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Abstract 
Aims: Previous studies have shown that tumour associated macrophages (TAMs) limit 

the efficacy of chemotherapy agents like paclitaxel in mouse tumours. Furthermore, 

perivascular (PV) MRC1+ TAMs stimulate tumour regrowth after their exposure to 

cyclophosphamide. The aim of this thesis was to investigate the presence and origin of 

these PV cells in orthotopic mammary (TS1) tumours after doxorubicin (DOX) 

treatment. Attempts were also made to characterise their interaction with the tumour 

vasculature in such tumours. 

 

Methods and Results: When TS1 tumours had become established in the mammary fat 

pads of FVB/N mice, their hosts were treated with a single injection of DOX or PBS. 48 

hours later, mice were culled and their tumours removed for analysis. 

Immunofluorescent staining of tumours sections revealed the presence of increased 

numbers of MRC1+ TAMs in the well-vascularised (normoxic) stromal areas of TS1 

tumours, compared to their less well-vascularised, tumour cell islands. Moreover, the 

number of these cells making direct contact with the tumour vasculature increased after 

DOX.  These cells were mature  Gr-1- cells, rather than newly recruited monocytes or 

immature TAMs. They were not seen to associate with vessels of a particular size. 

DOX had no effect on the luminal area, patency or pericyte coverage of tumour blood 

vessels but increased the expression of VegfA mRNA by CD31+ endothelial cells.  

Moreover, both endothelial cells, and other, as yet undefined cells, upregulated mRNA 

for Angiopoietin-2, Cx3cl1, Osteopontin and Plgf in response to DOX. 

 

Conclusions: DOX increases the number of MRC1+ TAMs associated with blood 

vessels in TS1 tumours, possibly in response to various genes upregulated by tumour 

endothelial cells (and other cells in the tumour microenvironment).  The impact of these 

on the recruitment, retention and/or activation of TAMs in the PV niche merits further 

investigation.
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1.1 Macrophage biology 

Metchnikoff first coined the term ‘macrophage’ in 1892, which he used to describe 

phagocytic cells in a number of different organs including the liver and lungs [1].  A 

great deal of work has since characterised macrophages as essential components of 

the innate immune system. Their major functions include phagocytosis of pathogens 

and dead/dying cells, antigen presentation to T cells and production of cytokines [2], 

[3]. 

 

1.1.1 Macrophage origins and differentiation  

Macrophages originate from two distinct sources: definitive haematopoiesis and yolk-

sac derived macrophages. Definitive haematopoiesis-derived macrophages begin 

differentiation in the colony forming unit, Granulocyte-Macrophage (CFU-GM) of the 

bone marrow, which contains progenitors which may form neutrophils or monocyte 

precursors, the monoblasts [4], [5]. Monoblasts differentiate into promonocytes, the 

precursors of monocytes, in the bone marrow [6]–[8]. Circulating monocytes can be 

divided into two subpopulations: ‘classical’ (formally inflammatory) and ‘non-classical’ 

(resident) subsets, both of which are capable of migrating into tissues and 

differentiating into macrophages [9].  

In both mice and humans, fractalkine (CX3CR1) receptor expression helps to 

distinguish between these two subsets; classical monocytes are CX3CR1lo and non-

classical monocytes are  CX3CR1hi [9].  CD62L (L-selectin) expression and CCR2 

expression also differs between these monocyte subsets - with classical monocytes 

defined as CX3CR1lo CCR2+ CD62L+ and non-classical monocytes as CX3CR1hi CCR2- 

CD62L-. Previously, human monocytes had been defined as CD14hi CD16- classical 

and CD14low CD16hi non-classical monocytes, which were additionally found to be 

defined by their CX3CR1 expression level [9], [10]. Murine monocytes subsets, while 

not distinguishable by CD14 nor CD16 expression can be identified by additional 
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markers not expressed in humans. Ly-6C is highly expressed by classical murine 

monocytes, but at low levels in non-classical monocytes, whereas the opposite is true 

for CD43 expression [11]. CCR5 is only expressed by non-classical human monocytes 

[12]. Markers for these two monocytic subsets are summarised in Table 1.1 [13]. Ly-

6Chi classical monocytes are thought to differentiate and give rise to Ly-6Clo 

monocytes, as Ly-6Chi monocytes are the first monocytic subset to re-appear following 

depletion with clodronate liposomes [11]. Following depletion, an intermediate 

monocyte subset appears, the Ly-6Cint, and then the Ly-6Clo monocytes reappear, 

suggesting that Ly-6Clo monocytes are more mature monocytes [11]. 

 

 

Experimentally, classical monocytes (CX3CR1lo Gr-1+) were shown to migrate 

into the inflamed peritoneum of mice. Conversely, while some CX3CR1hi Gr-1- non-

classical monocytes were identified in the inflamed peritoneum, most of the cells were 

found within the blood or non-inflamed peripheral organs [9]. As these monocytic 

subsets express different chemokine receptors, it is unsurprising they may respond to 

inflammation differently. Use of CX3CR1gfp/+ mice and intravital imaging revealed that 

GFPhi (thus CX3CR1hi non-classical) monocytes patrolled the inside of blood vessels 

[14]. Antibodies which inhibited CD11a/CD18 (LFA-1) showed that these integrins were 

integral to the ‘patrolling’ behaviour of these cells [14]. This patrolling behaviour is 

thought to be essential in the early response to inflammation as GFPhi CX3CR1hi Gr-1- 

non-classical monocytes extravasated out of blood vessels within 1 hour in order to 

Table 1.1 The markers of the inflammatory and resident subsets of monocytes in humans 
and mice [13] 

Mouse Monocytes Human Monocytes 

Classical Non-classical Classical Non-classical 

CX3CR1lo CX3CR1hi CX3CR1lo CX3CR1hi 

CCR2+ CCR2- CCR2+ CCR2- 

CD62L+ CD62L- CD62L+ CD62L- 

Gr1+ Gr1- CD14hi CD14lo 

Ly6Chi Ly6Clo CD16- CD16hi 

CD43- CD43+ CCR5- CCR5+ 
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respond to various stimuli, including intraperitoneal infection with Listeria 

monocytogenes, where they then differentiated into macrophages [14]. 

Another study examining monocyte recruitment to myocardial infarcts (MI), 

showed classical Ly-6Chi monocytes were initially recruited to the injury site (peaking at 

day 3 post-MI), followed by non-classical Ly-6Clo recruitment (peaking at day 7 post-

MI), which appeared to be dependent on the increased expression of CC-Chemokine 

ligand 2 (CCL2) during the wave of classical (CCR2+) monocyte recruitment [15]. This 

experimental model also revealed functional differences between the two monocytic 

subsets: Ly-6Chi classical monocytes had produced more TNF when stimulated and 

had increased matrix metalloprotease (MMPs -2, -3, -9 and -13) and cathepsin 

(cathepsins –B, -L and –S) activity, suggesting they are important in proteolysis and 

inflammation [15]. By contrast, non-classical Ly-6Clo monocytes had increased VEGF 

expression, suggesting a role for these cells in angiogenesis [15]. It is unknown, 

however, if the response of monocytic subsets to stimuli is due to their intrinsic 

programming, or due to the context and nature of the stimuli they are exposed to - i.e. 

Ly-6Clo monocytes arrive later at the MI and, therefore, will be exposed to a different 

microenvironment (i.e. different chemokine expression etc) compared to the Ly-6Chi 

monocytes which arrive at the MI site earlier.  

Peripheral blood monocytes are known to extravasate into tissues, where they 

can differentiate into macrophages or specialised antigen presenting dendritic cells in a 

context-dependent manner [13]. Studies have revealed different roles for the two major 

monocytic subsets [16], however this could be due to differential expression of 

chemokine receptors and thus migratory behaviour, which results in these subsets 

reacting to different stimuli. Peripheral blood monocytes are not the only source of 

macrophages, and yolk-sac derived macrophages are discussed below (see Figure 

1.1). 

Prior to the onset of definitive haematopoiesis within the bone marrow, 

macrophages exist during embryonic development [17]. These embryonic “yolk-sac 
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derived” macrophages are now considered to be very important in the development of 

some adult tissue macrophages. Three different waves of embryonic macrophages can 

be identified in the embryos of mice. First, at 7.5-8 postcoital days (dpc), a maternally 

derived CD45+ F4/80+ c-Kit- subset of macrophages can be identified just below the 

blood islands of the yolk sac [18]. These maternally derived macrophages constitute 

0.4% of yolk sac cells at 7.5-8 dpc, yet by 8.5-9 dpc only 0.03% of yolk sac cells are 

maternally derived macrophages, demonstrating they colonize the embryonic yolk sac 

for only a short period of time.  

Within the early (2-8 somite stage) yolk-sac two additional sources of embryonic 

macrophages exist, which are precursor subpopulations that are CD45- c-Kit+: 

erythomyeloid precursors (produce erythrocytes and myeloid cells) and monopotent 

precursors (myeloid cells only) [18].  

Foetal liver haematopoiesis is the final wave in macrophage development prior 

to definitive haematopoiesis [17]. By embryonic day 11.5, erythomyeloid progenitors 

have migrated from the yolk sac to the foetal liver, where they proliferate and 

differentiate [19]. Many tissue resident macrophage populations (for example Kupffer 

cells of the liver, microglia in the brain) are now believed to be derived from these 

embryonic macrophages (summarised in Table 1.2), although definitive 

haematopoiesis may also help maintain these populations [17]. A summary of the 

different macrophage differentiation pathways is shown in Figure 1.1. 
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Figure 1.1 Macrophage origins: yolk-sac derived and definitive haematopoiesis. 

Macrophages originate in the yolk-sac of the embryo (1) or from definitive haematopoiesis in the 
bone marrow of adults (2). In the yolk-sac, maternally derived macrophages (purple, above) 
provide a short-lived source of macrophages. Following this erythromyeloid (EMPs) and 
monopotent progenitors (MPs) are a source of yolk-sac derived macrophages. EMPs can also 
form other myeloid cells and erythrocytes. During embryonic development EMPs migrate to the 
foetal liver and continue to produce erythrocytes and myeloid cells. In definitive haematopoiesis 
(2), pluripotent stem cells (PPSCs) exist within the bone marrow niche. The colony forming unit 
granulocyte macrophage (CFU-GM) contains progenitors of macrophages and neutrophils, 
some of which form macrophage progenitors (M-CFU). These develop into monoblasts which 
then form pro-monocytes within the bone marrow. Monocytes are released from the bone 
marrow into the blood as classical monocytes, which may either be recruited into tissues to form 
macrophages (blue), or mature into non-classical monocytes, which can also extravasate and 
form tissue macrophages (blue). Yolk-sac derived macrophages (green) continue to exist within 
healthy adult tissues as described in Table 1.2. 

 

Tissue Macrophage type Origin 

Liver Kupffer cells Yolk-sac derived 

Brain Microglia Yolk-sac derived 

Lung Alveolar macrophage Yolk-sac derived 

Spleen Red pulp macrophage Yolk-sac derived 

Bone Osteoclasts Definitive haematopoiesis 

Skin Langerhans cells Yolk-sac derived 

Blood Circulating monocytes Definitive haematopoiesis 
Table 1.2 The ontogeny of different macrophage populations in adults [20] 

 

1.1.2 Macrophage functions 

Macrophages are a diverse and plastic cell type, with various functions that contribute 

to the elimination of pathogens and also play key roles in tissue homeostasis and 

wound healing [21]. There are also tissue-specific subsets of macrophages which have 

roles in supporting the tissues in which they reside, as follows.  
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Key players in the body’s “first line of defence” are alveolar macrophages which 

reside in the lungs. As well as defending against pathogens and suppressing allergic 

responses, these cells also maintain the optimal height of the air-liquid interface and 

breakdown the surfactant layer, which is crucial to maximise gaseous exchange [22]. 

Langerhans cells are a population of antigen presenting cells in the skin which are 

crucial in triggering immune responses [23]. Microglia reside in the brain and provide 

immunological surveillance and appropriate responses to both pathogens and other 

damaging stimuli such as the build-up of amyloid-β plaques. Furthermore, microglia 

play roles in synaptic pruning during embryonic development [24]. Osteoclasts are 

found within bone and are multinucleate cells derived from macrophages which have 

merged together. These cells are vital in bone resorption, an important homeostatic 

process in bone growth and repair [25]. In the liver, Kupffer cells line the sinusoids and 

perform a variety of roles such as clearance of erythrocytes and bacteria [26], [27]. 

Kupffer cells are also thought to be important in liver regeneration [27]. 

 

1.1.3 The M1/M2 paradigm 

Attempts to describe macrophage phenotypes have resulted in the ‘M1/M2 activation’ 

paradigm. Macrophage phenotypes have, therefore, been described as ‘classically 

activated (also known as ‘M1-skewed’) or an ‘alternatively activated’ (also known as 

‘M2-skewed’) [2], [28]. However, it is important to recognise the plasticity of 

macrophages means that they can express a phenotype anywhere on the sliding scale 

between these two polarized states, rather than being just one or the other, depending 

upon the balance of local signals acting on them at any one time [29]–[31].  

Macrophages can be ‘classically’ activated by Interferon-γ (IFN-γ) in 

combination with the pathogen associated molecule lipopolysaccharide (LPS) or 

tumour necrosis factor (TNF) [2], [32]. Such M1-skewed macrophages have an 

increased expression of pro-inflammatory molecules such as IL-1β, inducible nitric 

oxide synthase (iNOS), CXCL9, CXCL10, and CXCL11 [33]–[35]. These pro-
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inflammatory molecules are essential for drawing in other immune cells to the site of 

the insult e.g. a bacterial infection, and killing the pathogen responsible [2], [34], [36]. 

The stimulation and recruitment of immune cells such as cytotoxic T cells and natural 

killer cells can also be important for killing tumour cells [37], [38].  

Equally important are anti-inflammatory ‘M2-skewed’ macrophages which are 

essential for the resolution of inflammation and tissue repair [2], [39]. These M2-

skewed macrophages are believed to provide protection from excessive and unwanted 

inflammatory responses [40], [41]. Interleukin-4 (IL-4) and Interleukin-13 (IL-13) are 

able to polarise macrophages to an M2 phenotype [2].  Further studies revealed two 

other methods which contributed to ‘M2-skewing’. Macrophages activated with IL-4 and 

IL-13 are described as M2a; those activated with TLR ligands and immune complexes 

are described as M2b and activation with IL-10 or glucocorticoids gives an M2c 

phenotype [42]. Additionally, the macrophage growth factor colony stimulating factor-1 

(CSF1) is thought to be an M2-skewing signal, whereas CSF2 is an M1-skewing signal 

[43]. 

IL-4 can inhibit the expression of pro-inflammatory genes such as IL-1β, TNF, 

IL-6 and iNOS in murine monocytes or macrophages [44], [45] and upregulates anti-

inflammatory gene expression such as arginase-1, IL-27 receptor chain (WSX-1) and 

IL-1 receptor antagonist (IL-1RA) [46]–[48].  

Genes upregulated in murine macrophages when treated with IL-4 include 

MRC1 (a mannose receptor) [49], Arginase-1 [50], Ym1 and Fizz1 [51], with MRC1 

commonly used as a marker of anti-inflammatory macrophages. In humans, arginase-1 

expression is not regulated by IL-4, and so is not considered is not a marker of M2 

phenotype in humans [52], [53]. Ym1 and Fizz1, are only markers of M2 phenotype in 

mice, as humans do not express homologues of these genes [33], [53]. However, some 

markers, first identified in mice, remain useful for distinguishing polarisation in human 

macrophages. For example, human M2 polarised macrophages express the markers 
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MRC1, the mannose scavenger receptor MSR1 and CD163 amongst others described 

in Table 1.3 [33].  

Microarray and proteomic studies examining genes induced by IL-4 in both 

murine and human macrophages have been conducted to reveal ‘M2a’ markers which 

appear to be conserved between species. Genes upregulated in murine and human 

macrophages treated with IL-4 included the previously described mannose receptor 

MRC1 [49], Kruppel-like factor 4 (gut) [54], Prostaglandin-endoperoxide synthase 1 

(PTGS1) [55] and interferon regulatory factor 4 [53], [56]. Moreover, this microarray 

and proteomics analysis revealed transglutaminase 2 (TGM2) as a novel marker of the 

M2a phenotype [53]. A summary of M2a markers induced by IL-4 are summarised in 

Table 1.3. 

M2-activation can relate to functional differences, for example murine bone 

marrow derived macrophages (BMDMs) cultured with IFN-γ and immune complexes 

(M2b activation) had increased IL-10 production, whereas those cultured with IL-4 

alone (M2a activation) did not produce IL-10 [57]. Moreover, the M2b-skewed 

macrophages were able to stimulate T cell proliferation and caused T cells to 

upregulate activation markers CD25 and CD69, possibly as they expressed the antigen 

presenting proteins CD86 and major histocompatibility complex class II (MHCII).  

 

Murine macrophages Human macrophages 

M1 phenotype M2a Phenotype M1 phenotype M2a Phenotype 

CXCL9 MRC1 CXCL9 MRC1 

CXCL10 MSR1 CXCL10 MSR1 

CXCL11 CD163 CXCL11 CD163 

IL-12 IL-1RA IL-12B IL-1RA 

TNF TGM2 TNF TGM2 

iNOS Arginase-1 COX2 CCL17 

COX2 Stabilin-1 IL-6 CCL22 

IL-6  IL-15  
 
Table 1.3 Markers of macrophage M1 and M2a-skew in murine and human macrophages 
[2], [33], [53]. 
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IL-4 is known to affect arginine metabolism by upregulating arginase-1 and 

downregulating iNOS in murine M2a-skewed macrophages [45], [46]. However, 

skewing murine macrophages with immune complexes and LPS had the converse 

effect on arginine metabolism, as these macrophages produced large amounts of nitric 

oxide and low amounts of urea, demonstrating they had increased iNOS activity and 

decreased arginase-1 activity [57].  

M2c-skewed macrophages are described as being activated by IL-10 or 

glucocorticoids, and their effects on the phenotype of human macrophages have been 

studied [58]–[60]. Of note, pre-incubating human monocyte-derived macrophages 

(MDMs) with the glucocorticoid fluticasone propionate significantly altered their 

responses to activation with IFN-γ and IL-4 [60]. Activation of macrophages with IFN-γ 

typically caused an upregulation of the Fc receptor CD64, but pre-incubating with 

fluticasone propionate (a glucocorticoid) prevented this response. Only IL-10 and 

fluticasone propionate treated MDMs showed CD163 expression, however when these 

macrophages were pre-incubated with fluticasone propionate, macrophages activated 

with IFN-γ, IL-4 and IL-10 all showed an upregulation of CD163, compared to activation 

with the respective stimulus alone [60].  These data suggest that while the M1/M2 

paradigm is a traditional way to describe macrophage activation, the activation status 

of macrophages is complex, and can be modulated by additional stimuli. This is 

particularly important when considering relevance of in vitro models of macrophage 

activation, as a multitude of likely stimuli affect macrophage phenotype in vivo.  

Martinez and Gordon suggest a new outline for the M1/M2 paradigm in which 

many more factors are considered when describing macrophage phenotype, including 

growth and survival factors, interactions with other immune cells, pathogen interactions 

and resolution of the inflammatory response [28]. It is clear from this new perspective, 

that while ‘M1-skew’ and ‘M2-skew’ are traditional and useful general terms, terms 

need to be used to describe the activation status of macrophages that take on board 

the immunological context of these cells, so it is not over-simplified. For example, 
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Mosser and Edwards also define ‘M2-skewed’ macrophages into two different 

categories, specifically relating to their functions, with those that produce anti-

inflammatory cytokines such as IL-10 and can present antigens to T cells (e.g. express 

CD86 and MHCII) being referred to as ‘regulatory’ macrophages [2], [57]. In contrast, 

macrophages that express low amounts of pro-inflammatory cytokines and produce 

molecules involved in wound healing such as arginase-1, were categorised as ‘wound 

healing’ macrophages [2], [57]. This paradigm of macrophage phenotype is illustrated 

in Figure 1.2. 

Given their anti-microbial pro-inflammatory phenotype, M1-skewed 

macrophages are believed to be anti-tumoural as they could activate the immune 

system to promote an anti-tumour response. Macrophages with an M2-skew however, 

produce immunosuppressive molecules and molecules associated with tissue 

remodelling and are believed to be mainly tumour-promoting [2], [61].  
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Figure 1.2 Diversity in macrophage phenotypes and functions. 

(A) Traditionally, macrophages were described as having an ‘M1-skewed’ pro-inflammatory 
phenotype (i.e. expression of inflammatory cytokines) or an ‘M2-skewed’ anti-inflammatory 
phenotype (i.e. expression of immunosuppressive molecules, proangiogenic functions). 
Activation with IFN-γ and LPS leads to an M1-skewed macrophage. M2-skewed macrophages 
can be split into 3 subcategories – M2a (as activated by IL-4 and IL-13), M2b (activated by TLR 
activation and immune complexes) and M2c (IL-10 or glucocorticoid) activation. Csf-1 (not 
shown) also promotes M2-skewedness in macrophages.  

(B) Functional macrophage phenotypes accurately describe macrophage behaviour. 
Proinflammatory macrophages, probably would be considered as M1-skewed, and express 
many immunostimulatory molecules. Immunoregulatory macrophages are able to promote self-
tolerance with immunosuppressive molecules such as IL-10 and can present antigens to T 
cells. Wound-healing macrophages promote angiogenesis and fibroblast functions. Both 
regulatory and wound-healing macrophages share phenotypic features associated with M2-
skewed macrophages. 
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1.2 Tumour associated macrophages are a key component of the tumour 

microenvironment 

The tumour microenvironment consists of many components which can influence 

tumour growth and progression, including tumour associated macrophages (TAMs) and 

the tumour vasculature [62]. In addition to TAMs, other immune cells such as T cells, 

myeloid-derived suppressor cells (MDSCs), and neutrophils can infiltrate and interact 

with the tumour microenvironment to impact on tumour progression [63]. It is thought 

that TAMs support  tumour progression by influencing immunosuppression, metastasis, 

angiogenesis and response to therapy [64]–[66].  

 

1.2.1 The ontogeny of TAMs 

An important, much debated question about TAMs is the origin of these cells. As 

previously denoted, peripheral blood monocytes, derived from definitive 

haematopoiesis can give rise to mature macrophages within tissues. Yolk-sac derived 

macrophages also remain within certain adult tissues, and continually populate them by 

proliferating [17]. 

Recently, monocyte tracing studies have been employed to understand the 

origin(s) of TAMs. Fluorescent latex beads (0.5µm in size) were used to label the two 

monocytic subpopulations on the basis of their Gr-1 expression status in the peripheral 

blood of mice. Intravenous injection of 0.5µm microspheres was able to label cells 

within the peripheral blood and 10-12% of peripheral blood monocytes (identifiable as 

side scatter low, CD115+ F4/80+ cells within the circulation) were labelled with latex 

beads [67]. Initially all 3 monocytic subpopulations (Gr-1hi, Gr-1int Gr-1lo monocytes) 

could be detected within the latex bead labelled population of monocytes, but over time 

the percentage of latex bead+ Gr-1hi monocytes decreased until at 24 hours only Gr-1lo 

monocytes were detected within the latex bead+ population of peripheral blood 
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monocytes [67]. These latex bead+ Gr-1lo monocytes could be detected in the 

circulation for up to one week.  

In order to label Gr-1hi monocytes, circulating monocytes were first depleted 

with clodronate liposomes. 18 hours later, latex beads were injected into the mice 

intravenously. Importantly, latex bead+ Gr-1hi monocytes were also detectable for 1 

week after labelling using this method [67]. These Gr-1hi monocytes acquired their latex 

beads from neutrophils and B cells, which in the absence of circulating monocytes (i.e. 

after clodronate liposome administration) became latex bead+ and migrated to the bone 

marrow where the monocytes acquired latex beads [67].  

This technique was also used in a study by Movahedi and colleagues [68]. TS/A 

tumours were established following monocytic labelling with latex beads to identify the 

contributions of monocytic subpopulations to TAM subsets within the tumour 

microenvironment [68]. When circulating Ly-6Clo monocytes were labelled with latex 

beads, no latex bead+ CD11b+ cells could be identified within tumours, which were 

taken 6 days after monocyte labelling [68]. However, labelling the Ly-6Chi monocytes 

demonstrated that this subset of cells are recruited into tumours, as 4% of tumoural 

CD11b+ cells were also latex bead+. These cells could be identified within tumours up 

to 19 days after the initial labelling. This demonstrates that Ly-6Chi monocytes are 

recruited into and contribute to TAM populations within these tumours. In this model, 6 

days after tumour initiation, some Ly-6Chi monocytes had started to differentiate into 

MHCIIhi TAMs and MHCIIlo TAMs; whereas by day 12 most monocytes had converted 

into the two aforementioned TAM subsets [68]. These data suggest that TAMs derive 

from circulating Ly-6Chi classical monocytes.  

The limitations of these studies, however, are that only 10-15% of circulating 

monocytes are labelled using this latex bead technique and it appears that, as Ly-6Chi 

classical monocytes mature, they lose their Ly-6C expression, which in turn could lead 

to questions over the relevance of monocytic subsets when investigating macrophage 

origins [67], [68]. If Ly-6Chi monocytes mature into Ly-6Clo monocytes, then the 
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question still remains – are the monocytes Ly-6Chi cells upon entry into tumours, or 

must they have already become Ly-6Clo monocytes prior to tumour entry? A small 

population of Ly-6Chi monocytes was detectable within TS/A tumours, which decreased 

over time [68]. Conversely, only 0.06% of total CD11b+ tumoural cells were considered 

to be Ly-6Clo
 monocytes [68]. These data therefore suggest that Ly-6Chi monocytes 

were able to infiltrate tumours to a greater extent compared to Ly-6Clo
 monocytes.  

Tie2-expressing macrophages (TEMs) are thought to form from a subset of 

circulating non-classical monocytes and are found within tumours [69], [70]. It is 

therefore possible that non-classical monocytes also infiltrate tumours [69]–[71]. As 

previously discussed, different monocytic subsets do express different levels of 

chemokine receptors, e.g. non-classical monocytes are Cx3CR1hi CCR2- whereas 

classical monocytes are Cx3CR1lo CCR2+, which could explain differences in monocytic 

subset recruitment to different tumour types, as it is likely that a range of tumours may 

express different chemokines [9]. 

Another pool of monocytes which may contribute to the TAM pool are the 

reservoir of monocytes which reside in the spleen [72]. Studies in mice bearing 

genetically induced lung adenocarcinomas (induced by oncogenic Kras and loss of 

p53) demonstrate that monocytes from the spleen infiltrate these tumours [73]. 

Splenectomised mice had significantly fewer TAMs [73]. There was also a decrease in 

the circulating CD11b+ Ly-6Chi monocytes in splenectomised mice, yet bone marrow 

numbers were unaffected by the splenectomy suggesting that the spleen releases 

monocytes into the circulation and acts as a separate store of monocytes to the bone 

marrow [73]. The recruitment of cells into these tumours was shown to be in a CCL2-

CCR2 dependent manner, as targeting monocytes with lipid nanoparticles which 

contained CCR2-targeted siRNA, reduced TAMs [73]. This splenic pool of monocytes 

was also increased in patients with invasive cancers compared to spleens from 

patients without signs of malignancy, demonstrating a possible clinical significance of 

these data [73].  
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More recently, studies utilising a photoconvertible protein in monocytes were 

used to trace the contributions of bone marrow and splenic monocytes to TAMs within 

Lewis Lung Carcinomas (LLCs), which demonstrated bone marrow monocytes 

migrated to these tumours to a much greater extent than splenic monocytes [74]. 

Taken together, these studies suggest splenic monocytes contribute to TAM 

populations, however perhaps not to the same extent as bone marrow monocytes; it is 

also likely that differences in animal model may account for differences in splenic vs. 

bone marrow contributions to TAM populations in these two studies [73], [74]. 

Yolk-sac derived macrophages also contribute to resident macrophage 

populations within a variety of tissues [17]. A recent study described the role of the 

resident ‘mammary tissue macrophages’ (MTMs) in the progression of the MMTV-

PyMT murine mammary tumours [75]. MTMs were identified in healthy mammary 

glands as CD11bhi MHCIIhi cells, which were also found within mammary tumours. As 

these tumours increased in growth there was a decrease in the proportion of MTMs, as 

the proportion of TAMs (CD11blo MHCIIhi cells) increased [75]. Parabiosis was used to 

identify whether the increase in TAMs was due to recruitment from cells derived from 

definitive haematopoiesis or expansion of tissue resident (yolk-sac derived) 

macrophages. Both parabionts contributed to the MTMs, TAMs and monocytes as 

shown by chimerism of these cell populations, demonstrating that recruitment from 

definitive haematopoiesis-derived precursors plays a role in the expansion of TAMs 

during tumour progression [75].   

Depletion of CCR2+ cells using mice with diphtheria toxin receptor (DTR) 

expression driven by the CCR2 promoter decreased both TAM and MTM populations 

within the tumours [75]. These data suggest that classical CCR2+ monocytes contribute 

at least in part, to both TAMs and MTMs within these tumours [75]. Previously, 

classical monocytes were shown to contribute to TAM populations, using labelling 

experiments, whereas these data show that by depleting the classical monocytes, you 

can reduce TAM populations within tumours [68], [75]. Interestingly, MTMs are also 
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described within this study, which does indicate a potential role for ‘resident’ tissue 

macrophages in tumour progression. The MTMs in these tumours are clearly derived at 

least in part, from classical monocytes. Further studies using models which differentiate 

between definitive haematopoiesis and yolk-sac derived macrophages, such as the 

Myb knockout mouse which lacks cells derived from definitive haematopoiesis, but not 

embryonic macrophages, could give novel insights into the contributions of embryonic 

macrophages to tumour progression [76].  

In summary, Ly-6Chi classical monocytes have been traced and shown to enter 

tumours, where they can give rise to numerous TAM subpopulations within the tumour 

[68]. TEMs, which arise from circulating non-classical monocytes also infiltrate 

tumours, although evidence suggests that Ly-6Chi monocytes mature into Ly-6Clo 

monocytes and tracing studies demonstrated non-classical monocytes form a very low 

percentage of cells recruited into tumours [68], [70], [71]. Questions still remain over 

the source of resident tissue macrophages which could affect tumour progression, as 

studies demonstrated they were at least in part maintained by definitive 

haematopoiesis, and further studies are required to fully understand embryonic 

contributions to these macrophage subsets [75]. It is likely that the contributions of 

embryonic macrophages and macrophages which differentiate from monocytes will 

depend on the location and type of the tumour. 

 

1.2.2 Roles in tumour progression 

It is now widely accepted that TAMs can influence cancer growth, metastasis and 

response to therapy [65], [66], [77]. The presence of high numbers of TAMs is 

associated with poor prognosis in many types of human cancer including breast, 

thyroid, bladder, oesophageal and astrocytic tumours [78]–[82].  

Cancer has several defining features, best described by Hanahan and 

Weinberg as “Hallmarks of Cancer” [83]. In order to survive and grow, tumours must 

proliferate, develop a blood supply (angiogenesis), invade and metastasise to other 
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tissues and escape the immune system [83]. The evidence that TAMs can aid tumour 

progression by increasing tumour invasiveness, increasing tumour angiogenesis or 

immunosuppression of anti-tumoural cells e.g. cytotoxic T cells will now be discussed 

and summarised in Figure 1.3 [64], [66].  

 

1.2.2.1 Angiogenesis 

Angiogenesis, the process by which new vessels arise from pre-existing vessels, is 

required for tumour growth [84], [85]. Implanting tumour spheroids that were infiltrated 

with macrophages demonstrated increased angiogenic potential in vivo, providing 

evidence that macrophages may support angiogenesis [86]. In the MMTV-PyMT model 

of mammary cancer, Lin and colleagues describe the 4 stages of tumour progression, 

starting with hyperplasia, then adenoma/MIN stage [87]. Following this tumours enter 

the early carcinoma stage which can progress to a late carcinoma stage [87]. Vessel 

density increases as these tumours transition from the premalignant adenomas to the 

malignant early carcinoma stage, which suggests increases in angiogenesis is related 

to tumour progression. This lead to this increase in vessel density being described as 

an ‘angiogenic switch’ – an increase in angiogenesis required for tumour progression 

[88]. Interestingly, macrophages infiltrate MMTV-PyMT tumours prior to the increase in 

angiogenesis, and Csf1 deficient mice (Csf1op/op) with depleted macrophages [89], 

showed a delayed angiogenic switch and tumour progression, which implicates 

macrophages in promoting the angiogenic switch which is key for tumour survival and 

progression [88]. TAMs are known to express many pro-angiogenic molecules 

including VEGFA, angiopoietin-1 and angiopoietin-2, cathepsin B and thymidine 

phosphorylase [71]. Moreover, depletion of macrophages using clodronate liposomes 

resulted in a decrease in tumour vessel density and halted tumour growth [90].  

 De Palma et al. identified a new subpopulation of macrophages: TEMs [69]. It 

was later revealed that these TEMs had a strongly pro-angiogenic and M2-skewed 

phenotype. Originally, De Palma and colleagues set out to target endothelial cells as a 
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possible way to inhibit tumour angiogenesis. The TIE2 receptor was originally thought 

to be exclusively expressed in endothelial cells [91]. Transfecting cell lines with a 

construct expressing GFP under the control of the Tie2 promoter, demonstrated GFP 

expression (and therefore Tie2 expression) was restricted to endothelial cell lines in 

vitro [69]. However, when examining Tie2-driven GFP expression in vivo, it was clear 

that there were CD45+ (pan-leucocyte marker) CD11b+ (myeloid lineage marker) cells 

which also expressed Tie2 [69]. Interestingly these myeloid cells were found at the 

periphery of tumours and at sites of angiogenesis [69].  Furthermore, when TEMs were 

ablated in mice carrying LLCs or TS/A mammary tumours, there was a decrease in 

tumour volume and weight as well as in tumour vascular density, demonstrating that 

TEMs support tumour growth and angiogenesis [69]. 

The subsequent characterization of TEMs revealed they have a marked pro-

angiogenic macrophage-like phenotype, rather than that of endothelial or 

haematopoietic stem cells (HSCs) [70]. Human monocytes and MDMs were also found 

to express functional TIE2, as they responded to angiopoietin-2 treatment by 

chemotaxis and exerted increased pro-angiogenic activity [92], [93]. Venneri et al. 

described the presence of TEMs within human tumours, supporting the notion that 

TEMs are clinically relevant and may be a potential target for new anti-cancer therapies 

[93]. Moreover, a recent study correlated the presence of TEMs with increased 

angiogenesis in hepatocellular carcinomas, supporting their possible role in promoting 

tumour angiogenesis [94]. 

Pucci et al. extracted TEMs, TIE2- TAMs and endothelial cells from N202 

mammary tumours grown subcutaneously in Tie2-GFP transgenic mice in order to 

compare their gene expression profiles [71]. Quantitative PCR (qPCR) analysis of 280 

genes demonstrated that TEMs and TAMs express typical hematopoietic genes such 

as CD45, CD11b and F4/80 and low amounts of typical endothelial cell genes e.g. 

VEGFR2. qPCR analysis also showed differential gene expression between the TAMs 

and TEMs.  Arginase-1 and other M2 genes such as MRC1 and CD163 were 
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upregulated in TEMs in comparison to TAMs, whereas pro-inflammatory genes such as 

iNOS, IL-1β and COX2 were downregulated in TEMs. Interestingly, TEMs were found 

to be a population of non-classical Gr1- and CD43+ cells in peripheral blood [71]. In 

order to confirm the TEMs were definitely hematopoietic cells, Pucci et al. used a 

microRNA targeting system [95] to ensure that Tie2-GFP expression would be 

suppressed in hematopoietic cells. Haematopoietic cells express microRNA miR142 

[96] which causes degradation of GFP tagged with miR142 targeting sequences 

exclusively in haematopoietic cells. They showed that TEMs and endothelial cells 

express GFP in a Tie2-GFP transgenic mouse; however this GFP expression is lost in 

TEMs in the Tie2-GFPmiR142T mouse as the miR142 expression in hematopoietic 

cells causes degradation of the GFP [71]. Taken together, these three papers suggest 

that a population of bone marrow derived TEMs have a proangiogenic role, support 

tumour growth and are of an anti-inflammatory phenotype [69]–[71]. Interestingly, while 

TEMs are heavily M2-skewed, it should be noted that Tie2 expression is also strongly 

upregulated in human macrophages treated with IFN-γ and so is not a prototypical 

marker of the “M2” phenotype [97]. It is therefore important to assess the functions of 

TEMs within tissues, rather than assuming their behaviour based on the expression of 

one marker. 

Gene expression profiling of TEMs also demonstrated they express a variety of 

pro-angiogenic molecules including thymidine phosphorylase, vegfa and placental 

growth factor (plgf) [71]. The TIE2 ligand, angiopoietin-2 [98], has been shown to 

influence TEMs, acting as a chemoattractant and promoting their proangiogenic 

behaviour  [92], [93], [99]. Angiopoietin-2 increased the pro-angiogenic activity of 

human TEMs as measured by sprouting and endothelial cell tubule formation assays 

[99]. Using qPCR and protein assays, angiopoietin-2 was found to increase the 

expression of pro-angiogenic genes such as VEGFA, matrix metalloprotease-9 (MMP-

9), cathepsin B and thymidine phosphorylase [99].  



21 
 

Moreover, double transgenic mice, with endothelial cells over expressing 

angiopoietin-2 (ANG2-DT) [100] were used to demonstrate the effect of angiopoietin-2 

in vivo [99]. Tumours grown in the ANG2-DT mice did not grow faster, but showed 

increased infiltration by TEMs and had increased numbers of immature vessels, which 

were CD31+ but lacked pericyte coverage [99]. The increased angiopoietin-2 

expression also increased the expression of thymidine phosphorylase, cathepsin B and 

MRC1 in TEMs [99]. The overall effect of angiopoietin-2 overexpression was an 

increase in immature vessels, which could be partially due to the increased population 

of pro-angiogenic TEMs within the tumour [99], as well as the direct effects 

angiopoietin-2 may exert on the tumour endothelial cells [101].  

Knockdown of Tie2 in TEMs resulted in fewer TEMs around the vasculature, 

and a decrease in CD31+ area (endothelial cell coverage) in MMTV-PyMT tumours, 

demonstrating angiopoietin-2 may play a role in attracting TEMs to the vasculature 

[102]. However, knockdown of the Tie2 receptor in TEMs did not significantly inhibit 

tumour growth [102]. An antibody targeting angiopoietin-2 however significantly 

reduced tumour growth and metastasis suggesting that this antibody inhibits tumour 

growth by a mechanism other than its effects on TEMs alone i.e. effects on the 

vasculature [102] 

TEMs were also revealed to have increased immunosuppressive functions 

when treated with angiopoietin-2 [103]. Both in vitro, in vivo and ex vivo, angiopoietin-2 

increased the immunosuppressive effects of TEMs. TEMs pre-treated with 

angiopoietin-2 were shown to inhibit T cell proliferation, measured using a 

carboxyfluorescein succinimidyl ester (CFSE) assay [103]. There was also an increase 

in the percentage of T cells in vitro which were CD4+ CD25+ FOXP3+ Tregs, and a 

decreased percentage of CD8+ cytotoxic T cells, demonstrating another role for TEMs 

in aiding tumour progression [103]. These in vitro studies utilised an anti-IL-10 antibody 

to demonstrate the immunosuppressive activity of TEMs was dependant on IL-10. In 

tumours with endothelial cells overexpressing angiopoietin-2 (ANG2-DT) there was 
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also an increase in Tregs [103]. Ex vivo, TEMs isolated from tumours were capable of 

inhibiting T cell proliferation to a greater extent than that of Tie-2- TAMs. Interestingly 

CD11b+ Gr1+ cells isolated from the spleens of these mice were also more 

immunosuppressive than the Tie2- TAMs [103]. 

 

1.2.2.2 Immunosuppression 

Immunosuppression promotes tumour progression, as tumour cells evade the immune 

system and continue to proliferate [83]. Natural killer cells are part of the innate 

immune system and can kill tumour cells [37]. Natural killer cells isolated from mice 

bearing LLCs had decreased cytotoxic activity as the tumours increased in size [104]. 

Both tumour cells and macrophages were found to produce prostaglandin E2 which 

suppressed the natural killer cells [104]. Moreover the depletion of macrophages was 

found to prevent tumour suppression of natural killer cells, demonstrating one way in 

which TAMs promote tumour tolerance [104].  

Within the adaptive immune system, CD4+ FOXP3+ regulatory T cells (Tregs) 

suppress T cell responses and promote tumour self-tolerance, whereas CD8+ T cells 

(cytotoxic T cells) can mediate tumouricidal activity [105]. TAMs suppress T 

lymphocyte proliferation, preventing the adaptive immune system from promoting an 

anti-tumour response [106], [107]. Depletion of macrophages by inhibiting the CSF1 

receptor in murine models of cancer, following treatment with chemotherapy, 

significantly increased the amount of cytotoxic CD8+ T cells and reduced the amount of 

Tregs in tumours, indicating a role for TAMs in skewing the tumour microenvironment 

towards immune escape [108], [109].  

It is likely that TAMs mediate T cell suppression via IL-10 [57], [103], as IL-10 

was highly expressed by TAMs isolated from MMTV-PyMT tumours [110], and anti-IL-

10 therapy in combination with chemotherapy increased the amount of granzyme B 

expressing cells (cytotoxic T cells) within tumours and reduced tumour volume [110]. 
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Mechanistically, TAM-derived IL-10 was shown to suppress dendritic cell production of 

IL-12 which is important in the activation and proliferation of cytotoxic T cells [110].  

In order to promote self-tolerance, T cells express ‘checkpoint molecules’ such 

as programmed death-1 (PD-1), which allows them to be inactivated when necessary 

[111]. However, tumour cells and TAMs express ligands for these checkpoint 

molecules such as programmed cell death 1 ligand (PD-L1) and PD-L2, which also 

deactivate T cells [112]. Evidence suggests that tumours can encourage TAMs to 

become more immunosuppressive by inducing their expression of PD-L1 [113]. 

In sum, TAMs aid tumours to escape the immune system by many 

mechanisms, including preventing T cell proliferation and de-activating T cells through 

expression of immunosuppressive molecules such as IL-10 and checkpoint molecules. 

 

1.2.2.3 Metastasis 

Invasion and metastasis spread tumour cells throughout the body. TAMs release a 

number of factors implicated in these two processes [71]. TAMs have been implicated 

in both the initiation of metastasis (i.e. within the primary tumour) and the survival and 

growth of metastases (i.e. within the metastatic niche).  

Macrophage-derived epidermal growth factor (EGF) increased the invasive 

behaviour of carcinoma cells both in vitro and in mouse tumours [114], [115]. Moreover 

intravital imaging was used to visualise TAM-tumour cell interactions in vivo and 

demonstrated that tumour cells were more motile when in the proximity of TAMs near 

blood vessels in tumours [116]. In Csf1op/op macrophage deficient mice, there are 

significant delays in the onset of metastasis compared to Csf1+/op littermates [117]. The 

Csf1 deficient mice had fewer circulating tumour cells, indicating the loss of TAMs in 

these mice reduced tumour cell intravasation [116]. Inhibition of the EGF receptor or 

the CSF1 receptor had similar effects on the numbers of circulating tumour cells, 

implicating these molecules further in the promotion of metastasis [116]. 
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TAMs and TEMs express many molecules which may impact on metastasis, 

and one of these molecules is MMP-9 [99], [118]. In vitro, macrophages co-cultured 

with tumour cells upregulated MMP-9 expression, which increased the invasion of 

cancer cell lines (measured using matrigel invasion assays) [118]. Moreover, LLC-

bearing mice that were deficient in MMP9 exhibit reduced lung metastasis [119].  

TAMs are a well-documented source of factors which can increase vascular 

permeability such as VEGF-A [120] and thus may influence intravasation by increasing 

vascular permeability, enabling tumour cells to enter the blood from the tumour [121]. 

Indeed tumours with a more normalised, less “leaky” vasculature, form fewer 

metastases [30], [121]. Mena, a protein involved in actin regulation, was found to be a 

gene upregulated in invasive tumour cells [122], [123]. Research has recently focussed 

on trios of cells consisting of tumour cells which overexpress Mena, coupled with an 

endothelial cell and a perivascular (PV) TAM, to form a complex called the ‘tumour 

microenvironment of metastasis’ (‘TMEM’) [124]. Ablation of VEGF-A in PV TAMs 

within these TMEMs reduced vascular permeability and circulating tumour cells, 

demonstrating TAMs produce factors which promote intravasation [124]. High numbers 

of TMEMs in ER+ HER2- breast tumours are associated with increased risk of distant 

metastasis [125]. 

Tumour cells also require macrophages to be present if they are to extravasate 

and survive at the metastatic site [126]. Depletion of macrophages (using the Csf1op/op 

mouse) results in fewer experimental lung metastases following an intravenous 

injection of mouse mammary tumour cells [126]. Using clodronate liposomes, it 

became clear that depletion of macrophages during the time of tumour cell injection 

reduced the number of lung metastases, indicating their role in metastatic seeding at 

this site [126]. Depletion of macrophages at later time points (2 days and 4 days after 

tumour cells were injected) did not reduce the number of metastases established in the 

lungs, but decreased the size of metastases and the amount of alive, proliferating 

tumour cells within the metastases, suggesting that metastasis-associated 
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macrophages (MAMs) are also important for the growth of metastases [126]. Depletion 

of resident lung macrophages by intra-tracheal administration of clodronate liposomes 

however did not impact on metastasis, suggesting MAMs are a distinct sub-population 

of macrophages [126].  

In fact, the lung MAMs are thought to be derived from classical Ly-6Chi 

monocytes, as monocyte tracing studies demonstrated there was an increase in the 

numbers of classical monocytes infiltrating lung metastases compared to the non-

classical monocytes [127]. Moreover, an anti-CCL2 antibody inhibited the recruitment 

of the classical monocytes (which are CCR2+) to the lung metastases and reduced the 

number macrophages within metastases [127]. Anti-CCL2 therapy also significantly 

reduces metastatic burden, demonstrating macrophages have a role in promoting 

metastasis, which could be targeted with anti-CCL2 therapies [127]. Unfortunately, the 

clinical benefits of anti-CCL2 may be limited as a recent study revealed that metastatic 

growth accelerated after the cessation of anti-CCL2 therapy in mice, as monocytes 

previously sequestered in the bone marrow during anti-CCL2 therapy are released into 

circulation and promote metastasis [128]. Ongoing research into novel targets has 

revealed CCL3 and VEGFR1 are also expressed by and essential for the metastasis-

promoting activity of MAMs and therefore could be potential anti-metastatic targets in 

future [129], [130]. 

In short, PV TAMs support metastasis by aiding the intravasation of tumour 

cells and MAMs then promote the seeding, survival and growth of the tumour cells 

within the metastatic niche, as demonstrated in Figure 1.3. 
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Figure 1.3 TAMs promote tumour progression 

TAMs can promote angiogenesis through a number of proangiogenic molecules including 
VEGF-A, Angiopoietin-2 (ANG2) and thymidine phosphorylase (TP). TAMs also promote 
tumour tolerance by suppression of immune cells via molecules such as IL-10, Arginase-1 
(Arg1) and PD-L1. TAMs increase the initiation of metastasis by increasing tumour cell 
invasiveness (via EGF signalling) and vascular permeability (via VEGF-A). Metastases require 
macrophages to survive, and macrophages produce molecules such as VEGF-A and CCL3 to 
increase tumour cell extravasation, metastatic seeding, survival and growth. 
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1.3 TAMs and tumour responses to chemotherapy 

1.3.1 Use of chemotherapy in the treatment of cancer 

The type of cancer and extent of tumour progression contribute to the choice of 

treatment offered. Chemotherapy is a standard-of-care treatment for many types of 

cancer. There are a range of chemotherapeutic drugs available and their mechanism of 

action varies. Paclitaxel and docetaxel belong to the taxane family of drugs and stop 

cells from proliferating as they enter mitosis by increasing their microtubule stability 

[131]. Anthracyclines such as doxorubicin disrupt DNA synthesis by intercalating base-

pairs (guanine-cytosine and adenine-thymine) and inhibiting DNA topoisomerase 

activity [131]. DNA synthesis is also disrupted by the platin family of drugs, e.g. 

cisplatin, by inducing DNA cross-links [131]. Table 1.4 describes the other main types 

of chemotherapeutics currently in use. 
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Class of 
chemotherapy 

drug 

Example Mechanism of 
action 

Useful in the 
treatment of 

Anthracyclines Doxorubicin Intercalates base 
pairs and prevents 
DNA unwinding by 

inhibiting DNA 
toposiomerases 

Many types 
including 
breast, 

bladder and 
myeloma 

Anti-metabolites Gemcitabine Interferes with DNA 
and RNA synthesis 

Bladder, 
breast, lung, 
ovarian and 
pancreatic 
cancers 

Camptothecin 
analogs 

Irinotecan Inhibits 
topoisomerase I, 
disrupting DNA 

synthesis 

Colon and 
rectal cancer 

Epipodophyllotoxins Etoposide Inhibits 
topoisomerase II 

activity, preventing 
DNA unwinding and 
thus DNA synthesis 

Lung, 
lymphomas, 
ovarian and 

testicular 
cancers 

Nitrogen mustards Cyclophosphamide Alkylates DNA, 
causing DNA 

damage which leads 
to tumour cell death 

Many types 
including 

breast, lung, 
leukaemias, 
lymphomas 

and myeloma 

Nitrosoureas Carmustine Another alkylating 
agent, and causes 

DNA damage 

Lymphoma, 
myeloma and 

brain 
tumours 

Platinum agents Cisplatin Form DNA cross-
links and causes 

DNA damage 

Bladder, 
head and 

neck, lung, 
ovarian and  

testicular 
cancers  

Taxanes Paclitaxel Increases 
microtubule stability 
and causes cells to 

halt in mitosis 

Breast, lung 
and ovarian 

cancer 

Vinca Alkaloids Vinblastine Bind to tubulin and 
inhibits mitotic 

spindle formation, 
preventing mitosis 

Bladder, 
breast, 

lymphomas, 
Kaposi’s 

sarcoma and 
testicular 
cancer 

Table 1.4 The various categories of chemotherapeutics, their mechanisms of action and 
the type of cancer they are used to treat [131], [132].  
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1.3.2 TAMs modulate the response to chemotherapy 

Increasing evidence has shown that TAMs modulate the response of the tumour to 

chemotherapy [65]. TAMs can promote the regrowth of mouse tumours after 

chemotherapy, probably by expressing a wound-healing, immunosuppressive 

phenotype. However there is also evidence for TAMs helping to destroy tumours 

following chemotherapy. These differences within the literature are likely due to 

differences in tumour type and the form of chemotherapeutic agent used (i.e. its effect 

on tumour cells). If TAMs take a pro-inflammatory phenotype following chemotherapy, 

it is likely they will increase the effects of tumouricidal chemotherapy. 

 

1.3.2.1 Anti-tumoural functions of TAMs after chemotherapy 

Despite evidence demonstrating that high TAM numbers often correlate poorly with 

prognosis in cancer patients [77], some studies demonstrate TAMs are important in 

raising an anti-tumoural response after chemotherapy. Cyclophosphamide was shown 

to increase macrophage infiltration in xenografted tumours (consisting of murine 

embryonic fibroblasts transformed with oncogenic K-RAS and E1A) [133]. However, 

depletion of macrophage precursors (peripheral blood monocytes) with gadolinium 

chloride caused tumours to show diminished responses to sustained therapy with 

cyclophosphamide [133]. Interestingly, cyclophosphamide increased the number of IL-

1β-expressing cells, suggesting that cyclophosphamide induced a pro-inflammatory 

phenotype within the tumour microenvironment.  

High mobility group box 1 (HMGB1) is usually a nuclear protein but is released 

into the extracellular environment when cells undergo necrosis [134]. HMGB1-deficient 

tumours had a decreased response to cyclophosphamide, accompanied by a decrease 

in macrophage, neutrophil and natural killer cell recruitment to these tumours, 

compared to tumours expressing HMGB1 [135]. Furthermore, HMGB1-deficient 

tumours exhibited increased expression of M2-polarising genes like IL-4 whereas 

tumours expressing HMGB1 had an increase in proinflammatory gene expression such 
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as IL-1β following cyclophosphamide treatment. These data demonstrate HMGB1 as a 

possible chemoattractant for immune cells which are anti-tumoural.  

Interestingly, docetaxel was shown to skew myeloid-derived suppressor cells 

(MDSCs, immature CD11b+ Gr-1+ cells) to an immunostimulatory phenotype and 

increased T cell proliferation and cytolytic killing in 4T1-Neu tumours [136]. Further 

investigations are now required to show which chemotherapeutic drugs can trigger 

TAMs to take on such an immunostimulatory phenotype, as this could improve 

chemotherapeutic regimens by providing an immunostimulatory microenvironment 

within the tumour. Figure 1.4 summaries how TAMs can potentially improve the 

response to chemotherapy. 

Importantly, strategies that have focussed on re-educating TAMs towards a 

proinflammatory phenotype rather than an immunosuppressive phenotype, have had 

success in improving the response to chemotherapy [30]. Histidine-rich glycoprotein 

(HRG) overexpressing tumours were shown to polarise TAMs to be more 

immunostimulatory by increasing expression of genes such as CXCL9 and decreasing 

expression of immunosuppressive genes such as arginase-1 and IL-10 [30]. 

Accompanying this switch in macrophage phenotype was a decrease in tumour growth 

and metastases, a more normalised vascular network and an improved response to 

doxorubicin treatment [30]. Depletion of macrophages with clodronate liposomes 

decreased tumour growth in wild type tumours, whereas in tumours overexpressing 

HRG, macrophage depletion increased tumour growth, supporting the idea that the 

HRG overexpression skews TAMs towards an anti-tumoural phenotype [30]. These 

data demonstrate the importance of macrophage phenotype in the context of improving 

current front-line therapies.  
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1.3.2.2 TAMs limit the anti-tumour effects of chemotherapy 

Many studies have described TAMs as having an immunosuppressive and 

proangiogenic phenotype [66]. It is, therefore, not surprising to find that TAMs 

contribute to tumour survival and regrowth during/following chemotherapy in some 

mouse tumour models [65].  

In vitro primary mammary tumour cells were equally sensitive to doxorubicin, 

regardless of the stage of the MMTV-PyMT tumour they were isolated from. However, 

in vivo, early carcinomas showed increased doxorubicin sensitivity compared to late 

carcinomas and hyperplasias, despite all stages of the mammary tumour displaying 

similar amounts of cell proliferation, indicating doxorubicin sensitivity is not mediated by 

a property intrinsic to the tumour cells [137]. TAMs and monocytes/neutrophils were 

Figure 1.4 Anti-tumoural TAMs synergise with chemotherapy  
Chemotherapy may induce necrotic cell death. Necrotic cells can release high mobility group 
box 1 (HMGB1) which attracts anti-tumoural pro-inflammatory cells into tumours, enhancing 
the effects of chemotherapy. Re-education of pro-tumoural immunosuppressive TAMs to an 
anti-tumoural phenotype e.g. in tumours overexpressing histidine-rich glycoprotein (HRG) 
also improves response to chemotherapy. 



32 
 

shown to express MMP-9, and MMP9-/- mice had an increased response to doxorubicin 

and increased vascular leakage, suggesting that MMP-9 limited the ability of 

doxorubicin to diffuse within the tumours [137]. Doxorubicin increased tumour 

infiltration of CCR2+ monocytes, and this increase was not seen in CCR2-/- mice, 

suggesting that CCL2-CCR2 signalling is important in the recruitment of these 

monocytes after doxorubicin [137]. Moreover, CCR2-/- mice had an increased sensitivity 

to doxorubicin, showing these monocytes in particular are responsible for decreased 

sensitivity to doxorubicin in vivo [137]. 

The cathepsins B and S promote tumour growth and angiogenesis [138]. After 

observing an increased expression of these enzymes in lysates from paclitaxel-treated 

tumours, Shree and colleagues further investigated the source of these cathepsins 

[139]. Paclitaxel increased macrophage infiltration into tumours and using a fluorescent 

probe to detect cathepsin activity, they observed these macrophages were a source of 

cathepsins [139]. In vitro, they used co-cultures to demonstrate that macrophages also 

protect tumour cells from cell death (as detected by Annexin-V surface expression) 

[139]. Moreover inhibition of cathepsins with JPM abrogated the tumour-protective 

effects of macrophages and use of this inhibitor in vivo increased the efficacy of 

paclitaxel, doxorubicin and etoposide [139]. 

Insulin-like growth factors (IGFs) have been implicated in chemoresistance in 

pancreatic cancer [140]. In vitro, macrophage conditioned medium containing IGF1 and 

IGF2 increased the survival of pancreatic cell lines and, in addition, TAMs were shown 

to express IGF1 and IGF2 in patients with pancreatic ductal adenocarcinoma [140]. 

Murine pancreatic tumours also showed expression of IGF1 and IGF2 in TAMs and 

fibroblasts [140]. Inhibition of IGF signalling using IGF-blocking antibodies, in 

combination with the chemotherapy drug gemcitabine significantly increased tumour 

cell death (measured by tumour size and cleaved caspase-3 expression) in a murine 

model of pancreatic cancer, demonstrating IGFs,  which are expressed by TAMs, can 

contribute to chemoresistance [140]. 
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TAMs are known to express a number of pro-angiogenic molecules [71], [99], 

[141]. The role of myeloid cell VEGF-A was investigated using mice which had a loxed 

Vegfa allele and expressed Cre recombinase enzyme under the control of the LysM 

promoter [142], which specifically removed myeloid cell-derived VEGF-A [143]. 

Tumours grown in LysMCre/VEGF+f/+f mice grew more quickly than in wild type mice 

and had a more normalised vasculature, with increased pericyte coverage and a less 

tortuous, less permeable vascular network, suggesting vascular normalisation had 

aided tumour growth [143]. Furthermore, the LysMCre/VEGF+f/+f mice actually 

responded much better to cyclophosphamide therapy, perhaps because the more 

normalised vasculature allowed the chemotherapy to permeate further into the tumour 

mass [143]. These data implicate TAMs as hindering both tumour growth and 

responses to chemotherapy, and demonstrate the importance of normalising the 

vasculature to improve response to chemotherapy. 

More recently, TAM-derived VEGF-A was ablated using the Csf1r-Mer-iCre-Mer 

inducible, macrophage-specific knockout of VEGF-A [127], and this resulted in 

significantly delayed tumour regrowth in implanted MMTV-PyMT tumours treated with 

doxorubicin, demonstrating these TAMs promote relapse in a VEGF-A dependent 

manner [144]. These TAMs infiltrated tumours treated with chemotherapy – as 

demonstrated by increases in both TAMs and MRC1+ (a marker of M2-skewed 

phenotype) TAMs in 3 different tumour models given 3 different types of chemotherapy 

(LLC + cyclophosphamide; 4T1 + paclitaxel and MMTV-PyMT implants + doxorubicin) 

[144]. Adoptive transfer of MRC1hi TAMs isolated from LLCs into other LLCs following 

chemotherapy increased the rate of tumour regrowth compared to transfer of MRC1 lo 

TAMs, suggesting that MRC1+ TAMs are responsible for aiding the regrowth of 

tumours [144]. MRC1+ VEGF-A+ TAMs were found within the PV niche (the area of 

tumours directly in contact with the vasculature) of these LLCs [144]. Interestingly, 

AMD3100, an inhibitor of the CXCR4 receptor [145], delayed LLC regrowth after 

cyclophosphamide treatment [144]. AMD3100 inhibited the accumulation of PV MRC1+ 
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TAMs, demonstrating that they promote relapse [144].  This means that targeting the 

CXCL12-CXCR4 axis could improve the efficacy of some forms of chemotherapy by 

reducing PV TAMs that promote tumour relapse [144].  

Further studies utilised the LysM-Cre system to ablate Tie2 in myeloid cells  

which resulted in delayed regrowth of MCA205 fibrosarcomas after chemotherapy 

(both cyclophosphamide and doxorubicin used as single agents) [146]. Tumours grown 

with TAMs lacking TIE2 were less vascular after doxorubicin treatment, compared to 

those grown in wildtype mice [146]. It is worth noting however, that the LysM-Cre 

system was not inducible and so these studies are conducted with TAMs that are 

unable to express Tie2 from the beginning of the study, not exclusively during the 

regrowth phase, and previous studies have highlighted that angiopoietin2-TIE2 

signalling can increase the proangiogenic activity of TEMs [99]. Questions therefore 

remain about whether the Tie2 ablation reduces relapse because of initial changes in 

the tumour microenvironment prior to therapy, or due to changes which occur after 

therapy. Interestingly, Tie2 expression in vitro did not increase survival of RAW264.7 

macrophages treated with doxorubicin, but did offer survival benefits when they were 

grown under serum starvation conditions, suggesting TAMs which express Tie2 are 

more likely to survive stressful conditions [146].  

Immunosuppression is another method by which TAMs may promote tumour 

growth by evading anti-tumour responses. Patient biopsies (treated with chemotherapy 

prior to surgery) and MMTV-PyMT tumours treated with paclitaxel showed increased 

TAM infiltration compared to tumours not exposed to chemotherapy [109]. In the 

murine MMTV-PyMT tumour model, macrophage infiltration was found to be dependent 

on the macrophage growth factor and chemokine, CSF1, which was upregulated in 

these tumours following paclitaxel treatment [109]. PLX3397, an inhibitor of the CSF1 

receptor and the stem cell receptor c-kit, inhibited recruitment of macrophages to 

tumours and increased the efficacy of paclitaxel and carboplatin chemotherapy, 

causing an increase in tumour shrinkage [109]. In addition to this, T cell recruitment 
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(CD3+ CD8+ cells and CD3+ CD4+ cells) was increased in paclitaxel-treated tumours 

when TAM recruitment was inhibited by PLX3397. TAMs isolated from MMTV-PyMT 

tumours suppressed cytotoxic T cell proliferation (CD3+ CD8+ cells) in vitro and anti-

CD8 antibodies abolished the effects of PLX3397 on mammary tumours in vivo, 

demonstrating that the macrophages recruited by CSF1 after chemotherapy are pro-

tumoural and exert some of their effects via suppression of CD8+ cytotoxic T cells 

[109]. The importance of CSF1 was also demonstrated when a CSF1 blocking antibody 

reduced macrophage recruitment into MCF-7 chemoresistant tumour xenografts and 

rendered them sensitive to chemotherapy [147]. 

An increase in TAMs was also observed following treatment of pancreatic 

tumours in mice with gemcitabine [108].  TAMs were shown to increase the number of 

tumour initiating cancer stem cells, tumour growth and metastasis and to mediate 

cytotoxic T cell suppression. Again, inhibition of CSF1R caused a decrease in 

macrophage accumulation and improved response of pancreatic tumours to 

gemcitabine. It therefore appears that the CSF1 signalling pathway is a useful target for 

improving response to chemotherapy, as these data suggest CSF1 is a key factor for 

recruiting TAMs which limit the efficacy of chemotherapy.  

Paclitaxel was shown to increase IL-10 expression in TAMs, and anti-CSF1 

reduced the expression of IL-10 in these tumours [110]. Combining paclitaxel with 

either an anti-CSF1 or an anti-IL10 significantly decreased tumour growth compared to 

tumours treated with paclitaxel alone [110]. Inhibition of IL-10 in combination with 

paclitaxel increased the numbers of tumour dendritic cells and granzyme B+ (marker of 

cytotoxic T cells) cells, suggesting IL-10 triggers immunosuppression in paclitaxel 

treated tumours. Additional studies also showed inhibition of CSF1R prevented TAMs 

from adopting an immunosuppressive, proangiogenic phenotype and increased 

survival in a murine glioma model [31]. 
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Figure 1.5 TAMs aid tumour survival and regrowth after chemotherapy 

Tumours can upregulate macrophage chemoattractants CSF1, CCL2 and CXCL12 
following chemotherapy which increases TAM infiltration. These TAMs can promote 
angiogenesis (for example via MMP-9 and VEGF-A), enhance chemoprotection (e.g. via 
IGF-1 and IGF-2 or cathepsins) and aid immunosuppression (e.g. via IL-10). These three 
mechanisms all promote tumour survival and ultimately surviving tumour cells will be able 
to continue to grow following therapy. 

In this context, TAMs represent a population of immune cells which respond to 

chemotherapy-induced tumour damage by upregulating their wound-healing properties, 

to  promote tumour repair and regrowth (as summarised by Figure 1.5).  
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1.4 TAM targeting strategies in the treatment of cancer 

Not only do TAMs modulate the response of tumours to chemotherapy [65] but they 

can also limit the efficacy of other cancer treatments like anti-angiogenic agents, 

radiotherapy and immunotherapy, demonstrating these cells are a potential target for 

increasing the efficacy of a number of anti-cancer therapies [65]. Research 

investigating new ways of inhibiting the recruitment, and/or modulating the phenotype 

of TAMs is now warranted (see Figure 1.6).  Previous strategies that were developed to 

target TAMs are described below. 

 

1.4.1 Therapies which inhibit macrophage recruitment 

1.4.1.1 Targeting the CCL2-CCR2 axis 

Inhibiting CCL2-CCR2 signals reduces monocyte recruitment, metastasis and 

increases sensitivity to doxorubicin [127], [137] Moreover, several types of cancer have 

shown increased CCL2 expression in patients and in some cases, CCL2 expression 

correlates with poor prognosis [148]. CCL2-CCR2 signalling could be exploited to 

improve current therapies by increasing chemosensitivity and reducing metastasis. 

However, it was recently shown that halting treatment of mice with anti-CCL2 

antibodies rapidly increases metastasis, as monocytes migrate into both primary 

tumours and the metastases and promote growth by IL-6 and VEGF-A signalling [128]. 

A first-in-human phase I trial tested the safety and efficacy of the human anti-CCL2 

mAb, also known as carlumab (or CNTO 888) [149]. While carlumab reduced serum 

CCL2 initially (24 hours after treatment), 8 days later serum CCL2 levels had 

rebounded to pre-treatment CCL2 levels and in some cases the serum CCL2 

concentration was even higher than pre-treatment concentrations [149]. Given the 

rapid rebound of serum CCL2, this trial suggests that serum CCL2 is not successfully 

suppressed with carlumab treatment. Potentially, antibodies with different 
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pharmacokinetic properties, that are able to sequester CCL2 in patients for longer, may 

be more successful at suppressing CCL2 signalling [149]. 

Another study showed that combining four different chemotherapy regimens 

(docetaxel, gemcitabine, paclitaxel and carboplatin) with carlumab was reasonably 

well-tolerated in patients, however total and free (not bound to carlumab) CCL2 was 

increased in patient sera during the course of therapy, suggesting carlumab was 

unable to successfully sequester CCL2 [150]. Additionally patients with metastatic 

castration resistant prostate cancer did not respond to carlumab, and carlumab again 

failed to sequester CCL2 in the serum for long periods of time [151]. These 

unsuccessful clinical trials, which revealed no benefit of CCL2-targeting and the pre-

clinical mouse model suggesting that halting anti-CCL2 therapy can lead to accelerated 

metastasis and death, brings into question whether targeting CCL2 should be pursued 

further.  

Anti-VEGFA and anti-IL6 antibodies were able to prevent rebound of 

metastases after anti-CCL2 therapy was halted in mice, suggesting these molecules 

could potentially be targeted in combination with CCL2 to improve the anti-tumoural 

and anti-metastatic effects [128]. Indeed, further studies investigating CCL2 signalling 

in metastases, have revealed roles for CCL3 and VEGFR1 and inhibiting these 

pathways reduced metastasis [129], [130]. These studies highlight that while CCL2 

targeting may not be a good therapy, investigating pathways downstream of CCL2 

signalling may reveal alternative therapeutic targets. 

 

1.4.1.2 Inhibiting the CXCL12-CXCR4 axis 

Several studies demonstrate TAMs infiltrate tumours using the CXCL12-CXCR4 axis 

following treatment with the vascular disrupting agent, combretastatin A4 phosphate 

[152], radiotherapy [153], [154] and chemotherapy [144].  AMD3100, a CXCR4 inhibitor 

[145], has been shown to significantly improve responses to therapy and inhibits TAM 

infiltration of tumours following these treatments [144], [152]–[154]. AMD3100 also acts 
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as an agonist of CXCR7 [155] and CXCR4 is present on cells other than macrophages, 

including HSCs [156], which brings into question the specificity of AMD3100 as a 

potential therapeutic. Indeed, one use for AMD3100 is to mobilise HSCs from the bone 

marrow, which can then be collected and used for stem cell transplants following 

intensive chemotherapy [157]–[159]. It would therefore be important to investigate any 

undesirable effects AMD3100 may have, due to its non-specificity, and especially due 

to this mobilisation of HSCs in clinical trials.  

Due to the lack of specificity of AMD3100, additional CXCL12-CXCR4 

disrupting drugs have been developed [160]. One such drug is LY2510924, a peptide 

antagonist of CXCR4 [161]. Clinical trials have shown LY2510924 induces stem cell 

mobilisation and is reasonably tolerated in cancer patients [162]. A phase II trial 

combining LY2510924 with chemotherapy (carboplatin and etoposide) was carried out 

in patients with extensive-disease small cell lung cancer, and while the drug 

combination was tolerable, LY2510924 did not improve progression free- or overall 

survival of patients [163]. Somewhat disappointingly, these early clinical trials indicate 

CXCR4 inhibition is not impacting patient survival as well as pre-clinical studies have 

suggested. Reasons for this could be differences between the pre-clinical models and 

the patients themselves and combining the CXCR4 inhibitors with different types of 

chemotherapy and different tumour types may still yield interesting results. Further 

investigations into targeting mechanisms which upregulate CXCL12 within the tumour 

stroma, such as hypoxic signalling pathways like HIF-1 transcription factors [164], or by 

targeting downstream effectors of CXCR4 signalling may also reveal novel ways to 

inhibit TAMs and improve chemotherapy. 

 

1.4.1.3 Targeting CSF1 signalling 

As mentioned previously, CSF1 acts as a growth factor for macrophages, and 

promotes their M2-polarisation within tumours [31]. Inhibiting the CSF1 signalling 

pathway improves the outcome of chemotherapy [108]–[110], [147], radiotherapy [165] 
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and anti-angiogenic therapies in murine models of cancer [166], most likely due to its 

effects on TAMs within the tumour microenvironment. Current clinical trials should 

reveal if the CSF1R inhibitor PLX3397 can improve the outcome of chemotherapy in 

patients. It should be noted, that PLX3397 also inhibits the stem cell receptor cKIT, so 

it may be important to investigate whether PLX3397 has any additional effects on stem 

cell survival or proliferation [109]  

Inhibition of the CSF1 pathway may also affect macrophage phenotype as 

CSF1 increases the proangiogenic activity of monocytes in vitro [28], [167]. Inhibition of 

CSF1R (using the compound BLZ945) resulted in decreased expression of 

immunosuppressive genes by TAMs such as arginase-1, and the M2a-phenotype 

marker MRC1, as well as the pro-angiogenic molecule adrenomedullin in a murine 

model of glioma [31]. In this model, there was no decrease in the number of TAMs [31], 

which may have seemed unprecedented, as CSF1R inhibition has reduced TAM 

numbers in other models [108]–[110], [165], [166]. Potentially this could be because the 

CSF1R inhibitor was administered into mice 2.5 weeks after the original tumour was 

initiated [31], and macrophage recruitment can be time dependant. Moreover, BLZ945 

is a more selective CSF1R inhibitor, whereas PLX3397 also inhibits c-kit, which could 

account for these differences in macrophage recruitment. CSF1 is also a survival factor 

for macrophages [168], however using glioma-conditioned media, it appeared that 

macrophages were protected against cell-death, despite a lack of CSF1 signalling, due 

to glioma cell-derived CSF2, IFN-γ and CXCL10 [31].  

Interestingly CSF2, can alter macrophage phenotype, as immunofluorescent 

staining demonstrated mammary tumours injected with CSF2 have an increase in 

iNOS expressing (pro-inflammatory) TAMs and a decrease in arginase-1 expressing 

(immunosuppresive) TAMs [169].  Indeed, in gliomas treated with BLZ945, TAMs were 

less proangiogenic and immunosuppressive, which may be attributed to blockade of 

CSF1 M2-polarising signals, as well as an increased reliance on M1-polarising signals: 

IFN-γ and CSF2 [31]. 
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Several clinical trials using PLX3397 are currently underway [170]. 

Tenosynovial giant cell tumours (which overexpress CSF1) were treated with PLX3397 

as a single agent in patients [171]. As a single agent, PLX3397 was able to reduce 

tumour volume in patients on average by 61%, demonstrating PLX3397 was successful 

in treating these patients [171]. Some of these patients experienced adverse effects, 

such as periorbital oedema; despite this, most patients continued their treatment, 

suggesting that the drug was mostly well-tolerated [171]. PLX3397 was also used in a 

phase II trial as a single agent in the treatment of glioma [172]. While PLX3397 was 

well-tolerated, and reduced IBA1 (a macrophage marker) staining could be detected in 

glioma samples, demonstrating its ability to cross the blood-brain barrier, it had no 

effect on progression free or overall survival [172]. These data suggest that tumour 

type may well influence the response of tumours to CSF1R inhibitors. While CSF1R 

inhibition as a single agent failed to treat recurrent glioma, it was well-tolerated and 

potentially PLX3397 may reveal tumouricidal properties in different tumours 

(particularly if they overexpress CSF1), and in combination with other anti-cancer 

therapies.  

 

1.4.1.4 Targeting Angiopoietin-2/Tie2 signalling 

As angiopoietin-2 both recruits and activates the tumour-promoting functions of TEMs 

[71], [92], [99], [103], blocking this cytokine in the tumour microenvironment could 

possibly be seen as a way to inhibit TEMs in tumours. MEDI3617 is an anti-

angiopoietin-2 antibody, which is well tolerated in patients with solid tumours, either 

when used as a single agent or in combination with chemotherapy (carboplatin/ 

paclitaxel or paclitaxel alone) and the anti-angiogenic anti-VEGF drug bevacizumab 

[173]. These trials need to examine the effects of MEDI3617 on both the vasculature 

(i.e. direct effect) versus TEM number and phenotype.   

On the other hand, a humanised monoclonal antibody developed to sequester 

angiopoietin-2 (PF-04856884) was tested in metastatic renal cell cancer patients in 
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combination with axitinib (inhibitor of VEGFRs, c-Kit and PDGFR), but as some 

patients had thromboembolic events, the trial was terminated [174]. The differences in 

tolerability could be due to the differences in antibody, or the combination of axitinib 

with anti-angiopoietin-2 therapy could have led to increased risk of thromboembolism. 

Clearly these toxicities must be considered when combining novel therapeutics with 

pre-existing drugs. 

An antibody which targets both VEGF and angiopoietin-2 has been developed 

and elicited greater anti-tumoural effects than anti-VEGF or anti-angiopoietin-2 

antibodies alone [175]. In a murine glioma model, MEDI3617 (targeting angiopoietin-2) 

and cediranib (targeting VEGFR) were combined and demonstrated increased 

tumouricidal activity [176]. Tumours treated with cediranib and MEDI3617 had a more 

normalised vasculature (increased pericyte coverage and reduced oedema, suggesting 

more functional vessels) [176]. TAMs in combination treated tumours were less pro-

tumoural, and depletion of TAMs with anti-CSF1, abrogated the effects of the 

combination therapy, suggesting that this combination was successful due to its effects 

on TAMs and the vasculature [176]. In keeping with this, the bispecific antibody A2V 

(targeting angiopoietin-2 and VEGFA) increased survival in murine glioma models 

compared to antibodies targeting VEGFA alone, and was shown to skew TAMs 

towards an proinflammatory phenotype and reduced the percentage of MRC1+ M2-

skewed TAMs [177]. Patients with solid tumours were shown to tolerate treatment with 

the antibody CVX-241 (targeting both angiopoietin-2 and VEGFA) [178]. However a 

more recent trial (ClinicalTrials.gov Identifier: NCT01004822) investigating the efficacy 

of CVX-241 in patients with advanced solid tumours was suspended due to no 

significant effects when testing the efficacy of the antibody alone; these issues were 

thought to be due to the antibody being unable to bind VEGFA for as long as predicted 

[179]. 

In summary, while therapies which target TAM recruitment have shown promise 

in pre-clinical mouse models, their efficacy in patients has, to date, been disappointing. 



43 
 

Differences between the mouse tumour models and tumours growing in patients may 

account for these discrepancies.  

 

1.4.2 Therapies which modify TAM phenotype.  

A common theme between the different anti-tumoural therapies, (e.g. chemo-, radio- or 

anti-angiogenic therapies) is that inhibiting the recruitment of monocytes into tumours 

can improve the efficacy of the treatment. However, some studies have demonstrated 

that altering the phenotype of TAMs can also enhance tumour response to some forms 

of therapy [30], [180]. As macrophages are recruited to tumours following anti-tumoural 

therapy these cells could potentially be a resource for killing the tumour. Therefore re-

educating TAMs from an anti-inflammatory, pro-tumoural phenotype to a pro-

inflammatory, tumouricidal phenotype may be more beneficial to the treatment of 

tumours, rather than simply blocking their recruitment. 

 

1.4.2.1 Promoting a tumouricidal TAM phenotype 

One strategy proposed for increasing the proinflammatory, tumouricidal behaviour of 

TAMs was the targeting of the nuclear factor-κB (NF-κB) signalling pathway [29]. NF-

κB activation in TAMs was inhibited as these macrophages had no functional IκB 

kinase (IKKβ, removed by genetic deletion or expression of a non-functional IKKβ) [29]. 

This genetic manipulation skewed TAMs towards a proinflammatory phenotype – with 

an increased expression of M1-like genes such as iNOS and increased tumouricidal 

activity [29]. In terms of translating this strategy to patients, IKKβ inhibitors have been 

suggested. However, ways of targeting IKKβ inhibition specifically in TAMs would need 

to be developed. Another, more specific method would be to isolate monocytes from 

patients, modify them ex vivo to disrupt their NF-κB signalling, and then return them 

intravenously to the patient – or perhaps by intratumoural injection, if that was feasible. 

More recently, phosphoinositide-3 kinase γ (PI3Kγ) was shown to stimulate the 

tumour-promoting phenotype of TAMs in some mouse models.  Inhibition of PI3Kγ 
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using the inhibitors TG-100-115 or IPI-549 resulted in decreased tumour growth [181]. 

Myeloid (CD11b+) cells isolated from PI3Kγ deficient (p110γ-/-) tumours had decreased 

arginase-1, IL-10 and TGFβ expression, and had increases in proinflammatory gene 

expression such as iNOS and IL-12 [181]. TAMs isolated from  p110γ-/- tumours  were 

also less immunosuppressive and had decreased arginase activity [181]. This study 

identified PI3Kγ as a target within myeloid cells in tumours – as this would diminish the 

immunosuppressive tumour microenvironment. Clinical trials using the PI3Kγ inhibitor 

IPI-549 are now recruiting patients to test the safety profile of this drug.  Further trials 

will show if this promising new target has a future in the clinic [182]. 

DC101, an anti-VEGFR2 antibody has been used to target the tumour 

vasculature, and lower, ‘vascular normalising’ doses of DC101 increased pericyte 

coverage and vessel functionality (measured by FITC-lectin perfusion of vessels) [180]. 

These lower doses of DC101 also modulated the phenotype of TAMs which were 

located near to vessels (labelled by intravenous Hoescht dye).  It reduced their 

expression of immunosuppressive genes e.g. CCL17, CCL22, and increased 

expression of proinflammatory genes such as iNOS and IL-12α [180]. An additional 

study used overexpression of HRG in tumours to normalise the vasculature, which 

reduced tumour burden and metastasis, increased the efficacy of doxorubicin and 

induced a proinflammatory phenotype in TAMs, demonstrating perhaps vascular 

normalisation may be one strategy for re-educating TAMs [30].  

These findings are supported by a more recent study in which a bispecific 

antibody targeting both Angiopoietin-2 and VEGF helped normalise the tumour 

vasculature (increased pericyte coverage and vessel diameter) and also reduced M2-

skewed TAMs in tumours [177]. Anti-angiogenic drugs such as bevacizumab are 

clinically available, however tumours become resistant to these therapies, so they are 

not as effective in patients as expected [183]. Treatment with lower doses of anti-

angiogenic drugs to generate vascular normalisation may be a new way to utilise these 
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drugs in targeting both TAMs and increasing drug delivery [184], although this may be 

difficult to achieve.  

Elucidating the mechanism by which vascular normalisation affects 

macrophage phenotype could be very interesting – indeed tumour hypoxia decreases 

when vessels are normalised, and this may influence TAM function [184]. However, 

TAMs from PHD2+/- haplodeficient mice (i.e. isolated from more oxygenated tumours) 

expressed the same levels of M2-skewed markers MRC1 and arginase-1, as those 

isolated from wildtype mice with more hypoxic tumours [185]. Only genes regulated by 

hypoxia i.e. proangiogenic factors such vegfa were downregulated in PHD2+/- TAMs 

[185]. Therefore, it may be that endothelial cells influence TAM phenotype rather than 

hypoxia. Indeed, in vitro, macrophages co-cultured with endothelial cells showed an 

upregulation of the M2a marker MRC1 [186]. Therefore the impact of vascular 

normalisation on TAM phenotype may be due to the effects on the vasculature and not 

tumour hypoxia. These novel strategies to modulate TAM phenotype are promising, 

and require further investigation. Given the emerging evidence that PV TAMs are 

tumour-promoting and that vascular normalisation appears to re-educate TAMs to an 

anti-tumoural phenotype, research characterising the role of the vasculature after 

therapy should also be considered [141].  
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1.5 Summary 

TAMs are associated with poor prognosis in many different tumour types [77]. They 

can promote tumour progression by influencing angiogenesis, immunosuppression and 

metastasis [66], [141]. Moreover, TAMs can limit the effects of chemotherapy, making 

them an ideal target for new therapies which could improve the efficacy of current 

frontline  treatments [65]. Current TAM-targeting drugs work by either inhibiting their 

recruitment or by re-educating them to be a more tumouricidal. However, when tested 

in clinical trials, so far, TAM-targeting drugs are yet to show the promising results as 

seen in pre-clinical models, demonstrating the need to further understand mechanisms 

of TAM recruitment and phenotype [170]. It is known that chemotherapy alters the 

tumour microenvironment, and these changes could potentially lead to recruitment or 

skewing of TAMs towards to a tumour-promoting phenotype. Further characterisation 

of the tumour microenvironment and tumour vasculature and how it changes following 

chemotherapy is needed to identify novel mechanisms of TAM recruitment and/or 

education. 
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Figure 1.6 Strategies for targeting TAMs.   
A) A summary of drugs which may be used to target TAM recruitment – in particular CSF1-
CSF1R, CCL2-CCR2, CXCL12-CXCR4 and ANG2-TIE2 signalling have been shown to affect 
TAM recruitment into tumours.  
B) Re-educating protumoural TAMs (red) to be antitumoural (blue) could improve response of 
tumours to current frontline therapies. Strategies include inhibition of macrophage signalling 
pathways such as CSF1, NK-κB and PI3Kγ. Moreover vascular normalisation by methods 
including low dose anti-VEGFR2, overexpression of HRG and combining anti-VEGF and anti-
angiopoietin-2 (ANG2) therapies has also skewed TAMs to a tumouricidal phenotype. 
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1.6 Hypothesis to be tested 

I, therefore, hypothesised that chemotherapy induces changes within the tumour 

microenvironment, which ultimately stimulate TAMs to adopt a tumour-promoting 

phenotype. In particular, endothelial cells may influence PV TAMs to take on an M2-

skewed, wound-healing activation state. 

 

1.7 Project aims 

Therefore the aims of this thesis were as follows: 

1) Characterise the location of TAMs within orthotopic MMTV-PyMT (TS1) implant 

tumours following their exposure in vivo to the chemotherapeutic agent, 

doxorubicin. 

2) Characterise the relationship between TAMs and the tumour vasculature in 

doxorubicin-treated tumours. 

3) Isolate endothelial cells from doxorubicin-treated tumours and profile gene 

expression to understand how endothelial cells might stimulate TAMs to drive 

tumour relapse and repair.  
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2.1 Materials 

2.1.1 List of reagents 

Reagent Supplier 

5-Bromo-2’-deoxyuridine (BrdU) Sigma Aldrich 

Absolute Ethanol Thermo Fisher Scientific 

Acetone Thermo Fisher Scientific 

BD FACS Lysing Solution BD Biosciences 

Bovine serum albumin solution, 35% in DPBS Sigma Aldrich 

Butanol Sigma Aldrich 

CapSure Macro LCM caps Thermo Fischer Scientific 

Collagenase type IV from Clostridium histolyticum Sigma Aldrich 

4',6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI) Invitrogen 

Dimethyl Sulfoxide (DMSO) Sigma Aldrich 

Dispase II Gibco 

Doxorubicin Hydrochloride Sigma Aldrich 

DPX Mounting medium Sigma Aldrich 

Dulbecco’s Modified Eagle’s Medium (DMEM) 
Ultraglutamine, 4.5g/L glucose Lonza 

Dulbecco’s Phosphate Buffered Saline (DPBS) Lonza 

Dynabeads Sheep anti-Rat IgG Invitrogen 

Eosin Y Thermo Fisher Scientific 

FcR blocking reagent, mouse Miltenyi Biotec 

Fluorescein labelled Lycopersicon Esculentum (tomato) 
lectin (FITC-lectin) Vector Laboratories 

Foetal calf serum (FCS) Gibco 

Growth Factor Reduced (GFR) Matrigel Corning 

Haematoxylin Solution Gill No. 2 Sigma Aldrich 

Hank’s Balanced Salt Solution (HBSS) Gibco 

Iscove’s Modified Dulbecco’s Medium (IMDM) Lonza 

L-glutamine Lonza 

Normal Goat Serum Vector Laboratories 

Nuclease free water Qiagen 

Cryo-M Bed Optimal Cutting Temperature Compound 
(OCT) VWR International 

Paraformaldehyde Sigma Aldrich 

Penicillin-Streptomycin Lonza 
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Pimonidazole Hypoxyprobe 

PrecisionPlus qPCR mastermix with SYBR green and 
ROX Primer Design 

ProLong Gold Antifade mountant Invitrogen 

Recombinant mouse CSF1 Biolegend 

Roswell Park Memorial Institute (RPMI) medium Lonza 

Sucrose Sigma Aldrich 

Super PAP pen Thermo Fisher Scientific 

Tri-sodium citrate 
BDH Laboratories 
Suppliers 

Trypsin-EDTA Lonza 

TWEEN 20 Thermo Fisher Scientific 

Xylene Thermo Fisher Scientific 

Zombie NIR Fixable Viability kit Biolegend 

Zombie UV Fixable Viability kit Biolegend 

 

 

2.1.2 List of materials 

Material Supplier 

Tissue culture flasks (Nunc EasYFlask) 25cm2; 
75cm2; 125cm2  Thermo Fisher Scientific 

Superfrost Plus Microscope Slides Thermo Fisher Scientific 

Coverslips Scientific Laboratory Supplies 

Fisherbrand 384-well skirted PCR plate Thermo Fisher Scientific 

 

2.1.3 List of monoclonal (m) and polyclonal (p) antibodies 

Antibody (clone or cat no. if polyclonal) Supplier 

Goat (p) Anti-Rabbit IgG AlexaFluor555 Invitrogen 

Goat (p) Anti-Rat IgG AlexaFluor488 Invitrogen 

Goat (p) Anti-Rat IgG AlexaFluor555 Invitrogen 

Goat (p) Anti-Rat IgG AlexaFluor647 Invitrogen 

Mouse (m) Anti-pimonidazole Dylight549 (4.3.11.3) Hypoxyprobe 

Purified Rat (m) Anti-Mouse (MEC13.3) BD Bioscience 

Purified Rat (m) Anti-Mouse Gr-1 (RB6-8C5) Biolegend 

Purified Rat (m) Anti-PNAd (MECA-79) 
Cardiff University, Prof 
Gallimore 
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Rabbit (p) Anti- α-smooth muscle actin (ab5694) Abcam 

Rabbit (p) Anti-angiopoietin-2 (ab8452) Abcam 

Rabbit (p) Anti-Collagen IV (ab6586) Abcam 

Rabbit (p) Anti-Mannose Receptor (ab64693) Abcam 

Rat (m) Anti-CD11b AlexaFluor488 (M1/70) Biolegend 

Rat (m) Anti-CD11b Brilliant Violet 421 (M1/70) Biolegend 

Rat (m) Anti-FOXP3 FITC (FJK-16s) eBioscience 

Rat (m) Anti-Mouse CD3 AlexaFluor647 (17A2) Biolegend 

Rat (m) Anti-Mouse CD31 AlexaFluor488 
(MEC13.3) Biolegend 

Rat (m) Anti-Mouse CD31 AlexaFluor647 
(MEC13.3) Biolegend 

Rat (m) Anti-Mouse CD31 PE (MEC13.3) Biolegend 

Rat (m) Anti-Mouse CD4 AlexaFluor488 (GK1.5) Biolegend 

Rat (m) Anti-Mouse CD4 PE (GK1.5) Biolegend 

Rat (m) Anti-Mouse CD8α PE (53-6.7) Biolegend 

Rat (m) Anti-Mouse CXCR4 PE (2B11) eBioscience 

Rat (m) Anti-Mouse F4/80 AlexaFluor488 (Cl:A3-1) Biorad 

Rat (m) Anti-Mouse Ly-6C APC (HK1.4) Biolegend 

Rat (m) Anti-Mouse Ly-6G PE (1A8) Biolegend 

Rat (m) Anti-Mouse Ly-6G PerCP/Cy5.5 (1A8) Biolegend 

Rat (m) Anti-Mouse MRC1 APC (C068C2) Biolegend 

Rat (m) Anti-Mouse MRC1 Brilliant Violet 421 
(C068C2) Biolegend 

Rat (m) Anti-Mouse MRC1 PE (C068C2) Biolegend 
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2.1.4 List of commerical kits 

Kit Supplier 

Agilent RNA 6000 Nano kit Agilent Technologies 

Agilent RNA 6000 Pico kit Agilent Technologies 

DAB Peroxidase (HRP) substrate kit Vector Laboratories 

PicoPure RNA isolation kit Thermo Fisher Scientific 

QuantiTect Reverse Transcription Kit Qiagen 

RNeasy Mini kit Qiagen 

RNeasy Mini Plus kit Qiagen 

Vectastain ABC HRP kit (Peroxidase, Rabbit 
IgG) Vector Laboratories 

 

2.1.5 List of cell lines and animals 

Cell line or Animal Supplier 

TS1 cell line (in vivo passaged MMTV-PyMT 
derived tumour cells) 

Memorial Sloan Kettering 
Cancer Research Centre, Prof 
Johanna Joyce 

FvB/N female mice Envigo 

 

2.1.6 List of solutions 

Solution Instructions 

FACS buffer DPBS  with 0.5% FCS 

Sodium citrate solution DPBS  with 0.76% sodium citrate + 1% FCS 

14% Sucrose solution 14g sucrose in 100mL DPBS 

30% Sucrose solution 30g sucrose in 100mL DPBS 

4% Paraformaldehyde 4g paraformaldehyde  in 100mL DPBS 

PBST 250µL TWEEN 20 in 50mL DPBS 

DAPI staining solution 50µg/mL DAPI in PBST 

TS1 cell line growth medium DMEM Ultraglutamine with 10% FCS, 0.5 units/mL 
penicillin and 0.5 units/mL streptomycin 

Tumour dissociation medium IMDM with 0.2mg/mL collagenase type IV and 
2mg/mL dispase II 

Bone marrow derived 
macrophage medium 

RPMI with 10% FCS, 0.5 units/mL penicillin, 0.5 
units/mL streptomycin, 2mM L-glutamine and 
50ng/mL recombinant murine CSF1 

Water saturated butanol 10mL nuclease free water vigorously mixed with 
10mL butanol until separation into two layers: the 
top layer is the water saturated butanol 
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2.1.7 List of primers 

All primers were either previously published or designed using PrimerBlast and 

MFEprimer2.0. Primers were validated using melt-curve analysis and efficiency was 

assessed using a standard curve. Primers were obtained from Invitrogen, dissolved in 

nuclease free water at a stock concentration of 100μM. 

Gene  Sequence 5’-3’ 

Acta2 
 

FWD: AGCCATCTTTCATTGGGATGGAG 
REV: CATGGTGGTAACCCCTGACA 

Actb 
FWD: AGAGGGAAATCGTGCGTGAC 
REV: CAATAGTGATGACCTGGCCGT 

Adgre1 
FWD: CCACTTCCAAGATGGGTTAACAT 
REV: AAACAAAACTGCCATCAACTCA 

Angpt2 
FWD: GCATGTGGTCCTTCCAACTT 
REV: GATCCTCAGCCACAACCTTC 

Ccl12 
FWD: GCCTCCTGCTCATAGCTACC 
REV: GGGTCAGCACAGATCTCCTT 

Ccl2 
FWD: CACTCACCTGCTGCTACTCATTCAC 
REV: GGATTCACAGAGAGGGAAAAATGG 

Ccl3 
FWD: CGGAAGATTCCACGCCAATTC 
REV: GGTGAGGAACGTGTCCTGAAG 

Ccl4 
FWD: CCCACTTCCTGCTGTTTCTC 
REV: GAGCAAGGACGCTTCTCAGT 

Ccl5 
FWD: GTGCCCACGTCAAGGAGTAT 
REV: AGCAAGCAATGACAGGGAAG 

Ccl7 
FWD: GACAAAGAAGGGCATGGAAG 
REV: CATTCCTTAGGCGTGACCAT 

Ccl8 
FWD: TCTACGCAGTGCTTCTTTGC 
REV: CCACTTCTGTGTGGGGTCTA 

Ccl8 
FWD: TCTACGCAGTGCTTCTTTGC 
REV: CCACTTCTGTGTGGGGCTTA 

Ccl9 
FWD: CCAGATCACACATGCAACAG 
REV: CTATAAAAATAAACACTTAGAGCCA 

Csf1 
FWD: CCCAACGAGTCAGCAACTCA 
REV: AATGCCCCAAGAGTGGCTTT 

Csf2 
FWD: GAGGATGTGGCTGCAGAATTT 
REV: CTACCTCTTCATTCAACGTGACAG 

Cx3cl1 
FWD: ACTCCTTGATTGGTGGAAGC 
REV: CAAAATGGCACAGACATTGG 

Cxcl12 
FWD: CCGCGCTCTGCATCAGT 
REV: GCGATGTGGCTCTCGAAGA 

Eng 
FWD: TGTCCTGCCCTCTGTACTGG 
REV: GGGGCCACGTGTGTGAGAA 
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Epcam 
 

FWD: TTGCTCCAAACTGGCGTCTAA 
REV: GTTGTTCTGGATCGCCCCTT 

FasL 
FWD: CTGGTGGCTCTGGTTGGAAT 
REV: GGTTGGCTCACGGAGTTCTG 

Fgf1 
FWD: AAAGTGCGGGCGAAGTGTAT 
REV: CTCATTTGGTGTCTGCGAGC 

Fn1 
FWD: ACGGTTTCCCATTACGCCAT 
REV: GGCACCATTTAGATGAATCGCA 

Icam1 
FWD: AGCCTCCGGACTTTCGATCT 
REV: TGTTTGTGCTCTCCTGGGTC 

Icam2 
FWD: TTCACTCCCCGACCTGTAGC 
REV: CCAGACCCTGGGCTGTAGAAC 

Ifng 
FWD: TCAAGTGGCATAGATGTGGAAGAA 
REV: TGGCTCTGCAGGATTTTCATG 

Il10 
FWD: GGCGCTGTCATCGATTTCTC 
REV: ATGGCCTTGTAGACACCTTGG 

Il1a 
FWD: CGCTTGAGTCGGCAAAGAAAT 
REV: TGGCAGAACTGTAGTCTTCGT 

Il1b 
FWD: GCCACCTTTTGACAGTGATGAG 
REV: AGCTTCTCCACAGCCACAAT 

Il6 
FWD: TCCAGTTGCCTTCTTGGGAC 
REV: TGCCATTGCACAACTCTTTTCTC 

Itgam 
FWD: TCGCTACGTAATTGGGGTGG 
REV: AGCTGGCTTAGATGCGATGG 

Pecam1 
FWD: GCCAACAGCCATTACGGTTA 
REV: GTCGACCTTCCGGATCTCAC 

Plgf 
FWD: CCCTGTCTGCTGGGAACAA 
REV: CTGCGACCCCACACTTC 

Sele 
FWD: ACGTCCCGGGAAAGATGAAC 
REV: GACTGGGGCTTCACAGGTAG 

Spp1 
FWD: CTTTCACTCCAATCGTCCCTA 
REV: GCTCTCTTTGGAATGCTCAAG 

Thbs1 
FWD: GCAAAGACGTCGATGAGTGC 
REV: CGGTTTGCACACCTGTTTGT 

Tnf 
FWD: CCTTCACAGAGCAATGACTC 
REV: GTCTACTCCCAGGTTCTCTTC 

Vcam1 
FWD: TTTATGTCAACGTTGCCCCC 
REV: GAGGCTGCAGTTCCCCATTA 

Vegfa 
FWD: CAGGCTGCTGTAACGATGAA 
REV: AATGCTTTCTCCGCTCTGAA 
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2.1.8 List of instrumentation 

Instrument Supplier 

Agilent 2100 Bioanalyzer Agilent Technologies 

Aperio ScanScope CS Leica Biosystems 

Applied Biosystems 7900 Real-time PCR 
machine 

Applied Biosystems 

DynaMag-15 Magnet Thermo Fisher Scientific 

Dyna-Mag-2 Magnet Thermo Fisher Scientific 

FACS Aria BD Bioscience 

LSR II Flow cytometer BD Bioscience 

NanoDrop 2000 Thermo Fisher Scientific 

Nikon A1 Confocal Nikon 

Zeiss LSM510  NLO Inverted confocal 
microscope 

Zeiss 

 

2.1.9 List of software 

Software Supplier 

Primer Blast National Institute of Health, USA 

MFEPrimer-2.0 http://biocompute.bmi.ac.cn/CZlab/MFEprimer-2.0/ [187] 

Fiji  https://imagej.net/Fiji [188] 

Flow Jo TreeStar Inc 

Graph Pad Prism 7 Graph Pad Inc 

BD FACSDiva BD Bioscience 

 

 

 

 

 

 

 

http://biocompute.bmi.ac.cn/CZlab/MFEprimer-2.0/
https://imagej.net/Fiji
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2.2 Methods 

2.2.1 Maintenance of cell lines 

TS1-IVP1 PyMT (referred to as TS1) cells were obtained from Professor Joyce, 

Memorial Sloan Kettering Cancer Research Centre [139]. TS1 cells were derived from 

primary tumours of the MMTV-PyMT mice, then re-implanted and grown in vivo in order 

to increase the reliability of the cell line when transplanting them [139]. These cells 

were cultured in DMEM Ultraglutamine with 10% FCS, penicillin (0.5 units/mL) and 

streptomycin (0.5 units/mL). Cells were incubated at 37°C with 5% CO2 and passaged 

when approximately 80% confluent. To passage, cells were washed twice with 

Dulbecco’s Phosphate Buffered Saline (DPBS) and then incubated with trypsin-EDTA 

(200mg/ml EDTA; 170,000 units trypsin) until they no longer adhered to the T75 flask. 

The trypsin-EDTA was then neutralised with media, the cells washed off the flask and 

into a centrifuge tube before centrifuging at 1400rcf for 5 minutes. The cell pellet was 

then re-suspended in 5mL DPBS and an aliquot of the cell suspension was counted 

using a haemocytometer. Using the grid of the haemocytometer, cells within a grid (4 

squares made of 16 squares each) were counted. This was divided by 4 and multiplied 

by 10,000 to calculate number of cells/mL. If the cell suspension aliquot had been 

diluted e.g. 1 in 100, this number was multiplied by the dilution factor (e.g. x100) to 

calculate the number of cells/mL in the undiluted cell suspension. Cells were then 

seeded at the appropriate density (usually 3x105 cells per mL) in a T75 flask with fresh 

media before incubating at 37°C with 5% CO2, with regular media changes. 

Cells were cryopreserved using cryobuffer consisting of 90% FCS and 10% 

DMSO. In order to cryopreserve the cells, they were trypsinised as described above, 

and following centrifugation were resuspended in cryobuffer at a density of 3x106 

cells/mL. They were then slowly frozen at -80⁰C using a ‘Mr Frosty’ before transferring 

to the liquid nitrogen store within a week. 
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2.2.2 Isolation of BMDMs 

FvB/N female mice were obtained from Envigo and housed and cared for according to 

the University of Sheffield code of ethics and Home Office regulations. In order to 

isolate the BMDMs, 8 week old mice were first culled using cervical dislocation, and 

then the bones were dissected from these mice and placed in 70% ethanol to disinfect. 

Inside a laminar flow hood, the bones were cut to reveal the marrow. HSCs were then 

collected by flushing the bone marrow into a 50mL Falcon tube with 10mL 2% FCS in 

DPBS using a syringe with a 25 gauge needle. The cells were then centrifuged at 500 x 

g for 10 minutes before resuspending in 1mL DPBS and counting cells with a 

haemocytometer. Cells were then resuspended in the appropriate amount of RPMI 

media (to yield a density of 8x105 cells/10mL) containing 10% FCS, penicillin (0.5 

units/mL) and streptomycin (0.5 units/mL), 2mM L-glutamine and recombinant murine 

CSF1 (50ng/mL). Cells were then incubated at 37°C with 5% CO2. Every 3 days, media 

was replaced with fresh media and macrophages were used between 7-14 days after 

isolation. This incubation of HSCs with CSF1 allowed macrophages to differentiate 

from precursors [189]. Cells which differentiated into macrophages adhered to the 

plastic they were cultured on. To remove the macrophages from the plastic for use in 

further experiments, they were first washed in DPBS, and then incubated with trypsin-

EDTA (200mg/ml EDTA; 170,000 units trypsin) for 30 minutes, as macrophages 

adhere strongly to plastic, and scraping macrophages from plastic drastically reduces 

their viability. The trypsin was neutralised with FCS once cells had detached. 

 

2.2.3 Murine model of breast cancer 

FvB/N female mice were obtained from Envigo and were housed in the University of 

Sheffield Biological Services Unit and cared for according to the University of Sheffield 

code of ethics and Home Office regulations. At 8 weeks old, these mice received a 

mammary fat pad injection of 1x106 TS1 cells using the following protocol. Mice were 
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anaesthetised using the inhalant isoflurane (IsoFlo). They were then shaved and the 

skin was disinfected with Hibiscrub. Following this a 1cm midline incision was made 

with sterile surgical scissors, and the skin peeled back to reveal the 4 th mammary fat 

pad located in the inguinal region of the mouse. 1x106 TS1 cells (which were collected 

from flasks during their exponential growth phase) in a 20μL 1:1 mixture of DPBS and 

growth factor reduced (GFR) Matrigel were injected into the 4th mammary fat pad. 

Following this, the incision was closed using surgical staples. The staples were 

removed 1 week after surgery to allow the wound sufficient time to heal and the body 

weight of the mice was carefully monitored throughout the time course of the 

experiment, weighing mice a minimum of 3 times a week.  

Murine tumour volume was measured every other day using callipers and 

calculated using the formula: length x width2/2 [99]. Mice received 1 intraperitoneal 

injection of doxorubicin at 8mg/kg (DOX) or vehicle (DPBS) when tumours reached 

approximately 500mm3 in volume. 48 hours after this injection, mice received 1 

intraperitoneal injection of BrdU (100mg/kg – to assess cell proliferation) and 

pimonidazole (PIMO, 60mg/kg – to assess hypoxia) and were culled 2 hours later by 

cervical dislocation.  

 

2.2.4 Dissection of FvB/n mice and preparation of samples 

Mice, as described in 2.2.3, were culled by cervical dislocation. Confirmation of death 

was carried out by exsanguination. Blood was collected by injecting 10mL of 0.76% 

sodium citrate solution with 1% FCS into the left ventricle of the heart to prevent blood 

clots. Blood flowed out of an incision made in the right atrium, and was collected using 

a syringe. Approximately 5mL of blood diluted with sodium citrate solution was 

collected per mouse in this manner. 

Subsequently, the tumours were dissected from the mice, and then divided into 

three parts. One part of the tumour was first dissected into small chunks and then 

placed in cryobuffer (90% FCS with 10% DMSO) and frozen at -80°C, before 
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transferring these into liquid nitrogen stores 24 hours later, to be stored before use in 

fluorescence activated cell sorting (FACS) experiments (2.2.12) or magnetic isolation of 

tumour associated endothelial cells (2.2.14).  

Some tumours parts were snap frozen immediately in OCT. The other tumour 

parts were placed in 4% paraformaldehyde (PFA) along with the lungs, liver and spleen 

of the mice for 2 hours at room temperature. 2 hours later, the organs and tumours 

were washed in DPBS and then placed in a 14% sucrose solution overnight. They were 

then left in 30% sucrose solution for at least a week before mounting organs into 

disposable mounts with OCT and freezing them. Tumours were prepared in this way to 

maximise the possible antibodies which could be used on these samples – some 

antibodies (the majority) work best with snap frozen tissue. Others work better on PFA-

fixed frozen samples and PFA-fixing tumours also helps preserve tissue architecture. 

Samples were not embedded in paraffin as this drastically alters the antigens and 

antigen retrieval would have been required for antibodies to work. The majority of 

previously optimised antibody stains within the research group worked best with snap-

frozen tissue. 

14µM thick frozen sections were cut using the cryostat and collected onto 

Superfrost Plus slides and stored at -80°C prior to use in immunofluorescent staining. 

 

2.2.5 Dissociation of TS1 tumours for isolating cell populations 

Tumour chunks (see 2.2.4) were thawed and washed 3 times with DPBS prior to 

incubation with 5mL tumour dissociation media consisting of 0.2mg/mL collagenase 

and 2mg/mL dispase II in Iscove’s Modified Dulbecco’s Medium (IMDM). Tumour 

chunks were incubated at 37⁰C, while rotating in tumour dissociation media for 30 

minutes. The enzymes within the media were then neutralised with 10% FCS, prior to 

filtering the dissociated tumour using a 40µM filter. Any larger tumour chunks were 

crushed against the filter to collect the remaining cells. The cell suspension was then 

centrifuged at 4500 rpm for 5 minutes, and the cell pellet was washed 3 times in 500μL 
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DPBS before use in isolating cell populations by FACS (see 2.2.12) or magnetic 

isolation (see 2.2.14)  

 

2.2.6 Preparation of blood from tumour bearing mice for flow cytometry 

Blood was collected from mice, as described in 2.2.4, and then pelleted by 

centrifugation at 500 x g for 5 minutes. The supernatant was discarded and the cell 

pellet was then resuspended in 200µL 0.76% sodium citrate solution with 1% FCS, to 

prevent clotting of blood while staining samples. The samples were then blocked by 

adding 1% Bovine Serum Albumin (BSA, 5.7μL to 200μL) and 5% Normal Goat Serum 

(10μL to 200μL) to samples for 30 minutes while rocking on ice. Samples were then 

incubated with the primary antibodies (as specified, in a total volume of 200μL, as 

described in Chapter 4) and Zombie UV viability dye (1μL in 200μL) while rocking on 

ice and kept in the dark for 40 minutes. Cells were then pelleted in a microcentrifuge at 

4500rpm for 5 minutes and washed by resuspending in 500μL FACS buffer (50mL 

DPBS with 25µL FCS).  Cells were centrifuged again at 4500rpm for 5 minutes, before 

resuspending in 500μL 1X BD FACS Lysing solution (diluted in dH2O from a 10X stock) 

to lyse erythrocytes. Samples were incubated for 5 minutes on ice with 1 X BD FACS 

Lysing solution, before centrifuging at 4500rpm for 5 minutes. Cells were then washed 

with 500μL FACS buffer and centrifuged at 4500rpm for 5 minutes. Finally, samples 

were resuspended in 500µL FACS buffer before FACS analysis using the BD LSR II 

flow cytometer. The gating strategy for the FACS analysis of murine peripheral blood is 

detailed in Chapter 4. 

 

2.2.7 FlowJo analysis of FACS data 

FACS files were analysed using FlowJo Software. As multiple different markers were 

used (a total of 7 different fluorophores for peripheral blood analysis), fluorescent 

minus one (FMO) controls were imperative in the analysis of these samples, in order to 
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determine if fluorescence was due to fluorescent spectral overlap (i.e. false positive 

signals) or due to actual antibody binding.  

Some fluorophores emit fluorescence which will bleed into the detection of 

others e.g. AlexaFluor488 emission bleeds into the PE detector, which means any cells 

which are positive for AlexaFluor488 can appear to have PE fluorescence. FMO 

controls contain every antibody, except one, and allow the user to determine 

background fluorescence from all the other fluorophores, before considering the impact 

of their antibody of interest. FMO controls were used to compensate samples i.e. 

determine spectral overlap, and minimise this by allowing the software to assign parts 

of a fluorescent signal to the appropriate fluorophore e.g. in the case in of 

AlexaFluor488 and PE, approximately 20% of the PE signal may be attributed to 

spectral overlap from AlexaFluor488 (although this can vary and should be determined 

for each experiment using the appropriate FMO controls).  

FMO controls, given their ability to detect background which occurs due to the 

specific binding of multiple fluorophores, are favoured by flow cytometry users [190]. 

They were therefore used to set the gating strategy in these flow cytometry 

experiments as multiple fluorophores were used in these experiments, some of which 

had spectral overlap. The details of the different gating strategies and FMO controls 

are in the relevant chapters. 

 

2.2.8 Histological analysis of tumours 

Haematoxylin and Eosin staining 

Tumours which were immersion fixed in PFA prior to freezing, were sectioned using the 

cryostat (14μm thick sections) and then air dried at 37°C for 30 minutes, to allow the 

section to attach firmly to the slide. PFA fixed tumours were used as these tumours had 

better preservation of their architecture compared to those which were snap frozen. 

Sections were then placed in tap water for 5 minutes to rehydrate the sample. They 

were then placed in Gill’s Haematoxylin solution No.2 for 2 minutes and then rinsed in 
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tap water until the water was clear. Slides were then left in tap water for an extra 

minute, to allow the haematoxylin stain to become blue before placing slides in 70% 

ethanol for 3 minutes then 90% ethanol for a further 2 minutes. Following this slides 

were placed in eosin (2g eosin dissolved in 400mL 95% ethanol) before bathing slides 

in 3 baths of 100% ethanol for 5 minutes per bath. Slides were then cleared twice in 

xylene for 5 minutes and mounted using DPX mounting medium. Slides were scanned 

using the Aperio ScanScope CS with a 40x objective lens. 

 

2.2.9 Immunofluorescent staining of tumours 

Snap frozen tumour sections were fixed for 10 minutes in acetone. They were then 

rehydrated with PBST for 1 minute. Following this, all incubations were carried out at 

room temperature, in a dark humidified chamber, to prevent evaporation of liquid from 

the samples and to prevent fluorescent antibodies from reacting with light. Super PAP 

barrier pen was used to surround the tissue and the tissue was then blocked with a 

blocking solution, containing 1% BSA, 5% Goat serum and 10% Murine FcR blocking 

solution made in PBST, for 30 minutes at room temperature.  

Slides were incubated with primary or conjugated antibodies, at concentrations 

as specified in Table 2.1 for 1 hour, and then washed three times in PBST for 5 

minutes, to remove excess antibody. They were then incubated with the appropriate 

secondary antibodies, diluted in PBST with 1% normal goat serum, for 40 minutes. 

Slides were then washed three times in PBST for 5 minutes and then incubated with a 

50ng/mL DAPI solution for 2 minutes before washing another three times in PBST. 

Finally, 1 drop of ProLong Gold Antifade mountant was added to each slide before 

adding coverslips. Slides were then kept in the dark for a maximum of 2 days until 

imaging using the Nikon A1 confocal microscope or in some cases the Zeiss LSM510 

NLO Inverted confocal microscope. 

It is important to note that where unconjugated rat antibodies were used 

alongside conjugated rat antibodies, the blocking solution did not contain murine FcR 
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block (a rat anti-mouse antibody), as the secondary antibody would also detect the 

murine FcR block. In this case following incubation with the unconjugated rat primary, 

slides were washed and incubated with the appropriate secondary antibody. Slides 

were then washed three times with PBST for 5 minutes before incubating with a Rat 

IgG blocking solution of 0.5mg/mL, which was used to bind to any unsaturated sites of 

the primary antibody. Slides were then washed and incubated with conjugated primary 

antibodies. Finally, slides were washed again, then stained with DAPI and mounted as 

described above. 

 

2.2.10 Confocal microscopy 

Tumour sections were stained as described in 2.2.9. Using the 20x objective lens, 

random fields of view (FOV) were selected from the tumour. At least 5 FOV were 

analysed per tumour. Depending on microscope availability, either the Nikon A1 

confocal microscope, or the Zeiss LSM510-Inverted confocal microscope was used for 

imaging – importantly, images taken for one set of analyses were always taken on the 

same microscope to avoid variability which may have arose from using the different 

microscopes. 

 

2.2.11 Analysis of immunofluorescent images 

Image analysis was carried out using Fiji (Fiji Is Just ImageJ), accessed via 

http://fiji.sc/Downloads, as previously published [188]. The number of nuclei per FOV 

needed to be assessed, so cell counts could be normalised to the total number of cells 

in the FOV. Two different regions of the TS1 tumour sections could be identified on the 

basis of their nuclear density and morphology: the stroma and the tumour cell islands. 

Tumour cell islands had an increased nuclear density and a more uniform appearance 

compared to the stroma. For this reason, two different methods were used for counting 

the nuclei of the different regions.  
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Antibody Fluorophore Clone Conc 
(μg/mL) 

Goat (p) Anti-Rabbit IgG AlexaFluor555  10 

Goat (p) Anti-Rat IgG AlexaFluor647  10 

Goat (p) Anti-Rat IgG AlexaFluour488  10 

Goat (p) Anti-Rat IgG  AlexaFluor555  4 
Mouse (m) Anti-

pimonidazole Dylight549 4.3.11.3 5 
Purified Rat (m) Anti-Mouse 

Gr-1 unconjugated RB6-8C5 1 
Rabbit (p) Anti- α-smooth 

muscle actin  unconjugated ab5694 1 
Rabbit (p) Anti-Mannose 

Receptor unconjugated ab64693 2.5 

Rat (m) Anti-FOXP3 FITC FJK-16s 5 

Rat (m) Anti-Mouse CD3 AlexaFluor647 17A2 5 

Rat (m) Anti-Mouse CD31 AlexaFluor647 MEC13.3 5 

Rat (m) Anti-Mouse CD31  AlexaFluor488 MEC13.3 5 

Rat (m) Anti-Mouse CD31 PE MEC13.3 2 

Rat (m) Anti-Mouse CD4  AlexaFluor488 GK1.5 5 

Rat (m) Anti-Mouse CD4 PE GK1.5 2 

Rat (m) Anti-Mouse CD8α PE 53-6.7 2 

Rat (m) Anti-Mouse F4/80 AlexaFluor488 CI:A3-1 2 

Rat (m) Anti-Mouse Ly-6G PE 1A8 4 

Rat (m) Anti-Mouse MRC1 APC C068C2 2 

Rat (m) Anti-Mouse MRC1 PE C068C2 2 

Rat (m) Anti-PNAd unconjugated MECA-79 ~10 
Table 2.1 Concentrations of antibodies used in immunofluorescent analyses 
(m) indicates monoclonal antibody; (p) indicates polyclonal antibody. ~ indicates approximate 
concentration of antibody used, as the antibody was isolated from ascites. 
 

 

Semi-automatic nuclear counting for tumour cell islands 

The Image-based Tool for Counting Nuclei (ITCN) cell counter plug-in [191] was 

installed to Fiji, and was used to automate nuclear counts as follows. Images were first 

split into the respective colour channels to produce an image of the DAPI (nuclei 

staining) channel only. This image was used to outline the tumour cell island region of 

interest. The ITCN automated counter works by setting a minimum distance between 
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cell nuclei for cell counts. False positive events could be seen in blank areas, as the 

minimum distance set would randomly cause events to be ‘detected’. These events 

could be identified on the image as red dots which were not associated with a nucleus 

(see Figure 2.1A). Manually, false positive events were counted (orange triangles 

indicating red dots not on a nucleus, Figure 2.1A) and then subtracted from the total 

nuclei number. This gave the final cell count per area.  

To ensure that this method was accurate a correlation analysis was performed, 

analysing 10 images to see how the semi-automatic method worked in comparison with 

manually counting each nucleus (clicking on one nucleus at a time with a mouse). 

Manually counting each nucleus took several hours per image whereas the semi-

automatic counting method only took 10 minutes per image. There was a significant 

(p<0.0001) positive correlation, (Pearson’s correlation co-efficient r=0.9621) between 

manual and the semi-automatic counts, meaning this method was then used for all 

future tumour cell island cell counts. 

 

Automatic nuclear counting for stroma 

As the ITCN counter worked on the principle of a uniform distance between cells, like 

that in the tumour cell island, the counter did not work in the stroma, where the 

distance between cells was not as consistent. Therefore the “Analyse particles” tool, 

which does not rely on setting a minimum distance between cells, but does rely on 

accurately setting a threshold for the image, was used to count cell nuclei (see Figure 

2.1B). The processing tool “Make Binary” applied a simple threshold to the image and 

then “Watershed” was used to ensure any large cell clumps were broken into individual 

cell outlines. The binary and watershed processing tools were used for each image, as 

that made the analysis consistent. Following this, the “Analyse Particles” tool was used 

to count the nuclei in the stroma. This method was validated by comparing the 

automated cell counts with manual cell counts for 10 different images and there was a 
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significant (p<0.0001) positive correlation (Pearson’s correlation co-efficient r=0.9623) 

between the two. This method was then used for all future nuclei counts in the stroma. 

 

Figure 2.1 Workflow and validation of automated nuclear counting methods. 
(A) Tumour cell island nuclei were counted using the ITCN plugin. False positive events 
(identified by orange triangles) were counted and subtracted from the ITCN count. (B) To count 
stromal nuclei, images were first converted to binary and the watershed function was applied. 
The ‘Analyse Particles’ function was then used to count events. Both methods were validated by 
comparing the automated counts to counting the nuclei by eye. n=10 images for both methods. 
Two tailed Pearson’s correlation test used. Scale bar= 50μm. 
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Identification of tumour leucocyte populations 

The cell counter plug-in on Fiji [192] was used to count individual cells and allowed the 

counting of cells which were dual, or even triple positive for various markers.  

When counting TAMs, the marker F4/80 was used. In the case of identifying 

MRC1+ TAMs, the cell counter was first used to identify F4/80+ TAMs, and a secondary 

marker was used to identify the F4/80+ cells which co-expressed MRC1+. In the case of 

identification of immature myeloid cells – Gr-1 was used as a marker of 

neutrophils/monocytes and Ly-6G was used as a marker of neutrophils. PV cells were 

counted if they were in direct contact with a CD31+ blood vessel. When analysing the 

maturity of MRC1+ PV cells, the MRC1+ cells which were in contact with CD31+ blood 

vessels were first identified using one marker before assessing if they expressed either 

Gr-1 or Ly-6G with a second marker.  

T cells were identified as CD3+ cells, with one marker. If these T cells 

expressed CD8, a second marker was placed over them, and if they were CD4+ a third 

marker was placed over them – which allowed quantification of total T cells, and the 

CD4+ and CD8+ T cells. FOXP3 was used to identify CD3+ CD4+ regulatory T cells. 

First, CD3+ cells were identified with one marker, and then CD3+ cells which expressed 

CD4 were marked. Finally CD3+ CD4+ T cells expressing FOXP3 were counted with a 

third marker. 

 

Hypoxia analyses 

PIMO was used to mark regions of hypoxia. To quantify, the number of cells within the 

region of hypoxia were counted and then normalised to the total number of cells in a 

FOV. TAMs were quantified as F4/80+ cells and normalised to the number of cells in 

the region of interest e.g. TAMs in hypoxia were normalised to the total number of 

hypoxic cells. 
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Blood vessel analyses 

CD31 was used as a marker of blood vessels. PV cells were counted as cells which 

were in direct contact with a CD31+ cell. CD31 area was calculated as a percentage of 

total area analysed which was covered in CD31+ staining. To do this images of CD31 

staining were converted to binary to set a threshold and the analyse particles tool was 

used to calculate the area.  

Blood vessel sizes were analysed by selecting vessels which had a visible 

lumen. The lumens were measured by drawing a region of interest around the lumen 

outlined by the CD31 staining. The area of the region of interest was then measured 

using the Measure function in ImageJ. 

When analysing whether blood vessels were covered in α-smooth muscle actin 

(α-SMA positive cells) or were perfused by FITC-lectin, the CD31 stain and respective 

stain were converted to binary. The CD31+
 area was converted to a mask and applied 

to the stain – the percentage of CD31 area which was also positive for α-SMA or FITC-

lectin was then calculated using the analyse particles tool.  In addition to this, the 

number of CD31+ blood vessels were counted using the cell counter and whether these 

vessels were positive for FITC-lectin or had PV α-SMA+ cells was then quantified and a 

percentage of vessels which were positive for the respective marker was calculated. 

 

2.2.12 FACS based isolation of cell populations from tumour digests 

Tumour digests were prepared as described in 2.2.5, and the cell pellets were 

resuspended in 500µL DPBS with 1% FCS. The tumour samples were then incubated 

with the appropriate antibodies and the viability dye Zombie NIR (see Chapter 5 for 

details) for 40 minutes while rocking and covered on ice. Following this the samples 

were washed twice with 500μL DPBS with 1% FCS to remove excess unbound 

antibody and then centrifuged at 4500rpm for 3 minutes to pellet the cells. These cells 

were then resuspended in 2mL DPBS with 1% FCS and sorted using the BD 
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Biosciences FACS Aria. FMO controls were used to set a gating strategy, which is 

shown in Chapter 5. Briefly, viable cells were selected using the viability dye Zombie 

NIR and 3 cell populations were selected on the basis of their CD45 and CD31 

expression (CD45- CD31- cells; CD45+ CD31- cells and CD45- CD31+ cells). Cell 

populations were collected into 3mL RLT buffer (Qiagen RNeasy kit) for further 

analysis. 

 

2.2.13 Laser Capture Microdissection of endothelial cells 

10µM thick frozen sections were cut from snap frozen OCT embedded tumours using 

the cryostat and collected onto uncharged glass slides. Sections were stained using a 

Rapid-Immuno technique, developed by the neuropathology team at Sheffield Institute 

of Translational Neuroscience (SiTRAN). Rapid-Immuno works similar to regular 

immunohistochemistry, only the reagents used are much more concentrated, reducing 

the staining time and thus potential damage to the RNA within samples.  

Collagen IV was previously shown to stain the basement membrane of the 

endothelium in murine tumours (LLCs, RIP-Tag2 pancreatic tumours and MCa-IV 

mammary tumours), and co-localises with CD31 staining [193]. Moreover, this marker 

was previously optimised for Rapid-Immuno staining and therefore Collagen IV was 

used to identify endothelial cells during LCM. All solutions (except DAB) were prepared 

prior to staining. Slides were first brought to room temperature and then fixed in 

acetone at 4°C for 3 minutes. The acetone was then removed from the slides and the 

slides were blocked at room temperature for 3 minutes in a blocking solution made of 

2.5mL sterile PBS and 3 drops blocking solution from the Vectastain Rabbit ABC kit. 

Excess block was then tipped off and slides were incubated with the primary antibody, 

rabbit anti-collagen IV at a concentration of 10µg/mL made up in blocking solution, for 

3 minutes at room temperature. Slides were then washed by flooding them with PBS. 

The PBS was then tapped off, and the slides were incubated with the secondary 

antibody solution (1mL sterile PBS with 1 drop of biotinylated goat anti-rabbit IgG) for 3 
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minutes at room temperature. The slides were washed again by flooding them with 

PBS after tapping off the secondary antibody solution. The slides were then incubated 

with the ABC reagent solution (2.5mL sterile PBS with 1 drop of reagent A and 1 drop 

reagent B) for 3 minutes at room temperature. At this point the DAB solution was 

prepared with 2.5mL dH2O, 1 drop buffer solution, 2 drops DAB reagent and 1 drop 

hydrogen peroxide. After washing off the ABC reagent with PBS, the slides were 

incubated with DAB and the stain was allowed to develop for approximately 2 minutes, 

while watching under a light microscope. When the stain had developed, the reaction 

was stopped by washing slides with dH2O. Slides were then washed in dH2O and 

dehydrated by quickly dunking the slides in 70% ethanol, 90% ethanol and 100% 

ethanol baths and then leaving the slides in 100% ethanol for 5 minutes. Slides were 

then cleared in xylene for 5 minutes. Xylene was then tapped off and slides were dried 

in the fume hood for 1 hour.  

Collagen IV+ cells in vessel-like structures were then isolated using the PixCell 

II Laser Capture Microdissection system. The laser settings of power at 35mV and size 

7.5μm were used. This laser was fired through the film of the Capsure Macro LCM 

caps at the Collagen IV+ cells. This caused the film to melt and capture target cells, as 

shown in Figure 2.2. After endothelial cells were collected, a new cap was loaded onto 

the microdissection rig and then the surrounding tumour tissue was collected for 

comparative RNA values. 
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Figure 2.2 Laser capture microdissection. 

(A) During laser capture microdissection, slides are placed into a microdissection rig and the 
laser is fired at the cells of interest. This causes the film of the LCM cap to melt and collects the 
cells of interest. (B) After the laser is fired, the cells of interest will be captured on the LCM cap 
for downstream analyses. 

 

2.2.14 Magnetic isolation of CD31+ cells from tumour digests 

To prepare the magnetic beads, 2x107 Sheep anti-rat IgG Dynabeads (50μL of bead 

suspension) were washed twice with 2mL PBS containing 2% FCS. To do this, after 

suspending the beads in 2mL of wash buffer, they were placed within the DynaMag-15 

magnet for 3 minutes, which caused the magnetic beads to move to the sides of the 

falcon tube by magnetic attraction. This allowed removal of the wash buffer, without 

disrupting the magnetic beads. The tube was removed from the magnet and the beads 

were then resuspended in 50µL of PBS with 2% FCS and incubated with 3µg rat anti-

mouse CD31 (clone MEC13.3, BD Pharmingen) for 2 hours rotating at room 

temperature. Beads were then washed three times in PBS with 2mL of 2% FCS using 

the DynaMag-15 magnet (as described previously) and finally resuspended in 50µL 

PBS with 2% FCS. Conjugated Dynabeads were stored at 4°C for up to 2 weeks prior 

to use.  

Tumour digests were prepared as described in 2.2.5, and then the cell pellets 

were resuspended in 1mL Hank’s Balanced Salt Solution (HBSS) with 10% FCS. The 

cell suspension was then incubated with 2.4x106 Dynabeads conjugated to anti-mouse 

CD31 antibody, rocking on ice for 30 minutes. Samples were transferred to a 15mL 

falcon tube and placed in the DynaMag-15 magnet, and mixed with 2mL of HBSS with 

10% FCS. Samples were left within the magnet for 3 minutes, which allowed cells that 
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were bound to the Dynabeads to migrate to the sides of the falcon tube. A Pasteur 

pipette was used to carefully remove the HBSS with 10% FCS, to avoid disrupting cells 

captured by the magnetic field of the DynaMag-15 magnet. The cells were then 

resuspended by removing the sample from the magnet and mixing cells with 2mL 

HBSS with 10% FCS. This wash step was repeated six times to remove contaminating 

non-CD31+ cells from the sample. Finally, CD31+ cells were collected and centrifuged 

at 4500rpm for 3 minutes, before resuspending in RLT plus lysis buffer (RNeasy Plus 

kit) to start the RNA isolation protocol (see 2.2.15). 

 

2.2.15 RNA isolation  

RNA was isolated from the different samples using the methods described below. In 

every case nuclease-free water was used to make solutions required for the isolations, 

e.g. 70% ethanol, and to elute RNA. Sterile technique was used throughout, and 

samples and reagents were kept on ice. Following isolation, RNA was stored at -80°C. 

RNA was quantified using the NanoDrop, and the RNA integrity was quantified using 

the Agilent Bioanalyzer 2100. 

 

2.2.15.1 RNA isolation from FACS purified cell populations  

Cells isolated as described in 2.2.12 were collected into RLT lysis buffer, at a ratio of 

3mL RLT lysis buffer per 1mL cells collected. The numbers of cells collected varied 

from each population – the lowest number of cells was 25000 cells from the CD45- 

CD31+ population. Following this RNA was isolated using the RNeasy Mini kit as per 

the manufacturer’s instructions. Briefly, 70% ethanol was added to the RLT lysis buffer 

in a 1:1 ratio and 700μL of this mixture was added to the RNeasy spin column. The 

RNeasy spin column was centrifuged for 15 seconds at 10000 rpm to bind RNA to the 

column and the flow-through was discarded. This initial step was repeated until all the 

sample had been passed through the spin column. The column was then washed to 
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remove impurities initially by adding 700μL buffer RW1 and then centrifuging at 10000 

rpm for 15 seconds. The flow through was discarded and the column was then washed 

with 500μL buffer RPE and centrifuged at 10000 rpm for 15 seconds. This wash step 

was repeated, but the column was centrifuged for 2 minutes at 10000 rpm to ensure 

removal of all wash buffer. Following this, the membrane of the spin column was dried 

by centrifuging the column inside a fresh collection tube at 14000 rpm for 1 minute to 

increase RNA yields. The column was then transferred to a new collection tube to elute 

RNA. RNA was eluted from the column using 30μL RNase-free water and centrifuging 

the column at 10000 rpm for 1 minute. To increase the concentration of RNA, this final 

elution step was repeated, using the flow-through of the previous elution step to elute 

any RNA that remained on the column.  

 

2.2.15.2 Isolation of RNA from LCM-captured cells 

Laser capture microdissection was carried out on tissue sections as described in 

2.2.13. RNA was isolated from these microdissected cells using the PicoPure RNA kit 

according to the manufacturer’s protocol. Sterile forceps were used to remove the film 

from the Capsure Macro LCM caps and the film was then placed into an eppendorf with 

50μL extraction buffer from the PicoPure RNA Isolation kit and incubated for 30 

minutes at 42°C to lyse the cells. The RNA purification column was pre-incubated with 

250µL of conditioning buffer for 5 minutes at room temperature and centrifuged at 

16000 x g for 1 minute. Next 50μL of 70% ethanol was mixed with the cell extract 

before transferring the solution to the purification column. The column was then 

centrifuged for 2 minutes at 100 x g and then again for 30 seconds at 16,000 x g to 

bind the RNA to the column. The purification column was then washed to remove 

impurities as follows. The column was washed with 100μL of Wash Buffer 1 and 

centrifuged at 8000 x g for 1 minute. 100μL Wash Buffer 2 was then added to the 

column before centrifugation at 8000 x g for one minute. This wash step was then 

repeated, but the column was centrifuged at 16000 x g for 2 minutes to ensure 
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complete flow through of the final wash step. The purification column was then 

transferred to a fresh microcentrifuge tube before eluting the RNA. First 11μL of elution 

buffer was incubated on the purification column for 1 minute at room temperature and 

then the column was centrifuged at 1000 x g for 1 minute. RNA was then eluted by 

centrifugation of the column at 16000 x g for 1 minute. RNA was then quantified using 

the Agilent Bioanalyzer 2100 (as detailed in Section 2.2.15.4).  

 

2.2.15.3 RNA isolation from Dynabead collected CD31+ cells 

Cells were isolated as described in 2.2.14. Cell pellets were first collected and 

resuspended in 350µL RLT plus buffer, as described in the RNeasy Plus kit protocol. 

These cells were vortexed at room temperature for approximately 30 seconds, or until 

all cells were visibly lysed, as determined by a lack of cell debris in the solution. As 

these cells were still attached to the magnetic beads used for their extraction, once the 

cells had lysed, the cell lysate was placed in a DynaMag-2 magnet for 3 minutes in 

order to remove the magnetic dynabeads from the cell lysate. The solution was 

removed and placed in fresh tubes and RNA was isolated from the lysates using the 

RNeasy Plus kit.  

The cell lysate was initially centrifuged in the gDNA eliminator column for 30 

seconds at 10000 rpm to remove gDNA from the sample. The flow-through of this 

column was then mixed with 350μL of 70% ethanol and centrifuged in the RNeasy spin 

column for 15 seconds at 10000 rpm to bind RNA to the column. The flow-through was 

discarded and the column was washed with 700μL of buffer RW1. The column was 

centrifuged at 10000 rpm for 15 seconds and the flow-through discarded. The column 

was washed twice more with 500μL of buffer RPE. The first buffer RPE wash was 

removed by centrifuging the column at 10000 rpm for 15 seconds and the second wash 

was removed with a longer centrifugation step of 2 minutes. The membrane of the spin 

column was dried to improve RNA yields by centrifuging the column in a fresh 

collection tube at 14000 rpm for 1 minute. The spin column was transferred to a fresh 
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collection tube to elute RNA in 30μL RNase-free water. RNase free water was added to 

the spin column and centrifuged at 10000 rpm for 1 minute, to allow the water 

containing RNA to flow through the column. This step was repeated, using the flow-

through of the elution stage to elute any RNA which remained on the spin column, 

which increased the total RNA concentration of the sample.  

 

2.2.15.4 Quantification of RNA using the Bioanalyzer 

RNA isolated using laser capture microdissection (as in section 2.2.15.2) was 

quantified using the Agilent Bioanalyzer and PicoChip technology (Agilent RNA 6000 

Pico kit). This allowed assessment of low RNA yields in the range of 50-5000pg/μL, 

which are typical of samples isolated using laser capture microdissection. The 

Bioanalyzer not only quantifies RNA concentration, but also allows assessment of RNA 

quality by the RNA integrity number (RIN). RIN values detail how degraded the RNA is 

– with intact RNA having a RIN of 10 and highly degraded RNA having a RIN of 1. In 

order to assess RNA integrity, samples are run alongside an RNA ladder, which allows 

assessment of RNA fragment size. RNA which is intact should have two peaks at the 

ribosomal RNA sites 18S and 28S. RNA integrity is important to understand if the RNA 

can be used in downstream applications.  

The PicoChip was prepared by loading 9μL of gel mixed with dye into the 

designated wells of the PicoChip. 9μL of RNA conditioning solution was loaded into 

wells marked with the CS symbol. 5μL of RNA marker was then added to wells 

designated for the ladder and samples. 1μL of ladder was added to the designated 

RNA ladder well and 1μL of sample was added to each sample well. The chip was then 

vortexed at 2400rpm for 1 minute before running on the Agilent Bioanalyzer 2100. In 

the cases where larger quantities of RNA were purified e.g. when using magnetic 

isolation (2.2.15.3), the Agilent RNA 6000 Nano kit was used to assess RNA integrity. 

The protocol for this was similar to the aforementioned PicoChip protocol, only 

NanoChips were used to allow for the increased concentration of RNA in the sample. 
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2.2.15.5 Quantification of RNA using the NanoDrop 

RNA (of quantities greater than 5ng/μL) was quantified using the NanoDrop. This was 

used in the first instance for RNA isolated as in 2.2.15.1 and 2.2.15.3, as the NanoDrop 

was the closest and most readily available machine for quantification. The NanoDrop 

was first cleaned using RNase-free water (from the RNeasy Plus kit), and then 1μL of 

RNase-free water was used as a blank reading for the NanoDrop. RNA was then 

quantified using 1μL of each sample. The NanoDrop uses absorbance to quantify the 

presence of nucleic acids. 260nm absorbance is used to define nucleic acid presence; 

280nm absorbance is usually indicative of proteins and 230nm absorbance is 

considered to come from sample contamination. A ratio of 260/280 is used to define 

how pure the sample is and a 260/280 ratio of 2.0 is considered pure for RNA. The 

260/230 ratio for RNA should also be around 2.0-2.2. If the 260/230 ratio was lower 

than 2.0, it suggested that the sample may have contaminants. A likely source of this 

contamination would be guanidine thiocynate salts, which could have been left over 

from the use of RNeasy kits. These contaminations were easily removed using water-

saturated butanol as described below. 

 

2.2.15.6 Water-saturated butanol clean-up of RNA 

In order to remove contaminating guanidine thiocynate salts (described in 2.2.15.5), 

water-saturated butanol was used to clean up the RNA samples. Water saturated 

butanol was prepared by thoroughly mixing butanol and nuclease-free water in a 1:1 

ratio. Following vigorous mixing, two layers formed in the water-butanol mixture: of 

which, the top layer was water-saturated butanol. Approximately 30μL of RNA in 

RNase free water (various concentrations) was first mixed with 500μL of water-

saturated butanol and then microcentrifuged for 1 minute, until the mixture was clearly 

separated into two layers, the RNA solution with a water-saturated butanol layer on top, 

which was then removed. The RNA was washed with water-saturated butanol in this 

way 5 times. To remove any remaining water-saturated butanol, the RNA was washed 
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3 times with 300μL of di-ethyl ether, by gently layering the ether on top of the RNA 

layer and then removing it. 

 

2.2.16 cDNA synthesis 

RNA was converted to cDNA using the QuantiTect Reverse Transcription kit according 

to the manufacturer’s instructions. Genomic DNA was first eliminated using the gDNA 

elimination buffer prior to reverse transcription. 12μL of sample was mixed with 2μL 

gDNA elimination buffer and incubated for 2 minutes at 42°C. This reaction was then 

placed on ice and mixed with components for the reverse transcription reaction as 

follows. Each reverse transcription reaction contained 1μL of Quantitect Reverse 

Transcriptase, 4μL Quantitect RT Buffer, 1μL RT primer mix and 14μL of the gDNA 

reaction containing the RNA template. 200-500ng of cDNA was synthesised per 

reaction. The reverse transcriptase reaction was carried out at 42°C for 30 minutes. To 

inactivate the reverse transcriptase, the reaction was then held at 95°C for 3 minutes. 

Once synthesised, cDNA was stored at -20°C for a maximum of 2 months until use. 

 

2.2.17 Quantitative PCR 

Primers were designed using Primer blast and MFEprimer-2.0 or were previously 

published. Primers were validated by melt-curve analysis and performing a standard 

curve analysis to assess efficiency. Quantitative real-time PCR (qPCR) was performed 

using SYBR green detection and the Applied Biosystems 7900 Real-time PCR 

machine. In a 384-well plate, each reaction contained 1μL cDNA (at a concentration of 

1ng-2.5ng depending on the assay, see Chapter 5), 3.4μL nuclease-free water and 5μL 

PrecisionPLUS Mastermix premixed with SYBR green and ROX. Each well also 

contained forward and reverse primers at a concentration of 3pmols. The total reaction 

volume per well was 10μL. Each reaction was run in triplicate (three wells per gene and 

sample), and Ct values were calculated by determining the number of cycles needed to 

reach the threshold. The qPCR machine settings were as follows: 
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1. Hold at 50°C for 2 minutes 

2. Hold at 95°C for 10 minutes 

3. 40 cycles of 95°C for 15 seconds, and 60°C for 1 minute 

Melt-curve analysis (see Figure 2.3) was carried out by adding an additional step in 

which samples were heated to 95°C for 15 seconds, then the temperature was reduced 

to 60°C for 15 seconds, before heating to 95°C again. Melt-curves should have one 

single peak, indicative of one reaction product (Figure 2.3A) rather than multiple or very 

wide peaks (Figure 2.3B). 

 

Figure 2.3 Example melt curve analyses. 

qPCR was used to amplify genes as described in 2.2.17. Samples were then heated from 60°C 
to 95°C to create a melt-curve. Melt curves from good primer pairs have a single peak (as in A). 
(B) shows an example melt curve from a poor primer pair – notice the multiple wide peaks.  

 

2^-ΔΔCt method was used to calculate fold change and gene of interest 

expression was normalised to Actb (β-actin) expression which was used as an 

endogenous control. β-actin was used as a housekeeper as the Ct values remained 

consistent between different samples. First, triplicates for each reaction were averaged 

to find the Ct value. ΔCt values were calculated by subtracting the Ct value of the 
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housekeeping gene from the Ct value of the gene of interest. ΔΔCt values were then 

calculated by subtracting the ΔCt value of the control group from the ΔCt value of the 

experimental group. This was then placed into the formula 2^-ΔΔCt to obtain the fold 

change value. 

 

2.2.18 Data representation and statistical analyses 

Data was analysed using GraphPad Prism 7 Software. Graphs represent mean ± 

standard error of the mean (SEM) unless otherwise stated. Experiments were carried 

out a minimum of 3 times. Where possible, normality of these data was checked by 

performing a Quantile-Quantile plot analysis. If appropriate, samples were matched i.e. 

when comparing two different areas of the same tumour, samples were matched. 

Statistical analyses for data with normal distributions were then carried out, including t-

tests when comparing two different conditions; One-way ANOVAs when comparing 

more than one condition and two-way ANOVAs when comparing two-different variables 

on different treatments. P<0.05 was taken to be significant.  

If One-way ANOVAs showed significance, appropriate post-hoc analyses tests 

(as recommended by Prism software) were used to identify statistical significances 

between multiple groups and are described in the results. Two way ANOVAs identified 

whether the effects of doxorubicin treatment or the area analysed (i.e. differences 

between tumour stroma and tumour cell islands) were significant. This gives two p 

values of importance: (1) the treatment p value which is DOX having an effect and (2) 

the area analysed p value which indicates whether the stroma and tumour cell islands 

are different. Should one of these p values indicate significance, the relevant post-hoc 

analysis (usually Sidak’s multiple comparisons test, as indicated by Graph Pad Prism 7 

software) was used to identify which comparisons were of significance.  
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Chapter 3 
 

 

Characterisation of key features of mouse mammary (TS1) tumour 

implants after DOX treatment: stromal areas versus tumour cell 

islands. 
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3.1 Introduction 

As mentioned previously in section 1.2.2, high numbers of TAMs are associated with 

poor prognosis in many types of cancer [77]. Since then, studies in mouse tumour 

models have indicated that TAMs also modulate tumour responses to 

chemotherapeutic agents.  For example, TAMs limit the responses of mammary 

tumours to the cytotoxic agent, paclitaxel [109], [139]. They also promote the regrowth 

of LLCs after cyclophosphamide treatment [144]. Further studies showed that TAMs 

which expressed the pro-angiogenic gene, Vegfa, were partially responsible for tumour 

relapse (implanted PyMT tumours) after DOX [144]. TAMs have also been shown to 

limit the efficacy of chemotherapy in mouse mammary tumours by immunosuppressive 

mechanisms, such as production of IL-10 [110] and suppression of cytotoxic T cell 

proliferation [109].  

 TAMs express both CSF1R [194] and CXCR4 [144] and the ligands for these 

receptors (CSF1 and CXCL12) help to recruit monocytes into tumours, and are 

involved in macrophage differentiation [195], [196]. Inhibition of the CSF1-CSF1R and 

CXCL12-CXCR4 signalling axes in mouse tumour models has been shown to reduce 

TAM numbers after chemotherapy and significantly improved their response to 

chemotherapy [109], [144]. Inhibitors of these pathways are currently being tested in 

clinical trials; however early trials suggest that they may not be as effective in patients 

as in pre-clinical mouse models [170]. It is, therefore, important to further understand 

the mechanisms behind monocyte recruitment and ‘education’ in chemotherapy-treated 

tumours so new pathways can be identified as therapeutic targets. 

A decision was made to study TAMs in a model most relevant to breast cancer, 

as this is one of the most common types of cancer diagnosed in the UK, with an 

incidence of 31% of female cancer cases in 2014 [197]. Patients which have smaller, 

locally restricted tumours have reasonably good prognosis, as at least 88% of stage 2 

(and 99% of stage 1) patients go on to survive five years from initial diagnosis [198]. 
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However, patients with larger tumours, which have spread extensively to the lymph 

nodes (stage 3, locally advanced cancer), have poorer prognosis, with a 5-year survival 

rate of 55% [198]. There is a need to improve survival rates in this patient population, 

and so a murine model with mammary tumours was selected for these studies. 

Moreover, there is evidence to suggest that TAMs have a role in the 

progression of breast cancer. For example, breast cancer patients with tumours that 

had increased TAM infiltration had decreased relapse-free and overall survival [199]. 

More recently, TAMs were mechanistically shown to influence regrowth of murine 

mammary tumours following DOX treatment in a VEGF-A dependent manner [144], 

suggesting that murine models may be one way to understand how TAMs may be 

contributing to relapse, and potentially allow the investigation of novel targets which 

could be used to prevent relapse in patients in the future. 

An orthotopic mouse tumour model - the orthotopic implant of TS1 cells (a cell 

line isolated from transgenic MMTV-PyMT tumours [139]) - was used in the studies 

described in this chapter as this means that tumours form and grow in the correct local 

tissue environment, and are exposed to signals from the surrounding mammary tissue. 

The parent, MMTV-PyMT mouse model has also been used to study orthotopic 

mammary tumours but these mice develop multiple mammary tumours, which are rare 

in patients [200]. Orthotopic implantation of the TS1 cell line was used here as mice 

then develop one single mammary tumour, which is more indicative of breast cancer 

patients.  

Anthracyclines are commonly used in the treatment of breast cancer in various 

different regimens [201]–[203]. DOX, an anthracycline, is offered to patients with 

advanced triple negative (oestrogen receptor ER-, progesterone receptor PR-, HER2-) 

breast cancer [204]. The TS1 tumours are ER- and PR-, but express HER2 [87]. NICE 

guidelines indicate that patients with advanced tumours that are HER2+, but ER- PR- 

should receive neoadjuvant DOX in the first instance, and given an anti-HER2 therapy 

(trastuzumab) if they are not responding to therapy [201]. Therefore DOX was chosen 
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as an appropriate chemotherapeutic agent for treating TS1 tumours. Moreover 

previous studies showed DOX treatment of transgenic MMTV-PyMT tumours increased 

the recruitment of immature myeloid cells and MRC1+ TAMs into tumours within 48 

hours of treatment [137]. Furthermore, DOX administration resulted in an increase in 

MRC1+ TAMs in well vascularised areas of PyMT tumour implants within seven days of 

treatment [144].  

The hypothesis tested in this chapter was that DOX would trigger changes in 

the features of TS1 tumours, including the accumulation of TAMs.  Tumours were 

examined 48 hours after a single injection of DOX as this early time point was 

previously shown to affect the recruitment of both immature myeloid cells and MRC1+ 

TAMs in MMTV-PyMT tumours [137]. The aim of the work described in this chapter 

was, therefore, to characterise the changes induced in TS1 tumours by DOX - with 

particular reference to: 

a. Tumour vascularity and hypoxia (as changes in these tumour features could 

be relevant to changes in TAM accumulation/activation).   

b. Myeloid cell subsets (including F4/80+ TAMs and MRC1+ TAM subsets, Gr-1+ 

immature myeloid cells and Ly-6G+ neutrophils). 
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3.2 Methods 

3.2.1 Immunofluorescent staining of tumours 

To understand how DOX impacts on TS1 tumours, immunofluorescent analyses were 

performed on frozen tumour sections. TS1 tumours were removed from mice after the 

treatments described in section 2.2.3 and snap frozen in OCT (as described in section 

2.2.4). 14μm frozen sections were stained as described in section 2.2.9, using the 

antibodies at concentrations described below in Table 3.1. 

 

Antibody Fluorophore Clone Conc. 
(μg/mL) 

Rat (m) Anti-Mouse Ly-6G PE 1A8 4 

Rat (m) Anti-Mouse CD31 AlexaFluor647 MEC13.3 5 

Rat (m) Anti-Mouse F4/80 AlexaFluor488 CI:A3-1 2 

Rabbit (p) Anti-Mannose Receptor Unconjugated ab64693 2.5 

Purified Rat (m) Anti-Mouse Gr-1 Unconjugated RB6-8C5 1 

Goat (p) Anti-Rat IgG AlexaFluor647  10 

Goat (p) Anti-Rabbit IgG AlexaFluor555  10 

Mouse (m) Anti-PIMO Dylight549 4.3.11.3 5 
 
Table 3.1: Antibodies used in immunofluorescent analyses in this chapter.  
(m) = monoclonal and (p) = polyclonal antibody.  

 

3.2.2 Analyses of immunofluorescent images 

As previously described in section 2.2.11, Fiji was used to analyse images and nuclei 

(DAPI+ events) were counted by the ITCN plugin [191] in the tumour cell islands or by 

“Analyse particles” in the stroma. Images were taken using at 20x objective lens and at 

least 5 randomly selected fields of view (FOV) were analysed per tumour section.  

The cell counter plugin [192] enabled counting of cells, and allowed counting of 

cells which were positive, dual-positive or triple positive, by placing markers on cells 

which could then be applied across multiple colour channels. 

CD31 area was calculated by converting the CD31 stain to a binary image (to 

apply a threshold) and then using Fiji’s analyse particles tool which allowed the 

percentage of the region of interest covered by CD31 staining to be calculated. 
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3.3 Results 

3.3.1 TS1 tumours contain distinct regions of tumour cell islands and stroma. 

Use of haematoxylin and eosin staining showed that these tumours consist largely of 

two distinct regions - tumour cell islands surrounded by less cellular, stromal areas 

(Figure 3.1A).  This could also been see on the fluorescent microscope using DAPI 

nuclear staining (Figure 3.1B). The stroma of these tumours had significantly fewer 

nuclei (mean= 598.2 ± 40.48 per FOV) than that of the tumour cell islands (mean= 

2204 ± 77.12 per FOV, paired t-test p=0.0006). Given that the nuclear counts were 

significantly different between these two tumour areas (Figure 3.1C), it was clear that 

further analyses of these tumours would need to normalise cell counts to the number of 

nuclei present in the FOV, when comparing between stroma and tumour cell islands to 

account for the differences in nuclear density.  

 

Figure 3.1: TS1 tumours contain two distinct compartments: tumour cell islands and 
distinct stromal areas. 
The tumour cell islands (TCI) contain more nuclei than the stromal compartment (S). These two 
regions could be identified using haematoxylin and eosin staining (A; scale bar= 200µm) and 
DAPI immunofluorescence (B; scale bar= 50µm) of tumour sections. The total number of nuclei 
per FOV were counted for the stroma and tumour cell islands (C). *p≤0.001 n=4 tumours.  
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3.3.2 The stroma of PBS and DOX treated TS1 tumours is normoxic and has 

increased vascularity compared to tumour cell islands. 

It was hypothesised that tumour cell islands and stromal areas might also display 

differences in other microenvironmental features such as tumour vascularity and 

hypoxia. These related features were chosen as tumour hypoxia can regulate the 

phenotype of macrophages, including their expression of Vegfa [185], [205]. However, 

recent studies have shown that ablating hypoxia-inducible factors, 1 and 2 (HIFs 1 and 

2) in TAMs has no effect on the regrowth of LLC tumours after chemotherapy [144]. 

This suggests that hypoxia may not promote the relapse-promoting phenotype of TAMs 

after chemotherapy [144].  

Nevertheless, TS1 tumour bearing mice were injected with PIMO as described 

in 2.2.3 in order to assess tumour hypoxia.  Tumours were then removed, frozen and 

stained with anti-PIMO (red staining, Figure 3.2) and anti-CD31 (white staining, Figure 

3.2) to assess blood vessels as described in 3.2.1. Figure 3.2 shows representative 

images of the stroma (Figure 3.2A) and tumour cell islands (Figure 3.2B).  

Tumour hypoxia was analysed as the percentage of cells which stained PIMO 

positive out of the total number of cells within the area analysed, to account for different 

numbers of nuclei in each FOV. Figures 3.2C and 3.2D, alongside the representative 

staining demonstrate that hypoxia was restricted to the tumour cell islands of the 

tumours. Tumour cell islands of PBS and DOX treated tumours (PBS mean= 22.86 ± 

1.98, DOX mean= 20.59 ± 5.26) were more hypoxic than the stroma (PBS mean=0 ± 0, 

PBS paired t test p=0.0014, Figure 3.2C, DOX mean= 0 ± 0, DOX paired two tailed t 

test p=0.0112, Figure 3.2D). Interestingly, within 48 hours, DOX treatment had no 

effect on the percentage of cells which were hypoxic within TS1 tumours. 

Tumour vascularity was assessed by measuring the percentage CD31+ area, 

(i.e. the amount of area covered with CD31 staining). Normoxic regions of PBS treated 

tumour cell islands (mean= 1.87 ± 0.12) were significantly more vascularised than the 

hypoxic regions of the tumour cell islands (mean= 0.71 ± 0.15, One way ANOVA 
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p=0.0153 with Tukey’s multiple comparisons test p=0.0202). In PBS-treated tumours, 

the stroma (mean= 4.89 ± 0.73) had increased vascularity compared to the normoxic 

tumour cell island, although this was not significantly different (Tukey’s multiple 

comparison test p=0.0718). The stroma of PBS-treated tumours had significantly more 

CD31+ area compared to that of the hypoxic areas found in the tumour cell islands 

(Tukey’s multiple comparisons test p=0.0176; Figure 3.2E).  

The normoxic regions of tumour cell islands (mean= 1.67 ± 0.33) were also 

more vascularised than the hypoxic regions (mean= 0.51 ± 0.10) in DOX-treated 

tumours (One way ANOVA p=0.0036 with Tukey’s multiple comparisons test p=0.0172, 

Figure 3.2F). In DOX-treated tumours, the stroma (mean= 4.18 ± 0.78) was 

significantly more vascularised compared to both the normoxic regions of the tumour 

cell islands (Tukey’s multiple comparisons test p=0.0174) and the hypoxic regions of 

the tumour cell islands (Tukey’s multiple comparisons test p=0.0103). DOX did not 

significantly alter vascularity compared to PBS treated tumours. 
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Figure 3.2 The stromal component of TS1 tumours is normoxic and more vascularised 
compared to the tumour cell islands. 
Hypoxic cells (PIMO, red) and blood vessels (CD31, white) were identified using 
immunofluorescent staining. Representative staining of the stroma (A) and tumour cell islands 
(B) is shown. Scale bar = 50µm. Hypoxia was measured as % PIMO

+
 cells  for both PBS (C) 

and DOX (D) treated tumours. Vascularity of tumours was quantified as % CD31
+
 area (CD31

+
 

area as a percentage of total area measured) for PBS (E) and DOX (F) treated tumours. * 
p<0.05 and ** p<0.01. (n=4 PBS tumours; n=6 DOX treated tumours).  
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3.3.3 The normoxic stroma of PBS and DOX treated TS1 tumours contain 

increased numbers of TAMs compared to tumour cell islands. 

Previous studies have described TAMs as being located within hypoxic regions 

of breast carcinomas [78] and murine TS/A tumours [68] and shown that hypoxia can 

affect the phenotype of TAMs, by causing an upregulation of proangiogenic genes such 

as vegfa [185], [205], [206]. More recently, research has focussed on TAMs located 

within the normoxic areas of LLCs, demonstrating that such PV TAMs contribute more 

to tumour relapse after chemotherapy in that tumour model [144]. Given these 

apparent contradictions, the relationship between hypoxia and TAM density was 

investigated in TS1 tumour implants. Frozen tumour sections were stained for PIMO 

(hypoxia; red), CD31 (white) and the macrophage marker F4/80 (green) and 

representative images of the stroma (Figure 3.3A) and tumour cell islands (Figure 

3.3B) are shown.  

In PBS-treated tumours there was an increased density of TAMs (total number 

of TAMs in the area analysed as a percentage of total number of cells in area 

analysed) in the normoxic stroma (mean= 39.88 ± 4.05), compared to that of the 

normoxic tumour cell islands (mean= 5.62 ± 0.54, One way ANOVA p=0.0032, Tukey’s 

multiple comparison test p=0.007, Figure 3.3C). Hypoxic areas within PBS-treated 

tumour cell islands also contained F4/80+ TAMs (mean= 4.22 ± 1.07) at a lower density 

than the stroma (Tukey’s multiple comparison test p=0.0074). There was no significant 

difference in TAM density between normoxic and hypoxic regions of the tumour cell 

islands in PBS treated tumours (Tukey’s multiple comparison test p=0.2162). 

The stroma of DOX-treated tumours (mean= 37.87 ± 4.0) had a significantly 

increased density of TAMs compared to the normoxic regions of the tumour cell islands 

(mean= 7.51 ± 0.28, One Way ANOVA p=0.0004 with Tukey’s multiple comparisons 

test p=0.0014, Figure 3.3D) and hypoxic regions of tumour cell islands (mean= 3.83 ± 

0.48, Tukey’s multiple comparisons test p=0.0006). In contrast to the PBS treated 

tumours, in DOX-treated tumours, the hypoxic region of tumour cell islands had a lower 
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density of TAMs compared to the normoxic regions (Tukey’s multiple comparisons test 

p=0.0004). DOX did not impact on the TAM density of these tumours when compared 

with PBS treated tumours. 

 

Figure 3.3 The normoxic stroma contained a higher density of TAMs than the more 
hypoxic, tumour cell islands of TS1 tumours. 
Representative hypoxia (PIMO, red); CD31 (white) and F4/80 (green) staining in the stroma (A) 
and tumour cell islands (B). Scale bar= 20μm. The density of F4/80

+
 TAMs was calculated by 

dividing the total number of F4/80
+
 cells by the number of DAPI

+
 events in each specified region 

and multiplying by 100. * p<0.01 and ** p<0.001. (PBS tumours n=4; DOX tumours n=6).  
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3.3.4 MRC1+ TAMs are present mainly in the stroma of TS1 tumours. 

MRC1+ TAMs in mouse tumours have previously been shown to stimulate the regrowth 

of tumour residues after chemotherapy [144]. Therefore, the density and number of 

F4/80+ MRC1+ cells was analysed within these tumours by staining for F4/80 (green) 

and MRC1 (red) as described in section 3.2.1 (Figures 3.4 & 3.5). The number of TAMs 

per FOV were analysed to understand if TAM recruitment was affected by DOX. TAM 

density was also analysed to understand the effect of DOX on TAM recruitment, while 

accounting for the total number of cells per FOV. Representative staining is shown in 

Figure 3.4A (stroma) and 3.4B (tumour cell islands).  

In both DOX and PBS treated tumours, the number of F4/80+ TAMs per FOV 

increased slightly in tumour cell islands (PBS mean= 400.8 ± 108.3, DOX mean= 408.6 

± 61.67) compared to the stroma (PBS mean= 175.1 ± 42.19, DOX mean= 225.1 ± 

55.14, Two way ANOVA area analysed p=0.0077).  However, post-hoc analyses 

revealed these trends were just outside of statistical significance (Sidak’s multiple 

comparisons test PBS p=0.0615, DOX p=0.0961). Furthermore, DOX did not change 

the number of TAMs per FOV in either the stroma or the tumour cell islands (Two way 

ANOVA treatment p=0.7199, Figure 3.4C). 

Next the number of F4/80+ MRC1+ TAMs were counted per FOV in both tumour 

regions (Figure 3.4D). The stroma of both PBS (mean= 87.33 ± 28.94) and DOX-

treated (mean= 143 ± 39.84) tumours appeared to contain more MRC1+ TAMs than the 

tumour cell islands (PBS mean= 51.88 ± 15.89, DOX mean= 54.93 ± 12.72, Two way 

ANOVA area analysed p=0.0378). Post-hoc analyses found these differences were not 

statistically significant (Sidak’s multiple comparisons test PBS p=0.6018, DOX 

p=0.0591) and again DOX did not affect the numbers of F4/80+ MRC1+ cells per FOV 

(Two way ANOVA treatment p=0.3454). 
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Figure 3.4 Differences in F4/80
+
 and F4/80

+
 MRC1

+
 TAMs between the stromal 

compartment and tumour cell islands in TS1 implant tumours. 
Tumour sections were dual stained for F4/80 (macrophages; green) and MRC1 (red) in the 
stroma (A) and the tumour cell islands (B) In A, the stroma is denoted with an S, and some 
tumour cell island (TCI) can be seen at the top of the field of view (FOV). Scale bar = 50µm.  
F480

+
 MRC1

+
 cells appear yellow in the merged images on the right. MRC1

+
 TAMs were rarely 

seen in the tumour cell islands, and can be seen in the invading stroma (yellow arrow, B). Both 
F4/80

+
 (C) and F4/80

+ 
MRC1

+ 
cells (D) were counted per FOV. Two way ANOVA used (PBS 

tumours n=5; DOX tumours n=6). 
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In order to account for the increased density of nuclei in the tumour cell islands, 

TAM density was calculated as the number of F4/80+ cells as a percentage of total 

cells (Figure 3.5A). The density of F4/80+ TAMs was significantly increased in the 

stroma of PBS treated tumours (mean= 43.57 ± 3.82) compared to tumour cell islands 

(mean= 12.3 ± 2.91, Two way ANOVA area analysed p<0.0001, Sidak’s multiple 

comparisons test p=0.0001). This was also true in DOX treated tumours (Stroma 

mean= 44.21 ± 3.73, Tumour cell island mean= 13.8 ± 2.05, Sidak’s multiple 

comparisons test p<0.0001), and again DOX did not change the density of F4/80+ cells 

(Two way ANOVA treatment p=0.7556).  

The density of F4/80+ MRC1+ cells (Figure 3.5B) was then examined. The 

stroma showed a significant increase (mean= 18.28 ± 4.85) in F4/80+ MRC1+ cell 

density compared to tumour cell islands (mean= 1.67 ± 0.37, Two way ANOVA area 

analysed p<0.0001, Sidak’s multiple comparisons test p=0.0095) in PBS-treated 

tumours. This was also the case in DOX-treated tumours (Stroma mean= 29.05 ± 4.21, 

Tumour cell island mean = 1.90 ± 0.41, Sidak’s multiple comparisons test p=0.0002) 

and again DOX did not significantly alter the density of F4/80+ MRC1+ cells (Two way 

ANOVA treatment p=0.1382). 

Finally, the percentage of F4/80+ TAMs expressing MRC1 was calculated (as 

the number of F4/80+ MRC1+ cells divided by total F4/80+ cells multiplied by 100, 

Figure 3.5C). The stroma of PBS treated tumours (mean= 37.64 ± 10.16) contained a 

significantly increased percentage of MRC1+ TAMs compared tumour cell islands 

(mean= 16.22 ± 3.48 Two way ANOVA area analysed p<0.0001, Sidak’s multiple 

comparisons test p=0.0112). This was also seen in DOX treated tumours (Stroma 

mean= 63.94 ± 7.20, Tumour cell island mean= 15.69 ± 4.02, Sidak’s multiple 

comparisons test p<0.0001). Interestingly, there appeared to be a trend for an increase 

in the percentage of MRC1+ TAMs within the stroma of DOX treated tumours compared 

to PBS treated tumours, but it was not significant (Two way ANOVA treatment 

p=0.1643). 
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Figure 3.5 Differences in F4/80
+
 and F4/80

+
 MRC1

+
 TAM densities between the stromal 

compartment and tumour cell islands in TS1 implant tumours. 

Both F4/80
+
 (A) and F4/80

+
 MRC1

+ 
(B) cells were counted per field of view (FOV) and then 

calculated as percentage of total cells (DAPI
+
) per FOV to determine their respective densities. 

The percentage of F4/80
+
 cells in each FOV that were MRC1

+
 was also calculated (C). *p<0.05 

**p<0.01; ***p<0.001; ****p<0.0001. Two way ANOVA used (PBS tumours n=5; DOX tumours 
n=6) 

 

3.3.5 DOX does not increase infiltration of immature Gr-1+ cells. 

Although overall TAM infiltration was not affected within 48 hours of DOX treatment, it 

was deemed possible that the recruitment of TAMs first requires infiltration of immature 

monocytic cells. Given immature myeloid cells may be a source of TAMs post-

chemotherapy, their numbers were examined by counting Gr-1+ cells, comprising both 

monocytes and neutrophils. Therefore Gr-1 staining was carried out as described in 

section 3.2.1. Gr-1 was used instead of Ly-6C as this was found to co-stain blood 

vessels (see images in Figure 4.7). Stained Gr-1+ cells are shown in white in the 
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stroma (Figure 3.6A) and tumour cell islands (Figure 3.6B). The number of Gr-1+ cells 

per FOV was quantified (Figure 3.6C) and there were no significant differences 

between PBS and DOX treated tumours (Two way ANOVA treatment p=0.7533). The 

stroma of both PBS and DOX treated tumours contained significantly more Gr-1+ cells 

compared to tumour cell islands (Two way ANOVA area analysed p=0.0010, see Table 

3.2).  

 PBS DOX 

Stroma 103.2 ± 22.32 110.8 ± 22.52 

Tumour Cell Island 30.15 ± 4.46 36.05 ± 11.5 

Sidak’s multiple 
comparison test p=0.0120 p=0.0107 

 
Table 3.2 Number of Gr-1

+
 cells per field of view in PBS and DOX treated tumours.  

The number of Gr-1
+
 cells per field of view were counted in PBS and DOX treated tumours in 

the stroma and tumour cell islands. Values are mean ± SEM. Two way ANOVA with Sidak’s 
multiple comparison test showed there were more Gr-1

+
 cells in the stroma of both PBS and 

DOX treated tumours compared to tumour cell islands. 

 

To allow for the increased nuclear density seen in tumour cell islands, cell 

counts were normalised by the number of cell nuclei (i.e. by dividing total number of Gr-

1+ cells by total number of DAPI+ nuclei in a FOV and then multiplying by 100 to 

establish the percentage of cells which were Gr-1+, Figure 3.6D). Again, there was no 

significant difference between PBS- and DOX- treated tumours (Two way ANOVA 

treatment p=0.7461). The density of Gr-1+ cells was significantly increased in the 

stroma of TS1 tumours, regardless of treatment (Two way ANOVA treatment p=0.0002, 

see Table 3.3).  

 

 

 

 

 

 

 



97 
 

 

 

 PBS DOX 

Stroma 16.28 ± 2.81 17.45 ±3.03 

Tumour Cell Island 1.42 ± 0.28 1.82 ±0.56 

Sidak’s multiple 
comparison test p=0.0025 p=0.0019 

 
Table 3.3 Gr-1

+
 cell density in PBS and DOX treated tumours.  

The number of Gr-1
+
 cells per field of view were counted and expressed as a percentage of total 

cells per field of view in the stroma and tumour cell islands of PBS and DOX treated tumours. 
Values are mean ± SEM. Two way ANOVA with Sidak’s multiple comparison test showed there 
was an increased density of Gr-1

+
 cells in the stroma of both PBS and DOX treated tumours 

compared to tumour cell islands.  
 

 

Figure 3.6 The number and density of Gr-1
+
 cells was higher in the stroma compared to 

the tumour cell islands of TS1 implant tumours. 

Gr-1
+
 cells (white) were identified within the stroma (A) and tumour cell islands (B) of TS1 

implant tumours. Scale bar= 20µm. Total Gr-1
+
 cells were quantified per FOV (C) and 

normalised to the number of nuclei (D). *p<0.05; **p<0.01 (n=4 tumours).  
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3.3.6 DOX does not increase infiltration of Ly-6G+ cells. 

Neutrophils express Ly-6G [207] so their number can be assessed by staining tumours 

for this marker, as described in section 3.2.1. The Gr-1 antibody (clone RB6-8C5) used 

in the previous analysis was reported to inhibit the binding of the Ly-6G antibody (1A8), 

and so this analysis could not be performed in conjunction with the aforementioned Gr-

1 stain. Therefore, we were unable to obtain data about how many of the Gr-1+ cells 

were monocytes and not neutrophils. Nevertheless, Ly-6G+ cells (red cells) were 

present in the stroma (Figure 3.7A) and tumour cell islands (Figure 3.7B) of TS1 

tumours.  

The number of Ly-6G+ cells was counted per FOV (Figure 3.7C) and this was 

unchanged when comparing DOX and PBS treated tumours (Two way ANOVA 

treatment p=0.5536). The stroma of PBS treated tumours (mean= 15.7 ± 4.34) did not 

contain more Ly-6G+ cells than the tumour cell islands (mean= 11.05 ± 4.08, Two way 

ANOVA area analysed p=0.1754). This was also true in DOX treated tumours (stroma 

mean= 21.45 ± 5.08; tumour cell island mean= 8.75 ± 4.2). The number of Ly-6G+ cells 

per FOV were then normalised to nuclei per FOV to determine Ly-6G+ density (Figure 

3.7D), and again Ly-6G+ cell density was unaffected by DOX (Two way ANOVA 

treatment p=0.3840). The stroma of PBS treated tumours (mean= 2.84 ± 0.49) had an 

increased density of Ly-6G+ cells compared to tumour cell islands (mean= 0.47 ± 0.13; 

Two way ANOVA area analysed p=0.0006; Sidak’s multiple comparisons test 

p=0.0131). The stroma of DOX treated tumours (mean= 3.46 ± 0.48) also had an 

increased density of Ly-6G+ cells compared to tumour cell islands (mean= 0.43 ± 0.20; 

Sidak’s multiple comparison test p=0.0041). 
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Figure 3.7 The density of Ly-6G
+
 neutrophils is increased in the stroma compared to the 

tumour cell islands of TS1 implant tumours. 

Ly-6G
+
 cells (red) were identified within the stroma (A) and tumour cell islands (B) of TS1 

implant tumours. Scale bar= 20µm. Total Ly6G
+
 cells were quantified per field of view (C) and 

normalised to the number of nuclei (D). *p<0.05; **p<0.01. (n=4 tumours).  
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3.4 Discussion 

In PBS and DOX treated TS1 tumours, two morphologically distinct regions were 

present: more vascularised, normoxic stromal regions, and less vascularised, more 

hypoxic tumour cell islands. Interestingly, MRC1+ macrophages were more abundant in 

the former, suggesting their preference for accumulating and/or upregulating MRC1 

expression in such vascularised areas in both PBS and DOX treated tumours. 

 After noting the different nuclear densities of the stroma and the tumour cell 

islands within these TS1 tumours, it was hypothesised that these two areas may have 

additional functional differences. Hypoxia was first examined within these two niches as 

TAMs were previously shown to accumulate in avascular and necrotic areas of breast 

tumours [78], suggesting that hypoxia may recruit TAMs. Indeed, hypoxia regulates the 

expression of molecules known to recruit TAMs such as CXCL12 and VEGF-A [208]. In 

these studies, hypoxia was not affected by DOX in TS1 tumours; however hypoxia was 

found to be restricted to the tumour cell islands, whereas the stroma remained 

normoxic.  

 As maintaining tissue oxygenation relies on functioning blood vessels [209], the 

vascularity of these two regions was then established. The percentage CD31+ area 

was increased in the stroma of both PBS and DOX treated TS1 tumours, compared to 

normoxic and hypoxic regions of the tumour cell islands. This increase in vascularity 

offered a possible explanation as to why the TS1 stroma was normoxic. DOX did not 

impact on the CD31 area in TS1 tumours, and it was therefore not surprising that 

tumour hypoxia remained equally unaffected by this treatment. The analysis of tumour 

blood vessels was carried out by analysing CD31 staining. Other markers of blood 

vessels include CD34 [139] and endomucin [210]. However, previous studies have 

often used CD31 as a reliable marker of the tumour vasculature in LLCs, 4T1s and in 

both transgenic and orthotopically implanted MMTV-PyMT tumours [137], [144]. 

Therefore, CD31 was used in these current studies. It would be interesting to compare 
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vascular staining of CD31, CD34 and endomucin in these TS1 tumours, to establish if 

there is heterogeneity in the expression of these markers by the tumour blood vessels. 

Only the CD31 area was analysed, rather than analysing the effect of DOX on vessel 

phenotype. Previous studies demonstrated that cyclophosphamide decreased the 

length of blood vessels in LLC tumours [144], however this parameter was not 

measured in these studies. It is possible that the effect of chemotherapy on the tumour 

vasculature depends on the type of drug, tumour and the time at which the drug was 

given. 

Given the stroma was more normoxic and vascularised it was interesting that 

TAM density was increased in the stroma compared to areas of hypoxia within the 

tumour cell islands. This analysis used TAM density rather than raw numbers of TAMs, 

to account for the different numbers of nuclei in each region. Overall TAM infiltration, as 

assessed by the number of F4/80+ TAMs was unaffected two days after DOX 

treatment. However, unpublished studies demonstrated that these TS1 tumours do 

recruit TAMs and MRC1+ TAMs within seven days of DOX treatment (Hughes, 

unpublished); suggesting that this two day time point may be capturing the initial 

phases of the tumours responding to DOX.  

In these TS1 tumours, MRC1+ TAMs were mainly located within the stroma of 

these tumours, suggesting a preferential location of MRC1+ pro-tumoural TAMs within 

the tumour stroma. Previous studies identified MRC1+ TAMs within both vascularised 

and hypoxic areas of untreated LLCs; however cyclophosphamide increased the 

number of MRC1+ TAMs within the normoxic regions of LLCs, but not the hypoxic 

regions [144]. This suggests that while MRC1+ TAMs may be found within hypoxic 

regions of tumours, they may be specifically recruited to vascularised areas following 

chemotherapy. In these studies, MRC1 expression was not examined in conjunction 

with PIMO staining, as the density of TAMs within hypoxic regions was much lower 

than the rest of the tumour. Moreover, MRC1+ TAMs were far more abundant within the 

normoxic stroma of these tumours, and were a rare occurrence within the tumour cell 
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islands, suggesting it was unlikely that these TAMs would reside in hypoxic areas of 

the TS1 tumours. In agreement with these studies, Carmona-Fontaine and colleagues 

recently demonstrated a spatial segregation of MRC1hi TAMs within MMTV-PyMT 

tumours [209]. MRC1hi TAMs were mainly found within normoxic regions of these 

tumours due to differential patterns of metabolites in the hypoxic and normoxic regions 

of these tumours [209].  

Previous studies have shown that MHCIIlo TAMs, which also expressed higher 

amounts of MRC1, were found within hypoxic areas of TS/A tumours [68]. Moreover, 

hypoxia induced gene expression changes in human MDMs and murine BMDMs in 

vitro, increasing expression of cxcr4 and vegfa amongst other genes [205]. However, 

more recently, TAMs isolated from less hypoxic tumours (grown in mice which were 

haplodeficient for the oxygen sensor PHD2) were shown to have similar expression of 

genes associated with an M2-skewed phenotype such as mrc1 and arginase-1 as 

TAMs isolated from their more hypoxic counterparts [185]. Moreover, ablation of the 

hypoxia-regulated transcription factors HIF1 and HIF2 in myeloid cells  had no effect on 

the number of MRC1+ TAMs within hypoxic or normoxic areas of cyclophosphamide 

treated LLCs and did not impact upon their regrowth [144]. Therefore, the impact of 

tumour hypoxia on TAM phenotype is controversial and may be dependent on the 

model used. 

Increased TAM infiltration has been recognised as a feature of poor prognosis 

in many types of cancer [77]. Studies have now investigated the importance of the 

spatial organisation of immune cells within breast tumours, which is interesting as the 

stroma of PBS and DOX treated TS1 tumours had increased densities of TAMs and 

MRC1+ TAMs compared to the tumour cell islands. One study revealed that increased 

intratumoural TAMs was significantly correlated with decreased disease-free survival in 

breast cancer patients, and this trend was also true for stromal TAMs, although it was 

not significant [211]. Conversely, another study demonstrated that breast tumours with 

an increased density of CD163+ TAMs in the tumour stroma were of a higher grade and 
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more proliferative (as indicated by Ki67 staining), whereas the density of these TAMs in 

the tumour cell islands did not correlate with any clinicopathological features [212]. 

Decreased overall survival was also correlated with increased CD163+ TAMs in the 

tumour stroma, yet the presence of these TAMs in the tumour cell islands had no 

impact on survival [212]. Potentially, the differences between these two studies could 

be due to differences in TAM detection, as one paper examined CD68+ TAMs whereas 

the other examined TAMs expressing the M2-marker CD163. Further studies in breast 

cancer demonstrated that increased stromal, but not intratumoural TAMs was 

correlated with increased tumour grade [213]. Interestingly, tumours with increased 

numbers of intratumoural TAMs were more likely to have an increased microvascular 

density, suggesting these TAMs have roles in angiogenesis [213]. This study indicates 

that TAMs within different tumour microenvironments may have different phenotypes 

and tumour-promoting functions. Taken together, these studies highlight the 

importance of characterising niches within tumour microenvironment, as this may have 

prognostic significance for patients. 

As DOX was previously reported to increase the infiltration of immature 7/4+ 

myeloid cells in MMTV-PyMT tumours [137], it was important to examine the effect of 

DOX on immature myeloid cell infiltration in TS1 tumours. 7/4 staining was attempted 

on the tumours used in the current study, however it was not successful, so Gr-1 and 

Ly-6G were instead used as markers of immature myeloid cells (as these staining 

protocols had previously been optimised in my supervisor’s research group).  Using Gr-

1 as a marker of neutrophils and monocytes, it was clear that DOX did not increase Gr-

1+ cells within tumours. This contrasted with Nakasone and colleagues who showed an 

increase in CD11b+ 7/4+ Gr-1+ cells in transgenic MMTV-PyMT tumours 48 hours after 

DOX treatment [137].  However, this was measured in dissociated tissues by flow 

cytometry and these TS1 studies used immunofluorescence. Moreover, previous 

studies used 7/4, a monocyte/neutrophil marker not used in the TS1 model, and Gr-1 

was used as a marker instead [137].   
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Immature myeloid cells have been previously recognised as cells which may 

impact on the tumour response to chemotherapy [137]. One such study showed that 

7/4+ cells limit vascular permeability with MMP-9, which results in the decreased 

efficacy of DOX in MMTV-PyMT tumours [137]. Another study showed that MDSCs 

(immature CD11b+ Gr-1+ cells) secrete cathepsin B and IL-1β  to limit the efficacy of 5-

fluorouracil in EL4 tumour bearing mice [214]. Other studies suggest different 

chemotherapy drugs may have beneficial effects on the phenotype of MDSCs [136]. 

For instance, docetaxel was shown to reduce the number of MDSCs in the spleen of 

4T1 tumour bearing mice, and skew these cells towards an M1-like phenotype 

demonstrated by their increased expression of iNOS and CCR7, and reduced MRC1 

expression [136]. While DOX did not affect the number of Gr-1+ cells within TS1 

tumours, the effect of DOX on the phenotype of these cells themselves, e.g. do they 

produce cathepsin-B in a manner similar to MDSCs in EL4 tumours [214], was not 

examined, as this was outside the scope of the project. Future studies could examine 

these cells in more detail to understand their function within TS1 tumours, and how 

these cells may influence tumour regrowth. 

Interestingly, these data in this chapter show that, in both PBS and DOX treated 

tumours, Gr-1+ cells are located in increased numbers in the stroma of TS1 tumours 

compared to the tumour cell islands.  Previously, studies demonstrated that increased 

numbers of circulating MDSCs were associated with increased tumour stage in breast 

cancer patients [215]. Stage IV breast cancer patients with an increased metastatic 

burden had significantly increased numbers of MDSCs [215]. In another study, pre-

operative breast cancer patients had increased circulating MDSCs compared to healthy 

controls, and stage IV patients with more circulating MDSCs were found to have worse 

overall survival, than those with fewer MDSCs [216]. While the impact of circulating 

MDSCs has been established in patients, it would be interesting to see whether the 

spatial distribution of immature myeloid cells within patient tumours associates with 
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prognosis, as previously described for stromal and intratumoural TAMs, as this would 

also give some clinical significance to our findings within the TS1 tumours [211]–[213]. 

As Gr-1 is also expressed by neutrophils, Ly-6G was then examined within 

these tumours to understand if they made a significant contribution to the immune cell 

infiltrate of TS1 tumours. Unsurprisingly, there were fewer Ly-6G+ cells within these 

tumours, compared to the Gr-1+ cells, although this is probably because Gr-1 is 

expressed by immature myeloid cells, such as monocytes, and not just neutrophils. 

Like the Gr-1+ cells, the presence of Ly-6G+ cells were not affected by DOX, but they 

were also found to be at an increased density within the stroma of the TS1 tumours 

compared to tumour cell islands.  

 

3.5 Concluding remarks 

Both PBS and DOX-treated TS1 tumours were divided into distinct stromal areas and 

tumour cell islands, summarised in Figure 3.8.  The stromal areas were more heavily 

vascularised, less hypoxic and contained an increased density of TAMs. Moreover, 

MRC1+ TAMs were found mainly within the stromal tumour areas, suggesting that the 

stroma may recruit, retain and/or educate TAMs to become MRC1+. As the stroma of 

TS1 tumours is highly vascularised, future studies should investigate the relationship 

between MRC1+ TAMs and the vasculature, by characterising whether DOX impacts on 

the number and/or phenotype of PV TAMs.   
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Figure 3.8 Summary of differences between stromal and tumour cell island components 
of TS1 tumours. 

The stroma of TS1 tumours was normoxic and had an increase in vascular density. Tumour cell 
islands were more hypoxic (blue areas) and had fewer blood vessels. TAMs had an increased 
density in the stroma, and MRC1

+
 TAMs (red cells) were mainly found within the stroma. 
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Characterisation of the PV niche in TS1 mammary tumours: effects 

of DOX 
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4.1 Introduction 

In Chapter 3, MRC1+ TAMs were shown to be present at a higher density in the well 

vascularised, oxygenated stroma than in the less vascularised tumour cell islands in 

TS1 tumours. This was the case in both PBS and DOX-treated tumours.  As this TAM 

subset accumulated in such highly vascularised areas, their direct contact with blood 

vessels was then investigated. For this, the density of PV TAMs (i.e. TAMs directly 

abutting the abluminal surface of CD31+ blood vessels) was then investigated in both 

PBS and DOX-treated tumours. This was considered to be of potential functional 

relevance in TS1 tumours because, as mentioned previously, a recent study showed 

that such PV TAMs are increased in LLCs treated after cyclophosphamide treatment, 

and stimulate subsequent tumour regrowth [144]. However, neither their density, origin 

nor regulation in the PV niche has been investigated in TS1 tumours, to date. 

So in this chapter, an attempt was made to quantify their abundance in this type 

of tumour after exposure to PBS or DOX. Consideration was also given here to the 

possible origin of these PV cells. Understanding this could lead to the development of 

new strategies to target the precursors of these PV TAMs in the bloodstream or 

tumour. While some of the chemokine pathways that attract monocytes into mouse 

tumours after chemotherapy have been identified (e.g. CSF1 [109] CCL2 [137] and 

CXCL12 [144]), it is not known whether PV MRC1+ TAMs are derived from the 

recruitment of peripheral blood monocytes (generally or a specific subset), or the local 

proliferation of TAMs, monocytes or HSCs. One study attempted to address this by 

injecting BrdU into mice bearing LLCs following their exposure to cyclophosphamide. 

This showed that TAMs failed to proliferate in this tumour model, nor was there an 

increase in HSC numbers or any signs of HSC proliferation. This suggests that MRC1+ 

TAMs were likely to be derived from newly recruited peripheral blood monocytes in 

LLCs [144].  
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As PV TAMs are in direct contact with blood vessels it is highly likely that the 

tumour vasculature contributes to their recruitment, retention and phenotype in the PV 

niche. Indeed, when it comes to the latter of these, there is evidence that endothelial 

cells can regulate the phenotype of TAMs, even in the absence of chemotherapy. For 

example, one study showed that in vitro, macrophages co-cultured with endothelial 

cells develop an M2-skewed phenotype, with increased expression of MRC1, TIE2 and 

arginase-1 [186]. There is also indirect evidence that this phenomenon may occur in 

vivo. For example, agents which alter the vasculature of tumours (e.g. low-dose 

VEGFR2 inhibitors, overexpression of HRG by tumour cells, and dual inhibition of 

angiopoietin-2 and VEGF signalling) have been shown to reduce the tumour-promoting 

phenotype of TAMs [30], [176], [177], [180]. So, the possible effects of DOX on the 

tumour vasculature (i.e. vessel size, pericyte coverage and vessel patency) were also 

examined in TS1 tumours to see if these might have impacted upon the 

recruitment/phenotype of TAMs accumulating in the PV niche after DOX. 

Tumour blood vessels are more chaotic, have less pericyte coverage, are more 

permeable, and carry less regular blood flow than those in normal tissues [217]. 

Moreover, the tumour vasculature has a completely different structure to the hierarchy 

of vessels within healthy tissues [217]. In healthy tissues, arteries typically branch into 

smaller arterioles, which then form capillaries. These capillaries then deliver blood to 

the surrounding tissue before developing into a network of venules and veins. This is 

not the case in malignant tumours, as tumour blood vessels lack this structure, and can 

be identified and categorised as listed in Table 4.1 [217]. These vessel types include 

‘mother vessels’, which can develop into other vessel types including capillaries, 

glomeruloid microvascular proliferations and vascular malformations which are best 

recognised on the basis of their morphological features (Table 4.1).  

The perfusion of tumour blood vessels is often heterogeneous, with some 

vessels carrying flow, and others not [217], [218]. One method used to investigate 
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vessel patency is the perfusion of the vasculature with FITC-lectin, as only flow-

carrying vessels are then seen as FITC-lectin+ in frozen sections of tumours [137]. 

 

Vessel type Morphological features 

Mother vessel 
Enlarged hyperpermeable vessels with a degraded 
basement membrane – first vessel type to develop from 
pre-existing blood vessels 

Capillary 
Similar to capillaries found in healthy tissues, usually 
with a diameter of around 10μm 

Glomeruloid microvascular 
proliferation 

Clusters of microvessels which are encased within a 
poorly organised basement membrane of multiple 
layers and sporadic pericyte coverage 

Vascular malformation 
Large vessels coated in a thin layer of smooth muscle 
cells which are not permeable to macromolecules 

 
Table 4.1 Vessel types found within the abnormal tumour vasculature [217]. 

The structure of the tumour vasculature differs from that of normal tissues, as tumours do not 
have the typical arrangement of arteries-arterioles-capillaries-venules and veins. Instead their 
vessels may be categorised as described above. 

 

Pericyte coverage could also impact on monocyte recruitment into tumours after 

chemotherapy. These are PV, contractile cells, thought to regulate vessel stability 

[219]. Pericyte coverage of vessels varies, with more immature, proangiogenic vessels 

having fewer pericytes than mature, quiescent ones [217], [219], [220]. Current 

evidence for the effect of pericyte coverage on leucocyte recruitment is conflicting. In 

murine pancreatic tumours, increased pericyte coverage was associated with 

increased cytotoxic T cell infiltration, although this study did not examine TAM 

infiltration [221]. However, other studies have shown leucocyte extravasation occurs at 

areas of the endothelium not covered in pericytes, suggesting they may impede 

leucocyte recruitment [222]. In LLCs and B16 tumours, depletion of pericytes resulted 

in the increased infiltration of immature CD11b+ Gr-1+ myeloid cells [223].  

Recent studies have also focussed on the possible role of high endothelial 

venules (HEVs) in leucocyte trafficking into tumours. These are specialised vessels 

characterised by their expression of the protein, peripheral node addressin (PNAd) 

[224]. The expression of PNAd aids the adhesion and rolling of leucocytes in the 

bloodstream, and HEVs have been shown to be essential for the extravasation of 
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lymphocytes into lymph nodes [225]. More recently, HEVs have been reported within 

human breast carcinomas and in Treg-depleted murine fibrosarcomas [226], [227]. T 

cells are an important feature of tumours, as breast cancer patients with high CD8+ 

cytotoxic T cell densities and low CD4+ T cell and CD68+ TAM densities have greater 

recurrence-free survival [109]. Regulatory CD3+ CD4+ FOXP3+ T cells are 

immunosuppressive and mediate immune escape by mechanisms such as IL-10 

production and expression of checkpoint molecules, like CTLA-4, which trigger the 

inactivation of T cells [105]. Previously, TAMs have been shown to suppress T cell 

responses in tumours [108], [109], and as HEVs are known to affect T cell infiltration, it 

was deemed important to establish whether HEVs are present in TS1 tumours, and 

whether this is altered after DOX treatment. In addition to this, certain chemotherapies 

have been shown to affect T cell infiltration in murine tumour models [228]. For 

example, DOX increased the proportion of T cells which were CD8+ which infiltrated 

mammary tumours (OVA expressing AT3 cells) grown subcutaneously [229]. 

Therefore, the infiltration of T cells within TS1 tumours was also examined. 

While it is clear that vascular normalising doses of anti-angiogenic drugs are 

capable of inducing changes in the tumour vasculature, for example by increasing 

pericyte coverage and improving vessel functionality [230], few studies have studied 

whether chemotherapy also has this effect. One study demonstrated that 

cyclophosphamide did not affect FITC-lectin perfusion of MMTV-PyMT tumours [139]. 

Another study showed DOX did not affect pericyte coverage of cardiac microvessels in 

non-tumour bearing mice [231]. Interestingly, some chemotherapy drugs have been 

shown to inhibit angiogenesis in vitro [232], and in vivo cyclophosphamide was shown 

to reduce blood vessel length in LLCs [144]. However, this is controversial as other 

reports show that both DOX and docetaxel had no effect on microvascular density in 

stage II and III human breast carcinomas [233]. Conversely, another study showed that 

treatment with anthracyclines or taxanes actually increased the microvascular density 

of breast tumours [234]. Therefore, the effect of chemotherapy on tumour blood 
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vessels could depend on the type of drug used and/or tumour being treated. It will 

therefore be interesting to examine the effects of DOX on the tumour vasculature of 

TS1 tumours. 

It was therefore hypothesised that DOX would increase the number of MRC1+ 

TAMs in the PV niche (i.e. those making direct contact with blood vessels) of TS1 

tumours. Then, changes in the peripheral blood monocytes of such mice were 

analysed to see if this highlighted one or more monocyte subsets that could have been 

the precursors for PV MRC1+ TAMs. The maturity of MRC1+ TAMs in the PV niche was 

also compared in PBS and DOX-treated TS1 tumours to see if they were immature, 

newly recruited monocytes/TAMs. Finally, the effect of DOX on vessel size, patency 

and pericyte coverage was investigated in these tumours. 
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4.2 Methods 

4.2.1 Immunofluorescent staining of tumours 

TS1 tumours were grown in mice and treated, as described in section 2.2.3 and 

prepared for analysis as in section 2.2.4. Tumours were snap frozen in OCT and 14μm 

sections cut and stained as described in section 2.2.9, using the antibodies listed below 

in Table 4.2. It is important to note that when both unconjugated rat antibodies and 

conjugated rat antibodies were used on the same sections, the blocking solution did 

not contain murine FcR block, as the secondary antibody would have bound to this. 

Antibody Fluorophore Clone Conc 
(μg/mL) 

Goat (p) Anti-Rabbit IgG AlexaFluor555  10 

Goat (p) Anti-Rat IgG AlexaFluor647  10 

Goat (p) Anti-Rat IgG AlexaFluour488  10 

Goat (p) Anti-Rat IgG  AlexaFluor555  4 

Purified Rat (m) Anti-Mouse Gr-1 unconjugated RB6-8C5 1 

Rabbit (p) Anti- α-smooth muscle actin  unconjugated ab5694 1 

Rabbit (p) Anti-Mannose Receptor unconjugated ab64693 2.5 

Rat (m) Anti-FOXP3 FITC FJK-16s 5 

Rat (m) Anti-Mouse CD3 AlexaFluor647 17A2 5 

Rat (m) Anti-Mouse CD31 AlexaFluor647 MEC13.3 5 

Rat (m) Anti-Mouse CD31  AlexaFluor488 MEC13.3 5 

Rat (m) Anti-Mouse CD31 PE MEC13.3 2 

Rat (m) Anti-Mouse CD4  AlexaFluor488 GK1.5 5 

Rat (m) Anti-Mouse CD4 PE GK1.5 2 

Rat (m) Anti-Mouse CD8α PE 53-6.7 2 

Rat (m) Anti-Mouse F4/80 AlexaFluor488 CI:A3-1 2 

Rat (m) Anti-Mouse Ly-6G PE 1A8 4 

Rat (m) Anti-Mouse MRC1 APC C068C2 2 

Rat (m) Anti-Mouse MRC1 PE C068C2 2 

Rat (m) Anti-PNAd unconjugated MECA-79 ~10 
 
Table 4.2 Antibodies used in the fluorescent staining of tumours. 
(m) indicates monoclonal, (p) indicates polyclonal antibody. ~ indicates approximate 
concentration as the antibody was isolated from ascites. 

 

4.2.2 Flow cytometric analysis of peripheral blood mononuclear cells 

Blood was collected from TS1 tumour-bearing mice by flushing the circulation with 

0.76% sodium citrate solution (as described in section 2.2.4). While preparing samples 

for flow cytometry, the peripheral blood samples were kept on ice, in the dark, and with 
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gentle agitation. Cells were prepared for flow cytometry as described in section 2.2.6, 

with the antibodies described below in Table 4.3. FACS analysis was performed using 

the BD LSR II Flow Cytometer. Flow cytometry files (FCS files) were analysed using 

FlowJo software. 

Antibody Fluorophore Clone 
Conc. 

 (μg/mL) 

Rat (m) Anti-CD11b AlexaFluor488 M1/70 10 

Rat (m) Anti-Mouse CXCR4 PE 2B11 4 

Rat (m) Anti-Mouse Ly-6C APC HK1.4 4 

Rat (m) Anti-Mouse Ly-6G PerCP/Cy5.5 1A8 4 

Rat (m) Anti-Mouse MRC1 Brilliant Violet 421 C068C2 2 

Rat (m) IgG2a κ PerCP/Cy5.5  4 

Rat (m) IgG2a κ Brilliant Violet 421  2 

Rat (m) IgG2b κ AlexaFluor488  10 

Rat (m) IgG2b κ PE  4 

Rat (m) IgG2c κ APC  4 
 
Table 4.3 Antibodies and isotype controls used in the flow cytometric analysis of 
peripheral blood mononuclear cells.  (m) = monoclonal antibody. 

 

Isotype controls did not bind non-specifically to peripheral blood mononuclear 

cells; demonstrating antibody binding was specific, as shown by histograms in Figure 

4.1. Histograms show the fluorescence of unlabelled (black) cells and cells incubated 

with the isotype control (blue). Importantly, the isotype control (blue) histograms do not 

show increased fluorescence compared to unlabelled samples.  
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FMO controls (described in section 2.2.7) were used to compensate for spectral 

overlap in samples and were used to set the gating strategy in these flow cytometry 

experiments, shown in Figure 4.2. 7 different fluorescent parameters were measured in 

this experiment, some of which had spectral overlap, therefore FMO controls were the 

most appropriate control for gating samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Isotype-matched controls do not bind to mouse PBMCs (indicating the 
specificity of primary antibodies used in the flow cytometric studies described here). 
Peripheral blood was collected from FvB/N mice following cervical dislocation by flushing the 
circulation with 0.76% sodium citrate solution. Cells were then resuspended in FACS buffer 
and incubated separately with the appropriate isotype-matched IgG. Following staining, 
erythrocytes were lysed and peripheral blood mononuclear cells were then analysed using the 
LSR II. Forward scatter and side scatter profiles of the cells were used to eliminate any cell 
debris. Histograms show unlabelled cells (black) versus cells incubated with control IgGs 
conjugated to: Brilliant Violet 421 (blue; A); AlexaFluor488 (blue; B); PE (blue; C); 
PerCP/Cy5.5 (blue; D) and APC (blue; E). 
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The gating strategy used to identify peripheral blood mononuclear cells 

(PBMCs) was as follows: cells were selected on the basis of their side scatter-area 

(SSC-A) and forward scatter-area (FSC-A) profiles – Figure 4.2, gate 1. Single cells 

(Figure 4.2, gate 2) were then selected based on FSC-A and forward scatter-height 

(FSC-H). Cells which excluded the viability dye Zombie UV were selected as viable 

cells (Figure 4.2, gate 3). CD11b+ myeloid cells were then selected (Figure 4.2, gate 4).  

A small population of CD11bhi cells were excluded from this analysis as it was thought 

these may be cells which had bound excess antibody as these were a low proportion of 

cells and had increased fluorescence compared to the main CD11b+ cell population. 

CD11b+ Ly-6G+ cells (Figure 4.2, black circular gate) were excluded from analyses as 

neutrophils express Ly-6G. Monocytes were therefore selected as CD11b+ Ly-6G- 

(Figure 4.2, gate 5) side-scatterlo cells (Figure 4.2 gate 6). Three monocytic 

subpopulations could be identified on the basis of their Ly-6C expression: Ly-6Clo non-

classical monocytes (Figure 4.2 gate 7a); Ly-6Cint intermediate monocytes (Figure 4.2 

gate 7b) and Ly-6Chi classical monocytes (Figure 4.2 gate 7c). Using this strategy, the 

monocytes, neutrophils and monocytic subpopulations were quantified within the 

peripheral blood of mice bearing TS1 tumours, 48 hours after treatment with either PBS 

or DOX. MRC1 and CXCR4 expression were also measured on the monocytes and the 

different monocytic subsets.  

 

4.2.3 Preparation and staining of lymph nodes 

Lymph nodes were dissected from healthy female FvB/N mice and frozen in OCT at     

-80°C. 14μm sections were cut using the cryostat and sections were stained as 

described in 4.2.1. 
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Figure 4.2 Gating strategy for the flow cytometric analysis of murine peripheral 
blood monocytes. 

Cells were first gated using forward scatter and side scatter (1), and then forward 
scatter-height and forward scatter-area were used to select single cells (2). In order to 
set additional gates, FMO controls were used. Viable cells (cells unstained by the 
Zombie UV viability dye) were then selected (3), before gating on the CD11b

+
 myeloid 

cells (4). CD11b
+
 Ly6G

+
 neutrophils were excluded from this analysis (black circular 

gate) and CD11b
+
 Ly6G

-
 cells were then selected (red gate 5). As monocytes have a 

low side scatter profile, cells with a high side scatter were also excluded from the 
analysis (6). Based on their Ly-6C expression, three monocyte subsets were then 
identified: Ly-6C

lo
 non-classical monocytes (7a), Ly-6C

int
 intermediate monocytes (7b), 

and Ly-6C
hi
 classical monocytes (7c). 
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4.2.4 Image analysis 

Fiji was used to analyse images and nuclei (DAPI+ events) were counted by the ITCN 

plugin [191] in the tumour cell islands or by the “Analyse particles” tool in the stroma 

(section 2.2.11). Images were taken using at 20x objective lens and at least 5 FOV 

were analysed per tumour. The cell counter plugin was used to mark cells which were 

positive for various markers [192]. 

CD31 area was calculated by converting the CD31 stain to binary (to apply a 

threshold) and then using Fiji’s analyse particles tool which allowed the percentage of 

the region of interest covered by CD31 staining to be calculated.  

When analysing the presence of HEVs within tumours, random fields of view 

did not capture HEVs, suggesting their presence was rare, so the Leica DMI4000B 

fluorescent microscope was used to scan the whole tumour using the 20x objective 

lens. 3 tumours per treatment group were scanned in this way. 

 

4.2.4.1 Analysis of vessel patency 

Mice bearing TS1 tumours were treated with PBS or DOX as described in section 

2.2.3. 48 hours later mice were injected intravenously into the tail vein with FITC-lectin 

(1mg/mL, administered by Dr. Russell Hughes) and culled 10 minutes later. Post-

mortem the circulatory system of the mice was flushed with 0.76% sodium citrate 

solution. The tumours were then prepared as described in section 2.2.4. 

 

4.2.5 Isolation of BMDMs 

BMDMs were isolated from healthy female FvB/N mice as described in section 2.2.2. 

HSCs were incubated with recombinant murine CSF1 on plastic for 7-14 days to allow 

macrophages to differentiate [189]. To analyse macrophages, they were removed from 

plastic by incubating with trypsin and the trypsin was neutralised with FCS once cells 

had detached. 
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4.2.6 Flow cytometric analysis of BMDMs 

BMDMs were prepared as described in section 2.2.2. These cells were then 

suspended in FACS buffer and stained with the appropriate antibodies (as described in 

Table 4.4) and the viability dye Zombie UV (1μL in 200μL) for 40 minutes, rocking, 

sheltered from light and on ice. Samples were washed twice in FACS buffer before 

analysing samples on the LSR II flow cytometer and analysing files with FlowJo 

software. 

Antibody Fluorophore Clone 
Conc. 

 (μg/mL) 

Rat (m) Anti-Mouse CXCR4 PE 2B11 4 

Rat (m) Anti-Mouse F4/80 PE/Cy7 BM8 4 

Rat (m) Anti-Mouse MRC1 Brilliant Violet 421 C068C2 2 

Rat (m) IgG2a κ Brilliant Violet 421  2 

Rat (m) IgG2a κ PE/Cy7  4 

Rat (m) IgG2b κ PE  4 
 
Table 4.4: Antibodies and isotype controls used in the flow cytometric analysis of 
BMDMs. (m) = monoclonal antibody. 
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4.3 Results 

4.3.1 DOX significantly increases PV MRC1+ TAMs. 

In order to assess PV TAMs, immunofluorescent staining of F4/80 (green), MRC1 (red) 

and CD31 (white) was carried out on sections of TS1 tumours as described in section 

4.2.1. Representative staining of the stroma (Figure 4.3A) and tumour cell islands 

(Figure 4.3B) is shown. PV cells were cells in direct contact with CD31+ vessels, and 

normalised to the percentage area covered by CD31, to control for differing numbers of 

blood vessels in each FOV. The number of PV F4/80+ TAMs in the stroma (Figure 

4.3C) was not altered by DOX treatment of tumours (PBS mean= 4.87 ± 1.34, DOX 

mean= 6.77 ± 0.64, unpaired t test p=0.1036). In contrast, the number of PV F4/80+ 

MRC1+ TAMs in the stroma was significantly increased in DOX treated tumours 

(mean= 5.14 ± 0.47) compared to those treated with PBS (mean= 2.40 ± 0.39, 

unpaired t test p=0.0010, Figure 4.3D). 

In the tumour cell islands there was a non-significant trend for an increase in PV 

F4/80+ TAMs (Figure 4.3E) with DOX treatment (PBS mean= 20.82 ± 3.62, DOX 

mean= 27.98 ± 2.80, unpaired t test p=0.0731). Again, PV F4/80+ MRC1+ TAMs were 

significantly increased in the tumour cell islands of DOX treated tumours (mean= 8.24 ± 

1.28) compared to PBS-treated tumour cell islands (mean= 4.10 ± 1.0, unpaired t test 

p=0.0178, Figure 4.3F). Therefore in both the stroma and tumour cell islands of TS1 

tumours, DOX treatment significantly increases the number of PV MRC1+ TAMs 

compared to PBS treated tumours. 
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Figure 4.3 DOX increases the density MRC1

+
 TAMs in direct contact with CD31

+
 blood 

vessels in tumours.   
Tumours were stained with anti-F4/80 (TAMs in green), anti-MRC1 (red) and anti-CD31 (white). 
Examples of stroma (A) and tumour cell island (B) staining are shown. Scale bar = 20μm. F480

+
 

MRC1
+
 TAMs appear yellow in the far right merged images. PV TAMs i.e. F4/80

+
 cells in direct 

contact with a CD31
+
 blood vessel were scored and then normalised to the percentage of area 

covered by CD31 staining in the stroma (C) and the tumour cell islands (E). F4/80
+
 MRC1

+
 PV 

TAMs were counted and normalised to the percentage CD31
+
 area in the stroma (D) and the 

tumour cell islands (F). Unpaired t-test test used n=5 PBS tumours and n=6 DOX tumours.  
* p<0.05; ** p<0.001.  
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4.3.2 DOX depletes monocytes in TS1 tumour-bearing mice. 

Given the PV increase in MRC1+ TAMs, the effect of DOX on the abundance 

and/or phenotype of peripheral blood monocytes was then investigated in TS1 tumour-

bearing mice, as these could be a potential source of PV MRC1+ TAMs. As described 

in 4.2.2, peripheral blood cells were prepared for FACS and analysed using the gating 

strategy in Figure 4.2.  

The proportion of monocytes (gated as single viable CD11b+ Ly6G- Side-

Scatterlo, Ly6C+ cells, Figure 4.2 - gate 6) as a percentage of total myeloid cells (single 

viable CD11b+ cells, Figure 4.2 - gate 4) was significantly decreased in the blood of 

mice treated with DOX (mean= 30.50 ± 1.82, Figure 4.4B) compared to those treated 

with PBS (mean= 40.84 ± 3.20; unpaired t test p=0.0182). The proportion of neutrophils 

(gated as single viable CD11b+ Ly-6G+ cells, Figure 4.2 - black circular gate) out of the 

total myeloid cells was unaltered by DOX treatment in the blood of tumour bearing mice 

(PBS mean 50.93 ± 3.90, DOX mean 57.66 ± 2.48, Figure 4.4A; Unpaired t test 

p=0.1822).  

Three monocytic subpopulations were analysed on the basis of their Ly-6C 

expression; Ly-6Clo monocytes; Ly-6Cint monocytes and Ly-6Chi monocytes. DOX did 

not significantly alter the proportions of these monocytic subpopulations in the blood of 

tumour bearing mice (Figure 4.4C). Two-way ANOVA revealed that while DOX did not 

impact on peripheral blood monocyte subpopulations overall (p=0.3553), some 

subpopulations were more abundant than others in both PBS and DOX treated mice 

(p<0.0001). Tukey’s multiple comparisons test showed that in PBS treated mice, Ly-

6Clo monocytes (mean= 48 ± 4.5) were more abundant than Ly-6Cint monocytes 

(mean= 20.51 ± 1.21; p<0.0001) and Ly-6Chi monocytes (mean= 25.43 ± 3.16; 

p=0.0007), although there was no significant difference in abundance of Ly-6Chi 

monocytes and Ly-6Cint monocytes (p=0.6337). In DOX treated mice Ly-6Clo 

monocytes (mean= 47.11 ± 4.02) were more abundant than Ly-6Cint monocytes 

(mean= 15.7 ± 2.14 p<0.0001) and Ly-6Chi monocytes (mean= 32.3 ± 2.91 p=0.0398). 
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DOX treated mice had an increased abundance of Ly-6Chi monocytes compared to Ly-

6Cint monocytes (p=0.0197). The percentage of myeloid cells which were Ly-6Clo (PBS 

mean = 20.32 ± 3.17, DOX mean = 14.52 ± 1.70), Ly-6Cint (PBS mean = 8.27 ± 0.70, 

DOX mean = 4.89 ± 0.88) or Ly-6Chi monocytes (PBS mean = 9.84 ± 0.85, DOX mean 

= 9.64 ± 0.59)  was also analysed (Figure 4.4D). DOX appeared to alter the proportions 

of these monocytic subpopulations (Two-way ANOVA p=0.0290), however post-hoc 

analysis revealed these trends were not significant (Sidak’s multiple comparisons test 

Ly-6Clo p=0.0528; , Ly-6Cint p=0.4023; Ly-6Chi  p=0.9997) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 DOX significantly lowers the proportion of myeloid cells that are monocytes in 
the blood of TS1 tumour bearing mice. 

FvB/N mice bearing orthotopic TS1 tumours were treated with PBS or DOX (as described in 
section 2.2.3.) 48 hours later, mice were culled and their peripheral blood collected. The 
percentage of myeloid cells (CD11b

+
 cells) that were either: (A) neutrophils (CD11b

+
 Ly-6G

+
 

cells) or (B) monocytes (CD11b
+
 Ly6G

-
 Side-Scatter

lo
, Ly6C

+
 cells) were assessed. The 

percentage of total monocytes (CD11b
+
 Ly6G

-
 Side-Scatter

lo
, Ly6C

+
 cells) that were Ly-6C

lo
,    

Ly-6C
int

 or Ly-6C
hi
 was also assessed (C) The percentage of total myeloid cells (CD11b

+
 cells) 

that were Ly-6C
lo
, Ly-6C

int
 or Ly-6C

hi
 was also assessed (D). * p<0.05 (PBS n=8 mice; DOX n=7 

mice). 
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4.3.3 DOX slightly increases the abundance of MRC1+ monocytes in murine 

peripheral blood. 

As described in section 4.2.2, whole blood was labelled with fluorescent antibodies and 

analysed using the LSR II. Peripheral blood monocytes were identified using the gating 

strategy in Figure 4.2 (see gate 6) and were CD11b+ Ly6G- Side-Scatterlo, Ly6C+ cells. 

The expression of the M2-skewed marker MRC1 [49] and the receptor CXCR4, known 

to be important in TAM recruitment [144], were then examined on the surface of 

monocytes. A small proportion of these monocytes were found to have surface MRC1 

expression (Figure 4.5A & B). The proportion of monocytes that were MRC1+ was 

small (approximately 1%) but significantly increased following DOX treatment (mean = 

2.34 ± 0.49) compared to monocytes from PBS treated mice (mean = 1.09 ± 0.17; 

unpaired t test p=0.0240). Two way ANOVA revealed that DOX had a significant effect 

on the proportion of MRC1+ monocytes within each subset (p= 0.0395, Figure 4.5C). 

When examining MRC1 expression on the monocytic subpopulations, only the Ly-6Clo 

(PBS mean= 2.00 ± 0.21; DOX mean= 4.46 ± 0.91; Sidak’s multiple comparisons test 

p=0.017) and Ly-6Cint subpopulations (PBS mean = 1.88 ± 0.37; DOX mean= 4.32 ± 

0.89; Sidak’s multiple comparisons test p=0.0174) had an increased proportion of 

MRC1+ cells after DOX treatment, compared to mice treated with PBS. Ly-6Chi 

monocyte MRC1 expression was unaffected by DOX (PBS mean = 2.69 ± 0.48; DOX 

mean= 2.89 ± 0.52; Sidak’s multiple comparisons test p=0.9933), suggesting 

differences in response to DOX may depend on the monocytic subset (Two way 

ANOVA interaction of subpopulation and treatment p=0.0028). Monocytic subsets had 

similar (not significantly different) proportions of MRC1+ monocytes within each subset 

in both PBS and DOX treated mice (Two way ANOVA subpopulation p=0.4196). 

CXCR4 expression was also examined on monocytes, however the proportion 

of cells expressing CXCR4 was small (approximately 3%) and the same in PBS 

(mean= 2.97 ± 0.45) and DOX (mean= 3.36 ± 0.41) treated mice (unpaired t test 

p=0.5306, Figure 4.5D). Two way ANOVA revealed there was no significant difference 
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between percentage of CXCR4+ monocytes within the monocytic subpopulations in 

PBS and DOX treated mice (p=0.1788, Figure 4.5E). However, monocyte subsets had 

significantly different proportions of CXCR4+ monocytes, regardless of treatment (Two 

way ANOVA p<0.0001). PBS treated mice had an increased proportion of CXCR4+ 

monocytes in the Ly-6Clo (mean= 4.93 ± 0.62) subpopulation compared to the Ly-6Cint 

(mean= 1.92 ± 0.36; Tukey’s multiple comparison test p<0.0001) and Ly-6Chi (mean= 

0.63 ± 0.09; Tukey’s multiple comparison test p<0.0001) subpopulations. The Ly-6Cint 

subpopulation also contained an increased proportion of CXCR4+ monocytes 

compared to the Ly-6Chi subpopulation in PBS treated mice (Tukey’s multiple 

comparison test p=0.0311). DOX treated mice also showed this pattern with an 

increased proportion of CXCR4+ monocytes in the Ly-6Clo subpopulation (mean= 4.96 

± 0.53) compared to the Ly-6Cint (mean= 3.55 ± 0.69; Tukey’s multiple comparison test 

p=0.0272) and Ly-6Chi (mean= 1.33 ± 0.41, Tukey’s multiple comparison test 

p<0.0001) subpopulations. In DOX treated mice the Ly-6Cint subpopulation also 

contained an increased proportion of CXCR4+ monocytes compared to the Ly-6Chi 

subpopulation (Tukey’s multiple comparison test p=0.0005).   
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Figure 4.5 DOX increases the small proportion of MRC1
+
 monocytes in the peripheral 

blood of TS1 bearing mice. 

FvB/N mice bearing orthotopic TS1 tumours were treated with PBS or DOX (as described in 
section 2.2.3.) 48 hours later, mice were culled and their peripheral blood collected by flushing 
the circulation with 0.76% sodium citrate solution. (A) Demonstrates there were a low number of 
peripheral monocytes expressing MRC1. The percentage of monocytes (CD11b

+
 Ly6G

-
 Side-

Scatter low, Ly6C
+
 cells) expressing MRC1 (B) or CXCR4 (D) were measured. The expression 

of MRC1 (C) and CXCR4 (E) was then examined on the 3 monocytic subsets (based on the 
expression of Ly-6C – Ly-6C

hi
, Ly-6C

int
 and Ly-6C

lo
). * p<0.05; ** p≤0.001 and *** p≤0.0001 (n=8 

PBS mice; n=7 DOX mice).  
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4.3.4 BMDMs express MRC1 and CXCR4. 

As only a small proportion of peripheral blood monocytes were found to express MRC1 

and CXCR4 (approximately 1% and 3% respectively), it was important to validate the 

antibodies used in these FACS analyses.  To do this, BMDMs were also examined for 

their MRC1 and CXCR4 expression. BMDMs were isolated from healthy FvB/N female 

mice as described in section 2.2.2 and prepared for flow cytometry as described in 

section 4.2.6. FMO controls were used to set a gating strategy which is shown in 

Figure 4.6. Cells were first selected on the basis of their FSC and SSC profiles (gates 1 

and 2) to exclude debris and identify single cells. Zombie UV viability dye was used to 

identify viable cells (gate 3), before using F4/80 as a marker of cells which were mature 

macrophages (gate 4). These F4/80+ cells clearly expressed MRC1 (gate 5a) and 

CXCR4 (gate 5b). Figure 4.6 shows MRC1 and CXCR4 are readily detected on 

BMDMs, thus validating the antibodies used to analyse their expression on mouse 

peripheral blood monocytes. 

 

4.3.5 PV MRC1+ TAMs were mainly mature, Gr1- cells. 

As some peripheral blood monocytes were found to express MRC1, the maturity of PV 

MRC1+ cells was then assessed (i.e. to see if they could be newly recruited from 

MRC1+ monocytes in the blood).  Initially it was planned to use Ly-6C, as immature 

myeloid cells express this marker, however staining revealed some Ly-6C expression 

on CD31+ blood vessels in TS1 tumours (Figure 4.7A, Ly-6C stained in white, CD31 in 

green), making it difficult to distinguish between PV MRC1+ Ly-6C+ cells and blood 

vessels expressing Ly-6C. For this reason Gr-1 was used as an alternative marker of 

immaturity, even though Gr-1 can be expressed by both monocytes and neutrophils. In 

order to rule out neutrophil staining, tumours were also stained with Ly-6G, which is 

exclusively expressed by neutrophils (section 4.3.6). Representative staining of stroma 
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(Figure 4.7B) and tumour cell islands (Figure 4.7C) are shown, with CD31 in green, 

MRC1 in red and Gr-1 in white. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Analysis of MRC1 and CXCR4 on the surface of murine BMDMs. 
Bone marrow was flushed from the bones of FvB/N mice and HSCs were cultured for 14 days 
with murine CSF1 to differentiate these cells into BMDMs. BMDMs were labelled with the 
appropriate antibodies before analysis using the LSR II. Cells were selected on forward scatter 
(FSC-A) and side scatter profiles (SSC-A)(1) and then singlets were gated using forward 
scatter height (FSC-H) and area (FSC-A)(2). Viable cells (cells unlabelled by Zombie UV) were 
then selected (3) and then F4/80

+
 macrophages were selected (4). Surface MRC1 (5a) and 

CXCR4 (5b) expression were then indentified using flow cytometry. 
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PV MRC1+ Gr-1+ cells (i.e. cells in contact with CD31+ vessels) were counted 

and divided by the percentage of area covered in CD31 (Figure 4.7D). The stroma of 

PBS-treated tumours had significantly more PV MRC1+ Gr-1+ cells (mean= 2.54 ± 0.82) 

compared to tumour cell islands (mean= 0.28 ± 0.15, Two way ANOVA area analysed 

p=0.0037 with Sidak’s multiple comparisons test p=0.0352). Likewise, DOX treated 

tumours had significantly more PV MRC1+ Gr-1+ cells in the stroma (mean= 3.13 ± 

0.94) compared to tumour cell islands (mean= 0.84 ± 0.44, Sidak’s multiple 

comparisons test p=0.0339). DOX did not increase the number of PV MRC1+ Gr-1+ 

cells (Two way ANOVA treatment p=0.4989), suggesting that while DOX increased 

numbers of PV MRC1+ cells; it did not affect numbers of PV immature MRC1+ cells. 

The percentage of PV MRC1+ cells co-expressing Gr-1 was then calculated 

(Figure 4.7E). Of note, the majority of PV MRC1+ cells were Gr-1- (approximately 75-

80% of PV MRC1+ cells). In the stroma of PBS (mean= 22.83 ± 8.00) and DOX (mean= 

26.1 ± 6.62) treated tumours there was an increased percentage of PV MRC1+ cells 

co-expressing Gr-1 compared to the tumour cell islands (Two way ANOVA  area 

analysed p=0.0019, PBS mean= 4.56 ± 3.26 Sidak’s multiple comparisons test 

p=0.0215, DOX mean= 6.86 ± 2.50 Sidak’s multiple comparisons test p=0.0172). 

Furthermore, DOX did not affect the percentage of PV MRC1+ cells co-expressing Gr-1 

(Two way ANOVA p=0.7067). In summary, the majority of PV MRC1+ cells were 

mature and did not express Gr-1. Moreover, DOX did not impact on the maturity of 

these PV MRC1+ cells. 
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Figure 4.7 DOX did not alter the recruitment of immature PV MRC1
+
 Gr-1

+
 cells in TS1 

tumours. 

(A) Ly-6C (white) staining within tumours co-localised with CD31 (green), making it difficult to 
analyse whether or not a PV cell was truly Ly-6C

+
. Gr-1 (white) was used as a surrogate marker 

to assess maturity of MRC1
+
 (red) PV TAMs next to CD31 staining in green in the stroma (B) 

and tumour cell islands (C) Scale bar= 20μm. PV MRC1
+
 Gr-1

+
 cells were counted and 

normalised to percentage area covered with CD31 staining (D) and the percentage of PV 
MRC1

+
 TAMs co-expressing Gr-1 was calculated (E). Two-way ANOVA n=4 tumours/group  

* p<0.05. 
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4.3.6 The majority of PV MRC1+ TAMs were Ly-6G-.  

In order to assess whether the small percentage of PV MRC1+ cells co-expressing Gr-1 

were neutrophils, MRC1 (white) was co-stained with CD31 (green) and Ly-6G (red, a 

neutrophil marker) as described in 4.2.1. Representative staining of the stroma and 

tumour cell islands are shown in Figure 4.8A and 4.8B. PV MRC1+ Ly-6G+ cells were 

counted and normalised to percentage of area covered in CD31 staining, to account for 

different numbers of blood vessels in each FOV. Less than 4% of MRC1+ PV cells were 

Ly-6G+. There was a trend for an increase in PV MRC1+ Ly-6G+ cells in the stroma of 

PBS treated tumours (mean= 0.35 ± 0.19) compared to tumour cell islands (mean= 

0.11 ± 0.08, Two way ANOVA area analysed p=0.0387), however post-hoc analysis 

revealed this was not significant (Sidak’s multiple comparisons test p=0.5232). This 

was also true in DOX treated tumours (stroma mean= 0.65 ± 0.20, tumour cell island 

mean= 0.09 ± 0.05, Sidak’s multiple comparisons test p=0.0777). DOX did not affect 

the number of PV MRC1+ Ly-6G+ cells (Figure 4.8C, Two way ANOVA treatment 

p=0.3724).  

Importantly, the majority (approximately 95%) of MRC1+ PV cells were Ly-6G-, 

indicating they were unlikely to be neutrophils (Figure 4.8D). The stroma of both PBS 

(mean= 1.82 ± 0.91) and DOX (mean= 3.24 ± 0.61) treated tumours did not have 

significantly different percentages of PV MRC1+ cells co-expressing Ly-6G when 

compared to their tumour cell islands (PBS mean= 3.89 ± 2.89, DOX mean= 0.85 ± 

0.50, Two way ANOVA area analysed p=0.9220). Therefore, the majority of PV MRC1+ 

cells were not Ly-6G+ and not neutrophils. DOX did not affect the percentage of MRC1+ 

PV cells which co-expressed Ly-6G (Two way ANOVA treatment p=0.6293). Therefore, 

the small percentage (approximately 25%) of PV MRC1+ cells which expressed Gr-1 

were likely not Ly-6G+ and not neutrophils.  
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Figure 4.8 PV MRC1
+
 cells expressing Ly-6G were infrequent in PBS and DOX-treated 

tumours. Ly-6G (red) was stained alongside MRC1 (white) and CD31 (green) in the stroma (A) 

and tumour cell islands (B). Scale bar = 20μm. PV MRC1
+
 Ly-6G

+
 cells were counted and 

normalised to percentage area covered by CD31 staining (D) and the percentage of PV MRC1
+
 

cells co-expressing Ly-6G was calculated (E). 2-way ANOVA. n=4 tumours/group. 
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4.3.7 CD31+ blood vessels had larger luminal areas in the stroma of TS1 tumours 

than those in the tumour cell islands.  

It was thought possible that TAMs may gather around a particular size or type of blood 

vessel in TS1 tumours. As illustrated in Table 4.1, the tumour vasculature is different 

from that in healthy tissues, so it was not possible to use typical markers of arterioles 

and venules in this study. Lumen size was therefore used as a surrogate marker to 

distinguish between ‘capillary-like’ CD31+ blood vessels (<80μm2 - which equates to 

with a vessel diameter of <10μm) and larger, non-capillary like CD31+ vessels with a 

lumen area >80μm2 [235]. The luminal area of tumour vessels was measured as 

described in section 2.2.11. First, the distribution of sizes of blood vessels in TS1 

tumours was assessed. Figure 4.9 demonstrates the range of lumen sizes. In the 

stroma of PBS-treated tumours (Figure 4.9A), 37.5% of vessels had luminal areas in 

the range, 0-80μm2, 56.25% (i.e. the majority of vessels) in the range, 80-1200μm2, 

and 6.25% were over 1200μm2.  Similarly, in DOX treated tumours, 39.42% of vessels 

had luminal areas in the range, 0-80μm2, 50.96% (i.e. the majority of vessels again) in 

the range, 80-1200μm2, and 9.62% were over 1200μm2. 

In contrast to the stroma, in the tumour cell islands, no vessels had measurable 

luminal areas over 1200μm2. In these areas of PBS treated tumours (Figure 4.9C), the 

majority of vessels (64.71%) had luminal areas in the range 0-80μm2, with 35.29% of 

vessel lumens in the range, 80-1200μm2. This was also true in DOX treated tumours 

(Figure 4.9D) with 66.7% vessels having a luminal area of 0-80μm2, and 33.3% in the 

range of 80-1200μm2.  
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Figure 4.9 Analysis of vessel luminal area (restricted to vessels with a measurable 
lumen) within tumour cell islands and stroma of TS1 implant tumours, after PBS or DOX 
treatment.  
CD31

+
 vessels within TS1 tumours with a visible lumen were categorised based on their luminal 

area. The distribution of lumen areas for the stroma of PBS (A) and DOX-treated (B) tumours is 
shown. A histogram shows the distribution of lumen areas for smaller vessels in (i) (vessels up 
to the size of 1200µm

2
; Ai & Bi) and larger vessels (with lumen areas >1200µm

2 
Aii & Bii) and a 

pie-chart notes the contributions of these vessel sizes to the total vasculature (Aiii & Biii). The 
distributions of lumen areas within the tumour cell islands of PBS-treated (C) and DOX-treated 
tumours (D) are shown, with a histogram demonstrating the vessel distributions (Ci & Di) and 
pie charts noting the contribution of two vessel types to the overall vasculature (Cii & Dii). n=3 
tumours per group.
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4.3.8 The number of PV TAMs does not correlate with the luminal area of tumour 

blood vessels.   

In order to investigate whether TAMs associate preferentially with vessels of a 

particular size in TS1 tumours -  and whether DOX altered this - tumour vessels with a 

visible lumen were assessed for both their luminal area and number of PV F4/80+ 

TAMs attached per vessel. [N.B. Vessels which had no PV TAMs were excluded from 

this analysis]. 

First, the number of TAMs gathering around vessels of a particular type were 

counted, and then divided by the total number of TAMs gathering around all vessels 

analysed (to calculate the percentage of TAMs gathering around a particular subset of 

vessels). F4/80+ TAMs were found to be associated with vessels of a wide variety of 

sizes. In the stroma of PBS-treated tumours, only 11.48% of PV F4/80+ TAMs were 

found around smaller vessels (0-80μm2), and the majority (65.57%) were attached to 

vessels with a luminal area of 80-1200μm2. Fewer (22.95%) associated with vessels 

with a larger lumen (>1200μm2 in size, Figure 4.10A). In the stroma of DOX treated 

tumours (Figure 4.10B), the majority of PV TAMs were again mainly (69.29%) located 

around vessels with lumen areas of 80-1200μm2. There were more TAMs around 

vessels in the stroma of DOX-treated tumours with luminal areas of 0-80μm2 (18.21%) 

and fewer (12.5%) around vessels with a luminal area of >1200μm2, compared to PBS-

treated tumours. There was a significant (Chi-square test p<0.0001) shift in the 

percentage of TAMs gathering around a particular size of vessel in DOX treated 

tumours. It appeared that DOX decreased the percentage of TAMs associated with 

larger vessels (>1200μm2) compared to PBS treated tumours, and also increased the 

percentage of TAMs around smaller vessels, 0-80μm2 (Chi-squared test p<0.0001).  

In tumour cell islands, PV TAMs were mainly found around vessels with a 

lumen area of 80-1200μm2 in PBS (71.43%, Figure 4.11A) and DOX (70.53%, Figure 

4.11B) treated tumours. Fewer numbers of PV TAMs also associated with vessels 
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which had smaller lumen areas of 0-80μm2 in PBS (28.57%) and DOX (29.47%) 

treated tumours and there was no difference caused by treatment.  

As the stroma contained more vessels of the 80-1200μm2 subtype, the number 

of PV TAMs counted was then normalised to the number of vessels within each group 

for the stroma (Figure 4.10C) and tumour cell islands (Figure 4.11C), to ensure that 

that the increase in PV TAM association was not an artefact of there simply being an 

increase in vessel number.  

In the stroma of PBS treated tumours, lumen size had no impact on the number 

of PV TAMs counted per vessel (0-80μm2 mean= 2.22 ± 0.48, 80-1200μm2 mean= 3.11 

± 0.60, >1200μm2 mean= 4.58 ± 1.81, Two way ANOVA lumen size p=0.1546). This 

was also true in the stroma of DOX treated tumours (0-80μm2 mean= 1.91 ± 0.21, 80-

1200μm2 mean= 2.82 ± 0.47, >1200μm2 mean= 3.1 ± 0.71). Furthermore, DOX did not 

affect the number of PV TAMs per vessel in the stroma (Two way ANOVA treatment 

p=0.3250). 

In the tumour cell islands of PBS treated tumours there were more PV TAMs 

per vessel in the 80-1200μm2 category (mean= 2.65 ± 0.28), compared to those in the 

0-80μm2 category (mean= 1.65 ± 0.22, Two way ANOVA lumen size p=0.0176), 

however this was not significant (Sidak’s multiple comparisons test p=0.0640). In DOX 

treated tumours, lumen area did not impact on the number of PV TAMs per vessel (0-

80μm2 mean= 1.75 ± 0.15, 80-1200μm2 mean= 2.29 ± 0.33, Sidak’s multiple 

comparisons test p=0.3287). DOX did not significantly change the number of PV TAMs 

gathering around a particular vessel type (Two way ANOVA treatment p=0.6514). After 

quantifying raw numbers of PV TAMs, it appeared there may be a preferential 

gathering of TAMs around vessels with a lumen area of 80-1200μm2. However 

following normalisation of numbers of TAMs to the number of vessels counted, it 

became clear that PV TAMs do not preferentially gather around vessels of a particular 

size. DOX did not impact on the number of PV TAMs per vessel in this analysis, 
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matching with the previous analysis examining the total tumour vasculature (Figure 

4.1). 

 

 

 
Figure 4.10 Analysis of the distribution of F4/80

+
 TAMs around vessels with a visible 

lumen in the stroma of TS1 tumours, after PBS and DOX treatment. 

Individual vessel lumens were measured and then the number of PV F4/80
+
 TAMs were 

counted for each vessel. The distribution of PV TAMs around different sized vessels is shown 
for the stroma of PBS- (A) and DOX-treated (B) tumours, with a histogram demonstrating the 
number of TAMs attached to a vessel of a particular size (i) and a pie chart which shows the 
percentage of TAMs which lie in each vessel category (ii). The total number of PV TAMs per 
vessel category was then normalised to the total number of vessels in each category for the 
tumour stroma (C). 5 tumours/group; bar charts represent mean + SEM.  



138 
 

 

 

Figure 4.11 Analysis of the distribution of F4/80
+
 TAMs around vessels with a visible 

lumen in the tumour cell islands, after PBS or DOX treatment. 

Individual vessel lumens were measured and then the number of PV F4/80
+
 TAMs were 

counted for each vessel. The distribution of PV TAMs around different sized vessels is shown 
for the tumour cell islands of PBS- (A) and DOX-treated (B) tumours, with a histogram 
demonstrating the number of TAMs attached to a vessel of a particular size (i) and a pie chart 
which shows the percentage of TAMs which lie in each vessel category (ii). The total number of 
PV TAMs per vessel category was then normalised to the total number of vessels in each 
category for the tumour cell islands (C) in PBS and DOX treated tumours. 5 tumours/group; bar 
charts represent mean + SEM. 
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4.3.9 Luminal area does not impact on the number of PV MRC1+ TAMs per vessel. 

The numbers of F4/80+ MRC1+ TAMs around vessels with a measurable lumen were 

then counted per vessel to see if this subset of TAMs were gathering around vessels of 

a particular lumen size (Figures 4.12 and 4.13).  

In the stroma of PBS treated tumours, 68.75% of PV F4/80+ MRC1+ TAMs were 

located around vessels with a lumen area of 80-1200μm2 (Figure 4.12A). F4/80+ 

MRC1+ TAMs were also found around vessels with a lumen area of 0-80μm2 (9.37%) 

and >1200μm2 (21.88%) in the stroma of these tumours. In the stroma of DOX treated 

tumours, most PV F4/80+ MRC1+ TAMs (73.85%) also gathered around vessels with a 

lumen area of 80-1200μm2 (Figure 4.12B), with 16.41% of PV F4/80+ MRC1+ TAMs 

found around vessels with a lumen area of 0-80μm2 and 9.74% were found around 

vessels with a lumen area of >1200μm2. 

In the tumour cell islands of both PBS- (Figure 4.13A) and DOX- (Figure 4.13B) 

treated tumours, the majority of PV F4/80+ MRC1+ TAMs were found around vessels 

with a lumen area of 80-1200μm2 (PBS= 70.83%, DOX= 64.81%). F4/80+ MRC1+ 

TAMs were also located around vessels with a lumen area of 0-80μm2 (PBS= 29.17%, 

DOX= 35.19%). While DOX appeared to increase the numbers of PV MRC1+ TAMs 

around vessels which were 0-80μm2, it was then important to normalise the number of 

TAMs to the number of vessels counted, before concluding if DOX had an effect on 

vessels of a certain size. 

As there were differences in the numbers of vessels for each category, it was 

then important to normalise the number of PV F4/80+ MRC1+ TAMs to the number of 

vessels in each size category, ensuring that increases in TAM numbers were not 

artefacts of increased numbers of vessels in a particular category. In the stroma of PBS 

treated tumours, lumen area did not impact on the number of PV F4/80+ MRC1+ TAMs 

per vessel (0-80μm2 mean= 1.67 ± 0.88, 80-1200μm2 mean= 2.1 ± 0.61, 1200μm2 

mean= 2.83 ± 1.52 Two way ANOVA lumen size p=0.4628). This was also true for the 

stroma of DOX treated tumours, no particular vessel size had more PV F4/80+ MRC1+ 
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TAMs per vessel (Two way ANOVA lumen size p=0.4628, 0-80μm2 mean= 1.27 ± 0.23, 

80-1200μm2 mean= 2.13 ± 0.22 1200μm2 mean= 1.93 ± 0.27) In the stroma, the 

number of PV F4/80+ MRC1+ TAMs per lumenised vessel was not altered by DOX 

treatment (Figure 4.12C, Two way ANOVA treatment p=0.4741) 

Likewise, in PBS-treated tumour cell islands, lumen area did not affect the 

number of PV F4/80+ MRC1+ TAMs per vessel (0-80μm2 mean= 0.52 ± 0.24, 80-

1200μm2 mean= 0.63 ± 0.21, Two way ANOVA lumen size p=0.5198). This was also 

true in the tumour cell islands of DOX treated tumours (0-80μm2 mean= 0.50 ± 0.24, 

80-1200μm2 mean= 0.72 ± 0.25, Two way ANOVA lumen size p=0.5198). Similarly, in 

the tumour cell islands, DOX did not alter the number of PV F4/80+ MRC1+ TAMs per 

vessel (Figure 4.13C, Two way ANOVA treatment p=0.8728). It is possible that had 

more tumours been analysed, DOX would have had a significant effect on the number 

of PV F4/80+ MRC1+ TAMs per vessel, as a power analysis confirmed that the n 

numbers were too small for this analysis to show a significant effect. When analysing 

the numbers of PV MRC1+ TAMs per vessel, there was no significant difference 

between vessels of different lumen sizes, suggesting that PV MRC1+ TAMs do not 

associate with any one particular size of vessel preferentially. Moreover DOX did not 

impact on the numbers of PV MRC1+ TAMs per vessel, yet showed an effect when the 

total tumour vasculature was analysed, suggesting that DOX affects the total tumour 

vasculature, resulting in an increase in PV MRC1+ TAMs. 
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Figure 4.12 Analysis of the distribution of F4/80
+
 MRC1

+
 TAMs around vessels with a 

measurable lumen in the tumour stroma, after PBS or DOX treatment. 

Individual vessel lumens were measured and then the number of PV F4/80
+
 MRC1

+
 TAMs were 

counted for each vessel. The distribution of PV MRC1
+
 TAMs around different sized vessels is 

shown for the stroma of PBS- (A) and DOX-treated (B) tumours, with a histogram demonstrating 
the number of MRC1

+
 TAMs attached to a vessel of a particular size (i) and a pie chart which 

shows the percentage of MRC1
+
 TAMs which lie in each vessel category (ii). The total number 

of PV TAMs per vessel category was then divided by the total number of vessels in each 
category for the stroma (C). 5 tumours/group; bar charts represent mean + SEM. 
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Figure 4.13 Analysis of the distribution of F4/80
+
 MRC1

+
 TAMs around vessels with a 

measurable lumen in tumour cell islands, after PBS or DOX treatment. 

Individual vessel lumens were measured and then the number of PV F4/80
+
 MRC1

+ 
TAMs were 

counted for each vessel. The distribution of PV MRC1
+
 TAMs around different sized vessels is 

shown for the tumour cell islands of PBS- (A) and DOX-treated (B) tumours, with a histogram 

demonstrating the number of MRC1
+ 

TAMs attached to a vessel of a particular size (i) and a pie 

chart which shows the percentage of MRC1
+
 TAMs which lie in each vessel category (ii). The 

total number of PV TAMs per vessel category was then divided by the total number of vessels in 

each category (C) in PBS and DOX treated tumours. 5 tumours/group; bar charts represent 

mean + SEM. 
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4.3.10 HEVs are present in mouse lymph nodes but not TS1 tumours.   

Next, the presence of HEVs was examined in TS1 tumours after treatment with PBS or 

DOX. PNAd can be identified in tumour sections using the antibody, MECA-79. Lymph 

nodes were stained for PNAd as a positive control alongside tumours. Lymph node 

staining of PNAd (red) can be seen in Figure 4.14A, with CD31 (green) labelling blood 

vessels. Blood vessels which were positive for PNAd (red) are HEVs (Figure 4.14B 

shows a close-up of a HEV within the lymph nodes). Three tumours from each 

treatment group were stained for PNAd (as described, section 4.2.1) and entire 

sections were scanned for PNAd+ cells using a 20x lens on a fluorescent microscope.  

As shown in Figure 4.14C, no identifiable PNAd staining could be observed. From this 

it was concluded that HEVs were not present in these implanted TS1 tumours, and this 

was not altered by DOX treatment. 
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Figure 4.14 TS1 implant tumours do not contain high endothelial venules. 
CD31 (green) and peripheral node addressin (PNAd) (red) expression was analysed using 
immunofluorescence. Lymph nodes were used as a positive control for PNAd staining, 
demonstrating the presence of high endothelial venules (A & B). No PNAd staining was 
detectable in tumours (C). Scale bar = 50μm. 
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4.3.11 Distinct T cell populations are found within the tumour cell islands and 

stroma of TS1 tumours. 

In murine fibrosarcomas (induced by methylcholanthrene), HEVs were only present in 

tumours with depleted regulatory T cells [227]. Therefore, the T-cell infiltrate of TS1 

tumours was examined to establish whether the presence of regulatory T-cells could 

explain the lack of HEVs in the current model. Tumours were stained for CD3, CD8 and 

CD4 to identify the different T-cell populations as described in section 4.2.1. CD3 

expressing cells are T cells and can be subdivided on the basis of their CD8 (cytotoxic 

T cells) and CD4 (expressed by both T helper cells and regulatory T cells) expression. 

Figure 4.15 shows representative staining of CD3 (white), CD8 (red) and CD4 

(green) in the stroma (Figure 4.15A) and tumour cell islands (Figure 4.15B). PBS 

treated tumours had an increased density of CD3+ cells in the stroma (mean= 10.67 ± 

2.22) compared to the tumour cell islands (mean= 1.80 ± 0.42, Two way ANOVA area 

analysed p=0.0004, Sidak’s multiple comparisons test p=0.0007). This trend was also 

seen in DOX treated tumours, although it was not significant (stroma mean= 5.72 ± 

0.56, tumour cell island mean= 2.06 ± 0.77, Sidak’s multiple comparisons test 

p=0.0813). DOX did not significantly decrease CD3+ T cell density (CD3+ T cells as a 

percentage of total cells, Figure 4.15C), despite a trend for a decrease in CD3+ cell 

density the stroma of these tumours (Two way ANOVA treatment p=0.1238). 

The density of CD3+ CD4+ (T helper and/or regulatory T cells) was then 

analysed (Figure 4.15D). The stroma of PBS (mean= 6.02 ± 1.26) and DOX (mean= 

4.01 ± 0.31) treated tumours had an increased density of CD3+ CD4+ cells compared to 

the tumour cell islands (Two way ANOVA area analysed p<0.0001, PBS mean= 0.49 ± 

0.14 Sidak’s multiple comparisons test p=0.0005, DOX mean= 0.71 ± 0.28 Sidak’s 

multiple comparisons test p=0.0108). DOX did not affect the density of CD3+ CD4+ cells 

(Two way ANOVA treatment p=0.2448). 

The density of cytotoxic CD3+ CD8+ T cells was also not affected by DOX (Two 

way ANOVA treatment p=0.1780, Figure 4.15E). Interestingly, in contrast to CD3+ 
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Figure 4.15 Differences in the frequency of T cell subsets between the stroma and 
tumour cell islands of TS1 tumours after PBS or DOX treatment. 
CD3

+
 (white), CD8

+
 (red) and CD4

+
 (green) cells were immunostained and visualised in 

the stroma (A) and tumour cell islands (B).  Scale bar = 20μm. The frequency of these 
cells was calculated as a percentage of total DAPI

+
 cells (C-E). n=5 tumours/group. 2-way 

ANOVA used, * p<0.05; ** p<0.001.  

CD4+ cells, the CD3+ CD8+ density was not significantly different in the stroma (mean= 

1.38 ± 0.48) and tumour cell islands (0.66 ± 0.17) of PBS treated tumours (Two way 

ANOVA area analysed p=0.3048) or DOX treated tumours (stroma mean = 0.46 ± 0.08, 

tumour cell island mean= 0.64 ± 0.24). 
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The percentages of T cells which expressed CD4 were then calculated by 

dividing the number of CD3+ CD4+ cells by total CD3+ cells and multiplying by 100 

(Figure 4.16A). The percentage of T cells which were CD4+ was increased in the 

stroma of PBS treated tumours (mean= 56.78 ± 4.85) compared to tumour cell islands 

(mean= 27.69 ± 3.45, Two way ANOVA area analysed p=0.0002, Sidak’s multiple 

comparisons test p=0.0052). The stroma of DOX treated tumours (mean= 68.67 ± 

1.62) also had an increased percentage of CD4+ T cells compared to the tumour cell 

islands (mean= 35.22 ± 5.96 Sidak’s multiple comparisons test p=0.0022). 

Interestingly, DOX appeared to increase the percentage of CD4+ T cells (Two way 

ANOVA treatment p=0.0318), however post-hoc analysis revealed these increases 

were not significant (Sidak’s multiple comparisons test stroma p=0.1305, tumour cell 

island p=0.4104). 

The percentage of CD8+ T cells was also calculated (Figure 4.16B). The stroma 

of PBS treated tumours (mean= 11.79 ± 2.11) had a significantly lower percentage of 

CD8+ T cells compared to the tumour cell islands (mean= 36.02 ± 2.20, Two Way 

ANOVA area analysed p=0.0002, Sidak’s multiple comparisons test p=0.0085). This 

was also true in DOX treated tumours (stroma mean= 9.15 ± 0.56, tumour cell island 

mean= 39.55 ± 7.41, Sidak’s multiple comparisons test p=0.0022). Importantly, DOX 

did not significantly alter the percentage of T cells which were CD8+ (Two way ANOVA 

treatment p=0.9055). 

To understand whether there were more cytotoxic or regulatory T cells, the 

CD4:CD8 ratio was calculated by dividing the number of CD4+ T cells per FOV by the 

number of CD8+ T cells per FOV (Figure 4.16C). In PBS treated tumours, the stroma 

(mean= 7.35 ± 2.28) had an increased CD4:CD8 ratio compared to tumour cell islands 

(mean= 1.12 ± 0.20), however this was not significant (Sidak’s multiple comparisons 

test p=0.1521). The stroma of DOX treated tumours (mean= 13.67 ± 3.51) had a 

significantly increased CD4:CD8 ratio compared to tumour cell islands (mean= 1.08 ± 

0.20, Two way ANOVA area analysed p=0.0026, Sidak’s multiple comparisons test 
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p=0.0073). Interestingly, there appeared to be a trend for an increased CD4:CD8 ratio 

in the stroma of DOX treated tumours, compared to PBS-treated tumours, however this 

was not significant (Two way ANOVA treatment p=0.1542). Overall, DOX did not 

impact on the T cell infiltration of these tumours. Importantly CD3+ CD4+ cells were 

present in both PBS and DOX treated tumours, possibly explaining the absence of 

HEVs in these tumours. CD3+ CD4+ cells can be either T helpers or regulatory T cells, 

and co-staining CD3 and CD4 with FOXP3 in these tumours should reveal if regulatory 

T cells are part of the tumour immune infiltrate. 

 

Figure 4.16 Differences in the percentages of CD4
+
 or CD8

+
 T cells between the stroma 

and tumour cell islands of TS1 tumours after PBS or DOX treatment. 
The percentage of CD4

+
 cells/total CD3

+
 cells was calculated (A) as was the percentage of 

CD8
+
 cells (B). The CD4:CD8 ratio was also calculated (C). n=5 tumours 2-way ANOVA used, * 

p<0.01.  
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4.3.12 FOXP3+ regulatory T cells are found at an increased density within the 

stroma than the tumour cell islands of TS1 tumours. 

To address whether regulatory T cells were present in these tumours, CD3+ CD4+ 

FOXP3+ cells were counted. Tumours were stained as in 4.2.1 and typical staining of 

the stroma (Figure 4.17A) and tumour cell islands (Figure 4.17B) shows CD3 (white), 

CD4 (red) and FOXP3 (green) staining. The stroma of PBS treated tumours (mean= 

2.77 ± 0.86) had an increased density of CD3+ CD4+ FOXP3+ cells (number of CD3+ 

CD4+ FOXP3+ cells as a percentage of total nuclei, Figure 4.17C) compared to the 

tumour cell islands (mean= 0.12 ± 0.04, Two way ANOVA area analysed p=0.0070, 

Sidak’s multiple comparisons test p=0.0444). This trend was also seen in DOX treated 

tumours (stroma mean= 2.26 ± 0.62, tumour cell island mean= 0.17± 0.09) however, 

this trend was not significant (Sidak’s multiple comparisons test p=0.0619). The density 

of Tregs was not significantly different in DOX treated tumours compared to PBS 

treated tumours (Two way ANOVA treatment p=0.6599). 

The percentage of T (CD3+) cells that were Tregs (co-expressing CD4 and 

FOXP3) was then calculated. There was a trend for an increase in the percentage of T 

cells which were Tregs in the stroma of both PBS (mean= 33.96 ± 1.68) and DOX 

(mean= 30.2 ± 5.59) treated tumours compared to tumour cell islands (PBS mean= 

12.46 ± 2.23, DOX mean= 12.05 ± 6.05, Two way ANOVA area analysed p=0.0210). 

However, post-hoc analysis revealed these trends were not significant (Sidak’s multiple 

comparisons test PBS p=0.1218, DOX p=0.1311). Furthermore, DOX did not impact on 

the percentage of T cells which were Tregs (Figure 4.17D, Two way ANOVA treatment 

p=0.6099). Importantly, Tregs were present in these TS1 tumours, possibly explaining 

the lack of HEVs in this model. 
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Figure 4.17 Differences in the frequency of regulatory T cells between the stroma and 
tumour cell islands of TS1 tumours after PBS or DOX treatment. 
Immunostaining of CD3

+
 (white); CD4

+
 (red) and FOXP3

+
 (green) cells in the stroma (A) and 

tumour cell islands (B). Scale bar = 20μm. The frequency of CD3
+
 CD4

+
 FOXP3

+
 Tregs was 

calculated as a percentage of DAPI
+
 cells (C) or of total CD3

+
 cells (D). n=3-4 tumours/group.  

2-way ANOVA used, *p<0.05.  
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4.3.13 Vessel patency was increased in the stroma of TS1 tumours compared to 

the tumour cell islands. 

The impact of DOX on vessel flow was assessed by analysing whether vessels were 

patent (i.e. could they be perfused by FITC-lectin - as described in section 4.2.4.1). 

Mice were injected intravenously with 1mg/mL FITC lectin 10 minutes prior to culling. 

Tumour sections were stained with CD31 (red in Figure 4.18A-B) as described in 4.2.1 

and images show FITC-lectin (green) perfused vessels in the stroma (Figure 4.18A) 

and the tumour cell islands (Figure 4.18B). CD31 staining was converted into a mask 

and applied to the FITC-lectin staining, which allowed the percentage of CD31 area co-

stained by FITC-lectin to be calculated (Figure 4.18C).  

The stroma of both PBS (mean= 51.66 ± 4.31) and DOX (mean = 41.27 ± 5.23) 

treated tumours had an increased percentage of CD31 area which co-stained for FITC-

lectin compared to tumour cell islands (Two way ANOVA area analysed p=0.0025, 

PBS mean= 30.4 ± 9.21 Sidak’s multiple comparisons test p=0.0128, DOX mean= 23.6 

± 2.56 Sidak’s multiple comparisons test p=0.0244). However, the percentage of CD31 

area co-stained with FITC-lectin was not affected by DOX treatment (Two way ANOVA 

treatment p=0.3305). 

To establish whether the proportion of vessels that were patent was affected by 

DOX treatment, CD31+ vessels were identified within tumour sections, and then the 

number of CD31+ FITC-lectin+ vessels was expressed as a percentage of total vessels 

analysed (Figure 4.18D). The stroma of PBS treated tumours (mean= 88.11 ± 4.43) 

had an increased percentage of FITC-lectin perfused vessels compared to the tumour 

cell islands (mean= 62.10 ± 9.31, Two way ANOVA area analysed p=0.0043, Sidak’s 

multiple comparisons test p=0.0444). This was also true in DOX treated tumours 

(stroma mean= 87.51 ± 5.27, tumour cell island mean= 54.16 ± 7.72, Sidak’s multiple 

comparisons test p=0.0194). However, the percentage of FITC-lectin perfused vessels 

was unaffected by DOX (Two way ANOVA treatment p=0.6392). 
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Figure 4.18 DOX did not affect vessel patency in TS1 tumours. 
CD31 (red) and FITC-lectin (green) stain vessels within the stroma (A) and tumour cell islands 
(B). Lectin positive area was calculated as a percentage of the CD31

+
 area mask (C) and the 

percentage Lectin
+
 vessels out of total CD31

+
 vessels was calculated. 2-way ANOVA used n=3 

tumours. Scale bar= 50µm * p<0.05. 
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4.3.14 The majority of vessels in TS1 tumours were associated with pericytes. 

The pericyte coverage of vessels was assessed by staining tumours with CD31 (green) 

and with the pericyte marker α-SMA [220] (red) as described in section 4.2.1. 

Representative staining of vessels in the stroma (Figure 4.19A) and tumour cell islands 

(Figure 4.19B) are shown.  CD31 staining was converted to a mask and the percentage 

of CD31+ area co-stained by α-SMA was calculated to understand the amount of blood 

vessel area which was covered by pericytes (Figure 4.19C). The stroma of both PBS 

(mean 29.56 ± 6.10) and DOX (mean= 27.24 ± 5.33) treated tumours had similar 

CD31+ areas which co-localised with α-SMA staining in their tumour cell islands (PBS 

mean= 31.04 ± 3.17, DOX mean= 20.62 ± 3.86, Two way ANOVA area analysed 

p=0.6310). Thus, DOX did not alter the percentage of CD31+ area covered with α-SMA 

staining (Two way ANOVA treatment p=0.1978). 

CD31+ vessels were counted, and their coverage in PV α-SMA+ cells was 

assessed to give a percentage of vessels which were associated with pericytes out of 

total vessels analysed (Figure 4.19D). The majority of vessels in the stroma of both 

PBS (mean= 87.32 ± 3.82) and DOX (mean= 85.52 ± 2.54) treated tumours had 

pericyte coverage. This was also true for vessels in the tumour cell islands of PBS 

(mean= 95.59 ± 1.84) and DOX (mean= 85.92 ± 5.20) treated tumours. There was no 

significant difference in the percentage of pericyte covered vessels between the stroma 

and tumour cell islands of these tumours (Two way ANOVA are analysed p=0.2339). 

Again DOX did not change the percentage of pericyte covered vessels in either the 

stroma or tumour cell islands (Two way ANOVA treatment p=0.1887). 
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Figure 4.19 The majority of vessels in the stroma and tumour cell islands have pericyte 
coverage after PBS and DOX treatment. 
CD31 (green) and α-SMA (red) demonstrate pericyte coverage of vessels in the stroma (A) 
and tumour cell islands. Scale bar = 20μm. The percentage of CD31 area that co-localised 
with α-SMA staining was calculated to understand the amount of blood vessel area which was 
coated by pericytes (C) as was the percentage of vessels which had PV α-SMA

+ 
cells, to 

understand how many vessels were associated with pericytes (D).  n=4 tumours. 
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4.4 Discussion 

In this chapter, an increase in PV MRC1+ TAMs was demonstrated in TS1 

tumours following DOX treatment for this first time.  Monocyte subpopulations were 

also studied in a post-chemotherapy setting in mice bearing such tumours. Interestingly 

these data demonstrate that while DOX slightly reduces circulating peripheral blood 

monocytes, there was no significant change in the proportions of the Ly-6Chi, Ly-6Cint or 

Ly-6Clo monocytes present in the blood. However, DOX did induce a small but 

significant increase in MRC1+ monocytes in the Ly-6Cint and Ly-6Clo subsets. Further 

analysis of the PV MRC1+ TAMs revealed that these TAMs were mature Gr-1- cells, 

and were therefore unlikely to be newly recruited from these MRC1+ monocytes. 

Given the DOX-induced increase in PV MRC1+ TAMs it was important to 

characterise the tumour vasculature of these tumours, as this increase may have been 

due to changes in the structure of tumour blood vessels after DOX. TAMs were not 

found to preferentially gather around vessels of a particular luminal size in either the 

PBS or the DOX-treated tumours. DOX also had no impact on vessel patency or 

pericyte coverage. However, one interesting finding concerning the vessels was the 

increase in the patency of vessels in the stroma compared to tumour cell islands. 

These data in this chapter also demonstrate that HEVs are absent in TS1 tumours, 

which may have implications for investigating the immune infiltrate of these tumours in 

future, as HEVs are known to aid in the recruitment of lymphocytes from peripheral 

blood [224]. In summary, within 48 hours of DOX treatment, there was an increase in 

both MRC1+ monocytes in the blood and TAMs in the PV niche of tumours. However, 

DOX had no effect on vessel parameters like their size, pericyte coverage, or ability to 

carry flow.  

Although the previous chapter showed DOX had no impact on overall TAM 

numbers in TS1 tumours, these data in this chapter demonstrate a significant increase 

in PV MRC1+ TAMs in these tumours. This is in keeping with previous studies using 
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other tumour models (LLCs after cyclophosphamide; 4T1 after paclitaxel and PyMT 

implanted tumours with DOX), which showed that chemotherapy increased the number 

of MRC1+ TAMs in vascularised areas of tumours [144].  However, it is very interesting 

that these TAMs were increased specifically in the PV location, but not across the 

tumour as a whole. This suggests that perhaps the tumour vasculature may influence 

the retention and/or phenotype of TAMs. 

One limitation of these studies is that only MRC1 expression was examined on 

the PV TAMs. While MRC1 is a commonly used marker of M2-skewed macrophages 

[49], its presence on PV TAMs in this study does not necessarily mean that these cells 

are M2-skewed or would have or promoted relapse after DOX. However, unpublished 

studies carried out by another member of the group, Dr Russell Hughes, during my 

PhD showed that MRC1+ TAMs in TS1 tumours expressed additional M2 markers [42] 

including CD163 and scavenger receptor A.  This suggests that these cells may well 

have been M2-skewed and, are therefore likely to promote tumour angiogenesis and 

immunosuppression. This accords with the PV MRC1+ TAMs which accumulate and 

drive relapse in LLCs after cyclophosphamide treatment [144].  In LLCs, these MRC1+ 

TAMs were also shown to express TIE2 [144]. Interestingly, VEGF-A expression was 

limited to MRC1+ TAMs in implanted PyMT tumours and genetic ablation of this 

delayed relapse following  DOX [144]. Although these studies suggest that the PV 

MRC1+ TAMs in TS1 tumours promote relapse after DOX, further studies are needed 

to provide unequivocal evidence of this.  

The peripheral blood monocytes of mice were examined to understand whether 

DOX was having systemic effects on these mice at this early time point. DOX is known 

to induce myelosuppression [236], and so DOX depleting monocytes within peripheral 

blood was not surprising. It is also one of the reasons why peripheral blood was 

collected from mice 48 hours following the dose of DOX, as earlier time points may 

have had an increased depletion of monocytes, which would have made studying the 

monocytic subpopulations difficult. Interestingly, monocyte subpopulation proportions 
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were unaffected by DOX. Previously, depletion of monocytes with clodronate 

liposomes demonstrated that Ly-6Chi monocytes appear in circulation approximately 2 

days after depletion, whereas the Ly-6Clo subset appeared 7 days after depletion, as 

the Ly-6Chi monocytes are thought to mature into Ly-6Clo monocytes [11]. This 

suggests that the different monocytic subsets have different turnovers, with Ly-6Chi 

monocytes appearing in the blood soon after depletion compared to the Ly-6Clo 

monocytes.  However this was not the case in the current studies using DOX in tumour 

bearing mice. While total monocytes were depleted, the abundance of the different 

monocyte subpopulations was unchanged. Further studies with more time points would 

be needed to accurately study monocyte turnover in this model, and it would be 

interesting to investigate if the Ly-6Clo monocytes had some survival advantage, which 

is why they were not depleted 48 hours after DOX, despite an overall decrease in 

peripheral blood monocytes. Indeed, RAW264.7 macrophages expressing Tie2 were 

recently shown to have a survival advantage in serum starvation conditions in vitro, and 

TEMs are a subset of non-classical Ly-6Clo monocytes [70], [146]. Perhaps Tie2 

expression on a subset of these monocytes could be important for their survival 

following treatment with DOX.  

In this study monocyte subsets were identified on the basis of their Ly-6C 

expression. It would have been advantageous to include an additional marker of the 

Ly-6Clo monocytes, such as the frackalkine receptor CX3CR1, however attempts to 

detect surface CX3CR1 expression by flow cytometry in murine peripheral blood 

mononuclear cells were unsuccessful. This may be why most of the published studies 

using CX3CR1 as a marker of the non-classical subset of monocytes often use the 

CX3CR1GFP/+ mouse, and so non-classical monocytes can be detected on the basis of 

GFP expression as opposed to directly labelling CX3CR1 [9]. CX3CR1GFP/+ mice were 

not used in these studies, mainly due to budget constraints, and had more funds been 

available, CX3CR1GFP/+ mice may have allowed more accurate assessment of 

monocytic subsets.  
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This study indicated that all monocyte subsets were present in murine blood 2-

days post DOX treatment, although it was unable to trace monocyte uptake into the 

chemotherapy treated tumours. Further studies could utilise latex beads [68] to label 

the different monocytic subsets and provide interesting insights into which subsets are 

recruited into tumours post-chemotherapy. This method has previously demonstrated 

that Ly-6Chi monocytes are recruited into tumours, where they differentiate into TAMs, 

but this was in a non-therapy setting [68]. Intravital imaging could have also provided 

interesting insights into monocyte recruitment. Previously, intravital imaging described 

a “patrolling” behaviour of non-classical monocytes in the mouse dermis and 

mesenteric vessels and demonstrated the early extravasation of these cells in 

response to inflammation [14]. Whether the same resolution of vessels and monocytes 

could be achieved within tumours is questionable, although intravital imaging has been 

used in the MMTV-PyMT model of cancer with some success [116], [137]. Lack of 

funds and expertise in the area of intravital imaging meant this option was not fully 

explored in these studies. 

Monocyte phenotype was examined using the markers MRC1 and CXCR4. 

DOX significantly increased the proportion of MRC1+ monocytes and this increase was 

specific to the Ly-6Cint and Ly-6Clo subsets. MRC1 was chosen as a marker of ‘pro-

tumoural’ phenotype, as it well characterised and is conserved between both mice and 

humans [53]. DOX did cause a small increase in the number of MRC1+ monocytes, 

which could potentially be due to the effects of DOX on the tumour, for example if DOX 

caused the tumour to release molecules known to promote MRC1 expression. Further 

experiments in vitro may in future reveal mechanistically how this increase occurred. 

However, only a small proportion of MRC1+ monocytes were detected in murine 

peripheral blood, possibly reflecting that MRC1 is mainly expressed by more mature 

cells i.e. TAMs themselves. Moreover, monocytes in healthy female FvB/N mice only 

constitute 1.07% of white blood cells in peripheral blood [237], and so the biological 

relevance of this small increase in cells is questionable. 
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The number of CXCR4 expressing cells was unchanged by DOX, and again 

circulating CXCR4+
 monocytes were a very low percentage of total monocytes. 

Inhibition of CXCR4 with AMD3100 was previously shown to prevent TAM recruitment 

into tumours after chemotherapy [144], which suggests that TAMs are recruited via 

CXCL12 into tumours. However in the current model, the peripheral blood monocyte 

precursors of TAMs rarely expressed CXCR4, which suggests CXCL12-CXCR4 

signalling may be impacting TAMs directly, rather than acting on their monocytic 

precursors. It has previously been shown that CXCR4 is expressed by bone marrow 

monocytes, but this expression is lost in monocytes as they enter circulation [238], 

which supports the low proportion of CXCR4+ monocytes observed in this study.  

One of the limitations of this study was that only two markers of M2-skewed 

monocyte/macrophage (MRC1 and CXCR4) phenotype were used. This was due to the 

limited availability of antibodies for M2 markers that would successfully combine with 

the remainder of essential antibodies needed to label monocyte subsets in the flow 

cytometry panel. Moreover, as mice only have 2mL of circulating blood, it was not 

possible to split samples and use this to run different panels of markers, as there would 

have not been enough cells available for flow cytometric analysis. Had a greater 

budget for mice been available in my PhD studentship, perhaps more mice could have 

been used to increase the numbers of markers that could be examined, due to the 

increased amount of mouse blood available. An alternative to increase the number of 

markers investigated would have been to extract RNA from the subsets of peripheral 

blood monocytes. There were several reasons why this was not performed. Firstly, 

isolating monocyte subsets from the low amounts blood available from each mouse 

would have been extremely difficult. One published study did isolate RNA from the two 

major monocytic subsets in mice, however this required pooling the blood of 20 mice to 

yield enough RNA for an n=1 [71]. For an experiment of n=3 with PBS and DOX 

treated mice, this would mean 120 mice (60 mice for each treatment group, 20 mice 

per n) would have had to be used, which was not feasible from a budget or ethical 
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perspective. Although RNA could have been isolated from whole blood, this would not 

have yielded information about monocyte subsets. Furthermore, in order to examine 

monocyte subsets using flow cytometry, all the available murine blood was used, so no 

material was left over to isolate RNA from. 

Previous studies have compared monocytes (selected as CSF1R+ cells) from 

healthy and tumour-bearing mice. These studies showed that monocytes from tumour 

bearing mice are of a mixed phenotype and had decreased Tie2 and MHCII expression 

[239]. Gene expression analysis showed monocytes from tumour bearing mice had 

increases in both pro-inflammatory (e.g. CXCL10, TNF) and immunosuppressive genes 

(e.g. IL-10) [239]. However, these studies did not examine the impact of chemotherapy 

on murine monocyte subsets.  

Another study examined total monocytes from patients with breast cancer and 

found these to have decreased IL-6 and TNF production, and to be able to suppress T 

cells in vitro more than those isolated from healthy donors [240]. This suggests that 

monocytes in breast cancer patients adopt an immunosuppressive phenotype. It was 

not possible to examine production of cytokines from monocyte subsets in these TS1 

studies due to the low yield of cells per mouse, but this could potentially have been 

very interesting, as this could have revealed whether the MRC1+ monocytes were more 

immunosuppressive than the other monocytes. Further studies utilising patient samples 

may allow better analysis of monocyte subsets after chemotherapy as a greater volume 

of blood (and thus monocytes) would be available for analysis.  

Potentially, the small increase in MRC1+ monocytes in the blood of mice after 

DOX, observed within 48 hours of treatment, could be a source of PV MRC1+ TAMs in 

DOX treated tumours. Therefore, the maturity of PV TAMs was examined to see if they 

were immature (and therefore possibly newly recruited from such monocytic 

precursors) or mature.  This was done by co-staining them with Gr-1 and Ly-6G in 

frozen tumour sections. Gr-1 was used as a surrogate marker for Ly-6C, as this was 

found to be expressed on CD31+ blood vessels. As Gr-1 is also expressed by 



161 
 

neutrophils, Ly-6G was used to identify whether the PV MRC1+ cells co-expressing Gr-

1 were neutrophils. The majority of PV MRC1+ TAMs did not express Gr-1 or Ly-6G, 

suggesting that they were relatively mature macrophages, and not newly recruited, 

Ly6C+ monocytes.  Despite this, these cells may have still been recruited from MRC1+ 

circulating monocytes, and could have matured rapidly into TAMs in the presence of 

the vasculature. Again, this is relatively unlikely, as previous studies in TS/A bearing 

mice showed Ly-6Chi monocytes recruited from the peripheral blood did not lose their 

Ly-6C expression until 12 days after extravasating into these tumours [68]. Indeed, 

approximately 25% of MRC1+ PV TAMs did express Gr-1, although this was not altered 

by DOX, suggesting that DOX did not cause an increase in recruitment of immature 

myeloid cells into the PV niche. Another potential mechanism for the increase in PV 

MRC1+ TAMs could be that endothelial cells in DOX treated tumours recruit TAMs from 

elsewhere in the tumour and/or skew them towards a pro-tumoural phenotype (or at 

least upregulate their MRC1 expression).  

In order to assess whether TAMs were proliferating in this model, tumour 

bearing mice were injected with BrdU, a marker of cell proliferation. However, due to 

time constraints it was not possible to follow up on this study and investigate whether 

the TAMs had actually incorporated the BrdU. Future studies could do this to reveal 

insights in to whether TAMs accumulate in the PV niche, at least in part, via 

proliferation. Interestingly, previous studies demonstrated that MRC1+ TAMs in 

cyclophosphamide-treated LLCs did not incorporate BrdU, suggesting their increase in 

number after chemotherapy was due to recruitment/retention, not proliferation [144]. 

In order to investigate TAM recruitment and maturation in more detail, more 

time points, for example 6, 12 and 24 hours after chemotherapy, would be needed. It 

would also have been interesting to use intravital imaging to understand the origin of 

MRC1+ TAMs within the PV niche. Intravital imaging was not carried out due to budget 

constraints and the limitations of the multiphoton microscope in the mouse facility. 

Movahedi and colleagues demonstrated that Ly-6Chi monocytes infiltrate tumours and 
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develop into TAMs using flow cytometry and fluorescent latex beads, however this 

approach would not be useful to answer this question, as flow cytometric analysis 

would not provide spatial information about the location of each TAM subset, so PV 

TAMs would be indistinguishable from non-PV TAMs [68]. Adoptive transfer of MRC1+ 

monocytes into TS1 tumour bearing mice after DOX administration may have revealed 

whether these cells are recruited into the PV niche, however as these cells were so low 

in abundance, many mice would have had to be culled to perform such an experiment. 

In a recent study, Hoechst 33342 dye was injected into mice intravenously and 

allowed to diffuse into tumours, labelling cells (including TAMs) which were close to 

vasculature, which allowed purification of TAMs in vascularised areas using FACS 

[180]. This technique made it possible to study the TAMs which were near perfused 

vessels and those which were not. The limitation of this technique is it only labels 

TAMs that are ‘near’ the vasculature, rather than a purely PV population. Therefore, 

recent advances in labelling techniques developed by Dr. Russell Hughes are very 

exciting. Intravenous administration of fluorescently-conjugated dextrans have 

previously been used to label these TAMs within tumours [116], however in this novel 

technique, mice are culled 30 minutes after dextran administration, and during this time 

only the PV TAMs take up the fluorescent dextrans (Hughes, unpublished). This means 

that they can then be isolated from enzymatically dispersed tumours by FACS. Such 

studies are now being conducted by a postdoctoral scientist in my research group and 

will, hopefully, allow a detailed investigation into the phenotype of PV MRC1+ and non-

PV MRC1- TAMs in PBS and chemotherapy-treated tumours.  By examining chemokine 

receptor expression in PV MRC1+ TAMs, we may understand other mechanisms by 

which TAMs are recruited into tumours. Potentially, these studies could reveal novel 

targets specific to the PV TAMs, so they can be targeted with cytotoxic agents or 

agents which reprogram these cells towards a more M1-like phenotype. 

Given the increase in PV TAMs, the tumour vasculature was characterised to 

establish whether TAMs were being recruited by, or retained around, a particular type 
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of vessel. Normal blood vessels are typically described as arterial, venous or capillaries 

on the basis of features including several markers such as EphB4 (venous fate) and 

ephrin-B2 (arterial fate) [241]. In these studies, lumen size was used as a surrogate 

marker to identify different vessel types for several reasons. Firstly, EphB4 is 

expressed by many different tumour cells, making its detection on the tumour 

vasculature more complex [242]. Secondly, arterial and venous differentiation depends 

in part on blood flow, and it is well accepted that in tumours this is heterogeneous and 

untypical of blood flow which allows the vasculature to remodel into distinct arterial and 

venous vessels [218], [243].  It is therefore not surprising that the vasculature of 

tumours has a completely different structure to that seen within healthy tissues (i.e. not 

arteries-arterioles-capillaries-venules-veins) [217].  In tumours, vessel types include 

capillaries, glomeruloid microvascular proliferations and vascular malformations and 

are described in Table 4.1. Given that these vessel types require several morphological 

features to be defined, including pericyte coverage, it was decided to use lumen area 

so that CD31 could be utilised as a single marker approach to identify types of tumour 

blood vessels.  

Luminal area was able classify three different categories of vessels in TS1 

tumours. The smallest vessels, 0-80μm2 were considered to be capillaries, as this area 

corresponds to a diameter of ≤10μm [235]. Any vessels with a lumen area larger than 

80μm2 were likely to have an arteriole or venule-like structure, and these were 

subdivided into vessels that had an area smaller or greater than 1200μm2 – as 

histogram analysis showed there was a clear separation of vessels around this size, 

which allowed the analysis to distinguish between capillaries and larger vessels. 

Initially lumen size was measured and used to establish whether TAMs gathered 

around vessels of a particular size. For the first time, it was shown that the stroma of 

these implantable TS1 tumours had more vessels with a larger lumen area than the 

tumour cell islands. Both the stroma and tumour cell islands of TS1 tumours appeared 

to have more PV MRC1+ TAMs gathering around vessels which were 80-1200μm2 in 
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size. However, when the number of TAMs was normalised to number of vessels, it was 

revealed that luminal area did not impact on the number of associated PV TAMs. This 

suggests that the DOX-induced increase in PV MRC1+ TAMs may be a phenomenon 

which occurred across all vessels, rather than one particular subtype.  

It is important to note that there were limitations to this lumen-based approach. 

Not least of which was that the analysis itself was restricted to vessels with a 

measurable lumen, in other words, the vessel was cut at a cross-section which made 

the lumen visible. Some vessels were therefore not analysed in tumour sections, as 

within the tumour section they were running parallel to the plane in which the tumour 

section was cut. Furthermore, the number of vessels with a measurable lumen may 

have been reduced as the lumens of some vessels may have collapsed post-mortem. 

To avoid this, previous studies have used intra-cardiac administration of PFA to 

preserve the architecture of the vasculature [69], [70], [137]. However fixing the 

tumours in this way would have reduced the number of antibodies that could later be 

used to label cells in tumour sections. Moreover, lumen size was not a primary aim of 

the in vivo study, and PFA perfusion of the vasculature would have preserved the 

entire tumour, preventing the ability to collect live cells from these tumours for FACS 

analysis.  It is worth noting that when the analysis of PV TAMs was restricted to 

vessels with a measurable lumen, DOX had no effect on the numbers of PV TAMs 

when normalised to the number of vessels in each category – this was probably as 

many vessels were excluded (as they did not have a measurable lumen) and so the 

total tumour vasculature was not accounted for.  

While this lumen area-based analysis did not accurately identify vessel types 

such as mother vessels and vascular malformations, it did allow the study of the 

relationship between TAMs and vessels of different sizes. In order to identify additional 

features of these vessels within the tumours, other parameters such as pericyte 

coverage, blood flow (FITC-lectin perfusion) and vessel permeability (by administering 

molecules which could diffuse out of the vasculature, or Ricinus communis agglutinin I, 
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which binds to exposed basement membrane [137]) would have to be analysed in 

conjunction with CD31 staining. As the aim of this study was to also analyse PV 

MRC1+ TAMs, in conjugation with CD31 staining, it was not possible to simultaneously 

analyse pericyte coverage, vessel permeability and patency, as confocal microscopy 

only allows 4 different fluorophores to be imaged at a given time. 

HEVs are vessels adapted to promote T lymphocyte extravasation, and are 

usually found within lymph nodes [224]. More recently, their presence has been 

described within breast cancer patient samples [226]. Tumours which had increased 

HEV numbers also had increased infiltration of T cells and B cells and these patients 

had increased disease-free, metastasis-free and overall survival compared to patients 

with low numbers of HEVs [226]. Given this impact of HEVs on prognosis, it was 

interesting to attempt to identify HEVs within these TS1 tumours. However, HEVs (as 

recognised by PNAd staining) could not be identified within the PBS and DOX treated 

TS1 tumours.  

Interestingly, in another study, murine fibrosarcomas (induced by the chemical, 

methylcholanthrene) only contained HEVs after Tregs were depleted (using diphtheria 

toxin and FOXP3DTR mice to deplete FOXP3+ cells) [227], and even then, only half of 

the tumours which had depleted Tregs showed any positive PNAd staining. In those 

cases PNAd stained less than 1% of the FOV, suggesting that HEVs do not make up a 

significant part of the vasculature in such tumours. Importantly, in wild-type murine 

fibrosarcomas containing Tregs, there were no HEVs [227], in agreement with the 

studies detailed in this chapter using TS1 tumours. These studies call into question the 

relevancy of HEVs within murine tumour models. The HEV presence within some forms 

of human tumours, however, cannot be ignored, although there is clearly variability in 

HEV abundance within patient samples. This may suggest that HEV abundance is a 

factor which differs between patients and pre-clinical models, and is something which 

will need to be considered when translating research to patients. 
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As Tregs suppress HEV formation [227], T cell recruitment was examined in 

TS1 tumours to identify a potential reason for the lack of HEVs within TS1 tumours. 

Total T cell recruitment was not significantly altered by DOX, as although there was a 

trend of an increased CD4:CD8 ratio in the stroma of DOX treated tumours this was not 

significant. Importantly, Tregs were present in both DOX and PBS treated tumours, 

which probably explains the lack of HEVs within these tumours. 

Intravenous administration of FITC-lectin was used to analyse vessel patency, 

to further understand the functional status of vessels within these TS1 tumours (i.e. 

their ability to carry flow). If vessels were patent, it was possible that they could carry 

circulating monocytes into the tumour where they can extravasate and form TAMs. 

DOX did not affect vessel patency.  In agreement with this, other studies have shown 

the blood vessel perfusion of MMTV-PyMT tumour bearing mice was not affected by 

paclitaxel and cyclophosphamide treatment [139]. While vessel patency was not 

altered by DOX, it was interesting that the majority of vessels within the tumour stroma 

were patent, whereas the tumour cell island had far fewer patent vessels. These data 

help to explain the finding in Chapter 3, that the tumour stroma was more normoxic 

than tumour cell islands.  

It would have been interesting to analyse PV TAM recruitment around patent 

and non-patent vessels, as this might have contributed information on how TAMs arrive 

at the PV location (e.g. by extravasation vs. chemoattraction from different areas in 

tumours). Previously, Nakasone and colleagues demonstrated that TAMs and 

immature myeloid cells limit the permeability of the MMTV-PyMT tumour vasculature in 

an MMP9-dependant manner, however the location of TAMs in relation to patent and 

permeable vessels was not explored in this context [137]. Further studies should 

characterise how vessel patency relates to the location of TAMs. Although, as DOX 

treatment did not influence vessel patency, it is unlikely that alterations in vessel 

patency are responsible for the DOX-mediated increase in PV MRC1+ TAMs. Studies 
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utilising Ricinus communis lectin may also be useful to understand if PV MRC1+ TAMs 

gather around vessels which are more permeable.  

Pericyte coverage of vessels was also analysed, as a measure of blood vessel 

phenotype. There are conflicting studies regarding the effect of pericytes on 

macrophage infiltration [220]–[222], [244]–[246]. Total pericyte coverage of vessels as 

analysed by the CD31 area covered by α-SMA, and the proportion of vessels 

associated with pericytes, was not altered by DOX. In agreement with this, a study 

examining pericyte coverage of vessels in murine hearts also showed pericyte 

coverage was not affected by administration of DOX [231]. Due to time constraints, the 

number of pericytes per vessel was not analysed in the current study.  It would have 

been interesting to examine this, as pericyte coverage of tumour vessels differs with 

vessel maturity [220]. As the majority of blood vessels had some form of PV α-SMA+ 

cell, the effect of pericyte coverage on PV TAMs was not examined. However, 

analysing the number of pericytes per vessel could result in interesting findings by 

comparing TAM recruitment around vessels with increased pericyte coverage vs. those 

with few pericytes. As DOX did not impact on the pericyte coverage of vessels, it is 

unlikely that changes in pericyte coverage could be responsible for the increase in PV 

MRC1+ TAMs. 

 

4.5 Concluding Remarks 

DOX-treated TS1 tumours had increased numbers of MRC1+ TAMs making direct 

contact with blood vessels than their PBS-treated counterparts. These TAMs were 

mature Gr-1- cells, and were therefore unlikely to have been newly recruited from a 

subset of MRC1+ monocytes which were more abundant in DOX treated mice 

compared to PBS treated mice. The increase in PV MRC1+ TAMs suggests that 

following DOX treatment, the tumour vasculature is altered in a way which promotes 

the recruitment, retention and/or education of pro-tumoural MRC1+ TAMs, and 
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therefore attempts were made to characterise the tumour vasculature. DOX did not 

impact on the various vascular parameters analysed including vessel patency and 

pericyte coverage, suggesting that DOX may affect tumour vasculature in a different 

manner, which results in an increase in PV MRC1+ TAMs. Therefore, the next step to 

further understand the relationship between the tumour vasculature and TAMs is to 

purify tumour endothelial cells and identify how their gene expression profile changes 

following chemotherapy. Potentially TAMs may be attracted to the PV niche by 

endothelial cells expressing more chemokines after DOX treatment. Additionally, 

increases in adhesion molecule expression may also result in increased TAM retention 

in the PV space after DOX. Therefore, the expression of these genes will need to be 

investigated as these may impact on TAM recruitment, retention or phenotype. 
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Chapter 5 
 

 

Effect of DOX on the expression of selected genes by endothelial 

cells in TS1 tumours 
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5.1 Introduction 

The previous chapter demonstrated an increase in PV MRC1+ TAMs 48 hours after 

DOX treatment. It was unlikely that this was due to the selective recruitment of the 

small number of MRC1+ monocytes induced by DOX in the peripheral blood of such 

mice, bearing TS1 tumours, as the PV MRC1+ TAMs were shown to be mature (lacking 

Gr-1 expression). In addition to this, there were no obvious morphological changes in 

the vessels that correlated with this observation. Therefore, the next logical step was to 

establish whether DOX induced changes in the expression of genes by tumour 

endothelial cells that encode proteins likely to influence TAMs in the PV niche. 

Potentially, these could alter the recruitment, retention and/or phenotype of 

neighbouring TAMs.   

Endothelial cells provide a barrier through which monocytes extravasate in 

order to enter the tumour microenvironment [247]. As will be seen below, a number of 

studies have shown that endothelial cells can regulate monocytes/macrophages in a 

number of ways. For example, they express a number of chemokines and/or cell 

adhesion molecules (CAMs) which influence monocyte recruitment and TAM retention 

in the PV niche. Examples of the former include CSF1 [186], CXCL12 [248], [249] and 

angiopoietin-2 [250].  CSF1 is a growth factor, which also acts to promote monocyte 

viability and differentiation [251]. More recently, CSF1 was shown to increase TAM 

numbers in both pancreatic tumours treated with gemcitabine, and MMTV-PyMT 

mammary tumours treated with paclitaxel [108], [109]. CXCL12 was also implicated in 

TAM recruitment in LLCs treated with cyclophosphamide [144]. Angiopoietin-2 has also 

shown chemoattractive properties for TEMs [92] and knockdown of its receptor, Tie2 in 

TAMs reduced the number of TEMs in contact with blood vessels in MMTV-PyMT 

tumours [102]. 

Additional studies have shown that these chemokines are also able to stimulate 

TAMs to express an M2-like phenotype. For example, macrophages co-cultured with 
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endothelial cells express increased levels of the M2-like markers, MRC1 and arginase-

1; whereas M1-like genes like IL-12 and TNF were not upregulated [186]. CSF1 also 

skews TAMs towards an M2-like phenotype in some mouse tumour models. Treatment 

of mouse glioblastomas with a CSF1R inhibitor resulted in TAMs expressing a more 

M1-like phenotype [31]. CXCL12 was shown to increase VEGF and CCL1 expression 

in human peripheral blood monocytes in vitro, suggesting that CXCL12 also acts to 

increase the proangiogenic activity of these cells [195]. Angiopoietin-2 also exerts a 

profound effect on TAMs expressing TIE2, enhancing their proangiogenic and 

immunosuppressive functions [99], [103]. 

CAMs like vascular cellular adhesion molecule-1 (VCAM-1) are important 

mediators of monocyte extravasation, acting to aid the rolling and adhesion of 

monocytes to the surface of endothelial cells [237, 242]. Also, inhibition of Mac-1 (a 

complex of integrin αM and integrin β2) prevented regrowth of irradiated Fadu human 

head and neck squamous cell carcinoma xenografts, via a reduction in the recruitment 

of relapse-promoting myeloid cells [253]. Furthermore, direct contact with endothelial 

cells has been shown to promote the development of macrophages from colonies of 

HSCs in vitro, suggesting that endothelial cells express factors (CAMs and/or 

cytokines) that promote monocyte/macrophage differentiation [186].  

Other studies have also inferred the ability of tumour blood vessels to influence 

TAMs. When the blood vessels of mouse (MCaP0008) tumours were ‘normalised’ by 

treatment with the VEGFR2 targeted antibody, DC101, TAMs developed an M1-

skewed, immunostimulatory phenotype, increasing their expression of Il12a, Nos2, 

Cxcl9 and Cxcl11 and reducing their expression of the M2-associated genes, Ccl17 

and Mmp9 [180]. Vessel normalisation using other methods, such as overexpression of 

HRG by tumour cells [30] also skewed TAMs towards a tumouricidal phenotype, as 

depletion of TAMs using clodronate liposomes in these tumours caused them to grow 

faster [30]. More recently, vessels were normalised in murine models of glioma by 

simultaneously inhibiting angiopoietin-2 and VEGF signalling [176], [177]. These 
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tumours had reduced numbers of MRC1+ M2-skewed TAMs [177]. Moreover, depletion 

of TAMs from such mouse gliomas treated with anti-angiopoietin-2 and cediranib (a 

VEGFR inhibitor), using anti-CSF1 reduced survival of these mice, suggesting that the 

TAMs in these tumours had become tumouricidal [176].   

In order to investigate what, if anything, endothelial cells might express in 

tumours that stimulate the accumulation of PV MRC1+ TAMs after DOX treatment, 

endothelial cells were purified from TS1 tumours 48 hours after mice were injected with 

PBS or DOX. Following this, their RNA was isolated and qPCR studies were conducted 

to analyse the expression of genes encoding 31 selected cytokines and adhesion 

molecules, all previously shown to be involved in the process of macrophage 

chemoattraction and/or activation (Table 5.1). 

Three different methods were employed to isolate endothelial cells from these 

mouse tumours: FACS, laser capture microdissection (LCM) and magnetic isolation.  

Each of these methods provided various advantages, described below.   

FACS allows the use of multiple markers (CD45, CD31, etc) to isolate different 

cell subpopulations from one sample (up to 4 using the BD FACS Aria available in my 

department), and thus allowed the collection of both endothelial cells and leucocytes 

from the same tumours. This allows the selection of CD31+ cells which are not 

leucocytes, as TEMs were previously shown to express low levels of CD31 [71]. 

Previously, my supervisor’s group had successfully used FACS to isolate TAMs from 

mouse tumours but not endothelial cells so a protocol for this had to be established as 

part of the work outlined in this chapter [144].  

LCM is usually used to isolate cell populations located in different areas of the 

same tissue section (e.g. stroma and tumour cell islands). Previous studies have used 

LCM to successfully isolate endothelial cells from both murine and human tumour 

sections [254], [255].  

Magnetic isolation of endothelial cells from live cell suspensions derived from 

tumours has also been used to isolate such cells from tumours [256], [257]. However, 
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in the latter case, qPCR has to be used to assess the enrichment of endothelial cells in 

the samples isolated, as an antibody to only one marker (usually CD31) is used to 

select them [256].  

The hypothesis being tested in these studies was that DOX alters the 

expression of one or more genes in tumour endothelial cells which then contribute(s) to 

the accumulation of MRC1+ TAMs around blood vessels. So, the aims of this chapter 

were, therefore, to: 

1. Develop an effective way to isolate endothelial cells from PBS and DOX treated 

TS1 tumours. 

2. Analyse the expression of 31 selected genes, known to influence macrophage 

recruitment, retention and/or phenotype, by these endothelial cells, as 

described in Table 5.1.  

Gene name Abbreviation Function relevance to PV TAMs Ref 

Angiopoietin-2 Angpt2 Chemoattractant for TEMs, 
increases immunosuppressive and 
angiogenic functions in TEMs 

[92], 
[93], 
[99], 
[102], 
[103] 

Ccl2  Ccl2 Attracts CCR2+ monocytes into 
tumours 

[137] 

Ccl3 Ccl3 Retains MAMs in lung metastases [129] 

Ccl4  Ccl4 Monocyte/macrophage 
chemoattractant 

[258] 

Ccl5 Ccl5 Monocyte/macrophage 
chemoattractant 

[259] 

Ccl7  Ccl7 Monocyte/macrophage 
chemoattractant 

[260] 

Ccl8 Ccl8 Monocyte/macrophage 
chemoattractant 

[260] 

Ccl9 Ccl9 Chemoattractive to immature 
myeloid cells 

[261] 

Ccl12 Ccl12 Monocyte/macrophage 
chemoattractant 

[262] 

Colony stimulating 
factor 1 

Csf1 Macrophage growth factor and 
chemoattractant, promotes M2-skew 
and inhibition reduces TAMs in vivo 

[31], 
[108], 
[109], 
[196] 

Colony stimulating 
factor 2 

Csf2 Macrophage growth factor, promotes 
M1-skew 

[31], 
[43] 

Cx3cl1 Cx3cl1 Monocyte/macrophage 
chemoattractant 

[263], 
[264] 
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Cxcl12 Cxcl12 Regulates macrophage 
differentiation and interfering with 
signalling reduces TAMs in vivo 

[144], 
[195] 

Endoglin Eng Involved in monocyte extravasation [265] 
E-selectin Sele Involved in monocyte extravasation [247], 

[266] 
Fas ligand FasL Monocyte/macrophage 

chemoattractant 
[267] 

Fibroblast growth 
factor 1 

Fgf1 Decreases monocyte adhesion to 
endothelial cells 

[268] 

Fibronectin FN1 Chemoattractive to monocytes, 
increases tumouricidal activity of 
macrophages 

[269], 
[270] 

Intercellular 
adhesion molecule 1 

Icam1 Involved in monocyte extravasation 
 
 
 

[247], 
[271] 

Intercellular 
adhesion molecule 2 

Icam2 Involved in monocyte extravasation [247], 
[271] 

Interferon-γ Ifng Induces ‘M1’ phenotype in 
macrophages when combined with 
other stimuli such as LPS or TNF 

[2], [32] 

Interleukin-10 Il10 Induces ‘M2c’ immunosuppressive 
macrophage phenotype 

[2], [42] 

Interleukin-1α Il1a Affects endothelial CAM expression 
to increase monocyte adherence 

[272], 
[273] 

Interleukin-1β Il1b Affects endothelial CAM expression 
to increase monocyte adherence 

[272], 
[273] 

Interleukin-6 Il6 Promotes monocytes to differentiate 
into macrophages rather than 
dendritic cells 

[274] 

Osteopontin Spp1 Extracellular matrix component and 
macrophage chemoattractant 

[275], 
[276] 

Placental growth 
factor 

Plgf TAM chemoattractant, promotes M2-
skew 

[30], 
[277], 
[278] 

Thrombospondin-1 Thbs1 Chemoattractive to macrophages, 
increases phagocytic activity 

[279] 

Tumour necrosis 
factor  

Tnf Induces ‘M1’ phenotype in 
macrophages when combined with 
IFN-γ 

[2] 

Vascular cellular 
adhesion molecule 1 

Vcam1 Involved in monocyte extravasation [252] 

Vascular endothelial 
growth factor A 

Vegfa Monocyte/macrophage 
chemoattractant 

[280] 

Table 5.1 Genes assayed using qPCR, for primer sequences see section 2.1.7. 
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5.2 Methods 

The basic steps involved in these three different endothelial cell isolation methods are 

summarised in Figure 5.1.  

For FACS based isolations, there was limited availability of the BD FACS Aria in 

my Department (which was only available during core facility hours and in fairly 

constant use). Tumours were, therefore, cut into chunks and preserved in 

cryopreservation buffer and stored in liquid nitrogen, until the FACS Aria was available 

for use. The TS1 tumours were enzymatically dispersed (as described in section 2.2.5) 

and incubated with the antibodies listed in Table 5.2, along with the viability dye 

Zombie NIR (diluted 1 in 1000), for 40 minutes, whilst covered, rocking and on ice. 

Samples were then washed twice in FACS buffer before sorting the cells on the FACS 

Aria. The gating strategy was set using FMO controls and is shown in Figure 5.2. Three 

subpopulations were then selected on the basis of the expression of a pan-endothelial 

marker, CD31 [137], [281] and the pan-leucocyte marker CD45: CD31- CD45- cells 

(gate 3c); CD31+ CD45- cells (gate 3a i.e. endothelial cells) and CD31- CD45+ cells 

(gate 3b). Cells were then sorted into RLT lysis buffer (from the RNeasy Mini kit). 

Finally, RNA was collected from the cells using the RNeasy Mini kit as described in 

section 2.2.15.1. RNA was quantified using the NanoDrop as described in section 

2.2.15.5. 

 

Antibody Fluorophore Clone 
Conc  

(µg/mL) 

Rat (m) Anti-Mouse CD45 Brilliant Violet 421 30-F11 4 

Rat (m) Anti-Mouse CD31 AlexaFluor488 MEC13.3 10 

Table 5.2 Antibodies used in FACS sorting of TS1 tumours (m) = monoclonal antibody 

 

LCM was performed as described in section 2.2.13. Briefly, 10μm sections were 

cut using a cryostat and collected onto uncharged glass slides. The Rapid-Immuno 

staining protocol was used to stain collagen IV on the basement membrane of 
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endothelial cells. The Pixcell II LCM system was used to collect collagen IV+ cells. RNA 

was then isolated using the PicoPure kit as described in section 2.2.15.2. RNA quantity 

and quality was assessed using the Agilent Bioanalyzer 2100, described in section 

2.2.15.4.  

Magnetic isolation of a CD31-enriched cell fraction was carried out as described 

in section 2.2.14. Briefly, tumour digests (as described in section 2.2.5) were washed in 

HBSS with 10% FCS three times. The cell pellet was then resuspended in 1mL HBSS 

with 10% FCS and 2.4x106 Sheep anti-rat IgG Dynabeads conjugated to rat anti-mouse 

CD31 antibody and left incubating rocking at 4°C for 30 minutes. Following the 

incubation, the cells were washed using the DynaMag-15 magnet with HBSS with 10% 

FCS 6 times. RNA was isolated from these cells using the RNeasy Plus Mini kit as 

described in section 2.2.15.3. RNA was first quantified using the NanoDrop (section 

2.2.15.5) and then the RNA integrity was assessed using the Agilent Bioanalyzer 2100 

(section 2.2.15.4). RNA isolated from this experiment was converted to cDNA using the 

QuantiTect Reverse Transcription kit (section 2.2.16).  

Enrichment of the CD31-enriched cell fraction isolated via magnetic separation 

was assessed by qPCR, using the protocol described in section 2.2.17. 2.5ng of cDNA 

was used per well and the 2^-ΔΔCt method was used to compare the expression of 

Acta2 (α-SMA, a marker of fibroblasts, pericytes and smooth muscle cells); Adgre1 

(F4/80, a marker of macrophages); Epcam (a marker of epithelial and tumour cells); 

Itgam (CD11b, a marker of myeloid cells) and Pecam1 (CD31, a marker of endothelial 

cells) in the CD31-enriched cell fraction with the CD31-depleted cell fraction. Actb 

expression was also measured and used to normalise gene expression as a 

housekeeper. 

Gene expression analysis was performed in the CD31-enriched cell fractions 

using qPCR as described in section 2.2.17. 1ng of cDNA was used per well and the 2^-

ΔΔCt method was used to compare the expression of genes, described in Table 5.1, in 

CD31-enriched cell fractions from both DOX and PBS treated tumours. 
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Figure 5.1 Various methods used to isolate tumour endothelial cells. 
Method 1 used fluorescently conjugated antibodies and FACS to identify cell populations in 
tumour digests and sort them accordingly. Laser capture microdissection (LCM, method 2) uses 
immunohistochemical staining of frozen sections and selection of cells using a laser 
microdissection rig to isolate cells. Magnetic isolation (method 3) allows sorting of CD31

+
 cells 

from tumour digests using magnetic Dynabeads conjugated to anti-CD31. 
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Analysis of selected genes in the CD31-depleted cell fractions was performed 

as described above to compare gene expression in CD31-depleted cell fractions from 

PBS and DOX treated tumours. Gene expression analysis was restricted to the genes 

previously shown to be upregulated by the CD31-enriched cell fraction in response to 

DOX. Primer sequences for genes analysed can be found in section 2.1.7. 

 

Figure 5.2 Flow cytometric analysis of CD31 and CD45 in digested tumours. 

Tumours were digested and labelled with fluorescently conjugated antibodies. The LSR II was 
used to analyse CD31 and CD45 expression on digested tumours. The gating strategy was set 
using FMO controls. Cells were selected based on forward scatter and side scatter profiles (1); 
before gating on viable cells, which excluded the viability dye Zombie NIR (2). Three cell 
populations can be identified using this method: CD31

+
 CD45

-
 cells (3a); CD45

+
 CD31

-
 cells 

(3b) and CD45
-
 CD31

-
 cells (3c).  
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5.3 Results 

5.3.1 Isolation of endothelial cells using FACS. 

Due to the limited availability of the FACS Aria, the LSR II was first used to determine 

whether CD31 and CD45 could be detected on cells from the cyropreserved TS1 

tumours using flow cytometry. Figure 5.2 shows representative CD31 and CD45 

staining on cells in dissociated TS1 tumours, demonstrating that endothelial cells were 

present and detectable in these samples. RNA yields from the FACS sorting were 

initially negligible, possibly due to cell death prior to RNA isolation. This could have 

been due to cells being resuspended in Iscove’s Modified Dulbecco’s Medium prior to 

RNA isolation. In order to increase the RNA yield, cells were alternatively collected into 

RLT lysis buffer from the RNeasy Mini Kit, at a ratio of 1mL sorted cells to 3mL RLT 

buffer. This allowed cells to lyse on contact with the lysis buffer, thus improving RNA 

yields. 

The FACS Aria was used to identify and isolate the three main different cell 

populations: CD31+ CD45- cells (Figure 5.3A, gate 3a i.e. endothelial cells); CD31- 

CD45+ cells (Figure 5.3A, gate 3b i.e. leucocytes) and CD31- CD45- cells (Figure 5.3A, 

gate 3c, i.e. a population of any remaining tumour cells and cells like fibroblasts and 

pericytes). The FACS Aria is only able to record data for 10,000 events in total – and 

as the endothelial cells were rare events in comparison to the tumour cells and 

leucocytes, the population inside gate 3a does not appear very abundant. Despite this, 

25,000 cells were collected from population 3a.  

RNA was isolated from the sorted cells using the RNeasy kit as described in 

section 2.2.15.1. Figure 5.3B demonstrates the low yield of RNA from the CD31+ CD45- 

cells both before (i) and after (ii) the RNA was cleaned up using water-saturated 

butanol as described (section 2.2.15.6). Green arrows on the NanoDrop traces indicate 

where the typical RNA peak is seen at the 260nm wavelength if RNA yields are good. 
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As the RNA yields were too low to be used in subsequent qPCR analyses, alternative 

methods to isolate endothelial cell specific RNA were then attempted. 

 

Figure 5.3 FACS isolation of endothelial cells from digested tumours. 
Tumours were digested and labelled with fluorescently conjugated antibodies. The FACS Aria 
machine was then used to separate three different populations from the tumours. The sample 
gating strategy is shown in A. (1) First cells were selected based on forward scatter and side 
scatter profiles; (2) before selecting viable cells that excluded Zombie NIR viability dye. 
Following this three cell populations were sorted: (3a) CD31

+
 CD45

-
 cells; (3b) CD45

+
 CD31

-
 

cells and (3c) CD45
-
 CD31

-
 cells. (B i) Example NanoDrop traces from the CD31

+
 CD45

-
 

population is shown after RNA isolation and (B ii) following a clean-up of RNA with water-
saturated butanol. Green arrows indicate the typical position of a RNA peak at 260nm. 
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5.3.2 Isolation of endothelial cells using LCM. 

As mentioned previously, LCM represents an alternative approach for the isolation of 

endothelial cells. Previously, a rapid staining protocol was optimised using collagen IV 

to identify blood vessels (as described in section 2.2.13) by Dr Julie Simpson at the 

Sheffield Institute of Translational Neuroscience. Collagen IV has been shown to stain 

the basement membrane of the endothelium in murine tumours (LLCs, RIP-Tag2 

pancreatic tumours and MCa-IV mammary tumours), and co-localises with CD31 

staining [193]. Representative tumour collagen IV staining is shown in Figure 5.4A. An 

attempt was therefore made to isolate collagen IV+ endothelial cells from frozen TS1 

tumour sections.  

Figure 5.4B shows images taken during the LCM of blood vessels from these 

sections. As coverslips were absent during this procedure, the light refraction was less 

than optimal and so the background staining appears more intense in these images, 

but this was unavoidable. It was still possible to discern collagen IV+ blood vessels from 

this background staining during the LCM procedure (Figure 5.4Bi, see black arrows). 

During LCM (Figure 5.4Bii), a ‘halo-like’ appearance can be noted around the cells 

which are to be captured. Following capture, gaps can be seen in the tissue (note black 

arrows in Figure 5.4iii), which indicate the collagen IV+ cells have been successfully 

isolated. As demonstrated by Figure 5.4Biv, LCM collects collagen IV+ cells onto the 

cap of the laser microdissection rig. The RNA was then collected from these cells using 

the PicoPure RNA Isolation Kit (described in section 2.2.15.2.) It is very important to 

check the RNA integrity of samples, particularly when dealing with samples isolated 

using LCM, as the RNA is isolated from tissue which is already dead. Therefore, the 

Agilent 2100 Bioanalyzer was used to analyse the RNA integrity of the samples 

isolated.  

Figure 5.4C shows a typical trace from an Agilent Bioanalyzer demonstrating 

that these samples had very poor RNA integrity (as noted by the loss of the peaks at 

the 18S and 28S ribosomal RNA sites) [282]. The RIN value for the collagen IV+ cells 
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isolated was on average 2.1 out of a possible 10, demonstrating a degradation of the 

RNA (n=2). As the RNA quality was poor, LCM was deemed an unsuccessful method 

for isolating endothelial cell RNA and therefore, an alternative method was required. 

 

 
Figure 5.4 Isolation of endothelial cells via Laser Capture Microdissection. 
(A) 10µM thick frozen sections were collected onto uncharged glass slides and stained using 
the described Rapid-Immuno technique for Collagen IV (scale bar= 200μm). Collagen IV

+
 cells 

were collected using laser capture microdissection. Images in B demonstrate the (i) collagen IV 
stain before the laser is fired, note the black arrows indicating vessel-like collagen IV

+
 

structures; (ii) during the laser being fired - note the halo-like appearance around vessels; (iii) 
after the laser is fired – the collagen IV

+
 cells have now been collected onto the cap of the 

dissection rig, note the gaps in tissue, indicated by the black arrows and (iv) an image of the 
cap, showing the collected cells. (C) RNA was then isolated from the collected cells and the 
quality was analysed using the Agilent 2100 Bioanalyzer. An example trace from the 
Bioanalyzer is shown. 
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5.3.3 Successful isolation of RNA from CD31+ cells using magnetic Dynabeads. 

As both FACS sorting and LCM failed to produce high yields of intact RNA, a third 

method for isolating endothelial cells was then attempted. Magnetic Dynabeads 

conjugated to an anti-CD31 antibody were used to isolate CD31+ cells from dissociated 

tumours, and then the RNA was extracted immediately from these cells. Using this 

method RNA was isolated successfully from CD31-enriched cells (Figure 5.5Ai) and all 

other (i.e. CD31-depleted) cells passing through the cell sorting column (Figure 5.5Aii).  

This yielded improved RNA quality to that seen in the LCM-based isolation methods 

(Figure 5.5B).  

The success of this method can be noted by the clear peak at the 260nm 

wavelength where RNA is detected, as shown by green arrows on the NanoDrop 

traces (Figure 5.5A). Having successfully isolated RNA, the integrity was checked 

using the Agilent Bioanalyzer 2100. As shown in Figure 5.5B the RNA integrity was 

improved in RNA isolated in this way, with traces taken from the Agilent Bioanalyzer for  

shown for CD31-enriched (Figure 5.5Bi) and CD31-depleted cell fractions (Figure 

5.5Bii). Of note clear peaks are seen at the 18S and 28S ribosomal RNA sites, 

demonstrating intact RNA. As this magnetic method was able to yield intact RNA from 

both the CD31-enriched and CD31-depleted cell fractions, this method was employed 

to isolate RNA from both PBS and DOX treated TS1 tumours (n=3 tumours per group). 

 

5.3.4 Assessing the enrichment of endothelial cells in the CD31-enriched fraction 

of cells using qPCR. 

Having successfully extracted RNA from the CD31-enriched and CD31-depleted cell 

fractions isolated from tumour samples, qPCR was then used to assess the relative 

expression of Pecam1 (CD31, expressed by blood vessels), Epcam (a tumour cell 

marker); Itgam (CD11b, a myeloid cell marker); Adgre1 (F4/80, a macrophage marker); 

and Acta2 (α-SMA, a gene expressed by fibroblasts, pericytes and smooth muscle 

cells) in CD31-enriched and CD31-depleted samples in order to assess whether the 
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magnetic isolation of endothelial cells had been successful. Figure 5.6A shows the fold 

change of these genes, as calculated using the 2^-ΔΔCt method, normalising gene 

expression to Actb (β-actin).  

 

 

Figure 5.5 Isolation of CD31-enriched cells using magnetic bead isolation. 
Tumours were digested and labelled with anti-CD31 conjugated Dynabeads. The DynaMag 
magnet was then used to isolate the CD31

+
 cells. The RNeasy Plus kit was used to isolate 

RNA from both the CD31
+
 cells (Ai) and CD31

- 
cells (Aii) as seen in the NanoDrop traces – 

green arrows indicate peak at 260nm. RNA quality was assessed using the Agilent Bioanalyzer 
2100 for both cell populations as shown in B (i – example of a CD31

+
 cell trace; ii- example of 

a CD31
-
 cell trace). 
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Expression of the genes of interest were normalised to the housekeeper gene 

Actb, as the Ct values for this gene remained constant amongst samples, regardless of 

CD31 expression (i.e. CD31-enriched and CD31-depleted samples) and treatment 

(PBS or DOX). Pecam1 expression was significantly increased in the CD31-enriched 

cell fractions, with an average fold change of 54.39 (± 12.49) compared to the CD31-

depleted cell fractions, demonstrating that the former were enriched for endothelial 

cells. Expression of Epcam was significantly lower in CD31-enriched cell fractions by 

an average fold change of 0.48 (± 0.15) compared to the CD31-depleted cell fractions, 

demonstrating that they were also not highly contaminated by tumour cells. The Itgam 

relative expression of the CD31-enriched cell fractions was decreased by an average 

fold change of 0.60 (± 0.13) compared to the CD31-depleted cell fractions, suggesting 

that the CD31-enriched cell fractions were also not enriched for myeloid cells. Finally, 

Adgre1 relative expression was decreased by an average fold change of 0.40 (± 0.08) 

in the CD31-enriched cell fractions compared to the CD31-depleted cell fractions, 

demonstrating a depletion of macrophages from the CD31-enriched cell fractions.  

Acta2 relative expression remained unchanged between the CD31-enriched 

and CD31-depleted cell fractions (mean fold change 1.26 ± 0.23), which suggests that 

transcripts for fibroblast-like cells or pericytes remained unchanged between samples. 

This is likely explained by pericytes, which coat the vessels of these tumours, 

remaining attached to the endothelial cells. More vigorous wash steps were introduced 

to eliminate this possible source of contamination; however this caused all cells to 

detach from the Dynabeads and resulted in negligible RNA yields. Importantly, the 

CD31-enriched cell fractions did not have an increase in Acta2 expression, 

demonstrating that these samples, while enriched for endothelial cells, were not 

enriched for pericytes. 

ΔCt values were used to calculate if there were statistically significant changes 

in gene expression between CD31-enriched and CD31-depleted cell fractions as 

shown in Figure 5.6 (panels B-F). An increased ΔCt value indicates a lower expression 
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of the gene examined. The CD31-enriched cell fractions had significantly lower 

expression of Epcam (mean= 4.24 ± 0.35) compared to the CD31-depleted cell 

fractions (mean= 2.84 ± 0.20, Paired t-test p=0.0109, Figure 5.6B). Itgam expression 

(Figure 5.6C) was also significantly lower in the CD31-enriched cell fractions (CD31-

enriched mean= 9.67 ± 0.30, CD31-depleted mean= 8.63 ± 0.33, Paired t test 

p=0.0433), as was Adgre1 expression (CD31-enriched mean= 10.37 ± 0.43, CD31-

depleted mean= 8.92 ± 0.27, Paired t test p=0.0020, Figure 5.6D). 

Importantly, the CD31-enriched cell fractions had significantly increased 

Pecam1 expression (mean= 4.90 ± 0.38) compared to the CD31-depleted cell fractions 

(mean= 10.49 ± 0.20, Paired t test p<0.0001, Figure 5.6F). Acta2 expression was 

consistent between CD31-enriched (mean= 5.94 ± 0.23) and CD31-depleted cell 

fractions (mean= 6.13 ± 0.31, Paired t test p=0.2819, Figure 5.6E).  

Taken together, the above data indicate that the magnetic isolation was 

relatively successful and the CD31-enriched cell fractions were significantly enriched 

for endothelial cells. 
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Figure 5.6 Magnetic isolation of CD31
+
 cells enriches Pecam1 expression and decreases 

Epcam, Itgam and Adgre1 expression in the CD31-enriched fraction of cells compared to 
CD31-depleted fraction of cells.  

RNA was isolated from CD31-enriched cells (as selected using anti-CD31 conjugated 
Dynabeads) and CD31-depleted

 
cells. Real time qPCR was used to determine the relative 

expression of 5 different gene transcripts, representative of different cell populations: Epcam 
(protein name: epithelial cell adhesion molecule, a marker of tumour cells), Itgam (protein name: 
integrin αM also known as CD11b, a myeloid cell marker); Adgre1 (protein name: F4/80, 
expressed by macrophages); Acta2 (protein name: α-smooth muscle actin, expressed by 
fibroblasts, smooth muscle cells and pericytes) and Pecam1 (protein name CD31; a vascular 
marker). Fold change (A) was calculated using the 2^

-ΔΔCt 
method, with gene expression 

normalised to the housekeeper Actb (β-actin). ΔCt values are plotted for the individual genes – 
B Epcam expression; C Itgam expression; D Adgre1 expression; E Acta2 expression and F 
Pecam1 expression. n=6 tumours. Paired t tests *p<0.05; **p<0.01 ***p<0.0001 
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5.3.5 DOX significantly increases Angpt2 expression in CD31-enriched cells. 

The mRNA levels for the genes listed in Table 5.1 were then assessed in the CD31-

enriched and CD31-depleted cell fractions using qPCR. 

To understand how PV MRC1+ TAMs were increased after DOX, endothelial 

cell expression of chemokines previously shown to recruit monocytes into tumours 

were investigated, including Angpt2, Csf1, Cxcl12, and Plgf [102], [109], [144], [277]. 

The level of mRNA expression of these genes was examined in tumour endothelial 

cells, as increases in these genes may have contributed to the observed increase in 

PV MRC1+ TAMs 48 hours after DOX treatment. Figure 5.7A shows fold change 

expression of chemokines analysed including Angpt2, Ccl4, Ccl5, Csf1, Cx3cl1, 

Cxcl12, Il1b, Plgf and Vegfa. Angpt2 was upregulated by an average of 4.90 (± 1.87) 

fold in the CD31-enriched cell fractions isolated from DOX treated tumours compared 

to those isolated from PBS treated tumours. Cx3cl1 was also upregulated in CD31-

enriched cell fractions from DOX treated tumours by 5.51 (± 1.25) fold, as was Plgf 

(mean= 1.62 fold ± 0.03) and Vegfa (mean= 2.69 fold ± 0.69), compared to those 

isolated from PBS treated tumours. The expression of Ccl4, Ccl5, Csf1, Cxcl12, and 

Il1b did not change in CD31-enriched cell fractions isolated from tumours treated with 

DOX compared to those isolated from PBS treated tumours and mean fold change 

values can be found in Table 5.3. This suggests that in response to DOX treatment, 

tumour endothelial cells upregulate their expression of Angpt2, Cx3cl1, Plgf and Vegfa. 

Extravasation of monocytes (TAM precursors) relies on the expression of 

adhesion molecules on the surface of endothelial cells, like E-selectin and VCAM-1 

[247]. Adhesion molecule expression was therefore also analysed and fold change of 

genes: Eng, Fn1, Icam2, Sele, Spp1, Thbs1 and Vcam1 are shown in Figure 5.7B. 

Spp1 expression was increased (mean= 3.84 fold induction ± 1.26) in the CD31-

enriched cell fractions isolated from DOX treated tumours compared to those isolated 

from PBS treated tumours. Expression of Eng, Fn1, Icam2, Sele, Thbs1 and Vcam1 

were not altered when comparing the CD31-enriched cell fractions from PBS and DOX 
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treated tumours and mean fold change values can be found in Table 5.3. Therefore, 

only Spp1 expression was increased in tumour endothelial cells in response to DOX 

treatment. 

Gene Fold change (mean ± SEM) 

Ccl4 0.58 ± 0.15 

Ccl5 0.78 ± 0.16 

Csf1 0.78 ± 0.10 

Cxcl12 1.54 ± 0.52 

Il1b 0.57 ± 0.14 

Eng 1.37 ± 0.51 

Fn1 1.18 ± 0.09 

Icam2 0.85 ± 0.14 

Sele 1.11 ± 0.42 

Thbs1 1.08 ± 0.36 

Vcam1 1.13 ± 0.22 

Table 5.3 Comparing gene expression in the CD31-enriched cell fractions isolated from 
tumours treated with PBS and DOX. n=3 cell fractions per treatment group. 

 

ΔCt values for genes showing a biologically relevant increase of 1.5 fold change 

or more (i.e. gene expression had increased by 50% compared to PBS-treated 

samples [205], [283]) were then plotted and used to calculate if the increases were 

statistically significant using unpaired t-tests. A lower ΔCt value indicates increased 

expression. Angpt2 expression (Figure 5.7C) was significantly increased in DOX 

treated CD31-enriched cell fractions (mean= 7.57 ± 0.55) compared to those isolated 

from PBS treated tumours (mean= 9.66 ± 0.19, unpaired t test p=0.0230). Cx3cl1 

(Figure 5.7D) showed a trend for an increase in expression in the DOX treated CD31-

enriched cell fractions (mean= 7.32 ± 0.33) compared to those isolated from PBS 

treated tumours (mean= 9.70 ± 0.97, unpaired t test p=0.0808). Plgf (Figure 5.7E, PBS 

mean= 5.84 ± 0.45, DOX mean= 5.14 ± 0.03, unpaired t test p=0.1961) and Vegfa 

(Figure 5.7F, PBS mean= 8.31 ± 1.35, DOX mean= 7.01 ± 0.45, unpaired t test 

p=0.4116) expression were not significantly different, despite DOX treatment inducing 

biologically relevant fold increases in gene expression. This was also true for Spp1 

expression (Figure 5.7G, PBS mean= 2.43 ± 1.07, DOX mean= 0.65 ± 0.47, unpaired t 
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test p=0.2007). Therefore, while Angpt2, Cx3cl1, Plgf, Vegfa and Spp1 all had a fold 

induction of at least 1.5 fold in CD31-enriched cell fractions isolated from DOX treated 

tumours compared to those isolated from tumours treated with PBS; Angpt2 was the 

only gene that was statistically significantly upregulated in response to DOX. 

 

5.3.6 DOX significantly increased the mRNA levels for Angpt2, Plgf and Spp1 in 

CD31-depleted cell fractions. 

Angpt2, Cx3cl1, Plgf, Vegfa and Spp1 expression showed biologically relevant 

increases in the CD31-enriched cell fractions in response to DOX. In order to assess 

whether the increases in the expression of these genes were specific to the CD31-

enriched cell fractions, qPCR was used to analyse expression of these genes in the 

CD31-depleted cell fractions. Fold change for these genes is shown in Figure 5.8A. 

Angpt2 (mean= 4.16 ± 0.94); Cx3cl1 (mean= 3.21 ± 1.20), Plgf (mean= 1.68 ± 0.20) 

and Spp1 (mean= 5.29 ± 0.33) were all upregulated in the CD31-depleted cell fractions 

isolated from DOX treated tumours compared to those isolated from PBS treated 

tumours. Vegfa (mean= 1.03 ± 0.25) was not altered in the CD31-depleted cell 

fractions isolated from DOX treated tumours compared to those in PBS treated 

tumours.  

ΔCt values were used to identify genes that had statistically significant 

increases. Angpt2 expression (Figure 5.8B) was significantly increased in the CD31-

depleted cell fractions isolated from DOX treated tumours (mean= 9.60 ± 0.37) 

compared to those isolated from PBS treated tumours (mean= 11.57 ± 0.38, unpaired t 

test p=0.0208). This was also true for Plgf expression (Figure 5.8D, PBS mean= 4.34 ± 

0.15, DOX mean= 3.62 ± 0.18, unpaired t test p=0.0359) and Spp1 expression (Figure 

5.8F, PBS mean= 0.31 ± 0.33, DOX mean= -2.09 ± 0.09, unpaired t test p=0.0021).  
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Figure 5.7 DOX significantly increases Angpt2 expression in the CD31-enriched cell 
fractions. 
qPCR was used to analyse gene expression of several chemokines and adhesion molecules. 
Fold change of chemokines (A) and adhesion molecules (B) was calculated using the 2

^-ΔΔCt 

method normalising gene expression to Actb. Each point represents 1 individual tumour and 
bars show mean with SEM.  Dotted lines represent biologically relevant fold changes of 0.5 (i.e. 
50% decrease) or 1.5 fold (i.e. 50% increase). Genes which show biologically relevant 
increases are highlighted with green symbols. ΔCt  values for genes showing fold increases of 
over 1.5 fold are shown with bars representing mean and error bars show SEM: Angpt2 (C); 
Cx3cl1 (D); Plgf (E); Vegfa (F) and Spp1 (G). Lower ΔCt values indicate increased gene 
expression. n=3; Unpaired t-tests *indicates p<0.05.  
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Cx3cl1 (Figure 5.8C, PBS mean= 8.84 ± 0.72, DOX mean= 7.33 ± 0.49, 

unpaired t test p=0.1607) and Vegfa (Figure 5.8E, PBS mean= 5.85 ± 0.66, DOX 

mean= 5.89 ± 0.37, unpaired t test p=0.9588) were not significantly upregulated in the 

CD31-depleted cell fractions from DOX treated tumours compared to those isolated 

from PBS treated tumours. Therefore only Vegfa was specifically upregulated in tumour 

endothelial cells in response to DOX, whereas Angpt2, Cx3cl1, Plgf, and Spp1 were 

found to be upregulated in both the CD31-enriched and CD31-depleted cell fractions, 

suggesting that these changes in mRNA levels are not exclusive to endothelial cells in 

DOX-treated tumours. 
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Figure 5.8 DOX increases expression of Angpt2, Cx3cl1, Plgf and Spp1 but not Vegfa in 
CD31-depleted cell fractions. 
qPCR was used to analyse gene expression of molecules previously shown to be upregulated 
following DOX treatment in the CD31-enriched fraction of cells. Fold change of Angpt2, Cx3cl1, 
Plgf, Spp1 and Vegfa (A) was calculated using the 2^

-ΔΔCt 
method normalising gene expression 

to Actb. Each point represents 1 individual tumour and error bars show mean with SEM. Dotted 
lines represent biologically relevant fold changes of 0.5 (i.e. 50% decrease) or 1.5 fold (i.e. 50% 
increase). Genes which are increased by at least 1.5 fold are highlighted with green symbols.  
ΔCt values are shown with bars representing mean and error bars show SEM. Lower ΔCt value 
signifies increased expression. Angpt2 (B); Cx3cl1 (C); Plgf (D); Vegfa (E) and Spp1 (F). n=3; 
Unpaired two-tailed t-test * indicates p≤0.05; ** indicates p≤0.01.  
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5.4 Discussion 

The work described in this chapter aimed to further analyse tumour endothelial cells 

isolated from TS1 tumours treated with PBS or DOX using qPCR, as changes in the 

expression of one or more genes for chemokine or adhesion molecules could help to 

explain the increase in PV MRC1+ TAMs present in TS1 tumours after DOX treatment. 

Three different approaches were taken to isolate tumour endothelial cells, with the 

most successful being magnetic isolation. Analysing gene expression of the CD31-

enriched cell fractions revealed unique insights into their phenotype after DOX 

treatment; Vegfa was specifically upregulated in the CD31-enriched cell fractions 

isolated from DOX treated tumours compared to those isolated from PBS treated 

tumours. Both CD31-enriched and CD31-depleted cell fractions also upregulated 

Angpt2, Cx3cl1, Plgf, and Spp1 in response to DOX.  

Magnetic isolation of endothelial cells was the most successful method for 

isolating RNA from endothelial cells, as the RNA yields were higher than those 

obtained from cells isolated via FACS or LCM. Moreover the RNA was of better quality 

(increased RNA integrity) than samples isolated via LCM. Using magnetic isolation, 

only two subpopulations of cells were separated from tumours on the basis of their 

CD31 expression. There were concerns over extending length the isolation protocol by 

adding in extra magnetic isolation steps as this may have impacted upon cell viability 

and thus the quality and quantity of the RNA isolated. In future, multiple magnetic 

isolation steps could be used, which may increase the purity of samples and increase 

the number of subpopulations isolated. 

As samples were isolated using magnetic beads, only CD31 was used to 

identify cells, rather than using multiple markers to identify endothelial cells. It was 

therefore imperative to assess the enrichment of these samples. On average, the fold 

induction of Pecam1 expression in the CD31-enriched cell fractions was 54.39, 

however this did vary from sample to sample. A minimum induction of 24.31 fold was 
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seen in samples, which was deemed sufficient, as previous studies isolating 

endothelial cells with magnetic beads used samples with a minimum CD31 expression 

induction of 6 fold [257].  

The expression of the myeloid cell transcript marker Itgam, macrophage 

transcript marker Adgre1 and epithelial and tumour cell marker Epcam were 

significantly decreased in the CD31-enriched cell fractions compared to the CD31-

depleted cell fractions. As the magnetic isolation was less rigorous than a multi-panel 

FACS sort, it was likely that pericytes could still be attached to some of the endothelial 

cells in the sample. In order to eliminate this, more vigorous wash steps were 

attempted, but this resulted in negligible RNA yields, so the wash steps were reduced. 

Acta2 expression was not changed when comparing CD31-enriched and CD31-

depleted cell fractions. This is likely as Acta2 is marker of smooth muscle cells, 

fibroblasts and importantly pericytes, which are known to coat the vasculature of these 

tumours. Importantly, the CD31-enriched cell fraction was not significantly enriched for 

Acta2 expression, suggesting that while the pericytes may not have been depleted 

from the sample, the sample was equally not enriched with pericytes compared to the 

CD31-depleted cell fractions. 

These studies were the first to examine gene expression of tumour endothelial 

cells which had been exposed to DOX in vivo. Four genes were found to be 

upregulated in both CD31-enriched and CD31-depleted cell fractions isolated from 

DOX treated tumours compared to those isolated from PBS treated tumours. Vegfa 

was the only gene found to be increased in tumour endothelial cells alone in response 

to DOX although this increase failed to achieve statistical significance. Previous studies 

in the MMTV-PyMT and PyMT implanted tumours demonstrate that TAMs constitute 

the major source of VEGF-A within both untreated and DOX treated tumours [88], 

[144]. However, those studies examined VEGF-A protein, rather than mRNA.  It is 

possible that use of in situ hybridisation for Vegfa mRNA might have revealed the 

presence of additional cell types expressing Vegfa mRNA within these tumours (i.e. 
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cells making Vegfa mRNA but not yet the protein). The relevance of cells which 

express Vegfa at the mRNA, but not protein level is questionable however.  

The relevance of VEGF signalling in tumours has been explored in depth. 

VEGF-A is a well-characterised pro-angiogenic molecule and the target of readily 

available drugs such as bevacizumab (an anti-VEGF targeting antibody) [230], [284]. 

Others have also demonstrated VEGF-A is a chemoattractive molecule for 

macrophages [280]. Initially, it was thought that targeting VEGF signalling in tumours 

would prevent tumour angiogenesis and therefore tumour growth, although drug 

resistance to these therapies develop rapidly [183]. Standard high doses of anti-

angiogenic therapies induce hypoxia which causes an upregulation of other 

proangiogenic genes, which then lead to revascularisation of the tumour and tumour 

regrowth [183], [285]. More recently, these anti-angiogenic drugs have been 

repurposed as drugs for vascular normalisation – the concept of normalising the poorly 

perfused tumour vasculature, to a ‘normalised’ network of blood vessels that 

successfully deliver anti-tumour drugs [184]. 

This current study is the first to show DOX acting to upregulate Vegfa in 

tumoural endothelial cells in vivo, although chemotherapy has previously been shown 

to influence VEGF-A expression by other cell types in mouse tumours. For example, 

cyclophosphamide was shown to increase the numbers of MRC1+ VEGFA+ TAMs 

within LLCs in mice [144]. Moreover, the total TAM population in these 

cyclophosphamide-treated LLCs were also shown to release more VEGFA than TAMs 

isolated from tumours treated with PBS [144]. In the current studies, the cell types 

which express VEGF-A at the protein level were not investigated due to time 

constraints and would need to be explored further to understand if the increase in 

VEGF-A expression is limited to endothelial cells in TS1 tumours. According to the 

qPCR analysis, non-endothelial cells did not alter their Vegfa expression 48 hours after 

DOX treatment in this TS1 model. However, it is possible that there may be discord 

between the mRNA expression data and protein expression data.  
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In breast cancer patients, adjuvant chemotherapy (various regimens – all 

including either DOX or epirubicin) given to patients post-surgery has been shown to 

increase circulating VEGF [286]. Additional studies also showed serum VEGF 

concentration to be increased in patients with locally advanced breast cancer following 

two treatment cycles of chemotherapy (epirubicin/ docetaxel; cyclophosphamide/ 

epirubicin/ 5-fluorouracil or 5-fluorouracil/ epirubicin/ cyclophosphamide) [287]. These 

studies support the finding that DOX upregulates Vegfa in endothelial cells of TS1 

tumours. Another study in breast cancer patients revealed that those with larger 

tumours (>5cm) had decreased circulating VEGF following chemotherapy (treatment 

with epirubicin and paclitaxel alone or in combination with cyclophosphamide), 

suggesting that expression of this cytokine may change depending on the 

characteristics of the primary tumour [288]. 

Combining VEGF-targeting therapies with chemotherapy has been explored in 

the treatment of several types of cancer [230]. In metastatic colorectal cancer, 

bevacizumab increased both overall and progression free survival of patients treated 

with fluorouracil alone or those treated with a combination of fluorouracil and irinotecan 

[289], [290]. Combining anti-angiogenic drugs with chemotherapy (paclitaxel and 

carboplatin with bevacizumab or docetaxel and ramucirumab - a VEGFR2 blocking 

antibody) in non-small cell lung cancer (NSCLC) patients significantly increased their 

overall and progression free survival [291], [292]. The effect of bevacizumab in the 

treatment of triple negative breast cancer (TNBC) is somewhat controversial. In a 

phase III trial, bevacizumab was combined with anthracycline or taxane based therapy 

in TNBC patients in the adjuvant setting (i.e. post-surgery) although this did not seem 

to affect overall survival of patients [293]. Conversely, studies which combined neo-

adjuvant epirubicin, cyclophosphamide and docetaxel with bevacizumab significantly 

increased the pathological complete response rate (recognised as an absence of 

invasive or noninvasive residual tumour in the breast and lymph nodes), within a cohort 

of TNBC patients [294]. Perhaps neoadjuvant delivery of bevacizumab is more 
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effective in TNBC patients, explaining the difference between these studies. It would be 

interesting to combine bevacizumab with DOX in the treatment of TS1 tumours and see 

the impact of these therapies on PV MRC1+ TAM accumulation and tumour relapse, as 

VEGF-A may be one of the factors which causes TAMs to increase in the PV niche. 

Increases in Angpt2 mRNA expression were detected within DOX-treated TS1 

tumours in both the CD31-enriched and CD31-depleted cell fractions. The CD31-

depleted cells which expressed Angpt2 could potentially be tumour cells or 

macrophages, as others have previously reported Angpt2 expression in these cell 

types [250], [295], [296]. Angiopoietin-2 has multiple effects in tumours including acting 

as a proangiogenic molecule on the tumour vasculature [99], [101]. Previous studies 

have shown that TEMs treated with angiopoietin-2 had increased pro-angiogenic and 

immunosuppressive activities, suggesting that angiopoietin-2 can increase pro-

tumoural functions in TEMs [99], [103]. Moreover, inhibiting angiopoietin-2 signalling 

using an antibody to angiopoietin-2, was shown to significantly inhibit tumour growth 

and metastasis, suggesting angiopoietin-2 is a molecule which supports tumour 

progression [102]. DOX treatment was shown to increase PV MRC1+ TAMs, and this 

could be potentially due to the increased Angpt2 expression, if these cells were also 

shown to express the Tie2 receptor. Expression of the Tie2 receptor was not examined 

on PV MRC1+ TAMs, however, TEMs are a subset of TAMs, often found within the PV 

niche of tumours, and express M2-skewed markers such as MRC1 [69], [71]. 

Therefore, it is possible that these PV MRC1+ TAMs co-express Tie2 and accumulate 

after DOX treatment due to the increased production of Angpt2. 

In agreement with our TS1 studies, chemotherapy (various regimens, including 

epirubicin/ docetaxel; cyclophosphamide/ epirubicin/ 5-fluorouracil or 5-fluorouracil/ 

epirubicin/ cyclophosphamide) was shown to increase circulating angiopoietin-2 in 

patients with locally advanced primary breast cancer, compared to serum levels 

measured at time of diagnosis [287]. Had time permitted, it would have been interesting 

to investigate how serum angiopoietin-2 levels after chemotherapy correlate with 
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survival and TAM infiltration. It would also be interesting to see if increases in Angpt2 

expression by TS1 tumours following DOX treatment correlated with increased serum 

angiopoietin-2 levels in the same TS1 tumour bearing mice, as this may increase 

myeloid cell recruitment from peripheral blood. In future, use of serum angiopoietin-2 

could perhaps be used a readout for tumours which may relapse after chemotherapy - 

although this would need extensive clinical trial data to ratify this idea.  

Understanding the possible role of endothelial cell derived angiopoietin-2 in 

tumour relapse is another question that could be addressed in future studies. As 

angiopoietin-2 may be causing PV TAMs to gather around blood vessels following DOX 

treatment, it is possible that these TAMs may then mediate relapse by promoting 

angiogenesis, as previously described in implanted PyMT tumours and LLCs [144]. 

One such experiment would be to treat TS1 tumours with DOX and an angiopoietin-2 

blocking antibody (although this would block the effects of angiopoietin-2 expressed by 

other cell types in tumours as well). Previous studies combined various 

chemotherapies (including 5-fluorouracil, irinotecan, gemcitabine, docetaxel and 

oxaliplatin) with an anti-angiopoietin-2 antibody known as 3.19.3 to treat xenografted 

tumours in nude mice, which resulted in decreased tumour growth, compared to using 

these therapies as single agents, however the effect of these drug combinations on the 

tumour vasculature or PV TAMs was not established [297]. Additional studies 

combined administration of a low dose metronomic chemotherapy with an angiopoietin-

2 antibody to target metastases [298]. Tumour bearing mice first had their primary 

tumours resected (4T1 grown in mammary fat pad) and were then treated with 

metronomic paclitaxel in combination with anti-angiopoietin-2. This caused a reduction 

in metastases and increased survival of these mice [298]. These studies clearly 

demonstrate the additive effects of chemotherapy and targeting angiopoietin-2, but did 

not investigate the impact of these combination therapies on the PV niche.  

It is possible that inhibiting angiopoietin-2 helps to ‘normalise’ the tumour 

vasculature, allowing for more efficient delivery of chemotherapy and thus results in 



200 
 

improved prevention of tumour growth. Indeed, previous studies showed that 

combining anti-angiopoietin-2 with cediranib (a VEGFR inhibitor) reduced 

microvascular density but also increased PV cell coverage, and increased basement 

membrane coverage of the remaining vessels in murine models of glioma [176]. It is 

also plausible that inhibiting angiopoietin-2 may impact on the function and phenotype 

of TAMs and in particular the TEMs. Previous studies have shown angiopoietin-2 can 

significantly impact on the immunomodulatory functions of TEMs [103], therefore 

combining an angiopoietin-2 antibody with chemotherapy in the syngenic TS1 tumour 

model could provide novel insights into the mechanism behind the synergy of these two 

anti-cancer therapies, as this would allow the studies to investigate whether the 

cytotoxic T cells of the TS1 tumours are able to target the tumours when angiopoietin-2 

is ablated. Mazzieri and colleagues previously demonstrated that inhibiting 

angiopoietin-2 prevented TEMs from interacting with blood vessels and decreased their 

proangiogenic activity, suggesting that angiopoietin-2 may not only attract TEMs to 

blood vessels, but also encourage these cells to support blood vessel growth [102]. 

Potentially, this may be the function of angiopoietin-2 in these TS1 tumours, and 

purification of PV TAMs from tumours in which the endothelial cells overexpress 

angiopoietin-2 (as previously described [99]) could reveal the impact of this cytokine on 

these cells. 

Cx3cl1 expression was also increased in CD31-enriched and CD31-depleted 

cell fractions isolated from DOX treated tumours. This is particularly interesting as 

CX3CL1 is an established macrophage chemoattractant, known to cause adhesion and 

endothelial transmigration of monocytes [263], [264]. Moreover, the non-classical 

subset of monocytes express increased amounts of the CX3CL1 receptor, CX3CR1, 

suggesting that they are more susceptible to recruitment by CX3CL1 [9]. Indeed, 

CX3CR1hi non-classical monocytes were shown to patrol blood vessels and 

extravasate quickly into tissues in response to damage in vivo [14]. CX3CL1 may 

mediate extravasation of non-classical monocytes following DOX-mediated damage to 
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the TS1 tumours, which could explain the increase in PV MRC1+ TAMs. Interestingly, a 

subset of non-classical monocytes also express Tie2, and these monocytes have been 

implicated in tumour progression [70], [102].  

These studies are not the first to show CX3CL1 expression can be enhanced by 

chemotherapy - studies investigating Hand-Foot Syndrome, in which chemotherapy 

induces inflammation in the hands and feet of patients, demonstrated that pegylated 

liposomal DOX increased CX3CL1 expression in the skin tissue of rat hind-legs [299]. 

These studies support the finding here that Cx3cl1 mRNA is upregulated by TS1 

tumours after DOX. Interestingly the rats used in the previously mentioned study were 

not tumour bearing, which may indicate that DOX-mediated Cx3cl1 upregulation is not 

a tumour-specific phenomenon and may occur in other healthy tissues. Studies 

examining paclitaxel induced allodynia in rats, revealed paclitaxel increased CX3CL1 

expression in the dorsal root ganglia of the rats, which triggered macrophage activation 

and recruitment [300]. This study suggests that additional chemotherapy drugs (other 

than DOX) may induce CX3CL1 expression [300]. 

CX3CL1 has recently been implicated in TAM infiltration and tumour 

progression. LLCs grown in Cx3cl1-deficient mice contained fewer TAMs and had 

decreased growth than those grown in wildtype mice [301]. However, the effect of 

CX3CL1 signalling on cancer prognosis is controversial, with some papers inferring 

that CX3CL1 has anti-tumoural effects and with others demonstrating it is linked to 

tumour promotion [302]. For example, in hepatocellular carcinoma patients, those with 

increased tumour expression of CX3CL1 and its receptor CX3CR1, had increased 

overall- and disease free-survival, indicating CX3CL1 signalling was associated with a 

better prognosis in this disease [303]. A study of gastric adenocarcinoma patients 

showed that tumours with increased CX3CL1 expression had increased infiltration of 

anti-tumoural CD8+ T cells and natural killer cells, and that this correlated with 

increased disease-free survival compared to those with low tumoural CX3CL1 
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expression [304]. Finally, low tumour CX3CL1 expression was predictive of increased 

risk of recurrence in prostate cancer patients [305]. 

However, increased tumour CX3CL1 expression is associated with a poor 

outcome in some forms of cancer. Breast cancer patients with high levels of tumour 

CX3CL1 had worse overall survival than those with lower expression [306]. In addition 

to this, pancreatic ductal adenocarcinoma patients with increased tumour CX3CL1 

expression (or a combination of high CX3CL1 and CX3CR1 expression) had 

decreased overall survival. [307]. 

The level of Plgf mRNA was also higher in CD31-enriched and CD31-depleted 

cell fractions isolated from DOX treated tumours compared to those from PBS treated 

tumours. PLGF is a chemokine which functions as pro-angiogenic molecule and as 

chemoattractant to macrophages [278]. Targeting PLGF with antibodies results in 

significantly reduced tumour (Panc02 and B16) growth, demonstrating a role for PLGF 

in tumour growth and its potential as a new therapeutic target [277]. Combining anti-

PLGF treatment with chemotherapy (gemcitabine to treat Panc02; cyclophosphamide 

to treat B16) resulted in reduced tumour growth compared to tumours treated with 

chemotherapy or anti-PLGF alone [277]. Moreover, tumours treated with anti-PLGF 

had decreased TAM infiltration, again demonstrating the chemoattractive properties of 

PLGF [277].  

More recently the role of PLGF in macrophage phenotype was investigated 

[30]. TAMs isolated from Plgf-/- tumours exhibited a more anti-tumoural phenotype (with 

decreased Arg1 and Il10 expression, and increased Cxcl9 expression) than those 

isolated from wildtype tumours [30]. These data suggest that PLGF not only attracts 

TAMs to tumours, but also acts to promote a pro-tumoural phenotype; thus the 

potential of anti-PLGF to target TAMs is worthy of further investigation. As PLGF acts 

as a TAM chemoattractant, it is possible that the upregulation of Plgf mRNA in DOX-

treated TS1 tumours could explain the increase in PV MRC1+ TAMs also observed 

after DOX treatment. 
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When mice bearing B16F10 melanoma tumours were treated with DOX, serum 

PLGF decreased, unlike in our TS1 model, in which DOX increased Plgf expression.  

However, paclitaxel increased PLGF in the serum of the B16F10-bearing mice [308]. 

Although DOX did not induce an increase in serum PLGF in B16F10-bearing mice, this 

could be due to the differences in the tumour model used; different chemotherapies 

can have different effects depending on the tumour model. Interestingly, paclitaxel was 

able to directly upregulate Plgf and Vegfa in immortalised murine (SVEC-10) 

endothelial cells and primary lung fibroblasts in vitro [308]. These studies support our 

TS1 model, in that they show chemotherapy is able to induce Plgf expression. With 

some optimisation, tumour endothelial cells could be used in future in vitro studies to 

investigate the direct effects of DOX on their gene expression. Monocyte adhesion 

assays could also be used to address whether DOX stimulates monocyte adhesion to 

endothelial cells (and thus potentially tumour infiltration), or causes macrophages to 

migrate towards endothelial cells, thus explaining how DOX may cause TAM 

accumulation in the PV niche.  

Patients with Her2+ breast cancer treated with DOX had increased PLGF in 

their serum compared to serum levels prior to treatment, and those patients with high 

concentrations of serum PLGF had an increased risk of cardiotoxicity [309]. These 

studies suggest that in the context of breast cancer, DOX is capable of inducing 

increases in PLGF, in agreement with our studies in murine TS1 tumours [309]. 

PLGF is associated with clinical prognosis in different forms of cancer [310]. 

Studies in breast cancer patients confirmed plgf expression was increased within 

tumours compared to the normal breast tissue [311]. Moreover, patients with low plgf 

expression had a better prognosis (remaining disease free) compared to those with 

increased plgf expression (poor prognosis – local recurrence, metastasis or death) 

[311]. Increased tumour PLGF expression was also associated with decreased survival 

in NSCLC, colorectal, gastric and hepatocellular cancers [312]–[315]. However, not all 

tumours overexpress plgf – for example lung cancer and colon cancer express 
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relatively low levels of plgf, demonstrating the need to target this cytokine in 

appropriate groups of patients for it to be effective [316].  

Serum PLGF has also been measured and used as a biomarker in non-

squamous NSCLC patients – those with lower serum PLGF had increased overall 

survival [317]. This is exciting as monitoring serum biomarkers is a relatively non-

invasive procedure which could be carried out over multiple timepoints within a 

treatment regimen – whether serum PLGF changes during different anti-cancer 

regimens and if this correlates with treatment outcome should be investigated. 

Recently, a phase I clinical trial using an antibody targeting PLGF (TB-403) 

demonstrated that this treatment was reasonably well-tolerated in patients with solid 

tumours [318]. Further clinical trials should reveal how effective TB-403 is at reducing 

tumour growth and whether it can be combined with additional anti-cancer therapies, 

such as chemotherapy. 

SPP1, a chemokine and extracellular matrix component, was found to be 

upregulated in both CD31-enriched and CD31-depleted cell fractions. SPP1 has roles 

in bone homeostasis, as well as functions in the regulation of the immune system [275]. 

Importantly for this work, SPP1 has been shown to be chemoattractive for 

macrophages [275]. In vitro, transmigration assays were used to demonstrate that 

SPP1 could inhibit the reverse migration of monocytes i.e. once the monocytes had 

crossed the endothelial cell barrier they did not migrate back, indicating a possible 

mechanism by which SPP1 can maintain TAM accumulation in the PV niche [276]. 

Moreover, SPP1 was shown to increase the survival of monocytes grown under serum-

starvation conditions, suggesting SPP1 may also increase macrophage viability in 

stressful conditions [276]. SPP1 protein expression was also correlated with 

macrophage and neutrophil infiltration in glioblastoma patients, as those with increased 

SPP1 staining also had increased numbers of macrophages and neutrophils [319]. 

Interestingly, SPP1 stained more intensely in areas of necrosis and around blood 

vessels in these patient samples [319]. These studies suggest that SPP1 is another 
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factor which may be able to cause recruitment or retention of TAMs in the PV niche 

after DOX treatment. 

Previous studies investigating DOX-induced cardiotoxicity demonstrated that 

DOX induces Spp1 expression in H9c2 rat heart derived embryonic myocytes in vitro 

[320]. Furthermore, in vivo, SPP1 was upregulated in the myocardium of DOX treated 

rats [321]. These data support our studies which also show DOX upregulates Spp1 in 

TS1 tumours. As SPP1 can act as macrophage chemoattractant, it is therefore 

possible that the increase in Spp1 expression may mediate the increase in PV MRC1+ 

TAMs after DOX treatment. Further studies revealed that SPP1 deficient mice had less 

scarring (collagen deposits) in their hearts following DOX treatment [320] suggesting a 

role for SPP1 in the development of fibrosis. As the present study established Spp1 

was upregulated in TS1 tumours following DOX treatment, it would be interesting to 

investigate if SPP1 induces fibrotic scarring of tumours after chemotherapy in a similar 

manner.  

In addition to SPP1 affecting macrophages, it is possible that it may affect 

tumour cell survival during/after DOX treatment. In vitro, SPP1 knockdown was shown 

to increase the sensitivity of MDA-MB-231 breast tumour cells to DOX [322]. This was 

also shown in PC-3 prostate cancer cells, and believed to be because SPP1 

upregulated p-glycoprotein, a mediator of drug resistance [323]. Interestingly, PC-3 

tumours were also shown to upregulate SPP1 in response to daunorubicin– much like 

the response seen in this chapter with TS1 tumours which were treated with DOX 

[323]. Taken together, these studies implicate SPP1 as a mediator of resistance to 

chemotherapy and further studies should investigate SPP1 targeting therapies in 

combination with chemotherapy. 

Increased SPP1 expression may also have clinical implications: breast cancer 

patients treated with cyclophosphamide, methotrexate and fluorouracil had worse 

prognosis if their tumours expressed high levels of SPP1 [324]. Interestingly the 

prognosis of patients which were given DOX and cyclophosphamide followed by a 
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course of cyclophosphamide, methotrexate and fluorouracil showed no such correlation 

with SPP1 staining [324]. In another cohort of breast cancer patients that received 

chemotherapy (epirubicin, cyclophosphamide/ methotrexate/ 5-fluorouracil and 

paclitaxel),  patients with high Spp1 expression had decreased overall and disease-free 

survival [325]. Future studies could compare SPP1 expression in tumours treated with 

chemotherapy in the neoadjuvant setting with pre-treatment biopsies in order to 

analyse the effect of chemotherapy on this. SPP1 is not only important in breast 

cancer; increased expression of SPP1 was also associated with poor survival in gastric 

cancer, NSCLC, and prostate cancer patients [326]–[328]. 

Interestingly, in contrast to the cytokines investigated, the expression of most 

adhesion molecules, including Vcam1 and Sele (known to be involved in extravasation 

of leucocytes [247]), were unchanged in CD31-enriched cell fractions isolated from 

DOX treated TS1 tumours. These data suggest that such molecules involved in the 

extravasation of monocytes remain unchanged by DOX in tumour endothelial cells. 

This could indicate that the increased adhesion of monocytes to endothelial cells does 

not play a part in the increase in PV TAMs in these tumours after DOX.   

A major limitation of this study is the lack of protein expression data. It is 

important to confirm whether the above genes are also upregulated in DOX treated 

tumours at the protein level.  Had time permitted, it would also have been interesting to 

identify the cell types expressing these proteins in the CD31-depleted cell fractions in 

TS1 tumours.  

Immunofluorescent staining was attempted in order to examine the expression 

of angiopoietin-2 within these tumours, however this was not successful and the 

antibody did not detect any discernible patterns of cellular staining. Future attempts 

could perhaps analyse the expression of this cytokine in at least the CD31-enriched 

cell fraction from tumours using ELISA or western blotting, as reagents are more 

readily available for these techniques. 
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Another limitation of these studies is that it is still unknown if the response to 

DOX is limited to the tumour vasculature per se, i.e. what effect DOX has on the 

vasculature of healthy tissues. To investigate this, more studies are needed in which 

gene expression is analysed in endothelial cells purified from healthy tissues in tumour 

bearing mice and/or mammary endothelial cells from mammary tissue of healthy mice 

treated with DOX. Indeed many studies have previously characterised gene expression 

in healthy endothelial cells and the tumour vasculature, however no such work has 

examined this in the context of chemotherapy [257], [329]. 

Moreover, while the gene expression of CD31-enriched and CD31-depleted cell 

fractions were affected by DOX treatment, it is unknown whether this is a direct effect 

of DOX on the cells themselves, or due to the indirect effects of DOX on other cells 

within the tumour microenvironment. It is possible that the increase in PV MRC1+ TAMs 

is because of the increase in chemoattractive genes expressed by CD31-enriched cells 

within DOX treated tumours, however it is entirely possible that these events occur 

simultaneously, or that the PV MRC1+ TAMs release factors which cause the blood 

vessels to upregulate their expression of Angpt2, Cx3cl1, Plgf, Spp1 and Vegfa. To 

further understand these complex interactions, in vitro studies may be useful, as this 

would allow for co-culture experiments with various different cell types including tumour 

cells, endothelial cells and macrophages. 

Due to financial constraints, only 31 genes were analysed in the current studies. 

RNA sequencing would have identified potential changes in a much broader number of 

genes, however the cost of this was prohibitive on a PhD studentship. Whole 

transcriptome amplification is another tool which could have increased the total amount 

of RNA available for analysis, and thus the amount of genes analysed, but the RNA 

integrity of the samples did not meet the minimum requirements for this technique. It 

was therefore decided that RNA would be converted to cDNA using the QuantiTect 

reverse transcription kit which uses random primers and converts to cDNA from both 5’ 
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and 3’ ends, to enable reliable cDNA synthesis even if RNA has been partially 

degraded. 

The CD31-depleted cell fraction could potentially include tumour cells, TAMs 

and other tumour-infiltrating cells such as T lymphocytes and neutrophils as well as 

fibroblasts. Further studies profiling the expression of the above mRNA transcripts 

and/or proteins in these different cell populations could lead to a better understanding 

of how they are regulated by DOX in different cell types in tumours. In order to purify 

these different cell populations, FACS sorting could be used for cell populations that 

are more abundant than endothelial cells, such as TAMs [144].  

More recently, unpublished work by Professor Lewis’ group has focused on the 

purification of PV TAMs, using fluorescently conjugated dextrans. The dextrans are 

injected into the tail veins of mice 30 minutes prior to culling – this allows the 

fluorescent dextrans to diffuse into the tissues where they are engulfed by 

macrophages. The time window of 30 minutes means that the dextrans are only 

engulfed by PV TAMs, as the dextrans do not permeate the whole tumour in this period 

of time (Hughes, unpublished). Studies like this could be very illuminating – it would of 

course be appealing to investigate if these PV TAMs express receptors for the 

molecules these studies have identified e.g. TIE2, CX3CR1, VEGFR1 and VEGFR2, 

which would indicate that the chemokines upregulated by endothelial cells and the rest 

of the tumour in DOX treated tumours can signal to the PV TAMs. 

 

5.5 Concluding remarks 

In this chapter, we show for the first time that tumoural CD31-enriched cells exclusively 

upregulate Vegfa mRNA expression within 48 hours of DOX treatment. In addition to 

this, Angpt2, Cx3cl1, Plgf, and Spp1 were upregulated within both CD31-enriched and 

CD31-depleted cell fractions after DOX treatment. As these genes have all been 

previously implicated in macrophage chemoattraction, this increase in expression may 
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well explain the increase in PV MRC1+ TAMs also seen two days after DOX is 

administered to TS1 bearing mice. In future, studies should focus on confirming the 

protein expression of these genes, before deciding whether any of these genes are 

worthy targets for novel TAM-disrupting drugs. 
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6.1 Summary of major findings. 

In the implantable TS1 tumour model used in this thesis, the majority of MRC1+ TAMs 

were found to reside mainly in the normoxic, more vascularised stroma rather than in 

tumour cell islands. When TS1 tumours were treated with DOX there was no change in 

total TAM recruitment within 48 hours, however there was a significant increase in 

MRC1+ TAMs directly abutting tumour blood vessels.  As TAMs in untreated tumours 

are derived from blood monocytes, it was assumed that this PV accumulation was due 

to increased recruitment of these precursors from the blood.  However, these PV TAMs 

were shown to be relatively mature and, therefore, more likely to have been attracted 

into the PV niche from elsewhere in these tumours during/after DOX treatment (e.g. 

deeper in the stroma, the tumour cell islands or from surrounding normal tissue outside 

the tumour). 

Given this pronounced change in TAMs near blood vessels, the tumour 

vasculature was characterised, to determine if this increase was due to changes in the 

morphology or phenotype of endothelial cells. While DOX treatment did not alter 

vascular parameters like lumen size, vessel patency (as measured by FITC-lectin 

perfusion) or pericyte coverage, it induced increases in the expression of Vegfa, 

Angpt2, Cx3cl1, Plgf and Spp1 by tumour endothelial cells. Interestingly, the 

expression of the last four of these genes was also seen in other, undefined CD31-

depleted cells from these tumours (Figure 6.1). 
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Figure 6.1 Summary of the effects of DOX on the PV niche. 
DOX significantly increases PV MRC1

+
 TAMs and induces gene expression changes. Angpt2, 

Cx3cl1, Plgf and Spp1 were all upregulated by both CD31-enriched and CD31-depleted cell 

fractions in DOX treated tumours. CD31-enriched cells isolated from DOX treated tumours also 

had increased Vegfa expression. 

 

 

6.2 DOX induces changes within the PV niche of TS1 tumours. 

These studies further demonstrate that chemotherapy is capable of inducing changes 

within the tumour microenvironment that can impact on the behaviour of both TAMs 

and endothelial cells. To further understand the dynamics of PV TAMs following DOX, 

intravital imaging could be employed to study if these cells accumulate rapidly after the 

administration of DOX, or if these cells only start to accumulate two days after 

treatment. Indeed, intravital imaging was previously used to demonstrate non-classical 

monocytes rapidly extravasate from blood vessels in the dermis and into damaged 

tissues [14]. Moreover, intravital imaging demonstrated that CSF1R+ cells (likely 

monocytes or macrophages) infiltrate MMTV-PyMT tumours following DOX treatment 
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[137]. These studies however did not specifically examine the PV niche, possibly as 

achieving the resolution needed to examine individual blood vessels within such 

tumours is not yet possible. By studying additional early and later time points, it would 

of course be possible to learn more about the recruitment of these PV MRC1+ TAMs, 

and immunofluorescent analyses could show if they appear as PV MRC1- TAMs or 

even PV immature Gr-1+ cells at an earlier time point. Additionally, FACS sorting of PV 

TAMs using fluorescent dextrans at different time points would allow an in-depth study 

of how these cells change e.g. maturation status, expression of pro-angiogenic and 

immunosuppressive genes, in response to DOX. 

 In these studies, PV TAMs were examined but other leucocyte subpopulations 

were not studied in relation to vasculature. Future studies could examine whether these 

additional populations, including immature myeloid cells, associate with either the PV 

TAMs or the blood vessels themselves. Potentially, while DOX did not increase the 

overall infiltration of Gr-1+ cells, DOX could increase PV Gr-1+ cells. Immunofluorescent 

analyses of whether immature myeloid cells are found specifically around patent FITC-

lectin perfused blood vessels could give insight as to how these cells are recruited from 

the vasculature. 

 As the T cell infiltrate of tumours can affect the outcome of chemotherapy [109], 

it would be interesting to establish if these cells exist within the PV niche of TS1 

tumours. Previously, endothelial cell FasL expression has been shown to effect T cell 

infiltration of murine ID8-VEGF tumours, as when mice were treated with anti-FasL, 

they had an increased CD8+ T cell infiltrate [330]. This suggests that endothelial cells 

themselves may prevent recruitment of anti-tumoural T cells by expression of factors 

such as FasL. MRC1+ TAMs are increased in the PV niche of these tumours and so the 

PV niche may act as an immunosuppressive barrier. Understanding whether these PV 

MRC1+ TAMs express immunosuppressive molecules such as IL-10 [110] or 

checkpoint molecules such as PD-L1 [112], may help establish if they are able to 

suppress anti-tumoural T cells. In the TS1 tumours, cytotoxic T cells were observed 
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within the tumour cell islands, but rarely within the tumour stroma. It would also be 

interesting to establish the activation status of these cytotoxic T cells, particularly if they 

are in close proximity to PV MRC1+ TAMs. 

Inhibiting TAM infiltration of tumours has shown promising results when 

combined with chemotherapy. For example inhibition of TAMs using anti-CSF1 in both 

mammary (MMTV-PyMT) and pancreatic models significantly decreases tumour growth 

in combination with chemotherapy [108], [109]. Similarly, inhibiting TAM recruitment by 

blocking CXCR4 signalling with the drug AMD3100 vastly reduced tumour regrowth 

following chemotherapy [144].  

While there are clear benefits to inhibiting TAMs in murine models of cancer, 

some of these experimental therapies are yet to show such promising results in 

patients. The CSF1R inhibitor PLX3397 has now been trialled as single agent, and 

effectively caused tenosynovial giant cell tumours to regress, although this was likely 

as these tumours overexpress CSF1 [171]. In a phase II trial of recurrent glioma 

patients, however, PLX3397 failed to show any benefit, demonstrating that these 

CSF1R inhibitors may not be as successful at treating human cancer [172]. While well-

tolerated, combining carboplatin and etopside chemotherapy with the CXCR4 

antagonist, LY2510924, had no effect progression-free or overall survival in NSCLC 

patients [163].  

Given that MRC1+ TAMs were previously shown to promote relapse in LLC and 

PyMT implanted tumours, it is possible that targeting TAMs using nanobodies may be 

another potential therapy that could be used in future. Previously, an MRC1 targeting 

nanobody was developed and labelled with the isotope Technetium-99m and was used 

to image TAMs in TS/A and MMTV-PyMT tumours in vivo [331]. It is therefore possible, 

that this nanobody could be coupled to toxins in future, and used to ablate TAMs as a 

novel anti-cancer therapy, although care should be taken to analyse the effects of this 

nanobody on additional macrophage populations within the body, such as alveolar 

macrophages or Kupffer cells. In mice bearing S180 tumours, treatment with a 



215 
 

mannose-receptor targeted glucomannan conjugated to alendronate (ALN-BSP) 

decreased the number of TAMs, tumour growth and the number of vessels within such 

tumours [332]. In addition to this, ALN-BSP was capable of decreasing tumour 

expression of IL-10 and increasing tumour IFN-γ, suggesting that this therapy 

decreased the immunosuppressive activity of the tumour microenvironment by 

eliminating TAMs. Using MRC1 to target TAMs may therefore have some advantages 

in the treatment of cancer, although the effect of targeting MRC1 on healthy tissues 

needs to be established. Purifying PV macrophages from tumours and healthy tissues 

would allow the study of targets which may be exclusively expressed in PV TAMs, and 

therefore allow the design of therapeutics which specifically ablate TAMs and not 

resident tissue macrophages. 

For the first time, DOX was shown to also upregulate five mRNA transcripts in 

tumour endothelial cells (with Vegfa being the only gene exclusively upregulated in 

endothelial cells), all of which have been shown to affect macrophage recruitment, 

retention and/or regulation [30], [92], [99], [103], [263], [264], [275]–[277], [280]. Further 

studies are now warranted to see if and how these gene products influence TAMs in 

the PV niche of chemotherapy-treated tumours and if this then impacts on tumour 

relapse. 

 

6.3 Limitations of studies 

One of the major limitations of these studies is that only one mouse model of cancer 

was used. It would be important to verify some of the key findings of the studies in this 

thesis in other mouse mammary tumour models, and in response to different, clinically 

relevant chemotherapeutics. However, the finding that PV MRC1+ TAMs accumulate in 

TS1 tumours after DOX treatment is in agreement with previous studies which 

demonstrated that relapse promoting PV MRC1+ TAMs are increased after 

cyclophosphamide treatment of LLCs [144]. This suggests that the phenomenon of PV 
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TAMs accumulating in chemotherapy treated tumours may be applicable to different 

cancer types and models, other than the one studied in this thesis. Isolating tumour 

endothelial cells from LLCs treated with cyclophosphamide may reveal whether the 

genes in our TS1 studies are also potentially responsible for the accumulation of PV 

TAMs in LLCs. It is of course important not to extrapolate too much from murine 

tumours before confirming findings in human tumours. Previous studies showed there 

was an increased percentage of MRC1+ cells in vascularised areas of human breast 

carcinomas treated with paclitaxel, compared to the avascular areas [144], however 

further studies should confirm if PV TAMs contribute to the relapse-free survival of 

these patients. Indeed, previous studies have analysed gene expression in endothelial 

cells isolated from human tumours and healthy organs [257], but it would be very 

interesting to compare the expression profile of endothelial cells in breast cancer pre-

treatment biopsies and tumours taken after chemotherapy, again to confirm if the 

findings in the TS1 model are relevant to patients. 

Xenograft models using human tumour cell lines could have been used instead 

of TS1 cells, but this would have meant the mice themselves would not have had a fully 

competent immune system. An immunocompetent, syngeneic mouse model (TS1 

orthotopic implants) was used instead, as previous studies have shown TAMs can 

reduce the efficacy of chemotherapy by inhibiting T cell responses in mice [108]–[110].  

Intraperitoneal administration of 8mg/kg DOX was previously shown to induce necrosis 

and cause immature myeloid cell infiltration in transgenic MMTV-PyMT tumours [137], 

so this DOX regimen was selected for our implantable orthotopic (MMTV-PyMT 

derived) TS1 model.  It was thought the TS1 tumours would respond in a similar way to 

these MMTV-PyMT transgenic tumours, as they are established from the same tumour 

cell line, and so the intrinsic properties of the cancer cells should be similar. The TS1 

model was previously well-established and used alongside the parent MMTV-PyMT 

transgenic tumours by others [139]. Indeed, studies characterising the molecular 

characteristics of these two tumour cell types (transgenic and TS1), and reporting if 
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there are any differences between them, would be very useful to further understand 

these models. The implantable tumour models, however are more likely to be used in 

future research projects, as these allow the study of one tumour mass at an orthotopic 

site, rather than multiple tumours arising in different mammary glands.  

DOX was considered to be the most clinically relevant drug, as NICE 

recommends that patients with locally advanced, hormone receptor negative breast 

cancer are treated with DOX, or another anthracycline drug, in the first instance [201], 

[204]. TS1 tumours are also hormone receptor negative, and so their treatment with 

DOX bears clinical relevance [87]. In patients who cannot be treated with anthracycline 

drugs, patients may be treated with docetaxel, vinorelbine or capecitabine [204]. It 

would have been interesting to establish the effects of these alternative 

chemotherapeutic regimens on TAMs and the tumour microenvironment, but due to 

time and budget constraints, only DOX could be investigated in these studies. 

Previously, the effect of paclitaxel (which belongs to the taxane family of drugs), has 

been established in two murine models, increasing MRC1+ TAMs in vascularised areas 

of 4T1 tumours and generally increasing TAM recruitment in the MMTV-PyMT model 

[109], [144]. More recently, trials have started to investigate immunotherapy in patients 

and it would therefore be important to investigate whether the tumour 

microenvironment responds to checkpoint inhibitors, such as antibodies targeting PD1 

or PD-L1 [111], in a similar way to that seen in TS1 tumours treated with DOX in order 

to understand potential mechanisms by which tumours may relapse following 

checkpoint inhibitor therapy. 

Another limitation of these studies is that it is not understood exactly how DOX 

causes the upregulation of 5 different genes within tumour endothelial cells, and other 

unspecified cells. It is possible that DOX may cause changes in mRNA expression by 

directly affecting the cells involved. This could be addressed by in vitro experiments, 

however tumour endothelial cells are notoriously difficult to grow in vitro [333], and so 

murine endothelial cell lines may need to be used for these assays instead. Potentially 
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DOX impacts on tumour cells e.g. could induce cell death, which causes a release of 

factors which then impact on the endothelial cells, in which case co-culture 

experiments with endothelial cells and tumour cells should be optimised. Conditioned 

media from DOX treated endothelial cells could be taken and placed onto BMDMs or 

freshly isolated TAMs to understand the direct effects of endothelial cell produced 

cytokines on these cells which gather in the PV niche of TS1 tumours. 

 

6.4 Clinical implications 

Breast cancer is one of the most common types of cancer diagnosed in the UK, 

accounting for 31% of female cancer cases in 2014 [197]. There are multiple subtypes 

of breast cancer, defined by their molecular and pathological characteristics, making it 

a complex disease. Patients that present with smaller, locally restricted tumours e.g. 

stage 1 or stage 2 patients are usually treated with surgery to remove the tumour, and 

may also receive radiotherapy post-surgery to kill any remaining cancer cells. These 

patients have the best response to therapy, as at least 88% of stage 2 (and 99% of 

stage 1) patients go on to survive five years from initial diagnosis [198]. Unfortunately 

for patients presenting with larger tumours, which have spread extensively to the lymph 

nodes (stage 3, locally advanced cancer), the 5 year survival rate is 55% [198]. These 

patients are usually given chemotherapy or endocrine therapy in the neoadjuvant 

setting to shrink their tumours before removing the tumour with surgery [204]. The 

survival rate for patients with metastatic breast cancer (stage 4), which has spread to 

distant sites within the body (including brain, bone and lungs) is only 15% [198]. 

Therefore, there is clearly a need to improve survival rates of patients with stages 3-4 

of breast cancer. 

Currently breast cancer can be treated with a number of drugs including 

chemotherapy (usually taxane based or anthracycline based) and endocrine therapies. 

When considering treating patients with breast cancer, the patient biopsy is tested for 
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the expression of three receptors: ER, PR and the HER2 receptor [202]. Patients with 

oestrogen and progesterone receptors will respond to endocrine therapies, such as 

tamoxifen [202]. Tumours which are HER2 positive can also be treated with 

trastuzumab (also known by the drug name Herceptin) [202]. However, TNBC does not 

respond to endocrine therapies or trastuzumab, as the tumours do not express ER, PR 

or HER2 receptors. In the UK approximately 15% of breast cancer cases are TNBC 

[334]. These patients have more limited treatment options, usually only surgery and 

chemotherapy. It is therefore very important to investigate new pathways which can be 

manipulated in order to improve the response to chemotherapy and to develop new, 

more targeted therapies for these patients. 

More recently, molecular characterisation of tumours has been considered to 

further personalise treatments. Luminal-A, Luminal-B, HER2-enriched, Basal-like and 

Claudin-low describe the five main molecular subtypes of human breast cancer [335]. 

Luminal-A and Luminal-B tumours express hormone receptors (ER+ PR+) and are 

associated with a better outcome compared to the other molecular subtypes (with 

Luminal-A tumours having the best prognosis as it is less proliferative than Luminal-B 

tumours) [335]. HER-2 enriched tumours, express HER2, and therefore will respond to 

trastuzumab [335]. Basal-like tumours are often triple negative, as are Claudin-low 

tumours, which represent tumours which are more difficult to treat [335]. 

Previously, microarray analysis of transgenic MMTV-PyMT tumours showed 

that they model the ‘luminal’ molecular subtype of human breast cancer [336]. 

However, unlike this form of human cancer, they lack ER and PR expression [87], 

[336]. This lack of hormone receptors demonstrates they would not respond to 

endocrine therapy, much like patients with TNBC [335]. However, MMTV-PyMT 

tumours express the HER2 receptor (ErbB2/Neu), and in the clinic, patients with 

tumours expressing HER2 can be treated with trastuzumab [87], [201]. NICE guidelines 

indicate that trastuzumab is only administered to patients with locally advanced HER2+ 

breast cancer if they are unable to be treated with anthracycline based chemotherapy, 
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such as DOX [201]. Therefore, in the first instance, most ER- PR- HER2+ cases are 

given DOX or another anthracycline, much like patients with TNBC. Therefore, while 

the MMTV-PyMT tumours express ErbB2/Neu, it is still a clinically relevant model for 

analysing the response of tumours to DOX. I considered alternative murine models of 

cancer that could have been used to accurately model triple negative cancer, such as 

the 4T1 model, however 4T1 tumours are exceptionally inflammatory, and as these 

studies were focussed on the immune system, the decision was made not to use this 

model [337]. 

One of the most novel findings of this thesis is that TS1 tumours upregulate 

Angpt2, Cx3cl1, Spp1, Plgf in response to DOX. Endothelial cells also upregulated 

Vegfa in DOX treated tumours. Previous studies have demonstrated roles for each of 

these genes in macrophage recruitment and often correlated their high expression with 

poor prognosis [250], [306], [311], [324], [338]. Inhibiting one of these molecules 

alongside chemotherapy, could result in a better outcome for patients, although 

rigorous trials would be needed to understand the side effects of combining these 

therapies. It is possible that drugs which may also exert effects on the tumour 

vasculature, rather just the TAMs themselves e.g. anti-VEGFA or anti-PLGF, may 

result in cardiovascular events such as thromboembolism due to vascular collapse. For 

some of these molecules (e.g. VEGF-A), drugs which inhibit them already exist and are 

being used in the clinic [230], [284]. However some molecules, such as SPP1, have 

only been inhibited using shRNA [323], rather than small-molecule inhibitors that could 

be more easily translated into patients, and so therapies targeting SPP1 may take 

longer to receive clinical approval. 

Angiopoietin-2 is a molecule characterised by its effects on both the tumour 

vasculature and a subset of TAMs which express Tie2 (TEMs) [99], [101], [103]. In vitro 

studies demonstrated that angiopoietin-2 is a chemoattractant for TEMs, and enhances 

their proangiogenic and immunosuppressive functions which are known to aid tumour 

progression [92], [99], [103]. Moreover, inhibition of the Angiopoietin2-Tie2 signalling 
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axis in pre-clinical murine mouse models has revealed promising results, as an 

antibody raised to angiopoietin-2 was shown to reduce tumour growth and metastasis 

of murine tumours, demonstrating a role for angiopoietin-2 in tumour progression [102]. 

Furthermore, the antibody 3.19.3 which targets angiopoietin-2 was successfully 

combined with chemotherapy in a variety of xenograft mouse models of cancer, and 

significantly increased tumour shrinkage [297]. Low dose metronomic chemotherapy 

was also combined with angiopoietin-2 targeted antibodies to halt growth of murine 

metastases [298]. These studies all demonstrate the promise of combining anti-

angiopoietin-2 therapies with chemotherapy, although the effects of these on 

preventing TAM induced relapse have yet to be fully established.  It is entirely possible 

that the PV MRC1+ TAMs in the TS1 tumours also express TIE2, as TEMs are heavily 

M2 skewed and have been known to express MRC1 [71]. Moreover, previous studies 

showed that MRC1+ TAMs in LLCs also expressed TIE2 [144].   

Breast cancer patients with increased angiopoietin-2 expression have 

decreased overall and disease-free survival [250]. Interestingly, studies have 

demonstrated that patients with locally advanced breast cancer have increased 

circulating angiopoietin-2 following treatment with chemotherapy, suggesting that they 

may also respond to chemotherapy in a similar way to our model [287]. These studies 

demonstrate angiopoietin-2 may be a potential novel target for breast cancer patients 

receiving chemotherapy. Recently, early clinic trials revealed the anti-angiopoietin-2 

antibody, MEDI3617, was well-tolerated in patients in combination with carboplatin and 

paclitaxel [173] and the longer term outcomes of these trials are awaited with interest.  

CX3CL1 is a chemokine which attracts and aids the extravasation of monocytes 

into tissues [263], [264]. In breast cancer patients, high tumour CX3CL1 levels are 

associated with poor prognosis [306], suggesting that inhibition of this signalling 

pathway may improve the response of patients to current therapies. Studies should 

now focus on whether interfering with CX3CL1 signalling improves the outcome of 

chemotherapy regimens. 
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PLGF was demonstrated to be a proangiogenic molecule, which also acts as a 

macrophage chemoattractant and is known to be involved in skewing TAMs towards a 

pro-tumoural phenotype in murine models of cancer [30], [277]. Plgf is also associated 

with poor prognosis in breast cancer [311], and HER2+ breast cancer patients were 

shown to increase their circulating PLGF levels following treatment with DOX, 

demonstrating that our murine studies may mimic what is occurring in this subset of 

patients [309]. Taken together, these studies suggest that PLGF may be a potential 

novel target for improving the response to chemotherapy. Indeed, in pancreatic and 

B16 murine tumours, anti-PLGF antibodies were combined with chemotherapy which 

resulted in increased shrinkage of tumours [277]. In attempts to translate these studies 

towards clinical use, an antibody targeting PLGF was successfully delivered to patients 

with solid tumours and was well-tolerated, suggesting that there are therapies available 

to target PLGF signalling in patients [318]. Further trials should examine whether anti-

PLGF therapy can improve current chemotherapy regimens.  

VEGF signalling is the target of many anti-angiogenic drugs [230], [284]. While 

most studies confirm VEGF is important in the stimulation of angiogenesis, others have 

shown VEGF is a chemoattractant for macrophages [280]. Therefore, the DOX-

mediated upregulation of Vegfa in endothelial cells may offer an explanation as to why 

there was an increase in PV MRC1+ TAMs. Previously, murine studies revealed that 

TAM derived VEGF-A supports tumour regrowth following DOX treatment in implanted 

PyMT tumours, demonstrating this molecule is involved in tumour relapse [144]. 

Moreover, two separate studies have shown increased circulating VEGF in breast 

cancer patients following chemotherapy [286], [287]. However, another study showed 

circulating VEGF was decreased after chemotherapy in breast cancer patients with 

tumours larger than 5cm, suggesting that this may be a more complex regulation [288]. 

Perhaps in patients with larger tumours, the baseline circulating VEGF level is higher 

than in patients with smaller tumours, as there is a likely an increase in necrosis and 

hypoxia within these tumours, which results in an increase in VEGF-producing cells. If 



223 
 

chemotherapy causes tumour shrinkage, it may ablate some of the VEGF-producing 

cells, resulting in an overall decrease in circulating VEGF. Patients with smaller 

tumours on the other hand, may have fewer VEGF producing cells to start with, and the 

response to the chemotherapy in these patients causes the tumours to upregulate 

VEGF. While combining bevacizumab (an anti-VEGFA antibody) with chemotherapy 

was not successful when administered to patients in the adjuvant post-surgery setting 

[293], delivering this combination in the neoadjuvant setting effectively increased the 

pathological complete response rate of a cohort of breast cancer patients [294]. These 

studies suggest that targeting VEGFA may be useful in improving the response to 

chemotherapy; however the timing of when these drugs are given is very important to 

their clinical benefit. 

SPP1 also acts as a macrophage chemoattractant, as well as having many 

other functions including being a component of the extracellular matrix [275]. Breast 

cancer patients with increased expression of SPP1 had decreased survival compared 

to those with low SPP1 expression [325]. Moreover, increased SPP1 expression was 

associated with poor response to chemotherapy in another cohort of breast cancer 

patients [324]. Again, these studies indicate SPP1 may also have potential as a new 

therapeutic target in patients, and further studies should reveal if inhibiting SPP1 

improves the response of tumours to chemotherapy.  

In summary, each of these genes are associated with poor prognosis in breast 

cancer patients and are capable of regulating macrophages. It is, therefore, highly 

likely that combining chemotherapy with therapies that target one or more of these 

genes could benefit patients. Further work is needed to characterise the safety and 

efficacy of these approaches. 
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6.5 Further work and directions 

The most important step in continuing this research would be to examine the 

expression of the proteins encoded by the five genes up-regulated by DOX treatment in 

TS1 tumours (i.e. to confirm whether these novel transcriptional changes are translated 

to the protein, and specifically which cellular compartments of the tumour they are 

found in). 

Ideally, flow cytometry would be used to analyse protein expression, as this 

would allow protein expression to be analysed in a range of different cell types e.g. 

compare protein expression in endothelial cells, TAMs and tumour cells. Moreover, as 

flow cytometry allows the measurement of fluorescent intensity, this would allow the 

detection of whether these proteins were upregulated after DOX, giving this method a 

clear advantage over immunofluorescent staining, in which quantification of protein 

expression is far more subjective. Unfortunately there were no antibodies designed for 

the flow cytometric analysis of these proteins.  

In future, use of ELISAs or western blotting may be more useful, as reagents 

designed to measure angiopoietin-2, VEGF-A, PLGF, SPP1 and CX3CL1 protein 

expression by these methods are readily available. Ideally, this would be performed on 

the lysates of individual cell types isolated from dispersed tumours (e.g. CD31-enriched 

endothelial cells, etc).  

Should any of the above genes show the same regulation at the protein level, it 

would be crucial to understand the role, if any, of each of these in the regulation of PV 

MRC1+ TAMs (and whether endothelial cell expression of these is particularly important 

given the proximity of endothelial cells to PV TAMs). Transgenic mice could be used to 

induce deletion of these genes specifically in endothelial cells following DOX treatment 

of tumours. One such model could use a Tie1 promoter [100] to drive expression of a 

tamoxifen-inducible Cre protein [127], which could then specifically ablate the 

expression of floxed genes. This study would allow the role of endothelial cell-specific 
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genes in the recruitment of PV TAMs, and potentially tumour regrowth to be studied. 

Importantly, an inducible model would allow the role of these genes in TAM recruitment 

and/or education to be studied at multiple timepoints such as before and after 

chemotherapy administration. Monoclonal antibodies targeting the upregulated genes 

could also be used to investigate whether any of these genes could be targeted to 

improve response to chemotherapy, however this would not establish the role of 

endothelial-cell specific proteins. 

A new technique developed by our research group allows purification of PV 

TAMs from murine tumours (Hughes, unpublished). This technique utilises fluorescent 

dextrans which diffuse into the tumour and are engulfed by PV TAMs. Studies isolating 

these cells are now underway in my research group and will hopefully show whether 

PV MRC1+ TAMs express the receptors for the above genes. If so, the ex vivo effect of 

each of these proteins could be examined on the phenotype and function of PV MRC1+ 

TAMs isolated from chemotherapy-treated tumours.   

In summary, these studies have revealed novel insights into the PV niche 

following DOX treatment. Further work should reveal if any of the five genes identified 

by qPCR studies are also upregulated at the protein level and if they are suitable 

candidates for preventing tumour regrowth after chemotherapy. 
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