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ABSTRACT 

Colorectal cancer (CRC) is the 3rd most common cancer and the 4th highest cause of 

cancer deaths in the world. Genetic factors play a major role in its predisposition, 

initiation and development. Inherited variants in the CASP8 gene, a key regulator of 

apoptosis, have a potential yet controversial association with CRC risk. Sporadic 

CRC develop through different molecular pathways of genomic instabilities and 

mutations in key cancer driver genes. Classification of sporadic CRC into these 

molecular pathways has potential implications for diagnosis and treatment and it is 

an integral part of CRC studies, however, current published research suffers from 

lack of standardisation. Chromosomal Instability (CIN) drives CRC by affecting 

cancer driver genes, many of which are still to be identified.  

 

This project aimed to: (a) further investigate the role of CASP8 inherited variants in 

CRC risk, (b) to molecularly classify sporadic CRC tumour DNA samples using 

standard techniques and definitions, and (c) to identify novel CRC driver genes 

affected by CIN. A CASP8 promoter in/del variant was genotyped in 1193 CRC 

cases and 1388 matching controls. The coding region of the CASP8 gene was 

sequenced in 94 CRC cases to identify potential novel variants and a copy number 

variant was also investigated. A cohort of 53 paired CRC tumour and normal DNA 

samples were molecularly classified using standard techniques and definitions. 

Common aberration analysis was performed on high resolution array comparative 

genome hybridisation data from 45 chromosomally unstable CRC cases to identify 

focal minimal common regions (FMCR).  

 

CASP8 inherited variants did not significantly affect CRC risk in the investigated 

cohort. CRC molecular classification confirmed the heterogeneity of sporadic CRC 
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and a novel molecular subtype was proposed. FMCR were shown to target cancer 

related genes and novel CRC driver genes were proposed. Finally, preliminary 

studies supported the tumour suppressor role of NFKBIA, one of the novel candidate 

driver genes affected by a deletion FMCR. 
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1. INTRODUCTION 

1.1 Cancer 

Cancer is a complex group of distinct syndromes characterised by uncontrolled 

growth and spread of malignant cells. Tumours may affect different organs of the 

body and each tumour can be divided into several types and subtypes. More than 

100 distinct types of cancer are currently known (Hanahan and Weinberg 2000, 

Stratton et al. 2009). Worldwide, cancer is responsible for around 1 in 8 deaths, with 

an estimated total of 7.6 million deaths in the year 2008 (Stratton et al. 2009, Jemal 

et al. 2011). This makes cancer the 3rd leading cause of death after cardiovascular 

and infectious diseases (WHO 2008). In general, the overall lifetime risk of 

developing cancer is around 50% for men and 33% for women (based on data from 

the years 2001-2003) (Hayat et al. 2007).  

1.2 The genetics of cancer 

Genetic factors play a primary role in the predisposition, initiation and development of 

cancer (de la Chapelle 2004, Vogelstein and Kinzler 2004, Stratton et al. 2009). The 

familial clustering of cancer cases was firstly described by the French physician Paul 

Broca, who observed that his wife‟s family had multiple cancer cases (mainly of the 

breast) over 4 generations (Steel et al. 1991). Early suggestions for the involvement 

of genomic abnormalities in the development of cancer were made by David von 

Hansemann in the year 1890 and Theodor Boveri in the year 1902 when they noticed 

an “abnormal chromosome constitution” in malignant tumours and cancer cells 

(Marte 2006, Harris 2008).  After the discovery of DNA as the hereditary material in 

chromosomes, these early suggestions of a genetic involvement in tumourigenesis 

were supported by observations that DNA damaging agents can result in the 

development of cancer (Loeb and Harris 2008, Stratton et al. 2009). Currently, 

germline mutations are known to be responsible for hereditary cancer predisposition 
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and germline variants are known to affect both hereditary and sporadic cancer risk 

(Groden et al. 1991, Miki et al. 1994, Amundadottir et al. 2006, Easton et al. 2007, 

Tomlinson et al. 2008). Moreover, acquired genetic and genomic changes are known 

to drive cancer development (Vogelstein et al. 1988, Sjoblom et al. 2006, Wood et al. 

2007, Leary et al. 2008, Beroukhim et al. 2010) 

1.2.1 Germline genetic factors and cancer predisposition 

Cancer predisposing germline genetic factors can be divided into 3 main types; rare, 

highly penetrant mutations, rare, moderate penetrance mutations and common, lower 

penetrance variants (Balmain et al. 2003, de la Chapelle 2004). Highly penetrant 

germline mutations have been mostly identified through linkage studies in affected 

families. They include mutations in tumour suppressor genes (TSG) such as 

adenomatosis polyposis coli (APC), responsible for familial adenomatous polyposis 

(FAP), and the breast cancer associated genes (BRCA1 and BRCA2) responsible for 

familial breast cancer cases (Groden et al. 1991, Miki et al. 1994, Wooster et al. 

1995). These highly penetrant genetic factors are rare, accounting for ~20% of 

familial cancer cases and ~5% of cancer cases in general (Balmain et al. 2003, de la 

Chapelle 2004). Moderate penetrance mutations also occur in TSG and were mainly 

identified by sequencing candidate genes in familial cancer cases or association 

studies (Meijers-Heijboer et al. 2003, Cybulski et al. 2004). CHEK2 mutations, for 

example, confer moderate risk for several cancer types (Cybulski et al. 2004). 

However, they are also rare and account for <5% of cancer cases (Hemminki et al. 

2009a, Hemminki et al. 2009b).  

 

Much of the unknown inheritance can probably be explained by interactions between 

the more common but less penetrant genetic (and environmental) factors, based on a 

common variant common disease model (Balmain et al. 2003, Pasche and Yi 2010). 

These common, low penetrance genetic factors cannot be identified by linkage 



 3 

studies, but instead require large case control association studies (de la Chapelle 

2004). Two different approaches of association studies have helped in the 

identification of several common cancer susceptibility genes with low penetrance; 

candidate gene association studies and genome wide association studies (GWAS) 

(Pasche and Yi 2010, Chung and Chanock 2011). Candidate genes are usually 

selected based on their involvement in cancer related pathways such as cell 

proliferation and apoptosis (Pasche and Yi 2010). On the other hand, GWAS search 

for common susceptibility factors across the whole genome. GWAS are based on 

high throughput technologies, which genotype hundreds of thousands of common 

single nucleotide polymorphisms (SNPs) in large numbers of cancer cases and 

controls (Chung and Chanock 2011). Recently, copy number variants (CNVs) 

became of use in association studies as an alternative for SNPs (Beckmann et al. 

2007, Venkatachalam et al. 2010). 

1.2.2 Genetic instability, somatic changes and cancer development 

Throughout the development of cancer, cancer genomes acquire various somatic 

genetic changes. These changes can occur on several levels, ranging from single 

nucleotide mutations to the deletion or amplification of entire chromosomes (Balmain 

et al. 2003). Some of these somatic changes play an important role in cancer 

development, usually by affecting key cancer driver genes. On the other hand, some 

of the changes do not provide any selective advantage and are termed passenger 

mutations (Greenman et al. 2007). Despite the large number of cancer types and 

subtypes (>100), cancers are known to share a common pathogenesis in which they 

acquire 6-8 capabilities known as the hallmarks of cancer. These hallmarks are 

shared, more or less, by all types of cancer and they enable the progressive 

transformation of cells from normal to malignant (Hanahan and Weinberg 2011). The 

hallmarks include the ability of the cancer cells to: induce and sustain proliferative 

signalling, avoid growth suppression, resist cell death and apoptosis, replicate 
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continually, induce angiogenesis, activate invasion and metastasis, avoid immune 

destruction and deregulate cellular bioenergetics (Hanahan and Weinberg 2000, 

Hanahan and Weinberg 2011).  

 

Cancer hallmarks are mainly acquired through multiple steps of somatic genetic and 

epigenetic alterations and mutations affecting cancer driver genes (Loeb 1991, 

Hanahan and Weinberg 2011). Normally, the human genome is stable and is 

maintained by DNA monitoring and repair pathways which ensure that mutations are 

very rare events. If the mutations responsible for tumourigenesis were to occur at 

these normal rates, cancer would be a very rare disease (Loeb 1991). However, 

cancers occur at substantial frequency worldwide. For example, in the year 2008, 

~12.7 million new cancer cases were reported (Jemal et al. 2011). Therefore, in 

order to acquire enough mutations and occur at such high incidence, cancers must 

be genetically unstable. This is why genomic instability is considered one of the main 

driving forces behind cancer development (Loeb 1991, Hanahan and Weinberg 2000, 

Hanahan and Weinberg 2011). 

1.3 Colorectal cancer 

Colorectal cancer (CRC) is the third most common cancer in males (Figure 1.1) and 

the second in females (Figure 1.2) (Jemal et al. 2011). More than 1 million new CRC 

cases are diagnosed annually and ~600,000 related deaths were estimated 

worldwide in the year 2008, making CRC the 3rd highest cause of cancer related 

death in both genders (Figure 1.3)  (Parkin et al. 2005, Jemal et al. 2011). CRC is 

multifactorial and several environmental and genetic factors contribute to its aetiology 

(Jong et al. 2002). Environmental factors include diet, smoking and physical activity. 

In general, obesity, smoking and diets rich in red meat are associated with higher risk 

while regular physical exercise and diets rich in folate and calcium are associated 

with lower risk (Jong et al. 2002).  
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Figures 1.1-1.3 were generated based on data from the GLOBOCAN 2008 project available 

from the International Agency for Research on Cancer (IARC) website http://globocan.iarc.fr/ 

(accessed July, 2011).  

C Incidence of the most commonly diagnosed cancers in men worldwide (2008) 

Incidence of the most commonly diagnosed cancers in women worldwide (2008) 

 

Figure 1.1 Worldwide cancer incidence in males 

Figure 1.2 Worldwide cancer incidence in females 

Figure 1.3 Worldwide cancer mortality in males and females 

http://globocan.iarc.fr/
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1.3.1 Colorectal cancer: pathology and staging 

CRC progresses slowly over years and tumour development occurs through several 

distinct histo-pathological stages. These stages range from single crypt lesions 

through small adenomatous polyps (benign tumours) to malignant carcinomas with 

metastatic potential (Deschoolmeester et al. 2010, Migliore et al. 2011). CRC stages 

are mainly defined by the tumour, node, metastasis (TNM) staging system of the 

American Joint Committee on Cancer (AJCC) and the International Union Against 

Cancer (UICC), or the Dukes staging system (Compton and Greene 2004, Migliore et 

al. 2011). TNM staging is based on the local extent and the depth of invasion of the 

primary tumour (T), the level of lymph node involvement (N) and the presence of 

distant metastatic cancer (M) (Compton and Greene 2004). The Dukes staging 

system, which has undergone several modifications since it was originally described 

by the British pathologist Cuthbert Dukes in 1932, includes the parameters observed 

in TNM staging, but also describes the level of cancer cell differentiation (Jass and 

Morson 1987, Migliore et al. 2011). In general, both staging systems divide CRC into 

4 main stages that reflect the severity and development of CRC (Table 1.1). Although 

this histo-pathological staging of CRC is useful in stratifying patients into distinct 

groups to predict prognosis and survival, the system is limited in predicting treatment 

response or defining the underlying mechanisms of tumourigenesis  (Westra et al. 

2005, Ogino and Goel 2008, Walther et al. 2009).  

Table 1.1 Summary of TNM and modified Duke’s staging systems 

TNM Stages 
Modified  
Duke's 

Survival (%)* 

Stage 0  Tis, N0, M0 - - 

Stage I  

(no nodal involvement, no metastases) 

T1 (submucosa invaded) A 
90-100 

T2 (muscularis propria invaded) B1 

Stage II  

(no nodal involvement, no metastases) 

IIA (T3, subserosa invaded) B2 
75-85 

IIB (T4, visceral peritoneum invaded) B3 

Stage III  

(no metastases) 

IIIA (T1-T2, N1 (1-3 nodes involved)) C1 

30-40 IIIB (T2-T4, N1 (1-3 nodes involved)) C2/C3 

IIIC (T1-T4, N2 (≥4nodes involved)) C1-C3 

Stage IV (distant metastases) T1-T4, N1-N4, M1 D <5 

* 5 year survival estimates 

Table 1.1 was adapted from (Kerr D J 2001, Horton and Tepper 2005).  
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1.3.2 Colorectal cancer: genetics 

CRC is divided into sporadic and hereditary (familial) cases with genetic factors 

playing a significant role in predisposition to the disease (de la Chapelle 2004). 

Around 75% of CRC cases are sporadic and the remaining 25% of cases show 

hereditary or familial CRC characteristics (Migliore et al. 2011). Large cancer 

heritability studies based on 1st degree family members have shown that amongst 

common cancers, CRC has one of the highest genetic contributions towards its risk 

(Goldgar et al. 1994, Dong and Hemminki 2001). Moreover, a large multi-cohort twin 

study has estimated that the genetic contribution in CRC is ~35%, making it the 2nd 

highest (behind prostate cancer) in terms of heritability of the common cancers 

(Lichtenstein et al. 2000, de la Chapelle 2004). Nevertheless, known and highly 

penetrant inherited genetic factors that predispose to familial CRC are rare and 

account for only 5-6% of cases (Migliore et al. 2011). The two main inherited and 

well-characterised forms of CRC are Lynch syndrome and familial adenomatous 

polyposis (FAP) (Lynch and de la Chapelle 2003, de la Chapelle 2004).  

1.3.2.1 Lynch syndrome 

Lynch syndrome or hereditary non-polyposis colorectal cancer (HNPCC) was 

originally described in 1913 by the pathologist Aldred Warthin, who investigated a 

family with a high incidence of cancer (Lynch and de la Chapelle 1999). The study of 

this family, known as family “G” took place over several decades, with the disease 

being described as a cancer family syndrome in the mid 1960‟s (Lynch et al. 1966). 

In 1970, family “G”  (with more than 650 blood relatives and 95 cancer cases) was 

restudied in detail by Henry Lynch and Anne Krush who described an autosomal 

dominant hereditary cancer syndrome (Lynch and Krush 1971). 

 

Lynch syndrome is mainly caused by germline mutations in one of several DNA 

mismatch repair (MMR) genes such as MLH1, MSH2, MSH6 and PMS2 (de la 
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Chapelle 2004, Migliore et al. 2011). Loss of MMR gene function results in 

microsatellite instability (MSI) (Section 1.3.3.2) which occurs in ~90% of Lynch 

syndrome colorectal  tumours (Nussbaum et al. 2001). The syndrome is inherited in 

an autosomal dominant pattern and accounts for ~3% of the total CRC cases 

(Nussbaum et al. 2001, Migliore et al. 2011). People carrying a germline mutation in 

one of the MMR genes will have ~80% risk of developing CRC (de la Chapelle 2004, 

Migliore et al. 2011). In addition to CRC, Lynch syndrome patients are at an 

increased risk of other forms of cancer, including those of the stomach, ovaries, brain 

endometrium and pancreas (Lynch and de la Chapelle 2003, de la Chapelle 2004, 

Migliore et al. 2011). In 60-70% of Lynch syndrome cases, the tumour is proximal to 

the splenic flexure (Lynch and de la Chapelle 1999, Nussbaum et al. 2001). 

1.3.2.2 Familial adenomatous polyposis 

Familial adenomatous polyposis (FAP) is characterised by the formation of hundreds, 

even thousands, of adenomas in the colorectum, usually starting early in life 

(occasionally in the preteen years) (Nussbaum et al. 2001, Lynch and de la Chapelle 

2003). FAP is caused by mutations in a TSG, namely adenomatous polyposis coli 

(APC). FAP is an autosomal dominant syndrome, and accounts for ~1% of CRC 

cases (Migliore et al. 2011). The penetrance of FAP is almost 100% and CRC 

development is inevitable (at the age of 40 to 50 years) if the adenomas are left 

untreated (Lynch and de la Chapelle 2003, Migliore et al. 2011). Therefore, 

individuals who have a first-degree relative with FAP should be screened for APC 

mutations or have flexible sigmoidoscopy early in life (Lynch and de la Chapelle 

2003). Any patients carrying germline APC mutations or who have colonic polyps 

require an annual endoscopy examination (Lynch and de la Chapelle 2003). It is 

worth mentioning that mutations in APC occur in up to 70% of sporadic colorectal 

tumours (Miyaki et al. 1994, Luchtenborg et al. 2004). 
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1.3.2.3 Low penetrance genes and colorectal cancer risk 

As stated earlier, Lynch syndrome and FAP are caused by highly penetrant and well 

characterised mutations. However, these syndromes are rare, and account for <5% 

of all CRC cases and only ~20% of hereditary CRC cases (Jong et al. 2002, de la 

Chapelle 2004). The remaining majority of the hereditary cases, and a proportion of 

the sporadic CRC cases, are likely to be caused by more common but less penetrant 

genetic variants and polymorphisms (SNPs) (Broderick et al. 2007). These are 

generally difficult to identify as linkage analysis studies do not have enough power to 

detect low penetrance variants (de la Chapelle 2004). Nevertheless, genetic 

association studies using both the candidate gene and the genome wide approaches 

have helped to identify some of these less penetrant genetic variants (de la Chapelle 

2004, Migliore et al. 2011). 

 

Some of the genetic variants identified through candidate gene association studies 

occur within the genes of the metabolic enzymes Glutathione S-transferases (GSTs) 

methylenetetrahydrofolate reductase (MTHFR), and DNA repair genes such as 

XRCC2 (Huang et al. 2007, Curtin et al. 2009b, Economopoulos and Sergentanis 

2010).  However, most of these associations are yet to be confirmed in large and 

independent association studies (Migliore et al. 2011). Several of the genetic variants 

identified through GWAS occur within genes and loci that include SMAD7, CRAC1 

(HMPS), 8q23.3, 8q24, 10p14, 1q41, 3q26.2, 12q13.13 and 20q13.33 (Broderick et 

al. 2007, Haiman et al. 2007, Tomlinson et al. 2007, Zanke et al. 2007, Jaeger et al. 

2008, Tenesa et al. 2008, Tomlinson et al. 2008, Houlston et al. 2010). Recently, 

using fine mapping and a candidate gene approach based on GWAS results, genetic 

variants within GREM1, BMP4 and BMP2 were identified as CRC risk factors 

(Tomlinson et al. 2011). In general, all the verified common risk variants account for 

~6% of the unknown CRC heritability (Lascorz et al. 2010). The identification of more 

of these lower penetrance genetic variants will play an important role in increasing 
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the knowledge of the genetic pathways involved in the initiation, development and 

progression of CRC (de la Chapelle 2004). Moreover, this knowledge also has 

possible implications for the prevention, diagnosis and treatment of CRC (de la 

Chapelle 2004, Lerman and Shields 2004).  

1.3.3 Genomic instability and development of colorectal cancer 

As discussed earlier, genomic instability is a primary driving force in cancer 

development. Three main forms of genomic instability occur in CRC; chromosomal 

instability (CIN), microsatellite instability (MSI) and epigenetic instability, known as 

CpG island methylator phenotype (CIMP) (Thibodeau et al. 1993, Toyota et al. 1999, 

Pino and Chung 2010, Migliore et al. 2011). Studying the global genomic status of 

CIN, MSI and CIMP can play an important role in determining the biological and 

clinico-pathological characteristics of CRC (Issa 2008, Ogino and Goel 2008). 

1.3.3.1 Chromosomal instability 

1.3.3.1.1 The basis of chromosomal instability 

CIN is the most common type of genomic instability in CRC and accounts for 65-85% 

of cases (Derks et al. 2008, Issa 2008, Pino and Chung 2010, Migliore et al. 2011). 

Tumours that develop through the CIN pathway are characterised by frequent 

numerical and structural gains and losses of chromosomal fractions or whole 

chromosomes at a significantly increased rate in comparison to normal cells 

(Rajagopalan et al. 2003). CIN is thought to play an important role in tumourigenesis 

through the amplification of oncogenes such as MYC and the deletion of TSG such 

as SMAD4 and TP53 (Kozma et al. 1994, Ozakyol et al. 2006, Tanaka et al. 2006, 

Ogino and Goel 2008, Migliore et al. 2011). The molecular basis of CIN is not well 

understood. However, it can result from defects in the pathways which regulate and 

maintain chromosome segregations including the DNA damage response, the 

spindle assembly checkpoints, DNA double-strand break (DSB) repair and telomere 

regulation (Zhivotovsky and Kroemer 2004, Pino and Chung 2010). Mutations in 



 11 

genes that play a role in regulating these pathways, such as APC, MRE11 and TP53, 

are implicated in CRC development and are associated with CIN (Wang et al. 2004, 

Pino and Chung 2010). Another important cause of CIN, especially with numerical 

chromosomal defects (rather than structural), is abnormal centrosome function. 

AURKA, an important regulator of centrosome function, is overexpressed in several 

cancers and was recently shown to be associated with CIN in CRC (Baba et al. 

2009). 

1.3.3.1.2 Characterisation of chromosomal instability   

Several techniques and approaches are available to characterise and define CIN. 

They include conventional methods such as karyotyping, loss of heterozygousity 

(LOH) analysis using microsatellite markers, DNA ploidy analysis using flow 

cytometry, fluorescent in situ hybridisation (FISH) and conventional comparative 

genome hybridisation (CGH) and high throughput methods such as bacterial artificial 

chromosome (BAC) CGH and oligonucleotide array CGH and SNP arrays (Hermsen 

et al. 2002, Chang et al. 2006, Cheng et al. 2008, Derks et al. 2008, Baba et al. 

2009, Pino and Chung 2010, Poulogiannis et al. 2010a). These diverse approaches 

and techniques provide different criteria to define CIN; making it very difficult to 

compare results between studies or introduce standard definitions for CIN (Pino and 

Chung 2010). Nevertheless, LOH at several microsatellite markers, such as those on 

18q, 8p and 5q, and the so-called cancer associated events (CAE) (losses in 8p21-

pter, 15q11–q21, 17p12–13 and 18q12–21 and gains in 8q23-qter, 13q14–31 and 

20q13) were proposed to represent CIN. However, these markers are not in standard 

use and are prone to underestimating CIN and producing false-negative results 

(Hermsen et al. 2002, Ogino and Goel 2008). High resolution and genome-wide array 

based techniques are currently the methods of choice; however, a standard definition 

of CIN is still lacking (Brosens et al. 2010, Pino and Chung 2010, Dyrso et al. 2011). 

More recently, next generation sequencing platforms are providing even higher 

resolution and accuracy in the detection of chromosomal aberrations in cancer 
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(Wong et al. 2011). However, their use is currently limited due to the higher cost 

involved. 

1.3.3.2 Microsatellite instability  

1.3.3.2.1 Microsatellite instability and CRC 

In 1993, microsatellite instability (MSI), also known as the mutator phenotype, was 

identified in CRC as a molecular subtype with distinct genotypic and phenotypic 

characteristics (Ionov et al. 1993, Thibodeau et al. 1993). MSI is characterised by 

altered lengths of microsatellites in tumour DNA compared to normal DNA 

(Thibodeau et al. 1993). When microsatellites are located in coding regions of genes, 

MSI can result in frameshift mutations and altered protein function (Vilar and Gruber 

2010). Some of the important cancer genes affected by MSI, and also associated 

with CRC include the pro-apoptotic genes BAX, CASP5 and BCL10, the transforming 

growth factor beta receptor type II (TGFBR2), the insulin-like growth factor II receptor 

(IGF2R) the transcription factor E2F, the cell cycle control gene CHEK1 and the DNA 

repair genes MSH3 and MSH6 (Yin et al. 1997, Bertoni et al. 1999, Trojan et al. 

2004, Iacopetta et al. 2010, Yashiro et al. 2010). 

1.3.3.2.2 Microsatellite instability: molecular basis and testing 

MSI is associated with defective DNA mismatch repair machinery resulting from 

mutations or promoter hypermethylation of MMR genes such as MLH1 and MSH2 

(Zhivotovsky and Kroemer 2004, Ogino and Goel 2008). MSI is the main 

characteristic of Lynch syndrome, however, MSI only occurs in ~15% of sporadic 

colorectal tumours (Nussbaum et al. 2001). The global genomic status of MSI is 

assessed through the analysis of specific microsatellite markers. In 1997, the 

National Cancer Institute (NCI) set the guidelines for MSI testing and developed a 

panel of 5 microsatellite markers; 3 dinucleotide markers (D2S123, D5S346 and 

D17S250) and 2 mononucleotide markers (BAT25 and BAT26). These markers, 

called the NCI consensus panel or the Bethesda panel, were considered to be the 
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reference panel for MSI testing (Boland et al. 1998). Based on this panel, tumours 

with instability in 2 or more markers were classified as MSI-high (MSI-H), while those 

with one unstable marker were defined as MSI-low (MSI-L) and tumours without any 

instability were considered microsatellite stable (MSS) (Boland et al. 1998, Bacher et 

al. 2004). However, the NCI consensus panel suffered from several limitations arising 

from the dinucleotide markers, which were shown to be less sensitive and specific for 

MSI testing when compared to mononucleotide markers (Suraweera et al. 2002). 

In 2002, the NCI released the revised guidelines for MSI, and mononucleotide 

markers were recommended as the most sensitive markers for this type of testing 

(Umar et al. 2004). In 2004, a set of 5 mononucleotides markers (BAT25, BAT26, 

NR21, NR24 and MONO27) were developed for MSI testing according to the revised 

NCI criteria (Bacher et al. 2004). The latter panel was shown to be more accurate in 

determining the MSI-H status in comparison to the old panel (Murphy et al. 2006).  

1.3.3.3 The CpG island methylator phenotype 

Transcriptional silencing of TSG by DNA methylation at promoter CpG islands is very 

common in cancer cells (Ogino et al. 2006a). Several TSG, such as CDKN2A and 

MLH1 were shown to be transcriptionally inactivated by DNA methylation in CRC 

(Ahuja et al. 1997, Kambara et al. 2004). In 1999, a CpG island methylator 

phenotype (CIMP) was proposed as a distinct form of epigenetic instability in a 

subset of CRC tumours (Toyota et al. 1999). CRC cases with CIMP were 

characterised by having a higher frequency of methylated TSG promoters in tumour 

DNA compared to DNA from normal colon tissues (Toyota et al. 1999, Toyota et al. 

2000). The existence of CIMP as a unique form of epigenetic instability in CRC has 

now been established and confirmed (Ogino and Goel 2008). 

1.3.3.3.1 CIMP testing 

The global genomic status of CIMP is usually assessed by quantitatively analysing a 

set of CpG island methylation markers (Ogino and Goel 2008). Several marker 
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panels have been proposed for the evaluation of CIMP in CRC. The classical panel 

that was initially used to investigate CIMP in CRC included the following genes: 

CDKN2A, MINT1, MINT2, MINT31 and MLH1 (Rashid et al. 2001, Hawkins et al. 

2002, Frazier et al. 2003, Samowitz et al. 2005). However, other panels were later 

introduced and were proposed to be more robust than this classical group. One of 

these included the genes CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1 

(Weisenberger et al. 2006, Cheng et al. 2008) and another included; CACNA1G, 

CDKN2A, CRABP1, MLH1 and NEUROG1 (Ogino et al. 2006a). In 2007, a large 

population study (based on 920 CRC samples) evaluated the performance of both 

panels and proposed the use of 4-8 genes (RUNX3, CACNA1G, IGF2, MLH1, 

NEUROG1, CRABP1, SOCS1 and CDKN2A) as a highly sensitive and specific panel 

for the evaluation of CIMP in CRC (Ogino et al. 2007). However, the panel is still not 

in standard use (Kim et al. 2010, Jover et al. 2011). 

 

Several techniques are also available to determine the methylation status of the CpG 

markers for the evaluation of CIMP. Some of the commonly used techniques include 

methylation specific PCR (MSP) (which are qualitative) and pyrosequencing and real 

time PCR based assays (that are quantitative) (Samowitz et al. 2005, Ogino et al. 

2006a, Jover et al. 2011). In general, it is recommended that a minimum of 4-5 

validated CIMP markers are employed, and avoiding the use of qualitative 

techniques (Ogino et al. 2006a, Ogino et al. 2007, Goel and Shin 2008). Like MSI, 

CIMP can be divided into several subgroups; intense methylation of several markers 

known as CIMP-high (CIMP-H), less extensive marker methylation (compared to 

CIMP-H) known as CIMP-low (CIMP-L) and absence of methylation or CIMP-

negative (CIMP-N). Nevertheless, CIMP-L definition and its distinction from CIMP-

H/N remain controversial (Ogino et al. 2006b, Goel and Shin 2008).  
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1.3.4 Genetic mutations and colorectal cancer 

Germline mutations in genes such as APC and MLH1 are known to predispose to 

hereditary CRC (Sections 1.3.2.1 and 1.3.2.2). On the other hand, somatic mutations 

in cancer related genes play a primary role (alongside genomic instabilities) in driving 

CRC development (Wood et al. 2007, Migliore et al. 2011). Some of the major 

oncogenes and TSG known to be mutated in sporadic CRC include APC, TP53, 

KRAS, PIK3CA, BRAF and SMAD4 (Woodford-Richens et al. 2001, Davies et al. 

2002, Brink et al. 2003, Iacopetta 2003, Luchtenborg et al. 2004, Ikenoue et al. 2005, 

Velho et al. 2005, Oliveira et al. 2007).   

 

A comprehensive and systematic genome wide sequencing analyses of >18000 

genes was recently performed in CRC and breast cancer (Sjoblom et al. 2006, Wood 

et al. 2007). Sequencing results from >100 CRC patients indicated the presence of 

~80 somatic mutations in a typical colorectal tumour (Wood et al. 2007). However, 

statistical analysis predicted that <15 of these mutations were likely to be drivers of 

tumourigenesis (Wood et al. 2007). In total, 140 CRC driver genes were identified, 

and predicted to play an important role in CRC development and progression (Wood 

et al. 2007). Whilst including the well-known CRC driver genes APC, TP53, KRAS, 

FBXW7, PIK3CA and SMAD4, this exercise also identified a large number of genes 

that had never before been implicated in cancer. The results of these sequencing 

studies revealed the scale of somatic mutations in CRC and confirmed their central 

role in driving tumour development (Sjoblom et al. 2006, Wood et al. 2007). 

1.3.5 Molecular classification & characterisation of colorectal cancer 

As stated, CRC develops through a sequential and multistep process of 

accumulating genetic and epigenetic defects. Although these defects occur in a 

mostly random fashion, they tend to accumulate in patterns (Ogino and Goel 2008, 

Stratton et al. 2009). These organised patterns probably arise due to selection 
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pressure created by advantages and/or disadvantages of carrying some of the 

molecular defects (Ogino and Goel 2008, Stratton et al. 2009), with advantageous 

defects providing the tumour cells with one or more of the cancer hallmarks 

explained earlier (Stratton et al. 2009). Molecular classification of CRC helps in 

understanding the patterns which underlie the molecular mechanisms of 

tumourigenesis. This in turn can help to identify molecular biomarkers with the 

potential to be used in the clinic for predicting treatment response and patients‟ 

prognosis or survival (Westra et al. 2005, Ogino and Goel 2008). In this way, 

molecular classification of CRC can complement histo-pathological classification 

(Section 1.3.1) and provide a more comprehensive picture that can be applied 

clinically. 

 

For a long time it was considered that sporadic CRC develops through a uniform and 

linear pathway of molecular defects, starting with APC inactivating mutations and the 

subsequent acquisition of more defects such as KRAS activation and TP53 

inactivation (Fearon and Vogelstein 1990) (Figure 1.4). This homogenous view of 

sporadic CRC genetic development has directed both research and clinical 

management for several decades (Jass 2007, Issa 2008). However, more recently, 

integrated genetic and epigenetic studies on sporadic CRC cases have shown that it 

can no longer be considered as one uniform and homogenous disease (Shen et al. 

2007, Cheng et al. 2008, Derks et al. 2008, Issa 2008). Instead, there are several 

subtypes of sporadic CRC (at least 3) which develop through different pathways of 

genetic and epigenetic instabilities (CIN, MSI and CIMP), and mutations in key driver 

genes such as; APC, TP53, KRAS, BRAF and PIK3CA (Figure 1.5) (Chang et al. 

2006, Shen et al. 2007, Cheng et al. 2008, Derks et al. 2008, Issa 2008, Nosho et al. 

2008). In addition to their distinct molecular characteristics, these molecular 

pathways/CRC subtypes are known to associate with different clinical and 

pathological features (Shen et al. 2007, Issa 2008) (Figure 1.5). 
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Figure 1.4 The classical linear model for sporadic CRC development 

The classical linear model of genetic and epigenetic defects leading to CRC, the model is widely known as the “Vogelgram”. 

Figure adapted from (Fearon and Vogelstein 1990). 
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Recent studies have shown that sporadic CRC cannot be considered as a single homogenous disease. There are at least 3 molecular pathways for CRC 

development. These pathways provide a better understanding of sporadic CRC development with potential applications in clinic (Adapted from (Issa 2008)).
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1.3.5.1 An overview of CRC molecular pathways 

Several comprehensive molecular classification systems for sporadic CRC have 

recently been proposed, based on genomic instabilities, genetic mutations and clinic-

pathological features (Jass 2007, Issa 2008, Ogino and Goel 2008). The number of 

molecular subtypes ranges from 3-9 depending mainly on the genomic instabilities 

used and their definitions (Ogino and Goel 2008). Some of the proposed 

classification systems do not incorporate CIN (Ogino and Goel 2008). Moreover, 

some of the suggested subtypes are very rare, bearing subtle differences from the 

others which may not have any clinical relevance (Ogino and Goel 2008). The 

following sections (1.3.5.1.1-1.3.5.1.3) describe the 3 main subtypes based on a 

classification system proposed by Jean-Pierre Issa, which incorporates the 3 

genomic instabilities (CIN, MSI and CIMP) (Issa 2008) (Figure 1.5). 

1.3.5.1.1 The classical MSI-high pathway 

The first molecular pathway of CRC development is known as the MSI pathway.  This 

pathway accounts for 10-20% of sporadic CRC cases (Chang et al. 2006, Shen et al. 

2007, Issa 2008). It is characterised by 2 genomic instabilities; high levels of MSI 

(MSI-H) and in most cases, intense methylation of a wide range of genes (CIMP-H) 

(Issa 2008). MSI in sporadic CRC is thought to occur as a result of CIMP affecting 

distinct MMR genes, mainly MLH1 (Weisenberger et al. 2006). In addition to the 

genomic instabilities, this pathway is also characterised by mutations in key CRC 

driver genes. Mutations in BRAF (mainly V600E) occur at a frequency of 5-18% in 

sporadic CRC. However, they cluster within the MSI-H/CIMP-H pathway with a 

frequency of 40-50% (Oliveira et al. 2007, Shen et al. 2007). PIK3CA mutations were 

shown to play an important role in CRC development with an estimated frequency of 

13-30% (Samuels et al. 2004, Ikenoue et al. 2005, Velho et al. 2005). Several studies 

have shown an association between the most common and oncogenic PIK3CA 



 20 

mutations and the MSI-H/CIMP-H sporadic CRC pathway (Abubaker et al. 2008, 

Nosho et al. 2008). 

 

From a clinico-pathological perspective, sporadic colorectal tumours developing 

through the MSI-H/CIMP-H pathway are thought to arise from serrated or mucinous 

adenomas and mainly occur in the proximal colon (Jass 2007, Shen et al. 2007, Issa 

2008). CRC patients with this pathway are more commonly females, and usually 

have good prognosis and survival (Samowitz et al. 2001a, Shen et al. 2007, Ogino 

and Goel 2008, Ogino et al. 2009).  

1.3.5.1.2 The CIN positive/MSS pathway 

The most common molecular pathway in sporadic CRC (50-70%) is mainly 

characterised by frequent CIN, MSS, CIMP-N/L and mutations in APC and TP53 

(Eshleman et al. 1998, Chang et al. 2006, Shen et al. 2007, Issa 2008). Moreover, 

BRAF is largely unmutated, and the most common BRAF mutation (V600E) occurs at 

a frequency of < 5% in these tumours (Chang et al. 2006, Shen et al. 2007, Derks et 

al. 2008). Colorectal tumours developing through the CIN positive/MSS pathway are 

thought to arise from tubular adenomas and occur mainly in the distal colon (Chang 

et al. 2006, Issa 2008). These tumours are associated with an intermediate prognosis 

and do not show any sex bias (Issa 2008, Ogino and Goel 2008).  

1.3.5.1.3 CIMP-Low/MSS 

The 3rd main molecular pathway is poorly defined and accounts of 10-30% of 

sporadic CRC cases (Issa 2008). It is characterised mainly by CIMP-L (lower levels 

compared to MSI-H/CIMP-H pathway) and mutations in KRAS (Ogino et al. 2006b, 

Shen et al. 2007). The BRAF V600E mutation occurs in some of the cases in which 

KRAS is wild type. This pathway is usually MSS with lower levels of CIN compared to 

the MSS/CIN positive pathway (Shen et al. 2007). Colorectal tumours developing 

through this pathway are thought to arise from villous adenomas and mainly occur in 

the proximal colon (Issa 2008). CRC patients with tumours of this type are more 
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commonly males, usually have poor prognosis and their tumours are more resistant 

to chemotherapeutic agents (Ogino et al. 2006b, Shen et al. 2007). 

 

It is worth noting that these 3 molecular pathways/subtypes do not cover all the 

sporadic CRC cases (Issa 2008). Whilst some CRC cases are reported to show one 

or more of the 3 forms of genomic instabilities, others have been reported without 

any type of genomic instability (Cheng et al. 2008). It is still unclear whether these 

cases represent separate CRC molecular subtypes, with distinct clinico-pathological 

features. 

1.3.5.2 Standardisation of CRC molecular classification 

An important limitation of the molecular classification and characterisation of CRC is 

the absence of standard techniques and definitions for the global genomic 

instabilities (Issa 2008, Ogino and Goel 2008). The use of different methods, 

definitions and marker panels have resulted in major differences in estimating the 

frequencies of MSI, CIN and CIMP (Issa 2008). In order for molecular classification to 

generate clinically useful information, standard techniques and definitions must be 

used to identify the genomic instabilities, especially CIMP and CIN. 

1.3.5.3 Sporadic CRC molecular markers and the clinic 

1.3.5.3.1 Prognostic markers 

A more comprehensive understanding of CRC genetics and epigenetics is paving the 

way for personalised CRC care and treatment in the clinic. The prognostic values of 

CIN and MSI were validated in meta-analyses across a wide range of CRC patients 

(Popat et al. 2005, Walther et al. 2008, Guastadisegni et al. 2010). CIN was 

associated with a bad prognosis, and was recommended to be evaluated as a 

prognostic marker in clinical trials (Walther et al. 2008, Pritchard and Grady 2011). 

On the other hand, MSI was associated with a more favourable prognosis (Popat et 

al. 2005, Guastadisegni et al. 2010). The strength of these prognostic value means 
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that both CIN and MSI are likely to become increasingly utilised for the clinical 

evaluation of CRC (Pritchard and Grady 2011). MSI testing is already available for 

sporadic CRC, however, it is not yet widely used (Pritchard and Grady 2011). Other 

genetic markers with potential prognostic values include the chromosome 18q LOH 

and mutations in BRAF (V600E), both of which predict an unfavourable prognosis 

(Popat and Houlston 2005, Roth et al. 2010). 

1.3.5.3.2 Predictive markers 

The most evident example of personalised CRC treatment based on genetic markers 

is the use of KRAS mutational status as a predictive marker for resistance to anti-

epidermal growth factor receptor (EGFR) therapies such as cetuximab and 

panitumumab (Karapetis et al. 2008, Allegra et al. 2009). Detection of KRAS 

mutations, mostly codons 12 and 13, is currently in routine clinical use, and CRC 

patients with KRAS mutations do not receive anti-EGFR antibodies as part of their 

treatment (Allegra et al. 2009, Pritchard and Grady 2011). In addition to KRAS 

mutations, BRAF V600E mutation, PIK3CA mutations and loss of PTEN expression 

are promising predictive markers for resistance to anti-EGFR therapies (particularly 

in resistant cases with WT KRAS) (Figure 1.6) (Di Nicolantonio et al. 2008, Jhawer et 

al. 2008, Sartore-Bianchi et al. 2009, Di Fiore et al. 2010). A combined panel of these 

mutations might prove to be more efficient in predicting resistance to anti-EGFR 

therapies (Bohanes et al. 2011). 
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Figure 1.6 Anti-EGFR therapy molecular determinants 

A) An overview of the EGFR pathway and the main downstream effector molecules B) In 

sensitive cells, EGFR activation (overexpression, genomic amplification) can be counteracted 

by anti-EGFR therapies C) In resistant cells, mutations affecting downstream effector 

molecules make the treatment ineffective (Adapted from (Di Fiore et al. 2010)). 

 

In addition to their prognostic value, MSI and 18q LOH are also promising predictive 

markers for conventional adjuvant chemotherapy (Pritchard and Grady 2011). MSI 

was shown to predict resistance to treatment with fluorouracil (5-FU), however, the 

association is controversial (Ribic et al. 2003, Jo and Carethers 2006, Kim et al. 

2007). A recent meta-analysis of 31 studies has confirmed that the association 

between MSI and 5-FU resistance is controversial and recommended the use of 

combined genomic markers to predict the efficiency of 5-FU therapy (Guastadisegni 

et al. 2010). Nevertheless, MSI-H CRC cell lines were shown to be more sensitive to 

irinotecan treatment (Vilar et al. 2008) and a recent clinical trial has shown improved 

response of MSI patients to adjuvant chemotherapy with irinotecan (Bertagnolli et al. 
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2009). CIMP was also recently shown as a potential predictive marker for resistance 

to 5-FU adjuvant chemotherapy (Jover et al. 2011). 

 

In summary, due to the more comprehensive and detailed understanding of CRC 

genetic and epigenetic characteristics, personalised CRC treatment is becoming 

more of a reality (Choong and Tsafnat 2011, Pritchard and Grady 2011). Whilst the 

use of a single genetic or epigenetic marker is unable to fully predict prognosis or 

direct treatment decisions, the combinations of several markers through standardised 

CRC molecular classification provide scope for the future use of personalised CRC 

treatment (Choong and Tsafnat 2011). Therefore, this demonstrates the need for 

research directed towards identifying panels of novel genetic and epigenetic markers 

that are implicated in CRC tumourigenesis. 

1.4 Apoptosis 

1.4.1 Background 

Cell death usually occurs through three main pathways; necrosis, autophagy or 

apoptosis (Ishimura and Gores 2005). Apoptosis (the Greek word for “falling off”) was 

described for the first time in 1972 as a mechanism of controlled cell deletion that is 

complementary but opposite to mitosis (Kerr et al. 1972). Apoptosis differs from other 

pathways of cell death, particularly necrosis, by being highly regulated and occurring 

via well-defined steps (Okada and Mak 2004). Also referred to as programmed cell 

death, apoptosis is considered a fundamental and highly controlled biochemical 

pathway that plays an important role in normal tissue homeostasis, differentiation, 

immune system function and embryonic development (Ellis et al. 1991, Jacobson et 

al. 1997, Reed 2000, Fadeel and Orrenius 2005). However, the deregulation of 

apoptosis plays a key role in the development of neurodegenerative and autoimmune 

diseases and cancer (Okada and Mak 2004). Apoptosis is a complicated process 
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and involves the activation and inhibition of several signalling pathways (Huerta et al. 

2006) (Figure 1.7).  

1.4.2 Caspases and apoptosis 

The main executioners of apoptosis are a family of proteolytic enzymes called 

cysteinyl aspartate-specific proteases or caspases (Alnemri et al. 1996, Zhao et al. 

2010). The name “Caspase” reflects the catalytic properties of these proteases; “C” 

refers to the cysteine protease mechanism, and “aspase”  refers to their distinctive 

ability to cleave their protein targets after an aspartate residue (Alnemri et al. 1996).  

 

Up to 14 human caspases have been identified, although not all are implicated in 

apoptosis (Zhang et al. 2004). Caspases that function during apoptosis can be 

divided into two main groups; initiator or activator caspases characterised by a long 

N-terminus (Caspases 2, 8, 9 and 10) and executioner caspases characterised by a 

short N-terminus (Caspases 3, 6 and 7). Caspases are synthesised as inactive 

zymogens, termed procaspases (Earnshaw et al. 1999, Zhang et al. 2004). 

Procaspases can be activated by proteolytic cleavage after an aspartic acid residue, 

which allows autocatalytic activation of initiator caspases (Muzio et al. 1998, Shi 

2004). Activated initiator caspases will, in turn, cleave and activate executioner 

procaspases (Shi 2004). The specificity of the caspases is determined by 4 amino 

acid residues located near the cleavage site (Thornberry et al. 1997). In general, the 

initiator caspases can activate executioner caspases through 2 classical pathways: 

the extrinsic death receptor pathway and the intrinsic (mitochondrial) pathway (Figure 

1.7) (Zhang et al. 2004, Fadeel and Orrenius 2005, Huerta et al. 2006). 
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Figure 1.7 Pathways and regulation of Apoptosis 

Extrinsic (death-receptor) pathway and intrinsic (mitochondrial) pathway. Arrows (   ) 

represent stimulatory effect and dashed lines (       ) represent inhibitory effects.  
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1.4.2.1 Pathways of apoptosis 

1.4.2.1.1 The extrinsic pathway 

The extrinsic pathway is activated through the binding of extracellular ligands such as 

tumour necrosis factor (TNF) and Fas ligand to various death receptors. The 

intracellular (cytoplasmic) domains of these death receptors (death domains) 

subsequently recruit an intracellular adaptor protein known as FADD (Fas-associated 

death domain protein, also known as MORT1). FADD contains a death effector 

domain and death domain which binds to the receptor death domain. FADD then 

attracts and binds procaspase 8 (or procaspase 10) through dimerization of death 

effector domains (Zhang et al. 2004, Elmore 2007). This complex is known as the 

death-inducing signalling complex (DISC). Procaspase 8 can then be auto-activated 

through the close proximity of several procaspase 8 molecules (known as the 

induced proximity model) (Muzio et al. 1998, Shi 2004). Active caspase 8 molecules 

released into the cytoplasm can subsequently cleave and activate executioner 

caspases. This then results in apoptosis and cell death (Figure 1.7) (Johnstone et al. 

2002, Huerta et al. 2006).  

 

In some cell types, such as lymphoid cells, caspase 8 activation by DISC is sufficient 

to initiate apoptosis. However, in other cell types, such as hepatocytes, this pathway 

is not sufficient to fully activate apoptosis. In such cases, the mitochondrial (intrinsic) 

pathway is required to amplify the “weaker” extrinsic apoptotic signal (Igney and 

Krammer 2002, Zhang et al. 2004). The activation of the mitochondrial pathway in 

this case is mediated by BID (a pro-apoptotic member of the Bcl-2 family), which is 

be cleaved and activated by caspase 8 (Figure 1.7) (Luo et al. 1998, Yin et al. 1999). 

1.4.2.1.2 The intrinsic pathway 

In the intrinsic pathway, intracellular stress, such as DNA damage, can activate pro-

apoptotic proteins of the Bcl-2 family through P53 (Section 1.4.3.1) (Figure 1.7). Pro-

apoptotic members of the Bcl-2 family, such as BAX and BAK, stimulate 
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mitochondrial outer membrane permeabilisation and the release of cytochrome C 

and SMAC/DIABLO (Section 1.4.3.3) (Shimizu et al. 1999, Huerta et al. 2006). 

SMAC/DIABLO counteract the anti-apoptotic proteins known as IAP (Section 

1.4.3.3), and free cytosolic cytochrome C forms a complex with APAF1 (apoptotic 

protease activating factor-1) (required for the efficient activation of caspase-9), ATP 

(adenosine triphosphate) and the inactive form of procaspase-9 (Rodriguez and 

Lazebnik 1999, Huerta et al. 2006). This complex, known as the apoptosome, 

activates the initiator caspase 9 and results in activation of executioner caspases and 

apoptosis (Figure 1.7) (Igney and Krammer 2002, Huerta et al. 2006). 

 

Following the activation of either the extrinsic or intrinsic pathway, activated 

executioner caspases (mainly caspases 3, 6 and 7) can cleave specific “death 

substrates”, leading to morphological changes including DNA fragmentation, 

chromatin condensation and cytoplasmic shrinkage, apoptosis and cellular death 

(Zhang et al. 2004, Huerta et al. 2006). 

1.4.3 Regulation of apoptosis 

Apoptosis is a highly controlled process, and several protein families including  B cell 

leukaemia/lymphoma 2 (Bcl-2) family proteins, inhibitors of apoptosis proteins (IAP), 

CASP8 and FADD-like apoptosis regulator (CFLAR) and heat shock proteins (HSP) 

play a role in its regulation. Interactions between these proteins and the apoptotic 

machinery determine the activation or the inhibition of apoptosis at different levels 

(Igney and Krammer 2002, Zhang et al. 2004). 

1.4.3.1 Bcl-2  

The Bcl-2 protein family regulate apoptosis at the mitochondrial level (intrinsic 

pathway). They are divided into pro-apoptotic proteins such as Bcl-2–associated X 

protein (BAX), BCL-2 antagonist/killer (BAK) and BH3-interacting domain death 

agonist (BID) and anti-apoptotic proteins such as Bcl-2, Bcl-XL and Bcl-W (Figure 
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1.7). Bcl-2 proteins regulate the intrinsic pathway by altering the permeability of the 

mitochondrial membrane (Igney and Krammer 2002, Huerta et al. 2006).  

1.4.3.2 CFLAR (FLIP) 

By interfering directly with DISC, FLIP inhibits the initiation of apoptosis via the 

extrinsic pathway. There are 2 splice variants of FLIP; long variant (FLIPL) and short 

variant (FLIPS). Both forms bind to DISC and inhibit the activation of caspase 8 and 

the extrinsic pathway (Figure 1.7) (Igney and Krammer 2002). 

1.4.3.3 IAP  

Nine IAP family members, including  XIAP, apollon and survivin, are known to inhibit 

apoptosis by directly interfering with and inhibiting caspases 3, 7 and 9 (Igney and 

Krammer 2002, Zhang et al. 2004). During apoptosis, a protein known as second 

mitochondria-derived activator of caspase/direct IAP binding protein with low pI 

(SMAC/DIABLO), is released from the mitochondria. This binds and inhibits IAPs in 

order to allow the activation of caspases (Figure 1.7) (Igney and Krammer 2002). 

1.4.3.4 HSP 

HSP influence both the intrinsic and extrinsic pathways of apoptosis (Huerta et al. 

2006). Anti-apoptotic HSP such as HSP27 inhibit the release of cytochrome C, while 

HSP70 and HSP90 inhibit the apoptosome through interfering with APAF-1. On the 

other hand, pro-apoptotic HSP such as HSP10 and HSP60 stimulate caspase 3 

(Huerta et al. 2006).  

1.4.4 Apoptosis and colorectal cancer 

Deregulation or inhibition of apoptosis has been shown to play an important role in 

the initiation, development and progression of cancer (Lowe and Lin 2000, Johnstone 

et al. 2002). In order to proliferate indefinitely, tumour cells must be able to avoid 

apoptosis (Hanahan and Weinberg 2000). It was previously shown that apoptosis is 

inhibited or downregulated during the development of CRC (Bedi et al. 1995, 

Kawasaki et al. 1998). The disruption of the apoptotic pathway usually occurs 



 30 

through the abnormal expression of genes that control and regulate apoptosis (Butler 

et al. 1999). This generally arises through loss of function in genes that upregulate or 

activate apoptosis (such as TP53 and BAX) and overexpression of genes that inhibit 

or downregulate apoptosis (such as BCL2, BIRC5 and FLIP) (Kawasaki et al. 1998, 

Butler et al. 1999, Ryu et al. 2001, Huerta et al. 2006). Besides uncontrolled growth, 

defective apoptosis helps tumour cells to circumvent the body‟s immune defences 

(Ishimura and Gores 2005). 

1.4.5 Apoptosis and chemotherapy 

Cancer treatments – including chemotherapy and irradiation – mainly act through the 

induction of apoptosis. Therefore, defects in the apoptotic machinery usually result in 

cancer cells exhibiting resistance to treatment (Ishimura and Gores 2005). For 

example, mutations in the pro-apoptotic BAX gene were shown to render CRC cells 

resistant to treatment with nonsteroidal anti-inflammatory drugs (NSAID) (Geelen et 

al. 2004, Zhang et al. 2004). On the other hand, overexpression of the anti-apoptotic 

protein FLIP resulted in resistance of CRC cell lines to treatment with CRC drugs 

such as 5-FU, OXA (oxaliplatin) and CPT-11 (irinotecan) (Geelen et al. 2004, 

Longley et al. 2006). 

1.4.6 Apoptosis and genomic instability 

Apoptosis and genomic instability are closely linked in tumourigenesis (Zhivotovsky 

and Kroemer 2004). Genomic instabilities usually result in mutations or abnormal 

expression of genes that regulate apoptosis. For example, MSI often results in 

mutations that inactivate the pro-apoptotic genes BAX, CASP5 and BCL10 (Trojan et 

al. 2004, Iacopetta et al. 2010). Moreover, deletion of the short arm of chromosome 

17 (17p), as a result of CIN, usually leads to TP53 inactivation (Zhivotovsky and 

Kroemer 2004, Ozakyol et al. 2006). P53 protein plays a central role in initiating 

apoptosis, keeping the integrity of the genome and thus preventing tumourigenesis 

(Bourdon 2007, Vazquez et al. 2008). In fact, the TP53 gene is inactivated in up to 
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85% of human cancers (Huerta et al. 2006). Simultaneously, defective apoptosis 

enables the survival and division of cells with unstable genomes, which otherwise 

would be eliminated (Zhivotovsky and Kroemer 2004).    

1.4.7 Caspase 8 

As mentioned earlier, caspase 8 is an initiator caspase that plays a key role in the 

activation of the extrinsic pathway. Moreover, through its cleavage of BID, caspase 8 

also plays an important role in the activation of the intrinsic pathway (Igney and 

Krammer 2002). In 1999, the caspase 8 gene (CASP8) was mapped to chr2q33 

downstream of CFLAR and CASP10 and upstream of ALS2CR12. CASP8 is 

approximately 54Kb in size and contains 13 exons (Figure 1.8) (Grenet et al. 1999). 

There are 8 identified isoforms of caspase 8 (a-h), however, only isoforms, a and b 

are predominantly expressed (Scaffidi et al. 1997), and they result in proteins 

containing 496 and 479 amino acids respectively (relative molecular mass of 

55.4KDa  (isoform a) and 53.7KDa (isoform b). 

 

 
Figure 1.8 CASP8 genomic location, gene structure & protein 
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1.4.7.1 Caspase 8 in cancer and CRC 

Deletion of chromosome 2q33, the genomic region containing CASP8, has been 

reported in several cancers including gastric and lung cancer and neuroblastoma 

(Otsuka et al. 1996, Nishizuka et al. 1998, Teitz et al. 2000, Takita et al. 2001, 

Shivapurkar et al. 2002a, Geelen et al. 2004). Moreover, it was reported that CASP8 

was frequently silenced by methylation in small cell lung cancer (SCLC) cell lines, 

neuroblastoma and medulloblastoma (Teitz et al. 2000, Shivapurkar et al. 2002a, 

Zuzak et al. 2002, Pingoud-Meier et al. 2003a, Stupack et al. 2006). Furthermore, 

CASP8 somatic mutations were reported in ~11% of advanced gastric cancers 

(Soung et al. 2005) and >5% of advanced CRC cases (Kim et al. 2003). Loss of 

CASP8 (by inactivating mutations, genomic deletions or methylation) plays a role in 

inducing resistance to chemotherapy, in promoting metastasis and is associated with 

poor prognosis and survival (Hopkins-Donaldson et al. 2000, Kim et al. 2003, 

Pingoud-Meier et al. 2003a, Stupack et al. 2006) 

1.4.7.2 CASP8 polymorphisms and cancer risk 

Common polymorphisms in CASP8 were shown to affect lung cancer risk (Son et al. 

2006). Moreover, a common missense variant (D302H) in exon 12 of CASP8 was 

reported as a low penetrance susceptibility allele for breast cancer (MacPherson et 

al. 2004, Cox et al. 2007, Shephard et al. 2009). In addition, a 6bp insertion-deletion 

(in/del) polymorphism in the promoter region of CASP8 was shown to affect the 

susceptibility of several common cancers including CRC (Sun et al. 2007). However, 

results of the latter association were not confirmed by additional studies (Haiman et 

al. 2008, Pittman et al. 2008). Nevertheless, preliminary data from our laboratory 

have indicated a possible association between CASP8 SNPs and CRC risk (Curtin et 

al. manuscript in preparation).  
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1.5 Aims of the project 

Genetic factors (both inherited and somatic) play a key role in the predisposition, 

initiation and development of CRC. Large family based cancer studies involving 1st 

degree relatives and twin siblings have estimated that the genetic contribution 

towards CRC risk is very high (~35%) (Goldgar et al. 1994, Lichtenstein et al. 2000, 

Dong and Hemminki 2001, de la Chapelle 2004). Whilst some of the inherited factors 

are highly penetrant and rare, others are of low penetrance and are more common. 

Highly penetrant CRC genetic factors are well characterised (e.g. Lynch and FAP 

syndromes), however, they account for <20% of hereditary CRC (de la Chapelle 

2004, Migliore et al. 2011). The remaining cases of hereditary CRC are probably due 

to the more common, but less penetrant, genetic polymorphisms. Several low 

penetrant and common CRC risk variants have been identified through genome wide 

and candidate genes association studies, however, so far they only account for ~6% 

of CRC heritability (Lascorz et al. 2010). By identifying more of these common and 

low penetrant genetic factors, further biochemical pathways involved in the 

pathogenesis of CRC might be identified, with the potential of extensive clinical 

implications (de la Chapelle 2004).  

 

Cellular evasion of apoptosis is considered one of the hallmarks of cancer 

development (Hanahan and Weinberg 2011). This is usually achieved by the 

disruption of genes which regulate apoptosis (Butler et al. 1999). Caspase 8 is an 

initiator caspase with an important role in the regulation of apoptosis. The mutation or 

methylation of CASP8 is implicated in several cancers including CRC (Teitz et al. 

2000, Kim et al. 2003, Soung et al. 2005). Moreover, inherited CASP8 variants were 

shown to affect cancer risk, including CRC (Son et al. 2006, Cox et al. 2007, Sun et 

al. 2007). However, the association between CASP8 inherited variants and CRC risk 

is controversial (Haiman et al. 2008, Pittman et al. 2008). The aims of the first part of 
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the project were to further test the hypothesis that CASP8 inherited variants may be 

involved in CRC risk. This included the following: 

 

1. To investigate the controversial association between CASP8 in/del promoter 

variant and CRC risk by genotyping the in/del variant in 1193 CRC cases and 

1388 matching controls.  

2. To identify any novel or rare CASP8 variants with the potential to affect CRC risk 

by the sequencing of the CASP8 promoter region, exons, exon/intron boundaries 

and the 3‟UTR in 94 CRC cases.  

3. To develop an assay for the CASP8 copy number variant CNV23598, located 

close to the D302H (breast cancer risk) variant in a panel of 284 CRC cases and 

controls, and in 47 carefully selected breast cancer cases and controls enriched 

for CASP8 risk and protective haplotypes respectively.   

 

Sporadic CRC develops through different pathways of genetic and epigenetic defects 

and somatic mutations in key genes. Due to its potential clinical implications, there is 

increased recognition and interest in the molecular classification of CRC. However, 

the field is limited by the lack of standardisation in defining global genomic 

instabilities (CIN, MSI and CIMP) (Issa 2008, Ogino and Goel 2008). Therefore, the 

main aim of the 2nd part of the project was to molecularly classify 53 CRC cases 

using standard definitions and technologies. This involved the following: 

 

1. To investigate and define MSI status using a panel of 5 mononucleotide 

microsatellite markers according to the revised NCI criteria for MSI testing. 

2. To investigate CIMP using the latest validated panel of 7 methylation markers 

and the semi-quantitative methylation-specific multiplex ligation probe 

amplification (MS-MLPA) technology. 

3. To investigate CIN using high resolution genome wide array CGH. 
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CIN is considered the most common genomic instability in CRC. CIN plays a major 

role in CRC development through the amplification of oncogenes (such as MYC) and 

the deletion of TSG (such as SMAD4) (Migliore et al. 2011). However, the picture is 

far from complete (Brosens et al. 2010, Pino and Chung 2010). Therefore, the final 

aim of the project was to identify and characterise novel CRC driver genes affected 

by CIN. This involved: 

 

1. The identification of common focal chromosomal aberrations based on 

genome wide high resolution aCGH data. 

2.  Proof of concept experiments to examine the effects of alterations on one of 

the novel candidate driver genes.  
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2. MATERIALS AND METHODS 

2.1 Materials 

2.1.1 General laboratory equipment and consumables 

Table 2.1 Laboratory equipments 

Equipment Supplier 

ABI 7900 Genotyping Platform Applied Biosystems 

Agarose Gel Electrophoresis Unit (Sub-cell GT) Bio-Rad 

AB104-S Balance Mettler, Toledo 

Class II Microbiological Safety Cabinet Envair 

CO2 Incubator MCO175 Sanyo 

Fujifilm LAS3000 Chemiluminescence Imaging system Fujifilm 

GeneAmp® PCR System 2700 (9700) Thermal Cycler 96 well Applied Biosystems 

Heating Block Grant Boekel BBA 

Heated Plate Sealer ALPS
TM

 50 Abgene 

Heraeus Pico 17 Centrifuge Thermo Scientific 

Harrier 15/80-MSE Centrifuge Sanyo 

Ice Machine Scotsman Ice Machines 

Impact 2 Multichannel Electronic Pipette (0.5-10ml) Matrix 

Multichannel Pipette (0.5-10ml) Matrix 

Multiskan FC spoectrophotometer Thermo Scientific 

Nanodrop Thermo Scientific 

P2, P10, P20, P200, P1000 Pipettes Gilson 

Peltier Thermal Cycler (DNA Engine Dyad 
TM

) 384 well MJresearch Inc 

Power Pack Bio-Rad 

Powerpette Plus Pipette Jencons 

QBD4 Incubator for eppendorfs Grant 

Semi-Dry transfer Cell Bio-Rad 

Titramax 1000 Incubator and Shaker Heidolph 

U:Genius Gel Imager Syngene 

UV Sterilisation Cabinet Bigneat 

Vortex Genie 2 Scientific Industries 

Western Gel Mini Protean II Cell Bio-Rad 
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Table 2.2 Laboratory consumables 

Equipment Supplier 

10ml and 25ml Stripettes Corning Inc 

15ml Centrifuge Tubes Sarstedt 

6 and 96 Well Tissue Culture Plates Greiner Bio-One, Corning Inc  

Cell culture petri dishes Greiner Bio-One 

384 Well PCR Plates Applied Biosystems 

50ml Centrifuge Tubes Corning Inc 

500 l, 1.5ml and 2ml Microfuge Tubes Sarstedt 

96 Well PCR Plates Starlab 

Pipette Tips Matrix, Bioscience, Starlab, Axygen 

Gloves Schottlander 

Heat Sealing Foil Thermo Scientific 

Microseal B Adhesive Sealer Bio-Rad 

Pasteur Pipettes Scientific Laboratory Supplies 

Plate Seals Alphalaboratories 

Reservoirs with Dividers Thermo Scientific 

 

 

2.1.2 Laboratory solutions 

 TAE buffer (1 L, 10x, pH8.0): 0.4 M Tris-base, 11 ml glacial acetic acid, 10 

mM EDTA and ddH2O (pH adjusted to 8.0). 

 EDTA (1 L, 0.5 M, pH8.0): 1.861g sodium ethylene diamine tetra-acetate in 1 

L ddH2O (pH adjusted to 8.0). 

 Phosphate Buffered Saline (PBS) (100 ml, 1x): 1 Oxoid PBS tablet in 100 ml 

ddH2O. 

 Transfer buffer (1 L, 10x): 30.3 g (0.25 M) Tris base, 144 g (1.92 M) glycine 

and ddH2O. 

 TBS (1 L, 10x): 87.66 g (1.56 M) NaCl, 24.22 g (0.2 M) Tris and ddH2O. 

 SDS-PAGE running buffer: 30.3 g (0.25 M) Tris base, 144 g (1.92 M) glycine, 

10 g (1%) Sodium Dodecyl Sulphate (SDS) and ddH2O. 

 Tris-Cl (1 L, 1 M, pH6.8 or pH8.8): 121.1 g Tris-Cl in ddH2O (pH adjusted to 

6.8 or 8.8 as needed). 
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2.1.3 DNA samples 

2.1.3.1 Sheffield samples 

Peripheral blood DNA samples from Sheffield and the North Trent region were 

available from patients who had colorectal tumour surgery at the Sheffield Royal 

Hallamshire, Sheffield Northern General, Chesterfield Royal Infirmary, Doncaster 

Royal Infirmary and Barnsley District General hospitals (March, 2001 – June, 2005). 

These samples were identified with a 3 digit number prefixed with a “C”. Peripheral 

blood DNA samples were also available from patients who had chemotherapy 

treatment for metastatic CRC at Sheffield Weston Park hospital (March, 2001 – June, 

2005). These samples are referred to as “metastatic” and the samples numbers are 

prefixed with an “M”. Age- and sex- matched controls were recruited through the 

general practice (GP) registers in Sheffield (October, 2001 – December, 2005) and 

DNA samples were also available from their peripheral blood samples. 

2.1.3.2 Leeds and Dundee samples 

Peripheral blood DNA Samples from Leeds and Dundee were available from patients 

taking part in a population-based CRC epidemiological study in the North of England 

(Barrett et al. 2003). In Leeds, the cases were identified and recruited in Leeds 

General Infirmary and St James‟s hospitals. In Dundee, the cases were recruited 

from Ninewells and Perth Royal Infirmary Hospitals (1997 – 2000). Peripheral blood 

DNA samples from age- and sex- matched controls were also available from both 

Leeds and Dundee GP registers.   

2.1.3.3 Utah samples 

In Utah, peripheral blood DNA samples were extracted from CRC cases selected 

from high risk cancer pedigrees listed in the Utah Cancer Registry (UCR) and Utah 

Population DataBase (UPDB). Peripheral blood DNA samples were also available 
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from cancer-free controls recruited for different studies. Controls were matched 

based on sex and year of birth (within a 5 year age range of the cases).  

2.1.3.4 Paired tumour and normal DNA samples 

For 50 patients from the Sheffield population sample, DNA samples were also 

available from freshly frozen tumour tissue in addition to the peripheral blood. These 

DNA samples were extracted from micro-dissected colorectal tumour tissues that 

contained at least 80% cancerous cells. Throughout this thesis, this cohort of 

matching DNA samples will be referred to as the “Sheffield paired cohort” and the 

DNA extracted from the peripheral blood and tumour tissue will be referred to as 

“normal” DNA and “tumour” DNA, respectively. Patients from this cohort will be 

identified with a 3 digit number prefixed with “CA” and the normal and tumour DNA 

samples for each patient will have the same number prefixed with “N” and “T” 

respectively. Clinical data including gender, diagnosis age, tumour location and 

stage, histological type, tumour differentiation and presence of metastasis were 

available. Follow up data on patient survival are available for these patients until 

March 2011. These data were obtained from the Trent cancer registry. 

 

Seventeen additional paired DNA samples were available from the tissue bank in the 

Royal Hallamshire hospital- University of Sheffield. For these samples, normal DNA 

was extracted from freshly frozen normal colon tissues taken at the time of surgery. 

All tumour and normal tissue samples were checked independently by the pathologist 

Jonathan Bury before being included in the study. Clinical data were also available 

for these patients, however, no follow up information was available. These tissue 

bank patients and their DNA samples will have the same numbering identifiers 

explained above for the Sheffield paired cohort.  
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All the subjects included in the study have given informed consent for data and 

sample collection and ethical approval of the study was obtained from South 

Yorkshire Research Ethics Committee (Appendix 3).  

 

The above DNA sample sets were previously used in published genetic 

epidemiological studies (Curtin et al. 2009a, Curtin et al. 2009b). 

2.1.4 Cell lines  

The colon adenocarcinoma cell lines (HCT116, SW620, SW480, HT29, CACO2 and 

COLO205), the Glioblastoma Multiforme (GBM) cell lines (U87 and SNB19) and the 

non-tumour derived cell lines HEK293 (human embryonic kidney epithelial) and 

MRC5-SV2 (foetal lung fibroblast) were supplied by the American Type Culture 

Collection (ATCC), (Bethesda, USA).  

2.1.5 PCR and sequencing primers  

Primer design is described in Section 2.2.5. Primer sequences are provided in 

Appendix 1, tables 1-7. Primers used in this project were obtained from Sigma 

Aldrich (Ebersberg, Germany). The primers were supplied lyophilised and were 

reconstituted with deionised water at a stock concentration of 100 pmol/ μl (as per 

supplier‟s recommendations).  

2.1.6 Pyrosequencing primers 

Pyrosequencing primer design is described in Section 2.2.14.1. Primer sequences 

are provided in Appendix 1, table 8. Pyrosequencing primers were ordered from 

Applied Biosystems (Warrington, UK). The primers were supplied lyophilised and 

were reconstituted with deionised water at a stock concentration of 100 pmol/ μl (as 

per supplier‟s recommendations). 



 41 

2.2 Methods 

2.2.1 DNA extraction 

2.2.1.1 Cultured cells 

DNA from cancer cell lines was extracted using QIAamp DNA mini kit (Qiagen, West 

Sussex) according to the manufacturer‟s instructions. Briefly, the cells were split into 

six 1.5ml tubes and centrifuged at 300 xg for 5 min. The supernatant was removed 

and the cell pellet was re-suspended in 200  μl 1x phosphate buffer saline (PBS). 

The cells were then lysed by the addition of 20  μl proteinase K, 200  μl buffer AL, 

and incubation at 56oC for 10 min. The tubes were briefly centrifuged and 200  μl 

ethanol was added. Next, this mixture was transferred to QIAamp mini spin columns 

(provided in the kit) and centrifuged at 6000 xg for 1 min. The pellets were then 

washed twice by adding the provided wash buffers 1 & 2 with centrifugation at 6000 

xg for 1 min each time. An extra centrifugation step (13000 xg, 3 min) was performed 

to remove any remains of wash buffer 2. Finally, the DNA was eluted by the addition 

of 200  μl elution buffer, 1 min incubation at room temperature, followed by 1 min 

centrifugation at 6000 xg. 

2.2.1.2 Frozen tissues 

Frozen tissue DNA was extracted using the QIAamp DNA mini kit (Qiagen) according 

to the manufacturer‟s instructions. Briefly, the colon tissues were cut into small 

pieces using a scalpel. The pieces were then transferred to a 1.5 ml tube and 180 μl 

of buffer ATL and 20 μl of proteinase K were added. The samples were then mixed 

by vortexing and incubated at 56oC for 15 min, followed by manual homogenisation 

and incubation in an orbital shaker at 56oC overnight. The next day, the tubes were 

centrifuged and 4 μl of RNase A (100 mg/ml) were added. After pulse vortexing for 

15 sec, the samples were left at room temperature for 2 min. Next, 200 μl of buffer 
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AL were added, the samples mixed by vortexing and then incubated at 70oC for 10 

min. The remaining steps were carried out as described in Section 2.2.1.1. 

2.2.2 DNA quantification and quality analysis 

DNA samples were quantified using a NanoDrop spectrophotometer (ND-1000) 

(Fisher Scientific UK Ltd., Loughborough). The ND-1000 software was used with the 

nucleic acids module being selected. After cleaning the sensors, the NanoDrop was 

initialised and blanked using appropriate blank (1x Tris EDTA (TE), water or Qiagen 

elution buffer). Then each sample was quantified by pipetting 1.2 μl onto the sensors. 

The sensors were wiped between different measurements. DNA concentration was 

calculated using a modified Beer-Lambert equation (c = (A * e) /b) where c is DNA 

concentration (ng/ μl), A is absorbance at 260nm, e is the absorbance coefficient and 

equals 50ng-cm/ μl and b is the path length in cm. The purity of the DNA samples 

was determined using A260/A280 and A260/A230 ratios. The former indicates the absence 

of contaminating proteins when the ratio is 1.8-2.0 and the latter indicates absence of 

other organic compounds when the ratio is 1.8-2.2. 

2.2.3 Tumour DNA fragmentation 

In order to assess their degree of degradation, tumour DNA samples were 

electrophoresed on 1% Agarose gel (Section 2.2.7). Prior to loading, 1 μl of each 

sample was mixed with 3 μl water and 1 μl DNA loading buffer (6x) (0.25% (w/v) 

bromophenol blue, 30% (v/v) glycerol). 

2.2.4 Sodium acetate/ethanol DNA precipitation 

Some of the DNA samples used in the project had a low 260/230 ratio which 

indicates contamination with organic substances such as phenol. Such contamination 

can inhibit some of the tests applied to the DNA samples. In order to remove the 

contamination, sodium acetate (NaAc) / ethanol purification was performed. The 

procedure involved adding a one tenth volume of 3 M NaAc to the DNA sample 
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followed by the addition of 2 volumes of 100% ice cold ethanol. This mixture was 

then incubated at -20oC for 90 min. The samples were then centrifuged at 14100 

RPM for 15 min at 4oC and the supernatant was removed. The samples were spun 

again and any residual supernatant was removed. Then, 200 μl of 70% ice cold 

ethanol were added to the pellets which were centrifuged at 14100 RPM for 5 min at 

4oC. As much as possible of the supernatant was removed and the remainder was 

left to evaporate in a laminar flowhood for 15 min. DNA was reconstituted by the 

addition of 100 μl of 1x molecular grade TE (Promega, Southampton) and the 

260/230 ratio was checked again using the NanoDrop (Section 2.2.2). 

2.2.5 Primer design 

2.2.5.1 In silico primer design 

Primers used in the amplification of  CASP8, APC, TP53, KRAS, BRAF, PIK3CA and 

CASP8 CNV23598 were designed using the web-based tool Primer 3 

(http://frodo.wi.mit.edu/, accessed October, 2008 – August, 2010) (Rozen and 

Skaletsky 2000). The target sequence for each region was obtained from NCBI 

(www.ncbi.nlm.nih.gov, accessed October 2008 – August, 2010) (Table 2.3). The 

sequences were then imported into the Primer3 web page. The default parameters 

for picking primers were maintained except for the melting temperature (TM); primer 

TM range of 57°C-63°C was used with 60°C selected as the optimal temperature. For 

primer size, a range between 20-24 nucleotides was used with 22 as the optimal size 

and for primer GC%, a range of 45-55% was set with 50% as the optimal GC 

content. Primer3 provided a list of suggested primers according to the parameters 

chosen and indicated the most suitable pair. The “best pair” was chosen in all cases. 

The primer blast search tool provided by NCBI 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/, accessed February, 2009 – August, 

2010) was then used to test whether the primers were primarily/solely specific to their 

targets. Moreover, all the designed primers were tested for the occurrence of SNPs 

http://frodo.wi.mit.edu/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/


 44 

underneath their annealing sites using the diagnostic SNP check online tool provided 

by the National Genetics Reference Laboratories (NGRL) 

(http://ngrl.man.ac.uk/SNPCheck/SNPCheck.html, accessed October, 2008 – 

August, 2010). 

Table 2.3 NCBI accession numbers 

 

2.2.5.2 Manual primer design 

In a few cases, manual primer design was required to target a very specific area. The 

primers were designed manually to meet the following criteria:  

- 20-25 bases in length 

- GC content of 45-55% 

- 3‟ end to terminate with G or C 

-  Single base repeats >3 were avoided 

- Minimum complementarities between pairs of F and R primers 

- TM in the range 59ºC - 61ºC. Primer TM was calculated using the following 

equation (as recommended by MWG Biotech Ltd.): 

TM=69.3 + (GC% x 0.41)-(650/primer length). 

 

M13 tails (Table 2.4) were attached to all the primers used in this project, except for 

long range PCR primers, internal sequencing primers and fluorescently labelled 

primers. M13 primers are universal primers used for DNA sequencing. They were 

Gene Chromosome Accession number Location Genomic Build 

CASP8 2q33-q34 NC_000002.10 201804871-201862219 36.3 

APC 5q21-q22 NC_000005.8 112100455-112210835 36.3 

TP53 17p13.1 NC_000017.9 7532642-7511445 36.3 

KRAS 12p12.1 NG_007524.1 5001-50675 36.3 

BRAF 7q34 NG_007873.1 5001-195753 36.3 

PIK3CA 3q26.3 NG_012113.1 5001-91190 37.1 

http://ngrl.man.ac.uk/SNPCheck/SNPCheck.html
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used to facilitate the sequencing procedure, as all the exons can be sequenced using 

a single primer pair. 

Table 2.4 M13 sequences 

 

Primer Sequence (5’-3’) 

M13 Forward dTGTAAAACGACGGCCAGT 

M13 Reverse dCAGGAAACAGCTATGACC 

 

2.2.5.3 DNA sequencing primer design 

Conventional Sanger sequencing techniques are able to analyse PCR products up to 

600-800 nucleotides in length. The long-range PCR products (Section 2.2.6.2) in this 

study ranged between 1000bp up to 3000bp in length. To sequence across these 

regions, sequencing primers were required. These primers were designed ~400 bp 

apart to ensure enough overlap between the sequences to confidently cover the 

region of interest. Primers were designed manually using the same criteria as in 

Section 2.2.5.2. 

2.2.6 Polymerase Chain Reaction 

2.2.6.1 Conventional PCR 

Exons that required mutation screening were amplified using the polymerase chain 

reaction (PCR) (Mullis et al. 1986). Standard 25 μl PCR reactions were used. Each 

reaction contained 25 ng genomic DNA, 100 ng of each specific primer (forward and 

reverse), 1 μl deionised water and 22.5 μl Reddymix® (1.25 U Taq polymerase, 75 

mM Tris-HCl, 20mM (NH4)2SO4, 0.01% (w/v) Tween20, 0.2 mM of each dNTP and 

1.5 mM MgCl2 (Fisher Scientific UK Ltd.). A conventional PCR includes cycles of 3 

essential steps: denaturation, annealing and extension (Figure 2.1). The cycling 

conditions used in this study were; initial denaturation step at 94ºC for 7 min, 

followed by 35 cycles of denaturation at 94ºC for 1 min, annealing at nºC for 1 min 

and extension at 72ºC for 1 min, and a final extension step at 72 ºC for 7 min (Figure 
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2.1). The annealing temperatures varied according to the TM of the primers 

(Appendix 1). Throughout the project, all PCR reactions were carried out using the 

GeneAmp® PCR System 9200 thermocycler (Applied Biosystems). 

 

 

 

35 cycles of: denaturation (at 94ºC), annealing (depends on  primers TMºC), extension (at 

72ºC) 

 

2.2.6.2 Long-range PCR 

Long-range PCR is used to amplify larger fragments of DNA than those achieved 

using conventional PCR protocols (Cheng et al. 1994). Modifications from the 

conventional PCR protocol included the use of thermostable DNA polymerases with 

high 5‟-3‟ polymerase activity and 3‟-5‟ proofreading capability. Additionally, the 

extension step in the long-range PCR protocol was usually longer than in 

conventional protocols to allow the amplification of large fragments. Long-range PCR 

was performed using the Phusion high fidelity PCR kit (New England Biolabs (UK) 

Ltd., Hitchin). Long-range PCR reactions were set up in a total volume of 50 μl and 

consisted of 62.5 ng genomic DNA, 0.5 μM of each primer (forward and reverse), 

32.5 μl deionised water and 10 μl of 5x Phusion HF buffer®, 200 μM of each dNTP 

and 10 ul of the Phusion DNA polymerase. The long-range PCR conditions consisted 

of the following steps;  initial denaturation at 98ºC for 30 sec, followed by 35 cycles of 

denaturation at 98 ºC for 10 sec, annealing at nºC for 30 sec and extension at 72 ºC 

         7min   1min   1min      1min    7min 14 C 

94 C 

 n C 

  72 C 

  35 cycles                                  10min 

Figure 2.1 Conventional PCR thermal profile 
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for x min, and a final extension at 72ºC for 10 min. The annealing temperatures 

varied according to the TM of the primers (Appendix 1) and the extension time varied 

according to the size of the target region (15-30 sec/Kb). The PCR conditions were 

determined according to the Phusion kit recommendations. 

2.2.6.3 GAP PCR 

GAP PCR is a modified PCR that allows the detection of known insertions and 

deletions. It involves the use of 3 primers: a “common” forward primer, which anneals 

to the sequence upstream of the insertion/deletion site and 2 reverse primers. The 

first primer “insertion” anneals to the inserted sequence when present, and the 2nd 

primer “deletion” will anneal downstream of the insertion/deletion sequence (Figure 

2.2). In the case of a homozygous deletion, the “common” and the “deletion” primers 

alone will produce a product as the “insertion” primer will fail to anneal. In the case of 

an insertion, the “common” and the “insertion” primers alone will produce a PCR 

product as the optimised PCR conditions do not allow the amplification of large PCR 

products. The genotype of the sample is determined by gel electrophoresis based on 

the size of the different products (Figure 2.2). In this project GAP PCR was initially 

used for genotyping the CNV23598. Standard conventional PCR reactions and 

conditions were used, however, with 3 primers (Section 2.2.6.1). 

2.2.6.4 Fluorescent GAP PCR 

Fluorescent GAP PCR was used as a higher throughput method for the genotyping 

of CASP8 CNV23598. The principle is the same as described in the previous section. 

However, the “insertion” and the “deletion” primers were labelled with distinct 

fluorescent dyes and instead of gel based analysis, capillary electrophoresis was 

used. The products appear as peaks of different size and fluorescent colour 

according to the different alleles. Fluorescent GAP PCR was performed using the 

Amplitaq Gold® PCR master mix (Applied Biosystems). The reactions were set up in 

a 10 μl volume and consisted of 5 ng DNA, 0.5 μM of the unlabelled common forward 
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primer, 0.5 μM of the “insertion” labelled reverse primer, 0.2 μM of the “deletion” 

labelled reverse primer, 5 μl of the Amplitaq Gold® PCR master mix and 2.8 μl 

deionised water. The PCR conditions consisted of the following steps; initial 

denaturation at 95ºC for 5 min, followed by 32 cycles of denaturation at 95 ºC for 30 

sec, annealing at 59ºC for 30 sec and extension at 72 ºC for 30 sec, and a final 

extension at 72ºC for 7 min. The products were diluted 1 in 10 with deionised water 

and then electrophoresed on ABI PRISMTM 3730 DNA analyser with appropriate size 

standard by the Core Sequencing Facility (School of Medicine and Biomedical 

Sciences, University of Sheffield, Sheffield, UK). The data were analysed using 

genemapper software version 4.0 (Applied Biosystems). 

 

 

 

A schematic presentation of GAP PCR. Arrows represent the primers used. Black is the 

common forward, Red is the insertion reverse and Blue is the deletion reverse A) The target 

sequence with an insertion, the reverse deletion will anneal, however, the PCR conditions will 

not allow the amplification of large amplicons. B) The target sequence with the deletion, the 

insertion reverse will not anneal C) The different genotypes as will appear on agarose gel. 

 

 Homo INS       Heterozygous     Homo DEL

  

Target Insertion 

Target 

A 

B 

C 

Figure 2.2 GAP PCR 
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2.2.7 Agarose gel electrophoresis 

Prior to further analysis, PCR products were separated and identified using agarose 

gel electrophoresis. To prepare an agarose gel, the following procedure was used. 

Depending on the agarose percentage and the volume of gel required (usually 1.5% 

in 100 ml), an appropriate mass of Multi-Purpose Agarose (Bioline Ltd., London) and 

an appropriate volume of 1x TAE were mixed in a conical flask and heated in the 

microwave oven in short bursts. Once the agarose had fully dissolved and the 

solution had cooled down, 5 μl (10 mg/ml) ethidium bromide (Et.Br.) was added. 

Cooling the gel before Et.Br. addition reduces vaporisation of this mutagenic reagent. 

The solution was then poured into a gel casting tray (with combs in position) and left 

to solidify. When ready, the gel was placed in a Mini-Sub® Cell gel tank (Bio-Rad 

Laboratories Ltd., Hemel Hempstead) and overlaid with TAE (1x) as buffering 

system. 5 μl Et.Br. (10 mg/ml) was also added to the running buffer.  

 

To determine the size of the PCR product, a standard size marker was 

electrophoresed alongside the PCR products. According to the expected size of the 

PCR product, two different standard size DNA markers were used, hyperladder I and 

IV supplied by Bioline-London (Appendix 4). 5 μl of the PCR products amplified with 

the Reddy Mix (contains a loading dye) were loaded directly into the wells. 5 μl of the 

long range PCR products were mixed with 1 μl DNA loading buffer (6x) (0.25% (w/v) 

bromophenol blue, 30% (v/v) glycerol) prior to loading. Gels were electrophoresed at 

100 V for 35 min for conventional PCR products and at 120 V for 1 hour for long-

range PCR products. DNA bands were visualised using a UV trans-illuminator 

U:Genius from Syngene (Cambridge). 

2.2.8 Quantitative fluorescent PCR & microsatellite instability analysis 

Quantitative fluorescent PCR (QF-PCR) is based on the PCR amplification of 

polymorphic microsatellites using fluorescently labelled primers. The products are 
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visualised and quantified by capillary electrophoresis on an automated genetic 

analyser. The microsatellite instability (MSI) status of all the tumour and normal DNA 

samples analysed in this study was determined using a commercially available 

QFPCR kit: MSI Analysis System, Version 1.2 Kit (Promega). The kit includes 

fluorescently labelled primers for five quasimonomorphic mononucleotide 

microsatellite markers; BAT-25, BAT-26, NR-21, NR-24 and MONO-27 as 

recommended by the National Cancer Institute (NCI) revised criteria on MSI testing 

(Bacher et al. 2004, Umar et al. 2004). The MSI analysis was performed according to 

the manufacturer‟s protocol: 2 ng DNA was amplified in a 10 μl PCR mix containing; 

5.85 μl nuclease free water, 1.0 μl Gold STAR 10x buffer, 1.0 μl 10x multiplex primer 

mix and 0.15  μl Amplitaq Gold DNA polymerase (5 U/μl) (Applied Biosystems). 

  

The MSI cycling conditions were performed in a GeneAmp® PCR System 9700 

thermocycler (Applied Biosystems) and consisted of the following steps; initial 

denaturation at 95oC for 11 min, followed by another denaturation step at 96oC for 1 

min, then 10 cycles of denaturation (100% ramp) at 94oC for 30 sec, annealing (29% 

ramp) at 58oC for 30 sec and extension (23% ramp) at 70oC for 1 min, followed by 20 

more cycles of denaturation (100% ramp) at 90oC for 30 sec, annealing (29% ramp) 

at 58oC for 30 sec and extension (23% ramp) at 70oC for 1 min, then a final 

incubation step at 60oC for 30 min. The products were then analysed on ABI 

PRISMTM 3730 DNA Analyser with appropriate size standard by the Core 

Sequencing Facility. The results were analysed using genemapper software version 

4.0 (Applied Biosystems). The MSI markers were considered unstable if they exhibit 

a change in size in the tumour DNA compared to the paired normal DNA. Samples 

were classified to have high MSI (MSI-H) if they showed instability in two or more of 

the 5 mononucleotide markers, low MSI (MSI-L) if they showed instability in one of 

the markers, and MSS if none of the markers showed instability (Murphy et al. 2006) 
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2.2.9 TaqMan real time PCR 

TaqMan assays involve the use of dual-labelled oligonucleotide probes 

complimentary to the target DNA sequence as illustrated in Figure 2.3 (Heid et al. 

1996). The probes are fluorescently labelled with a reporter fluorophore at the 5‟ end 

and a „quencher‟ molecule at the 3‟ end. The quencher molecule quenches the 

fluorescent signal emitted by the fluorophore. The quenching process requires close 

proximity between the quencher and the reporter molecules. During PCR, the probe 

will anneal to the target sequence. However, due to the 5‟ exonuclease activity of 

Taq polymerase, the probe, if perfectly annealed, will be hydrolysed resulting in the 

release of the reporter and quencher molecules and consequently the generation of a 

fluorescent signal. Subsequently, the signal is detected and quantified using a 

quantitative PCR machine (Figure 2.3). If the probe is not perfectly matched to the 

target area, it will not be hydrolysed and the fluorescent signal will be minimal as the 

3‟ quencher stays in close proximity to the 5‟ fluorophore. 

2.2.9.1 TaqMan genotyping assays 

TaqMan assays were used for the genotyping of a 6bp insertion-deletion (ins/del) 

polymorphism (rs3834129) in the promoter region of CASP8. Probes specific for 

each allele were used and each probe was labelled with a different reporter 

fluorophore (FAMTM for insertion and VIC® for deletion). Thus, depending on the 

attached probe, the signal differs according to the genotype at that position. PCR 

reactions were performed in 384-well PCR plates with 10 ng genomic DNA in each 

well. Standard 5 μl PCR reactions were used. Each reaction contained 2.5 μl of 2x 

TaqMan Genotyping mastermix (ultrapure hot start AmpliTaq Gold DNA polymerase, 

deoxynucleotide triphosphates with UTP, AmpErase uracyl-N-glycosylase (UNG), 

passive reference dye, and optimised buffer), 0.0625 μl of primers and TaqMan 

probe mix (Applied Biosystems) and 2.4375 μl deionised water. The plates were 

sealed using BioRad PCR microseals (Bio-Rad Laboratories Ltd.). 



 52 

 

After centrifugation of the PCR plates for 1 min at 2000 RPM, TaqMan PCR reactions 

were performed under the following conditions: initial incubation at 50oC for 2 min, 

initial denaturation at 92oC for 10 min, followed by 40 cycles of denaturation at 92oC 

for 15 sec and combined annealing/extension at 60oC for 1 min. All TaqMan assays 

were carried out in a Dyad Peltier Thermal Cycler (MJ Research, currently supplied 

by Bio-Rad Laboratories Ltd.). TaqMan PCR products were analysed using an ABI 

HT7900 real time PCR machine (Applied Biosystems). The data were analysed using 

the allelic discrimination module of the Sequence Detector Software version 2.2.1 

(Applied Biosystems). 

 

Figure 2.3 TaqMan assay principle 

A schematic presentation of the TaqMan assay principle. For simplicity, the figure is showing 

PCR amplification in the forward direction only. 
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2.2.9.1.1 TaqMan genotyping quality control 

Several measures were taken to ensure good quality genotyping results. For 

example, up to 10% of the DNA samples were duplicated on separate 384-well PCR 

plates. These samples were thus genotyped twice to check the reproducibility of the 

assay. Duplicate samples were considered informative when successfully called in 

both assays and a duplicate concordance rate of ~98% represented high 

reproducibility. Additionally, no-template controls (NTC) were included on each plate 

to check for DNA contamination.  

2.2.9.2 TaqMan copy number assays 

Real Time PCR TaqMan copy number assays were used to validate the accuracy of 

the aCGH data (Section 2.2.15). Three of the common focal aberrations (PARK2, 

KCNMA1 and NFKBIA) identified in this project were chosen for confirmation by 

TaqMan copy number assays. Pre-designed assays were chosen from the ABI 

website (http://www.appliedbiosystems.com) (Table 2.5). Pre-designed TaqMan 

Copy number reference assays (TERT and RPPH1) were also used for the relative 

quantification of the copy numbers of the targets. The assays contain forward and 

reverse primers and a dye-labelled TaqMan probe (FAMTM for the target assays and 

VIC® for the reference assays). These reference assays were chosen to anneal to a 

region in the sample known to have a diploid copy number, based on the aCGH 

results. The target copy number assays were run simultaneously with the copy 

number reference assay in a duplex real time PCR. The number of copies of the 

target sequence is determined by relative quantification (RQ) based on a 

comparative threshold cycle (CT) method (ΔΔCT). Threshold cycle is the fractional 

cycle number at which the emitted fluorescence level passes the detection threshold 

(Figure 2.4). The CT difference (ΔCT) between the target and the reference assays is 

calculated and compared to the ΔCT value of control DNA samples known to have a 

chromosomally stable diploid genome. 

http://www.appliedbiosystems.com/
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Table 2.5 TaqMan copy number assays 

Gene Assay Number Cytoband Genomic location Genomic Build 

PARK2 Hs03585570-cn 6q26 chr6:162636459 37.1 

KCNMA1 Hs03760015-cn 10q22.3 chr10:79111001 37.1 

NFKBIA Hs00462687-cn 14q13.2 chr14:35870871 37.1 

 

 

 

 

A TaqMan copy number assay amplification plot showing tumour and normal DNA 

amplification curves. The CT of the tumour DNA is smaller in comparison to the CT of the 

normal DNA indicating an increased copy number in the Tumour DNA. This sample had 

amplification at this genomic location. 

 

PCR reactions were performed in 384-well PCR plates with 2 μl of 5 ng/μl DNA 

samples. Standard 8 μl PCR reactions were used. Each reaction contained 5 μl of 2x 

TaqMan Genotyping mastermix, 0.5 μl of 20x TaqMan copy number target assay, 0.5 

μl of the 20x TaqMan copy number reference assay and 2 μl nuclease free water. 

NTC were also included in all of the experiments to check for contamination. The 

plates were sealed using BioRad PCR microseals (Bio-Rad Laboratories Ltd.). After 

centrifugation of the PCR plates for 1 min at 2000 RPM, they were loaded in an ABI 

HT7900 real time PCR machine (Applied Biosystems) and reactions performed using 

the following conditions; initial denaturation at 95oC for 10 min, followed by 40 cycles 

Figure 2.4 TaqMan copy number assay amplification plot 
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of denaturation at 95oC for 15 sec and combined annealing/extension at 60oC for 1 

min. The results were then initially analysed using the copy number module of the 

Sequence Detector Software version 2.2.1 (Applied Biosystems). Copy numbers for 

the samples were then predicted using the Copy Caller software v1.0 (Applied 

Biosystems). 

2.2.10 DNA sequencing 

During this project, bidirectional automated dye terminator DNA sequencing was 

used to identify any sequence variants in specific target regions. This DNA 

sequencing method is based on dideoxynucleotide (ddNTPs) sequencing chemistry 

developed by Frederick Sanger in the 1970s (Sanger et al. 1977). In the current 

evolved form of Sanger sequencing, 4 different fluorescently labelled ddNTPs (one 

for each of the 4 bases adenine, thymine, cytosine, and guanine) are mixed with non-

labelled dNTPs (A, T, C and G) in a PCR reaction. The ddNTPs incorporation during 

the PCR extension step results in termination of the reaction as a result of the 

absence of a 3‟-OH group. This will happen at all positions in the target DNA 

sequence and result in a series of fluorescently labelled DNA fragments of different 

lengths. Capillary electrophoresis can then be used to separate the DNA fragments 

according to their length and the fluorescent signal will be captured at all positions. 

The last two steps are usually performed in an automated DNA analyser. 

 

DNA sequencing was applied on PCR products for the detection of sequence 

variants. After being amplified and assessed (using agarose gel electrophoresis), 

PCR products were enzymatically purified in preparation for sequencing. This step 

was performed to remove the residual primers and to degrade the remaining dNTPs; 

both of which might interfere with the quality of the sequences obtained. Enzymatic 

purification was carried out using the following protocol: 6 μl PCR product, 4 μl of 

ExoSAP-IT (GE Healthcare UK Ltd., Little Chalfont) (1:4 dilution v/v) and 4 μl 
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deionised H2O were mixed in a 0.5 μl PCR tube. The reaction was then incubated at 

37ºC for 30 minutes and denatured at 80ºC for 15 minutes. ExoSAP-IT is a mixture of 

two enzymes: the first one is Exonuclease I (Exo I) which removes any single-

stranded DNA and primers. The second enzyme is Shrimp Alkaline Phosphatase 

(SAP) which degrades residual dNTPs (Werle et al. 1994; www.usbweb.com).  

 

All sequencing reactions were carried out by the Core Sequencing Facility using an 

ABI PRISMTM BigDye Terminator v3.1 Sequencing standard kit and were performed 

on an ABI PRISMTM 3730 DNA analyser (Applied Biosystems). 

2.2.11 Sequence analysis 

2.2.11.1 Manual analysis 

All sequences were visually checked for double peaks, which might indicate a 

heterozygous position. When necessary, the sequences were checked against the 

published gene sequences and control sequencing results. 

2.2.11.2 Staden sequence checking 

The sequences were also analysed with reference to control sequence traces using 

the Staden sequence analysis package (Bonfield et al. 1998). A blank Staden 

database was set up for CASP8, APC, TP53, KRAS, BRAF and PIK3CA analysis. 

The target sequence was exported and saved from the Ensembl database as a text 

file (www.ensembl.org, accessed September, 2008 – August, 2010). Next, pregap4 

software (v1.4b1) from the Staden package was used to add the target sequence 

and a new database template was created. Subsequently, GAP4 software (v4.8b1) 

was used to edit the target sequence. All the exons were highlighted using the contig 

editor. For sequence analysis, the ab1 files of the generated sequences were placed 

in the Staden databases. The files for the samples and the controls were added 

using pregap 4 and the control was set as the reference sequence. GAP4 was then 

http://www.usbweb.com/
http://www.ensembl.org/
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used to analyse the imported sequences. GAP4 compares the fluorescent traces of 

the target sequence against those of the control sequence. It then subtracts the pairs 

of wild-type and mutant traces to produce new traces that represent the differences; 

those that are significant are highlighted (Bonfield et al. 1998). Each amplicon was 

processed and analysed separately. 

2.2.12 Methylation Specific Multiplex Ligation Probe Amplification 

Multiplex Ligation Probe Amplification (MLPA) is a multiplex fluorescent PCR method 

that is used to detect copy number variation (Schouten et al. 2002) (Figure 2.5). The 

technology involves the use of oligonucleotide probes of variable, but unique, lengths 

complimentary to various DNA targets. Other than the target specific sequence, the 

MLPA probes will also have identical 5‟ or 3‟ end sequences that are then amplified 

by a single fluorescent primer pair. The products are analysed by capillary 

electrophoresis and different product sizes will reflect the different targets. In 

methylation specific MLPA (MS-MLPA), the addition of a digestion step using 

methylation sensitive endonucleases result in the ability to semi-quantify the 

methylation level in DNA samples (Nygren et al. 2005) (Figure 2.5). MS-MLPA has 

several advantages over other methylation analysis technologies; it is not based on 

bisulphite conversion, it requires a small amount of DNA, and it allows the 

multiplexing of several markers in a single reaction (Jeuken et al. 2007). The MS-

MLPA kit ME042-A1 was used in this project to determine the methylation status of 8 

markers (CACNA1G, CDKN2A, CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and 

SOCS1) in paired normal and tumour DNA samples. All the steps were carried 

according to the manufacturer‟s instructions (MRC-Holland, Amsterdam). It is 

noteworthy here that copy number analysis using the MS-MLPA kit was not 

performed, since the reference probes targeted unstable genomic areas in CRC. 
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MS-MLPA probes contain 2 oligonucleotides; one short synthetic and one long M13-derived.  

Up to 50 MS-MLPA probes can be used in a single reaction. Both oligonucleotides contain 

universal primer sites and target specific sequences. Each M13 derived oligonucleotide also 

contains a “stuffer” sequence with a probe specific length. Moreover, MS-MLPA probes also 

contain an HhaI recognition site (only methylation specific probes). When attached to a 

methylated DNA target, methylation sensitive HhaI enzyme will fail to digest the probe, a 

fluorescent signal will be produced, and peaks will be observed through the genemapper 

analysis. When attached to unmethylated DNA target, HhaI will digest the probes and no 

signal will be detected. *Adapted from (Nygren et al. 2005). 

Universal forward primer Universal reverse primer 

Variable size stuffer 

Targets specific sequence 

M 

M 

Methylated target  Unmethylated target 

Target DNA denaturation        and multiplex probe hybridisation 

M 

M 

Simultaneous ligation &      digestion with HhaI 

      PCR amplification        with universal primers 

Capillary electrophoresis  &    methylation analysis 

    Highly methylated DNA   Non-methylated 

Figure 2.5 MS-MLPA technology 
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2.2.12.1 DNA denaturation and MS-MLPA probe hybridisation 

DNA samples (50 ng) were diluted in 5 μl of molecular biology grade 1xTE buffer 

(Promega) in 0.2 ml PCR tubes. The diluted DNA samples were then denatured by 

incubation in the GeneAmp® PCR System 9200 thermocycler (Applied Biosystems) 

at 98oC for 10 min followed by cooling down to 25oC. Following that, 3.0 μl of SALSA 

probe/MLPA buffer (1:1) mix were added to the samples, which were then mixed 

carefully by pipetting up and down and incubated at 95oC for 1 min followed by 60oC 

for 16 hrs. 

2.2.12.2 Ligation and digestion 

Before the end of the 16 hr incubation, the following mixes (per sample) were 

prepared and kept on ice; Ligase buffer A mix: 3 μl of ligase buffer A with 10 μl of 

nuclease free water, ligase-65 mix: 1.5 μl of ligase-65 buffer B, 0.25 μl of ligase-65 

enzyme and 8.25 μl of nuclease free water, ligase-digestion mix: 1.5 μl of ligase-65 

buffer B, 0.25 μl of ligase-65 enzyme, 0.5 μl HhaI enzyme (10 U/ μl) and 8.25 μl of 

nuclease free water. For each sample, a new 0.2 ml PCR tube was labelled and 

prefixed with D (referring to digestion mix). After the end of the 16 hr hybridisation, 13 

μl of ligase buffer A mix were added to each sample tube and mixed by pipetting. 

After that, 10 μl of the sample/ligase buffer A mix were transferred to the D prefixed 

labelled PCR tubes. Both tubes were then incubated at 49oC for at least 1 min (in the 

thermocycler). While at 49oC, 10 μl ligase-65 mix were added to the first tube of each 

sample (ligation reaction), then 10 μl of the ligase-digestion mix were added to the D 

prefixed labelled tubes of each sample (ligation digestion reaction). Both tubes were 

then incubated at 49oC for 30 min followed by 5 min at 98oC. 

2.2.12.3 Amplification and capillary electrophoresis 

For each sample, 2 PCR tubes (0.2 ml) were labelled (with and without the D- prefix). 

The following mixes were prepared and kept on ice; SALSA PCR buffer mix: 2 μl of 

SALSA PCR buffer with 13 μl nuclease free water, polymerase mix: 1 μl SALSA PCR 
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primers, 1 μl SALSA enzyme dilution buffer, 0.25 μl SALSA polymerase and 2.75 μl 

nuclease free water. In the new labelled 0.2 ml PCR tubes, 5 μl of MLPA ligation or 5 

μl of ligation digestion reaction were mixed with 15 μl of SALSA PCR buffer mix. The 

tubes were placed on ice and 5 μl polymerase mix was added to each tube. The 

tubes were then placed in a preheated thermocycler (72oC) and amplified using the 

following PCR conditions; 35 cycles of denaturation at 95oC for 30 sec, annealing at 

60oC for 30 sec and extension at 72oC for 60 sec followed by 20 min incubation at 

72oC. The PCR products were then electrophoresed on an ABI PRISMTM 3730 DNA 

Analyser with appropriate size standards by the Core Sequencing Facility. 

2.2.12.4 MS-MLPA results analysis 

The initial analysis of the MS-MLPA products was performed using genemapper 

software version 4.0 (Applied Biosystems). The raw data was then exported as a text 

file and the rest of the analysis described in Sections 2.2.12.4.1 - 2.2.12.4.3 was 

performed in Microsoft Excel spreadsheets templates and using an in-house 

algorithm designed by Dan Connely (Bioinformatician in our research group).  

2.2.12.4.1 Quality control 

Two types of quality control (QC) fragments are included in the MS-MLPA kit, the “Q” 

and the “D” fragments. The Q-fragments (64, 70, 76 and 82bp) are generated by the 

Q-probes in a non-ligation dependent manner. The Q-peaks areas should be smaller 

than half the area of D-peaks (below), if they were not, then the sample ligation failed 

or the DNA concentration was very low. The D-fragments (88, 92 and 96bp) are 

generated by the D-probes in a ligation dependent manner. The D-peaks areas 

should be comparable to other MLPA reference probes areas (≥40%) which mean 

that the ligation was successful, there was a sufficient amount of DNA and that they 

were properly denatured. If the 88 and the 96 D-fragments averaged areas were 

<40% of the 92 D-fragment area then denaturation was not enough. If the area of the 

92 D-fragment was <40% of the 88 and 96 D-fragments averaged areas, it indicates 
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that hybridisation was incomplete. This can result from short hybridisation time, low 

hybridisation temperature, insufficient amounts of MLPA probe mix and/or MLPA 

buffer, the use of >5ul of DNA, or the thermal cycler lid temperature was less than 

100oC. The QC tests are summarised in Table 2.6. Finally, a digestion control probe 

is included in the probe mix (Section 2.2.12.1) to test the efficiency of the digestion 

step. This probe should not give a signal upon digestion. 

Table 2.6 MS-MLPA “Q” and “D” fragments QC tests 

 
Test Description Pass* Fail* 

A DNA Concentration/Ligation Q-peaks against D-peaks ≤50% >50% 

B Denaturation 88D and 96D against 92D ≥40% <40% 

C Hybridisation 92D against 88D and 96D ≥40% <40% 

D DNA Quantity/Ligation/Denaturation D-peaks against reference peaks ≥40% <40% 

* The % reflect the ratio between the peaks areas 

2.2.12.4.2 Intra-sample data normalisation 

For the analysis of the MS-MLPA results, relative peak areas are used instead of 

absolute peak areas (generated by the ABI PRISMTM 3730 DNA Analyser). In order 

to calculate the relative peak areas, the data was normalised in an intra-sample 

fashion. This involved dividing the peak area generated from each marker probe by 

the peak area from each of the 10 reference probes in the same sample, thus 

creating 10 ratios for each of the marker probes. The median of the 10 marker 

probes ratios is considered the normalisation constant of the probe and is used for 

the methylation and copy number analyses. This normalisation was performed for the 

undigested as well as the digested samples. 

2.2.12.4.3 Methylation analysis 

The methylation status of the marker probe regions is calculated by dividing the 

normalisation constant of the probes from the digested sample by the normalisation 

constant of the probes from the corresponding undigested sample and multiplying the 

result by 100 to obtain the methylation percentage. In order to identify aberrant 

methylation, the tumour DNA methylation percentages were compared to their 
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matching normal DNA controls. A marker is considered to be methylated in the 

tumour DNA if the averaged methylation levels of all of its probes were greater by 

≥10% than the value for the normal DNA. However, at least 2 probes should indicate 

such an increase in methylation levels. This level of increase was previously shown 

to correlate with a marked decrease in mRNA expression (Cheng et al. 2008). 

Finally, a sample was classified as CIMP negative (CIMP-N) if none of the markers 

were methylated, CIMP low (CIMP-L) if 1-4 of the markers were methylated and 

CIMP high (CIMP-H) if 5 or more were methylated (Ogino et al. 2007).  

2.2.12.4.4 Sex determination and BRAF V600E mutation 

In addition to copy number and methylation analysis, the MS-MLPA kit ME042-A1 

provides X and Y chromosome specific probes which can be used to determine the 

gender of the samples. Moreover, a mutation-specific probe that binds only in the 

presence of the BRAF mutation V600E is available. 

2.2.13 DNA bisulphite treatment 

DNA bisulphite treatment results in the conversion of unmethylated cytosine residues 

to uracil with no effect on methylated cytosine (5-methylcytosine) (Ehrich et al. 2007). 

Bisulphite treatment of DNA is an essential step in many methylation studies as it is 

used prior to techniques including methylation specific PCR, real time PCR, 

sequencing and pyrosequencing. 

 

In this project, bisulphite treated DNA was used in pyrosequencing reactions to 

validate methylation positive and negative controls for MS-MLPA tests. The 

CpGenome DNA modification kit from Chemicon (Millipore, Watford) was used to 

perform DNA bisulphite treatment. All the reactions were performed according to the 

manufacturer‟s protocol. Briefly, 500 ng DNA was diluted to 10 μl in nuclease free 

water and then mixed with 97 μl of DNA modification reagent 4 (R4) mix (alkaline 

solution). The DNA/R4 mix was then incubated at 50oC for 10 min. This results in the 
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denaturation of the DNA (mild heat at an alkaline pH). 550 μl of DNA modification 

reagent 1 (R1) is then added to the samples and the mixture is incubated at 50oC for 

16 hr in the dark. R1 contains sodium bisulphite, which results in the conversion of 

unmethylated cytosine into uracil sulfonate. After 16 hr, 5 μl of DNA modification 

reagent 3 (R3) were added to the samples, followed by 750 μl of DNA modification 

reagent 2 (R2). R2/3 mix results in the binding of the DNA to micro-particulate 

carriers.  

 

Samples were then incubated at room temperature for 10 min, centrifuged at 8000 xg 

for 1 min and the supernatant was carefully discarded. The pellet was then washed 3 

times by adding 70% ethanol, vortexing and spinning at 8000 xg for 1 min. After the 

last wash, 50 μl of 20 mM NaOH/90% ethanol was added, and the tubes were 

incubated at room temperature for 5 min and then washed twice with 90% ethanol. 

This results in DNA desalting and the complete conversion of the intermediate uracil 

sulfonate into uracil (via alkaline desulfonation). After removing the supernatant, the 

samples were air dried for 20 min. The pellet was then dissolved in 20 μl 1x TE buffer 

(promega), vortexed and incubated at 60oC for 15 min. The samples were then 

centrifuged at 13000 xg for 3 min and the solution containing the bisulphite treated 

DNA transferred to new tubes. 

2.2.14 Pyrosequencing 

Pyrosequencing is a “sequencing by synthesis” method that is dependent on 

detecting pyrophosphate release during nucleotide incorporation (Brakensiek et al. 

2007). Pyrosequencing is only used for sequencing known and short DNA 

sequences, to screen for known variations (mutations or SNPs), or to quantify 

methylation levels in bisulphite treated DNA. In this project, pyrosequencing was 

used to validate the methylation status of DNA from HCT116 cells, in addition to 

methylation positive and negative controls used to test the MS-MLPA technology.  
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2.2.14.1 Pyrosequencing primer design 

Pyrosequencing primers for 2 of the methylation markers included in the MS-MLPA 

kit (NEUROG1 and CRABP1) were designed using the software PyroMark assay 

design v2.0 (Qiagen). The assay type was selected as methylation analysis (CpG). 

DNA sequences of both markers were imported into the software and the target 

regions were selected. PyroMark assay design software provided lists of 3 primers 

for each region; 2 PCR primers (one biotin labelled) and a sequencing primer. The 

genomic areas underneath the primers were then checked for SNPs using the 

diagnostic SNP check online tool provided by NGRL 

(http://ngrl.man.ac.uk/SNPCheck/SNPCheck.html, accessed April, 2010). 

2.2.14.2 Pyrosequencing PCR 

Pyrosequencing PCR was performed using hot start Taq polymerase (Qiagen). 

Standard 25 μl PCR reactions were used; each reaction contained 1-2 μl of the 

bisulphite treated DNA, 2.5 μl of 10x PCR buffer, 1.5 μl MgCl2 (25mM), 0.5 μl dNTPs, 

0.2 μl HotStart Taq and up to 25 μl deionised water. PCR cycling conditions were; 

initial denaturation step at 95ºC for 15 min, followed by 50 cycles of denaturation at 

95ºC for 20 sec, annealing at nºC for 20 sec and extension at 72ºC for 20 sec, and a 

final extension step at 72 ºC for 5 min. The annealing temperatures varied according 

to the TM of the primers (Appendix 1, Table 8). All PCR reactions were carried out 

using GeneAmp® PCR System 9200 thermocycler (Applied Biosystems). Prior to 

pyrosequencing, all the PCR products were analysed using agarose gel 

electrophoresis (Section 2.2.7) 

2.2.14.3 Pyrosequencing reaction 

The PCR products were taken to the Sheffield Children‟s hospital where the 

pyrosequencing procedures were performed. The pyro-CpG software was used to 

create the specific assay files for the reactions included in the run. Capturing master 

mixes were firstly prepared by mixing 30 μl deionised water, 38 μl binding buffer and 

http://ngrl.man.ac.uk/SNPCheck/SNPCheck.html
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2 μl sepharose beads for each sample. The capturing mix (70 μl) was then added to 

the corresponding wells and 10 μl of the PCR products were then added to the wells. 

The plate was then sealed and transferred to a shaker and incubated for 10 min at 

1400 RPM. During this step, the biotin labelled PCR products are attached to the 

sepharose beads. During the 10 min incubation step, pyrosequencing master mix 

was prepared by mixing 0.36 μl sequencing primers (10 pmol/ μl) with 11.64 μl of the 

annealing buffer. The pyrosequencing master mix was then transferred to the 

corresponding wells of a pyrosequencing plate and the plate was placed in the 

designated position of the pyrosequencing working station (Figure 2.6). The pyrofilter 

was hydrated in deionised water and checked for blocked filters by observing the 

water levels in the wells after switching on the vacuum pump. This pyrofilter is an 

aspiration device that is used to capture the biotin labelled PCR products attached to 

the sepharose beads. After 10 min shaking, the PCR plate was unsealed and 

transferred to the designated position on the working station (Figure 2.6).  

 

The vacuum pump was switched on and the pyrofilter was used to aspirate all the 

PCR products from the wells. Any biotin labelled PCR products attached to 

sepharose beads will be captured by the filters tips and all the other PCR reagents 

will pass through. The captured biotin labelled PCR products were denatured and 

washed by immersing the pyrofilter tips (containing captured PCR products) into the 

3 successive stations (~5 sec each) of ethanol, denaturation solution and washing 

buffer. At the end of this step, washed single stranded biotin labelled DNA sequences 

are attached to the pyrofilter tips ready to be released onto the pyrosequencing plate. 

The pyrofilter was positioned on top of the pyrosequencing plate, the pump was 

switched off and the pyrofilter was then lowered into the pyrosequencing plate wells. 

A gentle shake was the used to release the biotin labelled single stranded DNA. The 

pyrofilter was transferred to the water station and the sequencing plate was 

incubated at 80oC on a hot plate for a few minutes.  



 66 

 

While the plate is incubating, the pyrogold reagents were prepared. The required 

amounts of the substrate, enzyme and nucleotides (A, C, G and T) were added into 

the respective tips. While adding the reagents to the tips, air bubbles were strictly 

eliminated. The tips were checked for blockage by gently pressing the sides after 

covering the top of the tips with gloved fingers. A circular tiny drop should appear. If 

not, then the tip is blocked or there is an air bubble. After checking, tips were placed 

in the tip-holder in the correct order (Figure 2.7) and it was transferred to the 

pyrosequencer (PyroMarkTM MD) to test the dispensation. The tip-holder was placed 

in the specific chamber and dispensation was tested using a sealed plate underneath 

the tips. The sealed plate should have 6 drops after dispensation coming from the 

substrate, enzyme and the 4 nucleotides tips. After the dispensation test, the 

pyrosequencer was ready to run and the pyrosequencing plate was transferred into 

position and the reaction started. When the run was completed, the pyrosequencing 

data were analysed using the pyro-CpG software (Qiagen). 

 

The pyrofilter will be used in station 1 to aspirate the solution from the PCR plate wells. Biotin 

labelled PCR products attached to sepharose beads will be captured by the pyrofilter tips. 

The PCR products will then be denatured and washed (stations 2-4). Biotin labelled ssDNA 

will then be released into the pyrosequencing (PSQ) plate in station 5 and then the pyrofilter 

will be washed in water (station 6) (Figure adapted from http://www.pyrosequencing.com/). 

Figure 2.6 The pyrosequencer working station 

http://www.pyrosequencing.com/
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The pyrosequencer tip holder showing the locations of the enzyme (E), substrate (S) and the 

four nucleotides. 

2.2.15 Array Comparative Genome Hybridisation 

Array comparative genome hybridisation (aCGH) is an array-based technology that is 

used to compare genomic copy number variation between two DNA samples at high 

resolution. It is widely used in cancer genetics to detect copy number changes 

acquired by tumour cells by comparing normal and tumour DNA (Pinkel and 

Albertson 2005). Figure 2.8 summarises the aCGH technology. Briefly, tumour DNA 

is usually isolated from the cancer cells and control DNA is ideally isolated from 

normal cells from the same patient if available (e.g. peripheral blood). If not available, 

commercial sex-matched pooled genomic DNA can be used. Equal amounts of the 

tumour and normal DNA are first labelled with different fluorescent dyes, mixed and 

then hybridised to an array slide. The microarray slides contain oligonucleotide 

probes referring to human genomic sequences. After hybridisation and washing, the 

array slides are then scanned and the fluorescent intensities are measured from 

each probe. The scanned images are then interpreted and quantified using feature 

extraction (FE) software. The output from the FE software is then analysed using 

copy number analysis software where the ratios of the different dyes will be 

interpreted for each genomic region. All the aCGH steps were carried out according 

to Agilent Oligonucleotide Array-Based CGH for Genomic DNA Analysis version 6.0 

(Agilent Technologies UK Ltd., Wokingham). 

Figure 2.7 The pyrosequencer tip holder 
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Figure 2.8 Schematic representation of the aCGH technology 

Equal amounts of normal and tumour DNA are differentially labelled and hybridised to an 

array slide. After washing, scanning and feature extraction, the log2ratios of the normal and 

the tumour DNA signals are calculated. The dots underneath the log2ratio scale represent 

probes. Positive and negative log2ratios reflect amplifications (red probes) and deletions 

(green probes) respectively. Probes coloured in black represent stable genomic regions 

detected by log2ratios around zero. 
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2.2.15.1 Direct method 

The direct method of aCGH was used for samples for which a minimum amount of 

0.5 μg DNA was available. In this method, DNA samples were fragmented by 

restriction digestion using AluI and RsaI. The DNA samples (0.5 μg in 21 μl) were 

mixed with 5.8 μl digestion master mix which consisted of; 2 μl nuclease free water, 

2.6 μl 10x buffer C (supplied with RsaI), 0.2 μl acetylated bovine serum albumin 

(BSA) (10μg/ μl), 0.5 μl AluI (10U/ μl) and 0.5 μl RsaI (10 U/μl). The mix was then 

incubated at 37oC for 2 hr followed by 20 min at 65oC. In order to evaluate the 

completeness of digestion, the samples were then analysed on 1.5% agarose gel.  

2.2.15.2 Whole genome amplification  

When less than 0.5 μg of DNA was available, WGA was used to produce a 

representative amplification of genomic DNA (Brueck et al. 2007). In this research 

project, WGA was performed using a commercially available kit GenomePlex (Sigma 

Aldrich). The first step was DNA fragmentation; 10 μl of the DNA samples (50 ng) 

were mixed with 1 μl 10x fragmentation buffer and incubated at 95oC for exactly 4 

min. Then, the samples were immediately cooled on ice. The second step was library 

preparation; 2 μl of 1x library preparation buffer and 1 μl of library stabilisation 

solution were added to the fragmented DNA samples and incubated at 95oC for 2 

min. The samples were then cooled on ice and centrifuged briefly. Next, 1 μl of the 

library preparation enzyme was added to each sample and mixed thoroughly by 

pipetting. The samples were centrifuged briefly and incubated at 16oC for 20 min, 

24oC for 20 min, 37oC for 20 min and 75oC for 5 min in GeneAmp® PCR System 

9200 thermocycler (Applied Biosystems). The last step of the WGA protocol was 

DNA amplification; 60 μl of amplification master mix was prepared for each sample. 

Each reaction contained 7.5 μl 10x amplification master mix, 47.5 μl nuclease free 

water and 5 μl WGA DNA polymerase. The amplification master mix was then added 

to the 15 μl from the library preparation step, mixed thoroughly and amplified with the 
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following cycling conditions; initial denaturation at 95ºC for 3 min, followed by 14 

cycles of denaturation at 94ºC for 15 sec, annealing/extension at 65ºC for 5 min.  

2.2.15.2.1 Purification of WGA PCR products 

Following WGA, the PCR products were purified using the commercially available kit 

GenElute PCR clean-up (Sigma Aldrich); the 75 μl WGA products were mixed with 

375 μl binding solution and transferred to the miniprep binding column in a collection 

tube. The miniprep columns with the samples were then centrifuged at 13000 xg for 1 

min. The eluate was discarded, 0.5 ml of the wash buffer was added to the miniprep 

columns (supplied in the kit) and they were centrifuged at 13000 xg for 1 min. The 

eluate was discarded again and the miniprep columns were centrifuged at 13000 xg 

for 2 min, to remove any residual wash buffer. Next, the miniprep columns were 

transferred to a fresh collection tube and 50 μl of elution buffer was added to the 

centre of each column. The columns were incubated at room temperature for 1 min 

and finally centrifuged at 13000 xg for 1 min to recover the purified WGA products in 

the eluate. The purified products were quantified using Nanodrop as described in 

Section 2.2.2. The WGA yield (μg) was calculated by multiplying DNA concentration 

(ng/ μl) by the sample volume (50 μl) and dividing by 1000. 

2.2.15.3 Fluorescent labelling of DNA 

After the restriction digestion or WGA, the normal and tumour DNA samples were 

fluorescently labelled with cyanine 3-dUTP and cyanine 5-dUTP respectively; Firstly, 

DNA samples were mixed with 5 ng of random primers and incubated at 95oC for 3 

min followed by 5 min on ice. Subsequently, the samples were centrifuged at 6000 xg 

for 1 min and the labelling master mix was prepared; 2.0 μl nuclease free water (only 

for restriction digestion products), 10 μl 5x buffer, 5.0 μl 10x dNTP, 3.0 μl cyanine 3-

dUTP or cyanine 5-dUTP and 1.0 μl exo-klenow fragment. The labelling master mix 

was then added to 19 μl restriction digest product from Section 2.2.15.1 or 21 μl 

cleaned WGA product from Section 2.2.15.2.1 and then mixed thoroughly by 



 71 

pipetting. The cyanine 3-dUTP mix was used for the normal DNA and the cyanine 5-

dUTP was used for the tumour DNA. The samples were then incubated at 37oC for 2 

hr, followed by 10 min at 65oC for 10 min. 

2.2.15.4 Clean-up of labelled genomic DNA 

The labelled genomic DNA was purified using microcon YM-30 filters (Fisher 

Scientific UK Ltd.). Labelled DNA samples were mixed with 430 μl of 1x TE, pH 8.0 

(Promega), transferred to YM-30 filters in a 1.5 ml microfuge tube and centrifuged at 

8000 xg for 10 min. Then, the flow-through was discarded, 480 μl of 1x TE was 

added, and the tubes were centrifuged again at 8000 xg for 10 min. Next, the YM-30 

filters were inverted into a fresh 1.5 ml microfuge tube and centrifuged at 8000 xg to 

collect the purified labelled sample. The volume of the purified eluate was measured 

and recorded. If the volume of the purified labelled DNA was >21 μl, it was returned 

to its filter, centrifuged at 8000 xg for 1 min and the flow through was discarded. Then 

the filters were re-inverted and the same steps were repeated until sample volumes 

were equal to or less than 21 μl. If the volume was <21 μl, 1x TE buffer (pH 8.0) was 

used to bring the volume up to 21 μl.  

2.2.15.5 Labelling yield and specific activity determination 

The labelling yield and the specific activity were determined using the Nanodrop. 

From the main menu of the ND-1000 software, the microarray measurement module 

was selected and the sample type was changed to DNA-50 (double-stranded DNA). 

1x TE buffer (pH 8.0) was used to set the blank reading, and then 1.5 μl of purified 

labelled DNA was used for quantitation. The absorbance was recorded at A260nm 

(DNA), A550nm (cyanine 3) and A650nm (cyanine 5). The specific activity was calculated 

with the following equation: 

Specific activity (pmol dye/ μg DNA) = pmol per  μl dye / μg per  μl DNA  

Next, equal volumes of the cyanine-3 labelled “normal” DNA was mixed with the 

cyanine-5 labelled “tumour” DNA. 
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2.2.15.6 Microarray hybridisation 

Prior to hybridisation, the combined labelled DNA samples from the previous section 

were mixed with 50 μl cot-1 DNA (1.0 mg/ml) (Invitrogen Ltd., Renfrew) (to prevent 

the hybridisation of repetitive DNA sequences), 52 μl Agilent 10x blocking agent and 

260 μl of Agilent Hi-RPM buffer, then incubated at 95oC for 3 min and at 37oC for 30 

min. Then, the samples were centrifuged at 6000 xg for 1 min prior to hybridisation 

on the microarray slides. A clean gasket slide with 4 chambers was placed in an 

Agilent SureHyb chamber base with the gasket label facing up. Then, 100 μl of 

samples prepared as above were loaded into each chamber in a “drag and dispense” 

manner. Following that, the microarray (4x44K or 4x180K) was placed with the 

Agilent labelled barcode side (active side) facing down. The microarray slides were 

handled carefully without touching the edges. The SureHyb chamber cover was then 

placed onto the array-gasket sandwiched slides and they were clamped tightly. The 

assembled chamber was then rotated vertically to spread the samples, wet the 

microarray and to check the mobility of bubbles. Next, the assembled chamber was 

placed in the rotator rack of the hybridisation oven set at a temperature of 65oC and 

rotation speed of 20 RPM. The slides were left to hybridise for 24 hr. 

2.2.15.7 Microarray washing 

Wash procedure A of the Agilent‟s protocol version 6 was used. Three separate 250 

ml slide staining dishes were used. The first 2 slide staining dishes were filled with 

wash buffer 1 at room temperature and the 3rd was filled with wash buffer 2 pre-

warmed overnight at 37oC. Slide staining dish number 2 was placed on a magnetic 

stir plate and a slide rack and a magnetic stir bar were placed inside it. Slide staining 

dish number 3 was left in a water bath set at 37oC. After the washing dishes were in 

place, the hybridisation chamber was removed from the oven and the bubbles inside 

were checked to confirm that they were still rotating freely in the array-gasket 

sandwich. Next, the clamp of the hybridisation chamber and the chamber cover were 
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removed. The array-gasket sandwich was then taken out and quickly submerged in 

wash buffer 1 (in the first slide staining dish). The sandwich was opened from the 

barcode end using clean plastic forceps. The array slide was then placed in the slide 

rack in slide staining dish number 2 for 5 min. Afterwards, slide staining dish number 

3 was taken out of the water bath and placed on a heated magnetic stir plate with a 

magnetic stir bar inside. Next, the slide rack was transferred to dish number 3 for 1 

min. The slide rack was then removed slowly and the array slide was scanned 

immediately.  

2.2.15.8 Microarray scanning 

Microarray scanning was performed using an Agilent C scanner and scanner control 

software v8.3 (Agilent). The washed slides were placed in slide holders with the 

Agilent barcode facing up. The assembled slide holders were then placed into the 

scanner carousel. For the 4x180K arrays, Agilent G3_CGH was selected with 3 μm 

resolution while for the 4x44K arrays, Agilent HD_CGH profile was selected with 5 

μm resolution. After checking the scanner status, the slides slots were selected and 

scanning was performed. 

2.2.15.9 Data extraction using feature extraction software 

The feature extraction software version 10.5.1.1 (Agilent) was used to extract the 

microarray TIFF images. The software was launched and an FE project was opened. 

Then using the “add new extraction set” icon, the .tif files of the scanned arrays were 

added. The grid template and the CGH FE protocol were automatically assigned 

depending on the scanned microarray platform. The FE project was then saved and 

the extraction was performed.  

2.2.15.10 Quality control 

In order to ensure the integrity and quality of the aCGH results, 11 QC metrics were 

closely monitored for each array (Figure 2.9). These QC metrics check the placement 

of the array GRID, the noise of the experiment determined by the Derivative Log 
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Ratio Spread (DLRS), the signal intensity and the signal background (green and red), 

the signal reproducibility of non-control replicate probes and the presence of any 

outliers. Each metric was scored as excellent, good or evaluate. “Evaluate” metrics 

are usually of low quality. Each array will have a final QC status of either pass, 

marginal or fail. Array QC metrics were closely monitored with special attention to 

DLRS values as they greatly affect reliable analysis.  

 

Figure 2.9 An example of aCGH QC report 
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2.2.15.11 Data analysis 

Genomic workbench software version 5.0.14 (Agilent) was used for the main analysis 

of the aCGH microarray results. The CGH module was selected and a new 

experiment was created. Then, the results files, exported from the feature extraction 

software, were imported and the analysis performed.  

 

Several algorithms were available in the genomic workbench software v5.0 to 

perform the analysis. For defining and displaying the aberrations, 5 algorithms were 

available; circular binary segmentation (CBS), hidden Markov model (HMM), z-score 

based method, aberration detection method 1 (ADM1) and quality weighted interval 

score algorithm, also called the aberration detection method 2 (ADM2). In support for 

the aberration detection algorithms, data centring and correction algorithms were 

also available. These algorithms were used to increase the stringency of the 

aberration detection algorithms. Moreover, replicate probes and feature and 

aberration filters were also available to ensure the validity of the calls. Finally, 2 

common aberration analysis algorithms were provided; the t-test based method and 

the modified context corrected analysis algorithm. The following sections aim to 

briefly describe the concepts, limitations and advantages of the available algorithms. 

Most of the information presented is based on the CGH interactive analysis user 

guide for the Agilent genomic workbench software (v5.0).   

2.2.15.11.1 Aberration detection algorithms 

CBS and HMM are used for genome segmentation and detection of aberrant probes 

respectively. CBS identifies genomic points where the mean log2ratio scores change 

between intervals. On the other hand, aberrant probes identified by HMM can be 

collectively used to define aberrant regions. CBS and HMM are not user friendly and 

their outputs require a lot of processing and input from the operator to identify the 

aberrant regions. The latter might cause subjective calls, thus, they were not used in 

this project. The z-score based method detects aberrations by searching for genomic 
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regions enriched with probes that have log2ratios significantly different from a 

calculated baseline. The algorithm does so using a user defined sliding window of a 

fixed size. The disadvantage of the z-score algorithm is the fixed size of the sliding 

window which can limit the ability of the algorithm to identify some aberrations.  

 

ADM1 searches for any genomic regions and intervals that consistently have 

log2ratio values that are statistically significantly different from the zero log2ratio. The 

level of significance is determined by a user-defined statistical threshold which is 

recommended by Agilent to be set to a value of 6.0 for reliable results. ADM1 also 

determines the optimal size and the breakpoints of the identified aberrations. ADM2 

uses the same approach as ADM1, however, it also incorporates the quality 

information for the log2ratio values. Therefore, ADM2 deals better with lower quality 

or noisy data and is more stringent in identifying aberrations. ADM2 was the 

aberration detection method of choice in this project and its statistical threshold was 

set to 6.0 as recommended by Agilent. Another advantage of choosing ADM2 (or 

ADM1) is that the common aberration analysis algorithms (t-test based method and 

the modified context corrected analysis method) cannot deal with the outputs from 

the other aberration detection algorithms (CBS, HMM and z-score). 

2.2.15.11.2 Data centring and correcting algorithms 

Data centring and correcting algorithms were included in the analysis to increase the 

confidence in the called aberrations. 

2.2.15.11.2.1 Centralisation 

In general, the aberration detection algorithms will assume that the log2ratio values 

are centred around zero. That is, that the mean fluorescence values for the reference 

and the sample DNA are the same. This is often true for samples with stable or 

relatively stable genomes. However, for highly aberrant and unstable genomes (such 

as tumour genomes), the measured centre might deviate from the zero log2ratio and 
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the above assumption can lead to many aberrations being falsely called. 

Centralisation is an additional normalisation algorithm used to re-centre the log2ratio 

values and ensure that the zero-point value actually reflects the most common ploidy 

status of the samples. The algorithm will find a constant value for each sample based 

on its genomic status to re-normalise the log2ratios. The default centralisation 

parameters (bin size= 10 and threshold 6.0) were used as recommended by Agilent. 

The use of this centralisation algorithm was shown to increase the accuracy of the 

aberration detection algorithms (Chen et al. 2008). 

2.2.15.11.2.2 Fuzzy zero correction algorithm 

ADM1 and 2 can sometimes call large aberrations with a very low log2ratio average. 

These aberrations might be of genuinely low amplitude because of tumour 

heterogeneity. However, they could also be false aberrations caused by noise, and 

only reaching statistical significance because of the large number of probes in the 

area. This is caused by the limited ability of the ADM (1&2) algorithms to estimate 

errors over long genomic intervals. When used, the Fuzzy zero correction algorithm 

will apply a global error model to all of the aberrations called by the ADM algorithms. 

The global error model will assume two sources of noise; a local probe to probe 

noise where the error is not correlated between different probes within the same 

interval and a global noise where the error is correlated between the different probes. 

This meticulous global error estimation approach will avoid erroneous calling of large 

intervals with a high level of noise. 

2.2.15.11.3 Feature filter, aberration filter and replicate probes 

Feature filters were used to exclude non-uniform and saturated signals from the 

green and red fluorescence channels based on information from the feature 

extraction software. The default feature filter settings were used as recommended by 

Agilent. Additionally, an aberration filter was used which requires a minimum of 3 

probes for any aberration to be called. This will remove any aberrations called based 
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on deviation of 2 probes or less from the normalised zero log2ratio. Thus, the 

remaining calls will be of higher confidence. Finally, replicate probes were included in 

all of the Agilent arrays. The values of the intra-array replicate probes were combined 

during analysis to increase the statistical power for aberration detection.  

2.2.15.11.4 Common aberration analysis 

For common aberration analysis, context corrected common aberration (COCA) 

algorithm was chosen over the t-test based method. The t-test based method looks 

for commonly aberrant regions regardless of the amplification/deletion nature of the 

aberration. On the other hand, the COCA algorithm considers amplifications and 

deletions separately. It uses the aberrant regions identified by ADM2 (or ADM1) to 

construct a set of candidate intervals. Then, it will generate a statistical score 

reflecting the significance of each aberration in each sample. This significance score 

will be corrected based on the aberration status of each specific sample. This 

correction can be made in a genomic context for all the aberrations or chromosomal 

context. Because of the nature of CRC DNA in which some of the chromosomes are 

highly aberrant and others are relatively stable, a chromosomal context approach 

was applied for correction.  

 

The COCA algorithm will then test the hypothesis that each candidate aberration is 

common between any number of samples and it will generate a combined statistical 

score for each candidate. Candidate intervals will be reported as common aberrant 

regions if their combined statistical score (COCA score) was more than the 

recommended t-test p-value threshold of 0.05 and the overlap threshold of 0.9. The 

latter threshold means that for any common regions with > 90% overlap, the COCA 

algorithm will only report the one with higher statistical significance. COCA was 

previously shown to accurately identify common aberrant regions in cancer samples 

(Ben-Dor et al. 2007). 
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2.2.16 Cell lines culture 

Human cell lines were cultured in DMEM medium (Lonza, Belgium) supplemented 

with 10% foetal calf serum (FCS) and 1% pencillin-streptomycin in a 37oC incubator 

with 5% CO2. Standard sterile cell culture techniques were used to maintain the cell 

lines, which were all performed in a microbiological grade 2 safety cabinet. 

2.2.17 Western blotting 

Western blotting is a technique that can is used to detect the presence and the 

amount of specific proteins in a cell lysate. Briefly, proteins are separated according 

to size using Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-

PAGE), transferred to a nitrocellulose membrane and then detected using a specific 

antibody. Western blotting was used in this project to specifically assess the NFKBIA 

and the phosphorylated RELA protein levels in cellular extracts of various cell lines 

(Section 2.1.4). 

2.2.17.1 Protein extraction 

Confluent tissue culture plates were always used for protein extraction. The DMEM 

medium was removed and the cells were washed twice with PBS. Trypsin:versene 

(1:1) mixture (Lonza) was then added to the cells and the plates were incubated for  

few minutes (time varied according to cell lines) at 37ºC. When the cells were 

completely detached, 10 ml of DMEM medium (without antibiotics) were added to the 

plate. After pipetting up and down, the cells/medium mixture was transferred to 10 ml 

sterile tubes and centrifuged at 1300 RPM for 3 min. The cell pellet was then washed 

twice with 1x PBS. After the second wash, the cell pellet was resuspended in 1 ml 1x 

PBS and transferred to 1.5 ml eppendorf tube and centrifuged for at 2100 RPM for 3 

min at 4ºC. Meanwhile, 1 ml of 1x cell lysis buffer was prepared by mixing 100 μl of 

10x cell lysis buffer (Cell Signalling), 100 μl protease inhibitor (Roche), 100 μl 

phosphatase inhibitor (Roche), 10 μl serine protease inhibitor, termed 

phenylmethanesulfonylfluoride (100mM PMSF) and 690 μl distilled water. The PBS 

http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
http://en.wikipedia.org/wiki/Polyacrylamide_gel
http://en.wikipedia.org/wiki/Electrophoresis
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was then fully removed and ~300 μl of the freshly prepared ice-cold 1x cell lysis 

buffer were added to the tubes (the volume varied according to pellet size). After 

thoroughly pipetting the pellet up and down, the extracts were passed through a fine-

gauge needle ~30 times in order to release nuclear proteins. The tubes were 

incubated on ice for 30 min and then centrifuged at 14500 RPM for 5 min at 4ºC. The 

supernatant was then transferred to a new 1.5 ml tube and stored at -80ºC. 

2.2.17.2 Protein quantification 

Aliquots of the extracted protein samples were slowly defrosted on ice and then 

diluted in distilled water. Serial dilutions of 1 mg/ml BSA solution were also prepared 

in distilled water to be used as standards for protein quantification. The serial 

dilutions of both the samples and the BSA were then quantified using Bradford 

reagent (Bio-Rad Laboratories Ltd.) according to the manufacturer‟s instructions. 

2.2.17.3 Sodium Dodecyl Sulfate Polyacrylamide Gel 

Electrophoresis 

SDS denatures proteins and coats them in negative charges which will ensure their 

separation largely according to size during electrophoresis. SDS polyacrylamide gels 

were used to separate the protein extracts in preparation for Western blotting. 

Resolving and stacking gels were freshly prepared prior to each experiment using the 

reagents listed in Table 2.7 and Table 2.8 respectively. Tetramethylethylenediamine 

(TEMED) and 10% ammonium persulphate (APS) were only added when the gels 

were ready to be poured. The Bio-Rad mini protein gel apparatus was assembled 

according to the manufacturer‟s instructions (Bio-Rad Laboratories Ltd.) and 7 ml of 

the resolving gel was poured between the gel electrophoresis plates. Next, 200 μl of 

distilled water was carefully poured on top to eliminate air bubbles. Gels were left to 

set for ~15 min. After removing the water completely, the stacking gel was poured to 

fill the space between the plates and the well comb was inserted. The gel was ready 

to use after ~15 min. While the gel was polymerising, 20 μg of the protein samples 

http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
http://en.wikipedia.org/wiki/Polyacrylamide_gel
http://en.wikipedia.org/wiki/Electrophoresis
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were prepared by mixing with an equal volume of 2x Leammli buffer (5% v/v ß-

mercaptoethanol) (Sigma-Aldrich) and boiling for ~3 min. 

 

The electrophoresis plates were placed in the mini protein gel apparatus and 1x SDS 

buffer was poured into the central and the outer compartments. The well combs were 

then removed and 5 μl of Precision Plus ProteinTM Standard (Bio-Rad Laboratories 

Ltd.) was added into the first well. The protein samples were then added into the 

adjacent wells and the gels were electrophoresed for ~2 hr at 100 V. 

  

 

Table 2.7 Reagents and quantities for SDS-PAGE resolving gels 

 

 Quantity (ml) 

Resolving gel 10% 12% 

Distilled water 5.30 4.00 

30% polyacrylamide 6.70 8.00 

10% SDS 0.20 0.20 

1 M Tris-Cl (pH 8.8) 7.50 7.50 

10% APS* 0.25 0.25 

TEMED 0.025 0.025 

 

 *10% APS were freshly prepared by dissolving 0.1g ammonium persulphate in 1ml distilled water.  

Table 2.8 Reagents and quantities for SDS-PAGE stacking gel 

 

 

 

 

 

 

 

 

 *10% APS were freshly prepared by dissolving 0.1 g ammonium persulphate in 1ml distilled water.  

 

Stacking gel 5% Quantity (ml) 

Distilled water 6.80 

30% polyacrylamide 1.70 

1 M Tris-Cl (pH 6.8) 1.25 

10% SDS 0.10 

10% APS* 0.125 

TEMED 0.005 
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2.2.17.4 Protein transfer 

Once electrophoresis was complete, the gel was removed from the mini protein gel 

apparatus and the stacking gel was detached. The resolving gel was then incubated 

in transfer buffer for 30 min with shaking. The protein transfer apparatus (Bio-Rad 

Laboratories Ltd.) was assembled according to the manufacturer‟s instructions. 

Whatman Nitrocellulose membrane (GE Healthcare UK Ltd., Little Chalfont) was cut 

according to the size of the gel and incubated in the transfer buffer for ~15 min. 

Sponges and 3 mm thick blotting filter papers (GE Healthcare UK Ltd.) were also 

prepared and briefly soaked in transfer buffer. The protein transfer sandwich was 

prepared by placing a wet sponge onto the cathode of the transfer apparatus, 

followed by 3 mm blotting filter paper, the gel, the nitrocellulose membrane, another 3 

mm blotting paper, the second sponge and the anode (Figure 2.10). The protein 

sandwich was placed into the transfer apparatus and it was filled with transfer buffer. 

Transfer was carried out at 200 mA for 90 min.  

 

Figure 2.10 Western-blot protein transfer sandwich 

 

The transfer apparatus was disassembled and the membrane was stained with 

Ponceau S solution (Sigma-Aldrich) to check the efficiency of the transfer. The 
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membrane was washed with 1x TBS-T and placed in blocking buffer (5% dried milk 

in 1% TBS-T) for 2 hr at room temperature to prevent non-specific binding of the 

antibody. During the blocking step, fresh dilutions of the primary mouse anti-human 

antibody (NFKBIA or p-RELA) (Cell signalling) were prepared according to the 

manufacturer‟s instructions (1:1000 in the blocking buffer). The blocking buffer was 

removed and the membrane was incubated with 10 ml of the freshly diluted primary 

antibody overnight at 4ºC. 

Next day, the membrane was washed twice for 10 min with 1x TBS-T on a shaker. 

Following that, mouse secondary antibody (Sigma-Aldrich) was added after dilution in 

10 ml blocking buffer according to the manufacturer‟s recommended concentration 

(1:1000). The membrane was incubated for 1 hr at room temperature on shaker. Two 

10 min 1X TBS-T washes were then performed and the membrane was transferred 

onto a dry and clean plastic plate. Enhanced Chemiluminescent (ECL) reagent (GE 

Healthcare UK Ltd.) was prepared by mixing an equal volume of reagent 1 and 2 and 

then added slowly to cover the membrane. The covered membrane was incubated 

for 2 min at room temperature and the ECL reagent was then poured off. The 

membrane was wrapped in a plastic film and analysed using the luminescent image 

analyser LAS-3000 (Fuji-film, Bedfordshire) according to manufacturer‟s 

recommendations. The membranes were then washed 3 times for 10 min with 1x 

TBS-T on a shaker and the incubated in blocking buffer (5% dried milk in 1% TBS-T) 

for 1 hr at room temperature and then stained with the reference protein anti-α-

tubulin antibody (Sigma-Aldrich) using the same procedure described above. 

2.2.18 siRNA transfection and NFKBIA knockdown 

Small interfering RNA (siRNA) silencing is an effective mechanism that has been 

demonstrated to downregulate gene expression, and thus protein levels, in human 

cells (Lares et al. 2010). siRNA technology was used to temporarily knockdown 
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NFKBIA proteins by transfecting cells with a pool of NFKBIA-siRNA (Fisher Scientific 

UK Ltd.,) designed to complement NFKBIA messenger RNA (mRNA) (Table 2.9). 

 

Table 2.9 NFKBIA-siRNA target sequences 

NFKBIA-siRNA on target plus smart pool sequences 

GUGCUGAUGUCAAUGCUCA 

AGGACGAGCUGCCCUAUGA 

GCUGAUGUCAACAGAGUUA 

AGUCAGAGUUCACGGAGUU 

 

Transfection of the NFKBIA-siRNA into the target cells was performed using the 

transfection reagent Lipofectamine 2000 according to the manufacturer‟s instructions 

(Invitrogen Ltd.). On the day before siRNA transfection, 2-2.5x105 target cells were 

added to a 6 well cell culture plate containing  2 ml DMEM medium (with 10% FCS 

but without antibiotics) and incubated overnight at 37oC with 5% CO2. The next day, 

NFKBIA-siRNA, “negative” siRNA (designed not to complement any known human 

m-RNA sequence) (Eurogentec S.A., Southampton) and Lipofectamine 2000 were 

prepared. For each sample, 10 μl of 20 μM NFKBIA-siRNA (or negative siRNA) stock 

was mixed with 240 μl DMEM medium (without 10% FCS or antibiotics). Also, for 

each sample, 5 μl Lipofectamine 2000 was mixed with 245 μl DMEM medium 

(without 10% FCS or antibiotics). After 5 min incubation at room temperature, the 250 

μl Lipofectamine 2000 in DMEM was gently mixed with the 250 μl NFKBIA-siRNA in 

DMEM (or “negative” siRNA). These mixtures were then incubated for 20 min at 

room temperature. Meanwhile, the plated cells were washed with 1x PBS and then 

1.5 ml DMEM medium (with 10% FCS but without antibiotics) was added to each 

well. The Lipofectamine 2000/siRNA (NFKBIA or “negative”) mix was added to the 

cells which were then incubated at 37oC with 5% CO2. siRNA knockdown efficiency 

was determined by Western blotting (Section 2.2.17).  
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2.2.19 MTT cell proliferation assay 

In order to investigate the effect of NFKBIA knockdown on CRC cell lines growth, the 

number of viable transfected cells was estimated using the 3-(4,5-Dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. The MTT assay 

reflects the number of viable cells based on the activity of dehydrogenase enzymes 

(Mosmann 1983). The MTT assay was performed according to the manufacturer‟s 

instructions (ATCC). Briefly, 100 μl of 1x104 transfected cells were plated in 96 well 

plates and incubated (24-72 hr) at 37oC with 5% CO2. Next, 10 μl of the MTT reagent 

was added to the wells and incubated for 4 hr at 37oC with 5% CO2. Then, 100 μl of 

the solubilisation reagent (10% SDS, 10mM HCl) was added and incubated overnight 

at 37oC with 5% CO2. Absorbance was then measured at 570 nm using the MTT 

module on the Multiskan FC plate spectrophotometer (Thermo Scientific). The MTT 

test was performed on 3 consecutive days following transfection of cells with 

NFKBIA-siRNA and the “negative” siRNA. 

2.2.20 Colony formation experiment 

Colony forming activity is considered a representation of cell transformation which 

reflects the malignancy of cancer cells in culture (Bredel et al. 2010). Colony 

formation test was performed to examine the effect of the NFKBIA knockdown on the 

malignant behaviour of the transfected CRC cell lines. Briefly, 100 μl of 1x104 

transfected cells were mixed with 8 ml DMEM medium (with 10% FCS but without 

antibiotics), plated in cell culture petri dishes and incubated at 37oC with 5% CO2. 

Colonies were observed up to 2 weeks and counted following staining with 0.4% 

methylene blue. The test was performed on cells transfected with NFKBIA-siRNA 

and the “negative” siRNA. 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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2.2.21 Statistical tests 

2.2.21.1 Chi-square association test 

The chi-square test ( 2) was used to compare genotype frequencies for the 6bp 

ins/del polymorphism rs3834129 (and CASP8 CNV23598) between CRC cases and 

controls. The different genotypes (Ins/Ins, Ins/Del and Del/Del) and phenotypes (such 

as cases and controls) were tabulated in a 2x3 contingency table (Table 2.10). The 

equation                             was used to calculate the 2 statistic, where O is observed 

genotype frequency and E is expected genotype frequency. Expected frequencies 

are calculated using the contingency table. For example, the expected frequency of 

cases to have an Ins/Ins genotype is calculated by: (Tcase x Tins/ins)/T (Table 2.10). To 

determine whether the 2 is significant or not, the degrees of freedom (df) of the test 

are calculated using the equation: df = (number of columns – 1) x (number of rows – 

1). The df for 2x3 contingency tables thus equals 2. The chi-square distribution table 

can then be used to obtain the p-value for the 2 statistic. P-values <0.05 are 

considered to represent a significant result. The “CHIDIST” function in Microsoft 

Excel spreadsheet template was used to automatically determine the p-values for the 

various contingency tables.  

Table 2.10 A 2x3 contingency table 

 Genotype  

Phenotype Ins/Ins Ins/Del Del/Del Total 

Case x y z Tcase 

Control a b c Tcontrol 

Total Tins/ins Tins/del Tdel/del T 

                           

2.2.21.2 Hardy Weinberg Equilibrium  

In conditions of HWE, allele and genotype frequencies remain constant in the 

population across generations. This is an indication of random mating in large 

populations in the absence of selective pressure and mutations. Under conditions of 

HWE, the genotype frequencies are given by: 

E

EO
x

2

2
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p2+2pq+q2=1 

Where p and q stand for the frequencies of the common and the rare alleles 

respectively. Therefore, the expected genotype frequencies of the population in HWE 

were calculated as follows:  

E for the homozygous common= p2 x n 

   E for the homozygous rare= q2 x n 

   E for the heterozygoutes = 2pq x n 

Where “n” is the total number of genotyped samples in each assay. 

 

Testing for HWE is an essential quality control step in association studies. Departure 

from HWE might indicate low assay quality and genotyping errors. It might also 

indicate problems with the genotyped cohort such as small sample size, the 

presence of selection or population stratification. The chi-squared test with df=1 was 

used to check for any deviations from HWE. If the P-value was <0.05, the population 

genotypes were considered to be inconsistent with HWE. 

2.2.21.3 Odds ratios 

The odds ratio (OR) is an estimate of relative risk of CRC in a subset of patients with 

a specific genotype (e.g. Ins/Del) compared to another subset with a different 

genotype (e.g. Ins/Ins). The OR was calculated by dividing the odds in one group 

(e.g. Ins/Del) by the odds in the other group (Ins/Ins). An additive model was also 

used to calculate the OR based on the assumption that the risk of CRC increases 

additively with each copy of the rare allele (Del). OR and confidence intervals applied 

in this thesis were estimated by Dr. Angela Cox using Stata (v9). 

2.2.21.4 Fisher’s exact test 

Fisher‟s exact test (2x2 contingency table) was used to examine the significance of 

association between various genetic and/or clinical variables. The test was 
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performed using an online Fisher‟s exact test calculator available on Microsoft 

research website (http://research.microsoft.com, accessed May – September, 2011) 

2.2.21.5 Mann Whitney U test 

Mann Whitney U test is applied to assess if two independent sets of observations 

have statistically similar or different values. The test was used in this project to 

compare the number of CNA between CIMP-L/N and CIMP-H samples. The Mann 

Whitney U test was calculated using an online Microsoft Excel spreadsheet template 

(www.holah.karoo.net/Mann-Whitney%20U-test.xls, accessed May 2011). 

2.2.21.6 Spearman’s correlation test 

Spearman‟s correlation test was used to examine the strength of relationship 

between two different genetic defects (variables). The Spearman correlation 

coefficient (rs) was calculated using the CORREL function available in Microsoft 

Excel spreadsheet. A negative correlation coefficient value indicates an inverse 

relationship between the two tested variables.  

2.2.22 Splice site prediction 

In order to predict the physiological relevance of the novel intronic sequence 

alterations identified in this study, online splice-site prediction tools were used to 

predict any potential effects of the sequence alterations on splicing. Five online tools 

were applied on each of the sequence alterations. Several online tools were used to 

overcome shortcomings and weaknesses in any of the tools, as recommended by 

Houdayer et al. (2008). The splice site prediction tools web addresses are listed 

below (the default parameters were maintained unless specified): 

1) Splice site prediction by neural network: 

http://fruitfly.org:9005/seq_tools/splice.html. 

2) Exonic Splicing Enhancer (ESE) Finder : 

http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi.  

Parameters used: 

http://research.microsoft.com/
http://www.holah.karoo.net/Mann-Whitney%20U-test.xls
http://fruitfly.org:9005/seq_tools/splice.html
http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi
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a) Matrix Library: Splice sites 

b) Matrix: 5‟ splice sites donor of human 

3) MaxEntScan: scorsplice (MES): 

http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html.  

All the scoring models available on the tool were chosen. 

4) Relative Enhancer and Silencer Classification by Unanimous Enrichment 

(RESCUE-ESE): http://genes.mit.edu/burgelab/rescue-ese/. 

5) NetGene2 splice prediction: http://www.cbs.dtu.dk/services/NetGene2/ 

(All the above web tools were accessed July, 2011). 

2.2.23 Sequence nomenclature 

Throughout this study, the Human Genome Variation Society (HGVS) 

recommendations were followed for sequence nomenclature (http://www.hgvs.org/, 

accessed May, 2009). The coding DNA sequences were numbered from the 1st 

nucleotide of the start codon as the +1 position and they were prefixed with a “c”. The 

amino acid (aa) sequences were numbered from the 1st amino acid as the +1 

position, standard three letter amino acid codes were used and each aa sequence 

was prefixed with a “p”. 

http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
http://genes.mit.edu/burgelab/rescue-ese/
http://www.cbs.dtu.dk/services/NetGene2/
http://www.hgvs.org/
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3. Caspase 8 Inherited Variants and CRC Predisposition 

3.1 Introduction 

As described in Section 1.3, CRC is a major cause of cancer related deaths 

worldwide (Parkin et al. 2005, Jemal et al. 2011). The prognosis of CRC cases is 

largely dependent on the presenting cancer stage at the time of diagnosis. More than 

90% of the patients diagnosed in Duke‟s stage A survive for ~5 years compared to 

only ~5% when diagnosed in Duke‟s stage D (de la Chapelle 2004). Therefore, early 

diagnosis of CRC can play an important role in increasing the survival of patients.  

 

CRC is divided into sporadic and hereditary cases with the latter accounting for 

~25% of the incidence (Lichtenstein et al. 2000, de la Chapelle 2004, Broderick et al. 

2007). Environmental factors, such as diet and physical activity, have a major impact 

on CRC risk (Jong et al. 2002), however, genetics also play a key role in CRC 

predisposition with an estimated contribution of ~35%, placing it 2nd among common 

cancers in terms of heritability (Lichtenstein et al. 2000). Nonetheless, highly 

penetrant and well characterised mutations are rare and account for ~5% of all CRC 

cases and ~20% of the hereditary CRC cases (Jong et al. 2002, de la Chapelle 

2004). The majority of the hereditary cases and a large proportion of the sporadic 

CRC cases are probably caused by more common, but less penetrant, genetic 

variants and polymorphisms (Broderick et al. 2007). These are generally difficult to 

identify, since linkage studies do not have enough power to detect low penetrance 

variants. Nevertheless, through the use of SNP-based genetic association studies 

(based on both, candidate genes and genome wide) with large numbers of CRC 

cases and controls, some of these less penetrant genetic variants have already been 

identified (Jong et al. 2002, de la Chapelle 2004, Broderick et al. 2007, Haiman et al. 

2007, Sun et al. 2007, Tomlinson et al. 2007, Zanke et al. 2007, Jaeger et al. 2008, 

Tenesa et al. 2008, Tomlinson et al. 2008). In general, all the identified common risk 
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variants can only account for ~6% of the unknown CRC heritability (Lascorz et al. 

2010). Identifying more of these lower penetrance genetic variants will play an 

important role in increasing our knowledge of the genetic pathways involved in CRC 

development with possible applications in the clinic (de la Chapelle 2004, Lerman 

and Shields 2004). Recently, it has been suggested that some of the missing 

heritability may be accounted for by copy number variants (CNVs) (Pearson and 

Manolio 2008). CNVs are structural copy number polymorphisms; insertions, 

deletions and duplications of more than 1Kb in size that occur across the human 

genome. CNVs have been considered as a form of genetic variation and they affect 

the risk of genetic diseases (Beckmann et al. 2007). Therefore, they can provide an 

alternative strategy to identify cancer predisposing genes (Venkatachalam et al. 

2010). 

 

Apoptosis, is a fundamental biochemical pathway that plays an essential role in 

normal tissue homeostasis and differentiation, as it helps to eliminate abnormal cells 

(Reed 2000, Fadeel and Orrenius 2005). One of the main hallmarks of cancer cells is 

their ability to evade apoptosis (Hanahan and Weinberg 2000) which is usually 

acquired by disrupting apoptotic genes (Butler et al. 1999). Caspase 8 is one of the 

initiator caspases that plays a major role in activating apoptosis. Several studies 

have shown the loss of caspase 8 expression in tumours such as neuroblastoma, 

medulloblastoma and small cell lung cancer (Shivapurkar et al. 2002b, Pingoud-

Meier et al. 2003b, Stupack et al. 2006). Moreover, inactivating CASP8 mutations 

were previously reported in several cancer types such as CRC and gastric cancer 

(Shivapurkar et al. 2002b, Kim et al. 2003, Soung et al. 2005). Additionally, CASP8 

SNPs such as D203H have been shown to affect breast cancer risk (Cox et al. 2007).  

 

Recently, a large association study in a Chinese population identified a 6bp in/del 

(rs3834129) in the CASP8 promoter as a risk factor for multiple cancers including 



 92 

CRC (Sun et al. 2007). However, these results were not confirmed in European and 

multi-ethnic American populations (Haiman et al. 2008, Pittman et al. 2008). In an 

attempt to clarify this apparent disparity, the initial aim of the work described in this 

chapter was to investigate the relationship between rs3834129 and CRC risk in a 

Caucasian population. Secondly, our lab had some preliminary data indicating an 

association between CASP8 SNPs and CRC risk (Curtin et al. manuscript in 

preparation). Therefore, we decided to try to identify relatively rare and novel 

functional SNPs in CASP8 that might affect CRC risk. This was performed by re-

sequencing the coding region, intron/exon boundaries, the promoter region and the 

3‟UTR of CASP8. Rare variants could easily be missed by GWAS, because they are 

mainly based on a tagging SNP approach which uses specific known SNPs as 

representatives of multiple other common SNPs that occur together in strong linkage 

disequilibrium. Thus, rare variants are usually poorly captured by this approach. 

Finally, we also decided to develop an assay to investigate a possible role of CASP8 

CNV23598 in CRC predisposition. At the time this project was designed, only two 

CNVs were reported to occur in CASP8; CNV23598 and CNV23081. Both CNVs 

were not validated and their frequencies were unknown. However, we decided to 

develop an assay for investigating CNV23598 mainly because of its physical 

proximity to D302H, a CASP8 variant identified by our group to affect breast cancer 

risk (Cox et al. 2007). 
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3.2 Results 

3.2.1 rs3834129 genotyping 

The SNP rs3834129 was genotyped by TaqMan assay (Section 2.2.9.1) (Figure 3.1) 

in 1193 cases and 1388 controls from the UK (Sheffield, Leeds and Dundee) and the 

USA (Utah) populations (these are described in Section 2.1.3). A summary some of 

the characteristics of the cases and controls included in the study is presented in 

Table 3.1.  

 

 

 

Figure 3.1 TaqMan genotyping 

Genotyping clusters of rs3834129 Taqman assay from a 384 well plate from the Sheffield 

population. The X and the Y axes represent fluorescent signals from VIC® and FAM
TM

 

labelled probes respectively. Blue and Red clusters represent homozygous insertion and 

homozygous deletion genotypes respectively. Green cluster represents heterozygous 

genotypes. The crosses represent undetermined samples.  
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Table 3.1 Summary of the cases and controls for rs3834129 genotyping 

  Sheffield Leeds Dundee Utah 

  Cases Controls Cases Controls Cases Controls Cases Controls 

  n (%) 

 Total 475 (100.0) 447 (100.0) 270 (100.0) 227 (100.0) 137(100.0)  365(100.0)  455 (100.0) 449 (100.0) 

Sex 

Male 264 (55.6) 221 (49.4) 153 (56.7) 131 (57.7) 85(62.0)  189 (51.8)  250 (55.0)  250 (55.7) 

Female 211 (44.4) 220 (49.2) 116 (43.0) 96 (42.3) 52(38.0)  173 (47.4)  205 (45.0) 199 (44.3) 

Unknown NA 6 (13.4) 1 (0.4) NA NA   3 (0.82) NA   NA 

Family 
History* 

None 393 (82.7) 405 (90.6) 228 (84.4) 202 (89.0)  109 (79.6) 315 (86.3)  62 (13.6)   420 (93.5) 

1 relative 69 (14.5) 36 (8.1) 37 (13.7) 24 (10.6) 26 (19.0)  45 (12.3)  264 (58.0) 25 (5.6) 

≥ 2 relatives 13 (2.7) 6 (1.3) 5 (1.9) 1 (0.4) 6 (4.4)  5 (1.4)  129 (28.4)  4 (0.9)  

Age** 

≤50 25 (5.3) 18 (4.0) 11 (4.1) 11 (4.9) 6 (4.4)  16 (4.4)   54 (11.8)  NA 

51-59 82 (17.3) 98 (21.9) 40 (14.8) 29 (12.8) 20 (14.6)   67 (18.5) 69 (15.2) NA 

60-69 127 (27.6) 171 (38.3) 94 (34.8) 85 (37.4) 51 (37.2)  143 (39.5)  134 (29.5) NA 

≥70 237(49.9) 160 (35.8) 124 (45.9) 102 (44.9) 60 (43.8)  136 (37.6)  185 (40.7) NA 

Mean (Range) 68 (30-96) 66 (26-86) 67.4 (45-89) 67.1 (45-80) 67.2 (46-80)  66.7 (45-86)  64.9 (29-91)  NA 

CRC site*** 

Proximal 122 (25.7) NA 57 (24.4) NA 22 (16.0)  NA 158 (32.6) NA 

Distal 126 (26.5) NA 81 (34.6) NA 49 (35.8)  NA 147 (30.4) NA 

Rectal 190 (40.0) NA 92 (39.3) NA 62 (45.3)  NA 115 (25.3) NA 

Unknown 37 (7.8) NA 4 (1.7) NA 4 (2.9)  NA 64 (14.1)  NA 

* Family history includes 1st degree relatives only. 

** Controls for Utah were samples collected from previous studies. All controls were cancer 

free and matched by sex and year of birth (Age will reflect the age at recruitment for previous 

studies, therefore it will not necessarily match for this study (Section 2.1.3.3). 

*** CRC site for Utah includes 29 cases with multiple primary CRC. 

 

3.2.1.1 Quality control 

In order to assess the quality of the DNA samples and the accuracy of the TaqMan 

assay and genotyping results, several quality control assessments were performed. 

The assay genotyping call rate represents the number of successfully genotyped 

samples out of the total number of samples. It gives an indication of both assay and 

sample quality. Usually, a call rate of ~95% indicates that both the assay and the 

samples are of high quality. The call rate achieved for the different genotyped 

populations was between 92-96%, as shown in Table 3.2.  In each 384 well taqman 

plate, 5-10% of the samples were duplicated. The duplicate concordance represents 

the percentage of the duplicated samples that were successfully called with the same 

genotype. A duplicate concordance of 98% represents high accuracy. An overall 

duplicate rate of 97.5% was obtained for all of the genotyped cohorts combined 

(range 95-100%) (Table 3.2). As mentioned in Section 2.2.21.2, testing for Hardy 
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Weinberg equilibrium (HWE) is an important step to investigate the quality of the 

genotyping assay. Table 3.2 summarises the p-values for the populations genotyped 

for rs3834129. The chi-squared test was performed on the control genotypes only. All 

the p-values were >0.05 suggesting that all the genotyped populations were 

consistent with HWE. In summary, the quality control analysis of the genotyping 

results indicates reasonable data quality. 

Table 3.2 Quality control results of the genotyped cohorts 

Study Group Samples (n) 
Call rate 

(%) 
Overall call rate 

(%) 
Duplicate Concordance % 

(n)* 
HWE 

 (p-value) 

Sheffield 
Cases  436  92.0 

92.3  94.7 (94) 0.507 
Controls  442  92.5 

Leeds 
Cases 262 94.7 

96.1 100.0 (41) 0.254 
Controls 226 97.8 

Dundee 
Cases 136 94.8 

94.0 97.2 (36) 0.990 
Controls 364 93.7 

Utah 
Cases 451 92.0 

93.3 100.0 (71) 0.714 
Controls 444 94.6 

 

3.2.1.2 Allelic discrimination and genotypes 

Table 3.3 represents a summary of the rs3834129 genotype counts for the cases and 

controls from the genotyped populations. Moreover, Table 3.4 shows the observed 

allele frequencies in this study, together with those from previous publications and 

dbSNP. Comparison with the known frequencies of rs3834129 shows an agreement 

between our results and the results from the European and multi-ethnic American 

populations. However, it shows substantial difference from the Asian population. 

Table 3.3 rs3834129 Genotyping results 

  Genotyping results  

  n (%)  

  Ins/Ins Ins/Del Del/Del Total 

Sheffield 
Cases 107 (26.7) 186 (46.4) 108 (26.9) 401 

Controls 119 (29.1) 197 (48.2) 93 (22.7) 409 

Leeds 
Cases 53 (21.4) 126 (50.8) 69 (27.8) 248 

Controls 58 (26.2) 102 (46.2) 61 (27.6) 221 

Dundee 
Cases 40 (31.0) 60 (46.5) 29 (22.5) 129 

Controls 80 (23.5) 171 (50.1) 90 (26.4) 341 

Utah 
Cases 107 (25.8) 210 (50.6) 98 (23.6) 415 

Controls 116 (27.6) 213 (50.7) 91 (21.7) 420 

 
Table 3.3 summarises the genotyping results for rs3834129. 
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Table 3.4 rs3834129 frequencies 

 rs3834129 allele frequencies 

Insertion Deletion 

Sheffield 0.53 0.47 

Leeds 0.49 0.51 

Dundee 0.49 0.51 

Utah 0.53 0.47 

Pittman et al. 2008 0.50 0.50 

Haiman et al. 2008  0.50-0.52 0.48-0.50 

European panel dbSNP(133) 0.452 0.548 

Sun et al. 2007 0.76 0.24 

Asian panel dbSNP(133) 0.783 0.217 

 

Pittman et al. 2008 and Haiman et al. 2008 studies were performed in European and multi-

ethnic American populations respectively. Sun et al. 2007 study was performed in a Chinese 

population. dbSNP allele frequency was obtained from the database release 133. 

3.2.1.3 Association of rs3834129 with colon cancer 

A contingency table chi-squared test (Degree of freedom (df) =2) was used to 

investigate whether there was a significant difference in the frequency of the 

genotypes between cases and controls (Section 2.2.21.1). The test was applied 

separately on the four different populations using observed and expected values 

based on the null hypothesis of no association between genotype and case status. 

The p-values for the 4 populations are summarised in Table 3.5. 

  

The odds ratios (OR) for CRC relative risk of the heterozygous and the homozygous 

deletion (the rare allele) genotypes were calculated in comparison to the 

homozygous insertion (the common reference allele) (Section 2.2.21.3). OR were 

calculated separately for the different populations and a combined OR was also 

computed for the 4 populations with adjustment for study size. Finally, an additive OR 

model assuming an increase in CRC risk with each copy of the deletion allele (allele 

dose) was calculated for each study separately and with all the studies combined. 

The calculated OR are summarised in Table 3.5. All the calculated p-values were > 

0.05 and all the estimated OR 95% confidence intervals overlapped 1.0. Therefore, 

these data provide no evidence of association between rs3834129 and CRC risk. 
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Table 3.5 Chi-squared test p-values and odds ratios 

  Odds ratios (OR) 

Study p-value* 
Heterozygous OR  

(95% CI) 
Homozygous Del OR  

(95% CI) 
Additive model OR  

(95% CI) 

Sheffield 0.369 1.050 (0.756-1.459) 1.292 (0.882-1.890) 1.134 (0.937-1.372) 

Leeds 0.429 1.352 (0.858-2.130) 1.238 (0.745-2.056) 1.105 (0.857-1.424) 

Dundee 0.234 0.702 (0.434-1.134) 0.644 (0.366-1.134) 0.797 (0.599-1.061) 

Utah 0.736 1.069 (0.773-1.479) 1.168 (0.792-1.721) 1.080 (0.890-1.310) 

Combined data** 1.040 (0.860-1.258) 1.110 (0.891-1.384) 1.053 (0.944-1.176) 

 
Table 3.5 summarises the chi-squared test p-values, and the odd ratios for the different 

populations used in rs3834129 genotyping. 

* 2x3 Chi-squared p-values testing the null hypothesis that there is no significant difference in 

genotypes frequencies between cases and controls. 

** Combined OR were adjusted for the sizes of the 4 studies based on a logistic regression 

analysis by Dr Cox. 

 

3.2.2 Caspase 8 gene sequencing 

In order to try and identify any rare and possible coding variants that might have an 

effect on caspase 8 function and CRC risk, the coding region of the CASP8 gene, the 

intron/exon boundaries, the promoter region and the 3‟UTR (Figure 3.2) were 

sequenced in the peripheral blood DNA samples of 94 random CRC cases from the 

Sheffield population sample described in Section 2.1.3.1 (Table 3.6). 

 

.

 

 

A schematic representation of CASP8 promoter region and exons sequenced in the project. 

 

  

Figure 3.2 CASP8 promoter region and exons 
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Table 3.6 Patients and tumour characteristics 

Median age (range), years                  67 (30-90) 

Gender                                                  n (%) 

  Male 51 (54.3) 

  Female 43 (45.7) 

Tumour location                                    n (%) 

  Proximal 31 (33.0) 

  Distal 27 (28.7) 

  Rectal 34 (36.2) 

  Unknown 02 (2.1) 

Duke's Stage                                          n (%) 

  A 07 (7.4) 

  B 26 (27.7) 

  C 44 (46.8) 

  D 03 (3.2) 

  Unknown 14 (14.9) 

Family history CRC                               n (%) 

  None 72 (76.6) 

  1 relative 11 (11.7) 

  ≥ 2 relatives 11 (11.7) 

Metastastatic                                         n (%) 

  Yes 07 (7.4) 

  No 83 (88.3) 

  Unknown 04 (4.3) 

Differentiation                                       n (%) 

  Well 07 (7.4) 

  Well/Moderate 53 (56.4) 

  Moderate 20 (21.3) 

  Poor 04 (4.3) 

  Unknown 07 (7.4) 

 

Table 3.6 summarises the patients and tumour characteristics of the 94 sequenced 

CRC cases. Family history was defined by 1
st
 degree relatives having CRC. 

 

3.2.2.1 Novel sequence variants 

Six novel variants were identified in the screened cohort. To date, none of these 

variants have been previously reported. All the novel variants (except c.646+25) 

were confirmed by bi-directional sequencing and are summarised in Table 3.7. 

Table 3.7 Novel sequence variants 

Variant Location Genomic position* Number of cases 

-565 G>A Promoter region 202097619 2 

c.1-8338Del115 Exon 3 202122873-202122988 1 

c.1-7982A>G Intron 3 202123228 1 

c.646+25A>G Intron 8 202137524 1 

c.1488+388DelATTA Intron 13 202151702-202151705 1 

c.1488+1163C>T Intron 13 202152480 1 

 
* Genomic positions are according to human genome build 37.2. 
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3.2.2.1.1 Promoter region variant 

The first variant was identified in the promoter region of CASP8 in two different CRC 

cases (C201 and M202) (Figure 3.3). The variant is a G to A transition at nucleotide 

position -565 (-565 G>A) from the transcription initiation site in exon 1. The CASP8 

promoter region is well characterised and the regulatory sequences have been 

previously mapped and functionally validated (Figure 3.4) (Liedtke et al. 2003). The 

novel -565 variant does not occur within any of the known functional sites.  Moreover, 

in silico analysis using the online tool PROMO for the identification of putative 

transcription factors binding sites (TFBS) did not predict the introduction of any new 

sites (http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3, 

accessed July, 2011). Finally, the genomic position 202097619 was checked using 

the UCSC genome browser (http://genome.ucsc.edu, assembly Feb 2009, accessed 

July, 2011) for evolutionary conservation (across; Rhesus, Mouse, Dog, Elephant 

and Opossum) and the presence of regulatory regions assessed by DNase 

hypersensitivity clusters and histone marks. The genomic position was not highly 

conserved and it did not occur within any regulatory region. 

Bidirectional sequencing of the promoter region showing the -565 G>A variant in a wild type 

sample (A and B) and C201 (C and D). The site of the variant is marked with a red arrow. 

Figure 3.3 The novel variant -565 G>A 

  Forward sequence    Reverse 

A 

C D 

B 

http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3
http://genome.ucsc.edu/
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The novel variant is highlighted in pink. Nucleotides highlighted in yellow and green represent 

the 6bp ins/del (rs3834129) and STAT1 binding site respectively. Nucleotides highlighted in 

turquoise represent known SNPs.  

 

3.2.2.1.2 Exon 3 variant 

The second variant was a 115bp deletion in exon 3 (c.1-8338Del115). The variant 

was identified in one CRC case only (C536) (Figure 3.5). Exon 3 is only expressed in 

the longest isoform of CASP8 (Isoform G). c.1-8338Del115 results in an in-frame 

deletion of the first 11 amino acids (MEGGRRARVVI) of the isoform G precursor. The 

deleted 11 amino acids are not part of the known functional domains of caspase 8. 

 

In silico analysis using the database of protein domains, families and functional sites 

Prosite (http://www.expasy.ch/prosite/ accessed July, 2011) did not predict any highly 

conserved or functional domains. Nevertheless, c.1-8338Del115 genomic region was 

checked using the UCSC genome browser (http://genome.ucsc.edu, assembly Feb 

2009, accessed July, 2011) for evolutionary conservation (across; Rhesus, Mouse, 

Dog, Elephant and Opossum) and the presence of regulatory regions assessed by 

DNase hypersensitivity clusters and histone marks. The region was not highly 

conserved, however, the presence of strong DNase hypersensitivity cluster and 

histone marks were predicted in CASP8 exon3 and the surrounding region (including 

the novel variant c.1-7982A>G described in the following section). However, CASP8 

Figure 3.4 CASP8 promoter region 

Exon 1 

SP1 

NFκB 

ETS 

P53 responsive element 

GAGCTAAGTATTTTGCATGTATTAACTCATTTTGTTCTCATAATAACCTTCACATGCAGGAATCATTATA 

GCTACTTTATGAATGAGCCGAGGAAGGCACTGAGACGTTAAGTAACTTGCCCAAGGTCACGCAGCTAGTA 

AGTGGCAGAGCAAGAATTACTATGGCTTTATAAGCCTAGGAAAAAGTCTGAAAGAATCAAAATGTTAACA 

GCGGGGACCTCAAGGAAGCATTGAAGAGGCCATGGGAGAAGTTTTCACTTTGTTAAAAAATCAGTCCTTC 

AAATAAATAAATACAGTGAGGCTTCCCCAGAAGCAGATGTCACTATGCTTCCTGTACAGCCTGTGGAACT 

GTGAGCCAGTTAAACCTCTTTTCTTTATAAATTATCCAGTCTTAGGTATTTCTTTATAACAGTGCTAGGA 

TGAGCTGATACAGTTTCCTACACTGTAACCTAAGGCAATGCTTTGCACAAAGGGATGAGCCAGATTGCTT 

AGTAATTAAAACGCAAATACAAACCACAAGCATATCCATTCATGAATTGGGGGGCTGCTTTGTGTGCATA 

GATAAGGTATATTTTTTAAAAAAATTATTTTTCCAAGAAGAAAATAAACCAGTTAATAAACGACAACTCA 

CAGTGCCAGGAAGTGAGAAACAAGTGTGTGATAAACGGTGGAGAATGGGAGCACTCTCCGCAGTGGGCGG 

GAGGAGACGAGGAGGGCGTTCCCTGGGGAGTGGCAGTGGTTGGAGCAAAGGTTTGGAGGAGGTAAGTCAT 

GTGCTCTGAGTTTTTGGTTTCTGTTTCACCTTGTGTCTGAGCTGGTCTGAAGGCTGGTTGTTCAGACTGA 

GCTTCCTGCCTGCCTGTACCCCGCCAACAGCTTCAGAAGAAGGTGACTGGTGGCTGCCTGAGGAATACCA 

 

http://www.expasy.ch/prosite/
http://genome.ucsc.edu/
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exon 3 is only expressed in CASP8 isoform G, which is not a predominantly 

expressed CASP8 isoform (Scaffidi et al. 1997). 

 

 

A) Exon 3 deletion on 1.5% agarose gel (M: Hyperladder IV, 1: C536, 2: M225). B) 

Electropherogram of C536 showing c.1-8338Del115. (i and ii forward and reverse sequences 

respectively). Red arrows mark deletion breakpoints. C) CASP8 exon 3 is marked in red. c.1-

8338Del115 is highlighted in yellow and SNPs in turquoise. The underlined red nucleotides 

represent primers (italics for reverse). 

 M           1           2 

600 
500 
400 

622 

i 

ii 

GCACGTCCATGAATTGTCTGCCACATCCCTCTTCTGAATGGTTGGAAATTGGGCATCTGTTCCTTTAAAC 

AGGAAACATTTCTTGTTCGAGTGAGTCATCTCTGTTCTGCTTTAGGAGTAAAGTTTACCCTGCAGTTCCT 

TCTGTGGTGAAGTTTTCTCTTTCTCTCGGAGACCAGATTCTGCCTTTCTGCTGGAGGGAAGTGTTTTCAC 

AGGTTCTCCTCCTTTTATCTTTTGTGTTTTTTTTCAAGCCCTGCTGAATTTGCTAGTCAACTCAACAGGA 

AGTGAGGCCATGGAGGGAGGCAGAAGAGCCAGGGTGGTTATTGAAAGTAAAAGAAACTTCTTCCTGGGAG 

CCTTTCCCACCCCCTTCCCTGCTGAGCACGTGGAGTTAGGCAGGTTAGGGGACTCGGAGACTGCGATGGT 

GCCAGGAAAGGGTGGAGCGGGTGAGTGCCTGTTGCCAAGGTGGCCTCTTCAACAGGAAACCACAATATTT 

TTGTTTCTTGACTTGCTCTAGAAACAGGGCTGTGGGGGTGGGGAAGCAACTTGGATCTGCCCTTCTGAGG 

ACACCTCTGGGTGCTGCCTGGCCCAGGTCTCCTGTGTGGTTTCTCTCTGAGCCGTTGCCTCTGACTTTGC 

B 

C 

A 

Figure 3.5 CASP8 exon 3 115 bp deletion 

Size (bp) Expected size 

(bp) 
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3.2.2.1.3 Intronic variants 

Four novel intronic variants were identified; c.1-7982A>G (intron 3) in case C371 

(Figure 3.6), c.646+25A>G (intron 8) in case C109 (Figure 3.7) and 

c.1488+388DelATTA (intron 13) in control CO201 (used in the optimisation of the 

PCR conditions) (Figure 3.8) and c.1488+1163C>T (intron 13) in case C249 (Figure 

3.9). 

 

In silico analysis of the 4 intronic variants was performed using 5 different online 

splicing prediction tools as described in Section 2.2.21.4 and recommended by 

Houdayer et al. (2008). None of the tools used predicted any effect on splicing. 

Moreover, the genomic locations for the 4 intronic variants were checked using the 

UCSC genome browser (http://genome.ucsc.edu, assembly Feb 2009, accessed July 

2011) for evolutionary conservation (across; Rhesus, Mouse, Dog, Elephant and 

Opossum) and the presence of regulatory regions assessed by DNase 

hypersensitivity clusters and histone marks. In terms of evolutionary conservation, 

c.1488+1163C>T was the only variant occurring in a highly conserved position 

(Rhesus, Mouse Dog and Elephant), however, it was not predicted to be in a 

regulatory region. The rest of the genomic variants (except for intron 3 c.1-7982A>G 

as explained in the previous section) did not occur within any regulatory regions. 

 

http://genome.ucsc.edu/
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Bidirectional sequencing of intron 3 region showing the variant c.1-7982A>G in a wild type 

sample (A and B) and C371 (C and D). The site of the variant is marked with a red arrow. 

 

Reverse sequencing of intron 8 region showing the variant c.646+25A>G in a C109 (A) and a 

wild type sample (B). The site of the variant is marked with a red arrow. 

Figure 3.6 CASP8 intron 3 c.1-7982A>G 

Figure 3.7 CASP8 intron 8 c.646+25A>G 

A 

C D 

B 

  Forward sequence    Reverse sequence 

A B 
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Bidirectional sequencing of intron 13 region showing the 4bp in/del (c.1488+388DelATTA ) in 

a wild type sample (A and B) and CO201 (C and D). The breakpoints are marked with red 

arrows and the in/del sequence is marked with a horizontal red bar. 

 

Bidirectional sequencing of intron 13 region showing the variant c.1488+1163C>T in a wild 

type sample (A and B) and C249 (C and D). The site of the variant is marked with a red 

arrow. 

Figure 3.8 CASP8 intron 13 c.1488+388DelATTA 

Figure 3.9 CASP8 intron 13 c.1488+1163C>T 

Forward sequence Reverse sequence 

A 

C D 

B 

A 

C D 

B 

  Forward sequence    Reverse sequence 
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3.2.2.2 Known polymorphisms 

A summary of all the previously reported SNPs that were found in the course of this 

project is presented in Table 3.8. The frequencies of the SNPs in the sequenced 

cohort are compared to those from the European population panel (EGP-CEPH) 

available on dbSNP133 (http://www.ncbi.nlm.nih.gov/projects/SNP/). As shown in the 

table, the frequencies were similar and no major differences were observed. 

Table 3.8 Known SNPs identified and their observed/known frequencies 

SNP Reference 
Number 

CASP8 
Exon/Intron 

Alleles Known 
Frequency* 
(db SNP 133) 

Alleles Screened 
in the project (n) 

Observed 
Frequency 

rs3729647 Promoter G/C 0.548/0.452 184 0.570/0.430 

rs34224214 Promoter C/T 0.976/0.024 182 0.940/0.060 

rs3834129 Promoter AGTAAG/- 0.452/0.548 188 0.569/0.431 

rs35093568 Promoter A/G 0.977/0.023 184 0.989/0.011 

rs6747918 Promoter G/A 0.568/0.432 184 0.490/0.510 

rs36028425 Promoter A/T 0.977/0.023 106 0.915/0.085 

rs17860416 Promoter G/A 0.932/0.068 188 0.952/0.048 

rs3769823 Exon 3 G/A 0.705/0.295 188 0.680/0.320 

rs3769824 Exon 3 T/C 0.979/0.021 188 0.963/0.037 

rs2293554 Intron 5 T/G 0.952/0.048 188 0.930/0.070 

rs13401994 Intron 5 G/T 0.977/0.023 188 0.973/0.027 

rs36043647 Intron 11 T/C 0.932/0.068 188 0.936/0.064 

rs1045485 Exon 12 G/C 0.773/0.227 188 0.872/0.128 

rs1045487 Exon 12 G/A 0.977/0.023 188 0.968/0.032 

rs34750049 Intron 12 C/T 0.977/0.023 188 0.984/0.016 

rs41309820 Exon 13 C/T Unknown 42 0.976/0.024 

rs34841024 Exon 13 T/G 0.773/0.227 184 0.870/0.130 

rs3769818 Exon 13 G/A 0.750/0.250 184 0.790/0.210 

rs41309822 Exon 13 G/A Unknown 184 0.990/0.001 

rs17860428 Exon 13 G/A 0.841/0.159 182 0.841/0.159 

rs3185378 Exon 13 C/G 0.682/0.318 180 0.611/0.389 

rs2141331 Exon 13 C/T 0.932/0.068 180 0.906/0.094 

rs35419671 Exon 13 C/T 0.977/0.023 186 0.994/0.006 

rs17860432 Exon 13 G/C 0.977/0.023 184 0.935/0.065 

rs17860433 Exon 13 A/G 0.955/0.045 184 0.973/0.027 

rs1045494 Exon 13 T/C 0.977/0.023 184 0.967/0.033 

rs13113 Exon 13 A/T 0.432/0.568 186 0.414/0.586 

rs34461625 Exon 13 -/AT 0.977/0.023 186 0.973/0.027 

rs1035140 Exon 13 A/T 0.500/0.500 184 0.544/0.456 

rs35010052 Exon 13 -/A 0.955/0.045 184 0.956/0.044 

 
* Known frequencies were obtained from the EGP-CEPH European panel available on NCBI 

website (dbSNP133). 

 

http://www.ncbi.nlm.nih.gov/projects/SNP/
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3.2.3 Copy number variant CNV23598 genotyping 

As of August 2009, when we started this investigation, 8410 CNV loci had been 

reported in the human genome (http://projects.tcag.ca/variation/). At the time, only 

two CNVs were present within CASP8; CNV23081 and CNV23598. Both of these 

CNVs were not independently confirmed and their frequencies were unknown. 

CNV23081 is located between intron 9 and intron 11 and CNV23598 is located in 

intron 11 downstream from CNV23081 (Figure 3.10). Because of the physical 

proximity to the D302H variant identified as a risk factor in breast cancer (Cox et al. 

2007) (Figure 3.10), we wanted to investigate the association between CNV23598 

and colorectal and breast cancer risk. To this end, we set up genotyping assays for 

CNV23598 in a set of CRC cases (n=189) and controls (n=95) from the Sheffield 

population sample (Section 2.1.3.1). We also made use of 47 carefully selected 

patients from a breast cancer study. The chosen patients included 24 cases 

homozygous for a CASP8 breast cancer risk haplotype and 23 controls homozygous 

for a CASP8 breast cancer protective haplotype (Shephard et al. 2009).  

 

Figure 3.10 CNV23081 and CNV23598 in CASP8 

A schematic representation of CASP8 promoter region and coding sequence. The 

approximate location of CNV23081 and CNV23598 is presented by coloured lines. The breast 

cancer risk variant (D302H) location is also marked. 

 

3.2.3.1 Optimisation of GAP PCR 

Gel based GAP PCR, as described in Section 2.2.6.3 was initially used to investigate 

CNV23598 in CRC cases and controls from the Sheffield population. Three primers 

were designed to amplify both insertions and deletions in a duplex PCR reaction 

(Figure 3.11). The primers were optimised initially in two separate PCR reactions to 

http://projects.tcag.ca/variation/
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give single amplification products. Subsequently, the primers were combined in a 

duplex reaction at equal concentrations of each of the 3 primers. However, 

preferential amplification of the smaller deletion region resulted in a stronger product 

(Figure 3.12 A). In order to obtain equal amplification of both products, a range of 

lower concentrations of the deletion reverse primer were used until products of 

similar intensity were obtained (Figure 3.12 B). 

 

CNV23598 is highlighted in grey, exon 12 in red and SNPs in turquoise. Primers are 

highlighted in different colours as indicated. The sizes of the expected products and the 

genotypes are represented in the box.  

1450bp 

AGCCTAAATGATAGCTTACCCATCTTGTAAACTAGTTTACTAGAGAAAACAGACCAACAATAACACTCTC 

TCCTTTCTCATTTGCTTCAGGGTTTGAGAATGTTTTTAGCTGGTGGCAATAAATATTAGAAGCCTGCAGA 

ATCCAGCTACGAATATAGAGGGTTTTGCTCTTGAATTTCTGGTTCAAATTCTTTTTTTTTTTTTTTTTTT 

TTTATTGATCATTCTTGGGTGTTTCTCGCAGAGGGGGATTTGGCAGGGTCACAGGACAATAGTGGAGGGA 

AGGTCAGCAGATAAACAAGTGAACAAAGGTCTCTGGTTTTCCTAGGCAGAGGACCCTGCGGCCTTCCGCA 

GTGTTTGTGTCCCTGGGTACTTAAGATTAGGGAGTGGTGATGACTCTTAACGAGCATGCTGCCTTCAAGC 

ATCTGTTTAACAAAGCACATCTTGCACCGCCCTTAATCCATTTAACCCTGAGTGGACACAGCACATGTTT 

CAGAGAGCACAGGGTTGGGGATAAGGTCACAGATCAACAGGATCCCAAGGCAGAAGAATTTTTCTTAGTA 

CAGAACAAAATGAAAAGTCTCCCATGTCTACTTCTATCCACACAGACCCGGCAACCATCCGATTTCTCAA 

TTTTTTCCCCACCCTTCCCGCCTTTCTATTCCACAAAACCGCCATTGTCATCATGGCCCATCCCCAATGA 

GCCGCTGGGCACACCTCCCAGACGGGGTCGTGGCCGGGCAGAGGGGCTCCTCACTTCCCAGTAGGGGCGG 

CCCGGCAGAAGCGCCCCTCACCTCCCAGATGGGGCGGCTGGCCGGGCGGGGGGCTGACCCCCCCACCGCC 

CTCCCGGACGGGGCGGCTGGCCAGGCAGAGGGGCTCCTCACTTCCCAGTAGGGGCGGCCGGGCAGAGGCG 

CCCCTCACCTCCTGGATAGGGCGGCTGGCCGGGCGGGGGGCTGTTCCCCCCACCTCCCTCCCGGATGGGG 

 

TTCCCAGACGGCGTGGCGGCCGGGCAGAGGCTGCAATCTCGGCTCTTTGGGAGGCCAAGGCAGGCGGCTG 

GGAGGTGGTTGTAGCAAGCCGAGATCACGCCACTGCACTCCAGCCTGGGCACCATTGAGCACTGAGTGAA 

CGAGACTCCATCTGCAATCCCGGCACCTCGGGAGGCCGAGGCTGGCGGATCACTCGCGGTTAGGAGCTGG 

AGACCAGCCCGGCCAACACAGCGAAACCCCATCTCCACCAAAAAAAAAACGAAAACCAGTCAGGCGTGGC 

GGCGCGCGCCTGCAATCGCAGGCACTCGGCAGGCTGAGGCAGGAGAATCAGGCAGGGAGGTTGCAGTGAG 

CCGAGATGGCAGCAGTACCGTCCAGCTTTGGCTCGGCATGAGAGGGAGAGGGAGACGGGGAGAGGGAGAG 

GGAGAGGGAGACGGGGAGAGGGAGAGGGAGAGGGGTCAAATTCTTATCTATCAATGTTATGCCCACTGTG 

CTCTCCAGCTGTGGTCTGTGAATTACTGTGGTATAACGTGACTGTTCAAATTTCACTTTTCAGGGGCTTT 

GACCACGACCTTTGAAGAGCTTCATTTTGAGATCAAGCCCCACGATGACTGCACAGTAGAGCAAATCTAT 

GAGATTTTGAAAATCTACCAACTCATGGACCACAGTAACATGGACTGCTTCATCTGCTGTATCCTCTCCC 

ATGGAGACAAGGGCATCATCTATGGCACTGATGGACAGGAGGCCCCCATCTATGAGCTGACATCTCAGTT 

CACTGGTTTGAAGTGCCCTTCCCTTGCTGGAAAACCCAAAGTGTTTTTTATTCAGGCTTGTCAGGGGGAT 

AACTACCAGAAAGGTATACCTGTTGAGACTGATTCAGAGGAGCAACCCTATTTAGAAATGGATTTATCAT 

CACCTCAAACGAGATATATCCCGGATGAGGCTGACTTTCTGCTGGGGATGGCCACTGTGAATAACTGTGT 

TTCCTACCGAAACCCTGCAGAGGGAACCTGGTACATCCAGTCACTTTGCCAGAGCCTGAGAGAGCGATGT 

CCTCGGTAAGTTTTGCCTACTCAGCCCTCCTCACTGTTACACTACCTTCCCCCCCTACTCCATCACACTA 

Common forward 

Insertion reverse 

Deletion reverse 
Exon 12 

      INS/INS    INS/DEL   DEL/DEL 

567 

368 

Figure 3.11 CNV23598 GAP PCR 
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Equimolar concentrations of the 3 primers resulting in preferential amplification of the smaller 

deletion product. B) Lower concentration of reverse insertion resulting in insertion and 

deletion products of similar intensities M) Hyperladder IV, 1&2) C003 & C011 (Ins/Ins), 3&4) 

M026 & C017 (Ins/Del), 5)  C059 (Del/Del). 

 

3.2.3.2 CNV23598 testing in breast cancer cases and controls 

The optimised GAP PCR test was then used by Marina Parry (a PhD student in our 

research group) to test the 24 breast cancer cases and 23 controls. The results 

showed that 23 out of the 24 cases homozygous for the breast cancer CASP8 risk 

haplotype were also homozygous for the insertion allele. On the other hand, the 23 

controls homozygous for the protective haplotype were either heterozygotes (n=11) 

or homozygotes for the deletion allele (n=12). These results suggest a strong 

association between the insertion allele and the breast cancer risk haplotype (Table 

3.9). 

Table 3.9 CNV23598 genotypes for breast cancer cases and controls 

 Homo INS Heterozygous Homo DEL 

Cases 23 1 0 
Controls 0 11 12 

 

3.2.3.3 CNV23598 testing in CRC cases and controls 

The assay was then used to genotype 96 non-metastatic CRC cases, 96 metastatic 

CRC cases and 96 controls from the Sheffield population sample. Table 3.10 

summarises the genotyping results. 

 

  M         1        2           3          4         

600 
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400 
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  M         1        2           3          4         

600 
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A B 

Figure 3.12 CNV23598 GAP PCR optimisation 
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Table 3.10 Observed frequencies of CNV23598 

 Genotype 

 n (%) 

Total Ins/Ins Ins/Del Del/Del Total 

Non-metastatic 21 (21.9) 64 (66.7) 11 (11.5) 96 

Metastatic 10 (10.8) 58 (62.4) 25 (26.9) 93 

Controls 12 (12.6) 60 (63.2) 23 (24.2) 95 

Totals 43 182 59 284 

 

As mentioned in Section 2.2.21.2, testing for HWE is a useful step in investigating the 

quality of the genotyping assay. Therefore, the HWE test was performed on the 95 

successfully amplified controls in order to test the quality of the GAP PCR genotyping 

assay. The HWE chi-squared test p-value of 0.0063 was less than 0.05, suggesting 

that the genotyped data were inconsistent with HWE. We noticed that there was an 

excess of heterozygotes. The HWE test was then also applied to the non-metastatic 

and metastatic cases and the HWE chi-squared test p-values were 0.00065 and 

0.0068 respectively. Therefore, the tested cohort might be non-random, or the GAP 

PCR test might not be accurate. The former seems unlikely since the samples are a 

subset of cases and controls demonstrated to be consistent with HWE (Section 

3.2.1.1). It was observed that the genotype frequencies in the metastatic cases 

looked similar to the controls and both differed from the non-metastatic cases. 

However, as the populations are inconsistent with HWE, further investigations were 

carried out to confirm the validity and accuracy of the genotyping assay. 

3.2.3.4 Comparison of fluorescent GAP PCR and gel-based GAP 

PCR and DNA sequencing of PCR products 

In order to genotype a larger cohort of CRC cases for CNV23598, a high throughput 

technique was required. Fluorescent GAP PCR was optimised using a new set of 

reverse primers for the insertion and the deletion (Figure 3.13). The use of these new 

primers might also help in resolving the apparent genotyping issues described in the 

previous section. The insertion reverse was labelled with a FAMTM dye and the 

deletion reverse was labelled with a VIC® dye. The PCR products for the 3 

genotypes are shown in Figure 3.14. After optimising the fluorescent GAP PCR 
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assay, 16 CRC cases (6 homozygous insertion, 8 heterozygotes and 2 homozygous 

deletion as determined by GAP PCR, Table 3.11) were genotyped using the 

fluorescent GAP PCR and the gel based GAP PCR for comparison. Furthermore, the 

GAP PCR products were sequenced to confirm their specificity towards the correct 

region of the genome.  

 

Fluorescent GAP PCR and gel-based GAP PCR were concordant in the 16 samples. 

Moreover, the sequencing results confirmed the genotypes for all of the samples. 

Examples are shown (Figure 3.15 - Figure 3.17).  Seven of the samples with the 

insertion sequence had a longer stretch of Ts at the beginning of the CNV23598 

compared to the published sequence. This was confirmed by DNA sequencing and 

fluorescent GAP PCR (Figure 3.18). 

 

Table 3.11 The 16 samples for CNV23598 confirmation 

Sample Genotype* 

C004 Ins/Ins 

C009 Ins/Ins 

C010 Ins/Del 

C017 Ins/Ins 

C021 Ins/Ins 

C047 Ins/Ins 

C066 Ins/Del 

C069 Ins/Del 

C091 Ins/Ins 

C099 Ins/Del 

C106 Del/Del 

C111 Ins/Del 

C115 Ins/Del 

C117 Ins/Del 

C119 Del/Del 

C121 Ins/Del 

 

* CNV23598 genotypes in these samples were based on the gel-based GAP PCR results 

(Section 3.2.3.3). 
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A 

B 

C 

Insertion 

Allelic 
Ladder 
 

Deletion 

Ins/Del 

Del/Del 

Ins/Ins 

 

CNV23598 is highlighted in grey, exon 12 in red and SNPs in turquoise. Fluorescent primers 

are highlighted in different colours as indicated. The c.898+5147A/G SNP is highlighted in 

pink. The sizes of the expected products and the genotypes are represented in the box.  

 

The multiple peaks of the insertion product are caused by Taq slippage due to the stretch of 

Ts at 5‟ end of the insertion sequence (Figure 3.13).  

Figure 3.13 CNV23598 fluorescent PCR 

Figure 3.14 The 3 genotypes of CNV23598 using QF-PCR. 

1450bp 

AGCCTAAATGATAGCTTACCCATCTTGTAAACTAGTTTACTAGAGAAAACAGACCAACAATAACACTCTC 

TCCTTTCTCATTTGCTTCAGGGTTTGAGAATGTTTTTAGCTGGTGGCAATAAATATTAGAAGCCTGCAGA 

ATCCAGCTACGAATATAGAGGGTTTTGCTCTTGAATTTCTGGTTCAAATTCTTTTTTTTTTTTTTTTTTT 

TTTATTGATCATTCTTGGGTGTTTCTCGCAGAGGGGGATTTGGCAGGGTCACAGGACAATAGTGGAGGGA 

AGGTCAGCAGATAAACAAGTGAACAAAGGTCTCTGGTTTTCCTAGGCAGAGGACCCTGCGGCCTTCCGCA 

GTGTTTGTGTCCCTGGGTACTTAAGATTAGGGAGTGGTGATGACTCTTAACGAGCATGCTGCCTTCAAGC 

ATCTGTTTAACAAAGCACATCTTGCACCGCCCTTAATCCATTTAACCCTGAGTGGACACAGCACATGTTT 

CAGAGAGCACAGGGTTGGGGATAAGGTCACAGATCAACAGGATCCCAAGGCAGAAGAATTTTTCTTAGTA 

CAGAACAAAATGAAAAGTCTCCCATGTCTACTTCTATCCACACAGACCCGGCAACCATCCGATTTCTCAA 

TTTTTTCCCCACCCTTCCCGCCTTTCTATTCCACAAAACCGCCATTGTCATCATGGCCCATCCCCAATGA 

GCCGCTGGGCACACCTCCCAGACGGGGTCGTGGCCGGGCAGAGGGGCTCCTCACTTCCCAGTAGGGGCGG 

CCCGGCAGAAGCGCCCCTCACCTCCCAGATGGGGCGGCTGGCCGGGCGGGGGGCTGACCCCCCCACCGCC 

CTCCCGGACGGGGCGGCTGGCCAGGCAGAGGGGCTCCTCACTTCCCAGTAGGGGCGGCCGGGCAGAGGCG 

CCCCTCACCTCCTGGATAGGGCGGCTGGCCGGGCGGGGGGCTGTTCCCCCCACCTCCCTCCCGGATGGGG 

 

TTCCCAGACGGCGTGGCGGCCGGGCAGAGGCTGCAATCTCGGCTCTTTGGGAGGCCAAGGCAGGCGGCTG 

GGAGGTGGTTGTAGCAAGCCGAGATCACGCCACTGCACTCCAGCCTGGGCACCATTGAGCACTGAGTGAA 

CGAGACTCCATCTGCAATCCCGGCACCTCGGGAGGCCGAGGCTGGCGGATCACTCGCGGTTAGGAGCTGG 

AGACCAGCCCGGCCAACACAGCGAAACCCCATCTCCACCAAAAAAAAAACGAAAACCAGTCAGGCGTGGC 

GGCGCGCGCCTGCAATCGCAGGCACTCGGCAGGCTGAGGCAGGAGAATCAGGCAGGGAGGTTGCAGTGAG 

CCGAGATGGCAGCAGTACCGTCCAGCTTTGGCTCGGCATGAGAGGGAGAGGGAGACGGGGAGAGGGAGAG 

GGAGAGGGAGACGGGGAGAGGGAGAGGGAGAGGGGTCAAATTCTTATCTATCAATGTTATGCCCACTGTG 

CTCTCCAGCTGTGGTCTGTGAATTACTGTGGTATAACGTGACTGTTCAAATTTCACTTTTCAGGGGCTTT 

GACCACGACCTTTGAAGAGCTTCATTTTGAGATCAAGCCCCACGATGACTGCACAGTAGAGCAAATCTAT 

GAGATTTTGAAAATCTACCAACTCATGGACCACAGTAACATGGACTGCTTCATCTGCTGTATCCTCTCCC 

ATGGAGACAAGGGCATCATCTATGGCACTGATGGACAGGAGGCCCCCATCTATGAGCTGACATCTCAGTT 

CACTGGTTTGAAGTGCCCTTCCCTTGCTGGAAAACCCAAAGTGTTTTTTATTCAGGCTTGTCAGGGGGAT 

AACTACCAGAAAGGTATACCTGTTGAGACTGATTCAGAGGAGCAACCCTATTTAGAAATGGATTTATCAT 

CACCTCAAACGAGATATATCCCGGATGAGGCTGACTTTCTGCTGGGGATGGCCACTGTGAATAACTGTGT 

TTCCTACCGAAACCCTGCAGAGGGAACCTGGTACATCCAGTCACTTTGCCAGAGCCTGAGAGAGCGATGT 

CCTCGGTAAGTTTTGCCTACTCAGCCCTCCTCACTGTTACACTACCTTCCCCCCCTACTCCATCACACTA 

Common forward Fluorescent 

insertion reverse 

Fluorescent 

deletion reverse 

Exon 12 

         Ins/Ins    Ins/Del     Del/Del 

185 

152 
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DNA sequencing of sample C017 with homozygous Insertion genotype using the primers 

designed for the GAP PCR. A) Common forward, the figure indicates the start of CNV23598, 

B) Insertion reverse confirming CNV23598 sequence, C) Deletion reverse failed to generate 

PCR product. 

 

DNA sequencing of sample C119 with homozygous deletion genotype using the primers 

designed for the GAP PCR. A) Common forward, CNV23598 insertion is missing here, B) 

Insertion reverse, failed to generate a PCR product, C) Deletion reverse confirming CASP8 

exon12 sequence. The red arrow indicates the location where CNV23598 should appear if 

present. 

Figure 3.15 Homozygous insertion CNV23598 

Figure 3.16 Homozygous deletion CNV23598 

A 

B C 

Intron CNV235

A 

B C 
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DNA sequencing of a sample with heterozygous genotype using the primers designed for the 

GAP PCR. A) Common forward, the figure indicates the start of CNV23598. The double 

sequence indicates the presence of a deletion product as well. B) Insertion reverse confirming 

the CNV23598 sequence, C) Deletion reverse confirming CASP8 exon12 sequence. 

 

DNA sequencing and QF-PCR results of sample C121 showing the 22/~32 Ts at the 3‟start of 

the CNV23598. A & B represent the 22Ts repeat. CD represent ~32Ts repeat. 

Figure 3.17 Heterozygous CNV23598 

Figure 3.18 CNV23598 22T/32T alleles 

A 

B C 

Intron CNV2359

 

 
D 

B 

C 
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3.2.3.5 A SNP in the insertion sequence suggests the presence of 

an apparent extra insertion allele 

An interesting event was observed while analysing the results of the heterozygous 

samples. A single heterozygous SNP c.898+5147A/G was detected in 5 of the 

heterozygous samples in the insertion sequence. The SNP was detected through the 

analysis of the sequences produced by the insertion reverse primer. The common 

forward sequence cannot be analysed downstream of the stretch of Ts at the 

beginning of the CNV23598 sequence as the DNA sequence becomes noisy due to 

Taq polymerase slippage. In order to confirm the SNP, an internal forward primer 

was designed (identical to the fluorescent insertion reverse primer, but in the forward 

direction) downstream of the stretch of Ts (Figure 3.13). The SNP was then 

confirmed by bi-directional sequencing (Figure 3.19). The presence of this SNP was 

remarkable because the heterozygous samples should in theory have one insertion 

allele and one deletion allele.  

 

The apparent extra insertion copy was also confirmed by analysing the QF-PCR 

results. Two of the heterozygous samples have shown the presence of the 2 alleles 

of the T stretch 22/32 in addition to the deletion allele (Figure 3.20). It is worth noting 

here that both of these samples had the heterozygous c.898+5147A/G SNP. 

However, the A/G SNP and the 32T allele did not associate together as 2 of the 

samples carrying the SNP had he 22T insertion allele only. These apparent extra 

insertion copies could account for the genotyped population being inconsistent with 

HWE by having too many heterozygous genotypes (Section 3.2.3.4). Table 3.12 

summarises the genotyping results of the 16 samples using GAP-PCR, fluorescent 

GAP PCR and sequencing. The table also shows the samples where 3 copies of 

CNV23598 were predicted. 
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Table 3.12 GAP-PCR, QFPCR and sequencing for CNV23598 in 16 samples 

 Genotype 

Sample GAP PCR QFPCR* Sequencing** 

C004 Ins/Ins Ins/Ins Ins/Ins 

C009 Ins/Ins Ins/Ins Ins/Ins 

C010 Ins/Del Ins/Del Ins/Ins/del 

C017 Ins/Ins Ins/Ins Ins/Ins 

C021 Ins/Ins Ins/Ins Ins/Ins 

C047 Ins/Ins Ins/Ins Ins/Ins 

C066 Ins/Del Ins/Ins/del Ins/Ins/del 

C069 Ins/Del Ins/Del Ins/Ins/del 

C091 Ins/Ins Ins/Ins Ins/Ins 

C099 Ins/Del Ins/Del Ins/Del 

C106 Del/Del Del/Del Del/Del 

C111 Ins/Del Ins/Del Ins/Del 

C115 Ins/Del Ins/Del Ins/Del 

C117 Ins/Del Ins/Ins/del Ins/Ins/del 

C119 Del/Del Del/Del Del/Del 

C121 Ins/Del Ins/Ins/del Ins/Ins/del 

 

* Ins/Ins/Del genotype with QF-PCR was based on having 2 insertion peaks of different size in addition 

to the deletion peak 

** Ins/Ins/del genotype with sequencing was based on having the c.898+5147A/G SNP in a 

heterozygous sample 

A              Forward sequence B             Reverse sequence 

Figure 3.19 Novel c.898+5147A/G identified in CNV23598 insertion sequence 

22T insertion allele 

~30T insertion allele Deletion allele 

Figure 3.20 Three copies of CNV23598 using QF-PCR 
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3.2.3.6 In silico analysis 

The CNV23598 sequence was found to be common across the genome with high 

homolog, thus, it was hypothesised that the apparent observation of 3 alleles might 

be due to non-specific amplification.. Several in silico approaches were taken to 

investigate the possibility of non-specific amplification.To begin with, the specificity of 

the GAP PCR primers (both gel-based and fluorescent) were initially checked by 

primer BLAST as described in Section 2.2.5.1 (Figure 3.21 and Figure 3.22). This 

predicted high specificity of the primers to their target sequence, suggesting that non-

specific PCR products would not be expected. Following that, the sequence 

upstream of CNV23598, up to the beginning of the common forward primer 

sequence, was checked by nucleotide BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) 

and BLAT (http://genome.ucsc.edu/cgi-bin/hgBlat?command=start) in order to 

confirm the specificity of the area where the common forward primer was designed. 

The results showed that this sequence is highly specific to CASP8 intron 11 (Figure 

3.23).  

 

Next, the region amplified using the common forward primer and the insertion 

reverse primer was checked by BLAST and BLAT, which resulted in several regions 

with very high homology (Figure 3.24). The high homology areas were shared only 

with CNV23598 sequence. Moreover, analysing the 15 highest hits in detail revealed 

that none of the sequences could explain the observation of the single A/G SNP or 

the extended stretch of Ts (~30) in our sequence. It is worth mentioning that 

chr4:15793565-15794093(-) had the same A/G SNP, however, it had several more 

variants in addition. Moreover, chr12:90260871-90261372(+) had the extended T 

stretch (30Ts) but with 2 more SNPs.  Additionally, none matched the upstream 

sequence in CASP8 intron 11, and so would not be predicted to amplify with these 

primers. 

  

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://genome.ucsc.edu/cgi-bin/hgBlat?command=start
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The results showed high predicted specificity of the primers to their target sequence. Note 

that the amplicon size of the common forward with the deletion reverse includes CNV23598 

sequence. 

Figure 3.21 Primer BLAST for CNV23598 gel-based GAP PCR primers 
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The results showed high predicted specificity of the primers to their target sequence. Note 

that the amplicon size of the common forward with the deletion reverse includes CNV23598 

sequence. 

Figure 3.22 Primer BLAST for CNV23598 fluorescent GAP PCR primers 
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The results confirmed the high specificity of the 66 nucleotides (upstream CNV23598 in 

CASP8 intron11) to the target sequence. 

 

 

The highest 15 hits from “BLATing” the whole region amplified by common forward and 

insertion reverse primers. 

BLAST Search Results 

Figure 3.23 BLAST and BLAT of the 66 nucleotides upstream CNV23598 

Figure 3.24 BLAT for CNV23598 amplicon 
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3.2.3.7 Testing a 3’ GAP PCR assay 

Because of the difficulty of designing more primers in the 5‟ intron 11 area upstream 

of CNV23598, it was decided to try and genotype CNV23598 from the 3‟ end. This 

would allow the use of the reverse primer in CASP8 exon12 as the common primer. 

CASP8 exon12 was checked by BLAT and BLAST and results confirmed that this 

area is unique to CASP8 (Figure 3.25). The 3‟ deletion reverse primer was designed 

in the same location as the 5‟ common forward primer and the 3‟ common reverse 

primer was designed in the same location of the 5‟deletion reverse primer (Figure 

3.26). Designing a 3‟ forward insertion primer was not easy, due to potential non-

specific products identified in primer BLAST. The primer with the lowest number of 

potential non-specific products and the maximum number of mismatches with these 

products was chosen. It had three potentially unintended targets with sizes 

significantly different from the intended target (366bp, 2343bp and 3062bp) (Figure 

3.27). The unintended targets were the results of the forward primer serving both as 

forward and reverse. Aligning the sequences of the potentially unintended products 

with the CASP8 target region using the specialised BLAST “align” 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) has shown that the unintended target regions 

were completely different from the actual target as no significant similarity was found.  

 

The primers were then used to amplify samples that were shown to be heterozygous, 

homozygous insertion and homozygous deletion (Figure 3.28). The results confirmed 

the genotypes of the samples as identified previously; however, the size of the 

insertion product was consistently larger than the expected product by ~450bp. As 

shown in Figure 3.26, the expected insertion product was 406bp but the results 

showed ~850bp insertion products (Figure 3.28). The results were confirmed using 

different samples and the PCR products were then sequenced to verify their 

specificity. DNA sequencing results confirmed the specificity of the PCR products to 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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the target area, however, two main repeat sequences at the 3‟end of the CNV23598 

were found to be expanded (Figure 3.29). This expansion of repeats could account 

for the larger PCR products obtained with the 3‟ forward insertion and the 3‟ common 

reverse primers.  

 

 
The results of BLAST and BLAT confirmed the uniqueness of CASP8 exon 12 sequence 

 

CNV23598 is highlighted in grey, exon 12 in red and SNPs in turquoise. Primers are 

highlighted in different colours as indicated. The sizes of the expected products and the 

genotypes are represented in the box. 

BLAST Search Results 

Figure 3.25 BLAST and BLAT for CASP8 exon 12  

Figure 3.26 CNV23598 3’GAP PCR 

1450bp 

AGCCTAAATGATAGCTTACCCATCTTGTAAACTAGTTTACTAGAGAAAACAGACCAACAATAACACTCTC 

TCCTTTCTCATTTGCTTCAGGGTTTGAGAATGTTTTTAGCTGGTGGCAATAAATATTAGAAGCCTGCAGA 

ATCCAGCTACGAATATAGAGGGTTTTGCTCTTGAATTTCTGGTTCAAATTCTTTTTTTTTTTTTTTTTTT 

TTTATTGATCATTCTTGGGTGTTTCTCGCAGAGGGGGATTTGGCAGGGTCACAGGACAATAGTGGAGGGA 

AGGTCAGCAGATAAACAAGTGAACAAAGGTCTCTGGTTTTCCTAGGCAGAGGACCCTGCGGCCTTCCGCA 

GTGTTTGTGTCCCTGGGTACTTAAGATTAGGGAGTGGTGATGACTCTTAACGAGCATGCTGCCTTCAAGC 

ATCTGTTTAACAAAGCACATCTTGCACCGCCCTTAATCCATTTAACCCTGAGTGGACACAGCACATGTTT 

CAGAGAGCACAGGGTTGGGGATAAGGTCACAGATCAACAGGATCCCAAGGCAGAAGAATTTTTCTTAGTA 

CAGAACAAAATGAAAAGTCTCCCATGTCTACTTCTATCCACACAGACCCGGCAACCATCCGATTTCTCAA 

TTTTTTCCCCACCCTTCCCGCCTTTCTATTCCACAAAACCGCCATTGTCATCATGGCCCATCCCCAATGA 

GCCGCTGGGCACACCTCCCAGACGGGGTCGTGGCCGGGCAGAGGGGCTCCTCACTTCCCAGTAGGGGCGG 

CCCGGCAGAAGCGCCCCTCACCTCCCAGATGGGGCGGCTGGCCGGGCGGGGGGCTGACCCCCCCACCGCC 

CTCCCGGACGGGGCGGCTGGCCAGGCAGAGGGGCTCCTCACTTCCCAGTAGGGGCGGCCGGGCAGAGGCG 

CCCCTCACCTCCTGGATAGGGCGGCTGGCCGGGCGGGGGGCTGTTCCCCCCACCTCCCTCCCGGATGGGG 

 

TTCCCAGACGGCGTGGCGGCCGGGCAGAGGCTGCAATCTCGGCTCTTTGGGAGGCCAAGGCAGGCGGCTG 

GGAGGTGGTTGTAGCAAGCCGAGATCACGCCACTGCACTCCAGCCTGGGCACCATTGAGCACTGAGTGAA 

CGAGACTCCATCTGCAATCCCGGCACCTCGGGAGGCCGAGGCTGGCGGATCACTCGCGGTTAGGAGCTGG 

AGACCAGCCCGGCCAACACAGCGAAACCCCATCTCCACCAAAAAAAAAACGAAAACCAGTCAGGCGTGGC 

GGCGCGCGCCTGCAATCGCAGGCACTCGGCAGGCTGAGGCAGGAGAATCAGGCAGGGAGGTTGCAGTGAG 

CCGAGATGGCAGCAGTACCGTCCAGCTTTGGCTCGGCATGAGAGGGAGAGGGAGACGGGGAGAGGGAGAG 

GGAGAGGGAGACGGGGAGAGGGAGAGGGAGAGGGGTCAAATTCTTATCTATCAATGTTATGCCCACTGTG 

CTCTCCAGCTGTGGTCTGTGAATTACTGTGGTATAACGTGACTGTTCAAATTTCACTTTTCAGGGGCTTT 

GACCACGACCTTTGAAGAGCTTCATTTTGAGATCAAGCCCCACGATGACTGCACAGTAGAGCAAATCTAT 

GAGATTTTGAAAATCTACCAACTCATGGACCACAGTAACATGGACTGCTTCATCTGCTGTATCCTCTCCC 

ATGGAGACAAGGGCATCATCTATGGCACTGATGGACAGGAGGCCCCCATCTATGAGCTGACATCTCAGTT 

CACTGGTTTGAAGTGCCCTTCCCTTGCTGGAAAACCCAAAGTGTTTTTTATTCAGGCTTGTCAGGGGGAT 

AACTACCAGAAAGGTATACCTGTTGAGACTGATTCAGAGGAGCAACCCTATTTAGAAATGGATTTATCAT 

CACCTCAAACGAGATATATCCCGGATGAGGCTGACTTTCTGCTGGGGATGGCCACTGTGAATAACTGTGT 

TTCCTACCGAAACCCTGCAGAGGGAACCTGGTACATCCAGTCACTTTGCCAGAGCCTGAGAGAGCGATGT 

CCTCGGTAAGTTTTGCCTACTCAGCCCTCCTCACTGTTACACTACCTTCCCCCCCTACTCCATCACACTA 

 

3’Forward 

Deletion 

3’Forward 
insertion 

3’Common 

reverse Exon 12 

      INS/INS    INS/DEL   DEL/DEL 

406 

368 
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These non-specific targets are the products of the forward primer only acting in both 

directions. All the sizes differ significantly from the expected size of the specific target and 

they have several mismatches with the primer in both directions. 

 

Genotyping CNV23598 from the 3‟end. The genotypes of the samples were confirmed. 

Different conditions (A, B and C) were used and they all gave specific products. The size of 

the deletion product was as expected (368bp). The size of the insertion product was 

consistently larger (~850bp) than expected (406bp). M: Hyperladder IV Samples 1-

homozygous insertion, 2&3- heterozygous and 4- homozygous deletion. 

Figure 3.27 Potential unintended products with the 3’ insertion forward primer 

Figure 3.28 CNV23598 3’ GAP PCR gel electrophoresis 
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Sequencing results from the 3‟ forward insertion & 3‟ common reverse primers showing an 

expansion of two main repeat sequences B &C. A) The target area with the two repeat 

sequences B & C highlighted in turquoise and yellow respectively D) The sequence of the 

expansion that was analysable by sequencing and it contains repeats of B&C sequences; 

BBCBCBCGGGAGACCBCCBCC. E and F represent the sequencing results of the 3‟ common 

reverse primer. The sequences confirm the specificity of the PCR products. 

Figure 3.29 Repeat sequences at 5’ end of CNV23598 

D 

Exon 12 

Reverse primer sequencing results 

B C 

Forward primer sequencing results 

E 

F 

Intron 11 CNV23598 

Exon 12 

GGAGGTGGTTGTAGCAAGCCGAGATCACGCCACTGCACTCCAGCCTGGGCACCATTGAGCACTGAGTGAA 

CGAGACTCCATCTGCAATCCCGGCACCTCGGGAGGCCGAGGCTGGCGGATCACTCGCGGTTAGGAGCTGG 

AGACCAGCCCGGCCAACACAGCGAAACCCCATCTCCACCAAAAAAAAAACGAAAACCAGTCAGGCGTGGC 

GGCGCGCGCCTGCAATCGCAGGCACTCGGCAGGCTGAGGCAGGAGAATCAGGCAGGGAGGTTGCAGTGAG 

CCGAGATGGCAGCAGTACCGTCCAGCTTTGGCTCGGCATGAGAGGGAGAGGGAGACGGGGAGAGGGAGAG 

GGAGAGGGAGACGGGGAGAGGGAGAGGGAGAGGGGTCAAATTCTTATCTATCAATGTTATGCCCACTGTG 

CTCTCCAGCTGTGGTCTGTGAATTACTGTGGTATAACGTGACTGTTCAAATTTCACTTTTCAGGGGCTTT 

GACCACGACCTTTGAAGAGCTTCATTTTGAGATCAAGCCCCACGATGACTGCACAGTAGAGCAAATCTAT 

GAGATTTTGAAAATCTACCAACTCATGGACCACAGTAACATGGACTGCTTCATCTGCTGTATCCTCTCCC 

ATGGAGACAAGGGCATCATCTATGGCACTGATGGACAGGAGGCCCCCATCTATGAGCTGACATCTCAGTT 

CACTGGTTTGAAGTGCCCTTCCCTTGCTGGAAAACCCAAAGTGTTTTTTATTCAGGCTTGTCAGGGGGAT 

CACCTCAAACGAGATATATCCCGGATGAGGCTGACTTTCTGCTGGGGATGGCCACTGTGAATAACTGTGT 

 

A 
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3.2.3.8 Long range PCR CASP8 exon11- exon12 

The size of the region of CASP8 between exon11 and 12 (including CNV23598) is 

8491bp. In order to try and solve the problems of genotyping CNV23598, we decided 

to amplify the whole region by long range PCR and then sequence with internal 

primers. Phusion Taq polymerase have been successfully used in our lab to amplify 

PCR products up to 10Kb in size, however, several attempts using different DNA 

samples, primers and PCR conditions failed completely to give any specific products.  

3.3 Discussion 

As mentioned earlier, our lab had some preliminary data indicating an association 

between CASP8 SNPs and CRC risk. In order to further investigate the potential role 

of inherited CASP8 variants in affecting CRC risk, the following was performed; 

firstly, rs3834129 (an ins/del variant in the promoter region of CASP8 previously 

implicated in CRC risk) (Sun et al. 2007) was genotyped in 1193 CRC cases and 

1388 controls from Sheffield, Leeds, Dundee and Utah. Secondly, the CASP8 coding 

region, in addition to intron/exon boundaries, the promoter region and 3‟UTR were 

sequenced in 94 CRC cases from the Sheffield cohort.  

 

The SNP rs3834129 was genotyped using TaqMan assays. Several QC 

assessments were performed to validate the TaqMan assay and the genotyping data. 

In summary, the QC measures indicated a reasonable quality of the genotyping 

results. Chi-square association test was then performed and the results have shown 

that there was no significant difference in genotype frequencies between cases and 

controls. These results contradict the previous results from the Chinese population 

(Sun et al. 2007) which showed an association between rs3834129 and multiple 

cancer risks including CRC. However, the results are in concordance with the 

published data on the European and multi-ethnic American populations which found 

no effect of rs3834129 on CRC risk (Haiman et al. 2008, Pittman et al. 2008). Based 
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on the size of the analysed cohort, we had ~98% power (α=0.05) to detect an effect 

of similar size (OR=0.75/ copy of deletion allele) as described by Sun and 

colleagues. Possible explanations for the discrepancy between our results (and the 

European and the American studies) in comparison to the original study in the 

Chinese population could be due to different frequencies and effects of genetic and 

environmental modifier factors between the different populations, or due to the initial 

association being a false positive. Despite the lack of association overall, rs3834129 

genotyping results are currently being used in a more in depth analysis of CASP8 

inherited variants and CRC risk. This further analysis is being performed both to fine 

map associations and to investigate various subgroups of CRC cases (Curtin et al. 

manuscript in preparation).  

 

CASP8 sequencing was performed to try and identify rare coding variants that might 

affect CRC risk. Association studies are usually performed using a “tagging SNP” 

approach which depends on common and known SNPs. Therefore, rare or unknown 

SNPs could have been easily missed. Sequencing 94 cases yields an 85% 

probability of identifying variants with a minor allele frequency (MAF) of 0.01. Normal 

DNA extracted from the peripheral blood of 94 CRC cases from the Sheffield 

population was sequenced and six novel variants were identified. The first variant (-

565 G>A) was within the promoter region of CASP8, however, it did not affect any of 

the known functional sequences identified in that area. Moreover, in silico analysis 

did not predict the introduction of any transcription factors binding sites or the 

presence of any regulatory regions. The genomic location was not conserved across 

5 mammalian species. Therefore, it was not predicted to have an effect on CASP8 

function. The second variant was identified only in one case and was a 115 bp 

deletion in exon 3 (c.1-8338Del115). Despite this region having a potential regulatory 

role, as predicted by the presence of DNase cluster region and histone marks which 

could reflect transcriptional enhancers and promoters (Crawford et al. 2006), the 
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following observations led to the prediction that it was unlikely to be functionally 

important. Firstly, CASP8 has 8 different isoforms and exon 3 is only expressed in 

the G isoform precursor. The deletion results in an in-frame deletion of the first 11 

amino acids of isoform G precursor which is not part of the mature protein. 

Additionally, the deleted 11 amino acids are not part of the known conserved 

functional domains of CASP8 protein. Furthermore, in silico analysis of the 11 amino 

acids sequence using the database of protein domains, families and functional sites 

Prosite (http://www.expasy.ch/prosite/, accessed July, 2011) did not predict any 

highly conserved and functional domains. Finally, isoform G is not one of the 

predominantly expressed CASP8 isoforms and it is not detected at the protein level 

(Scaffidi et al. 1997). Therefore, this variant did not seem a suitable candidate for 

further investigation at this stage. The four other variants were intronic, and were not 

predicted to have an effect on CASP8 mRNA splicing using 5 different online splice 

sites prediction tools. Apart from the intron 3 variant c.1-7982A>G, none of the 

variants were predicted to be in a region with a potential regulatory role. However, 

the variant c.1-7982A>G was in the same region as the exon 3 115 bp deletion and it 

was not predicted to be functionally important for the same reasons discussed above.  

 

CNVs were recently shown to play an important role in several human inherited 

diseases and cancer (Beckmann et al. 2007). Moreover, they have been used 

successfully to predict cancer related genes (Venkatachalam et al. 2010). Although 

the above results do not suggest a role for CASP8 inherited variants in CRC risk, we 

decided to investigate the role of CNV23598, reported on the database of genomic 

variants, because of its physical proximity to the known breast cancer D302H risk 

variant and due to its unknown frequency.  

 

The genotyping results of 47 selected breast cancer cases and controls suggested a 

strong association between the insertion allele and the CASP8 risk haplotype. 

http://www.expasy.ch/prosite/
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However, when 288 CRC cases and controls were investigated, the genotype 

frequencies differed markedly from HWE with excess heterozygotes. Several 

molecular techniques (Gel-based and fluorescent GAP PCR, in addition to DNA 

sequencing) were used in an attempt to validate the genotyping results. The 

combined results showed some differences from the published reference sequence, 

and suggested the presence of multiple insertion copies of CNV23598. DNA 

sequencing results and the use of in silico tools indicated that the genotyping assays 

were specific to the target region. Multi-allelic CNVs are known to occur in the human 

genome, which could explain the presence of the 3rd copy (McCarroll and Altshuler 

2007). Moreover, reported CNVs in the genomic databases usually lack specificity at 

their breakpoints. Several more CNVs were recently reported on the database of 

genomic variants which overlap CNV23598, but with variable breakpoints at both 

ends. This could explain some of the difficulties encountered in the genotyping 

experiments. Thus, our attempts to accurately genotype CNV23598 using 

conventional molecular techniques have so far failed. The 47 breast cancer samples 

described in this project were recently sequenced using a 2nd generation sequencing 

platform as part of a different project. The analysis of these data may reveal the 

exact sequence of the CNV flanking regions and resolve some of the inconclusive 

observations for the data. 
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4. Colorectal Cancer Molecular Classification 

4.1 Introduction 

As described in section 1.3.5, recent studies on CRC have shown that the disease is 

highly heterogeneous from a molecular point of view and should no longer be 

considered as one disease (Cheng et al. 2008, Derks et al. 2008, Issa 2008, Ogino 

and Goel 2008). There are at least three different subtypes that develop through 

different pathways of genetic and epigenetic instabilities (MSI, CIN and CIMP) and 

mutations in key cancer genes such as APC, TP53, KRAS, BRAF and PIK3CA 

(Figure 1.5). MSI, CIN and CIMP are not entirely mutually exclusive and associations 

between these genomic instabilities and mutations in the cancer driver genes define 

the different CRC molecular subtypes.  

4.1.1 Associations of molecular events and CRC subtypes 

MSI-H was previously shown to be associated with CIMP-H (including MLH1 

methylation) (Weisenberger et al. 2006). MSI-H and CIMP-H tumours were both 

shown to be associated with mutations in BRAF (V600E) and PIK3CA (exons 9 and 

20) (Hawkins et al. 2002, Kambara et al. 2004, Weisenberger et al. 2006, Shen et al. 

2007, Abubaker et al. 2008, Nosho et al. 2008). However, the association between 

MSI-H and PIK3CA mutations is controversial and was suggested to occur as a 

result of MSI-H association with CIMP-H (Nosho et al. 2008). MSI-H was also shown 

to be inversely correlated with CIN and KRAS and TP53 mutations (Samowitz et al. 

2001b, Ogino and Goel 2008). In general, CIMP tumours (whether H or L, MSI or 

MSS) were found to associate with BRAF/KRAS mutant status (Samowitz et al. 

2005, Ogino et al. 2006b, Weisenberger et al. 2006). CIMP-H was found to be 

inversely correlated with TP53 mutations and CIN (or significantly associated with 

low levels of CIN) (Hawkins et al. 2002, Goel et al. 2007, Cheng et al. 2008). CIN 

was found to be associated with TP53 mutations (Chang et al. 2006). Mutations in 
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KRAS and BRAF oncogenes are mainly mutually exclusive as they both play roles in 

activating the proliferative MAP Kinase (MAPK) signalling pathway. However, 

although rare, concomitant KRAS/BRAF mutations were shown to have a synergistic 

effect and were associated with advanced CRC (Oliveira et al. 2007). 

 

Based on these molecular associations, several CRC molecular classification 

systems were proposed with various molecular subtypes (Jass 2007, Issa 2008, 

Ogino and Goel 2008). The 3 main subtypes include the MSI-H/CIMP-H pathway 

which accounts for 10-20% of sporadic CRC cases (Chang et al. 2006, 

Weisenberger et al. 2006, Shen et al. 2007), the CIN/MSS pathway which accounts 

for 50-70% of sporadic CRC cases (Eshleman et al. 1998, Chang et al. 2006, Issa 

2008) and the CIMP-L/MSS/chromosomally stable pathway which accounts for 10-

30% of sporadic CRC cases (Shen et al. 2007, Issa 2008, Ogino and Goel 2008). In 

addition to their distinct molecular characteristics, these CRC molecular subtypes are 

known to associate with different clinical and pathological features. (Chang et al. 

2006, Ogino et al. 2006b, Shen et al. 2007, Issa 2008, Ogino et al. 2009). Molecular 

classification has potential applications in both the clinic and in research. The main 

goal of molecular classification is to discover molecular biomarkers that can be used 

to predict prognosis and survival, or to predict treatment response and efficacy and 

help in the development of targeted cancer therapies (Issa 2008, Ogino and Goel 

2008). Moreover, classifying CRC into different molecular subtypes can help in 

designing more structured studies. For example, studies that have identified 

associations between certain polymorphisms and specific subtypes of CRC could be 

missed if CRC was considered a single disorder (Karpinski et al. 2010, Slattery et al. 

2011, Whiffin et al. 2011). 

 

At the beginning of this project, several studies had attempted to establish a 

molecular classification for sporadic CRC (Chang et al. 2006, Shen et al. 2007, 
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Cheng et al. 2008, Derks et al. 2008). The studies used different techniques to 

identify CIN, including conventional and BAC CGH, DNA ploidy analysis by flow 

cytometry and SNP arrays. Additionally, CIMP was investigated with different panels 

of CpG island methylation markers and using different technologies, not all of which 

were quantitative. MSI testing has been more standardised, however, it was mainly 

performed using the old NCI consensus panel (Section 1.3.3.2.2). 

 

The main limitation of CRC molecular classification studies was the lack of uniformity 

and standardisation in investigating and defining the molecular characteristics, 

especially global events such as CIMP and CIN (Issa 2008, Ogino and Goel 2008). 

This makes it a major challenge to compare results from different studies (Ogino and 

Goel 2008). The aims of the work described in this chapter were; firstly, to investigate 

MSI using a panel of 5 mononucleotide microsatellite markers according to the 

revised NCI criteria on MSI testing (Bacher et al. 2004, Umar et al. 2004). This panel 

was shown to be more accurate in MSI testing compared to the old NCI panel 

(Murphy et al. 2006). Secondly, to identify the common mutations in the key genes 

APC, TP53, KRAS, BRAF and PIK3CA. Thirdly, to investigate CIMP using a panel of 

8 methylation markers that were selected from different CIMP studies and have been 

validated in a large independent population based study (Ogino et al. 2006a, 

Weisenberger et al. 2006, Ogino et al. 2007) This panel was shown to give an 

accurate and specific estimation of the genomic status of CIMP (Ogino et al. 2007). 

Fourthly, to characterise CIN using high resolution genome-wide array CGH. This 

systematic approach was used to provide very detailed information on the molecular 

subtypes, in order to investigate new associations.  At the beginning of this project, a 

total of 67 paired “normal” and tumour DNA samples were assembled; 50 samples 

from the Sheffield population and 17 from the Sheffield tissue bank as described in 

Section 2.1.3.4. Samples were chosen based on the availability of both normal and 

tumour DNA (or tissue). 
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4.2 Results 

4.2.1 DNA quality 

DNA extraction was performed as described in Section 2.2.1. As described in Section 

2.2.2 and Section 2.2.3, samples included in the molecular classification study were 

checked for several quality measures; DNA concentration/quantity, 260/280 ratio 

(ideal ratio: 1.8-2.0), 260/230 ratio (ideal ratio: 1.8-2.2) and degree of DNA 

fragmentation. The latter is shown in Figure 4.1. Samples were selected if their DNA 

concentration was more than 50 ng/µl and if more than 2.5 µg DNA was available 

with acceptable 260/280 and 260/230 ratios. The 2.5 µg DNA quantity limit was the 

minimum amount required to perform all the molecular tests described in the 

following sections. Samples with very low 260/230 were rescued through sodium 

acetate/ethanol precipitation as described in Section 2.2.4. Samples were only 

included if their DNA was of high molecular weight. A total of 67 paired DNA samples 

(134 normal and tumour DNA samples) described above were checked for these 

quality measures. Out of the 50 Sheffield population samples, 10 did not qualify for 

inclusion. However, all of the 17 tissue bank samples were included. A total of 57 

samples were carried forward to the next step. 

 

 

 

Lane F represents an example of a sample with fragmented DNA (circled) in comparison to 

samples with high molecular weight DNA (in rectangle). Fragmented DNA samples were 

excluded from the study. M: Hyperladder I. 

Figure 4.1 DNA fragmentation test on agarose gel  
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4.2.2 Matching tumour and normal DNA test 

After sample quality validation, the next step of the molecular classification was to 

confirm that the normal and tumour DNA samples matched (i.e. were from the same 

patient). This confirmation step was done by comparing two highly polymorphic 

pentanucleotide markers, termed penta C and penta D. These markers were 

included in the MSI analysis kit (Section 4.2.3), thus, the matching test was 

performed as part of the MSI test. Two main reasons lie behind the choice of penta C 

and penta D to demonstrate any sample mix-up; firstly, the combined probability that 

penta C and penta D (based on their allele frequency) will both randomly match 

between two unrelated individuals is 0.2-0.6% (depending on the population), 

secondly, penta-nucleotide markers are stable in mismatch repair deficient cells 

(Bacher et al. 2004). In total, 57 pairs of matching normal and tumour DNA were 

tested using the MSI analysis kit. Comparing penta C and penta D data, 3 pairs of 

samples, 2 from the Sheffield population (CA147 and CA182) and 1 from Sheffield 

tissue bank sample set (CA945), were not matched and thus were excluded from the 

study. An example of a mismatched pair of DNA samples is given in Figure 4.2. 

 

 

 

Matching           Non-matching 

 

 

 

Normal 

 

 

 

Sample A             Sample B 

Penta 

Penta 

Figure 4.2 Matching normal and tumour DNA test 
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4.2.3 Microsatellite instability analysis 

The MSI status of the matching “normal” and tumour DNA samples was determined 

using the commercially available QFPCR kit: MSI Analysis System Version 1.2 Kit 

(Section 2.2.8). The kit includes 5 quasimonomorphic mononucleotide microsatellite 

markers; BAT-25, BAT-26, NR-21, NR-24 and MONO-27, and the two highly 

polymorphic pentanucleotide markers penta C and penta D (Figure 4.3). The MSI 

markers were considered unstable if they exhibit a change in size in the tumour DNA 

compared to the paired normal DNA. The samples were classified to have high MSI 

(MSI-H) if they showed instability in two or more of the 5 mononucleotide markers, 

low MSI (MSI-L) if they showed instability in one of the markers, and MSS if none of 

the markers showed instability (Murphy et al. 2006).  

 

Panel A represents a normal MSS sample. Panel B represents an MSI-H sample. Marked 

with coloured arrows are the size aberrations of the quasimonomorphic mononucleotide 

markers. For a sample to be considered MSI-H, two or more markers should show size 

aberration. Penta C and D are pentanucleotide markers used to verify that the matching 

normal/tumour DNA samples were from the same patient. The MSI-H sample presented is a 

mix of DNA from MSI-H HCT-116 and MSS normal sample, hence, the several penta C and 

penta D peaks.   

NR BAT 
BAT 

NR 
MONO 

Penta 

Penta 

Allelic 

A 

B 

Figure 4.3 MSI analysis system v2.1 
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4.2.3.1 MSI kit sensitivity testing 

In order to evaluate the sensitivity of the MSI kit, serial dilutions of MSI-H DNA were 

mixed with MSS normal DNA (10%, 30% and 50% MSI-H). The MSI-H DNA was 

extracted from HCT-116 cells which carry a homozygous MLH1 mutation (c.755C>A) 

and is known to exhibit MSI-H (http://www.sanger.ac.uk/genetics/CGP/CellLines/). 

The mixed DNA samples were then tested using the MSI kit. As shown in Figure 4.4, 

microsatellite markers showing instabilities were still detected (with careful 

examination) at a level of 10% of the total DNA.  

 

MSI kit sensitivity testing was performed using serial dilutions of MSI-H DNA mixed with MSS 

DNA. A) 10% dilution, B) 30% dilution and C) 50% dilution, the MSI-H status was still 

detectable at the 10% dilution with careful examination 

 

A 

B 

C 

Figure 4.4 MSI kit sensitivity testing 

http://www.sanger.ac.uk/genetics/CGP/CellLines/
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4.2.3.2 MSI results 

Two of the tested CRC samples (n=57) were found to be MSI-H (Figure 4.5). The 

first MSI positive sample, CA945, was determined to have high levels of MSI (Figure 

4.5 A), however, it is one of the samples that were considered to be contaminated in 

Section 4.2.2 as it had 3 alleles of both penta C and penta D. Comparing the patterns 

of the extra alleles with all the other DNA samples analysed within the same run 

excluded contamination at the MSI test level. The pattern was also compared to the 

samples extracted during the same run and it also excluded contamination on the 

DNA extraction level. Repeating the MSI test confirmed the presence of the extra 

alleles. The second MSI positive sample, CA008, had very low levels of MSI 

instability. According to the sensitivity test, this sample contained 10% or less MSI 

positive DNA. Therefore, it was either a heterogeneous tumour DNA sample, or the 

tumour sample was highly contaminated with normal DNA. A new cut from the 

tumour tissue has shown that the tumour is actually highly interspersed with normal 

cells. Therefore, CA008 and CA945 were excluded from further examination and the 

remaining cases were considered to be MSS.  

 

In summary, 4 samples were excluded at the MSI testing stage (including the 

matching “normal” and tumour DNA test) for either being non-matching (CA147, 

CA182 and CA945) or being highly interspersed with normal DNA (CA008). 

Therefore, out of the 57 paired DNA samples with sufficient amounts, 53 MSS cases 

were further characterised; 38 samples from the Sheffield population and 15 from the 

Sheffield tissue bank cohort. The clinical and pathological characteristics of these 

samples are summarised in Table 4.1. 
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Represents the 2 MSI samples identified in the project.  A) CA945 has high levels of MSI 

(marked by red arrows), however, penta C and D are indicating DNA contamination (Extra 

alleles marked by red circles). B) CA008 has low levels of MSI ~10% or less (marked by red 

arrows) high normal DNA presence. 

  

N008 

T008 

B 

N945 

T945 

A 

Figure 4.5 MSI positive cases 
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Table 4.1 Patient details and tumour characteristics of the paired samples 

  
Sheffield population     Tissue Bank  

Median age (range)/years                    67 (51-87) 76 (41-90) 

Gender  (n (%))   

  Male 21 (55.3) 8 (53.0) 

  Female 17 (44.7) 7 (47.0) 

Tumour location (n(%))   

  Proximal 8 (21.1) 11 (73.3) 

  Distal 10 (26.3) 1 (6.7) 

  Rectal 20 (52.6) 3 (20.0) 

Duke's Stage  (n(%))   

  A 2 (5.3) 2 (13.3) 

  B 11 (28.9) 3 (20.0) 

  C 22 (57.9) 9 (60.0) 

  D 1 (2.6) 0 (0.0) 

  Unknown 2 (5.3) 1 (6.7) 

Family history CRC (n(%))* 

NA 
  None 26 (68.4) 

  1 relative 9 (23.7) 

  ≥ 2 relatives 3 (7.9) 

Metastastatic  (n(%)) 

NA 
  Yes 10 (26.3) 

  No 26 (68.4) 

  Unknown 2 (5.3) 

Differentiation  (n(%))     

  Well/Moderate 11 (28.9) 1 (6.7) 

  Moderate 24 (63.2) 8 (53.3) 

  Poor 2 (5.3) 5 (33.3) 

  Unknown 1 (2.6) 1 (6.7) 

Survival   

NA 
  Alive 13 (34.2) 

  Dead 24 (63.2) 

  Unknown 1 (2.6) 

Median survival (range)/years         2.54 (0.08-7.58) NA 

 

* Family history includes first degree relatives only 

4.2.4 Mutations in APC, TP53, KRAS, BRAF and PIK3CA 

The next step of the CRC molecular classification was to determine the mutational 

status of APC, TP53, KRAS, BRAF and PIK3CA genes, which are known to play a 

key role in the development of sporadic CRC through the different molecular 

pathways (Figure 1.5). Somatic mutations were investigated in the 53 matching 

normal/tumour DNA samples that passed the quality and MSI testing. 

4.2.4.1  APC gene mutation cluster region sequencing 

Inactivating mutations in the TSG APC are one of the earliest genetic events that 

initiate CRC development (Kinzler and Vogelstein 1996, Kohler et al. 2008). Somatic 
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APC mutations were previously shown to occur in 34-70% of sporadic CRC cases 

(Miyaki et al. 1994, Luchtenborg et al. 2004). The vast majority of the APC somatic 

mutations occur in the mutation cluster region (MCR) in exon 15 (Miyoshi et al. 1992, 

Luchtenborg et al. 2004). The MCR and its surrounding region (codons 1265-1560) 

in APC exon 15 were sequenced in the screened cohort. Of the 53 cases, 29 (54.7%) 

had previously reported somatic mutations in the MCR (Table 4.2). All the mutations 

were only found in the tumour DNA (not present in normal DNA) and they were all 

confirmed by bi-directional sequencing. Moreover, all the somatic mutations were 

either frameshift (71%) or nonsense (29%) and they were predicted to result in 

truncated APC protein. This pattern of mutations agrees with previously published 

data (Beroud and Soussi 1996). None of the cases were found to carry more than 

one mutation.  

 

APC deletion results were available through the aCGH data (Section 4.2.6). Out of 

the 53 cases analysed by aCGH, 9 cases were shown to have deletions in the APC 

region, 3 of these samples did not have a somatic mutation in the MCR (Table 4.2). 

Therefore, a total of 32 cases (60.4%) had at least 1 genetic defect in the APC gene. 
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Table 4.2 APC somatic mutations 

Sample Mutation Codon Type APC deletions (aCGH) 

CA828 c.3871C>T 1291 Nonsense Del 

CA206 c.3883G>T 1295 Nonsense None 

CA096 c.3970C>T 1303 Nonsense None 

CA037 c.3916G>T 1306 Nonsense None 

CA104 c.3916G>T 1306 Nonsense None 

CA218 c.3927_3931del5 1309 Frame shift None 

CA045 c.3933_3934ins1 1312 Frame shift None 

CA085 c.3964G>T 1322 Nonsense None 

CA097 c.3982C>T 1328 Nonsense None 

CA249 c.4033G>T 1345 Nonsense Del 

CA098 c.4037C>G 1346 Nonsense None 

CA079 c.4054_4062dup7 1354 Frame shift Del 

CA138 c.4127_4128del2 1376 Frame shift None 

CA150 c.4216C>T 1406 Nonsense None 

CA244 c.4271del1 1424 Frame shift Del 

CA080 c.4271_4280del10 1424 Frame shift None 

CA184 c.4303A>T 1435 Nonsense None 

CA023 c.4328_4329insC 1443 Frame shift None 

CA078 c.4342del1 1448 Frame shift None 

CA109 c.4350C>T 1450 Nonsense None 

CA153 c.4350C>T 1450 Nonsense None 

CA741 c.4350C>T 1450 Nonsense Del 

CA795 c.4391_4394delAGAG 1464 Frame shift None 

CA863 c.4391_4394delAGAG 1464 Frame shift Del 

CA221 c.4415del1 1472 Frame shift None 

CA112 c.4421del1 1474 Frame shift None 

CA088 c.4582_4603del22 1528 Frame shift None 

CA114 c.4666_4667ins1 1554 Frame shift None 

CA208 c.4666_4667ins1 1554 Frame shift None 

CA213 None N/A N/A Del 

CA142 None N/A N/A Del 

CA158 None N/A N/A Del 

 

Table 4.2 summarises all the somatic mutations and genomic deletions (Section 4.2.6) that 

were identified in APC in the screened cohort. The mutations are in order of location. Twenty 

one cases did not have any APC defects. 

4.2.4.2 TP53 gene sequencing 

Mutations in TP53 represent the most common genetic alteration in human cancers. 

According to the International Agency for Research on Cancer (IARC) TP53 

database, CRC has the 2nd highest level of TP53 mutations (43.3%) (http://www-

p53.iarc.fr/index.html, accessed June, 2011). Mutations in TP53 are spread across 

the gene, however, most mutations occur in the region between exon 4 and exon 9 

http://www-p53.iarc.fr/index.html
http://www-p53.iarc.fr/index.html
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(>98% according to IARC TP53 database). TP53 exons 4-9 and their exon/intron 

boundaries were sequenced in this study. Previously reported somatic TP53 

mutations were identified in 49% (n=26) of the screened cohort (Table 4.3). One 

case, CA208, carried 2 somatic mutations, thus, the number of the identified 

mutations was 27 (Table 4.3). Most of these somatic mutations were missense 

(70.4%) and the rest were nonsense (14.8%), frameshift (11.1%) and splice site 

(3.7%). This pattern of TP53 mutations agrees with the published data (http://www-

p53.iarc.fr/index.html, accessed June, 2011). Moreover, most of these mutations 

occurred in exons 7 and 8 (~63%) which also agrees with the published figures.  

 

Throughout the sequenced regions of TP53, 7 polymorphic SNPs were identified. 

These SNPs enabled basic LOH analysis by comparison of variable alleles between 

the tumour and the normal DNA (Figure 4.6). Out of the 53 screened cases, 27 cases 

(51%) were informative (i.e. had at least 2 polymorphic SNPs) and the LOH status 

was therefore determined. For the rest of the cases (49%, n=26), there were fewer 

than 2 polymorphic SNPs, therefore, they were considered uninformative and their 

LOH status was undetermined. Out of the 27 informative cases, 16 cases (30.2% of 

the total cases) showed evidence of TP53 LOH. Interestingly, one of the CRC cases 

(CA045) had a germline mutation (c.935C>G) in TP53 exon 9 (Figure 4.7). 

Surprisingly, this mutation was on the allele that showed LOH (Figure 4.7 and Figure 

4.8). The sample also had a somatic mutation (c.524G>A) in exon 5 on the other 

allele (Figure 4.9). Interestingly, patient CA045 was not diagnosed with CRC at an 

early age (80 years); however, she had three 1st degree relatives with cancer.  

 

TP53 deletion information was also available through the analysis of the aCGH data 

(Section 4.2.6). Out of the 53 cases analysed by aCGH, 17 carried TP53 deletions. 

Comparing the aCGH results with the 27 LOH informative cases showed that 22 

cases were concordant and 5 were not (CA79, CA86, CA249, CA271 and CA828). 

http://www-p53.iarc.fr/index.html
http://www-p53.iarc.fr/index.html
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These 5 discordant samples were shown to have LOH by SNP analysis, however, 

they were found to be diploid by aCGH analysis. This result can be explained by 

mono-allelic inheritance from the parental cancerous cell or gene conversion events. 

In summary, 31 cases (~58.5%) had at least one defect in TP53 (Table 4.3). 

Table 4.3 TP53 somatic mutations 

Sample Mutation Exon Codon Type Amino acid change Deletion/LOH 

CA088 c.250del1 4 84 Frame shift N/A Del 

CA206 c.455-456ins1 5 152 Frame shift N/A LOH 

CA045 c.524G>A 5 175 Missense p.R175H Del/LOH 

CA098 c.524G>A 5 175 Missense p.R175H Del 

CA249 c.524G>A 5 175 Missense p.R175H LOH 

CA828 c.524G>A 5 175 Missense p.R175H LOH 

CA090 c.559+1G>T i5-intron NA Splice site N/A None 

CA863 c.586C>T 6 196 Nonsense N/A Del/LOH 

CA053 c.592G>T 6 198 Nonsense N/A Del/LOH 

CA097 c.637C>T 6 213 Nonsense N/A Del/LOH 

CA158 c.722C>G 7 241 Missense p.S241C None 

CA142 c.725G>T 7 242 Missense p.C242F None 

CA208 c.730G>A 7 244 Missense p.G244S None 

CA632 c.733G>A 7 245 Missense p.G245S Del/LOH 

CA104 c.733G>A 7 245 Missense p.G245S Del/LOH 

CA218 c.733G>A 7 245 Missense p.G245S Del/LOH 

CA213 c.751A>C 7 251 Missense p.I251L None 

CA223 c.811G>A 8 271 Missense p.E271K Del 

CA086 c.818G>A 8 273 Missense p.R273H LOH 

CA244 c.817C>T 8 273 Missense p.R273C Del/LOH 

CA153 c.844C>G 8 282 Missense p.R282G None 

CA079 c.844C>T 8 282 Missense p.R282W LOH 

CA184 c.844C>T 8 282 Missense p.R282W Del 

CA208 c.844C>T 8 282 Missense p.R282W None 

CA271 c.844C>T 8 282 Missense p.R282W LOH 

CA1120 c.847_859del13 8 283 Frame shift N/A None 

CA085 c.916C>T 8 306 Nonsense N/A None 

CA114 None N/A N/A N/A N/A Del/LOH 

CA201 None N/A N/A N/A N/A Del 

CA203 None N/A N/A N/A N/A Del 

CA214 None N/A N/A N/A N/A Del 

CA221 None N/A N/A N/A N/A Del/LOH 

 

Table 4.3 summarises all the somatic mutations, LOH and genomic deletions (Section 4.2.6) 

that were identified in TP53 in the screened cohort. The mutations are in order of location. 

Thirty one had at least 1 defect in TP53 (1 case with 2 somatic mutations, 18 cases with a 

somatic mutation and LOH/deletion, 5 cases with LOH/deletion only and 7 cases with a 

somatic mutation without LOH/deletion or LOH status undetermined). 
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Samples were analysed for using polymorphic SNPs comparison between normal and tumour 

DNA. The SNPs are marked with red arrows. As seen in the figure, the heterozygous SNPs in 

the normal DNA appear homozygous in the tumour DNA due to loss of one of the alleles. 

Traces of the normal DNA can be seen in the tumour DNA. 

 

 

 

Bidirectional sequencing of CA045 TP53 exon 9 region showing the germline mutation 

c.935C>G in the normal DNA (A and B) and tumour DNA (C and D). As seen in the figure, the 

tumour DNA was considered wild-type at this position, however, traces of the germline 

mutation can be seen in the tumour DNA.  

  

Figure 4.6 LOH analysis 

Figure 4.7 TP53 germline mutation c.935C>G in CA045 

Normal DNA 

Tumour DNA 

A 

C D 

B 

  Forward sequence    Reverse sequence 
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Bidirectional sequencing of CA045 TP53 showing 2 different heterozygous SNPs in the 

normal DNA (A and B) and the tumour DNA (C and D). As seen in the figures, the 2 SNPs 

indicate LOH in the tumour DNA. 

 

 

Bidirectional sequencing of CA045 TP53 exon 5 region showing the somatic mutation 

c.524G>A in the tumour DNA (C and D). The normal DNA did not show any evidence of 

mutation at this position (A and B). 

 

 

 

Figure 4.8 TP53 LOH in CA045 

Figure 4.9 TP53 somatic mutation c.524G>A in CA045 

A 
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B 

A 
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  Forward sequence    Reverse sequence 
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4.2.4.3 KRAS exon 1 sequencing 

KRAS oncogene activation by somatic mutations has been shown to occur in 30-60% 

of CRC cases (Brink et al. 2003). Approximately, 95% of these mutations occur in 

exon 1 (codons 12 & 13) and ~5% in exon 2 (codon 61). Therefore, KRAS exon 1 

was sequenced in our 53 CRC cases. Previously published somatic mutations were 

found in 36% (n=19) of the sequenced samples (Table 4.4). As expected, most of the 

mutations (84%, n=16) were in codon 12. All the mutations were only found in the 

tumour DNA (not present in normal DNA) and they were all confirmed by bi-

directional sequencing. 

Table 4.4 KRAS somatic mutations 

Sample Mutation Codon Type Amino acid change 

CA037 c.35G>T 12 Missense p.G12V 

CA046 c.35G>A 12 Missense p.G12D 

CA080 c.35G>A 12 Missense p.G12D 

CA086 c.35G>A 12 Missense p.G12D 

CA088 c.35G>T 12 Missense p.G12V 

CA097 c.34G>T 12 Missense p.G12V 

CA104 c.35G>T 12 Missense p.G12V 

CA107 c.35G>A 12 Missense p.G12D 

CA109 c.35G>T 12 Missense p.G12V 

CA114 c.38G>A 13 Missense p.G13D 

CA135 c.38G>A 13 Missense p.G13D 

CA138 c.35G>C 12 Missense p.G12A 

CA153 c.34G>T 12 Missense p.G12V 

CA201 c.35G>T 12 Missense p.G12V 

CA208 c.35G>T 12 Missense p.G12V 

CA249 c.35G>T 12 Missense p.G12V 

CA632 c.38G>A 13 Missense p.G13D 

CA824 c.35G>C 12 Missense p.G12A 

CA1350 c.34G>T 12 Missense p.G12V 

 

Table 4.4 summarises all the somatic mutations that were identified in KRAS in the screened 

cohort. The samples are in numerical order. 

4.2.4.4 BRAF exon 15 sequencing 

Activating mutations in the BRAF oncogene were previously shown to be involved in 

the development of a wide range of human cancers including CRC (Davies et al. 

2002). However, BRAF somatic mutations are relatively rare (~12%) in CRC. 

Nonetheless, they usually tend to cluster within the MSI-H pathway where they were 
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observed with a frequency of 40-50% compared to ~5% only in MSS CRC (Oliveira 

et al. 2007, Shen et al. 2007).  Most of the BRAF mutations occur in exons 11 and 

15. Approximately 80% of these mutations occur in the mutational hotspot in exon 15 

specifying amino acid V600. Therefore, exon 15 was sequenced and somatic 

mutations in BRAF were identified in 2 cases (3.8%) (Table 4.5). One of the 

mutations was in the hotspot codon encoding V600E. The second mutation is a 

relatively rare, but known, mutation (N581S). All the mutations were only found in 

tumour DNA (not present in normal DNA) and they were confirmed by bi-directional 

sequencing.  

Table 4.5 BRAF somatic mutations 

Sample Mutation Codon Type Amino acid change 

CA208 c.1742A>G 581 Missense p.N581S 

CA271 c.1799T>A 600 Missense p.V600E 

 

Table 4.5 summarises all the somatic mutations that were identified in BRAF in the screened 

cohort. The samples are in numerical order. 

 

4.2.4.5 PIK3CA exons 9 and 20 sequencing 

Activating mutations in the PIK3CA oncogene were previously shown to play an 

important role in the development of several human cancers including CRC (Samuels 

et al. 2004). Somatic PIK3CA mutations were reported in ~13-30% of sporadic CRC 

cases with mutational hotspots in exons 9 and 20 (~80% of the mutations) (Samuels 

et al. 2004, Ikenoue et al. 2005, Velho et al. 2005). Therefore, exons 9 and 20 were 

sequenced in this study and previously identified somatic mutations were found in 6 

cases (11.3%) (Table 4.6), consistently, most of which (n=5) were in exon 9, as 

previously reported (Samuels et al. 2004). All the mutations were only found in 

tumour DNA (not present in normal DNA) and they were confirmed by bi-directional 

sequencing. 
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Table 4.6 PIK3CA somatic mutations 

 
Table 4.6 summarises all the somatic mutations that were identified in PIK3CA in the 

screened cohort. The mutations are in order of genomic location. 

 

4.2.5 CpG island methylator phenotype 

As described in section 1.3.3.3, CpG island methylator phenotype (CIMP) occurs in 

20-40% of CRC cases and plays an essential role in sporadic CRC development 

(Weisenberger et al. 2006, Ogino et al. 2007, Goel and Shin 2008). The MS-MLPA 

kit ME042-A1 (MRC-Holland) was used to determine the methylation status of the 53 

normal/tumour paired DNA samples (Section 2.2.12). Eight methylation markers 

were included in the kit (CACNA1G, CDKN2A, CRABP1, IGF2, MLH1, NEUROG1, 

RUNX3 and SOCS1), however, SOCS1 was excluded from the analysis because 

only one probe was available. As described in section 2.2.12.4.3, no CIMP (CIMP-N) 

was defined as an absence of any methylated markers, CIMP low (CIMP-L) as the 

presence of 1-4 methylated markers and CIMP high (CIMP-H) as 5 or more (Ogino et 

al. 2007, Barault et al. 2008). During our study, the ME042-A1 MS-MLPA kit was still 

under development by MRC-Holland and not commercially available. Therefore, it 

was decided to attempt to validate the kit in-house. 

4.2.5.1 Pyrosequencing, MS-MLPA and testing methylation 

controls 

In order to validate the MS-MLPA kit, a commercially available universally methylated 

DNA (UMD) (CpGenome) and HCT116 cell line DNA were used as positive controls. 

In theory, UMD should give ~100% methylation in all of the markers; on the other 

hand, HCT116 cells which are MSI-H and CIMP-H, have positive and negative 

Sample PIK3CA Exon Codon Type Amino acid change 

CA023 c.1633G>A 9 545 Missense p.E545K 

CA046 c.1633G>A 9 545 Missense p.E545K 

CA107 c.1633G>A 9 545 Missense p.E545K 

CA153 c.1633G>A 9 545 Missense p.E545K 

CA795 c.1633G>A 9 545 Missense p.E545K 

CA109 c.3140A>G 20 1047 Missense p.H1047R 
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markers corresponding to various levels of methylation (Hinoue et al. 2009). One 

normal DNA sample from case CA037 was also used as negative control. As the 

gold standard technique for DNA methylation studies, pyrosequencing was used to 

test the positive and negative controls for three of the markers (MLH1, NEUROG1 

and CRABP1), which are available in the MS-MLPA kit. MLH1 primers were 

purchased from Qiagen, while NEUROG1 and CRABP1 primers were designed as 

described in Section 2.2.14.1, and obtained from Applied Bio-systems. The primers 

were designed to target areas previously investigated in CIMP studies (Ogino et al. 

2007). The PyroMark assay design software (v2.0) assigns quality measures for the 

designed primers and assays as high, medium or low. Both CRABP1 and NEUROG1 

designs scored “high” on the quality measures.  

 

Following bisulphite treatment, UMD, HCT116 and CA037 DNA samples were 

analysed by pyrosequencing (“pyrosequenced”) to confirm their methylation status. 

As described in Section 2.2.13, DNA bisulphite treatment results in the conversion of 

unmethylated cytosines into uracil with no effect on methylated cytosines. Therefore, 

all cytosines that are not followed by guanines should, in theory, be fully converted 

into uracil following bisulphite treatment, regardless of the methylation status of the 

sample. Uracil nucleotides will subsequently be replaced by thymidines during 

pyrosequencing. Therefore, a cytosine that is not followed by a guanine is usually 

selected as a marker to measure the bisulphite treatment quality (Figure 4.10). High 

quality bisulphite treatment should result in a thymdine instead of cytosine peak at 

the position indicated. Likewise, unmethylated cytosines followed by guanines (CpG) 

will also be converted into uracil and thus appear as thymidines in the pyrogram 

(Figure 4.11 A). On the other hand, methylated cytosines followed by guanines 

(CpG) will be protected and will remain as cytosines in the final pyrogram (Figure 

4.11 B). A ratio of the thymidines to cytosines at each CpG position will reflect the 

methylation level of the DNA. Usually, several CpGs are used to test the methylation 
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of a specific marker or gene. An average of these CpGs represents the methylation 

level of the marker. 

 

  

A pyrogram representing an unmethylated cytosine (highlighted in a light yellow box) followed 

by adenine. The cytosine was fully converted into thymidine as indicated by the red arrow. 

Highlighted in light blue box, a 50% methylated CpG. 

 

 

Shaded in light blue, cytosine nucleotides of the target CpGs. The small boxes on top of each 

CpG represent the calculated methylation percentage at each location. Blue coloured boxes 

indicate high pyrosequencing quality. A) Unmethylated sample, B) Highly methylated sample. 

 

The 3 methylation controls (UMD, HCT116 and CA037) were bisulphite treated and 

then pyrosequenced to confirm their methylation status. The methylation levels of the 

3 controls were as expected (Table 4.7). The controls were then tested using the MS-

MLPA kit. As described in Section 2.2.12 and, as summarised in Figure 2.5, the 

Figure 4.10 Pyrogram showing a bisulphite treatment control 

A B 

Figure 4.11 Unmethylated and methylated pyrograms 
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methylation sensitive enzyme HhaI is used in the MS-MLPA digestion/ligation step. In 

the case of a methylated DNA sample, the MS-MLPA probes will ligate to methylated 

DNA sequences and will be protected against digestion. Thus, these regions will be 

amplified in the PCR step, and produce a signal during capillary electrophoresis 

appearing as peaks when analysed by the genemapper software (Figure 4.12 B).  

 

In the case of an unmethylated DNA sample, MS-MLPA probes will ligate to 

unmethylated DNA sequences, and hence, they will be digested by HhaI. 

Consequently, they will fail to amplify and no peaks will be identified (Figure 4.12 C). 

The ratio between methylation sensitive peak areas and reference peak areas 

represents the methylation level. This is calculated using a Microsoft Excel based 

spreadsheet and in-house algorithm described in Section 2.2.12.4. The final 

quantitative estimates of the methylation levels are presented as barcharts (Figure 

4.13). Table 4.7 summarises both the pyrosequencing and the MS-MLPA results for 

UMD, HCT116 and CA037. As demonstrated in the table, there is very good 

concordance between pyrosequencing and MS-MLPA in determining the methylation 

levels of these controls. The results of the controls were confirmed twice by 

pyrosequencing.  

Table 4.7 Positive & negative controls using pyrosequencing & MS-MLPA 

 Methylation levels (%) 

 Pyrosequencing MS-MLPA 

Sample MLH1 NEUROG1 CRABP1 MLH1 NEUROG1 CRABP1 

CA037 14.5 7.0 5.4 0.5 9.3 4.4 

HCT116 11.5 96.3 94.6 0.4 100.0 95.9 

UMD 96.3 89.5 94.4 94.9 97.2 95.1 

No of CpGs* 4 8 7 3 6 4 

*Number of CpGs analysed for each marker, the methylation levels of the markers are determined by 

averaging the CpGs for each marker. 
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Peaks highlighted in light red boxes are the products of methylation sensitive probes. Peaks 

in between them represent the products of the reference probes. Peaks marked by the 

horizontal red arrow are the products of the QC metrics and sex determining probes. Peak 

marked by the vertical red arrow is the digestion control probe. This peak should disappear in 

digested samples. Peak marked by the red circle is the BRAF V600E mutation specific peak. 

This peak will appear only in the case of the mutation. A) Non-digested N212 DNA sample B) 

Methylated T271 DNA sample with BRAF V600E mutation C) Unmethylated N212 sample 

A 

B 

C 

 

Figure 4.12 MS-MLPA genemapper peaks 
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A) Methylated sample T271, B) Unmethylated sample N271 

 

  

A 

B 

Figure 4.13 Barcharts showing MS-MLPA calculated methylation levels 



 152 

4.2.5.2 MS-MLPA quantification test 

After confirming the specificity of the MS-MLPA kit, its ability to produce quantifiable 

data was tested. MS-MLPA as technology was previously described to be semi-

quantitative (Jeuken et al. 2007). In order to test the quantification of the MS-MLPA 

ME042-A1 kit, serial dilutions of the UMD were used. CIMP negative DNA from the 

tested sample CA037 was used to do serially dilute the UMD (75%, 50% and 25% 

UMD). The results of the serial dilution are shown in Table 4.8 and they indicate the 

ability of the MS-MLPA kit to quantify the methylation levels of the indicated DNA 

samples. 

Table 4.8 MS-MLPA ME042-A1 quantification test 

UMD serial 
dilution 

CIMP markers and average methylation levels (%) 

IGF2 RUNX3 NEUROG1 MLH1 CDKN2A CRABP1 CACNA1G 

100% 101.02 99.70 97.21 94.90 93.87 95.13 107.17 

75% 75.55 79.67 80.77 72.74 69.54 76.37 65.68 

50% 50.24 54.64 54.93 48.04 48.00 53.88 51.94 

25% 35.91 31.88 38.62 30.51 32.17 35.50 35.40 

 

4.2.5.3 MS-MLPA reproducibility 

Finally, the reproducibly of the MS-MLPA kit was tested by performing duplicate 

experiments. As its methylation status is known, HCT116 DNA was duplicated within 

both the same run and in separate runs. However, patient DNA samples had their 

methylation levels tested by MS-MLPA and these were then repeated in different 

runs, to confirm the findings and to further test the reproducibility of the MS-MLPA kit. 

In total, HCT116 DNA was tested 5 times and 4 case DNA samples (2 CIMP-H, 1 

CIMP-L and 1 CIMP-N) were analysed twice. The results of these duplications are 

summarised in Table 4.9. 
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Table 4.9 MS-MLPA reproducibility tests 

 Methylation Levels (%) 

 CACNA1G CDKN2A CRABP1 IGF2 MLH1 NEUROG1 RUNX3 

T080-1 1.6 1.3 3.4 29.9 1.0 5.7 1.7 

T080-2 2.1 1.6 3.9 25.7 1.0 5.2 1.8 

T184-1 7.6 1.8 10.9 50.0 0.4 46.1 2.5 

T184-2 9.3 1.9 11.0 51.0 1.3 45.7 2.4 

T114-1 2.1 24.7 25.5 60.3 0.0 52.2 23.7 

T114-2 1.9 31.1 31.1 68.9 1.8 60.0 24.9 

T271-1 34.3 17.0 28.6 58.7 18.3 49.7 51.0 

T271-2 32.0 19.3 28.4 59.4 21.9 50.4 62.2 

HCT116-1 95.7 38.3 95.9 100.0 0.4 100.0 4.0 

HCT116-2a 88.6 41.6 98.1 100.0 0.7 100.0 6.1 

HCT116-2b 89.8 35.8 99.0 100.0 2.1 100.0 5.9 

HCT116-3a 77.5 37.2 92.0 100.0 2.1 97.1 7.7 

HCT116-3b 85.2 41.1 100.0 99.2 1.1 100.0 5.6 

 

Table 4.9 summarises the results of the repeated samples. All the case samples were 

repeated in different runs. HCT116 was either duplicated within the same run (a and b) or 

repeated in different runs as well. 

4.2.5.4 CpG island methylator phenotype results 

After validating the performance of the MS-MLPA kit, it was used to determine the 

methylation levels in the paired tumour and normal DNA cohort. Two main issues 

were identified in the methylation testing of the MS-MLPA kit and were reported back 

to MRC-Holland. Firstly, there was only one probe for SOCS1, therefore it was not 

included in the analysis. Secondly, RUNX3 probe 1 had high methylation levels in the 

normal DNA, thus it was not included in the analysis of RUNX3 methylation. As a 

final validation step, 3 more cases were confirmed using pyrosequencing. Paired 

DNA samples from 2 CIMP-H cases (CA114 and CA223) and a CIMP-L case 

(CA090) were used. Table 4.10 summarises the results of these 3 paired samples 

using both pyrosequencing and MS-MLPA.  

 

As described in Section 2.2.12.4.4, sex determination probes and a specific BRAF 

V600E mutation probe (associated with CIMP-H) are part of the MS-MLPA ME042-
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A1 kit. It is noteworthy here that there was a full concordance between the sex 

prediction of in the MS-MLPA assay and the recorded sex of each case. Moreover, 

the mutation status of the only BRAF V600E positive sample CA271 (Table 4.5) was 

also confirmed by the MS-MLPA assay (Figure 4.12 B).  

 

It is noteworthy that all the MS-MLPA tests included in CIMP analysis had excellent 

QC metrics results (MS-MLPA QC-results were described in Section 2.2.12.4.1). The 

QC-tests results for all the samples are summarised in Appendix 5. Finally, out of the 

53 tested samples, 6 (11.3%) were defined as CIMP-H, 41 (77.4%) as CIMP-L and 6 

were defined as CIMP-N (11.3%) (Table 4.11). 

  

Table 4.10 Random samples analysed using pyrosequencing and MS-MLPA 

 Methylation levels (%) 

 Pyrosequencing MS-MLPA 

Sample MLH1 NEUROG1 CRABP1 MLH1 NEUROG1 CRABP1 

N090 11.8 9.5 5.7 1.2 7.6 4.4 

T090 12.5 31.0 38.3 1.2 19.8 20.4 

N114 13.8 6.9 6.7 1.2 11.7 3.7 

T114 13.3 45.6 54.0 0.0 52.2 23.7 

N223 15.3 7.5 5.4 0.6 10.0 3.8 

T223 10.8 52.5 57.0 0.7 48.3 50.8 

No of CpGs 4 8 7 3 6 4 

 

Table 4.10 summarises the reproducibility test performed on 3 paired cases. Normal DNA for 

the 3 samples was used to represent CIMP-N. T090 was used to represent CIMP-L and T114 

and T223 were used to represent CIMP-H. 
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Table 4.11 Summary of the final CIMP status for all of the 53 samples 

Sample CACNA1G CDKN2A CRABP1 IGF2 MLH1 NEUROG1 RUNX3 Result 

CA271 31.93 15.36 23.60 47.61 17.46 41.08 50.63 CIMP-H 

CA088 31.73 45.90 38.66 56.54 0.44 56.66 39.00 CIMP-H 

CA223 36.41 13.84 46.95 66.65 0.09 38.32 57.81 CIMP-H 

CA109 0.05 11.48 33.55 51.76 0.57 44.09 19.56 CIMP-H 

CA114 0.16 23.50 21.79 50.35 -1.21 40.51 22.64 CIMP-H 

CA138 -0.02 19.97 33.84 40.84 -0.47 33.77 32.93 CIMP-H 

CA795 0.36 12.56 6.86 20.92 0.13 25.86 23.12 CIMP-L 

CA085 3.63 0.77 18.16 33.39 0.24 42.82 1.34 CIMP-L 

CA086 0.99 0.77 17.61 57.23 10.30 40.03 13.33 CIMP-L 

CA090 -0.22 34.34 15.99 52.70 0.02 12.17 2.60 CIMP-L 

CA046 0.70 14.22 0.96 15.01 -0.23 12.62 1.88 CIMP-L 

CA150 12.90 2.12 6.60 23.68 6.66 12.82 28.14 CIMP-L 

CA244 -0.55 7.15 8.44 37.50 0.16 13.99 13.70 CIMP-L 

CA249 0.35 10.09 12.82 45.25 -0.20 31.05 0.80 CIMP-L 

CA023 1.06 5.89 6.59 16.07 0.94 12.30 0.08 CIMP-L 

CA045 0.13 8.39 0.42 39.23 0.00 18.22 2.10 CIMP-L 

CA053 1.91 0.44 -1.79 39.63 0.68 27.15 2.71 CIMP-L 

CA083 -0.31 0.78 -0.55 45.26 9.87 36.73 0.65 CIMP-L 

CA097 -0.74 -0.15 1.41 33.28 9.10 25.86 8.47 CIMP-L 

CA104 0.98 -0.16 1.20 43.49 0.12 27.88 0.48 CIMP-L 

CA107 -0.66 5.65 -2.94 40.73 0.19 32.66 -0.63 CIMP-L 

CA135 -0.12 7.84 -0.07 35.97 0.57 17.68 2.15 CIMP-L 

CA153 -1.10 13.72 3.27 45.75 -1.07 37.25 5.84 CIMP-L 

CA167 3.00 0.86 2.36 22.87 0.53 4.92 2.64 CIMP-L 

CA184 4.64 -0.28 7.34 43.57 -0.53 36.38 1.46 CIMP-L 

CA201 -1.26 -1.13 -1.44 31.91 -0.37 18.74 0.93 CIMP-L 

CA202 -0.33 1.91 -0.42 19.56 -0.92 13.69 0.48 CIMP-L 

CA203 -0.33 0.14 1.54 37.34 0.28 15.23 -0.47 CIMP-L 

CA206 -1.11 3.48 -0.35 23.23 16.00 37.45 1.59 CIMP-L 

CA208 0.50 -0.52 -1.68 46.73 -1.43 19.90 1.33 CIMP-L 

CA213 0.51 -0.28 0.79 41.90 14.11 9.46 2.68 CIMP-L 

CA214 0.62 2.61 -1.35 15.93 0.82 17.51 0.20 CIMP-L 

CA037 -0.49 1.26 -0.48 23.03 1.03 -0.42 1.13 CIMP-L 

CA218 -0.54 0.01 -2.23 41.98 -0.08 1.01 3.19 CIMP-L 

CA632 0.11 -0.89 -2.75 12.76 -0.35 75.08 -0.04 CIMP-L 

CA741 -0.63 -0.56 12.99 9.43 0.17 -3.78 -0.57 CIMP-L 

CA824 4.36 0.70 5.87 12.20 1.11 3.92 -2.07 CIMP-L 

CA828 2.90 9.80 -0.56 31.80 0.18 25.29 -2.09 CIMP-L 

CA863 -0.40 -0.51 -3.12 29.40 -0.48 25.09 -2.76 CIMP-L 

CA110 0.56 1.32 1.63 15.04 1.24 3.25 2.79 CIMP-L 

CA112 -0.30 -0.82 5.17 14.14 -0.19 -1.80 1.30 CIMP-L 

CA1120 -0.02 0.11 -2.29 3.21 0.36 33.59 0.18 CIMP-L 

CA1350 -0.09 0.26 8.58 55.24 -0.54 1.69 -1.67 CIMP-L 

CA016 1.26 -0.36 6.68 5.59 8.67 11.99 3.80 CIMP-L 

CA080 0.32 -0.71 -0.62 22.06 -0.24 -2.08 1.04 CIMP-L 

CA098 -1.95 0.29 -2.37 51.57 -0.03 15.50 1.14 CIMP-L 

CA142 -1.52 6.39 24.01 18.09 1.00 -7.36 1.53 CIMP-L 

CA79 -0.54 -0.34 0.24 16.69 -0.32 2.56 -1.82 CIMP-N 

CA122 0.63 -7.70 -0.48 -6.04 0.46 4.44 -0.78 CIMP-N 

CA158 0.29 -1.69 8.22 0.10 0.24 -2.70 -2.19 CIMP-N 

CA212 0.87 0.28 -0.59 10.19 0.39 -1.43 2.75 CIMP-N 

CA221 -1.28 8.41 -3.96 4.77 0.27 4.55 -0.09 CIMP-N 

CA248 0.71 1.42 0.52 9.72 0.13 3.26 2.02 CIMP-N 

 
 
Table 4.11 summarises the methylation status of all the markers and the final methylation 

status for all of the samples. Red boxes represent methylated markers, green boxes 

represent unmethylated markers. A Result red box represents CIMP-H, orange box represent 

CIMP-L and green box represents CIMP-N samples respectively. The values in the boxes 

represent the difference in percentage between the tumour and normal DNA methylation 

levels. Samples are arranged according to their final methylation status. 
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4.2.6 Chromosomal instability 

As described in section 1.3.3.1, chromosomal instability (CIN) is the most common 

form of genomic instability in CRC, and it accounts for between 65-85% of the cases 

(Pino and Chung 2010, Migliore et al. 2011). CIN is mainly characterised by 

numerical chromosomal abnormalities (aneuploidy) and structural amplifications and 

deletions (Pino and Chung 2010). Genome wide aCGH was the method used in this 

project to investigate CIN. Array CGH steps and protocol were performed according 

to the manufacturer‟s recommendations as described in Section 2.2.15. In this study, 

CIN was defined as a continuous variable of aberrations and samples were 

considered chromosomally unstable by the presence of significant amplifications or 

deletions in one or more region of any chromosome (Cheng et al. 2008). 

4.2.6.1 Array comparative genome hybridisation platforms 

A wide range of Agilent aCGH formats with differing resolutions are commercially 

available. After considering the cost of the arrays, their throughput, DNA requirement 

and resolution, two array formats were plausible; the whole genome 4x44K and 

4x180K. The 4x refers to the number of arrays per slide and the 44K and 180K refers 

to the number of distinct biological features covered by the array probes (42494 and 

170334 features). In terms of sample throughput and amount of DNA required, both 

formats were identical. In terms of resolution, the 180K platform provides an average 

resolution of ~13Kb based on the overall median probe spacing (11Kb in the Refseq 

genes). On the other hand, the 44K platform has an overall median probe spacing of 

43Kb (24Kb in Refseq genes). The advantages of using the 44K platform are the 

lower cost and potentially lower background signals. On the other hand, the 

advantages of using the 180K platform are the higher resolution, which might help in 

detecting smaller aberrations. Moreover, with higher probe density, the 180K platform 

would be expected to provide higher confidence in detecting chromosomal 

abnormalities in mosaic and heterogeneous tumour DNA samples.  



 157 

 

The minimum DNA input required for both arrays is 0.5 µg. Unfortunately, this 

amount of DNA is not available for all the tumour DNA samples included in the study. 

Therefore, whole genome amplification (WGA) might be necessary for some of the 

samples. Reviewing the literature, several publications (including Agilent‟s technical 

note) described the use of WGA DNA on aCGH with consistent and reproducible 

results (Brueck et al. 2007, Pugh et al. 2008). Nevertheless, other publications have 

shown that the use of WGA DNA on aCGH will result in the introduction of spurious 

aberrations (Talseth-Palmer et al. 2008). 

4.2.6.2 Array CGH Quality control metrics results 

As described in Section 2.2.15.10, the QC metrics of the CGH arrays are closely 

monitored to ensure high quality results. The genomic workbench software used in 

the analysis of the aCGH data combine the 11 QC metrics together and assigns a 

final GC status of either pass, marginal, fail or not applicable. All the CGH arrays 

included in the analysis of this study had a final QC status of pass. 

4.2.6.3 Array comparative hybridisation and whole genome 

amplification 

In order to decide upon the best platform to use (44K or 180K), and determine 

whether WGA affects the integrity of the results, a comparison aCGH test was 

performed. The test included 2 DNA samples, with and without WGA, on both array 

formats (Figure 4.14). Some of the QC metrics of the arrays were in the evaluate 

range, however, the total QC metrics score was pass and the experiment was 

considered valid for comparative purposes.  
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A schematic representation of the aCGH/WGA test, CA037 and CA184 were run twice on 

each array, both without and without WGA. 

 

To summarise the findings, one of the test samples was classified as chromosomally 

stable (CA037) and the other as unstable (CA184). CA037 results were identical with 

and without WGA. For the unstable CA184 sample, the direct unamplified DNA 

experiment was analysed first. The results of the unstable sample on both the 44K 

and the 180K platforms were highly comparable (Figure 4.15). In total, 7 aberrations 

were called on the 44K platform and 12 aberrations on the 180K platform. The 

aberrations on the 44K platform were all detected on the 180K platform. The missed 

aberrations by the 44K platform were on chrY (p and q arms), chr8p arm, chr18p arm 

and a small deletion on chr13. Figure 4.15 represents one of the relatively large 

aberrations (chr8p) missed on the 44K platform. As illustrated in the Figure, the chr8p 

probes on the 44K platform showed a clear shift towards the negative log2ratio, 

however, they did not reach the statistical significance to call a deletion. Thus, the 

fact that the 44K platform missed this aberration might be explained by tumour 

heterogeneity and/or the presence of normal DNA in the sample, in addition to the 

lower probe frequency in comparison to the 180K platform.  

 

4x180K 

CA037 

CA037 
WGA 

 

CA184 

CA184 

WGA 

4x44K 

CA037 

CA037 

WGA 
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Figure 4.14 aCGH and WGA 
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The results of this experiment confirmed the ability of the 180K platform to detect 

more aberrations, especially in heterogeneous tumour DNA. Analysing the WGA test 

results confirmed the advantage of using the 180K platform. As mentioned earlier, 7 

aberrations were detected on the 44K platform using unamplified DNA. The results of 

the WGA DNA on the 44K platform showed only 2 aberrations; the chr8q 

amplification and an extra focal amplification on chr7. In contrast, the results for the 

WGA DNA on the 180K platform were much more consistent with those of the 

unamplified DNA (Figure 4.17). All of the 12 aberrations detected on the 180K array 

of the unamplified DNA were detected on the 180K array of the WGA DNA. However, 

an extra focal deletion on chr17 was noted (Figure 4.17). Therefore, using the 180K 

platform will allow the use of WGA DNA when required. 
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A summary of the genomic aberrations called using both 44K and 180K platforms with the CA184 DNA samples. Solid lines represent aberrations. 

Transparent lines represent the amplitude of each aberration. Blue and red refer to 44K and 180K respectively. 

Figure 4.15 CA184 44K vs 180K test 
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A closer look at chromosome 8. Probes (represented by small crosses) coloured in black 

represent genomic regions with a log2ratio around zero, probes coloured in red and green 

represent amplifications (log2ratio ≥ 0.5) and deletions (log2ratio ≤ -0.5) respectively. As 

shown in the Figure, chromosome 8 long arm was called as an amplification on the 2 

platforms (marked by red arrows). However, because of the probe density the result appear 

with higher confidence on the 180K. On the other hand, chromosome 8 short arm was only 

recognised to be deleted using the 180K format (marked by the green arrow). On the 44K 

platform, the software did not consider chromosome 8 short arm to be deleted. However, 

although it is visually clear (marked by pink box), that the area has a deletion, the probe 

density was not enough for a confident call. 

 

Figure 4.16 CA184 Chromosome 8 

180K 44K X 
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A summary of the genomic aberrations called on the 180K platform using the CA184 unamplified and WGA DNA samples. Solid lines represent aberrations. Transparent lines 

represent the amplitude of each aberration. Red and blue refer to unamplified and WGA respectively. The red arrow points to the extra “spurious” aberration detected in the 

WGA DNA. 

Figure 4.17 CA184 180K platform unamplified vs WGA DNA 
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4.2.6.4 aCGH reproducibility test 

In order to confirm the specificity and reproducibility of the aCGH technology, 2 extra 

duplicate experiments were performed. Samples CA080 and CA090 were analysed 

twice, using both 44K and 180K platforms. The quality of this experiment was very 

high, since the 4 arrays passed all the QC metrics. The results of the duplicate 

experiments are shown in Figure 4.18 and Figure 4.19. CA080 had 27 aberrations 

called using the 44K platform and 38 aberrations called using the 180K platform. All 

27 aberrations called using the 44K platform were successfully called based on the 

180K platform (Figure 4.18). All the extra aberrations called using the 180K platform 

were small in size, except the amplification on chr12p and the y-chromosome 

deletion. However, these were of low amplitude.  

 

Sample CA090 had 39 aberrations called using the 44K platform and 64 using the 

180K platform. Out of the 39 called using the 44K array, 38 were also identified with 

the 180K array (97.4%) (Figure 4.19). All the other aberrations that were called by 

the 180K, but not the 44K, were relatively small in size except the amplification on 

chr8q. Figure 4.20 demonstrates an up-close look at one of the large aberrations that 

was missed by the 44K platform; chr8q from the CA090 duplicate experiment. The 

probes on the 44K show a shift towards the positive log2ratio area, however, it was 

not statistically significant and so not called as an amplification. It is also noteworthy 

that even on the 180K platform the chr8q amplification was of low amplitude. Figure 

4.21 represents a close-up look on a highly concordant result on chr20 from the 

CA090 experiment. Chr20 had several high amplitude amplifications and deletions of 

variable sizes and all of them were successfully called on both platforms. The 

experiments in this section and Section 4.2.6.3 confirm the reproducibility of the 

aCGH technology and the advantage of using a higher resolution array in detecting 

small aberrations and those of low amplitude caused by tumour heterogeneity. 
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Figure 4.18 CA080 aCGH duplicate experiment 

A summary of the genomic aberrations called on both 44K and 180K platforms using the CA080 DNA samples. Solid lines represent aberrations. Transparent lines represent 

the amplitude of each aberration. Blue and red refer to 44K and 180K respectively. 
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Figure 4.19 CA090 aCGH duplicate experiment 

A summary of the genomic aberrations called on both 44K and 180K platforms using the CA090 DNA samples. Solid lines represent aberrations. Transparent lines represent 

the amplitude of each aberration. Blue and red refer to 44K and 180K respectively. 
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Solid lines represent aberrations and transparent boxes represent aberration amplitude. A) 

CA090 chr8 on the 44K platform, B) CA90 chr8 on the 180K platform, red and green probes 

represent amplified and deleted regions respectively 

 

Solid lines represent aberrations and transparent boxes represent aberration amplitude. A) 

CA090 chr20 on the 44K platform B) CA090 chr20 on the 180K platform C) both platforms, 

red and green probes represent amplified and deleted regions respectively. 

Figure 4.20 CA090 Chromosome 8 

Figure 4.21 CA090 Chromosome 20 

A C B 

A B 
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4.2.6.5 Chromosomal instability results 

So far, there is no clear definition of CIN in CRC. For the purposes of molecular 

classification as mentioned earlier, CIN was defined as a continuous variable of 

aberrations and samples were considered chromosomally unstable based on the 

presence of one or more significant amplifications or deletions in one or more of the 

chromosomal regions (Cheng et al. 2008). Array CGH was successfully performed 

on the 53 cases and they all passed the QC metrics analysis. Six of the samples 

were analysed on a 44K platform (CA037, CA112, CA114, CA213, CA214 and 

CA218) and the remaining 47 samples were analysed on the 180K platform. 

Samples CA138, CA202, CA203, CA212 and CA249 required WGA prior to their 

aCGH experiments. 

 

All the samples investigated in the project were analysed using the genomic 

workbench software v5.0 and the same set of settings (except CA824 and CA1120). 

Copy number aberrations (CNA) were detected using the ADM2 algorithm with a 

threshold set to 6.0 and the use of centralisation and fuzzy zero correction. Default 

feature and aberration filters were applied and intra array probe replicates were 

combined as described earlier. CA824 and CA1120 were analysed using the same 

settings, but with ADM1 (instead of ADM2). These 2 arrays had very good QC-

metrics (11/11), however, ADM2 failed to call any CNA for unapparent reasons. 

Visual inspection of the aCGH data has shown clear CNA which were successfully 

called by ADM1. Agilent bioinformatics support recommended the use of ADM1 for 

these 2 samples. Out of the 53 cases, 5 (CA023, CA037, CA046, CA110, and 

CA248) were considered to be be chromosomally stable (i.e. no CNA). The rest 

(n=48, 91%) were considered chromosomally unstable. Table 4.12 summarises the 

number of aberrations (deletions and amplifications) for all of the chromosomally 

unstable samples. 
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Samples CA824, CA1120 and CA184 aCGH data was used only to determine their 

overall CIN status (all chromosomally unstable). However, they were excluded from 

any detailed chromosomal aberration analysis. CA824 and CA1120 were excluded 

because they were analysed using ADM1 and CA184 was excluded for having high 

DLRS ratio (Section 2.2.15.10).  

Table 4.12 Aberrations summary per sample 

Sample Aberrations Amp Del CIMP  TP53 Gender Survival/years Dukes Stage Tumour Location 

CA112 1 1 0 CIMP-L WT Female 2.92 C1 Distal 

CA795 2 2 0 CIMP-L WT Female NA C Proximal 

CA1120 2 1 1 CIMP-L Mt Male NA C Proximal 

CA086 3 2 1 CIMP-L Mt Female 0.92 C1 Distal 

CA016 4 3 1 CIMP-L WT Female NA B Proximal 

CA150 5 0 5 CIMP-L WT Male NA C Distal 

CA83 10 9 1 CIMP-L WT Male NA Unknown Distal 

CA184 12 2 10 CIMP-L Mt Male 6.50 C1 Distal 

CA135 14 3 11 CIMP-L WT Female 2.83 B Distal 

CA167 14 6 8 CIMP-L WT Male Alive C1 Distal 

CA218 14 8 6 CIMP-L Mt Female Alive C1 Distal 

CA109 18 10 8 CIMP-H WT Male 1.00 C2 Proximal 

CA122 18 17 1 CIMP-N WT Female NA C Proximal 

CA632 18 2 16 CIMP-L Mt Female NA C Proximal 

CA824 21 12 9 CIMP-L WT Female NA C Distal 

CA201 23 14 9 CIMP-L WT Female 2.50 B Distal 

CA138 24 8 16 CIMP-H WT Male 0.58 C1 Distal 

CA212 29 0 29 CIMP-N WT Female NA C1 Proximal 

CA202 33 25 8 CIMP-L WT Male Alive A Distal 

CA213 33 7 26 CIMP-L Mt Female Alive C2 Distal 

CA208 35 19 16 CIMP-L Mt Female 0.08 C1 Distal 

CA104 37 17 20 CIMP-L Mt Female 0.58 C2 Distal 

CA080 38 27 11 CIMP-L WT Male Alive B Distal 

CA221 39 17 22 CIMP-N WT Male 0.75 B Distal 

CA085 43 20 23 CIMP-L Mt Male NA B Proximal 

CA097 43 17 26 CIMP-L Mt Male 3.33 Unknown Distal 

CA088 45 13 32 CIMP-H Mt Female 0.83 C1 Proximal 

CA206 50 34 16 CIMP-L Mt Female 3.25 B Distal 

CA249 61 33 28 CIMP-L Mt Male 7.25 B Distal 

CA090 63 26 37 CIMP-L Mt Female 7.58 B Distal 

CA271 66 47 19 CIMP-H Mt Male Alive C1 Proximal 

CA741 66 35 31 CIMP-L WT Female NA C Proximal 

CA203 67 21 46 CIMP-L WT Female 5.75 B Proximal 

CA079 71 19 52 CIMP-N Mt Male 0.42 C1 Distal 

CA114 74 13 61 CIMP-H WT Male 2.58 C1 Distal 

CA223 76 53 23 CIMP-H Mt Male 0.67 C2 Proximal 

CA214 86 12 74 CIMP-L WT Male Alive B Distal 

CA158 87 31 56 CIMP-N Mt Female NA Unknown Proximal 

CA053 88 49 39 CIMP-L Mt Female Alive B Distal 

CA098 93 38 55 CIMP-L Mt Male 4.75 B Distal 

CA1350 94 85 9 CIMP-L WT Female NA B Distal 

CA107 110 91 19 CIMP-L WT Male 1.58 D Distal 

CA863 114 61 53 CIMP-L Mt Male NA A Proximal 

CA153 150 100 50 CIMP-L Mt Male NA C Proximal 

CA142 219 171 48 CIMP-L Mt Female 4.75 C1 Proximal 

CA828 248 152 96 CIMP-L Mt Male NA A Distal 

CA45 260 120 140 CIMP-L Mt Female 5.75 C1 Distal 

CA244 411 116 295 CIMP-L Mt Male Alive C1 Distal 

 

Table 4.12 summarises the number of aberrations/ sample including the type of the aberration 

(Amplification or deletion). TP53 mutation status, gender, survival years and tumour stage are 

also summarised. 
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4.2.6.5.1 Copy number aberrations: summary and patterns 

A total of 3097 CNA were identified in the 45 chromosomally unstable samples (apart 

from CA824 and CA184) (Table 4.12). The number of CNA per sample ranged from 

1-411, with an average of 68.8 per sample. CNA ranged in size from 0.0136Mb-

147.4767Mb (mean: 14.7627Mb, median: 2.2910Mb). Out of the 3097 CNA 

identified, 1554 were amplifications, ranging in size from 0.0136Mb-147.4767Mb 

(mean: 17.5479Mb, median: 3.2727Mb). There were also 1543 deletions, ranging in 

size from 0.0245Mb-145.1558 (mean: 11.9577Mb, median: 1.5526Mb). An overview 

of the pattern and frequencies of these CNA is presented in Figure 4.22. A summary 

of the CNA identified in the 40 samples analysed using the 180K arrays is presented 

in Figure 4.23. In the 45 CIN cases, the most common amplifications were within chr 

20q (73.3%, n=33), 13 (57.8%, n=26), 8q (53.3%, n=24), 7 (51.1%, n=23) and X 

(51.1%, n=23) and the most common deletions were within chr 18 (55.6%, n=25), 8p 

(51.1%, n=23) and 17p (51.1%, n=23). Some of these regions contain key CRC 

driver genes, such as MYC at 8q, SMAD4 at 18q and TP53 at 17p. 

 

Figure 4.22 Patterns of CNA in the studied cohort. 

Red represents amplifications and green represents deletions. The y-axis of the red and 

green bars reflects frequency. The figure represents the 40 CIN cases analysed by the 180K 

format. 
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Figure 4.23 CNA identified in 40 chromosomally unstable cases (180K) 

Representation of the entire CNA identified in 40 chromosomally unstable cases analysed 

using the 180K platform. Red represents amplification and green represents deletion. Dotted 

lines mark centromeres. Molecular and clinical features in order from top; PIK3CA, APC, 

TP53, KRAS and BRAF mutation status (blue and white represents mutant and WT 

respectively), CIMP (red, orange and green represent CIMP-H, CIMP-L and CIMP-N 

respectively), patient‟s sex (pink and grey represent female and male respectively) and 

tumour location (yellow and cyan represent proximal and distal respectively).   
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4.2.7 Associations of molecular events 

4.2.7.1 CIMP status and molecular and clinical features 

Two-tailed Fisher‟s exact test was used to test whether the published associations 

between the different molecular events and tumour/patient characteristics could be 

seen in our data. A summary of the molecular and clinical characteristics of the cases 

in relation to their CIMP status is summarised in Table 4.13. CIMP-H was found to 

associate with mutations in KRAS and BRAF in comparison to CIMP-L/N (p-value = 

0.024) and the only sample with the BRAF V600E mutation was CIMP-H (the only 

sample with methylation in all of the markers). However, no association was found 

between CIMP status and PIK3CA mutations (p-value = 0.5323), patient‟s gender (p-

value = 0.1959) and tumour location (p-value = 0.6687). Moreover, none of the 

CIMP-N (n=6) cases had any mutations in KRAS, BRAF or PIK3CA. Compared to 

CIMP-H/N, CIMP-L tumours seemed to be more common among samples from the 

distal colon, but the results did not reach statistical significance (p-value = 0.09). 

Figure 4.24 represents the CIMP status in relation to the molecular and clinical 

features of the 53 patients. 

Table 4.13 CIMP status and molecular and clinical features 

  
CIMP status 

  
n (%) 

  
CIMP-H CIMP-L CIMP-N 

  
6 (100.0) 41 (100.0) 6 (100.0) 

KRAS/BRAF 
Mutant 5 (83.3) 15 (36.6) 0 (0.0) 

WT 1 (16.7) 26 (63.4) 6 (100.0) 

PIK3CA 
Mutant 1 (16.7) 5 (12.2) 0 (0.0) 

WT 5 (83.3) 36 (87.8) 6 (100.0) 

TP53 
Mutant 3 (50.0) 21 (51.2) 2 (33.3) 

WT 3 (50.0) 20 (48.8) 4 (66.7) 

APC 
Mutant 4 (66.7) 21 (51.2) 2 (33.3) 

WT 2 (33.3) 20 (48.8) 4 (66.7) 

Tumour 
Location 

Proximal 4 (66.7) 12 (29.3) 3 (50.0) 

Distal 2 (33.3) 29 (70.7) 3 (50.0) 

Gender 
Male 5 (83.3) 20 (48.8) 3 (50.0) 

Female 1 (16.7) 21 (51.2) 3 (50.0) 

CIN 
CIN+ 6 (100.0) 37 (90.2) 5 (83.3) 

CIN- 0 (0.0) 4 (9.8) 1 (16.7) 
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Figure 4.24 CIMP and molecular and clinical features 

 

4.2.7.2 CIMP and CIN 

CIMP-H samples were previously shown to be inversely correlated with CIN (Goel et 

al. 2007) or correlated with a low degree of CIN when compared with CIMP-L/N 

cases (Cheng et al. 2008). Table 4.14 summarises the range of chromosomal 

aberrations in CIMP-H and CIMP-L/N samples. CIMP-H and CIMP-L/N were not 

found to be significantly different in-terms of the number of chromosomal aberrations 

(Mann Whitney U-test, p-value = 0.88) (Figure 4.25).  

 

Although the overall CNA frequency was not significantly different between CIMP-H 

and CIMP-L/N, there were some differences in the frequency of some of the broad 

and common CNA. The main differences were observed in amplifications within 13q 
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(33.3% CIMP-H, 61.5% CIMP-L/N), 20q (33.3% CIMP-H, 79.5% CIMP-L/N), chrX 

(16.7% CIMP-H, 56.4% CIMP-L/N) and chr7 (83.3% CIMP-H, 46.2% CIMP-L/N) and 

deletions in 8p (83.3% CIMP-H, 46.2% CIMP-L/N). However, both CIMP-H and 

CIMP-L/N tumours exhibited similar frequencies of amplifications within 8q (66.7% 

CIMP-H, 51.3 CIMP-L/N), and deletions in chr18 (66.7% CIMP-H, 53.8% CIMP-L/N) 

and 17p (66.7% CIMP-H and 48.7% CIMP-L/N). 

 

 

Table 4.14 CIN and CIMP 

 Copy number aberrations (CIN) 

 
No. of samples No. of Aberrations (range) Mean Median 

CIMP-H 6 18-76 50.50 55.50 

CIMP-L/N 39 1-411 71.64 43.00 

 

 

Figure 4.25 CIMP status and chromosomal aberrations 

Box plot and whisker charts representing the range and mean of chromosomal aberrations in 

CIMP-L/N cases compared to CIMP-H cases. 
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4.2.7.3 CIN and molecular and clinical features 

A summary of the molecular and clinical characteristics of the 53 cases in relation to 

CIN status is presented in Table 4.15. Chromosomally stable samples did not have 

any TP53 mutations while CIN samples had high frequency (54.2%), however, this 

difference was borderline statistically significant (p-value = 0.051). Moreover, CIN 

samples had relatively lower PIK3CA mutation frequency, but this was not 

statistically significant (p-value = 0.093). No associations were found with patient‟s 

gender (p-value = 0.356), or tumour location (p-value = 0.613) or mutations in KRAS 

(p-value = 1.000), BRAF (p-value = 1.000), or APC (p-value = 0.669). 

 

Table 4.15 CIN status and molecular and clinical features 

  
CIN status 

 

  
n (%) 

 

  
CIN positive CIN negative 

 

  
48 (100.0) 5 (100.0) p-value 

KRAS 
Mutant 17 (35.4) 2 (40.0) 

1.000 
WT 31 (64.6) 3 (60.0) 

BRAF 
Mutant 2 (4.2) 0 (0.0) 

1.000 
WT 46 (95.8) 5 (100.0) 

PIK3CA 
Mutant 4 (8.3) 2 (40.0) 

0.093 
WT 44 (91.7) 3 (60.0) 

TP53 
Mutant 26 (54.2) 0 (0.0) 

0.051 
WT 22 (45.8) 5 (100.0) 

APC 
Mutant 25 (52.1) 2 (40.0) 

0.669 
WT 23 (47.9) 3 (60.0) 

Tumour Location 
Proximal 17 (35.4) 2 (40.0) 

1.000 
Distal 31 (64.6) 3 (60.0) 

Gender 
Male 24 (50.0) 4 (80.0) 

0.355 
Female 24 (50.0) 1 (20.0) 

 

4.2.8 Molecular classification of the tested samples 

All the tested samples were MSS, therefore, none of them will fit within the MSI-H 

pathway. Out of the 5 chromosomally stable samples, 4 were CIMP-L. Table 4.14 

summarises the molecular characteristics of the 4 chromosomally stable/CIMP-L 
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samples. These samples can fit within the heterogeneous CIMP-L subtype described 

in Section 1.3.5.1.3.  

Table 4.16 Molecular and clinical features of the CIN negative samples 

Sample ID BRAF KRAS TP53 APC PIK3CA Location Gender Age 

CA023 WT WT WT Mut Mut Proximal Male 79 

CA037 WT Mut WT Mut WT Distal Male 57 

CA046 WT Mut WT WT Mut Distal Female 65 

CA110 WT WT WT WT WT Proximal Male 78 

 

One of the chromosomally stable samples (CA248) was also CIMP-N (and MSS). 

Therefore, CA248 fits within the chromosomally stable, CIMP-N, MSS subtype 

described in Section 1.3.5.1. Sample CA248 is referred to in the following section. 

The remainder of the samples were identified as chromosomally unstable. Six of 

these samples were also CIMP-H. The 6 CIMP-H samples did not differ from the rest 

of the CIN samples in terms of frequency of aberrations. A summary of the molecular 

and clinical features of all the CIN positive samples stratified according to their CIMP 

status (CIMP-H and CIMP-L/N) is presented in Table 4.17. Two tailed Fisher‟s exact 

test was used to test for differences between the 2 groups (CIN/CIMP-H and 

CIN/CIMP-L/N). Neither groups had any significant difference in terms of tumour 

location (p-value = 0.167), patient‟s gender (p-value = 0.188), or mutations in 

PIK3CA (p-value = 0.425), TP53 (p-value = 1.000) and APC (p-value = 0.668). 

However, the CIN/CIMP-L/N had significantly fewer KRAS/BRAF mutations (p-value 

= 0.022). In summary, the analysed cohort can be divided into 3 molecular 

subgroups; chromosomally stable CIMP-L/MSS (11.9%), CIN/CIMP-H/MSS (14.3%) 

and CIN/MSS subgroup (71.6%), in addition to CA248 which did not show any form 

of genomic instability. Figure 4.26 represents the 3 molecular subtypes identified in 

the screened samples. 
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Table 4.17 CIN positive samples and CIMP status 

CIN positive samples 

CIMP status 
 

n (%) 
 

CIMP-H CIMP-L/N 
 

6 (100.0) 42 (100.0) p-value 

KRAS/BRAF 
Mutant 5 (83.3) 13 (31.0) 

0.022 
WT 1 (16.7) 29 (69.0) 

PIK3CA 
Mutant 1 (16.7) 3 (7.1) 

0.425 
WT 5 (83.3) 39 (92.9) 

TP53 
Mutant 3 (50.0) 23 (54.8) 

1.000 
WT 3 (50.0) 19 (45.2) 

APC 
Mutant 4 (66.7) 21 (50.0) 

0.668 
WT 2 (33.3) 21 (50.0) 

Tumour Location 
Proximal 4 (66.7) 13 (31.0) 

0.167 
Distal 2 (33.3) 29 (69.0) 

Gender 
Male 5 (83.3) 19 (45.2) 

0.188 
Female 1 (16.7) 23 (54.8) 

 

 

Figure 4.26 The molecular subtypes identified in the screened cohort 

* Mutations details, in addition to CIMP and CIN are summarised in Appendix 6. 
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4.2.9 Molecular characteristics & CRC phenotype (extreme cases) 

One of the investigated samples (CA248) was shown to be MSS, chromosomally 

stable and with CIMP-N. This subset of CRC was previously reported at a similar low 

frequency (Cheng et al. 2008). However, surprisingly, the patient (CA248) did not 

even have any of the common somatic key mutations discussed above. The patient 

was diagnosed with CRC in the year 2002 at the age of 65 without any family history 

of cancer. The cancer had very good prognosis, it responded well to treatment, and 

cancer registry records of March 2011 show that the patient was still alive at this 

time.  

 

On the other hand, one of the cases (CA208) had 5 somatic mutations; APC, BRAF 

and KRAS, in addition to 2 somatic mutations in TP53. Moreover, the tumour was 

chromosomally unstable with CIMP low (but MSS). The patient did not have any 

family history of cancer, but she was diagnosed with CRC at the age of 51 and died 

within 1 month of diagnosis due to aggressive cancer progression. The aggressive 

CRC behaviour and the bad prognosis might be explained by the complex molecular 

characteristics of the tumour. 

4.3 Discussion 

As described earlier, molecular classification of CRC can play an important role in 

research and in the clinic. Towards the beginning of the project, 4 main studies were 

published on the molecular classification of CRC (Chang et al. 2006, Shen et al. 

2007, Cheng et al. 2008, Derks et al. 2008). One of the drawbacks of these initial 

studies was the lack of standardisation, especially when analysing CIN and CIMP, 

which makes it very difficult to compare the findings. The initial aim of this project 

was to try and classify our CRC samples using more standardised methods and 

marker panels.  
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4.3.1 Quality measures and MSI testing 

A thorough molecular characterisation was performed on our samples. The matched 

normal/tumour DNA samples were verified as coming from the same patient. MSI 

analysis was the first step of our classification, and a relatively new marker panel was 

used. This panel was developed according to the revised NCI recommendations on 

MSI testing (Bacher et al. 2004). Two samples out of 57 were shown to be MSI-H, 

however, they were excluded from further study because of contamination with a 

different DNA sample in sample CA945, and because of high levels of normal DNA in 

sample CA008. The remaining samples were all considered to be MSS. Because of 

the size of our sample, the expected number of MSI-H cases was ~6-9 based on a 

known MSI frequency of ~10-15% of sporadic CRC. The frequency of MSI-H in our 

samples (n=2, 3.6%) was below the expected. This could be due to sampling 

variation (i.e. chance), or due to limitations in the detection technique. We 

determined the sensitivity of the MSI detection kit by testing a serial dilution of MSI-H 

DNA extracted from HCT-116 cell line DNA. HCT-116 cells are classified as the MSI-

H/CIMP-H subtype. The analysis showed the ability of the kit to detect MSI down to 

10% dilution (assuming careful examination). Logically, therefore, only MSI-H 

tumours with a very high level of normal DNA contamination would have been 

missed by this assay. Thus, we considered the remaining cases as MSS. 

4.3.2 Sporadic CRC driver mutations 

The paired cohort DNA samples were tested for the most common mutations of the 

key CRC driver genes; APC, TP53, KRAS, BRAF and PIK3CA. The frequencies of 

the mutations found, especially BRAF (3.8%) and PIK3CA (11.3%), are consistent 

with the MSS nature of our cohort. Mutations in both genes were previously shown to 

cluster with MSI-H samples and the frequencies of mutations in both genes in our 

cohort were below those expected for a sporadic CRC cohort (Weisenberger et al. 

2006, Abubaker et al. 2008). In contrast, the frequency and pattern of APC (54.7%), 
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TP53 (49%) and KRAS (36%) mutations were within the expected range for sporadic 

CRC. These mutations are more common in sporadic CRC than BRAF and PIK3CA 

and they have a wider range of mutations.  

4.3.3 CpG island methylator phenotype and MS-MLPA 

The samples were screened for CIMP using a set of 7 methylation markers 

(CACNA1G, CDKN2A, CRABP1, IGF2, MLH1, NEUROG1 and RUNX3), which had 

been shown in a previous large study to specifically and accurately estimate the 

genomic CIMP status. MS-MLPA was used to estimate CIMP (Ogino et al. 2007). 

None of the studies in CRC have previously used MS-MLPA and the kit used 

(ME042-A1) was still under-development by MRC-Holland. The performance and 

accuracy of the kit was tested and the results confirm the ability of the MS-MLPA kit 

to accurately estimate methylation levels. In summary, out of the 53 tested samples, 

6 (11.3%) were defined as CIMP-H, 41 (77.4%) as CIMP-L and 6 (11.3%) were 

defined as CIMP-N. The CIMP-H frequency was less than expected, (~20%), for 

sporadic CRC (Cheng et al. 2008). However, this can be explained by the MSS 

nature of the analysed cohort. CIMP-H and MSI-H are known to strongly associate 

together in sporadic CRC (Weisenberger et al. 2006). The absence of KRAS, BRAF 

and PIK3CA mutations from the CIMP-N subgroup confirms the existence of CIMP-L 

as an independent subgroup of CIMP with a distinct biological background (Ogino 

and Goel 2008).  

4.3.4 Chromosomal instability and array CGH 

Finally, CIN was investigated in the samples using aCGH. High-resolution genome 

wide aCGH platforms were used and their intrinsic reproducibility was confirmed. Our 

samples exhibit a high frequency of CIN (90.1%, n=48), which is higher than 

expected for sporadic CRC samples (65-85%) (Pino and Chung 2010, Migliore et al. 

2011). CIN samples had a higher frequency of TP53 mutations (p-value = 0.051) and 
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none of the chromosomally stable samples had mutations in TP53 which agree with 

previously published data (Chang et al. 2006).  

 

The overall pattern of identified broad CNA, amplifications within chromosomes 20q 

(73.3%, n=33), 13 (57.8%, n=26), 8q (53.3%, n=24), 7 (51.1%, n=23) and X (51.1%, 

n=23) and deletions within chromosomes 18 (55.6%, n=25), 8p (51.1%, n=23) and 

17p (51.1%, n=23), strongly agree with published data (Hermsen et al. 2002, 

Lassmann et al. 2007, Poulogiannis et al. 2010a) 

4.3.5 Molecular associations and CRC subtypes 

In summary, 3 CRC molecular subtypes were observed in our cohort (Figure 4.26). 

Chromosomally stable/CIMP-L characterised by lower levels of CIMP, MSS and 

absence of chromosomal aberrations and TP53 mutations. The 2nd subtype was the 

CIN subtype characterised by CIN, MSS, TP53 mutations and distal tumours. The 3rd 

subtype was characterised by high levels of CIMP, CIN, MSS and KRAS and BRAF 

mutations. These results clearly confirm the molecular heterogeneity of sporadic 

CRC. Statistical analyses have also confirmed previous correlations between CIMP-

H and KRAS/BRAF mutations. Finally, the known association between TP53 

mutations and CIN was also confirmed.  

 

Interestingly, our CIMP-H samples were neither mutually exclusive with CIN nor 

correlated with low degree of CIN, as previously reported (Goel et al. 2007, Cheng et 

al. 2008). CIMP-H samples were characterised with CIN and they were not 

statistically different from other CIN samples (CIMP-L/N) (Mann Whitney U-test, p-

value = 0.88). This could be the result of sample size, however, the previous study 

that has shown a mutual exclusive relationship between CIMP-H and CIN employed 

LOH analysis to define CIN (Goel et al. 2007). LOH analysis is known to 

underestimate CIN and result in false negative chromosomally stable cases (Ogino 
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and Goel 2008). On the other hand, the cases in the study that established the 

association between CIMP-H and lower degree of chromosomal aberrations were 

mainly CIMP-H/MSI-H cases (Cheng et al. 2008). MSI and CIN have a well-

established mutually exclusive relationship (Ogino and Goel 2008). Therefore, the 

association between CIMP-H and the lower degree of CIN in this study could well be 

MSI dependent. Close examination of the data from the study by Cheng and 

colleagues has confirmed this suggestion. Four of the 60 investigated cases (6.67%) 

were CIMP-H/MSS samples and they had more chromosomal aberrations than 

CIMP-H/MSI-H samples. In fact, one case with the highest number of chromosomal 

aberrations was a CIMP-H/MSS sample. In their conclusion, the authors did suggest 

that the association between CIMP-H and low degree of CIN could reflect the inverse 

relationship between CIN and MSI and they anticipated the possible existence of the 

CIN/CIMP-H subset (Cheng et al. 2008). Nevertheless, a CIN/CIMP-H/MSS subtype 

has not been proposed by any of the current CRC molecular classification systems 

(Jass 2007, Issa 2008, Ogino and Goel 2008). Based on our data and the suggestion 

made by Cheng and colleagues, we propose the existence of a novel CIMP-H/MSS 

CRC subtype with high levels of CIN. However, this subtype needs to be confirmed in 

a larger sample size with more CIMP-H/MSS samples.  

 

Although the frequency of the CNA was similar across chromosomally unstable 

samples regardless of CIMP status, there were some differences in terms of common 

broad CNA patterns. Amplifications within 13q, 20q and chrX were less frequent in 

the CIMP-H samples. However, chr7 amplifications and 8p deletions were less 

common in the CIMP-L/N samples. Similar differences in the frequencies of 

amplifications within 13q and 20q were recently observed between CIN/MSS tumours 

and the rare CIN/MSI-H tumours (Poulogiannis et al. 2010a). These observations 

indicate that 13q and 20q amplifications play an important and specific role in the 

samples developing primarily through the CIN pathway. In contrast, CIMP-H and 
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CIMP-L/N chromosomally unstable samples had similar frequencies of 8q 

amplifications and 18q and 17p deletions. Likewise, MSI-H and MSS chromosomally 

unstable samples showed the same pattern for 8q amplifications (Poulogiannis et al. 

2010a). This might indicate that 8q aberrations might play a role in the development 

of CRC in general.  

 

Also, MS-MLPA technology was shown to be useful for testing CIMP. This will be 

essential if this molecular classification is to become of use in the clinical setting. 

Commonly used methylation techniques for determining CIMP are time consuming 

and they cannot be multiplexed. Moreover, they are all bisulphite treatment 

dependent, which in addition to requiring large amounts of DNA, introduces more 

variability. All the markers required for CIMP testing in CRC were multiplexed in a 

single MS-MLPA test that requires a small amount of DNA (as low as 50ng) without 

bisulphite treatment.  

 

Finally, two of the investigated samples, CA248 and CA208 demonstrate the 

opposite ends of the CRC molecular background. CA248 did not have any defects in 

the investigated molecular characteristics, the patient was diagnosed at the age of 

62, and had a very good survival. On the other hand CA208 had 5 somatic mutations 

in APC, TP53 (2 mutations), KRAS and BRAF, in addition to, CIMP-L and CIN. The 

patient was diagnosed with CRC at the age of 51 and died within 1 month due to 

cancer progression. These 2 extreme cases demonstrate the prognostic value of 

molecular characterisation. 
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5. Focal Minimal Common Regions in Microsatellite Stable 

Colorectal Cancer 

5.1 Introduction  

Three main genomic instabilities are thought to drive CRC development; CIN, MSI 

and CIMP (Migliore et al. 2011). CIN is the most common and is associated with 65-

85% of CRC cases (Derks et al. 2008, Issa 2008, Pino and Chung 2010, Migliore et 

al. 2011). Tumours that develop through the CIN pathway are characterised by 

frequent numerical and/or structural gains and losses of chromosomal segments or 

whole chromosomes (Rajagopalan et al. 2003). CIN is thought to drive CRC 

development through the amplification of oncogenes and the deletion of TSG (Kozma 

et al. 1994, Ozakyol et al. 2006, Tanaka et al. 2006, Martin et al. 2007, Ogino and 

Goel 2008, Migliore et al. 2011). This view is supported by the strong association 

reported between copy number abnormalities of cancer-related genes and their 

expression levels in CRC samples (Tsafrir et al. 2006, Sheffer et al. 2009, Brosens et 

al. 2010). 

 

Although most of the chromosomal aberrations arise in a random fashion, some are 

recurrent and are commonly found in different colorectal tumours and other types of 

cancer (Martin et al. 2007, Beroukhim et al. 2010, Brosens et al. 2010). These 

common aberrations were probably selected for during tumour development for 

providing a survival advantage. Recurrent CNA provide the tumour with a way of 

targeting TSG and oncogenes to acquire one or more of the cancer hallmarks and 

drive tumourigenesis (Martin et al. 2007). Several common chromosomal 

abnormalities have been identified through conventional cytogenetic techniques, 

such as metaphase CGH and fluorescent in situ hybridisation (FISH), and are 

thought to drive CRC development (Hermsen et al. 2002, Diep et al. 2006, Lassmann 
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et al. 2007).  These chromosomal defects include gains of 8q, 13q and 20q and 

losses of 18q, 5q, 8p, 17q (Hermsen et al. 2002, Lassmann et al. 2007). However, 

due to their large size, identification of specific driver genes within these regions is 

usually challenging (Carvalho et al. 2009, Brosens et al. 2010).  

 

Recent developments in the technologies used to define CIN, primarily array based 

methods, and advances in the computational algorithms used to interpret the results, 

have resulted in the acquisition of genome-wide information with high resolution 

(down to a few Kb) (Beroukhim et al. 2010, Brosens et al. 2010). This, in turn, has led 

to the identification of common focal chromosomal CNA. These focal CNA are 

usually smaller than 3Mb in size and thus contain a relatively small number of genes, 

hence simplifying the identification of driver genes (Brosens et al. 2010). Recently, 

focal CNA have led to the identification of several novel cancer driver genes with 

potential therapeutic and prognostic value in several cancer types including CRC 

(Andersen et al. 2010, Beroukhim et al. 2010, Bredel et al. 2010, Brosens et al. 2010, 

Poulogiannis et al. 2010a, Poulogiannis et al. 2010b, Veeriah et al. 2010, Dyrso et al. 

2011). Nonetheless, the picture is far from complete and many of these recurrent 

CNA and their target genes are yet to be identified (Andersen et al. 2010). 

 

Around 90.1% (n=48) of the 53 sporadic CRC cases investigated in this study were 

characterised by CIN and were MSS (Section 4.2.6.5). Only six of these CIN samples 

(~16%) were found to be CIMP-H. Therefore, CIN was considered the main form of 

genomic instability and a major driving force for CRC development amongst this 

cohort. The aims of the work described in this chapter were as follows. Firstly, 

identify the common CNA in the 45 CIN samples. Secondly, define the focal and 

highly recurrent minimal common regions (MCR) of the CNA and thirdly, identify any 

novel putative CRC driver genes located within these regions. A final aim was to 

confirm the aberrations in some of the candidate driver genes using qPCR.  
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5.2 Results 

5.2.1 Focal amplifications and deletions 

The aCGH data described in section 4.2.6 was used in the analysis performed in the 

following sections. Out of the 3097 CNA identified in the 45 chromosomally unstable 

samples, 1689 aberrations were focal (<3.0Mb) ranging in size from 0.0136Mb up to 

2.9992Mb (mean: 0.9518Mb, median: 0.7058Mb). The focal aberrations consisted of 

746 amplifications with a size range of 0.0136Mb-2.9897Mb (mean: 1.0882Mb, 

median: 0.9148Mb) and 943 deletions, with a size range of 0.02450Mb-2.9992Mb 

(mean: 0.8438Mb, median: 0.5747Mb).  

5.2.2 Minimal common regions 

The presence of several CNA arising at the same region in different samples allows 

definition of so-called “minimal common regions” (MCR). Figure 5.1 represents the 

concept of delimiting MCR by the combined analysis of several samples. The first 

step towards defining these MCR in the analysed cohort was attempted by using the 

context corrected common aberration (COCA) algorithm. 

 

Chromosome 10 aCGH data from 4 different cases, probes coloured in black represent 

genomic regions with a log2ratio around zero, probes coloured in red and green represent 

amplifications (log2ratio ≥ 0.5) and deletions (log2ratio ≤ -0.5) respectively. The 4 samples had 

amplifications of variable sizes. Combined analysis of the data delimits the minimal common 

region of amplification in the 4 cases. The MCR is marked by transparent red box. 

Figure 5.1 Delimiting an MCR from four different samples 
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5.2.2.1 Context corrected common aberration analysis results 

In order to identify recurrent CNA, COCA analysis was performed as described in 

Section 2.2.15.11.4. COCA employs several steps. Firstly, the software considers all 

the aberrations reported by the ADM2 as candidate regions. Secondly, it assigns a 

score for each of these candidate regions. This score is based on the ADM2 results 

and the amplitude of the aberration, thus, it reflects the potential significance of each 

aberration in each sample. Finally, the hypothesis that a specific aberration is a 

common aberration in a certain number of samples is tested and each common 

aberration assigned a p-value and a final COCA score (-log10 of the p-value), which 

reflects the significance of the recurrent CNA.  

 

When applied to the ADM2 results from the 45 cases, COCA identified 357 recurrent 

deletions and 286 recurrent amplifications. A graphical summary of the common CNA 

is presented in Figure 5.2. 

 

 

Figure 5.2 Heat map of common aberrations identified by COCA 

Red represents amplifications, green represents deletions, the intensity of the colour reflects 

the frequency and the width of the bars reflects COCA score. 



 187 

5.2.3 Focal minimal common regions 

Some of the small common CNA occur within larger aberrant regions. In some of the 

cases, the COCA report summarises the large common aberrations encompassing 

the smaller ones, in other words, maximum rather than minimum common regions. 

Moreover, based on the amplitude and the size of the aberration from different 

samples, COCA separates a single common aberrant region into several (Figure 5.3 

A). Therefore, the data output from COCA needed further analysis in order to 

accurately define the MCR.  

 

The MCR were defined by applying an algorithmic approach that scanned the 

common regions identified by COCA output and recalculated the predicted MCR 

when necessary. The algorithm was designed by Wei-Yu Lin (Post-Doctoral 

researcher in our group) and delimits the MCR using aberration breakpoints in that 

region. The genomic location at the start of the aberration lying furthest downstream 

(the maximum “start” of the common aberrations in the area) was subtracted from the 

genomic location at the most upstream end of another aberration (the minimum “end” 

of the common aberrations in the area) (Figure 5.3 B).  

 

All of the MCR identified by this algorithm were checked manually and aberrations 

that played a role in defining the size of the MCR, referred to as size determining 

events (SDE), were summarised (Figure 5.3B). Next, the MCR were filtered by size 

and only those with a size of 3Mbs or less were retained. These focal MCR (FMCR) 

were then filtered by frequency and any FMCR occurring in less than 10% of the 

cases were excluded from further analysis. The final step was to filter according to 

SDE, and FMCR were only kept when defined at least by 2 SDE (Figure 5.4). In 

order to increase the stringency of defining the significant FMCR, the minimum 

accepted COCA score was increased to ~2.0 (p-value of 0.01). These criteria 
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resulted in a list containing 64 deletions and 32 amplifications (Table 5.1 and Table 

5.2). 

 

 

Figure 5.3 Recurrent CNA area on chr20p (MACROD2 gene region) 

A) COCA output identifies several common aberrations in the presented area. B) The 

coloured lines represent different deletions in the area. The green transparent box represents 

the MCR identified by the in-house algorithm. Green arrows mark all the SDE in that area. 

The green circles mark the genomic locations of the maximum start and the minimum end of 

the 2 SDE that defined the MCR size. 
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Coloured horizontal lines represent aberrations. SDE are marked by horizontal green arrows 

and vertical transparent green boxes represent MCR. A) An MCR identified by 1 SDE, B) An 

MCR identified by 5 SDE. 

 

5.2.3.1 Summary of focal minimal common regions 

The 64 deleted FMCR ranged in size between 0.03-2.64Mb (median: 0.42Mb, mean: 

0.62Mb) and contained a total of 714 known genes with a range of 0-69 genes 

deleted per region (median: 4 genes, mean: 11 genes) (Table 5.1). The 32 amplified 

FMCR ranged between 0.03-1.96Mb in size (median: 0.83Mb, mean: 0.85Mb) and 

contained a total of 288 known genes with a range of 0-34 genes amplified per region 

(median: 3 genes, mean: 9 genes) (Table 5.2). It should be emphasised that for 

amplified FMCR, genes were only included in this count if they were fully contained 

within an FMCR. However, in the case of deleted FMCR, partially affected genes 

overlapping the size of delineation were included. Subsequently, deleted and 

amplified FMCR sets were checked for well-known cancer genes. To this end, the 

genes within the deleted and amplified FMCR were cross-checked against the 

complete gene list from the cancer gene census project 

Figure 5.4 Size determining events 



 190 

(http://www.sanger.ac.uk/genetics/CGP/Census/, accessed August, 2011), and the 

CRC and breast cancer driver genes identified in a relatively recent high throughput 

re-sequencing study (Wood et al. 2007). This analysis indicated the presence of 25 

“cancer genes” located within the deleted FMCR (~3.5% of the total number of 

deleted genes) and 11 “cancer genes” within the amplified FMCR (~3.8% of the total 

number of amplified genes). 

 

The occurrence of a cancer gene within an FMCR does not necessarily imply that it 

is a driver gene within that area. For some “cancer genes”, the type of FMCR 

(deleted or amplified) was not consistent with the known gene function, an example 

being the deletion of the known oncogene NRAS (Table 5.1). However, the gene 

function and the type of the FMCR were often consistent with expectation, examples 

include deletions of MAP2K4 and CDKN2C (Table 5.1) and amplification of FGFR1 

(Table 5.2). Perhaps, most importantly, the classical SMAD4 tumour suppressor 

deletion and oncogenic MYC amplification were both observed within deleted and 

amplified FMCR respectively. The frequency of both SMAD4 deletions and MYC 

amplifications in the 45 chromosomally unstable cases was high at ~53% (Table 5.1 

and Table 5.2). 

Table 5.1 Deleted FMCR 

Chromosomal  
location 

Start End Size (Mb) Recurrence (%) SDE Genes Cancer genes 

1p36.33 1479210 1851002 0.37 20.00 3 12 MLLT11, ARNT 

1p36.11-p35.3 26462948 28551543 2.09 24.44 4 46 ARID1A 

1p34.3 36375018 36734648 0.36 22.22 3 10 THRAP3 

1p33 49486071 50272200 0.79 22.22 3 1   

1p33-p32.3 50698666 51354770 0.66 20.00 2 2 CDKN2C 

1p31.1 78062885 78218246 0.16 20.00 2 3   

1p21.1 102307656 103278518 0.97 20.00 2 1 COL11A1 

1p13.2 112844021 115479162 2.64 17.78 2 29 NRAS, TRIM33 

1q21.2-q21.3 147644631 149711565 2.07 11.11 3 69   

1q31.3 196799738 196948778 0.15 13.33 2 1   

2p14 69914199 70385803 0.47 11.11 4 10   

2q33.1 197546654 198133273 0.59 13.33 4 6   

2q33.1 201432284 201850246 0.42 17.78 6 9   

2q37.1 232634311 232902204 0.27 11.11 2 1   

3p14.3 57521404 57652691 0.13 24.44 4 3   

3p14.2 60078018 61195823 1.12 31.11 7 1 FHIT 

http://www.sanger.ac.uk/genetics/CGP/Census/
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3q21.3 129834187 130497580 0.66 13.33 2 11 RPN1, CNBP 

3q26.1 163997028 164101976 0.10 17.78 2 0   

3q26.31 176177125 176426607 0.25 13.33 3 1   

4q22.1 91340468 92674544 1.33 33.33 8 2   

4q35.1 185447304 186062400 0.62 31.11 3 5   

5q12.1 59145099 59183979 0.04 22.22 2 1   

5q13.2 68438765 68906238 0.47 24.44 2 14   

5q35.1-q35.2 172069779 172570325 0.50 17.78 3 7   

6p22.1 26141996 26381758 0.24 15.56 2 26   

6p21.33-p21.32 31388886 32258223 0.87 13.33 3 63   

6p21.31 35536901 35954862 0.42 11.11 2 11 FANCE 

6q21 111214198 111443834 0.23 15.56 2 4   

6q26 162357125 163049854 0.69 22.22 7 1   

7q22.1 99307476 101900781 2.59 17.78 5 68 CUX1 

7q22.2 105680893 105712574 0.03 11.11 3 1   

8p22 16198781 16863085 0.66 48.89 2 0   

8p11.23 39431213 39480174 0.05 22.22 3 0   

8q11.21 48247963 48556480 0.31 13.33 4 1   

8q24.3 145103393 145715756 0.61 13.33 3 36 RECQL4 

9q21.13 73537301 74412105 0.87 17.78 3 7   

9q22.2 91117607 91411397 0.29 22.22 2 5   

10q23.32-q23.33 94363548 94454268 0.09 22.22 3 2   

11p15.4 3712771 3873442 0.16 15.56 3 4 NUP98 

11p15.4 9172449 9363610 0.19 22.22 5 3   

11p11.2 47337056 47964454 0.63 11.11 4 14   

11p11.2-p11.12 48215588 50164184 1.95 13.33 5 9   

11q13.1 63705254 63872837 0.17 15.56 2 17   

12p13.31 6314214 6963027 0.65 11.11 4 37 ZNF384, ATN1 

12q14.2 63277389 63368109 0.09 20.00 4 1   

12q24.31 122199734 122593396 0.39 17.78 5 8   

14q12 23615376 23888497 0.27 24.44 3 28   

14q13.2 34108596 34950339 0.84 28.89 5 9   

15q21.3 53286334 53506655 0.22 28.89 2 4   

15q26.1 88098779 89290699 1.19 31.11 4 20   

15q26.1 91163633 91270553 0.11 28.89 3 1 BLM, CRTC3, IDH2 

16p13.3-p13.2 6132536 7018275 0.89 24.44 7 1   

17p13.1 8743396 8866516 0.12 46.67 2 1   

17p13.1-p12 10957541 12400968 1.44 48.89 5 3 MAP2K4 

18p11.21 11759039 12046289 0.29 42.22 2 4   

18q12.2 32736160 32823241 0.09 51.11 2 1   

18q21.2 46648889 46859053 0.21 53.33 3 3 SMAD4 

19p13.3 909095 1223851 0.31 20.00 4 16 STK11 

19q13.11 17936643 18549005 0.61 20.00 2 21 ELL 

20p12.1 14376202 16071135 1.69 37.78 10 1   

21q22.11 33554005 33651205 0.10 28.89 7 3   

22q13.1 37647505 38597446 0.95 26.67 3 18 PDGFB 

22q13.33 48580338 49052472 0.47 26.67 3 16   

Xq25 122938369 123237260 0.30 15.56 3 1   

 

Table 5.1 summarises the deleted FMCR identified in the 45 chromosomally unstable 

samples. FMCR are arranged by genomic location (hg18 assembly). Genes within the FMCR 

were determined according to the UCSC genome browser (http://genome.ucsc.edu/, 

accessed August, 2011). “Cancer genes” are derived from the cancer gene census and Wood 

et al. 2007. 

 

http://genome.ucsc.edu/
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Table 5.2 Amplified FMCR 

Chromosomal  
location 

Start End Size (Mb) Recurrence (%) SDE Genes Cancer genes 

1p36.32 2412144 3630036 1.22 26.67 7 11 PRDM16, TNFRSF14 

1p36.13 17783440 18947883 1.16 17.78 4 4 PAX7 

1p35.1-p34.3 33866043 34889487 1.02 15.56 4 2   

1p34.3 36881028 37535891 0.65 20.00 5 1   

1q21.3 150753997 150969016 0.22 22.22 5 19   

1q21.3-q22 153171645 153567906 0.40 20.00 4 29 MUC1, THBS3 

1q32.1 203312447 205274691 1.96 15.56 2 34 ELK4, SLC45A3 

2p13.2-13.1 72867953 73995941 1.13 17.78 3 16   

2q11.2 96118572 97026741 0.91 15.56 3 21 CNNM4 

2q14.2 120835644 121713081 0.88 15.56 3 1   

2q21.2 132747027 132833787 0.09 17.78 2 0   

2q33.1 199239915 200062504 0.82 15.56 2 1   

2q35 218354227 218556081 0.20 20.00 5 1   

3p25.3 10406898 10978905 0.57 15.56 2 1   

5p15.33 131946 1578616 1.45 26.67 2 22 SLC6A3 

6p21.2-p21.1 39059270 40756937 1.70 24.44 2 9   

7p22.3-p22.2 1262920 2812963 1.55 46.67 2 18   

7p22.1-p21.3 7033162 7829887 0.80 48.89 5 4   

8p12-p11.23 38303146 39234126 0.93 15.56 5 7 FGFR1 

8q23.3 113827791 114547454 0.72 51.11 4 0   

8q24.21 128331769 128940144 0.61 53.33 2 1 MYC 

10q22.3 78238542 79084656 0.85 20.00 4 1   

10q26.3 133770546 135084977 1.31 15.56 3 22   

11p15.5-p15.4 916837 2837148 1.92 33.33 10 31   

12p13.32-p13.31 4282429 5364999 1.08 40.00 4 12   

14q11.2 21680489 21935641 0.26 20.00 3 0   

15q21.3-q22.1 55517770 56143371 0.63 11.11 2 2   

15q24.1 72478743 72569181 0.09 17.78 2 2   

16p13.3 738567 1229020 0.49 28.89 4 13   

17q11.2-q12 28205256 29488626 1.28 28.89 3 2   

22q11.21 18517833 18686313 0.17 20.00 4 1   

22q13.31 44865639 44898001 0.03 17.78 3 0   

 

Table 5.2 summarises the amplified FMCR identified in the 45 chromosomally unstable 

samples. FMCR are arranged by genomic location (hg18 assembly). Genes within the FMCR 

were determined according to the UCSC genome browser (http://genome.ucsc.edu/, 

accessed August, 2011). “Cancer genes” are derived from cancer gene census and Wood et 

al. 2007. 

 

5.2.3.2 FMCR and published focal aberrations in CRC 

In order to further validate our panel of deleted and amplified FMCR, they were 

compared to previously identified focal aberrations in CRC samples. Common 

chromosomal aberrations identified in four recent studies on CRC were used for the 

comparison (Martin et al. 2007, Leary et al. 2008, Andersen et al. 2010, Brosens et 

al. 2010). A summary of the technologies used in identifying the chromosomal 

http://genome.ucsc.edu/
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aberrations, the platforms and the resolutions, in addition to the number of primary 

CRC cases and CRC cell lines included in each study is presented in Table 5.3. 

Table 5.3 Previously published studies on focal aberrations in CRC 

 Martin et al. 2007 Leary et al. 2008 Brosens et al. 2010 Andersen et al. 2010 

Technology aCGH SNP array aCGH SNP array 

Platform Agilent 1AV2 SNP6.0 Agilent 44K SNP6.0 

Resolution ~55Kb ~30-50Kb ~43Kb ~30-50kb 

CRC Cases 42 36 38 33 

CRC cell lines 37 NA NA 40 

Adenomas NA NA NA 40 

 

In order to perform a valid comparison, only focal aberrations ≤3Mb in size were 

included. The combined total of focal aberrations identified in these studies was 187 

amplifications and 189 deletions. The published focal aberrations from each study 

were compared to identify any levels of similarity. The 4 studies had 10 overlapping 

focal deletions (5.3%) and 29 overlapping focal amplifications (15.5%). The published 

aberrations were then compared to the FMCR identified in our study. In total, 27 

overlapped focal deletions (42.2% of our identified deleted FMCR) and 11 

overlapped focal amplifications (34.4% of our identified amplified FMCR) were 

observed.  

 

The common overlapping areas between our FMCR and the published focal 

aberrations were investigated in order to check whether they were biologically 

significant. This was performed by examining if the overlapped regions contained the 

known cancer genes. Four of the overlapped FMCR carried established cancer 

genes (MYC, FGFR1, SMAD4 and MAP2K4). The overlapped regions were smaller 

in all cases compared to identified FMCR, and they all contained these cancer 

genes. Interesting examples were FGFR1 regions, where an overlap between our 

identified amplification FMCR of 931Kb (containing 7 genes) (Table 5.2), and a 

published focal amplification of 1475Kb resulted in a delimited region of 145Kb that 

contained only 2 genes, one of which was FGFR1.  
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5.2.3.3 FMCR and published CNA across several cancer types 

A large somatic CNA study was recently performed in 26 different cancer types, 

including CRC (Beroukhim et al. 2010). The study identified a list of the 20 most 

common somatic deletions and amplifications across the analysed cancer types. 

Moreover, a candidate driver gene was also selected for each of the common 

aberrations (Table 5.4).  

 

A comparison between our FMCR and the most common regions in the above study 

revealed an overlap with five of the deletion areas (25%) and 3 of the amplification 

areas (15%). All the candidate genes identified by Beroukhim and colleagues in their 

study were contained within the overlapping areas from our FMCR. 

Table 5.4 Candidate driver genes of the most common cancer CNA 

Deletion Amplification 

Chromosome Gene Chromosome Gene 

1p DFFB 1p MYCL1 

2q LRP1B 1q MCL1 

2q BOK 3q PRKC1 

3p FHIT 5p TERT 

4q TMSL3 7p EGFR 

4q FAT1 8p FGFR1 

5q PLK2 8p IKBKB 

6q PARK2 8q MYC 

7q TRB 11q CCND1 

8p CSMD1 12p KRAS 

9p PTPRD 12q CDK4 

9p CDKN2A/B 12q HMGA2 

10q PTEN 12q MDM2 

12p ETV6 12q CCT2 

13q RB1 14q NKX2-1 

16p A2BP1 15q IGF1R 

16q WWOX 17q ERBB2 

19q PPAP2C 19q CCNE1 

20p MACROD2 22q CRKL 

22q PPM1F Xq IRAK1 

 

Table 5.4 summarises the candidate driver genes identified across 26 different cancer types. 

Genes in bold were also found in the FMCR identified in this study (Beroukhim et al. 2010). 
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5.2.3.4 FMCR and pathway analysis 

In order to search for any specific patterns or pathways affected by the genes within 

the deleted or amplified FMCR, the Database for Annotation, Visualisation, and 

Integrated Discovery (DAVID) v6.7 was used (http://david.abcc.ncifcrf.gov/, accessed 

August, 2011). DAVID is a high throughput data mining software that can be used to 

analyse large gene lists (Huang da et al. 2009). DAVID performs enrichment analysis 

(based on biological annotations for the target genes) to identify any biological 

pathways that are statistically significantly over-represented in the analysed gene list  

(Huang da et al. 2009). The identified genes within the deleted and the amplified 

FMCR were analysed separately.  

5.2.3.4.1 Deleted FMCR pathway analysis 

For the deleted regions, the most enriched cancer-related pathway was Apoptosis (p-

value = 0.014) (Figure 5.5). Ten apoptotic genes (CASP3, CASP8, CASP10, CFLAR 

NFKBIA, BAD, PIK3R2, PIK3R5, TNFRSF1A and TNF) were found to be within the 

deleted FMCR. Seven of these genes have pro-apoptotic roles and 3 are anti-

apoptotic (Table 5.5).  

Table 5.5 Deleted apoptotic genes 

Proapoptotic Antiapoptotic 

Gene Frequency% (n)* Gene Frequency% (n)* 

CASP3 31.1 (14) PIK3R5 46.7 (21) 

NFKBIA 28.9 (13) PIK3R2 20.0 (9) 

CASP8 17.8 (8) CFLAR 17.8 (8) 

CASP10 17.8 (8)   

BAD 15.6 (7)   

TNF 13.3 (6)     

TNFRSF1A 11.1 (5)     

* Frequency out of the 45 chromosomally unstable tumours 

 

http://david.abcc.ncifcrf.gov/
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Figure 5.5 Apoptotic genes in the deleted FMCR (DAVID output) 

DAVID output showing the apoptosis signalling pathway with deleted genes marked by a red star. 

 

Another cancer related pathway that was found to be enriched within deleted FMCR 

was the P53 signalling pathway (p-value = 0.079). In addition to the apoptotic genes 

CASP8 and CASP10, 5 more genes from this pathway were also deleted; CCNB1, 

GADD45G, SERPINE1, SESN2 and SFN, all of which have reported anti-survival 

functions (Figure 5.6). 

Table 5.6 Deleted P53 pathway genes 

Gene Frequency% (n)* 

CCNB1 24.4 (11) 

SESN2 24.4 (11) 

SFN 24.4 (11) 

GADD45G 20.0 (9) 

SERPINE1 15.6 (7) 

* Frequency out of the 45 chromosomally unstable tumours 
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Figure 5.6 P53 signalling pathway and the deleted FMCR (DAVID output) 

DAVID output showing the P53 signalling pathway, with deleted genes marked by a red star. 

 

5.2.3.4.2 Amplified FMCR pathway analysis 

For amplified FMCR, the oncogenic MAPK signalling pathway was the only 

statistically significantly over-represented pathway (p-value = 0.032) (Figure 5.7). 

Nine genes in the MAPK pathway (CACNA1H, DUSP2, DUSP8, FGF23, FGF6, 

FGFR1, NTF3, ELK4, MAPKAPK2 and MYC) were found to be within the amplified 

FMCR. Seven of these genes are already known to promote growth and survival 

(Table 5.7).  

Table 5.7 Amplified MAPK genes 

Pro-survival Anti-survival 

Gene Frequency % (n) Gene Frequency % (n) 

MYC 53.3 (24) DUSP8 33.3 (15) 

FGF23 40.0 (18) DUSP2  15.6 (7) 

FGF6 40.0 (18)     

MAPKAPK2 15.6 (7)     

ELK4 15.6 (7)     

CACNA1H 28.9 (13)     

FGFR1 15.6 (7)     

* Frequency out of the 45 chromosomally unstable tumours 
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DAVID output showing the MAPK signalling pathway with amplified genes marked by a red star. 

5.2.3.5 Candidate FMCR and genes 

In order to reduce our list of FMCR and identify strong candidate driver genes for 

follow up studies, the FMCR criteria described in Section 5.2.3 were made more 

stringent. Firstly, candidate FMCR were defined by 4 SDE, instead of 2 (i.e. ~10% of 

the chromosomally unstable samples had targeted CNA in the region). Secondly, 

instead of defining “focal” by size only, a candidate FMCR was considered if it had a 

maximum of 12 genes in the aberrant area (i.e. ≤3.0Mb and ≤12 genes). This 

modification was introduced to help focus the search for candidate driver genes. The 

more stringent FMCR definition reduced the number of candidate FMCR to 17 

deletions (Table 5.8) and 11 amplifications (Table 5.9). The deleted regions had a 

size range of 0.09-1.95Mb (mean: 0.74Mb, median: 0.59Mb) and the total number of 

genes in these areas was 71 with a range of 1-10 genes (median: 3, mean: 4.2) 

(Table 5.8). The amplified regions had a size range of 0.17-1.22Mb (mean: 0.80Mb, 

Figure 5.7 MAPK pathway defects 
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median: 0.85Mb) and a total of 44 genes with a range of 0-12 (mean: 4, median: 2) 

(Table 5.9). 

Table 5.8 Shortlist of deleted FMCR 

Chromosomal  
location 

Start End Size (Mb) Recurrence (%) SDE Genes Candidate genes 

2p14 69914199 70385803 0.47 11.11 4 10 GMCL1, MAD1,  PCBP1 

2q33.1 197546654 198133273 0.59 13.33 4 6   

2q33.1 201432284 201850246 0.42 17.78 6 9 CASP8, CASP10 

3p14.3 57521404 57652691 0.13 24.44 4 3   

3p14.2 60078018 61195823 1.12 31.11 7 1 FHIT 

4q22.1 91340468 92674544 1.33 33.33 8 2 TMSL3 

6q26 162357125 163049854 0.69 22.22 7 1 PARK2 

8q11.21 48247963 48556480 0.31 13.33 4 1   

11p15.4 9172449 9363610 0.19 22.22 5 3   

11p11.2-p11.12 48215588 50164184 1.95 13.33 5 9 FOLH1 

12q14.2 63277389 63368109 0.09 20.00 4 1   

12q24.31 122199734 122593396 0.39 17.78 5 8 CDK2AP1 

14q13.2 34108596 34950339 0.84 28.89 5 9 NFKBIA 

16p13.3-p13.2 6132536 7018275 0.89 24.44 7 1 A2PB1 

17p13.1-p12 10957541 12400968 1.44 48.89 5 3 MAP2K4 

20p12.1 14376202 16071135 1.69 37.78 10 1 MACROD2 

21q22.11 33554005 33651205 0.10 28.89 7 3 IFNAR1, IFNAR2 

 

Table 5.9 Shortlist of amplified FMCR 

Chromosomal  
location 

Start End Size (Mb) Recurrence (%) SDE Genes Candidate genes 

1p36.32 2412144 3630036 1.22 26.67 7 11 PRDM16 

1p36.13 17783440 18947883 1.16 17.78 4 4 PAX7 

1p35.1-p34.3 33866043 34889487 1.02 15.56 4 2   

1p34.3 36881028 37535891 0.65 20.00 5 1   

2q35 218354227 218556081 0.20 20.00 5 1 TNS1 

7p22.1-p21.3 7033162 7829887 0.80 48.89 5 4 RPA3 

8p12-p11.23 38303146 39234126 0.93 15.56 5 7 FGFR1 

8q23.3 113827791 114547454 0.72 51.11 4 0 NA 

10q22.3 78238542 79084656 0.85 20.00 4 1 KCNMA1 

12p13.32-p13.31 4282429 5364999 1.08 40.00 4 12 FGF23, FGF6 

22q11.21 18517833 18686313 0.17 20.00 4 1   

 

5.2.3.5.1 Deleted FMCR 

In total 71 genes were affected by the 17 deleted FMCR. Sixteen of these genes 

(~22.5%) were cancer-related with known or potential anti-tumourigenesis activity 

(Table 5.8). Five of these genes (FHIT, TMSL3, PARK2, A2BP1 and MACROD2) 

were within the 20 most common deleted CNA in CRC and various other cancer 

types (Section 5.2.3.3) (Beroukhim et al. 2010). PARK2 is an interesting example as 

it was initially identified as a candidate TSG in glioblastoma multiforme (GBM) and 
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CRC through focal MCR (Veeriah et al. 2010) and in vitro and in vivo experiments 

have subsequently confirmed its anti-tumour activity in CRC (Poulogiannis et al. 

2010b). MAP2K4 was also reported to be commonly deleted in CRC (Leary et al. 

2008). None of the other genes have previously been reported to be deleted in CRC. 

The following sections briefly describe the candidate genes identified in the deleted 

FMCR. 

5.2.3.5.1.1 2p14 

This region contained 3 candidate CRC TSG; GMCL1, MAD1 and PCBP1. Germ 

cell-less homolog 1 (GMCL1) was previously proposed as a TSG as it was shown to 

increase the transcriptional activity of P53 (Masuhara et al. 2003). MAD1 (encoding 

MAX dimerization protein 1), also known as MXD1, was shown to have anti-tumour 

activity and its protein was shown to be under-expressed in several human cancers 

including CRC (Gunes et al. 2000, Toaldo et al. 2010). Finally, PolyC-RNA-binding 

protein 1 (PCBP1) was shown to inhibit the oncogenic kinase AKT in CRC (Wang et 

al. 2010). 

5.2.3.5.1.2 2q33.1 

Deletion of this region has been previously implicated in several cancers, including 

gastric and lung cancer and neuroblastoma (Otsuka et al. 1996, Nishizuka et al. 

1998, Teitz et al. 2000, Takita et al. 2001, Shivapurkar et al. 2002a, Geelen et al. 

2004). The region contains the well characterised pro-apoptotic genes CASP8 and 

CASP10 (Zhang et al. 2004). CASP8 inactivating mutations were previously reported 

in ~5% of advanced CRC cases (Kim et al. 2003). 

5.2.3.5.1.3 11p11.2-p11.12 

Folate hydrolase gene (FOLH1) was considered the candidate driver gene in this 

deleted FMCR. FOLH1 plays a role in folic acid absorption by hydrolysing folate 

bound to polygultamate. Lower levels of folic acid are thought to increase the risk of 
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CRC and to affect the efficiency of some chemotherapeutic agents (Giovannucci et 

al. 1995, DeVos et al. 2008, Sadahiro et al. 2010, Porcelli et al. 2011).     

5.2.3.5.1.4 12q24.31 

This region contains a candidate TSG which encodes the cell cycle regulator protein 

cdk2-associating protein1 (CDK2AP1). CDK2AP1 was recently shown to have anti-

metastatic activities in squamous cell carcinoma and prostate cancer (Zolochevska 

and Figueiredo 2010a, Zolochevska and Figueiredo 2010b). 

5.2.3.5.2 14q13.2 

NFKBIA (encoding nuclear factor of κ-light polypeptide gene enhancer in B-cells 

inhibitor-α) is the candidate TSG in this region. NFKBIA was recently reported to be 

deleted in GBM (Bredel et al. 2010). Over-expression of NFKBIA in GBM cell lines 

had anti-growth, anti-survival and anti-metastatic activities (Bredel et al. 2010). 

Moreover, inhibiting NFKBIA expression in lung cancer cell lines was shown to 

induce resistance to chemotherapeutic agents (Bivona et al. 2011). Interestingly, 

NFKBIA SNPs were also previously associated with CRC risk (Gao et al. 2007).  

5.2.3.5.2.1 21q22.11 

Interferon receptors genes (IFNAR1 and 2) were predicted to be TSG because their 

protein levels were shown to be downregulated in bladder cancer, and correlated 

with advanced stages and resistance to chemotherapy (Zhang et al. 2010).  

5.2.3.5.3 Amplified FMCR 

In total, 44 genes were within the amplified FMCR. Eight (18.2%) of these genes 

were known or predicted to have oncogenic activities (Table 5.9). FGFR1 was within 

the 20 most common amplified CNA in CRC and various other cancer types (Section 

5.2.3.3). FGF6 and FGF23 were previously reported to be amplified in CRC (Sheffer 

et al. 2009). The rest of the genes were not previously reported to be amplified in 

CRC. The following sections briefly describe the candidate genes in the amplified 

FMCR. 
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5.2.3.5.3.1 1p36.32 

PR domain-containing 16 gene (PRDM16) is a known oncogene implicated in acute 

myeloid leukaemia (AML) and osteosarcoma (Man et al. 2004, Shing et al. 2007) 

5.2.3.5.3.2 1p36.13 

This region contains the transcription factor paired box gene 7 (PAX7). PAX7 is 

known to play an important role in alveolar rhabdomyosarcoma by forming a fusion 

protein with forkhead in rhabdomyosarcoma gene (FKHR) (Barr et al. 1996). PAX7 is 

amplified in 20% of the alveolar rhabdomyosarcoma cases with the fusion gene (Barr 

et al. 1996). 

5.2.3.5.3.3 2q35 

Tensin 1 gene (TNS1) is the only gene in this region. TNS1 overexpression in vitro 

was previously shown to significantly promote cell migration in fibroblasts (Chen et al. 

2002). 

5.2.3.5.3.4 7p22.1-p21.3 

Replication protein A3 gene (RPA3) located in this area was recently shown to be 

amplified in metastatic melanoma (focal MCR) and to play an essential role in tumour 

invasion (Kabbarah et al. 2010).  

5.2.3.5.3.5 10q22.3 

Large conductance calcium-activated potassium channel alpha subunit gene 

(KCNMA1), the only gene in this area, was previously shown to be amplified in 

prostate cancer cases and overexpressed in metastatic breast cancer (Bloch et al. 

2007, Khaitan et al. 2009). Functional KCNMA1 assays confirmed a role in cancer 

cell growth and invasion in vitro (Bloch et al. 2007, Khaitan et al. 2009). 

5.2.3.6 FMCR confirmation using TaqMan copy number assays 

The reproducibility of the aCGH experiments (Section 4.2.6.4) was confirmed by 

performing duplicate experiments. In order to check the accuracy of the aCGH 
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platforms in detecting these focal aberrations, TaqMan copy number assays (qPCR) 

were used (Section 2.2.9.2). Three candidate genes (PARK2, NFKBIA and 

KCNMA1) that occur within the shortlisted FMCR, were chosen to be verified by 

qPCR. PARK2 and NFKBIA reside within deleted FMCR (6q26 and 14q13.2 

respectively) (Table 5.8) and KCNMA1 resides within an amplified FMCR (10q22.3) 

(Table 5.9). PARK2 was chosen because deletions in this gene were recently 

observed (and also confirmed) to occur in CRC and other cancers (Beroukhim et al. 

2010, Poulogiannis et al. 2010b, Veeriah et al. 2010). NFKBIA (deleted) and 

KCNMA1 (amplified) were selected because they are novel and potentially 

interesting aberrations in CRC (Sections 5.2.3.5.2 and 5.2.3.5.3.5).  

5.2.3.6.1 qPCR design 

Pre-designed TaqMan copy number assays were chosen from the ABI website 

(www.appliedbiosystems.com, accessed April, 2011). A specific assay was chosen 

for each of the 3 genes. Figure 5.8 - Figure 5.10 represent the locations of the 

PARK2, KCNMA1 and NFKBIA probes that are available on the Agilent 180K array 

platform. Additionally, the locations of the ABI TaqMan probes that were selected for 

the confirmatory qPCR experiments are shown. As described in Section 2.2.9.2, 

TaqMan copy number assays require a reference assay for relative copy number 

quantification. Two pre-designed and optimised copy number reference assays were 

available from ABI (TERT and RNAP). In order for the TaqMan copy number assays 

to be accurate, the reference probes should align to a diploid area of the genome. 

The genomic ploidy status of PARK2, KCNMA1, NFKBIA and the 2 reference assays 

according to aCGH results are shown in Table 5.10. 

http://www.appliedbiosystems.com/
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Figure 5.8 PARK2 FMCR area and TaqMan copy number assay 

The FMCR area of PARK2 on the genomic workbench software (Hg18). The aberrations 

appear as coloured lines, the green dots present deleted probes and the transparent green 

box represents the area shown in panel B. B) PARK2 from the UCSC genome browser 

(Hg19) showing the Agilent probe locations from different platforms. The 180K array probes 

are marked by the box. The red star shows the approximate location of the TaqMan copy 

number probe. The CNVs located in the area are also shown. 
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Figure 5.9 KCNMA1 FMCR area and TaqMan copy number assay 

A) The FMCR area of KCNMA1 on the genomic workbench software (Hg18). The aberrations 

appear as coloured lines, the red dots present amplified probes and the transparent red box 

represents the area shown in panel B. B) KCNMA1 from the UCSC genome browser (Hg19) 

showing the Agilent probes locations from different platforms. The 180K array probes are 

marked by the box. The red star shows the approximate location of the TaqMan copy number 

probe. The CNVs located in the area are also shown. 
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Figure 5.10 NFKBIA FMCR area and TaqMan copy number assay 

A) The FMCR area of NFKBIA on the genomic workbench software (Hg18). The aberrations 

appear as coloured lines, the green dots present deleted probes and the transparent green 

box represents the area shown in panel B. B) NFKBIA from the UCSC genome browser 

(Hg19) showing the Agilent probes locations from different platforms. The 180K array probes 

are marked by the box. The red star shows the approximate location of the TaqMan copy 

number probe. 
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Table 5.10 Genomic status of PARK2, NFKBIA, KCNMA1, TERT & RPPH1 

 
Target Genes Reference genes 

Sample PARK2  NFKBIA KCNMA1  TERT RPPH1 

T045           

T053           

T079           

T080           

T088           

T090           

T097           

T098           

T107           

T114           

T142           

T158           

T203           

T206           

T208           

T213           

T214           

T221           

T223           

T244           

T249           

T828           

T863           

T1350           

 

Table 5.10 depicts the samples with PARK2 and NFKBIA deletions or KCNMA1 

amplifications. The table also summarises the genomic ploidy status of the reference genes 

TERT and RPPH1 according to the aCGH results in the same CRC cases. Green, red and 

white boxes represent deletion, amplification and normal status respectively.  

 

5.2.3.6.2 Assessment of PARK2 deletion by qPCR 

In total, 10 tumour DNA samples (22.2%) had deletions across the PARK2 gene area 

(Table 5.10). T249 and T828 could not be confirmed because the genomic status of 

both TERT and RPPH1 (the reference assays) was not diploid (Table 5.10). Also, 

T90 could not be confirmed, because its focal deletion was outside the area covered 

by the TaqMan probe. For the rest of the deleted samples, the genomic status of 

either the reference assay TERT or RPPH1 was diploid. Copy number TaqMan 

assays steps were carried out according to the manufacturer‟s recommendations as 

described in Section 2.2.9.2.  
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Tumour DNA samples that required confirmation were T097, T114, T206, T142, 

T221, T223 and T1350. qPCR was performed on each tumour DNA sample and its 

normal control DNA pair in 4 replicates, and the findings are reported in Figure 5.11. 

PARK2 deletions were confirmed in all of the tumour DNA samples except for T97 

and T1350 (Figure 5.11). Table 5.11 summarises the calculated copy number ranges 

and their equivalent estimated copy number according to the Copy Caller software 

v1.0. Both T097 and T1350 calculated copy number was 1.67 and N097 and N1350 

calculated copy numbers were 2.00, thus the results indicate a clear reduction in the 

copy number. However, as their calculated copy number was >1.5, the estimated 

copy number was 2. A closer look at the aCGH results of PARK2 area in T097 and 

T1350 could explain the qPCR results (Figure 5.12). As shown in the Figure, T097 

and T1350 clear focal deletions targeting PARK2. However, the deletions seem to be 

of low amplitude (indicated by low log2ratio) in comparison, for example, to T142. 

 

Finally, all normal samples had a calculated copy number value very close to 2.0, 

except N142 which had a calculated copy number of 2.41. This might be caused by 

the CNVs in the area as shown above in Figure 5.8. 

 

Table 5.11 Calculated and estimated copy numbers 

Copy number 

Calculated  Estimated  

<0.5 0 

≥0.5-<1.5 1 

≥1.5-<2.5 2 

≥2.5-<3.5 3 

Table 5.11 summarises the calculated copy number ranges and their equivalent estimated 

copy number according to the copy caller software. 
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Figure 5.11 PARK2 QPCR results 

The Bars reflect the calculated copy number of the samples. The error bars represent the 

standard deviation based of 4 replicates within the same experiment. The colours of the bars 

reflect the estimated copy number. 
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Chromosome 6 aCGH data from T097, T142 and T1350, probes coloured in black represent 

genomic regions with a log2ratio around zero, probes coloured in red and green represent 

amplifications (log2ratio ≥ 0.5) and deletions (log2ratio ≤ -0.5) respectively. Closer look at 

PARK2 show focal deletions with variable amplitudes (reflected by the log2ratio values). 

 

5.2.3.6.3 Assessment of KCNMA1 amplification by qPCR 

In total, 9 tumour DNA samples (20.0%) had amplifications in KCNMA1 (Table 5.10). 

T45 could not be confirmed because the genomic status of both TERT and RPPH1 

(the reference assays) was not diploid. Unfortunately, T107 and T863 could not be 

confirmed due to insufficient amounts of remaining DNA. For the rest of the samples, 

T079, T142, T206, T208, T213 and T1350, qPCR tests were performed as 

described. Paired normal DNA samples were also tested. The results are 

summarised in Figure 5.13. As shown in the Figure, qPCR confirmed KCNMA1 

Figure 5.12 T097, T142 and T1350 PARK2 aCGH results 
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amplifications in all of the tested tumour DNA samples. T208 calculated copy number 

(15.58) was very high, which is reflected in the aCGH results showing very high 

amplitude amplification (Figure 5.14).   

 

 

 

Figure 5.13 KCNMA1 qPCR results 

The Bars reflect the calculated copy number of the samples. The error bars represent the 

standard deviation based of 4 replicates within the same experiment. The colours of the bars 

reflect the estimated copy number. 
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Chromosome 10 aCGH data from T208, probes coloured in black represent genomic regions 

with a log2ratio around zero, probes coloured in red and green represent amplifications 

(log2ratio ≥ 0.5) and deletions (log2ratio ≤ -0.5) respectively. Very high log2ratio in KCNMA1 

area reflecting high amplitude amplification. 

 

5.2.3.6.4 Assessment of NFKBIA deletion by qPCR 

In total, 13 samples had deletions across the NFKBIA area. However, only 7 were 

available for confirmation. T045, T080, T158, T249 and T828 could not be confirmed 

because the genomic status of both TERT and RPPH1 (the reference assays) was 

not diploid (Table 5.10). Moreover, T107 could not be confirmed due to insufficient 

amounts of remaining DNA. For the rest of the samples, T079, T088, T098, T114, 

T203, T214 and T244, qPCR testing was performed as described, earlier and the 

results of the tumour and normal DNA pairs are summarised in Figure 5.15. As 

shown in the figure, NFKBIA deletions were confirmed in all of the samples, with the 

exception of T244 (Figure 5.15). Close inspection of the aCGH data representing the 

NFKBIA area in T244 could potentially explain the results (Figure 5.16). As shown in 

the Figure, T244 had a focal deletion targeting NFKBIA. However, the deletion was of 

very low amplitude (indicated by a low log2ratio) in comparison to, for example T203. 

Figure 5.14 T208 KCNMA1 aCGH results 
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The Bars reflect the calculated copy number of the samples. The error bars represent the 

standard deviation based of 4 replicates within the same experiment. The colours of the bars 

reflect the estimated copy number. 

 

Figure 5.15 NFKBIA QPCR results 
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Chromosome 14 aCGH data from T244 and T203, probes coloured in black represent 

genomic regions with a log2ratio around zero, probes coloured in red and green represent 

amplifications (log2ratio ≥ 0.5) and deletions (log2ratio ≤ -0.5) respectively. Closer look at 

NFKBIA show focal deletions with variable amplitudes (reflected by the log2ratio values). 

5.2.3.7 Candidate FMCR and survival 

In order to begin to assess the clinical significance of the above candidate deleted 

and amplified FMCR, a survival analysis was performed by Dr Angela Cox. This 

preliminary analysis was only performed for chromosomally unstable cases from the 

Sheffield population sample set (n=33) as the survival follow up data was not 

available for the cases from the Sheffield Royal Hallamshire Tissue bank sample set 

Figure 5.16 T244 and T203 NFKBIA aCGH results 
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(Section 2.1.3.4). The analysis suggested an association between KCNMA1 

amplification and poor prognosis (p=0.05) (Figure 5.17). There was no relationship 

between any of the other candidate FMCR and survival (p>0.05). 

 

Figure 5.17 KCNMA1 amplification and survival 

Kaplan-Meier survival analysis estimated a worse survival of CRC cases with KCNMA1 

amplification (red line) in comparison to CRC cases without KCNMA1 amplification (blue line). 

 

It was noticed that the aCGH data showed that 2 of the 7 cases with KCNMA1 

amplification were focal and of high amplitude (T079 and T208) (Figure 5.18). The 

estimated copy number for these samples based on the aCGH results was >5 and 

this was quantitatively confirmed by qPCR (Figure 5.13). These 2 patients were 

diagnosed with CRC before 55 years of age and both died within 5 months of 

diagnosis due to CRC progression (Table 5.12). None of the remaining cases with 

survival information had a similar age of onset (<55 years) combined with a survival 

of less than 5 months. 

Table 5.12 CA079 and CA208 KCNMA1 amplification and survival 

 KCNMA1 amplification   

 aCGH log2ratio* QPCR ** Age at diagnosis Survival (months) 

CA79 1.67 5 54 5 

CA208 2.85 16 51 1 

* Maximum log2ratio value in the KCNMA1 area. 

** Estimated copy number. 
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Chromosome 10 aCGH data from T079 and T208, probes coloured in black represent 

genomic regions with a log2ratio around zero, probes coloured in red and green represent 

amplifications (log2ratio ≥ 0.5) and deletions (log2ratio ≤ -0.5) respectively. Very high log2ratio 

in KCNMA1 area reflecting high amplitude amplification. 

 

5.2.3.8 MicroRNA aberrations and KCNMA1 and NFKBIA 

The term microRNA (miRNA) refers to a group of small noncoding RNAs that 

regulate gene expression (Cummins et al. 2006). miRNAs were recently shown to 

play an important role in cancer development by altering the expression of both 

oncogenes and TSG (Schee et al. 2010). Several microRNAs are implicated in the 

development and progression of CRC (Arndt et al. 2009, Balaguer et al. 2010, Liu et 

al. 2010, Liu and Chen 2010). Deregulation of miRNA expression in CRC can result 

from altered methylation or chromosomal aberrations affecting miRNA genes 

(Diosdado et al. 2009, Balaguer et al. 2010, Liu and Chen 2010).  

5.2.3.8.1 KCNMA1 and microRNA211 

Recently, miR211 was shown to target and down-regulate KCNMA1 expression 

(Mazar et al. 2010). Under-expression of miR211 was shown to play a role in 

Figure 5.18 T079 and T208 focal KCNMA1 amplification 
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melanoma development and was directly associated with overexpression of 

KCNMA1 (Mazar et al. 2010). MiR211 gene (MIR211) is located on the long arm of 

chromosome 15 and it was found to be deleted in ~24.4% (n=11) of the investigated 

CRC cases. Table 5.13 summarises the CRC cases with KCNMA1 amplifications 

and/or MIR211 deletions. As shown in the table, KCNMA1 amplifications and MIR211 

deletions show a statistically significant mutual exclusive relationship (Spearman 

correlation test, p-value = 7.3x10-5, rs = -0.80). 

Table 5.13 KCNMA1 amplifications and MIR211 deletions  

Sample KCNMA1 Amp MIR211 Del 

T045 
  

T053 
  

T079 
  

T088 
  

T097 
  

T098 
  

T107 
  

T142 
  

T206 
  

T208 
  

T213 
  

T214 
  

T244 
  

T249 
  

T158 
  

T741 
  

T863 
  

T1350 
  

 

Table 5.13 compares the CRC samples with KCNMA1 amplifications (red) and/or MIR211 

deletions (green). The defects were shown to have a statistically significant inverse 

correlation (Spearman correlation test, p-value = 7.3x10
-5

, rs = -0.80). 

 

5.2.3.8.2 NFKBIA and miR301a 

Recently, miR301a was reported to down-regulate NF-ĸB repressing factor (NKRF) 

resulting in NF-ĸB activation (Lu et al. 2011). The miR301a gene (MIR301A) is 

located on the long arm of chromosome 17 and it was found to be amplified in 22.2% 

(n=10) of the investigated CRC cases. Table 5.14 summarises the CRC cases with 

NFKBIA deletions and/or MIR301A amplifications. As shown in the table, NFKBIA 
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deletions and MIR301A amplifications show a statistically significant mutual exclusive 

relationship (Spearman correlation test, p-value = 2.3x10-4, rs = -0.73) 

Table 5.14 NFKBIA deletions and MIR301A amplifications 

Sample NFKBIA Del MIR301A Amp 

T045   
T079   
T080   
T088   
T098   
T107   
T114   
T142 

  
T153 

  
T158   
T203   
T206 

  
T214   
T221 

  
T244   
T249   
T741 

  
T828   
T863 

  
T1350 

  
 

Table 5.14 compares the CRC samples with NFKBIA deletions (green) and/or MIR301A 

amplifications (red). The defects were shown to have a statistically significant inverse 

correlation (Spearman correlation test, p-value = 2.3x10-4, rs = -0.73). 

 

5.3  Discussion 

As described previously, CIN is the most common form of genomic instability in CRC 

and is characterised by gains and losses of chromosomal segments or whole 

chromosomes (Sheffer et al. 2009, Migliore et al. 2011). CIN can drive cancer 

development by targeting TSG and oncogenes, many of which have not yet been 

identified (Brosens et al. 2010). Recently, the use of high resolution techniques such 

as SNP arrays and array CGH has prompted the identification of novel cancer driver 

genes in CRC and other cancer types (Bredel et al. 2010, Veeriah et al. 2010). As 

detailed, CIN was the main form of genomic instability found in our cohort (90.1%, 
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n=48), and the aim of the work described in this chapter was to identify novel CRC 

driver genes affected by recurrent focal chromosomal aberrations. 

5.3.1 Common aberration analysis 

Statistically significant recurrent CNA were detected using the COCA algorithm. An 

in-house algorithm was then used to define FMCR based on the COCA output. 

FMCR were stringently defined as aberrant regions smaller than 3Mb in size, 

occurring in more than 10% of the cases with at least 2 SDE and a COCA score >2 

(p-value = 0.01). Overall, 64 deleted and 32 amplified FMCR were identified 

according to these criteria. These focal aberrations were validated by comparison to 

recently published data in CRC from 4 different studies (Martin et al. 2007, Leary et 

al. 2008, Andersen et al. 2010, Brosens et al. 2010). Our FMCR have shown more 

overlap with the published focal aberrations when compared to the other 4 studies 

(Section 5.2.3.2). The overlapped regions helped in further delimiting the identified 

FMCR affecting well known cancer genes.  

 

To further validate our FMCR, they were compared with the lists of the 20 most 

significant and recurrent focal deletions and amplifications identified across 26 

different types of cancer including CRC (Section 5.2.3.3) (Beroukhim et al. 2010). A 

25% (n=5) and 15% (n=3) overlap was identified between our deleted and amplified 

FMCR respectively. In general, comparison with the literature demonstrated the 

ability of the analyses methods and algorithms we have used to identify some the 

most commonly reported focal aberrations in CRC and other tumour types. 

 

Pathway analysis using the online database DAVID revealed 3 significantly enriched 

cancer related pathways amongst the genes affected by the FMCR. For deleted 

FMCR genes, the most significantly enriched cancer-related signalling pathways 

were apoptosis and P53. Ten apoptotic genes were commonly deleted in our 
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samples. Seven of these genes (CASP3, CASP8, CASP10, NFKBIA, CAPN1, BAD, 

TNF and TNFRSF1A) are pro-apoptotic and 3 are anti-apoptotic (PIK3R2, PIK3R5 

and CFLAR). It is noteworthy that the deleted anti-apoptotic gene, CFLAR occurs 

within the same FMCR as the pro-apoptotic genes CASP8 and CASP10. Moreover, 

PIK3R5 is located 1.2Mb downstream of TP53 and 81% (n=17) of the deletions are 

common between the 2 genes. For the P53 signalling pathway, all the deleted genes 

(n=5) are known to have anti-tumourigenetic activities. It is notable that TP53 was 

also deleted in 37.8% (n=17) of the cases, but it was not identified within an FMCR. 

These results indicate that the deleted FMCR might play an important role in tumour 

survival through disabling apoptosis and/or the P53 signalling pathway. 

 

The most significantly enriched pathway for the amplified FMCR genes was the 

oncogenic MAPK pathway, with 9 genes being commonly affected. Seven of these 

genes (CACNA1H, FGF23, FGF6, FGFR1, MAPKAPK2, ELK4 and MYC), are known 

or predicted to have oncogenic activities by promoting tumour growth and survival. It 

is noteworthy that one of the amplified anti-survival genes (DUSP8) occurred within 

the same FMCR with the oncogenic growth promoting gene IGF2. These results 

confirm that focal deletions and amplifications specifically target tumour suppressor 

and oncogenic pathways respectively.  

5.3.2 Candidate CRC driver genes 

In total, the identified FMCR contained 1002 genes. In order to identify a set of 

candidate genes, the FMCR were further shortlisted by increased stringency of their 

definition. Candidate FMCR were selected to have a maximum of 12 genes and they 

should be defined by at least 4 SDE. Based on the added criteria, shortlists of 17 

deletions and 9 amplifications were identified.  
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The 17 candidate deleted FMCR harboured 71 genes, 16 (24.6%) of which are 

thought to be cancer-related. Consistently, 6 of these genes (FHIT, TMSL3, PARK2, 

A2BP1, MACROD2 and MAP2K4) were recently reported to be deleted in CRC and 

other cancers (Leary et al. 2008, Andersen et al. 2010, Beroukhim et al. 2010, 

Veeriah et al. 2010). The remaining genes (GMCL1, MAD1, PCBP1, CASP8, 

CASP10, FOLH1, CDK2AP1, NFKBIA, IFNAR1 and IFNAR2) were not previously 

reported to be deleted in CRC and the literature suggests potential role as TSG. 

Nonetheless, MAD1 and CASP8 were previously reported to be under-expressed 

(MAD1) and inactivated by somatic mutations (CASP8) in CRC patients (Gunes et al. 

2000, Kim et al. 2003). PCBP1 was recently shown to be under-expressed in CRC 

cell lines (Wang et al. 2010). Our data support a tumour suppressor role of these 

genes in CRC and suggest deletions as a novel mechanism of functional inactivation. 

Our data also propose GMCL1, FOLH1, CDK2AP1, NFKBIA, IFNAR1 and IFNAR2 

as novel candidate CRC TSG. 

 

The 11 candidate amplified FMCR harboured 44 genes, 8 (18.2%) of which were 

cancer related with predicted oncogenic functions (PRDM16, PAX7, TNS1, RPA3, 

FGFR1, KCNMA1, FGF23 and FGF6). FGFR1, FGF23 and FGF6 were previously 

reported to be amplified in CRC and other cancer types (Sheffer et al. 2009, 

Beroukhim et al. 2010). Based on the literature, the remaining genes are proposed 

as novel candidate CRC oncogenes.  

 

Importantly, copy number TaqMan assays specific for the well-established deleted 

PARK2 gene and the novel NFKBIA deletion and KCNMA1 amplification confirmed 

the accuracy of the aCGH data. 
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5.3.3 Candidate FMCR and survival  

Survival analysis suggested an association between KCNMA1 high amplitude 

amplifications and poor prognosis (Table 5.12). In addition to confirming its 

oncogenic potential, these results also suggest that KCNMA1 amplification could be 

used as a potential prognostic marker. However, the results are based on a small 

sample size and should be confirmed in a larger sample before firm conclusions can 

be drawn.  

5.3.4 MicroRNA aberrations and KCNMA1 and NFKBIA 

Selective pressure in tumour cells usually requires one mechanism to achieve a 

certain tumorigenic advantage (Issa 2008, Rinkenbaugh and Baldwin 2011). This can 

be seen in known mutually exclusive relationships found in CRC, including BRAF 

V600E and KRAS mutations (Davies et al. 2002). KRAS and BRAF both regulate the 

MAPK signalling pathway (Nagasaka et al. 2004). Activating mutations in KRAS and 

the BRAF V600E mutation are known to constitutively activate the MAPK pathway, 

thus, their co-existence in the same tumour is extremely rare (Yuen et al. 2002, 

Kumar et al. 2009). Statistically significant inverse relationships were observed 

between KCNMA1 amplifications and MIR211 deletions and NFKBIA deletions and 

MIR301A amplifications. These inverse correlations support the role of miR211 in 

activating KCNMA1 and the role of both NFKBIA and miR301A in regulating NF-ĸB. 

Moreover, these observations support the oncogenic role of KCNMA1 amplifications 

and NFKBIA deletions.  

 

In summary, our results supported the hypothesis that recurrent focal aberrations 

selectively target cancer-related genes. Moreover, focal deletions and amplifications 

were clearly established to affect known TSG and oncogenes respectively. Several 

novel candidate CRC driver genes were also proposed with potential prognostic and 

therapeutic value in the future. 
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6. NFKBIA, a Tumour Suppressor in CRC 

6.1 Introduction  

Nuclear factor of ĸ-light polypeptide chain (NF-ĸB) is a transcription factor that plays 

an important role in promoting cell proliferation and survival (Sethi et al. 2007, Bredel 

et al. 2010). NF-ĸB is comprised of dimers of 5 subunits: RelA (p65), RelB, c-Rel, 

p50 and p52 (Lu et al. 2011, Rinkenbaugh and Baldwin 2011). The most abundant 

form of NF-ĸB heterodimers is RelA-p50 (Kojima et al. 2004, Ma et al. 2011). Under 

basal conditions, NF-ĸB dimers remain inactive in the cytoplasm by the binding of 

inhibitors of ĸB (IĸB) proteins (Karin et al. 2002).  

 

NF-ĸB activation occurs through 2 main pathways; the canonical classical pathway 

and the alternative pathway (Inoue et al. 2007). Both pathways result in the 

translocation of NF-ĸB dimers into the nucleus and the subsequent transactivation of 

their target genes (Bonizzi and Karin 2004, Inoue et al. 2007). NF-ĸB targets include 

immunoregulatory, inflammatory, anti-apoptotic and cell proliferative genes (Wang et 

al. 1996, Karin et al. 2002, Pikarsky et al. 2004, Jeyasuria et al. 2011). 

Proinflammatory cytokines, such as the tumour necrosis factor (TNF) family are 

important activators of the NF-ĸB pathway (Wang et al. 1996, Karin et al. 2002). 

Aberrant activation of NF-ĸB is known to play an oncogenic role in the development 

of several cancer types including, pancreatic and prostate cancer, Hodgkin 

lymphoma, GBM and CRC (Krappmann et al. 1999, Lind et al. 2001, Suh et al. 2002, 

Kojima et al. 2004, Inoue et al. 2007, Meylan et al. 2009, Basseres et al. 2010, 

Bredel et al. 2010, Lu et al. 2011). Aberrant NF-ĸB activation is relevant for the 

prognosis and survival of cancer patients, in addition to treatment efficiency (Camp et 

al. 2004, Izzo et al. 2006, Scartozzi et al. 2007). Subsequently, the NF-ĸB pathway 

and its regulatory proteins are now considered as potential targets for novel cancer 

therapeutic strategies (Inoue et al. 2007, Rinkenbaugh and Baldwin 2011). 



 224 

Somatic aberrations affecting NF-ĸB regulatory genes and microRNAs are 

responsible for the inappropriate activation of the pathway in several cancer types 

(Cabannes et al. 1999, Krappmann et al. 1999, Nishikori 2005, Lu et al. 2011). 

Inactivating mutations in NFKBIA, encoding NF-ĸB inhibitor alpha, were previously 

shown to play a role in Hodgkin lymphoma (Cabannes et al. 1999). Recently, 

heterozygous NFKBIA deletions were reported in ~25% of GBM cases (Bredel et al. 

2010). Moreover, siRNA knockdown of NFKBIA was shown to result in increased 

levels of the activated phosphorylated RelA in lung cancer cell lines (Bivona et al. 

2011).  

 

NFKBIA was predicted to be the driver gene in one of the candidate deleted FMCR 

identified in this project (Section 5.2.3.5.2). The aCGH data and the log2ratio values 

for this deletion FMCR were of relatively low amplitude, suggesting a heterozygous 

deletion, which agrees with the findings reported in GBM (Bredel et al. 2010). 

Moreover, the frequency of the deletions was 28.9%, also similar to that in GBM 

(Table 5.8). Therefore, as proof of concept experiments, preliminary functional 

studies investigating the role of NFKBIA deletions in CRC development were 

performed. The two major aims of these experiments described in this chapter were 

as follows. Firstly, to examine NFKBIA protein expression levels in a panel of CRC 

cell lines, in particular to observe whether any CRC cell lines contained reduced 

levels of NFKBIA. Two GBM cell lines, U87 and SNB19, were included as controls, 

because NFKBIA is known to be underexpressed in GBM (Bredel et al. 2010). 

Finally, two non-tumour derived cell lines, MRC5-SV2 and HEK293, were also 

employed. Secondly, to investigate the effect of NFKBIA depletion on NF-ĸB 

activation and malignant behaviour in culture, by performing NFKBIA knockdown, 

using NFKBIA-siRNA, in CRC cell lines expressing high levels of NFKBIA. 

Subsequently, these cell lines were used to perform clonogenic assays. 
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6.2 Results 

6.2.1 NFKBIA in CRC cell lines 

Western blotting (Section 2.2.17) was performed on cellular extracts from 6 CRC cell 

lines, HCT116, CACO2, SW620, SW480, COLO205 and HT29, in addition to 2 GBM 

cell lines, U87 and SNB19, and 2 non-tumour derived cell lines, MRC5-SV2 and 

HEK293. These results are presented in Figure 6.1. Remarkably, NFKBIA protein 

was expressed at lower levels in 3 of the 6 CRC cell lines (CACO2, SW480 and 

COLO205). The other 3 cell lines (HCT116, SW620 and HT29) had similar or 

increased levels of NFKBIA compared to the non-tumour cell lines. SNB19 (GBM) 

had low levels of NFKBIA (similar to CACO2 and SW480) and U87 (GBM) had 

similar levels to HT29. These experiments were repeated 3 times using 2 

independent cellular extracts. 

 

Figure 6.1 NFKBIA protein expression 

Western blot showing NFKBIA protein levels in CRC, GBM and control cell lines. An alpha-

tubulin antibody was used to confirm loading equal amounts of cellular extracts from each cell 

line. 

 

6.2.2 NFKBIA and phosphorylated NF-ĸB 

In order to examine the effect of NFKBIA deletions on NF-ĸB activation and tumour 

behaviour, NFKBIA-siRNAs were transfected into 3 CRC cell lines (HCT116, SW620 

and HT29) that had relatively increased levels of NFKBIA. siRNA experiments were 

performed as described in Section 2.2.18. For each cell line, a negative control was 

performed by treating the cells with “negative” siRNA designed not to complement 

any known human mRNA sequence. Western blotting with NFKBIA and p-RELA 
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antibodies was performed on cellular extracts taken 24 and 48 hr after transfection of 

CRC cell lines with NFKBIA-siRNA. Figure 6.2 summarises the Western blotting 

findings. As indicated, a marked reduction in NFKBIA expression was confirmed in 

HCT116 and SW620 cells. However, the effect appeared of short duration, because 

the NFKBIA levels were lower 24 hr after transfection when compared to 48 hr. 

Additionally, p-RELA levels were very low, but detectable, in all of the 3 cell lines 

regardless of siRNA treatment and NFKBIA expression. The Western blot was 

performed twice on 2 separate siRNA transfections. 

 

Figure 6.2 NFKBIA siRNA experiment 

HCT116, SW620 and HT29 cells were transfected with NFKBIA-siRNA and “negative” siRNA 

(Neg). Protein extraction was performed 24hrs and 48hrs after NFKBIA- siRNA transfection. 

For the negative controls, protein extraction was performed 48hrs post transfection with 

“negative” siRNA. Western blotting was then performed using NFKBIA and p-RELA 

antibodies. p-RELA positive control extract (HeLa cells treated with TNF-α) was also included.  

 
 

6.2.3 Effects of NFKBIA knockdown in cell culture 

The effects of NFKBIA protein depletion were evaluated by observing tumour cell 

proliferation and colony formation in HCT116 and SW620 cells transfected with 

NFKBIA-siRNA and “negative” siRNA. 

  

HCT116 and SW620 cell proliferation was measured via the MTT assay (Section 

2.2.19). The MTT test was performed on 3 consecutive days following treatment of 
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both cell lines with NFKBIA-siRNA and the “negative” control siRNA. The results are 

summarised in Figure 6.3. 

 

Figure 6.3 MTT assay results 

Cell proliferation was inferred spectrophotometrically via the MTT assay. The growth levels 

were calculated relative to day 1 negative control for each cell line. The error bars represent 

the standard deviation of 4 replicates within the same experiment. The above results are 

based on a single experiment.    

 

Colony forming ability of tumour cells in culture is known to reflect their malignancy 

(Bredel et al. 2010). The colony formation test was performed as described in 

Section 2.2.20. HCT116 and SW620 colonies were counted 9 and 13 days post 

siRNA transfection respectively. As for the MTT assay (above), “negative” siRNA 

controls were also included. Five replicates were performed for each cell line and 

treatment. Figure 6.4 shows the colony formation results for 2 replicates of HCT116 

cells treated with NFKBIA- siRNA and “negative” siRNA. Figure 6.5 summarises the 

colony counts from the 5 replicates for both cell lines and treatments.    
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Figure 6.4 Colony formation test in HCT116 (2 replicates) 

The 4 petri dishes represent 2 replicates for colony formation test for HCT116 cells treated 

with NFKBIA-specific siRNA and negative siRNA. 

 

Figure 6.5 Colony formation test results 

Colony counts for each cell line were based on 5 replicates. P-values were calculated using 

unpaired t-test (two tailed). 
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6.3 Discussion 

The novel candidate CRC TSG NFKBIA was further investigated and its protein was 

found to be relatively under-expressed in 3 of the 6 CRC cell lines investigated. 

NFKBIA-siRNA transfection was used to deplete NFKBIA protein in the CRC cell 

lines with higher levels of NFKBIA (HCT116, SW620 and HT29). Lower levels of 

NFKBIA proteins were detected in HCT116 and SW620 cell lines after siRNA 

treatment (Figure 6.2). We were unable to determine whether the lower levels of 

NFKBIA protein affect the levels p-RELA, as previously suggested (Bivona et al. 

2011). The levels of p-RELA were very low in all CRC cell lines tested regardless of 

NFKBIA levels. In contrast, p-RELA levels were higher in lung cancer cell lines, and 

an increase in level was observed with depletion of NFKBIA (Bivona et al. 2011). 

 

Knockdown of NFKBIA was also investigated for any potential effect on CRC cell line 

malignant behaviour as measured by cell growth and colony formation. Following 

transfection with NFKBIA-siRNA and “negative” siRNA control, lower levels of 

NFKBIA increased cell proliferation and the ability to form colonies in both HCT116 

and SW620. However, the effect seems to be more evident in HCT116, which could 

potentially be due to the lower levels of NFKBIA observed in HCT116 following 

siRNA transfection (Figure 6.2). These results agree with the effect of NFKBIA re-

expression in GBM cell lines (Bredel et al. 2010). In their study, Bredel and 

colleagues achieved NFKBIA overexpression in 2 GBM cell lines which resulted in 

decrease in cell proliferation and the ability to form colonies in culture and increased 

sensitivity to the chemotherapeutic agent Temozolomide (Bredel et al. 2010). As a 

proof of concept, these experiments support the predicted tumour suppressor role of 

NFKBIA in CRC. Nevertheless, these represent preliminary results that need to be 

repeated and confirmed. 
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7. Discussion and Conclusions 

7.1 CASP8 inherited variants and CRC risk 

Cancer in is considered a genetic disease, as both germline and somatic genetic 

factors play an essential part in its predisposition, initiation and development. CRC is 

considered the 2nd highest amongst common cancers, behind prostate, in terms of 

inherited susceptibility, with an estimated genetic contribution of ~35% (Lichtenstein 

et al. 2000). Highly and moderately penetrant genetic factors are rare in CRC and 

account for ~5-7% of the total CRC cases. The rest of the heritability is predicted to 

be caused by less penetrant but more common genetic factors (Broderick et al. 2007, 

Lascorz et al. 2010). Several low penetrant and common CRC risk variants were 

identified through genome wide and candidate genes association studies, however, 

so far they only account for ~6% of CRC heritability (Lascorz et al. 2010). Thus, most 

of the inherited susceptibility for CRC remains unknown.   

 

Caspase 8 is an initiator caspase that plays an important role in activating apoptosis 

(Grenet et al. 1999). Loss of caspase 8 protein function through acquired mutations, 

deletions or silencing of CASP8 gene has been shown to play a role in the 

development of several cancer types including CRC (Teitz et al. 2000, Kim et al. 

2003, Pingoud-Meier et al. 2003b, Soung et al. 2005, Stupack et al. 2006). Moreover, 

CASP8 inherited variants were shown to affect the risk of several cancer types 

including lung and breast cancer (Son et al. 2006, Cox et al. 2007). A somewhat 

controversial association between an inherited 6bp in/del variant in the CASP8 

promoter and CRC risk had been proposed at the beginning of this project (Sun et al. 

2007, Haiman et al. 2008, Pittman et al. 2008). Moreover, preliminary data from our 

laboratory indicated a possible association between some CASP8 SNPs and CRC 

risk (Curtin et al. manuscript in preparation). The aims of the work described in 

chapter 3 were to investigate the controversial role of the rs3834129 CASP8 
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promoter variant and CRC risk, to identify novel coding CASP8 variants that can 

affect CRC risk, and to develop an assay to investigate a possible role of CASP8 

CNV23598 in CRC and breast cancer predisposition.  

7.1.1 Summary and conclusions 

The CASP8 promoter in/del rs3834129 was genotyped in 1193 CRC cases and 1388 

controls. The cases and controls were from the UK (Sheffield, Leeds and Dundee) 

and USA (Utah). Association analysis was performed on the 4 sample sets 

separately and combined, and the results did not indicate any significant association 

between rs3834129 genotypes and CRC risk (p-value > 0.05). This conclusion was 

in agreement with the published data on the European and multi-ethnic American 

populations (Haiman et al. 2008, Pittman et al. 2008), however, it contradicted the 

original results showing association in the Chinese populations (Sun et al. 2007). The 

disparity between the original study in the Chinese population and our results (in 

addition to the results from the European and American populations) could be due to 

different effects of genetic and environmental modifier factors between the different 

populations, or due to the initial association being a false positive. Nevertheless, the 

rs3834129 data is being included in a more comprehensive analysis of SNPs in the 

CASP8 gene region and their potential role in CRC risk (Curtin et al. manuscript in 

preparation). This study aims to fine map the region and examine any possible 

associations with CRC susceptibility in various subgroups of the cases. The results 

do suggest a possible association between CASP8 SNPs and female early onset 

CRC (Curtin et al. manuscript in preparation).   

 

The CASP8 promoter region, exons, intron/exon boundaries and 3‟ UTR were 

sequenced in 94 CRC cases from the Sheffield population sample set. The 

sequencing results revealed the presence of 6 (relatively rare and) novel variants 

with minimum allele frequencies of 0.005 to 0.01. To date, none of these variants 
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have been previously reported. In silico analysis was performed and the results did 

not predict any functional impact of these variants on caspase 8. Nonetheless, the 

115 bp deletion in CASP8 exon 3 (c.1-8338Del115) and the variant in CASP8 intron 

3 (c.1-1982A>G) occurred within a region with a possible regulatory role assessed by 

the presence of DNase hypersensitivity clusters which could reflect the presence of 

transcriptional enhancers and promoters (Crawford et al. 2006). However, this region 

is expressed as part of the precursor of the non-predominantly expressed CASP8 

isoform-G which is not detected on protein level (Scaffidi et al. 1997). Therefore, 

none of the variants warranted further investigation at this stage. But, if the results of 

the fine mapping by Curtin and colleagues suggest that either of these two variants 

(c.1-8338Del115 and c.1-1982A>G) occur on CRC associated risk haplotypes, they 

may merit further investigation to examine possible effects on expression of CASP8 

isoform transcripts. 

 

CASP8 CNV23598 was genotyped in 284 CRC cases and controls (Sheffield sample 

set) and 47 breast cancer cases and controls enriched for CASP8 risk and protective 

haplotypes respectively. The initial genotyping results indicated differences in 

CNV23598 allele frequencies for CRC and breast cases and controls. However, the 

CRC control and case genotype frequencies were inconsistent with HWE, which 

might indicate genotyping errors. Several molecular techniques confirmed the 

genotyping results. However, they indicated the presence of multiple CNV23598 

insertion copies in addition to differences from the published insertion sequence at 

both breakpoints. A few more CNVs with variable lengths were recently reported 

around the CNV23598 region which could explain some of the genotyping issues 

(http://projects.tcag.ca/variation/, accessed August, 2011). CASP8 region is currently 

being fully investigated using a second generation sequencing platform in the 47 

breast cancer cases and controls as part of a different project. The sequencing 

results might help in further elucidating the reasons behind the questionable results 

http://projects.tcag.ca/variation/
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for CNV23598. In conclusion, our results do not provide evidence that CASP8 

inherited variants have any significant effect on CRC risk overall. Although more 

detailed investigation including subgroup analysis is underway. Finally, we have 

shown that CNV23598 has a very complex architecture that may only be resolved by 

advanced molecular techniques (such as 2nd generation sequencing). 

7.2 Molecular classification of CRC 

Sporadic CRC is highly heterogeneous from a molecular point was shown to develop 

through multiple pathways of genomic instabilities (MSI, CIMP and CIN), and somatic 

mutations in key driver genes (APC, TP53, KRAS, BRAF and PIK3CA) (Cheng et al. 

2008, Derks et al. 2008). Molecular classification of sporadic CRC has potential 

applications in research and in the clinic. It can help in understanding the underlying 

mechanisms of CRC development, identify new molecular targets and pave the way 

for personalised cancer care (Choong and Tsafnat 2011, Pritchard and Grady 2011). 

One of the main drawbacks in the field is the lack of standardisation in investigating 

and defining the molecular characteristics, especially the global genomic instabilities 

CIMP and CIN (Cheng et al. 2008, Derks et al. 2008, Ogino and Goel 2008). The 

main aim of the work described in chapter 4 was to classify a cohort of matching 

CRC patients using a more standardised approach.    

7.2.1 Summary and conclusions 

A thorough molecular characterisation was performed on 53 CRC cases with 

matching tumour and normal DNA samples. MSI was defined with a panel of 5 

mononucleotide microsatellite markers according to the revised NCI criteria for MSI 

testing (Bacher et al. 2004, Umar et al. 2004). CIMP was investigated using a semi-

quantitative MS-MLPA technology based on a set of 7 CpG markers previously 

verified in 3 independent studies (Ogino et al. 2006a, Weisenberger et al. 2006, 

Ogino et al. 2007). CIN was investigated using a high resolution genome wide array 

CGH technology and defined as recently recommended by Cheng and colleagues 
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(Cheng et al. 2008). DNA Sequencing was used to identify the most common 

mutations in APC, TP53, KRAS, BRAF and PIK3CA. All the investigated samples 

were shown to be MSS. Three molecular subtypes were identified within the 

investigated cohort, chromosomally stable/CIMP-L subtype (~7.7%), chromosomally 

unstable/CIMP-L/N subtype (78.8%) and a novel chromosomally unstable/CIMP-H 

subtype (11.5%). The latter may be a novel subtype missed in previous studies due 

to technical limitations in defining CIN, or due to the association of CIMP-H with MSI-

H which has an established inverse correlation with CIN (Goel et al. 2007, Cheng et 

al. 2008). The existence of CIN/CIMP-H/MSS as a distinct molecular subtype from 

CIN/CIMP-L/N/MSS is supported by the different patterns of broad common CNA and 

BRAF/KRAS mutations. Nevertheless, these results need to be confirmed 

independently in a larger cohort.  

7.3 Focal chromosomal aberrations and CRC 

Chromosomal instability is the most common form of genomic instability in CRC and 

it is known to drive CRC development by affecting TSG and oncogenes (Martin et al. 

2007, Brosens et al. 2010). CIN is usually characterised by a large number of 

chromosomal aberrations that affect a wide range of genes (Rajagopalan et al. 

2003). Most of the key driver genes affected by chromosomal abnormalities are yet 

to be identified (Brosens et al. 2010). The aim of the work described in chapter 5 was 

to investigate the genes affected by common focal chromosomal aberrations in order 

to identify novel candidate driver genes. 

7.3.1 Summary and conclusions 

Array CGH was successfully performed on 53 CRC cases. Common aberration 

analysis was performed on the 45 cases that had high values for QC metrics and 

showed chromosomal instability. Chromosomal aberrations were identified using 

strict algorithms and definitions. Frequencies of the most common broad CNA 

including amplifications within chromosomes 20q, 13, 8q, 7 and X and deletions 
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within chromosomes 18, 8p and 17p strongly agree with published data (Hermsen et 

al. 2002, Lassmann et al. 2007, Poulogiannis et al. 2010a). Context corrected 

common aberration analysis combined with an in-house developed algorithm were 

used to identify FMCR. Sixty-four deleted and 32 amplified FMCR were identified. 

Deleted FMCR contained established TSG such as SMAD4 and CDKN2C, and 

amplified FMCR contained established oncogenes such as MYC and FGFR1. 

Comparison with previously published data in CRC and other cancer types (Martin et 

al. 2007, Leary et al. 2008, Andersen et al. 2010, Beroukhim et al. 2010, Brosens et 

al. 2010) have shown enrichment within our FMCR of some of the most commonly 

reported focal aberrations which supported the efficiency of the used algorithms. 

 

Pathway analysis using the online database DAVID revealed that genes within 

cancer related pathways were commonly affected by the identified FMCR. The anti-

survival apoptosis and P53 pathways were affected by deleted FMCR and the 

oncogenic MAPK pathway was affected by amplified FMCR. The enrichment of 

apoptotic genes within the deleted FMCR supports the correlation between genomic 

instability and defective apoptosis (Zhivotovsky and Kroemer 2004). More stringent 

definitions were used to further shortlist the identified FMCR into 17 deletions and 11 

amplifications. Cancer related genes were enriched in the deleted (~22.5% of the 

total number of genes) and the amplified (~18.2% of the total number of genes) 

candidate FMCR. In total 6 novel candidate CRC TSG (GMCL1, FOLH1, CDK2AP1, 

NFKBIA, IFNAR1 and IFNAR2) and 5 novel candidate CRC oncogenes (PRDM16, 

PAX7, TNS1, RPA3, KCNMA1) were proposed. Survival analysis suggested that 

high amplitude amplifications of KCNMA1 may be associated with poor survival. 

None of the other candidate FMCR/genes was significantly associated with patient 

survival. NFKBIA deletions were previously associated with poor survival of GBM 

patients but this was not observed in our cohort. Out of the 45 samples included in 
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the common aberration analysis, survival data was only available for 33, which limits 

the power to detect any statistically significant association.  

 

The microRNA miR211 was recently reported to target KCNMA1. Underexpression of 

miR211 was shown to have oncogenic effects in melanoma, through abnormal 

activation of KCNMA1 (Mazar et al. 2010). A statistically significant inverse 

correlation was observed between MIR211 deletions and KCNMA1 amplification in 

our samples. Similarly, miR301a was recently reported to activate NF-ĸB in 

pancreatic cancer (Lu et al. 2011). A statistically significant inverse correlation was 

observed between miR301a amplifications and NFKBIA deletions in our samples. 

These results support the notion that the above mutually exclusive defects function in 

the same oncogenic pathways. 

 

NFKBIA, one of the identified candidate TSG, was selected for further analysis in a 

proof of concept experiment. NFKBIA protein was shown to be relatively under-

expressed in 3 of the 6 CRC cell lines investigated (SW480, CACO2 and COLO205). 

NFKBIA-siRNA experiments were performed to deplete NFKBIA protein in CRC cell 

lines HCT116, SW620 and HT29 in which NFKBIA is relatively expressed at normal 

to high levels. This was achieved significantly in HCT116 and SW620, however, the 

effect appeared to be of relatively short duration as the NFKBIA levels were lower 24 

hr after transfection compared to 48 hr.  Preliminary results from growth and colony 

formation experiments indicated a survival advantage of NFKBIA underexpression in 

the investigated cell lines which was consistent with what was recently shown in 

GBM cell lines (Bredel et al. 2010). 

7.4 Study limitations 

The CRC molecular classification experiment was limited by a relatively small sample 

size and the absence of MSI-H cases. The main limiting factor is the high cost 
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associated with the detailed examination of the molecular characteristics, especially 

when using high throughput technologies such as array CGH. Other molecular 

classification studies that included high throughput technologies as part of their 

analysis were also confined to a similar sample size of 60-70 cases (Cheng et al. 

2008, Derks et al. 2008). Multi-centre collaborative studies with large CRC cohorts 

will thus be essential to achieve more comprehensive molecular classification results. 

The Cancer Genome Atlas project (TCGA) led by NCI and the National Human 

Genome Research Institute (NHGRI) is performing a comprehensive genomic 

characterisation of ~20-25 cancer types including CRC. TCGA aims to characterise 

~500 cases for each cancer type. The characterisation involves genome wide copy 

number, methylation, gene expression and microRNA profiling, in addition to whole 

exon sequencing (http://cancergenome.nih.gov/, accessed September, 2011). The 

results of this project should provide, in the near future, much more detailed genomic 

information for CRC and other cancer types. 

 

Another main limitation of this project was the lack of CRC tumour and normal RNA 

samples. Messenger RNA would have been very useful, especially in investigating 

the expression levels of the proposed candidate driver genes. Although a strong 

association was previously established between copy number aberrations and mRNA 

expression levels, it is not always the case (Tsafrir et al. 2006, Sheffer et al. 2009, 

Brosens et al. 2010). If mRNA was available, a direct comparison of copy number 

aberrations and expression levels could have been undertaken for the candidate 

driver genes. Moreover, investigating mRNA expression levels is also essential as 

part of the molecular classification, especially given the recently proposed 

transcriptome instability in CRC (Sveen et al. 2011). MicroRNA samples would have 

been also useful in the project for several reasons, including confirmation of the 

expression levels of miR211 and miR301a in relation to their copy number 

aberrations and KCNMA1 and NFKBIA levels respectively.  

http://cancergenome.nih.gov/
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7.5 Future work 

Thorough analysis of CASP8 tag SNPs in CRC is in progress which may suggest 

further SNPs for follow up studies. Analysis of the second generation sequencing 

data encompassing CASP8 CNV23598 in the 47 breast cancer samples might reveal 

the exact sequence of the area flanking CNV23598 which can allow more accurate 

genotyping and further investigation of a potential role of CNV23598 in CRC and 

breast cancer risk. 

 

Further investigation and validation of the chromosomally unstable CIMP-H/MSS 

pathway is required. A larger sample set would allow confirmation of this molecular 

subtype. It would also allow us to examine any clinical associations of this subtype. 

 

Recent studies have shown that cancer related microRNA genes are targeted by 

chromosomal defects in several cancer types including CRC (Zhang et al. 2006, 

Diosdado et al. 2009). Further analysis of the aCGH data is required to investigate 

the presence of microRNA genes within the identified FMCR which can potentially be 

used to identify novel cancer related microRNAs. 

 

Preliminary functional studies results have supported the predicted role of NFKBIA as 

a TSG in CRC. However, these studies should be replicated. The siRNA experiments 

suffer from having only a short-term effect on NFKBIA protein expression. This could 

affect the scale and reproducibility of the results. An alternative approach to 

investigate the role of NFKBIA in CRC would be to overexpress NFKBIA in cell lines 

such as, CACO2, SW480 and COLO205, where NFKBIA was shown to be 

underexpressed. Stable transfection and overexpression of NFKBIA in these cell 

lines may provide a better model for determining the role of NFKBIA as a TSG in 

CRC. This model will also be more suitable to conduct more experiments and 

investigate the effect of NFKBIA on resistance to chemotherapeutic agents. It is also 
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important to examine NFKBIA copy number in the same cell lines in order to 

elucidate whether heterozygous deletions of the gene were also responsible for lower 

expression levels. 

 

NF-ĸB is known to be constitutively activated in several cancer types including CRC, 

however, the mechanisms behind this are mainly unknown (Kojima et al. 2004, Lu et 

al. 2011, Rinkenbaugh and Baldwin 2011). NFKBIA deletions were predicted to 

promote tumourigenesis in GBM through the aberrant activation of NF-ĸB (Bredel et 

al. 2010), however, NF-ĸB activation was not investigated. For potential clinical and 

therapeutic studies, it is necessary to understand the mode of action of NFKBIA 

deletions and to confirm its effect on NF-ĸB activation. In lung cancer cell lines 

NFKBIA-siRNA were shown to affect p-RELA (activated NF-ĸB subunit) levels 

(Bivona et al. 2011). However, we could not establish this in our tested CRC cell 

lines, because the levels of p-RELA were very low using Western blot. Considering 

that NF-ĸB was previously shown to be constitutively active in CRC (Kojima et al. 

2004). There might be a technical reason for not detecting p-RELA. When activated, 

RELA is translocated to the nucleus and phosphorylated. Our protein extraction 

procedure involved passing the protein extracts through a fine-gauge needle ~30 

times in order to release nuclear proteins. It is possible that this procedure was not 

sufficient. Another approach will be to try including a sonication step in the protein 

extraction protocol to try to release nuclear proteins more efficiently. 

Immunohistochemical staining of p-RELA was previously shown to be effective in 

determining NF-ĸB activity in CRC samples (Kojima et al. 2004). Therefore, this 

method could also be used to investigate NF-ĸB levels in the CRC cell lines. 

 

Functional studies (similar to the NFKBIA experiments) will be required to validate 

the other proposed candidate driver genes. Protein expression levels of the 

candidate CRC driver genes could be investigated in a panel of CRC cell lines, and 
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based on the results of these experiments, further functional studies can be 

performed to investigate the role of the promising genes in CRC development. The 

possible association between KCNMA1 and CRC prognosis should be examined in a 

large CRC cohort. This could be achieved relatively cheaply and quickly using a 

panel of TaqMan probes for the KCNMA1 gene. Validating this association is 

important to propose KCNMA1 as a prognostic marker and as a possible therapeutic 

target in CRC.  
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APPENDICES 

Appendix 1. Primers Sequences 

Table 1 CASP8 Primers 

 

Primer Primer Sequence 5'-3' Length GC % Tm º C 

CASP8-promoter Forward TCAAGCTGTCTGCAGTCAGCAG 22 54.5 62.00 

CASP8-promoter Reverse CTCATACCAGTGTACAGGGAAC 22 50.0 60.25 

CASP8-exon3F CATCCCTCTTCTGAATGGTTGG 22 50.0 60.25 

CASP8-exon3R CAGAGAGAAACCACACAGGAG 21 52.4 59.80 

CASP8-exon4F GAAGCTTTAGAAGGCACTCTGC 22 50.0 60.25 

CASP8-exon4R AGAGGGACTGCTACCTCTTAC 21 52.4 59.80 

CASP8-exon5F AGAGGGAACTTGTCTGGTGTTC 22 50.0 60.25 

CASP8-exon5R ACCCAAGGCACTACTGTCTTTC 22 50.0 60.25 

CASP8-exon6F GGGGAGAACACTATTCAACCAG 22 50.0 60.25 

CASP8-exon6R AATGGTAAGTGGTCACCCTAGC 22 50.0 60.25 

CASP8-exon7F TAGACTTCTGTGTCACCACACC 22 50.0 60.25 

CASP8-exon7R CACATCTGTAACACTCGTGCTG 22 50.0 60.25 

CASP8-exon8/9F ATGGAATCGCTTCCCTAGTAGC 22 50.0 60.25 

CASP8-exon8/9R TGCATGTGGTAGAAGGCTGTG 21 52.4 59.80 

CASP8-exon10F TGCTTGCAGAATCTCTCTGGC 21 52.4 59.80 

CASP8-exon10R TCCAGTATCTTCATCTCGGGTC 22 50.0 60.25 

CASP8-exon11F GGTCCTGTGTGAAGGAAATAGG 22 50.0 60.25 

CASP8-exon11R TGCACTTAACAGCCCAACCTG 21 52.4 59.80 

CASP8-exon12Fn CAATGTTATGCCCACTGTGCTC 22 50.0 60.25 

CASP8-exon12R TGACCTGGGAAATGCAGCTATG 22 50.0 60.25 

CASP8-exon13F GCAGATGCGATGTCAATTCGAG 22 50.0 60.25 

CASP8-exon13R TGCTTCTCAGACCTTTGCCATG 22 50.0 60.25 

Promoter-seqF1 TACAAGCTGCTGGCAGTCATG 21 52.4 59.80 

Promoter-seqF2 TTATGAATGAGCCGAGGAAGGC 22 50.0 60.25 

Promoter-seqF3 AACGACAACTCACAGTGCCAG 21 52.4 59.80 

Promoter-seqF4 GCAGAGCTGGGATTTGAATCC 21 52.4 59.80 

Exon13-seqF1 GTAGGTCTTGGTTTCGCACC 20 55.0 59.35 

Exon13-seqF2 GTAGAGACAGGGTTTCACTGTG 22 50.0 60.25 

Exon13-seqF3 GATTGCTTGAACCCAAGAGGTC 22 50.0 60.25 

Promoter-seqR1 GGATTCAAATCCCAGCTCTGC 21 52.4 59.80 

Promoter-seqR2 TTCCTGGCACTGTGAGTTGTC 21 52.4 59.80 

Promoter-seqR3 TTAACGTCTCAGTGCCTTCCTC 22 50.0 60.25 

Exon13-seqR1 AGTGCAGCGGTGTGAACATG 21 55.0 59.35 

Exon13-seqR2 GCCTGTAATCCCAGCACTTTG 22 52.4 59.80 

CASP8-exon10Fseq AAGTGATCTGCCCATCTTGGC 22 52.4 59.80 
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Table 2 KRAS Primers 

Primer Primer Sequence 5'-3' Length GC% Tm º C 

KRAS-exon1F ACGATACACGTCTGCAGTCAAC 22 50.0 60.30 

KRAS-exon1R GCACAGAGAGTGAACATCATGG 22 50.0 60.30 

 

Table 3 BRAF Primers 

Primer Primer Sequence 5'-3' Length GC% Tm º C 

BRAF-exon15F CCAGGAGTGCCAAGAGAATATC 22 50.0 60.30 

BRAF-exon15R AGTAACTCAGCAGCATCTCAGG 22 50.0 60.30 

 

Table 4 TP53 Primers 

Primer Sequence 5'-3' Length GC% Tm 
o 

C 

TP53-exon4F ACGTTCTGGTAAGGACAAGGG 21 52.4 59.8 

TP53-exon4R GACAGGAGTCAGAGATCACAC 21 52.4 59.8 

TP53-exon5/6F AAAGCTCCTGAGGTGTAGACG 21 52.4 59.8 

TP53-exon5/6R GGGAGGTCAAATAAGCAGCAG 21 52.4 59.8 

TP53-exon7F AAAAGGCCTCCCCTGCTTGC 20 60.0 61.4 

TP53-exon7R TGATGAGAGGTGGATGGGTAG 21 52.4 59.8 

TP53-exon8/9F AGCTTAGGCTCCAGAAAGGAC 21 52.4 59.8 

TP53-exon8/9R AGTTAGCTACAACCAGGAGCC 21 52.4 59.8 

TP53-exon10F GTCAGCTGTATAGGTACTTGAAG 22 43.5 58.9 

TP53-exon10R TGACCATGAAGGCAGGATGAG 21 52.4 59.8 

 

Table 5 APC Primers 

Primer Primer Sequence 5'-3' Length GC% Tm º C 

APCMCRf GTTCTGCACAGAGTAGAAGTGG 22 50.0 60.3 

APCMCRr GTGATGACTTTGTTGGCATGGC 22 50.0 60.3 

APCMCReqf CTCCGTTCAGAGTGAACCATG 21 52.4 59.8 

APCMCReqr CATGGTTCACTCTGAACGGAG 21 52.4 59.8 

 

Table 6 PIK3CA Primers 

Primer Primer Sequence 5'-3' Length GC% Tm º C 

PIK3CAexon9F CAGTTACTATTCTGTGACTGGTG 23 43.5 58.9 

PIK3CAexon9R TGCTGAGATCAGCCAAATTCAG 22 45.5 58.4 

PIK3CAexon20F TTGCTCCAAACTGACCAAACTG 22 45.5 58.4 

PIK3CAexon20R TGCAATTCCTATGCAATCGGTC 22 45.5 58.4 
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Table 7 CNV23598 primers 

Primer Primer Sequence 5'-3' Length GC% Tm º C 

Common forward TAGAAGCCTGCAGAATCCAGC 21 52.4 59.80 

Insertion reverse GGATGGGCCATGATGACAATG 21 52.4 59.80 

Deletion reverse GAGATGTCAGCTCATAGATGGG 22 50.0 60.30 

Fluorescent insertion reverse  CCTCCACTATTGTCCTGTGAC 21 52.4 59.80 

Fluorescent deletion reverse GAAGCTCTTCAAAGGTCGTGG 21 52.4 59.80 

A/G SNP confirmation forward GTCACAGGACAATAGTGGAGG 21 52.4 59.80 

Forward deletion TAGAAGCCTGCAGAATCCAGC 21 52.4 59.80 

New insertion forward AGCAGTACCGTCCAGCTTTG 20 55.0 59.35 

Common reverse GAGATGTCAGCTCATAGATGGG 22 50.0 60.30 

 

 

Table 8 Pyrosequencing Primers 

Primer Primer Sequence 5'-3' Length GC% Tm º C 

CRABP1F GGTGGATGTTTTGATGTAGAATTGA 25 45.6 58.5 

CRABP1R* B-ACCCAAACCTATAATACACCCTAC 24 52.4 59.8 

CRABP1seq ATGTTTTGATGTAGAATTGATT 22 52.4 59.8 

NEUROG1F AGGGAGTTTTTAGGTAGTGAAATAGAG 27 52.4 59.8 

NEUROG1R* B-ACTCCAAATACCCTCCAAATTTC 23 52.4 59.8 

NEUROG1seq AGGTAGTGAAATAGAGG 17 52.4 59.8 

 

* Biotin labelled primers 
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Appendix 2. MS-MLPA probes- ME042-A1 Kit 

Expected Length (nt) Observed Length (nt) Probe Hha1 Site Chromosomal Position 

130 126.53 Reference-1 
 

8q24 

141 137.56 IGF2-1 + 11p15.5 

148 144.28 RUNX3-1 + 1p36.11 

160 157.41 Reference-2 
 

10q26.13 

166 163.43 NEUROG1-1 + 5q31.1 

171 168.62 IGF2-2 + 11p15.5 

176 174.37 MLH1-1 + 3p22.2 

183 180.19 CDKN2A-1 + 9p21.3 

190 186.61 Reference-3 
 

2p22.3 

195 192.25 CDKN2A-2 + 9p21.3 

202 198.64 NEUROG1-2 + 5q31.1 

207 204.83 CRABP1-1 + 15q25.1 

211 209.75 NEUROG1-3 + 5q31.1 

218 216.23 CACNA1G-1 + 17q21.33 

226 222.54 Reference-4 
 

6q24.3 

232 231.49 CDKN2A-3 + 9p21.3 

246 244.33 CACNA1G-2 + 17q21.33 

256 253.54 RUNX3-2 + 1p36.11 

265 263.01 CRABP1-2 + 15q25.1 

273 271.02 CACNA1G-3 + 17q21.33 

282 279.24 NEUROG1-4 + 5q31.1 

292 289.93 Reference-5 
 

19q13.13 

310 307.46 CRABP1-3 + 15q25.1 

319 316.51 CRABP1-4 + 15q25.1 

327 323.89 Reference-6 
 

14q22.1 

335 333.95 CDKN2A-4 + 9p21.3 

346 343.48 RUNX3-3 + 1p36.11 

355 352.02 MLH1-2 + 3p22.1 

364 361.49 NEUROG1-5 + 5q31.1 

372 370.27 RUNX3-4 + 1p36.11 

382 380 Reference-7 
 

10q22 

389 387.21 NEUROG1-6 + 5q31.1 

399 397.54 SOCS1 + 16p13.13 

409 407.50 BRAF V600E 
 

7q34 

418 416.03 IGF2-3 + 11p15.5 

427 424.84 Reference-8 
 

12p13.31 

436 432.9 Digestion + 17q23.2 

463 461.53 MLH1-3 + 3p22.1 

472 471.41 Reference-9 
 

22q12.3 

481 479.71 Reference-10 
 

3p25.3 
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Appendix 4. DNA Size Standards 
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Appendix 5. MS-MLPA QC metrics 

Table 1 Normal DNA QC metrics results 
Sample DNA Conc./Ligation Denaturation Hybridisation DNA Quant./Lig./Denat. Sample DNA Conc./Ligation Denaturation Hybridisation DNA Quant./Lig./Denat. 

N016 9.52 140.06 71.40 42.35 N016D 4.80 145.17 68.88 40.54 

N023 9.96 131.67 75.95 41.08 N023D 6.60 114.78 87.12 39.31 

N037 10.08 139.13 71.87 77.18 N037D 7.89 182.57 54.77 60.14 

N045 7.35 142.18 70.34 108.03 N045D 7.70 194.89 51.31 99.66 

N046 5.97 115.54 86.55 118.86 N046D 12.34 199.51 50.12 99.60 

N053 6.95 130.13 76.84 61.62 N053D 4.24 126.96 78.77 66.41 

N079 4.67 100.63 99.37 85.17 N079D 7.31 147.68 67.72 75.21 

N080-1 12.97 151.53 66.00 111.94 N080D-1 13.53 184.42 54.22 82.48 

N080-2 17.91 182.17 54.89 91.58 N080D-2 13.53 184.42 54.22 82.48 

N083 6.04 126.26 79.20 81.32 N083D 6.80 136.81 73.09 76.26 

N085 7.27 157.17 63.63 40.74 N085D 5.47 139.20 71.84 42.17 

N086 8.67 85.28 117.26 106.67 N086D 9.82 106.98 93.48 84.75 

N088 11.35 164.84 60.67 73.52 N088D 4.74 155.36 64.37 68.38 

N090 12.74 166.19 60.17 74.42 N090D 10.74 138.10 72.41 81.37 

N097 16.92 54.12 184.79 121.63 N097D 7.47 101.12 98.90 101.06 

N098 11.25 85.00 117.65 104.81 N098D 13.24 157.38 63.54 85.54 

N104 6.57 77.02 129.83 97.35 N104D 7.71 83.36 119.96 107.90 

N107 5.53 105.52 94.77 102.08 N107D 5.35 132.10 75.70 100.75 

N109 3.96 161.16 62.05 211.57 N109D 2.64 228.37 43.79 157.55 

N110 5.73 125.38 79.76 144.09 N110D 10.55 103.46 96.66 83.95 

N112 16.04 166.63 60.01 123.25 N112D 13.53 184.42 54.22 82.48 

N114-1 5.80 108.74 91.97 139.06 N114D-1 12.51 190.10 52.60 117.18 

N114-2 5.65 89.53 111.69 354.06 N114D-2 6.98 141.24 70.80 113.93 

N122 7.15 144.96 68.98 42.77 N122D 3.92 144.38 69.26 46.37 

N135 9.75 104.33 95.85 142.43 N135D 10.36 146.24 68.38 94.13 

N138 3.35 89.30 111.99 112.22 N138D 3.67 131.65 75.96 94.68 

N142 6.73 93.23 107.26 84.29 N142D 8.60 136.65 73.18 73.23 

N150 10.83 161.50 61.92 48.57 N150D 4.29 158.80 62.97 59.12 

N153 7.56 108.93 91.80 55.86 N153D 4.96 153.25 65.25 58.55 

N158 7.64 158.61 63.05 51.19 N158D 6.43 123.97 80.67 49.80 

N167 6.84 81.16 123.22 131.58 N167D 5.22 128.31 77.93 91.25 

N184-1 8.01 160.69 62.23 71.75 N184D-1 7.05 171.02 58.47 68.83 

N184-2 9.95 154.78 64.61 83.96 N184D-2 8.55 117.68 84.98 113.56 

N201 4.68 132.05 75.73 111.96 N201D 5.84 181.32 55.15 102.37 

N202 7.00 121.34 82.41 151.41 N202D 9.51 183.30 54.56 114.36 

N203 6.46 111.54 89.66 115.66 N203D 7.49 98.86 101.15 99.35 

N206 3.65 101.87 98.16 118.28 N206D 5.26 131.24 76.20 101.33 
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N208 5.40 140.36 71.25 89.42 N208D 6.51 158.17 63.22 84.76 

N212 6.82 180.46 55.41 80.75 N212D 5.95 176.08 56.79 76.59 

N213 12.01 136.65 73.18 87.88 N213D 5.26 136.73 73.14 83.24 

N214 8.33 160.39 62.35 174.09 N214D 13.71 158.25 63.19 124.56 

N218 8.74 136.08 73.49 101.40 N218D 9.33 160.34 62.37 91.77 

N221-1 6.70 104.97 95.27 84.39 N221D-1 11.74 124.92 80.05 62.65 

N221-2 6.70 104.97 95.27 84.39 N221D-2 11.74 124.92 80.05 62.65 

N223 4.17 97.04 103.06 125.69 N223D 10.04 158.93 62.92 91.90 

N244 5.40 126.45 79.08 68.59 N244D 1.43 154.85 64.58 68.74 

N248 10.35 116.44 85.88 70.72 N248D 3.56 148.44 67.37 64.81 

N249 6.55 138.33 72.29 63.38 N249D 5.80 149.24 67.01 62.27 

N271-1 7.37 118.69 84.25 76.08 N271D-1 4.03 143.64 69.62 57.95 

N271-2 7.56 188.23 53.13 93.03 N271D-2 5.75 108.67 92.02 97.88 

N632 7.38 139.80 71.53 46.01 N632D 7.26 131.21 76.21 45.85 

N741 5.05 124.06 80.61 53.83 N741D 8.53 105.44 94.84 74.49 

N795 6.39 90.31 110.74 52.38 N795D 8.42 132.44 75.51 47.09 

N824 9.17 152.41 65.61 39.09 N824D 7.86 141.96 70.44 37.32 

N828 8.11 73.92 135.29 56.41 N828D 6.95 130.08 76.87 43.55 

N863 3.10 85.32 117.20 64.40 N863D 2.72 133.94 74.66 63.53 

N1120 32.07 73.89 135.34 74.81 N1120D 4.10 137.57 72.69 54.59 

N1350 10.59 150.13 66.61 63.31 N1350D 6.41 127.17 78.63 55.50 

 
Table 2 Tumour DNA QC metrics results 

Sample DNA Conc./Ligation Denaturation Hybridisation DNA Quant./Lig./Denat. Sample DNA Conc./Ligation Denaturation Hybridisation DNA Quant./Lig./Denat. 

T016 29.31 164.88 60.65 43.43 T016D 29.31 164.88 60.65 43.43 

T023 6.97 227.34 43.99 60.83 T023D 6.97 227.34 43.99 60.83 

T037 27.51 173.41 57.67 60.51 T037D 14.58 174.70 57.24 53.00 

T045 18.11 125.55 79.65 91.61 T045D 22.62 178.67 55.97 84.46 

T046 9.39 107.76 92.80 94.20 T046D 8.18 164.90 60.64 79.22 

T053 8.17 125.71 79.55 73.51 T053D 7.99 131.81 75.87 67.90 

T079 7.68 102.69 97.38 87.89 T079D 8.81 135.05 74.05 66.24 

T080-1 8.76 86.86 115.12 130.53 T080D-1 7.23 119.79 83.48 69.04 

T080-2 8.91 163.32 61.23 92.06 T080D-2 7.23 119.79 83.48 69.04 

T083 12.96 151.92 65.83 78.44 T083D 8.06 131.37 76.12 72.12 

T085 7.76 190.48 52.50 48.62 T085D 6.03 171.63 58.27 49.51 

T086 8.96 104.62 95.59 98.70 T086D 13.04 88.21 113.36 78.13 

T088 11.28 142.66 70.10 68.40 T088D 11.55 136.03 73.52 63.68 

T090 10.05 212.56 47.04 111.62 T090D 10.97 184.65 54.16 92.28 

T097 12.30 79.04 126.52 91.44 T097D 9.57 94.63 105.68 80.01 

T098 13.66 78.86 126.80 97.36 T098D 12.17 146.19 68.41 98.67 

T104 8.18 104.05 96.11 145.31 T104D 5.18 123.06 81.26 154.05 

T107 18.09 64.90 154.07 80.96 T107D 18.35 99.35 100.66 81.02 
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T109 12.63 54.74 182.69 89.34 T109D 12.15 77.69 128.72 82.06 

T110 7.72 89.35 111.93 100.89 T110D 6.71 128.42 77.87 93.35 

T112 24.47 174.30 57.37 109.36 T112D 5.80 111.91 89.35 69.78 

T114-1 18.38 164.98 60.61 94.30 T114D-1 19.97 170.10 58.79 121.15 

T114-2 12.73 134.37 74.42 72.35 T114D-2 9.94 109.26 91.52 76.93 

T122 5.50 134.86 74.15 53.89 T122D 7.99 146.93 68.06 45.75 

T135 24.37 36.11 276.90 197.46 T135D 14.59 138.29 72.31 96.89 

T138 12.18 70.85 141.15 86.44 T138D 10.63 83.11 120.32 75.47 

T142 7.31 195.00 51.28 150.67 T142D 5.37 147.09 67.98 154.77 

T150 5.57 159.42 62.73 54.46 T150D 7.14 166.51 60.06 59.14 

T153 6.64 121.86 82.06 60.14 T153D 3.67 114.86 87.07 55.10 

T158 7.81 156.36 63.96 50.92 T158D 9.34 142.19 70.33 51.61 

T167 5.22 79.79 125.33 100.53 T167D 12.50 105.15 95.10 76.89 

T184-1 12.33 115.61 86.50 63.75 T184D-1 11.53 154.32 64.80 64.12 

T184-2 7.32 165.99 60.24 65.60 T184D-2 4.34 139.41 71.73 81.72 

T201 16.63 92.99 107.54 93.03 T201D 35.45 119.76 83.50 76.30 

T202 6.60 78.09 128.06 96.88 T202D 6.29 100.18 99.82 78.99 

T203 13.91 70.21 142.43 97.90 T203D 9.96 103.26 96.84 88.44 

T206 19.06 97.90 102.15 90.66 T206D 16.78 108.05 92.55 70.33 

T208 9.54 154.68 64.65 70.94 T208D 9.80 162.99 61.35 75.80 

T212 7.98 132.81 75.29 58.14 T212D 5.62 140.48 71.19 60.97 

T213 34.13 89.37 111.89 67.32 T213D 24.30 127.39 78.50 67.41 

T214 4.96 92.15 108.51 101.58 T214D 6.60 129.67 77.12 94.04 

T218 18.27 109.72 91.14 88.56 T218D 14.01 128.48 77.83 102.69 

T221-1 14.16 107.42 93.09 60.30 T221D-1 11.99 121.46 82.33 66.60 

T221-2 14.16 107.42 93.09 60.30 T221D-2 11.99 121.46 82.33 66.60 

T223 14.06 127.61 78.37 124.12 T223D 13.58 141.16 70.84 104.44 

T244 9.87 112.38 88.98 68.30 T244D 5.63 88.16 113.44 56.22 

T248 10.51 116.52 85.82 65.44 T248D 10.52 147.38 67.85 60.91 

T249 12.33 124.49 80.33 62.77 T249D 10.63 124.87 80.08 70.27 

T271-1 9.08 143.73 69.58 72.71 T271D-1 8.33 226.34 44.18 76.60 

T271-2 9.53 69.90 143.07 177.49 T271D-2 6.92 170.41 58.68 82.63 

T632 14.02 144.95 68.99 51.06 T632D 4.54 143.21 69.83 49.30 

T741 8.35 150.88 66.28 46.23 T741D 7.02 161.54 61.90 53.20 

T795 5.72 144.58 69.17 51.44 T795D 3.60 119.00 84.04 54.82 

T824 6.88 119.93 83.38 53.52 T824D 7.29 132.11 75.70 49.15 

T828 8.05 222.22 45.00 50.61 T828D 7.79 146.47 68.28 58.43 

T863 5.53 118.77 84.20 42.50 T863D 8.83 131.84 75.85 48.89 

T1120 9.10 184.01 54.34 57.16 T1120D 4.00 149.01 67.11 58.85 

T1350 8.09 139.67 71.60 51.01 T1350D 6.15 154.51 64.72 49.22 

 

The QC metrics are described in section 2.3.4.2.1. A suffix of D represents digested DNA samples. Cells highlighted in red represent failed QC metrics.
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Appendix 6. Molecular characteristics of the 53 CRC cases 

Sample CIMP CIN APC MCR TP53 KRAS BRAF PIK3CA 

CA016 CIMP-L 4 WT WT WT WT WT 

CA023 CIMP-L 0 c.4328_4329insC WT WT WT c.1633G>A 

CA037 CIMP-L 0 c.3916G>T WT c.35G>T WT WT 

CA045 CIMP-L 260 c.3933_3934insT c.524G>A WT WT WT 

CA046 CIMP-L 0 WT WT c.35G>A WT c.1633G>A 

CA053 CIMP-L 88 WT c.592G>T WT WT WT 

CA079 CIMP-N 71 c.4054_4062dup7 c.844C>T WT WT WT 

CA080 CIMP-L 38 c.4271_4280del10 WT c.35G>A WT WT 

CA083 CIMP-L 10 WT WT WT WT WT 

CA085 CIMP-L 43 c.3964G>T c.916C>T WT WT WT 

CA086 CIMP-L 3 WT c.818G>A c.35G>A WT WT 

CA088 CIMP-H 45 c.4582_4603del22 c.220del1 c.35G>T WT WT 

CA090 CIMP-L 63 WT c.559+1G>T WT WT WT 

CA097 CIMP-L 43 c.3982C>T c.637C>T c.34G>T WT WT 

CA098 CIMP-L 93 c.4037C>G c.524G>A WT WT WT 

CA104 CIMP-L 37 c.3916G>T c.734G>A c.35G>T WT WT 

CA107 CIMP-L 110 WT WT c.35G>A WT c.1633G>A 

CA109 CIMP-H 18 c.4350C>T WT c.35G>T WT c.3140A>G 

CA110 CIMP-L 0 WT WT WT WT WT 

CA112 CIMP-L 1 c.4421delC WT WT WT WT 

CA114 CIMP-H 74 c.4666_4667insA WT c.38G>A WT WT 

CA122 CIMP-N 18 WT WT WT WT WT 

CA135 CIMP-L 14 WT WT c.38G>A WT WT 

CA138 CIMP-H 24 c.4127_4128delAT WT c.35G>C WT WT 

CA142 CIMP-L 219 WT c.725G>T WT WT WT 

CA150 CIMP-L 5 c.4216C>T WT WT WT WT 

CA153 CIMP-L 150 c.4350C>T c.844C>G c.34G>T WT c.1633G>A 

CA158 CIMP-N 87 WT c.722C>G WT WT WT 

CA167 CIMP-L 14 WT WT WT WT WT 

CA184 CIMP-L 12 c.4303A>T c.844C>T WT WT WT 

CA201 CIMP-L 23 WT WT c.35G>T WT WT 

CA202 CIMP-L 33 WT WT WT WT WT 

CA203 CIMP-L 67 WT WT WT WT WT 

CA206 CIMP-L 50 c.3883G>T c.455-456ins1 WT WT WT 

CA208 CIMP-L 35 c.4666_4667insA c.730G>A & c.844C>T c.35G>T A1742G WT 

CA212 CIMP-N 29 WT WT WT WT WT 

CA213 CIMP-L 33 WT c.751A>C WT WT WT 

CA214 CIMP-L 86 WT WT WT WT WT 

CA218 CIMP-L 14 c.3927_3931del5 c.734G>A WT WT WT 

CA221 CIMP-N 39 c.4415delT WT WT WT WT 

CA223 CIMP-H 76 WT c.811G>A WT WT WT 

CA244 CIMP-L 411 c.4271delC c.817C>T WT WT WT 

CA248 CIMP-N 0 WT WT WT WT WT 

CA249 CIMP-L 61 c.4033G>T c.524G>A c.35G>T WT WT 

CA271 CIMP-H 66 WT c.844C>T WT T1796A WT 

CA632 CIMP-L 18 WT c.733G>A c.38G>A WT WT 

CA741 CIMP-L 66 c.4350C>T WT WT WT WT 

CA795 CIMP-L 2 c.4391_4394delAGAG WT WT WT c.1633G>A 

CA824 CIMP-L 21 WT WT c.35G>C WT WT 

CA828 CIMP-L 248 c.3871C>T c.524G>A WT WT WT 

CA863 CIMP-L 114 c.4391_4394delAGAG c.586C>T WT WT WT 

CA1120 CIMP-L 2 WT c.847_859del13 WT WT WT 

CA1350 CIMP-L 94 WT WT c.34G>T WT WT 

 


