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Abstract 

Arbuscular mycorrhizal fungi (AMF) are plant root symbionts that supply limiting nutrients, 

largely phosphorus (P), to plants in exchange for carbon. Silicon (Si) is an important defence 

element for plants and several reports have observed a relationship between AMF colonisation 

and Si uptake. It is unknown how diverse soil microbial communities affect foliar Si and P 

concentrations, and whether improvements in foliar Si concentrations due to AMF colonisation 

are observed in field conditions. This is the first study to document the dual effects of AMF and 

Si application in a non-crop species (Brachypodium sylvaticum) and the effect of different 

microbial communities, on plant uptake and deposition of Si and P. 

An initial glasshouse experiment used a single species AMF inoculum in combination with a Si 

enrichment treatment to investigate the effect on foliar Si and P concentration. The results 

showed that AMF improved the uptake of Si and P compared to non-colonised plants, but that 

different mechanisms for uptake are likely. Introducing microbial communities isolated from 

agricultural and woodland environments as inocula in a controlled environment showed that 

microbial diversity alters the efficacy of Si and P supply, and that improvements in the supply 

of these were not directly related to AMF colonisation. Finally, B. sylvaticum plants from 

woodland were sampled across two years. The results of this sampling did not show any benefit 

of AMF on Si and P uptake, but did reveal significant differences in P concentration over time 

irrespective of fungal colonisation. 

Comparisons between studies using high throughput sequencing demonstrates that the methods 

commonly used in mycorrhizal studies may be overlooking important interactions with un-

recorded organisms in the soil and roots of experimental plants. Ecologically relevant studies 

incorporating long-term repeated sampling are required to fully understand how microbial 

communities can improve Si and P nutrition in plants.  
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1 General Introduction 

1.1  Rationale 

Plant yield improvements over the previous century have been the result of technical and 

chemical advances in agricultural practice, alongside highly selective plant breeding. Despite 

continued investment into agricultural research and development, yields of global staple crops 

have plateaued in recent decades (Ray et al., 2012; Grassini et al., 2013). The global application 

of chemical fertilisers, pesticides and herbicides in intensive agriculture has negatively affected 

natural floral (Schmitz et al., 2014), faunal (Beketov et al., 2013) and microbial (Jacobsen & 

Hjelmsø, 2014; Nettles et al., 2016) communities, as well as the abiotic soil environment 

(Pagliai et al., 2004; Abdollahi et al., 2014). Balancing demands to increase food supply for a 

growing population, safeguarding agricultural productivity under a warming climate and 

limiting biodiversity loss has led to the movement of ‘ecological intensification’ of agriculture 

(Cassman, 1999; Bommarco et al., 2013). Chemical interventions to improve plant productivity 

have typically attempted to replicate and enhance existing processes previously achieved 

through natural ecosystem functions, particularly symbiotic relationships (Bommarco et al., 

2013). The ecological intensification movement seeks to incorporate and enhance natural 

ecosystem functions to improve plant productivity to achieve multiple benefits for plant 

productivity, rather than trying to artificially replicate singular functions (Bommarco et al., 

2013; Bowles et al., 2016). 

Soil microbial communities are crucial in the functioning of healthy ecosystems, with 

rhizosphere organisms playing an important role in defence and nutrient acquisition. 

Understanding the processes, turnover and diversity of the biotic component of the soil is also 

crucial to inform reliable climate models. Soils represent the greatest terrestrial sink of organic 

carbon (C), but current predictions indicate that under a warming climate CO2 release from soils 

will increase, with microbes utilising formerly recalcitrant stable organic matter compounds 

(Frey et al., 2013; Scharlemann et al., 2014). Any loss of diversity as a result of climate change 

is also predicted to have significant negative effects on the provision of ecosystem services that 

are crucial in sustaining diverse plant communities and agricultural food crops (Delgado-

Baquerizo et al., 2016). 

Understanding the functions that soil microbes can provide will potentially lead to 

improvements in agricultural productivity and sustainability. Improving the microbial diversity 

in these soils will have additional benefits for soil structure, carbon sequestration and providing 

pools of microbial genetic diversity, which has implications for healthy ecosystem functioning 

and bioprospecting at present and in the future. 
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1.2 Arbuscular mycorrhizal fungi 

  Biology and structure of the arbuscular mycorrhizal symbiosis 1.2.1

Plants have evolved associations with a variety of microbes that have enabled them to alleviate 

or overcome numerous environmental stresses. One of the most ancient (c.450 million years) 

relationships forms between plant roots and a specific group of soil fungi from the phylum 

Mucoromycota, sub-phylum Glomeromycotina called arbuscular mycorrhizal fungi (AMF) 

(Parniske, 2008; Spatafora et al., 2016). The signalling pathway leading to arbuscular 

mycorrhizal (AM) symbiosis is shared in part with the pathway leading to the formation of the 

bacterial Rhizobium-legmue symbiosis, which evolved more recently, suggesting its origin in 

the AMF pathway (Genre & Russo, 2016). Over 80% of plants are capable of forming 

relationships with AMF, and the persistence of this relationship throughout evolutionary history 

is a testament to its benefit to plants (Smith & Read, 2010).  

AMF form a key bridge between the soil environment and plants, creating an extended chemical 

and microbial environment around the roots; termed the ‘mycorrhizosphere’(Rambelli, 1973; 

Linderman, 1988). The primary benefit of AMF to plants is to provide limiting nutrients from 

the soil, predominately phosphorus (P), but also nitrogen (N), and in return the fungus receives 

plant sugars on which is it dependent for survival (Smith & Smith, 2011; Hodge & Storer, 

2014). P is one of the most limiting nutrients for plants, second only to N. Roots are only able to 

take up and assimilate P as orthophosphate (inorganic P (Pi)), which is highly immobile in the 

soil profile and therefore leads to rapid formation of depletion zones surrounding plant roots 

(Smith et al., 2011). While the majority of plants are capable of forming the AMF symbiosis, 

the environmental conditions are not always conducive to their formation. In high intensity 

agricultural systems, plants are typically supplied with a volume of nutrients sufficient for their 

growth throughout the growing season, therefore reducing the reliance on AMF associations 

(Jensen & Jakobsen, 1980; Koide, 1985; Santos et al., 2006). Further to this, agricultural 

practices such as monoculture production, applications of pesticides and repeated tilling of soil 

all lead to a depauparate AMF community (Helgason et al., 1998; Daniell et al., 2001). 

Agricultural systems apply fertilisers to maintain growth and yield of crops, but the rock 

phosphate source for fertiliser production is finite and predicted to be exhausted in as little as 30 

years’ time (Branscheid et al., 2010; Cordell & White, 2011). Restoring a functional 

rhizosphere community, including AMF, in agricultural systems will offer an alternative to 

costly and unsustainable fertilisation practices.  
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Figure 1: Diagrammatical representation of the arbuscular mycorrhizal symbiosis in a 

latitudinal cross section of root. Labels and structures in blue represent fungal structures 

while labels and structures in green represent plant structures. 

 

The key features of an AM symbiosis is shown in Figure 1. The system is composed broadly of 

four to five parts, an arbuscule and peri-arbuscular membrane (PAM) which form within the 

root cortical cells, storage vesicles, and the intra- and extra-radical mycelia (IRM/ERM) which 

form within and outside the root respectively. The arbuscule is a highly differentiated and 

branched hyphal (fungal cell) extension that expands to fill a plant root cortical cell (Smith & 

Read, 2010). This structure is surrounded by the PAM which is generated by the plant host 

tissue. The exchange of compounds required for a successful symbiosis occurs at the PAM  and 

therefore this structure has a large surface area, closely following the extensions of the 

arbuscule and contains a high density of transporters (Pumplin & Harrison, 2009). Vesicles 

occur in certain species of AMF and are the storage structures of the symbiosis, once sugars are 

acquired by the fungus they are converted to glycogen and lipids for transport and storage in 

vesicles (Roth & Paszkowski, 2017). The IRM extends from the point where a fungal structure 

called the hyphopodium penetrates the plant root, towards to the arbuscule. Finally, the ERM is 

the fourth essential part of the AM symbiosis. This is a structure comprised of branching fungal 

hyphae that spreads into the soil around the root acting as an extension of the plant root system 



 18  

capable of reaching beyond the depletion zone that forms around plant roots. The smaller 

diameter (~4µm) of AMF hyphae (collectively mycelia) compared to fine plant roots (>2mm) 

enables access to smaller soil pores and otherwise inaccessible Pi from the soil (Miller et al., 

1995; Smith & Smith, 2011).  

  Diversity and distribution of AMF species 1.2.2

To date approximately 300 species of AMF have been defined using conventional identification 

techniques, predominantly based on spore morphology (Robinson-Boyer et al., 2009; Schüßler 

& Walker, 2010). There are a number of difficulties in identifying AMF, particularly within 

plant roots. Hyphal morphology is more difficult to distinguish and identification beyond the 

genus level is not possible, therefore a difference in spore production between species can lead 

to inaccurate estimates of abundance and diversity (Merryweather & Fitter, 1998; Sanders, 

2004). There has been a transition over the last twenty years to apply comprehensive sequencing 

techniques to analyse the diversity of AMF within plant roots to obtain more accurate estimates 

of fungal diversity (Taylor et al., 2017). The application of DNA sequencing technology to 

diversity studies have revealed the presence of AMF species in plant roots that have never been 

successfully documented in spore surveys in the immediate area (Clapp et al., 1995). With the 

ever decreasing costs of sequencing technologies, DNA-based identification has rapidly become 

the preferred method for analysing AMF diversity. This has been promoted by the provision of a 

curated database exclusively for Glomeromycotan DNA sequences, data from which has 

enabled detailed analyses on the global distribution of AMF (Öpik et al., 2010; Davison et al., 

2015). 

AMF are termed ‘host generalists’ due to their ability to colonise the majority of terrestrial 

plants and simultaneously colonising multiple hosts (Smith & Read, 2010). However, recent 

evidence suggests that there is some discrimination at an ecosystem level (Davison et al., 2011) 

and arising from dispersal limitation (Davison et al., 2016) and host relatedness (Reinhart & 

Anacker, 2014). This evidence would suggest that AMF diversity may show different patterns 

of diversity similar to plants, but at a broader scale.  

  AMF and plant stress tolerance 1.2.3

Colonisation by AMF can also induce changes in plant immune responses and chemistry, an 

effect that is broadly referred to as mycorrhizal induced resistance (MIR), but effects are 

variable depending on species and combinations and the mechanisms are not mutually exclusive 

(Figure 3, Pozo et al., 2009; Cameron et al., 2013). Colonisation by AMF induces a complex 

chemical interchange where microbe-associated molecular patterns (MAMPs) stimulate the 

plants immune system (Zhang & Zhou, 2010). This results in the release of plant 

phytohormones, which are subsequently suppressed, but this effectively primes the plant against 
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unwanted intruders (Kapulnik et al., 1996; Jung et al., 2012). In particular, Jasmonic Acid (JA) 

and derivatives have been correlated with MIR, and proposed as systemic signalling molecules 

(Jung et al., 2012; Hilou et al., 2014). The JA pathway typically targets necrotrophic fungi and 

chewing herbivores and so AMF primed defences are particularly effective against these groups 

(Pozo et al., 2009; Nabity et al., 2013). Transcription analyses of AM plants show that the 

majority of up-regulated genes are predicted to have a role as response/signalling genes for 

defence or stress, irrespective of AM identity (Liu et al., 2007b; Gerlach et al., 2015). However, 

numerous studies have shown that in stressed or challenged plants, different plant-AM fungal 

combinations appear to elicit different responses in the plants chemistry, even at a strain level 

(Newsham et al., 1995).  

AMF also improve soil structure physically, by increasing soil aggregate size, biologically by 

altering soil microbial and invertebrate communities and chemically through altered root and 

hyphal exudates (Rillig & Mummey, 2006; Leifheit et al., 2014). In drying soils shrinkage can 

lead to smaller soil pore spaces that are inaccessible to plant roots, but not the ERM which have 

a smaller diameter (Whitmore & Whalley, 2009). Soil structure, relating to soil pore and 

aggregate size, is crucial in plant water and nutrient acquisition and also on root anchorage 

(Rillig & Mummey, 2006).  

AM host plants also exhibit increased tolerance to osmotic (Augé et al., 2015) and salinity 

(Porcel et al., 2012) stresses, and heavy metal toxicity (Hildebrandt et al., 2007; Miransari, 

2017). AM plants also exhibit improved stomatal conductance, sustained photosynthetic 

activity, higher levels of proline and soluble sugars which all contribute to an improved water 

status (Augé, 2001; Bárzana et al., 2015). Direct transport of water from the soil to the plant via 

mycorrhizal hyphae has been recognised since the 1980’s, but it is only since 2009, with the 

discovery of water transport channels, aquaporins (AQP) in AMF that the mechanism of this has 

been determined (Duddridge et al., 1980; Ruiz-Lozano & Azcón, 1995; Aroca et al., 2009). 

Fungal AQP gene expression within the ERM has also been shown to respond to drought stress. 

AMF hyphal (ERM) growth increased the expression of two AMF AQP genes (RiAQPF1, 

RiAQPF2) were upregulated in response to drought conditions in maize and axenically grown 

carrot roots, resulting in improvements in plant water content (Li et al., 2013b,a). Use of split 

pot experiments demonstrate that AMF colonisation in roots within water stressed 

compartments led to alterations in plant AQP gene expression, resulting in improved water 

uptake, but not in non-colonised controls or in colonised compartments not exposed to stress 

(Bárzana et al., 2015). The same two AQP genes were measured in the AMF Rhizophagus 

intraradices  colonising tomato plants, but only RiAQPF2 showed upregulation in response to 

the drought treatment and this was accompanied by an upregulation in a plant AQP gene 

(LeNIP3;1) which was not observed in the control treatments (Chitarra et al., 2016). This 



 20  

demonstrates that AM can improve root functional responses in response to environmental 

stimuli at a small spatial scale, and that there may be some synchrony between AMF and plant 

AQP regulation.  

AMF AQP may also be crucial in filling in the gaps in the P and N uptake pathway. The uptake 

of phosphate by AMF occurs though uptake and accumulation of polyphosphate (PolyP), 

although P nutrition is commonly cited as the main benefit of AMF to plant hosts, the exact 

mechanisms for transport are still under contention (Smith & Smith, 2011). Kikuchi et al. 

(2016) identified three novel AQP in AMF Rhizophagus clarus, one of which, RcAQP3, was 

implicated in ammonium uptake. This study showed a strong correlation between rates of PolyP 

translocation and RcAQP3 gene expression. Plant transpiration rates were shown to stimulate 

the expression and activity of RcAQP3 and control the water flow through the hyphae, 

particularly through the tubular vacuoles, where PolyP accumulates. PolyP is then translocated 

through the hyphae towards the roots. Through the knock-out of RcAQP3 and measurement of 

plant response, Kikuchi et al. (2016) have shown the importance of fungal AQP within the 

function of the AM symbiosis.  

The benefits of the AM symbiosis for plant growth are numerous, and the mechanisms for these 

improvements are progressively being revealed. The effects of AM on AQP gene regulation and 

AQP channel gating which enable plants to combat and tolerate abiotic stresses have opened the 

avenue for investigating AM impact on other processes regulated by AQP. AQP facilitate 

passive transport of water, but also a number of small uncharged solutes and gases such as 

carbon dioxide (Uehlein et al., 2003), urea (Beitz et al., 2006), ammonia (Jahn et al., 2004), 

hydrogen peroxide (Bienert et al., 2007), boric acid (Takano et al., 2006), silicic acid (Ma et al., 

2006), and arsenic (Zhao et al., 2009) across a natural water or electrochemical gradient. The 

diverse role of these compounds in the plant range from osmotic regulation, nutrition, stress 

signalling and plant defence.  

1.3  Silicon  

  Silicon availability, uptake and deposition in plants 1.3.1

Elemental silicon (Si) is abundant in soils, but plants can only take up Si in the soluble form 

silicic acid (Si(OH)4) which is present in soils at concentrations of 0.1mM-0.6mM, However, 

soil concentrations of Si(OH)4 are lower than this in areas of high rainfall and alkalinity and at 

extreme temperatures, where plant available Si is deficient (McKeague & Cline, 1963; Haynes, 

2014). Silicic acid availability can be affected by numerous environmental factors, such as soil 

microbial (Alfredsson et al., 2016) and faunal (Bityutskii et al., 2016) communities, pH (Gocke 

et al., 2013), and litter degradation (Carey & Fulweiler, 2016). Litter degradation is significant, 

particularly in an agricultural context where plant residues are often removed post-harvest. The 
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dissolution of biogenic Si (SiO2.nH2O) fixed in phytoliths replenishes the bioavailable Si 

component in the soil more rapidly than occurs through abiotic weathering processes (Guntzer 

et al., 2012b; Carey & Fulweiler, 2016). Some agricultural soils are thus deficient in Si and 

there is increasing interest in the use of Si application to crop systems as a way to increase Si 

uptake by crops and hence their resistance to both biotic and abiotic stresses (Haynes, 2014; 

Meharg & Meharg, 2015; Cooke et al., 2016).  

Si uptake by plants has historically been thought to have no associated yield penalties, even 

when accumulated in excess, as shown in multiple cases under experimental conditions 

(Fauteux et al., 2005; Ma & Yamaji, 2006; Currie & Perry, 2007). However, a recent study 

comparing the Si concentration, growth rate and plant size of modern crop cultivars and 

ancestral landraces suggests that there is a penalty to the uptake and accumulation of Si, where 

high Si accumulating plants were on average 15% smaller than those with low Si accumulation 

(Simpson et al., 2017). This yield penalty is predicted to be associated with the active transport 

and deposition of Si once inside the plant tissues. 

The uptake and transport of Si in grass plants is summarised in Figure 2. Si transport from the 

soil is achieved through the uptake of Si(OH)4 through a constitutively expressed AQP channel 

(Lsi1) located in the mature roots, more than 10mm from root tips (Ma et al., 2006; Yamaji & 

Ma, 2007). In plants there are five sub-groups within the AQP MIP family and the Si channel 

(Lsi1) is classified within the Nodulin 26-like intrinsic protein (NIP) group (Ma et al., 2006; Xu 

et al., 2013). Originally identified in rice, homologs of the Lsi1 gene have been identified in 

maize (Mitani et al., 2009), pumpkin (Mitani et al., 2011), wheat (Montpetit et al., 2012) and 

other important crop species (Maurel et al., 2015). After passive assimilation into the root 

through Lsi1, Si(OH)4 is then actively transported through the endodermal cells across the 

casparian strip by Lsi2, a Si efflux transporter. The localisation of Lsi1 and Lsi2 is different in 

rice compared to other grass species, due to the difference in root structure. In maize and wheat 

and in other grass species lacking arenchyma, Si can be taken up by the epidermal, cortical and 

endodermal cells, while only exodermal cells contain the Lsi1 AQP channel in rice (Yamaji & 

Ma, 2007; Mitani et al., 2009; Montpetit et al., 2012). Transport of Si(OH)4 through the root 

tissues to the stele occurs through the symplast until being transported into the stele by Lsi2 in 

wheat and maize, although the xylem loading transporter or channel has yet to be identified in 

any plant species (Ma et al., 2011). Transport to aerial plant parts occurs through the xylem at a 

rate determined by transpiration (Ma et al., 2007; Kumar et al., 2017a), although uptake and 

deposition is inducible by damage to plant tissues and likely related to induction of active Si 

transporter Lsi2 (McLarnon et al., 2017). Silicic acid is released from the xylem into foliar 

xylem parenchyma by an active process via the transporter Lsi6 (Yamaji et al., 2008). The 

Si(OH)4 then polymerises, with highest concentrations occurring in ‘silica cells’ where the cells 
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become fully mineralised, a process that only occurs during cell development of young leaves 

(Motomura et al., 2006; Kumar et al., 2017a). While transport to the leaves is dependent on 

transpiration, the silicification and subsequent death of these cells is determined by a currently 

unknown biological process, possibly involving peptides, proteins or sugars that condense 

silicic acid to a solid form in foliar cells and phytoliths (Kumar et al., 2017a). There is also 

variety in the mechanism of Si deposition across cell types, which is passive at the cell wall of 

transpiring plant cells, and active in non-transpiring tissues and in specialised silica cells 

independent of transpiration (Kumar et al., 2017b). 
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Figure 2: Transport of silicic acid Si(OH)4 from the soil to leaf silica bodies. Schematic represents 

the transport pathway of wheat and maize plants. Adapted from Ma et al. (2011) 
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  Si and plant defence 1.3.2

Despite being classed as “non-essential” in most plants, Si has important prophylactic effects 

against many pests and pathogens (Massey et al., 2006; van Bockhaven et al., 2013; Hartley & 

DeGabriel, 2016). Traditionally, Si defences have been associated with structural defence. 

Phytoliths are foliar insoluble silica deposits that strengthen the leaf surface, reducing plant 

palatability and digestibility by herbivores (Massey & Hartley, 2006), and epidermal penetration 

by pathogens (Kim et al., 2002). Si uptake is variable across species, with grasses (Poaceae 

family) typically having the highest Si concentrations and investing most heavily in Si based 

physical defences such as silicification of leaf hairs (trichomes) and phytoliths (Epstein, 1999). 

The uptake of Si is constitutive but can be increased upon stimulation by herbivory, with plants 

that have been previously damaged typically having higher foliar Si concentrations than 

undamaged plants (Massey et al., 2007b). Deposition of Si can also vary between and within 

species. Phytoliths differ in structure between species and the patterns of Si deposition on the 

leaf surface is also very variable. Intraspecific variations in Si deposition also occurs, where less 

palatable varieties have been shown to invest more in trichome silicification than softer, more 

palatable varieties (Hartley et al., 2015).  

The mechanisms for Si related defences can be physical, biochemical, molecular or any 

combination of these. Soluble Si in the plant also plays a role in plant protection, priming plant 

defence pathways, leading to enhanced levels of defence hormones when plants are attacked 

(Ghareeb et al., 2011; Ye et al., 2013; van Bockhaven et al., 2015; Reynolds et al., 2016). The 

priming of plant defences by Si is thought to be similar in ways to AMF, with Si based defences 

also stimulating the hormone pathways involving salicylic acid (SA) and JA (van Bockhaven et 

al., 2013). In the absence of stress, Si-supplemented plants are generally indistinguishable from 

controls but when threatened or stressed Si-treated plants have more rapid and enhanced 

induction of chemical defences (Fauteux et al., 2005; Ye et al., 2013). Other chemical and 

molecular defence theories have been suggested, including Si interacting subtly with iron (Fe) 

homeostasis and links to Fe related redox-defences (Islam & Saha, 1969; Liu et al., 2007a). 

Also, Si has been shown to influence accumulation of photorespiratory enzymes associated with 

defence, and interaction with elemental co-factors of enzymes involved in immune signalling 

(Fauteux et al., 2005; Nwugo & Huerta, 2011; Kangasjärvi et al., 2012). This response has also 

been implicated in the improved tolerance of Si supplemented plants on heavy metal tolerance. 

Si enriched plants have demonstrated enhanced tolerance to a range of abiotic stresses including 

low temperatures (Liang et al., 2008), drought (Eneji et al., 2008), salinity (Li et al., 2015) and 

various heavy metal soil contaminants (Adrees et al., 2015).  
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1.4 AMF and Si 

Alternative methods to Si addition that improve Si availability for crop uptake are attracting 

interest, and given their well-recognised benefits in P, N and water uptake, attention has turned 

to the role of AMF in Si uptake, particularly because Si does not decrease the ability of AMF to 

colonise plants as previously thought (Garg & Bhandari, 2015; Maurel et al., 2015). AMF have 

been shown to induce the expression of plant AQPs, including AQP from the NIP sub-family to 

which the Si transporter belongs. If AM plants have increased Si compared to un-colonised 

plants, then they should have increased protection against a range of environmental stresses. 

Both AMF and Si have unique benefits improving plant tolerance to multiple stresses, involving 

different plant hormonal responses and physical structures. Application of AMF and Si in 

tandem has the potential to provide a holistic and broad coverage of defences against plant 

attackers and abiotic stresses (Figure 3). 

 

Figure 3: Summary of defence mechanisms in plants as a result of AM fungal interactions and Si 

application, mechanisms spatially organised to their main areas of impact. 

 

AMF have been shown to have elevated Si concentrations in spores and hyphae under salinity 

stress, which demonstrates that there is a mechanism present to take up Si either passively or 
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actively in both these structures (Hammer et al., 2011). The mechanism of this uptake is 

unknown and transport of any assimilated Si to plant hosts is also unknown (Hammer et al., 

2011). There is evidence that ectomycorrhizal fungi (ECM) can mobilise Si in the soil profile, 

resulting in increased plant root concentrations under certain conditions, a mechanism that may 

also be true for AMF, which have demonstrated a considerable effect on soil chemistry in the 

mycorrhizosphere (Rillig & Mummey, 2006; van Hees et al., 2006). Improvements in Si in AM 

plants have been observed under heavy metal stress (Turnau et al., 2007) and manganese stress 

(Nogueira et al., 2002) also, compared to non-colonised counterparts.  

Experiments that have directly tested the effect of Si and AMF application on Si uptake are few, 

but show promising interactive effects. The earliest study looked at Si uptake in mycorrhizal 

soybean (Glycine max), and demonstrated higher foliar Si concentrations in AMF colonised 

plants and, unlike other elements measured, Si uptake rates were not directly related to P 

application and uptake suggesting an alternative method of uptake (Yost & Fox, 1982). By 

contrast, Kothari and associates (1990) found that foliar Si concentration was lowest in maize 

(Zea mays) colonised by AMF Glomus mosseae (Funneliformis mosseae), but accounting for 

differences in root characteristics, mycorrhizal plants demonstrated improved Si uptake 

efficiency compared to non-colonised controls (Kothari et al., 1990). Using Rhizophagus 

irregularis, Oye Anda et al (2016) demonstrated improved plant growth and Si uptake in 

colonised banana (Musa acuminata) plants, and that uptake was responsive to addition of a 

soluble Si solution.  

The positive effect of AMF on plant Si uptake is also seen under stress conditions. Si 

application and mycorrhizal colonisation in chickpea (Cicer arietinum) subjected to salt stress 

decreased Na
+
 uptake, while also improving yield and nutrient uptake relative to controls (Garg 

& Bhandari, 2015).  In isolation, Si addition was found to be less effective than AMF for 

improving plant productivity, but was beneficial in improving plant K+/Na+ ratio, while AMF 

addition improved the uptake of Si yielding a joint benefit (Garg & Bhandari, 2015). Similarly, 

(Garg & Singh, 2017) also showed that the colonisation of AMF R. irregularis further improved 

Si uptake under cadmium and zinc stress in two genotypes of pigeonpea (Cajanus cajan)  The 

results of these two latter studies demonstrate that positive effects of Si uptake and AMF 

colonisation are achievable in non-Si accumulating plant species, and across a number of plant 

growth limiting conditions (Garg & Bhandari, 2015; Garg & Singh, 2017).  

Two recent studies have demonstrated that sugarcane plants colonised by AMF exhibit 

significantly higher Si concentrations in roots, particularly in low-Si treatments (Frew et al., 

2017a,b). This effect is consistently found in both commercial and native AMF communities 

(Frew et al., 2017a). Root feeding insect performance was also measured in these studies, but 
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AMF colonisation appeared to most significantly affect insects in the low-Si soil treatments 

(Frew et al., 2017a,b). Where two varieties of sugar cane were used, AMF only decreased the 

canegrub performance when Si availability was low and only in one variety of sugarcane tested 

(Frew et al., 2017b). It would be expected that improved Si concentration caused by AMF Si 

acquisition would have the same effect as addition of a Si treatment, however there may be 

more complex regulation in the process, and be dependent on host and fungal combinations. The 

addition of the Si treatment may be bringing about other benefits; this study did not amend the 

pH of the Si solution addition, so change in soil chemical conditions may have an effect on the 

soil grub performance. If AMF are able to enhance plant Si concentrations, either through 

improving plant uptake efficiency or through direct transport through the AMF hypha, this 

could benefit plant health and productivity (Figure 3, Guntzer et al., 2012). 

1.5 Illumina MiSeq Amplicon Sequencing  

Next-generation sequencing (NGS) as a tool for capturing microbial diversity is being applied in 

a variety of biological disciplines (Caporaso et al., 2012; Faith et al., 2013; Adams et al., 2015). 

While platforms such as Illumina MiSeq are often used on randomly fragmented DNA, 

adaptations to the method and sample preparation are enabling analyses to be carried out on 

specific parts of the genome used for species barcoding with novel methods to overcome the 

limitations of the technology to sequence short fragments (Caporaso et al., 2012; Taylor et al., 

2017). The Illumina Mi-Seq is a powerful benchtop sequencer, capable of generating 17 million 

pairs of reads using paired 250 nucleotide sequences (Kozich et al., 2013). It works by binding 

amplicons to a sequencing flow cell through the use of primer adaptations. Complementary 

base-pairs are called and emit a fluorescent label on incorporation into the DNA strand which is 

recorded by the analyser. Similar sequences cluster together and will correspond to operational 

taxonomic units (OTUs) generated in downstream processing (Quail et al., 2012). The number 

of reads assigned to the cluster is quantifiable so relative abundance can be assessed. There are 

two main approaches used to analyse rRNA gene sequences, either using a single or double 

PCR approach. This section will describe in detail the double-PCR method.  

Preparing samples for amplicon NGS involves several additions to the standard primers used to 

amplify specific regions. These adaptations are applied in a two-step process (Kozich et al., 

2013,Figure 4). Through an initial PCR to amplify the region of interest, the standard primers 

are attached to specialised sequencing primers and twelve random bases. The sequencing 

process clusters fragments together based on sequence similarity of the initial bases in the 

fragment, but because the primers remain adhered to the DNA fragment, and conserved regions 

make up the early parts of the DNA fragment, differentiation between sequences does not occur 

until further into the fragment. The twelve random bases create variable sequence beyond the 
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primers that ensures the sequences are read further along the strand to distinguish sequences and 

form clusters based on the variable regions of the DNA fragment. This enables separate colonies 

to be distinguishable by the imaging on the MiSeq chip by reading the sequence of a single read 

within a colony at each location on the chip. In a second PCR, barcodes (6bp) are added that 

bind to the sequencing primers and allow the identification of the sequences in downstream 

processing. Adaptors are also added that are complementary to stubs on the sequencing flow 

cell so that the fragments adhere to the surface and can be read.  

 

 

Figure 4: Adaptations of a DNA fragment for amplicon-based processing using the 

Illumina Miseq platform 

 

1.6 Thesis aims and hypotheses 

AMF have a significant impact on the growth and nutrition of plants. The colonisation of plants 

by AMF leads to significant changes in plant growth and performance, alongside a complex 

alteration of plant gene expression relating to the defence and nutrient uptake pathways. There 

has been significant evidence for a link between Si uptake and colonisation by AMF published 

in the last two to three years (Garg & Bhandari, 2015; Oye Anda et al., 2016; Garg & Singh, 

2017; Frew et al., 2017b). These studies have demonstrated the ability of AMF to improve Si 

uptake of a variety of crop species, and under stress and non-stress conditions. However, the 

mechanisms of the uptake are still unknown. Although AMF spores and hyphae have been 

shown to accumulate Si (Hammer et al., 2011), AMF also are capable of regulating plant AQP 

gene expression and post-translational gating of AQP which may also lead to improvements in 

Si uptake (Chitarra et al., 2016; He et al., 2016). This study aimed to develop understanding of 
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the mechanism by which Si uptake and deposition is improved by AMF by comparing Si and P 

uptake patterns in plants.  

Studies using single-species and single-isolate AMF inocula have shown improvements in Si 

uptake in crop species but to date no studies have examined the effect of different microbial 

communities on the uptake of Si. In this study, the application of high-throughput sequencing 

has enabled an accurate assessment of the diversity of root colonising fungi in controlled and 

field samples, which has highlighted some potential novel interactions between plant growth 

and nutrition and particular microbial species. Previous studies have also focussed purely on 

crop species, but understanding microbial and Si interactions in the natural environment is 

important to improve understanding of a key pathway in plant defence and community 

dynamics. The inclusion of diverse microbial communities and field sampling has enabled 

comparisons to be made between glasshouse and natural environments to reveal how important 

AMF are within natural communities. This study therefore aimed to understand the tripartite 

link between growth of a non-crop plant, silica uptake and microbial communities, with a 

special focus on AMF.  

Through the use of a variety of experiments at different scales and levels of complexity, 

progressing to a study of plants in their natural environment, this thesis aims to investigate the 

following hypotheses: 

1. Colonisation of plant roots by AMF will improve Si and P uptake and foliar concentration.  

 

2. The application of high-throughput sequencing methods to plant root DNA extracts from 

glasshouse experiments and field studies will accurately document the root colonising 

fungal communities and enable detailed analysis of species specific contributions to plant 

growth and nutrition. It is expected that despite differences in diversity, AMF abundance 

will remain a significant factor in Si and P uptake and concentration. 

 

3. Comparative analysis of the experiments in this thesis will reveal whether commonly 

applied AMF treatments in glasshouse conditions are valuable in replicating plant response 

in the natural environment. It is predicted that using natural inocula in controlled conditions 

will generate more ecologically relevant results.  
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2 Methods development 

This chapter has been included to provide context to the three main data chapters and to 

document preliminary experiments that had a significant impact on the direction of the research. 

It also includes a detailed overview of the sample preparation and bioinformatics for the next-

generation sequencing data that is used in Chapters 4 and 5.  

2.1  Substrate choice experiment 

  Introduction and background 2.1.1

Substrates suitable for plant growth naturally differ in their chemical composition depending on 

the parent material, and how readily available silicon (Si) compounds are available for plant 

uptake. For example, aluminosilicate clay material is more susceptible to weathering than quartz 

so sandy soils will have higher availability of soluble Si compared to clay-soils (Hodson & 

Evans, 1995). Substrates will also vary in pH which will impact the bioavailability of important 

compounds such as inorganic P (Pi) and silicic acid (Si(OH)4) for plant growth, and affect 

microbial activity also (Ehrlich et al., 2010). Availability of Si in substrates can vary widely 

between and within different substrates, for example soil concentrations are 1-0.6mM (Epstein, 

1999) and the dissolution of Si also varies with pH and is highest at low pH (~4-7) in soil and 

clay (Golubev et al., 2006; Haynes, 2014). 

This experiment analysed four common plant growth substrates to determine their effect on 

plant growth, Si content, and how they interacted with a Si enrichment treatment. The results of 

this experiment informed the choice of substrate for future experiments involving Si uptake and 

its interaction with mycorrhizal fungi. Two hypotheses were proposed:  

1. Plants grown in substrates with a pH range of 4-7 will have higher foliar Si concentrations 

than plants grown in substrates with lower or higher pH ranges. 

2. Plants treated with additional Si will have a higher Si content than plants without additional 

Si supply. 

  Materials and methods  2.1.2

Preparation of biological materials  

Winter wheat (Triticum aestivum var. croft (KWS-UK, Hertfordshire)) plants were grown with 

four different substrates: field soil from Yorkshire (Elvington), peat ( J. Arthur Bowers, Lincoln, 

U.K ) and perlite were used on their own and in combination (50:50) with terra-green (TG, 

calcinated attapulgite clay soil conditioner; Oil-Dri, Cambridgeshire, UK) resulting in six 

substrate treatments. All substrates were autoclaved (121°C, 72mins), soil and peat were 
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autoclaved twice with a 3 day resting period between autoclave events and prior to seed sowing 

while perlite and TG were autoclaved once. An additional Si treatment (Si+/Si-) was also 

applied to the plants, two weeks after germination. Half of the plants received 50ml of 

Thornton’s nutrient solution with added Si (Na2SiO3.9H2O) at 1.5mM (Si+) while the other half 

received a non-amended Thornton’s solution. These treatments were applied twice weekly for 

the duration of the experiment and all pots received dH2O throughout the experiment duration 

(Thornton & Bausenwein, 2000). Each treatment (substrate, Si +/-) was replicated 8 times, with 

a total number of 96 plants. Plants were grown in controlled glasshouse conditions (15-20°C, 

16:8hrs light:dark), in a randomised block design.  

Table 1: Names, formulas and final concentrations of chemicals used in the Thornton-Bausenwein 

nutrient solution. The final Si+ row indicates the chemical addition made for the Si+ treatments.  

Stock 

Solution 

Chemical Formula Final solution 

concentration 

(mg/L) 

1 Ammonium nitrate NH4NO3 120.00 

2 Calcium chloride CaCl2 233.10 

3 Magnesium sulphate heptahydrate MgSO4.7H2O 184.85 

4 Potassium sulphate K2SO4 87.13 

5 Sodium phosphate dihydrate NaH2PO4.2H2O 47.89 

6 Iron(III) citrate FeC6H5O7 2.45 

7 Micronutrients   

 Boric acid H3BO3 3.09 

 Manganese(II) sulphate tetrahydrate MnSO4.4H2O 1.92 

 Zinc sulphate heptahydrate ZnSO4.7H2O 0.58 

 Copper(II) sulphate pentahydrate CuSO4.5H2O 0.25 

 Ammonium molybdate tetrahydrate (NH4)6Mo7O24.4H2O 0.09 

Si+ Sodium metasilicate nonahydrate Na2SiO3.9H2O 426.3 

 

Measurements for pH were taken from three randomly selected pots per treatment (n=36), at 

two weeks post-germination, prior to the Si treatment application, and at harvest to monitor any 

changes related to the addition of the Si solution. pH of the Thornton’s solution with and 

without Si was also measured. pH measurements were taken from fresh substrate, and mixed in 

a 1:1 (v:v) with deionised water (dH2O).  

At harvest (49-52d after planting) leaf, shoot, and root fractions were separated and the latter 

rinsed thoroughly to remove residual substrate. Root length was calculated by the gridline-

intersect method (Tennant, 1975; McGonigle et al., 1990). Measurements were taken per field 

of view under a compound microscope at x200 magnification with a cross hair grid attachment 

to the lens. One hundred fields of view across two slides were analysed per sample, with 

samples randomised and allocated anonymous codes to avoid sampling bias based on the 

experimental condition (i.e. samples were analysed ‘blind’). Mycorrhizal structures (arbuscules 
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(A), vesicles (V), hyphae (H), and spores (S)) were scored independently, with hyphae being 

scored as mycorrhizal only if seen connected to other mycorrhizal structures listed above. If 

hyphae were viewed that possessed a similar structure to the mycorrhizal type (i.e. free of 

septa/coenocytic, similar diameter) these were labelled as ‘possible mycorrhizal hyphae’ (PH). 

Non-mycorrhizal structures were also noted (‘non mycorrhizal’ (NM)). Scores across the two 

slides (to add to a sum of 100 fields of view) were then analysed for percentage mycorrhizal 

colonisation (MC), minimum and maximum as follows: 

Min MC (%) = 100/(A+V+H+S) 

Max MC (%) = 100/(A+V+H+S+PH) 

Minimum values of colonisation were used throughout this thesis to ensure the values 

were most correct, and these scores were overall most consistent. 

Dried green leaf material was ground (Retsch MM400 Mixer mill, Haan, Germany) and pelleted 

(Specac Atlas™ manual 15ton hydraulic press, Kent, UK) for Si and P analysis using an X-ray 

Fluorescence (XRF) gun (Niton XL3t900 GOLDD Analyser, Thermo Scientific, UK) 

(Reidinger et al., 2012). The XRF gun was calibrated for measurements using Si-enriched 

methyl cellulose and validated using certified reference material from the China National 

Analysis Center for Iron and Steel; ‘Bush branches and leaves’ (NCS DC73349) (Reidinger et 

al., 2012).  

Statistical analysis 

Statistical analysis was carried out using Rstudio running R version 3.1.3 (RStudio Team, 

2016). Data was checked for normal distribution using the stats::shapiro.test and for 

homogeneity of variance using the stats::bartlett.test. Post-hoc tests were used where 

appropriate; the stats::TukeyHSD was used following ANOVA tests, while the FSA::dunnTest 

was used with the Bonferroni method following Kruskal-Wallis tests. One-way ANOVAs were 

carried out to examine the effects of Si treatment on foliar Si concentration and biomass within 

each substrate type. A non-parametric Kruskal-Wallis test was used to determine significant 

differences between substrate types. Linear models incorporating block as a random factor were 

compared to simpler models with the dependent factors (substrate and Si treatment) using the 

Akaike information criterion (AIC) to determine the model that best fit the data. Changes in pH 

were determined with a paired t-test within substrate types and a Mann-Whitney U test across 

substrates. Si concentrations were arcsine transformed prior to statistical analyses, graphs are 

produced with the raw concentration values, but statistical tests used arcsine values where 

appropriate.  
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  Results 2.1.3

All plants grew successfully to completion of the experiment. Plants grown in the peat substrate 

were much smaller in size compared to other treatments (Figure 6) and only three replicates had 

sufficient biomass to create a pellet for the Si analysis. The block in which plants were grown in 

did not affect the outcome of any statistical analyses, and this factor was removed from analyses 

based on the comparison of model AIC values. 

The pH of substrates across the experiment was measured to monitor changes caused by the Si 

treatments and how this may affect plant growth and Si concentration. The pH of the Si 

enriched nutrient solution was not adjusted for this experiment. Silicon enriched nutrient 

solution (Si+) had a pH of ~10.25, significantly higher (t(2)=-50.0, p<0.001) than the non-Si 

enriched nutrient solution (Si-) with a ~ pH 5.48. The addition of Si solution only had a 

significant impact on soil-TG substrate pH (t(2)=-5.167, p=0.035) increasing over the duration of 

the experiment (Figure 5). The addition of the lower pH Si- treatment led to a significant 

decrease in pH (t(2)=6.51, p=0.023) of the perlite substrate solution from an mean of 8.64 to 

7.48 (Figure 5). Overall the pH of the substrates was very diverse ranging from ~3.4 in peat to 

~8.3 in perlite. The addition of TG neutralised the pH, increasing or decreasing the pH of 

substrate solutions with the exception of the soil substrate. 

The substrate had a significant impact on the total biomass of plants (F(5,90)=59.78, p<0.01). TG 

addition significantly increased plant size in peat and perlite substrates compared to the single 

substrate treatments (Tukey adjusted P, Peat: p<0.001, Perlite: p<0.001), but decreased plant 

size when mixed with soil (Tukey adjusted P, p<0.001; Figure 6). This is possibly related to the 
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pH changes seen within these mixed substrates compared to the unmixed substrates (Figure 5). 

 

Figure 5: Change in substrate pH across the duration of the experiment at two weeks, prior to 

treatment with Si solution and at harvest, approximately 7 weeks after germination. Silicon (Si) 

treatment refers to the supply of Thornton’s nutrient solution alone (Si-, black) or with added 

soluble Si (Si+, blue). Substrates are Peat (shaded circle), peat mixed with Terra-Green (TG, non-

shaded circle), perlite (shaded triangle), perlite mixed with TG (non-shaded triangle), soil (shaded 

square), and soil mixed with TG (non-shaded square), n=3 for each treatment.  
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Figure 6: Dry weight biomass (g) by plant fractions (Leaf, Stem and Root) of winter wheat (Triticum aestivum var. Croft) grown in different substrates. The left panel 

shows results from plants grown without supplementary Si solution (Si-), and the right panel shows results from plants grown with weekly applications of a 1.5mM soluble 

Si solution (Si+), n=8 for all treatments 



 36  

 

Figure 7: Foliar silicon (Si) measurements in winter wheat (Triticum aestivum var. Croft) grown in different substrate types; a) Foliar silicon (Si) concentration and b) Si 

uptake efficiency (elemental uptake per unit root length, as calculated by total foliar elemental content/root length (cm). Silicon (Si) treatment refers to the supply of 

Thornton’s nutrient solution alone (Si-, grey bars) or with added soluble Si (Si+, white bars). Error bars represent standard error and n=8 for all treatments except for 

‘Peat’ where n=3 for Si+ and Si 
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The effect of Si+ treatment was variable depending on the substrate type (Figure 7a). Plants 

grown in Peat and Perlite showed the most significant increases in foliar Si concentration as a 

result of the Si+ treatment (Peat: F(1,4)=103.7, p<0.001; Perlite: F(1,14)=172.42, p<0.001). Si 

concentration in plants grown in perlite roughly doubled with the application of the soluble Si 

solution (Si- 1.06%, Si+ 2.03%). When substrates were mixed with TG, there was no increase in 

Si concentration associated with the Si+ treatment, yielding similar concentrations to the Si- 

treatments (Figure 7). Plants grown in the soil substrate demonstrated the lowest Si 

concentrations.  

To account for differences in biomass (Figure 6) Si uptake efficiency was calculated (Figure 

7b). The only plants that demonstrated a significant improvement in uptake of Si due to the Si+ 

treatment were those grown in perlite (F(1,14)= 16.85, p=0.001).The addition of terra-green 

improved the growth and Si uptake in both peat and perlite substrates, but this was not the case 

in the soil treatments. 

  Discussion 2.1.4

The addition of the Si+ nutrient solution had significant impacts on the pH of some substrates, 

particularly perlite and the soil-TG substrate mixture (Figure 5). pH appeared to be related to 

plant growth and the addition of TG, a clay substrate, buffered the pH of substrate. This 

concurrently led to improvements in plant growth and plant Si uptake efficiency in plants grown 

in peat and perlite substrates (Figure 6, Figure 7). This was not the case in plants grown in soil, 

where biomass decreased and Si uptake did not change with the addition of TG. However, pH 

cannot be the sole factor leading to the improvement in growth of plants grown in peat and 

perlite as growth and Si content and uptake were similar between the two despite their varying 

pH values (Figure 5, Figure 7 b). This may be due to TG improving the substrate structure and 

moisture content, although it should be noted that all plants received sufficient watering 

throughout.  

There is also the potential of TG providing a source of plant-available Si, as TG is a clay 

mineral composed of magnesium-aluminium silicate and potentially not an inert substrate but 

capable of influencing plant growth and Si uptake. Interestingly, the addition of Si solution did 

not appear to improve the Si concentration of plants grown in substrates mixed with TG. Again, 

because TG is a clay-based substrate this may indicate that the Si was binding to the clay 

particles. The dissolution, or release of ions and Si into solution varies with pH, and for Si is 

highest at pH 4-7 which would explain the high Si concentrations in Peat, Peat-TG and Perlite, 

and also the low concentration of Soil and Soil-TG (Golubev et al., 2006; Chen et al., 2011). 

Plants grown in soil had the lowest Si concentration, but due to a lower root:shoot ratio 

compared to plants grown in other substrates actually outperformed peat and perlite substrates 
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in regards to Si uptake efficiency (Figure 7b). Excluding the treatments involving substrate 

mixture with terra-green, soil in isolation performed the best in terms of plant growth and Si 

uptake efficiency.  

Aside from the quantitative results provided, there were some considerations regarding the 

harvesting process that influences the decision of substrates to take forward for mycorrhizal 

experiments. Harvesting plants from the peat substrate was complex due to the fine flecks of 

substrate becoming entangled in the roots and very difficult to remove compared to soil particles 

which easily washed away. Similarly, it was difficult to remove plant roots from the perlite 

substrate due to the roots growing through the perlite granules. This led to very time-consuming 

removal of roots in order to avoid damage so that accurate root length recordings could be 

obtained. This will be of particular concern in future experiments looking at the growth of 

mycorrhizas and their effects on plant root growth parameters.  

Overall, taking into consideration the Si fertilisation by TG, yield penalties by single substrate 

treatments of peat and perlite and the complications arising from harvesting plants from these 

two substrates, soil appeared to the best substrate for use in future experiments. Sand and TG 

mixtures are traditionally used in mycorrhizal studies predominately to create low-nutrient 

conditions to encourage mycorrhizal colonisation and also to improve root removal at harvest. 

However, this experiment has demonstrated that the use of TG is not appropriate for Si 

manipulation experiments. Sand was not considered as an option due to the chemical structure 

containing Si. The use of soil also has the benefit of recreating more ecologically relevant 

conditions within glasshouse studies and so this will be the substrate taken forward for future 

experiments involving mycorrhizas and Si manipulation. 
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2.2  Plant host selection for mycorrhizal and silicon manipulation 

experiments. 

 Winter wheat and mycorrhizal colonisation 2.2.1

Rationale 

Following on from the substrate experiment, an experiment to test the interaction between Si 

and arbuscular mycorrhizal fungal (AMF) colonisation on growth in winter wheat was set up. 

This experiment was devised to understand the change in Si accumulation in plants over time 

and whether mycorrhizal fungal colonisation affected Si uptake and accumulation. 

Materials and methods 

This experiment used a two way factorial design using application of a soluble Si application of 

Na2SiO3.9H2O  at 1.5mM (Si+) or a dH2O control (Si-) where pH of both Si- and Si+ treatments 

was altered to pH 7, and a commercial single species AMF inoculum, Glomus intraradices (syn. 

Rhizophagus intraradices, BEG72) accounting for 10% of total substrate volume (PlantWorks, 

UK). In addition there were three harvest time-points (4, 7, and 10 weeks after germination). 

The four treatments (AMF-/Si-, AMF+/Si-, AMF-/Si+, AMF+/Si+) were replicated seven times 

per harvest resulting in a total of 84 replicates over the course of the experiment plus eight 

sacrificial pots to check the progress of mycorrhizal colonisation.  

At harvest, plant fractions were weighed and dried (70°C, 3 days). Fresh roots were subsampled 

for staining. These were cleared in 10% KOH for 3 days at 25°C, then rinsed with dH2O and 

acidified for 1 hour in 1%HCl. Roots were stained in a 0.01% acid fuschin-lactic acid solution 

for 3days at 25°C before being rinsed once in dH2O and stored in destain solution (1:1:14 

dH2O:glycerol:lactic acid) until analysis. Samples were randomised and analysed blind for 

AMF intra-radical structures (arbuscules, hyphae, vesicles), at 100 fields of view per sample at 

x400 magnification to give a percentage of root length colonised (Nikon Eclipse 50i, Melville, 

NY) (McGonigle et al., 1990). Non-AM fungal root colonisation was also recorded. 

Results 

During the experiment sacrificial pots were sampled from to test for colonisation to inform 

future experimental harvest time points but no colonisation was observed in these at any point. 

Harvests were carried out as planned but very low mycorrhizal colonisation (<1% total root 

length) was recorded across the three harvest time points and across the treatments. Due to the 

lack of colonisation, Si analysis was performed on the control (AMF-/Si-) and Si supplemented 

(AMF-/Si+) alone to reduce experimental costs. Addition of Si solution did not lead to any 

significant differences in foliar Si concentration (F(1,35)=3.60, p=0.066, Figure 8). Foliar Si 
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concentration did change over the time course of the experiment (F(2,35)=11.53, p<0.001), 

increasing significantly between four week old plants to older plants (Tukey adjusted p: Week 

7: p=0.028; Week 10: p<0.001), but there was no significant difference between seven and ten 

weeks (Tukey adjusted p: p=0.147, Figure 8). Similarly, there was a significant difference in 

biomass across the harvests (F(2,37)=232.55, p<0.001), but no significant effect of Si treatment 

overall (F(1,37)=2.89, p=0.098).  

 

Figure 8: Foliar silicon (Si) concentration (%) of winter wheat (Triticum aestivum var. Croft) plants 

harvested at four, seven and ten weeks post-germination. The Si treatment was either a weekly 

application of 1.5mM Si solution (+, white bars) or an equivalent volume of deionised water (-, grey 

bars). Error bars represent standard error. The large, bold letters represent significant differences 

in Si concentration between harvests, the smaller letters represent significant differences between Si 

treatments across harvests.  
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Discussion 

Overall this experiment demonstrated that Si addition alone was not necessarily beneficial to 

plant growth or foliar Si concentration in winter wheat plants. It also demonstrated that either 

this variety of winter wheat (var. Croft) was not mycorrhizal dependent, as different crop 

varieties can express different levels of mycorrhizal responsiveness (Lehmann et al., 2012), or 

that the experimental materials (including the inoculum), setup and growth were not optimal for 

AMF colonisation. The quality of the mycorrhizal inoculum may be an issue also whereby 

colonisation by AMF may have been suppressed due to the presence of competing fungi in the 

plant roots, as non-mycorrhizal structures were noted in the mycorrhizal counts of experimental 

plants. Winter wheat was deemed an unsuitable plant to take forward for further experiments.  
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  Plant host screening experiment 2.2.2

Rationale 

Si enrichment in agricultural settings is increasing due to the substantial evidence of its benefit 

to plant growth across a number of different crops, and across a range of different stress 

conditions (Reynolds et al., 2016). Enrichment of soil microbial communities in agricultural 

systems is also being investigated to provide plants with similar benefits in growth and defence 

since agricultural soils were show to be microbially depauperate (Helgason et al., 1998; Thirkell 

et al., 2017). Co-inoculation experiments investigating the dual benefits of Si and AMF in crop 

species have been published in recent years, demonstrating the novelty of this research area 

(Garg & Bhandari, 2015; Oye Anda et al., 2016; Garg & Singh, 2017; Frew et al., 2017b). This 

led to the selection of a widely used crop species as the focal species in this project; however the 

outcome of the previous experiment involving winter wheat was not successful in regards to 

AMF colonisation, which may be due to low mycorrhizal responsiveness. A transition to a non-

crop species would generate more ecologically relevant results, and be important in 

understanding the interactions between AMF and Si uptake. This has relevance in natural 

systems, particularly with regards to herbivory defence and community structure which has 

important considerations for grassland conservation for example. 

The aim of this experiment is to see how the growth and foliar Si concentration of four different 

native grasses is affected by colonisation by an AMF Glomus intraradices (BEG72, syn. 

Rhizophagus intraradices) and Si fertilisation. The results of this experiment will inform the 

study species of future experiments.  

Materials and methods 

Four different species within the Poaceae grass family were selected. Brachypodium sylvaticum 

Huds. Beauv., Bromus erectus Huds. (Syn. Bromopsis erecta), Deschampsia cespitosa L. 

P.Beauv., and Lolium perenne L.. These plants were chosen based on their life history traits, 

their amenability to colonisation by AMF and their varying Si content (Grime et al., 1988, 

Harley and Harley, 1987, Massey et al., 2007).  

I. Preparation of biological materials 

Plants were grown with addition of live (AMF+) or twice sterilised single species AMF 

inoculum (AMF-) and addition of Si solution (Si+) or an equivalent volume of deionised water 

(dH2O) (Si-), resulting in four treatments (AMF-/Si-, AMF-/Si+, AMF+/Si-, AMF+/Si+). The 

AMF inoculum, Rhizophagus intraradices Walker & Schüßler (Glomus intraradices Schenck & 

Smith, (Schüßler and Walker, 2010)) isolate BEG72 was obtained from PlantWorks, UK in a 

zeolite-sand substrate containing spores and root fragments. The growth medium was field soil 
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from Yorkshire sterilised by two autoclave events (121°C, 72mins), with three days resting 

between and after autoclaving. The AMF inoculum for the AMF- treatment was also sterilised 

by the same method. To control for the effect of associated, non-AMF communities in the 

rhizosphere, the AMF inoculum was filtered (20µm mesh, followed by Whatman no.1) to obtain 

a bacterial filtrate, and 20ml was added to all pots to ensure uniform bacterial communities 

across all treatments. Seeds were sown directly in 0.5L pots, with 10% volume of AM 

inoculum, sterilised or live. The AMF inoculum (10% total pot volume) was added as a block, 

just under the soil surface based on advice received, rather than thoroughly mixing with the soil 

as was done previously in Section 2.2.1. This results in a dense patch of inoculum close to the 

location of the seed, increasing contact with the AMF propagules in the inoculum, and therefore 

increasing the chances of establishing a successful symbiosis. There were seven replicates per 

treatment (determined by an a priori power analysis test with an effect size of 0.25 (Thomas, 

1997)), grown in controlled glasshouse conditions (15-20°C, 16:8 hrs light:dark), in a 

randomised block design. Treatments (AMF-/Si-, AMF+/Si-, AMF-/Si+, AMF+/Si+) were 

replicated for each grass species, therefore resulting in a total of 12 treatments, each replicated 7 

times (n=84).  

Si solution consisted of 1.5mM sodium silicate nonahydrate (Na2SiO3.9H2O), with a pH 

amended using 0.5M HCl to match the pH of the dH2O Si- treatment. Control treatments 

received equivalent volumes of dH2O. Plants in the Si+ treatment received approximately 45mg 

of Si per week (exceeding natural soil concentrations and in line with similar studies 

(McKeague & Cline, 1963; Massey et al., 2006)), plus supplementary dH2O when required.  

At harvest leaf, shoot, and root fractions were separated and the latter rinsed thoroughly to 

remove residual soil. Root length was calculated by the gridline-intersect method (Tennant, 

1975; McGonigle et al., 1990). Root sub-samples were taken for mycorrhizal analysis, and their 

dry weights (DW) estimated for total root DW biomass (((remaining root fresh weight (FW) + 

root FW of AMF subsample) / remaining root FW) x remaining root DW).  

II.  Si and P measurement 

Dried green leaf material was ground (Retsch MM400 Mixer mill, Haan, Germany) and pelleted 

(Specac Atlas™ manual 15ton hydraulic press, Kent, UK) for Si and P analysis using an X-ray 

Fluorescence (XRF) gun (Niton XL3t900 GOLDD Analyser, Thermo Scientific, UK) 

(Reidinger et al., 2012). The XRF gun was calibrated for measurements using Si-enriched 

methyl cellulose and validated using certified reference material from the China National 

Analysis Center for Iron and Steel; ‘Bush branches and leaves’ (NCS DC73349), and ‘Spinach’ 

(NCS ZC73013) for the Si and P concentrations, respectively (Reidinger et al., 2012). 



 44  

III.  Symbiosis development  

Roots were cleared in 10% KOH at 70°C for 30 minutes then rinsed thoroughly with dH2O 

followed by staining in a 5% ink (Pelikan 4001 Brilliant Black)-5% acetic acid solution for 20 

minutes also at 70°C. Root were then rinsed in 1% acetic acid solution and stored in destain 

solution (1:1:14 dH2O:glycerol:lactic acid) until analysis. Prior to analysis, samples were 

randomised and assigned new IDs to avoid bias. Roots were mounted on glass slides in destain 

solution and analysed for intra-radical structures (arbuscules, hyphae, vesicles), at 150 fields of 

view per sample at x400 magnification to give a percentage of root length colonised (Nikon 

Eclipse 50i, Melville, NY,(McGonigle et al., 1990)).  

IV.  Statistical analysis 

Percentage data was arcsine transformed prior to statistical analysis. Analysis was conducted in 

R studio Version 3.1.3, (R Development Core Team, 2011; RStudio Team, 2016). Two Linear 

models were created using the lme4:lmer function (including the random term ‘Block’ to test for 

an effect of the block plants were grown in) or stats:lm function in R. The two models were 

compared using the Akaike Information Criterion (Akaike, 1973) to determine the model which 

best fits the data, and the model with the lowest score was selected for further analysis. The 

graphics:plot function was used to plot the data from the simple linear model to view the 

distribution of replicates and residuals.  Data was checked for normality and homogeneity of 

variance using the Shapiro-Wilk normality test (stats:shapiro.test) on the residual data points of 

the simpler linear model and Levene's test for homogeneity of variance across groups 

(car:leveneTest), respectively. Data was normally distributed and the simpler model excluding 

‘Block’ as the random term best described the data. Two-way analysis of variance (ANOVA) 

was carried out on mixed-effect linear models where the fixed effects were the AMF and Si 

treatments.  Correlations were performed on transformed data using the Pearson product-

moment correlation, calculated using the stats:cor.test function in R. 
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Figure 9: Total root length colonisation (%) of three grass species, Brachypodium sylvaticm (left panel), Deschampsia cespitosa (central panel), Lolium perenne (right panel) 

when grown with a live (AMF+) or sterilised (AMF-) arbuscular mycorrhizal inoculum and a silicon supplement (Si+) or water control (Si-). Grey bars represent 

colonisation by AMF, and white bars represent colonisation by non-AMF, error bars represent standard error.  
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Results  

B. erectus seeds did not germinate under the conditions of this experiment after three weeks in 

the glasshouse. The viability of the seeds was checked on growth on moistened filter paper in 

Petri dishes and no growth was observed in these circumstances either. Each plant species had a 

different growth and emergence rate and was therefore harvested at different times to balance 

the risk of plants becoming pot bound with plants having insufficient biomass to be able to 

produce pellets for Si analyses. L. perenne was the most rapidly growing species and was 

harvested 10 weeks post-germination. B. sylvaticum was harvested 11-12 weeks post-

germination and D. cespitosa 18 weeks post-germination. Roots were analysed for mycorrhizal 

structures, but only B.sylvaticum plants showed significant colonisation by AMF. Both L. 

perenne and D. cespitosa had within the region of 20-30% of total root length was colonised by 

non-AMF fungal structures, and on average 1-2% AMF colonisation (Figure 9).  

Discussion 

The failure of B. erectus to germinate and the lack of mycorrhizal colonisation in L. perenne and 

D. cespitosa only left B. sylvaticum as a viable option as a host plant to be used in future 

experiments. The three data chapters 3, 4, and 5 all focus on the relationship between Si and 

fungal colonisation in B. sylvaticum. 

This experiment also had an impact on the methods used in subsequent experiments to introduce 

fungi to experimental pots. The low rates of colonisation by AMF coupled with the presence of 

relatively high root colonisation by other non-mycorrhizal fungi across a range of different 

plants led to questions about the quality of mycorrhizal inocula used in the experiment. The 

mycorrhizal inoculum is clearly the largest source of contaminants or non-target fungi given the 

lower counts in AMF- treatments. Analysis of root samples was conducted blind after samples 

were randomised and given arbitrary sample names to avoid bias in the counting stage. The 

following section discusses the implications of using commercial and stock pot inocula. 

The full analysis of this experiment, focussing on B. sylvaticum is presented in Chapter 3. 
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2.3 Verifying mycorrhizal cultures 

  Rationale 2.3.1

The abundance of non-target fungal structures in experimental plant roots that was seen in early 

experiments was of concern. Mycorrhizal trap pots or stock pots are used to bulk up mycorrhizal 

inoculum using plants with high mycorrhizal susceptibility. This section details the molecular 

analysis of fungi in plant roots of existing stock pots and of a new stock pots set up containing 

the PlantWorks inoculum used in the previous two experiments (Sections 2.2.1 and 2.2.2). 

  Materials and methods 2.3.2

Mycorrhizal stock setup 

A 50:50 (v:v) mixture of sand and terragreen (TG, attapulgite clay) was dampened with distilled 

water and sterilised by autoclaving (121°C, 72mins). Plant pots were sterilised by immersion in 

8% Haychlor bleach overnight (~16hours) and rinsed thoroughly prior to potting. Plantago 

lanceolata L. seeds were sterilised by immersion and shaking in a 4% Haychlor solution for 2 

minutes, and thoroughly rinsed with deionised water (dH2O) to remove residual bleach. For 

each 1L pot, a 20µm mesh was cut to size and fitted in the base of the pot, 0.25g of bone meal 

and ~50g of original AMF inoculum (roots, spores and substrate) was mixed thoroughly with 

1L of autoclaved sand:terragreen mixture and added to the pots. Ten seeds of P. lanceolata were 

added to the pots and pots were inserted into sunbags (0.2µm pore; Sigma-Aldrich (Merck), 

MO, USA) to prevent cross contamination, labelled and transferred to the mycorrhizal stock 

glasshouse (15-20°C, 16:8 light:dark). A further three stock pots were sourced from existing 

stocks at the University of York including a Glomus mosseae, Gigaspora rosea and an 

additional G. intraradices. The other stock pots were set up by other PhD students and 

researchers (~1-2 years previously) using the same method detailed above.  

Mycorrhizal inocula origin and sampling 

The single species mycorrhizal inoculum from Plant Works Ltd. (Kent, UK) was used directly 

from the source material as an inoculum source in the previous two experiments (Sections 2.2.1, 

2.2.2). A sample of the original inocula in a terragreen-vermiculite (1:1, v:v) substrate was used 

to set up stock pots to produce further inocula for follow up experiments. The G. mosseae stock 

pot was also originally sourced from PlantWorks while the Gig. rosea and G. intraradices were 

from stocks originating from BioRhize Ltd. (Dijon, France), which has ceased to operate. 

Although the taxonomic names have been overviewed and updated recently (Schüßler & 

Walker, 2010), this chapter will refer to the stocks as they were identified by the companies that 

supplied them.  
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Sampling 

Root samples were taken using a 2cm diameter core inserted half way down the pot, generating 

approximately 6cm depth of substrate and root mixture. The corer was washed thoroughly 

before and between samples with water followed by 70% ethanol. Roots were extracted from 

the substrate and washed before drying in a 70°C oven for 3 days. Samples were transferred to 

Eppendorf tubes with 2mm stainless steel ball bearings and milled for 1 minute (24 Hertz; 

Retsch MM400, Haan, Germany).  

DNA extraction and Polymerase Chain Reaction (PCR) 

DNA was extracted from milled root material using the PowerPlant™ DNA isolation kit (MO 

BIO Laboratories, Inc., CA, USA) following the manufacturers protocol with an additional step 

for phenolic removal. DNA was eluted in 50µl of kit buffer and concentrations were determined 

by NanoDrop ND-8000 Spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA). 

DNA was stored at -20°C until PCR amplification using a Techne TC-512 thermocycler (Bibby 

Scientific, Staffordshire, UK). The ribosomal RNA (rRNA) Internal Transcribed Spacer (ITS) 

region was amplified using the ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4 (5′-

TCCTCCGCTTATTGATATG-3′) primer pair (Gardes & Bruns, 1993). Each PCR reaction 

mixture contained 5µl 5xGo-Taq Flexi buffer, 2µl 25mM MgCl2, 0.5µl 10mM dNTP mix, 0.5µl 

of each primer, 0.125µl GoTaq Flexi DNA polymerase, 15.875µl dH2O and 0.5µl template 

DNA. Samples were initially denatured for 4 minutes at 94 ºC, followed by 32 cycles of 94 ºC 

for 40 seconds, 52 ºC for 40 seconds, and 72 ºC for 60 seconds, concluded by a final extension 

at 72 ºC for 10 minutes. Products were checked by separation on 2% agarose gel by 

electrophoresis. PCR products were purified with the QIAquick PCR purification kit (Qiagen, 

CA, USA).  

Bacterial cloning 

DNA concentrations of the purified PCR products were quantified using the NanoDrop ND-

8000 Spectrophotometer to calculate the amount of PCR product required for the ligation 

reaction. PCR products were mixed in a 3:1 ratio with a vector (pGEM-T Easy Vector, 

Promega) calculated independently for each sample to control for different DNA concentrations. 

Each ligation reaction contained 5µl of 2x Rapid ligation buffer, 1µl of pGEM-T Easy Vector, 

1µl of T4 DNA ligase and varying volumes of the PCR product dependent on sample 

concentration, and dH2O to make up to the final 10µl volume. These reactions were incubated at 

4°C overnight. 50µl (100µl control) of Bacterial JM109 high-efficiency bacterial cells were 

added to Eppendorf tubes containing 2µl of the incubated ligation reaction, these reactions were 

heat shocked at 42°C for 45-50 seconds and returned to ice for two minutes. 950µl (900µl 

control) of Super Optimal Broth with added glucose (SOC) was added and reactions were 
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shaken for 1.5hours at 37°C. 100µl of reaction mixture was plated onto agar enriched with 

antibiotic ampicillin and X-gal for blue/white screening. Plates were incubated overnight at 

37°C and white colonies demonstrating successful transformation were selected for secondary 

PCR under the same conditions described above. This was performed for six samples, two 

plates per sample and five colonies selected from each plate. PCR products were cleaned as 

above, DNA concentrations verified and samples diluted to 1ng/µl per 100bp for Sanger 

sequencing carried out by Source Bioscience (Cambridge, UK).  

Sequence processing 

Sequence identity was checked using the NCBI Basic Local Alignment Search Tool (BLAST) 

for nucleotide sequences. Sequences were trimmed using BioEdit v7.2.5 (Hall, 1999) and 

aligned using MEGA v6.06 (Tamura et al., 2013). A Neighbour-Joining tree with five hundred 

bootstrap replications was generated using the MEGA package.  

  Results  2.3.3

Of the six pots that were analysed (three of Glomus intraradices, one of Gigaspora rosea and 

two of Glomus mosseae) only two produced sequences corresponding to arbuscular mycorrhizal 

fungi. One of the G. intraradices (2_BioRhize_Glomus intraradices, Figure 10) pots was 

dominated by sequences of F. mosseae, not the intended species. Another pot set up from the 

same initial starting inoculum (1_BioRhize_Glomus intraradices) however did not generate any 

mycorrhizal sequences. Similarly G. rosea (4_BioRhize_Gigaspora rosea) produced a sequence 

that corresponded to Rhizophagus irregularis, not the intended species (Figure 10).  

Sample three (3_PlantWorks_Glomus intraradices), was the most recently sourced stock that 

was analysed, and was derived from the same material used as a mycorrhizal inoculum in 

Sections 2.2.1 and 2.2.2. No mycorrhizal sequences were identified in this analysis coming from 

this stock, but rather the sequences generated were dominated by isolates from the Fusarium 

genus, and including one sequence identified as Serendipita sp. (syn. Piriformospora). 

Fusarium is a large genus containing saprophytic and pathogenic fungi while Serendipita is 

typified by S. indica a plant growth promoting endophytic fungus. Other frequently isolated 

species across other samples included Gibellulopsis nigrescens (syn. Verticillum nigrescens), a 

common plant pathogen, and isolates from the Myrothecium genus another potential plant 

pathogen.  

  Discussion 2.3.4

Overall, this analysis was dominated by a few species, mostly non-mycorrhizal. It could be 

argued that glasshouse contamination could be causing non-mycorrhizal fungi to become 

dominant in these pots. However, if this was the sole reason for the contamination of the pots, 
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then it would be expected that the sequencing results would be uniform across all samples. 

However this is not strictly the case and replicates of the same pots appear to cluster together, 

which indicates that the source of contamination may have arisen from the production stage in 

the suppliers systems. For example, the sequences generated from the Gig. rosea pot were 

unique in producing sequences of an Alternaria sp. and Mortierella alpina that were not found 

in other samples. However, some pots that have been set up with the same starting inocula have 

produced different results (i.e. comparing 1 and 2_BioRhize_Glomus intraradices), and others 

have produced similar sequencing outputs (i.e. 5 and 6_PlantWorks_Glomus mosseae; Figure 

10). This may reflect the ages of the cultures, or the difference in techniques used in the setup, 

as these were set up by different people. 

Overall, it appears that mycorrhizal stocks, independent of age and origin, contain a variety of 

fungi potentially at higher abundance in the roots than the target mycorrhizal species. While 

some stocks did contain mycorrhizal sequences, these were not the species that were meant to 

be in the cultures. While some stock pot contents are checked through staining and visualisation 

with microscopy prior to their use as a source of mycorrhizal inoculum, distinguishing between 

species of AMF in the roots is difficult to do visually (Merryweather & Fitter, 1998). This 

suggests that without the use of molecular quantification it may be difficult to be certain of the 

contents of stock pots. The presence of pathogenic fungi is of concern, but potentially less 

significant than the presence of a plant-growth promoting fungus from the Serendipita genus. 

The inclusion of this in mycorrhizal experiments may result in it contributing to beneficial plant 

response in a way that makes it difficult to disentangle from the effect of mycorrhizal fungi. The 

colonisation of roots by AMF is said to be opportunistic and different plant species and varieties 

have different mycorrhizal responsiveness and susceptibility to disease. A combination of these 

two factors and the overall absence of sequences corresponding to AMF in the PlantWorks G. 

intraradices inoculum that was used as the AMF source in previous experiments may reveal 

why colonisation was so low. This review of single species mycorrhizal stocks highlights the 

importance of verifying the contents of mycorrhizal inoculum sources, including those supplied 

direct from the producers, prior to experimentation.  
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Figure 10 Neighbour-joining tree displaying relationships between sequences from different 

mycorrhizal stocks. 'BioRhize' and 'Plant Works' refer to the source company and the intended 

cultured species, Glomus intraradices, Glomus mosseae and Gigaspora rosea. Clusters are annotated 

on the right hand side with Blastn assigned taxonomy. Bootstrap values indicate support for nodes.
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2.4  Overview of High-Throughput Sequencing methods  

This section is included to present an overview of the methodology involved in the preparation, 

sequencing and bioinformatics of samples and data for the Illumina MiSeq sequencing platform 

that was used in Chapters 4 and 5.  

  Sample preparation 2.4.1

30-40mg of dried (70°C 3 days) root material was milled (Retsch MM 400, Haan, Germany) 

with two steel grinding balls (1cm diameter) in a 25ml steel capsule (2 minutes, vibrational 

frequency 24 Hertz). DNA was extracted using PowerPlant
TM

 DNA isolation kit (MO BIO 

Laboratories, Inc., CA, USA). DNA was eluted in 50µl of kit buffer and concentrations were 

determined by NanoDrop ND-8000 Spectrophotometer (Thermo Fisher Scientific, Wilmington, 

DE, USA). DNA was stored at -20°C until PCR amplification using a Techne TC-512 

thermocycler (Bibby Scientific, Staffordshire, UK). DNA amplification was carried out in a 

nested PCR approach to produce enough product for sequencing. The DNA regions of interest 

were initially amplified using the general eukaryotic NS31 (5’-

TGGAGGGCAAGTCTGGTGCC-3’, Simon et al., 1992)) and ITS4 (3’-

TCCTCCGCTTATTGATATGC-5’, Gardes & Bruns, 1993)) primer pair, which covers the 18s 

small subunit (SSU), ITS1, 5.8s and ITS2 regions of the rRNA operon therefore creating a high 

volume of template product for the nested PCR. Products of this reaction were diluted 1:100 and 

used for PCR amplification using general fungal primers adapted with forward and reverse 

Illumina Nextera adapter and linker sequence (ITS1F-ITS4) and the V4 region of the 18s small 

subunit (SSU)  AMF specific region (NS31 (5’-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGANNWNNNHTTGGAGGGCA-3’)-

AM1 (Helgason et al., 1998).  

Problematic PCR reactions were used where the basic PCR recipe did not produce product, or 

weak bands. PCR products were purified with the GenElute™ PCR Clean-Up kit (Sigma-

Aldrich, St Louis, MO, USA) and DNA concentration determined by Invitrogen™ Quant-iT™ 

DNA high sensitivity assay Kit (Invitrogen, Life Technologies, Carlsbad, CA, USA). Sample 

concentrations were adjusted so all template was at the same concentration (2ng µl
-1

) in a 10µl 

volume. These purified products served as the DNA template for barcoded high-throughput 

sequencing on the Illumina MiSeq platform (Illumina Inc., San Diego, CA, USA) at the 

University of York, UK.   

 

Table 2: Details of the reaction mixture and PCR cycles used on fungal DNA extracts for the initial 

long-read PCR (NS31-ITS4) and the PCR amplification using Illumina MiSeq specific primers (ITS 
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region: I11-I14, AM region: I13-I15). Kits used were Q5 ® High-Fidelity DNA Polymerase (New 

England Biolabs, MA, USA) and GoTaq® G2 Flexi DNA Polymerase kit (Promega, WI, USA). 

 Primary long-read PCR Illumina MiSeq 

Primer pairs NS31-ITS4 ITS1F(I11)-

ITS4(I14) 

NS31(I13)-

AM1(I15) 

Reaction 

Mixture (25µl) 

5µl 5x GoTaq® Flexi buffer 5µl 5x Q5 reaction buffer 

2µl 25mM MgCl2  

0.5µl 10mM dNTP mix 0.5µl 10mM dNTP mix 

 0.5 µl each primer 0.5 µl each primer 

 0.125µl GoTaq® Flexi DNA 

polymerase 

0.125µl High-Fidelity DNA 

polymerase 

 15.375µl dH2O 17.375µl dH2O 

(*problematic samples: 14.875µl) 

 1µl template DNA 1µl template DNA (diluted 1° PCR) 

    *problematic samples: + 2.5µl BSA 

PCR Cycle    

Initial denaturation 5min at 94°C 5min at 95°C 5min at 95°C 

Cycles 30 20 20 

  Denaturation   30sec at 95°C   30sec at 94°C   30sec at 94°C 

  Annealing   30sec at 55°C   40sec at 55°C   40sec at 57°C 

  Extension    2min at 72°C   1m10sec at 72°C   1m10sec at 72°C 

Final extension 5min at 72°C 10mins at 72°C 10min at 72°C 

  Illumina Miseq sequencing 2.4.2

Amplicons were tagged with the Illumina adapter sequence were then subject to a final round of 

amplification to add the unique barcode sequences. Eight cycles of PCR amplification were 

performed using NEBNext® High Fidelity Q5 Polymerase 2X mastermix (New England 

Biolabs, Ipswitch, MA) and Illumina Nextera® XT index primers (Illumina, USA). Amplicons 

were purified using 0.9 x by volume AMPure XP beads (Beckman Coulter, High Wycombe, 

UK) and eluted into low TE buffer before quantitation and pooling at approximately equimolar 

ratios. Samples were diluted to 4nM before denaturing with 0.2N NaOH ready for loading at 

~10 pM, with a 20 % PhiX library spike (Illumina; for added sequence variety). Amplicon pools 

were sequenced on an Illumina MiSeq with a 600 cycle kit. The fastq (fasta files with integrated 

quality information) were created via the generation workflow in Illumina’s BaseSpace 

Sequence Hub. 

  Sequence processing 2.4.3

Downstream sequence processing was carried out in PuTTY/Unix using the QIIME v.1.9.1 

analysis pipeline (Caporaso et al., 2010). The full pipeline for processing sequences ready for 

diversity analyses is detailed in Table 3. The databases used for the amplicons differed, ITS 

sequences were referenced against the general fungal UNITE database (v7.1, Kõljalg et al., 

2005; Abarenkov et al., 2010) while AMF sequences were referenced against the 

Glomeromycota specific MaarjAM (v.0.8.1, Öpik et al., 2010) database. For the sorting stage 
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(Step 18-19, Table 3) OTU sequences were aligned using the EMBL-EBI online Clustal Omega 

tool (Goujon et al., 2010), which generates a simple distance phylogeny and a percentage 

identity matrix. OTUs that had high similarity (>90% for ITS, >95% for AM amplicons) were 

highlighted and taxonomy checked with BLAST (search parameters excluded environmental 

samples). Multiple OTUs were collapsed into a single record based on ID, and read counts 

aggregated if the BLAST outputs led to the same taxonomic outcome at high confidence 

(identical accessions or identity at >97% QC and ID in BLAST). Taxonomic attributes of OTUs 

previously assigned as ‘unidentified’ or ‘unassigned’ were edited to reflect the findings of the 

BLAST search and non-fungal OTUs were removed. Trophic guilds were assigned to group 

OTUs into ecologically meaningful categories using FunGuild (Nguyen et al., 2016). 
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Table 3: QIIME analysis pipeline 

  Action Function Description 

1 Strip off 1st 

13 bases 
usearch8  
-fastq_filter “input file name.fastq”  

-fastq_stripleft 13  
-fastqout “output file name.fastq” 

(repeat for all sequence files ) 

Remove the randomised bases added to sequences used in amplicon 

sequencing, so that sequences can be distinguished.  

2 De-

multiplexing 

sample files 

convert_fastaqual_fastq.py  

-f “input file name.fastq” 

-c fastq_to_fastaqual 

(repeat for all sequence files) 

Raw fastq file (-f) contains sequence and quality information. These need to be 

“de-multiplexed” and split into two files, a .fastqual (quality data) file and a 

sequence file (.fna).  

3 Create 

mapping files 

#SampleID BarcodeSequence

 LinkerPrimerSequence 
E4AM TTGGAGG GCAAGTCTGGTGCC 
E4ITS TCCGTAG GTGAACCTGCGG 

  

(Create a separate file for each sample) 

Create a mapping file so that QIIME can distinguish between the different 

amplicons you’ve used. There is no barcode, but this assigns the first 7 bases of 

the primer sequence as the barcode sequence and then the rest as a linker 

sequence. 

4 Filters out 

poorer 

sequences, 

and changes 

sequence 

headers  

split_libraries.py  

-b 7  

-m Step3_maps/eh1map.txt  

-f Step2/EH1_S66_L001_R1_001.fna  

-q Step2/EH1_S66_L001_R1_001.qual  

-o “Step4/EH1” 

(repeat for all sequence files) 

b is barcode, defined in Step 3 (7 bases long) 
-m is the mapping file location from Step 3 (.txt) 
-f is the sequence file from Step 2(.fna) 
-q is the file with quality information from Step 2 (.fastaqual) 
-o is the file path where to create a new directory for the  output (a .fna file and 

quality records) 

5 Creates 

separate .fasta 

split_sequence_file_on_sample_ids.py  

-i “Step4/EH1/seqs.fna”  
To pull the two amplicon AM and ITS sequences into separate files. 
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files for each 

amplicon 

within a 

sample 

-o “folder name” 

(repeat for all sequence files) 

6 Merges all 

samples by 

amplicon to 

generate one 

file per 

amplicon 

cat EH1_AMF.fasta EH2_AMF etc.  

> concatenatedAMF.fna 

(repeat for other amplicon) 

File names to be separated with a space only, no returns or lists.  

The next five steps are to rename the within file sequence headers to make them compatible with later analyses. 

7a sed 's/>/>barcodelabel=/g' concatenatedAMF.fna > step7a_AMF.fna 

7b sed 's/_/;/g' step7a_AMF.fna > step7b_AMF.fna  

7c sed 's/ M/z/g' step7b_AMF.fna > step7c_AMF.fna 

7d sed 's/z.*//' step7c_AMF.fna > step7d_AMF.fna 

7e sed 's/;201/1/g' step7d_AMF.fna > step7e_AMF.fna 

8 Groups identical 

seqeunces 

usearch8 -derep_fulllength step7e_AMF.fna 

-fastaout step8_AMF.fa -sizeout 

Input concatenated file with new headers, -fastaout to define new file name. 

9 Sort clusters by 

size 

usearch8 -sortbysize step8_AMF.fa  

-fastaout step9_AMF.fa  

-minsize 2 

Groups sequences together based on size, excludes singletons or samples with 

fewer than two records (minsize 2). 

10 Removes AMF:  For AMF sequences, the MaarjAM database of Glomeromycotan sequences, and 
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chimeric 

sequences  

usearch8 -uchime_ref step9_AMF.fa  

-db qiime_MaarjAM-master/maarjAM.5.fasta  

-strand plus  

-nonchimeras step10_AMF.fa 

ITS uses the UNITE database of general fungal sequences. 

11 Alter OTU 

labels   

python fasta_number.py step10_AMF.fa  

OTU_ > step11_AMF.fa 

Re-numbers OTUs after the previous re-ordering and sorting steps 

12 Maps new OTU 

file onto older 

file version for 

sample 

information 

usearch8 -usearch_global step7e_AMF.fna  

-db step11_AMF.fa -strand plus -id 0.97  

-uc step12_AMF.uc 

 

Input file is the output of Step7e, the complete concatenated table prior to 

filtering. The ID parameter dictates 97% similarity between sequences. –uc is the 

output in the form of a mapping file for the next step.  

13 Creates an OTU 

table 

python uc2otutab.py step12_AMF.uc > 

step13_AMF.txt 

 

The mapping file from step 12 is used to generate an OTU table.  

14 Convert from 

.txt to .biom file 

biom convert  

-i step13_AMF.txt  

-o step14_AMF.biom  

--table-type "OTU table" --to-json 

The following steps require a specific .biom file format so this converts the 

step13 product from a text to biom file.  

15 Assign 

taxonomy to 

sequences 

assign_taxonomy.py  

-i step11_AMF.fa  

-o step15_AMF/  

-r maarjAM.5.fasta  

-t maarjAM.id_to_taxonomy.5.txt 

This stage compares the sequence file from Step 11 to the reference databases 

fasta files (AMF: MaarjAM, ITS: Unite) to assign taxonomy to the sequences.-o 

is the file path for a new directory with the taxonomy assignments and a log file.  

16 Add meta data 

to file 

biom add-metadata  

-i step14_AMF.biom  

-o S16_AMF.biom  

This adds the sample information from the mapped sequence file from Step 14. 

Will create a table of OTUs counts for each sample. 



 58  

--observation-metadata 

-fp 

step15_AMF/step11_AMF_tax_assignments.txt  

--observation-header 

OTUID,taxonomy,confidence  

--sc-separated taxonomy  

--float-fields confidence 

17 Remove non-

fungal samples 

filter_taxa_from_otu_table.py  

-i step16_AMF.biom  

-o step17_AMF.biom  

-n k__Plantae,k__Protista,k__Protozoa 

Filters the OTU table, removing any samples that have been assigned as plant, 

protist or protozoan by the reference databases. The unite database contains a 

minimal amount of sequences on non-fungal samples, but this will remove them 

if present.  

18 Convert from 

.biom to .txt 

biom convert  

-i step17_AMF.biom  

-o step18_AMF.txt  

--table-type "OTU table" --to-tsv 

This needs to be converted to a text file so that the information can be visualised 

and extracted for the next step.  

At this stage many sequences will be “unassigned” because the databases are limited and there may be unassigned non-fungal sequences that need to be removed. 

Sequences are checked using NCBI BlastN database to assign taxonomy manually, non-fungal samples removed, and similar samples collapsed. The Step 15 

taxonomy file is also updated and re-imported for diversity analyses. 

19 Convert from 

.txt to .biom 

biom convert  

-i s18_AMF_curated.txt  

-o s19_AMF.biom  

--table-type "OTU table" --to-json 

Import the reduced and curated OTU table and convert from .txt to .biom file 

20 Add sample 

metadata 

biom add-metadata  

-i step19_AMF.biom  

-o step20_AMF.biom  

This is the same as Step 16, but is necessary to re-add the metadata to the OTU 

table since both files have been altered. 
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--observation-metadata 

-fp 

step15_AMF/step11_AMF_tax_assignments.txt 

--observation-header 

OTUID,taxonomy,confidence  

--sc-separated taxonomy  

--float-fields confidence 

21 Remove rare 

samples 

filter_otus_from_otu_table.py  

-i step20_AMF.biom  

-o step21_AMF.biom  

--min_count_fraction 0.00005 

This removes very rare samples which become problematic for normalisation 

techniques and can skew the data. This filters by total abundance of each OTU 

and removes if present at frequencies of less than 0.005% as recommended in 

documentation for Step 22. 

22 Normalise table normalize_table.py  
-i step21_AMF.biom  

-a CSS  

-o step22_AMF.biom 

This script normalises the abundance data and is used as an alternative to 

rarefying samples which can remove an excessive amount of data (McMurdie et 

al., 2014). The method CSS (cumulative sum scaling) is from the 

metagenomeSeq package(Paulson et al., 2013)  

23 Assign trophic 

guilds 

python Guilds_v1.0.py  

-otu step21_plustax.txt  

-db fungi -m -u 

This assigned fungal trophic guilds to the OTUs. It requires an OTU table with 

the taxonomic assignments included in the same file, so a new column with 

these is added with the header ‘taxonomy’.   
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3 Colonisation by Rhizophagus irregularis increases root 

uptake efficiency of silicon and phosphorus in 

Brachypodium sylvaticum   

3.1  Introduction 

Arbuscular mycorrhizal fungi (AMF) are obligate plant symbionts that colonise the roots of 

over 80% of land plants (Smith & Read, 2010). AMF exchange plant growth limiting nutrients, 

predominately P collected from the soil for photosynthetic carbon (Parniske, 2008). AMF 

mobilise P in the soil by forming networks of fine hyphae or extra-radical mycelia (ERM), 

which extend beyond the rhizosphere and penetrate small soil pores, thereby evading the P 

depletion zone that forms around plant roots, and indirectly improving soil nutrient retention 

(Rhodes & Gerdemann, 1975; Smith & Smith, 2011; Cavagnaro et al., 2015). Aside from P 

uptake, AMF are capable of directly transporting other compounds to the plant, including water 

and nitrogen (N) (Dietz et al., 2011; Hacquard et al., 2013; Hodge & Storer, 2014).  

The mechanism by which H2O is taken up by AMF hyphae is mediated by fungal aquaporin 

(AQP) channels present in the hyphal cell walls (Giovannetti et al., 2014). Six AQP from two 

AMF species, Glomus intradices (syn Rhizophagus intraradices, Aroca et al., 2009; Li et al., 

2013b) and R. clarus (Kikuchi et al., 2016) have been identified to date and primarily control 

hyphal supply of water to plants (Li et al., 2013a; Calvo-Polanco et al., 2014), but have also 

been linked to the facilitation of N and P transport through fungal hyphae (Kikuchi et al., 2016). 

AMF colonisation can also have a significant impact on the expression of certain plant AQP 

genes, the directional response  of which is dependent on plant and fungal species combinations 

and application of biotic and abiotic stresses (Uehlein et al., 2007; Armada et al., 2015).  

Silicon (Si) uptake by plants is a multistage process, initially achieved by uptake of silicic acid 

(Si(OH)4) from the soil through an AQP channel, a ubiquitous membrane protein in plants (Ma 

et al., 2006; Maurel et al., 2015). Colonisation by AMF has been shown to stimulate alterations 

in AQP gene regulation and channel gating in all five AQP groups, including the NIP sub-

family, to which the Si channel, Lsi1 belongs (Uehlein et al., 2007; Giovannetti et al., 2012). 

There has been some indications that AMF colonisation may improve Si concentrations within 

plants under different conditions (Yost & Fox, 1982; Kothari et al., 1990; Hammer et al., 2011). 

Within the last few years several studies have directly measured Si concentrations in plants with 

an arbuscular mycorrhizal (AM) symbiosis, although the mechanism for improved uptake is still 

unknown (Garg & Bhandari, 2015; Oye Anda et al., 2016; Garg & Singh, 2017; Frew et al., 

2017b). 
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The ability of AMF to improve plant Si concentration has significant implications for 

understanding species interactions and plant defence in natural environments as well as 

informing sustainable agricultural practice. Si has been shown to have a number of functional 

roles in plants (Cooke & Leishman, 2011; Cooke et al., 2016), but one of the most important is 

as a defence against herbivores (Reynolds et al., 2009; Hartley & DeGabriel, 2016) and 

pathogens (van Bockhaven et al., 2013). Deployment of these defences depends in part on the 

availability of SiOH4 in the soil (Garbuzov et al., 2011) which is in turn affected by numerous 

environmental factors, such as soil microbial (Alfredsson et al., 2016) and faunal (Bityutskii et 

al., 2016) communities, pH (Gocke et al., 2013), and litter degradation (Carey & Fulweiler, 

2016). The use of AMF as a method to improve Si concentration is now being considered, 

particularly as Si does not decrease the ability of AMF to colonise plants as previously thought 

(Garg & Bhandari, 2015; Maurel et al., 2015).  

This existing work on the impact of AMF colonisation on Si uptake has been carried out 

exclusively in agricultural species, but native grasses are also Si accumulators (Massey et al., 

2007a) and if AMF can increase plant Si accumulation in natural grasslands, there are important 

implications for plant-herbivore interactions (Hartley & DeGabriel, 2016). In this paper we 

present the results of the first experiment testing how Si uptake of the native grass 

Brachypodium sylvaticum Huds.(Beauv.) changes with AMF colonisation and Si addition. It 

was hypothesised that Si and AMF addition will independently improve Si uptake and foliar 

concentration, and that these effects will be additive, in line with previous studies. A secondary 

hypothesis that foliar P concentration will improve with colonisation by AMF was also tested 

by comparing the Si and P concentration and growth parameters of B. sylvaticum plants grown 

in a fully factorial randomised block design experiment.  

3.2  Materials and methods  

The methodology used in this chapter follows that detailed in Chapter 2 Section 2.2.2. Based on 

the positive colonisation results of the Brachypodium sylvaticum plants, this chapter focusses on 

further analysis of this species alone. In summary, there were four treatments (AMF-/Si-, AMF-

/Si+, AMF+/Si-, AMF+/Si+): addition of live (AMF+) or twice sterilised single species AMF 

inoculum (AMF-) and addition of Si solution (Si+) or an equivalent volume of deionised water 

(dH2O) (Si-), resulting in four treatments. Each replicated 7 times resulting in 28 B. sylvaticum 

plants grown. These were grown in a randomised block design interspersed with the other three 

species documented in Chapter 2 (Section 2.2.2). Statistical analyses are as described in Chapter 

2, Section 2.2.2. The data fit a normal distribution and homogeneity of variance, and therefore 

two-way ANOVA and correlations were able to be carried out.  
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3.3  Results 

  Plant growth and colonisation 3.3.1

Plants of the AMF- treatments showed no presence of AMF structures under microscopic 

analysis, but both AMF+ treatments had a substantial level of root length colonised (RLC) by 

AMF structures and no detrimental effect of Si application on RLC was observed (Table 4). 

Root biomass was significantly affected by AMF colonisation, decreasing on average to 11% of 

the total plant biomass, compared to 30% in non-colonised plants (Table 4). Specific root length 

can be used as a proxy for root structural characteristics, with higher values indicating a finer 

root system (more length (m) per g), and lower values representing a root system formed 

primarily of coarser or thicker roots (less length (m) per g). Colonisation by AMF increases 

specific root length relative to non-colonised treatments, demonstrating that AMF have a 

significant impact on root structural characteristics leading to the development of a root system 

dominated by fine roots (Table 4). While the addition of AMF led to a significant reduction in 

the size of several root characteristics measured, this was not directly correlated with the 

presence of AMF structures in the root. Total root length colonisation was not significantly 

correlated to root length (t(10)=-1.91, p=0.09), specific root length (t(10)=-0.27, p=0.79)  or root 

biomass (t(10)=-1.81, p=0.10). 

While leaf and root biomass decreased significantly in the AMF+ treatments, compared to 

AMF- controls (F(1,22)=7.06, p=0.01; F(1,22)=49.29, p<0.01 respectively), stem biomass did not 

(F(1,22)=1.96, p=0.18, Table 1). Despite the dramatic decrease in root biomass in AMF+ 

treatments, shoot biomass was not reduced to the same extent. The addition of Si solution in 

combination with AMF significantly increased leaf biomass and leaf water content, but no other 

growth parameters (Table 4).   

  Foliar Si and P content 3.3.2

Plants colonised by AMF had significantly lower foliar Si concentration than non-colonised 

counterparts (F(1,22)=18.28, p<0.01), while the Si+ treatment increased concentration relative to 

Si- controls (F(1,22)=9.29, p<0.01) (Figure 11a). No significant interaction effect was shown 

between the AMF and Si treatments (F(1,22)=1.96, p=0.18). Leaf P concentrations, showed a 

pattern similar to Si, with colonisation leading to a significant decrease in concentration 

(F(1,22)=82.78, p<0.01), and Si treatments causing it to increase (F(1,22)=22.51, p<0.01) (Figure 

11c). However, unlike for the Si concentrations, there was a significant interactive effect 

(F(1,22)=6.04, p=0.02) of the AMF and Si treatments. Overall, the AMF-/Si+ treatments had the 

highest Si and P concentrations, and AMF+/Si- had the lowest, reflecting the impacts of the 

treatments on root biomass.  
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Due to the significantly decreased root fractions of AMF colonised plants, uptake efficiency of 

roots was calculated (foliar Si or P content (mg)/root length (cm)). Plants colonised by AMF 

had greater Si and P uptake efficiency than non-colonised treatments (Figure 11b, d). The 

addition of AMF was the sole factor leading to a more efficient uptake of Si (F(1,22)=14.34, 

p<0.01) and P (F(1,22)=17.97, p<0.01). There was no significant effect of Si supplementation on 

Si (F(1,22)=1.33, p=0.26) and P (F(1,22)=1.39, p=0.25) uptake, nor was there a significant 

interaction effect between AMF and Si treatments (Si: F(1,22)=0.003, p=0.96; P: F(1,22)=0.004, 

p=0.95).  

Total leaf Si content was positively correlated to increases in root length in colonised plants 

(t(10)=4.10, p<0.01), but no such relationship was observed in non-colonised plants (t(11)=1.13, 

p=0.28) (Figure 12a). The same pattern was observed for total leaf P, but the relationship in the 

AMF+ treatments was stronger (t(10)=5.70, p<0.01), and weaker for AMF- treatments (t(11)=0.19, 

p=0.85) compared to the Si data (Figure 12b). The correlations in Figure 12a and 2b show clear 

segregation of treatments in terms of AMF addition, but also of Si addition. The total root 

length colonised by AMF was found to be an important factor in determining the relationship 

between root length and total foliar P content (F(1,17)=12.99, p<0.01), but there was no 

interaction detected between these factors for the Si data (F(1,17)=1.64, p=0.22). These 

relationships mirror the uptake efficiencies represented in Figure 11b and d, which provides 

evidence of improved nutrient uptake efficiency in AMF treated plants. 
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Table 4: Treatment effect of silicon (Si) addition and arbuscular mycorrhizal fungi (AMF) on fungal root length colonisation (RLC, %), dry weight biomass of plant 

fractions (g; leaf, stem and root), leaf water content (g) and specific root length (m/g) of Brachypodium sylvaticum plants.  

Treatment (n) RLC (%) Dry weight biomass (g) Leaf water content (g) Specific root length (m/g) 

AMF Si   Leaf  Stem Root   

- - 7 0
a
 (± 0) 1.43

b 
(± 0.07) 0.64

a
 (± 0.02) 0.80

b
 (± 0.07) 2.96

b
 (±0.23)  32.72

a
 (± 1.69) 

- + 6 0
a
 (± 0) 1.36

ab
 (± 0.08) 0.65

a
 (± 0.04) 0.94

b
 (±0.15) 3.07

b
 (±0.13) 31.43

a
 (± 4.21) 

+ - 7 33.14
b 
(± 2.88) 0.86

a
 (± 0.16) 0.48

a
 (± 0.08) 0.19

a
 (±0.11) 1.74

a
 (±0.38) 52.56

b
 (± 6.65) 

+ + 6 35.67
b 
(± 7.15) 1.21

ab
 (± 0.21)  0.63

a
 (± 0.11)  0.20

a
 (±0.07) 2.35

ab
 (±0.42) 39.48

b
 (± 6.22) 

Symbols represent Si/AMF absent (-) Si/AMF present (+). Numerical values presented represent the mean ± standard error. Mean values followed by different letters 

within the same column indicate statistical differences where p<0.05 assessed by Tukey HSD post-hoc test. 
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Figure 11: Treatment effect of silicon (Si-/Si+) and arbuscular mycorrhizal fungi (AMF-/AMF+) on 

foliar Si (a) and P (c) concentration (elemental % dry weight), and Si (b) and P (d) uptake efficiency 

(elemental uptake per unit root length, as calculated by total foliar elemental content/root length 

(cm)). Bars represent mean values of each treatment, and error bars represent standard error.  
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Figure 12: Treatment effect of silicon (Si-/Si+) and arbuscular mycorrhizal fungi (AMF-/AMF+) on 

the relationship between root length and total foliar Si (a) and P (b). Empty symbols represent non-

colonised (AMF-) treatments, and filled symbols represent colonised plants (AMF+), triangles 

represent treatments receiving supplementary silicon (Si+) and circles represent the treatment that 

received a deionised water control (Si -).  
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3.4 Discussion 

The data presented in this paper show the significant impact that symbiotic root fungi can have 

on plant growth, root architecture, and nutrient status. Plants colonised by AMF showed a 

significant reduction in root biomass compared to non-colonised plants, but were capable of 

supporting larger relative aboveground biomass, suggesting that the presence of the AMF in the 

roots led to higher root function efficiency. This was corroborated with the nutrient uptake data 

that showed that per centimetre of root, AMF treated plants were two to three times more 

efficient at taking up Si and P compared to non-colonised counterparts. The hypothesis of this 

study was that AMF and Si application in tandem would lead to the highest overall Si 

concentration. Si addition alone did improve both Si and P concentration, and in tandem with 

AMF addition did lead to some small improvements, compared to the non-Si supplemented 

treatment. However, accommodating for plant biomass differences, the AMF treatment was the 

most significant stimulus for improved nutrient uptake efficiency. This is important in regards to 

alternative methods for improving Si uptake in plants in the field, whereby the addition of AMF 

can yield multiple benefits in terms of improved nutrition (Leigh et al., 2009; Smith et al., 

2011), defence (Pozo et al., 2009; Hartley & Gange, 2009) and Si supply without costly Si 

supplementation. 

The most striking data from this paper are the strong correlation of shoot nutrient content and 

root length in AMF colonised plants; a relationship that is lacking in non-colonised plants 

(Figure 12a,b). This strong relationship in colonised plants demonstrates that increases in root 

length are directly linked to total leaf Si and P content. This is supported by the data in Figure 

11b and d, whereby per unit length of root, AMF plants are more efficient at nutrient uptake. 

Total root length colonised was not found to correlate with root length, nor nutrient 

concentration or uptake. However, it was a significant factor in the relationship between total 

foliar P content and root length, which was not the case in the total foliar Si concentration. The 

fact that the presence of AMF structures in the root is important for P, but not for Si, does 

suggest some functional segregation, and different mechanisms for the improvement of uptake 

of both nutrients. The idea that total root length colonised is not indicative of symbiont function 

has been noted previously (Smith et al., 2004). This strongly suggests that the presence of AMF 

in the root is stimulating change that is not related to abundance of fungal structures in the root, 

but rather functional symbiont activity. This therefore raises questions about the mechanisms by 

which Si uptake is improved in colonised plants. 

AMF are capable of supplying a variety of resources from the soil to the plant through the ERM.  

This is a well-established mechanism for P, N and water transport, where transporters and 

channels have been identified in AMF hyphae and at the peri-arbuscular membrane (PAM), 
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where plant and fungus meet within the root and exchange products necessary for the successful 

symbiosis (Leigh et al., 2009; Smith et al., 2011; Kikuchi et al., 2016). AQP channels in the 

ERM have been implicated in the success of N and P uptake by mycorrhizal fungi, primarily 

through their role in facilitating water flow through the hyphae, a process that is stimulated by 

plant transpiration (Kikuchi et al., 2016). Transpiration is also the driving force for the transport 

of SiOH4 from root to leaf tissues (Ma & Yamaji, 2006). However, the polymerisation and 

deposition of silica within the leaf is carried out by another, currently unknown, but likely 

biological process in the apoplast involving proteins, peptides, or sugars condensing the soluble 

SiOH4 (Kumar et al., 2017a). The data showing an improvement in foliar water content as a 

result of joint AMF and Si addition may support this, as Si uptake was also more efficient in the 

AMF+/Si+ treatments (Table 4, Figure 11). Further data looking at ERM length and activity of 

known AMF AQP genes will clarify the role of AMF in direct supply of Si. Results of other 

studies on AMF and Si have speculated that there may be a direct transfer of Si through the 

fungal ERM and that Si enters the plant through the arbuscules and PAM (Oye Anda et al., 

2016). This is also supported by the work of Hammer et al (2011) who were able to measure the 

accumulation of Si in AMF spores and hyphae under salt stress conditions, indicating that there 

is some mechanism for AMF hyphae to assimilate Si. The differences in rates of uptake of Si 

and P in mycorrhizal plants may therefore be due to differences in plant demand for each of 

these elements, water uptake or the varying availability of these nutrients in the soil.  

An alternative mechanism for improved nutrient uptake efficiency in AMF colonised plants is 

that the colonisation by AMF is stimulating improved plant uptake of resources. The evidence is 

conclusive on direct uptake of P, N and water by AMF hyphae, but the differences in patterns of 

Si and P uptake in the data may suggest that Si is not taken up in the same manner. Total root 

length colonisation was important in the relationship between P content and root length, but this 

was not the case for Si content. Colonisation of plants by AMF leads to highly complex 

transcriptional responses by plants; colonisation has been shown to up- and down-regulate a 

multitude of plant genes, including those coding for AQP channels, both under stress and non-

stress conditions (Ouziad et al., 2006; Uehlein et al., 2007; Bárzana et al., 2015; Chitarra et al., 

2016). There are examples of AQP genes coding for channels in the NIP family, to which the Si 

channel Lsi1 belongs, being stimulated by AMF colonisation, providing a potential mechanism 

for Si uptake to improve in colonised plants (Giovannetti et al., 2012). In this study specific root 

length was significantly increased in colonised plants, which supports the hypothesis that AMF 

stimulate plant-based Si uptake (Table 4). This translates to an increase of fine roots thereby 

creating a greater root surface area and enabling access to smaller soil pores. A network of finer 

roots confers the ability to access water and solute resources inaccessible to coarser roots, which 

may be reflected in the higher relative leaf water content in AMF colonised plants (Table 4). 

However, an abundance of fine roots does not necessarily lead to an increase in the abundance 
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of nutrient transporters in the root system. The Si AQP channel, Lsi1 that controls the initial 

entry of SiOH4 into the root is located in mature root regions of lateral and main roots, farther 

than 10mm from root tips, and not present in root hairs (Ma et al., 2011). So combined with an 

overall decrease in root size and increase in fine roots, AMF stimulated changes in Si uptake 

may be increasing the efficiency of transporters but unlikely to be stimulating changes in root 

structure that favours an increase in Si channel abundance. More detailed root structural analysis 

and monitoring of Si AQP (Lsi1) gene activity in the roots will enable this hypothesis to be 

answered.  

The main confounding factor in this study has been the substantial size difference between 

colonised and non-colonised plants (Table 4). Unusually, foliar P content also decreased with 

colonisation by AMF. As the results indicate, P content is intrinsically linked with root length 

and unlike similar studies colonisation by AMF significantly decreased root length and biomass 

(van der Heijden, 2004; Garg & Singh, 2017). Reports of decreased biomass in colonised plants 

are not uncommon, and are attributed to the fungus being a carbon drain when the plant has 

adequate nutrient supply (Johnson et al., 1997; Smith & Smith, 2011). In this study, plants were 

grown in a soil medium, rather than nutrient limiting media (often sand and attapulgite clay) 

commonly used in mycorrhizal studies, which may explain why non-mycorrhizal plants show 

higher levels of P as it was not limiting in these conditions. Yield penalties have been observed 

in Brachypodium distachyon, where colonisation by certain AMF led to decreased biomass and 

P relative to controls (Hong et al., 2012). Biomass gains for Brachypodium plants are highest in 

part-shaded conditions, so potentially the glasshouse conditions were unsuitable for the growth 

of these plants (Füzy et al., 2014). The results of this study suggest the plant may be allocating 

less growth to the roots as the fungal hyphal network is efficiently increasing the surface area of 

absorption of the root system. It could be argued that due to their smaller size, the colonised 

plants may be at a different developmental stage to the non-colonised plants, and that the AMF 

are having a parasitic effect. With the current data is it difficult to determine developmental 

markers by disentangling them from the growth data taken, but this something that should be 

considered in future studies.  

This work is the first demonstration of improved Si uptake in non-crop species colonised by 

AMF. The results of this study indicate that AMF colonisation leads to dramatic changes in root 

size and architecture which can improve Si and P uptake, and while P uptake is related to total 

root length colonisation in the root, Si uptake is not. AMF colonised plants had significantly 

decreased root biomass but aboveground biomass was not decreased to the same extent 

suggesting that the AMF were acting to support the root system. Under glasshouse conditions 

used in this study, there is a clear growth penalty associated with being mycorrhizal, but in a 

natural system, mycorrhizal plants would likely have a competitive advantage over non-
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mycorrhizal equivalents, where growth resources could be allocated to above ground growth 

without detriment to the belowground system. It is currently unclear what the mechanisms 

behind the improved uptake efficiency of Si and P by mycorrhizal plants are, however we have 

outlined two testable hypotheses: a) AMF colonisation stimulates activity of plant genes 

encoding Si AQP channels (perhaps related to improved water supply and transpiration), and b) 

AMF hyphae directly take up Si and transport it to the plant, in a similar mechanism to P and N. 

Improved plant Si uptake in mycorrhizal plants is supported not only by this work but previous 

studies, and these findings open up new opportunities to improve plant nutrition using natural 

systems. 
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4 How does mycorrhizal community affect Si and P content 

of Brachypodium sylvaticum plants? 

4.1  Introduction 

Rhizosphere organisms improve plant survival by improving availability and supply of 

nutrients, and through enhancing natural resistance to biotic and abiotic stresses. The arbuscular 

mycorrhizal fungi (AMF, Phylum Glomeromycota) are one of the most widespread and ancient 

symbiotic associations (Parniske, 2008; Davison et al., 2011). AMF are obligate biotrophs that 

form specialised, highly branched structures in plant root cortical cells called arbuscules, from 

which the fungus exchanges limiting nutrients from the soil for photosynthetic carbon (Smith & 

Read, 2010). While AMF are the most widely recognised plant growth promoting fungi, there 

are a multitude of interactions between microbes in the rhizosphere, and with their plant hosts 

that contribute to improving plant resilience to biotic and abiotic stresses (Berg, 2009). 

Although the majority of land plants are capable of forming a symbiosis with AMF, the 

environmental conditions are not always conducive to their formation (Smith & Read, 2010). In 

high intensity agricultural systems, plants are typically supplied with a volume of nutrients 

sufficient for their growth throughout the growing season, therefore reducing the reliance on 

AMF associations (Jensen & Jakobsen, 1980; Koide, 1985; Santos et al., 2006). Additional 

processes such as monoculture production, applications of pesticides and repeated tilling of soil 

all lead to depauperate fungal soil communities (Helgason et al., 1998; Daniell et al., 2001; 

Bowles et al., 2016). There is significant evidence for improved ecosystem function with high 

species diversity, and this is predicted to be due to an increase in variety of functional traits 

within the community (Maherali & Klironomos, 2007). For example, plants can be colonised by 

multiple AMF species, but there is a substantial range in the carbon cost and nutrient supply of 

these fungi, leading to the acknowledgement of a ‘mutualism-parasitism’ continuum among 

AMF (Johnson et al., 1997; Munkvold et al., 2004; Helgason & Fitter, 2009). The success and 

efficacy of the symbiosis is dependent on a multitude of factors determined by the identity of 

the plant and fungus as well as the abiotic environment and developmental stage (Johnson et al., 

1997; van der Heijden & Kuyper, 2001).  

Intra-specific diversity can also have significant implications on plant growth and nutrition, and 

potentially leads to higher levels of functional diversity than interspecific diversity (Munkvold 

et al., 2004). Different isolates of the same AMF species can alter plant growth and nutrition 

with varied outcomes, even if the isolates originate from the same community (Koch et al., 

2006; de Novais et al., 2014). It is predicted that high levels of intraspecific variation in AMF 

species tolerant of soil disturbance may compensate for the lack of species diversity in highly 

managed and disturbed environments (Munkvold et al., 2004). Furthermore, plants colonised by 
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AMF also demonstrate increased recruitment of plant growth promoting bacteria compared to 

non-mycorrhizal plants, and the efficacy and specificity of recruitment depends on the AMF 

species colonising the plant (Sood, 2003; Cameron et al., 2013). However, evidence shows that 

a similar mechanism exists for a direct recruitment of plant pathogenic bacteria and fungi to the 

plant rhizosphere, a mechanism irrespective of plant P status (Scheffknecht et al., 2006; 

Maherali & Klironomos, 2007). 

Plant colonising fungi also contribute to a range of other benefits for plants, both directly and 

indirectly. For example, colonisation leads to complex effects on the regulation of a variety of 

plant genes including those involved in plant water relations and defence. Similarly, the result 

and direction of these responses depends on multiple factors including specific combinations of 

plant and fungal species and the application of stress (Uehlein et al., 2007). Aside from their 

benefits on plant productivity, soil microbes, and particularly AMF perform a variety of 

additional useful functions within the soil profile, such as improving soil particle aggregation 

(Rillig & Mummey, 2006), reduction of nutrient leaching (Cavagnaro et al., 2015), carbon 

sequestration (Wilson et al., 2009) and limiting the release of nitrous oxide (N2O) from the soil 

produced by denitrification (Bender et al., 2014).  

In order to study the mechanisms and investigate specific plant responses to fungal root 

colonisers, the effects of single species on plant responses are typically examined in isolation. 

Single species stock or ‘trap’ cultures are produced by growing mycorrhizal responsive plants 

with a single species of mycorrhizal fungi to generate a large number of spores and root 

fragments as an inoculum source (Mosse, 1962). However, the long durations of growth and 

sub-culturing can lead to the introduction of fungal contaminants (Chapter 2, Section 2.3). Over-

reliance of studies on the effect of AMF in insolation from other beneficial soil fungi, in single-

species and single-isolate additions on plant growth and nutrition has been repeatedly 

highlighted in the literature and results in a bias towards easily cultivatable species (van der 

Heijden & Scheublin, 2007; de Novais et al., 2014). Comparisons between field and artificial 

AMF species assemblies demonstrate that similar richness can be achieved artificially, and plant 

benefits can be mirrored, but requires two or three different families of the Glomeromycota to 

be present, while most studies focus on the Glomeraceae alone (Maherali & Klironomos, 2007). 

Artificial species assemblages can also not bear any real comparison to field conditions. In one 

study where Rhizophagus irregularis was added into natural species mixtures, R. irregularis 

became the dominant root coloniser at a detriment to plant growth and overall decreased 

extraradical mycelia (Symanczik et al., 2015). Using inocula derived from agricultural and 

natural soils will enable a comparison to be made on how species in the field interact and affect 

plant growth under controlled conditions. This introduces the limitation of adding a high degree 

of complexity into the system, but will ultimately create a more realistic evaluation on how 
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natural microbial communities affect the growth of plants and relate controlled and targeted 

experiments carried out in glasshouses to real-world environments.  

In the majority of published studies, there is a tendency for colonisation data presented to focus 

purely on the abundance of AMF structures within the root, and to not record other fungi that 

are present within the root, or indeed to check the identity of colonising fungi in a robust way 

(Chapter 2, Section 2.3). The ability to amplify and sequence all fungal DNA using high-

throughput or next-generation sequencing (NGS) techniques has yet to be applied to the 

sequencing of plant roots in glasshouse conditions using traditional inoculum additions of root 

fragments and spores, but its use here will evaluate the true diversity of fungi present in these 

systems and whether this is a useful and cost-effective technique to use in such systems.  

The aim of this study was to evaluate the plant growth and nutritional response of 

Brachypodium sylvaticum plants to different fungal inocula sources. NGS techniques were 

applied to highlight differences in the microbial communities and relate these to alterations in 

plant growth and nutrition, and to evaluate the effectiveness of NGS in an artificial 

environment. Using natural inocula sources from commercially available stocks, agriculture, 

and woodland we created varying fungal communities at different levels of disturbance. We 

predicted that: 

1. Plants will have distinct fungal communities associated with each treatment. 

2. Plant growth and nutrition will be improved with colonisation of AMF and other symbiotic 

fungi, with higher foliar P and Si concentration compared to controls.  

3. Plants treated with inocula derived from an undisturbed (i.e. non-agricultural) site will have 

higher diversity of root colonising fungi.   
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4.2   Materials and methods 

   Preparation of biological materials 4.2.1

Fungal inocula were obtained from soil or substrates collected from four sources predicted to 

have varying fungal diversity: woodland grass, an agricultural field margin, an agricultural 

pasture, and a single species AMF stock pot. The woodland sample was obtained from Hetchell 

Woods, a site of special scientific interest (SSSI) close to Leeds (SE 376424). The pasture 

(SE442423) and field margin (SE441423) samples were taken from the Leeds University field 

research unit, close to Bramham, Leeds. A vegetated soil patch of approximately 30x30x10 cm 

was collected from each of these sites. The single species stock pot was Plantago lanceolata 

plants colonised by single AMF species in a 1:1 sand and attapulgite clay substrate, the identity 

of the fungal colonisers (predominately F. mosseae) in the root fragments were checked through 

clone libraries and sanger sequencing as described in Chapter 2 (Section 2.3.3). Throughout this 

paper, the treatments will be referred to as Control, F. mosseae, Field Margin, Pasture and 

Hetchell.  

500ml of substrate was repeatedly washed with tap water through a sieve stack until the flow-

through was clear. The sieve stack had 5 sieve sizes, starting with 2mm diameter mesh to 

prevent large debris to 600µm through to 50µm. Spores were collected by backwashing from 

each sieve <2mm  with 100ml of dH2O, the backwash from each sieve was mixed together and 

20ml of the spore backwash mixture was added to each experimental pot. Control pots received 

20ml of dH2O. Bacterial filtrates were added to pots to control for the effect of non-fungal 

rhizosphere organisms. 500ml of substrate was mixed with 1L of water and filtered through 10 

layers of muslin, followed by Whatman No.1 filter paper (pore size 11µm) until filtrate was 

clear. 20ml bacterial filtrate from the original source site was added to the respective treatment 

pots. Control pots received 20ml of filtrate mixed from the other treatments. Plant roots and 

spore washes were added to pots in combination to ensure a full range of fungal propagules was 

applied to capture the full diversity within the inocula (Varela-Cervero et al., 2015). 

   Experimental set-up and harvest 4.2.2

Treatments were replicated eight times, (n=40), based on results of an a priori power analysis 

(α=0.05, effect size=0.8 (based on pilot data), power = 0.95). Half-litre volume pots were filled 

with twice-autoclaved sieved soil (<2mm) which was allowed to rest 3 days between autoclave 

events and after the final autoclave. Plants were grown in glasshouse conditions (16:8h, 20:18°C 

day:night) in a randomised block design. Nine seeds were sowed and later thinned to leave one 

plant per pot. Plants received 50ml of NaSiO3.9H2O every 4 weeks, to ensure Si was not 

limiting. 
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Plants were harvested 10 weeks after seedling emergence. Roots were removed intact, rinsed 

and scanned using an Epson Perfection V700 photo scanner and image data analysed using 

WinRhizo (Regent Instruments Inc., Quebec City, Canada) to obtain root characteristics. Roots 

were then cut into 1cm pieces and randomly sub-sampled for root staining for mycorrhizal 

colonisation analysis and stored in 40% ethanol until staining. Remaining root, leaf and stem 

were dried separately at 70°C for 72 hours. Root dry weights (DW) were estimated to account 

for staining samples ((remaining root fresh weight (FW) + root FW of AMF subsample) / 

remaining root FW) x remaining root DW). 

Si and P analysis followed the same protocol as described in Section 2.2.2; Materials and 

methods; I. Root staining and root length colonisation of AMF and non-AMF was measured 

according to the same protocol as described in Section 2.2.2; Materials and methods; III. 

   Illumina Miseq sequencing 4.2.3

DNA was extracted and amplified from dried plant roots according to the protocol described in 

Chapter 2, Section 2.4. Samples were randomly split across two different sequencing runs, due 

to operational costs and availability. From 40 samples, 37 generated PCR products. Of these 

samples 27 generated products from both the ITS1F-ITS4 (ITS region) and NS31-AM1 (AM 

region) amplicons, 7 and 3 samples only amplified at the ITS and AM regions respectively. This 

was not related to the sequencing run which samples were placed. Sequence products were 

trimmed, de-multiplexed and quality filtered using QIIME v.1.9.1 (Caporaso et al., 2010). ITS 

and AM OTUs were generated and sorted using USEARCH (v.8,Edgar, 2010) using the general 

fungal UNITE (v7.1, Kõljalg et al., 2005; Abarenkov et al., 2010) and Glomeromycota specific 

MaarjAM (v.0.8.1, Öpik et al., 2010) databases respectively, at a 97% similarity threshold. 

OTU sequences were also aligned using the EMBL-EBI online Clustal Omega tool (Goujon et 

al., 2010), which  generates a simple distance phylogeny and a percentage identity matrix. 

OTUs that had high similarity (>90% for ITS, >95% for AM amplicons) were highlighted and 

compared with sequences in the NCBI-BlastN database (search excluded environmental 

samples). Multiple OTUs were collapsed into a single record, and read counts aggregated if the 

Blast outputs led to the same taxonomic outcome at high confidence. Taxonomic attributes of 

OTUs previously assigned as ‘unidentified’ or ‘unassigned’ were edited to reflect the findings 

of the BlastN search and non-fungal OTUs were removed. Following this rare (<0.001% of total 

reads) OTUs were also filtered out. Trophic guilds were assigned to group OTUs into 

ecologically meaningful categories using FunGuild (Nguyen et al., 2016). Species names used 

throughout reflect the current accepted species names as published in the IndexFungorum 

database, where these have changed recently is documented in Table 5.  
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  Statistical analysis  4.2.4

All percentage data (for Si and P, and fungal colonisation) was arcsine square root transformed 

prior to statistical analyses. Statistical tests and production of graphs was carried out in RStudio 

version 3.1.2 (R Development Core Team, 2011; RStudio Team, 2016). Plant growth, Si & P 

and alpha diversity data were tested for normality and homogeneity of variances following the 

methods outlined in Chapter 2 Section 2.2.2. One-way analysis of variance (ANOVA) was 

carried out on mixed-effect linear models where the fixed effects were the fungal community 

treatments and Si treatments.  Correlations of root length data and fungal abundances were 

performed on transformed data using the Pearson product-moment correlation, calculated using 

the stats:cor.test function in R. Significant differences in fungal guild related between treatments 

were assessed using multivariate analysis of variance (MANOVA). 

For the MiSeq data, to normalise the OTU table values for statistical analysis the python 

package normalize_table.py using the CSS algorithm was implemented as suggested by 

(Paulson et al., 2013; McMurdie et al., 2014) an alternative to rarefying. Fungal α-diversity and 

richness was calculated on the normalised OTU tables using the Shannon Diversity index, and 

the Chao1 estimation respectively, ANOVA tests were implemented to determine significant 

differences. Differences in fungal community composition between treatments were determined 

by performing a PERMANOVA (R function vegan:adonis) on a Bray-Curtis dissimilarity 

matrix of the CSS normalised OTU abundance tables, incorporating block as a random factor.  
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4.3  Results 

 

Figure 13: Dry weight biomass (g) of Brachypodium sylvaticum plants grown with different inocula. 

Biomass is shown within different plant fractions, leaf (black bars), stem (grey bars) and root 

(white bars). Error bars represent standard error, n=8 for all treatments.  
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Figure 14: Total Root Length (cm) of Brachypodium sylvaticum plants grown under the varying 

inoculum treatments as determined by WinRhizo. Sample size, n=8 for all treatments and error 

bars represent standard error. 

  Plant growth and colonisation 4.3.1

Total plant biomass differed significantly between treatments (F(4,35)=3.25, p=0.02), primarily 

driven by differences in leaf biomass (F(4,35)=4.34, p<0.01), where Field Margin inoculated 

plants had significantly higher leaf biomass than Hetchell and Control treatments (Figure 13). 

Stem and root biomass did not differ significantly between treatments (stem: F(4,35)=2.16, 

p=0.09, root: F(4,35)=2.01, p=0.11). However, total root length did vary significantly between 

treatments (F(4,35)=4.11, p<0.01, Figure 14). The results of a MANOVA test demonstrate that 

this difference was purely driven by differences in fine root length (F(4,35)=4.46, p<0.01), where 

the plants receiving the inoculum from Hetchell woods had significantly lower length of fine 

roots than plants treated with the Pasture inoculum (Tukey p=0.002, Figure 14). Root length 

was not found to be significantly correlated with AMF or non-AMF root length colonisation 

(AMF (excluding control treatments): t(30)=2.01, p=0.52, Non-AMF: t(38)=-0.12, p=0.90). Plants 

grown with the inoculum from the Pasture field and Hetchell woods showed relatively similar 



 79  

levels of colonisation by AMF and non-AMF fungi, but showed significant differences in root 

length characteristics (Figure 14, Figure 15).  

All treatments receiving a fungal inoculum exhibited relatively low levels of colonisation by 

AMF (< 10%), but in line with other experiments (Table 4) and no mycorrhizal structures 

identified in the control treatments (Figure 15). Statistical analysis on the fungal inoculum 

treatments (excluding the control) showed a weak difference (F(3,28)=3.04, p=0.05) between 

levels of mycorrhizal colonisation, with the single species F.mosseae treatment containing the 

highest abundance of AMF structures within the root (Figure 15). Non-AMF colonisation was 

higher in all treatments than the AMF colonisation, including the single species F. mosseae 

treatment, but there were significant differences in the non-AMF colonisation (F(3,28)=3.77, 

p=0.03) between treatments also, with Field Margin demonstrating the highest concentration of 

non-AMF colonisation at around 28% (Figure 15).  

  Foliar Si and P content 4.3.1

There were significant differences in foliar Si concentration values between treatments 

(F(4,35)=3.16, p=0.03, Figure 16a) but not for foliar P concentration (F(4,35)=1.46, p=0.24, Figure 

16c). Due to variations in root length between treatments (Figure 14) Si and P uptake per unit 

root length was calculated. This measure can be considered a measure of uptake efficiency, with 

higher values indicating more nutrient uptake per unit of root length. Differences in Si uptake 

between treatments were accentuated when accounting for root length differences (F(4,35)=7.48, 

p<0.01), results from a post-hoc test showed that plants receiving the Pasture inoculum 

demonstrated significantly lower Si uptake efficiency compared to other all treatments (Tukey 

p<0.05) except for the control treatment (Figure 16b). Similar results were observed in the P 

uptake by root length, where plant uptake efficiency of P was significantly affected by inoculum 

addition (F(4,35)=5.69, p<0.01) but to a lesser extent than Si uptake. Similarly, the results of the 

post-hoc test illustrated that plants receiving the Pasture inoculum were significantly different 

from plants treated with the F. mosseae single species, Hetchell and Field Margin inocula 

(Tukey, p<0.05, Figure 16d). Overall, Si content and uptake was more variable across 

treatments than P content and uptake.  
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Figure 15: Total root length colonised (%) of Brachypodium sylvaticum roots by AMF and non-

AMF fungal structures for each inoculum treatment. Sample size, n=8 for all treatments and error 

bars represent standard error. 
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Figure 16: Foliar Si (a) and P (c) elemental concentration of dry weight leaf biomass in 

Brachypodium sylvaticum plants grown with different inoculum treatments. Si (b) and P (d) uptake 

by plant root length. Sample size, n=8 for all treatments and error bars represent standard error. 

  Fungal Diversity 4.3.2

OTU tables were generated for the AM (NS31-AM1) and ITS (ITS1F-ITS4) amplified regions. 

Initial sequence reads after the split library stage (Step 6, Table 3) were 1,855,103 sequences for 

the ITS amplicon and 1,305,286 sequences for the AM amplicon. Extensive filtering and cross-

referencing with sequence databases was required and a high proportion of amplified sequences 

were non-fungal or very rare and subsequently removed or collapsed into one OTU due to high 

sequence similarity. After this, sequence reads for the ITS amplicon totalled 1,077,443 and 

324,830 in the AM dataset. This corresponded to 94 OTUs decreasing to 36 in the ITS region 

after the removal of plant and non-fungal sequences and 83 OTUs generated using USEARCH 

decreasing to 3 post-filtering for the AM region after the removal of plant, non-fungal and non-

AMF sequences. Consequently, after removal of non-fungal and rare OTUs, some samples had 
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too few reads (<100) to be kept in analyses and were also removed to avoid skewing the data 

where other samples typically possessed several thousand sequence reads in total. This resulted 

in a decrease in sample size in the ITS subset from 34 samples to 24, and from 30 samples to 7 

in the AM subset. This lead to an uneven depth of sampling across the treatments. For the AM 

subset there were no samples from the Control or Field Margin groups and fewer than three 

samples from the Field Margin, Pasture and Hetchell groups so further statistical analysis on 

this dataset was not possible.  

There was, nevertheless, an apparent trend in the distribution of OTUs within the AM subset 

samples, with plant receiving inoculum from the single species inoculum (F. mosseae) 

predominately having high abundance of Rhizophagus irregularis (VTX00114), while the other 

treatments showed greater abundance of two different Glomus OTUs (both VTX00105). 

Interestingly, the visual analysis of fungal colonisation using staining and microscopy 

techniques did yield broadly similar results to the sequencing outputs. Field Margin samples had 

the lowest observed colonisation by AMF visually, and also showed no amplification of AMF 

sequences (Figure 15). Similarly, the single species F. mosseae treatment showed the highest 

level of AMF colonisation, and had the highest average value of reads across the AMF OTUs 

amplified (~1570), although none of these corresponded to F. mosseae isolates. Pasture 

treatments also showed higher colonisation by AMF in the visual analysis compared to Hetchell 

treatments, and this again was seen in the average number of AMF read counts for each 

treatment (10358, and 4 respectively). Control treatments did amplify some Glomeromycotan 

OTUs, but across all replicates this was only 3 reads.  
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Diversity metrics 

Shannon diversity metrics were used for α-diversity. Values were found to not be significantly 

different, suggesting overall diversity of each treatment was similar (F(4,12)=0.89, p=0.50). There 

was also no significant block effect (F(7,12)=1.61, p=0.22). Analysis on ß-diversity indicated that 

significant differences between fungal communities were evident across different treatments 

(PERMANOVA: F(4,23)=1.266, p=0.048). This difference demonstrates that the Pasture 

treatment is somewhat distinctive in community composition compared to the other treatments, 

despite some overlap (Figure 17). To investigate the functional characteristics of the fungi 

within each treatment, fungal trophic guild composition was analysed (Figure 18). A MANOVA 

test indicated there were significant differences between guild composition between treatments 

(Wilks’ Λ= 0.07, F(4,19)=3.17, p=0.02), a result driven by differences in saprotroph abundance 

across treatments (F(4,19)=3.16, p=0.04). Control treatments had significantly higher numbers of 

saprophytic fungi compared to plants grown with Hetchell woods derived inoculum (Tukey 

p=0.024). No other significant differences in guild contribution between treatments, due to the 

high variability in the composition of fungi within treatments (Figure 17).  

OTU taxonomy and guild (as determined by analysis through FunGuild) is detailed in Table 5. 

The most widespread OTUs (‘Core OTUs’), occurring in nearly all samples and representing 

~60% of the total reads corresponded to Olpidiaster brassicae (47% of all reads, present in all 

samples) and Serendipita indica (12% of all reads, present in 21 samples).  An intermediate 

grouping (‘intermediate OTUs’), covered 33% of all reads and corresponds to 11 OTUs, found 

in 1 - 13 samples. This intermediate grouping contains OTUs from across all fungal phyla, 

including two Glomeromycetes (AMF), and is predominately made up of saprophytic and 

symbiotic fungi. The remaining 24 OTUs (‘rare OTUs’) make up 7% of the total reads, and are 

found in 1 – 11 samples, this group contains a large number of Sordariomycetes (Ascomycota) 

and is broadly dominated by saprophytic and pathogenic fungi. 
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Figure 17: Non-metric multi-dimensional scaling (NMDS) plot generated using Bray-Curtis 

dissimilarities matrix of a normalised OTU table. Dots represent individual samples. Ellipses 

represent standard error of the (weighted) average of scores. Inoculum treatments are overlaid on 

the ordination represented by the coloured ellipses which represent the standard error of the 

weighted averages of scores. Control (black, n=3), single species inoculum F. mosseae (red, n=7), 

and inocula derived from Field Margin (yellow, n=3), Pasture field (purple, n=5) and Hetchell 

woods (green, n=6). 
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Figure 18: Mean relative abundance of fungal sequences within plant roots grown under 

experimental conditions. Sequences generated from Illumina sequencing of the ITS1f-ITS4 region 

and represented by trophic guild (assigned by FunGuild) for each of the inoculum treatments; 

Control (n=3), single species inoculum F. mosseae (n=7), and inocula derived from Field Margin 

(n=3), Pasture field (n=5) and Hetchell woods (n=6). 
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Table 5: Identity and read information for all 39 operational taxonomic units (OTUs) generated in this study. Taxonomy was checked against NCBI Blast and MaarjAM 

databases, QC = Query Coverage, ID = Maximum identity, Accession= Accession reference number for closest hit, VT= Virtual Taxon generated by the MaarjAM 

database. No. reads is a total read count value across all samples that contained this OTU (No. samples). Guilds marked with a star are most probable assignments based 

on the literature.   

OTU No. 

reads 

No. 

samples 

Blast assigned taxonomy Species synonymy and isolate 

information   

QC ID Accession/

VT* 

Phylum Trophic 

mode 

ITS region (ITS1F-ITS4)       

1 506384 24 Olpidiaster brassicae Olpidium brassicae 100 99 AB205207 Chytridiomycete Pathotroph 

2 132698 21 Serendipita indica Piriformospora indica 100 99 KC176326 Basidiomycete Symbiotroph 

3 84056 13 Cladosporium herbarum  100 100 KX611004 Ascomycete Pathotroph-

Symbiotroph 

4 53715 9 Coprinopsis lagopus Coprinus lagopus  100 100 JN943127 Basidiomycete Saprotroph 

5 51372 10 Rhizophagus intraradices Clone U3.2,Glomus intraradices 100 98 AJ567352 Glomeromycete Symbiotroph 

6 48133 3 Rhizopus arrhizus  Rhizopus oryzae 100 100 KX922855 Zygomycete Saprotroph 

7 35378 8 Vishniacozyma victoriae Cryptococcus victoriae 100 100 KY105839 Basidiomycete Saprotroph-

Symbiotroph 

8 27825 1 Meliniomyces sp.  100 94 EF093175 Ascomycete Saprotroph-

Symbiotroph 

9 25020 7 Buckleyzyma phyllomatis Sporobolomyces phyllomatis 100 96 KY101786 Basidiomycete Pathotroph 

10 14633 4 Vermiconia calcicola  100 100 KP791762 Ascomycete Saprotroph 

11 12918 1 Talaromyces diversus Penicillium diversum 100 95 KJ775702 Ascomycete Saprotroph 

12 10856 8 Rhizophagus irregularis DAOM229456, Glomus 

irregulare 

100 100 HF968929 Glomeromycete Symbiotroph 

13 10488 1 Clitocybe sp.  100 99 KJ680990 Basidiomycete Saprotroph 

14 9104 4 Humicola sp.  100 100 KJ528986 Ascomycete Saprotroph 

15 7409 1 Baeospora myosura  100 100 JF907779 Basidiomycete Saprotroph 

          



 87  

OTU No. 

reads 

No. 

samples 

Blast assigned taxonomy Species synonymy and isolate 

information   

QC ID Accession/

VT* 

Phylum Trophic 

mode 

16 6750 3 Myrmecridium schulzeri  100 99 EU543253 Ascomycete Saprotroph 

17 6435 6 Fusarium oxysporum  100 100 KX655587 Ascomycete Pathotroph 

18 5886 1 Entophylctis sp.  54 99 AY997049 Chytridiomycete Unassigned 

19 5471 4 Fusarium sporotrichioides  100 100 KY081692 Ascomycete Pathotroph-

Saprotroph 

20 4319 2 Order Chytridales  47 99 EF432822 Chytridiomycete Unassigned 

21 3662 2 Operculomyces laminatus  47 95 NR119590 Chytridiomycete Unassigned 

22 2980 2 Chaetomium piluliferum  100 100 KF915989 Ascomycete Saprotroph 

23 2463 11 Microdochium bolleyi  100 100 KY365586 Ascomycete Pathotroph-

Symbiotroph 

24 2428 2 Plectosphaerella cucumerina 100 99 KY468524 Ascomycete Pathotroph 

25 2352 3 Schizothecium glutinans Podospora glutinans 100 99 AY615207 Ascomycete Saprotroph 

26 1714 1 Mucor circinelloides  100 100 KY933391 Zygomycete Saprotroph 

27 760 1 Family Lasiosphaeriaceae  100 99 KT948028 Ascomycete Unassigned 

28 564 1 Unidentified fungal endophyte 98 99 FN392300 Unidentified Unassigned 

29 452 2 Latorua caligans Torula caligans 100 99 FJ478093 Ascomycete Pathotroph-

Saprotroph 

30 337 3 Rhizophagus intraradices Clone M31.17,  

Glomusintraradices 

100 99 FJ769310 Glomeromycete Symbiotroph 

31 302 1 Chaetomium globosum  100 100 KX421416 Ascomycete Saprotroph 

32 187 2 Dokmaia sp.  100 97 GU973777 Ascomycete Saprotroph* 

33 133 1 Rhizophagus irregularis Clone 15.8m,  Glomus irregulare 100 99 JF820477 Glomeromycete Symbiotroph 

34 111 2 Ambispora sp.  Clone 2.8 45 90 FN820281 Glomeromycete Symbiotroph 

35 87 2 Naganishia uzbekistanensis Cryptococcus liquefaciens 100 100 KY104336 Basidiomycete Pathotroph 

36 61 1 Ascochyta sp.    100 100 AF520641 Ascomycete Pathotroph 
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OTU No. 

reads 

No. 

samples 

Blast assigned taxonomy Species synonymy and isolate 

information   

QC ID Accession/

VT* 

Phylum Trophic 

mode 

AMF region (NS31-AM1)       

1 89562 7 Rhizophagus intraradices BEG 121 100 100 AJ536822/

VTX00105 

Glomeromycete Symbiotroph 

2 65997 7 Rhizophagus irregularis DAOM229456 100 99 HF968850/

VTX00114 

Glomeromycete Symbiotroph 

3 7594 4 Glomus sp. Glo 10 100 98 AY129570/

VTX00105 

Glomeromycete Symbiotroph 
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  Relationships between fungal diversity and plant growth parameters 4.3.3

As noted in earlier sections, there were significant differences among treatments in terms of 

certain measurements, particularly root length, leaf biomass and Si and P content and uptake. To 

investigate this further in relation to the fungal diversity in the root, a correlation matrix was 

created to visualise relationships between these parameters (Figure 19). Correlations that were 

significant post-bonferroni correction (circles with a white X), had correlation values exceeding 

r=0.7 and a p value of <0.05 (Figure 19). Vermiconia calcicola and Ambispora sp. Showed the 

highest correlation (r=0.97, p<0.01) co-occurring in a Hetchell (Block 3) and Pasture (Block 4) 

sample at high frequencies. Similarly, Fusarium sporotrichioides and Operculomyces laminatus 

were highly correlated (r=0.93, p<0.01) and found co-occurring at high read count in a single 

sample Pasture (Block 5). Copinopsis lagopus and R. intraradices (OTU5), were found to be 

correlated (r=0.86, p<0.01) and co-occurring at similar abundances across several F. mosseae, 

Pasture and Hetchell treatments, both were also found to be present in a control sample (Block 

6), indicating potential sample contamination. Other significant correlations between OTUs 

included Plectospharella cucumerina and Schizothecium glutinans (r=0.78, p<0.01) co-

occurring in Field Margin and Hetchell (both Block 1) samples and between S. glutinans and 

Latorua caligans, although these two were only co-occuring in one sample, Hetchell (Block 1).  

There were no significant correlations between any OTUs and physiological parameters after 

the correction; however, some interesting trends should be highlighted. Only two OTUs showed 

any relationship with Si and P (Figure 19). OTU 32, representing an unknown species of the 

Dokmaia genus, present in a Pasture (Block 4) and Hetchell (Block 1) sample demonstrated a 

weak negative correlation with Si (r=-0.46, p>0.05) and P (r=-0.39, p>0.05) content in plants. 

Buckleyzyma phyllomatis (OTU 9) was shown to be weakly positively correlated with P content 

(r=0.52, p>0.05). S. glutinans, which correlated significantly with other OTUs also 

demonstrated a weak negative correlation with root area (r=-0.41, p>0.05). Chaetomium 

piluliferum and S. indica also showed an antagonistic relationship (r=-0.44, p>0.05), where the 

two samples that C. piluliferum was present in (Field Margin, Block 1; Pasture, Block 4) 

showed no reads, or very low read counts (3 hits) of S. indica respectively. Other circles 

showing weak positive correlations largely represent co-occurrence in certain samples. 
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Figure 19: Correlations between OTUs (excluding those that occur in 1 sample only) and key plant 

measures, generated using the Pearson method. Si and P concentration relate to foliar 

concentrations (%) that have undergone arscine transformation prior to analysis. The value for 

root length colonised has also been arcsine transformed. Larger, darker circles represent stronger 

correlations, blue indicates a positive correlation, red represents a negative correlation. Circles 

present on the graph represent a significant correlation prior to a Bonferroni correction for 

multiple comparisons; circles marked with a white X indicate a significant correlation post 

correction. 

The following section briefly comments on the species of interest and particularly those found 

to have significant correlations in the above analysis. 

Olpidiaster brassicae (OTU 1) -  Pathotroph 

O. brassicae showed the highest occurrence in this experiment, occurring in all samples. This 

species has a broad host range, infecting many crop species as well as weeds that can act as 

reservoirs (Hartwright et al., 2010). The combination of  this broad host range and a particularly 

long soil spore viability period of twenty years make this a very difficult pathogen to eradicate 

(Campbell, 1985). It is not clear whether all plants that are infected by this species show 

symptoms of infection, no visible infection signs were noted in this experiment.  
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Serendipita indica (OTU 2) - Symbiotroph 

The root endophyte S. indica (syn Piriformospora indica) was identified in 21 out of 24 

samples. However, most read counts were low (<200), with the exception of the F. mosseae 

treatment, where read counts for all replicates were within the 10,000 range. This species has 

been seen before during investigation of single species stock pot cultures of mycorrhizal fungi 

(Chapter 2, Section 2.3.3). This Basidiomycete fungus belongs to the novel family 

Serendipitaceae (Weiß et al., 2016), and has been identified as a model mutualistic fungus due 

to its ability to be cultured axenically and colonise the model plant species Arabidopsis thaliana 

(Peškan-Berghöfer et al., 2004). This species has also been linked to improvements in plant 

nutrition, including P (Yadav et al., 2010; Ghanem et al., 2014), and resistance to disease 

(Schäfer et al., 2009), herbivore attack (Cosme et al., 2016), and abiotic (Waller et al., 2005; 

Mohd et al., 2017) stresses, conferring similar benefits as AMF (Nath et al., 2016). Despite 

performing similar roles, there does not appear to be any competitive exclusion between AMF 

and S. indica, due to distinct colonisation patterns and niche partitioning (Schäfer et al., 2009; 

Newsham, 2011). S. indica typically forms within root hairs and requires cell-death dependent 

colonisation, whereas AMF colonise differentiated and physiologically active cortical cells 

close to the vascular bundle (Deshmukh et al., 2006). 

Glomeromycota (OTUs 5, 12, 30, 33, 34) - Symbiotroph 

From the 36 OTUs generated with the ITS region, 5 were identified as belonging to the phylum 

Glomeromycota, compared to the AM region, which identified only three OTUs. The only 

treatment that showed no presence of arbuscular mycorrhizal sequences was the field margin 

treatment. Control samples did show presence of Glomeromycota OTUs in two out of the three 

samples, but only a single figure number of reads across all samples. The plants which received 

F. mosseae single species inocula contained three different OTUs corresponding to R. 

irregularis (two separate isolates) and R. intraradices, neither of which were the intended 

‘single species’ that the inoculum was determined to contain (Chapter 2, Section 2.3.3). In fact, 

no OTUs recorded corresponded to F. mosseae in this experiment.  

Cladosporium herbarum (OTU 3) - Pathotroph-Symbiotroph 

Reads from this species were recorded in 13 samples, but most showed only a few reads and 

there was no amplification in control treatments. Four samples did show high read counts 

however, one replicate from the Field Margin treatment (Block 1: 22,021 reads), two replicates 

from the Pasture treatment (Block 2:39284; Block 4: 92) and one replicate from the Hetchell 

treatment (Block 7: 22634). This species is of particular interest due to its ability to solubilise P 

from the soil, and improve AMF colonisation (Singh & Kapoor, 1998). However, there was no 

correlation shown between this species and any AMF or P uptake. Interestingly, this species (or 
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rather species complex (Schubert et al., 2007)) is said to be one of the most common fungi 

globally, frequently found to be growing on decomposing leaves but also found as an 

endophyte, and frequently isolated from the environment (Bensch et al., 2012).  

Buckleyzyma phyllomatis (OTU 9) - Pathotroph 

This basidiomycete yeast was the only OTU to show a positive relationship with P 

concentration (Figure 19). The literature on this species is very limited, and there is no record of 

it being isolated from plants within the UK. This OTU had 96% similarity with records of B. 

phyllomatis.  

Vermiconia calcicola (OTU 10) - Saprotroph 

This OTU was strongly amplified in 4 samples, and was found to be strongly correlated with 

OTU 34, which has been assigned as a species from the Genus Ambispora with low confidence 

due to the low query coverage. Interestingly V. calcicola is a newly identified, extremotolerant 

species has previously only been shown to colonise stone (Isola et al., 2016). While this is 

unusual, the results of the BlastN search consistently had high matches for members of the 

Vermiconia genus and other fungi regularly isolated from monuments and stone.  

Fusarium sporotrichioides (OTU 19) - Pathotroph-Saprotroph 

This species was found across 4 samples. The fungus F. sporotrichioides is defined as a 

pathotroph, and is widely studied due to its capability of producing a potent mycotoxin 

(trichothecenes), which causes disease symptoms in a large range of plant species (Hohn & 

Beremand, 1989; Cosic et al., 2012; Moya-Elizondo et al., 2013; Ivanova et al., 2016). F. 

sporotrichioides was significantly correlated to Operculomyces laminatus (OTU 21) due to their 

co-occurrence in a single Pasture sample. This recently described chytrid species was present in 

one sample (Pasture, Block 5), but unfortunately there is very little information about the 

biology of O. laminatus (Powell et al., 2011).  

Plectosphaerella cucumerina (OTU 24) - Pathotroph 

This Ascomycete species was positively correlated with Schizothecium glutinans, occurring in 

the Hetchell and Field Margin samples. This species employs a variety of feeding mechanisms, 

as it can survive in the soil saprophytically (Palm et al., 1995), cause plant disease as a 

necrotrophic fungus (Pétriacq et al., 2016), and act as a biocontrol agent as a nematophagous 

fungus (Atkins et al., 2003)  
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Schizothecium glutinans (OTU 25) - Saprotroph 

This ‘dung-loving’ (coprophilous) fungus, also known as Podospora glutinans was amplified in 

3 samples, from Field Margin and Hetchell treatments. While current literature refers to this as a 

coprophilous species, there are records of it colonising plant roots also. Kwaśna et al (2008) 

also recorded this species in their analysis of tree roots (Betula, Fagus and Larix), matching the 

same accession (AY615207) as in this study. Interestingly, the same authors carried out a study 

in wheat roots, and also recovered sequences of P. glutinans, matching the same record on the 

NCBI database and again a first recording for this species in wheat (Kwaśna et al., 2010).  It has 

been noted that the Podospora-Schizothecium genus complex is in need of complete revision 

(Cai et al., 2005). 

Chaetomium species (OTU 22, 31) - Saprotroph 

While not demonstrating a significant correlation, C. piluliferum (OTU 22) was the only OTU to 

demonstrate any negative relationship with another OTU (S. indica, OTU 2). Members of this 

genus are particularly interesting however, and demonstrate a source of varied metabolites 

(presumably deriving from their role as saprophytes) which had led them to be highlighted as a 

potential biocontrol agent (Zhang et al., 2012). C. globosum (OTU 31) for example has recently 

been demonstrated to have a direct negative impact on F. sporotrichioides (Jiang et al., 2017). 

There were no incidences of samples containing either of the Fusarium species (OTU 17, 19) 

also containing either of the Chaetomium species (OTU 22, 31) present in this study.  

Microdochium bolleyi (OTU 23) - Pathotroph-Symbiotroph 

A dark septate endophyte (DSE), defined as an opportunistic pathogen and frequently isolated 

from plant roots, particularly grasses and Arabidopsis (Newsham, 2011; Mandyam et al., 2013) 

was found in low levels throughout 11 out of 24 treatments, and was a noticeable outlier. The 

role of DSE in plants is not clear, and this species has been shown to have a range of impacts on 

plants from parasitic to mutualistic, and in certain conditions have been referred to as ‘surrogate 

mycorrhizas’ although there is no consensus on the mechanism for exchange of resources 

between these endophytes and the plant host (Haselwandter & Read, 1982; Bledsoe et al., 1990; 

Jumpponen, 2001).  

Dokmaia sp. (OTU 32) - Saprotroph 

This OTU occurred in two samples, and was shown to be weakly, negatively correlated with 

foliar Si and P contents. There is very little in the literature regarding this genus, but it has 

typically been isolated from decaying organic matter (Promputtha et al., 2003; Ezeokoli et al., 

2016) 
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4.4 Discussion 

Overall, the addition of different inocula had significant impacts on the growth and nutrient 

uptake of B. sylvaticum plants, as well as the fungal species isolated from their roots. Conditions 

for plant growth and set up were identical for all treatments in this study, with the exception of 

the root and spore filtrates added as inoculum, so it is highly probable that the observed 

differences in plant response are caused by the fungal communities in the roots.  

NGS techniques were applied here to analyse the diversity of fungi within the roots. Of the 40 

replicates used in this experiment, only 24 demonstrated successful amplification of fungi and 

were subsequently used in analysis. There are two reasons for why this technique was not 

successful in amplifying products from all samples: 1) the primer pairs were not selective 

enough to be able to exclude plant DNA and 2) fungal colonisation was sufficiently low to not 

be amplified during the sequencing process. In the absence of high fungal abundance, plant 

sequences were amplified preferentially and were subsequently discarded. The use of this 

method did however highlight the presence of rarer fungi that may have otherwise been 

overlooked through other conventional methods of amplification and analysis, particularly in 

cloning and visual analyses of colonisation. It may be the case that other samples which lacked 

the highly abundant OTUs (OTU 1 and 2) may have contained interesting diversity at low 

abundance that was not picked up through this technique, particularly as rarer OTUs were 

filtered out for the purposes of normalising the dataset. The results of the NGS analysis have 

yielded interesting results, but there are a number of shared OTUs between treatments that 

suggest that the treatments do not have distinct communities, despite the clear differences in the 

plant growth and colonisation results. It is noted that due to the reduced dataset of 24 samples, 

repeated analysis of some of the initial plant growth data did not yield significant differences 

between treatments and these are commented on throughout the discussion.  

It was hypothesised that the application of different inoculation treatments would result in 

distinct fungal communities isolated from the plant roots. Overall, the application of the 

different inoculum treatments did lead to treatments having significant differences in 

community assemblages (Section 4.3.2, Diversity metrics). However, this relationship appeared 

to be driven by differences between the Control and Pasture treatments, while the single species 

F. mosseae, Field Margin and Hetchell treatments showed significant overlap (Figure 17). 

Distinct communities, with highly individual OTUs assemblages were not evident, and there 

was a high incidence of co-occurrence of many OTUs across samples, particularly of O. 

brassicae which was present in all samples (Table 5). However, analysis of the functional guilds 

also highlighted some key differences between the treatments, particularly where Control 

treatments contained a significantly higher proportion of saprophytic fungi compared to the 

other treatments. This is most likely due to the addition of the autoclaved roots as a control of 
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the addition of live roots as an inoculum source in the other treatments. This is an interesting 

result as it implies that administrating a sterilised treatment to control for the addition of roots in 

other treatments is actually causing other guilds of fungi to colonise the plant roots. In essence 

this creates another treatment category rather than a base-line comparison for the other 

treatments. The single species F. mosseae treatment also showed interesting diversity results.  

Both the visual microscopy analysis and the NGS data show that non-AMF species colonised 

the plants within the F.mosseae treatment at a higher rate than the target AMF species. S. indica 

was able to successfully colonise all seven replicates analysed, whereas AMF were only present 

in four of these samples. This presents an issue when attempting to disentangle which effects are 

being caused by each species, when both are very similar functionally. 

It was also hypothesised that both plant growth and nutrition would be improved with higher 

levels of AMF colonisation. Plants grown with inoculum from the Pasture field and Hetchell 

woods showed relatively similar levels of colonisation by AMF and non-AMF fungi, both in the 

root staining analysis and in the sequence analysis (Section 4.3.2). Interestingly, plants within 

the Pasture treatment were predominately colonised by two isolates of R. intraradices (OTU 5, 

30), while plants of the F. mosseae treatment were almost exclusively colonised by R. 

irregularis (OTU 12), and not F. mosseae. In the one F. mosseae replicate (Block 2) that was 

colonised at very low levels by R. intraradices (OTU 5), there was no colonisation by R. 

irregularis (OTU 12). This effect was only seen in one treatment but it may be an indication of 

competitive exclusion, as it has been noted previously in the literature, R. irregularis frequently 

becomes dominant in mixed species inoculums to the detriment of other AMF (Symanczik et 

al., 2015).  

The treatments had a significant effect on plant growth. For biomass, dry leaf mass was very 

variable, with plants grown with the Field Margin inocula being significantly larger than 

Control and Hetchell treatments. Interestingly, Field Margin treated plants showed the lowest 

level of AMF colonisation, and growth suppression by AMF has been noted previously in 

glasshouse experiments using B. sylvaticum (Chapter 3, Section 3.3.1). While Pasture and 

Hetchell plants had a similar biomass across all plant fractions, Pasture plants had significantly 

higher root length compared to Hetchell plants, demonstrating differences in root structure 

between the treatments. Fine root length is crucial to nutrient and water uptake (McCully, 1999) 

and has been shown to decrease with mycorrhizal colonisation in monocots (Kothari et al., 

1990; Gutjahr et al., 2009, 2015). This was not observed in this study. Overall, Pasture had the 

second highest level of colonisation by AMF, behind plants growth with the single species 

inoculum F. mosseae. Neither of these plants demonstrated reductions in fine root length 

compared to controls and treatments lacking in AMF colonisation. Howver, it should be noted 

that statistical analysis using the 24 samples that produced usable data from the MiSeq, revealed 
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that the significant differences between root length were no longer present (F(4,19)=1.67, p=0.20). 

Alternatively, other species colonising the plant roots may be causing changes in plant root 

growth. There was a weak negative relationship between OTU 25 (S. glutinans) and total root 

length highlighted in the correlation analysis, and this OTU was present at high levels in a 

Hetchell sample (Block 1), which was the treatment that had the lowest fine root length. 

However, this OTU was also present at much higher levels in the highly diverse Field Margin 

sample (Block 1) which did not exhibit growth suppression of fine roots. 

Foliar Si and P content and concentration were strongly linked to the physical characteristics of 

the plants, Si concentration was significantly different across treatments, but P concentration 

was not. Accounting for the differences in root length there was high variability in the efficacy 

of different treatments in Si and P uptake. For example, plant receiving the Hetchell woods 

inoculum yielded similar Si and P concentrations as the Pasture samples despite having similar 

leaf biomass and significantly lower length of fine roots (Figure 16b and d). Two OTUs were 

highlighted in the correlation analysis as being weakly related to Si and P uptake, primarily 

OTU 32 (Dokmaia sp.) was shown to be negatively related to the Si and P contents of the plants 

but only occurs in one sample at high frequencies (Pasture, Block 4). It would be expected that 

higher levels of colonisation by AMF would improve the uptake efficiency of P, and potentially 

also Si as has been shown previously (Chapter 3, Section 3.3.2). If this were the case, we would 

expect to see the plants grown with F. mosseae inoculum and the Pasture inoculum to 

outperform plants from the other treatments. This clearly is not the case with regards to the 

Pasture treatment, and the F. mosseae treatment is not significantly different to the control or 

even the Field Margin treatment which also showed low to no AMF colonisation. However, in 

plant roots colonised by a variety of fungi, the specific combinations of these may be more 

important for function rather than individual species.  

It was unexpected that plants receiving the Hetchell woods inoculum would show such low 

colonisation by AMF, considering the presence of Brachypodium species at the source site. It 

was predicted that inocula from Hetchell woods would contain a fungal community is already 

adapted to colonising the roots of Brachypodium plants, and would therefore resemble a distinct 

community, distinguishable from the other treatments. However, there was only 1 occurrence of 

a single OTU (OTU 29, Latorua caligans) which was found exclusively in a Hetchell woods 

replicate. Evidently the Pasture treatment was the most effective natural inocula in delivering 

AMF colonisation, however this treatment yielded the poorest nutrient uptake results, including 

surprisingly for P uptake, it is difficult to attribute this to any specific fungus within the pasture 

treatment due to the variability of the data, but it is important to show that presence of AMF in 

the roots does not always lead to improved nutrient uptake. By using a natural inoculum from an 

agricultural field, which contains a frequently used laboratory species of AMF, we can 
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demonstrate that applying a single species AMF inoculum in a glasshouse environment will not 

yield the same results in a field setting. 

Overall, the addition of different fungal inocula to B. sylvaticum has led to interesting 

differences in the growth and nutrient uptake of these plants. There were distinctly different 

responses in particular between the Pasture field treatment and the Hetchell woods treatments. 

The results of the NGS analysis have highlighted some interesting relationships between the 

OTUs and have shown that the plants grown with inoculum from the Pasture and Control 

treatment led to a distinct fungal community colonising these plants. Interestingly, the effect of 

supplying a sterilised version of the treatment to the Control plants actually acted as a treatment 

in itself, leading to a higher percentage of saprophytic fungi colonising the roots of these plants. 

The single species AMF treatment also yielded unintended results, with S. indica another plant 

growth promoting fungus outperforming the target AMF species. The consequences of this 

could be important for interpreting plant responses, as high colonisation by this fungus in 

conjunction with AMF would make it difficult to disentangle the contributions of each species. 

Overall, this experiment has demonstrated the importance of analysing the fungal diversity of 

treatments, even within control and single-species treatments. These results highlight the 

importance of accurately recording of root fungal colonisation of non-target species in the 

results of glasshouse experiments. Fungal communities in different environments clearly have 

the potential to have significant impact plant physiology and nutrition and future work should 

focus on identifying the functional contributions of these root colonising fungi when present in 

plant roots. 
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5 Community dynamics of fungi colonising Brachypodium 

sylvaticum roots and effects on foliar silicon and 

phosphorus concentrations 

5.1 Introduction 

Diverse fungal communities are important for plant growth and survival, and the interactions 

between microbes that colonise plant roots are as important as the identity of the individual 

fungi that colonise them. There are a number of interactions that can happen between microbes 

within the rhizosphere, and these can be competitive and antagonistic, mutualistic and passive, 

or mutually beneficial (Johansson et al., 2004; Philippot et al., 2013). It is these interactions that 

make the study of plants and microbes in-situ so important. Artificially generated plant and 

fungal combinations can be unrepresentative for plant function in the natural environment due 

to the difficulty of culturing certain species (Helgason et al., 2002). Studying the fungal 

community within plant roots in the field at a fine scale has largely been made possible through 

the use of novel molecular sequencing methods. These enable accurate identification of fungal 

colonising species which is not possible to do at such high resolution with morphological 

analyses (Taylor et al., 2017). This has particular advantages for investigating the effect of soil 

heterogeneity on soil microbial communities, particularly of root colonising fungi. 

The heterogeneity of the microbial community in soil is driven by a number of abiotic and biotic 

factors that dictate the dispersal capabilities of these fungi. Soil conditions are also prone to 

change within short distances, due in part to the underlying geology of the region, the vegetation 

overstory and external influences caused by fauna (Concostrina-Zubiri et al., 2013; Steven et 

al., 2013; Bender et al., 2016). Changes in soil abiotic conditions, particularly pH, are important 

in determining nutrient and solute availability. For example, silicon, an important defence 

element in grasses, is taken up by the plant in the form of silicic acid (Si(OH)4), which is 

available in the soil at concentrations of 0.1-0.6mM (Yost & Fox, 1982; Epstein, 1999). Soluble 

Si is most available in slightly acidic soils (pH4-7), at pH 9.8 silicic acid disassociates to form 

H3SiOH4
-
 which adsorbs to aluminium (Al) and iron (Fe) hydrous oxides (Golubev et al., 2006; 

Haynes, 2014). Plant available phosphate availability however, follows the opposite trend, with 

plant available P decreasing in acidic soils as inorganic P binds to Al3
+
 which is present at 

higher concentrations in the soil at acidic pH (<5.5) (Kluber et al., 2012; Jiao et al., 2016). Plant 

growth is dependent on high levels of available P, which is usually limiting due to the low 

mobility of P in the soil profile, but exacerbated by reduced pH in acidic conditions.  

Arbuscular mycorrhizal fungi (AMF) are plant root symbionts that substantially increase the 

supply of P to plants in limiting conditions, and receive carbon from plants in return (Smith & 

Read, 2010). AMF have the potential to improve plant P uptake in acidic conditions, by 
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immobilising Al3
+
, although AMF do vary in their ability to tolerate extreme pH values (van 

Aarle et al., 2002; Aguilera et al., 2011). Fungal communities (Dumbrell et al., 2010a), mycelial 

biomass (van Aarle et al., 2002) and root colonisation (Coughlan et al., 2000) have been shown 

to be significantly affected by pH. Soil pH has repeatedly been shown to be the overarching 

deterministic factor in affecting the growth and communities of AMF, outweighing the impact 

of other variables measured due to its substantial effect on other soil properties (Dumbrell et al., 

2010a; Kluber et al., 2012; Carrino-Kyker et al., 2016).  

Hetchell Woods is a site of special scientific interest (SSSI), located near Leeds, UK 

(53°52’36.54”N, 1°25’45.94”W). The area is unique in comprising an area where soil pH varies 

dramatically over a distance of a few metres, which results in dramatic changes in plant and 

microbial communities (Dumbrell et al., 2010). A series of studies have been published on the 

AMF colonising plant roots at Hetchell Woods, making the AMF community at this site one of 

the most extensively catalogued in Europe (Dumbrell et al., 2010a,b, 2011). Previous studies at 

this location have demonstrated how abiotic soil factors, particularly pH are capable of 

influencing the mycorrhizal community (Dumbrell et al., 2010a). They have also demonstrated 

how AMF communities change throughout the year (Dumbrell et al., 2011). Over winter 

months where carbon supply from plants is low, diversity and evenness of AMF communities in 

plant roots is high, while as the supply of carbon rapidly increases in spring months the 

dominance of individual, opportunistic species increases, thereby reducing evenness in these 

communities (Dumbrell et al., 2010b, 2011). Temporal variation has also been shown to be 

significant in pasture and arable settings, with effects of season having a stronger deterministic 

effect on AMF communities compared to large scale fertiliser inputs (Hazard et al., 2014).  

Although extensive work has been carried out at Hetchell Woods, what remains to be studied is 

whether the patterns in AMF community structure are also applicable to non-AMF root 

colonising fungi across a pH gradient and how replicable the effects are between years, given 

the variation across seasons. In the Dumbrell et al (2010b, 2011) papers the authors observed 

that the AMF taxa that become dominant in plant roots in spring and summer months are not 

consistent, suggesting that the successful dominant taxa are opportunists in the right place at the 

right time. If this is the case we would perhaps expect to see variability in the identity of the 

dominant AMF species between years. This trend may be applicable to other groups of root 

colonising fungi, which share similar life history traits with mycorrhizal fungi. This study will 

link changes in microbial root colonising communities to the foliar Si and P concentrations of 

Brachypodium sylvaticum plants in their natural environment, across a pH gradient. It was 

predicted that: 
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1. In increasingly alkaline conditions, silicic acid availability in the soil will decrease, while P 

availability will increase, leading to decreased foliar Si concentrations and increased foliar P 

concentrations.  

2. Fungal colonisation will be lower in very acidic soil, and microbial communities and 

richness will change in accordance with changes across the transect distance, related to 

changes in the pH profile. 

3. Dominant AMF root colonisers will differ between the two sampling years, and it will be 

determined whether similar trends are observed in the non-AMF fungal colonisers. 

5.2  Materials and methods 

  Sampling protocol 5.2.1

Samples were collected in the summer of 2015 (6
th
 August) and 2016 (6

th
 July) along a 10m 

transect with increasing distance from the limestone outcrop. Historical weather records were 

obtained for the Met Office stations Church Fenton (~12miles from Hetchell Wood) for long 

term records (1981-2010). Data from Bramham station (~3.5 miles from Hetchell Wood) was 

used for records during the sampling period as Church Fenton ceased to function in 2013 and 

Bramham records were inaccessible for long-term historical data. According to the work carried 

out by Dumbrell et al. (2010a) the transect is predicted to cover a change of pH from ~4.5 to 

7.5. Three separate B. sylvaticum plants were collected within each 1m
2
 for replication along the 

transect along with soil samples from the immediate area below the extracted plants. Plants and 

soil were placed in plastic zip-lock bags, transported back to the University of York and stored 

at 4°C until processing which was completed within 3 days.  

Plants were separated into leaf, stem and root fractions. Roots for DNA extraction and staining 

were only used if connected to the B. sylvaticum plants to ensure these results corresponded to 

the foliar nutrient analyses. Soil was sieved (<2mm) and tweezers were used to remove root 

fragments to prepare the soil for pH measurements. Soil and plant material were dried at 70°C 

for 3days to a week according to the methods of (Dumbrell et al., 2010a). Soil pH was measured 

using 0.01M CaCl2 (soil:solution ratio of 1:5 (w:v)) on dried soil. Root samples for each sample 

were divided; half was stored in 40% ethanol until mycorrhizal colonisation analysis and half 

dried at 70℃ for DNA extraction. For full mycorrhizal count procedure see Section 2.2.2; 

Materials and methods; III. DNA was extracted, amplified and sequenced according to the 

protocols detailed in Chapter 2, Section 2.4. Samples were randomly split across two different 

sequencing runs, due to operational costs and availability.  

  Statistical analysis  5.2.2

All percentage data (for Si and P, and fungal colonisation) was arcsine square root transformed 

prior to statistical analyses, but original concentration values are used for the production of 
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graphs. Statistical analysis and graph production was carried out using Rstudio running R 

version 3.1.3 (R Development Core Team, 2011; RStudio Team, 2016). Root colonisation, 

nutrient (Si and P) and pH data was checked for a normal distribution and homogeneity of 

variance following the methods outlined in Chapter 2, Section 2.2.2. In the case where data did 

not fit a normal distribution or had unequal variances, a Kruskal-Wallis test was used in the 

stead of a one-way ANOVA. Post-hoc tests were used where appropriate; the stats::TukeyHSD 

was used following ANOVA tests, while the FSA::dunnTest was used with the Bonferroni 

method following Kruskal-Wallis tests. Statistical tests were performed to examine whether 

distance along the transect and year of sampling had an effect on root colonisation, nutrient 

content and pH data and whether the distance factor was more significant in one year than 

another. This was tested using ‘Distance’ along the transect and ‘Year’ of sampling as two 

independent variables, and testing for interaction effects.  

For sequence data analysis, fungal α-diversity and richness was calculated on normalised OTU 

tables (Chapter 2, Table 3, Step 22) using the alpha_diversity.py to calculate Shannon Diversity 

index, and the Chao1 estimation. The Kruskal-Wallis test was used to determine significant 

differences between alpha diversity metrics. Differences in fungal community composition were 

determined by performing a PERMANOVA (R function vegan::adonis) on a Bray-Curtis 

dissimilarity matrix of the CSS normalised OTU abundance tables (Chapter 2, Table 3, Step 

21). A non-metric multidimensional scaling (NMDS) plot was also generated using the Bray-

Curtis dissimilarity matrix using the vegan:MetaMDS function. To identify specific taxa that 

differed as a result of sampling year, the differential_abundance.py package was implemented to 

test for significant differences in abundance of specific OTUs between the two years. A similar 

test that allows comparisons between more than two groups, compare_categories.py, was used 

to test whether there were any taxa present in a single location, or at particularly high abundance 

in a single location along the transect. To compare the OTUs sequenced in this study to those in 

the Dumbrell et al.(2011) AMF amplicon sequences were aligned using MEGA v6.06 (Tamura 

et al., 2013) and a Neighbour-Joining tree with five hundred bootstrap replications was 

generated, also using the MEGA program.  

5.3  Results 

  pH 5.3.1

Kruskal-wallis non-parametric tests were used to determine differences in pH values across the 

dataset. pH did not change significantly over the distance of the transect in either year (2015: 

H(9)=15.41, p=0.08; 2016: H(9)=15.79, p=0.07) and there were no significant differences in pH 

between the two years (H(1)=3.10, p=0.08). Although there was no change in pH across the 

transect, values for soil pH were more variable in the first 5 metres, closer to the limestone 
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outcrop and pH in 2016 was more variable than in 2015 (Figure 20). Due to the lack of pH 

gradient, rather than treating pH as a deterministic or independent variable in statistical tests, pH 

was incorporated into linear models as a random variable. These models were compared with 

simpler models without the random term and models were selected based on lowest Akaike 

Information Criterion (AIC) values, indicating a more representative model of the data (Akaike, 

1973). 

 

Figure 20: Change in soil pH across the transect distance for the two sampling years. Shaded boxes 

represent samples from 2015, while the white boxes represent samples taken in 2016. The heavy line 

within the box represents the median value, with the upper and lower hinges showing the 75
th

 and 

25
th

 quartile respectively. The whiskers extend to 1.5 times the interquartile range. 
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Table 6: Monthly records from the Bramham and Church Fenton Meteorological Office weather 

stations. Average values for June and July from 1981-2010 at the Church Fenton station are shown 

alongside individual records Bramham station for the week prior to sampling in 2015 and 2016, 

prior to and during sample collection. 

Church Fenton 1981-2010 average Average temperature (°C) Total average rainfall 

(mm) Month Minimum Maximum 

June 9.6 18.8 54.8 

July 11.8 21.2 50.2 

August 11.7 20.8 57.9 

Bramham 2015-2016 average Average temperature (°C) Rainfall (mm) 

Month Year Minimum Maximum Total Average 

June 2015 7.8 19.0 28 0.9 

 2016 10.1 18.8 55.4 1.8 

July 2015 10.5 20.3 86.0 2.8 

 2016 12.1 21.6 30.4 1.0 

August 2015 11.2 21.3 124.6 4.0 

 2016 12.5 21.3 86.8 2.9 

Bramham station weekly average 

w/c 31
st
 July 2015 10.1 21.8 3.0 0.4  

w/c 30
th
 June 2016 9.0 19.1 8.8 1.3 

  Root length colonisation 5.3.2

Total root length colonised was determined by microscopic analysis of stained fungal structures 

in the root, separated into arbuscular mycorrhizal structures (AMC) and ‘other’ fungal structures 

or non-mycorrhizal colonisation (NMC). AMC was significantly different across the transect 

(F(9,39)=3.55, p<0.01) and between years (F(1,39)=8.08, p=0.007). This relationship was also 

apparent in NMC across the transect (F(9,39)=2.36, p=0.03) and between years (F(1,39)=4.34, 

p=0.05), but the relationship was much weaker than for AMC. Overall AMC decreased in 2016, 

while NMC increased (Figure 21). The highest recorded value for AMC in both 2015 and 2016 

appeared to be at the 1m distance, closest to the limestone outcrop (Figure 21). Overall fungal 

root length colonisation did not change between the two years (F(1,39)=0.181, p=0.672), but the 

distance did become a significant factor when analysing the two years together (F(9,39)=3.539, 

p=0.003) and this seemed to be driven by the very low colonisation at 5m along the transect.. 

There was no significant interaction between distance and year for either AMC (F(9,39)=0.76, 

p=0.65) or NMC (F(9,39)=0.97, p=0.48). 
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Figure 21: Total root length colonised (%) by fungal structures of Brachypodium sylvaticum plants as determined by staining and counting method. Samples were 

collected. along a 10 metre transect during two years. The left panel shows colonisation in plant roots collected during 2015, and the right panel shows colonisation in root 

of plants collected in 2016. Black bars represent arbuscular mycorrhizal fungal (AMF) colonisation, and the white bars represent non-AMF colonisation.  
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Figure 22: Foliar Si and P concentration (% of leaf dry matter) of Brachypodium sylvaticum plants across a two year period. Shaded bars represent samples from 2015, 

and white bars represent samples collected in 2016. Error bars represent standard error.  
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  Si and P 5.3.3

Foliar Si concentration did not change over the distance of the transect (F(9,38)=0.78, p=0.64), 

nor did it differ between years (F(1,38)=0.02, p=0.89) and there was no interaction between 

distance and year (F(9,38)=0.84, p=0.58). Foliar P concentration was more variable and did vary 

somewhat across the transect, but not significantly (F(9,38)=2.08, p= 0.057) but values were 

significantly different between years (F(1, 38)=47.51, p<0.001) and there was no interactive effect 

between distance and year (F(9, 38)=0.88, p=0.55). No significant correlation between total root 

length colonisation by AMF and foliar P concentration was evident (Pearson’s t(55)=-1.91, 

p=0.06) although there was a slight negative trend. However, there was a significant, negative 

correlation between AMF colonisation and foliar Si concentration (t(55)=-2.08, p=0.042). 

  Fungal diversity 5.3.4

Two samples for the ITS amplicon and three samples for the AMF amplicon did not produce 

enough PCR product to be carried forward for sequencing. In the preliminary sequence 

preparation steps, several samples did not produce usable sequences for the generation of OTU 

tables. This was not related to the sequencing run which samples were placed. Efforts were 

made to recover samples by lowering the quality thresholds during the split_library.py stage, but 

several samples still did not generate useable sequences for the generation of OTU tables. OTU 

tables were generated separately for the AMF (NS31-AM1) and ITS (ITS1F-ITS4) amplified 

regions. Extensive filtering and cross-referencing with sequence databases was required and a 

high proportion of amplified sequences were non-fungal or very rare and subsequently removed 

or collapsed into one OTU due to high sequence similarity. This resulted in 193 OTUs 

generated using QIIME decreasing to 15 post-filtering for the AM region after the removal of 

plant and non-AMF sequences, and 331 decreasing to 109 in the ITS region after the removal of 

plant and non-fungal sequences and collapsing highly similar sequences (>99% similarity) as 

determined by a sequence alignment using the EMBL-EBI ClustalW. Consequently, after 

removal of non-fungal and rare OTUs, some samples had too few reads (<100) to be kept in 

analyses and were also removed. This resulted in a decrease in sample size in the ITS subset 

from 58 samples to 33, and from 57 samples to 15 in the AM subset. OTUs were re-labelled 

post filtering and the assigned numbers reflect decreasing abundance. Therefore OTU 1 will 

allocated to the most abundant taxa in the analysis, while OTU 109 and OTU 15 will represent 

the taxa with the lowest abundance in the ITS and AMF amplicon, respectively. The filtering 

led to an uneven depth of sampling across amplicons and the transect, and between years. This 

is detailed in the appropriate tables and figures. 

Of the 109 OTUs generated by the ITS amplicon, 36 OTUs represented 90% of the total 

sequences across all samples (Table 7). Overall the analysis shows that the root colonising 

fungal community is diverse and not dominated by a few high abundance species. The most 
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frequently isolated taxon was OTU1 Itersonillia perplexans, this plant pathogen was represented 

in 13 samples and accounted for 10% of all reads. This was also the most dominant OTU 

sequenced from the 2015 samples, accounting for 14.41% of all reads, slightly less than twice 

that of the next most abundant OTUs at ~8%. Two OTUs had similarly high read counts in the 

samples collected in 2016, OTUs 7 and 8, which both accounted for ~11% of all reads 

individually (Table 7). For the AMF amplicon, there were only 15 OTUs in total (Table 8). The 

AMF primer pair was more successful in amplifying AMF species than the ITS primer pair, 

which amplified four AMF sequences corresponding to Rhizophagus irregularis (OTU 15) and 

three unidentified Glomus species (OTUs 26, 42, 94). The dominant AMF amplicon taxon 

changed depending on the sampling year, with OTU 1 Glomus sp. (VTX00122) being the 

dominant taxon in 2015 accounting for 39% of all sequence reads. In 2016 however, results 

show a more even community, with three OTUs (1, 3 (VTX00163), and 5 (VTX00342)) sharing 

similar shares of the overall sequence reads (25-28%). AMF amplicon sequencing was only 

successful in four samples in 2016, two of which (at 1m and 7m along the transect) showed 

colonisation dominance by OTU 1, while the other two had a higher overall diversity and 

richness (Table 8).  

Species richness (Chao1) and alpha diversity (Shannon index) were higher in 2016 compared to 

2015, in both amplicons (Table 9). The Chao1 estimate of species richness did not show any 

significant differences across the distances measured for the ITS amplicon (Kruskal-Wallis: 

H(9)=4.91 p=0.84), but did indicate that there were differences between years (H(1)=13.60, 

p<0.001,Table 9). Shannon-diversity index, a measure of the diversity within groups also 

showed no significant differences in diversity of root colonising fungi across the distance of the 

transect (H(9)=5.38 p=0.80) but there was a significant difference between years (H(1)=12.98, 

p<0.001). For the AMF amplicon, there were no significant differences between the diversity of 

AMF colonising plant roots across the transect distance (H(6)=4.617, p=0.594) or between years 

(H(1)=0.017, p=0.896). Species richness of AMF also did not change across the transect 

(H(6)=4.953, p=0.550) or between years (H(1)=0.017, p=0.895).  
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Table 7: The most abundant taxa (representing 90% of total sequences) or operational taxonomic units (OTUs) of the ITS region amplified by the ITS1F-ITS4 primer 

pair. Sample counts and proportion of sequence reads (%) are shown for all samples, as well as separately for 2015 and 2016 samples. Taxonomy was assigned through 

NCBI blast and trophic guild is assigned using FunGuild.  

OTU  Sample 

count
a
 

%
b
 2015 2016 Taxonomic assignment 

(synonymous taxonomy) 

QC
c
 ID

d
 Accession Phylum Trophic guild 

Count % Count % 

1 13 10.64 12 14.41 1 0.01 Itersonilia_perplexans 100 100 KU563636 Basidiomycota Pathotroph 

2 11 8.56 4 8.81 7 7.84 Phallus_impudicus 100 92 KU516101 Basidiomycota Saprotroph 

3 9 6.16 7 8.27 2 0.21 Olpidiaster brassicae  

(syn. Olpidium_brassicae) 

98 96 AB205213 Chytridiomycota Pathotroph 

4 10 6.01 9 4.89 1 9.16 Penicillium_chrysogenum 100 100 KU947079 Ascomycota Pathotroph 

5 8 5.34 6 7.22 2 0.01 Cladosporium sp. 100 100 KY921924 Ascomycota Pathotroph-

Symbiotroph 

6 8 3.79 6 5.10 2 0.10 Neoascochyta sp. 98 100 KT389526 Ascomycota - 

7 8 3.68 4 0.93 4 11.44 Sebacina_cystidiata 100 100 JQ665511 Basidiomycota Symbiotroph 

8 7 3.67 2 1.01 5 11.19 Ophiosphaerella sp. 100 97 KT692575 Ascomycota Saprotroph 

9 22 3.21 12 4.20 10 0.43 Vishniacozyma victoriae (syn 

Cryptococcus_victoriae) 

100 100 KY105837 Basidiomycota Saprotroph-

Symbiotroph 

10 7 3.20 7 4.34 0 0.00 Heterobasidion_annosum 100 100 KU645332 Basidiomycota Saprotroph 

11 19 3.18 10 3.23 9 3.02 Myrmecridium_schulzeri 100 100 KC989072 Ascomycota Saprotroph 

12 3 2.86 1 3.87 2 0.01 Naganishia albida  

(syn. Cryptococcus_albidus) 

100 100 KY102595 Basidiomycota Saprotroph-

Symbiotroph 

13 3 2.84 3 3.84 0 0.00 Hymenoscyphus herbarum 

(syn. Calycina_herbarum) 

100 97 JN033407 Ascomycota Saprotroph 

14 5 2.46 1 2.14 4 3.36 Ascomycota sp.  97 98 GQ996144 Ascomycota - 

15 9 2.34 7 3.15 2 0.06 Rhizophagus_irregularis  

(syn. Glomus irregulare) 

100 100 HF968934 Glomeromycota Symbiotroph 

16 3 2.13 3 2.89 0 0.00 Psathyrella_spadiceogrisea 98 97 DQ389682 Basidiomycota Saprotroph 
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17 7 1.62 3 0.44 4 4.96 Serendipita_herbamans 100 100 NR_144842 Basidiomycota Symbiotroph 

18 1 1.50 1 2.03 0 0.00 Phomatospora_biseriata 100 96 KX549454 Ascomycota Saprotroph 

19 2 1.44 0 0.00 2 5.51 Hymenoscyphus sp. 97 97 KT268833 Ascomycota Saprotroph 

20 5 1.27 4 1.71 1 0.00 Hemimycena_gracilis 95 98 DQ490623 Basidiomycota Saprotroph 

21 6 1.25 0 0.00 6 4.78 Cadophora sp. 100 99 KX610415 Ascomycota Symbiotroph 

22 5 1.21 1 0.00 4 4.61 Cyathicula sp. 100 100 KC989059 Ascomycota Saprotroph 

23 2 1.03 2 1.39 0 0.00 Psathyrella_lutensis 100 99 FN396145 Basidiomycota Saprotroph 

24 5 1.00 3 0.86 2 1.40 Rhizoctonia sp. 100 99 JQ859888 Basidiomycota - 

25 7 0.95 3 0.66 4 1.78 Geminibasidiaceae 97 95 NR_111878 Basidiomycota - 

26 6 0.93 4 1.22 2 0.12 Glomus sp.  100 96 AJ504638 Glomeromycota Symbiotroph 

27 2 0.93 1 0.91 1 0.99 Mycena sp. 100 86 JF908444 Basidiomycota Pathotroph-

Saprotroph 

28 3 0.89 0 0.00 3 3.41 Helotiales sp. 100 97 KX438326 Ascomycota - 

29 5 0.88 1 0.51 4 1.93 Exophiala sp. 100 95 KX610445 Ascomycota Saprotroph 

30 3 0.81 2 1.10 1 0.02 Coprinellus_micaceus 100 100 KX449450 Basidiomycota Saprotroph 

31 4 0.77 0 0.00 4 2.93 Darksidea sp. 100 87 KT270207 Ascomycota - 

32 4 0.74 2 1.00 2 0.01 Helotiales sp. 100 93 KX438326 Ascomycota - 

33 2 0.74 1 0.06 1 2.68 Corticiaceae sp. 100 85 AB8318854 Basidiomycota - 

34 1 0.69 1 0.94 0 0.00 Coprinopsis_lagopus 100 100 JN943127 Basidiomycota Saprotroph 

35 3 0.69 3 0.93 0 0.00 Aspergillus_flavus 100 100 MF120213 Ascomycota Pathotroph-

Saprotroph 

36 3 0.69 1 0.53 2 1.14 Mycena sp. 100 81 JF908409 Basidiomycota Pathotroph-

Saprotroph 
a
 Sample count is the number of samples (out of 33) that contained sequences for this OTU. 

b
 The number of reads this OTU represents out of the total number of reads across all samples. 

c 
Query coverage (QC, %) of the submitted sequence against the top hit on BLAST. 

d
 The maximum identity (ID, %) of matched nucleotides of the submitted sequence against the top hit on BLAST.  
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Table 8: Details of all operational taxonomic units (OTUs) amplified by the NS31-AM1 Illumina primer pair. Total read counts across all samples (‘Sample count’, n=15) 

and isolation frequency (%) detailing how often the OTU was amplified in different samples. This is replicated for each sampling year, 2015 and 2016. Taxonomy was 

assigned using the MaarjAM database, or NCBI Blast (in bold), whichever had the highest query coverage and identity. Virtual taxa from the MaarjAM database were 

included regardless of database used.  

OTU 

ID 

Sample 

count
a
 

%
b
 2015  2016  Assigned taxonomy  

(isolate information) 

Virtual 

taxon 

QC
c
 ID

d
 Accession 

number Count % Count % 

1 12 36.80 8 39 4 25 Glomus sp.  VTX00122 100 100 HF568332 

2 7 22.79 5 24 2 14 Rhizophagus irregularis (DAOM229456) VTX00114 100 100 HF968850 

3 5 15.09 3 13 2 28 Glomus sp. VTX00163 100 100 LN621058 

4 5 9.11 3 10 2 1 Glomus sp. VTX00072 100 100 LN621104 

5 5 8.46 3 5 2 25 Glomus sp. VTX00342 100 93.3 LN619907 

6 4 4.68 2 5 2 2 Glomus sp. VTX00153 100 100 LN620070 

7 3 2.22 1 2 2 1 Glomus sp. VTX00214 100 100 FR728571 

8 5 0.47 3 0 2 2 Rhizophagus irregularis VTX00247 100 99 FJ009612 

9 1 0.09 0 0 1 1 Claroideoglomus lamellosum VTX00193 99 99 KU136434 

10 2 0.08 0 0 2 1 Glomus sp. VTX00122 99.6 100 LN620004 

11 1 0.08 0 0 1 1 Glomus sp. VTX00129 100 100 LN620841 

12 2 0.06 0 0 2 0 Claroideoglomus sp. VTX00057 100 100 HF568164 

13 1 0.03 0 0 1 0 Funneliformis mosseae VTX00067 100 100 KU136407 

14 2 0.02 1 0 1 0 Funneliformis constrictum VTX00064 100 100 KU136431 

15 1 0.02 0 0 1 0 Archaeospora trappei VTX00245 100 97 AJ006800 
a
 Sample count is the number of samples (total n=15, 2015 n=11, 2016 n=4) that contained sequences for this OTU. 

b
 The number of reads this OTU represents out of the total number of reads across all samples. 

c 
Query coverage (QC, %) of the submitted sequence against the top hit on BLAST. 

d
 The maximum identity (ID, %) of matched nucleotides of the submitted sequence against the top hit on BLAST.  
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Table 9: Alpha diversity metrics Chao1 and Shannon-Diversity Index across the two sampling 

years, 2015 and 2016 for the ITS and AMF amplicon. Different letters indicate a significant 

difference between values within each amplicon.  

Amplicon Sampling 

Year 

Sample size Chao1 Species richness Shannon 

diversity 

ITS 2015 26 13.54
a
 3.59

a
 

 2016 10 26.54
b
 4.31

b
 

AMF 2015 11 5.32
a
 0.57

a
 

 2016 4 7.00
a
 1.04

a
 

Beta Diversity 

With the use of the vegan::adonis PERMANOVA permutation test on the ITS amplicon Bray-

Curtis dissimilarity matrix, the effect of the independent variables ‘Distance’ along transect, 

‘Year’ of sampling and pH on sample communities was assessed. Both Year and Distance 

generated significant effects independently, the most significant factor accounting for 34.5% of 

the total variation (F(1,35)=3.082, p=0.001) was the year of sampling, followed by Distance 

accounting for 7.7% of the total variation (F(9,35)=1.638, p=0.003). pH was not a significant 

factor accounting for only 2.41% of the total variation (F(1,35)=1.030, p=0.442). Convergent 

solutions for the NMDS using the ITS amplicon Bray-Curtis dissimilarity matrix were found at 

5 attempts, with a stress value of 0.26. Figure 23 displays the clear separation of communities of 

the ITS samples by year and distance between data points demonstrates their similarity, so data 

points that are close together have similar community structures. The length of the arrows 

represents the strength of the correlation between the factor and the ordination, and the direction 

indicates the direction in which this variable changes most rapidly. This demonstrates that 

changes in the foliar P concentration changes most rapidly in the direction with the 2016 

samples (Figure 23).  

The differential_abundance.py that was used to test differences in OTU abundance between 

years highlighted 21 OTUs that varied in abundance significantly between the two years after a 

post-hoc multiple comparison correction (Table 10). With the exception of OTU 11, an 

unidentified Ascomycete, all OTUs that showed significant differences between years were 

higher in abundance in 2016 compared to 2015. The results of the compare_categories.py test to 

highlight differences between OTU abundance across the distance of the transect did not show 

any significant differences (data not shown).  
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Figure 23: Non-metric multidimensional scaling plot performed on a bray-curtis simmilarity 

matrix generated from a normalised OTU table. Shaded circles and solid ellipse represent 

communities from 2016 (n=10), and the non-shaded circles and dashed ellipse represent samples 

from 2015 (n=26). The length of arrows for the NMC (non-mycorrhizal root colonisation), AMC 

(arbuscular mycorrhizal root colonisation), Si (foliar silicon concentration), P (foliar phosphorus 

concentration) and pH demonstrate the strength of correlation between this factor and the 

ordination. 

The OTUs that had significantly different abundance between the two sampling years (Table 

10) were plotted on a correlation matrix to explore whether these OTUs showed a relationship 

with other parameters measured. Particularly to identify if there was any relationship between 

OTU abundance and foliar P concentration, which was significantly lower in plants sampled in 

2016 (Figure 22, Figure 24). This analysis was performed on a reduced dataset that only used 

samples where the NGS data was successful (Section 5.3.3). P concentration was shown to be 

weakly, negatively correlated to pH in the multiple correlation analyses, although not 

significantly after post-hoc multiple comparison corrections. Looking to the complete dataset, 
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this relationship was explored further. The weak correlation was found between P concentration 

and pH (t(56)=-2.38, p=0.021), indicating that at the higher recorded pH values (6.5-7) P 

concentration was lower than a more acidic values, although it appears this relationship may be 

being driven by low sample numbers at low pH values, although these values did not exceed 

Cook’s distance and so remained in the analysis. Analysing 2015 and 2016 records separately, 

there was no demonstrable trend or relationship shown between pH and foliar P concentration 

(2015: t(28)=-1.65, p=0.11; 2016: t(26)=0.63, p=0.53). pH also appeared to have a weak negative 

effects on three OTUs in this analysis, all of these showed a small positive effect on the P 

concentration. 
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Table 10: OTUs (Operational taxonomic units) that differed significantly in abundance between the two sampling years; 2015 and 2016. Calculated using the Qiime 

differential_abundance.py package, p-values displayed are adjusted using the Bonferroni correction for multiple comparisons. 

OTU  Isolation frequency Mean read count Adjusted 

P value 

Species ID Phylum Trophic mode 

 2015 2016 2015 2016    

21 1 6 1 9448 <0.001 Cadophora sp.  Ascomycota Symbiotroph 

22 4 5 5 9126 0.005 Cyathicula sp. Ascomycota Pathotroph-Saprotroph 

63 0 4 0 710 0.016 Apodus deciduus Ascomycota Saprotroph 

28 2 5 2 6739 0.016 Helotiales sp. Ascomycota - 

31 0 5 0 5799 0.016 Darksidea sp. Ascomycota Symbiotroph 

14 3 5 11979 6639 0.023 Ascomycota sp. Ascomycota - 

46 1 5 1 3157 0.028 Neonectria sp. Ascomycota Pathotroph 

57 1 5 1 1425 0.033 Ascomycota sp. Ascomycota - 

66 0 2 0 586 0.033 Amanita sp. Basidiomycota Saprotroph 

54 0 2 0 1588 0.033 Microdochium sp. Ascomycota Pathotroph-Symbiotroph 

50 1 3 1 1880 0.033 Sporobolomyces roseus Basidiomycota Pathotroph 

8 3 5 5623 22134 0.038 Ophiosphaerella sp. Ascomycota Saprotroph 

81 0 2 0 178 0.039 Pezizaceae sp. Ascomycota - 

7 6 6 5200 22630 0.039 Sebacina cystidiata Basidiomycota Symbiotroph 

88 0 2 0 94 0.039 Epicoccum nigrum Ascomycota Pathotroph 

29 6 5 2833 3817 0.039 Exophiala sp. Ascomycota Saprotroph 

68 1 2 1 498 0.039 Mortierella gamsii Zygomycota Saprotroph 

94 0 2 0 70 0.039 Glomus sp. Glomeromycota Symbiotroph 

19 2 7 2 10896 0.039 Hymenoscyphus sp. Ascomycota Saprotroph- 

97 0 2 0 59 0.039 Solicoccozyma aeria 

(aka Cryptococcus aerius) 

Basidiomycota Saprotroph 

70 0 2 0 391 0.052 Dictyosporium sp.  Ascomycota Saprotroph 
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Figure 24: Correlations between OTUs (operational taxonomic units) that differ significantly 

between sampling years (2015-2016) and key plant measures, generated using the Pearson method. 

Si and P relate to foliar silicon and phosphorus concentrations (%), respectively, which have 

undergone arscine transformation prior to analysis. The value for root length colonisation of AMF 

(arbuscular mycorrhizal fungi) and non-AMF has also been arcsine transformed. Larger, darker 

circles represent stronger correlations, blue indicates a positive correlation, red represents negative 

correlation. Circles present on the graph represent a significant correlation prior to a Bonferroni 

correction for multiple comparisons; circles marked with a white X indicate a significant 

correlation post correction. 

  Comparisons with other studies on Hetchell Woods 5.3.5

The ITS and AMF amplicon sequencing results of this study were compared to the results 

obtained in the glasshouse experiment in Chapter 4 to compare how effective the natural 

inoculum was at providing fungi to colonise plants within a controlled glasshouse experiment. 

The inoculum for Chapter 4 was collected during November 2015, so the taxa overlap may not 

be entirely representative. There were six taxa within the ITS amplicon identified that were 
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represented in both studies, and one shared AMF amplicon OTU (Table 11). In the glasshouse 

experiment in Chapter 4 (Section 4.3.2) 18 ITS and 3 AMF amplicon OTUs were isolated from 

plants grown with the Hetchell Woods generated inoculum while this study produced 109 OTUs 

from the ITS amplicon and 15 OTUs from the AMF amplicon across the two years studied.  

Table 11: Shared Operational Taxonomic Units (OTUs) between the glasshouse experiment in 

Chapter 4, and  this study for both ITS and AMF amplicons. 

Chapter 4 This study (Chapter 5) 

OTU  Taxonomy Accession OTU  Taxonomy Accession 

ITS amplicon 

3 Olpidiaster brassicae AB205207 1 Olpidiaster brassicae AB205213 

2 Serendipita indica KC176326 95 Serendipita indica KC176326 

3 Cladosporium 

herbarum 

KX611004 5 Cladosporium sp.  KY921924 

4 Coprinopsis lagopus JN943127 34 Coprinopsis lagopus JN943127 

7 Vishniacozyma 

victoriae 

KY105839 9 Vishniacozyma 

victoriae 

KY105837 

12 Rhizophagus irregularis HF968929 15 Rhizophagus irregularis HF968934 

AMF amplicon 

2 Rhizophagus irregularis 

(DAOM 229456) 

HF968850/ 

VTX00114 

2 Rhizophagus irregularis 

(DAOM 229456) 

HF968850/ 

VTX00114 

 

The AMF amplicon results of this study were compared to the AMF OTUs generated in the 

Hetchell Woods study by Dumbrell et al (2011, Table S3) to assess whether any species are 

consistently isolated from the plant roots at this site. The findings of the Dumbrell et al (2011) 

paper demonstrated that there were significant differences in AMF communities across various 

seasons, so for this comparison only the OTUs that were amplified from the two sampling 

events in July were used to ensure complementarity with this study. This study used the primer 

pair NS31-AM1 to sequence the ‘AMF region’, while Dumbrell et al (2011) used the NS31-

WANDA primer pair, which has significant overlap with the primer pair used in this study. 

Unlike in the comparison of OTUs to Chapter 4, there were no identical accessions (Table 11, 

Figure 25). Seven OTUs (OTUs 1,2,4,6,7,10,14) clustered closely and shared a virtual taxon ID 

(VTX) with sequences published in the Dumbrell et al (2011) paper (Table 8, Figure 25). 
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Figure 25: Neighbour-joining tree displaying relationships between sequences from this study 

(Haskell_AccessionNumber_OTUnumber) and the 52 OTUs that were present in samples collected 

in July from the Dumbrell et al. (2011) study (Dumbrell_AccessionNumber). Clusters are annotated 

on the right hand side with BLAST assigned taxonomy and MaarjAM virtual taxon numbers 

(VTX). Where annotation states ‘various’ this indicates 3+ different taxa/VTX represented within a 
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single cluster, ‘various sp.’ indicates 3+ different species while ‘sp.’ refers to unknown species. 

Bootstrap values indicate support for nodes. 

 

5.4 Discussion 

The results of this study have foremost demonstrated the importance of repeated sampling in 

natural environments. Many of the measured variables differed significantly between the two 

sampling years, most striking was the difference in foliar P concentration, with values 

increasing significantly in 2016 (Figure 22). Colonisation of plant roots by AMF and non-AMF 

also varied between years based on the microscopy results (Figure 21), and a number of OTUs 

were present in plant roots at higher abundances in 2016 compared to 2015 (Table 10). 

Comparatively, distance along the transect did not appear to be as crucial as sampling time in 

determining fungal communities colonising roots and nutrition of B. sylvaticum plants. This was 

not what was predicted in the original hypotheses, as it was also predicted that the distance 

would cover a strong pH gradient based on previous work in the area. In this study there was no 

evidence of a pH gradient across the transect although pH values were much more variable at 

distances close to the limestone outcrop (Figure 20). 

The primary hypothesis of this experiment was that at lower pH, silicic acid would be present at 

higher concentration in the soil profile and therefore lead to higher foliar Si concentrations. 

Across the limited pH profile found in this study, there was no evidence of foliar Si 

concentration being affected by pH. Interestingly there did appear to be a small interaction 

between pH and P concentration, although not in the direction hypothesised, with lower values 

at the higher, more neutral pH values (6.5-7), compared to the lower, more acidic pH values. 

This is a weak relationship and may be driven by unequal sample sizes of pH readings across 

the samples. It was predicted that P availability would be affected by changes in pH, but no 

significant difference in pH was detected betweeen years (Figure 20).  

The relationship between pH and P may be influenced by the interaction of fungal taxa 

colonising plant roots. Both Si and P foliar concentrations showed a weak negative relationship 

with AMC, but only the relationship with Si was significant. The absence of a relationship is 

unusual, but the observation of a negative trend is unexpected given the widely documented 

benefits of AMC on plant P and Si content (Smith & Smith, 2012; Oye Anda et al., 2016; Garg 

& Singh, 2017). There were no AMF OTUs that were shown to interact with P or Si in the 

correlation analysis. However, three OTUs from the ITS amplicon that were significantly 

different between the two sampling years were shown to be negatively affected by pH, and 

positively correlated to foliar P concentration, although these correlations were not significant 
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after applying a post-hoc correction (Figure 24). OTU 26 (Cyathicula sp.), OTU 48 

(Sporobolomyces roseus) and OTU 62 (Apodus deciduus) were all shown to be positively 

related to P concentration, and negatively related to pH (Figure 24). None of these OTUs were 

classed as plant symbionts, but rather a mixture of saprophytes and pathogens. The OTU that 

was identified as an unidentified Cyathicula species was found in samples collected in 2015 and 

2016, but only at high abundance in the latter (Table 10). Species within this genus are 

saprophytic fungi and teleomorphs, or the sexual stage, of species in the Chalara genus, 

members of which are causative agents of ash dieback (C. fraxinea) (Carpenter & Dumont, 

1978; Gams & Philippi, 1992). A. deciduus, a saprophytic fungus in the order Sordariales was 

found exclusively in root samples collected in 2016, in four of the ten samples in this sampling 

group (Cai et al., 2006). S. roseus is a Basidiomycotan yeast frequently isolated from grass 

leaves and seed heads that is predicted to be antagonistic to common plant pathogenic fungi 

(Bashi & Fokkema, 1977; Hertz et al., 2016). There were no records of this fungus being 

isolated from plant roots, but the taxonomy was assigned with high confidence with a 100% 

query coverage and identity with NCBI BLAST.  

Given the low frequency of isolation of these OTUs within the sampling periods and the weak 

correlations it is unlikely that they are the causative agents of the improvements of foliar P 

concentration witnessed. However, the presence of these taxa in the soil and along with other 

fungi that do not colonise plant roots may have an impact on the P cycling within the soil. 

Microbial activity is crucial in the turnover of P and maintaining concentrations of biologically 

available P in the soil profile (Stewart & Tiessen, 1987; Crews & Brookes, 2014). Minimal 

changes in pH have the potential to determine soil microbial communities which may in turn 

have an indirect impact on foliar P concentration (van Aarle et al., 2002; Zhalnina et al., 2015).  

A significant difference between foliar P was demonstrated between the two sampling periods, 

but this does not appear to be directly driven by pH, which did not vary significantly between 

years. Inorganic (Pi) P is the primary form available for plant uptake, yet the availability of Pi is 

negatively correlated with soil moisture (Magid & Nielsen, 1992). Microbial P on the other 

hand increases with soil moisture, and it has been proposed that microbes and plants may 

compete for available P in the soil (Liebisch et al., 2014). Rainfall records between the two 

sampling years were very different (Table 6). The 2015 samples were taken at the beginning of 

August, a particularly dry period with only 3mm of rain in the week prior to sampling, while 

July 2015 overall was a wetter month than average (Table 6). Samples for 2016 were collected 

in early July which followed an average rainfall in June and a drier than average July although 

decreased rainfall occurred largely after sampling (data not shown). The foliar P concentration 

measured is not an ephemeral P solution but P incorporated into the leaf cells, so the immediate 
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weather may not be the best indication of the plant uptake. The drier conditions in the months 

prior to sampling in 2016 may be the reason for the increased P concentration in these plants. 

It was also hypothesised that fungal colonisation would be lower in acidic soil, and while root 

AMC and NMC varied significantly across the transect, there was no evidence of this being 

related to pH. The sequencing data also revealed that fungal communities were different over 

the transect distance, although there were no individual OTUs that were unique to particular 

distances along the transect. While AMC indicated that the amount of the root colonised by 

AMF was variable across the transect distance and decreased in 2016, this was not matched by 

the sequencing data which demonstrated that only one AMF OTU differed significantly between 

years and the abundance increased in 2016, albeit at low sequence read depth (70 reads). NMC 

increased in 2016 according to the microscopic analysis, and the sequencing results appear to 

support this statement, with non-AMF OTUs dominating the table of OTUs that differed 

significantly between years (Table 10).  

The results for the AMF amplicon support the third hypothesis, along with previous findings on 

AMF communities studied at Hetchell Woods and as part of a wider meta-analysis (Dumbrell et 

al., 2010b). This study suggested that AMF communities colonising plant roots are dominated 

by a single AMF taxon and that the identity of this dominant taxon is variable. It was 

hypothesised that this would lead to different AMF taxa dominating the colonisation in plant 

roots in different years, and based on the share of sequence reads this is supported by the data 

collected in this study (Table 8). However, while roots collected in 2015 were clearly dominated 

by a single OTU (OTU 1), the 2016 results show a more even community, with three OTUs 

(1,3,5) sharing similar overall sequence reads. AMF amplicon sequencing was only successful 

in four samples in 2016, two of which (at 1m and 7m along the transect) showed colonisation 

dominance by OTU 1, while the other two had a higher overall diversity and richness. This 

suggests that the scale at which AMF are capable of becoming dominant in plant roots occurs is 

very small, potentially at a plant-by-plant basis, rather than a universal dominance in a particular 

location. The results from 2015 support this, as replicates collected within the same metre show 

dominance by different OTUs, reflected in the ‘sample count’ column in Table 8 which 

illustrates that OTUs are not uniformly represented across samples. For example in 2015 at 9m 

along the transect, one plant sampled was exclusively colonised by OTU2 Rhizophagus 

irregularis, while another was dominated by OTU1, an unidentified Glomus species. This is 

further supported by the findings from the colonisation analyses which was conducted on the 

full dataset, whereby at each metre along the transect AMC varied with no clear trend across the 

transect. Regrettably, the sample sizes for the sequencing data in this study were unequal across 

the transect and between years due to poor quality sequencing runs, so this cannot be examined 

in further detail.  
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Of the total 70 OTUs that were recorded in the Dumbrell et al (2011) survey, during the two 

July sampling events 52 OTUs (35 and 36 OTUs at each sampling date within July) were 

isolated. Fifteen AMF OTUs were observed in the current study (Table 8), seven of which 

matched those found in the Dumbrell et al (2011) study (Figure 25). The lower abundance of 

taxa captured by this analysis may be due to the fact that this study focussed on one plant 

species across a smaller sampling area, and a different primer pair and sequencing methodology. 

Alternatively, the differences may be attributed to the temporal separation of sampling at this 

site as the Dumbrell et al (2011) study sampled in 2007-8. The results of this present study have 

demonstrated the differences in microbial community between two years, so it would not be 

unreasonable to expect shifts in the AMF community composition between this study and the 

previous survey in 2007-8. It is difficult to speculate on how significant the effect of time is on 

soil and root colonising fungi due to the lack of research on this subject, particularly in 

monitoring community dynamics in natural systems without experimental manipulations 

(Wilson et al., 2009; Rousk et al., 2011).  

The comparison of OTUs isolated in this study compared to Chapter 4 showed approximately 

80% lower OTU richness in the glasshouse experiment, indicating that the inoculum did not 

accurately recreate the natural community of Hetchell Woods. However, it did demonstrate that 

the inoculum was successful in introducing certain species from Hetchell Woods that were 

capable of successfully colonising plant roots (Table 11). This may be related to the findings 

mentioned earlier, that opportunistic fungi colonise plant roots rapidly and through competitive 

exclusion prevent further colonisation. The inability of natural AMF species to perform well in 

artificial, glasshouse systems has been noted previously (Helgason et al., 2002). This may 

therefore indicate that a similar dominance process occurs in glasshouses, where plants grown 

from seed, or with no previous exposure to fungal inoculants, are rapidly colonised by a fungus 

at close proximity and subsequently less likely to form diverse AMF communities due to 

antagonistic behaviours of microbes within the roots.  

There are a number of additional possible reasons for the lack of significant overlap between 

this study and Chapter 4, primarily the fact that the inoculum for the glasshouse experiment was 

collected in November 2015. The effect of season on the performance and presence of AMF in 

particular has been fairly well studied and diversity and community evenness of root colonising 

fungi has been observed to be higher in the winter season, before varied, opportunistic species 

proliferate and dominate during the spring and summer months (Dumbrell et al., 2011; Hazard 

et al., 2014). A comparison of the OTUs generated by roots collected in November 2007 from 

the Dumbrell et al (2011) to the OTUs of roots in the July sampling period revealed that the 

November samples had lower diversity than in July (17 OTUs compared to 35-36), and that 

there were no OTUs unique to the November samples. This may indicate that the lower number 
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of OTUs generated in the Chapter 4 analysis could be due to there being a lower overall pool of 

fungi present to colonise roots. The inclusion of a spore filtrate in the experimental set-up was 

intended to overcome this, but root fragments provide a more rapidly colonising source of fungi. 

The root fragments included in the inoculum for Chapter 4 originated from a variety of different 

plant species, rather than just B. sylvaticum, which could also be leading to a lack of overlap in 

the sequences obtained from these two experiments. 

Overall, this study has shown interesting results on a variety of levels, primarily that repeated 

sampling is important in observing how natural systems operate. AMC and NMC varied 

significantly between years, as did the abundance of a range of fungal taxa and foliar P 

concentration. Secondly, root AMF communities in natural systems, and potentially in 

glasshouse systems also, are largely typified by the dominance of a single AMF taxon which 

supports previous findings (Dumbrell et al., 2010b). This study focussed on a single plant 

species in a natural environment, and results suggest that the spatial scales that dictate fungal 

communities in roots is very small, potentially on a plant-by-plant basis. This was not strictly 

the case for non-AMF colonising fungi, which did not show a particular dominance by a single 

taxon, presumably due to the variety of niches occupied in plant roots by different fungi. 

Finally, we were able to show that natural spore filtrates and root fragments were capable of 

introducing natural fungal species into experimental pots in glasshouses, but that a significant 

loss in diversity was observed and that glasshouse contaminants are still capable of 

outcompeting natural inoculants. All of this is crucial in understanding the role of the soil biotic 

component on plant production and soil abiotic processes. Further studies are required that 

sample natural systems without experimental manipulation to understand natural variability in 

soil microbial communities.  
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6 General Discussion 

The primary hypothesis of this study was that colonisation by AMF would improve Si and P 

uptake and foliar concentration, to contribute novel information to the rapidly growing field of 

AMF related improvements in Si uptake. The results of Chapter 3 demonstrate that colonisation 

by AMF is capable of significantly altering root growth, Si and P uptake and concentrations. 

The findings of this chapter suggested that colonisation by AMF was important in the 

relationship between Si uptake and root length, demonstrating that incremental increases in root 

length are strongly related to foliar Si and P content, but only in colonised plants. However, the 

results of Chapter 4 are a contrast to this. The presence of AMF within the roots, as determined 

by the visual and sequencing analyses, was not found to be related to Si or P uptake. That said, 

there were significant differences in Si and P concentration and uptake due to the different 

treatments and microbial communities, but from the data obtained it was difficult to draw any 

major conclusions in relation to causative agents. In the field setting of Chapter 5, there was a 

negative relationship observed between AMF colonising plant roots and Si and P concentration, 

but it was not possible to collect information on plant size (especially roots) in order to 

investigate the uptake rates of Si and P. This relationship is unusual but a similar decrease in 

shoot P concentration was observed in Chapter 3 (Figure 16), due to the smaller size of AM 

plants.  

The two potential mechanisms for AMF improved Si uptake are that the colonisation of AMF 

improves the ability of plants to take up Si, either through changes in root structure or AQP 

gene expression and modulation. The second mechanism is that AMF hyphae in the ERM 

assimilate silicic acid and transport it, either passively or actively to the plant in a similar 

mechanism to P, N and water (Hammer et al., 2011; Kikuchi et al., 2016). Interestingly the 

results of the glasshouse experiments in Chapter 3 and 4 show a remarkably similar pattern in Si 

and P uptake and deposition in plants across the treatments, which may suggest a similar uptake 

mechanism (Figure 11, Figure 16). However, the results of the field study in Chapter 5 may 

suggest otherwise. Comparing the Si and P concentrations within the same year illustrates that 

Si concentration does not show the same pattern as P concentration (Figure 22). Further to this, 

P concentration increased significantly from 2015 to 2016, but no significant change was 

observed in the Si concentration data. The plants grown in the glasshouse experiments evidently 

were grown in controlled conditions with no application of stress or damage. The uptake of Si 

plants is a passive process initially, but transport from root to shoot is active, and deposition of 

Si is regulated by processes that occur in foliar tissues (Kumar et al., 2017a). The Si uptake was 

strongly correlated with root length in AMF colonised plants only (Chapter3) and co-occurred 

with an improvement in plant water status, which suggests that plant transpiration is a driving 

force for the uptake. AMF are known to improve the water status of plants and the uptake and 
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transfer of water to plants through AQP in the ERM has been shown to facilitate the transport of 

N and P through the ERM also. Uptake of Si through plant AQP is also shown to be driven by 

the transpiration stream. While this study has provided additional evidence for the role of AMF 

in Si uptake and nutrition in plants, further work is required to determine the mechanism.  

Si uptake is inducible when plants become stressed or damaged and the uptake of Si is 

beneficial to plant growth and defence, yet Si is still classed as a non-essential element (van 

Bockhaven et al., 2013; Hartley & DeGabriel, 2016). Contrastingly P is regarded as the most 

important, and frequently limiting plant nutrient (Smith et al., 2011), hence the regulation of 

uptake of each of these elements is likely to be very different. In the controlled glasshouse 

conditions the foliar Si and P concentration was similar, but in the natural environment when 

competition for P is high and availability is patchy and ephemeral, there was no overlap in the 

patterns of Si and P concentration. Comparisons for uptake between the glasshouse and field 

studies are not possible as root length measurements were not possible due to the difficulty of 

extracting full root systems from field environments. This does not lead to a clear assumption 

about whether AMF enable plants to assimilate Si directly or indirectly, as P concentration did 

not appear to be related to the presence of AMF either. The results from Chapter 5 suggest that 

rainfall may be related to P availability, and as Si uptake is principally controlled through 

transpiration (Ma et al., 2007; Kumar et al., 2017a), investigations into how water availability 

affects the uptake of Si and P under controlled conditions and in the field would be of interest. 

Unsurprisingly, it appears that glasshouse studies are not capable of replicating natural 

conditions even with the use of natural inocula.  

The use of NGS methods to assess fungal diversity in Chapters 4 and 5 generated mixed results. 

The main limitation has been the loss of samples during and after the sequence processing. The 

reasons for this may be related to low quality template DNA, although quantities were checked 

at various stages pre and post-PCR prior to submission and were adjusted to meet the 

requirements of the MiSeq platform. Alternatively, the primer sets used may not be ideal for 

sequencing root colonising fungi or rather are not specific enough. The NS31-AM1 pair should 

exclude plant sequences but still a large number of plant sequences had to be removed from 

AMF amplicon samples from both Chapter 4 and 5. The primer pair ITS1F-ITS4 is also a large 

fragment covering both ITS1 and ITS2, and similar studies have instead preferentially used the 

shorter region ITS2 only (Granzow et al., 2017). The issue of amplification of non-target DNA 

is an issue as low abundance organisms may be shadowed during the base calling stage of the 

MiSeq run. For Chapter 5, samples were split between two MiSeq plates due to space sharing 

with other lab members, and the quality of the initial run was much poorer than the second. This 

resulted in most sequences from the first run being discarded at the split library stage, even at a 

lower quality threshold. Several studies have been published that sample soil and roots from 
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glasshouse experiments to assess the fungal communities using the MiSeq platform (Edwards et 

al., 2015; Granzow et al., 2017). However, to date there have been none that are carried out in 

autoclaved soil. The low diversity seen in the samples of Chapter 4 may be due to this, which 

may explain the high number of plant reads that were amplified, due to the low abundance of 

fungal DNA, coupled with a high prevalence of plant DNA.  

Despite the limitations, the sequencing results did provide interesting information about the 

fungal communities that emerge in glasshouse experiments. The application of the same 

sampling methodology for Chapter 4 and Chapter 5 enabled comparisons to be drawn about the 

efficacy of natural inocula in colonising plants in controlled conditions. It allowed parallels to 

be drawn between the data of Chapters 4 and 5 as well as against existing data from publications 

(Dumbrell et al., 2011). Alternative methodologies such as bacterial cloning and Sanger 

sequencing are also costly and time-consuming, and likely have lower coverage than the MiSeq 

method. 

The third hypothesis related to assessing the methods used across different experiments in this 

study and how replicable the results from glasshouse to field study could be. The single species 

inoculum used in Chapter 4 had previously been assessed using bacterial cloning and Sanger 

sequencing to determine the identity of the fungal root colonisers. The results of the mycorrhizal 

stock pot analysis (Chapter 2, Section 2.3) revealed that the majority of sequences were 

identified as Funneliformis mosseae, despite the original stock pot culture species being defined 

as Glomus intraradices (syn Rhizophagus intraradices). No OTUs in Chapter 4 corresponded to 

F. mosseae, but all AMF sequences from the roots of plants grown with the F. mosseae single 

species inocula corresponded to Rhizophagus irregularis which was observed once in the initial 

screen (Chapter 2, Section 2.3). This raises interesting questions about the conditions by which 

fungi colonise plants under experimental conditions. As noted in Chapter 5, the colonisation of 

plant roots by AMF is opportunistic and often results in a dominant species excluding others 

(Dumbrell et al., 2010b). This dominance of root colonisation has been noted previously for R. 

irregularis in experimental conditions, where this species outcompeted native AMF species 

(Symanczik et al., 2015). In documenting the inoculum composition prior to the experiment, 

and comparing it to the species isolated in the plant roots as a result of the addition of the 

inoculum it highlights the importance of understanding the mechanisms of AMF colonisation. 

In addition, Serendipita indica (syn. Piriformospora indica), a common plant growth promoting 

root symbiont was present at the highest read counts within the F. mosseae treatment and in the 

stock pot screen in Chapter 2 (Section 2.3). Although there is no competitive exclusion between 

AMF and S. indica, there is likely to be some division of plant carbon to each partner and it will 

be difficult to disentangle the beneficial effects on plant growth between these two functionally 

similar organisms (Schäfer et al., 2009; Newsham, 2011). 
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The addition of autoclaved inoculum is a common and established practice in the set-up of 

glasshouse experiments to control for the potential addition of any nutrients from the roots or 

substrate (Gerdemann, 1965; Grümberg et al., 2015). However, the result of the community 

analyses in Chapter 4 demonstrates that the inclusion of autoclaved roots may be having an 

unexpected effect by introducing saprophytic fungi into the pot environment (Figure 18). The 

methods used in this experiment subjected the roots to a double autoclaving with a resting 

period of three days in-between and after each autoclave. This is intended to kill any organisms 

that are stimulated to grow by the autoclave process, but may indicate that spores present in 

inocula may be capable of surviving the process and grow in the duration of the experiment. It 

may be that these species do not colonise plant roots but are present and active in the substrate 

during the experiment which may have an effect on nutrient availability. This is an important 

consideration for any inoculum addition experiment, as evidence shows that different species 

and treatments in glasshouse conditions leads to dominance of certain taxa, despite the same 

starting inocula, although in this case the inocula was sourced from the growing medium 

(unsterilised soil) (Granzow et al., 2017).  

6.1  Conclusion 

Overall, this project has successfully shown that AMF are capable of improving the Si and P 

uptake of a non-crop species under controlled glasshouse conditions (Chapter 3). In addition, 

the application of NGS methods to verify root colonising communities has highlighted some 

potential oversights in the current techniques used in artificial glasshouse experimental 

manipulations using AMF inocula. Verifying the microbial communities in stock pot cultures 

and control treatments, which is often overlooked in glasshouse experiments using single 

species inocula, is particularly important as identification by staining and microscopy is open to 

error, differences between scorers, and it is challenging to discriminate between colonising taxa 

within the root. The comparisons of AMF communities between Chapters 3, 4, and 5 have 

supported previous findings that suggest that colonisation of roots results in an uneven AMF 

community, with a single AMF species as the dominant coloniser. This may be the reason why 

certain species are difficult to culture in controlled conditions (Helgason et al., 2002). Adding 

diverse microbial inocula to experiments can make interpretation of results more difficult, and 

yet still does not generate communities that are representative of natural communities, 

particularly as the controlled conditions will preferentially select for certain species adapted to 

the temperature and moisture regimes applied. If mechanisms for the uptake of Si in AMF are to 

be determined, then culture experiments where roots are colonised by a single species or isolate 

are the most logical forward step (Voets et al., 2005, 2009). Utilising these systems and 

producing a split-pot style experiment under sterile conditions will be the most valuable in 
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producing informative results on the mechanisms for improved mycorrhizal uptake of Si(Figure 

26).  

 

Figure 26: Proposed future experiments and hypotheses to test the mechanisms of improved Si 

uptake seen in plants colonised by arbuscular mycorrhizal fungus. Plantlets will be grown in petri-

dishes (represented by the blue circles) in Si enriched, or basic agarose media with a single 

species/isolate arbuscular mycorrhizal fungus. Hyphae and/or roots will be permitted to grow over 

a dividing section to access different resources.  
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