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Abstract

Circadian data are typically analysed using the Fast Fourier Transform Non-

Linear Least Squared method. The purpose of my project was to develop a new

approach and to apply this to the analysis of rhythms for Quantitative Trait Lo-

cus (QTL) mapping over a time domain. This was achieved by examining the

rhythms as functional data. The data used for this process came from what is

known as the W9W recombinant inbred line population of Arabidopsis thaliana

plant. Contrasting conditions of light and dark were also examined. The data

consisted of circadian rhythm measurements that were expressed through the

CCR2 gene measured by luciferase imaging of living plants. In order to facilitate

exploratory analysis of the way in which the curves behaved, they were smoothed

and fitted using basis functions. Through this process the circadian rhythms were

transformed from discrete observations to clearly defined functions. From there,

derivatives were taken and both velocity and acceleration were examined. This led

to the identification of changes in length of period between wild-type and mutant

plants, as well as allowing direct comparisons of the curves behaviour between

differing light and dark conditions. Having examined the correlation functions of

the population free-running in darkness, further exploration was carried out by

conducting principal-component analysis. This enabled the main types of vari-

ability in the wild type and mutant to be identified and analysed. QTL mapping

analysis was then performed in the time domain measuring velocity with plants

free-running in darkness. Viewing these data as functions allowed for a thorough

and detailed exploration. This led to the discovery of new genetic information

that would have otherwise have been overlooked. Overall, the techniques used

in this project have opened the door to further study and investigation of the

quantitative basis of circadian rhythms.
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1. Introduction

1.1. Introduction. The Earth’s rotation, on its axis and its orbit around the

sun, results in environmental changes in light and temperature across time [96]. In

order to anticipate these environmental cues, organisms have developed a timing

mechanism termed the circadian clock, which is responsible for the organisms

oscillating rhythms [81]. These can be defined as a collection of biological rhythms

that occur during a time period that is approximately a 24-hour cycle. In general,

to be classed as circadian, a biological rhythm must be maintained in constant

conditions and have a free-running period of approximately 24 hours. It must

also be possible for the rhythm to reset following exposure to external stimuli,

known as entrainment. Lastly, throughout a range of temperatures, the rhythm

must maintain its periodicity [36]. Circadian rhythms are apparent in a range

of different organisms, such as mammals, birds, plants and algae [126]. A large

body of work has been carried out over many years in order to enhance our

understanding of how circadian rhythms work and interact within an environment

[10].

1.2. History of plant circadian rhythms. The first recorded observations

of a circadian process was in a plant. This appeared in the fourth century

B.C, where the diurnal leaf movements of the tamarind tree was described by

Androsthenes[14]. However, the fact that that the origin of these rhythms are

endogenous was not understood at that time. The first scientific literature on

this subject did not emerge until almost 21 centuries later when, in 1729, Jean-

Jacques d’Ortous de Mairan, a French scientist, conducted tests on the sensitive

heliotrope plant to ascertain whether a straightforward reaction to sunlight, or

something else, was responsible for the daily opening and closing of leaves [53]. He

concluded that the movement of leaves was not dependent on the daily light-dark

cycle and hypothesised they were controlled by an internal mechanism. In 1930,

the German scientist Bünning provided evidence that plants movements were

endogenous. He identified two variants within the species Phaseolus coccineus

where their endogenous period differed, exhibiting cycles of 23 and 26 hours.

When crossed, the period lengths of the progeny ranged between the extremes

of period lengths of the two parents, this suggests that this particular aspect



12

of circadian rhythms is a genetically based polygenic trait [18]. This provided

strong evidence that circadian rhythmicity derives from an interaction between

light and a circadian pacemaker, not from external stimuli alone [117]. Since

these first observations, the study of the plant circadian clock has developed and

it is now known that many genes covering aspects of the plants development,

flowering and growth, as well as its response to environmental stresses or harmful

pathogens are controlled by the circadian clock [81]. The analysis of circadian

rhythms as been developed over many centuries with plants dominating this field

of chronobiology [13]. Whereby chronobiology is defined as the field of biology

that studies timing processes in living organisms [36].

1.3. The plant circadian clock. A simplified way to visualise the circadian

system is as three components. The central component is a self-sustained cen-

tral oscillator that generates rhythmicity. The other two components are input

pathways that enable the clock to be entrained to local environmental day-night

cycles, and output pathways which are regulated by the core oscillator [88], [49].

However, in reality the clock is far more complex than this, as multiple levels of

feedback occur between each level [87].

A common approach used to explore the circadian clock is monitoring the

rhythmic outputs which are controlled by the core oscillator [49]. These have

been made relatively accessible by using a luciferase-reporter gene [86]. Luciferase

is an enzyme derived from fireflies that catalyses the biochemical reaction that

causes fireflies to “glow” [125]. If transgenic plants containing a luciferase tran-

scriptional reporter fused to a circadian regulated promoter are supplied with the

substrate luciferin, then the plants emit light when the promoter gene is being

expressed [85]. This procedure allows real-time gene expression to be monitored.

This has revolutionised the study of plant circadian biology and directly led to

many discoveries concerning the plant circadian clock [4],[31],[35],[49]. To demon-

strate this visually, Figure 1 shows a plot of a Ws wild-type plant under constant

darkness (DD) conditions. Here time in Days (d) is plotted against luminescence

measured as counts per second (cps), each point represents the luminescence

reading measured at a particular time point.
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Figure 1. The observed luminescence values measured over time

of a Ws wild-type plant free-running in DD conditions.

A recent circadian mathematical model published in 2016 [94] proposed the

cartoon shown in Figure 2. The core circadian oscillator is divided into three in-

terconnected areas of transcription-translation feedback loops, the core oscillator

central loop and a morning and evening loop, as oscillator genes are expressed at

different times of the day [56]. As shown in Figure 2 at dawn, CIRCADIAN

CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTLY

(LHY) repress the expression of the PSEUDO-RESPONSE REGULATOR (PRR)-

encoding genes, TIMING OF CAB EXPRESSION (TOC1), GIGANTEA (GI)

and the evening complex (EC) members LUX ARRHYTHMO (LUX), EARLY

FLOWERING 3 (ELF3) and EARLY FLOWERING 4 (ELF4). PRR9, PRR7,

PRR5 and TOC1 are sequentially expressed and repress the expression of CCA1

and LHY, as well as their own transcription. In the evening, TOC1 represses

all of the previously expressed components in addition to GI, LUX and ELF4.

Subsequently, the EC maintains the repression of GI and represses PRR9 and

PRR7. In reality it is much more complex than this with several feedback loops

of gene expression that interact [118].

There are slave oscillators present in the clock and these act as an intermediary

between the core oscillators and output pathways [114]. These have two important

properties, firstly it holds a negative-feedback loop. These regulate their own
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Figure 2. Adapted from [94]: The sequential expression of each

component throughout the day is shown from left to right and

the time of activity is expressed in hours after dawn. The yellow

and grey areas represent day and night, respectively. Black bars

indicate repression. Ovals represent functional groups. The sun

icon depicts light promotion of transcription [94].

expression when constitutively expressed by repressing accumulation of its own

transcript. Secondly, it is situated downstream of the core oscillator, such that

its rhythm is highly dependent on the core oscillator [114]. An example of a slave

oscillator gene in Arabidopsis thaliana (Arabidopsis) is COLD AND CIRCADIAN

REGULATED 2 (CCR2) also referred to as Arabidopsis thaliana GLYCINE-

RICH Protein 7 (AtGRP7). CCR2 encodes a glycine-rich RNA binding protein

whose transcriptional expression is cold regulated with peak expression occurring

8-12h after dawn (introduction of light) [52]. Under free-running conditions for

both constant light (LL) and constant darkness (DD), CCR2 produces robust

rhythms, which has made it an ideal choice in clock function detection [122].

1.4. Arabidopsis thaliana . The small flowering plant Arabidopsis is a model

system used in plant circadian biology for identifying genes and determining their

functions [83]. It is ideal for use in research as it has a rapid life cycle, is small
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in size and has the ability to self-fertilise [123]. In addition, the complete 125-

megabase genome sequence is known, and it currently contains 27,416 known

genes making it extremely well characterised and therefore a suitable model in

plant studies [74], [60].

1.5. Analysis of plant circadian rhythms. Over time a number of different

techniques have been developed and although these began with simple obser-

vations, time series analysis has now become a widely used method [89]. The

procedure of choice varies depending on experimental aims, sampling design and

thus the type of data that has been collected [111]. Nevertheless, an essential first

step in the analysis of any time series consists of visual inspection of a time plot.

Visualising data in this way guides the selection of the most suitable procedure

to use for further analysis [8].

Similar to other rhythmic processes, circadian rhythms are characterised by

certain parameters. These commonly include period, amplitude, phase, wave-

form and robustness or prominence [111]. One method used to analyse these

parameters is cosinor analysis whereby, under the assumption that the parame-

ters of the fitted function reflect the true parameters of the biological rhythm,

a cosine function is fitted usings a least squares method to the measured data

points [93].

Within the plant circadian community the current standard is the Fourier

Transform Non-Linear Least Squares (FFT-NLLS) method [121], the primary

aim of this method is the analysis of circadian data obtained from free-running

conditions without entrainment. The purpose of this method was initially for use

in genetic screenings in order to facilitate identification of mutant organisms that

had a altered period, and was first developed by the NSF Centre for Biological

Timing in Virginia [136]. The FFT-NLLS method is suitable under the assump-

tion that rhythmic data are comprised of trigonometric functions. As this model

has unconstrained periods and a large number of components, it is possible to

represent almost any curve. Most parameters are calculated through descriptive

statistics and a primary step is to obtain an accurate estimate of the underly-

ing period. There are numerous approaches that can be taken (Fourier analysis,



16

Enright periodogram, Lomb-Scargle periodogram [111]), all with their own as-

sumptions and differing levels of complexity. As an example a sum of cosine

functions can model these data and this is shown in Equation 1 below [136]:

f (t) = c+
N∑
i=1

αi cos

[
2π (t+ φi)

τi

]
, (1)

where τi, φi, αi are period, phase and amplitude of each cosine component, c is

the offset.

The widely used FFT-NLLS method centres on the assumption that circadian

rhythms are stationary, i.e. that parameters, such as period and amplitude are

stable and non-changing across time [46]. However, the literature on circadian

rhythms gives very little consideration to the question of stationarity. It is simply

taken for granted in the time scale of days/weeks. There has been very little

investigation into the effect that overlooking this may have on the representation

of circadian data [112].

There are alternative techniques for managing the non-stationarity of circadian

rhythms. One such technique is to view data as functional, where even though

data consists of discrete-measurements, using this method, their values can reflect

a smooth variation that describes behaviour [30],[110].

1.6. Functional Data. There are many forms of functional data, however, a

defining feature throughout is that the functions they consist of are frequently,

though not always, smooth curves [110]. A simple example of this is to con-

sider weather temperature recorded monthly throughout the year. Each time the

temperature is recorded, it is done as a discrete value. This data when viewed to-

gether, can then show the variation in temperatures during the year as a smooth

functional curve [109].

Ramsay and Dalzell (1991) initially coined the term functional data analysis

(FDA), though, a number of similar practices and ideas had been in use long

before this time [104]. FDA is a branch of statistical analysis that does not

have a firm definition, it is continuously shaped by new developments and it has

grown exponentially [105]. Nevertheless, in common with many other branches

of statistics, there are some common aims to consider when implementing FDA

techniques [110], including:
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• to represent data in different ways in order to aid further analysis;

• to display data in order to highlight various characteristics;

• to study important sources of pattern and variation among data;

• to use input or independent variable information to explain variation in

an outcome or dependent variable.

Established statistical techniques used for analysing data are extended through

the use of FDA. By viewing a dataset as a smooth function rather than as as

discrete points, enables inferences to be made from the data [104], [105], [110].

This allows many things to be examined that, with more traditional analysis

techniques, may be overlooked or missed. It is a fundamental aim to be able to

extract and explore as much information as possible from a data set.

1.7. Quantitative trait loci (QTL) analysis. A quantitative trait locus (QTL)

is defined as a region within a genome that contain genes associated with a par-

ticular quantitative trait [80]. A genetic map is created using the genetic markers

positioned in close proximity to genes and all genetic markers occupy a known

location on a chromosome called loci (singular locus) [25]. Linking this informa-

tion with displayed phenotypes of a population allows the relationship between

phenotypic and genotypic measurements to be analysed, and is commonly known

as QTL mapping [79]. The principle of QTL mapping is that through detecting

an association between the phenotype and genotype of markers, the genes re-

sponsible for the natural phenotypic variation observed within a population can

be explored, so providing insight into their effects and interactions [80], [39].

1.8. QTL mapping methods. QTL mapping has been well used in plant circa-

dian data, though this is commonly performed on static traits such as hypocotyl

elongation, or averaged traits such as period [101],[65]. Estimates for period are

often performed using Biological Rhythms Analysis Software System (BRASS),

which uses the FFT-NLLS curve estimation method [13], [6]. For example BRASS

has been used to address the circadian parameter of phase. Here phase reflects the

entrained relationship between the clock and the external cycle. Using BRASS,

luminescent rhythms of individual seedlings were plotted as a moving average

and the time of the first peak of each seedling rhythm was recorded. Using this
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procedure the positions for phase were successfully QTL mapped using interval

mapping (IM) and QTLs that have major effects on circadian phase were found

[32]. In contrast to the traditional FFT-NLLS method used by BRASS, by view-

ing circadian data as functional, a different approach for estimating curves can

be taken. This creates an opportunity to explore the different outputs from QTL

mapping, both in the traits measured and in the static nature of these traits. In

order to do this, it is important to consider the first the basic principle of how

QTL mapping works.

1.8.1. Single marker QTL analysis. A traditional method for detecting a

QTL with mapping data is to consider each marker individually [62]. At any

particular marker, all individuals can be categorised according to their genotypes

and the phenotypic means for each group can be compared. Statistical tests

can then be used to determine whether a QTL is present, a significant value

indicates that a QTL is located in the vicinity of the marker [103]. This method

does not require a complete linkage map and a disadvantage of this is that the

further a QTL is from the marker, the less likely it will be detected statistically

as recombination may occur between the marker and the QTL [25].

1.8.2. Interval mapping. Interval mapping (IM) is the most common method

of QTL analysis and is particularly useful as it takes account of missing genotype

data. The principle is to test for the presence of a QTL at many positions be-

tween the markers, making use of a linkage map [62]. The use of linked markers in

the analysis compensates for the recombination possibilities between the markers

and the QTL. There are several different interval mapping methods, each with

differences in the way missing data are treated [17], [21]. Standard interval map-

ping is frequently used and via the expectation maximisation (EM) algorithm,

has the maximum likelihood estimation. Other methods include the Haley-Knott

regression method [44].

Given that yi denotes the phenotype and gi denotes the QTL genotypes for

any given individual i, we assume that yi | gi ∼ N (µgi , σ
2). An individuals i

probability density function can be given by Σjpijφ (yi;µj, σ
2) where pij denotes

the mixing proportions and are derived using known marker data. The density of

the normal distribution (See Appendix 3) is given by φ and the sum is over the
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possible QTL genotypes (denoted j). These are calculated for each individual

using pij = Pr (gi = j |Mi), where Mi is the multipoint marker genotype for

individual i (for these calculations R package "R/qtl" was used) [15].

µj and σ were estimated by maximum likelihood; that is, we take those values

for which the observed data is most probable as our estimates. The likelihood

function is:

L (µ, σ) = ΠiΣjpijφ
(
yi;µj, σ

2
)

Where the sum is over the possible QTL genotypes [64].

The maximum likelihood estimates (MLEs) cannot be obtained without using

an iterative algorithm. This is where the EM algorithm is used. The EM al-

gorithm estimates the parameters of a model iteratively, beginning at a chosen

starting point. Each iteration consists of an Expectation (E) step and a Maximi-

sation (M) step. It can be shown that each such iteration either improves the true

likelihood, or leaves it unchanged [82]. The E step finds the distribution for the

unobserved variables as well as the current estimates of the parameters, while the

M step re-estimates the parameters under the assumption that the distribution

found in the E step is correct in identifying those with maximum likelihood [92].

Once the maximum likelihood estimates of the µj and σ have been obtained,

a test statistic know as a logarithm of odds ratio (LOD) is used to detect QTL

presence [95]. A LOD score is a transformation of the likelihood ratio statistic and

provides a ratio of the likelihood that there is a QTL present, and the likelihood

under the null hypothesis that is there is no QTL anywhere in the genome [132].

A LOD score is calculated as follows [17];

LOD = log10

ΠiΣjpijφ
(
yi; µ̂j, σ̂2

)
Πiφ

(
yi; µ̂0, σ̂2

)


Where µ̂0 and σ̂0 are the average and standard deviation of yi.

1.8.3. Determining a threshold value. A LOD score indicates the statistical

presence of a QTL, the higher the LOD score the more strongly the presence of

the QTL is indicated [17]. QTL mapping methods rely on identifying an appro-

priate threshold at which a LOD score becomes significant. The test statistics

are estimated from the data set and are compared in order to determine whether



20

a significant QTL exists. The distribution of LOD scores under the null hypoth-

esis depends on a number of factors, including the number of typed markers,

size of the genome, the number of individuals and the phenotype distribution.

[100]. There are many ways to approach the problem of estimating a significance

threshold, one is to use permutation tests, whereby the phenotypes relative to

the genotype data are “reshuffled” [103]. By randomly reshuffling the data, and

so which phenotype corresponds to which genotypes, the original marker QTL

association is eliminated. Permutation tests then generate a new data set under

the null hypothesis. The expectation of the null is that there is no association

between phenotype and genotype. This process is repeated a number of times re-

sulting in an empirical distribution of the test statistic LOD scores under the null

hypothesis, whereby the 95th percentile is used as an estimated LOD threshold

value [23].

The advantages of using the permutation test approach to estimate the LOD

score threshold are its simplicity, its distribution-free nature and its ease of use

as it is not dependent on population structure. Although the computational

workload is extensive, with the standard minimum number of permutations being

1000 [95], this is made relatively easy with the help of programming languages

such as R [132].



21

2. Generation of data

2.1. The plant population. A recombinant inbred line (RIL) is formed by

crossing two inbred strains followed by repeated selfing, in this case to create

a new inbred line whose genome is a mixture of the parental genomes [16]. A

visual example of a population derived in this manner is shown in Figure 3. The

Davis lab group generated the RIL population that was used in this project [34].

It was created from two different parent ecotypes (Columbia (Col-0) hsp90.2-3

mutant and Wassilewskija (Ws-2) CCR2:LUC wild-type [26]) and the resulting

BC1F7 generation used is referred to as the W9W RIL population. The Ws-2

Figure 3. A RIL formed by crossing two inbred strains and re-

peated selfing.

here on termed ‘Ws’ line was created by inserting a Luciferase fused to a reporter

gene under the control of the promoter for cold and circadian regulated (CCR)

genes. The Col-0 strain contained a homozygous mutation at hsp90.2-3 that

causes a mutation in the cytosolic heat shock protein. These two parent strains
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were crossed and then this F1 line was grown and it recurrently backcrossed

to the Ws parent. This BC1 line was then used for selfing six times to create

a F7 population. From this F7 population 48 homozygous mutant (hsp90.2-3 )

and corresponding 48 wild-type (without the mutation at hsp90.2-3 ) strains were

selected. Hsps are a family of proteins widely distributed throughout animals,

plants and fungi. Plants response to stress and disease and their development, are

linked to the Hsp90 chaperone proteins [133]. Identification of a number of HSP90

genes has shown that changes in salinity, temperature and metals all produce a

strong effect [133]. Arabidopsis contains seven identified Hsp90 proteins (Hsp90-1

to Hsp90-7) [71]. The W9W mutant plants contain a mutation of the Hsp90.2

protein known as hsp90.2-3 which is associated with an increase in stochastic

variation [113].

The W9W RIL contains 75% Ws and 25% of Col-0 background in its genome.

In a previous project, these 96 strains were genotyped, the physical mapping of

the chromosomes of theses 96 genotypes was performed using 102 SSLP markers,

and a genetic map of the resulting population was generated [34].

Each of the plants in the population (both the wild and mutant strains) are

homozygous for the CCR2:LUC construct. Therefore, in the presence of luciferin

the plants will luminesce allowing for gene expression of the CCR2 and thus

allow the core oscillator of the circadian clock to be measured. Luciferase ex-

pression was measured using a Topcount NXT imaging system (Perkin Elmer)

where the average luminescence reading of each well is measured over 5 seconds

approximately every hour, giving units of counts per second (cps) [47].

2.2. Materials and methods.

2.2.1. Plant growth media. ddddddddddddddddddddddddddddddddddddddddddddddddddddddd

Muraskige and Skoog Basal Salt (MS), containing 3% sucrose (MS3)

For 1 litre MS3;

• 4.4g Muraskige and Skoog Basal Salt

• 30g sucrose

• 0.5g MES free acid
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• 15g phytoagar

• Adjust pH to 5.7 using 1mM potassium hydroxide (KOH)

2.2.2. Surface sterilisation of seeds. ddddddddddddddddddddddddddddddddddddddddddddddddddddddd

Reagents

• Ethanol

– 100% Ethanol

• Bleach solution

– 33% Klorix Bleach in 0.02% Triton X-100

• Sterile water

• Agar water

– Sterile water with 0.1% phytoagar

2.2.3. Surface sterilisation of seeds. For each topcount experiment, appropriately

120 seeds were sterilised per genotype. First the seeds were rinsed with 600µl

of ethanol. After the ethanol was removed, 600µl of bleach solution was added.

The bleach solution was then removed and the seeds were rinsed with 700µl of

sterile water. Afterwards, the seeds were suspended in 240µl of agar water, this

was then placed on MS3 medium with 15µg/mL hygromycin antibiotic to select

for the transgene CCR2:LUC.

These plates were then kept in the 4◦C for 2 days for seed stratification, before

being transferred to the light/dark (LD) growth cabinet.

2.3. Topcount Set-up.

2.3.1. Reagents.

• Ethanol

– 100% Ethanol

• Luciferin solution 1mM

– 50mM Luciferin with 0.01% Triton X-100 as 1:49 ratio
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2.3.2. Plate set-up. To transfer seedlings to microtite plate, tweezers were washed

in 100% ethanol then the excess ethanol was burnt off to sterilised. Once tweezers

were cooled they were used to transfer a seedling into each well of the plate.

Luciferin 1mM solution was filter sterilise using 0.45 micron filter. Using a pipette,

15µl of luciferin solution was placed into each well of the plate. Each plate was

covered with a plastic plate seal and a small hole was pierced over each well.

2.4. Growth Conditions. Within the scope of this project three data sets are

used both the DD and constant light (LL) data sets were collected previous to this

project by the Davis lab group [34]. The short day (SD) data set was generated

by myself;

2.4.1. DD data. Plants entrained by subjecting them to cycles of 12 hours light,

followed by 12 hours dark (12L:12D) for 10 days at ∼ 20◦C then placed under

constant darkness. Each genotype had 48 plants measured. The non rhythmic

or non luminescence plants were “removed” before analysis took place, a table of

these removed plants can be seen in Appendix 1.

2.4.2. LL data. Plants entrained at 12L:12D for 10 days at ∼ 20◦C then placed

under constant light.

2.4.3. SD data. Plants entrained at 12L:12D for 11 days at ∼ 20◦C then placed

under 6L:18D.

2.5. Analysis software. All analysis was carried out using programming lan-

guage R [102], specifically the “fda” package for all FDA work [106]. QTL map-

ping was performed also in R using the “R/qtl” package. Two input files were

generated containing the quantitative data, genotypes of all of the 96 individuals,

and the marker locations. IM via the EM algorithm was performed for the veloc-

ity (Section 5.1) of the population across the experiment at every minutes and for

the velocity of the wild-type and mutant-type separately. All QTL analysis was

performed on data collected under free-running in DD conditions. Permutation

tests were used to determine the significance threshold of the LOD score for any

given minute during the experiment. 1000 permutations were performed in each

permutation test and the 95% significance threshold was taken.
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For ease of explanation throughout this report most analysis steps, unless

stated otherwise, are demonstrated on a Ws wild-type plant (seen in Figure 4)

or in some cases the genotype as a whole. In some chapters comparison of the

Ws wild-type and Ws hsp90.2-3 mutant type is a useful tool to gain information.

These plants will now be referred to as simply wild-type and mutant.
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3. Representing Functional Data

The following explanation of methods used in the analysis is taken from Lock

2016 with new developments added [78].

The basic principal of FDA is to view observed data as outputs of functions

rather than individual observations. In relation to observed data, the term func-

tional gives reference to the structure of the data, not its actual form. As such,

it is generally observed and recorded as discrete pairs (ti, yi) with i = 1, . . . , n,

where n represents the number of observations recorded and yi is the response

measured at time ti [105].

The plots shown in Figure 4 provide a visualisation of how discrete obser-

vations can lead to a continuous function. I first plotted each observation of a

wild-type plant free-running in DD conditions as its luminescence reading against

time (Figure 4 left). I then simply linearly connected the observed points together

(right), this clearly showed that a particular function, here called g, can be as-

sumed to be responsible for the underlying pattern shown by the observed data.

Three distinct peaks and two troughs are seen in these data showing clear rhyth-

mic activity over the time frame. The raw continuous line data for the whole

Figure 4. The observed values of a wild-type plant free-running

in DD conditions. Plotted as discrete points (left) and a continuous

line (right).

Ws wild-type genotype can be seen in Figure 5. This acts as a visual aid for

looking at the appearance of replicates of the genotype and gives information on

the structure of the group. It is shown that identical plants do not produce iden-

tical curves as demonstrated by the amount of variation present in the plot. This



27

emphasises the reasons for using FDA, so to investigate the modes of variation

within data and being able to represent data in different ways. In order to find

Figure 5. The observed values of the Ws wild-type genotype free-

running in DD conditions. Plotted as continuous lines.

the correct underlying curve, measurements for every possible value of t would

need to be taken. This is not practical. However, this problem is overcome by

viewing the discretely measured observed data as functional, hence enabling an

accurate estimate for the underlying curve to be obtained. If the observed dis-

crete values are a reflection of an errorless function then the process of estimation

would simply be interpolation. That is the creation of new data points with the

set of known discrete data points [108]. If however the data has incurred some

observational error that needs removing, then smoothing may be required in or-

der to make the conversion from discrete data to functions. The term smoothing

means to create an approximate function that will capture important features of

the data while excluding noise, thus resulting in a smooth and so differentiable

function [124]. It is clear from Figure 4 and the nature of circadian data that in

order to make the curve suitable to be used in analysis, some form of smoothing

does need to be applied.

Based on the principle that at a particular time point ti, an observation yi, is

the result of an observation from a function g at a particular time point, g (ti) for
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i = 1, . . . , n, then it can be assumed that y is the realisation of the curve g (ti)

given by;

yi = g (ti) + εi, (2.1)

where εi is the random error (noise), and adds a roughness to the raw data.

For ease the Equation (2.1) is presented using vector notation where, Y is the

vector containing the results of the observations at a particular time point ti,

made up from the vector of observations of a function g (ti); g (t), and the vector

of contributing noise e. All vectors are of length n so rewriting Equation 2.1

gives:

Y = g (t) + e (2.2)

Commonly, when using a standard statistical model, the distributions of the

random error εi would be identically and independently distributed with a mean

of zero and variance σ2. However, when looking at functional data this is too

simplistic, as the variance of the residuals changes dependent upon t. The matrix

in vector notation Σe will refer to the covariance structure of the errors. It shows

over repeated examples that are identical that the residuals vary, apart from the

error variation. Consequently Equation (2.2) will turn into:

Y = g (t) + Σe

3.1. Representation on a Basis Function. In FDA a critical step is estimat-

ing g (t). There are various approaches to this, the most common being, basis

expansion and smoothing penalties. A basis function consists of a set of known

basic functional building blocks and the desired function g (t) will be represented

by a linear combination of K groups of basis functions . A formal definition of a

basis can be described as:

Definition 3.1.1. A basis for the vector space V is the set of vectors satisfying

both of the following [120]:

• The set is linearly independent

• The set spans the vector space

In the case of FDA the vector space V is in fact the space L2 [R], known as the

Hilbert space [135] .
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The Hilbert space is the accepted way for enabling the number of dimensions to

become infinite whilst maintaining the geometry of an Euclidean space [45], [3].

Constructing the exact function of g (t) would be a complex, and computationally

expensive, process without using basis functions [120]. A linear expansion of g,

represented though K known basis functions φk is given by [110]:

g (t) =
K∑
k=1

ckφk (t)

Parameters c1, . . . , cK represent the coefficients of the expansion. It is termed

φ (t) is a basis system for g.

3.1.1. Examples of basis functions.

Example 1. A Fourier basis system is such a system where functions consist of

sine and cosine functions with increasing frequency and is shown in the following

equation:

φ1 (t) = 1

φ2 (t) =
1

2i

(
eiωt − e−iωt

)
φ3 (t) =

1

2

(
eiωt + e−iωt

)
φ4 (t) =

1

2i

(
ei2ωt − e−i2ωt

)
φ5 (t) =

1

2

(
ei2ωt + e−i2ωt

)
...

Here the constant ω is related to period τ by ω = 2π
τ

.

Example 2. The exponential basis function is another example of a basis sys-

tem, comprised of:
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φ1 (t) = 1

φ2 (t) = e−t

φ3 (t) = e−2t

φ4 (t) = e−3t

φ5 (t) = e−4t

...

Example 3. A further example of a basis system is the polynomial basis system,

the most common is the monomial basis and is shown in the example below:

φ1 (t) = 1

φ2 (t) = t

φ3 (t) = t2

φ4 (t) = t3

φ5 (t) = t4

...

Figure 6 provides a visual representation of Examples 1, 2 and 3 as well as the

polynomial basis function for up to K = 11 basis functions.

It should be noted that, other than those shown above, there are a number of

other basis systems that could be used, for example, the power basis and wavelets

[22]. The basis system used will be based on which one best represents the data.

Figure 7 shows an example of the way in which each of the basis systems shown

in Figure 6 fits an example set of data. The example data comes from a wild-type

plant free-running in DD conditions, and each basis system has been applied to

the data using K = 11. The monomial basis (shown top right), the exponential

basis (shown top left) and the polynomial basis (shown bottom left) all provide
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Figure 6. The exponential basis (top left), monomial basis (top

right), polynomial basis (bottom left) and Fourier basis (bottom

right) all with K = 11 basis functions.

quite poor representations of the data and generally some important features

are missing. However, the Fourier basis system (shown bottom right) provides

a generally more appropriate estimation, it gives a smooth function whilst still

retaining the main features of the data at K = 11. Consequently, this is the most

suitable basis system to use for fitting this type of data.

There are a number of advantages in using the Fourier basis system, (i) it is

well established and easily accessible and was the only available alternative to a

polynomial basis until the mid twentieth century; (ii), it has excellent computa-

tional properties, with equally spaced observations this is particularly apparent;

(iii) it is an excellent way to describe circadian data, which is periodic, owing

to its nature [54]. It is also common to use wavelets which are also ideal for

use with periodic data. There are differences between these systems, the central

difference is that wavelets are localised in both time and frequency whilst Fourier

is confined to frequency. For these reasons, the Fourier basis system will be the

focus of this project.

It should be noted that that its orthonormality properties are an important

feature of the Fourier basis. Using 〈 , 〉 to denote the inner product space (for

definition see Appendix 2) a definition follows [40].
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Figure 7. Curves estimated for a wild-type plant free-running

in DD conditions using an exponential basis (top left), monomial

basis (top right), polynomial basis (bottom left) and Fourier basis

(bottom right) all with K = 11 basis functions.

Definition 3.1.2. A subset {v1, . . . , vk} of a vector space V is called orthonormal

if both of the following are satisfied:

• 〈vi, vj〉 = 0 when i 6= j

• 〈vi, vi〉 = 1 when i = j

Summarised, each vector must be perpendicular and have unit length 1.

For this project, the basis functions of the Fourier basis used, form a complete

orthogonal system over the vector space [−π, π] [75].

Estimation of the coefficient vector. Writing in vector notation where the

vector of coefficients ck of length K is denoted c and the vector of basis functions

φk (t) of length K is denoted φ, then g (t) can be written as:

g (t) =
K∑
k=1

ckφk (t) =
[
c1 c2 . . . ck

]

φ1 (t)

φ2 (t)
...

φk (t)

 = cTφ (2.2)
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3.2. Smoothing Functional Data. As mentioned previously, the functions

must be smooth for analysis to take place. A well recognised method of smooth-

ing data is to minimise the sum of the squared errors using the equation below

[33]:

SSE =
K∑
k=1

(Yk − g (tk))
2 (2.3)

In vector notation where Y represents the vector (Y1, . . . , Yk) and using Equation

2.2 representation of g (t), φ is the k by K matrix containing the values of φk (t),

Equation 2.3 in functional form is:

minc

(
Y − cTφ

)T (
Y − cTφ

)
(2.4)

This is an example of homoscedastic noise, meaning that for any given value

of the independent variable, (in this instance it is t), the conditional variance

of residuals in the data set is assumed to be constant [24]. Consequently, this

provides a poor level of accuracy, as it is assumed that the errors e are not

normally distributed with a mean of zero and variance σ2 (see Section 3), and

in reality, they change depending on t. Thus it is reasonable as an estimation

technique to introduce weighting of the residuals. As a result, the observations

will then be weighted proportionally to the reciprocal of the error variance for

that particular observation, hence overcoming the issue of non-constant variance

[84]. Defining the reciprocal of each variance, σ2
i , as the weight, wi = 1

σ2
i
, then

W = Σ−1
e is the symmetric matrix containing these weights. When it is not

possible to estimate the complete variance-covariance matrix, for ease, as shown

below, it can be assumed that the covariances among the errors are zero:
w1 0 · · · 0

0 w2 · · · 0
...

...
. . .

...

0 0 · · · wn


The weighted sum of the squares is now given by:

minc

(
Y − cTφ

)T
W
(
Y − cTφ

)
(2.5)

As the independent variable t changes so too does the variance of the residuals;

this is heteroscedastic noise and an example is shown in Equation (2.5) [24]. It is
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important to note that in Equation (2.4), in the homoscedastic case the weighted

vector W is also there, though this is simply the identity matrix. Consequently,

in Equation (2.4) W = I.

Taking the derivative with respect to c of Equation (2.5), then rearranging,

leads to the weighted least squares estimate of the coefficient vector c denoted as

ĉ:

ĉ =
(
φTWφ

)−1
φTWY

Hence leading to the estimate of the function g (t):

ĝ (t) = ĉTφ = φT ĉ = φT
(
φTWφ

)−1
φTWY

3.2.1. Choosing K Basis Functions. When smoothing the data and therefore

ensuring the fit of the estimated function, the choice of K is of central importance.

If K is too large then problems of overfitting can arise and the function can

become too smooth, conversely, if K is too small, then the estimation may be

inaccurate and it will not provide a true representation of the data, possibly

resulting potentially important aspects of the data to be missed. In essence, the

error from bias is the difference between the models expected prediction and the

correctly predicted value, thus the issue is a choice between variance and bias.

The error from the variance is the amount of variation between different outcomes

of the model and predictions made for a given point. These are both shown below

[58]:

Bias [ĝ (t)] = E [ĝ (t)− g (t)]

V ar [ĝ (t)] = E
[
(ĝ (t)− E [ĝ (t)])2

]
The variance also becomes progressively high when dealing with the higher values

for K, and with K = n there will be an unacceptably high estimate of variance.

When the number of basis functions, K, are reduced, this also reduces the vari-

ance. However, this raises a new problem, as the bias will reach an unacceptable

level if K becomes too small. A balance between the two can be achieved through

use of the mean squared error, this is essentially just a combination of variance

and bias.

MSE [ĝ (t)] = Bias2 [ĝ (t)] + V ar [ĝ (t)] = E
[
(ĝ (t)− g (t))2

]
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Variance increases rapidly when the data is over fitted as a result of using too

many basis functions. Bias does not always decrease as a result of increasing K;

it is a general assumption that the sampling variance goes up when bias goes

down. In order to achieve a good estimate of the smooth trend in the data, it is

necessary to accept that there will be some bias [110].

There are a variety of methods that can be used to determine the ideal number

of basis functions to use [90]. The two most logical and straightforward methods

for choosing K are stepwise variable selection and variable-pruning. Taking each

method in turn, using stepwise variable selection begins with a very small K, then

basis functions are added one at a time and after each addition the fit is tested

to determine whether it improves significantly and whether the previously added

functions are still effective [98]. An example (with the original data superimposed)

can be seen in Figure 8. Here consecutive plots of the estimated function of a wild-

type plant free-running in DD conditions with increasing values of K is shown.

This clearly shows the effect that increasing K has on the fitting of the Fourier

basis expansion. When the values of K are low, the estimated curve does not

correspond to the shape of the original data, but as the number of K increases,

so the estimated function begins to reflect the shape of the original data.

The second method, variable pruning, is often used for data with high dimen-

sions [19]. It is essentially a reversal of the stepwise variable selection method.

This method begins by using a high number of K basis functions and reducing

them one by one and testing the estimation after each reduction in order to assess

whether it holds a significant fit to the data. Thus depending on the amount of

variation it contributes, each basis function is dropped, so reducing K, until the

majority of the variation within the data is determined.

There are a number of advantages to using basis functions to represent func-

tional data: they can easily store large quantities of data and are ideal to use for

large computations [110]; they are helpful to use in the interpolation of functions;

they enable data to be expressed in a matrix for which is particularly useful. A

particular issue with using basis functions is that the smoothness of the under-

lying function is largely dependent on the basis function. This results from the

process of choosing K discretely and so suggests that the level of smoothing is
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Figure 8. Successive plots of the estimated function of a wild-type

plant free-running in DD conditions using an increasing number of

K Fourier basis functions, with the original data superimposed.
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irregular [110]. However, this problem can be rectified with the addition of a

roughness penalty.

3.3. Roughness Penalty. Using the roughness penalty, also known as penalized

least squares regression or the Tikhonov regularization [9], [129] offers a balance

between avoiding unnecessary roughness to the curve and fitting the data closely.

In addition, it overcomes the limitations and, compared to the weighted least

squares method, often gives better results as the smoothness is continuously con-

trolled. The general definition for smoothness in this context is that a given func-

tion g has at least one derivative, Dmg refers to the mth derivative and Dmg (t)

is the value of the derivative taken at t. The roughness penalty is signified by

J [g] and measures the roughness of g, with λ as the smoothing parameter [51],

adjusting Equation (2.3) gives:

PENSSE =
K∑
k=1

(Yk − g (tk))
2 + λJ [g] (2.6)

The degree to which the roughness penalty influences the estimate is determined

by the smoothing parameter λ, this is responsible for controlling the bias and

variance trade-off (see Section 3.2.1) and the quality of the estimate is dependent

on the choice of λ. The roughness becomes progressively more compromised as as

λ→∞ and more importance is placed on smoothness of g (t) [131]. Conversely,

λ → 0 increases variability in the curve as the roughness is penalised less, so

g (t) improves the fit of the data. A common way to quantify the roughness

J [g] it to examine the square of second derivative of a function g at t. At t,

the curvature is measured by [D2g (t)]
2
, it is expected that interest will not be

confined to the second derivative square and consequently the following gives a

roughness measure that is more general:

Ji [g] =

∫ [
Dig (t)

]2
dt, i = 1, . . . ,m
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In vector notation, using g (t) = cTφ (t) from Equation (2.2) the roughness

penalty becomes:

Ji [g] =

∫ [
Dig (t)

]2
dt

=

∫ [
DicTφ (t)

]2
dt

=

∫
cTDiφ (t)DiφT (t) c dt

= cT
[∫

Diφ (s)DiφT (s) ds

]
c

= cTRc

where R =

∫
Diφ (s)DiφT (s) ds.

Now the PENSSE Equation (2.6) can be rewritten in matrix form with the

added roughness penalty, this gives:

PENSSE = (Y − φc)T W (Y − φc) + λcTRc

To find an expression for the estimate of the coefficient ĉ we first take the deriv-

ative with respect to c:

∂

∂c
PENSSE = −2φTWY + φTWφc+ λcTRc = 0 (2.7)

Rearrangement of Equation (2.7) then gives:

ĉ =
(
φTWφ+ λR

)−1
φTWY

The hat matrix H is what maps the vector of response values to the vector of

fitted values:

Ŷ = φ
(
φTWφ+ λR

)−1
φTWY = HY

3.3.1. Choosing the Smoothing Parameter. Choosing the smoothing pa-

rameter λ is important in the same way as the choice of K number of basis

functions as it is responsible for controlling the trade-off between the bias and

variance of the function. Ideally, averaged over all the data points, λ will min-

imise the true mean square error [27]. This can be achieved using the Cross

validation (CV) method [115]which works by holding back part of the data which

is only used for validation and is known as the validation set. The remaining
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data is used to train the data set, this is known as the training set. In this way

the validation set can be tested to determine the extent to which the model fits

the data. To ensure inaccurate results are avoided, the model is tested using

different data from that used to train the model, this is achieved by splitting the

data set into two groups. When choosing λ the technique of leave-one-out cross

validation is used. This is an extreme version of cross validation where validation

sample consists of a single observation that is held back and the model is trained

using the remaining data. The fitted value for the left out held back observation

can then be calculated. By repeating this across the data set and using a dif-

ferent observation as the validation sample each time, it is possible to calculate

the cross-validated error sum of squares across a variety of values, the value that

produces the minimum then becomes the chosen λ value [110]. Cross validation

is an effective and accurate way to determine the smoothing limits however there

are two limitations. Firstly, it is computationally expensive so not feasible to em-

ploy this method with large sample sizes. Secondly, as CV is minimised, under

smoothing of the data can occur as noisy types of variation are favoured, even

though it would be better if they were ignored.

Generalized Cross Validation (GVC) is a more popular method that is often

used and it gives more realistic results [42]. It is a well established as a simplified

version on CV and it overcomes the tendency of CV to under smooth. Using this

method the estimate λ̂ that minimises is selected,

GCV (λ) =

(
n

n− df (λ)

)(
SSE

n− df (λ)

)
here df (λ) = traceH

In respect of λ, in order to minimise GCV trial and error must be used on a

large quantity of values for λ and is a similar task to that employed when choosing

K basis. However, by using numerical optimisation algorithms or grid searches

it is possible for this process to be performed more quickly by [110].
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4. Curve registration and alignment

In common with any method of analysis, analysing functional data poses a

number of difficulties, one of the most notable issues is the problem of misaligned

curves [57]. Biological functional data involves looking from individual to indi-

vidual and although the typical shape of the curve may be similar, there are

differences in dynamics and intensity. Largely as a result of how data is collected.

For example, all seeds are sterilised under the same conditions and plated onto

MS3 media, but it is not be guaranteed that all seedlings get equal nutrients,

some may be subject to slightly more sugar causing them to grow faster and

therefore bigger. Similarly, in both the growth chambers and the Topcount imag-

ing machine there is an unavoidable light gradient causing plants to experience

slightly different light intensities. Again, the amount of luciferin pipetted into

each well is set to 5 µl, however, slight calibration errors can result in slightly

different quantities in each well. The process of transferring the seedlings can

also cause variation in the results. Great care must be taken when transferring

seedlings into the Topcount microtiter plates owing to their delicate nature, as

even the slightest damage can cause stress responses that only some of the plants

experience. Although individually all these difference are small, they can cause

substantial differences in luminescence readings, or timing differences, between

identical plants. Consequently the process itself can cause errors in data acquisi-

tion.

Differences are reflected in the resulting data represented by the two distinctive

types of variation, phase variation and amplitude variation [67]. Figure 9 pro-

vides a simple demonstration of these types of variation using plots of the first

derivatives of a Gaussian density. The top panel shows phase variation, whilst

the bottom panel shows amplitude variation. In this project, variability in phase

is attributed to the timings of the features without considering their size, where

as amplitude variation shows the difference associated with the intensity in lu-

minescence. In general, observed data are rarely uniform and often these two

types of variation are “muddled” together. Although all types of variation play

an important role in the analysis and interpretation of data, in some cases it is

best to separate these two types of variation as together they further complicate
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Figure 9. The top panel shows five first derivative Gaussian den-

sity curves varying only in phase (different µ values) The bottom

panel shows five first derivative Gaussian density curves varying

only in amplitude (different σ values). The dashed line in each

panel indicates the mean of the five curves.

the analysis of curves. Separation is also useful in order to obtain the best fit

in relation to a typical curves behaviour as taking an average, when these two

types of variation are mixed, is not necessarily representative of data. This is

highlighted in Figure 9 where the mean curve is shown as the red dashed curve

in both the top and bottom panel. Firstly, focusing on the top panel, it is clear

that taking an average over changes in phase does not produce a curve that is

representative of a typical curves behaviour. It is apparent that the maximum

and minimum of this mean curve is lower than any of the curves in the group.

The mean has a dampened shaped compared to any other curve in the group.

The x axis cooridinate at which the mean curve hits it maximum is also not

representative of what would be the mean x coordinate of the maximum points

in the group. The middle x coordinate of the 5 curves maximum points should

be at x = −1 where as the mean red curve actually places the maximum point

at x = −1.25. Consequently, when compared to any of the other curves, the

mean curve does not reflect the true behaviour of a typical curve. Secondly, the

bottom panel shows changes in amplitude, here the mean curve shows a peak at
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the correct x coordinate as with all other curves in the group. In addition to this,

the amplitude of the peak is in the middle of all curves in the group so providing

a good estimate of the behaviour of a typical curve within that group. Overall,

Figure 9 clearly illustrates that in order to obtain a strong representation of a

typical curves behaviour it may be best to separate these two types of variation.

Although the plants are all subjected to the same conditions, they are still af-

fected by environmental factors that cannot be controlled. Within each genotype

tested, there is no genetic variation between each of the 48 replicates, therefore

it is reasonable to assume that any variation observed relative to the timing of

the features of the curves, is due to some external environmental factors.

Looking at a set of N functions gi (tj), where i = 1, . . . , N , the values of any

two given functions can differ due to the two types of variation present. Firstly,

differences could be attributed to amplitude variation, whereby g1 (t) and g2 (t)

may simply, at time t, exhibit different values, while having the same shaped

features as displayed in the bottom panel of Figure 9. Secondly, the functions

may differ due to phase variation, whereby functions g1 and g2 should not be

compared at the same time point t as they do not exhibit the same behaviour, an

example of this is shown in the top panel of Figure 9. Hence when dealing with

phase variation, in order to compare the two functions appropriately, the time

scale itself has to be distorted or transformed [110].

4.1. Landmark registration. One way to eliminate phase variation is to use

a technique called landmark registration. This monotonically transforms the

domain for each curve so that features of the curves can be aligned to a specific

time argument [68]. This is a well-known method that allows a landmark to be

defined as some feature of a curve that can be associated with a specific argument

value.

For each curve this process begins with gi and the corresponding argument

values tif , this is gi (tif ), where i = 1, . . . , N and f = 1, . . . , F where f is each

identified landmark feature [110]. This requires computation of a set of smooth

strictly monotonic functions hi of the curve called time-warping functions, these

will transform the curves to align the functions to a common argument [41],

[68]. When identifying the landmarks to be used for registering, the features
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chosen must be shared throughout the data set, irrespective of timing. These

can often be identified either visually or alternatively through taking derivatives.

For both the DD and LL data sets, 5 landmarks were chosen. These were the

first 5 maxima and minimas occuring after 1.5 Days. In particular, these were

chosen as the features are present in all curves and are easily recognisable, either

at the derivative level, or the actual curves themselves [77]. Figure 10 shows

an example of a wild-type plant free-running in DD conditions with these five

landmark features identified, for consistency and ease the first derivative was

used to identify the landmark occurrences at which dg
dt

= 0.

Figure 10. Estimated function of a wild-type plant free-running

in DD conditions where the characters 1-5 identify the 5 features

used for landmark registration.

4.2. Warping functions. A warping function h is an element of a convex space

H ⊂ Wm [0, 1] also known as Sobolev space [2] [43]. The time warping function

must satisfy certain criteria, firstly both the start and end time must be the

same as the other curves. Secondly, as the timing of events remains in the same

chronological order, irrespective of the timescale, hi must be a strictly increasing

function. Lastly, hi must be invertible, this ensures that for the same feature, the

time points on different timescales correspond to each other [108]. Summarised

correspondingly; let gi be the set of functions defined on some interval [Ts, Te].

Also let hi (t) be the time warping functions of t for functions i over the common

interval [Ts, Te] and where the operator /circ denotes function composition [116].

• hi (Ts) = Ts;
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• hi (Te) = Te;

• hi (t1) > hi (t2) for t1 > t2;

• h−1 [h (t)] = (h−1 ◦ h) (t) = t, ∀ t is uniquely defined.

Let g∗ be a fixed function defined over interval [Ts, Te] then,

g∗ (t) = (g ◦ h) (t) = g [h (t)] (4.1)

In order to complete landmark registration, the estimated warping function

hi (t) must be used as shown in Equation 4.1. This requires two steps: firstly,

the inverse warping function h−1 (t) subject to h−1 [h (t)] = t must be computed;

secondly, the relationship between h−1 (t) on the horizontal axis (abscissa) and

x (t) on the vertical axis (ordinate) must be smoothed. Simple interpolation can

then be used to obtain the values of the registered function [41]. Figure 11 shows

an example of landmark registration carried out on 10 velocity curves of the

wild-type parent group free-running in DD conditions. The left panel (Figure

11a) shows the unregistered 10 velocity curves, while the right panel (Figure 11b)

shows the registered curves where the 5 landmarks of crossing at zero were used.

The act of registering curves, and therefore the reduction/complete cutting out of

(a) Unregistered curves (b) Landmark-registered curves

Figure 11. The left panel (A) gives the first derivatives of 10

wild-type plants free-running in DD conditions. The right panel

(B) shows the landmark-registered curves corresponding to these,

where five crossings at zero were used as landmarks (corresponding

to maximum and minimum points in original curves as seen in

Figure 10).

phase variation within a group, allows for a much more accurate representation
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of a typical curves behaviour when computing the mean as shown in Figure 9.

Figure 12 shows the mean curves computed from both the unregistered (black)

and registered (red) curves in Figure 11. Corresponding to this and relating back

to the original functions, Figure 13 provides the mean estimated functions for

the wild-type parent group for the first 10 curves for both unregistered (black)

and landmark registered curves (red). It can be seen in both Figure 11 and 13,

that averaging curves using the registered group, provides a much more realistic

depiction of the behaviour and features of a typical wild-type plant free-running

in DD conditions. The black curve shown in both Figure 12 and Figure 13 has

far more dampened features as, when the curves are unregistered, computing the

mean curve effectively borrows from amplitude to accommodate the variation in

phase. Therefore, as would be expected, the mean of the registered curves seen

in red show much sharper and well defined features.

Figure 12. The first derivative mean curves corresponding to the

unregistered curves in Figure 11a (black) and the landmark regis-

tered curves in Figure 11b (red).
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Figure 13. The mean curves corresponding to the first 10 curves

in the wild-type parent group free-running in DD conditions for

both unregistered curves (black) and the landmark registered

curves (red).
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5. Derivative Analysis

As previously mentioned in Section 3.3 at time t, the mth derivative of a func-

tion g is given by Dmg (t), also represented by dmg
dtm

. The velocity is given by the

first derivative Dg, acceleration is given by the second D2g.

5.1. Velocity and acceleration. The application of FDA techniques allows

data to be represented as smooth differentiable functions. The first derivative,

velocity, enables the rate of change of behaviour to be observed easily. It pro-

vides the opportunity to gain insight into the behaviour of the curve in relation

to whether it is increasing or decreasing and by how much. In addition, further

information about the curve can be seen by examining the second derivative,

acceleration D2g. This provides information concerning the rate of change of

velocity in relation to time. If the first derivative (velocity) is increasing, then

a positive second derivative (acceleration) will present a convex, upward facing

curve. Conversely, if the first derivative (velocity) is decreasing, then a negative

second derivative (acceleration) will present a concave, downward facing curve.

An example wild-type curve from the DD data set can be seen in Figure 14.

This shows the luminescence curve (top) and both the corresponding velocity

(middle) and acceleration (bottom) curves. In order to explore and identify the

characteristics of the data it is important to be able to examine the derivatives.

This is apparent in the example shown in Figure 14, between 1.5 and 2.5 Days.

Focusing on the top panel, between 1.5 and 2.5 Days. The portion of the curve

between the maximum and minimum appears relatively straight, only a small

deviation can be seen. It may not seem of importance however, it becomes

apparent that this is a prominant feature when the curves are viewed as both their

first and second derivatives. Focusing on the velocity curve in the middle panel,

immediately preceding 2 Days, it is clear that the velocity begins to increase,

it then makes a slight decrease before it continues to increase. This pattern is

also reflected in the acceleration curve shown in the bottom panel. Here, as the

curve is increasing, it crosses the y axis, it then crosses back down the y axis

at approximately 2 Days and finally continues to increase after crossing the y

axis again. This highlights the importance of using derivative plots. It allows
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Figure 14. An example of wild-type plant subject to DD con-

ditions plotted as luminescence against time (top), first derivative

curve relative to time (middle) and second derivative curve relative

to time (bottom).

characteristics, which may otherwise have been overlooked, to be easily identified

and explored.

Across all genotypes this feature is prominent. In fact it is present in all data

sets, although to different degrees of intensity and a dampening of this effect does

occur across each of the DD and LL experiments.

5.2. Phase-plane Plots. In order to compare the relationship and trade-off be-

tween velocity and acceleration they are plotted against each other. The resulting

plot is known as a phase-plane plot and provides a 2-dimentional diagram with

velocity and acceleration being the x and y Cartesian axes respectively (example

seen in Figure 15). What is considered to be potential energy is associated with
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the vertical axis and kinetic energy the horizontal axis [104]. Consequently, for

the mechanical system, a particular point in the phase-plane plot, at any given

time t, has a certain velocity and acceleration.

Two types of energy can be attributed to an object, kinetic energy from the

movement of the object and potential energy from its position within a system

[66]. By plotting the derivatives in this way, the behaviour of a system that may

be difficult to interpret can be easily visualised. It can show how a function moves

between different energy states. This allows for easy measurement of the time

at which the curve most active (also called acrophase), and the time of greatest

change (also known as inflection phase) [111]. A plot showing a perfect circle

centring around (0, 0) denotes the precise periodic motion of a function, therefore,

the energy path of the function for one period is shown. Thus, relationships

that exist between and within functions can be identified through this critical

aspect of functional data analysis. In Figure 15, the phase-plane plot of sin (t)

has a period of length 1. A point of constant velocity is apparent where the

horizontal axis is crossed and indicates a maximum or minimum point of the

velocity curves. Similarly, when the vertical axis is crossed it corresponds to a

maximum or minimum point on the original luminescence curves.

Figure 16 displays how phase-plane plots can be used to demonstrate differ-

ences between unregistered and landmark registered curves. Here the phase-plane

plot of a wild-type mean function for both unregistered (black) and landmark reg-

istered (red) free-running in DD conditions is shown. For this project, each of the

phase-plane plots that are shown include markers that appear along the length

of the curve and each of these markers corresponds to a particular time. For

example, the velocity and acceleration of the curve at 1.5 Days (or 36 hours) is

indicated by the point on the curve that is labelled 1.5. In addition, a cycle signi-

fies one period of the curve and refers to the path of the original function from a

minimum to a minimum point. Registration affects the relationship between the

kinetic and potential energy by drawing in and so producing a tighter ellipsis, so

providing a more detailed, sharper representation of the mean curve within the

group which is representative of the curve alignment.

Figure 17 displays the luminescence graph (left). The wild-type (black) and

mutant (red) from the DD data set is seen. The difference in amplitude between
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Figure 15. A phase-plane plot of harmonic function sin (t). Ki-

netic energy is maximised when acceleration is 0, and potential

energy is maximised when velocity is 0.

the two types is clearly apparent. It is important to note that there are also

changes in phase, though these are less easily identified. Nevertheless, exploring

relationships within the population is made much clearer and easier through the

use of phase-plane plots. As shown in the plot on the right in Figure 17, using the

phase-plane technique is the best way to illustrate the differences between these

two curves. In this case, behaviour of the period of the curve is determined by the

shape of the ellipse around (0, 0), maximum velocity and acceleration are signified

by a perfect circle, so indicating they are proportionally equal, consequently the

two energy types (velocity and acceleration) are equal. Period lengthening, or a

slower circadian clock, results in an elliptical shape in the horizontal plane. On

the other hand, period shortening, or a faster running circadian clock, results in

an elliptical shape in the vertical plane
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Figure 16. A phase-plane plot of a wild-type mean function for

both unregistered (black) and landmark registered (red) curves over

approximately 3 days (72 hours). Along each curve labels are placed

every 0.5 days (12 hours).

Figure 17. Estimated mean landmark registered functions (left)

and a phase-plane plot of the first two derivatives of the mean land-

mark registered functions (right) for wild-type (black) and mutant

(red) free-running in DD conditions measured over approximately

3 days (72 hours). Along each curve in phase-plane plot (right)

labels are placed every 0.5 days (12 hours).
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This effect is shown more clearly in Figure 18 which again shows both the

wild and mutant plants, however here only the first cycle is shown, from 1.5− 3

Days. In this case the ellipsis was found not to be centred around (0, 0), but

rather it is shifted to the right where it primarily lies within positive velocity

and is representative of the increasing amplitude of the curves over time. Once

again this feature of the data becomes much more apparent when plotting in the

phase-plane. The wild-type curve in Figure 18 begins in positive acceleration and

Figure 18. A phase-plane plot of a wild-type (black) and mutant

(red) mean landmark registered function measured over approxi-

mately 1.5 days (36 hours). Along each curve labels are placed

every 0.5 days (12 hours).

velocity before moving clockwise where it crosses the vertical axis corresponding

to the first peak seen in the left plot of Figure 17, this represents the start

of the first cycle. The curve then loops round crossing the horizontal axis, it

then immediately culminates in a cusp at 2 Days. From this point the cycle then

increases in potential energy, it crosses the vertical axis and reaches the maximum

potential energy before 2.5 Days. It then curves downwards where it crosses the

horizontal axis before it loops round to complete the cycle by crossing the vertical

axis once again with negative acceleration. This corresponds to the second peak

in the left plot in Figure 17 where the curve is at its maximum potential energy,

the period of this cycle is 1.101 Days (approx 26:25:40).

Focusing on the hsp90.2-3 mutant type curve, the first cycle starts to cross the

vertical axis at a lower potential energy than the wild-type, it loops round to cross

the horizontal axis also with a lower kinetic energy than the wild-type. The cusp
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that occurs around 2 Days is also present here and the cycle continues clockwise

where it crosses the vertical axis again and reaches its maximum potential energy

just prior to 2.5 Days. It continues round and reaches maximum kinetic energy

after 2.5 Days where it crosses the horizontal axis. The cycle then loops round to

cross the vertical axis and so completes the first cycle, the period of this first cycle

is 1.164 Days (approx 27:56:27) which is an increase in period length compared

to the wild-type plants, This confirms that the hsp90.2-3 mutation is a period

lengthening mutant as it causes the clock to run slower.

It is interesting to note that the mini loop occurs when the plants would nor-

mally be expecting to make a dark to light transition, under entrainment condi-

tions this is the time point that dawn would begin. This shows that even though

the plant has been subject to DD for 48 hours, under the entrainment conditions

the circadian clock works in anticipation of dawn, this indicates that the onset

of dawn alone does not drive the plants rhythm. It is instead a joint effort and

results from all input pathways working together to entrain the plants rhythms

to a particular schedule that is relative to the environmental cycles of light and

temperature. This means that the way the sequence relates to the environmental

cycle alters, although the internal sequence of events does not, that is, organ-

isms are allowed by the circadian system to anticipate these cycles relative to

environmental cycles [88].

As previously mentioned, viewing data in the phase-plane enables identification

of particular features of the data that would otherwise be overlooked. Figure 18

shows a good example of such a feature, where mini loops can be seen clearly in

both the wild-type and mutant around 2 Days. This feature is present in the first

and second cycle for all genotypes for the DD data set. However, in the second

cycle, the degree to which this mini loop occurs is somewhat reduced and in some

genotypes it is not present at all, in fact this dampening effect generally increases

throughout each cycle in the experiment. Nevertheless, the shape of the cycle

is still not uniform and it does show a cusp or pinch, in the types of energies

present. When directly compared to the wild-type, mutant genotypes show a

particularly dulled mini loop, or pinch. This is illustrated in Figure 19 which

shows the second cycles for both the wild-type and mutant plants, here it can

clearly be seen that the mini loop is dampened in the wild-type and disappears in
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the mutant type leaving only a slight pinch in the cycle. This highlights, not only

that the plants ability to control their clock in constant darkness deteriorates over

time as the anticipation of dawn effect decreases, but also that the ability of the

clock to tell the time itself, deteriorates over time. The expected time of dawn

under entrainment conditions would be 3 Days (72 hours), but it is clear from the

plot in Figure 19 that this feature takes place after the expected time of dawn, in

fact, for the wild-type this occurs at 3.260 Days (approx 78:14:00), 6 hours and 14

minutes later than would normally be expected. For the mutant type the pinch

point occurs at 3.326 Days (approx 79:50:00), which is 9 hours and 50 minutes

after expected dawn. This result is consistent with the hsp90.2-3 mutants direct

effect on the clock to tell the time and so causes the clock to run slower. A

Figure 19. A phase-plane plot of a wild-type (black) and mutant

(red) mean landmark registered function measured over approxi-

mately 1.5 days (36 hours). Along each curve labels are placed

every 0.5 days (12 hours).

further illustration the clocks ability to anticipate dawn is shown in Figure 20

from the LL data set, where Figure 20a shows this feature during the first cycle

for the wild-type and Figure 20b shows the feature during the second cycle, also

for the wild-type. The loop appearing in the first cycle occurs at around 2 Days,

similarly to the Ws wild-type curve from the DD data set. Again this happens

when the plant under entrainment conditions would normally experience a dark

to light transition, however in this case the plant is already in constant light. By

examining Figure 20b it is clear that this feature is still prominent and is more

defined compared to the second cycle of the DD data. Alongside this, the time
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of the feature in the second cycle is at 3 Days suggesting that the clock is more

robust under LL conditions.

(a) (b)

Figure 20. Phase-plane plots of a wild-type mean landmark reg-

istered function under LL conditions. Both the first (A and second

(B) anticipated light cue regions shown. Along each curve labels

are placed every 0.5 days (12 hours).

In order to provide a comparison of this feature in both the DD and LL data

sets, Figure 21 shows the phase-plane plot of the first cycle from the SD data set

whilst still under entrainment conditions, that is the wild-type was still subject

to external light dark cycles. This shows a perfect example of the relationship

between the potential and kinetic energy during a cycle where the mini loop

feature is large and well defined. As expected this occurred just prior to 2 Days

in anticipation of the onset of dawn at exactly 2 Days. Using this plot as a

comparison highlights that the ability of the clock to anticipate these light cues

becomes increasingly dampened when it is subjected to constant conditions, this

effect is at its strongest free-running in DD conditions. It also emphasises the fact

that the clocks ability to tell the time is also adversely affected over time when

it is subjected to free-running conditions, such that, with each cycle the time the

anticipation feature is observed lengthens. Once again this was observed most

strongly in the DD data set with the wild-type being over 6 hours later than the

time of dawn under entrainment.
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Figure 21. Phase-plane plots of a wild-type mean landmark regis-

tered function from SD data set whilst still under 12L:12D entrain-

ment conditions. Measured over approximately 1 day (24 hours).

Along each curve labels are placed every 0.5 days (12 hours).
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6. Variance - Covariance and Correlation Analysis

The following explanation of methods used in the analysis is taken from Lock

2016 [78].

As previously noted, there is variation both across functions within genotypes

and between functions in different genotypes. The variance indicates how widely

individuals within a group vary from each other. Whilst the classical defini-

tion of covariance is the measurement of the degree to which two variables are

linearly associated, in a functional approach, covariance measures the associa-

tion between different time values within a group. Analysing the variance and

variance-covariance functions within a group allows for identification of the main

types of variability, this is useful as it provides further insight into the groups

behaviour. To find the variance between a group of N curves gi (t) the equation

below is used :

V arg (t) =
1

N − 1

N∑
i=1

(gi (t)− ḡ (t))2 , where i = 1, . . . , N

The covariance between curve values gi (t1) and gi (t2) at times t1 and t2, where

i = 1, . . . , N , is specified by the bivariate covariance function and is given by the

following equation:

Covg (t1, t2) =
1

N − 1

N∑
i=1

(gi (t1)− ḡ (t1)) (gi (t2)− ḡ (t2)) (3.2)

As stated above, important insights concerning the variability within a group

can be gained through the varience-covarience functions, however, there are fre-

quently measured on different scales so leading to difficulty with interpretations

as relative comparisons are difficult. Using a correlation function is a much more

accessible tool for interpreting the relationship within groups and can overcome

this problem [76]. Correlation shows both the degree to which variables have a

tendency to move together and, whether they are related positively or inversely.

In functional terms, the correlation coefficient provides an indication of the as-

sociation between the two functional observations gi (t1) and gi (t2) of the same

quantity [107]. The correlation function that is equivalent Equation (3.2) is:

Corrg (t1, t2) =
Covg (t1, t2)√

V arg (t1)V arg (t2)
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Thus the cross-correlation function consists of estimated correlations between

the set of function values at time t1 and the set of functions values at time t2.

The value of the interval [−1, 1] is always taken on by the correlation coefficient.

A value that is positive indicates high values of g (t1) are related to high values of

g (t2) or equally low values of g (t1) are related to low values of g (t2). Conversely,

a value that is negative indicates high values of g (t1) are related to low values of

g (t2) or vice versa [38]. Likewise it is apparent there is no association between

g (t1) and g (t2) if the coefficient value is zero. Although this indicates that these

is no linear relationship, it does not necessarily indicate that they independent

[20].

This information can be displayed graphically as shown in Figure 22, where the

contour plotted correlation function values of the wild-type plants free-running in

DD conditions are shown for both the unregistered (left) and landmark registered

(right) curves. Complementary to this Figure 23 shows the corresponding contour

plotted correlation function as a surface over the plane of possible pairs of time.

In the contour correlation plots, the line running along the diagonal from the

(a) (b)

Figure 22. The estimated correlation surface of wild-type free-

running in DD conditions presented as contour plots. The left panel

(A) represents the unregistered curves, the right panel (B) repre-

sents the landmark-registered curves. Correlation values are repre-

sented through the colour key ranging from 0 (red) to 1 (white).

bottom left corner (1.5, 1.5) to the top right (4.5, 4.5), represents, within the

groups, the correlation at the matching points in time i.e. Corrg (tj, tj), therefore,

1 are the expected values. The speed at which the two time arguments become

separated is illustrated by line that runs perpendicular to this diagonal and as
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(a) (b)

Figure 23. The estimated correlation surface of wild-type free-

running in DD conditions presented as perspective surface plot over

the plane of possible pairs of time. The left panel (A) represents the

unregistered curves, the right panel (B) represents the landmark-

registered curves.

expected, Figure 22a shows that across the diagonal there is high correlation

and from this point, moving outwards, although the correlation decreases it does

remain positive. Around 2.5 and 3.5 Days there are areas of fast separation

moving perpendicular to the diagonal, in between these areas the separation is

less intense. Past these areas of fast separation, parallel to the diagonal, is further

very high area of positive correlation that can also be identified in Figure 23a as

the fairly flat highest areas. This is representative of the correlation between

functions at different times, whereby the first peak is positively correlated to

the second and third peak. In comparison, the landmark registered group of

curves shows similar behaviour with a strong correlation across the diagonal, but

with a much wider area of high correlation when moving away from the diagonal.

Again this highlights the important role that landmark registration has in aligning

functions and extending the amount to correlation within a group, the large areas

of high positive correlation are due to the functions all moving positively together.

Figure 24 shows the contour plotted correlation function values of the land mark

registered wild-type (left) and mutant (right) free-running in DD conditions, and

Figure 25 shows the corresponding contour plotted correlation function as a sur-

face over the plane of possible pairs of time. By firstly inspecting the mutant

curves in Figure 24b there is, as expected, a very strong correlation across the
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diagonal, and highly positively correlated areas remain when moving perpendic-

ularly outwards. Around 4 Days there is an area of fast separation , along with

dampened separation around 2.5 and 4.5 Days. These areas are all consistent

with the maximum and minimum points observed in Figure 17. Presenting data

(a) A contour plot of wild-type regis-

tered curves estimated correlation sur-

face free-running in DD conditions.

(b) A contour plot of mutant landmark

registered curves estimated correlation

surface free-running in DD conditions.

Figure 24. The estimated correlation surface of the landmark

registered wild-type (A) and mutant (B) subject to DD conditions

landmark registered curves presented as contour plots. Correlation

values are represented through the colour key ranging from 0 (red)

to 1 (white).

is in this way allows for further comparisons between the wild and mutant type

to be explored and looking between the landmark registered curves of the wild

and mutant type plots, the difference between them is clear. In general, the mu-

tant type plants show more positive correlation across the surface. This suggest

that the hsp.90.3-2 mutant causes the plants to behave more similarly to one

another. The comparison of wild and mutant plants can also be identified in the

corresponding contour plotted correlation function as a surface over the plane of

possible pairs of time seen in Figure 25, where notably the wild-type perspective

is higher in positive correlations and is reflected in the much smoother surface.
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(a) (b)

Figure 25. The estimated correlation surface of the landmark

registered wild-type (A) and mutant (B) free-running in DD condi-

tions presented as perspective surface plot over the plane of possible

pairs of time.
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7. Principal Component Analysis (PCA)

The following explanation of methods used in the analysis is taken from Lock

2016 [78].

Principal component analysis (PCA) has its origins in multivariate analysis,

it is an unsupervised learning method that is used in exploratory data analysis

to detect patterns or grouping in data [72]. Karl Pearson first described (PCA)

in 1901 [97] and in 1933 Harold Hotelling was responsible for furthering its de-

velopment [55]. Typically, a data set consists of many interrelated variables and

the primary function of PCA is to preserve as much of this variation as possible

whilst reducing the dimensionality of the data set [59]. The principle aim of this

method is to identify the types of variation contained within the data and in

order to achieve this, it is changed into principal components which consist of a

new reduced set of variables providing an effective summary of the observations,

whilst still retaining all the important information that is contained in the data.

Thus the principal components are selected in order to ensure that the maximum

amount of information concerning the original variables is added with each con-

secutive component [28] and is reached from the eigenvalue decomposition of the

data covariance matrix. A principal component in multivariate data analysis can

be defined as follows [63]:

Definition 7.0.1. Let gT = (g1, g2, . . . , gm) be a vector with mean ḡ = 0 and

covariance matrix Σ. The main aim of this is to identify, in order, the most

informative k linear combinations of a new set of variables p1, p2, . . . , pk. The

principal components for this are as follows:

p1 = a11g1 + · · ·+ a1mgm = a1
Tg

p2 = a21g1 + · · ·+ a2mgm = a2
Tg

...

pk = ak1g1 + · · ·+ akmgm = ak
Tg

Focusing on the first principal component which is p1 = a1
Tg, the spread of the p

value across all the observations determines the choices of coefficients a11, . . . a1m.
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The variance is used to measure this spread and is given in the form;

V ar (p1) =
m∑

i,j=1

a1ia1jσij = a1
TΣa1

Conditional upon the constraint a1
Ta = 1 it is chosen to maximise a1

TΣa1,

this is achieved by using Lagrange multipliers [12]. The Lagrangian function is

defined by,

L (a1) = a1
TΣa1 − λ

(
a1

Ta1 − 1
)

(4.1)

Differentiating Equation (4.1) gives,

Σa1 = λa1

As a result it is shown that a1 should be selected to be an eigenvector of Σ, for

example, called e, with an eigenvalue λ. Supposing that eigenvalues of Σ are

ranked in decreasing order λ1 ≥ λ2 ≥ · · · ≥ λm > 0 then,

V ar (p1) = a1
TΣa1

= λa1
Ta1

= λ

As a consequence of this, in relation to the largest eigenvalue λ1 of Σ a1 should

be chosen as the eigenvector e so maximising V ar (p1).

A similar method is used to calculate the second principal component, however,

as it is important that the subsequent principal components are not correlated, an

additional constraint is applied to the calculation as follows: a2
Ta1 = a1

Ta2 = 0.

The subsequent principal components are also calculated in this way, consequently

reducing the problem to solving [134],

Σa = λa

If the covariance matrix Σ has the eigenvalue-eigenvector pairs (λ1, e1) , (λ2, e2) , . . . (λp, ep)

where λ1 ≥ λ2 ≥ · · · ≥ λm > 0, the kth principal component is then represented

by;

pk = ek
Tg = ej1g1 + ej2g2 + · · ·+ ejmgm, j = 1, 2, . . . ,m.
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7.1. Functional PCA (FPCA). Variance-covariance and correlation functions

do not always provide a clear and understandable view of the variability of the

data and so can be difficult to interpret. This problem can be tackled by using

functional PCA (FPCA) which continues the fundamental purpose of PCA by

following through into an uninterrupted functional form [110].

When dealing with functional data, it is first centred. Therefore the mean

curve is subtracted from each of the relevant original curves. When using FPCA

an additional change arises as the vectors that were previously observed in the

multivariate case can now be represented through the summation:

pi = ai
Tg =

m∑
i,j=1

aijgj

are replaced with functions, these linear functions of the curves can be represented

by integrals [59]:

pi =

∫
a (t) gi (t) dt

Thus, the inner product space of a sequence of numbers 〈·, ·〉l2 is replaced by the

functional version 〈·, ·〉L2 . Here the inner product of functions say g (t) and h (t)

denoted 〈g, h〉L2 is:

〈g, h〉L2 =

∫
g (t)h (t) dt

Deciding on the weight function α1 (t) to maximise is the initial step in FPCA;

1

n− 1

n∑
i=1

p2i1 =
1

n− 1

n∑
i=1

[∫
α1 (t) gi (t) dt

]2
, i = 1, . . . , n

subject to the unit sum of squares constraint
∫
α1 (t)2 dt = 1 [110]. The idea that

each principal component is orthogonal from the previous principal component

is known as the orthogonality constraint and in the same way as with PCA, the

orthogonality constraint must be satisfied in each successive step of the weight

function pi. In functional data terms, this is measured through the inner prod-

uct, whereby 〈g, h〉L2 = 0 Subsequent functional principal components are then

defined successively as:

pik =
1

n− 1

n∑
i=1

[∫
αk (t) gi (t) dt

]2
, i = 1, . . . , n
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7.1.1. Calculating Functional Principal Components. Solving the func-

tional version of the eigenequation, the eigenfunction, provides a more easily

manageable approach to identifying the functional principal components. It is

firstly necessary to define the covariance of the sample between g (s) and g (t),

this is comparable to the multivariate case where it is assumed that the sample

mean is zero, similarly, in the functional case it is assumed that the curves means

are zero. This covariance function v (s, t), is as follows [119]:

v (s, t) =
1

n− 1

n∑
i=1

gi (s) gi (t) , i = 1, . . . , n

To find the functional principal components, the eigenfunction that needs to be

solved is: ∫
v (s, t)α (t) dt = λα (s) (4.2)

There are a number of ways to solve Equation (4.2),one straightforward resolution

is to make the data discrete and perform conventional PCA on the values that

were identified from the (n× p) matrix where the ith row comprises the values

gi (t1) , . . . , gi (tp) [127]. Having completed PCA, the eigenvectors that were iden-

tified should be transformed into functional form by renormalizing them before

using a suitable smoother to estimate the values [105].

Alternatively, Equation (4.2) can be solved by using known basis functions

where, similar to the process shown in Section 3.1, each function gi is expressed

as a linear combination of the aforementioned basis functions, consequently, each

function gi will then have a basis expansion in the form:

gi (t) =
K∑
k=1

cikφk (t) i = 1, 2, . . . , n (4.3)

In matrix formation it is essential to represent the Equation (4.3) where C is the

n×K coefficient matrix and g = (g1 (t) , . . . , gn (t))T , φ (t) = (φ1 (t) , . . . , φK (t))T

then:

g (t) = Cφ (t)

So from Equation (4.2) the covariance function in matrix notation becomes:

v (s, t) =
1

n− 1
φT (s)CTCφ (t)
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At this point, taking any eigenfunction α, can be stated in terms of the basis

function in Equation (4.3):

α (s) =
K∑
k=1

bkφk (s) = φT (s) b

It follows that, using these results, Equation (4.2) gives:∫
v (s, t)α (t) dt =

∫
1

n− 1
φT (s)CTCφ (t)φT (s) b dt

=
1

n− 1
φT (s)CTC

[∫
φ (t)φT (t) dt

]
b

The integral
∫
φ (t)φT (t) dt is a K ×K square matrix A whose entries are:

ak1,k2 =

∫
φk1 (t)φk2 (t) dt

The basis system used for this project is the Fourier series which is orthonormal,

consequently A is just the identity matrix IK [110]. Therefore, Equation (4.2)

becomes:
1

n− 1
φT (s)CTCAb = λφT (t) b (4.4)

As Equation (4.4) has to hold for all the values available for s, it therefore reduces

to the following:
1

n− 1
CTCAb = λb (4.5)

It should be noted that when
∫
α2 (t) dt = 1 that

1 =

∫
α2 (t) dt

=

∫
bTφ (t)φT (t) b dt

= bTAb

Likewise, in order for the two functions α1 and α2 to be orthogonal, the corre-

sponding vectors of coefficients must satisfy the following:

bT1Ab2 = 0

Usually, the eigenvector in an eigenequation is normalised to ensure a unit length

norm, this is achieved by defining u = A
1
2b. It then follows that uTu = 1 and

Equation (4.5) can be rewritten as:

1

n− 1
A

1
2CTCA

1
2u = λu (4.6)
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Then, for λ Equation (4.6) is solved and for each eigenvector b = A− 1
2u is calcu-

lated. As previously explained, this project focuses on examining the particular

case where the basis is orthogonal, so A = IK , will mean that b = u will be an

eigenvector of 1
n−1
CTC [59].

7.2. Results of FPCA. FPCA provides additional information concerning both

the functions and the data, that may not have been detected using other analytical

methods. To help interpret the results of FPCA, perturbations of the mean

function for each group is plotted. This is achieved by adding and subtracting

a multiple of each principal component function. FPCA was performed on the

wild-type and mutant plants free-running in DD conditions using the fda package

in R [106].

The number of principal components that should be used can be assessed by ex-

amining a scree plot which, as far as multivariate data are concerned, displays the

eigenvalues that are associated with a given principal component. This enables

the components accounting for the majority of the variability to be identified as

the proportion of the total variance accounted for by each principal component

is shown [1]. A scree plot works in the same way in the case of FPCA analysis as

the eigenvalues are plotted against the principal components and what is known

as the elbow of the plot is the point where it flattens out. Each subsequent com-

ponent will contribute little variability after this point, therefore, the last useful

component is often considered to be the component that occurs immediately be-

fore the elbow. Nevertheless, this is only considered to be a guideline as there

are other effective methods to determine the number of principal components

that should be used, such as examining the cumulative variance [37]. In this

method, values lying between 75% and 90% are generally thought to account for

an acceptable amount of variance [59].

For the unregistered wild-type plants free-running in DD conditions using two

principal components accounts for 90.17% of the variability in the data, which is

well within the accepted range. One way to visualise the results of FPCA that

can help with interpretation, is to examine plots of the mean function of the

group and the functions obtained by adding and subtracting a suitable multiple

of the principal component functions [110]. Figure 26 provides an example of
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this where the solid curve represents the mean function and the dashed (+) or

dashed (-) shows the effects of either adding or subtracting a multiple of the prin-

cipal component of the wild-type unregistered curves subject to DD conditions.

This method is a valuable technique as it allows several modes of variation to be

viewed together and presents a clearer view of the direct effects of each principal

component. It can be seen that the first principal component (Figure 26a) ac-

(a) (b)

Figure 26. The mean curves of the unregistered wild-type plants

free-running in DD conditions and the effect of adding (+) or sub-

tracting a suitable multiple of each principal components curve.

The first principal component (A) accounts for 79.68% and the

second principal component (B) accounts for 10.5% of the total

variance.

counts for a substantial 79.68% has a positive effect on the mean function which

corresponds to a vertical shift in the plot associated with changes in amplitude.

The size of the effect of this principal component increases as the experiment

goes on, with the largest difference occuring between 3.5 and 4 Days. It can be

inferred that this first principal component reflects the high amplitude variation

seen within the group, particularly at the end of the functions. It is also apparent

that there is a small effect in a horizontal shift where the addition of a multiple

of the principal component causes a backwards shift in phase from the mean in-

dicating a faster clock and conversely, the subtraction causes a forward shift in

phase from the mean indicating a slower clock.

The second principal component function (Figure 26b) accounts for a further

10.5% and has a more complex effect on the overall behaviour of the curve. Up
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until the minimum point of the curve, after 2 Days, the effect is a change in

amplitude and the addition of the principal component has a positive effect,

between this minimum and the next maximum, between 2.5 and 3 Days, both

the addition and subtraction of the principal component does not affect the mean

function. After this second peak changes in a time shift are more obvious, that

is, the addition of the principal component causes the mean function to express

its peaks later, therefore indicating a faster clock. Conversely, the addition of the

principal component has a negative effect on the original mean function occurring

between the minimum prior to 3.5 Days, the maximum at approximately 4 Days

and again at the minimum around 4.5 Days. This is due to the changes in phase

between the plants across the experiment where the features of the data do not

occur at the same time.

Due to landmark registrations removal of phase variation from the data, it is

expected that fewer principal components would have been needed to account for

the variation in landmark registered data compared to unregistered data when

performing FPCA. For the wild-type landmark registered curves using two prin-

cipal components would be the most suitable choice and accounts for a total

of 94.8% of the variability of the group. As expected, this has accounted for

more variability in the same amount of components compared to the unregis-

tered curves.

The first two principal components of the wild-type landmark registered curves

free-running in DD conditions are shown in Figure 27a and Figure 27b as pertur-

bations of the group mean function. As previously, a solid line shows the groups

mean function whilst the effect on the mean function of adding or subtracting

a multiple of the principal component is represented by the (+) and (-) curves.

The first principal component function (Figure 27a) accounts for 85.5% of the

variability within the group, as expected this is higher than the first principal

component of the unregistered curves (79.7%). The effect of the principal com-

ponent here is simply a vertical shift and is explained just by the changes in

amplitude across the genotype. Overall, the registered curves present a more

constant variability across the entire experiment compared with the unregistered

curves that indicated a large increase in variability towards the end. Again this

is due to the effect that phase variation has on the curve overall when it is mixed
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(a) (b)

(c) (d)

Figure 27. The mean curves of the landmark registered wild-

type plants (A,B) with the first and second principal components

accounting for 85.5% and 9.3% of the total variance and mutant

plants (C,D) with the first and second principal components ac-

counting for 84.8% and 9.9% of the total variance. All plants were

free-running in DD conditions and the effect of adding (+) or sub-

tracting a suitable multiple of each principal components curve.

with amplitude variation, hence highlighting a further reason for separation of

the two types of variation.

The second principal component accounts for 9.3% of the total variation within

the group, with most variation shown at the beginning or the end of the exper-

iment and the middle section showing the least. The beginning, from about 1.5

to 2.5 Days, shows the positive effect the addition of principal components has

on the mean function in respect of amplitude variation. However, after 3.5 Days,

this effect is reversed and the addition of the principal component has a negative

effect on the mean function and the subtraction has a positive effect, once again
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this is only demonstrated in the form of a downward vertical shift of the variation

in amplitude that is seen within the group.

For the landmark registered mutant plants free-running in DD conditions in

common with both other groups two principal components are a suitable choice

to explain the data. Like the registered wild-type plants more of the variability

is explain by these principal components than in the unregistered curves. Using

two principal components, accounts for 94.7% of the variability within the group.

Figure 27c and Figure 27d show perturbations of the group mean function of

the first two principal components of the mutant landmark registered curves

free-running in DD conditions. As previously, the mean function of the group

is shown by the solid line, whilst the (+) and (-) curves represent the effect

that adding or subtracting some multiple of the principal component has on the

mean function. Figure 27c shows the first principal component that accounts for

84.81% of the variability within the group and as with the wild-type landmark

registered group, there is a fairly constant positive effect of the addition of this

principal component. This stems from a vertical shift in the function that occurs

due to the amplitude variation seen in the data; this first component shows

that slightly less variation is explained compared to the wild-type plants. The

second principal component (Figure 27d) also shows very similar behaviour to the

wild-type, however, slightly more variation is explained, in this case 9.9%. The

majority of the variability is apparent at the beginning and end of the experiment,

whereas between approximately 2.5 and 3.5 Days, neither the subtraction nor

addition has an effect on the mean function.

Once again, the addition of the principal component has a positive vertical

shift effect on the mean function prior to 2.5 Days and after approximately 3.5

Days this is reversed and the addition of the principal component had a negative

effect on the mean function. Once more, in common with the wild-type landmark

registered curves, there is an increase in variability at the end of the experiment

when looking at the second principal component. Viewing Figure 27 as a whole

also allows for a direct comparison of mode of variation between the wild-type

and mutant plants. As had already been described the first principal component

for the wild-type plants holds more variation than the mutant type. However,

the distribution of this variation is much more constant in the mutant type, with
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the wild-type showing less positive effect when adding the principal component

across the minimum points in the mean curve. The second principal components

in both types shows very similar behaviour, with the wild-type holding 0.6%

less variability within the group than the mutant plants. One area of notable

difference is that between 2.5 and 3.5 Days the mutant plants both the addition

and subtraction of the principal component to the mean function had virtually

no effect. Similarly, both the wild-type and mutant show a switching of effect

of adding the principal component after 3.5 Days with this are onwards holding

most of the variation for the groups.

Using FPCA provides the opportunity to examine alternative ways to present

and explore different types of variability that occur within the data, specifically,

comparing mutant and wild-type plants and unregistered and landmark registered

curves, brings to light some of the influence these have in affecting the variability

within the data. It has been shown that the landmark registered curves hold

much more variation in fewer principal components; this is due to the elimina-

tion of phase variation, meaning all modes of variation are consequently displayed

through amplitude. Additionally, the location of where this variation is located

also changes. In both the wild-type and mutant plants, for the first principal

component landmark registered curves show that the variation is held evenly

across the experiments, whereas the majority of the variation held from 3.5 Days

onwards for the unregistered curves. Once more, in respect of the second princi-

pal components, all forms of variation in amplitude were apparent for both the

landmark registered wild and mutant types, however, this only occurred at the

beginning and end of the experiment, this variation reversed with addition of

the principal component after 3.5 Days which had the effect of decreasing the

mean function. Consequently this presents strong evidence to emphasise how

important it is to explore the data thoroughly by using landmark registration to

separate the two types of variation. This method allows for easy identification of

these types and so making it possible to explore the effect they have on the data

so gaining information and furthering understanding of the impact this variation

has on behaviour.

One possible way to further explore the results of FPCA is to examine the way

in which principal components are interpreted. This can be done by looking at
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which of the variables is most strongly correlated with each of the components

by plotting the loadings. This would allow for exploration of the relationships

between the variables of interest, the importance of each variable in affecting the

principal component variability is measured by the loading [1]. As explained, it

can be difficult to interpret principal component functions, however, one way to

overcome this is by using a rotation method and identifying some more easily

interpreted rotated functions, for example a method known as VARIMAX taken

from multivariate analysis could be used [29]. The separation of amplitude and

phase variation will allow for more in depth analysis of the relationship between

these types of variation within groups. For example, accounting for the variation

in amplitude would allow for further investigation into phase variation and vice

versa. The variation within the velocity and acceleration curves can also be

analysed using FPCA [73] and these techniques can also use canonical component

analysis, this would specifically look at the correlation between two groups, in

order to explore the variation still further [110].
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8. QTL Analysis

The genetic map for a RIL set made between Ws wild-type and Col-0 hsp90.2-

3 is shown on Figure 28 where 120 known markers have been placed along the

genome. Here the chromosomes are located along the x axis and the position of

the markers in centimorgans (cM) along the y axis. This genetic map was termed

the W9W population. Figure 38 shows a visual representation of the structure

of the population where blue blocks indicate genes from Col-0, yellow from Ws,

grey represents either Col-0 or Ws and white indicates no data was available.

Figure 28. The genetic location of markers of W9W population.

These data supplied by Amanda M Davis, created by the Davis lab

group [34].

8.1. Phenotyping the W9W population. In order to perform QTL analysis

first a trait that varies between the parents of the population must be measured.

Traditionally this is something well defined and easily measured, such as flow-

ering time [70] or hypocotyl elongation [7]. With the combination of the FDA

techniques previously discussed, and the ability to QTL map, previously unmea-

surable traits can now be measured. Due to the nature of the estimated functions,

traits such as velocity and acceleration can be measured and mapped. This can

provide a unique insight into the genetic basis for rates of change of the plants

rhythms. Not only can these traits now be measured, but also at any given time

point during the experiment. Where in typical QTL mapping experiments there

would be a single value for a trait across the whole experiment.
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After applying the FDA techniques to the provided DD data set, the estimated

velocity functions for all genotypes in the population were evaluated every minute

across the experiment, so measurements were taken from 37:00:00 to 108:00:00

measurements were calculated. In order to determine that QTL mapping is a

suitable form of analysis there needs to be a phenotypic difference between parents

[91]. That is the progeny needs to be a segregating population. The natural

variation within the population is important for gene detection [69]. For the trait

being observed within the population, and in the realms of QTL mapping, the

phenotype is assumed to display a normal distribution. An example of this is seen

in Figure 29 where a histogram of the phenotype values at 37:03:00, is displayed

for the population free-running in DD conditions measuring rate of change as a

trait. Here the distribution can be seen to look normal and using a Shapiro-Wilk

normality test a p-value of 0.8209 was calculated.

Figure 29. Histogram of velocity (cps/d) for all 96 genotypes

free-running in DD conditions at 37:03:00.

8.2. QTL analysis across time. With the application of FDA techniques ap-

plied to the W9W population, traits can be measured at any given time point

across the entire experiment allowing real-time gene expression to be monitored.

All Figures below are still images from a QTL map video that shows in real time

the movement of QTLs across the experiment for the velocity of the population
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free-running in DD conditions, in other words looking at the rate of change of

the circadian rhythm.

The method of using permutation tests to determine a significance threshold

was used. As determining the threshold is dependent on the QTL data presented

for any given phenotype, the threshold value is therefore also dependent on time.

With use of programming language R, a permutation test was performed at every

minute across the experiment, using 1000 permutations and taking the 95% sig-

nificance threshold. This produced a LOD score ranging between 3.412845 and

11.40345. Chromosome 1 was shown to have significant QTLs along the markers

between 21.38 − 26.38 cM (AtMSQTsnp31; assum. G-w and AtMSQTsnp40;

assump. G-w) all occurring between 37:01:00 and 37:58:00 hours, an example of

this is shown in the left hand plot in Figure 30. This is of particular interest

as this is the time where the plant “missed” its first light cue and is adjusting

in free running conditions after expecting it to be in the light. Another signif-

icant QTL shows up on chromosome 1 at 40.38 − 41.43 cM (AtMSQTsnp60),

this appears a lot later on in the experiment between 100:49:00 and 104:06:00

and is shown in the right hand plot of Figure 30. Chromosome 2 also showed

Figure 30. The QTL mapping output of chromosome 1 on veloc-

ity of the W9W population free-running in DD conditions at time

37:33:00, with 95% confidence threshold at 3.982 and 6.495.

significant QTLs around markers between 9.51−13.51cM (between LUGSSLP41

and AtMSQTsnp128; assum. G-w), these occur around the time of the first peak

(41:00:00-43:00:00) shown in the left hand plot of Figure 31. Again, another QTL

is detected between 24.51 − 29.51 cM (between AtMSQTsnp130 and W9W ii4)

later on in the experiment at approximately 93:00:00−95:00:00 shown in the right
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hand plot of Figure 31. On chromosome 3 some rhythmicity to the QTLs can be

Figure 31. The QTL mapping output of chromosome 2 on veloc-

ity of the W9W population free-running in DD conditions at time

42:30:00, with 95% confidence threshold at 7.309.

seen, between the markers placed along 50.35 cM to 67.35 cM (between markers

W9W iii7 and F27K19). Within this region there are significant QTLs observed

between the following approximate times; 37:22:00−39:12:00, 62:36:00−65:08:00,

88:07:00− 95:00:00 and 99:30:00− 105:37:00 these times are all shown in Figure

32 where they pattern in behaviour is clear. Interestingly these times correspond

to the general times where the curves are experiencing a peak, it should be noted

though the luciferase gene insert is at the top of chromosome 3 which is across

the region where these QTLs are being detected, so they could be a result of the

luciferase expression being at its highest point.

Chromosome 4 showed the least significant QTLs across the experiment shown

in Figure 33, with a QTL being detected early on between 38:53:00 − 38:58:00

so only being significantly present for a few minutes, this is all within the region

on the chromosome between 43.29 and 43.47 cM (G3883). The second much

stronger QTL was detected along the chromosome between 69.47 and 71.47 cM

(AtMSQTsnp306 and AtMSQTsnp310), the significant presence of QTLs here

are also occur for a longer amount of time appearing approximately between

41:15:00 and 43:30:00. Chromosome 5 also shows some strong rhythmic activity,

this occurs broadly across the area of markers placed between 1.52 and 23.52 cM .

More specifically the pattern seen follows a significant QTLs detected on the wider

region of 1.5 to 14.52 cM (W9W v1 and nga151a) then shortly after a stronger

narrower QTL is detected around the region between 18.52 to 23.53 cM (nga151a
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Figure 32. Successive QTL mapping outputs of chromosome 3 on

velocity of the W9W population free-running in DD conditions at

various times, with 95% confidence threshold representative 4.03,

5.24, 7.34, 5.30 and 6.76.

and AtMSQTsnp355), where by the first QTL disappears. Figure 34 shows still

shots of the QTL outputs presented from these times and demonstrates clearly the

repeated pattern shown. This pattern is seen at intervals across the experiment

mainly occurring close to the peaks and troughs observed in the original data.

Figure 35 shows all 94 genotypes landmark registered mean curves along with

guide lines for the times at which these QTLs appear.

The application of FDA to the data has allowed information to be viewed

that otherwise may have been missed. For example, if performing QTL analysis-

measuring period as the trait, what is actually being measured is the average
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Figure 33. Successive QTL mapping outputs of chromosome 4

on velocity of the W9W population free-running in DD conditions

at various times, with 95% respective confidence thresholds 4.01

and 7.28.

period across the entire experiment. Another example could be hypocotyl elon-

gation QTL experiments where, the measurement of the hypocotyl is taken once

only at a certain time of day and the QTL analysis produced is specific to that

one time measurement. Figure 36 shows still shots from the QTL video whereby

highlighting that QTLs are dependent on the time of day, the plot of the left

shows a QTL present on the top of chromosome 1 at 37:32:00 and the plot on

the right shows that at 38:00:00 the QTL is no longer significant and has dis-

appeared. In fact this QTL is present from approximately 37:06:00 till 37:59:00,

as only present for under an hour it may not, when averaged over the whole

experiment, have reached the threshold value and consequently would not have

been noted. Moreover, if the measurements for the QTL analysis were taken out

side this window of the QTL being present it would have also been missed. This

has highlighted that QTLs are in fact dependent on the time of day the trait

is measured, some are even themselves rhythmic and this method provides an

option for viewing genetics in a non-static manner. It should be noted that now

the ability to see the specific times of day that QTLs appear, means further gene

detection work is possible.

8.3. Future considerations of QTL anaysis. The analysis shown is from ob-

serving the whole population for both wild-type and mutant-types and across the

experiment time frame. An alternative to this would be to separate the popu-

lation into the wild and mutant types as it would actually be expected to see
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Figure 34. Successive QTL mapping outputs of chromosome 5

on velocity of the W9W population free-running in DD conditions

at various times, with 95% confidence thresholds.

two separate normal distributions. As an example to this Figure 37 shows the

histograms of phenotypes of the population separated into wild-type (left) and

mutant type (right). A ShapiroWilk normality test was performed on both sets
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Figure 35. Landmark registered mean functions of W9W pop-

ulation free-running in DD conditions. Guide lines indicate the

timings of rhythmic QTLs on chromosome 5.

Figure 36. QTL map highlighting a QTL on chromosome 1 ap-

pearing at 37:32:00 hours and dissappearing at 38:00:00

the wild and mutant type giving p-values of 0.9996 and 0.7428. This was sup-

ported as a feature across all time points in the experiment with normality being

stronger on average once the wild-type and mutant types are separated. Interest-

ingly the wild-type plants display more typically a stronger normal distribution

across the experiment than the mutant plants. This provided further evidence for

the hsp90.2-3 mutant increasing stochastic variation. It can therefore be useful

to separate the two plant types to see the direct effect of the mutation on QTL

outputs. Though this analysis is beyond the scope of this project, it was opened

up a possibility for further exploration.
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(a) (b)

Figure 37. Histogram of velocity (cps/d) for all genotypes sep-

arated as wild-type (A) and mutant-type (B) free-running in DD

conditions at 37:03:00.
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Figure 38. Physical map of W9W RIL. Yellow bars represent

Ws genes, blue bars represent Col-0 genes, grey bars represent the

heterozygous and white bars indicate that no data were available.
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9. Conclusion

There is a long history of using mathematical analyses in circadian research in

order to increase understanding of mechanisms as an intrinsic rhythmic process

and time series analysis is at the forefront of this [111]. Currently, the standard

techniques used by the circadian community for time series analysis is the Fourier

Transform Non-Linear Least Squares (FFT-NLLS) method [89], [121]. The aim

is to analyse circadian data obtained in free-running conditions, without entrain-

ment. Under these free-running conditions, the circadian clock is shown to be

nonstationary [48]. However FFT-NLLS works under the assumption that the

data are stationary [121]. One way to overcome problem is to develop novel FDA

techniques to analyse these non-stationary circadian rhythm data.

Observations of a circadian rhythm (CCR2 ) in Arabidopsis were measured;

this was made possible by a luciferase reporter gene that emits luminescence in

the presence of substrate luciferin. The RIL plant population used was a BC1F7

generation with 48 homozygous mutant (hsp90.2-3 ) and corresponding 48 wild

type (without the mutation at hsp90.2-3 ). There were three data sets used within

the project, each subjected the plants to different conditions. They were either set

to run in constant darkness, constant light or short day cycles, for each genotype

there were 48 replicates per experiment.

A large number of possibilities became apparent when these data were viewed as

functions rather discrete points. As a consequence of this, a number of additional

details concerning the behaviour of these curves were evident. The transformation

of data, from discrete observation to continuous functions, is a critical step and

could be approached in a variety of ways, however this project focused on using

basis functions and smoothing parameters. The set of 17 known Fourier basis

functions were linearly combined to provide an estimated function for the data.

Then, in order to maximise use of the functions, a roughness penalty was used

to create a smooth differentiable function.

Exploratory analysis of these data began once the discrete data had been fitted

into functional form by using the method of basis functions. Initially, through

visualising the data in simple plots, it was apparent there were two key areas of

variation, amplitude and phase variation. Although strict precautions were taken
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to ensure the same conditions for all plants, this cannot be perfectly achievable.

Uncontrollable factors could be distribution of media or gradient of light in the

growth rooms. Therefore, the variation between genotype replicates does not

solely result from genetics, but also from some unknown environmental factors.

Although all types of variation are important in the interpretation and analysis

of data, due to the nature of the data set and the project aims of investigating

the role genes have on the phenotypic behaviour of plants, it was suitable to sep-

arate these two types of variation. Landmark registration aims to remove phase

variation within a group by monotonically transforming the time domain for each

curve so that identifiable features are aligned to a common time argument using

time warping functions. For each light condition, the maximum and minimum

points were used as landmarks. Using landmark registration and therefore cut-

ting out phase variation has added the benefit of giving a much more accurate

representation of a typical curve’s behaviour when computing a mean function for

each group. This was clearly displayed in Figures 12 and 13 where the registered

functions show more clearly defined sharper features compared to the unregis-

tered curves. This is a direct result of the variation in phase effectively stealing

from the amplitude when taking an average, so dampening the features.

As the applied FDA techniques created smooth differentiable functions, both

first and second derivatives were taken in order to further explore behaviour of the

data. The ability to view data as derivative functions played an important role

in identifying and exploring particular characteristics of the data. For example,

a wild-type plant subject to DD conditions (Figure 16) showed a clear feature of

the data in both the velocity and acceleration curves between 1.5 and 2.5 Days,

however this feature is not apparent in the original curves. The effect of registering

curves is apparent in the phase plane coordinate system where it is shown to draw

in both kinetic and potential energy so giving a tighter ellipsis. This shows that

landmark registeration provides a more detailed, sharper depiction of the mean

curve. Using phase plane plotting it is also shown that mutant-type plants free-

running in DD conditions had a longer period (1.164 Days) compared to the

wild-type plants (1.101 Days). This is confirmation that hsp90.2-3 mutation

was seen as a period lengthening mutant causing the clock to run slower. This

feature noted in Figure 14 was clearly displayed in the phase-plane system in
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all experimental conditions. It showed in the phase plane plots as either a mini

loop or cusp point occurring at the time the plant would be expected to make

a dark to light transition. In the DD data set the plants ability to anticipate

dawn deteriorated more quickly than in LL conditions with the second cycle

occurring at more of a lag and less prominently so suggesting the clock was

more robust under LL conditions. In comparison, an example was shown (Figure

21) under entrainment conditions where the loop is extremely well defined and

occurs just prior to 2 Days, as expected, in anticipation of dawn. In summary

this demonstrates that the circadian clock works in anticipation of dawn and that

this is not what drives the plants rhythms, but rather it is a joint effort from all

input pathways to entrain the plants rhythm to a particular cycle.

Variation within the groups is very important, obtaining the correlation func-

tions by using variance and variance-covariance functions allowed for identifica-

tion of the main types of variability and provided another level of insight into the

behaviour of each genotype. The unregistered wild-type plants free-running in

DD conditions showed areas of fast separation moving perpendicular to the diag-

onal at around 2.5 and 3.5 Days. Areas of high positive correlation parallel to the

diagonal are representative of the correlation between functions at different times.

Highlighting the important role landmark registration plays in analysis of data,

the curves showed similar behaviour to the unregistered curves with a strong cor-

relation across the diagonal, but with a much wider area of high correlation when

moving away from the diagonal. As expected, the unregistered mutant plants

showed a strong correlation across the diagonal and highly positively correlated

areas remained when moving perpendicularly outwards. There were two areas

of fast separation at around 2.5 and 4 Days, along with dampened separation

around 3.5 and 4.5 Days. These areas were all consistent with the maximum and

minimum points identified on the original curves. Again, compared to the land-

mark registered curves, there was an increase to the overall positive correlations

across and moving outwards from the diagonal. The areas of fast separation were

dampened compared to the unregistered plot, with the only area of relatively

fast separation was seen around 4 Days. Using correlation plots to display the

data facilitates further comparisons between the wild-type and mutant. Looking

at both the landmark registered and unregistered curves, changes between the
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wild-type and mutant are clear with a definite positive trend in positive corre-

lation. This suggested that the hsp.90.3-2 mutant causes the plants to behave

more faithfully to one another, that is, it reduces inter-group variation.

FPCA is an extremely effective tool to further develop analysis of the different

modes of variation within the groups. For ease of interpretation, perturbations

of the mean function for each group are often used and are achieved by adding

and subtracting a multiple of each principal component function. Once again,

the use of landmark registration is highlighted in FPCA results, when comparing

the wild-type plants free-running in DD conditions, the amount of variability

accounted for in the first two principal components increases from 90.17% to

94.8%. Also, from plots of perturbations of the means, it is clear that the first

principal component of the unregistered curves has a positive effect on the mean

function which corresponds to the vertical shift in the plot associated with changes

in amplitude. The size of this effect increased as the experiment went on. It

can be concluded that this first principal component reflects the high amplitude

variation seen within the group, particularly at the end of the experiment. It was

also noted that there was a small effect in a horizontal shift where the addition of

a multiple of the principal component causes a backwards shift in phase from the

mean, so indicating a faster clock. This is mainly results from the mix of phase

and amplitude variation seen within the unregistered curves. In comparison, the

first principal component of the landmark registered curves accounts for more

variation, as well as showing a more even vertical shift and is completely explained

by the changes in amplitude across the genotype.

Traditionally a QTL mapping would be performed with one set of data per trait.

This trait would be measured once throughout an experiment, (i.e hypocotyl

length) or as an average across a whole experiment (i.e period). The resulting

QTL analysis would only provide information for the time point that the mea-

surements were taken, or as an average across a whole experiment, giving no

information of how QTLs may be changing across time. The application of FDA

techniques that allowed the discrete data to be viewed as continuous functions re-

sulted in the ability to measure, not only an otherwise unmeasurable trait such as

velocity (due to data being estimated as smooth functions), but for these traits to

be measured at any moment in time across the experiment. Thus giving an insight
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into time dependent QTLs. In theory, discrete data could be used to measure a

QTL trait across time, but the practicality of time expensive experiments would

make it near impossible. FDA applications give the unique opportunity for time

dependent QTL traits to be measured in the time domain. In this project rate

of change of the circadian rhythm in plants from the DD data set was measured

at every minute from the first missed light cue.

The analysis showed that, not only are QTLs dependant on time, but also that

some are themselves rhythmic. This was demonstrated on chromosome 3 between

the markers placed along 50.35 cM to 67.35 cM (between markers W9W iii7 and

F27K19), where throughout the experiment, significant QTLs were found corre-

sponding to times when the original curves would experience a maximum point.

This could be due to the Luciferase gene insert, which is at the top of chromosome

3 and so these QTLs could be a result of the luciferase expression being at its

highest point. Chromosome 5 also showed strong rhythmic activity between 1.52

and 23.52 cM . The pattern followed the detection of significant QTLs between

1.5 to 14.52 cM (W9W v1 and nga151a), then stronger narrower QTLs were

detected between 18.52 to 23.53 cM (nga151a and AtMSQTsnp355) where the

first QTL disappears. Looking at the times these took place together with the

original functions, showed that the maximum and minimum points correspond.

QTLs were also displayed on chromosomes 1, 2 and 4, these did not appear to be

rhythmic but are still significant and give reason to further investigate.

This QTL analysis has shown that QTLs depend on the time of day. The

methods implemented have allowed for genetics to be viewed in a non-static

manner. Overall this has shed new light on the detection of genes and can add

to the development of techniques used to gain information concerning what time

of day specific genes interact and cause diversity within a population.

9.1. Further work. This project focused on applying novel FDA techniques to

plant circadian data subjected to different light conditions (DD, LL and SD).

This method of analysis provided a unique insight into the exploration of the

data sets.

A next step specific to this project would be data collection for the W9W pop-

ulation under 18L:6D (LD) conditions. This would enable a direct comparison
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between this and the SD data through means of derivative analysis, correlation

analysis, PCA and QTL analysis. This would give further insight to plants be-

haviour in adjusting to different light-dark cycles. In addition to further explore

QTLs that I identified, they would need to be narrow down to smaller regions. To

achieve this more genetic markers would be needed in the regions surrounding the

QTLs. Once the specific responsible genes are identified, their functions would

be further determined in newly created Arabidopsis lines. All of this would allow

for more information to be gained about the circadian clock.

The central aim of this project was to investigate the extent to which a cir-

cadian rhythm is affected by light-dark cycles, in so doing, it has also provided

a solid foundation from which this type of analysis can be used to explore any

circadian rhythm. This project has only just begun to examine the wide range of

possibilities where the application of functional data analysis could provide new

and exciting contributions to this area of research.
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Abbreviations

AtGRP7 ARABIDOPSIS THALIANA GLYCINE RICH PROTEIN 7

BRASS BIOLOGICAL RHYTHMS ANALYSIS SOFTWARE SYSTEM

CCA1 CIRCADIAN CLOCK-ASSOCIATED 1

CCR2 COLD AND CIRCADIAN REGULATED 2

CV CROSS VALIDATION

DD CONTINUOUS DARKNESS

ELF3 EARLY FLOWERING 3

ELF4 EARLY FLOWERING 4

EM EXPECTATION MAXIMISATION

FDA FUNCTIONAL DATA ANALYSIS

FFT-NLLS FAST FOURIER TRANSFORMATION NONLINEAR LEAST

SQUARES

FPCA FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS

GCV GENERALISED CROSS VALIDATION

GI GIGANTEA

IM INTERVAL MAPPING

LD LONG DAY

LL CONTINUOUS LIGHT

LOD LOGARITHM OF ODDS RATIO

LUC LUCIFERASE

LUX LUX ARRHYTHMO

MLE MAXIMUM LIKELIHOOD ESTIMATE

PCA PRINCIPAL COMPONENT ANALYSIS

PRR PSEUDO RESPONSE REGULATOR

QTL QUANTITATIVE TRAIT LOCI

RIL RECOMBINANT INBRED LINE

SD SHORT DAY

TOC1 TIMING OF CAB EXPRESSION 1
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Appendix

Appendix 1: Tabel of genotypes and plants removed from the DD data

set previous to analysis. ddddddddddddddd

Table 1. Tabel of genotypes and plants removed from the DD

data set previous to analysis.
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Appendix 2: Definition of dot product and inner product.

Definition 9.1.1. For x, y ∈ Rn the dot product of x, y denoted x · y is defined

by [5], [61]:

x · y = x1y1 + x2y2 + · · ·+ xnyn

Where x = (x1, . . . , xn) and y = (y1, . . . , yn)

Definition 9.1.2. A inner product is a generlization of a dot product. For a real

vector space an inner product 〈·, ·〉 satisfies the following properties. Let u,v and

w be vectore and α be a scalar then [5], [61]:

• 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

• 〈αv, w〉 = α〈v, w〉

• 〈v, w〉 = 〈w, v〉

• 〈v, v〉 ≥ 0 and equal if and only if v = 0

Appendix 3: The normal distribution. The probability density of the nor-

mal distribution denoted φ is as follows [50]:

φ (x|µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2 (2)

where µ is the expectation, σ is the standard deviation and σ2 is the variance.
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