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ABSTRACT

It is known that friction due to boundary layer disturbances can affect the perfor-
mances of many engineering systems and there are many works on the suppression
of the transitional boundary layer. Most of the results on the velocity and pres-
sure in the literature are for the flat-plate boundary layer, but it is interesting to
see how the velocity and pressure change with the curvature. This work aims to
extend the results of the flat-plate boundary layer to a Rankine-body boundary
layer.

A small amplitude, unsteady, three-dimensional perturbation of a mean base
flow is considered. The flow is assumed incompressible and the Reynolds number
high. The analysis is performed in an optimal coordinate system, where the
streamwise coordinate is replaced by the velocity potential and the wall normal
coordinate by the streamfunction associated to the inviscid mean flow given by a
uniform flow which encounters a source flow. The perturbation flow around and
far from the body is solved analytically.

In the viscous region near the body, the base flow satisfies the steady mean
flow equations in optimal coordinates with no similarity. Boundary region equa-
tions in optimal coordinates for the perturbation flow are derived and numerically
solved by imposing no-slip conditions at the wall for the three velocity compo-
nents and appropriate boundary conditions at a large distance from the body.
The latter are found by matching with the outer solution. The boundary region
equations are parabolic in the streamwise coordinate therefore a marching pro-

cedure along this coordinate will be used in the code. Initial conditions to start
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the code are derived.

The results suggest that the mean pressure gradient modifies the shape of the
streamwise velocity profile compared to the one of the flat-plate boundary layer
and the inner perturbation pressure matches the outer one at a large distance
from the body. It is observed that the streamwise wavenumber of the perturbation

plays a key role in the development of streaks.



1. INTRODUCTION

The interaction of a fluid in motion with a solid surface affects the performance of
mechanical, aeronautical, civil and chemical engineering systems. When an object
moves through a fluid, a boundary layer is created on its surface. In this region
viscous effects are not negligible, while far from the body if the Reynolds number
based on the velocity of the flow, the characteristic length and the kinematic
viscosity is high enough, viscosity can be neglected. Normally in this kind of
problem the domain is divided in two regions, one inviscid region far from the
object and the small viscous boundary layer region. The velocity flow within
the boundary layer starts from zero (no-slip condition due to adherence to the
wall) and then it rapidly increases until it reaches the value of the free stream
velocity. The boundary layer can either be laminar or turbulent. In the former
case the fluid flows in parallel and ordered layers while in the latter case the
flow is chaotic. Generally, the boundary layer goes from laminar to turbulent
through a transitional zone. It has been established that turbulent flows exert
a much higher wall friction than laminar flows. Since vehicles such as cars and
airplanes, for example, consume an enormous amount of energy due to friction,
many works have been directed to the suppression of transitional boundary layer
disturbances. It is better achieving drag reduction in the still laminar transitional
zone than in the already developed turbulent one because suppressing small-
amplitude laminar disturbances requires less energy. The reduction of drag has
a great technological importance because it implies a significant decrease of the

enormous amount of energy consumed by airplanes during flight. Moreover flight
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costs and aerodynamic noise could be reduced and number of the passenger per
flight could be increased. Such outcomes could restrict the global warming effect.
Despite the process which governs the transition has been widely studied, at

present is not fully understood.

The flow within the boundary layer is influenced by the external flow. In the
literature there are numerous papers in which the effects of free stream turbulence
(FST) on the boundary layer are analysed. FST is defined by the turbulence level
(Tw) and the turbulence length scales. The experimental work of Matsubara &
Alfredsson (2001) confirms that if 7w is low ( < 1 % ) the transition from lam-
inar to turbulent boundary layer occurs for the growth of Tollmien-Schilichting
(TS) waves; otherwise, if T'u is high ( > 1%) the mechanism which determines the
passage from laminar to turbulent is called bypass transition. During bypass tran-
sition the boundary layer is laminar and the flow is characterised by long stream-
wise perturbations known as streaks. These streaks are also called Klebanoff
distortions, because Klebanoff was among the first to observe the streaks. Due
to non-parallel flow effects, these low-frequency components of three-dimensional
vortical disturbances in the free stream penetrate the boundary layer and they
produce significant distortions in the spanwise direction. There are a large num-
ber of direct laboratory investigations of the transition process in the presence of
Klebanoff fluctuations. [Kendall (1990) observed the intermittent appearance of a
wave packet in the boundary layer at moderate levels of free-stream turbulence.
Even if he did not understand the origin of Klebanoff modes he performed many
experiments which revealed some important characteristic of them. They appear
only when the turbulence level is higher than a threshold, they grow faster than
TS waves and they propagate quickly downstream and slowly in the spanwise
direction. Downstream of the streaky region turbulent spots appear and then a

turbulent boundary layer fully develops.
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In recent years, Klebanoff modes have been widely investigated. Works on a
flat plate geometry are presented in section[[LI]and a review of studies performed
on bluff bodies is presented in section The latter is more relevant for this
project, where the effect of the curvature and the flow at the stagnation point

are investigated.

1.1 Flat plate

1.1.1 Experimental works

Bypass transition has been mainly studied experimentally and all the results
showed that FST induced streamwise streaky structures of alternate high and
low velocity in the boundary layer. [Dryden (1936) obtained information about
the origin of eddies and turbulence effects by performing experiments in a wind
tunnel. He showed that the velocity in the boundary layer was affected by the
turbulence in the free stream and by the pressure gradient. He observed that
the amplitude of fluctuations was higher in the boundary layer than in the free
stream, while the frequency was lower, as if the boundary layer worked as a low-
pass filter. [Taylon (1939) continued to perform experiments in the wind tunnel
and his observations were in agreement with those of [Dryden (1936). In the lit-
erature the first experiments on transitions are attributed to [Klebanoff (1971)
and the observed streaks in the boundary layer are called Klebanoff modes after
him. |Johnson & Ercan (1999) developed a new method to predict boundary layer
transition by modelling the velocity fluctuations induced by FST. They suggested
that the transition process was dominated by low frequencies of perturbations.
Their model was used to predict the start and the end of transition and the
propagation of the spots. They also showed the relation between the integral
length scale and the transition length, which was inversely proportional to the

level of turbulence. In effect, at low turbulence there was a high dependence of
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the length scale, while at high turbulence the transition process was completely
independent of the length scale. Two years later [Matsubara & Alfredsson (2001)
made experiments using techniques like flow visualisation and hot-wire anemom-
etry in order to determine the effects of FST (in the range of 1-6 %) in the
boundary layer. They performed the experiments using grids of various sizes to
generate the free-stream turbulence on a test plate. They determined streamwise
and spanwise scales of the streaky structures, namely the wavelengths of the dis-
turbance. They found that the spanwise velocity decreased moving downstream,
where it approached the boundary layer thickness. Conversely the streamwise
velocity increased and it became proportional to the boundary layer thickness,
going downstream. As it can be seen in Figure [T} their results showed that a
streaky region could be observed in the boundary layer, in which high and low
velocity alternated. They also pointed out that the breakdown of the streaky
structures was associated with a secondary instability which seemed to lead to

turbulence.

Boundary layer transition from laminar to turbulent depends on many param-
eters, such as Reynolds number, T'w and Mach number. In the paper of Walsh
et al. (2004) it was pointed out that transition affect both entropy production
and heat transfer. They also suggested that the boundary layer transition was
only driven by the entropy generation rate and that all the other parameters were
functions of it. [Fransson et al.| (2005) , by making measurements on FST induced
transitions with 1.4 % < Tu < 6.7 %, affirmed that the disturbance energy is
proportional to Tu? and Re (Reynolds number). Like [Matsubara & Alfredsson
(2001) they used different grids to generate turbulence. They made a model of the
the transition zone, with the aim to determine the intermittency of the velocity
signal in it. In effect they found the universal shape of the intermittency function.

This allowed them to determine flow properties in the transitional zone. Moreover



1.1. Flat plate 5

the model of transition zone demonstrated that for Tu > 2.5 % the transition
zone length increased with increasing of T'u. They also found a formula for the
spot production rate. Mans et al. | (2005) analysed in detail oscillations during
bypass transition, using an experimental set-up formed by a water channel and
they found that two secondary instability modes were present: the antisymmetric
one, also called sinuous and the symmetric one, called varicose. The amplitudes
of these spanwise oscillations increased both spatially, specifically in the upstream
direction, and temporarily. When a critical amplitude of each mode was reached,
turbulent spots appeared. A few years later they focused on the antisymmetric
mode to understand how the sinuous secondary instability mode could initiate
the natural breakdown to turbulence. The study showed that this instability
resulted in a streak configuration in which low-speed streaks were near to each
other in the spanwise direction and that pieces of low speed fluid were present
in the high-speed streaks. This interaction led to vortices that then developed in
3D structures (Mans et al. |, 2007). Liepmann & Nosenchuck (1982) used active
feedback control to reduce the TS wave amplitude and then to delay transition
to turbulence. Their work is different from the previous experimental works since

they used phase control instead of the modification of the mean-velocity profiles.

1.1.2 DNS works

Direct numerical simulation (DNS) is a method to numerically solve the Navier-
Stokes equations. Many authors performed simulations on bypass transition in-
duced by free-stream turbulence (sometimes in complement with laboratory ex-
periments). [Kleiser & Zang (1991) reviewed some work about direct numerical
simulation on transition. In particular they discussed the interaction between
different theories and numerical results. They pointed out that the principal ob-

jective of numerical simulations was to obtain a complete model of the transition
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Fig. 1.1: Development of a streak instability. The time between frames is 20 ms, the

free-stream velocity is 2 ms~! and the speed of the structure is about 0.5 U,,.

Matsubara & Alfredsson, 2001).
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process. Landahl (1980) showed that inviscid parallel flows exhibited kinetic en-
ergy growth associated with the streamwise velocity component. He confirmed
the presence of long streaks in the boundary layer which depended on the am-
plitude of the free stream velocity. The linearized theory used in his work was
limited by nonlinear effects and secondary instabilities, namely his results were
valid only in the hypothesis that the characteristic length is much larger than
the initial velocity perturbation (multiplied by time). In other words, his re-
sults were only valid in a small time interval. [Rist & Fasel (1995) developed
a method based on the spatial-mode to reproduce the laboratory experiments.
By analysing the numerical results they identified the shear layers and vortical
structures. They understood that different visualisation techniques could give
different observations in some mechanisms, while their numerical results were in

perfect agreement with the experiments of Klebanoff.

Jacobs & Durbin (2001) depicted eddies and interactions between the modes
of the perturbation flow during transition induced by free-stream turbulence.
Their simulations showed that when low-frequency modes penetrated the bound-
ary layer, they produced lower frequency modes, which were amplified by the
shear and they developed into streaks in the streamwise velocity. These streaks
had the same shape and behavior of those observed in the experimental measure-
ments. The results showed that streaks were stable if they remained near the
wall, mechanism known as transient growth, because there is an initial growth
followed by exponential decay; instead if they lifted up, the disturbance rapidly
grew and turbulent spots appeared. Then the spots led to turbulent boundary
layer. Brandt & Henningson (2002) studied the transitions originated by sinuous
instability in an incompressible flat-plate-boundary-layer flow. They found that
during the transition process elongated streamwise vortices were present. At the

late stages, far from the wall the periodic motion continued while close to the
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wall they observed turbulent spots.

Zaki & Durbin (2005) explored the penetration of external vortical distur-
bances in the boundary layer, by studying Orr-Sommerfeld modes interaction.
The evolution of modes was analysed by DNS and the domain included bound-
ary region zone inside the boundary layer. The transition process was simulated
with two modes: one strongly coupled and one weakly coupled high-frequency
mode. Results showed that if one mode penetrated the boundary layer and the
other one did not, there was transition. In this paper it was confirmed that low
frequencies penetrated the boundary layer and they led to Klebanoff modes. Zaki
& Durbin (2006) continued their studies by investigating the role of the pressure
gradient on the flat-plate transitional boundary layer by changing the angle of
attack 8. Their results showed that under adverse pressure gradients the Kle-
banoff distortions were stronger and the transition occurred earlier. Moreover,
they observed that for high turbulence levels the transition was independent by
the pressure gradient. They also underlined that the effect of the pressure gradi-
ent on the amplitude of the streaks was enhanced by scaling the velocity by the

local mean velocity, namely considering the spatial variation of the mean flow.

Ovchinnikov et al. (2008) made DNS of bypass transition due to high-
amplitude FST to study the effects of the FST length scale and disturbance
behavior near the leading edge. They performed different DNS of boundary layer
transition in order to study how the transition behavior changed with the varia-
tion of the FST length scale. Results showed the importance of the FST length
scale to start the transition and also to determine the physical mechanism. They
concluded by suggesting that different FST length scales would produce differ-
ent disturbance growth rates in the boundary layer and this would explain the

differences in the measured transition origins in the experiments.
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1.1.3 Theoretical works

For a long time bypass transition has only been experimentally observed, but it
could not be theoretically explained. During the 1980’s and the 1990’s a new
mechanism was discovered. It was called algebraic growth. In more recent years
the role of algebraic growth was theoretically explained by transient growth the-
ory which is a candidate mechanism for bypass transition because it is essentially
algebraic growth followed by exponential decay. One of the first works based on
transient growth theory is [Libby & Fox (1964). They used perturbations of the
Blasius solution to describe the velocity fields associated with different flows and
they described the linearization procedure to improve each perturbation solution
in order to obtain high-order effects. They considered that the initial velocity
profiles deviated from the Blasius solution. A more recent work is of Butler &
Farrell (1992), who attempted to explain the transition to turbulence for stable
modes in channel flow. They found the 3D optimal perturbations responsible
of the streaks of streamwise velocity. They had a profound effect on the flow,
in effect they were the cause of streaks which could lead to secondary instabil-
ities. Butler & Farrell (1992)’s work demonstrated that using 3D disturbances,
instead of 2D disturbances, was a better approach to describe the development
of small disturbances. In the same period [Luchini (1996) found an unstable 3D
perturbation which developed at any Reynolds number, in contrast to previously
known flow instabilities. The flow did not depended on Reynolds number because
Prandtl’s boundary layer equation were used (Reynolds number scaled out). Be-
fore his work, the known effects which caused instabilities were the TS waves
and Gortler vortices. In [Libby & Fox (1964) a 2D perturbation was assumed,
but the response of a 2D flow to a 3D perturbation could be different. [Luchini
(1996) considered a non-parallel base flow and this choice had the consequence

that the algebraic growth was not followed by viscous decay, even in presence of
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viscosity. The mathematical model of [Luchini (1996) could describe the initial
linear amplification of bypass transition. In the following sections three different

theoretical approaches are described.

e Optimal growth theory which is a method used to calculate the optimal per-
turbations, namely the initial velocity perturbation profile which produces

the biggest amplification of the disturb.

o Orr-Sommerfeld theory, based on the Orr-Sommerfeld equation, which de-
termines the conditions for the stability. It is very important because the
solution of the Navier-Stokes equations can become unstable under some

conditions of the flow.

e (Goldstein theory is explained in details because this project is based on it.

Optimal growth theory

Luchini (2000) continued his work by determining optimal perturbations with a
new method based on the upstream integration of adjoint equations. He realised
that transient amplification explained the linear growth of initially small distur-
bances. Then a secondary instability excited nonlinear interactions and caused
transition. He found the maximum amplification factor approachable through the
mechanism of algebraic growth and he also determined the spanwise wavenum-
ber corresponding to the maximum amplification factor. Since the amplification
range was centred at zero frequency, the steady case was very easy and interest-
ing to study. He could clarify the strange concordance between the experimental
observations and the theoretical results that the perturbation profiles of transi-
tional flow had a single maximum. He explained this fact by declaring that the
shape of the streak always tended to the shape of the perturbation, even if it was

not the optimal one. |Andersson et al. | (1999) calculated the maximum spatial
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transient growth in the Blasius boundary layer and concluded that the energy

growth is due to vortices aligned in the streamwise direction.

One of the most recent works on optimal growth theory is of [Higuera & Vega
(2009), who constructed a numerical scheme in order to describe streaky pertur-
bations as a streamwise evolving solution of the problem formulated by [Luchini
(1996). They showed that the growth of internal streaky perturbations was alge-
braic instead of exponential and they supported the idea that the optimisation
procedure to define optimal streaks was not necessary because the streamwise

evolution exhibited a growth decay (transient growth).

Orr-Sommerfeld theory

The aim of the Orr-Sommerfeld theory is to study under which conditions the
solution of the Navier-Stokes equations is unstable, namely when the solution
keeps increasing as y — oo ,where y is the coordinate normal to the surface. The
flow is divided in a mean parallel flow (a mean flow with just the streamwise
component) and a perturbation flow in the three directions. Once obtained the
equations for the perturbation flow (collecting terms of order € , with € the ampli-
tude of the perturbation velocity) a periodic solution in x, z and ¢ is substituted
in the equations to obtain the Orr-Sommerfeld equations and the wavenumber
which makes the solution stable can be found.

The solution of the Orr-Sommerfeld equation has both discrete and continuous
modes. Jacobs & Durbin (1998) argued that a general free-stream disturbance
in a viscous flow could be seen as a superposition of continuous modes. In their
paper a method to compute the continuous modes and to show their inability to
penetrate the boundary layer was developed. This latter phenomenon was called
shear sheltering. Results showed that the penetration depth of the disturbance

in the boundary layer depends on frequency and Reynolds number.
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In the recent paper of [Dong & Wu (2013) it was argued that continuous
modes of the Orr-Sommerfeld equations could not be used to represent free-
stream vortical disturbances. The main reason was that they were derived from

the non-parallel-flow approximation.

Goldstein theory and recent works

In recent years many works have been carried out on turbulent flow on a flat
plate. _They aimed to find a solution for the flow in the boundary layer. Leib
et al. (1999) analysed the effects of free-stream turbulence on the pretransitional
boundary layer on a flat plate. The flow is decomposed into the mean flow (a
uniform flow in the streamwise direction) and a purely convected perturbation
flow (in the three directions). The domain is divided in four asymptotic regions
as shown in figure Region I is the inviscid upstream outer region, where the
flow is modified by the presence of the body without considering the displacement
effect; region II is the two dimensional boundary layer region, where the spanwise
viscous effects are negligible respect to the normal viscous effects; region III is the
three dimensional boundary layer region where the spanwise viscous effects are
to take in account; finally, region IV is the downstream outer region, where there
is the displacement effect. They found analytic solutions for equations in region
I, IT and IV and they derived the boundary and initial conditions to numerically

solve the equations in region III.

They assumed that the turbulence velocity satisfied the solenoidal condition.
In region I the flow is determined by Laplace’s equation which can be solved
with the method of variation of parameters. Therefore they found an analytic
solution of the inviscid perturbation velocity. In region II and III the mean flow
solution is determined by Blasius equation, but the perturbation flow in these

two regions has to satisfy different equations.In fact, in region II the boundary
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Fig. 1.2: Flow configuration.

layer thickness is small compared with the disturbance wavelength and thus in
the boundary layer equations the second derivative with respect to the spanwise
direction can be neglected; moreover there is no pressure gradient. The solution of
the boundary layer equations has to satisfy the appropriate upstream boundary
conditions and a solution in this region is found to show that the streamwise

velocity grows linearly with the streamwise coordinate.

In region III, where the boundary layer thickness is of the same order of
the disturbance wavelength, the flow is governed by the linearized unsteady
boundary-region equations, in which the second derivative with respect to the
spanwise direction is not negligible anymore and there is a pressure gradient.
They are solved numerically after having derived the upstream and far-field
boundary conditions by matching the solutions in the near regions. The flow
in region IV is used to derive far-field boundary conditions. Here the mean veloc-
ity components are expressed as the derivatives of the complex streamfunction,

where the displacement effect is considered. There are no pressure fluctuations



14 1. Introduction

in this region and the perturbation velocity is determined by introducing the
streamfunction variable in place of the normal one. The analytic solution in re-
gion IV is found and then it is used as a boundary condition for the large-n form
of boundary region equations , where 7 is the rescaled normal coordinate.

Since the equations are linearized they could divide the solution in individual
Fourier components and they showed that the low-frequency transverse velocity
fluctuations in the free-stream are the cause of Klebanoff modes. In section
some of the numerical results of ILeib et al. | (1999) are shown.

A few years later Wundrow & Goldstein (2001) considered the general case of
the effects on a laminar boundary layer of small-amplitude, steady, streamwise
vorticity in the upstream flow, by taking a finite Reynolds number. They showed
that the upstream linear perturbation led to a downstream small nonlinear per-
turbation. Ricco et al.| (2011) generalised the results of Wundrow & Goldstein
(2001) to an unsteady case, then considering ki/e = O(1) , where k; is the
streamwise dimensionless wavenumber. They studied the instability of unsteady
nonlinear streaks due to free-stream disturbances on an incompressible laminar
boundary layer. Their attention was focused on long disturbance wavelengths
because it is known that they are responsible for the streak generation. Their
results showed that the nonlinearity can inhibit the amplification of streaks, thus
it has a stabilising effect and nonlinear interactions have an effect of distortion on
the mean flow. These numerical results are in agreement with the experimental

results of [Matsubara & Alfredsson (2001).

1.2 Bluff body

1.2.1 Experimental works

Among all the works on bluff bodies, many studies have focused on understanding

perturbed stagnation point flows and one of the first experimental observations



1.2. Bluff body 15

was that free-stream turbulence induce large heat transfer enhancement at the
stagnation point. Later it was recognised that the turbulence length scale was a
key parameter in determining the effects of the free-stream turbulence, in partic-
ular it was found that the heat transfer enhancement increases with increasing
Reynolds number and turbulence intensity and decreases with decreasing turbu-

lence length scale.

Experimental observations are discussed in |Bearman (1972), Bearman &
Morel (1983), Maciejewski & Moffat (1992) and [Ueda et al. | (1997). Bearman
(1972) measured the distortion of turbulence approaching a two-dimensional bluff
body. His experimental results were in agreement with the basic theory of [Hunt
(1973).A few years later Bearman & Morel (1983) performed experiments in a
wind tunnel on a bluff body which encountered a fluid with a high level of free
stream turbulence at high Reynolds numbers. The main topic of the work was
the effect of the interaction between the mean flow and free stream turbulence
on the drag of bluff bodies. They described the main mechanisms whereby this
interaction occurred to predict the effects of free stream turbulence at differ-
ent locations. Three basic mechanisms were found: accelerated transition to
turbulence, enhanced mixing and entrainment and the distortion of free stream
turbulence itself by the mean flow. These mechanisms could act all together,
even if at different points of the flow. It was proved that the effect of free-stream
turbulence on drug reduction was to increase it. They also observed how the ef-
fects of turbulence changed by modifying the scale from a small value to a value
comparable with the characteristic length of the bluff body. They did not ar-
rive at any relevant conclusion because the effects of turbulence were completely
random by acting on the scale of turbulence, namely they could be amplified,
reduced or not modified at all. They concluded that high level free stream turbu-

lence had significant effects on the flow over bluff bodies but they were not easily
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predictable.

Maciejewski & Moffat (1992) investigated boundary layer heat transfer with
very high free stream turbulence. The experiment was performed by placing a
surface which had constant temperature at different locations in a turbulent free
jet. They measured the heat transfer rate on the surface and and the level of
turbulence in the free stream. They found that at high level of turbulence the
heat transfer was increased more than it was predicted in previous experiments in
which the level of turbulence was lower, considering the same Reynolds number.
Their research was among the first to explain what happened at high inten-
sity anisotropic turbulence. [Ueda et al. | (1997) experimentally studied velocity
statistics along the stagnation line of an axi-symmetric stagnating turbulent flow.
They took measurements of the instantaneous streamwise and normal velocity by
using a laser-Doppler velocimetry. During the experiments they changed the tur-
bulence level in the air flow by using a turbulence generator. In the previous
experimental works the measurements were performed by hot-wire anemometry
technique and this was a problem because flow was disturbed by the presence of
the probe and the heat was lost from the hot wire to the wall. With the laser-
Doppler velocimetry it was possible to take more accurate data close to the wall.
Their results showed that with the installation of the turbulence generator, near
the stagnation wall turbulence structures appeared. At high level of turbulence
the streamwise mean velocity component was found to increase with increasing
the distance from the wall until it started to increase linearly as in the case of low
turbulence. The streamwise perturbation velocity component had the same be-
haviour of the mean velocity, while the normal perturbation velocity component

increased by approaching the wall where it reached a maximum value.
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1.2.2 DNS works

DNS and large eddy simulation (LES) have been widely used to study the flow
around a bluff body. LES solves the low-pass filtered Navier-Stokes equations, as
a result, LES resolves the large scale flow structures, but represents the effect of

the small scale ones using subgrid-scale models.

Two examples of LES are presented in Xiong & Lelé (2001) and [Huai et al.

(1999).

Xiong & Lele (2001) performed a large eddy simulation of leading-edge heat
transfer under free-stream turbulence. The aim was to understand the mech-
anism of heat transfer augmentation and also to evaluate if LES could predict
heat transfer processes in the gas turbine environment. This was of essential
importance for the gas turbine design since combustors normally generate sig-
nificant free-stream turbulence. They solved the three-dimensional compressible
Navier-Stokes equations using a high-order finite difference method and an im-
plicit time marching scheme. Numerical results showed that for small disturbance
amplitudes the heat transfer increased significantly and also that when the dis-
turbance length scale was increased, the enhancement decreased. They found
an optimal length scale for which the heat transfer had its highest value. The
free-stream turbulence was the cause of three main processes on the leading edge.
The first one was the turbulence decay, the second one the inviscid distortion and
finally the viscous interaction. The structures responsible for the heat transfer
enhancement were found to be strong streamwise vortices on the wall. They used
the local boundary layer thickness to characterise the scale of these structures
at different Reynolds numbers. Their numerical results were in good agreement
with experimental measurements only at relatively low Reynolds numbers, while
for higher ones they used a hybrid simulation, namely LES method outside the

boundary layer and a finer DNS-like grid within it because in the region close to
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the wall smaller effects were present. [Huai et al.| (1999) computed the evolution of
the disturbances leading to transition on a swept wedge by large-eddy simulation.
The velocity and pressure were decomposed into a large-scale component and a
subrigid-scale component and a filtering operation was applied to the continuity
and Navier-Stokes equations in order to obtain the governing equations which
were solved by using the fractional-time-step method. Their results showed that
for stationary-crossflow-dominated transition the simulations were in agreement
with the wind tunnel experiments and direct numerical simulations. They found

the same shape of the structure and could predict the same transition location.

Thanks to DNS, some progress in understanding the effects of FST has been
done, because DNS allows the visualization of typical flow structures. Most of
the works focus on the downstream region of the body, without considering the
interaction with the flow upstream, also known as receptivity. However, receptiv-
ity is very important to determine the correct amplitude of the perturbation flow
inside the boundary layer and to understand how outer disturbances penetrate

ad interact with the boundary layer.

Attention has been given to receptivity by [Tempelmann et al. | (2012), who
investigated the linear receptivity of a swept-wing boundary layer by direct nu-
merical simulation by solving the linearised Navier-Stokes equations. They as-
sumed the disturbance to be periodic in time and spanwise direction and used
Dirichlet boundary conditions. They focused on finding the optimal disturbance
which gave the largest receptivity. They showed that the optimal surface rough-
ness had the form of a wavy wall with maximum amplitude near the stagnation
line and that under these conditions the boundary-layer receptivity was higher

than to free-stream disturbances.

Some other relevant works on DNS is here reported to outline the state of the

art.
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Bae et al. (2003) performed a direct numerical simulation for stagnation
point flow with free-stream turbulence given as a precomputed field of isotropic
turbulence. Their objectives were to obtain realistic stagnation flow turbulence
and to apply the results with the organised inflow disturbances in case of free-
stream turbulence. They used an optimised finite difference scheme to reduce
the computational cost of DNS. They considered a high Reynolds number based
on a reference length scale and they set different values of intensity of the free-
stream turbulence. They also changed the turbulence length scale, which was
a multiple of the laminar boundary layer thickness. Their results showed that
the streamwise vortices were stretched in the streamwise direction and because of
this, the temperature field was also stretched in the same direction. The evolution
of the streamwise vorticity outside the boundary layer made the turbulent dif-
fusion of the normal mean momentum much larger than that of the streamwise
one. They also investigated the evolution of flow structures in the stagnation
region and demonstrated that outside the boundary layer the stretched struc-
tures were preserved, while in the stagnation region the near-wall flow structure
was affected by the mechanism which also occurred in shear-layer flows. They
concluded their paper by suggesting that the effect of large-scale edges played
a fundamental role in the enhancement of the turbulent stagnation region heat
transfer. [Venema et al.| (2014) simulated by direct numerical simulation the flow
and the heat transfer in a tandem cylinder setup. Previous investigations had
shown that free-stream turbulence caused an increase in the heat transfer near
the stagnation region. The important parameters describing the models were
the Reynolds number, the turbulence intensity and the turbulence length scale.
They studied the mechanism for which the heat transfer increased and they also
analysed the flow development and the turbulent structures. In particular they

focused on the sensitivity of the heat transfer to the wake generator distance
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because they were particularly interested in the location of the maximum heat
transfer increase. Since in their DNS study they could not increase the Reynolds
number to obtain the changing of wake, they increased the distance between the
two cylinders. In this way the characteristic turbulence intensity was reduced.
The results with larger distance between the cylinders were in good agreement
with the experimental observations. They observed instantaneously the flow field
and they found out that elongated flow structures which penetrated the boundary
layer were the cause for the increase of the heat transfer. They finally pointed out
that downstream of the stagnation point there probably was a larger heat trans-
fer increase. In recent years many authors focused on receptivity in stagnation

point boundary layer.

Obrist et al. (2012) investigated by DNS the transition mechanism into a
swept Hiemenz boundary layer. The free stream flow was given by a mean flow
with two superimposed stationary rotating vortex-like disturbances. The streaks
created in the boundary layer could either decay or exhibit a secondary instabil-
ity which then led to turbulence downstream, depending on the amplitude and
frequency of the free-stream turbulence. The inflow boundary conditions for the
perturbed flow were of Dirichlet type, while the outflow boundary conditions were
of convective type. As initial condition to start the simulation they chose to use
an unperturbed flow field. Their results showed that by keeping the same free-
stream perturbation amplitude and changing the frequency, the breakdown to
turbulence occurred at different streamwise positions. In particular, the break-
down was first reached in the medium frequency configuration, it was reached
later in the slow frequency configuration and the streaks remained laminar in the
fast frequency configuration. \John et al.| (2014) showed that the transition mech-
anism in the swept Hiemenz boundary layer could be stabilised by uniform wall

suction. They performed a Fourier-Hermite spectral decomposition to estimate
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the growth rate of the secondary instability. Their results showed that suction
could reduce the growth rate of the secondary instability because it inhibited the
growth of the streaks. In other words even if the growth rate was positive (but
small) there may not be transition to turbulence due to the fact that the primary
streaks decay quicker. They also studied the effect of changing the Reynolds
number and demonstrated that by increasing it, the growth rate of the secondary

instability became larger.

Guegan et al. (2007) used direct numerical simulation and a optimization
algorithm to determine the optimal perturbation in swept Hiemenz flow. They
superimposed to the analytical solution of swept Hiemenz flow an infinitesimal
perturbation which was periodic in the spanwise direction. The optimal perturba-
tion was the initial perturbation with the most amplified energy over a finite time
and they found it to consist of spanwise vortices. [Pérez et al.| (2012) investigated
the linear global instability of non-orthogonal incompressible swept attachment-
line boundary-layer flow. They considered a basic flow given by the combination
of a two-dimensional non-orthogonal flow and a swept flow and solved the gov-
erning equations numerically with a shooting method. They employed both the
BiGlobal instability problem and DNS to analyse the linear instability and com-
pared the two methodologies. Their interest was then focused on the model of the
global instability and the effect of the o parameter on their numerical solutions,
where a was the angle of attack. In particular they wanted to understand if the
agreement between the two numerical methodologies employed was maintained

by changing «. They showed that if o was decreased the flow is destabilised.

Mack et al. (2008) focused their attention to the connection between attachment-
line and crossflow modes by using an iterative method together with direct nu-
merical simulations. They considered a compressible flow around a parabolic

body and they first studied the stability of a two-dimensional perturbation flow
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superimposed to a two-dimensional base flow in order to use this base flow for
the global stability analysis. They concluded that the global spectrum of a swept
body contained both attachment-line modes and crossflow modes and their nu-

merical results were in agreement with the previous experimental observations.

1.2.3 Theoretical works

In his most important work, Hiemenz in 1911 established that stagnation point
flow admitted exact solutions of the Navier-Stokes equations. [Sutera et al.| (1963)
performed a mathematical model of the sensitivity of heat transfer in the stag-
nation point boundary layer to free-stream vorticity. They were inspired by the
experimental evidences that such vorticity, of small intensity in the free stream
flow, amplified near the boundary layer. They considered a viscous, incompress-
ible, steady flow with a small amount of vorticity added and transported by the
mean stream. They focused on the region near the stagnation point, basically
they chose a case very similar to Hiemenz flow but with vorticity. The solution
of the perturbation flow differed from the classical Hiemenz solution because it
described a three-dimensional flow field. They obtained a system of nonlinear
partial differential equations whose unknown functions were the three pertur-
bation velocity components. Because of the nonlinearity the components were
coupled to each other, resulting in an exchange of energy among eddies of dif-
ferent size. They found out that the vorticity which entered the boundary layer
being transported by the mean flow, was parallel to the wall and thus it had the
orientation to be stretched in the stagnation point. This was the cause of the
generation of three-dimensional effects within the boundary layer. From their
model they also stated that only those components with wavelength equal to or
larger than a cut-off wavelength could enter the boundary layer. However the

process of nonlinearity generated vorticity of smaller scale within the boundary
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layer.

Sadeh et al. (1970) analysed the vorticity amplification in a flow approaching
a two dimensional stagnation point. Their work was based on the theory of Sutera
et al. (1963) which stated that the main mechanism through which small turbu-
lence in the free stream amplified at the wall was the vorticity amplification near
the stagnation point. This theory was called The vorticity amplification theory
and it was valid for a steady, two-dimensional stagnation flow of a viscous, incom-
pressible fluid with constant properties. The considered case was very similar to
the Hiemenz flow with the difference of added vorticity to the flow. According to
this theory, the streamwise velocity component was the only one which was am-
plified in the stagnation point flow. Moreover the amplification depended on the
wavelength of the vorticity, in particular only from a specific neutral wavelength
there was amplification. The principal objective of [Sadeh et al. | (1970) was to
extend the vorticity amplification model but considering the flow outside and
far from the boundary layer. They considered a steady, viscous, incompressible
flow past a circular cylinder with a superimposed sinusoidal perturbation. The
considered Reynolds number was high (O(10°)). They started from the Hiemenz
flow solution, namely from the linear variation of the velocity components near
the stagnation point. Then they took an approximate form of this solution near
the stagnation point for the mean flow and subsequently they tried a similar form
solution for the perturbation velocity. By substituting it in the equations of the
perturbation flow previously found, they numerically computed the perturbation
velocity in the outer region. Their results showed the amplification of vorticity,
by stretching mechanism namely the vorticity of scale larger than the neutral

scale was amplified and it gave the input vorticity in the boundary layer.

A great deal of attention has been given to the stability of stagnation-point

flows and bluff-body flows. Kestin & Wood (1970) investigated the stability of
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two-dimensional stagnation flow showing that it was unstable if a three-dimensional
disturbance was superimposed to the base flow. They considered an incompress-
ible flow over a two-dimensional blunt body and pointed out that the mean ve-
locity did not grow with y far away from the body, but it reached a constant
mean value upstream which was used as outer boundary condition for the mean
flow. A small disturbance periodic in the spanwise direction z direction was
superimposed to the base flow and it was required that the perturbation ampli-
tude vanished in the free stream. They derived the linearised equations for the
perturbation flow by using the vorticity in order to eliminate the pressure and
obtained the asymptotic solution of the vorticity as n — oco. They used the vor-
ticity equation to analyse the spectrum and found that the flow was unstable and
it consisted of counter-rotating vortices with a unique wavelength in the span-
wise direction. [Theofilis (1994) used a spectral method to obtain the solution of
the Orr-Sommerfeld equation. He considered a three-dimensional Hiemenz base
flow with a non-zero spanwise velocity component with a superimposed perur-
bation flow periodic in the spanwise direction. He derived the equations for the
perturbation flow by using the velocity-vorticity form of the unsteady Navier-
Stokes equations. As far field boundary conditions, the perturbation velocity
and vorticity components were assumed to vanish. He simplified the linearised
perturbation equations by assuming that the base flow had a predominant span-
wise direction and he then found the Orr-Sommerfeld equation related with the
disturbance. His results showed that the solution of the Orr-Sommerfeld equation
could be used to predict the eigenspectrum for unstable and stable modes and in
particular a couple of modes seemed to have similar frequencies and their inter-
action can lead to destabilisation of the boundary layer. Mack & Schmid (2011)
investigated the global stability of a three-dimensional compressible supersonic

flow around a parabolic body. The previous models consisted in breaking the
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domain in two regions: the stagnation point and the downstream region where
the boundary layer was three-dimensional. Their model gave a more complete
vision of the perturbation dynamics. They decomposed the flow into a mean flow
and a perturbation flow periodic in time and spanwise direction and substituted
it into the Navier-Stokes equations obtaining a system of linear partial differen-
tial equations. They used iterative techniques such as the Arnoldi method in
order to have stability information and employed the Cayley transformation to
accelerate the convergence of the method. Their results showed that there were
different modal structures. The boundary-layer modes which described the per-
turbation dynamics were vortices which became unstable for specific parameters.
The acoustic modes were divided in two categories: wave structures and acoustic
standing waves. The wavepacket modes were the equivalent of the continuous

spectrum.

Theofilis (1993) performed a numerical study on the stability of the swept
attachment line boundary layer. He used a shooting method to solve the equa-
tions for the three-dimensional base flow where a parameter was introduced in
order to control the blowing/suction in the boundary layer. The perturbation
equations were derived in the velocity-vorticity formulation and then discretized
using a second-order finite difference scheme in the normal direction and a pseu-
dospectral method in the spanwise direction. He assumed that only the chordwise
velocity components of both the mean flow and perturbation flow depended on
the chordwise coordinate. He then employied the Fourier transform to obtain a
set of equations in spectral space for the perturbation flow. The no-slip condition
at the wall for the streamwise and spanwise velocity components was set and the
disturbance was assumed to vanish at large distances from the plate. He consid-
ered several cases for the normal velocity component at the wall which was the

forcing term. He was among the first to use an initial value problem approach,
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and his work is useful to study the stability a the attachment line. Brattkus
& Davis (1991) studied the stability of stagnation-point flow for several distur-
bances. They set no-slip boundary conditions at the wall and vanishing boundary
conditions at a large distance from the wall assuming the exponential decay of
the disturbances and assuring a discrete spectrum model which means consider-
ing that the disturbance originates within the boundary layer. They considered
long wave disturbances which slowly varied along the streamwise direction, self-
similar disturbances which were of the same form of the base flow so that only
the streamwise component depended on the streamwise coordinate, generalised
Gortler disturbances which were an extension as a power series of the previous

ones. Their results showed that the self-similar disturbances were the least stable.

The most relevant research efforts on receptivity are reported in the following
works. They are certainly important to put the work herein presented in a broader

context.

Goldstein & Atassi (1976) developed a complete second-order theory for the
unsteady flow about an airfoil due to a periodic gust. This theory had been devel-
oped before but in the linearized approximation giving the same results of a flat
plate with no thickness and angle of attack. They included two small parameters
to formulate the problem correctly: the amplitude of the incident disturbance
and the angle of attack. They supposed that the amplitude of the gust was much
smaller than the amplitude of the mean velocity and that it was of the same
order of the angle of attack. The effect of including these parameters was the
distortion of the initial gust by the mean potential flow over the body, which in-
duced variations of the wavelength, amplitude and phase of the incident vorticity.
They formulated the problem considering a two-dimensional airfoil immersed in
an incompressible flow with a small amplitude perturbation in the free stream

flow. The solution of the linearized governing equations describing the problem
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were evaluated by taking an asymptotic expansion of the inner region, namely
the boundary region. The boundary conditions were obtained by matching the
outer expansion solution. They obtained an explicit solution for the simplest case
of zero-thickness airfoil. They could not superimpose all the parameters because
the problem would have became nonlinear. Thomas et al. | (2015) were inter-
ested in the receptivity process in the swept Hiemenz boundary layer which was
characterized by the initial flow properties. They considered an incompressible
viscous flow and used the vorticity form of the Navier-Stokes equations to find
the governing disturbance equations. The perturbation was considered periodic
in the spanwise direction and it was represented by a Fourier series. They forced
the flow using suction or blowing at the plate surface distributed as periodic
holes. Once the perturbation flow was generated inside the boundary layer they
could calculate the receptivity amplitude of the disturbance and this was found
to be independent by the wall forcing. The linear analysis showed that the re-
ceptivity amplitude was linearly proportional to the absolute maximum value of

the perturbation velocity.

Obrist & Schmid (2011) extended the flow solution of swept Hiemenz flow to
a swept bluff body flow which consisted of a three-dimensional boundary layer,
an inviscid stagnation-point flow and an outer parallel flow. They showed that in
the Hiemenz model the outer boundary conditions for the perturbation flow were
valid under the assumption that the Hiemenz solution was valid everywhere, but
it was only valid at the stagnation point. In their model they used a different base
flow and inserted it into the stability equations in order to find diverging modes.
By using the wave packet pseudomodes theory they derived the appropriate outer
boundary conditions. Their results showed how the modes are connected with the
outer flow and they could be used to study the receptivity of leading-edge bound-

ary layer. |Criminale et al.| (1994) investigated the evolution of disturbances in
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stagnation-point flow by considering a small perturbation of a three-dimensional
base flow. The linearised equations for the disturbance were written in terms of
the vorticity and the boundary conditions were the no slip condition at the wall
and the disturbance vanished at large distance from the plate. The initial con-
dition was derived considering that the disturbance at initial time was bounded
in all directions. The coordinates were changed from Cartesian to moving coor-
dinates with the advantage that in this new coordinate system the coefficients of
the equations only depended on time. They then employed Fourier transforms
in the new directions and found the analytical solution of the disturbance equa-
tions. They showed that while the planar stagnation-point flow was stable, the
fully three-dimensional flow could be stable or unstable depending on the position

along the transverse direction.

Lorna & Peake (2016) presented an analytic model which predicted the in-
viscid response to upstream turbulence with the leading-edge stagnation point of
a thin aerofoil. They initially considered one Fourier mode upstream and used
Goldstein (1978) solution for the vortical velocity components. They found an
analytical solution at leading order by considering both high and low frequencies.
In order to do that, they needed to do some approximations such as the Mach
number and body thickness had to be small. Moreover they had to consider a
new asymptotic region to avoid the singularity at the leading edge. They used
this solution to consider the effect of homogeneous weak turbulence upstream.
Their results were in a good agreement with the experimental results only for

high frequencies and their model did not include viscous and nonlinear effects.

van Driest & Blumer (1963) used the boundary layer solution of Pohlhausen
and Falkner-Skan to calculate the effect of pressure gradient on transition. They
introduced the disturbance in the flow, they used the Taylor method which con-

sists in assuming that the pressure disturbances distort the boundary layer. Their
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results showed that for the stagnation point flow the Polhausen and Falkner-Skan
solutions were in good agreement. Xiong & Lele (2004) studied the distortion
of upstream disturbances in a Hiemenz boundary layer, considering an unsteady
incompressible viscous flow. The flow was given by the combination of a steady
two-dimensional mean flow modelled by the Hiemenz boundary-layer flow and
an unsteady three-dimensional perturbation flow. They assumed that the length
scale of the disturbance was much larger than the boundary-layer thickness. The
perturbation was considered periodic in time and spanwise direction so that it
could be expanded in a double Fourier series and only the streamwise velocity
component depended on the streamwise coordinate. They studied the effect of
the perturbation wavelength and amplitude on the numerical solution found using
the over-relaxation method. They also found a composite asymptotic solution for
the vortical disturbances which was valid both inside and outside the Hiemenz
boundary layer. The asymptotic solution was obtained as an explicit dependence
on the disturbance length scale and frequency and they concluded that the pa-
rameter responsible for the amplification of the incoming vorticity was the ratio

between the disturbance length scale and the boundary-layer thickness.

Obrist & Schmid (2010) investigated the continuous spectrum and effect of
free-stream turbulence on a swept Hiemenz flow, focusing on algebraically decay-
ing modes. They performed the analysis using wave packet pseudo-modes which
was an approximation of the governing equations similar to WKBJ method. Their
results confirmed that the swept Hiemenz flow had a continuous spectrum in the
complex plane bounded by the imaginary part of eigenvalues. The modes of the
continuous spectrum represented decaying wave solutions which had the physical
meaning of the communication between the free-stream and the boundary layer
and they were then relevant for receptivity studies. (Gorla (1978) investigated the

response of an axisymmetric stagnation flow to transient free stream velocities.
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The equations were derived and solved numerically by a fourth order Runge-
Kutta method. The results were obtained for two different cases: the first one
was the case where the inviscid flow changed with constant acceleration and the
second case was where the free stream velocity changed exponentially with time.
In both cases the shear stress first increased and then decreased with time and

its maximum value depended on Reynolds number.

In his thesis, Turner (2005) analyzed the evolution of T-S waves over objects
of different geometries, among which was a Rankine body. He observed that the
mean pressure gradient on a Rankine body was adverse for the majority of the
body surface; he performed studies on the effect of the pressure gradient on the
position of the stability point and his results showed that for favourable pres-
sure gradients the stability point moved downstream while for adverse pressure
gradient it moved upstream. The amplitude of the T-S waves was influenced by
the position of the stability point, in particular the amplitude was increased for

adverse pressure gradients.

Rapid distortion theory

Rapid distortion theory is a method for calculating rapidly changing turbulent
flows under the action of different kinds of distortion, such as large-scale veloc-
ity gradients. Inspired by [Tayloy (1935), who calculated the effects of stream
distortion on_a turbulent flow where the disturbance was sinusoidal, Batchelor
& Proudman (1954) obtained the effect of rapid distortion on homogeneous tur-
bulence. They considered the Fourier transform of the turbulent motion and
they integrated [Taylor (1935)’s results. They focused on changes occurring in a
homogeneous turbulent motion when a uniform distortion is added. They were
interested in the changes on properties of a turbulent motion caused by imposing

distortions, because it was empirically known that they could drastically change.



1.2. Bluff body 31

Distortions occur in wind tunnels when there is a reduction in the work sectional
area. A distortion could also be seen as large-scale variation of turbulent mo-
tion, as it produced small-scale velocity variations which could see the large-scale
strain as a superimposed distortion. Even if their results were very interesting,
they could not be validated with experiments because it was really difficult to

obtain distortion so rapid.

Hunt (1973) generalised the rapid distortion theory developed by Batchelor &
Proudman (1954) by calculating the turbulent velocity around a bluff body out-
side of the boundary layer and upstream. The solution to the equations which he
obtained could be found only if the scale of the disturbance was not of the same
order of the characteristic length of the body, because in this case the computing
time was very high. He just showed a qualitative behavior of the velocity when
the two scales were comparable. The theory developed by [Hunt (1973) explained
different mechanisms, such as the governing physical processes of distortion of
the turbulence by the mean flow, the arrest of turbulence by the body and the
concentration of vortex lines at the body’s surface. His research was really inter-
esting for many different reasons. First of all it was the first work which differed
from the other studied cases (Batchelor & Proudman, [1954). Secondly it gave
an overview of the effects of turbulence on boundary layer transitions for bluff
bodies and finally it could be applied to many real situations where a turbulent
flow streamed around obstacles of generic shapes. He based his work on rapid
distortion theory, thus he assumed that each eddy did not exchange energy with
other Fourier components but it was just affected by the mean flow. Under this
hypothesis the problem was linear and then it could be solved by mathematical
methods. Differently from [Batchelor & Proudman (1954) , Hunt (1973) con-
sidered non-homogeneous distortion, namely the scale of the turbulence did not

allow the neglect of the mean flow velocity gradient. Moreover he imposed the
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boundary condition on the turbulence that the velocity normal to the surface of
the body was zero. The body chosen for the analysis was a circular cylinder but
the results could be extended to any body. Even if some of the assumptions made
were not realistic and the analysed turbulent flow was not physically realisable
everywhere around the body, the results could be used to predict some exper-
imental results. In the paper he briefly discussed the comparison between his
theory and the experiments of [Bearman (1972). Theory and experiments both
showed that when the scale of the disturbance was low, high-frequency compo-
nents of the streamwise velocity were amplified while low-frequency components

were reduced near the stagnation streamline.

Goldstein (1978) also worked on rapid distortion theory, to extend the work
of Hunt/ (1973). He considered compressible flows, with no restrictions on the
Mach number value with high Reynolds numbers and he started from the linear
inhomogeneous wave equation of a potential function associated with the pertur-
bation velocity. As usual, he assumed that the upstream disturbance was a small
perturbation of the constant velocity mean flow. He showed that the perturba-
tion velocity consisted of two parts: one was a known function of the imposed
upstream distortion and the mean flow, it was also called gust and it was purely
convected, it had zero-divergence and it was decoupled from the fluctuations in
pressure; the other one was an irrotational disturbance, given by the gradient
of the potential function which was the solution of the wave e equation and it
was related to pressure fluctuations. The source term of the inhomogeneous wave
equation was found to be zero upstream because it was given by the divergence
of the density multiplied by the perturbation velocity. Since the density was
considered constant upstream and one of the assumption was that the imposed
perturbation satisfied the continuity equation, namely its divergence was equal

to zero, the source term was zero upstream and then the solution of the homoge-
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neous wave equation was zero in this region. However, approaching the body, the
perturbation was distorted by the mean flow and thus its divergence was different
from zero, resulting in a source term in the wave equation and then a non-zero
solution for it, at finite distances from the obstacle. The potential velocity field
produced by the distortion gave pressure fluctuations. Remembering that the
perturbation velocity was given by two parts and noticing that the first one was
not zero in general at the wall, then the second part given by the potential flow
had to balance it to satisfy the boundary condition. Thus, even if the effect of the
distortion of the mean flow was not considered, pressure fluctuations would still
have been produced. From a mathematical point of view, pressure fluctuations
could then be seen as a necessary term to balance the fluctuations in momentum

which arised from the distortion of the gust by the mean flow around the object.

Goldstein (1984) focused on the solution of the external flow around a body
of generic shape where a small-amplitude, unsteady, viscous motion was imposed
on steady potential flow. He derived the equations for the perturbation velocity
and then divided the solution for it in two parts: the first one is the homogeneous
solution which satisfies the momentum equation without the forcing term (namely
without the pressure gradient); the second one is the potential solution, from
which the outer pressure is derived. The total perturbation velocity is given by
the summation of these two solutions. He first found the homogeneous solution by
WKBJ theory, a method to find the solution of partial differential equations and
then from the continuity equation he calculated the potential solution. By using
this theory he looked for the phase and the amplitude of the perturbation velocity.
The equation for the phase in a new coordinate system is found to be the Eikonal
equation. He found a complete analytic solution of the perturbation velocity by
changing coordinates. This change of coordinates will be better explained in the

next chapter and it is very important because it will be used in this project.
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Goldstein (1984) supposed that the steady potential flow is not influenced by
viscous effects and to study the problem he included viscous effects in rapid
distortion theory. He used his results to calculate the flow over a circular cylinder
and he showed the numerical results for large Reynolds numbers. In particular
he focused on the behavior of the streamwise perturbation component velocity
along the mean flow stagnation streamline. Its absolute value vanishes when the
dimensionless wavenumbers along the perpendicular directions go either to zero
or infinity. Moreover, plots of the same function versus the streamwise coordinate
show that it decreases as the coordinate goes to zero. Finally, it is very important

to remark that these results are valid just for high Reynolds numbers.

1.3 Objectives

In the literature, several theories have been presented to understand the transition
from laminar to turbulence. However, to the author’s best knowledge, very few
publications can be found in the literature that address the issue of understanding
the evolution of Klebanoff modes on bluff bodies. The interaction between the
outer flow and the flow inside the boundary layer has been scarcely investigated
from the theoretical point of view.

The major lack in the literature is that most of the previous studies do not
take into account the outer flow dynamics which is fundamental to determine the
correct amplitude of the streaks. Even though the dynamics of the streaks has
been widely investigated in recent years, most results have been obtained without
considering the outer flow dynamics and the perturbation at the leading edge or
stagnation point. Nonetheless, it is possible to further explain the evolution of the
streaks by using the proper mathematical formulation. With this goal, this work
seeks to analyse the dynamics of the Klebanoff modes on a bluff body in order to

make a contribution to understanding the transition to turbulence. In particular
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a Rankine body, obtained by the combination of a uniform flow with a source, is
considered because it is representative of many engineering systems. Two main
issues arise when dealing with the analysis of combined pressure gradient and

curvature on the pre-transitional boundary layer.
e [t is important to identify the streaks with accelerating mean flow.
e [t is crucial to compute the outer flow dynamics

Based on the approach presented in [Leib et al.| (1999), we present a rigorous
mathematical approach which consists of analysing the outer perturbation flow
and deriving the boundary region equations. Furthermore the correct initial
conditions are used to initiate the numerical simulations.

The results could eventually lead to a better understanding of the dynamics

of several physical mechanisms.






2. MATHEMATICAL FORMULATION

We consider a uniform flow of velocity UZ, encountering a large scale bluff body.
We chose a Rankine body since several engineering systems such as submarines,
turbine blades, airplane wings can be well represented by it. The stagnation
point is the first region encountered by the flow and the velocity here is zero. The
curvature is responsible for a mean pressure gradient. When the flow encounters
the body a laminar viscous boundary layer is created on its surface.

A small amplitude, unsteady, three-dimensional kinematic perturbation flow
is superimposed to the base flow. The free-stream disturbance is assumed of
the convected gust type at sufficiently large distance from the body, an excellent
model for oncoming turbulent flows of small amplitude, as if it was generated by
a grid. When the flow encounters the body both the mean and the perturbation
flow are distorted and they become parallel downstream. Figure 2] shows the
Rankine body and the flow generated by the grid. The origin of the Cartesian and
polar coordinate system is at the point source. The flow moves in the streamwise
direction. A rotated Cartesian coordinate system is used at the stagnation point
with origin located at the stagnation point.

A Rankine body is represented mathematically by a uniform flow which en-
counters a source flow (Anderson (2007)). The domain is divided in two asymp-
totic regions, corresponding to region III and IV of [Leib et al.| (1999): the outer
region around the body where the mean flow is inviscid and the inner thin vis-
cous boundary layer region. We only consider two asympotic regions because

the boundary layer of a Rankine body has a thickness at the stagnation point,
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Fig. 2.1: Perturbed flow around the body. The origin of Cartesian and polar coordinate

system is at the point source. At the stagnation point a rotated coordinate

system is used.
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therefore the perturbation flow inside the boundary layer is three dimensional
alongside the whole body’s surface as in region III of [Leib et al.| (1999). The
outer flow of a Rankine body is displaced at the stagnation point and around the
body as in region IV of [Leib et al. | (1999). In both regions the flow is decom-
posed into a mean flow and a perturbation flow. The outer mean flow is inviscid,
two-dimensional, given by a uniform flow encountering the flow produced by a
point source and it is displaced by the presence of the body. The displacement
effect is due to the actual viscous flow in the boundary layer. The streamline
external to the boundary layer is deflected upward a distance which is exactly
the boundary layer thickness. The displacement effect gives rise to the concept of
an effective body, namely the free stream sees the contour of the boundary layer
as if it was the body. The mean pressure is computed by the Bernoulli equation.
It is assumed that the outer perturbation flow has a periodic modulation along
the spanwise direction and time and that its spatial scales are much smaller that
the mean-flow scale. Helmholtz decomposition is used to decompose the velocity
into a homogeneous part and a potential contribution related to the pressure. It
will be shown that the outer perturbation pressure is of the same order of the
inner perturbation pressure, which means that the perturbation pressure inside
the boundary layer does not decay far from the body, unlike what happens on a
flat plate. As for the free-stream, the boundary layer flow is divided in a mean
flow and in a perturbation flow, both viscous. The mean boundary layer flow is
two-dimensional and for this reason a streamfunction can be defined, in analogy
with Blasius flow. This streamfunction depends on an unknown function F which
has a relationship with both of the components of the mean flow velocity. By
substituting these relationships in the equations of the mean flow, a nonlinear
third order equation for F' is obtained. This equation is the steady nonlinear

equation for the mean flow with no similarity, because there is a dependence
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on the streamwise variable. The solution of the inner mean flow is known at
the stagnation point, it is called the Hiemenz solution. The inner perturbation
flow is viscous and three-dimensional and it is governed by the boundary region
equations. Once the velocity and pressure disturbance are obtained everywhere
outside of the thin boundary layer, they are used to formulate the outer boundary
conditions of the boundary region equations. Although the asymptotic matching
is employed to find the composite mean flow, the same approach cannot be used
for the perturbation flow. The reason is that the solution of the outer perturba-
tion flow is obtained in a region where the outer mean velocity and its derivatives
are of order 1, because at the stagnation point the velocity is zero thus there is
a singularity. Since the integral is evaluated from upstream, the outer solution is
unknown for small streamlines alongside the body. Therefore the outer boundary
conditions for the boundary region equations are imposed at sufficiently large
distance from the body, without using the asymptotic matching. Initial condi-
tions are necessary to start the numerical computation and they are obtained by
making assumptions on the flow near the stagnation point. Table 2] gives an

overview of the asymptotic regions around the Rankine body.

2.1 Scaling

In this section the appropriate scaling is described. All the dimensional quantities
are marked by the symbol *. Lengths which are scaled by L* are indicated by
the subscript L. L* is the characteristic thickness of the Rankine body at infinite
downstream distance as shown in figure LIl Lengths which are scaled by A%,
which is the spanwise disturbance wavelength, do not have any subscript. The
velocity components are made dimensionless by UZ,, pressure by p*U*2 where p*
is the density and time by L*/UZ, .

The upstream turbulence is represented by a convected perturbation of the
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uniform mean flow UZ, namely the flow upstream is

V =i+ eux(z — t,y,2), (2.1)

where V = (u, v, w) is the dimensionless velocity vector and

Uso = ﬁooe’i(k’q>x+k\py+kzszq>t) + c.c., (22)

with |, ke = 275 /N5, ko = 275 /Ay, k. = 2m; A5, A, AL are the wavelengths in
the streamwise, normal and spanwise directions and kg, ky, k., are the dimen-
sionless wavenumbers. We are going to consider only one mode of the spectrum
of the oncoming turbulence.

The mean flow with components ((7 ,‘7) is uniform upstream but it becomes
non-uniform moving downstream. There is a region around the body where

derivatives of the mean flow are of order 1.

2.2 Optimal coordinates

Since the body is not a flat plate, it is convenient to work in a special coordinate
system. In this section the change of coordinates is explained.
The continuity and Navier-Stokes equations have to be satisfied by both the

mean and the perturbation flow

V.V =0, (2.3)

AY 1
L4 V.VV = — V. (VV 2.4
5 VY Vp+ 5oV (VV), (2.4)

where Ry, = U L*/v* > 1 is the Reynolds number.
The new set of coordinates @, ¥, z is employed, where & is the potential
and Yy, is the streamfunction of the inviscid mean flow in planes perpendicular to

the spanwise direction z, which can be used because the mean flow is independent
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Fig. 2.2: Outer potential velocity in z-y plane and ®-V¥ plane.

from z. The streamwise coordinate x, is replaced by the outer mean-flow velocity
potential ®;, and the wall normal coordinate v, is replaced by the outer mean-flow
streamfunction ¥ . Upstream, where the flow is parallel, &, = z;, and ¥ = y.
These coordinates are called optimal coordinates or Kaplun coordinates because
he was the first one to introduce them in his thesis (Kaplun, [1954).

The velocity U is a vector in the ® direction, because by definition a potential
flow is along constant streamlines. Thus it has two components in the z-y plane,
but just one component in the -V plane along ®. This means that the absolute

value of the velocity is the same value as the ®-component, namely

U|=U.

Figure shows the just explained relationship, which will be used when the

coordinates of the equations are changed.
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The reason why it is convenient to change coordinates and in particular to
choose the potential and streamfunction as new coordinates is that in this new
system the body can be treated as a flat plate, because the stream lines follow
the shape of the body as shown in Figure 23 In Appendix [A] continuity and

Navier-Stokes equations in optimal coordinates are derived and they are

Y LG

Fig. 2.3: Change of coordinates.
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The three velocity components wg, wy and w, are along the streamlines, the
potential lines which are parallel to the streamlines and the spanwise direction

respectively.
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To enable us to derive the equations for the mean and the perturbation flow,

several hypothesis have been made.

e High Reynolds numbers based on the characteristic length of the body are

considered.

e Periodicity of the perturbation flow is assumed along z and t.

e The amplitude of the perturbation velocity is much smaller than the ampli-

tude of the mean flow. This hypothesis allows having linearised equations
for the perturbation flow. The linearity is expressed mathematically by
¢/ke < 1 inside the boundary layer and terms of order €2 are neglected in

the equations.

e kp < 1, where kg = 2%/} is the dimensionless streamwise wavenumber,

3 is the streamwise wavelength and A} is the spanwise wavelenght. This

hypothesis can also be expressed as A3 > A%, following the experimental re-
sults which show that the streaks are elongated in the streamwise direction.
Since for a flat plate k¢ does not depend on the streamwise coordinate, we

assume that it is the same for a Rankine body.

e )\ and Ay are of the same order, where Ay, is the normal wavelength.

e )} is of the same order as L*, the characteristic length of the body. Since
the outer mean flow evolves on scales of order L*, this hypothesis states
that the scale of the mean flow is the same as the streamwise scale of the

perturbation.

o & = ke®. The barred variables indicate quantities scaled by A3. Following
the previous hypothesis, the mean flow is a function of (®, V) while the

perturbation flow is a function of (®, ¥, 2, t).
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e t = kgt. The time is also scaled by A} because the streaks modulate slowly

in time.

e Rke = O(1), where R is the Reynolds number based on \%.

2.3 The mean flow

2.3.1 Outer mean flow

In this section the outer mean flow is presented. Here the displacement due to
the boundary layer is not considered as we are interested to show the outer mean
velocity alongside the body’s surface. As in |Anderson (2007), a combination of

uniform flow with a source is well represented in a polar coordinate system,

r =z +y2, 6 = atan (yL> : (2.9)

Ty,
. A0 A
\llL:rsmH—F%—g, (2.10)
A A A
@L:rcose—i-%lnr—% {ln (27T>—1], (2.11)

where &, = ®*/(UX L") is the potential, ¥, = U*/(UX L*) is the streamfunction
associated with the outer mean flow as already defined. A is the dimensionless
strength of the source.

The absolute value of the mean outer velocity can be found analytically as a

function of r and 6.

~ 0D, \ 2 100, \2 \/ Acosf A2
_ 1 )1 9.12
v \/< or > + (r a0 ) v L (2.12)

and therefore the potential, streamfunction and the mean velocity are found

explicitly as functions of r and #. However, we need the absolute value of the
mean outer velocity in optimal coordinates, because the analysis is performed

in these coordinates. It is not possible to invert analytically the relationships
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Mean flow Perturbation flow
Outer
e Inviscid-2D. e Viscous-3D.
e Uniform plus source e Pressure gradient.
flow.
Section [2.4.1]
e Pressure gradient.
e Stagnation point:
Hiemenz flow
Section [2.3.1]
Inner

e Viscous-2D.

e Steady nonlinear mean
flow equation in optimal

coordinates.

Section

Viscous-3D.

Boundary layer equations.

Outer flow used to obtain

boundary conditions.

Derivation of initial condi-

tions.

Section [2.4.2

Tab. 2.1: Decomposition of the flow around the Rankine body.
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between r-0 and ®-V¥, thus this is performed numerically by using a Newton-
Raphson algorithm. The algorithm is explained in detail in section B.I.11

It is interesting to know the distance between the source point and the stag-
nation point. In order to do that, we start from the expression of r as function

of § and ¥,

1y, M A
7q_sinﬁ Yoo T o)

It is clear that r = co at § = 0 and § = 7. This can also be observed in Figure
2.1 because at these two angles the radius is parallel to the streamlines. There

is an exception on the body, where W, = 0. Here, the expression of r is

A(m —0)
2msinf ’

and r at § = 7 can be easily calculated. This value is the distance between the
stagnation point and the origin of the Cartesian coordinate system. It is found

to be

Asymptotic behavior of the mean velocity at the stagnation point in Cartesian

coordinates

In this section the outer mean velocity at the stagnation point is found as func-
tion of the Cartesian coordinates x;-y;,. The mean outer velocity field near the
stagnation point is known as Hiemenz flow velocity and it is given in [Schlichting
(1979) in dimensional form as uj; = a*z}, where a* = (aUZ)/L* and « is a
constant which depends on the strength of the source. In figure 211 it is shown

where the origin of the xy,-yur plane is. It is the coordinate system with origin

at the stagnation point, very suitable to analyse the flow in this region. Since
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xy, is small at the stagnation point because it is just near the origin, uj; is small
and « is of order 1. To demonstrate that « is of order 1, we start from the

streamfunction (2.I0) and (29]) is substituted into it to obtain

Uy, = /22 +¢2sin <arctan zi) + % arctan z—i - % (2.13)
In order to calculate uy, the derivative of the streamfunction with respect to
xy, is calculated. The streamfunction is derived with respect to x;, because the
streamwise velocity component uy at the stagnation point corresponds to the

normal velocity component in the x-y;, plane as the coordinates rotate at the

stagnation point (see Figure 2.1]).

Uy = —&IIL = — L sin <arctan yL) + B CcoS <arctan yL) +
" Oxy, l’% + y% L \/ CC% + y% L
Ay
21 2 + y2’
(2.14)

Once we have obtained uy the coordinates are changed from (zp-y) to (Tup-yur)

which are the coordinates at the stagnation point.

YL = THL, (2.15&)
A
:I:L = _yHL - %7 (2.15b)
O + A
uy == L 4 Yur 2; sin (arctan mHLA> +
o \/ (yur, + 22)" + 22, (9. + 22)
A 2
+ g 5 cos (arctan :EHLA> + o mAHL2 .
\/(yHL + %) + 73, (yHL + g) T (?JHL + ﬂ) + 23y

(2.15¢)

Now yyr = 0 and the limit of xy, — 0 is calculated to obtain

27
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From (2.10)) it is clear that & = (27)/A. « depends on A which is the source, but
in a real body it has to depend on L*, the characteristic length of the body. To

find out the value of A, it is necessary to write equation (2.I0) with dimensions

2 2

A6 AF

U* = U r*sinf + (2.17)

(Z9) is substituted into (ZIT) and in order to find how A* is related to L* the

limit of z* — oo and y* = L*/2 is evaluated and the result is A* = UZ L*.

Asymptotic behavior of the mean velocity at the stagnation point in optimal

coordinates

In this section the outer mean velocity at the stagnation point is found as function
of the optimal coordinates ®. -V, . The asymptotic behavior of the inner mean
flow near the stagnation point in optimal coordinates along the body (streamline
equal to zero) has been found by |Goldstein (1984) as a function of a constant C'

which depends on the shape of the body. It is

‘VH’2 = C(I)La

where Vy is the velocity vector at the stagnation point. The mean velocity follows
the streamlines, thus only the ®—component has to be considered and it is equal
to the absolute value of the mean flow. In the neighbourhood of the stagnation
point the ®-component is actually the zy.-component (see Figure 2.1]). Thus it

can be stated

In the previous section the Hiemenz solution at the stagnation point in Cartesian

coordinates has been found to be
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The relationship which links the potential to the streamwise coordinate at the
stagnation point is

2
_ma

P, = .
TN 2

The above relationship can be inverted to evaluate x; as function of @,

The constant C' is found

27 2 A 12 4
Uy = —ap = ——1]| =D/° = VC =/ —.
TTATET AVt A
Thus the outer mean flow near the stagnation point can be expressed in optimal

coordinates as

~ 47
Ub - X@L. (2.18)

To our knowledge, nobody else has found the constant C related with the shape
of the body. The outer mean velocity is evaluated numerically in optimal coordi-
nates by inverting equation (2.I12]) using the Newton-Raphson algorithm. Figure
2.4 (left) shows that in the neighbourhood of the stagnation point the asymptotic
solution (2.I8) and the mean velocity overlap. Figure[24] (right) shows the outer
mean velocity on the body surface ﬁb as a function of the coordinate s, which is

the coordinate along the body (where ¥, = 0), defined as

L

dy.,
dxy,

dx;,.
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Fig. 2.4: Comparison between the asymptotic solution (2.I8]) and the outer mean veloc-

ity evaluated numerically by inverting equation (2.I2]) near the stagnation point

(left). Outer mean velocity obtained numerically by inverting (ZI2) alogside

the body’s surface as a function of s (right)

2.3.2 Inner mean flow

In this section the equations for the inner mean flow are presented. The boundary

layer equations in optimal coordinates are found by considering the limit Ry, > 1.

In appendix [Bl the equations are derived and they are

o, v _
o0d, 0V,
oU oU 10U, , 1 0P
Voo, "Vou, TG, 00.0 ~ "2 09,
apP
5y ="

(2.19)

1 0%U
RiLqu%7 (2.20)
(2.21)

Here U and V are the velocity components of the inner mean flow and P is the

inner mean pressure.

Since the inner mean flow is two dimensional, a streamfunction can be defined

~ 2P
U = F(®y,n)4/ RL,
L

(2.22)
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where 7 is the inner variable

| Ry,
=W/ —. 2.2
n L 20, ( 3)

By definition the velocity components are

v
U= =F' 2.24
a\IjL ? ( a)
ow 20, L F [ 2
V- =— Fp, — F =y . 2.24b
0P, R, < P 29, * 2V R.P, ( )

By substituting (2:24)) in ([220) and using the Bernoulli equation in optimal

coordinates

P _ 5 dU,
4o, ’doy’
the following is obtained
F" + FF" +2m(®,)(1 — F”) = 2®,(F'Fy, — Fo, F"), (2.25)
where
OF OF &, dU,
F' = Fp, = — = =—.
an’ T 59, T, 4o,

Equation (Z.25)) is the transformed momentum equation in optimal coordinates
obtained by using the popular Falker-Skan transformation namely the definition
of the similarity variable 7. In appendix[Bl the derivation of (Z.23]) is shown. The

velocity components satisfy the following boundary conditions

U(®,,0) =0, V(®.,0) =0, U(®,,00) = 1. (2.26)

The first two are the no-slip condition at the wall for the two velocity components
and the last one is the outer boundary condition far from the wall. The latter

condition states that the velocity must be equal to the outer velocity (7,;“ because
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the inner mean velocity is scaled by it. The boundary conditions for equation

[225]) are then

F(®,,0)=0, F'(®,,0) =0, F'(®,,00) = 1. (2.27)

Equation (Z2) is the most general steady mean flow equation in optimal coordi-
nates, the flow depends on @, therefore it is not similar and an initial condition
is needed. The integration starts at the stagnation point where the outer mean
flow is given in (ZI8)) and it is written again here for convenience

~ 47

Uy, = A P,

In this particular case the coefficient m = %% in equation (2.20) is m = 1/2.
b
The equation reduces to a simpler equation with similarity because the function

F does not depend on @,

F" + FF' —F? 4+1=0, (2.28)

with the boundary conditions

F(0) =0, F'(0) =0, F'(c0) =1, (2.29)

Equation (2.:28)) is the well known Hiemenz equation which is solved numerically

in order to find the inner mean flow close to the stagnation point.

Composite mean flow

In this section the total mean flow is derived by the composite solution. It is given
by adding the inner mean flow to the outer mean flow and by subtracting the
common part. The last one is ﬁb, given by the limit of the inner mean velocity
for large 1 and the limit of the outer velocity for small ¥. The composite solution

with dimensions is
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Ul =F*+U* - Uy. (2.30)
By scaling by ﬁ[j = ﬁbUg‘o the following is obtained

~ U*
UTOT == F, + T* - 17 (2.31)
b

and dividing and multiplying the second term by UZ, the dimensionless total

mean flow is given by

. U
Uror = F' + =L (2.32)
b

The composite solution for the wall normal velocity component can be obtained
in a similar way. As far as we know this is the first time that the composite

solution for a Rankine body has been found.

2.4 Perturbation flow

2.4.1 Outer perturbation flow

In this section the equations for the outer perturbation flow are derived and
solved. |Goldstein (1984) analyzed the outer perturbation flow over a Rankine
body by employing the method illustrated in Appendix [El which involves solving
the Eikonal equation, a nonlinear partial differential equation. A few numerical
procedures to solve the Eikonal equation are presented in Appendix [El None of
these procedures worked, therefore we decided to find the solution of the outer
perturbation flow in a different way.

The solution for the perturbation flow in the outer region is of the form
suggested by |Goldstein (1984), where the flow is given by the mean flow and a
three-dimensional, unsteady, periodic in the spanwise direction and time, small

amplitude perturbation flow



2.4. Perturbation flow 55

(va) = (15 07 07 ﬁ) +e (UA)CPH, UA)\IIHa wzH)eikzz_iE + VQO,p] ; (233)

with e < 1. The velocities are scaled by the absolute value of the local outer mean
displaced velocity (7:{ This is obtained by the displaced potential and stream-
function which are derived in Appendix [Cl The decomposition (Z:33]) shows that
the outer mean flow Uy is uniform, because it is scaled by itself. We need to
do this because in the Navier-Stokes equations (Z.3)-(2.8) the velocity compo-
nents are scaled by the local mean velocity. The three velocity components of the
perturbation flow are along the optimal coordinates, namely parallel and orthog-
onal to the streamlines and in the spanwise direction. The outer perturbation
potential is also scaled by U 4 while the pressure is scaled by UZ.

Vi is the part of the perturbation velocity related with the pressure fluctua-
tions and wy; is the effect of the imposed upstream vorticity field. This is called
Helmholtz decomposition and [Ladyzhenskaya & Silverman (1969) provided the
existence and uniqueness of this solution for Navier-Stokes equations. The latter
part of the perturbation velocity is necessary because the upstream boundary
condition would not be satisfied by the potential part only, since upstream the
pressure fluctuations are zero thus the potential is zero and it cannot match the
imposed upstream perturbation velocity. The velocity wy has then to satisfy
the homogeneous equation (without pressure term). In the case of a flat plate,
wy coincides with us (initial gust) because there is no distortion due to the
curvature. This can be seen mathematically in the equations for wy derived in

Goldstein (1978) in Cartesian coordinates.

9 _ -1
Vi U Vwy + wy - VU = —V - (Vwy). (2.34)
8tL RL

The above equation contains the mean flow U which for a flat plate is uniform,

thus ay for a flat plate can only be equal to the initial gust, used as upstream
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boundary condition. This is the case studied in [Leib et al. | (1999) where the
solution in region I is given by equation (3.1) in their paper. The velocity must
satisfy the continuity equation which in their case becomes the Laplace’s equation
(3.3) in ILeib et al.| (1999) for the perturbation potential. For the case studied
herein the mean flow has a spatial variation and wy; is affected by this variation

which physically means that there is a distortion in the perturbation velocity

field.

Reduced momentum equations in optimal coordinates

By substituting the decomposition (Z33) into the Navier-Stokes equations in
optimal coordinates and collecting terms of order €, the equations for the homo-
geneous velocity are obtained.

d-momentum:

_ Lﬁ) Ien + i@w _ 1 0oy _ kéu; (2.35)
g2 " 0%y 7,084 " Rke \ 093 g2 M) '
V-momentum:
i g 2 AU, . 1 [ 0%0en K2 .
_ w2 e = | —= _ = 2.36
UC%M\PH + 0dy Uy, 8\I/dw<bH Rkg 8\113 ij\PH ’ ( )
zZ-momentum:
i My 1 Uy . 1 (0% k2
— 1, ~ — Sy = —— — = 2.37
g2 T8, T T,08,"" " Rk \ 002 o2 (2.37)

The streamwise coordinate ®, is scaled by Ay for both the mean and the per-
turbation flow, while the normal coordinate is scaled by A} only for the mean
flow, while it is scaled by A} for the perturbation flow. Therefore, the coordinates

used for the perturbation velocity are ®; — ¥, while the ones used for the mean
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flow are ®; — ¥, where Wy = ke W¥,. This choice follows the hypothesis that the
streamwise wavelength A} is of the same order of the characteristic length of the
body L*. The perturbation flow evolves on different scales in the two directions,
while the mean flow evolves on scales of order L* in both the directions, therefore
its derivative with respect to the normal coordinate V¥ is of order kg because

oU  9U 0¥,
oVy 0V, 0¥,

0Q) - ke.

Equation for outer perturbation potential

The outer perturbation potential is found by substituting the decomposition

(2:33) into the continuity equation

V2™ = -V - w, (2.38)

where ¢>° and wiP are scaled by UZ,. Then ¢ is introduced

(,OOO _ @OO(CI)zh \I,d)eikzz—1'57
and it is substituted into (2.38)). The equation in optimal coordinates is

3 + 5 e~ = — + Zsz
o0z " ot (2 9%, | oYy 0,

By rescaling the streamwise coordinate by Ag the terms of order kg can be
neglected. The scale for the potential is changed as ¢*° = cﬁﬁd, where ¢ is scaled
by U 7+ It is worth remembering that the outer mean flow U, can be taken out
of the derivative with respect to W, because its derivative with respect to this
variable is of order kg. The following is obtained

= 0P¢ k2

- (2.39)

AsY

U,2 7 Tz
o 1, vy T,

The total outer perturbation velocity in optimal coordinates is then given by
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P ﬁd P

23, V50, ik, @l . (2.40)

W =Wy + Udk:q>

The total velocity satisfies the continuity equation in optimal coordinates (2.1).
In fact, the first term of (2.5]) can be neglected because the scale of ®, is changed
and it is multiplied by kg. The remaining terms give

Uy —WyUg — =9 =0,
3‘1/d+ 8\1/2+ de UdSD

which is satisfied by construction because the potential is found by (2.39).

Equation for outer perturbation pressure

The equation for the outer perturbation pressure has been found by |Goldstein
(1978) and is given by
>

1
:—7—[] 00 T Y72, 00
D 5 4 Vo +RVg0,

where ™ is the potential scaled by UZ . The equation for the pressure is

_ 850 - 8(,0 1 202 o - 62 0 62 0
P=—"gr Yige, t (Ud 092 +Ui ouz 9.2 )

The pressure is written as

— ﬁ((I)dy \de>e’ikzzfiti

The potential is scaled by ﬁd and the coordinate ® is scaled by A3 to obtain

(2.41)

o 0Uy U3 92 ~ k2 5
—pUg o= + 2
103, %,  Rke OV Rkg "

p = o (z‘ﬁdga Tea 0,

The pressure can be written as kg which multiplies a quantity of order 1.
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where

Us 9%¢ ~ k2
Ui,
" Rke 002~ Rkg”

A~

. ~. 09
5 — illap — Ug Y
p=1ay d8<1>d

103,
Outer perturbation flow solution

In this section the solution for the outer perturbation velocity and potential is
found. We start from the z-momentum equation because it only contains w,y.

The z-momentum equation is written as

i 10U0; w2\ . Qw1 0
—=t ==+t = zH + = - 2 =Y,
Ug Uy, 09, Ug 0dy Rkg 8\I’d

with k = k,/+/Rkg. The function f, is introduced

- 1 1 oU, K2
JA(®,0) = -+ =22t
Uz U;0% U2
and the solution is assumed of the following form in order to simplify the z-
momentum equation.
P4

f-48, |, (2.42)

’LZ)ZH == ’Lz)zH(@, ‘1’) eXp

@40
where ®4q is the position of the grid upstream. Equation (242) is substituted into
the z-momentum equation and terms of order kg resulting from the derivatives
of the mean flow with respect to ¥, can be neglected. Leib et al. | (1999) do a
similar thing from equation (5.9) to (5.10) of their work, they also exclude terms
of order ki, which is the dimensionless streamwise wavenumber in [Leib_ef al.
(1999), by putting them on the right hand side of the equation.

The following equation for W,y is obtained

O 1 021,y
0®  Rke OU2

= O(ks).
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As in [Leib et al.| (1999) the matching upstream suggests to take the solution of

the form

The solution for W,y can easily be found by substituting the above equation into
the equation for 1.y obtaining

~ k23
Wy = Ce HQ(I):

where ko = ky/v/Rke and the constant C' is found by matching upstream with
the initial gust. The solution for the homogeneous spanwise velocity component

is

oF -
. s 9, = = . i 1 0U; K2 _
Wy = U0 exp | —ky(Pg — Pao) + ike Vg — | (—[73 + ﬁd@ + [73> dd, | .
(2.43)
The integral in the solution contains the outer mean flow and it is evaluated from
upstream for every streamline. Along the streamlines very close to the body, the
mean velocity becomes very small approaching the stagnation point. Therefore
we need to be in a region sufficiently away from the stagnation point to be able
to evaluate the integral. Solution (2.43)) is only valid when ﬁd and its derivatives
are of order 1. It can be observed that if U were uniform, equation (5.11) in
Leib et al.| (1999) would be obtained. Therefore solution ([2.43) is an extension
to solution (5.11) in [Leib et al. | (1999). The curvature affects the viscous decay.
It is easy to demonstrate that the solution (243) satisfies equation (237, by
taking the derivatives of w,y, which are

OWyy

2 A N
=— = —RoWgzy — fzwzH7
09y
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0%,y

" = —kgw
2 v WYzH)
w2

and substituting into (2Z43) the following is obtained

i 100; 1 o 1o
_T_H_Z—F,V—f:i —k‘ —Tkz .
72 2 f U;0%; Rko v U2

Considering that

; U 2
o fi=—4 4 10Uy x°
g U§+Ud8<1>d+U3

e k=Fk./vRkg

o ry = ky/vEke

the equation simplifies and the check is complete.
The solution for the ®-momentum equation (2.33]) is obtained in a similar

way by introducing the function fg

i 2 U, K2

f@é,‘ij :—T+T = +T
;T T G
The only difference with f, is that the term ﬁi% is multiplied by 2.
d

The solution for the homogeneous streamwise velocity is

i "
N N = = . 1 2 0U; K2 -
Wepy = u%’ exp —H%((I)d - (I)d()) + lk\p\lfd - | <—(72 + ﬁfdafi)d + ﬁ2> d(I)d .
® 40 d d
(2.44)

Even in this case, if ﬁd were uniform, namely upstream or for a flat plate, equation

(5.11) in [Leib et al.| (1999) would be obtained and it is easy to demonstrate that

the solution (244) satisfies equation (2.35]).

The ¥-momentum equation is written as
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- + 72 —= Woy,

AN Oy 1 gy 2 90U, .
> Wt s T Rke 092 [, 00
Ui U: d <I> d UqO¥a

and the function fy is introduced

; 2
o i K
A
The solution is assumed of the following form in order to simplify the ¥-momentum

equation.

P4
’LlA}\yH = If)ﬁ!H(i), \Ij> exXp — f\yd(i)d . (245)

Do
(2450) is substituted into the ¥-momentum equation and terms of order kg re-
sulting from the derivatives of the mean flow with respect to ¥4 can be neglected.

The following equation for ﬁ;\pH is obtained

i ) ~ Y
Oyy 1 0*yy 2 90Uy . _
vn _ —_2%% Ad, | + O(ke). (2.46
95 Rkg 002 b, 00, P fud®q | +Olke). (246)

P a0

The solution to equation ([2.46) can be obtained in two different ways.

e Using solution 1.1.2 — 1 in [Polyanin (2001) on page 51.

e Reducing equation (240) to a ordinary differential equation by assuming

the solution of the form

fo)‘IIH = "J)‘I/H((i))eikq}qja

as for the spanwise and streamwise velocity components.

In both cases, the solution for the homogeneous normal velocity is
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Dy
. 2
Wan = exp | —#2(Bg — Byo) + iky Ty — (fQ T ,’32d<1>>
® 40 Ud Ud
5 (2.47)
e + RHS(x, 7)e™7dr |,
o
where
_ P4
1 2 0Uy =
RHS= — {2 ""dy 49
exp (iky V) U, 0¥q W X |+ s fudq
dO

Upstream, where ®; = ®49, the initial gust is found. Moreover, if ﬁd were
uniform, RHS would be zero, therefore equation (5.11) in Leib et al. | (1999)
would be obtained.

Now that the homogeneous outer perturbation velocity is known, it can be
used to find the solution of the outer perturbation potential. Equation (2.39)
is inhomogeneous therefore we need to find the solution to the associated ho-
mogeneous equation and the particular solution. The solution to the associated
homogeneous equation is found by employing WKBJ theory (Bender & Orszag,

1999). This solution is of the form

\I/d \ijd
k, - k., -
@ =Crexp =AU, | + Crexp | — —=dvy, | . (2.48)
_ Ud = Ud
Yo Yo

The outer boundary condition for the potential states that it is zero when ¥, —
00, therefore C'y must be zero in order to satisfy this condition. The part of the
solution with Cy decays very quickly because k, = 2r and W is of order 1. The
solution is then confined within the boundary layer and it is not relevant for the

outer region.
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The particular solution could be found by the technique of variation of pa-
rameters, but we are not able to integrate from ¥; = 0 because the right hand
side of equation (2:39)) is only valid in the region where Uy is of order 1.

The solution for the outer perturbation potential is found by defining gé((bd)

¢ = p(Bg)errVe, (2.49)

because the right hand side of (2.39)) is of the same form. (2.49) is substituted

into equation (2.39) to obtain

~ oA k2. _ _
Uak§o(®a) + = 0(®a) = H(2a), (2.50)
d
where
B éd cf’d
H(®y) —e"3(2a—2a0) iky | uy + RHS(X,T)EH%TdT exp | — fud®y
L 'i)dO (i)d()
- 5,
¢ "5(2a=%a0) Liwg" exp | — f-d®y
| U b0

Therefore ([2.50) can be solved explicitly for ¢.

UgH (®,) gy

== (2.51)
k3U 3 + k2

The total outer perturbation velocity solution in optimal coordinates is

By . )
~ ~ 2/ % = . 'L 2 8Ud K =
we =ty exp | —k5(Pg — Pgo) + thy Ty — ——t =—+ = |d®; |+

3 3 ) | (w2
do

(2.52)

_.I_
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D4
N 2/ % = . ? K2
Wy = exp —/{2((1)(1 — <I>d()) + ikgW, — _ﬁ + ﬁdq)
D 40 d d
Py
e + RHS(x, 7)e™"dr | + (2.53)
Do
~ UsH(®q)
Ud/[/k\I} dN ( d) elk\p\I’d’
k:?I,UG% + k2
oy " )
_ — ) 1 90Uy K =
W, =0 exp | —k2(Py — Pyo) + ikg ¥y — e — =24 = | dPy |+

Dao

Zkzweik‘l’wd.
k‘?I,UdQ + k2

(2.54)

Solutions (2.52)-(2.54]) satisfy the outer perturbation equations and the resolution
check has been done numerically. Upstream when ®; = ®,4 the amplitudes are
the same as the initial gust. By moving downstream, the perturbation velocity
decays and it is distorted by the outer mean velocity ﬁd which varies alongside
the body. The pressure is an explicit function of the potential and it is written

again here for convenience

~

@Y.

" " 7T 3 2 k2
p:kq,(iUd— 3 0 _gplla, Ui O Z)

198y 10,  Rke 0V ‘Rkg
2.4.2 Boundary region equations

In this section the equations for the inner perturbation flow, namely the boundary

region equations, are derived. The flow inside the boundary layer is decomposed

into the total mean flow (composite solution) and a small amplitude perturbation

flow
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(u,p) = (ﬁTOTa ‘7TOT7 0, JBTOT)"‘

ik, - ik, [2®ke - - ik, ke - e i
—2u(D, W), —24/ o, V), w(d, W = 5(D, V) | eh=—1
6(,%U( ; ),kq) 7 o(®, V), w(P, )’\/RT@ Rp( ; ))e ;

(2.55)

with € <« 1. The coordinates for the analysis in the boundary layer region are
the not displaced ones (see appendix [()). The composite solution for the mean

flow in these coordinates is given by

(AjTOT — ﬁb(F/ - 1) + (Ajd,

VTOT =

kal, F —0F F 0 = o
i (Uss V256~ vep 06 /0V2D) el

with ﬁd and YN/d the displaced mean flow components along ®-¥ coordinates.
The composite mean flow must be used because for large-n the perturbation flow
matches the outer perturbation flow and the mean flow is the outer mean flow
with the displacement effect taken into account. For the flat plate case of Leib
et al. (1999) the mean flow is only the inner mean flow which coincides with the
composite mean flow without displacement. In fact, the mean flow is uniform in
their case and therefore the common and outer part are the same and simplify
so that only the inner mean flow is left.

The boundary region equations are obtained by substituting the decompo-
sition (Z.53]) into the Navier-Stokes equations in optimal coordinates (2.5)-(2.8))
and terms of order e are collected. The equations are linearised so that terms of
order € are neglected in the equations
Continuity:

ou nou O0v w

_ - — 4+ ==0 2.56
95 2dom on o (2.56)
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d-momentum:

i ou ~ ~ 1 0u

- [Oy(F —1)+Ud}a—¢—ﬁ[Ub(F — 1)+ T4 ot

G

7% [Ub(F/ - 1)+ Ud} U — i{)F"u%—

_ 2.57)

_(pF _9F  F 0 _ ) 1 ou (
U _ V20— —— — = (B(®)V2D) | ————+

b< 20 o0 V20 8<I>(5( ) ) V28 On

1

koROu ., oU o?u K
Va F'o4+2|U(F — 1)+ 0y oo e = 20 - 2
\/;6 * * [ o7 =1) + d} 0o 2wa2 2

V-momentum:

10 ~ 1 00
— [Gu(F = 1)+ O] o+ [To(F = 1)+ U] 52—
n _ 9
= [Oy(F' = 1) + U] o+
Rk@ Uy nE’ —JF F o — |
V20— (B(®)V2D) ) + V| a—
Rl%( NG 9% Vod 93 P(2)V2) |+ Vo) @
n |Rke O Uy nk’ —0F F o) ) ~ |
N[ e 9 V2 - L (B(®)V20) ) + T,
26\ 28 oy | VREg <«/2q> 95 vor 00 V@IV2®) )+ Va| it
U, [ nF —0F F ) > Rkg 00
_ V20— —— — (B(®)V2D) | + V| | 2
VEks (\/2<1> 0® 2% 53 P(®IV2®) ) +Va| \/ 55 an
o U, (nF —9F F ) ) Rke _
= _ o (B(®)V2D) ) +V, -
on | Vitke <\/2 95 vaz 00 V@IV2P) |+ Val [ 5got
29U [~ . R 1 10p 18*% k2
_ = Flfl = U|l=—=——=— — s — =—V—
7 0v [U”( HUd} kg 7220 0n 2o 2
200 1 ou
U o® 2 on’
(2.58)
z-momentum:
_w Ou(F" — 1) + U] Ow 0 0wy,
2 b P\o2 28 oy
~ [ nF' —9F F 0 > 1 0w ~ [keROw
U 207 — T (B(D)V2D) ) — " o
b<\/ﬁ o®  V2p 55 P(®) )\/ﬁfrd 26 0
110U 1 1 0w K2
F—1 2 = =Rt = —
Usp( )+Ud] 8<I>w U3/€ D+ 2% On? UQw
(2.59)

The ®-momentum equation has been obtained by dividing both sides by ik,

while the ¥-momentum equations has been obtained by dividing both sides by
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ik, 2‘%‘?. In the boundary region equations U comes from the Navier-Stokes

equations in optimal coordinates, while ﬁb and ffd come from the composite
solution of the mean flow.

The boundary conditions are the no slip condition at the wall for the three
velocity components and the outer boundary conditions are obtained by matching
the outer perturbation flow at large distance from the body. The no slip condition

is

u=v=w=0, at n=0. (2.60)

The perturbation velocity components and pressure in ([Z55) are imposed to be

equal to the outer perturbation velocity components and pressure obtaining

ik
i —- ® g as 1 — 00, (2.61)
z
_ . Wy
U — —1 — as 1 — 090, 2.62
KV 2P ( )
W — W, as 1 — 00, (2.63)
vV Rkg -
p— —i q)ﬁ as 1 — oo. (2.64)
K

The framed term is in (Z58)]) because the order of the derivative of the outer mean
flow and the streamwise perturbation velocity change by increasing 7. In fact,
when 7 is of order 1 the mean flow is a function of ® only because it is almost
the velocity on the body since the boundary layer is very thin and therefore its
derivative with respect to ¥ is small while the streamwise velocity component is
of order 1. However, when 1 — oo the derivative of the the outer mean flow with

respect to W is of order 1 but the streamwise velocity component is of order kg.
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ou m R

n=0(1) | Oks) | O(1) | O(kz'

n—oo | OQ1) | Oks) | O(kg

Tab. 2.2: Order of the framed term in equation (Z.58)

The framed term must then be kept in the equation because it is of order 1 both
inside and outside the boundary layer since % = O(kg 1) and the other two
contributes are of order kg. Table resumes the order of the different parts of

the frame term in (258

Large-n equations

In this section the large-n boundary region equations are derived to show that they
coincide with the outer perturbation flow equations. This check is very important
because the outer boundary conditions for the boundary region equations are
obtained by imposing that the velocity components and pressure are equal to
the outer perturbation velocity components and pressure. Therefore, the large-n
equations are satisfied by the outer velocity and pressure and for this reason they
need to coincide with the outer perturbation flow equations. As n — oo the inner

mean flow [’ and its derivatives go to the following values
F'—1,

F" — 0,

or _ _ 08
9% — 9%

These limits have been obtained by considering that the inner mean flow F' is

scaled by the local outer mean flow and taking into account the displacement
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effect given by . For a Rankine body [ is not a constant number as for a
flat plate, but it varies along the body because the solution is not self-similar.
The composite mean flow at large distance from the body reduces to the outer

displaced mean flow and the z-momentum equation reduces to

2‘u7+l7 ow n ow —I—‘N/ ow kq>R+wUd8U 1 25 1 Pw K2
- — — —kK ————w
g2\ 8s 2@ an ) YagV 28 T 90 s P ad oz 2
(2.65)
The boundary region equations are in (®-7) coordinates while the outer per-
turbation equations are in (®4-¥4) coordinates. It is necessary to change the

coordinates from (®-n) to (®-¥) as first step. The z-momentum equation be-

comes

W o~ 8@?} ~ 0w wUd 8U 1 25 1 0%w k%
5w (266
W e 5P Rrpowz o (266)

Here it is important to remark that the displaced outer mean velocity U g and
the inner perturbation velocity w* are scaled by the not displaced outer mean
velocity U*. The last one is scaled instead by the uniform mean flow UZ,, namely
Uy = U3/U*, 0 = w?/U* and U = U*/U%. The coordinates must be changed
from (®-¥) to (®4-V4). The displaced potential and streamfunction are functions
of the not displaced ones as explained in detail in appendix [C] so that they can

be written as

U;=V+ \I/d(CI), \I/),

(fd: (I)—I-‘I’d(fi)

»e I

)-

W, and @4 are a correction of the streamfunction and potential and they are of
order kg. The components of the displaced mean velocity can be found by deriv-

ing the displaced potential and streamfunction with respect to the not displaced
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coordinates because they play the role of the Cartesian coordinates. By deriving

the displaced potential and streamfunction the following are obtained

%:1+O(kq>):ﬁd, %%:14-0(%):(751,
a =ko% a\yd = ko Vy, %Lff = k@%%,‘i = ko Vy.

The coordinates of (2.66) are changed from (®-¥) to (®4-V4) by using the chain
rule and considering the relationships obtained by deriving the displaced coordi-

nates so that equation (Z.66) becomes

i U23w+wﬁda(7ﬁ 1 b ?w K2
~— = = — =W
I R TR A it w'p Rke 092 (72

(2.67)

Since the limit of n — oo is being considered, all U become U, scaled by UX
including the ones which divide w and the boundary conditions (2.63) and (2.64))
are used because the inner perturbation flow matches the outer perturbation flow
at large distance from the body. The boundary conditions used are written again

here for convenience

W — W, as 1 — 00,

p— —i P as 1 — o0.

_ VREkp 2
K

The displaced outer mean flow scaled by U* goes to 1 namely Uj — 1+ O(ko)
because [7; — U* + O(kg). Therefore equation (Z67) reduces to the following

equation which is the equation for the outer perturbation flow.

w, 0w, W, c?lj'd —iK A 1 0%w, K2
koD — =—W,. 2.68
+ v " Rke 002 2" (2:68)

u: 0% U;0%0 U3
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It is interesting to verify that the outer solution satisfies the large-n z-momentum
equation. By substituting in equation (2.68)) the total spanwise outer velocity

component and outer perturbation pressure the following is obtained

I ) B (e ) O e ) Uy

7 9%, G, 03,
—ik L 00 . ~,0U; U3 3% ~ k2
— " [Rke | iU — U322 _ _ —U
s Vo <Z @~ Vagg, = ?Yios, T Rrgov ~ VRke”) T
1 2(on + k@) K2 .
- == Az kz D).
—i—qu) 8\113 Ud2(w %)

The homogeneous velocity satisfies the equation without the pressure term and
therefore the pressure and the potential terms simplify. Similar steps are em-
ployed to check the large-n ¥-momentum equation coincides with the outer -
momentum equation. The boundary-region ¥-momentum equation as n — oo

becomes

v ~ 00 77 ~ 00 Rkg _ an n Rk‘.:p 8Vd
—— 4T U, gt L
U2 o d2 TYI5% T 2% an+ 23 "o5 20\ 23 oy

O(ks) ko)

~ 9 [Rkq avd Rhg 28U~ / 11 0p
W / 1 10p 2.69
o0\ 23 TV 28 T pow 2@/% 22 on (2.69)
L@_ﬁﬁ_zaﬂ@i
20 0n? 2 Uodon2d’
~—_———
O(ks)

Terms of order kg deriving from the order of @ at large n can be neglected. The

coordinates are changed from (®-n) to (®-W)

j O ov oV, 20U~ | R
_?+Ud +Uda +Vd8\1;+ a0 " poag \/ 20k

1 1 9p [Rke 1 9*v K%
= —— — + - =17.

722000\ 20 ' Rk 002 [r2

The coordinates are changed from (®-¥) to (®4-¥,4) and the boundary conditions

(Z61), 262) and (2:64)) are used

(2.70)
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1 ng,/ ow ) Zw}:/ Wy %
U2 /-@\/2<I) Md 3/2 8q>d K/ 2Dy Md 3/2 Kﬁ?d 0¥,

O(ks)
2 90U, i 1 9p i 1 aw\”,m? Wy
== — = = — — — 1= —.
UgOVa kr\/20, U2 k\/20,0%  Rko 1\/20, 0% U2 k\/20,
(2.71)
Both sides are multiplied by ixV2®
' i 2 oU 1 8p 1 ou 2
gy Qe 20Ua, 1 0D 1 Dby Ty, (272)

= + —= — =W =
g2 " 0%y 7,004 © 020%  Rke 04 (2
The outer solution satisfies the large-n ¥-momentum equation and it can be ver-
ified by following the same line of reasoning for the z-momentum equation. The

outer streamwise, normal velocity components and outer pressure are substitute

in equation (2.72)

a5\ 0 (’w\yH + ﬁda%) 5 U,

U = i =
3 (w‘l!H + da%) + 8<I)d + Uy 8\Ifdw¢H
T oA 773 99 ~772 80, %0 17 K2 4

1 0 <2Ud90 ~Uiss, —¥PUigs, T qu) v ‘5 Udriy ‘P>
N7 v, *
N 1 0 (12)\1;1{ + ﬁd%‘i) /€2 N (7' o}

W
Rkq o, 2\ gy, )

The homogeneous velocity satisfies the equation without the pressure term and

therefore the pressure and the potential terms simplify.

2.4.3 Initial conditions

In this section the initial condition for the boundary region equations is derived.
It is necessary because the equations are parabolic in the streamwise direction

and they are solved numerically by marching downstream. The initial condition
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is in the vicinity of the stagnation point where the mean flow solution is the well
known Hiemenz flow. Here, the coordinates are xy and yy as shown in figure
21 They are respectively parallel and orthogonal at the stagnation point. The

coordinates xy-yy are rescaled as

Oéqu;
k 9y

Ty = kown, a = Yu

where k = 27 L* /A5 = O(1). The flow at the stagnation point is decomposed in

the Hiemenz composite mean flow and a small perturbation

k. ik, _ . ke _
(uHapH> = (UHMa Vi, 0, P) + € Lﬁm LUH? Wy, 1K ng ) (273)
ke A R

where uy, vy and wy are the velocity components along zy, 1y and z respectively,

Py is the pressure at the stagnation point and

@Rk@
A== =0, (2.74)

and all the velocities are scaled by the uniform flow UZ,.

Composite Hiemenz flow

In this section the composite Hiemenz mean flow is derived. It is given by the
summation of the inner and the outer velocity and the subtraction of the common
part. The latter is the limit of the inner velocity for large nu and the limit of the

outer velocity for small yu. These two limits are the same

(6%
Uam = E:EHd(FII{ —1) 4+ Ung, (2.75)

[
Vi = —ko %(FH — Mg + Bu) + Via, (2.76)
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where By is the displacement thickness of the Hiemenz boundary layer. It is
observed that the streamwise velocity component is of order 1, while the normal
component is of order kg near the body and of order 1 at large distance from it.
The outer velocity components Uyy and Vi, are found analytically as functions of
the displaced stagnation point coordinates. This is possible because the potential

is known analytically in zy-yy, coordinates

A A2 A A A

The outer velocity components are obtained by deriving the potential with respect

to xyr, and yy and by changing the scales

R Ta _ k’fbde
HL k YuL [
Az 1
Uy = 21 : (2.78)
21k ko 2 A2 Aka
(79}1‘1) + o2 T S Yna
A =259 4yra + 2
Via=—1+ YT r (2.79)

o [(’“fde)Q + A ﬁr’i;"de]
The outer mean flow Hiemenz components (Z.78)-(Z79) have been obtained by
considering that Zy, is small because the stagnation point is near the origin of
the system.

The limit of (Z78)) and (Z79) for yuq — 0 is the common part of the composite

solution (Z70)- (276

(6
hm UHd - 7:1_7Hd
yaqa—0 k ’
: akg
llm VHd - de .
yua—0 k



76 2. Mathematical formulation

The limit of ([Z78) and (Z79) for yuq — oo is the uniform mean flow upstream.
However, the velocity components are swapped because the coordinates at the

stagnation point are rotated compared to the ones upstream.

lim Uy =0,
YHq 0

lim VHd = _1.
YHd — 0

Since the inner Hiemenz velocity is a function of 7y it is convenient to write the

outer velocity in the same coordinate

k
Yua = Rk:q,( /BH)v
Uns = 528 ! L (2:80)
|:<k]:/‘l> V OéRqu>( BH)) + 4Tl'2 + Akq) \/ aRk;q,( /BH):|
—2kg k A
A p ( - 5H) + e
Via = —1 4 — bV afks . (2.81)

| (i o o = 00) 4 450+ M [ e )

Hiemenz-boundary region equations

In this section the Hiemenz boundary region equations are derived. They are ob-
tained by substituting the decomposition (2.73)) into the Navier-Stokes equations

in Cartesian coordinates and collecting terms of order e

ou ov
a;z + 8—:):1 + iy =0, (2.82)
. 871].[ 8UH1\I 871].[ _ 8UH1\/I k(I) 82’&}1 A2 8271].1 2_
- Tt AV 221 _ e -
tun+Una g tn g2 =+ AV, 0ng = = o om T R o

(2.83)
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_tn Uni O 5 O Ve kA Opu ke 00
A A 9Ty ™Moy " Oy k./RkeOnu AR 072
A 0% K2
Rk 02 AW
(2.84)
— iy + U 020 4 AT 220 = 25, 4 ko 0% + A* Oy _ K2y, (2.85)
H HM 0Ty HM 877}1 = KR Pu R 8@% Rk 8771?1 H> .

where VHM = Vam/ka. The second derivative with respect to Ty are not neglected
even if they are of order kg because in the large-ny limit that term becomes
important. From equations ([2.82])-(2.85]) it is observed that inside the boundary
layer, where ny is of order 1 and the normal mean velocity component is of
order kg, all the terms are of order 1. However, as ny becomes very large, the
outer mean normal component becomes of order 1 as in the limit of large-ny,
Vua — —1, but the coordinates rotate moving upstream and their scale changes
as well. Therefore even for large ny all the terms in equations (2.82)-(2.85]) are of
order 1. It is worth checking if the upstream limit of the outer solution written in
Hiemenz-coordinates satisfies the large-ny limit of the Hiemenz boundary region
equations. The limit is where the mean flow is still uniform but after the grid
where the gust has already started to decay. The outer solution upstream for the
three velocity components in optimal displaced coordinates is given by

e = 1 et (Pa—Pao)tikuWa—(x*++3)(2a—Da0)

i(Pg—DPao)+iky Vg— (k2 +k2)(Pg—DPao)

~ ~ 00
w\p:u\pe( ,

W, = 03° ei(éd*édO)Jﬂk\IJ V= (K> +r3)(Pa—Pao)
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The above equations need to be written in the same coordinates as the Hiemenz
boundary region equations without displacement. The transformation is easy
because in the upstream limit the optimal coordinates coincide with the Cartesian

coordinates

_ k
<I>_—yH:>Q>:—%H:><I>:— q:ZH,
U=y = U= 1

ks

The upstream limit of the outer solution in the Hiemenz coordinates is then

N a0 . kenu kom0 ., Ty 9 2 konu kom0
w¢—u¢exp[z< 1 + 1 —Hk\yk@ (k° + K3) 1 + i )

k k 0 k k
Wy = Uy exp [l (— quH + (I)ZHO) —&—ik\p% — (K* + K3) <— 4;171{ + ‘DZHOH ’

k k T k k
W, = Ug° exp {l <— TH-F ¢ZHO> +ik\p%—(lﬁ;2+n§) <— TIH—F CI)ZHO)}

The amplitude of the gust is scaled by UZ as are the velocity components at
the stagnation point. In the large-ny limit the streamwise composite mean flow
velocity goes to 0, the normal composite mean flow velocity goes to —1, the
pressure goes to 0 and the three velocity components go to the decaying upstream
gust, but the streamwise and the normal components are swapped, because the
coordinates rotate

K oo i(—PUTH 4 BT iy TH (243 (— Peit 1 Fe)

Uy — —15—Ug € @ ,
k-

_keng | FenHOY, 57 TH 2., .2 keny | keMHO

_ . N i(— =2+ =) kg 7 — (k7 +k5) (— =+ =520

A A ARt L s
z
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i konH | keMHO Y, 1. ZH 2,2 kenu |, ko1HO
_ ~ i(— =4 1) kg - — (KR35 (— =2+ =1
Wy ugoe ( A A ) 4 kg ( 2)( A A )

Taking the large-ny limit of the continuity Hiemenz boundary region equation

gives the equation of the gust

ike

keptg + kyiy + k. u3” +

where kg is small, thus the balance upstream is between the normal and spanwise
velocity component, as expected. Following the same line of reasoning for the
momentum equations it is demonstrated that the upstream limit of the outer

solution satisfies the large-ny limit of the Hiemenz boundary region equations

Expansion Hiemenz flow

The velocity and pressure at Tyy < 1 can be expressed as a power series, where
the exponents for the first term of the series are found by the dominant balance

of the boundary region equations.

Uy = fHUO(nH)7

Wy = WO(T/H)a
Du = PO(T]H)a

Uam = deUHM (77H)7
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‘7HM = VHM (nH)

The expansion of the streamwise mean flow is validated by (Z.78]). By substituting
the above expansions in equations (Z82)-(2.85)) a system of ordinary differential

equations is obtained

Uy + VOI + Wy =0, (2.86)
s = é > / o A? "2
ko Rkg
i Vina«,r Voo, kA A, K?
vy My Oy = P -ty 2.88
AT T 0 e ™ T T Ve 0 Rkg 0 A (288)
iy é % .2 A2 2
ks Rkg

The system (2.806])-(2:89) needs 7 boundary conditions.

e Three of them are the no slip boundary conditions at the wall for the three
velocity components

U =Vy =Wy =0. (2.90)

e The outer boundary condition for the streamwise velocity component Uy is
zero because it cannot match the outer perturbation velocity as this is of

smaller order outside the boundary layer

Up—0 when g > 1. (2.91)

e From the continuity equation (Z86]) it is evident that for large ny the
balance is between the normal and spanwise velocity components as the

streamwise velocity component is zero. Since the continuity equation must
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be satisfied for large ny, the outer boundary conditions for the spanwise
velocity component and the derivative with respect to ny of the normal ve-
locity component must be equal and opposite. Therefore, the outer bound-
ary condition for the spanwise velocity component is given by matching
the outer flow and the outer boundary condition for the normal velocity

component is imposed on its derivative

Vg — =, when Mg > 1, (2.92)

Wy — w, when e > 1. (2.93)

e The inner pressure matches the outer perturbation pressure of the Hiemenz

flow

Py—p when M > 1. (2.94)

An important consideration on the boundary conditions for equations (2.86])-
(2:89) must be pointed out. For ny — oo the streamwise and normal velocity
components are swapped because the coordinates are rotated at the stagnation
point. The streamwise component matches the normal component of the gust
and the normal component matches the streamwise component of the gust with
opposite sign. Therefore, upstream the balance of the continuity equation is
between the streamwise Uy and spanwise Wy components. The maximum 7y
where the boundary condition for equations (2.86])-(289) is imposed must be
large enough to be outside the Hiemenz boundary layer but not too large because
the contribution of the streamwise velocity component must still be small in
order to have the balance between the normal and spanwise velocities. Table
gives a further explanation of the changing of the contributions of the velocity

components.
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ng = O(1) Juy 4 a”H +wyg =0 | Inside the boundary layer the balance is

OTH

among the three terms.

5 o0v
ou H ] _ .
> 1 iy T (9777}1 + =0 | At large 7y the balance is between the nor-
mal and spanwise components.
9u
N — 00 al_LH ”H + =0 | As ny — oo the balance is between the
Ty

streamwise and spanwise components.

Tab. 2.3: Balance of the continuity equation by varying ng

The solution to equations (2:80])-(2.:89)) is solved numerically with the bound-
ary conditions (2.90),(2.91]),([2:92)),[293]) and ([2.94) and it gives the velocity com-
ponents along the Zy-ny coordinates. However, the boundary region equations
are in optimal coordinates and the initial condition is imposed at the initial ®.

The following considerations are drawn:

e The spanwise initial component Wy is a function of 7y only, therefore it can

be used as it is.

e The streamwise velocity component Uy is a function of Zy-ny. In order to
find the initial streamwise component, the initial ® is fixed and for every 7
the corresponding Zy is found and the initial streamwise velocity component

is found by multiplying Zy by Up.

e The initial normal velocity component is found by integrating the continuity

equation in optimal coordinates.

e The initial velocity components obtained must also be rescaled by the local

outer mean flow as the velocities in the boundary region equations.



2.5. Summary of equations 83

2.5 Summary of equations

In this section a summary of the equations derived is presented.

2.5.1 Outer mean flow

The outer mean flow is known in polar and Cartesian coordinates, given by a

uniform flow combined with a source flow. Equation (2.12])

~ 0D, \ 2 103, \2 \/ Acosf A2
= — = 1
v \/< or ) * <'r a0 > L

is inverted numerically to have the outer mean flow as function of the independent

coordinates ®-¥ by using Newton-Raphson algorithm. The displaced outer mean

flow (~Jd is then found in the same fashion in coordinates ®4-V.

2.5.2 Inner mean flow

The inner mean flow is found by numerically solving the partial differential equa-

tion (Z25)

F" + FF" +2m(®,)(1 — F”?) = 2®,(F'Fg, — Fo, F"),
with the boundary conditions (Z.27)

F(®.,0) =0, F'(®.,,0) =0, F'(®,,00) = 1.

Equation (Z20) needs an initial condition, which is found by solving the ordinary
differential equation (2.28]), also known as Hiemenz equation for a stagnation
point flow

FIII+FF//_F/2+1 :07

with the boundary conditions (2.29)
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2.5.3 Outer perturbation flow

The outer perturbation velocity is solved by employing Helmholtz decomposition
which consists in dividing the velocity into two contributions: the homogeneous
part wy related with the imposed upstream velocity field and the potential part
V¢ related with the pressure fluctuations. The three components of wy are found

by solving the partial differential equations (2.35])-(2.37)

e Oben  200a 1 (0Pdes B

g2 " av, 7,084 ' Rke \ 093 g2 )7
i Ot 20Us, 1 (0Pden K2

g2 "t 9%y 094 " Rke \ 0¥ g2 M)
g 00w 1004 1 (Pua K

g2 " 0dy U004 ' Rke \ 093 2 7"

The semi-analytical solution of (2.38)-(2.37) is found by matching the gust up-

stream and it is given by (2.44),([2:47),([2:43)

Py -
. . 0 = = , i 2 0U; K2\ -
Wey = Ug exp | —k5(Pg — Pgo) + tky Vg — ——t =+ = | d®y4]|,
b \ U3 Ua0% O3
By
. 9, = = . { K2
gy = exp | —K3(Pq — Pao) + ke Wg — —= + = d®
@40 Ud Ud
by
ap + RHS(x, 7)e™7dr |,
B0
Dy " )
~ ~ 2/ % = . Z 1 8Ud KR =
Wy = U0 exp | —kry(Pg — Pao) + ike ¥y — <—~ + ==+ ~> d®y| .
b \ U3 Ua0%a 03

The perturbation potential ¢ is found by solving the partial differential equation

2.39)
~ %% k2

aﬁ)\pH ikz N
—_ = — — = Wzy,

U,——
o T, Ny T,

~
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whose the semi-analytical solution is given by (2.51))

. UgH(®y) Sk

PR k2
where
B ‘i)d q’d
& _ *KQ(édffidO) . ~ 00 k2T B —
H(®y) =e "2 iky | 4 +/ RHS(x, 7)e"27dr | exp / fod®y
L édO (ido

Q4
— — y 00
e 13(%a=Pa) Zkiwz exp | — f.ddy
Uq ;
a0

The perturbation pressure p is an explicit function of the potential given by

.41

) L 09 ~,0U; U ¢ ~ k2 ;
=k U U _ - Uy
p=Fe (7’ = Vigg, ~Vi5s, T Rk 092~ " Rkg "

2.5.4 Inner perturbation flow

The equations for the inner perturbation flow are the boundary region equations
(2.56)-2.59)

Continuity:

d-momentum:

—£+[ﬁb(F—1)+Ud}2;—;zi)[ﬁb(F’—l)+ﬁd}gZ

88(1) [ﬁb(F/ -1)+ ﬁd} i — %F"ﬂ—i—
. S L UNED) L

Vi ]{;’;gz F”‘+2{Ub( —1)+Ud}gg;_;§§;_;—,



86 2. Mathematical formulation

V-momentum:

ov
— 2+ [T = 1) + T oz + [G(F "~ 1)+ U4 52—
N (g -1 0] 28
o [Ub(F 1) + Ud} o
Rk@& U, [ nF —9F F d -) ~ |
= V20 - (B(®)V2D) ) + V| a—
@ 00 m(m o I R R
7 b nF’ —0F F ) _) -
U V20 - C (3(@)V28) )+ T,
<1>\/ qu)( V2% 9% or 0a N(BIV2®) )+ TV
nF —9F F 0 ) ~ | [Rke 0v
T T (BD)IV2D) ) + V| ) 2T
\/qu)(\/z‘ ERNGY: 93 P(@IV2®) ) +Va| /53 on
ol U, (nF —0F F ) _> ~ | [Rke _
< O T (B(®)V2D) ) + V| (]2
o %(@ IV At G R St
20U T~ ~ R 1 10p 10% k2.
== F/—l = - === = 5  =_U—
7o [Ub( HUO’} Whe | 22d0n 2002 T2
20U 1 0u
U86D2<I>017
z-momentum:
_ - ow  n ow
=+ [Oo(F = 1) + Tl <a<1> 2ci>an>+
Iy oF F 9 —\ 1 0w ~ [keROw
- _ = \Vop) | — 2= i iahidhad
U”<¢ 08 oz 0a VIR ) g ey TV 5s gy
R N TP I R
[U(F 1)—|—Ud] ~a(§w—ﬁ3/€p+2@ 2 f]Zw’

u=v=w=0, at n=0,

_ ike .

- ——Ws as 1 — 00,
k.

5 Wy N

v— —1i = as 17— 00
KV 2P

W — W, as 1 — oo
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Equations (2.56])-(259) need an initial condition, found by solving numerically

the system of ordinary differential equations (Z.80])-(2.89)
Up+ Vi + Wy =0,

_ A _ _ A?
— iUo + 2UunUp + k—VHMUé + VoUlyy = =—UY — KU,

Rka
i Ve, Vo k A, A 2
_ 1y Vg g P vy -y
A g 0 N T T URke O TRk 0 T A
. A - ! 2 A 2
_ fal Pra

with the boundary conditions (2.90)-(2.94)

Uy=Vo=Wy=0,

Up—0 when > 1,
Vo — —, when ny > 1,
Wy — w, when Ny > 1,

Py = p when Ny > 1.






3. NUMERICAL RESULTS

3.1 Numerical procedure

In this section the numerical procedures used to solve the equations are illus-
trated. The Newton-Raphson algorithm is employed to invert the relationships
(I0)-@II) in order to find the potential and streamfunction as functions of
r and 6. Block elimination method is used to solve the system (2.86)-(2.87),
the Newton’s method is employed to solve the nonlinear equation (2.25]) and the
boundary region equations (2.56])-([259) are solved with the block elimination

method.

3.1.1 Newton-Raphson algorithm

The Newton-Raphson algorithm is an iterative method used to find the approx-
imated solution of nonlinear systems of equations. The procedure consists in
guessing an initial solution and using it to find a better approximation of the
solution until convergence. Assuming that we are looking for the solution (zg, yo)

to the nonlinear system

fi(z,y) =0,
fa(z,y) =0.

(3.1)

The solution at the iteration n + 1 is given by

Xn4+1 = Xn — Jil(xn)F(xn%
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where x is the vector of the solution, F = (f1, fo)7 is the vector of the equations

and J is the Jacobian of the system (B.1) defined as

ofi  Oh

J=|% . (3.2)
f2 0fs
or dy

Since the solution at the iteration n + 1 is found by using the inverse of the
Jacobian, it must be invertible, therefore its determinant cannot be null. The
Newton-Raphson algorithm has a quadratic convergence and the only restriction
is that the initial guess must be close enough to the solution.

We want to find r-0 as functions of ®,-W¥; because the latter are the inde-
pendent coordinates, therefore we want to have the velocity field for each &, -V,
given. In our case the nonlinear system is given by the potential and streamfunc-
tion as functions of -0

AG A

\I/L:TSing—i-zi—g,

A A A
®;, =rcos+—Inr— — |In[ — | —1].
27 27 27
For a specific point ®19-Vo, the nonlinear system is given by
AG A

0)=Vr9—rsind — — + —
a(r,0) Lo — Tsin 27T+2,

A A A
b(r,0) = ®r9 — rcosf — %lnr+% [ln <27r> _ 1] ,

and we require that at the (n + 1) iteration a = 0 and b = 0. In this case
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da  Oa
J— or 00
ob  Oda
or 00

At the stagnation point, where ®, = 0 and ¥, = 0, we know that § = 7 and
r = A/(2m). Therefore the solution of the system is known at the stagnation point
and it can be used as initial guess. Part of the algorithm is shown in Appendix
The routine takes ®19,V 1o and it gives the corresponding r-6. Suppose that
we want to evaluate r and 6 at @14 and ¥y shown in figure 3.1 the initial guess
is the stagnation point where the solution is known, then we move along the
streamline ¥, = 0, namely along the body and find the solution for ¢, in order
to use it as initial guess for the next point. The same line of reasoning is used
by moving away from the body, at fixed &, until the desired point ®r4-Vy, is
reached. The index opt is used to optimize the code. In fact, in the codes used to
solve the inner mean flow and the perturbation flow, a marching procedure along
the streamwise coordinate ® is employed. Therefore, every time that we move
downstream and call the function to obtain the outer mean flow at the specific
point, we do not want to always start form the stagnation point, because this
would require much more time. The index opt is used for this purpose. It can be
set as 0 or 1. If opt= 0 the initial guess for the Newton-Raphson method in the
routine is the stagnation point. If opt= 1 the initial guess is set as the previous
value, because the solution of the nonlinear system is close to that value, since

the iteration step is small.

[ R0

Fig. 3.1: Newton-raphson procedure.
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3.1.2 Initial condition equations: block elimination method

Equations (2.86)-(2.89)) are solved by employing the block elimination method
described in|Cebeci (2002) on pages 260-264. The Tth-order system of 4 equations
is reduced to a system of 7 first-order equations by introducing the new variables

U1:U6,V1:V0’andW1:W6

C1Uo + CoVy + CsWy = 0,

AUy + AU = 0,

X1Up + XUl + X3U ] + X4Vo =0,

BiVi + BoVy =0, (3.3)
YiVo + Y2V + Y3V) + Y4 Py = 0,

DWWy + DQW(/) =0,

Wy + ZQW(S + Z3W1, + Z4Py =0,

where

_ V: A? _
X1 :7i+2UHM+52, X2:Aﬂa X3 =———, X4:U£IM7
k‘@ Rk@

Bl = 17 BQ = 717
i Vi, K2 _ Vau 1 ikA

v, — L oy YYo=ty = A
ST T e T T T BT T REe YT T ihVRRe

Di=1, Dy=-—1,

Vi A?
A :—i+I{2, ZQZA%, Jyg = —— = 2,

The ordinary differential equations in the system (B.3)) are discretized around the
point ®,,,7;_1 /7 in figure Since they are linear, the system can be written in

a block tridiagonal matrix-vector form
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Ay Co do To
Bj Aj Cj (5]' = T ’
Byn_1 An-1 IN—1 TN-1

where A,B, C are the 7 x 7 matrices of coefficients, § is the vector of the unknown
variables at the j* point and r is the vector of the right hand side. At j = 0
and j = N — 1 we have the boundary conditions, which are the no-slip condition
at the wall for the three velocity components and the matching with the outer
perturbation flow at large 7. The solution is obtained by the block elimination
method which consists of two sweeps, one forward and one backward. At each
step j the unknown functions are computed from recursion formulas.

J

j—1/2

n—1 n—1/2 n

Fig. 3.2: Grid used to compute the
the initial conditions and

the inner mean flow.

3.1.3 Inner mean flow equation: Newton’s method

Equation (Z20) is a nonlinear partial differential equation. Its solution is com-
puted by employing the Keller’s Box method. We write the equation and the
boundary conditions as a first-order system by introducing new dependent vari-

ables F1 = F' and F, = F]
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F=F',
Fy=F], (3.4)
OF, OF
F,4+ FFy+2m(l — F3) =20, | Fi— — I
\ 5+ FFy + 2m( ) L<18¢L 28<I>L>’
F(®,,0) =0, Fy(®.,0) =0, Fi(®,,00) = 1. (3.5)

The grid used for the computation is shown in figure The first two equations
of ([B.4) are discretized around the point ®,,7n;_4 /2 while the third equation of
([3.4) is discretized around the point ®,,_/5,7;_1/2. We assume that anfl, Fﬁ-*l
and anjfl are known so that, given an initial condition, a marching procedure
along ® can be used to solve the equation at every streamwise position. Since we
have the solution of the Hiemenz equation (Z.28), we can use that as the initial
condition. The system (B.4]) is solved using Newton’s Method at every streamwise

position. The iterates Fj(i), F®

1 FQ(;) are introduced and their initial guess is set

as the solution at ®,,_1. We write

FOH) — pO) 4 sp@) (3.6a)
F2(i+1) _ F2(i) + 5F2(i), (3.6¢)

and substitute ([B.0]) in the system (B.4]). The system is linearized by neglecting
terms of order (§F(®)2, (6Fl(i))27 ((5Ff_,i))2 and it is solved at each iteration by
using the block-elimination method (Cebeci (2002)). Once §F®, 5F1(i) and (5F2(i)

are null the iterative procedure is interrupted.

3.1.4 Boundary region equations

In order to solve the boundary region equations a marching procedure along ® is

used. The method is based on second-order central differences in n and backward
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differences in ®. The grid used to compute the pressure is staggered compared

to the grid used for the velocity components as shown in Figure

A

n

oJt+1
| .
+1 h

aa o7
—
o o ®J
bb b ‘
0"

c‘)J—l

)

Fig. 3.3: Grid used to compute the velocity components and pressure.

With the second-order central differences method a function f and its first

and second derivatives are approximated as follows

=1 (3.7)

of _ fiv1—fia

o 5 (3.8)

O*f _ i =26+ fj—li

57 - (3.9)

With the second-order backward differences method the first derivative of a func-

tion f is given by

Of _ afj +bfe; + co;
0P do ’

(3.10)

where a, b and c are assigned values.
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The grid of pressure is staggered, therefore the value of the pressure and its
derivative with respect to n have been expressed in terms of the staggered index,

namely

5= 7“1; Pi*. (3.11)
Op  Dje41 — Dj*
—_— = 3.12

as can be easily seen in Figure

The index j goes from 0 to N — 1, thus the boundary conditions are

lj—0 = Vj—0 = Wj=0 = 0, (3.13)

Uj=N—-1 = 0, (314)

Vi=N—1 = —l————", 3.15

j=N-1 VT (3.15)

U_Jj:N—l = ’lf)z(j,N — 1), (3.16)
VERko 5, .

Dj=N-1 =~ p(. N ~1). (3.17)

The linear system of the discretized equations can be written in the form of a
block tridiagonal matrix-vector and it is solved by the block elimination method

as described on page 263-264 in |Cebeci (2002).

3.2 Previous numerical results

In this section some of the numerical results of ILeib et al.| (1999) are shown. They

are relevant to make a comparison with the results obtained for the Rankine body.
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Fig. 3.4: Profile of the streamwise (left) and spanwise (right) perturbation velocities at

the indicated values of Z.

Figures 3.4] and have been obtained by numerically solving the boundary
region equations in [Leib et al.| (1999). They exactly reproduce the results shown
in their paper, giving a further confirmation that the algorithms used to solve
the equations for the Rankine body work. Figures [3.4] show the profiles of the
amplitudes streamwise and spanwise velocity at different values of the streamwise
variable Z (7 is normal variable). It is seen that the maximum value of the
streamwise velocity increases initially with Z and then it quickly decreases to
zero. This can better be seen in figure where the amplitude of the streamwise
velocity is plotted in & at the fixed value of ) where the peaks occur. The spanwise

velocity increases with 1 and it keeps constant, due to the matching conditions.

The results of Leib et al.| (1999) have been compared to those ones of Choud-
hari (1996) who studied the interaction of a vortical perturbation transported
from the free stream to the flat plate boundary layer. The streamwise velocity
profiles look similar to each other while the spanwise velocity profile are quite
different. Figure [3.4] was obtained at fixed value of k and ko which are the scaled
transverse wavenumbers. Other computations show that by increasing the value

of both x and ko the peak of the streamwise profiles decrease very quickly to zero
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0.03

0.01

Fig. 3.5: Evolution of the boundary region streamwise velocity perturbation magnitude

at n = 1.64.

after having reached its highest value. Contrarily, the decay is slower.

In the limit case where k — oo and ka/k = O(1) the steady boundary region
equations of [Leib et al.| (1999) have an asymptotic solution. Results show that
the steady solution increases linearly with the boundary layer thickness, even
if this is not valid near the origin. These results led Bertolotti (1997) to think
that Klebanoff modes could be well represented by one single steady mode, while
Leib et al.| (1999) demonstrated that the unsteady low frequency solutions have
the dominant effect on the streamwise velocity in the boundary layer. They
also showed that for kK — 0 the boundary region equations reduce to the steady
ones and the solutions overlap. The results of ILeib et al. | (1999) have been
presented because the solution of the Rakine-body boundary region equations

will be compared with their results in section
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3.3 Mean flow solution

In this section the results for the mean flow are presented and compared to the
analytical expressions presented in [Panton (1995). In particular, the pressure
coefficient, the boundary layer thickness and the composite mean flow are shown

and discussed.

The mean pressure coefficient is defined as

C,=1-U2

The pressure changes along the body surface because of the curvature and it is
studied as a function of s. The behavior of ), is obtained numerically and shown
in figure At the stagnation point C), = 1 and since there is symmetry the
slope of the curve is zero. Then the fluid accelerates and the pressure decreases
until the fluid starts to decelerate and the pressure increases. The same behavior
is obtained by [Panton (1995) and the two curves perfectly overlap as shown in

figure

1
| Numerical
o Panton
05
S
Q o}
0.5
L L 1 L L 1 L L
1 0 1 2

Fig. 3.6: Mean pressure as a function of s along the body.
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The boundary layer thickness is the distance from the body to a point where
the velocity reaches the free stream velocity value, in particular it is defined as
the distance where v* = 0.99U%, . This distance can be numerically found by the
definition of 0, which is the inner variable used to find the solution in the viscous

boundary layer. In optimal coordinates 7 is define as

n= "y f{;.
Once we have obtained the solution of the inner mean flow the value of n where the
velocity has the free stream value can be found for every streamwise coordinate
®,, and this value is supposed to be different on the curvature where the solution
is not similar. Two important checks can be done analytically and numerically:
at the stagnation point and downstream, where the flow is uniform, the boundary

layer thickness is well known. In particular at the stagnation point the potential

and streamfunction are

2 a2
U, = KxHLyHLy o, = AHL

By substituting the two above equations in the definition of 5 the following is

obtained

B 27 R,
7l = YuL A

Thus the boundary layer thickness for the stagnation point is constant and equal

to

B /A
YurL = T7)s 27TRL7

where n; is the value of 7 where the velocity is 0.99 and it is numerically found

to be 75 = 2.4. This result is in agreement with [Schlichting (1979)
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5 =244 2,
a

where a* = U /L*, a = 2w /A. By substituting the value of a* in the boundary

layer thickness found by [Schlichting (1979) it is obtained

[ A
=244/ ——
o 2rR;’

which is the thickness previously found. The same analytical check can be done

downstream where the potential and streamfunction are

Yy, =y, Dy, = 11,

and therefore

_ [2x,
Y =15 R,

1/2

Downstream the boundary layer grows as z; On the body is not possible
to find analytically the boundary layer thickness since the expressions of the
potential and streamfunction are more complicated. Therefore, the boundary
layer thickness is numerically evaluated and its value is compared to Hiemenz
boundary layer at the stagnation point and Blasius boundary layer downstream.

Figure 3.7 shows the composite solution for the total mean flow given by
equation ([Z.32) at s = 1.48. In figure 3.8 the profiles of the velocity are shown at
different positions on the body. At each position the velocity reaches a different
free-stream value, as expected since the outer mean velocity is not constant.
The point where the velocity has the free stream value increases following the
boundary layer thickness.

The behavior of the boundary layer thickness along the body is shown in figure

B8 At the stagnation point, the Hiemenz boundary layer is constant because
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there is a perfect balance between the wall-normal viscous diffusion, which lets the
boundary layer thickness increase and the favourable pressure gradient, which lets
the boundary layer thickness decrease. Downstream the pressure gradient effect
never overcomes the wall-normal diffusion and eventually wall-normal diffusion

takes over completely.

Fig. 3.7: Composite solution of the mean flow at s = 1.48

3.4 Outer perturbation flow solution

The analytical solution of the outer perturbation flow has been found and it
depends on the outer mean flow. The integral in equation (?7) is evaluated
numerically for every streamline, from the position of the grid to a downstream
position. Along the streamline ¥ = 0, the flow encounters the stagnation point
at & = 0 where the velocity is null. It is then not possible to evaluate the integral
near the stagnation point where the velocity is close to zero because the function
to be integrated becomes singular. The first value of the displaced streamline

W, where it is possible to calculate the integral is found numerically. Figure
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Fig. 3.8: Boundary layer thickness as a function of s (top) and inner mean velocity profiles

at different positions on the body (bottom).
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(left) shows the spanwise perturbation velocity at two different streamlines
near the body. The other two velocity components are not shown because the
behavior is the same as the spanwise velocity component. The velocity decays
exponentially as expected. The position of the grid ®4y is very important for
the exponential decay. In fact, if the grid was too far away from the body, the
perturbation flow would decay before encountering the body. However, the grid
cannot be positioned too close to the stagnation point. Figure 3.9 (right) shows

the outer perturbation pressure at different streamlines.

0.004 0.0003

0.0002
<< g‘

I 0.0001
0.001

Fig. 3.9: Spanwise outer perturbation velocity (left) and pressure (right) at different

streamlines.

Figure B.I0] shows how the outer spanwise perturbation velocity changes by
moving the grid. The chosen numerical range is between ®49 = —3 and ®49 = —2.
As the analytical solution (2.43]) suggests, changing the grid position has an
effect on the viscous decay. If the grid was positioned too far from the body,
the perturbation flow would decay before reaching the body. In figure B.I0l the
spanwise perturbation velocity is shown for three different values of the position

of the grid ®49. The velocity is smaller when the grid is farther.
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Figure 311l shows the effect of changing x and xo on the outer perturbation
spanwise velocity component. Changing these two parameters is interesting to
see the role of the viscous effects, because decreasing x and k9 means increasing
the Reynolds number. On the top-left figure B.I1] ko = 1 is kept constant and
k is varied at the three indicated values. In the analytical solution (Z43) it can
be seen that the parameter & is in the integral. Upstream, where the mean flow
is uniform, x only multiplies ®4, therefore it is responsible for the exponential
decay. Decreasing x lets the velocity have a higher value upstream. However,
the contribution of k is different moving downstream as the mean velocity varies.
On the top-right figure B11] k = 1 is kept constant and ko is varied at the three
indicated values. As is clearly evident in the analytical solution (2.43]), the only
contribution of k9 is on the exponential decay, therefore by decreasing the value
of kg the velocity decays slower. The bottom figure B.IT] shows the effect of
simultaneously changing both x and k9. As expected, since the two parameters
have an effect on the exponential decay, by decrasing them, the exponential decay

is also decreased.

3.5 Initial conditions solution

Stagnation point coordinates

In this section considerations on coordinates used at the stagnation point are
illustrated. The results obtained for the initial conditions cannot be compared
with the works in the literature as the approach used in this thesis to find the
initial condition is presented herein for the first time. It is interesting to show
the relationship between the optimal coordinates and the coordinates used at
the stagnation point. In particular, it is worth to see the effect of the Reynolds
number on the coordinates. The lines at constant ® and V¥ in the (xy-ny) plane

are shown in figure 3.2 for different Reynolds numbers. It can be observed that



3.5. Initial conditions solution 107

moving along the line at constant ®, the same value of Zy is reached at larger ny
by increasing the Reynolds number. This occurs because changing the Reynolds
number has an effect on the vertical scale, since the definition of 7y contains the
Reynolds number. The lines at constant ® have been obtained numerically with

the following steps.

e ® is fixed to the chosen value and ¥ is varied from a value upstream to a
certain value not too downstream because we are interested in the region

around the stagnation point.

e For each ¥ and the assigned ®, the corresponding value of x and y is
found numerically by inverting the relationship of the potential and stream

function.

e The value of zy and 7y is found from the value of the coordinates with

origin in source x-y.

The same line of reasoning is used to find the line at constant W. Since ny is
yu rescaled with the Reynolds number, the latter has an effect on the curves, as
shown in figure In particular, by increasing the Reynolds number, the lines
at constant ¥ become more perpendicular to the stagnation point.

Another important observation is that when ny; — oo the optimal coordinate
® is negative, because the coordinates rotate at the stagnation point, therefore
moving away from the stagnation point corresponds to moving upstream. The
optimal coordinate ® is zero at the stagnation point and it becomes negative
along the streamline ¥ = 0 moving away from the stagnation point. This is
shown in figure BI3] where the coordinate xy is fixed at three different small
values and 7y is increased. In the (®-V) plane it is clear that the more zy is
small, the more ® is immediately negative for positive ny. In other words, for a

given xy, by increasing ny the corresponding ® is negative because we are moving
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Fig. 3.12: Constant ® and ¥ lines at R = 100 (top left), R = 1000 (top right) and
R = 5000 (bottom) in xy — i plane.
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upstream. Starting exactly at the stagnation point, namely taking xzy = 0, would
only give negative ®, because ® < 0 upstream, ® = 0 at the stagnation point
and ® > 0 along the body. The value of the streamline, which play the role of
the vertical coordinate, does not change significantly because moving upstream
the streamlines are uniform, therefore changing the Reynolds number does not
have a big effect. The boundary condition for the initial condition equations is

given at negative ®.

zp = 0.11
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Fig. 3.13: Constant xy lines at R = 100.

The optimal coordinates follow the shape of the body, therefore at the stag-
nation point they are rotated and perfectly coincide with the coordinates used
at the stagnation point zy-ny. We used two different coordinates to analyse the
flow at the stagnation point and the flow around the Rankine body. It is shown
that 1 used for the boundary region equations and 7y used at the stagnation
point coincide by taking the limit of small ®, namely approaching the stagnation

point. The scaled normal coordinate used in the boundary region equation is

Rk
= P4/ —
n Y

which can only be defined for positive ®. It has been checked numerically (Figure
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B.I4 top left) that if ® is small enough, Zy remains small even when 7 is large,
because the curvature has no effect yet and 7 remains orthogonal to the stagnation
point, that is to xy which remains small and constant. In this case n = ny. On
the other hand, by increasing the value of ®, Zy becomes too large for 7 large
because of the curvature. Figure B.I4] (top right) shows that for small ¥ and
® the two coordinates 1 and 7 overlap. By increasing the value of ®, namely
moving away from the stagnation point, the two normal coordinates are not the
same. Figure 314 (bottom) shows a further confirmation that n and 7y only
coincide near the stagnation point. In fact the plot of 1 versus ny has a slope of

45 degrees only for ® small enough.
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Fig. 3.15: Hiemenz streamwise (left) and normal (right) composite velocity components.

Results of initial condition equations

In this section results of the equations derived in section [ZZ4.3] are presented.
Figure shows the streamwise and normal composite velocity components.
The composite is equal to the inner velocity inside the boundary layer (for ny <
Bu, where By is the Hiemenz displacement thickness) and it is equal to the outer
velocity outside the boundary layer. In the limit of ny very large the velocity
will eventually go to 0 (streamwise) and —1 (normal). This is not evident in
the figures because 1y would need to be very large to see it, since it happens

upstream, far away from the stagnation point.

Figure shows the profiles of Uy (left) and Wy (right) obtained by solving
equations (2.86])-(2:89). The streamwise component is confined within the bound-
ary layer because outside it is of smaller order and the outer boundary condition
is set as 0. The spanwise component reaches the value of the outer perturbation
velocity at large ny because it matches the outer solution. Figure B.I7 shows the
maximum residual, Res, of the z-momentum equation (Z87) as a function of the
number of points NV used to find the solution. The plot is in logarithmic scale

and the residual decreases linearly by increasing the number of points.
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Fig. 3.16: Streamwise (left) and spanwise (right) solution of the system (2:86)-(2.89).
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Fig. 3.17: Maximum residual Res of z-momentum equation (2.87) as a function of number

of points N in a log — log scale.

As explained in section 2.4.3] the solution of the system (2.80)-(2.89) cannot be
used as initial condition because the profiles obtained are in coordinates xy-ny
while the boundary region equations are in optimal coordinates. To find the ini-
tial streamwise component, the initial ® is fixed and for every 7 the corresponding
Zy is found and the initial streamwise velocity component is found by multiply-
ing Zy by Up. The initial normal velocity component is found by integrating the
continuity equation in optimal coordinates and the initial velocity components

obtained are rescaled by the local outer mean flow as the velocities in the bound-
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Fig. 3.18: Initial profile of the streamwise (top left), normal (top right) and spanwise

(bottom) perturbation velocities.

ary region equations. Figure B.I8 shows the initial value of the streamwise (top
left), normal (top right) and spanwise (bottom) velocity components at the initial
® in optimal coordinates. The velocity components and pressure obtained for the
initial profile satisfy the boundary region equation at the initial ®. Figure
shows the resolution check for the continuity (top left) and momentum equations
(top right, bottom left and bottom right) in optimal coordinates at the initial ®
in logarithmic scale. The residual decreases linearly by increasing the number of

points N.
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momentum (bottom left) and z-momentum (bottom right) equations at the

initial ® as a function of number of points N in a log — log scale.

3.6 Boundary region equations solution

In this section the results of the boundary region equations are illustrated and
compared with those of [Leib et al. | (1999) for the flat-plate boundary layer.
Figure shows the amplitude of the streamwise (top) and spanwise (bot-
tom) velocity components at different values of the streamwise coordinate ®. It
is found that, while the dynamic of the streamwise velocity component is the
same as the streamwise velocity component of the flat plate, the dynamic of the
spanwise velocity component is significantly different from the spanwise velocity

component of the flat plate. This is due to the matching requirements which
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indicate that the effect of the pressure gradient plays a fundamental role in the
outer flow dynamics. The streamwise streaks are initially amplified and then
they decay downstream, behavior known as transient growth. The behavior of
the spanwise velocity amplitude is due to the free-stream matching requirements.
In fact, at a large distance from the body the value is the same as the outer
spanwise perturbation velocity component. It decays by moving downstream as
shown in figure and the free-stream value is also smaller downstream because
the outer perturbation flow decays with ®. Figure B.21] illustrates the contour

plot of the streamwise velocity component. It is observed that at large distance

from the body the velocity is null and that its maximum value decreases moving

downstream.
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Fig. 3.20: Streamwise (top) and spanwise (bottom) velocity profiles at the indicated val-

ues of ®.



116 3. Numerical results

Fig. 3.21: Contour plot of the streamwise velocity component.

The peak of the streamwise velocity component has a different value to the one on
the flat-plate boundary layer and it occurs at different » moving along the body.
This is due to the curvature and the fact that the inner mean flow is not similar.
Figure (left) shows the maximum value of @ at each streamwise location: it
increases at the beginning and then decreases moving downstream because the
streaks decay. This behavior is similar for the flat-plate boundary layer analysed
in [Leib et al.| (1999) because they also considered the linear case. The drawback
of such choice is that the streaks decay moving downstream, therefore we cannot
obtain an information on the perturbation flow farther downstream. Figure
(right) shows the n value where the streamwise velocity has its maximum value
for every ®. Differently from the flat-plate case the value of nyax varies along
the body, showing the difference of considering a Rankine body, namely variable

mean flow, instead of a flat plate, namely a uniform mean flow.
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Fig. 3.22: Maximum value of the streamwise velocity component as a function of ® (left)
and the n value where the streamwise velocity component is maximum along

® (right).

The effect of k on the solution is interesting. The equations have been ob-
tained considering that Rke = O(1). This assumption follows the experimental
observations on the streaks performed on the flat plate. The parameter x in the
boundary region equation must be of order 1 because it is given by

k-
VRkg'

Therefore, as k, = 27 and Rke = O(1), k must also be of order 1. However its

KR =

value can be changed to see the effect of the Reynolds number or the effect of
the streamwise perturbation wavelength. For the flat plate, in the limit of K — 0
the boundary region equations reduce to the boundary layer equations which are
the equations that describe the two dimensional flow inside the boundary layer.
This is not the case considered herein, where the leading edge corresponds to the
stagnation point where the boundary layer already has a nonzero thickness and
the perturbation flow is already three-dimensional. Figure (left) shows that,
when the ratio between x and k9 is kept constant, for large x the solution of the
boundary region equations coincides with the solution of the steady boundary

region equations as in [Leib et al. | (1999). However, for a Rankine body the
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boundary region equations do not have an asymptotic solution for large x, namely
the solutions for different x do not overlap. In the case of ILeib et al. | (1999) the
solution for large x is proportional to the inverse of k? which multiplies a function
of Z and 7. Both the solution and the streamwise coordinate scale with x2. For a
Rankine body, due to the non-similarity of the mean flow, the curves at different
values of large x cannot be rescaled by a constant, as well as the streamwise

coordinate as shown in figure B.23 (right).
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Fig. 3.23: Maximum value of % as a function of ® for kK = 5 compared to the steady
solution of the boundary region equations (left) and maximum value of @ at

the indicated values of k.

In figure the amplitude of the streamwise velocity component is plotted
as a function of  at ® = 0.5 for different values of k. It is shown that the
amplitude of the streamwise velocity component increases as x decreases. This
confirms what already observed in figure (right) where it is evident that for
larger values of x the maximum value of the streamwise velocity component is

smaller for every streamwise position.
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Fig. 3.24: Streamwise velocity component at ® = 0.5 for different values of .
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Fig. 3.25: Pressure profiles at the indicated values of ®.

Figure show the perturbation pressure at the indicated values of ®. The
behavior of the pressure is due to the free-stream matching requirements. The
outer perturbation pressure is small, therefore the inner perturbation pressure is
small at large distance form the body, however its value at the wall is significantly
high.

Figure[3.26 shows the shear at the wall as a function of ®. It has been obtained

by evaluating the derivative of the streamwise velocity component with respect
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Fig. 3.26: Shear at the wall along the body.

to the normal variable at each streamwise position. The shear increases at first,
then it reaches a maximum value and eventually it decreases downstream.
Figure shows the effect of changing the grid position on the spanwise
velocity component. The outer perturbation velocity decays downstream, there-
fore by decreasing the distance between the grid and the body, the outer velocity
would have a higher value at the same streamwise position and since the matching
has been employed, the inner perturbation velocity would have a higher value for
large 1. However the grid cannot be too close to the body because there would
be a singularity in the outer perturbation velocity solution due to the stagnation
point, where the mean flow is zero. This is why the outer value is always small

for positive ®, as shown in figure B.27
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Fig. 3.27: Effect of the grid position on the spanwise velocity component.






4. CONCLUSIONS AND FUTURE WORK

The downstream evolution of a perturbed incompressible flow at high Reynolds
numbers around a Rankine body has been analysed. In the outer region around
the body the flow is decomposed in a mean flow and a perturbation flow. The
first one is given by a uniform flow which encounters a source flow because the
considered geometry is well represented by this flow. The outer mean velocity
and pressure are analysed along the body’s surface. The solution for the outer
perturbation flow is found in a new set of coordinates which are called optimal
coordinates because they follow the shape of the body. The velocity components
are made dimensionless by the local outer mean flow and the outer perturbation
velocity is decomposed in a homogeneous part and a potential part which is
linked with the perturbation pressure variation. The homogeneous perturbation
velocity solution is found by solving analytically the homogeneous Navier-Stokes
equations in optimal coordinates. The perturbation potential is then found by
using the continuity equations and the perturbation pressure is a function of the
perturbation potential.

In the boundary layer region the mean flow satisfies the steady nonlinear
mean flow equations without similarity in optimal coordinates while the pertur-
bation flow is governed by the linearised unsteady boundary region equations in
optimal coordinates. As for the outer region, the scale for the inner perturbation
velocity is the local outer mean velocity. The boundary region equations satisfy
appropriate boundary conditions derived from matching with the solution in the

outer region and no-slip condition at the wall. Initial conditions for boundary
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layer equations have been derived considering that at the stagnation point the
inner mean flow is the well known Hiemenz flow and a set of equations in Carte-
sian coordinates for the perturbation flow at the stagnation point is derived. In
order to obtain a solution independent by the streamwise coordinate a power
series solution is assumed and substituted into the linearised Hiemenz Navier-
Stokes equations. The solution for the series is found numerically and it is used
to build the initial condition for the boundary region equations. The spanwise
velocity component is only rescaled because the spanwise direction is the same
for the stagnation point and the Rankine body. The streamwise velocity com-
ponent is calculated at the initial streamwise coordinate ® for each stagnation
point streamwise coordinate xy. The two coordinates do not coincide because of
the curvature therefore it is necessary to build the initial condition from the so-
lution of the series as well as rescaling the velocity component by the local outer
mean velocity. The normal initial velocity component is found by integrating the

continuity equation in optimal coordinates.

The effect of the curvature and the mean pressure gradient on the veloc-
ity profiles has been analyzed. The streamwise wavenumber also plays a role on
the streaks amplitude. It has also been demonstrated that the inner perturbation
pressure matches the outer perturbation pressure which has a very important role
in the boundary layer dynamics. The shape of the streaks is different compared
to flat-plate boundary layer, but the behavior is the same: the streamwise veloc-
ity component initially increases in magnitude and then it decreases by moving
downstream while the spanwise velocity component, which matches the outer per-
turbation spanwise velocity component at large distance from the body, decreases
in magnitude moving downstream. The value and the location of the maximum
of the streamwise velocity component also changes from the flat plate case. In

fact, the n value where the velocity has its maximum value is different at each
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streamwise position, due to the non-similarity of the problem. The effect of the
Reynolds number and the streamwise wavenumber on the streaks has also been
analysed, showing an influence on the amplitude of the streaks. The numerical
solution of the boundary region equations shows a perturbation pressure which
is significantly high at the wall and its behavior is due to the matching with the
outer perturbation pressure, which is very small. The shear at the wall along the
body has been shown to initially increse up to a maximum value and then slowly
decrease moving downstream. The position of the grid where the disturbance is
generated plays a relevant role on the value of the velocity at large distance from
the body because it determines the position where the outer perturbation flow
has decayed.

In this thesis we have constructed the unsteady and three-dimensional flow
generated by the free-stream forcing. This is the first step towards the formulation
of the nonlinear problem, where the interactions between the mean flow and the
perturbation flow inside the boundary layer are considered. To our knowledge,
this is the first study to deal with investigate both the perturbation outer and
inner flows around a Rankine body, considering the effects of the curvature and
the pressure gradient. To verify our results, a comparison with the flat-plate
case has been performed and we observed a good match between our solution
and the flat-plate solution. The findings of our research are quite convincing,
but additional theoretical and experimental work is required in order to fully
understand the Klebanoff mode generation and growth over a Rankine body.

The rigorous mathematical approach used in this work could be useful to
extend the results to more complex cases and some ideas have already been

developed.

e Studying the evolution of order-one disturbances by solving the nonlinear

boundary-region equations. It is interesting because in real applications
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4. Conclusions and future work

the superimposed perturbation flow is of the same order of the mean flow.
In effect, experimental results on bypass transitions show the interaction
between the mean and the perturbation flow which leads to turbulence. In
this case the amplitude € of the disturbance is of the same order of the
amplitude of the mean flow therefore when the boundary region equations
are derived, terms of order €2 cannot be neglected. The equations for the
perturbation flow are then nonlinear and the modes are coupled so that it
is not possible to analyse only a single mode as for the linear case studied

herein.

Using nonlinear streaks as a base flow to study secondary instabilities. This
is useful to have correct initial conditions for direct numerical simulation.
In fact, DNS could be employed to analyze secondary instabilities by solving
numerically the complete Navier-Stokes equations, but an initial condition

is still required. This could be provided by the nonlinear streaks.

Studying the perturbed flow around a wedge body. In this case there would
be Falkner-Skan boundary layer with self similar equations along the entire
body. The only parameter which would be interesting to change is the angle
B in the equations of the inner mean flow. The boundary layer equations
are the same for the Rankine body and the analysis of the outer flow is the
same. The only difference is in defining the outer mean flow which for a
Rankine body is given by a uniform flow plus a source flow and upstream
the flow is uniform, which allows us to define the gust. The challenge is
finding a way to describe the wedge flow with a combination of sources

which is also uniform upstream.
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A. DERIVATION OF CONTINUITY AND NAVIER-STOKES
EQUATIONS IN OPTIMAL COORDINATES

Since the body is not a flat plate the analysis of the outer and inner flows is
made in a new coordinate system. In order to fully understand the significance of
this choice, it is necessary to make a regression to explain how a general change
of coordinates is made. Switching from x — y orthogonal coordinate system to
an another generic orthogonal coordinate system ® — W, the following relation is

valid

dz? + dy? = h2d®? + h2,dv?,

where he and hy are the transformation coefficients.

It can be easily demonstrated that

w2 (52)% - (52)? (A.10)
(35)2(32)2 — (32)2(3L )2’ ‘

h2 — (5.0 = (5,7 (A.1b)
T(Gh)(8)2 — (Z2)2(5L)2 '

Now the general transformation coefficients can be calculated. A special orthog-
onal coordinate system is chosen, ®-¥ where ® is the potential function and ¥
is the streamfunction of the outer mean flow U of components U and V. By

definition the following relations are valid
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~ 0P OV
~ 0P ov
V=3 = "5 (A.2b)

By calculating the transformation coefficient from (A.lal) and (A.1bl) the result

is that

1 1

jup vrqve

Then

d®? + dv?

dz? + dy? = h2d®? + h2,dP? = _
(] \'4 |U|2

(A.3)

Now it is important to see how gradient, divergence and curl operations change
when the coordinate system changes. The function a is a scalar and A is a vector
with components (Ag, Ay, A,) (these components are in the new directions);
The new coordinate system is ®, V¥, z, the new directions are ég, €y, €, and the
transformation coefficients are hg, hy, h,. The divergence, gradient and curl are
defined as follows:

04, 04, O0A,

v 8$+8y+8z

A4
L [O(hwhiAe) | O(hohsAv) | O(hahyA.) (A.4a)
hohyh 0P ov 0z ’
~0da +~0a -0a . 1 0O0a . 1 da . 10a
Va—z% +]87y+k%—e@g%+e\paﬁ+ezhfza, (A4b)
~ (0A 0A ~ {0A 0A ~ (0A 0A
A =1 E_ 7Y G z T Uiy | _
VX Z(@y 8z> ‘7(8:16 8z>+k<8x Gy)
1 . d(hA,)  O(hgAy) . d(h.A,)  O(heAs)
_ _¢oh _
hahoh, [e‘bh‘l’ ( I 0z R T o= )|
éshe  (O(hwAy)  O(hoAs)
hohwh, o0® ov '

(A.4c)
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Relations (A.4)) are used to obtain the continuity and Navier-Stokes equations in

the new coordinate system. In the case considered here

In order to derive the continuity and Navier-Stokes equations in optimal coordi-
nates namely from (z,y,z) to (®,V¥,z), the following equation is used to write the

term V - (VV) in another way

V.-VV=V(V-V)-VxVxV. (A.5)

By the continuity equation the term V -V is zero. Thus (A5) becomes

V.-VV=-VxVxV. (A.6)

Moreover, it is easy to demonstrate the following relation:

V]?

By substituting (A6) and (A7) in the continuity equation and the following

Navier-Stokes equations
V-V =0, (A.8)

AY 1
V.YV = —V.(VV A.
5 TVV Vp+ 5V (VV), (A.9)

where R is the Reynolds number, it is obtained

ov V|? _ 1
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which is another form of the Navier-Stokes equation.

By equations ([A.4) it is easy to see the the continuity equation in optimal

coordinates is

~ 0wy ~Owy Ow,
U6<I> +U6‘I/ + 5, =0, (A.11)

where U = |U|, wp = u/U, wy = u/U and w, = w/U, with u and u the velocity
components in the ® and ¥ directions respectively.

In order to find the Navier-Stokes equations in optimal coordinates the fol-

lowing passages are made

VxVxV =U? u v w =
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and thus equation (A.10) in scalar form is

{5 Lo (5)] - lae (7) -0 (5)]} -

g U0 ow 8 (v\]_ O frm]o
9¥ R0z |0V 9z \[ oD oD

(e
Z) ] B;“ o= ()] -
Tl -F-w w2 ()}

where w,v,w are the velocity components in the ®,¥,z directions (not in z,y,z
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directions). Rearranging and simplifying it is obtained

.i8w<p owe owe %awq) 9 9 i ~ __i@
).ﬁQ—at + we 9% + wy 50 + G o +(w¢+wq,)8q)(an)— %2(9(1)+
1| Pwe  Pwe 1 0Pwe 0T (wy  Ows) 20U dus
R| 092 902 V2 922 v \ 9®  ov U 0% 0z |’
'iaw\p Owy Owy %871)\1; 9 9, O ~ __i@
Vigar Teege vy T g Twe ten)ggnl) = —paagt
1|\ Puwy | Puwy 1 Pwy 0T (Gwy  dwe) 20T du.
R| 892 " 9u2 V2 922 od \ 9®  Ov U ov 9z |’

).iﬁwsz 8wz+ 8wz+%%+ 81n(7+ olnU B
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B. DERIVATION OF CONTINUITY AND NAVIER-STOKES
EQUATIONS FOR THE INNER MEAN FLOW

The equations which govern the mean flow inside the boundary layer are de-
rived. The mean flow velocity components and pressure are (U,V, P). During
the derivation of the non-dimensional Navier-Stokes equations in optimal coor-
dinates we scaled all the legths by the characteristic lenght of the body L*. The
key point in the boundary layer theory is the existence of two different length

scales
e the characteristic length of the body L*,
e the boundary layer thickness 0* < L*.

We now take L* as scale in the streamwise direction and §* as scale in the normal
direction. The boundary layer thickness 6* actually varies along the body, but we
choose it to be the value at one fixed streamwise position so that it is constant.
We also expect different scales for the velocity components (U, V). The aim is
to have all the flow variables of order 1. From the continuity equation (2.1 it is
clear that both the normal velocity component V' and the normal coordinate W,
are of order ¢
ou oVs 6

°_0
9%, 0,0

with V5 = V/é = O(1), ¥ 5 = ¥,/d = O(1) and ¢ the non-dimensional bound-

ary layer thickness. The ®-momentum equation is obtained by expressing the

equation in terms of these rescaled variables, so that some terms become small

and they can be ignored. The boundary layer thickness is proportional to R; 1/2
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therefore some viscous terms cannot be neglected in the equations. The same line
of reasoning is used for the W-momentum equation and it is assumed that the
outer mean velocity U= (~fb in the boundary layer. The momentum equations

for the mean flow in the boundary layer are

pOU U 10U, 1 0P 19U
9%, 0V [, 0%, 020%, ' R, 0V
oP
a\IJL5 B

For convenience the subscript ¢ in section 2.3.2] has been omitted. The stream-

function and the inner variable are defined

=~ 20 R
U=F(@un)/ = n= T/ o5

The following relationships are valid:

U=F,
20, ;N F 2
V=-— Fp, — F iy
R, < o 2<1>L> oV R, |
oUu  OF' n o
9, ~ 0, 20,
oU R
— F// 71-4
o, 20,
82U _ F/// RL
w2 20,
0P _ 09U, 1 0P 100,
o®,  'od, 0,00, 0%,

By substituting these relationships into equation (2.20), it is obtained

OF’ n
F/ < + F//> o
0P, 29,

20, n F 2
Fp, — F' —/ F
R, < L 2<I>L> oV Ria,

1 aﬁb ]. F/” RL

0,00, R, 28,

7/ RL 1 8(7[7

—_ 17/2 =
20, U, 0%,
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that becomes

"  FEF’" 19U,

N N OF'
20, 29, [, 0P,

1-F?)=F

Multiplying both sides by 2®;, we have

F" + FF" 4 2m(®.)(1 — F?) =

where

oF 5 oF

od,

0D

oF
F// F/F// _ F/F// .
0, + /% /%

2<I>L(F'F<i>L — Fp F"),

o _2udl,
Up 421







C. DISPLACEMENT EFFECT

The Navier-Stokes equations have been derived in optimal coordinates without
displacement ®-¥ and the inviscid mean flow without displacement has been
found numerically as a function of ®-W. In the same fashion, the Navier-Stokes
equations can be derived in displaced coordinates ®4-U,, where ®4-¥,; are the
potential and streamfunction of the displaced mean flow. The first observation is
that as the inviscid mean flow with no displacement has only the ®-component
in optimal coordinates without displacement, the displaced mean flow has only
the ®4-component in displaced coordinates. However, the displaced mean flow
has two components in the ®-¥ plane, as shown in figure

We need to find &4, ¥4 and the mean inviscid displaced mean flow as func-
tions of the not-displaced coordinates ®-V¥. In order to do that, we need to solve
the Laplace equation for the displaced streamfunction ¥, in (®, ¥) optimal co-
ordinates. Therefore, we need to define the streamfunction associated with the

displaced mean flow

U = (Ug, Va, 0) Ud

where
° ﬁd =U 3/ U* is the mean velocity component along @,
° ‘7d = 17; / U* is the mean velocity component along W,

e U* is the absolute value of the inviscid mean flow without displacement.
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The velocity components (C.J]) satisfy the continuity equations and Navier-Stokes

equations in optimal displaced coordinates.

The vorticity of the inviscid displaced mean flow (C.I]) must be zero, therefore

5, = OV 90s _
o ov

the streamfunction can be written as

Uy(®, ) =W+ R™2Ty(D, ).

It follows that the problem to be solved is

0* 0*U
d | d _ 0,
P2 U2

V23U, =
V4(¢,0) = —B(®)V,d > 0,

U4(9,0) =0,® < 0,

Uy;=0 as ¥ — oo,

Uy;=0 as ¥ — —o0.

(C.2)

(C.3)

(C.4)

(C.5)

(C.6)

(C.7)

If (®) were a constant the problem could be easily solved by analytic con-

tinuation to the complex plane, (Van Dyke (1975) pages 134-135). But it is not

constant, so it is solved numerically. The same line of reasoning is used for the po-

tential ®4(P, ¥) so that we have numerically ®4(®, V), ¥4(P, ¥) and [~J(<I>d, Uy).

The analysis of the outer perturbation flow is performed by using these displaced

coordinates.
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Fig. C.1: Outer potential displaced velocity in ®-¥ plane and ®4-¥, plane.






D. NEWTON-RAPHSON ALGORITHM

void get_x_y_r_theta(double PHI,double PSI,int opt){

//Stagnation point

if (PHI==0.0 && PSI==0.0){

x=-Lambda/(2.0*PI);

y=0.0;

R=fabs (x) ;

theta=PI;

r_start=R;

theta_start=theta;

}

r_guess=r_start;

theta_guess=theta_start;

//Newton-Raphson

while(1){

a=r_guess*cos (theta_guess)+Lambda/ (2.0*PI)*log(r_guess)-
Lambda/ (2.0*PI)*(log(Lambda/(2.0*PI))-1.0)-PHI;
b=r_guess*sin(theta_guess)+(Lambda*theta_guess)/(2.0*PI)-Lambda/2.0-PSI;
if (fabs(a)<=toll && fabs(b)<=toll){break;}
jac_1=cos(theta_guess)+Lambda/(2.0%PI*r_guess);
jac_2=-r_guess*sin(theta_guess);

jac_3=sin(theta_guess) ;
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jac_4=r_guess*cos(theta_guess)+Lambda/(2.0*PI);
det_j=jac_1*jac_4-jac_2*jac_3;
h_r=(a*jac_4-bxjac_2)/det_j;
h_theta=(b*jac_l-a*jac_3)/det_j;
r_guess=fabs(r_guess-h_r) ;
theta_guess=fabs(theta_guess-h_theta) ;
}

R=r_guess;

theta=theta_guess;

x=R*cos(theta) ;

y=R*sin(theta);

r_start=r_guess;

theta_start=theta_guess;



E. EIKONAL EQUATION

In this appendix an alternative method employed by |Goldstein (1984) to solve
the outer perturbation flow is illustrated. The focus is on the Eikonal equation,
a nonlinear partial differential equation obtained during the analysis. The main
difference with our method is that upstream it is considered that A* < L*, where
A* represents the wavelengths in all the three directions. Equation ([2.34]) was
obtained by using the outer scale L* and 1/R;, is a small parameter because Ry,
is large. It is solved by employing WKBJ theory, which is used to obtain the
approximate solution of a linear differential equation whose highest derivative is
multiplied by a small parameter (Bender & Orszag, [1999). In this case the small
parameter used to obtain the solution is not in the equations, but the time scale
of perturbation motion is much smaller than the characteristic time of mean
flow. Moreover the spatial scale of the perturbation is much smaller than L*
which is used in analogy to the application of WKBJ theory to classical ordinary
differential equations, where the equations are initially scaled by the larger scale.
This case is very similar to that one of [Holmes (2013) where there is not a small
parameter in the equations, then it is not obvious how to use WKBJ theory. By

using WKBJ theory the solution to (Z34]) can be taken of the form

= e'*s (ﬁo + iﬁl + ) ethlksga—tL) (E.1)
ik ’
where k = 2 L* /A\} > 1 and k3 = \;/A%. Thus to find @y it is necessary to find

s(zy,y) and Qg(zy, y1,). By substituting (E.J]) in (2:34]) and equating coefficients

of inverse powers of k, the following are obtained
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1—ﬁ-vs:—RL(vs-vs+k§G), (E.2)

Ap

~ % ; ~

U Vil — —— Vs - Vilg — ——agV2s + iy - VU = 0, (E.3)
R, R,

where Ry, = R./k = O(1).
It has to be remarked that in obtaining equation (E.2]) the following assump-

tions have been made:

® A\, Ap,Ar < L* namely the wavelengths of the disturbance in the three
spacial directions are all of the same order and they are all smaller than

the characteristic length of the body L*.

e R, is of order 1. This assumption permitted to use WKBJ theory to
expand the solution for the velocity as in (EJI). This theory is used to
obtain the approximated solution of partial differential equations whose
highest derivative is multiplied by a small parameter. The equation for uy
is (Z334) where Gy is a function of x;, — y;, only and ¢, is the time scaled
by the mean flow velocity and L*. The small parameter in this equation is
1/Ry. In WKBJ theory the solution expands as in (E]) where the phase
is normally multiplied by a large parameter, which should be the inverse of
the small parameter in the equation (in this case the Reynolds number Ry).
We actually chose to multiply the phase by k, following |Goldstein (1984)

and we are allowed to do that because Ry /k = O(1).

As explained, it is convenient to change the coordinates from Cartesian to opti-
mal. Here, in the outer region, the potential and streamfunction used are ®, and
P, associated with the outer mean flow U.

A new function is introduced
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SoL, = s+ (P, — Pro), (E.4)

Ry,

where @ is an arbitrary constant and sor, = si/L*. Then (E.2) becomes

aSOL 2 880L 27 2
(2" (22 - g me) .

where

0 di <1+ik§G> .
R)\q)|U|2 R)\(p

with [U| = |V®,|. Equation (EB) is called Eikonal equation.

The boundary conditions on all the four boundaries are taken as equation
(3.27) in |Goldstein (1984) which is the solution for equation (E.2) for a constant
mean flow, thus it can be used as the solution far from the body, where the mean

flow is uniform. The solution written in the notation here used is

/1 1 .
ZRiq)Qz - k%G - iR)“bZ

where ko = A5/AL. By substituting Q2 for ]fﬂ in the above equation the

s = koquyr, + (xL - $LO)a (EG)

following is obtained

2

; 2 R/\<1> 2 1 ;
s = koqyL + iRy, — k5o — 1 k3o — ER)@J (xy, —xrp)-

In the next sections it is demonstrated that the solution (E.G]) satisfies equation
(E2)) and there is also the proof that that solution in the inviscid limit coincides
with Leib et al.| (1999)’s region IV solution. Moreover, a few possible methods
to solve the Eikonal equation everywhere in the domain are illustrated. There

are two big issues in the case studied herein:

1. The right hand side of the Eikonal equation is complex.
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2. The right hand side of the Eikonal equation is singular at the stagnation

point.

E.1 Solution of the Eikonal equation for a constant mean flow

The following are the passages which demonstrate that the solution (E.G)) satisfies
equation (E.2). Remember that the outer mean flow far from the body is {1,0}

and that the coordinates x;, — ., coincide with &, — U,

ds \? ds \? 9
<axL> +<8yL> +k3G]7

1 0s o
8$L_ R)\q)

1 1 )
NET RO
i I o o 2 Lo s o 2 2 2
"R ZR)@Q — kg — ZR,\q) — Ryt ZR)@Q — ki + kag +F3q |

o

1

1—y/~ % — k3, + RM,

—fR 2 kGl R 1(%1& — k2 — k2
)\4>Q + 2 R)\q) + /\q:. 2G 2 R 3G R)\q,

4i  4k2 R k2
1+ qu, ——ZRA<1>< . - 1>+Z e G

1-—

4 Ry, R}, 1 Ry’
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Thus the solution of (Goldstein (1984) for a constant mean flow satisfies the equa-
tion (E.2)).
E.2  Solution of FEikonal equation for a costant mean flow in the inviscid
limit

It is important to notice that the initial gust used