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Mesoscale Modelling of Cytoplasmic Dynein using Fluctuating Finite

Element Analysis

by Benjamin S. Hanson

At the forefront of biological experimentation and simulation technology is the attempt

to understand the biological mesoscale, the regime in which thermal fluctuations are

still vital for function but atomic resolution may no longer be required. There is a

wealth of low-resolution biomolecular structural data of macromolecules available for

study, and experimental developments are allowing these biomolecules to be visualised

to near-atomic resolution without the need for crystallisation. It is clear that a new

form of simulation is required to take advantage of this structural data in order to better

understand the dynamics of proteins at the biological mesoscale, and their relationship

to dynamics at both the microscale and the macroscale.

The work presented in this thesis concerns the development of Fluctuating Finite Ele-

ment Analysis (FFEA), a mesoscale simulation technique that treats globular macro-

molecules as visco-elastic continuum objects subject to an additional thermal stress,

satisfying our definition of the mesoscale. I have further developed the constitutive

continuum model to better represent biological macromolecules, and designed a new

solution procedure in order to both increase the computational efficiency of the algo-

rithm and to remove superfluous dynamical information. I also introduce a completely

new kinetic framework that couples to the underlying simulation protocol, enabling

us to simulate discrete biological events, such as conformational changes, within a

continuous dynamical simulation.

I apply FFEA to the molecular motor cytoplasmic dynein, a mesoscopic system ex-

hibiting dynamical features that are beyond the scope of standard molecular dynamics

simulations, but well within the mesoscopic regime FFEA was designed for. I deter-

mine the physical parameters that an FFEA model of dynein requires for consistency

http://www.leeds.ac.uk
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with both experimental and high-resolution molecular dynamics simulations. Finally,

I consider the diffusional properties of dynein with respect to its microtubule track,

with the aim of understanding the potential mechanisms that enable the motor to be

processive.
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Chapter 1

Introduction

Biomolecular simulation allows scientists to study static equilibrium conformations

and subsequent time evolution of biomolecules as a function of their structure. With

much of the small length-scale and fast time-scale dynamical behaviour of biomolecules

being out of scope for the experimental methods available today, simulation technology

is a necessary counterpart to experimentation, enabling us to understand the higher

resolution mechanisms that lead to the lower resolution experimental observations.

The continuous development of computing technology has lead to Moore’s Law, the

doubling of computational power every 2 years [10], being rigidly followed ever since

its conception. Simulation technology has followed a similar trend, and has been under

constant development ever since the molecular dynamics (MD) method was first in-

troduced, validated and optimised for use on general purpose computers [11]. In 1967,

Levitt was the first to develop generalised force-fields for atomic simulations [12], with

immediate applications including calculation of thermodynamic properties and vibra-

tional spectra of n-alkane molecules [13] and structural refinement of macromolecular

crystal structures using energy minimisation [14]. These initial insights and applica-

tions paved the way for MD to be generalised to any protein with a known structure.

As computers have continued to increase in speed, algorithms have been optimised

and force-fields have been made more accurate in parallel with similar advances in

experimental techniques. However, the methodological approach to biomolecular sim-

ulation has remained largely unchanged, with MD still being the ‘go to’ method for

simulations even for the largest proteins with structures available in the Protein Data

Bank (PDB) [15].

At the upper limit of biophysics, at the scale of entire organisms, one would not consider

the specific motions of each and every atom and electron in a system when describing

1
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its properties. Our experiences with everyday length and time-scales show us that it

simply isn’t necessary to do so, and Avogadro’s constant, NA = 6.022 × 1023mol−1,

and the associated mole unit of quantity clearly shows it to be an infeasible task. So

the question arises: at what length-scale are we able to stop considering the discrete

atomic and electronic nature of biomolecules with regards to their function?

1.1 The Spatio-Temporal Regimes of Molecular Biology

We can begin to address the physical relevance of different levels of structural reso-

lution by looking at the length-scale regimes into which well-known biomolecules and

biological structures are traditionally categorised, and the physical models used to

describe their dynamics.

1.1.1 The Macroscale

The macroscale, as it is traditionally thought of, comprises the length-scales at which

whole biological organisms, such as humans, exist. In this regime interactions with the

physical world are deterministic, with processes such as jumping, throwing a ball, or

even relatively complex activities like fluid flow having completely predictable outcomes

given a set of initial conditions1.

In addition to predictability, the length-scales at the macroscale are so large in com-

parison to the fundamental interparticle distances that we are able to model physical

properties as being spatially continuous throughout the system, as well as continu-

ously varying in time. For this reason, biological systems at the macroscale are often

described using continuum mechanics. This allows us to model biomechanical pro-

cesses such as cardiovascular flow [16], objects such as bones [17] or even hearts [18]

and study how these systems respond due to physical interactions. For example, one

might consider how the viscosity of blood affects its flow as it approaches an arterial

junction [19] or the elastic limit of bone, and subsequent plastic and brittle behaviour

i.e. how bones break [17].

1Chaotic systems are an exception to this. Although these types of systems have deterministic
dynamics that are almost impossible to predict in practice, this is due to a strong dependence on the
initial state of the system. We will be dealing with a different kind of uncertainty.
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1.1.2 The Nanoscale

The nanoscale refers to the regime in which the discrete nature of atomic structures

becomes apparent in the dynamics of systems. At these length-scales, we cannot

neglect the stochastic motion caused by thermal fluctuations as it is of the same order

of magnitude as the size of the structures of interest. It follows that both spatial and

temporal fluctuations in measurable properties at the nanoscale are of equal importance

to biological function as their mean value. It is for this reason that we mainly treat

biomolecules at the nanoscale using discrete sets of particles, to keep track of the

individual particle fluctuations required for biological function.

In contrast with the macroscale, we mainly use discrete classical mechanics to describe

the motion and interactions of individual atoms, and statistical mechanics to study

the dynamics and probability distributions resulting from their associated ensembles.

Using a well-known molecule as an example, consider a starch hydrocarbon polymer

and how its length might affect its hydrolysis to glucose [20]. The relative size of

thermal fluctuations with respect to the size of the polymer means that over time it

will occupy a wide range of physical configurations [21]. The molecule will spend much

of its time away from its lowest energy structure and therefore each chemical interaction

site may not always be in a conformation that can accommodate the hydrolysis enzyme.

In order to study how these conformational variations affect the interaction between

the two molecules, we must consider at least an atomic representation of the molecule

to keep track of these nanoscale fluctuations. To study the reaction kinetics themselves,

we would also need to include the electronic structure variations to determine how the

bond energies changes as a function of structural conformation2.

1.1.3 The Mesoscale

Our definitions of the nanoscale and macroscale are at the extremes of each of the

biological length scales of interest, and it is, to some extent, intuitively clear how

we should physically view the systems. At the macroscale, thermal fluctuations are

negligible and we can use a continuum approximation, and at the nanoscale thermal

fluctuations are of the utmost importance in both time and space and require a dis-

crete atomic description. However, the function of many biological systems occur at

intermediate length and time-scales, the so-called mesoscale, where it is unclear which,

if any, of these categories is appropriate.

2Starches also have internal interactions with themselves forming granular tertiary structure, which
makes this problem much more complex. Our aim here is simply to show the relevance of thermal
fluctuations.
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We will use blood as an example to illustrate what happens as we transition from

the nanoscale to the macroscale. The different possible representations of blood as we

increase our length-scale from the nanoscale are shown in Figure 1.1.
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Figure 1.1: The structure of blood at various length scales. a) A hemoglobin
subunit visualised in PyMOL (PDB-ID:5NI1). b) A hemoglobin molecule visualised
in PyMOL [1]. c) An electron micrograph of human red blood cells [2]. d) A single

droplet of human blood [3].

Figure 1.1a shows a single hemoglobin subunit visualised by its secondary structure.

It has been shown that the specific fold responsible for formation of the heme group

in hemoglobin (the functional group which binds iron, and subsequently oxygen) is

evolutionarily conserved [22]. Therefore, the stochastic thermal motion and varying

arrangements of the individual helical structures (known as α-helices) affect how the

subunits bind together and so, to understand the assembly of hemoglobin from these

subunits, it would be necessary to model this as a discrete atomic system to capture

the specific atomic interactions conserved through this fold.

We can then begin to think about the successfully assembled hemoglobin molecule as

a whole (Figure 1.1b). Although a similar length-scale to the subunit, the specific

function of this quaternary structured protein changes how we might physically un-

derstand it. For the oxygen we breath to distribute around the body for respiration,

hemoglobin and oxygen molecules must first diffuse together in the alveoli of the lungs.
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The diffusion is caused by the thermal fluctuations of the individual molecules of oxy-

gen and those that form hemoglobin. These latter fluctuations ultimately result in the

diffusion of the entire of hemoglobin molecule. The characteristic length-scale associ-

ated with the diffusion is of the same order of magnitude as the object itself, ∼ 6nm,

which is much greater than inter-atomic distances. Hence, if we are considering the

relative abundances of hemoglobin and oxygen, or the mean free time between inter-

actions between the two species, it would be more intuitive to consider a hemoglobin

molecule as a single body diffusing through a viscous external medium, removing many

‘unnecessary’ degrees of freedom from the diffusion problem and hence the removal of

atomic resolution for this process. Yet, during the diffusion process, we must at some

point consider the atomic nature of the system once again when looking at how an

oxygen molecule enters the hemoglobin complex, and even the quantum mechanical

effects when considering how that oxygen is then able to bind to the central iron ion.

We see that both atomic and mesoscopic length-scales are in play here, depending on

which process we wish to model.

Human red blood cells (RBCs) exist at much larger length-scales, functioning as con-

tainers and transporters of hemoglobin molecules en masse. They have a well-defined

and continuous concave structure [23] (Figure 1.1c) and in addition, lack all but the

most essential organelles to maximise space for hemoglobin [24]. Due to the relative

lack of discrete internal structure, they are often modelled as continuum objects with

associated elasticities and internal viscosities [25]. This enables the deformation of

RBCs as they pass through constricted vessels to be modelled as a continuous, elastic

process [26]. However, when considering specific interactions at the cell membrane,

the dynamics are often atomistic in nature. For RBC transmembrane proteins, such

as receptor proteins and ion channels, the dynamics of single ions or small proteins are

required to study specific interactions and therefore thermal fluctuations and spatial

discretisation are again important. Yet the local curvature around channels and the

overall elastic, continuum nature of the structure are also known to affect the function

of these proteins. This curvature is generated from a combination of local scaffolding

caused by hydrophilic ‘coat’ proteins and macroscale scaffolding formed by the micro-

tubule and actin networks which span the entire cell [27]. We see that RBCs exhibit

both nanoscale and macroscale properties, and even some coupling between the two

regimes.

Finally, as the flow generated by the heart overcomes the stochastic thermal effects of

diffusion, and the vessel is much larger than the RBC, the collection of RBCs, plasma

and other components form whole blood (Figure 1.1d) which on large length scales

acts as a deterministic fluid [28]. Although the physical properties of the fluid change
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through processes such as coagulation [29], the structure clearly remains continuous

and deterministic from simple everyday observations.

It is clear that blood as a general substance does not rigidly fit into the classical

nanoscale and macroscale regimes. The different structural components of blood asso-

ciated with different length-scales each have different associated physics [30]. At the

extremes ends, such as nanoscale hemoglobin subunits and macroscale whole blood,

it is clear which physical model is appropriate. However, for the intermediate struc-

tures, hemoglobin and the whole RBC, the appropriate physical model depends upon

the specific process of interest. This spatio-temporal range, where biological systems

begin to transition from the nanoscale to the macroscale, is known as the mesoscale,

and it is the least understood regime in molecular biology.

To understand how we might model dynamics at the mesoscale, we will first consider a

selection of currently available techniques for each of the biological length-scale regimes.

1.2 The Simulation of Biological Systems

At each of the different length-scales of biology, different physical processes dominate

the dynamics of the system. With appropriate equations of motion, computational

power allows us to simulate the dynamics of biological systems at each of these length-

scales. Here we provide an overview of simulation techniques appropriate to each

length-scale, and look at what is missing from currently available biological simulation

tools.

1.2.1 Quantum Mechanical Methods (Resolution: Sub-nanoscale)

The forces between atoms arise from their associated electron distributions, governed

by the Schrödinger equation [31],

− ~2

2m
∇2Ψ + V (~x, t)Ψ = EΨ, (1.1)

where V (~x, t) is the total potential energy the particles experience, E the total energy

and Ψ = Ψ(~x, t) is the wavefunction of the system. The indistinguishability of elec-

tons within an atomic network makes solving Equation 1.1 exceedingly difficult in the

general case [31], so approximations must be made to elucidate any information.

Density Functional Theory (DFT) is a quantum mechanical method that enables the

calculation of physical observables without the explicit evaluation of Equation 1.1
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through implementation of the Hohenburg-Kohn (H-K) theorems [32]. These theorems

show that the ground-state wavefunction, Ψ0, can be fully and uniquely defined by the

electron density distribution, n(~x), in the ground-state such that Ψ0 = Ψ [n0(~x)] [33],

and,

n(~x) = N

∫
d3x1...

∫
d3xNΨ∗(~x1, ...~xN )Ψ(~x1, ...~xN ), (1.2)

where N is the total number of electrons. By treating n as the single variable of

interest, we can define each of our physical observables as functionals of this electron

density, specifically the energy,

E = 〈Ψ [n(~x)]
∣∣∣T̂ + V̂ + Û

∣∣∣Ψ [n(~x)]〉,

⇒ E(n) = T (n) + V (n) + U(n), (1.3)

where T (n), V (n) and U(n) are the set of specific energy functionals. Numerical

minimisation of the total energy functional with respect to n yields n0, the ground-

state density, which uniquely determines every physical observable of the ground-state

that can be calculated from E0 and n0. Becke provides an in-depth review of the forms

of T (n), V (n) and U(n) and the specific operations involved in his perspective [34].

DFT has been used to study a variety of different chemical processes, from adsorption

of ligands to chain folding [35]. However, due to the relatively poor scaling of DFT

with system size, it is currently restricted to systems with a relatively small number

of electrons, Ne ∼ 102, and therefore an even smaller number of atoms. DFT, as

with many quantum mechanical calculations, effectively involves eigen-decomposition

of a Hamiltonian energy operator which is formally an O(N3
e ) operation. Even with

algorithmic optimisation from available software packages, the coupling between elec-

trons can never be fully ‘eliminated’ from the computation so that at best the cost

will scale as O(N2
e ), with the true scaling being somewhere in between. This is clearly

infeasible for proteins comprised of many thousands of atoms, and so as we move up

in length-scale we will need alternative models.

1.2.2 Molecular Dynamics (Resolution: Nanoscale)

A few simple but significant approximations allow us to reduce the electronic interac-

tions from Section 1.2.1 to much simpler forms. The limit of the Born-Oppenheimer

approximation allows us to assume that the reaction of the electron cloud to the mo-

tion of the nucleus is not only decoupled, but infinitely fast. We can now assume the

nuclei, hereafter referred to simply as atoms, to be point-like particles connected in a

covalent network by their electron clouds. The connectivity of this network remains
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Figure 1.2: The overall method of MD. Although developed for atomic systems,
this throughput can be applied to any discrete set of particles (see Section 1.2.3).

constant in this framework, and so electronic motion, and therefore chemistry, is not

included in the model. The second approximation is the assumption that the interac-

tions of the overall electronic system with any atom, i, can be written as a classical

potential energy, V ({xi}, t). We can therefore define Newtonian forces ~Fi on each atom

as the gradient of the total potential, ~Fi = −∇iV , thus ‘removing’ the quantum effects

from the equations. Applying Newton’s Second Law, and integrating numerically the

resulting equation of motion for each atom allows us to evolve the system forward in

time. This form of simulation is known as Molecular Dynamics (MD).

We can define a general potential energy VMD which can be applied to any biomolecule.

The general functional form of the total potential used in MD [36] is,

VMD =
∑

bonds

kb(l − l̄b)2

+
∑

angles

ka(θ − θ̄a)2

+
∑

torsions

∑
n

kφ (1 + cos(nφ− γφ))

+
N∑
i

N∑
j=i+1

εij

(reqij
rij

)12

− 2

(
reqij
rij

)6
+

qiqj
4πε0rij

. (1.4)
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The first three terms in Equation 1.4 represent the covalent bond interactions, and

the last two represent Van der Waals (VdW) and long-range electrostatics. The action

of the external solvent is also a necessary part of protein function [37], and so the

inclusion of an appropriate water model within MD is required. Water can either be

added to the model as explicitly defined molecules which are subject to the general

potential Equation 1.4 [38], or implicitly using an approximate coupling to the Poisson-

Boltzmann equation [39].

For an MD simulation to be specified for a particular protein, we must define the full

set of system parameters that define the specific force response to motion for that

protein. These extensional and angular spring-constants, and torsion angles for each

possible bond type (C−H, C−C, C−−O etc.) in a number of different possible chemical

environments have been calculated from either experimentation or higher resolution

simulation (DFT, for example) and compiled into MD force-fields which define the set

of constants {kb, l̄b, ka, l̄a, kφ, γφ}. Software implementations of the MD method then

use these force-fields together with Newton’s Second Law, integrating the equations of

motion to evolve the system forward in time and simulate protein dynamics in general.

Today, MD can be applied to any protein with a known atomic structure. The MoDEL

database contains multi-nanosecond trajectories for 1595 proteins, specifically chosen

to include the most diverse set of structures possible [40]. More commonly, a simulation

suite is developed for a specific molecule. A very relevant example for this thesis

are recent MD simulations of a monomer of the molecular motor dynein, generating

200ns simulation trajectories [41]. Using an approximation to increase the speed of

the calculation of the long-range electrostatics, the simulations were able to provide

evidence that the presence of an adenosine triphosphate (ATP) molecule in place of

an adenosine diphosphate (ADP) molecule in the primary binding site increases the

flexibility of the molecule. We will be considering these specific simulations in more

detail in Chapter 5.

Notice that even these 200ns simulations required the development of a new computa-

tional procedure to increase the speed of the MD calculations [41]. For Na atoms, the

algorithms to calculate long-range electrostatic and VdW interactions have a formally

O(N2
a ) time-dependence. Using multi-grid techniques and mean field approximations

this calculation can be reduced to O(Na ln(Na)) for long-range interactions [42], but

the close-range electrostatics are still a huge computational bottleneck. The time-

integration procedure of MD is also highly constrained, requiring a simulation timestep

smaller than the fastest time-scale in the system for numerical stability, which for bi-

ological systems is typically ∼ 10−15s [43]. As with DFT (see Section 1.2.1), the
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relatively poor scaling with system size, and timestep limitation, means that MD sim-

ulations require infeasible runtimes in order to simulate the dynamics of many proteins

over the timescales of their motion. The group of Shaw have been addressing the scal-

ability issue by developing ANTON [44], a special purpose processor designed specifi-

cally for running MD simulations. This hardware optimisation has enabled sufficiently

long-time simulations of proteins to observe protein conformational changes [45] and

is bringing us closer to being able to address the problem of protein folding.

Motivated by the idea of hardware acceleration, recent advances in MD technology have

concentrated on integrating MD algorithms with graphical processor units (GPUs).

GPU hardware development is driven primarily by the fast growing commercial inter-

active entertainment sector, making it a sustainable time investment for MD integra-

tion. The parallelisation capabilities of GPUs are currently allowing simulations of up

to 3 million atoms, limited only by the memory capacity of the GPUs themselves [46].

However, even with the possibility of almost unlimited parallelisation, the inclusion of

every single atom in the system may be an unnecessary use of resources when studying

the global dynamics of large biological systems [47]. To compensate for this inefficiency,

we require coarse-graining methods when simulating larger systems.

1.2.2.1 Quantum Mechanics / Molecular Mechanics

Warshel and Levitt [48] united quantum mechanical methods and molecular dynamics

into a hybrid method known as QM/MM. The model treats specific parts of a protein

using quantum mechanical methods, but the remainder is studied using lower resolution

molecular dyamics. By using an appropriate coupling scheme between the regions [49],

QM/MM is able to capture accurate QM properties for chemically active regions whilst

still considering the flexibility and electrostatics of the rest of the protein. However,

such a method is still limited by the same constraints of regular MD, and so is still not

appropriate for large protein simulations.

1.2.3 Coarse-grained Discrete Methods(Resolution:Nano/Mesoscale)

The scaling of the MD method means it often cannot feasibly be applied to the afore-

mentioned ‘large’ systems at atomistic resolution due to the runtime required. Coarse-

grained (CG) methods have been developed to lessen the computational load by re-

ducing the number of degrees of freedom in the system but conserving the general MD

method shown in Figure 1.2.
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Within large molecules, various intermediate structures are formed as we move up in

length-scale: atoms form residues, residues form secondary structure, secondary to ter-

tiary and so on. Each of these intermediaries can be considered as the fundamental unit

in a coarse-grained simulation technique using the general MD method. Provided that

effective force-fields that describe the interactions between these units can be defined,

the MD algorithm is able to produce dynamical trajectories that generate the dynam-

ics of these intermediate structures at a much lower computational cost than all-atom

MD. This discrete coarse-graining approach can group arbitrary numbers of atoms and

functional groups together, and so naturally there are multiple different CG methods

available to be applied to different length-scales. Izvekov et al. developed a method

which generalises the creation of a CG force-field from higher-resolution structural

data [50], but perhaps a more well-known example is the MARTINI model [51].

The MARTINI model uses a potential similar to that of MD, but where the fundamen-

tal units are groups of atoms. On average, every 4 heavy atoms are represented as a

single CG particle, with specific charged, polar, non-polar and apolar particle ‘types’,

each with additional hydrogen bonding capabilities. The bonded force parameters are

determined from the underlying atomic structure, and non-bonded interactions are still

treated using a Lennard-Jones potential for Van der Waals and Coulomb electrostat-

ics for charged particles [52]. Once parametrised the CG simulation progresses in a

manner identical to MD, as per Figure 1.2.

By reducing the number of degrees of freedom in this fashion we lose dynamical in-

formation at smaller length-scales, which often corresponds to the fastest motions in

the system. However, as we saw in Section 1.2.2, our computational limitations are

due both to the number of particles and the smallest time-scale in the system, and

so CG simulations using the MARTINI model provide a substantial speed increase in

comparison to all-atom MD. Spatial resolution, then, forms somewhat of a trade-off

with simulation speed.

This acceleration has allowed CG MD simulations of much larger systems than all-

atom MD. Applications include, but aren’t limited to, self-assembly processes, protein

conformational change and lipid membrane formation and interactions [52]. A recent

study probed the interaction and permeation of particles through a lipid bilayer mem-

brane [53]. The lengths of these simulations enabled comparison with experimental

results, which in turn allowed conclusions to be drawn about the underlying mecha-

nisms responsible for experimental observations. For example, Oroskar et al. were able

to show that a gold nano-particle functionalised with hydrophobic ligands, designed
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to transport drug molecules, weakened the membrane following permeation. The hy-

drophobicity of the nano-particle displaced lipid molecules from the membrane, with

larger nano-particles causing permanent dissociation and potentially irreparable dam-

age. Hydrophilic nano-particles on the other hand were still able to permeate through

the membrane, yet caused only minor disruption to the membrane with almost imme-

diate recovery of membrane structure once the nano-particle exited. These simulations

give evidence that CG MD, specifically those implementing the MARTINI model in

this case, capture a significant proportion of the relevant dynamics one would obtain

from all-atom MD, but with a much smaller runtime.

1.2.3.1 Gaussian Network Models

Proteins in general can be viewed as a network of ‘backbone’ carbon atoms with func-

tional groups attached to them. The backbone carbon network, or Cα atoms, are

(mostly) responsible for the overall flexibility of the molecules, so the next level of

coarse-graining we may consider is including only those Cα atoms in our calculations,

and removing electrostatic interactions altogether. A model in which molecular struc-

tures are represented as a series of Cα atoms connected by Hookean springs is known

as a Gaussian Network Model (GNM) [54]. The simplest CG potential to describe a

GNM containing N Cα atoms is significantly less complex than the MARTINI model,

VGNM =
1

2

N∑
i=0

N∑
j=i

γij(Rij −R0
ij)

2, (1.5)

where Rij = Ri − Rj is the distance between each pair of atoms in the structure, R0
ij

being the equilibrium distance, and γij is the associated stiffness. Here, there is no

‘type’ defined for each particle, as was the case for MARTINI. Instead, each particle

is simply described by its position in space with interactions modelled as pure elastic

connections with neighbouring atoms. Equation 1.5 can be rewritten in matrix form,

VGNM =
1

2
∆~RTK∆~R, (1.6)

where K is the stiffness matrix of the system, populated with the values γij and applied

to the vector of deviations from equilibrium ~R. A cut-off distance rc is also specified

to simplify the calculation further, such that for R0
ij > rc, Kij = 0. In other words,

elastic connections are neglected in the calculations for atoms that are too far away

from one another.
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The GNM potential is simple enough that we do not need to run a simulation at all

to study the resulting dynamics. It can be shown (see Chapter 3) that all of the

possible dynamical information of a GNM is contained within the stiffness matrix, K.

Diagonalisation of K gives a series of elastic normal modes. The eigenvectors describe

the relative motions of each atom in the mode, and the eigenvalues describe the relative

stiffness of each mode.

Although the stiffness matrix is able to incorporate inhomogeneous spring constants γij

between each pair of Cα atoms (known specifically as an Anisotropic Network Model

(ANM)), it is still based on a linearisation of the force-field between atoms. Thus,

the eigendecomposition gives only first-order dynamical information regardless of the

spring constants chosen. Hence, any long-range or non-linear effects are not included

in a GNM. However, GNMs have been suprisingly successful in their analysis of the

motion of large proteins. A GNM of the entire ribosome, a ∼ 3MDa assembly of 55

protein subunits and 3 rRNA segments, was able to show strong positive and negative

correlations between the motions of different regions within the superstructure [55].

Although they verified previous experimental observations, these correlations alone

imply a ratchet-like motion that gives an immediate insight into the mechanism by

which a segment of RNA may be translated through the ribosome.

1.2.3.2 Dissipative Particle Dynamics

Coarse-grained MD and network models effectively cover the entire range of possible

methodologies for coarse-graining large molecules via structural averaging. However,

an additional spatially discrete method considers only the overall shape of the system,

rather than the underlying atomistic structure.

Dissipative Particle Dynamics (DPD) takes the overall volumetric structure of a bi-

ological object and populates that volume with close-packed spherical particles [56].

These spherical particles have no relation to the underlying, higher resolution struc-

ture, they are used purely to fill space within the defined volume. On each of these

particles we apply a stochastic force, representing the effect of temperature, and a vis-

cous force, representing the internal and external frictional forces. We can also include

any conservative force we wish, giving us a general force on any particle i, ~Fi, of the

form,

~Fi =
∑
j 6=i

~F cij + ~F dij + ~F tij , (1.7)

where ~F cij ,
~F dij and ~F tij are the conservative, dissipative and thermal forces respectively.
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The thermal and dissipative forces are mathematically coupled through the fluctuation-

dissipation theorem, such that the energy within the system conforms to equipartion at

equilibrium [21]. These terms are both given generalised forms such that the frictional

interaction range and strength can be varied a priori without the need for re-derivation

of the governing equations. The fluctuation-dissipation theorem will discussed in more

detail in Chapter 2.

In addition to this coupling we have the conservative forces, ~F cij . The form of this

force used in DPD is often arbitrary, with the only ‘constraint’ other than it being

conservative is that it remains as a soft potential that inhibits particle overlap.

DPD has a number of advantages compared to single particle models such as simple

Brownian or Langevin dynamical models. Unlike single particle models, the total fric-

tional force within DPD is determined as a superposition of interactions between all

pairs of connected particles. This ensures that Newton’s 3rd law is obeyed, such that

~Fij = −~Fji ∀ i, j, and so momentum is explicitly conserved in addition to preseving

equilibrium thermodynamics. As a consequence, if we ensure all additional forces are

conservative, a simulation of unbound DPD particles converges to the dynamics pre-

dicted by the Navier-Stokes equation. DPD, therefore, is a fluctuating fluid dynamical

model [57].

While Brownian dynamics have been used to model large, overdamped systems where

the relative local viscosity is so large that momentum is dynamically unimportant [58],

if the inertial forces are large and the convergence to hydrodynamical behaviour is

important, DPD is the appropriate choice. Recalling our earlier example of the red

blood cell at the mesoscale, a 2012 study by Li et al. [59] used a conservative DPD

force to model molecular chirality, and were thus able to observe the self-assembly of

sickle hemoglobin into fibres. Following this, they modelled the RBC itself as a DPD

system with appropriate conservative forces matching experimental observations, and

inserted the fibres inside the RBC. They saw that extended growth of the fibres within

the RBC can cause it to form the abnormal half-moon shape associated with sickle cell

disease, showing the emergence of a macroscopic observable as a result of underlying

fluctuating fluid dynamics.

1.2.4 Continuum Methods (Resolution: Meso/Macroscale)

The final level of discrete coarse-graining, DPD, took us into a new regime for un-

derstanding biological dynamics. The method describes the structure of an object by

its volume alone, and the dynamics observed in DPD simulations recover macroscopic
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observations of fluid dynamics in the long-time limit. This means that DPD in fact

belongs to the field of computational fluid dynamics (CFD), which is a sub-field of the

much broader topic of continuum mechanics. We now provide a brief introduction to

continuum mechanics before describing a selection of simulation techniques that deal

explicitly with continuum mechanics from the beginning.

1.2.4.1 An Introduction to Continuum Mechanics

Continuum mechanics differs from discrete mechanics in how it deals with the concept

of spatial position. If we consider an atomic system, each individual atom in that

system can be assigned its own properties. Each atom, indexed by i, can be assigned

scalar properties such as mass, mi, charge, qi, and vector properties such as position,

~xi, and any of its time derivatives, ~vi, ~ai. This implies that the space between these

particles is effectively empty3, and so we can discretise the contents of the space into a

finite set of points, each with their own individual properties. But what happens when

we start to look at bigger systems, or, when the length-scales we are interested in are

much larger than the inter-atomic distances?

We can define a characteristic length, lc, as the minimum length-scale we wish to

consider within a given system. As we ‘zoom out’ and consider larger systems, lc

increases, while the particle density remains constant. It can be shown that,

d

lc
∝ 1

N
1
3

, (1.8)

where d is the average inter-particle distance and N is the total number of particles in

the system. As N → ∞, we make the continuum approximation in which d tends to

zero i.e. the object is fully continuous in space.

Making this change to our model means that we can no longer discuss the individual

properties of particles. We now effectively have infinite particles separated from each

other by infinitesimal distances, and so our position ~xi is ‘promoted’ from a property

of a particle to a continuous system co-ordinate, i.e. we now discuss the ‘average’

properties of all atoms located in the vicinity of any continuous position ~x. Hence, all

of our other properties, ~vi, mi, qi etc are no longer discretely indexed, but parametrised

by ~x, as well as time. Table 1.1 shows how the quantities change as we transition to a

continuum description.

3With the exception of force-fields.
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Discrete Continuous

Spatio mi, ~vi, qi, ~xi ρm(~x), ~v(~x), ρq(~x)
Spatio-Temporal mi(t), ~vi(t), qi(t), ~xi(t) ρm(~x, t), ~v(~x, t), ρq(~x, t)

Table 1.1: The difference in variable representation between discrete and continuum
systems. In contrast with a discrete representation, where each variable is indexed to
tie it to the object is represents, a continuum system uses position itself as an addi-
tional continuous variable. This means that continuum systems deal with intensive

properties like densities, rather than extensive properties like mass and charge.

It follows from this analysis that any measurable property of a continuum system,

whether it be a charge distribution, ρq(~x, t), a temperature variation, T (~x, t) or even

the overall shape of the system, X(~x, t), is now a field that is a function of space and

time. The equations which describe the evolution of these properties must necessarily

be partial differential equations (PDEs) involving both position and time.

Just as with DPD, in the continuum formalism we can define biological objects simply

by their overall shape, as a continuous volume bounded by a surface. Instead of

populating the volume with discrete particles however, we derive PDEs that apply

over the volume of that object and define the continuous variation of some physical

property of interest. For more detail on continuum mechanics in general, Lai et al.

provide a highly useful introductory text to the subject [60].

We now look at the methods most commonly used for computationally solving PDEs,

using the well known one-dimensional diffusion equation as an example,

∂f

∂t
= D

∂2f

∂x2
. (1.9)

1.2.4.2 Finite Difference Methods

The finite difference method is a commonly used method for computationally solving

partial differential equations [61], due to its relative simplicity and ease of implemen-

tation over simple domains. For any function f(x, t) we can use a Taylor expansion to

write an approximation to any derivative at any point x and time t using only points

from the original function. Equation 1.9 can be approximated as follows,

∂f

∂t
≈ f(x, t+ ht)− f(x, t)

ht
,

∂2f

∂x2
≈ f(x+ hx, t) + f(x− hx, t)− 2f(x, t)

h2
x

, (1.10)
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Figure 1.3: The grid for a finite difference method with two variables, x and t.
Green nodes are those values already known, either through initial conditions or
previously calculated. The blue and red nodes form the stencil for the explicit solution
of Equation 1.11. Knowledge of the blue values allows the calculation of the red. We
can see that if we translate the stencil, a full row of known values would allow the

remainder of the time axis of the grid to be calculated.

where ht and hx are grid spacings of the variables x and t respectively. Substitution of

these types of expansion into any PDE removes the explicit derivative terms, replacing

them with multiple evaluations of underlying solution f . For Equation 1.9 this results

in,

f(x, t+ ht) = f(x, t) (1− 2Dr) +Dr (f(x+ hx, t) + f(x− hx, t)) , (1.11)

where r = ht
h2x

. This is known as a difference equation, a recursive problem which in

this simple example can be solved explicitly and iterated through time using simple

computational techniques when given suitable initial and boundary conditions. The

two constants ht and hx transform the domain of the solution from a continuum into

a discrete grid, shown if Figure 1.3.

The finite difference method is a natural approach for the study of physical growth. A

recent study by Trivisa et al. developed a general model which looked at the growth

of tumours by considering the flow of cell density under the action of a transport

equation [62]. The model is multi-phasic in that the tumour cells and healthy cells

are modelled separately, and the expansion of the tumour is driven primarily by the

increased pressure on the healthy cells due to cell division and competition for space.

The finite difference approximation to the governing transport and pressure equations
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was applied to an initial density distribution with a radial Gaussian profile, and showed

that the tumour continued to expand with a circular shape, but quickly became almost

homogeneous with respect to density, with a steep decay to zero tumour cell density

at the edge.

The weakness of the method however, as we can perhaps tell from Figure 1.3, is that

it requires an orthogonal grid. It is therefore not well suited for the complex domain

shapes that can exist in higher dimensions.

1.2.4.3 Finite Volume Methods

The finite volume method is an alternative method for the solution of PDEs, and is

more suitable for transport equations and conservation equations which involve a flux

of some kind, particularly on complex domains [63]. As the name suggests, the finite

volume method divides the domain into a set of discrete volume segments, with the

solution calculated at the center of each of the segments using the transport though

the bounding surfaces of the segments. As a consequence, the finite volume method

only requires the total volume to be partitioned into a number of geometrically simple

shapes and so can be more easily applied to complex domains.

We begin by discretising the domain of Equation 1.9 into a series of nodes, but this

time considering the nodes as the center points of volumetric cells, or line segments in

our example (see Figure 1.4). Each cell contains a node, i, and is bounded by partitions

defined by the indices i− 1
2 and i+ 1

2 .

Figure 1.4: The discretisation of a 1D line for the finite volume method. Each
grey node, i, represents the average solution within the cell bounded by the partitions
i− 1

2 and i+ 1
2 . This allows a semi-discrete algebraic equation to be specified at each

node. The collection of these equations, plus appropriate boundary conditions, can be
solved using standard linear algebra techniques for the solution values at each node,

and integrated through time if necessary.

Equation 1.9 is valid over the entire domain, so we can perform a volume integral over

the ith cell, ∫ x
i+1

2

x
i− 1

2

∂f

∂t
dx = D

∫ x
i+1

2

x
i− 1

2

∂2f

∂x2
dx. (1.12)



Chapter 1. Introduction 20

We then define the quantity f̄i(t) as the volume average of f(x, t) in cell i,

f̄i(t) =
1

∆xi

∫ x
i+1

2

x
i− 1

2

f(x, t), (1.13)

where ∆xi = xi+ 1
2
− xi− 1

2
. This allows us to reverse the order of integration and

differentiation on the LHS of Equation 1.12 to obtain,

∆xi
∂f̄i
∂t

= D

∫ x
i+1

2

x
i− 1

2

∂2f

∂x2
dx. (1.14)

The RHS of Equation 1.14 can be immediately evaluated in this 1D example,

D

∫ x
i+1

2

x
i− 1

2

∂2f

∂x2
dx =

∂f

∂x

∣∣∣
i+ 1

2

− ∂f

∂x

∣∣∣
i− 1

2

. (1.15)

The function ∂f
∂x ≡ −J , where J is the flux associated with the quantity f . Hence,

∂f̄i
∂t

=
D

∆xi

(
Ji− 1

2
− Ji+ 1

2

)
. (1.16)

The physical interpretation of Equation 1.16 is that the rate of change in the total

amount of the quantity f within the volume element i, defined by its volume average

f̄i, is equal to the algebraic sum of the amount entering from the left side of the

element, Ji− 1
2
, and the amount leaving from the right hand side of the element, J1+ 1

2
.

The use of flux in this manner allows Equation 1.14 to be generalised to any volume

element in any spatial dimension through use of the divergence theorem. The values of

J , which are spatial gradients of the quantity of interest, can be approximated using

differencing schemes similar to those used in the finite difference method. In our 1D

example, we can expand the spatial derivatives as linear interpolations between the

volume averages defined within each cell. This eventually leads to the final discretised

equation for cell i,

∂f̄i
∂t

=
D

∆xi∆xi− 1
2

f̄i−1 +
D

∆xi∆xi+ 1
2

f̄i+1 −
D

∆xi

(
1

∆xi− 1
2

+
1

∆xi+ 1
2

)
f̄i. (1.17)

An equation of the form Equation 1.17 can be written for all values of i. With ap-

propriate boundary conditions for the limiting values of i, this forms a set of algebraic

equations for the volume averages f̄i in each cell, which can be solved using standard

linear algebra techniques.

Note that the volumes / widths of each cell, ∆xi, are not necessarily equal. This allows
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a greater level of control over the resolution of the method compared to finite difference

methods. In a recent publication by Sifounakis et al. the finite volume method was

applied to the 2D incompressible Navier-Stokes equation to generate a generalised

solution regime for any specified initial and boundary conditions [64]. The variability

of the cell sizes was used to define ‘regions of interest’ that were of a much higher

resolution than the rest of the grid, thus lowering the overall computational complexity

than would be possible with uniform high resolution throughout the system. An initial

Gaussian pulse was applied, and velocity and pressure fields calculated and evolved in

time until the system equilibrated. The expanding pulse was able to transition into

the high resolution region without picking up any erroneous simulation artefacts, with

only a small least-squares error compared to the analytical solution for the total grid.

1.2.4.4 Finite Element Methods

The finite element method, or finite element analysis (FEA), is a core topic of this

thesis and so we provide a thorough derivation of the method in the following section.

FEA is similar to the finite volume method in subdividing the domain into simple

geometric shapes, or elements, but now uses a polynomial interpolation to define the

solution at all points in space.

We begin again by discretising the domain of the equation before considering the

equation itself. Within FEA, the subdivision into simple geometric elements can be

unstructured, allowing regions of low and high resolution wherever we choose (see Fig-

ure 1.5). Algorithms are available to optimise the procedure, efficiently meshing a given

domain into a set of tessellating shapes while conforming to user defined constraints [65]

i.e. keeping element volumes and shapes within a specified range, explicitly avoiding

shapes with too large volumes, minimising the overall loss of volume due to loss of

curvature at the boundary, and so on. In three dimensions, tetrahedra are the most

common element used as any 3D structure can be subdivided into tetrahedra, with a

bounding surface approximated as a set of triangles4, and due to the large variation in

their size and shape, these are broadly referred to as elements.

Once we have our discrete computational domain, we can begin to transform the

corresponding equation into the appropriate discretised form. Unlike the previous

methods we have seen, FEA does not approximate the differential operators. Instead,

we seek a solution formed from a restricted set of functions based on the discretisation

itself. However, the general complexity of the domain, together with the boundary

4Any shape which perfectly tessellates in the dimension of the problem can be used as the FEA
mesh building block. Even a combination of different shapes can be used if a tessellation can be formed.
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Figure 1.5: The discretisation of 1D, 2D and 3D globular structures into finite
element meshes. The associated elements are line segments, triangles and tetrahedra
respectively. Emphasis is given to the non-uniformity of the element sizes, particularly
in the 3D model c) where the element density is much higher in the highly curved
region to capture fine structural detail. Models a) and b) were built manually, whereas

model c) was built using the Blender [4] and Netgen [5] software packages

conditions, may mean that the equation has no exact solution within this restricted

set of functions. As such, our overall solution to the specified PDE will necessarily

be an approximation of some kind. With this in mind, we use Equation 1.9 as a 1D

example and explicitly define the residual, R, of the equation,

R =
∂f

∂t
−D∂

2f

∂x2
. (1.18)

Given this definition, our aim is to find the function f(x, t) which minimises the ab-

solute value of the residual in some sense. For generality, the finite element method

minimises the residual in the weighted integral sense, by multiplying Equation 1.18 by

a weight function ω(x) and integrating over the domain V ,∫
V
ωRdV =

∫
V
ω

(
∂f

∂t
−D∂

2f

∂x2

)
dV = 0, (1.19)

where Equation 1.19 is known as the weak formulation of Equation 1.9. Note that

if we were to choose a functional form for f such that R were identically zero, then

the integrand of the RHS of Equation 1.19 must also be zero, and so any solution of

Equation 1.9 would also satisfy Equation 1.19. However, the converse is not true.

For our approximation of f , we restrict the space of possible functions to piecewise

polynomial interpolations over the elements. Within each element, we approximate the

true form of the function f(x, t) as a truncated Taylor expansion, with each element
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therefore having its own uniquely associated polynomial which is defined only within

that element. This set of element equations covers the total domain of Equation 1.9

with no domain overlap, and so f can be defined as the piecewise assembly of the

set of element equations. We make the following general approximation for a mesh

containing N nodes5,

f(x, t) ≈
N∑
j

fj(t)ψj(x), (1.20)

where fj(t) are a set of unknown values of f(x, t) evaluated at each of the nodes j,

and ψj the set of interpolation functions between them, otherwise known as the shape

functions. Outside of their associated elements, these shape functions are undefined.

Within their associated elements, with discrete nodal positions defined as xj , the shape

functions must satisfy the following conditions,

ψj(x) =

1 x = xj

0 x = xi, i 6= j

These conditions lead to the required discretisation condition,

f(xj , t) = fj(t) (1.21)

and so, under this approximation, the nodal values in the discretised system are defined

to be exactly equal to their counterparts in the original continuous formulation in

Equation 1.9.

The values fj(t) are now a finite set of unknowns in a discretised system, and so to find

a uniquely determined set as a solution to Equation 1.19, we require a set of exactly

N linearly independent weight functions ω. Each of these can then be substituted into

Equation 1.19 to generate an independent algebraic equation, resulting in a set of N

algebraic equations in total that form a linear algebra problem with a unique solution.

Provided that the weight functions are at least once differentiable, we can manipulate

Equation 1.19 through use of the divergence theorem to transfer a spatial derivative

from the RHS onto the weight function,∫
V
ω
∂f

∂t
dV +D

∫
V

∂ω

∂x

∂f

∂x
dV = D

∫
S
ω
∂f

∂x
n̂dS. (1.22)

By performing this integration, the solution f(x, t) is now only required to be differ-

entiable once with respect to x, weakening the continuity conditions on the solution

through the existence of the weight functions ω (hence the label of ‘weak formulation’).

5Or, in general, N degrees of freedom.
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An additional and useful property of this procedure is that, in a similar way to the

finite volume method, the use of the divergence theorem on the final term of Equa-

tion 1.19 directly evaluates the boundary values as an integration over the bounding

surface of the domain, and thus the boundary conditions are explicitly included in the

weak form itself. In 1D, we can see from Figure 1.5 that the domain V represents a

line segment, and so S is simply the two end-points of the line. For generality, we keep

this evaluation in terms of S with n̂ as the 1D equivalent of a normal vector, such that

n̂ = 1 at the upper domain limit, and n̂ = −1 at the lower domain limit.

Substitution of Equation 1.20 into Equation 1.22 gives,

N∑
j

∫
V
ωψj

∂fj
∂t

dV +D

∫
V
fj
∂ω

∂x

∂ψj
∂x

dV = D

N∑
j

∫
S
ωfj

∂ψj
∂x

n̂dS. (1.23)

All that remains is to choose the weight functions. As previously stated, any set of

N linearly independent weight functions is sufficient to specify a unique set of fj(t).

Our set has the additional requirement of being at least once differentiable, to satisfy

Equation 1.22. The Galerkin formulation of finite element analysis states that, without

loss of generality, we can choose the weight functions to be the set of shape functions

used to discretise the solution itself [66]. Substitution of ω = ψi into Equation 1.23

gives,

N∑
j

∫
V
ψiψj

∂fj
∂t

dV +D

∫
V
fj
∂ψi
∂x

∂ψj
∂x

dV = D

N∑
j

∫
S
fjψi

∂ψj
∂x

n̂dS, (1.24)

which can be rewritten as a linear algebra problem for the set of values fi at each of

the nodes i. In matrix form,

A
∂ ~f

∂t
+ B~f = ~F , (1.25)

where,

A = Aij =

∫
V
ψiψjdV,

B = Bij = D

∫
V

∂ψi
∂x

∂ψj
∂x

dV,

and,

~F = Fi =

D
∑N

j

∫
S fjψi

∂ψj
∂x n̂dS i ∈ S

0 otherwise
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So far, we have not specified what specific polynomial form the shape functions have.

The most simple form is a linear interpolation between the nodes of each element.

However, as long as we add additional nodes within the elements to account for the

number of degrees of freedom required for a given order of polynomial, the finite element

method can accommodate any set of shape functions over the domain of a single

element. In our 1D example, we require n + 1 nodes per element for a polynomial of

order n; a start and end point (2 nodes) for a linear polynomial (order 1), for example.

The strength of the finite element method is that we can increase the accuracy of our

approximation of f to as high a level as we wish, either by increasing the element

density, which is known a h-refinement, or by increasing the order of the polynomial,

called p-refinement [66]. As with any computational increase in accuracy, there is an

associated cost in algorithm runtime. In the case of FEA, this is due to the matrices

A and B increasing in size with both h-refinement and p-refinement. However, unlike

many other algorithms, the increase (or decrease) in accuracy is built into the method

itself and can be achieved with the same algorithm. We will see the method applied to

both simple geometric shapes and the very complex domains of biological molecules in

3D space throughout the remainder of this thesis.

As with the finite difference method, the finite element method has been used to model

tumour tissue, specifically heat diffusion throughout the material. A 2009 paper from

Lin et al. modelled a breast as an ideal hemisphere with 4 radial layers to represent

the different tissues [67]. The equation discretised over the mesh was Pennes’ bio-heat

equation, an empirical biological equivalent of Equation 1.9 for the diffusion of tem-

perature. Each interface between layers constitutes a boundary separating structural

discontinuities, the conditions of that can be included in the weak form of the equation.

The study was able to show that a tumour embedded in the mesh (effectively forming

an extra self-contained layer) generated a measurable thermal fingerprint on the breast

surface temperature distribution. From this work, a more recent study used a similar

finite element approach to develop a temperature control probe which has the potential

to destroy tumour cell through heat death whilst protecting the surrounding healthy

cells [68].

Finite element methods have also been used to study mechanical biological structures.

Following early models of the mechanical response of (canine) heart tissue to the regular

pulsing force [69], more modern work uses varying, but highly controlled, levels of

structural resolution to model the repair of the mitral valve within the heart [70].

Computational models of sutures are embedded into the meshes in order to study the

effect of different types of suture on the strength of the repair, and whether the mitral

valve can sustain the highly localised stress without tearing under the force of a beating
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heart. Such modelling is invaluable for surgical techniques as it enables large testing

suites of different types of repair without the need for animal testing, vastly lowering

the mortality rate of new treatments.

Finite element analysis forms a core part of this thesis for the simulation of biologi-

cal macromolecules, so for further information on the technique itself and its general

applicability, Reddy provides a thorough introductory text [66].

1.3 Thesis Outline

We have introduced a multitude of simulation techniques available to the community

that aid us in understanding the function of complex biomolecules. We have seen that

many currently available mesoscopic simulation techniques treat systems as networks

of spherical beads connected by some form of pair-wise potential. The only real differ-

ence between these models is the form of the potential. Yet we have also seen that the

mathematics of the macroscale is fundamentally different to that of the microscale, and

so that there may be some limit to how far these bead-spring models can help us as we

look at larger and larger systems, and the beads no longer represent distinguishable

particles within the material. The natural reaction as computational power increases,

then, is to rely more on high-resolution simulation techniques and understand meso-

scopic dynamical properties as emergent properties. But, a recent review by Gray et

al. emphasises that “the ‘computational microscope’ of biomolecular simulation is not

infinitely powerful” [47]. They show that the availability of computational resources is

insufficient to meet the national demand for high-resolution simulations, and so phys-

ical models that are appropriate to the length and time-scales of interest are not only

scientifically desirable, but economically essential as well.

CG MD takes us from the ‘bottom-up’ to the upper limit beyond which bead-spring

models are no longer effective. DPD then introduces the concept of overall shape,

and populates that shape with loosely connected beads to coincide with macroscale

observations. But due to the nature of these beads, the potentials connecting them are

somewhat arbitrary. The alternative is to develop a ‘top-down’ view of the mesoscale,

starting from the fluid dynamics and continuum mechanics that already have a fully

developed mathematical framework for us to work from. To that end, this thesis

presents continued development of a relatively new technique which begins fully in the

continuum regime and takes this ‘top-down’ view of the mesoscale [71].
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In this thesis, we present the further development of Fluctuating Finite Element Anal-

ysis (FFEA), a novel simulation technique and software package that began develop-

ment in 2013 with the work of Oliver et al. . The technique implements a continuum

mechanical approach to model the dynamics of globular biomolecules, but with the

inclusion of stochastic thermal effects [71]. Chapter 2 gives an introduction to FFEA

and its functionality up to the developmental stage as it was prior to the work pre-

sented in this thesis. Chapter 3 then describes the different modifications I have made

to the model to allow the simulation of longer time-scales, as well as different forms

of simulation. Chapter 4 then looks at an entirely new form of simulation within the

FFEA framework which we have called Kinetic FFEA, allowing the modelling and real

time simulation of kinetic events in parallel with underlying dynamical models. Fi-

nally, Chapter 5 presents an initial study of the molecular motor cytoplasmic dynein,

to which we apply Kinetic FFEA in combination with empirical knowledge derived

from available experimental evidence in an attempt to determine how, and why, the

motor is able to function as a cargo transporter.





Chapter 2

Fluctuating Finite Element

Analysis

We saw in Chapter 1 that the current range of mesoscale simulation technologies are

mostly based on coarse-grained particle methods that do not fit naturally with the

way we describe the macroscale. To make full use of the emerging experimental tech-

niques that allow structure identification at the upper limit of the mesoscale [72], we

require a method that maps smoothly onto continuum mechanics as the length scale

increases. Those current methods that are available look specifically at viscous fluids.

However, Oliver et al. (2013) developed a method based on finite element analysis

to model proteins as visco-elastic solids [71]. The technique was further developed by

Richardson [73] who developed a C++ implementation of the algorithm called Fluctu-

ating Finite Element Analysis (FFEA), a software package designed specifically for the

continuum mechanical simulation of large, globular proteins and protein assemblies.

These types of protein can have molecular weights ranging from ∼10kDa, approxi-

mately that of the hemoglobin molecule we saw in Chapter 1 [74], all the way up

to ∼1MDa, approximately the total weight of a fully assembled GroEL chaperonin

molecule [75]. System sizes towards the higher end of this range are effectively out

of scope for fully atomistic simulations at current computational speeds, at least for

readily accesible computational resources [47]. Consequently, many such large proteins

have been studied using discrete CG methods. FFEA, though, was not developed as

yet another coarse-grained method for simulating atomistic systems. Rather, FFEA

originated from the paradigm that the complex properties emerging from large collec-

tions of atoms conform more to the mathematical framework of continuum mechanics

than discrete Newtonian dynamics. As shown in Chapter 1, these kinds of systems and

their interactions with the environment are often not spatially discrete at the relevant

29
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length-scales, i.e. they are no longer atomistic in nature, and so we avoid treating

them as such.

The mathematics of FFEA is derived from the continuum mechanics formalism, which

was introduced in Chapter 1. We progress from there with the idea of our biomolecules

of interest being continuum objects.

2.1 A Continuum Equation of Motion

The general formalism of continuum mechanics, further developed from the ideas pre-

sented in Section 1.2.4.1, derives a continuum equivalent of Newton’s Second Law of

motion,

ρ
D~u

Dt
= ∇ · σ + ~f, (2.1)

where ~u is the velocity field throughout the object, ρ is the object density, σ is the total

stress, ~f is the external body force and D
Dt is the time derivative in the material frame

of reference. Equation 2.1 describes the mechanical evolution of any continuum object

with a volume V as its domain, subject to short range forces, which are represented as

stresses in a continuum, and long range body forces. Within biomolecular simulation,

V represents the volume of a mesoscopic protein or large biomolecule bounded by a

molecular surface profile.

Before applying the finite element method, we will consider what form the stress should

take to give appropriate behaviour for biological molecules.

2.2 Stresses at the Mesoscale

Experimental studies of proteins in general show that no matter their sequence, pro-

teins often have a preferred equilibrium structure around which they fluctuate [76].

Mathematically, we can describe this using an elastic energy that has a minimum at

the equilibrium structure of the object. Within a continuum, the forces that result

from this energy are written as an elastic stress. The constitutive model used in FFEA

represents a hyperelastic, compressible solid in which the elastic stress is given by,

σe =
G

|F|
FFT +

(
K +

G

3

)
(|F| − α) I, (2.2)
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where G and K are the shear and bulk moduli of the object, I is the identity matrix

and F is the deformation gradient tensor,

F =
∂~x

∂ ~X
. (2.3)

F is a tensor describing how deformed an object with configuration ~x is from its

equilibrium configuration ~X. α is an additional constant included to give a stress of

zero at F = I, i.e. in the undeformed state.

The core FFEA constitutive model was chosen to be hyperelastic with experimental

evidence in mind. Many previous applications of the standard finite element method

to macroscopic biological soft tissues such as ligaments, tendons [77], heart valves [70],

and so on, have been successfully modelled using hyperelastic models, with the mitral

heart valve model having direct surgical applications. Similar evidence is used to justify

our protein compressibility, where explicit water MD simulations have recently been

used to show that the volume of the ‘typical’ protein staphylococcal nuclease has a

strong pressure dependence, and some specific temperature dependence [78]. Indeed,

topological models have been developed to explain this volumetric change using the

underlying atomistic structure and its geometric properties [79].

Also required for any realistic system is a form of viscosity, a term which models the

loss of energy to the surroundings. Within FFEA, the viscous properties are modelled

as those of a Newtonian fluid, with the viscous stress formed from a linear combination

of velocity gradients throughout the system,

σv = µ
(
∇~u+ ∇~uT

)
+ λ∇ · ~uI, (2.4)

where µ is the dynamic viscosity and λ is an additional coefficient allowing the definition

of a viscosity component specific to bulk deformation, µbulk = λ + 2
3µ. Equation 2.4

means that the viscous stress is proportional to the strain rate within the system, not

just the strain itself.

These two stresses are sufficient to model the relaxation properties of a continuum

biomolecule. However, the fluctuation-dissipation theorem tells us that with any form

of viscous dissipation there must exist an associated stochastic thermal noise, as both

phenomena emerge from the same underlying physical process [21]. Hence, for a viscous

stress, there must also be an associated thermal stress which is stochastic in nature.

The inclusion of stochastic noise through a thermal stress, σt, is the key component

of FFEA and its form was developed by Oliver et al. [71] expanding on the work of

Landau and Lifshitz [80]. The form of σt required to give the correct thermodynamic
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properties is,

σt =

√
2kBT

V∆t

(√
µX +

√
λX0I

)
, (2.5)

where kBT represents the magnitude of the thermal energy within the system via the

absolute temperature T , V is the total volume and ∆t is the simulation time step. The

thermal stress is coupled to the viscous stress through the inclusion of the viscosity

parameters µ and λ, and it was shown by Oliver et al. that the final FFEA equation of

motion obeys the equipartition theorem at equilibrium, with an associated Boltzmann

distribution of energy for the system, when the forms of the independent, normalised

stochastic variable X0 and the stochastic tensor X are as follows,

〈Xij〉 = 〈X0〉 = 0,

〈XijX0〉 = 0,

〈X0X0〉 = 1,

〈XijXkl〉 = δikδjl + δilδjk. (2.6)

The series summation of the components of stress gives us a total stress, σ,

σ = σe + σv + σt. (2.7)

This form of the total stress constitutes a Kelvin-Voigt constitutive model (see Fig-

ure 2.1), which enables the system to dissipate energy in such a way that it is always

able to return to its equilibrium structure following any deformation, modelling creep

behaviour but without retaining any permanent deformation [81]. The elastic stress is

a conservative stress which acts to return the continuum to its equilibrium structure.

The thermal stress acts to continuously induce deformation which, when coupled to

the viscous stress, is consistent with the equipartition theorem. These three stresses

together form the mechanical core implemented in the FFEA method.
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Figure 2.1: The standard structural template represented by the Kelvin-Voigt model
implemented within FFEA. The component at the top is a spring, representing the
elastic component of stress. The bottom component is a dashpot, representing the
viscous component of stress. We see here that the components are in parallel, which
implies that the stresses are summed in series. In addition, FFEA applies a thermal

stress to the system.

2.3 Finite Element Analysis

The potential geometric complexity of biomolecules means that there isn’t necessar-

ily an analytical solution for the velocity distribution, the solution to Equation 2.1,

throughout the structure. We settle instead for a generalised numerical procedure for

which an approximate solution can be obtained via computational techniques.

Finite Element Analysis (FEA) provides this functionality. Applying the procedure

shown in Section 1.2.4.4 to Equation 2.1 generates the following algebraic system of

equations,

M
D~u

Dt
+ Λ~u+ ~C = ~N + ~fe, (2.8)

where M is a mass matrix, a function of the density which describes how mass is

distributed between elements of the mesh, Λ is a viscosity matrix which describes the

dissipation of energy due to relative motion of the nodes within the object, and ~C is an

elasticity vector, a non-linear function of the deformation of the object that describes

its tendency to return to its mechanical equilibrium. ~N is the thermal noise vector

with the required equipartition statistics and ~fe is a vector representing all additional

body and external forces. Equation 2.8 describes how a continuum object responds to

any applied deformation or external stress.
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It must be stated that although FEA brings us back into a discrete solution environ-

ment, this is purely for numerical purposes. It is developed from continuum mechanics,

which is fundamentally different from discrete particle methods such as MD. It can be

shown that as the number of elements Ne → ∞, the analytical continuum solution

will be recovered (if such a solution exists) [66], but the motions of individual atoms,

residues or any ‘underlying structure’ will not.

2.4 External and Inter-Molecular Forces

In addition to the internal stresses that describe the mechanical components of a

globular biomolecule, FFEA also includes functionality to model the interactions of

biomolecules with a surrounding solvent, as well as interactions with other FFEA ob-

jects.

2.4.1 External Solvent Interactions

FFEA currently models the interactions with external solvent material as local inter-

actions about each of the discretised nodes following the application of finite element

analysis to the original equation. An additional viscous drag force ~FDi is applied di-

rectly to each node with the following form,

~FDi = −(6πµrsi )~ui, (2.9)

which therefore opposes the motion of the node. Here, rsi is an effective Stokes’ radius

assigned to each node i with velocity ~ui. This force is included as an additional

contribution to the viscosity matrix Λ,

Λ = Λint + Λext, (2.10)

where Λint is formed from the application of the finite element method to the term of

Equation 2.8 involving the viscous stress, and the diagonal elements of Λext are the

elements of the set of vectors ~FDi for all nodes i.

By setting the Stokes radii in such a way that they approximate the length scale of the

local environment, we can model the correct magnitude of viscous drag on the system.

However, there is no fluid flow field defined within the external solvent, it is simply

a local effect, and so hydrodynamic communication between different biomolecules is

not currently modelled within FFEA.
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2.4.2 Van der Waals Interactions

In order to model non-specific, short-range repulsive (and in some cases, attractive)

behaviour, FFEA includes a force term which approximates Van der Waals interac-

tions through use of the Lennard-Jones interaction potential. This was implemented

by Richardson [73] within the finite element analysis procedure as a surface-surface

interaction, using Gaussian quadrature to evaluate the required surface integrals. The

total force exerted by the continuous surface Γq onto a point ~p can be written as follows,

~F int(~p) =

∫
Γq

~f(~p, ~q)dAq, (2.11)

where ~q is a point on the surface Γq, and ~f(~p, ~q) is a force per unit area per unit area.

To implement VdW interactions, ~f takes the Lennard-Jones form,

~f(~p, ~q) =
12ε

req

((
req

r(~p, ~q)

)13

−
(

req
r(~p, ~q)

)7
)
~̂r, (2.12)

where r(~p, ~q) = |~p−~q|, the distance between the two points ~p and ~q, ~̂r is the unit vector

corresponding to these points and ε and req are the equilibrium interaction strength and

separation respectively. A further integration of ~F int over the surface Γp containing

~p gives the total force between the two surfaces. We can use this in conjunction with

the finite element method to discretise these continuous surface effects onto the surface

nodes of the mesh. These forces then form part of the external force term ~fe from

Equation 2.8.

Within FFEA, different instances of the parameters ε and req can be assigned to the

different surface faces, allowing multiple different interaction potentials between the

two surfaces, all of which correspond to VdW type interactions. As well as this, the

discretisation of the surfaces into a set of triangles means that Equation 2.11 can

be easily modified to allow surface-surface interactions within the same molecule, if

necessary. More detail on this method is given by Richardson [73].

2.5 Fluctuating Finite Element Analysis

Following application of the finite element method, the inclusion of all additional sol-

vent and inter-molecular interactions and the addition of the new thermal stress term,
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we obtain the following equation of motion, written in index notation for clarity,

Mij ẍj + Λij ẋj + Ci = Ni + fei , (2.13)

where the indices i and j run over both the nodes and directional components.

Equation 2.13 is the equation of motion used in FFEA simulations prior to the work

presented in this thesis. With Mij , Λij and Ci evaluated at the beginning of each

simulation time step, standard linear algebra and numerical integration techniques can

be applied to change the velocity field of the system by a small amount ∆vi, and update

the configuration of the system by a small amount ∆xi, over a time step ∆t.

The vector ~N in the final discretised model has the effect of applying random forces

to each node such that each degree of freedom has 1
2kBT of energy on average, with

Gaussian fluctuations about that value. With a time step, ∆t, the vector components

Ni have the following covariance coupling to the viscosity matrix Λij ,

〈NiNj〉 =
kBT

∆t
(Λij + Λji) , (2.14)

which shows implies that the thermal noise is delta-correlated in time, but also in

space. This is due to the spatial discretisation of the solution from the finite element

method, leading to the matrix Λ being block-diagonal. This lack of global viscous

coupling allows the FFEA calculations to be performed on an ‘element by element’

basis1, enabling an approximately linear scaling of simulation speed with system size,

whilst still preserving the required local coupling between the elements and the correct

statistical behaviour of the stochastic noise with respect to the viscosity.

2.6 Summary

We have introduced Fluctuating Finite Element Analysis, a novel and robust method

for the simulation of globular macromolecules. The method treats these molecules

as continuous soft matter systems, with a visco-elastic response to thermally induced

deformation. Inter-particle forces are implemented to model both steric repulsion and

Van der Waals type forces.

Tests performed on simple continuum structures by Oliver et al. [71] show that the

technique successfully equilibrates to the correct distribution of energy, in line with

1Computationally, each element can treated as independent, with no pair-wise, long-range coupling
to account for.



Chapter 2. Fluctuating Finite Element Analysis 37

the equipartition theorem, and gives the correct thermodynamic properties for simple

test systems. Yet as with any emerging technique, there is room for improvement.

The following chapter will discuss the developments I have made to the FFEA software

package, including additional algorithmic functionality within the software to allow a

much broader range of length and time scales to be accessed by a potential user. These

improvements will prove to be vital for the applications of FFEA to the molecular

motor cytoplasmic dynein in Chapter 5.





Chapter 3

Development of Fluctuating

Finite Element Analysis

As a continuum mechanical method, finite element analysis applied to the Cauchy

momentum equation naturally applies to macroscopic systems. FFEA extends this to

simulations of mesoscopic systems through the inclusion of a stochastic stress, which

produces thermal fluctuations that naturally reduce in relative magnitude as the system

size increases. However, the general forms of dynamic motion which can result from

the application of FFEA to biological systems have yet to be analysed in detail.

This chapter presents an analysis of the different types of stress within FFEA, and

how they combine to produce different regimes of motion. We develop an inertialess

solution protocol for FFEA simulations, which takes into account the over damped

nature of motion specific to the mesoscale, and discuss the advantages of both solution

methods and in what circumstances each should be used. Using this analysis, we also

develop two network models for FFEA systems, similar in nature to Gaussian Network

Models, which can determine the relative propensities of different normal modes of

motion within specific systems. Finally, we optimise the surface-surface interactions

within FFEA to obtain a robust transition between steric repulsion and Van der Waals

attraction without affecting the computational efficiency of an FFEA simulation.

3.1 A New Constitutive Model

The continuum mechanical equations of motion within FFEA take into account all

forces in the form of stresses. We saw in Chapter 2 that the total mechanical stress,

39
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σ, is formed as a series summation of all of the individual components [71],

σ = σe + σv + σt, (3.1)

where the components of stress are elastic, viscous, and thermal. Here we consider the

current state of the elastic stress, σe.

3.1.1 Elastic Stress - Current Formulation

An elastic stress can be calculated from a strain energy density functional, ψ, to model

the material as hyperelastic (see Section 2.2). The hyperelastic property within FFEA

means that the stress-strain relationship for biomolecules is non-linear with respect to

deformation from the equilibrium configuration, and the stress is independent of the

strain rate.

ψ can take a variety of functional forms depending on the properties of elasticity to be

modelled. The original form developed and implemented within FFEA, ψo, is,

ψo =
G

2
(FijFij − 3) +

B

2

(
(|F| − α)2 −

(
G

B

)2
)
, (3.2)

where G is the shear modulus, K = B−G
3 is the bulk modulus and F is the deformation

gradient tensor. The first term in Equation 3.2 is drawn from the neo-Hookean model

for incompressibility [82] and the second term adds energy proportionally to fractional

volumetric change. The addition of a constant, α, then gives both zero elastic stress

and zero elastic energy at zero deformation. We saw in Chapter 2 that the form of

stress derived from this functional, now given in index notation, is,

σeij =
G

|F|
FikF

T
kj +B(|F| − α)δij . (3.3)

For σe = 0 at F = I, it follows that α = 1 + G
B .

This formulation was developed for small fluctuations about an equilibrium structure,

for which previous uses of the model have worked well [83]. However, recent uses of

FFEA have required smaller elements to capture structural detail ≤ 1nm, which is near

the lower limit of the mesoscale. This means that relative deformations, and there-

fore the strains within these elements, are much larger than in previous applications.

We can examine the effect of large, compressive strains by considering pure isotropic
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deformation, such that Fij = ζδij then Equation 3.2 simplifies to,

ψo(ζ) =
3G

2

(
ζ2 − 1

)
+
B

2

((
ζ3 − α

)2 − (G
B

)2
)
, (3.4)

which has a single variable, ζ. Figure 3.1 shows the effect of isotropic expansion on

the current strain energy density for G = 1GPa and K = 3GPa. We can see that for

small fluctuations about equilibrium and indeed at large expansion the model has an

acceptable form, being approximately harmonic about ζ = 1 and tending to infinity

as ζ → ∞. However, we may expect that for large compressions (ζ → 0), the strain

energy density would also tend towards infinity. The original model does not provide

this behaviour, rather, ψ0(0) = 1
2

(
K − 2G

3

)
= 1

2λ, where λ is an additional material

property known as Lamé’s first parameter. Additionally, we chose our values of G and

K to emphasise that, depending on the material parameters, turning points can form

in the region 0 < ζ < 1. In our example, the strain energy density actually begins

to decrease with increasing compression, or, for decreasing ζ at ζ < 0.506. This is

an unrealistic model for large compressions of an isotropic and homogeneous material

such as this. Although the resulting stress does give the required tendency to infinity,

this is only a result of the compressibility of the object, with a fractional volumetric

change determined by |F| = V
V0

, and not due to the intrinsic energy storage ability of

the system itself. We require a more robust functional form for ψ to suitably model

large compressive deformations.

3.1.2 Elastic Stress - New Formulation

Shontz et al. [84] provide a strain energy density which is valid for large compressional

deformations as well as expansion. The form is as follows,

ψn =
G

2
(FijFij − 3) +

λ

4

(
|F|2 − 1

)
−
(
λ

2
+G

)
ln(|F|). (3.5)

From this, we can calculate the Cauchy stress tensor required by FFEA using the

following relation [82],

σeij =
1

|F|
∂ψ

∂Fik
Fjk. (3.6)
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Figure 3.1: The effect of isotropic expansion on the strain energy density for both
the original and new FFEA constitutive elastic models. We can see that although
both models approximate the correct behaviour about ζ = 1, the undeformed state,

the original model incorrectly models the energy density at large compressions.

Firstly, considering only the derivative from Equation 3.6, substitution of Equation 3.5

gives us,

∂ψn
∂Fik

=
G

2

∂

∂Fik
FlmFlm +

λ

4

∂

∂Fik
|F|2 −

(
λ

2
+G

)
∂

∂Fik
ln |F| ,

= GFik +
λ

2
|F|2 F−1

ki −
(
λ

2
+G

)
F−1
ki .

Now, fully evaluating Equation 3.6,

1

|F|
∂ψn
∂Fik

Fjk =
G

|F|
FikFjk +

λ

2
|F| δij −

(
λ

2
+G

)
1

|F|
δij , (3.7)

and rearranging gives,

σeij =
G

|F|
(
FikF

T
kj − δij

)
+
λ

2

(
|F| − 1

|F|

)
δij . (3.8)

Figure 3.1 also shows the behaviour of the new elastic model. We can see that as

ζ → 0, ψn → ∞ as required. However, the gradient and curvature of this model

clearly differ from the original at large deformations from the equilibrium structure.

Although previous applications of FFEA remained largely within the linear regime

and therefore did not see this effect, it is possible that future simulations may need to
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take into account these non-linear effects. Consistency with the constitutive models for

subsequent simulations must be adhered to, as material parameters such as the shear

and bulk moduli, even when constant between simulations, may have different effects

within the different constitutive models for large deformations.

We validate the new constitutive model with a simple set of simulations performed

on cuboid objects. We built 4 tetrahedral meshes of different coarsenesses, each with

length 15nm, width 3nm and height 1nm, and with the length aligned along the z-axis

(see Figure 3.2, inset). Each model had the same material parametrisation, with a

homogeneous Young’s modulus E = 1GPa, Poisson ratio, ν = 0.35 and all internal

and external viscosities µ = 1 × 10−3Pa.s. For each cuboid model we ran a series of

15 simulations, where, in each simulation, we applied a different constant force to the

nodes making up the faces with normal vectors in the ±z directions. These forces

were in the same direction as the face normals, so as to induce tensile strain in the

cuboids. The simulations were performed in the absence of thermal noise, allowing

the cuboids to settle into a new static equilibrium under the action of the external

forces. We then measured the induced strains and effective stresses from the final state

of the simulation1, and plotted the resulting stress-strain curves. These are shown in

Figure 3.2.

We see that for each of the four different meshes we obtain exactly the same overall

pattern in the strain response to applied stress. For the set of strain values ε < 1.0

we calculated a linear regression with respect to stress. The graphs show that the

gradient of this line is within 0.1% of the true value of the Young’s modulus, implying

that the linear elastic regime is adhered to for extensions up to approximately the

original length of the object. From there, we see a continual increase in the magnitude

of the elastic response as the cuboid enters the non-linear regime from the underlying

hyper-elastic model. This is exactly the behaviour we expect given the underlying

energy curve for isotropic expansion.

3.2 Inertialess Formulation of FFEA

The original formulation of FFEA naturally takes into account the inertia within each

molecule [71]. This was partly because our main reference model, the standard molec-

ular dynamics algorithm, takes the mass into account by default due to account for the

types of oscillatory motion occurring at atomic resolution [85], but also because the

1As FFEA objects are compressible, the surfaces reduced in area as strain increased, giving a
varying amount of stress under the action of a constant force.
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Figure 3.2: The stress-strain curves obtained by applying varying levels of stress to
cuboid structures of different levels of mesh coarseness. a) is a 30 element mesh, b)
a 49 element mesh, c) a 207 element mesh and d) a 1119 element mesh. The inset

images in each graph are FFEA visualisations of the undeformed cuboids.

Cauchy momentum equation itself contains mass as a consequence of Newton’s Second

Law,

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=
∂σij
∂xj

, (3.9)

where the density, ρ = ρ(xi), gives the mass distribution throughout the continuum.

However, the following section will show that mass has little effect on the resultant

dynamics of many mesoscopic biological systems. Not only that, the inclusion of mass

within FFEA places a relatively low upper bound on the allowed size of the time

step required for stable numerical integration, such that it is actually a computational

hindrance to take inertia into account given that the relevant dynamics do not depend

on it.

We have successfully reformulated the FFEA algorithm by removing the inertia from

all calculations, and in the following section we discuss the inertialess approximation to

the FFEA equation of motion, and perform simulations on simple, regular geometric

structures to verify the software implementation of inertialess FFEA simulations.
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3.2.1 Time Scales within FFEA

In order to determine whether it is necessary to consider inertia within FFEA, we must

look at how the mass affects the dynamics of interest within an FFEA system i.e. a

mesoscopic biological system. FFEA is designed to study the long-time dynamics of

these systems, such as the dynamical modes of motion of our biomolecule associated

with large scale deformations. As an example, consider the bending motions of a

mesoscopic cantilever of length L. Theoretical analysis of beam bending shows us

that the motion of an object fixed at one end can be readily decomposed into Fourier

modes with associated wavelengths, λi [86]. From this decomposition we find that

the fundamental mode corresponding to bending fluctuations of the entire cantilever,

λ0 ≈ 2L, has a longer associated time scale, τ0 than any of the higher order fluctuations,

λi 6=0 < 2L. If we order these modes such that λi+1 ≤ λi, then we find that τi+1 ≤ τi.

To find the equivalent set of dynamical modes for a three-dimensional FFEA system,

we begin by making a linear approximation to the elastic force vector in the FFEA

equation of motion. Following the finite element approximation, the core equation of

motion solved within FFEA in the absence of external forces is,

Mij ẍj + Λij ẋj + Ci = Ni, (3.10)

which includes the mass matrix, Mij , the viscosity matrix, Λij and the elasticity vector,

Ci, and the indices i and j extend over all nodes and also their directional components.

Each of these terms describe a different type of coupling between each pair of nodes

in the system. We have seen that the elasticity vector, Ci, has a non-linear response

at large deformations from equilibrium (see Figure 3.1). This means that it cannot be

written exactly as a matrix applied to a position vector. But, for ease of analysis, we

will approximate the force as linear about the equilibrium structure, ~x0, at which the

elastic stress is ~0. This gives,

Mij ẍj + Λij ẋj +
�
�
�Ci

∣∣∣
~x0

+
∂Ci
∂xj

∣∣∣
~x0

(xj − x0,j) = Ni. (3.11)

Redefining our position variable ~x to measure deviation from equilibrium, such that

~x− ~x0 → ~x,

Mij ẍj + Λij ẋj +Kijxj = Ni, (3.12)

where Kij = ∂Ci
∂xj

∣∣∣
~x=~0

is the local stiffness matrix. By making this approximation, we

have reduced the FFEA equation of motion to a simpler system of linear, second order

stochastic differential equations.
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We can simplify the system further by making the assumption that M, Λ and K

are simultaneously diagonalisable, that is, that they have a mutual set of eigenvectors.

Using the matrix of arranged eigenvectors, V, the equation of motion may be rewritten

as follows,

V−1MV~̈y + V−1ΛV~̇y + V−1KV~y = V−1Ni,

m~̈y + λ~̇y + k~y = ~n,

where m,λ and k are diagonal matrices of eigenvalues, ~y = V−1~x and ~n = V−1 ~N .

By replacing our coordinates ~x with the new set ~y, our system of equations of motion

become separable. Each of these equations describe a different normal mode of the

system and it is from these that we may estimate the time-scales associated with

this system. Taking a single equation from the set, we reduce the single mode to a

one-dimensional equation of motion with a single coordinate y,

mÿ + λẏ + ky = n, (3.13)

where m,λ and k are respectively the mass, drag and elasticity eigenvalues associated

with this particular mode, and n is the appropriate thermal noise function in this

coordinate system. In the absence of the stochastic noise, the equation is linear and

has well known solutions of the form y = A exp(b+t) +B exp(b−t), where A and B are

constants, and,

b± =
λ

2m

(
1±

√
1− 4

km

λ2

)
, (3.14)

which can be rewritten as,

b± =
1

2τm

(
1±

√
1− 4

τm
τk

)
, (3.15)

where τm = m
λ and τk = λ

k are the time constants associated with the inertial damping

and elastic damping respectively, or, the evolution of velocity and positional degrees of

freedom respectively. The three possible solution regimes which exist here are given in

Table 3.1. Equation 3.15 shows that the regime limits are determined by the ratio of

the two time scales, their relative size determining whether our system has oscillatory

motion or pure exponential decay. For such a simplified system, representing a single

dynamical mode within a biomolecule, we can estimate the values of these time scales

using values representative of the mesoscale and therefore determine which regime is

applicable for a generic mesoscopic biomolecule.
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4 τmτk Discriminant Regime Type of Motion

< 1 > 0 Over Damped Exponential Decay

= 1 = 0 Critically Damped Exponential Decay

> 1 < 0 Under Damped Oscillatory

Table 3.1: The three regimes of dynamical motion in FFEA, written in terms of the
intrinsic time constants. With these constants, we can see that dynamical regimes

are more effectively defined by their dynamical time scales.

For a highly over damped system, the long-time solution to Equation 3.13 is,

y = y0 exp

(
− t

τk

)
, (3.16)

showing that the over damped dynamics are not affected by the mass at all. Hence,

the dynamical regime in which mesoscopic biomolecules exist will in turn determine

whether or not the inclusion of mass is necessary for an FFEA simulation. We can

estimate which regime this is for a given system by taking the normal mode with

the largest associated length scale, and hence the largest expected time scales, and

calculating the ratio between τk and τm for material parameters representative of the

biological mesoscale.

We will consider two geometrically simple objects representative of the mesoscale

and study their resulting dynamics. Since the drag on, and effective elasticity of

a biomolecule depend strongly upon its shape, we will discuss both globular and

elongated biomolecules by defining the aspect ratio, a = L√
A

; the axial length of a

biomolecule divided by the square-root of its corresponding cross-sectional area. Our

two test models, with clearly differing aspect ratios, are shown in Figure 3.3.

Figure 3.3: Structures used to verify the inertialess approximation to FFEA.
A. 3 spheres of differing mesh coarseness, each with radius, R = 5nm.

B. A single cuboid, 1nm× 3nm× 15nm



Chapter 3. Development of FFEA 48

3.2.1.1 Globular Biomolecules - Small Aspect Ratio

For a ≈ 1, we take a spherical object of radius R as our test system. Provided we have

similar bulk and shear moduli, we would expect the slowest mode within this object

to be a uniform radial expansion. To calculate a linear elastic parameter, k, we first

use the definition of the bulk modulus to calculate the change in pressure required for

the sphere to contract,

∆P = −K
∫ Vf

Vi

1

V
dV = −K ln

Vf
Vi
, (3.17)

where P is the pressure applied to the surface, and Vi and Vf are the initial and

final volumes respectively. Since the object remains spherical when undergoing radial

expansions, we can write Equation 3.17 in terms of the radius only,

∆P = −3K ln
R+ ∆r

R
, (3.18)

where the initial radius corresponding to Vi, ri = R and the final radius rf = R+ ∆r.

We can linearise the logarithm around ∆r = 0,

∆P = −3
K

R
∆r, (3.19)

which gives us a linear approximation for the pressure change required for pure radial

contractions. Rewriting this in terms of a linear restoring force at the surface allows

us to introduce the parameter k,

∆F = −k∆r = −A∆P, (3.20)

where A is the representative area of the sphere. Substituting in our expression for

∆P , and using an area A = 4πR2 gives us our linear elastic parameter for this system,

k∆r =
3K

R
∆r × 4πR2,

k = 12πRK, (3.21)

giving us a linear elastic constant in terms of the intrinsic object parameters. It is

important to note at this stage that the effective elasticity for a given motion is not

independent of the geometry of the object.

To determine the effect of viscosity on the object, we simplify the drag experienced

by the sphere when undergoing radial expansion by assuming it to be equivalent to
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Stokes’ drag on a sphere moving through a fluid [80],

λ = 6πµR. (3.22)

Finally, writing the mass in terms of an homogeneous density, m = ρ4
3πR

3, we can

calculate the form of the ratio of time constants as,

4
τm
τk

= 4
mk

λ2
,

=
16

9

ρK

µ2
R2, (3.23)

which shows a relationship between the dynamics of radial expansion and the intrinsic

material properties of the system.

To specify Equation 3.23 to a mesoscopic biomolecule, we substitute values repre-

sentative of the mesoscale in general. The viscosity of the surrounding medium is

close to that of water, µ = 1 × 10−3Pa.s, and the densities are also similar to that

of water, ρ = 1 × 103kgm−3. For the bulk modulus, a representative value obtained

though experiments on mesoscopic biomolecules is K = 1GPa [87]. Finally, we choose

the equilibrium radius as R = 5nm, a value sufficiently within our definition of the

mesoscale [71]. Substituting in these values gives us our dynamical regime,

4
τm
τk

=
16

9

103 × 109

(10−3)2 ×
(
5× 10−9

)2
,

= 44.4. (3.24)

With reference to Table 3.1, we see that this type of motion is reasonably under

damped and therefore oscillatory2. For this level of under damping, energy is dissipated

very slowly to the surroundings. For hydrodynamically realistic solvent environments,

periodic waves would be formed and potentially sustained over long distances through

the surrounding medium and so for a highly globular system it is necessary to include

inertia if we are interested in how it fluctuates as a whole and the effects of those

fluctuations on the surroundings.

2We have neglected the effects of internal viscosity in this example. However, we are far enough
into the under damped regime that it is unlikely that the addition of internal friction will be sufficient
to transition to the over damped regime, and so inertia should still be included for dynamics of small
aspect ratio objects
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3.2.1.2 Elongated Molecules - Large Aspect Ratio

Many mesoscopic biomolecules are not as isotropically globular as a sphere, but are

formed of long, thin regions for which the aspect ratio affects the drag and effective

elasticity in a drastic way. Suppose instead that our test object is a cuboid of length

L, height h and width w in the x, y and z directions respectively, and L >> h (see

Figure 3.3). Our specific case of w = 3h and L = 15h gives us a primary aspect ratio

a = L√
hw

= 8.66, much greater than that of a sphere. The most flexible elastic mode

for this object will be a first order bend about the x-axis.

We can calculate an effective spring constant for the bending motion using Euler-

Bernoulli beam bending theory. For a first order deflection of size ∆r, elastic beam

theory gives the following expression for static linear deformation in terms of the

Young’s modulus, E [88],

F =
48EI

L3
∆r,

=
4wh3

L3
E∆r. (3.25)

where F is an applied force and I is the appropriate second moment of area. Again

assuming the linear relation F = k∆r, we find that this motion has an effective linear

elasticity given by,

k =
4wh3

L3
E, (3.26)

and substituting in the values for w and h in terms of L,

k =
4L

16875
E, (3.27)

where again, we note the strong effect of the geometry of the object on its effective

elasticity.

We can calculate an approximate drag on the cuboid object using the drag coefficient

on a long, slender body moving perpendicular to the primary axis, obtained by Cox et

al. [89]

λ ≈ 4πµL

ln
(
L
w

)
− 0.806

≈ 5πµL, (3.28)

which shows that the hydrodynamic drag is mostly determined by the largest length

scale, L.
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For a mass again being a function of the equilibrium density, m = ρhwL, allowing us

to estimate the time constants for the bending of an elongated molecule,

4
τm
τk

= 4
mk

λ2
,

≈ 1

4.68× 107

ρE

µ2
L2. (3.29)

For our representative values ρ = 1 × 103kgm−3, E = 1GPa, µ = 1 × 10−3Pa.s and

L = 15nm, we find,

4
τm
τk

=
1

4.68× 107

103 × 109

(10−3)2 ×
(
15× 10−9

)2
,

≈ 4.81× 10−6. (3.30)

We note that the pre-factor present in Equation 3.29, when compared to that for the

spherical oscillations is Equation 3.24, is very small. This pre-factor emerged from

the geometry of the object, and so we see that that for the bending motion of a

molecule with a large aspect ratio, the dominant modes of motion are highly over

damped. Although the drag increases with the largest length scale in the molecule,

the elastic constant for bending scales inversely with approximately the third power

of the largest length scale, and approximately the third power of the aspect ratio such

that an increase in L with no increase in h or w would make the motion even more over

damped. Consequently, the deflection simply decays exponentially, with no oscillatory

motion at all. The energy in the system is quickly lost to the surrounding medium

through dissipation and as such, velocities are not sustained within the system. As

we will see in Chapter 5, many functional proteins within biological organisms have

sub-structures of exactly this type; long, thin and flexible regions for which the motion

is over damped. It is exactly these types of molecules that FFEA was designed to

simulate.

We also note that for both the globular and elongated objects, the time scale ratio was

proportional to L2. This means that when the system approaches macroscopic sizes,

the mass of the object dominates the geometric considerations in terms of these time

scales, and inertia again becomes important, this time in terms of the global dynamics.

It is at the mesoscale that the geometry of the object becomes the deciding factor in

the type of motion the object can undergo.

The above arguments lead us to conclude that a large number of potential FFEA

simulations will not require inertia in order to simulate the dynamics of interest for
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the mesoscopic systems. Therefore, an inertialess solution protocol for this type of

simulation is required.

3.3 Numerical Implementation of an Inertialess Formula-

tion

Up until this point we have provided specific examples showing that long-time dynamics

at the mesoscale are independent of inertia. A more general formalism can be derived

through an alternate method of numerical integration of the FFEA equation of motion.

3.3.1 Solving the FFEA Equation of Motion using Numerical Inte-

gration

Even following the finite element approximation, there is no general analytical solution

to Equation 3.10. In order to simulate our FFEA system, we must use numerical

integration to update the positions of the nodes, and it is this process which is limited

by the dynamical time scales of each specific system.

The original numerical integration method for FFEA is a two step forward Euler inte-

gration of the acceleration vector. Rewriting Equation 3.10 in matrix notation and in

terms of velocities, ~v,

M~̇v + Λ~v + ~C = ~N. (3.31)

When applying forward integration we use the velocities at the current time t on the

RHS of Equation 3.31 to calculate the new velocities ~v(t+ ∆t),

~v(t+ ∆t)− ~v(t)

∆t
= M−1

(
~N(t)−Λ~v(t)− ~C(t)

)
,

⇒ ~v(t+ ∆t) =
(
I−∆tτ−1

m

)
~v(t) + ∆tM−1

(
~N(t)− ~C(t)

)
, (3.32)

where τm = Λ−1M is the matrix of inertial time constants associated with the relative

motion between each node, and each direction, of the FFEA object. Further numerical

expansion of ~v(t+ ∆t) also allows us to update the positions of the nodes,

~x(t+ ∆t) = ~x(t) + ∆t
(
I−∆tτ−1

m

)
~v(t) + (∆t)2M−1

(
~N(t)− ~C(t)

)
. (3.33)
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Equations 3.32 and 3.33 make up the entire current numerical integration scheme with

FFEA. By linearising ~C(t), we see the effect of both time constant matrices,

~x(t+ ∆t) = ~x(t) + ∆t
(
I−∆tτ−1

m

)
~v(t) + (∆t)2M−1

(
~N(t)−K~x(t)

)
,

=
(
I− (∆t)2τ−1

m τ−1
k

)
~x(t) + ∆t

(
I−∆tτ−1

m

)
~v(t) + (∆t)2M−1 ~N(t), (3.34)

where τ k = K−1Λ is the viscous time constant matrix.

It can be shown that Equation 3.32 is numerically unstable over repeated integration

steps if ∆t
em

> 1, where em is the smallest eigenvalue of τm, Equation 3.34 is unstable

for both ∆t
em

> 1, and ∆t2

emek
> 1, where ek is the smallest eigenvalue of τ k. Hence, a

forward integration method is numerically limited by the smallest time scale within

our system. It can be shown, by similar geometric arguments as those presented in

Section 3.2.1, that the inertial time scales have all of the length scale dependence of

the calculated time step ratios, and so with biologically representative material param-

eters, the smallest time scales almost always correspond to smallest length scales. In

FFEA, the smallest time scales are therefore rapid, oscillatory, inertial motion between

adjacent nodes.

An alternative approach to the solution of the FFEA equation of motion is to use

implicit backward integration, in which we use the velocities ~v(t+ ∆t), on the RHS of

Equation 3.31. This leads to a substantially different numerical expansion,

M
~v(t+ ∆t)− ~v(t)

∆t
+ Λ~v(t+ ∆t) + ~C(t) = ~N(t),(

1

∆t
M + Λ

)
~v(t+ ∆t) =

1

∆t
M~v(t) + ~N(t)− ~C(t). (3.35)

Multiplying though by Λ−1 allows us to see the effect of the inertial time scales,(
1

∆t
τm + I

)
~v(t+ ∆t) =

1

∆t
τm~v(t) + Λ−1

(
~N(t)− ~C(t)

)
. (3.36)

Upon repeated iterations, Equation 3.36 is numerically stable for all values of ∆t.

Taking ∆t to be large in comparison to the largest eigenvalue of τm,

~v(t+ ∆t) = Λ−1
(
~N(t)− ~C(t)

)
,

Λ~v(t+ ∆t) + ~C(t) = N(t), (3.37)

which is the original equation of motion, Equation 3.10, with the inertial term ne-

glected. As backward iteration allows us to take any size time step whilst retaining

numerical stability, the effect on the FFEA equation of motion is that we can ‘skip



Chapter 3. Development of FFEA 54

over’ all of the dynamics that FFEA was not designed to simulate, i.e. the small length

scale inertial motion, whilst still retaining the numerical accuracy required to simu-

late motion at the mesoscale. Therefore, we can implement Equation 3.37 as our new

equation of motion.

Using a single forward Euler integration, we can calculate the new positions of all of

the nodes in the FFEA object as a function of their instantaneous velocities,

~x(t+ ∆t) = ~x(t) + ∆tΛ−1
(
~N(t)− ~C(t)

)
, (3.38)

which is the complete numerical integration scheme3.

In order to validate the inertialess approximation and its implementation into FFEA,

we must ensure that the dynamics are equivalent in both space and time between

inertial and inertialess simulations of the same processes.

3.4 Verification - Cuboid Normal Modes

Validation of the spatial dynamics can be achieved by comparing the normal modes

of motion for a test object. We will use the test model from Section 3.2.1.1, an

elongated cuboid, for which we expect the slowest modes (associated with the smallest

eigenvalues) to be identical in the inertial and inertialess cases due to their over damped

nature. As the modes become faster and more localised, we expect the mass to play a

larger role leading to the modes no longer being identical.

3.4.1 Theoretical Background

The stochastic noise function within FFEA derived by Oliver et al. is such that that

there is only δ -correlation in both space and time, and that the equipartition theorem

is fulfilled [71]. Hence, we have a Boltzmann distribution for the probability that the

3We must use a forward method in the final numerical integration step because the elastic force
vector ~C is non-linear with respect to ~x, and so we cannot easily use a factor of ~x(t + ∆t) for stable,
backwards integration
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system is in any energy state,

P (E) =
1

Z
exp

(
− E

kBT

)
,

=
1

Z
exp

(
− Ek
kBT

)
exp

(
− Es
kBT

)
,

⇒ P (Es) =
1

Zs
exp

(
− Es
kBT

)
, (3.39)

where the total energy, E = Ek+Es, the sum of kinetic and strain energies respectively,

and the total partition function Z = ZkZs is the product of the two independent

partition functions for strain and kinetic energies.

As Equation 3.39 shows that the strain and kinetic energy states form separable sub-

systems, the form of the strain energy partition function must be,

Zs =

∫ ∞
0

exp

(
− Es
kBT

)
dEs,

=

∫ ∞
−∞

∫ ∞
−∞

exp

(
−xiKijxj

kBT

)
dxidxj , (3.40)

showing that the distribution of strain energy, in the linear elastic regime, is purely

a function of the linear elasticity matrix K. This allows us to calculate the normal

modes of motion available to the system, those with respect to xi, through analysis

of K alone. However, we must also verify that our software implementation is correct

by extracting these modes from a simulation which implements K directly, i.e. an

FFEA simulation. This can be achieved using Principal Component Analysis (PCA),

a generalised method for compressing large data sets via a relatively small amount

of analysis of the statistical properties of that data [90]. For our purposes, PCA can

calculate the covariance matrix of nodal positions using the set of simulation frames,

Cij = 〈XiXj〉t =
1

N

N∑
t

(Xi(t)− X̄i)(Xj(t)− X̄j), (3.41)

where the sum is taken over all N frames present in the simulation. If the simulation

has run for an appropriately long period of time (longer than the longest time scale,

τk) then we can assume the ergodic theorem holds, and postulate that the time average

covariance matrix from Equation 3.41 is equal to the spatial average covariance matrix.

We can then use equipartition of energy to equate the following,

1

2
Kik〈XkXj〉t =

1

2
kBTδij ,

〈XiXj〉t = kBTK
−1
ij . (3.42)
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So we find that over a fully converged simulation, the elasticity matrix is linked via

equipartition to the covariance matrix. Taking the eigen-decomposition of Kij ,

〈XiXj〉t = kBT
(
eiαDαβe

−1
βj

)−1
,

= kBTeiαD
−1
αβe
−1
βj ,

= eiα

(
kBTD

−1
αβ

)
e−1
βj , (3.43)

where the matrix eiα is the matrix of eigenvectors (each eigenvector denoted by α) and

Dαβ is the diagonal matrix of eigenvalues. This means that the eigenvectors of C and

K are identical in the limit of simulation convergence and the respective eigenvalues

are simply the inverse of one other, multiplied by a factor of kBT . Therefore, PCA

allows us to calculate the normal modes of motion as a function of a simulation itself.

For the dominant modes in which the inertialess approximation is valid, we would ex-

pect to find that the PCA eigenvectors from both an inertial simulation (using Equa-

tion 3.31 as the equation of motion) and an inertialess simulation (using Equation 3.37

as the equation of motion) are the same. We denote these eigen-systems using the

eigenvector matrices e1 and e2 respectively. As the matrix K is symmetric, so too

is C and therefore the following identity must be true of their respective orthogonal

eigen-systems,

eT1 e2 = I, (3.44)

where I is the identity matrix and e1 and e2 correspond to the eigenvector matrices

from inertial and inertialess simulations respectively.

3.4.2 Results

To verify the expected diffusion result derived in Section 3.4.1, we built a single cuboid

mesh with 966 elements and dimensions 1nm ×3nm ×15nm to avoid degeneracy be-

tween dimensions (see Figure 3.3). Simulations of both an inertial and non-inertial

system were performed until the dynamics were sufficiently converged to show the

expected result. Principal component analysis was then performed on the resulting

trajectories in order generate the set of elastic normal modes of the system from the

covariance matrix. The PCA analysis was performed using the pyPcazip software pack-

age [91]. pyPcazip was was designed primarily for atomistic trajectory data from MD

simulations, but we were able to compensate for this simply by converting the nodes

of our FFEA system into the PDB format.
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Figure 3.4: Eigen-system inner product matrices for the dominant 10 modes of both
an inertial (eigen-system A) and inertialess (eigen-system B) cuboid. a), b), c) and
d) represent analysis of 100, 1000, 5000 and 10000 simulation frames respectively from
a simulation of total length 0.5µs. We can see that as dynamical convergence occurs,
this matrix tends toward the identity matrix as expected, showing that biological

motion is indeed over damped.

The slowest 10 modes of each system were the used to form the eigenvector matrices,

which were multiplied as in Equation 3.44 to form the following matrix,

Aαβ = eT1,αie2,iβ. (3.45)

The evolution of the structure of Aαβ throughout a simulation is visualised as a heat

map in Figure 3.4.

We clearly see convergence towards the identity matrix for the lowest ten normal modes,

which is enough to support the notion that FFEA simulations of biological molecules

with physically realistic properties are highly over damped. To get a numerical value

for the level of diagonalisation, we calculated the Pearson sample correlation coefficient,

r, of the matrix by modelling the elements of the matrix as probabilities of a discrete

data set i.e. Aαβ is modelled as the probability of eigenstate α being equal to eigenstate
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β. This analysis gives a value of 1 for perfectly diagonal and −1 for perfectly anti-

diagonal. For the four examples in Figure 3.4, we obtained the values r = 0.458,

r = 0.789, r = 0.890 and r = 0.916 for 5ns, 50ns, 250ns and 500ns of simulation time

respectively.

For completeness, we extracted the 100 most flexible modes from each trajectory, and

plotted their inner product matrix as a heat map in Figure 3.5. This larger data set

shows the identity property becoming less well defined at higher modes, with r = 0.620

after 0.5µs of simulation time. As these higher modes should have converged much more

quickly than the lower modes, being associated with smaller length scales, we believe

this loss of identity to be due to the expected breakdown of inertial behaviour for

faster modes as described in Section 3.3.1. However, as the slowest 10 modes contain

80.31% of the calculated variance, we maintain that this is a sufficient level of overlap

to justify the claim that the two eigen-systems are equivalent with respect to the global

dynamical behaviour.

Figure 3.5: Eigen-system inner product matrix for inertial and non-inertial cuboids
for the top 100 most flexible modes.
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3.5 Verification - Spherical Diffusion

To verify the dynamics of FFEA processes which depend on time, we can measure

the diffusive properties of a mesoscopic spherical object. Here we present a small

theoretical background to diffusive processes.

3.5.1 Theoretical Background

As our inertialess approximation is based on the assumption that the dynamics of

mesoscopic biological molecules are highly over damped, the diffusion of a mesoscopic

sphere through a viscous background medium of viscosity µ should have the well known

solution [21],

〈x2〉 = 2Dt = 2
kBT

λ
t,

⇒ 〈r2〉 = 6
kBT

λ
t, (3.46)

where 〈r2〉 = 〈x2〉 + 〈y2〉 + 〈z2〉 is the three dimensional squared displacement, and

λ is the drag on the sphere. In our case, for a sphere with radius R, this drag force

is described by Stokes’ formula (Equation 3.22). Thus, for an inertialess sphere, we

would expect the squared displacement of the sphere from its starting position to be

a function of the drag and to increase linearly with time. We can better express this

linearity by taking logarithms of Equation 3.46,

ln
(
〈r2〉

)
= ln(t) + ln

(
6
kBT

λ

)
, (3.47)

which allows us to view over damped diffusion as a curve with a gradient g = 1 and

an associated y-intercept y0 = ln
(

6kBTλ

)
.

For the same over damped system, but with inertia explicitly included, the over damp-

ing means that after a long period of time, the diffusion should tend toward that of an

inertialess system, and be described by Equation 3.47. However, for small periods of

time, we would expect the diffusion to have the following form,

〈x2〉 = 〈v2〉t2 =
kBT

m
t2,

⇒ 〈r2〉 = 3
kBT

m
t2, (3.48)

due to the fact that the inertia of an object allows it to retain a velocity v for a time

t < τm. In an over damped system the effects of these retained velocities would become
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Sphere Model Number of Elements Number of Nodes

1 - Coarse 70 38
2 - Mid 122 64
3 - Fine 336 134

Table 3.2: Three different models of the same sphere, radius R = 5nm. These three
allow us to verify the diffusion calculated by FFEA is independent of the coarseness

of the model.

negligible over long periods of time. Again taking logarithms,

ln
(
〈r2〉

)
= 2 ln (t) + ln

(
3kBT

m

)
, (3.49)

which allows us to view inertial diffusion as a curve with gradient g = 2 and y-intercept

y0 = ln
(

3kBTm

)
. Notice that the curves of Equation 3.47 and Equation 3.49 must

intersect for some value of t. Equating the two regimes using Equation 3.46 and

Equation 3.48 gives us the time around which inertial diffusion tends towards inertialess

diffusion for an over damped object,

〈r2〉 = 6
kBT

λ
t = 3

kBT

m
t2,

t = 2
m

λ
,

= 2τm. (3.50)

So the time scale over which the effects of inertia become negligible is the inertial time

constant, as we would perhaps expect.

3.5.2 Results

To verify the expected diffusion result derived in Section 3.5.1, we built three spherical

tetrahedral meshes of the same radius, R = 5nm, but 3 different levels of coarseness

(see Table 3.2). We performed twenty identical simulations of each model to allow

the necessary averages to be taken. Each simulation was 20ns with an integration

time step dt = 1fs, to allow for both the necessary temporal resolution to capture

inertial effects for t < 2τm as well the transition to inertialess motion for t > 2τm.

FFEA currently simulates drag on an object by applying a local drag to each node,

which has a characteristic radius ri called the Stokes radius assigned to it during the

initialisation routines. For a sphere of radius R and containing N nodes, we are able
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to exactly simulate the drag it should experience as follows,

λsphere = Nλnode,

6πµR = 6πµNrs,

rs =
R

N
, (3.51)

where the characteristic radius ri = rs ∀ i. For the mass, we set the density of each

sphere to be the same for each model, ρ = 1.5×103kg, a value representative of globular

biomolecules [87].

The results from the simulations are presented in Figures 3.6, 3.7 and 3.8. We can

clearly see that for each model the theoretical diffusion trace is reproduced within the

FFEA framework, with the explicit inertial diffusion trajectory transitioning from the

graph with a gradient, g = 2 to the theoretical inertialess graph with g = 1 at exactly

the point at which the graphs cross, t = 2τm.

Figure 3.6: Diffusion trace of a 70 element sphere, radius R = 5nm.
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Figure 3.7: Diffusion trace of a 122 element sphere, radius R = 5nm.

Figure 3.8: Diffusion trace of a 336 element sphere, radius R = 5nm.
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3.6 Performance Increase

Section 3.4 and Section 3.5 provided the necessary verification to justify the usage of

a non-inertial equation of motion (Equation 3.37) by default in an FFEA simulation.

The equation has been reduced to a first order differential equation, and so we must

now solve the equation of motion by inverting the viscosity matrix Λ in our solution

regime, as opposed to the mass matrix M in the original formulation. We obtain

the solution using the conjugate gradient method, an iterative steepest decent method

for the solution of linear algebraic systems with symmetric, positive definite matri-

ces [92]. The sparsity of our viscosity matrix makes such an iterative algorithm orders

of magnitude faster than alternative, direct inversion methods.

However, compared with the mass matrix, the viscosity matrix has additional direc-

tional dependencies due to the strain rate tensor having non-zero off-diagonal compo-

nents [80]. This means that for a system with N nodes, M has dimensions N × N
whereas Λ is 3N × 3N . Not only this, unlike M, which remains constant throughout

the simulation4, Λ must be continuously recalculated and rebuilt at each simulation

time step to take into account varying strain rates between nodes. We already know

that this has no implications on the overall dynamics of an FFEA simulation, but it

will affect the speed of the program itself.

If we define our runtime as tr and our simulation time as ts, the goal of optimizing

any piece of simulation software is to maximise the ratio vsim = ts
tr

, i.e. to get as much

simulation time completed in as little real time as possible. Although the inertialess

approximation means we can theoretically take much larger integration time steps

whilst still retaining numerical stability, if the simulation itself takes longer due to the

slower matrix building and inversion procedures at each time step, then we may as

well continue to include the mass matrix.

To determine whether or not the inertialess approximation increases the speed of an

FFEA simulation, we performed a parameter sweep over a number of variables con-

tributing to the speed of the simulation. We firstly varied the Young’s modulus, E, of

the system as this parameter directly affects the size of the allowed time step by chang-

ing the viscous time scale. Additionally, we were able to check whether or not larger

/ smaller values affected the numerical efficiency of the conjugate gradient solver.

We have found that although numerical stability is theoretically retained for much

larger time steps with the non-inertial system, the smallest length scale in the system,

lmin, still affects the size of the time step that we can take. The connectivity of an

4Which is because the density of each element also remains constant throughout a simulation
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FFEA mesh is constant throughout a simulation, and therefore each element must

retain its relative topology. In other words, the normal vectors of each of the element

faces are initially defined to point outwards when calculated as a cross product of the

edge vectors.

However, if a node moves too far in a single direction, then it may pass through

the opposite face of one of its associated elements. If this occurs, the normal vector

no longer point outwards with respect to the element when calculated from its edge

vectors. We refer to this effect in general as element inversion, and it is a problem due

to physically unrealistic properties being calculated, such as negative volumes, which

in turn lead to incorrect dynamics. Element inversion is the end result of numerical

instabilities, where position and velocity fluctuations gradually build up in magnitude

but it also occurs if a node simply doesn’t have time to physically relax under the

action of the equation of motion. This can occur if the magnitude of the thermal noise

is too high, which we know from Equation 2.5 is itself a function of the time step. This

is not a numerical stability problem but a limit of the mesoscale simulation itself in

that our mesh must be at least as fine as the finest level of detail we wish to investigate.

We cannot escape this limit, or the size of the thermal noise which it imposes. We refer

to these two different occurrences of element inversion as unstable and stable inversion

respectively.

To look at the effect of element inversion, we also varied lmin in our performance anal-

ysis by keeping the same mesh connectivity and varying the size of the whole molecule.

For completeness, we also performed the iteration for three different mesh structures,

a coarse, mid and finely detailed cubic structure, to see whether the structure of the

matrices themselves affected the speed of their inversion.

For any of these simulations we can use any simulation time step ∆t less than the

smallest time scale within the system and get a numerically stable simulation. This

gives us a spectrum of possible speeds for any simulation. We found the maximum

speed of any given simulation, vsim, by performing a bisection iteration procedure for

the time step. The bisection method is as follows:

� Initialise:

– Select Bisection Range (∆tmin = 1× 10−17, ∆tmax = 1× 10−3)

– Select Initial Time step (∆t = ∆tmax)

– Select Mesh Coarseness (Number of Elements = 6, 93, 678)

– Select Young’s Modulus (1× 107Pa < E < 1× 1011Pa)
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Figure 3.9: Maximum simulation speed for a 6 element cubic object as a function
of the smallest element size, for a variety of different Young’s Moduli

– Select System Smallest Element Length (1× 10−10m < lmin < 1× 10−7m)

� Iteration:

– Run FFEA simulation for 10000 time steps

– If simulation successful:

∆tmin = ∆t i.e. ∆t could potentially be larger

– Else:

∆tmax = ∆t i.e. ∆t must be smaller

– Set new time step, ∆t =
√

∆tmax∆tmin

– Exit Condition: If
∣∣∣1− ∆tmax

∆tmin

∣∣∣ < 0.05:

End Iteration

This iteration procedure was performed for 5 different values of the Young’s modu-

lus and 11 values of the minimum length scale, constituting 55 independent iteration

procedures for each mesh. To remove the effects of software parallelisation from these

measurements, we performed all simulations on a single core. The results of the iter-

ative procedures for each value of E, lmin and each mesh structure are presented in

Figures 3.9, 3.10 and 3.11
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Figure 3.10: Maximum simulation speed for a 93 element cubic object as a function
of the smallest element size, for a variety of different Young’s Moduli

Figure 3.11: Maximum simulation speed for a 678 element cubic object as a function
of the smallest element size, for a variety of different Young’s Moduli
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Let us begin by considering only the coarse structure, Figure 3.9, and within that, the

single inertialess graph corresponding to E = 1×107Pa. We see an almost linear initial

increase in the maximum speed as we increase the value of lmin. This is the stable

inversion regime, in that individual thermal fluctuations are of the same magnitude as

lmin and so we are limited in our value of ∆t, and hence the simulation speed, by the

size of the smallest element in the system. However, the graph comes to a plateau and

for all increases of lmin after that point, the simulation cannot sustain a larger time

step. This is the unstable inversion regime, where the numerical instabilities iteratively

build up and cause element inversion even though the individual thermal fluctuations

are much smaller than the size of the element. For the values of E, which increase by a

factor of exactly 10, the plateau in the simulation speed decrease by exactly the same

factor. As the time scale τk ∝ E−1, this is exactly the behaviour we would expect if

the simulation speed is dependent only on the size of the time step, which must be

lowered by exactly the same factor again to retain numerical stability. Hence, we can

conclude from just the inertialess graphs that the simulation runtime, and by extension

the efficiency of the conjugate gradient solver, is not dependent upon the magnitude

of the elasticity parameters.

Let us now consider the inertial simulations. From Equation 3.34, we define the smallest

eigenvalues from each of the inertial and viscous time constant matrices as τm and τk

respectively. Equation 3.34 shows us that there are actually two ways for numerical

instabilities to occur within an inertial solution protocol,

1− ∆t

τm
> 0,

∆t > τm, (3.52)

1− ∆t2

τmτk
> 0,

∆t2 > τmτk. (3.53)

For small systems, which correspond to smaller values of lmin, τm will generally be

much smaller than τk. Therefore, it is Equation 3.52 that is responsible for numerical

instabilities in the small lmin regime. τm is independent of the elasticity parameters,

and in Figure 3.9 we see that the maximum speed for all values of the Young’s modulus

is approximately the same for small lmin. However, as the system size increases, so

too does the mass of the system (as we have kept the density constant) and hence, the

inertial time scale increases. As τm ∝ l2min (see Section 3.2.1), the initial gradient of the
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graphs is 2 due to their logarithmic axes. However, τk is approximately independent

of the length scale of the system and so Equation 3.53 will become the dominant

cause of numerical instability as the system size increases. If we define a new time

scale τmk =
√
τmτk, the geometric average of the two time scales, then we can rewrite

Equation 3.53 as,

1− ∆t2

τ2
mk

> 0,(
1− ∆t

τmk

)(
1 +

∆t

τmk

)
> 0,

⇒ 1− ∆t

τmk
> 0. (3.54)

As τmk ∝ lmin, we see the gradient of each of the inertial graphs tend towards gradients

of one on the logarithmic axes. This transition happens at higher values of lmin with

lower values of the Young’s modulus as τmk ∝ E−0.5, so the system size, and therefore

the mass, must increase further before τmk dominates the numerical instabilities.

Finally, we compare the different meshes. The overall pattern we have described up

to now is approximately the same for each of the different meshes. We see that there

is about an order a magnitude difference in speed between the coarse, mid and fine

structure simulation speeds, with the fine structure being the slowest one. As there

are no pair-pair interactions in these simulations, we can posit that this difference is

simply due to the increase in number of degrees of freedom within the simulations

i.e. the conjugate gradient algorithm, performed serially, requires more floating-point

calculations for the fine structure simulation each step. It takes ∼ 10 times longer for

coarse, mid and fine simulations respectively as each has ∼ 10 times as many elements

as the previous model, which backs up this conclusion.

So should we replace the inertial solution procedure with the FFEA simulation proto-

col? Oliver et al. defined the mesoscale as beginning at ∼ 5Å, so we will take that as

our limiting case. At this value, we see that for the coarse system, an inertialess system

runs faster for all values of E in our range. For the mid system, this is again true. For

the fine system however, our simulation with E = 1× 1011Pa actually ran slower than

the inertial equivalent. But, the value of E at which the inertialess simulation became

faster is E ≈ 10GPa, ∼ 10 times larger than our representative value of the biological

mesoscale, E = 1GPa (see Section 3.2.1). In our worst case scenario, that of a serial

simulation of a highly detailed structure with very small features i.e. lmin ≈ 5Å, an in-

ertialess simulation gives us a simulation speed increase,
vsim,in

vsim,non−in
≈ 50 at E = 1GPa,

a very promising result.



Chapter 3. Development of FFEA 69

3.7 FFEA Normal Mode Analysis

FFEA is able to model not only the dynamics of individual molecules about their

equilibrium structure, but the interactions of multiple large molecules such as steric

or van der Waals interactions and completely generalised force-fields [93]. However,

we may simply be interested in the range of motions that a specific parametrisation

enables for an individual molecule, rather than the global effect of this molecule in

its biological environment. We have developed a procedure within FFEA that pro-

vides the functionality to calculate the set of elastic and dynamic modes via network

modelling [54].

3.7.1 FFEA Linear Elastic Model

As we saw in Section 3.2.1, the equation of motion of an FFEA simulation, Equa-

tion 3.10, can be linearised to form a multi-dimensional 2nd order SDE,

Mij ẍj + Λij ẋj +Kijxj = Ni. (3.55)

We also saw in our analysis of cuboid normal modes (Section 3.4) that the matrix

K contains within it all of the information necessary to extract the available elastic

normal modes from the structure, which can be written as a set of eigenvalues and

eigenvectors. Each eigenvalue from the set, ~eα , can be used to write the following

equation,

K~eα = kα~eα, (3.56)

where the summation convention is not applied, meaning kα is the corresponding eigen-

value to eα. Dimensional analysis shows that each eigenvalue has the same units as K,

and is therefore an effective elastic constant describing the linear flexibility associated

with this particular mode of motion. Each eigenvector has units of length, and so

represents the relative motion of each node within this mode.

With insights from Bathe [94], we have been able to implement a method of determining

elastic modes as a sub-routine of the FFEA framework. By linking to the Eigen C++

matrix libraries [95], FFEA performs this diagonalisation process in a highly efficient

manner and exports the eigenvectors and eigenvalues in a standardised format for any

FFEA system. We call this the FFEA Linear Elastic Model (LEM).

We can verify the implementation by comparing the eigenvectors calculated from an

LEM with those calculated from PCA analysis of a fully converged trajectory. Using
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the cuboid structure from Section 3.4 and the resulting PCA analysis of the simulation,

we calculated the inner product of the two PCA and LEM eigen-systems, the matrix

of which is shown as a heat map in Figure 3.12. We can see that again, we have ob-

tained an approximate identity matrix, as the two systems are identical. Although still

diagonally dominant, the small deviations from identity are due to the full simulation

not having achieved dynamical convergence.

Figure 3.12: The inner product of an LEM analysis and PCA analysis of the same
system, an elongated cuboid. We can clearly see the dominant feature is the diagonal,

showing that the eigen-systems are the same.

We can use the eigenvectors from the LEM analysis to create animations of the modes

by noticing that the following form of Equation 3.56 also holds,

K∆~eα = kα∆~eα, (3.57)

where ∆~eα represents a small change in the position of each node. Using equipartition,

and the fact that kα is a spring constant, we can write the following equation,

lα =

√
kBT

kα
, (3.58)

where lα is the standard deviation of the fluctuations associated with kα. Using this

characteristic length scale we can create an animation with each frame a multiple of

~eα, with the amplitude of the motion within the animation made to be ∼ lα. We use
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20 frames to make the animation, which in our experience gives a clear idea of the

motion with good spatial resolution.

We do note that this is simply a reimplementation of a standard Elastic Network

Model as described in Section 1.2.3.1. However, the following two sections show how

the additional mechanical considerations taken into account within FFEA allow more

sophisticated normal mode calculations to be performed.

3.7.2 FFEA Dynamic Mode Model

Due to the visco-elastic nature of biological systems, local effects of viscous damping

can modify the elastic modes of the system. For example, if we have a long, thin

molecule which has homogeneous elastic parameters but highly inhomogeneous internal

viscosity, then over any period of time the less viscous side will move much more quickly

than the more viscous side, and the relative amounts of motion we see over time will not

be the same as the motion theoretically available to the system due to the elasticity.

So if we take time into account as well as position, and wish to know the relative

frequency of motion in time as well as positional variance, then we should decompose

our system into modes that take the viscosity into account as well as the elasticity. We

refer to these modes as the dynamic modes.

In a similar fashion to Section 3.7.1, we linearise the system, but we keep the viscosity

component of the equation, giving us the following equation,

Λij ẋj +Kijxj = Ni. (3.59)

In order to determine the modes due to the combination of the viscous and elastic

components, we cannot simply invert the viscosity matrix and diagonalise the resultant

matrix, as we would get the following equation,

ẋi + Λ−1
ik Kkjxj = Λ−1

ij Nj . (3.60)

The RHS of Equation 3.60 forms a vector of coupled thermal noise components with

statistical moments which do not correspond to the fluctuation-dissipation theorem as

applied to an FFEA system. Hence, the system of linear equations remain inseparable

and so do not represent truly independent normal modes. In order to generate truly

independent dynamical modes, we must find a new set of coordinates yi for which the

eigen-systems of L and K can be combined to form a system of independent linear

equation.
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We begin by diagonalising Λ to find its own independent eigen-system,

Λ = eΛλΛe−1
Λ , (3.61)

where eΛ
ij is the matrix of eigenvectors and λΛ is the diagonal matrix of eigenvectors

for the viscosity matrix. We can then form the diagonal matrix Q such that,

Qij =

λΛ,i i = j

0 i 6= j

This definition leads us to the following identity,

QTeTΛΛeΛQ = I, (3.62)

which will be of use later on. Our next definition is the matrix K̂, defined as,

K̂ = QTeTΛKeΛQ. (3.63)

As K and Q are symmetric, and eΛ forms an orthonormal basis, we note that K̂ itself

is symmetric, and so can be diagonalised,

K̂ = eKλKe−1
K , (3.64)

which forms another set of eigenvectors and eigenvalues. It is relatively intuitive that

a combination of the two eigen-systems of the viscosity and elasticity matrices is nec-

essary to form the dynamic mode eigen-system, so we define the final matrix R,

R = eΛQeK , (3.65)

and note the following identities,

RTΛR = I,

RTKR = λK . (3.66)

Applying RT to Equation 3.59,

RTΛ~̇x+ K~x = RT ~N. (3.67)
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Finally, we can see how we must transform the coordinate system in order to find the

dynamic normal modes,

~x = R~y, (3.68)

and so substituting into Equation 3.67 gives,

RTΛR~̇y + KR~y = RT ~N, (3.69)

and with the identity from Equation 3.66 we finally obtain

~̇y + λK~y = RT ~N. (3.70)

With respect to the new rotated coordinate system ~y, the statistical moments of the

effective thermal noise components Fi = RTijNj are spatio-temporally independent,

〈Fi(t)Fj(t′)〉 = RTikR
T
jl〈NkNl〉,

= RTikR
T
jl × 2kBTλkl,

= 2kBTR
T
ikλklRlj . (3.71)

Equation 3.66 shows that the matrices in Equation 3.71 reduce to the identity matrix,

and so,

〈Fi(t)Fj(t′)〉 = 2kBTδijδ(t− t′), (3.72)

where the two delta functions show the required spatio-temporal independence between

thermal degrees of freedom.

The numerical construction of the matrix R is relatively straightforward using the

Eigen C++ libraries, and from there, diagonalisation gives the dynamic normal modes

and associated eigenvalues for the coordinates ~y. Using Equation 3.68 we can transform

back to the regular spatial coordinates ~x used within FFEA to visualise the dynamic

modes in the same manner as the elastic modes.

3.7.3 FFEA Time Scale Calculator

Given the large overall variation in possible time steps due to their dependence on the

specific system to be modelled, we have found it useful to get a rough idea of what

the time scales within an FFEA system are in advance of a simulation. Given the

inertial equation of motion with linearised elasticity, Equation 3.55, there exist two
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time constant matrices,

τm = Λ−1M,

τ k = K−1Λ.

Independent diagonalisation of these matrices provides the spectra of time constants

associated with each type of motion, inertial and viscous. Again building and diago-

nalising these matrices using the Eigen C++ libraries, we can obtain the full spectrum

of time constants relatively quickly for even the largest of FFEA systems by exploiting

the sparsity of the matrices, using optimised Eigen algorithms for sparse matrix diag-

onalisation. The largest time-constant from either matrix tells us how long we must

run our simulation to achieve full dynamical convergence, and the smallest gives us an

idea of how small to make our integration time step to avoid numerical instabilities

within a full simulation. However, this approach cannot determine whether or not sta-

ble element inversion will occur (see Section 3.6) as this is not a mechanical problem,

rather, it is a geometric issue.

3.8 Further Additions to FFEA

3.8.1 Steric Interactions and Lennard-Jones

We saw in Chapter 2 that FFEA includes a procedure for modelling Van der Waals

interactions. These interactions inherently include steric forces through the hard-

core repulsive term between the two surfaces. Although realistic, in practise we have

found that these hard-core interactions are prohibitively numerically unstable in that

as the potential VLJ → ∞ with r → 0, where r is the distance between the Gaussian

integration points on each surface, we are unable to take large simulation timesteps

due to the huge forces involved. This causes us to lose a major new benefit of FFEA,

the ability to take long timesteps due to the over damped nature of the system (see

Section 3.2). Solernou et al. have since developed a softer potential through a volume-

volume interaction, which lessens the constraints on the system by allowing volume

overlap. The local gradient of volume overlap is the metric used to scale the steric

force repelling the two surfaces. This force is then applied to the two surfaces in the
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direction of the gradient itself [93]. Although steric interactions are well modelled5,

the formation doesn’t allow for a non-specific potential at the surface-surface interface,

a required feature for an accurate representation of inter-molecular interactions. To

account for this, we have developed an interpolative potential to model the steric

interactions at close range using the volume overlap method, and a standard 6-12

potential at intermediate ranges.

We implement the function by considering two parallel surfaces being moved into

contact with one another. For the two surfaces, separated by a single distance r with

an energy minimum ε at req, we have the following piecewise functional form


Volume Overlap Potential r < 0

Intermediate 0 < r < req

6-12 potential r > req

where we must define the intermediate potential to interpolate between the two limiting

regimes. The form of the intermediate function should be continuous in V and also in

the first derivative, dVdr , so that the forces are continuous as well as the energy. As such,

we require the following boundary conditions to hold. To smoothly transition into the

volume overlap function, we must have V = 0 and dV
dr = 0 at r = 0. To smoothly

transition into the attractive component of a Lennard-Jones 6-12 potential at r = req,

we require V = −ε and dV
dr = 0, where ε is the potential energy minimum defined by

the user. Our intermediate function, V int, must have two turning points to form these

boundary conditions and hence, the simplest form is a 3rd order polynomial,

V int = ar3 + br2 + cr + d,

dV int

dr
= 3ar2 + 2br + c. (3.73)

We can see immediately that c = d = 0 from the boundary conditions at r = 0. The

final functional forms corresponding to the boundary conditions are,

V int = ε

(
2

(
r

req

)3

− 3

(
r

req

)2
)
,

dV int

dr
=

6ε

req

((
r

req

)2

− r

req

)
. (3.74)

5The FFEA test suite shows that two colliding spheres with a relative velocity 30m/s do not
intersect at all over the course of a collision simulation (in the absence of thermal noise) due to
the steric potential. They also undergo only 2.70◦ of rotation, showing the potential to be highly
conservative.
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Figure 3.13: The new functional form for the Van der Waals potential, formed as
an interpolation between the steric interactions at short range and Lennard-Jones in-
teractions at mid-long range. A regular Lennard-Jones form is shown for comparison.

A graph of this potential is shown in Figure 3.13 for the specific case of two parallel

surfaces, where we can clearly see the benefit of this softer potential in comparison with

the original hard-core repulsion of a standard 6-12 potential. The gradient of the steric

potential, and therefore the strength of the repulsion forces, can be tuned manually by

the user, but always remains proportional to the gradient of volume overlap between

the two structures.

For the general case of non-parallel interacting surfaces, there is no single distance

r used to calculate surface-surface separation. As we saw in Section 2.4.2, the set of

distances r(~p, ~q) = |~p−~q| defined the continuous variation in surface-surface separation

as a set of distances between the Gaussian integrations points ~p and ~q on each of the two

interacting surfaces. The true potential is therefore a summation of the volume-volume

and surface-surface components, which reduces to a pure interpolation for the specific

case of parallel interacting surfaces. We therefore calculate the volume-volume steric

repulsion in all cases of volume overlap, together with the Lennard-Jones attraction if

r(~p, ~q) > req, or the intermediate repulsive potential if r(~p, ~q) <= req, between each

the different pairs of Gauss points between the surfaces.

We have found through the simulations in this thesis involving van der Waals and

steric interactions that this potential is soft enough to retain numerical stability at
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even the largest time steps allowed by the time step limitations shown in Section 3.6,

and so van der Waals / non-specific interaction potentials do not limit the speed of

our simulation by adversely affecting the size of the time step. However, whether the

specific geometry of each FFEA mesh, and therefore the layout of Gauss points, has

any effect on the shape of the interaction landscape has yet to be studied in detail.

3.9 Summary

We have seen that the over damped nature of the biological mesoscale justifies using

a non-inertial equation of motion within a mesoscopic simulation technique such as

FFEA. This has allowed us to optimise the overall simulation protocol in terms of

speed, taking larger time steps and obtaining an equivalent data set as a result. For

interacting molecules, the new steric/Lennard-Jones coupled solver enables the sim-

ulation of effective surface-surface interactions without affecting this speed increase

through local numerical instabilities. Finally, the network modelling and time scale

calculator provide rapid insights of the approximate motion available to a given system.

All of these tools together form the core of the FFEA method.

One significant result from the work presented in this thesis is the official publication

and release of the FFEA software package to the general public [93]. In addition to the

new techniques and models presented in this chapter, a substantial amount of work has

been put into the software itself. The package contains a variety of initialisation tools

to help a user build their desired simulation environment, and analysis tools which

contain automatic methods for calculating and plotting common values of interest.

We have also developed a visualiser as a plugin to the PyMOL molecular graphics

program [96], which enables FFEA systems to be viewed alongside atomistic data, if

available, and to interact with all of the built-in tools for analysis in PyMOL.

For software robustness, all of the tools are written using a centralised set of python

classes that define the underlying structural components of an FFEA system. Exam-

ples include python objects which handle the structural topology, surface topology,

material parameter distributions and, perhaps most importantly, the trajectories and

measurement data that are produced by an FFEA simulation.

The open-access software is centralised under a git repository, and can be downloaded

from https://bitbucket.org/FFEA/ffea/downloads/ with associated documenta-

tion and installation instructions at http://ffea.readthedocs.io/.

https://bitbucket.org/FFEA/ffea/downloads/
http://ffea.readthedocs.io/




Chapter 4

A Kinetic Scheme for FFEA

4.1 Kinetics at the Mesoscale

FFEA can currently be used to study protein equilibrium dynamics which, as we saw

in Chapter 3, are driven by thermal fluctuations. The conformational space accessible

to proteins is a function of their shape and elastic properties, represented in FFEA by a

set of bulk and elastic moduli, which define how much a protein can deform away from

a well defined equilibrium structure, or native state [97]. In addition to this however,

many mesoscopic proteins perform their function in a much more directed manner; via

the binding and hydrolysis of adenosine triphosphate (ATP), using the released energy

to rearrange their internal structure [98]. The energy provided by ATP hydrolysis to the

local environment is often much greater than that of the average thermal fluctuations

in the same region, and so the local increase in energy can provide access to a much

larger conformational space, or more commonly allows the protein to overcome internal

energy barriers and rearrange their atomic structure. This process is very obvious in

the family of transporter molecular motors, kinesin, myosin and dynein, which use

ATP hydrolysis and subsequent structural rearrangement to generate directed bipedal

motion (see Chapter 5).

This type of event is not currently modelled within the framework of an FFEA sim-

ulation as the dynamics involve the making and breaking of chemical bonds, which

requires quantum mechanical considerations. This is of much higher resolution than

FFEA was designed to simulate, and yet many of the large protein complexes that we

would ideally want to model using FFEA, such as the molecular motors, are macro-

molecules whose overall function depends upon the large conformational changes which

result from ATP hydrolysis. These molecules are fundamentally multi-scale systems,

79
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with core processes acting at both the mesoscale, the regime in which FFEA was de-

signed to simulate, and also at the nanoscale, more suited towards molecular dynamics

and quantum mechanical techniques.

If we were to study the dynamics of these events together, we could perhaps employ

multiple layers of resolution in a similar manner to QM/MM (Chapter 1). However,

to retain the computational advantages of FFEA, we can consider only the free energy

changes involved in ATP hydrolysis and other similarly non-equilibrium processes, and

instead include these processes within the FFEA framework using kinetic theory.

4.2 Introduction to Kinetic Theory

Consider a physical system with two well defined states, A and B, and some path-

way enabling a transition between them, for example, a standard, reversible chemical

reaction. It is often the case that the full mechanism by which the reaction occurs

is highly complex, yet the information required from a study of the reaction doesn’t

require knowledge of the mechanism at all. For example, for a given amount of re-

actant one may simply wish to determine the amount of product that will be formed

given certain environmental conditions. In this situation we may ignore the specific

atomistic processes involved over the course of the reaction and simply use a kinetic

model, which uses the statistics of equilibrated systems to determine the end result

of a given reversible reaction. All that is required is prior knowledge of the reaction

rates, which can be measured via experimentation.

4.2.1 A Chemical Example - Table Salt

As a practical example, take the traditional example given in basic chemistry lessons

for generating table salt,

NaOH + HCl −−⇀↽−− NaCl + H2O. (4.1)

Although the mechanism for the reaction is known, for the sake of example let us

assume for now that it is not. Regardless, we are simply be interested in how much

product we will obtain given an initial amount of reactant together with some set

of environmental conditions. For a given reaction that has reached equilibrium, we

can define the presence of reactant and the presence of product as separate, discrete

kinetic states. From Equation 4.1, we will define state A as NaOH+HCl and state B as
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NaCl+H2O. If we assume stoichiometry in the reaction, the equilibrium concentrations

of both states can then be obtained using the principle of detailed balance as follows,

cARAB = cBRBA, (4.2)

where cA and cB are the equilibrium concentrations of states A and B respectively,

and due to our (assumed) lack of knowledge on the specific molecular mechanisms

occurring during the reaction, we are required to include reaction probabilities in the

form of statistical averages, the equilibrium reaction rates RAB and RBA, which are

approximately constant at equilibrium. In actuality, the rates are a function of the

specific molecular details and are therefore typically related to an energy barrier be-

tween states. Environmental conditions such as temperature, pressure, and presence

of catalysts, as well as reactant concentrations and other factors all contribute to the

rates by affecting the ability of the molecular ensembles to acquire enough energy to

proceed in the reaction. But in principle for our study of interest, the specific molecu-

lar details can be bypassed in favour of the reaction rates, which contain the net result

of all of the higher resolution detail and can be measured directly through relatively

simple experimentation.

Once the rates are determined, we can solve Equation 4.2 to determine the equilib-

rium concentrations of both reactant and product. We can assume that the total

concentration of initial mixture is known, such that,

cA + cB = cT , (4.3)

where cT is the total initial concentration of both product and reactant. Substitution

into Equation 4.2 gives,

cA =
RBA

RAB +RBA
cT ,

cB =
RAB

RAB +RBA
cT . (4.4)

4.2.2 Kinetic Networks

Kinetic theory can be generalised to any number of discrete states forming a connected

network. At equilibrium, for any two directly connected states within the network,

indexed by i and j, detailed balance requires that,

ciRij = cjRji. (4.5)
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Figure 4.1: A visualisation of a generic kinetic network, where the occupancies of
each state are visualised by their areas. The detailed balance condition is applicable to
every pair of connected states in this network. Although each transition is reversible,
we can see a clear inhomogeneity in the occupancies, implying that the transition

rates towards state 2 are large, and those towards state 4 are small.

Such a network is illustrated in Figure 4.1.

The reaction rates within these networks can often be individually determined via ex-

perimentation. The complete set of rates means that the network corresponds to a

fully parametrised Markov chain of events [99] for which we can determine the equi-

librium distribution of concentration around the whole network using methods similar

to Equation 4.4.

The idea of detailed balance can also be applied to the kinetics of single molecules.

By dividing throughout by the total concentration, cT , we can rewrite Equation 4.5 in

terms of occupation probabilities,

PiRij = PjRji, (4.6)

where Pi is the probability of being in state i at any given time once equilibrium is

reached. For our example network, this represents having only a single state occupied

within the system at a time. We can see how this kind of model can be useful by

looking at studies of molecular motors.
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4.2.3 A Biological Example - Molecular Motors

A set of molecules present within biological organisms responsible for generating force

are the molecular motors. Molecular motors feel the effect of thermal fluctuations

as all proteins do, and as a result dynamically explore conformational space about a

well defined equilibrium configuration. The generation of force is not due to these

fluctuations however, but due to internally metabolised ATP providing enough energy

to change the equilibrium state itself. These large transitions between equilibrium

structures enable the motor to do very specific work against any attached cargo and

it is this cycle that generates force and the useful work done by the molecule. Both

of these equilibrium structures have been solved to atomic resolution for a variety of

motors but what is still largely unknown is exactly how the transitions proceed at the

atomic level.

With incomplete structural detail regarding the transition process, a kinetic model is

suitable for studying a molecular motor, and indeed, a purely kinetic model of the

motor cytoplasmic dynein has been designed by Zhao et al. [100]. Cytoplasmic dynein

is a highly complex dimer known to be responsible for intra-cellular transport of vital

cargoes via a bipedal walking mechanism, with each step driven by an ATP hydrolysis

fuelled ‘power-stroke’. The ‘pre’ and ‘post’ power-stroke equilibrium structures were

modelled by Zhao as discrete kinetic states. With very little ab initio knowledge

of the underlying transition mechanism from pre-powerstroke to post-powerstroke or

vice versa, their model is able to calculate a probability distribution of the step size

(including direction) of the motor, which indicated a bias towards forward motion with

the number of ‘hand over hand’ steps1 being ∼ 4 times less prevalent than so-called

‘inchworm’ steps2. The authors make a number of assumptions regarding the rates,

yet we can still see how powerful a kinetic model is when parametrised only by a small

number of transition rates. Each rate can be easily modified within the model to see

the global effect of altering the rate at which processes occur, such as ATP hydrolysis

(by varying the ATP concentration), or diffusion (by varying the background viscosity).

We will perform our own study of cytoplasmic dynein in more detail in Chapter 5.

Following our discussion and development of the dynamical FFEA model in Chapter 3,

one might consider whether the thermal fluctuations may have a significant effect on

these reaction rates. In cytoplasmic dynein, for example, the structural deformations at

equilibrium are relatively large and could therefore undergo associated energy changes

that are potentially comparable to that released via ATP hydrolysis. If this is the case,

1Steps in which the trailing monomer moves past the leading monomer, or vice versa
2Steps in which the trailing monomer merely catches up to the leading monomer, or vice versa,

without overtaking.
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then the effect of these fluctuations on the kinetic transition rates of single molecules

should be considered. The remainder of this chapter concerns the development of a

coupled dynamic-kinetic model and its implementation within the FFEA framework.

4.2.4 A Note on Nomenclature

We define the ‘kinetics’ we have introduced in this chapter as the modelling of occupa-

tion probabilities of discrete states defined within a system, and the rates of transition

between them. We explicitly distinguish this type of modelling from the inclusion of

‘dynamics’, by which we mean that the entire trajectory of the system is calculated

from underlying, fundamental laws of motion. These two models are mutually exclu-

sive when simulating a specific process, in the sense that if one has enough knowledge

about the underlying physical transition process to determine appropriate equations

of motion, then the dynamical model can replace the kinetic model. What we can do

is use these models in conjunction with one another to retain the advantages of a low

spatial resolution dynamical simulation (FFEA, for example) whilst applying kinetic

theory to model discrete, atomistic events in a statistical manner, without the need

for the inclusion of high resolution detail.

4.3 Modelling Kinetics with Newtonian Dynamics

4.3.1 Reinterpreting FFEA Dynamics

Let us assume that we have a dynamic system which can exist within N different energy

minima. Although there must exist some continuous process by which the system can

transition from one of these minima to the other, because of the high spatio-temporal

resolution required to understand the energy landscape across these transitions, we

will consider them to be mesostates, states which are fully separated in a dynamic

sense but may undergo kinetic transitions from one mesostate to another as described

in Section 4.2.4. This type of separability is valid for the formation of table salt in

Section 4.2.1, where the reactants are constantly undergoing Brownian motion and the

reaction itself can easily be modelled kinetically, but could, in principle, be described

by the continuous change in electronic probability described in Section 1.2.1.

Within each of these individual mesostates, i, there exists a continuum of possible

internal energies Ei that the population of the mesostate may be in. This energy

landscape can be decomposed into a set of unique microstates, (~x, ~p)i, characterised
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by the set of position vectors ~x and the set of momentum vectors ~p. The set of pairs

of vectors Ω = {(~x, ~p)} constitutes the phase space of the system such that any point

(~x, ~p) in Ω, together with a mesostate i, specifies a unique microstate (~x, ~p)i within

the total free energy landscape. The microstates within any specific mesostate are the

familiar, continuous set of states accessible via the thermal fluctuations of Brownian

motion. This means that the continuous distribution of internal energy within each

mesostate i can be modelled as a Boltzmann distribution, as we assume there to be

no interaction between any two mesostates i and j. This gives a probability density

function p(~x, ~p|i), which is the probability of being in configuration ~x with momentum

~p given that we are already in mesostate i,

p(~x, ~p|i) =
1

Zi
exp

(
−E(~x, ~p)i
kBT

)
, (4.7)

where Zi is the partition function for the mesostate i,

Zi =

∫
Ω

exp

(
−E(~x, ~p)i
kBT

)
. (4.8)

It is this phase space that FFEA was originally designed to explore, with each molecule

being confined to a single mesostate i and exploring the subset of microstates within

Ω. However, given that the transitions between these mesostates are often vital to the

function of mesoscopic proteins, we must build into FFEA the ability to sample the

entirety of the global energy landscape as well, including all additional mesostates j.

4.3.2 Microstates and Mesostates

As each mesostate is fully separable in our description, we can define a total partition

function ZT for the entire global energy landscape as a discrete summation of each

individual mesostate,

ZT =
N∑
i=1

Zi. (4.9)

This allows us to define a more general probability density function for the entire

system, p(~x, ~p)i, as the probability of being in any microstate (~x, ~p)i,

p(~x, ~p)i =
1

ZT
exp

(
−E(~x, ~p)i
kBT

)
. (4.10)
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Integrating over the total phase space Ω will give us the occupation probability for

each mesostate i,

Pi =

∫
Ω
p(~x, ~p)idΩ

=
Zi
ZT

, (4.11)

which we can finally define in terms of a free energy, Fi, for the mesostate i,

Pi =
1

ZT
exp

(
−Fi
kBT

)
, (4.12)

where Fi = −kBT ln(Zi). We have now defined two types of kinetic state within the

total system; a mesostate i which may be described in comparison to other mesostates

j by their free energies, Fi and Fj , and a microstate (~x, ~p)i which can be described

dynamically within each mesostate i by their microscopic energies E(~x, ~p)i. We now

consider how we can use this formulation to build the possibility of kinetic transitions

between mesostates into a dynamic simulation.

It is perhaps useful to note at this point that because FFEA is a coarse-grained model,

all of the energy contained within the underlying atomic degrees of freedom has been

lost. As such, our microstate energies Ei(~x, ~p) are actually free energies themselves,

albeit of a higher order than the discrete mesostate values Fi we have defined, with

a dynamic FFEA simulation more of a continuous exploration through a free energy

space, not an energy space. However, it is intuitively clear to refer to the dynamic

part of the model as having a real energy, and the kinetic mesoscale part as having

free energy, so this will be our convention for the remainder of this work.

4.3.3 Microscale and Mesoscale Kinetics

We have already seen that detailed balance tells us how reaction rates are intrinsically

linked to occupation probabilities in Equation 4.6. Let us rewrite this by substituting

in Equation 4.12,
Rij
Rji

= exp

(
−∆Fij
kBT

)
, (4.13)

where ∆Fij = Fj − Fi. Equation 4.13 shows that the reaction rate ratio is dependent

only upon the free energy difference between the two mesostates i and j. The assump-

tion is often that because these free energies are constant (at constant temperature),

so too are the kinetic transition rates Rij . At higher resolution however, we have seen

that these free energies are formed through a combination of the microstates energies
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within each mesostate. As Equation 4.10 has a similar form to Equation 4.12, we may

postulate a further detailed balance condition between pairs of microstates within the

system,

p(~x, ~p)irij = p(~x, ~p)jrji, (4.14)

rij
rji

= exp

(
−∆E(~x, ~p)ij

kBT

)
, (4.15)

where ∆Eij = Ej − Ei and rij = rij(∆Eij) is the transition rate from one microstate

to another, or, from mesostate i to mesostate j whilst also in configuration ~x and at

momentum ~p. We find that these microscopic rates must be a function of the current

energy of the system, as well as the energy of the state it is transitioning into and

hence, a function of the position in phase space. These energies are constantly varying

as the dynamic system undergoes thermal fluctuations and hence, the reaction rates

also vary as a function of the underlying dynamics. This concept of separable mesoscale

/ microscale kinetics is visualised in Figure 4.2.

We will now begin to explore the relationship between the microscopic rates rij , and

mesoscopic rates Rij , by considering the underlying energetic contributions.

4.3.4 Energy within Microscale Kinetics

As a continuous function of both the configuration, ~x, and the momentum, ~p, the

internal energy Ei(~x, ~p) can be divided into a number of constituent parts,

rij
rji

= exp

(−∆Ecij −∆E(~x, ~p)ncij
kBT

)
, (4.16)

where ∆E(~x, ~p)ncij is the ‘non-chemical’ component of energy that is fully dependent

upon the location in phase space and which determines the dynamics within a mesoscale

simulation such as FFEA. ∆Ecij is an additional, as yet unknown, energy change which

we will call the chemical energy, and represents additional energy differences between

the mesostates. ∆Encij can be further subdivided into the individual energy ‘types’ that

contribute to it,

∆E(~x, ~p)ncij = ∆K(~p)ij + ∆U(~x)ij , (4.17)

where ∆Kij is the change in kinetic energy, and ∆Uij the change in potential energy

following a kinetic transition. It follows that ∆Ecij must exist to account for the

inherent difference in forward and backward transition rates even at ∆Kij = ∆Uij = 0.

If we assume this to be the chemical energy change due to the making and breaking
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Figure 4.2: A representation of the nature of discrete mesostates and continuous
microstates. Within each mesostate we can dynamically model the microstate as we
have knowledge of the underlying continuous energy landscape from high energy (blue)
to low energy(red). However, between the mesostates themselves we have neglected
to model, or have no knowledge, of the underlying energy landscape (white) and so we
must model them as discrete states with associated kinetic transition rates. We have
included an example pathway through this joint internal and free energy landscape:
1. A kinetic transition from a low energy state to a low energy state, r13(~x1, ~p1). 2. A
transition from low energy to high energy. We can infer that r34(~x2, ~p2) is relatively
small at this point in phase space. 3. A high energy to high energy transition with rate
r45(~x3, ~p3). Perhaps counter-intuitively, such a transition is not kinetically suppressed,
as the energy change is quite small at this point in phase space even though the
absolute energies are high. 4. Within mesostate 5, the system has mechanically
relaxed to a lower energy (a likely scenario for a Boltzmann energy distribution) before
transitioning to the higher mechanical energy mesostate 4 with rate r54(~x4, ~p4). 5.
The system passes through the low energy region of phase space with mesostate 4 and
then transitions into the (very) low energy mesostate 3 with rate r43(~x5, ~p5). This
final state represents a mechanical energy minimum, which, although inhibited within
mesostate 3 itself, can be realised through a pathway of intermediate mesostates as

we have seen in this example.

of bonds we may also approximate it as constant and can rewrite in terms of specific

kinetic rates,

exp

(−∆Ecij
kBT

)
=
r0
ij

r0
ji

, (4.18)

and hence, Equation 4.16 simplifies to,

rij
rji

=
r0
ij

r0
ji

exp

(−∆E(~x, ~p)ncij
kBT

)
, (4.19)
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where r0
ij is a constant ‘base’ rate which is modified by the other energy contributions

to give overall rates rij .

4.3.5 Decoupling Detailed Balance

The condition of detailed balance at equilibrium has given us information about the

relative sizes of the kinetic rates, but we need a further constraint in order to separate

the rates and determine individual expressions for them. We introduce the following

generalised form for the individual rates rij ,

rij = r0
ij exp

(−fij∆Encij
kBT

)
,

rji = r0
ji exp

(−fji∆Encji
kBT

)
, (4.20)

where the summation convention is not in effect, and fij and fji are constants specific

to each transition between mesostates i and j. We can make Equation 4.20 consistent

with Equation 4.19 by meeting the following condition,

fij + fji = 1. (4.21)

The ratio of the two rates will be independent of these values for all energy types

and will therefore have the correct dependence on the overall energy change ∆Eij

associated with that kinetic process. Although the values of fij and fji are no longer

independent, we will continue to refer to them both in later equations for clarity. The

physical meanings of both fij and fji are related to the activation energy, which is

analysed in detail in Appendix A.

4.3.6 Coupling the Microscale to the Mesoscale

We are now in a position to determine how the continuously changing microscopic rates

rij result in the experimentally measured mesoscopic rates Rij . The lack of temporal

resolution means that experiments measure the average effect of the varying rates rij

as the system quickly moves through phase space. It therefore follows that,

Rij = 〈rij〉, (4.22)

where 〈rij〉 is an average taken over all possible kinetic transitions, weighted by the

probability starting in a given microstate, and constitutes the intersection of phase
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spaces of mesostates i and j. This average can therefore be written in terms of an

integral over the Boltzmann probability distribution from Equation 4.10,

PiRij =

∫
Ω
pirijdΩ. (4.23)

Substitution of Equation 4.10 and Equation 4.20, and making Rij the subject gives,

Rij =
r0
ij

∫
Ω exp

(
−Enci
kBT

)
exp

(−fij∆Encij
kBT

)
dΩ∫

Ω exp
(
−Enci
kBT

)
dΩ

, (4.24)

where we have assumed r0
ij to be truly constant, and independent of both ~x and ~p.

Equation 4.24 can be simplified and rearranged for the base rate r0
ij ,

r0
ij = Rij

∫
Ω exp

(
−Enci
kBT

)
dΩ∫

Ω exp

(
−(fjiEnci +fijEncj )

kBT

)
dΩ

. (4.25)

We can now, in principle, calculate the underlying rate r0
ij that gives rise to the mea-

sured rate Rij as a result of thermal exploration of conformational space. If we follow

the same derivation procedure for the reverse rates r0
ji, we find that,

r0
ji = Rji

∫
Ω exp

(−Encj
kBT

)
dΩ∫

Ω exp

(
−(fjiEnci +fijEncj )

kBT

)
dΩ

. (4.26)

Notice that the denominator integrals in Equation 4.25 and Equation 4.26 are identical.

As such, we need only calculate it once for any given transition, and with knowledge

of the mesostate transition rates we can write a simpler relation for the reverse base

rate, r0
ji,

r0
ji = r0

ij

Rji
Rij

∫
Ω exp

(−Encj
kBT

)
dΩ∫

Ω exp
(
−Enci
kBT

)
dΩ

, (4.27)

which completes the coupling between the mesoscale and microscale.

From a set of measured kinetic rates Rij together with appropriate values of fij , we

can now calculate the underlying rates r0
ij that are unmodified by thermal exploration

of conformational space. The values of fij used within this work are assumptions based

upon the general arguments presented in Appendix A. The justification of each value

will be briefly explained prior to its use.

With the full set of base rates, at any time during a dynamical simulation we can
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calculate the modified rate rij(∆E
nc
ij ) as the system moves through phase space. We

can therefore couple this kinetic scheme together with any underlying dynamical model,

explicitly reintroducing the thermal fluctuations, and use the resulting mechanical

energies to calculate the effect of conformational exploration on the kinetic processes.

Most importantly, we can switch between the two mesostates at any time within the

dynamical framework and perform kinetic transitions in real time within a simulation

environment. This provides us with a very high level of temporal resolution when

studying kinetic processes in biological systems. Before we look at integrating this

kinetic scheme into the FFEA framework, which has its own complications, we will

first apply it to a simpler one-dimensional model for which we can calculate the exact

solution.

4.4 A One-Dimensional Example - The Dumbbell Model

We validate the coupled dynamic-kinetic model using a one-dimensional bead spring

model, otherwise known as a dumbbell model. This model comprises a single Hookean

spring connecting two spherical objects together (see Figure 4.3).

4.4.1 Bead - Spring System: Dynamics

Each of our point particles i have mass mi and position xi. Immersed in a back-

ground fluid, they experience a drag force λi and due to the fluctuation-dissipation

theorem, they must both experience a stochastic thermal force Ni in order to satisfy

the equipartition theorem and give each particle the correct energy distribution [21].

Assuming our system is over-damped at the biological mesoscale, we may solve for an

inertialess system. The equations of motion for these particles are,

λ1
dx1

dt
− k(x2 − x1 − l) = N1, (4.28)

λ2
dx2

dt
+ k(x2 − x1 − l) = N2. (4.29)

These two coupled equations can be numerically integrated in parallel using a one step

Eulerian integration scheme, such that the numerical update following a time step ∆t
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is,

x1(t+ ∆t) = x1(t)

(
1− ∆t

τk,1

)
+

∆t

τk,1
(x2 − l) +

∆t

λ1
N1,

x2(t+ ∆t) = x2(t)

(
1− ∆t

τk,2

)
+

∆t

τk,2
(x1 + l) +

∆t

λ2
N2, (4.30)

where τk,1 = λ1/k and τk,2 = λ2/k are the time constants associated with the viscous

motion of each particle. Keeping in mind that for numerical stability and accuracy,

∆t� τk,α ∀ α, the above equations of motion can easily be implemented and iteratively

solved within a computer simulation and, if necessary, visualised to produced dynamical

trajectories of the system.

In regard to the motion of the overall dumbbell, we sum Equation 4.28 and Equa-

tion 4.29 to obtain,

λT
dxc
dt

= NT , (4.31)

where λT = λ1 + λ2, NT = N1 +N2 and we define xc, the centre of drag, as,

xc =
x1λ1 + x2λ2

λT
. (4.32)

Equation 4.31 represents a purely diffusive object which feels the background drag and

associated noise from both of the constituent beads. We therefore expect the diffusion

to be measured as,

〈(xc − xc,0)2〉 = 2Dt, (4.33)

where the diffusion constant D = kBT/λT .

Subtraction of Equation 4.28 from Equation 4.29 instead gives,

λr
dx′

dt
+ k(x′ − l) =

λr
λ2
N2 −

λr
λ1
N1, (4.34)

where x′ = x2 − x1 and λr, the reduced drag, is defined as follows,

λr =
λ1λ2

λ1 + λ2
. (4.35)

Equation 4.34 is a standard Brownian equation of motion for the single extensional

degree of freedom x′, and as such we expect the variance in length to be,

〈
(
x′ − l

)2〉 =
kBT

k
, (4.36)

in the limit of a long time simulation, t� λr/k as per the equipartition theorem.
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4.4.2 Bead - Spring System: Kinetics

The dynamical simulation method we have developed for the bead-spring system cor-

responds to the microscale dynamics we defined in Section 4.3.1. This continuous ex-

ploration of conformational space could be seen to represent a single kinetic mesostate,

a single energy well which is separated from other accessible wells by a free energy

(see Figure 4.2). Let us define a set of kinetic states α which correspond to different

instances of the material constants k and l, such that, k → kα and l → lα. It may

help to envisage a transition from state α to another state β as a biological molecule

undertaking an ATP driven internal rearrangement of structure which in turn gives

rise to different material properties due to differing bond structures. We could also

‘upgrade’ the parameters λ1 and λ2 to be varying kinetic parameters as well, but for

simplicity we will leave them as constant across the kinetic landscape.

As we are modelling the system as over-damped, the total energy within any state α,

Eα = Eα(x), is a function of position only, and not momentum. With no work done

on or by the system either, the energy landscape can be described using only potential

energies. From Equation 4.17, it follows that,

E(~x, ~p)ncα = U(x′)α, (4.37)

where,

U(x′)α =
1

2
kα(x′ − lα)2. (4.38)

We define a discrete kinetic transition to be an instantaneous change from kα → kβ

and lα → lβ, whilst keeping the spring extension constant, which gives a change in

potential energy,

∆U(x′)αβ =
1

2

(
kβ(x′ − lβ)2 − kα(x′ − lα)2

)
. (4.39)

Assuming we have a set of global rates Rαβ, we can analytically solve for the corre-

sponding base rates r0
αβ. An integral over all microstates with a given mesostate is

equivalent to an integral over the single spatial degree of freedom x′. As such, the

numerator integral of Equation 4.25 is a simple Gaussian integral,∫
Ω

exp

(
−Uα
kBT

)
dΩ =

∫ ∞
−∞

exp

(
−kα(x′ − lα)2

2kBT

)
dx′,

=

√
2πkBT

kα
. (4.40)
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Figure 4.3: A visualisation of a 1D kinetic system with internal dynamics. a)
shows two different kinetic states, with no additional knowledge of the underlying
dynamics. Rαβ and Rβα appear to be constant rates at this scale. b) shows the
addition of underlying dynamic information. Each kinetic state is actually a spring
connecting two point masses, but each spring has a different spring constant, kα, and
equilibrium length, lα. At a certain rate rαβ , the system may switch from state α
to state β which means a change in the parameters: kα → kβ and lα → lβ . The
potential energy change due to this change affects these microscopic rates, showing
that the mesoscale rates are in fact averages. c) shows one possible set of potential
and free energy landscapes associated with the system, with activation free energies

emerging as ensemble averages of the energy modifications to the base rates r0αβ .

The denominator integral is slightly more complex but still forms a Gaussian integral,∫
Ω

exp

(
−fβαUα − fαβUβ

kBT

)
dΩ,

=

∫ ∞
−∞

exp

(
−fβα

kα(x′ − lα)2

2kBT

)
exp

(
−fαβ

kβ(x′ − lβ)2

2kBT

)
dx′,

=

√
2πkBT

fαβkβ + fβαkα
exp

(
fαβfβαkαkβ(lα − lβ)2

2kBT (fαβkβ + fβαkα)

)
. (4.41)

Substituting Equation 4.40 and Equation 4.41 into Equation 4.25, and replacing fβα

with fαβ from Equation 4.21, gives us the base transition rate r0
αβ in terms of the

measured average rate Rαβ and the material properties of the two kinetic states. For

clarity, we make Rαβ the subject,

Rαβ = r0
αβ

√√√√ 1

fαβ

(
kβ
kα
− 1
)

+ 1
exp

(
−fαβ(1− fαβ)

kαkβ(lα − lβ)2

2kBT (kα + fαβ (kβ − kα))

)
.

(4.42)
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Recall that Rαβ, the measured, average rate, is being mechanically modified from

an underlying rate r0
αβ due to the different mechanical energies accessed via thermal

fluctuations. If the change from mesostate α to mesostate β more often involves an

increase in mechanical energy, then we would expect Rαβ < r0
αβ. The opposite is true

if the typical case is a decrease in energy. We can check that Equation 4.42 has all of

these expected properties by considering the behaviour for certain types of transition.

First of all, we will consider the behaviour of Equation 4.42 when the domain of fαβ is

restricted to 0 < fαβ < 1. In this case, the value of fαβ does not affect the sign of the

exponent in the exponential term. For this range of fαβ, there exist no combinations

of kα, kβ, lα and lβ that would generate a change in sign for the exponent term. Hence,

this term always acts to reduce the measured rate Rαβ with respect to the base rate

r0
αβ.

If we set kα = kβ = k, then,

Rαβ = r0
αβ exp

(
−fαβ(1− fαβ)

k(lα − lβ)2

2kBT

)
, (4.43)

which shows that the base transition rate is modified only by a Boltzmann factor,

with a potential energy change due to the difference in equilibrium lengths only. The

symmetry of the potential energy about the equilibrium length for any pair of values lα

and lβ means that the change from lα to lβ following a kinetic transition will cause an

increase in energy for the majority of locations in phase space. Therefore, for kα = kβ,

we find Rαβ ≤ r0
αβ. This energy difference corresponds to the relative position on the

x-axis of the two potential energy graphs seen in Figure 4.3c.

If instead we set lα = lβ = l, then,

Rαβ = r0
αβ

√√√√ 1

fαβ

(
kβ
kα
− 1
)

+ 1
. (4.44)

In this case, we lose the Boltzmann factor and the rate is modified only by the frac-

tional difference in spring constants, for which the energy difference corresponds to the

difference in curvature between the two potential energy graphs seen in Figure 4.3c.

If kβ > kα then our target state β would always represent a higher mechanical energy

state and so Rαβ < r0
αβ. The opposite is true for kβ < kα. Here we also note that

the restriction of the domain of fαβ prevents the square-root argument from becom-

ing negative (see Appendix A). For completeness, if we implement both of the above
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conditions from Equations 4.43 and 4.44, then,

Rαβ = r0
αβ, (4.45)

showing us that if our states are completely identical, then the average rate and the

base rate are equal due to there being no potential energy modification between the

two states. The two potential energy graphs seen in Figure 4.3c would be perfectly

overlapped in this case.

We can now use the calculated base rate from Equation 4.42 together with Equa-

tion 4.20 to determine an instantaneous kinetic rate as a function of the potential

energy at any point in the dynamical trajectory which will give the correct statistical

average Rαβ over a long enough time.

4.4.3 Bead - Spring System: Coupled Kinetics

At any point during the dynamical simulation described in Section 4.4.1 we can cal-

culate the potential energy of the system, Uα(x), and the potential energy which the

system would have if it were in the other state, Uβ(x). Using these energy values

and our pre-calculated base rates r0
αβ we can calculate an instantaneous value for the

transition rate as the simulation progresses using Equation 4.20. Transforming these

transition rates to transition probabilities per time step, παβ, is as follows,

παβ(x) = rαβ(x)∆t, (4.46)

where ∆t is the simulation time step. By testing a number, n, drawn from a uniform

random number generator on the range {n | 0 ≤ n ≤ 1} that has been partitioned

into bins based on these probabilities, we can change the system parameters to those

of a different state at appropriate times during the dynamical simulation and continue

with no interruption. The way in which we calculated our base rates ensures that

detailed balance holds at both the mesoscopic level as well as the microscopic whilst

at all times, a dynamical simulation is happening in parallel.

4.4.4 Bead - Spring System: Results

Before the inclusion of the new coupled kinetics, we verified that the dynamical simu-

lation works as a standalone simulation by performing a number of standard tests on

the bead-spring system. Our two beads, each with an associated drag λ = 5.65kg.s−1
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Figure 4.4: The average potential energy trace of the 1D dumbbell model with no
coupled kinetics.

are connected by a spring with spring constant k = 1.8849 × 10−3Nm−1 and equilib-

rium length l = 3nm. The choice of spring constant was designed to give a fluctuation

time constant of τ = 30ns for testing purposes. We performed an ensemble of 1000

simulations for 100µs to fully capture the dynamics of all available types of motion for

this system.

For this system, we firstly checked that each individual simulation equilibrated by

measuring the average potential energy of each simulation as an average over the full

100µs, corresponding to 10000 simulation frames. With an expected value 〈U〉 =

0.5kBT , the average error for each simulation was (1.37± 1.03)%. A single simulation

can be seen equilibrating in Figure 4.4, which converged to 〈U〉 = 0.5013kBT , a 0.03%

error compared to the expected value.

We also calculated the diffusion of the entire dumbbell with respect to its starting

position by calculating 〈xc − xc,0〉 at each time t averaging over the entire ensemble

of 1000 simulations. We obtain a diffusion constant D = 74.08nm2/ns, an error of

1.93% compared to the expected value calculated from Equation 4.33. Finally, the

variance in the length of the spring was calculated at each time step from the ensemble

of simulations. This equilibration of variance is shown in Figure 4.6, where we see

that the convergence is almost instantaneous over this time-scale, given the size of our
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Figure 4.5: The diffusion trace of the 1D dumbbell model with no coupled kinetics.

simulation time step. We obtain the average extensional variance using a least-squares

fit to a straight line, giving us 〈(x′ − l)2〉 = 218.89Å
2
, a 0.39% error compared with

the theoretical value.

Now that we have shown that the underlying dynamical simulation functions correctly

and within a reasonable error tolerance, we can define multiple kinetic states with

associated transition rates and couple them to the dynamical model. We chose, some-

what arbitrarily, to define four states with the parameter sets kα and lα as shown in

Table 4.1. These parameters are representative of the biological mesoscale [101] but

not specific to any real system. In addition to the states, we must define the mesoscale

State (α) k(pN/nm) l(nm)

1 1 5
2 2 3
3 3 2
4 4 1

Table 4.1: The parameters defining each one of the kinetics states within the bead-
spring system.

average rates, Rαβ, at which the states transition between one another. As we saw

from Equation 4.6, the detailed balance condition means that occupation properties

are related to the relative rate proportions only, and not their individual magnitudes.
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Figure 4.6: The variance in length between beads for the 1D dumbbell model.

We chose four occupation probabilities in advance, 0.1, 0.2, 0.3 and 0.4, and used the

detailed balance conditions between each pair of states to define a set of rates that

should correspond to the pre-defined distribution of mesostate occupation. The two

sets of values shown in Table 4.2 have this property, with the faster set simply being

a multiple of the smaller set, thus preserving the relative rate conditions required for

detailed balance whilst at the same time having a faster equilibration time-scale. These

rates have been largely accelerated when compared with experimental rates (chemi-

cal reaction rates, for example) in order to show the convergence of the occupation

probabilities within a reasonable amount of simulation runtime.

Set 1 Set

From / To 1 2 3 4 From / To 1 2 3 4
1 N/A 30 20 10 1 N/A 300 200 100
2 40 N/A 20 10 2 400 N/A 200 100
3 40 30 N/A 10 3 400 300 N/A 100
4 40 30 20 N/A 4 400 300 200 N/A

Table 4.2: The two sets of average transition rates Rαβ between kinetics states
within the bead-spring system, with units of MHz.

Figure 4.7 shows the convergence of occupation probabilities for the two simulations

resulting from each of the sets of kinetics rates. These initial simulations ran without

the mechanical energy modifications to the transition rates shown in Equation 4.42
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(a) Slow set of kinetic rates (b) Fast set of kinetic rates

Figure 4.7: Running averages of the kinetic state occupation probabilities emerging
from the two different sets of transition rates. These rates were constant throughout

the simulation, i.e. unmodified by the dynamic mechanical energies.

i.e. r(~x)αβ = r0
αβ = Rαβ. In each, we see that the same occupation probabilities are

reached but at different rates, consistent with the differing magnitudes of the two sets

of kinetic rates. Additionally, these converged probabilities are consistent with the

analytical solution of each of the detailed balance conditions between states.

Figure 4.8 shows similar convergence properties for a simulation using the slow set of

kinetic rates, but this time including the energy modification term in Equation 4.42,

therefore utilising the full kinetic framework we have developed. We see that these

continuously varying kinetic rates seem to have converged to the global averages faster

compared to Figure 4.7a. However, this is simply an artefact of the single simulation

and not a general property of including energy modifications to the kinetic rates. The

important outcome is that the set of base rates r0
αβ were not equal to the average rates

throughout the simulation, yet the exploration of phase space and associated energy

modifications that form the varying rates r(~x, ~p)αβ gave us exactly the occupation

probabilities we expected, validating the technique. The set of r0
αβ values calculated

using Equation 4.42 are shown in Table 4.3.

Set 1

From / To 1 2 3 4
1 N/A 43.00 42.44 34.28
2 57.34 N/A 23.94 16.86
3 84.88 35.91 N/A 11.93
4 137.12 50.58 23.86 N/A

Table 4.3: The set of (slow) base transition rates r0αβ between kinetic states within
the bead-spring system, with units of MHz.
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Figure 4.8: Running averages of the kinetic state occupation probabilities emerging
from the slow set of transition rates. These rates were modified by the dynamic energy

changes throughout the simulation.

4.5 Implementing Kinetics Within the FFEA Framework

In the previous section we examined the coupling between mesoscopic and microscopic

kinetics in mesoscale simulations with multiple kinetic states. This model is completely

general, and can be implemented within any currently existing dynamical simulation

framework. We will continue the development of FFEA with our implementation of

the kinetic model within the FFEA dynamical framework.

4.5.1 A Kinetic State within FFEA

Within an FFEA simulation we can define a state in much the same way as Section 4.4

for a one-dimensional system. The structural components of a simulated object within

FFEA are separated into their own files and are as follows:

� The equilibrium positions of all of the nodes (Filetype: → .node)
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� The topology (connectivity) of these nodes into a finite element mesh structure

(Filetype: → .top)

� The material parameters of each element (Filetype: → .mat), which are them-

selves as follows:

– Density

– Shear + Bulk Internal Viscosity

– Shear + Bulk Elastic Moduli

� Van der Waals interaction sites (Filetype: → .vdw)

� Immobile nodes (Filetype: → .pin)

A change in any of these components would cause the simulated object to behave in

a physically different way, with different equilibrium and non-equilibrium dynamics

emerging from a simulation, and so together we define them to be a kinetic state of the

FFEA object. For example, if we were to change the equilibrium configuration of the

nodes, this would change the structure about which the object fluctuates (under the

current constitutive stress model). This is equivalent to a change in the equilibrium

length of the spring in Section 4.4. Changing the connectivity of the tetrahedral mesh

could change the local deformability of the mesh, due to the change in how material

parameters are discretely distributed around the object. A mesh alteration could also

introduce or remove degrees of freedom from the object. Changing the Van der Waals

interaction sites, strengths or ranges would fundamentally change how molecules in-

teract with one another. To visualise this idea, two different states have been defined

for a hexahedral test object in Figure 4.9a. One state has a cubic equilibrium struc-

ture, the other a parallelohedron, each with different mesh connectivities and material

properties. These objects represent the same object within the simulation with two

different equilibrium structures. Just like in 1D, there are transition rates between

these two kinetic states, but the method by which we perform the transition from one

state to another is more complex in 3D.

4.5.2 Transitioning Between Kinetic States in FFEA

In our one-dimensional example in Section 4.4, as we transitioned into a new kinetic

state we kept the positions of the nodes constant whilst only the material parameters

were changed, the values of kα and lα. We were able to do this because each state

had only one degree of freedom, the spring extension x′, which implied a one-to-one
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correspondence between the beads. As we can see from Figure 4.9a, the general case

for a three-dimensional structure is that the different kinetic states of the same object

can have different mesh connectivities and even different numbers of nodes and degrees

of freedom. As the two equilibrium structures may be very different from one another,

simply defining a new equilibrium configuration for the same mesh is not the optimum

solution. We saw in Chapter 3 that simulations are numerically inhibited by the

minimum length-scale within the system. Deforming a mesh too far away from its

equilibrium structure tends to result in very long, thin elements, which are exactly the

types of elements we want to avoid. A kinetic transition corresponds to this type of

non-equilibrium deformation, and so the resultant structure would be very likely to

contain elements that would immediately invert during an FFEA simulation.

A better solution is to have each equilibrium structure associated with its own unique

mesh. Each mesh can then be independently built using meshing software such as NET-

GEN that has been specifically optimised to avoid numerically unstable elements [5].

However, meshing algorithms do not generally concentrate on finding a user defined

number of nodes, as a mesh does not correspond to the underlying structure in any

physically relevant way. Therefore, two structural meshes have no local or global node

correspondence, and so the number of nodes in two different meshes representing two

kinetic states of the same object can have, in general, different numbers of degrees of

freedom.

To transition between states in an FFEA simulation, then, we need a method by which

the kinematic properties of one equilibrium structure, the positions and velocities of

all of the nodes, can be used to generate an equivalent set for the other structure. In

short, we must generalise a co-ordinate mapping procedure from the co-ordinate basis

of the initial structure to that of the target structure.

4.5.3 Kinematic Mapping

To transition between kinetic states, we derive a mapping procedure similar to that

used by Noid et al. in their development of a generalised CG procedure for atomic

systems [102]. Given two equilibrium structures X and Y with P and Q nodes respec-

tively, we need to be able to construct the structural topology of Y using the details of

structure X. In other words, we need to generate a Q node target FFEA structure (Y )

from a P node base structure (X). We may write the positions of the target nodes, ~y,

as a function of the positions of the base nodes, ~x,

yαk = Mαβxβk, (4.47)
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Figure 4.9: The process by which we generate a coordinate mapping between two
kinetic states. a) The two different kinetic states we want to simulate. Both have
different equilibrium structures as shown, but also differing material parameters. b)
The set up for the simulation required to generate the map. We firstly overlay the
structures, and then attach linear restraints between user defined ‘equivalent posi-
tions’. All of the corners and the center points of each edge are attached here. c) The
simulation with linear restraints included. We can see that the restraints are strong
enough to overcome the elasticity of the continuum, forcing them to overlap to the

global energy minimum subject to these configurational constraints.

where Mαβ is a Q × P linear mapping operator which we must construct. Notice

that the matrix operates on the nodes indices, indexed by α and β, and not to each

individual directional component, indexed by k i.e. the same mapping is performed

on each of the Cartesian directions. Figure 4.9a provides an example of two possible

structural states, the cube and the parallelohedron.

For a stable FFEA simulation, the only constraint on M is that following its operation

on X, structure Y must contain no inverted elements. Any form of M which exhibits

this property will allow a kinetic state change to occur within an FFEA simulation

with no disruption. However, the total set of possible mappings include center of mass

translations, rotations and volumetric and shear structural deformations. The FFEA

kinetic framework was designed to include the effect of how the dynamics change due

to their energetic landscape, with kinetic transitions acting as instantaneous changes in

the energy environment. The application of these types of structural maps constitute

instantaneous changes in both energy and structure, something the kinetic framework

was not specifically designed for. In the dumbbell model (Section 4.4.2), a kinetic

transition involved the material parameters changing instantaneously whilst the spring

extension was kept constant.

As kinetic transitions occur instantaneously within the FFEA framework as well, we

must consider some form of structural alignment between the base and target structure
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before constructing the mapping matrix.

4.5.3.1 Deformable Structure Alignment

Making the mapping free from translations and rotations is relatively straightforward.

A number of algorithms are available for point cloud alignment; alignment of rigid

sets of nodes with no topological information. This type of alignment is shown in

Figure 4.9b. One choice of mapping would be to define a structural map directly

between these two equilibrium structures. This would allow us to transition directly

between the initial and final equilibrium states of the process, but misses out the

mechanical process of the transition itself. We call this type of structural transition

‘equilibrium mapping’. However, as is clear for the hexahedral structures in Figure 4.9,

FFEA objects are inherently deformable, and so we can further align the two structures

by volumetric and shear deformations.

For two mechanically deformable structures, with different equilibrium structures but

representing the same object, we would expect there to be a continuous mechanical

transformation that would change one structure into the other composed of transla-

tions, rotations and shear and volumetric deformation. We can use the dynamic part

of FFEA to take advantage of this and align the two structures using an energy min-

imisation procedure. The ideal case would be to define an energy penalty for the two

structures being out of alignment, and run a dynamic FFEA simulation in the absence

of noise and simply allow the two structures to move into alignment. However, how

two structures ‘should’ align is a non-trivial problem. Volume overlap is an insufficient

metric to define overlap as can be seen with our hexahedral test objects in Figure 4.9b,

where we notice that there are a number of rotational symmetries which would have

the exact same volume overlap. For more complex structures, a volume overlap algo-

rithm may instead get caught in a local overlap minimum and converge to a completely

incorrect alignment.

Instead, we consider that it is more often the case that a user will have some idea

of certain points in the structure in one state corresponding to given points of the

structure in the second state (e.g. the location of a binding domain might be obvious

in both structures, and so the mapping we use should make these domains overlap).

We have designed a semi-automatic method of alignment and mapping for the FFEA

toolkit which introduces linear restraints between user-defined ‘equivalent points’. This

gives us an energy penalty function and enables an FFEA simulation, in the absence of

steric interactions and thermal noise, to relax and overlap to a joint minimum energy

configuration based on their shape. In Figure 4.9b, we have added a number of linear
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(a) Example of the equilibrium mapping pro-
cedure

(b) Example of the full mapping procedure

Figure 4.10: The idealised case of the equilibrium and full mapping procedures for a
single degree of freedom undergoing a kinetic transition from mesostate 1 to mesostate
2. For the equilibrium mapping protocol, we see that there should be no mechanical
energy change affecting the mapping. In the full mapping case however, the size of

the mechanical energy change depends upon the position in phase space.

restraints between the equivalent corners and sides of the cube and parallelohedron,

which are visualised as springs. In Figure 4.9c, we then perform consecutive FFEA

simulations with further restraints introduced between each run, giving us an adaptive

procedure to generate a user-defined overlap. In principle one could continue to add

springs to this to increase the degree of overlap. Alternatively, once the two states

have been adequately aligned, an additional overlap energy function could be added,

though this has not been implemented within the framework.

We can then define a structural map between the two deformed structures following the

energy minimisation procedure. This type of map would usually introduce a significant

amount of energy to the system as the state transition occurs, following which the new

state would relax into its equilibrium state through the dynamic part of the simulation.

This is the method we used in Section 4.4, which we will refer to as ‘full mapping’. We

show the effect of both types of map in Figure 4.10.

4.5.3.2 Building the Mapping Matrix

Now we have two suitably overlapping structures (either for equilibrium or full map-

ping), we can begin to build the mapping matrix. However, with P possible base

nodes to choose from to determine the position of any target node, there is no unique

structure for Mαβ. In the case that Q > P , Equation 4.47 represents an overdeter-

mined system of equations with the likely scenario of no solutions for a specific matrix

M. For Q < P , Equation 4.47 is instead under-determined with the likely case being
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infinite possible solutions. However, we can exploit the constant topology of the target

FFEA structure to build M with a unique mapping between any two structures with

the same underlying topologies. We accomplish this by choosing to make each target

node position a function of only the nodes making up the base element that contains

it,

~yα = mαγ~xγ , (4.48)

where mαγ is an Q × 4 sub-matrix of Mαβ and ~xγ are the base nodes forming the

containing element. Hence, 0 < γ < 4. If the two structures are such that there are

some nodes with no containing element, Equation 4.48 still applies but becomes an

extrapolation from the coordinates of the nearest element rather than an interpolation

from the containing element. The initial alignment procedure minimises the errors

introduced by extrapolation by aligning the structures based upon their shape and

local deformability.

We now wish to specify the position yα of node α that is within (or close to) an element

of structure X using the coordinates of the containing element, {~x0, ~x1, ~x2, ~x3}. As we

require the mapping to be translationally invariant, we can disregard one additional

degree of freedom and use the local coordinates of the element to determine a unique

value of yα with respect to a local origin, the node ~x0,

~yα = ~x0 +
3∑
δ=1

cαδ (~xδ − ~x0) . (4.49)

The vectors ~xδ−~x0 are the three edge vectors joined to the origin node. Three linearly

independent vectors are sufficient to uniquely determine the position of any point in

3D space, and so expanding the vectors into their directional components, k, gives,

yαk − x0k =

3∑
δ=1

cαδ (xδk − x0k) , (4.50)

=
3∑
δ=1

cαδXδk. (4.51)

Xδk is a 3× 3 matrix, which can be quickly inverted to find the mapping pre-factors,

cαδ, for this particular target node α,

cαδ = (yαk − x0k)X
−1
kδ , (4.52)

where the inverse X−1
kδ must exist due to the linear independence of the element edge

vectors. Using the values for cαδ, we can convert back into the global coordinates

required for mαγ ,
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mαγ =


1−

3∑
δ=0

cαδ γ = 0

cα(γ−1) 1 ≤ γ ≤ 3

mαγ contains the non-zero components of a single row of the overall mapping matrix

Mαβ, and so a computational loop over all target nodes will fully populate the global

mapping matrix and give us an interpolative, and therefore stable, mapping matrix.

As the global matrix is not square, we cannot simply calculate the inverse to find the

equivalent mapping from structure Y to structure X. Therefore, we begin from the

aligned state of the two structures and perform the same procedure a second time

to build the reverse map. The non-square nature of the mapping matrix presents

certain problems in regards to energetics and equipartition which we will discuss in

the following section. As a final point, if we take the derivative of Equation 4.47 with

respect to time, where M is constant, we find that the mapping matrix is suitable for

the velocity components as well.

4.5.4 Kinetic Transitions and Energy in FFEA

When we attempt a transition between kinetic states using rates similar to those in

Equation 4.20, it is the change in energy that affects the transition rates. In FFEA, the

total amount of energy that the object will typically attain through thermal fluctua-

tions is dependent upon the number of degrees of freedom used to define the structure.

Therefore, a direct comparison of energies following a kinetic state change could eas-

ily be affected by the difference in the number of nodes between the base and target

structures. This is clearly physically unrealistic, as the number of nodes used to define

a structure in FFEA is completely arbitrary.

Consider the two 1D structures shown in Figure 4.11, where structure X has one more

node than structure Y and hence an additional degree of freedom. Let us assume that

these two structures are equivalent objects and that they have already undergone the

alignment procedure for equilibrium mapping described in Section 4.5.3.1. We define

the two mapping matrices between these structures as MY X , the map from structure

X to structure Y , and MXY , the map from structure Y to structure X. Simply by
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Figure 4.11: Two simple 1D finite element structure to which he kinetic mapping
procedure can be applied.

inspection, it is relatively straightforward to show that the two maps are,

MY X =
1

2

(
1 1 0

0 1 1

)

MXY =
1

2


3 −1

1 1

−1 3

 (4.53)

where MY X would be applied to a three component position vector ~x and MXY to a

two component position vector ~y.

If we apply a map to its corresponding structure, and then the reverse map to the

result, we may expect to obtain the original structural state exactly. In other words,

the product of the two mapping matrices may intuitively be expected to be the identity

matrix. If we begin with structure Y , the structure with fewer degrees of freedom, that

is indeed the case,

MY XMXY =

(
1 0

0 1

)
(4.54)

However, if we begin with structure X,

MXY MY X =
1

4


3 2 −1

1 2 1

−1 2 3

 (4.55)

The two maps operating in the order in Equation 4.55 clearly do not form the identity

matrix as we might expect. Eigen-decomposition shows that instead, the matrix has

two eigenvalues equal to unity, with associated eigenvectors ~v1 = (−1, 0, 1) and ~v2 =



Chapter 4. Kinetic Scheme 110

(0, 1, 2), and a third eigenvalue equal to zero with associated eigenvector ~v3 = (1,−1, 1).

If we imagine the line segments between nodes as 1D finite elements, then FFEA does

not permit position vectors with the topology of ~v3 to exist, as it constitutes element

inversion. Only the position vectors that are multiples of ~v1 or ~v2 return to their

original structure under the sequential action of the two maps. Any other vector, say,

~x = (x1, x2, x3), becomes,

~x′ = (MXY MY X) ~x =
1

4


3 2 −1

1 2 1

−1 2 3



x1

x2

x3



=
1

4


3x1 + 2x2 − x3

x1 + 2x2 + x3

−x1 + 2x2 + 3x3

 (4.56)

From here, we note that for every initial vector ~x, we find x′2 = 0.5(x′1 + x′3), which

shows that the central node will always be placed exactly at the center of the two outer

nodes, and x′3 − x′1 = x3 − x1, or, the separation between the outer nodes is conserved

over the mapping procedure and is independent of the position of the central node.

This shows that when our end result requires the inclusion of extra degrees of freedom,

our map acts to place those degrees of freedom into the relative positions that they

were in when the maps were first defined. For both the equilibrium and full mapping

procedures, because we used an energy minimisation method to construct the mapping

operators to begin with, the relative positions of the extra degrees of freedom therefore

corresponds to their energy minimised state, subject only to the enforced structural

overlap.

Within a kinetic FFEA simulation, when we compare the energies of the initial and

target structures to determine the energy modifications to the kinetics rates, we im-

plement the following protocol,

� Apply MY X to the base structure, X, to produce a target structure, Y

� Apply MXY to the structure Y to get a base structure X ′ different from X

� Apply MY X to the structure X ′ to get a target structure Y ′ different from Y

� Calculate the energy difference between X ′ and Y ′ and use this value to modify

the kinetic rates

� If a kinetic transition occurs, use the structure Y ′ as the new target structure,

and not Y
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The above procedure is designed to remove all energy fluctuations associated with the

“extra” eigen-modes of the structure with the greater number of degrees of freedom, so

that the energy of the two structures can be compared on an even basis. This method

should reduce the amount of energy lost or gained following a kinetic transition in the

simulation due to the addition of arbitrary degrees of freedom and their associated

thermal fluctuations to the varying mesh structures.

4.6 A Three-Dimensional Example - Cubes and Parallelo-

hedra

We performed a full coupled kinetic simulation on the two hexahedral example struc-

tures from Figure 4.9. As with the dumbbell model, we again chose to have four kinetic

states, but this time the states have been defined much more rigorously within the

FFEA framework, and are shown in Table 4.4. The cubic (equilibrium) structure has

21 nodes, 27 tetrahedral elements and 144 surface faces, and the parallelohedron has 63

nodes, 160 elements and 416 faces. Each element from both systems was parametrised

with the same material parameters, corresponding to a Young’s modulus, E = 1GPa

and a Poisson ratio, ν = 0.35, and bulk and shear viscosities µS = µB = 1× 10−3Pa.S.

The base length of each object, L = 5nm.

Mesostate 1 2 3 4

Conformation Cube Parallelohedron Parallelohedron Cube
Occupation Probability 0.4 0.3 0.2 0.1

Table 4.4: The states in our example FFEA simulation defined by their conforma-
tional structures.

Conformation Cube Parallelohedron

Nodes 21 63
Elements 27 160

Surface Faces 144 416
Density N/A N/A

Young’s Modulus 1GPa 1GPa
Poisson Ratio 0.35 0.35

VdW Interactions N/A N/A
Pinned Nodes N/A N/A

Table 4.5: The set of conformations within our example FFEA simulation defined by
the relevant structural components. As our simulations are non-inertial, the density
is not defined. VdW interactions and pinned nodes are also optional, and so left out

for simplicity.
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(a) Slow set of kinetic rates (b) Fast set of kinetic rates

Figure 4.12: Running averages of the kinetic state occupation probabilities emerging
from the two different sets of transition rates for the FFEA cube/parallelohedron
kinetic model. These rates were constant throughout the simulation, i.e. unmodified

by the dynamic mechanical energies.

Previous applications of the FFEA software together with a newly developed, rigorous

test suite [93] show that the underlying mechanical model for FFEA is consistent with

theoretical predictions, so we need only test the new kinetic components.

4.6.1 3D Example - No Energy Modifications

Firstly we ran kinetic simulations in the absence of energy considerations, using the

average transition rates shown in Table 4.6 and treating them as constant. These values

are similar to Table 4.1 and thus give the same resulting occupation probabilities, but

they are much faster to allow for probability convergence within a single simulation.

As energy modifications to the rates are not being made, which mapping protocol we

use makes no difference in regards to convergence tests. Regardless, the structural

maps used in these simulations were constructed using the full mapping procedure.

All simulations were run for 500ns.

Set 1 Set 2

From / To 1 2 3 4 From / To 1 2 3 4
1 N/A 3 2 1 1 N/A 30 20 10
2 4 N/A 2 1 2 40 N/A 20 10
3 4 3 N/A 1 3 40 30 N/A 10
4 4 3 2 N/A 4 40 30 20 N/A

Table 4.6: The two sets of average transition rates Rαβ between kinetics states
within the cube/parallelohedron system, with units of GHz.

Figure 4.12 shows the results of these simulations. We have shown only the first 50ns

of the faster set of rates for clearer comparison. We can clearly see that the faster set
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Figure 4.13: Raw energy trace from the first 50ns of the cube/parallelohedron FFEA
kinetic simulation. We clearly see two distinct equilibrium states corresponding to the

equipartition of energy for the cube and parallelohedron.

of rates converge to the predicted values approximately 10 times faster than the slow

set.

Although the simulations utilising the rates from Table 4.6 sufficiently show occupation

probability convergence, both sets of rates are too fast to allow the systems to relax into

equipartition of energy (see Appendix B). We therefore ran one additional simulation

using the slower set of rates reduced by a further factor of 10. The raw energy trace

for the first 50ns of this simulation is shown in Figure 4.13, which we can see moving

between the expected values for the cube and parallelohedron as per the equipartition

theorem, with large spikes in energy between each transition. These spikes correspond

to the energy changes ∆E(~x)ncαβ that determine how much each transition rate between

states is reduced / increased.
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Figure 4.14: Running average of the strain energy from a 300ns of the cube/paral-
lelohedron FFEA kinetic simulation.

We can use the expected occupation probabilities to calculate the expectation value of

the total strain energy, ET , within the system,

〈E〉 =
4∑

α=1

Pα〈Eα〉,

= (0.1 + 0.4)〈Ec〉+ (0.2 + 0.3)〈Ep〉,

=

(
3

4
(Nc +Np)− 1

)
kBT, (4.57)

where Nc and Np are the number of nodes within the cube and parallelohedron struc-

tures respectively. A running average of energy for a 300ns simulation is shown in

Figure 4.14. The underlying, continuous microstate probability densities seem to be

disproportionately skewed towards the higher energy states of their respective Boltz-

mann distributions to begin with. This is perhaps due to the huge amounts of energy

gained by the system as it transitions to a new state, or could simply be an artefact

from averaging over a single simulation. In either case, total system equilibration is

attained as the length of simulation increase, showing that each kinetic transition was

slow enough to allow each state to relax and undergo sufficient thermal exploration to

approximate thermodynamic equilibrium.
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We note that in these simulations, detailed balance is only adhered to at the mesostate

level, and not at the microstate level, and as such the amount of time spent in each of

the microstates will be incorrect. However, even without inclusion of energy modifica-

tions we are still able to introduce large amounts of energy into the system and study

the effect on the resulting dynamics.

4.6.2 3D Example - Energy Modifications

Finally, we consider simulations in which the energy differences were used to modify the

transition rates. Unlike in Section 4.4, we no longer have a single degree of freedom.

We are now working with biologically realistic objects with hundreds of degrees of

freedom in both the initial and final mesostates of a kinetic transition. Each structure

has the potential to store considerably larger amounts of energy than a 1D model. As

such, we need to understand exactly what our mapping physically represents as we

consider each form of energy comparison.

Remember that our cubic structure had 21 nodes, the parallelohedron 63 nodes and

both had side length L = 5nm. With these parameters, a transition from the equi-

librium state of the cubic structure to the parallelohedron using the full mapping

procedure (corresponding to Figure 4.10b) constitutes a mechanical energy change of

2922kBT . If a kinetic process with rate rαβ was gated by this mechanical energy

change as per Equation 4.20, then rαβ ≈ 0 and the process would simply never occur.

However, we must consider what we are trying to represent by this process.

In a biological system, a conformational change like this cannot be achieved via thermal

diffusion alone. Instead, ATP hydrolysis provides energy to the system. This process

has a very low activation free energy and is therefore largely spontaneous, dependent

only upon the presence of water in the local environment [103]. As such, there is

no mechanical energy barrier to the independent process of ATP hydrolysis itself.

However, for the conformational changes we are modelling, the question is whether

ATP hydrolysis provides enough energy to the system to proceed with a conformational

change that does have a mechanical energy barrier.

An ATP hydrolysis reaction [104] has an associated Gibbs free energy ∆GATP ≈
12kBT , considerably less than the mechanical energy required to undertake our ex-

ample kinetic process. We must again consider the physical meaning of our process.

Assuming a density of approximately 1×103kg/m3, an object of length L = 5nm would

contain approximately ∼ 104 heavy atoms, each associated with approximately 1kBT

of energy, and our kinetic transition requires them all to be in a highly unfavourable
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Figure 4.15: Running averages of the kinetic state occupation probabilities emerging
from an energy modified set of transition rates for the FFEA cube/parallelohedron

kinetic model.

mechanical state. Indeed, the total strain energy within a continuum mechanical ob-

ject is proportional to the total volume of the object for exactly this reason. ∆GATP

implies that ATP hydrolysis releases enough energy to its local environment to signif-

icantly affect only a few degrees of freedom, 5 at most, but significantly less than our

example transition requires.

To compensate for this, we have reduced the size of our cube to L = 0.6nm. At this

size, the lower end of the mesoscale, the energy changes involved in a state transition

∆E(~x, ~p)αβ ∼ ∆GATP . In these simulations, we were forced to neglect thermal effects

as the size of the thermal fluctuations caused the mesh elements to invert. The system

is still able to sample a reasonable amount of phase space by being brought out of

equilibrium by the mapping procedure itself. As the dynamic part of the simulation is

now deterministic, we can calculate the maximum energy gain from a state transition.

This occurs when a parallelohedron (in its equilibrium state) transitions to a cube

with ∆E(~x, ~p)αβ = 7.53kBT . We assume the value fαβ = 0.5 for both the forward

and backwards transitions. As shown in Appendix A, fαβ is related to the mechanical

energy barrier, and so we are effectively assuming that the mechanical energy barrier is

halfway between the initial and final mechanical energy states, and the ATP hydrolysis

process provides the energy required for the remainder of the transition.
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Set 1

From / To 1 2 3 4
1 N/A 30.16 20.12 10.00
2 40.00 N/A 20.00 9.93
3 40.00 30.00 N/A 9.94
4 40.00 30.00 20.00 N/A

Table 4.7: The base transition rates r0αβ between kinetics states within the energy
modified cube-parallelohedron system, with units of GHz.

By using a set of rates which allowed the system to relax to mechanical equilibrium

between each transition, we were able to model the continuous probability density

function as having only two relevant configurations, ~x1 and ~x2 with regards to ki-

netic transition probabilities, where ~x1 is the equilibrium configuration corresponding

to state α and ~x2 is the configuration in state α corresponding to the equilibrium

configuration in state β. The integrals from Equation 4.23 can then be written as

summations, ∫
Ω
pα(~x, ~p)rαβ(~x, ~p)dΩ ≈ pα(~x1)rαβ(~x1) + pα(~x2)rαβ(~x2),∫

Ω
pα(~x, ~p)dΩ ≈ pα(~x1) + pα(~x2).

These two conditions allowed us to solve exactly for the base rate ratio,

r0
αβ

r0
βα

=
1 + exp

(
∆Encαβ(~x2)

kBT

)
1 + exp

(
∆Encβα(~x1)

kBT

) Pβ
Pα

(4.58)

where Pα and Pβ are the mesoscale probabilities. If state α represents the cubic struc-

ture and state β the parallelohedron, then within the FFEA simulation we measured

∆Encαβ(~x1) = −5.04kBT and ∆Encβα(~x1) = −7.53kBT . Using the values for the total

occupation probabilities we have been using for the rest of this section, we obtained

the set of base rates for the simulation shown in Table 4.7,

For this set of base rates, which deviate only slightly from those used in Section 4.6.1,

we obtained a system which converged to the required mesostate probabilities after

∼ 400ns, shown in Figure 4.15. Although not thermally exploring their respective

Boltzmann probability distributions, the energy modifications were calculated using

the respective Boltzmann probabilities following a state change to give the correct

detailed balance conditions between the two considered microstates as well as the

overall mesostates.





Chapter 5

Applications of FFEA to

Cytoplasmic Dynein

We now have a software package capable of simulating a wide range of possible bio-

logical mechanics. Both stochastic dynamics (using standard FFEA simulations) and

kinetics (through the newly developed kinetic coupling) can be performed in conjunc-

tion with one another, with an energetic coupling between the two. These two com-

ponents encompass the entirety of the functional capabilities of the molecular motor

cytoplasmic dynein as they are currently known.

This chapter will focus on application of the full FFEA framework to furthering our

understanding of cytoplasmic dynein. We perform a manual parametrisation of the

molecule using data from both high resolution MD simulations and state of the art

experimental imaging, followed by a suite of simulations to look at how the monomer

may interact with its microtubule track. Finally, we perform a kinetic simulation of the

entire superstructure to see the effect of ATP hydrolysis on the independent dynamics

of the molecule, and its interactions with the microtubule.

5.1 Introduction to Molecular Motors

Of the three different superfamilies of translational molecular motors, myosin, kinesin,

and dynein, it is dynein that is generally considered to be the least well understood.

The size and complexity of the molecule, as well as its diversity of function, has made

the mechanism by which dynein generates force significantly harder to grasp than its

counterparts. Over the past 5 − 10 years, experimental advances have given us a

119
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wealth of structural information with which to begin characterising this mechanism,

and understand how dynein is able to perform its function within a eukaryotic cell.

We begin with an introduction to the more well understood translational motors,

myosin and kinesin.

5.1.1 Myosin

Myosin is the molecular motor responsible for force generation through interactions

with actin filaments [105]. The most recent phylogenetic classification of myosin

has hinted at 31 distinct myosin molecules [106] which can be subdivided into 12

classes [107]. They perform a wide range of functions, from conventional muscle con-

traction (myosin II) to transport of vesicles and other cargo types, including entire

organelles (myosin V) [108]. The differences between these types are highly nuanced

from a mesoscopic perspective, yet slight differences in sequence generate the differences

in activity regulation and dimerisation capabilities that specify each class of myosin to

their own specific tasks. Each monomer of myosin V, for example, contains repeated

hydrophobic registries that allows the formation of a stable coiled-coiled dimerisation

when in water [109]. However, the mechanism of force generation is similar across all

classes, whether that force is used to transport the motor itself together with its cargo,

or act on an external structure (a muscle fibre, for example). A simplified structure

of myosin V is shown in Figure 5.1a). Each myosin class has three major domains,

the motor, linker and tail. The motor domain acts as both the catalytic site of the

molecule and the external actin binding region. The tail domain is a coiled-coil struc-

ture at the end of which is the cargo binding domain that mediates interactions with

external objects, leaving the linker domain to couple the two subdomains together.

Each myosin motor domain is able to bind an adenosine triphosphate (ATP) molecule,

which can be hydrolysed to form adenosine diphosphate (ADP),

ATP + H2O −−→ ADP + Pi. (5.1)

Equation 5.1, ATP hydrolysis, releases energy from the phosphate bond to the sur-

rounding molecule [110] which in the case of myosin is used to generate force.

The functional ATP cycle for myosin proceeds as follows. When a myosin motor is not

bound to the actin filament, it is able to bind an ATP molecule from the surrounding

cytoplasm. This ATP is rapidly hydrolysed via Equation 5.1, and the energy released

triggers a cascading series of microscopic conformational changes that result in a meso-

scopic ‘priming’ of the neck domain, storing the released energy in a similar manner
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to an elastic spring. This structural remodelling also gives the motor domain high

affinity for actin. Subsequent binding of the head domain to an actin filament triggers

the release of the now independent single phosphate, which in turn triggers the release

of the stored energy in a process called the ‘powerstroke’. Unlike during the priming

process, both tail and head domains are now attached to external structures, which

means that tension within myosin must apply force to these external objects. Follow-

ing the powerstroke, the myosin is able to release the remaining ADP molecule, again

weakening the affinity to the actin and leading to dissociation of the motor domain.

The whole process can then repeat [111].

The type of myosin involved changes how the force is applied to external objects. In

muscle, multiple myosin II molecules associate to the same cargo, a long, static central

filament between two separate actin filaments that are arranged axially along muscle

fibres. Therefore, the powerstoke causes the actin tracks themselves to move towards

each other, directly causing muscle contraction [112]. If instead it is the actin filament

that is rigid, as in the case of myosin V on the cytoskeletal actin network, then the

powerstroke acts to pull the tail domain and associated cargo forward [113]. However,

the dimerisation of two monomers in myosin V generates allosteric communication so

that following the powerstroke, the leading motor is severly inhibited from releasing

from the actin track [114]. Instead, the rear head is much more likely to release, which

inhibits backward steps and likely forms a more efficient walking mechanism than if

both motors were equally likely to release.

Although this is the core ATP hydrolysis cycle for myosin, each stage within it has

specific regulation mediated by additional proteins that bind to the motor. A thorough

review of the mechanism of force generation for myosins is available [115], as well as

an in depth review of each individual subclass [108]. For the purposes of this work,

it is sufficient to note that the same molecule is able to both translate itself together

with external cargo along its filament track, or remain static and translate the track.

5.1.2 Kinesin

The 14 classes of kinesin [116] are mainly transport motors but are involved in a

similarly diverse range of functions as myosin. These range from standard cargo trans-

port around the cytoskeleton to the more specific intraflagellar transport (IFT) of the

structural components of cilia as they are being built [117]. Kinesin is even involved

in the construction of the mitotic spindle, a vital component of cell division [118].
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Unlike myosin, kinesin associates to microtubules instead of actin filaments, specifi-

cally performing anterograde transport toward the plus-end end of the microtubule

protofilaments, which generally results in motion towards the outside of the cell [119].

Disregarding the size differences and various regulatory proteins which bind to specific

types of kinesin, this motor has approximately the same architecture as dimerised

classes of myosin (see Figure 5.1). Kinesin dimers contain two motor domains that are

again the catalytic sites of the molecule and which also associate with the microtubule

track, and a stalk domain which is a long coiled-coil region terminating in a subdomain

responsible for binding to the cargo. Connecting the two motors to the stalk is a smaller

neck region that transduces the chemical energy generated by Equation 5.1 into force

and motion.

The diversity of function between classes of kinesin result from changes in structure at

the atomic level, but as with myosin, the core force-generation process is approximately

conserved across the entire superfamily. However, the functional mechanism is slightly

different than for myosin, possibly due to it existing as a dimer in most of its classes.

Once a motor domain is bound to the microtubule track, it binds an ATP molecule.

This binding triggers the powerstroke of the molecule, which causes the neck region

to contract towards the bound motor. This contraction not only moves the cargo,

but generates enough momentum to throw the additional, unbound motor domain

forward, past the bound motor domain and toward the next binding site along the

microtubule. ATP is then hydrolysed in the bound motor domain, and the resulting

energy releases the contracted neck region, storing the energy for the next cycle. ADP

from the previous cycle is then released from the unbound head, enabling it to bind

to the microtubule. Finally, the remaining phosphate present in the original bound

head is then released, which subsequently releases the head from the microtubule. The

process can then be mirrored in the other motor which is now bound to the microtubule

in the leading position [120].

We see here that the two heads of kinesin are highly coupled in its dimeric form, such

that the powerstroke in one head directly affects the other, biasing the next step to be

a step in the forward direction. Yet monomeric kinesin does exist (kinesin III), and

can be processive in a so-called ‘inch-worm’ manner.

Kinesin remains loosely associated to the microtubule through non-specific electrostatic

interactions with the microtubule filaments [121], which allows sliding of the motor do-

main along the mirotubule track without full dissociation. With no partner monomer

to tether it to the microtubule, kinesin III is dependent upon this electrostatic interac-

tion. However, the processivity of kinesin III has been found to be a factor three less
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Figure 5.1: Minimalist depictions of the structure of two translational molecular
motors. a) Myosin V, which exists as a dimer, and b) Kinesin I. Images reproduced

with reference to work by R.D. Vale [6]

than when dimerised [122]. The attraction to the microtubule for kinesin monomers

allows 1D diffusional searching for the next binding site, whereas the close coupling of

the dimer motors means that the powerstroke directly places the unbound head much

closer to the next binding site. This contrasts with myosin, which exists and functions

both as a monomer and as a dimer. The linker region of myosin is much longer than

that of kinesin, so that the powerstroke provides less of a reduction in the diffusional

search time for myosin dimers. These differences in processivity mechanisms will be

important to keep in mind in Section 5.2 when we look at cytoplasmic dynein.

5.2 Dynein

We now move onto the main focus of this chapter, the molecular motor dynein. As with

myosin, dynein exists in both monomeric and dimeric forms. As a monomer, dynein

is found within eukaryotic axonemes. Vast arrays of dynein monomers, or axonemal

dyneins, apply coordinated forces to the axonemal superstructure, which results in

the beating of the flagellum within eukaryotic sperm tails. As a dimer, dynein is the

counterpart to kinesin, performing retrograde transport of cellular cargo to the minus-

end of the microtubule network i.e. towards the cell nucleus. This form of dynein has

been termed cytoplasmic dynein [7]. One may expect, then, that dynein has structural

characteristics common to both myosin and kinesin, due to its dual monomeric/dimeric

nature (myosin) and its binding affinity for the microtubule network (kinesin). Yet we

can see in Figure 5.2 that structurally, dynein seems to have very little in common

with either motor.
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Figure 5.2: Minimalist depictions of the structure of the dynein molecular motor.
a) The monomeric structure of dynein. b) The two main conformations of dynein
throughout a kinetic cycle. i. The post-powerstroke state of dynein. ii. The pre-
powerstroke state. Main images are walking to the right, and inset images walking
into the page, showing the dimerisation of the tail domains. c) The four possible
dimeric structures occuring throughout the kinetic cycle of the entire dimer. Images

reproduced with reference to work by A.J. Roberts et al. [7]

The first thing to note is that in a dynein monomer, the motor domain is completely

separate from the stalkhead that contains the microtubule binding domain (MTBD)

(Figure 5.2a). This motor domain is known as a AAA+ ring, a set of 6 subunits from a

superfamily of ATP hydrolysing proteins which are not specific to dynein [123]. We now

know that in kinesin and myosin, binding and hydrolysis of ATP at the motor domain

triggers release from the microtubule, so this process must be significantly different

in dynein. We also see that dimerisation of dynein occurs in the tail region [124]

(Figure 5.2b)), leaving the two motor domains much more loosely connected to one

another than in kinesin and myosin, and the MTBDs even more so due to their distance

from the point of connection.

Work over the past 5-10 years has elucidated the mechanism by which a single monomer

of dynein proceeds through its ATP hydrolysis cycle to generate force / motion [124].

Without a bound ATP in its primary binding pocket, dynein is able to bind strongly

to the microtubule. As a dimer, both monomers will associate to approximately adja-

cent protofilaments. Binding of ATP to the motor domain at the AAA1 site triggers

a restructuring of the entire AAA+ ring, shifting the relative positions of the AAA4

and AAA5 subunits [125]. We can see from Figure 5.2a) that this shift will affect both

the stalk and the strut, which results in each individual coil from the stalk sliding with

respect to one another. This transmits a mechanical signal down the stalk, causing

the MTBD to adopt a new conformation that is only weakly attracted to the micro-

tubule [126]. This rearrangement of the ring structure also causes the linker domain to
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come into steric contact with AAA4, thus allowing it freedom of movement with respect

to the motor domain. ATP binding and microtubule release also causes the linker to

adopt the pre-powerstroke configuration by undergoing the ‘reverse powerstroke’, an

approximately 90◦ rotation about AAA1 (clockwise in Figure 5.2b)). ATP hydrolysis

provides energy to the molecule as it diffuses to the new binding site. Subsequent

phosphate release allows the MTBD to readopt the high-affinity conformation for the

microtubule, and rebinding sends a return signal up the stalk to the motor which in

turn triggers the powerstroke. The linker returns to its straight position, pulling the

external cargo / axoneme forward with it. ADP is then released and the cycle can

begin again [127].

The full conformational cycle for a single monomer as it is currently known is shown in

Figure 5.3. With the exception of the communication between the separated MTBD

and motor domains, the kinetic cycle is almost identical to that of myosin. As with

muscle myosin, this cycle fully explains how the dynein motor generates force in the

monomeric (axonemal) form. The tail structure acts as a permanent tether to the

axoneme, the motor simply detaches from the microtubule, binds again at a point

further along, and undergoes the powerstroke to move to the adjacent microtubule.

For cytoplasmic dynein however, the walking mechanism is very unlike dimeric myosin

or kinesin. Although each step proceeds in a similar manner (with the addition of

motor / MTBD allostery), in cytoplasmic dynein the two MTBDs are connected only

very loosely, whereas in kinesin they are very tightly bound via the relatively short

neck region. In kinesin, this tight binding combined with the ‘hand-over-hand’ stepping

mechanism means that the binding of one motor allosterically inhibits the other motor,

preventing both motors being unbound at the same time [128]. In dynein however,

there is no clear mechanism for such steric inhibition due to the loose coupling between

the heads. Dynein has regulatory proteins, such as Lis1 which is known to inhibit

conformational changes in the molecule [129] [130]. However, our knowledge of kinesin

regulation suggests that inhibition should depend not on an external molecule, but on

the state of the other monomer. In the case of kinesin, this steric inhibition not only

causes the rear head to be more likely to detach, and thus make for a more efficient

walking mechanism, but also prevents the entire molecule from detaching from the

microtubule altogether.

To further complicate matters, the motions of the two monomers of cytoplasmic dynein

have been experimentally visualised and seen to be almost independent from one an-

other unless the two monomers are relatively far from one another [8], making allosteric
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Figure 5.3: The ATP hydrolysis cycle of a single step of a monomer of cytoplasmic
dynein. 1) The MTBD is tightly bound to the microtubule. 2) ATP binding to
AAA1 weakens the MTBD microtubule affinity. 3)Internal rearrangements trigger
the priming of the linker domain. 4) ATP is hydrolysed as the MTBD diffuses to
the next binding site. 5) Phosphate release causes the MTBD to readopt the high
affinity conformation, and rebinding to the microtubule occurs. 6) Rebinding triggers
the powerstroke, pulling the trailing motor and associated cargo forwards. 7) ADP

is released, keeping the MTBD in its high affinity state until ATP binds again.

communication seem highly unlikely altogether. Knowing how a single monomer func-

tions, we pose the following question: by what mechanism is the dimer cytoplasmic

dynein able to walk without detaching from the microtubule?

5.2.1 Cytoplasmic Dynein - How Can It Walk?

For cytoplasmic dynein to be a processive motor it must have two basic properties.

Firstly, each monomer must be able to detach from the microtubule track and reattach

to a different binding site further along. Secondly, both monomers must be highly

unlikely to detach at the same time, as this would likely cause them to diffuse away from

the microtubule track. Here we discuss how this may be accomplished for cytoplasmic

dynein given the relatively weak mechanical coupling between the monomers.

The most simple answer would be that there is little to no communication between the

monomers, and a detached monomer has sufficient time to freely diffuse to the next
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binding site. This was postulated by Qui et al. , who assumed that the high duty ratio

of the molecule compensates for the lack of communication [131]. The rate limiting

step of the ATP hydrolysis cycle for dynein, rl, is the ADP release rate, and the most

conservative estimate for this is rl = 160Hz [132]. Therefore, we assume that a dynein

monomer releases from the microtubule at this rate. Under what conditions, then, is

the partner monomer able to diffuse to the next binding site in time?

We first consider some form of undirected diffusion. The ‘weakest’ form of this would

be if the detached dynein monomer could freely rotate about the GST connection to

the partner monomer, and also undergo translational diffusion subject only to the GST

domain flexibility. Let us consider free rigid-body rotation together with translational

diffusion limited to the microtubule axis. In this case, we can calculate an approximate

time taken for the MTBD of dynein to coincide with a binding site using the set of

dynein parameters collected by Sarlah et al. [132].

The total length of a dynein monomer from the MTBD to the end of the motor domain,

lD ≈ 25nm, and its largest radial component (the motor), rD ≈ 5nm. Using these

values with Equation 3.28, the approximate drag on this molecule when immersed in

a water-like medium is λ = 3.91 × 10−10Ns/m. The distance between binding sites,

lbb ≈ 8nm. Assuming lbb to be the required root-mean squared displacement to find

a new binding site, we can use the equation for free diffusion, l2bb = 〈x2〉 = 2Dtbb to

determine an approximate transit time, tbb between binding sites. For D = kBT/λ, we

find that tbb = 3.04µs, i.e. for a molecule the size of dynein undergoing 1D translation

only, we expect it to move between binding sites in approximately this amount of

time. We have not taken the action of ATP hydrolysis into account, which causes

the monomer to adopt the pre-powerstroke state and likely biases the diffusion in the

forward direction. Even without this process, the number of times a dynein monomer

will be able to diffuse between binding sites within a single ADP release, nbb ≈ 2056,

which shows that it is almost certain to occur. However, rotation of the monomer must

also be taken into account. If it is truly free rotation, then we cannot simply use a

root-mean squared displacement argument as we did with translation, as the MTBD

needs to be in a specific orientation. The long-time probability of the monomer being

in the correct rotational orientation for a given binding site, Pr, is the ratio of the areas

of the MTBD, AMTBD ≈ πr2
s , and the total spherical surface area it sweeps out, AS ,

where rs ≈ 1nm is the radius of the MTBD. If it rotates about its linker connection,

the radius of this spherical surface is approximately the length of the stalk domain,

ls ≈ 12nm. This gives Pr = AMTBD/AS = 1.74× 10−3. The total number of times the

MTBD is both in the correct position along the microtubule axis and in the correct
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orientation within the transit time, Nbb = nbbPr ≈ 4, with a total transit time between

two adjacent binding sites including rotation, Tbb = 1.75ms.

This simple calculation shows that for a dynein monomer freely rotating about the GST

connection, we would expect both monomers to detach from the microtubule every 4

ATP cycles, which would correspond to run-lengths of only 32nm if all of the steps

were in the forward direction. However, experiments have shown that cytoplasmic

dynein has run-lengths closer to 1.9µm, or 238 steps in the forward direction [133].

Of course, there is significant uncertainty in our calculation. The flexibility of the

GST domain would allow for diffusion both around and away from the microtubule,

both of which would increase the transit time. Additionally, the initial dependence of

the expected MTBD position on its initial position (see Appendix C) may mean that

the MTBD remains much closer to the microtubule over the course of a single ATP

cycle, increasing the area ratio and lowering the total transit time. But our estimate,

together with our knowledge of the other motors, does encourage the idea of some

additional interaction, either mechanical inhibition or otherwise, that enables a dynein

monomer to reach its next binding site faster. Both myosin and kinesin exhibit some

form of communication, so considering these motors may give us some insight into

what mechanisms are possible.

Kinesin achieves processivity by heavily biasing the diffusional search for the new bind-

ing site in the forward direction. As we saw previously, kinesin has a relatively short

linker domain compared with myosin and dynein. This allows significant mechanical

strain to build between the two motor domains, as well as lessening the diffusional vol-

ume the detached motor is able to search over. The powerstoke of kinesin also biases

the search in the forward direction by throwing the unbound motor directly towards

its next binding site. Indeed, the processivity of a kinesin motor has been shown to

be heavily dependent upon the length of the linker domain [134] or more specifically,

the distance between the microtubule bound domain and its unbound partner. Some

monomeric forms of kinesin, which do not have this mechanical strain method of com-

munication, exhibit a non-specific attraction to the microtubule [135]. This reduces its

diffusion to a 1D search along their respective protofilaments, likely as a compensation

for the lack of directed diffusion enabled by the power-stroke in the dimeric form.

Myosin V on the other hand has been seen to perform something close to 2D surface

diffusion to find its next binding site [136], with one linker and the associated unbound

motor domain acting somewhat like a rigid rod pivoting about its connection to the

other linker and bound motor domains. As we have previously discussed, there is

mechanical inhibition through the rigid linker domains that inhibits the lead motor
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from detaching when both heads are in the attached state, prioritising forward steps,

but once detachment has occured and the search is underway, mechanical strain can

theoretically relax in the molecule. Therefore, it is only the rate limiting step of

ADP realease in myosin V, 12Hz [109], that prevents the rear head from detaching

as the already detached head searches for a new site. Myosin V exhibits intermediate

mechanisms other than the powerstroke that bias the rotational search in the forward

direction [137], and together with the very slow ADP release rate, allow myosin to find

a new binding site through an effectively free rotational diffusion. Cytoplasmic dynein

may have a similar directional bias through its reverse powerstroke, but nevertheless,

it has a much faster ADP release rate than myosin V. The entire dynein monomer is

approximately the same size as a myosin V linker domain [114], meaning that their

diffusion is approximately equal. Although myosin V has to diffuse 36nm along an

F-actin filament to find its next binding site, whereas cytoplasmic dynein only needs

to diffuse 8nm along the microtubule, myosin V seems to have a much more limited

diffusional range due to its specific hinge joint between the two linker domains, whereas

a dynein monomer has much more freedom allowed by the flexible GST region.

From a mesoscopic structural perspective, cytoplasmic dynein seems to be closer to

myosin V than kinesin in its diffusional characteristics. However, as it shares a track

with kinesin, we may hypothesise that some of its diffusional dynamics are similar to

the forms of kinesin which have no strong mechanical connections between them, i.e.

the monomeric forms. Recents simulation studies have indeed shown that cytoplasmic

dynein may feel a long-range electrostatic attraction to the microtubule track, which

guides its diffusion to the next binding site [138]. Our interpretation of all of the

available evidence is that cytoplasmic dynein take a single step through an almost free

diffusion, as myosin V does, but with some sort of interaction with the microtubule,

as kinesin does.

Recent experiments have taken advantage of the technological advances in cryo-electron

microscopy [72] to generate new data that gives novel insight into the action of cytoplas-

mic dynein [8]. New high-resolution structural data has also been obtained using x-ray

crystallography [9], allowing structural interpretation of the experimentally observed

dynamics. The remainder of this chapter describes our use of this data to build a full

FFEA simulation suite of the cytoplasmic dynein system. We discuss continuum me-

chanical parametrisation of the individual monomers from both experimental studies

and higher resolution molecular dynamics simulations. We then look at parametrisa-

tion of the entire dimer, and see what we can learn about the walking mechanism of the

molecule by using FFEA simulations to probe the long-time dynamics of cytoplasmic

dynein.
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5.3 FFEA Modelling of Cytoplasmic Dynein from MD

One of the major topics in the development of the FFEA method is determining a

robust method of general parametrisation for FFEA systems. Generalised force-fields

cannot necessarily be developed for FFEA models due to the differences in elastic

and viscous properties for structures that seem to be identical at the mesoscale. For

example, the coiled-coil structures present in myosin, kinesin and dynein, although

structurally similar at the mesoscale1, do not have the same flexibilities. If an all-

atom MD structure is available however, then simulations can be performed on the

entire structure, or simply segments of it, and flexibility data extracted. These can be

converted to FFEA material parameters to reproduce the same flexibility seen in the

higher resolution MD, and used in subsequent FFEA simulations to probe emergent

properties that are often beyond the capabilities of MD due to time restrictions. This

is the type of empirical modelling we will be using for the remainder of the chapter. We

begin with a possible parametrisation from existing high-resolution MD simulations.

5.3.1 Building an FFEA Model of Dynein - MD Model

In collaboration with Kamiya et al. [41] we have had access to long-time, all-atom

MD simulations of dictyostelium discoideum dynein from which we are able to extract

flexibility data. Kamiya et al. built two atomistic dynein structures, one with ADP

present in the AAA1 primary binding pocket (ADP model) and one with ATP present

instead (ATP model). The other secondary binding locations at AAA2, AAA3 and

AAA4 all had ADP present [41]. These systems were then energy minimised to form

two distinct structures, and a 200ns MD simulation was performed for both models in

explicit water (TIP3P water model) using the AMBER MD package, with a modified

force-field optimised for swift electrostatic calculations [139]. We were able to extract

the average structure for each model from the simulation and, using VMD, calculate an

electrostatic surface to capture the overall shape of the molecule. From here, we used

a surface collapse algorithm to coarsen the system to an acceptable resolution. Due to

the resolution used to calculate the electrostatic surface, we also needed to manually

detach the linker domain from the motor domain to give it the freedom to fluctuate

independently from the motor. This was achieved using the Blender computational

modelling software [4]. Finally, we populated the triangulated surface with tetrahedra

using the Tetgen software package [65], completing the FFEA modelling procedure.

The entire process is shown in Figure 5.4.

1Consider just the secondary structure, for example
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Figure 5.4: FFEA conversion procedure for the atomistic models of dictyostelium
discoideum dynein. a) The conversion process. i. The average atomistic structure
calculated from the 200ns MD simulations. ii. The electrostatic surface calculated
using VMD. iii. First coarsened triangulated surface. iv. Final coarsened surface
with linker domain separated from motor. b) The final FFEA models visualised in

PyMOL for the two structures.

5.3.2 Parametrisation of Monomeric Dynein - MD Model

In order to parametrise FFEA models in the current framework, a manual analysis

of the underlying atomistic trajectory is required, the dynamics of which can then be

reproduced within an FFEA simulation.

5.3.2.1 Atomistic Dynein Models

Initial analysis of the MD simulations of the two atomistic dynein models provided

flexibility data for the stalk region of dynein [41]. An axial stalk vector can be defined

by taking residues at both ends of the stalk, and by aligning the motor domain within

each frame of the simulation to its average structure (see Figure 5.5), the variance in

both angle and length of the stalk can be calculated and converted into stiffnesses,

〈U(x)〉 =
1

2
kx〈(x− x̄)2〉,

⇒ kx =
kBT

〈(x− x̄)2〉
, (5.2)

where the equipartition theorem has been applied to the general coordinate x to give an

associated stiffness kx for the motion of that coordinate. Kamiya et al. performed this



Chapter 5. FFEA and Cytoplasmic Dynein 132

Figure 5.5: The definition of the stalk vectors for our analysis of the dynein molecu-
lar dynamics simulations. ~Xs,0 is the vector defining the stalk of the average structure
(coloured in green). The variance in stalk angle and length are calculated relative to
this vector for each trajectory frame, (example coloured in blue). Similar vectors were

defined for the linker domain.

calculation for the length and angular fluctuations of each helix within the coiled-coil

of the stalk, and determined that the presence of ATP in the AAA1 domain increases

the flexibility of the stalk. A change in flexibility is consistent with the coil-coil sliding

mechanism seen by Schmidt, where ATP binding to the motor domain was seen to

allosterically communicate with the MTBD [125]. However, as the coil-coil sliding was

explicitly noted to be missing from the MD simulations, the increase in flexibility may

be due to a different mechanism. Appendix C (specifically Equation C.14) does show

that any stiffness calculated from the variance of insufficient simulation trajectory data

should be proportional to the actual stiffness, which it exponentially decays towards.

Hence, assuming the stalk was subjected to approximately the same viscous drag in

both simulations, we expect that this increase in flexibility is representative of a real

change in the free energy landscape of the monomer, and not an artefact of the lack of

simulation data.

Using a single vector to define the motion of the stalk means that we can parametrise
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the stalk domain within FFEA only as a single, homogeneous object. We performed

similar calculations to Kamiya et al. , using the same residues at the base and tip of

the stalk but defining only a single stalk vector, ~Xs, as,

~Xs = ~ts −~bs, (5.3)

where ~ts and~bs are calculated as the centroids of the tip residues (Ts) and base residues

(Bs) respectively,

~ts =
1

N

N∑
i

~xi i ∈ Ts,

~bs =
1

M

M∑
i

~xi i ∈ Bs, (5.4)

We also defined a vector for the linker domain, ~Xl = ~tl −~bl, using a synonymous set

of residues at the base and tip of the linker.

We calculated the distributions of the changes in length and angle for both the stalk and

the linker with respect to their average structures over the course of the simulations.

Figures 5.6 and 5.7 show examples of the probability distributions emerging from the

simulation for the linker length and angles respectively, both from the ADP model.

For the linker length we see a well defined Gaussian distribution, as expected for a

Boltzmann distribution in energy. For the linker angle we obtain a chi-distribution,

still corresponding to Boltzmann distribution for the case where we do not define

negative values i.e. for angles.

Treating the stalk as a bending beam as in Section 3.2.1.2, a simple calculation for

the viscous time constant for stalk length L = 12nm, width w = 1.5nm and biolog-

ically representative material parameters gives τk ≈ 16ns. Figures 5.8 and 5.9 show

the evolution of the variance over the course of the simulation which results in these

distributions. These traces indicate that the variance has almost converged, and there-

fore that 200ns seems to be sufficiently long to explore the entire conformational space

available for these degrees of freedom. However, the stalk angular variance in the ADP

model, shown in Figure 5.10, shows a clear discontinuity in the variance trace, as did

the stalk length variance. These are likely the result of the molecule escaping from local

energy minimum, something not considered in our simplified beam bending analysis,

and therefore implies the existence of a larger free energy landscape that the molecules

have not yet had time to explore.
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Figure 5.6: Probability distribution for the linker length in the ADP atomic model
of dynein.

Figure 5.7: Probability distribution for the linker angle in the ADP atomic model
of dynein.
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Figure 5.8: Evolution of the variance of the ADP model linker length over the course
of the simulation.

Figure 5.9: Evolution of the variance of the ADP model linker angle over the course
of the simulation.
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Variances ADP Model ATP Model

Stalk Length (2.111 ± 0.001) Å
2

(11.70 ± 0.01) Å
2

Stalk Angle (10.030 ± 0.008)◦2 (21.55 ± 0.02)◦2

Linker Length (0.550 ± 0.001) Å
2

(0.4431 ± 0.0001) Å
2

Linker Angle (0.5544 ± 0.0002)◦2 (2.557 ± 0.0007)◦2

Table 5.1: The extrapolated limit of the fitted variance traces of the atomic simu-
lations of dynein monomers. Errors reported are the standard errors of exponential

fit parameters.

To better approximate the flexibility of the model given potentially insufficient sim-

ulation runtime, we fit an exponential decay to this trace of the form Equation C.9

in order to extrapolate the data. We note that there is both excessive noise and an

initial spike in variance in the early stages of the simulation, which corresponds to

the equilibration phase. Hence, we assume the exponential fit to be valid only beyond

40ns.

To fit our extrapolation curves to the data, we used the least-squares fitting algorithm

implemented in the SciPy Python package and chose the segment of data after this

characteristic initial spike which gives the best fit based on the normalised least-squares

residual value (residual per data point). The limiting variance values for these curves

are shown in Table 5.1 for each of the degrees of freedom and for each model.

The relative size of the discontinuities in some of the trajectories make our exponential

fit an inappropriate extrapolation method over the total simulation time. In these

cases, we have manually chosen the range over which we extrapolate the data to better

approximate the final tendency of the variance. It is unlikely that this is representative

of the true total variance, but it does represent the local environment of the molecule

at that time in the simulation.

Although our flexibilites cannot be directly compared to those of Kamiya et al. due

to differences between our definitions of the vectors, our calculated values for the stalk

properties are qualitatively equivalent, with differences in flexibility of the same order

of magnitude between the ADP and ATP models. Minor differences in our values are

likely due to our extrapolation procedure. Although the relationship of these calculated

values to the true variance is questionable due to the potentially insufficient amount

of simulation runtime from the clear discontinuities in the data, which imply localised

energy minima, we justify the use of these values to parametrise the FFEA models

as the most suitable approximation to use based upon the data available to us. With

reference to Figure 5.3, we specify the ADP model as corresponding approximately to

the post-powerstroke state shown (states 6,7 and 1) and the ATP model as correspond-

ing to the pre-powerstroke state (state 3). The difference in flexibilites point towards
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Figure 5.10: Evolution of the variance of the ADP model stalk angle over the course
of the simulation. The clear discontinuity at 100ns < t < 120ns may indicate escape
from a metastable state, leading to difficulties in extrapolating the true variance from

the available data.

some sort of conformational change within the stalk, consistent with this definition,

although it was explicitly noted that the coiled-coil chain sliding observed by Schmidt

et al. [9] was not observed in the MD.

5.3.2.2 FFEA Dynein Models

To determine the correct parameters for an FFEA simulation given the existing MD

simulations, we performed a suite of FFEA simulations using the models shown in Fig-

ure 5.4. For both the ADP and ATP structures, we performed 7 FFEA simulations with

Young’s moduli, E, ranging from 100MPa to 100GPa to centre on a biologically realis-

tic range [87], together with a constant Poisson ratio, with insights from Oliver [140],

of ν = 0.35. The resulting trajectories of each of these FFEA simulations were then

mapped onto the atomic structures from which they were created using the structural

mapping procedure shown in Section 4.5.3, which preserves the mesoscopic detail of

the simulation [93]. From here, the same analysis performed in Section 5.3.2.1 was

performed on the pseudo-atomic trajectories, allowing a consistent analysis procedure

for both simulation types.

The simplicity of the FFEA simulations meant that convergence of the variance tra-

jectories occurred much faster than the MD simulations. Figures 5.11 and 5.12 show
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Figure 5.11: Evolution of the variance of the linker length over the course of the
FFEA simulation corresponding to the ADP atomic model with Young’s modulus,

E = 2.51GPa.

examples of the results of the range of simulations, showing the linker length fluctu-

ations of the ADP model and stalk angle fluctuations of the ATP model respectively.

5.3.2.3 Combining the Models

For a stiffness kx of a general coordinate x, we expect kx ∝ E. From Equation 5.2,

this implies,

E ∝ kBT

〈(x− x̄)2〉
,

⇒ E = A
kBT

〈(x− x̄)2〉
, (5.5)

where A is a constant. Taking logarithms of both sides of Equation 5.5 gives,

ln(E) = ln(AkBT )− ln
(
〈(x− x̄)2〉

)
. (5.6)

Equation 5.6 has the form of a straight line. Hence, for our set of simulations, we plot

the logarithm of the extrapolated fluctuations against logarithm of the initial moduli

to obtain a linear fit. Figures 5.13 and 5.14 show these fits for the linker angular

fluctuations for the ADP and ATP models respectively. To each of these linear fits,
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Figure 5.12: Evolution of the variance of the stalk angle over the course of the
FFEA simulation corresponding to the ATP atomic model with a Young’s modulus,

E = 15.8GPa.

Figure 5.13: The linear relationship between the defined Young’s modulus and
measured linker angular variance (logarithms) in an FFEA simulation for the ADP
model of dynein. By tracing the measured atomic fluctuations to the graph, we
can extract the Young’s modulus that reproduces the dynamics within an FFEA

simulation.
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Figure 5.14: The linear relationship between the defined Young’s modulus and
measured linker angular variance (logarithms) in an FFEA simulation for the ATP

model of dynein.

Young’s Moduli ADP Model ATP Model

Stalk Length 2.22GPa 2.13GPa
Stalk Angle 1.08GPa 0.62GPa

Linker Length 4.06GPa 3.23GPa
Linker Angle 5.54GPa 0.77GPa

Table 5.2: The effective Young’s moduli for the two dynein models required to
reproduce the atomistic dynamics within an FFEA simulation. Values obtained from

fitting atomic variance measurements to FFEA variance measurements.

we have determined the value of the Young’s modulus which would reproduce the

measured atomic fluctuation variance for each parameter of interest. The total set of

measured Young’s moduli extracted from the series of fits are shown in Table 5.2.

For an ideal linear beam, we would expect that the modulus corresponding to the angu-

lar and length fluctuations would both be identically equal to the Young’s modulus. We

see differences between the Young’s modulus obtained for length and angular fluctua-

tions in both the linker and stalk of both models, implying (somewhat unsurprisingly)

that these structures are not ideal beams. Therefore, homogeneous parametrisation in

this fashion means that we can reproduce either the angular or length fluctuations of

each model, but not both.

The ATP model is still more flexible on the whole in terms of the magnitude of the

Young’s modulus, the continuum stiffness parameter. However, the difference between
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Parametrisation Variables Stalk Length Stalk Angle

Linker Length Stalk: (2.39 ± 0.11) Å
2

Stalk: (12.91 ± 0.60) ◦2

Linker: (0.49 ± 0.02) Å
2

Linker: (0.56 ± 0.02) Å
2

Linker Angle Stalk: (2.08 ± 0.09)Å
2

Stalk: (13.51 ± 0.72)◦2

Linker: (0.64 ± 0.03 ◦2) Linker: (0.65 ± 0.03 ◦2)

Table 5.3: The variances resulting from FFEA simulations of the ADP dynein
model when parametrised using each variable combination from the analysis of the
ADP model atomic trajectories. Errors reported are standard errors of the variance.

the Young’s modulus values between the ADP and ATP models is not as prominent

as the raw variance values obtained in Section 5.3.2.1 (Table 5.1). This is because

the measured variances are dependent upon the geometry of the object, whereas the

Young’s modulus is an intensive property, independent of the geometry. The surface

profile we generated from the ATP model has a thinner stalk than that of the ADP

model, such that the ATP model will be much more flexible than the ADP model

when parametrised by the values in Table 5.2, even though they have similar Young’s

moduli. Nevertheless, given these two models, parametrisation using these values gives

the correct amount of flexibility for the molecule we are modelling.

To show the reliability of this parametrisation, we ran a final set of FFEA simulations

parametrised by the values shown in Table 5.2, with a linear interpolation of the

material parameters across the motor domain. The variances calculated from these

simulations of the ADP model are provided in Table 5.3.

These parametrised models give variances to within 10% of the measured values from

the atomic simulations shown in Table 5.1. The slightly larger error is likely due to

the linear interpolation of material parameters over the motor domain giving addi-

tional sources of flexibility when compared to the homogeneous models used for the

parametrisation.

5.4 FFEA Modelling of Cytoplasmic Dynein from Exper-

imental Studies

We have seen that although approximate stiffness values for proteins can be extrap-

olated from MD simulations and reproduced in FFEA simulations, these values are

perhaps more representative of a local energy environment rather than the full free

energy landscape, given the short time of the all-atom simulations. However, for our

models of cytoplasmic dynein, experimental evidence is available that enables a much
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more accurate estimation of the monomeric parameters, which allows us to perform

subsequent simulations on the full cytoplasmic dynein system.

Imai et al. performed a thorough investigation into the mechanical properties of the

cytoplasmic dynein system via a statistical analysis of flexibility data of the molecule

whilst bound to microtubules [8]. By utilising unstained cryo-electron microscopy

(cryo-EM), the group were able to freeze a prepared and equilibrated sample of wild

type, chimeric cytoplasmic dynein molecules in the presence of 3.7µM microtubule and

3.6mM ATP concentrations. The chimeric monomers were formed using the majority of

the dictyostelium discoideum structure [141], with the stalkhead region, which contains

the MTBD, replaced with that of human axonemal dynein as it has a higher overall

binding affinity for the microtubule. The dynein monomers were artificially dimerised

into the cytoplasmic dynein complex by expressing the schistosoma japonicum GST

domain within the two monomers, coupling them by their linker domains without the

disordered tail region seen in natural dynein [7]. Although mutations in the tail domain

of certain dynein complexes in mice have been seen to inhibit cytoplasmic dynein motor

processivity [142], the GST dimerised dynein is known to be capable of well-defined

processive motion [131] and so is suitable for this simulation suite.

Following the cryo-EM procedure, Imai et al. determined the polarity of the micro-

tubules within the sample, and used their presence to locate 10,080 individual dynein

monomers using particle picking software. This sample was further reduced to 711

dimers by considering only pairs of monomers that were within 40nm of each other,

or single monomers at least 40nm away from any other monomer, where 40nm is the

total length of the GST domain at maximum linear extension. This reduction en-

sured that all pairs of monomers considered in the sample were unique dimers or single

monomers. Image analysis was then performed on the data set to align the monomers

with respect to various structural components visible in the raw images. Alignment

of the ‘single monomer’ images with respect to the visible stalkhead domain showed

that the normalised pixel density values were approximately twice that of the equiv-

alent monomeric dynein images, showing that these molecules were actually dimers

with superposed monomers on adjacent microtubule protofilaments. These superposed

structures formed 46.3% of the total number of dimers, a significant amount that may

point towards some as yet unknown interation between the dimers that keeps them

superposed. The remaining ‘offset’ dimers were aligned with respect to the leading

head under the assumption that the stalk flexes as a rigid body with a localised hinge

region near the interface between stalk and MTBD. This analysis showed a variation

in stalk angle with respect to the microtubule with a visible stalk emerging from the

image averages. This implies that the flexibility is indeed mostly localised to the hinge
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region, thought to be caused by a conserved set of proline residues in the vicinity

of the neck of the stalk [8]. We will use this flexibility data to determine structural

parameters for each monomer in our model.

Using the same structure of dynein used in the cryo-EM studies, for which x-ray

crystallographic data is available [143] with the stalk head replaced by that of mus

musculus to give the higher affinity properties of the study, Imai et al. were finally

able to build a full atomic structure for the dimer complex by fitting the atomic models

to the available EM density data. We were given access to these atomic models in order

to build our lower resolution FFEA structures.

5.4.1 Building an FFEA Model of Dynein - Experimental Model

As the experimental images were all bound to the microtubule in the presence of

ATP, and the limiting step of the cytoplasmic dynein ATP hydrolysis cycle being

the ADP release rate [132], we can assume that the majority of the experimental

images correspond to the post-powerstroke, or ‘unprimed’ state of the monomers (states

6, 7 and 1 in Figure 5.3). We recall that the atomic ADP model also corresponds

approximately to these conformational states. Figure 5.15a shows the FFEA model of

this structure, which was built in an analagous manner to the models in Section 5.3.1,

and which corresponds to atomic model A built by Imai et al. [8]. In preparation

for the inclusion of a hinge region as predicted by the cryo-EM data, we manually

remodelled the stalk region into a more regular topology with respect to the tetrahedral

elements using the Blender modelling software [4]. This allowed us to manipulate the

parameters of specific elements to generate specific types of motion. We note that

if this was performed after the parametrisation procedure, the parametrisation would

no longer be valid. However, as a generalised parametrisation is not yet available,

we believe this to be an appropriate method at present. Figure 5.15 visualises the

completed hinge, with specific detail on the parametrisation presented later in this

section.

To build the pre-powerstoke / ‘primed’ model for a dynein monomer, we used Blender

to manually detach the triangulated linker domain from the post-powerstoke model

and reattach it to an FFEA structure built using the work of Schmidt et al. [9]. The

linker was rotated by 90◦ with respect to the motor domain before being reattached,

approximately corresponding to the linker domain structure reported by Schmidt et

al. This is shown in Figure 5.15b. A visual inspection shows that our surface model is

sufficient to capture the differences in overall shape between both motor domains that
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Figure 5.15: FFEA models constructed from the atomic models built by Imai et al.
based on cryo-EM [8] and crystallographic [9] experimental results, and the modified
models that allow a hinge region to be defined. a) is the post-powerstroke model,
and b) the pre-powerstroke model, with the colour images showing a higher flexibility

region (the hinge) defined at the stalk-stalkhead interface.

have been remodelled through the ATP hydrolysis process [125], as well as the clear

differences in linker position corresponding to the action of the powerstroke.

Following the construction of the monomer, we built a full microtubule complex com-

prised of 14 protofilaments, each containing 8 tubulin monomers. This represents a

96nm length of track for the cytoplasmic dynein FFEA model to interact with. The

surface profile generated for the atomic structure of each tubulin monomer was of a

high enough resolution to define a binding site between the α and β domains [126]. We

reconstructed a full microtubule complex, including the 0.9nm offset between protofila-

ments, using simple geometric translations and rotations of the single tubulin monomer.

Finally, we placed a dynein monomer on the microtubule such that the stalkhead was

within 5Å of the tubulin binding site, and another monomer in the equivalent position

on the adjacent protofilament, with the angle between the stalk and microtubule being

41.5◦ as reported by Imai et al. for superposed dimers. The completed superstructure

is shown in Figure 5.16.

5.4.2 Parametrisation of Monomeric Dynein - Experimental Model

Flexibility data reported by Imai et al. gives the variances of the angular distributions

of the dynein monomer stalks with respect to the microtubule. For the superposed

monomers this data is sufficient to immediately calculate an effective angular stiffness

for each of the monomer stalks. However, the presence of the GST domain means that
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Figure 5.16: FFEA model of the completed cytoplasmic dynein system on the
microtubule, visualised by the Van der Waals interaction locations. The two dynein
monomers are initialised in the post-powerstroke state. a) shows the monomers to be
in the superposed state, offset only by the 0.9nm difference in protofilament alignment
in the axial direction. b) shows the GST domain, which we have modelled as a
linear restraint between the tips of the two linkers. Finally, both a) and c) show the
placement of the binding sites along the microtubule, coloured in green. The tip of
each dynein monomer is also green, representing the MTBD in the high affinity state.
The red colouring on the microtubules represent a possible weak attraction between
the MTBDs and the protofilaments, similar to that seen between kinesin and tubulin.
The remainder of the molecule is coloured grey to represent regions of zero attractive

interaction.

the angular fluctuations between monomers will be correlated. We can use the super-

posed data to determine what this correlation should be, and hence find an effective

spring constant for the GST domain.

If we reduce each dynein monomer to two beads (the motor domain and the stalkhead)

connected by a spring (the stalk), with both monomers connected by an additional

spring (the GST domain) we can write the total energy of this system as,

UT =
1

2

(
K(θ2

1 + θ2
2) + k12 |~r2 − ~r1|2

)
, (5.7)

where θ1 and θ2 are the angular deviations from the energy minimum state for each

stalk, and ~r1 and ~r2 are the stalk vectors from stalkhead to motor domain. Equa-

tion 5.7, specifically the term involving k12 is valid only if the two monomers are

bound in approximately the same location on the microtubule axis. In this case, we
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can use the small angle approximation to give,

UT =
1

2

(
K(θ2

1 + θ2
2) +K12(θ2 − θ1)2

)
, (5.8)

where K12 = k12L
2 for a stalk of average length L. As we have two degrees of freedom

here, it is better to write Equation 5.8 as a matrix equation,

UT =
1

2
~θTK~θ, (5.9)

where ~θT = (θ1θ2) and,

K =

(
K +K12 −K12

−K12 K +K12

)
(5.10)

The stiffness matrix K can be transformed into an angular covariance matrix C as we

saw with Equation 3.42,

C = 〈θiθj〉 = kBTK−1,

=
kBT

K(K + 2K12)

(
K +K12 K12

K12 K +K12

)
(5.11)

which is sufficient to calculate all stiffness properties for the cytoplasmic dynein com-

plex.

For the set of superposed monomers, where θ1 = θ2 = θ, the observed angular standard

deviation was σθ = 11.5◦, calculated on a sample of 318 images. Using the statistics of

higher order moments [144], 〈θ2〉 = (130±10)◦2. To have rigidly superposed monomers

is the equivalent of K12 →∞ in Equation 5.11. In this case, we find that,

〈θ2〉 =
kBT

2K
, (5.12)

and therefore, K = (52±4)pN.nm. This is approximately half of the stiffness calculated

by Imai et al. , which is expected for a system of two springs (stalks) in parallel. Note

that these values are angular stiffness, and are therefore independent of whether the

flexibility is localised to a hinge or not.

5.4.2.1 Homogeneous Stalk Parametrisation

We first emulated these stiffness values within our FFEA models using the same tech-

niques as in Section 5.3. By performing a suite of 7 FFEA simulations with homo-

geneous parametrisations of varying Young’s moduli and a constant Poisson ratio, we
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Figure 5.17: The effective Young’s modulus required to reproduce the experimental
observations of stalk fluctuations of the post-powerstroke state of cytoplasmic dynein.

were able to find a similar linear relationship between the logarithms of the stalk and

linker angular fluctuations and their Young’s moduli. For the stalk we were able to

use the flexibility value calculated from Equation 5.12 to immediately determine an

appropriate Young’s modulus, which can be seen in Figure 5.17.

For the pre-powerstroke state, the experiments unfortunately provide us with no data.

To compensate for this, we made the assumption that the proportional difference in

flexibility between the ADP and ATP models from the MD simulations, KADP and

KATP respectively, would be the same as for the experiment,

Kpre = Kpost
KATP

KADP
. (5.13)

Hence, using the values for stalk angular fluctuations from Table 5.1, we obtained

Kpre = (24 ± 2)pN.nm. The total set of Young’s moduli extracted from these linear

fits and MD comparisons, which give rise to the experimentally observed flexibilities,

are shown in Table 5.4.

5.4.2.2 Hinge Region Stalk Parametrisation

The set of Young’s moduli required to give the same experimentally measured stalk

flexibilities but with the angular fluctuations localised to a hinge region, would be
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Young’s Moduli Post-Powerstroke Model Pre-Powerstroke Model

Stalk Angle 122.9MPa 73.73MPa
Linker Angle 9.29GPa 2.64GPa

Table 5.4: The effective homogeneous Young’s moduli for the two dynein models
required to reproduce the experimental dynamics within an FFEA simulation. Values
obtained from fitting the theoretical analysis of the experimental systems to FFEA

simulations, and comparison with MD simulations where necessary.

Figure 5.18: Animations of the most flexible normal mode in the FFEA models of
the dynein monomers. A is the hinge model, with a significantly softer hinge region
compared to the stalk, whereas B is homogeneously parametrised, with the bending

beginning at the base of the stalk.

significantly lower than the homogeneous values. So low in fact that to perform the

same process as above to parametrise the hinge (7 FFEA simulations with varying

parameters) would require prohibitively long simulation run-times. Therefore, to find

the set of Young’s moduli that give the localised hinge flexibilities, we utilised the new

linear elastic modelling capabilities of the software.

We first built two test parametrisations of the post-powerstoke state, one with a ho-

mogeneously parametrised stalk with Young’s modulus E = 1GPa, and one with a

smaller hinge region of Young’s modulus E = 1GPa and the remainder of the stalk

100GPa, representing a soft hinge attached to a rigid beam. Figure 5.18 shows the two

primary elastic normal modes calculated using the FFEA LEM tool (see Chapter 3).

We clearly see that for the hinge model, the motion is more localised to the hinge

region compared with the homogeneous model. The difference is verified by the dot

product between the two relevant eigenvectors, ~e1 · ~e2 = 0.725, a significant deviation

from unity.
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Young’s Moduli Post-Powerstroke Model Pre-Powerstroke Model

Stalk Angle 28.67MPa 17.20MPa
Linker Angle 9.29GPa 2.64GPa

Table 5.5: The effective hinge Young’s moduli for the two dynein models required to
reproduce the experimental dynamics within an FFEA simulation. Stalk values ob-
tained from scaling the homogeneous values from the initial homogeneous parametri-

sation. Linker values remain unchanged.

Due to the Cartesian representation of the modes, the eigenvalue corresponding to

each mode represents its linear stiffness and so is dependent upon the geometry of the

stalk. For the hinge model flexibility, we obtained an eigenvalue eh = 1.360N/m and

for the homogeneous model flexibility, es = 1.714 × 10−2N/m, which shows that the

homogeneously parametrised stalk is more flexible overall. If we compare both the ho-

mogeneous stalk and hinge regions to linearly bending beams, then from Equation 3.26

we would expect our stiffness eigenvalues to have the following property for the same

value of the Young’s modulus,
eh
es

=

(
Ls
Lh

)3

. (5.14)

Substituting the eigenvalues into Equation 5.14 gives eh/es = 79.35. Using the mea-

surement tools in the PyMOL visualiser, we determined our total stalk length as

Ls = (15± 1)nm and the hinge region as Lh = (3.5± 0.2)nm, where our errors are the

measurement uncertainty in how to define the correct stalk lengths given the modes.

Substituting these into Equation 5.14 gives
(
Ls
Lh

)3
= 78.7±20.7, which is only a 0.82%

difference from the eigenvalue ratio and shows that Equation 5.14 is valid within the

FFEA environment.

We wish to find a Young’s modulus for the hinge region that gives the same angular

fluctuation as for the homogeneous model. Again using Equation 3.26 and remembering

that an angular stiffness K is related to a linear stiffness k as K ∝ kL2, then the hinge

Young’s modulus Eh is related to the homogeneous Young’s modulus Es by,

Eh
Es

=
Lh
Ls
. (5.15)

The values of the Young’s moduli, then, are scaled by the fractional difference in length

between the two models. Our Young’s modulus values for the hinge region are shown

in Table 5.5.

Due to the high sensitivity of this method of parametrisation on the geometry of the

object, these hinge localised Young’s moduli are a clear approximation to the true

values. However, the experimental results of Imai et al. , and more recently simulation

studies from Li et al. [138], clearly show the existence of localised flexibility about the
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stalk neck region. Indeed, on closer inspection, PCA analysis on the stalk domains of

the MD simulations also show the most flexible modes to be localised to a hinge region

even when the structure is not bound to a microtubule, as it was in the experimental

studies. Hence, we will use the hinge parameterisation for all simulations for the

remainder of this chapter, with the remainder of the stalk region treated as a relatively

rigid beam, (E = 100GPa).

5.4.3 Parametrisation of the Cytoplasmic Dynein Complex

All that remains for a reasonable structural parametrisation of the entire cytoplasmic

dynein system is to calculate the effective stiffness of the GST domain. We can ac-

complish this by using the variance of the angular difference, 〈(θ2 − θ1)2〉, reported by

Imai et al. without the assumption of K12 →∞,

〈(θ2 − θ1)2〉 = 〈θ2
1〉+ 〈θ2

2〉 − 2〈θ1θ2〉. (5.16)

Substituting the individual elements from C in Equation 5.11, we obtain,

〈(θ2 − θ1)2〉 =
2kBT

K + 2K12
, (5.17)

and rearranging for K12,

K12 =
kBT

〈(θ2 − θ1)2〉
− 1

2
K. (5.18)

The quoted experimental values for 〈(θ2 − θ1)2〉 vary as the stalkhead separation in-

creases, with the GST region becoming stiffer as the relative stalkhead positions force

it into a high energy state. Given the relatively small sample size of experimental

observations, we choose σθ2−θ1 = (17 ± 2)◦, a value approximately averaged over the

entire range of possible stalkhead separations. Our error value is set to encompass the

total range of measured variances. This gives us a final stiffness value for the GST

domain of K12 = (21± 5)pN.nm.

5.4.4 Simulations of Cytoplasmic Dynein - Microtubule Diffusion

From the fully parametrised system developed over the course of this chapter, we began

simulations to study how dynein functions given its structure. We begin by looking at

the potential diffusional dynamics along the microtubule track.

The current theoretical model of the ATP hydrolysis cycle of cytoplasmic dynein

(shown in Figure 5.3) predicts that ADP release is the rate limiting process for each
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step along the microtubule. With ADP bound to the AAA1 binding site, a dynein

monomer will bind to the microtubule. We model this in the left-hand monomer of

the system simply by using ‘pinned nodes’, node which do not move within the FFEA

simulation, to prevent the stalkhead from moving away from the initial position. This

allows the remainder of the monomer, and especially the stalk, to retain its flexibility.

We leave the remaining monomer as it is, connected to the bound monomer by the

GST domain but able to freely detach from the microtubule. By modelling the GST

domain as a simple Hookean spring, our simulations will not capture the superposed

states experimentally visualised by Imai et al. [8]. However, due to a lack of informa-

tion on what the causes of these superposed states may be, we chose to neglect that

particular interaction.

We studied the diffusion of this dynein monomer as a function of a non-specific, at-

tractive potential between the MTBD and the microtubule track, similar to that seen

in monomeric kinesin [121]. The potential form used was the Lennard-Jones and steric

coupling developed in Section 3.8.1, a short range potential not dependent upon spe-

cific electrostatic interactions. We performed simulations with 12 different interaction

potentials with minima ranging from ε = 1kBT to ε = 500kBT , each with an equi-

librium distance req = 1nm. Each simulation was started with cytoplasmic dynein in

the configuration shown in Figure 5.16, corresponding to the superposed configuration

described by Imai et al. [8]. In this configuration, each monomer begins approxi-

mately at the VdW equilibrium position for the interaction. To maximise the search

rate through the external fluid, we lowered the external viscosity of the system to a

value µ = 1× 10−5Pa.s.

Using the central axis of the microtubule to define a cylindrical coordinate system, we

calculated the diffusional properties of the right-hand MTBD, which was not pinned

to the microtubule binding site, but was able to interact via VdW interactions. We

firstly consider the radial diffusion, for which the resulting variance trace is shown in

Figure 5.19.

We see that for many of the values of the VdW interaction strength there are two differ-

ent regimes for the diffusion trace. For the first part of the simulation, the diffusional

variance converges to a constant plateaus, becoming constant for a time. Following

this, a large growth is observed in the trace. The ε = 3kBT and ε = 5kBT traces show

this trend clearly, remaining constant at 〈(r−r0)2〉 ≈ 7.5nm2 and 〈(r−r0)2〉 ≈ 9.5nm2

respectively before experiencing a huge growth in variance at t ≈ 13µs. Closer inspec-

tion of the two simulations show that this is the moment when the MTBDs overcame

the local attraction to the microtubule and began to explore the full three-dimensional
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Figure 5.19: Radial variance of the free cytoplasmic dynein monomer under the
action of a range of different Lennard-Jones potential strengths, each with the same

equilibrium distance req = 1nm.

conformational space. To emphasise the point more clearly, the same data has been

plotted on logarithmic axes and only for the first 15µs in Figure 5.20.

From the strongest interaction potentials, we see something of a plateau forming with

an approximately exponential decay. As we have seen in the previous flexibility calcu-

lations in this chapter, this represents constrained diffusion under the action of a linear

restoring force, which is characteristic of a particle trapped in a harmonic potential.

Beyond the steep increase in variance, if a plateau forms at all it is the constrained 3D

diffusion limited only by the GST domain and flexibility of the monomer that remains

bound to the microtubule.

The Lennard-Jones interaction potential cut-off within FFEA is at a distance of 3nm,

and so any radial variance 〈(r−r0)2〉 > 9nm2 represents effective dissociation from the

microtubule under this potential. As we are not considering the free 3D diffusion of

the monomer, but its diffusion along the microtubule, from this point forward we will

only consider the simulations up to the point of their dissociation. We also disregard

those simulations that dissociate too quickly to see any axial diffusion.
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Figure 5.20: Radial variance of the free cytoplasmic dynein monomer under the
action of a range of different Lennard-Jones potential strengths, each with the same

equilibrium distance req = 1nm, for the first 15µs of the total simulation.

Figure 5.21 shows the axial variance of each simulation, along the length of the micro-

tubule, whilst the MTBD is still associated with the microtubule i.e. each graph stops

as soon as the corresponding radial variance increases beyond the VdW cut-off distance.

We notice the presence of a number of characteristic exponential decays forming with

each curve, which implies a good approximation of a linearly constrained fluctuation

in the axial direction before the dissociation occurs. We also see that higher potentials

correspond approximately to lower axial variances. The diffusional behaviour of the

MTBD changes significantly between the ε = 10kBT simulation and the ε = 20kBT

simulations. As the interaction minimum decreases, so too does the local gradient of

the Lennard-Jones potential well about the energy minimum, which means that the

fluctuations about the local energy minima decrease in size. At some point between

ε = 10kBT and ε = 20kBT , the gradient is so large that thermal fluctuations, over the

15µs period, are insufficient to allow the MTBD to escape. A closer inspection of the

respective simulations show that these local minima correspond to geometric artefacts

at specific locations along the microtubule. The small perturbations in the ε = 10kBT

simulation are actually rotational variations within a local minimum allowing a small

amount of increased axial motion, whereas in the ε = 20kBT simulation even rotation is

inhibited. However, the ε = 5kBT simulation shows a continuously increasing variance
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Figure 5.21: Axial variance of the free cytoplasmic dynein monomer under the
action of a range of different Lennard-Jones potential strengths, each with the same

equilibrium distance req = 1nm.

with localised relaxations. It is likely within this range then, 5kBT < ε < 10kBT , that

axial diffusion can occur whilst the MTBD remains bound to the microtubule. Assum-

ing that the overall diffusion between the localised relaxations is approximately free

diffusion, given the weakness of the GST restoring force, we attempted to characterise

the diffusion numerically by performing linear fits to suitable portions of the data.

These fits are shown in Figure 5.22. For the ε = 3kBT and ε = 5kBT simulations we

obtain approximately the same diffusion constant, whereas for the ε = 10kBT case we

see a noticeable decrease in the diffusion constant even in the relatively small amount

of time it was in motion. With an increasing interaction potential strength, then, we

see that it is not simply radial diffusion that is affected. The complex geometry of

the microtubule, which we were able to approximately capture in our initial meshing

procedure, contains localised geometric minima which also inhibit axial diffusion with

increasing interaction strength until eventually, axial diffusion is prevented altogether

as can be seen clearly in the ε ≥ 20kBT traces in Figure 5.21.

We also find that none of our simulations, over the 15µs time scale, were able to diffuse

far enough on average to reach the next available binding size before detaching from

the microtubule. The distance between binding sites in the microtubule is 8nm, and
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Figure 5.22: Axial variance of the free cytoplasmic dynein monomer under the
action of a range of different Lennard-Jones potential strengths, each with the same
equilibrium distance req = 1nm, and their associated linear fits. Errors reported as

the standard deviations of the least-squares fitted parameter.

so this would correspond approximately to an axial variance 〈(Z −Z0)2 ∼ 64nm2. We

would expect our axial variance 〈(Z − Z0)2 ∝ t for an approximately free diffusion in

the axial direction, and so with a maximum axial variance achieved over the course of

15µs, 〈(Z −Z0)2 ≈ 17.5nm2, we would expect that simulations of ∼ 60µs are required

to capture the full range of axial diffusion.

Further simulations performed to refine the specific required potential for surface dif-

fusion were considered. However, whether this relatively simple and short-range func-

tional form is itself sufficient to capture diffusional dynamics with respect to something

as geometrically complex as the microtubule has also been called into question as a

result of these simulations. Such short-range potentials could potentially have a prob-

lematic effect on the numerical integration procedure. As such, work is being pursued

into other generalised functional forms which are less dependent upon the local mesh

structure.





Chapter 6

Conclusions and Future Work

Although we have made significant progress in the development of FFEA over this

project, the software has much room for improvement. What makes this an exciting

project is that more than simply software optimisation remains. The underlying the-

oretical model, although currently self-consistent, can be expanded in a multitude of

ways. Here we describe what the future direction of the software will likely be given

the progress made in this thesis, and also what new systems can potentially be studied

in the future.

6.1 Progress Overview

The theoretical development presented in this thesis has allowed FFEA to sample mi-

crosecond time scales with relative ease (compared to all-atom MD), taking us firmly

into the mesoscale. Through development of the inertialess solution protocol we have

seen that there are some biological systems, such as vesicles or small globular proteins,

whose structurally isotropic nature makes their inertial modes of motion, those involv-

ing the velocity degrees of freedom, as important as the elastic dynamics. Yet for a

biomolecule that is even slightly non-spherical, or for transport processes such as diffu-

sion, the viscosity of the background material heavily overdamps the motion. This will

likely have important consequences regarding the inclusion of external hydrodynamics

to the theoretical model.

We note that the dynamical model does not converge to atomistic dynamics as the

resolution of the mesh increases. Rather, FFEA converges instead to the continuum

mechanical behaviour at the macroscale. Over long simulation times, the model ex-

plores the global conformational space available via continuous volumetric deformation,

157
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the range of which we have seen is based more on the overall geometry than the in-

tensive material parameters for many biomolecules. As the system size increases, the

relative size of the thermal fluctuations naturally decrease, which effectively lowers the

resolution of the simulation. These properties give FFEA a position at the upper limit

of the coarse-grained simulation techniques introduced in Chapter 1, almost in paral-

lel with DPD. However, note that the mapping procedure presented in Chapter 4 is

not limited to transitions between two FFEA structures. The constant topology of an

FFEA structure means that if an atomistic structure is available, we are able to map

an FFEA trajectory back onto a higher resolution atomic structure. Although this

process is an interpolation, and will therefore not introduce any additional higher res-

olution dynamical information, it does provide a stepping stone between the mesoscale

and microscale. FFEA has been derived from fundamental equations of motion, and

as such the constitutive models and mechanical stresses have real physical meaning

with functional forms not specific to any particular simulation. With the work being

done on continuum modelling of biological systems over the past decade [145] [146],

FFEA has the potential to be key in developing a multi-scale framework between the

mesoscale, macroscale and indeed the microscale as well.

The kinetic model was a first attempt at a direct link between the mesoscale and

the macroscale. By using mesoscale mechanical processes to generate macroscopic

observables, even in just a statistical sense, we have gained valuable insights into the

interactions between these two length and time scales. The amounts of mechanical

energy required to make substantial changes to the biological structures in comparision

with the energy provided by ATP hydrolysis imply a highly specific pathway through

the free energy environment for ATP hydrolysing proteins such as dynein. We found

that in order to make the kinetic model feasible, both in a physical sense but also

computationally, we are required to consider only the relevant degrees of freedom

involved in the transition.

Our simulations of cytoplasmic dynein showed that the relevant flexibilities can indeed

be modelled at the mesoscale, including the localisation of flexibility to a hinge region.

However, the flexibility of the GST domain alone does not account for the prevelance of

superposed states seen in experiments [8]. From this parametrisation, we saw the full

cytoplasmic dynein system is completely free to diffuse in all three dimensions due to

the flexibility of the GST domain. The inclusion of short range interaction potentials

allowed us to associate the free MTBD with the microtubule and study the effects on

its diffusional dynamics. We found that over the total 50µs simulation period, many

interaction potentials were simply not strong enough to keep the monomer associated

with the microtubule track. We also found that it was the shape of geometric artefacts
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along the microtuble that enabled spatially localised energy minima to form. Whether

there exists an interaction potential ε that gives the MTBD the freedom to move

between these energy minima whilst staying associated to the microtubule is as yet

unknown, but if it does exist then based on our current data we believe it will be on

the range 5kBT < ε < 10kBT .

6.2 FFEA Development

6.2.1 Software Development

In parallel with the work done in this thesis, I have been part of a software development

team working to make FFEA into a self-contained and user-friendly software package.

We recently released the first public edition of the software [93], which contains the

functionality of the FFEA dynamic model, linear elastic model, dynamic mode model

and time scale calculator functionalities. These core simulation protocols are bundled

with a fully integrated test suite which verifies the computational and physical stability

of the installation. The tests presented in Chapter 3 form a key part of these physical

tests, with minor modifications made so that they run faster for an standard user.

Also contained within the package are a set of software tools designed to help a user

build the initial FFEA system ready for simulation. The majority of these tools,

written in both C++ and Python, were developed by myself continuously throughout

this research project. In preparation for the software release, I refactored all of these

tools, making them dependent upon a core set of python modules designed to read,

write and modify each of the FFEA file formats, and interact with any other required

data structures in a consistent manner. Using these modules, we have developed a

plugin for the PyMOL molecular visualiser [96]. The plugin enables a user to visualise

FFEA objects alongside the electron density profiles / atomic structures they were built

from, visualise simulation trajectories and modify the FFEA structures themselves

through the PyMOL GUI. This toolkit makes interfacing with the software a much

easier process. The software can be downloaded as a a pre-built binary or as source

code from https://bitbucket.org/FFEA/ffea/downloads/. Keen users can link to

the central repository through git version control: https://bitbucket.org/FFEA/

ffea.git.

I envisage the future of the software to be as follows. For large proteins such as cy-

toplasmic dynein and others that have been simulated, hydrodynamic communication

throughout the external solvent environment cannot be neglected. Indeed, axonomal

https://bitbucket.org/FFEA/ffea/downloads/
https://bitbucket.org/FFEA/ffea.git
https://bitbucket.org/FFEA/ffea.git
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dynein works in coordination with many other identical monomers which are separated

by ∼ 10nm [7]. This is close enough, given their size, that it is quite feasible that the

monomers affect each other’s motion through the external solvent velocity field. If we

are to simulate systems like this, or any system with multiple macromolecules, then

hydrodynamics cannot truly be assumed to be a local effect.

Hydrodynamics is inherently a long-range interaction, unlike the Lennard-Jones and

steric interactions we have implemented up to this point. It will become vital, then,

to develop an efficient parallelisation of the software to compensate for the increased

number of calculations required per simulation timestep. Although the thermal noise

is currently spatially delta-correllated throughout each simulated biomolecule due to

the localisation of the viscous drag to each finite element, this may not be possible

with external hydrodynamic coupling. The parallelisation will therefore need to go

beyond the shared memory parallelisation we currently utilise, and into a full MPI

implementation to compensate for the coupling.

Finally, the visualisation we currently use is simply a plugin to the PyMOL molecular

graphics package. Although useful, it is a currently a reasonably inefficient interface,

taking approximately 10minutes to load a standard FFEA trajectory. It may become

necessary to write our own visualisation software that explicitly includes support for

both continuum systems with associated mesh topologies, and atomistic systems with

chemical bond topologies. This visualiser would ideally be linked to the various mesh

processing tools as well as atomistic analysis packages, allowing a much more user-

friendly interface for new users, a necessary requirement of any emerging technology.

6.2.2 FFEA Kinetics

The kinetic model developed in Chapter 4 has been shown to work in the general case.

Through its development and application to test objects, we uncovered new biophysical

questions regarding the free energy landscape of a biomolecular system. As we have

repeatedly mentioned throughout this thesis, a Young’s modulus E ∼ 1GPa is widely

regarded as representative of the biological mesoscale. Therefore, the required amount

of energy calculated by FFEA to perform a kinetic transition from the L = 5nm cubic

structure to the parallelohedron (∼ 2000kBT ) is not an unrealistic value. Instead, it

was the process itself that was unrealistic. We were able to compensate for the large

energy difference by reducing the size of the cube to that of a single element, or a small

number of degrees of freedom.
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The only assumptions made in the core kinetic model, before it was integrated into

FFEA, was that the ‘chemical rates’ r0
ij were completely independent of the position in

phase space of the molecule, and the specific values of fij . Other than this, the model

is exact with regards to equilibrium statistical mechanics. In future considerations of

biological kinetics within FFEA, we must consider whether our mapping procedure

is appropriate for consideration of only the relevant degrees of freedom which are

affected by the conformational change. Also, to prevent the immediate reversal of any

conformational change to a high mechanical energy state within FFEA, we may also

need to consider the effect of energy dissipation over the course of a conformational

change. These adaptations will likely prove necessary for the future applications of

kinetic FFEA with regards to conformational change in real biological systems, such

as cytoplasmic dynein.

Due to the specificity of chemical binding events on local atomistic structure as well

as configurational entropy, parameterisation of specific binding is as yet an unsolved

problem within FFEA. As such, we have also considered the inclusion of chemical

binding as a kinetic event. This would require the consideration of an external work

term ∆W into our energy modifications to the kinetic rates, but would allow us to

study the effect on external forces on kinetic events, potentially enabling us to further

elucidate the effect of mechanical gating in molecular motors.

6.3 FFEA Applications

Our simulations of cytoplasmic dynein generated several interesting results, but are

only the beginning of a much larger project. In regards to the monomer, we saw that

the geometry of the stalk domain, rather than its intrinsic flexibility, is responsible

for homogeneous flexibility. Yet, when flexibility is localised atomistically due to a

sequence breaking residue (proline), then the only way to replicate the flexibility within

FFEA is to greatly reduce the intrinsic flexibility of the system by lowering the effective

Young’s modulus. When compared to the results obtained by Yun et al. [146], it seems

that intrinsic flexibility in biomolecules is determined simply by the electron density

(density of covalent bonds), whereas extrinsic flexibility is heavily dependent upon

the shape of the object. From Chapter 3, we know that at the mesoscale the aspect

ratio of an object determines which physical regime of motion, inertial or viscous, the

system is in. This invites an interesting question in general: is there a relationship

not just between structure and function, but also shape and function at the mesoscale?

Studies into how high-resolution atomistic dynamics result in the mesoscopic behaviour

which is often on the overall shape have a new avenue for analysis through combined
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atomistic and FFEA simulations. Unlike many other mesoscale techniques, using the

mapping procedure developed in Chapter 4 atomistic and FFEA simulations can be

directly compared with one another, presenting many new opportunities for studying

the interface between the two spatio-temporal regimes.

We saw that the amount of diffusional range a dynein monomer has when not bound

to the microtubule is large enough to hint at the possibility of some form of interaction

between the MTBD and the microtubule, as do recent simulations results by Li et

al. [138]. Our simulations showed, qualitatively at least, that an increase in non-

specific interaction potential strength between the MTBD and microtubule affects

not only the radial diffusion, but the axial diffusion as well. How the specific local

geometry of the binding sites and indeed, the spaces between protofilaments, affect

the motion of the MTBD has not yet been studied in detail. The functional form of

the Lennard-Jones interactions used, and its implementation in FFEA, may not be a

suitable representation of non-specific interaction at the mesoscale, and so more work

needs to be done on how the geometry and mesh topologies affect these interactions.

At the conclusion of this project, new interaction potentials have been developed that

are more weakly dependent upon the distance between the two interacting objects, and

are being used to test these properties using simple sphere / cuboid systems.

Our original aim was to study how cytoplasmic dynein is able to walk at all, given

only its structure. To accomplish this goal, we firstly need to perform further studies

on the diffusional properties of both the post-powerstroke state, and indeed, the pre-

powerstroke state too. To show that microtubule surface diffuson is possible within

FFEA, given the current functional form of non-specific interaction, specification of

an appropriate range of interaction parameters for microtubule would require a fur-

ther simulation series of interaction potentials on the range 5kBT < ε < 10kBT with

∼ 1kBT intervals. If this system proved incapable of performing surface diffusion,

then the next stage would be to consider a different energy minimum position, req,

between the MTBD and the microtubule. It may be the case that the proximity to

the microtubule itself may allow the complex geometric structure a larger effect on the

dynamics of interacting objects, which ‘smooths out’ at larger distances.

Whether surface diffusion is possible or not, the kinetic transition between the post and

pre powerstroke states will likely have a significant effect on a dynein monomer finding

the next binding site. Simulations including the kinetic model described in Chapter 4

can be performed to enhance the simple diffusional studies described above. It may be

the case that the reverse-powerstroke of dynein acts to reduce the need for undirected

diffusion by placing the MTBD much closer to the target binding site. Whether this
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is the case or not will tell us whether or not undirected diffusion is a limiting step

for the entire kinetic cycle. These simulations can be performed using just two kinetic

transitions within a dynamic simulation (post-powerstoke to pre-powerstroke transition

and vice versa) and analysing the probability distribution of the MTBD position with

respect to the microtuble. Including some form of specific binding procedure, where

the detachment rate is affected by the mechanical strain in the object, is the clear

extension to this, and how the experimentally observed binding events affect long-

time probability distributions of position along the microtubule is vital information in

determining the energetics of translational motors. From here, we would have insights

into which stages of the kinetic cycle are necessary for motion, and which are simply

efficiency optimisations.

With an understanding of the above processes, we will have systematically built up to

the inclusion of the entire set of kinetic transitions into the cytoplasmic dynein system.

With insights from the work of Sarlah et al. [132], we will then be in a position to

perform either a single step or, if time allows1, multiple steps of the cytoplasmic dynein

motor. Comparison with recent kinetic models, again from Sarlah et al. [147], this

will allow us to understand how the mechanical structure of the motor truly affects the

kinetic cycle, and study the effect of the kinetic cycle on emergent properties of the

system, such as the stalling force, run-length and perhaps most importantly, the force

that dynein can exert on attached cargo. A physically informed understanding of how

molecular motors function will hopefully provide the necessary knowledge to aid the

community in building our own motor systems at the mesoscale, expanding on work

already performed [148] to help with real-world problems such as drug delivery, health

enhancements, and so forth.

6.4 Final Remarks

Much work remains to be done on the FFEA software package with regards to func-

tionality and usability. The work presented in this thesis, in my opinion, represents a

vital step into the theoretical understanding of how biological system operate at the

upper reaches of the mesoscale. The associated software release verifies the dynamic

model, with the kinetic model next in line for publication and release. I hope that the

software is of use to biologists, chemists and physicists alike in the future as we search

for a robust and consistent mathematical and computational framework to describe

the biological mesoscale, and indeed, multi-scale biological systems in general.

1By which we mean computational runtime!
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My final remark will be a much bolder claim for structural biology and bioinformat-

ics in general. Although our overarching goal in this thesis has been to use FFEA

for predictive purposes, the sheer complexity of the dynein system has shown us that

continuous experimental input is needed for this type of simulation. Peters et al. re-

cently argued, for the field of chemistry, that such a strengthening of collaboration is

necessary for the optimisation of research [149]. We can imagine worst-case scenarios,

that theoreticians, without experimental input, may specify their mathematical gener-

alisations to incorrect real-world conditions, and experimentalists, without theoretical

input, may unnecessarily perform experiments which look for biophysical behaviour

that cannot exist. In our case, the mesoscopic regime is so complex in the biophysics it

presents, overlapping the mathematically distinct discrete (atomistic) and continuum

(solid/fluid) mechanics, that ‘minor’ approximations and errors in theoretical models

can have far reaching consequences.

We saw this problem emerge in our study of dynein, where we realised that a homoge-

neous parametrisation of the dynein stalk / linker, in effect treating the system using

Euler beam theory, does not accurately describe the total range of available motion

to the object. It may be that even inhomogeneous parametrisation is insufficient, and

that these discrepancies are truly atomistic properties. Although we were able to make

use of this parametrisation by considering only the angular fluctuations, it may be the

case that length fluctuations are also important to the system in some way, a question

which could be much more readily studied via experimentation. On the other hand,

in our main citation for the simulation studies, we note that the measurements of

Imai et al. [8] all utilised the binding of dynein to the microtubule in order to align

images and extract structural data. This method clearly prevents the experimental

study of dynamical and kinetic behaviour in the absence of the microtubule, yet this is

something that can be accomplished in a simulation environment simply by removing

the microtubule object. Simulation and theoretical calculations give us full control

over our models, from which we can observe interesting behaviour that cannot be seen

within a less-controlled experimental system. Yet those very same experiments must

be performed to inform the model in the first place. A combination of the two methods

through continuous collaboration, with simulation and theory informing experimental

decisions and vice versa, is necessary to properly understand what truly drives biology

at this scale, and to move biophysics as a whole into the mesoscale.



Appendix A

FFEA Kinetics and Activation

Energy

In Chapter 4, Section 4.3.5 we postulated the existence of the values fij and fji without

reference to what they physically represent. These terms exist with the FFEA kinetic

framework for all possible biological processes that can be modelled kinetically, i.e. a

process for which we know the initial and final structural states but have no knowledge

of the underlying energy landscape. Equation 4.21 shows that for detailed balance to

be preserved at equilibrium, fij is actually the only free parameter, with fji constrained

by,

fij = 1− fji. (A.1)

This Appendix will look at the physical meaning of this value.

The Arrhenius equation for reaction rates provides us with an empirical relationship

between the activation energy and the kinetic rate,

R = A exp

(
−EA
kBT

)
, (A.2)

where R is an experimentally measured kinetic transition rate and EA is the activa-

tion energy for the transition, with the pre-factor A being an unknown constant. In

Chapter 4, we defined these measured rates in terms of free energies as opposed to

standard energies, and so we rewrite Equation A.2 for a transition from mesostate i to

mesostate j within a kinetic network as,

Rij = A exp

(
−∆FA,ij
kBT

)
, (A.3)
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where ∆FA,ij = FB,ij − Fi and FB,ij is the absolute free energy barrier between

mesostate i and j, from which it follows FB,ij = FB,ji (see Figure 4.3c). This def-

inition then gives,

Rij
Rji

= exp

(
Fi − FB,ij − Fj + FB,ji

kBT

)
,

= exp

(
−∆Fij
kBT

)
. (A.4)

which is identical to Equation 4.13, corresponding to the mesoscale detailed balance

conditions.

As we are mainly working with microstates in our study of kinetic processes, we assume

an equivalent relation for the microstate rates r(~x, ~p)ij ,

r(~x, ~p)ij = a exp

(
−∆E(~x, ~p)A,ij

kBT

)
, (A.5)

where a is a new, unknown pre-factor and ∆E(~x, ~p)A,ij = E(~x, ~p)B,ij − E(~x, ~p)i is

the activation energy in each microstate that contributes to the overall free energy of

activation. E(~x, ~p)B,ij is then an absolute energy barrier that must be overcome to

begin a kinetic transition. Just as in Chapter 4, we can decompose this into chemical

and non-chemical components such that ∆E(~x, ~p)A,ij = ∆E(~x, ~p)cA,ij + ∆E(~x, ~p)ncA,ij ,

where we assume the chemical contributions to the energy to be independent of the

location in phase space. Equation 4.20 then gives us an explicit form for r(~x, ~p)ij within

the FFEA kinetic framework, so we can substitute into Equation A.5 to obtain,

r0
ij exp

(−fij∆Encij
kBT

)
= a exp

(−∆EcA,ij
kBT

)
exp

(−∆EncA,ij
kBT

)
. (A.6)

Our definition of r0
ij was that it is comprised of all contributions to the overall rate

r(~x, ~p)ij not dependent upon the location in phase space. Therefore, from Equation A.6

we postulate that r0
ij on the LHS is comprised of all of the chemical terms on the RHS,

including the chemical component of the activation energy,

r0
ij = a exp

(−∆EcA,ij
kBT

)
, (A.7)

which allows us to cancel these from both sides of Equation A.6,

exp

(−fij∆Encij
kBT

)
= exp

(−∆EncA,ij
kBT

)
. (A.8)
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Finally, taking logarithms of both sides of Equation A.8 and making fij the subject

gives,

fij =
EncB,ij − Enci
Encj − Enci

, (A.9)

where EncB,ij is the non-chemical component of the activation energy barrier. Equiva-

lently for the reverse process,

fji =
EncB,ij − Encj
Enci − Encj

. (A.10)

With the chemical component of the activation energy being included in the definition

of r0
ij , Equations A.9 and A.10 show that the values fij and fji are proportional to the

sizes of the relative mechanical energy barriers, ∆EncA,ij and ∆EncA,ji, with respect to the

total mechanical energy change between states ∆Encij . If these values are constrained

to the range 0 < fij < 1 as was assumed in Chapter 4, Section 4.4, then it also follows

that Enci < EncB,ij < Encj i.e. the mechanical energy barrier is somewhere between the

initial and final energy states, which makes intuitive sense for a process which has a

continuous mechanical pathway from mesostate i to mesostate j. We might assume that

the energy barrier for a given transition is in fact dominated by the chemical energy

barrier1 and that the mechanical energy contribution to the barrier is a relatively

small perturbation. In such a case, the activation barrier will be at some point along a

putative reaction co-ordinate between the mesostates i and j. If we further assume that

the effective non-chemical energy varies smoothly along that reaction co-ordinate, the

value of fij we use will depend on the location of the energy barrier along that reaction

co-ordinate. For example, if the energy barrier is about half-way along the reaction

co-ordinate, then we might expect the change in non-chemical energy from state i to

the barrier (EncB,ij − Enci ) to be around half the change in non-chemical energy from

state i to state j (Encj −Enci ) and so fij ≈ 0.5. On the other hand, if the energy barrier

is for some reason close to state j, for example in a sharp chemical binding event, then

EncB,ij − Enci will be almost the same as Encj − Enci and fij ≈ 1. The physical reason

for this would be that the system needs to undertake almost all the mechanical energy

change before it arrives at the chemical energy barrier.

However, there is no physical reason that the mechanical energy barrier is confined to

this range, which has further implications for the value of fij .

The kinetics for the 1D dumbbell model derived in Section 4.4 show there to be fun-

damental limits on the range of fij . The true domain of fij can be found by analysing

1We would perhaps expect this for a process known to be dependent upon a chemical process such
as ATP hydrolysis
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the following term from Equation 4.42,

Rαβ ∝
√√√√ 1

fij

(
kj
ki
− 1
)

+ 1
. (A.11)

The presence of the square-root introduces a limit on its argument, such that for any

transition from mesostate i to mesostate j to physically exist, we require,

fij

(
kj
ki
− 1

)
> −1. (A.12)

This inequality is discontinuous depending on the relative sizes of the two spring con-

stants,

fij :


fij <

1

1−
kj
ki

, kj < ki

fij >
1

1−
kj
ki

, kj > ki

fij undefinied, kj = ki

This piecewise inequality keeps the pre-factor to x′2 in Equation 4.41 negative, so that

the integral over the Boltzmann distribution exists and is non-infinite. These conditions

allow the activation energy barrier to be any size within the FFEA kinetic framework,

and not restricted to the range Enci < ∆EB,ij < Encj . The activation energy may be

arbitrarily large compared with the final difference between mechanical energy states.

For the specific case of kj = ki, Equation A.12 shows us that fij can take any value

and is thus undefined.

As a final note, notice that the only mathematical restriction on fij is in Equation A.1,

required for detailed balance to hold. In general then, fij and fji are not constants as

they are considered in this work, but can be generalised as functionals of the activation

energy barrier EncB,ij in this mathematical framework.



Appendix B

Numerical Stability within the

Kinetic Framework

To generate our test case results in Section 4.4.4 we used arbitrarily defined sets of

rate constants to show the effects of the kinetic scheme on the underlying dynam-

ics. Equipartition of energy was adhered to even as the instantaneous state changes

provided large amounts of energy to the system. However, if the rates are too high

and the energy is introduced too quickly, this is the equivalent to standard numerical

instability within a purely dynamical simulation. Here we include a derivation of the

numerical instability conditions for the one-dimensional bead spring model from Sec-

tion 4.4, and show how they can be applied to the much more complicated systems

involved in FFEA simulations.

We begin again with our equation of motion for the bead separation in the bead-spring

system,

λr
dy

dt
+ ky =

λr
λ2
N2 −

λr
λ1
N1, (B.1)

where y = x′ − l is the deviation from the energy minimum. Equation B.1 is a first

order ODE in y and can therefore be solved exactly using the integrating factor method.

However, as we are interested in numerical stability, we will solve numerically using

a single-step Euler approach. Expanding the partial derivative ∂y
∂t ≈

∆y
∆t , we get the

following form for a single integration step,

y(t+ ∆t) = y(t)

(
1− ∆t

τ

)
+ ∆t

(
N2(t)

λ2
− N1(t)

λ1

)
, (B.2)
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where τ = λr/k. From here, we can determine the result of a series of N applied

integration steps from an initial extension y(0),

y(tN ) = y(0)

(
1− ∆t

τ

)N
,

+ ∆t
N−1∑
n=0

(
1− ∆t

τ

)n(N2(tN−(1+n))

λ2
−
N1(tN−(1+n))

λ1

)
, (B.3)

where ti = i∆t. Here we see our first numerical stability condition, required to keep

the first term of Equation B.3 and many of the summation terms from diverging or

oscillating,

0 < 1− ∆t

τ
≤ 1,

⇒ 0 ≤ ∆t < τ. (B.4)

Equation B.4 is a standard condition and common to all numerical integration tech-

niques. From here we can immediately calculate the expectation value of our spring

extension,

〈y(tN )〉 = y(0)

(
1− ∆t

τ

)N
, (B.5)

as 〈N1〉 = 〈N2〉 = 0 [21]. At N = 0 we see that 〈y(t0)〉 = y(0) as expected. Addition-

ally, as N →∞, 〈y(tN )〉 → 0 showing that as time progresses, the initial extension no

longer affects position expectation.

We now calculate the variance in the extension,

〈y(tN )y(tM )〉 = y(0)2

(
1− ∆t

τ

)2N

,

+ ∆t2
N−1∑
n=0

N−1∑
m=0

(
1− ∆t

τ

)n+m(〈N2(ti)N2(tj)〉
λ2

2

+
〈N1(ti)N1(tj)〉

λ2
1

)
,

(B.6)

where i = N − (1 + n), j = N − (1 + m) and the cross terms 〈N2(ti)N1(tj)〉 =
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〈N1(ti)N2(tj)〉 = 0 due to the spatial delta-correlation of stochastic noise when ap-

plied to a system modelling Brownian motion in this fashion. The noise is also delta-

correlated in time [21] as follows,

〈N1(ti)N1(tj)〉 =
2kBTλ1

∆t
δij ,

〈N2(ti)N2(tj)〉 =
2kBTλ2

∆t
δij ,

and so we can substitute these into Equation B.6,

〈y(tN )2〉 = y(0)2

(
1− ∆t

τ

)2N

+ ∆t
2kBT

λr

N−1∑
n=0

(
1− ∆t

τ

)2n

. (B.7)

We can rewrite both power terms in Equation B.7 under the assumption that ∆t << τ ,

〈y(tN )2〉 = y(0)2

(
1− 2

∆t

τ

)N
+ ∆t

2kBT

λr

N−1∑
n=0

(
1− 2

∆t

τ

)n
. (B.8)

Finally, solving for the geometric series and rearranging to a more useful form gives,

〈y(tN )2〉 =
kBT

k
+

(
y(0)2 − kBT

k

)(
1− 2

∆t

τ

)N
. (B.9)

Again, we look at the limiting cases. At n = 0, 〈y(t0)2〉 = y(0)2, again showing the

expected behaviour. For n→∞, we find that 〈y(tN )2〉 → kBT
k , which is the expected

case of constrained diffusion for the extension of a spring.

Now we understand the equilibration process, we are in a position to understand the

other numerical stability condition arising from the kinetic scheme. Imagine a coupled

kinetic simulation where, at some time after equilibration the system makes a kinetic

transition from state α, defined by kα and lα, to state β, defined by kβ and lβ,. We

choose to define this time as t = 0, and because it is post equilibration we can make

the assumption that the spring extension is the expected value of the original state. As

such, immediately following the transition y(0) = lα− lβ. We can write an equation for

the expectation value of the new energy as a function of time, 〈U(tN )〉 = 0.5kβ〈y(tN )2〉,

〈U(tN )〉 =
1

2
kBT +

1

2

(
kβ(lα − lβ)2 − kBT

)(
1− 2

∆t

τβ

)n
, (B.10)
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where τβ is the time constant associated explicitly with the current kinetic state β.

From here, we define the fractional error in 〈U(tN )〉, e(tN ), as,

e(tN ) =

∣∣〈U(tN )〉 − 1
2kBT

∣∣
1
2kBT

,

=

∣∣∣∣ kβkBT
(lα − lβ)2 − 1

∣∣∣∣ (1− 2
∆t

τβ

)N
,

⇒ e(tN ) = e(0)

(
1− 2

∆t

τβ

)N
. (B.11)

Rearranging Equation B.11 for N will give us the expected number of time steps

required to reach equilibration within a user defined error bound of e(N),

N ≈ ln (e(N))− ln (e(0))

ln
(

1− 2∆t
τβ

) . (B.12)

The denominator of Equation B.12 has a recognisable form; that of the first numeri-

cal stability condition from Equation B.4. This time however, the condition is more

stringent such that for the logarithm to exist,

1− 2
∆t

τβ
> 0,

⇒ ∆t <
1

2
τβ ∀ β. (B.13)

Although Equation B.4 shows that the integration procedure will be numerically stable

if ∆t < τβ, for the physical measurements to be accurate we require the stronger

condition of Equation B.13.

For any value of error, 0 < e(N) < ∞ we define, our integration scheme will be able

to equilibrate within a finite number of time steps following a state transition, as if

e(N) − e(0) > 0 we get a number of time steps required for equilibration. For the

cases where e(N) − e(0) ≤ 0, we the system has already equilibrated to our required

accuracy level. Finally, we see that defining e(N) = 0 gives an equilibration time of

infinite time steps, correctly showing that perfect accuracy is impossible.

Let us define an equilibration time, teqαβ, as the equilibration time following a transition

from state α to state β. This can be written simply as teqαβ = N∆t, with N calcu-

lated from Equation B.12. However, if we choose our kinetic transition rates to be so

quick that we do not leave the system time to re-equilibrate in between subsequent

state transitions, then over the course of a simulation our system will never converge

to equipartition within our defined error bounds. More formally, our final stability
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(a) Running averages of kinetic state occupa-
tion probabilities.

(b) Equilibration of potential energy.

Figure B.1: A numerically inaccurate kinetic system (1D bead-spring model) in
which the rates are so fast that the system cannot reach mechanical equilibrium
between mesostate transitions. We see that mesoscopic detailed balance is adhered

to, but equipartition is not, showing this to be a non-equilibrium system.

condition is,

rβγ <
1

teqαβ
∀ α, γ, (B.14)

where rβγ is the transition rate from state β to some other state γ. In words, this

means that following a transition from state α into state β, all transition rates to

further states γ must be slow enough to allow the system to equilibrate before the

transition occurs.

This final condition is more an accuracy condition than a stability condition, as the nu-

merical integration procedure would not diverge if the condition was not met. However,

Equation B.14 must be statisfied for numerical and physical accuracy. An example of

a system with a set of rates that are too high is shown reaching equilibration in Fig-

ure B.1, where we can see that the occupation probabilities have equilibrated to the

correct values for the set of rates shown in Table 4.2 but the system has not equili-

brated to 〈U〉 6= 1
2kBT , instead equilibrating to a slightly higher value. Within this

simulation, the dynamics are stable but equipartition is not being adhered to. In the

biological systems we have been looking at, rates are often slow enough such that we

do not have to worry about non-equilibrium effects when performing these types of

calculations [132]. However, in simulations where we may wish to accelerate these

rates to save on runtime, we must take these conditions into account.
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Flexibility Convergence

It is often the case with biomolecular simulation, and especially molecular dynamics,

that the amount of conformational space sampled over the course of a simulation is

insufficient to determine the true positional variance, and therefore the real flexibility,

of the molecule in question. A recent paper brought light to this issue with evidence

that certain dynamical modes within proteins have self-similar behavior over 13 or-

ders of magnitude, with relaxation times of 10−13s and ∼ 102s existing within the

same molecules [150]. However, the way in which the variance evolves throughout a

simulation can provide a small amount of detail in itself.

As we saw in Chapter 3, we can extract any over-damped degree of freedom we wish

and, in an appropriate coordinate system, define a 1D equation of motion for that

specific coordinate,

λ
∂x

∂t
+ k(x− x̄) = f(t), (C.1)

where λ is a viscosity component, k is a spring constant and f(t) is the stochastic force

vector applied to the coordinate x, which has an average value x̄. Equation C.1 can be

partially solved using the integrating factor method. Multiplying through by a factor

exp
(
t
τ

)
, where τ = λ/k gives,

∂x

∂t
e
t
τ +

1

τ
e
t
τ (x− x̄) =

1

λ
f(t)e

t
τ . (C.2)

The LHS of Equation C.2 is the result of the product rule, and so can be rewritten as,

∂

∂t

(
(x− x̄)e

t
τ

)
=

1

λ
f(t)e

t
τ , (C.3)
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which can then be integrated over the length of the simulation, t, resulting in,

x(t)− x̄ = (x0 − x̄)e−
t
τ +

1

λ

∫ t

0
f(t′)e

t′−t
τ dt′. (C.4)

Equation C.4 contains the limiting properties that we need. At t = 0, x = x0 and as

t→∞, the term involving x0 tends to 0, leaving a pure stochastic process.

We can use Equation C.4 to calculate the expected statistical moments of a simulation

utilising this equation of motion by taking ensemble averages of the simulation at any

time t. For the first central moment,

〈x(t)− x̄〉 = (x0 − x̄)e−
t
τ +

1

λ

∫ t

0
〈f(t′)〉e

t′−t
τ dt′,

= (x0 − x̄)e−
t
τ , (C.5)

where 〈f(t)〉 = 0 is defined for the RNG contained within FFEA. Equation C.5 shows

that at t = 0, 〈x〉 = x0 and the expected value of x decays towards the mean as t→∞.

The second moment, the variance at any time t is calculated as,

〈(x(t)− x̄)2〉 = (x0 − x̄)2e−
2t
τ +

1

λ2

∫ t

0

∫ t

0
〈f(t′)f(t′′)〉e

t′′+t′−2t
τ dt′dt′′, (C.6)

where the cross multiplied terms equal zero as 〈f(t)〉 = 0. We can again implement the

statistical properties defined within FFEA, where the fluctuation-dissipation theorem

is used to give 〈f(t′)f(t′′)〉 = 2kBTλδ(t
′ − t′′) within the RNG [71], so,

〈(x(t)− x̄)2〉 = (x0 − x̄)2e−
2t
τ + 2

kBT

λ

∫ t

0

∫ t

0
e
t′′+t′−2t

τ δ(t′ − t′′)dt′dt′′. (C.7)

The delta function reduces the number of integrals in Equation C.7,

〈(x(t)− x̄)2〉 = (x0 − x̄)2e−
2t
τ + 2

kBT

λ

∫ t

0
e2 t
′−t
τ dt′, (C.8)

which can then be solved exactly,

〈(x(t)− x̄)2〉 =
kBT

k
+

(
(x0 − x̄)2 − kBT

k

)
e−

2t
τ . (C.9)

Equation C.9 shows that the variance calculated as an ensemble average at any time

t should decay from the initial value of (x0 − x̄)2 towards the final value kBT/k as

t→∞, which is based solely on the true stiffness k. Using this, we can determine the
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expected energy at any time, 〈U〉 = 1
2k〈(x(t)− x̄)2〉,

1

2
k〈(x(t)− x̄)2〉 =

1

2
kBT +

(
1

2
k(x0 − x̄)2 − 1

2
kBT

)
e−

2t
τ . (C.10)

Now as t → ∞, the dependence on both the starting state and the equilibrium state

again decays away, leaving only the theoretical value 〈U〉∞ = 1
2kBT as predicted by

the equipartition theorem.

We see that equipartition statistics only hold as t→∞, or more accurately for t� τ ,

the time constant of this degree of freedom. In many studies however, we see the

equipartition theorem applied to systems for which t ∼ τ or even worse, t < τ . Let us

define a new spring constant, kt, defined as the spring constant with the equipartition

theorem applied at time t,

kt =
kBT

〈(x(t)− x̄)2〉
. (C.11)

We can substitute Equation C.9 into Equation C.11 to obtain,

kt = k
1

1 +
(
k(x0−x̄)2

kBT
− 1
)
e−

2t
τ

, (C.12)

Equation C.12 shows that at t = 0,

kt = k0 =
kBT

(x0 − x̄)2
, (C.13)

which is an elasticity parameter based solely upon the initial extension. At t � τ

however, as with the variance, the term involving both this initial spring constant

decays away, tending towards the true spring constant k when t� τ . Substitution of

Equation C.13 into Equation C.12 gives,

kt = k
1

1 +
(
k
k0
− 1
)
e−

2t
τ

. (C.14)

Equations C.9 and C.14 are both forms of exponential decay which we can fit to the

variance and stiffness trajectories of a simulation. If we assume that the system tends

towards ergodicity, then values of kt or 〈(x(t)− x̄)2〉 can be measured from any single

simulation. Then, by either approximating the value of λ based upon the geometry

of the object in question, or leaving τ as a free parameter, we can least-squares fit an

equation of the form of Equation C.9 or Equation C.14 to extrapolate our simulation

data and calculate a better approximation of the elasticity of the selected coordinate.

It should be noted that we have explicitly used x̄ and not µ, the true mean, to represent
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the mean value as the entire reason for this analysis is that we do not have enough

trajectory data to know the final value of the mean. As such, the most appropriate

implementation of this extrapolation is to calculate the variance at each time t as

variations away from the sample mean of the entire available trajectory.
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