Random Dataset . 108
5.4.3.2 Zipf Dataset . 109

5.4.4 The Experimental Datasets . 109
5.5 Data Analysis . 112
5.6 Conclusion . 114

6 Top-Down Approach based on Child Prime Labels 115
6.1 Introduction . 115
6.2 Preliminaries . 116

6.2.1 Notation . 116
6.2.2 Motivation and Limitations of TwigStack 117

6.2.2.1 Straightforward Example 118
6.3 Child Prime Labels . 120

6.3.1 Properties of Child Prime Label 123
6.4 Holistic Twig Matching Algorithm with Child Prime Label 127

6.4.1 Top-Down Twig Matching Algorithm: TwigStackPrime 127
6.4.2 Analysis of TwigStackPrime . 133

6.5 Experimental Evaluation . 137
6.5.1 Experimental Setting . 138

6.5.1.1 XML Datasets and Queries 138

xiv Table of Contents

6.5.1.2 Metrics . 139
6.5.2 Experimental Results . 141

6.5.2.1 DBLP . 141
6.5.2.2 XMark . 144
6.5.2.3 TreeBank . 146
6.5.2.4 Random . 148
6.5.2.5 Scalability . 151

6.5.3 Summary . 151
6.6 Conclusion . 154

7 Ordered Twig Pattern Matching: Top-Down Approach 155
7.1 Introduction . 155
7.2 Ordered Twig Pattern . 156

7.2.1 Notation and Data Structure . 158
7.2.2 Motivation . 159

7.3 Holistic Ordered Twig Matching algorithms 162
7.3.1 Ordered Twig Matching Algorithm: OTJPrime 162
7.3.2 Ordered Twig Matching Algorithm: OTJPrimeList 167
7.3.3 Analysis of Ordered Twig Matching Algorithms 172

7.4 Experimental Evaluation . 179
7.4.1 Experimental Results . 179

7.4.1.1 XMark . 180
7.4.1.2 TreeBank . 183
7.4.1.3 Random . 187
7.4.1.4 Scalability . 190

7.4.2 Summary . 193
7.5 Conclusion . 193

8 Twig Pattern Matching: Bottom-Up Approach 195
8.1 Introduction . 195
8.2 Preliminaries . 196

8.2.1 Notation and Data Structure . 196
8.2.2 Motivations . 198

8.3 Bottom-Up Twig Matching Algorithm with Child Prime Label 203
8.3.1 Bottom-Up Twig Matching Algorithm: TwigPrime 203

8.3.1.1 Analysis of TwigPrime 209
8.4 Experimental Evaluation . 213

8.4.1 XML Datasets and Queries . 213
8.4.2 Metrics . 214
8.4.3 Experimental Results . 215

8.4.3.1 DBLP . 215

Table of Contents xv

8.4.3.2 XMark . 219
8.4.3.3 TreeBank . 223
8.4.3.4 Random . 227
8.4.3.5 Zipf . 231
8.4.3.6 Scalability . 238

8.4.4 Summary . 244
8.5 Conclusion . 244

9 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach 245
9.1 Introduction . 245
9.2 Preliminaries . 246

9.2.1 Notation and Data Structure . 246
9.2.2 Motivation . 248

9.3 Child Prime Label Approaches to support Ordered and Positional TPQs . 252
9.3.1 Ordered Bottom-Up Twig Matching Algorithm 252
9.3.2 Ordered and Positional Bottom-Up Twig Matching Algorithm . . 254
9.3.3 Analysis of Ordered and Positional Twig Matching Algorithms . . 268

9.4 Experimental Evaluation . 272
9.4.1 Experiment 1: Ordered Twig Queries 274

9.4.1.1 Experimental Results 274
9.4.1.2 XMark . 274
9.4.1.3 TreeBank . 277
9.4.1.4 Random . 280

9.4.2 Experiment 2: Ordered/Positional Twig Queries 282
9.4.2.1 XMark . 283
9.4.2.2 TreeBank . 285
9.4.2.3 Random . 287

9.4.3 Scalability . 290
9.4.4 Summary . 293

9.5 Conclusion . 293

10 The Overall Evaluation 295
10.1 Introduction . 295
10.2 The Objective of the Experiments . 296

10.2.1 The Strategy of the Experimental Evaluation 296
10.3 Evaluation From Different Perspective 297

10.3.1 Top-Down Approaches for the Basic Structural Axes 298
10.3.2 Top-Down Approaches for Ordered Constraints and Positional

Predicates . 300
10.3.3 Bottom-Up Approaches for the Basic Structural Axes 301

xvi Table of Contents

10.3.4 Bottom-Up Approaches for Ordered Constraints and Positional
Predicates . 304

10.4 Features and Limitations of the Experiments 305
10.4.1 Features of the Experiments . 305
10.4.2 Limitations of the Experiments 306

10.5 The Main Findings of the Experiments 307
10.6 Conclusion . 307

11 Conclusion and Future Work 309
11.1 Introduction . 309
11.2 Thesis Summary . 309
11.3 Main Research Contributions . 311
11.4 Future Work . 312
11.5 Finally . 313

References 315

Appendix A Top-Down Holistic Approaches Full results 335

Appendix B Ordered Top-Down Holistic Approaches Full results 337

Appendix C Bottom-Up Holistic Approaches Full results 347

Appendix D Ordered and Positional Bottom-Up Holistic Approaches Full re-
sults 359

List of Figures

2.1 An example of XML data representing an inproceedings element in the
DBLP document. 8

2.2 The tree representation of the XML document in Figure 2.1 10
2.3 A fragment of the DBLP schema corresponding to data provided in Figure

2.1 . 12
2.4 An illustration of the DOM tree for an XML file. 13
2.5 SAX events for an XML document. 14
2.6 The thirteen axes supported by XPath. 16
2.7 The most common symbols and functions used in XPath expressions. . . 16
2.8 An example of XPath tree model . 16
2.9 An example of XML tree T1. 17
2.10 An example of XPath tree model . 17
2.11 An example of XQuery and its tree model 18

3.1 An example of XML tree T1 and a TPQ Q1 with matches. The output
query nodes are underlined. 23

3.2 Structural summaries for the XML tree T1 in Figure 3.1. 24
3.3 labelling schemes for the XML tree in Figure 3.1. 26
3.4 An illustration to PRIX. 28
3.5 An example of exact matching process (exact mapping). 31
3.6 Streams containing range-based labels for five distinct tags in the XML

tree in Figure 3.3. 32
3.7 Illustration to PathStack. 34
3.8 Stack items with final self-list and inherit-list for the XML data and query

in Figure 3.7. 34
3.9 Illustration of different partitioning schemes. 37
3.10 Illustration of Twig2Stack and TwigList. 41
3.11 Illustration of level split list approach introduced in [89]. 42
3.12 Illustration of ordered twig queries. "<" is used to identify ordered branch-

ing query nodes. 44
3.13 (a) QueryGuide as structural summary and (b) its corresponding label lists. 48
3.14 Illustration of false positive problem in ViST [188]. 50

xviii List of Figures

4.1 (a) sample of an XML tree and (b) its DataGuide 55
4.2 A grammar of TPQ . 56
4.3 (a) sample of a twig pattern with formula F and (b) its optimised transfor-

mation to more readable one. 58
4.4 An XML tree. 59
4.5 Illustration of an ordered twig query with LR ordering. The dashed arrow

lines indicate LR ordering between query nodes. 66
4.6 The difference between an unordered twig and an ordered twig. 69
4.7 Illustration of ordered twig match shown in dashed lines. 69
4.8 A sample of an XML data tree and twig pattern queries with positional

predicates. The edges associated with the positional predicates are unla-
belled while edges labelled with "*" should be checked after satisfying the
positional predicate. 69

4.9 Illustration of an ordered twig query with LR and SLR ordering. The
dashed arrow line indicates LR ordering, while the solid arrow lines indi-
cate SLR ordering. 70

4.10 A grammar of TPQ with order-constraints and positional predicate. 71
4.11 The semantics of order constraints imposing in two different ways. In

the first path expression using << operator, the processing can be made
using the existing algorithms with post-processing operation to prune false
positives regarding document order, while the second expression requires
a modification to the structural relationship between a-node and r-node in
order to produce the accurate result. The dashed arrow lines indicate the
query matches. 72

4.12 Inefficiency of top-down filter strategy. 74
4.13 TJStrictPre algorithm state when evaluating the twig query q1 against the

XML tree t1 of Figure 4.12. The interval pointers are shown in dashed lines. 74
4.14 Illustration to GTPStack operations for the data tree and the twig pattern

query of Figure 4.12. (a) GTPStack right before xn+1 is about to be
processed. (b) GTPStack after all elements has to be read. (c) the final
intermediate storage read for enumeration. 75

4.15 Different node push order and node pop order sequences in the literature.. 77

5.1 The framework of holistic model. 86
5.2 A fragment of document and partition index for a sample of XML tree. . . 87
5.3 A holistic join versus binary structural joins from query plan point of view. 87
5.4 A grammar of XML query expression used in this holistic model. 96
5.5 A twig representation of an XML query in example 5.1. 97

6.1 Tag Streaming Model of a query node q. 117
6.2 Illustration of the suboptimal processing of TwigStack. 119

List of Figures xix

6.3 Illustration of TwigStack operations. 120
6.4 An XML tree labelled with range-based augmented with CPL and the

corresponding tag indexing. 123
6.5 The improved approach to label the XML tree in Figure 6.4. 126
6.6 Illustration to TwigStackPrime processing of Q1 on T1 in Figure 6.2. . . . 131
6.7 An example to illustrate a case when useless paths may be produced. . . . 131
6.8 Illustration to TwigStackPrime processing of Q1 on T2 in Figure 6.7a. . . 132
6.9 Illustration to the difference between TwigStackList [144] and TwigStack-

Prime. 140
6.10 The number of intermediate single paths generated by each algorithm for

the queries tested over DBLP. "Actual" represents the number of path
solutions relevant to the query results. 142

6.11 Query processing time of the algorithms compared for TPQs against DBLP.143
6.12 The number of intermediate single paths generated by each algorithm for

the queries tested over XMark. "Actual" represents the number of paths
appearing in the final matches. 144

6.13 Query processing time of the algorithms compared for TPQs against XMark.145
6.14 The number of intermediate single paths generated by each algorithm for

the queries tested over TreeBank. "Actual" represents the number of paths
contributing in the final matches. 146

6.15 Query processing time of the algorithms compared for TPQs against Tree-
Bank. 148

6.16 The number of intermediate single paths generated by each algorithm for
the queries tested over Random. "Actual" represents the number of paths
contributing in the final matches. 149

6.17 Query processing time of the algorithms compared for TPQs against Random.150
6.18 Scalability comparison for XMark datasets. 152
6.19 Scalability comparison for Random datasets. 153

7.1 Illustration of ordered TPQs with a following-sibling or preceding-sibling

axis following a query node in A-D edge. The solid arrows indicate SLR
ordering. (a) and (c) represents the novel approach, whereas b and d shows
the work of [173]. 157

7.2 An example of embedding the document node in the twig to convey the
semantics of ordered axes related to the root query node. The dotted
arrow indicate the LR ordering constraint. The double-head, dotted arrow
indicates the SeqLR constraints for Q2. 158

7.3 Ordered Twigs and ordered aware Twigs. 159
7.4 Ordered aware Twig in (a) and conventional twig representation of Q4 in (b).161
7.5 Illustration to ordered extension. 166

xx List of Figures

7.6 An example of inefficient processing using the ordered extension among
head elements. 167

7.7 Hard case with restricted memory (i.e., the OTJPrime algorithm). It can
not be known whether x1, . . . ,xn are useless before y1 is processed, or
whether y1, . . . ,ym are useless before x1, . . . ,xn are processed. 168

7.8 Illustration to the extraFiltering function used by OTJPrimeList. (a) and
(b) illustrate the use of temporary streams for query nodes y and x. (c)
depicts the status after filtering the streams. 169

7.9 An example to illustrate the effect of OTJPrimeMultiLists. 170
7.10 Illustration to extraFiltering function used by OTJPrimeMultiLists. 171
7.11 An example to illustrate Lemma 7.14. 173
7.12 An example of ordered query Q4. The path solution ending at y1 can

merge with the path solutions ending at x1 and x2, while the path solution
involving y2 can only be merged with x2 to compute answers to Q4 in T7. . 175

7.13 Ordered TPQs tested over XMark dataset. The useful paths are the root-to-
leaf paths which can be merged in order to produce the final result. "Result
size" is the matching result of a twig pattern query. 180

7.14 The number of intermediate path solutions generated by each algorithm for
the queries tested over XMark. "Actual" represents the number of paths
appearing in the final matches. 181

7.15 Query processing time of the algorithms compared for OTPQs against
XMark. 182

7.16 Ordered TPQs tested over TreeBank dataset. The useful paths are the
root-to-leaf paths which can be merged in order to produce the final result.
"Result size" is the matching result of a twig pattern query. 183

7.17 The number of intermediate path solutions generated by each algorithm
for the queries tested on the TreeBank dataset. "Actual" represents the
number of paths appearing in the final matches. 184

7.18 Query processing time of the algorithms compared for OTPQs on TreeBank.186
7.19 Ordered TPQs tested over Random dataset. The useful paths are the root-

to-leaf paths which can be merged in order to produce the final result.
"Result size" is the matching result of a twig pattern query. 187

7.20 The number of intermediate path solutions generated by each algorithm for
the queries tested on the Random dataset. "Actual" represents the number
of paths appearing in the final matches. 188

7.21 Query processing time of the algorithms compared for OTPQs on TreeBank.189
7.22 Scalability comparison for XMark datasets. 191
7.23 Scalability comparison for Random datasets. 192

8.1 An example to illustrate the child and descendant intervals in bottom-up
holistic algorithms. 197

List of Figures xxi

8.2 Illustration to child and descendant intervals using a level split and simple
lists. 197

8.3 Illustration of TJStrictPre and GTPStack algorithms using the level split
approach. 198

8.4 Illustration of TJStrictPre evaluating Q1 on T2 of Figure 8.3. 201
8.5 Illustration of GTPStack evaluating Q1 on T2 of Figure 8.3. 202
8.6 An example to illustrate tail pointers for level split data structure. 204
8.7 Intervals for intermediate result handling approaches after processing f1. . 204
8.8 An example to illustrate the basic notations of TwigPrime. 209
8.9 Bottom-up algorithms and their corresponding intermediate storages for

processing Q2 against T3 in Figure 8.8. 210
8.10 The number of elements stored in the intermediate storage by each algo-

rithm for the queries tested over DBLP. "Actual" represents the number of
elements relevant to the query results. 216

8.11 Query processing time of the algorithms utilising the simple list approach
in (a) and the level split approach in (b) against the DBLP dataset. 218

8.12 The number of elements stored in the intermediate storage by each algo-
rithm for the queries tested over XMark. "Actual" represents the number
of elements relevant to the query results. 219

8.13 Query processing time of the algorithms using the simple list approach in
(a) and the level split approach in (b) against the XMark dataset. 222

8.14 The number of elements stored in the intermediate storage by each algo-
rithm for the queries tested over the TreeBank document. Actual represents
the number of elements relevant to the query results. 223

8.15 Query processing time of the algorithms using the simple list approach in
(a) and the level split approach in (b) against the TreeBank dataset. 226

8.16 The number of elements stored in the intermediate storage by each algo-
rithm for the queries tested over the Random dataset. "Actual" represents
the number of elements relevant to the query results. 227

8.17 Query processing time of the algorithms using the simple list approach in
(a) and the level split approach in (b) against the Random dataset. 230

8.18 The number of elements stored in the intermediate storage by each algo-
rithm for the queries tested over the Zipf dataset. Actual represents the
number of elements relevant to the query results. 234

8.19 The number of elements stored in the intermediate storage by each algo-
rithm for the queries tested over the Zipf dataset. "Actual" represents the
number of elements relevant to the query results. 235

8.20 Query running time of the algorithms against the Zipf dataset. 236
8.21 Query processing time of the algorithms against the Zipf dataset. 237
8.22 Scalability comparison for XQ1 against XMark datasets. 240

xxii List of Figures

8.23 Scalability comparison for XQ6 against XMark datasets. 241
8.24 Scalability comparison for RQ5 against Random datasets. 242
8.25 Scalability comparison for RQ9 against Random datasets. 243

9.1 A sample of an XML data tree and twig pattern queries with positional
predicates. The edges associated with the positional predicates are unla-
belled while edges labelled with "*" should be checked after satisfying the
positional predicate. 247

9.2 Illustration of TwigPos processing following-sibling. 250
9.3 Illustration of TwigPos processing positional predicate. Evaluation of Q3

against T1 of Figure 9.1. 251
9.4 An example to explain the basic ideas of OTwigPrimeList when processing

Q1 against T2 in Figure 9.2. 253
9.5 An example of OTwigPrimeList using the level split approach to buffer

elements for Q1 against T2 in Figure 9.2. 254
9.6 Hard case with the original getMatch and the CPL approach to support po-

sitional predicates with a combination of pre-structural and post-structural
constraints. 255

9.7 Problematic case with ordered extension introduced in Chapter 7 and
positional predicates . 257

9.8 An example of maintaining the number of mismatching siblings in preorder
and postorder filtering. 266

9.9 An example of processing a//d with positional predicate. 267
9.10 Illustration to the difference between TwigPos [70] and OPTwigPrime. . . 267
9.11 An example to illustrate the difference between positional predicates on

basic axes as in Q1 and ordered axes as in Q2. 271
9.12 The number of elements stored in the intermediate storage by each algo-

rithm for the ordered queries tested over the XMark collection. "Actual"
represents the number of elements relevant to the ordered query results. . 275

9.13 Query processing time of the algorithms compared for OTPQs against
XMark. 276

9.14 The number of elements stored in the intermediate storage by each algo-
rithm for the ordered queries tested over the TreeBank document. "Actual"
represents the number of elements relevant to the ordered query results. . 278

9.15 Query processing time of the algorithms compared for OTPQs against the
TreeBank document. 279

9.16 The number of elements stored in the intermediate storage by each algo-
rithm for the ordered queries tested over the Random dataset. "Actual"
represents the number of elements relevant to the ordered query results. . 281

9.17 Query processing time of the algorithms compared for OTPQs against the
TreeBank document. 282

List of Figures xxiii

9.18 The number of elements stored in the intermediate storage by each algo-
rithm for the ordered queries tested over the XMark collection. "Actual"
represents the number of elements relevant to the query results. 283

9.19 Query processing time of the algorithms compared for Ordered/Positional
over the XMark document. 284

9.20 The number of elements stored in the intermediate storage by each algo-
rithm for the ordered queries tested over the TreeBank document. "Actual"
represents the number of elements relevant to the ordered query results. . 286

9.21 Query processing time of the algorithms compared for Ordered/Positional
TPQs against TreeBank. 287

9.22 The number of elements stored in the intermediate storage by each al-
gorithm for the ordered queries tested over the Random dataset. Actual
represents the number of elements relevant to the ordered query results. . 288

9.23 Query processing time of the algorithms compared for Ordered/Positional
TPQs against the Random dataset. 289

9.24 Scalability comparison for OXQ1 and ORQ7 against XMark and Random
datasets, respectively. 291

9.25 Scalability comparison for PXQ3 and PRQ4 against XMark and Random
datasets, respectively. 292

10.1 The experimental results of top-down approaches for TPQs with {/,//,[]}. . 299
10.2 The experimental results of top-down approaches for TPQs with ordered

axes and sequence operators. 301
10.3 The experimental results of bottom-up approaches for TPQs which use

only the P-C and A-D axis. 303
10.4 The experimental results of bottom-up approaches for OTPQs. 304
10.5 The experimental results of bottom-up approaches for ordered and posi-

tional TPQs. 305

11.1 Illustration to the CPL partitioning scheme. 314

C.1 The number of elements stored in the intermediate storage by each algo-
rithm for the queries tested over DBLP. Actual represents the number of
elements relevant to the query results. 349

C.2 The number of elements stored in the intermediate storage by each algo-
rithm for the queries tested over XMark. Actual represents the number of
elements relevant to the query results. 349

C.3 The number of elements stored in the intermediate storage by each algo-
rithm for the queries tested over the TreeBank document. Actual represents
the number of elements relevant to the query results. 350

xxiv List of Figures

C.4 The number of elements stored in the intermediate storage by each algo-
rithm for the queries tested over the Random dataset. Actual represents
the number of elements relevant to the query results. 350

List of Tables

4.1 A summary of previous algorithms and their filtering properties. 63
4.2 Semantics of sibling axes between two query nodes u and v. 67
4.3 Classification of holistic twig join algorithms according to their node

processing order. 76

5.1 Features of two examples of XML datasets in terms of the number of
labelled elements and inverted lists. E-T stands for elements and text
values are encoded separately, while E&T means text nodes are combined
with their parent elements. 95

5.2 Characteristics of the existing real-world XML documents. 104
5.3 Characteristics of the existing Benchmarked XML datasets. 105
5.4 Statistical information about Random dataset used in this thesis. 108
5.5 Statistical information about Zipf dataset used in this thesis. 109
5.6 The experimental datasets and their sizes. 110
5.7 Criteria for selecting statistical tests. 112

6.1 Possible cases for binary structural A-D relationship shown in a//d. 118
6.2 Possible cases for binary structural P-C relationship shown in p/c. 119
6.3 Further classification of head elements for p/c in Table 6.2. 127
6.4 Datasets statistics . 139
6.5 Experimental TPQs for DBLP. 139
6.6 Experimental TPQs for XMark. 139
6.7 Experimental TPQs for TreeBank. 140
6.8 Experimental TPQs for Random. 141
6.9 Results for the comparison groups over DBLP. 142
6.10 The overall comparisons based on U tests over DBLP. "-" indicates no

difference in the performance. 143
6.11 Results for the comparison groups over XMark dataset. 145
6.12 The overall comparisons based on U tests over XMark dataset. "-" indicates

no difference in the performance. 145
6.13 Results for the comparison groups over TreeBank dataset. 147
6.14 The overall comparisons based on U tests for TreeBank dataset. "-"

indicates no difference in the performance. 148

xxvi List of Tables

6.15 Results for the group comparisons over Random dataset. 150
6.16 The overall comparisons based on U tests over Random dataset. "-"

indicates no difference in the performance. 151

7.1 Results for the comparison groups on the XMark dataset. 180
7.2 The overall comparisons based on U tests over XMark dataset. "-" indicates

no statistically difference in the performance. 182
7.3 Results for the comparison groups on TreeBank dataset. 185
7.4 The overall comparisons based on U tests over TreeBank dataset. "-"

indicates no statistically difference in the performance. 185
7.5 Results for the comparison groups on the Random dataset. 188
7.6 The overall comparisons based on U tests over the Random dataset. "-"

indicates no statistically difference in the performance. 189

8.1 Experimental TPQs for TreeBank. 214
8.2 Zipf TPQ templates for XPath expressions. 214
8.3 Results for the comparison groups over the DBLP document. 216
8.4 The overall comparisons based on U tests over the DBLP dataset. "-"

indicates no difference in the performance. 217
8.5 Results for the comparison groups over XMark dataset. 220
8.6 The overall comparisons based on U tests for all queries in the XMark

dataset. "-" indicates no difference in the performance. 220
8.7 Results for the comparison groups over TreeBank dataset. 224
8.8 The overall comparisons based on U tests for all queries in the TreeBank

dataset. "-" indicates no difference in the performance. 225
8.9 Results for the comparison groups over the Random dataset. 228
8.10 The overall comparisons based on U tests for all queries in the Random

dataset. "-" indicates no difference in the performance. 229
8.11 Results for the comparison groups over the Zipf dataset. 232
8.12 The overall comparisons based on U tests for all queries in the Zipf collec-

tion. "-" indicates no difference in the performance. 233

9.1 Experimental TPQs with positional predicates for the XMark dataset. . . 273
9.2 Experimental TPQs with positional predicates for the TreeBank dataset. . 273
9.3 Experimental TPQs with positional predicates for the Random dataset. . . 274
9.4 Results for the comparison groups on the XMark dataset. 276
9.5 The overall comparisons based on U tests over the XMark dataset. "-"

indicates no statistically difference in the performance. 276
9.6 Results for the comparison groups on the TreeBank dataset. 277
9.7 The overall comparisons based on U tests over the TreeBank dataset. "-"

indicates no statistically difference in the performance. 279
9.8 Results for the comparison groups on the Random dataset. 280

List of Tables xxvii

9.9 The overall comparisons based on U tests over the Random dataset. "-"
indicates no statistically difference in the performance. 281

9.10 The overall comparisons based on U tests over the XMark dataset. "-"
indicates no statistically difference in the performance. 285

9.11 The overall comparisons based on U tests over the TreeBank dataset. "-"
indicates no statistically difference in the performance. 286

9.12 The overall comparisons based on U tests over the Random dataset. "-"
indicates no statistically difference in the performance. 288

A.1 Results for paired comparisons based on the U test over the DBLP dataset. 335
A.2 Results for paired comparisons based on the U test over the XMark dataset.335
A.3 Results for paired comparisons based on the U test over the TreeBank

dataset. 336
A.4 Results for paired comparisons based on the U test over the Random dataset.336

B.1 Experimental ordered TPQs for XMark. 337
B.2 Experimental ordered TPQs for TreeBank. 337
B.4 Results for paired comparisons based on the U test over the XMark dataset. 337
B.4 Results for paired comparisons based on the U test over the XMark dataset.338
B.4 Results for paired comparisons based on the U test over the XMark dataset.339
B.5 Results for paired comparisons based on the U test over the TreeBank

dataset. 339
B.5 Results for paired comparisons based on the U test over the TreeBank

dataset. 340
B.5 Results for paired comparisons based on the U test over the TreeBank

dataset. 341
B.5 Results for paired comparisons based on the U test over the TreeBank

dataset. 342
B.6 Results for paired comparisons based on the U test over the Random dataset.342
B.6 Results for paired comparisons based on the U test over the Random dataset.343
B.6 Results for paired comparisons based on the U test over the Random dataset.344
B.3 Experimental ordered TPQs for the Random dataset. 345

C.1 Experimental TPQs for the Zipf dataset. 347
C.1 Experimental TPQs for the Zipf dataset. 348
C.2 Processing times for the DBLP dataset. 351
C.3 Processing times for the XMark dataset. 352
C.4 Processing times for the TreeBank dataset. 353
C.5 Processing times for the Random dataset. 354
C.6 Processing times for the Zipf dataset, Template T1. 355
C.7 Processing times for the Zipf dataset, Template T2. 355
C.8 Processing times for the Zipf dataset, Template T3. 355

xxviii List of Tables

C.9 Processing times for the Zipf dataset, Template T4. 355
C.10 Processing times for the Zipf dataset, Template T5. 355
C.10 Processing times for the Zipf dataset, Template T5. 356
C.11 Results for paired comparisons based on the U test over the XMark dataset,

Experiment 1. 357
C.12 Results for paired comparisons based on the U test over the TreeBank

dataset, Experiment 1. 357
C.13 Results for paired comparisons based on the U test over the Random

dataset, Experiment 1. 358
C.14 Results for paired comparisons based on the U test over the XMark dataset,

Experiment 2. 358
C.15 Results for paired comparisons based on the U test over the TreeBank

dataset, Experiment 2. 358
C.16 Results for paired comparisons based on the U test over the Random

dataset, Experiment 2. 358

D.1 Results for paired comparisons based on the U test over the XMark dataset,
Experiment 1. 359

D.2 Results for paired comparisons based on the U test over the TreeBank
dataset, Experiment 1. 360

D.3 Results for paired comparisons based on the U test over the Random
dataset, Experiment 1. 360

D.4 Results for paired comparisons based on the U test over the XMark dataset,
Experiment 2. 360

D.5 Results for paired comparisons based on the U test over the TreeBank
dataset, Experiment 2. 361

D.6 Results for paired comparisons based on the U test over the Random
dataset, Experiment 2. 361

List of Algorithms

1 Region Encoding Algorithm . 93
2 Tag Partitioning Algorithm . 94

3 CPL-Region Encoding Algorithm . 124
4 Generate Tag Indexing Algorithm . 125
5 getNext(q) . 129
6 TwigStackPrime . 132

7 getNext(q) . 164
8 getNext(q) . 176
9 extraFiltering(q) . 177
10 moveToList(q) . 178

11 TwigPrime . 205
12 Level split tail filtering . 206

13 check ordered extension and update counter and mismatch tables 259
14 descendant forward movement and the CPL approach with the pre-structural

constraints . 260
15 getMatch(q) . 261
16 OPTwigPrime . 264
17 extraFilteringPass(q) . 265

Chapter 1

Introduction

1.1 Introduction

The eXtensible Xarkup Language (XML) models semi-structured data and has emerged as
the main standard for the representation and exchange of data over the internet. There are
two basic strategies currently being adopted in research into storing XML data [154, 24].
One is the XML-enabled database which uses well established models to store and query
XML data (e.g., relational and object-oriented database systems) and the other is the native
XML database which is mainly designed to manage the organization, storage, access and
security of XML data. This study attempts to improve XML querying and retrieval in
native XML databases.

The growing number of XML documents leads to the need for appropriate XML
querying algorithms which are able to utilize the specific characteristics of XML documents.
Twig pattern matching (TPM) is a major area of interest within the field of XML query
processing. Thus, TPM is a core operation in XML query processing because it is how
all the matching occurrences of a twig pattern (i.e., a labelled query tree) in an XML
tree (i,e., an XML document is modelled as a rooted-labelled tree) are found. In the last
decade, several querying algorithms have been proposed to perform twig pattern matching
[40, 144, 185, 22, 132, 89, 11, 8, 30]. However, it could be argued that most of the existing
algorithms fail to process XML twig pattern queries efficiently in terms of processing
time capabilities and space overheads. Therefore, the work of this thesis investigates the
factors that may improve the efficiency of the TPM approach regarding the worst-case I/O
complexity.

The research begins by laying out the basics of XML, and investigates up-to-date
approaches for querying XML data in native XML databases leading to the identification
of limitations in the existing methods which in turn motivate further work. This study
set out to propose new XML query processing approaches to overcome these drawbacks.
To reduce the memory consumption and computation overhead of twig pattern matching
algorithms, the approaches proposed are based on combinations of a novel indexing

2 Introduction

technique which exploits the property of prime numbers and the existing twig matching
algorithms.

The purpose of this short chapter is to give an overview of the thesis. Section 1.2
outlines the thesis structure. a list of published work and research activities is provided in
Section 1.3. The chapter is then concluded in Section 1.4.

1.2 Thesis Outline

The rest of this thesis is structured as follows: Chapter 2 aims to introduce the concept
of XML and its related concepts. Most of the related models and techniques used in this
thesis will be briefly discussed.

Chapter 3 provides a review of literature related to twig pattern query (TPQ) processing.
The chapter begins by reviewing the XML processing techniques as a prerequisite to
demonstrate XML query processing model including XML Indexing and partitioning. It
will then go on to provide an overview of previous research on twig pattern matching
including approaches proposed and their complexities.

In Chapter 4, problems arising from existing approaches are discussed in order to
identify a place where a new contribution could be made. Consequently, the research
hypothesis is highlighted. After that, this study justifies the choice of research method
in order to test the hypothesis. Furthermore, the scope of the research and the expected
objectives are discussed.

Chapter 5 introduces the design of experiments which are described in this thesis in
order to compare the performance of the algorithms proposed to the related methods in the
literature. It also describes the objectives of the experiments and the statistical procedures
used to analyse data collected in experiments.

Chapter 6 deals with introducing a new approach to index Parent-Child edges in
XML trees. After that, a novel holistic twig matching algorithm which is based on this
technique is proposed and compared to the existing algorithms in the literature. This
chapter consists of two parts: the first part shows the main drawbacks in the existing
approaches and presents the new indexing and querying methods. The second part aims
to discuss the experiments and the overall evaluation in order to draw a conclusion using
statistical procedures. Some of the contents of this chapter were published in previous
papers [12, 11].

Chapter 7 describes the process of ordered twig patterns in which normal twig patterns
contain order and sequence constraints. Little research work has dealt with this type
of twig patterns and most of them assumed twig patterns are ordered as a whole tree
without considering the semantics of order axes introduced in the XPath specification.
This chapter examines the emerging role of the semantics of order axes in the context of
TPQ matching. The algorithms proposed are the first to consider sequence operators when
processing holistic twig matching algorithms. The performance of the algorithms proposed

1.3 Publications 3

are compared to the existing approaches in the literature which are modified in order to
process ordered twig patterns and sequence operators.

Chapter 8 describes how the advanced preorder filtering strategy proposed in this study
is applied to bottom-up twig matching algorithms in order to improve query performance.
A set of twig matching algorithms are proposed in order to enhance the filtering phase
and speed up the query response time. A set of experiments are described to compare the
performance of the new approaches against other related bottom-up holistic twig matching
methods. The experimental results are analysed and discussed to evaluate the research
hypothesis.

In Chapter 9, bottom-up holistic twig matching algorithms for processing ordered twig
patterns are proposed. The experiment is designed to compare the performance of different
approaches and demonstrate the improvements of the algorithms proposed. This chapter
also discusses the new approach to process twig patterns with positional predicates. A
novel method is introduced and compared to the related algorithms in the literature. Lastly,
the experimental results are analysed and conclusions are drawn at the end.

In Chapter 10, the thesis presents and evaluates the designs and results of the four
experiments conducted from different perspectives. In addition, it discusses the features
and limitations of the experiments. The chapter is concluded by identifying the main
findings of the experiments.

Chapter 11 is the final chapter in this thesis and aims to conclude the research work
presented in this thesis by summarising it and identifying possible directions for future
work.

1.3 Publications

What follows is a list of publications and research activities related to this research study.

1.3.1 Poster

1. S. Alsubai and S. North,“TwigList+: A New Approach for Processing XML Twig
Queries” in Computer Science department, The University of Sheffield, UK, during
the research retreat event in June 2015.

1.3.2 Peer Reviewed Papers

2. S. Alsubai and S. North, “A Prime Number Approach to Matching an XML Twig
Pattern including Parent-Child Edges”, in The 13th International Conference on Web
Information Systems and Technologies (WEBIST 2017), 2017, pp. 204–211.

3. S. Alsubai and S. North, “TwigStackPrime : A Novel Twig Join Algorithm Based
on Prime Numbers”. In Lecture Note Business Information Processing, Revised
Selected Papers WEBIST, Springer, 2018, 20 pages (in press).

4 Introduction

1.4 Conclusion

This research aims to improve the performance of the XML query processing algorithms
in native XML databases. After surveying the related work of XML query processing
and optimisation in Chapter 3 and discussing the problem identifications, the research
objectives and contributions will be discussed later in Chapters 4 and 11, respectively.

This chapter presented introductory information about the thesis and outlined the thesis
structure by giving a brief summary of each chapter. The next chapter introduces the
general background of XML and explains its related concepts including the semantics of
XML documents, data model, XML parsers and XML query languages.

Chapter 2

XML Databases’ Background

2.1 Introduction

Extensible Mark-up Language (XML) is emerging as a de facto standard for information
exchange among various application on the World Wide Web due to its capability in
organizing data and because of it is self-describing [81, 225, 98, 239]. As the volume
and the number of XML documents get larger because of the universal adoption of it
over the internet and digital libraries, the term XML database is a relatively new name for
semi-structured databases [107]. An XML database can be defined as a database that is
comprised of a well-formed XML document or a set of such documents [180, 45, 86, 209].
XML databases may be divided into native and enabled databases depending on whether
the support of the XML data is the initial feature of the system or it is added later [143].
XML databases are still an emerging concept that has not been considered yet as a
well-established field in comparison to traditional Relational Databases (RDBs) or Object-
Oriented Databases (OODBs). It is a widely held view [98, 154, 107, 72, 150] that new
strategies and techniques to support storing and querying XML databases is a fundamental
need. Therefore, the process of retrieving data within the XML database has attracted a
considerable number of researchers over the past decade [5, 40, 188, 98, 68].

This introductory section provides a brief overview of XML databases, it then goes on
to describe the concepts of XML databases in Section 2.2. In Section 2.3 and Section 2.4,
the processes of parsing and querying XML data will be explained in greater detail. The
chapter will be concluded in Section 2.5.

2.2 The Concepts of XML Databases

The Extensible Markup Language (XML) models semi-structured data, and is the standard
for sharing, saving and exchanging business data over heterogeneous and homogeneous
platforms [81, 225, 98, 239]. There are two main approaches to storing XML documents.
On the one hand, XML documents can be stored using one of the conventional databases
such as relational or object-oriented as the underlying storage mechanism. This approach

6 XML Databases’ Background

is called XML enabled-databases (as abbreviated XEDs). On the other hand, storing XML
documents in its own format without mapping the data to a different model is known as the
native storage technique. XML databases that store XML documents in the native format
are called native XML databases (NXDs, for short) [98, 250, 154, 150, 204, 197].

This section aims to outline the underlying concepts of XML databases and provides
a general background for XML data management. In the subsections that follow, it will
be explained what is the difference between XML enabled databases in Section 2.2.1
and native XML databases in Section 2.2.2. Also, more explanation of some important
terminologies in XML databases will be described in Sections 2.2.3, 2.2.4 and 2.2.5,
namely: the syntax rules of XML, the tree representation of XML data and XML schema,
respectively [225, 120, 226].

2.2.1 XML Enabled Databases (XED)

According to [110] three main fundamental functions have to be provided when working
on XML data. These are: adding information to the repository, retrieving information from
the repository and updating information in the repository. An outstanding database must
perform them very well. XML enabled databases are powerful in terms of providing the
database features such as scalability, portability, recovery control, query engine and so on
[211, 87, 98, 154, 187]. Because XML enabled databases store XML documents in another
format such as tables as in relational database or objects as in object database, most of the
works in the literature have focused on using relational database as the underlying storage
[3, 236, 235]. This may be due to the limitations that the object oriented data model does
not have standard object-oriented query language nor does it have a research prototype of
XML data storage as object oriented is the underlying storage [98, 187, 197]. However,
there exists a mismatch between the XML semi-structured data and relational data, hence,
mapping plays an important role in providing seamless integration between these database
infrastructures. This process is referred to as the shredding of XML document into tables. It
is essential for a mapping strategy to preserve the hierarchical structures of XML documents
during the mapping process in order to process XML queries effectively [197, 126] so
that structured query language (SQL) can be used to query XML data. Several different
approaches for mapping XML documents into relational schemas have been discussed
and proposed over the last few years [76, 211, 56, 98, 204, 177, 49, 191, 56, 187, 197].
In spite of XEDs benefits in terms of providing database features (such as availability,
scalability, security, concurrency and so on), the key problem with these approaches is
that XML queries can not be processed efficiently, particularly for a large XML document.
However, further discussion on this issue is outside the scope of this thesis.

2.2 The Concepts of XML Databases 7

2.2.2 Native XML Databases (NXD)

A native XML database (NXD) is a customized database that is built from scratch to
store and handle XML documents in their original format [98, 154, 73, 107, 86]. A
straightforward strategy to store an XML document is to store it directly in its textual
format, called text-based model (also known as document-based storage). The whole XML
document is stored as a file either in the file system of a server or in LOB (Large Object)
columns in the DBMS. One major drawback of this approach is that it can only handle
XML data up to 2 GB when the XML file stored in LOB types, and inefficient query
performance due to the fact that the entire file has to be loaded and scanned by the query
processor in order to execute the query [27, 126, 197]. In contrast, another strategy stores
the XML document into an internal data structure as the Document Object Model (DOM)
or the events as defined by the Simple API for XML (SAX) [225, 194]. This technique
is called model-based storage (also known as node-based). Since the representation of
XML data in this model is mainly structure oriented which has a pivotal role in query
formulation, native XML indexes [85, 40, 188, 5, 52, 95, 246, 24, 154, 102] have been
introduced to index XML structures in order to improve the efficiency and scalability of
query processing. Among this literature, much published research has been proposed to
improve the performance of XML query processing. This research study falls in this area.
The review of native XML technologies used to evaluate XML queries will be presented in
Chapter 3.

Furthermore, [150] studied and analysed the different model approaches for storing
a native XML database and evaluated the performance for each approach on a set of
commercial native XML database products available in the market at that time. The
empirical comparisons show that using a node-based model provides more flexibility and
performance for the entire database system. In addition, [154] addressed the performance
degradation for indexing and storing in native XML databases. The best examples for a
native XML database approach are research prototypes of XML data storage such as in
[144, 89, 22, 7, 40]. A major advantage of NXDs is that they can provide a more natural
data model and query language for XML data, which is typically represented as a graph
(i.e., tree-based structure).

2.2.3 XML Syntax

XML is Mark-up language and is gaining popularity for data representation and exchange.
Nested, tagged elements are the building blocks of XML documents. Due to the definition
of relationships in XML as nested tags, data in XML documents are self-describing and
flexibly organized [132]. For example, consider the XML document1 in Figure 2.1, the
document is composed of two main components, namely: element and attribute. It contains
a declaration that identifies the document as an XML document, called XML prolog in Line

1DBLP document snippet obtained from http://dblp.uni-trier.de/

8 XML Databases’ Background

1 <?xml v e r s i o n ="1 .0" e n c o d i n g ="ISO−8859−1"?>
2 < db lp >
3 . . .
4 < i n p r o c e e d i n g s key=" con f / w e b i s t / AlsubaiN17 ">
5 < a u t h o r > Shtwa i A l s u b a i < / a u t h o r >
6 < a u t h o r >Siobh&a a c u t e ; n Nor th < / a u t h o r >
7 <!−− a a c u t e i s a c h a r a c t e r e n t i t y r e f e r e n c e f o r l a t i n s m a l l l e t t e r a

wi th a c u t e a c c e n t −−>
8 < t i t l e >A Prime Number Approach t o Matching an XML Twig P a t t e r n

i n c l u d i n g P a r e n t−C h i l d Edges . < / t i t l e >
9 < pages >204−211< / pages >

10 < y e a r >2017< / y e a r >
11 < b o o k t i t l e >WEBIST< / b o o k t i t l e >
12 <ee > h t t p s : / / d o i . o rg /10 .5220 /0006225602040211 < / ee >
13 < c r o s s r e f > con f / w e b i s t /2017 < / c r o s s r e f >
14 < u r l >db / con f / w e b i s t / w e b i s t 2 0 1 7 . h tml # AlsubaiN17 < / u r l >
15 < / i n p r o c e e d i n g s >
16 . . .
17 < / db lp >

Figure 2.1: An example of XML data representing an inproceedings element in the DBLP
document.

1. XML makes use of one built-in element starting with XML as in Line 1 to validate some
special meanings beside informing the system to expect an XML document to accelerate
the document processing (this will be explained more in Section 2.3). Unlike Hyper Text
Mark-up Language (HTML), the syntax rules of XML are strict. As a result, an XML
document is considered as a well-formed document only if it conforms to the syntax rules
(constraints) and they are simple and flexible as follows:

• The document must have one element that identifies the entire document, called root
element (see Section 2.2.3.1).

• For every opening tag, there must be a corresponding closing tag (see Section
2.2.3.1).

• The sequence of distinct attribute names within a single element must be unique (see
Section 2.2.3.2).

• The value of every attribute must be quoted using either single or double quotation
marks (see Section 2.2.3.2).

An XML documents is comprised of five components including elements, comments,
attributes, namespaces and processing instructions. The following subsections provide a
description of XML elements and attributes which are the main two components of XML
files [225, 120, 226].

2.2.3.1 XML Elements

An element is deemed as the basic component of information in XML documents. Consider
the example in Figure 2.1, it starts with an opening tag as in Line 2 < dbl p > and ends

2.2 The Concepts of XML Databases 9

with a closing tag as in Line 17 < /dbl p >, this is the root element. Each XML document
has a single root element. An element may contain atomic data as in Line 5 for the element
< author >, other elements as in Line 4 the element < inproceedings > contains a set of
elements, or both (i.e., mixed content). Also, an element might be empty with nothing
enclosed between the pair of tags and in this case the element can be defined using one
tag as < tag/ >. An element can have an attribute that is included within the opening tag
to describe the specific element precisely as in Line 4 the element < inproceedings > is
assigned with key as an attribute. Furthermore, as with other languages, XML supports
comments to contain more information and provide human-readable annotations about
the actual content. There are two kinds of information which can be found in XML files:
markup (e.g., <dblp>) and the character data (e.g., 2017). In XML comments are always
considered as child elements and start with a specific opening tag {<!−−} and end with
a specific closing tag {−−>}, see Line 7 of Figure 2.1 [203, 226, 120].

2.2.3.2 XML Attributes

Generally, attributes are used to provide additional information about elements, especially
when the information is irrelevant to data contained within elements. For example, the
key attribute in Figure 2.1 is for identifying the different inproceedings in the DBLP
document. Attributes are added to elements, so they are dependent on their elements.
Attributes only can have value and that value is declared within either single or double
quotation marks. Attributes are placed within the opening tags of elements and an element
may have a sequence of zero or more attributes. This can be demonstrated in Line 4 of
Figure 2.1 as < inproceedings key = ”con f/webist/AlsubaiN17” >. There are a number
of important differences between elements and attributes. While elements can contain
multiple values and tree structure, attributes can not. However, an element can only have a
single attribute of type id whose value provides a unique identifier that can be referenced
by attributes of type idre f from other elements. Attributes are widely-used as parameters to
sort XML documents because they are designed to contain data related to a specific element
[203, 226, 120]. For example, the DBLP document can be sorted by type of records (books,
journal articles, conference and workshop papers, etc.) using the key attribute that further
specifies the type of record. An XML namespace can be loosely described as a collection
of names that is identified by a URI (Uniform Resource Identifier) reference to avoid tag
name conflicts in XML by using prefix. The namespace can be defined by a predefined
attribute, xmlns in the start tag of an element [226].

2.2.4 XML Tree Structure

The XML is a textual language rather than a data model [86]. Because of that an XML
document has an implicit order. The internal structure of an XML document might be very
complex and get more complicated since that order cannot be avoided. Therefore, XML is

10 XML Databases’ Background

commonly modelled as tree structure for more simplicity in the document representation
as T = (N,E,r), where N is a set of nodes, r ∈ N is the root of T , and E is a set of
edges connecting couples of nodes together (ni,n j) ∈ N×N. Tree nodes are labelled
by elements, attributes or atomic data (also known as leaf nodes). Tree edges represent
element-element, element-attribute and element-value relationships (also known as Parent-
Child relationships, P-C for short). Figure 2.2 shows the tree-based representation for the
XML document in Figure 2.1. It can be seen that the need for opening and closing tags in
XML is unavoidable and might increase the complexity of the document’s internal structure
because the nesting of elements renders the overall tree structure of XML documents.

Although an XML tree provides easy document access, a large amount of memory is
consumed by the document when the document is modelled as tree. More relationships can
be defined between the elements within the XML document such as Ancestor-Descendant
(abbreviated as A-D) and sibling (this can be more divided into two more specific relation-
ships: preceding-sibling and following-sibling) relationships. An Ancestor-Descendant
relationship is structural information in a tree that indicates one element is contained within
another element through one or more elements. For example, in Figure 2.2 pages is a
descendant of dblp. A sibling relationship is defined as a relationship between two or
more elements that have the same parent. Consider Figure 2.2 as an example, the elements
author and booktitle share the same parent, inproceedings.

dbl p

. . . inproceedings

key

...

author

Sh
tw

ai
A

ls
ub

ai

author

Si
ob

há
n

N
or

th

title

A Prime Number Approach to Matching an XML Twig Pattern including Parent-Child Edges

pages

. . .

year

. . .

booktitle

. . .

ee

. . .

crossre f

. . .

url

. . .

. . .

The document root:

Element nodes:

Attribute node:

Leaf/Textual nodes:

Figure 2.2: The tree representation of the XML document in Figure 2.1

It is necessary here to clarify exactly what is meant by document order which is defined
among all the tree nodes accessible during XML processing. Generally, document order is
the order in which XML elements and attributes are accessed during XML processing and
the output generation. Document order must satisfy the following constraints within an
XML tree.

• The document root is the first node.

• Every parent node must precede its children and its descendants in the document
order.

• Namespace nodes must be ordered immediately after their parents.

2.2 The Concepts of XML Databases 11

• Attributes must be ordered after their parents and their sibling namespace nodes (if
they exist).

• Node’s children and descendants are ordered before its following siblings.

• The children property of a parent node determines the relative order of its children
(i.e., the relative order of siblings).

2.2.5 XML Schema

A schema can be loosely defined as a way to describe an organised pattern of thoughts or
actions that constitute collections of information and the relationships among them [203].

In the context of XML databases, the purpose of an XML schema is to define legal
building blocks of an XML document and provide a set of built-in data-types [223, 203,
71, 1]. There exist several XML schema languages for expressing constraints about XML
documents, yet the main two languages that are supported in widespread use and have high
degree of interoperability, Document Type Definition (DTD) and XML Schema Definition
(XSD). The last one is recommended by W3C [223, 167, 79, 3, 72, 228, 1, 152]. Figure
2.3 shows an example of an XML schema document of DTD and XSD describing the
XML document in Figure 2.1, respectively. The key features of an XML schema can be
listed as follows:

• to provide a list of the main components in an XML document: elements and
attributes.

• to constrain where elements and attributes can occur within an XML document.

• to show what data-types such as String and Integer must be assigned to leaf elements.

2.2.6 Summary

With regard to XML databases, underlying storage techniques have a significant impact on
their performance [150, 154, 204, 3]. In this section an overview over the different storage
techniques have been discussed. The efficiency of the underlying storage is measured by
different criterion: the ability of the storage mechanism to retrieve data effectively and
accurately and exploit the storage resources efficiently [98]. As has been mentioned above
in Section 2.2.1 and Section 2.2.2, many approaches have been proposed in the literature to
improve the process of storing XML documents, hence, enhancing the process of retrieving
information from a large repository of XML documents (this will be explained more in
Section 2.4).

12 XML Databases’ Background

Listing 2.1: DTD
1 <!ELEMENT db lp (a r t i c l e | i n p r o c e e d i n g s | p r o c e e d i n g s | book | i n c o l l e c t i o n |
2 p h d t h e s i s | m a s t e r s t h e s i s |www| p e r s o n | d a t a) *>
3 < ! ATTLIST db lp mdate CDATA #IMPLIED >
4
5 < ! ENTITY % f i e l d " a u t h o r | e d i t o r | t i t l e | b o o k t i t l e | pages | y e a r | a d d r e s s | j o u r n a l | volume | number | month | u r l | ee | cdrom | c i t e

| p u b l i s h e r | n o t e | c r o s s r e f | i s b n | s e r i e s | s c h o o l | c h a p t e r | p u b l n r ">
6
7 < !ELEMENT a r t i c l e (% f i e l d ;) *>
8 < ! ATTLIST a r t i c l e
9 key CDATA #REQUIRED

10 mdate CDATA #IMPLIED
11 p u b l t y p e CDATA #IMPLIED
12 r e v i e w i d CDATA #IMPLIED
13 r a t i n g CDATA #IMPLIED
14 c d a t e CDATA #IMPLIED
15 >
16
17 < !ELEMENT i n p r o c e e d i n g s (% f i e l d ;) *>
18 < ! ATTLIST i n p r o c e e d i n g s key CDATA #REQUIRED
19 mdate CDATA #IMPLIED
20 p u b l t y p e CDATA #IMPLIED
21 c d a t e CDATA #IMPLIED
22 >

Listing 2.2: XSD
1 <xsd : complexType name=" db lp ">
2 <xsd : c h o i c e maxOccurs=" unbounded ">
3 <xsd : e l e m e n t name=" a r t i c l e " t y p e =" a r t i c l e " maxOccurs=" unbounded " / >
4 <xsd : e l e m e n t name=" book " t y p e =" book " maxOccurs=" unbounded " / >
5 <xsd : e l e m e n t name=" i n c o l l e c t i o n " t y p e =" i n c o l l e c t i o n " maxOccurs=" unbounded " / >
6 <xsd : e l e m e n t name=" i n p r o c e e d i n g s " t y p e =" i n p r o c e e d i n g s " maxOccurs=" unbounded " / >
7 <xsd : e l e m e n t name=" m a s t e r s t h e s i s " t y p e =" m a s t e r s t h e s i s " maxOccurs=" unbounded " / >
8 <xsd : e l e m e n t name=" p h d t h e s i s " t y p e =" p h d t h e s i s " maxOccurs=" unbounded " / >
9 <xsd : e l e m e n t name=" p r o c e e d i n g s " t y p e =" p r o c e e d i n g s " maxOccurs=" unbounded " / >

10 <xsd : e l e m e n t name="www" t y p e ="www" maxOccurs=" unbounded " / >
11 < / xsd : c h o i c e >
12 < / xsd : complexType>
13
14 <xsd : e l e m e n t name=" db lp " t y p e =" db lp " / >
15
16 . . .
17 <xsd : complexType name=" i n p r o c e e d i n g s ">
18 <xsd : c h o i c e maxOccurs=" unbounded ">
19 <xsd : e l e m e n t name=" a u t h o r " t y p e =" xsd : s t r i n g " minOccurs=" 0 " maxOccurs=" unbounded " / >
20 <xsd : e l e m e n t name=" b o o k t i t l e " t y p e =" xsd : s t r i n g " / >
21 <xsd : e l e m e n t name=" cdrom " t y p e =" xsd : s t r i n g " minOccurs=" 0 " maxOccurs=" unbounded " / >
22 <xsd : e l e m e n t name=" c i t e " t y p e =" c i t e " minOccurs=" 0 " maxOccurs=" unbounded " / >
23 <xsd : e l e m e n t name=" c r o s s r e f " t y p e =" xsd : s t r i n g " minOccurs=" 0 " maxOccurs=" unbounded " / >
24 <xsd : e l e m e n t name=" ee " t y p e =" xsd : s t r i n g " minOccurs=" 0 " maxOccurs=" unbounded " / >
25 <xsd : e l e m e n t name=" month " t y p e =" xsd : s t r i n g " minOccurs=" 0 " / >
26 <xsd : e l e m e n t name=" n o t e " t y p e =" xsd : s t r i n g " minOccurs=" 0 " / >
27 <xsd : e l e m e n t name=" number " t y p e =" xsd : s t r i n g " minOccurs=" 0 " / >
28 <xsd : e l e m e n t name=" pages " t y p e =" xsd : s t r i n g " minOccurs=" 0 " maxOccurs=" unbounded " / >
29 <xsd : e l e m e n t name=" t i t l e " t y p e =" t i t l e " / >
30 <xsd : e l e m e n t name=" u r l " t y p e =" xsd : s t r i n g " minOccurs=" 0 " maxOccurs=" unbounded " / >
31 <xsd : e l e m e n t name=" y e a r " t y p e =" xsd : s t r i n g " / >
32 < / xsd : c h o i c e >
33 <xsd : a t t r i b u t e name=" key " t y p e =" xsd : s t r i n g " use =" r e q u i r e d " / >
34 < / xsd : complexType>
35 . . .

Figure 2.3: A fragment of the DBLP schema corresponding to data provided in Figure 2.1

2.3 XML Parsing

XML parsing is a process by which the input XML documents are scanned, broken
down into smaller elements, and eventually built into a corresponding data representation
[225, 194, 117, 121, 231, 232, 36].

Based on the inner data representation, there are two categories of XML parsing:
tree-based APIs and event-based APIs. On the one hand, tree-based parsers map the
XML documents into an inner tree data structure and allow the applications to navigate
them in memory only when the parsing process is completed, a well-known example
of this category is Document Object Model (DOM) recommended by World Wide Web
Consortium [225]. On the other hand, event-based parsers report parsing events such
as the start and end of elements (i.e., opening and closing tags, respectively) directly to

2.3 XML Parsing 13

the application through callbacks, and do not usually build an internal tree, a notable
example of it is SAX (SAX Project Organization) [36, 194, 97]. For example, consider a
fragment of the XML document shown in Figure 2.1, Figure 2.4 and Figure 2.5 illustrate
that DOM and SAX have distinct functions in representing an XML document. It provides
an illustration for how the two groups mentioned above handle an XML document.

Listing 2.3: An XML snippet
1 <?xml v e r s i o n ="1 .0" e n c o d i n g ="ISO−8859−1"?>
2 < i n p r o c e e d i n g s key=" con f / w e b i s t / AlsubaiN17 ">
3 < a u t h o r > Shtwa i A l s u b a i < / a u t h o r >
4 < a u t h o r >Siobh&a a c u t e ; n Nor th < / a u t h o r >
5 < / i n p r o c e e d i n g s >

Root element
inproceedings

Attribute
key

co
nf

/w
eb

is
t/A

ls
ub

ai
N

17

Element
author

Sh
tw

ai
A

ls
ub

ai

Element
author

Si
ob

há
n

N
or

th

Parent/Child

Sibling

Figure 2.4: An illustration of the DOM tree for an XML file.

It can be seen from Figures 2.4 and 2.5, a DOM parser has to read through the entire
XML document tree before an application can work on the output tree. One reason why
DOM parser has difficulty parsing medium to large sized an XML document is that the
entire document has to be presented in the main memory. Unlike a DOM parser, a SAX
parser does not need to read through the entire XML document tree before allowing an
application to process the XML data. It allows applications to construct customisable data
structures using a series of predefined events [194]. As was mentioned earlier, a DOM
parser may limit the size of XML documents processed, a SAX parser, on the other hand,
can parse XML document trees of any size (e.g., number of XML nodes or disk-size) even
if they are larger than the available resources [169].

XML parsing is a prerequisite for any processing of an XML document. As a conse-
quence, XML parsing is both memory and computationally intensive, it consumes about

14 XML Databases’ Background

Listing 2.4: An XML snippet
1 <?xml v e r s i o n ="1 .0" e n c o d i n g ="ISO−8859−1"?>
2 < i n p r o c e e d i n g s key=" con f / w e b i s t / AlsubaiN17 ">
3 < a u t h o r > Shtwa i A l s u b a i < / a u t h o r >
4 < a u t h o r >Siobh&a a c u t e ; n Nor th < / a u t h o r >
5 < / i n p r o c e e d i n g s >

Listing 2.5: SAX events
1 s t a r t document :
2 s t a r t e l e m e n t : i n p r o c e e d i n g s
3 a t t r i b u t e s [1] . name : key
4 a t t r i b u t e s [1] . v a l u e : c o n f / w e b i s t / A l suba iN17
5 s t a r t e l e m e n t : a u t h o r
6 c h a r a c t e r s : Sh t wa i A l s u b a i
7 end e l e m e n t : a u t h o r
8 s t a r t e l e m e n t : a u t h o r
9 c h a r a c t e r s : S iobh án North

10 end e l e m e n t : a u t h o r
11 end e l e m e n t : i n p r o c e e d i n g s
12 end document :

Figure 2.5: SAX events for an XML document.

30 percent of processing time in many Web service applications. For instance, Morgan
Stanley’s Financial Service system spends 40 percent of its execution time on processing
XML documents [16, 117]. The XML parsing process is considered as the bottleneck
to performance when processing XML data. Many studies have been made to address
the parsing performance through the use of pre-fetching, element-skipping and parallel
approaches as in [117, 13, 231, 190].

2.4 XML Query

In general, a query is a question. In the field of computing, a query is a request for infor-
mation from an organised collection of information (i.e, a database). In XML documents,
information is organised by tag-names semantically and hierarchically. Using the tree
structure of XML documents for information retrieval demands efficient support for a
special query language to extract data from XML files. Therefore, several XML query
languages have been designed such as XPath [222], XSLT [220], XPointer [221], Quilt
[46] and XQuery [224]. These query languages are based on the concept of regular path

expression (RPE) to specify path in a semi-structured data. The most two common, XPath
and XQuery, are World Wide Web Consortium Recommendations (W3C) and are the
common query languages for XML databases [24]. The following subsections provide a
brief report on these two languages.

2.4 XML Query 15

2.4.1 XPath

XPath stands for XML Path, which is an XML query language. XPath exploits path
expressions to traverse an XML tree to select nodes or a set of nodes (also known as node-
set). The mode of processing used by XPath is similar to that used in a traditional computer
file system. In addition to addressing a specific portions of an XML document, XPath is
used for matching (examining whether node matches a given pattern or not). The result
of a path expression is a sequence of matching nodes. XPath models an XML document
as a tree and supports structural relationships between XML nodes (e.g Parent/Child,
Ancestor/Descendant, Sibling and etc . . .). Moreover, numerous comparison expressions
are supported such as value, logical, node and conditional comparisons [222, 42, 3, 46].

Starting from the context node which is defined as the current node in the XML tree,
XPath 2.0 [222, 171] specifies a sequence of nodes (known as node-set) to be returned
according to a given path expression. The path expression is the most important part
of XPath and it is comprised of a number of axis steps, each of which consists of axis,
NodeTest and zero or more predicates. The axis determines the structural relationship
while NodeTest selects nodes based on their tag names and types. The predicate specifies
additional constraints for filtering. The result set of the axis step will become the context
node for the next axis step. The path expression might optionally begin with ”/” or ”//”
which represent an implicit root node. The XPath language defines thirteen axes to traverse
through the XML tree from the context node. Therefore, with respect to the context
node, the corresponding XML tree is partitioned into a number of overlapping and distinct
subtrees according to the XPath’s axis specified. Explanation of the XPath‘s thirteen axes
is given in Figure 2.6. Some of the XPath’s axes can be expressed in an abbreviated syntax
while used in path expressions, the commonly used abbreviated symbols are shown in
Figure 2.7.

Every XPath expression which uses only P-C and A-D axes can be conveniently
represented as tree pattern query. A tree pattern is a tree where nodes are tag names
(i.e., elements and attributes) and structural relationships between nodes are specified
by P-C ("/") and A-D ("//") edges. If any step is associated with a predicate expression
(i.e., []), it gives rise to a subtree corresponding to that step (i.e., branching). The
node corresponding to the last step outside a predicate is the output node. Nodes (i.e.,
steps) can be constrained by value-based conditions. For example, consider the following
XPath expression p1 = dbl p//inproceedings[title]/author. Figure 2.8 shows the tree
representation of p1, where P-C and A-D are visualised by single and double lines,
respectively. The output node (i.e., author) is underlined to distinguish it from the other
nodes. Throughout this thesis, the term twig pattern query (TPQ) will be used to refer to
XML queries since it is the more general form of RPE [24].

As an illustration, the following are examples of XPath expressions to identify specific
node-sets within the XML dataset shown in Figure 2.9, single characters represent element
tags and subscripts identify instances of elements with the same tag. The following XPath

16 XML Databases’ Background

AxisName Result
ancestor contains the ancestors of the context node.
ancestor-or-self contains the context node and the ancestors of the context node.
attribute contains the attributes of the context node.
child contains the children of the context node.
descendant contains the descendants of the context node.
descendant-or-self contains the context node and the descendants of the context node.
following contains all nodes that are after the context node in document order,

excluding any descendants, attributes and namespaces.
following-sibling contains all the following siblings of the context node, excluding

attributes and namespaces.
preceding contains all nodes that are before the context node in document order,

excluding any descendants, attributes and namespaces.
preceding-sibling contains all the preceding siblings of the context node, excluding

attributes and namespaces.
parent contains the parent of the context node, if it is not the root.
self contains the context node.
namespace contains the namespace nodes of the context node.

Figure 2.6: The thirteen axes supported by XPath.

Expressions Description
/ P-C relationship between two steps in a path.
// A-D relationship between two steps in a path.
. the current step.
.. the parent of the current step.
[] predicate on the current step.
@tag−name selected attribute of the current step.
Position() positional constraint on the current step.

Figure 2.7: The most common symbols and functions used in XPath expressions.

dbl p

inproceedings

title author

Figure 2.8: An example of XPath tree model

expression p2 = //e//a identifies all a-tagged nodes which are descendant of e-tagged
nodes in the XML document. The result of this XPath expression is a set of ordered nodes
{a1,a2,a3,a4,a5} because XPath traverses an XML document according to the document
order which is the order the XML nodes would appear in a textual XML document. Tree
model representation for p2 is shown in Figure 2.10. On the other hand, the XPath
expression p3 = //e/a finds all a-tagged nodes which are immediate child of e-tagged
nodes. It returns the results {a1,a2,a4,a5}.

2.4 XML Query 17

e

a1

x1 y1

f1

a2

a3 x2

”x2 value”

a4

y2 y3

x3 f2

a5

y4 x4 y5

Figure 2.9: An example of XML tree T1.

The next XPath expression p4 = //a[/y]/x finds all x-tagged nodes which are imme-
diate child of a a-tagged node which has an immediate child y-tagged node. It is worth
noting that some a-tagged nodes might not have siblings of x-tagged and y-tagged nodes.
p4 demonstrates the flexibility, in terms of structure, provided by semi-structured query
languages such as XPath which is not available in the relational model. p4 allows to
search for subtrees rooted at a-tagged nodes without concern for where they are located
within the XML data tree. Thus, the query results are {x1,x4}. The following XPath
expression p5 = //e/a[/x = ”x2 values”] returns a-tagged node which has an immediate
child x-tagged node associated with content values as ”x2 values”. The result of p5 is {a2}.
In addition, predicates can be used to specify the numerical position of nodes within the
sequence of nodes currently processed, these predicates are called positional predicates.
The next XPath expression p6 = //e/a[//x]/y[position() = 2] refers to the second child
y-tagged node of each a-tagged node which has x-tagged children in the XML tree T1. The
results of p6 are {y3,y5}. Finally, XPath defines four ordered axes: following, following-
sibling, preceding and preceding-sibling. To illustrate, the following-sibling axis can be
used to select the following sibling x-tagged nodes after the y-tagged node in document
order as in p7 = y/ f ollowing− sibling :: x. The evaluation of p7 yields one result {x4}.

e

a
(a)
p2

e

a
(b)
p3

a

y x

(c) p4

a

x

”x2 values”

(d) p5

a

x y[2]

(e) p6

Figure 2.10: An example of XPath tree model

In XPath, all path expressions (i.e, XML queries) are evaluated against the tree repre-
sentation of XML data. The XML queries represented in p2, p3 and p5 are also called a
single-path or a simple-path queries because it only consists of one leaf node as depicted
in Figures 2.10a, 2.10b and 2.10d. However, the XPath expressions in p4 and p6 belong to

18 XML Databases’ Background

the set of queries (i.e., twigs) which define two or more leaves as shown in Figures. This
will be discussed in more detail in Chapters 3 and 4.

2.4.2 XQuery

XQuery (XML Query Language) is an XML query language even though it can query
structured and semi-structured data. It is specified by W3 Consortium XML Query Working
Group and became a W3C Recommendation on January 23, 2007 [224]. XQuery is based
on the existing XPath query language. Both XQuery and XPath share the same data model
(tree-based structure) and support the same functionalities but XQuery is extended with
features for better query expressiveness and to handle complex queries since XPath can
only answer simple queries [224, 227, 75, 20]. It is worth noting that there is a slight
difference between the semantics of XPath and XQuery. Whereas in XPath there is only
a single query output node, XQuery can specify a set of query return nodes. However,
this research focus on twig pattern matching which returns all possible combinations of
node matches because it is practical for the flexibility in XQuery. Further, XQuery is
considered as the most powerful XML query language for extracting information from
an XML document or any collection of data modelled as XML. XQuery defines a set
of expressions, called FLWOR expressions (For Let Where Order Return) to perform
SQL-like (Structured Query Language) queries on XML data similar to that performed
on relational databases. The for clause defines variables and iterates over nodes resulting
from an XPath expression, while the let clause declares variables but does not iterate
over them. The optional where clause specifies a selection condition similar to that in
SQL. The optional order by clause can be used to specify the sorting order of the result.
The return clause specifies what to be returned in the result. For instance, the following
FLWOR expression shown in Figure 2.11a asks for the same data as the path expression
p4 presented in Section 2.4.1. In contrast to p4 which returns one node for each match, the
tree representation of XQuery can have one or more underlined nodes to identify output
nodes. The results are a set of 3-tuples which consist of a-tagged, y-tagged and x-tagged
node matches = {< r > a1,y1,x1 < /r >,< r > a5,y4,x4 < /r >,< r > a5,y5,x4 < /r >}.

f or $a in doc(”T1”)//a
f or $y in $a/y
f or $x in $a/x
return < r > $a,$y,$x,< /r >

(a)

a

y x

(b)

Figure 2.11: An example of XQuery and its tree model

2.5 Conclusion 19

2.5 Conclusion

The purpose of this chapter is to outline the important aspects of XML that are relevant to
this research study. In this chapter, XML databases and their supporting mechanisms have
been described in Section 2.2, and the two core processes performed in XML databases:
parsing and querying have been reviewed in Sections 2.3 and 2.4, respectively.

The next chapter presents the literature review of XML twig pattern query approaches.
Several approaches and techniques previously proposed for processing XML structured
queries will be investigated. The main goal of the following chapter is to identify the
research problems which will be addressed later in Chapter 4.

Chapter 3

Related Work on XML Query
Processing

3.1 Introduction

As enterprises and businesses produce and exchange XML-formatted information more
frequently, consequently, there is an growing requirement for effective handling of queries
on data which conforms to an XML format [146, 68, 201, 98, 81]. Recently, several
approaches have been proposed in the literature to process XML queries [5, 147, 68, 38,
254, 6, 188, 101, 190, 147, 57, 139, 102, 211, 48, 249, 66, 112, 96, 53, 245, 70, 92, 240,
242, 127, 110, 146].

Effective matching of XML formatted tree patterns has been broadly considered as
an essential operation in processing XML queries. Therefore, XML query processing
has attracted a considerable number of researchers to improve the XML query processing
performance. Proposed algorithms include TwigStack, TwigStackList, TJFast, Twig2Stack,
TwigList, TwigFast and TJStrictPre and GTPStack. Most of the state-of-the-art algorithms
to evaluate XML queries will be outlined, discussed and surveyed in terms of critical
parameters i.e, memory consumption, response time and I/O costs. This chapter aims to
provide a general background to techniques used in XML query processing in Section 3.2.
The research work related to XML query processing will be described in Section 3.3. The
state-of-the-art approaches for processing XML queries will be discussed in detail as well.

3.2 XML Query Processing

An Extensible Markup Language (XML) tree pattern query (abbreviated as TPQ) usually
can be symbolized as twig (referred to as a rooted-labelled tree) which is considered as
one of the common structural queries. As discussed in Chapter 2, single path expressions
are the simplest structure of XML queries, thus, research into it has a long history and
simple path expressions are not in the interest of this study. On the other hand, branching
path expressions are essential to the pattern language which is the core of most languages

22 Related Work on XML Query Processing

(i.e., XPath and its sub-languages) for processing XML documents [119]. The main aim of
this study is to investigate efficient evaluation techniques for branching path expressions.
In general, an XML query is defined as a complex selection on elements of an XML
document specified by structural information of the selected elements. Improving the
efficiency of twig patterns matching is a core operation in processing of an XML query
[110, 147, 146, 144, 172, 146, 15, 53, 89, 87, 22] since tree patterns are the basis for
querying structured tree-based data model such as XML.

There are two main types of XML query: a keyword-based query and a structured-
oriented query. Keyword-based query comes from the traditional informational retrieval
field [248, 26, 51, 124, 123]. In this category of query, an XML document is queried
based on their textual contents without considering the semantics carried by the document
structural information. This type of XML query is irrelevant of this research study but
an overview of the work related to keyword-based queries will be described further in
Section 3.2.2. By way of contrast, a structured query is the commonly used definition of
a query which concerns not only the content but also the structure of XML documents,
the effectiveness of queries in this group depends on users’ knowledge of the document
structure.

The underlying data model for XML documents is a labelled tree, where nodes are
elements of XML documents and edges represent relationships between them, plays
an important role in XML retrieval algorithms [20, 81, 155, 68, 40, 61]. The same
representation is used for structured queries, as a result, the retrieval process can be seen
as a matching problem between XML documents and XML query patterns [209, 146, 70].

One of the most important problems in XML query processing is tree pattern matching.
Generally, tree pattern matching is defined as a mapping function M between a given
tree pattern query Q and XML data D, M : Q→ D that maps nodes of Q into nodes of D

where structural relationships are preserved and the predicates of Q are satisfied. Formally,
tree pattern matching is to find all matches of a given tree pattern query Q in an XML
document D [81, 209, 93, 40, 5, 68, 146]. For a document D and a query Q with n nodes
(q1, . . . ,qn), a complete match is an n-dimensional tuple (e1, . . . ,en) that consists of the
database elements that identify a distinct match of Q in D. On the other hand, an output
match is a projection of a complete match such that the database elements corresponding
to non-output query nodes are excluded [148]. The answer of Q on D is an ordered set of
all the output matches of Q on D. The matching tuples have to be in the sorted order of the
common prefixes of the individual root-to-leaf paths. Figure 3.1 shows XML data and a
TPQ with a match.

The aim of this section is to outline the state-of-the-art techniques in addressing tree
pattern query matching problems. An overview will be given to describe the different
methodologies exploited in the field of XML query processing in the following subsections.

3.2 XML Query Processing 23

e

a1

x1 y1

f1

a5

y4 x4 y5 a

y x

(a) an XML tree T1 and a TPQ Q1

a1 y1 x1
a5 y4 x4
a5 y5 x4

(b) the complete
match

a1 y1
a5 y4
a5 y5

(c) the output
match

Figure 3.1: An example of XML tree T1 and a TPQ Q1 with matches. The output query
nodes are underlined.

3.2.1 XML Indexing

Generally, the purpose of indexing is to improve the efficiency and the scalability of
query processing by reducing the search space [98, 140, 174, 243, 250]. Without an
index, retrieval algorithms have to scan all the data (in the context of XML, every node
in an XML document), which would degrade the performance of retrieving processes by
consuming a considerable amount of time and space. In XML technology, there are two
basic approaches currently being adopted in research into XML indexes. One is the content
index approach which indexes data values in XML documents (for instance, B+ tree
indices) and the other is the structural index approach which indexes the structure of XML
documents [1, 154, 140, 119, 52, 24]. The structural indexing approach may be further
divided into three main classes, namely, path indexing, node indexing and sequence-based
indexing. Many indexing methods based on semi-structured data have been proposed in the
literature [4, 243, 229, 248, 254, 84, 60, 119, 52, 147, 85, 109, 124, 175, 184, 17, 10, 2].

Path indices, also known as structural summaries and index graph schemes, usually
summarize all paths in an XML document starting from the root. A classic example of a
path graph index is a DataGuide [85]. It is a typical model that merges all equivalent paths
into a single one so that every path in a DataGuide is unique. One major drawback of this
approach is that it only supports a simple path queries. An example of a DataGuide for a
given XML tree is depicted in Figure 3.2a.

To tackle this problem, [240] proposed a new concise data structure, called VersionTree,
to carry the structural information of the original XML document based upon the existing
DataGuide, coupled with a covering index for branching path expressions. The new
summarized tree supports efficient evaluation of twig queries and improves XML query
processing performance. In contrast, the work of [254] addressed the indexing problems
when storing XML in relational model. The researchers developed two index structures,
namely: ROOTPATHS and DATAPATHS, which are effective for processing XML queries.

24 Related Work on XML Query Processing

e

a

x y

f
(a)
DataGuide

e

a1

x1 y1

f1

a2

y2 x2

(b) F&B

Figure 3.2: Structural summaries for the XML tree T1 in Figure 3.1.

The proposals can seamlessly integrate with SQL query processors in relational database
management systems. Another group of structural summaries rely on the idea of grouping
nodes in an XML tree based on local similarity, called similarity-based indexes which are
designed to support frequent path queries. When the index is able to adjust its structure
according to a specific query work load, it is called an adaptive path index, a well-known
example of this category is the D(K) where K is the length of the label path considered
during grouping [52]. The D(K) has a major limitation that is the value of K influences
the index performance. A covering index, F&B index, similar to that in RDBMSs, has
been considered to support all branching path queries [119, 147]. The main limitation of a
covering index, however, is that the index size tends to be very large, in most cases close
to the size of the data tree. Figure 3.2b shows the F&B index for the data in Figure 3.1.
Meanwhile, another approach was proposed in [102] to reduce the size of the summarized
tree further by storing the structural information obtained into two hash tables. The
proposed indexing method is called CIS-x and according to the experimental results, it
yields a good performance in terms of index space and query efficiency. However, it is
a memory-based index which makes it unable to handle large XML documents and it
does not support updating. Similarly, [7] exploited the notion of objects of XML data in
indexing all paths of the XML document. An object of an XML document is defined as a
non-leaf element that consists of simple or other complex elements. Object-based XML
data partitioning technique was introduced to structure large XML data logically for query
processing. The authors proposed a series of indices, namely: schema index, data index
and value index based on the utilization of structural and content components of XML data.
The schema and data index are proposed to maintain the structural constraints of XML
queries while the value index is used to improve the performance of querying constant
values within XML data.

Node indexing approaches index each node in an XML document by assigning an
unique label (based on a labelling scheme) to every node which records its positional
information within an XML tree. The values of labels vary according to the chosen
labelling scheme. Moreover, this group of indices utilizes nodes as the basic unit of a
query which provides a great flexibility in performing any structural query efficiently by

3.2 XML Query Processing 25

the matching nodes of a query via structural joins. Using a node index is also known
as a labelling scheme, numbering scheme or node encoding. According to [154], a
labelling scheme has to guarantee uniqueness and order preservation of node labels, thus
the hierarchical relationships between a pair of nodes can be determined efficiently. The
labelling scheme should enable checking all XPath relationships by computations only.
To better understand the mechanisms of node indexing methods and their properties,
[98] classified node indexing into four distinct types; Sub-tree labelling, Prefix-based
labelling, Multiplicative labelling and Hybrid labelling. However, a full discussion of
the different categories lies beyond the scope of this study. Generally, all XML query
processing algorithms which perform structural join operations to match a given query
against an XML document rely on either sub-tree labelling schemes or prefix-based
labelling schemes [40, 147, 146, 5, 236, 19, 140, 138, 184, 205]. A well-known example
of sub-tree labelling is the regional labelling scheme proposed in [253]. In this approach,
each node is assigned with a 3-tuple as < start,end, level >. Start and end contain values
of positions corresponding to the opening tag < tag > and the closing tag < /tag >.
Level represents the depth of a node within an XML tree. The two basic relationships
Ancestor-Descendant (A-D) and Parent-Child (P-C) can be determined efficiently. Given
two nodes u and v, u is an ancestor of v if and only if u.start < v.start < v.end < u.end.
Furthermore, a P-C relationship is defined as node u is the parent of node v if and only
if u.start < v.star < v.end < u.end, v.level = u.level +1. By way of explanation, node v

is in the range of node u. A notable example of prefix-based labelling (also known as a
path-based labelling scheme) is the Dewey labelling scheme [243]. In the Dewey labelling
scheme each node is associated with a sequence of integers that represents the node-ID
path from the root to the node. The sequence of components in a Dewey label is separated
by "." where the last component is called the self label (i.e, the local order of the node)
and the rest of the components is called the parent label. For instance, consider the XML
tree in Figure 3.1, Figure 3.3 presents labelling an XML tree using three different labelling
schemes. Using the Dewey labelling scheme, given two nodes u and v, u is an ancestor of
v if and only if u.label is a prefix of v.label. For instance, a1 is the ancestor of f1 because
{1.1} is a prefix of {1.1.2.1} as shown in Figure 3.3. In the same way, {1.1} is the parent of
{1.1.2} because path-based labelling schemes encode the P–C relationship by extending the
parent’s label with a component for the child. The main disadvantage of these two labelling
schemes is that they fail to take XML documents with frequent updates into consideration.
Thus, updating can incur a heavy cost of re-labelling. Another problem with prefix-based
labelling schemes is that the performance of determining structural relationships is affected
by the depth of the XML tree due to the increase in the size of labels.

More recently, [147] proposed a new labelling scheme based on Dewey to speed up the
evaluation of XML twig queries. The proposed labelling scheme has the ability to derive a
unique path from the root to a given node and maps a given node label to a series of element
names. Also, it can be extended to handle dynamic documents and avoid re-labelling. One

26 Related Work on XML Query Processing

e (1,13,1)

a1 (2,7,2)

x1 (3,3,3) y1 (4,6,3)

f1 (5,5,4)

a5 (8,12,2)

y4 (9,9,3) x4 (10,10,3) y5 (11,11,3)

(a) regional (range-based) labelling scheme

e 1

a1 1.1

x1 1.1.1 y1 1.1.2

f1 1.1.2.1

a5 1.2

y4 1.2.1 x4 1.2.2 y5 1.2.3

(b) Dewey labelling scheme

e 1

a1 1 × 2

x1 2 × 5 y1 2 × 7

f1 7 × 11

a5 1 × 13

y4 13 × 17 x4 13 × 19 y5 13 × 23

(c) prime number labelling scheme (top-down
approach)

Figure 3.3: labelling schemes for the XML tree in Figure 3.1.

study by [243] examined the trend in designing an effective labelling scheme for both static
and dynamic XML documents. The researchers proposed a novel labelling scheme which
is a variant of Dewey, called dynamic Dewey encoding (abbreviated as DDE). A novel
ordering concept was defined to transform the original Dewey into a fully dynamic labelling
scheme; thus re-labelling can be avoided. DDE support high query performance and has
the ability to avoid re-labelling completely. [84] exploited the notion of IP addressing
and sub-netting techniques in computer networks to propose a novel labelling scheme.
The proposed scheme is efficient in determining the hierarchical relationships between
two given nodes very quickly by applying a simple logical AND operation. The new
scheme is called XDAS and shows superior efficiency in terms of reducing label size.
[229] also proposed a new numbering scheme to support dynamic XML documents and
avoid re-labelling. The new labelling scheme shows a space-efficiency in terms of the
length of labels and time consumed to update XML documents. Another approach was
proposed in [248] to improve content-oriented query (keyword search). The proposed
labelling scheme was coupled with a inverted index on the content nodes to provide rapid
access. Likewise, focusing on labelling dynamic XML documents, [244] proposed a new
encoding technique that can completely avoid re-labelling when updating occurs. The
proposed encoding technique utilizes vector-based order to label nodes instead of natural
or lexicographical order. Based on the encoding technique mention above, [174] studied
the influence of applying vector-based order on some of the existing labelling schemes.
Vector-based order is a novel order concept to avoid relabelling when XML documents
change frequently. A vector code is a 2-tuple of the form (x, y) where x and y are integers
with y ̸= 0. Given two vector codes A:(x1, y1) and B:(x2, y2) A precedes B in vector

3.2 XML Query Processing 27

preorder if and only if and only if x1/y1 < x2/y2. The experimental results indicate that
using vector-based order reduces the size of the label and improves the performance of
the query system. In addition, [4] reviewed, evaluated and matched several of dynamic
labelling schemes that support dynamic XML documents. Particularly, the researchers
considered various labelling schemes that depend on the Dewey encoding concept. Such
labelling schemes are preferable to containment labelling schemes when it comes update
competence; but, these schemes are considered expensive in terms of storage. Furthermore,
a novel labelling scheme was proposed, a sibling-labelling scheme which depends on the
notable Dewey coding concept. By utilizing the proposed scheme merely two nodes need
to be re-labelled. However, sibling-labelling scheme is very efficient in supporting the
common axes (Parent-Child, Ancestor-Descendant, siblings relationships and document
order) and restoring the relations among the given nodes. In the same way, the authors in
[138] proposed a novel dynamic prefixed labelling scheme (DPLS) which can re-use labels
deleted in order to reduce the label size. A classic example of multiplicative labelling is a
prime number labelling scheme (see Figure 3.3) which was proposed to support labelling
dynamic XML documents. In a prime number labelling scheme [238], every node is given a
unique prime number called the self-label. Then the label for each node is the product of its
self-label and its parent-label. This labelling scheme completely avoids re-labelling when
a new node is inserted, only simultaneous congruence value to determine the document
order needs to be recalculated. In [2], a parallel algorithm for prime number labelling
scheme was proposed so that the prime number labelling scheme can deal with huge XML
documents. More recently, a new labelling scheme which combines the advantages of
range-based and prefix-based schemes was proposed in [186]. The new labelling scheme is
an extension to the prime number labelling scheme introduced in [238]. The basic idea is
to encode the structural information using prime numbers similar to that used in [238] and
the middle fraction for encoding the document order so that there is no need to recalculate
simultaneous congruence value. A combination of structural summary and prime labelling
scheme has been proposed in [163] to estimate the result size of a TPQ.

Finally, sequence-based indexing methods are used to transform both XML documents
and queries into sequences. Tree pattern matching then is reduced to subsequence matching
[98, 146, 137, 96, 236]. Early examples of research into sequence-based indexing include
[188, 157, 230, 213]. Sequence indexing approaches suffer from two problems, namely,
false positives (also known as false alarms or imprecise result) and false negatives (also
known as false dismissals or incomplete result). Time-consuming postprocessing is
necessary to overcome these problems and identify the actual result from the subsequence
matchings. In [188], based on Prü f er codes, XML documents and queries are transformed
into sequences where an one-to-one correspondence between trees and sequences are
formed. The most outstanding feature of the proposed indexing method is that it can prevent
false positives caused by transforming the hierarchical structure of XML documents into
equivalent sequences when using a structure-encoded sequence introduced in the previous

28 Related Work on XML Query Processing

work of [230]. However, this method of indexing has a number of limitations. Approaches,
[188, 213], in this category require a large amount of computation, called refinement
phases, which are performed after the matching phase to avoid the generation of false
negatives which occur when a branching query node has multiple identical child nodes.
This will be explained more in Section 3.3.2.3. Figures 3.4 illustrates the process of
transforming an XML document and an XML query into sequences in PRIX (PRü f er

sequences for Indexing XML) introduced in [188].

e7

a2

x1

a6

y3 x4 y5

(a) an XML tree T2 with nodes
associated post-order number-
ing

Number prü f er sequence: {2,7,6}
Label Sequence {a2,e7,a6}

(b)

Figure 3.4: An illustration to PRIX.

Overall, these studies highlight the need for XML indexing methods in XML retrieval
systems and how these indexing methods play an important role in improving the XML
query processing performance by reducing the search space and providing the structural
relationships between nodes within XML documents. All the studies reviewed so far,
however, suffer from a large index size, long construction time and an absence of some
structural information. These are still open issues in the field of indexing XML documents.

3.2.2 XML Keyword Search

XML keyword search queries, also called information retrieval style queries, generally do
not have structural parts and consist only of the content parts specified as a set of keywords
k = {k1,...,kn}. The answers to keyword queries in XML are sub-trees of XML documents
which contain all the query keywords. The sub-trees returned by a keyword query are
computed by finding the lowest common ancestors (LCA for short) of all query keywords,
the lowest common ancestors defines the group of elements that are likely to be relevant to
a query [26, 51, 248, 142]. The most commonly used of Moreover, a ranking function is
required to identify the most appropriate candidate query results based on their relevance
to keyword queries, only high ranked sub-trees are returned to users.

The authors of [26] addressed the problems of users’ intentions in keyword queries
and ranking results. The researchers proposed a new approach to analyse XML documents
statistically to determine the appearances of keywords within XML documents either as
tag names or as text values. Also, a new ranking method based on the statistical analysis
of the XML documents was proposed. Concentrating on improving the efficiency of the
top-k keyword search queries which is a set of K elements (or nodes) with the highest
ranking relevant to keywords searched, [51] proposed a novel node labelling scheme, called

3.3 Tree Matching 29

JDewey that preserves the order of all nodes occurring at the same level. A bottom-up
processing algorithm was devised to compute efficiently the smallest, lowest common
ancestor which is a variant of the lowest common ancestor. The smallest lowest common
ancestor, or SLCA contains all keywords of a query but has no sub-tree which also contains
all the keywords. In other words, the closest internal node that contains all keywords of a
given query.

3.3 Tree Matching

Extensible Mark-up Language (XML) has become the standard data representation format
for exchanging many types of data. XML documents may be classified on the basis of
their content into data-oriented documents and text-oriented documents. XML documents
of the first category are highly structured and commonly stored in databases, text-oriented
documents have an irregular structure [72, 6, 110, 31, 98, 209]. The growing number
of XML documents leads to the need for appropriate XML querying algorithms which
are able to utilize the specific characteristics of XML documents. In these documents,
data is hierarchically structured as are the queries and evaluation is performed using tree
matching methods. In order to state the tree matching problem, in addition to the definition
in Section 3.2, a labelled tree is defined as T = (V,E,r,µ), where V = (v1,...,vn) is a finite set
of nodes, E = {(u,v) ∈ V × V } is a set of edges. r ∈ V is the root node and µ is a labelling
function which maps each node in T to one label in a finite set of labels L = (l1,..,ln). In
a labelled ordered tree, the function call level l(u) of node u is defined as the number of
distinct edge(s) from the root to u. Therefore, tree pattern match problem between a given
tree T1 = (V1,E1,r1,µ1) and a given tree pattern query P = T2 = (V2,E2,r2,µ2) is defined as
a mapping function (as discussed in Section 3.2) from the nodes of T2 into the nodes of T1

such that the following must be satisfied [209, 110, 31, 15]:
1. if v2 ∈ V2 maps to v1 ∈ V1, then µ(v1) = µ(v2),

2. if v2 ∈ V2 maps to v1 ∈ V1 and v1 is an internal node (not leaf node), then each child

of v2 maps to at least one child of v1.

In the context of XML, tree pattern matching can be grouped into two classes: exact
matching or approximate matching. Unlike exact matching where finding all occurrences
of a given twig on a given document is necessary, the approximate matching technique
aims at measuring the similarity between two given trees and quickly returns approximate
answers to XML queries. The major difference between exact and approximate matching
is that the restrictions on the mapping function which is defined above in Section 3.2
are required in exact matching which is strict in terms of structural relationships and the
predicates which must be satisfied, while approximate matching is not.

Before proceeding to examine tree matching, it will be necessary to recall that XML
query processing approaches may be divided into two main sub-groups. The relational
approaches which store XML documents in relational databases and transform twig queries

30 Related Work on XML Query Processing

over XML documents to SQL queries over relational tables and the native approaches in
which storage and query processing mechanisms are built from scratch without involving
relational databases. Only the native approaches are relevant to this thesis, although several
studies investigating the relational approaches have been carried out [59, 3, 254, 211, 253,
98, 245, 236, 204, 197, 187]. So far this chapter has considered XML query processing
as a tree pattern matching problem. The following sections will discuss approximate
matching approaches in Section 3.3.1 and exact matching in Section 3.3.2.

3.3.1 Approximate Matching

This section only gives an overview of approximate matching because it is irrelevant to
the work of this study. Approximate tree pattern matching is the technique of determining
approximately the best match of one tree against another [129]. In the field of XML query
processing, approximate tree pattern matching is the process of finding a given tree pattern
query Q that matches a given an XML document D approximately rather than exactly.

The goal of this technique is to increase users’ satisfaction rather than matching effi-
ciency [93, 31, 135]. Approximate matching techniques actually summarise by measuring
the similarity between two given trees utilizing the minimum possible sequence of opera-
tions to get the two trees to fit into each other. The issue with this approach is attempting
to find one match between a twig pattern and a target tree, whereas in reality tree matching
for XML retrieval systems requires the output of all possible matching, also the existence
of A-D relationships in twig pattern queries makes the matching problem more complex
[212, 40, 155, 129, 1]. Despite the limitations of approximate matching for XML retrieval
systems, an approximate matching process such as query rewriting, query relaxation and
query expansion has been utilized to answer XML queries. Such a process is not relevant
to this thesis.

The process of tree matching is exploited in the field of XML clustering by dividing a
large collection of XML documents into groups according to their similar characteristics
(i.e, structural, content and semantic similarity). One study by [31] examined the trend in
tree edit distance and according to the researcher, tree edit distance is the first approach
proposed to find the similarity between two trees by computing the minimum number
of operations to transform the former tree in the latter one, these operations are: node
insertion, node deletion and node re-labelling. The issue with this approach is that it
is computational expensive and makes it impossible to measure the structural similarity
information. Another approach has been advanced to overcome these problems, [129]
proposed a new algorithm to improve approximate join quality by considering both XML
structure and node labels. In [167], the authors proposed a new methodology to determine
the similarity between heterogeneous XML schemas which are modelled as trees by
considering semantic as well as the hierarchical similarity of the elements. The quality
of match model has been proposed in [62] to match two XML schemas and approximate
matching has been considered in this model by quantifying the match according a measure

3.3 Tree Matching 31

of some degree of match called relaxed match. Interestingly, the work of [212] transformed
the tree-based structure of XML data into a multi-set of pivotal elements, wherein each
pivot (i.e, set) contains the labels of two nodes and their lowest common ancestor (LCA).
Hence, the similarity between two trees can be reduced to the similarity between their
encoded pivots. Based on the concept of edit tree operations, [214] has addressed the lack
of utilizing the structural similarities between sub-trees to compute the similarity between
XML documents.

Even though, approximate matching for XML retrieval systems and their relevant
techniques are out of the scope of this thesis, an overview has been given in this section
because they are widely used in developing XML query processing system as filtration
phase of XML documents resembles to that in [9]. The next section will outline exact
matching approaches for XML query processing.

3.3.2 Exact Matching

Exact matching is a process which allows users to retrieve the information when a tree
pattern query matches exactly, according to the mapping function defined in Section 3.2,
data stored within databases. As an illustration, the exact matching process as mapping
function between two trees is shown in Figure 3.5. Exact matching for processing XML
queries has been well studied since one of the main usages of tree patterns is to express
and optimize queries over tree-based structured data [15, 93, 24]. Several attempts have
been made in the literature to improve XML retrieval systems based on the exact matching
approach [105, 91, 253, 5, 127, 171, 53, 188, 213, 230, 128, 19, 136, 255, 25, 96, 89,
132, 130, 206, 70, 217, 102, 181, 125, 172, 67, 22, 87]. The process of querying an XML
document is to identify a specific data pattern in the given document by using an XML
query language such as XPath or XQuery. Due to the importance of twig tree pattern
queries in XML retrieval systems, finding all matching occurrences of a tree pattern query
in an XML document is often considered as a specific task for XML databases as well as a
core operation in XML query processing.

e

a1

x1 y1

f1

a5

y4 x4 y5 a

y x

Figure 3.5: An example of exact matching process (exact mapping).

Exact matching approaches may be further classified into three main types according
to the type of the indexing methods exploited as discussed above in Section 3.2.1. These
types are binary Structural Join, holistic structural join and sequence-based approaches.

32 Related Work on XML Query Processing

Algorithms of the first and the second groups usually use an inverted index mechanism
wherein labels for each distinct tag name are stored in one inverted list (also referred to as
a streaming list or a label list) and ordered based on the order of their appearance in the
document, or the document order. For instance, Figure 3.6 illustrates the inverted lists for
the XML data tree in Figure 3.3. Most algorithms in this category rely on nodes indexing
methods (i.e, labelling scheme) to capture the common axes in XML query languages
and facilitate XML query processing. That is, labels retrieved for each query node tag
are merged by twig matching algorithms such as TwigStack to return the result of a TPQ.
Using streaming lists refer to partition index (i.e., the XML data is partitioned to streams
where the input data is read once) which uses the XML node tag as a key while document
index uses the node label as a key and the XML node tag as value in addition to some other
information about the node [24].

Te (1,13,1)

Ta (2,7,2) (8,12,2)

Tx (3,3,3) (10,10,3)

Ty (4,6,3) (9,9,3) (11,11,3)

Tf (5,5,4)

Figure 3.6: Streams containing range-based labels for five distinct tags in the XML tree in
Figure 3.3.

This section has reviewed the three key aspects of exact matching for XML retrieval
approaches. The next subsections will discuss the methods used in these approaches. The
first section 3.3.2.1 will outline the binary structural joins. Then, the holistic join-based
approaches will be investigated in Section 3.3.2.2. Finally, the sequence-based approaches
will be described in section 3.3.2.3.

3.3.2.1 Binary Structural Join Approaches

The basic structural relationships between nodes in tree-based models are the Parent-Child
and Ancestor-Descendant. A core operation in XML query processing is searching all
the occurrences of these relationships. The pioneering work of [253] is the first native
approach that developed binary structural joins. The authors introduce a special inverted list
technique similar to that in Figure 3.6 based on the regional labelling scheme where each
node is associated with triplets with a (start,end,level) label (Section 3.2.1). They proposed
a structural join algorithm (i.e., specialised loop joins) to find all the occurrences of the basic
transitive closures of the data tree (i.e., the basic axes “/” and “//” in XPath). The proposed
algorithm benefits from the notion of a labelling scheme in which all positional information

3.3 Tree Matching 33

about data elements are recorded in labels and has shown a significant improvement over
the traditional merge join algorithm utilized in RDBMS.

This approach is called a binary structural approach because it performs a binary join
where the input is two sets of nodes to be joined to eliminate irrelevant nodes, then the
output of this join may be used as the input of another join. Binary join approaches, from
their names, only join two sets at the same time, in other words, they only join two label
lists at a time. The major drawback of this approach is that the I/O cost is very high due to
the fact that a query node may be accessed several times at any point during execution. To
tackle this limitation, the Stack-tree algorithm was proposed in [5] to avoid scanning query
nodes more than once. The researchers augmented the structural join algorithm with a stack
or LIFO (Last In First Out) data type such that a single sequential scan for the two sets of
nodes would capture all the basic relationships without any recursive scan. Algorithms
of this binary join family are based on a decomposition technique that decomposes a
given query into a set of binary relationships, then performs structural joins to generate
intermediate results. Finally, the query answer is produced by stitching the intermediate
results together. The size of intermediate results has a significant impact on XML query
processing performance. The researchers in [207] provided a new solution for efficiently
processing queries with sibling axes using a sibling list for each level in the XML tree. In
the same way, [217] introduced a new technique which can provide an efficient solution
for processing positional predicates in binary structural join approaches.

[40] extended the Stack-tree algorithm by utilizing a stack for each query node in
a single path from root-to-leaf. Their algorithm is called PathStack and the encoding
representation of query nodes results in intermediate results of manageable size compared
to the input and the output lists. Figure 3.7 illustrates the stack encoding of the PathStack
algorithm. Elements in stacks are linked by pointers to produce the query answers without
the need to decompose it into a set of binary relationships. PathStack uses a filtering
mechanism to avoid pushing irrelevant nodes in the corresponding stacks. The downside of
this algorithm is that it only supports a simple path query efficiently (Section 2.4). In order
to have path matches in a sorted order of the common prefixes of the individual root-to-leaf
paths, self-list and inherit-list are maintained for each stack item corresponding to an inner
query node during the query evaluation. As a result, output matches are delayed until
the algorithm ensures that there is no match prior to them in the sort order that should
be outputted. The self-list and inherit-list for the XML data and query in Figure 3.7 are
presented in Figure 3.8. The algorithm outputs the contents of the self-list and then the
contents of the inherit-list to return paths in sorted root-to-leaf order. The extension of
PathStack to support TPQs will be discussed in Section 3.3.2.2.

The authors of [127] have developed a native XML storage and query system, or XSQS
for short. They have addressed the challenge of the size of intermediate results generated
by Stack-tree algorithm and have proposed a new algorithm as an extension of Stack-tree
called modified Stack-tree. According to the experimental results, the proposed algorithm

34 Related Work on XML Query Processing

has better performance in terms of reducing the size of intermediate results. In an analysis
of binary structural approaches, [148] found that the binary structural join algorithms can
have linear time complexity with respect to the size of input and output for TPQs with a
higher ratio of non-output query nodes when a fully pipelined (FP) plan is selected. In
other words, the same complexity as the holistic twig join approaches but the difference is
that the complexity of holistic approaches is not influenced by the number of non-output
query nodes. Following the semantics of XQuery, output query nodes corresponding to
‘return clauses in XQuery while non-output query nodes corresponding to all other query
nodes. The FP plan guarantees no-blocking so that each join operation does not have to
wait for the complete result of the previous join [241].

e

a1

y1

a2

y2

f1

(a) an
XML
tree
T3

a

y

f
(b)
an
XML
query

S f

f1
Sy

y1

y2

Sa

a1

a2

→ is used to represent a pointer to the closest ancestor.

(c) stack encoding

(a1,y1 , f1)
(a1,y2 , f1)
(a2,y2, f1)
(d) matches

Figure 3.7: Illustration to PathStack.

Sy

y1

y2

Sa

a1

a2
(y2, f1)sel f

/0
(y1, f1)sel f
(y2, f1)inherit

(a2,y2, f1)sel f

/0
((a1,y1, f1),(a1,y2, f1))sel f

(a2,y2, f1)inherit

Figure 3.8: Stack items with final self-list and inherit-list for the XML data and query in
Figure 3.7.

Although binary structural join approaches significantly degrade XML query processing
performance, most XML algebras representing an XML query language by a logical query
plan support binary structural joins [108, 83, 20, 24, 148]. However, an accurate query
optimiser is an important parameter for the efficiency of binary structural joins. In the
following section, the main algorithms in the holistic join-based approach are discussed.

3.3 Tree Matching 35

3.3.2.2 Holistic Structural Join Approaches

The holistic join was introduced by [40] as a new approach to evaluate query twig patterns
efficiently. The work was an extension to the sophisticated PathStack algorithm to support
twig queries without decomposing the queries into a set of binary structural relationships.
They proposed decomposing twigs into a set of root-to-leaf paths and the evaluation is
performed for each root-to-leaf path using the PathStack algorithm. The final results
are produced by a merge join operations for intermediate results generated by PathStack
evaluation on decomposing single paths. The developed algorithm is called TwigStack
and has shown a significant performance improvement in reducing intermediate results
in comparison to the binary structural join algorithms. The TwigStack algorithm only
guarantees an optimal evaluation of twig queries with Ancestor-Descendant relationships
connecting all query nodes. The optimal evaluation in an holistic approach means every
query node pushed into the encoding data structure types (in the case of TwigStack a
chain of stacks) must be part of the final results by scanning them sequentially once [61].
However, TwigStack’s performance suffers from generating useless intermediate results
when twig queries encounter Parent-Child relationships. In [40], the XB-tree index, which
is a variant of a B-tree index, was proposed to reduce the disk-read costs of TwigStack by
skipping over input streams corresponding to inner query nodes which do not satisfy A-D
relationships with child query nodes.

In general, TwigStack performs twig evaluation in two phases: the first phase is to
decompose a twig pattern query into single root-to-leaf paths and then it matches them
against XML data. The second phase is the merge phase in which all matching results
produced by the first phase are merged to compute the final query answers. Obviously,
the second phase is an expensive process since n-way merge has to be performed where n

is the number of single paths in the twig query. TwigStack is considered as the keystone
for algorithms using this approach, many research papers suggested improvement to the
original TwigStack as in [53, 146, 147, 18, 9, 245, 249, 114, 111, 50, 116, 89, 54, 144, 18,
236, 118, 185, 240, 137, 145, 237, 47, 252]. Nevertheless, an optimal evaluation of tree
pattern query with any arbitrary combination of Ancestor-Descendant and Parent-Child
relationships has been proven to be impossible by [61] for the TwigStack algorithm and
its variants. [198] researched the space complexity of XML twig queries over indexed
documents for three different modes of query evaluation: tree matching, full-fledged and
filtering queries. The authors have analytically proven the difficulty evaluating twig queries
with Parent-Child edges in which large sets of unused intermediate results remain in the
main memory. However, the worst case space complexity of twig pattern matching is an
open question, the known bounds are Ω(max(d,u)) and O(I), where d is the longest path
in the XML tree, u is the total number of elements which are part of a complete match and
I is the size of the input tree [88].

XR-tree and TSGeneric+ were proposed in [114, 111], respectively. They were de-
signed to speed up reading the input lists during the structural join operation in TwigStack.

36 Related Work on XML Query Processing

XML Region Tree (XR-tree as abbreviation) was introduced based on regional labelling
scheme to index XML nested elements in which all ancestors (parents) or descendants for
a given elements can be obtained in an optimal time. The two research papers focused
on improving scanning elements in label lists to avoid sequential scanning by jumping
over irrelevant elements. The XR-tree index can be easily integrated into any holistic
join algorithm. [77] extended the work of [111] to reduce the number of physical moves
over the streams. This was achieved by applying virtual moves as much as possible. In
order to avoid as many data structure reads as possible, nodes are forwarded to "virtual
positions", which have only start values. Then, the query is processed bottom-up and
top-down. In the bottom-up phase, nodes are forwarded to contain their descendants,
and in the top-down phase, nodes are forwarded until they are contained by their parents.
Eventually, the node with the minimal current start value is forwarded to a real data node.
The authors in [130] introduced three optimization rules to improve the efficiency of the
existing holistic twig matching algorithms. The basic idea of their algorithm, TJEssential,
is to avoid unnecessary self-nested matching checks, the order in which child query nodes
are checked and avoid unnecessary recursive calls when all elements in a stream have been
scanned.

In [54], the authors reviewed the sub-optimality of the existing clustering technique
used in TwigStack where an XML document is clustered into tag streams which group
together elements with the same tag name. They proposed two novel different streaming
schemes, namely: prefix path and tag+level streaming schemes. A tag+level streaming
scheme contains all elements which have the same tag and located in the same level. A
prefix-path streaming scheme, or PPS for short is ordered set of elements which have the
same prefix path. Based on the introduced streaming schemes, they proposed an extension
to TwigStack called iTwigJoin. Their algorithm is optimal for queries with A-D edges
only when tag streaming schemes (i.e, label lists) is applied, the utilization of tag+level

streaming scheme in iTwigJoin guarantees the optimality in two classes of queries: A-D or
P-C edges only. In addition, the iTwigJoin depends on prefix path (i.e, iTwigJoin+PPS)
is optimal in three classes of queries: A-D, P-C edges or one branching node only. It has
been proven that the efficiency of iTwigJoin can be reduced when the number of streams
for every query node is increased. Figure 3.9 presents different streaming schemes over
an XML tree, elements are clustered based on similarity in tag and level and the number
associated with each tag indicating the level. For example, x3 streaming list contains all
elements with x-tagged node and appear in level 3. A recursive prefix path streaming
scheme was proposed in [50] to support highly recursive XML data. The new streaming
scheme is an extension of prefix path scheme to reduce I/O cost when a recursive prefix
path occurs on particular tags. The authors in [21] introduced a new holistic approach
for searching prefix path streams efficiently instead of the dynamic programming used in
[54]. The basic idea of their approach is to retrieve the set of matched labelled paths (i.e.,
matching streams) by finding nodes corresponding to those labelled paths in a DataGuide.

3.3 Tree Matching 37

The experimental results have proven that the solutions based on holistic approaches are
more robust than the stream pruning technique presented in [54].

e

a1

x1 y1

a2

a3

x2

x3

a4

y2 y3

a5

y4 x4

(a) an XML tree

e:{e}
a:{a1,a2,a3,a4,a5}
x:{x1,x2,x3,x4}
y:{y1,y2,y3,y4}

(b) tag streams

e1:{e}
a2:{a1,a2,a4,a5}
a3:{a3}
x3:{x1,x3,x4}
x4:{x2}
y3:{y1,y2,y3,y4}
(c) tag+level streams

/e:{e}
/e/a:{a1,a2,a4,a5}
/e/a/a:{a3}
/e/a/x:{x1,x3,x4}
/e/a/a/x:{x2}
/e/a/y:{y1,y2,y3,y4}
(d) prefix path streams

Figure 3.9: Illustration of different partitioning schemes.

The researchers in [18] introduced a variant of iTwigJoin+PPS called TwigStackSort
which reduced the time to search for the equivalent set of prefix-path streams participant in
a given twig query by searching a DataGuide first and using the binary search algorithm
to retrieve elements with the minimal start value during query processing. A set of
experiments was conducted to verify the correctness of their algorithm and has shown that
the number of labelled paths can degrade the efficiency of algorithms based on prefix label
streaming scheme. Similarly, the same authors proposed a new holistic algorithm utilizing
prefix path labelling scheme (in this case Dewey labelling scheme) called TJDewey in
[19].

An early work to reduce the number of intermediate path solutions generated by
TwigStack when twig patterns contain Parent-Child edges has been introduced in [144].
The researchers proposed a new algorithm TwigStackList that utilizes two data structure
types for every query node in a twig query: stack as in TwigStack and a list. The key
idea is to buffer some elements with P-C in lists to eliminate redundant path solutions.
Subsequently, TwigStackList ensures optimal CPU and I/O costs when twig queries contain
only Ancestor-Descendant edges below branching nodes and allows the occurrences of
Parent-Child elsewhere. However, TwigStackList performs multiple scans of elements in
the buffering lists so that relevant parents can be returned to the main algorithm. TwigBuffer
[131] extended TwigStackList by using a complex buffering technique in order to avoid
the generation of useless intermediate paths. Unlike the previous algorithms, TwigBuffer
does not guarantee that elements in stacks (from bottom to top) do not lie on a root-to-leaf

38 Related Work on XML Query Processing

path in the XML document. The main disadvantage of TwigStackList and TwigBuffer is
that output matches are not presented in sorted root-to-leaf order. More recently, a new
algorithm, QTwig was proposed in [206]. The QTwig algorithm is based on a new labelling
scheme, ReLab+, which is an extension of the range-based labelling scheme. That is,
each node in the XML document is associated with 3-tuple as < sel f ,region, parent >.
Self is a unique number assigned to each node by incorporating the preorder traversal
ordinal numbers into the nodes. Region is the self value of the right-most node of a
subtree rooted from the current node. The parent attribute is the self field of the parent
node. QTwig (Quick-Twig) is an extension of TwigStack for checking P-C edges before
storing nodes in their corresponding stacks using parentList which is a hash table built
during the query processing. The parentList table stores the self attribute as a key and the
parent field as value. However, the authors overlooked the fact that TwigStack checks P-C
relationships before pushing nodes into stacks by inspecting top elements [89] (This issue
will be discussed in Chapter 3).

An alternative approach, using pre-processing filtration phases was introduced in [9] to
reduce the search space. The horizontal filtration phase is based on an element labelling
scheme (containment labelling scheme) to prune irrelevant nodes. The vertical filtration is
based on a binary labelling scheme to compute the nearest common ancestor in constant
time. The final step is to construct the structure matching in a bottom-up fashion. The
proposed technique, TWIX, is effective when a query contains keywords in leaf nodes
(selective queries) and only works for data-oriented XML documents. Their techniques are
tailored to a specific class of XML documents such as DBLP (i.e., highly structured XML
document). A wide range of XML datasets will be discussed in Chapter 5. Improving
their techniques to make these mechanisms general to a wider class of XML documents
is not a trivial task. In addition, the researchers in [199] highlighted the need to consider
the XML node tags during the labelling process in order to improve the efficiency of
XML query processing. They used a binary encoding to record child tags based on the
information obtained from the XML schema. They introduced a new approach which
requires a pre-processing step to filter out useless elements from the streams. Such an
approach, however, has failed to satisfy the property of holistic approaches because the
input streams corresponding to parent query nodes are scanned twice and stored in the main
memory. It seems possible that these results are due to the complexity of binary encoding
during the query evaluation. The paper made no attempt to give sufficient consideration to
an XML dataset which has irregular structure and many recursive tags such as TreeBank.
Furthermore, binary encoding is too expensive to be used for recursive XML documents
[186].

To support content search, [236] developed a new algorithm to speed up the process of
XML twig pattern matching by introducing the object and property concepts to holistic
twig joins. The property of such value in an XML tree is the parent node of that value
node. Then, the corresponding object can be considered as the ancestor/parent node of

3.3 Tree Matching 39

each property. In their approach, non-value nodes are transformed into inverted lists and
value nodes are stored in relational storage. The researchers justified reordering the steps
of the previous holistic join approaches where the structural matching is performed first,
then the value matching is executed. Accordingly, the new order results in high selectivity.
The new approach, TwigTable, is a combination of TwigStack and SQL processing. That is,
TwigStack is used to perform the structural matching while SQL processing is performed
to reduce the input lists when TPQs contain value constraints. A group of experimental
results has proven that TwigTable outperforms TwigStack when twig pattern queries
contain content-search constraints, otherwise they have the same performance. Although,
TwigTable has improved the XML query processing in terms of response time and I/O
overhead, it violates the feature of native XML databases because it relies on RDBMS to
store value nodes and on SQL processor to perform value comparison operations.

All the algorithms mentioned previously are based on decomposing twig queries into
individual root-to-leaf paths and process queries in a top-down manner. The top-down
process, in TwigStack and its variants, is a filtering strategy to eliminate irrelevant nodes
which match query nodes’ tags but do not satisfy structural constraints specified in queries.
The top-down filtering can be seen as prefix path matching where a sequence of steps in
XPath expression connects descendants to their ancestors. For example, consider a given
query consisting of k query nodes as q1/q2/.../qk and if document element e corresponding
to q2 in the mapping function q2→ e. If and only if e has a parent element corresponding
to q1 which is satisfied the mapping function and so on to the leaf query node qk, then
each element in the entire path will be pushed into their corresponding stacks. In other
words, the top-down process checks document elements in pre-order and stores them in
the representation data structure in post-order.

However, the approach to examine XML queries against document elements in post-
order was first introduced by [53]. The authors have proven in their paper that decomposi-
tion of twigs into a set of single paths and enumeration of these paths are not necessary to
process twig pattern queries. The key idea of their approach is based on the proposition
that when visiting document elements in post-order (i.e, reversed order) any element e

the determination whether or not e satisfies the twig query sub-rooted at e can be drawn
directly without further investigation because all its descendants have been visited. They
proposed a new algorithm to process twig queries without merge joining single paths. A
new encoding representation was introduced to store twig results in main memory. Unlike
TwigStack where every query node has a stack to represent intermediate results, they
proposed a tree of stacks in which every query node n is associated with a hierarchical
stack HSn which consists of an ordered sequence of stack trees, where each tree node is
a stack. Pointers are heavily used to capture the basic relationships between elements in
different hierarchical stacks as shown in Figure 3.10. The researchers developed a new
algorithm called Twig2Stack to evaluate a wider range of XML queries including general-
ized twig pattern (GTP) queries which contain both mandatory and optional relationships.

40 Related Work on XML Query Processing

The mandatory relationships correspond to those path expressions in the FOR or WHERE
clauses. The optional relationships correspond to those path expressions in the LET clauses.
For a given GTP which is a fundamental building block for XQuery processing, not all
nodes are return nodes. For the path expressions in the FOR clause, only the last node
is the return node. [58]. Twig2Stack produces the eventual answers by performing an
enumeration function using the pointers in the hierarchical stacks. In the same context,
a new algorithm was proposed in [116], called HolisticTwigStack. The new algorithm
introduced the filtering strategy of TwigStack to Twig2Stack in order to reduce memory
consumption. The major limitations with these two algorithms is that the time taken to
maintain the complex stack structure is significant. Even though, they both reduce the cost
of query execution by eliminating the merge phase (second phase in TwigStack). In the
worst case the entire document needs to be loaded into the main memory. The pointers in
both algorithms, especially Twig2Stack are complex and expensive to maintain.

To overcome these drawbacks, a new algorithm was proposed in [185] called TwigList.
It replaced hierarchical stacks with lists (one for every query node) and pointers with
simple intervals to capture structural relationships (i.e., a single recorded interval of
contained elements for each child query). TwigList utilizes a stack to read all the document
elements in pre-order and add them if they satisfy the mapping function conditions to
the corresponding lists in post-order. For example, in Figure 3.10 element a1 in Lista
has two intervals specified by four pointers in two 2-tuple, namely < starty,endy > and
< startx,endx >, starty records first element matches to a1 as one of its descendants with
y-tagged node while endy records last element matches to a1 as one of its descendants
with y-tagged node. a1 has < 1,2 > as its recorded interval for contained elements
corresponding to query node y.

A comprehensive experimental study was conducted on both real-world datasets and
synthetic datasets, and has shown that TwigList outperforms Twig2Stack. The space and
time complexity of TwigList are linear with respect to the size of the XML tree and the
total number of elements in the output. A key to the efficient performance of TwigList is
the storage of intermediate results in simple lists, but it assumes the relationship between
elements in different lists is Ancestor-Descendant relationship. In order to handle Parent-
Child edges TwigList utilizes extra pointers between elements in the same list indicating
a sibling relationship. These additional pointers will degrade the result enumeration
when twig queries contain Parent-Child edges. [132] extended TwigList by combining the
features of two-phase holistic algorithms with the one-phase algorithms, namely TwigStack
and TwigList. They incorporated into TwigList the filtering strategy applied in TwigStack
to select useful elements before pushing them into the main stack in TwigList. They
proposed two novel algorithms, called TwigMix and TwigFast, to improve the efficiency
of TwigList. When twig pattern queries contain only Ancestor-Descendant edges both
algorithms guarantee all elements in intermediate results contribute to the final results.
According to their experiments TwigMix and TwigFast outperform TwigList.

3.3 Tree Matching 41

a1

a2

x1 y1

a3

a4

y2

x2

x3

(a) an XML tree T4

a

y x
(b) a TPQ
Q1

a2
a3

a1

HSa

x1 x2 x3

HSx

y1 y2

HSy

(c) Twig2Stack’s trees of stacks

La a2 a3 a1

Ly y1 y2 Lx x1 x2 x3

(d) TwigList’s simple vectors

(a1,y1 ,x3)

(a1,y2 ,x3)

(a2,y1,x1)

(a3,y2,x2)

(e) matches

Figure 3.10: Illustration of Twig2Stack and TwigList.

[89] assessed filtering strategies (a detailed analysis will be given in Chapter 4) and
the linear time evaluation of the result enumeration in TwigList and its variant algorithm,
TwigFast which proposed in [132] to examine document elements and store intermediate
results in pre-order. The authors in [89] proposed a new storage scheme, level split
approach which splits the intermediate list connected to its parent list with P-C edge
to a number of levels equals to the depth of the XML tree as shown in Figure 3.11
for the data and query in Figure 3.10. In their paper, a combination of preorder and
postorder filtering methods is adopted to develop two algorithms, namely: TJStrictPre
and TJStrictPost. The experimental results have indicated the ability of the new method
to eliminate useless elements in inner lists, and the size of intermediate results is by far
smaller in comparison to TwigList and TwigFast. The new approaches can guarantee

42 Related Work on XML Query Processing

linear CPU and I/O complexities of the output enumeration with respect to the output
size. However, they suffer from large intermediate results in comparison with the query
output. In [22], GTPStack improved the filtering strategy proposed in [89] by eliminating
unnecessary self-nested matching checks (i.e., recursive calls) similar to that introduced in
[130]. GTPStack is capable of processing GTPs efficiently.

La a2 a3 a1

Ly y1 y2 Lx[2] x3

Lx[3] x1 x2

Figure 3.11: Illustration of level split list approach introduced in [89].

[70] extended twig pattern to make it more expressive to handle positional predicates
and following-sibling relationship in XPath expressions. They developed a new algorithm
called TwigPos which is a superset of TwigList for processing the new version of TPQs, or
ExTwig for short. The work of [136] proposed an extension to TwigList in order to process
recursive queries. The experimental results showed that the new approach is applicable
and efficient. The main weakness with this algorithm is that it considers only one level of
recursion among query nodes.

The algorithms described above of XML tree pattern concentrate only on tree pattern
queries with A-D and P-C relations. Little research has been performed on tree pattern
queries which may include order restriction, wildcards, and negation functions, all of them
are repeatedly utilized in XML query languages such as XQuery and XPath. For instance,
Figure 3.12 shows some examples of ordered twig pattern queries, the symbol ” < ” is
attached to branching nodes to indicate that its descendants are ordered (i.e., descendants
must appear in the correct order according to the query). When a twig query includes a
wildcard node represented by "*", which can match any single node. For example, consider
the following a query a//*/f, the query asks for a f-tagged node that is a descendant of
an a-tagged node but the f-tagged node has to be at least two level below its ancestor
(i.e., a-tagged node). Usually wildcards are used to specify structural constraints on twig
queries. To handle ordered twig patterns, previous work has to perform post-processing
step to eliminate irrelevant results.

[145] was the first research paper to study the efficiency of evaluating ordered twig
patterns in a holistic way without a post-processing phase. They introduced a new concept
called ordered children extension (for short OCE) which expands the mapping function to
satisfy one more condition that the order of sibling query nodes are also satisfied. Based on
that OCE a novel holistic join algorithm was developed to evaluate ordered twig queries,
called OrderedTJ which is an extension of TwigStackList. However, the authors did not
take into account nesting elements within the XML data (more explanation on this issue
will be given in Chapters 4 and 7).

3.3 Tree Matching 43

According to [147] labelling scheme is commonly used to label an XML document to
accelerate XML query performance by recording information on the path of an element to
capture structural relationships rapidly during query processing without the need to access
the XML document physically. Motivated by this, the authors proposed a novel labelling
scheme based on existing Dewey labelling, called extended Dewey [211]. The proposed
technique is a mod function to label an element based on its occurrence order appearance
to its parent node among its sibling node(s). To elaborate, suppose there is a node that has
three distinct child nodes, each child node will be assigned a local number such that the
result of its reminder after dividing by 3 is either 0,1 or 2 according to the appearance of
the tag name within the parent node. The purpose of this mechanism is to derive a node
name from its label which leads to reduced I/O cost by only accessing elements of leaf
nodes of a twig query since the proposed labelling scheme has the ability to turn a given
node label into a series of elements names in the path from that node to the root.

The researchers extended the holistic twig pattern algorithm TwigStack proposed in
[40] by applying their proposed labelling scheme instead of the region-based scheme used
in TwigStack. The proposed algorithm was called TJFast and according to the experimental
results shows a superior performance in terms of reducing disk access cost because only
elements corresponding to leaf query nodes are accessed since "virtual streams" is used
for internal nodes, by inferring the existence of elements from their descendants. The
authors also considered a GTP query where optional axes and returned nodes are defined
to present more semantics than a simple twig pattern query [53, 58]. As a consequence,
they classified all nodes in GTP queries into four categories based on their properties and
contribution to the final result. Thus, a new data structure was an augmentation of TJFast to
maintain all descendants and children for generalized query nodes without buffering them
into the main memory. The developed algorithm for evaluating generalized twig query is
called GTJFast. Moreover, the authors exploited tag + level data partitioning scheme on the
input lists to prune data by levels which speeds up the query processing evaluation when
twig query contains more parent-child edges since the parent-child relationship is strictly
specified by level. As a result, an extension was made to the previous proposed algorithms
TJFast and GTJFast to apply tag + level partition technique and the proposed algorithms
respectively are TJFastTL and GTJFastTL. Experiments were conducted to compare the
proposed algorithms with TwigStack and TwigStackList. The proposed algorithms yield
significant improvement in the query processing performance in terms of reducing disk
access costs [147]. The authors in [118] augmented the original TJFast join algorithm with
a set of children linked stacks to support the evaluation of ordered tree pattern queries,
called OTJFast.

More recently, [146] examined a large series of XML-formatted tree patterns, referred
to as extended XML tree patterns, which might contain negation, ancestor-descendant
(A-D), parent-child (P-C) relationships, order restriction, and wildcards. The authors
established a theoretical framework for optimal XML query processing. They concluded

44 Related Work on XML Query Processing

a

x y f

<

(a) simple ordered
TPQ

a

x y

f d

<

<

(b) complex
ordered TPQ

Figure 3.12: Illustration of ordered twig queries. "<" is used to identify ordered branching
query nodes.

by identifying a new concept called matching cross, which describes a moment during
query execution where the previous holistic algorithms have to decide whether to output
redundant intermediate results or to miss potential results. The matching cross, thus, is
the reason for the weakness of other comprehensive holistic algorithms. As a result, the
researchers suggested a new algorithm to handle extended XML tree patterns effectively,
called TreeMatch which is an extension to TJFast to avoid producing useless paths by
returning target nodes. A group of empirical outcomes on both synthetic and real world
datasets shows the efficiency and effectiveness of the proposed algorithm and theories.
Unlike previous algorithms where the answers to queries are the whole matching solutions,
TreeMatch only outputs elements corresponding to query nodes required to be returned in
the query. The experiments reveal that the TreeMatch algorithm is optimal for queries with
Ancestor-Descendant relationship in non-returned branching edges. It should be noted
that when all query nodes must be returned, there is no difference between TreeMatch and
TJFast.

Most of the holistic twig join algorithms following from TwigStack in [40] only
handle plain twig patterns where each node corresponds to a particular element name and
the siblings belonging to the same parent are connected via the AND logical operator,
which is implicitly represented in the normal twig pattern. To illustrate, the following
query, a[/x]/y[/ f and/d] selects a y-tagged node that must have two child nodes of
types f-tagged and d-tagged, and has a sibling node x-tagged where both of the y-tagged
and x-tagged nodes are children of an a-tagged node. The AND between the query
nodes x and y is implicit, whereas the one between the query nodes f and d is obviously
explicit. A twig query that has an arbitrary combination of Boolean operations is called
a Boolean-twig or AND/OR/NOT twig (also referred to as B-twig). There are relatively
few published papers in the area of XML query processing that have examined efficient
evaluation of XML twig pattern queries with all or some of the Boolean logical operators
[113, 249, 245, 106, 66, 68]. It should be noted that a sequence of predicates (i.e., [])
can be used to replace conjunction of predicates (i.e., explicit AND operators) so that
a[/x]/y[/ f and/d] would be reformulated as a[/x]/y[/ f][/d].

The naïve method to process XML twig queries with logical predicates is to decompose
the twig query with OR or NOT to multiple twig queries, and then combine the final results

3.3 Tree Matching 45

by computing the set difference (union) between them in case of NOT (OR) operator. The
first holistic twig join algorithm to process twig queries with OR predicates was proposed
in [113]. The key idea is to avoid the decomposition process which causes much more I/O
and CPU overhead since some elements need to be accessed more than once in order to
produce the result to a twig query with logical OR predicates. For example, the twig query
a[/x or/y]/ f can be decomposed into two AND-twig queries a[/x]/ f and a[/y]/ f , with
the final result being generated by combining both results. Elements corresponding to a

and f query nodes have to be accessed twice. Because of the decomposition mechanism
equivalent to transforming an arbitrary logical expression into a logical expression in
disjunctive normal form (DNF), the researchers introduced a new concept to evaluate
logical OR predicates, called OR-block, which is a sub-tree attached to the original twig
and the root is an OR node, the children of the OR-block sub-tree are query nodes connected
to the parent of the OR-block sub-tree. The reason for this is to have twigs with logical
AND operators whether explicit or implicit and OR-block(s). Every OR-block in their
proposal is augmented with logical formula P(n) to record the information needed when
the OR predicate is evaluated. A new holistic algorithm was designed to process twig
queries with OR predicates, called GTwigMerge.

[249] addressed the challenges for processing AND/NOT-twig queries holistically.
They developed a new algorithm, TwigStackList¬, which guarantees the intermediate
results are always smaller than the decomposition-based method. The first attempt made
to process a twig query with all logical predicates was in [245]. The authors proposed
a new path-partitioned encoding scheme to derive all path information of elements in
XML documents. A new simplified representation of a twig pattern was also introduced to
represent the logical predicates in the ordinary twig pattern. Based on the their encoding
scheme and the new representation of twig pattern, they proposed a new join algorithm
to process twig queries without holistically computing the twig patterns. Nevertheless,
developing a holistic twig algorithm that completely supports and is compatible with the
three basic logical operators has been considered as challenging due to the fact that all
the holistic twig join algorithms proposed in the literature and originated from TwigStack
have failed to handle holistically a general B-twig query and provide good performance.
One possible implication of this is that the main challenge as addressed in [68] is arbitrary
occurrences of arbitrary combinations of AND/OR/NOT logical operators in B-twig
patterns. They introduced a new mechanism to represent a twig query with an arbitrary
combination of logical operations, which is derived from traditional Boolean normalization.
The idea of this mechanism, called B-twig normalization, is to push all the NOTs symbols
to the leaf query node and then applying the OR blocks technique mentioned earlier in
[113]. Therefore, they proposed some supporting functions that can be added to any of the
existing holistic twig join algorithms to make them able to handle complex B-twig queries
after the normalization pre-processing step. In this paper, the authors proposed a novel
holistic twig join algorithm, named BTwigMerge. An analytical and experimental study

46 Related Work on XML Query Processing

was conducted and BTwigMerge, according to the results, showed a superior performance
to related approaches. The same group in [66] examined the efficiency of processing
Boolean twigs directly without normalizing the input B-twig query, because they claimed
that the pre-normalization phase would incur extra processing time and in the worst case
query expansion increases exponentially. They introduced a new mechanism, called status
mechanism, in which every query node is associated with a boolean constant to indicate
whether or not a match rooted at this query node is satisfied. The nodes in twig patterns
are classified into two groups: query nodes and logical nodes. A query node is associated
with an element tag-name in XML documents, while a logical node can be an AND,
OR or NOT node. The researchers developed a new status updating mechanism based
on the type of query nodes. An extension has made to TwigStack based on the status
mechanism to process B-twig queries, the developed algorithm being called DBTwigMerge.
According to the experimental results, the algorithm designed has failed to outperform the
previous one with normalization in [68], BTwigMerge. In order to reduce the complexity
of normalization, [67] introduced a new approach which combines the advantages of
the previous ones. They used only three rules from the eight rules of BTwigMerge
for transforming any B-twig into their desired form of B-twigs, called well-formed B-
twigs (WFBT). According to the experimental results, the new approach, FBTwigMerge
significantly outperformed the previous algorithms. On the whole„ once a TPQ with
logical operators is normalized, it is straightforward to include boolean expressions in the
filtering strategy [24, 22].

An XML query language such as XQuery and XPath allow the use of wildcards to
broaden the scope of pattern matching, such a feature making the holistic evaluation of
twig tree patterns with wildcards more complex. Therefore, optimizing XPath expressions
by reducing the number of non-redundant wildcard steps is the work of [47]. An efficient
rewriting technique was introduced based on a new composite axes, called layer axes
which is a generalization of the other vertical axis, namely the Ancestor-Descendant and
Parent-Child axes. They only proposed a rewriting algorithm and studied the effectiveness
of the new proposed layer without implementation of the new algorithm to process the new
axes. Recently, [237] proposed a novel approach to transform twig pattern queries with
wildcards to equivalent wildcards-free tree patterns. They introduced a new axes, AD-dis,
which is a generalize case of both Ancestor-Descendant and Parent-Child axes. By utilizing
the new axes both branching and non-branching wildcards query nodes can be eliminated.
The authors developed two algorithms namely, Path∗ and Twig∗, to process path and twig
queries, respectively. The most interesting aspect of their work is the rewriting optimization
utilizing AD-dis (dis is an abbreviation for distance, providing relatively the same benefits
as layer axes in [47]). The key problem with this approach is that they have to decompose
a given twig pattern query into paths, then deploy rewriting paths utilizing AD-dis axis
with recording the information of lowest common node(s) participating in different single
rewriting paths. A serious weakness with this Twig∗ algorithm, however, is that single

3.3 Tree Matching 47

paths are merged-joined based on the property of a prefix path labelling scheme, Dewey
labelling, which incurs expensive iterations over the common ancestors to determine the
merge-able nodes. A set of experiments were conducted to verify the effectiveness and the
efficiency of the proposed algorithms, and the experimental results indicate that Twig∗ can
guarantee ,in the worst case, I/O and CPU time complexities to be linear in the sum of the
(n−m) input lists and the output lists, where n is the number of query nodes and m is the
number of * nodes.

More recently, new algorithms were proposed to speed up XML query processing
by combining the well-known XML indexing types, namely structural summaries and
node labelling schemes [105]. The TwigStack algorithm and its variants are based on
node labelling schemes to capture the basic relationships between elements in XML
documents in amortized constant time such as the region-based labelling scheme in [144,
40], the extended Dewey in [146, 147] and the Dewey in [19]. Most of the path indices
mentioned in Section 3.2.1 were proposed to facilitate the naïve method (navigation-based
approach) to evaluate tree-based data such as XML documents which requires traversing
the entire document and performing many forward and backward traversals (especial when
processing XML queries with A-D edges) to produce the answers to XML queries. In order
to reduce the number of joins performed by TwigStack at the second phase, [96] proposed
a new algorithm, TwigX-Guide, which is based on a DataGuide coupled with range-based
labelling scheme. The key idea of this algorithm is that it combines the efficiency of the
TwigStack algorithm, which is optimal in XML queries with A-D edges and the efficiency
of a DataGuide which can process tree pattern queries with P-C edges efficiently in constant
time. That results in a new algorithm that partitions XML tree nodes according to their
occurrences in DataGuide single paths which leads later to reduce the disk-access costs by
only reading elements that are likely participate in the final results rather than reading every
element whose tag-name appears in the tree pattern query. Their technique in partitioning
elements in XML documents is similar to prefix path labelling streaming proposed in [54].
Their algorithm needs to perform, in the worst case, one join operation on the top branching
node while TwigStack and its variants need to merge-join the single paths produced in the
first phase n−1 times where n is the number of query nodes. According to the experiments
represented in [96] TwigX-Guide outperforms TwigStack and TwigStackList in terms of
execution time for queries containing only P-C edges. When TPQs contain a mix of A-D
and P-C, TwigX-Guide failed to outperform TwigStack and TwigStackList.

[105] proposed a novel method, called S3 which can is a non-holistic approach which
combines structural summaries and the inference of internal node matches similar to TJFast.
The label lists contain DeweyIDs associated to the class of nodes in the structural summary
"QueryGuide". The authors addressed the challenge in optimising XML query evaluation
when processing large-scale XML documents which is to avoid document access as much
as possible. A new mechanism was suggested to guide the query evaluation to reduce
the search space by executing, first, tree pattern queries on the structural summary, called

48 Related Work on XML Query Processing

QueryGuide which describes the structure of XML documents by its paths. Every path class
in QueryGuide has a corresponding elements which are labelled using the Dewey labelling
scheme and clustered together in lists in their ascending lexicographical order. Unlike the
previous holistic joins, S3 performs the tree matching on QueryGuide to select inverted
lists that match path expressions over the structural summary. Only elements whose tags
appear as leaves in tree pattern queries are joined based on the property of the Dewey
labelling scheme to generate the query answers. Figure 3.13 depicts the QueryGuide
and its corresponding inverted lists. For example, consider the query T PQ = //a[/x]/y.
The previous algorithm i.e, TwigStack will retrieve all elements whose tags appear in
the query a,x and y in this example, but it can be seen from the structural summary that
only elements corresponding to query nodes a in class a2, x in class x3 and y in class y4

satisfy the query matching conditions. Scanning, thus, a and x in classes a6 and x8 will
be redundant and cause extra I/O overhead. The researchers indicated that any previous
tree matching algorithm can be performed first on the structural summary to retrieve the
participant node classes since the size of the QueryGuide is much smaller than the source
data tree. S3’s evaluation mechanism is similar to TJFast proposed in [147]. That is, S3

looks at the query leaf nodes pairwise and merge joins sets based on their lowest common
ancestor query nodes using the property of Dewey labelling scheme. Thus, large sets of
unused intermediate results may be produced. In [105], S3 was compared with algorithms
(i.e., TwigSack, TJFast and TwigList), which do not use structural summaries, in terms of
memory consumption, response time and disk-access costs. A better study would compare
the performance of S3 with TJDewey [19] or the approach proposed in [102], CIS-X which
extended TwigList to use structural summaries.

e1

a2

x3 y4

f5

a6

f7 x8

(a) QueryGuide

e1 1
a2 1.1:1.9:1.23
x3 1.9.2:1.23.2
y4 1.1.2:1.1.4:1.9.1
f5 1.1.2.1
a6 1.2:1.3:1.4
f7 1.2.1:1.4.1
x8 1.2.2

(b) label lists

Figure 3.13: (a) QueryGuide as structural summary and (b) its corresponding label lists.

A twig pattern matching algorithm, called TwigVersion was proposed in [240]. The
authors proposed a new labelling scheme, called version-labelling scheme to identify the
repetitive structures (twigs) in XML documents. The proposed labelling scheme was
incorporated into a structural index tree to form a version tree (DataGuide annotated
with Dewey labelling scheme) where each node in it can be identified by its unique label

3.3 Tree Matching 49

path. The TwigVersion algorithm executes tree pattern queries in bottom-up fashion by
inspecting version information associated with every node in the version tree (i.e., F&B
summary). The authors also proposed a new technique to compress content information
inside the version tree to support tree pattern queries with selection value-based predicates.
The experimental results revealed that TwigVersion significantly outperforms TwigStack,
TJFast and Twig2Stack algorithms and its performance improvement has a strong depen-
dency on the size of version tree and the ratio of the number of versions to the total element
in XML documents. [137] proposed a new algorithm to evaluate XML tree pattern queries
in three phases, where the first phase is to perform TwigStack on version tree similar to the
one proposed in [240] to produce the structural matching, after which TJFast is executed
on the retrieved version nodes to produce the final query answers. The experimental results
showed that the performance of the algorithm, Twig3Version, may be degraded when the
structure of XML documents is very complex.

Summary Finding all occurrences of tree pattern queries (TPQs) in XML documents is
considered as a specific task for XML query processing of XML databases. The ground-
breaking work of [40] established for the first time that processing XML tree patterns can
be performed holistically without decomposing tree pattern queries into multiple binary
joins. The key idea to their work is to merge multiple inverted lists at a time in pipeline
strategy to reduce the size of intermediate results. Two algorithms were proposed, namely
PathStack to process simple path queries holistically and TwigStack to answer twig queries
in a holistic way by decomposing twig queries into multiple root-to-leaf paths. TwigStack
uses a linked of stacks chain to represent intermediate results and works in two phases.
The first phase is to output single path solutions and the second phase is to merge all
path results produced in the first phase to produce the answer to the whole twig query.
As been discussed above in this section, several approaches have been published in the
literature to improve the efficiency of the TwigStack algorithm since it only optimal for
tree pattern queries having only Ancestor-Descendant edges. The researchers in the field
of XML query processing community have extended TwigStack in order to enlarge the
class of queries for which the method is optimal (no redundant paths generated in the
first phase) as in [144, 54, 131], support selective queries through value predicates [236],
reduce I/O costs and avoid document access as much as possible [147], eliminate merge
join operations in the second phase [185, 53, 132, 89, 22] and enhance execution time by
utilizing a combination of different XML indexing techniques [95, 19, 105, 96]. Little work
has been suggested to evaluate logical predicates in XML tree pattern queries holistically
such as [113, 249, 66, 68, 22, 67]. Skipping useless elements techniques such as XB-
tree, XR-tree and virtual cursors can be easily incorporated into algorithms for structural
joins with few extensions. Finally, searching structural summaries (e.g., DataGuide) is
time consuming [21], therefore efficient query pattern search of large structural index
trees is needed. To sum up, holistic approaches may be classified on the basis of the
output enumeration algorithm into top-down (two-phase) algorithms which use the output

50 Related Work on XML Query Processing

enumeration process introduced in TwigStack and bottom-up (one-phase) methods which
use the output enumeration algorithm introduced in Twig2Stack and TwigList.

3.3.2.3 Sequence-Based Approaches

The result of an XML query is a set of nodes that is sorted in document order which
causes generation of duplicates that need to be eliminated before producing the final results.
The key issue of efficient evaluation of XMl queries is to avoid duplicates at any time
during processing. A new approach was proposed to evaluate XML queries to avoid
merge-join operations by transforming both XML documents and queries into sequences
[230, 188, 213]. The process of XML query processing, then is reduced to subsequence
matching. Virtual Suffix Tree, or ViST in [230] transformed XML documents and queries
into structure-encoded sequences. It builds virtual tries (two levels of B+-tree) so that
sub-sequence matching is performed through a series of index probes. The answers to
queries generated by ViST may result in some false positives. To tackle this limitation,
[188] proposed an indexing technique to transform both the XML documents and queries
into sequences by the Prü f er code method that generates an one-to-one correspondence
between trees and sequences. This, thus, avoids the false answers problem generated by
transforming trees into sequences. The new algorithm is called PRIX and has to perform
expensive post-processing refining phases to eliminate irrelevant results (i.e., possible
matches) before producing the final answers to queries. Figure 3.14 illustrates the false
positives problem produced by previous sequence-based algorithms. To evaluate the query
Q1 over the data T1, it can be noticed that the underlined sequences form an answer to Q1.
However, it is incorrect because element x and element y in the XML tree T1 do not have
the same parent. The limitations of sequence-based approach can be summarised into two
main drawbacks. Firstly, it supports ordered twig queries only because it is a sub-sequence
matching process rather than tree matching process, and secondly, it might unnecessarily
scan some nodes more than once.

e

a

x

a

y

(a) an XML
tree T1

e

a

x y

(b) an XML
tree T2

e

a

x y

(c) a TPQ
Q1

T1 (e,ε) (a,e) (x,ea) (a,e) (y,ea)
T2 (e,ε)(a,e)(x,ea)y,ea)
Q1 (e,ε)(a,e)(x,a)(y,a)

(d) underlined indicates subsequence match-
ing

Figure 3.14: Illustration of false positive problem in ViST [188].

This section has reviewed the process of evaluating XML queries as sub-sequence
matching. The most sophisticated algorithms in this approach were discussed. The lack of
algorithms in this approach may be due to the fact that the number of sequence indices is

3.4 Conclusion 51

limited and they are built upon these indexing methods to transform XML documents and
queries into sequences.

3.4 Conclusion

This chapter has reviewed the major approaches for an XML query processing. The core
operation for processing XML query is examining and searching for the outcrop of a
twig pattern query in an XML database. As mentioned in this chapter, many algorithms
have been proposed in the literature. The structural join approaches are the oldest and
derived from the traditional join approach exploited in relational databases by providing a
native implementation for processing XML queries. The main issue with algorithms in the
structural join approach is that they may create large valueless intermediate results because
of the results of the individual binary relationships may not contribute to the final result.
The holistic twig join algorithms were proposed to solve this problem, and the first holistic
twig join algorithm is TwigStack. Subsequently, various holistic twig join algorithms
were proposed to improve the original one in terms of reducing the disk access cost as in
[54, 147, 125], avoiding expensive merging phase as in [185, 89, 22] or evaluating some or
all logical predicates (B-twigs) [68, 66]. Moreover, non-holistic approaches were proposed
to perform twig pattern matching originated from TwigStack on indexing tree to enhance
query performance and minimize I/O cost [240, 105, 96]. Additionally, sequence matching
algorithms show significant improvement over the structural join algorithms yet they are
limited due to the fact that they are reliant on indexing methods to transform the XML
documents into sequences and they only support ordered twig pattern queries and it is not
trivial task to modify them in order to support unordered twig pattern queries.

To conclude, the purpose of this chapter was to review the literature on XML query
processing. It begins by introducing the main concepts and techniques exploited in XML
retrieval systems. Then, the process of query evaluation in XML query processing is
viewed as a tree matching process and it is classified into approximate and exact matching.
This chapter, also, has reviewed the three key aspects of the exact tree matching process
for XML retrieval systems which are structural joins, holistic joins and sequence-based
approaches.

In view of the success and limitations of previous work, this thesis aims at studying
the space-time tradeoff for holistic twig matching algorithms and focuses on optimizing
space consumption without sacrificing query response time. The next chapter will discuss
problems arising from existing approaches in order to identify a place where a new
contribution could be made. Furthermore, the research hypothesis will be highlighted.

Chapter 4

Research Hypothesis and Methodology

4.1 Introduction

This chapter will outline the research motivation and describe the general area of research in
order to address the potential research problems emerging from the literature review in the
field of XML query processing (see Chapter 3). The main interest of this research revolves
around the matching filtering concepts introduced in [89], and how it can be realized
efficiently by extending the existing labelling schemes to overcome the issues arising when
developing an XML query model as a part of native XML databases management systems
(XDBMS) [9, 85, 86]. In native XML databases management systems, a comprehensive
set of core functionalities designed for data stored in XML format is offered. However,
this thesis concentrates on the basic functionality of the query model in these systems
and describes the research work in a particular area of XML matching process. In the
context of XML query processing, Twig Pattern Query (for short TPQ) is the simple query
model proposed in the literature [20, 22, 118]. A twig pattern is a small tree and can be
represented as a rooted, labelled tree [22, 5, 40, 38, 70, 145, 237, 133, 128, 236, 207].

The purpose of this chapter is to discuss the problems identified by the literature survey
conducted in the literature review chapter (see Chapter 3). This chapter then demonstrates
the main methodology and research techniques which have been used in the field and will
be adopted in this thesis to establish the overall research process used to test the tentative
hypothesis presented later [210, 179, 193, 69, 179].

The rest of this chapter is organized as follows. The research problems and motivation
will be explained in Section 4.2. The research hypothesis will be presented in Section
4.3 as will the methodology used in this research is described. The scope of this thesis
is highlighted in Section 4.4 and Section 4.5 will demonstrate the main objectives of the
solution proposed.

54 Research Hypothesis and Methodology

4.2 Research Problems and Motivation

The growing number of XML documents leads to the need for appropriate XML querying
algorithms which are able to retrieve data efficiently within XML documents [6, 110, 31,
98, 209]. In recent years, there has been an increasing interest in twig pattern matching
[132, 5, 20, 22, 40, 18, 38, 43, 54, 53, 7, 89, 148, 24]. Due to the importance of TPQs in
XML retrieval systems, finding all occurrences of a tree pattern query in an XML document
is often considered as a specific task for XML databases as well as a core operation in
XML query processing. However, it could be argued that most of the existing algorithms
fail to process XML twig pattern queries efficiently or to guarantee an optimal evaluation
without storing useless elements in intermediate storage prior to forming the final answer
regardless of the query class as was mentioned in Chapter 3.

Most existing XML query processing algorithms [54, 20, 237, 207, 144, 7, 132, 118,
116, 22, 89] rely on XML indexing techniques to scan only XML data relevant to XML
queries, as a result, the XML query performance is improved. In XML, there are two basic
type of indices. The first one is to index each node in an XML document for recording
its positional information [253, 90, 81, 98, 211, 147, 238, 175, 186, 184]. This group is
well-known as node label or labelling schemes. In this group of indices, every node in
an XML document is assigned an unique label to record its position within the original
XML tree. The labelling scheme should enable determination of the structural information,
namely: child (also is referred to as Parent-Child) and descendant (short for Ancestor-
Descendant) relationships. Therefore, for any given two elements in an XML document,
the relationship between them (if it exists) can be computed in constant time.

The alternative uses root-to-node paths in the XML document and is well-known as
graph indexing (also referred to as structural summary or path indexing). Because an XML
document can be modelled as rooted, ordered, labelled tree, a labelled path is defined as
a sequence of tag names in the form of tag1/tag2/. . ./tagn from the root represented by
tag1 to node n tagged by tagn . For illustration, consider the XML tree in Figure 4.1a,
elements tagged by a can be stored in different storage structures according to their unique
labelled paths. Consequently, elements corresponding to the path e/a are { a1 a3 a4 },
while a2 is stored alone in its distinct labelled path e/a/a. A classic example of a path
index is the DataGuide which is a typical model that merges all equivalent paths into a
single one. Every path in DataGuide is unique. One major drawback of this approach
is that it only supports a simple path queries, however, there are some graph indices that
cover twig path queries as in [119] but one of the limitations with these indices is that
they can be very large. An example of a DataGuide for the same XML tree is depicted
in Figure 4.1b. The literature review chapters (see Chapters 3) highlighted the alternative
indexing techniques of XML proposed in the literature and studied their advantages and
limitations in depth [174, 81, 9, 76, 244, 253, 240, 52, 119], but these two are important
for a wide range of XML query processing algorithms [20].

4.2 Research Problems and Motivation 55

e (1,18,1)

a1 (2,8,2)

x1 (3,3,3) a2 (4,7,3)

x2 (5,5,4) y1 (6,6,4)

a3 (9,13,2)

x3 (10,12,3)

y2 (11,11,4)

a4 (14,17,2)

x4 (15,15,3) y3 (16,16,3)

(a)

e

a

a

x y

x

y

y

(b)

Figure 4.1: (a) sample of an XML tree and (b) its DataGuide

Both node and graph indexing are essential to XML query processing algorithms,
they play important role in providing efficient evaluation of queries with respect to time
complexity and memory consumption overhead [20, 188, 240, 6]. For the sake of simplicity
the following example 4.1 aims to explain the use of labels in determination of hierarchical
relationships in XML trees, and Example 4.4 is a demonstration of path indexing technique
used in facilitating XML query processing.

Example 4.1. Consider the Figure 4.1a, the structural relationships between the elements

can be determined according to property 4.3 and 4.2 for ancestor-descendant and parent-

child relationships, respectively. Consider the relationship between node a1 and y1 , as

the elements are labelled based on containment labelling scheme proposed in [253]. a1

is an ancestor of y1 because 2 < 6 < 8. Also, a1 is a parent node of a2 because the

parent-child conditions are satisfied as 2 < 4 < 8 and 2+1 = 3.

Property 4.2 (Parent-Child relationship). Element u is a parent of element v if and only if

startu < startv < endu and levelu +1 = levelv

Property 4.3 (Ancestor-Descendant relationship). Element u is an ancestor of element v if

and only if

startu < startv < endu

Example 4.4. Suppose a simple path query Q = /e/a is issued against the XML tree in

Figure 4.1a and by traversing the DataGuide in Figure 4.1b, the result of this query can be

returned by a single access because it is a simple path so that elements corresponding to

this labelled path in a DataGuide can be retrieved in a single access. Only a1 , a3 and

a4 are the answer to Q and a2 is discarded.

This section aims to provide a general background to different techniques used as
sub-components in XML query systems because it is necessary here to clarify exactly
what is meant by deploying XML indexing in the context of XML query processing before
proceeding to criticize the previous approaches. Chapter 2 has highlighted the different
types of XML queries and their characteristics in more details. As a result, the research

56 Research Hypothesis and Methodology

T PQ → Pattern
Pattern → Step(Predicate)∗ (Pattern)?
Step → Axis NodeTest
Predicate → [Pattern]
Axis → / | //
NodeTest → String

Figure 4.2: A grammar of TPQ

presented in this thesis is motivated by the need to address a set of major problems derived
from the literature survey conducted in Chapters 3. The research problems are summarised
in the next sections.

4.2.1 Determination of the Basic Structural Axes

An Extensible Markup Language (XML) tree pattern query is defined as a complex
selection on elements of an XML document specified by structural information of the
selected elements [132]. Improving the efficiency of tree patterns matching is a core
operation in processing of XML queries. Therefore, XML query processing has attracted a
considerable number of researchers to improve its performance [110, 147, 144, 249, 146,
15, 53]. One of the most important problems in XML query processing is tree pattern
matching. Generally, tree pattern matching is defined as mapping function M between a
given tree pattern query Q and XML data D, M : Q→ D that maps nodes of Q into nodes
of D where structural relationships are preserved and the predicates of Q are satisfied.
Formally, tree pattern matching must find all matches of a given tree pattern query Q

on an XML document D [81, 209, 40, 5, 68, 146]. The matching problem, then can be
formalised in Definition 4.10. In addition, weak and strict filter matching are defined
in definitions 4.15 and 4.16, respectively adopted from [89]. As has been discussed in
the literature review chapter (see Chapter 3), most of the previous holistic twig pattern
processing approaches are reliant on a combination of matching and filtering techniques
in order to process twig queries efficiently. subtree and prefix-path are two of the most
widely used groups of matching and filtering strategies in the literature. For illustration, the
definitions of both are given in the Definitions 4.14 and 4.13, respectively. The grammar
of TPQ used in this thesis which is expressed as a fragment of the grammar of XPath 2.0

[222] is introduced in Figure 4.2.
In XML, both data and queries are represented and expressed, respectively, using

tree-structured model, the following are the definitions of XML tree and twig pattern tree
[209].

Definition 4.5 (XML Tree). A rooted, node-labelled tree is defined as T = (V,E,r,∑V ,µ)

where

• V = {v1, . . . ,vn} is a finite set of nodes.

• E = {(u,v) ∈ V ×V} is a set of edges.

4.2 Research Problems and Motivation 57

• r ∈V is a distinguished node called the root.

• ∑V is the set of element names appearing in T.

• µ : V −{r} → ∑V is a labelling function which associates an element name with

each node other than the root.

The level of any node in T is the number of distinct element(s) along the unique path from

itself to the root, where level(r) = 1.

Definition 4.6 (Child Relationship). Given two nodes u and v in a rooted, labelled tree

where u,v ∈ V , v is a child of u if and only if ∃e ∈ E : e = (u,v). Conversely, u is a parent

of v, this relationship is denoted as PC or P-C.

Definition 4.7 (Descendant Relationship). Given two nodes u and v in a rooted, labelled

tree where u,v ∈ V , v is a descendant of u if and only if ∃n1, . . . ,nk ∈ V such that

(u,n1) ∈ E, (n1,n2) ∈ E, . . . ,(nk,v) ∈ E where 1≤ k < the depth o f the tree. Conversely,

u is an ancestor of v, this relationship is denoted as AD or A-D.

The difference between an XML tree and a twig pattern can be seen in their types of
edges, the XML tree is only entitled to have parent-child edges connected its nodes, while
the twig pattern is extensible to handle the Ancestor-Descendant structural relationship
as edges connected to its nodes. In practice, twig pattern is much more smaller than the
original XML tree. Twig pattern can be seen as the translation of user query and translating
an XML query plan into a twig pattern is not a simple task [93]. Complex XML queries
are divided into several twig patterns because a single twig pattern can represent only a
single XPath path expression. The complexity of XML queries determine the difficulty
of translating them into twig pattern(s) [161]. In XML query optimization, the process
of translating user queries to twig patterns, then optimise the generated twig patterns has
been considered as the most effective solution used in the literature [93].

Definition 4.8 (Twig Pattern). TP is a rooted, node-labelled tree T P = (V,E,r,∑V ,µ)

where

• V = {v1, . . . ,vn} is a finite set of query nodes.

• E = {(u,v) ∈ V ×V} is a set of edges which represents parent-child or ancestor-

descendant relationships between connected query nodes. The set of child edges is

denoted by E/, while the set of descendant edges is denoted by E//.

• r ∈V is a distinguished query node called the root.

• ∑V is the set of element names appearing in TP.

• µ : V → ∑V is a labelling function which associates an element name with each

node.

Definition 4.9 (Twig Pattern Query). TPQ is a pair (TP,F) where

58 Research Hypothesis and Methodology

$1

$2 $3 $4

$1.tag = ”a”

$1≈ $2

$3.tag = ”x” and $4.tag = ”y”

$3.value = "is x node"
(a)

a

a x

"is x node"

y

(b)

Figure 4.3: (a) sample of a twig pattern with formula F and (b) its optimised transformation
to more readable one.

• TP is a twig pattern.

• F is a formula which specifies constraints on TP’s nodes.

[122] explained how the formula F is expressed in a twig pattern. In their work, F is
defined as a combination of tag constraints (TCs), value based constraints (VBCs) and node
identity constraints (NICs). TCs specify constraints on tags (labels) of twig pattern nodes,
e.g. node.tag(node.label) = "a" (see Figure 4.3). VBCs include selection constraints on
values using relational operators =, ̸=,≥,>,≤ and <. For illustration, consider the query
a[/a][/x="is x node"]/y and its twig pattern representation in Figure 4.3, VBCs indicate
that the x-node to be selected is associated with a text value equals to "is x node". NICs
determine if two nodes of TP are the same using ”≈ ” [93]. Consequently, the following
definition formalises answers to twig pattern queries using matchings.

Definition 4.10 (Query Matching). A match of a twig pattern query

T PQ = (T P = (V1,E1,r1,∑V1,µ1),F) in D = (V2,E2,r2,∑V2,µ2) is a total mapping M :
T P→ D that maps nodes of TP into nodes of D such that:

• For each query node u1 ∈V1 maps to u2 ∈V2 , then µ1(u1) = µ2(u2).

• For each edge e = (u,v) ∈ T P where e represents parent-child relationship, M(v) is

a child of M(u) in D.

• For each edge e = (u,v) ∈ T P where e represents ancestor-descendant relationship,

M(v) is a descendant of M(u) in D.

• formula F of TPQ is satisfied.

It is worth noting that the matching result of a twig pattern query as in Definition
4.11 coincides with that presented in the previous holistic twig pattern query processing
approaches [81, 209, 40, 5, 68, 146, 108]. In contrast to this, XPath outputs only the last
step of the path expression which is not part of a predicate. On the other hand, XQuery

can define the output more precisely. In their examination of incorporating TPQ into the
XQuery algebra [161] concluded that their developed algebra uses TPQ has a single output
query node. Even when a complex FLWOR XQuery expression indicates more than one
query node as the output of a TPQ, the twig is bound by a single query node in each

4.2 Research Problems and Motivation 59

iterative of for clause [18]. Interestingly, it is almost certain that reducing the number of
output query nodes in the final matching tuples has a significant impact on the performance
of holistic TPQ processing approaches [146]. In this thesis, however, the output of TPQ is
consistent with the previous holistic TPQ processing approaches as defined in Definition
4.11 in order to compare the proposed approaches with the state of the art approaches
based on the processing time and memory consumption overheads.

Definition 4.11 (Matching Result Set). The matching of the query nodes of Q under a

mapping of Q to D is a solution of Q on D. The answer of Q on D is an ordered set of

all the solutions of Q on D. The answer to TPQ Q with n nodes can be represented as an

n-ary relation where each tuple (q1, . . . ,qn) consists of the database elements that identify

a distinct match of Q in D. Some of the fields may be duplicated and some may not be in

the document order, but tuples have to be in a sorted order of the common prefixes of the

individual root-to-leaf paths.

e (1,18,1)

a1 (2,8,2)

x1 (3,3,3) a2 (4,7,3)

x2 (5,5,4) y1 (6,6,4)

a3 (9,13,2)

x3 (10,12,3)

y2 (11,11,4)

a4 (14,17,2)

x4 (15,15,3) y3 (16,16,3)

Figure 4.4: An XML tree.

Example 4.12. Consider the XML tree in Figure 4.4, one possible solution of the twig

pattern query Q = a[/x]/y is the tuple consists of (a1,x2,y1), but the full answer to the

query is the ordered set of all the matching solutions as (a1,x2,y1) and (a4,x4,y3).

Definition 4.13 (Prefix-Path Matching). A query node in a TPQ Q as qn ∈ Q is a strict-

ly/weakly prefix-path matching of an XML element M(qn) ∈ D if and only if the simple

path q1, . . . ,qn is a strictly/weakly match of qn, where q1 is the root query node.

Definition 4.14 (Subtree Matching). A node in a TPQ Q as qn ∈ Q is a strictly/weakly

subtree matching of an XML element M(qn) ∈ D if and only if all query nodes which are

child or descendant nodes of qn are in a strictly/weakly prefix-path matching of the simple

paths starting from qn as the root to each one of its children and descendants in Q.

In reviewing the literature, the main research problem in the context of XML query
processing models may be seen as

“Given a twig pattern query Q and an XML data tree D, find all occurrences
of Q in D efficiently.’

60 Research Hypothesis and Methodology

In the literature review chapter (see Chapter 3), the state-of-the-art of XML query
processing algorithms were discussed. The evidence from this study suggests that most
of the existing algorithms, regardless the query class, fail to process XML twig pattern
queries efficiently or to guarantee an optimal evaluation without storing useless results
in intermediate storage before computing the final answers. The classical holistic twig
join algorithm TwigStack considers only the ancestor-descendant relationship between
query nodes to process a twig query efficiently without storing irrelevant nodes in the
intermediate storage. It has been reported [40, 61] that it has the worst-case I/O and CPU
complexities when all edges in twigs are “//” (AD relationship) linear in the sum of the
size of |Q| input and output lists where |Q| denotes the number of nodes in Q. However,
it can not efficiently process twigs with “/" (PC relationship) edges or a combination
of Ancestor-Descendant and Parent-Child relationships, as was explained in Chapter 3.
Another limitation of TwigStack [40] is that it might perform unnecessary processing by
considering weak subtree filtering between query nodes and strict matching between query
nodes in each root-to-leaf path [89]. The weak filtering is performed in the core function
getNext() in which an element en is considered likely to contribute to the result if and
only if en has a descendant extension that is (i) en has a descendant element eni in each
of the streams corresponding to its child elements where eni = children(en) ; (ii) each
of its child elements satisfies recursively the first property (i). The latter is achieved by
maintaining a chain of stacks corresponding to query nodes and each stack points to the
stack corresponding to its parent query node and the root query node points to null to
indicate the end of path. The strict path matching check is implied by a modification to the
push method where elements are pushed onto its corresponding stack if and only if they
have a strict match with the top elements in their parent stack as in the Definition 4.16.
Note that the root query node satisfies the strict match since it is the ancestor of all query
nodes.

In their comprehensive analysis of filtering strategies [89], the researchers have drawn
a conclusion that the efficiency of XML matching algorithms could be improved by
combining different types of filtering strategies. As a result, filtering strategy is a dominant
feature of the efficiency of XML query matching algorithms. The use of semi-strict filtering
has not been investigated and one possible definition, which is close to that of [89], has
been broadened in this research to include inferred information from labelling schemes or
structural indices, further explanation of this information will be found in Chapter 6 . This
definition can be formalized as in Definition 4.17.

Definition 4.15 (Weak Matching). A node map according to M weakly satisfies the edge

e = (p,q) ∈ Q if M(p) is an ancestor of M(q).

Definition 4.16 (Strict Matching). A node map according to M strictly satisfies the edge

e = (p,q) ∈ Q if and only if M(p) has a relationship with M(q) as specified by label(e).

4.2 Research Problems and Motivation 61

Definition 4.17 (Semi-Strict Matching). A node map according to M semi-strictly satisfies

the edge e = (p,q) ∈ Q if and only if M(p) is a ancestor of M(q) and it can be derived that

M(p) has a relationship with M(q) as specified by label(e).

TwigStack has been extended extensively in the literature 1, strategies to enhance it
might involve reducing the number of partial paths when parent-child axes “/" exist in
twig queries as in [54, 144, 18], alleviating the I/O cost by maintaining virtual cursors to
avoid reading elements corresponding to internal query nodes [147, 125, 146], boosting
processing time by skipping irrelevant elements in the input inverted lists based on prebuilt
indices (variants of B-tree index) such as [40, 111], or avoiding redundant computation by
sequentially forwarding the cursors to potential, matching elements [255, 133, 111, 96].

Nevertheless, [61] points out that the TwigStack algorithm and its variants which de-
pend on a single sequentially scan of the input lists can not be optimal for evaluation of
tree pattern queries with any arbitrary combination of ancestor-descendant and parent-
child relationships. In the context of XML twig processing, a twig matching algorithm
is considered optimal if and only if all elements stored in main memory are directly rel-
evant to the twig solutions. It means that storing elements using simple, as in [144], or
complex, as in [131], buffering techniques does not guarantee optimal evaluation since
extra computations would cause overheads and violate the worst-case space complexity in
the early phases prior to producing final solutions to twig queries. Despite this, reducing
the irrelevant elements stored in main memory would improve the overall performance sig-
nificantly as been reported in the literature and guarantee the linear worst-case complexity
[53, 125, 144, 89, 54, 88, 22].

Numerous studies have attempted to devise an optimal evaluation for twig pattern
queries over the past decades [53, 255, 105, 21, 128, 96, 66, 139, 70, 116, 240, 185].
The most obvious finding to emerge from the analysis (see Chapter 3) is that their main
limitations, however, lie in the fact that they store many irrelevant nodes in intermediate
storage and no optimal approach has been proven yet [20, 22, 89, 116, 132]. It is worth
noting that the term optimal is misleading because the existing research recognizes an
optimal evaluation of twig queries based on the approach chosen. If twig queries are
processed in one of the two-phase group of algorithms, the optimal evaluation is achieved
if and only if all partial single paths are part of the final results, while the one-phased family
of algorithms achieve optimal processing if and only if all elements stored in intermediate
storage are relevant to twig queries answers [22]. However, an optimal enumeration can be
obtained in one-phase algorithms through the use of split vectors or tree of stacks as the
intermediate storage used where useless elements corresponding to internal query nodes
are pruned efficiently before performing the enumeration [53, 89]. In other words, the
optimal evaluation guarantees the optimal enumeration but the opposite is not true. It has
been pointed out that state of the art algorithms TJStrictPre, TJStrictPost and GTPStack

still have redundant computation and overheads in practice, and store useless elements

1A more comprehensive study can be found in the literature review discussed in Chapter 3.

62 Research Hypothesis and Methodology

corresponding to leaf query nodes in the intermediate storage [22, 20, 89]. Furthermore,
holistic twig algorithms define query classes for which they are optimal. A summary
of the cutting edge XML query processing algorithms and their optimal set of query
classes is presented in Table 4.1. Notice two important assumptions ensuring the linear I/O
complexity are that a holistic algorithm can access only a single node from each stream in
each step during the processing time and cursors can be only forwarded. It is believed that
TPQ algorithms’s optimal processing is based on the labelling schemes and tag stream

schemes used and the characteristics of XML documents [22].

4.2 Research Problems and Motivation 63

Ta
bl

e
4.

1:
A

su
m

m
ar

y
of

pr
ev

io
us

al
go

ri
th

m
s

an
d

th
ei

rfi
lte

ri
ng

pr
op

er
tie

s.
A

lg
or

ith
m

So
ur

ce
Fi

lte
ri

ng
In

te
rm

ed
ia

te
R

es
ul

ts
O

pt
im

al
Q

ue
ry

Ty
pe

s
pr

eo
rd

er
po

st
or

de
r

pa
th

s
el

em
en

tr
ef

er
en

ce
s

Tw
ig

St
ac

k
[4

0]
✓

✓
A

-D
Tw

ig
St

ac
kL

is
t

[1
44

]
✓

✓
P-

C
be

lo
w

no
n

br
an

ch
in

g
iT

w
ig

Jo
in

+
TL

[5
4]

✓
✓

P-
C

iT
w

ig
Jo

in
+

P
P

L
[5

4]
✓

✓
on

e
br

an
ch

in
g

qu
er

y
no

de
or

al
lP

-C
be

fo
re

A
-D

T
w

ig
2 St

ac
k

[5
3]

✓
✓

✓
op

tim
al

en
um

er
at

io
n

1 2
Pa

th
St

ac
k
+

T
w

ig
2 St

ac
k

[5
3]

✓
✓

✓
✓

op
tim

al
en

um
er

at
io

n
1 2
T

w
ig

St
ac

k
+

T
w

ig
2 St

ac
k

[2
1]

✓
✓

✓
✓

op
tim

al
en

um
er

at
io

n
TJ

Fa
st

[1
47

]
✓

✓
P-

C
be

lo
w

no
n

br
an

ch
in

g
TJ

Fa
st

+
TL

[1
47

]
✓

✓
P-

C
or

P-
C

be
lo

w
no

n
br

an
ch

-
in

g
Tw

ig
St

ac
kS

or
tin

g+
P

P
L

[1
8]

✓
✓

sa
m

e
as

iT
w

ig
Jo

in
+

P
P

L
Tr

ee
M

at
ch

[1
46

]
✓

A
D

in
no

n
ou

tp
ut

br
an

ch
in

g
ed

ge
s

Tw
ig

Li
st

[1
85

]
✓

✓
Tw

ig
Fa

st
[1

32
]

✓
✓

A
-D

TJ
St

ri
ct

Po
st

[8
9]

✓
✓

✓
A

-D
TJ

St
ri

ct
Po

st
+

Sp
lit

Ve
ct

or
[8

9]
✓

✓
✓

✓
op

tim
al

en
um

er
at

io
n

TJ
St

ri
ct

P
re

[8
9]

✓
✓

A
-D

TJ
St

ri
ct

P
re

+
Sp

lit
Ve

ct
or

[8
9]

✓
✓

✓
✓

op
tim

al
en

um
er

at
io

n
G

TP
St

ac
k+

Sp
lit

Ve
ct

or
[2

2]
✓

✓
✓

✓
op

tim
al

en
um

er
at

io
n

64 Research Hypothesis and Methodology

The work of [9] addressed the limitations of information encoded within labels pro-
duced by existing labelling schemes. It focused on performing join operations more earlier
at leaf levels where the selectivity of query nodes is at its peak for data-oriented XML doc-
uments. The significance of the proposed approach stems from a comprehensive labelling
scheme that could infer additional structural information, called Nearest Common Ancestor,

NCA for short rather than the basic relationships among elements of XML documents. A
particular problem in TPQ is wildcard. A Twig pattern query may contain a query node
where its node label can be any node label in the XML documents, it is represented in Q

as “*" (also referred to as, wildcard node). The authors in [237], proposed a new XML
matching algorithm to process wildcard nodes efficiently by transforming twig pattern
queries with one or more wildcard nodes into wildcard node free queries. Their success
was made through devising a new rewriting mechanism and augmenting the elements’
labels, called Gap Label with extra information to accelerate the matching process. In
addition, this suggests a need to consider the amount of information stored within elements
of XML documents to enhance the efficiency of XML query algorithms.

Example 4.18. Consider the XML tree in Figure 4.1a, assume a simple path query to

return only elements labelled y which have an element labelled a as a grandfather of it

regardless of the label of its parent. In other words, a is exactly a parent of its parent.

Such a query can be written as Q = a/∗/y, then the query solutions consist of two tuples

(a1,a2,y1) and (a2,x1,y2).

To overcome the above issues, this thesis proposes a new approach that combines tech-
niques from different aspects of XML query processing. The new approach is introduced
in Chapter 6 where its features are related to this research problem. The key idea of is to
find an appropriate, refined labelling scheme such that, for any given query node in Q, the
set of its child query nodes in the XML document D specified by the major bottleneck
structural relationship, namely Parent-Child can be determined efficiently. The proposed
approach should be able to combine multiple filtering strategies to eliminate eventually
storing useless elements in intermediate storage, by increasing the overall performance
while space overheads are reduced. The next section is to address ordered twig pattern

query, or for short OTPQ in which the document order of XML elements is taken into
account during the matching process [118, 145, 141, 207, 218].

4.2.2 Ordered Twig Pattern Query and Positional Predicates

XML has become a de facto standard to share, save and represent business data over
heterogeneous and homogeneous platforms [93, 209, 98]. As a result, large collections
of XML data need to be managed and queried efficiently. Popular XML query languages,
such as XPath [222] and XQuery [224], provide constructs for specifying relationship
patterns serving as structural constraints in XML queries. As been discussed in the above
sections, a twig pattern match is the most frequently used query model in the literature

4.2 Research Problems and Motivation 65

for searching XML [88]. A twig pattern matching problem has been attracted most of
the research work in the context of XML querying and indexing [81] since it is seen as
equivalent to a subset of XPath which is, in turn, a subset of XQuery. It provides operators
to express structures of XML documents in path expression of XPath and path expressions

in for and let clauses of XQuery [189, 188] (see Chapter 2). XPath can specify more than
Ancestor-Descendant and Parent-Child structural patterns, in its specification [222], XPath
has thirteen axes and among them only child and descendant, which represent Parent-Child
and Ancestor-Descendant relationships, respectively, appear in a majority of XPath queries
in practice. The lists of XPath navigational axes were discussed in Chapter 2, however,
very little is known about sibling edges in twig patterns which determine the order of
relationships among sibling query nodes. The existing literature on XML twig pattern
match is extensive and focuses particularly on processing queries where structural axes are
restricted to P-C and A-D. Nevertheless, there is a relatively small body of literature that
is concerned with sibling axes in twig pattern queries under branching twig nodes. Table
4.2 illustrates semantics of sibling axes supported by XPath. When these four axes are
involved in twig pattern queries, they are referred to as ordered twig pattern queries.

In order to define the query matching for TPQ with order-constraints, the left-to-right
relationship plays a vital role in the matching of ordered twig queries. In an ordered twig
match, all child query nodes of a branching twig node have to satisfy the left-to-right
relationship. Formally, it is as the twig match pre-defined in definition 4.10 with an
additional constraint to handle left-to-right relationships or so-called left-to-right ordering
among sibling twig query nodes which is the target of the research work of this thesis.
It has commonly been assumed that the existing holistic twig algorithms can guarantee
nodes contributing in the final solutions by processing a bounded number of elements
when twig queries involved A-D axes only, while the existing of P-C edges might lead to
the need for processing an unnecessary number of elements, which could be in the order
of the size of the input document [218]. In general, this requires the same when processing
following-sibling and preceding-sibling axes. To illustrate the semantics of order-based
axes and their corresponding matching process, Figure 4.6 depicts the difference between
unordered twig and ordered twig queries over the data tree in Figure 4.6a, of the top
of each twig query is the corresponding XPath expression. It should be noted that the
order restriction is denoted by a ” < ” in a box to indicate that all child query nodes of
that marked branching query node are ordered from left to right as in Definition 4.21
[118, 145, 93, 146]. This is a limitation of previous work, in contrast, an ordered branching
query node, which is marked by ” < ”, can have some children which have to be ordered
[173].

Definition 4.19 (Left-to-Right ordering or LR ordering). Considered two nodes u and v in

a TPQ which are descendants of a node n. Let M(u) and M(v) are matching of u and v in

D as in definition 4.10. Left-to-Right ordering from u to v is an order constraint specifying

that M(u) must appear before M(v) in D, but must not be an ancestor of M(u).

66 Research Hypothesis and Methodology

Property 4.20 (Left-to-Right relationship). For two nodes u and v encoded in the regional

encoding scheme as triples (start,end, level), where u = (startu,endu, levelu) and v =

(startv,endv, levelv). u is to the left of v if and only if

endu < startv

The following definition is formalised to extend the match of the basic twig query
against an XML database, where the structural relationships are parent-child and ancestor-
descendant as was defined in the previous section. The above definition (see Definition
4.19) is important to establish the order constraint in ordered twig queries. However,
a limitation of this definition is that a query processing strategy based on it can not
process more complex ordered twig queries in which ordering between two sibling query
nodes may not be significant [146, 118, 145, 146, 188, 230]. For illustration, the XPath
expression a//b[/ f ollowing :: c]/ f ollowing :: d looks for b-node which has LR ordering
with c-node and d-node, it can be seen that the LR ordering between c-node and d-node
is not considered since b-node is the context-node associated with order axes (see Figure
4.5).

a

b c d

<

Figure 4.5: Illustration of an ordered twig query with LR ordering. The dashed arrow lines
indicate LR ordering between query nodes.

Definition 4.21 (Query Matching). A match of a twig pattern query

T PQ = (T P = (V1,E1,r1,∑V1,µ1),F) in D = (V2,E2,r2,∑V2,µ2) is a total mapping M :
T P→ D that maps nodes of TP into nodes of D such that:

• For each query node u1 ∈V1 maps to u2 ∈V2 , then µ1(u1) = µ2(u2).

• For each edge e = (u,v) ∈ T P where e represents parent-child relationship, M(v) is

a child of M(u) in D.

• For each edge e = (u,v) ∈ T P where e represents ancestor-descendant relationship,

M(v) is a descendant of M(u) in D.

• For all query nodes u1, . . . ,uk ∈V1 which are ordered (1 to k) children of an ordered

branching twig node n, they map to v1, . . . ,vk ∈ V2, then M(v1) is to the left of

M(v2), . . . ,M(vk−1) is to the left of M(vk) in D.

• formula F of TPQ is satisfied.

Example 4.22. Consider the ordered twig query depicted in Figure 4.6c which represents

the path expression a/x/ f ollowing− sibling :: y, this twig has one match in the data tree

4.2 Research Problems and Motivation 67

Table 4.2: Semantics of sibling axes between two query nodes u and v.
Axis Semantic
following u appears in the document before v and v is not a descendant of u.
following-sibling like following, u and v have the same parent.
preceding v appears in the document before u and v is not an ancestor of u.
preceding-sibling like preceding, u and v have the same parent.

of Figure 4.6a as (a1,x1,y2) as indicated by dashed lines in Figure 4.7. It can be seen

from the positional information encoded in document elements, the order between x1 and

y2 satisfies the left-to-right ordering as 2 < 7, while x2 and y1 does not satisfy the order

constraint as 5 ≮ 4. In contrast, the unordered twig of Figure 4.6b in the same data tree

has two matches as (a1,x1,y2) and (a2,x2,y1).

XML data are order-sensitive and the need to support querying order model is crucial
in many domains. There are many XML models which have to be queried with respect to
the order of elements under particular branching elements to preserve the logical structure
of the document as in TreeBank where the syntactic structure of text data has to be retained
when handling queries over it [55]. Early examples of research into OTPQ can be found in
a sequence matching approach, where both XML documents and queries are converted to
sequences, and query matching, thus, is reduced to subsequence matching. This approach
was discussed in the literature review chapter (see chapter 3). Twig pattern matching
algorithms based on sequence indexing can support only ordered twig pattern queries
due to the nature of sequence encoding of the hierarchical structures of XML documents.
Algorithms in this approach are not comparable to holistic twig join algorithms, which is
adopted in this thesis, as has been reported [164, 55]. Holistic twig join algorithms are the
most robust and predictable solutions when compared with other matching approaches,
also they have been regarded as the most efficient group in the literature [164, 209, 24].

In recent years, there has been an increasing amount of literature on unordered twig

pattern matching where order-based constraints are not significant, whereas there are
relatively few research studies in the area of ordered twig pattern [55, 145, 118, 90, 218,
146]. The existing twig-based algorithms fail to handle order-based queries efficiently
because they concentrate more on P-C and A-D relationships. Thus, they do not impose any
order constraints in the processed nodes [173]. In addition to order-based axes, positional
predicate, which appears in a twig pattern query as numerical value enclosed within
a predicate 2 in the path expression, has been considered in limited approaches as in
[217, 70].

A straightforward technique to answer twig pattern queries containing order-based
axes and positional predicates were studied and it might lead to redundant computations

2In XPath specification [222], positional predicates can be invoked through pre-defined function called
position() inside predicates in the form position() op n, where op is one of the basic logical comparison
operators {=,<,>,≤,≥, ̸=}and n is an integer. For example path expression to find the second x-node
which must be a descendant of a-node which must have y-node as one of its children can be written as
a[/y]//x[position() = 2] or abbreviated as a[/y]//x[2]

68 Research Hypothesis and Methodology

and a large number of intermediate results (i.e path solutions in TwigStack) [217]. In order
to process ordered twig queries and positional predicates efficiently, the mapped elements
have to be checked against theses constraints prior to produce the final solutions. No
algorithm can process order twig pattern query or positional predicates in linear time. A
possible explanation for this may be the lack of a proper mechanism to alleviate following-

sibling and preceding-sibling axes which hold to some extent the same obstacles when
processing P-C axis. The representation of XPath expressions with sibling axes as a
twig, in this thesis, is based on the ideas presented in [207, 173]. Basically, preceding

and preceding-sibling, or so-called backward, axes are converted to their equivalent axes
following and following-sibling, respectively. It has been proven [207] that XPath order-
based axes have their natural inverses as: f ollowing−1 → preceding and f ollowing−
sibling−1→ preceding− sibling, vice versa. One more, processing twig pattern queries
efficiently with positional predicates remains a challenge as the occurrences of nodes in
XML documents have to be taken into consideration to identify participant elements in
final answers to twig queries.

Up to now, there has been no advanced preorder filtering technique, based on getNext()

function originally introduced in [40], that can filter out irrelevant elements with positional
predicates efficiently [70]. Avoiding useless elements can not be handled by top-down
filtering strategies as they may result in false negatives (also known as false dismissals
or incomplete result). It seems possible that this is due to positional predicates are not
permutable. Locations of positional predicates in TPQs might change the semantics of
twig queries the matching results. To better understand the processing of twig pattern
queries with positional predicates and the semantics of different occurrences of positional
predicates, example 4.23 illustrates this point clearly.

Example 4.23. Consider the XML data tree t1 of Figure 4.8, the three twigs with positional

predicates marked inside brackets next to the branching a-node yield different matching

results. The first twig query q1 asks for the second a-node which is found it has x-node

as one of its child nodes if it has child y-node. The match of twig query q1 on XML tree

t1 returns no match because the second a-node a2 has only child x-node. While the twig

query q2 questions if the second a-node has children nodes of x-node and y-node, it has

no match on XML tree t1. The last twig query q3 wants to return the second a-node which

already satisfies the structural relationships associated with it, in this example it returns

the second a-node that has x-node and y-node. The match of q3 against the XML tree t1
yields one match (a3,x3,y3). This can be illustrated briefly by q2 takes into account the

occurrences of elements with the XML tree, q1 considers the satisfaction of the partial

structural relationships (a/x instead of a[x]/y) and the position of the matching result sets is

significant in q3. The different representations model as twigs are achieved by labelling the

edges, which have to be satisfied after checking the positional predicates, with "*". They

are called post-structural constraints, while the unlabelled edges called pre-structural

constraints [70].

4.2 Research Problems and Motivation 69

a1 (1,8,1)

(2,2,2) x1 a2 (3,6,2)

(4,4,3) y1 x2 (5,5,3)

y2 (7,7,2)

(a) an XML tree t1.

a

x y

a[/x]/y

(b) unordered
twig query q1.

a

x y

<

a/x/ f ollowing− sibling :: y

(c) ordered twig query q2.

Figure 4.6: The difference between an unordered twig and an ordered twig.

a1 (1,8,1)

(2,2,2) x1 a2 (3,6,2)

(4,4,3) y1 x2 (5,5,3)

y2 (7,7,2)

a

x y

<

Figure 4.7: Illustration of ordered twig match shown in dashed lines.

e

a1

x1 y1

a2

x2

y2

a3

x3 y3

(a) an XML tree t1.

a[2]

x y

a[/x][2]/y

∗

(b) a twig query
q1.

a[2]

x y

a[2][/x]/y

∗ ∗

(c) a twig query
q2.

a[2]

x y

a[/x][/y][2]

(d) a twig query
q3.

Figure 4.8: A sample of an XML data tree and twig pattern queries with positional
predicates. The edges associated with the positional predicates are unlabelled while edges
labelled with "*" should be checked after satisfying the positional predicate.

70 Research Hypothesis and Methodology

It is important to bear in mind that the previous holistic ordered twig join algorithms
have not considered the semantics of order axes in their implementations. In other words,
the basic structural relationships among children nodes of ordered twig queries would
be processed the same way as unordered twig queries while the left-to-right ordering
is used to check the order relationship among them to eliminate useless elements. It,
therefore, seems that the existing ordered twig algorithms’ understanding of the ordered

twig pattern queries is questionable [55, 145, 118, 90, 218]. In their excellent analysis of
order-based axes in XPath expressions, [173] concluded that the semantics of order axes
have to be taken into account while encoding path expressions with order axes in twig
patterns. This encoding technique would improve the filtering process and identify the
participant elements effectively. The existence of following-sibling and preceding-sibling

axes would change the semantics of ordered twig queries, according to their sibling query
nodes, ordered twig queries have to be modified in order to produce the accurate results.
The authors extended the definition of left-to-right ordering to handle sibling order axes as
in the following definition 4.24. Figure 4.9 provides an overview of LR and SLR ordering
in an ordered TPQ.

Definition 4.24 (Sibling Left-to-Right ordering or SLR ordering). For two nodes u and

v in a TPQ are connected to their common parent query node n. Let M(u) and M(v) are

matching of u and v in D as in Definition 4.10. Sibling Left-to-Right ordering from u to v
is an order constraint specify that M(u) is and M(v) are siblings in D, and M(u) appears

before M(v).

Property 4.25 (Sibling Left-to-Right relationship). For two nodes u and v encoded in the

regional encoding scheme as 4-tuple (start,end, level, parentID), where

u = (startu,endu, levelu, parentIDu) and v = (startv,endv, levelv, parentIDv). u has a sib-

ling left to right relationship with v if and only if

parentIDu == parentIDv and endu < startv

a

x y z

b

f

< XPath Expression:

a//x[/following-sibling::y]/following-sibling::f/preceding::z/b

Figure 4.9: Illustration of an ordered twig query with LR and SLR ordering. The dashed
arrow line indicates LR ordering, while the solid arrow lines indicate SLR ordering.

The grammar of ordered twig pattern query addressed in this thesis is presented in
Figure 4.10. The order relationship can be explicitly declared using one of the four order-
based axes which in this case twig queries representing path expressions with these axes
might be modified based on the idea in [173]. Otherwise, the order constraints among

4.2 Research Problems and Motivation 71

T PQ → Pattern
Pattern → Step(Predicate)∗ (Pattern)?
Step → Axis NodeTest
Predicate → [Pattern | OrderSpec | Digits]
Axis → / | // | / f ollowing :: | / f ollowing− sibling :: | /preceding :: | /preceding− sibling ::
OrderSpec → NodeTest NodeComp NodeTest
NodeComp →<< |>>
Digits → [0−9]+

NodeTest → String

Figure 4.10: A grammar of TPQ with order-constraints and positional predicate.

children query nodes of branching twig nodes might be imposed inside predicates using
node comparison (also known as sequence) operators defined in XPath [222]. These node
comparisons take two nodes as operands. To illustrate, << returns true if the left side
operand precedes the right hand operand in document order, otherwise it returns false.
By the same token, of course, >> mean follows. The semantic difference between the
two approaches is illustrated in Figure 4.11. This distinction is further exemplified in
Chapter 7 in which a new approach to provide an efficient evaluation for TPQs with
order axes and sequence operators is proposed. As a result, in an ordered twig match,
the query nodes must satisfy the left-to-right ordering, sibling left-to-right ordering and
sequence operators. Formally, it is a twig match as defined in Definition 4.10 with the
order constraints. Definition 4.28 formalise an ordered twig match proposed in this thesis.

Definition 4.26 (Sequence Left-to-Right ordering or SeqLR ordering). For two nodes u
and v in a TPQ are connected to their common parent query node n. Let M(u) and M(v)

are matching of u and v in D as in Definition 4.10. Sequence Left-to-Right ordering from u
to v is an order constraint specify that M(u) appears before M(v) in document order.

Property 4.27 (Sequence Left-to-Right relationship). For two nodes u and v encoded in

the regional encoding scheme as 4-tuple (start,end, level, parentID), where

u = (startu,endu, levelu, parentIDu) and v = (startv,endv, levelv, parentIDv). u has a se-

quence left to right relationship with v if and only if

startu < startv

It is possible, therefore, that a novel combination of previous approaches to han-
dle parent-child axes can be exploited to process order axes, this could be achieved by
proposing a new mechanism which gives efficient evaluation for twig pattern queries with
Parent-Child edges and the existing techniques can then be used to evaluate order axes. An
efficient combination might lead to algorithms processing twig pattern queries with order
axes efficiently. Moving on now to consider the improvement on top-down and bottom-up

combinations to improve twig join algorithms. In the following section, the limitations
and the advantages of combining top-down processing with bottom-up filtering will be
discussed in order to demonstrate further possibilities for filtering twig pattern queries
involving P-C edges.

72 Research Hypothesis and Methodology

e

a1

x1

f1

x2

f2 r1

r2 f3

XPath Expressions:

a[//f][/r][f << r]

a//f/following-sibling::r

Matches:

(a1, f1,r2),(a1, f2,r2)

(a1, f2,r1)

Figure 4.11: The semantics of order constraints imposing in two different ways. In the
first path expression using << operator, the processing can be made using the existing
algorithms with post-processing operation to prune false positives regarding document
order, while the second expression requires a modification to the structural relationship
between a-node and r-node in order to produce the accurate result. The dashed arrow lines
indicate the query matches.

Definition 4.28 (Query Matching). A match of a twig pattern query

T PQ = (T P = (V1,E1,r1,∑V1,µ1),F) in D = (V2,E2,r2,∑V2,µ2) is a total mapping

M : T P→ D that maps nodes of TP into nodes of D such that:

• For each query node u1 ∈V1 maps to u2 ∈V2 , then µ1(u1) = µ2(u2).

• For each edge e = (u,v) ∈ T P where e represents parent-child relationship, M(v) is

a child of M(u) in D.

• For each edge e = (u,v) ∈ T P where e represents ancestor-descendant relationship,

M(v) is a descendant of M(u) in D.

• For each query node u1 ∈V1 which is a child of an ordered branching twig node n,

if u1 has LR ordering with sibling query nodes un, . . . ,um ∈V1, then M(u1) is to the

left of M(vn), . . . ,M(u1) is to the left of M(vm) in D.

• For each query node u1 ∈V1 which is a child of an ordered branching twig node n,

if u1 has SLR ordering with sibling query nodes un, . . . ,um ∈V1, then M(u1) is the

sibling left of M(vn), . . . ,M(u1) is the sibling left of M(vm) in D.

• For each query node u1 ∈V1 which is a child of an ordered branching twig node n,

if u1 has SeqLR ordering with sibling query nodes un, . . . ,um ∈V1, then M(u1) is the

sequence left of M(vn), . . . ,M(u1) is the sequence left of M(vm) in D.

• formula F of TPQ is satisfied.

4.2.3 Combination of Different Filtering Strategies

An XML technology has emerged as de facto standard for storage of semi-structure data
and for data exchange in e-business [88]. TPQ is a core operation in XPath [222] and
XQuery [224] which are popular of XML query languages. TPQ represents path expression

which is the basic building block of XML query languages. The existing literature on XML

4.2 Research Problems and Motivation 73

query processing is extensive and focuses particularly on twig pattern matching problem
[209]. Several twig join algorithms have been proposed to search XML data. As was
pointed out in the literature review, the existing twig join algorithms have been grouped
into two main lines of improvements over the pioneering holistic twig join algorithm,
TwigStack [40]. Top-down twig join algorithms process TPQs by reading the nodes in
pre-order traversal of the input document and checking children solution extensions for
internal query nodes. The second category is bottom-up algorithms which store elements
of the input document in post-order manner and inspect matching elements through virtual
sub-trees, one major drawback of this approach is that high memory consumption due to
the fact that all elements mapping to leaf query nodes reside in the main memory until the
entire trees are completely processed. Although, they have better practical performance
than algorithms using top-down processing.

In the literature, top-down processing, which is based on getNext() [40], has been
associated with bottom-up algorithms as a filter in order to reduce memory usage and
improve thus the overall performance. As discussed in Section 4.2.1, the main weakness
of the top-down filter is the failure to provide an optimal evaluation for TPQs with parent-
child relationships. Advantages of top-down filter in bottom-up algorithms can be broken
down into speeding up the sequential reading of the input streams and avoiding the storage
of elements which do not have ancestors likely participating in the final solutions. No
top-down filter algorithm can remove leaf query nodes effectively when a mixed of P-C
and A-D queries are processed. Recently, two twig join algorithms, which are proposed
in [22, 89], have been considered as the most superior ones which improve top-down and
bottom-up combinations. The authors of [89] proposed a new advanced preorder filtering
function called getPart() which introduces two improvements of the original getNext()

function. Compared with the existing preorder filtering function, getPart() returns only
child query nodes if and only if they satisfy weak prefix filtering checks with their parents.
The second improvement is to perform a cursor forward movement according to the current
query node descendants and ancestors, in contrast to the getNext which performs a cursor
forward movement according to the current query node descendants. Other authors [22]
further improved the getPart() function by avoiding unnecessary function calls. The new
advanced preorder filtering function is called getMatch. The getPart() function is served as
the advanced preorder filtering strategy for a family of twig matching algorithms devised
in [89] whereas the GTPStack algorithm which is proposed in [22] uses the getMatch()

function. Figures 4.13 and 4.14 illustrates the difference between these two approaches. It
can be seen in this examples lower query nodes, specifically nodes x1, . . . ,xn, are useless,
they though processed and stored in the intermediate storage. There is some evidence to
suggest that a strong filter which can prune irrelevant elements corresponding to internal
and leaf query nodes would improve the practical performance [88]. Filtering strategy
is optimal for a TPQ if it skips all irrelevant nodes during sequential read of the input

74 Research Hypothesis and Methodology

document, and the twig query processing algorithms use this filter has a linear worst-case
I/O complexity with respect to the sum of the input and output sizes for TPQ [198, 22].

e

a1

x1 xn a2

xn+1 y1

f1

a3

xn+2 y2

(a) an XML tree t1.

a

x y

f

(b) a twig query
q1.

Figure 4.12: Inefficiency of top-down filter strategy.

Lqy

L3 y1

Lq f

L4 f1

Lqx

L2x1. . .xn

L3xn+1

Lqa a1 a2

(a) The intermediate storage state when all elements have been
processed.

Lqy

L3 y1

Lq f

L4 f1

Lqx

L2x1. . .xn

L3xn+1

Lqa a2

(b) The intermediate storage after performing strict bottom-up
filter using level split vectors.

Figure 4.13: TJStrictPre algorithm state when evaluating the twig query q1 against the
XML tree t1 of Figure 4.12. The interval pointers are shown in dashed lines.

An advanced preorder filter, which is used in top-down approaches, reads the nodes in
document order, then passes them to the main algorithm which pushes them into stacks
for further processing and causes them to pop out in an order which does not correspond
to the document order nor the document postorder. Note that only nodes corresponding
to the same query node are popped out in the document postorder because the main data
structure used in XML query processing algorithms is a stack, and there is some evidence
to suggest that every holistic twig join algorithm uses stacks during query processing [22].
While postorder algorithms require nodes to be popped out in the document postorder.

4.2 Research Problems and Motivation 75

Lqy

Sqy

/0

Lq f

Sq f

/0

Lqx

L2x1. . .xn−1

Sqx

xn

xn+1

Lqx

Sqa

a1

a2

(a)

Lqy

Sqy

y1

Lq f

Sq f

f1

Lqx

L2x1. . .xn

Sqx

xn+1

Lqx

Sqa

a1

a2

∞

(b)

Lqy

L2 y1

Sqy

/0

Lq f

L4 f1
Sq f

/0

Lqx

L2x1. . .xn

L3xn+1
Sqx

/0

Lqx a2

Sqa

/0

(c)

Figure 4.14: Illustration to GTPStack operations for the data tree and the twig pattern query
of Figure 4.12. (a) GTPStack right before xn+1 is about to be processed. (b) GTPStack
after all elements has to be read. (c) the final intermediate storage read for enumeration.

Taken together, this is an obstacle when a combination of preorder and postorder filters are
proposed. A node processing order (also known as a node pushing order) is essential to

76 Research Hypothesis and Methodology

Table 4.3: Classification of holistic twig join algorithms according to their node processing
order.

Node processing order Holistic twig join algorithms
Global process order PathStack [40], Twig2Stack [53], TwigList

[185], TJStrictPost [89] and TwigPos [70]
Local process order TwigStack [40], TwigFast [132], TJStrictPre

[89] and GTPStack [22]
Unclassified TwigStackList [144]

return answers correctly to twig pattern queries. There are two types of node processing
order in the literature:

1. Global process order in which a node ni is processed (or pushed onto a stack) before
a node n j if ni precedes n j in the document order.

2. Local process order in which a node ni is processed (or pushed onto a stack) before
a node n j if ni precedes n j in the document order and ni corresponds to the parent
query node of n j.

There is an approach where nodes are processed in an order which corresponds neither to
global push order nor local push order as in TwigStackList [144]. It seems possible that
this is due to the buffering technique used which violates the document order even if nodes
corresponds to the same query node. This means TwigStackList’s filter strategy can not
be applied to postorder algorithms because nodes can not be popped out in the order they
require [132, 22]. On the other hand, a node pop order is determined by the node push
order and the pop sequence operation used in holistic algorithms [89, 22].

A global pop order can be defined analogously to the definition of global push order.
However, a local pop order pops nodes in the document postorder only when nodes
correspond to the same query node. It has been shown that a local push order can not be
followed by a global pop order as was assumed in a previous approach which lead to some
results are lost [89]. Consequently, the work of [89] has modified the local push order

to ensure nodes are pushed in a strict order corresponding to the document order which
can then work accurately with postorder algorithms. In [22], the researchers proposed
a new pop sequence operation (called relaxed pop order) in which a node is popped out
after popping out its all descendants when a local push order is used. Neither approach
guarantees a global pop order but they are sufficient to determine subtree matching (see
Definition 4.14) in postorder manner. Table 4.3 provides the breakdown of holistic twig
join algorithms according to their node pushing orders.

Example 4.29. Consider the XML tree in Figure 4.15 and the query //a[//x]//b/c,

Figure 4.15c shows different push order sequences during holistic processing and the

corresponding node pop order sequences are presented in Figure 4.15d. It can be seen

from the tables that a combined approach can be problematic and it must take into

consideration the node pushing and popping order in order to process the query correctly,

otherwise some results might be missed.

4.3 Research Methodology 77

e

a1

b1 b2

b3

c1

c2

x1 c3

(a) an XML tree t1.

a

x b

c

(b) a twig query
q1.

Global push order a1 b1 b2 b3 c1 c2 x1 c3
Local push order a1 b2 b3 c1 c2 c3 x1
TwigStackList’s push order a1 b3 c1 b2 c2 c3 x1
Strict push order a1 b2 b3 c1 c2 x1

(c) a node push order.

Global pop order b1 c1 b3 c2 b2 x1 c3 a1
Local pop order c1 b3 b2 c2 c3 x1 a1
TwigStackList’s pop order b3 c1 b2 c2 c3 x1 a1
Relaxed pop order c1 b3 c2 b2 x1 a1

(d) a node pop order.

Figure 4.15: Different node push order and node pop order sequences in the literature..

In the literature, holistic query processing for TPQs may be divided into three phases.
The first phase in which elements are read from indexed XML documents and node filtering
is then performed. Lastly potential nodes are stored in the intermediate storage and an
output enumeration is computed. Several approaches have been proposed to optimise
the node reading and filtering phases [88, 147, 144, 53, 125, 181, 89]. The existing
optimizations include the utilization of indexed streaming lists [40], making use of a refined
access method [54, 18, 21], the utilization of path labelling scheme [147, 146, 125, 19], and
performing node buffering techniques [144]. These optimization techniques are orthogonal
to postorder algorithms with the sole exception of node buffering techniques in which
nodes can not be in either global or local pushing (popping) order which gives uncertainty
of the node order of the result. The main advantage of node buffering techniques is that
they can filter out irrelevant nodes efficiently using a simple tag streaming scheme. It can
thus be suggested that an improved tag streaming preorder filtering function may reduce
the combined approach’s processing time.

4.3 Research Methodology

In an academic context, a generally accepted definition of scientific research is a systematic
process of collecting, analysing and interpreting data with the objective of discovering and
disseminating new knowledge [63]. The research process is systematic in that it makes use

78 Research Hypothesis and Methodology

of rigorous methodology for achieving the objective of research [234, 29, 200, 99, 193, 14].
A well-defined explanation of research process would result in a "good research" as [200]
said, it is thought that acceptance of research’s results relies on the process of acquiring and
analysing the results [200, 14, 193]. The work of [99] proposed guidelines which describe
characteristics of well-carried out research in Information System discipline. Generally,
the research philosophy (or so-called paradigm) explains how the source influences the
researcher and how the researcher deals with the development of new knowledge [63, 69].
It identifies the trustworthy evidence to answer research questions or hypotheses.

Within the scope of Computer Science discipline, there are four dominant research
philosophies: Positivism, Interpretivism, Critical Theory and Pragmatism [63, 29, 234,
158]. The research work conducted in this study adopts the positivism research philosophy.
Positivism is the most suitable research philosophy for this study because a positivism
study determines if there is a cause-effect relationship as a means of representing the need
to identify and assess causes that influences outcomes [63, 69, 158]. Consequently, the
current work examines how the amount of information contained within XML labels can
be increased in order to implement a set of holistic twig join algorithms which may have
the potential to improve the performance of XML twig query processing. Furthermore,
quantitative research is generally associated with the positivist research philosophy. Thus,
theory which is the building block of scientific knowledge is seen in quantitative research
as the use of interrelated set of variables formed in the hypothesis (see Section 4.3.2) to
specify the relationship among them in order to predict outcomes. Science as an underlying
ground of positivism is the process of verifying theories by testing hypotheses derived from
them [158, 14, 216, 233]. Throughout this thesis, hypotheses are tested and verified based
on the deductive inference in quantitative research in which hypotheses are the main route
to draw logical conclusions and form specific theories. The current work, thus, develops a
set of hypotheses in order to assess the effect of information contained within XML labels
on improving the efficiency of holistic twig join algorithms using a deductive approach.

Quantitative approach can begin with at least one research question, which is about
the central phenomenon being explored [63, 159, 158]. Quantitative researchers need
to adopt methodology to test their hypotheses. Researchers in Computer Science use
various methodologies to solve research questions within the discipline, among these
methodologies experimental methodology is the most common [14, 216]. It is believed
that Computer Science is also experimental science [104]. It could be argued that the
research questions are necessary to have a clearer understanding of the phenomena as well
as the rational basis for selecting the appropriate methodology. Section 4.3.1 will highlight
research questions (the nature of problem) that this research work is dealing with. The
most important process for the successful completion of research project is the choice of
the appropriate research methodology which generally guarantees a systematic approach
to carry out a research. The research methodology used to test hypotheses for their validity
in this thesis is discussed in Section 4.3.2.

4.3 Research Methodology 79

4.3.1 Research Questions

Having identified the research problems (see Section 4.2), researchers may need to form
exploratory questions which help them to choose the appropriate research methodologies
[69]. Analysing problems and clarifying research questions are thus considered a funda-
mental first step to help in the selection of the appropriate methodology [210, 158]. In this
study, the general research question addressed here is:

It is possible that inserting more meta data inside XML labels may further
improve query response time and reduce main memory consumption cost with
minimal computation and space overhead.

Basically, this question identifies two main issues: efficiency and scalability in the context
of XML twig pattern matching. To better understand the research question, it has been
refined into more specific questions.

1. What meta-data could usefully be inserted without a significant effect on label
storage?

Following the discussion in Section 4.2.1 and by being aware of the main research
problem in XML query processing models, an optimal XML twig matching algo-
rithm should be able to filter out useless elements which do not contribute in the
answers to twig pattern queries. Over the past decades, several approaches have
been proposed in the literature to handle P-C relationship efficiently and provide
an optimal evaluation for twig patterns with P-C axes. The utilization of refined
inverted indexing schemes based on the depth information of XML elements have
been considered, and the proposed schemes have shown a superior performance in
processing only P-C relationship in all twig patterns’ edges. Grouping the XML
elements according to their unique labelled paths has been proposed in [54] which
is resemble to the structural index generated by strong DataGuide [85, 21]. The
proposed prefix path labelled streaming scheme has been proven [22, 21, 18] to
prune irrelevant elements efficiently. However, there are still twig queries where
both tag-level and prefixed path labelled can not guarantee optimal evaluations
[22, 18], and the only indexing technique which is able to cover all twig queries
is F&B-Index proposed in [119]. The elements of XML documents are grouped in
partitions according to the indexing technique used, they are sorted in document

order and encoded using a labelling scheme. Therefore, the labels of elements within
an XML document can be exploited to combine the advantages of different partition
techniques to facilitate the structural relationship determination.

Another important finding was that in [217, 207], the authors exploited the infor-
mation of parent elements for two or more context-node under an investigation to
speed up the process of handling sibling-axes in ordered twig queries. They modi-
fied the original range-based labelling scheme to accelerate the following-sibling
relationship processing by incorporating the parentID which is the start filed of

80 Research Hypothesis and Methodology

the parent element in the original labelling scheme. As a result, each element is
encoded a quadruple as (start,end,level,parentID). In addition, it was hypothesised
that registering the information of the total number of children under branching
elements has provided a significant mechanism to identify contributing branching
elements and prune irrelevant elements while scanning the input streams [125]. The
authors stated that the dominant cost of XML query processing is the data access

cost. In this study, they augmented the extended Dewey labelling scheme proposed
in [147] with their novel approach to reduce I/O overhead. It is possible, therefore,
that recording the distinct tags of child elements under internal elements would be
more useful to filter out useless elements without incurring significant costs.

2. How can the meta-data of XML labels be extended to alleviate some issues in
XML query processing?

In practice, XML documents may be very large, complex and have deeply nested
elements [147]. Therefore, a straightforward approach to incorporate additional
information within XML labels is to use bits representing element names or number
of children of internal elements. The key problem with this approach is that the label
size is very large. There are several optimization techniques which propose more
promising labelling scheme to overcome this limitation [147, 125, 199]. However,
they are too expensive to be used for processing deeply recursive data trees as the
space usage increases and internal nodes can not be guaranteed to participate in final
results. One major drawback of these approaches is that they rely on the existence
of schema information in which elements’ names are derived and the children tags
information is computed. The proposed labelling schemes can be generated by
scanning the document in a tree-traversal order at least twice. Moreover, holistic
algorithms based on a refined labelling scheme with extra information require the
maintenance of additional indices and data structures during query processing such
as finite state transducer [147] and pointer structure [125]. One of the limitations
with the work of [199] is that it does not explain how it can derive child name
information during query processing. It may be that proposing a technique, which is
schema-less as the presence of schema is not required, to extract the distinct child
name while scanning XML documents in depth-first traversal order only once would
be more likely to improve the efficiency of XML tree pattern query processing.
Depth-first traversal scanning of XML trees can be carried out efficiently using the
outstanding event-based XML parser SAX (the Simple API for XML) [194].

It should be noted that research questions state what the researcher wants to learn.
Hypotheses, in contrast, are perceived to be tentative answers to these questions [29, 69].
The above research questions serve as a mix of knowledge question and design questions to
provide sufficient information about the nature of problem addressed in this thesis. Having
specified the research questions, the next step is to formulate a research hypothesis and
identify the research methodology applied in this research.

4.3 Research Methodology 81

4.3.2 Research Hypothesis

Motivated by a critical investigation of existing XML query processing approaches (see
Chapter 3), and following on the previous discussion in the above sections (see Sections
4.2.1, 4.2.2 and 4.2.3), this research aims to test the following hypothesis:

“Encoding names of child elements of branching XML’s elements based
on Parent-Child relationships may improve the efficiency of holistic twig
join algorithms by increasing the query processor’s coverage as well as
reducing computation cost and memory consumption.”

Hypotheses must be tested rigorously using the appropriate methodology [65, 29, 63].
A methodology may be defined as a system of principles around which empirical data is
collected and analysed [69, 179, 193, 200, 216, 158]. Throughout this thesis, the above
hypothesis is tested using an experimental methodology. Experimental methodology (also
known as experiment or controlled experiment) is widely used in Computer Science to
evaluate new solutions [99, 179, 158, 14, 216]. It involves an iteration of hypothesize and
test process. Also, experiment is the most appropriate for this study because it is about an
investigation of a testable hypothesis in which one or more independent variables receive
the experimental manipulation to measure their influences on one or more dependent

variables [63, 69].
A precondition to experiment is a clear hypothesis. The above hypothesis decides what

variables to include and identifies clearly independent and dependent variables [193]. As a
result, the present study is concerned with understanding the behaviour of holistic twig
join algorithms as a means of improving the performance of XML query processing by
providing an augmentation into the existing labelling schemes with minimal computation
and space overheads. This means that a novel set of holistic twig join algorithms based on
the Child Prime Label approach (see Chapters 6, 7, 8 and 9) are the independent variables,
and the dependent variables should be the query processing time and memory consumption.
On the question of developing a new theory, evaluating the experiments (see Chapter 10)
which are used to test the hypothesis and their results should help in generalising a new
theory and identifying contributions and limitations of this study [63, 69, 208]. It should
be noted that this study as quantitative research involves data collection that is numerical
and subjected to statistical procedures in order to support or refute hypotheses [234, 104].
This research thus provides conclusions with statistical significances.

To conclude this section, the hypotheses in this research will be tested and assessed
by a practical implementation that is designed to evaluate them. More precisely, the main
aim of this study is the processing and optimization of XML twig pattern matching. The
implementation covers many aspects:

• Parsing, labelling and partitioning XML documents.

• Providing stream management systems.

82 Research Hypothesis and Methodology

• Implementing twig join algorithms which are previously proposed in the literature.

• Developing twig join algorithms which are originally proposed in this thesis (details
in this will be discussed in Chapters 5).

4.4 The Scope of the Research

Many different twig join algorithms for XML TPQ processing have been proposed in the
literature on XML twig join processing (see Chapter 3). Performance of holistic twig join
algorithms [40, 53, 185, 132, 89] has been proven to be superior to other approaches [188,
230, 5, 105], particularly when the XML tree is deeply recursive [173]. Holistic approaches
are considered the most robust solutions which do not require further complicated query
optimizations [18]. Hence, TPQ processing complexity can be determined efficiently when
holistic approaches are deployed because of their optimal processing of a wide range of
XML query types. The main aim of this study is to propose a comprehensive set of holistic
twig join algorithms that consume less time and memory than the existing approaches. The
performance of the proposed holistic algorithms will be tested based on the analysis of two
significant factors, which are the most frequent in the literature of XML query processing,
namely: query processing time and number of nodes processed.

The work of this thesis investigates the factors that improve the efficiency of holistic
algorithms regarding the worst-case I/O complexity of holistic twig join algorithms. This
study also provides new insights into the link between the information contained in
XML labels and the efficiency of XML twig join algorithms in terms of processing time
capabilities and memory consumptions. In this thesis, analysis of the state-of-the-art
holistic approaches is carried out in order to propose additional improvements. Thus far,
the thesis focuses mainly on node filtering optimisations, which are the main challenge
faced by many holistic approaches, performing a structural match. The purpose of this
section is to outline the scope of this thesis. The next section describes the research
objectives acquired when applying the hypothesis formalised in Section 4.3.2.

4.5 The Main Objectives for the Solution

Having identified the research problems emerging from the analysis of XML processing in
Section 4.2 and deploying the research hypothesis stated in Section 4.3.2 which results in
the proposal discussed in Chapter 6, this research work has two significant objectives which
are explained in the following sections. As was mentioned in the research methodology
section (see Section 4.3), the work in this thesis revolves around the hypothesis formalised
in this chapter but it is not exclusively basing on it. In other words, the main basis for
proposing comprehensible process model for twig join algorithms is obtained from the
accumulated findings throughout the experiments. Accordingly, the hypothesis will be

4.6 Conclusion 83

expanded to cope with the findings which emerge from this study. As a result, contributions
of the thesis will be discussed later in Chapter 11.

4.5.1 Extending the Existing Labelling Schemes

XML documents organize data in hierarchical structures and describe semantic relation-
ships among data elements by user-defined tags. One of the most important features of
labelling scheme is that it can be used to identify structural relationships efficiently without
the need to access the entire documents [147, 253, 90, 238, 243, 244, 140]. The names of
XML data elements (also referred to as tag names) have not been exploited effectively to
capture structural relationships involving more than two elements which share the same
parent. This is an important issue for improving the efficiency of holistic twig join algo-
rithms. The proposed approach may prove to be particularly valuable to process different
types of twig pattern queries which contain axes rather than the Ancestor-Descendant and
Parent-Child axes introduced in the XPath specification [222].

4.5.2 Improving the Structural Match of TPQ

Structural match is a fundamental property of XML query which is a combination of
structural search and content search. Processing both structural and value searches on
XMl databases requires the determination of structural relationships between elements and
fast access to the desired content. Evidence suggests that structural match is among the
most important factors for speeding up the process of XML queries [103]. The majority
of XML TPQ algorithms utilize twig representation of XPath path expressions since twig
structure is orthogonal to tree-structured adopted for XML data [173, 93, 209, 18, 22].
The proposed approach can be integrated with the existing holistic algorithms in order
to facilitate query processing performance. Novel combinations of previous approaches
can be devised around the new labelling scheme in which suboptimal processing of TPQs
with a combination of A-D and P-C edges in terms of running time can be expected to be
superior when compared to the existing work. The new approaches also can be expected
to process TPQs containing order axes efficiently by capturing the semantics of order
constraints involved.

4.6 Conclusion

Finding all occurrences of TPQs in XML documents is considered as a specific task for
XML query processing of XML databases. There is room for improvement as suboptimal
processing still exists as was explained in Section 4.2. Improving labelling schemes is
vital to optimise node filtering strategies of holistic algorithms and process different axes
of XPath [222] efficiently.

84 Research Hypothesis and Methodology

This chapter aims at highlighting the research problems and motivations and describing
the research methodology adopted in this thesis in order to ensure the systematic process
for carrying out scientific research. The research questions were asked to provide a clear
understanding of the problem. Then, the research hypothesis, which arises from the
literature review (see Chapter 3) and the research problems identified in this chapter, were
described. The research hypothesis has been formulated by proposing an augmentation
into the existing labelling schemes in order to improve the efficiency of holistic algorithms
in terms of processing time and space overheads. The scope of this study and the potential
research objectives were discussed as well. The next chapter describes the overview of
experimental framework design for XML query processing model used in this study.

Chapter 5

Experimental Framework

5.1 Introduction

This chapter explains the general framework used in this research study to conduct a set
of experiments which aims mainly to evaluate the research hypothesis stated in Chapter
4. These experiments will be described in detail as parts of the testing and evaluation
processes regarding their functionalities (see Chapters 6, 7, 8 and 9). Each experiment is
designed to test different aspects of holistic twig matching algorithms and derive specific
goals. As was mentioned in Chapter 4, The main aim of this study is to improve the
performance of holistic twig matching algorithms and increase query-coverage of XML
query processors adopting a holistic model [40, 61]. Thus, this chapter describes the
overall test environment in order to evaluate the properties of the algorithms proposed.

The holistic model [146, 40, 22, 147, 89] for processing XML queries consists of
two stages. The first stage can be considered as an off-line stage which performs three
basic operations: XML parser, labelling and partitioning and tag indexing (this will be
further discussed in Chapter 6). The on-line stage handles basic steps in query processing
over indexed XML data. The complete design of the holistic model used in this thesis
is illustrated in Figure 5.1. Note that Tag Indexing (TI) is an idea originally proposed
in this thesis and is incorporated into the holistic model to facilitate the determination
of Parent-Child edges. It will be discussed in full detail in Chapter 6. There is no
existing standard platform in which holistic twig matching algorithms can be assessed
in the same way to compare fairly their performance. Therefore, the main purpose of
this chapter is to describe the complete architecture of the experimental framework to
overcome this issue. Consequently, each holistic twig matching algorithm utilised in this
framework is implemented from scratch in order to calibrate machine speeds and have
all the benchmarked algorithms compared based on their characteristics [202, 156]. In
addition to the discussion in this chapter, the discussion from the later chapters, in which
new approaches to process XML twig queries are proposed, can be combined to facilitate
the implementation and design of experiments to be applied to the new approaches.

86 Experimental Framework

Figure 5.1: The framework of holistic model.

The rest of this chapter is structured as follows. Section 5.2 presents an informal
description of the design of holistic model for query processing in native XML databases,
its basic components and its features. The implementation of the experimental framework
in Section 5.3 An overview of the existing benchmarked XML datasets used in the literature
will be discussed in Section 5.4, the selected XML datasets in the experiments are described
as well. Next, the statistical analysis procedures used to analyse the collected data are
discussed in Section 5.5. Finally, Section 5.6 concludes this chapter.

5.2 Holistic Model Overview

This section illustrates the main components of XML query processing adopting holistic

Model (HM) [40]. The complete design of HM is depicted in Figure 5.1. It is necessary
here to clarify exactly what is meant by holistic model from XML query processing
perspective. There are two main approaches for twig pattern query processing in XML
databases, namely navigational and join-based. The first approach is considered to be the
native one inherited from relational databases [34]. In this approach a query plan relies on
scan operations on a document index rather than a partition index (see Chapter 3). Figure
5.2 illustrates the difference between these two approaches. The underlying data storage is
analogous to DOM-like tree [225] in main memory in order to allow the traversal of XML
documents sequentially through pointers to find match of TPQs [20]. The latter approach,
join-based, relies on a partition index in which nodes are stored in disjoint groups. The
join-based approach can be further classified into two main categories. The first category
decomposes twig pattern queries into a set of binary structures, and searches occurrences
of TPQs by performing consecutive binary structural joins (see Chapter 3) [5]. The holistic

5.2 Holistic Model Overview 87

e(1,15,1)

a1(2,10,2)

x1(3,3,3) a2(4,9,3)

x2(5,5,4) y1(6,8,4)

f1(7,7,5)

a3(11,14,2)

y2(13,13,3)

(a) an XML tree t1.

Tag Label
e (1,15,1)
a (2,10,2)
x (3,3,3)
a (4,9,3)

.
(b) document index.

Tag Label
e (1,15,1)

a
(2,10,2)
(4,9,3)

(11,14,2)

x
(3,3,3)
(5,5,4)

y
(6,8,4)

(13,13,3)
f (7,7,5)

(c) partition index.

Figure 5.2: A fragment of document and partition index for a sample of XML tree.

a

x y

f

(a) a twig query.

▷◁

x ▷◁

f ▷◁

y a
(b) a binary structural join.

▷◁

a x y f

(c) a holistic structural join.

Figure 5.3: A holistic join versus binary structural joins from query plan point of view.

approach , in contrast, uses input streams corresponding to query nodes and processes the
entire TPQ by using one holistic operator as opposite to extensive structural joins carried
out in the binary structural approach [40]. Figure 5.3 demonstrates the difference between
these two approaches from query plan perspective.

To study the performance of holistic twig matching algorithms over indexed documents,
it is very important to demonstrate the architecture which underlines query evaluation.
Therefore, the holistic Model can be divided into storage and execution models as illustrated
in Figure 5.1. The storage model includes the process of parsing XML documents to derive
the logical structures and indices which deploys node labelling schemes, partitioning
mechanisms and tag index generator. The query execution model coordinates two main
operations. In the first operation, query constructor’s result, which is the twig representation
of the input XML query, is passed to the next operation to handle twig pattern queries.
Query processor contains a set of holistic twig matching algorithms to process twig pattern
queries over indexed documents. The following sections describe the primary components
of the holistic Model. The storage model is discussed in Section 5.2.1; whilst the execution
model is illustrated in Section 5.2.2.

88 Experimental Framework

5.2.1 Storage Model

In XML DBMSs (XDBMS, for short), fetching data is one of the dominant cost drivers
for XML query evaluation, hence this section describes how XML data is stored and
how it can be accessed in order to facilitate the efficient processing of TPQs in the query
evaluation phase (the system architecture is depicted in Figure 5.1) [7, 34]. This stage
can be broadly defined as an off-line pre-processing stage which is designed to prepare
information needed in the next stage to process TPQs in holistic way. It consists of four
processes each of which conducts a set of operations for parsing,labelling, partitioning and
indexing the underlying XML data. The roles of these processes are summarised in the
next sections.

5.2.1.1 The XML Parser

The main goal of XML parsers is to help applications extract XML data from its plain
textual format. An XML parser treats an XML document as a tree (see Chapter 2, a
tree-structure representation of XML) which consists of a finite set of nodes and edges,
the textual content is stored in leaf nodes. The role of this process in an holistic model is
that it labels elements of the underlying XML data using an existing labelling scheme (see
Chapter 3) and partitions the underlying XML data into a set of streams which contain the
generated labels. There are two models of XML parsing: SAX and DOM. Since XML
parsing is an essential precursor to any processing of an XML document, the XML parsing
process is considered as the bottleneck to performance when processing XML data. It
was hypothesized that a SAX parser shows superior performance when a serial access is
required while a DOM parser supports random access of an XML tree nodes efficiently
[169].

The implementation of the holistic model for processing XML queries in this thesis
adopts SAX rather than DOM as the XML parser. As was mentioned in Chapter 2, a SAX
parser can provide a simpler,high-performance, low-level access of XML document trees,
whilst DOM parsers consume memory space and it may limit the size of XML documents
processed in this model, alternatively it provides more functions. The main reason for
selecting SAX as an XML parser for the holistic model implemented in this thesis was that
the system needs to partition the XML tree nodes into inverted indexing lists according to
their tag names (i.e., adopting tag streaming scheme). Consequently, a SAX parser leaves
the choice of the underlying data structure up to the system, in other words, It allows
applications to construct customisable data structures using a series of predefined parsing
events (e.g., start and end of elements) [36].

In addition, the holistic model needs an efficient way to retrieve the logical structure
information of the XML document trees in order to analyse the input XML documents
as fast as possible using a little memory. More importantly, the aim of this study is to
propose alternative approaches for processing XML twig pattern queries over indexed
XML documents regardless their size. Thus, a SAX parser can parse XML document

5.2 Holistic Model Overview 89

trees of any size (e.g. number of XML nodes or disk-size) even if they are larger than the
available resources [194]. The main memory requirement of a SAX parser is proportional
to the longest depth of the parsed XML tree and the maximum amount of data involved
within a single element [36]. Lastly, the implementation of a SAX parser is freely available
in several platforms, such as Java [36] and C++ [183]. These are important factors in
choosing a SAX parser in this thesis as the XML parser.

To conclude this section, the process of a SAX parser can be seen as depth-first traversal

of the XML document. During the traversing process, a SAX parser starts at the root node,
moving downward to the left-most, deepest leaf nodes and upward then back to navigate
the rest of XML tree branches until the whole XML tree has been covered. When each
element is encountered, a set of hierarchical relationships can be recognised. The next
section describes the use of SAX parser to traverse and label the XML tree nodes in the
holistic model used in this study. It also discusses the algorithm of parsing and labelling
XML tree nodes.

5.2.1.2 Node Labelling Scheme

A labelling scheme provides efficient access to XML tree nodes by supporting the navi-
gational operations and the evaluation of the main axes for XML query languages [94].
In particular, most query processing algorithms [40, 5, 19, 22, 89, 185] on XML docu-
ments rely on labelling schemes, such as region-based [253, 90] and prefix-based labelling
schemes [76, 147]. The labelling scheme associates each XML element with an unique
label (based on a labelling scheme) which records its positional information within an XML
tree. Range-based labelling scheme which is commonly used in XML query processing
algorithms [40, 144, 145, 89, 185, 53, 132, 70]. In this labelling scheme, each element
is assigned with a triplet as (start,end, level). Start and end records values of positions
corresponding to the opening tag < tag−name > and the closing tag < /tag−name >.
Level represents the depth of an element within an XML tree. Therefore, the hierarchi-
cal relationships can be determined efficiently. An example of this labelling scheme is
depicted by Figure 5.2a, each element is labelled with rang-based encoding scheme, for
instance, e-node which is located in the first level and is associated with 1 and 15 values to
represent start and end parameters, respectively. Labelling schemes were further discussed
in Chapter 3.

All holistic twig matching algorithms which are described in this thesis are based on
a range-based labelling scheme. Thus, the selected labelling scheme to label XML tree
nodes in the holistic model is range-based labelling scheme [90]. One advantage of this
labelling scheme is that it can be produced in a single scan of the original XML document
and is less complicated than the other approaches [89, 98]. The main weakness of this
approach is that it is not a dynamic labelling scheme, in other words, the XML document
must be relabelled when an update occurs. As was mentioned in the previous section, a
SAX parser invokes a set of callback methods to inform the subsequent operations (e.g.

90 Experimental Framework

XML labelling, data partitioning and tag indexing) the XML document structure (e.g.
names,attributes and nested elements). These callback functions are: startDocument(),
endDocument(), startElement() and endElement(). The former two functions are responsi-
ble for constructing auxiliary data structures and operations at the start and end of an XML
document, respectively. The latter two are functions can be used to perform operations
when the opening and closing tag of an element are encountered, respectively. There is a
SAX parsing event which is responsible for representing the textual content of an XML
element. This event can be captured through predefined function called characters() in the
Java implementation of SAX [36].

The process of XML parser and node labelling is given in Algorithm 1. The whole
process is committed in two of SAX event handlers, namely startElement() and endEle-

ment(). The events are passed to the code through a SAX listener (line 7), if the SAX
listener encounters an opening tag of an element, it triggers startElement() (lines 15-33)
which records the start position of the current element when traversing the XML document
in depth-first scanning. The level information is recorded as well. The current information
is stored in two global variables orderStack and level to be added later to the end position
value in order to constitute the range label of the current element. Another global variable
is childStack which keeps tracking of the number of children of the current element to
ensure the containment because in region-based labelling scheme, the end values of an
element must be larger than all the start and end values of its immediate children and its
descendants. This is handled when the algorithm encounters an closing tag of an XML
element. Meanwhile, the attributes of the current processing element are passed through
the SAX’s event as a set of attributes because of the existence of attributes within the
opening tag of an element. It is worth noting that most existing XML query processing
algorithms [40, 147] treat an XML attribute as an element or more precisely a leaf element
because it can not contain another element as well this thesis does. The algorithm iterates
over the attributes of the current undergoing element and assigns each attribute its unique
region label (lines 26-33). Additionally, dataPartition() function is called to insert the label
of the current attribute to its corresponding partition (see Algorithm 2). The methodology
for data partitioning of an XML document is discussed in the following section. When
an closing tag of an element is encountered, endElement() is invoked (lines 35-43). This
function is used to construct the entire region label of the current element. If the current
element has at least one child node, its end value is set by the increment of the current
order, otherwise it is set to be the current order. The information of the current element
label is sent to dataPartition() for storage in the corresponding partition (line 42-45). The
other SAX’s events are omitted because they do not contribute to the process of labelling
XML tree nodes in which the logical structure of the XML document is the main concern.

An XML query is composed of structural search and content search [235]. The content
search is used to filter the structural solutions based on the specified value comparison [236].
In the context of XML, a value, which is each non-tag text, is contained with the opening

5.2 Holistic Model Overview 91

and closing tag of an element and it must be a leaf node in the tree representation of the
XML document. The parent of each value node (a.k.a text node) is known as the property
of this value. During the labelling process, a value can be obtained through a SAX’s
handler characters() and is processed prior to endElement(). The result of characters() is
an array of characters which contains the textual content of the current processing element.
There are two times when a SAX event encounters a text node in the XML tree. Firstly,
scanning the content values of the XML attributes (line 31). Secondly, parsing the textual
content of an XML element after the completion of a startElement() event and prior to the
process of an endElement() event. In the endElement() function, if the current element is
associated with textual data, the information of its label and the textual value are passed
to the partitioning algorithm to construct the tag-based streaming list for each distinctive
tag in an XML document (line 38-42). Nevertheless, there are several approaches to
facilitate the process of XML queries which contain value-based constraints [235, 236].
These approaches are based on the idea of utilising the relational schema in relational
databases to store values of XML nodes, the content-search then can be performed prior to
the structural search in order to speed up the performance. The research work proposed in
this thesis can be combined with these approaches since they used TwigStack algorithm to
perform the structural search. However, the combination of approaches proposed, in this
research work, is beyond the scope of the thesis.

As was reported in Chapter 4, the main weakness of the existing labelling schemes,
which adopted in the previous holistic twig matching algorithms, may be tackled by
increasing the meta-data of the existing labelling schemes. The study of this thesis aims
to improve the process of XML queries in holistic model. Therefore, this thesis proposes
a new approach to be incorporated into the existing region labelling scheme in order to
accelerate the determination of a Parent-Child relationship in this model. The fundamental
idea of the new approach is to augment the existing region labelling scheme with an
extra parameter using the property of prime numbers. The new technique will be further
discussed in Chapter 6.

To sum up, the holistic model adopts a SAX parser to map the underlying XML data
into a set of streaming lists which contain the labels of the parsed XML tree nodes. As the
performance of a SAX parser was discussed in the previous section, the performance of a
region encoding labelling scheme is determined by the performance of the XML parser
which is O(n), where n is the total number of XML tree nodes [36, 90]. Similarly, the
memory requirement for region encoding labelling scheme is proportional to the longest
path in the input XML tree and the destiny of the textual content of XML tree nodes [3].
The system uses a single SAX parser process in order to construct the components of the
storage model (see Figure 5.1). An XML document is parsed only once unless the XML
document is updated or the system may require additional knowledge prior to commencing
node labelling scheme. The following section describes the process of organising the

92 Experimental Framework

storage into partitions. Moreover, it explains the algorithm of partitioning the underlying
XML tree nodes into a set of stream labelled with a region labelling scheme.

5.2.1.3 Data Partitioning Scheme

In the holistic model, the storage is organised into partitions which are a set of streams
annotated with a labelling scheme. The result of this stage, in this thesis, is a set of
streams labelled with a region encoding labelling scheme. One of the core segment of
the holistic model is the resource model which is a persistent model and can use the file
system as a simple storage engine (i.e., storage device see Figure 5.1). The resource model
receives a request from the main component of the evaluation stage, namely the query
processor. The main purpose of this phase is to pre-process XML documents to facilitate
the underlying execution model. This process aims to minimise irrelevant data access in
the structured retrieval of an XML document by returning always the smallest unit of a
document answering the input query [54, 151].

The pioneering work of [40], proposed the first holistic twig matching algorithm in
order to overcome the limitations of the binary structural joins algorithms which usually
generate unnecessary intermediate results. A significant assumption of the original holistic
twig matching algorithm is that an XML document tree is clustered into tag streams in
which all elements with the same tags are grouped together and each element is associated
with an interval encoding (e.g. range-based label) [54]. This clustering technique is known
as tag streaming and the combination of XML structural index strategies with labelling
schemes is called an XML streaming scheme (see Chapter 3). This model adopts the XML
tag streaming scheme which uses an XML tag as the key to partition the entire tree.

The algorithm for partitioning an XML document tree into disjoint inverted lists which
contain either labels of the XML elements or a pair of labels and values of the XML
elements associated with text nodes is presented in Algorithm 2. All the information
necessary to construct the inverted lists are passed to the algorithm as arguments. The ID
of the XML document is used to create a new directory for the input document in order to
store related partitions in the same directory which is, in turn, subdirectory of the main
directory in the system (i.e., DB). The input information includes a tag name of the input
XML element, the positional information of the context element and the textual content (if
any exists).

Firstly, the algorithm checks whether the inverted list corresponding to the current
element’s tag has been created or not (lines 3-6). The dataPartition method (lines 6-9)
simply appends the new label into its corresponding an inverted list and then sorts all the
existing labels based on their start values in order to keep the inverted list in an order which
conforms to the document order. The system stores each inverted list (i.e., tag streaming
list) into a separate file on disk. The inverted lists are further indexed automatically by the
file system, thus the relevant inverted lists to the input XML query nodes can be quickly
accessed during query processing [39, 236]. If the current element is associated with a

5.2 Holistic Model Overview 93

Algorithm 1: Region Encoding Algorithm
Input: an XML file
Result: XML elements labelled with the original range-based labelling scheme

1 // initialization
2 IntegerStack orderStack = /0 // stack holds the start values of the current processing

elements.
3 IntegerStack childStack = /0 // stack holds the number of children for each element.
4 order = 0 // the start value of the current element.
5 level = 1 // the recent accessed level.
6 docID = xml.name // the ID of the XML document.
7 event = saxParser(xml) //sax method returns a sequence of events.
8 while ¬eo f (event) do
9 if event is open tag then

10 startElement(event.tag,event.attributes)
11 else
12 endElement(event.tag)
13 event = saxParser(xml) // get the next SAX event.
14 Procedure startElement(tag,attributes):
15 order = order + 1 // generate a sequential integer number.
16 push(orderStack,order)
17 level = level + 1
18 if ¬ isEmpty(childStack) then
19 x = pop(childStack)
20 x = x+1
21 push(childStack,x) // for the parent element
22 push(childStack,1) // for the current element
23 else
24 push(childStack,1)
25 // this is for the root node because it does not have a parent.
26 while ¬ isEmpty(attributes) do
27 order = order + 1
28 x = pop(childStack)
29 x = x+1
30 push(childStack,x)
31 call dataPartition(docID,attributes.current,order,order, level +

1,attributes.current.value)
32 // see Algorithm 2
33 attributes = attributes.next
34

35 Procedure endElement(tag):
36 level← level − 1
37 if pop(childStack) ̸= 1 then
38 order = order + 1
39 if characters().length > 0 then
40 call dataPartition(docID, tag, pop(orderStack),order, level,characters())

41 // see Algorithm 2
42 else
43 call dataPartition(docID, tag, pop(orderStack),order, level,empty)
44 // see Algorithm 2

94 Experimental Framework

text node (lines 10-17), the algorithm combines the text node with the label of its parent
element into a new inverted list to store the textual content. Lines 8 and 16 ensure all the
entries in the value inverted list are sorted based on the start values of their labels.

Algorithm 2: Tag Partitioning Algorithm
Result: Store the label of the input element in the corresponding partition

1 Procedure dataPartition(docID,tag,start,end,level,text):
2 // Create an inverted index list contains labels of nodes sharing the same tag

name equals to tag and values are combined to their parent elements’ labels in
separate inverted list.

3 if ¬exist(File(DB/DocID/tag)) then
4 newFile = createFile(DB/DocID/tag)
5 else
6 newFile = openFile(DB/DocID/tag)
7 // newFile:write((start,end,level))
8 // Sort all labels in newFile based on their start values.
9 newFile:close()

10 if text.length > 0 then
11 if ¬exist(File(DB/DocID/tag_value)) then
12 newFile = createFile(DB/DocID/tag_value)
13 else
14 newFile = openFile(DB/DocID/tag_value)
15 newFile:write((start,end,level), text) // Create an inverted list contains the

label of the property node and its value.
16 // Sort all labels in newFile based on their start values.
17 newFile:close()

The main reason for the combination of element’s value and label in a single inverted
list is that the content search can be performed while scanning inverted lists, so that holistic
twig matching algorithms can improve the efficiency of the structural search by reducing
the size of inverted lists when processing XML queries with content constraints [236].
This approach also avoids labelling text nodes separately which leads to a reduced number
of inverted lists in the system. For illustration, examples of two XML datasets, which are
widely used in the literature and are rich with textual content, have been tested in terms of
the number of labelled nodes and inverted lists in order to compare the two approaches for
partitioning XML documents. Table 5.1 compares the breakdown of the real world DBLP
dataset and the benchmarked XMark dataset according to the number of labelled nodes
(i.e., elements, attributes and text nodes) and the number of inverted lists. It can be seen
from the data in Table 5.1 that E&T approach (i.e., elements and text values are encoded
together) has a superior performance in terms of space management to the original work
introduced in [40]. Having discussed how to construct XML tag streaming lists for the
underlying XML document, the next section describes the process of indexing tag names
of XML elements in order to facilitate the determination of a Parent-Child relationship in
TPQs. Tag indexing is a new indexing technique which is proposed in this thesis.

5.2 Holistic Model Overview 95

Table 5.1: Features of two examples of XML datasets in terms of the number of labelled
elements and inverted lists. E-T stands for elements and text values are encoded separately,
while E&T means text nodes are combined with their parent elements.

Dataset
of labelled nodes #s of inverted lists
E-T E&T saving E-T E&T saving

DBLP (127 MB) 6,771,148 3,736,406 44.8% 388,630 79 99.9%
XMark (116 MB) 3,221,925 2,048,193 36.4 % 353,476 138 99.9%

5.2.1.4 Tag Indexing

The tag indexing is a simple indexing scheme which provides a mapping from a string to
a prime number. This novel technique contains a collection of 2-tuple (tag name,unique
prime number) and is implemented as hash table in order to facilitate the look-up of the
corresponding prime number associated with a particular tag name during query processing,
where a key is a tag name and a return value is an unique prime number. This is very
important component to interpret the information encoding within internal, branching
elements in an XML document. The construction and utilisation of this new approach will
not be described here, as it will be discussed in Chapter 6. The following section describes
the process of evaluating XML queries in the holistic model and its subsections discuss the
roles of processes of the execution model.

5.2.2 Execution Model

The on-line phase of the holistic model performs the query processing phase of the designed
system. It is sequentially organised in two fundamental stages: Query Constructor (a.k.a
query parsing or query analyser) and Query Processor (see Figure 5.1). Traditionally the
first step in any XML query processing system is to load and parse the input XML query.
The purpose of this step is to translate the input XML query into an optimised evaluation
query plan (i.e., twig pattern query). The next conventional step is to evaluate the parsed
XML query using a holistic twig matching algorithm. The structure and functions of each
stage will be explained in the following sections.

5.2.2.1 Query Constructor

Several query languages have been proposed in order to retrieve information within an
XML document such as XPath [222] and XQuery [224]. XPath is the standard language for
traversing paths in an XML document. Generally, an XML query can be decomposed into
a set of path expressions which is the basic building block of XML query languages. The
query constructor compiles the input XML query into , twig pattern query, a logical query
plan which can be used later by a physical query plan implemented in a query processor.
This is due to the fact that TPQ is the most simple model and has been adopted as the
logical query plan in many approaches [40, 147, 89, 87, 19, 21]. The query constructor is
mainly responsible for transforming the input XML query into its twig representation in

96 Experimental Framework

order to facilitate the query evaluation process. Firstly, an XML query is expressed in an
XPath-like format which is a fragment of XPath 2.0 specification [222]. Having formulated
queries, the system then builds the corresponding twig pattern query (TPQ) of the path
expression.

This thesis specifies a grammar for an XML query, using the basic EBNF notation
[178]. The grammar of XML query expressions addressed in this thesis is presented in
Figure 5.4. An XML query is accepted as a string in the system, to better demonstrate the
accepted format of an XML query see Example 5.1. It should be noted that all XML query
languages request an XML user to specify the exact XML document whose information
shall be retrieved. As a result, the system receives an XML query in the form of a pair as
(XML query expression, Document name). In addition, the role of the query constructor
can be extended to classify the input XML queries according to their query types because
a query type can determine how a query can be evaluated by the query processor. It
can be seen from the introduced grammar of path expressions that the designed system
supports the evaluation of a wide range of query types including the main axes of XPath
[222], sequence operator and positional constraint. The query classification is an important
step because the XML query processor applies different types of holistic twig matching
algorithms in order to improve the efficiency, scalability and performance of the query
evaluation plan for a certain query type. The result of this phase yields an optimised twig
pattern query based on the pattern expressions addressed in this thesis (see Figure 5.4). The
process of extending the generated TP to capture semantics of ordered axes and definitions
of TPQs for different classes of XML queries were discussed in Chapter 4.

Example 5.1. Consider the XML tree t1 of Figure 5.2a, suppose this XML document is

parsed, indexed and partitioned in the system. This query is looking for a x-node whose

content is "is x" which has a parent a-node and a sibling y-node with a child f-node. This

XML query can be expressed based on the grammar introduced in this thesis as //a[/x="is

x"]/y/f. The corresponding TPQ representation of this XML query is depicted in Figure

5.5, where the nodes stand for terminal/non-terminal symbols of the introduced grammar.

Consequently, the system accepts this query in the form Q = (//a[/x = ”is x”]/y/ f , t1)

T PQ → Pattern
Pattern → Step(Predicate)∗ (Pattern)?
Step → Axis NodeTest
Predicate → [Pattern | OrderSpec | Digits | GeneralComp “ , string ,”]
Axis → / | // | / f ollowing :: | / f ollowing− sibling :: | /preceding :: | /preceding− sibling ::
OrderSpec → NodeTest NodeComp NodeTest | Pattern NodeComp Pattern
NodeComp →<< |>>
Digits → [0−9]+

GeneralComp →= | ! = | < | <= | > | >=
NodeTest → String

Figure 5.4: A grammar of XML query expression used in this holistic model.

5.2 Holistic Model Overview 97

a

x

“is x”

y

f

Figure 5.5: A twig representation of an XML query in example 5.1.

5.2.2.2 Query Processor

An XML query is normally processed in two steps: query constructor and query processor.
The former is responsible for constructing an optimised query plan for evaluating the input
query. A query processor then interprets the plan. The query is then evaluated by the
appropriate holistic twig matching algorithm (i.e., a physical query plan) for rendering a
results set. The query processor consists of groups of holistic twig matching algorithms
to process different classes of XML queries over indexed XML documents. The query
processor can evaluate the following query types (see Chapter 2): predicate (branching),
non-predicate (simple path), predicate with order constraints, predicate with positional
constraint and non-predicate with positional constraint. In addition, the query processor
can evaluate XML queries in two different manners either top-down (i.e., two-phase) or
bottom-up (i.e., one-phase). The following subsections describe the core algorithms in each
category. The functionality and coverage for each group of algorithms will be described
briefly as well.

5.2.2.3 Basic Two-Phase Approach

In the basic two-phase category, both predicate and non-predicate XML queries can be
processed in TwigStack [40] manner. A structural search is processed in two phases. In the
first phase, the input XML query is decomposed into a set of individual single paths and
the structural join operations are performed using a chain of stacks. The second phase is
responsible for merging join the intermediate results of the first phase in order to eliminate
useless single paths. In this holistic model, three two-phase twig matching algorithms
are implemented from scratch. Two are previously proposed in the literature, namely
TwigStack and TwigStackList, respectively in [40] and [144]. The third one is originally
proposed in this thesis and it can be seen as an extension of TwigStack to process Parent-
Child axes efficiently. The name of the new algorithm, TwigStackPrime is driven from
the combination of the original TwigStack with a new technique which is based on prime

numbers. It utilises tag indexing in order to facilitate the query evaluation. TwigStackPrime

will be further discussed in full detail in Chapter 6.

5.2.2.4 Ordered Two-Phase Approach

The work of this thesis aims to improve the efficiency of holistic twig matching algorithms
and increase their query coverage. Up to now, there is no holistic twig matching algorithm

98 Experimental Framework

[145, 118, 173] which can consider the semantic of order axes and sequence operators
introduced in the XPath specification [222]. As was discussed in Chapter 4, this thesis
incorporates the semantics of order constraints into TPQs in order to support order XML
queries. As a result, novel set of ordered holistic twig matching algorithms have been
proposed which are either an extension of TwigStackPrime as OTJPrime or a combination
of TwigStackList and TwigStackPrime as OTJPrimeList (abbreviated as OTJPL). Moreover,
OTJPL algorithm was further optimised to process following-sibling and preceding-sibling

efficiently. The refined version of OTJPL uses a modification of level split vector which
was proposed in [89] so that the new algorithm is called OTJPrimeMultiList (OTJPMultiL,
for short) which stands for Ordered Twig Join Prime Multi List. The new approaches will
be described later in Chapter 7.

5.2.2.5 Basic One-Phase Approach

In the context of XML query processing, reviewing the state of the art of XML query
processing algorithms leads to the fact that most of the sophisticated holistic algorithms
fall in this category. The one-phase approach alleviates the process of structural search
in the second phase of TwigStack-based algorithms by eliminating extensive merge join
operations in order to join structurally branching nodes of TPQs. A combination of
preorder filter strategy in the one-phase algorithm with the postorder filtering strategy in
the one-phase has been proven to be problematic [185, 132, 89, 22, 20]. Therefore, a set
of one-phase holistic algorithms were proposed, in this thesis, in order to improve the
efficiency, scalability and performance of one-phase holistic twig matching algorithms.
The basic notion is to combine the the efficient filtering of useless elements introduced in
TwigStackPrime with the efficient data structure for storing intermediate result introduced
in the previous work [132, 89]. TwigPrime algorithm and its refined versions were proposed
in this thesis to demonstrate the superiority of the new approaches to the previous one-
phase holistic algorithms. Further explanation of the new approaches will be given in
Chapter 8.

5.2.2.6 Ordered One-Phase Approach

Similar to the approaches proposed in the previous section, a group of order one-phase
holistic algorithms were proposed based on the efficient selection of useful elements
introduced by OTJPrime, OTJPL and OTJPMultiL in section 5.2.2.4. This combination
enables the previous mentioned one-phase holistic algorithms to process TPQs which
contain order constraints and sequence operators efficiently without performing post-
processing steps. A more detailed account of techniques to combine different approaches
in order to support forward and backward order axes as well as sequence operators in
one-phase holistic algorithms will be given in Chapter 9.

5.3 The Implementation of the Experimental Framework and Testing Platform 99

5.2.2.7 Positional One-Phase Approach

XML query languages such as XPath [222] and XQuery [224] supports functions beside
the basic thirteen axes introduced in the specification of XPath (see Chapter 4). Positional
predicate or function is commonly used to increase meta-data of TPQs as well as add
a restricting condition. Previous studies of XML query processing have not supported
positional predicates in an advanced preorder filtering strategy [217, 70]. Furthermore, the
increasing size of XML documents and the complexity of evaluating TPQs with positional
predicate pose a challenge performance to the existing positional XML query algorithms.
Therefore, this thesis proposes a novel positional one-phase holistic algorithm which can
filter out several useless elements based on a combination of novel techniques. Chapter 9
describes the proposal of a novel positional holistic twig matching algorithm.

5.3 The Implementation of the Experimental Framework
and Testing Platform

The holistic-based system for XML query processing was implemented using Java pro-
gramming language (with JDK 1.8) and Eclipse IDE. As was described in Section 5.2,
the system consists of two stages to facilitate the query evaluation process. The next two
sections describe the implementation of these stages.

5.3.1 The Storage Model

As was discussed in Section 5.2.1.1, the system used a SAX parser to extract the structure
and content of an XML document. The Java implementation of a SAX parser was adapted
to generate SAX events for the construction of the storage model. By scanning the XML
document through a SAX parser, each node of an XML tree is assigned a label as was
described in Algorithm 1. During the labelling process, the textual content involved within
a text node is stored alongside the label of its parent in a text file (i.e., inverted list). When
a label of an XML node is generated, the label is stored in a text file based on the node’s
tag name. The text files are sorted in ascending order of their start values. The process of
partitioning and sorting text files is coded as described in Algorithm 2.

5.3.2 The Execution Model

The implementation of the execution model is composed of two stages. The first stage
implements a query analyser to tokenise a given query into a set of context-nodes in order
to build tree-like representation of the query (i.e., TPQ). Then, the query is further tested
to check whether its nodes correspond to tag names of the XML document or not. In
addition to checking the validity of the query on the given XML document, the type of
the query is classified according to the class of query supported in this model as was

100 Experimental Framework

described in Section 5.2.2.1. Having identified the type of the query, the system requests
the necessary information to evaluate the query from the storage model and invokes the
appropriate holistic twig matching algorithm based on the query type. The second stage
is the implementation of groups of holistic twig matching algorithms which are based on
inverted lists and can evaluate the query in a single forward scan of the lists.

5.3.3 Platform Setup

All the algorithms implemented in the system were written in Java with JDK 1.8. In this
study, a set of experiments were conducted to assess the characteristics of the proposed
holistic algorithms and test the efficiency, scalability and performance of holistic twig
matching algorithms in order to compare the new holistic algorithms with the existing ones.
All the experiments were performed on a laptop with 2.9 GHz Intel Core i5 and a RAM
memory of 8 GB 1867 MHz DDR3. 500 GB HD Size with Mac OS Extended (journaled)
format. This laptop runs a Mac OS X El Capitan as the operating system.

5.3.4 Testing the Holistic Model

The holistic model system was tested practically using different levels of functional testing
for a software: unit testing, integration testing and system testing. The goal of unit testing
here is to test individual components of the system to ensure that they function properly
and produce the required data. In the designed system, a variety of XML datasets with
different characteristics (see Section 5.4) were used to identify how the node labelling
process is affected by the properties of XML documents in order to generate XML labels
effectively. Also, complex twig queries were tested in order to examine the building of their
twig representations in the query constructor. For the process of generating inverted lists,
the result of unit testing should be that the number of lists generated equals the number of
distinctive tags plus the number of text nodes in the benchmarked XML datasets.

Having identified the individual units work correctly, the reason for conducting integra-
tion testing is that some units, such as query constructor, query processor, tag indexing and
resource model, are integrated as was illustrated in Figure 5.1. In this level of testing, the
system checks how the optimised query model would pass correctly to the query processor
and then the retrieved inverted lists are sufficient to evaluate the twig queries. Since the
system is implemented from scratch, the system was eventually tested as a whole to verify
that it meets the main functional specification which is the evaluation of XML queries on
indexed XML documents and renders query result sets for testing queries. This is done
by comparing the functionality of the designed system with state of the art XML query
engine, namely Saxon 9.7 [160]. The outcomes of the system testing should be that the
completeness and the correctness for the holistic model system are demonstrated with
respect to a specification of XML queries addressed in this research. In the other way, the
designed system supports all the queries and all supported queries give the correct answers.

5.4 An Overview of XML Datasets 101

Therefore, the system can be used as the test-bed on which the efficiency, scalability and
performance of holistic twig matching algorithms can be assessed and the hypothesis,
which was introduced in this thesis (see Section 4.3.2), can be tested as well.

The next section discusses properties of the available XML datasets which are widely
used to test the performance of XML techniques.

5.4 An Overview of XML Datasets

This section gives an overview of the general classification of XML datasets. It describes
the existing XML datasets used in the literature for XML testing and benchmarking.
XML datasets may be divided into three sub-groups: real-world, benchmark and synthetic
datasets. A summary of the properties of each dataset will be discussed further for
real-world XML datasets in sections 5.4.1 and benchmark datasets in Section 5.4.2. In
addition, two synthetic XML datasets were generated in order to cover testable aspects
of performance which may be missed by the existing real-world and benchmark datasets.
Section 5.4.3 provides a brief review of the most popular synthetic datasets which are
widely used in the context of XML query processing.

5.4.1 Real-World Datasets

A real-world XML dataset is a single XML document which contains real data. The
existing XML documents differ in three aspects: the depth, the breadth and the number
of XML nodes to reflect the variety of XML documents. In addition, XML documents
can be either highly structured (data-centric) or irregularly structured (text-centric). The
characteristics of an XML document may affect the performance of query evaluation
process [22]. Some of these datasets were used in the experiments for testing the efficiency,
scalability and performance of holistic twig matching algorithms previously proposed in
the literature (see Chapter 3). The subsequent sections describe the properties of the most
commonly used real-world datasets.

5.4.1.1 DBLP Dataset

DBLP is an acronym of Digital Bibliography and Library Project. It is a huge XML dataset
which contains bibliographic information on major computer science publications such
as the VLDB Journal and ACL conference. The original version of DBLP has indexed
more than three million publications and the XML file size is up to 1.77 GB and it can
be obtained from [32]. The university of Washington XML repository provides a small
version of this dataset for the purpose of the experimental evaluations in the XML research
community [162]. This real-world dataset is widely used in the experiment evaluation
of previous research studies as in [5, 9, 7, 154, 114, 70, 245, 244, 118, 147, 237, 112, 53,

102 Experimental Framework

105, 253, 89, 146, 115]. The structure of this dataset is simple, wide and highly regular.
The main characteristic of the small version will be summarised in Table 5.2.

5.4.1.2 TreeBank Dataset

TreeBank was designed by the Computer and Information Science Department at the
University of Pennsylvania [162]. It is a single XML file of parsed English sentences
tagged with parts of speech. The English Sentences were selected from a collection of
three years of Wall Street Journal (WSJ) stories for syntactic annotation. The dataset is
partially encrypted with respect to text nodes for copyright protection. The structure of the
dataset is not affect by the encryption process. Since it has a complex, deeply recursive
and irregular structure, it is considered as an interesting case for relative performance
evaluations [185, 70, 89, 144, 147, 146]. The dataset contains a large number of nested
structures (338,749) [19]. The XML file of TreeBank is a quite large in size with 82 MB
and can be freely downloaded from the XML Data Repository [162]. Table 5.2 summarises
features of this dataset.

5.4.1.3 Protein Sequence Dataset

Protein Sequence Dataset is published by Georgetown Protein Information Resource [44],
and serves as a resource of integrated bioinformatics which records functionality annotated
protein sequences. The structure of this dataset is considered to be simple and regular
similar to DBLP [22, 66]. The XML file is about 683 MB and it is the largest dataset
available in [162]. It is commonly used to experimental evaluations on the XML storage
and the XML streaming techniques [57, 94, 239]. Table 5.2 presents some features of this
dataset.

5.4.1.4 NASA Dataset

The NASA dataset contains an astronomical data which are converted from s flat-file
format into XML by the GSFC/NASA XML Project. The XML file is 23 MB in size [162]
and it has a shallow structure with a few recursive elements. Unlike TreeBank, the number
of unique tags is small 69 distinctive tags comparing to 251 in TreeBank. This dataset
has been used to test different aspects of XML application for processing XML queries
[235, 18, 105], labelling XML elements [140] and compressing [251]. Some properties of
the dataset will be given in Table 5.2.

5.4.1.5 SwissProt Dataset

SwissProt is a curated protein sequence dataset which describes the DNA sequences
marked up in XML. The size of the XML file is 109 MB. The dataset is tightly structured
and can be integrated with other datasets [162]. It is used in the evaluation of a variety of

5.4 An Overview of XML Datasets 103

XML technologies such as XML query processing [18, 188, 105, 149]. Table 5.2 illustrates
some features of SwissPort dataset.

5.4.1.6 SIGMOD Record Dataset

SIGMOD Record dataset is the XML version of a portion of the ACM SIGMOD website
which contains issues of SIGMOD Record. It is a tiny dataset since the XML file size is
around 0.5 MB [162]. It is used to the relative performance evaluation of techniques on
small XML databases [134]. The characteristics of the XML file will be presented in Table
5.2.

5.4.1.7 Mondial Dataset

Mondial is an XML file serves as a geographical database of diverse sources such as the
CIA World Factbook, the International Atlas, and the TERRA database [162]. The XML
file is small in size around 1 MB. It was considered in various experiments to test the
performance of XML technologies [94, 96]. Table 5.2 provides some features of this
dataset.

104 Experimental Framework

Ta
bl

e
5.

2:
C

ha
ra

ct
er

is
tic

s
of

th
e

ex
is

tin
g

re
al

-w
or

ld
X

M
L

do
cu

m
en

ts
.

D
at

as
et

Si
ze

M
B

#
of

no
de

s
D

ep
th

D
is

tin
ct

iv
e

ta
gs

#
of

el
em

en
ts

#
of

at
tr

ib
ut

es
M

ax
A

vg
D

B
L

P
12

7
33

32
13

0
40

42
76

6
2.

9
40

Tr
ee

B
an

k
86

24
37

66
6

1
36

7.
8

25
1

Pr
ot

ei
n

Se
qu

en
ce

86
21

30
58

18
12

90
64

7
7

5.
15

68
N

A
SA

23
47

66
46

56
31

7
8

5.
58

69
Sw

is
sP

ro
t

10
9

29
77

03
1

21
89

85
9

5
3.

55
99

SI
G

M
O

D
R

ec
or

d
≈

0.
5

11
52

6
37

37
6

5.
14

12
M

on
di

al
1

22
42

3
47

42
3

5
3.

59
55

5.4 An Overview of XML Datasets 105

Ta
bl

e
5.

3:
C

ha
ra

ct
er

is
tic

s
of

th
e

ex
is

tin
g

B
en

ch
m

ar
ke

d
X

M
L

da
ta

se
ts

.
B

en
ch

m
ar

k
K

ey
pa

ra
m

et
er

s
D

at
as

et
#

of
us

er
s

#
of

qu
er

ie
s

#
of

fil
es

Si
ze

M
ax

/A
vg

de
pt

h
X

M
ar

k
si

ze
fa

ct
or

si
ng

le
an

y
si

ze
12

/5
.5

si
ng

le
20

X
O

O
7

de
pt

h,
fa

no
ut

an
d

am
ou

nt
of

te
xt

ua
l

da
ta

si
ng

le
th

re
e

fix
ed

si
ze

:
sm

al
l,

m
ed

iu
m

an
d

la
rg

e

7/
5

1
23

T
Po

X
si

ze
an

d
#

of
us

er
s

m
ul

tip
le

ea
ch

fil
e

ha
s

si
ze

fr
om

2
to

25
K

B
te

m
pl

at
e-

ba
se

d
m

ul
tip

le
17

X
B

en
ch

si
ze

si
ng

le
/m

ul
tip

le
fo

ur
cl

as
se

s
ra

ng
-

in
g

fr
om

sm
al

l
w

ith
10

M
B

to
hu

ge
w

ith
10

G
B

lim
ite

d
si

ng
le

20

X
M

ac
h-

1
#

of
do

cu
m

en
ts

,
el

em
en

ts
,

w
or

ds
in

a
se

nt
en

ce
,

pr
ob

ab
ili

ty
of

ph
ra

se
s

an
d

lin
ks

m
ul

tip
le

fr
om

2
to

10
0

K
B

pe
rfi

le
6/

3
m

ul
tip

le
11

T
he

M
ic

hi
ga

n
si

ze
si

ng
le

si
ng

le
fil

e
w

ith
73

9K
no

de
s

as
de

-
fa

ul
t

an
d

ca
n

be
sc

al
ed

do
w

n
an

d
up

to
10

tim
es

its
or

ig
in

al
si

ze

16
/5

si
ng

le
31

106 Experimental Framework

5.4.2 Benchmark Datasets

This section gives an overview of the most popular XML benchmarks. Generally, XML
benchmarks are used for evaluating the performance of XML storage and XML query pro-
cessors [195]. XML benchmarks may be classified into micro-benchmarks and application-
benchmarks. Application benchmarks, such as XMach-1 [33], focus on assessing the
performance of the entire system (i.e., XML databases) whereas micro-benchmarks, such
as XMark [195], concentrate on XML processing operations [170]. The following subsec-
tions highlights well-know XML benchmarks which are commonly used in the literature.

5.4.2.1 XMark Benchmark

XMark Benchmark was developed as research work of [195]. XMark is a code generated
dataset in a single XML file which simulates an Internet auction website, and can be
seen as data-centric XML document. The XMark dataset generator is available on the
XMark project website [195]. The dataset can be produced in any size based on predefined
scaling factors. Regardless of the size of the dataset, the structure of the XML file
has a considerable number of recursion and the maximum depth is fixed at twelve. It
provides a twenty XML queries to test different aspects of XML technologies. Equally
important, the authors of [78] proposed an XPath benchmark for the XMark document
base. An XPathMark, which consists of a set of queries, was developed to evaluate tools
which support the language XPath 1.0 and cover main aspects of the language including
different axes, node tests, Boolean operators, references, and functions [87, 176, 89].
Therefore, it is the most commonly used XML benchmark to demonstrate the performance
of variety of XML applications [144, 145, 87, 18, 185, 235, 52, 70, 140, 116, 105, 50].
The characteristics of the dataset generated by this benchmark are summarised in Table
5.3.

5.4.2.2 XOO7 Benchmark

XOO7 [35] can be considered as the XML version of OO7-Benchmark [41]. The data and
queries of the original OO7-Benchmark were modified to test the characteristics of XML
technologies. The XOO7 benchmark can generate an XML dataset in three different sizes:
small, medium and large. Using predefined size of documents restricts the use of this
benchmark for testing scalability. Similar to XMark, the depth is always five regardless the
size of the XML file generated. Moreover, it provides twenty-three queries which cover
search operations. Some features of the XML file is presented in Table 5.3.

5.4.2.3 TPoX Benchmark

TPoX is an acronym for Transaction Processing over XML developed by IBM [170]. It is a
commercial application-benchmark to evaluate the overall performance of XML databases
including storage, indexing and concurrency control. The dataset simulates a financial

5.4 An Overview of XML Datasets 107

multi-users system marked up in XML format which conforms to real-world Financial
Information eXchange Markup Language (FIXML) schema. The dataset can be scaled
from very small to extra large by identifying its depth and breadth (i.e., fanout). Seventeen
queries have been composed in XQuery to cover fundamental operations. Table 5.3 shows
a statistical information of this dataset.

5.4.2.4 XBench Benchmark

XBench is a family of XML benchmarks, and can be seen as template-based benchmark
[247]. Because of the nature of XML as flexible data format which can be exploited to
populate a document in different ways, an XML document can be further grouped into
a single-document and multi-document. XBench can generate data-centric (DC) and
text-centric dataset (TC). The dataset then can be in either a single-document (SD) or a
multi-document (MD). Depending on the type and group of dataset, the toXgen tool is
provided to generate four classes of datasets: DC/SD, DC/MD, TC/SD and TC/MD. The
size of dataset can be in four different classes: small (10 MB), normal (100 MB), large (1G)
and huge (10 GB). XBench provides twenty XML queries for evaluating search operations.
The properties of the XML file are provided in Table 5.3.

5.4.2.5 XMach-1 Benchmark

XMach-1 (XML Data Management Benchmark, version 1) is a scalable multi-user bench-
mark which was developed at the University of Leipzig, Germany [33]. It was the first
XML benchmark proposed in the literature for evaluating the performance of XML data
management systems. XMach-1 is composed of four parts: application server, XML
database, loaders and browser clients. The size of XML file ranges from 2 KB and 100
KB. XMach-1 provides eleven queries to assess the performance of search and update
processes.

5.4.2.6 The Michigan Benchmark

The Michigan Benchmark was designed by the authors of [192] at University of Michigan.
It is a micro-benchmark for demonstrating the performance of XML processing engines.
The dataset is generated in a single, default XML file which encompasses 739×103 nodes
at fixed depth set to sixteen. The benchmark dataset can be scaled easily by increasing
the number of nodes or fanout and the maximum size of dataset can contain 100 times
the default number of nodes. In addition, the query-set is provided with twenty eight
XML queries which cover all the aspects introduced in XMark benchmark [195], and three
additionally queries concentrate on update operations. Table 5.3 presents the summary
statistics for this benchmarked dataset.

108 Experimental Framework

Table 5.4: Statistical information about Random dataset used in this thesis.
Label # of nodes (≈ thousands)
a 657
b 658
c 658
d 658
e 658
f 657

Summary
Total # of internal nodes 1183298
Total # of leaf nodes 2764789
Total # of nodes 3948087
Max/Avg depth 13/7

5.4.3 Synthetic Datasets

Synthetic XML datasets are used to control the structure and join characteristics of the
XML data so that the overall performance of holistic twig matching algorithms can be
evaluated [112]. They are widely utilised in the relative performance evaluations for XML
query processing methods [253, 40, 89, 22, 146, 38, 112, 101]. A synthetic Dataset is a
single XML file which is generated using three parameters: depth, fan-out and number of

unique labels. Synthetic datasets may be classified depending on the way the node labels
are distributed into Random and Zipf. The next subsections describe the main features of
each class and how they are utilised in this thesis.

5.4.3.1 Random Dataset

A Random dataset is created by using an XML data generator to generate the structural
part of the XML tree (i.e., without text nodes) and the node labels in XML trees are
uniformly distributed. In order to evaluate new querying approaches, this thesis creates a
new Random dataset using the above mentioned parameters similar to the one produced by
[40, 144]. The depth of data tree has a range from 2 to 13. The fan-out of nodes in XML
trees is varied from 0 to 6. This dataset has six different labels, namely: a, b, c, d, e, f

and the node labels were uniformly distributed. The XML dataset generated takes roughly
24.5 MB and contains about four million element nodes. In order to test the scalability
of holistic twig matching algorithms concerning the number of nodes and the structural
complexity of XML documents, this dataset can be scaled either down or up by using
document size (i.e., the number of nodes) as a key to provide a scalable XML document.
Since it is crucial for twig matching algorithms to be scalable, this study generated ten
XML documents of increasing sizes with a scaling range from 3.1 MB to 31 MB. The
document series is the following (sizes in MB): (3.1, 6.2, 9.3, 12.4, 15.5, 18.6, 21.7, 24.8,
27.9, 31). The characteristics of XML datasets which are randomly generated and used in
this thesis are further illustrated in Table 5.4.

5.4 An Overview of XML Datasets 109

Table 5.5: Statistical information about Zipf dataset used in this thesis.
Label % of nodes # of nodes (≈ thousands)

a 38.55 1403
b 19.27 701
c 12.88 469
d 9.59 349
e 7.75 282
f 6.39 232
g 5.45 198

Summary
Total # of internal nodes 1820881
Total # of leaf nodes 1820895
Total # of nodes 3641776
Max/Avg depth 26/18.5

5.4.3.2 Zipf Dataset

Zipf’s law is a commonly used model to demonstrate how terms are distributed across
a collection [151]. It states that the most frequent term will occur approximately twice
as many times as the second most frequent term, three times as many as the third most
frequent term, etc. A Zipf dataset was generated using the Zipfian distribution to spread
the node labels within the dataset. In this research work, the Zipf dataset contains seven
different labels from a to g, where a has the highest occurrences (≈ 38.55%) and g has
the lowest occurrence ((≈ 0.055%). Table 5.5 shows an overview of the distribution of
node labels in the Zipf dataset. The fan-out has a maximum value of 2 and the depth of the
dataset is up to 26. The XML file produced, with 25.5 MB, consists of 3.64 million nodes.
The structure of the XML document has many recursions in some of its element names
(i.e., recursive element names in a document path) and approximately equal numbers of
internal and leaf nodes. The main properties of this dataset will be given in Table 5.5. The
Zipf dataset generated in this work is similar to Zipf dataset used in [89, 22]

5.4.4 The Experimental Datasets

In evaluating the performance, scalability and efficiency of holistic twig matching algo-
rithms, a set of XML datasets were used and this set was carefully selected from those that
have been discussed in the previous section, real-world datasets in Section 5.4.1, bench-
marked documents in Section 5.4.2 and synthetic XML files in Section 5.4.3. In order to
test different aspects of XML irregularity, at least one dataset from each class was chosen to
meet the experiments’ objectives (see Chapters 6, 7, 8 and 9). From the real-world datasets,
DBLP (tightly structured, see Section 5.4.1.1) and TreeBank (highly irregular, see Section
5.4.1.2) were included in the experiments to test two extremes of the spectrum with respect
to the structural complexity. These datasets have been extensively used in the relative per-
formance evaluations on XML query search [146, 40, 144, 89, 22, 185, 132, 181]. XMark

110 Experimental Framework

was selected over the other benchmarks because it is the most popular benchmarked dataset
used to evaluate variety of XML techniques focusing on search functions [124, 181, 196]
and was used in the experimental evaluations of the comparable XML twig matching
algorithms [146, 40, 144, 89, 22, 185, 132, 181, 145]. Another reason for selecting XMark
is that it provides a query-set consisting of twenty predefined queries which cover different
aspects of XML query languages besides queries generated by XPathMark. Moreover, it
is a single but scalable document which makes it appropriate for testing scalability. This
study created five different XMark datasets with a scaling factor from 1 to 5.

In addition to the three datasets, synthetic datasets were used in the experiments in
order to test as many aspects of irregularity in XML documents as possible. Random
and Zipf datasets were adopted in the experiments as described in Sections 5.4.3.1 and
5.4.3.2. Datasets of this complexity in terms of structure are widely used to demonstrate
suboptimal performance of holistic twig matching algorithms [89, 144, 40]. Furthermore,
they were designed to test the performance of holistic algorithms where the XML combines
features of DBLP and TreeBank being structured and deeply recursive at the same time.
The Random dataset will be used to facilitate the process for evaluating the scalability of
the new approaches using ten different document sizes. Table 5.6 presents all datasets used
in the experiments of this thesis and their sizes.

Table 5.6: The experimental datasets and their sizes.
Dataset Size in MB Experiment
DBLP 127 Chapters 6 and 8

TreeBank 86 Chapters 6, 7, 8 and 9
XMark (default) 116.5

Chapters 6, 7, 8 and 9
XMark2 233.7
XMark3 351.1
XMark4 468.4
XMark5 585.5

Random (default) 24.5

Chapters 6, 7, 8 and 9

Random1 3.1
Random2 6.2
Random3 9.3
Random4 12.4
Random5 15.5
Random6 18.6
Random7 21.7
Random8 24.8
Random9 27.9

Random10 31
Zipf 25.5 Chapter 8

Generally, the relative performance evaluations in the context of XML query processing,
such as [40, 89, 144, 132] and the one conducted in this study, are based on a set of XML
queries which are executed on a set of XML datasets. In terms of query-set, a set of queries
for each dataset will be described in the corresponding experiments. The testing queries

5.4 An Overview of XML Datasets 111

are classified into groups and each group represents a query type that is supported in this
study (see Section 5.2.2.1). All queries tested in the evaluations are described in full detail
in Chapters 6, 7, 8 and 9. The next section gives an overview of the statical procedures to
analyse the experimental data in order to draw rigorous conclusions.

112 Experimental Framework

Table 5.7: Criteria for selecting statistical tests.
Type of analysis Parametric Nonparametric
Describe one group Mean, SD Median
Compare two unpaired groups Welch’s t test Mann-Whitney U test
Compare two paired groups paired t test Wilcoxon test
Compare more than two independent groups One-way ANOVA Kruskal-Wallis test
Compare more than two dependent groups Repeated-measures ANOVA Friedman test

5.5 Data Analysis

This section gives an overview of the procedures involved in analysing the experimental
data. This research study will present a set of experiments which aim to compare the
relative performance of existing holistic twig matching algorithms for the purpose of
evaluating the performance of new holistic twig matching algorithms based on Child

Prime Labels. Since Computer Science is believed to be an experimental science [104],
experimental analysis of the performance for a proposed method, comparing with a set of
algorithms, is a crucial task in an investigation [82]. Statistical analysis is fundamental to
all experiments which use statistics as a research methodology, such as the one conducted
here [65, 63, 37, 100]. Having identified the design of research and types of collected data
(see Chapter 4), statistical techniques will be used to analyse the data collected in order to
decide whether to reject or accept the research hypothesis introduced in Section 4.3.2.

As was discussed in Chapter 4, testing the hypothesis requires comparisons of groups
(i.e., holistic twig algorithms) in terms of outcomes (i.e., query response time and memory
consumption) so that inferences can be drawn. Several factors determine what statistical
procedures will be suited for testing the research hypothesis. These factors are the number
of independent and dependent variables, the underlying measurement scales, such as a
continuous variable (e.g., query processing time = 2 seconds) and a categorical variable
(e.g., TwigStack = 1 and TwigStackPrime = 2), and normality distribution of scores (i.e.,
the Gaussian Population). Before proceeding to discuss the common statistical methods,
the normal distribution is important because statistical tests are classified into two families
based on their dependencies on parameters (i.e., mean and standard deviation) to describe
the distribution of variables. Hence, the names are parametric and nonparametric. Tests
referred to as parametric assume measurements come from a normal distribution, while
nonparametric functions do not make assumption on the sample distribution [168, 82, 74].
Table 5.7 presents the most common statistical tests in computational experiments for the
relative performance evaluations [104, 82, 37].

The statistical significance testing has a pivotal role in providing assessment as the
observed relationships or differences reflect pattern than chance [63]. Thus, Null Hy-

pothesis Significant Testing (abbreviated as NHST) is a statistical function for testing
whether the factor has an effect on the observation or not. The main steps of NHST can be
described as follows: developing the first statistical hypothesis (i.e., the null hypothesis
denoted as H0) which is generally assumed to be true until evidence indicates otherwise,

5.5 Data Analysis 113

developing another statistical hypothesis, called alternative hypothesis and denoted as
HA which is the counterpart of the null hypothesis and finally running the appropriate
statistical tests to determine p-value, which is a probabilistic abstraction indicating the
probability of error involved in rejecting the null hypothesis [168], the null hypothesis
can be rejected if the p-value is lower than 0.05 the conventional significant level. By
way of illustration, the null hypothesis in this study will be formulated as “there is no
significant difference in the performance of the algorithms compared ". The present study
concerns both the time-related performance and the size-related performance for a set of
holistic twig matching algorithms. Since the size-related performance can be evaluated
using a simple data analysis in conjunction with graphical representation tools, but the
time-related performance will be further tested for the statistical significance of the results.
The Shapiro–Wilk test [74] was carried out to test the normality of query processing times
of all query-sets in the experiments in order to choose the appropriate statistical tests from
Table 5.7. Shapiro–Wilk test was chosen from the other normality tests because it yields
the exact significance in most cases as reported in [74]. The outcomes turned out to reject
the idea that the populations are normally distributed. Thus, the Mann-Whitney U test
[165, 168] was used to compare two independent data samples which are , in this research,
the results of running a holistic twig algorithm n times compared to another holistic twig
algorithm in a pairwise comparison [37]. In the context of Computer Science, the most
common rule is to have the number of runs n = 30 [104, 37]. However, since large numbers
of runs can be carried out to evaluate properly the behaviour of holistic twig matching
algorithms, this research has a number of runs n =100 in the experiments conducted later
in Chapters 6, 7, 8 and 9. The Kruskal-Wallis test [219] was also considered to compare
more than two groups (i.e., a set of holistic twig matching algorithms) as an extension for
the Mann-Whitney U test. It can be used for performing multiple comparisons between
various algorithms by computing the differences in the performance based on the median
[82, 219]. Specifically, for each testing query the Kruskal-Wallis test was run first to see
whether there is a difference in the performance between two comparable algorithms at
least. Then, the Mann-Whitney U test were carried out on each pair of groups to cover
the total number of possible paired comparisons. As an illustration, for k groups, the total
number of possible paired comparisons = (k×(k−1))

2 .
It should be noted that the p-value can not be used to assess the magnitude of the

differences between algorithms compared. Therefore, an effect size test will be used to
identify the strength of group differences as is recommended in quantitative research [63].
The calculation of the effect size based on the Mann-Whitney U test as a nonparametric
effect size measure is expressed in Equation 5.1 from [80]. The z distribution (a.k.a,
Standard Score (z-score)) is a signed number which indicates the difference between the
value of observations and the population mean which can be reported by Mann-Whitney U
test, and n is the total number of observations in data samples. The standard values of r are

114 Experimental Framework

that a large effect is 0.5, a medium effect is 0.3 and a small effect is 0.1, the absolute value
is only reporting because the sign does not bear any extra information [80, 64, 37].

r =
z√
n

(5.1)

Another technique to be considered is a box plot which is a powerful tool to convey
statistical information about a single sample data [28]. The main reason for utilising box
plots is that they depict groups of numerical variables through their quartiles as they are cut
by horizontal lines through their medians so that the box plot is suitable for nonparametric
tests since it makes use of the median instead of the mean and standard deviation to
describe the population distribution [28]. Therefore, the box plots of data samples will be
used to demonstrate which groups differ in the experiments. However, Bar Charts, which
are a graphical representation of the mean, are used for the size-related performance. The
rigorous combination of statistical procedures adopted in this research should support the
validity of their results [37, 65]. Finally, all analyses were carried out using R version 3.2.2
[182]. The next section concludes this chapter by summarising its main contribution of it
to the overall thesis’s design.

5.6 Conclusion

To conclude, this chapter described the specification and guidelines for implementing the
experimental framework in order to evaluate the performance, scalability and efficiency
of the new approaches. The holistic model designed will be used to obtain experimental
results by comparing different physical query plans in the query processor. Moreover, the
platform set up was discussed in Section 5.3, and testing the framework was considered to
validate the implementation of holistic twig matching methods. Then, an overview of the
well-known XML datasets was given in Section 5.4. In addition, the appropriate statistical
analyses were addressed to choose the most suitable tests in order to develop reliable
experimental results over time-related performances. Overall, this chapter serves as a base
for overcoming problems concerning reproducible experimental research in Computer
Science by providing sufficient information to verify and reproduce the computational
experiments carried out in this research [104, 202].

The following chapter discusses the new approach to improve the process of TPQs with
Parent-Child edges relying on Child Prime Labels to process XML TPQs in a top-down
processing manner. In addition, the chapter describes the process and implementation for
assigning Child Prime Labels to internal XML tree nodes. The chapter is concluded with
an experiment evaluation to compare the approach proposed with its competitors.

Chapter 6

Top-Down Approach based on Child
Prime Labels

6.1 Introduction

In the recent years, many algorithms for processing twig pattern queries (TPQs) have
been proposed in the literature [56, 40, 87, 5, 147]. A labelling scheme is fundamental to
processing XML queries efficiently. They are used to determine structural relationships
between elements corresponding to query nodes in TPQs. As was discussed in Chapter
4, increasing the meta-data of information contained with labels of XML elements may
improve the filtering phase in holistic approaches.

This chapter starts by presenting a new indexing technique which exploits the property
of prime numbers to identify Parent-Child (P-C) edges in TPQs during query processing.
Two different approaches to index internal elements will be proposed. Then, it discuss
the development of a novel holistic twig matching algorithm based on the new indexing
approach for processing TPQs with Parent-Child (P-C) and Ancestor-Descendant (A-D)
relationships efficiently. After that, a set of experiments to test the hypothesis introduced
in Chapter 4 are described and used to evaluate the performance, scalability and efficiency
of the new holistic algorithm.

The rest of this chapter is structured as follows. Section 6.2 covers some preliminaries
including the notation and data structures in holistic algorithms and the limitations of
TwigStack. The new indexing technique will be presented in Section 6.3. The new
holistic algorithm will be introduced in Section 6.4. Section 6.5 presents the experimental
evaluation and reports the performance comparison between the new algorithm and the
previous comparable approaches. Finally, Section 6.6 concludes this chapter.

116 Top-Down Approach based on Child Prime Labels

6.2 Preliminaries

6.2.1 Notation

Throughout this chapter, the term element will refer to a data element in an XML tree and
node will refer a query node in twig pattern. As was discussed in the literature chapters,
top-down holistic algorithms perform two phases. In the first phase, potential single
paths are generated as intermediate results where each individual path corresponds to
a non-predicate (i.e., root-to-leaf path) path expression of the query. The second phase
consists of merge operations to stitch intermediate paths together and eliminate useless
results. There are also some auxiliary operations on TPQ and its nodes to facilitate the twig
matching process. Supported operations are as follows: children(q) returns all child nodes
of q. subtree(q) returns all child nodes which are in the subtree rooted at q. childrenAD(q)

returns all child nodes which have A-D relationship with q. childrenPC(q) returns all child
nodes which have P-C relationship with q. isRoot(q) returns boolean values to see whether
q is the root or not. getRoot(TPQ) returns the query root of the input TPQ. parent(q)

returns the parent query node of q. isLeaf(q) returns boolean values to see whether q is a
leaf node or not. In addition, previous top-down holistic approaches make use of a Tag

Streaming scheme where each query node q is associated with a stream Tq (see Section
3.3.2.2) consisting of all elements with the same label as q in which the elements are sorted
by the start values of their range-based labels in ascending order. It should be noted that
elements may appear in different streams if there are nodes with the same tags in TPQ (i.e.,
similar node tests, see Section 5.2.2.1). Every stream Tq in TPQ is equipped with a cursor,
denoted as Cq, which initially points to the first element in Tq at the beginning of a query
processing. To ensure the linear processing in the filtering phase of holistic algorithms,
only the first element is accessible and the rest elements are unseen by the algorithms, the
filtering task has to be performed in a single forward scan of the streams. As shown in
Figure 6.1, the stream of query node q has two parts head which is pointed by Cq while the
remaining set of elements is referred to as tail. In order to accomplish the evaluation of the
whole TPQ, the previous approaches augment the streams with virtual end element labelled
with infinity values as (∞,∞,∞). The following operations are defined over every cursor of
a stream in TPQ. getStart(Cq) returns the start attribute of the head element corresponding
to query node q. getEnd(Cq) returns the end attribute of the head element corresponding to
query node q. getLevel(Cq) returns the level attribute of the head element corresponding
to query node q. advance(Cq) forward the cursor of q by one position to point to the next
element. eo f (Tq) returns boolean values to judge whether or not Cq points to the end of
stream of Tq.

Furthermore, stacks are fundamental data structures to twig matching algorithms [88].
In holistic algorithms, each query q is allocated to a stack named Sq, and each item of
the stack consists of a pair: (the label of element,pointer points the matching item in the
parent stack Sparent(q)). Moreover, each element in the stack is associated with two linked

6.2 Preliminaries 117

head

Tag Streaming Tq

Tail

First element

Figure 6.1: Tag Streaming Model of a query node q.

lists. The first list to represent all blocked descendant extensions (see Chapter 3) rooted at
that element. The second list is to represent all blocked descendant extensions rooted at
element which is a descendant that element [5, 40]. The common stack operations, such as
empty(), push(), pop() and top(), are used. At any point during query processing, elements
in stack Sq are nested from the bottom to top in a path containing the similar chain of
elements as appear in the XML tree, and a chain of linked stacks is used to represent
compactly intermediate results of individual root-leaf paths in TPQ.

The following section will discuss the limitations of TwigStack algorithm with respect
to P-C edges in TPQs. It will also demonstrate important definitions to classify the state of
the head elements of streams in XML query processing. Simple examples will be presented
to show how the new indexing technique can be proposed.

6.2.2 Motivation and Limitations of TwigStack

In this section, a basic notion of optimal processing of TPQs in holistic approaches is
discussed. Accessing head elements of streams is a fundamental property of holistic
approaches, thus the original work of Bruno et al.[40] introduced a new definition which
can control the size of intermediate results. That is an element e which corresponds to a
query node q is pushed to the stack only if it has a descendant extension (see Section 4.2.1)
which means that no element is stored in the stack unless it has useful descendant elements
in the head elements of streams corresponding to its child query nodes and they recursively,
in turn, have descendant extensions for sub-twigs rooted in them. Because of the restricted
access mechanism, the holistic algorithms can not guarantee that the head elements would
form matches to TPQs comprising of P-C edges. This dilemma (i.e., two head elements
block each other with respect to a binary P-C relationship) causes the holistic algorithms to
decide whether to output useless intermediate results or to miss some potential answers to
TPQs. The researchers [54, 89] in holistic twig matching classified head elements pointed
by cursors of streams to three types with respect to TPQ Q as follows:

1. Matching element: element en of a query node qn is called a matching element if it
has minimal extension to qn as in Definition 6.1.

2. Useless element: element en of a query node qn is called a useless element if en can
not participate in a match to Q with the current or future elements.

118 Top-Down Approach based on Child Prime Labels

3. Blocked element: otherwise element en of a query node qn is a blocked element.

Definition 6.1 (Minimal Extension). Consider the head element en, pointed by Cqn , which

corresponds to query node qn ∈ T PQ Q. en has a minimal extension if there is a strict

subtree match to a subtree of Q rooted by qn as in Definition 4.14, where every element of

the match is the head element of its stream.

It can be seen from the above definitions, TwigStack can guarantee linear processing
for TPQs with only A-D edges, due to the fact that minimal extension can be always
identified from the head elements forming matches to the query while useless elements
can be discarded safely using the positional information of elements. It has been proven
[40, 144, 61] blocked elements can not exist in TPQs with A-D relationships. The following
examples illustrates the different head elements and minimal extension.

Example 6.2. Consider the binary structural relationship A-D between two head elements

in the streams as ea and ed of the query nodes qa and qd , respectively, representing simple

path query a//d. There are four cases which describe the status of the current head elements

as illustrated in Table 6.1. The possible cases of the head elements when the structural

relationship between them is P-C is presented in Table 6.2 for the head elements ep and ec

corresponding to the query nodes qp and qc, respectively for the path expression p/c.

Example 6.3. Consider the XML tree T1 in Figure 6.2 and the TPQ Q1 a[//x]/y/f, at the

beginning of query processing the head elements are Cqa → a1, Cqx → x1, Cqy → y1 and

Cq f → f1. The element y1 has a minimal extension to the subtree rooted at the query node

qy as (y1, f1) which is the match to the sub-twig of qy. The head element a1 does not have

a minimal extension because it is a blocked element since a1 and y1 block each other as

described in Table 6.2 so that a blocked element has to be stored in order to compute a

match (if any) to Q1.

The existence of blocked elements influences the optimality of holistic twig matching
algorithms, an optimal holistic twig matching algorithm should not have blocked elements,
in other word, the head elements are either matching or useless. Therefore, streams can be
forwarded without storing irrelevant elements. The next section presents intuitive example
to illustrate different classes of head elements and suboptimal evaluation for TPQs using
the information contained within the existing labels.

6.2.2.1 Straightforward Example

This section illustrates the main problem of TwigStack which assumes edges in TPQs
are A-D. It shows also how the number of blocked elements in streaming lists, when P-C

Table 6.1: Possible cases for binary structural A-D relationship shown in a//d.
Case 1 Case 2 Case 3 Case 4

Property getEnd(ea) < getStart(ed) getStart(ea) < getStart(ed) and
getEnd(ea) > getEnd(ed)

getStart(ea) > getEnd(ed) getStart(ea) > getStart(ed) and
getEnd(ea) < getEnd(ed)

ea useless element matching element blocked element blocked element
ed blocked element matching element useless element useless element

6.2 Preliminaries 119

relationships involved in the query, influences the optimal evaluation for TPQs in holistic
approaches. These limitations will be demonstrated in the following example.

e

a1

x1 xn a2

xn+1 y1

f1

a3

xn+2 y2

xn+3

f2

(a) an XML tree T1.

a

x y

f

(b) a twig query
Q1.

Figure 6.2: Illustration of the suboptimal processing of TwigStack.

Example 6.4. Consider the XML tree T1 and the TPQ Q1 a[//x]/y/f of Figure 6.2. The first

cycle of TwigStack identifies that the element a1 is blocked (see case 3 in Table 6.2)and it

is pushed into the corresponding stack, and the table in Figure 6.3 presents the situation at

each iteration of TwigStack. After n iterations, the n number of x has been processed, the

algorithm generated n single paths corresponding to the simple path expression a//x. After

n+1 cycle, the element a2 is found to have a minimal extension and can be returned to

compute a match to Q1 since it corresponds to the query root. This match is confirmed by

the main algorithm at iteration n+4 after the element f1 is pushed into its query node stack.

Then, TwigStack proceeds to the next head element to see whether the element a3 has a

descendant extension or not. From the head elements, it can be seen the element a3 has

the descendant extension but two head elements are found to be blocked and the algorithm

can no longer guarantee their contributions to the result of Q1, namely a3 and y2. Finally,

at the iteration n+9, the algorithm can ensure that the element f2 does not participate in

the final result as it does not have P-C relationship with y2 which is the top element in its

parent stack as Sparent(f). By this step, TwigStack has produced two more useless paths as

(a3,xn+2) (a3,xn+3). Note that there is only one match to the TPQ Q1 in this example but

TwigStack generated n+3 useless intermediate paths.

As was discussed in Chapters 3 and 4, the number of intermediate results has a
significant impact on the performance holistic twig matching algorithms and the above
example has shown that TwigStack can not filter out irrelevant elements for TPQs with P-C
edges. In the worst case, the number of intermediate root-to-leaf paths can be O(F×L)

Table 6.2: Possible cases for binary structural P-C relationship shown in p/c.
Case 1 Case 2 Case 3 Case 4 Case 5

Property Case 1 in A-D Case 2 in A-D and getLevel(ep) -
getLevel(ec) = 1

Case 2 in A-D and getLevel(ep) -
getLevel(ec) > 1

Case 3 in A-D Case 4 in A-D

ep useless element matching element blocked element blocked element blocked element
ec blocked element matching element blocked element useless element useless element

120 Top-Down Approach based on Child Prime Labels

Ta a1 a2 a3 ⊥

Tx x1 ... xn xn+1 xn+2 xn+3 ⊥

Ty y1 y2 ⊥

Tf f1 f2 ⊥
(a) Streams and arrows indicating the head ele-
ments.

iteration returned node head elements key element Operations
1 a a1,x1,y1, f1 a1 is blocked push a1
.
n x a2,xn,y1, f1 xn is useless push x1

n+1 a a2,xn+1,y1, f1 a2 has a minimal extension push a2
n+2 x a3,xn+1,y1, f1 xn+1 is useless push xn+1
n+3 y a3,xn+2,y1, f1 y1 is useless push y1
n+4 f a3,xn+2,y2, f1 f1 is useless push f1
n+5 a a3,xn+2,y2, f2 y2 is blocked pop a2 and a1 , push a3
n+7 y ⊥ , xn+3,y2, f2 y2 is blocked, xn+3 is useless pop y1 , push y2
n+8 x ⊥ , xn+3, ⊥ , f2 xn+3 is useless pop xn+2 , push xn+3
n+9 f ⊥ , ⊥ , ⊥ , f2 f2 is useless discard f2

(b) TwigStack processing of Q1.

Figure 6.3: Illustration of TwigStack operations.

where F is the sum of the lengths of the input lists for leaf query nodes and L is the
maximum depth in the XML tree [61, 144, 116]. It should be noted that an element might
be useless with respect to the current head elements but it may participate in a match to
the query if its ancestor is stored in the corresponding stack. TwigStack applies a strict

prefix-filtering (see Definition 4.16) to handle useless elements returned by getNext().
Furthermore, Example 6.4 illustrates the main drawback of TwigStack which may be a
result of the limited access only to the head elements in which there is no such a way to
find elements which satisfy Parent-Child relationships with the rest of the input streaming
lists.

Having illustrated the limitations in the evaluation of the head elements, the next
sections will discuss the proposal for a new indexing technique to overcome blocked
elements issues with P-C edges. The development of a new holistic twig matching
algorithm based on the indexing mechanism proposed will be discussed as well.

6.3 Child Prime Labels

This section presents a new indexing technique which can be applied to the existing
labelling schemes to minimise the number of blocked cases in the streams during the
processing of TPQs with Parent-Child axes. The key idea of the work presented in this
section is to find an appropriate technique which can be used in addition to the triplet of

6.3 Child Prime Labels 121

range-based labelling scheme to resolve Case 3 in Table 6.2. The name of the new approach,
Child Prime Labels (for short CPL), is driven from the exploitation of child relationships
in XML trees (see Definition 4.6) and the property of prime numbers. Therefore, the
immediate child elements of inner elements can be derived from their labels, then the
process to handle Parent-Child relationship among head elements in the streams can be
resolved by computation.

The idea is to identify all the distinct tags in the XML tree and assign them with
unique prime numbers. Then, the intuition of the CPL is to use the modulo function
to test whether an element has a particular element name among its children. The leaf
elements will be annotated with 1 as their CPLs, while the inner elements (i.e., parent
elements) are assigned CPLs by multiplying the prime numbers of its distinct names of
child elements. For illustration, consider an element e, with all distinct names of children,
C = {c1,c2, . . . ,cm} and a list of prime numbers P = {p1, p2, . . . , pm}. The bijective
mapping function f : C→ P for all element p ∈ P, there is a unique element c ∈C such
that f (c) = p. Then, the CPL for element e can be computed as follows:

CPL(e) =

m
∏
i=1

f (ci), if m≥ 1

1, otherwise
(6.1)

This thesis aims to extend the original range-based labelling scheme to incorporate
the CPL information see Definition 6.7. Each range-based label with CPL is presented
as quadruple =(start,end,level,CPL). The first three attributes remain the same as in the
original labelling scheme see Chapter 5. According to Proposition 6.5, all distinct names
of immediate child elements for a particular element in the XML tree can be obtained from
having the corresponding prime numbers associated with tag names of its children. For
efficient generation the CPL labels, they can be generated during the preorder traversal of
the XML tree. Algorithm 3 presents the process for CPL generator. The algorithm can
be seen as an extension of Algorithm 1 in Chapter 5. It first initialises a stack to record
CPL for the current processing element. A hash table is used to create a mapping from an
element tag to a prime number as in Equation 6.1. During depth-first scanning, the current
element is assigned the next available prime number if its tag has not been examined (Lines
15-18). The smallest prime number is 2 because 1 is reserved to identify leaf elements in
the XML tree as explained in the equation above. After that, Lines 20-26 check the CPL
parameter of its parent element to see whether it is divisible by the assigned prime number
or not. If it is not a factor of the parent CPL, the parent element’s CPL is multiplied by
the new prime number after checking overflow condition. In case of overflow, the CPL
has a value of 0 to avoid lose potential elements, in other words there is no change to the
original labelling scheme. Otherwise, Line 26 assigns 1 as CPL for the current element
since it appears before its child elements (if exist). Line 28 handles special case for the
root element. When reading the closing tag of the current element, endElement() function
generates the complete label for the element under investigation as 4-tuple in which the

122 Top-Down Approach based on Child Prime Labels

CPL parameters are 1 for leaf elements, while parent elements are assigned their CPL
computed by popping the global stack, childStack in Lines 30-35.

Proposition 6.5 (Uniqueness [166]). There is only one unique set of prime factors for any

number.

Proposition 6.6 (Zero Factors [166]). Zero is a multiple of any number.

According to Proposition 6.6, overflowing problems in CPLs can be handled without
modifying the query results. In case of overflow, the information obtained from CPLs can
be discarded and holistic twig matching algorithms based on CPL would continue process-
ing current head elements using the original range-based labelling scheme. However, five
different datasets (see Section 5.4) were used in the experiments of this thesis and there
was no sign of overflow.

Definition 6.7 (Child Prime Label). A child prime label is assigned to each element in

an XML document as an extra parameter into the range-based label. A child prime label

indicates the multiplication of distinct prime numbers for every internal elements within

the document, and leaf elements are assigned 1.

Example 6.8. Consider the XML tree in Figure 6.4. For instance the CPL of the root

element e is computed as follows. When reading the opening tag of e, it is given 1 as its

initial CPL and it is pushed into a global stack and stored in tag indexing. After scanning

the elementa1, the tag a is assigned with 3 as its unique prime number. The CPL of e is

checked to see whether it is divisible by the new prime number or not. Since the old value

1 is not divisible by 3, the CPL of e is updated to 1×3. Once the element a3 is received, its

tag is checked to see whether it has been assigned a prime number or not. The tag a has

already been assigned a prime number by looking up the tag indexing dictionary. The CPL

of its parent element e is examined to see whether the prime number of a3’s tag divides e’s

CPL or not. Because 3, as the prime number of tag a, is already a divisor of the CPL of

e which is 3, the algorithm proceeds without updating the CPL of e. In like manner, the

element y2 has a CPL with value of 55 as CPL(y2) = f (x)× f (f) = 5×11 = 55.

It can be seen from the above example, the process of assigning prime numbers to
distinct tags in the XML tree is simple and straightforward. It can be performed in a
single scan of the original document. However, assigning small prime numbers to the top
elements in the tree may result in relatively large numbers assigned to CPLs. This may
also increase the number of CPLs which overflow, thus it has a detrimental impact on
the advantages of CPLs. An improved approach to assign unique prime number to the
distinct tag names in the XML tree is proposed to reduce the number of overflow cases.
In the improved approach, the labelling scheme is done in two phases. First, it traverses
the XML tree once to determine for each distinct tag name the number of distinct sibling
tags, which is used later to sort tag names according to their number of distinct sibling tags
in descending order. The sorted tag names are assigned prime numbers from the smallest

6.3 Child Prime Labels 123

e (1,18,1,3)

a1 (2,10,2,15)

x1 (3,3,3,1) a2 (4,9,3,35)

x2 (5,5,4,1) y1 (6,8,4,11)

f1 (7,7,5,1)

a3 (11,17,2,7)

y2 (13,16,3,55)

x3 (14,14,4,1) f2 (15,15,4,1)

(a) an XML tree T1.

Tagname Key
e 2
a 3
x 5
y 7
f 11

(b) tag index.

Figure 6.4: An XML tree labelled with range-based augmented with CPL and the corre-
sponding tag indexing.

to the largest. In the second phase, the result of the first phase is used to initialise the
hash table in Line 4 of Algorithm 3, and Algorithm 3 scans the document in depth-first
traversal to label the XML elements. The Algorithm 4 illustrates the process for counting
the number of distinct sibling tag names and pairing tag names with prime number. The
following example shows that the improved approach can avoid assigning small prime
numbers to tag names corresponding to elements at the top of the XML tree.

Example 6.9. Consider the XML tree in Figure 6.4. The tag names are assigned prime

numbers as they have been seen by the SAX parser in depth-first traversal. The order for

assigning prime numbers can be presented as follows: e→ 2, a→ 3, x→ 5, y→ 7, f →
11. Using the improved approach, the order of assigning prime numbers is different since

it considers the number of sibling tags. The same XML tree is labelled by the improved

approach in Figure 6.5. For instance, the tag name x is given the smallest prime number

because it has the maximum number of distinct sibling tags.

The next section describes the advantages of the CPL. Furthermore, it discusses the
characteristics of the CPL in terms of handling Parent-Child relationships in the streaming
model.

6.3.1 Properties of Child Prime Label

This section summarises the properties of Child Prime Labels indexing. The CPL of a
particular element can be used to derive a set of the tag names of its immediate child
elements as in Property 6.10. For sake of clarity, two more operations are defined on

124 Top-Down Approach based on Child Prime Labels

Algorithm 3: CPL-Region Encoding Algorithm
Input: an XML file xml
Result: XML elements labelled with the range-based labelling scheme and

augmented with CPL where internal elements are assigned the product of
their children’s prime numbers while leaf elements assigned 1

1 // initialization
2 // see Algorithm 1
3 IntegerStack childStack = /0 // stack holds the number of children for each element.
4 HashTable tagIndexing = /0
5 // hash table to generate string to Integer mapping where tags are keys and prime

number are values, and produce
6 tag indexing to be used later by query processors, see Section 5.2.1.4
7 order = 0 // document order level = 1 // level of element
8 while ¬ read(xml) do
9 // if opening tag calls startElement

10 // if closing tag calls endelement
11 Procedure startElement(tag,attributes):
12 order = order + 1 // generate sequential integer number.
13 push(orderStack,order)
14 level = level + 1
15 if ¬contain(tagIndexing, tag) then
16 currentPrime = getPrime() // returns the next smallest prime number to be

used for the current element starting from 2 as the smallest prime number
17 put(tagIndexing,tag,currentPrime)
18 // insert the prime to the disctionry
19 if ¬ isEmpty(childStack) then
20 CPL = pop(childStack)
21 // check if the CPL of the parent element is divisible by the prime of its new

child tag
22 if x mod get(tagIndexing, tag) ̸= 0 then
23 CPL =CPL×get(tagIndexing, tag)
24 // here apply safeMultiple to avoid overflow, in case of overflow CPL = 0

to ensure the element is not mistakenly discarded by twig matching
algorithms

25 push(childStack,CPL) // update the parent CPL
26 push(childStack,1) // creat the CPL for the current element
27 else
28 push(childStack,1) // this is for the root node because it does not have a

parent.
29 Function endElement(tag):
30 level = level - 1 // return to the previous level
31 if top(childStack) ̸= 1 then
32 order = order + 1

return :(pop(orderStack),order,level,pop(childStack))
33

34 else
return :(pop(orderStack),order,level,1)

35

6.3 Child Prime Labels 125

Algorithm 4: Generate Tag Indexing Algorithm
Input: an XML file xml
Result: XML tags with the largest number of distinct sibling tags are assigned the

smallest prime numbers
1 // initialization
2 IntegerStack childStack = /0 // stack holds the number of children for each element.
3 HashTable siblingCount = /0 // the key is string and the value is a list of string
4 // hash table to compute number of distinct tags for each tag in the XML tree
5 // each entry of the table returns a list of string to compute the number of distinct tags

6 elementStack eStack = /0
7 // stack to hold objects of elements which contains a list, called cList to store distinct

child tags)
8 while ¬ read(xml) do
9 // if opening tag calls startElement

10 // if closing tag calls endelement
11 tagList = sorted keys of siblingCount based on the sizes of their sibling lists
12 HashTable tagIndexing = /0
13 foreach tag in tagList do
14 currentPrime = getPrime() // tag is paired with getPrime() returns the next

smallest prime number to be used for the current element according to the order
based on the number of distinct tags to mitigate overflow issues

15 put(tagIndexing,tag,currentPrime)
Return : tagIndexing // Tag Indexing to be used during the labelling process in

Algorithm 3 at Line 5
16 Procedure startElement(tag,attributes):
17 if ¬ isEmpty(childStack) then
18 x = pop(childStack)
19 x = x+1
20 push(childStack,x) // for the parent element
21 push(childStack,1) // for the current element
22 if ¬top(eStack).cList.contains(tag) then
23 top(eStack).cList.add(tag) // add the new tag to the list of child tags
24 else
25 push(childStack,1) // this is for the root node because it does not have a

parent.
26 e = new Object
27 push(eStack,e)
28

29 Procedure endElement(tag):
30 // if the current element has a child element, the distinct tags are calculated
31 if pop(childStack) ̸= 1 then
32 foreach child in top(eStack).cList do
33 List sList = get(siblingCount,child) // sibling list
34 foreach sibling in top(eStack).cList do
35 if ¬ sList.contains(sibling) then
36 sList.add(sibling)
37 replace(siblingCount,child,sList)
38 // update the list of sibling tags to compute the total number at the end

126 Top-Down Approach based on Child Prime Labels

e (1,18,1,3)

a1 (2,10,2,6)

x1 (3,3,3,1) a2 (4,9,3,10)

x2 (5,5,4,1) y1 (6,8,4,7)

f1 (7,7,5,1)

a3 (11,17,2,5)

y2 (13,16,3,14)

x3 (14,14,4,1) f2 (15,15,4,1)

(a) an XML tree T1.

Tag Key
e 11
a 3
x 2
y 5
f 7

(b) tag index.

Tagname # of sibling tags
e 0
a 1
x 3
y 1
f 1

(c) First phase in the improved ap-
proach.

Figure 6.5: The improved approach to label the XML tree in Figure 6.4.

query nodes of TPQs and over cursors during the query processing as in Section 6.2.1.
tagPrime(q) returns the unique prime number associated with q from tag indexing (see
Definition 6.12). getCPL(Cq) returns the CPL attribute of the head element corresponding
to query node q.

Property 6.10 (CPL Relationship). In any XML labelling scheme that is augmented with

Child Prime Labels, for any elements x,y and z in an XML document, x has at least one or

more child elements of label µ(y) and µ(z) if and only if CPLx mod keyµ(y)× keyµ(z) = 0,

where keyµ(y) and keyµ(z) are defined prime numbers.

In addition to the three classes of head elements described in Section 6.2.2, this thesis
introduces a new class of head elements with respect to TPQ Q as follows:

4. Possible matching element: element en of a query node qn is called a possible
matching element if it has possible extension to qn as in Definition 6.11.

Definition 6.11 (Possible Extension). Consider the head element en, pointed by Cqn , which

corresponds to query node qn ∈ T PQ Q. en has a possible extension if there is a semi-strict

subtree match to a subtree of Q rooted by qn as in Definitions 4.14 and 4.17, and the

information derived from CPL of en satisfies the CPL relationship for each child query

node.

Definition 6.12 (Tag Indexing). The tag indexing is a lookup table to find unique prime

numbers associated with distinct tags within a given XML document during query process-

ing.

6.4 Holistic Twig Matching Algorithm with Child Prime Label 127

The original range-based labelling scheme does not have Property 6.10 so that there are
only five possible cases for Parent-Child relationships between two head elements in the
streams. Case 3 in Table 6.2 is associated with suboptimal evaluation of TPQs containing a
combination of A-D and P-C axes [144, 54]. Utilising the properties of CPLs, the present
study further classifies Case 3 in Table 6.2 into two sub-cases which are illustrated in Table
6.3. Case 3-1 changes the state of the parent query node to be useless rather than blocked
if the parent element does not satisfy the CPL relationship with the child element (see
Property 6.10). In Case 3-2, the parent element is found to satisfy the CPL relationship
and it can be expected to have at least one child element in the tail of its child input stream.

In the following section, the Child Prime Labels will be used to design a novel top-down
holistic twig matching algorithm which utilises Property 6.10 to reduce the intermediate
results by decreasing the number of blocked head elements in the streams during the query
processing.

6.4 Holistic Twig Matching Algorithm with Child Prime
Label

Having established the concept of CPL indexing, the present research proposes a new
top-down holistic twig matching algorithm using the CPL. This approach differs from the
previous algorithms mainly in the labelling used.

6.4.1 Top-Down Twig Matching Algorithm: TwigStackPrime

This section present a new top-down holistic twig matching algorithm, called TwigStack-
Prime. The new approach can be seen as an alternative to TwigStack algorithm. The
original TwigStack remains the same with the only difference being in the advanced pre-
order function getNext. The use of stacks in TwigStackPrime is similar to that in TwigStack
(see Section 6.2.1).

The structure of the main algorithm, TwigStackPrime presented in Algorithm 6 is not
much different from the original holistic twig join algorithm TwigStack [40] which uses
two phases to compute answers to a twig query. In the first phase, solutions to root-to-leaf
paths in a TPQ are found and stored in output arrays (Lines 1-11). It repeatedly calls the
getNext algorithm (see Algorithm 5) with the query root as the parameter to return the next

Table 6.3: Further classification of head elements for p/c in Table 6.2.
Case 3-1 Case 3-2

Property Case 2 in A-D and getLevel(ep) -
getLevel(ec) > 1 and getCPL(ep)
mod tagPrime(qc) ̸= 0

Case 2 in A-D and getLevel(ep) -
getLevel(ec) > 1 and getCPL(ep)
mod tagPrime(qc) == 0

ep useless element possible matching element
ec blocked element blocked element

128 Top-Down Approach based on Child Prime Labels

query node for processing. In the second phase (Line 12), solutions in the output arrays
are merge-joined based on their common branching query nodes and query matches are
returned as the query result. The number of output arrays is equal to the number of leaf
query nodes (i.e., the number of individual root-to-leaf paths in a TPQ).

getNext is an essential function which is called by the main algorithm to decide the
next query node to be processed. It is fundamental to guarantee that the current head
element associated with the query node returned is part of the final output since all
the basic structural relationships are thoroughly checked by getNext or its supporting
subroutine getElement. getNext(q) returns an element eq of a query node q ∈ T PQ with
three properties:

i eq has a descendant element eqi in each of the streams corresponding to its child
elements where eqi is the head element of a query node qi = children(q) (this property
is checked in Lines 9-11).

ii each of its child elements satisfies recursively the first property (this property is
checked in Lines 4-5).

iii if q has Parent-Child edge(s) with its child query nodes, then eq has a child eqi in Tqi

for each query node qqi = childrenPC(q) (this property is checked in Lines 21-23 of
getElement function).

Moving on now to go through getNext algorithm. Firstly, if q is a leaf query node,
it trivially satisfies the three properties, thus it is returned in Line 1. After that, getNext

invokes recursively getNext for each query node ni = children(q). If any query node gi is
not equal to ni, gi is immediately returned because ni can not satisfy the aforementioned
three properties. This is how the algorithm handles Cases 3 and 4 for A-D relationship
between elements in the streams as presented in Table 6.1. The cursor pointed to gi is
advanced to point to the next element in the stream. Otherwise, every child of q satisfies
the three properties. Lines 4 and 5 get the max and min the head elements corresponding
to child query nodes of q. Line 7 discards elements of q which do not contribute to the
final result.This line handles Case 1 for A-D (see Table 6.1). In Line 8, the first property is
checked. If the current head element of q fails to satisfy the first property, the child query
node with the smallest start value is returned in Line 9 (handling Cases 3 and 4 for A-D,
see Table 6.1). Otherwise, the query node q is returned that means it corresponding to
Case 2 for A-D or Cases 2 and 3-2 for P-C. In another way, the current head element of q

is either matching or possible matching.
In the function getElement(q), if q does not have P-C edges, the current head element

of q is returned. Otherwise, Line 21 checks CPL relationship for all child query nodes with
Parent-Child relationships. If the current element does not satisfy the CPL relationship (the
third property), the function skips all elements which do not satisfy the CPL relationship
(Case 3-1 for P-C in Table 6.3). Otherwise, the head element satisfying the CPL relationship

6.4 Holistic Twig Matching Algorithm with Child Prime Label 129

is returned in Line 21 if the stream is unfinished. In case the stream reaches the end, Line 19
returns virtual end element labelled with infinity values to complete the query processing.

Algorithm 5: getNext(q)
Input: q is a query node
Result: a query node in TPQ which may or may not be q

1 if isLeaf(q) then
return :q

2 foreach node ni in children(q) do
3 gi = getNext(ni) if gi ̸= ni then

return :gi
4 nmax = a query node with the maximum start value ∈ children(q)
5 nmin = a query node with the minimum start value ∈ children(q)
6 while getEnd(getElement(q)) < getStart(getElement(nmax)) do
7 advance(q)
8 if getStart(getElement(q)) < getStart(getElement(nmin)) then

return :q
9 else

return :nmin
10 Function getQCPL(Query node q):
11 // the prime number assigned to the query node which is the product of its child

query node prime numbers, it is called only once for each branching query node
with P-C edge(s)

12 qCPL = 1
13 foreach node ni in childrenPC(q) do
14 qCPL = qCPL × tagPrime(ni)

return :qCPL
15 Function getElement(Query node q):
16 if childrenPC(q) > 0 then
17 while ¬ eof(Cq) ∧ getCPL(Cq) % getQCPL(q) ̸= 0 do
18 advance(q)
19 if eof(Cq) then

return :∞,∞,∞,1 // out of range label
20

21 else
return :Cq // the current head element in the stream of q

22

Turning now to the main algorithm of TwigStackPrime, it repeatedly calls getNext to
get the next query node to be processed as follows. Firstly, Line 2 calls getNext with the
root query node as the input parameter to identify the query node qact to be processed.
After that, Line 4 performs a strict prefix matching (see Definition 4.13) by removing
elements which are not ancestors of the head element of qact from the stack of parent(qact).
If the head element of qact has the ancestor extension and qact is not a leaf query node, it is
pushed into its corresponding stack and assigned a pointer to its ancestor/parent element in
the parent stack at Line 4. Otherwise, all individual root-to-leaf paths involving the head
element are generated and stored in their output array. Note that some path solutions may
be blocked using blocking sorting technique introduced in [5, 40] (see Chapter 3) in order

130 Top-Down Approach based on Child Prime Labels

to sort simple paths in a sorted order of their common prefixes. If the element of qact fails
to satisfy the strict prefix the matching, its cursor is shifted to point to the next element in
the stream and the algorithm proceeds to the next cycle.

Compared to TwigStack (i.e., any holistic algorithm which satisfies only the first
and second property in getNext and does not apply CPL relationships), the effect of
TwigStackPrime can be illustrated in the following examples.

Example 6.13. Consider the XML tree T1 of Figure 6.2 and Q1 = a[//x]/y/f. Recall that

TwigStack generated n+3 useless paths. Assume the tree is labelled with range-based

labelling and CPL indexing as in Figure 6.5. Initially, the cursors point at the head

elements as depicted in Figure 6.6. getNext(a) is called since a is the root query node. The

first call of getNext(a) in TwigStack returns a1 because it satisfies the descendant extension

condition, but TwigStackPrime skips a1 since it does not satisfy the CPL relationship that

is CPL of a1 is not divisible by the prime number associated with the tag name y. The

algorithm has to skip n elements with tag x since they are useless to the head element a2.

After this, TwigStackPrime can ensure that a2 has a minimal match and thus is pushed

into the stack of a. Next, a3 is the head element of a, see Figure 6.6b, so that elements

corresponding to query nodes x and y are pushed into their stacks to form partial paths

with a2. After n+3 iteration, a3 is discarded from the stream because it does not satisfy the

first and second property since y2 is removed from its stream. For instance, CPL(y2)→ 3
mod tagPrime(f)→ 7 is not equal to zero. The algorithm terminates after performing

n+5 recursive calls of getNext(a).

Example 6.14. Consider the XML tree of Figure 6.7a and the TPQ Q1 = a[//x]/y/f in Figure

6.2. The head elements in their streams are Ca→ a1, Cx→ x1, Cy→ y1 and C f → f1. The

first call of getNext() inside the main algorithm will return a→ a1 because it has A-D

relationship with all head elements and satisfies the CPL relationship with x and y, and its

descendant y→ y1 also satisfies the child and descendant extension with respect to f, Figure

6.7 shows the stack encoding during the query processing of Q1 and the output arrays

corresponding to the individual root-to-leaf paths. However, TwigStackPrime generates

the useless paths (a1,x1) and (a1,x2) because the element a1 has a possible extension as

in definition 6.11 and after scanning its child element y2, it is found that it does not satisfy

the three properties. There are only two merge-able paths which consist the final match.

These paths are (a2,x2),(a2,y1, f1).

It can be seen from the above examples, the getNext proposed in this thesis can use the
CPL relationship to eliminate irrelevant elements from the parent streams as was illustrated
in Example 6.13. Due to the restricted access mechanism, TwigStackPrime may produce
useless paths as it considers only the CPL relationship between two streams. Example 6.14
illustrates some cases when TwigStackPrime can not guarantee that all path solutions will
contribute to the final result. However, TwigStackPrime is still superior to TwigStack in

6.4 Holistic Twig Matching Algorithm with Child Prime Label 131

Ta a1 ...

Tx x1 ...

Ty y1 ...

Tf f1 ...
S f

Sy

Sa
Sx

(a) Stack encoding of TwigStackPrime at the first cycle.

Ta a3 ...

Tx xn+1 ...

Ty y1 ...

Tf f1 ...
S f

Sy

Sa

a2

Sx

(b) Stack encoding at the n cycle.

Ta ⊥ ...

Tx xn+2 ...

Ty ⊥ ...

Tf f2 ...
S f

f1
Sy

y1
Sa

a2

Sx

xn+1

→ is used to represent partial paths.

(c) Stack encoding at the n+3 cycle.

Figure 6.6: Illustration to TwigStackPrime processing of Q1 on T1 in Figure 6.2.

e

a1

x1 a2

x2 y1

f1

y2

a4

x4 y3

(a) an XML tree T2.

Figure 6.7: An example to illustrate a case when useless paths may be produced.

132 Top-Down Approach based on Child Prime Labels

Algorithm 6: TwigStackPrime
Input: TPQ Q

1 while ¬end(getRoot(Q)) do
2 qact = getNext(getRoot(Q)) // see Algorithm 5
3 if ¬ isRoot(qact) then
4 cleanStack(qact , parent(qact))
5 if isRoot(qact) ∨ ¬ empty(Sparent(qact)) then
6 cleanStack(qact ,qact)
7 moveToStack(qact)
8 if isLeaf(qact) then
9 outPathSolution(qact) // Blocked solutions as introduced in [40]

10 advance(qact)
11 MergeAllPathSolutions() // Phase 2 as introduced in [40]
12 Procedure cleanStack(Query node qact ,Query node q):
13 // pop any element in Sq which is not the ancestor of getElement(qact)
14 while ¬empty(Sq)∧getEnd(top(Sq))< getStart(getElement(qact)) do
15 pop(Sq)

16 Procedure moveToStack(Query node q):
17 // p is a pointer to the top parent stack if q is the root p is null
18 // p = top(Sparent(q))
19 push(Cq, p) to Sq

20 Function end(Query node q):
return :∀ni ∈ subtree(q) : isLea f (ni) ∧ eo f (Cni)

a//x:

(a1,x1)

a/y/f:

S f
Sy

Sa

a1

a2

Sx

x1

(a) Stack encoding before x2 is pushed into Sx.

a//x:

(a1,x1)

(a1,x2)

(a2,x2)

a/y/f:

(a2,y1, f1)

S f

f1
Sy

y1
Sa

a1

a2

Sx

x2

(b) Stack encoding when f1 is pushed into S f .

Figure 6.8: Illustration to TwigStackPrime processing of Q1 on T2 in Figure 6.7a.

6.4 Holistic Twig Matching Algorithm with Child Prime Label 133

terms of the number of intermediate single paths as it will be shown in the experimental
section 6.5.

Before proceeding to show the correctness of TwigStackPrime algorithm, it is important
to compare it with TwigStackList [144] which uses a simple buffering technique to cache
some elements from the parent streams in order to resolve blocked head elements as
described in Case 3 of Table 6.2. The difference between the algorithms is presented in the
following example.

Example 6.15. Consider the XML tree T3 of Figure 6.9a, and a TPQ Q2 = a[//x]//y/f in

Figure 6.9b. The first call of getNext(a) in TwigStackList returns a1 but before that the

algorithm buffers all elements with tag name y which are ancestors of the head elements

of query node f to buffering list. The buffering list contains elements from y1 to yn and

the cursor pointed to yn because the head element of query node f is its immediate child

element, thus, Cy→ yn. TwigStackList returns elements yn and f1 before y1 in order to

move the cursor the next element of query node f. Therefore, TwigStackList produces path

solutions which are not ordered in a sorted order of their common prefixes as (a1,yn, f1)

precedes (a1,y1, f2) which is incorrect according to the definition of twig matching result

(see Definition 4.11). Unlike TwigStackList, TwigStackPrime doe not violate the document

order. The first call of getNext(a) returns a1 and the second iteration return y1 because it

has a child and descendant extension. Thus, the path solutions generated are (a1,y1, f2)

followed by (a1,yn, f1) which can be merged with the path (a1,x1) to compute matches to

Q2. Finally, the individual root-to-leaf paths are merged together based on their common

branching query node a to form the matches to Q2. Therefore, the query result consists of

two matches (a1,x1,y1, f2) and (a1,x1,yn, f1).

Example 6.15 demonstrates the effect of TwigStackPrime in filtering useless elements
without consuming extra storage and manipulating node processing order, see Section
4.2.3. The next section presents definitions and theorems to prove the correctness of
TwigStackPrime.

6.4.2 Analysis of TwigStackPrime

This section shows the correctness of TwigStackPrime and analyses its complexity. The
correctness of TwigStackPrime algorithm can be shown analogously to TwigStack due to
the fact that they both use the same stack mechanism. In other words, the correctness of
Algorithm 6 follows from the correctness of TwigStack [40]. Therefore, if the algorithm
is optimal, the space, time and I/O complexity is the same as shown in TwigStack [40].
Recall that, TwigStack was reported to has a linear worst-case I/O complexity with respect
to the result size when TPQs contain only A-D edges. Since the use of CPL properties in
getNext improves the filtering strategy, this section aims mainly to prove its correctness.

Definition 6.16 (Head element). For each query node q in a TPQ Q, the element indicated

by the cursor Cq is the head element of q.

134 Top-Down Approach based on Child Prime Labels

Definition 6.17 (Child and Descendant Extension). A query node q has the child and

descendant extension if the following properties hold:

• ∀ ni ∈ childrenAD(q), there is an element ei which is the head of Tni and a descendant

of eq which is the head of Tq.

• ∀ ni ∈ childrenPC(q), there is an element eq which is the head of Tq and its CPL

parameter is divisible by tagPrime(ni).

• ∀ ni ∈ children(q), ni must have the child and descendant extension.

The above definitions are fundamental to establish the correctness of the following
lemmas:

Lemma 6.18. For any arbitrary query node q′ which is returned by getNext(q), the

following properties hold:

1. q′ has the child and descendant extension.

2. Either (a) q = q′ or (b) q′ violates the child and descendant extension of the head

element eq of its parent(q′).

Proof. (Induction on the number of child and descendants of q). If q is a leaf query
node, it is returned in Line 2 because it verifies all the properties 1 and 2a in Lemma
6.18. Otherwise, the algorithm recursively gets gi = getNext(ni) for each child of q in
Line 4. If for some i, there is gi ̸= ni, and it is known by inductive hypothesis that gi

verifies the properties 1 and 2b with respect to q, so the algorithm returns gi in Line 6.
Otherwise, by inductive hypothesis that all q’s child nodes satisfy properties 1 and 2a
with their corresponding sub-queries. At getElement(q) (Lines 21-25), getNext advances
from Tq all segments that do not satisfy the divisibility by the product of prime numbers in
childrenPC(q) returned from getQCPL. After that, the algorithm advances from Tq (Lines
9-10) all segments that are beyond the maximum start value of ni ∈ children(q). Then, if
q satisfies properties 1 and 2a, it is returned at Line 12. Otherwise, Line 13 guarantees that
ni ∈ children(q) with the smallest start value satisfies properties 1 and 2b with respect to
start value of q’s head element eq is returned.

Lemma 6.19. Let e1,e2, . . . ,em be a sequence of elements corresponding to the same query

node q and returned by getNext. Then getStart(e1)< getStart(e2)< · · ·< getStart(em)

Proof. Query node q is either leaf or internal. If q is a leaf query node, by Lemma 6.18, q
satisfies properties 1 and 2b since the parent of q denoted as p=parent(q) has start value
greater than the start value of q, such that getStart(q) < getStart(p), getNext returns q at
Line 13, therefore all elements in the stream of q are returned in ascending order of their
start values as they are sorted in their corresponding stream from the definition of tag

streaming scheme. Otherwise, all elements which are skipped at Lines 9-10 of getNext or
Lines 21-25 of getElement(q) are guaranteed not to be part of any child and descendant
extension. By Lemma 6.18, q is returned, then it satisfies properties 1 and 2a, thus all

6.4 Holistic Twig Matching Algorithm with Child Prime Label 135

elements in the stream of q are returned in ascending order of their start values as they
are sorted in their corresponding stream tag streaming scheme. For both cases the lemma
holds.

The lemma above guarantees that when an element of a query node q is returned by
getNext algorithm, there is no element remaining in the stream which has a start value
lower than the start value of the element returned. This shows the difference between
TwigStackPrime and TwigStackList with respect to the element processing order (see
Section 4.2.3) since TwigStackList guarantees this property only for leaf query nodes
while internal query nodes may be returned in an order violating the sorted order of the
streams. Because of this, TwigStackList can not be used to accelerate one-phase holistic
algorithms nor produce a query result conforming to the definition of TPQs (see Definition
4.11) [132, 89].

Lemma 6.20. Suppose getNext(q) returns a query node q′ and q == q′. Then there is no

further solution involving some elements of children(q′) which have start values less than

the start value of the head element of q′.

Proof. Suppose that on contrary, there is a new solution using some already processed
elements of q′ in Sq′ denoted as eSq′ for which getEnd(eSq′) < getStart(q′). Using range-
based property, it will be inferred that all elements in the streams of children(q′) must have
end values less than getEnd(eSq′), thus less than getStart(q′). Since getNext(q) = q′, it is
known by Lemma 6.18 that q′ has child and descendant extension, therefore all elements
in the streams of children(q′) must have start values larger than the start value of the head
element of q′, which is a contradiction.

Lemma 6.21. Suppose getNext(q) returns a query node q′ and q ̸= q′ at either Line 4 or

13 of getNext. Then there is no new solution involving top element of the parent stack of

q′ denoted as p which has end value less than the start value of the head element of q′ or

some elements which are in children(p).

Proof. Suppose that on contrary, there is a new solution using some elements of p =
parent(q′) in Sp denoted as eSp for which getEnd(eSp) < getStart(q′). Using range-based
property, it will be known that all elements from children(p) in some solutions must have
end values less than the end value of eSp , therefore less than the start value of the head
element of q′. Since getNext(q) = q′ and from Line 3 of getNext for each child node ni of
p (including q′), it is getNext(ni) = ni and getStart(q′) ≤ getStart(ni). Using Lemma 6.18,
it will be known that each ni has a child and descendant extension, and thus all elements of
children(ni) have start values greater than getStart(ni), therefore greater than getStart(q′),
which is a contradiction.

The above lemmas guarantee that all elements in the XML tree which are part of some
solutions at subtree rooted at a query node in a TPQ will be returned in a document order
and a stack for each query node is sufficient to keep track of all elements which may

136 Top-Down Approach based on Child Prime Labels

contribute in further path solutions. Lemma 6.20 is very important to verify the use of the
getNext with CPL in the family of one-phase holistic algorithms. Moreover, both prove
also a chain of stacks can be used to represent partial solutions similar to TwigStack that is
the chain of stacks represents paths containing the similar chain of elements as appear in
the XML tree [40]. Finally, each time getNext returns a leaf query node, the corresponding
root-to-leaf path can be outputted using the head element of the query node returned.

Lemma 6.22. For any element eq of a query node q in the stack Sq. If eq is popped from

Sq, then it does not contribute to any further solution.

Proof. In TwigStackPrime, any element is popped off the stack by either the head element
of ni ∈ children(q) or the head element of q. In the case of the head element which
corresponds to children(q), the proof can be obtained using Lemma 6.21. In the case of the
head element has the same query node, the proof of this by using Lemma 6.20.

The above lemma is very important to ensure that each time getNext returns a query
node q and the head element of q does not have the ancestor extension, the algorithm can
safely pop out elements in the parent stack since they do not contribute in any new solution.
If the stack is empty, the current head element of q can be also skipped and the cursor of q

can be advanced to the next element in the stream of q. Using the above lemmas, the next
theorem will be used to prove the correctness of TwigStackPrime and its core function
getNext.

Theorem 6.23. Given a twig pattern query Q and an XML document D, Algorithm

TwigStackPrime correctly returns the answer to Q on D.

Proof. In Algorithm TwigStackPrime, getNext(root) is repeatedly invoked to determine the
next query node to be processed. Using lemma 6.18, it is known that all elements returned
by qact = getNext(root) have the child and descendant extension. If qact ̸= root, Line 4,
the algorithm pops from Sparent(qact) all elements that are not ancestors of the head element
of qact by Lemma 6.21. After that, it is already known qact has a child and descendant
extension so that Line 5 checks whether Sparent(qact) is empty or not. If so, it indicates that
it does not have the ancestor extension, and it can be discarded safely to continue with the
next iteration. Otherwise, the current head element of qact has both the ancestor and child
and descendant extensions which guarantee its participation in at least one root-to-leaf
path. Then, Sqact is cleaned by popping elements which do not contain the head of qact ,
using Lemma 6.22. Then, the item in the stack is used to maintain pointers from itself
to the query root. Finally, if qact is a leaf query node, all possible combinations of single
paths with respect to qact can be computed at Lines 8-9 and stored in the corresponding
output array.

The correctness holds for TPQs with both Ancestor-Descendant and Parent-Child
relationships, it can be inferred that TwigStackPrime is optimal for the case where the
TPQ has Ancestor-Descendant edges or there are only Parent-Child edges connected the

6.5 Experimental Evaluation 137

leaf query nodes. The intuition is simple since The CPL relationship can detect hidden
immediate child elements only in two streams related by P-C relationship due to the
restricted access mechanism. Thus, elements are only stored in the intermediate result if
they have child and descendant extension. Therefore, the merge postprocessing operation
is optimal. However, in the case where P-C axes connects internal query nodes, the
algorithm can not guarantee that the inferred, hidden elements in the streams have child
and descendant extensions by using Lemma 6.18 since they have not been seen as head
elements yet. As a result, the following result can be concluded.

Theorem 6.24. Consider a twig pattern query Q with n query nodes, and only Ancestor-

Descendant edges or there are Parent-Child edges to connect leaf query nodes, and an

XML document D. TwigStackPrime has worst-case I/O and CPU time complexity linear in

the sum of the size of the n input lists and the output list.

Since TwigStackPrime maintains stacks to encode individual root-to-leaf paths, the
worst-case size of any stack in TwigStackPrime is equal the maximum depth in the XML
tree. Due to this fact the following result can be obtained.

Theorem 6.25. Consider a twig pattern query Q with n query nodes, and an XML document

D. The worst-case space complexity of TwigStackPrime is proportional to the longest path

in D times n.

The following section describes the experiments to evaluate the performance of the
algorithm proposed and to test the research hypothesis introduced in Section 4.3.2. It
also presents the experimental results on the performance of three top-down holistic twig
matching algorithm.

6.5 Experimental Evaluation

The main objective of the experiments in this section is to compare the performance and
scalability of TwigStackPrime against other top-down holistic algorithms in the literature.
Moreover, the aim of this section is to present the experimental results of the performance
comparison of top-down twig join algorithms, namely: TwigStackPrime the new algorithm,
proposed in this thesis, based on Child Prime Labels, along with TwigStack [40], which is
the original twig join algorithm, that was reported to have worst case I/O and CPU time
complexity which are linear with respect to the TPQ result size when the TPQ has only A-D
relationships in all edges, and TwigStackList is the first refined version of TwigStack to
handle P-C edges efficiently [144]. TwigStackList was chosen in this experiment because
it utilizes a simple buffering technique to prune irrelevant elements from the streams.
TwigStackList was reported to allow a TPQ processing with a linear I/O and CPU time
complexity with respect to the TPQ result size for a TPQ with A-D relationships in all axes
or P-C edges which exist only in non-branching edges. Recall that from the theoretical

138 Top-Down Approach based on Child Prime Labels

analysis in the above section, TwigStackPrime can guarantee optimal evaluation for a TPQ
with respect to the TPQ result size for a TPQ containing either A-D relationships in all
edges or the only P-C edges connect leaf query nodes with their parents. The research
hypothesis, which was stated in Chapter 4, will be tested using the evaluation process.

6.5.1 Experimental Setting

All the algorithms tested in the experiment were implemented and added to the query
processor discussed in Section 5.2.2.2. The experiments were executed in the platform
described in Section 5.3. Since the intermediate results are stored in memory, output arrays
are implemented using the ArrayList implementation in Java. To ensure comparability, for
each algorithm the ArrayLists used are tuned and initialised using the capacity parameter
with the value of the maximum number of single paths produced by the algorithm for
the purpose of eliminating resizing costs [215]. Although this provision comes at the
expense of memory consumption, it is believed that such a cost may affect the running time
of the algorithm and because of the TwigStack algorithm does not apply a sophisticated
mechanism to control the number of intermediate paths for TPQs with P-C edges, such a
cost may be counted as a speed-up mechanism for the other algorithms [202, 156]. Also
note that outputting path solutions to the secondary storage may lead to a high number of
random disk access with the TwigStack algorithm as was reported in the experiments of
[21, 116].

6.5.1.1 XML Datasets and Queries

The datasets selected are those most frequently used in the literature of XML query
processing [40, 144, 89, 237, 132, 185]. Four datasets were chosen out of the five datasets
utilised in this thesis because the Zipf dataset was designed to investigate the performance
of the one-phase family of holistic algorithms (see Section 5.4.3.2). As a result, the
DBLP (see Section 5.4.1.1), XMark with the scaling factor equal to 1 (see Section 5.4.2.1),
TreeBank (see Section 5.4.1.2) and Random (see Section 5.4.3.1) datasets were used in
the experiments. Table 6.4 presents statistical information about the five datasets labelled
with the original range-based labelling scheme and a combination of range-based and the
CPL index. The XML structured queries for evaluation over these datasets were chosen
specifically to cover the classes of TPQ which fall within or outside the optimal groups of
the comparable algorithms, to put it another way, they include members of the class that
are optimal as well as members of the class that are not optimal. Furthermore, the queries
chosen have different structures and distributions of A-D and P-C edges. The queries over
DBLP, XMark and TreeBank datasets were previously used in the literature, they were
obtained from several existing studies on TPQ processing [40, 144, 22, 89, 54, 18, 188],
while TPQs over the Random dataset were created by replacing randomly the tag names
for the existing queries with the labels of the Random dataset. They were grouped into

6.5 Experimental Evaluation 139

Table 6.4: Datasets statistics
DBLP XMark TreeBank Random Zipf

Rangae-based MB 65.3 35.3 43 69.4 68.33
Rangae-based + CPL MB 70.3 40.1 47.9 74.1 74
△ size MB 5 4.8 4.9 4.7 5.76
Tag Indexing Size KB 0.48 1 3 0.049 0.056
Distinct Tags 40 83 251 6 7
Largest CPLs generated 6.3842417e+18 3.052156e+15 9.123407e+18 30,030 30,030

Table 6.5: Experimental TPQs for DBLP.
Code Category XPath expression Result size
DQ1 B /dblp/inproceedings[//title]//author 88
DQ2 C //www[editor]/url 21
DQ3 A //article[//sup]//title//sub 278
DQ4 - //article[/sup]//title/sub 0

four categories: category A for A-D axes, category B for P-C edges in non-branching axes
and category C for P-C edges related to leaf query nodes. Recall that TwigStack is optimal
for A and TwigStackList is optimal for both A and B, while TwigStackPrime is optimal
for A and C. Category "-" for other classes of queries. For the sake of simplicity, they
were also encoded, the code indicates a combination of dataset and its TPQ. By way of
illustration, TQ2 refers to the second TPQ issued over TreeBank dataset. The properties of
TPQs selected over DBLP are given in Table 6.4. The characteristics of the queries over
XMark are presented in Table 6.6. Tables 6.7 and 6.8 provide an overview of the TPQs
over TreeBank and Random datasets, respectively.

6.5.1.2 Metrics

The experiments compare two variables for each TPQ selected under the three top-down
holistic algorithms. Consequently, the performance comparison of these algorithms was
based on the following metrics:

• Number of intermediate path solutions: the individual root-to-leaf paths generated
by each algorithm and stored in the output arrays.

• Processing time: the running time of an algorithm spent on the whole TPQ includes
both phases (in milliseconds). All TPQs were executed 103 times to increase the
reliability of measures and the first three runs were excluded for cold cache issues.

Table 6.6: Experimental TPQs for XMark.
Code Category XPath expression Result size
XQ1 - /site/closed_auctions/closed_auction[annotation/description/text/keyword]/date 4042
XQ2 A,B and C /site/closed_auctions/closed_auction//keyword 12527
XQ3 - /site/closed_auctions/closed_auction[//keyword]/date 12527
XQ4 - /site/people/person[profile[gender][age]]/name 3243
XQ5 - //item[location][//mailbox//mail//emph]/description//keyword 16956
XQ6 - //people/person[//address/zipcode]/profile/education 3241

140 Top-Down Approach based on Child Prime Labels

a1

y1

y2

yn

f1

f2

x1

(a) an XML
tree T3.

a

x y

f

(b) a twig query
Q1.

Figure 6.9: Illustration to the difference between TwigStackList [144] and TwigStackPrime.

Table 6.7: Experimental TPQs for TreeBank.
Code Category XPath expression Result size
T Q1 A //S[//MD]//ADJ 19
T Q2 - //S/VP/PP[/NP/VBN]/IN 152
T Q3 C //VP[/DT]//PRP_DOLLAR_ 3
T Q4 C //S[/JJ]/NP 5
T Q5 - //S[VP[DT]//NN]/NP 32
T Q6 B and C //S[//VP/IN]//NP 20311
T Q7 - //S/VP/PP[//NP/VBN]/IN 320
T Q8 - //EMPTY/S//NP[/SBAR/WHNP/PP//NN]/_COMMA_ 17
T Q9 - //SINV//NP[/PP//JJR][//S]/NN 4
T Q10 C //NP[/NN]/PP 43942

6.5 Experimental Evaluation 141

Table 6.8: Experimental TPQs for Random.
Code Category XPath expression Result size
RQ1 C //b//e//a[//f][d] 1331
RQ2 C //a//b[//e][c] 18033
RQ3 C //e//a[/b][c] 11216
RQ4 B and C //a[//b/d]//c 59568
RQ5 - //b[d/f]/c[e]/a 377
RQ6 - //c[//b][a]/f 47159
RQ7 - //a[c//e]/f[d] 1906
RQ8 - //d[a//e/f]/c[b] 204
RQ9 C //a[d][c][b][e]//f 3757

The I/O cost for tag indexing files for TwigStackPrime algorithm is not counted
because it is negligible, and the cost to read the tag indexing is constant over a series
of twig pattern queries for each dataset. In other words, it needs only to be read once
for a set of TPQs over a particular dataset.

6.5.2 Experimental Results

This section describes the evaluation of the experimental results. In the first place, all the re-
sults returned from the algorithms were inspected, and were found to be all the same which
verifies the validity of the new approach. To allow precise comparisons, the discussion
of the query performance related to a particular dataset is contained within an individual
subsection. The query performances for TPQs over DBLP, XMark, TreeBank and Random
datasets are evaluated in Sections 6.5.2.1, 6.5.2.2, 6.5.2.3 and 6.5.2.4, respectively. The
scalability tests are discussed in Section 6.5.2.5.

6.5.2.1 DBLP

This section shows the experimental results for TPQs over the DBLP dataset, the TPQs are
given in Table 6.5. This real world dataset is wide and shallow so that it is not common for
TPQs, which contain both ’//’ and ’/’, to make a significant difference in performance for
tightly-structured XML documents. Figure 6.10 depicts the number of intermediate results
generated by each algorithm along with the actual path solutions participating in the query
results.

Even though most of the TPQs tested do not fall within the optimal sets for TwigStack-
List and TwigStackPrime algorithms, they both show optimal processing for all TPQs over
this dataset, while TwigStack generates useless paths in DQ1 and DQ4. Note that DQ4 has
no match in the dataset. Figure 6.11 shows the performance of the algorithms, note that the
query processing time in seconds is to enable a clear representation of wide diversity using
the same plot. As can be seen from the experimental results, TwigStackPrime has the best
performance for most the queries. To compare statistically the overall query performance,
the Kruskal-Wallis test for each TPQ was carried out to see whether there was a difference

142 Top-Down Approach based on Child Prime Labels

Figure 6.10: The number of intermediate single paths generated by each algorithm for the
queries tested over DBLP. "Actual" represents the number of path solutions relevant to the
query results.

Table 6.9: Results for the comparison groups over DBLP.
Query p-value p-value < 0.05
DQ1 2.28E-57 TRUE
DQ2 4.66E-21 TRUE
DQ3 9.61E-40 TRUE
DQ4 1.90E-46 TRUE

in the performance between at least two algorithms or not. Table 6.9 presents the results of
running the Kruskal-Wallis tests over the queries using the significance level 0.05 to test the
null hypothesis. Consequently, it can be seen from the table that the Kruskal-Wallis tests
suggest that there is a significant difference in the performance between two algorithms
at least. Therefore, the Mann-Whitney U test was run for all possible combinations of
pair over the queries tested. For K groups (i.e., the algorithms) and T the number of
TPQs which reject the null hypothesis of the Kruskal-Wallis test, the number of pairwise
comparisons can be expressed using the following formula:

o f U tests =
(k× (k−1))

2
×T (6.2)

Using the formula in 6.2, the number of paired comparisons for this dataset is calculated
as = (3×(3−1))

2 ×4 = 12. The complete results for the paired comparisons can be found
in Appendix A. The overall results are presented in Table 6.10 which summarises the
comparisons to show how many times each algorithm statistically outperformed or was
outperformed by the algorithm it was compared with.

As shown in Table 6.10, TwigStackPrime outperformed the other algorithms in all
TPQs except for DQ3, a possible explanation is that DQ3 falls within the A category where
TwigStack is optimal and TwigStackPrime introduces some run-time overhead in order
to improve its optimality features. Interestingly, TwigStackList and TwigStackPrime are

6.5 Experimental Evaluation 143

Figure 6.11: Query processing time of the algorithms compared for TPQs against DBLP.

Table 6.10: The overall comparisons based on U tests over DBLP. "-" indicates no differ-
ence in the performance.

Algorithm
of comparisons
Faster Slower -

TwigStack 5 3 0
TwigStackList 0 8 0
TwigStackPrime 7 1 0

extensions of TwigStack but it can be observed that TwigStackPrime has significantly
better performance than TwigStackList for DQ3, this could be expected because it does
not need to perform extra investigations with the absence of P-C edges as TwigStackList
has to check its lists every time a new element is scanned and skipped. For DQ3, the query
processing time difference between TwigStack and TwigStackPrime is 1 millisecond and
the effect size is very small r= 0.18, while the difference with TwigStackList is around 15
milliseconds with a large effect size r = 0.86. It should be noted that the effect size tests
suggested moderate to high practical significance with the sole exception of DQ3 between
TwigStack and TwigStackPrime.

To conclude, the number of intermediate results and query processing time for TwigStack-
Prime were better than the other algorithms in most cases. It can be observed that for

144 Top-Down Approach based on Child Prime Labels

TPQs with A-D edges, both TwigStack and TwigstackPrime have very similar perfor-
mance. However, the number of intermediate path solutions produced by TwigStackList
and TwigStackPrime are the same due to the fact that DBLP does not have recursive tags.

6.5.2.2 XMark

In the XMark dataset, the experiment is to test the performance of the algorithms on a
relatively balanced XML tree. The number of intermediate results are shown in Figure
6.12. Similar to the experimental results obtained from DBLP, both TwigStackList and
TwigStackPrime showed optimal performance regardless the classes of TPQs, whereas
TwigStack can not perform efficiently for XQ1. This can be explained that XMark dataset
conforms to a predefined scheme so that the query matches have relatively uniform
distribution. Figure 6.13 depicts query processing overall performance for this experiment.

Figure 6.12: The number of intermediate single paths generated by each algorithm for the
queries tested over XMark. "Actual" represents the number of paths appearing in the final
matches.

To compare the query performance, the experiment hypothesises that there is no
difference in the performance between the algorithms so that the Kruskal-Wallis test
was carried out to test that null hypothesis. Table 6.11 presents an overview of group
comparisons based on Kruskal-Wallis tests. Since Kruskal-Wallis tests suggested that
there is a significant difference in the performance between two algorithms at least for all
TPQs, the total number of paired comparisons using Formula 6.2 is obtained as follows:
= (3×(3−1))

2 ×6 = 18.
Combining the figures from Table 6.12 and the experimental results given in Figure 6.13,

TwigStackPrime showed the best performance in most cases, it performed slightly slower
than TwigStack in two TPQs, namely XQ2 and XQ6. All the algorithms are optimal with
respect to XQ2 because it is a non-predicate query (i.e., simple path expression). The reason
for selecting this query for the experiments was to test the performance of the algorithms
when there are no branching edges. Both TwigStackList and TwigStackPrime have a
similar performance with only 1 millisecond slower than TwigStack. When comparing

6.5 Experimental Evaluation 145

Table 6.11: Results for the comparison groups over XMark dataset.
Query p-value p-value < 0.05
XQ1 4.93E-58 TRUE
XQ2 1.67E-09 TRUE
XQ3 2.01E-23 TRUE
XQ4 3.07E-40 TRUE
XQ5 8.19E-43 TRUE
XQ6 2.28E-14 TRUE

Figure 6.13: Query processing time of the algorithms compared for TPQs against XMark.

Table 6.12: The overall comparisons based on U tests over XMark dataset. "-" indicates no
difference in the performance.

Algorithm
of comparisons

Faster Slower -
TwigStack 5 6 1
TwigStackList 3 6 3
TwigStackPrime 6 2 4

TwigStackPrime with TwigStackList, TwigStackPrime outperformed the latter in three
queries, namely XQ1,XQ4 and XQ5. However, they performed the same for the rest of the

146 Top-Down Approach based on Child Prime Labels

TPQs. With regard to the effect size tests, most of the results suggested medium to large
practical significance. The raw data for the paired comparisons is presented Appendix A.

To conclude, for this type of dataset, TwigStackPrime has a superior performance to
the other techniques in terms of the number of paths generated and query running time.
When subtrees in the dataset have unbalanced structures such as the one examined by XQ1,
TwigStack can not prevent the generation of useless paths. For XQ1, TwigStackPrime ran
two times faster than TwigStack and provided optimal processing.

6.5.2.3 TreeBank

Figure 6.14: The number of intermediate single paths generated by each algorithm for the
queries tested over TreeBank. "Actual" represents the number of paths contributing in the
final matches.

Ten TPQs (see Table 6.7) were issued over TreeBank to test the performance of the
algorithms where the dataset has an extremely irregular structure. Figure 6.14 shows the
number of path solutions produced by each algorithm. Unlike the previous datasets, the
TreeBank dataset is deeply recursion so that the suboptimal evaluation of TwigStack can be
demonstrated here as depicted in the illustrative graph. Due to the gap between TwigStack
and the other algorithms, each TPQ is depicted in an individual plot for the sake of clear
presentation. For example, 5 actual path solutions are the only participants to find matches
to T Q3, the number of simple paths produced by each algorithm is as follow: TwigStack
and TwigStackList generated 10,663 and 11 paths, respectively, while TwigStackPrime
produced 5 paths. It can be seen that TwigStackPrime is the only algorithm which can
process T Q3 and T Q4 efficiently in terms of the number of path solutions because they fall
within the optimal class of TPQs where TwigStackPrime guarantees optimal processing
according to Theorem 6.24. However, in T Q2, no algorithm can guarantee optimal
evaluation, the number of useful path solutions is 302 but the algorithms TwigStack,
TwigStackList and TwigStackPrime produced 2,236, 388 and 443 paths, respectively. For

6.5 Experimental Evaluation 147

Table 6.13: Results for the comparison groups over TreeBank dataset.
Query p-value p-value < 0.05
TQ1 9.69E-49 TRUE
TQ2 2.87E-58 TRUE
TQ3 8.92E-59 TRUE
TQ4 5.42E-54 TRUE
TQ5 1.93E-58 TRUE
TQ6 1.05E-56 TRUE
TQ7 1.86E-58 TRUE
TQ8 1.88E-58 TRUE
TQ9 1.86E-58 TRUE

TQ10 1.18E-65 TRUE

T Q6, TwigStackList and TwigStackPrime performed efficiently by generating only useful
paths of 22,565, whereas the number of intermediate paths in TwigStack was 702,391.
Figure 6.15 shows the execution time of the algorithms over this dataset. In order to the
group comparisons, ten Kruskal-Wallis tests were carried out over TPQs to see whether
there was a difference in the performance between the algorithms or not. All the Kruskal-
Wallis tests suggested that there is a difference in the performance between two algorithms
at least as presented in Table 6.13. Consequently, the paired comparisons based on the
U test of Mann Whitney were calculated. The number of paired comparisons for this
dataset can be obtained using Formula 6.2 as = (3×(3−1))

2 ×10 = 30. The full results of
the pairwise comparisons can be found in Appendix A.

Even though the query T Q1 has only A-D edges, TwigStackPrime was faster than
TwigStackList and slower than TwigStack by only 1 millisecond. The effect size test
suggested that this had a large practical significance with TwigStackList and a moderate
practical significance with TwigStack. As observed, TwigStackPrime does not sacrifice
the performance when a TPQ has all A-D axes as it is the optimal class of TwigStack.
The illustrative graph in Figure 6.15 shows that the only TPQs where TwigStackPrime
was slower compared to the others are T Q3 and T Q9 because they touch very little of
the dataset. In contrast, TwigStackPrime showed a superior performance in avoiding the
storage of unnecessary paths while the cost difference between the compared algorithms is
insignificant.

T Q6 is a very expensive query, it touches a very large portion of the document and
has a great deal of results. The Pairwise comparison based on Manny-Whitney test
between TwigStackPrime and TwigStackList resulted in p− value < .001 which suggests
a significant difference. TwigStackPrime had the best performance and the effect size
suggested a large practical significance as TwigStackList was 610 milliseconds slower than
TwigStackPrime. Table 6.14 provides the interpretation of the results returned from the
paired comparisons between the algorithms.

148 Top-Down Approach based on Child Prime Labels

Figure 6.15: Query processing time of the algorithms compared for TPQs against Tree-
Bank.

Table 6.14: The overall comparisons based on U tests for TreeBank dataset. "-" indicates
no difference in the performance.

Algorithm
of comparisons

Faster Slower -
TwigStack 7 13 0
TwigStackList 10 10 0
TwigStackPrime 13 7 0

To sum up, TwigStackPrime has shown a superior performance to the other algorithms
in terms of the number of intermediate results and query running time for deeply recursive
dataset. For TPQs in category C, TwigStackPrime did not produce useless paths, whereas
the others did. This verifies the analysis of its optimal sets of TPQs as stated in Theorem
6.24. The illustrative graph in Figure 6.15 shows that TwigStackPrime was faster than
TwigStack and TwigStackList in 5 and 6 TPQs, respectively.

6.5.2.4 Random

The Random dataset has a complex structure with six distinct tags. This dataset was created
to test the performance where the XML combines features of DBLP and TreeBank, being

6.5 Experimental Evaluation 149

relatively structured and deeply-recursive at the same time. The number of intermediate
path solutions produced by each algorithm is presented in Figure 6.16

Figure 6.16: The number of intermediate single paths generated by each algorithm for the
queries tested over Random. "Actual" represents the number of paths contributing in the
final matches.

Five queries, namely RQ1, RQ2, RQ3, RQ6 and RQ9, can be processed efficiently
in terms of the number of intermediate single paths generated only by TwigStackPrime
as shown by Figure 6.16. TwigStackList and TwigStackPrime are optimal for RQ4,
while TwigStack produced useless paths. Moreover, TwigStackPrime has shown the
best evaluation for RQ6 even though this query does not fall within its optimal sets of
TPQs. TwigStackPrime produced 72,084 paths, while the number of intermediate paths
in TwigStack and TwigStackList are 201,835 and 98,600 paths, respectively. Figure 6.17
illustrates the query processing time of the algorithms.

To compare the query performance, Kruskal-Wallis test was carried out to test the null
hypothesis for each TPQ tested. The result of group comparisons based on Kruskal-Wallis
test are summarised in Table 6.15. Since the results turned out to reject the null hypothesis
by suggesting that for each TPQ there was a difference in the performance between two
algorithms at least, all the possible paired comparisons were computed using Formula 6.2
as follows: = (3×(3−1))

2 ×9 = 27. The full results detail are shown in Appendix A.
The summary of the paired comparisons based on the Mann Whitney U test is given in

Table 6.16. As reflected in the table, TwigStackPrime was faster than the other algorithms
in most cases, it had a similar performance with TwigStackList for RQ4. For example, to
evaluate RQ6, TwigStackPrime had the best performance, it was roughly twice as fast than
TwigStackList and five time faster than TwigStack, see Figure 6.17.

To conclude, TwigStackPrime outperformed TwigStack in 6 TPQs and was faster
than TwigStackList in 5 TPQs. According to the experimental results, the presence of
P-C edges in the lowest level of the individual paths of TPQs demonstrated the effect of

150 Top-Down Approach based on Child Prime Labels

Figure 6.17: Query processing time of the algorithms compared for TPQs against Random.

Table 6.15: Results for the group comparisons over Random dataset.
Query p-value p-value < 0.05
RQ1 1.93E-58 TRUE
RQ2 1.93E-58 TRUE
RQ3 1.93E-58 TRUE
RQ4 2.38E-44 TRUE
RQ5 2.72E-58 TRUE
RQ6 7.09E-53 TRUE
RQ7 1.17E-54 TRUE
RQ8 1.92E-58 TRUE
RQ9 1.93E-58 TRUE

TwigStackPrime in providing efficient processing. Even the existence of P-C axes at the
top level of TPQs, TwigStackPrime was more efficient than the other techniques. However,
TwigStack had better performance than TwigStackPrime for TPQs with a relatively small
number of intermediate results as an extra operation incurred by TwigStackPrime to
eliminate irrelevant elements, namely RQ1,RQ5 and RQ8. This can be explained that these
TPQs have few occurrences in the dataset as presented in Table 6.8.

6.5 Experimental Evaluation 151

Table 6.16: The overall comparisons based on U tests over Random dataset. "-" indicates
no difference in the performance.

Algorithm
of comparisons

Faster Slower -
TwigStack 6 12 0
TwigStackList 9 8 1
TwigStackPrime 11 6 1

6.5.2.5 Scalability

This section aims to simulate and test the scalability of the new approach. In this experi-
ment, two datasets were used, XMark and Random datasets. Whereas the XMark dataset
is shallow and data oriented, the random collection has a very recursive structure. Five
different versions of XMark were created using the scaling factor from 1 to 5 as explained
in Section 5.4.4. The Random dataset was partitioned into 10 different datasets to evaluate
the scalability of the algorithms over irregular datasets, see Section 5.4.4. In order to make
the experiment more objective, two TPQs have been selected over each category of datasets,
one of them was processed efficiently by TwigStackPrime in the query performance study
while TwigStackPrime had the worst performance for the other one. As a result, XQ1 and
XQ6 were selected for the XMark datasets, and RQ8 and RQ9 were chosen to be issued
over the Random datasets. The results for XQ1 and XQ6 are illustrated in Figure 6.18.
Since TwigStack produced useless paths for XQ1, it did not scale well for this query. It can
be observed that TwigStackList and TwigStackPrime scaled linearly with the increasing
size of the dataset for XQ1. On the other hand, for XQ6, all the algorithms showed the
same performance, they scaled almost linearly with the increasing size of the dataset.

For Random datasets, the scalability results for RQ8 and RQ9 are depicted in Figure
6.19. Both TwigStackList and TwigStackPrime scaled effectively for RQ8 even though
they produced useless paths. In contrast, TwigStack started to increase slightly with the
large datasets compared to the others. This can be explained because increasing the size
of the dataset increases the number of useless paths for TwigStack, hence the processing
time is slower as illustrated in Figure 6.19a. It can be seen from Figure 6.19b that the
performance of TwigStackList and TwigStackPrime presented a linear relationship with
the increasing of the size of the dataset. However, TwigStack had the worst scalability for
RQ9. Since the experiment includes variety of TPQs with different structures, it can be
concluded that TwigStackPrime is more scalable in processing large, scale datasets.

6.5.3 Summary

The experimental results have shown that TwigStackPrime can filter out many irrelevant
elements effectively and it can be observed that the number of path solutions produced
by TwigStackPrime is usually significantly less than that generated by TwigStack. Fur-
thermore, TwigStackPrime has the best performance in comparison to the comparable

152 Top-Down Approach based on Child Prime Labels

(a)

(b)

Figure 6.18: Scalability comparison for XMark datasets.

6.5 Experimental Evaluation 153

(a)

(b)

Figure 6.19: Scalability comparison for Random datasets.

algorithms in most cases. The experiment employed twenty nine TPQs over four datasets to
evaluate the performance and efficiency of TwigStackPrime against the existing algorithms
TwigStack and TwigStackList. According to the experimental results, TwigStackPrime
outperformed TwigStack in 18 TPQs and they achieved similar performance in 1 TPQ.
When compared with TwigStackList, TwigStackPrime was faster in 19 TPQs and there
was no difference in the performance between them in 5 TPQs. Finally, the scalability tests
demonstrated that TwigStackPrime can scale well for large datasets. It should be noted
that only TwigStack and TwigStackPrime compute answers to TPQs in sorted order as
specified in Definition 4.11. In some cases, TwigStackList may produce matches which
are not sorted in the root-to-leaf order.

154 Top-Down Approach based on Child Prime Labels

6.6 Conclusion

This chapter presented a new approach that prunes efficiently irrelevant elements for TPQs
with P-C relationships. It also introduced a novel holistic algorithm which can utilise the
new labelling technique to process TPQs with P-C axes efficiently. Unlike the previous
holistic algorithms, TwigStackPrime takes into considerations the CPL relationships be-
tween elements in the streams, henceforth it generates fewer path solutions for TPQs with
P-C edges. Furthermore, it has been shown analytically that for TPQs with only A-D
edges or P-C relationships related to leaf query nodes, TwigStackPrime can guarantee
optimal evaluation, in other words, all path solutions contribute to the final result. The
overall performance of TwigStackPrime is substantiated in the experiments. In summary,
the experimental results have shown that TwigStackPrime has a superior performance to
the comparable algorithms in terms of the number of intermediate path solutions and query
processing time.

In the chapter that follows, new top-down holistic approaches to process order rela-
tionships and sequence operators based on the CPL relationship will be introduced. The
next chapter describes the procedures and methods used in this thesis to incorporate the
semantics of the order axes into twig patterns.

Chapter 7

Ordered Twig Pattern Matching:
Top-Down Approach

7.1 Introduction

This chapter describes the process for developing a new approach to evaluate XPath
expressions with ordered axes. The difference between processing unordered and ordered
twig patterns was discussed in Chapter 4. In this thesis, the work of [173] will be adapted
to extend conventional twig patterns to capture the semantics of order relationships and
sequence operators introduced in XPath [222] specification.

The purpose of this chapter is to discuss how ordered twig pattern queries (OTPQs)
can be evaluated in a holistic model. It highlights the importance of ordered twig pattern
matching. To process OTPQs naïvely, the existing holistic algorithms, such as TwigStack
and TwigStackPrime, can be used to compute answers to TPQs without ordered constraints,
then merge join operations are performed to guarantee that individual path solutions satisfy
ordered predicates of elements. The main weakness with the naïve approach is that it leads
to unnecessary computations and a large number of irrelevant path solutions. This chapter
provides a systematic way to transfer the path expressions developed, in this thesis (see
Section 4.2.2), to order aware twig patterns. A set of algorithms for holistic order twig
matching is designed. Finally, experiments are conducted to evaluate the scalability and
efficiency of the proposals for ordered twig pattern processing.

The rest of this chapter is organised as follows: Section 7.2 presents the rewriting
rules to transform a standard twig patterns to an ordered twig pattern by incorporating
constraints that capture the meaning of order axes and sequence operators. The new
algorithms to process ordered TPQs are described in Section 7.3. Section 7.4 is dedicated
in the experimental results. The chapter will be concluded in Section 7.5.

156 Ordered Twig Pattern Matching: Top-Down Approach

7.2 Ordered Twig Pattern

There are four ordered axes, namely following, following-sibling, preceding and preceding-

sibling which can express effectively searches satisfying order constraints among elements
of XML trees. These four axes take into consideration both the opening and closing tags
of elements because elements with ordered axes must satisfy the document order and must
not be nested as was explained in Section 4.2.2. In addition to these ordered axes, sequence
operators can be used to express traversals satisfying order which takes into account only
the opening tags of elements. In Chapter 4, three constraints were introduced to capture
the semantics of ordered axes and sequence operators, namely: Left-to-Right (for short
LR) ordering, Sibling Left-to-Right or SLR ordering and Sequence Left-to-Right ordering
(abbreviated as SeqLR). In the context of stored data, the existing approaches, such as
[188, 141, 145, 118, 189] to process TPQs with ordered axes have been unable to capture
the semantics of ordered axes as discussed in Chapter 4.

The representation of XPath expressions with ordered axes as an order aware twig,
in this thesis, is based on the ideas presented in [207, 173]. Generally, preceding and
preceding-sibling axes are converted to their equivalent axes following and following-

sibling, respectively. As a result, LR ordering (see Definition 4.19) will be used to encode
following and preceding axes into the equivalent OTPQ, and SLR ordering (see Definition
4.24) utilised to represent the order constraints of following-sibling and preceding-sibling

axes. The SeqLR ordering will be encoded as an array of nodes associated with the context
node and used during the query processing. For illustration, consider the following path
expression
Q2 = //a[//y]//f[y « f]. In the graphical notation shown in Figure 7.2c, SeqLR ordering
constraint is denoted using a double-headed, dotted arrow from y-node to f-node.

Recall that the Definition 4.28 formalised an ordered twig match addressed in this
research study. When an XPath expression contains a step axis with following-sibling or
preceding-sibling axis relating to the context node with a descendant axis, the structures of
twig patterns may need to be extended to convey the semantics of these axes. In another
way, the relationship between the query node, with following-sibling or preceding-sibling

axis, and its parent query node will be expanded to A-D edges and SLR ordering will be
used to represent the order constraints among the query nodes. In contrast, the work of
[173] expanded the original query by introducing a new wildcard query node to maintain
the sibling relationship among the corresponding sibling query nodes with order relation-
ship. Then the new wild card query node was connected to the ascendant node A-D edge.
For example, consider the path expressions
Q1 = a//x/ f ollowing− sibling :: y and Q2 = a//x/preceding− sibling :: y, the corre-
sponding order aware twigs to represent these expressions are illustrated in Figure 7.1.
The edge between the y-node and its parent a-node is expanded to A-D relationship and
an SLR edge is used to preserve the sibling relationship between x-node and y-node in
Q1. By the same token, SLR edge represents the sibling relationship between y-node and

7.2 Ordered Twig Pattern 157

a

x y

<

(a) OT PQ1.

a

∗

x y

<

(b) OT PQ1
[173].

a

y x

<

(c) OT PQ2.

a

∗

y x

<

(d) OT PQ2
[173].

Figure 7.1: Illustration of ordered TPQs with a following-sibling or preceding-sibling axis
following a query node in A-D edge. The solid arrows indicate SLR ordering. (a) and (c)
represents the novel approach, whereas b and d shows the work of [173].

x-node in Q2. For [173], new *-nodes are added to the queries in order to search for sibling
elements which are descendants of the ascendant node. In the streaming model, the sibling
relationship between two or more elements can not be determined without reading their
common parent elements. Consequently, wildcard nodes can not be eliminated. Since this
research study aims to improve the query processing in the stored model, the indexing
techniques (i.e., labelling scheme) may be used to get rid of wildcard nodes. This novel
approach results in widcard-free queries, therefore the number of structural joins are
reduced.

As was discussed in Chapter 4, the SLR relationships between elements corresponding
to the query nodes with SLR ordering can be computed straight away using the information
of parent elements encoded within the labels of elements. That is, the work of [217, 207]
exploited the information of parent elements to speed up the process of handling sibling
axes in ordered twig queries. Therefore, the labelling scheme proposed in the previous
chapter will be extended by incorporating the parentID which is the start attribute of the
parent element in the original labelling scheme. As a result, each element is encoded a
5-tuple as (start,end,level,parentID,CPL). Otherwise, during the parsing process of path
expressions, the constraints will be used to record the query nodes which have order
relationships and impose sequence operators.

It should be noted that when the root query node in the relative path expression has
ordered axes, the root of the XML document (or the document node) will be augmented to
the ordered twig as the root query node. This is used to avoid the extensions of the twig
to multiple twigs based on sibling axis occurrences. As a result, the cosmic root of the
original XML tree can effectively be used to represent an order aware twig in a single twig
as has been proved in [173]. The following example illustrates the process for transforming
a relative path expression with the root query node imposing ordered axes to an ordered
twig pattern.

Example 7.1. Consider the XML tree in Figure 7.2 and the query

Q1 = a[/ f ollowing :: y][//x]// f . During the parsing operation of the path expression, the

158 Ordered Twig Pattern Matching: Top-Down Approach

e
a1

y1 x1 xn a2

xn+1 y2

f1

a3

y3

f2

xn+2 y4

(a) an XML tree T1.

e

a

x f

y

<

(b) Q1.

a

y f

<

(c) Q2.

Figure 7.2: An example of embedding the document node in the twig to convey the
semantics of ordered axes related to the root query node. The dotted arrow indicate the LR
ordering constraint. The double-head, dotted arrow indicates the SeqLR constraints for Q2.

query node a is encountered and recorded as the root. After stripping off the predicate

[/following::y], it is found that the relationship between the context-node→ a and the

current node→ y is order relationship, so the node y is connected to the parent of the

context node. Since the context node is the root, the root of the document is added as the

root query node to capture the meanings of the ordered axes and assure there is no missing

result. The path expression is transformed into Q1 = e//a[/ f ollowing :: y][//x]// f . The

twig representation is depicted in Figure 7.2.

The work in this thesis is motivated by the following observation. The lack of a compact
and accurate encoding of path expressions with ordered axes and sequence operators
embedded in the conventional twigs hinders algorithms, particularly those for stored data,
from effectively processing ordered axes and sequence operators. It is possible that the
use of the semantics of ordered and sequence relationships in twig-based algorithms can
provide a new solution that makes effective utilization of ordered aware twigs to achieve
efficiency. The following subsections describe the notation and data structures used to
process ordered axes efficiently. Examples will be also presented to illustrate the difference
between order aware TPQ and ordered twig matching in previous approaches.

7.2.1 Notation and Data Structure

Most of the notation and data structures used in this chapter are the same as those in
Section 6.2.1. The only exception is that there are extra, auxiliary functions on nodes of
OTPQ to facilitate the ordered twig matching process. Supported functions are as follows:
rightLR(q) returns all following query nodes of q. rightSLR(q) returns all sibling-following

query nodes of q. rightSeqLR(q) returns all query nodes which have sequence operators
with q. isOrderedBranching(q) returns boolean values to see whether q has children with
ordered axes or sequence operators or not. hasOrderingConstraint(q) returns boolean
values to see whether q has ordering constraints or not. In addition to a stack for each
query node, the approach proposed in this thesis may make use of an extra data structure,
namely lists.

7.2 Ordered Twig Pattern 159

In this chapter, two approaches to process ordered TPQs efficiently are proposed.
The first approach extends the original TwigStackPrime to satisfy the SeqLR ordering
constraints among TPQs with ordered axes or sequence operators by inspecting only head
elements. As a result, the use of stacks in this approach is similar to that in TwigStackPrime
explained in Chapter 6. This will be discussed further in Section 7.3.1. On the other
hand, the second approach makes use of two types of data structure: stack and list. The
basic notion is to buffer elements in main memory to avoid storing irrelevant elements
and producing useless path solutions so that the algorithm can check the three ordering
constraints. Unlike the first approach, this approach can guarantee, to some extent, most of
the elements with ordering constraints match their counterparts. It is likely that reducing
the number of irrelevant elements in the streams will provide efficient output enumeration
in the second phase. In this approach, each query q which has ordered axes or sequence
operators is associated with a list named Lq. The common list operations, such as empty(),

append(), get() and delete(), are used. At every point during computation, elements in list
Lq are sorted in their preorder (i.e., start values).

The next subsection illustrates how the constraints capturing by ordered aware TPQs
differ from the constraints maintained by previous ordered twig matching algorithms such
as PRIX [188] and OrderedTJ [145], OTJFast in [118], TreeMatch in [146] and TwigPos
in [70].

7.2.2 Motivation

This section illustrates how the inability to encode ordered or sequences constraints may
results in returning incomplete results by ordered twig matching algorithms. It also demon-
strates the limitation of the existing holistic ordered twig matching algorithm proposed in
[145] since the other methods adopt their approach in handling order specifications in TPs.
Figure 7.3 shows two conventional ordered twigs and two ordered aware twigs.

e

a1

x1

a2

x2 y1

y2

(a) an XML tree
T2.

a

x y

<

(b) Q1.

a

x y

<

(c) Q′1.

a

x y

<

(d) Q2.

a

x y

<

(e) Q′2.

a

x y

<

(f) Q3.

Figure 7.3: Ordered Twigs and ordered aware Twigs.

Example 7.2. The ordered twig in Figure 7.3b represents the following path

Q1 =//a//x/following::y. The ordered match yields four structural matches in the XML tree

of Figure 7.3a as (a1,x1,y2),(a1,x2,y1),(a1,x2,y2) and (a2,x2,y1). Figure 7.3c shows an

ordered aware twig with LR ordering edge from x-node to y-node which represents the

160 Ordered Twig Pattern Matching: Top-Down Approach

same constraint as the one maintained by ordered twig matching, therefore it returns the

same matches as the final result. However, the constraints imposed by the two twigs in

Figures 7.3d and 7.3f can not be maintained by ordered match of Q1 because they represent

different queries. The twig in Figure 7.3d represents the following query

Q2 = //a//x/following-sibling::y which is looking for x-node which has a sibling y-node, and

the x-node must be a descendant of a-node. The conventional ordered twig for this query is

presented in Figure 7.3e. The structural matches for Q2 in the XML tree by maintaining SLR

ordering constraint from x-node to y-node yields two matches (a1,x1,y2) and (a2,x2,y1),

while the ordered match of Q′2 leads to three matches (a1,x1,y2), (a1,x2,y2) and (a2,x2,y1)

which is incorrect since x2 is not a sibling of the element y2. The last ordered aware twig

depicted in Figure 7.3f is the representation of the following query Q3 = //a[//x]//y[x«y].

This also can not be maintained by the ordered match of Q1 since it is looking for x-

node and y-node which are descendants of a-node, and x-node must precede y-node in

document order only. The structural matches of Q3 in the XML tree yields five matches as

(a1,x1,y1),(a1,x1,y2),(a1,x2,y1),(a1,x2,y2) and (a2,x2,y2).

The above example illustrates that the ordering constraints imposed by ordered aware
twigs can not be maintained by ordered match of the standard twigs. The following example
demonstrates how ordered aware twigs can represent path expressions with ordered axes
or sequence operators in single twigs, instead of extending the conventional twig to a set
of twigs.

Example 7.3. Consider the XML tree in Figure 7.2 and the following query //a[/x]//y/following::f

which is looking for a-node that has child relationship with x-node and descendant re-

lationships with y-node and f-node. The y-node must have following relationship with

f-node. It can be seen from the semantics of this query, there is no ordered relationship

between x-node and its sibling query nodes y-node and f-node. The use of the meanings of

ordered axes imposed by the LR ordering constraint leads to a single twig representing

the query as in Figure 7.4a. The straightforward approach to process this query using

the existing holistic ordered matching algorithms would represent the query in two twigs.

The unordered twig is to represent the simple path //a/x. On the other hand, the ordered

twig is to capture the ordered constraint between y-node and f-node in the sub-query

//a//y/following::f. To find the structural matches of the query, the results of the unordered

and ordered twigs are merged by identifying the common prefixes to compute answers

to the query. The main disadvantages of this approach is that representing the query

using two twigs can lead to a proportional increase in time and space requirement of

query evaluation. In contrast, the ordered aware twig in Figure 7.4a has n matches as

(a1,x1,y1, f1), . . . and (a1,xn,y1, f1).

Before proceeding to introduce the new approaches, it is important to illustrate the
limitation of the previous holistic ordered twig matching algorithm, OrderedTJ [145] which
is an extension to TwigStackList to process ordered queries. The authors introduced a

7.2 Ordered Twig Pattern 161

a

x y f

<

(a) Q4.

a

y f

<

+

a

x

(b) Q′4.

Figure 7.4: Ordered aware Twig in (a) and conventional twig representation of Q4 in (b).

new concept, called ordered children extension (for short OCE) to control the number of
intermediate path solutions in ordered TPQs. That is an element likely involves in ordered
queries if it has OCE as defined in Definition 7.4. The OCE is an extension of children
extension of TwigStackList discussed in Chapter 3.

Definition 7.4 (Ordered children Extension). A query node q has the ordered children

extension if the following properties hold:

• ∀ ni ∈ childrenAD(q), there is an element ei which is the head of Tni which refers to

the tag streaming of query node ni, and a descendant of eq, and ei also has OCE.

• ∀ ni ∈ childrenPC(q), there is an element ei, which is the head of Tni , has a parent

in the path from eq to ei in the corresponding buffering list Lq of query node q, and

ei also has OCE.

• ∀ ni, . . . ,nik−1 ∈ children(q) which are ordered (ni to nk), eni satisfies the following

relationship with eni+1 that is the end value of the head element eni is less than the

start value of the head element eni+1 . eni also has OCE.

In comparison with the the original TwigStackList, the only extension is to check the
ordered constraints imposed by the following relationship among elements corresponding
to branches in ordered TPQs. The next example shows why using the following relationship
as the ordered constraint in OrderedTJ [145] gives problems regardless of whether A-D or
P-C edges are used.

Example 7.5. Consider the XML tree T2 of Figure 7.3a, and the following ordered queries

Q1 = //a//x/following::y and Q2 = //a/x//following::y. If following relationship is embedded

within the filtering phase (i.e., getNext() with OCE), errors may occur. Initially, the head

elements are a→ a1, x→ x1 and y→ y1. For Q1, a1 satisfies the first two properties since

there is no P-C edge in the query as the buffering list is empty. The ordered constraint

imposed between its child nodes is found to be violated by x1 because it does not end

before y1, hence, x1 is discarded. This leads to three matches of Q1 in the XML tree T2 as

(a1,x2,y1), (a1,x2,y2) and (a2,x2,y1). In contrast, the query has four matches in the XML

tree T1 as the OrderedTJ algorithm missed the match (a1,x1,y2). For Q2, a1 is found to

satisfy the OCE as it has descendant relationship with x1 and the element y1 has a parent

a2 in the path from a1 to y1. However, the child elements of a1 do not satisfy the following

relationship which leads to skip the element x1. This results in returning only one match of

Q2 in T2 as (a2,x2,y1) and losing the match - (a1,x1,y2).

162 Ordered Twig Pattern Matching: Top-Down Approach

In the following section, the thesis proposes a new concept to filter out irrelevant
elements form the streams which unlikely contribute in the final results for ordered aware
TPQs. The new approaches can overcome the limitation in the previous approaches and
extends TwigStackPrime, introduced in Chapter 6, to process ordered queries efficiently.
To avoid the generation of useless path solutions and storing irrelevant elements, some
elements may be buffered to the main memory using simple lists.

7.3 Holistic Ordered Twig Matching algorithms

In this section, the thesis introduces new approaches which permit a combination of
different techniques to match ordered TPQs as addressed in Definition 4.28. First it
extends the child and descendant extension used by TwigStackPrime to process unordered
TPQs for the purpose of considering the ordered relationships among head elements
imposed by the generalised case. In ordered aware twigs, there are three additional
constraints to capture the semantics of ordered axes and sequence operators, namely
LR, SLR and SeqLR ordering constraints defined in Definitions 4.19, 4.24 and 4.26,
respectively. It may be observed that the SeqLR relationship is the generalised relationship
for the other constraints. That is, an advanced preorder filtering algorithm should only
take into account the document order among elements with these constraints to avoid
missing potential results. In this thesis, a simple extension to TwigStackPrime is proposed
to handle ordered constraints by examining head elements only. This new approach is
called OTJPrime, Ordered Twig Join Prime, which can skip efficiently elements violating
SeqLR relationships. The other one is OTJPrimeList which can be seen as an extension
to the first one. It uses lists to buffer some elements with ordering constraints to avoid
storing irrelevant elements. Unlike OTJPrime, OTJPrimeList performs strict filtering for
the ordering constraints as specified by the ordered queries.

The next subsections describe the novel approaches and introduce a new approach to
incorporate the data structure proposed in [207], which enables efficiently the checking of
following-sibling relationships in the queries, into the holistic approaches.

7.3.1 Ordered Twig Matching Algorithm: OTJPrime

This section presents a novel top-down holistic algorithm to process OTPQs. The OTJPrime
algorithm extends TwigStackPrime to consider the minimal ordered constraint (i.e., the
SeqLR ordering constraint which is the less restrictive relationship among the others)
which does not affect the query answers. The new algorithm can be seen as alternative to
TwigStackPrime when the queries containing ordered axes and sequence operators.The
majority of the OTJPrime algorithm is the same as the TwigStackPrime. OTJPrime differs
in the use of the SeqLR ordering constraint inside the getNext() function and extending the
second phase to merge paths on their common prefixes as well as check all the ordering
constraints to compute answers to OTPQs.

7.3 Holistic Ordered Twig Matching algorithms 163

As was discussed in Chapter 6, getNext is a core function as the advanced preorder
filtering strategy in twig pattern matching. It is used to identify the next element associated
with the query node to be processed and advanced in its corresponding stream. A key
to the practical performance of getNext in TwigStackPrime is that elements returned
must have a child descendant extension according to Definition 6.17 which can prune
efficiently a considerable number of irrelevant elements. As the basic axes can be checked
using the child and descendant extension, the ordered extension, defined in Definition 7.6,
aims to take into consideration the SeqLR ordering constraint among children of ordered,
branching elements to check whether or not they likely contribute to the final results.

Definition 7.6 (Ordered Extension). A query node q has the ordered extension if the

following properties hold:

• ∀ ni ∈ rightLR(q), there is an element ei which is the head of Tni and has a start

value greater than the start value of eq which is the head of Tq.

• ∀ ni ∈ rightSLR(q), there is an element ei which is the head of Tni and has a start

value greater than the start value of eq which is the head of Tq.

• ∀ ni ∈ rightSeqLR(q), there is an element ei which is the head of Tni and has a start

value greater than the start value of eq which is the head of Tq.

Algorithm 7 shows the general framework for identifying potential elements partic-
ipating in the final results of OTPQs extending getNext(q) proposed in Chapter 6, see
Algorithm 5. In OTJPrime, the branching elements must have their children with ordering
constraints sorted in ascending order of their start values in addition to satisfy A-D and
P-C relationships to be consider for further processing. As a result, getNext(q) returns an
element eq of a query node q ∈ OT PQ with four properties. The first three properties are
inherited from the child and descendant extension while the fourth property aims to check
the ordered extension introduced in this chapter.

i eq has a descendant element eqi in each of the streams corresponding to its child
elements where eqi is the head element of a query node qi = children(q) (this property
is checked in Lines 7-9).

ii each of its child elements satisfies recursively the first property (this property is
checked in Lines 2-4).

iii if q has Parent-Child edge(s) with its child query nodes, then eq has a child eqi in Tqi

for each query node qqi = childrenPC(q) (this property is checked in Lines 21-23 of
getElement function, see Algorithm 5).

iv if q has child nodes with ordering constraints, then each of its child elements with the
ordering constraints has ordered extension according to Definition 7.6. this property
is checked in Lines 13-21).

164 Ordered Twig Pattern Matching: Top-Down Approach

The description of the new extension to the original getNext() is as follows: at Line
13, it checks if the current query node has child nodes with the ordering constraints. if so,
it iterates over its children to assure that they all have the ordered extension. Note that
by getting to Line 13, the current query node q has already satisfied the three properties
of the child and descendant extension. According to Lemma 6.20, all the head elements
corresponding to the child query nodes of q are parts of solution involving q. Since
elements are sorted in their start values, the ordered relationship between two elements is
violated when the following node occurs before its preceding node. Thus, it is useless and
can be discarded safely. At Lines 17, 19 and 21, if a query node pointed by LR, SLR or
SeqLR edges precedes the source of the edge, it is returned to the main algorithm in which
advances the corresponding stream to point to the next element and proceeds to the next
cycle.

Algorithm 7: getNext(q)
Input: q is a query node
Result: a query node in OTPQ which may or may not be q

1 if isLeaf(q) then
return :q

2 foreach node ni in children(q) do
3 gi = getNext(ni)
4 if gi ̸= ni then

return :gi
5 nmax = a query node with the maximum start value ∈ children(q)
6 nmin = a query node with the minimum start value ∈ children(q)
7 while getEnd(getElement(q)) < getStart(getElement(nmax)) do
8 advance(q)
9 if getStart(getElement(q)) > getStart(getElement(nmin)) then

return :nmin
10 else
11 // the following code lines add the ordered extension for child nodes with the

ordering constraints
12 // if an element is found to violate the order of children with ordering constraints,

the algorithm returns it to the main algorithm and it can be discarded safely.
13 if isOrderedBranching(q) then
14 foreach node ni in children(q) do
15 if hasOrderingConstraint(ni) then
16 foreach node m j in rightLR(ni) do
17 if getStart(getElement(ni)) > getStart(getElement(m j)) then

return :m j
18 foreach node m j in rightSLR(ni) do
19 if getStart(getElement(ni)) > getStart(getElement(m j)) then

return :m j
20 foreach node m j in rightSeqLR(ni) do
21 if getStart(getElement(ni)) > getStart(getElement(m j)) then

return :m j
return :q

7.3 Holistic Ordered Twig Matching algorithms 165

It should be noted that in the second phase, path solutions in the output arrays are
merge-joined based on their common branching query nodes and child elements must
satisfy the ordering relationships as specified by the ordered queries. As a result, query
matches are returned as the query result. Note that OTJPrime can process efficiently both
unordered and ordered queries because Lines 13-22 in the getNext function can be skipped
if the OTPQ does not have ordered branching query nodes.

In comparison with TwigStackPrime, which does not take into account the ordered
constraints between child query nodes, the effect of OTJPrime can be illustrated in the
following example.

Example 7.7. Consider the XML tree in Figure 7.5a, and the ordered query

Q1 = // a //y/following::x which is represented in Figure 7.5b. The head elements in their

streams are Ca→ a1, Cy→ y1 and Cx→ x1. For TwigStackPrime, The first call of getNext()

inside the main algorithm will return a→ a1 because it has child and descendant extension.

The cursor of the query node is shifted to the next element a2, therefore all the elements

which are parts of solution involving a1 will be pushed to their corresponding stacks to

generate individual root-to-leaf paths. For the branching element a1, the algorithm will

produce 1 path solution for the simple path //a//y and n+1 path solutions for the path

//a//x. In the same way, a2 has a child and descendant extension, hence it is returned to the

main algorithm. When all elements have been processed, TwigStackPrime will generate

m-1 paths for the simple path //a//y rooted at the element a2, and 1 single path for the

non-predicate path //a//x. In the second phase, the algorithm merges the paths based on

their common ancestor and the single paths ending with the y-node must satisfy the LR

relationship with the corresponding elements in the root-to-leaf paths ending with the

x-node. According to the LR ordering constraint, the following paths (a1,x1), . . . ,(a1,xn)

violate the following relationship with (a1,y1) since it is the only path for their common

ancestor a1. Thus, they can not contribute to the final results. For a2, it has one path ending

with the x-node which occurs before all the paths ending with the y-node, hence all its paths

can not be merge-joined. However, Q1 has only one match in the tree as (a1,y1,xn+1).

Unlike TwigStackPrime, the first call of getNext() inside the main algorithm, OTJPrime

will not return the elements x1, . . . ,xn because they violate the SeqLR relationship with

respect to the element y1 as the head element of the y-node. After n calls of getNext(), the

head elements are Ca→ a1, Cy→ y1 and Cx→ xn+1. The element a1 is found to have the

child and descendant extension and its child query nodes satisfy the ordered extension.

Therefore, the algorithm pushes a1 into its corresponding stack and advances the cursor

to a2. Then, both y1 and xn+1 are pushed into their stacks to generate the individual root-

to-leaf paths. Now, the cursors point to the elements Ca→ a2, Cy→ y2 and Cx→ xn+2.

a2 has the child and descendant extension but xn+2 violates the SeqLR relationship with

y2, therefore it is returned by getNext() to be skipped and advance the cursor of x-node

to the next element. Once the cursor of x-node is advanced and points to the empty

label ⊥, OTJPrime terminates the first phase. In the second phase, there are only two

166 Ordered Twig Pattern Matching: Top-Down Approach

path solutions which are merge-joined because they satisfy the LR (i.e., the following)

relationship. It can be observed that the effect of OTJPrime to avoid processing the subtree

rooted at a2 and generating a large number of useless paths was efficient. To sum up, the

straightforward approach using TwigStackPrime produced ((n+2) + m) paths, while the

OTJPrime algorithm generates only two paths which contribute to the final result.

The above example illustrates the effect of the OTJPrime algorithm which considers the
simplest level of ordered relationship among sibling query nodes with ordering constraints.
This novel approach can avoid processing irrelevant elements and the generation of useless
paths. However, this approach has a serious drawback. That is, if the head elements
satisfy the SeqLR relationship but they do not strictly satisfy the ordering relationships as
specified by the ordered queries. Hence, the algorithm may be inefficient. Example 7.8
illustrates this limitation.

e
a1

x1 xn y1 xn+1

a2

xn+2 y2 ym

(a) an XML tree T3.

a

y x

<

(b) Q1.

Figure 7.5: Illustration to ordered extension.

Example 7.8. Consider the XML tree in Figure 7.6, and the ordered query in Figure 7.5b.

Assume the head elements are Ca→ a2, Cy→ y2 and Cx→ xn+2. The algorithm returns

xn+2 In order to skip over it because it occurs before y2 and violates the SeqLR ordering

relationship. In the next cycle, the head elements are Ca→ a2, Cy→ y2 and Cx→ xn+3.

The algorithm returns a2 because it has the child and descendant extension and the head

element y2 precedes xn+3 in document order. Thus, elements which are parts of solution

involving a2 will be pushed to their stacks. Although there is no match of the query in the

subtree rooted at a2, the algorithm fails to avoid the storage of useless paths. This case

demonstrates how the head elements can be ordered but they do not contribute to the final

result.

It can be observed from Examples 7.5 and 7.8 that if the algorithm restricts the
relationship among the head elements, some useful results may be missed as the OrderedTJ
algorithm fails to give sufficient consideration to the hierarchical representation of data
that XML provides [145]. On the other hand, applying a weak ordering restriction by using
the SeqLR relationship may generate a number of useless paths. Accordingly, the next
section introduces a new approach which performs a strict filtering using simple buffering
techniques partially inspired by [207, 144].

7.3 Holistic Ordered Twig Matching algorithms 167

e
a1

x1 xn y1 xn+1

a2

xn+2 y2

xn+3

ym

Figure 7.6: An example of inefficient processing using the ordered extension among head
elements.

7.3.2 Ordered Twig Matching Algorithm: OTJPrimeList

In this section, OTJPrimeList is proposed to overcome the limitations of the OTJPrime
algorithm where many useless paths may be generated. OTJPrimeList exploits the buffering
technique proposed in TwigStackList [144] to store elements with ordering constraints in
order to perform a strict filtering as required by ordered queries. It also can be considered
as a combination of TwigStackList and OTJPrime to improve the efficiency of ordered
twig matching. The OTJPrimeList algorithm introduces two improvements to the previous
TwigStackList and OTJPrime algorithms:

1. irrelevant elements are pruned from their temporary streams if they do not satisfy
the ordering constraints as specified by the ordered queries.

2. elements are returned in a sorted order conforming to the document order.
These improvements are implemented by means of lists so that the algorithm makes multi-
ple scans over elements with ordering constraints if and only if their common ancestor has
the child and descendant extension and the ordered child query nodes have the ordered ex-
tension. The number of scans is bounded by the maximum number of ordering constraints
acquired by sibling query nodes. In addition, OTJPrimeList makes an extension to the
getElement function by considering the first element of the list associated with the ordered
query node as the head element if the list is not empty. Otherwise, the element pointed
to by the cursor is treated as the head element as in OTJPrime. The following example
demonstrates how the novel approach can filter out irrelevant elements from the streams
and in turn improve the efficiency.

Example 7.9. Consider the XML tree T4 and the ordered query Q1 in Figure 7.7. In the first

d cycles of OTJPrime, all elements a1 to ad are pushed into the stack Sa because they have

child and descendant extensions and the element y1 has the ordered extension as y1 ≺ x1.

Therefore, The OTJPrime algorithm produces d× (n+m) path solutions even though

there is no match of the ordered query in the XML tree. On the contrary, OTJPrimeList

firstly assures that the parent query node must satisfy the child and descendant extension

and if it has a child query node with ordering constraints, it has to have the ordered

extension. Hence, the element a1 satisfies the four properties so that all elements in

the Ty and Tx streams which are descendants of a1 are buffered to their lists for further

investigation. Before proceeding to the next iteration by getNext, the algorithm visits all

168 Ordered Twig Pattern Matching: Top-Down Approach

e

a1

ad

y1

x1 xn

ym

(a) an XML tree T4

a

y x

<

(b) Q1

Figure 7.7: Hard case with restricted memory (i.e., the OTJPrime algorithm). It can not
be known whether x1, . . . ,xn are useless before y1 is processed, or whether y1, . . . ,ym are
useless before x1, . . . ,xn are processed.

elements in the Ly and Lx to eliminate useless elements. Since elements are found not

to satisfy the ordered relationship as specified by the query, they are removed from the

lists. Consequently, OTJPrimeList terminates the evaluation before proceeding to the next

cycle because streams of leaf query nodes pointed at the end as cursors are pointed to

the position after the last element in the streams (i.e., no more elements to be processed).

OTJPrimeList does not produce intermediate results for this query. Figure 7.8 presents

instances during the execution of OTJPrimeList for Q1 on the XML tree T4. Note that a1 is

pushed into the stack to avoid the extra filtering process for its descendants with the same

tag, namely a2, . . . ,ad .

The above example provides an overview of how the OTJPrimeList algorithm improves
the filtering strategy of OTJPrime by eliminating useless elements which either violate the
ordering relationships or are not parts of a solution involving their preceding/following
(preceding-sibling/following-sibling, respectively) elements. It can be observed that ele-
ments in the buffering lists might be visited multiple number of times in order to avoid
the generation of useless paths. As a result, the run time complexity for the filtering phase
becomes O(|P|×|F |+ |Input|) where P is the sum of lengths of input lists for query nodes
with ordering constraints and F is the sum of lengths of input lists for query nodes pointed
by ordering constraints, while Input is the sum of the lengths of the remaining input lists
without ordering constraints. However, in most cases, this approach can guarantee linear
enumeration of the outputs and increases the overall performance by avoiding unnecessary
merge joins which are computationally expensive. The effect of this novel approach is
shown in the experimental evaluation presented in Section 7.4. It should be noted that
the algorithm considers only a small part of the streams to be buffered and this can be
performed only once for subtrees of the original XML tree. In addition, the buffering lists
are split for query nodes connected by the SLR edge constraints or below P-C edges with
the SeqLR constraints to enable access usable element matches in ordered TPQs with the
following-sibling and preceding-sibling axes. Therefore, there is one list for each elements’
level in the data tree. Each element can identify the corresponding list by retrieving the

7.3 Holistic Ordered Twig Matching algorithms 169

Ta a1 ... ad ⊥

Tx x1 ... xn ⊥

Ty y1 ... ym ⊥

(a) First call of getNext in-
side OTJPrimeList.

Ta a1 ...

Tx ⊥

Ty ⊥Ly y1 ... ym

Lx x1 ... xn

(b) Buffering elements with ordering constraints by
extraFiltering(a) function.

Ta a2 ...

Tx ⊥

Ty ⊥Ly empty

Lx empty

Sy

Sa

a1

Sx

(c) OTJPrimeList processing of Q1 over T4 of Figure 7.7.

Figure 7.8: Illustration to the extraFiltering function used by OTJPrimeList. (a) and (b)
illustrate the use of temporary streams for query nodes y and x. (c) depicts the status after
filtering the streams.

list of its depth. The new version of the OTJPrimeList is called, OTJPrimeMultiLists
which indicates the utilisation of multi-lists to buffer elements for each query node which
has or is pointed to by the SLR constraints as well as it is below P-C axis and has the
SeqLR constraint. Note that the filtering strategy used by OTJPrimeMultiLists algorithm
is comparable to that used by OTJPrimeList but it is expected to allow efficient handling
of sibling axis. Example 7.10 demonstrates the effect of OTJPrimeMultiLists to avoid
scanning irrelevant elements in the buffering lists.

Example 7.10. Consider the XML tree T5 and the ordered query

Q2 = //a//y/following-sibling::x in Figure 7.9. After OTJPrimeMultiLists ensures that

element a1 satisfies the child and descendant extension as well as y1 ≺ x1, it appends

all elements which are descendants of a1 to their level lists because y-node and x-node

are restricted with the SLR constraint. As illustrated in Figure 7.10, the extra filtering

strategy scans elements in the level split lists of y-node to see whether they satisfy the SLR

relationships with at least one element in the corresponding list of x-node using the level as

a key. To check whether or not y1 contributes to the final result, the algorithm needs to visit

only one element stored in the list of level d+2, namely xn+1. In contrast, OTJPrimeList

has to visit at least n elements before finding that y1 is useful with xn+1. In similar fashion,

y2 matches with xn so that x1, . . . ,xn−1 are removed from the list because they do not

participate in any solution. When the algorithm filters out all irrelevant elements which

170 Ordered Twig Pattern Matching: Top-Down Approach

e

a1

ad

y1

x1 xn−1 y2 xn

ym xn+1

1

Level

2

d +1

d +2

d +3
(a) an XML tree T5

a

y x

<

(b) Q2

Figure 7.9: An example to illustrate the effect of OTJPrimeMultiLists.

are parts of solution involving a1, the multi lists are combined in a single list containing

elements sorted by their start values. Both OTJPrimeList and OTJPrimeMultiLists produce

only path solutions which are merge-joined, therefore the merge join operation is linear

with respect to the number of paths.

Algorithm 8 extends the getNext function used by OTJPrime to filter out elements
which do not contribute to the final result through extra filtering pass at Line 23 as the first
twenty two lines are similar to that in Algorithm 7. It is implemented by cleaning buffering
lists from left to right and in-place overwriting of elements not satisfying the ordering
constraint specified by the ordered queries. The three ordering constraints among elements
corresponding to sibling query nodes are checked thoroughly in the extraFiltering function
shown in Algorithm 9. Firstly, it appends only elements which are descendants of the
current element of query node q by calling the moveToList function (see Algorithm 10)
at the first line. The algorithm identifies two cases where elements are appended to level
split lists. The first case is the existence of a SLR constraint between query nodes so that
elements corresponding to these query nodes are stored in level split lists. The second case
is that two sibling query nodes are connected to their parent query node with P-C axes
and they have the SeqLR constraint. For the second case, the algorithm checks the SeqLR
relationship between sibling elements using their parentID attributes to ensure that they
have a common parent. The getElement function is also extended to maintain the head
element returned depending on whether the list is empty or not. If the list is empty, the
head element is the one pointed to by the cursor. Otherwise, the head element is the first
element in the list stored at index 0. Likewise, elements in the list are shifted by removing
the first element while in the streams, which do not have buffering constraints or have an
empty list, are advanced by moving the cursor forward.

The subsection below shows the correctness of the algorithms proposed. It also analyses
their complexities.

7.3 Holistic Ordered Twig Matching algorithms 171

Ta a1 ... ad ⊥

Tx x1 ... xn+1 ⊥

Ty y1 ... ym ⊥

(a) First call of getNext inside
OTJPrimeMultiLists.

Ta a1 ...

Tx ⊥

Ty ⊥

Ly[d +2] y1 ... ym

Ly[d +3] y2

Lx[d +3] x1 ... xn−1 xn

Lx[d +2] xn+1

useless

(b) Buffering elements with ordering constraints by ex-
traFiltering(a) function.

Ta ad ⊥

Tx ⊥

Ty ⊥Ly y1 y2 ... ym

Lx xn xn+1

Sy

Sa

a1

...

Sx

(c) OTJPrimeMultiLists processing of Q2 over T5 of Figure 7.9.

Figure 7.10: Illustration to extraFiltering function used by OTJPrimeMultiLists.

172 Ordered Twig Pattern Matching: Top-Down Approach

7.3.3 Analysis of Ordered Twig Matching Algorithms

This section presents the correctness of the new algorithms and analyses their complexities.
The correctness of OTJPrime, OTJPrimeList and OTJPrimeMultiLists follows from the
correctness of TwigStackPrime described in Section 6.4.2. The getNext functions used
by these algorithms are extensions to that of TwigStackPrime which takes into account
only A-D and P-C relationships. The new getNext functions assure that the head elements
of query nodes with ordering constraints must have start values less than their following
elements.

Definition 7.11 (Head element). In OTJPrime, for each query node q in a TPQ Q, the

element indicated by the cursor Cq is the head element of q.

Definition 7.12 (Head element). In OTJPrimeList and OTJPrimeMultiLists, for each query

node q in an ordered TPQ Q, if the list Lq is not empty, then the first element of Lq is the

head element of q. Otherwise, the element indicated by the cursor Cq is the head element

of q.

Definition 7.13 (Ordered Child and Descendant Extension). A query node q has the

ordered child and descendant extension if the following properties hold:

• ∀ ni ∈ childrenAD(q), there is an element ei which is the head of Tni and a descendant

of eq which is the head of Tq.

• ∀ ni ∈ childrenPC(q), there is an element eq which is the head of Tq and its CPL

parameter is divisible by tagPrime(ni).

• ∀ ni ∈ children(q), ni must have the ordered child and descendant extension.

• ∀ ni ∈ children(q)∧ hasOrderingConstraints(ni), ni must have the ordered exten-

sion according to Definition 7.6.

The above definitions are essential to establish the correctness of the following lemmas:

Lemma 7.14. Suppose getNext(q) returns a query node q′ which is pointed by one of the

ordering constraints and q ̸= q′ at either Lines 18, 20 or 22 of getNext. Then, there is no

further solution involving some elements of children(parent(q′)) which have start values

greater than the start value of the head element of q′.

Proof. Suppose that on contrary, there is a new solution using some elements in the
streams of children(parent(q′)) which have start values larger than the start value of q′.
Using range-based property, it is known by the SeqLR ordering relationship that the start
value of the following query node must be greater than the start value of the preceding
query node, therefore all elements in the streams of children(q′) must have start values
larger than the start value of the head element of q′, which is a contradiction.

7.3 Holistic Ordered Twig Matching algorithms 173

e

a1

y1 x1 a2

x2 y2

(a) an XML tree T6

a

y x

<

(b) Q3

Figure 7.11: An example to illustrate Lemma 7.14.

Example 7.15. Consider the XML tree T6 and the ordered query

Q3 = //a//x//preceding::y in figure 7.11. The first call of getNext ensures that a1 has the

ordered child and descendant extension so that it is returned and pushed into the stack Sa.

After that, y1 and x1 are pushed into their stacks to produce the path solutions. Then, x2 is

returned because it violates the ordered child and descendant extension of its parent a2.

Henceforth, the next iteration skips a2 because it does not have an element of x-node. After

that, y2 is returned. Finally, OTJPrime produces 3 useful path solutions and 1 useless path.

Q3 has two matches in T6 as (a1,y1,x1) and (a1,y1,x2).

Lemma 7.16. For any arbitrary query node q′ which is returned by getNext(q), the

following properties hold:

1. q′ has the ordered child and descendant extension.

2. Either (a) q = q′ or (b) q′ violates the ordered child and descendant extension of the

head element eq of its parent(q′).

Proof. (Induction on the number of ordered child and descendants of q). If q is a leaf query
node, it is returned in Line 2 because it verifies all the properties 1 and 2 in Lemma 7.16.
Otherwise, the algorithm recursively gets gi = getNext(ni) for each child of q in Line 4. If
for some i, there is gi ̸= ni, it is known by the inductive hypothesis gi verifies the properties
1 and 2b with respect to q, so the algorithm returns gi in Line 6. Otherwise, by inductive
hypothesis that all q’s child nodes satisfy properties 1 and 2a with their corresponding
sub-queries. At getElement(q) (Lines 21-25), getNext advances from Tq all segments that
do not satisfy the divisibility by the product of prime numbers in childrenPC(q) returned
from getQCPL. After that, the algorithm advances from Tq (Lines 9-10) all segments
that are beyond the maximum start value of ni ∈ children(q). Then, if q does not satisfy
properties 1 and 2a, Line 9 guarantees that ni ∈ children(q) with the smallest start value
satisfies properties 1 and 2b with respect to start value of q’s head element eq is returned.
Otherwise, q is checked to see whether or not it has child query nodes with ordering
constraints at Line 13. If q is found to be an ordered, branching query node, the algorithm
compares start values for each child of q with ordering constraints against their following
elements at Lines 14-22. If for some j, there is m j ≺ ni, and it is known by inductive
hypothesis that m j verifies the properties 1 and 2b with respect to q, hence the algorithm
returns m j in Lines 18, 20 and 22. Otherwise, it is known by inductive hypothesis that

174 Ordered Twig Pattern Matching: Top-Down Approach

all q’s child nodes satisfy properties 1 and 2a with their corresponding sub-queries and
following elements. After that q is returned.

The above lemmas guarantee that each time getNext returns a query node q and the
head element of q does not have the ancestor extension, the current head element of q can
be skipped and the cursor of q can be advanced to the next element in the stream of q.
Using the above lemmas and lemmas introduced in Section 6.4.2, the next theorem will be
used to prove the correctness of OTJPrime, OTJPrimeList and OTJPrimeMultiLists and
their core functions getNext.

Theorem 7.17. Given an ordered twig pattern query Q and an XML document D, Algo-

rithms OTJPrime, OTJPrimeList and OTJPrimeMultiLists correctly return answer to Q on

D.

Proof. In Algorithms OTJPrime, OTJPrimeList and OTJPrimeMultiLists, getNext(root) is
repeatedly invoked to determine the next query node to be processed. Using Lemma 7.16,
it is known that all elements returned by qact = getNext(root) have either the ordered child
and descendant extension or violated the ordered child and descendant extensions of their
parents. If qact ̸= root, Line 4, the algorithm pops from Sparent(qact) all elements that are not
ancestors of the head element of qact by Lemma 6.21. In addition, it is already known qact

has an ordered child and descendant extension so that Line 5 checks whether Sparent(qact) is
empty or not. If so, it indicates that it does not have the ancestor extension, and it can be
discarded safely to continue with the next iteration. Otherwise, the current head element of
qact has both the ancestor and ordered child and descendant extensions which guarantee its
participation in at least one root-to-leaf path. Then, Sqact is cleaned by popping elements
which do not contain the head of qact , using Lemma 6.22. Then, the item in the stack is
used to maintain pointers from itself to the query root. Finally, if qact is a leaf query node,
all possible combinations of single paths with respect to qact can be computed at Lines 8-9
and stored in the corresponding output array. To ensure that answers returned are correct
with respect to the ordered axes and sequence operators, the postprocessing step to merge
path solutions must check the ordering constraints as specified by the ordered query to
avoid generating incorrect matches.

The correctness holds for TPQs with ordering constraints in addition to both Ancestor-
Descendant and Parent-Child relationships. In contrast to top-down unordered twig
matching algorithms, the second phase must merge individual path solutions based on their
common prefixes and elements corresponding to query nodes with ordering constraints that
match their following elements as specified by the ordered query. For example, to evaluate
the ordered query Q4 on the XML tree T7 shown in Figure 7.12. The merge operation must
prevent the path (a1,y2) to be merged with the path (a1,x1) even though the two paths are
useful and contribute to the final result.

Moving on now to consider the run time complexity of the proposal algorithms, it
should be noted that none of the algorithms can guarantee, for a specific class of query,

7.3 Holistic Ordered Twig Matching algorithms 175

e

a1

y1 x1 y2 x2

(a) an XML tree T7

a

y x

<

(b) Q4

Figure 7.12: An example of ordered query Q4. The path solution ending at y1 can merge
with the path solutions ending at x1 and x2, while the path solution involving y2 can only
be merged with x2 to compute answers to Q4 in T7.

linear evaluation with respect to the size of input and output lists since they consider
ordering branching query nodes as the key to filter out irrelevant elements. That is,
elements with ordered axes or sequence operators may be gathered in the input streams
after buffering them to the lists and satisfy the LR or SeqLR ordering relationships with
elements in subtrees rather than their tight subtrees. That is, the buffering lists may contain
elements with ordered axes or sequence operators which are found to satisfy the LR or
SeqLR ordering relationships with elements in subtrees rooted from ancestors which are
not their lowest common ancestor within a deeply recursive XML tree. The OTJPrimeList
and OTJPrimeMultiLists can ensure in some cases that all path solutions produced are
merge-joined but this can not be considered as optimal processing but the worst case
behaviour for the algorithms is O(|P|× |F |+ |Input|) where P is the sum of lengths of
input lists for query nodes with ordering constraints and F is the sum of lengths of input
lists for query nodes pointed to by ordering constraints, while Input is the sum of the
lengths of the remaining input lists without ordering constraints. On the other hand,
the OTJPrime algorithm can process ordered queries less efficiently than the buffering
algorithms with linear performance expected in the filtering phase (i.e., the first phase).
Moreover, the purpose of the OTJPrimeList’s and OTJPrimeMultiLists’s extra filtering
technique are to speed up the query processing. It is likely that this does not bring an
overhead in comparison to the existing approaches to process ordered TPQs.

Similar to TwigStackPrime, the worst case space complexity of the OTJPrime algorithm
is proportional to the longest path in the XML tree times the number of query nodes in
the ordered TPQ. By contrast, the worst case space complexity of the OTJPrimeList
and OTJPrimeMultiLists algorithms are equal to the longest path in the XML tree times
the number of query nodes in the ordered TPQ plus the sum of lengths of input lists
corresponding to query nodes with the ordering constraints.

The next section describes the experiments to test the performance of the top-down
ordered holistic twig join algorithms just described.

176 Ordered Twig Pattern Matching: Top-Down Approach

Algorithm 8: getNext(q)
Input: q is a query node
Result: a query node in TPQ which may or may not be q

1 // Starting from Line 22 in Algorithm 7
2 if isOrderedBranching(q) ∧ (empty(Sq) ∨ ¬ ancestor(Sq.get(0),getElement(q)))

then
3 extraFiltering(q) // see Algorithm 9

return :q
4 Function getQCPL(Query node q):
5 // the prime number assigned to the query node which is the product of its child

query node prime numbers
6 qCPL = 1
7 foreach node ni in childrenPC(q) do
8 qCPL = qCPL × tagPrime(ni)

return :qCPL
9 Function checkCursor(Query node q):

10 if childrenPC(q) > 0 then
11 while ¬ eof(Cq) ∧ getCPL(Cq) % getQCPL(q) ̸= 0 do
12 Cq→Cq +1
13 if eof(Cq) then

return :∞,∞,∞,∞,1 // out of range label
14 else

return :Cq // the element pointed by Cq
15 Procedure advance(Query node q):
16 if ¬ empty(Lq) then
17 Lq.delete(0) // remove the first element
18 else
19 Cq→Cq +1
20 Procedure allElements(Query node q):
21 returns a special iterator to all the elements for a query node pointed by the SLR

ordering edge sorted in their start values.
22 Function getElement(Query node q):
23 if (isRoot(q) ∨ q ∈ childrenAD(parent(q))) then
24 if ¬ empty(Lq) then

return :Lq.get(0)
25 else

return :checkCursor(q)
26 else
27 if ¬ empty(allElements(q)) then

return :allElements(q).get(0)
28 else

return :checkCursor(q)

7.3 Holistic Ordered Twig Matching algorithms 177

Algorithm 9: extraFiltering(q)
Input: q is a query node
Result: perform a strict filtering as specified by the ordered TPQ the ordering

constraints among potential elements
1 moveToList(q) // see Algorithm 10
2 foreach node ni in children(q) do
3 if hasOrderingConstraint(ni) then
4 foreach node mi in rightLR(ni) do
5 i = j = 0
6 while i < Lni .size do
7 if Lni[i] has at least one element satisfying the LR relationship in Lmi

then
8 Lni[j] = Lni[i]
9 j = j + 1

10 i = i + 1
11 resize(Lni ,j)
12 // Scan Lmi to prune elements which are not parts of ordered extensions

for elements in Lni

13 // the only difference between OTJPrimeList and its refined version
OTJPrimeMultiLists is in the following constraints as the level can be used
for the current element

14 foreach node mi in rightSLR(ni) do
15 i = j = 0
16 while i < Lni .size or allElements(ni).size do
17 level = getLevel(Lni[i])
18 if Lni[i] has at least one element satisfying the SLR relationship in

Lmi or Lmi[level] then
19 Lni[j] = Lni[i]
20 j = j + 1
21 i = i + 1
22 resize(Lni ,j)
23 // Scan Lmi or Lmi[level] to prune elements which are not parts of ordered

extensions for elements in Lni

24 foreach node mi in rightSeqLR(ni) do
25 i = j = 0 while i < Lni .size or allElements(ni).size do
26 level = getLevel(Lni[i])
27 if Lni[i] has at least one element satisfying the SeqLR relationship in

Lmi or Lmi[level] then
28 Lni[j] = Lni[i]
29 j = j + 1
30 i = i + 1
31 resize(Lni ,j)
32 // Scan Lmi or Lmi[level] to prune elements which are not parts of ordered

extensions for elements in Lni

178 Ordered Twig Pattern Matching: Top-Down Approach

Algorithm 10: moveToList(q)
Input: q is a query node
Result: fetch some elements from the streams which are dscendants of the current

element corresponding to the query node q
1 foreach node ni in children(q) do
2 if hasOrderingConstraint(ni) then
3 // append all elements in the stream Tni to Lni if they are descendants of the

current element in the stream Tq or the first element in Lq if q has ordering
constraints.

4 while ¬ eof(ni) ∧ ancestor(getElement(q),Cni) do
5 level = getLevel(Cni)
6 // if the current child ni has or is pointed by SLR edge constraint so that it

is appended to level split data structure, otherwise to the regular list.
7 if isPointedBySLR(ni) ∨ (ni ∈ childrenPC(q) ∧ isPointedBySeqLR(ni) ∧

ni ∈ rightSeqLR(mi) ∧ mi ∈ childrenPC(q)) then
8 Lni[level].append(Cni)
9 else

10 Lni .append(Cni)
11 Cni →Cni +1

7.4 Experimental Evaluation 179

7.4 Experimental Evaluation

The following experiments explore the effect of the ordered child and descendant extension,
extra filtering strategy and multi list data structure to process ordered TPQs. Since the
proposed algorithms are the first top-down holistic approaches which can prune useless
elements from the streams prior to the merge join operation, the unordered top-down
holistic algorithms used in the experiments of Chapter 6 are modified to use the straight-
forward postprocessing approach in their second phases. Hence, this section provides the
experimental results of the performance comparison of top-down twig join algorithms,
namely SFTwigStack, SFTwigStackList, SFTwigStackPrime, OTJPrime, OTJPrimeList
and OTJPrimeMultiLists. The first three algorithms use the straightforward post-processing
which is abbreviated as the prefix SF. In contrast, OTJPrime utilises the ordered child and
descendant extension in the filtering phase to minimise the number of useless paths, while
OTJPrimeList and OTJPrimeMultiLists extends OTJPrime by applying an extra filtering
strategy to provide efficient merge join in the second phase. Similar to the experiments in
Chapter 6, all the algorithms tested in the experiments were implemented and added to the
query processor described in Section 5.2.2.2.

XMark, TreeBank and Random datasets were used for the experiments. The bench-
marked datasets used in the experiments and their characteristics are shown in Section
6.5.1.1 of Chapter 6. The ordered TPQs on XMark and TreeBank datasets were obtained
from [145, 118], and then modified to carry the meanings of ordered axes and sequence
operators. On the other hand, the ordered TPQs over the Random dataset were created
by adding the ordered axes and sequence operators to the previously unordered TPQs
used in Section 6.5.1.1. For the sake of simplicity, ordered TPQs were encoded so that
the code indicates the dataset and its ordered TPQs. By way of illustration, OXQ1 refers
to the first ordered TPQ issued over XMark dataset. The characteristics of the ordered
queries over XMark are presented in Figure 7.13. The properties of TPQs selected over
TreeBank are given in Figure 7.16. Figure 7.19 provides an overview of the ordered TPQs
over Random dataset. The experiments compare the algorithms based on metrics similar
to those described in Section 6.5.1.2. Text-based queries are provided in Appendix B.

7.4.1 Experimental Results

The section highlights the evaluation of the experimental results. The first step in this
process was to inspect all the results returned from the algorithms. Since the algorithms
produced the same results, the validity of the new approaches can be verified. By way
of illustration, the discussion of the query performance related to a particular dataset
is presented within an individual subsection. The query performances for OTPQs over
XMark, TreeBank and Random datasets are evaluated in Sections 7.4.1.1, 7.4.1.2 and
7.4.1.3, respectively. The scalability tests are provided in Section 7.4.1.4.

180 Ordered Twig Pattern Matching: Top-Down Approach

mail

text

keyword bold

<

(a) OXQ1

text

bold

keyword

emph

<

(b) OXQ2

description

text parlist

<

(c) OXQ3

listitem

bold text

emph keyword

<

(d) OXQ4

mail

text

keyword bold

<

(e) OXQ5

Code Useful Paths Result size
OXQ1 8611 6581
OXQ2 3806 2516
OXQ3 15821 11955
OXQ4 0 0
OXQ5 16381 16034

(f) Features of OXQs

Figure 7.13: Ordered TPQs tested over XMark dataset. The useful paths are the root-to-leaf
paths which can be merged in order to produce the final result. "Result size" is the matching
result of a twig pattern query.

7.4.1.1 XMark

The number of intermediate path solutions when running the XMark dataset are given in
Figure 7.14. An immediate observation from the figure is that the new approaches are
more efficient in terms of the intermediate results than the straightforward approaches
for all ordered queries on this dataset. OTJPrimeList and OTJPrimeMultiLists showed
a superior performance in avoiding the generation of useless paths whereas OTJPrime
failed in some cases to produce only useful path solutions. However, its performance, in
general, is significantly superior to the straightforward approaches. To assess the query
performance, the Kruskal-Wallis test was carried out to see whether or not there is a
performance difference between two algorithms at least for every ordered TPQ on the
dataset. The results of the groups analysis are set out in Table 7.1. It can be seen from the
data in Table 7.1 that a significant difference between two groups (i.e., algorithms) at least
was evident in all queries.

Table 7.1: Results for the comparison groups on the XMark dataset.
Query p-value p-value < 0.05
OXQ1 4.62E-119 TRUE
OXQ2 1.90E-118 TRUE
OXQ3 1.17E-122 TRUE
OXQ4 1.99E-123 TRUE
OXQ5 2.52E-111 TRUE

7.4 Experimental Evaluation 181

Figure 7.14: The number of intermediate path solutions generated by each algorithm for
the queries tested over XMark. "Actual" represents the number of paths appearing in the
final matches.

Consequently, the number of paired comparisons for this dataset can be obtained
using Formula 6.2 described in Chapter 6 as = (6×(6−1))

2 × 5 = 75. The full results
of the pairwise comparisons can be found in Appendix B. As shown in Figure 7.15,
the new algorithms were significantly faster than the other straightforward approaches
on all OTPQs. According to the results provided in Table 6.12, OTJPrimeList had the
best performance in all cases followed by its refined version OTJPrimeMultiLists. Even
though OTJPrime applied a weak filtering among ordered, sibling query nodes, it had
a superior performance to the straightforward approaches and ran slightly slower than
OTJPrimeList and OTJPrimeMultiLists. Note that OTJPrime has an advantage over the
buffering techniques that it does not consume an extra amount of main memory in the
filtering phase. When OTJPrime compared with the straightforward approaches, it ran in a
range from two to thirty times faster than the algorithms based on the merge operation to
match ordering constraints. The buffering algorithms, in turn, were at least twice fast as
OTJPrime. For each pairwise comparison, the effect size suggested that there is a medium
to large practical significance unless the null hypothesis is rejected, it suggested that there
is low practical significance.

182 Ordered Twig Pattern Matching: Top-Down Approach

Figure 7.15: Query processing time of the algorithms compared for OTPQs against XMark.

Table 7.2: The overall comparisons based on U tests over XMark dataset. "-" indicates no
statistically difference in the performance.

Algorithm
of comparisons

Faster Slower -
SFTwigStack 5 19 1
SFTwigStackList 4 19 2
SFTwigStackPrime 4 20 1
OTJPrime 15 10 0
OTJPrimeList 24 0 1
OTJPMultiLists 20 4 1

To conclude, the experimental results demonstrated that the novel approaches to match
ordered TPQs had a superior performance to the other techniques using postprocessing in
terms of the number of paths generated and query running time. For the XMark dataset, the
extra filtering strategy applied by OTJPrimeList and OTJPrimeMultiLists did not bring any
overhead and they were multiple times faster than the comparable algorithms. For OTPQs
with SLR ordering constraints in OXQ1 and OXQ4, OTJPrimeMultiLists failed to improve
the efficiency of sibling matching when compared with OTJPrimeList. The most obvious
finding to emerge from the analysis is that OTJPrime can be considered to evaluate ordered

7.4 Experimental Evaluation 183

TPQs on dataset of this type when the main memory is limited so that only the elements in
a single path can be loaded. To summarize, OTJPrimeList significantly outperformed in all
queries the other algorithms with the exception of OXQ3 where it had similar performance
to OTJPrimeMultiLists as can be seen in Table 7.2.

7.4.1.2 TreeBank

S

V P

PP

IN NP V BN

<

(a) OT Q1

NP

NN PP

<

(b) OT Q2

V P

DT PRP_DOLLAR_

<

(c) OT Q3

NP

PP NN

<

(d) OT Q4

PP

V P V BN NP

<

(e) OT Q5

PP

V P V BN NP

<

(f) OT Q6

PP

V P V BN NP

<

(g) OT Q7

V P

NP

NNS S

<

(h) OT Q8

S

MD ADJ

<

(i) OT Q9

Code Useful Paths Result size
OT Q1 8448 5220
OT Q2 79941 43780
OT Q3 5 3
OT Q4 308 162
OT Q5 147 84
OT Q6 101 68
OT Q7 6674 6271
OT Q8 12784 9188
OT Q9 35 19

(j) Features of OTQs

Figure 7.16: Ordered TPQs tested over TreeBank dataset. The useful paths are the root-to-
leaf paths which can be merged in order to produce the final result. "Result size" is the
matching result of a twig pattern query.

For the TreeBank dataset, the experiment is designed to test ordered TPQs which have
different structures and combinations of A-D, P-C, LR, SLR and SeqLR edges. These
queries were generated specifically to give a comprehensive comparison of algorithms.
The number of intermediate results produced by each algorithm is depicted in Figure 7.17.
From the illustrative graph in Figure 7.17, it can be seen that by far the best performance is
achieved by the buffering algorithms. However, they produced useless paths in ordered

184 Ordered Twig Pattern Matching: Top-Down Approach

TPQs with LR ordering constraints, namely OT Q1, OT Q5, OT Q7 and OT Q8. These
results are consistent with the theoretical analysis discussed in Section 7.3.3. Despite
the fact that the TreeBank dataset has many recursive tags, OTJPrime surprisingly was
found to perform efficiently in most cases by eliminating a considerable number of useless
single paths. It seems possible that these results are due to the fact that elements in the
TreeBank dataset are ordered in the sequence they occur in the original text so that the
SeqLR ordering constraint can prune irrelevant elements efficiently.

Figure 7.17: The number of intermediate path solutions generated by each algorithm
for the queries tested on the TreeBank dataset. "Actual" represents the number of paths
appearing in the final matches.

To evaluate the query performance, the Kruskal-Wallis tests presented in Table 7.3
revealed that there is a difference in the performance between at least two algorithms.
Accordingly, paired comparisons based on the U test of Mann Whitney were computed. The
number of pairwise comparisons for this dataset can be obtained using Formula 6.2 as =
(6×(6−1))

2 ×9 = 135. The full results of the pairwise comparisons can be found in Appendix
B. The effect of the extra filtering can be seen in OT Q4 in which OTJPrimeList and
OTJPrimeMultiLists consumed less than two seconds while the straightforward approaches
needed more than one thousand seconds. However, the straightforward approaches are
comparable to the new algorithms in queries which examine relatively ordered subtrees

7.4 Experimental Evaluation 185

Table 7.3: Results for the comparison groups on TreeBank dataset.
Query p-value p-value < 0.05
OTQ1 8.56E-114 TRUE
OTQ2 3.33E-127 TRUE
OTQ3 3.93E-121 TRUE
OTQ4 2.21E-125 TRUE
OTQ5 6.17E-124 TRUE
OTQ6 3.01E-118 TRUE
OTQ7 1.03E-115 TRUE
OTQ8 5.18E-120 TRUE
OTQ9 4.98E-19 TRUE

within the original tree such as OT Q1,OT Q3,OT Q6 and OT Q9. The useful number of
path solutions is highlighted in Table 7.16j.

Table 7.4: The overall comparisons based on U tests over TreeBank dataset. "-" indicates
no statistically difference in the performance.

Algorithm
of comparisons

Faster Slower -
SFTwigStack 13 30 2
SFTwigStackList 15 28 2
SFTwigStackPrime 19 25 1
OTJPrime 28 16 1
OTJPrimeList 33 10 2
OTJPMultiLists 22 21 2

To sum up, OTJPrime and OTJPrimeList showed a superior performance to the other
algorithms in terms of the number of intermediate results and query running time for
deeply recursive dataset. From the data in the illustrative graph in Figure 6.15 and Table
7.4, it was observed that OTJPrime and OTJPrimeList were faster than their counterparts
in 28 and 33 cases out of 45 for each algorithm, respectively.

186 Ordered Twig Pattern Matching: Top-Down Approach

Figure 7.18: Query processing time of the algorithms compared for OTPQs on TreeBank.

7.4 Experimental Evaluation 187

b

e

a f d

<

(a) ORQ1

a

c b e

<

(b) ORQ2

a

c

d e b

<

(c) ORQ3

b

a

d f e

<

(d) ORQ4

d

a

f e

c

b

<

(e) ORQ5

a

d c b e f

<

(f) ORQ6

a

c

e

f

d

<

(g) ORQ7

Code Useful paths Result size
ORQ1 2482 2069
ORQ2 3271 1994
ORQ3 3007 1196
ORQ4 4398 2562
ORQ5 806 403
ORQ6 8786 3757
ORQ7 2457 1906

(h) Features of ORQs

Figure 7.19: Ordered TPQs tested over Random dataset. The useful paths are the root-to-
leaf paths which can be merged in order to produce the final result. "Result size" is the
matching result of a twig pattern query.

7.4.1.3 Random

In the Random dataset, the experiment is to evaluate the performance of the algorithms
on a deeply recursive XML tree but less complicated than TreeBank. The number of
intermediate results are shown in Figure 7.20. Similar to the experimental results obtained
from the previous datasets, the buffering approaches produced approximately the same
path solutions as the useful paths. In addition, the OTJPrime algorithm showed a superior
performance in avoiding useless paths despite the complexity of this dataset in terms of
structure. In general, the effect of the new approaches is significantly superior to the
straightforward approaches. Figure 7.21 depicts query processing overall performance for
this experiment. To evaluate the query performance, the Kruskal-Wallis test was carried
out to test the null hypothesis stating that there is no difference in the performance between
the compared algorithms. The results of the groups analysis are presented in Table 7.5.

188 Ordered Twig Pattern Matching: Top-Down Approach

From the data in Table 7.5, every Kruskal-Wallis test revealed that there is a significant
difference between two algorithms at least.

Figure 7.20: The number of intermediate path solutions generated by each algorithm
for the queries tested on the Random dataset. "Actual" represents the number of paths
appearing in the final matches.

Table 7.5: Results for the comparison groups on the Random dataset.
Query p-value p-value < 0.05
ORQ1 2.80E-115 TRUE
ORQ2 2.88E-125 TRUE
ORQ3 1.98E-121 TRUE
ORQ4 3.42E-122 TRUE
ORQ5 1.16E-115 TRUE
ORQ6 3.33E-127 TRUE
ORQ7 3.55E-118 TRUE

7.4 Experimental Evaluation 189

Figure 7.21: Query processing time of the algorithms compared for OTPQs on TreeBank.

Table 7.6: The overall comparisons based on U tests over the Random dataset. "-" indicates
no statistically difference in the performance.

Algorithm
of comparisons

Faster Slower -
SFTwigStack 8 27 0
SFTwigStackList 10 25 0
SFTwigStackPrime 8 27 0
OTJPrime 26 9 0
OTJPrimeList 30 4 1
OTJPMultiLists 22 12 1

190 Ordered Twig Pattern Matching: Top-Down Approach

Accordingly, the total number of paired comparisons for the Random dataset can be
computed using Formula 6.2 described in Chapter 6 as = (6×(6−1))

2 ×7 = 105. The full
results of the pairwise comparisons can be found in Appendix B. The overall results
are provided in Table 7.6 which summarises the comparisons to show how many times
each algorithm statistically was either faster or slower. As depicted in Figure 7.21, the
new algorithms were significantly faster than the other straightforward approaches in
most ORTQs except in ORQ5 where SFTwigStackList had the best performance since the
number of intermediate paths is relatively small. It can be seen from the results provided
in Table 7.6, OTJPrimeList had the best performance in most cases as it was faster in 30
out of 35 cases while in one case it showed similar performance with its refined version
OTJPrimeMultiLists. It was roughly 90, 14 and 22 time faster than the straightforward
approaches in ORQ2,ORQ4 and ORQ6, respectively. Interestingly, OTJPrime was the
second best algorithm in performance for the Random dataset which is similar to that
observed over the TreeBank dataset. when the ordered query has an ordering constraint and
the P-C edge connects leaf query nodes to their parent as in ORQ6, OTJPrimeMultiLists
outperformed OTJPrimeList by avoiding scanning irrelevant levels in the buffering lists.
For every U test, the effect size suggested that there is a medium to large practical
significance. However, when the null hypothesis is rejected, low practical significance was
evident.

To conclude, the experiment is used to explore the effects of the CPL relationship and
ordered extension because the Random dataset combines structural features of two well-
known, real-world datasets, namely DBLP and TreeBank. As a result, the simple buffering
technique, OTJPrimeList, showed a superior performance to the other techniques in terms
of the number of paths generated and query running time. Moreover, it can be observed that
OTJPrime had a better performance than the straightforward algorithms and outperformed
the level split buffering algorithm in four queries, namely ORQ1,ORQ5,ORQ6 and ORQ7.

7.4.1.4 Scalability

The experiment aims to simulate and evaluate the scalability of the new algorithms. Two
datasets were used, XMark and Random datasets. While the XMark dataset is shallow and
data oriented, the random collection has a very recursive structure. Five different versions
of XMark were created using the scaling factor from 1 to 5 as described in Section 5.4.4.
The Random dataset was partitioned into 10 different datasets to evaluate the scalability
of the algorithms over deep, unbalanced trees, see Section 5.4.4. In order to make the
experiment more objective, two ordered TPQs were selected over each scalable file of
datasets, one of them can be processed by the straightforward algorithms efficiently to
some extent when compared to the new approaches. Consequently, OXQ1 and OXQ6

were selected for the XMark datasets, and RQ5 and RQ7 were chosen to be tested on the
Random datasets.

7.4 Experimental Evaluation 191

The results for OXQ1 and OXQ5 are illustrated in Figure 7.22. From the graphs, it can
be observed that the new approaches scaled linearly with the increasing size of the dataset.
In addition, with the increase of the size, the benefits of OTJPrime, OTJPrimeList and
OTJPrimeMultiLists over the straightforward approaches correspondingly increased.

(a)

(b)

Figure 7.22: Scalability comparison for XMark datasets.

For Random datasets, the scalability results for ORQ5 and ORQ7 are depicted in Figure
7.23. Despite the fact that the new approaches generated useless paths for the selected
queries, they scaled effectively and presented a linear relationship with the increasing
of the size of the dataset. For ORQ5, all algorithms showed a sub-linear behaviour for
growing file sizes except TwigStack. From the data in Figure 7.23b, the performance of
the comparable algorithms linearly declined with the increase of the size. Altogether, the
experiment considered different structures of ordered TPQs over two groups of different

192 Ordered Twig Pattern Matching: Top-Down Approach

datasets in terms of structural complexity. It can be, therefore, concluded that the new
ordered twig matching algorithms are more scalable in processing large datasets.

(a)

(b)

Figure 7.23: Scalability comparison for Random datasets.

7.5 Conclusion 193

7.4.2 Summary

The experimental results, in the previous sections, have shown that the new ordered
algorithms have the ability to ensure pruning of unnecessary elements and in turn enhance
runtime efficiency and reduce memory consumption. It can also be observed that the
number of path solutions produced by the new approaches was significantly less than
the paths generated by the straightforward approaches in all ordered queries tested. It
seems possible that the multi list data structure employed by OTJPrimeMultiLists can
improve the performance only in one case where the ordered query has leaf query nodes
with ordering constraints related to their parents with P-C axes. However, in most cases
the extra filtering in OTJPrimeMultiLists had no effect over the original version (i.e.,
OTJPrimeList); it only causes overheads. The OTJPrimeMultiLists algorithm is only
suitable for one class of ordered queries (e.g., ORQ6), while the OTJPrimeList algorithm
can provide better performance for the other classes of ordered queries. When the available
memory can not fit elements with ordering constraints (i.e., the runtime memory usage is
not bounded to the longest path in the XML tree which is usually small), the OTJPrime
algorithm can be used to prune irrelevant elements as they reside in their streams rather
than storing them in the main memory. Finally, the scalability tests demonstrated that the
new approaches can linearly scale with the increase of dataset size. In summary, OTJPrime
and OTJPrimeList algorithms should be used to evaluate ordered TPQs because they have
significant performance advantages over the approaches with postprocessing operation.

7.5 Conclusion

In this chapter, the research study presented new approaches that consider the ordered axes
and sequence operators incorporated into conventional TPQs. This thesis also introduced
novel techniques which can utilise buffering techniques previously proposed in the litera-
ture along with the CPL indexing to process ordered TPQs efficiently. Furthermore, the
experimental results have shown that the new holistic ordered twig matching algorithms
have superior performances to the algorithms with postprocessing in terms of the number
of intermediate path solutions and query running time.

In the next chapter, the TwigStackPrime’s filter strategy will be applied to one-phase
holistic algorithms to improve their practical performances by minimising the number of
elements stored in the intermediate storage. The property of CPL will be added to the
existing advanced preorder filtering functions in the same way it was embedded to the
original getNext algorithm [40].

Chapter 8

Twig Pattern Matching: Bottom-Up
Approach

8.1 Introduction

In the last decade, several twig matching algorithms have been proposed in the literature
[40, 5, 144, 147, 146, 89, 87, 185, 130, 132, 128, 22]. In particular, the one phase holistic
twig matching algorithms have better practical performance than algorithms performed
in two phases such as TwigStack [40] and TwigStackList [144]. This may be due to the
fact that the computationally expensive merge join operation is replaced with a simple
enumeration process to output the desired query result [20]. Advanced preorder algorithms
getNext, getPart and getMatch are used in one phase algorithms to skip irrelevant elements
which are not part of the whole TPQ using weak subtree match filtering (see Definition
4.14). The recursive functions getPart and getMatch are refined versions of the original
getNext to improve practical performance.

The getPart algorithm [89] was designed to return query nodes in strict preorder
instead of a relaxed preorder provided by getNext. It also uses efficient mechanisms
which forward cursors corresponding to both internal and leaf query nodes. Note that
the original getNext is efficient only when leaf query nodes are selective because it uses
Case 1 with respect to the binary structural relationship, A-D (see Table 6.1 of Chapter
6) to forward cursors of internal query nodes efficiently. In other words, the getNext

algorithm skips elements conforming to Case 1 of Table 6.1 whereas the getPart algorithm
discards elements conforming to Case 1, 3 and 4 of Table 6.1 (Case 2 is the matching case).
The getMatch algorithm extends getPart to avoid redundant computations by skipping
unnecessary recursive calls. That is, if the internal query node was checked in the previous
match, there is no need to recompute the subtree rooted from it since all head elements are
guaranteed to be part of its solution. However, these advanced preorder algorithms provide
a weak subtree match filtering and for optimal enumeration strict subtree match filtering
is required [89, 22]. Therefore, a level split data structure was proposed to enable access
to useful child elements below P-C edges and perform strict subtree match checking in

196 Twig Pattern Matching: Bottom-Up Approach

bottom-up holistic twig matching algorithms such as TJStrictPre [89] and GTPStack [22].
As was discussed in Chapter 4, a combination of an advanced preorder function and level
split data structure can not filter out leaf query nodes effectively when TPQs with a mix of
P-C and A-D edges are processed.

In this chapter, the research study proposes a new solution to avoid unnecessary stack
operations used respectively in the TJStrictPre and GTPStack algorithms. The new solution
can skip useless elements efficiently as it utilises the Child Prime Label approach devised
in Chapter 6. This chapter presents a set of one phase holistic algorithms based on the
Child Prime Label approach. The one phase algorithm, TwigPrime is proposed in this
thesis to extend TwigFast [132] and TJStrictPre [89] algorithms since they were reported
to have the best practical performance among one phase algorithms [89, 88]. An extensive
set of experiments is conducted to evaluate the performance, scalability and efficiency of
the new bottom-up holistic twig matching algorithms.

The rest of this chapter is structured as follows. Section 8.2 covers some preliminaries
including the notation and data structures in one phase holistic algorithms and the limita-
tions of the state-of-the-art bottom-up algorithms. The development of the new algorithm,
TwigPrime will be presented in Section 8.3.1. Section 8.4 describes the experimental
evaluation and reports the performance comparison between the algorithms. Finally, the
chapter will be concluded in Section 8.5.

8.2 Preliminaries

8.2.1 Notation and Data Structure

Most of the notation and data structures used in this chapter are the same as those in
Section 7.2.1. In the one phase algorithms, there is one list Ln for each query node n in a
TPQ. The only exception is that elements are stored in the intermediate lists (i.e., buffering
lists in OTJPrimeList and OTJPrimeMultiLists algorithms) as objects which contain the
following information for each element: its label, pairs of intervals for each child query
nodes to record positions of children or descendants in their corresponding lists. In order
to avoid the use of stacks to control useless elements, each object has two pointers to
simulate the layout of nested elements stored in a stack similar to that in TwigStack and
TwigStackPrime algorithms explained in Chapter 6. In other words, one pointer represents
the element holding the top position in the stack while the second pointer points to the
bottom element of the stack. It is thought that the overhead of maintaining pointers is
negligible in comparison with the pushing and popping of elements into and out their
stacks [132]. The intermediate lists are used to store the final solutions. For each query
node, there is a list of elements. Each element en in the list Ln has, for each child of n, pairs
of start and end pointers pointing to the start and end positions of child and descendant
intervals. Start values are updated as elements are processed in preorder while end values
are recorded as elements are found not to contribute to any new solution.

8.2 Preliminaries 197

e

a1

a2

y1 x1

x2 y2

a3

y3 x3

(a) an XML tree T1

a

y x
(b) Q1

Figure 8.1: An example to illustrate the child and descendant intervals in bottom-up holistic
algorithms.

La a1 a2 a3

Ly y1 y2 y3 Lx[3] x2 x3

Lx[4] x1

(a) Level split lists approach

La a1 a2 a3

Ly y1 y2 y3 Lx x1 x2 x3

(b) Simple lists approach

Figure 8.2: Illustration to child and descendant intervals using a level split and simple lists.

Example 8.1. Consider the XML tree of Figure 8.1 and the query Q1 = //a[//y]/x. The

intermediate storage containing the final solutions with child and descendant intervals

is depicted in Figure 8.2a. For each element in La, its child x-elements and descendant

y-elements can be arranged within minimal intervals. For instance, all y-descendants

of a-element a1 fall into its interval as a1starty = 1 and a1endy = 2 so that only relevant

y-elements y1 and y2 are accessed. Similarly, child x-element of a1, namely x1 can be

scanned efficiently as a1startx = 1 and a1endx = 1 in the relevant level split list which

contains x-elements hierarchically nested one level down a1 (i.e., at level 3 by Lx[3][1]).
It can be seen from this example, the use of level split lists avoids unnecessary scan of

irrelevant elements when enumerating over intermediate lists to output the query results.

This due to the overlap of descendants when simple lists are used as shown in Figure 8.2b.

With the simple approach introduced in [132], a1 is associated with x1 despite the fact that

x1 does not satisfy the P-C relationship with a1. Eventually, the enumeration algorithm

produces matches (a1,y1,x2),(a1,y2x2),(a2,y1,x1) followed by (a3,y3,x3).

The following section will discuss the limitations of the up-to-date bottom-up matching
algorithms with respect to P-C edges in TPQs. It will also show the importance of
strict matching checks in order to guarantee optimal evaluation and enumeration. Simple
examples will be presented to demonstrate the potential benefits of using the CPL approach
in bottom-up matching algorithms.

198 Twig Pattern Matching: Bottom-Up Approach

8.2.2 Motivations

In this section, the limitations of the state-of-the-art one phase holistic algorithms are
addressed in order to improve practical performance. The original TwigFast algorithm was
reported [88] to have the best practical performance. The main disadvantage of TwigFast
is that it implements only a weak subtree match filtering that inherits from the use of an
advanced preorder filtering function, getNext of TwigStack [40]. Since a strict filtering is
required to provide optimal evaluation, the TJStrictPre algorithm [89] was proposed to
extend TwigFast by implementing both strict prefix path and subtree filtering. The prefix
path filtering is implemented by means of a chain of stacks similar to that in TwigStack
because the use of level split data structure may cause random access if it is implemented
naïvely. Furthermore, the strict subtree filtering is performed by using level split lists
through extra filtering passes over lists corresponding to inner query nodes. The work of
[22] devised a new algorithm, GTPStack which improves TJStrictPre by avoiding the extra
filtering passes over the intermediate lists and unnecessary recursive calls of advanced
preorder filtering functions. However, these algorithms suffer from a considerable number
of useless elements appended to the intermediate lists since they are based on an advanced
preorder filtering applying a weak subtree match filtering introduced in TwigStack [40].
It is possible that proposing a new solution to avoid stack operations and skip useless
elements using the Child Prime Label approach [11] may improve the overall performance.
The following example illustrates how the previous algorithms process TPQs using a
combination of preorder and postorder filtering with and without post-processing filtering
passes.

e

a1

y1 yn

a2

yn+1

x1

a3

a4

yn+2 x2

1

Level

2

3

4

5

6

7

(a) an XML tree T2

a

y x
(b) Q1

Figure 8.3: Illustration of TJStrictPre and GTPStack algorithms using the level split
approach.

Example 8.2. Consider running TJStrictPre to process the query Q1 = //a[//y]/x against

the XML tree T2 of Figure 8.3. Initially, the algorithm associates the x-node with level

8.2 Preliminaries 199

split lists in order to avoid the overlap of descendants and provide optimal enumeration.

The TJStrictPre algorithm in contrast to TwigFast uses one stack Sqi for each query node

qi to enable strict prefix path filtering. That is, the current query node is used to clean

the closest ancestor stack by popping off non-contained elements (i.e., reference objects

in the TJStrictPre algorithm to avoid significant cost incurred from removing useless

elements). From the example in Figure 8.4, elements a1 to a3 are useless because they fail

subtree filtering with respect to x-node after checking their corresponding level split lists

when streams reach the end after reading x2 in Figure 8.4c. However, The TJStrictPre

algorithm stores them in the intermediate list of query node a. The TJStrictPre algorithm

relies on extra pass filtering for intermediate lists corresponding to inner query nodes

to perform subtree filtering checks in order to provide optimal enumeration as shown in

Figure 8.4d. Elements a1 to a3 are removed from La since they do not have proper child

x-elements in Lx[3], Lx[5] and Lx[6], respectively. It should be noted that x1 is not added to

the intermediate storage of x-node because it fails strict prefix path matching with a2 as the

top element of Sa. With respect to the GTPStack algorithm, Figure 8.5 depicts operations

of a combination of preorder and postorder checks during the query processing of Q1 over

the XML tree T2 in Figure 8.3 by the GTPStack algorithm. Compared with the TJStrictPre

algorithm, the GTPStack algorithm does not append elements to the intermediate storage

without performing strict subtree checks. Elements from a1 to a4 are nested in Sa and when

streams reach the end, only a4 is stored in the intermediate storage because a1 to a3 do

not satisfy strict subtree checks. To avoid storing unordered elements in the intermediate

storage because of the relaxed pop order used by the GTPStack algorithm as described

in Chapter 4 (see Section 4.2.3); a linked list is used as the main intermediate storage

structure instead of a dynamic array. As a result, each item in a stack is represented with a

pair (prev:next) to enable concatenation of elements according to the document order in a

constant time. Figure 8.5c illustrates this idea when yn is appended to the intermediate

storage after its descendants yn+1 and yn+2. This shows how GTPStack avoids producing a

post-order list of elements for each query node as in TwigList by using a list concatenation

even though Arrays have better cache locality as compared to linked lists.

However, all the previously mentioned algorithms suffer from some serious drawbacks.
A shortcoming of both TJStrictPre and GTPStack is that they store irrelevant elements
in the intermediate storage. One of the limitations with TJStrictPre is that it relies on
extra filtering pass to avoid pushing many irrelevant elements and guarantee linear output
enumeration with respect to the result size. A serious weakness with this GTPStack,
however, is that it focuses on enabling combined filtering checks before storing elements in
the intermediate storage achieved by a list concatenation which may occasionally result in
performance degradation. A possible explanation for this might be that a positional access
which is excessively performed during the output enumeration requires O(n) in a linked list
and O(1) in a dynamic array where n is the number of elements stored [88, 22, 153, 215].

200 Twig Pattern Matching: Bottom-Up Approach

The next section presents a new one phase holistic twig matching algorithm which
combines the efficient selection of useful elements for TPQs with a mix of P-C and A-D
edges introduced in Chapter 6 and the level split data structure for storing intermediate
results without using stacks in order to enable strict prefix checks. In addition, the CPL
approach will be introduced to the advanced preorder filtering functions used by the
TJStrictPre and GTPStack algorithms, namely getPart and getMatch, respectively, in the
same way that getNext of TwigStack was augmented with the CPL approach.

8.2 Preliminaries 201

Ta a2 . . .

Ty yn+1 . . .

Tx x1 . . .

La a1

Ly y1 ... yn Lx[3]

Sy

yn Sa

a1

Sx

(a) When yn has been returned by the filtering function.

Ta a3 . . .

Ty yn+2 . . .

Tx x2 . . .

La a1 a2

Ly y1 ... yn yn+1 Lx[3]

Lx[5]

Sy

yn

yn+1

Sa

a1

a2

Sx

(b) After x1 has failed the strict prefix matching.

Ta ⊥

Ty ⊥

Tx ⊥

La a1 a2 a3 a4

Ly y1 ... yn yn+1 yn+2 Lx[3]

Lx[5]

Lx[6]

Lx[7] x2

Sy

yn

yn+2

Sa

a1

a2

a3

a4

Sx

x2

(c) After processing x2 and filtering phase is terminated.

La a4

Ly y1 ... yn yn+1 yn+2 Lx[7] x2

(d) Extra pass filtering over the list of a-elements to pro-
vide optimal enumeration.

Figure 8.4: Illustration of TJStrictPre evaluating Q1 on T2 of Figure 8.3.

202 Twig Pattern Matching: Bottom-Up Approach

Ta ⊥

Ty ⊥

Tx ⊥

La

Ly y1 ... yn+1 Lx[3]

Lx[5]

Lx[6]

Lx[7]
Sy

yn

yn+2

Sa

a1

a2

a3

a4

Sx

x2

poproot(∞,∞,∞)

(a) After processing x2 and filtering phase is terminated.

La a4

Ly y1 ... yn+1 yn+2 Lx[3]

Lx[5]

Lx[6]

Lx[7] x2

Sy

yn Sa

a1

a2

a3

Sx

poproot(∞,∞,∞)

(b) When a4 and all its descendants are poped out from their stacks.

La a4

Ly y1 ... yn+1 yn+2

yn

Lx[7] x2

(c) An example to illustrate the use of linked lists in the
GTPStack algorithm.

La a4

Ly y1 ... yn yn+1 yn+2 Lx[7] x2

(d) The intermediate storage prior to the output enumera-
tion.

Figure 8.5: Illustration of GTPStack evaluating Q1 on T2 of Figure 8.3.

8.3 Bottom-Up Twig Matching Algorithm with Child Prime Label 203

8.3 Bottom-Up Twig Matching Algorithm with Child Prime
Label

In this section, the thesis introduces a set of new bottom-up holistic twig matching al-
gorithms which combine the advantages of the previous approaches [132, 89, 22, 11],
TwigPrime and its versions are modification of TwigFast [132] which combine the efficient
selection of useful elements for TPQs with a mix of P-C and A-D edges introduced in [11]
(see Chapter 6) and utilises level split data structure as the main intermediate storage. They
further improve TwigFast by strictly checking prefix path matching for P-C relationships
before storing the intermediate results. Moreover, the state-of-the-art filtering strategies
getPart and getMatch will be extended to apply the CPL approach in order to explore the
potential benefit of the CPL approach in the contemporary one phase holistic algorithms.

8.3.1 Bottom-Up Twig Matching Algorithm: TwigPrime

The new approach can be seen as an alternative to the TwigFast algorithm. The original
TwigFast remains the same with the differences being in the advanced preorder function
getNext which is based on the CPL approach and the use of a level split data structure to
store the intermediate results. The use of pointers in TwigPrime and its refined versions is
similar to that in [132] (see Section 8.2.1).

The structure of the main algorithm, TwigPrime presented in Algorithm 11, is a total
rewrite of TwigFast, and more complex than the original algorithm. In [132], there is
one list containing matches for each query node, the list is sorted in preorder. Each
element in the list has a recorded interval for each child query node. Interval start values
are recorded as elements are appended to intermediate lists while interval end positions
are recorded when elements can not be part of any further match. In order to avoid the
use of stacks and construct intervals effectively, each element appended to the list has a
pointer to the closest ancestor in the same list. There is also a tail pointer associated with
each list which indicates the candidate for the parent query node. An advantage of this
approach is that there is no overhead for maintaining a set of stacks. However, it fails
to give sufficient consideration to prefix path filtering checks so that elements are added
without having relevant parents. Note that using the level split data structure as the main
intermediate storage is hard to transfer directly to TwigFast unless some query nodes are
treated carefully. For illustration, Figure 8.7 shows the intermediate results after running
TwigFast to process Q1 against T2 in Figure 8.6. When f2 is returned, the algorithm can
record interval end positions for x1 and x2 since the tail for x-elements points to x2 and x2

has an ancestor pointer to x1 in the same list as depicted in Figure 8.7b. Assuming the level
split approach is used as shown in Figure 8.7a, if x2 is only pointed to by the tail pointer,
then one match including x1 may be missed. Accordingly, to set descendant intervals
correctly, there must be a tail for each level and each tail must be checked separately. In
this thesis, a new procedure is introduced which presents the novel level split filtering

204 Twig Pattern Matching: Bottom-Up Approach

used by the TwigPrime algorithm without the need for stacks. The level split tail filtering
represented by Algorithm 12 is mainly based on considering one type of query node which
plays an essential role in the matching process in TwigPrime. Generally, there is only one
situation that the level split tail filtering happens. That is, if the incoming element for a
query node qn has an A-D relationship to the parent query node qp that has, in turn, P-C
relationship with the parent query node, the tail for every level split list corresponding to
the query node qp must be checked to record the end positions correctly. This definition
can be formalized as in Definition 8.3. It should be also noted that using a pointer to the
closest ancestor in the same list is unnecessary when an element has P-C relationship to
the parent as they are stored in different lists. Henceforth, a tail pointer is sufficient to track
potential parents or ancestors for query nodes under P-C edges.

Definition 8.3 (AD Follows PC). If and only if given a query node p, which is connected

with P-C edge to its parent, and its A-D child c, suppose n separate level split lists of p

has been visited. In intermediate lists of p, all elements which are pointed by n tails will

be checked. The tailed elements that are not ancestor of the current element ec will be

assigned their end interval values.

e

a1

x1

a2

x2

f1

y1

f2 y2

(a) an XML tree T2

a

x

f

y

(b) Q1

Figure 8.6: An example to illustrate tail pointers for level split data structure.

La a1 a2

tail

Ly y1 y2 Lx[3] x1

tail

Lx[5] x2 tail

L f f1

(a) Nested tail checks for level split approach

La a1 a2

tail

Ly y1 y2 Lx x1 x2

tail

L f f1

(b) Straightforward tail checks, TwigFast

Figure 8.7: Intervals for intermediate result handling approaches after processing f1.

8.3 Bottom-Up Twig Matching Algorithm with Child Prime Label 205

Algorithm 11: TwigPrime
Input: A TPQ Q

1 // initialization
2 // initialise Lni = /0 for each ni ∈ T PQ Q if ni is root or

ni ∈ childrenAD(parent(ni)) and ni.tail = -1
3 // initialise an array of L[]ni = /0 for each ni ∈ T PQ Q if

ni ∈ childrenPC(parent(ni))
4 while ¬end(getRoot(Q)) do
5 qact = getNext(getRoot(Q)) // see Algorithm 5
6 vact = getElement(qact)
7 if ¬ isRoot(qact) then
8 setEndPointerParent(qact ,parent(qact)) // see Algorithm 12
9 if isRoot(qact) ∨ getParentTail(qact) ̸= -1 then

10 if qact ∈ childrenPC(parent(qact)) then
11 h = level(vact) - 1 // parent should be stored one level higher
12 vp = getVectorElement(parent(qact),h)
13 if ¬ PCrealtionship(vp,vact) then
14 // here to perform strict prefix path filtering which TwigFast misses
15 advance(qact)
16 continue // skip the following lines and moves to the next cycle
17 if ¬ isLeaf(vact) then
18 // set the end values for all elements in Lqact which are not ancestor of

vact
19 // ∀ ni ∈ children(qact) vact .startni = length(getVector(ni))
20 // vact .ancestor = getTail(qact) // pointer to the closest ancestor or -1 if it

does not have one
21 // setTail(qact) to length(getVector(qact)) // this to set the tail pointing to

vact as the open element for this list
22 // append vact to the corresponding list
23 advance(qact)
24 setResetEndPointers(getRoot(Q)) // process remaining open elements using ∞

25 extraPassFiltering(getRoot(Q)) // clean intermediate results with postorder checks
introduced in [89]

26 enumerateResults()
27 Function getVector(Query node q,Integer level):
28 // return the regular intermediate result list if q is below an A-D edge or split list

given by level if q is below a P-C axis.
29 Procedure setResetEndPointers(Query node q):
30 if ¬isLeaf(q) then
31 // set th end values for all remaining elements pointed by tails not equal to -1

and tails’ ancestors (if any)
32 // if q has P-C, then ∀ level ∈ used level of L[level]q set th end values for all

remaining elements pointed by tails not equal to -1
33 ∀ ni ∈ children(q) setResetEndPointers(ni)
34 Procedure extraPassFiltering(Query node q):
35 // read inner query nodes in postorder and any element which does not satisfy the

postorder filtering will be deleted. After that, the intermediate list will be
resized. Interval pointers for parent query nodes will be updated according to
the change in their child lists.

206 Twig Pattern Matching: Bottom-Up Approach

Algorithm 12: Level split tail filtering
1 Function isADfollowsPC(Query node q):
2 p = parent(q)
3 if q ∈ChildrenAD(p) then
4 if p ∈ChildrenPC(parent(p)) then

return : true
return :false

5 Function getTail(Query node q,Integer h):
6 if isRoot(q) ∨q ∈ childrenAD(parent(q)) then

return :q.tail
7 else

return :q[h].tail
8 Function getParentTail(Query node q,Query node p):
9 h = level(getElement(q))

10 if ¬ isADfollowsPC(q) then
return :getTail(p,h-1)

11 else
12 ∀ level ∈ used level if getTail(p,level) ̸= -1) then

return :getTail(p,level)
return :-1

13 Procedure setEndPointerParent(Query node q,Query node p):
14 if isADfollowsPC(q) then
15 ∀ level ∈ used level of Lp
16 if getTail(p,level) ̸= -1) then
17 vact = getVectorElement(p,level)
18 if getEnd(vact) < getStart(getElement(q)) then
19 markEnd(vact) // set the end valuse for ecah ni ∈ children(p)
20 // vact .endni = length(getVector(ni)) -1
21 else
22 while getParentTail(q,p) ̸= -1 do
23 vact = getVectorElement(p,0)
24 if getEnd(vact) < getStart(getElement(q)) then
25 markEnd(vact) // set the end values for each ni ∈ children(p)
26 setTail(vact) // set tail for the particular query node.
27 else
28 break
29 Function getVectorElement(Query node q,Integer level):
30 // return the current element pointed by the tail of the regular intermediate result

list if q is below an A-D edge or split list given by level if q is below a P-C axis.
31 Procedure setTail(Query node q,Integer level):
32 // set the tail to point to the closest ancestor of the current tail if any exists,

otherwise -1. if q is below an A-D edge q.tail or q[level].tail given by level if q
is below a P-C axis.

8.3 Bottom-Up Twig Matching Algorithm with Child Prime Label 207

Moving on now to the main algorithm of TwigPrime, Algorithm 11 presents the general
framework for constructing intermediate results in preorder manner, extending TwigFast
[132]. It supports any combinations of preorder and postorder filtering and simple or level
split vectors. It also can be extended to use advanced preorder filtering functions such as
getPart and getMatch since elements are stored in preorder. It iteratively invokes getNext

based on the CPL approach [12] to identify the next query node for processing. As opposed
to the original TwigFast algorithm, elements are passed directly to the intermediate result if
they have passed a strict prefix path filtering (Lines 10-16), If the head element of qact fails
to satisfy the strict prefix path matching, its cursor is shifted to point to the next element in
the stream and the algorithm proceeds to the next iteration. Prior to that, Line 8 performs a
weak prefix matching (see Definition 4.13) by determining the end positions for elements
which are not ancestors of the head element of qact in intermediate lists corresponding
to parent(qact) according to Definition 8.3 when level split vectors are used to avoid
false negative errors. This is performed though calling the procedure setEndPointerParent

in Algorithm 12. After that, if the head element of qact has the ancestor extension and
qact is not a leaf query node, Line 18 updates the end values for elements which are not
ancestor if the current element in the same list. Then, the start positions for intervals of
element vact will be determined which are equal to the current lengths of vact’s children
lists. After that, the tail and ancestor pointers are updated. The purpose of these pointers
is to identify elements which still have potential descendants. For example, in Figure
8.7, when y2 is considered as the head element of qact = y, it indicates that a2 will not
have any further descendant so that the end positions intervals for a2 are recorded. At
Line 22, the current element is appended into the corresponding list. The cursor of the
current query node qact is forwarded and the algorithm proceeds to the next cycle. When
streams are ended the algorithm terminates the top-down processing by using the largest
range-based label (∞,∞,∞) to enforce all open elements to update end positions for their
intervals. To perform strict subtree checks, the intermediate results are filtered bottom-up
in the post-processing procedure extraPassFiltering at Line 25. An internal element eq

is removed from the list Lq if and only if for any ni ∈ children(q), eq.startni > eq.endni .
Finally, once the intermediate storage contains elements with their intervals, TwigPrime
will enumerate the output based on the enumeration algorithm introduced in [185] and
extended in [89, 22] to use child intervals when the level split approach is applied.

The following example demonstrates the effect of TwigPrime in filtering useless
elements based on a combination of the CPL level split approach without consuming extra
storage, manipulating node processing order and using stacks, see Section 4.2.3.

Example 8.4. Consider the XML tree T2 of Figure 8.8, and the TPQ Q2 = //a[/y//f]//x in

Figure 8.8. The first call of getNext() in TwigPrime returns a and a1 is the current element

vact because it satisfies the descendant extension condition and the CPL relationship

regarding y-node. Since query node a is not a leaf, the list is checked to identify elements

which are not ancestors of a1 in order to set their end positions of their child intervals.

208 Twig Pattern Matching: Bottom-Up Approach

The lists are empty so that the procedure does not do anything. Next the closest ancestor of

vact is set to -1. After that, the start position of a1’s descendant interval for x-node is set to

0 as length(Lx) = 0 whereas the start position of a1’s child interval for y-node is set to 0

as length(L[3]y) = 0. Now the tail of query node is pointed to a1 as length(La) = 0, and

a1 is appended to the simple list La and the cursor of Ta is forwarded to a2. TwigPrime

proceeds to the next cycle and the second call of getNext() returns x1. The procedure

setEndPointerParent(x,a) is called to perform a weak prefix path filtering. Since a1 is the

tail for query node a and x1 is contained by a1, the procedure finishes without performing

any thing, Tx is pointed to x2. After that, y1 is returned by getNext(), a weak prefix path

matching is performed through calling setEndPointerParent(y,a). Since y-node has P-C

edge with a-node, a strict prefix path matching is performed through Lines 10-16. After

finding that y1 satisfies P-C relationship with a1, the start position of y1’s descendant

interval for f-node is recorded, and y1 is appended to the corresponding level split list

L[3]y. Now a2 is considered and returned to the main algorithm, because a.tail = 0 and

a1 is ancestor of a2, a2.ancestor = 0, and a.tail = 1. Then, the start position of a2’s

descendant interval for x-node is set to 1 as length(Lx) = 1 while the start position of a2’s

child interval for y-node is set to 0 as length(L[5]y) = 0. x2 and y2 are appended to their

corresponding intermediate lists because they satisfy weak and strict prefix path filtering,

respectively. After that, f1 is stored in the list L f , and TwigPrime proceeds to the next

iteration. TwigPrime skips a3 since it does not satisfy the CPL relationship that is CPL

of a3 is not divisible by the prime number associated with the tag name y. The algorithm

terminates the inner cycle and finishes the top-down processing to construct the child and

descendant intervals through calling setResetEndPointers(a,∞) to set the remaining end

values. That is, the end positions of a2’s intervals are set to a2.endx = 1 and a2.endy = 0,

respectively. Similarly, a1.endx = 1 and a1.endy = 0. Finally, the end values for y1 and

y2 are set to 0 as they both are ancestors of f1 (i.e., length(L f)−1 = 1−1 = 0). In Line

25, a strict subtree filtering is performed to provide optimal enumeration by checking for

non-empty child and descendant intervals. In this example, no element is removed because

of the use of the CPL approach in TwigPrime which avoids the process of a3. After that,

the output is enumerated according to the enumeration algorithm used in [185, 89, 22].

As a result, the query result consists of three matches (a1,x1,y1, f1), (a1,x2,y1, f1) and

(a2,x2,y2, f1). Figure 8.9 depicts construction of intervals during the query processing of

Q2 in different bottom-up algorithms and shows the number of elements stored by each

algorithm. From Figure 8.9 it can be seen that only TwigPrime was successful in filtering

out irrelevant elements to Q2.

The improvement of TwigStackPrime [12] can trivially be ported to the state-of-the-art
algorithms such as TJStrictPre, TJStrictPost and GTPStack. In this thesis, TJStrictPrePrime,
TJStrictPostPrime and GTPStackPrime, which are less involved modifications of the
original algorithms, are proposed. This is due to the fact that they are based on advanced
preorder filtering strategies (i.e., getPart and getMatch) which are extensions of getNext.

8.3 Bottom-Up Twig Matching Algorithm with Child Prime Label 209

e

a1

x1 y1

a2

x2 y2

f1

a3

x3 . . . xn

y3

f2

(a) an XML tree T3

a

y

f

x

(b) Q2

Figure 8.8: An example to illustrate the basic notations of TwigPrime.

To achieve the above improvement, getPart and getMatch are augmented with getElement

introduced in Chapter 6 to improve structural relationship checks using the CPL approach.
As a result, getPart(q) and getMatch(q) return an element eq of a query node q ∈ T PQ

with four properties:

i eq has a descendant element eqi in each of the streams corresponding to its child
elements where eqi is the head element of a query node qi = children(q).

ii each of its child elements satisfies recursively the first property.

iii if q has Parent-Child edge(s) with its child query nodes, then eq has a child eqi in
Tqi for each query node qqi = childrenPC(q) (this property is checked in getElement

function).

iv if ¬isRoot(q), then eq has a relevant ancestor ep stored in the main algorithm
which has been the head element of a query node p = parent(q) in previous calls of
getPart(p) (getMatch(p), respectively).

In the same way, TwigPrimePart and TwigPrimeMatch are proposed as refined versions
of TwigPrime to use the getPart and getMatch, respectively. The following section shows
the correctness of the new approaches.

8.3.1.1 Analysis of TwigPrime

This section shows the correctness of the new algorithms and analyses their complexities.
The correctness of TwigPrime, TwigPrimePart and TwigPrimeMatch follow from the cor-
rectness of the level split tail filtering discussed in Section 8.3, the correctness of preorder
filtering used in TwigStackPrime [12] described in Section 6.4.2, and the correctness
of the TwigList output enumeration algorithm [185] which is trivially extended to use
child intervals when elements are stored in level split lists as in [89]. The correctness of
TJStrictPrePrime and TJStrictPostPrime follows from the correctness of preorder filtering
used in TwigStackPrime [12] described in Section 6.4.2, and the correctness of TJStrictPre

210 Twig Pattern Matching: Bottom-Up Approach

La a1 a2

Lx x1 x2 Ly[3] y1

Ly[5] y2

L f f1

(a) TwigPrime

La a1 a2 a3

Lx x1 x2 x3 . . . xn Ly y1 y2 y3

L f f1 f2

(b) TwigFast

La a1 a2 a3

Lx x1 x2 x3 . . . xn Ly[3] y1

Ly[5] y2

L f f1

(c) TJStrictPre without extra pass filtering

La a1 a2

Lx x1 x2 x3 . . . xn Ly[3] y1

Ly[5] y2

L f f1

(d) TJStrictPre with extra pass filtering and GTP-
Stack

Figure 8.9: Bottom-up algorithms and their corresponding intermediate storages for
processing Q2 against T3 in Figure 8.8.

[89] and TJStrictPost [89], respectively. Similarly, the correctness of GTPStackPrime
follows from the correctness of preorder filtering used in TwigStackPrime [12] described
in Section 6.4.2, and the correctness of GTPStack [22].

Lemma 8.5. Let eq be an element corresponding to the query node q in the intermediate

storage. Then its child and descendant intervals are correctly recorded.

Proof. Query node q is either leaf or internal. If q is a leaf query node, the lemma holds.
Otherwise, it is known by Lemma 6.18 eq is returned by getNext because it satisfies the
properties 1 and 2a (see Chapter 6). Therefore, eq is appended into the intermediate list
before child and descendant elements of eq are stored in their corresponding lists, and the
start positions of the intervals thus can be set correctly at Line 19 of TwigPrime. Using
Lemma 6.21, all elements in the XML tree which are part of some solutions at subtree
rooted at eq will be returned in preorder. Henceforth, all child and descendant elements of
eq are stored in the intermediate storage while eq is pointed by the tail of q. Using lemma
6.20, the procedure setEndPointerParent correctly records the end values for eq’s intervals.
For both cases the lemma holds.

Using the above lemma and the lemmas introduced in Section 6.4.2, the next theorem
will be used to prove the correctness of TwigPrime, TwigPrimePart and TwigPrimeMatch.

8.3 Bottom-Up Twig Matching Algorithm with Child Prime Label 211

Theorem 8.6. Given a twig pattern query Q and an XML document D, Algorithms Twig-

Prime, TwigPrimePart and TwigPrimeMatch correctly construct the intermediate results

of Q on D.

Proof. In Algorithm TwigPrime, getNext(root) is repeatedly invoked to determine the next
query node to be processed. Using Lemma 6.18, it is known that all elements returned
by qact = getNext(root) have the child and descendant extension. If qact ̸= root, Line 8,
the algorithm sets the end values for all elements in the intermediate lists Lparent(qact) that
are not ancestors of the head element of qact by Lemma 6.21. After that, it is already
known qact has a child and descendant extension so that Line 9 checks whether the tail of
parent(qact) is pointed to proper ancestor or not. If so, it indicates that it does not have
the ancestor extension, and it can be discarded safely to continue with the next iteration.
Otherwise, the current head element of qact has both the ancestor and child and descendant
extensions which guarantee its participation in a weak match of prefixed path from itself
to the root. After that, if qact is connected to the parent query node with P-C edge, Lines
10-16 ensure that the current element has a strict match of a prefixed path. If the head
element fails to pass a strict prefix path filtering, then it can be skipped safely to proceed to
the next cycle. Otherwise, the corresponding list of vact is cleaned by setting end values
of intervals for elements which do not contain the head of vact , and the start positions
of intervals for vact are recorded, using Lemma 8.5. Then, if vact has an ancestor in the
same list, the ancestor pointer of vact is pointed to qact .tail. Otherwise, vact .ancestor is
set to -1 indicating that it does not have a proper ancestor in the list. Finally, qact .tail

is updated to point to vact , and vact is pushed into its corresponding intermediate list.
Once the intermediate storage containing elements with their intervals correctly set, it is
straightforward to perform the output enumeration.

The correctness holds for TPQs with both Ancestor-Descendant and Parent-Child
relationships. In addition, TJStrictPrePrime, TJStrictPostPrime and GTPStackPrime are
correct due to the correctness of the preorder filtering used in TwigStackPrime [12]
described in Section 6.4.2 and the correctness of the original algorithms introduced in
[89, 22].

With respect to the run time and space complexity of the proposal algorithms, the new
algorithms reads elements form data streams only once in a single forward scan through
advanced preorder filtering functions. When elements are appended to the intermediate
storage, each child check and interval set takes constant time. Therefore, the worst-case
time and space complexity for building up the intermediate storage is O(f ×|Input|) where
f is the maximum fanout at any query node in TPQ with n query nodes and Input is the
sum of the lengths of the n input lists. It can thus be suggested that the new approaches
guarantee optimal evaluation for the case where the TPQ has Ancestor-Descendant edges or
there are only Parent-Child edges connected the leaf query nodes, similar to that provided
by TwigStackPrime. Thus, elements are only stored in the intermediate result if they
contribute to the final result. Therefore, the intermediate result can be enumerated in linear

212 Twig Pattern Matching: Bottom-Up Approach

time O(n×|Out put|) where Output is the number of twig matchings. However, in the case
where P-C axes connects internal query nodes, linear performance for output enumeration
can be achieved by performing a strict subtree filtering (i.e., extraPassFiltering at Line 25),
but the algorithms can not guarantee optimal evaluation. In other words they can provide
optimal enumeration (i.e., all elements in internal lists must be part of the final result).
Consequently, the worst-case I/O and CPU time complexity is linear with respect to the
sum of the input list sizes and the size of the output result. For example, to demonstrate
the difference between optimal evaluation and enumeration, TwigPrime in Figure 8.9a
guarantees optimal evaluation while TJStrictPre and GTPStack of Figure 8.9d provides
optimal enumeration, and both TJStrictPre without a strict subtree matching and TwigFast
show suboptimal evaluation in Figures 8.9c and 8.9b, respectively. The space complexity
of the new approaches is O(|Int put|) which is linear with respect to the total number of
elements whose tags appear in TPQs. This is due to the fact that they directly construct
the intermediate results. However, when the new algorithms are optimal, the Ω(u) lower
bound is matched, where u is the total number of elements to which query nodes can be
matched (i.e., optimal evaluation) [198, 88]. However, an early enumeration approach
introduced in [53] can significantly reduce the intermediate storage size needed to return
query answer. The early enumeration starts when the incoming element corresponding
to the first branching query node does not have a relevant ancestor in the corresponding
intermediate list or stack of the first branching query node.

The next section describes the experiments to evaluate the performance of the new
algorithms and test the research hypothesis introduced in Section 4.3.2.

8.4 Experimental Evaluation 213

8.4 Experimental Evaluation

The following experiments explore the effects of the CPL approach, different advanced
preorder filtering strategies and different intermediate storage approaches in bottom-up
holistic twig matching algorithms. Hence, this section provides the experimental results
of the performance comparison of the new bottom-up twig matching algorithms, namely
TwigPrime, TwigPrimePart, TwigPrimeMatch, TJStrictPrePrime, TJSTrictPostPrime and
GTPStackPrime against state-of-the-art holistic algorithms: TwigList [185], TwigFast
[132], TJStrictPre [89], TJStrictPost [89] and GTPStack [22], with significantly different
XML datasets. To improve the efficiency of the output enumeration, TwigList and TwigFast
are incorporated with the strategy of next sibling links introduced in [185]. With the excep-
tion of TwigList and TwigFast, the algorithms in the experiments are implemented to use
level split approach as the default setting unless they are coded with "_" as suffix to indicate
intermediate results are stored in simple lists (e.g., TwigPrime_). When TwigPrime, Twig-
PrimePart, TwigPrimeMatch TJStrictPrePrime, TJSTrictPostPrime and GTPStackPrime
use the simple list approach, they are incorporated with the next sibling links. Moreover,
the following simple notation is used, where TwigPrime_N, TwigPrimePart_N and Twig-
PrimeMatch_N stand for TwigPrime, TwigPrimePart and TwigPrimeMatch utilise the
simple list approach and the strategy of next sibling links, respectively. Throughout this
section, the term "CPL" refers to bottom-up holistic algorithms based on the CPL approach
combined with the level split, while the term "CPL_" refers to bottom-up holistic algorithms
based on the CPL and simple list approaches. As a result, the "CPL" includes TwigPrime,
TwigPrimePart, TwigPrimeMatch, TJStrictPrePrime, TJSTrictPostPrime and GTPStack-
Prime algorithms. The "CPL_" refers to the set of algorithms including TwigPrime_,
TwigPrimePart_ TwigPrimeMatch_, TJStrictPrePrime_, TJSTrictPostPrime_. Note that
the CPL approaches are used to denote bottom-up twig matching algorithms using the CPL
relationship introduced in Chapter 6 regardless the approach used to store intermediate
results. Similar to the experiments in Chapter 6, all the algorithms tested in the experiments
were implemented and added to the query processor introduced in Section 5.2.2.2, and
versions of algorithms are implemented as new algorithms to make sure the overhead of
the complex algorithms does not affect the simpler ones [202, 89, 156].

8.4.1 XML Datasets and Queries

Five datasets are used in the experiments, and their characteristics are shown in Section
6.5.1.1 of Chapter 6. Therefore, the DBLP (see Section 5.4.1.1), XMark with the scaling
factor equal to 1 (see Section 5.4.2.1), TreeBank (see Section 5.4.1.2), Random (see Section
5.4.3.1) and Zipf 5.4.3.2) datasets were used in the experiments. Queries for DBLP, XMark,
TreeBank and Random datasets are similar to that used in the experiments of Chapter 6.
Because bottom-approaches can process recursive queries efficiently, one recursive TPQ
was added to TPQs over the TreeBank dataset. Table 8.1 presents an overview of the TPQs

214 Twig Pattern Matching: Bottom-Up Approach

Table 8.1: Experimental TPQs for TreeBank.
Code XPath expression Result size
T Q1 //S[//MD]//ADJ 19
T Q2 //S/VP/PP[/NP/VBN]/IN 152
T Q3 //VP[/DT]//PRP_DOLLAR_ 3
T Q4 //S[/JJ]/NP 5
T Q5 //S[VP[DT]//NN]/NP 32
T Q6 //S[//VP/IN]//NP 20311
T Q7 //S/VP/PP[//NP/VBN]/IN 320
T Q8 //EMPTY/S//NP[/SBAR/WHNP/PP//NN]/_COMMA_ 17
T Q9 //SINV//NP[/PP//JJR][//S]/NN 4
T Q10 //NP[/NN]/PP 43942
T Q11 //S[//VP][//NP]/VP/PP[IN]/NP/VBN 1185

Table 8.2: Zipf TPQ templates for XPath expressions.
Template Query template # of randomly generated queries
T1 //α/β [//χ]/δ 10
T2 //ε[/η]/γ 10
T3 //α[/ε][/η]//γ 10
T4 //α/β//χ/δ 10
T5 //α/α[//β]/χ//χ[/δ]//ε 10

over the TreeBank dataset. The XML structured queries for evaluation over the Zipf dataset
were generated according to five query templates shown in Table 8.2. Templates specify
relationships between query nodes. For each template, ten TPQs were randomly generated
such that α,β ,χ,δ ∈ {a,b,d,g} and ε,η ,γ ∈ {a,b,c,d,e, f ,g}. A list of the generated
Zipf queries can be found in Appendix C. In order to show the difference between the
tested algorithms and make the comparisons more comprehensive, ten recursive TPQs
were generated according to the template T5 (see Table 8.2).

8.4.2 Metrics

The experiments compare two variables for each TPQ selected under the bottom-up holistic
algorithms. Accordingly, the performance comparison of these algorithms was based on
the following metrics:

• Number of elements stored in the intermediate storage: the number of elements
stored by each algorithm in the intermediate storage.

• Processing time: the running time of an algorithm spent on the whole TPQ includes
the filtering process and the result enumeration (in milliseconds). All TPQs were
executed 103 times to increase the reliability of measures and the first three runs
were excluded for cold cache issues. The I/O cost for tag indexing files for the set of

8.4 Experimental Evaluation 215

algorithms in "CPL" and "CPL_" is not counted because it is negligible, and the cost
to read the tag indexing is constant over a series of TPQs for each dataset. By way
of explanation, the tag indexing needs only to be read once for a set of TPQs over a
particular dataset.

8.4.3 Experimental Results

This section presents the evaluation of the experimental results. In order to verify the
validity of the new approaches, all query results in the experiments returned from the
tested algorithms were inspected. Since all algorithms returned the same results, the
validity, can thus be verified. To allow precise comparisons, the discussion of the query
performance related to a particular dataset is contained within an individual subsection.
The query performances for TPQs over DBLP, XMark, TreeBank, Random and Zipf
datasets are discussed in Sections 8.4.3.1, 8.4.3.2, 8.4.3.3, 8.4.3.4 and 8.4.3.5, respectively.
In addition, for each dataset, the experimental results of processing time are depicted
in two graphs based on the intermediate storage approach used, the reason for this is to
enable a clear presentation of several algorithms in the same plot. To avoid extreme value
differences, experimental results of TwigList regarding the number of elements stored in
the intermediate storage are not included in the illustrative graphs since the remaining
algorithms use an improved version of TwigList. A complete result including TwigList is
presented in Appendix C. The scalability tests are evaluated in Section 8.4.3.6.

8.4.3.1 DBLP

This section discusses the experimental results for TPQs over the DBLP dataset, the TPQs
are given in Table 6.5. As it is not common for TPQs, which contain both ’//’ and ’/’, to
have a significant difference in performance for data-oriented datasets, the purpose of this
dataset is to show that the new approaches do not bring any overhead for processing XML
documents with a simple structure. Figure 8.10 shows the number of elements stored in
the intermediate storage by each algorithm along with the actual elements which are parts
of complete matches. An immediate observation from the figure is that "CPL" and "CPL_"
approaches are more efficient in terms of the intermediate results than the tested algorithms
for all queries on this dataset. Even though the DBLP document is highly-structured,
the state-of-the-art TJStrictPre, TJStrictPost and GTPStack algorithms provided optimal
evaluation only for one TPQ, namely DQ2. Moreover, the size of the intermediate storage
for TwigList and twigFast was 580 and 2 times larger respectively than that constructed by
the new approaches. The rest of the algorithms tested appended useless elements accounted
for 30% to 40% of all relevant elements.

Moving on now to compare query processing time for this dataset, the performance of
the algorithms using the simple list approach is illustrated in Figure 8.11a while Figure
8.11b shows the experimental results for algorithms utilising the level split approach.

216 Twig Pattern Matching: Bottom-Up Approach

Figure 8.10: The number of elements stored in the intermediate storage by each algorithm
for the queries tested over DBLP. "Actual" represents the number of elements relevant to
the query results.

Table 8.3: Results for the comparison groups over the DBLP document.
Query p-value p-value < 0.05
DQ1 ≈ 0 TRUE
DQ2 ≈ 0 TRUE
DQ3 4.17e−181 TRUE
DQ4 ≈ 0 TRUE

As can be seen from the experimental results, "CPL" and "CPL_" approaches outper-
form the comparable algorithms for all TPQs except for DQ1, see Figures 8.11a and 8.11b.
A possible explanation is that the CPL approach improves the filtering process without
any additional overhead [12]. To compare statistically the overall query performance, the
Kruskal-Wallis test for each TPQ was carried out to see whether there was a difference in
the performance between at least two algorithms or not. Table 8.3 provides the results of
running the Kruskal-Wallis tests over the queries using the significance level 0.05 to test
the null hypothesis. Accordingly, it can be seen from the table that the Kruskal-Wallis tests
suggest that there is a significant difference in the performance between two algorithms at
least. In some queries the p-value for running Kruskal-Wallis tests is nearly zero which
strongly indicates that the observed sample is improbable under the null hypothesis 1

[82, 74]. Therefore, the Mann-Whitney U test was run for all possible combinations
of pair over the queries tested. This set was computed using Formula 6.2 as follows:
= (21×(21−1))

2 ×4 = 840. Raw timings are given in Appendix C.
The summary of the paired comparisons based on the Mann Whitney U test is provided

in Table 8.4. The table contains the number of comparisons for which a particular algorithm
was faster and slower. The tested algorithms are sorted according to the performance speed
in descending order. The reason for this is that the number of comparisons for which

1These p-values don’t indicate that the p-value is literally zero. They are simply less than the smallest
representable positive double-precision floating point value in R [182].

8.4 Experimental Evaluation 217

an algorithm was faster is misleading because most of the algorithms in the experiments
belong to "CPL" and "CPL_" groups. For instance, the TJStrictPrePrime_ showed similar
performance with the algorithms compared in 19 cases while it was slower in 21 cases.
On the other hand, the GTPStack algorithm has a better performance in 56 comparisons
but it was slower in more cases than TJStrictPostPrime_. Moreover, TJStrictPostPrime_
performed better than GTPStack in two queries whereas GTPStack outperformed TJStrict-
PostPrime_ in two cases. As shown in Table 8.4, the CPL approaches outperformed the
existing algorithms. TwigPrimePart_N which can be seen as a combination of TwigPrime
and getPart outperformed both approaches TJStrictPre and TJStrictPost using the getPart.
However, TwigPrime using the getNext performed very poorly for this dataset because
the getPart and getMatch can skip irrelevant elements efficiently using the cursor forward
movement.

Table 8.4: The overall comparisons based on U tests over the DBLP dataset. "-" indicates
no difference in the performance.

Algorithm
of comparisons

Faster Slower -
TJStrictPostPrime_ 45 18 17
GTPStack 56 20 4
TJStrictPrePrime 40 21 19
TJStrictPrePrime_ 40 21 19
TJStrictPostPrime 43 22 15
TwigPrimePart_N 40 24 16
TwigPrimePart_ 40 25 15
TJStrictPre 50 26 4
TJStrictPost 40 29 11
TJStrictPost_ 40 29 11
TwigPrimePart 41 30 9
TJStrictPre_ 40 30 10
TwigPrimeMatch_ 34 31 15
TwigPrimeMatch_N 33 35 12
GTPStackPrime 29 38 13
TwigFast 35 39 6
TwigPrimeMatch 31 47 2
TwigPrime_ 18 54 8
TwigPrime_N 17 55 8
TwigPrime 13 59 8
TwigList 5 75 0

To conclude, The "CPL" and "CPL_" approaches stored only elements contributing to
the query results in the experiments. Except TwigList, the rest of the tested approaches
stored useless elements up to 60% more than the relevant elements. The CPL approaches
showed a better performance in all cases, however, the existing algorithms were comparable
to the new approaches only for DQ1. This can be explained because few elements in the
dataset violate the structural relationships specified by DQ1.

218 Twig Pattern Matching: Bottom-Up Approach

(a)

(b)

Figure 8.11: Query processing time of the algorithms utilising the simple list approach in
(a) and the level split approach in (b) against the DBLP dataset.

8.4 Experimental Evaluation 219

8.4.3.2 XMark

Figure 8.12: The number of elements stored in the intermediate storage by each algorithm
for the queries tested over XMark. "Actual" represents the number of elements relevant to
the query results.

In the XMark dataset, the experiment is to compare the performance of the algorithms
on a relatively balanced XML tree. The number of elements stored by each algorithm are
shown in Figure 8.12. Similar to the experimental results obtained from DBLP, both "CPL"
and "CPL_" approaches showed optimal performance, whereas the existing algorithms
using the getNext can not perform efficiently for XQ1. On the other hand, TwigList showed
the worst performance because it uses a simple filtering strategy which skips elements
according to parent query nodes and does not perform cursor forward movement. Figure
8.13 presents query processing overall performance for this experiment.

To compare the query performance, the experiment is based on hypothesis that there
is no difference in the performance between the algorithms so that the Kruskal-Wallis
test was carried out to test that null hypothesis. Table 8.5 provides an overview of group-
based comparisons using Kruskal-Wallis tests. There is a significant difference in the
performance between two algorithms at least for all TPQs as suggested by Kruskal-Wallis
tests 2, thus the total number of paired comparisons using Formula 6.2 is computed as
follows: = (21×(21−1))

2 ×6 = 1260. The raw data of query processing time for the XMark
dataset can be found in Appendix C.

Combining the figures from Table 8.6 and the experimental results given in Figures
8.13a and 8.13b, TJStrictPost_ and TJStrictPre_ using the simple list approach showed the
best performance in most comparisons. These results could be due to the benefits of using
the level split approach seem to be exceeded by the cost of maintaining and accessing them.

2In all queries the p-value for running Kruskal-Wallis tests is nearly zero which strongly indicates that
the observed sample is improbable under the null hypothesis. These p-values don’t indicate that the p-value
is literally zero. They are simply less than the smallest representable positive double-precision floating point
value in R [182].

220 Twig Pattern Matching: Bottom-Up Approach

Table 8.5: Results for the comparison groups over XMark dataset.
Query p-value p-value < 0.05
XQ1 ≈ 0 TRUE
XQ2 ≈ 0 TRUE
XQ3 ≈ 0 TRUE
XQ4 ≈ 0 TRUE
XQ5 ≈ 0 TRUE
XQ6 ≈ 0 TRUE

TwigPrimeMatch_ and TwigPrimeMatch_N showed a better performance compared to the
rest of the algorithms tested. Inefficiency of the GTPStack and GTPStackPrime comes from
the use of linked lists as the intermediate storage which increases the cost of enumerating
results since linked list do not support random access efficiently. They were significantly
worse than the other algorithms in three queries. The raw data for all paired comparisons
is presented in Appendix C. The CPL approaches were comparable to TJStrictPost_ and
TJStrictPre_ in all queries except XQ4, and the new algorithm TwigPrime combined with
the getMatch function outperformed them in two queries.

Table 8.6: The overall comparisons based on U tests for all queries in the XMark dataset.
"-" indicates no difference in the performance.

Algorithm
of comparisons

Faster Slower -
TJStrictPost_ 102 11 7
TJStrictPre_ 97 19 4
TJStrictPost 84 29 7
TwigPrimeMatch_ 84 30 6
TwigPrimeMatch_N 84 30 6
TJStrictPre 83 34 3
TJStrictPostPrime_ 79 39 2
TJStrictPrePrime_ 78 41 1
TwigFast 67 49 4
TJStrictPostPrime 59 59 2
TJStrictPrePrime 58 61 1
TwigList 57 62 1
GTPStack 50 68 2
TwigPrime_N 40 80 0
TwigPrimePart 39 81 0
TwigPrimePart_N 30 86 4
TwigPrime_ 32 87 1
TwigPrimePart_ 27 88 5
TwigPrimeMatch 29 89 2
GTPStackPrime 30 89 1
TwigPrime 23 97 0

8.4 Experimental Evaluation 221

To conclude, the experimental results demonstrated that the CPL approaches had a
superior performance to the comparable algorithms in terms of the number of elements
pushed into the intermediate results. For the XMark dataset, the CPL approach efficiently
filters out useless elements in all queries so that the use of semi-strict subtree filtering
checks followed by a strict prefix path matching can provide optimal evaluation. There is no
need to perform a strict subtree filtering using the level split approach. Thus, a promising
approach to process efficiently the XMark queries might involve the combination of
TwigPrime and the getMatch function such as TwigPrimeMatch_ and TwigPrimeMatch_N.
To summarise, the findings of this analysis suggest that the semi-strict filtering developed
in this thesis can be considered to evaluate efficiently TPQs on data-oriented dataset. It is
possible that the performance gain of TJStrictPost and TJStrictPost_ is achieved because of
elements are pushed into the intermediate storage in postorder and a strict subtree filtering
can be performed with additional extra passes over the intermediate results. However,
these approaches output the result tuples unordered, see Definition 4.11.

222 Twig Pattern Matching: Bottom-Up Approach

(a)

(b)

Figure 8.13: Query processing time of the algorithms using the simple list approach in (a)
and the level split approach in (b) against the XMark dataset.

8.4 Experimental Evaluation 223

8.4.3.3 TreeBank

Eleven TPQs including complex and recursive queries (see Table 8.1) were used in the
TreeBank dataset to understand the differences among the algorithms where the XML
document has a highly recursive structure. Figure 8.14 shows the size of the interme-
diate storage constructed by each algorithm. In comparison to the previous datasets,
the TreeBank dataset is the most complicated XML document from various aspects of
query processing point of view [255, 23, 147] although it is the smallest dataset in the
experiments. Therefore, the suboptimal evaluation of the existing approaches can be
demonstrated here as depicted in the illustrative graph. This dataset may also demonstrate
the effectiveness of the CPL approaches. In contrast to the previous experiments in Sec-
tions 8.4.3.1 and 8.4.3.2, the "CPL" and "CPL_" approaches failed to provide optimal
evaluation for T Q2,T Q5,T Q8 and T Q11 in which useless elements were stored. They
stored several orders of magnitude fewer elements than the comparable algorithms. For
T Q6, the "CPL" and "CPL_" approaches performed efficiently by storing only the 16,062
useful elements, whereas the number of elements stored in the state-of-the-art algorithms
was between 374,370 and 563,741. The simple algorithms TwigList and TwigFast built
up the intermediate storage with 770,052 and 669,312 elements in order to evaluate T Q6,
respectively.

Figure 8.14: The number of elements stored in the intermediate storage by each algorithm
for the queries tested over the TreeBank document. Actual represents the number of
elements relevant to the query results.

Figure 8.15 shows the execution time of the algorithms over this dataset. For better
presentation the algorithms tested are grouped based on the approach used to store the
intermediate results. In Figure 8.15a, the query processing times for algorithms based on the
simple list approach are given while Figure 8.15b presents the overall query performance
for the level split approaches. In order to test the group comparisons, eleven Kruskal-
Wallis tests were carried out over TPQs to see whether there was a difference in the

224 Twig Pattern Matching: Bottom-Up Approach

Table 8.7: Results for the comparison groups over TreeBank dataset.
Query p-value p-value < 0.05
TQ1 ≈ 0 TRUE
TQ2 ≈ 0 TRUE
TQ3 ≈ 0 TRUE
TQ4 ≈ 0 TRUE
TQ5 ≈ 0 TRUE
TQ6 ≈ 0 TRUE
TQ7 ≈ 0 TRUE
TQ8 ≈ 0 TRUE
TQ9 ≈ 0 TRUE

TQ10 ≈ 0 TRUE
TQ11 ≈ 0 TRUE

performance between the algorithms or not. All the Kruskal-Wallis tests suggested that
there is a difference in the performance between two algorithms at least as presented
in Table 8.7. The overall results suggest that the sample is improbable under the null
hypothesis3. Consequently, the paired comparisons based on the U test of Mann Whitney
were calculated. The number of paired comparisons for this dataset can be obtained using
Formula 6.2 as = (21×(21−1))

2 ×11 = 2310. The raw data of query processing time for the
real-world dataset, TreeBank can be found in Appendix C.

The summary of the paired comparisons based on the Mann Whitney U test is presented
in Table 8.8. It can be seen from the data in Table 8.8 and Figures 8.15a and 8.15b that
the "CPL" and "CPL_" approaches significantly outperformed the rest of the algorithms
tested. Eleven different versions of the new approaches significantly outperformed the
other algorithms, and the combination of TwigPrime and the getMatch function using
the simple list approach showed a superior performance to the other combinations of
TwigPrime. The reason for this is due to the use of the CPL approach to filter useless
elements and the getMatch to avoid redundant computations. When the new algorithm
TwigPrime uses the level split approach, the getPart function had the best performance.
This is due to the use of additional vector which stores one extra value for each query node
to check the latest ancestors that form a weak full match for the entire TPQ in getPart

while getMatch has to check several tails and ancestors to determine whether an element is
useful or not. Note that T Q6 is a very expensive query in the experiments, it touches a very
large portion of the document and the answer to it is a quite large. It was chosen because it
shows the effects of the CPL approach. For T Q6, only the "CPL" and "CPL_" algorithms
can provide optimal evaluation and hence the reduction in the CPU cost of the algorithms.

3In all queries the p-value for running Kruskal-Wallis tests is nearly zero which strongly indicates that
the observed sample is improbable under the null hypothesis. These p-values don’t indicate that the p-value
is literally zero. They are simply less than the smallest representable positive double-precision floating point
value in R [182]

8.4 Experimental Evaluation 225

Table 8.8: The overall comparisons based on U tests for all queries in the TreeBank dataset.
"-" indicates no difference in the performance.

Algorithm
of comparisons

Faster Slower -
TwigPrimeMatch_ 143 45 32
TwigPrimeMatch_N 146 47 27
TwigPrimePart 140 64 16
TwigPrimePart_N 127 75 18
TwigPrimePart_ 123 77 20
TJStrictPrePrime 88 119 13
TJStrictPrePrime_ 92 119 9
TJStrictPostPrime 92 121 7
TJStrictPostPrime_ 96 121 3
TwigPrime_N 65 149 6
GTPStackPrime 59 152 9
GTPStack 61 159 0
TJStrictPre 61 159 0
TwigPrime_ 53 161 6
TJStrictPre_ 56 164 0
TJStrictPost 55 165 0
TJStrictPost_ 52 168 0
TwigFast 42 174 4
TwigPrime 39 181 0
TwigPrimeMatch 28 190 2
TwigList 6 214 0

To sum up, the "CPL" and "CPL_" approaches showed a superior performance to the
other algorithms in terms of the number of elements stored and query running time for a
highly recursive dataset. For TPQs falling in the optimal class of the CPL approach, the
new algorithms did not store useless elements, whereas the others did. This verifies the
analysis of its optimal sets of TPQs as stated in Section 8.3.1.1.

226 Twig Pattern Matching: Bottom-Up Approach

(a)

(b)

Figure 8.15: Query processing time of the algorithms using the simple list approach in (a)
and the level split approach in (b) against the TreeBank dataset.

8.4 Experimental Evaluation 227

8.4.3.4 Random

The Random dataset has a complex structure with six distinct tags. This dataset was
selected to show the differences between algorithms where the XML combines features of
DBLP and TreeBank, being relatively structured and deeply recursive at the same time.
The size of intermediate storage generated by each algorithm is presented in Figure 8.16

Figure 8.16: The number of elements stored in the intermediate storage by each algorithm
for the queries tested over the Random dataset. "Actual" represents the number of elements
relevant to the query results.

Six TPQs, namely RQ1, RQ2, RQ3, RQ4, RQ6 and RQ9, can be processed efficiently
by the CPL approaches as illustrated in Figure 8.16. For the remaining queries, the CPL
algorithms stored by far fewer elements than the other methods tested. Both RQ6 and
RQ9 show the effects of introducing the CPL approach to the existing advanced preorder
filtering functions. It can be observed that even for queries which do not fall within the
optimal sets of TPQs for the CPL approach, optimal evaluation can be achieved as in the
case of RQ6, and the new approaches significantly outperformed the other algorithms. For
instance, in RQ9, the number of elements stored in the "CPL" and "CPL_" approaches was
17 times less than that stored in the existing algorithms using the level split intermediate
storage, and up to three orders of magnitude fewer than methods using simple vectors.
Clearly, the size of intermediate storage built by the new approach is by far less than the
other approaches.

To compare the query performance, Kruskal-Wallis test was carried out to test the null
hypothesis for each TPQ tested. The result of group comparisons based on Kruskal-Wallis
test are summarised in Table 8.9. Since the results turned out to reject the null hypothesis
by suggesting that for each TPQ there was a significantly difference in the performance
between two algorithms at least4, all the possible paired comparisons were computed using

4In all queries the p-value for running Kruskal-Wallis tests is nearly zero which strongly indicates that
the observed sample is improbable under the null hypothesis. These p-values don’t indicate that the p-value

228 Twig Pattern Matching: Bottom-Up Approach

Table 8.9: Results for the comparison groups over the Random dataset.
Query p-value p-value < 0.05
RQ1 ≈ 0 TRUE
RQ2 ≈ 0 TRUE
RQ3 ≈ 0 TRUE
RQ4 ≈ 0 TRUE
RQ5 ≈ 0 TRUE
RQ6 ≈ 0 TRUE
RQ7 ≈ 0 TRUE
RQ8 ≈ 0 TRUE
RQ9 ≈ 0 TRUE

Formula 6.2 as follows: = (21×(21−1))
2 ×9 = 1890. The full results are given in Appendix

C.
The results obtained from all paired comparisons based on the Mann Whitney U test

of query running time are summarised in Table 8.10. It is apparent from this table that
when TwigPrime is combined with the advanced preorder filtering strategy, i.e., getMatch,
the "CPL_" approach significantly performed better than the "CPL" approaches. Only
TwigPrimePart which uses the getPart showed a superior performance to the other versions
of TwigPrime on the level split approach (i.e., the "CPL" approaches). Interestingly,
TwigPrimePart performed better than the other approaches using combinations of the
getPart function and the CPL approach, such as TJStrictPrePrime and TJStrcitPrePrime_.
The enhanced performance can illustrate that maintaining pointers to perform a strict prefix
path matching may provide low overhead when compared to stack operations for highly
recursive datasets including the TreeBank and Random dataset. Moreover, when TPQs
contain many P-C edges, the "CPL_" and "CPL" approaches performed better than the
existing algorithms, which can be observed in RQ9 (see Figures 8.17a and 8.17b).

In summary, the "CPL_" approaches can be considered when evaluating TPQs in
this type of XML dataset. They provide optimal evaluation in several queries and get
better performance for complex queries. This is because the CPL approach can filter out
many useless elements before storing them in the intermediate storage while the getMatch

function avoids unnecessary recursive calls during the query processing. Therefore, the
overall CPU cost can be saved. The benefits of using level split intermediate results
combined with the CPL approach seems to be outweighed by the cost of maintaining and
accessing them since the combined filtering can prevent slightly fewer elements than that
stored using the CPL approach alone (see Figure 8.16).

is literally zero. They are simply less than the smallest representable positive double-precision floating point
value in R [182]

8.4 Experimental Evaluation 229

Table 8.10: The overall comparisons based on U tests for all queries in the Random dataset.
"-" indicates no difference in the performance.

Algorithm
of comparisons

Faster Slower -
TwigPrimeMatch_N 149 25 6
TwigPrimeMatch_ 145 28 7
TJStrictPre 133 40 7
TJStrictPre_ 125 50 5
TJStrictPost_ 93 83 4
TJStrictPost 92 84 4
TwigPrimePart 89 91 0
TJStrictPostPrime_ 86 93 1
TJStrictPrePrime 85 95 0
TJStrictPrePrime_ 85 94 1
TJStrictPostPrime 85 95 0
TwigPrimePart_N 73 101 6
TwigPrimePart_ 72 102 6
GTPStackPrime 62 116 2
GTPStack 57 121 2
TwigFast 43 137 0
TwigPrime_N 37 139 4
TwigPrime_ 36 140 4
TwigPrimeMatch 28 152 0
TwigPrime 24 156 0
TwigList 7 173 0

230 Twig Pattern Matching: Bottom-Up Approach

(a)

(b)

Figure 8.17: Query processing time of the algorithms using the simple list approach in (a)
and the level split approach in (b) against the Random dataset.

8.4 Experimental Evaluation 231

8.4.3.5 Zipf

The Zipf collection and queries were used to gain insight into the benefits and the potential
overheads of using combinations of the CPL approach, different advanced preorder filtering
functions (i.e., getNext, getPart and getMatch) and the level split intermediate results. As a
result, only algorithms using the level split approach to build the intermediate storage and
storing elements in preorder were compared. In addition, approaches which store elements
in the intermediate storage in postorder, such as TJStrictPost and TJStrictPostPrime, were
not included in the performance comparison because they output the result tuples unordered,
hence they are not directly comparable. Recall that every element in the Zipf dataset has
exactly two children and the longest path in the document is 26 (see Section 5.4.3.2). Fifty
queries were randomly generated according to five query templates provided in Table
8.2. For the purpose of analysis, ten queries were produced for each query template. By
way of illustration, ZQ12 refers to the second Zipf query generated by template T2. The
Zipf queries generated by templates T2,T3 and T4 can be processed efficiently by the CPL
approach. On the other hand, the Zipf queries produced by template T1 and T5 fall outside
the optimal groups of the CPL approach as stated in the analysis in Section 8.3.1.1. Note
that the Zipf queries generated by template T4 are path (i.e., non-branching) queries. The
path queries were used to explore the benefits of the CPL approach although the existing
algorithms can provide optimal evaluation for simple path queries (see Figure 8.19a). The
size of intermediate storage generated by each algorithm is presented in Figures 8.18 and
8.19. Experimental results related to the Zipf queries generated by each template are
depicted in an individual plot.

Clearly, the CPL approaches provided optimal evaluation for the Zipf queries generated
by templates T1, T2, T 3 and T4, while the existing approaches stored useless elements as
eight times as larger than the relevant elements. All the algorithms tested provided optimal
evaluation for queries generated by T4. Furthermore, the Zipf queries produced by template
T5 are recursive, complex TPQs which were chosen to show the potential effects of the
distribution of P-C relationships and duplicate query nodes in TPQs. For queries, ZQ41 to
ZQ50, the CPL algorithms stored order of magnitude fewer elements than the rest of the
approaches due to the fact that it uses the combined approach. The size of the intermediate
storage produced by the CPL approaches for queries generated by T5 was about 0.0134%
of the size of the intermediate storage produced by the existing algorithms.

Figures 8.20 and 8.21 show query processing overall performance for this experiment.
To evaluate the query performance, the Kruskal-Wallis test was carried out to test the null
hypothesis stating that there is no difference in the performance between the compared
algorithms. The results of the groups analysis are presented in Table 8.11. From the data in
Table 8.11, every Kruskal-Wallis test revealed that there is a significant difference between
two algorithms at least.

Accordingly, the total number of paired comparisons for the Zipf dataset can be com-
puted using Formula 6.2 described in Chapter 6 as = (7×(7−1))

2 ×50 = 1050. Raw timings

232 Twig Pattern Matching: Bottom-Up Approach

Table 8.11: Results for the comparison groups over the Zipf dataset.
Query P-value < 0.05 Query p-value < 0.05 Query p-value < 0.05
ZQ1 6.84E-136 TRUE ZQ21 6.84E-136 TRUE ZQ41 6.84E-136 TRUE
ZQ2 4.49E-144 TRUE ZQ22 4.49E-144 TRUE ZQ42 4.49E-144 TRUE
ZQ3 1.01E-141 TRUE ZQ23 1.01E-141 TRUE ZQ43 1.01E-141 TRUE
ZQ4 2.32E-144 TRUE ZQ24 2.32E-144 TRUE ZQ44 2.32E-144 TRUE
ZQ5 9.26E-143 TRUE ZQ25 9.26E-143 TRUE ZQ45 9.26E-143 TRUE
ZQ6 5.89E-142 TRUE ZQ26 5.89E-142 TRUE ZQ46 5.89E-142 TRUE
ZQ7 3.96E-142 TRUE ZQ27 3.96E-142 TRUE ZQ47 3.96E-142 TRUE
ZQ8 1.52E-144 TRUE ZQ28 1.52E-144 TRUE ZQ48 1.52E-144 TRUE
ZQ9 2.31E-144 TRUE ZQ29 2.31E-144 TRUE ZQ49 2.31E-144 TRUE

ZQ10 3.63E-142 TRUE ZQ30 3.63E-142 TRUE ZQ50 3.63E-142 TRUE
ZQ11 6.84E-136 TRUE ZQ31 6.84E-136 TRUE
ZQ12 4.49E-144 TRUE ZQ32 4.49E-144 TRUE
ZQ13 1.01E-141 TRUE ZQ33 1.01E-141 TRUE
ZQ14 2.32E-144 TRUE ZQ34 2.32E-144 TRUE
ZQ15 9.26E-143 TRUE ZQ35 9.26E-143 TRUE
ZQ16 5.89E-142 TRUE ZQ36 5.89E-142 TRUE
ZQ17 3.96E-142 TRUE ZQ37 3.96E-142 TRUE
ZQ18 1.52E-144 TRUE ZQ38 1.52E-144 TRUE
ZQ19 2.31E-144 TRUE ZQ39 2.31E-144 TRUE
ZQ20 3.63E-142 TRUE ZQ40 3.63E-142 TRUE

are given in Appendix C. The overall results are provided in Table 8.12 which summarises
the comparisons to show how many times each algorithm statistically was either faster or
slower. As depicted in illustrative graphs, the new approaches were significantly faster than
the existing algorithms in most queries. TJStrictPrePrime had the best performance in most
cases as it was faster in 269 out of 300 individual comparisons; however it was slower in
all queries generated by template T5 when compared with GTPStack and GTPStackPrime.
The existing algorithm GTPStack was only comparable to the CPL approaches for queries
corresponding to the fifth template which due to the additional filtering pass over the large
intermediate results. In most queries, GTPStackPrime was faster than GTPStack because it
used combined approaches, and the effect size test suggested that this had a large practical
significance. Interestingly, the combination of the getPart function and the CPL approach
performed better than any other combination as the first and the second best algorithm in
performance using the getPart function.It seems possible that these results are due to the
use of a simple technique to check a weak match for the entire query combined with ad-
vanced cursor forward movement. On the other hand, processing time of TwigPrimeMatch
was influenced by the new design maintaining pointers since the latest ancestors matched
are required in order to perform cursor forward movement. For every U test, the effect size
suggested that there is a medium to large practical significance. However, when the null
hypothesis is rejected, low practical significance was evident.

To conclude, the experiment has been used to explore the benefits of the CPL relation-
ship when evaluating the Zipf queries according to predefined query templates. The Zipf
dataset was chosen to compare the performance of the algorithms by varying the selectivity

8.4 Experimental Evaluation 233

Table 8.12: The overall comparisons based on U tests for all queries in the Zipf collection.
"-" indicates no difference in the performance.

Algorithm
of comparisons

Faster Slower -
TJStrictPrePrime 269 29 2
TwigPrimePart 216 81 3
TwigPrime 149 148 3
TwigPrimeMatch 130 167 3
GTPStackPrime 120 175 5
TJStrictPre 106 193 1
GTPStack 48 247 5

of query nodes using the property of the Zipf distribution. As a result, the CPL approaches
showed superior performance to the other techniques in terms of the number of elements
stored in the intermediate storage and query running time.

234 Twig Pattern Matching: Bottom-Up Approach

(a) the Zipf queries generated by template 1

(b) the Zipf queries generated by template 2

(c) the Zipf queries generated by template 3

Figure 8.18: The number of elements stored in the intermediate storage by each algorithm
for the queries tested over the Zipf dataset. Actual represents the number of elements
relevant to the query results.

8.4 Experimental Evaluation 235

(a) the Zipf queries generated by template 4

(b) the Zipf queries generated by template 5

Figure 8.19: The number of elements stored in the intermediate storage by each algorithm
for the queries tested over the Zipf dataset. "Actual" represents the number of elements
relevant to the query results.

236 Twig Pattern Matching: Bottom-Up Approach

(a) the Zipf queries generated by template 1

(b) the Zipf queries generated by template 2

(c) the Zipf queries generated by template 3

Figure 8.20: Query running time of the algorithms against the Zipf dataset.

8.4 Experimental Evaluation 237

(a) the Zipf queries generated by template 4

(b) the Zipf queries generated by template 5

Figure 8.21: Query processing time of the algorithms against the Zipf dataset.

238 Twig Pattern Matching: Bottom-Up Approach

8.4.3.6 Scalability

This section aims to simulate and test scalability with respect to the processing time of
the new approaches. In this experiment, two datasets were used, the XMark and Random
datasets. While the XMark dataset is shallow and data oriented, the random collection has
a very recursive structure. Five different versions of XMark were created using the scaling
factor from 1 to 5 as explained in Section 5.4.4. The Random dataset was partitioned
into 10 different datasets to evaluate the scalability of the algorithms over deeply irregular
datasets (see Section 5.4.4). In order to make the experiment comprehensive, two TPQs
have been selected over each group of datasets. The "CPL" and "CPL_" approaches were
outperformed by the existing algorithms in one of them . Henceforth, XQ1 and XQ6

were selected for the XMark datasets as TJStrictPostPrime_ significantly outperformed
the other approaches in XQ1 while TwigFast and TJStrictPost had the best performance
for XQ6. In addition, RQ5 and RQ9 were chosen to be issued over the Random datasets
because GTPStack performed better than the rest of the algorithms for RQ5 whereas
GTPStackPrime was faster than the other approaches for RQ9. In order to get meaningful
results, algorithms are compared based on the approach used to store the intermediate
storage.

The results for XQ1 and XQ6 are illustrated in Figures 8.22 and 8.23. Since the XMark
dataset is a data-oriented document with only two recursive tags, it can be observed that
algorithms using simple lists scaled linearly with the increasing size of the dataset for XQ1.
On the other hand, when varying the size of the XMark document, algorithms using the
level split approach started to increase dramatically with the large datasets compared to
algorithms using the combined approach (i.e., the CPL and level split approach), such as
TJStrictPostPrime and TJStrictPrePrime. The reason for this may be due to increasing the
size of the dataset increases the cost of maintaining and accessing level split lists, hence
the processing time is slower as shown in Figure 8.22b.

When processing XQ6 against XMark datasets, all the algorithms which use the
simple list approach showed the same performance, they scaled almost linearly with the
increasing size of the dataset (see Figure 8.23a). Closer inspection of the graph shows
that TwigPrimeMatch_N significantly outperformed the other approaches. However, the
overhead for using linked lists to build the intermediate storage in GTPStack can be
observed in Figure 8.23b, although elements stored in a linked list correspond to only
one query node. Thus, GTPStack and GTPStackPrime started to increase dramatically
with the large datasets compared to the other approaches. Note that all algorithms in the
experiments except TwigList can provide optimal evaluation for XQ6.

Turning now to evaluate the scalability of the algorithms compared against the Random
datasets, the results of scalability analysis for RQ5 are shown in Figure 8.24. Apart
from TwigList, the algorithms scaled effectively and presented a linear relationship with
increasing size of the dataset. From this data, algorithms using getPart and getMatch

functions scaled better than algorithms using the getNext function (see Figure 8.24a). For

8.4 Experimental Evaluation 239

algorithms using the level split approach, it can be seen that all algorithms scaled linearly
with the increasing size of the dataset. For RQ9, it can be seen from Figure 8.25a that the
performance of algorithms combining different advanced preorder filtering functions and
additional fitering strategies presented a linear relationship with the increasing of the size
of the dataset. However, TwigList and TwigFast had the worst scalability for RQ9 because
they only apply a weak subtree filtering check. In addition, algorithms using the level
split approach scaled linearly with the increasing size of the dataset with the exception
of GTPStack as shown in Figure 8.25b. The observed increase in GTPStack could be
attributed to the cost of enumerating results over large intermediate results stored in linked
lists. From the data in Figure 8.25b, it is apparent that the benefits of using the CPL
approach in GTPStack overcome the overhead of utilising linked lists in the intermediate
storage as the best performance was achieved by GTPStackPrime.

To sum up, the experiment considered different structures of TPQs over two groups of
different datasets in terms of structural complexity. It can be, therefore, concluded that the
new approaches are more scalable than the existing algorithms in processing large datasets.

240 Twig Pattern Matching: Bottom-Up Approach

(a)

(b)

Figure 8.22: Scalability comparison for XQ1 against XMark datasets.

8.4 Experimental Evaluation 241

(a)

(b)

Figure 8.23: Scalability comparison for XQ6 against XMark datasets.

242 Twig Pattern Matching: Bottom-Up Approach

(a)

(b)

Figure 8.24: Scalability comparison for RQ5 against Random datasets.

8.4 Experimental Evaluation 243

(a)

(b)

Figure 8.25: Scalability comparison for RQ9 against Random datasets.

244 Twig Pattern Matching: Bottom-Up Approach

8.4.4 Summary

The aim of the present research was to examine the effects and possible overheads of using
the CPL approach in bottom-up holistic twig matching algorithms. The experimental results
have shown that the CPL approach can filter out many irrelevant elements effectively and it
can be observed that the number of elements stored by the "CPL" and "CPL_" algorithms
is always fewer than that stored by the other up-to-date approaches. Furthermore, the CPL
approaches have the best performance in comparison to the state-of-the-art algorithms in
most cases. The reason for this is that the CPL filtering minimises the cost of building
intermediate results because their size is reduced and the cost of enumerating results
because unnecessary traversal is avoided. The data reported, in the previous sections,
appear to support the assumption that using of the same advanced preorder filtering
function and the same design of algorithm (e.g., pointers, local stacks with references) for
all TPQs is not always the best approach. In addition, the scalability tests demonstrated
that the new approaches can scale well for large datasets. Note that algorithms storing
elements in the intermediate storage in postorder may output matching tuples unordered.
Eventually, these experiments confirmed that the CPL approach’s filtering does not bring
any overhead in most cases.

8.5 Conclusion

In this chapter, the research study presented new approaches that use the CPL approach
to improve the filtering phase of bottom-up twig matching algorithms. This thesis also
introduced a novel design of algorithm which can use the level split approach along with the
CPL indexing in TwigFast without maintaining stacks in order to process TPQs efficiently.
Furthermore, multiple statistical analysis revealed that the new holistic twig matching
algorithms significantly outperformed the existing approaches in terms of the size of the
intermediate storage and query running time.

In the next chapter, the advanced preorder filtering strategies will be applied to bottom-
up twig matching algorithms to process efficiently ordered TPQs and TPQs with positional
predicates by filtering out irrelevant elements with ordered constraints and positional
predicates. The advanced preorder filtering functions proposed in this thesis (see Chapter
7) to process ordered TPQs will be added to bottom-up twig matching algorithms in the
same way the original getNext with the property of CPL was embedded in algorithms
proposed in this chapter.

Chapter 9

Ordered and Positional Twig Pattern
Matching: Bottom-Up Approach

9.1 Introduction

This chapter describes the task of designing efficient evaluation algorithms for ordered
TPQs (OTPQs, for short) and TPQs with positional predicates in a bottom-up twig matching
approach. Up to now, no one has proposed an advanced preorder filtering function which
can process OTPQs and works properly with bottom-up algorithms with the exception
of those proposed in this thesis and introduced in Chapter 7. The efficient selection of
useful elements for OTPQs applied by OTJPrimeList and OTJPrime algorithms will be
combined with bottom-up twig matching approaches proposed in Chapter 8. To process
positional predicates, a novel approach will be proposed to extend the existing preorder
filtering functions to skip irrelevant elements which do not satisfy positional predicates
using cursor forward movement.

The purpose of this chapter is to discuss how ordered twig pattern queries (OTPQs) can
be evaluated in holistic bottom-up approaches. Two approaches are proposed to process
OTPQs efficiently which inherit filtering checks for ordered constraints and sequence oper-
ators from the advanced preorder filtering functions used by OTJPrimeList and OTJPrime,
respectively. In addition, a novel approach which combines preorder and postorder filtering
strategies to identify useful elements in TPQs when positional predicates are involved is
proposed. Then, the development of a novel holistic twig matching algorithm based on
the new filtering approach for processing TPQs with positional predicates efficiently is
discussed. Eventually, an extensive set of experiments is conducted to evaluate the perfor-
mance, scalability and efficiency of the new bottom-up holistic twig matching algorithms
to process OTPQs and positional predicates.

The rest of this chapter is structured as follows. Section 9.2 describes some prelimi-
naries including the notation and data structures in one phase holistic algorithms and the
limitations of the existing bottom-up algorithms to evaluate sibling axes and positional
predicates. Then, the development of new algorithms, OTwigPrimeList to process ordered

246 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

axes, and OPTwigPrime to process OTPQs and positional predicates will be presented in
Section 9.3. Section 9.4 describes the experimental evaluation and reports the performance
comparison between the algorithms. The chapter will be concluded in Section 9.5.

9.2 Preliminaries

9.2.1 Notation and Data Structure

In the XPath specification [222], positional predicates can be invoked through a pre-defined
function called position() inside predicates in the form position() op n, where op is one of
the basic logical comparison operators {=,<,>,≤,≥, ̸=} and n is an integer. For example,
a path expression to find the second x-node which must be a descendant of an a-node
which must have a y-node as one of its children can be written as a[/y]//x[position() = 2]
or abbreviated as a[/y]//x[2]. These have been considered in some limited approaches as
in [217, 70]. Evaluation of TPQs with positional predicates takes into account the current
context node (i.e., element in the XML tree) and current context-siblings (i.e., elements
with the same tag sharing the same parent) as introduced in XPath specification [222]. For
illustration, consider the XML tree T1 in Figure 9.1 and the query Q2, when the current
context element a3, the current context siblings is a sequence which contains {a1,a2,a3},
while for the query Q4 the current context siblings is a sequence which contains {a1,a3}
because a2 does not have child y-node. The representation of XPath expressions with
positional predicates in this thesis is based on the ideas presented in [70]. Structural
constraints in TPQs with positional predicates are divided into two types: pre-structural
constraints which refer to structural constraints specified prior to the positional predicate
and post-structural constraints which identify structural constraints specified after the
positional predicate. The different representations modelled as twigs are achieved by
labelling post-structural constraints with "*". For example, consider the following query
with positional predicate as Q1 = //a[//x][2]/y, the A-D relationship between query nodes
a and x is called pre-structural relationship because it has to be satisfied in order to check
the positional predicate, while the P-C relationship between query nodes a and y refers
to as post-structural relationship because it should be checked when the context node a

has already satisfied both the pre-structural relationship and positional predicate. This
classification is due to the fact that positional predicates are not permutable. For instance,
Q1 = //a[//x][2]/y is different from Q2 = //a[//x][/y][2]. That is, the former looks for
the second element a which has already been found to have x-descendants and y-child,
while the latter searches for the second element a among its context-siblings which has
already been found to have x-descendants and y-child.

Most of the notation and data structures used in this chapter are the same as those
in Sections 8.2.1 and 7.2.1. The only exception is that there are extra, auxiliary func-
tions on nodes of TPQs to facilitate the evaluation of TPQs with positional predicates.
Supported functions are as follows: preChildren(q) returns all child nodes of q which

9.2 Preliminaries 247

e

a1

x1 y1

a2

x2

y2

a3

x3 y3

(a) an XML tree T1.

a

x[2] y

/a[/x[2]]/y

(b) a twig query
Q1.

a[2]

x y

/a[2][/x]/y

∗ ∗

(c) a twig query
Q2.

a[2]

x y

/a[/x][2]/y

∗

(d) a twig query
Q3.

a[2]

x y

/a[/x][/y][2]

(e) a twig query
Q4.

Figure 9.1: A sample of an XML data tree and twig pattern queries with positional
predicates. The edges associated with the positional predicates are unlabelled while edges
labelled with "*" should be checked after satisfying the positional predicate.

have structural relationships with q before the positional predicate. preChildrenAD(q)

returns all child nodes which have A-D relationship with q before the positional predicate.
preChildrenPC(q) returns all child nodes which have P-C relationship with q before the po-
sitional predicate. hasPP(q) returns a boolean value to identify whether q has a positional
predicate or not. getPPValue(q) returns the numerical value of the positional predicate
of a query node q. getPPOperator(q) returns the relational operator of the positional
predicate of a query node q. In addition to a stack for each query node in order to perform
a strict prefix path matching used in TJStrictPrePrime as an extension to TJStrictPre, the
approach proposed in this thesis uses a hashtable to keep track of the position of the
context element. This is achieved by using the parentID attribute that is maintained in the
positional representation of each element as a 5-tuple (start,end,level,parentID,CPL). The
set of keys in the hashtable is a set of parentID values for context elements corresponding
to query nodes with positional predicates. The common hashtable operations, such as
get(key), put(key, value) and replace(key, value), are used.

According to the XPath specification [222], there are four typical cases that the po-
sitional predicate may appear in a TPQ. The following four queries exemplify these
four representative cases: Q1 = //a[/x[2]]/y. Q2 = //a[2][/x]/y. Q3 = //a[/x][2]/y.
Q4 = //a[/x][/y][2]. The twig representations of these queries are depicted in Figure 9.1.
In the first case, Q1, the positional predicate is associated with a leaf query node. That is,
only the second element x must be considered as the mapped element for each element
a. The rest of queries show cases where positional predicates are used to restrict parent
query nodes. For Q2, the query looks for the second a element if it has child x-element
and y-element. This is similar to the first case in that only the second element a must be
considered as the mapped element in the XML tree. The third case is considered the most
challenging query because it asks for the second element a among its sibling elements
which has already satisfied the pre-structural constraints. After that, the mapped elements
must also satisfy the post-structural constraints. In the last case, the query searches for the
second element a among its siblings which has satisfied the pre-structural constraints.

248 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

The next subsection will discuss the limitations of the existing bottom-up matching
algorithms to process following-sibling and positional predicates. Simple examples will be
presented to demonstrate the potential benefits of applying a combination of preorder and
postorder filtering to improve the performance when processing TPQs which may contain
ordering and positional constraints.

9.2.2 Motivation

XML query languages such as XPath and XQuery support functions in addition to the
basic thirteen axes introduced in the specification of XPath. The positional predicate or
function is commonly used to increase meta-data of TPQs. Previous studies of XML twig
join processing have not dealt with positional predicate in advanced preorder filtering
functions. Most studies of positional twig join processing have only been carried out in
the original twig join algorithm such as Stack-tree and TwigList. The authors in [217]
extended the binary structural joins algorithm, Stack-tree to support XML TPQs with
positional predicates and process following-sibling axes. In their approach, every element
(i.e., an ancestor candidate) in the stack is associated with counter to check whether a new
element with a positional predicate can be joined or not. For processing following-sibling

edges, a list called Context Sibling List, for short CSL is associated with every entry (i.e.,
the parentID value) in the stack to check whether a new element has useful a preceding-

sibling element or not. However, the key problem with this approach is that it generates
large intermediate results even when the set of query matches is small. This is due to
decomposing the query into binary relationships. One important point to note here is that
this approach does not fall within the class of holistic twig matching algorithms.

In [70], the first holistic twig matching algorithm, called TwigPos which can process
positional predicates and following-sibling relationships was proposed. It is an extension
to TwigList algorithm which replaces global stack with nested stacks in order to maintain
following-sibling constraints among document elements and provide information about
current context-siblings. This novel mechanism does not improve the performance of
holistic twig matching algorithms rather than providing a strict strategy to check following-

sibling relationships and positional predicates. Although, the TwigPos algorithm can avoid
storing useless elements with following-sibling relationships in the intermediate storage,
the number of elements stored are huge because it does not use any advanced preorder
filtering function. Thus, its processing time is not influenced by the query result [22].
TwigPos can support TPQs with positional predicates where pre-structural constraints are
a mix of P-C and A-D relationships, while post-structural constraints are a combination of
P-C, A-D and following-sibling relationships. Figures 9.2 and 9.3 illustrate the matching
process of TwigPos. The key idea is to check pre-structural constraints and positional
predicates before a new sibling element is pushed into the corresponding inner stack since
the current element is accessed before any of its following siblings and context siblings in
document order. As a result, post-structural relationships which may contain following-

9.2 Preliminaries 249

sibling edges can be checked when the current element is popped up from the nested stack.
That is, every following sibling element has to scan over the corresponding stack to mark
elements which satisfy the following-sibling relationship. In the same way, when a new
element associated with positional predicate is about to be pushed into the corresponding
stack it has to traverse over the corresponding stack to set its position among context
sibling elements. This would take O(w) in the worst-case, where w is the maximum degree
of element in the original XML tree. The main weakness with TwigPos is that elements are
appended to the intermediate results in postorder. Thus, the enumeration process outputs
query matches unordered. Unlike TwigList in which some elements may be appended to
the intermediate lists even though they do not satisfy P-C relationships, TwigPos performs
a strict subtree filtering check when TPQs contain P-C edges by traversing intervals of the
current element. This is inefficient because it may take O(d×w) in the worst-case where d

is the longest path in the original XML data and w is the maximum degree of element in the
original XML tree. The reason for this is that pre-structural constraints must be satisfied
before proceeding to check positional predicates in order to correctly return answers to
TPQs. In other words, the algorithm must be able to maintain context sibling elements with
the existence of pre-structural constraints. To achieve this, the authors proposed a mapping
table to track the number of elements which do not satisfy pre-structural constraints using
the parent query node stored in the nested stack as key. Therefore, an element satisfies the
positional predicate if its position among its sibling elements with the same tag satisfies the
numerical relational operator specified by the positional predicate to the integer value of the
positional predicate plus the number of sibling elements which do not satisfy pre-structural
constraints. For example, when processing Q3 in Figure 9.1, a3 is found to be a match
for the query because a2 failed to satisfy the P-C pre-structural constraint with y-node so
that a3 satisfies the positional predicate since 3 = 2+1, where 2 is the integer value of the
positional predicate and 1 indicates the number of elements which are useless (i.e., a2).

The key problem with the previous approaches [217, 70] is that they can only sup-
port TPQs with positional predicates which are on P-C edges. As noted in the original
description [70], unnecessary scans over in-memory data structures may be performed to
set elements’ positions, mark useful elements and filter out irrelevant parents, but further
changes are needed to improve the overall evaluation. Another problem with the existing
approaches is that they fail to take the semantics of ordered and sequence relationships in
twig-based algorithms into account (see Chapter 7).

In view of the success and limitations of the previous approaches in [217, 70], this
research study proposes a new holistic bottom-up matching approach to process TPQs
with positional predicates which focuses on reducing the overhead of storing irrelevant
elements and performing redundant computations. The new approach can support TPQs
with positional predicates which are associated with query nodes under both P-C and A-D
edges.

250 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

e

a1

x1

a2

x2 y1

y2 x3

(a) an XML tree T2.

a

x y

<

(b) Q1.

La

Lx Ly

a1

x1

a2

x2y1

NS

y2y1,x2,a2

(c) Before processing y2

La a2

Lx x2 Ly y1

a1

x1y2x3

NS
(d) When processing x3

La a2 a1

Lx x2 x1 Ly y1 y2

NS

∞

(e) The intermediate results with intervals

Figure 9.2: Illustration of TwigPos processing following-sibling.

The next section presents a set of new holistic bottom-up twig matching algorithms
which combine the efficient selection of useful elements for ordered TPQs introduced
in Chapter 7, the level split data structure for strict subtree checks and the extra filtering
pass introduced in [89]. In addition, a new technique which provides the accurate and
efficient solution to support positional predicates in holistic bottom-up twig matching will
be introduced.

9.2 Preliminaries 251

La

Lx x1 Ly y1

a1[1]a2[2]

x2

y2

NS

a3

(a) Before processing a3

La

Lx x1 x2 x3

Ly y1 y2 y3

a1[1]a2[2]a3[3]

NS

∞

(b) After processing all elements in streams

La

Lx x1 x2 x3

Ly y1 y2 y3

NS

∞

(c) The intermediate storage is ready for enumeration

Figure 9.3: Illustration of TwigPos processing positional predicate. Evaluation of Q3
against T1 of Figure 9.1.

252 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

9.3 Child Prime Label Approaches to support Ordered
and Positional TPQs

In this section, the thesis introduces a novel set of bottom-up twig matching algorithms
which can combine the advantages of different techniques [132, 89, 22, 12] to match
ordered TPQs and TPQs with positional predicates. To process ordered TPQs, OTwig-
PrimeList can be seen as a combination of the efficient selection of useful elements for
ordered TPQs used by OTJPrimeList introduced in Chapter 7, the design of TJStrict-
PrePrime as the main algorithm and the getMatch function as the advanced preorder
filtering strategy. The reason for this is that the experimental results in Chapter 8 serves as
a hint for the selection of the most appropriate combination to improve query efficiency in
bottom-up algorithms. When positional predicates are present, OPTwigPrime is introduced
which provides a general and efficient solution to support OTPQs and TPQs with positional
predicates. OPTwigPrime extends the getMatch with the CPL approach to consider the
minimal ordered constraint which does not affect the query answers. It can be seen as
alternative to OTwigPrimeList without the buffering technique when the queries containing
ordered axes, sequence operators and positional predicates.

The next subsections describe the novel approaches and introduce a new approach to
provide efficient filtering for positional predicates into the holistic approaches.

9.3.1 Ordered Bottom-Up Twig Matching Algorithm

The improvement of OTJPrime and OTJPrimeList introduced in Chapter 7 can be triv-
ially ported to the up-to date algorithms. In this thesis, OTwigPrimeList is introduced
which is a less involved modification of the original algorithms TJStrictPrePrime and
TwigPrimeMatch proposed in this thesis (see Chapter 8). This is due to the fact that it is
based on an advanced preorder filtering strategies (i.e., getPart and getMatch(q)) which
are extensions of getNext. To achieve the above improvement, getPart and getMatch using
the CPL approach are augmented with the buffering technique introduced in Chapter 7 to
process OTPQs efficiently. Consequently, getPart(q) and getMatch(q) return an element
eq of a query node q ∈ OT PQ with five properties. The first four properties are inherited
from the ordered child and descendant extension introduced in Chapter 7 while the fifth
property aims to check the ordered extension introduced in Chapter 7.

i eq has a descendant element eqi in each of the streams corresponding to its child
elements where eqi is the head element of a query node qi ∈ children(q).

ii each of its child elements satisfies recursively the first property.

iii if q has Parent-Child edge(s) with its child query nodes, then eq has a child eqi in Tqi

for each query node qqi ∈ childrenPC(q) (this property is checked by getElement

function introduced in Chapter 6).

9.3 Child Prime Label Approaches to support Ordered and Positional TPQs 253

iv if q has child nodes with ordering constraints, then each of its child elements with
the ordering constraints has the ordered extension according to Definition 7.6. This
property is newly introduced to getPart and getMatch proposed in Chapter 8.

v if¬isRoot(q), then eq has a relevant ancestor ep which has been the head element of a
query node p = parent(q) in a previous call of getPart(p) (getMatch(p), respectively).

Figure 9.4 illustrates the basic ideas of OTwigPrimeList when evaluating OTPQs. It
provides an overview of how the OTwigPrimeList algorithm improves the filtering strategy
of the existing bottom-up twig matching algorithms by eliminating useless elements which
violate the ordering relationships.

Ta a1 a2 ⊥

Tx ⊥

Ty ⊥
TLx x1 x2 x3

TLy y1 y2

(a) Buffering elements with ordering constraints by ex-
traFiltering(a) function.

La a1 a2

Lx[2] x1

Lx[3] x2

Ly[2] y2

Ly[3] y1

(b) The intermediate results with intervals

Figure 9.4: An example to explain the basic ideas of OTwigPrimeList when processing Q1
against T2 in Figure 9.2.

In comparison with TwigPos which outputs matching tuples unordered and does
not take into account the constraints capturing by ordered aware TPQs, the effect of
OTwigPrimeList can be illustrated in the following example.

Example 9.1. Consider the XML tree T2 in Figure 9.2 and the OTPQ Q1 a/x/following-

sibling::y. At the beginning of query processing the head elements are Cqa → a1, Cqx → x1

and Cqy → y1. At the first place, OTwigPrimeList has to assure that the parent query

node must satisfy the child and descendant extension and if it has a child query node with

ordering constraints, it has to have the ordered extension as well. Hence, the element

a1 satisfies the four properties so that all elements in the Tx and Ty streams which are

descendants of a1 are buffered to their lists for further investigation. Next, the algorithm

visits all elements in the buffering lists, TLx and TLy to eliminate useless elements. Since

elements are found to satisfy the ordered relationship as specified by the query, the

algorithm appends elements to their corresponding lists in the intermediate storage in

preorder as follows: a1,x1,a2,x2,y1 and finally y2. Consequently, each element in the

list has child intervals correctly set as presented in Figure 9.4. Finally, OTwigPrimeList

returns the query result consisting of two matches (a1,x1,y2) and (a2,x2,y1). In contrast,

TwigPos outputs two matches which are not ordered in their common prefix as (a2,x2,y1)

and (a1,x1,y2). It can be seen that during the enumeration process of a1 TwigPos has to

perform unnecessary visits for x2 and y1. This is due to the fact that TwigPos uses the

simple list approach to store the intermediate results.

254 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

In a like manner, OTwigPrimeList can be extended to avoid unnecessary scans when
evaluating following-sibling relationships. The original OTwigPrimeList remains the same
with the only difference being in using the level split approach to store buffering elements.
This is illustrated in Figure 9.5. Note that the output enumeration algorithm is adjusted to
consider the ordering relationships as specified by the ordered query. To put it another way,
the current element corresponding to a query node with ordering constraints or sequence
operators during the enumeration process must have a relevant element falling in the range
of its parent intervals. The next section introduces a new approach which can filter out
several useless elements when positional predicates are present based on a combination of
novel techniques.

Ta a1 a2 ⊥

Tx ⊥

Ty ⊥TLx[2] x1 x3

TLx[3] x2

TLy[2] y2

TLy[3] y1

(a) Buffering elements with ordering constraints by extraFil-
tering(a) function.

Figure 9.5: An example of OTwigPrimeList using the level split approach to buffer elements
for Q1 against T2 in Figure 9.2.

9.3.2 Ordered and Positional Bottom-Up Twig Matching Algorithm

Matching TPQs with positional predicates to XML data requires the appropriate handling of
pre-structural constraints, the positional predicate constraint and post-structural constraints.
The existing advanced preorder filtering functions can not naïvely support TPQs with
positional predicates since the filtration may result in false negatives because these different
types of constraints can conflict: a match that satisfies the pre-structural constraints may
violate post-structural constraints, and vice versa. The order in which constraints must be
satisfied is very important in order to return query answers correctly, especially when query
nodes are associated with both pre-structural constraints and post-structural constraints.
For illustration, consider running the original getMatch for the query Q1 = /a[//x][2]//y

against the XML tree T3 in Figure 9.6. The first three calls of getMatch(getRoot(Q1))
return the sequence a1,x1,y1 because a1 satisfies the four properties (see Section 9.3.1)
so that elements in the subtree rooted from a1 are returned. The next call will discard a2

because it does not satisfy the first property (i.e., head elements of child streams must
be descendants of a2). Although a2 should be considered for further processing since it
satisfies the pre-structural constraint, the original getMatch returns the incorrect match
a3,x3,y2. To overcome this, TwigPos is based on the simple preorder filtering strategy

9.3 Child Prime Label Approaches to support Ordered and Positional TPQs 255

e

a1

x1 y1

a2

x2

a3

y2

x3

a4

x4 y4

(a) an XML tree T3.

a[2]

x y

//a[//x][2]//y

∗

(b) a twig query Q1.

a[2]

y x

//a[/y][2]/x

∗

(c) a twig query
Q2.

Figure 9.6: Hard case with the original getMatch and the CPL approach to support
positional predicates with a combination of pre-structural and post-structural constraints.

introduced in TwigList [185] which returns elements from the query root down to the query
leaf by iterating through the head elements in sorted order of their start values. Thus, a2

is returned and its positional is found to satisfy the positional predicate since its position
equals to the numeral value of the positional predicate plus the number of mismatching
sibling elements, 2 = 2 + 0 (a1 was previously found to satisfy the pre-structural constraint).
Similarly, for Q2 in Figure 9.6, the CPL approach discards a3 because it does not satisfy the
third property (i.e., a3 must have a child eqi in Tqi for each query node qqi ∈ childrenPC(a)).
However, a3 should be stored for further processing to check the post-structural constraints
since it has satisfied the pre-structural and positional constraints as a3 has y2 as one of its
children and 3 = 2 + 1, respectively. Even though there is no match for Q2 in the XML tree
T3, the CPL approach returns the incorrect match a4,y4,x4.

The above examples illustrate how the failure to consider the order and type of con-
straints imposed by positional predicates result in returning irrelevant results by the existing
advanced preorder filtering functions. Basically, the incorrect match mainly comes from the
first and third property because they do not consider the pre-structural and post-structural
constraints when positional predicates are associated with branching query nodes. Since
there are four typical cases where positional predicates may appear in a TPQ (see Section
9.2.1), the challenge is to handle the existence of pre-structural constraints in the third and
fourth case because the first and second cases are straightforward, and a simple filtering
technique over the input streams can be used to discard useless elements. The key idea is to
extend the existing advanced preorder filtering strategies to support the pre-structural and
post-structural constraints effectively. In addition, the extra filtering pass which performs
strict subtree matching will be used to update the number of mismatching siblings and
filter out useless elements with respect to the pre-structural, positional and post-structural
constraints. The intuition is simple because the use of extra filtering pass with the level
split approach can guarantee optimal enumeration so that any combination of P-C and
A-D relationships imposed as pre-structural constraints can be checked during a single
traverse over the intermediate results of the parent query nodes [89]. It should be noted
that when a positional predicate on a query node with a combination of pre-structural and
post-structural constraints has preceding, preceding-sibling relationships or is pointed to

256 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

by sequence operators, using the ordered extension introduced in Chapter 7 gives errors.
This is due to the fact that in this case elements must satisfy the pre-structural constraints to
update the number of mismatching siblings correctly, and they can not be filtered out before
checking whether or not they satisfy the pre-structural constraints. The next example,
Example 9.2, shows why using the ordered extension used by OTJPrime (see Chapter 7)
gives problems when elements with positional predicates violate the ordered extension.
This can also be used to justify not using the buffering technique to support positional
predicates.

Example 9.2. Consider the XML trees T4 and T5 of Figure 9.7, and the following ordered

and positional queries Q1 = e//a[/x][/y][2]/preceding::f and Q2 = e//a[/x][/y][2]/following::f.

For Q1 over T4, if the ordered extension must be satisfied between f1 and a1 errors may

occur, while in Q2 against T5 the ordered extension between a1 and f1 can be checked

safely. The reason for this is that the ordered extension skips efficiently elements violating

SeqLR relationships. Initially, the head elements are a→ a1, x→ x1, y→ y1 and f → f1.

For Q1, a1 violates the ordered extension with respect to f1 because it has a start value

less than the start value of f1, thus it can be discarded safely according to the ordered

extension definition. When a1 is removed from the stream, there is no way to find out

whether or not it satisfies the pre-structural constraints to update the number of mismatch-

ing siblings so that incoming elements can be assigned correct positions. As a result, the

match (e, f1,a2,x2,y2) will be lost. For Q2, the ordered extension can be checked without

losing matches because elements with positional predicates are not skipped during this

check. f1 is found to violate the ordered extension with respect to a1 so that the cursor of

the query node f is advanced. Now, all elements satisfy the ordered child and descendant

extension, and during the output enumeration they must satisfy the ordering relationships

as specified by the ordered axes. This leads to no match because a2 is found to satisfy the

pre-structural and positional constraints but violate the post-structural constraints (i.e., it

has no following element f).

As was discussed in Section 9.3.1, getMatch is a core function used as the advanced
preorder filtering strategy in twig pattern matching. It is used to identify the next element
associated with the query node to be processed and advanced in its corresponding stream.
A key to the practical performance of getMatch using the CPL approach is that elements
returned must satisfy the five properties which can prune efficiently a considerable number
of irrelevant elements. As query nodes on the basic axes can be checked using the
child and descendant extension, the positional child and descendant extension defined
in Definition 9.3, aims to take into consideration query nodes with pre-structural and
positional constraints associated with branching elements to check whether or not they
likely contribute to the final results. In addition, the ordered and positional extension
defined in Definition 9.4 extends the ordered extension introduced in Chapter 7 to avoid
filtering out elements before checking the pre-structural constraints, as has been seen in
Example 9.2. Before proceeding to explain the new advanced preorder filtering function

9.3 Child Prime Label Approaches to support Ordered and Positional TPQs 257

e

a1

x1 y1

f1 a2

x2 y2

(a) an XML tree T4.

e

f a[2]

x y

<

e//a[/x][/y][2]/preceding :: f

∗

(b) a twig query Q1.

e

f1 a1

x1 y1

f2 a2

x2 x3 x4 y2

(c) an XML tree T5.

e

a[2]

x y

f

<

e//a[/x][/y][2]/ f ollowing :: f

∗

(d) a twig query Q2.

Figure 9.7: Problematic case with ordered extension introduced in Chapter 7 and positional
predicates

which provides an efficient and general solution to TPQs which may contain ordered and
positional predicates, it should be noted that every element stored in the intermediate
storage is associated with a positional attribute to test whether or not it satisfies the
positional predicate. To achieve this, two hash-based tables are associated with query nodes
which have positional predicates. A hash table counter is used to compute the positional
value of each element using the parentID value as the key. The second hash table mismatch

is used to record the number of siblings which fail to satisfy the pre-structural constraints
and uses the parentID value as the key. Accordingly, the procedure advance(), which
forwards cursors of query nodes by one position to point to next elements, is extended to
update the entries of the hash-based tables every time elements with positional predicates
are discarded.

Definition 9.3 (Positional Child and Descendant Extension). A query node q has the

positional child and descendant extension if the following properties hold:

• ∀ ni ∈ prechildrenAD(q), there is an element ei which is the head of Tni and a

descendant of eq which is the head of Tq.

• ∀ ni ∈ prechildrenPC(q), there is an element eq which is the head of Tq and its CPL

parameter is divisible by tagPrime(ni).

• ∀ ni ∈ prechildren(q), if hasPP(ni), then ni must have the positional child and

descendant extension, otherwise ni must have the child and descendant extension.

258 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

Definition 9.4 (Ordered and Positional Extension). A query node q has the ordered and

positional extension if the following properties hold:

• ∀ ni ∈ rightLR(q), if preChildren(ni) = /0, then there is an element ei which is the

head of Tni and has a start value greater than the start value of eq which is the head

of Tq.

• ∀ ni ∈ rightSLR(q), if preChildren(ni) = /0, then there is an element ei which is the

head of Tni and has a start value greater than the start value of eq which is the head

of Tq.

• ∀ ni ∈ rightSeqLR(q), if preChildren(ni) = /0, then there is an element ei which is

the head of Tni and has a start value greater than the start value of eq which is the

head of Tq.

Algorithm 15 shows the general framework for identifying potential elements partic-
ipating in the final results of TPQs which may have ordered and positional constraints
extending getMatch(q) proposed in Chapter 8 to take into account Definitions 9.3 and
9.4. Consequently, the branching elements with pre-structural constraints need only to
satisfy A-D and P-C relationships specified before the positional predicate to be considered
for further processing. In addition, the branching elements must have their children with
ordering constraints sorted in ascending order of their start values, except elements with
pre-structural constraints. As a result, getMatch(q) returns an element eq of a query node
q ∈ T PQ with four properties. The first and third property are inherited from the child
and descendant extension while the second and fourth property aim to check the new
definitions introduced in this chapter.

i if q does not have pre-structural constraints, then eq has the child and descendant
extension introduced in Chapter 6.

ii if q has pre-structural constraints, then eq has the positional child and descendant
extension introduced in Definition 9.3.

iii if ¬isRoot(q), then eq has a relevant ancestor ep stored in the main algorithm
which has been the head element of a query node p = parent(q) in previous calls of
getMatch(p).

iv if q has child nodes with ordering constraints, then each of its child elements with the
ordering constraints has the ordered and positional extension introduced in Definition
9.4.

The description of the new extension to the original getMatch() is as follows: at Line 13,
it checks if the current query node has pre-structural constraints. If so, the algorithm gets
the max and min of the head elements corresponding to child query nodes of q which are
returned by preChildren(q). Line 16 discards elements of q which do not contribute to the
final result considering the positional child and descendant extension. Before proceeding

9.3 Child Prime Label Approaches to support Ordered and Positional TPQs 259

Algorithm 13: check ordered extension and update counter and mismatch tables
1 Function orderedExtensionWithPP(Query node q):
2 foreach node ni in children(q) do
3 if hasOrderingConstraint(ni) then
4 foreach node m j in rightLR(ni) do
5 while getStart(getElement(ni)) > getStart(getElement(m j) ∧

preChildren(m j) == /0) do
6 if ¬empty(Sq)∧Sq.get(0)is not ancestor o f Cm j then
7 advance(m j)
8 else

return :m j
9 foreach node m j in rightSLR(ni) do

10 while getStart(getElement(ni)) > getStart(getElement(m j) ∧
preChildren(m j) == /0) do

11 if ¬empty(Sq)∧Sq.get(0)is not ancestor o f Cm j then
12 advance(m j)
13 else

return :m j
14 foreach node m j in rightSeqLR(ni) do
15 while getStart(getElement(ni)) > getStart(getElement(m j) ∧

preChildren(m j) == /0) do
16 if ¬empty(Sq)∧Sq.get(0)is not ancestor o f Cm j then
17 advance(m j)
18 else

return :m j
return :q

19 // the ordered extension is satisfied
20 Procedure advance(Query node q, Integer c):
21 key = getParentID(getElement(q))
22 if counterq.contains(key) then
23 temp = counterq.get(key)
24 temp++ // the corresponding counter is incremented according to sharing

parents
25 counterq.replace(key, temp)
26 temp = mismatchq.get(key)
27 temp++ // the number of mismatching elements increases by one
28 mismatchq.replace(key, temp)
29 else
30 counterq.put(key,1)
31 mismatchq.put(key,1)
32 Cq =Cq +1

260 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

Algorithm 14: descendant forward movement and the CPL approach with the pre-
structural constraints
1 Function descendantForward(Query node q):
2 p = parent(q)
3 if ¬empty(Sp) then
4 if eof(p) then
5 forwardToEnd(q)
6 fwdToDescOf(q,getElement(p))
7 else
8 fwdToDescOf(q,Sp.get(0)) // forward the descendant cursor according to the

latest ancestor stored in the main algorithm
9 if Sp.get(0) is ancestor of the current element q then

10 if eof(p) then
11 forwardToEnd(q)
12 fwdToDescOf(q,getElement(p))
13 Procedure fwdToDescOf(Query node q, NodeLabel act):
14 while ¬eo f (q)∧getStart(getElement(q))< getStart(act) do
15 advance(q)
16 Function getQCPL(Query node q):
17 // the prime number assigned to the query node which is the product of its child

query node prime numbers
18 qCPL = 1
19 if preChildrenPC(q) > 0 then
20 foreach node ni in preChildrenPC(q) do
21 qCPL = qCPL × tagPrime(ni)
22 else
23 foreach node ni in childrenPC(q) do
24 qCPL = qCPL × tagPrime(ni)

return :qCPL
25 Function getElement(Query node q):
26 if preChildrenPC(q) > 0 ∨ childrenPC(q) > 0 then
27 while ¬ eof(Cq) ∧ getCPL(Cq) % getQCPL(q) ̸= 0 do
28 advance(q)
29 if eof(Cq) then

return :∞,∞,∞,1 // out of range label
30

31 else
return :Cq // the current head element in the stream of q

32

9.3 Child Prime Label Approaches to support Ordered and Positional TPQs 261

Algorithm 15: getMatch(q)
Input: q is a query node
Result: a query node in a TPQ with ordered and positional constraints which may or

may not be q
1 if ¬ isRoot(q) then
2 descendantForward(q) // cursor forward movement according to the latest

processed element’s descendants
3 if isLeaf(q) then

return :q
4 while true do
5 foreach node ni in children(q) do
6 if ¬ match[q] then
7 gi = getMatch(ni)
8 if gi ̸= ni then
9 match[q] = false

return :gi
10 nmax = a query node with the maximum start value ∈ children(q)
11 nmin = a query node with the minimum start value ∈ children(q)
12 // the following code lines add the positional child and descendant extension for

child nodes with the pre-structural constraints
13 if prechildren(q) ̸= /0 then
14 nmax = a query node with the maximum start value ∈ prechildren(q)
15 nmin = a query node with the minimum start value ∈ prechildren(q)
16 while getEnd(getElement(q)) < getStart(getElement(nmax)) do
17 advance(q)
18 // the following code lines return elements with post-structural constraints in

preorder to perform the simple preorder filtering strategy introduced in
PathStack

19 if preChildren(q) ̸= /0 then
20 postNodemin = a query node with the minimum start value ∈ children(q)
21 if postNodemin ̸= nmin then
22 if getStart(getElement(q)) > getStart(getElement(postNodemin)) then
23 match[q] = false
24 if ¬empty(Sq)∧Sq.get(0)is not ancestor o f CpostNodemin then
25 // pop all elements in Sq and update their end values
26 CpostNodemin =CpostNodemin +1
27 continue // proceed to the next cycle and skipping the following

lines
28 else

return : postNodemin
29 if getStart(getElement(q)) > getStart(getElement(nmin)) then
30 match[q] = false
31 if ¬empty(Sq)∧Sq.get(0)is not ancestor o f Cnmin then
32 // pop all elements in Sq and update their end values
33 Cmin =Cmin +1
34 else

return :nmin
35 else
36 if isOrderedBranching(q) then
37 qoewpp = orderedExtensionWithPP(q)
38 if qoewpp ̸= q then

return :qoewpp
39 match[q] = true

return :q

262 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

to check whether or not the current element of q satisfies the first and second property,
Lines 19-28, ensure that elements which are in post-structural constraints are returned if
they precede the head element of q and a have relevant ancestor stored inside the main
algorithm, the third property. This novel approach allows the advanced preorder filtering
functions to combine the simple preorder filtering strategy introduced in the PathStack
algorithm [40] which strictly filters elements according to the node query path from the
root and does not perform any cursor forward. It also guarantees that when an element of a
query node is returned by getMatch, there is no element remaining in the stream which
has a start value lower than the start value of the element returned. After that, in Line 29,
the first and second property is checked. If the current head element of q fails to satisfy
them, the child query node with the smallest start value is checked to see whether or not
it has a relevant ancestor stored in the main algorithm. If so, it is returned in Line 34.
Otherwise, the current element of nmin is discarded and the algorithm proceeds to the next
cycle. Next, by getting to Line 36, the current query node q has already satisfied the first
three properties of a combination of the positional child and descendant extension. At Line
37, the supporting function orderedExtensionWithPP (see Algorithm 13) is called to iterate
over children of q to assure that they all have the ordered and positional extension. That is,
if a query node, which does not have pre-structural constraints, pointed by LR, SLR or
SeqLR edges precedes the source of the edge, it is checked to see whether or not it has
a relevant ancestor. If so, it is returned at Line 38. Otherwise, the function advances the
corresponding stream to point to the next element until all children of q have the ordered
and positional extension. Note that the procedure advance introduced in Algorithm 13
keeps track of the number of siblings and mismatching siblings for each inner element.
Each time an element is removed from the stream and is determined to be useless, the
corresponding counter and mismatch tables are updated.

Turning now to the main algorithm of OPTwigPrime shown in Algorithm 16, it can be
seen as an alternative to OTwigPrimeList, supporting ordered and positional constraints
without using the buffering techniques. The key for supporting positional predicates
is to choose the appropriate time to skip irrelevant elements which do not satisfy the
positional predicate constraint. In OPTwigPrime, there are two time points that are
correct for skipping according to where the positional predicate appears in the TPQ
(see Section 9.2.1). Time point 1 is for positional predicates which are associated with
leaf query nodes or parent query nodes without pre-structural constraints. Since query
nodes belonging to these cases do not have pre-structural relationships, OPTwigPrime
immediately skips elements which do not satisfy the positional constraints. As a result,
the supporting function checkPosition() is called at Line 9 to assure that only elements
satisfying the positional predicate are appended to the intermediate storage. Time point

2 is performed during the extra filtering pass for the third and fourth case in which pre-
structural constraints are present. The reason for this is that optimal enumeration can be
guaranteed if and only if a combination of the level split and extra filtering pass (i.e., a

9.3 Child Prime Label Approaches to support Ordered and Positional TPQs 263

strict subtree filtering check) approach is applied for twig matching algorithms building
up directly the intermediate storage (see Chapter 8). Accordingly, both contributing and
non-contributing elements can be determined during scanning the intermediate results
in preorder. At Line 19, the supporting procedure extraFilteringPass is used to perform
a strict subtree matching and positional filtering check. The branching element must
satisfy both P-C and A-D relationships and the positional predicate if it is associated
with pre-structural constraints. The previous siblings which do not satisfy pre-structural
constraints for each potential element may be visited twice during the filtering phase. This
is because OPTwigPrime uses a combination of preorder and postorder filtering. Therefore,
the number of mismatching siblings is computed as the number of mismatching siblings in
preorder filtering (i.e., getMatch) plus the number of mismatching siblings in postorder
filtering (i.e., extraFilteringPass). In order to achieve this, entries of mismatch tables are
cleared prior to performing a strict subtree matching at Line 18 of OPTwigPrime. The
intuition is simple since elements are processed in preorder in both strategies (see Example
9.5). Once the intermediate storage contains elements with their corresponding child and
descendant intervals, Line 20 calls the output enumeration algorithm to enumerate the
output. It should be noted that the output enumeration algorithm is extended to consider the
ordering relationships as specified by the query. That is, the current element corresponding
to a query node with ordering constraints or sequence operators during the enumeration
process must have a relevant element within the range of its parent intervals.

Example 9.5. Consider the XML tree T6 in Figure 9.8 and the query Q1 = //a[/x][/y/ f][1].
When the current element of query node a is a3, the number of mismatching siblings is

0 because during the process of getMatch both a1 and a2 have the positional child and

descendant extension with respect to subtrees rooted from a1 and a2, respectively. Moreover,

y1 is found to have the child and descendant extension with respect to f1. However, during

the extra filtering pass a1 is deleted because it does not have element y. Thus, the number

of mismatching siblings for a1 is increased. a3 is found to satisfy the pre-structural and

positional constraints as a3.position = 2 = 1+1. Finally, the query result consists of two

matches (a2,x2,y1, f1) and (a3,x3,y3, f2).

Unlike previous approaches [217, 70], the purpose of counter table is to support the
process of positional predicates on A-D edges using the parentID value. This is due to the
fact that holistic twig matching algorithms are based on partitioning index so that labelling
schemes without parentID values do not suffice to determine whether or not a specific pair
of a and d elements satisfy a//d[2]. To illustrate this, consider the XML tree T7 in Figure
9.9 and the previous query Q1 = a//d[2]. In the partitioning approach only elements
corresponding to query nodes are scanned so that there is no way to determine sibling
relationships between context elements using the original range-based labelling schemes.
Without the parentID value, two matches of Q1 against T6 will be missed. Accordingly,
the parentID value must be maintained while processing the input sets of a and d elements
to return answers to TPQs with positional predicates correctly. Before proceeding to show

264 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

Algorithm 16: OPTwigPrime
Input: TPQ Q

1 foreach qi ∈ Q do
2 match[qi] = false
3 qact = getMatch(getRoot(Q)) // see Algorithm 15
4 vact = getElement(qact)
5 while ¬end(getRoot(Q)) do
6 if ¬ isRoot(qact) then
7 processLocalDisjoint(vact , parent(qact))
8 processLocalDisjoint(vact ,qact)
9 setPositional(vact ,qact)

10 if vact has a prefix path matching then
11 if ¬hasPP(qact)∨ (preChildren(qact) ̸= /0 ∨ checkPosition(vact ,qact)) then
12 // ∀ ni ∈ children(qact) vact .startni = length(getVector(ni))
13 push vact into Sqact

14 append vact to the corresponding intermediate list
15 Cqact =Cqact +1 // the number of siblings has been already increased by

setPositional()
16 qact = getMatch(getRoot(Q)) // see Algorithm 15
17 vact = getElement(qact)
18 ∀qi ∈ Q∧hasPP(qi), mismatchqi.clear
19 extraFilteringPass(getRoot(Q)) // see Algorithm 17
20 enumerateResults()
21 Procedure processLocalDisjoint(Label qact ,Query node q):
22 // pop any element in Sq which is not the ancestor of vact and update their end

values
23 while ¬empty(Sq)∧getEnd(top(Sq))< getStart(vact) do
24 pop(Sq)

25 Procedure setPositional(Label vact ,Query node q):
26 if hasPP(q) then
27 key = getParentID(vact)
28 if counterq.contains(key) then
29 vact .position = counterq.get(key)
30 temp = position++ // the corresponding counter is incremented according

to sharing parents
31 counterq.replace(key, temp)
32 else
33 vact .position = 1
34 counterq.put(key,1)
35 if mismatchq.contains(key) then
36 vact .preMiss = mismatchq.get(key)
37 // preMiss indicates the number of previous siblings which do not satisfy

the pre-structural constraints
38 else
39 mismatchq.put(key,0)
40 Function checkPosition(Label vact ,Query node q):
41 if vact .position satisfies the relational operator in getPPOperator(q) with

getPPValue(q) then
return : true

42 else
return :false

9.3 Child Prime Label Approaches to support Ordered and Positional TPQs 265

Algorithm 17: extraFilteringPass(q)
Input: q is a query node
Result: perform a strict filtering as specified by the ordered TPQ the ordering

constraints among potential elements
1 Procedure extraFilteringPass(Query node q):
2 // read inner query nodes in postorder and any element e which does not satisfy

the postorder filtering in checkChildMatch(e,q) will be deleted. After that, the
intermediate list will be resized. Interval pointers for parent query nodes will be
updated according to the change in their child lists.

3 Function checkChildMatch(Element e, Query node q):
4 key = getParentID(e)
5 temp = 0
6 checkPosition = false; if ¬ checkPreChildMatch(e,q) then
7 if mismatchq.contains(key) then
8 temp = mismatchq.get(key)
9 temp++

10 mismatchq.replace(key, temp)
11 else
12 mismatchq.put(key,1)
13 if checkPreChildMatch(e,q) ∧ preChildren(q) ̸= /0 then
14 if mismatchq.contains(key) then
15 temp = mismatchq.get(key)
16 // the new value to test the position of the current element against the

positional value is computed as the previous mismatching siblings plus the
current mismatching siblings in the extra filtering pass

17 newPPValue = getPPValue(q) + (e.preMiss + temp)
18 if e.position does not satisfy the relational operator in getPPOperator(q)

with newPPValue then
19 checkPosition = true // it can be safely deleted

return :checkPreChildMatch(e,q) ∧ checkPostChildMatch(e,q) ∧
checkChildMatchAll(e,q) ∧¬ checkPosition

20 Function checkPreChildMatch(Element e, Query node q):
21 for ni ∈ preChildren(q) do
22 if e.startni >e.startni then

return :false
return : true

23 Function checkPostChildMatch(Element e, Query node q):
24 for ni ∈ postChildren(q) do
25 if e.startni >e.startni then

return :false
return : true

26 Function checkChildMatchAll(Element e, Query node q):
27 for ni ∈ children(q) do
28 if e.startni >e.startni then

return :false
return : true

266 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

e

a1

x1 a2

x2 y1

f1

y2

a3

x3 y3

f2

(a) an XML tree T6.

a

x y

f

//a[/x][/y/ f][1]

(b) a twig query Q1

Figure 9.8: An example of maintaining the number of mismatching siblings in preorder
and postorder filtering.

the correctness of OPTwigPrime algorithm, it is important to compare it with TwigPos
[70] which does not perform preorder filtering. The difference between the algorithms is
presented in the following example.

Example 9.6. Consider the XML tree T3 in Figure 9.6 and the TPQ Q2 //a[/y][2]/x, at the

beginning of query processing the head elements are Cqa → a1, Cqy → y1 and Cqx → x1.

The first call of getMatch() inside OPTwigPrime will return a→ a1 because it has the

positional child and descendant extension. That is, it satisfies the CPL relationship with

y. Unlike the original CPL approach, the CPL relationship with x is not considered here

because x is connected to a by post-structural constraint. Since a1 is the first element

of its siblings, it is assigned 1 as its positional value and 0 as the number of previously

mismatching siblings. After that, a new entry using the parentID value as the hash key is

inserted to the counter table with the value set to 1. Ca is forwarded to point to a2, and a2

is discarded because it does not have the positional child and descendant extension. When

a2 is advanced, it increases the number of siblings stored in the counter table and adds a

new entry to the mismatch table using the parentID as the key which sets the number of

mismatching siblings to 1. This is because it fails to satisfy the pre-structural constraint.

The next call returns x→ x1 since it has the smallest start value among elements in streams

and it has its ancestor a1 stored inside the main algorithm. Similarly, y→ y1 is returned

because it violates the positional child and descendant extension of the current element

of Cqa → a3. Even though x2 has the smallest start value among elements in streams, it is

discarded because it does not have an ancestor extension which was previously returned

by getMatch. In contrast, TwigPos will append x2 to the intermediate storage. Now, the

head element a3 is returned because it has the positional child and descendant extension,

therefore it is assigned 3 as its positional value while the attribute preMiss is set to 1

(i.e., a2 does not satisfy the positional child and descendant extension). y2 is returned

and stored in the inter mediate storage whereas x3 is discarded because it fails to satisfy

the strict prefix matching check with a3. Finally, elements in the subtree rooted from a4

are returned and appended to the intermediate storage because they satisfy the positional

child and descendant extension. When a4 is returned, it is has a positional value set to

9.3 Child Prime Label Approaches to support Ordered and Positional TPQs 267

a1

f1

d1 d2

f2

d3

b1

d4 d5

a

d[2]

Q1 = /a//d[2]

Ta a1 ⊥

Td d1 d2 d3 d4 d5 ⊥

Matches:

(a1,d2)

(a1,d5)

(a) an XML tree T7.

Figure 9.9: An example of processing a//d with positional predicate.

4 and the preMiss value is set to 1. After all input streams reach the end, OPTwigPrime

performs a strict subtree filtering check through extra filtering pass over the intermediate

list of a. a1 is removed because it does not satisfy the positional predicate. That is, it

has positional value which is not equal to the numerical value of the positional predicate

plus the number of previously mismatching siblings as 1 ̸= 2+0. a3 is found to satisfy the

pre-structural and positional constraints as 3 = 2+1. However a3 is deleted because it

does not satisfy the post-structural constraint. Although a4 satisfies both the pre-structural

and post-structural constraints, it is removed from the list because the positional predicate

is not satisfied as 4 ̸= 2+ 1. Figure 9.10 shows the number of elements stored by each

algorithm. The benefits can be seen of combining different filtering strategies to process

TPQs with positional predicates.

Example 9.5 demonstrates the effect of OPTwigPrime in filtering useless elements
while storing elements in preorder. The subsection below presents definitions and theorems
to prove the correctness of the algorithms proposed. It also analyses their complexities.

La

Lx x1 x2 x3 x4

Ly y1 y2 y4

(a) The intermediate results of Twig-
Pos

La

Lx x1 x4

Ly y1 y2 y4

(b) The intermediate results of
OPTwigPrime

Figure 9.10: Illustration to the difference between TwigPos [70] and OPTwigPrime.

268 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

9.3.3 Analysis of Ordered and Positional Twig Matching Algorithms

This section shows the correctness of the new algorithms and analyses their complexity.
The correctness of OTwigPrimeList follows from the correctness of preorder filtering for
ordering constraints used in OTJPrimeList described in Section 7.3.3, the correctness of
TJStrictPrePrime and TwigPrimeMatch introduced in Chapter 8, with the enumeration
algorithm extended to consider ordering constraints or sequence operators during enumer-
ating the output as specified by OTPQs. The correctness holds for TPQs with ordering
constraints in addition to both Ancestor-Descendant and Parent-Child relationships. More-
over, the getMatch function used by OPTwigPrime is extension to that of OTJPrime which
supports A-D and P-C relationships, and assures that the head elements of query nodes
with ordering constraints must have start values less than their following elements with the
sole exception of query nodes with positional predicates specified as following nodes. The
new getMatch function takes into account the pre-structural constraints during preorder
filtering.

Definition 9.7 (Ordered-Positional Child and Descendant Extension). A query node q has

the ordered-positional child and descendant extension if the following properties hold:

• if q does not have pre-structural constraints, then eq has the child and descendant

extension introduced in Chapter 6.

• if q has pre-structural constraints, then eq has the positional child and descendant

extension introduced in Definition 9.3.

• if ¬isRoot(q), then eq has a relevant ancestor ep stored in the main algorithm

which has been the head element of a query node p = parent(q) in previous calls of

getMatch.

• if q has child nodes with ordering constraints, then each of its child elements with

the ordering constraints has the ordered and positional extension introduced in

Definition 9.4.

The above definition is essential to establish the correctness of the following lemmas:

Lemma 9.8. For any arbitrary query node q′ which is returned by getMatch(q), the

following properties hold:

1. q′ has the ordered-positional child and descendant extension.

2. Either (a) q = q′ or (b) q′ violates the ordered-positional child and descendant

extension of the head element eq of its p = parent(q′) and the head element of eq′

has an already processed ancestor in Sp denoted by eSp for which getEnd(eSp) >

getStart(q′).

Proof. (Induction on the number of ordered-positional children and descendants of q). If q
is a leaf query node, it is returned in Line 3 because it satisfies all the properties 1 and 2 in

9.3 Child Prime Label Approaches to support Ordered and Positional TPQs 269

Lemma 9.8. Otherwise, the algorithm sets up a loop for the inner nodes Lines 4-40 which
does not terminate the getMatch call until an element is possibly the root of a query match
of q. The algorithm recursively gets gi = getNext(ni) for each child of q in Line 7 if and only
if the streams’s cursors of subtree(q) are not moved from the last call to avoid redundant
computations. If for some i, there is gi ̸= ni, and it is known by inductive hypothesis that
gi verifies the properties 1 and 2b with respect to q, so the algorithm returns gi in Line 9.
Otherwise, by the inductive hypothesis that all q’s child nodes satisfy properties 1 and 2a
with their corresponding sub-queries. If preChildrenPC(q) is empty, then at getElement(q)

(Lines 25-32), getMatch advances from Tq all segments that do not satisfy the divisibility
by the product of prime numbers in childrenPC(q) returned from getQCPL. Otherwise
getMatch advances from Tq all segments that do not satisfy the divisibility by the product
of prime numbers in preChildrenPC(q) returned from getQCPL. After that, Lines 10-15
consider the existence of pre-structural constraints to advance from Tq all segments that
are beyond the maximum start value of ni ∈ children(q)/ni ∈ preChildren(q). Then, if q
does not satisfy properties 1 and 2a, Lines 28-34 guarantee that ni ∈ children(q) with the
smallest start value satisfies properties 1 and 2b with respect to the start value of q’s head
element eq is returned. Line 28 ensures that if q has post-structural constraints, the element
with the smallest start value must be returned. Otherwise, q is checked to see whether or
not it has child query nodes with ordering constraints at Line 36. If q is found to be an
ordered, branching query node, the algorithm called the subroutine orderedExtensionWPP

to compare start values for each child of q with ordering constraints against their following
elements according to Definition 9.4. If for some j, there is m j ≺ ni∧¬preChildren(m j),
and it is known by inductive hypothesis that m j verifies the properties 1 and 2b with respect
to q, hence the algorithm returns m j in Line 38. Otherwise, it is known by inductive
hypothesis that all q’s child nodes satisfy properties 1 and 2a with their corresponding
sub-queries and following elements. After that q is returned at Line 40.

Lemma 9.9. Let e1,e2, . . . ,em be a sequence of elements corresponding to the same query

node q and returned by getMatch. Then getStart(e1)< getStart(e2)< · · ·< getStart(em)

Proof. Query node q is either leaf or internal. If q is a leaf query node, by Lemma 9.8, q
satisfies properties 1 and 2b since the parent of q denoted by p=parent(q) has start value
greater than the start value of q, such that getStart(q) < getStart(p), getMatch returns q at
either Line 28 or 34, therefore all elements in the stream of q are returned in ascending
order of their start values as they are sorted in their corresponding streams by the definition
of tag streaming scheme. Otherwise, all elements which are skipped at Lines 16-17 of
getMatch or Lines 27-28 of getElement(q) Lines 7-17 are guaranteed not to be part of any
ordered-positional child and descendant extension. By Lemma 9.8, q is returned, so it
satisfies properties 1 and 2a. Thus all elements in the stream of q are returned in ascending
order of their start values as they are sorted in their corresponding stream tag streaming

scheme. For both cases the lemma holds.

270 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

The above lemmas guarantee that all elements in the XML tree which are part of some
solution at a subtree rooted at a query node in a TPQ will be returned in document order,
and each time getMatch returns a query node q and the head element of q must have the
ancestor extension. Using the above lemmas (Lemma 9.8 and 9.9) and lemmas introduced
in Sections 6.4.2, 7.3.3 and 9.3.3, the next theorem will be used to prove the correctness of
OPTwigPrime and its core function getMatch.

Theorem 9.10. Given a twig pattern query Q and an XML document D, Algorithm OPTwig-

Prime correctly construct the intermediate results of Q on D.

Proof. In Algorithm OPTwigPrime, getMatch(root) is repeatedly invoked to determine the
next query node to be processed. Using Lemma 9.8, it is known that all elements returned
by qact = getMatch(root) have the ordered-positional child and descendant extension. If
qact ̸= root, Line 7, the algorithm sets the end values for all elements in the intermediate
lists Lparent(qact) that are not ancestors of the head element of qact by Lemma 6.21. After
that, it is already known qact has an ordered-positional child and descendant extension and
it has the ancestor extension so that this guarantees its participation in a weak match of
prefixed path from itself to the root. Then, Sqact is cleaned by popping elements which do
not contain the current element vact so that they update end values of their intervals. If qact

has a positional predicate, vact is assigned its positional value using the parentID as the
key. Lines 10-14 ensures that the current element has a strictly matched prefixed path. If
the head element fails to pass a strict prefix path filtering, then it can be skipped safely to
proceed to the next cycle at Line 15. Otherwise, the start positions of intervals for vact are
recorded and vact is pushed into Sqact and appended to its corresponding intermediate list,
using Lemma 8.5 unless qact has a positional predicate but does not have pre-structural
constraints, it must satisfy the positional predicate to be considered for further processing
via the supporting function checkPosition(qact). Finally, the stream of qact is advanced and
the algorithm proceeds to the next iteration. When all streams are ended, the procedure
extraFilteringPass is called to provide a strict subtree filtering match and filter out elements
which do not satisfy positional predicates. Once the intermediate lists containing elements
with their intervals are correctly set, it is straightforward to enumerate the output.

The correctness holds for TPQs which may contain positional predicates and ordering
constraints, and pre-structural constraints consisting of both Ancestor-Descendant and
Parent-Child relationships whereas pre-structural constraints can contain ordered axes and
sequence operators, along with both Ancestor-Descendant and Parent-Child relationships.
More importantly positional predicates are only on edges corresponding to A-D and P-C
axes in TPQs. The reason for this is that the new approach can not guarantee optimal
enumeration when ordered axes and sequence operators are present in order to update
the number of mismatching siblings during the filtering phase. Therefore, time point

2 for computing positional values for query nodes in the third and fourth case should
be performed during the output enumeration. It should be noted that when positional

9.3 Child Prime Label Approaches to support Ordered and Positional TPQs 271

a1

f1

d1 d2

f2

d3

f3

d4 d5

an XML tree T8

a

d[2]

Q1 = /a//d[2]

Q1 Matches:

(a1,d2) (a1,d5)

a

f d[2]

Q2 = /a// f/ f ollowing :: d[2]

<

Q2 Matches:

(a1, f1,d4) (a1, f2,d5)

a

d[2] f

Q3 = /a// f/preceding :: d[2]

< Q3 Matches:

(a1, f2,d1) (a1, f3,d2)

(a) an XML tree T8 and three TPQs with ordered axes and positional predicates, Q1, Q2 and Q3 .

Figure 9.11: An example to illustrate the difference between positional predicates on basic
axes as in Q1 and ordered axes as in Q2.

predicates are on edges corresponding to ordered axes in the original TPQ, the counter

and mismatch tables should be modified to use the information of the current element
in the intermediate storage as the key according to the XPath specification. If edges
are backward axes, positional predicates must be checked in reverse document order.
Otherwise, elements must satisfy positional predicates in document order. For illustration,
consider the XML tree T8 and two TPQs with positional predicates Q1 and Q2 in Figure
9.11. For Q1, the positional information of the context element is determined using the
information of the parent whereas the positional information of the potential element for
Q2 is based on its location according to the preceding element. Though d4 is useless for
Q1, it is useful for Q2. On the other hand, Q3 returns matches which satisfy the positional
predicate in postorder as d1 and d2. While it is straightforward to process positional
predicates on forward axes since the intermediate results are stored in preorder, positional
predicates on backward axes can be supported by reading the parents’ intervals backwards
to set positional values correctly. That is, elements within child intervals are scanned
starting from end values and countdown to start positions.

The new algorithms read elements form data streams only once in a single forward
scan through advanced preorder filtering functions. When elements are appended to the
intermediate storage, each child check and interval set takes constant time. Therefore,
the worst-case time complexity for building up the intermediate storage is O(D×|Input|)
where D is the maximum degree at any query node in TPQ with n query nodes and Input is
the sum of the lengths of the n input lists. When the buffering technique is used to process
OTPQS, the worst case behaviour for the algorithms is O(|P|× |F |+D×|Input|) where
P is the sum of lengths of input lists for query nodes with ordering constraints and F is
the sum of lengths of input lists for query nodes pointed to by ordering constraints, while

272 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

Input is the sum of the lengths of the remaining input lists without ordering constraints.
Therefore, the intermediate result can be enumerated in linear time O(|Out put|) where
Output is the number of twig matchings.

Similar to TJStrictPrePrime and TwigPrimeMatch, the worst case space complexity of
OPTwigPrime algorithms is O(|Input|) which is linear with respect to the total number of
elements whose tags appear in TPQs. This is due to the fact that it directly constructs the
intermediate results. The maximum number of entries for the hash tables is O(2×N×P)

where N is the number of nodes with positional predicates in TPQs and P is the total
number of parents in the XML tree. By contrast, the worst case space complexity of the
OTwigPrimeList algorithms is equal to the sum of lengths of input lists corresponding to
query nodes with the ordering constraints plus the total number of elements whose tags
appear in TPQs as O(|Out put|+ |Input|).

The next section describes the experiments to test the performance of bottom-up holistic
twig matching algorithms for processing ordered axes, sequence operators and positional
predicates proposed in this thesis.

9.4 Experimental Evaluation

The following experiments investigate the effectiveness of the new approaches by per-
forming a number of experiments on benchmark, real world and synthetic datasets. The
effect of the ordered child and descendant extension and the use of buffering techniques
to process ordered TPQs in bottom-up holistic approaches will be explored. In addition,
the experiments investigate the benefits of early identification of elements that satisfy
positional predicates. This section provides the experimental results of a comparison of
the performance and scalability of the new approaches with the existing bottom-up holistic
twig matching algorithm, TwigPos which provides early filtering of following-sibling

relationships and positional predicates. Two parallel experiments will be performed with
the XMark, TreeBank and Random datasets, each aimed at distinctive subclass of TPQs:
experiment 1 tests all the three related algorithms on OTPQs, namely OTwigPrimeList,
OPTwigPrime and TwigPos proposed in [70]. Note that TwigPos is implemented with a
straightforward postprocessing in the enumeration phase to support the rest of the ordering
constraints in order to compare the performance with the proposed algorithms. Experiment

2 tests OPTwigPrime and TwigPos, which is extended to support positional predicates
under A-D edges, on TPQs with positional predicates and ordering constraints specified as
post-structural while pre-structural constraints consist of both A-D and P-C axes. It should
be noted that no performance comparison with the EPPP (Effective Positional Predicate
Processing) structural join algorithm proposed in [217] is presented because it does not fit
into the holistic general framework. Also, TwigPos is previously reported in [70] to have
better performance than EPPP for queries similar to that used in experiment 2. Eventually,

9.4 Experimental Evaluation 273

Table 9.1: Experimental TPQs with positional predicates for the XMark dataset.
Code XPath expression Result size
PXQ1 //people/person[//address/zipcode][88]/profile/education 1
PXQ2 //text[/bold][//keyword[10]]//emph 100
PXQ3 //description[//text]//parlist[1] 98602
PXQ4 //mail/text[/keyword]//bold[3] 1632
PXQ5 //description/text/bold[5] 196
PXQ6 //item[/name[1]]//description[//text/keyword[6]] 90
PXQ7 //item/name[1]/following-sibling::payment/following-sibling::description//text/keyword[6] 90
PXQ8 //people/person[88]/profile/education 1

Table 9.2: Experimental TPQs with positional predicates for the TreeBank dataset.
Code XPath expression Result size
PT Q1 //S/VP/PP[/NP/VBN][2][/IN] 3
PT Q2 //NP/VP/_NONE_[2] 6
PT Q3 //NP[/NN[6]]/PP 1
PT Q4 //S//VP//PP[//IN][4]/NP 65
PT Q5 //WHNP[/NP//JJ][position() ≥ 1]/WRB 1
PT Q6 //S/VP[2]/PP[/IN]/NP[/CD]/VBN 1
PT Q7 //S/VP/PP/IN/following-sibling::NP/VBN[2] 1
PT Q8 //NP/PP[3]/following-sibling::NN 1

all the algorithms tested in the experiments were implemented and added to the query
processor described in Section 5.2.2.2.

For experiment 1, the ordered queries on the XMark, TreeBank and Random datasets
are similar to those used in the experiments of Chapter 7. For experiment 2, as there are
no standard TPQs with positional predicates available for this experiment, test queries
are designed with balanced consideration of the following factors: depth, width, skewed,
balanced, and mixture of pre-structural and post-structural constraints. It should be noted
that some of TPQs with positional predicates on XMark and TreeBank datasets were
obtained from [70]. However, TPQs with positional predicates over the Random dataset
were designed based on the factors mentioned above. For the sake of simplicity, TPQs
with positional predicates were encoded so that the code indicates the dataset and the
corresponding TPQ. By way of example, PRQ2 refers to the second positional TPQ issued
over the Random dataset. The characteristics of the test queries over XMark are presented
in Table 9.1. The properties of TPQs selected over TreeBank are given in Table 9.2.
Table 9.3 provides an overview of TPQs over the Random dataset. Both experiment 1

and experiment 2 compare the algorithms based on metrics similar to those described in
Section 8.4.2. The scalability tests are provided in Section 9.4.3.

274 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

Table 9.3: Experimental TPQs with positional predicates for the Random dataset.
Code XPath expression Result size
PRQ1 //b/e//a[/f][2]//d 16
PRQ2 //a//b[//e]/c[3] 290
PRQ3 //a/c//b[//d][2][/e]/f 2
PRQ4 //b/c[/e][3]/f 4
PRQ5 //d[a[//e]/f]/c[position ≤ 3]/b 0
PRQ6 //b//e//a[//f][2][d] 23
PRQ7 //a/c//b[3][/following-sibling::d][/following-sibling::e] 1
PRQ8 //a//d[2][/following-sibling::f]/following-sibling::e[/c]//b[2] 3

9.4.1 Experiment 1: Ordered Twig Queries

9.4.1.1 Experimental Results

This section presents the evaluation of the experimental results. The first step in this
process was to inspect all the results returned from the algorithms. Since the algorithms
produced the same results, the correctness of the new approaches can be verified. For the
purpose of clarification, the discussion of the query performance related to a particular
dataset is presented within an individual subsection. The query performances for OTPQs
over XMark, TreeBank and Random datasets are evaluated in Sections 9.4.1.2, 9.4.1.3 and
9.4.1.4.

9.4.1.2 XMark

This section discusses the experimental results for OTPQs over the XMark dataset. The
purpose of using this dataset is to show that the new approaches do not bring any overhead
for processing XML documents with a simple structure. Figure 9.12 shows the number
of elements stored in the intermediate storage by each algorithm along with the actual
elements which are part of complete matches. An immediate observation from the figure is
that the new approaches are more efficient in terms of the intermediate results than TwigPos
for all queries on this dataset. It can be seen from the data in Figure 9.12, OTwigPrimeList
provided optimal evaluation for all queries, and the size of the intermediate storage
produced by OPTwigPrime and TwigPos is 2 and 12 times larger than the intermediate
storage of OTwigPrimeList, respectively. Generally, when comparing OPTwigPrime
with TwigPos, OPTwigPrime stored fewer elements than TwigPos. To assess the query
performance, the Kruskal-Wallis test was carried out to see whether or not there is a
performance difference between two algorithms at least for every OXQ on the dataset.
The results of the groups analysis are set out in Table 9.4. As can be seen from the table,
a significant difference between two groups (i.e., algorithms) at least was evident in all
ordered queries.

In consequence, the number of paired comparisons for this dataset can be obtained
using Formula 6.2 described in Chapter 6 as = (3×(3−1))

2 ×5 = 15. Details of the pairwise

9.4 Experimental Evaluation 275

Figure 9.12: The number of elements stored in the intermediate storage by each algorithm
for the ordered queries tested over the XMark collection. "Actual" represents the number
of elements relevant to the ordered query results.

comparisons can be found in Appendix D. The performance result of ordered queries on
this dataset is plotted in Figure 9.13. Clearly, the new algorithms were significantly faster
than TwigPos on all OTPQs. According to the results provided in Table 9.5, OPTwigPrime
had the best performance in all cases with the sole exception of OXQ3. OTwigPrimeList
significantly outperformed the other algorithms in the experiments for OXQ3 in which
it took only 20% of the time taken by the other algorithms. A possible explanation for
this might be that OXQ3 is a simple OTPQ with only one branching query node so that
the buffering technique did not cause any overhead during the filtering phase and the cost
of enumerating results because a redundant scan is avoided. Even though OPTwigPrime
applied a weak filtering among ordered, sibling query nodes, it had a superior performance
to the algorithms compared. TwigPos was comparable to OTwigPrimeList only when a
query contained the minimal ordered constraint as for OXQ5. TwigPos ran slightly faster
than OTwigPrimeList. For each pairwise comparison, the effect size suggested that there is
a medium to large practical significance.

On the whole, the experimental results demonstrated that the novel approaches to
match ordered TPQs had a superior performance to the existing algorithm, TwigPos, which

276 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

Table 9.4: Results for the comparison groups on the XMark dataset.
Query p-value p-value < 0.05
OXQ1 1.904992e-58 TRUE
OXQ2 3.411924e-52 TRUE
OXQ3 1.340419e-56 TRUE
OXQ4 1.899373e-58 TRUE
OXQ5 4.434081e-49 TRUE

Figure 9.13: Query processing time of the algorithms compared for OTPQs against XMark.

Table 9.5: The overall comparisons based on U tests over the XMark dataset. "-" indicates
no statistically difference in the performance.

Algorithm
of comparisons

Faster Slower -
OTwigPrimeList 5 5 0
OPTwigPrime 9 1 0
TwigPos 1 9 0

supports only following-sibling axes and uses postprocessing for the remaining of ordering
constraints, in terms of the space consumption and query running time. For the XMark
dataset, the extra filtering strategy applied by the buffering algorithm, OTwigPrimeList
provided optimal evaluation for all ordered queries. However, the buffering technique had

9.4 Experimental Evaluation 277

Table 9.6: Results for the comparison groups on the TreeBank dataset.
Query p-value p-value < 0.05
OTQ1 5.612397e-58 TRUE
OTQ2 2.858499e-38 TRUE
OTQ3 2.735609e-54 TRUE
OTQ4 3.833918e-49 TRUE
OTQ5 6.147709e-58 TRUE
OTQ6 3.514137e-58 TRUE
OTQ7 1.173357e-56 TRUE
OTQ8 4.059079e-55 TRUE
OTQ9 3.094025e-58 TRUE

no effect and only caused overhead with respect to the query performance when compared
with the simple algorithm, OPTwigPrime. To summarize, OPTwigPrime significantly
outperformed in all ordered queries the other algorithms with the exception of OXQ3

which was slower than OTwigPrimeList as can be seen in Table 9.5.

9.4.1.3 TreeBank

The experiment is designed to test algorithms processing ordered TPQs on the TreeBank
dataset which have different structures and a mixture of A-D, P-C, LR, SLR and SeqLR
edges. Figure 9.14 shows the size of the intermediate storage constructed by each algorithm.
It can be seen that by far the best performance is achieved by the buffering algorithm,
OTwigPrime. However, it stored irrelevant elements in ordered TPQs with LR ordering
constraints, namely OT Q1, OT Q5, OT Q7 and OT Q8. These results are consistent with
the theoretical analysis discussed in Chapter 7. That is, the buffering lists may contain
elements with ordered axes or sequence operators which are found to satisfy the LR or
SeqLR ordering relationships with elements in subtrees rooted from ancestors which are
not their lowest common ancestor within a deeply recursive XML tree. Another reason is
that the buffering lists are checked in one traversal starting from preceding to following
elements so that some following elements may be found useless later if they also precede
another elements. Interestingly, there was not much difference between the buffering
technique and the simple ordered filtering checks in spite the fact that the TreeBank dataset
has many recursive tags. This may be due to the nature of the TreeBank document in
which elements are ordered in the sequence they occur in the original text so that the
use of the minimal ordering constraint can eliminate irrelevant elements efficiently. On
the other hand, TwigPos stored elements 11 and 18 times larger than OPTwigPrime and
OTwigPrimeList, respectively. TwigPos provided optimal enumeration for OT Q2 and
OT Q4 because they only have following-sibling relationships. However, the size of the
intermediate storage of TwigPos for OT Q2 and OT Q4 was about 83% and 411% larger
than that generated by OTwigPrimeList.

278 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

Figure 9.14: The number of elements stored in the intermediate storage by each algorithm
for the ordered queries tested over the TreeBank document. "Actual" represents the number
of elements relevant to the ordered query results.

Moving now to evaluate the query performance, the Kruskal-Wallis tests presented
in Table 9.6 revealed that there is a difference in the performance between at least two
algorithms. Accordingly, paired comparisons based on the U test of Mann Whitney were
computed. The number of pairwise comparisons for this dataset can be obtained using
Formula 6.2 as = (3×(3−1))

2 ×9 = 27. The full results of the pairwise comparisons can
be found in Appendix D. From the data in Figure 9.15 and Table 9.7, it is apparent that
OPTwigPrime significantly outperformed the other approaches in all queries. Note that the
cost difference between OPTwigPrime and OTwigPrime which is due to some run-time
overhead in order to improve the filtering strategy. The effect of the extra filtering is
significant in top-down approaches as was previously reported in Chapter 7, whereas the
use of a combination of CPL and level split approach in bottom-approaches can lower
the cost of enumerating results without any additional overhead. The reason for this is
that the buffering algorithms, OTJPrimeList and OTJPrimeMultiLists can overcome the
main weakness of top-down approaches which comes from redundant intermediate results
and inefficient output enumeration. TwigPos was comparable to OTwigPrimeList only for

9.4 Experimental Evaluation 279

Figure 9.15: Query processing time of the algorithms compared for OTPQs against the
TreeBank document.

OT Q2 because the following-sibling axis is present and the number of elements stored by
all algorithms is quite large.

Table 9.7: The overall comparisons based on U tests over the TreeBank dataset. "-"
indicates no statistically difference in the performance.

Algorithm
of comparisons

Faster Slower -
OTwigPrimeList 8 9 1
OPTwigPrime 18 0 0
TwigPos 0 17 1

To sum up, OPTwigPrime which applies a simple ordering check over the head el-
ements of candidate parents showed a superior performance to the other algorithms in
terms of query running time on deep recursive data (e.g., TreeBank). On the other hand,
OTwigPrimeList stored fewer elements than the other algorithms due to the fact that it uses
the buffering technique to filter out useless elements with ordering constraints.

280 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

9.4.1.4 Random

The Random dataset has a complex structure with six distinct tags. This dataset was
selected to show the differences between algorithms where the XML combines features of
data-centric and text-centric documents, being relatively structured and deeply recursive at
the same time. The number of elements stored by algorithms in the experiment is plotted
in Figure 9.16. Unlike the previous datasets, OTwigPrimeList provided optimal evaluation
only for one OTPQ, ORQ6 because elements in subtrees matching the ordered query satisfy
the SeqLR ordering constraint. Thus, OPTwigPrime did not store any useless element for
ORQ6. OTwigPrimeList stored two orders of magnitude fewer elements than TwigPos
while the number of elements stored by OPTwigPrime was twice as big as the number
of element stored by OTwigPrimeList. Further, the OPTwigPrime algorithm showed a
superior performance in filtering out useless elements despite the complexity of this dataset
in terms of structure. Generally, the effect of the new approaches is significantly superior
to the existing algorithm, TwigPos. The performance results with ordered queries over
the Random dataset is plotted in Figure 9.17. To evaluate the query performance, the
Kruskal-Wallis test was carried out to test the null hypothesis stating that there is no
difference in the performance between the algorithms tested. The results of the groups
analysis are presented in Table 9.8. It can be seen from the data in Table 9.8 that every
Kruskal-Wallis test revealed that there is a significant difference between two algorithms
at least.

Table 9.8: Results for the comparison groups on the Random dataset.
Query p-value p-value < 0.05
ORQ1 1.93E-58 TRUE
ORQ2 1.08E-43 TRUE
ORQ3 1.93E-58 TRUE
ORQ4 9.22E-54 TRUE
ORQ5 1.93E-58 TRUE
ORQ6 1.93E-58 TRUE
ORQ7 1.93E-58 TRUE

Accordingly, the total number of paired comparisons for the Random dataset can be
computed using Formula 6.2 described in Chapter 6 as = (3×(3−1))

2 × 7 = 21. The full
results of the pairwise comparisons can be found in Appendix D. The overall results
are provided in Table 9.9 which summarises the comparisons to show how many times
each algorithm statistically was either faster or slower. As shown in Figure 9.17, the
new algorithms were significantly faster than TwigPos on all ORTQs. OPTwigPrime
had the best performance in all cases, and it was several times faster than the rest of
algorithms tested. It was five times faster than OPTwigPrimeList and fifty times faster than
TwigPos. Even though most of the ordered queries over this dataset have following-sibling

axes, TwigPos failed to outperform the new approaches nor lower the cost of building the

9.4 Experimental Evaluation 281

Figure 9.16: The number of elements stored in the intermediate storage by each algorithm
for the ordered queries tested over the Random dataset. "Actual" represents the number of
elements relevant to the ordered query results.

intermediate storage. When comparing OTwigPrimeList with TwigPos, OTwigPrimeList
significantly outperformed TwigPos in all queries as presented in Table 9.9, except for
ORQ2 where OTwigPrimeList moderately outperformed TwigPos. After tracing into the
evaluation of this query, it can be observed that all algorithms generated a quite large
number of elements, and there is a following-sibling edge. For every U test, the effect size
suggested that there is a medium to large practical significance except for ORQ2, where
low practical significance was evident when a paired comparison between OTwigPrimeList
and TwigPos.

Table 9.9: The overall comparisons based on U tests over the Random dataset. "-" indicates
no statistically difference in the performance.

Algorithm
of comparisons

Faster Slower -
OTwigPrimeList 7 7 0
OPTwigPrime 14 0 0
TwigPos 0 14 0

282 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

Figure 9.17: Query processing time of the algorithms compared for OTPQs against the
TreeBank document.

To conclude, the experiment was used to explore the effects of combining the ordered
child and descendant extension introduced in Chapter 7 and level split approach as the
main intermediate storage over the Random dataset. The complexity of this dataset comes
from the fact that every subtree may form a potential match. Thus, the new approaches
provided an efficient way to perform strict filtering checks although ordering constraints
are present (see Figure 9.16). Clearly, OPTwigPrime showed a superior performance to the
rest of algorithms compared, due to the fact that it uses a simple filtering strategy which
does not bring any additional overhead while filtering out a considerable number of useless
elements during the filtering phase. In addition, OTwigPrimeList was found to be several
times faster than TwigPos. For example, it was 35 times faster than TwigPos for ORQ4

(see Figure 9.17).

9.4.2 Experiment 2: Ordered/Positional Twig Queries

This section presents the evaluation of the experimental results for processing Ordered/-
Positional twig queries. This experiment is limited to OPTwigPrime and TwigPos only.
Even though OPTwigPrime is capable of processing TPQs which may contain ordering

9.4 Experimental Evaluation 283

constraints as post-structural, the experiment only contains following-sibling relationships
in the post-structural constraint because TwigPos is capable of evaluating this type of twig.
Thus, the experiment aims at comparatively studying the performance of OPTwigPrime and
TwigPos on various common subclasses of the aforementioned type of Ordered/Positional
twig queries. In order to verify the validity of the new approaches, all query results in the
experiments returned from the tested algorithms were inspected. Since both algorithms
returned the same results, their correctness can be verified. To allow precise comparisons,
the discussion of the query performance related to a particular dataset is contained within
an individual subsection. The query performances for TPQs with ordered constraints
and positional predicates over XMark, TreeBank and Random datasets are discussed in
Sections 9.4.1.2, 9.4.1.3 and 9.4.1.4, respectively.

9.4.2.1 XMark

Figure 9.18: The number of elements stored in the intermediate storage by each algorithm
for the ordered queries tested over the XMark collection. "Actual" represents the number
of elements relevant to the query results.

In the XMark dataset, the experiment is to compare the performance of the algorithms
on a relatively balanced XML tree. The number of elements stored by each algorithm are

284 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

shown in Figure 9.18. Generally, the size of the intermediate storage of OPTwigPrime
was half as big as that constructed by TwigPos due to the fact that it uses a combination of
preorder and postorder filtering whereas TwigPos uses only a postorder filtering strategy.
Since positional predicates are checked during the postorder filterings, OPTwigPrime
stored many irrelevant elements for PXQ1 and PXQ2. For example, OPTwigPrime stored
59,823 elements while TwigPos stored 141,454 elements; however only 54 elements are
relevant to PXQ2. Note that PXQ8 is a path query with positional predicate. However,
TwigPos stored a large number of irrelevant elements. For PXQ8, OPTwigPrime provided
optimal evaluation and stored four orders of magnitude fewer elements than TwigPos.

Figure 9.19: Query processing time of the algorithms compared for Ordered/Positional
over the XMark document.

Moving on now to compare query processing time for this dataset, Figure 9.19 presents
the performance results. To compare the query performance statistically, the experiment is
based on hypothesis that there is no difference in the performance between the algorithms
so that the Mann-Whitney U test was carried out to test the null hypothesis for each query.
Thus, the total number of paired comparisons is equal to the number of queries since the
experiment tests two algorithms. All U tests suggest that there is a significant difference in
the performance between the algorithms. The summary of the paired comparisons based
on the Mann Whitney U test is provided in Table 9.10. The raw data of query processing

9.4 Experimental Evaluation 285

time for the XMark dataset can be found in Appendix D. TwigPos was comparable to
OPTwigPrime only when there is no much difference in the size of the intermediate storage
built up by each algorithm. When following-sibling edges are present, OPTwigPrime
significantly outperformed TwigPos as for PXQ7. TwigPos outperformed OPTwigPrime
in PXQ3 and PXQ5 due to the absence of pre-structural constraints and in PXQ1 because
there is only one match in the dataset. The reason is that OPTwigPrime uses a combination
of the preorder and postorder filterings before storing elements in the intermediate storage
which introduces some run-time overhead in order to skip irrelevant elements. Since the
number of matching is quite small, the filtering has almost no effect, and only causes
overhead.

Table 9.10: The overall comparisons based on U tests over the XMark dataset. "-" indicates
no statistically difference in the performance.

Algorithm
of comparisons

Faster Slower -
OPTwigPrime 5 3 0
TwigPos 3 5 0

To wrap up, OPTwigPrime showed a superior performance to the existing algorithm,
TwigPos in terms of the space consumption in all queries and the query efficiency in some
queries which are more complex than the rest of queries over this dataset. The performance
ratio of OPTwigPrime over TwigPos ranges from 1.03 (with PXQ7) to 36.13 (with PXQ8).
On the other hand, the performance ratio of TwigPos over OPTwigPrime ranges from 1.02
(with PXQ5) to 6.61 (with PXQ1).

9.4.2.2 TreeBank

Eight ordered and positional TPQs including complex and mixture of pre-structural and
post-structural constraints (see Table 9.2) were used in the TreeBank dataset to show
the differences between the algorithms where the XML document has a highly recursive
structure. Figure 9.20 shows the size of the intermediate storage constructed by each
algorithm. Clearly, OPTwigPrime stored by far fewer elements than TwigPos on over all
queries tested on TreeBank. OPTwigPrime stored approximately one order of magnitude
fewer elements than TwigPos due to the fact that it combines the efficient selection of
useful elements for TPQs with a mix of P-C and A-D edges introduced in Chapter 6 and a
strict subtree filtering match by one additional traversal over the intermediate results. This
combination can handle pre-structural constraints efficently as shown in the experiments
of Chapter 8. Interestingly, OPTwigPrime provided optimal evaluation for some queries
such as PT Q2 and PT Q6.

To compare the query performance statistically, the experiment is based on hypothesis
that there is no difference in the performance between the algorithms so that the Mann-
Whitney U test was carried out to test that null hypothesis for each query. Thus, the total
number of paired comparisons is equal to the number of queries because the experiment is

286 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

Figure 9.20: The number of elements stored in the intermediate storage by each algorithm
for the ordered queries tested over the TreeBank document. "Actual" represents the number
of elements relevant to the ordered query results.

limited to OPTwigPrime and TwigPos. All U tests turned out to reject the null hypothesis.
Since there is a significant difference in the performance between the algorithms, the
summary of the paired comparisons based on the Mann Whitney U test is provided in Table
9.11. The raw data of query processing time on TreeBank can be found in Appendix D.
The performance result is plotted and fitted into Figure 9.21. OPTwigPrime significantly
outperformed TwigPos in all queries except PT Q4 because both stored a quite large number
of irrelevant elements (see Figure 9.20). Another possible explanation for this is that only
A-D edges are present during the preorder filtering match which are less restrictive while
the P-C edge has to be checked by a strict postorder check.

Table 9.11: The overall comparisons based on U tests over the TreeBank dataset. "-"
indicates no statistically difference in the performance.

Algorithm
of comparisons

Faster Slower -
OPTwigPrime 7 1 0
TwigPos 1 7 0

9.4 Experimental Evaluation 287

Figure 9.21: Query processing time of the algorithms compared for Ordered/Positional
TPQs against TreeBank.

To sum up, OPTwigPrime significantly outperformed TwigPos in all queries (except
PT Q4, see Table 9.11). When the queries tested contain a combination of following-sibling

edges and positional predicates, OPTwigPrime was up to five times faster than TwigPos.
Overall, the improvement ratio of OPTwigPrime over TwigPos ranges from 1.80 (with
PT Q8) to 7.49 (with PT Q5).

9.4.2.3 Random

The Random dataset has a complex structure with six distinct tags. This dataset was used to
demonstrate the cost difference between OPTwigPrime and TwigPos because all elements
are equally probable with a deeply recursive XML tree. The size of intermediate storage
generated by each algorithm is presented in Figure 9.22. Generally, OPTwigPrime stored
two orders of magnitude fewer elements than TwigPos over all queries on this dataset. For
instance, in PRQ7 and PRQ8, the number of elements stored in OPTwigPrime was 105
and 61 times fewer than that stored in TwigPos, respectively. Note that PRQ7 and PRQ8

contain following-sibling axes which are supported by TwigPos.

288 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

Figure 9.22: The number of elements stored in the intermediate storage by each algorithm
for the ordered queries tested over the Random dataset. Actual represents the number of
elements relevant to the ordered query results.

To compare the query efficiency, the Mann Whitney U test was carried out to test
the null hypothesis for each TPQ tested. Since the results turned out to reject the null
hypothesis by suggesting that for each TPQ there was a significantly difference in the
performance between OPTwigPrime and TwigPos. The summary of the paired comparisons
based on the Mann Whitney U test is given in Table 9.12. The full results are given in
Appendix D. As reflected in the table, OPTwigPrime significantly outperformed TwigPos
over all queries on the random dataset (see Figure 9.23).

In summary, OPTwigPrime showed a superior performance to TwigPos in terms of
the number of elements stored in the intermediate storage and the CPU execution time.

Table 9.12: The overall comparisons based on U tests over the Random dataset. "-"
indicates no statistically difference in the performance.

Algorithm
of comparisons

Faster Slower -
OPTwigPrime 8 0 0
TwigPos 0 8 0

9.4 Experimental Evaluation 289

Figure 9.23: Query processing time of the algorithms compared for Ordered/Positional
TPQs against the Random dataset.

Overall, the improvement ratio of OPTwigPrime over TwigPos ranges from 2.42 (with
PRQ4) to 4.58 (with PRQ3).

290 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

9.4.3 Scalability

This section aims to evaluated the scalability of the new algorithms by increasing the size
of the dataset. In this experiment, two datasets were used, the XMark and Random datasets.
Whereas the XMark dataset is shallow and data oriented, the random collection has a deep
recursive structure. Five different versions of XMark were created using the scaling factor
from 1 to 5 as explained in Section 5.4.4. The Random dataset was partitioned into 10
different datasets to evaluate the scalability of the algorithms over irregular datasets (see
Section 5.4.4). In order to make the experiment more objective, two TPQs have been
selected over the two groups of datasets for each experiment in the query performance
study (i.e., experiment 1 and 2), one of them being supported efficiently by TwigPos. As a
result, OXQ1 and PXQ3 were selected for the XMark datasets, and ORQ7 and PRQ4 were
chosen to be issued over the Random datasets.

The results for OXQ1 and ORQ7 are illustrated in Figure 9.24. With ordered TPQs,
it can be observed that the new approaches scaled linearly with the increasing size of
the dataset for both OXQ1 and ORQ7. On the other hand, for OXQ1, TwigPos started to
increase dramatically with the large datasets, and it has the worst scalability for ORQ7.

Moving now to test the scalability with positional TPQs, the results are shown in Figure
9.25. The algorithms showed the same performance, they scaled almost linearly with the
increasing size of the XMark document. However, when varying the size of the Random
dataset. The reason for this is that OPTwigPrime stored 81 times fewer elements than
TwigPos for PRQ4.

9.4 Experimental Evaluation 291

(a)

(b)

Figure 9.24: Scalability comparison for OXQ1 and ORQ7 against XMark and Random
datasets, respectively.

292 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

(a)

(b)

Figure 9.25: Scalability comparison for PXQ3 and PRQ4 against XMark and Random
datasets, respectively.

9.5 Conclusion 293

9.4.4 Summary

The aim of the present research was to explore the benefits of the early filtering for pro-
cessing ordered and positional TPQs in bottom-up holistic twig matching algorithms. The
experimental results have shown that the new approach can filter out many irrelevant
elements effectively and it can be observed that the number of elements stored by the
algorithms is significantly fewer than that stored by the existing approach. In addition,
OPTwigPrime has the best performance in comparison to the rest of algorithms tested in
most cases. The reason for this is that the new approaches’ filtering lowers the cost of
building intermediate results because their size is reduced and the cost of enumerating
results because unnecessary traversal is avoided. The performance degradation of OTwig-
PrimeList when compared with OPTwigPrime is likely to be due to the expensive cost of
fetching every element with ordering constraints into the buffering lists and performing
additional filtering passes over the large buffering lists. Moreover, the scalability tests
indicated that the new approaches have good scalability and they can scale well for large
XML documents. An important observation is that TwigPos may output matching tuples
unordered because it stores elements in postorder so that post-processing sorting of the
output matches may be required to return query answers in preorder. On the other hand,
the new approaches return the query results in document order. Finally, the experiments
demonstrated the validity and improvement of the new approaches over the existing algo-
rithm. These experiments also confirmed that the use of different filtering strategies does
not cause any overhead in comparison to the existing approach. Thus, OPTwigPrime is
the more powerful and most efficient bottom-up twig matching algorithm for processing
ordered and positional TPQs.

9.5 Conclusion

In this chapter, two approaches, OTwigPrimeList and OPTwigPrime, to process ordered
TPQs efficiently were proposed, without sequentially scanning the whole intermediate
storage as in the case of top-down approaches. The first approach uses the advanced
preorder filtering function introduced in OTJPrime to satisfy the SeqLR ordering con-
straints among TPQs with ordered axes or sequence operators by inspecting only head
elements. The second approach makes use of the advanced preorder filtering function in
OTJPrimeList. That is, some elements with order constraints are buffered in the main
memory to avoid storing irrelevant elements so that a strict check for the three ordering
constraints can be achieved. Unlike the first approach, the buffering algorithm can provide
optimal enumeration in some cases as was shown in the experimental results. This is
achieved by performing a strict check for the ordering constraints followed by a strict
check for both prefix path and subtree matches. In addition, one approach has been devised
to process TPQs with positional predicates. The new approach, OPTwigPrime combines
features of previous approaches to process TPQs such as the CPL approach, level split

294 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach

intermediate storage and the state-of-the-art advanced preorder filtering function, getMatch.
OPTwigPrime is the first of its kind using preorder and postorder filtering for processing
ordered and positional TPQs.

The following chapter describes the overall evaluations of the experimental results
obtained in this thesis in the light of the research hypothesis, and identifies the limitations
of the experiments’ design. Furthermore, the main findings of the CPL approach for
processing structural XML queries will be given.

Chapter 10

The Overall Evaluation

10.1 Introduction

In Chapters 6, 7, 8 and 9, the design of four experiments was described; each experi-
ment evaluated a set of XML query processing algorithms in terms of query coverage,
performance and scalability. The first experiment was designed to test top-down holistic
twig matching algorithms which process and store XML elements in preorder and use
the output enumeration introduced in TwigStack. This experiment focused on a subset of
XPath expressions, which contains Parent-Child (P-C) and Ancestor-Descendant (A-D)
relationships since this type of query is the main building block for more complex queries.
The second experiment evaluated the new top-down holistic approaches for processing
ordered queries which contain ordering constraints in addition to the basic axes. Further-
more, the third experiment was limited to the bottom-up category of holistic twig matching
algorithms on the subclass of TPQs which contains only P-C and A-D edges and use the
output enumeration introduced in TwigList. Finally, the last experiment tested bottom-up
holistic twig algorithms which are capable of processing TPQs with ordering constraints
and positional predicates.

The results of the four experiments were provided and analysed in Chapters 6, 7, 8 and
9, respectively. However, the results will be reconsidered here from different perspective
in order to provide a more comprehensive evaluation of the new approaches. The specific
objective of this chapter is to evaluate the experimental results in the light of the research
hypothesis stated in Chapter 4. With this intention, each experiment’s results are discussed
in an individual section.

The rest of this chapter is organised as follows. Section 10.2 highlights the main aim of
the experiments. To achieve this goal, several procedures were followed while designing
the experiments and they are presented in Section 10.2.1. Moreover, Section 10.3 presents
the overall evaluation of the results for each experiment individually. After that, features
and limitations of the experiments are summarised in Section 10.4. As a final point, the
experiments’ main findings will be discussed in Section 10.5. The chapter is concluded in
Section 10.6

296 The Overall Evaluation

10.2 The Objective of the Experiments

One purpose of the experiments conducted in Chapters 6, 7, 8 and 9, was to establish a
fair comparison between the relative performance of the new algorithms proposed in this
thesis and the up-to-date approaches in the literature. Many existing algorithms have been
proposed in the literature, of which only relevant approaches have been selected to provide
a valid comparison. The algorithms compared were chosen to represent different groups of
holistic twig matching algorithms. The main aim of the four experiments is to demonstrate
the validity of the new approaches. As a result, throughout this thesis, the experimental
evaluations were carried out to test the research hypothesis which was stated in Chapter 4.

“Encoding names of child elements of branching XML’s elements based
on Parent-Child relationships may improve the efficiency of holistic twig
join algorithms by increasing the query processor’s coverage as well as
reducing computation cost and memory consumption.”

Before proceeding to the next section, the criteria to compare the chosen algorithms
with the new approaches are described and they are based on the following aspects: the
data structure utilized to store potential elements (i.e., top-down approaches in contrast
to bottom-up approaches), the underlying indexing technique (i.e., range-based labelling
scheme), the I/O mechanism where the data must be scanned only once in a sequential read
(i.e, holistic approaches) and the filtering strategy (i.e., top-down in contrast to bottom-up).
Furthermore, the matching output must be returned as a set of tuples representing all
matching elements corresponding to query nodes according to Definition 4.11. The next
section restates the guidelines which were taken into account while running the experiments
to ensure the completeness and correctness of the experimental evaluation [159, 200].

10.2.1 The Strategy of the Experimental Evaluation

In order to achieve the objective of the experiments, some constraints, which emerge
from the nature of computer science as a combination of science and engineering, to be
followed during the design of the experiments in this thesis [159, 202, 200, 37, 156]. The
following steps were conducted to fulfil the main objectives and assure the reliability of
the conclusions:

• The appropriate implementations where the new approaches were implemented
and evaluated under the available Hardware/Software, in an environment where the
implementations of the algorithms to be compared is as similar as possible must
be identified. Therefore, a fair comparison can be guaranteed. This was covered in
Chapter 5.

• The criteria for selecting the datasets used in the experiments and the structured XML
queries issued over them must be clear. In addition, the selected datasets and XML
query sets must show their strengths and weaknesses. The ability to investigate the

10.3 Evaluation From Different Perspective 297

limitations corresponding to each set of XML queries and datasets must be available
as well. For the purpose of scalability tests, at least two datasets with significantly
different schemas must be used to avoid the potential bias of using a single dataset
or datasets with similar structure. This was given in Chapters 5, 6, 7, and 9.

• For each experiment, the metrics must be identified and unified throughout the entire
evaluation for all the approaches compared. More details can be found in Chapters
6, 7, 8, and 9.

• The platform setup in which the experiments take place must be described including
the Hardware and Software specifications. This was provided in Chapter 5.

• The use of statistical tests must be described in order to analyse properly the re-
sults obtained from the experiments. The research thus provides conclusions with
statistical significances. This was provided in Chapter 5.

This section summarised the strategy of the experimental evaluation in this thesis which
was described in Chapters 5, 6, 7, 8 and 9.

10.3 Evaluation From Different Perspective

This section describes the evaluation of a novel set of holistic twig join algorithms based on
the Child Prime Label (CPL) approach for processing TPQs in native XML databases (see
Chapter 5). These approaches aimed to improve the efficiency of holistic twig matching
algorithms and extending holistic querying algorithms to make them able to handle ordering
constraints and positional predicates in XPath expressions. The research study achieved
the main objectives for the new solution by incorporating encoded names of children into
the existing labelling schemes with minimal computation and space overheads. Based on
this novel mechanism to label XML elements, the thesis proposed a set of novel holistic
twig matching algorithms which are easily capable of processing different subclasses of
TPQs including P-C relationships, A-D edges, ordered axes and positional predicates.

To test the research hypothesis, the holistic model was successfully implemented. The
design of the full implementation was described in Chapter 5. The node labelling scheme
was extended to use the CPL approach. Furthermore, the query processor was augmented
with the up-to-date algorithms and a set of novel algorithms which were introduced in
Chapters 6, 7, 8, and 9. For each experiment, the experimental results were analysed
after the description of the experimental design. The evaluation of the performance was
subsequently provided. Also, the experiments examined the behaviour of the algorithms
compared over different groups of datasets in order to test their scalability.

In the four experiments, two variables were measured during the run of each TPQ
over the XML datasets: the processing time taken by each algorithm to output the query
matches in milliseconds and the number of paths or elements stored by each algorithm
when answering the query. To increase the reliability of the measures, all TPQs were

298 The Overall Evaluation

warmed up by three runs and then each TPQ was executed 100 times (see Section 5.5).
It is interesting to note that in all four experiments of this study, the research hypothesis
was supported by empirical evidence based on the proposals, the experimental design and
results. Generally, the CPL approaches (i.e., holistic twig matching algorithms based on
the CPL approach) showed a superior performance to the existing algorithms in terms of
query running time and the intermediate storage size.

The aim of this section is to evaluate the experimental design and results in order to
identify further improvements. To facilitate the evaluation, the improved ratio of algorithm
pairs for all TPQs over each dataset in the experiments will be used to demonstrate the scale
of the improvement of the new approaches over the algorithms compared. The improved
ratio (IR) of algorithm A over algorithm B for a set of queries issued over an XML dataset
can be computed using Formula 10.1 [130, 22], where TA and TB are the median running
times for algorithms A and B, respectively.

IRA,B =
TB−TA

TB
(10.1)

The main attribute indicating the efficiency of every holistic twig matching algorithm
related to I/O complexity is the intermediate storage size. For the first and second experi-
ments reported in Chapters 6 and 7, the intermediate result size for each algorithm will be
evaluated by computing a ratio of the number of paths stored by each algorithm and the
number of relevant paths for each dataset, whereas for the third and fourth experiments
discussed in Chapters 8 and 9, the intermediate result size for each algorithm will be
evaluated by computing a ratio of the number of elements stored by each algorithm and the
number of relevant elements for each collection. If the ratio has value that equals to 1, then
the algorithm was optimal for all queries tested for that dataset. Otherwise, the smaller the
value of the ratio the better, since this indicates that the algorithm was more successful in
filtering out irrelevant elements to queries tested on a specific collection.

The subsequent sections evaluate all the experiments conducted in this thesis in terms
of their designs and results using these new measures

10.3.1 Top-Down Approaches for the Basic Structural Axes

This section evaluates the design and results of the first set of experiments which focused on
incorporating the notion of CPL approach into the existing labelling scheme (range-based
labelling scheme was chosen because it is used by most holistic twig matching algorithms
related to this thesis since it has commonly been assumed that integer comparisons are
several times faster than string comparisons [102]) and determining the effect of the CPL
approach to improve the filtering strategy of twig matching algorithms by comparing the
performance of TwigStackPrime against the performance of two representative top-down
algorithms from the literature. The results, as expected, showed that the CPL approach can
be successfully added to the existing labelling scheme without affecting the functionality

10.3 Evaluation From Different Perspective 299

of the labelling scheme and consuming a large amount of storage in disk-resident data
structure (i.e., streams of elements). Although five datasets with different structures,
sizes and number of tags were used to test the augmentation of the CPL approach, the
maximum increase in the size of the indexing files was only 5 MB (see Section 6.5).
The optimised approach to assign CPL attributes showed no sign of overflow (e.g., the
maximum number of distinct tags used in the experiment was 251). Figure 10.1 shows
the summary of the results for this experiment. Overall, these results indicate that the
CPL approach (i.e., TwigStackPrime) provided an efficient solution to reduce storage
space by skipping irrelevant elements from the input streams (see Figure 10.1c) and
to improve the overall performance (see Figure 10.1b). By way of illustration, on the
Random dataset, the improvement of TwigStackPrime over TwigStackList, denoted as
IRTwigStackPrime,TwigStackList , is more than 25%. Furthermore, TwigStackPrime showed
basically linear scalability.

DBLP XMark TreeBank Random
TwigStackPrime TwigStackPrime TwigStackPrime TwigStackPrime
TwigStack TwigStackList TwigStackList TwigStackList
TwigStackList TwigStack TwigStack TwigStack

(a) Compared algorithms sorted according to their IRs

DBLP XMark TreeBank Random
TwigStackList 0.122 0.005 0.220 0.256
TwigStack 0.081 0.076 0.644 0.740

(b) The IR of TwigStackPrime compared to all approaches tested for all
queries for each collection

DBLP XMark TreeBank Random
TwigStack 1.037257 1.25277 10.73372 2.810589
TwigStackList 1 1 1.122552 1.252916
TwigStackPrime 1 1 1.001484 1.007868

(c) Ratio of the number of paths stored in intermediate storage and the number of
relevant paths for each dataset

Figure 10.1: The experimental results of top-down approaches for TPQs with {/,//,[]}.

In this experiment, all path solutions were stored in main memory. However, when the
intermediate storage sets are large and can not fit into main memory, they must be written to
and read in from secondary storage. This means that TwigStackPrime is expected to further
outperform TwigStack and TwigStackList when I/O operations are counted into the total
processing time. Since the CPL approach is not dependent on a specific type of labelling
scheme, it can be used with any labelling scheme. Thus, the experiment could be extended
to study the impact of the CPL approach when incorporated into prefix-based path labelling
schemes such as extended Dewey [147]. The process of assigning CPL attributes could be
further optimised by using statistics relating to inner elements in the XML data. Notice

300 The Overall Evaluation

that this is different from the simple information obtained when counting the number of
sibling-unique tag names introduced in this thesis (see Chapter 6).

10.3.2 Top-Down Approaches for Ordered Constraints and Positional
Predicates

The experiment was designed to test the performance of the new approaches which are eas-
ily capable of processing ordered axes1 and sequence operators by representing effectively
XPath expressions with ordered axes and sequence operators using tree structures. Because
the new approaches, unlike all other holistic approaches, are capable of working with order-
aware TPQs, the experiment compared the performance of the new approaches against
the existing top-down algorithms which were extended to process ordering constraints
during the output enumeration (i.e., the second phase of top-down approaches). Figure 10.2
shows the summary statistics for this experiment. Together these results provide important
insights into the effect of the CPL approach in enlarging the query processor’s coverage in
holistic approaches. The buffering algorithms showed a superior performance to the rest of
algorithms tested because they use combined approaches and perform semi-strict filtering
checks in both vertical and horizontal relationships. However, their performance could
be further improved by avoiding linear search over the large buffering lists. This can be
achieved if every element is compared to the first and last element in the corresponding
preceding/following lists since they are sufficient for a semi-strict filtering match. One of
the greatest challenges when evaluating order axes and sequence operators is that elements
which have satisfied P-C and A-D relationships might not satisfy order axes. However,
the new buffering approaches (i.e., OTJPrimeList and OTJPrimeMultiLists) provided
nearly optimal evaluation for all collections with respect to the intermediate result size.
Moreover, considering only the minimal constraint check among head elements resulted in
significantly lowering the number of useless paths in the case of OTJPrime. The filtering
could be improved if elements are further checked in the main algorithm to avoid storing
non-contributing elements. The scalability tests indicated that the querying time needed for
the new approaches is linearly correlated to the dataset size. That is, with the increase of
dataset size, the benefit of the new approaches over the existing algorithms correspondingly
increases.

Similar to the previous experiment (see Section 10.3.1), all root-to-leaf path solutions
were kept in the main memory. However, the cost difference between the algorithms
compared will be huge if the path solutions are larger than the available main memory. The
results obtained from this experiment form a base for further extensive tests, nevertheless
more reliable results could be obtained by extending the query set and/or incorporating the
ideas of ordered and descendant extension into the existing top-down algorithms.

1order axes = {preceding, f ollowing, preceding− sibling and f ollowing− sibling}

10.3 Evaluation From Different Perspective 301

XMark TreeBank Random
OTJPrimeList OTJPrimeList OTJPrimeList
OTJPMultiLists OTJPMultiLists OTJPMultiLists
OTJPrime OTJPrime OTJPrime
SFTwigStackList SFTwigStackPrime SFTwigStackPrime
SFTwigStackPrime SFTwigStackList SFTwigStackList
SFTwigStack SFTwigStack SFTwigStack

(a) Tested algorithms sorted according to their IRs

XMark TreeBank Random
SFTwigStack 0.942 0.662 0.933
SFTwigStackList 0.941 0.648 0.817
SFTwigStackPrime 0.941 0.539 0.814
OTJPrime 0.496 0.051 0.520
OTJPMultiLists 0.010 0.023 0.088

(b) The IR of OTJPrimeList compared to all approaches tested for all
queries for each collection

XMark TreeBank Random
OTJPrimeList 1 1.00083 1.169596
OTJPrimeMultiLists 1 1.00083 1.169596
OTJPrime 1.681548 1.558014 3.76566
SFTwigStackPrime 4.257155 2.553089 6.530527
SFTwigStackList 4.257155 2.811911 7.15333
SFTwigStack 4.312132 3.06518 13.66382

(c) Ratio of the number of paths stored in intermediate storage and the
number of relevant paths for each dataset

Figure 10.2: The experimental results of top-down approaches for TPQs with ordered axes
and sequence operators.

10.3.3 Bottom-Up Approaches for the Basic Structural Axes

Motivated by the success in efficient filtering of irrelevant elements using the CPL approach
for TPQ{/,//,[]}, the experiment evaluated the performance of a set of new approaches which
are based on the CPL approach and use a combination of preorder and postorder filtering
matches against the state-of-the-art holistic twig matching algorithms. The experimental
design and results were respectable but they could include more bottom-up algorithms.
Some algorithms were not considered in the experiment because it had been reported
that the algorithms used in the experiment significantly outperformed them. For instance,
[185] reported that TwigList was several times faster than Twig2Stack; similarly [132, 89]
reported that TwigFast outperformed HolisticTwigStack for queries similar to that used
in this experiment. Figure 10.3 provides a summary obtained from the analysis of the
experimental results. It can be seen from the data in Figure 10.3 that the CPL algorithms
significantly outperformed the other up-to-date methods. A nearly optimal evaluation
has been provided in complex datasets with many recursions in the structure and an

302 The Overall Evaluation

optimal evaluation has been provided for relatively structured XML collections with a lot
of repetitive structures (see Figure 10.3c).

The query performance of TwigPrimeMatch can be further improved by maintaining,
for each inner query node, the latest ancestor in tree postorder that has been returned by
getMatch in previous calls similar to that used in getPart. This could significantly reduce
the number of iterations required to check whether or not there is a relevant ancestor in the
intermediate storage. Moreover, the scalability test was performed with varying the size
of datasets and showed that the new approaches are outstanding in their linear scalability.
However, the scalability test could be extended to not only vary the sizes of dataset but
also vary the number of P-C axes in the queries to further investigate the behaviour of the
CPL approach.

Due to time constraints the GTP semantics (see Chapter 3) were ignored (i.e., all query
nodes are considered as output nodes and TPQs do not contain OR and NOT operators) but
no difficulties in including them are anticipated because they are less restrictive predicates
than AND operators which have been successfully implemented. This issue can be
considered as future work to provide more comparative results when comparing GTPStack
with the proposals for processing GTPs. An important observation is that the bottom-up
approaches overcome the main weakness of top-down methods which can be attributed
to their inefficient output enumeration (i.e., the enumeration algorithm reads the entire
output arrays even though useless paths are stored in the intermediate storage). Conversely,
the bottom-up approaches suffered from a high memory usage. The experiment could
be extended to test extensively the benefit of early enumeration approach to alleviate the
main memory consumption when the intermediate storage kept in the main memory. On
the other hand, I/O costs should be included when the intermediate storage exceeds the
memory limit of a stand-alone computer.

10.3 Evaluation From Different Perspective 303

TJStrictPostPrime_ TwigPrimeMatch_N
DBLP XMark TreeBank Random

TwigList 0.845392 TwigList 0.273789 0.886956 0.804136
TwigFast 0.595187 TwigFast 0.338623 0.887777 0.733736
TwigPrime_ 0.647691 TwigPrime_ 0.550353 0.814618 0.576148
TwigPrime_N 0.647880 TwigPrime_N 0.533485 0.810421 0.571815
TwigPrime 0.662291 TwigPrime 0.576910 0.820713 0.604048
TwigPrimePart_ 0.001522 TwigPrimePart_ 0.497283 0.121738 0.176654
TwigPrimePart_N 0.001522 TwigPrimePart_N 0.496382 0.113134 0.176479
TwigPrimeMatch_ 0.047896 TwigPrimeMatch_ 0.000264 0.009731 0.012845
TwigPrimeMatch_N 0.031019 TwigPrimePart 0.418207 0.094694 0.102553
TwigPrimePart 0.004552 TwigPrimeMatch 0.479305 0.779424 0.563903
TwigPrimeMatch 0.631978 TJStrictPre 0.112333 0.731077 0.138516
TJStrictPre 0.197062 TJStrictPre_ 0.031904 0.725904 0.142467
TJStrictPre_ 0.201461 TJStrictPrePrime 0.128947 0.058569 0.085152
TJStrictPrePrime 0.004552 TJStrictPrePrime_ 0.075104 0.046249 0.082390
TJStrictPrePrime_ 0.001522 TJStrictPost 0.053643 0.731177 0.143128
TJStrictPost 0.200974 TJStrictPost_ 0.000395 0.733055 0.144189
TJStrictPost_ 0.199512 TJStrictPostPrime 0.084480 0.065729 0.078033
TJStrictPostPrime 0.004552 TJStrictPostPrime_ 0.038530 0.062163 0.070078
GTPStack 0.189122 GTPStack 0.721175 0.982632 0.916856
GTPStackPrime 0.053391 GTPStackPrime 0.806992 0.957722 0.821266

(a) The IR of TJStrictPostPrime_ compared to all approaches tested for all queries on DBLP and the IR of Twig-
PrimeMatch_N compared to all algorithms tested for all queries on XMark, TreeBank and Random

TJStrictPrePrime
Zipf

TwigPrime 0.536
TwigPrimePart 0.044
TwigPrimeMatch 0.484
TJStrictPre 0.528
GTPStack 0.986
GTPStackPrime 0.921

(b) The IR of TJStrictPrePrime com-
pared to all approaches tested for all
queries on Zipf

DBLP XMark TreeBank Random Zipf
TwigFast 1.590525 1.195006 16.90548 4.815722
TwigList 577.9526 6.347786 34.42001 65.00936
CPL_ 1 1 1.036419 1.009365
CPL 1 1 1.03293 1.009345 1.000043
TJStrictPost 1.275804 1.021521 6.051748 2.255521
TJStrictPost_ 1.275804 1.021521 6.180917 2.279508
TJStrictPre 1.275804 1.021521 6.051799 2.255621 4.129953
TJStrictPre_ 1.409475 1.087964 9.929092 2.650552
GTPStack 1.275804 1.021521 6.051799 2.255621 4.129953

(c) Ratio of the number of elements stored in intermediate storage and the number of relevant
elements for each dataset

Figure 10.3: The experimental results of bottom-up approaches for TPQs which use only
the P-C and A-D axis.

304 The Overall Evaluation

10.3.4 Bottom-Up Approaches for Ordered Constraints and Positional
Predicates

The last set of experiments was designed to compare the performance of the new bottom-up
approaches for processing a subset of twigs which may contain ordered axes, sequence
operators and positional predicates. The new bottom-up methods are based on the preorder
filtering function for P-C edges and ordering constraints introduced in Chapter 7. The first
experiment focused on algorithms which can provide efficient evaluation of ordering con-
straints. The results obtained from this experiment are shown in Figure 10.4. Surprisingly,
the simple filtering check of ordering constraints performed by OPTwigPrime significantly
outperformed the other methods tested. The cost difference between OPTwigPrime and
OTwigPrimeList is due to the fact that the latter has to perform some extra operations
to avoid storing useless elements. In connection with the issues mentioned in Section
10.3.2, the benefit of filtering out irrelevant elements in the bottom-up approach exceeded
by the in-memory cost of caching and handling (i.e., linear search) elements with ordering
constraints in the buffering lists.

XMark TreeBank Random
OPTwigPrime OPTwigPrime OPTwigPrime
OTwigPrimeList OTwigPrimeList OTwigPrimeList
TwigPos TwigPos TwigPos

XMark TreeBank Random
OTwigPrimeList 0.271 0.501 0.595
TwigPos 0.412 0.647 0.889

(a) The top table presents algorithms sorted according to their IRsand and the bottom
table shows the IR of OPTwigPrime compared to all algorithms tested for all queries
for each collection

XMark TreeBank Random
OTwigPrimeList 1 1.007719 1.248917
OPTwigPrime 2.188501 1.670205 3.712064
TwigPos 11.43852 18.32452 104.598

(b) Ratio of the number of elements stored in intermediate storage
and the number of relevant elements for each dataset

Figure 10.4: The experimental results of bottom-up approaches for OTPQs.

The second experiment evaluated the comparisons between OPTwigPrime and TwigPos
because there is no other holistic approach which is capable of processing positional
predicates. Figure 10.5 compares the summary statistics for this experiment. Even though
OPTwigPrime significantly outperformed TwigPos for all collections, its performance
could be further improved by considering the subclass of TPQs which falls within the
optimal group of the CPL approach during the filtering phase. To put it another way, if the
sub-twig query built from query nodes specified in the pre-structural constraints contains

10.4 Features and Limitations of the Experiments 305

only P-C edges related to leaf query nodes, then irrelevant elements can be discarded and
mismatch tables can be updated safely.

XMark TreeBank Random
TwigPos 0.585 0.575 0.720

(a) The IR of OPTwigPrime compared to TwigPos for
all queries

XMark TreeBank Random
OPTwigPrime 2.414471 1231.787 24.5489
TwigPos 5.491509 8922.656 3702.741

(b) Ratio of the number of elements stored in intermediate storage
and the number of relevant elements for each dataset

Figure 10.5: The experimental results of bottom-up approaches for ordered and positional
TPQs.

The scalability test was done with increasing dataset sizes. It revealed that the new
approaches demonstrated linear scalability of the running time with the queries tested. The
experiments would have been better if they had included more algorithms, datasets and
queries. However, the performance comparison was limited to TwigPos because it is the
only, to date, bottom-up algorithm which can support some of ordered axes and positional
predicates in the filtering phase. The experiment could be extended to study the effect
of the ordered child and descendant concept when incorporated into the existing holistic
methods.

10.4 Features and Limitations of the Experiments

The experiments conducted in this thesis were designed to measure specifically whether
or not the hypothesis stated in Chapter 4 can be accepted. They were intended to be as
simple as possible and effective. However, the comparison experiment is susceptible to two
problems: a bias in favouring of the proposals and a selection for incomparable approaches,
thus standard precautions were strictly followed, during the design of these experiments,
to improve the validity of the comparison. Due to the time constraints, the outcomes of
these experiments are limited in a number of ways discussed in the following subsections.
While the features of the experiments are described in Section 10.4.1, the limitations of the
experiments are highlighted in Section 10.4.2.

10.4.1 Features of the Experiments

• The experiments were conducted over several datasets each of which has a different
schema. The main goal of this is to test the influence of different XML structures
on the algorithms compared. The selected datasets include XML data from various
resources such as real-world, benchmark and synthetic. The use of real-world and

306 The Overall Evaluation

benchmark data was to demonstrate the performance of the algorithms in practice
whereas the synthetic data allowed to cover some aspects that may not be found in
the real-world data.

• Numerous queries were used in the experiments, most of them were used by the
algorithms compared in experiments conducted in previous work, but the number
was still limited.

• The experiments were thorough in the sense that they considered two major compo-
nents of native XML databases (NXDs): storage engine and query processor.

• The experiments measured the main variables that have a significant relationship to
the query performance in native XML database management systems (NXDMSs).

• The experimental design included the plan for analysing and reporting of the results.
It was made available (see Chapter 5).

• More datasets, queries and algorithms could be included seamlessly in the framework
to obtain more elaborate results.

• The full experimental results, which are easy to interpret, can be found in Appendices
A, B, C and D for further and related research.

10.4.2 Limitations of the Experiments

• Since the current study was limited to the searching of TPQ matches in an XML tree,
it was not possible to support the semantics of XPath. In XPath there is only a single
query node which can be returned whilst twig pattern matching outputs all legal
combinations of matches which is useful for the flexibility of XQuery. However,
the query performance could be tested to return a specific query output node when
evaluating less complicated XPath queries.

• It is unfortunate that the experiments did not consider the GTP semantics and content-
based queries. Also, they did not address a subset of TPQs which involve wildcards
"*" and logical operators.

• The experiments did not make use of indices (e.g., XB-tree) built over the input
streams in order to further speed up the query running time by reducing I/O costs.

• The intermediate storage was stored in the main memory. However, in order to test
whether the holistic algorithms would be able to exploit fully the available size of
main memory when the intermediate storage size is larger than the available memory,
the intermediate results must be written to and read from the secondary storage.

10.5 The Main Findings of the Experiments 307

10.5 The Main Findings of the Experiments

The most obvious finding to emerge from the experimental results is that the main idea
of research hypothesis was confirmed. Generally, the experiments showed that the CPL
approach can be incorporated into the existing labelling schemes without any additional
overhead. Through them, the validity and improvements of the new approaches over
the other related algorithms can be demonstrated. The scalability analysis revealed that
the new approaches can efficiently scale up, since when the size of dataset increases,
non-contributing elements do not proportionally consume more processing time because
the optimal optimization that the CPL approach alone possesses. These findings suggest
that in general the new algorithms are more suitable for processing large XML documents
than the existing methods. Moreover, this is the first study to investigate the effect of
early filtering for ordering constraints and positional predicates in a single algorithmic
framework. This thesis has raised important questions about the amount of information
encoded within XML labels to provide an efficient evaluation of XML queries. The main
findings (contributions) of the whole research study will be discussed in the next chapter
(see Chapter 11).

10.6 Conclusion

This chapter presented an overall evaluation of the designs and results of the experiments
carried out in this research study. The experimental results were reconsidered to allow a
precise comparison for each XML collection. During the evaluation, some suggestions and
improvements were briefly discussed. They will be further explained as recommendations
for further research work in the next chapter. In addition, a description of the features,
limitations and findings of the experiments was given.

All in all, the findings of this thesis could be used to draw the following conclusion. The
CPL approach is a new source of improvement for holistic twig matching algorithms since
it can reduce the number of elements processed and the size of intermediate result when
TPQs contain Parent-Child edges. Through experiments the validity and improvements of
the new algorithms over the other related holistic methods on subsets of TPQs have been
demonstrated. The efficiency comes primarily from two sources: the semi-strict matching
on P-C edges between two input streams and the various optimization mechanisms (pursued
in the buffering technique and the advanced preorder filtering for ordering constraints and
positional predicates).

The next chapter concludes the thesis by identifying its main contributions and sug-
gesting some directions for future work.

Chapter 11

Conclusion and Future Work

11.1 Introduction

In the context of XML databases, twig pattern query (TPQ) matching is a core operation in
XML query processing because it is how all the matching occurrences of a twig pattern
are found in an XML document. The last two decades have seen a growing trend towards
TPQ matching. This study contributed to this active area of research by proposing a set of
novel twig matching algorithms using the Child Prime Label (CPL) approach. To conclude
this thesis, the chapter begins by briefly summarising the thesis and its main contributions.
Then, it presents areas for future work.

The remainder of this chapter is organised as follows. Section 11.2 provides a summary
of the thesis. A more detailed account of the main contributions of this study is given in
Section 11.3. Some directions for future work will be discussed in Section 11.4.

11.2 Thesis Summary

This thesis has investigated problems of twig pattern matching for XML query evaluation.
Generally, in XML information retrieval, an XML document and query can be represented
by a tree model, and retrieving XML documents can thus be considered as a tree matching
problem between the document tree and the query tree. Chapter 2 was devoted to basic
concepts of XML and preliminary definitions that are needed for the understanding of the
current research.

The purpose of Chapter 3 was to review the literature on XML query processing. It
began by introducing the main concepts and techniques exploited in XML retrieval systems.
Different aspects of XML query processing have been identified and studied in order to
expose inefficiencies in previous work leading to an identification of several limitations in
existing approaches. These can be classified into three main categories: inefficiency of
the determination of P-C axes in TPQs for algorithms using a partition index, failure to
consider the semantics of ordered axes and support positional predicates efficiently and the

310 Conclusion and Future Work

performance trade-off between space overhead and optimal enumeration for a combination
of preorder and postorder processing for TPQs.

Chapter 4 aimed at highlighting the research problems and motivations, also describing
the research methodology adopted in this thesis to ensure a systematic process for carrying
out scientific research. In this chapter, the research hypothesis was formulated by proposing
an augmentation to the existing labelling schemes in order to improve the efficiency of
holistic twig algorithms in terms of running time and memory consumption. Also, it
discussed the scope of this study and the potential research objectives. Chapter 5 described
the specification and guidelines for implementing the experimental framework in order to
evaluate the performance, scalability and efficiency of the new algorithms for processing
TPQs.

Chapter 6 presented a new approach that prunes irrelevant elements efficiently for
TPQs with P-C axes. It also introduced a novel holistic algorithm which can use the
new indexing technique to process TPQs with P-C edges efficiently. Unlike the previous
holistic algorithms, TwigStackPrime takes into account the CPL relationships between
elements in the streams, therefore it produces fewer path solutions for TPQs with P-C
edges. Furthermore, correctness proofs for the filtering strategy using the CPL approach
were provided. It has been shown analytically that for TPQs with only A-D edges or P-C
relationships related to leaf query nodes, depending on tag partitioning scheme and the
CPL approach top-down, TwigStackPrime can guarantee optimal evaluation.

In Chapter 7, the thesis introduced new approaches which consider the ordered axes
and sequence operators incorporated into conventional TPQs. In addition, it presented
novel techniques which use buffering techniques previously proposed in the literature along
with the CPL indexing to process ordered TPQs efficiently. The experimental results have
shown that the new holistic ordered twig matching algorithms have superior performance
to other related methods with postprocessing in terms of the size of the intermediate storage
and query processing time.

The research study, in Chapter 8, presented new approaches that use the CPL approach
to improve the filtering phase of bottom-up twig matching algorithms. A novel design of the
algorithm uses the level split approach along with the CPL indexing without maintaining
stacks in order to process TPQs efficiently. In addition, the research study extended the
state-of-the-art bottom-up twig algorithms . Thus, the new methods can skip irrelevant
elements efficiently as they utilise the CPL approach devised in Chapter 6. Statistical
analysis revealed that the new bottom-up holistic twig matching algorithms significantly
outperformed the existing approaches in terms of the number of elements stored in the
intermediate storage and query running time.

The research undertaken in this thesis concludes with Chapter 9, in which the discussion
of how ordered twig pattern queries (OTPQs) can be evaluated in holistic bottom-up
approaches. Two approaches have been proposed to process OTPQs efficiently which are
based on filtering checks for ordered constraints and sequence operators from the advanced

11.3 Main Research Contributions 311

preorder filtering functions introduced in Chapter 7. In addition, a novel approach which
combines preorder and postorder filtering strategies to identify useful elements in TPQs
when positional predicates are involved was presented. The experimental results showed
its superiority over the existing twig matching algorithm.

Lastly, the overall evaluation of the experimental design and results was presented in
Chapter 10. In this chapter, the experimental results were reconsidered using additional
metrics to provide additional results. A summary of the features and limitations of the
experiments was discussed in addition to their main findings.

11.3 Main Research Contributions

The contributions of the research presented in this thesis and the related publications
[11, 12] can be summarized as follows:

• a new indexing technique which exploits the property of prime numbers to facilitate
the determination of P-C axes on XML documents during holistic twig pattern
matching has been proposed. It has been demonstrated that the Child Prime Label
(CPL) approach can be efficiently incorporated within existing labelling schemes
(e.g., range-based encoding).

• an improved approach to reduce the number of overflow cases when creating the
CPL index has been introduced.

• a new preorder filtering strategy algorithm has been proposed which is an extension of
getNext() core function in the classical holistic twig joins algorithm, TwigStack [40],
to take advantage of the CPL approach. The new advanced preorder filtering function
can efficiently filter out irrelevant elements without violating the document order

nor consuming additional space overhead. Then, a new top-down holistic algorithm
TwigStackPrime has been presented, which is an improvement to TwigStack [40],
focusing on reducing the memory consumption and computation overhead of twig
pattern matching when P-C edges are involved. Full proofs of correctness for the
algorithms necessary to evaluate subsets of TPQs containing P-C and A-D axes have
been provided. The behaviour of the CPL approach was explained by analytical
results. In particular, holistic algorithms using the CPL indexing technique were
shown to be I/O and CPU optimal when a TPQ has only A-D edges or there are P-C
edges to connect leaf query nodes. This analysis was confirmed by experimental
results on a wide range of real-world, benchmark and artificial datasets.

• new top-down holistic approaches accompanied with optimal implementation al-
gorithms for efficiently processing ordered TPQs have been presented. The new
approaches are combinations of the CPL indexing technique and previous methods.
The holistic approaches proposed here are the first to consider the semantics of
order axes and sequence operators introduced in the XPath specification. Full proofs

312 Conclusion and Future Work

of correctness for the algorithms necessary to evaluate subclasses of TPQs with
ordering constraints and sequence operators have been provided.

• a set of novel bottom-up holistic twig matching algorithms have been presented
which are based on the advanced preorder filtering function introduced in Chapter
6 which has the ability to preserve the document order, unlike previous filtering
strategies, such as [144, 131], and filter out irrelevant elements when P-C edges are
present in TPQs. Full proofs of correctness for the algorithms necessary to evaluate
subsets of TPQs containing P-C and A-D axes have been provided.

• a set of novel bottom-up holistic twig matching algorithms for efficiently processing
ordered TPQs have been presented.

• a novel bottom-up holistic twig algorithm, OPTwigPrime has been proposed for
efficiently processing ordered TPQs with positional predicates. Up to now, OPTwig-
Prime is the first holistic twig matching algorithm designed for TPQs which may
contain ordering constraints and positional predicates, including a number of orig-
inal supporting techniques. Full proofs of correctness for the algorithm necessary
to evaluate subsets of TPQs with ordered axes, sequence operators and positional
predicates have been provided.

• lastly, the study has provided an empirical proof of improvements of the holistic
algorithms proposed, based on the CPL approach, over other related methods from
the literature.

11.4 Future Work

The empirical findings in this study provide a new understanding of the link between the
information contained in XML labels and the efficiency of XML twig matching algorithms
in terms of processing time capabilities and memory consumption. The present study was
designed to determine the effect of the CPL approaches on various common subsets of
TPQs, however there is plenty of scope for further investigation. Some directions for future
work are:

Further experimental investigations are needed to explore the effects of the CPL
approach by using a different labelling scheme such as E2Dewey [125] instead of the
range-based encoding scheme used in this study. Such an advanced labelling scheme
that can fit in the framework of the CPL approach for more effectively skipping non-
contributing elements while reading streams corresponding to branching and leaf query
nodes.

Since the study was limited to holistic algorithms which do not use structural sum-
maries, it was not possible to evaluate the performance of the CPL approaches with

11.5 Finally 313

methods which combine structural summaries and node labelling schemes. Further re-
search needs to examine more closely the links between the CPL indexing technique and
different streaming schemes rather than the tag streaming scheme. It would be interesting
to assess the effects of the CPL indexing technique to classify elements based on their
forward bi-simulation in order to reduce the number of elements scanned (reducing I/O
cost). This could be expected to overcome some limitations associated with the prefix
path scheme (PPS) which involved a large number of streams and induced inefficiency
[130, 24]. Figure 11.1 illustrates a potential partitioning scheme using the CPL approach.

Example 11.1. Consider the XML tree T1 of Figure 11.1a and the TPQ = //a[/x]/y. If the

tag streaming is used as in Figure 11.1b, five elements corresponding to the query node a

have to be scanned, namely {a1,a2,a3,a4,a5} even though only {a1,a5} contribute to the

final result. On the other hand, two elements, namely {a1,a5} are scanned when using the

CPL streaming scheme since the stream a35 satisfies the CPL relationship with respect to

the query node x and y as shown in in Figure 11.1e.

Another suggestion for future work is to combine the algorithms proposed with pre-
vious orthogonal approaches such as useless elements skipping [114, 114, 77], refined
partitioning [21, 50], virtual streams [125] and content search [235, 236].

The current study has not yet addressed the type of XML queries that involve reverse
axes and wildcard ("*") node. Incorporating the support for reverse axes (i.e., "\" and "\\")
and wildcard nodes into the CPL approaches presented in this thesis is another interesting
topic to study in the future. Besides, further work needs to be done to investigate the
behaviour of the CPL approach when processing boolean expressions and supporting the
GTP semantics.

Lastly, it would be interesting to see an elegant algorithm which can guarantee linear
CPU and I/O complexities of the output enumeration with respect to the output size for
TPQs with ordered axes and positional predicates, and does not perform multiple scans of
input streams.

11.5 Finally

This research has investigated a wide range of XML query evaluation approaches leading
to the identification of several limitations which motivated the introduction of the CPL
approach and numerous original supporting techniques. The CPL is a novel indexing
technique that provides an excellent solution in terms of query efficiency and ability.
However, there is still room for improvement.

In this chapter, a summary of the thesis was presented followed by a list of its main
contributions and some directions for suture work. All in all, the contributions of this study
have been to confirm that the CPL is a promising alternative approach for twig pattern
matching of XML query processing and therefore, further research in this direction may
be worth pursuing.

314 Conclusion and Future Work

e

a1

x1 y1

a2

a3

x2

x3

a4

y2 y3

a5

y4 x4

(a) an XML tree T1

e:{e}
a:{a1,a2,a3,a4,a5}
x:{x1,x2,x3,x4}
y:{y1,y2,y3,y4}

(b) tag streams

e1:{e}
a2:{a1,a2,a4,a5}
a3:{a3}
x3:{x1,x3,x4}
x4:{x2}
y3:{y1,y2,y3,y4}
(c) tag+level streams

/e:{e}
/e/a:{a1,a2,a4,a5}
/e/a/a:{a3}
/e/a/x:{x1,x3,x4}
/e/a/a/x:{x2}
/e/a/y:{y1,y2,y3,y4}
(d) prefix path streams

e3:{e}
a35:{a1,a5}
a5:{a2,a3}
a7:{a4}
x1:{x1,x2,x3,x4}
y1:{y1,y2,y3,y4}

(e) CPL streams

Tagname Key
e 2
a 3
x 5
y 7

(f) tag indexing

Figure 11.1: Illustration to the CPL partitioning scheme.

References

[1] Santa Agreste, Pasquale De Meo, Emilio Ferrara, and Domenico Ursino. XML
Matchers: Approaches and challenges. Knowledge-Based Systems, 66(0):190–209,
2014. doi: http://dx.doi.org/10.1016/j.knosys.2014.04.044.

[2] Jinhyun Ahn, Dong Hyuk Im, Taewhi Lee, and Hong Gee Kim. Parallel prime
number labeling of large XML data using MapReduce. In 6th International Con-
ference on IT Convergence and Security, ICITCS 2016, pages 1–2, 2016. ISBN
9781509037643. doi: 10.1109/ICITCS.2016.7740360.

[3] Mohammed Al-Badawi. A Performance Evaluation of a New Bitmap-based XML
Processing Approach. PhD thesis, The University of Sheffield, 2010.

[4] Hamdi A Al-jamimi, Ahmed Barradah, and Salahadin Mohammed. Siblings Label-
ing Scheme for Updating XML Trees Dynamically. In 4th International Conference
on Computer Engineering and Technology (ICCET 2012), volume 40, pages 21–25,
2012.

[5] S Al-Khalifa, H V Jagadish, N Koudas, J M Patel, D Srivastava, and Wu Yuqing.
Structural joins: a primitive for efficient XML query pattern matching. In Data
Engineering, 2002. Proceedings. 18th International Conference on, pages 141–152,
2002. ISBN 1063-6382. doi: 10.1109/icde.2002.994704.

[6] N S Alghamdi, W Rahayu, and E Pardede. Object-Based Semantic Partitioning
for XML Twig Query Optimization. In Advanced Information Networking and
Applications (AINA), 2013 IEEE 27th International Conference on, pages 846–853,
2013. ISBN 1550-445X. doi: 10.1109/aina.2013.74.

[7] Norah Saleh Alghamdi, Wenny Rahayu, and Eric Pardede. Semantic-based structural
and content indexing for the efficient retrieval of queries over large XML data
repositories. Future Generation Computer Systems, 2014. ISSN 0167739X. doi:
10.1016/j.future.2014.02.010.

[8] Norah Saleh Alghamdi, Wenny Rahayu, and Eric Pardede. Efficient Processing of
Queries over Recursive XML Data. In 2015 IEEE 29th International Conference on
Advanced Information Networking and Applications, number June, pages 134–142,
2015. ISBN 978-1-4799-7905-9. doi: 10.1109/AINA.2015.177.

[9] S Alireza Aghili, Li Hua-Gang, Divyakant Agrawal, and Amr El Abbadi. TWIX:
twig structure and content matching of selective queries using. InfoScale ’06:
Proceedings of the 1st international conference on, page 42, 2006. doi: 10.1145/
1146847.1146889.

[10] Alaa Almelibari. Labelling Dynamic XML Documents: A GroupBased Approach.
PhD thesis, 2015.

[11] Shtwai Alsubai and Siobhán North. A Prime Number Approach to Matching
an XML Twig Pattern including Parent-Child Edges. In The 13th International
Conference on Web Information Systems and Technologies (WEBIST 2017), pages
204–211, Porto, 2017. SCITEPRESS – Science and Technology Publications, Lda.

316 References

[12] Shtwai Alsubai and Siobhán North. TwigStackPrime : A Novel Twig Join Algorithm
Based on Prime Numbers. Lecture Note Business Information Processing, Revised
Selected Papers WEBIST 2017, Springer (in press), 2018.

[13] T Amagasa, M Seino, and H Kitagawa. Energy-Efficient XML Stream Processing
through Element-Skipping Parsing. In Database and Expert Systems Applications
(DEXA), 2013 24th International Workshop on, pages 254–258, 2013. ISBN 1529-
4188. doi: 10.1109/dexa.2013.34.

[14] Jose Nelson Amaral, Michael Buro, Renee Elio, Jim Hoover, Ioanis Nikolaidis,
Mohammad Salavatipour, Lorna Stewart, and Ken Wong. About Computing Sci-
ence Research Methodology, 2011. URL https://webdocs.cs.ualberta.ca/{~}c603/
readings/research-methods.pdf.

[15] Sihem Amer-Yahia, SungRan Cho, Laks V. S. Lakshmanan, and Divesh Srivastava.
Minimization of tree pattern queries. ACM SIGMOD Record, 30:497–508, 2001.
ISSN 01635808. doi: 10.1145/376284.375730.

[16] P Apparao, R Iyer, R Morin, Nayak Naren, M Bhat, D Halliwell, and W Steinberg.
Architectural characterization of an XML-centric commercial server workload. In
Parallel Processing, 2004. ICPP 2004. International Conference on, pages 292–300
vol.1, 2004. ISBN 0190-3918. doi: 10.1109/icpp.2004.1327935.

[17] Andrei Arion, Angela Bonifati, Ioana Manolescu, and Andrea Pugliese. Path
summaries and path partitioning in modern XML databases. World Wide Web, 11
(1):117–151, 2008. ISSN 1386145X. doi: 10.1007/s11280-007-0036-7.

[18] Radim Bača and Michal Krátký. On the Efficiency of a Prefix Path Holistic. In
Database and XML Technologies: 6th International XML Database Symposium,
XSym 2009, Lyon, France, August 24, 2009. Proceedings, number 201, pages
25–32, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-
03555-5. doi: 10.1007/978-3-642-03555-5_3. URL http://dx.doi.org/10.1007/
978-3-642-03555-5{_}3.

[19] Radim Bača and Michal Krátký. TJDewey - On the Efficient Path Labeling Scheme
Holistic Approach. In Lei Chen, Chengfei Liu, Qing Liu, and Ke Deng, editors,
Database Systems for Advanced Applications: DASFAA 2009 International Work-
shops: BenchmarX, MCIS, WDPP, PPDA, MBC, PhD, Brisbane, Australia, April
20 - 23, 2009, number 201, pages 6–20, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg. ISBN 978-3-642-04205-8. doi: 10.1007/978-3-642-04205-8_3.

[20] Radim Bača and Michal Krátký. XML query processing. Proceedings of the 16th
International Database Engineering & Applications Sysmposium on - IDEAS ’12,
pages 8–13, 2012. doi: 10.1145/2351476.2351478.

[21] Radim Bača, Michal Krátký, and Václav Snášel. On the Efficient Search of an XML
Twig Query in Large DataGuide Trees. In Proceedings of the 2008 International
Symposium on Database Engineering & Applications, IDEAS ’08, pages
149–158, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-188-0. doi:
10.1145/1451940.1451962.

[22] Radim Bača, Michal Krátký, Tok Wang Ling, and Jiaheng Lu. Optimal and efficient
generalized twig pattern processing: a combination of preorder and postorder
filterings. The VLDB Journal, 22(3):369–393, oct 2012. ISSN 1066-8888. doi:
10.1007/s00778-012-0295-5.

[23] Radim Bača, Petr Lukáš, and Michal Krátký. Cost-based Holistic Twig Joins.
Information Systems, 52(C):21–33, aug 2015. ISSN 0306-4379. doi: 10.1016/j.is.
2015.03.004.

https://webdocs.cs.ualberta.ca/{~}c603/readings/research-methods.pdf
https://webdocs.cs.ualberta.ca/{~}c603/readings/research-methods.pdf
http://dx.doi.org/10.1007/978-3-642-03555-5{_}3
http://dx.doi.org/10.1007/978-3-642-03555-5{_}3

References 317

[24] Radim Bača, Michal Krátký, Irena Holubová, Martin Nečaský, Tomáš Skopal, Mar-
tin Svoboda, and Sherif Sakr. Structural XML Query Processing. ACM Computing
Surveys, 50(5):1–41, 2017. ISSN 03600300. doi: 10.1145/3095798.

[25] Zhifeng Bao, Tok Wang Ling, Jiaheng Lu, and Bo Chen. SemanticTwig : A
Semantic Approach to Optimize XML Query Processing. In Database Systems for
Advanced Applications 13th International Conference, DASFAA 2008, New Delhi,
India, March 19-21, 2008. Proceedings, pages 282–298, 2008.

[26] Zhifeng Bao, Tok Wang Ling, Bo Chen, and Jiaheng Lu. Effective XML keyword
search with relevance oriented ranking. In Proceedings - International Conference
on Data Engineering, number 3, pages 517–528, 2009. ISBN 9780769535456. doi:
10.1109/ICDE.2009.16.

[27] Charles Barton, Philippe Charles, Deepak Goyal, and Mukund Raghavachari.
Streaming XPath Processing with Forward and Backward Axes. In In Proceedings
of the 19th International Conference on Data Engineering ICDE, pages 455—-466,
2003.

[28] Yoav Benjamini. TEACHER ’ S CORNER In: Opening the Box of a Boxplot. The
American Statistician, 42(4):257–262, 1988.

[29] Mikael Berndtsson, Jörgen Hansson, B. Olsson, and Björn Lundell. Thesis Projects:
A Guide for Students in Computer Science and Information Systems. Number 1.
Springer-Verlag London, 2 edition, 2008. ISBN 978-1-84800-009-4. doi: 10.1007/
978-1-84800-009-4.

[30] Nicole Bidoit, Dario Colazzo, Noor Malla, Federico Ulliana, Maurizio Nolè, and
Carlo Sartiani. Processing XML queries and updates on map/reduce clusters. In Pro-
ceedings of the 16th International Conference on Extending Database Technology,
pages 745–748, Genoa, Italy, 2013. ACM. doi: 10.1145/2452376.2452470.

[31] Philip Bille. A survey on tree edit distance and related problems. Theoretical
Computer Science, 337(1-3):217–239, 2005. doi: 10.1016/j.tcs.2004.12.030.

[32] The DBLP Advisory Board. DBLP. URL http://dblp.uni-trier.de/xml/.

[33] Timo Böhme and Erhard Rahm. XMach-1: A Multi-User Benchmark for XML
Data Management., pages 264–273. Springer Berlin Heidelberg, Berlin, Heidelberg,
2002. ISBN 978-3-642-56687-5. doi: 10.1007/978-3-642-56687-5_20.

[34] Angela Bonifati. XPathMark: An XPath Benchmark for the XMark Generated Data.
Database and XML Technologies, 3671(July 2015), 2005. doi: 10.1007/11547273.
URL http://www.springerlink.com/content/19l0fpmekdlcdbjw/.

[35] Stephane Bressan, Gillian Dobbie, Zoe Lacroix, Mong-Li Lee, Ying Guang Li, Ullas
Nambiar, and Bimlesh Wadhwa. X007: Applying 007 Benchmark To Xml Query
Processing Tool. In Proceedings of the 2001 ACM CIKM International Conference
on Information and Knowledge Management, pages 167–174, Atlanta, Georgia,
USA, 2001.

[36] David Brownell. SAX2 Processing XML Efficiently with Java. O’Reilly & Associates,
Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472., 2004. ISBN
0596002378.

[37] Achim D. Brucker and Jacques Julliand. A Hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. Software Testing
Verification and Reliability, 24(8):591–592, 2014. ISSN 10991689. doi: 10.1002/
stvr.

http://dblp.uni-trier.de/xml/
http://www.springerlink.com/content/19l0fpmekdlcdbjw/

318 References

[38] N Bruno, L Gravano, N Koudas, and D Srivastava. Navigation- vs. index-based XML
multi-query processing. In Data Engineering, 2003. Proceedings. 19th International
Conference on, pages 139–150, 2003. doi: 10.1109/icde.2003.1260788.

[39] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Technical Report - Holistic
twig joins: optimal XML pattern matching. Technical report, 2002.

[40] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins: optimal
XML pattern matching. In Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, pages 310–321, Madison, Wisconsin, 2002.
ACM. doi: 10.1145/564691.564727.

[41] Michael J Carey, David J DeWitt, Chander Kant, and Jeffrey F Naughton. A
Status Report on the OO7 OODBMS Benchmarking Effort. Proceedings of the
Ninth Annual Conference on Object-oriented Programming Systems, Language, and
Applications, pages 414–426, 1994. ISSN 03621340. doi: 10.1145/191080.191147.
URL http://doi.acm.org/10.1145/191080.191147.

[42] Balder Ten Cate and Luc Segoufin. Transitive Closure Logic, Nested TreeWalking
Automata, and XPath. Journal of the ACM, 57(3):1–41, 2010. ISSN 00045411. doi:
10.1145/1376916.1376952.

[43] B Cautis and E Kharlamov. Answering queries using views over probabilistic XML:
complexity and tractability. Proceedings of the VLDB Endowment, 5:1148–1159,
2012. ISSN 21508097. URL http://dl.acm.org/citation.cfm?id=2350235.

[44] Georgetown University Medical Center and University of Delaware. The Universal
Protein Resource (UniProt), 2007. URL http://pir.georgetown.edu/.

[45] Stefano Ceri, Piero Fraternali, and Stefano Paraboschi. XML: Current Developments
and Future Challenges for the Database Community. In Carlo Zaniolo, Peter C
Lockemann, Marc H Scholl, and Torsten Grust, editors, Advances in Database
Technology EDBT: 7th International Conference on Extending Database Technol-
ogy Konstanz, Germany, pages 3–17, Berlin, Heidelberg, 2000. Springer Berlin
Heidelberg. ISBN 978-3-540-46439-6. doi: 10.1007/3-540-46439-5_1.

[46] Don Chamberlin, Harry Road, San Jose, Jonathan Robie, and Daniela Florescu.
Quilt : An XML Query Language for Heterogeneous Data Sources. Language,
pages 1–10, 2000.

[47] Cy Chan, Wenfei Fan, and Y Zeng. Taming XPath queries by minimizing wildcard
steps. Vldb, pages 156–167, 2004. URL http://portal.acm.org/citation.cfm?id=
1316689.1316705.

[48] Tao-Ku Chang and Gwan-Hwan Hwang. Developing an efficient query system for
encrypted XML documents. Journal of Systems and Software, 84(8):1292–1305,
2011. doi: http://dx.doi.org/10.1016/j.jss.2011.04.012.

[49] Surajit Chaudhuri, Zhiyuan Chen, Kyuseok Shim, and Yuqing Wu. Storing XML
(with XSD) in SQL databases: Interplay of logical and physical designs. IEEE
Transactions on Knowledge and Data Engineering, 17(12):1595–1609, 2005. ISSN
10414347. doi: 10.1109/TKDE.2005.204.

[50] Bo Chen, Tok Wang Ling, M Tamer Ozsu, and Zhenzhou Zhu. On Label Stream
Partition for Efficient Holistic Twig Join. In 12th International Conference on
Database Systems for Advanced Applications, DASFAA, pages 807–818, Bangkok,
Thailand, 2007. ISBN 9783540717027.

http://doi.acm.org/10.1145/191080.191147
http://dl.acm.org/citation.cfm?id=2350235
http://pir.georgetown.edu/
http://portal.acm.org/citation.cfm?id=1316689.1316705
http://portal.acm.org/citation.cfm?id=1316689.1316705

References 319

[51] Liang Jeff Chen and Yannis Papakonstantinou. Supporting top-K keyword search
in XML databases. Proceedings - International Conference on Data Engineering,
pages 689–700, 2010. ISSN 10844627. doi: 10.1109/ICDE.2010.5447818.

[52] Qun Chen, Andrew Lim, and Kian Win Ong. D(k)-index: an adaptive structural
summary for graph-structured data. Proceedings of the 2003 ACM SIGMOD inter-
national conference on Management of data, pages 134–144, 2003. ISSN 07308078.
doi: 10.1145/872757.872776.

[53] Songting Chen, Hua-Gang Li, Junichi Tatemura, Wang-Pin Hsiung, Divyakant
Agrawal, and K Selçuk Candan. Twig2Stack: bottom-up processing of generalized-
tree-pattern queries over XML documents. In Proceedings of the 32nd international
conference on Very large data bases, pages 283–294, Seoul, Korea, 2006. VLDB
Endowment.

[54] Ting Chen, Jiaheng Lu, and Tok Wang Ling. On Boosting Holism in XML Twig
Pattern Matching Using Structural Indexing Techniques. In ACM SIGMOD interna-
tional conference on Management of data, pages 455–466, 2005. ISBN 1595930604.
doi: 10.1145/1066157.1066209.

[55] Yangjun Chen and Donovan Cooke. Evaluation of Twig Pattern Queries Based
on Ordered Tree matching. In IEEE International Conference on Signal Image
Technology and Internet Based Systems Evaluation, pages 3–10, 2008. ISBN
9780769534930. doi: 10.1109/SITIS.2008.32.

[56] Yi Chen, Susan B Davidson, and Yifeng Zheng. BLAS: An Efficient XPath Pro-
cessing System. In ACM SIGMOD Int. Conf. on Management of data, pages 47–58,
2004. ISBN 1-58113-859-8. doi: http://doi.acm.org/10.1145/1007568.1007577.

[57] Yi Chen, George A Mihaila, Susan B Davidson, and Sriram Padmanabhan. Efficient
Path Query Processing on Encoded XML. In International Workshop on High
Performance XML Processing, 2004.

[58] Zhimin Chen, H V Jagadish, Laks V S Lakshmanan, and Stelios Paparizos. From
Tree Patterns to Generalized Tree Patterns: On Efficient Evaluation of XQuery. In
Proceedings of the 29th international conference on Very large data bases, pages
237–248, 2003. ISBN 0127224424. URL http://www.vldb.org/conf/2003/papers/
S08P03.pdf.

[59] Zhiyuan Chen, Johannes Gehrke, Flip Korn, Nick Koudas, Jayavel Shanmugasun-
daram, and Divesh Srivastava. Index structures for matching XML twigs using
relational query processors. Data and Knowledge Engineering, 60:283–302, 2007.
ISSN 0169023X. doi: 10.1016/j.datak.2006.03.003.

[60] Su Cheng Haw, Samini Subramaniam, Wei Siang Lim, and Fang Fang Chua. Hybri-
dation of Labeling Schemes for Efficient Dynamic Updates. Indonesian Journal of
Electrical Engineering and Computer Science, 4(1):184, 2016. ISSN 2502-4760.
doi: 10.11591/ijeecs.v4.i1.pp184-194.

[61] B Choi, M Mahoui, and D Wood. On the optimality of holistic algorithms for twig
queries. In Database and Expert Systems Applications 14th International Confer-
ence, DEXA 2003, Prague, Czech Republic, September 1-5, 2003, Proceedings,
pages 28–37, 2003.

[62] Kajal T. Claypool, Vaishali Hegde, and Naiyana Tansalarak. QMatch - A hybrid
match algorithm for XML schemas. In Proceedings - International Workshop on
Biomedical Data Engineering, BMDE2005, volume 2005, 2005. ISBN 0769526578.
doi: 10.1109/ICDE.2005.272.

http://www.vldb.org/conf/2003/papers/S08P03.pdf
http://www.vldb.org/conf/2003/papers/S08P03.pdf

320 References

[63] J W Creswell. Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches. SAGE Publications, Inc, 4th edition, 2013. ISBN 9781452274614.
doi: 10.1007/s13398-014-0173-7.2.

[64] Harold D Delaney and Andrfis Vargha. A Critique and Improvement of the CL
Common Language Effect Size Statistics of McGraw and. Journal of Educational
and Behavioral Statistics, 25(2):101–132, 2000.

[65] Amy B Dellinger and Nancy L Leech. Toward a Unified Validation Framework in
Mixed Methods Research. Journal of Mixed Methods Research, 1(4):309–332, 2007.
ISSN 1558-6898. doi: 10.1177/1558689807306147. URL http://mmr.sagepub.com/
content/1/4/309.abstract.

[66] Dabin Ding, Dunren Che, and Wen-Chi Hou. A Direct Approach to Holistic
Boolean-Twig Pattern Evaluation. In 23rd International Conference Database and
Expert Systems Applications (DEXA), pages 342–356, 2012.

[67] Dabin Ding, Dunren Che, Fei Cao, and Wen-Chi Hou. A Practical Approach
to Holistic B-Twig Pattern Matching for Efficient XML Query Processing, pages
165–174. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-
39467-6. doi: 10.1007/978-3-642-39467-6_16.

[68] Che Dunren, Ling Tok Wang, and Hou Wen-Chi. Holistic Boolean-Twig Pattern
Matching for Efficient XML Query Processing. Knowledge and Data Engineering,
IEEE Transactions on, 24(11):2008–2024, 2012. doi: 10.1109/tkde.2011.128.

[69] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian.
Selecting Empirical Methods for Software Engineering Research. Guide to Ad-
vanced Empirical Software Engineering, pages 285–311, 2008. ISSN <null>. doi:
10.1007/978-1-84800-044-5_11. URL http://link.springer.com/chapter/10.1007/
978-1-84800-044-5{_}11.

[70] Li Fajin, Liao Husheng, and Gao Hongyu. Twig Pattern Matching with Posi-
tional Predicates in XML Queries. In Web Information System and Applica-
tion Conference (WISA), 2013 10th, pages 113–118, 2013. doi: 10.1109/wisa.
2013.30. URL http://ieeexplore.ieee.org/ielx7/6777803/6778588/06778621.pdf?tp=
{&}arnumber=6778621{&}isnumber=6778588.

[71] David C Fallside and Priscilla Walmsley. XML Schema Part 0: Primer Second
Edition, 2004. URL http://www.w3.org/TR/xmlschema-0/.

[72] Norah Saleh Farooqi. Applying Dynamic Trust Based Access Control to Improve
XML Databases Security . Phd thesis, The University of Sheffield, 2013.

[73] T Fiebig, S Helmer, C.-C. Kanne, G Moerkotte, J Neumann, R Schiele, and T West-
mann. Anatomy of a Native XML Base Management System. The VLDB Journal,
11(4):292–314, dec 2002. ISSN 1066-8888. doi: 10.1007/s00778-002-0080-y.
URL http://dx.doi.org/10.1007/s00778-002-0080-y.

[74] Andy Field, Jeremy Miles, and Zoë Field. Discovering Statistics Using IBM
SPSS Statistics, volume 81. SAGE Publications Ltd, 3 edition, 2013. ISBN
"9781847879066". doi: 10.1111/insr.12011_21.

[75] Peter M. Fischer, Aayush Garg, and Kyumars Sheykh Esmaili. Extending XQuery
with a pattern matching facility. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
6309 LNCS(1):48–57, 2010. ISSN 03029743. doi: 10.1007/978-3-642-15684-7_5.

http://mmr.sagepub.com/content/1/4/309.abstract
http://mmr.sagepub.com/content/1/4/309.abstract
http://link.springer.com/chapter/10.1007/978-1-84800-044-5{_}11
http://link.springer.com/chapter/10.1007/978-1-84800-044-5{_}11
http://ieeexplore.ieee.org/ielx7/6777803/6778588/06778621.pdf?tp={&}arnumber=6778621{&}isnumber=6778588
http://ieeexplore.ieee.org/ielx7/6777803/6778588/06778621.pdf?tp={&}arnumber=6778621{&}isnumber=6778588
http://www.w3.org/TR/xmlschema-0/
http://dx.doi.org/10.1007/s00778-002-0080-y

References 321

[76] D. Florescu and D. Kossmann. Storing and Querying XML Data using an RDMBS.
IEEE Data Engineering Bulletin, Special Issue on 1060, 22(3):27–34, 1999. URL
http://dsl.serc.iisc.ernet.in/{~}course/TIDS/papers/daniela.pdf.

[77] Marcus Fontoura, Vanja Josifovski, Eugene Shekita, and Beverly Yang. Optimizing
Cursor Movement in Holistic Twig Joins. In Proceeding CIKM ’05 Proceedings of
the 14th ACM international conference on Information and knowledge management
Pages 784-791, pages 784–791, 2005. ISBN 1595931406. doi: 10.1145/1099554.
1099741.

[78] Massimo Franceschet. XPathMark : an XPath Benchmark for the XMark Generated
Data. In Third International XML Database Symposium XSym, Trondheim, Norway.,
2005.

[79] Massimo Franceschet, Donatella Gubiani, Angelo Montanari, and Carla Piazza. A
graph-theoretic approach to map conceptual designs to XML schemas. ACM Trans.
Database Syst., 38(1):1–44, 2013. doi: 10.1145/2445583.2445589.

[80] Catherine O Fritz, Peter E Morris, and Jennifer J Richler. Effect size estimates:
current use, calculations, and interpretation. Journal of experimental psychology.
General, 141(1):2–18, 2012. ISSN 1939-2222. doi: 10.1037/a0024338. URL
http://www.ncbi.nlm.nih.gov/pubmed/21823805.

[81] Gou Gang and Rada Chirkova. Efficiently querying large XML data repositories:
A survey. IEEE Transactions on Knowledge and Data Engineering, 19(10):1381–
1403, 2007. ISSN 10414347. doi: 10.1109/TKDE.2007.1060.

[82] Salvador García, Alberto Fernández, Julián Luengo, and Francisco Herrera. Ad-
vanced nonparametric tests for multiple comparisons in the design of experi-
ments in computational intelligence and data mining: Experimental analysis of
power. Information Sciences, 180(10):2044–2064, 2010. ISSN 00200255. doi:
10.1016/j.ins.2009.12.010.

[83] Haris Georgiadis, Minas Charalambides, and Vasilis Vassalos. A Query Optimiza-
tion Assistant For Xpath. In Proceedings of the 14th International Conference on
Extending Database Technology, pages 550–553, 2011. ISBN 9781450305280. doi:
10.1145/1951365.1951438.

[84] T A Ghaleb and S Mohammed. Novel scheme for labeling XML trees based on bits-
masking and logical matching. In Computer and Information Technology (WCCIT),
2013 World Congress on, pages 1–5, 2013. doi: 10.1109/wccit.2013.6618715.

[85] Roy Goldman and Jennifer Widom. DataGuides: Enabling Query Formulation
and Optimization in Semistructured Databases. In proceedings of the international
conference on Very Large Data Bases, pages 436–445, Athens, Greece, 1997. ISBN
3060296103. doi: 10.1.1.15.9610.

[86] Roy Goldman, Jason McHugh, and Jennifer Widom. From Semistructured Data
to XML: Migrating the Lore Data Model and Query Language. In ACM SIGMOD
Workshop on The Web and Databases (WebDB 1999), pages 25–30, 1999.

[87] Nils Grimsmo and Truls A Bjørklund. XLeaf : Twig Evaluation with Skipping
Loop Joins and Virtual Nodes. In Second International Conference on Advances in
Databases, Knowledge, and Data Applications, 2010. ISBN 9780769539812. doi:
10.1109/DBKDA.2010.8.

[88] Nils Grimsmo and Truls A Bjørklund. Towards Unifying Advances in Twig Join Al-
gorithms. In Proceedings of the Twenty-First Australasian Conference on Database
Technologies, volume 104 of ADC ’10, pages 57–66, Darlinghurst, Australia, Aus-
tralia, 2010. Australian Computer Society, Inc. ISBN 978-1-920682-85-9.

http://dsl.serc.iisc.ernet.in/{~}course/TIDS/papers/daniela.pdf
http://www.ncbi.nlm.nih.gov/pubmed/21823805

322 References

[89] Nils Grimsmo, Truls Amundsen Bjørklund, and Magnus Lie Hetland. Fast optimal
twig joins. Proceedings of the VLDB Endowment, 3(1-2):894–905, sep 2010. ISSN
21508097. doi: 10.14778/1920841.1920955.

[90] Torsten Grust. Accelerating XPath Location Steps. Proceedings of the 2002
ACM SIGMOD international conference on Management of data - SIGMOD ’02,
page 109, 2002. ISSN 07308078. doi: 10.1145/564704.564705. URL http:
//portal.acm.org/citation.cfm?doid=564691.564705.

[91] Torsten Grust, Maurice van Keulen, and Jens Thilo Teubner. Staircase Join: Teach a
Relational DBMS to Watch its (Axis) Steps. Proceedings of the 29th International
Conference on Very Large Databases, pages 524—-535, 2003.

[92] Liu Guiquan, Yao Meiling, Wang Desheng, and Chen Enhong. A novel three-phase
XML twig pattern matching algorithm based on version tree. In Fuzzy Systems and
Knowledge Discovery (FSKD), 2011 Eighth International Conference on, volume 3,
pages 1678–1688, 2011. doi: 10.1109/fskd.2011.6019809.

[93] Marouane Hachicha and Jérôme Darmont. A survey of XML tree patterns. In IEEE
Transactions on Knowledge and Data Engineering, volume 25, pages 29–46, 2013.
doi: 10.1109/TKDE.2011.209.

[94] Theo Härder, Michael Haustein, Christian Mathis, and Markus Wagner. Node
labeling schemes for dynamic XML documents reconsidered. Data and Knowledge
Engineering, 60(1):126–149, 2007. ISSN 0169023X. doi: 10.1016/j.datak.2005.11.
008.

[95] Su-Cheng Haw and Chien-Sing Lee. TwigINLAB : A Decomposition-Matching-
Merging Approach To Improving XML Query Processing. American Journal of
Applied Sciences, 5(9):1199–1205, 2008.

[96] Su Cheng Haw and Chien Sing Lee. TwigX-Guide: An efficient twig pattern match-
ing system extending dataguide indexing and region encoding labeling. Journal of
Information Science and Engineering, 2009. ISSN 10162364.

[97] Su Cheng Haw and G. S V Radha Krishna Rao. A comparative study and benchmark-
ing on XML parsers. In International Conference on Advanced Communication
Technology, ICACT, volume 1, pages 321–325, 2007. ISBN 8955191316. doi:
10.1109/ICACT.2007.358364.

[98] Su-Cheng Cheng Haw and Chien-Sing Sing Lee. Data storage practices and query
processing in XML databases: A survey. Knowledge-Based Systems, 24(8):1317–
1340, 2011. ISSN 09507051. doi: 10.1016/j.knosys.2011.06.006.

[99] Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. Design Science
in Information Systems Research. MIS Quarterly, 28(1):75–105, 2004. ISSN
02767783. doi: 10.2307/25148625. URL http://dblp.uni-trier.de/rec/bibtex/journals/
misq/HevnerMPR04.

[100] Hilary J Holz, Anne Applin, Donald Joyce, Helen Purchase, Catherine Reed, and
Bruria Haberman. Research Methods in Computing : What are they , and how
should we teach them ? Information Systems, pages 96–114, 2006. ISSN 00978418.
doi: 10.1145/1189136.1189180.

[101] Mingsheng Hong, Alan J Demers, Johannes E Gehrke, Christoph Koch, Mirek
Riedewald, and Walker M White. Massively multi-query join processing in pub-
lish/subscribe systems, 2007.

http://portal.acm.org/citation.cfm?doid=564691.564705
http://portal.acm.org/citation.cfm?doid=564691.564705
http://dblp.uni-trier.de/rec/bibtex/journals/misq/HevnerMPR04
http://dblp.uni-trier.de/rec/bibtex/journals/misq/HevnerMPR04

References 323

[102] Wen-Chiao Hsu and I En Liao. CIS-X: A compacted indexing scheme for efficient
query evaluation of XML documents. Information Sciences, 241(0):195–211, 2013.
doi: http://dx.doi.org/10.1016/j.ins.2013.03.055.

[103] Gongzhu Hu and Chunxia Tang. Indexing XML Data for Path Expression Queries.
In First International Conference, SERA: International Conference on Software
Engineering Research and Applications, pages 332–348, 2003.

[104] Sascha Hunold and Jesper Larsson Träff. On the state and importance of
reproducible experimental research in parallel computing. arXiv preprint
arXiv:1308.3648, pages 1–15, 2013.

[105] Sayyed Kamyar Izadi, Theo Härder, and Mostafa S. Haghjoo. S3: Evaluation of
tree-pattern XML queries supported by structural summaries. Data and Knowledge
Engineering, 68(1):126–145, 2009. ISSN 0169023X. doi: 10.1016/j.datak.2008.09.
001. URL http://dx.doi.org/10.1016/j.datak.2008.09.001.

[106] Sayyed Kamyar Izadi, Mostafa S. Haghjoo, and Theo Härder. S3: Processing tree-
pattern XML queries with all logical operators. Data and Knowledge Engineering,
72:31–62, 2012. ISSN 0169023X. doi: 10.1016/j.datak.2011.09.003.

[107] H. V. Jagadish, Shurug Al-Khalifa, Adriane Chapman, Laks V S Lakshmanan,
Andrew Nierman, Stelios Paparizos, Jignesh M. Patel, Divesh Srivastava, Nuwee
Wiwatwattana, Yuqing Wu, and Cong Yu. Timber: A native XML database. VLDB
Journal, 11:274–291, 2002. ISSN 10668888. doi: 10.1007/s00778-002-0081-x.

[108] H V Jagadish, Laks V S Lakshmanan, Divesh Srivastava, and Keith Thompson.
TAX: A Tree Algebra for XML. In Giorgio Ghelli and Gösta Grahne, editors,
Database Programming Languages: 8th International Workshop, DBPL 2001
Frascati, Italy, September 8–10, 2001 Revised Papers, pages 149–164, Berlin,
Heidelberg, 2002. Springer Berlin Heidelberg. ISBN 978-3-540-46093-0. doi:
10.1007/3-540-46093-4_9.

[109] Ahmed Jedidi, Olfa Arfaoui, and Minyar Sassi-Hidri. Indexing Compressed XML
Documents. In Zhifeng Bao, Yunjun Gao, Yu Gu, Longjiang Guo, Yingshu Li,
Jiaheng Lu, Zujie Ren, Chaokun Wang, and Xiao Zhang, editors, Web-Age Infor-
mation Management, volume 7419, chapter 31, pages 319–328. Springer Berlin
Heidelberg, 2012. ISBN 978-3-642-33049-0. doi: 10.1007/978-3-642-33050-6_31.
URL http://dx.doi.org/10.1007/978-3-642-33050-6{_}31.

[110] Lu Jiaheng. EFFICIENT PROCESSING OF XML TWIG. Phd thesis, National
University Of Singapore, 2006.

[111] Haifeng Jiang, Wei Wang, Hongjun Lu, and Jx Yu. Holistic twig joins on indexed
XML documents. Proceedings of the 29th international conference on Very large
data bases, Volume 29:273 – 284, 2003.

[112] Haifeng Jiang, Hongjun Lu, and Wei Wang. Efficient Processing of XML Twig
Queries with OR-Predicates. In Proceedings of the 2004 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 59—-70, Paris, France, 2004.
ACM.

[113] Haifeng Jiang, Hongjun Lu, and Wei Wang. Efficient processing of XML twig
queries with OR-predicates. In Proceedings of the 2004 ACM SIGMOD interna-
tional conference on Management of data, pages 59–70, Paris, France, 2004. ACM.
doi: 10.1145/1007568.1007578.

http://dx.doi.org/10.1016/j.datak.2008.09.001
http://dx.doi.org/10.1007/978-3-642-33050-6{_}31

324 References

[114] Haifeng Jiang Haifeng Jiang, Hongjun Lu Hongjun Lu, Wei Wang Wei Wang, and
B.C. Ooi. XR-tree: indexing XML data for efficient structural joins. Proceedings
19th International Conference on Data Engineering (Cat. No.03CH37405), pages
253–264, 2003. ISSN 1063-6382. doi: 10.1109/ICDE.2003.1260797.

[115] Zhewei Jiang, Cheng Luo, and Wen-Chi Hou. An efficient one-phase holistic
twig join algorithm for XML data. In Proceedings of the 15th ACM international
conference on Information and knowledge management, pages 786–787, Arlington,
Virginia, USA, 2006. ACM. doi: 10.1145/1183614.1183730.

[116] Zhewei Jiang, Cheng Luo, Wen-Chi Hou, Qiang Zhu, and Dunren Che. Efficient
Processing of XML Twig Pattern : A Novel One-Phase Holistic Solution. In
Database and Expert Systems Applications: 18th International Conference, DEXA
2007, Regensburg, Germany, September 3-7, 2007. Proceedings, pages 87–97,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 9783540744672. doi:
10.1007/978-3-540-74469-6_10.

[117] Tang Jie, Liu Shaoshan, Liu Chen, Gu ZhiMin, and J L Gaudiot. Acceleration
of XML Parsing through Prefetching. Computers, IEEE Transactions on, 62(8):
1616–1628, 2013. doi: 10.1109/tc.2012.88.

[118] Jiang Jinhua, Chen Gang, Shou Lidan, and Chen Ke. OTJFast: Processing Ordered
XML Twig Join Fast. In the 3rd IEEE Asia-Pacific Services Computing Conference,
APSCC, number 60603044, pages 1289–1294, 2008. ISBN 9780769534732. doi:
10.1109/APSCC.2008.15.

[119] Raghav Kaushik, Philip Bohannon, Jeffrey F Naughton, and Henry F Korth. Cover-
ing indexes for branching path queries. Proceedings of the 2002 ACM SIGMOD
international conference on Management of data - SIGMOD ’02, page 133, 2002.
ISSN 07308078. doi: 10.1145/564704.564707. URL http://portal.acm.org/citation.
cfm?doid=564691.564707.

[120] Kay Whatley. XML basics for new users, 2009. URL http://www.ibm.com/
developerworks/library/x-newxml/.

[121] M Khabbaz, D Assi, R Alhajj, and M Hammad. Parse tree based approach for
processing XML streams. In Information Reuse and Integration (IRI), 2013 IEEE
14th International Conference on, pages 546–553, 2013. doi: 10.1109/iri.2013.
6642517.

[122] Laks V S Lakshmanan, Ganesh Ramesh, Hui Wang, and Zheng (Jessica) Zhao. On
Testing Satisfiability of Tree Pattern Queries. Proc. of the Int. Conf. on Very Large
Data Bases (VLDB), pages 120–131, 2004.

[123] Prashant R. Lambole and Prashant N. Chatur. A review on XML keyword query
processing. In IEEE International Conference on Innovative Mechanisms for
Industry Applications, ICIMIA 2017 - Proceedings, number Icimia, pages 238–241,
2017. ISBN 9781509059607. doi: 10.1109/ICIMIA.2017.7975610.

[124] Ki Hoon Lee, Kyu Young Whang, Wook Shin Han, and Min Soo Kim. Struc-
tural consistency: Enabling XML keyword search to eliminate spurious results
consistently. VLDB Journal, 19(4):503–529, 2010. ISSN 10668888. doi:
10.1007/s00778-009-0177-7.

[125] Sangkeun Lee, Byung Gul Ryu, and Kun Lung Wu. Examining the impact of
data-access cost on XML twig pattern matching. Information Sciences, 203:24–43,
2012. ISSN 00200255. doi: 10.1016/j.ins.2012.03.011.

http://portal.acm.org/citation.cfm?doid=564691.564707
http://portal.acm.org/citation.cfm?doid=564691.564707
http://www.ibm.com/developerworks/library/x-newxml/
http://www.ibm.com/developerworks/library/x-newxml/

References 325

[126] Changqing Li and Tok Wang Ling. Advanced Applications and Structures in
XML processing: Label streams, semantics utilization and data query technolo-
gies. Hershey, PA: IGI Global, 2010. ISBN 9781615207275. doi: 10.4018/
978-1-61520-727-5.

[127] Dong Li, Xiuyu Lu, Xifeng Huang, and Wenhao Chen. Structural Join in the ‘XSQS’
Native XML Database. JOURNAL OF SOFTWARE, 8(1), 2013.

[128] Dongyang Li and Chunping Li. TRACK: A novel XML join algorithm for efficient
processing twig queries. In Conferences in Research and Practice in Information
Technology Series, volume 75, pages 137–143, 2008.

[129] Fei Li, Hongzhi Wang, Liang Hao, Jianzhong Li, and Hong Gao. Approximate
joins for XML at label level. Information Sciences, 282(0):237–249, 2014. doi:
http://dx.doi.org/10.1016/j.ins.2014.06.007.

[130] Guoliang Li, Jianhua Feng, Yong Zhang, and Lizhu Zhou. Efficient Holistic Twig
Joins in Leaf-to-Root Combining with Root-to-Leaf Way. In Ramamohanarao
Kotagiri, P Radha Krishna, Mukesh Mohania, and Ekawit Nantajeewarawat, editors,
12th International Conference on Database Systems for Advanced Applications,
DASFAA, volume 1, pages 834–849, Bangkok, Thailand, 2007. Springer Berlin
Heidelberg. ISBN 978-3-540-71703-4. doi: 10.1007/978-3-540-71703-4_69.

[131] Jiang Li and Junhu Wang. TwigBuffer : Avoiding Useless Intermediate. In Jayant R
Haritsa, Ramamohanarao Kotagiri, and Vikram Pudi, editors, Database Systems
for Advanced Applications: 13th International Conference, DASFAA 2008, New
Delhi, India, March 19-21, 2008. Proceedings, pages 1–8, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg. ISBN 978-3-540-78568-2. doi: 10.1007/
978-3-540-78568-2_46. URL http://dx.doi.org/10.1007/978-3-540-78568-2{_}46.

[132] Jiang Li and Junhu Wang. Fast Matching of Twig Patterns. In International
Conference on Database and Expert Systems Applications, volume 5181 LNCS,
pages 523–536, 2008. ISBN 3540856536. doi: 10.1007/978-3-540-85654-2_45.

[133] Jiang Li, Junhu Wang, and Maolin Huang. Twig Pattern Matching: A Revisit. In
Abdelkader Hameurlain, Stephen W Liddle, Klaus-Dieter Schewe, and Xiaofang
Zhou, editors, Database and Expert Systems Applications: 22nd International Con-
ference, DEXA 2011, Toulouse, France, August 29 - September 2, 2011, Proceedings,
Part II, pages 43–50, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN
978-3-642-23091-2. doi: 10.1007/978-3-642-23091-2_4.

[134] Quanzhong Li and B Moon. Indexing and querying XML data for regular path
expressions. Vldb, pages 361–370, 2001. ISSN 1047-7349. doi: http://www.vldb.
org/conf/2001/P361.pdf. URL http://www.vldb.org/conf/2001/P361.pdf.

[135] Wang Lian, David Wai Lok Cheung, Nikos Mamoulis, and Siu Ming Yiu. An
Efficient and Scalable Algorithm for Clustering XML Documents by Structure.
IEEE Transactions on Knowledge and Data Engineering, 16(1):82–96, 2004. ISSN
10414347. doi: 10.1109/TKDE.2004.1264824.

[136] Husheng Liao, Hongyu Gao, and Zhaoning Guan. Recursive Twig Pattern Query.
International Journal of Database Theory and Application, 7(3):179–190, 2014.

[137] Guiquan Liu, Meiling Yao, Desheng Wang, and Enhong Chen. A novel three-phase
XML twig pattern matching algorithm based on version tree. Proceedings - 2011
8th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD
2011, 3:1678–1688, 2011. doi: 10.1109/FSKD.2011.6019809.

http://dx.doi.org/10.1007/978-3-540-78568-2{_}46
http://www.vldb.org/conf/2001/P361.pdf

326 References

[138] Jian Liu and X. X. Zhang. Dynamic labeling scheme for XML updates. Knowledge-
Based Systems, 106:135–149, 2016. ISSN 09507051. doi: 10.1016/j.knosys.2016.
05.039. URL http://dx.doi.org/10.1016/j.knosys.2016.05.039.

[139] Jian Liu, Z. M. Ma, and Ruizhe Ma. Efficient processing of twig query with
compound predicates in fuzzy XML. Fuzzy Sets and Systems, 2013. ISSN 01650114.
doi: 10.1016/j.fss.2012.11.004.

[140] Jian Liu, Z M Ma, and Li Yan. Efficient labeling scheme for dynamic XML trees.
Information Sciences, 221(0):338–354, 2013. doi: http://dx.doi.org/10.1016/j.ins.
2012.09.036.

[141] Jian Liu, Z. M. Ma, and Xue Feng. Answering ordered tree pattern queries
over fuzzy XML data. Knowledge and Information Systems, 2014. ISSN 0219-
1377. doi: 10.1007/s10115-014-0731-5. URL http://link.springer.com/10.1007/
s10115-014-0731-5.

[142] Ziyang Liu, Yichuang Cai, Yi Shan, and Yi Chen. Ranking Friendly Result Composi-
tion for XML Keyword Search. In the 34th International Conference on Conceptual
Modeling ER 2015, volume 9381, pages 441–449, 2015. ISBN 9783319252636.
doi: 10.1007/978-3-319-25264-3.

[143] Jiaheng Lu. Towards Benchmarking Multi-Model Databases. In The 8th biennial
Conference on Innovative Data Systems Research (CIDR 2017), page 1, Chaminade,
California, 2017.

[144] Jiaheng Lu, Ting Chen, and Tok Wang T.W. Ling. Efficient Processing of XML
Twig Patterns with Parent Child Edges : A Look-ahead Approach. In Proceedings
of the thirteenth ACM international conference on Information and knowledge man-
agement, pages 533–542, Washington, D.C., USA, 2004. ACM. ISBN 1581138741.
doi: http://doi.acm.org/10.1145/1031171.1031272.

[145] Jiaheng Lu, Tok Wang Ling, Tian Yu, Changqing Li, and Wei Ni. Efficient Pro-
cessing of Ordered XML Twig Pattern. In Kim Viborg Andersen, John Debenham,
and Roland Wagner, editors, Database and Expert Systems Applications: 16th
International Conference, DEXA 2005, Copenhagen, Denmark, August 22-26, 2005.
Proceedings, pages 300–309, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.
ISBN 978-3-540-31729-6. doi: 10.1007/11546924_30.

[146] Jiaheng Lu, Tok Wang Ling, Zhifeng Bao, and Chen Wang. Extended XML tree
pattern matching: Theories and algorithms. IEEE Transactions on Knowledge and
Data Engineering, 23(3):402–416, 2011. ISSN 10414347. doi: 10.1109/TKDE.
2010.126.

[147] Jiaheng Lu, Xiaofeng Meng, and Tok Wang Ling. Indexing and querying XML
using extended Dewey labeling scheme. Data & Knowledge Engineering, 70(1):
35–59, 2011. doi: http://dx.doi.org/10.1016/j.datak.2010.08.001.

[148] Petr Lukas, Radim Bača, and Michal Krátký. Cooking Lightweight XML Query
Processor with Binary Joins and Comparing it with Holistic Joins : Technical Report.
the Computing Research Repository (CoRR), abs/1703.0, 2017.

[149] Abdul Nizar M and P Sreenivasa Kumar. Efficient Evaluation of Forward XPath
Axes over XML Streams. Society.

[150] N Mabanza. Analyzing the Impact of XML Storage Models on the Performance of
Native XML Database Systems A Case Study. In Information Technology: New
Generations (ITNG), 2010 Seventh International Conference on, pages 210–215,
2010. doi: 10.1109/itng.2010.207.

http://dx.doi.org/10.1016/j.knosys.2016.05.039
http://link.springer.com/10.1007/s10115-014-0731-5
http://link.springer.com/10.1007/s10115-014-0731-5

References 327

[151] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval,
volume 35. Cambridge University Press, 1 edition, 2008. ISBN 978-0-521-86571-5.
doi: 10.1162/coli.2009.35.2.307.

[152] Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick. BonXai:
Combining the Simplicity of DTD with the Expressiveness of XML Schema. In
Proceedings of the 34th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS ’15, pages 145–156, New York, NY, USA, 2015. ACM.
ISBN 978-1-4503-2757-2. doi: 10.1145/2745754.2745774.

[153] Mahesh P. Matha. Core Java: A Comprehensive Study. Prentice-Hall of India
Pvt.Ltd, 1 edition, 2011. ISBN 978-8120342415.

[154] Christian Mathis, Theo Härder, Karsten Schmidt, and Sebastian Bächle. XML
indexing and storage: fulfilling the wish list. Computer Science - Research and
Development, pages 1–18, 2012. doi: 10.1007/s00450-012-0204-6.

[155] Mirjana Mazuran, Elisa Quintarelli, and Letizia Tanca. Data mining for XML
query-answering support. IEEE Transactions on Knowledge and Data Engineering,
24(8):1393–1407, 2012. ISSN 10414347. doi: 10.1109/TKDE.2011.80.

[156] Catherine C. McGeoch. A Guide to Experimental Algorithmics. Cambridge
University Press, New York, NY, USA, 1st edition, 2012. ISBN 0521173019,
9780521173018.

[157] Xiaofeng Meng, Yu Jiang, Yan Chen, and Haixun Wang. XSeq: An Indexing
Infrastructure for Tree Pattern Queries. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 941–942, New York, NY,
USA, 2004. ACM. ISBN 1-58113-859-8. doi: 10.1145/1007568.1007709. URL
http://doi.acm.org/10.1145/1007568.1007709.

[158] Tobias Mettler and Robert Winter. On the Use of Experiments in Design Science
Research : A Proposition of an Evaluation Framework. Communications of the
Association for Information Systems, 34(January):223–240, 2014.

[159] Bertrand Meyer, Christine Choppy, Jørgen Staunstrup, and Jan van Leeuwen.
Research evaluation for computer science. Communications of the ACM, 52
(4):31, 2009. ISSN 00010782. doi: 10.1145/1498765.1498780. URL http:
//portal.acm.org/citation.cfm?doid=1498765.1498780.

[160] Michael H. Kay. SAXON The XSLT and XQuery Processor, 2015. URL http:
//saxon.sourceforge.net/.

[161] Philippe Michiels and George A Mih. Put a Tree Pattern in Your Algebra. In 2007
IEEE 23rd International Conference on Data Engineering, pages 246–255, 2007.
ISBN 1424408032. doi: 10.1109/ICDE.2007.367870.

[162] Gerome Miklau. The University of Washington: XMLData Repository, 2002. URL
http://www.cs.washington.edu/research/xmldatasets/.

[163] Salahadin Mohammed, Ahmad F. Barradah, and El Sayed M El-Alfy. Selectivity
estimation of extended XML query tree patterns based on prime number labeling
and synopsis modeling. Simulation Modelling Practice and Theory, 64:30–42, 2015.
ISSN 1569190X. doi: 10.1016/j.simpat.2016.01.008.

[164] Mirella M Moro, Zografoula Vagena, and Vassilis J Tsotras. Tree-Pattern Queries on
a Lightweight XML Processor. In Proceedings of the 31st international conference
on Very large data bases, Trondheim, Norway, 2005.

http://doi.acm.org/10.1145/1007568.1007709
http://portal.acm.org/citation.cfm?doid=1498765.1498780
http://portal.acm.org/citation.cfm?doid=1498765.1498780
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://www.cs.washington.edu/research/xmldatasets/

328 References

[165] Nadim Nachar. The Mann Whitney U : A Test for Assessing Whether Two Indepen-
dent Samples Come from the Same Distribution. In The Quantitative Methods for
Psychology, volume 4, pages 13–20, 2008.

[166] Trygve Nagell. Introduction to Number Theory. American Mathematical Society; 2
Reprint edition (June 1, 2001), 2001. ISBN 0828401632.

[167] Richi Nayak and Wina Iryadi. XML schema clustering with semantic and hierar-
chical similarity measures. Knowledge-Based Systems, 20(4):336–349, 2007. doi:
http://dx.doi.org/10.1016/j.knosys.2006.08.006.

[168] Robert G. Newcombe. Confidence intervals for an effect size measure based on
the Mann-Whitney statistic. Part 1: General issues and tail-area-based methods.
Statistics in Medicine, 25(4):543–557, 2006. ISSN 02776715. doi: 10.1002/sim.
2323.

[169] M Nicola and J John. XML Parsing: A Threat to Database Performance. In the
twelfth international conference on ACM Digitail Library, volume 9, pages 3–6,
2003. ISBN 1581137230. doi: 10.1145/956863.956898.

[170] Matthias Nicola, Irina Kogan, and Berni Schiefer. An XML transaction processing
benchmark. Proceedings of the 2007 ACM SIGMOD international conference on
Management of data - SIGMOD ’07, page 937, 2007. ISSN 07308078. doi: 10.1145/
1247480.1247590. URL http://portal.acm.org/citation.cfm?doid=1247480.1247590.

[171] Bo Ning and Chengfei Liu. XML filtering with XPath expressions containing
parent and ancestor axes. Information Sciences, 210(0):41–54, 2012. doi: http:
//dx.doi.org/10.1016/j.ins.2012.04.035.

[172] Bo Ning, Guoren Wang, and Jeffrey Xu Yu. A Holistic Algorithm for Efficiently
Evaluating Xtwig Joins. In Database Systems for Advanced Applications: 13th
International Conference, DASFAA, volume 1, pages 571–572, New Delhi, India,
2008.

[173] M Abdul Nizar and P Sreenivasa Kumar. Order-Aware Twigs : Adding Order
Semantics to Twigs. Journal of Information and Data Management, 3(1):3–17,
2012.

[174] S. Noor Ea Thahasin and P. Jayanthi. Vector based labeling method for dynamic
XML documents. In 2013 International Conference on Information Communication
and Embedded Systems, ICICES 2013, pages 217–221, 2013. ISBN 9781467357869.
doi: 10.1109/ICICES.2013.6508390.

[175] Martin F O’Connor and Mark Roantree. SCOOTER: A Compact and Scalable
Dynamic Labeling Scheme for XML Updates. In Stephen W Liddle, Klaus-
Dieter Schewe, A Min Tjoa, and Xiaofang Zhou, editors, Database and Ex-
pert Systems Applications. DEXA 2012. Lecture Notes in Computer Science,
pages 26–40. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-32600-4. doi:
10.1007/978-3-642-32600-4_4.

[176] Peter Ogden, David Thomas, and Peter Pietzuch. Scalable XML Query Processing
using Parallel Pushdown Transducers. the VLDB Endowment, 6(14):1738–1749,
2013.

[177] Eric Pardede, J. Wenny Rahayu, and David Taniar. XML-enabled relational database
for XML document update. Proceedings - International Conference on Advanced
Information Networking and Applications, AINA, 2:205–209, 2006. ISSN 1550445X.
doi: 10.1109/AINA.2006.354.

http://portal.acm.org/citation.cfm?doid=1247480.1247590

References 329

[178] Richard Pattis. Chapter 1 EBNF : A Notation to Describe Syntax. In the Ada
Programming Language, pages 1–19. Dreamsongs Press, 2013.

[179] Ken Peffers, Tuure Tuunanen, Marcus Rothenberger, and Samir Chatterjee. A
design science research methodology for information systems research. Journal
of Management Information Systems, 24(3):45–77, 2007. ISSN 0742-1222. doi:
10.2753/MIS0742-1222240302.

[180] Jaroslav Pokorny. XML A Challenge for Databases? Contemporary Trends in
Systems Development, pages 147–148, 2001.

[181] Chung Keung Poon and Leo Yuen. Faster Twig Pattern Matching Using Extended
Dewey ID. In Stéphane Bressan, Josef Küng, and Roland Wagner, editors, Database
and Expert Systems Applications: 17th International Conference, DEXA 2006,
Kraków, Poland, September 4-8, 2006., pages 297–306, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg. ISBN 978-3-540-37872-3. doi: 10.1007/11827405_29.

[182] GNU Project. The R Project for Statistical Computing, 2017. URL https://www.
r-project.org/.

[183] The Apache Xerces™ Project. Xerces-C++ XML Parser, 1999. URL https://xerces.
apache.org/xerces-c/.

[184] Ghassan Z. Qadah. Indexing techniques for processing generalized XML documents.
Computer Standards and Interfaces, 49:34–43, 2017. ISSN 09205489. doi: 10.
1016/j.csi.2016.07.002.

[185] Lu Qin, Jeffrey Xu Yu, and Bolin Ding. TwigList: Make Twig Pattern Matching Fast.
In Ramamohanarao Kotagiri, P Radha Krishna, Mukesh Mohania, and Ekawit Nan-
tajeewarawat, editors, 12th International Conference on Database Systems for Ad-
vanced Applications, DASFAA, pages 850–862, Bangkok, Thailand, 2007. Springer
Berlin Heidelberg. ISBN 978-3-540-71703-4. doi: 10.1007/978-3-540-71703-4_70.

[186] Zunyue Qin, Yong Tang, Feiyi Tang, Jing Xiao, Changqin Huang, and Hongzhi Xu.
Efficient XML Query and Update Processing Using A Novel Prime-Based Middle
Fraction Labeling Scheme. China Communications, 14(March):145–157, 2017.

[187] Amjad Qtaish and Kamsuriah Ahmad. XAncestor: An efficient mapping ap-
proach for storing and querying XML documents in relational database using
path-based technique. Knowledge-Based Systems, 114(October):167–192, 2016.
ISSN 09507051. doi: 10.1016/j.knosys.2016.10.009.

[188] Praveen Rao and B. Moon. PRIX: indexing and querying XML using prufer
sequences. In the 20th International Conference on Data Engineering, number
January, pages 288–299, 2004. ISBN 1063-6382. doi: 10.1109/icde.2004.1320005.

[189] Praveen Rao and Bongki Moon. Sequencing XML Data and Query Twigs for Fast
Pattern Matching. ACM Trans. Database Syst., 31(1):299–345, mar 2006. ISSN
0362-5915. doi: 10.1145/1132863.1132871. URL http://doi.acm.org/10.1145/
1132863.1132871.

[190] Chen Rongxin and Chen Weibin. A parallel solution to XML query application. In
Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE Interna-
tional Conference on, volume 6, pages 542–546, 2010. doi: 10.1109/iccsit.2010.
5564719.

[191] Kanda Runapongsa and Jignesh Patel. Storing and Querying XML Data in Object-
Relational DBMSs. XMLBased Data Management and Multimedia Engineering
EDBT 2002 Workshops, pages 579–583, 2002. ISSN 0302-9743. URL http:
//dx.doi.org/10.1007/3-540-36128-6{_}15.

https://www.r-project.org/
https://www.r-project.org/
https://xerces.apache.org/xerces-c/
https://xerces.apache.org/xerces-c/
http://doi.acm.org/10.1145/1132863.1132871
http://doi.acm.org/10.1145/1132863.1132871
http://dx.doi.org/10.1007/3-540-36128-6{_}15
http://dx.doi.org/10.1007/3-540-36128-6{_}15

330 References

[192] Kanda Runapongsa, Jignesh M. Patel, H. V. Jagadish, Yun Chen, and Shurug Al-
Khalifa. The Michigan benchmark: Towards XML query performance diagnostics.
Information Systems, 31(2):73–97, 2006. ISSN 03064379. doi: 10.1016/j.is.2004.
09.004.

[193] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14(2):131–164,
2009. ISSN 13823256. doi: 10.1007/s10664-008-9102-8.

[194] SAX: the Simple A P I for X M L SAX Project Organization. SAX, 2014. URL
http://www.saxproject.org/.

[195] Albrecht Schmidt, Florian Waas, Martin Kersten, Ralph Busse, Michael J Carey,
and G B Amsterdam. XMark : A Benchmark for XML Data Management. In VLDB

’02 Proceedings of the 28th international conference on Very Large Data Bases,
pages 974–985, 2002.

[196] Karsten Schmidt, Sebastian Bächle, and Theo Härder. Benchmarking performance-
critical components in a native XML database system. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 5667 LNCS:64–78, 2009. ISSN 03029743. doi: 10.1007/
978-3-642-04205-8_7.

[197] Kai Schweinsberg and Lutz Wegner. Advantages of complex SQL types in storing
XML documents. Future Generation Computer Systems, 68:500–507, 2017. ISSN
0167739X. doi: 10.1016/j.future.2016.02.013.

[198] Mirit Shalem and Ziv Bar-Yossef. The space complexity of processing XML twig
queries over indexed documents. In Proceedings - International Conference on
Data Engineering, number March, pages 824–832, 2008. ISBN 9781424418374.
doi: 10.1109/ICDE.2008.4497491.

[199] M A Shao-long, Wang Xin-jun, and Zhang Feng. Efficient Processing of XML
Twig Pattern Matching based on Extended Region Encoding Labeling Scheme. In
IEEE International Symposium on IT in Medicine & Education, pages 1–6, 2009.
ISBN 9781424439300.

[200] Mary Shaw. What makes good research in software engineering? International
Journal on Software Tools for Technology . . . , 4(1):1–7, 2002. ISSN 1433-2779.
doi: 10.1007/s10009-002-0083-4. URL http://link.springer.com/article/10.1007/
s10009-002-0083-4.

[201] Mikael Fernandus Simalango. XML Query Processing and Query Languges: A
Survey. 2010.

[202] David S.Johnson. A Theoretician’s Guide to Experimental Analysis of Algorithms.
In Proceedings of the 5th and 6th DIMACS Implementation Challenges, pages
215–250, 2002.

[203] Aaron Skonnard and Martin Gudgin. Essential Xml Quick Reference: A Program-
mer’s Reference to XML, XPath, XSLT, XML Schema, SOAP, and More. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 2001. ISBN
0201740958.

[204] Samini Subramaniam, Su-Cheng Cheng Haw, and Poo Kuan Hoong. S-XML: An
efficient mapping scheme to bridge XML and relational database. Knowledge-Based
Systems, 27(0):369–380, 2012. ISSN 09507051. doi: 10.1016/j.knosys.2011.11.007.

http://www.saxproject.org/
http://link.springer.com/article/10.1007/s10009-002-0083-4
http://link.springer.com/article/10.1007/s10009-002-0083-4

References 331

[205] Samini Subramaniam, Su-Cheng Haw, and Lay-Ki Soon. DGReLab + : Improving
XML Path Query Processing by Avoiding Buffering Irrelevant Results. In 7th
International Conference on Advances in Computing & Communications, ICACC-
2017, volume 115, pages 804–811. Elsevier B.V., 2017. doi: 10.1016/j.procs.2017.
09.157.

[206] Samini Subramaniam, Su-cheng Haw, Lay-ki Soon, and Kok-leong Koong. QTwig:
A Structural Join Algorithm for Efficient Query Retrieval Based on Region-Based
Labeling. International Journal of Software Engineering and Knowledge Engineer-
ing, 27(2):321–342, 2017.

[207] G V Subramanyam, P Sreenivasa Kumar, Jayant Haritsa, and T M Vijayaraman
Editors. Efficient Handling of Sibling Axis in XPath. In Advances in Data Manage-
ment 2005, Proceedings of the Eleventh International Conference on Management
of Data, January 6, 7, and 8, 2005, Goa, India, pages 95–102, 2005.

[208] Suphat Sukamolson. Fundamentals of quantitative research. Language Institute,
page 20, 2007. doi: 9781848608641.

[209] Mohammed Amin Tahraoui, Karen Pinel-Sauvagnat, Cyril Laitang, Mohand
Boughanem, Hamamache Kheddouci, and Lei Ning. A survey on tree match-
ing and XML retrieval. Computer Science Review, 8(0):1–23, 2013. doi:
http://dx.doi.org/10.1016/j.cosrev.2013.02.001.

[210] Hideaki Takeda, Hideaki Takeda, Paul Veerkamp, Paul Veerkamp, Tetsuo Tomiyama,
Tetsuo Tomiyama, Hiroyuki Yoshikawa, and Hiroyuki Yoshikawa. Modeling Design
Processes. AI Magazine, 11(4):37–48, 1990. ISSN 0738-4602. doi: 10.1609/aimag.
v11i4.855.

[211] Igor Tatarinov, Stratis D Viglas, Kevin Beyer, Jayavel Shanmugasundaram, Eugene
Shekita, and Chun Zhang. Storing and querying ordered XML using a relational
database system, 2002.

[212] Shirish Tatikonda and Srinivasan Parthasarathy. Hashing tree-structured data: Meth-
ods and applications. Proceedings - International Conference on Data Engineering,
pages 429–440, 2010. ISSN 10844627. doi: 10.1109/ICDE.2010.5447882.

[213] Shirish Tatikonda, Shirish Tatikonda, Srinivasan Parthasarathy, Srinivasan
Parthasarathy, Matthew Goyder, and Matthew Goyder. LCS-TRIM: dynamic pro-
gramming meets XML indexing and querying. In the 33rd international conference
on Very large data bases VLDB, pages 63–74, 2007. ISBN 978-1-59593-649-3.

[214] Joe Tekli, Richard Chbeir, and Kokou Yetongnon. Efficient XML Structural Simi-
larity Detection using Sub-tree Commonalities. In 22nd Brazilian symposium on
databases (SBBD), pages 116–130, 2007.

[215] Terrill Brett Spell. Pro Java 8 Programming. Apress, 1st edition, 2015. ISBN
978-1484206423.

[216] David R. Tobergte and Shirley Curtis. Experimentation in Software Engineering
Book. Journal of Chemical Information and Modeling, 53(9):1689–1699, 2013.
ISSN 1098-6596. doi: 10.1017/CBO9781107415324.004.

[217] Zografoula Vagena, Nick Koudas, Divesh Srivastava, and V. Tsotras. Efficient
handling of positional predicates within XML query processing. Proc. 3rd Int. XML
Database Symp. on Database and XML Technologies, pages 579–579, 2005. ISSN
03029743. URL http://www.springerlink.com/index/82augt6wrxff4p8q.pdf.

http://www.springerlink.com/index/82augt6wrxff4p8q.pdf

332 References

[218] Zografoula Vagena, Nick Koudas, Divesh Srivastava, and Vassilis J Tsotras. Answer-
ing Order-based Queries over XML Data. In Special Interest Tracks and Posters of
the 14th International Conference on World Wide Web, number January in WWW
’05, pages 1162–1163, New York, NY, USA, 2005. ACM. ISBN 1-59593-051-5. doi:
10.1145/1062745.1062919. URL http://doi.acm.org/10.1145/1062745.1062919.

[219] Andris Vargha and Harold D Delaney. The Kruskal-Wallis Test and Stochastic
Homogeneity. Journal of Educational and Behavioral Statistics, 23(2):170–192,
1998.

[220] W3C. XSL Transformations (XSLT) Version 1.0, 1999. URL https://www.w3.org/
TR/xslt.

[221] W3C. XML Pointer Language (XPointer) Version 1.0, 2001. URL https://www.w3.
org/TR/WD-xptr.

[222] W3C. XML Path Language (XPath) 2.0 (Second Edition), 2010. URL http:
//www.w3.org/TR/xpath20/.

[223] W3C. SCHEMA, 2012. URL http://www.w3.org/standards/xml/schema.

[224] W3C. XQuery 3.0: An XML Query Language, 2014. URL http://www.w3.org/TR/
xquery-30/.

[225] W3C. Extensible Markup Language (XML), 2016. URL http://www.w3.org/XML/.

[226] W3schools. Introduction to XML. URL http://www.w3schools.com/xml/
xml{_}whatis.asp.

[227] W3schools. XQuery Tutorial, 2016. URL http://www.w3schools.com/xquery/.

[228] Dale Waldt. Six strategies for extending XML schemas in a single namespace
Create flexible XML schemas that grow to fit changing. Technical report, 2010.

[229] Bing Wang, Xianfeng Liu, Zhenxi Lei, and Gaocai Wang. CCSU: Research on the
Compression Coding of Supporting Data Update Completely. In High Performance
Computing and Communications & 2013 IEEE International Conference on Em-
bedded and Ubiquitous Computing (HPCC_EUC), 2013 IEEE 10th International
Conference on, pages 1796–1801, 2013. doi: 10.1109/HPCC.and.EUC.2013.257.

[230] Haixun Wang, Sanghyun Park, Wei Fan, and Philip S Yu. ViST: A Dynamic Index
Method for Querying XML Data by Tree Structures. In Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data, SIGMOD ’03,
pages 110–121, New York, NY, USA, 2003. ACM. ISBN 1-58113-634-X. doi:
10.1145/872757.872774. URL http://doi.acm.org/10.1145/872757.872774.

[231] Lu Wei, K Chiu, and Pan Yinfei. A Parallel Approach to XML Parsing. In Grid
Computing, 7th IEEE/ACM International Conference on, pages 223–230, 2006. doi:
10.1109/icgrid.2006.311019.

[232] Zhang Wei and R van Engelen. A Table-Driven Streaming XML Parsing Method-
ology for High-Performance Web Services. In Web Services, 2006. ICWS ’06.
International Conference on, pages 197–204, 2006. doi: 10.1109/icws.2006.15.

[233] Adrian White. HOW TO GET A PhD: A HANDBOOK FOR STUDENTS AND
THEIR SUPERVISORS. Complementary Therapies in Medicine, 11(1):51, 2003.
ISSN 09652299. doi: 10.1016/S0965-2299(03)00003-7.

[234] Carrie Williams. Research Methods. Journal of Business & Economic Research, 5
(3):65–72, 2007. ISSN 0895-4356. doi: 10.1093/fampract/cmi221.

http://doi.acm.org/10.1145/1062745.1062919
https://www.w3.org/TR/xslt
https://www.w3.org/TR/xslt
https://www.w3.org/TR/WD-xptr
https://www.w3.org/TR/WD-xptr
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/
http://www.w3.org/standards/xml/schema
http://www.w3.org/TR/xquery-30/
http://www.w3.org/TR/xquery-30/
http://www.w3.org/XML/
http://www.w3schools.com/xml/xml{_}whatis.asp
http://www.w3schools.com/xml/xml{_}whatis.asp
http://www.w3schools.com/xquery/
http://doi.acm.org/10.1145/872757.872774

References 333

[235] Huayu Wu, Tok Wang Ling, and Gillian Dobbie. TP + Output : Modeling Complex
Output Information in XML Twig Pattern Query. In the 7th International XML
Database Symposium, XSym, pages 128–143, Singapore, 2010.

[236] Huayu Wu, Tok Wang Ling, Bo Chen, and Liang Xu. TwigTable : using semantics
in XML twig pattern query processing. Journal on Data Semantics XV, 6720:
102–129, 2011.

[237] Huayu Wu, Chunbin Lin, Tok Wang Ling, and Jiaheng Lu. Processing XML
twig pattern query with wildcards. In Stephen W Liddle, Klaus-Dieter Schewe,
A Min Tjoa, and Xiaofang Zhou, editors, International Conference on Database
and Expert Systems Applications, volume 7446 LNCS, pages 326–341, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 9783642325991. doi: 10.
1007/978-3-642-32600-4_24.

[238] X Wu, Mong Li Lee, and W Hsu. A prime number labeling scheme for dynamic or-
dered XML trees. In Proceedings. 20th International Conference on Data Engineer-
ing, pages 66–78, 2004. ISBN 1063-6382 VO -. doi: 10.1109/ICDE.2004.1319985.

[239] Xiaoying Wu and Dimitri Theodoratos. A survey on XML streaming evaluation tech-
niques. The VLDB Journal, 22(2):177–202, 2013. doi: 10.1007/s00778-012-0281-y.

[240] Xin Wu and Guiquan Liu. XML twig pattern matching using version tree. Data
and Knowledge Engineering, 64(3):580–599, 2008. doi: http://dx.doi.org/10.1016/j.
datak.2007.09.013.

[241] Yuqing Wu, Jignesh M. Patel, and H. V. Jagadish. Structural join order selection for
XML query optimization. In International Conference on Data Engineering, pages
443–454, 2003. ISBN 0-7803-7665-X. doi: 10.1109/ICDE.2003.1260812.

[242] Wu Xiaoying, S Souldatos, D Theodoratos, T Dalamagas, Y Vassiliou, and T Sellis.
Processing and Evaluating Partial Tree Pattern Queries on XML Data. Knowledge
and Data Engineering, IEEE Transactions on, 24(12):2244–2259, 2012. doi:
10.1109/tkde.2011.137.

[243] Liang Xu, Tok Wang Ling, Huayu Wu, and Zhifeng Bao. DDE: from dewey
to a fully dynamic XML labeling scheme. Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 719–730, 2009. doi: 10.1145/1559845.1559921.

[244] Liang Xu, Tok Wang Ling, Huayu Wu, Xu Liang, Ling Tok Wang, and Wu Huayu.
Labeling Dynamic XML Documents: An Order-Centric Approach. In IEEE Trans-
actions on Knowledge and Data Engineering, volume 24, pages 100–113, 2012.
ISBN 1041-4347. doi: 10.1109/tkde.2010.221.

[245] Xiaoshuang Xu, Yucai Feng, and Feng Wang. Efficient processing of XML twig
queries with all predicates. In Proceedings of the 2009 8th IEEE/ACIS Interna-
tional Conference on Computer and Information Science, ICIS 2009, 2009. ISBN
9780769536415. doi: 10.1109/ICIS.2009.74.

[246] Beverly Yang, Marcus Fontoura, Eugene Shekita, Sridhar Rajagopalan, and Kevin
Beyer. Virtual Cursors for XML Joins. In Proceedings of the Thirteenth ACM
International Conference on Information and Knowledge Management, CIKM ’04,
pages 523–532, New York, NY, USA, 2004. ACM. ISBN 1-58113-874-1. doi:
10.1145/1031171.1031271. URL http://doi.acm.org/10.1145/1031171.1031271.

[247] Benjamin Bin Yao, M. Tamer Özsu, and Nitin Khandelwal. XBench benchmark
and performance testing of XML DBMSs. Proceedings - International Conference
on Data Engineering, 20:621–632, 2004. ISSN 1063-6382. doi: 10.1109/ICDE.
2004.1320032.

http://doi.acm.org/10.1145/1031171.1031271

334 References

[248] Xiang Yongqing, Deng Zhihong, Yu Hang, Wang Sijing, and Gao Ning. A new
indexing strategy for XML keyword search. In Fuzzy Systems and Knowledge
Discovery (FSKD), 2010 Seventh International Conference on, volume 5, pages
2412–2416, 2010. doi: 10.1109/fskd.2010.5569522.

[249] Tian Yu, TokWang Wang Ling, and Jiaheng Lu. TwigStackList ¬: A Holistic Twig
Join Algorithm for Twig Query with Not-Predicates on XML Data. In Mong Li
Lee, Kian-Lee Tan, and Vilas Wuwongse, editors, Database Systems for Advanced
Applications, volume 3882, pages 249–263. Springer Berlin Heidelberg, 2006. ISBN
978-3-540-33337-1. doi: 10.1007/11733836_19.

[250] Leo Yuen and Chung Keung Poon. Relational Index Support for XPath Axes.
Database and XML Technologies, Third International XML Database Symposium,
XSym 2005, Trondheim, Norway, August 28-29, 2005, Proceedings. Lecture Notes
in Computer Science, 5679(August 2005), 2009. doi: 10.1007/978-3-642-03555-5.

[251] Hanaa Al Zadjali and Siobhán North. XML Labels Compression using Prefix-
Encodings. In The 12th International Conference on Web Information Systems
and Technologies (WEBIST 2016), pages 69–75, Rome, Italy, 2016. doi: 10.5220/
0005755500690075.

[252] Qiang Zeng and Hai Zhuge. Stack-based Algorithms for Pattern Matching on DAGs.
In the 31st VLDB Conference, Trondheim, Norway, 2005. ISBN 1595931546.

[253] Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong Luo, and Guy Lohman. On
supporting containment queries in relational database management systems. ACM
SIGMOD Record, 30:425–436, 2001. ISSN 01635808. doi: 10.1145/376284.
375722.

[254] Chen Zhiyuan, J Gehrke, F Korn, N Koudas, J Shanmugasundaram, and D Srivastava.
Index Structures for Matching XML Twigs Using Relational Query Processors. In
Data Engineering Workshops, 2005. 21st International Conference on, page 1273,
2005. doi: 10.1109/icde.2005.231.

[255] Junfeng Zhou, Min Xie, and Xiaofeng Meng. TwigStack+: Holistic twig join
pruning using extended solution extension. Wuhan University Journal of Natural
Sciences, 12(5):855–860, 2007. ISSN 10071202. doi: 10.1007/s11859-007-0032-x.

Appendix A

Top-Down Holistic Approaches Full
results

Table A.1: Results for paired comparisons based on the U test over the DBLP dataset.
AlgorithmA AlgorithmB Twig P-Value p-value < 5% Median A Median B effect size r Best

TwigStackList TwigStackPrime DQ1 2.26E-34 TRUE 0.34 0.237 0.8605028 TwigStackPrime
TwigStackList TwigStackPrime DQ2 4.33E-18 TRUE 1.035 1.009 0.607437 TwigStackPrime
TwigStackList TwigStackPrime DQ3 4.55E-30 TRUE 0.21 0.196 0.8012964 TwigStackPrime
TwigStackList TwigStackPrime DQ4 6.68E-32 TRUE 0.209 0.133 0.8270301 TwigStackPrime
TwigStackList TwigStack DQ1 4.46E-33 TRUE 0.34 0.299 0.8431224 TwigStack
TwigStackList TwigStack DQ2 1.52E-08 TRUE 1.035 1.022 0.3916347 TwigStack
TwigStackList TwigStack DQ3 5.96E-31 TRUE 0.21 0.195 0.8137879 TwigStack
TwigStackList TwigStack DQ4 4.51E-15 TRUE 0.209 0.1975 0.5481811 TwigStack

TwigStackPrime TwigStack DQ1 3.63E-33 TRUE 0.237 0.299 0.8443291 TwigStackPrime
TwigStackPrime TwigStack DQ2 2.00E-09 TRUE 1.009 1.022 0.416049 TwigStackPrime
TwigStackPrime TwigStack DQ3 0.005262825 TRUE 0.196 0.195 0.1808825 TwigStack
TwigStackPrime TwigStack DQ4 2.35E-31 TRUE 0.133 0.1975 0.8194512 TwigStackPrime

Table A.2: Results for paired comparisons based on the U test over the XMark dataset.
AlgorithmA AlgorithmB Twig P-Value p-value < 5% Median A Median B effect size r Best

TwigStackList TwigStackPrime XQ1 2.12E-33 TRUE 14.3205 14.039 0.8474823 TwigStackPrime
TwigStackList TwigStackPrime XQ2 0.2082787 FALSE 0.216 0.216 0.05744595 tie
TwigStackList TwigStackPrime XQ3 0.676971 FALSE 52.3595 52.5035 0.03247355 tie
TwigStackList TwigStackPrime XQ4 9.54E-31 TRUE 21.5035 20.975 0.810919 TwigStackPrime
TwigStackList TwigStackPrime XQ5 6.85E-06 TRUE 58.618 58.4545 0.3074949 TwigStackPrime
TwigStackList TwigStackPrime XQ6 0.8306972 FALSE 8.308 8.3165 0.06766476 tie
TwigStackList TwigStack XQ1 2.56E-34 TRUE 14.3205 23.939 0.859799 TwigStackList
TwigStackList TwigStack XQ2 1.47E-09 TRUE 0.216 0.215 0.419672 TwigStack
TwigStackList TwigStack XQ3 2.62E-18 TRUE 52.3595 53.9075 0.6114935 TwigStackList
TwigStackList TwigStack XQ4 5.66E-32 TRUE 21.5035 20.953 0.8280259 TwigStack
TwigStackList TwigStack XQ5 1.17E-31 TRUE 58.618 59.9775 0.8236795 TwigStackList
TwigStackList TwigStack XQ6 1.03E-11 TRUE 8.308 8.2205 0.4739111 TwigStack

TwigStackPrime TwigStack XQ1 2.56E-34 TRUE 14.039 23.939 0.8597981 TwigStackPrime
TwigStackPrime TwigStack XQ2 2.17E-06 TRUE 0.216 0.215 0.3248566 TwigStack
TwigStackPrime TwigStack XQ3 3.21E-19 TRUE 52.5035 53.9075 0.6282234 TwigStackPrime
TwigStackPrime TwigStack XQ4 0.2518079 FALSE 20.975 20.953 0.0472921 tie
TwigStackPrime TwigStack XQ5 3.72E-32 TRUE 58.4545 59.9775 0.8305387 TwigStackPrime
TwigStackPrime TwigStack XQ6 4.80E-12 TRUE 8.3165 8.2205 0.4817012 TwigStack

336 Top-Down Holistic Approaches Full results

Table A.3: Results for paired comparisons based on the U test over the TreeBank dataset.
AlgorithmA AlgorithmB Twig P-Value p-value < 5% Median A Median B effect size r Best

TwigStackList TwigStackPrime TQ1 1.51E-31 TRUE 0.139 0.127 0.8221121 TwigStackPrime
TwigStackList TwigStackPrime TQ2 6.70E-34 TRUE 1.52 1.466 0.8542129 TwigStackPrime
TwigStackList TwigStackPrime TQ3 9.22E-35 TRUE 0.409 0.462 0.8656703 TwigStackList
TwigStackList TwigStackPrime TQ4 3.56E-24 TRUE 1.623 1.61 0.7124215 TwigStackPrime
TwigStackList TwigStackPrime TQ5 2.55E-34 TRUE 5.985 8.2285 0.859816 TwigStackList
TwigStackList TwigStackPrime TQ6 1.06E-25 TRUE 36.53 35.9195 0.7364704 TwigStackPrime
TwigStackList TwigStackPrime TQ7 2.42E-34 TRUE 1.568 1.494 0.860124 TwigStackPrime
TwigStackList TwigStackPrime TQ8 2.49E-34 TRUE 3.274 3.017 0.859955 TwigStackPrime
TwigStackList TwigStackPrime TQ9 2.46E-34 TRUE 2.189 2.324 0.8600162 TwigStackList
TwigStackList TwigStackPrime TQ10 3.52E-45 TRUE 1107.155 850.555 0.9939336 TwigStackPrime
TwigStackList TwigStack TQ1 1.08E-33 TRUE 0.139 0.126 0.8514198 TwigStack
TwigStackList TwigStack TQ2 2.32E-34 TRUE 1.52 1.785 0.860359 TwigStackList
TwigStackList TwigStack TQ3 8.98E-35 TRUE 0.409 0.434 0.8658218 TwigStackList
TwigStackList TwigStack TQ4 2.19E-34 TRUE 1.623 2.785 0.8606963 TwigStackList
TwigStackList TwigStack TQ5 2.55E-34 TRUE 5.985 10.4385 0.8598241 TwigStackList
TwigStackList TwigStack TQ6 5.64E-39 TRUE 36.53 1371.105 0.9196807 TwigStackList
TwigStackList TwigStack TQ7 2.45E-34 TRUE 1.568 1.969 0.8600536 TwigStackList
TwigStackList TwigStack TQ8 2.48E-34 TRUE 3.274 2.7955 0.8599869 TwigStack
TwigStackList TwigStack TQ9 2.45E-34 TRUE 2.189 2.056 0.8600553 TwigStack
TwigStackList TwigStack TQ10 3.52E-45 TRUE 1107.155 1151.6 0.9939336 TwigStackList

TwigStackPrime TwigStack TQ1 9.59E-18 TRUE 0.127 0.126 0.6009459 TwigStack
TwigStackPrime TwigStack TQ2 2.34E-34 TRUE 1.466 1.785 0.8603133 TwigStackPrime
TwigStackPrime TwigStack TQ3 1.04E-34 TRUE 0.462 0.434 0.8649838 TwigStack
TwigStackPrime TwigStack TQ4 2.13E-34 TRUE 1.61 2.785 0.8608599 TwigStackPrime
TwigStackPrime TwigStack TQ5 2.55E-34 TRUE 8.2285 10.4385 0.859816 TwigStackPrime
TwigStackPrime TwigStack TQ6 5.63E-39 TRUE 35.9195 1371.105 0.9196842 TwigStackPrime
TwigStackPrime TwigStack TQ7 2.43E-34 TRUE 1.494 1.969 0.8600891 TwigStackPrime
TwigStackPrime TwigStack TQ8 2.47E-34 TRUE 3.017 2.7955 0.8600032 TwigStack
TwigStackPrime TwigStack TQ9 2.43E-34 TRUE 2.324 2.056 0.8600963 TwigStack
TwigStackPrime TwigStack TQ10 3.52E-45 TRUE 850.555 1151.6 0.9939336 TwigStackPrime

Table A.4: Results for paired comparisons based on the U test over the Random dataset.
AlgorithmA AlgorithmB Twig P-Value p-value < 5% Median A Median B Effect size r Best

TwigStackList TwigStackPrime RQ1 2.55E-34 TRUE 6.9775 7.618 0.8598065 TwigStackList
TwigStackList TwigStackPrime RQ2 2.56E-34 TRUE 94.542 87.5205 0.859789 TwigStackPrime
TwigStackList TwigStackPrime RQ3 2.56E-34 TRUE 44.219 41.8955 0.8597903 TwigStackPrime
TwigStackList TwigStackPrime RQ4 0.06142632 FALSE 409.3945 412.4995 0.1091002 tie
TwigStackList TwigStackPrime RQ5 5.57E-34 TRUE 12.318 11.9135 0.8552907 TwigStackPrime
TwigStackList TwigStackPrime RQ6 3.89E-23 TRUE 1216.978 769.7405 0.6955955 TwigStackPrime
TwigStackList TwigStackPrime RQ7 9.26E-26 TRUE 7.8395 8.3285 0.7373509 TwigStackList
TwigStackList TwigStackPrime RQ8 2.55E-34 TRUE 11.7885 12.2725 0.8598202 TwigStackList
TwigStackList TwigStackPrime RQ9 2.56E-34 TRUE 43.0745 23.394 0.8597942 TwigStackPrime
TwigStackList TwigStack RQ1 2.55E-34 TRUE 6.9775 6.6865 0.8598095 TwigStack
TwigStackList TwigStack RQ2 2.56E-34 TRUE 94.542 131.433 0.859788 TwigStackList
TwigStackList TwigStack RQ3 2.56E-34 TRUE 44.219 69.612 0.8597903 TwigStackList
TwigStackList TwigStack RQ4 2.56E-34 TRUE 409.3945 509.6845 0.859787 TwigStackList
TwigStackList TwigStack RQ5 2.55E-34 TRUE 12.318 11.223 0.8598075 TwigStack
TwigStackList TwigStack RQ6 5.02E-33 TRUE 1216.978 4032.539 0.8424288 TwigStackList
TwigStackList TwigStack RQ7 2.56E-34 TRUE 7.8395 12.503 0.8598 TwigStackList
TwigStackList TwigStack RQ8 2.54E-34 TRUE 11.7885 8.9575 0.8598296 TwigStack
TwigStackList TwigStack RQ9 2.56E-34 TRUE 43.0745 510.318 0.8597886 TwigStackList

TwigStackPrime TwigStack RQ1 2.55E-34 TRUE 7.618 6.6865 0.8598069 TwigStack
TwigStackPrime TwigStack RQ2 2.56E-34 TRUE 87.5205 131.433 0.8597886 TwigStackPrime
TwigStackPrime TwigStack RQ3 2.56E-34 TRUE 41.8955 69.612 0.8597896 TwigStackPrime
TwigStackPrime TwigStack RQ4 2.56E-34 TRUE 412.4995 509.6845 0.859787 TwigStackPrime
TwigStackPrime TwigStack RQ5 2.56E-34 TRUE 11.9135 11.223 0.8598007 TwigStack
TwigStackPrime TwigStack RQ6 2.56E-34 TRUE 769.7405 4032.539 0.859787 TwigStackPrime
TwigStackPrime TwigStack RQ7 2.56E-34 TRUE 8.3285 12.503 0.859799 TwigStackPrime
TwigStackPrime TwigStack RQ8 2.54E-34 TRUE 12.2725 8.9575 0.8598303 TwigStack
TwigStackPrime TwigStack RQ9 2.56E-34 TRUE 23.394 510.318 0.8597925 TwigStackPrime

Appendix B

Ordered Top-Down Holistic
Approaches Full results

Tables B.1, B.2 and B.3 present the XPath expressions used in the experiments of Chapter
7.

Table B.1: Experimental ordered TPQs for XMark.
Code XPath expression
OXQ1 //mail/text/keyword/following-sibling::bold
OXQ2 //text/bold[//keyword]/following::emph
OXQ3 //description//text/following::parlist
OXQ4 //listitem//bold/following-sibling::text[//emph]//keyword
OXQ5 //mail/text[/keyword]//bold[keyword«bold]

Table B.2: Experimental ordered TPQs for TreeBank.
Code XPath expression
OT Q1 //S/VP/PP/IN/following::NP/following::VBN
OT Q2 //NP/NN/following-sibling::PP
OT Q3 //VP/DT/following::PRP_DOLLAR_
OT Q4 //NP/NN/preceding-sibling::PP
OT Q5 //PP//NP[/preceding::VP]/preceding-sibling::VBN
OT Q6 //PP//NP[/preceding::VP]/VBN
OT Q7 //PP//NP[/preceding::VP]/preceding::VBN
OT Q8 //VP/NP//NNS/following::S
OT Q9 //S[//MD]//ADJ[MD«ADJ]

Table B.4: Results for paired comparisons based on the U test over the XMark dataset.

AlgorithmA AlgorithmB Twig P-Value p-value < 5% Median A Median B effect size Winner

SFTwigStack SFTwigStackList OXQ1 2.56E-34 TRUE 42.869 35.3105 0.8597906 SFTwigStackList

SFTwigStack SFTwigStackList OXQ2 0.2720523 FALSE 8.5085 8.5255 0.04289436 tie

338 Ordered Top-Down Holistic Approaches Full results

Table B.4: Results for paired comparisons based on the U test over the XMark dataset.

AlgorithmA AlgorithmB Twig P-Value p-value < 5% Median A Median B effect size Winner

SFTwigStack SFTwigStackList OXQ3 3.52E-45 TRUE 622.7475 639.935 0.9939336 SFTwigStack

SFTwigStack SFTwigStackList OXQ4 3.52E-45 TRUE 510.586 516.767 0.9939336 SFTwigStack

SFTwigStack SFTwigStackList OXQ5 3.55E-26 TRUE 49.549 45.47 0.7437648 SFTwigStackList

SFTwigStack SFTwigStackPrime OXQ1 2.56E-34 TRUE 42.869 35.1695 0.8597906 SFTwigStackPrime

SFTwigStack SFTwigStackPrime OXQ2 2.54E-32 TRUE 8.5085 8.805 0.8328053 SFTwigStack

SFTwigStack SFTwigStackPrime OXQ3 3.52E-45 TRUE 622.7475 628.899 0.9939336 SFTwigStack

SFTwigStack SFTwigStackPrime OXQ4 3.52E-45 TRUE 510.586 517.802 0.9939336 SFTwigStack

SFTwigStack SFTwigStackPrime OXQ5 3.99E-23 TRUE 49.549 45.5235 0.6954218 SFTwigStackPrime

SFTwigStack OTJPrime OXQ1 2.56E-34 TRUE 42.869 18.1765 0.8597951 OTJPrime

SFTwigStack OTJPrime OXQ2 2.55E-34 TRUE 8.5085 3.9685 0.8598052 OTJPrime

SFTwigStack OTJPrime OXQ3 5.64E-39 TRUE 622.7475 77.632 0.9196779 OTJPrime

SFTwigStack OTJPrime OXQ4 5.64E-39 TRUE 510.586 17.0415 0.9196787 OTJPrime

SFTwigStack OTJPrime OXQ5 2.56E-34 TRUE 49.549 24.612 0.8597877 OTJPrime

SFTwigStack OTJPrimeList OXQ1 2.56E-34 TRUE 42.869 14.0375 0.8597948 OTJPrimeList

SFTwigStack OTJPrimeList OXQ2 2.56E-34 TRUE 8.5085 2.891 0.8598026 OTJPrimeList

SFTwigStack OTJPrimeList OXQ3 5.64E-39 TRUE 622.7475 31.3805 0.9196791 OTJPrimeList

SFTwigStack OTJPrimeList OXQ4 5.60E-39 TRUE 510.586 1.003 0.9197196 OTJPrimeList

SFTwigStack OTJPrimeList OXQ5 2.56E-34 TRUE 49.549 21.9755 0.8597877 OTJPrimeList

SFTwigStack OTJPMultiLists OXQ1 2.56E-34 TRUE 42.869 14.204 0.8597948 OTJPMultiLists

SFTwigStack OTJPMultiLists OXQ2 2.55E-34 TRUE 8.5085 2.996 0.8598153 OTJPMultiLists

SFTwigStack OTJPMultiLists OXQ3 5.64E-39 TRUE 622.7475 31.7655 0.9196791 OTJPMultiLists

SFTwigStack OTJPMultiLists OXQ4 5.59E-39 TRUE 510.586 1.052 0.9197224 OTJPMultiLists

SFTwigStack OTJPMultiLists OXQ5 2.56E-34 TRUE 49.549 22.0235 0.859788 OTJPMultiLists

SFTwigStackList SFTwigStackPrime OXQ1 1.73E-04 TRUE 35.3105 35.1695 0.253018 SFTwigStackPrime

SFTwigStackList SFTwigStackPrime OXQ2 1.09E-32 TRUE 8.5255 8.805 0.8378398 SFTwigStackList

SFTwigStackList SFTwigStackPrime OXQ3 3.52E-45 TRUE 639.935 628.899 0.9939336 SFTwigStackPrime

SFTwigStackList SFTwigStackPrime OXQ4 3.52E-45 TRUE 516.767 517.802 0.9939336 SFTwigStackList

SFTwigStackList SFTwigStackPrime OXQ5 7.55E-01 FALSE 45.47 45.5235 0.04890127 tie

SFTwigStackList OTJPrime OXQ1 2.56E-34 TRUE 35.3105 18.1765 0.8597961 OTJPrime

SFTwigStackList OTJPrime OXQ2 2.55E-34 TRUE 8.5255 3.9685 0.8598049 OTJPrime

SFTwigStackList OTJPrime OXQ3 5.64E-39 TRUE 639.935 77.632 0.9196779 OTJPrime

SFTwigStackList OTJPrime OXQ4 5.64E-39 TRUE 516.767 17.0415 0.9196787 OTJPrime

SFTwigStackList OTJPrime OXQ5 2.56E-34 TRUE 45.47 24.612 0.859788 OTJPrime

SFTwigStackList OTJPrimeList OXQ1 2.56E-34 TRUE 35.3105 14.0375 0.8597958 OTJPrimeList

SFTwigStackList OTJPrimeList OXQ2 2.56E-34 TRUE 8.5255 2.891 0.8598023 OTJPrimeList

SFTwigStackList OTJPrimeList OXQ3 5.64E-39 TRUE 639.935 31.3805 0.9196791 OTJPrimeList

SFTwigStackList OTJPrimeList OXQ4 5.60E-39 TRUE 516.767 1.003 0.9197196 OTJPrimeList

SFTwigStackList OTJPrimeList OXQ5 2.56E-34 TRUE 45.47 21.9755 0.859788 OTJPrimeList

SFTwigStackList OTJPMultiLists OXQ1 2.56E-34 TRUE 35.3105 14.204 0.8597958 OTJPMultiLists

SFTwigStackList OTJPMultiLists OXQ2 2.55E-34 TRUE 8.5255 2.996 0.859815 OTJPMultiLists

SFTwigStackList OTJPMultiLists OXQ3 5.64E-39 TRUE 639.935 31.7655 0.9196791 OTJPMultiLists

SFTwigStackList OTJPMultiLists OXQ4 5.59E-39 TRUE 516.767 1.052 0.9197224 OTJPMultiLists

SFTwigStackList OTJPMultiLists OXQ5 2.56E-34 TRUE 45.47 22.0235 0.8597883 OTJPMultiLists

SFTwigStackPrime OTJPrime OXQ1 2.56E-34 TRUE 35.1695 18.1765 0.8597961 OTJPrime

SFTwigStackPrime OTJPrime OXQ2 2.55E-34 TRUE 8.805 3.9685 0.8598059 OTJPrime

SFTwigStackPrime OTJPrime OXQ3 5.64E-39 TRUE 628.899 77.632 0.9196779 OTJPrime

SFTwigStackPrime OTJPrime OXQ4 5.64E-39 TRUE 517.802 17.0415 0.9196787 OTJPrime

SFTwigStackPrime OTJPrime OXQ5 2.56E-34 TRUE 45.5235 24.612 0.859788 OTJPrime

339

Table B.4: Results for paired comparisons based on the U test over the XMark dataset.

AlgorithmA AlgorithmB Twig P-Value p-value < 5% Median A Median B effect size Winner

SFTwigStackPrime OTJPrimeList OXQ1 2.56E-34 TRUE 35.1695 14.0375 0.8597958 OTJPrimeList

SFTwigStackPrime OTJPrimeList OXQ2 2.55E-34 TRUE 8.805 2.891 0.8598033 OTJPrimeList

SFTwigStackPrime OTJPrimeList OXQ3 5.64E-39 TRUE 628.899 31.3805 0.9196791 OTJPrimeList

SFTwigStackPrime OTJPrimeList OXQ4 5.60E-39 TRUE 517.802 1.003 0.9197196 OTJPrimeList

SFTwigStackPrime OTJPrimeList OXQ5 2.56E-34 TRUE 45.5235 21.9755 0.859788 OTJPrimeList

SFTwigStackPrime OTJPMultiLists OXQ1 2.56E-34 TRUE 35.1695 14.204 0.8597958 OTJPMultiLists

SFTwigStackPrime OTJPMultiLists OXQ2 2.55E-34 TRUE 8.805 2.996 0.859816 OTJPMultiLists

SFTwigStackPrime OTJPMultiLists OXQ3 5.64E-39 TRUE 628.899 31.7655 0.9196791 OTJPMultiLists

SFTwigStackPrime OTJPMultiLists OXQ4 5.59E-39 TRUE 517.802 1.052 0.9197224 OTJPMultiLists

SFTwigStackPrime OTJPMultiLists OXQ5 2.56E-34 TRUE 45.5235 22.0235 0.8597883 OTJPMultiLists

OTJPrime OTJPrimeList OXQ1 2.56E-34 TRUE 18.1765 14.0375 0.8598003 OTJPrimeList

OTJPrime OTJPrimeList OXQ2 2.55E-34 TRUE 3.9685 2.891 0.8598098 OTJPrimeList

OTJPrime OTJPrimeList OXQ3 2.56E-34 TRUE 77.632 31.3805 0.859788 OTJPrimeList

OTJPrime OTJPrimeList OXQ4 2.55E-34 TRUE 17.0415 1.003 0.8598218 OTJPrimeList

OTJPrime OTJPrimeList OXQ5 1.60E-26 TRUE 24.612 21.9755 0.7490674 OTJPrimeList

OTJPrime OTJPMultiLists OXQ1 2.56E-34 TRUE 18.1765 14.204 0.8598003 OTJPMultiLists

OTJPrime OTJPMultiLists OXQ2 2.55E-34 TRUE 3.9685 2.996 0.8598225 OTJPMultiLists

OTJPrime OTJPMultiLists OXQ3 2.56E-34 TRUE 77.632 31.7655 0.859788 OTJPMultiLists

OTJPrime OTJPMultiLists OXQ4 2.55E-34 TRUE 17.0415 1.052 0.8598241 OTJPMultiLists

OTJPrime OTJPMultiLists OXQ5 1.08E-30 TRUE 24.612 22.0235 0.8101351 OTJPMultiLists

OTJPrimeList OTJPMultiLists OXQ1 1.49E-22 TRUE 14.0375 14.204 0.6859546 OTJPrimeList

OTJPrimeList OTJPMultiLists OXQ2 2.91E-25 TRUE 2.891 2.996 0.7296294 OTJPrimeList

OTJPrimeList OTJPMultiLists OXQ3 8.30E-10 TRUE 31.3805 31.7655 0.4262409 OTJPrimeList

OTJPrimeList OTJPMultiLists OXQ4 8.85E-17 TRUE 1.003 1.052 0.5824281 OTJPrimeList

OTJPrimeList OTJPMultiLists OXQ5 6.70E-01 FALSE 21.9755 22.0235 0.03107458 tie

Table B.5: Results for paired comparisons based on the U test over the TreeBank dataset.

AlgorithmA AlgorithmB Twig P-Value p-value < 5% Median A Median B effect size Winner

SFTwigStack SFTwigStackList OTQ1 0.09636652 FALSE 61.2015 61.066 0.09210324 tie

SFTwigStack SFTwigStackList OTQ2 3.52E-45 TRUE 1276.887 1223.651 0.9939336 SFTwigStackList

SFTwigStack SFTwigStackList OTQ3 4.91E-33 TRUE 0.527 0.493 0.8425519 SFTwigStackList

SFTwigStack SFTwigStackList OTQ4 3.52E-45 TRUE 1229.29 1178.948 0.9939336 SFTwigStackList

SFTwigStack SFTwigStackList OTQ5 3.52E-45 TRUE 73.272 73.798 0.9939336 SFTwigStack

SFTwigStack SFTwigStackList OTQ6 2.50E-34 TRUE 1.449 0.9295 0.8599322 SFTwigStackList

SFTwigStack SFTwigStackList OTQ7 3.52E-45 TRUE 70.312 74.951 0.9939336 SFTwigStack

SFTwigStack SFTwigStackList OTQ8 3.52E-45 TRUE 103.697 103.022 0.9939336 SFTwigStackList

SFTwigStack SFTwigStackList OTQ9 3.87E-04 TRUE 0.117 0.12 0.2377369 SFTwigStack

SFTwigStack SFTwigStackPrime OTQ1 3.96E-33 TRUE 61.2015 55.3235 0.8438185 SFTwigStackPrime

SFTwigStack SFTwigStackPrime OTQ2 3.52E-45 TRUE 1276.887 878.387 0.9939336 SFTwigStackPrime

SFTwigStack SFTwigStackPrime OTQ3 2.48E-34 TRUE 0.527 0.757 0.8599699 SFTwigStack

SFTwigStack SFTwigStackPrime OTQ4 3.52E-45 TRUE 1229.29 888.492 0.9939336 SFTwigStackPrime

SFTwigStack SFTwigStackPrime OTQ5 3.52E-45 TRUE 73.272 73.548 0.9939336 SFTwigStack

SFTwigStack SFTwigStackPrime OTQ6 2.53E-34 TRUE 1.449 1.3405 0.8598703 SFTwigStackPrime

SFTwigStack SFTwigStackPrime OTQ7 3.52E-45 TRUE 70.312 74.664 0.9939336 SFTwigStack

SFTwigStack SFTwigStackPrime OTQ8 3.52E-45 TRUE 103.697 102.912 0.9939336 SFTwigStackPrime

SFTwigStack SFTwigStackPrime OTQ9 0.01032286 TRUE 0.117 0.119 0.1636529 SFTwigStack

SFTwigStack OTJPrime OTQ1 4.49E-31 TRUE 61.2015 56.3025 0.8155185 OTJPrime

340 Ordered Top-Down Holistic Approaches Full results

Table B.5: Results for paired comparisons based on the U test over the TreeBank dataset.

AlgorithmA AlgorithmB Twig P-Value p-value < 5% Median A Median B effect size Winner

SFTwigStack OTJPrime OTQ2 3.52E-45 TRUE 1276.887 889.6 0.9939336 OTJPrime

SFTwigStack OTJPrime OTQ3 2.47E-34 TRUE 0.527 0.7115 0.8600054 SFTwigStack

SFTwigStack OTJPrime OTQ4 5.62E-39 TRUE 1229.29 4.9345 0.9196981 OTJPrime

SFTwigStack OTJPrime OTQ5 5.60E-39 TRUE 73.272 1.869 0.9197152 OTJPrime

SFTwigStack OTJPrime OTQ6 1.53E-22 TRUE 1.449 1.424 0.6858001 OTJPrime

SFTwigStack OTJPrime OTQ7 5.57E-39 TRUE 70.312 1.853 0.9197423 OTJPrime

SFTwigStack OTJPrime OTQ8 5.64E-39 TRUE 103.697 42.9305 0.9196783 OTJPrime

SFTwigStack OTJPrime OTQ9 2.15E-01 FALSE 0.117 0.1165 0.05569781 tie

SFTwigStack OTJPrimeList OTQ1 2.56E-34 TRUE 61.2015 21.5905 0.859789 OTJPrimeList

SFTwigStack OTJPrimeList OTQ2 3.52E-45 TRUE 1276.887 890.809 0.9939336 OTJPrimeList

SFTwigStack OTJPrimeList OTQ3 6.37E-33 TRUE 0.527 0.558 0.8410178 SFTwigStack

SFTwigStack OTJPrimeList OTQ4 5.59E-39 TRUE 1229.29 1.5915 0.9197244 OTJPrimeList

SFTwigStack OTJPrimeList OTQ5 5.56E-39 TRUE 73.272 1.0295 0.9197542 OTJPrimeList

SFTwigStack OTJPrimeList OTQ6 2.52E-34 TRUE 1.449 1.064 0.8598915 OTJPrimeList

SFTwigStack OTJPrimeList OTQ7 5.60E-39 TRUE 70.312 1.8715 0.9197164 OTJPrimeList

SFTwigStack OTJPrimeList OTQ8 5.64E-39 TRUE 103.697 30.401 0.9196791 OTJPrimeList

SFTwigStack OTJPrimeList OTQ9 1.02E-08 TRUE 0.117 0.122 0.3965471 SFTwigStack

SFTwigStack OTJPMultiLists OTQ1 2.56E-34 TRUE 61.2015 22.87 0.8597919 OTJPMultiLists

SFTwigStack OTJPMultiLists OTQ2 3.52E-45 TRUE 1276.887 910.661 0.9939336 OTJPMultiLists

SFTwigStack OTJPMultiLists OTQ3 2.47E-34 TRUE 0.527 0.739 0.8599882 SFTwigStack

SFTwigStack OTJPMultiLists OTQ4 5.59E-39 TRUE 1229.29 2.2595 0.9197212 OTJPMultiLists

SFTwigStack OTJPMultiLists OTQ5 5.55E-39 TRUE 73.272 1.057 0.9197609 OTJPMultiLists

SFTwigStack OTJPMultiLists OTQ6 3.78E-10 TRUE 1.449 1.464 0.4351392 SFTwigStack

SFTwigStack OTJPMultiLists OTQ7 5.59E-39 TRUE 70.312 1.8895 0.9197264 OTJPMultiLists

SFTwigStack OTJPMultiLists OTQ8 5.64E-39 TRUE 103.697 30.508 0.9196787 OTJPMultiLists

SFTwigStack OTJPMultiLists OTQ9 6.99E-11 TRUE 0.117 0.123 0.4536918 SFTwigStack

SFTwigStackList SFTwigStackPrime OTQ1 9.53E-32 TRUE 61.066 55.3235 0.824894 SFTwigStackPrime

SFTwigStackList SFTwigStackPrime OTQ2 3.52E-45 TRUE 1223.651 878.387 0.9939336 SFTwigStackPrime

SFTwigStackList SFTwigStackPrime OTQ3 2.46E-34 TRUE 0.493 0.757 0.8600253 SFTwigStackList

SFTwigStackList SFTwigStackPrime OTQ4 3.52E-45 TRUE 1178.948 888.492 0.9939336 SFTwigStackPrime

SFTwigStackList SFTwigStackPrime OTQ5 3.52E-45 TRUE 73.798 73.548 0.9939336 SFTwigStackPrime

SFTwigStackList SFTwigStackPrime OTQ6 2.50E-34 TRUE 0.9295 1.3405 0.8599289 SFTwigStackList

SFTwigStackList SFTwigStackPrime OTQ7 3.52E-45 TRUE 74.951 74.664 0.9939336 SFTwigStackPrime

SFTwigStackList SFTwigStackPrime OTQ8 3.52E-45 TRUE 103.022 102.912 0.9939336 SFTwigStackPrime

SFTwigStackList SFTwigStackPrime OTQ9 2.49E-01 FALSE 0.12 0.119 0.04785163 tie

SFTwigStackList OTJPrime OTQ1 1.97E-29 TRUE 61.066 56.3025 0.7921585 OTJPrime

SFTwigStackList OTJPrime OTQ2 3.52E-45 TRUE 1223.651 889.6 0.9939336 OTJPrime

SFTwigStackList OTJPrime OTQ3 2.44E-34 TRUE 0.493 0.7115 0.8600608 SFTwigStackList

SFTwigStackList OTJPrime OTQ4 5.62E-39 TRUE 1178.948 4.9345 0.9196981 OTJPrime

SFTwigStackList OTJPrime OTQ5 5.60E-39 TRUE 73.798 1.869 0.9197152 OTJPrime

SFTwigStackList OTJPrime OTQ6 2.49E-34 TRUE 0.9295 1.424 0.8599478 SFTwigStackList

SFTwigStackList OTJPrime OTQ7 5.57E-39 TRUE 74.951 1.853 0.9197423 OTJPrime

SFTwigStackList OTJPrime OTQ8 5.64E-39 TRUE 103.022 42.9305 0.9196783 OTJPrime

SFTwigStackList OTJPrime OTQ9 4.03E-06 TRUE 0.12 0.1165 0.3156219 OTJPrime

SFTwigStackList OTJPrimeList OTQ1 2.56E-34 TRUE 61.066 21.5905 0.8597883 OTJPrimeList

SFTwigStackList OTJPrimeList OTQ2 3.52E-45 TRUE 1223.651 890.809 0.9939336 OTJPrimeList

SFTwigStackList OTJPrimeList OTQ3 2.44E-34 TRUE 0.493 0.558 0.8600663 SFTwigStackList

SFTwigStackList OTJPrimeList OTQ4 5.59E-39 TRUE 1178.948 1.5915 0.9197244 OTJPrimeList

341

Table B.5: Results for paired comparisons based on the U test over the TreeBank dataset.

AlgorithmA AlgorithmB Twig P-Value p-value < 5% Median A Median B effect size Winner

SFTwigStackList OTJPrimeList OTQ5 5.56E-39 TRUE 73.798 1.0295 0.9197542 OTJPrimeList

SFTwigStackList OTJPrimeList OTQ6 2.49E-34 TRUE 0.9295 1.064 0.8599501 SFTwigStackList

SFTwigStackList OTJPrimeList OTQ7 5.60E-39 TRUE 74.951 1.8715 0.9197164 OTJPrimeList

SFTwigStackList OTJPrimeList OTQ8 5.64E-39 TRUE 103.022 30.401 0.9196791 OTJPrimeList

SFTwigStackList OTJPrimeList OTQ9 1.84E-02 TRUE 0.12 0.122 0.1476047 SFTwigStackList

SFTwigStackList OTJPMultiLists OTQ1 2.56E-34 TRUE 61.066 22.87 0.8597912 OTJPMultiLists

SFTwigStackList OTJPMultiLists OTQ2 3.52E-45 TRUE 1223.651 910.661 0.9939336 OTJPMultiLists

SFTwigStackList OTJPMultiLists OTQ3 2.45E-34 TRUE 0.493 0.739 0.8600435 SFTwigStackList

SFTwigStackList OTJPMultiLists OTQ4 5.59E-39 TRUE 1178.948 2.2595 0.9197212 OTJPMultiLists

SFTwigStackList OTJPMultiLists OTQ5 5.55E-39 TRUE 73.798 1.057 0.9197609 OTJPMultiLists

SFTwigStackList OTJPMultiLists OTQ6 2.49E-34 TRUE 0.9295 1.464 0.8599475 SFTwigStackList

SFTwigStackList OTJPMultiLists OTQ7 5.59E-39 TRUE 74.951 1.8895 0.9197264 OTJPMultiLists

SFTwigStackList OTJPMultiLists OTQ8 5.64E-39 TRUE 103.022 30.508 0.9196787 OTJPMultiLists

SFTwigStackList OTJPMultiLists OTQ9 8.02E-04 TRUE 0.12 0.123 0.2230932 SFTwigStackList

SFTwigStackPrime OTJPrime OTQ1 2.32E-07 TRUE 55.3235 56.3025 0.3564094 SFTwigStackPrime

SFTwigStackPrime OTJPrime OTQ2 3.52E-45 TRUE 878.387 889.6 0.9939336 SFTwigStackPrime

SFTwigStackPrime OTJPrime OTQ3 7.53E-34 TRUE 0.757 0.7115 0.8535377 OTJPrime

SFTwigStackPrime OTJPrime OTQ4 5.62E-39 TRUE 888.492 4.9345 0.9196981 OTJPrime

SFTwigStackPrime OTJPrime OTQ5 5.60E-39 TRUE 73.548 1.869 0.9197152 OTJPrime

SFTwigStackPrime OTJPrime OTQ6 4.80E-34 TRUE 1.3405 1.424 0.8561541 SFTwigStackPrime

SFTwigStackPrime OTJPrime OTQ7 5.57E-39 TRUE 74.664 1.853 0.9197423 OTJPrime

SFTwigStackPrime OTJPrime OTQ8 5.64E-39 TRUE 102.912 42.9305 0.9196783 OTJPrime

SFTwigStackPrime OTJPrime OTQ9 0.000177207 TRUE 0.119 0.1165 0.2525708 OTJPrime

SFTwigStackPrimeOTJPrimeList OTQ1 2.56E-34 TRUE 55.3235 21.5905 0.859788 OTJPrimeList

SFTwigStackPrimeOTJPrimeList OTQ2 3.52E-45 TRUE 878.387 890.809 0.9939336 SFTwigStackPrime

SFTwigStackPrimeOTJPrimeList OTQ3 2.49E-34 TRUE 0.757 0.558 0.8599634 OTJPrimeList

SFTwigStackPrimeOTJPrimeList OTQ4 5.59E-39 TRUE 888.492 1.5915 0.9197244 OTJPrimeList

SFTwigStackPrimeOTJPrimeList OTQ5 5.56E-39 TRUE 73.548 1.0295 0.9197542 OTJPrimeList

SFTwigStackPrimeOTJPrimeList OTQ6 2.52E-34 TRUE 1.3405 1.064 0.8598882 OTJPrimeList

SFTwigStackPrimeOTJPrimeList OTQ7 5.60E-39 TRUE 74.664 1.8715 0.9197164 OTJPrimeList

SFTwigStackPrimeOTJPrimeList OTQ8 5.64E-39 TRUE 102.912 30.401 0.9196791 OTJPrimeList

SFTwigStackPrimeOTJPrimeList OTQ9 1.85E-04 TRUE 0.119 0.122 0.2517365 SFTwigStackPrime

SFTwigStackPrimeOTJPMultiLists OTQ1 2.56E-34 TRUE 55.3235 22.87 0.8597909 OTJPMultiLists

SFTwigStackPrimeOTJPMultiLists OTQ2 3.52E-45 TRUE 878.387 910.661 0.9939336 SFTwigStackPrime

SFTwigStackPrimeOTJPMultiLists OTQ3 2.12E-19 TRUE 0.757 0.739 0.6314879 OTJPMultiLists

SFTwigStackPrimeOTJPMultiLists OTQ4 5.59E-39 TRUE 888.492 2.2595 0.9197212 OTJPMultiLists

SFTwigStackPrimeOTJPMultiLists OTQ5 5.55E-39 TRUE 73.548 1.057 0.9197609 OTJPMultiLists

SFTwigStackPrimeOTJPMultiLists OTQ6 2.52E-34 TRUE 1.3405 1.464 0.8598856 SFTwigStackPrime

SFTwigStackPrimeOTJPMultiLists OTQ7 5.59E-39 TRUE 74.664 1.8895 0.9197264 OTJPMultiLists

SFTwigStackPrimeOTJPMultiLists OTQ8 5.64E-39 TRUE 102.912 30.508 0.9196787 OTJPMultiLists

SFTwigStackPrimeOTJPMultiLists OTQ9 1.04E-06 TRUE 0.119 0.123 0.3355727 SFTwigStackPrime

OTJPrime OTJPrimeList OTQ1 2.56E-34 TRUE 56.3025 21.5905 0.8597886 OTJPrimeList

OTJPrime OTJPrimeList OTQ2 3.52E-45 TRUE 889.6 890.809 0.9939336 OTJPrime

OTJPrime OTJPrimeList OTQ3 2.47E-34 TRUE 0.7115 0.558 0.8599989 OTJPrimeList

OTJPrime OTJPrimeList OTQ4 2.54E-34 TRUE 4.9345 1.5915 0.8598417 OTJPrimeList

OTJPrime OTJPrimeList OTQ5 2.52E-34 TRUE 1.869 1.0295 0.8598801 OTJPrimeList

OTJPrime OTJPrimeList OTQ6 2.51E-34 TRUE 1.424 1.064 0.8599071 OTJPrimeList

OTJPrime OTJPrimeList OTQ7 1.44E-07 TRUE 1.853 1.8715 0.3628495 OTJPrime

342 Ordered Top-Down Holistic Approaches Full results

Table B.5: Results for paired comparisons based on the U test over the TreeBank dataset.

AlgorithmA AlgorithmB Twig P-Value p-value < 5% Median A Median B effect size Winner

OTJPrime OTJPrimeList OTQ8 1.91E-28 TRUE 42.9305 30.401 0.7778266 OTJPrimeList

OTJPrime OTJPrimeList OTQ9 3.88E-11 TRUE 0.1165 0.122 0.459995 OTJPrime

OTJPrime OTJPMultiLists OTQ1 2.56E-34 TRUE 56.3025 22.87 0.8597916 OTJPMultiLists

OTJPrime OTJPMultiLists OTQ2 3.52E-45 TRUE 889.6 910.661 0.9939336 OTJPrime

OTJPrime OTJPMultiLists OTQ3 9.22E-31 TRUE 0.7115 0.739 0.8111244 OTJPrime

OTJPrime OTJPMultiLists OTQ4 2.54E-34 TRUE 4.9345 2.2595 0.8598391 OTJPMultiLists

OTJPrime OTJPMultiLists OTQ5 4.79E-33 TRUE 1.869 1.057 0.8426991 OTJPMultiLists

OTJPrime OTJPMultiLists OTQ6 9.45E-29 TRUE 1.424 1.464 0.7822915 OTJPrime

OTJPrime OTJPMultiLists OTQ7 9.88E-19 TRUE 1.853 1.8895 0.6193305 OTJPrime

OTJPrime OTJPMultiLists OTQ8 1.60E-29 TRUE 42.9305 30.508 0.793461 OTJPMultiLists

OTJPrime OTJPMultiLists OTQ9 2.63E-13 TRUE 0.1165 0.123 0.5104265 OTJPrime

OTJPrimeList OTJPMultiLists OTQ1 1.21E-26 TRUE 21.5905 22.87 0.7508958 OTJPrimeList

OTJPrimeList OTJPMultiLists OTQ2 3.52E-45 TRUE 890.809 910.661 0.9939336 OTJPrimeList

OTJPrimeList OTJPMultiLists OTQ3 2.48E-34 TRUE 0.558 0.739 0.8599817 OTJPrimeList

OTJPrimeList OTJPMultiLists OTQ4 2.53E-34 TRUE 1.5915 2.2595 0.8598606 OTJPrimeList

OTJPrimeList OTJPMultiLists OTQ5 9.27E-23 TRUE 1.0295 1.057 0.6893907 OTJPrimeList

OTJPrimeList OTJPMultiLists OTQ6 2.51E-34 TRUE 1.064 1.464 0.8599068 OTJPrimeList

OTJPrimeList OTJPMultiLists OTQ7 6.07E-08 TRUE 1.8715 1.8895 0.3741665 OTJPrimeList

OTJPrimeList OTJPMultiLists OTQ8 8.63E-02 FALSE 30.401 30.508 0.09644356 tie

OTJPrimeList OTJPMultiLists OTQ9 1.96E-01 FALSE 0.122 0.123 0.06053243 tie

Table B.6: Results for paired comparisons based on the U test over the Random dataset.

AlgorithmA AlgorithmB Twig P-Value p-value < 5% Median A Median B effect size Winner

SFTwigStack SFTwigStackList ORQ1 3.52E-45 TRUE 7.856 8.497 0.9939336 SFTwigStack

SFTwigStack SFTwigStackList ORQ2 3.52E-45 TRUE 879.209 899.929 0.9939336 SFTwigStack

SFTwigStack SFTwigStackList ORQ3 2.15E-37 TRUE 104.337 107.353 0.8997745 SFTwigStack

SFTwigStack SFTwigStackList ORQ4 3.52E-45 TRUE 200.485 201.732 0.9939336 SFTwigStack

SFTwigStack SFTwigStackList ORQ5 7.68E-43 TRUE 192.686 100.157 0.9666109 SFTwigStackList

SFTwigStack SFTwigStackList ORQ6 3.52E-45 TRUE 2718.407 179.706 0.9939336 SFTwigStackList

SFTwigStack SFTwigStackList ORQ7 2.55E-34 TRUE 14.529 9.1885 0.8598095 SFTwigStackList

SFTwigStack SFTwigStackPrime ORQ1 3.52E-45 TRUE 7.856 8.095 0.9939336 SFTwigStack

SFTwigStack SFTwigStackPrime ORQ2 3.52E-45 TRUE 879.209 898.262 0.9939336 SFTwigStack

SFTwigStack SFTwigStackPrime ORQ3 2.15E-37 TRUE 104.337 117.697 0.8997745 SFTwigStack

SFTwigStack SFTwigStackPrime ORQ4 3.52E-45 TRUE 200.485 200.692 0.9939336 SFTwigStack

SFTwigStack SFTwigStackPrime ORQ5 5.76E-45 TRUE 192.686 113.055 0.9914657 SFTwigStackPrime

SFTwigStack SFTwigStackPrime ORQ6 3.52E-45 TRUE 2718.407 136.726 0.9939336 SFTwigStackPrime

SFTwigStack SFTwigStackPrime ORQ7 2.55E-34 TRUE 14.529 10.442 0.8598075 SFTwigStackPrime

SFTwigStack OTJPrime ORQ1 5.63E-39 TRUE 7.856 6.304 0.9196854 OTJPrime

SFTwigStack OTJPrime ORQ2 3.52E-45 TRUE 879.209 184.288 0.9939336 OTJPrime

SFTwigStack OTJPrime ORQ3 2.59E-38 TRUE 104.337 43.0315 0.9114022 OTJPrime

SFTwigStack OTJPrime ORQ4 2.65E-43 TRUE 200.485 113.413 0.9720684 OTJPrime

SFTwigStack OTJPrime ORQ5 1.82E-41 TRUE 192.686 105.155 0.9501823 OTJPrime

SFTwigStack OTJPrime ORQ6 3.52E-45 TRUE 2718.407 113.088 0.9939336 OTJPrime

SFTwigStack OTJPrime ORQ7 2.55E-34 TRUE 14.529 9.167 0.8598082 OTJPrime

SFTwigStack OTJPrimeList ORQ1 4.69E-36 TRUE 7.856 6.4575 0.8825932 OTJPrimeList

SFTwigStack OTJPrimeList ORQ2 5.63E-39 TRUE 879.209 10.462 0.9196918 OTJPrimeList

SFTwigStack OTJPrimeList ORQ3 2.26E-38 TRUE 104.337 10.2265 0.912138 OTJPrimeList

343

Table B.6: Results for paired comparisons based on the U test over the Random dataset.

AlgorithmA AlgorithmB Twig P-Value p-value < 5% Median A Median B effect size Winner

SFTwigStack OTJPrimeList ORQ4 5.64E-39 TRUE 200.485 14.5015 0.9196783 OTJPrimeList

SFTwigStack OTJPrimeList ORQ5 1.42E-41 TRUE 192.686 101.964 0.9514658 OTJPrimeList

SFTwigStack OTJPrimeList ORQ6 3.52E-45 TRUE 2718.407 123.718 0.9939336 OTJPrimeList

SFTwigStack OTJPrimeList ORQ7 2.55E-34 TRUE 14.529 8.3745 0.8598114 OTJPrimeList

SFTwigStack OTJPMultiLists ORQ1 4.70E-36 TRUE 7.856 6.633 0.8825894 OTJPMultiLists

SFTwigStack OTJPMultiLists ORQ2 5.63E-39 TRUE 879.209 10.689 0.9196902 OTJPMultiLists

SFTwigStack OTJPMultiLists ORQ3 2.26E-38 TRUE 104.337 11.318 0.9121388 OTJPMultiLists

SFTwigStack OTJPMultiLists ORQ4 5.64E-39 TRUE 200.485 14.8105 0.9196783 OTJPMultiLists

SFTwigStack OTJPMultiLists ORQ5 3.52E-45 TRUE 192.686 134.224 0.9939336 OTJPMultiLists

SFTwigStack OTJPMultiLists ORQ6 3.52E-45 TRUE 2718.407 115.325 0.9939336 OTJPMultiLists

SFTwigStack OTJPMultiLists ORQ7 2.55E-34 TRUE 14.529 9.446 0.8598059 OTJPMultiLists

SFTwigStackList SFTwigStackPrime ORQ1 3.52E-45 TRUE 8.497 8.095 0.9939336 SFTwigStackPrime

SFTwigStackList SFTwigStackPrime ORQ2 3.52E-45 TRUE 899.929 898.262 0.9939336 SFTwigStackPrime

SFTwigStackList SFTwigStackPrime ORQ3 3.54E-37 TRUE 107.353 117.697 0.8970221 SFTwigStackList

SFTwigStackList SFTwigStackPrime ORQ4 3.52E-45 TRUE 201.732 200.692 0.9939336 SFTwigStackPrime

SFTwigStackList SFTwigStackPrime ORQ5 3.31E-41 TRUE 100.157 113.055 0.947044 SFTwigStackList

SFTwigStackList SFTwigStackPrime ORQ6 3.52E-45 TRUE 179.706 136.726 0.9939336 SFTwigStackPrime

SFTwigStackList SFTwigStackPrime ORQ7 2.55E-34 TRUE 9.1885 10.442 0.8598072 SFTwigStackList

SFTwigStackList OTJPrime ORQ1 5.63E-39 TRUE 8.497 6.304 0.9196854 OTJPrime

SFTwigStackList OTJPrime ORQ2 3.52E-45 TRUE 899.929 184.288 0.9939336 OTJPrime

SFTwigStackList OTJPrime ORQ3 2.59E-38 TRUE 107.353 43.0315 0.9114022 OTJPrime

SFTwigStackList OTJPrime ORQ4 2.65E-43 TRUE 201.732 113.413 0.9720684 OTJPrime

SFTwigStackList OTJPrime ORQ5 1.65E-13 TRUE 100.157 105.155 0.5148825 SFTwigStackList

SFTwigStackList OTJPrime ORQ6 3.52E-45 TRUE 179.706 113.088 0.9939336 OTJPrime

SFTwigStackList OTJPrime ORQ7 0.000326623 TRUE 9.1885 9.167 0.2410163 OTJPrime

SFTwigStackList OTJPrimeList ORQ1 5.63E-39 TRUE 8.497 6.4575 0.9196886 OTJPrimeList

SFTwigStackList OTJPrimeList ORQ2 5.63E-39 TRUE 899.929 10.462 0.9196918 OTJPrimeList

SFTwigStackList OTJPrimeList ORQ3 2.26E-38 TRUE 107.353 10.2265 0.912138 OTJPrimeList

SFTwigStackList OTJPrimeList ORQ4 5.64E-39 TRUE 201.732 14.5015 0.9196783 OTJPrimeList

SFTwigStackList OTJPrimeList ORQ5 4.35E-13 TRUE 100.157 101.964 0.5055609 SFTwigStackList

SFTwigStackList OTJPrimeList ORQ6 3.52E-45 TRUE 179.706 123.718 0.9939336 OTJPrimeList

SFTwigStackList OTJPrimeList ORQ7 4.71E-33 TRUE 9.1885 8.3745 0.8427996 OTJPrimeList

SFTwigStackList OTJPMultiLists ORQ1 1.68E-37 TRUE 8.497 6.633 0.9011386 OTJPMultiLists

SFTwigStackList OTJPMultiLists ORQ2 5.63E-39 TRUE 899.929 10.689 0.9196902 OTJPMultiLists

SFTwigStackList OTJPMultiLists ORQ3 2.26E-38 TRUE 107.353 11.318 0.9121388 OTJPMultiLists

SFTwigStackList OTJPMultiLists ORQ4 5.64E-39 TRUE 201.732 14.8105 0.9196783 OTJPMultiLists

SFTwigStackList OTJPMultiLists ORQ5 7.68E-43 TRUE 100.157 134.224 0.9666109 SFTwigStackList

SFTwigStackList OTJPMultiLists ORQ6 3.52E-45 TRUE 179.706 115.325 0.9939336 OTJPMultiLists

SFTwigStackList OTJPMultiLists ORQ7 6.11E-29 TRUE 9.1885 9.446 0.7850524 SFTwigStackList

SFTwigStackPrime OTJPrime ORQ1 5.63E-39 TRUE 8.095 6.304 0.9196854 OTJPrime

SFTwigStackPrime OTJPrime ORQ2 3.52E-45 TRUE 898.262 184.288 0.9939336 OTJPrime

SFTwigStackPrime OTJPrime ORQ3 2.59E-38 TRUE 117.697 43.0315 0.9114022 OTJPrime

SFTwigStackPrime OTJPrime ORQ4 2.65E-43 TRUE 200.692 113.413 0.9720684 OTJPrime

SFTwigStackPrime OTJPrime ORQ5 6.36E-40 TRUE 113.055 105.155 0.9313985 OTJPrime

SFTwigStackPrime OTJPrime ORQ6 3.52E-45 TRUE 136.726 113.088 0.9939336 OTJPrime

SFTwigStackPrime OTJPrime ORQ7 2.55E-34 TRUE 10.442 9.167 0.8598059 OTJPrime

SFTwigStackPrimeOTJPrimeList ORQ1 4.69E-36 TRUE 8.095 6.4575 0.8825932 OTJPrimeList

SFTwigStackPrimeOTJPrimeList ORQ2 5.63E-39 TRUE 898.262 10.462 0.9196918 OTJPrimeList

344 Ordered Top-Down Holistic Approaches Full results

Table B.6: Results for paired comparisons based on the U test over the Random dataset.

AlgorithmA AlgorithmB Twig P-Value p-value < 5% Median A Median B effect size Winner

SFTwigStackPrimeOTJPrimeList ORQ3 2.26E-38 TRUE 117.697 10.2265 0.912138 OTJPrimeList

SFTwigStackPrimeOTJPrimeList ORQ4 5.64E-39 TRUE 200.692 14.5015 0.9196783 OTJPrimeList

SFTwigStackPrimeOTJPrimeList ORQ5 3.51E-40 TRUE 113.055 101.964 0.9345648 OTJPrimeList

SFTwigStackPrimeOTJPrimeList ORQ6 3.52E-45 TRUE 136.726 123.718 0.9939336 OTJPrimeList

SFTwigStackPrimeOTJPrimeList ORQ7 2.55E-34 TRUE 10.442 8.3745 0.8598091 OTJPrimeList

SFTwigStackPrimeOTJPMultiLists ORQ1 1.68E-37 TRUE 8.095 6.633 0.9011386 OTJPMultiLists

SFTwigStackPrimeOTJPMultiLists ORQ2 5.63E-39 TRUE 898.262 10.689 0.9196902 OTJPMultiLists

SFTwigStackPrimeOTJPMultiLists ORQ3 2.26E-38 TRUE 117.697 11.318 0.9121388 OTJPMultiLists

SFTwigStackPrimeOTJPMultiLists ORQ4 5.64E-39 TRUE 200.692 14.8105 0.9196783 OTJPMultiLists

SFTwigStackPrimeOTJPMultiLists ORQ5 5.76E-45 TRUE 113.055 134.224 0.9914657 SFTwigStackPrime

SFTwigStackPrimeOTJPMultiLists ORQ6 3.52E-45 TRUE 136.726 115.325 0.9939336 OTJPMultiLists

SFTwigStackPrimeOTJPMultiLists ORQ7 2.55E-34 TRUE 10.442 9.446 0.8598036 OTJPMultiLists

OTJPrime OTJPrimeList ORQ1 6.27E-12 TRUE 6.304 6.4575 0.4789848 OTJPrime

OTJPrime OTJPrimeList ORQ2 5.63E-39 TRUE 184.288 10.462 0.9196918 OTJPrimeList

OTJPrime OTJPrimeList ORQ3 2.56E-34 TRUE 43.0315 10.2265 0.8597877 OTJPrimeList

OTJPrime OTJPrimeList ORQ4 1.38E-37 TRUE 113.413 14.5015 0.9022356 OTJPrimeList

OTJPrime OTJPrimeList ORQ5 3.12E-15 TRUE 105.155 101.964 0.5514694 OTJPrimeList

OTJPrime OTJPrimeList ORQ6 3.52E-45 TRUE 113.088 123.718 0.9939336 OTJPrime

OTJPrime OTJPrimeList ORQ7 4.71E-33 TRUE 9.167 8.3745 0.8427983 OTJPrimeList

OTJPrime OTJPMultiLists ORQ1 1.23E-22 TRUE 6.304 6.633 0.6873409 OTJPrime

OTJPrime OTJPMultiLists ORQ2 5.63E-39 TRUE 184.288 10.689 0.9196902 OTJPMultiLists

OTJPrime OTJPMultiLists ORQ3 2.56E-34 TRUE 43.0315 11.318 0.8597883 OTJPMultiLists

OTJPrime OTJPMultiLists ORQ4 1.38E-37 TRUE 113.413 14.8105 0.9022356 OTJPMultiLists

OTJPrime OTJPMultiLists ORQ5 1.82E-41 TRUE 105.155 134.224 0.9501823 OTJPrime

OTJPrime OTJPMultiLists ORQ6 3.52E-45 TRUE 113.088 115.325 0.9939336 OTJPrime

OTJPrime OTJPMultiLists ORQ7 1.92E-31 TRUE 9.167 9.446 0.8206563 OTJPrime

OTJPrimeList OTJPMultiLists ORQ1 2.69E-14 TRUE 6.4575 6.633 0.5319174 OTJPrimeList

OTJPrimeList OTJPMultiLists ORQ2 6.27E-28 TRUE 10.462 10.689 0.7702004 OTJPrimeList

OTJPrimeList OTJPMultiLists ORQ3 1.77E-20 TRUE 10.2265 11.318 0.6506047 OTJPrimeList

OTJPrimeList OTJPMultiLists ORQ4 0.2651988 FALSE 14.5015 14.8105 0.04436382 tie

OTJPrimeList OTJPMultiLists ORQ5 1.42E-41 TRUE 101.964 134.224 0.9514658 OTJPrimeList

OTJPrimeList OTJPMultiLists ORQ6 3.52E-45 TRUE 123.718 115.325 0.9939336 OTJPMultiLists

OTJPrimeList OTJPMultiLists ORQ7 4.45E-33 TRUE 8.3745 9.446 0.8431433 OTJPrimeList

345

Table B.3: Experimental ordered TPQs for the Random dataset.
Code XPath expression
ORQ1 //b//e//a[/following::f][/following::d]
ORQ2 //a//b[/following::e][/preceding-sibling::c]
ORQ3 //a/c//b[/preceding-sibling::d][/preceding-sibling::e]
ORQ4 //b//a//d[/following-sibling::f]/following-sibling::e
ORQ5 //d[a//e/preceding-sibling::f]/c[b]
ORQ6 //a[d][c][b][e]//f [d«c][c«b][b«e]
ORQ7 //a[c//e]/f[d] [c«f]

Appendix C

Bottom-Up Holistic Approaches Full
results

Bottom-Up Holistic Algorithms for XPath/,//,[]

Table C.1: Experimental TPQs for the Zipf dataset.

Query XPath expression Result

ZQ1 //g/b[//d]/a 87116

ZQ2 //a/b[//d]/g 42886

ZQ3 //a/g[//b]/d 79146

ZQ4 //d/g[//a]/b 57184

ZQ5 //b/a[//g]/d 40200

ZQ6 //d/b[//a]/g 31161

ZQ7 //b/d[//g]/a 52463

ZQ8 //b/a[//d]/g 40224

ZQ9 //b/g[//a]/d 56263

ZQ10 //g/b[//a]/d 120316

ZQ11 //g[/c]/f 1672

ZQ12 //a[/c]/e 13775

ZQ13 //a[/c]/b 34673

ZQ14 //g[/d]/b 3758

ZQ15 //c[/g]/e 1997

ZQ16 //e[/c]/a 13849

ZQ17 //b[/c]/g 4942

ZQ18 //c[/a]/b 34877

ZQ19 //a[/f]/d 8763

ZQ20 //g[/f]/a 5062

348 Bottom-Up Holistic Approaches Full results

Table C.1: Experimental TPQs for the Zipf dataset.

Query XPath expression Result

ZQ21 //g[/e][/f]//c 3267

ZQ22 //g[/a][/c]//b 78009

ZQ23 //a[/c][/b]//f 65035

ZQ24 //b[/a][/d]//f 57653

ZQ25 //b[/e][/d]//a 136372

ZQ26 //b[/c][/d]//f 21389

ZQ27 //a[/g][/c]//b 43298

ZQ28 //g[/e][/d]//f 2143

ZQ29 //a[/d][/g]//e 38488

ZQ30 //d[/c][/b]//g 10306

ZQ31 //b/a//d/g 20235

ZQ32 //g/a//d/b 24984

ZQ33 //d/g//a/b 19312

ZQ34 //a/g//d/b 31819

ZQ35 //d/g//b/a 19294

ZQ36 //b/d//a/g 21878

ZQ37 //a/d//b/g 18168

ZQ38 //d/b//g/a 17057

ZQ39 //b/d//g/a 21923

ZQ40 //g/d//b/a 26259

ZQ41 //g/g[/d]/b//b[/a]//c 38

ZQ42 //a/a[/g]/d//d[/b]//e 490

ZQ43 //b/b[/a]/d//d[/g]//e 206

ZQ44 //d/d[/a]/g//g[/b]//c 111

ZQ45 //d/d[/b]/g//g[/a]//e 53

ZQ46 //d/d[/b]/a//a[/g]//f 441

ZQ47 //a/a[/d]/b//b[/g]//f 748

ZQ48 //d/d[/b]/a//a[/g]//e 536

ZQ49 //d/d[/g]/b//b[/a]//f 79

ZQ50 //g/g[/a]/b//b[/d]//c 154

349

Figure C.1: The number of elements stored in the intermediate storage by each algorithm
for the queries tested over DBLP. Actual represents the number of elements relevant to the
query results.

Figure C.2: The number of elements stored in the intermediate storage by each algorithm
for the queries tested over XMark. Actual represents the number of elements relevant to
the query results.

350 Bottom-Up Holistic Approaches Full results

Figure C.3: The number of elements stored in the intermediate storage by each algorithm
for the queries tested over the TreeBank document. Actual represents the number of
elements relevant to the query results.

Figure C.4: The number of elements stored in the intermediate storage by each algorithm
for the queries tested over the Random dataset. Actual represents the number of elements
relevant to the query results.

351

Table C.2: Processing times for the DBLP dataset.

Algorithm DQ1 DQ2 DQ3 DQ4

TwigList 1.461 0.853 0.964 0.965

TwigFast 0.288 0.955 0.1885 0.189

TwigPrime_ 0.385 0.988 0.188 0.301

TwigPrime_N 0.382 0.992 0.188 0.301

TwigPrime 0.3895 1.064 0.189 0.3

TwigPrimePart_ 0.36 0.001 0.196 0.101

TwigPrimePart_N 0.36 0.001 0.196 0.101

TwigPrimeMatch_ 0.3605 0.024 0.1925 0.112

TwigPrimeMatch_N 0.362 0.009 0.194 0.112

TwigPrimePart 0.365 0.001 0.192 0.102

TwigPrimeMatch 0.364 0.941 0.183 0.2945

TJStrictPre 0.278 0.167 0.187 0.185

TJStrictPre_ 0.276 0.1685 0.19 0.187

TJStrictPrePrime 0.361 0.004 0.192 0.102

TJStrictPrePrime_ 0.36 0.004 0.192 0.101

TJStrictPost 0.277 0.169 0.188 0.187

TJStrictPost_ 0.273 0.169 0.1895 0.188

TJStrictPostPrime 0.361 0.004 0.194 0.1

TJStrictPostPrime_ 0.361 0.004 0.191 0.1

GTPStack 0.275 0.167 0.1845 0.1825

GTPStackPrime 0.361 0.024 0.197 0.111

352 Bottom-Up Holistic Approaches Full results

Table C.3: Processing times for the XMark dataset.

Algorithm XQ1 XQ2 XQ3 XQ4 XQ5 XQ6

TwigFast 2.8605 0.214 0.507 0.511 1.2925 0.35

TwigPrime_ 4.3435 0.221 0.807 0.837 1.546 0.681

TwigPrime_N 4.245 0.229 0.817 0.813 1.41 0.6165

TwigPrime 4.4735 0.2705 0.918 0.926 1.643 0.734

TwigPrimePart_ 2.829 0.2055 0.625 1.101 1.5435 1.241

TwigPrimePart_N 2.8255 0.205 0.6265 1.0965 1.5345 1.2435

TwigPrimeMatch_ 0.8575 0.193 0.458 0.618 0.872 0.7955

TwigPrimeMatch_N 0.852 0.192 0.459 0.6195 0.873 0.7975

TwigPrimePart 2.321 0.209 0.562 0.923 1.4455 1.059

TwigPrimeMatch 2.864 0.281 0.9645 1.114 1.229 0.832

TJStrictPre 1.791 0.1945 0.382 0.01 1.253 0.6425

TJStrictPre_ 1.6635 0.167 0.315 0.01 1.168 0.5945

TJStrictPrePrime 0.3745 0.199 0.508 0.788 1.42 1.065

TJStrictPrePrime_ 0.361 0.1685 0.435 0.7225 1.386 1.028

TJStrictPost 1.6685 0.215 0.405 0.01 1.1305 0.579

TJStrictPost_ 1.595 0.186 0.343 0.01 1.1035 0.557

TJStrictPostPrime 0.3675 0.215 0.5265 0.749 1.299 0.986

TJStrictPostPrime_ 0.36 0.1865 0.4635 0.699 1.268 0.968

GTPStack 0.75 1.799 2.051 0.445 7.9795 0.579

GTPStackPrime 1.0075 1.8035 2.143 0.743 12.9965 0.9585

353

Table C.4: Processing times for the TreeBank dataset.

Algorithm TQ1 TQ10 TQ11 TQ2 TQ3 TQ4 TQ5 TQ6 TQ7 TQ8 TQ9

TwigList 0.361 2.6855 25.0335 4.019 0.6995 4.131 16.9675 9.645 3.922 5.245 3.363

TwigFast 0.103 2.0425 32.4555 1.818 0.444 4.0655 18.111 10.8295 1.8105 2.349 2.6

TwigPrime_ 0.103 2.1815 22.23 2.0255 0.6105 1.961 5.3485 3.522 2.0315 3.62 2.7545

TwigPrime_N 0.104 2.0455 22.1775 2.006 0.609 1.9545 5.336 3.4275 2.022 2.94 2.739

TwigPrime 0.105 2.344 22.586 2.08 0.6405 2.092 5.642 3.6965 2.0955 3.835 2.8485

TwigPrimePart_ 0.069 2.0715 2.023 1.1385 0.173 0.326 0.612 0.846 1.1635 0.778 0.591

TwigPrimePart_N 0.069 2.074 2.0185 1.139 0.173 0.3275 0.614 0.845 1.1745 0.667 0.595

TwigPrimeMatch_ 0.073 1.988 1.402 0.9665 0.174 0.325 0.6285 0.7835 0.98 0.78 0.5835

TwigPrimeMatch_N 0.073 1.9905 1.406 0.969 0.173 0.327 0.632 0.789 0.982 0.67 0.588

TwigPrimePart 0.068 2.0985 1.865 1.09 0.172 0.3255 0.607 0.81 1.114 0.763 0.586

TwigPrimeMatch 0.103 2.4945 11.6445 2.4945 0.638 2.081 6.8545 5.109 2.524 2.391 2.6525

TJStrictPre 0.071 2.1255 5.222 1.7325 0.2965 2.914 9.4795 7.3905 1.75 0.587 0.409

TJStrictPre_ 0.072 2.1505 5.3055 1.731 0.2975 2.8975 8.562 7.6025 1.7475 0.594 0.414

TJStrictPrePrime 0.073 1.9115 1.8445 1.076 0.171 0.327 0.6045 0.799 1.091 0.653 0.584

TJStrictPrePrime_ 0.073 1.852 1.833 1.06 0.169 0.3265 0.6035 0.7835 1.081 0.653 0.582

TJStrictPost 0.072 2.314 5.254 1.72 0.316 3.15 8.784 7.6425 1.7315 0.592 0.4135

TJStrictPost_ 0.072 2.3625 5.275 1.726 0.317 3.1335 8.7715 7.696 1.735 0.712 0.414

TJStrictPostPrime 0.073 2.0255 1.8345 1.064 0.17 0.3245 0.603 0.799 1.076 0.654 0.581

TJStrictPostPrime_ 0.072 1.997 1.838 1.068 0.171 0.323 0.5975 0.786 1.085 0.652 0.58

GTPStack 0.071 184.953 4.059 0.8555 0.3215 4.025 7.178 291.776 0.866 0.6295 0.41

GTPStackPrime 0.0735 193.416 1.487 0.989 0.1745 0.327 0.6215 3.9175 1.002 0.8065 0.591

354 Bottom-Up Holistic Approaches Full results

Table C.5: Processing times for the Random dataset.

Algorithm RQ1 RQ2 RQ3 RQ4 RQ5 RQ6 RQ7 RQ8 RQ9

TwigList 10.2905 7.792 8.1685 8.194 15.364 13.1315 11.247 14.8805 78.479

TwigFast 4.494 4.4345 4.435 5.9135 9.089 10.9585 6.1205 9.2805 68.5225

TwigPrime_ 5.3615 5.281 4.8985 7.5145 11.9025 7.828 6.729 12.9015 15.008

TwigPrime_N 5.406 5.09 4.7915 6.996 11.9305 7.6285 6.803 12.995 15.0005

TwigPrime 5.8135 5.718 5.306 7.9785 12.6145 8.4475 7.436 13.562 16.004

TwigPrimePart_ 3.823 4.094 3.6435 5.1125 4.954 4.3155 4.3815 4.954 4.5795

TwigPrimePart_N 3.822 4.093 3.646 5.138 4.948 4.285 4.4025 4.932 4.5825

TwigPrimeMatch_ 3.1575 3.2675 2.8215 4.266 4.011 3.92 3.5615 4.173 4.0655

TwigPrimeMatch_N 3.165 3.245 2.82 4.247 3.954 3.81 3.5865 4.177 3.812

TwigPrimePart 3.472 3.7045 3.3145 4.642 4.5325 4.079 4.018 4.5275 4.2765

TwigPrimeMatch 5.882 5.9065 5.404 10.2465 9.023 8.572 6.6385 7.395 16.183

TJStrictPre 2.905 3.2195 3.164 3.9505 4.199 5.1975 3.83 3.586 8.0415

TJStrictPre_ 2.968 3.2315 3.18 3.9995 4.2195 5.1925 3.8155 3.601 8.061

TJStrictPrePrime 3.3935 3.6255 3.2605 4.5665 4.4815 3.9355 3.9535 4.4515 4.203

TJStrictPrePrime_ 3.416 3.6165 3.252 4.5285 4.457 3.8975 3.9575 4.453 4.185

TJStrictPost 2.9595 3.116 3.097 3.7005 4.1955 5.487 3.786 3.5875 8.369

TJStrictPost_ 2.9265 3.111 3.079 3.6775 4.195 5.559 3.791 3.59 8.4165

TJStrictPostPrime 3.3885 3.546 3.233 4.3295 4.462 4.044 3.9355 4.4445 4.211

TJStrictPostPrime_ 3.3935 3.5275 3.1655 4.289 4.438 3.976 3.904 4.4265 4.1695

GTPStack 2.4715 11.022 4.8805 110.9105 3.1455 239.249 2.8895 2.71 17.414

GTPStackPrime 3.132 10.001 4.918 98.831 3.7835 51.9045 3.492 3.9725 3.571

355

Table C.6: Processing times for the Zipf dataset, Template T1.

Algorithm ZQ1 ZQ2 ZQ3 ZQ4 ZQ5 ZQ6 ZQ7 ZQ8 ZQ9 ZQ10

TwigPrime 12.69 6.331 6.3285 10.182 4.985 8.383 8.1065 4.972 8.803 9.677

TwigPrimePart 10.769 5.9185 4.2475 3.5625 6.087 3.9145 6.118 5.65 3.581 6.189

TwigPrimeMatch 13.4005 6.4785 6.578 10.171 5.144 8.436 8.161 5.14 8.8995 10.0165

TJStrictPre 12.174 7.497 6.687 5.774 6.884 7.5785 8.139 6.8705 7.533 9.823

TJStrictPrePrime 10.4945 5.6685 4.168 3.407 5.75 3.7535 6.017 5.355 3.4425 5.7285

GTPStack 368.49 370.869 1157.271 179.237 236.982 321.85 84.643 360.021 863.928 1371.898

GTPStackPrime 182.265 41.1545 175.891 76.179 36.9995 16.0905 51.9345 42.306 77.853 411.799

Table C.7: Processing times for the Zipf dataset, Template T2.

Algorithm ZQ11 ZQ12 ZQ13 ZQ14 ZQ15 ZQ16 ZQ17 ZQ18 ZQ19 ZQ20

TwigPrimePart 0.9095 2.961 5.1895 1.2565 1.1585 3.469 1.957 6.738 2.4715 1.6995

TwigPrimeMatch 2.389 3.7455 6.1195 3.6345 1.8965 7.276 2.874 9.554 3.102 5.639

TJStrictPre 3.155 5.692 8.3985 4.692 2.692 8.4245 4.1895 10.7375 4.647 7.0055

TJStrictPrePrime 0.871 2.757 4.675 1.1995 1.131 3.0575 1.829 5.793 2.372 1.5875

GTPStack 4.537 14.455 109.325 7.0515 3.746 18.9145 6.486 92.2085 8.65 10.944

GTPStackPrime 0.7965 10.9615 97.4935 1.481 1.0155 11.065 2.599 86.261 5.1595 2.366

Table C.8: Processing times for the Zipf dataset, Template T3.

Algorithm ZQ21 ZQ22 ZQ23 ZQ24 ZQ25 ZQ26 ZQ27 ZQ28 ZQ29 ZQ30

TwigPrimeMatch 3.844 10.9675 7.6135 9.588 9.187 4.7595 6.529 3.3635 4.4845 5.6555

TJStrictPre 5.6415 14.5685 11.604 14.3135 15.3165 7.8035 11.21 4.8535 7.216 7.364

TJStrictPrePrime 1.104 3.9825 5.162 5.244 4.201 2.479 3.369 1.0265 2.992 1.963

GTPStack 64.101 1582.083 603.838 449.324 3553.837 187.41 1128.867 17.072 395.912 59.5225

GTPStackPrime 1.005 138.281 135.884 85.804 522.379 6.635 40.759 0.889 22.5275 3.0165

Table C.9: Processing times for the Zipf dataset, Template T4.

Algorithm ZQ31 ZQ32 ZQ33 ZQ34 ZQ35 ZQ36 ZQ37 ZQ38 ZQ39 ZQ40

TwigPrime 3.234 5.236 5.6915 4.631 7.18 3.4865 3.167 6.2855 6.136 7.4585

TwigPrimePart 4.381 5.37 4.202 4.8745 4.204 4.269 4.053 4.258 4.3875 4.993

TwigPrimeMatch 3.1105 5.168 6.5385 4.9175 7.9635 3.697 3.2275 6.3905 6.3545 8.187

TJStrictPre 4.393 5.927 4.8025 4.869 4.802 4.681 4.127 4.405 4.729 6.697

TJStrictPrePrime 4.239 5.1145 4.054 4.619 4.021 4.142 3.9225 4.0745 4.169 4.769

GTPStack 14.9635 20.8745 12.774 32.467 11.2315 18.2175 13.3595 9.33 14.804 17.907

GTPStackPrime 13.413 20.491 13.461 31.382 11.555 18.5365 12.641 9.4935 13.4925 18.707

Table C.10: Processing times for the Zipf dataset, Template T5.

Algorithm ZQ41 ZQ42 ZQ43 ZQ44 ZQ45 ZQ46 ZQ47 ZQ48 ZQ49 ZQ50

TwigPrime 15.0545 12.169 25.781 27.465 18.3795 15.839 10.346 15.965 11.8455 27.1075

TwigPrimePart 3.7495 5.633 5.906 2.7325 2.581 4.457 5.4675 4.56 3.807 3.821

TwigPrimeMatch 13.4975 10.441 16.17 17.9015 13.6715 10.972 7.9825 11.1455 10.804 17.6265

356 Bottom-Up Holistic Approaches Full results

Table C.10: Processing times for the Zipf dataset, Template T5.

Algorithm ZQ41 ZQ42 ZQ43 ZQ44 ZQ45 ZQ46 ZQ47 ZQ48 ZQ49 ZQ50

TJStrictPre 9.833 14.0605 29.229 9.6225 5.998 10.241 16.1525 10.5045 6.972 14.8075

TJStrictPrePrime 3.685 5.634 5.891 2.712 2.583 4.416 5.412 4.5285 3.7935 3.7765

GTPStack 4.7655 5.336 4.1215 3.4415 2.7505 4.236 5.0065 4.349 3.412 4.7215

GTPStackPrime 3.6535 5.055 3.179 2.5555 2.518 4.67 4.255 3.897 3.743 3.1755

357

Bottom Up Results for Ordered Axes, Sequence Operators
and Positional Predicates

Table C.11: Results for paired comparisons based on the U test over the XMark dataset,
Experiment 1.

AlgorithmA AlgorithmB Twig P-Value p-value < 5% medina A Median B effect size r Best
OTwigPrimeList OPTwigPrime OXQ1 2.50E-34 TRUE 1.046 0.7945 0.8599292 OPTwigPrime
OTwigPrimeList OPTwigPrime OXQ2 7.51E-31 TRUE 1.0785 0.5165 0.812377 OPTwigPrime
OTwigPrimeList OPTwigPrime OXQ3 2.47E-32 TRUE 0.492 0.622 0.8329845 OTwigPrimeList
OTwigPrimeList OPTwigPrime OXQ4 2.48E-34 TRUE 1.2745 0.924 0.8599647 OPTwigPrime
OTwigPrimeList OPTwigPrime OXQ5 2.53E-34 TRUE 1.1945 0.848 0.8598687 OPTwigPrime
OTwigPrimeList TwigPos OXQ1 2.53E-34 TRUE 1.046 1.226 0.8598693 OTwigPrimeList
OTwigPrimeList TwigPos OXQ2 2.59E-26 TRUE 1.0785 1.5735 0.7458713 OTwigPrimeList
OTwigPrimeList TwigPos OXQ3 7.11E-34 TRUE 0.492 0.6865 0.8538723 OTwigPrimeList
OTwigPrimeList TwigPos OXQ4 2.53E-34 TRUE 1.2745 1.6455 0.8598505 OTwigPrimeList
OTwigPrimeList TwigPos OXQ5 4.62E-13 TRUE 1.1945 1.172 0.504974 TwigPos
OPTwigPrime TwigPos OXQ1 2.51E-34 TRUE 0.7945 1.226 0.8598951 OPTwigPrime
OPTwigPrime TwigPos OXQ2 4.68E-33 TRUE 0.5165 1.5735 0.8428446 OPTwigPrime
OPTwigPrime TwigPos OXQ3 4.62E-33 TRUE 0.622 0.6865 0.842918 OPTwigPrime
OPTwigPrime TwigPos OXQ4 2.49E-34 TRUE 0.924 1.6455 0.8599436 OPTwigPrime
OPTwigPrime TwigPos OXQ5 2.53E-34 TRUE 0.848 1.172 0.8598609 OPTwigPrime

Table C.12: Results for paired comparisons based on the U test over the TreeBank dataset,
Experiment 1.

AlgorithmA AlgorithmB Twig P-Value p-value < 5% medina A Median B effect size r Best
OTwigPrimeList OPTwigPrime OTQ1 2.46E-34 TRUE 5.2565 2.129 0.8600227 OPTwigPrime
OTwigPrimeList OPTwigPrime OTQ2 2.46E-34 TRUE 3.5935 2.527 0.860022 OPTwigPrime
OTwigPrimeList OPTwigPrime OTQ3 2.44E-34 TRUE 0.745 0.201 0.8600761 OPTwigPrime
OTwigPrimeList OPTwigPrime OTQ4 7.67E-19 TRUE 1.9835 1.6975 0.6213435 OPTwigPrime
OTwigPrimeList OPTwigPrime OTQ5 2.45E-34 TRUE 2.3845 0.837 0.8600442 OPTwigPrime
OTwigPrimeList OPTwigPrime OTQ6 2.42E-34 TRUE 2.1305 0.544 0.860126 OPTwigPrime
OTwigPrimeList OPTwigPrime OTQ7 2.46E-34 TRUE 2.7605 0.9735 0.860012 OPTwigPrime
OTwigPrimeList OPTwigPrime OTQ8 2.45E-34 TRUE 1.469 1.203 0.8600536 OPTwigPrime
OTwigPrimeList OPTwigPrime OTQ9 1.83E-34 TRUE 0.106 0.075 0.8617208 OPTwigPrime
OTwigPrimeList TwigPos OTQ1 2.46E-34 TRUE 5.2565 6.903 0.860011 OTwigPrimeList
OTwigPrimeList TwigPos OTQ2 5.05E-01 FALSE 3.5935 3.5345 0.00096002 tie
OTwigPrimeList TwigPos OTQ3 8.71E-33 TRUE 0.745 1.08 0.8391729 OTwigPrimeList
OTwigPrimeList TwigPos OTQ4 2.46E-34 TRUE 1.9835 3.009 0.8600282 OTwigPrimeList
OTwigPrimeList TwigPos OTQ5 2.46E-34 TRUE 2.3845 3.196 0.8600256 OTwigPrimeList
OTwigPrimeList TwigPos OTQ6 2.46E-34 TRUE 2.1305 2.811 0.8600318 OTwigPrimeList
OTwigPrimeList TwigPos OTQ7 2.47E-34 TRUE 2.7605 4.249 0.8600051 OTwigPrimeList
OTwigPrimeList TwigPos OTQ8 2.45E-34 TRUE 1.469 3.6305 0.8600377 OTwigPrimeList
OTwigPrimeList TwigPos OTQ9 2.11E-34 TRUE 0.106 0.475 0.8608981 OTwigPrimeList
OPTwigPrime TwigPos OTQ1 2.46E-34 TRUE 2.129 6.903 0.8600194 OPTwigPrime
OPTwigPrime TwigPos OTQ2 2.46E-34 TRUE 2.527 3.5345 0.860023 OPTwigPrime
OPTwigPrime TwigPos OTQ3 2.44E-34 TRUE 0.201 1.08 0.8600761 OPTwigPrime
OPTwigPrime TwigPos OTQ4 2.45E-34 TRUE 1.6975 3.009 0.8600442 OPTwigPrime
OPTwigPrime TwigPos OTQ5 2.44E-34 TRUE 0.837 3.196 0.8600602 OPTwigPrime
OPTwigPrime TwigPos OTQ6 2.42E-34 TRUE 0.544 2.811 0.8601181 OPTwigPrime
OPTwigPrime TwigPos OTQ7 2.46E-34 TRUE 0.9735 4.249 0.860012 OPTwigPrime
OPTwigPrime TwigPos OTQ8 2.44E-34 TRUE 1.203 3.6305 0.8600608 OPTwigPrime
OPTwigPrime TwigPos OTQ9 2.06E-34 TRUE 0.075 0.475 0.8610409 OPTwigPrime

358 Bottom-Up Holistic Approaches Full results

Table C.13: Results for paired comparisons based on the U test over the Random dataset,
Experiment 1.

AlgorithmA AlgorithmB Twig P-Value p-value < 5% medina A Median B effect size r Best
OTwigPrimeList OPTwigPrime ORQ1 2.55E-34 TRUE 10.912 4.1785 0.8598043 OPTwigPrime
OTwigPrimeList OPTwigPrime ORQ2 3.52E-33 TRUE 10.914 4.7985 0.8445152 OPTwigPrime
OTwigPrimeList OPTwigPrime ORQ3 2.55E-34 TRUE 6.1455 3.2425 0.8598072 OPTwigPrime
OTwigPrimeList OPTwigPrime ORQ4 1.16E-23 TRUE 3.891 2.822 0.7041548 OPTwigPrime
OTwigPrimeList OPTwigPrime ORQ5 2.55E-34 TRUE 8.6225 4.0455 0.8598075 OPTwigPrime
OTwigPrimeList OPTwigPrime ORQ6 2.55E-34 TRUE 17.579 3.516 0.8598124 OPTwigPrime
OTwigPrimeList OPTwigPrime ORQ7 2.55E-34 TRUE 6.6695 3.6355 0.8598121 OPTwigPrime
OTwigPrimeList TwigPos ORQ1 2.56E-34 TRUE 10.912 16.4675 0.8597929 OTwigPrimeList
OTwigPrimeList TwigPos ORQ2 0.000926213 TRUE 10.914 11.1975 0.2201171 OTwigPrimeList
OTwigPrimeList TwigPos ORQ3 2.56E-34 TRUE 6.1455 14.098 0.8597961 OTwigPrimeList
OTwigPrimeList TwigPos ORQ4 2.20E-34 TRUE 3.891 136.962 0.8606767 OTwigPrimeList
OTwigPrimeList TwigPos ORQ5 2.56E-34 TRUE 8.6225 18.0805 0.8597929 OTwigPrimeList
OTwigPrimeList TwigPos ORQ6 2.56E-34 TRUE 17.579 24.965 0.8597938 OTwigPrimeList
OTwigPrimeList TwigPos ORQ7 2.56E-34 TRUE 6.6695 13.944 0.8597994 OTwigPrimeList
OPTwigPrime TwigPos ORQ1 2.56E-34 TRUE 4.1785 16.4675 0.859799 OPTwigPrime
OPTwigPrime TwigPos ORQ2 2.33E-33 TRUE 4.7985 11.1975 0.8469442 OPTwigPrime
OPTwigPrime TwigPos ORQ3 2.56E-34 TRUE 3.2425 14.098 0.8598013 OPTwigPrime
OPTwigPrime TwigPos ORQ4 2.20E-34 TRUE 2.822 136.962 0.8606767 OPTwigPrime
OPTwigPrime TwigPos ORQ5 2.56E-34 TRUE 4.0455 18.0805 0.8598023 OPTwigPrime
OPTwigPrime TwigPos ORQ6 2.55E-34 TRUE 3.516 24.965 0.8598075 OPTwigPrime
OPTwigPrime TwigPos ORQ7 2.56E-34 TRUE 3.6355 13.944 0.8598016 OPTwigPrime

Table C.14: Results for paired comparisons based on the U test over the XMark dataset,
Experiment 2.

AlgorithmA AlgorithmB Twig P-Value p-value < 5% medina A Median B effect size r Best
OPTwigPrime TwigPos PXQ1 2.52E-34 TRUE 2.8325 0.424 0.8598752 TwigPos
OPTwigPrime TwigPos PXQ2 4.84E-33 TRUE 1.614 1.92 0.842648 OPTwigPrime
OPTwigPrime TwigPos PXQ3 7.70E-32 TRUE 0.969 0.8285 0.8261779 TwigPos
OPTwigPrime TwigPos PXQ4 2.52E-34 TRUE 0.744 1.171 0.8598856 OPTwigPrime
OPTwigPrime TwigPos PXQ5 1.41E-15 TRUE 1.055 1.016 0.5585102 TwigPos
OPTwigPrime TwigPos PXQ6 1.58E-05 TRUE 1.748 1.771 0.2943182 OPTwigPrime
OPTwigPrime TwigPos PXQ7 1.07E-05 TRUE 2.278 2.3065 0.3005597 OPTwigPrime
OPTwigPrime TwigPos PXQ8 2.54E-34 TRUE 0.528 18.927 0.8598485 OPTwigPrime

Table C.15: Results for paired comparisons based on the U test over the TreeBank dataset,
Experiment 2.

AlgorithmA AlgorithmB Twig P-Value p-value < 5% medina A Median B effect size r Best
OPTwigPrime TwigPos PTQ1 2.55E-34 TRUE 1.4805 6.6695 0.8598033 OPTwigPrime
OPTwigPrime TwigPos PTQ2 2.53E-34 TRUE 0.605 2.3675 0.8598661 OPTwigPrime
OPTwigPrime TwigPos PTQ3 2.55E-34 TRUE 2.2185 4.029 0.8598033 OPTwigPrime
OPTwigPrime TwigPos PTQ4 1.75E-24 TRUE 6.729 5.921 0.7173423 TwigPos
OPTwigPrime TwigPos PTQ5 2.47E-34 TRUE 0.269 1.973 0.8600028 OPTwigPrime
OPTwigPrime TwigPos PTQ6 2.55E-34 TRUE 1.112 6.3875 0.8598205 OPTwigPrime
OPTwigPrime TwigPos PTQ7 2.55E-34 TRUE 1.138 5.6025 0.8598235 OPTwigPrime
OPTwigPrime TwigPos PTQ8 2.55E-34 TRUE 1.852 3.3035 0.859814 OPTwigPrime

Table C.16: Results for paired comparisons based on the U test over the Random dataset,
Experiment 2.

AlgorithmA AlgorithmB Twig P-Value p-value < 5% medina A Median B effect size r Best
OPTwigPrime TwigPos RQ1 2.56E-34 TRUE 5.1875 16.519 0.859789 OPTwigPrime
OPTwigPrime TwigPos RQ2 4.95E-34 TRUE 4.311 12.2165 0.8559711 OPTwigPrime
OPTwigPrime TwigPos RQ3 2.56E-34 TRUE 4.8725 21.8965 0.8597896 OPTwigPrime
OPTwigPrime TwigPos RQ4 2.56E-34 TRUE 5.303 12.4455 0.8597899 OPTwigPrime
OPTwigPrime TwigPos RQ5 2.56E-34 TRUE 5.4295 21.1635 0.8597903 OPTwigPrime
OPTwigPrime TwigPos RQ6 2.56E-34 TRUE 3.997 16.386 0.8597909 OPTwigPrime
OPTwigPrime TwigPos RQ7 2.56E-34 TRUE 4.2495 15.976 0.8597916 OPTwigPrime
OPTwigPrime TwigPos RQ8 2.56E-34 TRUE 5.7485 23.16 0.8597899 OPTwigPrime

Appendix D

Ordered and Positional Bottom-Up
Holistic Approaches Full results

Table D.1: Results for paired comparisons based on the U test over the XMark dataset,
Experiment 1.

AlgorithmA AlgorithmB Twig P-Value p-value < 5% medina A Median B effect size r Best
OTwigPrimeList OPTwigPrime OXQ1 2.50E-34 TRUE 1.046 0.7945 0.8599292 OPTwigPrime
OTwigPrimeList OPTwigPrime OXQ2 7.51E-31 TRUE 1.0785 0.5165 0.812377 OPTwigPrime
OTwigPrimeList OPTwigPrime OXQ3 2.47E-32 TRUE 0.492 0.622 0.8329845 OTwigPrimeList
OTwigPrimeList OPTwigPrime OXQ4 2.48E-34 TRUE 1.2745 0.924 0.8599647 OPTwigPrime
OTwigPrimeList OPTwigPrime OXQ5 2.53E-34 TRUE 1.1945 0.848 0.8598687 OPTwigPrime
OTwigPrimeList TwigPos OXQ1 2.53E-34 TRUE 1.046 1.226 0.8598693 OTwigPrimeList
OTwigPrimeList TwigPos OXQ2 2.59E-26 TRUE 1.0785 1.5735 0.7458713 OTwigPrimeList
OTwigPrimeList TwigPos OXQ3 7.11E-34 TRUE 0.492 0.6865 0.8538723 OTwigPrimeList
OTwigPrimeList TwigPos OXQ4 2.53E-34 TRUE 1.2745 1.6455 0.8598505 OTwigPrimeList
OTwigPrimeList TwigPos OXQ5 4.62E-13 TRUE 1.1945 1.172 0.504974 TwigPos
OPTwigPrime TwigPos OXQ1 2.51E-34 TRUE 0.7945 1.226 0.8598951 OPTwigPrime
OPTwigPrime TwigPos OXQ2 4.68E-33 TRUE 0.5165 1.5735 0.8428446 OPTwigPrime
OPTwigPrime TwigPos OXQ3 4.62E-33 TRUE 0.622 0.6865 0.842918 OPTwigPrime
OPTwigPrime TwigPos OXQ4 2.49E-34 TRUE 0.924 1.6455 0.8599436 OPTwigPrime
OPTwigPrime TwigPos OXQ5 2.53E-34 TRUE 0.848 1.172 0.8598609 OPTwigPrime

360 Ordered and Positional Bottom-Up Holistic Approaches Full results

Table D.2: Results for paired comparisons based on the U test over the TreeBank dataset,
Experiment 1.

AlgorithmA AlgorithmB Twig P-Value p-value < 5% medina A Median B effect size r Best
OTwigPrimeList OPTwigPrime OTQ1 2.46E-34 TRUE 5.2565 2.129 0.8600227 OPTwigPrime
OTwigPrimeList OPTwigPrime OTQ2 2.46E-34 TRUE 3.5935 2.527 0.860022 OPTwigPrime
OTwigPrimeList OPTwigPrime OTQ3 2.44E-34 TRUE 0.745 0.201 0.8600761 OPTwigPrime
OTwigPrimeList OPTwigPrime OTQ4 7.67E-19 TRUE 1.9835 1.6975 0.6213435 OPTwigPrime
OTwigPrimeList OPTwigPrime OTQ5 2.45E-34 TRUE 2.3845 0.837 0.8600442 OPTwigPrime
OTwigPrimeList OPTwigPrime OTQ6 2.42E-34 TRUE 2.1305 0.544 0.860126 OPTwigPrime
OTwigPrimeList OPTwigPrime OTQ7 2.46E-34 TRUE 2.7605 0.9735 0.860012 OPTwigPrime
OTwigPrimeList OPTwigPrime OTQ8 2.45E-34 TRUE 1.469 1.203 0.8600536 OPTwigPrime
OTwigPrimeList OPTwigPrime OTQ9 1.83E-34 TRUE 0.106 0.075 0.8617208 OPTwigPrime
OTwigPrimeList TwigPos OTQ1 2.46E-34 TRUE 5.2565 6.903 0.860011 OTwigPrimeList
OTwigPrimeList TwigPos OTQ2 5.05E-01 FALSE 3.5935 3.5345 0.00096002 tie
OTwigPrimeList TwigPos OTQ3 8.71E-33 TRUE 0.745 1.08 0.8391729 OTwigPrimeList
OTwigPrimeList TwigPos OTQ4 2.46E-34 TRUE 1.9835 3.009 0.8600282 OTwigPrimeList
OTwigPrimeList TwigPos OTQ5 2.46E-34 TRUE 2.3845 3.196 0.8600256 OTwigPrimeList
OTwigPrimeList TwigPos OTQ6 2.46E-34 TRUE 2.1305 2.811 0.8600318 OTwigPrimeList
OTwigPrimeList TwigPos OTQ7 2.47E-34 TRUE 2.7605 4.249 0.8600051 OTwigPrimeList
OTwigPrimeList TwigPos OTQ8 2.45E-34 TRUE 1.469 3.6305 0.8600377 OTwigPrimeList
OTwigPrimeList TwigPos OTQ9 2.11E-34 TRUE 0.106 0.475 0.8608981 OTwigPrimeList
OPTwigPrime TwigPos OTQ1 2.46E-34 TRUE 2.129 6.903 0.8600194 OPTwigPrime
OPTwigPrime TwigPos OTQ2 2.46E-34 TRUE 2.527 3.5345 0.860023 OPTwigPrime
OPTwigPrime TwigPos OTQ3 2.44E-34 TRUE 0.201 1.08 0.8600761 OPTwigPrime
OPTwigPrime TwigPos OTQ4 2.45E-34 TRUE 1.6975 3.009 0.8600442 OPTwigPrime
OPTwigPrime TwigPos OTQ5 2.44E-34 TRUE 0.837 3.196 0.8600602 OPTwigPrime
OPTwigPrime TwigPos OTQ6 2.42E-34 TRUE 0.544 2.811 0.8601181 OPTwigPrime
OPTwigPrime TwigPos OTQ7 2.46E-34 TRUE 0.9735 4.249 0.860012 OPTwigPrime
OPTwigPrime TwigPos OTQ8 2.44E-34 TRUE 1.203 3.6305 0.8600608 OPTwigPrime
OPTwigPrime TwigPos OTQ9 2.06E-34 TRUE 0.075 0.475 0.8610409 OPTwigPrime

Table D.3: Results for paired comparisons based on the U test over the Random dataset,
Experiment 1.

AlgorithmA AlgorithmB Twig P-Value p-value < 5% medina A Median B effect size r Best
OTwigPrimeList OPTwigPrime ORQ1 2.55E-34 TRUE 10.912 4.1785 0.8598043 OPTwigPrime
OTwigPrimeList OPTwigPrime ORQ2 3.52E-33 TRUE 10.914 4.7985 0.8445152 OPTwigPrime
OTwigPrimeList OPTwigPrime ORQ3 2.55E-34 TRUE 6.1455 3.2425 0.8598072 OPTwigPrime
OTwigPrimeList OPTwigPrime ORQ4 1.16E-23 TRUE 3.891 2.822 0.7041548 OPTwigPrime
OTwigPrimeList OPTwigPrime ORQ5 2.55E-34 TRUE 8.6225 4.0455 0.8598075 OPTwigPrime
OTwigPrimeList OPTwigPrime ORQ6 2.55E-34 TRUE 17.579 3.516 0.8598124 OPTwigPrime
OTwigPrimeList OPTwigPrime ORQ7 2.55E-34 TRUE 6.6695 3.6355 0.8598121 OPTwigPrime
OTwigPrimeList TwigPos ORQ1 2.56E-34 TRUE 10.912 16.4675 0.8597929 OTwigPrimeList
OTwigPrimeList TwigPos ORQ2 0.000926213 TRUE 10.914 11.1975 0.2201171 OTwigPrimeList
OTwigPrimeList TwigPos ORQ3 2.56E-34 TRUE 6.1455 14.098 0.8597961 OTwigPrimeList
OTwigPrimeList TwigPos ORQ4 2.20E-34 TRUE 3.891 136.962 0.8606767 OTwigPrimeList
OTwigPrimeList TwigPos ORQ5 2.56E-34 TRUE 8.6225 18.0805 0.8597929 OTwigPrimeList
OTwigPrimeList TwigPos ORQ6 2.56E-34 TRUE 17.579 24.965 0.8597938 OTwigPrimeList
OTwigPrimeList TwigPos ORQ7 2.56E-34 TRUE 6.6695 13.944 0.8597994 OTwigPrimeList
OPTwigPrime TwigPos ORQ1 2.56E-34 TRUE 4.1785 16.4675 0.859799 OPTwigPrime
OPTwigPrime TwigPos ORQ2 2.33E-33 TRUE 4.7985 11.1975 0.8469442 OPTwigPrime
OPTwigPrime TwigPos ORQ3 2.56E-34 TRUE 3.2425 14.098 0.8598013 OPTwigPrime
OPTwigPrime TwigPos ORQ4 2.20E-34 TRUE 2.822 136.962 0.8606767 OPTwigPrime
OPTwigPrime TwigPos ORQ5 2.56E-34 TRUE 4.0455 18.0805 0.8598023 OPTwigPrime
OPTwigPrime TwigPos ORQ6 2.55E-34 TRUE 3.516 24.965 0.8598075 OPTwigPrime
OPTwigPrime TwigPos ORQ7 2.56E-34 TRUE 3.6355 13.944 0.8598016 OPTwigPrime

Table D.4: Results for paired comparisons based on the U test over the XMark dataset,
Experiment 2.

AlgorithmA AlgorithmB Twig P-Value p-value < 5% medina A Median B effect size r Best
OPTwigPrime TwigPos PXQ1 2.52E-34 TRUE 2.8325 0.424 0.8598752 TwigPos
OPTwigPrime TwigPos PXQ2 4.84E-33 TRUE 1.614 1.92 0.842648 OPTwigPrime
OPTwigPrime TwigPos PXQ3 7.70E-32 TRUE 0.969 0.8285 0.8261779 TwigPos
OPTwigPrime TwigPos PXQ4 2.52E-34 TRUE 0.744 1.171 0.8598856 OPTwigPrime
OPTwigPrime TwigPos PXQ5 1.41E-15 TRUE 1.055 1.016 0.5585102 TwigPos
OPTwigPrime TwigPos PXQ6 1.58E-05 TRUE 1.748 1.771 0.2943182 OPTwigPrime
OPTwigPrime TwigPos PXQ7 1.07E-05 TRUE 2.278 2.3065 0.3005597 OPTwigPrime
OPTwigPrime TwigPos PXQ8 2.54E-34 TRUE 0.528 18.927 0.8598485 OPTwigPrime

361

Table D.5: Results for paired comparisons based on the U test over the TreeBank dataset,
Experiment 2.

AlgorithmA AlgorithmB Twig P-Value p-value < 5% medina A Median B effect size r Best
OPTwigPrime TwigPos PTQ1 2.55E-34 TRUE 1.4805 6.6695 0.8598033 OPTwigPrime
OPTwigPrime TwigPos PTQ2 2.53E-34 TRUE 0.605 2.3675 0.8598661 OPTwigPrime
OPTwigPrime TwigPos PTQ3 2.55E-34 TRUE 2.2185 4.029 0.8598033 OPTwigPrime
OPTwigPrime TwigPos PTQ4 1.75E-24 TRUE 6.729 5.921 0.7173423 TwigPos
OPTwigPrime TwigPos PTQ5 2.47E-34 TRUE 0.269 1.973 0.8600028 OPTwigPrime
OPTwigPrime TwigPos PTQ6 2.55E-34 TRUE 1.112 6.3875 0.8598205 OPTwigPrime
OPTwigPrime TwigPos PTQ7 2.55E-34 TRUE 1.138 5.6025 0.8598235 OPTwigPrime
OPTwigPrime TwigPos PTQ8 2.55E-34 TRUE 1.852 3.3035 0.859814 OPTwigPrime

Table D.6: Results for paired comparisons based on the U test over the Random dataset,
Experiment 2.

AlgorithmA AlgorithmB Twig P-Value p-value < 5% medina A Median B effect size r Best
OPTwigPrime TwigPos RQ1 2.56E-34 TRUE 5.1875 16.519 0.859789 OPTwigPrime
OPTwigPrime TwigPos RQ2 4.95E-34 TRUE 4.311 12.2165 0.8559711 OPTwigPrime
OPTwigPrime TwigPos RQ3 2.56E-34 TRUE 4.8725 21.8965 0.8597896 OPTwigPrime
OPTwigPrime TwigPos RQ4 2.56E-34 TRUE 5.303 12.4455 0.8597899 OPTwigPrime
OPTwigPrime TwigPos RQ5 2.56E-34 TRUE 5.4295 21.1635 0.8597903 OPTwigPrime
OPTwigPrime TwigPos RQ6 2.56E-34 TRUE 3.997 16.386 0.8597909 OPTwigPrime
OPTwigPrime TwigPos RQ7 2.56E-34 TRUE 4.2495 15.976 0.8597916 OPTwigPrime
OPTwigPrime TwigPos RQ8 2.56E-34 TRUE 5.7485 23.16 0.8597899 OPTwigPrime

	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Introduction
	1.2 Thesis Outline
	1.3 Publications
	1.3.1 Poster
	1.3.2 Peer Reviewed Papers

	1.4 Conclusion

	2 XML Databases' Background
	2.1 Introduction
	2.2 The Concepts of XML Databases
	2.2.1 XML Enabled Databases (XED)
	2.2.2 Native XML Databases (NXD)
	2.2.3 XML Syntax
	2.2.3.1 XML Elements
	2.2.3.2 XML Attributes

	2.2.4 XML Tree Structure
	2.2.5 XML Schema
	2.2.6 Summary

	2.3 XML Parsing
	2.4 XML Query
	2.4.1 XPath
	2.4.2 XQuery

	2.5 Conclusion

	3 Related Work on XML Query Processing
	3.1 Introduction
	3.2 XML Query Processing
	3.2.1 XML Indexing
	3.2.2 XML Keyword Search

	3.3 Tree Matching
	3.3.1 Approximate Matching
	3.3.2 Exact Matching
	3.3.2.1 Binary Structural Join Approaches
	3.3.2.2 Holistic Structural Join Approaches
	3.3.2.3 Sequence-Based Approaches

	3.4 Conclusion

	4 Research Hypothesis and Methodology
	4.1 Introduction
	4.2 Research Problems and Motivation
	4.2.1 Determination of the Basic Structural Axes
	4.2.2 Ordered Twig Pattern Query and Positional Predicates
	4.2.3 Combination of Different Filtering Strategies

	4.3 Research Methodology
	4.3.1 Research Questions
	4.3.2 Research Hypothesis

	4.4 The Scope of the Research
	4.5 The Main Objectives for the Solution
	4.5.1 Extending the Existing Labelling Schemes
	4.5.2 Improving the Structural Match of TPQ

	4.6 Conclusion

	5 Experimental Framework
	5.1 Introduction
	5.2 Holistic Model Overview
	5.2.1 Storage Model
	5.2.1.1 The XML Parser
	5.2.1.2 Node Labelling Scheme
	5.2.1.3 Data Partitioning Scheme
	5.2.1.4 Tag Indexing

	5.2.2 Execution Model
	5.2.2.1 Query Constructor
	5.2.2.2 Query Processor
	5.2.2.3 Basic Two-Phase Approach
	5.2.2.4 Ordered Two-Phase Approach
	5.2.2.5 Basic One-Phase Approach
	5.2.2.6 Ordered One-Phase Approach
	5.2.2.7 Positional One-Phase Approach

	5.3 The Implementation of the Experimental Framework and Testing Platform
	5.3.1 The Storage Model
	5.3.2 The Execution Model
	5.3.3 Platform Setup
	5.3.4 Testing the Holistic Model

	5.4 An Overview of XML Datasets
	5.4.1 Real-World Datasets
	5.4.1.1 DBLP Dataset
	5.4.1.2 TreeBank Dataset
	5.4.1.3 Protein Sequence Dataset
	5.4.1.4 NASA Dataset
	5.4.1.5 SwissProt Dataset
	5.4.1.6 SIGMOD Record Dataset
	5.4.1.7 Mondial Dataset

	5.4.2 Benchmark Datasets
	5.4.2.1 XMark Benchmark
	5.4.2.2 XOO7 Benchmark
	5.4.2.3 TPoX Benchmark
	5.4.2.4 XBench Benchmark
	5.4.2.5 XMach-1 Benchmark
	5.4.2.6 The Michigan Benchmark

	5.4.3 Synthetic Datasets
	5.4.3.1 Random Dataset
	5.4.3.2 Zipf Dataset

	5.4.4 The Experimental Datasets

	5.5 Data Analysis
	5.6 Conclusion

	6 Top-Down Approach based on Child Prime Labels
	6.1 Introduction
	6.2 Preliminaries
	6.2.1 Notation
	6.2.2 Motivation and Limitations of TwigStack
	6.2.2.1 Straightforward Example

	6.3 Child Prime Labels
	6.3.1 Properties of Child Prime Label

	6.4 Holistic Twig Matching Algorithm with Child Prime Label
	6.4.1 Top-Down Twig Matching Algorithm: TwigStackPrime
	6.4.2 Analysis of TwigStackPrime

	6.5 Experimental Evaluation
	6.5.1 Experimental Setting
	6.5.1.1 XML Datasets and Queries
	6.5.1.2 Metrics

	6.5.2 Experimental Results
	6.5.2.1 DBLP
	6.5.2.2 XMark
	6.5.2.3 TreeBank
	6.5.2.4 Random
	6.5.2.5 Scalability

	6.5.3 Summary

	6.6 Conclusion

	7 Ordered Twig Pattern Matching: Top-Down Approach
	7.1 Introduction
	7.2 Ordered Twig Pattern
	7.2.1 Notation and Data Structure
	7.2.2 Motivation

	7.3 Holistic Ordered Twig Matching algorithms
	7.3.1 Ordered Twig Matching Algorithm: OTJPrime
	7.3.2 Ordered Twig Matching Algorithm: OTJPrimeList
	7.3.3 Analysis of Ordered Twig Matching Algorithms

	7.4 Experimental Evaluation
	7.4.1 Experimental Results
	7.4.1.1 XMark
	7.4.1.2 TreeBank
	7.4.1.3 Random
	7.4.1.4 Scalability

	7.4.2 Summary

	7.5 Conclusion

	8 Twig Pattern Matching: Bottom-Up Approach
	8.1 Introduction
	8.2 Preliminaries
	8.2.1 Notation and Data Structure
	8.2.2 Motivations

	8.3 Bottom-Up Twig Matching Algorithm with Child Prime Label
	8.3.1 Bottom-Up Twig Matching Algorithm: TwigPrime
	8.3.1.1 Analysis of TwigPrime

	8.4 Experimental Evaluation
	8.4.1 XML Datasets and Queries
	8.4.2 Metrics
	8.4.3 Experimental Results
	8.4.3.1 DBLP
	8.4.3.2 XMark
	8.4.3.3 TreeBank
	8.4.3.4 Random
	8.4.3.5 Zipf
	8.4.3.6 Scalability

	8.4.4 Summary

	8.5 Conclusion

	9 Ordered and Positional Twig Pattern Matching: Bottom-Up Approach
	9.1 Introduction
	9.2 Preliminaries
	9.2.1 Notation and Data Structure
	9.2.2 Motivation

	9.3 Child Prime Label Approaches to support Ordered and Positional TPQs
	9.3.1 Ordered Bottom-Up Twig Matching Algorithm
	9.3.2 Ordered and Positional Bottom-Up Twig Matching Algorithm
	9.3.3 Analysis of Ordered and Positional Twig Matching Algorithms

	9.4 Experimental Evaluation
	9.4.1 Experiment 1: Ordered Twig Queries
	9.4.1.1 Experimental Results
	9.4.1.2 XMark
	9.4.1.3 TreeBank
	9.4.1.4 Random

	9.4.2 Experiment 2: Ordered/Positional Twig Queries
	9.4.2.1 XMark
	9.4.2.2 TreeBank
	9.4.2.3 Random

	9.4.3 Scalability
	9.4.4 Summary

	9.5 Conclusion

	10 The Overall Evaluation
	10.1 Introduction
	10.2 The Objective of the Experiments
	10.2.1 The Strategy of the Experimental Evaluation

	10.3 Evaluation From Different Perspective
	10.3.1 Top-Down Approaches for the Basic Structural Axes
	10.3.2 Top-Down Approaches for Ordered Constraints and Positional Predicates
	10.3.3 Bottom-Up Approaches for the Basic Structural Axes
	10.3.4 Bottom-Up Approaches for Ordered Constraints and Positional Predicates

	10.4 Features and Limitations of the Experiments
	10.4.1 Features of the Experiments
	10.4.2 Limitations of the Experiments

	10.5 The Main Findings of the Experiments
	10.6 Conclusion

	11 Conclusion and Future Work
	11.1 Introduction
	11.2 Thesis Summary
	11.3 Main Research Contributions
	11.4 Future Work
	11.5 Finally

	References
	Appendix A Top-Down Holistic Approaches Full results
	Appendix B Ordered Top-Down Holistic Approaches Full results
	Appendix C Bottom-Up Holistic Approaches Full results
	Appendix D Ordered and Positional Bottom-Up Holistic Approaches Full results

