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Abstract	
Semantic	 retrieval	 extends	 beyond	 the	 here-and-now,	 to	 draw	 on	 abstract	

knowledge	 that	 has	 been	 extracted	 across	multiple	 experiences;	 for	 instance,	we	

can	easily	bring	to	mind	what	a	dog	looks	and	sounds	like,	even	when	a	dog	is	not	

present	 in	 our	 environment.	 However,	 a	 clear	 understanding	 of	 the	 neural	

substrates	 that	 support	 patterns	 of	 semantic	 retrieval	 that	 are	 not	 immediately	

driven	by	stimuli	in	the	environment	is	lacking.	This	thesis	sought	to	investigate	the	

neural	 basis	 of	 semantic	 retrieval	 within	 unimodal	 and	 heteromodal	 networks,	

whilst	manipulating	the	availability	of	information	in	the	environment.	Much	of	the	

empirical	 work	 takes	 inspiration	 from	 modern	 accounts	 of	 transmodal	 regions	

(Lambon	 Ralph	 et	 al.	 2017;	 Margulies	 et	 al.	 2016),	 which	 suggest	 the	 anterior	

temporal	lobe	(ATL)	and	default	mode	network	(DMN)	support	both	abstraction	and	

perceptual	 decoupling.	 The	 first	 empirical	 chapter	 examines	 whether	 words	 and	

experiences	 activate	 common	 neural	 substrates	 in	 sensory	 regions	 and	 where,	

within	 the	 ATLs,	 representations	 are	 transmodal.	 The	 second	 empirical	 chapter	

investigates	how	perceptually-decoupled	forms	of	semantic	retrieval	in	imagination	

are	 represented	 across	 unimodal	 and	 transmodal	 regions.	 The	 third	 empirical	

chapter	 interrogates	whether	 transmodal	 regions	 respond	 in	 a	 similar	manner	 to	

conceptually-guided	and	perceptually-decoupled	cognition,	and	whether	these	two	

factors	 interact.	 The	 data	 suggests	 ventrolateral	 ATL	 processes	 both	 abstract	

modality-invariant	 semantic	 representations	 (Chapter	 3)	 and	 decoupled	 semantic	

processing	during	imagination	(Chapter	4).	In	addition,	this	thesis	found	comparable	

networks	 recruited	 for	 both	 conceptual	 processing	 and	 perceptually-decoupled	

retrieval	 corresponding	 to	 the	broader	DMN	 (Chapter	 5).	 Further	 interrogation	of	

these	 sites	 confirmed	 lateral	MTG	 and	bilateral	 angular	 gyrus	were	 pivotal	 in	 the	

combination	of	 conceptual	 retrieval	 from	memory.	Collectively,	 this	data	 suggests	

that	brain	 regions	situated	 farthest	 from	sensory	 input	systems	 in	both	 functional	

and	connectivity	space	are	required	for	the	most	abstract	forms	of	cognition.		
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Chapter	1	-	Introduction	and	Review	of	Literature	

	“Whilst	part	of	what	we	perceive	comes	through	our	senses	from	the	object	before	
us,	another	part	(and	it	may	be	the	larger	part)	always	comes	out	of	our	own	head.”		
	

William	James	(1890)	

1.1.	Introduction	

As	 noted	 by	 William	 James	 in	 the	 19th	

century	 not	 all	 cognitive	 functions	 are	

driven	 by	 perceptual	 experience	 (William	

James,	 1983;	 p.	 102).	 One	 ubiquitous	

phenomenon	 that	 occupies	 over	 half	 of	

waking	 thought	 is	 the	 retrieval	 of	

memories	unrelated	to	the	here-and-now	

(Klinger	 &	 Cox,	 1987;	 Killingsworth	 &	

Gilbert,	2010;	Poerio	et	al.	2013),	such	as	

imagining	 lying	 on	 a	 sandy	 beach	 during	

the	daily	 commute.	Such	experiences	are	

made	possible	by	conceptual	knowledge	1		

(i.e.,	 knowledge	 of	 what	 a	 sandy	 beach	

looks	 likes,	 how	 the	 sand	 feels	 on	 your	

feet,	 the	 sound	 of	 waves	 crashing).	

Conceptual	 knowledge	 puts	 meaning	 to	

our	world	and	shapes	our	interaction	with	

it;	 therefore	 it	 is	 fundamental	 for	 nearly	

all	 human	 behaviour	 including	 language	

processing,	 communication,	 perception,	

judgement,	 action,	 reasoning,	

remembering	the	past	and	thinking	about	

                                                
1 Throughout the thesis, the terms conceptual and semantic will be used 
interchangeably.  
 

Glossary	

Unimodal*	-	regions	that	typically	receive	input	
from	a	single	sensory	modality	(such	as	vision	or	
audition).	These	include	primary	and	adjacent	
visual,	auditory,	somatosensory,	olfactory	and	
gustatory	cortex.		

Heteromodal*	–	receives	convergent	inputs	from	
unimodal	areas	in	more	than	one	modality.	
Heteromodal	regions	typically	reflect	an	area	
outside	of	unimodal	sensory	regions	(i.e.,	
association	cortex).	These	areas	include	
prefrontal	cortex,	posterior	parietal	lobule,	lateral	
temporal	cortex	and	parahippocampal	gyrus.	

Transmodal*	–	reflects	a	heteromodal	brain	
region	that	does	not	show	specificity	for	any	
single	modality	of	sensory	input.	Following	this	
definition	a	transmodal	region	is	always	a	
heteromodal	region,	but	a	heteromodal	region	is	
not	always	a	transmodal	region.	Such	regions	are	
considered	the	most	abstracted	from	sensory	
experience,	as	these	regions	receive	information	
predominantly	from	downstream	parts	of	
unimodal	areas	and	from	other	
heteromodal/transmodal	regions.	These	regions	
include	limbic	and	paralimbic	structures	and	the	
default	mode	network.		

Perceptual-decoupling	–	cognition	that	is	
independent	of	perception,	such	as	imagining	
lying	on	a	sandy	beach	during	the	daily	commute.	

*	Definitions	taken	from	Mesulam	(1998)	
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the	future	(Binder	et	al.	2009;	Binney,	Embelton,	Jefferies,	Parker	&	Lambon	Ralph,	

2010;	Hart	et	al.	2007;	Irish,	2016;	Jefferies	&	Lambon	Ralph,	2006;	Lambon	Ralph	&	

Patterson,	2008).		

Although,	 for	 a	 healthy	 brain,	 retrieval	 of	 conceptual	 knowledge	 -	 both	 in	

the	 presence	 and	 absence	 of	 external	 sensory	 cues	 -	 appears	 effortless,	 it	 is	

composed	 of	 several	 interactive	 components,	 such	 as	 (i)	 a	 system	 that	 stores	

transmodal	 conceptual	 representations	 by	 linking	 concepts	 together	 according	 to	

meaning,	 independent	of	modality	 information	 (e.g.,	Binney	et	al.	2010;	Damasio,	

2008;	Lambon	Ralph	et	al.	2017;	Meteyard	et	al.	2012;	Mion	et	al.	2010;	Patterson,	

Nestor	&	Rogers,	 2007;	 Tranel,	Damasio	&	Damasio,	 1997),	 and	 (ii)	 a	 system	 that	

allows	us	to	disengage	or	perceptually	decouple	from	the	external	world	in	order	to	

support	 internally	 generated	 retrieval	 of	 memories	 (Schooler	 et	 al.	 2011;	

Smallwood	 et	 al.	 2013).	 However,	 historically,	 these	 two	 systems	 have	 been	

investigated	 in	 relative	 isolation	 of	 one	 another	 (for	 exceptions	 see	 Binder	 et	 al.	

2009;	 Humphreys	 et	 al.	 2015);	 with	 the	 former	 focusing	 on	 semantic	 networks	

encompassing	 core	 sensory	 regions,	 bilateral	 anterior	 temporal	 lobe	 (ATL),	

temporal-parietal	 regions	 and	 lateral	 frontal	 cortex	 (Lambon	 Ralph	 et	 al.	 2017;	

Noonan	 et	 al.	 2010;	 2013;	 Binder	 et	 al.	 2009),	 while	 the	 later	 concentrates	 on	 a	

distributed	network,	whose	core	regions	include	angular	gyrus,	posterior	cingulate	

cortex	 and	 medial	 prefrontal	 cortex,	 collectively	 known	 as	 the	 default	 mode	

network	 (DMN)	 (Fox	 et	 al.	 2005;	 Greicius	 et	 al.	 2003).	 Therefore,	 a	 clear	

understanding	of	the	neural	substrates	that	support	patterns	of	semantic	retrieval	

that	are	not	immediately	driven	by	stimuli	in	the	environment	is	lacking.	

This	opening	chapter	will	 firstly	discuss	brain	regions	thought	to	contribute	

to	 conceptual	 representations	 by	 reviewing	 neuropsychological,	 functional	

neuroimaging	 and	 neuroanatomical	 evidence.	 It	 will	 then	 discuss	 brain	 regions	

thought	 to	 contribute	 to	 perceptually	 decoupled	 states.	 Finally,	 it	 will	 discuss	 a	

component	process	hypothesis,	that	postulates	the	retrieval	of	memories	depends	

on	operations	of	potentially	independent,	but	nevertheless	interactive,	components	

or	networks	(Moscovitch,	1992),	while	drawing	comparisons	from	modern	accounts	

of	 anatomical	 organisation	 (e.g.,	Margulies	 et	 al.	 2016)	 to	provide	an	explanatory	



 15 

framework	 for	 the	 multifaceted	 function	 of	 these	 brain	 regions	 with	 regard	 to	

perceptually-decoupled	semantic	retrieval.		

	

1.2.	Conceptual	Representations			

Semantic	 memory	 enables	 us	 to	 effortlessly	 understand	 the	 meaning	 of	 items	

encountered	 via	 any	 of	 our	 senses.	 This	 aspect	 of	 memory	 is	 distinct	 from	 our	

episodic	memory	for	personal	experience,	which	is	dependent	on	a	particular	time	

or	place	(Tulving,	1972).	That	is,	not	all	of	us	went	on	holiday	to	France	last	summer	

(episodic	memory),	but	the	majority	of	us	could	identify	that	Paris	is	the	capital	of	

France	 (semantic	 memory).	 Semantic	 memory	 is	 abstracted	 from	 specific	 similar	

experiences,	 allowing	 us	 to	 generalize	 the	 information	 without	 reference	 to	 an	

actual	experience	(Binder	&	Desai,	2011).	It	 is	therefore	fundamental	for	nearly	all	

human	 behaviour	 including	 language	 processing,	 communication,	 perception,	

judgement,	action,	reasoning,	remembering	the	past	and	thinking	about	the	future	

(Binney,	Embelton,	Jefferies,	Parker	&	Lambon	Ralph,	2010;	Hart	et	al.	2007;	 Irish,	

2016;	 Jefferies	 &	 Lambon	 Ralph,	 2006;	 Lambon	 Ralph	 &	 Patterson,	 2008).	 As	 a	

result,	the	manner	in	which	this	knowledge	is	represented	and	organized	has	been	

of	 great	 interest	 to	 researchers	 (Binder,	Desai,	Graves	&	Conant,	 2009;	Bonner	&	

Price,	 2013;	 Cree	 &	McRae,	 2003;	 Damasio,	 1989;	Martin,	 2007;	Meteyard	 et	 al.	

2012;	 Lambon	 Ralph	 et	 al.	 2017;	 Patterson	 et	 al.	 2007;	 Pulvermüller,	 2013;	

Sitnikova,	 West,	 Kuperburg	 &	 Holcomb,	 2006;	 Visser,	 Jefferies	 &	 Lambon	 Ralph,	

2010).	 Before	 discussing	 the	 theory	 and	 evidence	 for	 transmodal	 semantic	

representations,	we	will	first	briefly	review	both	historical	and	contemporary	views	

of	semantic	memory.	

1.2.1.	Distributed	Theories	of	Semantic	Memory	
	
Embodied	accounts	of	semantic	processing	postulate	that	neural	regions	generally	

used	 for	 perception	 and	 action,	 are	 also	 recruited	 during	 semantic	 processing	

(Barsalou,	 1999;	 2008;	 Humphrey	 &	 Forde,	 2001;	Martin,	 2007;	 Patterson,	 et	 al.	

2007;	Pulvermüller,	 2005).	 These	 regions	are	 considered	modality-specific	 as	 they	

represent	 modality-specific	 attributes	 and	 are	 located	 in	 areas	 proximal	 to	 and	
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reciprocally	 linked	to	primary	sensory	and	motor	regions.	For	 instance,	knowledge	

about	 the	 sound	 a	 flute	 makes	 is	 modally	 auditory	 so	 would	 be	 represented	 in	

auditory	cortex,	whereas	knowledge	about	what	a	flute	looks	like	is	modally	visual	

so	would	be	represented	in	visual	cortex.	It	is	therefore	suggested	that	retrieving	a	

concept	will	engage	neural	pathways	that	encode	the	items	distinct	colour,	shape,	

sound,	motor	properties	and	so	on	(see	Figure	1.1;	Patterson	et	al.	2007).	Indeed,	a	

plethora	 of	 functional	 neuroimaging	 studies	 have	 provided	 compelling	 evidence	

that	these	neural	pathways	are,	to	some	extent,	shared	with	perception	and	action	

systems	 (Martin	et	al.	1995;	Goldberg,	Perfetti	Charles	&	Schneider	Walter,	2006;	

Rueschemeyer	et	al.	2014).	For	instance,	processing	tool	concepts	activates	regions	

associated	with	non-biological	motion	and	action	execution	(Chao	&	Martin,	2000).	

Similarly,	 processing	 food	 concepts	 activated	 regions	 previously	 implicated	 in	

representation	of	 taste	and	food	reward	properties	 (Simmons,	Martin	&	Barsalou,	

2005).	Particularly	noteworthy	are	findings	that	unimodal	regions	are	activated	by	

words	denoting	sensory	or	motor	properties;	 for	 instance,	words	denoting	actions	

(e.g.,	 kick)	 and	manipulable	 objects	 (e.g.,	 hammer)	 elicit	 activation	 in	 the	 brain’s	

motor	 system	 (Hauk	&	Pulvermüller,	 2004),	words	 associated	with	 specific	 smells	

(e.g.,	cinnamon)	elicit	activation	in	olfactory	cortex	(Gonzalez	et	al.	2006)	and	words	

associated	with	colour	overlapped	with	(Simmons	et	al.	2007)	or	were	processed	in	

regions	 proximal	 to	 (Chao	 &	Martin,	 1999)	 the	 neural	 substrates	 used	 for	 actual	

colour	perception.	
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	The	umbrella	 term	“embodied”	encompasses	many	 theories	 that	 fall	on	a	

continuum	of	embodiment;	from	theories	that	suggest	distributed-modality	specific	

regions	 form	 the	entire	neural	basis	of	 semantic	memory	 (coined	distributed-only	

views	by	Patterson	et	al.	2007)	to	theories	that	suggest,	in	addition	to	distributed-

modality	 specific	 regions,	 that	 higher-level	 convergence	 “zones”	 or	 “hubs”	 are	

required	to	assist	semantic	processing	(for	review	see	Meteyard,	Cuadrao,	Bahrami	

&	Vigliocco,	2012;	Caramazza	et	al.	1990;	Damasio,	1989;	Geschwind,	1965;	Lambon	

Ralph,	 Sage,	 Jones	 &	 Mayberry,	 2010;	 Martin,	 2007;	 Patterson	 et	 al.	 2007;	

Pulvermüller,	 2013;	 Riddoch	 et	 al.	 1988;	 Rogers	 et	 al.	 2004).	 This	 review	 is	 not	

intended	to	be	exhaustive	and	given	the	majority	of	modern	theorists	acknowledge	

the	role	of	higher-level	integrative	brain	regions	in	semantic	processing	this	chapter	

will	therefore	focus	on	evidence	for	the	existence	of	convergence	zones.		

1.2.2.	The	Role	of	Convergence	Zones	in	Semantic	Processing	

A	 long	 standing	 argument,	 in	 favour	 of	 convergence	 zones,	 highlights	 that	

distributed-only	 views	 fail	 to	 fully	 explain	 how	 we	 are	 able	 to	 generalize	 across	

concepts	that	are	semantically	similar,	despite	having	different	sensory,	motor	and	

language	 attributes	 (Lambon	 Ralph	 et	 al.	 2017;	 Patterson	 et	 al.	 2007).	 Take	 the	

Figure	1.1.	Distributed-only	view	of	semantic	processing	suggests	our	entire	semantic	

network	is	a	product	of	these	widely	distributed	regions,	along	with	the	connections	

between	them	(green	lines;	taken	from	Patterson,	Nestor	&	Rogers,	2007).		
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comparison	 of	 a	 “flute”	 and	 “piano”;	 both	 have	 different	 shapes,	 sizes,	 names,	

descriptions	and	so	on,	but	we	can	easily	identify	them	as	instruments	because	they	

have	 considerable	 conceptual	 overlap.	 Distributed-only	 views	 cannot	 explain	 our	

ability	 to	 abstract	 away	 from	 modality-specific	 properties	 and	 generalize	 across	

semantically	similar	concepts.	Several	theories	have	been	reported	that	suggest	this	

abstraction	process	is	the	function	of	a	convergence	zone,	however	these	theories	

differ	 in	 their	 details.	 An	 early	 proposal	 suggested	 that	 a	 hierarchical	 set	 of	

convergence	 zones	 integrate	modality-specific	 information	across	modalities	 (e.g.,	

convergence	zone	theory,	Damasio,	1989;	Pulvermüller,	1999;	Simmons	&	Barsalou,	

2003;	 Martin,	 2007).	 More	 recent	 integration	 proposals	 suggest	 that	 a	 single	

transmodal	 “hub”	 binds	 modality-specific	 information	 into	 a	 representation	 of	 a	

concept	 (Lambon	 Ralph	 et	 al.	 2017;	McClelland	&	 Rogers,	 2003;	 Patterson,	 et	 al.	

2007;	Rogers	et	al.	2004).		

Although	 many	 recent	 theories	 agree	 about	 the	 need	 for	 a	 convergence	

zone	 or	 hub,	 there	 is	 still	 controversy	 regarding	 its	 neural	 basis	 (Binder	 &	 Desai,	

2011;	Gainotti,	2011;	Martin,	2007;	Visser	et	al.	2010).	The	regions	that	have	been	

implicated	as	a	transmodal	convergence	zone	include	the	ATLs	(Lambon	Ralph	et	al.	

2010;	Patterson	et	al.	2007;	Rogers	&	McClelland,	2004;	Vandenberghe	et	al.	1996);	

posterior	MTG	(Fairhall	&	Caramazza,	2013);	angular	gyrus;	and	the	lateral	temporal	

cortex	 (for	 review	 see	 Bookheimer,	 2002;	 Binder	 &	 Desai,	 2011;	 Martin,	 2007,	

Martin	 &	 Chao,	 2001).	 Over	 the	 course	 of	 this	 chapter	 evidence	 from	

neuropsychological,	 neuroimaging	 and	neuroanatomical	 fields	will	 be	 reviewed	 to	

understand	 the	 specific	 contribution	 of	 each	 of	 these	 regions;	 firstly,	 due	 to	 a	

compelling	 body	 of	 evidence,	 this	 review	 will	 focus	 on	 the	 ATL	 as	 a	 candidate	

semantic	 hub	with	 the	 later	 portion	 of	 this	 chapter	 discussing	 the	 evidence	 for	 a	

wider	range	of	brain	regions	implicated	in	heteromodal	processing.		

1.2.2.1.	Neuropsychology		

Semantic	 Dementia.	 Neuropsychological	 studies	 of	 patients	 with	 semantic	

dementia	(SD)	have	provided	critical	evidence	that	a	heteromodal	semantic	hub	is	

housed	 in	 ATL.	 SD	 is	 a	 progressive	 neurodegenerative	 disorder	 that	 results	 from	

bilateral	 atrophy	 and	 hypermetabolism	 of	 ATLs.	 As	 a	 result	 patients	 show	
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progressive	deterioration	of	 their	 conceptual	 knowledge,	despite	other	aspects	of	

cognition	 and	 memory	 being	 preserved	 (Butler	 et	 al.	 2009;	 Hodges	 et	 al.	 1992;	

Mummery	 et	 al.	 2000;	 Patterson	 et	 al.	 2007;	 Warrington,	 1975;	 Snowden	 et	 al.	

1989).	 The	 progressive	 nature	 of	 the	 disease	 is	 reflected	 in	 a	 specific-to-general	

decline	in	conceptual	knowledge	(Hodges,	Graham	&	Patterson,	1995;	Patterson	et	

al.	 2007);	 for	 example	 SD	 patients	 may	 not	 be	 able	 to	 identify	 specific-level	

information	 (e.g.,	 camels	 have	 humps),	 however,	 as	 the	 disease	 progresses	 they	

may	 also	 lose	 general	 information	 (e.g.,	 camels	 are	 animals).	 These	 deficits	 are	

evident	in	a	wide	range	of	semantic	tasks	across	all	modalities	of	testing	suggests	a	

pan-modal	 nature	 of	 the	 deficit	 (Bozeat,	 Lambon	 Ralph,	 Patterson,	 Garrard	 &	

Hodges,	2000;	Coccia,	Bartolini,	Luzzi,	Provincilali	&	Lambon	Ralph,	2004).			

Herpes	Simplex	Virus	Encephalitis.	Further	evidence	that	a	heteromodal	hub	

is	housed	within	the	ATL	comes	from	patients	with	herpes	simplex	virus	encephalitis	

(HSVE).	 HSVE	 results	 in	 widespread	 damage	 to	 frontotemporal	 regions	 (usually	

bilaterally).	HSVE	patients	with	predominately	 frontal	 lobe	damage	often	have	no	

semantic	deficits,	 but	 rather	 show	executive	deficits	 and	poor	 control	 of	memory	

retrieval.	In	contrast	HSVE	patients	who	show	damage	to	bilateral	ATL	(overlapping	

with	 the	 damage	 in	 SD),	 have	 heteromodal	 semantic	 deficits	 on	 both	 production	

and	comprehension	 tests;	 for	 instance	when	asked	 to	 select	which	of	 two	photos	

(dog	 or	 goat)	 is	 the	 dog,	 they	 are	 significantly	 worse	 than	 healthy	 controls	

(Warrington	&	Shallice,	1984;	Lambon	Ralph,	Lowe	&	Rogers,	2007;	Noppeney	et	al.	

2007).	This	deficit	is	specific	to	living	categories	as	opposed	to	non-living	categories;	

arguably	 due	 to	 the	 high	 number	 of	 shared	 features	 living	 concepts	 have	 in	

common.	For	example,	‘dog’	and	‘goat’	have	high	featural	overlap	(e.g.,	4	legs,	fur,	

mammals),	 whereas	 two	 vehicle	 concepts	 (such	 as	 car	 and	 aeroplane)	 share	 few	

featural	 properties	 (different	 shapes,	 sounds,	 colours,	 movements	 etc).	 Concepts	

that	share	more	featural	overlap	are	argued	to	place	greater	demands	on	semantic	

processing	during	both	identification	and	differentiation	(Ikeda	et	al.	2006;	Moss	et	

al.	 2005;	 Tyler	 &	Moss,	 2001).	 Therefore	 damage	 to	 a	 semantic	 store	 (e.g.,	 ATL)	

should	result	in	more	profound	deficits	in	the	living	than	non-living	conditions.	This	

category-specific	 impairment	 for	 living	 things	has	been	attributed	 to	more	medial	
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ATL	 damage	 in	 HSVE	 compared	 to	 SD,	 affecting	 visual	 aspects	 of	 knowledge	

(Noppeney	et	al.	2006).		

Further	Evidence.	Neuroanatomical	research	provides	further	evidence	that	

the	 ATLs	 are	 the	 ideal	 site	 for	 forming	 transmodal	 semantic	 representations	

because	 of	 two	 key	 features:	 (i)	 it	 has	 extensive	 connections	 with	 sensorimotor	

cortical	regions,	allowing	modality-specific	information	to	converge	at	this	point	but	

(ii)	 its	 function	 is	 not	 dominated	 by	 a	 single	 sensorimotor	 input/output	 (Gloor,	

1997;	 Plaut,	 2002;	 Margulies	 et	 al.	 2016).	 Consistent	 with	 these	 findings,	

computational	models	 have	 shown	 that	 transmodal	 semantic	 representations	 can	

be	constructed	from	input/output	information	from	different	modalities	(verbal	and	

nonverbal;	 Rogers	 et	 al.	 2004).	 Convincingly,	 neural	 network	 models	 that	

incorporate	 intermediate	 transmodal	 hubs	 are	 best	 able	 to	 capture	 the	 semantic	

relationship	between	conceptually	similar	items	(e.g.,	flute	and	piano)	despite	them	

having	 vastly	 different	 sensory-motor	 properties	 (McClelland	 et	 al.	 2010).	

Moreover,	 when	 damaged,	 the	 model	 yielded	 accurate	 predictions	 of	 the	

performance	 of	 patients	 with	 semantic	 disruption	 (such	 as	 SD),	 across	 a	 wide	

variety	of	semantically	demanding	tasks.	

Theory:	 The	 hub-and-spoke	 model	 of	 semantic	 processing	 draws	 on	 this	

aforementioned	 work	 and	 proposes	 that	 SD	 reflects	 damage	 to	 a	 transmodal	

semantic	hub	housed	within	the	ATL	bilaterally	(Patterson	et	al.	2007;	see	Figure	2).	

This	 theory	 combines	 two	 important,	 existing	 ideas.	 First,	 in	 keeping	 with	 the	

embodied	accounts	discussed	earlier,	 the	hub-and-spoke	model	 assumes	 that	our	

distributed	 semantic	 network	 is	 comprised	 of	 modality-specific	 information	 that	

contributes	only	to	concepts	experienced	in	that	modality	–	these	representations	

are	 processed	 in	 areas	 proximal	 to	 and	 reciprocally	 linked	 to	 primary	 sensory	

cortices,	 referred	 to	 as	 “spokes”.	 Second,	 a	 transmodal	 “hub”	 housed	 within	

bilateral	 ATL	 integrates	modality-specific	 information	 from	 the	 spokes	 (see	 Figure	

1.2).	 As	 summarised	 by	 Reilly,	 Garcia	 &	 Binney	 (2016),	 ‘the	 additional	

representational	 layer	 afforded	 by	 the	 ATL	 hub	 provides	 a	 tertiary	 level	 of	

abstraction	 allowing	 for	 distillation	 of	 the	 highly	 complex,	 non-linear	 transmodal	

relationships	between	multi-modal	features	that	comprise	concepts’.	Crucially,	this	

account	does	not	suggest	 that	conceptualization	can	be	achieved	by	the	exclusive	
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activation	 of	 the	 representations	 performed	 by	 the	 hub.	 Rather,	 this	 model	

emphasises	 bi-directional	 connections	 between	 hub	 and	 spoke	 regions	 to	 permit	

the	 complete	 conceptualization	 of	 knowledge	 (Lambon	 Ralph	 et	 al.	 2010;	 Pobric,	

Jefferies	&	Lambon	Ralph,	2010;	Reilly,	Peelle,	Garcia,	&	Crutch,	2016).	Therefore,	

the	 hub-and-spoke	model	 predicts	 that	 semantic	 processing	will	 be	 supported	 by	

the	 joint	 activation	 of	 (i)	 transmodal	 representational	 cortex	 (e.g.,	 ATL)	 and	 (ii)	

distributed	unimodal	regions.	

	

1.2.2.2.	Functional	Neuroimaging	Studies	

Despite	 neuropsychological,	 neuroanatomical	 and	 computational	 evidence	

highlighting	the	crucial	role	of	the	ATL	in	semantic	processing,	as	summarised	by	the	

hub-and-spoke	 model,	 neuroimaging	 studies	 have	 not	 been	 as	 conclusive.	 A	

number	 of	 functional	 neuroimaging	 studies	 have	 reported	 ATL	 activation	 for	 a	

variety	 of	 semantic	 tasks	 in	 healthy	 individuals	 (e.g.,	 Baron	 &	 Osherson,	 2011;	

Binder	et	al.	2009;	Devlin	et	al.	2000;	Rogers	et	al.	2006;	Vandenberghe,	Nobre	&	

Figure	1.2.	Distributed-plus-hub	model	of	semantic	processing	(more	commonly	

referred	to	as	the	hub-and-spoke	model)	suggests	in	addition	to	the	widely	distributed	

modality-specific	regions	(and	their	connections	-	green	lines),	a	“convergence	zone”	or	

“hub”	is	required	to	allow	for	integration	of	information	(red	lines)	across	all	distributed	

regions	(transmodal	hub	housed	within	bilateral	ATL;	taken	from	Patterson,	Nestor	&	

Rogers,	2007).	
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Price,	 2002).	 Yet,	 critically,	 many	 studies	 of	 semantic	 memory	 have	 implicated	

regions	outside	 of	 the	ATL:	 typically	 a	 combination	of	 frontal,	 posterior	 temporal,	

and	 inferior	 parietal	 regions	 (for	 review	 see	 Binder	 et	 al.	 2009;	 Martin,	 2007;	

Patterson	 et	 al.	 2007;	 Thompson-Schill,	 2003).	 One	 possible	 explanation	 for	 the	

discrepancies	between	functional	neuroimaging	studies	and	patient	findings	relates	

to	 imaging	 artefacts.	 Functional	 neuroimaging	 studies	 typically	 employ	 functional	

magnetic	 resonance	 imaging	 (fMRI)	 to	 acquire	data	 -	 although	 some	use	positron	

emission	tomography	(PET).	Brain	regions	close	to	air-filled	sinuses,	such	as	ventral	

ATL,	are	affected	by	discrepancies	in	magnetic	susceptibility	across	different	tissue	

types	 (e.g.	 water,	 air,	 bone),	 resulting	 in	 loss	 of	 signal	 and	 distortion.	 This	

susceptibility	artefact	in	fMRI	studies	could	potentially	explain	why	ATL	activation	is	

absent	 from	many	 fMRI	 studies	 investigating	 semantic	memory	 (Jezzard	 &	 Clare,	

1999;	Devlin	et	al.	2000).	Support	for	this	assumption	comes	from	a	meta-analysis	

which	 revealed	 PET	 studies	 were	 more	 likely	 to	 find	 ATL	 activation	 than	 fMRI;	

lending	 to	 the	 assumption	 that	 fMRI,	 but	 not	 PET,	 is	 sensitive	 to	 magnetic	

susceptibility	leading	to	signal	distortion	(Visser	et	al.	2010).	

Despite	the	inconsistencies	in	conventional	fMRI	studies,	recent	advances	in	

neuroimaging	methodologies	such	as	distortion-corrected	fMRI	(Binney	et	al.	2010;	

Visser	 et	 al.	 2010;	 Visser	 &	 Lambon	 Ralph,	 2011);	 fMRI	 decoding	 (Correia	 et	 al.	

2014;	 Coutanche	&	 Caramazza,	 2014;	 Peelen	&	 Caramazza,	 2012);	MEG	 and	 EEG	

decoding	(Chan	et	al.	2011;	Chen	et	al.	2016);	and	repetitive	transcranial	magnetic	

stimulation	 (rTMS;	 Lambon	 Ralph,	 Pobric	 &	 Jefferies,	 2009;	 Pobric,	 Jefferies	 &	

Lambon	Ralph,	2007;	2009)	have	provided	converging	evidence	that	the	ATLs	play	

an	important	role	in	transmodal	semantic	processing.	In	brief,	neuroimaging	studies	

have	implicated	the	ATLs	in	tasks	that	manipulate	semantic	specificity	(Rogers	et	al.	

2006;	Tyler	et	al.	2004);	studies	involving	semantic	judgements	of	both	auditory	and	

visual	 input	 (Binney	 et	 al.	 2010;	 Bright,	Moss	&	 Tyler,	 2004;	 Lambon	 Ralph	 et	 al.	

2009;	 Pobric	 et	 al.	 2007;	 2009;	Visser	&	 Lambon	Ralph,	 2012);	 comprehension	of	

both	 spoken	 and	 written	 sentences	 (Hickok	 &	 Peoppel,	 2007;	 Scott	 et	 al.	 2000),	

decoding	 abstract	 conceptual	 properties	 of	 objects	 (Peelen	 &	 Caramazza,	 2012;	

Coutanche	 &	 Thompson-Schill,	 2014)	 and	 decoding	 language	 invariant	 concepts	

(Correia	et	al.	2014).	However,	the	peak	ATL	activation	reported	across	such	studies	
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is	often	variable	(for	review	see	Visser	et	al.	2010;	Lambon	Ralph	et	al.	2017).	Given	

the	anatomical	variability	 in	previous	 findings,	 the	next	section	will	address	which	

specific	regions	within	the	ATL	contribute	to	transmodal	semantic	memory.	

1.2.3.	 Differentiation	 of	 Function	 within	 ATL	 Structures	 –	 Which	
Region	is	Transmodal?		

Historically	the	ATL	has	been	discussed	as	one	homogenous	structure	(Patterson	et	

al.	 2007).	 However,	 the	 ATLs	 are	 made	 up	 of	 multiple	 anatomically	 defined	

structures,	 each	 of	 which	 arguably	 plays	 a	 distinct	 role	 in	 the	 representation	 of	

conceptual	 knowledge	 (see	 Figure	 1.3	 adapted	 from	 Bonner	 &	 Price,	 2013;	

Brodmann,	1909;	Blaizot	et	 al.	 2010);	 this	may	explain	why	 the	peak	activation	 is	

variable	across	semantic	studies.	Prior	investigations	of	the	ATL	have	revealed	that	

anterior	superior	temporal	gyrus	(aSTG)	is	particularly	involved	in	the	processing	of	

auditory	and	verbal	stimuli	(Scott	et	al.	2000;	Spitsyna	et	al.	2006;	Visser	&	Lambon	

Ralph,	 2011),	 while	 anterior	 fusiform	 is	 particularly	 involved	 in	 the	 processing	 of	

pictures	(Coutanche	&	Thompson-Schill,	2014;	Peelen	&	Caramzza,	2012;	Visser	et	

al.	2010).	Collectively,	these	findings	lend	to	the	idea	that	there	is	some	degree	of	

modality-specificity	 in	 the	 function	 of	 the	 ATL	 (Bajada	 et	 al.	 2017;	 Jackson	 et	 al.	

2015;	 Lambon	 Ralph	 et	 al.	 2017;	 Visser	 et	 al.	 2001).	 Meta-analytic	 results	 are	

consistent	 with	 this	 account;	 Visser	 et	 al	 (2010)	 found	 that	 although	 there	 were	

significant	differences	 in	the	 location	of	peaks	for	pictures	and	words	(ventral	ATL	

structures	 including	 inferior	 temporal	 gyrus	 (ITG)	 and	 fusiform	 cortex	 for	 pictures	

and	superior	temporal	gyrus	(STG)	for	words);	the	activation	across	pictures,	spoken	

words	 and	 written	 words	 was	 highly	 overlapping.	 Moreover,	 the	 distribution	

between	pictorial	and	word	peaks	gradually	became	more	distinct	in	regions	closer	

to	input	modalities	(i.e.,	regions	posterior	the	ATL).		
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One	 suggestion	 for	 such	 findings	 is	 that	 information	 converges	 within	

heteromodal	and	transmodal	regions	with	graded	connectivity	(Bajada	et	al.	2017;	

Buckner	 &	 Krienen,	 2013;	 Lambon	 Ralph	 et	 al.	 2017;	 Margulies	 et	 al.	 	 2016;	

Mesulam,	 1998;	 Plaut,	 2002;	 Schapiro	 et	 al.	 2013).	 For	 instance,	 Plaut’s	 (2002)	

computational	 model	 proposed	 there	 is	 a	 posterior-to-anterior	 gradient	 in	 the	

degree	 of	 modality-specificity	 within	 our	 semantic	 system.	 This	 gradient	 reflects	

connection	distance,	that	is,	areas	closest	to	sensory	input	systems	(i.e.,	verbal	and	

visual)	 are	 relatively	 more	 important	 for	 semantic	 tasks	 in	 that	 domain,	 while	

regions	 furthest	 from	 modality	 input	 (e.g.,	 the	 ATL)	 detach	 from	 sensory	

information.	 Plaut’s	 model	 also	 highlighted	 that	 there	 is	 no	 absolute	 distinction	

between	 semantic	processing	of	different	 stimuli	 types	 in	 the	ATLs,	 in	 line	with	a	

transmodal	 perspective.	 Consistent	 with	 this	 finding,	 Margulies	 et	 al.	 (2016)	

investigated	 representational	 gradients	 across	 the	 entire	 brain.	 This	 paper	

described	 a	 “principal	 gradient”	 of	 connectivity	 explaining	 the	 largest	 source	 of	

variance	 in	 temporal	 correlations	 at	 rest,	 which	 extends	 from	 unimodal	 sensory-

motor	regions	at	one	end,	to	transmodal	default	mode	regions	at	the	other.	Regions	

situated	at	the	top	of	this	representational	hierarchy,	in	the	default	mode	network	

Figure	1.3.	Structures	of	the	anterior	temporal	lobe	taken	from	Bonner	and	Price	(2013).		The	

y-axis	refers	to	the	contribution	of	regions	in	relation	to	visual	and	non-visual	processing.	The	

x-axis	refers	to	the	complexity	of	processing.		
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(including	 ventrolateral	 ATL)	 might	 support	 higher-order	 representations	 with	

predictive	 value	 across	 multiple	 situations	 and	 modalities,	 which	 maximally	

integrate	 features	 from	 diverse	 sensory-motor	 regions	 and	 other	 transmodal	

integration	zones.		

In	 line	with	these	graded	perspectives,	more	recent	studies	have	placed	an	

increasing	 emphasis	 on	 ventrolateral	 temporal	 regions	 -	 that	 are	 posterior	 to	 the	

temporal	pole	(Mion	et	al.	2010)	extending	laterally	into	middle	and	inferior	aspects	

of	 the	 ATL	 (Binney	 et	 al.	 2010)	 –	 as	 the	 core	 transmodal	 site.	 This	 region	 is	

consistent	with	the	site	of	maximal	atrophy	in	SD	patients	(Binney	et	al.	2010;	Mion	

et	 al.	 2010).	 Moreover,	 distortion-corrected	 fMRI	 studies	 have	 revealed	 peak	

activation	 in	 ventrolateral	 ATL	 region	 across	 a	 variety	 of	 semantic	 tasks	 including	

synonym	 judgements	 and	 verbal/picture	 semantic	 association	 tests	 (Binney	 et	 al.	

2012;	Visser	et	al.	2010;	2012).	In	addition,	macroscale	decomposition	reveals	that	

ventrolateral	ATL	is	situated	further	from	sensory	input,	compared	to	superior	and	

ventral	 ATL	 regions,	 allowing	 it	 to	 support	 higher-order	 representations	 with	

predictive	 value	 across	 multiple	 situations	 and	 modalities	 (Bajada	 et	 al.	 2017;	

Buckner	&	Krienen,	2013;	Margulies	et	al.	2016;	Mesulam,	1998;	Plaut,	2002).		

Taken	 together,	 the	 functional	 segregation	 identified	 within	 the	 ATLs	 has	

been	 incorporated	 into	a	 recently	updated	version	of	 the	hub-and-spoke	account,	

coined	 the	graded-hub	account	 (Lambon	Ralph	et	al.	2017;	 see	Figure	1.4),	which	

highlights	that	(i)	superior	ATL	regions	play	a	role	in	auditory	processing	due	to	its	

connection	 to	 auditory	 and	 language	 systems,	 (ii)	 portions	 of	 the	 inferior	 and	

ventral	 ATL	 play	 a	 role	 in	 visual	 processing	 due	 to	 their	 connections	 to	 visual	

cortices	and	(iii)	the	core	site	for	the	transmodal	semantic	hub	can	be	assigned	to	

ventrolateral	ATL	encompassing	anterior	MTG	and	ITG	by	virtue	of	its	distance	from	

both	 auditory	 and	 visual	 sensory	 input	 systems;	 as	 this	 region	 is	 transmodal	 in	

nature	it	should	integrate	conceptual	information	from	all	sensory	input	modalities,	

but	 does	 not	 exhibit	 preference	 for	 any	 single	 modality.	 That	 is,	 because	 the	

representation	 of	 a	 concept	 within	 the	 “hub”	 is	 now	 translational	 across	

information	 sources,	 the	 representation	 becomes	modality	 invariant	 (e.g.,	we	 are	

able	to	know	the	visual	properties	of	a	flute	given	only	its	sound).	
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1.2.4.	 Organization	 of	 Conceptual	 Representations	 within	 Unimodal	
and	Transmodal	Regions	
	
Despite	our	growing	understanding	of	the	functional	role	and	anatomical	location	of	

both	 “hub”	 and	 “spoke’	 regions	 of	 the	 cortex,	 as	 captured	 by	 the	 graded-hub	

account	 (Lambon	 Ralph	 et	 al.	 2017),	 several	 questions	 remain	 regarding	 how	

concepts	 are	 represented	 across	 our	 distributed-semantic	 network:	 (i)	 in	 “spoke”	

regions	 do	words	 and	 experiences	 really	 activate	 common	 neural	 substrates?	 (ii)	

How	is	information	represented	in	transmodal	regions	–	for	instance,	are	concepts	

organized	by	overlap	in	shared	features	and	(iii)	despite	ventrolateral	ATL	activating	

equally	 across	 multiple	 modalities	 of	 testing	 it	 is	 still	 unclear	 whether	 the	

conceptual	representations	themselves	are	 identical	or	unique;	a	truly	transmodal	

representation	 should	 be	 the	 same	 regardless	 of	 how	 it	 is	 accessed	 it	 (i.e.,	 the	

representation	 of	 a	 flute	 triggered	 by	 the	 sound	 it	 makes	 should	map	 on	 to	 the	

representation	 of	 a	 flute	 when	 triggered	 by	 its	 visual	 appearance).	 Notably,	 a	

methodological	 advancement,	 known	 as	 multivoxel	 pattern	 analysis	 (MVPA),	 has	

A.	 B.	

Figure	1.4.	Graded	hub	account	adapted	from	Lambon	Ralph	et	al	(2017).		(A)	Illustration	of	

the	computational	framework	of	the	graded	hub-and-spoken	model.	The	8x8	grid	represents	

the	reciprocal	connectivity	to	the	modality-specific	spoke	layers	(each	spoke	is	depicted	by	a	

different	colour).	At	the	centre-point		(denoted	by	the	white	coloured	circles)	there	is	equally	

weighted	connectivity	to	all	input,	and	thus	the	function	of	the	unit	remains	evenly	

transmodal.	(B)	Illustration	of	the	graded	hub	framework	projects	onto	the	cortical	surface.	

This	highlights	that	transmodal	function	is	assigned	to	ventrolateral	ATL	(white	cluster).		
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allowed	researchers	to	address	such	questions.	As	opposed	to	standard	univariate	

analyses,	which	are	interested	in	the	overall	activity	of	individual	voxels	or	regions	

of	interest,	MVPA	is	interested	in	the	distributed	pattern	of	activity	across	multiple	

voxels	 (these	methods	will	be	discussed	 in	more	detail	 in	Chapter	2).	 Therefore	a	

common	 brain	 region	may	 be	 activated	 equally	 by	 two	 conditions	 (e.g.,	 smelling	

cinnamon	and	reading	the	word	cinnamon)	but	this	does	not	mean	the	pattern	of	

activity	is	the	same	for	these	two	conditions.	The	following	section	will	summarise	

recent	MVPA	findings	that	have	helped	shed	light	on	how	concepts	are	represented	

in	both	unimodal	and	heteromodal	brain	regions.	

As	 alluded	 to	 earlier,	 embodied	 accounts	 assert	 that	 knowledge	 is	

represented	 in	 the	 neural	 systems	 used	 for	 perceiving	 and	 acting	 on	 sensory	

information	 in	 our	 environment	 (Allport,	 1985;	 Barsalou,	 Simmons,	 Barbey	 &	

Wilson,	2003;	Chao	&	Martin,	1999;	2000;	Goldberg,	Perfetti	Charles	&	Schneider	

Walter,	2006;	Gonzalez	et	al.	2006;	Hauk	&	Pulvermüller,	2004;	Humphrey	&	Forde,	

2001;	Martin,	2007;	Pulvermüller,	1999;	2005;	Simmons,	Martin	&	Barsalou,	2005;	

Simmons,	et	al.	2007).	Clearly,	however,	the	two	cognitive	abilities	are	not	the	same	

phenomena,	 as	 such	 the	 relationship	 between	 perception	 and	 meaning	 remains	

unclear.	 For	 example,	 despite	 sensory	 and	 motor	 cortices	 activating	 to	 both	

perception	and	knowledge,	it	remains	unclear	whether	the	two	representations	are	

similar	or	whether	they	simply	share	a	common	neural	 region,	but	are	coded	 in	a	

unique	 format.	 Notably,	 a	 recent	 MVPA	 study	 investigated	 whether	 overlapping	

cortical	 activation	 for	 action	 execution	 and	 action-word	 comprehension	 reflected	

common	 neural	 sources	 or	 proximal,	 but	 distinct,	 sources	 (Rueschemeyer	 et	 al.	

2014).	MVPA	was	used	 to	 investigate	whether	 the	pattern	of	activity	 captured	by	

distinguishing	 action	 execution	 vs.	 nonbiological	 motion,	 could	 also	 capture	 the	

distinction	between	action	words	(e.g.,	grasp)	vs.	nonbiological	motion	words	(e.g.,	

to	snow).	The	results	demonstrated	that	activation	in	unimodal	“spoke”	regions	of	

the	 cortex	 (e.g.,	 ventrolateral	 pre-motor	 cortex)	 was	 not	 comparable	 for	 action	

execution	 and	 action	 word	 comprehension;	 suggesting	 that	 although	 common	

neural	regions	are	required	for	both	processes,	the	underlying	representations	are	

distinct.	 However,	 it	 remains	 unclear	 whether	 this	 is	 true	 in	 other	 sensory	

modalities	(e.g.,	visual	and	auditory).		
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	 Furthermore,	 the	 central	 assumption	 of	 the	 graded-hub	 account	 is	 that	

transmodal	processing	occurs	 in	 ventrolateral	ATL.	However,	 if	 this	 region	 is	 truly	

transmodal	 then	the	pattern	of	activity	 for	a	concept	activated	through	the	visual	

domain	(i.e.,	seeing	a	picture	of	a	flute)	should	map	on	to	the	same	representation	

activated	through	the	auditory	domain	(i.e.,	hearing	a	flute)	or	any	other	modality	

for	that	matter.	Recent	MVPA	studies	have	provided	tentative	evidence	along	this	

line.	 For	 instance,	 Peelen	 and	 Caramazza	 (2012)	 found	 that	 bilateral	 ventral	 ATL	

encodes	 information	about	 the	abstract	 conceptual	 properties	of	objects.	 In	 their	

study,	 participants	 viewed	 images	 of	 objects	 that	 differed	 on	 two	 dimensions:	

location	and	action.	Half	of	 the	objects	were	 found	 in	a	kitchen	(e.g.,	garlic	press)	

the	other	half	in	a	garage	(e.g.,	screwdriver).	Half	were	objects	requiring	a	rotating	

movement	to	operate	(e.g.,	screwdriver)	and	the	other	half	a	squeezing	movement	

(e.g.,	 garlic	 press).	 The	 authors	 reasoned,	 for	 a	 region	 to	 process	 abstract	

conceptual	features	it	should	have	similar	neural	responses	to	objects	that	share	a	

conceptual	feature	(i.e.,	both	found	in	a	kitchen),	even	if	those	objects	differed	on	

all	 other	 dimensions.	MVPA	 revealed	 visual	 similarity	was	 encoded	 in	 early	 visual	

processing	 regions	 of	 temporal-occipital	 cortex,	 whereas	 the	 strongest	 similarity	

between	abstract	concepts	was	revealed	in	bilateral	anterior	ventral	temporal	lobe.	

This	 region	 showed	 a	 similar	 effect	 for	 both	 the	 location	 and	 action	 features	 of	

concepts.	 These	 findings	 indicate	 a	 posterior-anterior	 gradient	 along	 the	 ventral	

visual	 stream,	 with	 higher-level	 conceptual	 associations	 processed	 in	 anterior	

ventral	 temporal	 lobe.	 This	 lends	 support	 to	 the	 idea	 that	 ventral	 ATL	 is	 a	

heteromodal	 region	 that	 integrates	 knowledge	 about	 motor	 and	 spatiotemporal	

properties.	Similar	results	were	found	in	a	recent	MVPA	electrocorticogram	(ECoG)	

study	that	utilised	a	picture-naming	task	and	found	that	ventral	ATL	held	patterns	of	

activity	 regarding	 the	 categories	 of	 pictures	 being	 presented	 (Chen	 et	 al.	 2016).	

Interestingly,	 both	 of	 these	 studies	 used	 picture	 stimuli	 which	 heavily	 relies	 on	

visual-feature	knowledge,	and	has	been	shown	to	recruit	ventral	ATL	regions	in	line	

with	a	graded	effect	of	modality-input	 from	ventral	visual	stream	 into	ventral	ATL	

(Plaut,	 2002;	 Visser	 et	 al.	 2010).	 These	 factors	may	 explain	why	 both	 Peelen	 and	

Caramazza	(2012)	and	Chen	and	colleagues	(2016)	identified	a	more	ventral	cluster	

compared	 to	 previous	 findings	 -	 spanning	 neuropsychology,	 distortion-corrected	
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fMRI	or	macroscale	decompositions	-	that	pin	point	ventrolateral	ATL	as	the	site	of	

transmodal	 processing	 (Bajada	 et	 al.	 2017;	 Binney	 et	 al.2010;	 2012;	 Buckner	 &	

Krienen,	2013;	Margulies	et	al.	2016;	Mesulam,	1998;	Mion	et	al.2010;	Plaut,	2002;	

Visser	et	al.	2010;	2012).	

Consistent	with	notion	that	the	presentation	format	influences	the	location	

of	heteromodal	processing	within	the	ATLs,	Correia	et	al	(2014)	identified	superior	

ATL	 in	a	crossmodal	 study	 investigating	semantic	 representations	 in	Dutch-English	

bilinguals.	 In	 their	 study,	 MVPA	 was	 employed	 to	 investigate	 the	 neural	

mechanisms	 underlying	 the	 representation	 of	 language-independent	 concepts	 in	

the	 brain.	 Bilingual	 subjects	 were	 presented	 with	 spoken	 animal	 nouns	 in	 both	

English	 and	 Dutch.	 A	 classifier	 was	 trained	 to	 see	 whether	 patterns	 of	 activity	

trained	 to	 distinguish	 between	 spoken	 nouns	 in	 one	 language	 (e.g.,	 “horse”	 vs.	

“duck”	 in	 English)	 could	 accurately	 predict	 the	 same	 distinction	 in	 the	 other	

language	(e.g.,	“paard”	vs.	“eend”	 in	Dutch).	This	cross-modal	classifier	revealed	a	

significant	cluster	in	the	left	superior	ATL,	lending	to	the	idea	that	the	superior	ATL	

is	 a	 hub	 region	 that	 organizes	 conceptual	 information	 in	 a	 language-invariant	

manner	(i.e.,	abstracted	away	from	input	modality).	Taken	together	these	findings	

suggest	that	studies	that	use	MVPA	to	decode	visual	information	retrieve	clusters	in	

the	 most	 ventral	 portion	 of	 the	 ATLs	 (Chen	 et	 al.	 2016;	 Devereux,	 Clarke,	

Marouchos	&	Tyler,	2013;	Peelen	&	Carmazza,	2012;),	whereas	those	who	decode	

auditory	 information	 retrieve	 clusters	 in	 the	 most	 superior	 portions	 of	 the	 ATL	

(Correia	 et	 al.2014).	 These	 results	 are	 consistent	 with	 graded	 effect	 of	 input	

modality	(Bajada	et	al.	2017;	Lambon	Ralph	et	al.	2017;	Margulies	et	al.	2016;	Plaut,	

2002;	Visser	et	al.	2010),	with	language	and	auditory	semantic	processing	recruiting	

superior	 portions	 of	 the	 ATL	 and	 visual	 and	 picture	 processing	 recruiting	 ventral	

portions	 of	 the	 ATL;	 however	 they	 do	 not	 provide	 compelling	 evidence	 for	 a	

‘transmodal’	 hub	 as	 these	 effects	 seem	 to	 be,	 at	 least	 in	 part,	 driven	 by	 the	

modality	of	presentation.		

Therefore,	 although	 MVPA	 is	 a	 valuable	 tool	 for	 investigating	

representations	 within	 the	 ATLs,	 the	 precise	 location	 of	 the	 putative	 transmodal	

hub	remains	a	hotly	debated	topic	(Lambon	Ralph,	2014).	Moreover,	in	addition	to	

the	 lack	 of	 consistency	 of	 MVPA	 results	 within	 the	 ATL,	 several	 MVPA	 studies	
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investigating	 the	 representation	 of	 conceptual	 knowledge	 only	 report	 findings	

outside	 of	 the	 ATL	 (e.g.,	 Bonnici	 et	 al.	 2016;	 Bruffaerts	 et	 al.	 2013;	 Fairhall	 &	

Caramzza,	2013;	Fernandino	et	al.	2016;	Simanova	et	al.	2014);	including	posterior	

middle	 temporal	 gyrus	 (pMTG),	 angular	 gyrus	 and	 inferior	 frontal	 gyrus.	 These	

regions	 are	 compatible	with	 the	 semantic	 control	 network	 (a	 distributed	network	

made	 up	 of	 fronto-temporal-parietal	 brain	 regions),	 which	 permits	 relevant	

information	to	be	brought	to	the	fore,	and	are	particularly	important	when	we	need	

to	retrieve	distance	semantic	associations	or	weakly	activated	features	(Badre	et	al.	

2005;	Binder	et	al.	2009;	Davey	et	al.	2016;	Pobric	et	al.	2007;	Lambon	Ralph	et	al.	

2017;	Thompson-Schill	et	al.	1997;	Wagner	et	al.	2001;	Whitney	et	al.	2011).	Given	

that	 only	 semantic	 control	 regions,	 and	 not	 the	 putative	 hub,	 are	 reported	 in	

several	 machine-learning	 studies,	 one	 could	 speculate	 that	 the	 experimental	

paradigms	being	tested	are	not	tailored	for	revealing	transmodal	properties	within	

the	 ATL.	 For	 instance,	 Fairhall	 and	 Caramazza’s	 (2013)	 paradigm	 required	

participants	 to	 rate	 how	 typical	 each	 item	was	within	 its	 semantic	 category	 (e.g.,	

rating	 the	 typicality	 of	 “apple”	 or	 “coconut”	 as	 a	 fruit).	 This	 type	 of	 judgement	

arguably	manipulates	the	requirement	of	control	processes;	that	 is	an	“apple”	 is	a	

highly	typical	fruit	example	and	thus	requires	little/no	input	from	control	processes,	

whereas	identifying	a	“coconut”	as	a	fruit	may	require	control	process	to	facilitate	

the	 suppression	 of	 strongly	 activated	 features	 (e.g.,	 coconut	 –	 tree)	 to	 activate	

distant	associations	(coconut	–	fruit).	Thus	patterns	of	activity	may	have	been	more	

informative	 in	 semantic	 control	 regions	 for	 decoding	 between	 different	 semantic	

concepts.	 Furthermore,	 as	 stated	 in	 their	 study,	 the	 signal-to-noise	 ratio	 in	

ventrolateral	 ATL	 was	 significantly	 weaker	 than	 the	 regions	 they	 found	 MVPA	

results	 in,	 lending	 to	 the	 notion	 that	 a	 lack	 of	 ATL	 finding	 could	 be	 due	 to	 the	

susceptibility	 artefacts.	 Finally,	 the	 lack	 of	 ATL	 results	 can	 also	 be	 attributed	 to	 a	

limited	ROI	analysis	that	neglects	ATL	contribution	(e.g.,	Bonnici	et	al.	2016).	Taken	

together,	 the	 MVPA	 literature	 sheds	 light	 on	 how	 semantic	 memories	 are	

represented	across	the	cortex,	but	it	remains	unclear	whether	transmodal	semantic	

concepts	are	represented	within	the	ATL.			
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1.2.5.	Summary	of	Conceptual	Representation		

The	 graded-hub	 account	 proposes	 that	 semantic	 processing	 is	 comprised	 of	 two	

components:	(i)	modality-specific	regions	of	the	cortex	referred	to	as	spokes	and	(ii)	

a	 transmodal	 hub	 (bilateral	 ventrolateral	 ATL)	 optimal	 for	 the	 abstraction	 of	

conceptual	representations	from	multiple	experiences	and	modalities	(e.g.,	sound,	

visual	 and	 action	 attributes).	 A	 wealth	 of	 evidence	 from	 neuropsychological,	

neuroanatomical	 and	 functional	 neuroimaging	 studies	 supports	 this	 theory.	

However,	 several	 questions	 remain	 unclear,	 namely,	 which	 brain	 structures	 are	

important	 for	 forming	 conceptual	 representations	 and	 what	 role	 or	 type	 of	

information	 do	 they	 add.	 The	 primary	 goal	 of	 this	 thesis	 is	 to	 utilise	 MVPA	 to	

address	 the	 following	 questions	 (i)	 in	 “spoke”	 regions,	 do	words	 and	 experiences	

really	 activate	 common	 neural	 substrates?	 That	 is,	 despite	 sensory	 and	 motor	

cortices	responding	to	both	perception	and	knowledge,	it	remains	unclear	whether	

the	two	representations	are	similar	or	whether	they	simply	share	a	common	neural	

region,	 but	 are	 coded	 in	 a	 unique	 manner.	 (ii)	 The	 current	 thesis	 also	 aims	 to	

elucidate	 where,	 within	 the	 ATLs,	 are	 representations	 truly	 transmodal	 by	

comparing	representations	across	both	spoken	(auditory	input)	and	written	(visual	

input)	 presentations	 formats.	 This	 will	 overcome	 the	 limitations	 of	 ‘sensory	 bias’	

results	 (the	 notion	 that	 the	 presentation	 format	 influences	 the	 location	 of	

heteromodal	processing	within	the	ATLs;	e.g.,	Peelen	&	Caramazza,	2012;	Chen	et	

al.	 2016;	 Correia	 et	 al.	 2014)	which	 are	 potentially	mediated	 by	 the	 presentation	

format	as	well	as	the	conceptual	meaning.		

	

1.3.	Perceptually-decoupled	Retrieval			
	

While	previous	research	has	resulted	 in	a	number	of	theories	regarding	the	broad	

organisation	of	semantic	cognition	in	the	brain	(e.g.,	Barsalou	et	al.	2003;	Binder	et	

al.	2009;	Binder	&	Deasi,	2011;	Damasio,	2008;	Koenig	&	Grossman,	2007;	Lambon	

Ralph	 et	 al.	 2017;	 Martin,	 2007;	 Meteyard	 et	 al.	 2012;	 Patterson	 et	 al.	 2007;	

Pulvermüller,	 2013;	 Tranel,	 Damasio	 &	 Damasio,	 1997),	 most	 of	 this	 work	 has	

considered	processes	such	as	picture	recognition	or	matching;	less	is	known	about	
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patterns	 of	 semantic	 retrieval	 that	 are	 perceptually-decoupled	 (i.e.,	 not	

immediately	driven	by	stimuli	in	the	environment).	This	is	an	interesting	avenue	for	

investigation	 since	 semantic	 retrieval	 extends	 beyond	 the	 here-and-now,	 to	 draw	

on	 abstract	 knowledge	 that	 has	 been	 extracted	 across	 multiple	 experiences;	 for	

instance,	we	can	easily	bring	to	mind	what	a	dog	looks	and	sounds	like,	regardless	

of	whether	or	not	there	is	a	dog	present	in	our	immediate	environment.	The	ability	

for	semantic	regions	to	process	information	“off-line”	enables	us	to	make	sense	of	

past	 experiences	 and	 create	 effective	 plans	 regarding	 behaviour	 in	 the	 future	

(Binder	et	al.	2009;	Binney,	Embelton,	Jefferies,	Parker	&	Lambon	Ralph,	2010;	Hart	

et	al.	2007;	Irish,	2016;	Jefferies	&	Lambon	Ralph,	2006;	Lambon	Ralph	&	Patterson,	

2008).	Particularly	noteworthy	are	suggestions	that	this	uniquely	human	behaviour	

to	perform	high-level	computations	off-line	is	the	main	explanation	for	our	ability	to	

adapt,	create	culture,	and	even	develop	technology	(Binder	et	al.	2009;	Irish,	2016;	

Klein,	2013;	Suddendorf	&	Corballis,	2007).	However,	a	clear	understanding	of	the	

neural	 substrates	 that	 support	 patterns	 of	 semantic	 retrieval	 that	 are	 not	

immediately	driven	by	stimuli	in	the	environment	is	lacking.	Therefore,	the	second	

goal	of	 this	 thesis	 is	 to	better	understand	how	we	can	retrieve	semantic	concepts	

from	memory,	in	the	absence	of	external	input.	

	

1.3.1.	 The	 Neural	 Correlates	 of	 Perceptually-decoupled	 Semantic	

Retrieval	

Contemporary	semantic	accounts	 (e.g.,	Lambon	Ralph	et	al.	2017;	Patterson	et	al.	

2007)	suggest	that	memory	retrieval	relies	on	modality-specific	components	located	

in	unimodal	 sensory	cortex	and	abstract	 representations	 that	are	 largely	 invariant	

to	 the	 input	 modality,	 in	 transmodal	 portions	 of	 the	 brain.	 In	 the	 absence	 of	

perceptual	 input,	memory	retrieval	 is	 likely	to	depend	on	abstract	representations	

to	a	 greater	extent,	 suggesting	 that	 transmodal	 regions,	 such	as	 the	ventrolateral	

ATL,	 may	 be	 especially	 important	 for	 stimulus-independent	 cognition	 (Damasio,	

1989;	 Margulies	 et	 al.	 2016).	 In	 line	 with	 this	 perspective,	 the	 literature	 on	

perceptually-decoupled	semantic	retrieval	can	be	broadly	divided	 into	two	camps:	

(i)	 embodied	accounts	 that	 focus	on	 the	 role	of	unimodal	 sensory	 cortices	during	
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internally-generated	semantic	 retrieval	 tasks,	 such	as	mental	 imagery	 (e.g.,	Albers	

et	al.	2013;	Daselaar	et	al.	2010;	de	Borst	et	al.	2016;	Halpern	&	Zatorre,	1999;	Ishai	

et	al.	2000;	Reddy	et	al.	2010;	Vetter	et	al.	2014;	Zvyagintsev	et	al.	2013)	and	(ii)	a	

growing	body	of	work	 that	 investigates	 transmodal	brain	 regions	 such	as	anterior	

and	posterior	temporal	 lobe,	fronto-parietal	and	medial	regions	(e.g.,	Binder	et	al.	

2009;	Binder	&	Desai,	2011;	Fox	et	al.	2005;	Humphreys	et	al.	2015;	Irish	&	Piguet,	

2013;	 Jefferies,	2013;	Margulies	et	al.	2017;	McKiernan	et	al.	2006;	Noonan	et	al.	

2010;	 Smallwood	 &	 Schooler,	 2006).	 Evidence	 from	 neuroimaging	 and	

neuroanatomical	fields	will	be	reviewed	to	understand	the	specific	contributions	of	

both	of	these	bodies	of	research,	to	perceptually-decoupled	semantic	retrieval.		

	

1.3.1.1.	Unimodal	Brain	Regions	

As	 discussed	 previously	 embodied	 accounts	 propose	 that	 knowledge	 of	 objects	

resides	 in	 the	 very	 cortices	 that	 process	 their	 features	 during	 perception	 or	 use	

(Barsalou,	 2008;	 Barsalou	 et	 al.	 2003;	 Kiefer	&	 Pulvermüller,	 2011;	Martin,	 2007;	

Meteyard	et	 al.	 2012;	 Pulvermüller,	 2012;	Wilson,	 2002).	 Particularly	noteworthy,	

with	regard	to	perceptually-decoupled	semantics,	are	studies	that	 investigate	how	

sensory	cortices	are	recruited	during	mental	 imagery;	which	requires	 the	retrieval	

and	maintenance	of	information	from	memory,	such	as	imagining	what	a	dog	looks	

or	 sounds	 like,	without	 the	 supporting	 sensory	experience	 (i.e.,	without	 seeing	or	

hearing	 a	 dog).	 Imagery	 therefore	 relies	 on	 previously	 organised	 and	 stored	

semantic	 information	 about	 the	 features	 to	 be	 imagined	 (Kosslyn	 et	 al.	 1997),	

therefore	retrieval	of	memories	–	that	is,	semantic	retrieval	–	is	argued	to	underlie	

imagery	 (Barsalou,	1999).	Consistent	with	this	viewpoint,	studies	have	shown	that	

visual	 cortex	 is	 activated	 by	 imagined	 images	 (Albers	 et	 al.	 2013;	 Coutanche	 &	

Thompson-Schill,	 2014;	 de	 Borst	 et	 al.	 2016;	 Ishai	 et	 al.	 2000;	 Reddy	 et	 al.	 2010;	

Vetter	et	al.	2014)	and	auditory	cortex	is	activated	by	imagined	sounds	(Daselaar	et	

al.	 2010;	 de	 Borst	 et	 al.	 2016;	 Halpern	&	 Zatorre,	 1999;	 Zvyagintsev	 et	 al.	 2013).	

Notably,	the	majority	of	studies	find	recruitment	of	sensory	association	cortices	as	

opposed	 to	 primary	 cortices	 during	 visual	 (Amedi	 et	 al.	 2005;	 Ishai	 et	 al.	 2000;	

Knauff	 et	 al.	 2000),	 auditory	 (Bunzeck	 et	 al.	 2005;	 Zatorre	 &	 Halpern,	 2005)	 and	

action	mental	imagery	(Willems	et	al.	2009;	2010).		
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One	possible	explanation	for	the	recruitment	of	sensory	association	cortices	

is	 the	 ‘anterior	 shift’	 noted	 by	 Thompson-Schill	 (2003).	 She	 found	 that	 areas	

engaged	 during	 semantic	 processing	 are	 not	 isomorphic	 to	 those	 areas	 used	 in	

direct	experience,	but	rather	are	shifted	anterior	to	those	areas	(for	a	wider	review	

see	Chatterjee,	2010;	Binder	&	Desai,	2011;	McNorgan	et	al.	2011;	Meteyard	et	al.	

2012).	 This	 anterior	 shift	 therefore	 suggests	 that	 information	 in	modality-specific	

regions	 is	abstracted	 from	direct	experience	during	retrieval	of	semantic	concepts	

from	 memory.	 Such	 accounts	 are	 therefore	 consistent	 with	 a	 gradient	 of	

‘abstraction’,	 where,	 as	 one	moves	way	 from	 primary	 sensory	 and	motor	 cortex,	

more	 complex	 relationships	 are	 captured	 (Bajada	et	 al.	 2017;	Buckner	&	Krienen,	

2013;	Lambon	Ralph	et	al.	2017;	Margulies	et	al.		2016;	Mesulam,	1998;	Meteyard	

et	 al.	 2012;	 Patterson	 et	 al.	 2007;	 Plaut,	 2002;	 Schapiro	 et	 al.	 2013;	 Visser	 et	 al.	

2010).		

Furthermore,	 as	 highlighted	 by	 Mahon	 and	 Caramazza	 (2008),	 embodied	

findings,	similar	to	those	discussed	earlier,	do	not	clarify	whether	unimodal	regions	

are	directly	activated	to	facilitate	the	retrieval	of	a	semantic	concept	from	memory	

(bottom-up)	 or	 whether	 they	 are	 subsequently	 activated	 due	 to	 the	 retrieval	 of	

conceptual	 knowledge	 from	 a	 transmodal	 region	 (top-down).	 Convincingly,	 fMRI	

studies	that	utilise	dynamic	causal	modelling	(Friston	et	al.	2003;	2013)	support	the	

top-down	 recruitment	 of	 unimodal	 cortices	 for	 perceptually-decoupled	 semantic	

retrieval.	 For	 example,	 Mechelli,	 Price,	 Friston	 and	 Ishai	 (2004)	 found	 that	

conceptual	 representations	 in	 secondary	 visual	 cortices	 are	 facilitated	 by	 primary	

visual	areas,	 in	a	bottom-up	fashion	during	perception	(e.g.,	viewing	a	picture	of	a	

DOG)	 while	 top-down	 activation	 from	 heteromodal	 regions	 to	 visual	 cortices	 are	

seen	during	imagery	(e.g.,	imaging	a	DOG).	This	is	consistent	with	a	growing	body	of	

fMRI	literature	indicating	top-down	activation	of	sensory	and	motor	cortices	during	

perceptually-decoupled	 semantic	 retrieval	 (e.g.,	 Coutanche	 &	 Thompson-Schill,	

2014;	Dijkstra	et	al.	2017;	Ganis	&	Schendan,	2008;	Ishai	et	al.	2000;	Kalkstein	et	al.	

2011;	Kosslyn,	2005;	Kosslyn	&	Thompson,	2003;	Pearson	et	al.	2011;	Stokes	et	al.	

2009).	 Moreover,	 electrophysiological	 data	 showed	 greater	 top-down	 activation	

during	 visual	 imagery	 as	 compared	 to	 visual	 perception	 (Dentico	 et	 al.	 2014;	 van	

Wijk	et	al.	2013).	Taken	together,	this	evidence	suggests	that	(i)	unimodal	portions	
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of	 cortex,	 in	 particular	 secondary	 association	 regions,	 are	 recruited	 during	

perceptually-decoupled	 retrieval	of	 semantic	 information	and	 (ii)	 the	activation	 in	

these	 regions	 are	 facilitated	 in	 a	 top-down	 fashion	 by	 higher-order	 transmodal	

cortices.		

	

1.3.1.2.	Transmodal	Brain	Regions		

In	an	effort	to	elucidate	how	transmodal	portions	of	the	semantic	network	engage	

during	perceptually-decoupled	semantic	retrieval,	attention	has	also	been	given	to	

imagination-based	 tasks	 that	 capture	 the	 deliberate	 retrieval	 of	 internally-

generated	 information	 (e.g.,	Coutanche	&	Thompson-Schill,	2014;	Daselaar,	Porat,	

Huijbers	&	Pennartz,	2010;	Golchert	et	al.	2017;	McNorgan,	2012).	For	 instance,	a	

recent	fMRI	study	in	conjunction	with	MVPA	found	that	left	ATL	could	successfully	

decode	the	properties	of	an	imagined	object	(Coutanche	&	Thompson-Schill,	2014).	

In	this	study,	classification	accuracy	in	early	visual	regions,	related	to	the	shape	(in	

V1)	 and	 colour	 (in	 V4)	 of	 the	 object,	 predicted	 classifier	 accuracy	 for	 the	 specific	

object	 in	 ATL.	 This	 is	 consistent	 with	 the	 theory	 that	 information	 from	 sensory	

cortex	 is	 integrated	 in	 transmodal	 ATL	 to	 form	 modality-invariant	 conceptual	

representations	 that	are	critical	 for	perceptually-decoupled	semantic	cognition,	as	

well	as	for	the	comprehension	of	words	and	objects	in	the	external	environment.		

	 In	addition	to	specific	task	manipulations	that	help	elucidate	the	role	of	the	

semantic	network	in	retrieval	of	concepts	from	memory	(i.e.,	 imagination	inducing	

experiments),	focus	has	been	drawn	to	“passive”	or	“rest”	periods	within	a	task,	in	

which	 subjects	 are	 given	 either	 no	 task,	 or	 a	 minimally	 demanding	 task	 such	 as	

staring	at	a	 fixation	cross	 (Binder	et	al.	1999;	2009).	Although	such	conditions	are	

routinely	used	across	neuroimaging	 studies	as	 low-level	baselines,	 the	majority	of	

subjects	report	experiencing	detailed	and	memorable	thoughts	and	mental	images	

during	 such	 conditions	 (Binder	 et	 al.	 1999;	 James,	 1890;	 McKiernan	 et	 al.	 2006;	

Singer,	1993;	Visser	et	al.	2010).	Consequently,	a	growing	body	of	researchers	have	

argued	 that	 such	“task-unrelated	 thought”	 is	essentially	underpinned	by	 semantic	

processing	(Binder	et	al.	1999;	2009;	Irish,	2016;	Irish	&	Piguet,	2013;	McKiernan	et	

al.	2006;	Visser	et	al.	2010).	It	has	subsequently	been	argued	that	semantic	memory	
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is	the	root	of	imagination;	that	is,	all	forms	of	imagination,	whether	it	is	creative	or	

autobiographical	 in	 nature,	 emerge	 from	 semantic	 memory	 (Abraham	 &	 Bubic,	

2015;	 Irish	&	 Piguet,	 2013).	 Strong	 support	 for	 these	 arguments	 comes	 from	 the	

finding	that	during	rest	periods	a	network	almost	identical	to	the	semantic	network	

is	recruited	(Binder	et	al.	1999;	2009;	Jackson	et	al.	2016;	Pascual	et	al.	2015).	For	

instance,	 using	 an	 intrinsic	 connectivity	 measure,	 Jackson	 and	 colleagues	 (2016)	

revealed	 the	 same	 semantic	 regions	 were	 active	 during	 rest	 and	 semantic	 task	

states,	 supporting	 the	 necessity	 for	 semantic	 cognition	 in	 internal	 processes	

occurring	during	rest.		

An	important,	and	often	overlooked,	observation	-	that	may	help	shed	light	

on	 how	 transmodal	 regions	 are	 recruited	 during	 retrieval	 of	 knowledge	 from	

memory	 -	 is	 that	 the	 network	 implicated	 in	 semantic	 tasks	 extends	 over	multiple	

intrinsic	 networks,	 including	 “task-positive”	 networks	 such	 as	 the	 frontoparietal	

network,	 but	 also	 the	 default	 mode	 network	 (DMN),	 whose	 core	 regions	 are	

functionally	connected	during	rest	(see	Figure	1.5).	Given	the	anatomical	similarity	

between	 the	 semantic	 and	 default	 mode	 networks,	 there	 may	 be	 common	

underlying	 processes	 that	 facilitate	 these	 two	 independent,	 but	 nevertheless	

interactive,	components	or	networks	(Moscovitch,	1992).	Although	investigations	of	

the	DMN	and	semantic	network	have	been	primarily	 independent	of	one	another	

(for	review	see	Binder	et	al.	2009;	Humphreys	et	al.	2015),	there	are	several	reasons	

why	direct	 comparison	of	 the	networks	may	be	beneficial.	 First,	during	“rest”	 the	

brain	is	engaged	in	the	activation	of	rich	conceptual	representations,	and	thus	the	

DMN	processing	places	strong	demands	on	the	semantic	system	(Binder	et	al.	1999;	

2009;	Irish,	2016;	Irish	&	Piguet,	2013;	Jackson	et	al.	2015;	McKiernan	et	al.	2006).	

Second,	the	DMN	and	semantic	network	engage	several	common	anatomical	areas,	

including	 regions	 in	 parietal	 and	 lateral	 temporal	 lobes	 (Binder	 et	 al.	 1999;	 2009;	

Buckner,	Andrews-Hanna	&	Schacter,	2008;	Humphreys	et	al.	2015;	Raichle,	2001).	

For	instance,	both	ATL	and	angular	gyrus	are	considered	semantic	“hubs”	that	help	

represent	 heteromodal	 semantic	 representations	 (Binder	 &	 Desai,	 2011;	 Lambon	

Ralph,	2013).	Consequently,	a	recent	upsurge	of	interest	has	seen	the	simultaneous	

investigation	of	 these	 two	networks	 for	 the	retrieval	of	 semantic	knowledge	 (e.g.,	

Humphreys	et	al.	2015;	Seghier	&	Price,	2012;	Seghier,	2013;	Wirth	et	al.	2011).	The	
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following	 section	 will	 briefly	 review	 the	 literature	 surrounding	 the	 anatomical	

organisation	and	 function	of	 the	DMN	and	 then	 reflect	on	how	 the	 semantic	 and	

default	mode	networks	may	support	a	common	cognitive	function.		

	
	

	

	 	

	

The	DMN	is	an	anatomically	defined	network	consisting	of	a	constellation	of	

transmodal	 brain	 regions	 including	 anterior	 and	 posterior	 temporal	 lobe,	 fronto-

parietal	and	medial	regions	(Fox	et	al.	2005;	Greicius	et	al.	2003;	Raichle	et	al.	2001;	

Smallwood	 &	 Schooler,	 2006).	 Early	 studies	 characterised	 the	 DMN	 as	 “task-

negative”,	as	this	network	was	shown	to	be	more	active	during	“rest”	periods	(such	

as	 staring	 at	 a	 fixation	 cross)	 than	 during	 explicit	 task	 conditions	 (Shulman	 et	 al.	

1997).	The	term	‘default	mode’	caught	on	after	the	publication	of	‘A	Default	Mode	

of	Brain	Function’	by	Raichle	et	al	(2001).	This	seminal	paper	supported	Shulman’s	

findings	and	concluded	that	there	was	a	distributed	network	of	brain	regions	that	

decreased	 their	 activity	 during	 goal-directed	 and	 attention-demanding	 tasks.	

Moreover,	this	paper	showed	that	these	regions	were	highly	related	at	‘rest’.	Since	

the	 discovery	 of	 a	 distributed	 ‘default	mode’	 network,	 research	 has	moved	 away	

from	 this	 initial	 interpretation	 of	 a	 “task-negative”	 state.	 Notably,	 the	

understanding	of	the	function	and	organisation	of	the	DMN	has	been	propelled	by	

studying	 spatial	 coherence	 patterns	 in	 the	 spontaneous	 fluctuations	 in	 the	 fMRI	

Figure	1.5.	Anatomical	 similarity	between	the	semantic	network	 (Noonan	et	al.	2010)	

and	other	core	intrinsic	networks	(Yeo	et	al.	2011).	Notably,	the	red	intrinsic	network	

(which	depicts	the	DMN)	has	considerable	overlap	with	the	semantic	network.		
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BOLD	signal	during	the	resting	state	(see	Raichle	2010,	2011);	commonly	known	as	

resting-state	functional	connectivity	(this	method	will	be	discussed	in	more	detail	in	

Chapter	2).	During	such	scans	participants	are	required	to	lie	still	in	an	fMRI	scanner	

for	 several	 minutes	 without	 an	 explicit	 task.	 Functional	 connectivity	 analysis	

revealed	 that	 the	 DMN	 can	 be	 reliably	 delineated	 based	 on	 the	 functional	

connectivity	 during	 such	 resting-state	 scans;	 that	 is,	 the	 activity	 within	 the	 DMN	

regions	 were	 functionally	 coupled	 when	 participants	 were	 not	 engaged	 in	 an	

explicit	 task.	 This	 led	 to	 a	 new	wave	 of	 researchers	 exploring	 internally-oriented	

cognitive	processes	during	 these	 rest-periods,	a	phenomenon	widely	described	as	

task-unrelated	thought	or	mind-wandering	(Buckner	et	al.	2008;	Mason	et	al.	2007).	

To-date	 an	 established	 body	 of	 work	 has	 routinely	 shown	 that	 the	 DMN	

actively	 supports	 several	 aspects	 of	 cognition	 (Spreng,	 2012),	 including	 semantic	

processing	(Binder	et	al.	2009;	Humphreys	et	al.	2015;	Irish	&	Piguet,	2013;	Krieger-

Redwood	et	al.	2016),	autobiographical	and	episodic	recollection	(Andrews-Hanna,	

2012;	Buckner	et	al.	2008;	Rugg	&	Vilberg,	2013),	working	memory	 (Konishi	et	al.	

2015;	Spreng	et	al.	2014;	Vatansever	et	al.	2015),	mental	 imagery	 (Hassabis	et	al.	

2007),	self-generation	of	emotion	(Engen,	Kanske	&	Singer,	2017)	and	imagining	the	

future	 or	 recalling	 the	 past	 (Huijbers	 et	 al.	 2009;	 Maguire,	 2001;	 Schacter	 et	 al.	

2007;	Spreng	et	al.	2009;	Svoboda	et	al.	2006;	Szpunar	et	al.	2007).	This	evidence	

therefore	 goes	 against	 historical	 accounts	 of	 the	 DMN	 as	 “task-negative”	 by	

showing	 that	 the	DMN	does	 activate	 under	 a	 variety	 of	 task	 conditions.	 Notably,	

many	 of	 these	 situations	 involve	memory	 retrieval	 –	 i.e.,	 a	 requirement	 to	 focus	

cognition	 on	 previously-encoded	 knowledge	 as	 opposed	 to	 information	 in	 the	

external	 environment.	 The	 current	 thesis	 was	 therefore	 motivated	 by	 the	

hypothesis	 that	 there	 might	 be	 common	 neurocognitive	 processes	 underpinning	

perceptually-decoupled	 and	 conceptually-guided	 cognition	 in	 the	 DMN.	 During	

states	 of	 episodic	 recollection,	 we	 recreate	 past	 experiences	 that	 involve	 places,	

objects	 and	 people	 not	 currently	 present	 in	 the	 environment.	 Consequently,	

memory	 retrieval	 might	 necessitate	 a	 process	 of	 decoupling	 from	 sensorimotor	

systems,	allowing	cognition	to	be	generated	internally	in	a	way	that	diverges	from	

what	is	going	on	around	us	(Smallwood,	2013).	These	perceptually-decoupled	states	



 39 

might	 be	 easier	 in	 brain	 regions	 whose	 neural	 computations	 are	 functionally	

independent,	or	distant,	from	systems	important	for	perceiving	and	acting.	

In	 line	with	this	observation,	many	regions	within	or	allied	to	the	DMN	are	

considered	 to	 be	 transmodal	 ‘hubs’	 for	 memory-related	 processes,	 including	

posterior	 cingulate	 cortex	 (Leech,	 Braga	 &	 Sharp,	 2012;	 Leech	 &	 Sharp,	 2014),	

angular	 gyrus	 (Binder	 &	 Desai,	 2011;	 Bonnici	 et	 al.	 2016;	 Seghier,	 2013),	

hippocampus	(Moscovitch	et	al.	2016)	and	anterior	temporal	lobes	(Lambon	Ralph	

et	 al.	 2017;	 Patterson	 et	 al.	 2007;	 Visser,	 Jefferies	 and	 Lambon	 Ralph,	 2010).	 In	

addition	 to	 the	ATLs,	 a	 region	of	particular	 importance	 to	perceptually-decoupled	

semantic	retrieval,	is	the	angular	gyrus.	Using	the	NeuroSynth	database	(Yarkoni	et	

al.	2011),	a	“reverse	 inference”	of	the	 left	angular	gyrus	reveals	key	concepts	that	

have	 been	 associated	 with	 this	 region	 in	 neuroimaging	 studies;	 the	 top	 five	

concepts	 comprise	 ‘retrieval’,	 ‘default	 mode	 network’,	 ‘memory’,	 ‘semantic’	 and	

‘sentence’	 (Seghier,	 2013).	 Semantic	 processing	 is	 therefore	 one	 of	 the	 most	

consistent	functions	that	activates	the	angular	gyrus	(Binder	et	al.	2009;	Price	et	al.	

2015;	 Seghier,	 2013;	 Seghier	 et	 al.	 2010;	 Wang	 et	 al.	 2010).	 Furthermore,	 the	

activity	in	bilateral	angular	gyrus	during	‘rest’	is	remarkably	reliable	(Buckner	et	al.	

2008;	Shehzad	et	al.	2009;	Smith	et	al.	2009;	Spreng	et	al.	2009).	To	account	for	the	

wide	 variety	 of	 tasks	 that	 the	 angular	 gyri	 have	 been	 associated	 with,	 several	

influential	theories	have	been	proposed.	

One	 prominent	 hypothesis	 put	 forward	 to	 explain	 the	 varied	 cognitive	

functions	 assigned	 to	 the	 angular	 gyrus	 is	 the	 proposal	 that	 it	 is	 involved	 in	 the	

combination	and	manipulation	of	acquired	knowledge	about	the	world	during	rest,	

that	 is	 interpreted	 during	 demanding	 tasks,	 such	 as	 sentence	 comprehension,	

problem	solving	and	planning	(Binder	et	al.	1999;	Seghier	et	al.	2010).	A	second,	but	

not	mutually	exclusive	proposal	is	that	the	angular	gyri	show	a	stronger	response	to	

a	 range	of	memory	 retrieval	 situations	 in	which	 the	 retrieved	 representations	are	

detailed,	specific	or	precise	(Binder	et	al.	2005;	Price	et	al.	2015;	Bonnici	et	al.	2016;	

Davey	 at	 al.	 2015).	 Alternatively,	 Andrews-Hanna	 and	 colleagues	 (2010)	 suggest	

that	the	angular	gyrus	might	be	engaged	in	the	construction	of	mental	scenes	based	

on	memory	 during	 perceptually-decoupled	 retrieval,	 during	 rest.	 Finally,	 a	 fourth	

more	general	 theory	 is	 that	 the	 inferior	parietal	cortex,	 including	angular	gyrus,	 is	
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responsible	for	focusing	attention	on	memory	(Cabeza	et	al.	2011;	Humphreys	et	al.	

2015).	Clearly	we	lack	an	over-arching	account	of	the	functions	of	the	angular	gyrus,	

however	the	common	denominator	between	these	hypotheses	 is	the	engagement	

of	 the	 angular	 gyrus	 in	 the	 manipulation	 of	 increasingly	 abstract	 conceptual	

knowledge	and	mental	representations.		

	

1.3.2.	 Intrinsic	 Connectivity	 Characterizes	 Functional	 Organisation	 of	

the	Brain		

A	 complementary	 method	 that	 has	 helped	 shed	 light	 on	 the	 role	 of	 the	 angular	

gyrus	(and	other	transmodal	regions)	in	abstract	conceptual	knowledge	and	mental	

representations,	 focuses	 on	 understanding	 the	 underlying	 connectivity	 structures	

and	intrinsic	organisation	of	these	networks	(Braga	et	al.	2013;	Buckner	&	Krienen,	

2013;	Leech	et	al.	2012;	Margulies	et	al.	2016;	Mesulam,	1998;	Plaut,	2002).	Recent	

macroscale	 decompositions	 of	 brain	 connectivity	 have	 helped	 characterize	 the	

neural	 regions	 that	 are	 likely	 to	 be	 important	 for	 heteromodal	 memory	

representations	 in	 a	 more	 formal	 manner;	 such	 data	 provides	 support	 for	

transmodal	processing	in	ventrolateral	ATL	and	angular	gyrus,	as	well	as	other	core	

DMN	regions	(see	Figure	6).	Margulies	and	colleagues	(2016)	described	a	“principal	

gradient”	of	connectivity	with	unimodal	sensory	regions	at	one	end	and	transmodal	

regions	 including	 posterior	 cingulate	 cortex,	 medial	 prefrontal	 cortex	 and	

ventrolateral	ATL	at	the	other	–	regions	that	are	allied	to	or	fall	within	the	default	

mode	network	 (DMN;	Raichle	et	al.	2001).	These	 regions	are	maximally	distant	 in	

functional	and	structural	space	from	primary	landmarks	of	unimodal	function	such	

as	the	calcarine	sulcus	or	the	central	sulcus	(Margulies	et	al.	2016).	This	topographic	

architecture	 suggests	 regions,	 such	 as	 ventrolateral	 ATL	 and	 angular	 gyrus,	 are	

situated	 at	 the	 top	 of	 a	 representational	 hierarchy	 allowing	 these	 regions	 to	

integrate	 information	 across	 systems.	 Such	 regions	 are	 therefore	 able	 to	 support	

higher-order	 representations	 with	 predictive	 value	 across	multiple	 situations	 and	

modalities,	 which	 integrate	 features	 from	 diverse	 sensorimotor	 regions.	 In	 other	

words,	 increasingly	 abstract	 and	 complex	 representations	 might	 be	 formed	 at	

greater	distances	along	the	gradient,	where	the	influence	of	specific	features	linked	
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to	 stimuli	 in	 the	 immediate	 environment	 is	 reduced	 (Buckner	 &	 Krienen,	 2013;	

Margulies	et	al.	2016;	Mesulam,	1998;	Plaut,	2002).		

	

	

	

	

	

	

	

	

	

This	 principal	 gradient	 account	 suggests	 that	 aspects	 of	 cognition	 that	 are	

less	 related	 to	 input	 (e.g.,	 perceptually-decoupled	 semantic	 retrieval)	 might	 be	

easier	 in	 regions	 whose	 neural	 computations	 are	 functionally	 independent,	 or	

distant,	 from	 systems	 important	 for	 perceiving	 and	 acting	 in	 the	 here	 and	 now	

(Buckner	et	al.	2009;	Bullmore	&	Sporns,	2009;	Hagmann	et	al.	2008;	Margulies	et	

al.	2016).	As	such,	it	has	been	suggested	that	the	DMN	integrates	information	from	

Unidmodal 	 	 																								Transmodal	

A.	

B.	

Figure	1.6.	Principal	gradient	adapted	from	Margulies	et	al	(2016).	(A)	The	principal	gradient	of	

connectivity	in	humans,	which	captures	the	functional	spectrum	from	perception,	and	action	in	

unimodal	regions	(dark	blue)	to	more	abstract	cognitive	functions	in	transmodal	cortex	(red).	(B)	

Gradient	1	extends	between	primary	sensorimotor	(blue-green)	and	transmodal	regions	(red).	

Gradient	2	separates	somatomotor	and	auditory	cortex	(green)	from	visual	cortex	(blue).	The	right	

hand	panel	summarises	the	order	of	networks	in	the	gradient	and	provides	a	schematic	of	the	

spatial	relationships	of	intrinsic	resting-state	networks.	dmn,	default-mode	network;	dorsal	attn,	

dorsal	attention	network;	sal,	salience	network;	somato/mot,	somatosensory/motor	network.	
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multiple	sources	in	memory	to	create	states	that	are	not	reducible	to	the	moment	

they	 take	 place.	 This	 decoupling	 hypothesis	 therefore	 provides	 a	 framework	 for	

how	internally	generated	representations	may	be	supported.	That	is,	thinking	about	

concepts	not	present	in	the	environment,	such	as	imagining	lying	on	a	beach	during	

the	daily	commute,	 is	made	possible	 in	regions	that	are	functionally	 isolated	from	

input	 (as	 this	 sensory	 information	 is	 not	 necessary	 for	 thinking	 about	 a	 beach).	

Therefore,	 the	 explanatory	 power	 of	 this	 gradient	 account	 is	 emphasised	 in	 its	

ability	 to	 explain	 common	 neurocognitive	 processes	 underpinning	 perceptually-

decoupled	 and	 conceptually-guided	 cognition	 in	 both	 the	 DMN	 and	 semantic	

network.	 For	 instance,	 the	 gradient	 account	 explains	 why	 regions,	 such	 as	

ventrolateral	 ATL,	would	 be	 optimal	 for	 the	 abstraction	 of	 conceptual	 knowledge	

away	 from	 sensory-features	 into	 transmodal	 representations	 as	 proposed	 by	

several	semantic	theories	(Lambon	Ralph	et	al.	2017;	Patterson	et	al.	2007;	Rogers	

et	al.	2004)	–	this	region	sits	close	to	the	top	of	the	representational	hierarchy	and	

receives	 convergent	 inputs	 from	 all	 other	 sensory	 networks.	 In	 addition,	 this	

account	 situates	 the	 angular	 gyrus,	 as	 well	 as	 other	 core	 DMN	 regions	 such	 as	

lateral	middle	temporal	gyrus	(MTG),	at	the	furthest	end	of	the	gradient,	suggesting	

they	 play	 an	 integral	 role	 in	 the	 most	 abstract	 forms	 of	 cognition,	 including	

internally-oriented	 retrieval	 and	 manipulation	 of	 knowledge	 (Binder	 et	 al.	 2009;	

Cabeza	et	al.	2011).	

Another	 striking	 observation	 is	 the	 gradient’s	 ability	 to	 align	 with	 other	

influential	 explanations	 regarding	 the	 functional	 architecture	 of	 the	 DMN	 and	

transmodal	 cortices.	 Braga	 and	 colleagues	 (2013)	 suggest	 that	 if	 heteromodal	

regions,	captured	by	the	DMN	and	semantic	network,	converge	information	to	form	

coherent	 cognition,	 perception	 and	 behaviour	 then	 they	 should	 show	 traces	 or	

“echoes”	of	information	from	the	intrinsic	networks	that	they	are	converging.	Using	

fMRI	they	were	able	to	show	that	unimodal	portions	of	the	cortex,	such	as	primary	

sensory	and	motor	cortices	contain	traces	of	few	or	even	single	networks,	while	the	

existence	of	multiple	“echoes”	were	identified	within	transmodal	regions.	Therefore	

the	presence	of	multiple	echoes	within	transmodal	regions	provides	an	explanatory	

framework	for	why	these	regions	are	involved	in	multiple	different	cognitive	states	

(see	 also	 Leech	 et	 al.	 2012;	 de	 Pasquale	 et	 al.	 2012;	 Smith	 et	 al.	 2009).	 This	 is	
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consistent	 with	 the	 principal	 gradient	 account,	 which	 suggests	 that	 transmodal	

regions	sit	at	 the	 top	of	a	 representational	hierarchy	and	thus	 receive	convergent	

input	from	all	other	networks	beneath	them.	Consequently,	both	of	these	bodies	of	

work	 highlight	 that	 the	 unique	 macroscale	 organisation	 of	 transmodal	 regions	

permits	them	to	mediate	cross-talk	between	the	brain’s	functional	networks.		

Taken	 together	 this	established	body	of	 research	outlines	how	 transmodal	

regions	of	 the	brain	are	pivotal	 for	processing	abstract	conceptual	knowledge	and	

perceptually-decoupled	 mental	 representations	 by	 virtue	 of	 their	 macroscale	

organisation	and	intrinsic	connectivity	(Buckner	&	Krienen,	2013;	Braga	et	al.	2013;	

Leech	 et	 al.	 2012;	Margulies	 et	 al.	 2016;	Mesulam,	 1998;	 Plaut,	 2002).	 However,	

there	 is	 little	 empirical	 evidence	 regarding	 the	 pattern	 of	 activity	 within	 these	

regions	 during	 different	 forms	 of	 perceptually-decoupled	 semantic	 retrieval.	

Therefore	several	 important	questions	remain	unclear.	First,	 if	 transmodal	regions	

contain	 ‘echoes’	 of	 the	 systems	 they	 integrate,	 for	 example	 in	 the	 form	 of	

differential	connectivity	to	these	systems	across	each	cortical	region	contributing	to	

this	network,	transmodal	regions	of	cortex	might	still	contain	information	about	the	

sensory	properties	of	 internally	driven	experiences	(Leech	et	al.	2012).	 In	the	case	

of	 semantically-driven	 imagery,	 one	might	 expect	 that	 the	 ATL	 hub	would	 play	 a	

crucial	 role	 in	 the	 generation	 of	 different	 types	 of	 features	 in	 a	 perceptually-

decoupled	way	 (e.g.,	 thinking	 about	what	 a	 dog	 looks	 like	 versus	what	 it	 sounds	

like);	however,	if	there	is	graded	convergence	of	information	in	this	region,	different	

forms	 of	 imagery	 might	 not	 maximally	 evoke	 the	 same	 portions	 of	 ATL.	 Both	

machine	 learning	 methods,	 such	 as	 MVPA,	 and	 investigation	 of	 the	 intrinsic	

connectivity	of	transmodal	regions	will	be	integral	to	addressing	these	outstanding	

questions.	

Second,	 the	 framework	 suggests	 that	 transmodal	 regions	 located	 farthest	

from	input	systems	would	be	optimal	for	(i)	abstract	conceptual	processing	and	(ii)	

perceptually-decoupled	 retrieval	 of	 knowledge	 from	 memory.	 However,	 it	 is	 not	

well	 specified	 if	 this	 network	 shows	 preference	 for	 either	 of	 these	 processes,	 or	

alternatively	whether	 it	 prefers	 the	 combination	 of	 abstraction	 and	 perceptually-

decoupled	states.	Moreover,	it	is	unclear	how	different	components	of	transmodal	

cortex	 are	 recruited	 during	 perceptually-decoupled	 retrieval	 of	 abstracted	
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conceptual	knowledge.	For	instance,	given	that	both	the	angular	gyrus	and	ATL	are	

two	 prominent	 regions	 across	 DMN	 and	 semantic	 networks,	 it	 is	 not	 clear	 what	

their	precise	contributions	are.	According	 to	Margulies	and	colleagues	 (2016),	 the	

angular	gyrus	sits	slightly	higher	in	the	representational	hierarchy	than	ventrolateral	

ATL.	 As	 it	 is	 situated	 farthest	 from	 unimodal	 systems,	 this	 framework	 suggests	 it	

may	play	a	role	in	the	most	abstract	forms	of	cognition;	one	could	therefore	predict	

that	ventrolateral	ATL	may	be	involved	in	transmodal	conceptual	processing	both	in	

the	presence	and	absence	of	 input,	whereas	 the	angular	gyrus	 is	more	 influential	

when	cognition	is	orientated	inwardly	to	memory.		

Third,	although	the	DMN	has	been	shown	to	activate	 to	several	aspects	of	

cognition	(Spreng,	2012),	 including	semantic	processing	 (Binder	et	al.	2009;	Davey	

et	al.	2015;	2016;	Humphreys	et	al.	2015;	Irish	&	Piguet,	2013;	Krieger-Redwood	et	

al.	 2016),	 autobiographical	 and	 episodic	 recollection	 (Andrews-Hanna,	 2012;	

Buckner	et	al.	2008;	Rugg	&	Vilberg,	2013),	working	memory	 (Konishi	et	al.	2015;	

Spreng	et	al.	2014;	Vatansever	et	al.	2015),	mental	 imagery	(Hassabis	et	al.	2007),	

self-generation	of	emotion	(Engen,	Kanske	&	Singer,	2017)	and	imagining	the	future	

or	 recalling	 the	 past	 (Huijbers	 et	 al.	 2009;	 Maguire,	 2001;	 Schacter	 et	 al.	 2007;	

Spreng	et	al.	2009;	Svoboda	et	al.	2006;	Szpunar	et	al.	2007),	it	remains	unclear	the	

specific	 circumstances	 in	 which	 regions	 of	 the	 transmodal	 DMN	 shows	 above	

baseline	activation	during	semantic	tasks.	For	instance,	is	it	the	general	retrieval	of	

knowledge	 from	memory	 that	 activates	 the	 DMN	 or	 the	 richness	 of	 the	 concept	

being	retrieved?			

	

1.3.3.	Summary	of	Perceptually-decoupled	Semantic	Retrieval	

Semantic	 retrieval	 extends	 beyond	 the	 here-and-now,	 to	 draw	 on	 abstract	

knowledge	 that	 has	 been	 extracted	 across	multiple	 experiences;	 for	 instance,	we	

can	easily	bring	to	mind	what	a	dog	looks	and	sounds	like,	regardless	of	whether	or	

not	 there	 is	 a	 dog	 present	 in	 our	 immediate	 environment.	 However,	 a	 clear	

understanding	of	the	neural	substrates	that	support	patterns	of	semantic	retrieval	

that	are	not	immediately	driven	by	stimuli	in	the	environment	is	lacking.	Given	the	

anatomical	 and	 functional	 similarity	 between	 the	 semantic	 network	 and	 DMN	
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(Binder	 et	 al.	 2009;	 Humphreys	 et	 al.	 2015;	Margulies	 et	 al.	 2016),	 this	 thesis	 is	

motivated	by	the	hypothesis	that	there	might	be	common	neurocognitive	processes	

underpinning	 perceptually-decoupled	 and	 conceptually-guided	 cognition	 in	 the	

DMN.	 Firstly,	 perceptually-decoupled	 states	 might	 recruit	 brain	 regions	 whose	

neural	 computations	 are	 functionally	 independent,	 or	 distant,	 from	 systems	

important	for	perceiving	and	acting.	Secondly,	DMN	regions	might	support	higher-

order	 representations	 with	 predictive	 value	 across	 multiple	 situations	 and	

modalities,	which	integrate	features	from	diverse	sensory-motor	regions.	This	view	

is	consistent	with	the	observation	that	the	DMN	and	many	portions	of	the	semantic	

network	lie	at	the	extreme	end	of	a	gradient	from	heteromodal	to	unimodal	cortex	

(Margulies	 et	 al.	 2016),	 since	 increasingly	 abstract	 and	 complex	 representations	

might	be	formed	at	greater	distances	along	the	gradient,	as	the	influence	of	specific	

features	and	modalities	is	reduced	(Buckner	&	Krienen,	2013;	Margulies	et	al.	2016;	

Mesulam,	 1998).	 However,	 it	 is	 not	 clear	 if	 these	 aspects	 of	 processing	 recruit	

identical	regions	and	if	they	interact.	Therefore,	the	second	goal	of	this	thesis	is	to	

better	 understand	 how	we	 can	 retrieve	 semantic	 concepts	 from	memory,	 in	 the	

absence	of	external	input.	The	combination	of	machine	learning	methods,	intrinsic	

connectivity	 and	 univariate	 activation	will	 be	 integral	 to	 addressing	 the	 following	

questions:	 (i)	 Which	 portions	 of	 unimodal	 sensory	 cortex	 are	 necessary	 for	 the	

processing	of	perceptually-decoupled	semantic	features	(e.g.,	thinking	about	what	a	

dog	 sounds	 or	 looks	 like)?	 (ii)	 How	 are	 transmodal	 regions	 recruited	 during	

perceptually-decoupled	retrieval	of	knowledge	from	memory;	for	instance,	do	they	

show	global	 increases	 in	activation	to	 internally-generated	semantic	content,	or	 is	

their	 contribution	 reflected	 in	 the	multivariate	 pattern	 of	 activity?	 and	 (iii)	 given	

transmodal	cortex	is	theoretically	optimal	for	abstract	and	complex	representations	

from	memory,	 it	remains	unclear	whether	transmodal	regions	respond	in	a	similar	

manner	 to	 conceptually-guided	 and	 perceptually-decoupled	 cognition,	 but	 it	 is	

unclear	whether	these	two	factors	interact.		

	

1.4.	Conclusion	and	Research	Aims	
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Perceptually-decoupled	 semantic	 cognition	 requires	 a	 store	 of	 transmodal	

conceptual	 knowledge	 and	 an	 ability	 to	 disengage	 from	 the	 external	 world	 and	

orientate	 cognition	 inwardly	 on	 previously	 encoded	 information.	 Our	 store	 of	

conceptual	 knowledge	 is	 arranged	 such	 that	we	have	 (i)	 “spokes”	 (sensory-motor	

regions	 of	 the	 cortex)	 and	 (ii)	 a	 transmodal	 convergence	 zone	 or	 “hub”	

(ventrolateral	ATL).	The	role	of	 the	hub	 is	 to	abstract	away	 from	modality-specific	

attributes	and	generalize	across	semantically	similar	concepts.	Despite	a	large	body	

of	 evidence	 -	 spanning	 neuroanatomical,	 neuropsychological	 and	 neuroimaging	

fields	 -	 supporting	 the	 graded-hub	 account	 of	 semantic	 processing,	 it	 remains	

unclear	 how	 conceptual	 knowledge	 is	 represented	 within	 this	 semantic	 network;	

such	as,	(i)	the	exact	portion	of	ATL	that	is	transmodal,	(ii)	whether	traces	of	sensory	

systems	 are	 still	 seen	 even	 in	 the	 most	 transmodal	 parts	 and	 (iii)	 how	 the	

transmodal	ATL	is	supported	by	other	transmodal	regions	in	the	DMN.	Furthermore,	

perceptually-decoupled	 retrieval	 of	 memory	 is	 thought	 to	 rely	 on	 transmodal	

regions	 allied	 to	 or	within	 the	 DMN.	 These	 regions	 are	 thought	 to	 be	 critical	 for	

higher-order	 representations	 with	 predictive	 value	 across	multiple	 situations	 and	

modalities,	which	integrate	features	from	diverse	sensorimotor	regions.	Moreover,	

aspects	 of	 cognition	 that	 are	 less	 related	 to	 input	 (e.g.,	 perceptually-decoupled	

semantic	 retrieval)	 might	 be	 easier	 in	 regions,	 such	 as	 the	 DMN,	 whose	 neural	

computations	are	functionally	independent,	or	distant,	from	systems	important	for	

perceiving	and	acting	 in	 the	here	and	now.	Nevertheless,	 the	precise	mechanisms	

behind	perceptually-decoupled	retrieval	of	semantic	memories	remain	elusive.	This	

thesis	 will	 utilise	 a	 combination	 of	 MVPA,	 intrinsic	 connectivity	 measures	 and	

standard	 univariate	 analysis	 in	 an	 attempt	 to	 understand	 (i)	 how	 concepts	 are	

represented	 in	 the	 brain	 and	 (ii)	 how	 transmodal	 mechanisms	 adapt	 for	

perceptually-decoupled	memory	states.	The	specific	aims	of	this	thesis	were:	

• To	 explore	 the	 role	 of	 unimodal	 sensory-motor	 cortex	 in	 semantic	

representations.	 Using	 MVPA,	 chapters	 3	 and	 4	 will	 explore	 whether	 the	

patterns	 of	 activity	 in	 unimodal	 cortex	 represent	modality	 of	 presentation	

(spoken	vs.	written;	Chapter	3),	modality	of	word	meaning	(loud	vs.	bright;	
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Chapter	 3)	 and	 modality	 of	 perceptually-decoupled	 retrieved	 memory	

(thinking	about	what	a	dog	sounds	like	vs.	what	it	looks	like;	Chapter	4).		

• To	 localise	 where	 within	 the	 ATL	 abstract	 heteromodal	 semantic	

representations	 are	 supported.	 Using	 a	 searchlight	 MVPA,	 Chapter	 3	

investigates	 where,	 within	 the	 ATLs,	 patterns	 of	 activity	 for	 a	 concept	

activated	through	the	visual	domain	map	on	to	the	same	concept	activated	

through	 the	 auditory	 domain.	 This	 cross-classification	 will	 permit	 the	

localisation	 of	 a	 transmodal	 ‘hub’	 region	 that	 captures	 abstract	 meaning	

irrespective	 of	 presentation	 modality.	 Moreover,	 analysis	 of	 the	 intrinsic	

connectivity	 of	 this	 region	will	 provide	 evidence	 of	 whether	 this	 region	 is	

embedded	within	a	network	that	facilitates	abstract	transmodal	processing	

(e.g.,	default	mode	network).		

• To	 investigate	 perceptually-decoupled	 semantic	 retrieval	 states	 such	 as	

imagination	(Chapter	4)	and	judgements	from	memory	(Chapter	5).	Chapter	

4	 examines	 perceptually-decoupled	 forms	 of	 semantic	 retrieval	 and	

establishes	which	brain	regions	can	decode	sensory	features	in	imagination,	

in	 the	 absence	 of	 input.	 Chapter	 5	 assesses	 the	 conjunction	 of	 cognitive	

processes	 that	 require	 (i)	 multi-featural	 abstract	 concepts	 and	 (ii)	

decoupling.	Notably,	this	later	study	combines	the	two	dominant	features	of	

chapter	3	 (abstract	 conceptual	 representations)	and	perceptual-decoupling	

(retrieval	of	knowledge	from	memory	in	the	absence	of	input).	Both	of	these	

experiments	will	 interrogate	whether	unimodal	 and/or	 transmodal	 regions	

are	necessitated	by	perceptually-decoupled	semantic	retrieval	and	measure	

the	intrinsic	connectivity	of	these	brain	regions.		

• To	identify	circumstances	in	which	regions	of	the	transmodal	default	mode	

network	 shows	 above	 baseline	 activation	 during	 semantic	 tasks.	 This	 is	

addressed	 in	 Chapter	 5	 by	 comparing	 semantic	 conditions	 (multi-featural	

concepts)	with	perceptual	conditions		(simple	colour	patches)	in	a	univariate	

fMRI	analysis.		
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Chapter	2	–	fMRI	Methods	Review		
	

This	 thesis	adopts	multiple	 functional	magnetic	 resonance	 imaging	 (fMRI)	analysis	

methods	to	investigate	how	semantic	information	is	represented	and	processed	in	

the	 brain.	 	 fMRI	 measures	 neural	 responses,	 in	 vivo,	 by	 tracking	 changes	 in	 the	

blood	flow	associated	with	increased	neural	activity.	As	neurons	increase	their	firing	

rate	they	consume	energy	reserves.	To	replenish	these	reserves	oxygenated	blood	

is	transferred	to	those	cells	via	the	bloodstream,	thereby	increasing	the	local	supply	

of	 oxygenated	blood	 in	 that	 region.	 fMRI	 provides	 a	measure	of	 this	 oxygenation	

using	a	contrast	called	Blood	Oxygenation	Level-Dependent	signal	(BOLD;	Ogawa	et	

al.	1990).	The	BOLD	signal	therefore	provides	an	indirect	measure	for	investigating	

the	 underlying	 neural	 activity.	 This	 method	 is	 one	 of	 the	 most	 widely	 used	

techniques	for	studying	the	function	of	the	brain,	and	as	such	will	be	utilized	in	the	

current	thesis.	This	chapter	will	outline	the	statistical	fMRI	methods	applied	within	

this	 thesis	 that	 broadly	 fall	 under	 two	 categories:	 (i)	 detection	 of	 functional	

activation	 and	 (ii)	 detection	 of	 functional	 connectivity.	 The	 final	 section	 of	 this	

chapter	 will	 discuss	 additional	 approaches	 proposed	 to	 merge	 across	 functional-

activity	and	connectivity	measures.	

	

2.1.	Functional	Activity	

2.1.1.	Univariate	Analysis	

The	most	 popular	 statistical	 approach	 for	 analysing	 fMRI	 data	 is	 referred	 to	 as	 a	

univariate	general	 linear	model	 (GLM)	approach	(Friston	et	al.	1994).	This	method	

aims	 to	 detect	 voxels	 that	 are	 activated	 during	 a	 specific	 stimulus	 condition	 by	

analysing	each	voxel’s	time	series	independently	(known	as	a	“univariate	analysis”:	

Huettel,	Song	&	McCarthy,	2004;	2009).		

	

2.1.1.1.	Univariate	Analysis	Statistics	

The	GLM	approach	sets	up	a	model	derived	from	the	timing	of	the	task	in	the	MRI	

scanner,	which	creates	the	general	pattern	you	would	expect	to	see	in	the	data	(i.e.,	
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periods	when	the	stimulus	condition	were	present	and	periods	when	it	was	absent)	

(Monti,	 2011).	 This	 model	 is	 referred	 to	 as	 a	 box-car	 model.	 Next,	 because	 the	

hemodynamic	 response	 is	 a	 delayed	 process,	 each	 of	 the	 regressors	 is	 convolved	

with	a	hemodynamic	response	function	(HRF),	which	mimics	the	effect	of	the	brains	

neurophysiology	and	when	convolved	with	the	model	produces	an	expected	time-

series	of	response.	This	convolved	model	can	then	be	regressed	against	the	original	

fMRI	BOLD	signal	on	a	voxel-by-voxel	basis,	which	produces	a	whole-brain	statistical	

map	 of	 parameter	 estimates	 (regression	 coefficients).	 These	 parameter	 estimates	

reflect	 how	well	 the	model	 fitted	 the	 fMRI	 data;	 a	 large	 coefficient	 value	will	 be	

given	 if	a	particular	voxel	 responds	strongly	 to	 the	stimulus	condition	as	 it	will	be	

predicted	 well	 by	 the	model,	 whilst	 a	 smaller	 coefficient	 value	 will	 be	 given	 if	 a	

voxel	is	not	responsive	to	the	stimulus	condition	and	thus	is	predicted	poorly	by	the	

model	 (Monti,	 2011).	 This	 pipeline	 is	 illustrated	 in	 Figure	 2.1.	 Many	 stimulus	

conditions	 can	 be	 modeled	 in	 parallel,	 and	 thus	 univariate	 analysis	 allows	 for	

conditions	 to	 not	 only	 be	 contrasted	 against	 rest	 periods	 but	 also	 directly	

contrasted	 against	 one	 another	 (e.g.	 condition	 A	 >	 condition	 B).	 From	 here,	

statistical	maps	can	be	combined	across	scan	sessions	and	/	or	subjects	(Holmes	&	

Friston,	1998;	Worsley	et	al.	2002).	 In	order	 for	datasets	 to	be	comparable	within	

and	across	subjects,	 individual	results	are	warped	 into	a	common	reference	space	

(such	 as	 MNI152).	 This	 allows	 corresponding	 structures	 to	 be	 aligned	 across	

subjects	 with	 differing	 brain	 anatomy	 (Brett	 et	 al.	 2002).	 The	 final	 step	 of	 the	

univariate	analysis	is	to	threshold	the	statistical	maps	in	order	to	determine	which	

parts	 of	 the	 brain	 were	 activated,	 above	 a	 given	 threshold	 (e.g.	 z-statistic	 or	 p-

value)	 (Huettel,	 Song	 &	 McCarthy,	 2004).	 These	 thresholded	 statistical	 maps	

therefore	 reveal	 brain	 regions	 whose	 BOLD	 signal	 correlated	 with	 the	 stimulus	

condition	under	examination.		
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Figure	2.1.	Example	of	univariate	general	linear	model	(GLM)	analysis	of	functional	

MRI	data.	Top	panel	 indicates	the	general	pattern	you	would	expect	to	see	 in	the	

data	 for	 stimulus	 condition	 A	 (i.e.,	 periods	 when	 the	 stimulus	 condition	 were	

present	 and	periods	when	 it	was	absent).	A	box-car	 function	 is	 then	defined	 that	

corresponds	 to	 these	 periods	 of	 stimulus	 presentation.	 A	 hemodynamic	 response	

function	 (HRF)	 is	 then	 convolved	 with	 the	 box-car	 model	 to	 produce	 a	

hemodynamic	regressor	of	stimulus	condition	A.	Finally,	this	is	regressed	against	the	

fMRI	signal	for	each	voxel	independently.	This	results	in	a	parameter	estimate	(e.g.,	

statistical	map)	 that	 indicates	 the	 fit	of	 the	 regressors	 to	 the	 fMRI	BOLD	signal	at	

each	voxel.		

	

An	additional	process	 that	 is	often	undertaken	 is	a	 region	of	 interest	 (ROI)	

analysis	 (Friston	 et	 al.	 1994;	 Poldrack,	 2007;	 Poldrack	 et	 al.	 2011).	 This	 method	

adopts	 the	same	univariate	principles	as	discussed	above,	however	 it	 looks	at	 the	

average	activity	of	all	voxels	within	a	pre-defined	region.	There	are	several	reasons	

why	one	might	perform	an	ROI	analysis,	 for	 instance	adopting	an	ROI	analysis	can	

control	 for	 type	 1	 error	 by	 reducing	 the	 number	 of	 statistical	 tests	 to	 a	 limited	
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number	of	ROIs	 rather	 than	all	 voxels	 in	 the	entire	cortex.	Moreover,	 researchers	

can	 explore	 their	 data	 in	 pre-defined	 regions	 from	 the	 literature	 or	 a	 separate	

functional	localizer	to	help	guide	their	analysis	and	shape	interpretation	(Poldrack,	

2007).	 This	 is	 particularly	 useful	 when	 you	 have	 a	 complex	 design	 (e.g.,	 factorial	

design)	where	 there	 are	multiple	 conditions	 and	 it	 is	 unclear	which	 is	 driving	 the	

effect.	Using	an	ROI	based	approach	you	can	extract	the	signal	for	each	condition	to	

depict	 the	pattern	of	signal	across	all	conditions.	This	univariate	GLM	method	has	

been	 considered	 the	 ‘gold	 standard’	 in	 fMRI	 research	 (Mahmoudi	 et	 al.	 2012;	

Norman,	 Polyn,	 Detre	 &	 Haxby,	 2006	 )	 and	 has	 therefore	 been	 widely	 used	 for	

identifying	 brain	 regions	 associated	 with	 semantic	 processing	 and	 internally	

generated	thought.		

	

2.1.1.2.	Limitations	

Despite	the	wealth	of	knowledge	that	conventional	univariate	GLM-based	analyses	

have	provided,	they	are	not	without	limitations.	The	first	draw	back	to	this	method	

is	the	assumption	that	covariance	across	voxels	does	not	convey	information	about	

the	cognitive	function	under	investigation.	As	univariate	analysis	focuses	on	voxel-

by-voxel	 activity	 it	 neglects	 the	 information	 that	 may	 arise	 from	 the	 pattern	 of	

distributed	neighbouring	voxels.	 In	traditional	univariate	methods	this	 information	

is	considered	uncorrelated	noise	and	 is	normally	dealt	with	by	using	spatial	 filters	

that	 smooth	 BOLD	 signal	 across	 neighbouring	 voxels.	 Secondly,	 because	 these	

methods	spatially	average	across	neighbouring	voxels	that	respond	significantly	to	

that	 stimulus	 condition	 only	 responses	 that	 differ	 significantly	 from	 zero	 reflect	

stimulus-related	 neural	 activity.	 Therefore	 univariate	 analyses	 assume	 that	 sub-

threshold	 voxels	 or	 voxels	 that	 only	 marginally	 deviate	 from	 zero	 are	 non-

informative.	 Furthermore,	 this	 spatial	 averaging	 blurs	 out	 potential	 fine-grained	

spatial	 patterns	 present	 across	 neighbouring	 voxels	 that	 may	 be	 informative	 for	

discriminating	 between	 stimulus	 conditions.	 This	 limits	 the	 understanding	 of	

dimensional	 structure	 that	 may	 be	 present	 across	 subthreshold	 voxels	 and	 /	 or	

multiple	 spatially	 distributed	 voxels	 (Norman	 et	 al.	 2006).	 For	 instance,	 research	

employing	standard	univariate	methods	has	shown	that	the	anterior	temporal	lobes	

(ATL)	respond	to	both	written	forms	of	an	object	(e.g.	APPLE)	and	picture	forms	of	
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the	same	object	(Visser	et	al.	2012).	However,	 it	 is	unclear	whether	the	pattern	of	

activity	 is	 the	 same	 for	 these	 two	 modalities.	 To	 overcome	 the	 limitations	 of	

univariate	methods	 and	 address	 questions	 regarding	 the	 patterns	 of	 activity	 that	

represent	 content,	 many	 researchers	 have	 begun	 implementing	 multivariate	

methods	within	fMRI	research	(as	well	as	EEG	and	MEG;	Chan	et	al.	2011;	Murphy	

et	al.	2011;	Simanova	et	al.	2010;	Wang	et	al.	2004).	

	

2.1.2.	Multivariate	Pattern	Analysis	(MVPA)	

Whilst	 univariate	methods	 are	 sensitive	 to	 the	mean	 activity	 of	 individual	 voxels	

(Friston	et	al.	1994;	Poldrack	et	al.	2011),	multivariate	approaches	are	sensitive	to	

the	distributed	patterns	of	BOLD	 fMRI	across	multiple	voxels	 (Cox	&	Savoy,	2003;	

Haxby	et	al.	2001;	Haynes	&	Rees,	2006,	Norman	et	al.	2006).	These	methods	are	

often	referred	to	as	Multi-Voxel	or	Multivariate	Pattern	Analysis	 (MVPA).	Because	

MVPA	methods	 are	 sensitive	 to	 distributed	 patterns	 of	 activity,	 and	 thus	 able	 to	

capture	multidimensional	 effects	 (i.e.,	 different	 voxels	 within	 a	 region	 carry	 non-

identical	information	about	stimulus	conditions	(Diedrichsen	et	al.	2013)),	they	can	

overcome	 some	 of	 the	 limitations	 of	 conventional	 univariate	 approaches.	 	 For	

instance,	weak	 information	available	at	each	voxel	 that	would	be	considered	sub-

threshold	 in	 a	 standard	 univariate	 analysis	 can	 be	 gathered	 in	 an	 efficient	 way	

across	 many	 voxels	 using	 MVPA.	 Moreover,	 even	 if	 two	 voxels	 or	 ROIs	 are	 not	

informative	 to	 the	 stimulus	 condition	 in	 a	 univariate	 analysis,	 they	 might	 do	 so	

when	 analysed	 together	 (for	 review	 see	 Haynes	 &	 Rees,	 2006).	 The	 following	

sections	will	provide	a	brief	summary	of	the	different	varieties	of	MVPA	available,	

and	conclude	which	method	will	be	adopted	in	the	current	thesis.		

	

2.1.2.1.	Correlation-based	methods	 	

Haxby	and	colleagues	(2001)	first	applied	MVPA	to	fMRI	data,	where	it	was	used	to	

demonstrate	that	distributed	neural	patterns	of	activity	could	distinguish	between	

object	 categories.	 In	 this	 seminal	 paper,	 the	 authors	 used	 a	 simple	 correlation-

based	MVPA	 approach	 to	 identify	 reliable	 neural	 profiles	 in	 the	 ventral	 temporal	

(VT)	cortex	evoked	by	each	object	category.	There	are	three	basic	steps	undertaken	
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in	this	correlation	analysis.	Firstly,	MVPA	is	performed	across	a	subset	of	voxels	(i.e.,	

a	 pre-defined	 ROI)	 rather	 than	 the	 whole-brain	 volume.	 This	 step	 is	 known	 as	

feature	 selection,	where	 features	 refer	 to	 brain	 voxels.	 The	 second	 step,	 pattern	

assembly,	 involves	 organizing	 the	 fMRI	 data	 into	 discrete	 ‘brain	 patterns’.	

Parameter	estimates	are	therefore	calculated	for	each	stimulus	condition	for	each	

experimental	run,	(as	per	the	univariate	analysis).	An	advantage	of	using	the	GLM	to	

produce	 parameter	 estimates	 is	 the	 ability	 to	 include	 motion	 predictors	 in	 the	

model	 in	 order	 to	 obtain	 better	 estimates	 of	 the	 pattern	 of	 activity	 (Mur	 et	 al.	

2009).		

To	ensure	that	patterns	of	activity	are	not	contaminated	by	a	high	degree	of	

shared	variance	across	the	stimulus	conditions,	such	as	global	and	local	variations	in	

baseline	hemodynamic	response,	the	data	is	typically	normalized.	Normalization	of	

the	data	can	be	achieved	by	de-meaning	(subtracting	the	mean	across	all	stimulus	

conditions	 per-voxel	 from	 each	 stimulus	 condition)	 or	 z-scored	 normalization	 (in	

addition	to	de-meaning	each	stimulus	condition	is	divided	by	the	per-voxel	estimate	

of	 the	 standard	deviation	across	 conditions).	 Both	procedures	 remove	 the	 shared	

variance	across	conditions,	and	therefore	better	isolate	the	unique	variance	in	each	

stimulus	 condition	 (although	 z-scored	 normalization	 is	 more	 commonly	 used;	

Misaki,	 Bandettini	 &	 Kriegeskorte,	 2010).	 As	 a	 result,	 unlike	 univariate	 methods	

where	 the	main	 component	 of	 interest	 is	 the	 subject-specific	 variability	 in	mean	

activation	 across	 an	ROI,	MVPA	 captures	 the	 latent	multidimensional	 code	 across	

multiple	 voxels	 within	 a	 brain	 volume,	 and	 is	 therefore	 insensitive	 to	 the	 mean	

activation	(Davis	et	al.	2014).		

Next,	 to	 determine	 if	 these	 patterns	 of	 activity	 are	 reliable,	 it	 is	 vital	 to	

compare	stimulus	conditions	across	independent	estimates	of	the	neural	response	

(i.e.,	across	independent	runs).	This	process	is	known	as	cross-validation.	To	ensure	

that	each	split	of	the	cross-validation	process	remains	 independent,	normalization	

must	be	computed	within	each	split	independently	(Kriegeskorte	et	al.	2009).	Once	

the	 normalized	 patterns	 of	 activity	 have	 been	 generated,	 the	 third	 step	 is	 to	

conduct	 the	 correlation	 MVPA.	 For	 each	 subject,	 the	 first-half	 patterns	 are	

correlated	with	the	second-half	for	all	conditions.	This	was	the	first	study	to	show	



 54 

that	 reliable	distributed	patterns	of	 activity	 capture	multidimensional	 information	

about	stimulus	conditions.		

	

2.1.2.2.	Classification	methods	

Since	 its	 advent,	 more	 sophisticated	 methods	 for	 pattern	 recognition	 have	

emerged.	 Machine	 learning	 techniques	 originally	 developed	 for	 pattern	

classification	 of	 a	 variety	 of	 domains,	 such	 as	 handwriting	 recognition,	 have	 now	

been	successfully	applied	 to	 fMRI	data	analysis	 (Cox	&	Savoy,	2003;	Hanson	et	al.	

2004;	 Haynes	 &	 Rees,	 2006;	 Norman	 et	 al.	 2006,	 Pereira,	 Mitchell	 &	 Botvinick,	

2009).	 	 As	 these	 algorithms	 are	 more	 sophisticated	 than	 the	 original	 correlation	

method	 they	 have	 the	 potential	 to	 provide	 greater	 sensitivity	 to	 capturing	

multidimensional	 effects	 of	 stimulus	 conditions.	 Classification	 methods	 apply	 a	

function	 that	 takes	 the	 values	 of	 multiple	 features	 (i.e.,	 voxels)	 in	 a	 set	 of	

independent	 variables	 known	 as	 an	 example	 and	 predicts	 the	 class	 (i.e.,	 stimulus	

condition)	that	the	example	belongs	to	(the	dependent	variable).		The	initial	stages	

of	 a	 classification	 analysis	 are	 similar	 to	 those	 for	 a	 correlation	 method.	 Firstly,	

feature	 selection	 is	 undertaken	 where	 the	 voxels	 included	 in	 the	 classification	

analysis	need	to	be	determined	(see	Figure	2.2a).	

Secondly,	 pattern	 assembly	 is	 necessary	 to	 produce	 estimates	 of	 the	

patterns	of	response	for	independent	splits	of	the	data.	Here	parameter	estimates	

are	created	in	line	with	univariate	analysis	approach,	these	are	then	normalized,	as	

per	the	correlation	method.	Furthermore,	cross-validation	 is	necessary	 in	order	to	

examine	 how	 well	 the	 model,	 derived	 from	 the	 classification	 algorithm,	 will	

generalize	 to	 new	 stimulus	 examples.	 This	 results	 in	 independent	 training	 and	

testing	sets	(Figure	2.2b).	Since	Haxby	and	colleagues	(2001)	use	of	split-half	cross-

validation	more	 powerful	 methods	 for	 cross	 validating	 have	 been	 proposed.	 The	

most	 popular	 of	which	 is	 known	as	 leave-one-run-out	 cross-validation,	where	 the	

original	data	set	 is	partitioned	 into	 individual	 runs	and	a	single	 run	 is	 retained	 for	

validating	 the	model.	 The	model	 is	 therefore	 trained	on	N	–	1	 subsamples	of	 the	

data	(where	N	=	number	of	runs).	The	cross-validation	method	is	then	repeated	N	

times,	where	each	time	a	different	run	is	removed	from	the	training	sample,	so	that	

each	 run	 is	 the	 independent	 left-out	 run	 exactly	 once.	 The	N	 results	 can	 then	be	
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averaged	 into	 a	 single	 estimate	 of	 classifier	 accuracy.	 This	 method	 is	 considered	

superior	to	split-half	as	it	is	generally	recommended	to	choose	a	larger	training	set	

in	order	to	enhance	classifier	convergence	(Kreigeskorte	et	al.	2009;	Mahmoudi	et	

al.	 2012).	 Once	 pattern	 assembly	 has	 been	 achieved	 the	 following	 stages	 of	 the	

classifier	analysis	differ	substantially	from	the	correlation	approach.	

	
Figure	 2.2.	 Illustration	 of	 classification-based	MVPA	 adapted	 from	 Norman	 et	 al.	

(2006).	 (a)	 Participant	 views	 blocks	 of	 objects	 from	 two	 conditions	 (bottles	 and	

shoes).	Feature	selection	is	then	used	to	identify	which	voxels	will	be	included	in	the	

classification	 analysis.	 (b)	 Pattern	 assembly:	 The	 BOLD	 fMRI	 time	 series	 is	

decomposed	 into	 discrete	 patterns	 of	 activity,	 which	 produces	 estimates	 of	 the	

patterns	of	response	for	independent	splits	of	the	data.	Here	parameter	estimates	

are	created	in	line	with	univariate	analysis	approach.	Each	pattern	of	brain	activity	

is	 labelled	 with	 its	 corresponding	 stimulus	 condition	 (e.g.,	 bottle	 or	 shoe).	 These	

patterns	are	 then	divided	 into	 independent	 training	and	 testing	 sets.	 (c)	Classifier	

training:	 a	 classifier	 function	 is	 then	 trained	 on	 the	 training	 set	 to	map	 between	

brain	patterns	and	stimulus	conditions.	(d)	Red-dashed	line	represents	the	classifier	
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derived	 decision	 boundary	 in	 the	 high-dimensional	 space	 of	 voxel	 patterns	

(depicted	 here	 in	 2-D	 for	 illustrative	 purposes).	 Each	 dot	 denotes	 the	 associated	

pattern	of	activity	and	the	colour	of	the	dot	indicates	its	stimulus	condition	(shoe	or	

bottle).	 The	 background	 colour	 corresponds	 to	 the	 guess	 the	 classifier	makes	 for	

patterns	 in	 that	 region	 (blue	=	shoe;	green	=	bottle).	The	 trained	classifier	 is	 then	

used	 to	predict	category	membership	 for	patterns	 from	the	 independent	 test	 set.	

The	 figure	 shows	 (i)	 a	 successful	 classification	where	 a	 bottle	 pattern	 (green	dot)	

was	accurately	classified	as	a	bottle,	and	(ii)	an	unsuccessful	classification	where	a	

shoe	pattern	(blue	dot)	was	misclassified	as	a	bottle.	

	

	 The	third	step	in	the	classifier	analysis	is	known	as	classifier	training,	which	

involves	 passing	 a	 set	 of	 labelled	 patterns	 into	 a	 MVPA	 classification	 algorithm	

(known	as	the	training	set).	This	algorithm	learns	a	function	that	maps	between	the	

stimulus	 conditions	 and	 the	 voxel	 activity	 patterns.	 Within	 this	 step,	 the	 most	

pivotal	 decision	 is	 choosing	 which	 classifier	 to	 train.	 There	 are	 many	 different	

classification	algorithms	available	(for	review	see	Duda	et	al.	2012).	In	general	these	

classifiers	can	be	split	into	two	branches:	(i)	linear	classifiers,	such	as	support	vector	

machine	(SVMs)	(Correia	et	al.	2014;	LaConte	et	al.	2005;	Kamitani	and	Tong,	2005)	

and	Gaussian	Naïve	Bayes	classifiers	(GNB)	(Mitchell	et	al.	2004)	and	(ii)	nonlinear	

classifiers,	 such	 as	 non-linear	 SVMs	 (Cox	 &	 Savoy,	 2003;	 Kamitani	 &	 Tong,	 2005;	

Kragel,	Carter	&	Huetel,	2012).	The	main	difference	between	these	two	branches	is	

that	 nonlinear	 classifiers	 can	 capture	 multidimensional	 conjunctions	 between	

features	 in	 a	 way	 that	 differs	 from	 their	 response	 to	 individual	 features.	

Consequently,	nonlinear	 classifiers	are	 considered	potentially	more	powerful	 than	

linear	classifiers,	as	they	are	more	flexible	in	the	types	of	mappings	they	can	learn	

(Norman	 et	 al.	 2006).	 However,	 a	 growing	 body	 of	 research	 has	 shown	 that	

nonlinear	 classifiers	 perform	 no	 better	 (and	 occasionally	 worse)	 than	 linear	

classifiers	(Cox	&	Savoy,	2003;	LaConte	et	al.	2005;	Misaki	et	al.	2010).	This	poorer	

performance	has	been	attributed	 to	overfitting,	as	 the	decision	boundary	 is	more	

flexible	 and	 therefore	 is	 likely	 to	 capture	 the	 idiosyncrasies	 of	 the	 noise	 in	 the	

training	data	(Duda	et	al.	2000;	Kriegeskorte	et	al.	2009).	Furthermore,	it	has	been	

suggested	 that	 a	 ‘good	 performance’	 in	 a	 nonlinear	 classifier	 is	 more	 difficult	 to	
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interpret	than	a	‘good	performance’	in	a	linear	classifier	(for	discussion	see	Norman	

et	 al.	 2006;	 Kamitani	 &	 Tong,	 2005).	 Therefore,	 due	 to	 their	 simplicity	 and	

sensitivity,	 linear	 classification	 is	 the	most	 commonly	used	and	 successful	 pattern	

classifier	 analysis	 in	 neuroimaging	 so	 far	 (Corriea	 et	 al.	 2014;	 Countanche	 &	

Thompson-Schill,	2014;	Cox	&	Savoy,	2003;	LaConte	et	al.	2005;	Misaki	et	al.	2010;	

Mur,	Bandettini	&	Kriegeskorte,	2009;	Norman	et	al.	2006).	In	light	of	this	evidence,	

the	current	thesis	will	focus	on	using	linear	classifiers.		

	 Once	trained,	all	linear	classifiers	place	a	separating	decision	boundary	(i.e.,	

hyperplane)	between	different	conditions	 in	the	multidimensional	space.	 In	Figure	

2.2d	 the	 multivariate	 pattern	 of	 activity	 for	 two	 experimental	 conditions	 are	

represented	 by	 blue	 (shoe	 condition)	 and	 green	 (bottle	 condition)	 dots.	 The	 red	

dashed	 line	 separating	 these	 two	 conditions	 is	 the	 classifier	 derived	 decision	

boundary.	 However,	 where	 the	 boundary	 is	 placed	 differs	 subtly	 across	 the	

different	linear	classification	methods	(Mur	et	al.	2009).	Two	of	the	most	commonly	

used	 linear	 classifiers	 are	 SVMs	 and	 GNBs	 (for	 extensive	 discussion	 on	 the	

mathematics	of	a	wide	variety	of	pattern	classification	 techniques	see	Duda	et	al.	

2001).		

Linear	 SVMs	 weight	 each	 voxels	 activity	 and	 then	 project	 these	 patterns	

onto	 a	 linear	 discrimination	 dimension	 in	 order	 to	 maximize	 the	 margin	 (i.e.,	

distance	of	the	closest	data	point	to	the	hyperplane)	(see	Figure	2.3	adapted	from	

Mur	 et	 al.	 2009).	 Linear	 SVM	 classifiers	 do	 not	 assume	 multivariate	 normality.	

Instead,	the	margins	are	widened	on	either	side	of	the	decision	boundary,	until	the	

margin	 cannot	 be	 widened	 anymore	 without	 including	 more	 than	 one	 stimulus	

conditions	 data	 points	 (i.e.,	 blue	 dots	 should	 be	 on	 one	 side	 of	 the	 decision	

boundary	 and	 red	 on	 the	 other).	 The	 triangles	 indicate	 the	 patterns	 of	 activity	

closest	to	the	decision	boundary.	These	points	(known	as	“support	vectors”)	define	

the	margins	and	the	decision	boundary	is	placed	in	the	middle	of	these.	Whichever	

side	of	the	decision	boundary	a	data	point	is	closet	to	will	be	the	stimulus	condition	

to	which	that	point	will	be	assigned.	

In	 contrast,	 GNB	 classifiers	model	 each	 voxels	 activity	 as	 Gaussians	 (Ng	&	

Jordan,	 2002;	 Raizada	 &	 Lee,	 2013).	 Firstly	 this	 method	 calculates	 the	 z-score	

distances	 for	each	stimulus	condition;	 therefore	the	model	 takes	 into	account	not	
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only	 the	 distance	 of	 each	 voxel	 from	 the	mean	 but	 also	 how	 it	 compares	 to	 the	

stimulus	 condition	 variance	 (see	 Figure	 2.3).	 The	 “Gaussian”	 part	 of	 GNB	 is	

highlighted	 in	 the	 assumption	 that	 the	 stimulus	 conditions	 have	Gaussian	 normal	

distributions.	Each	z-score	distance	is	then	converted	into	a	p-value;	probability	of	

observing	a	given	data	point	if	that	data	point	were	drawn	from	the	distribution	of	a	

particular	stimulus	condition.	However,	the	purpose	of	a	classifier	is	to	calculate	the	

probability	of	a	stimulus	condition,	given	our	observed	data.	Therefore	the	“Bayes”	

part	of	 the	GNB	classifier	adopts	Bayes	theorem	to	derive	each	from	one	another	

(predict	 stimulus	 condition	 from	 data	 and	 predict	 data	 from	 stimulus	 condition).	

Finally,	 the	“Naive”	part	of	GNB	treats	all	of	 the	 input	dimensions	as	 independent	

from	 each	 other.	 As	 a	 result	 GNB	 classifiers	 do	 not	model	 the	 covariance	 of	 the	

dimensions.	In	sum,	the	GNB	classifier	calculates	distances	from	stimulus-condition-

centers	 and	 positions	 a	 decision	 boundary	 halfway	 between	 the	 two	 centers.	

Whichever	center	a	data	point	 is	closet	 to	will	be	the	stimulus	condition	to	which	

that	point	will	be	allocated.		

	
Figure	2.3.	Hypothetical	illustrations	of	classification	by	different	classifiers	adapted	

from	Mur	et	al.	(2009).		

	

To	determine	the	most	powerful	linear	classification	method,	several	studies	

have	directly	compared	the	sensitivity	of	 linear	SVMs	and	GNBs,	as	well	as	several	

other	 classifiers	 (e.g.,	 fishers	 linear	 discriminant	 analysis	 (LDA)	 and	 k-nearest-

neighbour	classifiers	 (KNN);	Duda	et	al.	2001).	Mitchell	et	al.	 (2004)	present	three	

studies	 where	 classifiers	 were	 used	 to	 distinguish	 cognitive	 states	 between	 (i)	

pictures	or	sentences,	(ii)	ambiguous	or	non-ambiguous	sentences	and	(iii)	category	
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of	words	(e.g.,	food,	buildings	etc.).	They	found	that,	despite	having	a	large	number	

of	features	(>	100,000)	and	less	than	a	dozen	noisy	training	examples	per	stimulus	

condition,	 linear	 SVMs	 out	 performed	 both	 GNB	 and	 KNN	 classifiers	 (with	 KNN	

coming	 off	 as	 the	 worst	 performing	 across	 all	 three	 studies).	 Notably,	 they	

illustrated	 that	 SVMs	 performance	 increases	 when	 the	 number	 of	 features	 is	

reduced,	and	the	number	of	training	examples	increases.	Similar	results	have	been	

shown	in	high-resolution	imaging	of	BOLD	signals	in	monkeys	(Ku	et	al.	2008).	Here,	

the	authors	compared	classifier	performance	across	both	single	trials	and	averaged	

across	 numerous	 stimulus	 presentations.	 In	 general,	 GNB	 classifiers	 performed	

significantly	worse	than	all	other	classifiers	across	all	modes	of	testing,	while	SVMs	

and	 LDAs	 consistently	 out-performed	 correlation	 and	 GNB	 classifiers.	 However,	

Ledoit	 &	 Wolf	 (2003)	 illustrated	 that	 linear	 SVMs	 handle	 limited	 data	 in	 high-

dimensional	 space	 more	 effectively	 than	 LDAs	 (which	 may	 require	 an	 additional	

regularized	 covariance	 estimate).	 As	 fMRI	 data	 typically	 produces	 many	 more	

features	than	examples,	SVMs	are	potentially	better	equipped	at	dealing	with	this	

limited	data	than	LDA.	Taken	together,	these	findings	suggest	that	linear	SVMs	are	

arguably	the	most	powerful	classification	method;	it	is	therefore	not	surprising	that	

linear	SVMs	are	the	most	popular	classification	method	(Mur	et	al.	2009).		

However,	 to	perform	a	 linear	SVM	classification	 successfully	 it	 is	 critical	 to	

effectively	reduce	the	number	of	features	used	in	the	classification	analysis.	This	is	

particularly	 important	given	the	 findings	 that	a	classifier	performance	 is	known	to	

degrade	 in	 the	 presence	 of	 many	 irrelevant	 features,	 known	 as	 over-fitting,	

particularly	when	the	number	of	training	sets	is	somewhat	limited,	as	in	typical	fMRI	

studies	 (Guyon	 &	 Elisseef,	 2003,	 Kohavi	 &	 John,	 1997,	 Norman	 et	 al.	 2006).	 A	

common	method	 for	 reducing	 the	number	of	 features	 (i.e.,	 voxels)	 is	 known	as	 a	

searchlight-analysis	(Kriegeskorte	et	al.	2006).	Here,	instead	of	analysing	distributed	

fMRI	 activity	 patterns	 contained	 within	 all	 the	 voxels	 in	 a	 predefined	 ROI	 -	 that	

could	 potentially	 contain	 hundreds	 of	 thousands	 of	 voxels	 (Cox	 &	 Savoy,	 2003;	

Haxby	et	al.	2001)	-	a	spherical	“searchlight”	can	be	moved	throughout	a	functional	

volume	to	continuously	map	informative	regions.	The	searchlight	is	centred	on	each	

voxel	in	turn.	The	size	of	the	searchlight	can	vary	(see	Kriegeskorte	et	al.	2006)	but	

typically	 a	 6-mm	 radius	 is	 used,	which	 is	 comprised	of	 123	2	mm	voxels.	At	 each	
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location,	a	multivariate	classifier	 can	 then	be	computed	on	 the	pattern	of	activity	

across	 neighbouring	 voxels	 within	 the	 searchlight	 sphere.	 The	 accuracy	 of	 each	

sphere	 is	 then	allocated	 to	 the	central	voxel	of	 that	 sphere.	Resulting	 in	a	whole-

volume	 accuracy	 map	 that	 depicts,	 for	 each	 voxel	 in	 the	 volume,	 how	 well	 the	

pattern	 of	 activity	 in	 the	 local	 spherical	 neighbourhood	 decodes	 between	 the	

stimulus	conditions.	Moreover,	as	pattern	classification	has	been	shown	to	be	most	

sensitive	to	information	in	contiguous	macroscopic	regions,	the	use	of	a	searchlight	

is	optimal	for	sampling	of	informative	voxels	(Kriegeskorte	et	al.	2006).		

So	 far	 this	 chapter	has	discussed	 the	 first	 three	 stages	of	 the	classification	

method:	feature	selection,	pattern	assembly	and	classifier	training.	The	fourth	step	

in	 the	 classification	 method	 is	 known	 as	 generalization	 testing.	 Here	 the	

classification	model	 is	fed	a	new	unseen	pattern	of	brain	activity	and	the	classifier	

has	 to	determine	which	 stimulus	 condition	 is	 associated	with	 that	pattern.	 In	 the	

case	 of	 leave-one-run-out	 cross-validation	 the	 ‘unseen’	 data	 refers	 to	 the	

independent	left	out	run.	Accuracy	scores	are	averaged	across	N	folds	of	the	cross-

validation	 (N	 =	 number	 of	 runs),	 resulting	 in	 whole-volume	 accuracy	 maps	 that	

depict,	 for	 each	voxel	 in	 the	 volume,	how	well	 the	pattern	of	 activity	 in	 the	 local	

spherical	neighbourhood	decodes	between	the	stimulus	conditions.		

The	 final	 step	 in	 the	 classification	 method,	 statistical	 thresholding,	 is	 to	

determine	which	results	are	statistically	significant.	Typically,	this	is	done	across	all	

participants	in	order	to	make	group-level	inferences	(Raizada	&	Lee,	2013).	First,	for	

each	 individual	 searchlight	 map,	 the	 chance-level	 score	 (50%	 for	 binary	

classification)	 is	 subtracted	 from	 the	 classification	 accuracy	 score	 (e.g.,	 61%)	

assigned	 to	 each	 voxel.	 This	 adjusted-score	 map	 can	 then	 be	 submitted	 to	 a	

standard	random	effects	analysis.	Here	searchlight	maps	across	all	participants	can	

be	 thresholded	 and	 corrected	 for	 multiple	 comparisons	 using	 family	 wise	 error	

(FWE)	and	/	or	false	discovery	rate	(FDR)	(Kragel	et	al.	2012;	LaConte,	2005;	Raizada	

&	Lee,	2013).	 The	 resulting	maps	 indicate	where,	within	 the	brain	 volume,	 voxels	

could	decode	between	stimulus	conditions	at	significantly	above	chance-level	(e.g.,	

50%).		

	

2.1.2.3.	Limitations	
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Despite	its	superior	ability	to	detect	distributed	patterns	of	activity	across	multiple	

voxels,	it	is	worth	briefly	noting	that	pattern	classification	is	not	without	limitations.	

One	drawback	of	the	MVPA	method	 is	voxel	resolution,	as	the	spatial	 information	

about	 neural	 populations	 codes,	 provided	 by	 fMRI,	 is	 limited.	 For	 instance,	 the	

BOLD	signal	in	a	2mm	voxel	(common	voxel	dimension	for	3T	fMRI	studies)	carries	

information	about	 the	underlying	neural	 activity	of	many	 voxels.	 The	 fine-grained	

activity	patterns	 across	 these	 voxels	may	not	 reflect	precise	 fine-grained	patterns	

because	 of	 hemodynamic	 blurring	 and	 distortion	 (Mur	 et	 al.	 2009).	 This	 caveat	

alters	 the	 interpretation	 that	 can	 be	 drawn	 from	 fMRI	MVPA,	 specifically,	 that	 a	

change	of	activity	patterns	across	stimulus	conditions	can	only	be	interpreted	as	a	

change	of	neural	population	activity.	The	use	of	high-resolution	MRI	scanners	(7T)	

has	been	proposed	as	a	way	to	reduce	this	 limitation,	however	this	 is	beyond	the	

resources	available	within	the	current	thesis.		

	

2.1.2.4.	Summary	of	MVPA	methods	

In	light	of	the	methods	outlined	above	it	is	clear	that	there	are	many	different	forms	

of	MVPA,	the	following	section	will	briefly	outline	the	specific	classification	methods	

that	will	be	adopted	in	the	current	thesis.	Firstly,	after	reviewing	the	strengths	and	

weaknesses	of	different	MVPA	methods	it	is	evident	that	linear	SVM	classifiers	are	

superior	 at	 decoding	 underlying	 patterns	 of	 activity	 associated	 with	 stimulus	

conditions,	particularly	so	when	feature	selection	is	restricted	(Mitchell	et	al.	2004;	

Ku	et	al.	2008).		Linear	classifiers	are	often	praised	for	their	simplicity	(Pereira	et	al.	

2009)	 and	 over	 the	 past	 decade	 an	 increase	 in	 software	 packages	 have	 emerged	

such	as	LIBSVM	(Chang	&	Lin,	2011)	and	PyMVPA	(Hanke	et	al.	2009),	making	linear	

SVM	 classifiers	 more	 standardized	 across	 the	 neuroimaging	 field.	 Secondly,	 a	

powerful	and	widely	used	method	for	reducing	the	number	of	features	fed	into	the	

classifier	 is	known	as	a	searchlight	analysis	(Kriegeskorte	et	al.	2006).	This	method	

iterates	 a	 spherical	 “searchlight”	 across	 the	 entire	 brain	 volume,	 centring	 this	

searchlight	 on	 each	 voxel	 in	 turn.	 All	 neighbouring	 voxels	 that	 fall	 within	 this	

searchlight	 are	 included	 as	 features	 within	 the	 classification.	 As	 pattern	

classification	 has	 been	 shown	 to	 be	 most	 sensitive	 to	 information	 in	 contiguous	

macroscopic	regions,	the	use	of	a	searchlight	has	been	commended	for	its	capacity	
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to	 optimize	 sampling	 of	 informative	 voxels	 (Kriegeskorte	 et	 al.	 2006).	 Finally,	 to	

improve	 classification	 performance	 a	 leave-one-out-cross-validation	 method	 is	

suggested.	 This	 method	 maximizes	 the	 amount	 of	 data	 the	 classifier	 trains	 on,	

improving	the	classifiers	chance	at	learning	the	latent	multidimensional	patterns	of	

activity	associated	with	different	stimulus	conditions,	whilst	reducing	the	chances	of	

over-fitting	(Kriegeskorte	et	al.	2009).	In	light	of	this,	the	current	thesis	will	adopt	a	

searchlight-analysis,	 to	 reduce	 feature	 selection,	 with	 a	 leave-one-run-out	 cross	

validation	method	in	conjunction	with	a	linear	SVM.		

	 		

2.1.3.	Combining	MVPA	and	Univariate	Methods	

As	discussed,	MVPA	has	been	successfully	employed	to	detect	a	broader,	and	often	

more	 subtle,	 class	 of	 task-related	 effects	 compared	 to	 traditional	 univariate	

methods.	 Notably,	 MVPA	 has	 been	 successfully	 used	 to	 investigate	 the	 neural	

mechanisms	 underlying	 the	 representation	 of	 language-independent	 concepts	 in	

the	 brain.	 For	 instance,	 Correia	 et	 al.	 (2014)	 presented	 bilingual	 subjects	 with	

animal	 nouns	 in	 both	 English	 and	 Dutch.	 A	 classifier	 was	 trained	 to	 see	whether	

patterns	of	 activity	 trained	 to	distinguish	between	 spoken	nouns	 in	one	 language	

(e.g.,	“horse”	vs.	“duck”	in	English)	could	accurately	predict	the	same	distinction	in	

the	other	 language	 (e.g.,	 “paard”	 vs.	 “eend”	 in	Dutch).	 This	 cross-modal	 classifier	

revealed	a	 significant	 cluster	 in	 the	 left	 superior	ATL,	 lending	 to	 the	 idea	 that	 the	

ATL	 is	 a	 region	 that	 organizes	 conceptual	 information	 in	 a	 language-invariant	

manner	 (i.e.,	 abstracted	 away	 from	 input	 modality).	 Furthermore,	 Coutanche	 &	

Thomspon-Schill	 (2014)	 successfully	 employed	MVPA	 to	 reveal	 stable	 patterns	 of	

activity	across	several	cortical	regions	(e.g.,	ATL	and	V4)	that	captured	information	

about	 objects	 that	 participants	 were	 merely	 imagining	 (e.g.,	 thinking	 about	 an	

orange).	Notably,	both	of	these	papers	highlight	how	these	findings	would	not	have	

been	achieved	using	univariate	approaches.		

Oftentimes,	 however,	 in	 addition	 to	 exploiting	 MVPAs	 superior	 ability	 to	

detect	 stimulus-conditions	 researchers	 are	 also	 interested	 in	 comparing	 between	

MVPA	and	univariate	results	to	draw	inferences	about	how	task-related	effects	are	

coded	 in	 the	 brain	 (Correia	 et	 al.	 2014;	 Coutanche,	 2013;	 Fairhall	 &	 Caramazza,	
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2013;	 Jimura	 &	 Poldrack,	 2012;	 Peelen	 &	 Caramazza,	 2012;	 Tusche,	 Smallwood,	

Bernhardt	 &	 Singer,	 2014),	 as	 MVPA	 captures	 distributed	 coding	 of	 information	

whereas	univariate	analysis	is	sensitive	to	global	engagement	in	ongoing	tasks	–	all	

voxels	changing	their	activity	in	the	same	direction.	Therefore	the	results	from	both	

methods	will	be	reported	in	the	current	thesis.	Specifically,	in	Chapter	3	MVPA	will	

used	 to	 address	 research	 aims	 1	 and	 2	 of	 this	 thesis:	 (i)	 understand	 what	 the	

patterns	 of	 activity	 in	 unimodal	 cortex	 represent	 (e.g.,	modality	 of	 input;	 spoken	

versus	written	words	or	modality	meaning;	light	vs.	bright),	and		(ii)	localise	where	

in	 the	 ATL	 representations	 are	 truly	 decoupled	 from	 sensory	 input	 (e.g.,	

transmodal).	 While	 univariate	 analysis	 will	 be	 used	 to	 investigate	 the	

unimodal/transmodal	 properties	 of	 our	 MVPA	 findings.	 In	 Chapter	 4	 MVPA	 will	

examine	perceptually-decoupled	 forms	of	 semantic	 retrieval	 (research	 aim	3)	 and	

establish	 which	 brain	 regions	 can	 decode	 sensory	 features	 in	 imagination,	 in	 the	

absence	 of	 input	 (i.e.,	 thinking	 about	what	 something	 sounds	 like	 versus	what	 it	

looks	like),	while	univariate	analysis	will	be	performed	to	interrogate	which	regions	

are	 crucial	 for	 producing	 internally	 generated	 thoughts	 across	 all	 experimental	

conditions.	 Finally,	 to	 identify	 circumstances	 in	 which	 regions	 of	 the	 transmodal	

default	 mode	 network	 shows	 above	 baseline	 activation	 during	 semantic	 tasks	

(research	 aim	 4),	 Chapter	 5	 will	 use	 univariate	 analysis	 to	 detect	 brain	 regions	

involved	in	tasks	when	information	is	either	present	or	not	present	in	the	external	

world,	 and	 compare	 this	 to	 brain	 regions	 that	 are	 interested	 in	 conceptually	

complex	(Dalmatian)	versus	simple	(colour	patch).		

	

2.2.	Functional	connectivity	

Since	 its	 discovery	 in	 1990	by	Ogawa	 and	 colleagues	BOLD	 fMRI	 has	 been	widely	

used	as	a	tool	for	detecting	functional	activation:	univariate	methods	capture	global	

activity	and	MVPA	approaches	capture	distributed	patterns	of	activity.	Whilst	these	

forms	of	analysis	have	been	integral	for	understanding	the	function	of	specific	brain	

regions	 they	 fail	 to	 fully	 capture	 the	 interactions	 between	 spatially	 distributed	

regions	that	arguably	underpin	these	brain	activations.	It	therefore	remains	unclear	

whether	 there	 is	 a	 core	 network	 within	 the	 brain	 that	 underlies	 conceptual	
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knowledge	across	an	array	of	complex	stimulus	domains	(e.g.,	perceptually-coupled	

versus	 perceptually-decoupled).	 As	 our	 brain	 consists	 of	 spatially	 distributed,	 but	

functionally	associated	brain	regions	that	continuously	share	information	with	each	

other	 (Van	 Den	 Huevel	 &	 Pol,	 2010),	 recent	 methodological	 advances	 are	 now	

moving	 beyond	 the	 localization	 of	 task-related	 responses,	 as	 outlined	 in	 the	

previous	sections,	to	capturing	connectivity	of	remote	brain	areas.	These	methods	

provide	 conceptually	 complimentary	 evidence	 to	 the	 inferences	made	 from	 task-

fMRI	 data	 and	 as	 such	 are	 increasingly	 being	 applied	 across	 a	 variety	 of	 fields	 of	

neuroscience	to	further	 inform	our	knowledge	of	the	fundamental	organisation	of	

processing	systems	in	the	human	brain.		

	

2.2.1.	Resting-state	connectivity		

fMRI	 can	 be	 used	 as	 a	 means	 for	 studying	 the	 dynamics	 of	 neural	 networks	 by	

tracking	BOLD	response	characteristics	across	spatial	and	temporal	scales	(Aertsen	

et	 al.	 1989;	 Logothetis	 et	 al.	 2001;	 Lowe	 et	 al.	 2000).	 This	 technique,	 known	 as	

resting-state	 fMRI	 or	 functional	 connectivity,	 captures	 the	 co-activation	 (i.e.,	

temporal	dependence)	of	neuronal	activation	in	distributed	brain	regions	across	the	

fMRI	time	series,	during	rest	(Lowe	et	al.	2000).	This	co-activation	is	taken	to	reflect	

“functional	 communication”	 between	 brain	 regions	 (Damoiseaux	 et	 al.	 2006;	

Salvador	 et	 al.	 2005;	 Scholvinck,	 et	 al.	 2010).	 Investigating	 the	 resting-state	

connectivity	 highlights	 the	 ongoing	 spontaneous	 brain	 activity	 in	 the	 absence	 of	

cognitive	or	sensory	stimulation	(Scholvinck,	et	al.	2010).	Since	the	seminal	paper	by	

Biswal	et	al.	(1995)	where	functional	connectivity	was	first	used	to	show	that	BOLD	

signal	 time	 course	within	motor	 cortex	 strongly	 correlated	with	 the	 contralateral	

motor	 region	 during	 rest,	 many	 researchers	 have	 questioned	 what	 exactly	

functional	 connectivity	 is	 capturing	 and,	more	 specifically,	whether	 it	 provides	 (i)	

indirect	 information	 about	 anatomical	 connectivity,	 (ii)	 correlation	 patterns	 that	

emerge	from	common	inputs	(i.e.,	‘information	about	neuromodulatory	input	from	

ascending	neurotransmitter	 systems	or	 thalamo-cortical	 afferents’	 (Van	Dijk	 et	 al.	

2010))	or	 (iii)	both.	The	 following	section	will	briefly	outline	 the	current	 literature	

surrounding	this	topic	(for	extensive	review	see	Damoiseaux	&	Grecius,	2009).		
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Several	 lines	 of	 evidence	 suggest	 that	 BOLD	 fluctuations	 captured	 by	

functional	 connectivity	 are	 constrained	 by	 anatomic	 connectivity.	 For	 example,	

Margulies	 and	 colleagues	 (2009)	 revealed	 that	 in	monkeys	 functional	 connectivity	

corresponded	to	tracer	injections	in	several	distinct	pathways.	However,	it	has	also	

been	 shown	 that	 functional	 connectivity	 exists	between	 regions	 that	do	not	have	

direct	 anatomical	 connectivity	 (e.g.,	 bilateral	 primary	 visual	 cortex;	 Vincent	 et	 al.	

2007).	 Several	 studies	 investigating	 cerebro-cerebellar	 circuits	have	demonstrated	

that	 functional	 connectivity	 also	 reflects	 long-range	 polysnaptic	 connections	

(Krienen	 &	 Buckner,	 2009;	 O’Reilly	 et	 al.	 2010).	 The	 cerebellum	 is	 connected	 to	

other	 cerebral	 regions,	 not	 via	 direct	 anatomical	 projections,	 but	 via	 long-range	

polysynaptic	 circuits.	These	 functional	 connectivity	 studies	 showed	 that,	despite	a	

lack	of	anatomical	connectivity,	 the	cerebellum	was	correlated	with	activity	 in	the	

motor	 cortex.	 In	 light	 of	 this,	 functional	 connectivity	 is	 thought	 to	 capture	 both	

anatomical	connectivity	and	polysynaptic	connectivity	(i.e.,	correlation	patterns	that	

emerge	from	common	inputs).			

	 Over	the	past	15	years	this	method	has	gained	popularity	and	has	revealed	

several	 distinct	 networks	 of	 correlated	 activity	 in	 the	brain	 (for	 review	 see	 Fox	&	

Raichle,	2007;	Cole,	Smith	&	Beckmannn,	2010;	Yeo	et	al.	2011)	including	visual	and	

auditory	 networks	 (Bianciardi	 et	 al.	 2009;	 Damoiseaux	 et	 al.	 2006;	 Hunter	 et	 al.	

2006),	the	dorsal	attentional	network	(Fox	et	al.	2005;	2006),	the	language	system	

(Hamspon	 et	 al.	 2002),	 medial	 temporal	 lobe	 memory	 systems	 and	 the	 default-

mode	 network	 (DMN;	 Buckner	 et	 al.	 2008;	 Fox	 et	 al.	 2005;	 Greicius	 et	 al.	 2003;	

2004)	and	the	frontoparietal	control	network	(Vincent	et	al.	2008).	For	 illustration	

of	 these	 networks	 see	 Figure	 2.4	 adapted	 from	 Yeo	 et	 al.	 (2011).	 These	 studies	

emphasize	that	during	rest	the	brain	is	not	idle,	but	instead	shows	a	large	amount	

of	spontaneous	activity	that	is	highly	correlated	between	brain	regions.	Importantly,	

these	 networks	 reflect	 brain	 regions	 that	 have	 been	 shown	 to	 typically	 work	

together	during	task-based	fMRI	experiments.		
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Figure	 2.4.	 The	 7-network	 adapted	 from	 Yeo	 et	 al.	 (2011).	 Large-scale	 cortical	

networks	 identified	 through	 resting-state	 connectivity	 analysis.	 Each	 of	 the	 7	

networks	are	depicted	by	a	unique	 colour:	 visual	 (dark	purple),	 dorsal	 attentional	

(green),	 ventral	 attentional	 (violet),	 frontoparietal	 control	 (orange),	 somatomotor	

(blue),	default	mode	(red),	limbic	(cream).		

	

Despite	 an	 increase	 in	 the	 number	 of	 functional	 connectivity	 studies,	

deciphering	 the	appropriate	methods	 to	analyse	 this	data	 remains	a	 controversial	

topic	(Cole,	Smith	&	Beckmannn,	2010).	Current	debates	in	the	literature	include	(i)	

how	to	successfully	 remove	the	effect	of	nuisance	covariates	 (such	as	 respiration-

induced	 fMRI	 signal	 and	motion-related	 artifacts:	 Birn	 et	 al.	 2006;	Murphy	 et	 al.	

2009)	to	improve	the	quality	of	resting-state	data	and	(ii)	which	statistical	analyses	

are	 most	 appropriate	 for	 functional	 connectivity	 (for	 review	 see	 Cole,	 Smith	 &	

Beckmann,	2010).	As	such,	this	field	has	seen	a	rapid	growth	in	both	pre-processing	

and	statistical	analysis	methods.	The	 following	 section	will	 review	 these	methods,	

outlining	the	strengths	and	caveats	of	each,	and	conclude	with	which	approach	will	

be	adopted	in	the	current	thesis.	

	

2.2.1.1.	Acquisition	
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Resting-state	 connectivity	 involves	 participants	 lying	 in	 an	 MRI	 scanner	 for	 an	

allotted	 time	 (typically	5-10	minutes)	without	an	explicit	 stimulus	or	 task	present.	

During	this	time	they	are	asked	to	think	about	nothing	in	particular,	without	falling	

asleep.	Measurement	during	rest	is	advantageous	as	it	minimizes	task-related	BOLD	

fMRI	fluctuations	(Van	Dijk	et	al.	2010).	Just	as	in	conventional	task-based	fMRI,	the	

BOLD	fMRI	signal	is	measured	throughout	the	resting-state	scan.		

	

2.2.1.2.	Functional	connectivity	pre-processing	

For	 functional	 connectivity	 the	 initial	 pre-processing	 steps	 are	 similar	 to	 those	

routinely	applied	to	traditional	task-based	BOLD	fMRI	data	(Beckmann	et	al.	2005);	

including	 slice-timing	 correction	 for	 slice	 dependent	 time	 shifts	 /	 intensity	

differences	and	spatial	smoothing.	However,	unlike	univariate	and	MVPA	methods,	

which	employ	a	high	pass	filtering,	functional	connectivity	typically	applies	low	pass	

filtering	to	retain	frequencies	less	than	0.1	Hz	(Biswal.	1995;	Lowe	et	al.	2000).	Low	

pass	filtering	is	necessary	to	remove	signal	from	cardiac	and	respiratory	oscillations	

that	 typically	 occur	 above	 0.3	 Hz	 (Corders	 et	 al.	 2001).	 The	 resulting	 low-pass	

filtered	 data	 is	 therefore	 thought	 to	 reflect	 a	 neuronal	 basis	 of	 functional	

connectivity	 (as	 opposed	 to	 signal	 explained	 by	 physiological	 responses	 such	 as	

cardiac	 and	 respiratory	 noise).	 Removal	 of	 this	 noise	 is	 pivotal	 as	 physiological	

sources	 of	 noise	 produce	 time	 dependent	 changes	 in	 the	 magnetic	 field	 due	 to	

subject’s	 chest	 movements	 (Brosch	 et	 al.	 2002),	 moreover	 it	 is	 has	 been	

demonstrated	 that	variations	 in	 the	static	magnetic	 field	within	brain	 tissue	occur	

due	to	respiration	(Raj	et	al.	2001).		

Although	temporal	filtering	reduces	cardiac	and	respiratory	related-noise,	it	has	

been	 shown	 that	 these	 physiological	 noises	 alias	 in	 the	 low	 frequency	 range	 (~	

0.1Hz)	 due	 to	 the	 long	 TR	 (~	2-3	 s)	 typically	 used	 in	 standard	 resting-state	 BOLD	

sequences	 (Bhattacharyya	 &	 Lowe,	 2004;	 Lowe	 et	 al.	 1998).	 Utilizing	 external	

recordings	 of	 physiological	 noise	 (e.g.,	 recording	 cardiac,	 respiratory	 and	 blood	

pressure	 traces)	 allows	 researchers	 to	model	 these	 responses	 and	 remove	 these	

estimates	 from	 each	 voxels	 time	 series.	 However,	 there	 are	 many	 reasons	 why	

obtaining	 physiological	 recordings	 is	 not	 routinely	 done	 in	 the	 field	 of	 functional	
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connectivity:	 for	 instance,	 lack	 of	 equipment,	 data	 corruption	 and	 non-

compliant/uncomfortable	subjects	(Murphy	et	al.	2009).			

Therefore,	more	advanced	statistical	methods	have	been	developed	to	reduce	

physiological	 causes	 of	 noise	 in	 functional	 connectivity	 data.	 This	 is	 particularly	

important	 in	 resting-state	analysis	as,	unlike	 traditional	 task-based	BOLD	activity	 -	

where	 the	 timing	 of	 the	 task	 is	 known	 a	 priori,	 and	 many	 events	 are	 averaged	

together	 to	 increase	 the	 signal	 to	noise	 ratio	 –	 functional	 connectivity	 uses	 some	

metric	(typically	correlation	coefficient)	to	determine	the	temporal	similarity	of	the	

BOLD	 time	 series.	 In	 the	 latter,	 trials	 are	 not	 averaged	 together	 and	 as	 such	

functional	 connectivity	 is	 more	 susceptible	 to	 spurious	 sources	 of	 noise.	 For	

example,	 in	 the	 seminal	 paper	 by	 Biswal	 and	 colleagues	 (1995),	 the	 correlation	

coefficient	was	calculated	between	the	BOLD	time	series	of	a	voxel	in	the	left	motor	

cortex	 and	 all	 other	 voxels	 in	 the	 brain.	 Voxels	 were	 considered	 functionally	

connected	if	their	correlation	coefficient	passed	a	statistical	threshold.	This	resulted	

in	common	‘spontaneous	fluctuations’	between	bilateral	motor	cortices.	However,	

as	the	time	series	of	the	two	voxels	are	measured	simultaneously,	any	non-neural	

activity	affecting	one	or	both	time	series	may	influence	the	functional	connectivity,	

thus	producing	a	 spurious	 result.	By	 introducing	 false	 similarities	 these	confounds	

may	increase	the	apparent	functional	connectivity	between	two	time	series	(Bright	

and	Murphy,	2013;	Murphy	et	al.	2011;	Van	Dijk	et	al.	2012).		

One	 proposed	 method	 to	 remove	 such	 noise	 is	 known	 as	 global	 signal	

regression	 (GSReg),	 which	 subtracts	 the	 global	 signal	 (i.e.,	 mean	 BOLD	 signal	

computed	 across	 all	 voxels)	 from	 each	 voxel	 in	 the	 brain	 (Greicius	 et	 al.	 2003;	

Macey	et	al.	2004).	This	method	proposed	that	any	activity	that	globally	influences	

the	 BOLD	 signal	 must	 be	 unrelated	 to	 neural	 activity	 and,	 as	 such,	 must	 be	 a	

confound.	This	method	was	popular	in	the	advent	of	functional	connectivity	studies	

as	it	produced	reliable	patterns	of	functional	connectivity	across	the	brain	(Fox	et	al.	

2005;	 2009).	 However,	 many	 studies	 now	 question	 the	 effect	 of	 global	 signal	

removal	 on	 resting	 state	 maps.	 Firstly,	 this	 technique	 only	 removes	 the	 average	

time-series;	 therefore	 voxel-specific	 phase	 differences	 in	 the	 noise	 produced	 by	

physiological	 fluctuations	 are	 not	 accounted	 for	 (Behzadi	 et	 al.	 2007).	 	 Secondly,	

GSReg	consistently	produces	anti-correlations	between	the	DMN	and	the	extended	
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dorsal	attentional	network.	This	negative	correlation	 is	hard	to	 interpret	given	the	

fact	 that	 artifactual	 deactivations	 are	 produced	 in	 task-based	 fMRI	 after	 global	

normalizations	(Desjardins	et	al.	2001;	Macey	et	al.	2004).	More	poignantly,	 it	has	

been	mathematically	demonstrated	that	when	GSReg	was	not	performed	the	anti-

correlated	network	disappears	(Murphy	et	al.	2009).	In	light	of	this	evidence,	it	has	

been	 argued	 that	 GSReg	 produces	 unreliable	 negative	 correlations	 making	

interpretation	 of	 results	 after	 GSReg	 difficult	 and,	 therefore,	 should	 be	 avoided	

(Murphy,	Birn	&	Bandettini,	2013).	

To	 circumvent	 this	 problem,	 alternative	 methods	 have	 been	 devised.	 One	

popular	method,	known	as	CompCor,	defines	regions	unlikely	to	be	associated	with	

neural	activity	 (e.g.,	 cerebrospinal	 fluid	and	white	matter;	Behzadi	et	al.	2007),	as	

any	signal	here	is	likely	to	reflect	physiological	noise	(Dagli	et	al.	1999;	Van	Dijk	et	al.	

2010).	 CompCor	 then	 applies	 Principal	 Component	 analysis	 (PCA)	 to	 the	 signal	

extracted	 from	these	“noise	ROIs”	 to	obtain	a	 subset	of	nuisance	 regressors	 from	

the	 larger	 set	 of	 voxel-wise	 signals	 of	 no	 interest.	 These	 nuisance	 regressors	 can	

then	 be	 included	 as	 nuisance	 parameters	 within	 a	 standard	 GLM	 for	 BOLD	 fMRI	

time-series	data.	This	method	overcomes	the	issues	present	in	GSReg	as	it	obtains	

more	 locally-specific	 signals	 that	 many	 not	 be	 well-reflected	 in	 the	 mean	 signal.	

Moreover,	the	use	of	nuisance	regressors	derived	from	these	noise	ROIs	have	been	

shown	 to	 improve	 specificity	 of	 functional	 connectivity	 maps	 (Bright	 &	 Murphy,	

2013;	Weissenbacher	et	al.	2009).		

In	addition	 to	physiological	noise,	 functional	connectivity	 is	also	susceptible	 to	

motion	artifacts.	Over	the	last	few	years,	several	independent	research	groups	have	

reported	 that	 motion	 adds	 spurious	 variance	 that	 is	 typically	 more	 similar	 for	

nearby	voxels	than	at	distance	voxels	(Power	et	al.	2012;	Satterthwaite	et	al..	2012;	

Van	 Dijk	 et	 al.	 2012).	 This	 is	 problematic	 in	 functional	 connectivity	 as	 these	

differences	 in	 the	 distributed	 variance	 causes	 distant-dependent	 modulation	 of	

signal	 correlations.	 For	 instance,	 all	 things	 being	 equal,	 a	 ‘higher-motion’	 group	

would	 have	 comparatively	 stronger	 short-distance	 correlations	 than	 a	 ‘lower-

motion’	 group	 (Power	 et	 al.	 2015).	 Pre-processing	 steps	 therefore	 also	 need	 to	

include	motion	correction	regressors,	to	remove	this	confound	from	the	functional	

connectivity	BOLD	signal.		
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Motion	 artifacts	 can	 be	 measured	 directly	 from	 the	 fMRI	 datasets	 via	

realignment	parameters	(as	the	fMRI	data	contains	information	required	for	motion	

artifact	 removal).	 A	 standard	whole-brain	 approach	 for	modelling	 head	motion	 is	

through	 FSL’s	MCFLIRT	 function	 (Jenkinson	 et	 al.	 2002).	 This	method	 produces	 a	

motion	transformation	matrix	for	each	time	point	relative	to	the	reference	volume	

(middle	 time	 point	 of	 the	 time	 series).	 In	 total,	 MCFLIRT	 derives	 six	 motion	

parameters	 consisting	 of	 three	 rotations	 and	 three	 translations	 (Jenkinson	 et	 al.	

2002).	These	six	parameters	can	then	be	entered	as	confound	regressors	within	a	

standard	GLM	for	BOLD	fMRI	time-series	data.	Despite	its	popularity	and	ability	to	

significantly	 reduce	motion	 variance	 (Lund	 et	 al.	 2005)	more	 recent	 studies	 have	

suggested	that	these	regressors	are	inadequate	at	removing	subtle	motion	artifacts	

(Kundu	et	al.	2013;	Power	et	al.	2014).	

An	alternative	approach	for	motion	denoising	is	to	utilize	the	signal	in	non-grey	

matter	regions	(e.g.,	white	matter	and	CSF).	Any	signal	here	is	likely	to	reflect	non-

neural	activity.		As	discussed	previously,	CompCor	defines	voxels	in	noise	ROIs	(non-

grey	matter	 locations)	 and	uses	PCA	 to	obtain	 a	 small	 set	of	nuisance	 regressors.	

Note	physiological	sources	of	noise	can	also	manifest	as	subtle	motion	artifacts	such	

as	time	dependent	changes	in	the	magnetic	field	due	to	subject’s	chest	movements	

(Brosch	 et	 al.	 2002).	 As	 such,	 it	 has	 been	 demonstrated	 that	 CompCor	 not	 only	

tackles	physiological	noise	issues	but	also	reduces	subtle	motion	artifacts	(Muschelli	

et	 al.	 2014).	 Collectivity	 speaking,	 both	 physiological	 noise	 and	 motion-artifacts	

must	 be	 appropriately	 modeled	 in	 order	 to	 make	 reliable	 interpretations	 about	

resting-state	data.	Therefore	both	(i)	the	top	subset	of	nuisance	regressors	derived	

from	 the	 CompCor	 analysis	 and	 (ii)	 the	 six	 motion	 parameters	 derived	 from	

MCFLIRT	 can	 be	 simultaneously	 entered	 into	 the	 GLM	 model	 as	 confound	

regressors.	 Multiple	 linear	 regression	 can	 then	 be	 performed	 to	 remove	 these	

confounds	from	the	BOLD	time-series.		

	

2.2.1.3.	Functional	connectivity	statistical	analysis	

The	most	common	statistical	method	for	detecting	functional	connectivity	is	known	

as	a	seed-based	correlation	analysis	(SCA;	Andrews-Hanna	et	al.	2007;	Biswal	et	al.	

1995;	 Fox	 et	 al.	 2005;	 Fransson,	 2005;	 Jiang	 et	 al.	 2004;	 Larson-Prior	 et	 al.	 2009;	



 71 

Song	et	al.	2008).	SCA	is	a	model-dependent	method	that	requires	the	selection	of	a	

voxel,	cluster	or	atlas	region,	guided	by	a	priori	knowledge	(typically	from	previous	

literature	 or	 from	 a	 localizer	 experiment).	 Once	 selected	 the	 time	 series	 data	 is	

extracted	 from	 the	 seed	 region	 and	used	 as	 a	 regressor	 in	 a	GLM	analysis	 (along	

with	 confound	 regressors	 of	 no	 interest	 outlined	 in	 the	 previous	 section).	 This	

calculates	whole-brain,	voxel-wise	functional	connectivity	maps	of	co-variance	with	

the	 seed	 region.	 This	 technique	 reveals	 reliable	 connectivity	 properties	 of	 many	

seed	areas	and,	as	such,	has	been	utilized	by	many	prolific	research	groups	 in	the	

resting-state	field	(e.g.,	Greicius	et	al.	2003;	Fox	et	al.	2005;	Margulies	et	al.	2007).		

The	 primary	 advantage	 of	 SCA	 is	 the	 simplicity	 in	 interpreting	 the	 resting-

state	 findings	 (Buckner	 &	 Vincent,	 2007).	 This	 method	 asks	 a	 direct	 question	 –	

which	regions	most	strongly	functionally	connect	with	the	seed	region	-	and	as	such	

provides	 a	 direct	 answer.	 Moreover,	 assessments	 of	 test-retest	 reliability	 have	

shown	 that	 resting-state	 connectivity	 can	 be	 identified	 by	 SCA	with	moderate	 to	

high	reliability	(Shezad	et	al.	2009).		One	potential	weakness	of	this	method	reflects	

the	influence	that	structured	confounds	(e.g.,	rigid	head	movements)	may	have	on	

the	 functional	 connectivity,	 as	 the	 presence	 of	 residual	 confounds	 can	 negatively	

impact	the	correlation	maps	by	also	including	voxels	that	describe	the	artifact	and	

not	the	true	functional	connectivity	to	the	seed	region.	Furthermore,	this	method	is	

limited	to	investigating	the	connectivity	of	pre-determined	seed	regions;	as	such	it	

is	not	designed	to	examine	functional	connection	patterns	on	a	whole-brain	scale.	

An	alternative	approach,	 known	as	 independent	 component	analysis	 (ICA),	

has	been	proposed	to	avoid	the	influence	of	noise	attached	to	the	seed	and	capture	

whole-brain	 connectivity	 patterns	 (Beckmann	 et	 al.	 2005;	 De	 Luca	 et	 al.	 2006;	

Kiviniemi	et	al.	2003;	2009).	This	model-free	approach	aims	to	capture	underlying	

sources	 that	 can	 explain	 resting-state	 patterns	 by	 identifying	 spatial	 sources	 of	

resting-state	signals	that	are	maximally	independent	from	each	other.	This	method	

has	gained	popularity	 in	 the	resting-state	 field	due	to	 its	ability	 to	capture	whole-

brain	connectivity	patterns	(Beckman	et	al.	2005;	De	Luca	et	al.	2006;	Kiviniemi	et	

al.	 2003;	 2009;	 Smith	 et	 al.	 2009).	 However,	 the	 components	 produced	 from	 ICA	

methods	 are	 often	 perceived	 as	 more	 difficult	 to	 understand,	 compared	 to	

traditional	 seed-based	maps,	 as	 they	 compare	 a	more	 complex	 representation	 of	
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the	 data	 (Fox	 &	 Raichle,	 2007).	 Nevertheless,	 although	 both	methods	 have	 their	

advantages	 and	 disadvantages,	 the	 connectivity	maps	 derived	 from	both	 ICA	 and	

SCA	 analyses	 show	 strong	 overlap,	 supporting	 the	 notion	 that	 robust	 functionally	

linked	networks	exist	in	the	brain	at	rest	(Beckmann	et	al.	2005).		

In	light	of	this	evidence,	SCA	will	be	adopted	in	the	current	thesis	due	to	its	

elegance	and	ease	in	both	implementing	and	interpreting	the	data.	Moreover,	SCA	

links	 regions	 of	 activity	 identified	 in	 task-based	 fMRI	 studies	 (e.g.,	 functional	

activation)	with	 functional	 connectivity.	 The	 combination	 of	 task-based	 activation	

and	 seed-based	 functional	 connectivity	 allows	 us	 to	 simultaneously	 address	 two	

complimentary	 aspects	 of	 semantic	 retrieval.	 Task-based	 fMRI	 can	 interrogate	

direct	hypotheses	regarding	discrete	activity	of	a	small	number	of	regions	whereas	

experimentally	 guided	 seed-based	 functional	 connectivity	 explains	 the	 true	

distributed	 nature	 and	 complexity	 of	 these	 neural	 functions	 and	 how	 they	 are	

embedded	 in	 large-scale	 functional	 networks.	 Therefore,	 SCA	 will	 be	 adopted	 in	

Chapters	3-5	to	further	interrogate	regions	identified	from	task-based	fMRI.		

	

2.3.	Methods	that	combine	functional-activity	and	functional-

connectivity	data	

	

Thus	 far,	 this	 chapter	 has	 outlined	 methods	 to	 statistically	 analyse	 (i)	 functional	

activation	 (univariate	 and	 MVPA)	 and	 (ii)	 functional-connectivity	 (functional	

connectivity)	 separately.	 The	 final	 section	 of	 this	 chapter	 will	 discuss	 new	 and	

emerging	approaches	that	attempt	to	bridge	the	gap	between	these	two	domains	

by	simultaneously	taking	into	consideration	task-based	activation	and	resting-state	

networks.		

	

2.3.1.	Neurosynth	Decoder		

Neurosynth	is	an	online	platform	for	large	scaled	automated	synthesis	of	fMRI	data	

(Yarkoni	 et	 al.	 2011).	 Neurosynth	 pools	 results	 from	 published	 fMRI	 studies	

(including	univariate,	MVPA	and	functional	connectivity	studies)	and	stores	them	in	
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a	 large	database.	 From	 this	 database,	 each	published	 article	 is	 examined	 for	 key-

terms	using	a	text-mining	technique.	Key	terms	are	extracted	if	they	are	reported	in	

the	article	more	than	once,	along	with	their	frequency.	Next,	peak	coordinates	are	

extracted	from	tables	in	the	published	article.	Both	key-terms	and	coordinates	are	

saved	 in	 the	 database	 allowing	 investigators	 to	 interrogate	 either	 key	 words	 of	

interest	 or	 peak	 coordinates.	 For	 key	words	 of	 interest,	 the	 user	 enters	 a	 search	

string	 (e.g.,	 ‘semantic	memory’)	 and	 peak	 coordinates	 from	 articles	with	 this	 key	

term	 in	 are	 extracted	 from	 tables.	A	meta-analysis	 is	 automatically	 performed	on	

each	peak-coordination,	producing	a	whole-brain	map	of	the	probability	of	the	term	

producing	 activation	 at	 each	point.	 The	user	 can	 therefore	 see	 regions	of	 activity	

related	 to	 the	 search	 string	 and	 the	 probability	 of	 that	 region	 being	 activated	 by	

that	term.	Alternatively,	a	user	can	interrogate	the	function	of	a	specific	coordinate	

by	entering	peak	coordinates	of	interest.	In	return,	NeuroSynth	will	produce	a	list	of	

key	 terms	 associated	 with	 that	 coordinate	 and	 their	 probability.	 In	 addition	 to	

searching	 specific	 coordinates,	 and	 arguably	 the	most	 interesting	property	 of	 this	

tool	 is	 its	 ability	 to	handle	whole-brain	 statistical	maps.	 For	 this	users	 can	upload	

whole-brain	maps	(e.g.,	z-stat	or	t-stat	map)	and	NeuroSynth	will	decode	the	list	of	

key	 terms	 associated	 with	 the	 entire	 map	 (and	 their	 probabilities).	 This	 method	

therefore	allows	for	both	forward	and	reverse	inferences	to	be	made	on	fMRI	data:	

given	 a	 known	 cognitive	 phenomenon	 (e.g.,	 day	 dreaming)	 one	 can	 quantify	 the	

corresponding	 neural	 activity	 and	 generate	 forward	 inferences,	whereas	 given	 an	

observed	 pattern	 of	 activity,	 Neurosynth	 can	 draw	 a	 reverse	 inference	 about	

associated	cognitive	states	using	probability	algorithms.		

	 There	are	many	advantages	for	utilizing	a	tool	like	Neurosynth.	Firstly,	given	

an	 observed	 pattern	 of	 activity	 (e.g.,	 an	 unthresholded	 z-stat	 map	 created	 from	

univariate,	 MVPA	 or	 functional	 connectivity	 analysis)	 it	 provides	 confirmation	 of	

cognitive	function	from	a	large	independent	data	set.	Secondly,	it	provides	a	novel	

framework	 that	 simultaneously	 aggregates	 and	 synthesizes	 both	 task-based	 and	

resting-state	 data.	 This	 is	 particularly	 important,	 given	 the	 fact	 that	 many	

neuroimaging	 studies	 are	 often	 underpowered	 and	 exhibit	 relatively	 high	 false	

positive	rate	(Yarkoni,	2009),	thus	Neurosynth	provides	a	mechanism	through	which	

results	 from	multiple	 methods	 can	 be	 combined	 in	 order	 for	 a	 consensus	 to	 be	
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achieved	 regarding	 the	 relationship	between	brain	and	cognitive	 function.	 Finally,	

as	 researchers	 are	 besieged	 by	 an	 increasing	 number	 of	 fMRI	 publications	 each	

year,	 these	 tools	provide	an	automated	platform	 to	 synthesis	 and	 compare	 these	

findings.	 Overall,	 although	 this	 tool	 is	 not	 a	 classic	 statistical	 analysis	 (like	 those	

discussed	in	previous	sections	of	this	chapter),	it	does	provide	for	automated	meta-

analyses	 across	 a	 wide	 range	 of	 recent	 publication	 that	 tackles	 many	 prominent	

issues	 in	 the	 cognitive	 neuroimaging	 field.	 This	 tool	 will	 therefore	 be	 used	 as	 a	

complimentary	 approach	 to	 more	 conventional	 statistical	 analyses	 to	 quantify	

inferences	drawn	on	the	neural	activity	identified	in	all	Chapters	of	this	thesis.	

		

2.3.2.	Principal	Gradient		

The	final	method	discussed	in	this	chapter	explores	the	topographical	organisation	

of	 functional	 brain	 networks.	 In	 addition	 to	 linking	 functional	 connectivity	 with	

functional	 activation,	 recent	 studies	 have	 shown	 that	 the	 topology	 of	 these	

networks	is	organized	in	such	a	way	as	to	produce	highly	efficient	and	cost-effective	

processing:	 by	 integrating	 across	 different	 sub-systems	 of	 the	 brain	 network,	 this	

topology	optimizes	towards	a	high	level	of	information	processing	(Margulies	et	al.	

2016;	Van	Den	Heuvel	&	Pol,	2010).	A	recent	account	of	topographical	organisation	

suggests	 that	 the	 cortex	 is	 arranged	 along	 a	 macroscale	 principal	 gradient	 that	

describes	gradual	transitions	in	functional	connectivity,	repeated	in	multiple	regions	

(Margulies	et	al.	2016).	At	one	end,	this	functional	gradient	is	anchored	by	unimodal	

regions	 that	 have	 well-described	 roles	 in	 perception	 and	 action	 (sensory/motor	

areas),	 while	 the	 other	 end	 is	 characterized	 by	 transmodal	 association	 regions,	

within	 the	 so-called	 default	mode	 network	 (DMN)	 that	 are	 thought	 to	 represent	

complex	 and	 abstract	 functions	 (see	 Figure	 2.5).	 The	 following	 section	will	 briefly	

outline	 how	 Margulies	 et	 al	 (2016)	 computed	 the	 principal	 gradient	 and	 then	

discuss	 the	potential	benefits	of	using	 such	a	measure	 to	explain	 task-based	 fMRI	

activation.	
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Figure	2.5.	 The	principal	 gradient	of	 connectivity	 in	human	 cortices	 adapted	 from	

Margulies	et	al	(2016).	The	principal	gradient	shows	a	spectrum	between	unimodal	

regions	(dark	blue)	and	transmodal	regions	(red),	which	in	the	human	cortex,	peaks	

in	regions	corresponding	to	the	DMN.	The	proximity	of	colours	can	be	interpreted	

as	greater	similarity	of	connectivity	patterns.	

	

The	 principal	 gradient	 was	 generated	 using	 a	 non-linear	 dimensionality	

reduction	technique,	known	as	diffusion	map	embedding.	This	method	takes	high-

dimensional	 data	 (e.g.,	 functional	 connectivity	 data)	 and	 returns	 parameters	 that	

describe	the	 lower-dimensional	structures	of	which	 it	 is	comprised	(Coifman	et	al.	

2005;	de	 la	Porte	et	al.	2008).	 In	higher-dimensions,	distances	between	points	are	

often	too	large	for	linear	techniques	(such	a	Euclidean	distance)	to	handle,	given	the	

sparsely	populated	feature	space.	The	key	to	the	non-linear	embedding	technique	is	

the	 assumption	 that	 data	 lies	 on	 (embedded)	 a	 lower-dimensional	 structure	 or	

manifold;	as	we	measure	distance	on	 the	manifold	 itself,	 rather	 than	 in	Euclidean	

space,	 this	 approach	 is	 able	 to	 characterize	 neural	 data	 and	 the	 relationship	

between	 individual	 points	 using	 fewer	 dimensions.	 Importantly,	 dimensionality	

reduction	 produces	 meaningful	 parameters	 that	 preserve	 the	 important	

relationships	between	data	points.		

Principal Gradient 

Unimodal         Transmodal 
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In	Margulies	et	al.	 (2016)	the	resulting	diffusion	map	represents	the	global	

connectivity	structure	as	a	distribution	of	cortical	points	on	an	axis	(e.g.,	embedding	

space).	 The	 position	 of	 cortical	 points	 on	 this	 axis	 represents	 connectivity	

similarities	 between	 regions	 such	 as	 points	 that	 are	 strongly	 connected	 by	 either	

many	connections	or	fewer	strong	connections	are	close	together,	whereas	points	

with	weak	or	no	connections	are	 far	apart.	 This	 revealed	a	principal	 gradient	axis	

that	explained	the	most	variance	in	resting-state	connectivity	when	primary	sensory	

and	 motor	 regions	 were	 positioned	 on	 one	 end	 and	 higher-order	 association	

regions	(DMN)	at	the	other	end	(see	Figure	2.5).	In	addition	to	the	principal	gradient	

derived	from	diffusion	map	embedding,	the	authors	showed	that	a	regions	position	

on	 the	 principal	 gradient	 axis	 were	 predicted	 by	 its	 geodesic	 distance	 from	 the	

DMN:	the	further	a	region	was	from	the	DMN	in	geodesic	space	the	further	away	it	

was	positioned	on	the	gradient.	

There	are	many	advantages	to	explaining	links	between	neural	function	and	

cognition	 in	 this	manner.	 For	 example,	 describing	 the	macrolevel	 organization	 of	

connectivity	 patterns	 from	 unimodal	 regions	 to	 transmodal	 association	 cortex	

(Krienen	 &	 Sherwood,	 2016)	 highlights	 that	 features	 of	 higher	 order	 cognition	

maybe	organized	into	a	successions	of	functional	gradients	that	are	present	in	the	

topographical	 organization	 of	 visual	 processing	 (Rosa,	 2002).	 This	 gradient	

perspective	 is	 important	 because	 it	 highlights,	 not	 only	 the	 topography	 of	 these	

distinct	 distributed	 networks	 but	 also	 the	 reason	 for	 their	 particular	 spatial	

relationship	and	how	this	constrains	their	function.	Following	this	view	information	

is	converged	across	modalities	into	progressively	more	abstract	representations	and	

situates	the	DMN	at	the	top	of	this	representational	hierarchy	in	order	to	describe	

the	current	cognitive	landscape	in	the	most	abstract	terms.	Notably,	regions	tied	to	

a	 specific	 modality	 (e.g.,	 sensory	 and	motor	 regions)	 have	 the	 greatest	 geodesic	

distance	 from	 the	 DMN	 supporting	 the	 notion	 that	 abstract	 processing	 requires	

abstraction	away	from	modality	input.	

Given	the	principle	gradient’s	potential	explanatory	power	 in	capturing	the	

organizing	 principle	 of	 human	 cognition,	 it	 could	 be	 used	 to	 help	 interpret	 task-

based	fMRI	data.	In	the	section	that	follows,	two	novel	applications	of	the	principal	

gradient	 -	as	an	analysis	method	 for	 task-based	 fMRI	 -	will	be	described.	The	 first	
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will	 focus	on	 identifying	where	ROIs	 fall	 on	 the	principal	 gradient	and	 the	 second	

will	aim	to	capture	whole-brain	neural	shifts	in	activity.	

	

2.3.2.1.	Principal	Gradient	Analysis	

For	 an	 ROI	 analysis,	 first	 regions	 need	 to	 be	 identified,	 typically	 from	 previous	

literature	 or	 clusters	 of	 activity	 derived	 from	 traditional	 univariate	 analyses.	

Following	Margulies	 et	 al	 (2016)	 the	 original	 principal	 gradient	map	 can	 then	 be	

divided	into	five-percentile	bins;	yielding	twenty	bins	in	total	(bin	1	=	0	–	5,	bin	2	=	5	

–	10	etc.).	Next,	for	each	ROI	the	number	of	voxels	in	each	of	the	twenty	principal	

gradient	bins	is	calculated.	This	is	calculated	for	each	individual	participant	and	then	

group-averaged	 to	 calculate	 the	 group-average	 gradient	 for	 each	 ROI	 	 (i.e.,	 the	

position	 on	 the	 gradient	 where	 the	 greatest	 number	 of	 voxels	 fell).	 To	 evaluate	

whether	 these	 values	 differed	 from	 chance,	 gradient	 values	 can	 be	 compared	 to	

those	 obtained	 based	 on	 random	 permutation	 labelling.	 Random	 permutation	

labelling	is	a	nonparametric	test:	within	each	subject	a	random	label	is	assigned	to	

each	gradient	bin,	in	a	way	no	label	recurs.	Next,	the	number	of	voxels	in	that	bin	is	

recalculated	 with	 these	 random	 labels	 for	 each	 subject.	 The	 gradient	 values	

obtained	can	then	compared	with	the	distribution	of	the	values	obtained	with	these	

random	 labels.	 This	method	 therefore	 quantifies	where	 on	 the	 gradient	 ROIs	 fall	

and	the	statistical	likelihood	of	identifying	a	cluster	at	that	position.	

Alternatively,	 to	 capture	 more	 general	 whole-brain	 patterns	 of	 cortical	

activity	 the	 average	 neural	 signal	 can	 be	 extracted	 from	 each	 of	 the	 20	 bins,	 for	

unthresholded	 zstat	 maps.	 These	 zstat	 maps	 are	 created	 as	 part	 of	 a	 standard	

univariate	 analysis	 and	 contrast	 task	 condition	 >	 rest.	 The	 purpose	 of	 using	

unthresholded	 z-stat	 maps	 is	 to	 capture	 changes	 that	 may	 occur	 at	 the	 level	 of	

whole-brain,	 that	manifest	 as	 distributed	 shifts	 in	 activity	 as	 opposed	 to	 discrete	

clusters	of	activity	that	surpass	a	statistical	threshold.	 	Once	extracted,	the	group-

averaged	activity	in	each	bin	can	be	plotted	across	the	principle	gradient	separately	

for	 each	 condition.	 This	 approach	 will	 reflect	 general	 shifts	 in	 the	 patterns	 of	

cortical	 activity	 at	 the	 whole-brain	 level.	 Follow	 up	 statistics	 can	 interrogate	 the	

linear	 relationships	 between	 the	 loading	 of	 each	 stimulus-condition	 across	 the	



 78 

principal	 gradient	 (such	 as	 analysis	 of	 variance	 (ANOVA)	 or	 principal	 component	

analysis	(PCA)).			

	 Taken	 together,	 the	 principal	 gradient	 analyses	 offer	 a	 complementary	

approach	 to	 functional	 activation	 statistics	 (univariate	 and	 MVPA)	 that	 provides	

additional	evidence	that	the	topographical	location	of	a	neural	region	(e.g.,	position	

on	the	principal	component)	is	related	to	its	functional	characterization.	Moreover,	

as	the	far	extreme	of	the	gradient	is	tied	to	higher-order	association	zones	-	regions	

that	 have	 been	 implicated	 in	 spontaneous	 thought,	 daydreaming	 and	 semantic	

processing	of	multi-modal	concepts	-	this	method	can	also	highlight	the	reason	for	

their	particular	spatial	relationship	and	how	this	constrains	their	function.		

	

2.4.	Additional	caveats	

	

In	 addition	 to	 identifying	 appropriate	 statistical	 analyses,	 careful	 consideration	

regarding	the	fMRI	scanning	acquisition	is	needed.	This	is	particularly	important	as	

the	current	thesis	is	interested	in	regions	close	to	air-filled	sinuses,	such	as	ventral	

anterior	 temporal	 lobes.	 Such	 regions	 are	 affected	 by	 discrepancies	 in	 magnetic	

susceptibility	across	different	tissue	types	(e.g.	water,	air,	bone),	resulting	in	loss	of	

signal	 and	 distortion.	 Emerging	methods	 have	 been	 proposed	 to	 overcome	 these	

distortions	 such	 as	 dual-echo	 EPI	 sequences	 (coined	 distortion-corrected	 fMRI).	

Such	methods	 consecutively	 collect	 two	EPI	 read-outs	 at	 a	 short	 and	 longer	 echo	

time	(TE),	which	has	been	shown	to	reduce	signal	loss	due	to	spin	dephasing	(Halai	

et	al.	2014;	Visser	et	al.	2010).	However,	due	to	the	scanner	resources	available	for	

data	collection,	this	method	is	unable	to	be	implemented.		

Alternative,	and	easily	implemented	methods	for	reducing	signal	distortion	have	

also	been	proposed.	 First,	optimization	of	 slice	orientation	 (e.g.,	orientating	 slices	

with	the	temporal	 lobe)	has	been	shown	to	reduce	signal	distortion	 in	susceptible	

regions	 (De	 Panfilis	 &	 Schwarzbauer,	 2005;	 Deichmann	 et	 al.	 2003;	 Halai	 et	 al.	

2014).	 	 Second,	 reducing	 the	 TE	 (e.g.,	 selecting	 the	 shortest	 possible	 TE)	 can	

effectively	reduce	fMRI	signal	distortions	(Hutton	et	al.	2002;	Weiskopf	et	al.	2007).		

As	 distortion-corrected	 fMRI	 is	 not	 feasible,	 the	 current	 thesis	 will	 optimize	 slice	
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orientation	 and	 select	 a	 short	 TE	 to	 reduce	 the	 effects	 of	 signal	 distortion,	 and	

improve	 the	 likelihood	 of	 detecting	 activation	 in	 crucial	 regions	 of	 interest	 (e.g.,	

vATL).	

	

2.5.	Methods	Overview	

	

Simultaneous	 analysis	 that	 focuses	 on	 different	 dimensions	 of	 the	 same	data	will	

provide	 a	 rich	 explanation	 for	 how	 complex	 representations	 decoupled	 from	

perceptual	 input	 are	 represented	 within	 the	 brain.	 In	 all	 cases,	 the	 experiments	

proposed	 in	 this	 thesis	 make	 use	 of	 univariate	 and	MVPA	methods	 to	 provide	 a	

clear	 understanding	 of	 the	 activation	 (univariate)	 and	 representational	 content	

(MVPA)	 of	 regions	 associated	with	 complex	 abstract	 concepts	 that	 are	 processed	

independently	 of	 sensory	 input.	 Furthermore,	 all	 experiments	 will	 include	 seed-

based	 functional	 connectivity	 that	 aims	 to	 further	 interrogate	 the	 clusters	 of	

functional	 activity	 identified	 from	 either	 univariate	 or	 MVPA	 approaches,	 to	

understand	 the	 neural	 networks	 in	 which	 these	 different	 clusters	 of	 activity	 are	

embedded.	 In	 addition,	 all	 chapters	 will	 include	 the	 search	 tool	 Neurosynth	 to	

decode	the	most	common	interpretations	of	patterns	of	functional	connectivity,	in	

the	broader	neuroimaging	literature.	Finally,	Chapter	5	will	also	employ	a	principal	

gradient	 analysis	 to	 investigate	 the	 underlying	 function	 of	 the	 transmodal	 end	 of	

the	 gradient	 (e.g.,	 regions	 that	 have	 been	 implicated	 in	 spontaneous	 thought,	

daydreaming	and	semantic	processing	of	multi-modal	concepts)	as	this	method	can	

highlight	the	reason	for	their	particular	spatial	relationship	and	how	this	constrains	

their	function.		
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Chapter	3	-	Fractionating	the	anterior	temporal	

lobe:	MVPA	reveals	differential	responses	to	

input	and	conceptual	modality	
	

This	chapter	is	adapted	from:	Murphy,	C.,	Rueschemeyer,	S.	A.,	Watson,	D.,	

Karapanagiotidis,	T.,	Smallwood,	J.,	&	Jefferies,	E.	(2017).	Fractionating	the	

anterior	temporal	lobe:	MVPA	reveals	differential	responses	to	input	and	

conceptual	modality.	NeuroImage,	147,	19-31.2	

	

3.1.	Abstract	

	

Words	 activate	 cortical	 regions	 in	 accordance	with	 their	modality	 of	 presentation	

(i.e.,	 written	 vs.	 spoken),	 yet	 there	 is	 a	 long-standing	 debate	 about	 whether	

patterns	 of	 activity	 in	 any	 specific	 brain	 region	 capture	 modality-invariant	

conceptual	 information.	 Deficits	 in	 patients	with	 semantic	 dementia	 highlight	 the	

anterior	 temporal	 lobe	 (ATL)	 as	 a	 transmodal	 store	 of	 semantic	 knowledge	 but	

these	 studies	 do	 not	 permit	 precise	 localisation	 of	 this	 function.	 The	 current	

investigation	 used	 multiple	 imaging	 methods	 in	 healthy	 participants	 to	 examine	

functional	dissociations	within	ATL.	Multi-voxel	pattern	analysis	 identified	spatially	

segregated	 regions:	 a	 response	 to	 input	 modality	 in	 anterior	 superior	 temporal	

gyrus	 (aSTG)	 and	 a	 response	 to	meaning	 in	more	 ventral	 anterior	 temporal	 lobe	

(vATL).	This	functional	dissociation	was	supported	by	resting-state	connectivity	that	

found	 greater	 coupling	 for	 aSTG	with	 primary	 auditory	 cortex	 and	 vATL	with	 the	

default	 mode	 network.	 A	 meta-analytic	 decoding	 of	 these	 connectivity	 patterns	

implicated	aSTG	in	processes	closely	tied	to	auditory	processing	(such	as	phonology	

                                                
2 The author, Charlotte Murphy, designed the experiment, analysed the results and wrote 
the article under the supervision of Prof. Beth Jefferies and Dr. Shirley-Ann 
Rueschemeyer. Dr. David Watson and Theo Karappanagiotidis provided technical 
support for the analysis. Dr. Jonathan Smallwood helped to supervise the analysis and 
provided comments on the manuscript. 
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and	 language)	and	vATL	 in	meaning-based	 tasks	 (such	as	comprehension	or	 social	

cognition).	 Thus	 we	 provide	 converging	 evidence	 for	 the	 segregation	 of	meaning	

and	input	modality	in	the	ATL.	

	

3.2.	Introduction	

	

Current	neurocognitive	models	propose	 that	 concepts	 are	 represented	 in	 a	 large-

scale	 distributed	 network	 comprising	 (1)	 sensory	 and	motor	 ‘spoke’	 regions	 that	

store	 knowledge	 of	 physical	 features	 and	 (2)	 convergence	 zones	 that	 integrate	

across	 multiple	 modalities	 (e.g.,	 visual	 vs.	 auditory)	 to	 form	 abstract	 transmodal	

representations	 (Damasio,	 1989;	Patterson,	Nestor	&	Rogers,	 2007).	 For	example,	

the	 hub-and-spoke	 model	 of	 Patterson	 and	 colleagues	 (2007)	 proposes	 that	

information	from	modality-specific	spoke	regions	is	integrated	in	a	transmodal	‘hub’	

region	within	the	anterior	temporal	 lobes	(ATL),	allowing	the	conceptual	similarity	

of	items	that	are	semantically	similar	yet	share	few	surface	features,	such	as	‘flute’	

and	‘violin’,	to	be	represented,	and	making	 it	possible	to	map	between	modalities	

so	 that	we	 can	picture	 a	 flute	 and	 imagine	 the	 sound	 that	 it	makes	 from	only	 its	

name	 (e.g.,	 Damasio,	 1989;	 Lambon	 Ralph,	 Sage,	 Jones	 &	 Mayberry,	 2010;	

Patterson	et	al.	2007;	Rogers	et	al.	2004).	This	hub-and-spoke	model	proposes	that	

both	 the	 ATL	 and	 modality-specific	 spokes	 make	 a	 crucial	 contribution	 to	

conceptual	representation,	and	these	elements	are	mutually-constraining	through	a	

pattern	of	interactive-activation.	

The	spokes	are	hypothesized	to	represent	the	contributions	of	sensory	and	

motor	 cortex	 to	 conceptual	 knowledge,	 as	 words	 associated	 with	 specific	

sensorimotor	attributes	activate	corresponding	 sensorimotor	 cortex.	 For	example,	

words	 denoting	 actions	 (e.g.,	 kick)	 activate	 the	motor	 system	 (Postle,	McMahon,	

Ashton,	Meredith,	&	de	Zubicaray,	2008;	Rueschemeyer,	Brass,	&	Friederici,	2007;	

Rueschemeyer,	 van	 Rooij,	 Lindemann,	 Willems,	 &	 Bekkering,	 2010),	 while	 words	

associated	with	specific	 smells	 (e.g.,	 cinnamon)	elicit	activation	 in	olfactory	cortex	

(Cerf-Ducastel	 &	 Murphy,	 2004;	 Gonzalez	 et	 al.	 2006).	 Although	 these	 neural	

regions	 are	 important	 for	 perception	 and	 action,	 they	 are	 also	 recruited	 during	
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semantic	 processing	 to	 provide	meaning	 to	words	 (Barsalou,	 1999;	 2008;	Martin,	

2007;	Patterson,	et	al.	2007;	Kiefer	&	Pulvermüller,	2012).		

The	proposal	that	the	ATL	forms	a	key	semantic	“hub”	capturing	knowledge	

across	different	input	modalities	was	initially	put	forward	to	account	for	the	pattern	

of	impairment	in	semantic	dementia	(SD),	in	which	relatively	focal	atrophy	centered	

on	 ATL	 leads	 to	 progressive	 conceptual	 degradation	 across	 modalities	 and	 tasks	

(e.g.,	Patterson	et	al.	2007;	Rogers,	Patterson,	Jefferies	&	Lambon	Ralph,	2015).	SD	

patients	 are	 highly	 consistent	 in	 the	 knowledge	 they	 can	 demonstrate	 when	 the	

same	 concepts	 are	 probed	 in	 different	 ways,	 suggesting	 central	 semantic	

representations	 degrade	 in	 this	 condition.	 Patients	 with	 SD	 have	 atrophy	 which	

increasingly	 affects	 inferior	 frontal	 and	 posterior	 temporal	 areas,	 as	 well	 as	 ATL,	

making	it	difficult	to	draw	strong	conclusions	about	the	location	of	the	“hub”	from	

neuropsychology	 alone;	 however,	 the	 severity	 of	 the	 semantic	 impairment	

correlates	most	 strongly	with	 the	 degree	 of	 hypometabolism	 in	 ventrolateral	 ATL	

(Mion	 et	 al.	 2010).	 The	 crucial	 role	 of	 ATL	 is	 also	 supported	 by	 functional	

neuroimaging	 studies	 of	 healthy	 participants	 that	 show	 transmodal	 conceptual	

processing	 in	 ATL	 (Rice	 et	 al.	 2015;	 Visser	 et	 al.	 2010).	 For	 example,	 Visser	 et	 al.	

(2011)	 characterized	 the	 degree	 of	 modality	 convergence	 in	 STG,	 MTG,	 ITG	 and	

fusiform	cortex	comparing	posterior	and	anterior	parts	of	the	temporal	 lobe.	Both	

STG	 and	 fusiform	 were	 modality-sensitive	 along	 the	 temporal	 lobe,	 showing	

stronger	 activation	 for	 spoken	 words	 and	 pictures	 respectively.	 MTG	 showed	 a	

multimodal	response	in	both	anterior	and	posterior	regions.	ITG	uniquely	showed	a	

pattern	 consistent	 with	 the	 increasing	 integration	 of	 information	 from	 different	

inputs,	 namely	 sensitivity	 to	 modality	 in	 posterior	 but	 not	 anterior	 regions.	

Moreover,	 Spitzyna	 et	 al.	 (2006)	 showed	 that,	 despite	 originating	 from	 different	

sensory	 inputs,	 there	 is	 considerable	 activation	 overlap	 for	 spoken	 and	 written	

processing	in	ATL	regions.	Thus,	emerging	evidence	from	both	patients	with	SD	and	

healthy	participants	suggests	that	the	semantic	hub	may	be	located	in	ventrolateral	

ATL.		

These	observations	raise	the	possibility	of	functional	dissociations	with	ATL.	

Jackson	et	al.	(2016)	recently	observed	different	patterns	of	functional	connectivity	

within	superior	and	ventral	regions	of	the	ATL,	with	anterior	STG	showing	stronger	
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connectivity	 to	 language,	 auditory	 and	 motor	 regions,	 while	 ventrolateral	 ATL	

showed	 connectivity	 to	 other	 heteromodal	 semantic	 regions	 including	 inferior	

frontal	gyrus,	angular	gyrus	and	posterior	middle	temporal	gyrus.	These	parallel	the	

pattern	of	white-matter	connections	 found	by	Binney	et	al.	 (2012)	and	 Jung	et	al.	

(2016).	Consistent	with	these	findings	it	has	been	proposed	that	superior	regions	of	

the	ATL	are	important	in	lexical	and	auditory	processing,	while	ventrolateral	regions	

support	conceptual	processing	across	all	sensory	modalities	(Rice	et	al.	2015;	Visser	

et	 al.	 2010;	 Visser	&	 Lambon	Ralph,	 2011).	 Ventral	 and	 ventrolateral	 ATL	 regions	

have	 been	 found	 to	 respond	 to	 meaningful	 inputs	 across	 multiple	 modalities	 by	

studies	 employing	 convergent	methods;	 including	 fMRI	 and	 transcranial	magnetic	

stimulation	(Binney	et	al.	2010;	Visser	et	al.	2011;	2012;	Hoffman	et	al.	2015)	and	

representational	similarity	analysis	(RSA)	of	ECoG	data	(Chen	et	al.	2016).		

The	current	study	used	multiple	imaging	methodologies	to	simultaneously	

investigate	the	organization	of	knowledge	in	the	ATL	(hub)	and	auditory	and	visual	

regions	(as	potential	spokes).	In	a	functional	experiment	we	manipulated	the	

format	in	which	words	were	presented	(i.e.,	spoken,	written)	and	the	modality-

specific	features	associated	with	the	word’s	meaning	(e.g.,	auditory	features:	“loud”	

vs.	visual	features:	“shiny”).	We	used	Multi	Voxel	Pattern	Analysis	(MVPA)	to	

decode	how	these	different	features	(modality	of	presentation	and	underlying	

meaning)	are	represented.	Based	on	the	hub-and-spoke	model,	we	expected	this	

analysis	to	reveal	regions	that	are	distributed	across	the	cortex	that	responded	to	

the	meaning	of	the	stimulus	regardless	of	the	input	modality.	In	this	experiment	we	

were	particularly	interested	in	identifying	regions	in	ATL	where	the	meaning	of	

words	is	represented	that	are	independent	of	input	modality.	The	transmodal	hub	

regions	should	be	able	to	code	the	meaning	of	a	stimulus	regardless	of	the	

presentation	format	(e.g.,	auditory	feature	words	should	elicit	similar	patterns	of	

activation	even	when	spoken	and	written	words	are	compared).	In	addition,	this	

region	should	represent	the	meaning	of	words	tied	to	different	sensory	modalities	

(i.e.,	it	should	represent	words	with	auditory	meanings	like	‘loud’	and	words	with	

visual	meanings	like	‘shiny’).	In	contrast,	the	spokes	should	represent	particular	

semantic	features	in	regions	of	sensory	cortex	(i.e.,	words	with	an	auditory	

meaning,	such	as	loud,	should	be	represented	in	auditory	cortex	regardless	of	how	
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they	are	presented	(written	or	spoken).	However,	spoke	regions	are	not	expected	

to	represent	meaning	that	is	tied	to	a	different	sensory	modality	(i.e.,	auditory	

cortex	may	not	contribute	to	semantic	representation	for	words	with	a	visual	

meaning,	such	as	shiny).		

	Next	we	used	the	regions	identified	in	our	MVPA	analysis	as	regions	of	

interest	in	a	seed	based	resting-state	connectivity	analysis	to	understand	the	neural	

networks	in	which	these	different	regions	of	the	ATL	are	embedded.	We	expected	

the	transmodal	region	of	ATL	to	show	functional	connectivity	with	regions	of	cortex	

that	are	important	in	more	abstract	forms	of	cognition,	e.g.,	the	default	mode	

network,	rather	than	regions	important	in	unimodal	sensory	processing,	such	as	the	

auditory	and	visual	cortex.	Finally,	we	used	the	search	tool	Neurosynth	to	decode	

the	most	common	interpretations	of	this	pattern	of	functional	connectivity	in	the	

broader	neuroimaging	literature.		

	

3.3.	Materials	and	Methods	

	

3.3.1.	Functional	Experiment	

3.3.1.1.	Participants	

Twenty	participants	were	 recruited	 from	 the	University	of	 York.	One	participant’s	

data	was	excluded	due	to	excessive	motion	artefacts,	 leaving	nineteen	subjects	 in	

the	final	analysis	(10	female;	mean	age	24.55,	range	18-36	years).	Participants	were	

native	British	speakers,	right	handed	and	had	normal	or	corrected-to-normal	vision.	

Participants	gave	written	 informed	consent	 to	 take	part	and	were	 reimbursed	 for	

their	 time.	 The	 study	 was	 approved	 by	 the	 York	 Neuroimaging	 Centre	 Ethics	

Committee	at	the	University	of	York.		

	

3.3.1.2.	Stimuli	

Participants	were	 presented	with	 blocks	 of	 spoken	 and	written	 items	 from	 three	

conditions:	AUD	words	denoted	 auditory	 features	 (e.g.,	 loud),	 VIS	words	denoted	

visual	 features	 (e.g.,	 shiny)	 and	 NON	 stimuli	 were	 meaningless	 non-words	 (e.g.,	
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brodic).	A	block	consisted	of	a	 sequence	of	 items;	participants	were	asked	 to	pay	

attention	 to	 the	 meaning	 of	 each	 item,	 and	 respond	 with	 their	 left	 index	 finger	

when	 an	 out-of-category	 item	 was	 presented	 (see	 Figure	 3.1).	 For	 VIS	 and	 AUD	

blocks,	 half	 of	 the	 out-of-category	 items	 were	 taken	 from	 the	 non-presented	

feature	 condition,	 while	 the	 other	 half	 were	 taken	 from	 a	 separate	 list	 of	 taste	

words	 (e.g.,	 spicy).	 Participants	 could	 not	 predict	 the	 category	 of	 the	 out-of-

category	item	and	therefore	had	to	focus	on	the	AUD	or	VIS	feature	specified	in	the	

instructions.	In	the	NON	condition,	participants	were	asked	to	respond	to	any	item	

that	was	a	word.	All	stimuli	were	presented	 in	both	spoken	and	a	written	format.	

Spoken	words	were	recorded	digitally	and	then	normalized	for	volume	and	power.	

Written	words	were	presented	centrally	as	white	letters	on	a	black	background.	The	

combination	 of	 item	meaning	 (AUD,	 VIS,	NON)	 and	 presentation	 format	 (Spoken,	

Written)	yielded	6	experimental	conditions	(Spoken-AUD,	Spoken-VIS,	Spoken-NON,	

Written-AUD,	Written-VIS,	Written-NON).		

The	 selection	 of	 AUD	 and	 VIS	words	was	 validated	 in	 a	 behavioural	 study	

with	 twelve	 participants	 who	 did	 not	 take	 part	 in	 the	 fMRI	 session.	 Participants	

were	asked	to	rate	a	subset	of	modality-specific	words	 (n=220),	according	to	how	

much	each	one	related	to	four	sensory	categories;	auditory,	visual,	haptic	and	taste.	

Participants	 also	 provided	 ratings	 of	 familiarity	 and	 emotional	 valence.	 All	 ratings	

were	given	on	a	5-point	likert-scale.	We	selected	adjectives	with	strong	auditory	or	

visual	 associations.	 Each	 set	 contained	 8	 items,	 which	 were	 matched	 for	 key	

psycholingusitic	 variables	 such	 as	 frequency	 and	 length	 (see	 Table	 3.1;	Wilcoxon	

signed	rank	tests	revealed	all	p	>	.05).	AUD	words	(such	as	‘loud’)	were	selected	if	

they	 scored	 significantly	 higher	 on	 the	 auditory	 than	 visual,	 haptic	 or	 taste	

modalities	(all	p	<	 .001).	Likewise	VIS	words	(such	as	 ‘shiny’)	were	selected	 if	they	

scored	significantly	higher	on	the	visual	than	the	auditory,	haptic	or	taste	modalities	

(all	p	<	.001).		

A	 set	 of	 8	 taste-features	 were	 used	 in	 out-of-category	 catch	 trials.	 These	

items	 scored	 significantly	 higher	 on	 the	 taste	 modality	 than	 auditory,	 visual	 and	

haptic	 (p	 <	 .001).	 These	 items	 were	 also	 matched	 to	 AUD	 or	 VIS	 words	 on	 the	

variables	 in	Table	3.1	 (all	p	>	 .05).	Finally,	NON	words	were	made	by	recombining	

the	phonemes	from	the	AUD	and	VIS	conditions	to	create	8	pseudo-words.	The	non-
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word	condition	matched	AUD	and	VIS	conditions	on	number	of	letters,	syllable	and	

Levenshtein	distance	(Levenshtein,	1965),	which	quantifies	the	number	of	phoneme	

insertions,	 deletions	 and/or	 substitutions	 required	 to	 change	 one	 word	 into	

another,	(all	p	>	.05).	 	The	use	of	a	small	number	of	items	is	consistent	with	other	

MVPA	 studies	 into	 semantic	 representation	 (Corriea	 et	 al.	 2014;	 Peelen	 &	

Caramazza,	2012).		
	

Table	3.1	-	Mean	psycholinguistic	properties	of	stimuli	(SD	in	parentheses)	

Property	 Auditory	feature		

words			

Visual	

feature	words		

Non-words	

Example	 “loud”	 “shiny”	 “brodic”	

Log	frequency	 2.27	(1.05)	 2.54	(.82)	 N/A	

Length	 5.25	(.76)	 5.50	(.80)	 5.88	(1.17)	

Syllables		 1.88	(.45)	 1.63	(.49)	 2.00	(.50)	

Age	of	acquisition		 7.17	(2.70)	 6.85	(2.76)	 N/A	

Familiarity	 4.43	(.63)	 4.40	(.51)	 N/A	

Emotional	Valence	 3.18	(.70)	 3.3	(.67)	 N/A	

Levehnstein	distance	 5.11	(.94)	 6.00	(1.25)	 5.89	(.86)	

Behavioural	feature-rating	(auditory)	 4.45	(.61)*	 1.15	(.04)*	 N/A	

Behavioural	feature-rating	(visual)	 1.65	(.32)*	 4.77	(.19)*	 N/A	

Behavioural	feature-rating	(haptic)	 1.5	(.39)	 1.76	(.72)	 N/A	

Behavioural	feature-rating	(taste)	 	1.19	(.07)	 	1.21	(.09)	 		N/A	

Footnote:	Log	frequency	=	log-transformed	lemma	frequencies	from	the	SUBTLEX	database	(Brysbaert,	New	&	

Keuleers,	2012;	http://expsy.ugent.be/subtlexus).	 Length	=	number	of	 letters.	Age	of	acquisition	 (AoA	norms;	

Kuperman	et	al.	2012).	Part	of	 speech	also	 taken	 from	SUBTLEX	database.	Familiarity,	emotional	valence	and	

behavioural	feature	rating	(auditory;	visual;	haptic;	taste)	were	obtained	from	a	behavioural	experiment	with	a	

separate	 cohort	 of	 participants	 from	 the	 fMRI	 study.	 These	 were	 scored	 on	 a	 Likert-scale	 (1-5).	 *	Wilcoxon	

signed	rank	tests	revealed	a	significant	difference	between	auditory-feature	and	visual-feature	conditions	(p	<	

.001).		

	

Stimulus	presentation	was	controlled	by	a	PC	running	Neurobehavioural	

System	 Presentation®	 software	 (Version	 0.07,	 www.neurobs.com).	 Stimuli	 were	

projected	onto	a	screen	viewed	though	a	mirror	mounted	on	the	head	coil.	Spoken	

stimuli	were	presented	binaurally	using	MR-compatible	headphones.	

	

3.3.1.3.	Task	Procedure	
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Prior	 to	 being	 scanned,	 participants	 were	 shown	 a	 printed	 copy	 of	 all	 stimuli	 (8	

AUD,	 8	 VIS,	 8	 NON)	 to	 familiarize	 them	 with	 the	 items.	 They	 also	 performed	 a	

practice	session	consisting	of	12	blocks,	identical	to	one	scanning	run.				

In	 the	 scanner	 there	were	 4	 runs	 of	 12	 blocks.	 The	 choice	 of	 4	 functional	

runs	is	consistent	with	many	MVPA	studies	that	also	presented	trials	within	4	runs	

that	were	each	5-10	minutes	long	(Countanche	&	Thompson-Schill,	2012;	Fairhall	&	

Caramazza,	2013;	Li	et	al.	2011;	Peelen	&	Caramzza,	2012).	Within	each	run,	there	

were	 two	 blocks	 related	 to	 each	 of	 the	 6	 experimental	 conditions	 (spoken	 and	

written	words	combined	with	three	meaning	conditions:	AUD,	VIS	and	NON).	These	

were	 presented	 in	 a	 pseudo-random	 order,	 with	 no	 immediate	 repetition	 of	

conditions.	 Blocks	 were	 separated	 by	 a	 jittered	 gap	 (4-8s)	 during	 which	 a	 red	

fixation	cross	was	presented.	A	block	consisted	of	17	stimuli:	eight	stimuli	related	to	

that	 experimental	 condition	 presented	 twice	 in	 a	 pseudo-random	 order,	 with	 no	

immediate	 repetition,	 plus	 one	 out-of-category	 catch	 trial.	 Written	 stimuli	 were	

presented	for	600ms;	spoken	stimuli	were	presented	on	average	for	633.57ms	(SD	=	

71.57ms).	 Words	 within	 each	 block	 were	 separated	 by	 a	 500ms	 inter-stimulus	

interval.		

Block	 transitions	 were	 marked	 with	 a	 written	 task	 instruction,	 which	

indicated	(i)	the	aspect	of	meaning	that	participants	needed	to	focus	on	and	(ii)	the	

presentation	 format	 presented	 in	 parentheses.	 The	 task	 instructions	 were	

presented	for	3500ms	(followed	by	500ms	fixation).	A	grey	fixation	cross	against	a	

black	background	was	used	 to	minimize	eye	movements	during	 the	duration	of	 a	

block.	 Each	 block	 (including	 task	 instruction	 and	 jittered	 rest	 period)	 lasted	 on	

average	28.7	seconds.		
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Figure	3.1.	Experimental	design.	(A)	Four	runs	across	the	fMRI	session.	Each	run	

lasted	no	longer	than	6	min	19	s.	(B)	Block	organization	across	each	run.	WA	=	

written-Aud,	WV	=	written-VIS,	WN	=	written-NON,	SA	=	spoken-AUD,	SV	=	spoken-

VIS	and	SN	=	spoken-NON.	Only	6	are	depicted	for	illustration	(from	a	total	of	12	

blocks).	Each	of	the	6	conditions	were	randomly	presented	twice,	with	no	

immediate	repetition.	Written	blocks	lasted	22.7	seconds,	spoken	blocks	lasted	no	

longer	than	23.2	seconds.	(C)	Each	block	began	with	written	instructions	stating	the	

semantic	feature	type	and	presentation	format,	for	3500ms	(followed	by	500ms	

fixation).	The	8	items	from	the	condition	were	then	presented	twice	in	a	random	

order,	with	no	immediate	repetition.	Only	5	are	depicted	for	illustration	(from	a	

total	of	16	items).	The	arrow	represents	an	out-of-category	item	(e.g.,	visual	feature	

‘glossy’	in	a	block	of	auditory	features).	In	total,	17	words	were	presented	within	

each	block	(16	targets	and	1	catch	trial).			

	

3.3.1.4.	Acquisition	

Data	were	acquired	using	a	GE	3T	HD	Excite	MRI	scanner	at	the	York	Neuroimaging	

Centre,	University	of	York.	A	Magnex	head-dedicated	gradient	insert	coil	was	used	
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in	conjunction	with	a	birdcage,	radio-frequency	coil	tuned	to	127.4	MHz.	A	gradient-

echo	EPI	sequence	was	used	to	collect	data	from	38	bottom-up	axial	slices	aligned	

with	the	temporal	 lobe	(TR	=	2s,	TE	=	18	ms,	FOV	=	192	×	192	mm,	matrix	size	=	64	

×	64,	 slice	 thickness	=	3	mm,	slice-gap	1mm,	 flip-angle	=	90°).	Voxel	 size	was	3	×	3	

×	3	mm.	 Functional	 images	 were	 co-registered	 onto	 a	 T1-weighted	 anatomical	

image	from	each	participant	(TR	=	7.8	s,	TE	=	3	ms,	FOV	=	290	mm	x	290	mm,	matrix	

size	 =	 256	mm	x	256	mm,	 voxel	 size	 =	 1.13	mm	x	1.13	mm	x	1	mm)	using	 linear	

registration	(FLIRT,	FSL).		

	

3.3.1.5.	Pre-processing		

Imaging	 data	 were	 pre-processed	 using	 the	 FSL	 toolbox	

(http://www.fmrib.ox.ac.uk/fsl).	Images	were	skull-stripped	using	a	brain	extraction	

tool	 (BET,	 Smith,	 2002)	 to	 remove	non-brain	 tissue	 from	 the	 image.	 The	 first	 five	

volumes	 (10s)	 of	 each	 scan	 were	 removed	 to	 minimize	 the	 effects	 of	 magnetic	

saturation,	 and	 slice-timing	 correction	 was	 applied.	 Motion	 correction	 (MCFLIRT,	

Jenkinson	et	 al.	 2002)	was	 followed	by	 temporal	 high-pass	 filtering	 (cutoff	 =	 0.01	

Hz).	 Individual	 participant	 data	 were	 first	 registered	 to	 their	 high-resolution	 T1-

anatomical	image,	and	then	into	a	standard	space	(Montreal	Neurological	Institute	

(MNI152);	 this	 process	 included	 tri-linear	 interpolation	of	 voxel	 sizes	 to	 2	 ×	 2	 ×	 2	

mm.	For	univariate	analyses,	data	were	additionally	smoothed	(Gaussian	full	width	

half	maximum	6	mm).		

	

3.3.1.6.	Univariate	Analysis	

The	condition	onset	and	duration	were	taken	from	the	first	item	in	each	block	(after	

the	 initial	 instructions)	 to	 the	end	of	 the	 last	 item.	The	 response	 to	each	of	 the	6	

conditions	was	 contrasted	 against	 rest.	 Box-car	 regressors	 for	 each	 condition,	 for	

each	 run,	 in	 the	 general	 linear	 model	 were	 convolved	 with	 a	 double	 gamma	

hemodynamic	 response	 function	 (FEAT,	 FSL).	 Regressors	 of	 no	 interest	were	 also	

included	 to	 account	 for	 head	motion	within	 scans.	 A	 fixed	 effect	 design	 (FLAME,	

http://www.fmrib.ox.ac.uk/fsl)	was	then	conducted	to	average	across	the	four	runs,	

within	 each	 individual.	 Finally,	 individual	 participant	 data	 were	 entered	 into	 a	
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higher-level	 group	 analysis	 using	 a	 mixed	 effects	 design	 (FLAME,	

http://www.fmrib.ox.ac.uk/fsl)	whole-brain	analysis.		

	

3.3.1.7.	Multivariate	Pattern	Analysis	

Parameter	 estimates	 were	 calculated	 in	 the	 same	 manner	 as	 for	 univariate	

analyses,	 for	 each	 condition	 and	 for	 each	 run:	 in	 this	 way,	 the	 spatial	 pattern	

information	entered	into	the	classifier	from	each	condition	represented	the	average	

response	 to	 the	 8	 exemplars.	 This	 method	 is	 consistent	 with	 previous	 literature	

investigating	 semantic	 representations	 (Countanche	 &	 Thompson-Schill,	 2012;	

Fairhall	 &	 Caramazza,	 2013;	 Peelen	 &	 Caramagzza,	 2012):	 it	 allows	 us	 to	 make	

inferences	that	a	particular	region	is	able	to	discriminate	between	words	referring	

to	 auditory	 and	 visual	 features,	 for	 example,	 but	 not	 the	 meanings	 of	 these	

individual	words.		MVPA	was	conducted	on	spatially	unsmoothed	data	to	preserve	

local	voxel	information.		

As	 we	 had	 a	 priori	 knowledge	 of	 strong	 selectivity	 for	 the	 classes	 in	

particular	brain	regions	(ATL,	primary	auditory	cortex	and	primary	visual	cortex),	we	

opted	for	a	ROI-based	MVPA	method	rather	than	whole-brain	analysis.	This	reduced	

the	 number	 of	 voxels	 used	 for	 classification	 (and	 therefore	 the	 number	 of	 free	

parameters	which	can	lead	to	over-fitting;	for	similar	approaches	see	Kamitani	and	

Tong,	2005)	and	Kuhl,	Rissman,	Chun	and	Wagner,	2011).	The	following	masks	were	

used;	 primary	 visual	 cortex	 (taken	 from	 FSL	 Juelich	 Atlas;	

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases),	 primary	 auditory	 cortex	 (taken	 from	

FSL	Juelich	Atlas;	http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases)	and	ATL	(anterior	to	Y	

=	 -22;	Lambon	Ralph	et	al.	2015).	The	size	of	 these	masks	are	as	 follows;	primary	

visual	 cortex,	 12662	 voxels;	 primary	 auditory	 cortex,	 2372	 voxels;	 ATL,	 18523	

voxels.	

To	 ensure	 that	 our	 ROIs	 had	 sufficient	 signal	 to	 detect	 reliable	 fMRI	

activation,	 the	 temporal	 signal-to-noise	 ratio	 (tSNR)	 for	 each	 participant	 was	

calculated	 for	 the	 first	 run	of	 the	experiment	by	dividing	 the	mean	 signal	 in	each	

voxel	 by	 the	 standard	 deviation	 of	 the	 residual	 error	 time	 series	 in	 that	 voxel	

(Friedman	and	Glover,	2006).	tSNR	values	were	averaged	across	the	voxels	of	each	

ROI.	Mean	tSNR	values,	averaged	across	participants,	were	as	 follows:	ATL,	76.74;	
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primary	 auditory	 cortex	 (PAC),	 93.61;	 primary	 visual	 cortex	 (PVC),	 102.96.	 The	

percentage	of	 voxels	 in	 each	ROI	 that	 had	 “good”	 tSNR	 values	 (>20;	Binder	 et	 al.	

2011)	was	above	85%	for	all	ROIs:	ATL,	86.17%;	PAC,	99.87%;	PVC,	94.58%.	These	

values	 indicate	 that,	 although	mean	 tSNR	 was	 lower	 in	 anterior	 temporal	 cortex	

than	in	sensory	regions,	the	tSNR	was	sufficient	to	detect	reliable	fMRI	activation	in	

all	ROIs	(Binder	et	al.	2011).	Moreover,	to	determine	whether	tSNR	was	sufficient	in	

each	sub-region	of	the	ATL		(as	signal	drop	out	is	most	prominent	in	ventral	anterior	

regions),	 the	 tSNR	 was	 calculated	 for	 the	 following	 regions:	 aSTG,	 85.97;	 aMTG,	

89.00;	aITG,	69.79;	anterior	fusiform	gyrus,	69.74;	anterior	parahippocampal	gyrus,	

67.13;	temporal	pole,	63.27.	These	values	suggest	that,	again,	although	mean	tSNR	

was	 lower	 in	more	ventral	anterior	regions,	 it	was	still	sufficient	to	detect	reliable	

fMRI	activation	(Binder	et	al.	2011).	

For	each	voxel	in	our	three	ROI	masks,	we	computed	a	linear	support	vector	

machine	 (LIBSVM;	 with	 fixed	 regularization	 hyper-parameter	 C	 =	 1)	 and	 a	 4-fold	

cross-validation	 (leave-one-run-out)	 classification,	 implemented	 in	 custom	 python	

scripts	using	 the	pyMVPA	software	package	 (Hanke	et	al.	2009).	A	 support	vector	

machine	was	chosen	as	this	aims	to	combat	over-fitting	by	limiting	the	complexity	

of	 the	 classifier	 (Lewis-Peacock	 &	 Norman,	 2013).	 The	 classifier	 was	 trained	 on	

three	 runs	 and	 tested	 on	 the	 independent	 fourth	 run;	 the	 testing	 set	 was	 then	

alternated	 for	 each	 of	 four	 iterations.	 Classifiers	 were	 trained	 and	 tested	 on	

individual	 subject	data	 transformed	 into	MNI	 standard	 space.	 The	 functional	data	

were	 first	 z-scored	 per	 voxel	 within	 each	 run.	 The	 searchlight	 analysis	 was	

implemented	 by	 extracting	 the	 z-scored	 β-values	 from	 spheres	 (6mm	 radius)	

centered	on	each	voxel	in	the	masks.	This	sized	sphere	included	∼	123	3mm	voxels	

(Kriegeskorte	et	al.	2006).		Classification	accuracy	(proportion	of	correctly	classified	

trials)	 for	 each	 sphere	 was	 assigned	 to	 the	 sphere’s	 central	 voxel,	 in	 order	 to	

produce	accuracy	maps.	The	 resulting	accuracy	maps	were	 then	smoothed	with	a	

Gaussian	kernel	 (6mm	FWHM).	To	determine	whether	accuracy	maps	were	above	

chance-levels	 (50%),	 individual	 accuracy	 maps	 were	 entered	 into	 a	 higher-level	

group	 analysis	 (mixed	 effects,	 FLAME;	 http://www.fmrib.ox.ac.uk/fsl),	 testing	 the	
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accuracy	values	across	subjects	against	chance	for	each	voxel.	Voxel	 inclusion	was	

set	at	z	=	2.3	with	a	cluster	significance	threshold	at	FWE	p	<	.05.	

The	 following	 classification	 tests	 were	 performed:	 (1)	 Semantic	 feature	

classifier:	 this	 examined	 whether	 patterns	 of	 activity	 conveyed	 information	

regarding	 the	meanings	of	words,	 by	 training	 a	 classifier	 to	discriminate	between	

words	referring	to	auditory	features	(e.g.	loud)	and	visual	features	(e.g.,	shiny).	This	

classifier	 was	 truly	 format-independent	 in	 the	 sense	 that	 it	 was	 trained	 on	 this	

semantic	distinction	using	spoken	words	and	tested	using	written	words	(and	vice	

versa).	 The	 advantage	 of	 performing	 the	 classification	 in	 this	 manner	 is	 only	

semantic	information	common	to	both	presentation	formats	was	informative	to	the	

classifier	(see	Figure	3.2.A).	The	results	from	the	two	classifications	were	averaged	

to	produce	a	single	estimate	of	classification	accuracy.	(2)	Perceptual	classifier:	here	

a	classifier	was	trained	to	discriminate	between	spoken	and	written	non-words	and	

was	 tested	 on	 these	 two	 presentation	 formats	 for	 words.	 In	 this	 way	 only	 the	

presentation	 format	 that	 was	 general	 to	 both	 non-words	 and	 words	 was	

informative	to	the	classifier	(see	Figure	3.2.B).		

	

	

Figure	3.2.	Schematic	illustration	of	the	MVPA	searchlight	classifiers	performed.	

Each	box	includes	the	six	experimental	conditions.	Classifiers	were	trained	to	

distinguish	between	two	conditions	(red	and	blue).	The	classifiers	were	then	tested	

on	independent	trials	that	differed	in	the	same	way.	(A)	Classifiers	were	trained	and	

tested	based	on	semantic	content	(trained	on	Spoken-AUD	vs.	Spoken-VIS,	tested	
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on	Written-AUD	vs.	Written-VIS	–	and	vice	versa).	The	results	from	both	

comparisons	were	then	averaged.	(B)	Classifiers	were	trained	and	tested	based	on	

presentation	format	(trained	on	Spoken-NON	vs.	Written-NON,	tested	on	Spoken	

words	vs.	Written	words).	(C)	Classifiers	were	trained	on	one	distinction	and	tested	

on	the	other	(trained	on	Spoken	vs.	Written	items,	tested	on	AUD	vs.	VIS;	trained	on	

AUD	vs.	VIS	items,	tested	on	Spoken	vs.	Written	items).		

	

3.3.2.	Resting	state	fMRI	

3.3.2.1.	Participants	

This	analysis	was	performed	on	a	separate	cohort	of	42	healthy	participants	at	York	

Neuroimaging	 Centre	 (13	 male;	 mean	 age	 20.31,	 range	 18-25	 years).	 Subjects	

completed	 a	 9-minute	 functional	 connectivity	 MRI	 scan	 during	 which	 they	 were	

asked	 to	 rest	 in	 the	 scanner	with	 their	eyes	open.	Using	 these	data	we	examined	

the	resting-state	 fMRI	 connectivity	 of	 ATL	 regions	 that	 were	 informative	 to	 the	

semantic	 feature	 (aITG)	 and	 perceptual	 classifiers	 (aSTG)	 to	 investigate	 whether	

these	 regions	 fell	 within	 similar	 or	 distinct	 networks.	In	 addition,	we	 investigated	

the	 rs-fMRI	 connectivity	 of	 semantic	 regions	within	 primary	 sensory	 cortices	 that	

showed	significant	decoding	by	the	semantic	classifiers	 to	examine	whether	these	

regions	overlap	with	the	connectivity	maps	of	the	ATL	seeds.		

	

3.3.2.2.	Acquisition	

As	 with	 the	 functional	 experiment,	 a	Magnex	 head-dedicated	 gradient	 insert	 coil	

was	used	in	conjunction	with	a	birdcage,	radio-frequency	coil	tuned	to	127.4	MHz.	

For	 the	 resting-state	data,	 a	 gradient-echo	EPI	 sequence	was	used	 to	 collect	data	

from	 60	 axial	 slices	 with	 an	 interleaved	 (bottom-up)	 acquisition	 order	 with	 the	

following	parameters:	TR	=	3s,	TE		=	minimum	full,	volumes	=	180,	flip	angle	=	90°,	

matrix	size	=	64	×	64,	FOV	=	192	×	192	mm,	voxel	size	=	3x3x3	mm.	A	minimum	full	

TE	was	selected	to	optimise	image	quality	(as	opposed	to	selecting	a	value	less	than	

minimum	full	which,	for	instance,	would	be	beneficial	for	obtaining	more	slices	per	

TR).	 Functional	 images	 were	 co-registered	 onto	 a	 T1-weighted	 anatomical	 image	
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from	each	participant	(TR	=	7.8	s,	TE	=	3	ms,	FOV	=	290	mm	x	290	mm,	matrix	size	=	

256	mm	x	256	mm,	voxel	size	=	1	mm	x	1	mm	x	1	mm).		

	

3.3.2.3.	Pre-processing	

Data	 were	 preprocessed	 using	 the	 FSL	 toolbox	 (http://www.fmrib.ox.ac.uk/fsl).	

Prior	to	conducting	the	functional	connectivity	analysis,	the	following	pre-statistics	

processing	was	applied	to	the	resting	state	data;	motion	correction	using	MCFLIRT	

to	 safeguard	 against	 motion-related	 spurious	 correlations	 (Baker	 et	 al.	 2015;	

Smallwood	et	al.	2016;	Kreiger-Redwood	et	al.	2016;	Davey	et	al.	2016);	slice-timing	

correction	using	Fourier-space	 time-series	phase-shifting;	non-brain	 removal	using	

BET;	 spatial	 smoothing	 using	 a	 Gaussian	 kernel	 of	 FWHM	 6	mm;	 grand-mean	

intensity	 normalisation	 of	 the	 entire	 4D	 dataset	 by	 a	 single	multiplicative	 factor;	

high-pass	temporal	filtering	 (Gaussian-weighted	 least-squares	 straight	 line	 fitting,	

with	sigma	=	100	s);	Gaussian	lowpass	temporal	filtering,	with	sigma	=	2.8	s.	

	

3.3.2.4.	Low-level	Analysis	

For	our	ATL	sites	we	created	two	spherical	seed	ROIs,	6	mm	in	diameter,	centered	

on	 the	 co-ordinates	of	 the	 central	 voxel	 in	 the	highest	performing	 spheres	 in	our	

presentation	and	semantic	searchlight	analyses;	left	aSTG	[-54	2	-10]	and	aITG	[-50	-

10	 -26]	 respectively	 (see	Table	3.2).	 For	our	 sensory	 semantic	 regions	we	created	

two	spherical	 seed	ROIS	centered	on	 intracalcarine	cortex	 [-18	 -84	4]	and	planum	

polare	 [-48	 -12	 -4]	 from	 the	 best	 performing	 spheres	 in	 our	 semantic	 searchlight	

analysis;	 as	 these	 regions	 showed	 high	 performance	 accuracy	 on	 the	 semantic	

classifier	and	fall	within	primary	sensory	regions.		

The	 time	 series	 of	 these	 regions	 were	 extracted	 and	 used	 as	 explanatory	

variables	 in	a	separate	subject	 level	functional	connectivity	analysis	for	each	seed.	

Subject	 specific	 nuisance	 regressors	 were	 determined	 using	 a	 component	 based	

noise	 correction	 (CompCor)	 approach	 (Behzadi	 et	 al.	 2007).	 This	 method	 applies	

principal	 component	 analysis	 (PCA)	 to	 the	 fMRI	 signal	 from	 subject	 specific	white	

matter	 and	 CSF	 ROIS.	 In	 total	 there	were	 11	 nuisance	 regressors,	 five	 regressors	

from	 the	CompCorr	and	a	 further	6	nuisance	 regressors	were	 identified	using	 the	

motion	 correction	MCFLIRT.	 These	 principle	 components	 are	 then	 removed	 from	
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the	 fMRI	 data	 through	 linear	 regression.	 The	 WM	 and	 CSF	 covariates	 were	

generated	by	 segmenting	each	 individual's	 high-resolution	 structural	 image	 (using	

FAST	in	FSL;	Zhang	et	al.	2001).	The	default	tissue	probability	maps,	referred	to	as	

Prior	Probability	Maps	 (PPM),	were	 registered	 to	each	 individual's	high-resolution	

structural	 image	 (T1	 space)	 and	 the	 overlap	 between	 these	 PPM	 and	 the	

corresponding	 CSF	 and	 WM	 maps	 was	 identified.	 These	 maps	 were	 then	

thresholded	(40%	for	the	SCF	and	66%	for	the	WM),	binarized	and	combined.	The	

six	motion	 parameters	were	 calculated	 in	 the	motion-correction	 step	 during	 pre-

processing.	 Movement	 in	 each	 of	 the	 three	 Cartesian	 directions	 (x,	 y,	 z)	 and	

rotational	movement	 around	 three	 axes	 (pitch,	 yaw,	 roll)	were	 included	 for	 each	

individual.		

	

3.3.2.5.	High-level	Analysis	

At	 the	 group-level	 the	 data	 were	 processed	 using	 FEAT	 version	 5.98	 part	 of	 FSL	

(FMRIB's	 Software	 Library,www.fmrib.ox.ac.uk/fsl)	 and	 the	 analyses	 were	 carried	

out	using	FMRIB's	Local	Analysis	of	Mixed	Effects	 (FLAME)	stage	1	with	automatic	

outlier	 detection.	 The	 z	 statistic	 images	 were	 then	 thresholded	 using	 clusters	

determined	 by	 z	>	2.3	 and	 a	 (corrected)	 cluster	 significance	 threshold	 of	 p	=	0.05	

(Worsley,	2001).	No	global	signal	regression	was	performed.	

	To	investigate	the	differences	between	the	connectivity	maps	a	fixed	effect	

design	(FLAME,	http://www.fmrib.ox.ac.uk/fsl)	was	conducted	for	each	participant	

to	investigate	four	contrasts;	(i)	aSTG	>	aITG	seed,	(ii)	aITG	>	aSTG	seed,	(iii)	auditory	

semantic	>	visual	semantic	seed	and	(iv)	visual	semantic	>	auditory	semantic	seed.	

Individual	 participant	 data	 were	 then	 entered	 into	 a	 higher-level	 group	 analysis	

using	 a	 mixed	 effects	 design	 (FLAME,	 http://www.fmrib.ox.ac.uk/fsl)	 whole-brain	

analysis.	 Finally,	 to	 determine	 whether	 our	 ATL	 seeds	 connectivity	 maps	 overlap	

with	 the	 connectivity	 maps	 of	 the	 sensory	 semantic	 seeds	 we	 calculated	 the	

number	 of	 overlapping	 voxels	 for	 our	 two	 ATL	 sites	 and	 the	 sensory	 semantic	

connectivity	maps.			

	

3.3.3.	Resting	state	decoder	
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	To	 allow	 quantitative	 inferences	 to	 be	 drawn	 on	 the	 functional	 neural	 activity	

identified	 through	 our	 seed	 based	 correlational	 analyses	 we	 performed	 an	

automated	 meta-analysis	 using	 NeuroSynth	 (http://neurosynth.org/decode;	

Yarkoni	et	al.	2011).	This	software	computed	the	spatial	correlation	between	each	

ATL	 component	 mask	 and	 every	 other	 meta-analytic	 map	 (n	 =	 11406)	 for	 each	

term/concept	stored	 in	the	database	(e.g.,	semantic,	 language,	memory,	sensory).	

The	15	meta-analytic	maps	exhibiting	the	highest	positive	correlation	and	negative	

correlation	for	each	sub-system	mask	were	extracted,	and	the	term	corresponding	

to	each	of	these	meta-analyses	is	shown	in	Figure	3.4.	The	font	size	reflects	the	size	

of	the	correlation	(ranging	from	r	=	0.10	to	0.45	for	positive	correlations	and	r	=	-

0.05	 to	 -0.2	 for	 negative	 correlations,	 in	 increments	 of	 0.05).	 This	 allows	 us	 to	

quantify	 the	 most	 likely	 reverse	 inferences	 that	 would	 be	 drawn	 from	 these	

functional	maps	by	the	larger	neuroimaging	community.	

	

3.4.	Results	

	

3.4.1.	Behavioural	Results	

Accuracy	and	reaction	times	(RT)	were	calculated	for	each	participant	(n=19)	for	the	

catch	trials	in	each	experimental	condition.	Results	showed	that	all	participants	paid	

attention	 to	 the	 words	 as	 indicated	 by	 a	 mean	 accuracy	 above	 80%	 for	 all	

experimental	 conditions	 (spoken	 AUD	 =	 80.63%	 ±	 15.33,	 spoken	 VIS	 =	 88.12%	 ±	

4.86,	spoken	NON	=	85.62%	±	11.47,	written	AUD	=	83.12%	±	19.01,	written	VIS	=	

86.25%	±	13.52,	written	NON	=	88.75%	±	5.45).	A	chi-square	test	of	independence	

revealed	 that	 accuracy	 did	 not	 significantly	 differ	 across	 the	 six	experimental	

conditions	(𝑥!(5)	=	6.09,	p	=	.303)	or	across	spoken	and	written	input	(𝑥!(1)	=	.301,	

ns).	 RTs	 differed	 significantly	 between	modality-input	 (t(59)	 =	 7.36,	 p	 <	 .001),	but	

not	 semantic-category	 within	 each	 modality	 (spoken:	 F(2,38)	 =	 .92,	 ns;	

written:	F(2,38)	=	0.074,	ns).	In	line	with	previous	findings	(Booth	et	al.	2002;	Cohen	

et	 al.	2004),	 participants	 were	 significantly	 faster	 at	 responding	 to	 written	 than	

spoken	stimuli.	Furthermore,	there	was	no	difference	in	RT	between	AUD,	VIS	and	

NON	 items	 within	 each	 presentation	 modality,	 suggesting	 that	 the	
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experimental	conditions	 were	 well	 matched	 at	 the	 behavioural	 level	 within	 our	

stimuli	subset.	

	

3.4.2.	Searchlight	Analysis	

3.4.2.1.	Semantic-feature	Classifier	

	The	 format-independent	 searchlight	 classifier,	 trained	on	 the	distinction	between	

visual	 and	 auditory	 features	 in	 one	 presentation	 modality	 and	 tested	 on	 this	

distinction	 in	 the	 other	modality,	 was	 run	 in	 three	 separate	masks	 (ATL;	 primary	

auditory	 cortex	 and	 primary	 visual	 cortex).	 All	 results	 reported	 are	 above	 chance	

levels	(50%,	cluster	corrected	p	<	.05).	The	searchlight	analysis	within	the	ATL	mask	

revealed	a	 left	hemisphere	cluster	 that	could	decode	semantic	 information	across	

modalities	 in	 ventrolateral	 regions,	 namely	 aMTG	and	 aITG	 (see	 Figure	 3.3,	 Table	

3.2).	 Additionally,	 right	 hemisphere	 clusters	 were	 revealed	 in	 anterior	

parahippocampal	gyrus	and	temporal	pole	(TP).	The	searchlight	analysis	within	the	

primary	 auditory	mask	 revealed	 a	 cluster	 in	 planum	polare	 (see	 Figure	 3.4,	 Table	

3.2).	 Finally,	 the	 primary	 visual	 cortex	 mask	 revealed	 a	 cluster	 in	 intracalcarine	

cortex	that	could	decode	semantic	content	(see	Figure	3.5,	Table	3.2).		

	

3.4.2.2.	Perceptual	Classifier		

The	classifier	that	was	trained	on	the	distinction	between	spoken	and	written	non-

words	 and	 tested	 on	 the	 distinction	 between	 these	 presentation	 modalities	 for	

words,	 was	 also	 run	 in	 three	 separate	 masks	 (ATL;	 primary	 auditory	 cortex	 and	

primary	 visual	 cortex).	 All	 results	 reported	 are	 above	 chance	 levels	 (50%,	 cluster	

corrected	 p	 <	 .05).	 Within	 the	 ATL,	 anterior	 portions	 of	 STG,	 extending	 into	

temporal	pole,	were	able	to	decode	between	presentation	formats	(see	Figure	3.3;	

Table	3.2).	The	classifier	 results	 for	 the	primary	auditory	 cortex	mask	 revealed	an	

extensive	 cluster	 of	 voxels	 that	 could	 classify	 perceptual	 information	 in	 Heschl’s	

Gyrus,	 planum	 temporale	 and	 superior	 temporal	 gyrus	 (see	 Figure	 3.4.;	 Table	 2).	

The	 classifier	 results	 for	 the	 primary	 visual	 cortex	 mask	 revealed	 an	 extensive	

cluster	of	voxels	in	occipital	pole	(see	Figure	3.5;	Table	3.2).			
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To	explicitly	determine	whether	the	ventrolateral	site	(aITG)	and	aSTG	were	

differentially	able	 to	classify	 the	modality	of	presentation	and	the	meaning	of	 the	

stimulus,	we	conducted	a	2	X	2	repeated-measures	ANOVA	in	which	we	compared	

the	prediction	accuracies	for	each	classifier	output	for	each	significant	cluster.	This	

revealed	 three	 significant	 effects.	 First,	 a	 main	 effect	 for	 classifier	 type	

(presentation	 format	 vs.	 semantic	 classifier;	 F(1,18)	 =	 36.76,	p	<	 .001).	 Second,	 a	

significant	main	effect	of	region	(aSTG	vs.	aITG;	F(1,18)	=	79.71,	p	<	.001).	Critically,	

we	 also	 found	 a	 significant	 interaction	 between	 classifier	 type	 and	 ATL	 region	

(F(1,18)	 =	 1087.51,	 p	 <	 .001).	 Post-hoc	 tests	 revealed	 a	 significant	 difference	

between	 aSTG	 and	 aITG	 for	 the	 presentation	 format	 classifier,	 with	 aSTG	

performing	significantly	better	than	aITG	(t(18)	=	29.04,	p	<	.001).	There	was	also	a	

significant	 difference	 between	 aITG	 and	 aSTG	 for	 the	 semantic	 feature	 classifier,	

with	 aITG	 performing	 significantly	 better	 than	 aSTG	 (t(18)	 =	 28.30,	 p	 <	 .001).	

Collectively,	 these	 analyses	 show	 a	 dissociation	 between	 ATL	 regions:	 aSTG	

classification	 accuracy	 was	 higher	 for	 presentation	modality	 than	 word	meaning,	

while	the	reverse	pattern	was	obtained	for	aITG.	

In	 addition	 to	 our	 ROI-based	 MVPA	 results,	 a	 whole-brain	 searchlight	

analysis	 was	 computed	 for	 both	 the	 semantic	 feature	 classifier	 and	 perceptual	

classifier,	 using	 the	 same	 analysis	 pipeline	 outlined	 for	 our	 ROI	 analysis.	 Results	

from	 the	 whole-brain	 searchlight	 reveal	 similar	 clusters	 across	 primary	 auditory	

cortex,	 primary	 visual	 cortex	 and	 anterior	 temporal	 lobe.	 In	 addition,	 the	whole-

brain	 analysis	 revealed	 clusters	 in	 occipital-parietal	 cortex	 and	 clusters	 extending	

along	the	temporal	lobe.	The	unthresholded	maps	from	the	whole-brain	searchlight	

analysis	 have	 been	 uploaded	 to	 the	 neurovault	 database	 and	 can	 be	 found	 here	

http://neurovault.org/collections/1970/.”	
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Figure	3.3.	Coronal	slices	taken	at	Y	=	5,	Y	=	-5		and	Y	=	-15.	Anterior	temporal	

lobe	mask	shows	all	regions	of	the	temporal	lobe	anterior	to	Y	=	-22	in	line	with	

Lambon	 Ralph	 et	 al.	 (2015)	 projected	 in	 blue.	 Results	 of	 the	 group-level	

searchlight	analysis	for	semantic	feature	classification	(AUD	vs.	VIS)	projected	in	

magenta	(cluster-corrected	p	<	.01).	Results	for	perceptual	classifier	(spoken	vs.	

written)	 projected	 in	 cyan	 (cluster-corrected	 p	 <	 .01).	 Overlap	 of	 the	 two	

searchlight	 analyses	 in	 white.	 In	 total	 47	 voxels	 overlapped	 across	 the	 two	

searchlight	 analyses	 in	 aSTG	 (right	 hemisphere,	 38	 voxels;	 left	 hemisphere,	 9	

voxels).	aSTG	=	anterior	superior	temporal	gyrus;	aMTG/aITG	=	anterior	middle	

temporal	gyrus/inferior	temporal	gyrus.		
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Figure	3.4.	Left	hemisphere	sagittal	slices	taken	at	X	=	-55	and	X	=	-50.	Primary	

auditory	ROI	taken	from	Juelich	histological	atlases	projected	in	blue.	Results	of	

the	group-level	searchlight	analysis	for	semantic	feature	classification	(AUD	vs.	

VIS)	projected	in	magenta	(cluster-corrected	p	<	.01).	Results	for	perceptual	

classifier	(spoken	vs.	written)	projected	in	cyan	(cluster-corrected	p	<	.01).	

Overlap	of	the	two	searchlight	analyses	in	white.		
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Figure	3.5.	Left	hemisphere	sagittal	slices	taken	at	X	=	-20,	X	=	-15	and	X	=	-10.	

Primary	visual	ROI	taken	from	Juelich	histological	atlases	projected	in	blue.	

Results	of	the	group-level	searchlight	analysis	for	semantic	feature	classification	

(AUD	vs.	VIS)	projected	in	magenta	(cluster-corrected	p	<	.01).	Results	for	

perceptual	classifier	(spoken	vs.	written)	projected	in	cyan	(cluster-corrected	p	<	

.01).	Overlap	of	the	two	searchlight	analyses	in	white.		

	

3.4.3.	Univariate	Analysis		

The	searchlight	results	revealed	that	in	ATL,	primary	auditory	cortex	and	visual	

cortex,	 distinct	 regions	 were	 able	 to	 decode	 semantic	 feature	 type	 and	

presentation	 modality.	 As	 an	 additional	 complementary	 analysis,	 the	

percentage	 signal	 change	was	 extracted	 for	 each	 condition	 from	 the	 pairs	 of	

clusters	 that	 were	 able	 to	 decode	 semantic	 feature	 type	 and	 modality	 of	

presentation	in	ATL,	visual	cortex	and	auditory	cortex	(generating	six	analyses;	

see	Figure	3.6).	A	6mm	sphere	was	centered	at	the	peak	MVPA	accuracy	in	each	

of	these	sites	(see	Table	3.2).	The	ventrolateral	ATL	region	(encompassing	aITG	

and	 aMTG,	 decoding	 feature	 type)	 showed	 deactivation	 across	 all	 four	

conditions,	and	the	degree	of	deactivation	was	sensitive	to	meaning	(auditory	>	

visual	 features)	 but	 not	 input	modality	 (spoken	 =	written	words).	 In	 contrast,	
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aSTG	(which	decoded	presentation	modality)	was	sensitive	to	modality	(spoken	

>	 written)	 but	 not	 meaning	 (auditory	 =	 visual	 features).	 Thus,	 univariate	

analyses	also	 revealed	a	 functional	dissociation	within	ATL.	We	also	examined	

regions	that	could	decode	modality	of	presentation	and	semantic	feature	type	

within	 primary	 auditory	 cortex	 (planum	 temporale	 and	 planum	 polare	

respectively)	and	primary	visual	cortex	(occipital	pole	and	intracalcarine	cortex).	

All	 four	 sites	 showed	 strong	 effects	 of	 input	 modality	 in	 univariate	 analyses	

across	both	feature	types.	In	addition,	the	intracalcarine	cortex	showed	greater	

activity	 to	words	 that	denoted	a	visual	property	 (e.g.,	bright)	whereas	planum	

polare	 showed	greater	activation	 to	words	 that	denoted	an	auditory	property	

(e.g.,	loud).	This	effect	of	meaning	in	primary	visual	and	auditory	areas	was	only	

seen	when	 the	 words	 were	 presented	 in	 the	 complementary	 input	modality:	

primary	 visual	 cortex	 responded	more	 to	 visual	 features	when	written	words	

were	 presented,	 while	 primary	 auditory	 cortex	 responded	 more	 to	 auditory	

features	when	spoken	words	were	presented.	Thus,	aITG	was	unique	in	showing	

a	pattern	across	both	multivariate	and	univariate	analyses	consistent	with	 the	

predictions	for	a	transmodal	 ‘hub’:	 i.e.,	sensitivity	to	meaning	and	 insensitivity	

to	presentation	modality.	
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Figure	3.6.	The	first	column	shows	6mm	ROIs	centered	on	the	peak	MVPA	

results	from	the	searchlight	analyses	(shown	in	figure	3.3-3.5)	for	semantic	

classifier	in	magenta	and	modality	classifier	in	cyan,	for	each	of	our	three	masks	

(anterior	temporal	lobe,	primary	auditory	cortex	and	primary	visual	cortex)	

projected	in	blue.	The	centre	for	these	ROIs	are	as	follows;	aITG	seed	[-50	-10	-

26],	aSTG	seed	[-58	-10	-2],	planum	polare	[-48	-12	-4],	planum	temporale	[-58	-

24	8],	intracalcarine	cortex	[-16	-84	4]	and	occipital	pole	[-16	-92	0].	The	second	

column	shows	the	univariate	percent	signal	change	for	each	of	our	four	

conditions	within	the	semantic	(magenta)	ROI.	The	third	column	shows	the	

univariate	percent	signal	change	for	each	of	our	four	conditions	with	the	

modality	(cyan)	ROI.	Grey	bars	show	the	results	for	auditory-feature	words	(e.g.,	

‘loud’)	and	white	bars	show	the	results	for	visual-feature	words	(e.g.,	‘bright).	*	

indicates	a	significant	difference	between	auditory-features	and	visual-features	

within	a	modality	(i.e.,	spoken	auditory-features	and	spoken	visual-features;	p	<	

.05).	**	indicates	a	significant	difference	between	spoken	and	written	

presentation	format	(p	<	.001).		The	unthresholded	univariate	maps	for	each	
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condition	have	been	uploaded	to	the	Neurovault	database	and	can	be	found	

here	http://neurovault.org/collections/1970/	

	

3.4.4.	Resting-state	fMRI	

To	provide	a	better	understanding	of	the	neural	architecture	that	supported	the	

functional	distinction	between	aSTG	(effect	of	 input	modality)	and	aITG	(effect	

of	 semantic	 feature	 type),	 we	 explored	 the	 connectivity	 of	 these	 regions	 in	

functional	fMRI	(see	Figure	3.7)	by	placing	spherical	ROIs	at	peaks	in	the	MVPA	

analysis.	 The	 aSTG	 seed	 showed	 significant	 positive	 connectivity	 across	 the	

entire	 length	 of	 STG	 through	 primary	 auditory	 cortex	 and	 into	 supramarginal	

gyrus	 (SMG).	 It	 coupled	with	posterior	 and	anterior	 regions	of	MTG,	pre-	 and	

post-central	 gyrus,	 supplementary	 motor	 cortex	 and	 anterior	 cingulate	 gyrus	

and	 deactivation	 with	 visual	 regions,	 including	 lateral	 occipital	 cortex,	

intracalcarine	 cortex,	 occipital	 fusiform	 gyrus	 (OFG)	 and	 temporal	 occipital	

fusiform	gyrus,	as	well	as	posterior	cingulate	and	precuneous.	 In	contrast,	 the	

aITG	site	showed	connectivity	with	core	parts	of	the	default	mode	network	and	

multimodal	 semantic	 regions,	 including	 angular	 gyrus,	 posterior	 parts	 of	MTG	

and	ITG,	temporal	pole	extending	medially	to	include	hippocampus	and	anterior	

parahippocampal	gyrus,	and	anterior	and	 inferior	prefrontal	 regions,	 including	

orbital	cortex	and	left	 inferior	frontal	gyrus	(LIFG).	This	seed	also	coupled	with	

lateral	visual	regions	(e.g.,	LOC	and	occipital	fusiform	gyrus).	Table	3.3	presents	

location	and	size	of	each	of	these	clusters.			

	

Table	3.3.	-	Coordinates	of	Peak	Clusters	in	the	Resting-state	Connectivity	Analyses	

Seed	Region	 Cluster	 Cluster	Extent	 Z-score	 x	 y	 z	

aSTG		 Increased	Correlation	 	 	 	 	 	

	 L.	aSTG	 15745	 12.3	 -54	 2	 -10	

	 R.	Temporal	pole	 12970	 9.24	 52	 8	 -14	

	 Cingulate	Gyrus	 7618	 7.02	 -4	 12	 32	

	 Reduced	Correlation		 	 	 	 	 	

	 L.	Cuneal	cortex	 26667	 6.19	 -20	 -74	 32	

	 R.	Superior	frontal	gyrus	 4128	 4.69	 20	 12	 52	
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Footnote:	The	table	shows	peak	clusters	in	the	resting-state	connectivity	analysis	from	

two	seed	regions;	aSTG	and	aITG.	Results	are	thresholded	at	p	<	.01	(cluster	corrected).	

L	=	left,	R	=	right.		

	

	

To	investigate	the	differences	between	these	two	ATL	maps	a	difference	

analysis	was	 performed	 (Figure	 3.7.B).	 The	 contrast	 of	 aSTG	 >	 aITG	 identified	

bilateral	superior	temporal	and	frontal	polar	regions.	The	contrast	aITG	>	aSTG	

revealed	 bilateral	 inferior	 and	 middle	 portions	 of	 the	 temporal	 lobe	 and	

multimodal	 semantic	 sites	 including	 angular	 gyrus,	 pMTG	 and	 LIFG.	 These	

differences	 resemble	 resting	 state	 differences	 for	 aSTG	 and	 vATL	 reported	 by	

Jackson	et	al.	(2016),	helping	to	validate	the	functional	dissociation	we	observed	

using	MVPA.	

	

	 L.	Middle	frontal	gyrus	 2259	 4.53	 -32	 10	 50	

	 L.	Lateral	occipital	cortex,	inferior	 1457	 5.46	 -46	 -70	 -12	

aITG			 Increased	Correlation	 	 	 	 	 	

	 L.	aITG/MTG	 20324	 13.1	 -50	 -10	 -26	

	 L.	Frontal	pole	 2899	 7.22	 -10	 50	 32	

	 L.	Occipital	fusiform	gyrus	 1981	 4.49	 -26	 -82	 -8	

	 Reduced	Correlation	 	 	 	 	 	

	 Postcentral	gyrus	 3725	 4.44	 0	 -54	 74	

	 R.	Frontal	pole	 2717	 5.07	 42	 54	 12	

	 L.	IFG,	pars	triangularis	 2118	 5.17	 -46	 35	 16	

	 R.	Cingulate	gyrus	 1276	 4.44	 12	 32	 16	

	 L.	Angular	gyrus	 783	 4.39	 -40	 -50	 42	

	 L.	Superior	parietal	lobule	 769	 3.94	 -30	 -48	 -56	

	 L.	Middle	frontal	gyrus	 724	 4.72	 -28	 8	 60	

	 R.	Middle	frontal	gyrus	 626	 4.16	 30	 12	 56	
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Figure	3.7.	Resting	state	connectivity	maps	projected	on	rendered	brain,	

displaying	(from	left-to-right)	left	hemisphere,	right	hemisphere,	medial	view.	

Maps	thresholded	at	z	=	2.3,	cluster	corrected	p	<	.01.	(A)	Resting	state	

connectivity	from	two	ATL	regions	connectivity	maps;	green	seed	=	aSTG	(taken	

from	peak	accuracy	for	modality	classifier	within	anterior	temporal	lobe)	and	

red	seed	=	aITG	(taken	from	peak	accuracy	for	semantic	classifier	within	

anterior	temporal	lobe)	-	the	seed	locations	are	highlighted	on	the	right.	(B)	

Subtraction	analysis	from	two	ATL	connectivity	maps;	red	=	aITG	>	aSTG.	Pie	

chart	on	the	right	shows	proportion	of	overlapping	voxels	for	this	difference	

map	with	core	networks	taken	from	Yeo	et	al.	(2011).	These	four	networks	

include	two	sensory	maps	(Visual,	Somatosensory),	Limbic	and	Default	Mode	

Network.		(C)	Subtraction	analysis	from	two	ATL	connectivity	maps;	green	=	

aSTG	>	aITG.	Pie	chart	on	the	right	shows	proportion	of	overlapping	voxels	for	

this	difference	map	with	core	networks	taken	from	Yeo	et	al.	(2011).			

	



 108 

To	 further	 interrogate	the	assumption	that	aITG	exhibits	a	connectivity	

profile	 consistent	 with	 an	 transmodal	 region,	 whereas	 aSTG	 is	 connected	 to	

sensory	 regions,	 we	 looked	 at	 the	 similarity	 between	 our	 two	 ATL	 difference	

maps	(see	Figure	3.7.B	and	C)	and	that	of	four	core	networks	taken	from	Yeo	et	

al.	 (2014).	 These	 included	 two	 networks	 sensitive	 to	 sensory	 input	 (visual,	

somatosensory)	 and	 two	 networks	 thought	 to	 be	 crucial	 in	 the	 generation	 of	

cognitive	 states	 that	 do	 not	 rely	 on	 sensory	 inputs	 for	 their	 mental	 content	

(limbic	 and	 default	 mode	 network)	 (for	 a	 review	 see	 Andrews-Hanna,	

Smallwood	and	Spreng,	2014).	The	results,	outlined	 in	Figures	3.7.B	and	3.7.C,	

indicated	 substantial	 overlap	 between	 the	 sensory	 networks	 (namely	

somatosensory)	 and	 aSTG.	 In	 contrast,	 aITG	 showed	 substantial	 overlap	 with	

limbic	and	DMN	networks.	

	

3.5.	Discussion		

	
The	current	study	used	multiple	imaging	methods	to	identify	regions	in	the	

anterior	temporal	lobe	(ATL)	and	primary	sensory	regions	that	showed	the	

pattern	expected	for	the	semantic	hub	of	the	hub-and-spokes	model	(Patterson	

et	al.	2007).	In	an	fMRI	study,	participants	listened	to	or	viewed	words	that	

referred	to	either	visual	or	auditory	features	(e.g.,	BRIGHT	or	LOUD).	Multivoxel	

pattern	analysis	(MVPA)	revealed	a	dissociation	between	(i)	ventrolateral	ATL	

(aMTG	/	aITG),	which	could	classify	semantic	categories	relating	to	feature	type	

(e.g.,	auditory	features	like	“loud”	as	being	different	from	visual	features	like	

“bright”)	across	auditory	and	visual	inputs	and	(ii)	anterior	superior	temporal	

gyrus	(aSTG),	which	was	sensitive	to	input	modality	across	meaningful	and	

meaningless	items.	This	dissociation	within	ATL	was	further	supported	by	

univariate	contrasts	and	patterns	of	functional	connectivity:	aSTG	showed	a	

stronger	response	to	spoken	than	written	inputs	and	was	functionally	coupled	

to	an	auditory-motor	network	(somatosensory	network;	Yeo	et	al.	2014),	while	

ventrolateral	ATL	was	insensitive	to	input	modality	and	showed	substantial	

connectivity	with	regions	in	the	default	mode	network	and	limbic	network,	plus	
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some	overlap	with	visual	regions	(see	Jackson	et	al.	2016,	for	similar	findings).		

Our	findings	make	an	important	contribution	to	our	understanding	of	the	

neural	basis	of	semantic	cognition	in	three	ways:	(1)	We	provide	evidence	that	

conceptual	 knowledge,	 extracted	 from	 different	 modalities	 of	 input	 across	

many	learning	experiences,	 is	represented	within	ventrolateral	portions	of	ATL	

which	 act	 as	 a	 ‘hub’	 (Patterson	 et	 al.	 2007;	 Rogers	 et	 al.	 2004).	 (2)	 Across	

converging	 methods,	 we	 observe	 a	 functional	 dissociation	 between	

ventrolateral	 and	 superior	 portions	 of	 ATL	 and	 provide	 evidence	 that	 these	

regions	are	situated	within	distinct	large-scale	cortical	networks.	(3)	Responses	

in	primary	visual	and	auditory	cortex	confirm	the	contribution	of	these	‘spoke’	

regions	to	semantic	processing.	

According	to	the	hub-and-spoke	model	(Patterson	et	al.	2007),	conceptual	

knowledge	 depends	 on	 the	 co-activation	 of	 spoke	 regions	 that	 convey	

information	about	specific	unimodal	and	multimodal	features	of	concepts,	and	

an	 ATL	 hub,	 which	 integrates	 these	 features	 to	 form	 transmodal	 conceptual	

representations	 that	 are	 independent	 of	 specific	 sensory	 input.	 Studies	 of	

patients	with	semantic	dementia	(SD)	provided	the	original	motivation	for	this	

proposal	yet	neuropsychological	methods	are	not	especially	well-suited	 to	 the	

precise	 localization	 of	 transmodal	 conceptual	 representations	 given	 the	

widespread	 atrophy	 in	 this	 condition.	 Nevertheless,	 the	 degree	 of	 semantic	

impairment	 correlates	 with	 hypometabolism	 in	 ventral	 rather	 than	 superior	

portions	of	ATL	across	patients	(Mion	et	al.	2010),	suggesting	that	ventrolateral	

ATL	could	be	the	critical	substrate	for	transmodal	knowledge.	Relevant	evidence	

is	 also	 provided	 by	 univariate	 fMRI	 analyses	 of	 the	 ATL	 response	 to	 verbal	

comprehension	 tasks	 in	 healthy	 participants,	 which	 show	 multiple	 peak	

responses	in	both	ventral	ATL	and	aSTG,	often	to	the	same	contrasts	(Binney	et	

al.	 2010;	 Hoffman	 et	 al.	 2015;	 Visser	 &	 Lambon	 Ralph,	 2011).	 Semantic	

matching	and	naming	tasks	have	also	shown	multiple	peak	responses	in	the	ATL	

with	 the	 more	 superior	 ATL	 region	 being	 involved	 in	 object	 naming	 and	 the	

more	 ventrolateral	 region	 in	 semantic	 matching	 (Sanjuán	 et	 al.	 2015).	

Furthermore,	 the	 differential	 patterns	 of	 functional	 connectivity	 across	 ATL	
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regions	 have	 been	 observed	 by	 both	 Jackson	 et	 al.	 (2016)	 and	 Pascual	 et	 al.	

(2015).		

Our	findings	therefore	add	to	existing	knowledge	by	showing	a	dissociable	

response	in	these	two	regions:	only	the	ventrolateral	ATL	site	showed	a	pattern	

consistent	with	the	representation	of	conceptual	information,	since	it	was	able	

to	classify	responses	according	to	semantic	category	(i.e.,	feature	type,	not	

input	modality).	In	univariate	analyses,	this	site	also	showed	deactivation	

(arguably	due	to	the	use	of	rest	rather	than	an	active	baseline)	for	both	auditory	

and	visual	feature	types,	irrespective	of	whether	these	words	were	spoken	or	

written	–	and	the	magnitude	of	this	deactivation	was	greater	for	visual	than	

auditory	features.	Finally,	this	site	showed	stronger	functional	connectivity	at	

rest	with	the	default	mode	and	limbic	systems,	as	expected	for	a	region	

implicated	in	transmodal	conceptual	processing.	Therefore,	our	combination	of	

functional	and	resting	state	methods	provides	novel	converging	evidence	that	

anterior	ventrolateral	temporal	areas	allow	different	sensory	representations	to	

be	integrated	to	form	‘transmodal’	conceptual	representations	(particularly	for	

auditory	features,	see	limitations	below).		

Previous	studies	have	used	MVPA	to	explore	the	neural	basis	of	semantic	

processing,	and	have	identified	a	conceptual	response	in	ATL	using	classification	

of	stimuli	within	a	single	presentation	modality	(Coutanche	&	Thompson-Schill,	

2014;	Peelen	&	Caramazza,	2012).	Other	studies,	examining	semantic	cognition	

across	modalities	of	presentation	(Devereux	et	al.	2013;	Fairhall	&	Caramazza,	

2013;	Man	et	al.	2015),	have	largely	not	observed	effects	in	ATL.	An	exception	is	

a	recent	crossmodal	MVPA	study,	investigating	Dutch-English	bilinguals	(Correia	

et	 al.	 2014).	 The	 research	 tested	 whether	 patterns	 of	 activity	 related	 to	 the	

distinction	between	spoken	nouns	 in	one	 language	 (e.g.,	 “horse”	vs.	“duck”	 in	

English)	 could	 accurately	 predict	 the	 same	 distinction	 in	 the	 other	 language	

(e.g.,	 “paard”	 vs.	 “eend”	 in	 Dutch).	 Consistent	 with	 our	 findings,	 the	 cross-

language	classifier	revealed	a	significant	cluster	 in	the	left	ATL.	This	 largely	fell	

within	mid-superior	 temporal	pole	 rather	 than	 the	more	ventrolateral	 regions	

we	 identified	 in	 our	 analysis,	 perhaps	because	 aSTG	 is	 an	 important	 interface	

between	semantic	processing	and	other	aspects	of	language.		
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Figure	3.8.	Decoding	the	functions	of	two	ATL	components	(aSTG	and	aITG)	

using	automated	fMRI	meta-analyses	(NeuroSynth,	Yarkoni	et	al.	2011).	This	

software	computed	the	spatial	correlation	between	each	ATL	component	

unthresholded	zstat	mask	(shown	on	the	left;	red	=	positive	correlation	and	blue	

=	negative	correlation)	and	every	other	meta-analytic	map	(n	=	11406)	for	each	

term/concept	stored	in	the	database	(e.g.,	semantic,	language,	memory	and	

sensory).	The	15	meta-analytic	maps	exhibiting	the	highest	positive	correlation	

(red	words)	and	negative	correlation	(blue	words)	for	each	sub-system	mask	

were	extracted,	and	the	term	corresponding	to	each	of	these	meta-analyses	is	

shown	in	the	respective	box	(shown	on	the	right).	The	font	size	reflects	the	size	

of	the	correlation	(ranging	from	r	=	0.10	to	0.45	for	positive	correlations	(red)	

and	r	=	-0.05	to	-0.2	for	negative	correlations	(blue),	in	increments	of	0.05).	This	

allows	us	to	quantify	the	most	likely	reverse	inferences	that	would	be	drawn	

from	these	functional	maps	by	the	larger	neuroimaging	community.	

1 



Analyses	 of	 functional	 connectivity	 from	 the	 ATL	 regions	 that	 were	 able	 to	

classify	 input	modality	 (aSTG)	 and	 semantic	 feature	 type	 (aITG)	 revealed	 that	 these	

two	 sites	 lie	 within	 distinct	 large-scale	 functional	 networks.	 A	 similar	 dissociation	

between	 the	 resting	 state	 connectivity	 of	 ventrolateral	 ATL	 and	 anterior	 STG	 was	

recently	reported	by	Jackson	et	al.	(2016),	providing	further	evidence	for	the	validity	of	

the	 functional	 dissociation	 in	 ATL	 that	 we	 observed	 using	 MVPA.	 To	 quantify	 the	

interpretation	of	the	functional	connectivity	of	the	aSTG	and	aITG	connectivity	maps,	

we	 performed	 a	 decoding	 analysis	 using	 automated	 fMRI	 meta-analytic	 software	

NeuroSynth	 (see	 Figure	 3.8).	Meta-analytic	 decoding	 of	 these	 spatial	maps	 revealed	

that	 our	 aSTG	 connectivity	 map	 correlated	 with	 terms	 related	 to	 language	 (e.g.,	

sentence,	 comprehension)	 and	 auditory	 processing	 (e.g.,	 speech,	 sound)	whilst	 anti-

correlating	 with	 other	 modality	 information	 (e.g.,	 visual,	 spatial)	 and	 memory	 (e.g.,	

working	 memory,	 episodic).	 In	 contrast,	 the	 aITG	 connectivity	 map	 correlated	 with	

terms	related	to	memory	(e.g.,	semantic,	autobiographical)	and	social	processes	(e.g.,	

theory	of	mind,	 social	 cognition)	 terms,	whilst	 anti-correlating	with	modality-specific	

(e.g.,	ventral	visual,	motor,	spatial)	and	executive	terms	(e.g.,	maintenance,	demands).	

This	 is	 consistent	with	 previous	 findings	 that	 relate	 aSTG	 to	 speech	 comprehension,	

language	and	sensory	processing	(Patterson	&	Lambon	Ralph,	1999;	Jobard,	Vigneau,	

Mazoyer	&	Tzourio-Mazoyer,	2007;	Scott	&	Johnsrude,	2003;	Scott,	Leff	&	Wise,	2003;	

Scott,	 Blank,	 Rosen	 &	 Wise,	 2000;	 Spitsyna	 et	 al.	 2006)	 and	 ventrolateral	 ATL	 to	

semantic	processing	but	not	sensory	experience	(Margulies	et	al.	2016;	Patterson	et	al.	

2007;	 Visser	 et	 al.	 2010).	 Furthermore,	 the	 differences	 in	 function	 across	 temporal	

areas	 as	 revealed	by	 the	Neurosynth	database	 seem	 to	 align	with	differences	 in	 the	

white-matter	 terminations	 (see	 Bajada	 et	 al.	 2016).	 These	 findings	 confirmed	

associations	 between	 (i)	 the	 network	 anchored	 in	 the	 aSTG	 and	 auditory	 processing	

and	speech	perception,	plus	(ii)	the	aITG	network	and	more	abstract	domains	(such	as	

social	cognition,	theory	of	mind,	or	mental	states).	

Thus,	 the	putative	semantic	 ‘hub’	 in	ventrolateral	ATL	was	 functionally	coupled	

to	 aspects	 of	 cortex	 that	 specialize	 in	 forms	 of	 stimulus-independent	 higher	 order	

cognition,	including	angular	gyrus	(AG)	and	posterior	and	anterior	areas	on	the	medial	

surface	 that	 correspond	 to	 the	midline	 core	 of	 the	 so-called	 default	mode	 network	

(DMN)(see	also	Hurley	et	al.	2015).	This	network	is	known	to	be	deactivated	by	input	
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(Raichle	et	al.	2001)	and	is	thought	to	be	crucial	 in	the	generation	of	cognitive	states	

that	 do	 not	 rely	 on	 sensory	 information	 for	 their	 mental	 content	 (for	 a	 review	 see	

Andrews-Hanna,	 Smallwood	 and	 Spreng,	 2014).	 Tasks	which	 are	 associated	with	 the	

default	 mode	 network	 include	 those	 that	 depend	 on	 episodic	 memory,	 semantic	

processing,	mental	state	attribution	as	well	as	states	of	spontaneous	thought	studied	

under	the	rubric	of	mind-wandering	/	daydreaming	(Spreng,	Mar	&	Kim,	2009;	Raichle,	

2015).	Although	previous	literature	has	shown	that	connectivity	to	the	AG	may	not	be	

due	 to	 shared	 semantic	 processing	 (Humphreys	 et	 al.	 2015).	 Therefore,	 as	 many	

cognitive	 states	 that	 involve	 the	 DMN	 are	 stimulus-independent	 in	 nature,	 their	

association	with	 ventrolateral	ATL	both	 in	 terms	of	 functional	 connectivity	 and	 their	

meta-analytic	decoding	is	consistent	with	the	view	that	this	region	supports	semantic	

processing	across	different	input	modalities	and	may	form	conceptual	representations	

that	 are	 not	 tied	 to	 a	 specific	 input	 modality.	 In	 contrast,	 aSTG	 showed	 greater	

functional	 connectivity	 with	 auditory	 and	 motor	 regions	 and	 this	 spatial	 map	 was	

associated	 with	 auditory	 processing	 and	 language	 tasks,	 as	 opposed	 to	 transmodal	

tasks,	 in	 the	 meta-analytic	 decoding.	 Therefore,	 our	 combination	 of	 functional	 and	

resting	state	methods	provides	novel	converging	evidence	that	anterior	ventrolateral	

temporal	 areas	 allow	 different	 sensory	 representations	 to	 be	 integrated	 to	 form	

‘transmodal’	conceptual	representations.		

As	discussed,	the	hub	and	spoke	model	(Lambon	Ralph,	Sage,	Jones	&	Mayberry,	

2010;	 Patterson	 et	 al.	 2007;	 Rogers	 et	 al.	 2004)	makes	 novel	 predictions	 about	 the	

contribution	of	the	ATL	to	transmodal	conceptual	knowledge,	but	it	also	anticipates	an	

important	 role	 for	modality-specific	 ‘spoke’	 regions	 in	 visual	 and	 auditory	 cortex,	 in	

line	 with	many	 influential	 accounts	 of	 semantic	 processing	 (Damasio,	 1989;	Martin,	

2007;	 Meteyard,	 Cuadrado,	 Bahrami,	 &	 Vigliocco	 2012;	 Pulvermüller,	 2013).	

Furthermore,	 the	 involvement	 of	 both	 hub	 and	 spoke	 regions	 in	 semantic	

representations	has	been	shown	using	TMS	(Pobric	et	al.	2010).	In	line	with	this	view,	

MVPA	revealed	regions	that	responded	to	meaning	in	both	ventrolateral	parts	of	ATL	

(putative	 ‘hub’)	 and	 in	 primary	 visual	 and	 auditory	 regions	 (putative	 ‘spokes’).	 In	

addition,	even	 though	 the	putative	 ‘spoke’	 regions	 (i.e.,	 voxels	 sensitive	 to	meaning)	

were	 adjacent	 to	 areas	 that	 coded	 for	 input	modality,	 the	 specific	 voxels	 that	 could	

classify	 meaning	 and	 input	 modality	 were	 largely	 different.	 These	 findings	 do	 not	
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readily	 support	 traditional	 ‘strong’	 embodied	 accounts	 that	 equate	 semantic	

representations	 with	 traces	 of	 perceptual/motor	 experience	 (for	 a	 review,	 see	

Meteyard	et	 al.	2012)	 since	 this	would	 suggest	 a	 greater	degree	of	overlap	between	

the	 results	 of	 these	 two	 classifiers.	 While	 our	 data	 suggests	 that	 sensory	 systems	

appear	to	play	a	critical	role	in	the	representation	of	meaning,	they	also	suggest	that	

perceptual	 experience	 and	 imagery	 generated	 as	 part	 of	 semantic	 retrieval	 may	 be	

distinguishable	on	the	basis	of	differences	in	the	patterns	of	activity	in	sensory	cortex.	

One	potential	limitation	of	our	study	is	that	we	did	not	observe	evidence	that	

aITG	responds	to	both	auditory	and	visual	semantic	features	in	the	univariate	

contrasts:	this	site	showed	deactivation	for	both	feature	types	that	was	greater	for	

visual	features.	Thus,	the	strongest	evidence	for	the	aITG	as	an	transmodal	hub	is	

provided	by	the	MVPA	results	and	our	meta-analytic	decoding	of	this	region’s	pattern	

of	distinct	functional	connectivity,	and	not	the	univariate	analyses.	Our	design	was	

optimized	for	decoding	rather	than	univariate	effects	–	as	we	focused	on	obtaining	the	

maximum	number	of	blocks	for	MVPA	and	did	not	employ	a	high-level	non-semantic	

baseline	which	would	have	allowed	us	to	recover	semantic	activation	in	ATL	for	both	

auditory	and	visual	features	from	a	contrast	(Humphreys	et	al.	2015).	Since	we	found	

that	ventrolateral	responds	more	to	auditory	features	(words	such	as	“loud”)	than	

visual	features	(words	such	as	“bright”),	it	remains	unclear	whether	this	region	reflects	

the	meanings	of	auditory	features	alone,	or	both	feature	types	equally.	Future	studies	

might	allow	these	possibilities	to	be	disentangled	using	a	high-level	baseline	with	

which	both	feature	types	can	be	compared	(e.g.	Jackson	et	al.	2015).		

	

3.6.	Conclusion	

Collectively,	 our	 findings	 from	both	pattern	 classification	 and	 functional	 connectivity	

provide	converging	evidence	that	sub-regions	of	the	ATL	support	different	aspects	of	

semantic	 processing.	 Anterior	 ITG	 and	MTG	 capture	 meaning	 independent	 of	 input	

modality,	 consistent	 with	 the	 fact	 that	 semantic	 dementia	 patients	 (who	 have	

multimodal	 semantic	 impairment)	 have	 considerable	 atrophy	 in	 this	 same	 region	 of	

ATL	 (Binney	 et	 al.	2010;	 Galton	 et	 al.	2001).	 In	 contrast,	 aSTG	 exhibited	 a	 degree	 of	

modality	specificity:	this	structure,	which	is	known	to	be	important	for	understanding	
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speech	 and	 environmental	 sounds,	 does	 not	 fulfil	 the	 criteria	 for	 an	 transmodal	

semantic	hub.	Finally,	the	current	results	provide	evidence	for	modality-specific	spokes	

regions	within	the	vicinity	of	primary	auditory	and	visual	cortex	(intracalcarine	cortex	

and	 planum	 polare	 respectively).	 However,	 the	 specific	 voxels	 that	 could	 classify	

between	 each	 condition	 (presentation	 format	 and	 semantic	 feature)	 were	 largely	

different.	These	findings	challenge	traditional	embodied	accounts	(Pulvermüller,	2005)	

that	 attempt	 to	 equate	 semantic	 representations	 with	 traces	 of	 perceptual/motor	

experience,	and	instead	support	the	view	that	the	richness	of	semantic	cognition	arises	

at	 least	 in	part	 from	abstraction	away	 from	specific	 input	modalities	 in	 ventrolateral	

regions	of	the	anterior	temporal	lobe.		
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Chapter	4	–	Imagining	sounds	and	images:	

Decoding	the	contribution	of	unimodal	and	

transmodal	brain	regions	to	semantic	retrieval	in	

the	absence	of	meaningful	input	

	
This	chapter	is	adapted	from:	Murphy,	C.,	Rueschemeyer,	S.	A.,	Smallwood,	J.,	&	

Jefferies,	E.	(in	review).	Imagining	sounds	and	images:	Decoding	the	contribution	of	

unimodal	and	transmodal	brain	regions	to	semantic	retrieval	in	the	absence	of	

meaningful	input.3	

	

4.1.	Abstract	

	

In	the	absence	of	sensory	information,	we	can	generate	meaningful	images	and	sounds	

from	 representations	 in	memory.	However,	 it	 remains	unclear	which	neural	 systems	

underpin	 this	 process,	 and	 whether	 different	 types	 of	 imagery	 recruit	 similar	 or	

different	 neural	 networks.	 We	 asked	 people	 to	 imagine	 the	 visual	 and	 auditory	

features	of	objects,	either	in	isolation	(car,	dog)	or	in	specific	meaning-based	contexts	

(car/dog	 race).	 Using	 an	 fMRI	 decoding	 approach,	 in	 conjunction	 with	 functional	

connectivity	 analysis,	 we	 examined	 the	 role	 of	 primary	 auditory/visual	 cortex	 and	

transmodal	 brain	 regions.	 Conceptual	 retrieval	 in	 the	 absence	 of	 external	 input	

recruited	 sensory	 and	 transmodal	 cortex.	 The	 response	 in	 transmodal	 regions	 –	

including	 anterior	 middle	 temporal	 gyrus	 –	 was	 of	 equal	 magnitude	 for	 visual	 and	

auditory	 features,	 yet	 nevertheless	 captured	modality	 information	 in	 the	 pattern	 of	

response	 across	 voxels.	 In	 contrast,	 sensory	 regions	 showed	 greater	 activation	 for	

                                                
3 The author, Charlotte Murphy, designed the experiment, analysed the results and wrote the 
article under the supervision of Prof. Beth Jefferies, Dr. Shirley-Ann Rueschemeyer and Dr. 
Jonathan Smallwood 
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modality-relevant	 features	 in	 imagination	 (even	when	external	 inputs	did	not	differ).	

These	 data	 are	 consistent	with	 the	 view	 that	 transmodal	 regions	 support	 internally-

generated	 experiences	 through	 the	 integration	 of	 stored	 perceptual	 information	

encoded	in	memory.	

	

4.2.	Introduction	

	

In	 the	 absence	 of	 sensory	 information,	 the	 mind	 produces	 experiences	 with	 rich	

sensorimotor	 features	 through	 the	 retrieval	 of	 information	 from	 memory	 (Singer,	

1966;	 Antrobus,	 Singer	 &	 Greenberg,	 1966;	 Mason	 et	 al.	 2007).	 For	 instance,	 in	

everyday	 life	we	regularly	hear	voices	and	music	 in	the	mind’s	ear	when	no	sound	 is	

delivered	 (e.g.,	 Alderson	 &	 Fernyhough,	 2015;	 Halpern,	 2001)	 and	 studies	 suggest	

more	than	one	third	of	our	time	is	spent	engaged	in	thoughts	and	experiences	that	are	

unrelated	 to	 the	 ongoing	 environment	 (Kane	 et	 al.	 2007;	 Killingsworth	 &	 Gilbert,	

2010).	 Although	 attempts	 have	 been	 made	 to	 understand	 how	 the	 brain	 retrieves	

memories	 in	 the	 absence	 of	 input	 (Albers	 et	 al.	 2013;	 Daselaar,	 Porat,	 Huijbers	 &	

Pennartz,	2010;	Vetter,	Smith	&	Muckli,	2014),	we	lack	an	account	of	the	component	

neurocognitive	processes	critical	for	mental	imagery,	whether	these	vary	with	respect	

to	the	modality	of	the	memories	being	retrieved,	and	how	these	processes	combine	to	

support	more	complex	multi-dimensional	aspects	of	cognition.	Studies	of	imagination	

have	almost	entirely	focused	on	a	constrained	regions-of-interest	analysis,	which	may	

not	 adequately	 represent	 the	 rich	 involvement	 of	multiple	 brain	 regions	 distributed	

across	 the	 cortex.	Moreover,	 they	 have	 seldom	 attempted	 to	 differentiate	 between	

different	 forms	 of	 imagery,	 with	 the	 majority	 of	 studies	 focusing	 solely	 on	 visual	

imagery	(Albers	et	al.	2013;	Countanche	&	Thompson-Schill,	2014;	Dijkstra	et	al.	2017;	

Ishai,	Ungerleider	&	Haxby,	2000;	Lee,	Kravitz	&	Baker,	2012;	Reddy,	Tsuchiya	&	Serre,	

2010;	Stokes,	Thompson,	Cusack	&	Duncan,	2009;	Vetter	et	al.	2014).	As	such,	there	is	

limited	 understanding	 of	 the	 neural	 signature	 of	 different	 modalities	 (e.g.,	 visual	

versus	auditory),	and	whether	different	 forms	of	 imagination	share	similar	or	unique	

neural	 representations.	 Notably,	 studies	 that	 have	 compared	 visual	 and	 auditory	
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imagery	 within	 the	 same	 experiment	 have	 been	 criticized	 for	 not	 employing	

comparable	task	conditions	(see	Daselaar	et	al.	2010;	Halpern	et	al.	2004).		

We	addressed	these	issues	by	applying	multivoxel	pattern	analysis	(MVPA)	and	

resting-state	 functional	magnetic	 resonance	 imaging	 to	 identify	 neural	 patterns	 that	

support	 different	 aspects	 of	 imagination	 at	 the	 whole-brain	 level.	 Using	 a	 constant	

source	of	visual	and	auditory	noise	as	a	baseline,	participants	were	asked	to	 imagine	

information	 under	 three	 different	 conditions:	 visual	 (e.g.	 what	 a	 dog	 looks	 like),	

auditory	 (what	 a	 dog	 sounds	 like)	 and	 contextual	 (e.g.	 imagining	 a	 dog	 in	 a	 specific	

context,	 such	 as	 a	 race	 dog).	 This	 latter	 condition	 combines	 features	 from	multiple	

modalities	 in	 a	 complex	 way	 (e.g.,	 imagining	 a	 race	 dog	 may	 involve	 the	 visual	

properties	of	a	greyhound	and	 race	 track,	as	well	 as	 the	auditory	properties	of	dogs	

panting	 and	 crowds	 cheering).	 Figure	 4.1	 presents	 a	 schematic	 description	 of	 the	

experimental	 design	 used	 in	 our	 experiment.	 We	 compared	 the	 time	 points	 during	

which	participants	imagined	a	given	concept	whilst	observing	visual	and	auditory	noise	

to	those	in	which	participants	only	observed	visual	and	auditory	noise	(baseline).	Our	

paradigm,	therefore,	permitted	us	to	investigate	the	mechanisms	involved	in	imagery	

whilst	controlling	for	sensory	input	across	our	conditions.		
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Figure	4.1.	Experimental	design.	Participants	were	presented	with	written	cues	embedded	 in	

visual	 and	 auditory	 noise	 that	 referred	 to	 items	 they	must	 detect.	 Cues	 referred	 to	 one	 of	

three	tasks	(Thinking	about	the	sound	of	a	concept;	Thinking	about	the	visual	properties	of	a	

concept;	Thinking	about	a	concept	in	a	particular	complex	context	i.e.,	at	the	races)	for	one	of	

two	 concepts	 (Dogs;	 Cars).	 This	 yielded	 six	 experimental	 conditions	 (Sound	 Car;	 Sound	Dog;	

Visual	Car;	Visual	Dog;	Context	Car	(e.g.,	Race	Car);	Context	Dog	(e.g.,	Race	Dog)).	Cues	were	

followed	by	blocks	of	pure	noise	that	lasted	6-12	s.	Each	block	ended	with	either	an	image	or	a	

sound	 embedded	 in	 noise,	 that	 was	 either	 congruent	 to	 the	 cue	 (e.g.,	 greyhound	 for	 the	

context	 cue	 ‘Race	Dog’)	or	 incongruent	 (e.g.,	 elephant	 trunk	 for	 the	visual	 cue	 ‘Visual	Dog’).	

Participants	 responded	with	a	yes/no	 response	 to	whether	 the	 target	 trial	matched	 the	cue.	

Time	 points	 of	 interest	 are	 highlighted	 in	 red,	 these	 refer	 to	 pure	 noise	 trials	 where	

participants	were	 thinking	about	 the	 relevant	 cue	 (e.g.,	 thinking	about	what	a	 sound	 looked	

like).	Cues,	each	pure-noise	image	and	targets	were	shown	for	3	s	each.		

	

	 A	 wealth	 of	 evidence	 supports	 the	 view	 that	 regions	 of	 unimodal	 sensory	

cortex	 are	 important	 for	 modality-specific	 elements	 of	 memory	 retrieval	 during	

imagination.	Visual	cortex	is	activated	by	mental	images	(Albers	et	al.	2013;	de	Borst	&	

de	Gelder,	2016;	Ishai	et	al.	2000;	Reddy	et	al.	2010;	Vetter	et	al.	2014)	and	auditory	

cortex	 is	 activated	 by	 imagined	 sounds	 (Daselaar	 et	 al.	 2010;	 de	 Borst	&	 de	Gelder,	

2016;	Halpern	&	Zatorre,	1999;	Zvyagintsev	et	al.	2013).	These	findings	are	consistent	

with	embodied	cognition	accounts,	which	propose	that	sensory	regions	important	for	

perception	 and	 action	 also	 support	 mental	 processes	 such	 as	 comprehension	 and	

imagery	 (for	discussion,	see	Barsalou,	1999;	2008;	Patterson,	Nestor	&	Rogers,	2007;	

Kiefer	 &	 Pulvermüller,	 2012).	 Notably,	 the	 majority	 of	 studies	 find	 recruitment	 of	

sensory	association	cortices	during	visual	(Amedi	et	al.	2005;	Ishai	et	al.	2000;	Knauff	

et	 al.	 2000)	 and	 auditory	 mental	 imagery	 (Bunzeck	 et	 al.	 2005;	 Zatorre	 &	 Halpern,	

2005).	Moreover,	 a	 recent	 fMRI	 study	 showed	 that	 both	 secondary	 sensory	 regions	

and	top-down	mechanisms	are	necessary	in	visual	imagery	for	enhancing	the	relevant	

representations	 in	 early	 sensory	 areas	 (Dijkstra	 et	 al.	 2017).	 However,	 some	 studies	

have	also	 found	 imagery-induced	activation	 in	primary	 sensory	 cortex	 (Kosslyn	et	 al.	

1999;	 2001;	 Slotnick,	 Thompson	&	 Kosslyn,	 2005),	 and	 the	 extent	 to	which	 primary	

and/or	secondary	sensory	regions	are	recruited	during	different	modalities	of	imagery	

remains	a	source	of	contention	(Daselaar	et	al.	2010;	Kosslyn	et	al.	2001).	By	directly	
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comparing	 visual	 and	 auditory	 imagery	 under	 equivalent	 conditions	 in	 the	 same	

experiment,	the	present	study	can	elucidate	the	role	of	primary	and	secondary	sensory	

cortex	in	mental	imagery.		

Contemporary	 accounts	 of	 semantic	 cognition	 suggest	 that	memory	 retrieval	

also	relies	on	abstract	representations	that	are	largely	invariant	to	the	input	modality.	

A	 prominent	 theory	 of	 conceptual	 representation,	 known	 as	 the	 hub-and-spoke	

account,	 suggests	 that	 input-invariant	 concepts	 draw	 on	 a	 convergence	 zone	 in	 the	

ventrolateral	anterior	temporal	 lobes	(ATL),	which	extracts	deep	semantic	similarities	

across	multiple	unimodal	features	(Lambon	Ralph,	Jefferies,	Patterson	&	Rogers,	2017;	

Patterson	 et	 al.	 2007).	 Support	 for	 this	 account	 comes	 from	 a	 recent	 fMRI	 study	

utilizing	MVPA,	which	 demonstrated	 that	 ventrolateral	 portions	 of	 the	ATL	 (anterior	

inferior	and	middle	 temporal	gyrus)	supported	modality-invariant	patterns	of	activity	

corresponding	to	meaning,	whereas	superior	temporal	voxels	held	patterns	of	activity	

that	reflected	sensory	input	modality	(Murphy	et	al.	2017).	Therefore,	if	ventrolateral	

ATL	 represents	 abstract	 conceptual	 representations,	 as	 expected	 for	 a	 transmodal	

brain	 region	 (Margulies	 et	 al.	 2016;	Mesulam,	 2012),	 it	may	 be	 critical	 for	 stimulus-

independent	cognition	regardless	of	the	modality	of	what	is	being	imagined.	

In	line	with	this	broad	perspective,	studies	have	revealed	ATL	activation	during	

the	 retrieval	 of	 concepts	 across	 modalities	 (Coutanche	 &	 Thompson-Schill,	 2014;	

Gabrieli	et	al.	1997;	Murphy	et	al.	2017;	Reilly,	Garcia	&	Binney,	2016;	Rice	et	al.	2015;	

Van	 Ackeren	 &	 Rueschemeyer,	 2014;	 Visser,	 Jefferies	 &	 Lambon	 Ralph,	 2010).	

Coutanche	and	Thompson-Schill	 (2014)	 found	that	 left	ATL	could	successfully	decode	

the	 properties	 of	 an	 imagined	 object.	 In	 this	 study,	 classification	 accuracy	 in	 early	

visual	regions,	related	to	the	shape	(in	V1)	and	colour	(in	V4)	of	the	object,	predicted	

classifier	accuracy	for	the	specific	object	in	ATL.	This	is	consistent	with	the	hypothesis	

that	 information	 from	sensory	 cortex	 is	 integrated	 in	ATL	 to	 form	modality-invariant	

conceptual	 representations	 that	 are	 critical	 for	 perceptually-decoupled	 semantic	

cognition,	 as	 well	 as	 for	 the	 comprehension	 of	 words	 and	 objects	 in	 the	 external	

environment.	 Recent	 intrinsic	 connectivity	 accounts	 of	 ATL	 function	 have	 suggested	

that	 the	 role	 of	 this	 region	 in	 abstract	 conceptual	 processes,	 such	 as	 those	 occur	 in	

imagination,	 emerges	 from	 its	 location	 as	 a	 convergence	 zone	 for	 information	 from	

different	 sensory	 modalities	 (Visser	 et	 al.,	 2010;	 Lambon	 Ralph	 et	 al.,	 2017).	
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Consequently,	 it	 is	 assumed	 that	 this	 region	 retains	 some	 degree	 of	 differential	

connectivity	 to	 auditory	 and	 visual	 ‘spoke’	 regions.	 A	 key	 question,	 therefore,	 is	

whether	 transmodal	 portions	 of	 ATL	 play	 a	 common	 or	 distinct	 role	 in	 the	

representation	of	information	about	specific	modalities	in	imagination.	

Furthermore,	our	context	condition	(race	+	dog)	permits	us	to	investigate	brain	

regions	recruited	during	more	complex	multi	modal	imagery	(e.g.,	imagining	a	race	dog	

may	involve	the	visual	properties	of	a	greyhound	and	race	track,	as	well	as	the	auditory	

properties	 of	 dogs	 panting	 and	 crowds	 cheering).	 Baron	 and	 Osheron	 (2011)	 found	

that	conceptual	combination	(young	+	man)	was	represented	 in	 left	ATL,	 indicating	a	

role	in	broader	conceptual	thinking.	However,	recent	studies	have	shown	that	complex	

mental	 events	 are	 more	 associated	 with	 activation	 within	 a	 broader	 transmodal	

network	 including	medial	 prefrontal	 cortex	 (Hartung	et	 al.	 2015)	 and	both	unimodal	

and	 attentional	 brain	 mechanisms	 (Berger,	 2016).	 Taken	 together	 this	 literature	

suggests	 that	 when	 imagination	 is	 more	 complex	 and	 potentially	 involves	 multiple	

modalities,	 additional	heteromodal	 regions	may	come	 into	play	–	e.g.,	 attention	and	

transmodal	 regions	beyond	ATL.	 Therefore,	 a	pertinent	 research	question	 is	 to	what	

extent	additional	heteromodal	regions	are	recruited	during	context-based	multimodal	

mental	imagery?			

	 The	 present	 study	 used	 a	 combination	 of	 imaging	 methods	 to	 understand	

patterns	of	common	and	distinct	neural	activity	that	are	important	for	different	forms	

of	mental	 imagery	 (sound	vs.	 visual	 imagery;	 sound	vs.	 context;	 etc.).	 First,	we	used	

MVPA	to	identify	regions	that	coded	for	each	of	our	three	conditions	(visual,	auditory	

and	 context).	 Second,	 we	 performed	 conjunctions	 of	 these	 MVPA	 maps	 to	 identify	

distinct	 regions	 recruited	 during	 the	 decoding	 of	 different	 forms	 of	mental	 imagery.	

Third,	we	 interrogated	 the	 univariate	 activation	 of	 our	 conjunction	maps	 to	 identify	

the	 level	 of	 bold	 activity	 in	 each	 region.	 Fourth,	 we	 seeded	 these	 maps	 in	 an	

independent	 resting-state	 session	 to	 identify	 the	 intrinsic	 networks	 that	 these	 fall	

within.	This	allowed	us	to	identify	the	large-scale	networks	that	were	identified	in	our	

experiment	are	allied	with.	Finally,	we	performed	a	conjunction	of	these	resting-state	

maps	to	identify	potential	common	regions	within	the	large-scale	networks	necessary	

for	all	forms	of	imagery.	To	complement	these	resting	state	analyses,	we	performed	a	

meta-analysis	 of	 the	 spatial	 maps	 generated	 through	 these	 analyses	 to	 provide	 a	
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quantitative	 description	 of	 the	 types	 of	 cognitive	 processes	 these	 patterns	 are	most	

frequently	interpreted	as.	

Using	 this	 analysis	pipeline,	 the	present	 study	examined	 three	questions	 that	

emerge	 from	 a	 common	 and	 distinct	 account	 of	 imagination.	 First,	 we	 examined	

whether	 different	 types	 of	 sensory	 cortex	 play	 a	 specific	 role	 in	 imagination.	 For	

example,	 auditory	 cortex	 should	 be	 recruited	 more	 for	 thinking	 about	 what	 a	 dog	

sounds	 like	 than	 what	 it	 looks	 like,	 moreover	 the	 patterns	 of	 activity	 in	 this	 region	

should	be	able	 to	decode	between	 thinking	about	what	a	dog	sounds	 like	and	other	

forms	 of	 imagery	 (e.g.,	 visual	 or	 context	 conditions).	 Given	 that	 the	 majority	 of	

literature	highlights	 the	 recruitment	of	 sensory	association	cortex,	we	also	predicted	

that	 secondary	 sensory	 regions	 would	 be	 recruited	 more	 extensively	 than	 primary	

sensory	 regions	 during	 imagery.	 Second,	 we	 investigated	 the	 contribution	 of	

transmodal	 regions,	 including	 ATL,	 to	 different	 forms	 of	 imagery.	 If	 these	 regions	

combine	 information	 from	 different	 modalities	 in	 a	 graded	 fashion,	 differential	

connectivity	 might	 allow	 these	 regions	 to	 classify	 imagined	 visual	 and	 auditory	

features.	Finally,	using	resting-state	fMRI,	we	characterized	the	intrinsic	connectivity	of	

regions	 identified	 in	 our	MVPA	analysis	 to	understand	 the	neural	 networks	 they	 are	

embedded	in.	We	anticipated	that	these	regions	would	show	functional	connectivity	to	

regions	 of	 transmodal	 cortex	 important	 in	 abstract	 forms	 of	 cognition,	 as	well	 as	 to	

relevant	portions	of	sensory	cortex	(i.e.	visual	cortex	during	visual	imagery).	Together	

these	 different	 analytic	 approaches	 permit	 the	 investigation	 of	 both	 similarities	 and	

differences	in	the	networks	recruited	when	semantic	retrieval	is	internally-generated.		

	

4.3.	Materials	and	Methods	

	

4.3.1.	Functional	Experiment	

4.3.1.1	Participants	

Twenty	participants	were	recruited	from	the	University	of	York.	One	participant’s	data	

was	excluded	due	to	excessive	motion	artifacts,	 leaving	nineteen	subjects	 in	the	final	

analysis	 (11	 female;	 mean	 age	 23.67,	 range	 18-37	 years).	 Participants	 were	 native	

British	 speakers,	 right	 handed	 and	 had	 normal	 or	 corrected-to-normal	 vision.	
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Participants	gave	written	informed	consent	to	take	part	and	were	reimbursed	for	their	

time.	The	study	was	approved	by	the	York	Neuroimaging	Centre	Ethics	Committee	at	

the	University	of	York.		

	

4.3.1.2.	Design	

The	 functional	 experiment	 contained	 six	 experimental	 conditions,	 in	 a	 2	 (concepts;	

dog,	 car)	 x	 3	 (type	 of	 imagery;	 auditory,	 visual	 and	 conceptually-complex	 context)	

design	(see	supplementary	table	A.2.1	for	full	list	of	experimental	conditions).	

	

4.3.1.3.	Stimuli	

Experimental	 stimuli	 consisted	 of	 (i)	 six	 verbal	 conceptual	 prompts	 that	 referred	 to	

each	of	our	 six	experimental	 conditions	 (e.g.,	Dog	Sound,	which	cued	participants	 to	

imagine	what	a	dog	sounded	like),	(ii)	visual	and	auditory	noise	which	was	presented	

throughout	 experimental	 conditions	 and	 rest	 periods.	 For	 this,	Gaussian	 visual	 noise	

was	 generated	 through	 Psychopy	 (Pyschopy,	 2.7),	 and	 auditory	 white	 noise	 was	

generated	 through	 Audacity	 software	 (Audacity	 Version	 2.0.0),	 and	 (iii)	 target	

images/sounds.	The	targets	used	in	this	paradigm	were	piloted	prior	to	fMRI	scanning,	

on	 a	 separate	 group	of	 participants	 (n=24)	 to	 determine	 the	 average	 length	 of	 time	

taken	to	detect	a	target	(image	or	sound)	emerging	through	noise.	For	the	visual	and	

context	 trials	 (car	 visual,	 car	 context,	 dog	 visual,	 dog	 context),	 a	 pictorial	 target	was	

used	 (e.g.,	 a	 picture	 of	 a	 car	 tyre	 for	 the	 car	 visual	 condition).	 For	 auditory	 trials,	 a	

sound	 target	 was	 used	 (e.g.,	 a	 dog	 barking).	 On	 each	 trial	 of	 this	 behavioral	 pilot,	

participants	were	 presented	with	 both	 visual	 and	 auditory	 noise.	 One	 of	 two	 target	

types	were	 then	 superimposed	 over	 the	 visual	 and	 auditory	 noise:	 (i)	 image	 targets	

and	 (ii)	 sound	 targets.	 For	 image	 targets,	 150	 different	 images	 were	 presented	

centrally	to	participants.	There	were	30	images	for	each	of	the	following	experimental	

conditions:	 Dog	 Visual-Features	 (e.g.,	 dog	 paw),	 Cars	 Visual-Features	 (e.g.,	 car	 tyre),	

Dog	 Contexts	 (e.g.,	 race	 dog)	 and	 Car	 Contexts	 (e.g.,	 race	 car)	 and	 an	 additional	 30	

catch-trials	 (that	 did	 not	 represent	 any	 of	 the	 experimental	 conditions).	 Each	 item	

emerged	through	the	noise	by	adjusting	the	opacity	of	the	image	from	0	(transparent)	

to	 1	 (opaque)	 in	 increments	 of	 0.025	 every	 150ms.	 For	 sound	 trials,	 90	 different	

sounds	were	presented	binaurally	 to	participants.	 There	were	30	 sounds	 for	each	of	
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following	sound	experimental	conditions:	Dog	Sounds	(e.g.,	barking),	Car	Sounds	(e.g.,	

breaks	screeching)	and	an	additional	30	catch-trials	(that	did	not	represent	the	other	

experimental	 conditions).	 All	 sound	 trials	 were	 modified	 to	 have	 the	 same	 average	

amplitude.	Each	sound	emerged	through	noise	by	adjusting	the	volume	from	0	to	1	in	

increments	of	 0.10.	 Each	 sound	was	played	 in	 full	 before	 the	 volume	 increased	 (the	

maximum	length	of	any	of	the	sound	trials	was	600ms).		

For	this	pilot	test,	participants	were	instructed	to	respond	with	a	button-press	

when	 they	 could	 identify	 the	 image	 or	 sound	 emerging	 through	 the	 noise.	 	 Images	

were	 presented	 first	 (for	 all	 image-based	 conditions),	 followed	 by	 sound	 trials.	 The	

order	 of	 presentation	 of	 individual	 image	 and	 sound	 trials	 was	 randomized	 across	

participants.	 To	 ensure	 that	 participants	were	 accurately	 identifying	 the	 images	 and	

sounds,	on	10%	of	trials	participants	were	also	required	to	type	what	they	had	seen	or	

heard.	 The	 average	 detection	 time	 across	 all	 participants	 was	 calculated	 for	 every	

image	and	sound	trial.	Ten	images	were	then	selected	for	each	of	our	six	experimental	

conditions	 (Dog	 Visual-Features,	 Car	 Visual-Features,	 Dog	 Sound,	 Car	 Sound,	 Dog	

Context	 and	 Car	 Context)	 based	 on	 statistically	 similar	 reaction	 times	 (RTs)	 for	

detecting	 the	 item	 emerging	 through	 noise.	 Images	 were	 detected	 on	 average	 at	

2861ms	and	sounds	at	2912ms	(see	Table	4.1).	These	timings	were	used	 in	 the	 fMRI	

experiment	to	ensure	that	the	in-scan	detection	task	would	be	challenging	enough	to	

engage	 all	 participants.	 The	 fMRI	 scan	 therefore	 allowed	 3000ms	 for	 participants	 to	

detect	an	item	emerging	through	noise.		

	

4.3.1.4.	Task	Procedure	

Prior	 to	 being	 scanned	 participants	 completed	 a	 practice	 session,	 identical	 to	 one	

scanning	run.	For	the	in-scanner	task	stimuli	were	presented	in	four	independent	runs.	

Within	each	scanning	run	participants	were	instructed	to	respond	with	a	button-press	

(yes/no)	whether	a	target	item	emerging	through	visual	and	auditory	noise	was	related	

to	 the	 cue	 word.	 Trials	 began	 with	 a	 word	 cue	 to	 indicate	 which	 experimental	

conditions	 they	 should	 be	 focusing	 on	 (e.g.,	 “Dog	 Sound”).	 Task	 instructions	 were	

presented	 for	 3s.	A	 variable	number	of	 images	 then	 followed,	 each	displaying	 visual	

and	 auditory	 noise	 (see	 Figure	 4.1).	Within	 the	 blocks,	 the	 pure-noise	 images	 were	

each	shown	for	3s.	Following	a	variable	 length	of	 time	(between	6	and	12s	after	 the	
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initial	 cue),	a	 target	 image	or	sound	began	 to	emerge	 through	 the	noise	 (at	 the	 rate	

outlined	in	the	pilot	experiment	described	above).	Participants	were	given	3000ms	to	

respond	 to	 this	 item.	 The	 block	 automatically	 ended	 after	 this	 image.	 This	 design	

afforded	 us	 the	 high	 signal	 sensitivity	 found	 with	 block	 designs,	 combined	 with	

unpredictability	to	keep	participants	cognitively	engaged.		

Each	experimental	 condition	 (e.g.,	 “Dog	Sound”)	occurred	 two	 times	 in	 a	 run	

(giving	8	blocks	 for	each	experimental	condition	across	the	experiment).	Blocks	were	

presented	in	a	pseudo-randomized	order	so	the	same	cue	did	not	immediately	repeat,	

and	blocks	were	 separated	by	12s	 fixation.	During	 the	 fixation	period	 the	 visual	 and	

auditory	 noise	 were	 also	 presented,	 to	 create	 an	 active	 baseline.	 50%	 of	 the	 items	

emerging	through	noise	contained	an	item	that	did	not	match	the	preceding	cue	(i.e.,	4	

of	 8	 were	 foils)	 in	 order	 to	 focus	 participants	 on	 detecting	 the	 specific	 target.	 To	

encourage	participants	to	search	for	the	cued	target	from	the	very	start	of	every	block,	

an	additional	short	block	was	included	in	each	run,	in	which	an	item	emerged	through	

noise	after	only	3s,	followed	by	12s	of	fixation.	These	blocks	were	disregarded	in	the	

analysis.	

	

4.3.1.5.	Acquisition	

Data	were	 acquired	using	 a	GE	3T	HD	Excite	MRI	 scanner	 at	 the	 York	Neuroimaging	

Centre,	University	of	York.	A	Magnex	head-dedicated	gradient	 insert	coil	was	used	 in	

conjunction	with	a	birdcage,	radio-frequency	coil	tuned	to	127.4MHz.	A	gradient-echo	

EPI	sequence	was	used	to	collect	data	from	38	bottom-up	axial	slices	aligned	with	the	

temporal	lobe	(TR	=	2s,	TE	=	18	ms,	FOV	=	192	×	192	mm,	matrix	size	=	64	×	64,	slice	

thickness	 =	 3	 mm,	 slice-gap	 1mm,	 flip-angle	 =	 90°).	 Voxel	 size	 was	 3	 ×	 3	 ×	 3	 mm.	

Functional	images	were	co-registered	onto	a	T1-weighted	anatomical	image	from	each	

participant	(TR	=	7.8	s,	TE	=	3	ms,	FOV	=	290	mm	x	290	mm,	matrix	size	=	256	mm	x	256	

mm,	voxel	size	=	1.13	mm	x	1.13	mm	x	1	mm)	using	linear	registration	(FLIRT,	FSL).	This	

sequence	was	chosen	as	previous	studies	employing	this	sequence	have	produced	an	

adequate	 signal-to-noise	 ratio	 in	 regions	 prone	 to	 signal	 dropout,	 such	 as	 ATL	 (e.g.,	

Coutanche	&	Thompson-Schill,	2014;	Murphy	et	al.	2017).	

To	ensure	that	our	ROIs	had	sufficient	signal	to	detect	reliable	fMRI	activation,	

the	 temporal	 signal-to-noise	 ratio	 (tSNR)	 for	 each	 participant	 was	 calculated	 by	
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dividing	the	mean	signal	in	each	voxel	by	the	standard	deviation	of	the	residual	error	

time	series	in	that	voxel	(Friedman	et	al.,	2006).	tSNR	values	were	averaged	across	the	

voxels	 in	 both	 anterior	 temporal	 lobe	 (ATL)	 and	 medial	 prefrontal	 cortex	 (mPFC);	

regions	 that	 suffer	 from	 signal	 loss	 and	distortion	due	 to	 their	 proximity	 to	 air-filled	

sinuses	(Jezzard	&	Clare,	1999).	Mean	tSNR	values,	averaged	across	participants,	were	

as	 follows:	 ATL,	 82.85;	mPFC,	 97.14.	 The	 percentage	 of	 voxels	 in	 each	 ROI	 that	 had	

“good”	tSNR	values	(>20;	Binder	et	al.,	2011)	was	above	97%	for	all	ROIs:	ATL,	97.19%;	

mPFC,	 99.24%.	 These	 values	 indicate	 that	 the	 tSNR	was	 sufficient	 to	 detect	 reliable	

fMRI	activation	in	all	ROIs	(Binder	et	al.,	2011).	

	

4.3.1.6.	Pre-processing		

Imaging	 data	 were	 preprocessed	 using	 the	 FSL	 toolbox	

(http://www.fmrib.ox.ac.uk/fsl).	 Images	 were	 skull-stripped	 using	 a	 brain	 extraction	

tool	 (BET,	 Smith,	 2002)	 to	 remove	 non-brain	 tissue	 from	 the	 image.	 The	 first	 five	

volumes	 (10s)	 of	 each	 scan	 were	 removed	 to	 minimize	 the	 effects	 of	 magnetic	

saturation,	 and	 slice-timing	 correction	 was	 applied.	 Motion	 correction	 (MCFLIRT,	

Jenkinson	et	al.	2002)	was	followed	by	temporal	high-pass	filtering	(cutoff	=	0.01	Hz).	

Individual	participant	data	were	first	registered	to	their	high-resolution	T1-anatomical	

image,	and	then	into	a	standard	space	(Montreal	Neurological	Institute	(MNI152);	this	

process	included	tri-linear	interpolation	of	voxel	sizes	to	2	×	2	×	2	mm.	For	univariate	

analyses,	data	were	additionally	smoothed	(Gaussian	full	width	half	maximum	6	mm).		

	

4.3.1.7.	Multivariate	Pattern	Analysis	

Analysis	was	 focused	 on	 the	moments	when	 participants	were	 imagining	 the	 target	

cues	 (e.g.,	 thinking	 about	what	 a	 dog	 looked	 like,	 or	 what	 a	 car	 sounded	 like).	 The	

condition	onset	and	duration	were	taken	from	the	first	pure	noise	trial	 in	each	block	

(after	the	initial	cue)	to	the	end	of	the	last	pure	noise	trial	(before	the	item	began	to	

emerge	through	the	noise).	The	response	to	each	of	the	6	conditions	was	contrasted	

against	the	active	rest	baseline	(periods	of	auditory	and	visual	noise	where	participants	

were	not	 cued	 to	 imagine	 concepts).	Box-car	 regressors	 for	each	 condition,	 for	each	

run,	in	the	general	linear	model	were	convolved	with	a	double	gamma	hemodynamic	

response	function	(FEAT,	FSL).	Regressors	of	no	interest	were	also	included	to	account	
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for	head	motion	within	scans.	MVPA	was	conducted	on	spatially	unsmoothed	data	to	

preserve	 local	 voxel	 information.	 For	 each	 voxel	 in	 the	 brain,	we	 computed	 a	 linear	

support	vector	machine	(LIBSVM;	with	fixed	regularization	hyper-parameter	C	=	1)	and	

a	 4-fold	 cross-validation	 (leave-one-run-out)	 classification,	 implemented	 in	 custom	

python	 scripts	 using	 the	 pyMVPA	 software	 package	 (Hanke	 et	 al.	 2009).	 A	 support	

vector	machine	was	 chosen	 to	 combat	 over-fitting	 by	 limiting	 the	 complexity	 of	 the	

classifier	(Lewis-Peacock	&	Norman,	2013).	The	classifier	was	trained	on	three	runs	and	

tested	on	the	independent	fourth	run;	the	testing	set	was	then	alternated	for	each	of	

four	 iterations.	 Classifiers	 were	 trained	 and	 tested	 on	 individual	 subject	 data	

transformed	into	MNI	standard	space.	The	functional	data	were	first	z-scored	per	voxel	

within	each	run.	The	searchlight	analysis	was	implemented	by	extracting	the	z-scored	

β-values	 from	spheres	 (6mm	radius)	centered	on	each	voxel	 in	 the	masks.	This	 sized	

sphere	 included	 ∼	 123	 3mm	 voxels	 (when	 not	 restricted	 by	 the	 brain’s	 boundary;	

Kriegeskorte	 et	 al.	 2006).	 Classification	 accuracy	 (proportion	 of	 correctly	 classified	

trials)	for	each	sphere	was	assigned	to	the	sphere’s	central	voxel,	in	order	to	produce	

accuracy	 maps.	 The	 resulting	 accuracy	 maps	 were	 then	 smoothed	 with	 a	 Gaussian	

kernel	(6mm	FWHM).	To	determine	whether	accuracy	maps	were	above	chance-levels	

(50%),	individual	accuracy	maps	were	entered	into	a	higher-level	group	analysis	(mixed	

effects,	 FLAME;	 http://www.fmrib.ox.ac.uk/fsl),	 testing	 the	 accuracy	 values	 across	

subjects	against	chance	for	each	voxel.	Voxel	inclusion	was	set	at	z	=	2.3	with	a	cluster	

significance	threshold	at	FWE	p	<	.01.	

The	following	classification	tests	were	performed:	(1)	Car	vs.	Dog	classifier:	this	

examined	 whether	 patterns	 of	 activity	 conveyed	 information	 about	 conceptual	

identity,	 by	 training	 a	 classifier	 to	 discriminate	 between	 periods	 of	 noise	 where	

participants	were	thinking	about	a	dog	and	periods	of	noise	where	participants	were	

thinking	about	a	car.		We	were	not	able	to	successfully	classify	the	semantic	class	(dog	

vs.	car)	in	our	dataset	at	the	whole-brain	level.	This	finding	is	broadly	consistent	with	

previous	 decoding	 studies	 of	 internally	 generated	 thought,	 which	 have	 shown	 that	

specific-level	concepts	(e.g.,	lime	vs.	celery)	can	be	decoded;	however	categorical-level	

concepts	 (e.g.,	 fruit	 vs.	 vegetable)	 were	 not	 successfully	 classified	 (Coutanche	 &	

Thompson-Schill,	 2014).	 This	may	 reflect	 the	 dynamic	 nature	 of	 conceptually	 driven	
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internally-generated	 thought;	 for	 instance,	 on	 one	 trial,	 subjects	 may	 have	 been	

thinking	about	 the	exterior	 look	of	a	 car	and	on	 the	next	 trial	 imagining	 the	 interior	

decor.	As	this	analysis	revealed	no	regions	across	the	cortex	could	successfully	decode	

this	 information,	 the	 remaining	 classification	 tests	 combine	 car	 and	 dog	 trials.	 (2)	

Auditory	 vs.	 visual	 classifier:	 this	 examined	 whether	 patterns	 of	 activity	 conveyed	

information	regarding	the	modality	of	 imagery,	by	training	a	classifier	to	discriminate	

between	periods	of	noise	where	participants	were	thinking	about	the	visual	properties	

of	objects	and	periods	of	noise	where	participants	were	 thinking	about	 the	auditory	

properties	of	objects.	 (3)	Visual	 vs.	 context	 classifier:	here	a	 classifier	was	 trained	 to	

discriminate	 between	 periods	 of	 noise	 where	 participants	 were	 thinking	 about	 the	

visual	properties	of	objects	and	periods	of	time	when	participants	were	thinking	about	

objects	in	more	complex	conceptual	contexts.	(4)	Auditory	vs.	context	classifier:	here	a	

classifier	 was	 trained	 to	 discriminate	 between	 periods	 of	 noise	 where	 participants	

were	 thinking	 about	 the	 auditory	 properties	 of	 objects	 and	 period	 of	 time	 when	

participants	 were	 thinking	 about	 objects	 in	 complex	 contexts.	 Unthresholded	 maps	

from	 all	 analyses	 are	 uploaded	 on	 Neurovault:	

http://neurovault.org/collections/2671/.		

Next,	we	identified	regions	where	patterns	of	activity	consistently	informed	the	

classifier	for	each	of	our	three	tasks	(visual,	auditory	and	context)	by	running	a	formal	

conjunction	on	the	uncorrected	searchlight	maps	(using	the	FSL	easythresh	command).	

For	 visual	 patterns	 we	 looked	 at	 the	 conjunction	 of	 the	 two	 searchlight	 maps	 that	

decoded	visual	properties	(visual	vs.	auditory	and	visual	vs.	context).	Since	regions	that	

contributed	 to	 both	 of	 these	 searchlight	 maps	 were	 able	 to	 decode	 simple	 visual	

features	in	imagination,	relative	to	both	auditory	features	and	more	complex	contexts,	

we	reasoned	that	their	pattern	of	activation	related	to	simple	visual	features.	Next,	we	

looked	 at	 the	 conjunction	 of	 the	 two	 searchlight	 maps	 that	 decoded	 the	 auditory	

condition	 (auditory	 vs.	 visual	 and	 auditory	 vs.	 context),	 to	 identify	 brain	 regions	

containing	patterns	of	activation	relating	to	simple	auditory	properties	in	imagination.	

Finally,	 we	 looked	 at	 the	 conjunction	 of	 the	 two	 searchlight	 maps	 that	 decoded	

context	 properties	 (context	 vs.	 visual	 and	 context	 vs.	 auditory).	 This	 identified	 brain	

regions	 containing	 activation	 patterns	 relating	 to	 complex	 conceptual	 contexts,	 as	

distinct	 from	 both	 simple	 visual	 and	 auditory	 features.	 All	 analyses	 were	 cluster	
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corrected	 using	 a	 z-statistic	 threshold	 of	 2.3	 to	 define	 contiguous	 clusters.	Multiple	

comparisons	were	controlled	using	a	Gaussian	Random	Field	Theory	at	a	threshold	of	p	

<	.01.		

	

4.3.1.8	Univariate	Analysis	

We	examined	univariate	activation	to	further	characterise	the	response	within	

our	unimodal	and	transmodal	regions	defined	by	MVPA.	The	percentage	signal	change	

was	extracted	for	each	condition	from	regions	of	interest	(ROIs)	defined	by	the	MVPA	

conjunctions	(see	above).		

	

4.3.2	Resting	state	fMRI	

4.3.2.1.	Participants	

This	analysis	was	performed	on	a	separate	cohort	of	157	healthy	participants	at	York	

Neuroimaging	 Centre	 (89	 female;	 mean	 age	 20.31,	 range	 18–31	 years).	 Subjects	

completed	a	9-minute	functional	connectivity	MRI	scan	during	which	they	were	asked	

to	rest	in	the	scanner	with	their	eyes	open.	Using	these	data,	we	examined	the	resting-

state	fMRI	(rs-fMRI)	connectivity	of	our	conjunction	regions	that	were	 informative	to	

decoding	 visual	 imagery,	 auditory	 imagery	 and	 contextual	 imagery,	 to	 investigate	

whether	these	regions	fell	within	similar	or	distinct	networks.		

	

4.3.2.2.	Acquisition	

As	with	the	functional	experiment,	a	Magnex	head-dedicated	gradient	 insert	coil	was	

used	in	conjunction	with	a	birdcage,	radio-frequency	coil	tuned	to	127.4	MHz.	For	the	

resting-state	data,	a	gradient-echo	EPI	sequence	was	used	to	collect	data	from	60	axial	

slices	 with	 an	 interleaved	 (bottom-up)	 acquisition	 order	 with	 the	 following	

parameters:	TR=3	s,	TE=minimum	full,	volumes=180,	flip	angle=90°,	matrix	size=64×64,	

FOV=192×192	mm,	voxel	size=3x3×3	mm.	A	minimum	full	TE	was	selected	to	optimise	

image	 quality	 (as	 opposed	 to	 selecting	 a	 value	 less	 than	 minimum	 full	 which,	 for	

instance,	would	be	beneficial	for	obtaining	more	slices	per	TR).	Functional	images	were	

co-registered	onto	a	T1-weighted	anatomical	 image	 from	each	participant	 (TR=7.8	 s,	
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TE=3	ms,	FOV=290	mmx290	mm,	matrix	size=256	mm	x256	mm,	voxel	size=1	mm	x	1	

mm	x	1	mm).	

	

4.3.2.3.	Pre-processing	

Data	were	pre-processed	using	the	FSL	toolbox	 (http://www.fmrib.ox.ac.uk/fsl).	Prior	

to	 conducting	 the	 functional	 connectivity	 analysis,	 the	 following	 pre-statistics	

processing	was	applied	to	the	resting	state	data;	motion	correction	using	MCFLIRT	to	

safeguard	 against	 motion-related	 spurious	 correlations	 slice-timing	 correction	 using	

Fourier-space	 time-series	 phase-shifting;	 non-brain	 removal	 using	 BET;	 spatial	

smoothing	 using	 a	 Gaussian	 kernel	 of	 FWHM	 6	 mm;	 grand-mean	 intensity	

normalisation	 of	 the	 entire	 4D	 dataset	 by	 a	 single	 multiplicative	 factor;	 high-pass	

temporal	 filtering	 (Gaussian-weighted	 least-squares	 straight	 line	 fitting,	 with	

sigma=100s);	Gaussian	low-pass	temporal	filtering,	with	sigma=2.8s.	

	

4.3.2.4.	Low-level	analysis	

For	each	conjunction	site	we	created	spherical	seed	ROIs,	6mm	in	diameter,	centered	

on	 the	peak	 conjunction	voxel;	 visual	 conjunction	 site	 in	 left	 inferior	 lateral	occipital	

cortex	(LOC)	[-48	-70	-2],	auditory	conjunction	site	in	left	superior	temporal	gyrus	[-48	-

12	 -10]	 and	 context	 conjunction	 site	 in	 left	 LOC	 [-48	 -60	 0]	 respectively	 (see	

supplementary	table	A.2.2).	This	ensured	that	we	assessed	the	functional	connectivity	

of	 a	 key	 site	 when	 the	 searchlight	 conjunction	 revealed	 a	 large	 cluster	 or	 multiple	

clusters.	 The	 time	 series	 of	 these	 regions	 were	 extracted	 and	 used	 as	 explanatory	

variables	 in	 a	 separate	 subject	 level	 functional	 connectivity	 analysis	 for	 each	 seed.	

Subject	specific	nuisance	regressors	were	determined	using	a	component	based	noise	

correction	 (CompCor)	 approach	 (Behzadi	 et	 al.	 2007).	 This	method	 applies	 principal	

component	 analysis	 (PCA)	 to	 the	 fMRI	 signal	 from	 subject	 specific	white	matter	 and	

CSF	ROIs.	In	total	there	were	11	nuisance	regressors,	five	regressors	from	the	CompCor	

and	 a	 further	 6	 nuisance	 regressors	 were	 identified	 using	 the	 motion	 correction	

MCFLIRT.	These	principle	components	were	then	removed	from	the	fMRI	data	through	

linear	 regression.	 The	WM	 and	 CSF	 covariates	 were	 generated	 by	 segmenting	 each	

individual's	high-resolution	structural	image	(using	FAST	in	FSL;	Zhang	et	al.	2001).	The	

default	 tissue	 probability	 maps,	 referred	 to	 as	 Prior	 Probability	 Maps	 (PPM),	 were	
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registered	 to	 each	 individual's	 high-resolution	 structural	 image	 (T1	 space)	 and	 the	

overlap	between	these	PPM	and	the	corresponding	CSF	and	WM	maps	was	identified.	

These	maps	were	then	thresholded	(40%	for	the	SCF	and	66%	for	the	WM),	binarized	

and	 combined.	 The	 six	motion	 parameters	were	 calculated	 in	 the	motion-correction	

step	during	pre-processing.	Movement	in	each	of	the	three	Cartesian	directions	(x,	y,	z)	

and	rotational	movement	around	three	axes	(pitch,	yaw,	roll)	were	included	for	each	

individual.	

	

4.3.2.5.	High-level	analysis	

At	 the	 group-level	 the	 data	 were	 processed	 using	 FEAT	 version	 5.98	 within	 FSL	

(www.fmrib.ox.ac.uk/fsl)	 and	 the	 analyses	 were	 carried	 out	 using	 FMRIB's	 Local	

Analysis	of	Mixed	Effects	(FLAME)	stage	1	with	automatic	outlier	detection.	No	global	

signal	 regression	was	performed.	The	z	 statistic	 images	were	 then	 thresholded	using	

clusters	 determined	 by	 z	 >	 2.3	 and	 a	 cluster-corrected	 significance	 threshold	 of	 p	 =	

0.05.	 Finally,	 to	 determine	 whether	 our	 connectivity	 maps	 overlapped	 with	 one	

another	we	calculated	the	number	of	overlapping	voxels	for	our	three	conjunction	site	

connectivity	maps.	

	

4.4.	Results	

	

4.4.1.	Behavioural	Results	

To	 determine	 whether	 our	 experimental	 conditions	 were	 well	 matched	 at	 the	

behavioural	 level,	 accuracy	 and	 reaction	 times	 (RT)	 for	 the	 fMRI	 session	 were	

calculated	for	each	participant	(n=19).	All	participants	were	engaged	in	the	correct	task	

(e.g.,	thinking	about	the	sound	of	a	dog)	as	indicated	by	a	mean	accuracy	score	above	

75%	for	all	experimental	conditions	(Table	4.1).		A	2	(semantic	category;	car,	dog)	by	3	

(imagery	 type;	 auditory,	 visual,	 context)	 repeated-measures	 ANOVA	 revealed	 no	

differences	 in	 accuracy	 across	 the	 three	 types	 of	 imagery	 (auditory,	 visual,	

conceptually-complex	context;	F(2,36)	=	2.32,	p	=	 .11)	and	no	effect	of	 concept	 (car,	

dog;	F(1,18)	=	1.95,	p	=	.66).	RT	scores	were	also	well	matched	across	our	experimental	

conditions	 (Table	 4.1).	 A	 2	 x	 3	 repeated	 measures	 ANOVA	 revealed	 there	 was	 no	
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difference	in	RT	between	the	three	experimental	tasks	(auditory,	visual,	conceptually-

complex	context;	F(2,36)	=	0.46,	p=.64),	no	effect	of	concept	(car,	dog;	F(1,18)	=	2.61,	

p=.09)	and	no	interaction	between	imagery	types	and	concept	(F(2,36)	=	1.17,	p	=	.37).	

Furthermore,	 the	 in-scan	RT	data	were	close	 to	 the	RT	 in	our	pilot	 study,	 suggesting	

that	participants	required	the	same	amount	of	time	to	detect	stimuli	both	in	and	out	

of	 the	scanner	 (mean	RT	 for	 images	=	2660	ms,	SD	=	233	ms,	mean	RT	 for	 sounds	=	

2763	ms,	SD	=	616	ms).	

	

Table	4.1.	Behavioural	scores	across	pilot	and	fMRI	experiments	

Footnote:	 RT	 =	 reaction	 time	 in	 milliseconds,	 ACC	 =	 percentage	 accuracy.	 Standard	 deviation	 in	
parentheses.		

	

	

4.4.2.	MVPA	Decoding	Results	

To	test	which	brain	regions	held	patterns	of	activity	related	to	the	type	of	 internally-

generated	conceptual	retrieval,	we	examined	brain	regions	that	could	classify	imagery	

conditions	 during	 the	 presentation	 of	 auditory	 and	 visual	 noise.	 For	 example,	 the	

auditory	 vs.	 visual	 classifier	 was	 trained	 on	 the	 distinction	 between	 thinking	 about	

auditory	and	visual	properties	of	concepts	 (collapsed	across	both	cars	and	dogs)	and	

tested	 on	 the	 same	 distinction	 in	 unseen	 data	 using	 a	 cross-validated	 approach.	 All	

results	reported	are	above	chance	levels	(50%,	cluster-corrected,	p	<	.01).	

The	 whole-brain	 searchlight	 analysis	 for	 the	 distinction	 between	 visual	 and	

auditory	 imagery	 revealed	 an	 extensive	 network	 of	 brain	 regions	 including	 sensory	

regions,	 such	 as	 bilateral	 inferior	 lateral	 occipital	 cortex	 (LOC),	 left	 fusiform	 and	 left	

Condition	 Pilot	Experiment	 fMRI	Experiment	

	 RT	 Acc	 RT	 Acc	

Car	Sound	 2873	(635)	 N/A	 2748	(713)	 82.11	(16.53)	

Dog	Sound	 2951	(876)	 N/A	 2753	(552)	 76.84	(12.04)	

Car	Visual	 2886	(367)	 N/A	 2704	(204)	 83.68	(11.64)	

Dog	Visual	 2812	(402)	 N/A	 2620	(241)	 82.63	(9.91)	

Car	Context	 2994	(355)	 N/A	 2754	(211)	 76.76	(12.62)	

Dog	Context	 2752	(398)	 N/A	 2569	(250)	 79.61	(14.71)	
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auditory	 cortex	 (encompassing	 planum	 polare	 and	 Heschl’s	 gyrus	 extending	 more	

broadly	 into	 superior	 temporal	gyrus),	as	well	 as	 transmodal	brain	 regions	 that	have	

been	 implicated	 in	semantic	processing,	such	as	middle	temporal	gyrus,	ATL	(middle,	

inferior,	 fusiform	and	parahippocampal	portions)	and	on	the	medial	surface,	anterior	

cingulate	gyrus	and	thalamus	(see	Figure	4.2A;	Table	4.2).		

	

Table	4.2.	Centre	Voxel	Coordinates	of	Highest	Decoding	Sphere	in	the	Searchlight	Analyses	

Condition	 Cluster	Peak	 Extended	Cluster	

Regions	

Cluster	

Extent	

Z-

Score	

Acc	(%)		 x	 y	 z	

Auditory	

vs.	Visual	

	 	 	 	 	 	 	 	

	 L	Lateral	occipital	

cortex,	superior	

division	

L	Lateral	occipital	

cortex,	inferior	

division,	L	

Occipital	pole,	L	

Occipital	fusiform	

gyrus.		

975	 4.13	 68.32%	 -36	 -86	 10	

	 L	Thalamus	 R	Thalamus	 599	 4.18	 61.09%	 -12	 -26	 2	

	 R	Lateral	occipital	

cortex,	inferior	

division	

R	Middle	

temporal	gyrus,	

temporooccipital	

part.		

431	 4.43	 62.76%	 54	 -66	 10	

	 L		Planum	polare		 L	Superior	

temporal	gyrus,	

posterior	division	,	

Insular	cortex,	L	

Heschl’s	gyrus,	

Anterior	superior	

temporal	gyrus.	

226	 3.77	 60.63%	 -40	 -16	 -8	

	 L	Supramarginal	

gyrus,	posterior	

division		

L	Planum	

temporale,	

Posterior	superior	

temporal	gyrus.	

178	 3.52	 61.59%	 -60	 -42	 16	

	 R	Frontal	

operculum	cortex	

R	Frontal	orbital	

cortex,	R	Insular	

156	 3.37	 58.24%	 40	 22	 4	
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cortex.	

	 L	Anterior	

parahippocampal	

gyrus	

L	Temporal	

fusiform	gyrus,	,		

75	 4.34	 59.83%	 -36	 -18	 -18	

	 L	Anterior	middle	

temporal	gyrus	

L	Anterior	inferior	

temporal	gyrus,		

67	 4.12	 61.07%	 -56		 -6	 -18	

	 L	Anterior	

cingulate	gyrus	

	 49	 3.82	 58.16%	 -4	 34	 -2	

Visual	vs.	

Context	

	 	 	 	 	 	 	 	

	 L	Lateral	occipital	

cortex,	inferior	

division	

L	Middle	temporal	

gyrus,	

temporooccipital	

part,	L	Occipital	

Pole.		

733	 4.16	 68.05%	 -46	 -72	 0	

Auditory	

vs.	

Context	

	 	 	 	 	 	 	 	

	 L	Lateral	occipital	

cortex,	inferior	

division	

L	Temporal	

occipital	fusiform	

cortex,	L	inferior	

temporal	gyrus,	

temporooccipital	

part.		

312	 3.81	 66.49%	 48	 -62	 -6	

	 R	Temporal	

occipital	fusiform	

gyrus	

R	Lateral	occipital	

cortex,	inferior	

division,	R	Inferior	

temporal	gyrus,	

temporooccipital	

part,	R	Middle	

temporal	gyrus.	

temporooccipital	

part		

118	 3.17	 60.35%	 34	 -56	 -20	

	 R	Posterior	

middle	temporal	

gyrus	

R	Posterior	

superior	temporal	

gyrus,	R	

Supramarginal	

90	 2.92	 58.76%	 56	 -34	 -2	
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gyrus,	R	Anterior	

superior	temporal	

gyrus	

	 R	Posterior	

superior	temporal	

gyrus	

R	Middle	

temporal	gyrus,	R	

Planum	polare,	R	

Planum	

Temporale	

81	 3.15	 59.09%	 60	 -22	 0	

Footnote:	Highest	decoding	accuracy	clusters	for	each	of	our	three	classifiers	analysed	separately.	The	

Auditory	 vs.	 Visual	 classifier	 was	 trained	 on	 the	 distinction	 between	 thinking	 about	 the	 sound	 of	 a	

concept	versus	thinking	about	what	a	concept	looked	like.	The	Visual	vs.	Context	classifier	was	trained	

on	 the	 distinction	 between	 thinking	 about	 what	 a	 concept	 looked	 like	 versus	 thinking	 about	 it	 in	 a	

specific	meaning-based	context.	The	Sound	vs.	Context	classifier	was	trained	on	the	distinction	between	

thinking	about	what	a	concept	sounded	like	and	thinking	about	it	 in	a	specific	meaning-based	context.	

All	 analyses	 were	 cluster	 corrected	 using	 a	 z-statistic	 threshold	 of	 2.3	 to	 define	 contiguous	 clusters.	

Multiple	comparisons	were	controlled	using	a	Gaussian	Random	Field	Theory	at	a	threshold	of	p	<	.01.	L	

=	 left,	 R	 =	 right.	 As	well	 as	 peak	 accuracy	 (reported	 under	 the	 ‘Cluster	 Peak’	 column),	 the	 ‘Extended	

Cluster	Regions’	includes	all	significant	regions	within	each	ROI.	The	unthresholded	MVPA	maps	for	each	

searchlight	 have	 been	 uploaded	 to	 the	 Neurovault	 database	 and	 can	 be	 found	 here	

http://neurovault.org/collections/2671/.		

	

	
Figure	4.2.	Results	of	the	group-level	whole-brain	searchlight	analysis	with	above-chance	(50%)	

decoding	 projected	 in	 red	 (z	 >	 2.3,	 cluster-corrected	 p	 <	 .01).	 All	 panels	 reveal	 results	 from	

binary	choice	searchlight	analyses	decoding	the	content	of	thought	while	participant’s	viewed	
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visual	 and	 auditory	 noise.	 (A)	 Location	 of	 searchlights	 that	 could	 decode	 between	 thinking	

about	 the	 sound	 and	 thinking	 about	 the	 visual	 properties	 of	 concepts.	 (B)	 Location	 of	

searchlights	that	could	decode	between	thinking	about	the	visual	properties	of	concepts	and	

thinking	about	the	same	concepts	in	more	complex	contexts.	(C)	Location	of	searchlights	that	

could	 decode	 between	 thinking	 about	 the	 sound	 of	 concepts	 and	 thinking	 about	 the	 same	

concepts	in	more	complex	contexts.		

	

Next,	we	examined	a	visual	vs.	context	classifier,	which	identified	regions	that	

could	classify	the	difference	between	thinking	about	the	visual	properties	of	concepts	

and	 thinking	 about	 the	 same	 concepts	 in	 complex	 conceptual	 contexts.	 This	 whole-

brain	 searchlight	analysis	 revealed	a	 large	 region	 in	 the	 left	occipital	 lobe	 that	 could	

decode	between	 visual	 and	 context	 conditions	 at	 above	 chance	 levels	 (50%,	 cluster-

corrected	 p	 <	 .01)	 (Figure	 4.2B;	 Table	 4.2).	 Finally,	 we	 tested	 whether	 auditory	 vs.	

context	conditions	could	be	decoded.	This	whole-brain	searchlight	analysis	revealed	a	

set	of	clusters	in	bilateral	auditory	cortex	extending	along	the	superior	temporal	gyrus	

(STG)	 into	 ATL	 and	 posterior	 occipital-temporal	 cortex	 that	 could	 decode	 between	

auditory	 and	 context	 conditions	 (50%,	 cluster-corrected	 p	 <	 .01)	 (Figure	 4.2C;	 Table	

4.2).	

To	identify	regions	that	could	consistently	decode	visual,	auditory	and	context	

conditions,	conjunction	analyses	were	performed	across	the	searchlight	maps	outlined	

in	Figures	4.2A-C.	The	results	of	these	conjunctions	are	presented	 in	Figure	4.3A.	For	

visual	imagery,	we	looked	at	the	conjunction	of	the	two	searchlight	maps	that	involved	

decoding	 simple	 visual	 features	 (visual	 vs.	 auditory	 and	 visual	 vs.	 context).	 This	

revealed	 a	 left	 lateralized	 cluster	 in	 occipital	 pole	 extending	 into	 lateral	 occipital	

cortex,	which	reliably	decoded	the	distinction	between	simple	visual	 feature	 imagery	

and	both	of	the	other	conditions.	For	auditory	imagery,	we	looked	at	the	conjunction	

of	 the	 two	searchlight	maps	 that	 involved	decoding	auditory	properties	 (auditory	vs.	

visual	 and	 auditory	 vs.	 context).	 This	 analysis	 revealed	 left	 hemisphere	 regions,	

including	 primary	 auditory	 cortex,	 STG,	 pMTG	 and	 occipital	 fusiform,	 that	 reliably	

decoded	 the	 distinction	 between	 simple	 auditory	 feature	 imagery	 and	 both	 of	 the	

other	conditions.	For	imagery	driven	by	complex	conceptual	contexts,	we	looked	at	the	

conjunction	 of	 the	 two	 searchlight	 maps	 that	 involved	 decoding	 context	 (visual	 vs.	
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context	 and	 auditory	 vs.	 context),	 which	 produced	 a	 cluster	 in	 left	 lateral	 occipital	

cortex.		

	 	
Figure	 4.3.	 A.	 Represents	 brain	 regions	where	 patterns	 of	 activity	 consistently	 informed	 the	

classifier	for	each	of	our	three	tasks	(visual,	context	and	sound).	For	visual	patterns	we	looked	

at	the	conjunction	of	the	two	searchlight	maps	that	decoded	visual	properties	(sound	vs.	visual	

and	 visual	 vs.	 context).	 For	 context	 patterns	 we	 looked	 at	 the	 conjunction	 of	 the	 two	

searchlight	maps	 that	decoded	context	properties	 (visual	vs.	 context	and	 sound	vs.	 context).	

For	 sound	patterns	we	 looked	at	 the	 conjunction	of	 the	 two	 searchlight	maps	 that	decoded	

sound	 properties	 (sound	 vs.	 visual	 and	 sound	 vs.	 context).	 B.	 Shows	 the	 univariate	 percent	

signal	change	for	each	of	our	three	conditions	taken	from	a	6mm	sphere	centered	on	the	peak	

conjunction	point	(visual	[-48	-70	2],	context	[-48	-60	0],	sound	[-52	-8	-10]).	(C	=	context,	S	=	

sound,	 V	 =	 visual).	 *	 Indicates	 a	 significant	 different	 between	 conditions	 (p	 <	 .05).	 The	

unthresholded	maps	for	each	condition	have	been	uploaded	to	the	Neurovault	database	and	

can	be	found	here	http://neurovault.org/collections/2671/.	C.	Grey	panel	illustrates	the	7	core	

intrinsic	 networks	 identified	 by	 Yeo	 et	 al	 (2011);	 Dark	 purple	 =	 visual	 network,	 light	 blue	 =	

somatosensory	 network,	 dark	 green	 =	 dorsal	 network,	 light	 pink	 =	 ventral	 network,	white	 =	

limbin	 network,	 yellow/orange	 =	 frontoparietal	 network	 (FPN)	 and	 red	 =	 default	 mode	

network	(DMN).	The	black	circles	highlight	where	our	peak	conjunction	sites	fall	with	respect	

to	 these	 network.	 Our	 peak	 visual	 conjunction	 fell	 within	 the	 Visual	 network,	 peak	 context	

conjunction	 fell	 within	 the	 dorsal	 network	 and	 peak	 sound	 conjunction	 site	 within	 the	

somatosensory	network.		
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The	 conjunction	 of	 the	 MVPA	 searchlight	 maps	 revealed	 regions	 of	 sensory	

cortex	 that	 could	 decode	 different	 types	 of	 imagery	 (Figure	 4.3A).	 As	 an	 additional	

complementary	 analysis,	 the	 percentage	 signal	 change	 was	 extracted	 for	 each	

condition	 from	each	of	 the	 three	 conjunction	 sites	by	placing	a	6mm	sphere	around	

the	 peak	 (Figure	 4.3B).	 A	 3	 (conjunction	 site;	 visual,	 sound,	 conceptually-complex	

context)	 by	 3	 (imagery	 type:	 visual,	 sound,	 conceptually-complex	 context)	 repeated-

measures	 ANOVA	 revealed	 no	 significant	 main	 effect	 of	 conjunction	 site	 (F(2,36)	 =	

0.48,	 p	 =	 .622)	 or	 imagery	 type	 (F(2,36)	 =	 2.30,	 p	 =	 .114;,	 however	 there	 was	 a	

significant	 interaction	 between	 site	 and	 imagery	 type	 (F(4,72)	 =	 4.38,	 p	 =	 .003).	

Planned	comparisons	in	the	form	of	repeated-measure	t-tests	revealed	that	our	visual	

cluster	 showed	 significantly	 more	 activity	 for	 visual	 imagery	 than	 auditory	 imagery	

(t(18)	=	4.99,	p	<	.001)	and	for	the	context	condition	vs.	auditory	imagery	(t(18)	=	4.61,	

p	 <.001),	 but	 there	 was	 no	 significant	 difference	 between	 the	 visual	 and	 context	

conditions	(t(18)	=	.94,	p	=	.36).	Our	auditory	cluster	showed	significantly	more	activity	

for	auditory	 imagery	 than	visual	 imagery	 (t(18)	=	4.64,	p	<	 .001)	and	 for	 the	context	

condition	 vs.	 visual	 imagery	 (t(18)	 =	 5.602,	 p	 <	 .001),	 but	 no	 significant	 difference	

between	 auditory	 and	 context	 imagery	 (t(18)	 =	 -1.17,	 p	 =	 .25).	 Finally,	 our	 context	

cluster	revealed	significantly	more	activity	for	the	context	condition	compared	to	both	

visual	 (t(18)	 =	 5.56,	 p	 <	 .001)	 and	 auditory	 imagery	 (t(18)	 =	 5.31,	 p	 <	 .001),	 but	 no	

significant	difference	between	visual	and	auditory	imagery	conditions	(t(18)	=	-.03,	p	=	

.97).		

These	univariate	analyses	demonstrate	 that	 regions	 that	were	able	 to	classify	

particular	 aspects	 of	 internally-driven	 conceptual	 retrieval	 also	 showed	 a	 stronger	

BOLD	 response	 to	 these	 conditions	 –	 i.e.,	 greater	 activation	 to	 visual	 or	 auditory	

imagery	 in	 ‘visual’	 and	 ‘auditory’	 classifier	 areas,	 and	 more	 activation	 to	 complex	

conceptual	contexts	in	areas	that	could	reliably	classify	this	context	condition.	Regions	

that	 could	 decode	 visual	 and	 auditory	 imagery	 also	 responded	 to	 the	 context	

condition,	consistent	with	the	view	that	there	is	a	multi-sensory	response	to	complex	

conceptual	contexts.	Moreover,	the	context	classifier	region	showed	a	response	across	

both	visual	and	auditory	conditions,	suggesting	this	region	is	heteromodal;	however,	it	

also	showed	an	increased	response	to	imagery	involving	contexts,	supporting	the	view	
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that	 this	 region	 responds	most	 strongly	 to	 the	 unique	 demands	 of	 the	 construction	

process	 imposed	 by	 this	 condition.	 Finally,	 to	 determine	which	 distributed	 networks	

our	 conjunction	 findings	 fall	within,	we	 compared	 our	 results	with	 seven	 large-scale	

networks	 as	 defined	 by	 Yeo	 et	 al	 (2011)	 (Figure	 4.3C).	 Both	 visual	 and	 sound	

conjunction	clusters	fell	predominantly	within	unimodal	sensory	networks	(visual	and	

somatosensory	respectively),	while	our	context	conjunction	site	was	located	within	the	

dorsal	attentional	network.	

Given	 our	 priori	 predictions	 regarding	 heteromodal	 cortex	 (e.g.,	 ATL),	 we	

interrogated	 candidate	 heteromodal	 regions	 within	 the	 auditory	 vs.	 visual	 classifier	

map.	The	brain	regions	 labelled	on	Figure	4.4	are	the	peaks	representing	the	highest	

decoding	 accuracy	 taken	 from	 Table	 4.2,	 with	 the	 exclusion	 of	 peaks	 in	 unimodal	

cortex	 (determined	 by	 the	 conjunction	 results).	 This	 analysis	 included	 a	 distributed	

network	of	putative	transmodal	regions,	including	supramarginal	gyrus	extending	into	

pMTG,	ventrolateral	ATL	(aMTG	and	aITG),	thalamus,	anterior	parahippocampal	gyrus	

and	anterior	cingulate	cortex	(aCC)	(Figure	4.4A).	As	before,	the	percent	signal	change	

was	extracted	from	each	of	these	regions	by	placing	a	6mm	sphere	around	each	peak;	

SMG	[-60	-42	16],	aMTG	[-56	-6	-18],	aCC	[-4	34-2],	thalamus	[-12	26	2]	and	aPG	[-36	-

18	 -18].	 	A	 5	 (location;	 SMG,	 aMTG,	 aCC,	 thalamus,	 aPG)	by	3	 (imagery	 type:	 visual,	

sound,	 conceptually-complex	 context)	 repeated-measures	 ANOVA	 revealed	 no	

significant	 main	 effect	 of	 conjunction	 site	 (F(4,72)	 =	 0.34,	 p	 =	 .71)	 or	 imagery	 type	

(F(4,72)	 =	 2.02,	 p	 =	 .131;	 nor	 was	 there	 a	 significant	 interaction	 between	 site	 and	

imagery	 type	 (F(8,144)	 =	 2.65,	 p	 =	 .102).	 This	 equivalency	 across	 conditions	 is	

consistent	with	the	characterization	of	these	regions	as	transmodal.	Finally,	to	quantify	

which	 intrinsic	networks	our	clusters	 fall	within	we	compared	our	 results	with	seven	

large-scale	 networks	 as	 defined	 by	 Yeo	 et	 al	 (2011)	 (Figure	 4.4B).	 The	 majority	 of	

clusters	fell	within	transmodal	cortices,	including	the	default	mode	network	and	limbic	

system.		
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Figure	4.4.	Heteromodal	brain	regions	taken	from	the	auditory	vs.	visual	classifier	map	(Figure	

4.2A).	(A)	Labelled	regions	highlight	the	peaks	of	decoding	accuracy	from	Table	4.2	(excluding	

those	 peaks	 in	 unimodal	 cortex	 highlighted	 in	 our	 conjunction	 analysis	 for	 sound	 and	 visual	

imagination);	SMG	=	supramarginal	gyrus	[-60	-42	16],	aMTG	=	anterior	middle	temporal	gyrus	

[-56	 -6	 -18],	 aCC	 =	 anterior	 cingulate	 cortex	 [-4	 34-2],	 thalamus	 [-12	 26	 2],	 aPG=	 anterior	

parahippocampal	 gyrus	 [-36	 -18	 -18].	 The	 bar	 graph	 shows	 the	 univariate	 percent	 signal	

change	for	each	of	our	three	conditions	(C	=	context,	S	=	sound,	V	=	visual)	extracted	from	a	

6mm	 sphere	 centered	 on	 each	 labeled	 peak.	 There	 were	 no	 significant	 different	 between	

conditions	 across	 any	 of	 our	 ROIs	 (p	 >	 .05).	 The	 unthresholded	map	 for	 can	 be	 found	 here	

http://neurovault.org/collections/2671/.	 (B)	 Grey	 panel	 illustrates	 the	 7	 core	 intrinsic	

networks	 identified	 by	 Yeo	 et	 al	 (2011);	 Dark	 purple	 =	 visual	 network,	 light	 blue	 =	

somatosensory	 network,	 dark	 green	 =	 dorsal	 network,	 light	 pink	 =	 ventral	 network,	white	 =	

limbic	network,	yellow/orange	=	frontoparietal	network	(FPN)	and	red	=	default	mode	network	
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(DMN).	 The	 black	 circles	 highlight	 where	 our	 peak	 sites	 fall	 with	 respect	 to	 these	 network.	

SMG	falls	between	ventral	stream	and	somatomotor,	aMTG,	ACC	fall	within	the	default	mode	

network,	 aPG	 falls	within	 the	 limbic	 system.	 Subcortical	 regions	 (e.g.,	 the	 thalamus)	 are	 not	

shown	on	the	Yeo	et	al	(2011)	networks.			

	

4.4.3.	Intrinsic	Connectivity			

To	 provide	 a	 better	 understanding	 of	 the	 neural	 architecture	 that	 supported	

imagination	in	each	condition,	we	explored	the	intrinsic	connectivity	of	our	unimodal	

conjunction	 sites	 (Figure	 4.3)	 and	 transmodal	 sites	 (Figure	 4.4)	 identified	 through	

MVPA,	 in	 resting-state	 fMRI.	 The	 results	 of	 the	 unimodal	 connectivity	 analysis	 are	

presented	 in	 Supplementary	 Table	 A.2.2	 (Figure	 4.5).	 For	 the	 visual	 and	 auditory	

conjunction	 sites,	which	peaked	within	visual	and	auditory	 cortex	 respectively,	 there	

was	coupling	beyond	the	sensory	areas	surrounding	the	seed	regions,	to	include	areas	

of	 transmodal	 cortex,	 including	 ATL,	 particularly	 the	 left	 medial	 surface,	 posterior	

middle	temporal	gyrus	and	precuneus.	To	quantify	the	interpretation	of	the	functional	

connectivity	 of	 the	 visual,	 context	 and	 sound	 connectivity	 maps,	 we	 performed	 a	

decoding	 analysis	 using	 automated	 fMRI	 meta-analytic	 software	 NeuroSynth	 (right	

panel	 of	 Figure	 4.5).	Meta-analytic	 decoding	 of	 these	 spatial	maps	 revealed	 domain	

specific	networks	and	their	associated	function.	The	visual	connectivity	map	correlated	

with	 terms	 related	 to	 visual	 processing	 (e.g.,	 visual,	 objects),	 likewise	 our	 sound	

connectivity	map	 correlated	with	 terms	 related	 to	 auditory	 processing	 (e.g.,	 speech,	

sound).	The	context	connectivity	map	 included	both	visual	 (e.g.,	objects)	and	higher-

order	terms	(e.g.,	attention).		
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Figure	4.5.	Resting	state	connectivity	maps	of	unimodal	regions	projected	on	rendered	brain,	

displaying	left	hemisphere	and	left	medial	view.	Maps	thresholded	at	z	=	3.1,	cluster	corrected	

p	<	.01.	Visual	maps	seeded	from	left	inferior	lateral	occipital	cortex	[-48	70	-2].	Context	maps	

seeded	 from	 left	 inferior	 lateral	 occipital	 cortex	 [-48	 -60	 0].	 Sound	 maps	 seeded	 from	 left	

superior	 temporal	 gyrus	 [-52	 -8	 -10].	Word	 clouds	 represent	 the	 decoded	 function	 of	 each	

connectivity	map	 using	 automated	 fMRI	meta-analyses	 software	 (NeuroSynth,	 Yarkoni	 et	 al.	

2011).	This	software	computed	the	spatial	correlation	between	each	unthresholded	zstat	mask	

and	every	other	meta-analytic	map	(n	=	11406)	for	each	term/concept	stored	in	the	database.	

The	 10	 meta-analytic	 maps	 exhibiting	 highest	 positive	 correlation	 for	 each	 sub-system	 was	

extracted,	and	the	term	corresponding	to	each	of	these	meta-analyses	is	shown	on	the	right.	

The	 font	 size	 reflects	 the	 size	 of	 the	 correlation.	 This	 allows	 us	 to	 quantify	 the	most	 likely	

reverse	 inferences	 that	 would	 be	 drawn	 from	 these	 functional	 maps	 by	 the	 larger	

neuroimaging	community.			
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The	 results	 of	 the	 heteromodal	 connectivity	 analysis	 are	 presented	 in	

Supplementary	 Table	 A.2.2	 (Figure	 4.6).	 Both	 our	 thalamus	 and	 SMG	 seed	 coupled	

extensively	 with	 sensorimotor	 regions	 and	 core	 portions	 of	 the	 DMN	 (thalamus	 =	

angular	gyrus	and	posterior	cingulate	cortex;	SMG	=	middle	temporal	gyrus	and	ATL).	

The	three	other	seeds	(aMTG,	anterior	parahippocampal	gyrus	and	anterior	cingulate	

cortex)	 all	 coupled	with	 core	 transmodal	 networks	 (DMN	and	 limbic	 system).	 To	 aid	

the	interpretation	of	these	connectivity	maps,	we	performed	a	decoding	analysis	using	

automated	 fMRI	meta-analytic	 software	 NeuroSynth	 (right	 panel	 of	 Figure	 4.6).	 The	

thalamus	 connectivity	 map	 correlated	 with	 terms	 related	 to	 task	 demands	 and	

multisensory	 properties	 (e.g.,	 anticipation,	 motivation,	 somatosensory),	 likewise	 our	

SMG	 connectivity	 map	 correlated	 with	 terms	 related	 to	 sensory	 processing	 (e.g.,	

speech,	sound),	while	in	contrast	aMTG,	aPG	and	aCC	connectivity	maps	all	correlated	

with	terms	related	to	memory	retrieval	(e.g.,	semantic,	memory,	encoding,	DMN).	
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Figure	 4.6.	 Resting	 state	 connectivity	 maps	 of	 heteromodal	 regions	 projected	 on	 rendered	

brain,	 displaying	 left	 hemisphere	 and	 left	medial	 view.	Maps	 thresholded	 at	 z	 =	 3.1,	 cluster	

corrected	p	<	 .01.	Thalamus	maps	 seeded	 from	 [-48	 -60	0].	 Supramarginal	 gyrus	 (SMG)	map	

seeded	 from	 [-48	 -70	 -2].	 Anterior	middle	 temporal	 gyrus	 (aMTG)	 seeded	 from	 [-56	 -6	 -18].	

Anterior	 parahippocampal	 gyrus	 (aPG)	 seeded	 from	 [-36	 -18	 -18].	 Anterior	 cingulate	 cortex	

(aCC)	seeded	from	[-4	34-2].	Word	clouds	represent	the	decoded	function	of	each	connectivity	

map	 using	 automated	 fMRI	 meta-analyses	 software	 (NeuroSynth,	 Yarkoni	 et	 al.	 2011).	 This	

software	computed	the	spatial	correlation	between	each	unthresholded	zstat	mask	and	every	

other	meta-analytic	map	 (n	 =	 11406)	 for	 each	 term/concept	 stored	 in	 the	 database.	 The	 10	

meta-analytic	maps	exhibiting	highest	positive	correlation	for	each	sub-system	was	extracted,	

and	 the	 term	corresponding	 to	each	of	 these	meta-analyses	 is	 shown	on	 the	 right.	 The	 font	

size	 reflects	 the	 size	 of	 the	 correlation.	 This	 allows	 us	 to	 quantify	 the	 most	 likely	 reverse	
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inferences	 that	 would	 be	 drawn	 from	 these	 functional	 maps	 by	 the	 larger	 neuroimaging	

community.			

	

Next,	 to	 localise	 whether	 there	 was	 a	 common	 network	 implicated	 across	

different	 forms	 of	 imagery,	 we	 performed	 a	 formal	 conjunction	 of	 the	 functional	

connectivity	maps	obtained	 from	the	visual,	auditory	and	context	MVPA	conjunction	

peaks	 (see	 Figure	 4.7A).	 This	 revealed	 a	 distributed	 network	 of	 clusters	 in	 bilateral	

parietal	 operculum	 cortex,	 supramarginal	 gyrus,	 posterior	 middle	 temporal	 gyrus,	

insular	cortex	and	left	anterior	parahippocampal	gyrus	extending	to	hippocampus	and	

temporal	 pole.	 Meta-analytic	 decoding	 of	 this	 conjunction	 map	 revealed	 strong	

correlations	 with	 terms	 related	 to	 visual	 processing	 (e.g.,	 visual,	 objects)	 as	 well	 as	

higher-order	cognitive	 functions	 such	as	attention,	 imagination	and	meaning.	Finally,	

to	 explore	 whether	 our	 connectivity	 conjunction	 shared	 spatial	 properties	 with	 our	

“transmodal”	MVPA	connectivity	maps	(SMG,	aMTG,	anterior	parahippocampal	gyrus	

and	anterior	cingulate	cortex),	we	calculated	the	number	of	overlapping	voxels	across	

the	 four	 maps.	 As	 the	 thalamus	 connectivity	 map	 deviated	 substantially	 from	 the	

connectivity	 profiles	 of	 the	 remaining	 four	 “transmodal	 seeds”,	 it	was	 omitted.	 This	

revealed	a	distributed	network	of	 regions	encompassing	 lateral	 temporal	 cortex	 and	

anterior	 parahippocampal	 gyrus	 (see	 Figure	 4.7B).	 The	 similarity	 of	 these	 two	

conjunction	maps	is	evident	by	an	overlap	within	anterior	parahippocampal	gyrus.	
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Figure	 4.7.	Overlap	 of	 resting-state	 connectivity	maps.	 (A)	 The	 overlap	 between	 our	

“unimodal”	 connectivity	 maps	 depicted	 in	 Figure	 4.5.	 (B)	 The	 overlap	 between	 our	

“heteromodal”	 connectivity	 maps	 depicted	 in	 Figure	 4.6,	 with	 the	 exception	 of	 our	

thalamus	 seed	 as	 this	 connected	 to	 a	 substantial	 network	 of	 sensorimotor	 and	

thalamic	 regions.	 Overlap	 between	 these	 two	 maps	 is	 seen	 in	 anterior	

parahippocampal	gyrus.		

	

4.5.	Discussion	

	

Our	study	examined	common	and	distinct	components	supporting	conceptually-driven	

visual	 and	 auditory	 imagery.	Multivariate	whole-brain	 decoding	 identified	 aspects	 of	

secondary	 visual	 and	 auditory	 cortex	 (inferior	 lateral	 occipital	 cortex	 and	 superior	

temporal	gyrus)	in	which	the	pattern	of	activation	across	voxels	related	to	the	modality	

of	what	was	imagined.	Using	functional	connectivity,	we	established	that	at	rest	these	

regions	 showed	 a	 pattern	 of	 differential	 connectivity	 with	 auditory	 or	 visual	 cortex,	

indicating	 that	 they	 reflected	 domain-specific	 aspects	 of	 imagination.	 We	 also	
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identified	 several	 heteromodal	 regions	 (including	 ventrolateral	 ATL,	 anterior	

parahippocampal	 gyrus	and	anterior	 cingulate	 cortex)	 that	were	also	able	 to	decode	

the	difference	between	thinking	about	what	a	concept	looked	like	and	what	it	sounded	

like.	 Finally,	 a	 region	 within	 the	 dorsal	 attention	 network	 (inferior	 lateral	 occipital	

cortex)	 was	 predominantly	 recruited	 for	 contextually-complex	 imagery	 and	 reliably	

able	 to	 decode	 between	 all	 of	 our	 experimental	 conditions.	 	 Complementary	

investigation	 of	 the	 intrinsic	 connectivity	 of	 these	 regions	 confirmed	 their	 role	 in	

unimodal	 and	 heteromodal	 processing.	 These	 findings	 are	 consistent	 with	 the	 view	

that	imagination	emerges	from	a	combined	response	within	unimodal	and	transmodal	

regions.	

The	current	fMRI	study	is	one	of	only	a	few	(e.g.,	Vetter	et	al.,	2014)	to	identify	

patterns	 of	 activity	 in	 both	 visual	 and	 auditory	 association	 cortices	 that	 can	 reliably	

decode	between	different	modalities	of	 imagination	 (e.g.,	 thinking	about	what	a	dog	

sounds	 like	and	what	 it	 looks	 like)	within	the	same	subjects.	Our	study	is	the	first,	to	

our	knowledge,	to	 investigate	this	 issue	whilst	equating	the	visual	and	auditory	 input	

across	our	conditions.	Typically	neuroimaging	studies	of	visual	 imagery	have	required	

participants	to	stare	at	a	fixation	cross	while	imagining	an	object,	ensuring	a	consistent	

and	simple	visual	 input	 into	 the	 system	 (e.g.,	Albers	et	al.	2013;	Dijkstra	et	al.	2017;	

Ishai	et	al.	2000;	Lee,	Kravitz	&	Baker,	2012;	Reddy	et	al.	2010).	In	contrast,	studies	of	

auditory	 imagery	 typically	 require	 participants	 to	 imagine	 the	 sound	 of	 an	 object	 or	

piece	 of	music	 in	 the	 presence	of	 auditory	 input	 created	by	 the	 scanner	 noise	 (e.g.,	

Kraemer	et	al.	2005;	Lima	et	al.	2015;	2016;	Zattore	&	Halpern,	2005).	In	this	study,	we	

presented	both	visual	and	auditory	 random	noise,	providing	more	comparable	visual	

and	auditory	baselines.	 This	methodological	 advance	allows	a	purer	 test	of	 common	

and	distinct	neural	contributions	to	imagination	in	different	modalities	than	has	been	

possible	in	prior	studies.	

	

Domain	specific	contributions	to	imagination	

Our	study	provided	evidence	that	neural	recruitment	occurs	in	primary	sensory	regions	

in	order	to	support	modality-specific	imagery.	However,	the	highest	decoding	accuracy	

and	the	location	of	our	imagination	conjunctions	fell	within	secondary	sensory	regions	
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(superior	temporal	gyrus	and	 inferior	 lateral	occipital	cortex	respectively;	Figure	4.3).	

Our	functional	connectivity	analyses	confirmed	that	although	these	regions	fall	outside	

of	 these	 systems	 as	 defined	by	 Yeo	 and	 colleagues	 (2011),	 at	 rest	 these	 regions	 are	

functionally	coupled	to	primary	visual	and	auditory	cortex	respectively.	These	findings	

are	in	line	with	prior	decoding	and	fMRI	studies	that	have	highlighted	the	relationship	

between	 imagery	 and	 secondary	 sensory	 regions	 (Albers	 et	 al.	 2013;	 de	 Borst	 &	 de	

Gelder,	 2016;	 Coutanche	&	 Thompson-Schill,	 2014;	 Chen	 et	 al.	 1998;	Daselaar	 et	 al.	

2010;	Halpern	et	al.	2004;	Ishai	et	al.	2000;	Lee	et	al.	2012;	Reddy	et	al.	2010;	Stokes	et	

al.	 2009;	 Vetter	 et	 al.	 2014;	 Zvyagintsev	 et	 al.	 2013).	 Interestingly,	 our	 results	 are	

consistent	with	 the	 ‘anterior	 shift’	 noted	by	 Thompson-Schill	 (2003).	 She	 found	 that	

areas	 activated	 by	 semantic	 processing	 are	 not	 isomorphic	 to	 those	 used	 in	 direct	

experience,	 but	 rather	 are	 shifted	 anterior	 to	 those	 areas	 (for	 a	 wider	 review	 see	

Chatterjee,	2010;	Binder	&	Desai,	2011;	McNorgan	et	al.	2011;	Meteyard	et	al.	2012).		

Our	 whole-brain	 searchlight	 analysis	 also	 revealed	 patterns	 of	 activity	

supporting	 modality-specific	 imagination	 that	 extended	 beyond	 sensory	 cortex	 into	

semantic	 regions,	 including	 ATL	 (MTG,	 ventral	 and	 medial	 portions)	 and	 anterior	

cingulate	 cortex	 (see	 Figure	 4.4).	 Functional	 connectivity	 analysis	 indicated	 that	 the	

majority	 of	 these	 regions	 showed	 extensive	 connectivity	 to	 other	 temporal	 lobe	

regions,	 encompassing	 both	 medial	 and	 lateral	 sites.	 Three	 of	 these	 regions	 also	

showed	pre-frontal	connectivity,	primarily	with	connections	 to	 regions	of	 the	default	

mode	network	(anterior	IFG	and	ventral	and	dorsal	medial	prefrontal	cortex).	Together	

this	 pattern	 of	 functional	 connectivity,	 suggests	 that	 these	 regions	 form	 a	 common	

network	in	the	temporal	lobe,	and	at	least	some	of	these	regions	are	closely	allied	at	

rest	with	regions	within	the	default	mode	network.			

	

Domain	general	contributions	to	imagination	

We	found	a	cluster	 in	 left	 inferior	 lateral	occipital	cortex	(LOC)	that	showed	stronger	

activation	 in	 the	 context	 condition.	 This	 region	 was	 able	 to	 classify	 the	 distinction	

between	all	three	conditions.	Left	lateral	occipital	cortex	is	traditionally	thought	to	be	

a	 ‘visual’	region.	However,	this	region	predominantly	falls	within	the	dorsal	attention	

network,	as	opposed	to	the	visual	network	(Yeo	et	al.	2011).	While	this	“task-positive”	
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network	 usually	 responds	 to	 demanding,	 externally-presented	 decisions	 (for	 review	

see	Corbetta	&	Shulman,	2002),	 in	 this	 study	we	 see	engagement	 in	a	 task	 in	which	

imagery	 is	 being	 generated	 internally	 from	 memory.	 This	 pattern	 of	 results	

demonstrates	 that	 imagery	 not	 only	 recruits	 transmodal	 regions	 associated	 with	

memory	 but	 also	 sites	 implicated	 in	 attention,	 when	 the	 features	 that	 are	 being	

retrieved	 have	 to	 be	 shaped	 to	 suit	 the	 context,	 and/or	 when	 complex	 patterns	 of	

retrieval	are	required.	One	caveat	is	that	our	current	experimental	paradigm	does	not	

allow	 us	 to	 establish	 if	 this	 response	 in	 LOC	 is	 driven	 by	 the	 need	 to	 generate	 rich	

heteromodal	content	(i.e.,	‘dog	races’	can	envision	the	sound	of	a	crowd	cheering	and	

the	visual	properties	of	a	race	track),	or	the	requirement	to	steer	retrieval	away	from	

dominant	 features	 to	 currently-relevant	 information	 (since	 the	 fact	 that	 dogs	 go	 for	

walks	 is	 not	 pertinent	 to	 ‘dog	 races’,	 and	 might	 need	 to	 be	 suppressed	 to	 allow	

contextually-relevant	 information	to	come	to	the	fore).	Nevertheless,	 the	findings	do	

suggest	that	this	specific	region	plays	a	greater	role	in	supporting	imagery	of	complex	

multimodal	contexts	as	opposed	to	single	features.	

Seeding	 from	our	 “heteromodal”	MVPA	 sites	highlighted	extensive	 functional	

coupling	with	core	transmodal	networks	including	DMN	and	limbic	systems	(see	Figure	

4.6;	 Margulies	 et	 al.	 2016;	 Mesulam,	 1989;	 Yeo	 et	 al.	 2011).	 Meta-analytic	

decomposition	 of	 these	 maps	 returned	 terms	 related	 to	 memory	 retrieval	 (e.g.,	

semantic,	memory,	encoding,	DMN).	In	addition,	to	transmodal	networks,	two	of	these	

sites	 (thalamus	 and	 SMG)	 also	 coupled	 to	 somatosensory	 and	 attentional	 networks.	

Thalamic	influence	has	been	previously	reported	during	multisensory	interplay	(Driver	

&	Noesselt,	 2008),	 its	 role	 in	multimodal	 processing	may	 therefore	 explain	why	 this	

region	could	decode	between	visual	and	auditory	 forms	of	 imagination.	Moreover,	 it	

has	 recently	 been	 suggested	 that	 SMG	 is	 crucial	 in	 the	 construction	 of	 mental	

representations	 (Benedek	et	 al.	 2017).	As	 this	 region	 is	 connected	 to	both	 attention	

and	 sensory	networks,	our	 findings	 converge	with	previous	evidence	 suggesting	 that	

SMG	 integrates	 memory	 content	 in	 new	 ways	 and	 supports	 executively	 demanding	

mental	simulations	(Benedek	et	al.	2014;	2017;	Fink	et	al.	2010).	Finally,	we	identified	

a	 common	 intrinsic	 network	 across	 the	 different	 seed	 regions	 that	 extended	 from	

auditory	 and	 visual	 cortex	 into	 several	 transmodal	 regions,	 including	 bilateral	

temporal-parietal	 cortex	 and	 left	 anterior	 parahippocampal	 gyrus	 (see	 Figure	 4.7).	
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These	sites	terminated	in	several	regions	identified	in	our	“heteromodal”	connectivity	

maps	and	 thus	provide	a	quantifiable	explanation	 for	how	unimodal	and	 transmodal	

regions	 communicate	 in	 order	 to	 produce	 dynamic	 retrieval	 of	 knowledge	 from	

memory.	

	

4.6.	Conclusion	

	

In	 this	 investigation	of	semantic	 retrieval	 in	 the	absence	of	meaningful	 stimuli	 in	 the	

external	environment,	we	 found	extensive	 recruitment	of	 sensory	 cortex,	which	was	

modulated	by	 the	modality	of	 imagination	 required	by	 the	 task.	We	also	observed	a	

role	 for	 transmodal	 brain	 regions	 in	 supporting	 internally-generated	 conceptual	

retrieval.	 These	 findings	 are	 consistent	 with	 the	 view	 that	 different	 types	 of	

imaginative	 thought	 depend	 upon	 patterns	 of	 common	 distinct	 neural	 recruitment	

that	 reflect	 the	 respective	 contributions	 of	 modality	 specific	 and	modality	 invariant	

neural	representations.	
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Chapter	5	-	Isolated	from	input:	Evidence	of	

default	mode	network	support	for	perceptually-

decoupled	and	conceptually-guided	cognition	

This	chapter	is	adapted	from:	Murphy,	C.,	Jefferies,	E.,	Rueschemeyer,	S.	A.,	Sormaz,	
M.,	Wang,	H.	T.,	Margulies,	D.,	&	Smallwood,	J.	(in	review).	Isolated	from	input:	
Transmodal	cortex	in	the	default	mode	network	supports	perceptually-decoupled	
and	conceptually-guided	cognition.	bioRxiv,	150466.	4	

	

5.1.	Abstract	

	

The	default	mode	network	supports	a	variety	of	mental	operations	such	as	semantic	

processing,	 episodic	 memory	 retrieval,	 mental	 time	 travel	 and	mind-wandering,	 yet	

the	 commonalities	 between	 these	 functions	 remains	 unclear.	 One	 possibility	 is	 that	

this	 system	 supports	 cognition	 that	 is	 independent	 of	 the	 immediate	 environment;	

alternatively	or	additionally,	it	might	support	higher-order	conceptual	representations	

that	 draw	 together	 multiple	 features.	 We	 tested	 these	 accounts	 using	 a	 novel	

paradigm	 that	 separately	 manipulated	 the	 availability	 of	 perceptual	 information	 to	

guide	decision-making	and	the	representational	complexity	of	this	 information.	Using	

task	 based	 imaging	 we	 established	 regions	 that	 respond	 when	 cognition	 combines	

both	 stimulus	 independence	 with	 multi-modal	 information.	 These	 included	 left	 and	

right	angular	gyri	and	the	left	middle	temporal	gyrus.	Although	these	sites	were	within	

the	default	mode	network,	 they	showed	a	stronger	 response	 to	demanding	memory	

judgements	than	to	an	easier	perceptual	task,	contrary	to	the	view	that	they	support	

                                                
4 The author, Charlotte Murphy, designed the experiment, analysed the results and wrote the 
article under the supervision of Prof. Beth Jefferies, Dr. Shirley-Ann Rueschemeyer and Dr. 
Jonathan Smallwood. Dr. Mladen Sormaz and Hao-Ting Wang contributed to the collection 
of the data, some of which occurred outside of the PhD – funded by Dr. Smallwood's ERC 
grant (Wandering Minds – 303701). Dr.Daniel Margulies provided the principal gradient 
maps. 
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automatic	 aspects	 of	 cognition.	 In	 a	 subsequent	 analysis,	 we	 showed	 that	 these	

regions	were	 located	 at	 the	 extreme	 end	 of	 a	macroscale	 gradient,	which	 describes	

gradual	transitions	from	sensorimotor	to	transmodal	cortex.	This	shift	 in	the	focus	of	

neural	 activity	 towards	 transmodal,	default	mode,	 regions	might	 reflect	a	process	of	

isolation	from	specific	sensory	inputs	that	enables	conceptually	rich	cognitive	states	to	

be	generated	in	the	absence	of	input.	

	

5.2.	Introduction	

	

Although	 initial	 studies	 characterized	 the	 default	 mode	 network	 (DMN)	 as	 “task	

negative”,	this	network	actively	supports	aspects	of	cognition	(Spreng,	2012),	including	

semantic	 processing	 (Binder,	 Desai,	 Graves,	&	 Conant,	 2009;	 Krieger-Redwood	 et	 al.	

2016),	 episodic	 recollection	 (Rugg	 &	 Vilberg,	 2013),	 working	 memory	 (Konishi,	

McLaren,	 Engen,	 &	 Smallwood,	 2015;	 Spreng	 et	 al.	 2014;	 Vatansever,	 Menon,	

Manktelow,	 Sahakian,	 &	 Stamatakis,	 2015),	 autobiographical	 planning	 (Spreng,	

Gerlach,	Turner,	&	Schacter,	2015;	Spreng,	Stevens,	Chamberlain,	Gilmore,	&	Schacter,	

2010),	self-generation	of	emotion	 (Engen,	Kanske,	&	Singer,	2017)	and	 imagining	the	

future	or	the	past	(Schacter	&	Addis,	2007).	Although	we	lack	an	over-arching	account	

of	the	functions	of	the	DMN,	many	of	these	situations	involve	memory	retrieval	–	i.e.,	

a	 requirement	 to	 focus	 cognition	 on	 previously-encoded	 knowledge,	 as	 opposed	 to	

information	in	the	external	environment.	In	line	with	this	account,	many	regions	within	

or	 allied	 to	 the	 DMN	 are	 considered	 to	 be	 heteromodal	 ‘hubs’	 for	 memory-related	

processes,	including	the	posterior	cingulate	cortex	(Leech,	Braga,	&	Sharp,	2012;	Leech	

&	Sharp,	2014),	angular	gyrus	(Bonnici,	Richter,	Yazar,	&	Simons,	2016;	Seghier,	2013),	

hippocampus	 (Moscovitch,	 Cabeza,	Winocur,	 &	 Nadel,	 2016)	 and	 anterior	 temporal	

lobes	 (Visser,	 Jefferies,	 &	 Lambon	 Ralph,	 2010).	 In	 addition,	 cognitive	 states	 that	

activate	 the	 DMN	 tend	 to	 involve	 meaningful	 content	 that	 has	 personal	 relevance	

(Gusnard,	Akbudak,	Shulman,	&	Raichle,	2001).	

The	 current	 study	 was	 motivated	 by	 the	 hypothesis	 that	 there	 might	 be	

common	 neurocognitive	 processes	 underpinning	 perceptually-decoupled	 and	

conceptually-guided	cognition	 in	 the	DMN.	During	states	of	episodic	 recollection,	we	
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recreate	past	experiences	that	involve	places,	objects	and	people	not	currently	present	

in	 the	 environment.	 Consequently,	memory	 retrieval	might	 necessitate	 a	 process	 of	

decoupling	from	sensorimotor	systems,	allowing	cognition	to	be	generated	 internally	

in	 a	 way	 that	 diverges	 from	 what	 is	 going	 on	 around	 us	 (Smallwood,	 2013).	 These	

perceptually-decoupled	 states	 might	 be	 easier	 in	 brain	 regions	 whose	 neural	

computations	 are	 functionally	 independent,	 or	 distant,	 from	 systems	 important	 for	

perceiving	 and	 acting.	 This	 is	 consistent	 with	 the	 observation	 that	 the	 distributed	

regions	of	the	DMN	are	maximally	distant	from	primary	visual	and	motor	cortex,	both	

in	terms	of	their	distinct	patterns	of	 functional	connectivity	and	their	positions	along	

the	cortical	surface	(Margulies	et	al.	2016).		

In	 addition,	 DMN	 regions	 might	 support	 higher-order	 representations	 with	

predictive	 value	 across	 multiple	 situations	 and	 modalities,	 which	 integrate	 features	

from	 diverse	 sensorimotor	 regions.	 Contemporary	 accounts	 of	 semantic	

representation	 (Lambon	 Ralph,	 Jefferies,	 Patterson,	 &	 Rogers,	 2017)	 envisage	 an	

interaction	 between	 unimodal	 brain	 regions	 that	 support	 knowledge	 about	 specific	

features	(e.g.,	knowledge	that	BANANAS	are	YELLOW	and	CURVED	in	visual	cortex)	and	

heteromodal	 regions	 within	 or	 allied	 to	 the	 DMN,	 which	 extract	 deeper	 similarity	

structures	across	 these	domains	 (i.e.,	allow	us	to	understand	that	BANANA	and	KIWI	

are	conceptually	related,	despite	salient	differences	in	colour,	shape	etc.).	This	view	is	

also	consistent	with	 the	observation	 that	DMN	 lies	at	 the	extreme	end	of	a	gradient	

from	 heteromodal	 to	 unimodal	 cortex	 (Margulies	 et	 al.	 2016),	 since	 increasingly	

abstract	and	complex	representations	might	be	formed	at	greater	distances	along	the	

gradient,	where	 the	 influence	of	 specific	 features	 linked	 to	 stimuli	 in	 the	 immediate	

environment	 is	 reduced	 (Buckner	&	 Krienen,	 2013;	Margulies	 et	 al.	 2016;	Mesulam,	

1998).	Within	the	DMN,	angular	gyrus	(Binder	&	Desai,	2011;	Bonner	et	al.	2013)	and	

anterior	 temporal	 cortex	 (Lambon	Ralph	et	 al.	 2017;	Patterson	et	 al.	 2007)	 are	both	

implicated	 in	 heteromodal	 semantic	 processing.	 However,	 their	 roles	 remain	

controversial	 since	 other	 regions	 such	 as	 left	 inferior	 frontal	 gyrus	 and	 posterior	

aspects	of	the	temporal	lobe	frequently	show	stronger	task-induced	activation	in	fMRI.	

Angular	 gyrus,	 in	 particular,	 typically	 shows	 a	 pattern	 of	 task-induced	 deactivation,	

which	 is	 greater	 for	 harder	 judgements	 in	 both	 semantic	 and	 non-semantic	 tasks	

(Humphreys	 et	 al.	 2015;	 Humphreys	 &	 Lambon	 Ralph,	 2015).	 In	 addition,	 despite	
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commonalities	 in	 the	 intrinsic	 connectivity	 of	 these	 regions,	 differences	 in	 semantic	

content	have	been	proposed	although	not	broadly	accepted	(Jackson,	Hoffman,	Pobric	

&	 Lambon	 Ralph,	 2016):	 the	 anterior	 temporal	 lobes	 might	 support	 object	

identification,	 while	 angular	 gyrus	 is	 potentially	 more	 sensitive	 to	 thematic	

associations	(Davey	et	al.	2015;	Schwartz	et	al.	2011).	

We	 developed	 a	 novel	 paradigm	 to	 identify	 brain	 regions	 important	 for	

stimulus	independence,	more	complex	memory	representations	and	the	combination	

of	 both	 features	 in	 cognition.	 Our	 experiment	 builds	 on	 prior	 work	 by	 Konishi	 and	

colleagues	(Konishi	et	al.	2015).	In	their	study,	participants	kept	track	of	the	location	of	

pairs	of	simple	shapes	(triangles,	squares	and	circles)	presented	either	side	of	fixation.	

When	probed	with	one	shape	from	a	prior	trial	and	asked	which	side	of	the	screen	it	

was	presented	on,	activity	 increased	 in	 regions	 including	 those	within	 the	DMN.	The	

current	study	extended	this	paradigm	by	varying	the	complexity	of	the	information	to	

be	encoded	and	retrieved.	 In	one	condition	participants	keep	track	of	the	location	of	

pairs	of	stimuli	that	vary	on	a	single	feature	(coloured	patches),	in	a	second	they	keep	

track	 of	 stimuli	 that	 vary	 in	 a	 more	 complex	 manner	 (pairs	 of	 familiar	 real	 world	

objects	 such	 as	 dogs	 or	 cars).	 Objects	 place	 greater	 demands	 on	 memory	 than	 do	

colours	 because	 they	 are	 distinguished	 based	 on	 a	 greater	 number	 of	 features.	 This	

allowed	us	 to	 contrast	higher	 and	 lower	 levels	of	 representational	 complexity	 in	 the	

perceptual	representations	and	memories	that	would	be	probed.	We	also	manipulated	

whether	these	decisions	were	made	when	the	relevant	information	is	on	the	screen	(0	

–	 back)	 or	when	 only	 the	 identity	 of	 the	 target	 upon	which	 the	 decision	 is	 based	 is	

present	 (1	 –	 back).	 	 In	 the	 latter	 case	 the	 relevant	 spatial	 information	 must	 be	

retrieved	 from	memory,	 a	manipulation	 that	 allowed	 us	 to	 explore	 the	 property	 of	

stimulus	independence	in	cognition.	This	paradigm	is	presented	schematically	in	Figure	

5.1.	
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Figure	 5.1.	 Experimental	 design.	 The	 four	 different	 judgments	 that	 participants	made	 in	 this	

experiment.	

	

We	 used	 this	 paradigm	 in	 a	 functional	 magnetic	 resonance	 imaging	 (fMRI)	

experiment	 to	 localize	 the	 brain	 regions	 that	 support	 the	 properties	 of	 stimulus	

independence	 and	 representational	 complexity.	 Our	 aim	 was	 to	 establish	 whether	

regions	 sensitive	 to	 perceptual	 decoupling	 and	 conceptual	 retrieval	 fall	 within	 the	

DMN,	and	whether	 these	effects	were	 located	 in	overlapping	or	distinct	 regions.	We	

identified	 regions	 of	 cortex	 that	 respond:	 (i)	 to	 stimuli	 with	 a	 rich	 multi-modal	

structure	by	comparing	the	response	of	objects	to	colours,	 (ii)	when	decision	making	

has	a	higher	reliance	on	memory	by	comparing	decisions	that	are	made	in	the	1-back	

condition	with	those	made	in	the	0-back	conditions,	and	(iii)	to	conditions	that	require	

a	combination	of	both	elements	of	cognition.	We	tested	these	hypotheses	using	both	

standard	whole	 brain	 univariate	 analyses,	 as	well	 as	 characterizing	 neural	 activity	 in	

each	condition	 in	 terms	of	 its	position	on	 the	macroscale	gradient	 from	unimodal	 to	

heteromodal	cortex	described	by	Margulies	et	al.	(2016).	

If	 regions	 in	 the	 DMN	 are	 activated	 when	 spatial	 decisions	 are	 guided	 by	

information	from	memory,	this	would	support	a	role	in	stimulus	independent	decision	

making.	 Alternatively,	 if	 DMN	 regions	 respond	 to	 decisions	 made	 regarding	 objects	

rather	 than	colours,	 this	would	 reflect	a	 role	 in	 the	processing	of	 information	with	a	

high	degree	of	representational	complexity.	Finally,	if	DMN	regions	show	the	strongest	
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response	 when	 spatial	 decisions	 are	 made	 based	 on	 objects	 from	 memory,	 these	

regions	would	 support	more	 complex	 stimulus	 independent	 representational	 states.	

This	 latter	 pattern	 would	 be	 consistent	 with	 the	 hypothesis	 that	 decoupling	 from	

perceptual	input	enables	cognition	to	represent	information	that	diverges	from	what	is	

going	on	around	us	(Smallwood,	2013).	Moreover,	if	this	processing	emerges	in	regions	

located	towards	the	transmodal	end	of	the	principle	gradient,	this	would	support	the	

hypothesis	 that	 the	 “distance”	 from	 systems	 important	 for	 perceiving	 and	 acting,	

provides	 a	 cortical	 mechanism	 that	 underpins	 the	 processing	 of	 complex	

representations	 derived	 from	 memory	 (Lambon	 Ralph	 et	 al.	 2016;	 Margulies	 et	 al.	

2016).	

	

5.3.	Material	and	Methods	

	

5.3.1.	Participants	

Thirty	 right-handed	 native	 British-speaking	 participants	with	 normal	 or	 corrected-to-

normal	vision	were	recruited	from	the	University	of	York	(16	female;	mean	age	22.68,	

range	 18-34	 years).	 One	 participant’s	 data	 was	 excluded	 due	 to	 excessive	 motion	

artefacts,	 leaving	 twenty-nine	subjects	 in	 the	 final	analysis	 for	 (15	 female;	mean	age	

22.57,	 range	18-24	years).	 In	a	subsequent	analysis	we	used	a	set	of	60	participants’	

resting	state	data,	including	the	same	individuals	who	performed	the	task	(34	female;	

mean	 age	 20.32,	 range	 18-29	 years).	 Both	 studies	 were	 approved	 by	 the	 York	

Neuroimaging	 Centre	 (YNIC)	 Ethics	 Committee.	 Participant’s	 provided	 informed	

consent	prior	to	the	start	of	the	experimental	session.	

	

5.3.2.	Stimuli	

The	task	paradigm	had	four	conditions:	(A)	Object	0-back,	(B)	Object	1-back,	(C)	Colour	

0-back	and	(D)	Colour	1-back	using	a	block	design.	In	all	conditions,	pairs	of	items	were	

presented	 separated	by	a	 central	 line.	 In	 the	colour	 conditions,	 these	were	different	

coloured	squares,	while	 in	the	object	conditions,	 these	were	familiar	and	meaningful	

objects,	 taken	 from	 the	 same	 semantic	 category	 (i.e.,	 different	 types	 of	 cars,	 fruit,	

dogs;	 see	 Figure	 5.1).	 Items	 were	 presented	 once	 with	 no	 repetition.	 The	 contrast	
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between	 object	 and	 colour	 conditions	 allowed	 us	 to	 investigate	 regions	 that	 are	

important	for	the	retrieval	of	conceptual	 information.	The	colour	patches	only	varied	

on	 one	 feature	 (their	 colour),	 while	 the	 objects	 were	 meaningful	 multi-featural	

concepts.	 In	 addition,	 the	 contrast	 of	 0-back	 and	 1-back	 conditions	 allowed	 us	 to	

investigate	the	effect	of	stimulus-independent	processing	(1	back	>	0	back).	

	

5.3.3.	Procedure	

In	the	scanner,	participants	completed	a	total	of	four	functional	runs	(average	run	time	

8	min	32	s).	Within	each	run,	there	were	two	blocks	related	to	each	of	the	4	conditions	

(Object	 1-back;	Object	 0-back;	Colour	1-back;	Colour	0-back).	 Each	block	began	with	

written	 instructions	 stating	 the	 task	 type	 (0-back	 or	 1-back).	 Blocks	 consisted	 of	

observing	pairs	of	items	(1000	ms);	each	pair	was	separated	by	a	jittered	inter-stimulus	

interval	 (ISI;	 3000-5000	 ms)	 in	 which	 a	 fixation	 cross	 was	 presented.	 At	 random	

intervals	 (4-8	 trials),	 a	 third	 item	 was	 presented	 in	 the	 centre	 of	 the	 screen	 and	

participants	were	asked	to	 indicate	the	 location	of	one	of	 the	pair	 (left	or	right)	 that	

was	 most	 similar	 to	 this	 probe	 (see	 Figure	 5.1).	 This	 paradigm	 also	 required	

participants	 to	 match	 items	 that	 were	 present	 and	 compared	 this	 with	 items	 in	

memory.	 In	 the	0-back	 catch-trials	participants	had	 to	decide	which	 stimulus	 (left	or	

right	of	 the	screen)	was	most	similar	 to	 this	centrally-presented	probe	 (i.e.,	all	 items	

were	 present	 on	 the	 screen).	 In	 the	 1-back	 catch-trials,	 participants	 had	 to	 decide	

which	 stimulus	 (left	 or	 right	 of	 the	 screen)	 had	 been	most	 similar	 to	 this	 centrally-

presented	 probe	 on	 the	 previous	 trial	 (i.e.,	 the	 critical	 stimulus	 was	 absent).	 Blocks	

consisted	of	5	probes	in	total	and	lasted	on	average	64	s.	

	

5.3.4.	MRI	Acquisition	

Data	for	both	experiments	were	acquired	using	a	GE	3	T	HD	Excite	MRI	scanner	at	the	

YNIC.	 A	Magnex	 head-dedicated	 gradient	 insert	 coil	 was	 used	 in	 conjunction	with	 a	

birdcage,	 radio-frequency	 insert	 coil	 tuned	 to	 127.4	 MHz.	 A	 gradient-echo	 EPI	

sequence	 was	 used	 to	 collect	 data	 from	 38	 bottom-up	 axial	 slices	 aligned	 with	 the	

temporal	 lobe	 (TR	 =	 2s,	 TE	 =	 18ms,	 FOV	 =	 192x192mm,	 matrix	 size	 =	 64x64,	 slice	

thickness	 =	 3mm,	 slice-gap	 =	 1mm,	 flip-angle	 =	 90°).	 Voxel	 size	 was	 3x3x3mm.	
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Functional	images	were	co-registered	onto	a	T1-weighted	anatomical	image	from	each	

participant	(TR	=	7.8s,	TE	=	3ms,	FOV	=	290x290mm,	matrix	size	=	256x256mm,	voxel	

size	=	1.13x1.13x1mm)	using	linear	registration.	

	

5.3.5.	Pre-processing	

All	imaging	data	were	pre-processed	using	a	standard	pipeline	and	analysed	via	FMRIB	

Software	Library	(FSL	Version	6.0).	Images	were	skull-stripped	using	a	brain	extraction	

tool	 [BET,	 (Smith,	2002)].	 The	 first	 five	volumes	 (10s)	of	each	 scan	were	 removed	 to	

minimize	 the	effects	of	magnetic	 saturation,	 and	 slice-timing	 correction	with	 Fourier	

space	time-series	phase-shifting	was	applied.	Motion	correction	(MCFLIRT,	(Jenkinson,	

Bannister,	Brady,	&	Smith,	2002))	was	followed	by	temporal	high-pass	filtering	(cut-off	

=	 0.01Hz).	 Individual	 participant	 data	 was	 registered	 to	 their	 high-resolution	 T1-

anatomical	 image,	 and	 then	 into	 a	 standard	 spare	 (Montreal	Neurological	 Institute);	

this	process	included	tri-linear	interpolation	of	voxel	sizes	to	2x2x2	mm.	

The	resting	state	functional	data	used	were	pre-processed	and	analysed	using	

the	FMRI	Expert	Analysis	Tool	(FEAT).	The	individual	subject	analysis	involved:	motion	

correction	 using	 MCFLIRT;	 slice-timing	 correction	 using	 Fourier	 space	 time-series	

phase-shifting;	spatial	smoothing	using	a	Gaussian	kernel	of	FWHM	6mm;	grand-mean	

intensity	normalisation	of	the	entire	4D	dataset	by	a	single	multiplicative	factor;	high-

pass	 temporal	 filtering	 (Gaussian-weighted	 least-squares	 straight	 line	 fitting,	 with	

sigma	=	100	s);	Gaussian	low-pass	temporal	filtering,	with	sigma	=	2.8s	

	

5.3.6.	Task-based	fMRI	

For	 our	 task-based	 analysis,	 the	 time	points	 of	 interest	were	 the	 probe	 trials	where	

participants	 had	 to	make	 a	 decision	 about	 something	 present	 (0-back)	 or	 absent	 (1-

back)	from	the	screen.	We	therefore	used	a	box-car	regressor	to	model	the	probe	trial	

for	 each	 condition	 and	 another	 one	 to	model	 the	 entire	 block.	Modelling	 the	 entire	

block	 ensured	 any	 effect	 detected	 from	our	 analysis	 can	 be	 attributed	 to	 the	 probe	

itself	and	not	the	general	effect	of	the	block.	Box-car	regressors	for	each	probe/block,	

for	each	condition,	for	each	run,	were	convolved	with	a	double	gamma	hemodynamic	

response	 function.	 Regressors	 of	 no	 interest	 were	 included	 to	 account	 for	 head	
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motion.	 We	 computed	 four	 contrasts:	 (1)	 0-back	 >	 1-back,	 (2)	 1-back	 >	 0-back,	 (3)	

Object	 >	 Colour	 and	 (4)	 Colour	 >	 Object.	 A	 fixed	 effect	 design	 (FLAME,	

http://www.fmrib.ox.ac.uk/fsl)	was	 conducted	 to	 average	 the	 four	 runs,	within	 each	

individual.	 Individual	 participant	 data	 were	 then	 entered	 into	 a	 higher-level	 group	

analysis	 using	 a	mixed	 effects	 design	 (FLAME,	 http://www.fmrib.ox.ac.uk/fsl)	 whole-

brain	 analysis.	 Finally,	 our	 analysis	 focused	on	 a	 conjunction	 of	 1-back	 >	 0-back	 and	

Object	>	Colour	to	 identify	regions	engaged	 in	both	stimulus	 independent	processing	

and	conceptually	abstract	representations.	

	

5.3.7.	Resting-state	fMRI	

We	extracted	 the	 time	series	 from	regions	 identified	by	univariate	analysis	and	used	

these	as	explanatory	variables	in	a	connectivity	analyses	at	the	single	subject	level.	In	

each	analysis,	we	entered	11	nuisance	 regressors;	 the	 top	 five	principal	 components	

extracted	from	white	matter	(WM)	and	cerebrospinal	 fluid	(CSF)	masks	based	on	the	

CompCor	method	 (Behzadi,	 Restom,	 Liau,	&	 Liu,	 2007),	 six	 head	motion	 parameters	

and	 spatial	 smoothing	 (Gaussian)	was	 applied	at	 6mm	 (FWHM).	WM	and	CSF	masks	

were	generated	from	each	individual's	structural	image	(Zhang,	Brady,	&	Smith,	2001).	

No	 global	 signal	 regression	 was	 performed,	 following	 the	 method	 implemented	 in	

Murphy,	Birn,	Handwerker,	Jones,	&	Bandettini	(2009).	

All	whole	brain	analyses	were	cluster	corrected	using	a	z-statistic	threshold	of	

3.1	 to	 define	 contiguous	 clusters.	 Multiple	 comparisons	 were	 controlled	 using	

Gaussian	 Random	 Field	 Theory	 at	 a	 threshold	 of	 p	 <	 .05	 [34].	 All	 statistical	 maps	

produced	 in	 these	 analyses	 are	 freely	 available	 at	 Neurosynth	 at	 the	 following	URL:	

http://neurovault.org/collections/2296/.	

	

5.4.	Results	

Table	 5.1	 presents	 behavioural	 performance,	 in	 the	 form	 of	 response	 efficiency	

(RT/ACC),	for	each	of	the	four	conditions	of	our	task.	Response	efficiency	controls	for	

speed-accuracy	 trade-offs.	 These	 data	were	 compared	 using	 a	 2	 (task;	 0-back	 vs.	 1-

back)	 by	 2	 (condition;	 object	 vs.	 colour)	 repeated-measures	 analysis	 of	 variance	

(ANOVA).	There	was	no	significant	differences	between	stimulus	type	(F(1,28)	=	2.55,	p	
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=	.116)	but	a	significant	main	effect	of	task	(F(1,28)	=	15.38,		p	<	.001).	There	was	no	

significant	interaction	(p	>	.05).	These	analyses	demonstrate	that	performance	on	the	

1-back	 task	 was	 less	 efficient	 than	 for	 the	 0-back	 task	 but	 that	 object	 and	 colour	

conditions	were	well	matched	in	terms	of	overall	task	difficulty.	

	

Table	5.1.	Behavioural	results.	

Condition	 Response	Efficiency	

Mean	 SE	

Colour	1-back	 1028	 206	

Colour	0-back	 829	 287	

Object	1-back	 1041	 229	

Object	0-back	 841	 295	

Footnote:	 SE	=	 standard	error.	Response	efficiency	=	 reaction	 time	 in	milliseconds	 /	percent	

accuracy.		

	

We	next	generated	statistical	maps	describing	patterns	of	neural	activity	at	the	

moments	 when	 participants	 responded	 in	 each	 of	 our	 four	 conditions.	 These	 maps	

were	 compared	 at	 the	 group	 level	 using	 a	 GLM.	 The	 contrast	 of	 0-back	 >	 1-back	

decisions	captures	perceptually-guided	decision-making,	revealing	increased	activity	in	

the	 bilateral	 ventral	 visual	 stream,	 from	occipital	 pole	 through	 to	 posterior	 fusiform	

cortex	(presented	in	cool	colours	in	the	upper	panel	of	Figure	5.2).	These	regions	have	

a	well-documented	 role	 in	 online	 visual	 processing.	 The	 contrast	 of	 1-back	 >	 0-back	

reflects	stimulus	 independence	 in	decision-making.	This	comparison	revealed	greater	

activation	 in	 bilateral	 angular	 gyrus	 and	 anterior	 temporal	 lobes,	 as	 well	 as	 medial	

structures	 in	 the	 posterior	 cingulate	 cortex	 and	medial	 prefrontal	 cortex	 (these	 are	

presented	 in	warm	colours	 in	the	middle	panel	of	Figure	5.2).	Many	of	these	regions	

fall	within	 the	DMN	 (58.44%	 of	 voxels	 fell	within	 the	DMN	 as	 defined	 by	 Yeo	 et	 al.	

2011)	and	are	spatially	similar	to	the	‘general	recollection	network’	proposed	by	Rugg	

and	 Vilburg	 (2013).	 The	 comparison	 of	 Objects	 >	 Colours	 identifies	 brain	 areas	 that	

support	 the	 processing	 of	 multi-featural	 conceptual	 representations.	 These	 are	
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presented	 in	warm	colours	 in	 the	 lower	panel	 in	Figure	5.2.	This	 contrast	 revealed	a	

similar	set	of	regions	to	the	stimulus	independence	contrast	(medial	pre	frontal	cortex,	

left	and	right	angular	gyrus	and	anterior	temporal	lobe)	with	the	addition	of	the	right	

dorsolateral	 cortex	 (52.49	%	 of	 voxels	 fell	 within	 the	 DMN	 as	 defined	 by	 Yeo	 et	 al.	

2011).	The	contrast	of	Colours	>	Objects	yielded	no	significant	whole-brain	corrected	

results.	To	allow	comparison	with	previous	research,	the	spatial	maps	for	the	contrast	

of	1-back	>	0-back	from	Konishi	and	colleagues	are	also	displayed:	similarities	can	be	

seen	 in	 posterior	 cingulate	 cortex,	medial	 prefrontal	 cortex,	 right	 angular	 gyrus	 and	

dorsolateral	cortex.	

		

	
	

Figure	 5.2.	 Neural	 activity	 produced	 when	 making	 decisions	 based	 on	 meaningful	

objects	 and	 when	 decisions	 are	 made	 from	 memory.	 (a)	 Activity	 elicited	 when	

decisions	 were	 made	 based	 using	 information	 from	 perception	 (b)	 Activity	 when	

decisions	 were	 made	 on	 the	 basis	 of	 information	 from	 memory	 and	 (c)	 when	

information	from	memory	was	more	complex.	Spatial	maps	were	cluster	corrected	at	Z	

=	3.1	FWE.	

	

Our	 next	 analysis	 formally	 identifies	 regions	 that	 show	 a	 response	 to	 both	

stimulus	independence	and	memory	complexity.	Figure	3	shows	the	results	of	a	formal	
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conjunction	of	 the	contrasts	of	Object	>	Colour	and	1-back	>	0-back,	 revealing	 three	

regions	 –	 bilateral	 angular	 gyrus	 and	 lateral	 medial	 temporal	 gyrus	 in	 the	 left	

hemisphere.	 The	 left	 hand	 panel	 of	 Figure	 5.3	 summarizes	 the	 parameter	 estimates	

from	each	of	these	regions	 in	each	condition	of	our	task.	 In	every	case	the	strongest	

response	was	when	decisions	were	made	in	the	Object	1-back	condition.	Importantly,	

although	these	regions	 fell	within	the	DMN	(88.07%	of	voxels	within	the	conjunction	

mask	 fell	 within	 the	 DMN	 as	 defined	 by	 Yeo	 et	 al.	 2011),	 their	 response	 profile	

indicated	greater	responding	during	a	demanding	condition	(i.e.	Object	1-back)	ruling	

out	a	task-negative	interpretation	of	these	results.		

		

		
Figure	 5.3.	 Locating	 peak	 activity	 during	 stimulus	 independent	 decisions	 regarding	

complex	objects.	(a)	A	conjunction	of	the	neural	activity	when	making	decisions	based	

on	meaningful	categories	and	when	decisions	are	made	in	the	absence	of	perceptual	

input	 revealed	 three	 regions:	bilateral	 angular	 gyrus	and	 in	 the	 left	middle	 temporal	

gyrus.	(b)	Percent	signal	extracted	from	these	regions	confirmed	an	additive	effect	(i.e.	

these	regions	responded	significantly	more	to	the	object	condition	when	information	

was	 not	 present	 on	 the	 screen	 compared	 to	 all	 other	 conditions).	 The	 conjunction	

analysis	 was	 based	 on	 whole-brain	 cluster	 corrected	 spatial	 maps	 from	 Figure	 5.2.	

Error	bars	indicated	95%	confidence	intervals.			
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We	also	explored	 the	 intrinsic	architecture	of	 conjunction	 regions	 responding	

to	Object	>	Colour	and	1-back	>	0-back	in	an	independent	resting-state	data	set.	The	

results	of	this	analysis	are	presented	in	Figure	5.4	and	reveal	coupling	beyond	the	seed	

regions	 to	 the	 posterior	 cingulate	 cortex,	 dorsolateral	 prefrontal	 cortex	 and	 pre-

supplementary	motor	area	bilaterally.	Some	of	these	regions	fall	outside	the	DMN,	as	

defined	by	Yeo	and	colleagues,	and	instead	are	members	of	the	frontoparietal	network	

linked	with	cognitive	control	(Yeo	et	al.	2011).	

	

	
		

Figure	5.4.	Peak	areas	during	stimulus	independent	decision	regarding	complex	stimuli	

involve	 both	 regions	 of	 the	 default	 mode	 network	 (DMN)	 and	 the	 fronto-parietal	

network	(FPN).		These	regions	show	functional	connectivity	at	rest	with	both	the	pre-

supplementary	 cortex	 and	 the	 dorsolateral	 pre-frontal	 cortex.	 Although	 the	 regions	

identified	 in	 our	 conjunction	 analysis	 fall	 within	 the	 DMN	 they	 show	 functional	

communication	 with	 regions	 in	 the	 FPN,	 including	 the	 right	 dorsolateral	 prefrontal	

cortex.	The	spatial	networks	in	the	grey	panel	are	from	the	decomposition	of	Yeo	and	

colleagues.	 The	 conjunction	 analysis	 was	 based	 on	 whole-brain	 cluster	 corrected	

spatial	maps	from	Figure	5.1.	For	the	connectivity	analyses	spatial	maps	were	cluster	

corrected	at	Z	=	3.1	FWE.	

	

We	 also	 conducted	 a	 supplementary	 analysis	 contrasting	 Object	 and	 Colour	

decisions	separately	in	the	1-back	and	0-back	conditions	to	confirm	regions	important	
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for	 stimulus-independent	 decisions	 (see	 Supplementary	 Figure	 A.1.1).	 This	 analysis	

showed	 that	 1-back	 trials	 involving	 meaningful	 objects	 activated	 regions	 including	

angular	 gyrus,	middle	 temporal	 gyrus	 and	 right	 dorsolateral	 prefrontal	 regions	more	

than	colours.	In	contrast,	the	comparison	of	Objects	>	Colours	in	the	0-back	condition	

only	revealed	greater	activity	in	fusiform	cortex.	

Together	 these	 analyses	 highlight	 a	 network	 of	 regions	 that	 are	 important	

when	spatial	decisions	are	made	in	the	absence	of	external	sensory	support,	and	when	

they	 involve	multi-feature	 concepts	 (Figure	5.5).	 Common	 regions	 responding	 to	 the	

two	task	contrasts	(1-back	>	0-back;	Object	>	Colour)	include	angular	gyrus	and	middle	

temporal	gyrus.	In	the	right	hemisphere,	two	of	the	three	maps	also	include	the	right	

dorsolateral	cortex.	All	of	these	right	hemisphere	regions	responded	to	a	similar	1-back	

>	 0-back	 contrast	 involving	 abstract	 shapes	 (circle,	 triangle,	 square)	 in	 the	 study	 by	

Konishi	and	colleagues	(2015).		

	

	

		

Figure	5.5.	Regions	linked	to	during	stimulus	independent	decisions	regarding	complex	

stimuli	form	localized	clusters	in	transmodal	cortex.	Regions	in	the	main	panel	reflect	

data	generated	in	this	experiment.	The	grey	sub	panel	presents	the	spatial	distribution	

of	the	principle	gradient	from	Margulies	and	colleagues	(2016)	coloured	blue-red,	and	

the	cluster	corrected	map	from	Konishi	and	colleagues	(2015)	coloured	green.	
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In	Figure	5.5,	we	summarise	the	spatial	maps	produced	by	this	experiment	and	

present	these	alongside	the	principal	gradient	 from	Margulies	and	colleagues	(2016),	

which	 describes	 a	 functional	 spectrum	 of	 intrinsic	 connectivity	 across	 the	 cortical	

surface,	extending	 from	primary	sensorimotor	systems	to	 regions	of	 the	DMN	at	 the	

other	 extreme.	 More	 similar	 colours	 on	 this	 gradient	 reflect	 greater	 similarity	 in	

connectivity.	It	can	be	seen	that	common	regions	implicated	in	stimulus-independent	

and	 conceptual	 processing	 are	 all	 localized	 towards	 the	 transmodal	 end	 of	 the	

principal	gradient.	

	

Our	 final	 analysis	 characterizes	 the	 similarity	 between	 the	 neural	 patterns	

captured	 by	 our	 task	 and	 the	 spatial	 distribution	 of	 the	 principle	 gradient	 from	

Margulies	et	al.	(2016)	in	a	more	formal	manner.	Following	Margulies	et	al.	we	divided	

the	 principle	 gradient	 into	 20	 equally	 sized	 bins.	 Next	 for	 each	 participant	 we	

calculated	the	average	signal	in	each	bin	for	each	condition	of	our	task.	The	left	hand	

panel	in	Figure	5.6	presents	these	data	plotted	across	the	principle	gradient	separately	

for	each	condition;	the	shaded	bars	represent	the	95%	confidence	intervals.	It	can	be	

see	that	the	conditions	are	most	distinct	towards	the	transmodal	end,	with	the	highest	

values	when	 participants	made	 judgments	 about	 objects	 from	memory.	 To	 quantify	

these	 patterns,	we	 compared	 their	 distribution	 using	 a	 2	 (stimulus	 independence)	 X	

(stimulus	 complexity)	 X	 20	 (Gradient	 Bin)	 ANOVA.	 This	 revealed	 a	 significant	 3-way	

interaction	[F	(19,	532)	=	5.136,	p	<	.001].	To	follow	up	this	interaction,	we	performed	

a	 principle	 components	 analysis	 (PCA)	 on	 the	 condition	 level	 data,	 describing	 the	

dynamics	 captured	 in	 the	 left	 hand	 panel	 of	 Figure	 5.6.	 The	 results	 revealed	 two	

components	with	eigenvalues	greater	than	1	accounting	for	over	86%	of	the	variance	

(component	 1	 =	 70.49%;	 component	 2	 =	 15.73%)	 across	 the	 principal	 gradient	 bins.	

The	 first	 two	 components	 are	 presented	 in	 the	 right	 hand	 panel	 of	 Figure	 5.6.	 The	

second	 component	 describes	 a	 gradual	 transition	 showing	 increasing	 levels	 of	 BOLD	

activity	from	the	unimodal	end	of	the	gradient	towards	the	transmodal	end.	Projecting	

the	values	from	component	2	back	onto	the	task	conditions,	and	averaging	them	at	the	

group-level,	 revealed	 that	 this	 pattern	 of	 variance	 loaded	 almost	 exclusively	 on	 the	

‘object’	1-back	condition.	There	was	a	significant	positive	fit	between	the	spatial	map	
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of	 the	 principle	 gradient	 and	 recruitment	 in	 the	 Object	 1-Back	 task,	 but	 not	 other	

conditions.	

	

	 	
Figure	 5.6.	 Stimulus	 independent	 decisions	 regarding	 meaningful	 objects	 leads	 to	 a	

whole-brain	shift	towards	the	transmodal-end	of	the	gradient.	(a)	A	regions-of-interest	

analysis	using	bins	of	the	principal	gradient	revealed	that	the	decisions	that	are	made	

on	objects	rather	than	colours	when	these	stimuli	are	not	available	to	perception	led	

to	 higher	 activity	 towards	 the	 transmodal-end	 of	 the	 principal	 gradient.	 	 (b)	

Decomposition	using	PCA	revealed	that	this	difference	was	related	to	a	gradual	shift	in	

the	 locus	 of	 neural	 activity	 away	 from	 regions	 on	 the	 principal	 gradient	 related	 to	

perception	and	action	and	towards	transmodal	regions	of	cortex.	Error	bars	indicated	

95%	confidence	interval.	

	

5.5.	Discussion	

Our	experiment	contrasted	judgments	when	stimuli	to	be	decided	upon	were	present	

in	 the	 current	 trial	 (stimulus-dependent	 0-back	 decisions)	 with	 identical	 decisions	

where	 the	 information	 was	 from	 the	 previous	 trial	 (stimulus-independent	 1-back	

decisions,	 see	 Figure	 5.1).	 We	 also	 varied	 whether	 decisions	 were	 made	 on	 uni-

dimensional	 stimuli	 (colour	 patches)	 or	 more	 complex	 multi-dimensional	 stimuli	

(objects	 in	 conceptual	 categories).	 In	 each	 task,	 the	 items	 to	 be	matched	were	 not	

perceptually	 identical:	 participants	 selected	 the	 closest	 hue	 or	 the	 closest	 concept	

from	 similar	 distractors.	 This	 allowed	 us	 to	 identify	 regions	 that	 capture	 cognitive	
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processes	 important	 for	 representing	 (i)	 information	 that	 is	decoupled	 from	stimulus	

input,	(ii)	representations	that	are	complex	and	multi-dimensional	in	nature	and	(iii)	a	

combination	of	both.	

Using	 conventional	whole	brain	 analyses	we	 identified	overlapping	 regions	 in	

the	 DMN	 that	 are	 sensitive	 to	 both	 perceptual	 decoupling	 (i.e.,	 the	 requirement	 to	

make	 decisions	 based	 on	memory,	 as	 opposed	 to	 the	 immediate	 environment)	 and	

when	 these	 decisions	 regarded	more	 complex	 conceptual	 categories	 of	 stimuli	 (i.e.,	

decisions	 based	 on	 objects	 rather	 than	 colours).	 We	 also	 used	 a	 novel	 analytic	

approach	to	demonstrate	that	these	isolated	clusters	of	activity	can	be	seen	as	part	of	

a	 whole	 brain	 shift	 in	 the	 locus	 of	 neural	 activity	 towards	 the	 extreme	 end	 of	 a	

gradient	from	unimodal	to	heteromodal	cortex	(Margulies	et	al.	2016).	These	findings	

have	broad	 implications	 for	 the	role	of	DMN	in	cognition,	and	also	contribute	to	our	

understanding	of	specific	DMN	regions,	particularly	angular	gyrus	and	lateral	temporal	

lobe.	We	first	consider	the	results	in	terms	of	their	implications	for	functional	accounts	

of	 these	 regions.	 Secondly,	 we	 consider	 the	 macroscale	 organisation	 of	 the	 cortex,	

focusing	on	approaches	which	can	explain	the	functional	similarity	of	these	distributed	

clusters	and	their	relative	position	on	the	cortical	surface.	

Functional	 implications	for	the	angular	gyri:	There	were	stronger	responses	 in	

left	and	right	angular	gyri,	as	well	as	 in	 left	middle	temporal	gyrus,	when	conceptual	

decisions	were	based	on	information	that	was	no	longer	present	in	the	environment.	

These	 findings	 are	 inconsistent	with	 several	 existing	 accounts	 of	 the	 contribution	 of	

angular	gyrus	 to	memory	and	semantic	cognition.	First,	 they	do	not	easily	align	with	

the	 proposal	 that	 specific	 aspects	 of	 meaning	 are	 represented	 in	 angular	 gyrus	 –	

namely	thematic	associations,	but	not	item	identity	(Davey	et	al.	2015;	Schwartz	et	al.	

2011).	Our	conceptual	task	involved	matching	items	on	the	basis	of	their	identity,	yet	it	

robustly	activated	this	region.	Secondly,	the	findings	are	at	odds	with	the	proposal	that	

the	angular	 gyri	 only	 activate	during	 contrasts	of	 easier	 versus	harder	 tasks,	 and	 for	

“automatic”	 and	 not	 “controlled”	 patterns	 of	 retrieval	 (Humphreys	 et	 al.	 2015;	

Humphreys	&	Lambon	Ralph,	2017).	The	1-back	condition	was	harder	than	the	0-back	

condition	and	still	elicited	a	greater	response.	

Instead,	 our	 findings	 are	 consistent	 with	 suggestions	 that	 the	 role	 of	 the	

angular	 gyri	 role	 is	 to	 allocate	 attention	 to	 complex	 memory	 representations.	 The	
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angular	 gyri	 show	 a	 stronger	 response	 to	 a	 range	 of	memory	 retrieval	 situations	 in	

which	 the	 retrieved	 representations	 are	 detailed,	 specific	 or	 precise	 (Binder	 et	 al.	

2005;	Price,	et	al.	2015;	Bonnici	et	al.	2016;	Davey	at	al.	2015).	In	our	study,	the	1-back	

trials	required	attention	to	switch	from	an	encoding	mode,	to	a	retrieval	mode	when	

task	 relevant	 information	 is	 represented	 internally.	This	pattern	of	 responding	 in	 the	

angular	 gyrus	 is	 consistent	 with	 the	 purported	 role	 of	 inferior	 parietal	 cortex	 in	

focusing	attention	on	memory	(Cabeza	et	al.	2011).	 In	our	study,	the	angular	gyri	did	

not	activate	to	the	same	extent	when	stimuli	were	matched	on	colour,	suggesting	this	

region	 is	 especially	 important	 when	 heteromodal	 representations	 from	 long-term	

memory	are	retrieved.		

Functional	 implications	 for	 temporal	 cortex:	 Angular	 gyrus	 shows	 strong	

intrinsic	connectivity	with	ventral	anterior	temporal	cortex	(Davey	et	al.	2016;	Jackson	

et	 al.	 2016),	 which	 is	 proposed	 to	 support	 the	 integration	 of	 multiple	 features	 and	

modalities	 to	 capture	 ‘deep’	 conceptual	 similarities	 between	 items	 with	 diverse	

‘surface’	features	(e.g.,	items	such	as	PINEAPPLE	and	KIWI	that	have	different	colours,	

sizes,	 shapes,	phonology	etc.;	 for	a	 review	see	Lambon	 (Ralph	et	al.	2017).	Semantic	

dementia	 patients	 with	 atrophy	 focussed	 on	 this	 region	 show	 highly	 consistent	

degradation	 of	 conceptual	 knowledge	 across	 tasks	 (Bozeat	 et	 al.	 2000;	 Jefferies	 &	

Lambon	Ralph,	2006),	while	neuroimaging	studies	of	healthy	participants	 localise	the	

response	during	heteromodal	conceptual	processing	to	ventral	anterior	temporal	lobes	

and	 anterior	 middle	 temporal	 gyrus	 (Murphy	 et	 al.	 2017;	 Visser	 et	 al.	 2011).	Word	

meaning	 can	 be	 decoded	 within	 anterior	 middle	 and	 inferior	 temporal	 gyri,	 while	

patterns	 of	 activation	 in	 superior	 temporal	 gyrus	 instead	 reflect	 the	 presentation	

format	(Murphy	et	al.	2017).			

The	 ventrolateral	 anterior	 temporal	 lobes	 are	 thought	 to	 provide	 a	 “graded	

hub”	 in	 which	 different	 unimodal	 features	 are	 gradually	 integrated	 to	 form	

heteromodal	concepts,	with	visual	 information	reaching	this	 region	along	the	ventral	

visual	 pathway	 (fusiform	 cortex),	 auditory	 and	 motor	 information	 arriving	 from	

superior	temporal	gyrus	and	frontal	cortex,	and	social/emotional	information	merging	

from	the	temporal	pole	(Lambon	Ralph	et	al.	2017).	Nevertheless,	the	peak	response	in	

the	anterior	temporal	lobes	in	the	current	study	was	in	lateral	MTG,	and	not	in	the	site	

of	 the	 putative	 hub	 in	 ventrolateral	 anterior	 temporal	 cortex	 (Murphy	 et	 al.	 2017).	
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Visser	et	al.	 (2012)	observed	evidence	compatible	with	 two	gradients	of	 information	

convergence	in	the	temporal	lobes:	first,	there	is	a	posterior-to-anterior	axis:	posterior	

temporal	 lobe	 regions	 proximal	 to	 visual	 and	 auditory	 cortex	 show	 largely	 unimodal	

responses,	 while	 more	 anterior	 regions	 integrate	 across	 these	 types	 of	 input	 to	

support	heteromodal	conceptual	processing.	Secondly,	there	may	be	integration	from	

superior	and	inferior	regions,	implicated	in	auditory	and	visual	processing	respectively:	

towards	middle	 temporal	gyrus	 response	become	more	heteromodal	 response	along	

the	length	of	the	temporal	cortex.	The	site	we	observed	in	the	conjunction	of	semantic	

and	perceptually-decoupled	decisions	in	the	current	study	corresponds	to	the	extreme	

heteromodal	end	of	both	of	these	temporal	lobe	gradients.	

Implications	for	the	default	mode	network:	We	replicated	prior	demonstrations	

that	 transmodal	 regions	 in	 the	DMN	 are	 engaged	when	 participants	make	 decisions	

that	rely	on	information	from	memory	rather	than	input	from	perception,	even	though	

the	 1-back	 task	 was	 more	 difficult	 than	 the	 0-back	 task	 (Konishi	 et	 al.	 2015).	 This	

pattern	of	task-positive	behaviour	adds	to	a	growing	body	of	evidence	that	the	DMN	

contributes	 in	an	active	manner	to	demanding	external	cognitive	tasks	(Konishi	et	al.	

2015;	Krieger-Redwood	et	al.	2016;	Spreng	et	al.	2014;	Spreng	et	al.	2015;	Spreng	et	al.	

2010;	Vatansever	et	al.	2015).	The	contribution	of	DMN	to	controlled	cognitive	states	

appears	 to	 reflect	 situations	 in	 which	 DMN	 regions	 work	 in	 tandem	 with	 the	

frontoparietal	network.	Prior	work	has	established	the	combination	of	these	networks	

is	 important	 for	 tasks	 including	controlled	semantic	 retrieval	 (Krieger-Redwood	et	al.	

2016),	working	memory	(Vatansever	et	al.	2015),	autobiographical	planning	(Spreng	et	

al.	2014;	Spreng	et	al.	2015),	retrieving	memories	of	close	personal	friends	(de	Caso	et	

al.	2017)	and	the	control	of	spontaneous	thoughts	in	a	deliberate	manner	(Golchert	et	

al.	 2017).	 Our	 study	 shows	 that	 right	 angular	 gyrus,	 within	 the	 DMN,	 and	 right	

dorsolateral	 prefrontal	 cortex,	 a	 member	 of	 the	 frontoparietal	 network,	 activate	

together	when	participants	make	 judgments	about	meaningful	objects	 from	memory	

rather	 than	 colours	 (see	 Supplementary	 Figure	 A.1.1).	 Our	 functional	 connectivity	

analysis	also	demonstrates	 that	 these	 regions	are	 correlated	at	 rest,	 suggesting	 they	

form	 an	 intrinsic	 network.	 The	 right	 dorsolateral	 cluster	 replicates	 the	 spatial	

distribution	observed	 from	the	prior	 study	by	Konishi	et	al.	 (Konishi	et	al.	2015)	and	

overlaps	with	a	region	of	greater	grey	matter	associated	with	more	deliberate	mind-
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wandering	 (Golchert	 et	 al.	 2017).	 Both	 1-back	 retrieval	 in	 our	 paradigm,	 and	 more	

deliberate	 spontaneous	 thought,	 require	 memory	 retrieval	 to	 be	 shaped	 in	 a	 goal-

directed	fashion.	It	is	possible	that	a	range	of	states	requiring	the	goal-directed	control	

of	memory	depend	on	co-operation	between	these	two	large-scale	networks.	

At	the	most	general	 level	our	study	supports	the	hypothesis	that	the	capacity	

for	 complex	 memory	 representations	 to	 influence	 cognition	 emerges	 from	 the	

topographical	 arrangement	 of	 neural	 processes	 across	 the	 cortex.	 Prior	 work	

highlighted	regions	of	transmodal	cortex,	such	as	the	default	mode	network,	as	having	

the	 greatest	 distance	 from	 uni-modal	 sensorimotor	 cortex	 in	 both	 functional	 and	

structural	 space	 (Margulies	 et	 al.	 2016).	 Our	 finding	 builds	 on	 this	 observation	 by	

showing	 an	 association	 between	 ongoing	 neural	 activity	 and	 this	 dimension	 of	

connectivity	 under	 situations	 when	 the	 demands	 placed	 on	 cognition	 require	 a	

combination	of	memory	complexity	and	stimulus	 independency.	Using	both	standard	

and	novel	methods	 of	 analysis,	we	demonstrated	 that	 the	 neural	 activity	 associated	

with	 this	 type	 of	 activity	 is	 prevalent	 in	 transmodal	 regions	 (Figure	 5.5)	 and	 can	 be	

represented	 as	 a	 whole	 brain	 shift	 in	 the	 balance	 of	 neural	 activity,	 away	 from	

sensorimotor	regions	cortex	and	towards	the	transmodal	end	of	 the	gradient	 (Figure	

5.6).	This	topographical	shift	in	the	distribution	of	neural	processing	is	consistent	with	

theoretical	accounts	 that	assume	that	more	abstract	cortical	 functions	are	 facilitated	

through	functional	isolation	from	incoming	input	(Buckner	&	Krienen,	2013;	Margulies	

et	al.	2016;	Mesulam,	1998;	Smallwood,	2013).	Consistent	with	this	 interpretation	of	

DMN	 function,	 a	 recent	 study	 found	 that	 strong	 connectivity	 within	 the	 DMN	

(including	 an	 overlapping	 region	 of	 left	 temporal	 cortex)	 was	 linked	 to	 poor	

performance	on	 tasks	which	depend	on	encoding	 information	 from	the	environment	

but	not	for	those	that	depended	on		retrieving	information	from	memory	(Poerio	et	al.	

2017).	 The	 findings	 of	 Poerio	 and	 colleagues,	 in	 combination	 with	 those	 from	 the	

current	 study,	provide	converging	evidence	 that	 regions	of	 the	DMN	support	a	 state	

where	 cognition	 is	 guided	 by	memory	 rather	 than	 input,	 regardless	 of	whether	 it	 is	

beneficial	to	the	task	or	not.	

There	 are	 a	 number	 of	 limitations	 that	 should	 be	 borne	 in	 mind	 when	

considering	 the	 results	 of	 this	 study.	 First,	 our	 comparison	 of	 semantic	 and	 colour	

decisions	 allowed	 us	 to	 demonstrate	 a	 neural	 pattern	 associating	 conceptual	
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processing	with	stimulus	 independency.	This	comparison	 is	 too	crude	a	manipulation	

to	determine	which	aspects	of	the	semantic	judgements	gave	rise	to	this	response	in	

the	DMN;	for	example,	 is	 it	the	richness	of	concepts	such	as	Labrador	or	apple,	their	

heteromodal	 nature	 or	 the	 fact	 that	 they	 are	 acquired	 over	 a	 lifetime,	 which	

dissociates	 them	 from	 colours?	 Future	 studies	 could	 probe	 different	 features	 of	

retrieval,	such	as	whether	the	target	is	a	concrete	or	abstract	concept,	whether	it	has	

to	be	identified	at	a	specific	or	superordinate	level,	and	whether	there	are	differences	

according	to	the	modality	of	 the	representation	being	probed.	Second,	the	nature	of	

our	 design	 precludes	 the	 ability	 to	 separate	 different	 aspects	 of	 memory	 retrieval	

engaged	 during	 1-back	 decisions.	 In	 our	 paradigm,	 these	 decisions	 require	 both	 the	

integration	of	appropriate	 information	 from	memory,	as	well	as	 the	 inhibition	of	 the	

memory	 representation	 for	 the	 non-probed	 item.	 Interestingly,	 studies	 have	

implicated	dorsolateral	prefrontal	cortex	in	the	suppression	of	memories	(Anderson	et	

al.	2004)	whereas	the	angular	gyrus	has	been	linked	to	the	integration	of	appropriate	

semantic	features	(Wagner	et	al.	2015)	and	the	retrieval	of	specific	information	(Davey	

et	al.	2015).	It	is	possible	that	the	angular	gyrus	and	dorsolateral	prefrontal	region	are	

performing	 distinct	 roles	 in	 integration	 of	 relevant	 associations	 and	 suppression	 of	

irrelevant	information	during	retrieval	in	our	paradigm.	Future	work	could	address	this	

question	 by	 manipulating	 the	 level	 of	 featural	 overlap	 between	 target	 and	 probe	

during	retrieval	in	a	similar	paradigm	as	in	this	experiment.	
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Chapter	6	-	Thesis	Summary	and	Discussion	
	

6.1.	Summary	of	Research	Questions	

	

This	 thesis	 sought	 to	 understand	 the	 contributions	 of	 unimodal	 sensory	 and	

transmodal	cortex	to	the	retrieval	of	conceptual	knowledge.	The	empirical	work	in	this	

thesis	 employed	 paradigms	 that	 varied	 the	 extent	 to	 which	 semantic	 access	 was	

directly	 driven	 by	 sensory	 inputs	 or	 generated	 internally	 from	 memory.	 This	 is	 an	

interesting	avenue	for	investigation	since	semantic	retrieval	extends	beyond	the	here-

and-now,	 to	 draw	 on	 abstract	 knowledge	 that	 has	 been	 extracted	 across	 multiple	

experiences;	 for	 instance,	we	 can	easily	bring	 to	mind	what	 a	dog	 looks	 and	 sounds	

like,	 regardless	 of	 whether	 or	 not	 there	 is	 a	 dog	 present	 in	 our	 immediate	

environment.	 However,	 a	 clear	 understanding	 of	 the	 neural	 substrates	 that	 support	

patterns	 of	 semantic	 retrieval	 that	 are	 not	 immediately	 driven	 by	 stimuli	 in	 the	

environment	is	lacking.	For	instance,	while	previous	research	has	resulted	in	a	number	

of	 theories	 regarding	 the	broad	organisation	of	semantic	cognition	 in	 the	brain	 (e.g.,	

Barsalou	et	al.	2003;	Binder	&	Deasi,	2011;	Damasio,	2008;	Koenig	&	Grossman,	2007;	

Lambon	Ralph	et	al.	2017;	Meteyard	et	al.	2012;	Patterson	et	al.	2007;	Pulvermüller,	

2013;	Tranel,	Damasio	&	Damasio,	1997),	most	of	this	work	has	considered	processes	

such	as	word	comprehension	or	picture	 recognition;	 less	 is	known	about	patterns	of	

semantic	 retrieval	 that	 are	 perceptually-decoupled	 (i.e.,	 not	 immediately	 driven	 by	

stimuli	 in	 the	environment).	 Furthermore,	many	 theories	of	 semantic	 representation	

propose	 that	 concepts	 are	 computed	 through	 the	 interaction	 of	 sensory-motor	

features	 in	 unimodal	 cortex	 with	 abstract	 or	 transmodal	 representations	 which	

integrate	 these	 features	 (e.g.,	 Lambon	 Ralph	 et	 al.	 2017;	 Margulies	 et	 al.	 2016;	

Patterson	 et	 al.	 2007):	 however,	 the	 way	 in	 which	 these	 components	 are	 recruited	

might	differ	depending	on	whether	retrieval	is	tightly	coupled	to	the	external	world	or	

internally-focused.		

Notably,	much	of	 the	empirical	work	 in	 this	 thesis	 takes	 inspiration	from	modern	

accounts	of	transmodal	brain	regions	(e.g.,	Lambon	Ralph	et	al.	2017;	Margulies	et	al.	

2016).	These	have	helped	to	form	hypotheses	about	the	role	of	the	ATL	as	a	hub	that	
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integrates	modality-specific	information	from	the	spokes,	to	form	abstract	transmodal	

conceptual	representations.	As	well	as	the	default	mode	networks	role	in	perceptually-

decoupled	and	conceptually-guided	cognition.	Previous	literature	indicates	the	DMN	is	

optimal	 for	 the	 abstraction	of	 conceptual	 representations	 from	multiple	 experiences	

and	modalities,	and	the	generation	of	mental	content	that	 is	not	directly	mirrored	 in	

the	 external	 world.	 These	 functions	 occur	 by	 virtue	 of	 the	 distance	 from	 DMN	 to	

primary	 sensory-motor	 regions	 on	 the	 cortical	 surface	 and	 in	 intrinsic	 connectivity	

(Bullmore	&	Sporns,	2009;	Hagmann	et	al.	2008;	Margulies	et	al.	2016).	This	functional	

separation	 is	 characterised	 by	 a	 whole-brain	 principal	 gradient	 of	 connectivity,	

described	by	Margulies	and	colleagues	(2016).	Increasing	distance	from	sensory-motor	

regions	 might	 also	 allow	 the	 integration	 of	 multiple	 feature	 types,	 supporting	 the	

emergence	 of	 complex,	 high-dimensional	 representations,	 as	 envisaged	 by	

contemporary	models	 of	 semantic	 processing	 (e.g.,	 hub-and-spoke	model;	 Patterson	

et	 al.	 2007;	 the	 graded-hub	 account;	 Lambon	 Ralph	 et	 al.	 2017).	 This	 process	 of	

integration	 might	 be	 detectable	 as	 “echoes	 of	 integration”	 in	 connectivity	

decompositions	(Braga	et	al.	2013;	Leech	et	al.	2012).	These	explanatory	frameworks	

are	used	throughout	the	thesis.	

The	 thesis	 employed	 a	 combination	 of	 task-based	 fMRI	 and	 machine	 learning	

approaches	 plus	 analyses	 of	 intrinsic	 connectivity	 to	 investigate	 the	 retrieval	 of	

conceptual	knowledge.	MVPA	is	used	to	localise	functions	of	unimodal	and	transmodal	

brain	regions;	this	permits	the	exploration	of	regions	that	can	classify	different	aspects	

of	knowledge.	Univariate	analysis	 is	employed	to	 identify	the	circumstances	 in	which	

semantic	regions,	including	those	in	the	DMN,	show	activation	and	deactivation,	while	

functional	 connectivity	 is	 used	 to	 express	 measures	 of	 intrinsic	 organisation.	 The	

specific	aims	of	this	thesis	were:	

• To	 explore	 the	 role	 of	 unimodal	 sensory-motor	 cortex	 in	 semantic	

representations.	 Using	 MVPA,	 chapters	 3	 and	 4	 will	 explore	 whether	 the	

patterns	 of	 activity	 in	 unimodal	 cortex	 represent	 modality	 of	 presentations	

(Spoken	 vs.	 written;	 Chapter	 3),	 modality	 of	 word	 meaning	 (loud	 vs.	 bright;	

Chapter	 3)	 and	 modality	 of	 retrieved	 memory	 (thinking	 about	 what	 a	 dog	

sounds	like	vs.	what	it	looks	like;	Chapter	4).		
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• To	 localise	 where	 within	 the	 ATL	 abstract	 heteromodal	 semantic	

representations	 are	 supported.	 Using	 a	 searchlight	 MVPA,	 Chapter	 3	

investigates	where,	within	the	ATLs,	patterns	of	activity	for	a	concept	activated	

through	the	visual	domain	map	on	to	the	same	concept	activated	through	the	

auditory	domain.	This	cross-classification	will	permit	the	localisation	of	a	‘hub’	

region	 that	 captures	 abstract	meaning	 irrespective	 of	 presentation	modality.	

Moreover,	 analysis	 of	 the	 intrinsic	 connectivity	 of	 this	 region	 will	 provide	

evidence	of	whether	this	region	is	embedded	within	a	network	that	facilitates	

abstract	transmodal	processing	(e.g.,	default	mode	network).		

• To	 investigate	 perceptually-decoupled	 semantic	 retrieval	 states	 such	 as	

imagination	(Chapter	4)	and	judgements	from	memory	(Chapter	5).	Chapter	4	

will	examine	perceptually-decoupled	forms	of	semantic	retrieval	and	establish	

which	brain	regions	can	decode	sensory	features	in	imagination,	in	the	absence	

of	input.	While	Chapter	5	assessed	the	conjunction	of	cognitive	processes	that	

required	 (i)	multi-featural	 abstract	 concepts	 and	 (ii)	 decoupling.	Notably,	 this	

later	 study	 combines	 the	 two	 dominant	 features	 of	 chapter	 3	 (abstract	

conceptual	representations)	and	perceptual-decoupling	(retrieval	of	knowledge	

from	 memory	 in	 the	 absence	 of	 input).	 Both	 of	 these	 experiments	 will	

interrogate	whether	unimodal	and/or	 transmodal	 regions	are	necessitated	by	

perceptually-decoupled	 semantic	 retrieval	 and	 measure	 the	 intrinsic	

connectivity	of	these	brain	regions.		

• To	 identify	 circumstances	 in	 which	 regions	 of	 the	 transmodal	 DMN	 shows	

above	baseline	activation	during	semantic	tasks.	This	is	addressed	in	Chapter	5	

by	 comparing	 semantic	 conditions	 (multi-featural	 concepts)	 with	 perceptual	

conditions		(simple	colour	patches)	in	a	univariate	fMRI	analysis.		

	

6.2.	Main	Findings	

	

6.2.1.	Chapter	3	

This	study	established	the	functional	organisation	of	both	sensory	cortex	and	ATL,	to	

modality-invariant	conceptual	retrieval.	In	an	fMRI	experiment,	participants	listened	to	
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or	 viewed	 words	 that	 referred	 to	 either	 visual	 or	 auditory	 features	 (e.g.,	 bright	 or	

loud).	Using	a	linear	classification	algorithm,	this	study	found	a	functional	dissociation	

between	superior	and	ventrolateral	ATL,	such	that	superior	portions	hold	patterns	of	

activity	 regarding	 sensory	 modality,	 and	 the	 ventrolateral	 portions	 hold	 patterns	 of	

activity	 about	 abstract	 modality-invariant	 semantic	 representations.	 Moreover,	 the	

activity	 within	 this	 ventrolateral	 region	 was	 equated	 from	 both	 spoken	 and	written	

format,	suggesting	that	ventrolateral	ATL	is	transmodal	in	nature,	as	it	does	not	show	

preference	for	spoken	or	written	 input.	An	additional	 functional	connectivity	analysis	

revealed	different	patterns	of	connectivity	within	superior	and	ventrolateral	portions	

of	the	ATL,	with	superior	ATL	showing	stronger	connectivity	to	language,	auditory	and	

motor	 regions,	 while	 ventrolateral	 ATL	 showed	 connectivity	 to	 other	 transmodal	

semantic	 regions,	such	as	angular	gyrus,	posterior	cingulate	and	hippocampus	within	

the	 default	 mode	 network	 and	 limbic	 system.	 Furthermore,	 primary	 auditory	 and	

visual	cortex	held	patterns	of	activity	for	both	the	sensory	modality	and	the	semantic	

category.	 However,	 these	 patterns	 were	 not	 overlapping	 suggesting	 that	 sensory	

experience	and	meaning	are	not	equated	in	sensory	cortex.		

These	 findings	 therefore	 reveal	 a	 region	 in	 ventrolateral	 ATL	 that	 captures	

meaning	 irrespective	 of	 presentation	 modality,	 as	 proposed	 by	 the	 graded-hub	

account	 	 (Lambon	 Ralph	 et	 al.	 2017).	 Moreover,	 the	 finding	 that	 ventrolateral	 ATL	

‘hub’,	but	not	aSTG,	is	functionally	coupled	to	the	default	mode	network	is	consistent	

with	 the	 view	 that	 the	 integration	 of	 increasingly	 abstract	 representations	 are	

facilitated	by	regions	at	the	farthest	end	of	the	gradient	(Margulies	et	al.	2016)	

	

6.2.2.	Chapter	4	

Having	found	that	presentation	format	could	be	separated	from	semantic	concepts	in	

both	unimodal	 and	 transmodal	 brain	 regions	 in	 Chapter	 3,	 the	next	 study	 examined	

perceptually-decoupled	 forms	of	 semantic	 retrieval,	 to	 establish	which	 brain	 regions	

could	decode	 sensory	 features	 in	 imagination,	 in	 the	 absence	of	 input.	Notably,	 this	

design	permitted	the	investigation	of	transmodal	brain	regions,	because	this	network	

has	 been	 previously	 implicated	 in	 cognition	 that	 is	 independent	 of	 the	 immediate	

environment.	However,	only	a	handful	of	studies	directly	compare	different	 forms	of	
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memory	 retrieval	 within	 this	 network	 (e.g.,	 Daselaar	 et	 al.	 2010).	 Using	 a	 novel	

paradigm,	 where	 participants	 were	 presented	 with	 a	 constant	 source	 of	 visual	 and	

auditory	 noise,	 to	 control	 for	 sensory	 input	 across	 conditions,	 participants	 were	

prompted	 to	 generate	 imagery,	 in	 the	 mind’s	 ear	 and/or	 eye,	 relating	 to	 the	

experimental	conditions	(i.e.,	focus	on	the	sound	of	a	concept,	its	visual	features	or	a	

conceptually	complex	context).	MVPA	was	then	used	to	identify	brain	regions	that	held	

patterns	of	activity	informative	for	the	different	forms	of	imagination	while	functional	

connectivity	 was	 performed	 to	 show	 the	 intrinsic	 architecture	 within	 which	 these	

results	were	embedded.	This	combination	of	methods	permitted	the	 investigation	of	

whether	the	content	of	retrieved	memories	recruits	common	or	distinct	brain	regions.	

The	key	findings	were	that:		

a. In	 line	with	previous	 imagery	 literature,	 there	were	consistent	patterns	of	

activity	 regarding	 retrieved	memories	 in	 secondary	 sensory	 cortex	 (Albers	

et	 al.	 2013;	 Daselaar	 et	 al.	 2010;	 de	 Borst	&	 de	Gelder,	 2016;	 Halpern	&	

Zatorre,	 1999;	 Ishai	 et	 al.	 2000;	 Reddy	 et	 al.	 2010;	 Vetter	 et	 al.	 2014;	

Zvyagintsev	 et	 al.	 2013).	 Specifically,	 STG	 activated	 to	 sound	 and	 context	

imagery	and	held	patterns	of	activity	that	could	decode	between	sound	and	

other	 forms	 of	 imagery,	 whereas	 inferior	 lateral	 occipital	 cortex,	

predominantly	activated	to	visual	and	context	imagery	and	held	patterns	of	

activity	 informative	 for	 decoding	 visual	 conditions.	 These	 results	 are	

consistent	with	the	‘anterior	shift’	noted	by	Thompson-Schill	(2003),	where	

areas	activated	by	semantic	processing	are	not	isomorphic	to	those	used	in	

direct	experience	in	primary	sensory	regions,	but	rather	are	shifted	anterior	

to	those	areas.		

b. Several	 regions	 allied	 to	 or	 within	 the	 extended	 default	 mode	 network	

(including	anterior	middle	temporal	gyrus,	anterior	parahippocampal	gyrus	

and	 anterior	 cingulate	 gyrus)	 could	 decode	 between	 sound	 and	 visual	

imagery.	Although	 the	MVPA	analysis	 revealed	differences	 in	 the	patterns	

of	 activity	 within	 default	mode	 regions,	 the	 univariate	 analysis	 could	 not	

find	 any	 statistical	 differences	 between	 the	 imagery	 types.	 This	 finding	 is	

interesting	as,	although	the	default	mode	is	considered	transmodal	(and	the	

univariate	activity	 is	comparable	across	all	 forms	of	 imagery),	the	patterns	
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of	 activity	 within	 these	 regions	 are	 informative	 to	 decoding	 unimodal	

memory	retrieval	(thinking	of	a	dog	barking	vs.	what	a	dog	looks	like),	and	

thus	must	 contain	 traces	 of	 sensory	 information.	 These	 results	 therefore	

align	with	previous	literature	suggesting	that	regions	capable	of	performing	

integration,	 such	 as	 default	 mode	 and	 heteromodal	 cortices,	 might	 be	

expected	to	contain	traces	or	“echoes”	of	the	neural	signals	from	multiple	

networks	(Braga	et	al.	2013;	Leech,	Braga	&	Sharp,	2012).		

c. Finally,	 context	based	 imagery	could	only	be	decoded	 in	 regions	of	cortex	

that	 fell	 within	 the	 dorsal	 attention	 network	 (inferior	 lateral	 occipital	

cortex;	 LOC).	 More	 broadly,	 this	 pattern	 of	 results	 demonstrates	 that	

imagery	 not	 only	 recruits	 transmodal	 regions	 associated	 with	 memory	

representation	 and	 retrieval	 (i.e.,	 areas	 allied	 to	 or	 within	 the	 extended	

DMN)	but	also	sites	implicated	in	executive	control	when	the	features	that	

are	 being	 retrieved	 have	 to	 be	 shaped	 to	 suit	 the	 context,	 and/or	 when	

complex	 patterns	 of	 retrieval	 are	 required	 (Corbetta	 &	 Shulman,	 2002;	

Dosenbach	et	al.	2009).		

	

This	 chapter	 corroborates	 the	 assertion	 in	 Chapter	 3	 that	 both	 unimodal	 and	

heteromodal	brain	regions	are	critical	for	semantic	retrieval	in	the	absence	of	relevant	

sensory	input.	This	study	revealed	extensive	recruitment	of	sensory	cortex,	which	was	

modulated	by	the	modality	of	imagination	required	by	the	task.	In	addition,	there	was	

also	an	observed	role	for	transmodal	brain	regions	in	supporting	internally-generated	

conceptual	retrieval.	These	findings	emphasise	the	bi-directional	connections	between	

hub	 and	 spoke	 regions	 to	 permit	 the	 complete	 conceptualization	 of	 knowledge	

(Lambon	 Ralph	 et	 al.	 2010;	 Pobric,	 Jefferies	 &	 Lambon	 Ralph,	 2010;	 Reilly,	 Peelle,	

Garcia,	 &	 Crutch,	 2016).	 Moreover,	 this	 data	 is	 highly	 coherent	 with	 recent	

perspectives	 on	 information-integration	within	 transmodal	 regions	 of	 the	 brain	 that	

suggest	graded	information	convergence	(e.g.,	Buckner	et	al.	2009;	Bullmore	&	Sporns,	

2009;	Hagmann	et	al.	2008;	Lambon	Ralph	et	al.	2017;	Margulies	et	al.	2016).		

	

6.2.3.	Chapter	5	
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As	both	Chapters	3	and	4	revealed	similar	portions	of	unimodal	and	heteromodal	brain	

regions	 for	both	abstract	processing	and	perceptual	decoupling,	 the	concluding	 fMRI	

study	assessed	 the	conjunction	of	cognitive	processes	 that	 required	 (i)	multi-featural	

concepts	 as	 opposed	 to	 unidimensional	 perceptual	 stimuli	 and	 (ii)	 perceptual-

decoupling.	 This	 fMRI	 experiment	 therefore	 used	 a	 matching	 paradigm	 and	

manipulated	 whether	 decisions	 were	 semantic	 or	 perceptual	 in	 nature	 (based	 on	

single-feature	 colour	 patches,	 or	 images	 of	multi-featural	 concepts	 such	 as	 types	 of	

dogs	 or	 cars)	 and	 the	 availability	 of	 information	 in	 the	 external	 world	 (present	 vs.	

absent	–	i.e.,	the	decision	was	based	on	memory).	This	chapter	also	characterised	the	

whole-brain	activity	for	each	of	our	conditions	in	terms	of	their	position	on	the	macro-

scale	 gradient	 from	 unimodal	 to	 heteromodal	 cortex	 described	 by	 Margulies	 et	 al	

(2016).	 This	 allowed	 us	 to	 test	 the	 hypothesis	 that	 isolation	 from	 input	 is	 a	 critical	

feature	 shared	 by	 cognitive	 states	 activating	 the	 DMN.	 Notably,	 this	 experiment	

benefitted	 from	 an	 increased	 sample	 size	 compared	 to	 the	 previous	 two	 empirical	

chapters.		The	findings	revealed:	

a. Perceptually	guided	decision-making	(present	>	absent)	revealed	increased	

activity	 in	 bilateral	 ventral	 visual	 stream,	 regions	 which	 have	 a	 well-

documented	role	in	online	visual	processing.	

b. In	 contrast,	 both	 decoupled	 states	 (absent	 >	 present)	 and	 more	

conceptually	 complex	 states	 (multi-featural	 concepts	 >	 uni-featural	

concepts)	 activated	 bilateral	 angular	 gyrus,	 anterior	 temporal	 lobes,	

posterior	 cingulate	 cortex	 and	 medial	 prefrontal	 cortex;	 regions	 that	 fall	

predominantly	within	 the	 default	mode	 network,	 or	 in	 networks	 allied	 to	

the	DMN.		

c. A	 formal	 conjunction	 of	 these	 contrasts	 (absent	 >	 present	 AND	 multi-

featural	 >	 uni-featural)	 revealed	 consistent	 activation	 in	 bilateral	 angular	

gyrus	 and	 left	middle	 temporal	 gyrus	 –	 showing	 that	 core	 regions	 of	 the	

default	mode	network	are	critical	for	making	conceptual	decisions	based	on	

information	that	was	no	longer	present	in	the	environment.		

d. Finally,	 the	 intrinsic	 architecture	 of	 conjunction	 regions	 using	 functional	

connectivity	 was	 explored.	 The	 results	 of	 this	 analysis	 reveal	 coupling	 to	

core	parts	of	the	default	mode	network	as	well	as	portions	of	frontoparietal	
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network.	 One	 explanation	 for	 why	 these	 regions	 recovered	 both	 default	

mode	and	frontoparietal	networks,	might	relate	to	the	fact	that	the	1-back	

condition	 was	 more	 demanding	 than	 0-back;	 suggesting	 that	 integration	

between	executive	and	default	mode	networks	is	necessary	for	demanding	

tasks.		

	

These	data	highlight	that	the	conjunction	of	conceptual	and	memory	demands	recruits	

bilateral	angular	gyrus	and	left	lateral	middle	temporal	gyrus.	These	three	regions	fall	

at	 the	 highest	 end	 of	 the	 principal	 gradient,	 even	 further	 than	 ventrolateral	 ATL,	

supporting	the	notion	that	the	most	abstract	forms	of	cognition	are	processed	at	the	

highest	end	of	the	representational	hierarchy	(Margulies	et	al.	2016).		

	

6.3	Linking	Data	to	Theory		

	

6.3.1.	Sensory	Cortex	

Embodied	 accounts	 of	 semantic	 processing	 postulate	 that	 neural	 regions	 generally	

used	 for	 perception	 and	 action,	 are	 also	 recruited	 during	 semantic	 processing	

(Barsalou,	1999;	2008;	Humphreys	&	Forde,	2001;	Martin,	2007;	Patterson	et	al.	2007;	

Pulvermüller,	2005).	These	regions	are	considered	modality-specific	as	they	represent	

modality-specific	attributes	and	are	located	in	areas	proximal	to	and	reciprocally	linked	

to	primary	sensory	and	motor	regions.	For	instance,	knowledge	about	the	sound	a	dog	

makes	 would	 be	 represented	 in	 auditory	 cortex.	 It	 is	 suggested	 that	 retrieving	 a	

concept	will	engage	neural	pathways	that	encode	items	distinct	colour,	shape,	sound,	

motor	properties	and	so	on	(e.g.,	Patterson	et	al.	2007;	Pulvermüller,	2005).	Indeed,	a	

plethora	of	 functional	neuroimaging	 studies	have	provided	 compelling	evidence	 that	

these	neural	pathways	are,	to	some	extent,	shared	with	perception	and	action	systems	

(Martin	 et	 al.	 1995;	 Goldberg,	 Perfetti	 Charles	 &	 Schneider	 Walter,	 2006;	

Rueschemeyer	 et	 al.	 2014).	 For	 instance,	 words	 denoting	 actions	 (e.g.,	 kick)	 and	

manipulable	objects	(e.g.,	hammer)	elicit	activation	in	the	brain’s	motor	system	(Hauk,	

Johnsrude	&	Pulvermüller,	2004)	whereas	words	associated	with	specific	smells	(e.g.,	

cinnamon)	elicit	activation	 in	olfactory	cortex	 (Gonzalez	et	al.	2006).	Taken	together,	



 180 

these	findings	inform	cognitive	accounts	of	perception	and	knowledge	representation.	

Clearly,	 however,	 perception	 and	 internally-driven	 cognition,	 are	 not	 the	 same	

phenomena,	and	many	questions	remain	regarding	the	relationship	between	sensory	

experience	and	meaning.	For	example,	despite	sensory	and	motor	cortices	activating	

to	both	perception	and	states	of	imagination	or	semantic	retrieval	to	words,	it	remains	

unclear	 whether	 the	 representations	 elicited	 by	 these	 states	 are	 overlapping	 or	

whether	these	situations	 involve	a	common	neural	region,	but	are	coded	in	a	unique	

format.	 Recent	 evidence	 in	 the	motor	domain	 suggests	 that	 sensory	 experience	 and	

meaning	are	coded	in	unique	formats	(e.g.,	Rueschemeyer	et	al.	2010;	2014),	however	

it	is	not	clear	whether	this	is	true	of	other	modalities	of	testing,	such	as	in	the	visual	or	

auditory	domain.		

The	data	presented	in	this	thesis	suggest	that	sensory	cortex	is	recruited	during	

semantic	 retrieval	 for	 both	 word	 meaning	 (Chapter	 3)	 and	 perceptually	 decoupled	

states	 (Chapter	4).	 The	overlap	 in	 sensory	 recruitment	across	 the	 two	 studies,	 taken	

from	 the	MVPA	 analysis,	 is	 depicted	 in	 Figure	 6.1.	 Both	 auditory	 and	 visual	 cortices	

held	patterns	of	 activity	not	only	 regarding	 sensory	 input	 (spoken,	written)	but	 they	

were	 also	 sensitive	 to	 modality-specific	 meaning.	 In	 Chapter	 3	 this	 meaning	 was	

related	 to	 the	 sensory-feature	 of	 a	 word	 (i.e.,	 the	 word	 ‘loud’	 refers	 to	 a	 concept	

perceived	 through	 the	 auditory	 modality	 whereas	 ‘bright’	 refers	 to	 a	 concept	

perceived	 through	 the	 visual	 modality;	 Figure	 6.1A),	 while	 Chapter	 4	 showed	 that	

sensory	 regions	 were	 recruited	 when	 imagining	 the	 sound	 or	 visual	 properties	 of	 a	

concept	 (i.e.,	 thinking	 about	 a	 dog	 barking	 versus	 thinking	 about	what	 it	 looks	 like;	

Figure	6.1A-B).		
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Figure	 6.1.	 MVPA	 results	 from	 chapter	 3	 and	 4	 highlighting	 similarity	 of	 results	 in	 primary	

auditory	and	visual	 cortex.	 (A)	Results	within	auditory	cortex,	 the	overlap	between	semantic	

classifier	 (sound	 vs.	 bright)	 and	 imagination	 classifier	 (dog	 barking	 vs.	 dog	 tail)	 projected	 in	

white	 in	 left	 auditory	 cortex	 (Planum	 polare).	 (B)	 Results	 within	 visual	 cortex,	 the	 overlap	

between	semantic	classifier	 (sound	vs.	bright)	and	 imagination	classifier	 (dog	barking	vs.	dog	

tail)	projected	in	white	(intracalcarine	cortex	and	lingual	gyrus).		

	

Interestingly,	the	results	in	Chapter	3	highlight	that,	although	primary	auditory	

and	visual	cortex	held	patterns	of	activity	for	both	the	sensory	modality	(green	clusters	

in	Figure	6.1)	and	 the	semantic	category	 (cyan	clusters	 in	Figure	6.1),	 these	patterns	

were	 predominantly	 non-overlapping,	 suggesting	 that	 sensory	 experience	 and	

meaning	are	not	equated	in	primary	sensory	cortex.	Moreover,	in	Chapter	3	it	was	not	

possible	 to	 cross-classify	 between	modality	 of	meaning	 and	modality	 of	 perception.	

Meaning	and	sensory	experience	did	not	share	a	common	neural	pattern,	consistent	

with	 a	 growing	body	of	 literature	 that	 suggests	meaning	 is	 not	 a	direct	 reflection	of	

sensory	experience	in	sensorimotor	cortex	(e.g.,	Rueschemeyer	et	al.	2010;	2014).	For	

instance,	a	 recent	MVPA	study	conducted	by	Coutanche	and	Thompson-Schill	 (2014)	

interrogated	 whether	 the	 pattern	 of	 activity	 for	 an	 imagined	 concept	 (e.g.,	 orange)	

was	comparable	to	the	activity	when	perceiving	an	orange.	They	found	that	only	 left	

ATL	was	able	to	successfully	perform	this	cross-classification,	suggesting	that	meaning	

and	 experience	 are	 not	 equated	 in	 unimodal	 portions	 of	 cortex	 but	 instead	 are	



 182 

represented	 in	heteromodal	convergence	zones,	arguably	because	such	regions	code	

conceptual	 knowledge	 in	 an	 abstract	 form	 that	 is	 comparable	 across	 memory	 and	

perceptual	experience.		

Furthermore,	both	Chapter	3	and	4	show	that	overlapping	regions	anterior	to	

perception	hold	patterns	of	activity	regarding	semantic	content	(see	white	clusters	in	

Figure	 6.1).	 In	 Chapter	 3	 the	 clusters	 that	 could	 decode	word	meaning	 (loud	 versus	

bright)	 were	 anterior	 to	 those	 clusters	 that	 could	 decode	 input	 (spoken	 versus	

written),	while	Chapter	4	identified	clusters	in	anterior	secondary	sensory	cortices	that	

could	decode	between	different	 forms	of	 imagined	 features	 (dog	barking	versus	dog	

tail).	One	possible	explanation	for	the	recruitment	of	sensory	association	cortices	is	the	

‘anterior	 shift’	 noted	 by	 Thompson-Schill	 (2003).	 She	 found	 that	 areas	 activated	 by	

semantic	processing	are	not	isomorphic	to	those	used	in	direct	experience,	but	rather	

are	shifted	anterior	to	those	areas	(for	a	wider	review	see	Chatterjee,	2010;	Binder	&	

Desai,	2011;	McNorgan	et	al.	2011;	Meteyard	et	al.	2012).	This	anterior	shift	therefore	

suggests	 that	 information	 in	 modality-specific	 regions	 is	 abstracted	 from	 direct	

experience	 during	 retrieval	 of	 semantic	 concepts	 from	 memory.	 Such	 accounts	 are	

therefore	consistent	with	a	gradient	of	 ‘abstraction’,	where,	as	one	moves	way	 from	

primary	sensory	and	motor	cortex,	more	complex	conjunctions	are	captured	(Bajada	et	

al.	2017;	Buckner	&	Krienen,	2013;	Lambon	Ralph	et	al.	2017;	Margulies	et	al.	 	2016;	

Mesulam,	1998;	Meteyard	et	al.	2012;	Patterson	et	al.	2007;	Plaut,	2002;	Visser	et	al.	

2010).			

Taken	 together	 these	 findings	 therefore	 do	 not	 align	 with	 strong	 embodied	

accounts,	 which	 propose	 that	 neural	 and	 phenomenological	 processes	 that	 occur	

during	 sensory	 perception	 and	 semantic	 processing	 are	 similar	 in	 function	 and	

structure	due	to	shared	underlying	neural	mechanisms	(for	a	review,	see	Meteyard	et	

al.	2012;	Pulvermueller,	2005;	Glenberg	&	Kaschak,	2002).	 Instead,	 the	 findings	align	

with	integrative	embodied	theories	that	do	not	postulate	meaning	and	experience	are	

equated	 in	 sensory	 cortex,	 but	 instead,	 emphasise	 the	 contribution	 of	 heteromodal	

brain	 regions	 to	 assist	 semantic	 processing	 (for	 review	 see	 Meteyard,	 et	 al.	 2012;	

Caramazza	et	al.	1990;	Damasio,	1989;	Lambon	Ralph,	Sage,	Jones	&	Mayberry,	2010;	

Martin,	2007;	Patterson	et	al.	2007;	Pulvermueller,	2013;	Riddoch	et	al.	1988;	Rogers	

et	 al.	 2004).	 This	 interpretation	 is	 further	 supported	 by	 the	 findings	 that	 modality-
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specific	 information	 (e.g.,	 the	meaning	 of	 the	word	 ‘loud’	 –	 Chapter	 3;	 or	 imagining	

what	 a	 dog	 sounds	 like	 –	 Chapter	 4)	 activates	 brain	 regions	 that	 extend	 beyond	

sensory	 cortex	 in	 to	 heteromodal	 structures	 such	 as	 anterior	 temporal	 lobe,	 and	

portions	of	the	default	mode	network.		

One	 plausible	 explanation	 of	 why	 we	 discovered	 both	 unimodal	 and	

heteromodal	regions	in	this	thesis	relates	to	top-down	activation	hypotheses	(Friston,	

2012;	Mechelli	et	al.	2004;	Miller	&	D’Esposito,	2005;	Naselaris	et	al.	2015;	Shulman	et	

al.	 1997).	 Such	 theories	 suggest	 that	 over	 time	 heteromodal	 brain	 regions,	 such	 as	

anterior	 temporal	 lobe,	 extract	 relevant	 featural	 information	 from	 sensory	 cortex	

during	perception	in	order	to	form	abstract	generalizable	concepts	(the	concept	‘dog’	

is	formed	in	heteromodal	brain	regions,	due	to	the	integration	of	what	a	dog	sounds	

like,	 looks	 like,	 how	 it	 moves	 etc.)	 (e.g.,	 Berkes	 et	 al.	 2011;	 Patterson	 et	 al.	 2007;	

Lambon	 Ralph	 et	 al.	 2017).	 This	 in	 turn	 creates	 heteromodal	 representations	 of	

concepts	 that	 are	 no	 longer	 tied	 to	 sensory	 input.	 In	 line	 with	 predictive	 coding	

theories,	 higher	 order	 regions,	 such	 as	 anterior	 temporal	 lobe,	 maintain	 these	

heteromodal	 internal	 representations,	 which	 provide	 predictions	 about	 the	

environment	to	the	early	sensory	regions	through	top-down	activation	(Friston,	2012;	

Mechelli	 et	 al.	 2004;	Miller	&	D’Esposito,	2005;	Naselaris	 et	 al.	 2015;	 Shulman	et	 al.	

1997).	For	example,	during	visual	imagery	transmodal	brain	regions	mediate	activity	in	

early	visual	areas	through	feedback	connections	(de	Borst	et	al.	2012;	Mechelli	et	al.	

2004).	It	has	been	argued	that	these	feedback	connections	permit	the	primary	sensory	

cortices	 to	 represent	 features	 of	 objects	 during	 imagery,	 which	 may	 facilitate	

interpretation	of	sensory	input.	Furthermore,	the	involvement	of	default	mode	regions	

has	been	 shown	 to	 facilitate	 the	 combination	 and	modification	of	 stored	perceptual	

information	 in	novel	ways	(Kosslyn,	Ganis	&	William,	2001).	This,	 for	 instance,	allows	

us	to	 imagine	scenarios	that	we	have	never	experienced	before,	such	as	 imaging	the	

dog	races,	despite	never	having	attended	this	event.		

Take	 home	 message:	 Collectively,	 the	 findings	 from	 this	 thesis	 align	 with	

integrative	 embodied	 accounts	 (e.g.,	 hub-and-spoke	 model;	 Patterson	 et	 al.	 2007)	

which	highlight	that	modality-specific	areas	reflect	general	representations	of	content-

features	 (e.g.,	auditory	cortex	 reflects	 the	sound	a	dog	makes,	whereas	visual	cortex	

reflects	what	a	dog	looks	likes);	however	the	spatial	characteristics	of	modality-specific	
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activations	differ	for	semantic	meaning	and	sensory	experience.	Moreover,	the	results	

of	 this	 thesis	 suggest	 that	 in	 addition	 to	 sensory	 portions	 of	 the	 cortex,	 transmodal	

brain	 regions	 –	 such	as	 anterior	 temporal	 lobe	and	 the	default	mode	network	–	 are	

recruited	to	facilitate	semantic	retrieval,	arguably	through	top-down	activation	of	the	

relevant	conceptual-feature	in	sensory	cortices.			

	

6.3.2.	Anterior	Temporal	lobe	

Theoretical	accounts	of	semantic	cognition	have	suggested	that	in	addition	to	sensory	

portions	 of	 the	 cortex	 -	 outlined	 above	 -	 cross-modal	 interactions	 for	 all	 modality-

specific	information	are	mediated,	at	least	in	part,	by	convergence	zones	(Barsalou	et	

al.	2003;	Binder	&	Desai,	2011;	Damasio,	1989;	2008;	Mesulam,	2000;	Meteyard	et	al.	

2012;	 Patterson	 et	 al.	 2007;	 Pulvermüller,	 2013;	 Simmons	 &	 Martin,	 2009;	 Tranel,	

Damasio	&	Damasio,	1997).	One	prominent	theory	suggests	this	convergence	zone	or	

hub	 is	 situated	 bilaterally	 in	 the	 ATLs	 (e.g.,	 hub-and-spoke	 model;	 Patterson	 et	 al.	

2007).	 Notably,	 however,	 the	 ATLs	 are	 not	 one	 homogenous	 region	 and	 the	 debate	

surrounding	 the	 heterogeneity	 of	 the	ATLs	 has	 been	 fuelled	 by	 compelling	 evidence	

highlighting	 both	 structural	 (Brodmann,	 1909)	 and	 functional	 differences	 across	

superior-to-ventral	ATL	(Baylis,	Rolls	&	Leonard,	1987;	Binney,	Parker	&	Lambon	Ralph,	

2012;	Geranmayeh,	Leech	&	Wise,	2015;	Jackson	et	al.	2016;	Rice,	Hoffman	&	Lambon	

Ralph,	2015;	Skipper,	Ross	&	Olson,	2011;	Visser	&	Lambon	Ralph,	2011;	Visser	et	al.	

2012;	Yeo	et	al.	2011).	As	a	result	of	such	findings,	contemporary	accounts	of	semantic	

cognition	have	extended	the	predictions	of	the	hub-and-spoke	model	and	postulate	a	

broader	 graded	 function	 across	 the	ATL,	with	 superior	 and	 ventral	 portions	 showing	

sensitivity	 to	 sensory	 input	 and	 ventrolateral	 ATL	 showing	 the	 properties	 of	 an	

integrative	multi-modal	hub	(graded-hub	account;	Lambon	Ralph	et	al.	2017).	Despite	

both	neuropsychological	and	neuroimaging	literature	converging	on	ventrolateral	ATL	

as	 the	 site	 of	 a	 transmodal	 integrative	 hub,	 few	 studies	 have	 investigated	 whether	

patterns	 within	 this	 area	 reflect	 truly	 transmodal	 representations	 (Chapter	 3)	 or	

whether	 this	 region	 is	 recruited	 during	 perceptually	 decoupled	 semantic	 retrieval	

(Chapter	4	&	5).	Figure	6.2	illustrates	the	graded	function	of	the	ATL,	as	outlined	by	the	
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graded-hub	 account	 (adapted	 from	 Lambon	 Ralph	 et	 al.	 2017;	 Figure	 6.2A)	 and	

summarizes	the	ATL	findings	across	the	three	experimental	chapters	(Figure	6.2C).		

	

	 	
Figure	6.2.	Comparison	of	our	ATL	findings	across	the	three	experimental	chapter.	(A)	Modified	

version	of	the	graded	hub	account	(Lambon	Ralph	et	al.	2017)	highlighting	ventrolateral	ATL	as	

the	site	of	the	putative	 ‘hub’	 in	white.	 (B)	Modified	version	of	the	principal	gradient	account	

(Margulies	 et	 al.	 2016)	 highlighting	 the	 convergence	 of	 unimodal	 regions	 into	 transmodal	

cortices.	 (C)	MVPA	 results	 from	 Chapter	 3	 -	 multimodal	 semantic	 classifier	 (loud	 vs.	 bright)	

project	 in	 blue,	MVPA	 results	 from	 chapter	 4	 -	 imagination	 classifier	 (imagining	what	 a	 dog	

sounds	 like	 versus	 what	 a	 dog	 looks	 like)	 projected	 in	 green	 and	 univariate	 results	 from	

chapter	5	–	conceptual	retrieval	from	memory	(object	1-back	>	colour	1-back)	projected	in	red.	

Overlap	of	(i)	3	and	4	in	cyan,	(ii)	Chapter	3	and	5	in	magenta	(iii)	Chapter	4	and	5	in	yellow	and	

(iv)	all	three	experiments	(Chapter	3,	4	and	5)	in	ventrolateral	ATL	projected	in	white.		

	

The	MVPA	findings	from	Chapter	3	and	Chapter	4	reveal	a	similar	cluster	within	

ventrolateral	ATL	that	could	decode	semantic	content	in	a	modality-invariant	manner,	

that	is	the	patterns	for	decoding	between	loud	vs.	bright	in	the	spoken	modality	where	

comparable	 to	 the	 patterns	 for	 decoding	 loud	 vs.	 bright	 in	 the	 written	 modality	
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(Chapter	 3).	 This	 region	 also	 held	 patterns	 of	 activity	 that	 could	 decode	 between	

imaging	the	auditory	properties	of	a	concept	and	imagining	the	visual	properties	of	a	

concept	(Chapter	4).	Notably,	both	of	these	studies	show	transmodal	representations	

about	 both	 sound	 (e.g.,	 dog	 barking)	 and	 visual	 concepts	 (e.g.,	 dogs	 fluffy	 tail)	 are	

represented	 within	 ventrolateral	 ATL.	 This	 is	 an	 interesting	 discovery	 for	 several	

reasons.	 First,	 previous	 literature	 has	 attempted	 to	 utilise	MVPA	 to	 address	 similar	

questions	 regarding	 representational	 content	 in	 the	 ATL	 (e.g.,	 Peelen	 &	 Caramazza,	

2012;	 Correia	 et	 al.	 2014).	 However,	 these	 studies	 typically	 report	 very	 different	

portions	of	ATL	as	the	putative	‘hub’	site.	For	instance,	Peelen	and	Caramazza	(2012)	

found	 that	 bilateral	 ventral	 ATL	 encodes	 information	 about	 the	 abstract	 conceptual	

properties	 of	 objects,	 whereas	 Correia	 et	 al	 (2014)	 identified	 superior	 ATL	 in	 a	

crossmodal	 study	 investigating	 semantic	 representations	 in	 Dutch-English	 bilinguals.	

One	plausible	explanation	for	these	conflicting	results	 is	the	notion	that	presentation	

format	 influences	 the	 location	of	heteromodal	processing	with	 the	ATLs.	Peelen	and	

Caramazza	used	picture	stimuli	which	have	been	shown	to	recruit	ventral	ATL	regions	

in	 line	 with	 a	 graded	 effect	 of	 modality-input	 (Plaut,	 2002;	 Visser	 et	 al.	 2010)	 and	

typically	 depend	 heavily	 on	 visual-feature	 knowledge.	While	 Correia	 and	 colleagues	

utilized	spoken	concrete	nouns,	 in	both	English	and	Dutch,	which	depend	heavily	on	

orthographic	 and	 phonological	 knowledge.	 These	 previous	 results	 are	 therefore	

consistent	with	graded	effect	of	input	modality	(Lambon	Ralph	et	al.2017;	Margulies	et	

al.	 2016;	 Plaut,	 2002;	 Visser	 et	 al.	 2010),	 with	 language	 and	 auditory	 semantic	

processing	 recruiting	 superior	 portions	 of	 the	 ATL	 and	 visual	 and	 picture	 processing	

recruiting	 ventral	 portions	 of	 the	 ATL;	 however	 they	 do	 not	 provide	 compelling	

evidence	for	a	‘transmodal’	hub	as	these	effects	seem	to	be,	at	least	in	part,	driven	by	

the	 modality	 of	 presentation.	 The	 current	 data	 therefore	 adds	 to	 this	 literature	 by	

showing	transmodal	representations,	not	driven	by	either	auditory	or	visual	input,	are	

represented	in	ventrolateral	ATL.		

Second,	most	 studies	 of	 ATL	 function	 have	 focused	 on	 the	 representation	 of	

object	 concepts,	which	heavily	 rely	on	 visual	 feature	 knowledge	 (Binney	et	 al.	 2012;	

Bright,	Moss	&	Tyler,	2004;	Correia	et	al.2014;	Countanche	&	Thompson-Schill,	2014;	

Lambon	 Ralph	 et	 al.2009;	 Peelen	 &	 Caramazza,	 2012;	 Visser	 et	 al.	 2010;	 2012).	 As	

pointed	out	in	a	review	by	Bonner	&	Price	(2013),	what	is	less	known	about	the	ATL	is	
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whether	it	also	encodes	categories	that	have	weak	visual-feature	associations,	such	as	

auditory	 concepts	 like	 “loud”	and	 “thunder”.	 The	data	presented	 in	 this	 thesis	 lends	

tentative	support	for	the	notion	that	visual-feature	and	auditory-feature	concepts	are	

represented,	or	at	least	decodable,	within	ventrolateral	ATL.		

Furthermore,	 the	 findings	demonstrate	 that	 recruitment	of	 ventrolateral	ATL,	

but	not	superior	ATL,	 is	necessitated	by	perceptually	decoupled	memory	retrieval,	 in	

the	form	of	imagination	(Chapters	4	&	5).	Specifically,	this	site	held	unique	patterns	of	

activity	that	coded	different	forms	of	 imagination	(thinking	about	what	a	dog	sounds	

like	versus	what	 it	 looks	 like),	and	responded	more	to	the	retrieval	of	concepts	 from	

memory	 compared	 to	 simple	 colour	patches.	 Interestingly,	Margulies	 and	 colleagues	

(2016)	situate	this	ventrolateral	ATL	site	higher	along	the	principal	gradient	than	more	

superior	 or	 ventral	 portions	 of	 ATL,	 such	 as	 fusiform	 gyrus.	 The	 current	 findings	

therefore	complement	this	account	as	transmodal	regions	 in	ventrolateral	ATL	which	

are	further	along	the	principal	gradient,	are	implicated	in	cortical	functions	by	virtue	of	

its	distance	 from	both	auditory	 (projecting	along	superior	 temporal	gyrus)	and	visual	

(projecting	along	the	ventral	visual	stream	through	the	fusiform)	input.	Therefore,	the	

findings	 of	 Margulies	 et	 al	 (2016),	 in	 combination	 with	 those	 from	 the	 current	

experimental	chapters,	provide	converging	evidence	that	regions	of	transmodal	cortex,	

namely	ventrolateral	ATL,	support	a	state	where	cognition	is	guided	by	memory	rather	

than	input.	

Collectively,	Chapters	3	and	4	demonstrate	that	ventrolateral	ATL	recruitment	

is	 required	 for	 a	 diverse	 range	 of	 functions,	 including	 transmodal	 conceptual	

representations	 and	 perceptually	 decoupled	 memory	 retrieval.	 However,	 the	

conjunction	 of	 multi-featural	 conceptual	 knowledge	 and	 perceptually	 decoupled	

retrieval,	 as	 investigated	by	Chapter	5,	 revealed	a	 site	posterior	 to	 this	 ventrolateral	

cluster,	 in	 lateral	middle	 temporal	 gyrus	 (MTG).	 This	 suggests	 that	 ventrolateral	 ATL	

may	 be	 important	 for	 both	 heteromodal	 conceptual	 representations	 and	 perceptual	

decoupling,	but	the	two	processes	converge	in	neighbouring	lateral	MTG.	Notably,	this	

lateral	 MTG	 site	 has	 been	 identified	 as	 a	 candidate	 ‘hub’	 in	 several	 theories	 of	

semantic	 memory	 (Binder	 &	 Desai,	 2011;	 Bonnici	 et	 al.	 2016;	 Mesulam,	 1985).	We	

therefore	find	compelling	evidence	that	ventrolateral	ATL	and	lateral	MTG	both	show	

properties	consistent	with	heteromodal	hubs,	that	integrate	increasingly	abstract	and	
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complex	 representations,	 however	 the	 precise	 function	 differs;	 ventrolateral	 ATL	

captured	 transmodal	 representations	 while	 lateral	 MTG	 is	 necessitated	 by	

conceptually	complex	perceptually-decoupled	states.		

Interestingly,	 although	 the	 two	 temporal	 sites	 (ventrolateral	 ATL	 and	 lateral	

MTG)	differ	in	their	peak	activity	(see	Figure	6.3	clusters	c-e),	 it	 is	worth	emphasizing	

that	both	sites	are	not	only	intrinsically	linked	to	one	another	but	are	also	embedded	

within	 the	DMN	(Yeo	et	al.	2011),	with	 the	 latter	being	situated	at	 the	highest	point	

within	the	principal	gradient	(Marguiles	et	al.	2016).	This	findings	also	fit	with	the	two	

gradient	account	of	Visser	et	al.	(2011),	who	showed	(i)	a	first	gradient	of	convergence	

from	superior	and	ventral	portions	into	ventrolateral	ATL	and	(ii)	a	second	gradient	of	

processing	 that	 extends	 longitudinally	 (caudal-rostral)	 along	 the	 middle	 temporal	

gyrus,	 converging	 in	 regions	 of	 transmodal	 cortex	 to	 facilitate	 abstract	 conceptual	

processing	 (Buckner	 et	 al.	 2009;	 Bullmore	 &	 Sporns,	 2009;	 Hagmann	 et	 al.	 2008;	

Lambon	Ralph	et	al.	2017;	Marguiles	et	al.	2016;	Mesulam,	1998;	Plaut,	2002;	Visser	et	

al.	2011).	Specifically,	the	current	data	builds	on	research	that	suggest	a	gradient	from	

the	most	rostral	and	caudal	temporal	regions	into	lateral	MTG	(i.e.,	Temporal	pole	à	

lateral	MTG	ß	posterior	MTG)	to	facilitate	transmodal	conceptual	processing	(Binney	

et	al.	2012;	Binder	et	al.	2009;	Lambon	Ralph	et	al.	2017;	Visser	et	al.	2012).	The	most	

rostral	 temporal	 regions	 receive	 inputs	 from	 limbic	 systems	 regarding	 valence	 and	

social	concepts	while	the	posterior	regions	receive	modality-specific	information	from	

sensory	cortices	(Jackson	et	al.	2016;	2017;	Pascual	et	al.	2013;	Hurley	et	al.	2015;	Saur	

et	al.	2010).		

Finally,	 it	 is	 worth	 noting	 that,	 although	 ventrolateral	 ATL	 was	 consistently	

activated	across	all	 fMRI	experiments	 in	 this	 thesis,	 the	paradigms	varied	extensively	

across	the	three	experimental	chapters.	Both	Chapters	3	and	4	employed	MVPA,	which	

measures	generalizable	patterns	of	activity	across	multiple	voxels,	whereas	Chapter	5	

utilized	 a	 univariate	 analysis,	which	makes	 use	 of	 the	 overall	 level	 of	 activity	within	

individual	 voxels.	 To	 understand	 whether	 the	 neighbouring	 brain	 regions	 were	 a	

manifestation	of	the	methods	used,	future	studies	could	optimize	the	experiment	from	

Chapter	5	for	MVPA	analysis.	However,	notwithstanding	experimental	differences,	all	

studies	proposed	in	this	thesis	share	a	commonality	in	that	they	investigated	semantic	

retrieval	 that	was	not	explicitly	 tied	 to	sensory	 input	 from	the	external	world	 (either	
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abstracted	away	from	input	in	Chapter	3,	or	perceptually	decoupled	in	Chapters	4	and	

5).	 Moreover,	 despite	 a	 lack	 of	 direct	 overlap	 between	 the	 lateral	 temporal	 sites	

(ventrolateral	 ATL	 and	 lateral	 MTG),	 the	 functional	 connectivity	 profiles	 extracted	

across	the	three	chapters	show	a	common	 intrinsic	network	that	reflects	 transmodal	

brain	 regions	 including	 both	 the	 semantic	 cognition	 network	 and	 DMN.	 One	 could	

therefore	speculate	that	using	multiple	methodologies	(univariate	analysis,	MVPA	and	

functional	 connectivity)	 is	 advantageous	 as	 instead	 of	 relying	 on	 cluster-based	

univariate	methods	which	 are	 intrinsically	 tied	 to	 the	 arbitrary	 statistical	 thresholds	

applied	(Woo,	Krishnan	&	Wager,	2014),	they	provide	converging	support	for	a	shared	

distributed	network	in	which	the	cluster-based	results	lie	within.	Therefore,	even	if	the	

peak	results	differ	in	their	coordinates,	their	affiliation	with	a	common	neural	network	

(e.g.,	 semantic	 cognition	 network	 and	 DMN)	 provides	 an	 explanation	 for	 their	

cognitive	 function;	 this	 network	 is	 implicated	 in	 a	 host	 of	 cognitive	 tasks	 that	 focus	

cognition	on	previously	encoded	knowledge,	as	opposed	to	information	in	the	external	

environment.	

Take	 home	 message:	 Results	 across	 the	 three	 fMRI	 experiments	 converge	

within	 ventrolateral	 ATL	 (white	 cluster	 in	 Figure	 6.2B),	 a	 site	 consistent	 with	 the	

putative	‘hub’	outlined	in	the	graded-hub	account	(see	Figure	6.2A;	Lambon	Ralph	et	

al.	 2017).	 This	 ventrolateral	 cluster	 was	 revealed	 during	 (i)	 modality-invariant	

representations	 of	 modality-specific	 concepts	 (loud	 vs.	 bright)	 (Chapter	 3),	 (ii)	

perceptually-decoupled	processing	of	semantic-features	(sound	of	a	concept	vs.	visual-

features	 of	 a	 concept)	 (Chapter	 4)	 and	 (iii)	 during	 the	 retrieval	 of	 multi-featural	

concepts	 from	 memory	 (Chapter	 5)	 compared	 to	 the	 retrieval	 of	 unimodal	 colour	

features	from	memory.		In	addition,	the	findings	of	Chapter	5	revealed	a	neighbouring	

cluster	 in	 lateral	MTG	was	 recruited	 for	 the	 conjunction	 of	 (i)	 conceptually	 complex	

semantic	 processing	 and	 (ii)	 perceptually	 decoupled	 retrieval	 from	 memory.	

Collectively,	 the	 findings	provide	 tentative	support	 for	 the	notion	 that	 there	are	 two	

principal	directions	of	information	convergence	in	the	temporal	lobes:	(i)	laterally	(STG	

à	MTG/ITG	ß	FG)	and	(ii)	longitudinally	(ATL	à	MTG	ß	pMTG).	Moreover,	both	the	

ventrolateral	ATL	and	lateral	MTG	sites	are	allied	with	the	DMN,	a	network	implicated	

in	a	host	of	cognitive	tasks	that	focus	cognition	on	previously	encoded	knowledge,	as	

opposed	 to	 information	 in	 the	 external	 environment.	 Consequently,	 there	 may	 be	
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common	 neurocognitive	 processes	 shared	 between	 states	 that	 activate	 the	

multimodal	 semantic	 network	 outlined	 in	 the	 graded	 hub	 account	 and	 those	 that	

recruit	the	wider	DMN.		

	

6.3.3.	Default	Mode	Network		

To-date	 an	 established	 body	 of	 work	 has	 routinely	 shown	 that	 the	 DMN	 actively	

supports	 several	 aspects	 of	 cognition	 (Spreng,	 2012),	 including	 semantic	 processing	

(Binder	et	al.	2009;	Humphreys	et	al.	2015;	 Irish	&	Piguet,	2013;	Krieger-Redwood	et	

al.	2016),	autobiographical	and	episodic	 recollection	 (Andrews-Hanna,	2012;	Buckner	

et	al.	2008;	Rugg	&	Vilberg,	2013),	working	memory	(Konishi	et	al.	2015;	Spreng	et	al.	

2014;	Vatansever	et	al.	2015),	mental	imagery	(Hassabis	et	al.	2007),	self-generation	of	

emotion	(Engen,	Kanske	&	Singer,	2017)	and	imagining	the	future	or	recalling	the	past	

(Huijbers	 et	 al.	 2009;	 Schacter	 et	 al.	 2007;	 Spreng	 et	 al.	 2009;	 Svoboda	 et	 al.	 2006;	

Szpunar	 et	 al.	 2007).	 This	 evidence	 therefore	 goes	 against	 historical	 accounts	 of	 the	

DMN	as	“task-negative”	by	showing	that	the	DMN	does	activate	under	a	variety	of	task	

conditions.	 Notably,	 many	 of	 these	 situations	 involve	 memory	 retrieval	 –	 i.e.,	 a	

requirement	 to	 focus	 cognition	 on	 previously-encoded	 knowledge	 as	 opposed	 to	

information	in	the	external	environment.	The	current	thesis	was	therefore	motivated	

by	 the	 hypothesis	 that	 there	 might	 be	 common	 neurocognitive	 processes	

underpinning	perceptually-decoupled	and	conceptually-guided	cognition	 in	the	DMN.	

During	 states	 of	 episodic	 recollection,	 we	 recreate	 past	 experiences	 that	 involve	

places,	 objects	 and	 people	 not	 currently	 present	 in	 the	 environment.	 Consequently,	

memory	 retrieval	 might	 necessitate	 a	 process	 of	 decoupling	 from	 sensorimotor	

systems,	 allowing	 cognition	 to	 be	 generated	 internally	 in	 a	 way	 that	 diverges	 from	

what	 is	 going	on	around	us	 (Smallwood,	 2013).	 These	perceptually-decoupled	 states	

might	 be	 easier	 in	 brain	 regions	 whose	 neural	 computations	 are	 functionally	

independent,	or	distant,	from	systems	important	for	perceiving	and	acting.	

Notably,	 recent	macroscale	decompositions	of	brain	connectivity	have	helped	

characterize	 the	 neural	 regions	 that	 are	 likely	 to	 be	 important	 for	 abstract	memory	

representations	in	a	more	formal	manner.	Margulies	and	colleagues	(2016)	described	a	

principal	 gradient	 of	 connectivity	 with	 unimodal	 sensory	 regions	 at	 one	 end	 and	
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transmodal	regions	 including	posterior	cingulate	cortex,	medial	prefrontal	cortex	and	

angular	 gyrus	 at	 the	 other	 –	 regions	 that	 are	 collectively	 are	 known	 as	 the	 DMN	

(Raichle	et	al.	 2001).	DMN	regions	are	maximally	distant	 in	 functional	and	 structural	

space	from	primary	landmarks	of	unimodal	function	such	as	the	calcarine	sulcus	or	the	

central	sulcus	(Margulies	et	al.	2016).	This	topographic	architecture	suggests	the	DMN	

can	 represent	 information	 that	 differs	 from	 the	 current	 state	 of	 the	 external	world,	

which	is	reflected	in	sensory-motor	systems.	Moreover,	the	DMN	is	situated	at	the	top	

of	a	representational	hierarchy	allowing	these	regions	to	integrate	information	across	

systems	 (Buckner	 et	 al.	 2009;	 Bullmore	 &	 Sporns,	 2009;	 Hagmann	 et	 al.	 2008;	

Margulies	 et	 al.	 2016;	 Mesulam,	 1998).	 However,	 the	 specific	 role	 of	 the	 DMN	 in	

semantic	 cognition	 is	 still	 unclear;	 for	 instance,	 is	 it	 perceptually-decoupled	 states,	

conceptually	complex	or	the	combination	of	these	two	cognitive	states	that	the	DMN	

preferentially	 responds	 to,	moreover	 there	 is	 little	 clarity	 regarding	which	 regions	of	

the	transmodal	DMN	shows	above	baseline	activation	during	semantic	tasks.	

The	results	of	 this	 thesis	go	some	way	to	helping	to	elucidate	the	role	of	 this	

network	in	semantic	retrieval.	For	example,	not	only	has	the	current	thesis	confirmed	

the	 finding	 that	 the	 DMN	 is	 engaged	 during	 perceptually	 decoupled	 retrieval	 of	

information	 from	memory	 (e.g.,	 Konishi	 et	 al.	 2015),	 but	 the	 results	 show	 that	 this	

recruitment	 was	 enhanced	 when	 the	 content	 being	 retrieved	 was	 conceptual	 (i.e.,	

Dalmatian)	as	opposed	to	perceptual	(i.e.,	colour	patches)	(Chapter	5);	suggesting	that	

this	 network	 has	 a	 specific	 role	 to	 play	 in	 semantic	 cognition	 that	 may	 lie	 beyond	

perceptual	 decoupling.	 If	 the	 DMN	 were	 only	 involved	 in	 perceptually	 decoupled	

retrieval,	 there	should	have	been	no	difference	between	 the	perceptually-decoupled	

retrieval	of	uni-featural	colour	patches	or	multi-featural	concepts.	However,	an	almost	

identical	network	was	retrieved	when	participants	were	thinking	about	multi-featural	

concepts	 in	 both	 perceptually	 decoupled	 retrieval	 from	 memory	 and	 perceptually	

guided	retrieval.	Furthermore,	a	conjunction	of	the	two	manipulations	(conceptually-

guided	cognition	and	perceptually-decoupled	retrieval)	revealed	core	sites	within	the	

DMN;	bilateral	AG	and	lateral	MTG.	Taken	together,	the	results	of	this	thesis	speak	to	

prior	suggestions	that	there	might	be	common	neurocognitive	processes	underpinning	

perceptually-decoupled	 and	 conceptually-guided	 cognition	 in	 the	 DMN	 (Buckner	 &	

Krienen,	2013;	Margulies	et	al.	2016;	Mesulam,	1998;	Smallwood,	2013).	These	regions	
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are	maximally	 distant	 in	 functional	 and	 structural	 space	 from	 primary	 landmarks	 of	

unimodal	 function	such	as	 the	calcarine	sulcus	or	 the	central	 sulcus	 (Margulies	et	al.	

2016).	This	topographic	architecture	suggests	regions,	such	as	lateral	temporal	cortex	

and	 angular	 gyrus,	 are	 situated	 at	 the	 top	 of	 a	 representational	 hierarchy	 allowing	

these	regions	to	integrate	information	across	systems.	Such	regions	are	therefore	able	

to	 support	 higher-order	 representations	 with	 predictive	 value	 across	 multiple	

situations	and	modalities,	which	integrate	features	from	diverse	sensorimotor	regions.	

In	other	words,	increasingly	abstract	and	complex	representations	might	be	formed	at	

greater	distances	along	the	gradient,	where	the	influence	of	specific	features	linked	to	

stimuli	in	the	immediate	environment	is	reduced	(Buckner	&	Krienen,	2013;	Margulies	

et	al.	2016;	Mesulam,	1998;	Plaut,	2002).	

Speculatively,	the	current	findings	are	also	broadly	consistent	with	the	account	

that	 there	are	multiple	 levels	of	 integration	 (see	 Figure	6.3).	Across	 all	 experimental	

chapters	perceptually-guided	semantic	retrieval	engaged	unimodal	portions	of	sensory	

cortex.	 Next,	 following	 the	 principal	 gradient	 account,	 heteromodal	 properties	 of	

semantic	retrieval	began	to	emerge	in	ventrolateral	ATL,	a	region	allied	with	the	core	

DMN;	 such	 activity	 was	 common	 to	 both	 perceptually	 guided	 heteromodal	

representations	(Chapter	3)	and	perceptually	decoupled	semantic	retrieval	(Chapters	4	

&	5).	 Finally	 portions	 at	 the	highest	 end	of	 the	principal	 gradient	 –	bilateral	AG	and	

lateral	MTG	 –	were	 recruited	 for	 the	most	 abstracted	 and	 complex	 representations	

from	 memory.	 Interestingly,	 the	 lack	 of	 angular	 gyrus	 findings	 in	 Chapter	 3	 and	 4,	

discussed	 previously,	 fits	 within	 this	 ‘multiple	 levels	 of	 integration’	 narrative.	 The	

current	 data	 indicated	 that	 angular	 gyrus	 did	 not	 show	 heteromodal	 properties	 of	

semantic	 retrieval	 as	 it	 was	 not	 able	 to	 cross-classify	 between	 unimodal	 forms	 of	

conceptual	knowledge,	however	previous	literature	has	suggested	both	angular	gyrus	

and	lateral	temporal	cortex	play	a	specific	role	in	multimodal	as	opposed	to	unimodal	

representations	 (Bonnici	 et	 al.	 2016).	 Given	 the	 functional	 profile	 and	 anatomical	

location	 of	 the	 findings,	 the	 results	 lend	 support	 to	 the	 notion	 that	 the	macroscale	

organisation	 of	 the	 cortex	 directly	 relates	 to	 its	 cognitive	 function	 (e.g.,	 Buckner	 &	

Krienen,	 2013;	 Mesulam,	 1998;	 Margulies	 et	 al.	 2016);	 the	 gradient	 encapsulates	

multiple	 levels	 of	 integration	 from	unimodal	 portions	of	 cortex	 through	 to	 the	most	
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transmodal	 regions	 of	 the	 DMN,	 with	 the	 later	 supporting	 abstract	 states	 (e.g.,	

transmodal	semantic	concepts	from	memory)	that	are	not	tied	to	the	external	world.		

	

Figure	 6.3.	 Schematic	 illustration	 of	 key	 findings	 projected	 on	 to	 the	 principal	 gradient	

(Margulies	et	al.	2016).	

	

Finally,	 in	 line	 with	 the	 notion	 of	 multiple	 levels	 of	 integration,	 the	 results	

outlined	 in	 both	 Chapters	 3	 and	 4	 align	with	 other	 studies	 that	 suggest	 transmodal	

brain	regions,	including	the	DMN	and	heteromodal	cortices,	contain	traces	or	“echoes”	

of	neural	signals	represented	in	other	intrinsic	connectivity	networks,	such	as	primary	

sensory	networks	 (Braga	et	 al.	 2013;	 Leech,	Braga	&	Sharp,	 2012).	 For	 instance,	 this	

thesis	shows	that	core	regions	of	the	DMN,	including	posterior	and	anterior	portions	of	

the	temporal	lobe,	hippocampus	and	anterior	cingulate	cortex,	were	recruited	equally	

by	both	auditory	and	visual	imagery	in	the	univariate	analysis	(Chapter	4),	however	the	

MVPA	analysis	could	decode	between	imaging	what	a	dog	sounds	like	versus	imagining	

what	a	dog	 looks	 like,	 therefore	different	patterns	must	be	generated	depending	on	

the	sensory	features	that	need	to	be	brought	to	mind.	Notably,	although	portions	of	
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the	DMN	were	able	to	decode	between	auditory	and	visual	meaning,	these	regions	did	

not	capture	the	difference	between	these	conditions	and	complex	conceptual	contexts	

–	 perhaps	 because	 the	 context	 condition	 involved	 both	 auditory	 and	 visual	 features	

(e.g.,	thinking	about	the	dog	races	may	envisage	the	visual	properties	of	a	greyhound	

and	 a	 race	 track	 as	 well	 as	 the	 acoustic	 properties	 of	 crowds	 cheering	 and	 dogs	

barking).	 Compatible	 with	 the	 “echoes”	 of	 integration	 proposal	 (Braga	 et	 al.	 2013;	

Leech	et	al.	2012)	one	possible	explanation	is	that	the	difference	between	imagining	a	

dog’s	 sounds	 and	 visual	 features	 might	 be	 decodable	 within	 DMN	 because	 these	

conditions	 have	 very	 different	 “echoes”	 from	 sensory	 cortex;	 however	 the	 context	

condition	might	 involve	overlapping	sensory	 inputs	with	both	the	visual	and	auditory	

imagery	conditions.	Moreover,	this	interpretation	is	consistent	with	the	findings	from	

Chapter	3,	where	ventrolateral	ATL	contained	transmodal	patterns	of	activity	relating	

to	 sensory	 semantic	 concepts	 (auditory	 words,	 such	 a	 loud,	 could	 be	 distinguished	

from	visual	word	concepts,	 such	as	bright).	Taken	together,	 these	 findings	align	with	

the	view	that	transmodal	regions	receive	both	types	of	information	(i.e.,	about	sound	

and	visual	features)	in	order	to	permit	integration	of	information	effectively	and	allow	

for	memory	retrieval	in	the	absence	of	sensory	input.	

Take	 home	message:	 This	 thesis	 presents	 a	 complex	 network	 of	 brain	 areas	

that	 are	 often	 both	 modality-invariant	 (Chapter	 3)	 and	 sensitive	 to	 perceptually	

decoupled	 states	 (Chapter	 4	 and	 5).	 Combining	 the	 data	 in	 this	 thesis	 with	 the	

literature	suggests	that	the	DMN	shows	specialization	for	the	most	abstract	 forms	of	

cognition.	Regions	 allied	with	 the	DMN,	 such	as	 ventrolateral	ATL,	 are	necessary	 for	

processing	heteromodal	semantic	concepts,	whereas	core	portions	of	the	DMN,	such	

as	 lateral	 MTG	 and	 angular	 gyrus,	 are	 critical	 for	 retrieving	 conceptually	 complex	

representations	from	memory.	Furthermore,	this	thesis	provides	tentative	support	for	

multiple	 levels	 of	 integration.	 Following	 Margulies	 and	 colleagues’	 (2016)	 principal	

gradient	 account,	 the	 data	 highlight	 that	 both	 perceptually-coupled	 (spoken	 and	

written	 words)	 and	 perceptually-decoupled	 (imagine	 what	 something	 looks	 like	 and	

what	 it	 sounds	 like)	 semantics	 engage	 extensive	 portions	 of	 unimodal	 cortex,	whilst	

heteromodal	representations	were	 identified	 in	regions	further	up	the	gradient,	such	

as	 ventrolateral	 ATL,	 and	 finally	 regions	 at	 the	 furthest	 end	of	 the	 gradient,	 such	 as	

lateral	 MTG	 and	 angular	 gyrus,	 were	 implicated	 in	 the	 most	 abstract	 cognitive	
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processes	 (i.e.,	 retrieving	 complex	 semantic	 concepts	 from	 memory).	 The	 DMN	

therefore	plays	 a	 critical	 role	 in	 semantic	 processing	 as	 it	 is	 situated	 at	 the	 top	of	 a	

representational	 hierarchy	 allowing	 these	 regions	 to	 integrate	 information	 across	

systems:	this	also	explains	why	the	neural	activity	within	the	DMN	contains	echoes	of	

the	information	represented	in	other	regions	of	cortex	(Braga	et	al.	2013;	Leech,	Braga	

&	Sharp,	2012).			

	

	

6.4.	Limitations	and	Future	Directions	

	

This	thesis	provides	evidence	for	a	distributed	network	of	brain	regions	contributing	to	

both	 modality-invariant	 and	 perceptually	 decoupled	 semantic	 retrieval.	 Naturally,	

there	are	questions	that	remain	to	be	answered	in	view	of	the	findings	presented	here.	

An	 important	first	step	might	be	to	replicate	the	findings	 in	Chapter	3,	using	a	wider	

variety	of	modalities.	For	example,	future	studies	could	interrogate	whether	modality-

invariant	 representations	 exist	 in	 ventrolateral	 ATL	 by	 comparing	 concepts	 across	

multiple	 input	 types	 (e.g.,	 pictures,	 sounds,	words,	 actions,	 smells),	 to	 test	whether	

representations	 in	ventrolateral	ATL	are	 invariant	 to	all	modalities	of	 testing.	Several	

recent	 studies	 have	 adopted	 such	 paradigms	 to	 investigate	 whether	 different	 input	

types	necessitate	 common	 representations	 (e.g.,	 Kumar,	 Federmeier,	 Fei-Fei	&	Beck,	

2017;	Man,	Damasio,	Meyer	&	Kaplan,	2015;	Simanova	et	al.	2014),	although	few	have	

reported	ventrolateral	ATL	as	a	site	 for	 transmodal	 representations.	One	explanation	

for	the	lack	of	consistency	in	the	results	and	recent	literature	is	that	some	studies	opt	

for	a	regions-of-interest	analysis	that	neglects	anterior	temporal	lobe	(e.g.,	Man	et	al.	

2015).	 Moreover,	 failure	 to	 find	 significant	 cross-modal	 decoding	 in	 the	 ATL	 may	

reflect	 the	 fact	 that	 this	 region	 is	 vulnerable	 to	 magnetic	 susceptibility	 artefacts	

causing	signal	loss	and	distortion.	For	instance,	unlike	the	experiments	outlined	in	the	

current	 thesis,	 Kumar	 et	 al.	 (2017)	 acknowledge	 that	 they	 did	 not	 optimize	 their	

scanning	 protocol	 for	 the	 ATLs.	 This	 resulted	 in	 lower	 tSNR	within	 ATL	 regions	 (~40	

compared	 to	 >	 70	 in	 the	 current	 thesis),	 and	 thus	 it	 is	 difficult	 to	 draw	 conclusions	

about	 failures	to	 find	decoding.	Future	research	could	therefore	 interrogate	whether	
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modality-invariant	 representations	 exist	 in	 ventrolateral	 ATL	 by	 comparing	 concepts	

across	multiple	 input	types	(e.g.,	pictures,	sounds,	words,	actions,	smells),	whilst	also	

optimizing	 their	 scanning	 protocol	 for	 ATL,	 such	 as	 aligning	 their	 slices	 with	 the	

temporal	lobe,	using	a	short	echo	time	or	adopting	a	dual-echo	sequence	(Halai	et	al.	

2014).	 Also,	 the	 data	 presented	 in	 this	 thesis	 go	 some	way	 in	 clarifying	 the	 role	 of	

ventrolateral	ATL	 in	processing	concrete	concepts	 in	a	 transmodal	 fashion.	However,	

concrete	concepts	are	definable	by	their	combination	of	features	(e.g.,	a	dog	has	four	

legs,	 fur	 and	 barks)	 and	 so	 the	 results	 presented	 here	 are	 not	 generalizable	 to	

abstracts	 concepts	 such	 as	 ‘truth’,	 which	 are	 not	 definable	 by	 their	 combination	 of	

features.	Future	studies	may	therefore	wish	to	clarify	the	degree	to	which	this	region	

represents	abstract	concepts.		

There	 are	 also	 a	 number	 of	 limitations	 that	 should	 be	 borne	 in	 mind	 when	

considering	 the	 results	 of	 this	 thesis	 in	 regards	 to	 sensory	 cortex.	 First,	 the	

experimental	 designs	 have	 not	 permitted	 us	 to	 directly	 investigate	 directionality	

between	 unimodal	 sensory	 and	 transmodal	 brain	 regions,	 and	 therefore	 cannot	

provide	 direct	 evidence	 for	 top-down	 activation	 hypotheses.	 Future	 research	 could	

employ	 dynamic	 causal	modelling	 to	 investigate	 directionality	 (Stephan	 et	 al.	 2010).	

Although	 this	method	has	 been	questioned	 regarding	whether	 robust	 statements	 of	

directionality	 can	 be	 made	 (see	 Daunizaeu,	 David	 &	 Stephan,	 2011).	 Alternatively,	

similar	 research	 questions	 could	 be	 investigated	 using	 magnetoencephalography	

(MEG)	 to	 resolve	 the	 timing	 of	 recruitment	 of	 brain	 regions,	 which	 can	 help	 infer	

directionality	 (e.g.,	 van	Diessen	et	al.	2015).	Therefore,	 this	 thesis	 can	only	 conclude	

that	 the	 findings	 are	 consistent	 with	 a	 top-down	 activation	 account.	 Second,	 the	

nature	of	the	designs	in	both	Chapter	3	and	4	preludes	the	ability	to	directly	compare	

perception	and	meaning	of	the	same	concept.	In	Chapter	3	participants	retrieved	the	

meaning	 of	 modality-specific	 words,	 such	 as	 ‘loud’,	 but	 they	 did	 not	 perceive	

something	 loud.	 Moreover,	 in	 Chapter	 4	 participants	 imagined	 modality-specific	

features	of	concepts,	such	as	what	a	dog	looks	likes,	but	they	were	not	presented	with	

an	 image	of	a	dog.	 In	 light	of	 the	 findings,	 it	 can	only	be	concluded	that	 the	general	

mechanism	 for	 thinking	 about	 modality-specific	 meaning	 (thinking	 about	 sound-

features)	 and	 perception	 (hearing	 something)	 is	 not	 equitable	 in	 sensory	 cortex.	 A	

wealth	 of	 literature	 has	 investigated	 the	 relationship	 between	 imagination	 and	
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perception	in	sensory	cortex	(Albers	et	al.	2013;	Lee,	Kravitz	&	Baker,	2012;	Reddy	et	

al.	2010;	Vetter	et	al.	2014),	however	the	simultaneous	investigation	of	multiple	forms	

of	 imagination	 and	 perception	 (e.g.,	 visual,	 auditory,	 audiovisual,	 emotional)	 in	both	

unimodal	and	transmodal	brain	regions	is	still	lacking.		

	 Finally,	further	elucidating	the	role	of	the	DMN	in	semantic	cognition	would	be	

a	beneficial	avenue	for	investigation,	given	that	this	network	has	been	implicated	in	a	

variety	of	tasks	that	focus	cognition	on	previously	encoded	knowledge,	as	opposed	to	

information	 in	 the	 external	 environment,	 yet	 a	 unifying	 account	 for	 the	 role	 of	 the	

DMN	 is	 still	 lacking.	 For	 example,	 the	 current	 data	 has	 shown	 that	 (i)	 the	 DMN	 is	

recruited	during	perceptually-decoupled	retrieval	and	thus	the	findings	are	consistent	

with	 previous	 work	 suggesting	 that	 this	 decoupling	 process	 is	 necessary	 for	 the	

generation	 of	 precise	 representations	 from	 memory	 (e.g.,	 Davey,	 2015)	 and	 (ii)	 is	

activated	 during	 both	 perceptually-driven	 and	 perceptually-decoupled	 retrieval	 of	

semantic	 concepts	 (Chapter	 5);	 but	 it	 remains	unclear	whether	 the	 same	network	 is	

recruited	 when	 information	 available	 in	 the	 environment	 is	 coherent	 with	 the	

representations	 retrieved	 from	memory.	 Future	 research	 could	 therefore	 investigate	

whether	this	network	is	involved	in	retrieval	of	semantic	concepts	from	memory	when	

coherent	representations	are	available	in	the	external	world.	For	instance,	in	addition	

to	 0-back	 and	 1-back	 conditions	 outlined	 in	 Chapter	 5,	 future	 work	 could	 include	 a	

recognition	condition	where	during	probe	trials	participants	are	shown	two	concepts	

(similar	to	0-back	probes)	and	are	required	to	retrieve	the	concepts	they	were	shown	

on	the	previous	trial	 (similar	to	the	1-back	probes)	and	decide	whether	the	concepts	

on	screen	match	their	retrieved	representation	from	memory.	Investigations	along	this	

line	 would	 be	 important	 as	 it	 would	 clarify	 whether	 the	 DMN	 is	 engaged	 during	

semantic	 retrieval	 in	 both	 perceptually	 decoupled	 and	 coherent	 states,	 an	 issue	 of	

contention	in	the	current	literature	(e.g.,	Huijbers,	Pennartz,	Cabeza	&	Daselaar,	2011).		

Furthermore,	one	potential	 limitation	of	the	experimental	 investigation	of	the	

DMN	 is	 the	comparison	of	 semantic	and	colour	decisions	 in	Chapter	5.	This	 contrast	

allowed	 us	 to	 demonstrate	 a	 neural	 pattern	 associating	 conceptual	 processing	 with	

stimulus	 independency,	 however	 it	 is	 too	 crude	 a	manipulation	 to	 determine	which	

aspects	of	the	semantic	judgments	gave	rise	to	this	response	in	the	DMN;	for	example,	

is	 it	 the	 richness	of	 concepts	 such	as	Labrador,	 their	heteromodal	nature	or	 the	 fact	
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that	 they	 are	 acquired	over	 a	 lifetime,	which	dissociates	 them	 from	 colours?	 Future	

studies	 could	 probe	 different	 features	 of	 retrieval,	 such	 as	 whether	 the	 target	 is	 a	

concrete	 or	 abstract	 concept,	 whether	 it	 has	 to	 be	 identified	 at	 a	 specific	 or	

superordinate	 level,	 and	whether	 there	 are	differences	 according	 to	 the	modality	 of	

the	 representation	 being	 probed.	Moreover,	 the	 imagination	 task	 in	 Chapter	 4	 only	

investigated	 task-driven	mental	 imagery.	 As	 the	majority	 of	 literature	 regarding	 the	

DMN	 focuses	on	 spontaneous	mind	wandering	 states	 (Addis	et	al.	2007;	Addis	et	al.	

2009;	 Binder,	 Desai,	 Graves	 &	 Conant,	 2009;	 Buckner	 &	 Carroll,	 2007;	 Christoff,	

Gordon,	Smallwood,	Smith	&	Schooler,	2009;	Hassabis	&	Maguire,	2007;	Mason	et	al.	

2007;	Rugg	&	Vilberg,	2013;	Schacter	&	Addis,	2007),	it	is	unclear	whether	this	network	

is	 recruited	 in	 a	 similar	 or	 distinctive	 manner	 during	 spontaneously	 generated	

semantic	retrieval.		

	

6.5.	Conclusions	

	

This	thesis	sought	to	investigate	the	neural	basis	of	semantic	retrieval	within	unimodal	

and	heteromodal	brain	networks,	whilst	manipulating	the	availability	of	information	in	

the	environment,	by	using	convergent	methods	of	task-based	fMRI,	machine	learning	

and	 functional	 connectivity	analyses.	Much	of	 the	empirical	work	 in	 this	 thesis	 takes	

inspiration	from	modern	accounts	of	transmodal	brain	regions	(e.g.,	Lambon	Ralph	et	

al.	 2017;	 Marguiles	 et	 al.	 2016),	 which	 suggest	 the	 ATL	 and	 default	 mode	 network	

support	both	abstraction	and	decoupling,	through	the	particular	interactions	they	have	

with	unimodal	 cortices.	 The	data	 suggests	 a	 gradient	 of	 processing	 from	 superior	 to	

ventral	 ATL,	 such	 that	 superior	 portions	 preferentially	 process	 information	 about	

sensory	 modality,	 and	 ventrolateral	 portions	 process	 abstract	 modality-invariant	

semantic	 representations.	 Moreover,	 ventrolateral	 ATL	 was	 also	 necessary	 for	

decoupled	 semantic	 processing	 during	 imagination.	 In	 addition,	 this	 thesis	 found	

comparable	 networks	 recruited	 for	 both	 conceptual	 processing	 and	 perceptually-

decoupled	retrieval	 that	corresponded	to	 the	broader	DMN.	Further	 interrogation	of	

these	 sites,	 confirmed	 lateral	 MTG	 and	 bilateral	 angular	 gyrus	 were	 pivotal	 in	 the	

combination	of	conceptual	retrieval	from	memory.	Taken	together	this	data	suggests	
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that	 there	may	 be	multiple	 levels	 of	 integration	 occurring	 across	 heteromodal	 brain	

regions;	 such	 that	 those	 situated	 farthest	 from	 sensory	 input	 systems	 in	 both	

functional	and	connectivity	space	are	required	for	processing	the	most	abstract	forms	

of	cognition.		
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Appendices	

	

A.1.	Supplementary	Figures		

A.1.1.	Chapter	5	

	

	

	Figure	 A.1.1.	 Comparison	 of	 complex	 memory	 representation	 in	 the	 presence	 or	

absence	of	 relevant	perceptual	 input.	Spatial	maps	were	 cluster	 corrected	at	 Z	 =	 3.1	

FWE.	

	 	

5 0 Beta Object > Colour 
1-back 

Object > Colour 
0-back 
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A.2.	Supplementary	Tables	

A.2.1	Chapter	4	

Table	A.2.1.	List	of	stimuli	

	 Sound	 Visual	 Context	

Dog	 “Sound	Dog”	 Visual	Dog”	 “Fast	Dog”	

“Dangerous	Dog”	

“Old	Dog”	

“New	Dog”	

“Muddy	Dog”	

“Clean	Dog”	

“Abandoned	Dog”	

“Family	Dog”	

Car	 “Sound	Car”	 Visual	Car”	 “Fast	Car”	

“Dangerous	Car”	

“Old	Car”	

	“New	Car”	

“Muddy	Car”	

“Clean	Car”	

“Abandoned	Car”	

“Family	Car”	

Footnote:	Prompt	for	each	experimental	conditions	depicted	in	“	“.		 	
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Table	A.2.2.	Coordinates	of	peak	clusters	in	the	resting-state	connectivity	analyses.	

Seed	Region	 Cluster	 Cluster	

Extent	

Z-score	 x	 Y	 z	

Context	seed		 Increased	Correlation	 	 	 	 	 	

	 L.	 Lateral	 occipital	 cortex,	 inferior	

division	

15566	 16.4	 -50	 -64	 0	

	 L.	Superior	frontal	gyrus	 566	 8.18	 -22	 -8	 54	

	 R.	Planum	polare	 256	 5.45	 42	 -10	 -8	

	 Reduced	Correlation	 	 	 	 	 	

	 R.	Lingual	gyrus		 6653	 7.27	 4	 -88	 14	

	 R.	Anterior	cingulate	gyrus	 5584	 7.14	 6	 26	 30	

	 R.	Insular	Cortex	 2324	 6.46	 38	 14	 -10	

	 L.	Postcentral	Gyrus	 340	 4.75	 -60	 -6	 14	

	 L.	Frontal	Pole	 296	 4.43	 -36		 50	 12	

	 R.	 Lateral	 occipital	 pole,	 superior	

division		

265	 4.8	 48	 -64	 48	

Visual	seed	 Increased	Correlation	 	 	 	 	 	

	 L.	 Lateral	 occipital	 cortex,	 inferior	

division	

7797	 15.3	 -48	 -68	 0	

	 R.	 Lateral	 occipital	 cortex,	 inferior	

division	

6793	 10.9	 50	 -64	 2	

	 L.	Hippocampus		 346	 5.29	 -20	 -10	 -20	

	 L.	Superior	Frontal	gyrus	 342	 7.47	 -22	 -8	 54	

	 Reduced	Correlation	 	 	 	 	 	

	 R.	Lingual	gyrus	 6688	 7.35	 4	 -70	 -4	

	 R.	Insular	cortex	 2463	 6.31	 40	 12	 -6	

	 R.	Paracingulate	gyrus	 2369	 6.85	 10	 22	 34	

	 R.	Frontal	pole	 2270	 6.17	 38	 40	 18	

	 L.	Insular	cortex	 856	 5.42	 -36	 4	 2	

	 L.	Frontal	pole	 388	 5.25	 -34	 50	 8	

	 R.	Posterior	cingulate	gyrus	 354	 4,59	 2	 -32	 26	
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Sound	seed	 Increased	Correlation	 	 	 	 	 	

	 L.	Superior	temporal	gyrus	 17702	 15.8	 -46	 -10	 -6	

	 R.	Intracalcarine	cortex	 614	 5.45	 20	 -62	 10	

	 L.	Lingual	gyrus	 564	 5.27	 -16	 -51	 0	

	 R.	Anterior	cingulate	gyrus	 511	 4.54	 6	 -14	 42	

	 Reduced	Correlation	 	 	 	 	 	

	 R.	Thalamus	 1961	 6.28	 16	 -14	 10	

	 L.	Superior	frontal	gyrus	 1685	 4.98	 -20	 10	 62	

	 R.	Cerebellum	 1445	 5.58	 36	 -58	 -48	

	 L.	Cerebellum	 1187	 5.6	 -36	 -50	 -48	

	 L.	 Lateral	 occipital	 cortex,	 superior	

division	

1110	 5.16	 -26	 -72	 30	

	 R.	 Lateral	 occipital	 cortex,	 superior	

division	

670	 5.86	 26	 -78	 34	

	 R.	Superior	frontal	gyrus	 571	 5.68	 26	 -4	 52	

	 L.	 Lateral	 occipital	 cortex,	 inferior	

division	

364	 4.38	 -48	 -78	 -12	

	 L.	Frontal	pole	 291	 5.07	 -26	 54	 2	

Thalamus	 Increased	Correlation	 	 	 	 	 	

	 L.	Thalamus		 22269	 17.1	 -12	 -26	 2	

	 L.	 Lateral	 occipital	 cortex,	 superior	

division		

270	 5.17	 -42	 -72	 24	

	 Reduced	Correlation	 	 	 	 	 	

	 L.	Cerebellum	 19581	 7.66	 -40	 -74	 -32	

	 L.	Frontal	pole	 786	 5.58	 -26	 54	 20	

	 L.	Planum	polare		 258	 6.29	 -44	 -10	 -12	

SMG	 Increased	Correlation	 	 	 	 	 	

	 L.	 Supramarginal	 gyrus,	 posterior	

division		

9745	 15.1	 -60	 -42	 16	

	 R.	Planum	temporale	 7485	 8.64	 52	 -32	 18	

	 L.	Cingulate	gyrus,	anterior	division		 4128	 7.26	 -6	 -12	 36	
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	 L.	Precentral	gyrus	 330	 4.96	 -46	 -8	 44	

	 R.	Cerebellum	 289	 5.43	 26	 -72	 -56	

	 Reduced	Correlation	 	 	 	 	 	

	 R.	Lateral	occipital	cortex,	superior	

division		

6353	 7.45	 26	 -66	 52	

	 L.	Lateral	occipital	cortex,	superior	

division		

3955	 6.63	 -28	 -60	 46	

	 R.	Middle	frontal	gyrus	 1529	 6.19	 38	 8	 60	

	 L.	Superior	frontal	gyrus		 552	 5.95	 -26	 18	 58	

	 L.	Cerebellum		 245	 5.23	 -44	 -68	 -46	

aMTG	 Increased	Correlation	 	 	 	 	 	

	 L.	Middle	temporal	gyrus,	anterior	

division		

10430	 15.3	 -56	 -6	 -18	

	 R.	Middle	temporal	gyrus,	posterior	

division	

7048	 10.2	 50	 -12	 -16	

	 L.	Posterior	cingulate	gyrus		 2696	 7.34	 -8	 -54	 32	

	 L.	Superior	frontal	gyrus		 1606	 7.69	 -8	 52	 32	

	 L.	Frontal	pole	 821	 5.94	 -6	 56	 -14	

	 Reduced	Correlation	 	 	 	 	

	 R.	Frontal	pole	 3034	 6.85	 46	 46	 12	

	 L.	Frontal	pole		 1397	 6.56	 -46	 42	 16	

	 R.	Angular	gyrus		 1178	 6.25	 42	 -52	 50	

	 L.	Supramarginal	gyrus,	posterior	

division		

1158	 6.90	 -50	 -42	 44	

	 L.	Cerebellum	 1108	 6.15	 -32	 -70	 -34	

	 R.	Paracingulate	gyrus		 781	 6.91	 4	 20	 42	

	 R.	Superior	frontal	gyrus	 734	 5.47	 20	 16	 56	

	 R.	Cerebellum	 648	 5.69	 40	 -56	 -54	

	 L.	Superior	frontal	gyrus	 490	 5.38	 -24	 2	 56	

	 L.	Lingual	gyrus	 337	 4.54	 -2	 -82	 -24	

	 Thalamus		 246	 4.64	 0	 -4	 2	
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	 L.	Precuneous		 210	 4.87	 -14	 -74	 42	

aPG	 Increased	Correlation	 	 	 	 	 	

	 L.	Parahippocampal	gyrus,	anterior	

division/temporal	fusiform	cortex	

15370	 15.6	 -36	 -16	 -18	

	 L.	Thalamus		 207	 4.88	 -2	 -14	 6	

	 Reduced	Correlation	 	 	 	 	 	

	 R.	Middle	frontal	gyrus		 7768	 7.09	 34	 16	 50	

	 R.	Lateral	occipital	cortex,	superior	

division		

2232	 6.83	 46	 -62	 30	

	 Intracalcarine	cortex		 2115	 4.71	 12	 -82	 4	

	 L.	Middle	frontal	gyrus		 1893	 5.90	 -34	 2	 50	

	 L.	Angular	gyrus		 1016	 5.50	 -54	 -58	 36	

	 L.	Thalamus	 659	 5.79	 -8	 -14	 -2	

ACC	 Increased	Correlation	 	 	 	 	 	

	 L.	Cingulate	gyrus,	anterior	division		 28384	 15.4	 -4	 34	 -2	

	 R.	Lateral	occipital	cortex,	superior	

division		

315	 5.56	 52	 -68	 20	

	 L.	Middle	frontal	gyrus		 272	 6.21	 -24	 32	 34	

	 Reduced	Correlation	 	 	 	 	 	

	 R.	Cerebellum	 7277	 7.76	 12	 -80	 -34	

	 L.	Inferior	frontal	gyrus,	pars	

opercularis		

3364	 6.43	 -54	 14	 20	

	 R.	Inferior	frontal	gyrus,	pars	

opercularis	

2065	 5.47	 52	 16	 18	

	 L.	Lateral	occipital	cortex,	superior	

division	

1782	 6.82	 -30	 -64	 40	

	 R.	Lateral	occipital	cortex,	superior	

division	

750	 4.93	 36	 -66	 46	

	 L.	Paracingulate	gyrus		 468	 4.61	 -4	 28	 44	

Footnote:	The	table	shows	peak	clusters	in	the	resting-state	connectivity	analysis	from	eight	seed	regions.	

Three	“unimodal”	regions;	context	seed	[-48	60	0],	visual	seed	[-48	-70	-2]	and	sound	seed	[52	-8	-10].	Results	

are	thresholded	at	p<.01	(cluster	corrected).	Five	“heteromodal”	regions;	Thalamus	seed	[-48	-60	0],	

supramarginal	gyrus	(SMG)	seed	[-48	-70	-2],	anterior	middle	temporal	gyrus	(aMTG)	seed	[-56	-6	-18],	anterior	
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parahippocampal	gyrus	(aPG)	seed	[-36	-18	-18]	and	anterior	cingulate	cortex	(aCC)	seed	[-4	34-2].	L=left,	

R=right.	
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