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Abstract 

 

Legumes, such as Medicago truncatula, can fix atmospheric nitrogen by forming 

symbiotic associations with soil-borne bacteria collectively called rhizobia. As a 

result of this relationship, specific roots organs called nodules, are developed 

that houses rhizobia and where the nitrogen fixation process occurs. Nodule 

formation is tightly regulated by complex signalling mechanisms and 

environmental cues, such as nitrate availability. Molecular signals move between 

the site of infection and the cortex/pericycle to coordinate nodule organogenesis 

and also systemically along the vascular system to coordinate root and shoot 

responses. Despite recent progress in the identification of some of these signals 

very little is known about the pathways for intercellular transport. 

In this project, the role of the cell-wall polysaccharide callose in the establishment 

of symbiotic interaction between Medicago truncatula and Sinorhizobium meliloti 

was addressed. Callose metabolism regulates transport through 

plasmodesmata: intercellular channels that form a symplastic path for transport. 

Using immuno-histochemistry we found that callose is downregulated as early 

as 16 hours post-bacterial inoculation. Concomitantly, the expression of a 

plasmodesmata located callose degrading enzyme (Medtr3g083580), identified 

using phylogeny, was induced. Roots constitutively expressing either 

Medtr3g083580 or its Arabidopsis orthologue PdBG1, showed reduced callose 

levels and a higher rate of infection and nodulation, even when grown in nitrate 

concentrations that inhibit nodulation. The effects were stronger when using a 

promoter active early after rhizobial infection and were mimicked, in high nitrate 

conditions, by the ectopic expression of a novel plasmodesmata receptor-like 

kinase (Medtr1g073320).  

The results suggest an important role for callose in the control of nodulation, both 

under nitrate deprived or sufficient conditions, likely associated with the 

regulation of transport via plasmodesmata. The relevance of the findings is 

discussed in light of potential applications in crop improvement and in reducing 

the use of nitrogen fertilizers.  
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Chapter 1 –Introduction 

1.1 Brief introduction to symbiosis 

Symbiosis is a biological interaction between two different organisms living in 

physical association, often to the advantage of both. Symbiosis can be 

established between plants and some soil microorganisms. Through exploiting 

these interactions, the plant can improve its capacity to obtain water and 

essential macronutrients (including nitrogen and phosphorus) that sustain growth 

and development. With a human population growing at a fast rate and the 

impacts of climate change in agriculture, it is required that the food industry 

reduce the inputs of water, fertilisers and pesticides in crop production. Improving 

traits that affect symbiosis, or extending the number of plants that can engage in 

these beneficial associations, can be used as an alternative to overcome these 

challenges.  

In beneficial plant-microbe interactions, two symbiotic systems have been mostly 

studied: interactions involving arbuscular mycorrhizal fungus (AM) or bacteria of 

the genus Rhizobium (rhizobia). More than 80% of all land plants families are 

able to form symbiosis with AM fungi (Bonfante and Genre, 2010). AM 

interactions have an important impact on nutrient uptake, especially nitrogen and 

phosphate, and on the global carbon cycle (Gherbi et al., 2008). 

The origin of AM symbiosis is dated approximately 400 million years ago, hence 

might be the precursors of other symbiotic systems, such as the one established 

between legumes and rhizobia (Gherbi et al., 2008). In fact, some mutants 

unable to engage in symbiosis with rhizobia are also defective in forming 

associations with AM fungus. This suggests a genetic link between bacterial and 

fungal symbiosis. Common symbiosis genes have been successfully cloned and 

characterised, proteins involved in several steps in the recognition of the 

symbiotic partner and in the establishment of the symbiosis are shared among 

these two symbiotic systems (Denarie et al., 1996; Madsen et al., 2003; Gherbi 

et al., 2008; Maillet et al., 2011). 

Different from AM, rhizobia can fix atmospheric nitrogen in symbiosis with only a 

few plant species belonging mainly to the Fabaceae family. In the next chapters, 
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the features that distinguish the legume-rhizobia symbiosis from other systems 

will be revised. By understanding these plant-microbe systems, the aim is to 

develop new environmentally sustainable technologies and tools to improve 

biological nitrogen fixation, a crucial process that will be introduced in the next 

section. 

1.2 Brief introduction to biological nitrogen fixation 

Nitrogen is an essential element for appropriate plant growth, representing 

around 2% of the total plant dry matter that will enter the food chain (Santi et al., 

2013). Although the dinitrogen gas state is highly represented in the atmosphere, 

making about 78.1% of the earth’s atmosphere, plants are not able to directly 

acquire it and metabolise it in that form. Plants can uptake nitrogen in the form 

of nitrate, nitrites and ammonium that become available after lighting storms and 

from decomposition of animal depositions and plant residues (Bernhardt et al., 

2003). Only 1-4% of the nitrogen required for crop production is naturally 

available and this forces the use of nitrogen fertilisers to optimise yield. Nitrogen 

fertilizers are produced using the Haber-Bosch process which is energetically 

and economically expensive. Fertilizers production has other environmental 

consequences: important amounts of CO2 are generated during production and, 

after periods of heavy rain or extensive irrigation, the excess of these fertilizers 

can run-off into waterways, contributing to eutrophication (Silva et al., 1978; 

Andersen et al., 2014). Due to these issues, the Department for Environment, 

Food and Rural Affairs determines the amount of nitrogen fertilisers that can be 

used and controls and fines those farms that do not comply with current 

regulations1. 

Some plants have evolved to overcome nitrogen limitation by establishing 

beneficial symbiotic associations with nitrogen-fixing soil-borne micro-

organisms. Four different orders of flowering plants (Rosales, Fagales, 

Cucurbitales and Fabales) are able to associate with nitrogen-fixing micro-

                                            

1Last visited 08/08/2017: https://www.gov.uk/guidance/using-nitrogen-fertilisers-in-
nitrate-vulnerable-zones#inspections  

https://www.gov.uk/guidance/using-nitrogen-fertilisers-in-nitrate-vulnerable-zones#inspections
https://www.gov.uk/guidance/using-nitrogen-fertilisers-in-nitrate-vulnerable-zones#inspections
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organism, but legumes are the group of plants with the highest representation 

within these groups (Doyle, 2011).  

In this symbiotic interaction, the bacteria is hosted intracellularly within highly 

specialised organs, known as root nodules, that are formed on the roots of host 

plants, and within which the bacteria have the optimal environment to fix nitrogen 

for the host plant in exchange for photosynthates (Li et al., 2012). Bacteria have 

an enzymatic complex, called nitrogenase, that mediates the reduction of 

atmospheric N2 to ammonia (Figure 1.1) but that only function effectively in the 

low oxygen environment created within the nodules.  

 

Figure 1.1-Chemical reaction of the biological nitrogen fixation that occurs 
in legume nodules. The bacterial enzyme nitrogenase catalyses the 
reaction that converts di-nitrogen gas into assimilable forms of nitrogen, 
such as NH3. The process is coupled to the hydrolysis of 16 equivalents 
of ATP and is accompanied by the co-formation of one molecule of H2. 

 

Rather than relying on the use of external N sources, alternative ways to supply 

crops with the required nitrogen are the basis of developing more sustainable 

farming. A popular alternative is intercropping, a farming technique that relies on 

growing legumes able to fix nitrogen in arable soils aiming to improve the 

nitrogen content of the soil, positively impacting the growth of future crops 

harvested in the same land (Searle et al., 1981; Murray et al., 2017; Qin et al., 

2017). 

Understanding how legumes interact with soil bacteria to establish this beneficial 

interaction is essential in order to optimise the process and, in the future, 

engineer other economically important crops to enter in similar relationships. 

This would be especially important in terms of improving crops yield while 

reducing the use of contaminant fertilisers.  

 

https://en.wikipedia.org/wiki/Hydrolysis
https://en.wikipedia.org/wiki/Adenosine_triphosphate
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1.2.1 Sequential steps in the formation of nitrogen fixing symbiosis  

Symbiotic nitrogen fixation accounts for about 175 x 106 tons of N fixed globally 

(Maximising the Use of Biological Nitrogen Fixation in Agriculture, report of a 

FAO/IAEA meeting 2001 2) ). The process involves a series of concatenated 

events that starts with the recognition of the bacteria by the plant and finishes 

with the creation of a fully functional nitrogen-fixing nodule. Bacterial infection 

and organogenesis are highly specialised programmes that require the supply of 

important energetic resources, hence they are tightly regulated. In legumes, such 

as in M. truncatula, rhizobia symbiotic interaction begins with the exchange of 

chemical signals, leading to bacterial infection and nodule differentiation. This is 

a complex process, involving reprogramming of different root tissues cell types 

to allow for bacterial infection, entry and dedifferentiation into nitrogen-fixing 

bacteroids. 

In nitrogen deprivation, legume roots release specific flavonoid molecules that 

serve as chemoattractants for the soil bacteria (Zhang et al., 2009) and activate 

the expression of rhizobia nodulation genes (nod genes). Among others, 

bacterial Nod genes encode for biosynthesis of the Nod factors, chito-

oligosaccharides that trigger a number of morphological and biochemical 

changes in the host plant necessary for the symbiosis to occur (Geurts and 

Bisseling, 2002; Kereszt et al., 2011). A well-characterized example is the Nod 

factor-induced expression of ENOD11, an early nodulin gene encoding for a 

putative cell wall-associated protein widely used as a marker for early infection-

related symbiotic events (Journet et al., 2001; Boisson-Dernier et al., 2005). 

Infection is initiated in root hairs and rhizobia are entrapped within the root hair 

and enter the plant through the formation of a tubular compartment that growths 

into the host cell, known as the infection thread (IT) (Mitra et al., 2004) (Figure 

1.2-A). A region of the root, at around 3 cm from the root tip coincident with root 

hair initiation, is called ‘infection zone’ and is where the host-bacteria recognition 

is believed to take place (Bhuvaneswari et al., 1981). Bacteria can also enter the 

                                            

2 Maximising the use of Biological Nitrogen Fixation in Agriculture. Report of an 
FAO/IAEA Technical Expert Meeting held in Rome, 13-15 March 2001.  
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root by cracks in the epidermis, normally caused by the emergence of lateral 

roots, but this is a much less common method (Vega-Hernández et al., 2001).  

Bacterial infection is associated with concomitant cortical and pericycle cell 

reprogramming and division that will lead to the creation of a new organ, the 

nodule primordia, situated directly below the infection site (Geurts and Bisseling, 

2002; Jones et al., 2007; Cerri et al., 2012) (Figure 1.2 B-1). 

Eventually, the infection thread reaches the nodule primordia, releasing the 

bacteria into the dividing cells (Figure 1.2 D-3). As the nodule develops and 

matures, the bacteria will then turn into bacteroids, the fully functioning form of 

nitrogen-fixing symbiont. These bacteroids are not directly in contact with the 

plant’s cytoplasm as they remain enclosed by a host membrane (Haag et al., 

2013; Farkas et al., 2014). All steps described in this section are schematized in 

(Figure 1.2). 

Nodules can be classified into two main groups depending on their 

developmental pattern. Determinate nodules, like those observed in Lotus 

japonicus, are characterised by a non-persistent meristem,  are round-shaped 

with a centric nitrogen fixation zone where the bacteroids are hosted (Hirsch, 

1992; Mao et al., 2013). In determinate nodules, senescence develops radially, 

starting from inner layers of the nodule and slowly spreading toward the outer 

sections of the nodule (Van de Velde et al., 2006). 

On the other hand, temperate legumes, such as the model used in this work 

Medicago truncatula, generate indeterminate nodules, phenotypically 

characterised by a cylindrical shape consisting in a gradient of developmental 

zones comprising a persistent meristem (where cell division occurs), infection 

zone (where rhizobia differentiate into bacteroids) and fixation zone (composed 

of infected rhizobia-filled cells interspersed with some uninfected cells ) (Van de 

Velde et al., 2006). As the nodule ages, a new zone named the senescence zone 

is developed close to the infection zone. This developmental zone will develop 

gradually until it reaches the apical zone as the nodule degenerates (Van de 

Velde et al., 2006).   
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Figure 1.2- Diagram showing the steps involved in rhizobia infection and nodule 

formation in Medicago truncatula. A- The host plant secretes signalling 

compounds, called flavonoids, that are perceived by the bacteria and that will 

trigger the synthesis of bacterial Nod Factors. These factors are then perceived 

by the plant, triggering the start of the symbiosis. B and 1- Rhizobia attaches to 

the surface of the root hairs, which deform and curl for bacterial entrapment. 

Cell division start in the cortex in synchrony to bacterial infection in the 

epidermis. C and 2-Bacteria are entrapped in the root hair. A local hydrolysis of 

the plant cell wall takes place in the curled root hair and the plasma membrane 

invaginates. This results in the formation of a tubular structure, called the 

infection thread (IT), which transports the bacteria into the plant. The cortex 
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continues to divide and dedifferentiates into a nodule primordia. D and 3-

Infection threads develop into the root epidermis, through inner plant’s tissues 

and into the nodule primordia developing in the cortex. E and 4- Infection 

thread allows bacterialcolonization of the nodule, where they differentiate into 

their symbiotic form, the bacteroids. These bacteroids remained enclosed by a 

host membrane. Nodules hosting the bacteroids reach their functional and 

mature stages and begin to fix nitrogen.  

1.2.2 Key regulators of rhizobia infection and nodulation in 

Medicago truncatula 

Important efforts have been made in the last years to identify the key genetic 

regulators orchestrating the processes of infection and nodulation in the M. 

truncatula-rhizobia symbiosis. The rise of plant genomics resources during the 

last decade allowed an impressive accumulation of datasets on gene identity, 

expression and regulation (Benedito et al., 2008; He et al., 2009). This has led 

to a more detailed understanding of the genetic programs associated/regulating 

the symbiotic process in legumes. Nevertheless, the biggest challenge remains 

focus on the regulatory hubs orchestrating the different stages of these 

programs.  

Infection and nodulation are interconnected but independent programmes as 

they appear controlled by different regulatory mechanisms. This extra complexity 

hinders the complete understanding of the genetic pathway behind the symbiotic 

process and highlights the needs for more research in this area. The main 

regulatory pathways of infection and nodulation are reviewed in the next 

sections. 

1.2.2.1 The Nod-factor signal transduction pathway 

The initial stages of the symbiotic interaction involve a series of signalling events 

between the host plant and the soil-borne bacteria present in the rhizosphere. 

When the conditions for the symbiosis are appropriate, the plant will synthesize 

phenolic compounds, known as flavonoids, which will be perceived by the 

bacteria and will trigger the transcription of bacterial Nod-genes (Fisher and 

Long, 1992; Ehrhardt et al., 1996) (Figure 1.3). Nod-genes are primarily involved 

in the activation of Nod-factors, chitin-based compound that acts as powerful 
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signalling molecules (Cardenas et al., 1995). The specificity of the symbiotic 

interaction is determined by the nature of the plant phenolic signal and the 

structure of bacterial Nod factor (Cardenas et al., 1995; Ehrhardt et al., 1996). 

Nod factors are necessary, and in some cases sufficient, to elicit a response in 

the host plant, as experiments with isolated Nod factors have proven (Wais et 

al., 2002; Oldroyd et al., 2005). 

The first responses are observed within 1 min of treatment with Nod factors and 

involves perception by LysM receptor-like kinases (named Nod factor perception, 

NFP, in M.truncatula (Arrighi et al., 2006), and Nod factor receptor, NFR1/NFR5, 

in L. japonicus (Madsen et al., 2003). Recent studies focused on the regulatory 

pathways controlling the recognition step of the bacteria and subsequent 

formation of the infection thread in root hairs. In L.japonicus genetic approaches 

identified a LysM-receptor as necessary for the recognition step, for infection 

thread formation and development (Kawaharada et al., 2015). This receptor is 

initially regulated in the epidermal cell layer but controls the development of 

infection threads through inner cell layers in the root (Kawaharada et al., 2015). 

After Nod factor perception in the epidermal cell layer, the first physiological 

changes include depolarization of the plasma membrane and changes in ion 

fluxes across it (Ehrhardt et al., 1992; Felle et al., 1999; D'Haeze and Holsters, 

2002) (Figure 1.3). This induces calcium spiking events in and around the 

nucleus (Ehrhardt et al., 1996). Mutants unable to trigger this calcium spiking 

were defective in nodulation highlighting the importance of this physiological 

response (Dudley et al., 1987; Ehrhardt et al., 1996). This calcium signal is 

deciphered by the calcium and calmodulin-dependant kinase, DMI3 (Levy et al., 

2004; Mitra et al., 2004; Miller et al., 2013), which triggers downstream signalling 

processes that will eventually lead to the transcriptional regulation of early 

nodulin genes. Mutants in DMI3 are not able to induce Nod factor dependent 

gene expression but maintain Nod factor-induced calcium spiking, placing this 

kinase downstream of the first calcium spiking events (Wais et al., 2000). 

Nod factor-dependent gene expression regulates infection and nodulation and 

activate, among others, the genes ENOD11 and ENOD12 in the epidermal cell 
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layer within hours of rhizobia inoculation or treatment with Nod factors (Journet 

et al., 2001). Analysis of the ENOD11 promoter has identified a Nod-Factor 

responsive regulatory unit (also called the Nod Factor Box) sufficient to direct 

Nod Factor-elicited expression of ENOD11 in root hairs soon after infection but 

not in later stages of the infection process (Andriankaja et al., 2007; Laloum et 

al., 2014).The expression of these genes (and the use of the Nod Factor Box 

regulatory unit) are nowadays used as markers for early-stages in the infection 

process.  

1.2.2.2 Signalling crosstalk between infection and nodulation 

Signalling in the root epidermis controls pre-infection and infection thread 

formation, but these signalling pathways also coordinate nodule organogenesis. 

The calmodulin-dependent protein CCaMK, encoded by DMI3, forms a complex 

with the regulator CYCLOPS upon inoculation that will decode the calcium 

spiking in the nucleus and affect the expression of two main symbiotic regulators 

(Cerri et al., 2012; Singh et al., 2014), Nodule Inception (NIN) (Singh et al., 2014) 

and Ethylene Response Factor Required for Nodulation 1 (ERN1) (Andriankaja 

et al., 2007; Marsh et al., 2007; Middleton et al., 2007).  

NIN and ERN1 are two of the first genes activated after inoculation, and are 

essential for the development of infection threads (Cerri et al., 2012; Xie et al., 

2012; Fournier et al., 2015; Kawaharada et al., 2015). These factors also 

contribute to nodule organogenesis in the cortex although acting in different 

pathways (Middleton et al., 2007; Cerri et al., 2012; Kawaharada et al., 2015). 

Mutants in ERN1 develop small nodules that arrest soon after initiation 

(Middleton et al., 2007). 

On the other hand, NIN is both required and sufficient to initiate nodule 

organogenesis but is not essential in early Nod factor signalling (Schauser et al., 

1999; Marsh et al., 2007; Soyano et al., 2013; Vernie et al., 2015). Some 

evidence suggest that NIN regulates pre-infection responses and nodulation 

steps in different root tissues (Vernie et al., 2015). For example, when NIN is 

expressed under the epidermal specific promoter pEXP7 and in a nin mutant 

background, it can induce cortical cell division in response to rhizobia but at much 

lower efficiencies that when is expressed in the cortex. Additionally, when 
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expressed under the cortical specific promoter, pNRT1.3, NIN was able to 

promote spontaneous nodule organogenesis in wildtype plants (Vernie et al., 

2015). NIN is also sufficient to promote the transcription of the essential cytokinin 

receptor Cytokinin Response 1(CRE1) in to the root cortex (Figure 1.3) (the role 

of cytokinins in nodule organogenesis will be reviewed in section 1.2.2.3.2 of this 

thesis). 

NIN expression not only appears to regulate both infection and nodule 

organogenesis, but also nodule number. For proper functioning in all these 

different processes, expression of NIN should be spatially and temporally 

regulated, and NIN itself appears to be important for its regulation. How NIN is 

regulated and how it coordinates responses in these distant cell layers is still 

unknown.  
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Figure 1.3 Epidermal Nod factor (NF) signalling pathway and components 
of the cortical signalling transduction in M. truncatula. Nod factors 
secreted by rhizobia are sensed by root epidermal cells that activate the 
LysM-type receptor-like kinases NFP. Receptor activation induces 
Ca2+ influx at the root hair tips, resulting in Caspiking, in root hair curling 
and rhizobia infection. The calcium-dependant calmodulin CCaMK, 
encoded by DMI3, form a complex with its partner CYCLOPS and decodes 
the calcium spiking signals in the nucleus, and trigger the expression of the 
transcription factors ERN1 and NIN. Together ERN1 and NIN activate the 
early nodulin gene ENOD11, important for infection. In parallel, a mobile 
signal, is activated/produced in the epidermis downstream of DMI3 and is 
translocated to the cortex where it activates the transcription factors ERN1, 
NIN and the cytokinin receptor CRE1 and induces cortical cell divisions 
leading to nodule organogenesis. 

 

1.2.2.3 Control of nodulation by hormones 

Hormones regulate a myriad of developmental processes in plants (Gray, 2004; 

Schaller, 2012; Locascio et al., 2014; Crook et al., 2016) including the 

establishment of nitrogen-fixing symbiosis and the development of nodules. In 

the next section, information on the role of specific hormones in the process of 

infection and nodulation will be reviewed. 



Chapter 1 

 

13 

 

1.2.2.3.1 Auxin 

Auxin is thought to be a regulator of nodule organogenesis, being its 

accumulation correlated with an increase in the number of nodules and its long-

distance transport appears regulated upon inoculation (Mathesius et al., 1998; 

van Noorden et al., 2006). Application of polar auxin transport inhibitors such as 

NPA or TIBA leads to the formation of spontaneous nodule-like structure in 

Medicago species (Hirsch et al., 1989; Rightmyer and Long, 2011). Furthermore, 

the application of a low concentration of auxin enhances nodulation in M. 

truncatula (van Noorden et al., 2006). Additionally, recent work from Roy et al 

(2017) shows that the Medicago paralogue of the Arabidopsis auxin transporter 

AUX1, MtLAX2, plays an important role in nodule organogenesis. Expression 

studies found the gene to be expressed in nodule primordia, the vasculature of 

developing nodules and at the apex of mature nodules (Roy et al, 2017). The 

characterisation of the mutant mtlax2 showed that these plants had a defective 

lateral root development and fewer nodules than wild type plants (Roy et al 

2017).  

Auxin has also been proposed to play a role in the infection process. Research 

in the actinorhizal symbiosis Frankia/Casuarina glauca showed that the auxin 

transporter CgAux1 was predominately expressed in infected cells and infected 

root hairs (Peret et al., 2007) and that auxin accumulated in the infected cells of 

the nodule (Krouk et al., 2010). In the legume/bacteria symbiosis interaction 

auxin signalling has been identified as essential for correct bacterial infection 

(Breakspear et al, 2014). A Medicago ortholog of the Arabidopsis Arabidopsis 

thaliana Auxin Response Factor 16 is rapidly regulated upon infection in 

Medicago root hairs. A mutation in the gene results in reduced infection, 

potentially caused by a blocking in the stage of infection pocket, suggesting that 

the early stages of infection were affected in the mutant. Interestingly, nodule 

numbers and development were normal in the mutants, suggesting an essential 

role of the ARF16 in infection initiation (infection pocket formation) but not in 

infection thread extension and/or nodule organogenesis (Breakspear et al, 

2014).    
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Auxin function in the development of infection threads has been proposed to be 

related to its effects in cell wall loosening and expansion (Perrot-Rechenmann, 

2010) but so far little evidence support this theory. 

1.2.2.3.2 Cytokinins 

Cytokinins are known to control root development, shoot branching and lateral 

root formation (Laplaze et al., 2007; Bensmihen, 2015). In Lotus, cytokinins act 

in the root epidermis upon inoculation with rhizobia and throughout nodule 

development (Held et al., 2014).  A gain of function mutation in the kinase domain 

of the cytokinin receptor gene (LHK1) in L. japonicus leads to spontaneous 

nodule development in absence of rhizobia (Tirichine et al., 2007), suggesting 

that cytokinin signalling is necessary and sufficient for nodule organogenesis. On 

the other hand, a loss of function in the same receptor in Lotus and its 

homologous in M. truncatula (CRE1) reduces nodulation (Gonzalez-Rizzo et al., 

2006; Murray et al., 2007).  

To further support an important role for cytokinins in nodule organogenesis, 

essential genes for nodulation were up-regulated upon the treatment with 

exogenous cytokinin and nodule primordia were visible in the absence of rhizobia 

(Heckmann et al., 2011). External application of cytokinin can also activate NIN 

in the cortex, but not in the epidermal cell layer, linking its function with cortical 

cell reprogramming  (Heckmann et al., 2011). The role for cytokinin in infection 

has also been discussed and linked to auxin, where both hormones might be 

counteracting each other effects. Intriguingly, cytokinins appears to mediate 

bacterial attachment during infection, adding to the complexity of cytokinin’s role 

during the establishment of symbiotic interactions (Liu et al., 2015).  

The dual role of cytokinins in epidermal and cortical cell layers suggest that an 

intermediary partner might travel to the cortex to elicit de novo cytokinin 

synthesis. Alternatively, the hormone might act as a secondary signal 

synthesized in epidermal cell layer upon inoculation and Nod Factor perception 

and translocated to underlying cortex cells, where it triggers the initiation of 

nodule primordia (Frugier et al., 2008). Whether the initial response to Nod 

factors involves de novo cytokinin synthesis or cytokinin transport remains 

unclear.  
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1.2.2.3.3 Ethylene 

The role of ethylene in nodulation has been largely studied. In most legumes, 

ethylene acts as a negative regulator of nodulation. External application of the 

ethylene precursor aminocyclopropane 1-carboxylic acid blocks the 

characteristic calcium spiking necessary for nodulation (Oldroyd et al., 2001). 

Consistent with this, the ethylene biosynthesis inhibitor aminoethoxyvinylglycine 

(AVG) enhances nodulation and infection in several legumes (Peters and Crist-

Estes, 1989; Nukui et al., 2000; Benitez-Alfonso et al., 2013).  

A mutation in MtSkl1, the M. truncatula orthologue of the Arabidopsis EIN2 gene 

(a component of the ethylene signalling pathway) leads to enhanced number of 

nodules and Nod factor response (Penmetsa et al., 2003; Combier et al., 2008; 

Penmetsa et al., 2008). Ethylene has also been linked to infection thread 

formation and development in pea and Lotus (Guinel and Larue, 1992; Nukui et 

al., 2004). For a complete review of the role of ethylene in nodulation see (Guinel, 

2015). 

 

1.2.3 The regulation of symbiosis by the host plant  

 

1.2.3.1 The mechanism behind the Autoregulation of Nodulation 

Legumes balance their need to enter in the symbiotic interaction with the energy 

expense that it requires by limiting the number of nodules through the 

Autoregulation Of Nodulation (AON), a negative feedback system that control 

systemically number of nodules and infection. This regulatory system starts 

functioning as soon as 4 days post inoculation and involves both local and 

systemic signalling. Split-root experiments showed that when a sector of the root 

was inoculated with rhizobia, nodulation in the second section of the root was 

inhibited when it was inoculated at a later time point with rhizobia, demonstrating 

that a systemic  inhibitory signal is transported through the plant (Kosslak and 

Bohlool, 1984). Furthermore, Medicago plants showing spontaneous nodule-like 

structures in the absence of rhizobia supressed the formation of rhizobia-elicited 

nodule formation, but this suppressive response was eliminated when the 



Chapter 1 

 

16 

 

spontaneous nodule-like structure were excised, suggesting that the inhibitory 

signal is originated in the nodules (Caetano-Anolles and Gresshoff, 1991) 

(spontaneous nodulation will be reviewed later in this chapter). 

The best studied mutants in AON are the LRR-receptor kinase har1 in L. 

japonicus (Wopereis et al., 2000), sym29 in Pisum sativum (Krusell et al., 2002), 

nark in Glycine max (Searle et al., 2003) and sunn in M. truncatula (Schnabel et 

al., 2005). These genes encode for a leucine-rich repeat receptor protein kinase 

and their mutations result in supernodulating plants, with often about 10-fold 

increase in the number of nodules. Their orthologue in Arabidopsis is 

CLAVATA1, a receptor like kinase, which perceives the CLAVATA3 peptide and 

that regulates meristem and flower development (Clark et al., 1993; Stahl and 

Simon, 2013).  

The currently proposed model for this receptor is as follows: soon after the 

initiation of nodulation, short CLAVATA3/ESR-related (CLE)-peptides are 

induced by rhizobia (also named rhizobia induced CLE peptides or RIC). 

GmRIC1 and GmRIC2 in Glycine max and MtRIC12 and MtRIC13 (MtCLE12 

and MtCLE13) in M. truncatula are thought to be expressed in the root and move 

through the xylem to the shoot, where they are perceived by NARK in Glycine 

max and SUNN in M. truncatula (Searle et al., 2003; Schnabel et al., 2005; 

Mortier et al., 2010). The overexpression of these peptides in transgenic roots 

significantly inhibited nodulation 21 dpi (Mortier et al., 2010). Nodulation was also 

inhibited in untransformed roots on the same composite plants (Medicago 

truncatula roots that were not overexpressing CLE peptides), suggesting that the 

overexpression of MtCLE12 and MtCLE13 in transgenic roots might have a 

negative systemic effect on roots not overexpressing the peptides (Mortier et al., 

2010). Additionally, the overexpression of MtCLE13 in the supernodulating sunn 

mutant background did not lead to an inhibition of nodulation, suggesting that the 

systemic effect of MtCLE13 in control of nodulation is SUNN dependent (Mortier 

et al., 2012).  

The expression patterns suggest that GmRIC1 in Glycine max and MtCLE12 in 

M. truncatula are early signals of AON, signalling the degree of infection, while 

GmRIC2 and MtCLE13 are a later signal, determining the extent of successful 
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nodule organogenesis (Mortier et al., 2010; Ferguson et al., 2014). Analysis of 

ENOD11 expression pattern 3 dpi in roots overexpressing both MtCLE12 and 13 

in Medicago shows a downregulation of the gene, suggesting that the peptides 

inhibit nodulation at the early stages of Nod factor signalling, before the onset of 

ENOD11 expression. The combination of both RIC peptides is likely to 

orchestrate AON in legumes.  

Alternatively to the systemic effect of CLE peptides in nodulation, it might be 

possible that the peptides are perceived locally in the root and control a separate 

from SUNN pathway to control nodule number. This second pathway might be 

auxin-related. Auxin transport assays post inoculation in the sunn mutant 

showed that the amount of auxin loaded from shoot to root was not reduced, 

compared to what was seen in the wild type plants. This reduction of auxin 

transport also correlates with the start of the autoregulation of nodulation 

program (Mathesius et al., 1998; van Noorden et al., 2006). CLE peptides can 

modulate auxin in Arabidopsis (Whitford et al., 2008), suggesting that it is 

possible that they are regulating auxin levels in the root to restrict nodulation in 

M. truncatula. 

Future experiments aimed at characterising the CLE peptides expression 

pattern, transport and components involved in CLE perception and signalling will 

enhance our understanding of their importance in AON in legumes.  

1.2.3.2 Host mechanisms to control nodulation in response to nitrate 

availability  

The symbiotic process is also regulated by nitrate availability in the soil. This is 

a homeostatic process that allows the plant to control the energy partition that 

will allocate to biological nitrogen fixation depending on its nitrogen requirements 

(Cho and Harper, 1991). External availability of readily assimilable forms of 

nitrogen, such as ammonia, heavily inhibits the formation of nodules (Streeter, 

1985; Day et al., 1989; van Noorden et al., 2016). Agricultural soils often contain 

high levels of residual nitrogen due to the repeated addition of fertilisers to the 

soil, this limits the efficiency and the usefulness of legumes as an intercrop. 

Understanding the pathway by which legumes sense nitrogen status in the 

environment and how that signal is translated to the nodulation and nitrogen 
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fixation processes is essential to maximise the potential of legumes in the 

development of a more sustainable agriculture with fewer added fertilisers.  

The early stages of nitrogen recognition and signalling are likely to be mediated 

by membrane receptors (Krouk et al., 2010; Criscuolo et al., 2012) of the family 

of nitrate transporters NRT1/NRT2. These family of proteins include more than 

90 members in L. japonicus and in M. truncatula that are also involved in the 

control of root growth (Pellizzaro et al., 2014).  

The signalling process downstream of sensing the nitrate status in the 

environment appears, as the AON pathway, to be both systemic and local and 

mediated by small peptides and perceived by a family of LRR-receptor kinases 

(Reid et al., 2011a). 

Recent research in soybean identified a pathway where GmNIC1 (a nitrate-

induced CLE peptide) controls infection and nodulation in response to the nitrate 

status but not to rhizobial infection (Reid et al., 2011a; Reid et al., 2011b). The 

proposed mechanism is that GmNIC1 interacts with a homolog of the LRR-

receptor kinase GmNARK expressed in the root. It is not currently known how 

GmNARK can distinguish between CLE peptides induced by rhizobia and by 

nitrate. On the other hand, two CLE peptides have been identified in L. japonicus, 

LjCLE-RS1 regulated by rhizobia and LjCLE-RS2 regulated by both rhizobia and 

nitrate availability. In the case of the nitrate induced peptide, its expression 

pattern in response to nitrate was not affected in mutants deficient in the Nod 

factor signalling pathway, suggesting that it acts downstream of this pathway 

(Okamoto and Kawaguchi, 2015).  

Currently, there is not a similar model in M. truncatula, nor are mutants available 

in encoding nitrate-induced CLE peptides in soybean. Therefore it is difficult to 

determine if the role of CLE peptides in the control of nodulation by nitrate is 

conserved in different plant systems. 

Additionally, another class of small peptides called CEPs (C-Terminally Encoded 

Peptides) identified in M. truncatula are induced in a nitrogen dependent manner 

(Imin et al., 2013) The overexpression of these peptides promotes nodulation 
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(Delay et al., 2013) and in M. truncatula have also been identified as partners in 

the pathway that controls lateral root formation (Mohd-Radzman et al., 2016). 

Finally, nitrate levels also appear to affect signalling via other important factors, 

such as ethylene, flavonoids, auxin and cytokinin (Coronado et al., 1995; Caba 

et al., 1998; Mathesius et al., 2000). The role that these factors play in nodulation 

has been introduced before in this work. 

 

1.2.3.2.1 A shared pathway? 

Mutants in the LRR-receptors SUNN in M. truncatula and NARK in G. max are, 

additionally to supernodulating, insensitive to nitrate in the media, meaning that 

they do not see an inhibition of nodulation in the presence of exogenous nitrate 

(Carroll et al., 1985a; Day et al., 1989; Schnabel et al., 2010). This suggests that 

the pathways involved in the autoregulation of nodulation and the inhibition by 

nitrate might have shared components. As described above, nitrate induced CLE 

peptides are potentially also signalling through NARK/SUNN in G. max and M. 

truncatula, but it appears that rhizobia-induced peptides are perceived in the 

shoots, whereas NICs are perceived locally in the root, at least in G. max (Reid 

et al., 2011a). To study the role of the shoot in the control of nodulation by nitrate, 

grafting experiments were carried out using as root stock either wild type of 

mutants in the AON pathway. 

The number of nodules developed post inoculation were assessed after 

treatment with high levels of nitrate compared to the absence of nitrate. Plants 

with intact AON response (wild type shoot stock/nark root stock or wild type shoot 

stock/wild type root stock) were used to assess the role of NARK in the root as 

part of the nitrate-controlled regulation of nodulation. Plants with  wt root stocks 

displayed a decreased number of nodules in high levels of nitrate compared to 

those having a supernodulating (nark mutation) rootstock (Reid et al., 2011a). 

There was not a significant difference in nodule number when nitrate was not 

applied between the different combinations of root and shoot stocks, suggesting 

that the role of NARK in the root is nitrate-dependant. These grafting experiments 

indicate the potential of dual action for NARK, in the local perception of nitrate-
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induced CLE and in the systemic (shoot derived) response to rhizobia-induced 

CLE in no-nitrate (Reid et al., 2011a). 

Structural studies showed that the rhizobia induced peptides feature a signal 

peptide domain, which is highly conserved across species (Reid et al., 2013) and 

it potentially serves a function in transport and/or cleavage. Interestingly, in 

soybean, the peptides induced by nitrate do not feature this domain. This might 

correlate with the fact that rhizobia induced peptides are transported long-

distances, thus require modifications to enter the secretory pathway (Reid et al., 

2013). 

Little is known about this mechanism in M.truncatula, but sunn and other 

supernodulating mutants affected in the LRR-receptor also show nitrate 

insensitivity, nodulating in spite of its availability in the environment. As before, 

this suggests some shared steps and/or components in the autoregulation of 

nodulation and in the response to nitrate. The identification of nitrate-induced 

CLE peptides in M. truncatula  is essential to discern the molecular mechanisms 

behind the control of nodulation by nitrate availability in this model legume.  

1.2.3.2.2 Summary: Genetic control of nodulation 

Great efforts have been made in recent years to decipher the partners regulating 

nodulation in legumes. Several mutants have been characterized which have 

helped to decode this mechanism (Table 1.1).  

Table 1.1-Table summarising some of the genes identified up-to date that 
play a role in the regulation of the nodulation process in legumes.  

Gene Gene 
product 

Site of 
production 

Site of 
action
  

Comments References 

GmNARK; 
GsNARK; 
LjHAR1; 
MtSUNN;P
sSYM29 

LRR-RK Shoot/root Shoot/root Acts in shoot 
(AON) and root 
(Nitrate 
inhibition)  

(Krusell et al., 2002; 
Searle et al., 2003; 
Schnabel et al., 2005)   

GmNIC1 CLE root root Nitrate induced 
CLE peptide 

(Reid et al., 2011a) 

GmRICI/2;
LjCLE-
RS1/2;MtC
LE12/13 

CLE root probably 
the shoot 

rhizobia-induced 
CLE-peptide 

(Okamoto et al., 2009; 
Mortier et al., 2010; 
Lim et al., 2011; Reid 
et al., 2011a) 
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1.2.4 Spontaneous nodulation 

Several legume mutants are able to produce nodule-like structures in the 

absence of rhizobia (Gleason et al., 2006; Tirichine et al., 2006a; Marsh et al., 

2007; Suzaki et al., 2013; Saha and DasGupta, 2015). The study of these 

mutants is especially interesting as they are evidence that the Nod factor 

signalling and nodule organogenesis can be uncoupled. Their analysis establish 

the signalling and molecular mechanisms behind nodule organogenesis in the 

absence of rhizobia.  

LjASTRAY bZIP TF 
 

root Supernodulation
/ early 
nodulation 
phenotype 

(Nishimura et al., 
2002) 
 

LjCLV2; 
PsSYM28 

CLV2 
(truncated 
LRR-
receptor 
protein) 

Shoot/root Shoot/root
? 

May interact 
with other AON 
LRR RKs  

(Sagan and Duc, 
1996; Krusell et al., 
2002) 

LjETR1 ETR1 Shoot/root Shoot/root? Ethylene 
receptor  

(Gresshoff et al., 
2009; Lohar et al., 
2009) 

LjKLV LRR-RK Shoot/root? Shoot/root? May interact 
with other AON 
LRR RKs 

(Oka-Kira et al., 2005) 

LjPLENTY Unknown root root Mutants show 
hypernodulation 

(Yoshida et al., 2010) 

LjRDH1 Unknown root root Mutants show 
hypernodulation 

(Ishikawa et al., 2008) 

LjTML Unknown root root Mutants show 
hypernodulation 

(Magori et al., 2009) 

MtEFD Ap2-
EREBP 

root root positively 
regulates CK 
levels  

(Vernie et al., 2008) 

MtLSS Unknown Shoot/root? Shoot/root? A possible 
regulator of 
SUNN 

(Schnabel et al., 
2010) 

MtSKL EIN2 Root root ethylene 
response factor 

(Penmetsa and Cook, 
1997; Penmetsa et 
al., 2008) 

PsNOD3, 
MtRDN1 

RDN1 Root root affects CLE 
synthesis and/or 
transport 

(Engvild, 1987; Li et 
al., 2009; Novak, 
2010; Schnabel et al., 
2011) 
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Experiments expressing the native promoter pDMI3 and an autoactive version of 

DMI3 (generated by deletion of the the CaM binding/autoinhibition domain) in the 

mutant dmi3 (unable to form infection threads and nodules) showed that as many 

as 43% of these plants would spontaneously nodulate (Gleason et al., 2006). 

Sectioning of these structures showed the absence of an infection zone in the 

nodule. Additionally, when inoculated with rhizobia, these plants were unable to 

form infection threads showing that the mutant phenotype is complemented, as 

compared to mutants complemented with the native promoter and a full version 

of DMI3 that showed regular infection thread and nodule development (Gleason 

et al., 2006). Additionally, a mutation in a single aminoacid in CCaMK (snf1 

mutant) is sufficient to trigger cortical cell dedifferentiation and form nodule 

primordia in L. japonicus (Tirichine et al., 2006b).  In all cases spontaneous 

nodules were round in shape and smaller than control nodules developed after 

inoculation with rhizobia. 

Research from Marsh et al (2017) showed that, unlike dmi3 mutants, nin plants 

transformed with the autoactive version of DMI3 did not form spontaneous 

nodulation. This result suggests that the capacity of autoactive version of DMI3 

to induce spontaneous nodule organogenesis is NIN-dependent in M. truncatula 

(Marsh et al., 2007).  

A mutant in L. japonicus affected in the cytokinin receptor LHK1 (snf2) presents 

a constitutively activated cytokinin signalling. snf2 mutants also showed nodule 

organogenesis in the absence of rhizobia (Tirichine et al., 2007). Further studies 

with this mutant showed that auxin was regulated during cortical cell proliferation, 

suggesting that this response appears downstream of the cytokinin signalling 

pathway (Suzaki et al., 2013). Additionally, and as described in section 1.2.2, 

expression of NIN in cortical cells of nin and cre1 mutant backgrounds can 

promote spontaneous nodule organogenesis. Contrarily, when NIN was 

expressed in the epidermal cell layer no spontaneous nodulation could be seen, 

indicating that NIN  can act independently of cytokinin signalling in the cortex to 

trigger organogenesis (Vernie et al., 2015). 

Finally, other mutants, such as a mutation in the Symbiosis Receptor Kinase in 

M. truncatula (symrk, a member of the Nod factor signalling pathway and 
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essential for both nodule organogenesis and infection) were affected in nodule 

organogenesis. When this mutant is transformed with the kinase domain of 

SYMRK (symrk-kd), plants displayed spontaneous nodule organogenesis. 

Spontaneous organogenesis could not be seen when transformed with the full 

length version of the protein, suggesting that the kinase domain is responsible 

for the phenotype (Saha et al., 2014). Unlike the spontaneous nodules seen in 

the experiments using the CCaMK autoactive version, symrk-kd plants showed 

both a deregulation in the number of nodules and their spatial positioning.  

The underlying mechanism of the miss-regulation of nodule organogenesis in 

the absence of rhizobia is not yet clear (Saha et al., 2014). Whatever the 

underlying mechanism, it is clear that deregulated SYMRK, CCaMK and NIN 

activity affects the signalling pathways that control  nodule number and, in some 

cases, spatial positioning of nodules. Deciphering the mechanisms behind these 

phenotypes could help to understand how infection and nodulation processes 

regulated and to what extent they are genetically uncoupled. 

 

1.3 Brief introduction to the symplastic pathway 

In all multicellular organisms, cell to cell communication is essential for growth, 

response to the environment and defence. Intercellular communication can occur 

apoplastically, which implicates ligands and plasma-membrane localized 

receptors, transcellularly, involving protein channels (Chaumont and Tyerman, 

2014; Adamowski and Friml, 2015) or exocytosis (Zarsky et al., 2013) of 

molecules that move in the apoplastic space or symplastically, where the 

molecules move through channels embedded in the cell walls called 

plasmodesmata. Plasmodesmata connect the cytoplasm of adjacent cells 

forming the symplast where small and large of molecules can move either by 

diffusion or actively via interactions with plasmodesmata proteins/modifiers 

(Ehlers and Kollmann, 2001; Turgeon and Wolf, 2009). Plasmodesmata also 

play an important role in long distance signalling by enabling the loading and 

unloading of molecules transported in the phloem (Turgeon and Wolf, 2009; 

Sevilem et al., 2013). 
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Plasmodesmata are lined by plasma membrane and, in the centre of the pores 

a structure called desmotubule, derived from the endoplasmic reticulum (ER), 

can be found (Lucas and Lee, 2004). Two types of plasmodesmata have been 

characterised based on their biogenesis: primary and secondary (Ehlers and 

Kollmann, 2001). Primary plasmodesmata originate in the developing cell wall 

during cytokinesis (Knox and Benitez-Alfonso, 2014), and secondary 

plasmodesmata originate de novo, independent of cell division, in already 

existing cell walls. Secondary plasmodesmata are thought to have more complex 

structures (Ehlers and Kollmann, 2001) as they can either be simple (a single 

channel) or branched (multiple channels connected) (Carlsbecker et al., 2010) 

(Figure 1.4). Plasmodesmata structure are regulated with age, with young 

tissues displaying more simple plasmodesmata and more complex structures 

arising during cell differentiation (Ehlers and Kollmann, 2001). The differences in 

the structure of simple and branched plasmodesmata can affect the transport  

capacity of the channels (Oparka et al., 1999). 

 

Figure 1.4- Diagram showing the structure of a simple (A) and branched (B) 
plasmodesmata. Simple plasmodesmata are formed after cytokinesis, and 
comprises a modified ER (green), the cell wall (blue), and the plasma 
membrane domain (red). Branched plasmodesmata appear post-
cytokinesis presumably through modifications in already existing primary 
plasmodesmata and can comprise more than one channel aperture. 
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1.3.1 Role of the symplastic pathway in plant development 

Plasmodesmata constitute an important pathway for the transport of proteins, 

RNAs and other signalling molecules that play a role in plant development 

(Sevilem et al., 2015; Otero et al., 2016). For example, the transcription factor 

LEAFY, that moves presumably via secondary plasmodesmata, to activate non-

cell autonomously genes involved in flowering in the meristem and to determine 

flower organogenesis (Wu et al., 2003). Similarly, the Flowering Locus T protein 

is induced in response to environmental signals in leaves and its transported 

presumably via plasmodesmata into the phloem and up to the shoot where it 

promotes the differentiation of the apical meristem into floral meristems (McGarry 

and Kragler, 2013). Symplastic connectivity also regulates the activity of the 

transcription factors and miRNAs involved in the maintenance of the apical 

meristems (Vaten et al., 2011; Kitagawa and Jackson, 2017), in root hair 

patterning (Ishida et al., 2008) and is likely to control radial root patterning 

(Helariutta et al., 2000). Rinne et al. (2011) and Benitez-Alfonso et al (2013) 

suggested that some developmental transitions rely on symplastic 

communication, although the mobile factors affected are not yet identified. For 

instance, the formation of lateral root primordium (LRP) is miss-regulated when 

plasmodesmata are occluded (Benitez-Alfonso et al., 2013). The research 

indicates that for proper lateral root patterning, pericycle cells need to be 

symplastically connected prior lateral root specification and altering this 

connectivity produce lateral root clusters. Symplastic connectivity is temporally 

regulated as soon after the first round of cell division, the lateral root primordium 

appear symplastically isolated from the surrounding cells. Plasmodesmata are 

also temporarily closed during dormancy in poplar buds, being the recovery of 

symplastic connectivity associated with the transport of factors that trigger 

dormancy release (Rinne et al., 2011). 

Despite their vital role in organogenesis and morphogenesis, the specific 

regulatory factors involved in the function of plasmodesmata during development 

remain mostly unknown. Research in plasmodesmata biology will provide deeper 

insights into how they are formed, structurally modified and the mechanisms 

regulating their function during plant development. 
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1.3.2 Regulation of plasmodesmata transport 

Small molecules such as sugars, metabolites and RNAs are thought to move 

across plasmodesmata preferentially by diffusion through the cytoplasmic sleeve 

(the symplasm) (Lucas and Lee, 2004). Other molecules interact with partners 

to modify plasmodesmata aperture or transport capacity in order to be 

transported (Complainville et al., 2003). Plasmodesmata aperture are 

susceptible to modification of the architecture of the surrounding cell walls 

affecting symplastic transport. Specifically, the cell wall polysaccharide callose 

(β-1, 3-glucan polymer Figure 1.5) can accumulate in the neck region of 

plasmodesmata, in response to chemicals and environmental stresses, 

constricting the size and transport capacity of the channel (De Storme and 

Geelen, 2014). It is thought that the deposition of callose acts as a physical 

barrier to decrease the size of molecules that can go through (i.e. size exclusion 

limit, SEL). In contrast, the degradation of callose ‘opens’ plasmodesmata, 

increasing the molecular flux.  

The study of proteins involved in plasmodesmata regulation is especially 

challenging since plasmodesmatalocalization in the cell walls difficult their 

accessibility for characterization and the isolation of pure plasmodesmata 

fractions (Fernandez-Calvino et al., 2011). Moreover, as these channels are 

essential for plant development, forward genetic screening only identified lethal 

alleles. Nevertheless, the collective effort of several research groups has 

produced a comprehensive list of putative plasmodesmata-located proteins 

identified by proteomic approaches (Fernandez-Calvino et al., 2011; Salmon and 

Bayer, 2012; Benitez-Alfonso et al., 2013). Some of these novel factors are 

callose synthases (CALS or Glucan Synthase Like protein, GSL) and β-1,3-

glucanases, or BGs, which are directly involved in controlling callose synthesis 

and degradation respectively (Doxey et al., 2007; Vaten et al., 2011; Zavaliev et 

al., 2011; Benitez-Alfonso et al., 2013; De Storme and Geelen, 2014) (Figure 

1.6). Other proteins such as Plasmodesmata-Callose Binding proteins (PDCBs) 

(Simpson et al., 2009), Plasmodesmata-Located Proteins (PDLPs) (Thomas et 

al., 2008) and other Receptor-like Kinases (RLKs) (Vaddepalli et al., 2014) were 

also identified and their function have been directly or indirectly linked to changes 
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in callose deposition. For example, the over-expression of PDLP1, PDLP5 and 

PDCB1 produces callose over-accumulation that decreases symplastic 

connectivity in Arabidopsis thaliana (Thomas et al., 2008; Lee et al., 2011). A 

mechanism involving PDLP and PDCB proteins has been shown to play a role 

in the response to bacterial and fungal pathogens and to abiotic stresses (Lee et 

al., 2011; Cui and Lee, 2016). PDLP1 has been associated with callose 

accumulation during the development of the haustorium, (a specialised feeding 

structure) during infection of Arabidopsis with Hyaloperonospora arabidopsidis 

(Caillaud et al., 2014). Recent work identified PDLP5 as partner for CALS1 and 

CALS8 in the regulation of callose in response to different stressors. Salicylic-

acid regulates plasmodesmata permeability, expression analysis identified 

CALS1/PDLP5 as responsible for this regulation. On the other hand, the study 

of a pool of mutants identified a novel callose synthase, CALS8, required in the 

regulation of callose in response to reactive oxygen species (Cui and Lee, 2016).   

 

Figure 1.5-Structure of callose. Callose molecules are conformed by n 
repetitions of β-1,3 linked molecules of glucose.  

 

In some cases, genetic screens have been successful in identifying proteins with 

a role in the regulation of callose at plasmodesmata affecting plant development 

(McGarry and Kragler, 2013). Loss of function mutation in Arabidopsis CALS10, 

named chorus, leads to a down regulation of callose in the epidermis (Chen et 

al., 2009; Cui and Lee, 2016) which appears to induce the spreading of the 

transcription factor SPEECHLESS, known to promote cellular entry into the 

stomatal lineage. As a result, chorus mutants show abnormal stomata 

development (Guseman et al., 2010; Simmons and Bergmann, 2016). CALS10 

is also involved in the phototropic response in hypocotyls, an effect that 
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correlates with changes in auxin distribution (Han et al., 2014). In addition, a loss 

of function cals7 mutant shows defects in the formation of sieve plate in phloem 

cells thus affecting vascular transport (Xie et al., 2011).  

Similarly, a gain of function mutants in CALS3 result in an over accumulation of 

callose, decreased plasmodesmata aperture leading to defects in the transport 

of the transcription factor SHORT-ROOT and the microRNA165 (Vaten et al., 

2011). SHORT-ROOT determines cell fate and root patterning (Nakajima et al., 

2001), whereas, microRNA165 is involved in the radial patterning of the xylem 

(Carlsbecker et al., 2010; Vaten et al., 2011). As expected, these cals3 

hyperactive mutants displayed root developmental defects and altered vascular 

transport.  

 

Figure 1.6- Schematic model on callose regulation of plasmodesmata 
permeability. Callose synthase promotes callose accumulation at the neck 
region of plasmodesmata, decreasing the pore permeability. On the other 
hand, β-1,3 glucanases digest callose, widening the pore and increasing 
molecular flux between cells. 

 

Several genetic tools have been developed over the past years to modify callose 

at plasmodesmata sites aiming to alter symplastic communication under different 

cues (Muraro et al., 2011; Sevilem et al., 2013; Yadav et al., 2014). These 

approaches allowed the determination of spatial-temporal patterns of importance 
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for plasmodesmata regulation during plant development. Recent research 

exploiting one of these tools (the icals3m system, by which a mutated version of 

CALS3 was driven by the endodermis specific promoter EN7) has shown that the 

symplastic transport of signals is essential for the coordination of cell divisions 

and patterning in Arabidopsis roots (Wu et al., 2016). Wu et al. (2016) used the 

icals3m system to overexpress callose and block plasmodesmata-mediated 

transport to and from the endodermis in Arabidopsis roots. After reducing 

symplastic transport, the cells in the elongation zone of the root were shorter and 

wider compared to control plants not overexpressing callose. Additionally, cells 

in the meristem were affected in patterning and the endodermal cell lineage 

expanded to two cell layers, compared to control plants, where endodermal cell 

layer was still only one cell layer (Wu et al., 2016) 

Symplastic transport can also be regulated by modifications in plasmodesmata 

branching and/or frequency (Burch-Smith et al., 2011; Sager and Lee, 2014). 

The molecular mechanism behind this dynamic regulation in plasmodesmata 

frequency/branching is mostly unknown. The genetic screen of PD-mutants has 

identified two mutants, ise1 and ise2, affected in two RNA-helicases. These 

mutants display an increased symplastic transport and a higher proportion of 

branched plasmodesmata compared to wild type plants (Burch-Smith et al., 

2011). More recent research has helped in the characterisation of a mutant in a 

choline transporter showing a reduction in the number of secondary 

plasmodesmata in the shoot apical meristem and in Arabidopsis leaves. Also, 

the number of highly branched plasmodesmata, characteristic of cellular 

differentiation, were reduced in this mutant (Kraner et al., 2017). These results 

suggest an essential role for this transporter in the formation and maturation of 

secondary plasmodesmata although the molecular mechanism involved remains 

unclear.  

1.3.3 Role of plasmodesmata in plant-microorganism interactions 

1.3.3.1 The regulation of the symplastic pathway during plant-pathogen 

interactions 

Some microorganisms have evolved to exploit plasmodesmata for infection. 

Among plant pathogens manipulating plasmodesmata, viruses have been 
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studied more broadly (Benitez-Alfonso et al., 2010). Plant viruses produce 

specialised ‘movement proteins’ (MP) that interact with plasmodesmata and 

participate in virus spreading (Ward et al., 1997). MPs from tobamoviruses, 

bromoviruses or dianthoviruses are thought to increase plasmodesmata SEL by 

activation of BGs, the enzymes that degrade callose (Haupt et al., 2005; Sasaki 

et al., 2006; Su et al., 2010; Zavaliev et al., 2013). MPs from geminivirus can 

also associate with the synthesis of tubules that transverse the plant cell wall 

across plasmodesmata to facilitate virus spreading (Ward et al., 1997). Other 

viruses’ MP, such as the tobacco mosaic virus can associate with the ER during 

early stages of infection and is then redistributed to plasmodesmata (Heinlein et 

al., 1998; Huang et al., 2001) 

In some fungal invasions, plasmodesmata appear to be exploited as a way to 

spread the infection. Electromicroscopy pictures suggest that in the biotrophic 

invasion of the rice blast fungus, Magnaporthe oryzae develops an invasive 

hyphae (IH) that penetrates into the neighbouring cell through what appears to 

be plasmodesmata regions (Kankanala et al., 2007). The average 

plasmodesmata are too small to accommodate the IH, thus the appressed ER is 

thought to disintegrate, creating cytoplasmic pores, in order to make space for 

the  passage of the fungus (Kankanala et al., 2007). There are literature reports 

that others fungi such as Fusarium graminearum move into neighbouring cells 

through pit pairs (cavities in lignified cell walls that resemble plasmodesmata) 

(Guenther and Trail, 2005; Kankanala et al., 2007). Fungus, and some 

pathogenic bacteria, can also affect the regulation of the molecular flux between 

cells presumably as a medium to limit plant defences (Lee et al., 2011). For 

example, the plasmodesmata protein Lym2, in concert with other receptors like 

kinases, appears to be required for regulating symplastic transport in response 

to the fungal elicitor chitin but not to the bacterial elicitor flagellin. Mutations in 

this receptor affect the defence response against the fungal pathogen Botrytis 

cinerea in Arabidopsis (Faulkner et al., 2013). More recently, a plasmodesmata-

localised Ca2+ binding protein was identified to play a role in the regulation of 

plasmodesmata in response to bacterial flagellin through a mechanism involving 

changes in callose deposition (Xu et al., 2017). Arabidopsis responses to the 

fungus Hyaloperonospora arabidopsidis also trigger callose deposition at the site 
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of fungal penetration. Although in this case the role of plasmodesmata is not 

known, this regulation of callose depends on the expression of the 

plasmodesmata-located protein PDLP1 (Caillaud et al., 2014). The role of 

PDLP1 and PDLP5 in callose deposition and pathogenic responses has been 

dissected more recently (Lim et al., 2016). They regulate the symplastic transport 

of the signalling molecules azelaic acid and glycerol-3-phosphate which are 

involved in the systemic acquired resistance (SAR). Systemic acquired 

resistance refers to the primimg that occurs in plants after a first encounter with 

pathogens, allowing plants that are primed to more quickly and more effectively 

activate defence responses. Overexpressing PDLP5 and PDLP1 drastically 

reduces plasmodesmata connectivity and impairs SAR in Arabidopsis (Cui and 

Lee, 2016; Lim et al., 2016). The role of CALS1 and CALS8, together with their 

partner PDLP5, in the regulation of callose in these responses was introduced in 

section 1.3.2. 

The development of parasitic nematodes also appears influenced by 

plasmodesmata connectivity. Feeding occurs in highly specialised structures, 

called giant cells or syncytia depending if you are referring to root-knot 

nematodes or cyst nematodes. Many plasmodesmata connections form de novo 

between giant cells but between giant cells and the plant vascular system 

symplastic connectivity is reduced (Hofmann et al., 2010). In contrast, syncytia 

are massively connected to the phloem through plasmodesmata (Absmanner et 

al., 2013). When Arabidopsis mutant lines impaired in callose degradation were 

infected with cyst nematodes, histological analyses showed that feeding sites 

were smaller, indicating a crucial role for plasmodesmata in syncytia formation 

(Hofmann et al., 2010). 

Plasmodesmata and callose also appears to regulate the plant response to 

herbivores. A triple PDLP mutant in Arabidopsis line (pdko3) challenged by 

herbivory caterpillars, is defective in some of the characteristic plant responses 

to pathogens, such as the K+ fluxes that trigger the depolarisation of the 

plasmamembrane of leaves cells 30 min post attack (Bricchi et al., 2013). These 

results suggest that PDLP, and likely plasmodesmata, are involved in the early 

responses to herbivory attack. Additionally, callose might be regulating response 
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to herbivores in a plasmodesmata-independent way. In response to herbivores, 

callose was deposited strongly on the sieve plates of a resistant rice variety 

compared to the susceptible one and his regulation was mediated by specific 

members of the  CALS and BG family (Hao et al., 2008).  

In summary, plasmodesmata and callose appear differentially regulated during 

plant interactions with viruses, fungal and bacterial pathogens but also after 

infection with nematodes and herbivores. Although the mechanism is not yet 

clear, plasmodesmata located proteins (PDLP), Lym receptors and callose 

metabolic enzymes appear to play a role in this response.   

1.3.3.2 The regulation of the symplastic pathway during symbiotic 

interactions  

The plant response to microbes is adjusted according to their nature (symbiont 

or pathogen) and the plant capacity to engage in these interactions (Soto et al., 

2006; Vadassery and Oelmuller, 2009; Soto et al., 2011) (Zipfel and Oldroyd, 

2017). In contrast to pathogenesis, the role that plasmodesmata or callose play 

in beneficial interactions it is not very well characterised (Rey and Schornack, 

2013). 

Research in the mutualistic symbiosis involving arbuscular mycorrhiza (AM) 

fungi with tobacco plants showed molecular trafficking between plant and AM 

fungus (Morales-Rayas et al., 2011). The symplastic tracer CFDA was applied in 

the leaves of the host plant, and it was transported to the fungus mycelia 

suggesting that there is a cytoplasm continuum between host plant cells and the 

fungus. However, no evidence for either plasmodesmata or other forms of 

tunnelling in the arbuscular interface was found (Morales-Rayas et al., 2011). On 

the other hand, AM was studied in the liverwort Allisonia and plasmodesmata-

like structure were found in the fibrillary material that surrounds the colonizing 

fungus and separates them from the host plant plasmamembrane (Field et al., 

2016). However, although these results suggest the symbiotic partners are 

symplastically connected, there is no evidence yet suggesting that the symplastic 

pathway in the host plant is regulated upon inoculation to facilitate this 

interaction.  
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In the legume-rhizobia symbiosis symplastic connectivity between the phloem 

and the nodule primordium has been shown to increase (Complainville et al., 

2003) which was associated with an increase in plasmodesmata density in new 

and pre-existing cell walls. One day after infection of M. truncatula with 

rhizobium, reprogramming of cell division in the pericycle and in the cortex occurs 

and, concomitantly, the overall number of plasmodesmata between pericycle 

cells and the phloem companion cells increase in comparison to uninfected 

areas of the same root (Complainville et al., 2003). Cytoplasmic GFP, expressed 

under the companion cell-specific promoter AtSUC2, was normally restricted to 

the phloem in uninfected roots but it was transported into nodule initials and 

meristematic and invasion zones of the infected nodules (Complainville et al., 

2003). As GFP, 6h after phloem loading, the symplastic fluorescent reporter 5 

(6)-carboxy-fluorescein diacetate (CFDA) was transported into in the nodule 

primordium but not into uninfected cortical tissues. These findings suggest the 

formation of a new symplastic domain between the phloem and the nodule initials 

after rhizobia inoculation coincident with an increase in plasmodesmata density 

(Complainville et al., 2003). Ectopic expression of a viral movement protein (MP 

from Tobacco Mosaic Virus) is known to increase plasmodesmata permeability 

and was used in this study to modify symplastic communication. A significant 

increase in nodule numbers two weeks post infection were counted in MP 

expressing transgenic roots, suggesting a role for plasmodesmata in nodule 

formation perhaps through interaction with the signalling pathways that regulate 

nodule number or infection sites (Beachy and Heinlein, 2000; Complainville et 

al., 2003). 

Bederska et al. (2012) also used CFDA as a marker to determine changes in 

symplastic transport by loading the dye in the leaf and tracking its movement to 

the inner tissue of the nodules formed in M. truncatula roots infected with 

rhizobium. 42 days post infection CFDA was found to translocate to the pericycle 

and the endodermis of the nodule, but no fluorescence was detected in the 

nodule meristem or the invasion zone. This suggests that in older fully 

differentiated nodules symplastic continuity only occur between companion cells 

and the first layer of the parenchyma cells of the nodule. Further transport of 

molecules within the nodule is probably apoplastic (Bederska et al., 2012). 
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Plasmodesmata structure and frequency were also studied in other symbiotic 

systems. For instance, it was found that plasmodesmata frequency change 

between infected and uninfected cell types in the indeterminate nodules of Vicia 

faba, 5 weeks after the infection with rhizobium (Abd-Alla et al., 2000). 

Plasmodesmata were found 30 times more frequently between uninfected cells 

than between infected and uninfected cells and between infected cells. During 

actinorhizal symbiosis fully differentiated nodules of D.glomerata show abundant 

plasmodesmata between infected and uninfected cells (Schubert et al., 2011) 

although plasmodesmata density appears higher between mature infected cells 

than between younger ones.  

1.3.3.3 Potential role of plasmodesmata in intercellular signalling during 

symbiosis 

Communication of signals between epidermal and cortical cell layer might also 

play a role in legume-rhizobia symbiosis. Root hair bacterial infection and nodule 

primordia formation occur simultaneously in distant tissues, likely involving the 

transport of one or several mobile signals that coordinate these processes. 

However, the nature of these intercellular signal(s) and how they translocate 

from one cell layer to another remain poorly understood. The role of CCaMK in 

coordinating rhizobia infection and nodule organogenesis was introduced in 

section 1.2.2.2. Research from Rival et al., (2012) suggests that CCaMK also 

has a non-cell-autonomous function in coordinating the epidermis/cortex 

response to rhizobia infection. M. truncatula dmi3 mutant plants were 

transformed with DMI3 driven by epidermal and cortical cell specific promoters. 

When DMI3 was only expressed in the epidermis infection threads but not nodule 

primordia could be seen (either at 7 dpi or 21 dpi), in contrast to when DMI3 was 

expressed in the cortex, neither infection threads nor nodule primordia could be 

seen at any time point analysed (Rival et al., 2012). Nodule organogenesis was 

achieved when dmi3 plants were transformed with DMI3 driven by both 

epidermal and cortical promoters, suggesting that nodule formation 

requiresDMI3 expression in both cell layers. These results suggest that, if nodule 

organogenesis requires a secondary signal between epidermis and cortex, DMI3 

might be involved at two levels: in the epidermis to generate this secondary 

signal and in the cortex to perceive it (Rival et al., 2012). Additionally, research 
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from Vernié et al (2015) reviewed in section1.2.2.1, also suggested a non-cell 

autonomous role for NIN in nodule organogenesis. Regulators of NIN, or even 

NIN itself, might be transported intercellularly from the epidermis to the root 

cortex. Whether any of these mechanisms involve plasmodesmata is still 

unknown.  

Finally, it was shown that epidermal expression of the early nodulin gene 

ENOD40 that encodes two small peptides can induce division of cortical cells in 

M. truncatula roots (Sousa et al., 2001). This suggests that either the peptides 

encoded by ENOD40 are moving from the epidermal cell layer to the cortex or 

alternatively, a secondary signal is triggered that transmits the information 

between cells to promote cell division. There is not enough evidence to support 

either of these hypothesis or to implicate plasmodesmata in the mobility of NIN, 

ENOD40 or any other signalling molecule that coordinates the cross-talk 

between epidermal and cortical cell layers. 

Although the nature of the signal is not yet known, together the findings suggest 

that symplastic communication is regulated during nodule initiation and that this 

regulation is crucial to control the number of nodules formed in Medicago 

truncatula. So far this regulation has been linked to a regulation in the number of 

plasmodesmata during the nodule organogenesis process, but the role of callose 

in this process has not yet been studied. Moreover the signal and pathways 

mediating communication between epidermis and cortex to coordinate infection 

and nodule organogenesis remain unclear. Although numerous transcriptional 

regulators have been identified to play a role in this process, so far there is no 

evidence that these move (or not) through plasmodesmata.  
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Figure 1.7-Schematic model showing the possible role of the symplastic 
pathway in the symbiotic process. Early signalling induced in response 
to rhizobia is perceived in the epidermal cell layer triggering further 
signalling to control infection and nodulation. It is hypothesised that these 
signals would regulate plasmodesmata and callose to control shoot-root 
signalling and to coordinate cortical cell division and the formation of 
infection threads. Solid lines refer to known changes in symplastic pathway 
and signalling pathway. Dotted lines refer to hypothesised changes in the 
root upon inoculation.  

 

1.4 Aims and objectives of this thesis 

The establishment of a symbiotic relation between legumes and nitrogen-fixing 

bacteria relays on a successful infection and the proper formation of nodules.  

These processes are independent but tightly coordinated through the transport 
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of signals between the site of bacteria recognition (epidermis) and the site of cell 

division in the cortex. Long distance communication (via the phloem) is also 

involved in regulating nodule formation (and infection) in relation to the plant 

nutritional status (and photosynthetic capacity) (Figure 1.7).  

Previous research has demonstrated that the symplastic pathway is regulated 

upon inoculation by increasing number of plasmodesmata between cortex and 

phloem in infected roots, but until this day, there is no data regarding callose 

regulation or if there is any effect on epidermal-cortical communication. The 

following study is designed to fill these gaps in knowledge through characterising 

the role of callose and callose-modifying enzymes in rhizobia infection and 

nodulation in the model legume M. truncatula. 

The specific objectives of this thesis are as follows: 

1. To determine the patterns of callose deposition at the cell wall of M. 

truncatula roots upon inoculation with S. meliloti.  

2. To identify genes/proteins regulating callose at plasmodesmata upon 

inoculation with rhizobia. 

3. To determine how the infection and nodulation processes are affected 

when callose deposition is ectopically modified prior to inoculation by 

biochemical and genetic means. 

4. To determine how the infection and nodulation processes are affected 

when callose deposition is spatially and locally modified using symbiotic 

promoters.  

5. To determine the role of a novel plasmodesmata-located receptor like 

kinase protein in the response of M. truncatula to rhizobia in nitrate 

sufficient and depleted conditions.  

 



Chapter 2 

 

38 

 

Chapter 2 

 

 

 

  



Chapter 2 

 

39 

 

Chapter 2 –Materials and Methods 

2.1 Plant Methods 

2.1.1 Plant materials, seed sterilisation and vernalisation  

M. truncatula ecotype Jemalong A17 (Barker et al., 1990) and Jester (Hill, 2000) 

were used in this study. M. truncatula line L416 containing the pENOD11-GUS 

(Boisson-Dernier et al., 2005) transgene was used to spatially and temporarily 

localise infection.  

Seed coats were scarified by scratching the seeds between two sheets of sand 

paper, under sterile conditions 10% of sodium hypochlorite was added to the 

seeds. Bleach was removed after 3 minutes and the seeds washed with sterile 

water several times until all the bleach was removed. Sterile seeds were kept in 

water for 4 hours for imbibition prior placing them in Distilled Water Agar plates 

(DWA). Plates were covered in foil and placed at 4 °C for 4 days to synchronise 

germination.  

2.1.2 Plant growth conditions  

For phenotypic characterization and nodulation assays plants were grown in 

square plates containing Buffered Nodulation Medium (BNM) or Fahraeus plant 

medium (FP) supplemented with 1 μM L-α-(2-aminoethoxyvinyl)-Gly (AVG) in 

control environment chambers with 16h light/ 8h dark photoperiod 

(irradiance=418 μmol m-2s-1) and 21°C/16°C day-night temperature regime. For 

nodulation assays in the presence of nitrate, Potassium Nitrate to a final 

concentration of 2 mM and 5mM was added to BNM media. S. meliloti strain 

1021 pXLGD4 lacZ reporter was used for all the infection and nodulation assays. 

All recipes used in this work can be found in Table 2.1. 

2.1.3 Generation of M. truncatula transgenic roots by A. rhizogenes 

Seeds were sterilised as described above and let vernalize for 7 days. The day 

before transformation plates were kept at RT in an inverted position overnight. 

Under sterile conditions, germinated seeds were submerged in sterile water to 

avoid damaging the root tip prior transformation. A sterile scalpel was used to 

remove the root tip and the remaining seedling was dipped in the Agrobacterium 
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rhizogenes suspension. A total of three rows of 10 seedlings each were placed 

in squared plates containing FP medium and left in horizontal position and 

covered in foil overnight. The plates were then kept upright in controlled 

environment chambers for 7 days, covering the plates with blue paper to avoid 

direct exposure to light. Untransformed roots were cut and discarded and plants 

were transferred to fresh FP plates and let grown for three weeks before 

selection. For selection purposes, only plants expressing dsRED fluorescence 

or others fluorescence signals were transferred to fresh media (FP+AVG) or soil 

(sand+terragren) for further experiments.  

2.1.4 Plant growth media 

Recipes of plant growth media used in this work (Table 2.1). 

Table 2.1-Recipe of plant growth media used in this work 

Media Recipe for 1 L 

DWA 10 g Plant Agar (Sigma 

A4675) 

Fahraeus plant 0.1 g CaCl2. 2H2O, 0.12 g 

MgSO4, 0.01g KHPO4, 0.150 

g NaHPO4.12H2O, 5 mg ferric 

citrate, 2.86 g H3BO3, 2.03 g 

MnSO4, 0.22 g ZnSO4.7H2O, 

0.08 g CuSO4.5H2O, 0.08 g 

H2MoO4.4H2O, pH 6.3-6.7. 

For solid medium 0.5% (w/v) 

Plant agar (Sigma A4675) 

was added. pH 6 

Buffered Nodulation 

Medium 

390 mg MES, 344 mg 

CaSO4.2H2O, 0.125 g 

KH2PO4, 122 mg 

MgSO4.7H2O, 18.65 mg 

Na2EDTA, 13.9 mg 

FeSO4.7H2O, 4.6 mg 

ZnSO4.7H2O, 3.1 mg H3BO3, 

8.45 mg MnSO4.H2O, 0.25 

mg Na2MoO4.2H2O, 0.016 

mg CuSO4.5H2O, 0.025 mg 

CoCl2.6H2O, pH 6.5. For solid 

medium 10 % (w/v) Plant 

agar (Sigma A4675) was 

added.  pH 6 
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Fahraeus Media 

supplemented with 

Nitrate 

Fahraeus Media as above, 

KNO3 to 2mM or 5mM 

 

2.2 Bacterial Methods 

2.2.1 Bacterial strains 

Escherichia coli cultures were grown at 37°C overnight at 250 RPM in 7-10 ml 

cultures in LB media supplemented with the corresponding antibiotic. A. 

rhizogenes strain AR1193 (Stougaard, 1987)  was used for hairy root 

transformation of M. truncatula. A. rhizogenes was grown in TY medium 

containing Rifampicin (50 μM), Carbenicillin (100 μM) and vector specific 

antibiotic at 28°C as and 250 RPM required.  

S. meliloti strain 1021 pXLGD4 lacZ was grown overnight at 28°C and 250 RPM 

in the presence of tetracycline (5 μM).  

2.2.2 Plasmid preparation and bacterial transformation 

Overnight grown cultures of E.coli expressing the vector of interest were used to 

isolate the plasmid by the alkaline lysis method using the Qiagen Miniprep kit 

following manufacturer instructions.  

E.coli and Agrobacterium cells were transformed by electroporation. In individual 

sterile cuvettes (Molecular Bioprobes 5510-11), 40 μl of competent cells and 

around 100 ng of plasmid were added. The current was applied at 2V for 10 

seconds and sterile LB media added immediately after the shock. Transformed 

cells were recovered for 1 hour at 37°C in the case of E.coli and 2 hours at 28°C 

in the case of Agrobacterium cells. Cells were then plated on LB or TY medium 

respectively with appropriate antibiotics.  

 

2.2.3 Growth curve 

A preculture of S. meliloti was grown overnight in TY medium in presence of 

tetracycline at a final concentration of 500 μg/ml. When the OD600 reached 

between 0.5 and 0.7 the culture was diluted to OD600 0.001 in TY media. 40 μl of 
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the bacterial dilution was added to 360 μl of TY media with the appropriate 

inhibitor: 100μM DDG (Sigma D8375), 100 mM MgCl2, water as a control for the 

solvent and TY alone. TY without bacterial inoculation was used as negative 

control. A 48 well plate was used (Cellstar) in a TECAN Infinite 200 

(LifeSciences), and media for each condition was delivered in a randomised 

fashion to avoid mismeasurement from the machine. The absorbance was taken 

at 600 nm every 2 hours for 66 hours until the stationary phase was reached. 

The data was exported to GraphPad Prism 7 and the Log (10) of the average of 

all replicates per treatment used as each data point. 

2.2.4 Bacterial growth media  

Recipes of bacterial growth media used in this work (Table 2.2) 

Table 2.2-Recipe of bacterial growth media used in this work 

Media Recipe for 1 L 

LB 10 g Tryptone, 5 g   Yeast 

Extract, 10 g  NaCl. For solid 

media 10g, Bactoagar 

(Sigma 05040) was added. 

pH 7 

TY 5 g Tryptone, 3 g Yeast 

Extract, 1.32 g CaCl2 6H2O. 

For solid media 10g, 

Bactoagar (Sigma 05040)  

was added 

MM 1 g MgSO4 7H2O, 2.2 g CaCl2 

6H20, 2.2g g K2HPO4, 0.2g 

FeCl3, 10 ml 3% Mannitol, 1.1 

g NaGlu, 0.5 mg Biotin, 

0.5mg Thiamine, 0.5 mg 

Pantothenic Acid 
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2.2.5 Nodule occupancy assay 

Nodules were excised from each transgenic root and were surface-sterilized in 

12% hypochlorite, followed by five washes in sterile water under sterile 

conditions. Nodules were crushed individually in 1 ml of sterile water. The 

suspension was plated on TY plates and was incubated at 28°C for 48 h. The 

same procedure was followed to use it to inoculate wild-type seedlings grown on 

BNM plates.  

2.3 Microscopy Methods 

2.3.1 Confocal Microscopy 

Confocal analysis was performed on a Zeiss LSM700 Inverted and LSM800 

Upright microscope using a 488 nm excitation laser for Alexa-488 and GFP. 

Emission was collected using the filters: BP 505–530 for GFP, the DAPI filter for 

Calcofluor (463 nm) and LP 615 for Pontamine Red staining. The images 

correspond to individual stacks of z- optical sections. 

2.3.2 Light Microscopy 

Light Microscopy Imaging was performed on a Zeiss AX10 light microscope and 

a Brunel Microscope Ltd BSR stereomicroscope. Pictures were taken with an 

Olympus -BH2 fitted with a QIMAGING camera (Canada). 

2.4 Molecular Biology Methods 

2.4.1 Standard PCR 

Standard PCR was performed using Thermo 3 Prime in 0.2 ml PCR tubes with 

a final volume of 20 μl.  dNTPs were added to a final concentration of 10 μM and 

MgCl2 to 1.5mM. Reactions were run in a thermocycler with the following 

conditions (Table 2.3): 
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Table 2.3-Standard PCR reaction conditions 

Temperature Time Cycles 

95°C 2 minutes 1  

95°C 0.5-1 minute  

60-65°C 0.5-1 minute 25-35  

72°C 1 min/kb  

72°C 10 minutes 
1  

2.4.2 Agarose gel electrophoresis 

Nucleic acids were resolved by running the samples on 0.8-1% agarose gel at 

70V in 1X TAE Buffer (tris-Acetate EDTA) and a final concentration of SYBR 

Safe of 1X (Invitrogen). Gels were photographed using SynGene GBox 

transilluminator and pictures analysed using GeneSys software.  

2.4.3 Golden Gate designs and cloning system 

Promoters and the genes necessary for generation of vectors mentioned were 

synthesised by GenScript. These include the sequences corresponding to the 

genes PdBG1 (At3g13560) and fragments for fusion constructs. To generate 

level 1 vectors 100 ng of the linearized backbone and equimolar amounts of each 

assembly pieces vectors were added to 15 μl total reaction volume (Table 2.4).  

Table 2.4: Standard reaction mixture for GoldenGate cloning system 

100 ng backbone vector 

Equimolar amount of each 

assembly piece 

1x NEB T4 Buffer 

1x BSA 

10 units BsaI/BpiI 

400 units T4 ligase 

Water to 15 μl 
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The tube was placed in a thermocycler and cycling parameters setup as follows: 

(37°C/ 3min//16°C/4min) x25 cycles (50°C/5min/80°C/5min) x1 cycle. 2 μl of the 

assembly reaction was transformed into 40 μl of competent E. coli cells. Colonies 

were checked using colony PCR and sequencing. Positive colonies were used 

to generate level 2 vectors using the same protocol replacing BsaI with BpiI 

restrictions enzyme. Selection of positive colonies was based on red/white 

phenotype, being the negative colonies red. Maps of the tagged version of the 

vector (Figure 2.1) and untagged versions of the construct (Figure 2.2) were 

generated.  

 

 

 

 

Figure 2.1- Map of the pMtERN1-PdBG1-GFP vector. A final binary vector 

carrying PdBG1 signal peptide (pdbgSP), GFP and PdBG1 C-terminal parts of the 

gene (PdBG1) driven by 2400 bp from the MtERN1 promoter. The vector includes 

dsRED driven by the ubiquitin promoter (pAtUBI10) as a marker for transgenic root 

selection. 
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Figure 2.2- Map of the untagged vectors generated with specific infection 

and nodulation promoters MtNFBx, MtERN1 and MtNIN. A final binary 

vector carrying PdBG1 gene driven by 2400 bp from the MtERN1 promoter, 178 

bp from the MtNFBx and 2180 bp from the MtNIN. The vector includes dsRED 

driven by the ubiquitin promoter (pAtUBI10) as a marker for transgenic root 

selection. 

 

Constructs were obtained by GoldenGate cloning system (Engler et al., 2008),  

and contained the promoters of interest driving PdBG1 and the red fluorescent 

protein from the coral Discosoma (dsRED) driven by the ubiquitin promoter 

(Zhang et al., 2015). Constructs were transformed via A. rhizogenes in M. 

truncatula roots and transgenic roots were selected based on dsRed 

fluorescence. Vectors generated by GoldenGate are listed in Table 2.5. 
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Table 2.5: List of vectors generated by GoldenGate in this study 

Vector generated Purpose/Description 

pMtERN1-AtPdBG1-

GFP 

Cellular localisation and 

nodulation assays 

pMtNIN-AtPdBG1 Nodulation assays 

pMtNFB-AtPdBG1 Nodulation assays 

pMtERN1-AtPdBG1 Nodulation assays 

2.4.4 Primer design 

Primers were designed to confirm correct assembly of GoldenGate modules. 

Primers were designed using primer3 software (http://primer3.ut.ee). Sequences 

of primers of target genes are listed in Table 2.6.  

Table 2.6: List of primers used in the generation or confirmation of 

GoldeGate clones 

Primer 

name 

5’ to 3’ 

primer 

sequence 

Purpose Target 

PdBG1-C-

Rv 

CAG TGC 

CAA TGT 

TTA CAC 

CGA TA 

Cloning 

confirmation/sequencing 
At3g13560 

MtERN1-Fw 

CTC ATA 

GCT TGC 

AAA TTA 

CAA CAT 

Cloning 

confirmation/sequencing 
EU038802(gene) 

MtNIN-Fw 

CGT ACG 

TGT TCT 

CCT CAA 

CTA C 

Cloning 

confirmation/sequencing 
Medtr5g099060(gene) 

NFBx4-Fw 

CGC TGA 

GCT CGA 

ATT CTA 

GTG 

Cloning 

confirmation/sequencing 
Synthetic NFB promoter 

Right 

Border-Fw 
GAT AAA 

CCT TTT 

Cloning 

confirmation/sequencing 

Backbone EC50505 

pL2V 

http://primer3.ut.ee/
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CAC GCC 

CTT TTA 

Left Border-

Rv 

CTG CCT 

GTA TCG 

AGT GGT 

GA 

Cloning 

confirmation/sequencing 

Backbone 

EC50505 pL2V 

2.4.5 Gateway designs and cloning system 

Gateway cloning system is based in site-specific recombinases that catalyse the 

recombination of two DNA segments that carry specific and complementary 

sequences (Katzen, 2007). To create entry clones the target genes or gene 

fragments were amplified using primers containing the compatible adapters.  

Primers were designed to amplify target genes MtBG2 and MtPDLP1 to generate 

fusion proteins with fluorescent proteins. In the case of Medtr3g083580, an 

internal fusion was required since the protein has a signal peptide and a GPI 

anchor, both needed for proper localisation and function of the protein. For that 

purpose, C-terminal and N-terminal section of the protein was amplified 

separately and cloned into different donor vector. In the case of Medtr1g073320, 

the whole protein was amplified in one single PCR reaction and cloned into the 

donor vector.  

Amplification was purified by gel extraction using Qiagen Gel Extraction Kit 

(ID: 28706) and following the manufacturer’s instructions and cloned into either 

pDONR201 or pDONR207 backbone. Ligation reaction with 1 μl BP clonase was 

incubated overnight at 25°C and stopped by adding 1 μl Proteinase K 

(Invitrogen). 1 μl of the ligation reaction was used to transform 50 μl of 

electrocompetent E.coli cells. Colonies were checked by PCR and positive 

colonies confirmed by sequencing.  Confirmed positive clones were used for LR 

reaction, around 150 ng of each entry clone and destination vector was added to 

a PCR tube along with 1 μl of LR clonase to a maximum volume of 5 μl. The 

reaction was incubated at 25°C overnight. 1-2 μl of the reaction was used to 

transform electrocompetent E.coli cells. Colonies were screened by colony PCR 

and confirmed by sequencing.  Gateway vectors used and generated are listed 

in Table 2.7 and Table 2.8 and schematized in Figure 2.3.  
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Table 2.7: List of Gateway vectors used in this study 

Vector used Purpose/Description Reference 

pDNOR201 Entry vector Invitrogen® 

pDNOR207 Entry vector Invitrogen ® 

pB7YWG2 

 

Destination, Binary 

vector, YFP tag at C-

terminal 

(Karimi et al., 2005) 

pB7WG 

 

Destination, Binary 

vector 

Invitrogen ® 

p35s-PdBG1-mcitrine Cellular localisation 

and nodulation assays 

(Benitez-Alfonso et al., 

2013) 

Table 2.8: List of expression vectors generated and used in this study 

Vector generated Purpose/Description 

pUb-MtBG2-mcherry Cellular localization 

and nodulation 

assays 

p35s-MtPDLP1-YFP Cellular localization 

and nodulation 

assays 
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Figure 2.3- Map of pUb-MtBG2-mcherry vector generated by GateWay 

cloning system. A final vector carrying MtBG2 Nt, mcherry fluorescent protein 

and MtBG2 Ct driven by the Ubiquitin promoter (AtUB10).   

 

2.4.6 Primer design 

Primers were designed to amplify target genes with the necessary adapters. 

Primers were designed using primer3 software (http://primer3.ut.ee). Sequences 

of primers of target genes are listed in Table 2.9.  

 

 

 

 

 

 

http://primer3.ut.ee/
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Table 2.9: List of primers used in the generation of clones by Gateway 

system. Adapters for Gateway donor vectors are underlined. 

Primer name 5’ to 3’ primer sequence Target 

MtBG2-ATTB2 GGG GAC CAC TTT GTA 

CAA GAA AGC TGG GTT 

TTA CAA CAT CAA AGC 

CAA AAG TAG 

Medtr3g083580  

 

MtBG2-ATTB3 GGG GAC AAC TTT GTA 

TAA TAA AGT TGT AAC 

TGG CGG TGA TGG GAG 

C 

Medtr3g083580  

 

MtBG2-ATTB4 GGG GAC AAC TTT GTA 

TAG AAA AGT TGG GTG 

GCT CAA GTT AGA ACT 

TCC TGC AT 

Medtr3g083580 

 

MtPDLP1-ATTB5r GGG GAC AAC TTT GTA 

TAC AAA AGT TGT AAT 

GAA GCT TCA AAA ATG 

GCT CAC  

Medtr3g083580 

 

MtPDLP1-ATTB1 GGG GAC AAG TTT GTA 

CAA AAA AGC AGG CTC 

CAT GTT TTG ATT CTC 

TCT CCA 

Medtr1g073320 

MtPDLP1-ATTB2 GGG GAC CAC TTT GTA 

CAA GAA AGC TGG GTA 

CCA CAA ATC TCT TTC 

AGC CAA AA 

Medtr1g073320 

PUBIQ-ATTB1 GGG GAC AAG TTT GTA 

CAA AAA AGC AGG CTT 

AGT CGT TGT GGT TGG 

TGC TTT 

Ubiquitin promoter 

from Arabidopsis  

PUBIQ-ATTB5r GGG GAC AAC TTT TGT 

ATA CAA AGT TGT TCT 

GCA TCT GTT AAT CAG 

AAA AAC T 

Ubiquitin promoter 

from Arabidopsis 

 

 

 

 

http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesCDSSeq_20130731_1800.fasta&id=Medtr3g083580.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesCDSSeq_20130731_1800.fasta&id=Medtr3g083580.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesCDSSeq_20130731_1800.fasta&id=Medtr3g083580.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesCDSSeq_20130731_1800.fasta&id=Medtr3g083580.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesCDSSeq_20130731_1800.fasta&id=Medtr1g073320.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesCDSSeq_20130731_1800.fasta&id=Medtr1g073320.1&type=subject
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2.4.7 Quantitative Real-Time Reverse Transcription PCR 

2.4.7.1 Primer design 

Primers were designed to amplify around 200 bp of target genes. Primers were 

designed using primer3 software (http://primer3.ut.ee). Sequences of primers of 

target genes and housekeeping genes are listed in Table 2.10.  

Table 2.10: Primers used in QPCR and RTPCR assays 

Primer name 5’ to 3’ primer sequence 

QPCR-MtBG2-Fw TGG TGG AAC TTG CGA CTT TG 

QPCR- MtBG2-Rv AGG GTA GAC ACT TGC AGG TT 

QPCR- MtBG2-Fw TGC AGC TAT TCA AGC AGG GA 

QPCR- MtBG2-Rv CCG CCA GTG CTC AAG TTA GA 

QPCR-MtBG5-Fw TGT TCT TTG TTG CAG GGA 

QPCR-MtBG5-Rv GAG CAG GGG CGT TAG AGA AG 

QPCR-UBIQ-Fw GCA GAT AGA CAC GCT GGG A 

QPCR-UBIQ-Rv AAC TGG GCA GGC AAT AA 

RTPCR-MtACTIN-Fw GAC AAT GGA ACT GGA ATG GTG 

RTPCR-MtACTIN-Rv CAA TAC CGT GCT CAA TGG GG 

RTPCR-MtBG1-Fw GCT CCT ATT CAA CAA GGA CAG 

C 

RTPCR-MtBG1-Rv GGG ACT TGA AGA AGG TCC AA 

RTPCR-MtPDLP1-Fw GGT TCC AAA GGG TGG TCA CT 

RTPCR-MtPDLP1-Rv GGC CTC CAC AGT AAA CCA TAT  

2.4.7.2 RNA extraction and cDNA synthesis 

M. truncatula roots were spot inoculated and a window of 1 cm of root containing 

the inoculation point were collected at different time points and immediately 

frozen in liquid nitrogen. The samples were ground in liquid nitrogen in a chilled 

http://primer3.ut.ee/
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mortar. RNA was extracted using the RNeasy Plant Mini Kit following the 

manufacturer’s instructions (Qiagen, France). Quality and concentration of RNA 

were evaluated by electrophoresis and NanoDrop® Spectrometer ND-1000.  

1 μg of RNA was used per sample to synthesise cDNA using SuperScript II 

(ThermoFisher-18064014) following manufacturer’s protocol.  

2.4.7.3 RT-PCR analysis 

cDNA synthesised was used in standard PCR reactions to semi-quantify 

transcription. Primers were designed to amplify around 200 base pairs. Actin was 

used as internal housekeeping gene. 

2.4.7.4 QPCR 

Real time qPCR was carried out in a CFX ConnectTM Real-Time PCR Detection 

System using CFX96 TouchTM program for recording the results (Bio-Rad). 

SYBR green was used for quantification of dsDNA synthesis during amplification. 

Reactions were carried out on whit optical 96 well plates. 3 wells were used per 

condition. The wells were as follows: 10 μl SYBR Green Jumpstart Taq 

ReadyMix for qPCR (Sigma), 2 μl cDNA (50ng), 1 μl of 10 μM gene specific 

forward primer and 1 μl of 10 μM gene specific reverse primer, and 6 μl of 

nuclease-free water (20 μl total volume)(Table 2.11). 

Table 2.11 CFX96 TouchTM program setting designed for optimal output 

and used in PCR cycling for the QPCR analysis. 

 

 

 

 

1 Cycle: 

Initial Denaturation 94C 2 mins 

40 Cycles: 

Denaturation 94C 15 secs 

Annealing, Extension and Read Fluorescence. 57C 1 min 
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2.4.7.5 Relative Gene Expression Analysis 

The relative gene expression levels were calculated using the 

comparative Ct (𝚫𝚫Ct) method (Schmittgen and Livak, 2008). The range for 

relative target gene expression, relative to the control calibrator sample, is 

calculated by: 2-𝚫𝚫Ct, where Ct represents the threshold cycle, with 𝚫𝚫Ct + s and 

𝚫𝚫Ct – s, where s is the standard deviation of the 𝚫𝚫Ct value. 

 

2.5 Phenotyping M. truncatula roots development 

2.5.1 2-Deoxy-D-glucose (DDG) treatment 

100 μM DDG (Sigma D8375) diluted in water was used to treat 5 day-old wild 

type M. truncatula plants either 24 hours prior infection or during the inoculation 

process. In the case of transgenic roots, the treatment was applied 14 days after 

transformation. The treatment was delivered by placing a DDG soaked filter 

paper on top of the roots while growing in plates and removed prior the infection. 

2.5.2 Root hair length measurement 

Root hair length was measured using the Zeiss LSM700 Inverted Confocal 

Microscope and the ImageJ software. Medicago seeds were germinated and 

described above and seedlings were placed in plates with the treatment or water 

as a control between filter paper. Seedlings were allowed to grow for 5 days 

before imaging. To measure root hair length seedlings were imaged and root 

hairs measured using ImageJ. At least 3 seedlings were imaged for each 

condition. Average of all root hairs contained in the image was used to determine 

the difference.  

2.5.3 Root length, weight and width measurement 

Root length and width were measured using a D5200 Nikon Camera and ImageJ 

software. The widest point of the root was measured for width estimation.  
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2.6 Nodulation and infection assays 

2.6.1 β-Galactosidase staining  

M. truncatula roots were infected with S. meliloti strain 1021 pXLGD4 lacZ. Roots 

at different infection stages were fixed in Z buffer 2.5% Glutaraldehyde for 30 

min under vacuum and further incubated for 1 hour. Roots were then trough fully 

washed with Z-Buffer. Roots were incubated at 30 °C for 4 hours (or until visible 

staining is seen) in staining solution. For 1 mL of staining solution, 50 μl of 100 

mM potassium ferrocyanide and potassium ferricyanide were added and 16 μl of 

50 mg/ml of X-gal in DMF (Promega) was made up in Z-buffer.  Staining reaction 

was stopped by washing roots with Z-Buffer. The roots were then analysed under 

a microscope and the number of infection threads, infection pockets and nodule 

primordia quantified and/or imaged.  

2.6.2 Flood infection in plates 

For flood infection, 10 ml of liquid TY medium is inoculated with a single colony 

and grown overnight. The culture is pelleted, washed twice with 10 mM MgCl2 

and resuspended in 10 mM MgCl2 to a final OD600 of 0.05. 

2.6.3 Spot inoculation 

100 ml of liquid MM medium is inoculated with a saturated S. meliloti culture to 

a final OD of 0.007 and incubated for 16 hours. A final inoculum is prepared in 

FP (Fahraeus, 1957) medium to a final OD of 0.02. One single drop is deposited 

in the infection zone of the root (Figure 2.4) with Microloader tips (5242956003, 

Eppendorf). Plates were maintained in horizontal position for several minutes 

before sealing them with Micropore tape (3M) and cover the roots with foil.  
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Figure 2.4: Drawing showing infection zone in a M. truncatula root. The 

infection zone is where root hairs start to develop and are susceptible to 

infection by rhizobia. 

 

2.6.4 Infection in soil 

Transformed Medicago roots growing in soil were infected ten days after the 

transplant with 1 ml of a saturated S. meliloti resuspension in water to a final 

OD600 of 0.02-0.03. 

2.6.5 Counting Infection Threads, Infection Pockets and Nodule 

Primordia 

After lac Z staining infection threads, nodule primordia and older nodules were 

visualised and counted using a Zeiss Axio Scope.A1 and imaged using an 

Olympus -BH2 fitted with IMAGING camera (Canada). All nodule and nodule 

primordia were counted for the total number of nodule counting, but only nodules 

and nodule primordia showing blue staining were considered as ‘infected’ or 

‘colonised’. The ratio between blue nodules and the total number of nodules is 

the percentage of colonised nodules. All infection threads and infection pockets 

including the ones leading to a nodule primordia/ mature nodule were counted 

for the total number. 

2.6.6 Assaying nodulation in soil 

Composite plants were grown in a mixture of equal amounts of sand and terra 

green for 10 days before inoculation. For inoculation 1 ml of a saturated culture 
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of Sm1021 pXLGD4 (lacZ) at an OD600 0.05 per pot was used. Control plants 

were inoculated with 1 ml of water. Plants were watered as needed for 2 weeks 

after infection before harvesting the roots and assaying nodulation. The total 

number of mature nodules per composite plant were counted.  

2.7 Phylogenetic and structural analyses of proteins 

2.7.1 Retrieval of β-1,3-glucanases, GSL and PDLP-like sequences 

and analysis of protein domains 

Isolation of sequences containing the β-1,3-beta glucosidase domain (GHL17) 

from M. truncatula and A. thaliana was performed as described in Gaudioso-

Pedraza and Benitez-Alfonso, 2014. Only protein sequences containing the 

GHL17 domain (confirmed in SMART) and predicted to be complete were 

considered. To eliminate redundancies sequences obtained for each organism 

were aligned using MUSCLE (Edgar, 2004). The sequences were screened for 

characteristic features of this family, signal peptide (SP), 

glycosylphosphatidylinositol anchor (GPI) and carbohydrate-binding module 

(X8) in the case of GHL17, using the prediction programs SMART, SignalP 4.1 

Serve, Phobius, GPI-SOM, FragAnchor, PredGPI and BIG-PI respectively 

(Eisenhaber et al., 2003; Fankhauser and Maser, 2005; Poisson et al., 2007; 

Pierleoni et al., 2008; Letunic et al., 2012). Sequences isolated are available in 

Appendix 1.  

The same process was followed to retrieve orthologues of CALS and PDLP 

Arabidopsis family in M. truncatula. CALS proteins are characterised for their 

glucan-synthase domain. Sequences isolated are available in Appendix 2. On 

the other hand, PDLPs have a DUF26 domain and a transmembrane domain. 

Sequences isolated are available in Appendix 3  

2.7.2 Alignments and phylogenetic analysis 

All sequences isolated were aligned using Muscle 58 and phylogenetic trees 

calculated as described in Gaudioso-Pedraza and Benitez-Alfonso, 2014. The 

best model under the Akaike Information Criterion was LG+G. Majority-rule 

consensus trees convergence was reached after 90000 generations in all cases. 
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The trees were visualised using the software Figtree 

(http://tree.bio.ed.ac.uk/software/figtree/) and edited using TreeGraph2 (Stover 

and Muller, 2010). Trees generated are available in newick format in Appendices 

10 to 18.  

2.7.3 Selection of candidates 

M. truncatula glucanases and PDLP that localised in the same clade as 

plasmodesmata Arabidopsis proteins were identified. Transcriptomic analyses 

available in The Medicago truncatula Gene Expression Atlas ((Benedito et al., 

2008) were consulted. Candidate genes were further selected based on their 

expression pattern based on the following criteria: response to 1, 2, 3 or 5 dpi in 

root hairs, response to Nod factor treatment and/or lack of differential expression 

when infected with rhizobia mutants. 

2.8 Biochemistry Methods 

2.8.1 Immunolocalisation 

2.8.1.1 Sample preparation 

M. truncatula roots were cut into 1-2 cm pieces (to improve fixative infiltration) 

and fixed in 4% paraformaldehyde in PBS buffer at pH 7.0 and supplemented 

with 0.01% Triton-100. Ascending ethanol: water series (10:90, 30:70, 50:50 

70:30 and 90:10) were used to dehydrate the samples. Samples were stained 

with a 2% eosin solution to facilitate sample positioning during embedding and 

sectioning. Wax embedding and sectioning 

Samples are incubated overnight in a 1:1 solution paraffin wax (VWR) and 

ethanol at 37°C. Wax: ethanol is removed and replaced by 100% fresh wax and 

further incubated overnight at 37 °C. Wax was changed twice per day for at least 

5 days. Roots were then oriented, taking care of avoiding bubbles. Sections of 

10 μm were collected using a Rotatory Microtome HM 325 (MICROM) and 

recovered in polylysine slides (VWR International). Sections were stored at -

20°C for further experiments. 
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When hand sections were needed, roots were sectioned with a razor blade 

(Wilkinson), exposing the inner tissue and were let dry for two hours at room 

temperature before immunolocalization.  

2.8.1.2 Callose immunolocalisation 

A drop of cell-wall degrading enzyme (2% pectinase (Sigma), 0.01% pectolyase 

Y23 (Sigma) in PBS) was added to each section and incubated at 37 C for 30 

min, the enzyme was then removed and the section washes 3 times with PBS. 

A 3% BSA in PBS solution was used to block sections for 1 hour. After removing 

the blocking solution (3 washes with PBS) sections were incubated overnight at 

4 C with a dilution 1:400 of anticallose antibody (Biosupplies). The sections were 

washed 6 times with PBS prior incubation with secondary antibody (Alexa -488 

antimouse Invitrogen dilution 1:200) for 4 hours. Sections were then washed six 

times with PBS prior counterstaining with DAPI (1μg/ml) or Calcofluor (1mg/ml).  

Sections were covered in mounting solution and were ready to image.  

2.8.1.3 Fluorescence quantification 

For quantification, z-stacks confocal images of callose immunolocalisation roots 

were taken. At least 3 roots per condition were used for quantification 

experiments. A region of interest of around 100 μm2 was drawn in comparable 

areas of the root in every one of the stacks of each picture. Fluorescence 

intensity analysis was performed using ImageJ software (ImageJ, U.S. National 

Institutes of Health, Bethesda, MD; imagej.nih.gov/ij/). The integrated density 

was corrected for background differences by dividing the measured intensities 

with the average intensity of a cell-free region. Integrated density was averaged 

for all stacks and roots per conditions. 

2.8.2 Aniline blue staining  

Aniline blue was used to stain callose at the cell wall in whole roots. Roots were 

cut and rapidly submerged in 0.01% (w/v) aniline blue in phosphate buffer (pH 

8) and incubated for 15 min under vacuum. Roots were then incubated in aniline 

blue solution overnight wrapped in foil at RT. Before imagining roots were 

washed thoughtfully with water. 
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2.8.3 Histochemical localisation of GUS  

To localise spatial and temporal gene expression pattern M. truncatula plants 

expressing the transgene pENOD11-GUS were spot inoculated and samples 

taken at different time points. Plants were fixed in ice-cold 90% acetone in 15ml 

tubes for 30 min. Plants were then cover in GUS staining solution (50mM Sodium 

Phosphate pH 7, 0.5 mM potassium ferrocyanide, 0.5 mM potassium ferricyanide 

and Triton X-100 at 0.1 ml/100 ml) supplemented with 1mM 5-bromo-4-chloro-3-

indolyl-β-D-glucuronic acid. Samples were incubated overnight at 37 °C in dark.  

2.8.4 Toluidine blue staining  

Wax sections of nodules were recovered in polylisine slides and dewaxed with 

increasing ethanol: water series. Sections were then submerged in a 5% 

toluidine blue solution until the tissue was stained (approximately 10 minutes). 

Sections were then washed several times with water.  

2.9 Statistical analysis of the data 

The significant differences between conditions were evaluated using the 

standard deviation of the mean (SDM) and P-values (Student’s t-test). All data 

were analysed for normality using D’Agostino Pearson omnibus normality test. 

Differences were referred to as significant when p-values<0.05 and were all 

calculated using GraphPad Prism 7. 

Data set were plotted using Box Plot where whiskers indicate maximum to 

minimum values, boxes delimit quartiles and central lines indicate the mean. 

Different letters were used to indicate statistically significant differences between 

datasets. 

Normalised relative expressions and standard deviation were calculated using 

actin as an endogenous control using the Comparative Ct Method using 

Microsoft Excel Statistical package (Schmittgen and Livak, 2008) for QPCR 

experiments. 
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Chapter 3 – Regulation of callose in cell walls of M. truncatula 

roots in response to rhizobia 

3.1 Summary 

The symplastic pathway is regulated during different processes of plant 

development to allow essential short and long distance signalling processes 

(Roberts and Oparka, 2003; Benitez-Alfonso et al., 2013; Stahl and Simon, 

2013; Benitez-Alfonso, 2014). How this regulation is orchestrated remains 

not fully understood, but callose turnover at plasmodesmata has been 

shown one of the means by which symplastic connectivity is controlled. 

Callose degradation enhances cell-to-cell communication (Bucher et al., 

2001; Rinne et al., 2005) and symplastic trafficking (Iglesias and Meins, 

2000; Levy et al., 2007). 

Previous research have shown that nodule formation in legumes is linked 

to a regulation of the symplastic pathway (Complainville et al., 2003). So far 

these changes have been associated with an increase in plasmodesmata 

density connecting the tissues but not with a regulation in callose 

(Complainville et al., 2003). Determining spatial and temporal changes in 

callose deposition in response rhizobia would help to discern the role of this 

polysaccharide in the regulation of the symplastic pathway during nitrogen-

fixing symbiosis. 

When nitrogen becomes available in the soil, legumes avoid interaction with 

rhizobia, the sites of infection are reduced and nodules formation is 

inhibited. Although the exact mechanism by which nitrogen regulates 

symbiosis is not fully understood, it is known to act both locally and 

systemically (Jeudy et al., 2010). Therefore, in this chapter is explored 

whether nitrogen would regulate callose deposition in roots, as a 

mechanism to affect colonisation by the bacteria.  
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This chapter focuses on the characterization of the role of callose during 

inoculation of M. truncatula roots with rhizobia in different growing 

conditions and the identification of potential callose modifying enzymes that 

might be regulating this process.  

The sections 3.2.1 and 3.2.2 explore the levels of callose after inoculation 

in nitrogen-depleted conditions. Sections 3.2.2 and 3.2.4 refer to the 

identification of new M. truncatula plasmodesmata proteins potentially 

involved in callose regulation. Finally, sections 3.2.2.1 to 3.2.2.3 explore the 

role of callose in the inhibition of nodulation by nitrogen availability. The 

discussion section aims to bring together these results with current 

knowledge about the subject, as well as suggestions for future work.  
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3.2 Results  

3.2.1 Immunolocalisation experiments show that callose is down-

regulated after inoculation of M. truncatula roots with rhizobia 

To determine if callose regulation correlates with rhizobia infection in M. 

truncatula roots, its deposition was immunodetected after spot-inoculation 

of the roots with mock (water) or with rhizobia. Sections of the root 

inoculated (a window of around 1 cm) with either mock (water) or rhizobia 

cultures were collected at two time points (16 h and 24 h post-inoculation). 

Callose antibody was used to detect the sites of deposition along the cell 

wall which were imaged using confocal microscopy as described in 

Materials and Methods. Images were used to quantify green fluorescence 

(using an Alexa 488-conjugate as secondary) to infer callose levels.  

Callose appears strongly in inner root tissues of mock control roots (Figure 

3.1-A). Punctate pattern of the signal was accumulated at the cortical, 

pericycle and endodermis cell layers, suggesting plasmodesmata labelling 

(Figure 3.1-G). Punctate signal is also present in the rhizobia-inoculated 

samples, but it appears reduced in comparison to mock-inoculated roots 

(Figure 3.1-D). Quantification of the fluorescence signal using ImageJ 

confirmed downregulation of callose at 16 and 24 hpi (Figure 3.2). 

At this early stages of the infection process, the bacterial colonization of the 

host plant has not started, since infection threads typically appear between 

24 and 36 hpi (Laplaze et al., 2015). Therefore, is proposed that changes 

in the composition of the host plant cell walls occur prior bacterial infection, 

or even before root hair curling.   
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Figure 3.1- Callose levels are globally reduced 24 hours post-inoculation 

with rhizobia in M. truncatula. Immunolocalisation of callose revealed a 

down-regulation of the polysaccharide at the cell wall of M. truncatula roots 

spot-inoculated with rhizobia. Callose was detected using a monoclonal 

anti-callose antibody and an Alexa-488 (green) conjugated secondary 

antibody in longitudinal sections of roots 24 hours post inoculation with 

mock (water) (A to C) or rhizobia cultures (hpi) (D to F). Transmission light 

sections (B and E) are shown for signal co-localisation (C and (F). Callose 

signal is strongly visible in inner root tissues of control roots and reduced in 

the rhizobia-inoculated conditions. A close up of panel (A) is magnified in 

panel (G), showing plasmodesmata resembling punctated pattern (white 

arrows). Symbols in A to F refer to xylem vessel (x), pericycle (p), 

endodermis (e), and cortex (c). Panels C and F were brighten to improve 

signal localisation. 
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Figure 3.2- Callose is downregulated upon inoculation. Fluorescent 

immunolocalisation experiments using callose antibody were used to 

quantify callose levels at the cell wall at 16 hours and 24 hours post spot 

inoculation of M. truncatula roots with mock (water) and rhizobia cultures 

(hpi). Integrated density was calculated using ImageJ for each image in at 

least 3 roots per condition. Fluorescence was quantified in a region of 

interest of approximately 100μm2. A Student’s t-test was performed, 

different letters indicate significant differences (p<0.001). 

 

3.2.2 Callose regulation appears not to be essential for the inhibition 

of nodulation in nitrate conditions 

3.2.2.1 Nitrate availability inhibits infection and nodule formation in M. 

truncatula 

Symbiotic interactions and the formation of root nodules are a highly 

energetically demanding process, therefore must be tightly regulated. Plants 

regulate the number and location of new nodules by a diverse number of 

mechanisms (Reid et al., 2011b; Mortier et al., 2012; Bensmihen, 2015). Nitrate 

naturally available in the plant's surroundings is, unsurprisingly, one of the main 

signals that would determine the number of developed nodules (Carroll et al., 

1985b; van Noorden et al., 2006). To verify the response of M. truncatula to 

nitrogen availability in our growing conditions, wild-type seedlings were grown in 
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FP medium plates with either depleted nitrate (no nitrate) or supplemented with 

2mM KNO3 or with 5mM KNO3. Plants were inoculated with S. meliloti expressing 

the galactosidase gene and stained 7 dpi to identify infection sites and nodule 

primordia. M. truncatula plants showed a strong inhibition of both infection 

threads and nodule primordia under both concentrations of nitrate (Figure 3.3). 

2 mM of nitrate appears to be enough to significantly inhibit symbiosis in M. 

truncatula. No significant differences in terms of root length could be seen 

between wildtype plants grown in no nitrate or nitrate supplemented media 

(Figure 3.4).   

 

 

Figure 3.3- Nitrate inhibits nodulation and infection in M.truncatula roots. 

M. truncatula plants were grown in the presence of 0, 2 and 5mM nitrate for 

5 days prior to inoculation with rhizobia expressing the galactosidase gene. 

(A) 7 days post inoculation, roots were stained to dissect the number of 

infection threads. A significant decrease in the density of infection threads 

(number of infection threads and infection pockets/cm of root length) under 

these conditions was recorded. (B) 7 days post inoculation nodule primordia 

and young nodule number were counted. Nodule density decreased 

significantly in plants growing in plates with nitrate in the growth media. A 

Student’s t-test was performed, different letters indicate significant 

differences (p<0.001). 
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Figure 3.4- Nitrate does not have an effect in M. truncatula root length. Main 

root length of 12 day old M. truncatula growing in 2, 5 mM of nitrate and no 

nitrate, was measured. A Student’s t-test was performed, no significant 

differences were seen (p>0.05). 

 

3.2.2.2 Callose deposition in roots grown in the presence of nitrate and 

in no nitrate media do not appear significantly different 

Callose is downregulated upon inoculation and potentially playing a role in the 

establishment of the symbiotic interaction (Figure 3.2). In order to assess 

whether callose also played a role in the root response to high nitrate, the callose 

content in roots grown under depleted (no nitrate) and added or full (2mM and 

5mM KNO3) nitrate conditions were compared. Wild-type M. truncatula seedlings 

were grown in nitrate conditions and aniline blue staining (Figure 3.5) and callose 

immunolocalisation (Figure 3.6) were carried out to compare callose levels. 

Quantification of fluorescence was measured in at least 3 roots per condition and 

method but no significant differences were observed (Figure 3.5-C and Figure 

3.6-G). This suggests that callose turnover is not regulated by nitrate availability 

in the growth media and that potentially levels of callose in the root prior to 

inoculation is not a factor in the inhibition of nodulation by nitrate. 
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Figure 3.5- Aniline blue staining suggest that callose is not regulated by 

nitrate. Aniline blue was used to stain callose deposition (false coloured 

white) at plasmodesmata in wild-type M. truncatula roots growing in FP 

media and FP media supplemented with 2 mM and 5 mM KNO3. (A) Callose 

deposits in plants growing in nitrate-depleted media (FP) (B) Callose 

deposits in plants growing in FP media supplemented with 2mM KNO3. (C) 

Aniline blue fluorescence signal was measured by calculating integrated 

density using ImageJ for each image in at least 3 biological repetitions. The 

region of interest measured was approximately 100 μm2. A Student’s t-test 

was performed, no significant differences were seen (p>0.05). 
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Figure 3.6- Immunolocalisation indicates that 5mM nitrate does not 

regulate callose in M. truncatula roots. Immunolocalisation of callose 

revealed that there is not a regulation of the polysaccharide due to nitrate 

availability. Callose was detected using a monoclonal antibody and Alexa-

488 (green) conjugated antibody in M. truncatula roots longitudinal sections 

grown in no nitrate (A) and 5mM nitrate (D). Bright field (B and E) and 

composite images are shown for tissue localisation of the signal (C and F). 

(G) Fluorescence quantification of callose was performed by calculating the 

integrated density using ImageJ for each image in at least 3 biological 

repetitions per condition. Note that pictures do not show same sections of 

the roots. Fluorescence was quantified in a region of interests of 

approximately 100μm2. Symbols in A to F refer to, xylem vessel (x), 

pericycle (p), endodermis (e), and cortex (c). A Student’s t-test was 

performed, no significant differences were seen (p>0.05). 
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In order to determine whether callose downregulation reported after inoculation 

in nitrate-depleted conditions was maintained in nitrate media, M.truncatula 

transgenic roots expressing an empty vector were grown in media supplemented 

with 5 mM KNO3 and inoculated with either water (mock) or rhizobia cultures. 

Roots were retrieved 24 hpi and used to localise callose deposits at 

plasmodesmata. Inoculation of M. truncatula roots with S. meliloti in the nitrate 

environment showed a reduction in callose deposition at the cell wall (Figure 

3.7), resembling no nitrate conditions. This result supports the hypothesis that 

regulation of callose is not involved in the inhibition of rhizobia infection by nitrate 

at least at that time point post inoculation.  
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Figure 3.7- Callose is downregulated upon inoculation in M. truncatula 

roots growing in nitrate. Callose was detected using a monoclonal 

antibody and Alexa-488 (green) conjugated antibody in M. truncatula roots 

longitudinal sections grown in 5mM nitrate media and after 24 hours post 

spot-inoculation with either mock (water) (A) or rhizobia (hpi) solution (D). 

Bright field (B and E) and composite images are shown to help section 

localisation (C and F). (G) Fluorescence quantification of callose was 

performed by calculating the integrated density using ImageJ for each 

image in at least 3 biological repetitions per condition. Fluorescence was 

quantified in a region of interests of approximately 100μm2. Symbols in A to 

F refer to xylem vessel (x), pericycle (p), endodermis (e), and cortex (c). A 

Student’s t-test was performed, different letters indicate significant 

difference (p<0.001). 
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3.2.2.3 ENOD11 expression is regulated upon rhizobia infection in 

depleted and high nitrate conditions 

To further support the hypothesis that, at least in the very early stages of the 

process after inoculation, nitrate is not inhibiting essential processes in the 

infection process and Nod factor signalling pathway, it was tested if nitrate 

operates by repressing the expression of symbiotic genes, such as ENOD11 

(Journet et al., 2001; Andriankaja et al., 2007; Svistoonoff et al., 2010). 

M. truncatula plants expressing the GUS reporter gene driven by the ENOD11 

promoter were used to determine the spatial-temporal expression pattern of the 

gene upon inoculation in depleted and in full nitrate growing conditions (FP 

medium supplemented with 5mM nitrate). Seedlings were inoculated either with 

a mock solution or with rhizobia. Seedlings were stained 24 hpi to localise GUS 

expression. GUS expression appears in the epidermal cell layer and regulated 

by nitrogen availability. Roots that were exposed to nitrate in the growing media 

(N+) presented a patch-like expression pattern and staining was much less 

strong than plants growing under nitrated depleted conditions (N-) (Figure 3.8). 

This suggests that, although nitrate strongly affects ENOD11 expression, does 

not completely inhibit it, thus infection still occur although at lower efficiency. 

These results agree with previous research that proved that ENOD11 expression 

was regulated upon exposure to NodFactors in the presence of nitrate (Marsh et 

al., 2007).    
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Figure 3.8 ENOD11 expression is not completely inhibited by nitrate in M. 

truncatula roots.  M. truncatula expressing the GUS reporter gene driven 

by the ENOD11 promoter were grown in no nitrate (N-) or 5mM nitrate (N+) 

for 5 days and inoculated with either mock or rhizobia (24 hpi). Roots were 

stained 24 hpi to localise ENOD11 expression pattern. GUS staining 

showed that in the absence of nitrate ENOD11 is expressed widely in the 

infection zone epidermis but this expression is patchy and much less strong 

(although not completely inhibited) in the case of plants growing in high 

nitrate. 
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3.2.3 Identification of callose metabolic enzymes regulated in 

response to rhizobia infection in Medicago roots 

It was shown that there is a downregulation of callose upon inoculation, and it 

was hypothesised that this downregulation is due to the activity of callose 

metabolic enzymes (such as BGs). Phylogenetic analyses have been recently 

applied to the preliminary screening of glycosyl hydrolases family 17, also known 

as β-1,3-glucanases (BGs) which include callose degrading enzymes in a range 

of plant representatives (Gaudioso-Pedraza and Benitez-Alfonso, 2014). 

Phylogenetic trees using three search algorithms were generated: Bayesian 

inference (Bayesian), Maximum Likelihood (ML) and Neighbour Joining (NJ) 

aiming to identify BG and CALS in Medicago by comparison with Arabidopsis 

orthologues.  

For BG (GHL17 family) and CALS family members, identified as described in 

Material and Methods, the trees’ topology were generally well supported by all 3 

methods (Figure 3.9 and Figure 3.10 and Appendix 4, 5, 6, 7, 10, 11, 12, 13, 14 

and 15). 

Regarding BG, this approach allowed to pinpoint sequences with homology to 

plasmodesmata-located enzymes identified in Arabidopsis. Secretory signal 

peptides (SP) and a C-terminal glycophosphatidylinositol anchoring (GPI) 

domain are both present in plasmodesmata located GHL17 proteins identified in 

Arabidopsis (Thomas et al., 2008). Prediction tools were used to determine (the 

presence of a SP and GPI anchor in Medicago candidate orthologues. Out of 42 

sequences containing the predicted GHL17 domain in M. truncatula, 14 have 

both a predicted SP and a GPI-anchor. All sequences retrieved, together with 

predicted domains can be found in the Appendix 1.  

Out of the 42 GHL17 predicted proteins, MtBG1 (Medtr8g085720), MtBG2 

(Medtr3g083580), MtBG4 (Medtr5g078200) and MtBG5 (Medtr3g065460) are 

phylogenetically more closely related to Arabidopsis glucanases that localised at 

plasmodesmata (At3G13560, At1G66250 and At2G01630) but only 

Medtr8g085720, Medtr3g083580 and Medtr3g065460 present SP and GPI, 

suggesting a membranous localisation (Figure 3.11-B).   
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On the other hand, microarray data shows an upregulation of the putative β-1,3-

glucanase MtBG1 in root hairs upon inoculation (Figure 3.12-A), suggesting a 

role in infection and/or early stages of the signalling process (Breakspear et al., 

2014).  

To confirm results from microarrays experiments, inoculated roots were used for 

RT-PCR experiments. Due to the microarrays data and their close phylogenetic 

relationship with Arabidopsis PdBG1 (involved in post-embryonic developmental 

processes in Arabidopsis), MtBG1 and MtBG2 were selected for further 

experiments. Gene-specific primers for MtBG1 and MtBG2 were used to amplify 

around 200 bp of each gene. Actin was used as a housekeeping gene. 

Amplification of cDNA synthesised from extracted RNA shows that both genes 

are induced at early stages of infection (16 hpi) (Figure 3.13-A). 

Additionally, and given the stronger regulation pattern of MtBG2 seen by RT-

PCR, Q-PCR was also performed to study the expression pattern of the gene at 

4, 8, 16 and 24 hpi with rhizobia (Figure 3.13-B). Relative expression of MtBG2 

significantly increases at 24 hpi compared to roots inoculated with a mock 

solution (water). Earlier time points did not show any change in relative gene 

expression. The expression of MtBG2 was also assessed in ‘full’ nitrate 

conditions (5mM) and compared with control plants growing in no nitrate media 

but no significant differences were found (data not shown). 
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Figure 3.9- Full majority-rule consensus tree of GHL17s using sequences 

isolated from M. truncatula (Medtr) and Arabidopsis thaliana (At) generated 

by Bayesian inference of phylogeny. 

Phylogenetic relationship between Medicago and Arabidopsis Glycosyl 

hydrolase family 17 (GHL17) family of proteins was determined using the 

Bayesian inference of phylogeny algorithm. A glucanase from Picea sitchensis 

(PsGHL17_1) was used as an outgroup. Bayesian posterior probabilities are 

indicated above the clades. 
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Figure 3.10 Full majority-rule consensus tree of Glucan Synthase Like 

(GSL) protein family using sequences isolated from M. truncatula (Medtr) 

and Arabidopsis thaliana (At) generated by Bayesian inference of 

phylogeny. 

Phylogenetic relationship was determined using the Bayesian inference of 

phylogeny algorithm. Bayesian posterior probabilities are indicated above the 

clades.  
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Figure 3.11- Phylogenetic studies identify potential Medicago orthologues 

to Arabidopsis Plasmodesmata located β-1,3-glucanases. (A) A fraction of 

phylogenetic tree indicating Bayesian posterior probabilities as a measurement 

of branch confidence. Proteins with known plasmodesmata localisation are 

arrowed. Red squares indicate Medicago glucanases closely related to 

Arabidopsis plasmodesmata β-1,3-glucanases. The whole tree is available in 

Figure 3.9 (B) Protein domains in the β-1,3-glucanase family (also known as 

Glycosyl hydrolase family 17, GHL17) in A. thaliana. Protein domains include the 

core glycosyl hydrolase catalytic domain (GHL17) and the N-terminal signal 

peptide (SP) and might also include one or more carbohydrate binding modules 

(X8), and a hydrophobic C-terminal glycophosphatidylinositol anchoring 

sequence (GPI). 
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Figure 3.12- Expression profiles of potential BGs in M. truncatula root hairs 

suggest a role in early stages of infection. The profiles shown are 

extracted from Microarray data from http://mtgea.noble.org/ (A) MtBG1 

shows a regulation in the expression in root hairs at 5 days post-inoculation 

with rhizobia compared to control experiments with a mutated rhizobia 

strain unable to form symbiosis (mock) (B) In contrast, MtBG2 and MtBG5 

do not seem regulated in M. truncatula root hairs compared to mock 

conditions. Image adapted from http://mtgea.noble.org/v3/. Data published 

by (Breakspear et al., 2014). 
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Figure 3.13- The genes MtBG2 and MtBg1 are upregulated upon rhizobia 

inoculation of M. truncatula roots. (A) M. truncatula roots were spot-

inoculated with S. meliloti and samples collected at 16 and 24 hours post 

inoculation (hpi) RNA was extracted and cDNA synthesized. PCR was 

performed with Actin primers as housekeeping gene. MtBG1 shows an 

upregulation at 16 hpi, with steady expression at 24 hpi. On the other hand, 

MtBG2 shows an upregulation both at 16hi and 24 hpi. (B) Relative gene 

expression levels of MtBG2 at 4, 8, 16 and 24 hours post infection (hpi) with 

spot-inoculated rhizobia. Expression levels were detected using QPCR as 

described in Methods. Error bars represent 2-(∆∆Ct +/- standard deviation). Student’s 

t-test between control and infected ∆Ct values (* indicates a significant 

increase p< 0.05). Data obtained in collaboration with Callum Williams. 
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Phylogenetic analyses were also performed to study the Callose synthase 

protein family of M. truncatula and A. thaliana. Following the same protocol 

described above and in Material and Methods, the phylogeny of this protein 

family was reconstructed. General tree topology was maintained among the 

three algorithms (Appendix 6, 7, 13, 14 and 15). 

Arabidopsis GSL12, also known as CALS3 is located at plasmodesmata and it 

is thought to control callose synthesis and symplastic trafficking during root 

development (Vaten et al., 2011). M. truncatula MtGSL8 (Medtr1g116370) and 

MtGSL10 (Medtr7g005950) are closely related to Arabidopsis GSL12, but 

expression data do not show a regulation of these genes upon inoculation 

(Figure 3.14), suggesting that they are not involved in the early stages of the 

symbiotic process.   

 

 

 

 

 

 

 

 

 

 

 

 

http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr1g116370.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr7g005950.2&type=subject
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Figure 3.14- Expression profiles of potential callose synthase orthologues 

in M. truncatula do not suggest a role in early stages of infection. The 

profiles shown are extracted from Microarray data from 

http://mtgea.noble.org/ (A) MtGSL8 does not show a regulation in roots at 

1, 3 and 5 days post-inoculation with rhizobia compared to control 

experiments with a mutated rhizobia strain (mock) (B) MtGSL10 does not 

seem regulated in M. truncatula roots at 3 and 5 dpi, with a slight 

upregulation at 1 dpi. Student’s t-test was performed. Different letters show 

statistical differences. Image adapted from http://mtgea.noble.org/v3/. Data 

published by (Breakspear et al., 2014). 
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3.2.4 MtBG2 (Medtr3g083580) is a novel plasmodesmata located 

callose degrading enzyme induced in response to rhizobia 

Phylogenetic studies identified potential plasmodesmata-located glucanases in 

M. truncatula (Figure 3.9) which expression is affected after rhizobia inoculation 

(Figure 3.13). MtBG2 (Medtr3g083580) shows a strong expression profile linked 

to rhizobia inoculation, hence it was selected as a candidate gene. A fluorescent 

protein fusion was generated by placing the mcherry sequence between 462-

463aa of MtBG2 (before the predicted omega site for GPI modification) and 

under the Arabidopsis Ubiquitin promoter to test the protein cellular localisation. 

M. truncatula transgenic roots expressing the fusion protein showed punctate 

localisation pattern (Figure 3.15-A) which co-localised with callose deposits 

revealed by aniline blue staining (Figure 3.15-B and C), suggesting that this 

newly identified protein is located at plasmodesmata.  

To determine if the MtBG2-mcherry fusion is an active enzyme, callose levels in 

M. truncatula roots constitutively expressing the fusion protein were assessed. 

Aniline blue staining and callose immunolocalisation revealed that callose 

fluorescence signal was strongly reduced in transgenic roots overexpressing 

MtBG2 in relation to control roots transformed with an empty vector (Figure 3.16 

and Figure 3.17). Integration analysis of the signal in multiple sections indicates 

a significant decrease in callose in MtBG2-overexpressing roots supporting its 

role in callose degradation (Figure 3.16-C and Figure 3.17-C).  
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Figure 3.15- MtBG2 localises at plasmodesmata. MtBG2 fused to mcherry 

was expressed under the Ubiquitin promoter (pUb) in transgenic M. 

truncatula roots. (A) Confocal microscopy picture showing MtBG2-mcherry 

localisation (red channel) (B) Callose deposits were revealed in the same 

root by aniline blue staining false coloured in white (C) Co-localisation of 

MtBG2 with callose deposits suggesting plasmodesmata localisation (white 

arrows). 
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Figure 3.16- MtBG2 expressed under the ubiquitin promoter affects callose 

deposition in M. truncatula transgenic roots. Aniline blue was used to 

stain callose deposits at plasmodesmata (white spots highlighted by white 

arrows) in Medicago roots transformed with an empty vector as control (A) 

and with pUb-MtBG2-mcherry (B) (C) Aniline blue fluorescence signal was 

measured by calculating integrated density using ImageJ for each image in 

at least 3 biological repetitions. A Student’s t-test was performed, different 

letters indicate significant differences (p<0.001). 



Chapter 3 

 

88 

 

 

Figure 3.17- Immunolocalisation experiments confirms reduced callose in 

plants overexpressing MtBG2. Callose was localised with monoclonal 

antibodies and detected with a conjugated secondary antibody (Alexa-488). 

Bright field and composite image are shown to help section localisation. (A) 

Callose immunolocalisation in longitudinal sections of M. truncatula roots 

expressing an empty vector as control. (D) Callose immunolocalisation of 

M. truncatula roots constitutively (pUB) expressing MtBG2-mcherry. Bright 

field (B, C) and composite image (E, F) are shown to help with localisation. 

(G) Fluorescence quantification of callose. Integrated density was 

calculated using ImageJ for each image in at least 3 biological repetitions. 

Fluorescence was quantified in a region of interest of approximately 

100μm2. Symbols in A to F refer to xylem vessel (x), pericycle (p), 

endodermis (e), and cortex (c). A Student’s t-test was performed, different 

letters indicate significant differences (p<0.001). 
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3.3 Discussion 

3.3.1 Establishment of Medicago-rhizobia symbiosis involves down-

regulation of callose in cell walls   

The work presented in this chapter has provided insights into the changes in 

callose deposition at the cell wall that occur in M. truncatula roots after 

inoculation with rhizobia. 

Through callose immunolocalisation it was confirmed that a down-regulation of 

this polysaccharide occurs throughout the first 24 hours post-inoculation. 

Although the conditions might affect the times for infection, the work from 

(Laplaze et al., 2015) indicates that infection threads are normally visible 

between 24 and 72 hours post-inoculation. The observed changes in callose, 

therefore, suggest that the plant arranges its cell wall structure before the 

infection thread starts developing. This timescale also suggests that these 

changes might be triggered by Nod factors secreted by the bacteria in the early 

stages of host-bacteria communication. Further experiments characterising 

callose deposition after Nod factors treatment or in mutants with defects in these 

signalling pathways will help to dissect this response.  

Downregulation of callose differentiates the Medicago-rhizobia interaction from 

some plant-pathogens incompatible interactions where callose is deposited to 

fight the pathogen. Although the role of callose in non-pathogenic interactions 

has not been widely studied, callose is a well-known mechanism of plant defence 

against pathogens (Luna et al., 2011; Ellinger and Voigt, 2014; Voigt, 2014) 

where it plays a role in strengthening the cell wall. In addition, callose has been 

suggested to play an important role in the development of feeding sites during 

nematode infection of Arabidopsis plants, where it appears to be downregulated 

to allow the feeding site to develop (Hofmann et al., 2010). Also, and contrarily 

to other pathogens, some viruses have evolved to target the host glucanases to 

degrade callose, helping the spread of the infection (Iglesias and Meins, 2000; 

Benitez-Alfonso et al., 2010; Li et al., 2012). For a more in-depth review of the 

role of callose and plasmodesmata in pathogenic interactions, see Chapter 1 

sections 1.3.3. 
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As in the response to rhizobia, the arbuscular mycorrhizal symbiosis does not 

trigger callose deposition (Bonfante-Fasolo et al., 1990; Peterson and 

Bonafante, 1994). Interestingly, a Pisum sativum mutant unable to form both 

nodules and arbuscular mycorrhizal showed an abnormal accumulation of 

callose when in contact with the beneficial fungus compared to wild-type plants 

(Gollotte et al., 1993). These observations suggest that callose is synthesized as 

a defence mechanism in AM non symbiotic pea mutant, contrary to interactions 

with wild-type pea plants. It is also interesting that a number of mutants unable 

to form arbuscular mycorrhizal symbiosis are also impaired in nodule formation 

(Resendes et al., 2001; Parniske, 2004; Breakspear et al., 2014). If callose 

regulation is involved in this response/common pathway still needs to be 

investigated.    

3.3.2 Callose regulation upon inoculation suggest changes in 

symplastic communication 

The early regulation of callose in the cell wall of roots undergoing 

inoculation/infection process can be associated with changes in plasmodesmata 

permeability. A de-novo symplastic continuum is generated upon infection (48 

hpi) to connect the phloem and the cells in the inner cortex where the nodule 

primordia will form (Complainville et al., 2003). Research from Berderska et al., 

(2012) shows that, in older and fully differentiated nodules (40 dpi), symplastic 

continuity is maintained between companion cells and the first layer of the 

parenchyma cells within the nodule (Bederska et al., 2012). Together the results 

suggest that the symplastic continuum created between phloem and nodule in 

the early stages of nodulation (described by Complainville et al., 2003) is 

maintained during nodule maturation (Bederska et al., 2012). So far these 

changes were linked to an increase in plasmodesmata number not to changes 

in callose. Our results showing reduced callose levels early after inoculation 

suggest that regulation of symplastic communication during nodulation might 

occur through two mechanisms: callose degradation and formation of new 

plasmodesmata. Furthermore, this regulation appears induced in pericycle, 

endodermis and cortex upon infection as seen in immunolocalisation. Spot 

inoculated roots showed 24 hpi a downregulation of callose especially among 

these tissue layers that will form the nodule primordia. Interestingly, these results 
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are in concordance with previous literature that shows how a fluorescence probe 

that can only move through plasmodesmata was found in pericycle and cortex 

cell layers 48 hpi (Complainville et al., 2003). Further immunolocalisation 

experiments are needed to characterise the callose deposition pattern in outer 

cell layers (epidermis) upon inoculation.  

Additionally, further studies focusing on changes in symplastic connectivity are 

required to fully understand the effect that this regulation has in cell-to-cell 

communication upon inoculation. The use of fluorescent mobile signals (GFP, 

CFDA, esculin…) has been useful in the past to dissect changes in symplastic 

connectivity (Knoblauch et al., 2015).   

It has been recently demonstrated 3 that symplastic communication is, in fact, 

regulated upon inoculation and that new symplastic connections are created 

between epidermis and inner cell layers in M. truncatula roots 3 dpi. In short, this 

was demonstrated by monitoring the transport of a fluorescent tracer (CFDA) 

from epidermal cells towards inner cell layers in inoculated roots 3 days post 

inoculation. CFDA is a membrane permeable dye that only becomes 

fluorescence inside the cell where an endogenous esterase produces a non-

membrane permeable fluorescent form that can only move between cells via 

plasmodesmata (Knoblauch et al., 2015). By these means, it was shown that the 

fluorescence signal was restricted to epidermal tissues in control roots 

(inoculated with water) but that it diffused from the epidermis to cortical cells in 

rhizobia-inoculated tissues.  

Therefore, it can be hypothesised that this increase in symplastic permeability is 

due, at least partially, to a down-regulation of callose deposition in the cell wall 

around plasmodesmata sites. It would be interesting to explore if other 

modifications leading to changes in symplastic communication, such as the 

transitions from primary to secondary and/or branched plasmodesmata, play a 

role in this process.  

                                            

3 Personal communication: Martina Beck and Fernanda de Carvalho-Niebel 

(LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France) 
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3.3.3 Newly identified plasmodesmata located protein plays a role in 

regulating callose during the establishment of the Medicago-

rhizobia endosymbiotic interaction 

Callose turnover at plasmodesmata is a dynamic process mainly carried out by 

two antagonist protein families, callose synthases and β-1, 3-glucanases. Here, 

it is reported a pool of putative glucanases and callose synthases in M. truncatula 

that might be involved in callose regulation upon inoculation by using 

phylogenetic and transcriptomic analyses. Identifying plasmodesmata proteins 

involved in the regulation of inoculation, infection and/or nodulation is an 

essential step to understand how symplastic communication and its regulation is 

involved in the establishment of symbiotic relationships and to identify the mobile 

signal(s) that orchestrate nodule organogenesis. Here, it is reported for the first 

time the plasmodesmata localisation of MtBG2, a protein with callose degrading 

activity.  

Additionally, MtBG2 and another prospective glucanase, MtBG1, are both 

upregulated after inoculation with rhizobia. This upregulation coincides in time 

(24 hpi) with the reduction in callose levels post inoculation reported in earlier 

sections of this thesis. Transcriptomic data from microarray experiments in root 

hairs (Breakspear et al., 2014) do not show upregulation in Medtr3g083580 

expression but, if the expression of this gene coincides with the cortex and 

pericycle regions, where callose is downregulated, it would not show in the 

microarray data set.  Studies from collaborators have confirmed that this is the 

case: the expression of the gene is mostly restricted to meristematic tissue, such 

as lateral roots in non-inoculated tissue and the root tip and to nodule primordia 

upon inoculation with rhizobia4. The expression of MtBG2 was localised to 

dividing inner root tissues localized below an infection site 3 dpi. In mature 

nodules, the expression was restricted to the apical zone, which includes both 

meristematic and early infection zones 4. All these data together suggest that 

MtBG2, and potentially other β-1,3 glucanases, are involved in nodule formation, 

likely by mediating the regulation of callose and thereby the symplastic transport 

                                            

4 Personal communication: Martina Beck and Fernanda de Carvalho-Niebel (LIPM, 
Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France) 



Chapter 3 

 

93 

 

of signals that, ultimately, control the processes leading to nodule 

organogenesis.  

 

The formation of lateral roots and nodules share some characteristics and 

regulatory signalling pathways, as has been pointed out by several authors (Imin 

et al., 2013; Moreira et al., 2013; Bensmihen, 2015). For example, hormonal 

control of both structures is alike, with an auxin gradient and the accumulation of 

auxin in the initiation area of both lateral roots and indeterminate nodule 

primordia being essential for their development (Hirsch et al., 1989; van Noorden 

et al., 2006; Overvoorde et al., 2010; Bensmihen, 2015). Additionally, the ectopic 

overexpression of the CLE peptides leads to both a reduction in nodule and 

lateral root primordia (Schnabel et al., 2005; Araya et al., 2014). Conversely, 

antagonist pathways, involving factors known to modulate meristem growth and 

maintenance, such as cytokinin or ethylene, have been identified where nodule 

formation is favoured while lateral root formation is negatively regulated (Huault 

et al., 2014; Bensmihen, 2015).  

Arabidopsis orthologues of MtBG2 and MtBG1, PdBG1 and PDBG2, are 

plasmodesmata-located proteins that mediate callose degradation. Mutations in 

these genes restrict symplastic communication and increase lateral root density 

and distorting patterning (Benitez-Alfonso et al., 2013). This contrasts with our 

results where decreasing callose increased nodule density. Despite the essential 

role that callose is playing in these two postembryonic developmental processes, 

it seems clear that the downstream mechanisms behind the control of these 

systems differ (Benitez-Alfonso et al., 2013). MtBG2 promoter expression was 

also seen in lateral root primordia5. In the absence of mutant lines, the role of 

MtBG2 in lateral root formation and patterning was not addressed in this work 

but it has the potential to reveal interesting crosstalk between the mechanisms 

regulating nodules and lateral roots.  

 

                                            

5 Personal communication: Martina Beck and Fernanda de Carvalho-Niebel (LIPM, 
Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France) 
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3.3.4 Nitrate availability inhibits nodule development but may not 

affect callose regulation 

The formation of nitrogen-fixing nodules is a tightly controlled process, regulated 

by several mechanisms and signals, including nitrate and the number of 

functioning nodules (Reid et al., 2011a; van Noorden et al., 2016). When plants 

can retrieve nitrate or ammonium directly from the soil, they will not form 

symbiotic association with rhizobia, thus nodules are inhibited. Some infection 

threads will be observed, but most of them will be arrested at the epidermal cell 

layer (Gage, 2004). The exact mechanism by which nitrate inhibits nodule 

formation is still unknown, but it includes both, local and systemic regulatory 

signals (Jeudy et al., 2010; Reid et al., 2011a; van Noorden et al., 2016).  

High concentrations of nitrate have a similar effect on nodule and lateral root 

development and this inhibition has been associated with ABA signalling 

(Signora et al., 2001) and mutants in ABA have been characterised to have 

impaired nodulation (Tominaga et al., 2009).  

Here, it is shown that, despite the availability of nitrate in plates, the effect of 

rhizobia in callose regulation appears the same than in no-nitrate conditions. In 

other words, roots that were grown in nitrate-depleted and full nitrate conditions 

did not show a significant difference in callose antibody labelling. However, it 

cannot be dismissed the possibility of nitrate having an effect on the length of the 

reduction, since both conditions were not compared in similar conditions. Further 

experiments characterising callose deposition in the same conditions would help 

discern this possibility. Additionally, MtBG2 expression was not changed in roots 

growing under full nitrate (5mM) conditions and roots grown in full nitrate showed 

a downregulation of callose 24 hpi, just like roots inoculated in nitrate-depleted 

conditions. The expression of ENOD11, a reporter for early infection steps of the 

symbiotic interaction, was generally and strongly restricted 24 hpi in roots grown 

in the presence of high nitrate, but it was not completely inhibited. This suggests 

that nitrate effects in the inhibition of nodulation is upstream of ENOD11 but that 

is not associated with changes in the levels of callose, at least at 24 hpi.  

Research by van Noorden et al (2016) shows that normal roots hairs curling 

occurs after inoculation under high nitrate conditions, suggesting that available 
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forms of nitrate and ammonium do not affect the early stages of the signalling 

process. If early signalling is what triggers the regulation of callose, it is not 

surprising that in full-nitrate conditions callose remains unaffected. More 

research is required to understand how callose regulation is integrated with other 

factors to coordinate specific responses to nitrate conditions. Understanding how 

infection and nodulation markers are regulated in response to nitrate and in 

relation to callose metabolic enzymes and symplastic connectivity would help to 

elucidate these questions.  
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Chapter 4 -Altering callose turnover affects infection and 

nodulation in M. truncatula-rhizobia interaction 

4.1 Summary 

In the previous chapter, it was demonstrated that the inoculation of M. truncatula 

roots with S. meliloti leads to a rapid reduction of callose deposition as early as 

24 hours post inoculation. The studies described in this chapter were performed 

to understand the role of callose in the establishment of the symbiotic 

relationship, specifically how modifying the patterns of callose deposition at the 

cell wall prior inoculation affect infection and nodulation processes.  

To achieve this, the inhibitor of callose biosynthesis, 2-Deoxy-D Glucose (DDG), 

was used to chemically inhibit callose synthases in the cell wall of Medicago roots 

prior inoculation with the bacteria. In the 2-Deoxy-D-glucose (DDG) molecule the 

2-hydroxyl group of glucose is replaced by hydrogen so it cannot undergo further 

glycolysis, hence it is not suitable as a monomer for polysaccharides such as 

callose. DDG is known to inhibit biosynthesis of callose in several plant species 

(Jaffe and Leopold, 1984; Li et al., 2012). Results from these assays are shown 

in section 1.2.1. 

In section 1.2.2, genetically modified M. truncatula roots ectopically expressing 

the glucanase MtBG2, identified in Chapter 3, were used to assess how callose 

degradation affects the nodulation formation and infection processes.  

Interestingly, modification of callose deposition by the two methods mentioned 

above not only lead to a significantly higher number of infection events and  

number of developing nodules, but also to a significantly weaker inhibition of 

nodulation and infection by nitrate. 

In the discussion section, these results are interpreted in light of the current 

literature on the regulation of nodulation and infection. Suggestions for future 

work are also included in this section. 
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4.2 Results  

4.2.1 Effect of the callose synthase inhibitor 2-Deoxy-D-Glucose in 

rhizobial infection and nodulation  

4.2.1.1 Plant growth and rhizobia infectability are not significantly 

affected by DDG treatment 

To establish whether DDG could inhibit callose synthesis in M. truncatula 

seedlings were treated with 100 μM DDG for 24 hours. Concentrations of DDG 

of 250 μM have been successfully used in infiltration experiments in leaves of 

soybean plants (Li et al., 2012). Since the treatment would be applied in young 

seedlings for a long duration, a lower concentration (100 μM DDG) was tested 

to avoid prejudicial phenotypic effects in the roots. Callose deposition was 

quantified by immunolocalisation using fluorescence values collected from at 

least three roots per condition. M. truncatula seeds were germinated and grown 

in unmodified FP media for 5 days prior applying DDG for 24 hours. Sections of 

the treated root in the infection zone were fixed and callose immunolocalisation 

was performed to reveal callose deposition (Figure 4.1). Callose deposition was 

inferred in these roots as described in Materials and Methods. After 24 hours of 

treatment with 100μM DDG green fluorescence was generally lower in plants 

treated compared to plants growing in the presence of water, suggesting that the 

inhibitor is acting at that concentration in M. truncatula. All experiments were 

carried out using 100μM DDG. 

Next, the effect of 100 μM DDG treatment in root development and bacterial 

growth was assessed.  Root length and architecture (including root hair 

formation) and bacterial growth in the presence of 100 μM DDG were studied.  

No significant difference was seen in primary root length between control plants 

(growing in the presence of water) and plants treated with DDG (Figure 4.2). As 

for root hairs, root hair length, width and quantity were quantified in control plants 

and in plants treated with DDG for either 24 hours or 5 days. No significant 

changes in root hair phenotype between control conditions and plants treated 

with 100 μM DDG were seen for both treatments (Figure 4.3). 
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Lateral roots number and lateral root density were also measured. After 5 days 

of continuous DDG treatment, lateral roots density was increased but not 

significant change was seen after 24h of treatment (Figure 4.4).  

Regarding DDG effect on bacterial growth, a growth curve was performed by 

measuring the optical density of bacterial cultures growing in the presence of 100 

μM DDG and water (control) every 2 hours for 60 hours until stationary phase 

was reached (Figure 4.5). 100 mM MgCl2 was used as a positive control for 

inhibition since it is known that at that particular concentration it strongly inhibits 

rhizobia growth (Botsford, 1984). Bacterial media with water (the solute for DDG), 

was used as a negative control. Bacterial cultures growing in the presence of 

MgCl2 presented growth inhibition, never reaching the exponential growth phase 

(Figure 4.5). On the other hand, bacteria growing in the presence of 100 μM DDG 

did present a very similar growth curve to bacteria growing in the presence of 

water, suggesting that the chemical is not affecting bacterial growth kinetics.   

In addition, the infectability of rhizobia on plants grown on the presence of 100 

μM DDG was assessed by using the spot inoculating method. Roots were grown 

in control and 100 μM DDG containing media and percentage of nodulating 

plants (percentage of plants showing nodules 7 dpi in relation to the total number 

of plants) was calculated (Table 4.1). Percentage of infected nodules was also 

measured by calculating the number of colonized nodules (7 days post 

inoculation roots were fixed and stained to localise lacZ expressing bacteria 

within nodules and nodule primordia) in relation to the total number of nodules. 

The results suggest that there is no significant difference in either the percentage 

of nodulating plants or of infected nodules between control and DDG treated 

plants indicating no effect of DDG in either the nodulation capability of the plant 

(Table 4.1) or the colonization capability of the rhizobia (Table 4.2). 

Infectability, or the rhizobia’s capacity for infection, was also assessed by 

growing rhizobia in the presence of 100 μM DDG and using this culture to spot 

inoculate Medicago roots. In parallel, control experiments were carried out using 

a bacterial culture with no added DDG in the growth media and plants growing 

in plant media containing DDG. As before, the percentage of nodulating plants 

was calculated and found not significantly different between these conditions, 
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suggesting that the infectability of the bacteria is unaffected in the presence of 

DDG (Table 4.3).  

 

 

Figure 4.1 2- Deoxy-D Glucose treatment affects callose deposition in M. 

truncatula roots. Callose immunolocalisation in longitudinal sections of M. 

truncatula 5 day-old root growing in the presence of water (control) or 100 

μM DDG for 24h. Callose was localised using monoclonal antibodies and 

detected with an appropriate Alexa-488nm conjugated secondary antibody. 

Fluorescence quantification of callose was performed by calculating the 

integrated density using ImageJ for each image in at least 3 biological 

repetitions per condition. Fluorescence was quantified in a region of interest 

of approximately 100μm2. A Student’s t-test was performed, different letters 

indicate significant difference (p<0.001). 

 



Chapter 4 

 

101 

 

 

 

Figure 4.2- Effect of DDG treatment in Medicago truncatula root length. 

5 days-old M. truncatula roots treated with water (control) or with 100 μM 

DDG (24 hours or 5 days treatment) were measured. A Student’s t-test was 

performed, no significant differences were seen (p>0.05) (N=30). 
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Figure 4.3- DDG does not seem to affect root hair development in M. 

truncatula. A-C Root hairs appear in the infection zone of M. truncatula 

roots (zone of the root were root hairs start to emerge, around 1-3 cm above 

the root tip). 5 days-old roots were treated with water (control-A) or with 

DDG for either 24 hours(B) or 5 days(C) and the infection zone was 

pictured. Root hairs length (D) and width (E) were measured in at least 3 

roots per condition and at least 8 root hairs per root using ImageJ. Control 

picture (A) shows a root growing in the presence of water for 24 hours. A 

Student’s t-test was performed, no significant differences were seen 

(p>0.05). 
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Figure 4.4- Continuous treatment with DDG affects the number of emerged 

lateral root in M. truncatula. 7 days-old plants were treated with either 

water (control) or with 100 μM DDG for 24h or for 5 days. The number of 

emerged lateral roots were counted and divided by the total root length to 

determine lateral root density. An increase in emerged lateral root density 

was observed after treatment with DDG for 5 days compared to control 

conditions (water treated roots) and to 24 hours of treatment. A Student’s t-

test was performed, different letters indicate significant differences 

(p<0.05). 
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Figure 4.5- DDG does not affect rhizobia growth. A growth curve for S. meliloti 

pXLGD4 LacZ was performed by measuring optical density (OD600) every 

two hours until cultures reached stationary phase (plateau, from hour 54). 

Cultures were grown in TY broth 100 mM MgCl2 as a control for growth 

inhibition, with water as a negative control, and with 100μM DDG.  TY media 

was used to measure background absorbance. OD600 readings were taken 

in a set of triplicate cultures to calculate the standard deviation. Bacteria 

growth (LogOD600 values) was not significantly different in media 

supplemented with DDG or with water. Growth was inhibited in 100 mM 

MgCl2. Error bars show standard deviation. 
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Table 4.1- DDG treatment does not affect the percentage of nodulating 

plants. M. truncatula plants growing in either water (control) or 100μM DDG for 

24 hours or 5 days were inoculated with rhizobia and number of plants showing 

one or more nodules 5 days after infection in relation to the total number of plants 

was used to calculate the percentage of nodulating plants. A Student’s t-test was 

performed to the means with no significant differences seen (p>0.05). 

Conditions 
Percentage of nodulating 

plants 

Control (continuous water) 85.5% 

24 h DDG 97.5% 

5 days DDG 95% 

 

Table 4.2- DDG treatment does not affect the percentage of colonised 

nodules. M. truncatula plants treated either with water (control) or with 100 μM 

DDG for either 24 hours prior inoculation with S. meliloti expressing the β-

galactosidase protein or 5 days concomitant to the inoculation process   7 days 

post inoculation roots were fixed and stained to localise bacteria within nodules 

and nodule primordia. The percentage is calculated dividing blue nodules by a 

total number of nodule per plant. Student’s t-test was performed to the means 

with no significant differences seen (p>0.05). 

Conditions 
Percentage of colonised 

nodules 

Control (continuous water) 79.2% 

24 h DDG 69.1% 

5 days DDG 73.3% 
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Table 4.3- Infectability of rhizobia is not affected by DDG. Plants growing in 

control conditions (water) and growing in the presence of 100 μM DDG were 

spot inoculated with either rhizobia growing in Minimal Media (MM) 

supplemented with water or DDG to a final concentration of 100 μM. The 

number of plants growing a nodule in the inoculated spot was divided by 

the total number of plants inoculated and this referred as percentage of 

nodulating plants. A Student’s t-test was performed to the means with no 

significant differences seen (p>0.05). 

Conditions 
Percentage of nodulating 

plants 

Plants grown in control media 

and inoculated with bacteria 

grown in MM media. 

78% 

Plants grown in DDG and 

inoculated with bacteria 

grown in MM media 

75% 

Plants inoculated with 

bacteria grown in DDG 

supplemented MM media 

79% 

4.2.1.2 2-Deoxy-D-Glucose affects nodulation and rhizobial infection in 

both nitrate depleted and sufficient conditions  

Plants pre-treated with 100 μM DDG for 24h prior to inoculation and plants 

growing in the presence of 100 μM DDG for 5 days were inoculated with rhizobia 

expressing the β-galactosidase gene (S. meliloti strain 1021 pXLGD4 lacZ). 

Roots were stained to reveal infection sites, nodule primordia and nodules which 

were counted in at least 20 plants per condition. The number of nodules 

(including nodule primordia and mature nodules) and infection threads (including 

infection threads and infection pockets) divided by the root length was used to 

calculate the density of events (Figure 4.6). Our results indicate a significant 

increase in infection thread and nodule density in DDG-treated plants in both 

conditions, pre-treatment and with constant exposure to DDG (Figure 4.6). 

Infection threads and frequency of colonized nodules in plants treated with DDG 

were similar to control plants grown in the presence of water (Figure 4.7).  Roots 

were fixed and stained at the same time point post inoculation (7 dpi in this case) 

but notice that the extent to which the colonization of the nodule has occurred is 

different between control and DDG treated plants (Figure 4.7). It is difficult to 
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discern if these differences relay in a true phenotype (late colonization, for 

example) or if this is just the case of a slight older nodule primordia (control) 

compared to the DDG treated primordia. In any case, for the calculation of 

percentage of colonized nodules, all nodules, regardless of age or extent of 

colonization that presented blue staining were considered as ‘colonized’. 

 

 

 

 

Figure 4.6- DDG treatment affects the density of nodules and infection 

threads in M. truncatula roots inoculated with rhizobia. 100 μM DDG 

was applied either 24 hours prior inoculation or 5 days concomitant with the 

inoculation and infection process. Control plants were treated with water. 

Both, infection thread and nodule density were calculated by counting the 

number of events per cm of root length. Significant differences in 

comparison to control were detected in nodule density and infection thread 

density in both DDG treatments. A Student’s t-test was performed, different 

letters indicate significant differences (p<0.01). 
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Figure 4.7 Examples of nodule primordia and infection threads (IT) in wild-

type M. truncatula treated with 100 μM DDG for 5 days or water 

(control) (A) 5 days old Medicago roots were grown in water and inoculated 

with rhizobia expressing lacZ. Infection threads (IT) are marked with a red 

arrow and nodule primordia delimited by red discontinuous lines. (B) 5 days 

old Medicago roots were grown in the presence of 100 μM DDG 

concomitantly to inoculation with lacZ expressing rhizobia. IT are marked 

with a red arrow and nodule primordia delimited by red discontinuous lines. 

Roots were fixed and stained at the same time point post inoculation (7 dpi 

in this case) but notice that the extent to which the colonization of the nodule 

has occurred is different between these particular control and DDG treated 

plants.  

 

Nodules are not efficiently formed in M. truncatula plants growing in the presence 

of 2 mM or 5 mM nitrate 7 dpi (Chapter 3- figure 3.3)  but callose levels resembled 

non-nitrate conditions (lower at 24h after rhizobia inoculation) (Chapter 3-figure 

3.5 and figure 3.6). DDG affects infection and nodulation in M. truncatula (Figure 

4.6), thus its effects in nitrate conditions were evaluated. Plants were grown in 
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full nitrate and no-nitrate conditions for 5 days prior DDG application 24 hours 

prior inoculation or exposed for 5 days concomitant with rhizobia. Interestingly, 

plants treated with DDG appear to produce more infection threads than the 

untreated plants. Remarkably, DDG treatment in nitrate conditions was able to 

restore infection threads and nodule density to the same levels as untreated 

plants in no nitrate conditions (Figure 4.8). These results suggest that changes 

in callose levels prior infection might compensate for the inhibitory effect of nitrate 

in nodule formation in M. truncatula.  
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Figure 4.8- DDG treatment can recover infection and nodulation phenotype 

in nitrate sufficient conditions. M. truncatula plants were grown in FP 

media supplemented with potassium nitrate (0, 2mM and 5 mM final 

concentration) for 5 days. Plants were treated with 100μM DDG either for 

24 h prior inoculation or for 5 days concomitant with infection. Control plants 

were grown in FP media (0, 2mM and 5mM nitrate) and treated with water 

as a control. 5 days post infection plants were stained to localise infection 

threads (IT), nodules and nodule primordia. (A) IT density (IT and infection 

pockets) in plants inoculated while growing in nitrate sufficient conditions 

and treated with 100 μM DDG showed no significant difference to the 

control plants growing in no nitrate media and treated with water. (B) 

Nodules (primordia and mature nodules) density was not significantly 

different in control and nitrate condition (both with pre-treatment and 

concomitant exposure to DDG). A Student’s t-test was performed, different 

letters refer to significant differences (p<0.01). 
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4.2.2 Ectopic expression of a plasmodesmata-located callose 

degrading enzyme affects infection and nodulation  

4.2.2.1 Ectopic expression of MtBG2 affects the number of nodules and 

infection threads 

After demonstrating in previous chapters of this thesis that MtBG2 has callose 

degrading activity, and to further support the idea that callose plays a role in the 

establishment of symbiotic interactions, the M. truncatula gene was 

overexpressed in transgenic roots using a constitutive promoter and infection 

and nodulation phenotypes were studied.  

M. truncatula roots transformed with a construct with MtBG2 driven by the 

Ubiquitin promoter (pUb-MtBG2-mcherry) were inoculated with a saturated 

solution of S. meliloti (expressing LacZ) and stained to identify infection sites and 

nodule primordia 7 dpi. As control of transformation an empty backbone vector 

was used. Number of infection threads and nodules was higher in M. truncatula 

transgenic plants overexpressing MtBG2 in comparison to transgenic plants 

expressing the empty vector as a control. Percentage of infected nodules was 

also calculated by counting blue (rhizobia containing) nodules in relation to the 

total number of nodules per plant (Table 4.4).  

To assess the effect of constitutive MtBG2 expression in root and nodule 

development, root length and the general aspect of composite plants were 

recorded. An average of 27 independent roots from composite plants were 

measured with no significant difference among control (empty vector transgenic) 

and MtBG2 overexpressing plants (Figure 4.10). No obvious developmental 

abnormality was seen, apart from the higher number of nodules in these 

composite plants (Figure 4.11).  
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Figure 4.9- M. truncatula transgenic roots constitutively expressing MtBG2 

show higher density of infection thread and nodule primordia compared 

to control roots expressing an empty vector. Roots were inoculated with 

S. meliloti expressing the β-galactosidase gene. 7 days post inoculation roots 

were stained to localise infection sites and nodule primordia. Roots expressing 

MtBG2-mcherry showed a higher number of both infection threads and nodule 

primordia compared to the control plants expressing an empty vector. A 

Student’s t-test was performed, different letters refer to significant differences 

(p<0.05). 
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Table 4.4- Percentage of infected nodules in composite plants expressing 

pUb-MtBG2-mcherry construct. M. truncatula roots were infected with 

Sinorhizobium meliloti expressing lacZ. 7 days post inoculation, plants were 

stained to localise bacteria within nodules and nodule primordia. The percentage 

of blue nodules in relation to the total number of nodules per plant was 

calculated. A Student’s t-test was performed to the means with no significant 

differences seen (p>0.05). 

Composite plants expressing vector 
Percentage of infected 

nodules 

Control (empty backbone vector) 78% 

pUb- MtBG2-mcherry 81% 

 

 

 

Figure 4.10- Root length is not affected by the expression of pUb-MtBG2-

mcherry. M. truncatula transgenic roots transformed with the pUb- MtBG2-

mcherry or an empty vector (control) were grown in plates and root length 

of the composite plants measured. A Student’s t-test was performed, no 

significant differences were seen (p>0.05). (N=25). 
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Figure 4.11- M. truncatula composite roots 14 days post inoculation. 

Composite plants were grown in FP media and inoculated with S. meliloti. 

Red triangles mark nodules. (A) M. truncatula transgenic roots expressing 

an empty vector as a control. (B) M. truncatula transgenic roots 

constitutively expressing pUb-MtBG2-mcherry 
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4.2.2.2 Ectopic expression of MtBG2 is sufficient to offset the inhibition 

of nodulation by nitrate 

M. truncatula transgenic roots expressing either an empty vector as a control or 

pUb-MtBG2-mcherry were grown in the presence of 5 mM nitrate for 9 days prior 

inoculation with rhizobia expressing the galactosidase gene. Roots were stained 

7 dpi to localise infection sites and nodule primordia. Nitrate did not affect root 

length in either of the transgenic roots (Figure 4.12). Roots expressing the pUb-

MtBG2-mcherry showed a higher number of nodules at 7 dpi in both nitrate and 

no-nitrate conditions, when compared to transgenic roots expressing an empty 

backbone vector (Figure 4.13). Infection success was very similar in plants 

expressing pUb-MtBG2-mcherry grown in nitrate-full conditions and plants 

infected in no nitrate (Figure 4.13-A). Nodule formation appears reduced by 

nitrate in both transgenic roots (expressing either pUb-MtBG2-mcherry or empty 

vector) (Figure 4.13-B) in comparison to plants growing and inoculated under no 

nitrate conditions, but roots overexpressing MtBG2 in nitrate conditions showed 

similar nodule density as control plants in nitrate-depleted media (Figure 4.13-

B). Given that number of nodules was already higher in plants overexpressing 

MtBG2 compared to control plants expressing an empty vector, the ‘inhibition 

rate’ was calculated by dividing the number of events (both infection threads and 

nodules) in no nitrate conditions by the number in nitrate (5mM) conditions. By 

these means, it was shown that the inhibitory effect of nitrate was two times 

stronger in plants overexpressing MtBG2 compared to plants expressing an 

empty vector as a control (Table 4.5). 

The general aspect of composite plants was similar among control and plants 

expressing pUb-MtBG2-mcherry construct 14 dpi grown in full nitrate conditions 

(Figure 4.14). Percentage of infected nodules in nitrate-replete media was also 

calculated but not significant difference was observed (Table 4.6). 
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Figure 4.12- Nitrate does not affect root length in M. roots expressing pUb-

MtBG2-mcherry. Roots expressing either an empty vector as a control or 

pUb-MtBG2-mcherry were measured in 5mM nitrate or no nitrate 

conditions. A Student’s t-test was performed, no significant differences 

were seen (p>0.05). (N=35) 
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Figure 4.13- M. truncatula roots constitutively expressing MtBG2 show 

inhibition of nodulation and in infection thread in high nitrate 

conditions. Composite plants expressing an empty vector (control) or pUb-

MtBG2-mcherry were grown in media supplemented with no nitrate or 5mM 

nitrate and inoculated with S. meliloti expressing the β-galactosidase gene. 

7 days post inoculation roots were stained to localise infection sites and 

nodule primordia. (A) The density of infection threads (IT) is affected by 

nitrogen availability in the growing media in both control roots and in roots 

expressing pUb-MtBG2-mcherry. Infection threads density in plants 

overexpressing MtBG2 growing in high nitrate conditions was similar to 

control (empty vector) plants growing under no nitrate. (B) The density of 

nodules (primordia and young nodules) is affected by nitrogen availability 

in the growing media in both control roots and roots expressing pUb-

MtBG2-mcherry. Nodule density in plants overexpressing MtBG2 growing 

in high nitrate conditions was similar to control (empty vector) plants 

growing under no nitrate. A Student’s t-test was performed, different letters 

refer to significant differences (p<0.05). 
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Table 4.5-Effect of nitrate in infection and nodulation in control and 

overexpressing MtBG2 plants. The ‘inhibition rate’ was calculated by 

dividing the number of events (infection threads and nodule) in no nitrate 

conditions by the number of events in 5mM nitrate conditions.  

Composite plant 

expressing vector 

Infection threads 

inhibition rate 

Nodules inhibition 

rate 

Control (empty 

backbone vector) 
2.2 1.5 

pUb-MtBg2-mcherry 5.4 3 

 

Table 4.6- Percentage of infected nodules in composite plants expressing 

pUb-MtBG2-mcherry construct and growing in 5mM potassium 

nitrate. M. truncatula roots were infected with S. meliloti expressing the 

galactosidase gene. 7 days post inoculation plants were stained to localise 

bacteria within nodules and nodule primordia. The percentage of blue 

nodules in relation to the total number of nodules per plant was calculated. 

A Student’s t-test was performed to the means with no significant 

differences seen (p>0.05). 

Composite plant expressing 

vector 

Percentage of infected 

nodules 

Control (empty backbone vector) 77% 

pUb- MtBG2-mcherry 79% 
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Figure 4.14- M. truncatula transgenic roots 14 days post inoculation in 

nitrate conditions. Composite plants were grown in FP media 

supplemented with 1 μM of AVG and 5mM potassium nitrate and inoculated 

with S. meliloti. Red triangles mark nodules. (A) M. truncatula roots 

expressing the empty vector as a control. (B) M. truncatula roots 

constitutively expressing pUb-MtBG2-mcherry. 
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MtBG2 ectopic expression reduces callose levels in no nitrate conditions in 

comparison to control (root expressing an empty vector) (Chapter 3, Figure 3.7). 

To determine if the effect in nodulation and infection seen in nitrate conditions 

was linked to a further reduction in callose levels, callose immunolocalisation 

was performed. Longitudinal section of plants grown in no nitrate (0 mM) or 

nitrate (5mM) expressing pUb-MtBG2-mcherry 24 hpi with mock (water) or 

rhizobia cultures were used for these experiments. Just as in control plants, there 

was not a significant difference in callose labelling between un-inoculated plants 

expressing pUb-MtBG2-mcherry and growing in no nitrate and nitrate media 

(Figure 4.15). Furthermore, and contrarily to what has been seen in control 

plants, no further downregulation in callose levels after inoculation was seen, 

neither in nitrate-depleted conditions nor in full nitrate conditions (Figure 4.15).  
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Figure 4.15- Callose remains the same in M. truncatula transgenic roots 

expressing pUb-MtBG2-mcherry inoculated with mock or rhizobia 

cultures in no nitrate and nitrate sufficient conditions. M. truncatula 

roots expressing pUb-MtBG2-mcherry and grown in 5mM nitrate or no 

nitrate media were either inoculated with water (mock) or with S. meliloti 

suspension (24 hpi). Callose immunolocalisation was performed 24 hours 

post inoculation (hpi) with monoclonal antibodies and the fluorescent signal 

detected after incubation with an Alexa-488 conjugated secondary 

antibody. Callose deposition was inferred by calculating the integrated 

density in ImageJ in at least 3 biological repetitions per condition. 

Fluorescence was quantified in a region of interest of approximately 

100μm2. A Student’s t-test was performed, no significant differences were 

seen (p>0.05). 

 

 

 

 

 

 

 

 



Chapter 4 

 

122 

 

4.3 Discussion 

4.3.1 The regulation of callose is probably required to control 

nodule number in both nitrate depleted and sufficient 

conditions  

In Chapter 3 of this thesis it was shown how callose is downregulated upon 

inoculation of M. truncatula roots with rhizobia and it was also reported the 

discovery of a novel M. truncatula callose-degrading enzyme, which expression 

appears up-regulated upon rhizobia inoculation. In this section it is presented 

that M. truncatula plants treated with the callose biosynthesis inhibitor 2-Deoxy-

D Glucose (DDG) showed an increase in the number of nodules and the number 

of infection sites. As far as it was seen, DDG treated plants were not 

phenotypically different from wild type, but the infection process was significantly 

more efficient. 24 hours of treatment prior to inoculation was sufficient to see an 

effect in the number of nodules and infection sites, strongly supporting our 

hypothesis that callose plays a role in the very early stages of infection, probably 

in the regulation of signalling.  

Moreover, M. truncatula transgenic roots ectopically expressing the newly 

identified plasmodesmata-located glucanase MtBG2 showed an increase in 

infection and nodule number. Medicago transgenic roots constitutively 

expressing MtBG2 presented a similar phenotype in terms of root length and 

general aspect of the composite plant to plants transformed with the empty vector 

as a control. Nodules and infection threads did not appear phenotypically 

different from wildtype and the percentage of infected nodules did not vary either. 

These results suggest that endosymbiotic colonization of the nodule is not 

affected in the composite plants, but instead there is an increase capacity to form 

these relations.  

M. truncatula plants expressing the viral movement protein (MP) of the Tobacco 

Mosaic Virus (TMV) under a constitutive promoter also showed increased 

number of nodules (Complainville et al., 2003). Tobamoviral MPs have been 

largely linked to plasmodesmata and changes in its connectivity (Ding et al., 

1992; Beachy and Heinlein, 2000; Amari et al., 2010; Yuan et al., 2016). MPs 
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are known to increase plasmodesmata aperture through, among other 

mechanisms, activation of β-1, 3-glucanases. In light of the results reported in 

this chapter, it can be proposed that changing callose levels and plasmodesmata 

connectivity using either the callose synthase inhibitor DDG or the 

overexpression of a M. truncatula glucanase, before rhizobia inoculation is 

sufficient to improve the success of infection and to manipulate nodule number. 

Further studies are required to discern whether nitrogenase activity remains 

unaltered in the composite plants, or if an increase in the number of nodules 

improves nitrogen assimilation.  

Constitutive MtBG2 expression reduces callose levels in cell walls in comparison 

to control transgenic expressing an empty vector (Chapter 3, Figure 3.17). 

Analysis of inoculated roots indicates that transgenic roots ectopically expressing 

MtBG2 did not regulate callose further upon inoculation with rhizobia. This might 

suggest that callose regulation upon inoculation only occurs when callose levels 

at the cell wall are above a certain threshold or that the technique used is not 

sensitive enough to detect these differences. 

The number of nodules seen in plants treated with DDG or transgenic roots 

expressing the pUb- MtBG2-mcherry construct, although significantly higher 

compared to plants untreated (growing in water) or transformed with an empty 

vector, are not close to those found in supernodulation mutants (Schnabel et al., 

2005; Lim et al., 2010; Schnabel et al., 2010). Autoregulation of nodulation (AON) 

is a tightly controlled process by which the plant regulates the number of nodules 

that will form depending on their nutritional status. Environmental and genetics 

cues such as nitrate concentration in the soil, hormonal signals and number of 

infection threads and nodule primordia play a role in regulating the number of 

final nodules (Ferguson et al., 2010; Kassaw et al., 2015). Our results suggest 

that callose regulation might contribute to some of the steps of the non-essential 

AON pathway thus, different from wildtype, plants impaired in callose regulation 

might be able to overcome to some extent the shoot-derived signals and not 

trigger a negative regulatory feedback, leading to a higher number of nodules 

but not to supernodulating mutant phenotypes.  
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Alternatively, the number of nodules and infection threads reported in plants 

treated with DDG and overexpressing MtBG2 plants are more similar to plants 

overexpressing the ENOD40 gene (reviewed in more detailed in section 4.3.2) 

(Charon et al., 1999) and in the Lotus japonicus mutant ein1-2 (Breakspear et 

al., 2014), involved in ethylene signalling. Both cases have in common the role 

of ethylene and potentially cytokinins (Charon et al., 1999; Roberts and Oparka, 

2003; Benitez-Alfonso et al., 2010). It is possible that modifying callose either by 

DDG or overexpressing a callose degrading enzyme is affecting the balance of 

hormones that controls number of nodules, affecting the total number of nodules 

in plants with altered callose deposition pattern.   

The experiments presented in this chapter showed that plants with reduced 

callose levels, either through chemical or genetics approaches, did not respond 

to nitrate availability similarly to wild-type plants in terms of nodulation. MtBG2 

overexpressing plants showed a higher N-inhibition rate than control plants in 

the same conditions (Table 4.5). Although the N-inhibition rate is higher in these 

plants the total number of nodules 7 dpi and after treatment is still higher.  The 

effect of callose regulation described above might also be linked to nitrate 

perception which also contributes to control of nodulation, explaining why plants 

overexpressing MtBG2show a higher number of nodule even in the presence of 

higher concentration of nitrate in the media. It might also be possible that the 

effect seen is due to the fact that overexpressing MtBG2 plants are already 

developing more nodules, hence the total number of nodules after nitrate 

inhibition would also be higher. Proportionally, the overexpressor was more 

sensitive to nitrate but, in terms of absolute nodule number, MtBG2 

overexpression plants can tolerate higher levels of nitrate. However, it is also 

important to remember that inhibition of nodulation might not be acting in a linear 

and proportional way. A more thorough analysis of the nodulation process under 

high nitrate conditions would reveal if plants overexpressing MtBG2 present any 

kind of insensitivity to nitrate. For example, studying growth rates of the nodules 

(do they grow faster?), size of nodule primordia or arrested infection threads 

could help determine to what extent is callose downregulation affecting control 

of nodulation by nitrate.  
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Additionally, all experiments exploring the effect of nitrate in nodulation were 

done in plates, it is therefore possible that this phenotype is not maintained in 

plants growing in soil. Furthermore, nitrate was applied from the germination 

stage and throughout the infection and nodulation processes, hence the effect of 

applied nitrate in the media of plants at later stages of nodulation and infection 

was not assessed. Future experiments in soil and/or applying nitrate treatments 

in different stages of the symbiotic process would enrich our understanding of 

the role of callose in this response. 

Nitrate availability inhibits nodule growth and nitrogenase activity and also the 

formation of new infection sites and nodules (Streeter, 1985a, b). Several 

authors have identified legumes mutants that showed both a supernodulation 

phenotype and a tolerance to nitrate availability. For example, har1, nark, sym29 

and sunn mutants are able to nodulate in the presence of high nitrate in the 

environment (Carroll et al., 1985a; Sagan and Duc, 1996; Sagan and Gresshoff, 

1996; Wopereis et al., 2000; Penmetsa et al., 2003; Oka-Kira et al., 2005; 

Schnabel et al., 2005; Magori et al., 2009). These results suggest that nitrate 

tolerance and the AON in legumes might share some of the regulatory signals or 

steps in the signalling pathway in M. truncatula. On the other hand, the nitrate-

tolerant phenotype in these mutants might also be a secondary phenotype. For 

example, nitrate might negatively regulate the transport of auxin or other signals 

needed for the control of nodulation, ultimately affecting the number of nodules 

that are generated. Auxin has also been identified as an important mediator of 

nitrate effect on root branching in Arabidopsis (Zhang et al., 1999). Interestingly, 

accumulation of auxin in the infection zone of M. truncatula roots in response to 

rhizobia 24 hpi occurred in both the absence or in the presence of nitrate (van 

Noorden et al., 2016). Although nitrate does not prevent auxin accumulation, at 

least at this time point, these plants failed to form a defined auxin maximum in 

the cortex, which was seen in plants grown in no-nitrate conditions. Cortical cell 

division could not be seen either (van Noorden et al., 2016). It is still not known 

if the supernodulating mutants that present a nitrate-insensitive phenotype allow 

auxin to be accumulated at the nodule primordia site when grown in nitrate. It 

would alos be interesting to characterise the auxin accumulation of plants grown 

in nitrate and treated with DDG or overexpressing MtBG2. Future experiments 
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addressing this will shed some light into the mechanisms behind control of 

nodulation by nitrate in these plants.  

Nitrate is also known to affect levels of cytokinin, an essential factor for nodule 

formation in legumes (Caba et al., 2000; Mathesius et al., 2000). The 

downregulation of callose deposition might affect cytokinin levels and/or 

movement, affecting nodule formation. The role for the symplastic pathway in the 

transport of cytokinins through the phloem has been proposed in Arabidopsis 

plants. An Arabidopsis line with an over-accumulation of callose in phloem cells 

was loaded with radioactive cytokinin by the hypocotyl, leading to a 4-fold 

reduction of cytokinin concentration in the root meristem compared to wild type 

treated in the same conditions (Absmanner et al., 2013). Further studies 

analysing whether the accumulation of hormones, such as auxin and/or 

cytokinin, is differently regulated when callose is depleted could indicate a link 

with the increase in nodulation observed in full nitrate conditions.  

  

4.3.2 The increase in infection thread formation in callose depleted 

roots suggests a positive feedback linking infection and 

nodulation 

Autoregulation of nodulation does not only involve the regulation of the number 

of nodules, but also infection threads that will develop and reach the cortex 

(Mortier et al., 2012). Plants overexpressing the callose degrading enzyme 

MtBG2 did not only show a higher number of nodules, but the number of infection 

threads that developed from rhizobia inoculation was higher.  

Similar effects were seen in M. truncatula transgenic plants overexpressing the 

early nodulin gene ENOD40. A higher number of both infection threads and 

nodules were seen. Nodules also developed faster, since nodule primordia 

appeared bigger at the same developmental stage compared to control plants 

(Charon et al., 1999). Interestingly, plants overexpressing ENOD40 showed a 

higher number of infection threads and nodules at 18 dpi, but the numbers 

reached wild type levels at 30 dpi (Charon et al., 1999). Infection and nodulation 

were never assessed after 14 dpi in plants overexpressing MtBG2, hence 

whether the increase in the number of infection thread and nodules seen at that 
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time point is maintained or it will eventually stabilise is not known. The 

developmental stage of nodule primordia was not examined, so it would also be 

interesting to assess whether nodule primordia grow faster or the infection rate 

(infection events/time) is affected in these plants.  

Several other mutants affected in the number of nodules have been 

characterised also have changes in the number of infection threads. For 

example, mutants in the SUNN receptor also show a higher number of infection 

threads compared to wild type plants (Parniske, 2004). On the other hand, the 

supernodulating mutant astray in L. japonicus shows a higher number of nodules 

but the number of infection threads remained unaltered (Nishimura et al., 2002).  

Based on our results we can propose two hypotheses: 1) degradation of callose 

might trigger a signalling pathway that improves root hair infection success, 

leading to a higher number of nodule primordia and mature nodules. Additionally, 

a degradation of callose in the cell wall could lead to a weakened root hair, 

making easier for the rhizobia to enter the epidermis. Alternatively, 2) the 

negative feedback that occurs in wild type where nodule primordia inhibit the 

formation of new infection threads (Reid et al., 2011b; Kassaw et al., 2015) might 

be compromised in plants with modified callose patterns, explaining why it is also 

seen an increased number of infection threads.  

In order to dissect among these two hypotheses, infection and nodulation can be 

characterised in M. truncatula mutants affected in the cell wall to determine if it 

plays a role in the infection success. Alternatively, the use of a mutant that is 

able to undergo infection but impaired in the formation of nodules would be useful 

to determine if the higher number of infection threads is an effect of a 

compromised negative feedback from the nodule primordia or an actual 

phenotype from the downregulation of callose.  

 



Chapter 5 

 

128 

 

Chapter 5 

  



Chapter 5 

 

129 

 

Chapter 5 – Using symbiotic promoters to determine the 

temporal and spatial requirements for callose regulation during 

nodulation 

5.1 Summary 

Reducing callose through the constitutive expression of a M. truncatula β-1, 3-

glucanase or via treatment with the callose synthase inhibitor DDG leads to a 

significant increase in infection threads and nodule primordia (Chapter 4). These 

two approaches target general callose deposition throughout the root but do not 

allow to temporarily or spatially control the modification of the polysaccharide. 

The role of Arabidopsis β-1, 3-glucanases in the regulation of callose and 

plasmodesmata during different developmental processes has been reported in 

the past years (Neale et al., 1990; Morohashi and Matsushima, 2000; Benitez-

Alfonso et al., 2013; Maule et al., 2013). In this chapter, an heterologous β-1, 3-

glucanase (identified in Arabidopsis and named PdBG1 (Benitez-Alfonso et al., 

2013) was expressed under infection and nodulation-specific promoters. These 

promoters in the early stages of symbiosis are regulated at different stages of 

the infection and nodulation process and in different cell layers. The activity of 

these promoters is mainly epidermal and infection-related for MtERN1 and 

MtNFB, whereas MtNIN is activated both in the epidermal and cortical cell layer 

to regulate during infection and nodule organogenesis processes (Andriankaja 

et al., 2007; Marsh et al., 2007; Plet et al., 2011; Vernie et al., 2015). The role of 

these genes in symbiotic colonization is described in the Introduction (Chapter 

1, sections 1.2.2.1 and 1.2.2.2). The aim was to ectopically modify callose at 

different infection and nodulation stages.  

In sections 5.2.2 and 5.2.3 the results of studying nodulation and infection 

phenotypes in these transgenic lines are presented. In brief, nodulation and 

infection improved in all the transgenic plants although with different efficiency 

levels.  

In the discussion section, these results are integrated with those obtained in 

Chapter 4 and with current literature in the regulation of the cell wall architecture 
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during plant-microbes interactions. Suggestions for future work are also included 

in this section. 
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5.2 Results 

5.2.1 PDBG1, a bona-fide β-1,3-glucanase as a tool to reduce 

plasmodesmata-associated callose in M. truncatula  

Callose degrading activity for the plasmodesmata located β-1, 3-glucanase 

PdBG1, involved in secondary root organogenesis (lateral root formation) in A. 

thaliana, has been demonstrated (Benitez-Alfonso et al., 2013). The protein 

displays a high degree of similarity (67%) and the same conserved domain as 

MtBG2, and was selected here as a tool to ectopically modify plasmodesmata-

associated callose in M. truncatula.  

To verify the localisation of PdBG1 in M. truncatula, a fusion version of the protein 

with eGFP was created and ectopically expressed under the infection specific 

promoter pMtERN1 in M. truncatula roots (Figure 5.1). Co-localisation with 

callose deposits, revealed with aniline blue staining (as described in Materials 

and Methods), showed a punctate pattern in the cell periphery resembling 

plasmodesmata localisation. 
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Figure 5.1- Arabidopsis thaliana β-1, 3-glucanase PdBG1 localises in the 

cell periphery in a pattern that resembles plasmodesmata sites in M. 

truncatula roots. (A) Confocal microscopy of roots cortical cells expressing the 

pMtERN1-AtPdBG1-eGFP construct 24 hours post inoculation with rhizobia 

shows PdBG1 (green channel) localization in the cell periphery (arrows). (B) 

Callose revealed by aniline blue staining (cyan channel) in the same region of 

the root shows similar localization pattern (C) Green and cyan channel pictures 

superimposed revealed co-localisation of PdBG1 and callose (arrows) 

suggesting plasmodesmata targeting.  

 

In order to determine PdBG1 glucanase activity in M. truncatula roots, PdBG1 

was expressed under the constitutive p35S promoter and callose 

immunolocalisation was carried out using roots expressing an empty vector as a 

control. Antibody signal was quantified to infer callose levels. A strong 

downregulation of callose deposition was seen in transgenic roots expressing 

the p35S-AtPdBG1 vector compared to control plants, suggesting that PdBG1 

function as a callose degrading enzyme in M. truncatula.  



Chapter 5 

 

133 

 

 

Figure 5.2- Arabidopsis PdBG1 displays callose degrading activity in M. 

truncatula. Immunolocalisation of callose revealed a down-regulation of the 

polysaccharide at the cell wall of M. truncatula over-expressing Arabidopsis 

PdBG1 (A-C) compared to control plants expressing an empty vector (D-F) 

Callose was detected using a monoclonal anti-callose antibody and Alexa-488 

(green) conjugated secondary antibody (A and C). Bright field (B and E) and 

composite image are shown to help section localisation (C and F).  (G) 

Fluorescence quantification of callose was performed by calculating the 

integrated density using ImageJ for each image in at least 3 biological repetitions 

per conditions. Fluorescence was quantified in a region of interest of 

approximately 100μm2. Symbols in A to F refer to xylem vessel (x), pericycle (p), 

endodermis (e), and cortex (c).A Student’s t-test was performed, different letters 

indicate significant differences (p<0.001). 
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5.2.2 Expressing PdBG1 under infection and nodulation promoters 

leads to a higher number of nodules 

To discern if temporal and spatial regulation of callose affect Medicago-rhizobia 

interaction, transgenic plants expressing the Arabidopsis glucanase PdBG1 

under MtERN1, MtNIN and MtNFB promoters were generated using Goldengate 

technology. These were inoculated with mock (water) or rhizobia cultures and 

nodules were identified and counted 14 dpi as described in Material and Methods 

(Section 2.1.3).Roots carrying either the pMtERN1-AtPdBG1, pMtNIN-AtPdBG1 

or pMtNFB-AtPdBG1 constructs showed a significant increase in the number of 

nodules (Figure 5.3) in comparison to control roots transformed with and empty 

(backbone) vector. The results suggest that nodule organogenesis is improved 

by ectopic expression of PdBG1 with similar efficiency regardless of the 

promoter. Composite plants were divided into categories depending on the 

number of nodules in each plant. Most composite plants showed 4 or more 

nodules (Figure 5.4) but there is a clear increase in the (>80%) of pMtERN1-

AtPdBG1 transgenic plants that fall in this category in relation to control and other 

transgenic lines.  
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Figure 5.3- Ectopic expression of the Arabidopsis β-1, 3- glucanase 

PdBG1 improves nodulation. The total number of nodules was counted 

in M. truncatula roots expressing Arabidopsis PdBG1 under infection and 

nodulation- promoters (pMtERN1, pMtNFB and pMtNIN) 14 days post 

inoculation with S. meliloti and compared to transgenic carrying an empty 

vector (control). Only mature nodules were counted. A Student’s t-test was 

performed, different letters indicate significant differences (p<0.001). 
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Figure 5.4- The majority of M. truncatula plants show more than 4 nodules 

per plant.  The number of plants showing no nodules, 2 or fewer nodules, 4 or 

fewer nodules or more than 4 nodules in control (expressing an empty vector) 

and PdBG1 transgenic plants (expressing from either the MtERN1, MtNFB or 

MtNIN promoters) was counted 14 days post inoculation with rhizobia. The 

numbers are expressed in percentage (%) relative to the total number of plants. 

 

5.2.3 Roots expressing the pMtERN1-AtPdBG1 construct show a 

higher number of infection threads 

Transgenic roots expressing the pMtERN1-AtPdBG1 construct showed a higher 

percentage of plants forming more than 4 nodules despite this promoter being 

associated with infection. To more clearly dissect this phenotype, the formation 

of infection pockets and threads were evaluated after X-Gal staining of 

pMtERN1-AtPdBG1 roots 7 dpi (Figure 5.5). A higher density (number of events 

per cm of root length) in infection threads was observed in transformed roots 

when compared to control roots carrying the empty vector (Figure 5.5). At that 

specific time point and inoculation conditions, no differences were found in the 

nodule primordia density, contrasting with results obtained 14 days post 

inoculation (Figure 5.3).  
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The percentage of infected nodules in roots transformed with the vector 

pMtERN1-AtPdBG1 does not significantly differ from control conditions, 

suggesting a normal colonisation of the nodule (Table 5.1). 

 

Figure 5.5- PdBG1 expression in M. truncatula affects the number of 

infection threads. (A) Infection threads and infection pockets were counted 

together 7 days post inoculation with rhizobia expressing the LacZ gene. After 

X-gal staining, the total number of events was used to calculate density (total 

number of infection threads and infection pockets/cm of root). Differences were 

significant. A Student’s t-test was performed, different letters indicate significant 

difference (p<0.05). (B) Nodule primordia were counted in the same roots 7dpi. 

Only infected primordia (stained blue or uninfected primordia but with a clear 

infection thread above it) were counted. A Student’s t-test was performed, with 

no significant differences (p>0.05). 
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Table 5.1- Percentage of infected nodules in composite plants expressing 

pMtERN1-AtPdBG1 construct. M. truncatula roots were infected with S. meliloti 

expressing the β-galactosidase gene. 14 dpi plants were stained to localise 

bacteria within nodules and nodule primordia. The percentage of blue nodules in 

relation to the total number of nodules per plant was calculated. A Student’s t-

test was performed to the means with no significant differences seen (p>0.05). 

 

Composite plant 

expressing vector 

Percentage of 

infected nodules 

Control (backbone vector) 72.4% 

pMtERN1-AtPdBG1 77.8% 

 

 

5.2.4 Root phenotype, nodule development and colonisation are not 

affected in roots expressing PdBG1 

In order to discern if plants expressing AtPdBG1 showed defects in root 

development plant weight (both root and shoot), length, width, nodule maturity 

(assessed by pink colouration and size) and nodule colonisation were measured.   

No significant differences were seen in root development, morphology or weight 

compared to the control with the exception of composite plants expressing the 

pMtNIN-AtPdBG1 construct, that showed a higher root weight (Figure 5.6 and 

Figure 5.7). Nodule size and general appearance are normal in transgenic roots 

expressing AtPdBG1 (Figure 5.8), suggesting a normal function of the nodule. 

Inoculated plants were stained to reveal nodule primordia and infection threads 

(Figure 5.9). The general aspect of infection thread, pockets and root hairs 

appeared normal in plants expressing pMtERN1-AtPdBG1 (Figure 5.9).  
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Figure 5.6- Phenotype of Medicago transgenic roots expressing PdBG1 

under different promoters. (A) The general aspect of the root and shoot of M. 

truncatula 24 days post-transplant to the soil. (B) Root weight was measured for 

40 roots per transgenic. Only plants expressing pMtNIN- PdBG1 had a 

significantly higher root weight. A Student’s t-test was performed, different letters 

indicate significant differences (p<0.05). (C) Shoots were also weighed (N=40). 

No significant difference was found among the different transgenic.  
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Figure 5.7- M. truncatula shoots appear normal in PdBG1 transgenic. 

Pictures were taken of the general aspect of M. truncatula composite plants 

growing for 24 days in pots containing an equal mixture of sand and 

Terragreen. 
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Figure 5.8- Example of nodule architecture 14 days post inoculation in in 

M. truncatula control and roots expressing Arabidopsis PdBG1. Nodules 

could be seen growing in an alternate pattern (A), in clusters (B) or in isolation 

(C, D). All three types of nodule architecture were seen in composite plants 

expressing the four constructs indistinctly. (A) picture was taken in control (empty 

vector), (B) in roots expressing pMtERN1- AtPdbG1 construct, Individual young 

rounded-shaped nodules in roots expressing pMtNIN- AtPdBG1 (C) and 

pMtNFB- AtPdBG1 (D). 
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Figure 5.9- Example pictures of infection thread, infection pocket, nodule 

primordia and nodule in M. truncatula roots 14 days post inoculation with 

lacZ expressing rhizobia. (A) Infection pocket in Medicago transgenic roots 

expressing an empty vector as a control. (B) Older infected nodule in a control 

root expressing the empty vector. (C) Infection thread entering the epidermal cell 

layer in Medicago transgenic roots expressing pMtERN1-AtPdBG1. (D) Older 

infected nodule in a root expressing pMtERN1-AtPdBG1.  
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5.3 Discussion 

5.3.1 Ectopic degradation of callose in rhizobia infected epidermal 

tissues is sufficient to regulate nodulation  

Ectopic expression of callose degrading enzyme MtBG2 leads to changes in 

callose deposition in M. truncatula roots and these transgenic appear to develop 

more nodules and infection threads (Chapter 4).  

In this chapter, the Arabidopsis β-1,3-glucanase PdBG1 was used as a tool to 

establish the spatial and temporal profiles where callose degradation is required 

to control nodulation.  

Composite plants expressing PdBG1 under a constitutive promoter showed a 

plasmodesmata protein localisation and a reduction in callose deposition, which 

suggests that the protein remains active in the heterologous system. Intriguingly, 

all transgenic (expressing either the nodulation promoter pMtNIN, the infection 

pMtNFB or the infection and nodulation promoter pMtERN1) appeared normal in 

root and shoot development, despite research linking PdBG1 to changes in 

lateral root patterning. This is a good indication of the specificity of the promoters, 

which function mainly in symbiotic infection and nodulation.  

Among all the transgenic, roots expressing pMtERN1-AtPdBG1 showed the 

strongest effect on nodulation.  

ERN1 is a well-studied transcription factor required in early infection events and 

ERN1 expression is induced in the epidermis 1 to 3 hpi and during root hair 

curling (based on GUS-fusion proteins, RNAseq and Affymetrix arrays) 

(Middleton et al., 2007; Plet et al., 2011; Cerri et al., 2012; Larrainzar et al., 

2015). Later, as the nodule develops ERN1 expression appears in cortical cells 

(Cerri et al., 2012). Driven by the ERN1 promoter, it is expected that PdBG1 

expression would be upregulated from the first events involved in NF signalling 

and infection thread formation. Consistent with this expression profile, roots 

expressing PdBG1 under the pMtERN1 promoter showed more infection pockets 

and infection threads at 7 dpi than control plants transformed with the empty 

vector. The number of nodule primordia and young nodules at 7 dpi was, 

however, not affected in the transformed roots, in contradiction with the results 
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obtained at 14 dpi. In every experiment only infected primordia (blue after lacZ 

staining of the rhizobia) and non-infected primordia, but with a clear infection 

thread above the bump were counted. Very early nodule primordia might have 

been excluded with this method and this might be the cause why there is a 

difference at 14 dpi (where more primordia would be infected) but not at 7 dpi. 

Alternatively, this might be an indication of a possible role for the promoter at 

later stages of nodule development. A repetition of the experiment using a nodule 

primordia marker, such as the WD-repeat protein, CCS52A, that regulates 

endoreduplication of the cortical cells (Li et al., 2009) would help bypass this 

difficulty. Another possibility is that the primary response to PdBG1 expression 

in the ERN1 domain is an increase in the number of infection threads formed at 

an early time frame which indirectly affects the number of primordia at a later 

stage. Alternatively, and since ERN1 expression also appears in cortical cells, it 

is possible that the higher number of nodules is just a direct effect of the 

expression of PdBG1 in cortical cell layers. The expression of PdBG1 under 

epidermal/cortical specific promoters, such as pLeEXT1 and pCO2 (successfully 

used in M. truncatula) (Rival et al., 2012), could help characterising the possible 

tissue-specific role of the protein. 

Additionally, the high deviation of the nodule primordia density data set in plants 

expressing the pMtERN1-PdBG1 (Figure 5.5) might indicate that there is a 

strong expression difference between transgenic roots, with roots expressing the 

construct at higher levels developing more nodules. To discern if this is the case, 

RT-PCR could be performed in roots showing a number of nodules in both 

extremes of the data set and confirm if the number of nodules correlates with 

gene expression. Further experiments exploring the expression patterns of 

infection and nodulation genetic markers in the pMtERN1-PdBG1 transgenic 

lines, such as NIN, ENOD11 or ERN1 itself, could shed some light on which step 

of the process is primarily affected in these plants.  

Although significantly higher compared to control plants, infection thread density 

in pMtERN1-AtPdBG1 was not as high as in plants expressing the pUb-MtBG2-

mcherry vector. This might be due to differences in the expression patterns or in 

the strength of the promoters. MtBG2 driven by the strong ubiquitin promoter 

would affect callose generally around the root and at all times, while PdBG1 
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under the pMtERN1 promoter, will only be activated in the early stages of 

infection and in the ERN1 expression domains. Differences can also be linked to 

the activity of the specific proteins (PdBG1 vs MtBG2). M. truncatula transgenic 

roots overexpressing PdBG1 showed a massive downregulation of callose and 

this effect was used to infer callose regulation in pMtERN1, pMtNIN and pMtNFB 

transgenic roots.  

Important research from collaborators has also shown how the expression of a 

hyperactive callose synthase (cals3m (Vaten et al., 2011) driven by pMtERN1 

dramatically increase callose deposition and reduced the number of infected 

nodules6. Root hair infection was however not as strongly affected compared to 

control roots. Interestingly, the expression of the same callose synthase under 

an epidermis specific promoter (pEXP) did not significantly affect nodule 

development, suggesting that the effect is tightly linked to the promoter strength 

or expression domain. This result suggest that symplastic connectivity is not 

essential for infection thread formation. Regardless, the effect of pMtERN1-

PdBG1 in infection can be explained by a couple of possibilities. As presented in 

Chapter 4, ectopic callose degradation might contribute to bacterial entrapment 

by modifying root hairs cell walls or to the ectopic transport of signals (normally 

restricted to underlying cell layers in early stages of symbiosis) that enhance 

infection in the epidermis. In pMtERN1-cals3m the signal will remain restricted 

thus infection thread will form as normal. In these plants, other signals important 

for nodule colonization and infection thread progression might instead be 

restricted. 

Although one of the outcomes of changing callose deposition is the regulation of 

symplastic connectivity (Li et al., 2012; De Storme and Geelen, 2014) there is 

not enough data to demonstrate that this is happening in PdBG1 transgenic 

plants. Further investigation on changes in symplastic communication needs to 

be done to reveal if in this system, callose downregulation is causing an increase 

in plasmodesmata permeability and if this modifies signalling between the 

epidermis, the underlying cell layers and the phloem. Several genes (including 

                                            

6 Personal communication: Martina Beck and Fernanda de Carvalho-Niebel (LIPM, 
Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France) 
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NIN, ENOD40 and DMI3) have been found essential for the epidermis/cortex 

layers cross-talk (as described more deeply in Chapter 1 section 1.2.2.2) 

(Charon et al., 1999; Rival et al., 2012). Now it’s timely to study if any of their 

pattern of expression or function is modified in the PdBG1, cals3m or MtBG2 

overexpressing transgenic roots.  
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Chapter 6 -A novel receptor-like kinase targets plasmodesmata to 

regulate nodulation in nitrogen sufficient conditions 

6.1 Summary 

In previous chapters, it was discussed how nitrate availability can change the 

root response to rhizobia, through a signalling pathway that involves local and 

systemic communication. Transgenic roots expressing the plasmodesmata-

located β-1,3- glucanase PdBG1 or MtBG2 are partially able to offset inhibition 

by nitratethus a role for callose and plasmodesmata in regulating nodulation in 

response to nitrate can be proposed.  In this chapter, phylogenetic and molecular 

approaches were used to identify a receptor-like kinase (RLK) M. truncatula 

homolog of the A. thaliana Plasmodesmata located protein family, PDLP 

(Thomas et al., 2008; Lee et al., 2011).  

The PDLP protein family plays a function in signal perception and/or transduction 

and is proposed to regulate callose deposition at plasmodesmata (Thomas et al., 

2008; Lee et al., 2011). PDLPs are induced in response to viruses and other 

pathogens (Amari et al., 2010) and are also involved in pathogen recognition and 

signalling during systemic acquired resistance and immune response in 

Arabidopsis (Caillaud et al., 2014; Carella et al., 2015). PDLPs control symplastic 

communication (Thomas et al., 2008; De Storme and Geelen, 2014), presumably 

via activation of CALS at plasmodesmata (Wang et al., 2013; Cui and Lee, 2016).  

RLK proteins also play a role in development by coordinating cell fate in 

meristematic tissue and organ differentiation through regulating signalling at 

plasmodesmata (Stahl and Simon, 2013). A more in-depth review of the role of 

PDLP in the symplastic pathway can be found in Chapter 1, 1.3.2 and 1.3.3.1 

The newly identified RLK (PDLP-like) protein in Medicago was found upregulated 

in the epidermal cell layer after exposure to Nod factors, suggesting an important 

role in early stages of signalling (Jardinaud et al., 2016). In this chapter, it is 

explored whether this PDLP-like protein is also involved in the generation and/or 

maintenance of the nodule meristem and/or in signal perception/response to 

nitrate sufficient conditions. It is also discussed the implication of the results in 
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the signalling process that lead to the inhibition of nodulation by nitrate availability 

in the growth media.  
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6.2 Results  

6.2.1 Phylogenetic analysis identifies MtPDLP1 (Medtr1g073320) as 

evolutionary related to PDLP proteins 

The role of PDLP in plant-microbe interactions and in the regulation of callose at 

plasmodesmata has been reported. To identify novel PDLP-like proteins that 

regulate symbiosis in M. truncatula, phylogenetic trees were generated using 

three search algorithms: Bayesian inference (Bayesian), Maximum Likelihood 

(ML) and Neighbour Joining (NJ). Features such as the characteristic DUF26 

domain were analysed to identify potential PDLP orthologues (Figure 6.1).  

All proteins identified had predicted signal peptide (SP), transmembrane and 

DUF26 domain (Appendix 3). The tree topology was generally well supported by 

all 3 methods (Appendix 8, 9, 16, 17 and 18). MtPDLP2 (Medtr7g098410) and 

MtPDLP1 (Medtr1g073320) were found closely related to Arabidopsis PDLP 

proteins which target plasmodesmata to regulate cell-to-cell communication and 

response to a pathogen (Amari et al., 2010; Caillaud et al., 2014). Specifically, 

MtPDLP1 shares high homology with Arabidopsis PDLP3 (66% homology) and 

PDLP2 (71% homology) and the DUF26 and transmembrane domain are 

conserved (Figure 6.2).  
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Figure 6.1 Full majority-rule consensus tree of Arabidopsis (At) PDLPs and 

M. truncatula (Medtr) genes identified putative orthologues. 

Medicago RLK proteins containing the DUF26 domain were identified using 

BLAST search. All sequences identified are in Appendix 3. Bayesian inference 

of phylogeny algorithm was used to predict the phylogenetic relationship 

between Medicago and Arabidopsis PDLP family proteins. A PDLP-like protein 

from Picea sitchensis (PsPDLP-like_1) was used as an outgroup. Bayesian 

posterior probabilities are indicated above the clades. 
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6.2.2 MtPDLP1 co-localises with callose deposits around 

plasmodesmata in M. truncatula roots 

In order to confirm the plasmodesmata localisation of MtPDLP1, a YFP C-

terminal protein fusion was generated and expressed under the 35S promoter. 

M. truncatula roots were transformed to express the fusion protein and 

localisation was assessed by confocal microscopy. The protein showed a 

punctate localisation pattern (Figure 6.3-A) which co-localised with callose 

deposits revealed by aniline blue staining (Figure 6.3-B and C), suggesting that 

this newly identified protein is, very likely, located in plasmodesmata.  

 

Figure 6.2- Alignment of the M. truncatula PDLP-like protein-1 (Medtr1g073320), and 

the Arabidopsis thaliana PDLP proteins AtPDLP1 and AtPDLP2 sequences. The 

conserved domains DUF26/salt stress/antifungal are shaded in blue. The transmembrane 

domain is shaded in orange. Residues conserved in all three proteins are indicated in yellow 
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Figure 6.3- Intercellular localisation of MtPDLP1 in M. truncatula roots. (A) 

Shows a confocal picture of a M. truncatula transgenic root expressing 

MtPDLP1 fused to YFP under p35S promoter (green-yellow signal). (B) 

Blue channel shows callose deposits revealed by aniline blue staining in 

the same section of root. (C) Co-localisation of the green-yellow signal for 

MtPDLP1-YFP with the blue signal for callose deposits at plasmodesmata 

(white arrows). 

 

6.2.3 Expression profile indicates up-regulation of MtPDLP1 after 

rhizobial infection.  

Arabidopsis PDLP proteins are known to act in signalling and recognition of 

pathogens (Amari et al., 2010; Bricchi et al., 2013). MtPDLP1 appears 

upregulated in root hairs 3 dpi, as shown by microarray data (Figure 6.4).  

Therefore, we tested whether MtPDLP1 was involved in the signalling and 

recognition of rhizobia as a symbiotic partner. Roots inoculated with rhizobia and 

mock cultures were collected and total RNA retrotranscribed into cDNA using 

polydT. Gene-specific primers for MtPDLP1 were designed to amplify around 

200 base pairs. Actin was used as housekeeping gene to control for variations 

in the RT or PCR efficiency. The results show that MtPDLP1 is induced at 16hpi 

and expression maintained high at 24hpi (Figure 6.5).  
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Figure 6.4-Expression profile of MtPDLP1 in M. truncatula inoculated root 

hairs. MtPDLP1 relative expression in root hairs inoculated with a mutant 

rhizobia strain (unable to form symbiosis, mock) and a wild-type strain. 

Notice increase in expression at 5dpi. Image adapted from 

http://mtgea.noble.org/v3/. Data published by (Breakspear et al., 2014). 
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Figure 6.5- MtPDLP1 is upregulated upon inoculation in M. truncatula 

roots. M. truncatula roots were spot-inoculated with S. meliloti and samples 

retrieved at 16 and 24 hours post inoculation (hpi). RNA was extracted and 

cDNA synthesized. PCR was performed using. Actin was used as a 

housekeeping gene. MtPDLP1 shows an upregulation at 16 and 24 hpi. 

 

 

6.2.4 Constitutive expression of MtPDLP1 improves plant biomass in 

soil 

Overexpression of members of the PDLP family in Arabidopsis leads to over 

accumulation of callose at plasmodesmata, cell death and chlorosis (in the case 

of PDLP5), affecting plant growth and development even at the seedling phase 

(Lee et al., 2011) and/or leading to a dwarf phenotype (reported for PDLP1) 

(Thomas et al., 2008). To assess whether the over-expression of MtPDLP1 

affects root and shoot development in M. truncatula we measured root length 

and shoot/root biomass of composite plants. We grew control (expressing an 

empty vector) and MtPDLP1 overexpressing plants (transformed with p35S- 

MtPDLP1-YFP construct) for 17 days on plates.  An average of 27 independent 

composite roots was measured but no significant difference among control and 

MtPDLP1 overexpressing plants was found (Figure 6.6). On the other hand, 

when transplanted to pots in an equal mixture of sand and terragreen, plants 
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expressing the p35S- MtPDLP1-YFP construct showed an increase in biomass, 

both at the shoots and roots (Figure 6.7). These differences might mean that 

MtPDLP1 overexpression improves plant development when growing in soil or 

that this effect is only seen at a later stage of development. Additionally, root 

weight was not measured in plants 20-days old, hence a direct comparison of 

both developmental stages can not be made. Further phenotyping should be 

made to fully understand the timely effect of the overexpression of  MtPDLP1 in 

plant development. Since transformed plants only express the vector in the roots, 

it can also be inferred that shoot growth is influenced by the root phenotype.  

  

 

 

Figure 6.6- MtPDLP1 overexpression does not affect root length in M. 

truncatula. M. truncatula roots transformed with p35S-MtPDLP1-YFP or 

with an empty vector (control) were grown for 20 days post-transformation 

and root length was measured. A Student’s t-test was performed; no 

significant differences were seen (p>0.05). (N=24). 
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Figure 6.7- MtPDLP1 overexpression affects plant development. (A) The 

general aspect of M. truncatula composite plants shoots expressing an 

empty vector (control) or p35S-MtPDLP1-YFP  driven by a constitutive 35S 

promoter. 44 days post-transformation the composite plants were 

photographed growing in an equal mixture of sand and terragreen. (B) 

Shoot and root weight of composite M. truncatula plants expressing an 

empty vector (control) or p35S-MtPDLP1-YFP 44 days post-transformation. 

A Student’s t-test was performed; different letters refer to significant 

differences (p<0.05), (N=20). 

 

 



Chapter 6 

 

158 

 

6.2.5 Over-expression of MtPDLP1 does not affect callose, nodule 

number or infection threads in nitrogen-depleted conditions 

As overexpression of the Arabidopsis orthologue results in over-accumulation of 

callose (Caillaud et al., 2014) callose immunolocalisation was performed in 

transgenic roots expressing p35S-MtPDLP1-YFP. In contrast to what it was 

expected, M. truncatula roots constitutively expressing MtPDLP1 did not show a 

strong regulation of callose in cell walls (Figure 6.8). 

MtPDLP1 is upregulated early after inoculation (Figure 6.5) (Jardinaud et al., 

2016), so we wondered whether the ectopic expression of MtPDLP1 would affect 

infection and/or nodulation. In order to discern this, we inoculated Medicago 

transgenic roots, overexpressing the protein, with mock and rhizobia cultures 

and counted infection sites and nodule primordia 7 dpi in plates. We also 

inoculated composite roots in soil and measured nodule density (number of 

nodules per gr of root weight) at 14 dpi. We could not see a significant difference 

in infection threads, nodule primordia or mature nodules in either of these 

conditions (Figure 6.9). Percentage of infected nodules in composite plants 

expressing p35S-MtPDLP1-YFP was also similar to transgenic roots expressing 

an empty vector (Table 6.1). 

Callose immunolocalisation upon inoculation with rhizobia was also performed. 

Similar to control roots (transformed with an empty vector) downregulation of 

callose was observed 24 hpi with rhizobia in p35S-MtPDLP1-YFP roots growing 

in nitrate-depleted conditions (Figure 6.11) in comparison to mock (water) 

inoculated roots. 
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Figure 6.8- Over expression of MtPDLP1 does not affect callose deposition 

in M. truncatula grown in depleted nitrate. Confocal pictures showing 

callose detected using a monoclonal antibody and an Alexa-488 conjugated 

secondary antibody in longitudinal sections of transgenic roots expressing 

an empty vector as control (A) or p35S-MtPDLP1-YFP (D). Bright field (B 

and E) and composite images (C and F) are shown in the same section 

were used for localisation. (G) Fluorescence quantification of callose was 

performed by calculating the integrated density using ImageJ for each 

image in at least 3 biological repetitions per conditions. Fluorescence was 

quantified in a region of interest of approximately 100μm2. Symbols in A to 

F refer to xylem vessel (x), pericycle (p), endodermis (e), and cortex (c). A 

Student’s t-test was performed, no significant differences were seen 

(p>0.05). 
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Figure 6.9- Plants expressing p35S-MtPDLP1-YFP are not affected in 

infection or nodulation 7 days post inoculation in low nitrate 

conditions. Transgenic roots were inoculated with S. meliloti expressing 

the β-galactosidase gene. 7 days post inoculation roots were stained to 

localise infection sites and nodule primordia. Roots overexpressing 

MtPDLP1 did not show a significant difference in infection thread or nodule 

primordia density when compared to control roots expressing an empty 

vector. A Student’s t-test was performed, with no significant differences 

(p>0.05). 
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Figure 6.10- Plants overexpressing MtPDLP1 nodulate normally in soil in 

low nitrate conditions. Transformed plants were transplanted to soil and 

infected with rhizobia. 14 days post-inoculation, nodule density was calculated 

by dividing the total number of nodules per plant by root weight. Only mature 

nodules visible without the aid of a microscope were counted. A Student’s t-test 

was performed, with no significant differences (p>0.05). 
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Table 6.1- Percentage of infected nodules in composite plants expressing 

p35S- MtPDLP1-YFP construct. M. truncatula roots were infected with S. 

meliloti expressing the β-galactosidase gene. 7 days post inoculation plants were 

fixed and stained to localise bacteria within nodules and nodule primordia. The 

percentage of blue nodules/primordia in relation to the total number of nodules 

per plant was calculated. A Student’s t-test was performed to the means with no 

significant differences seen (p>0.05). 

 

Composite plant 

expressing vector 

Percentage of infected 

nodules 

Control (empty 

backbone vector) 

85.5% 

p35S- MtPDLP1-YFP 86.2% 
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Figure 6.11- MtPDLP1 plants experience  callose downregulation upon 
inoculation in M. truncatula in nitrate-depleted conditions. Callose 
immunolocalisation was performed in longitudinal sections of M. truncatula 
hairy roots expressing an empty vector (control) (A,C) or p35S-MtPDLP1-
YFP (B,D) and either mock inoculated (A, B) or rhizobia inoculated and 
growing in media containing no nitrate(C,D). Samples were retrieved 24 hpi.  
Callose was localised with monoclonal antibodies (Biosupplies) and 
detected with a conjugated secondary antibody (Alexa 488). E) Integrated 
Density was calculated using ImageJ for each image in at least 3 different 
roots per condition. The region of interests was approximately 100μm2. The 
region of interests was approximately 100μm2. Symbols in A to F refer to 
xylem vessel (x), pericycle (p), endodermis (e), and cortex (c). A Student’s 
t-test was performed, different letters refer to statistic differences (p<0.05). 

 

6.2.6 Constitutive expression of MtPDLP1 affects response to 

rhizobia in nitrate sufficient conditions 

Despite regulation early after infection, overexpressing MtPDLP1 did not show 

any infection or nodulation phenotype under nitrate depleted conditions. A laser 

dissection-RNAseq analysis of the epidermal cell layer of Medicago roots treated 

with Nod factors identified MtPDLP1 and CLE-related peptide among several 

genes up-regulated soon after the treatment (Jardinaud et al., 2016). CLE-
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related peptides are essential in the regulation of the AON pathway in full 

nitrogen conditions, therefore it was hypothesized a role for MtPDLP1 in this 

pathway.  

Callose regulation was assessed, infection and nodulation in transgenic roots 

constitutively expressing MtPDLP1 under full nitrate conditions and compared 

with nitrate depleted conditions. Shockingly, the characteristic downregulation of 

callose after infection was not maintained in MtPDLP1 overexpressing roots 

grown and inoculated in plates containing full nitrate media (Figure 6.12). 

Moreover, composite plants overexpressing MtPDLP1 were not affected in 

infection (Figure 6.13-A) or nodulation (Figure 6.13-B) in full nitrate conditions in 

contrast to plants transformed with an empty vector which displayed an inhibition 

in both infection thread and nodule density in full nitrate. Indeed, there were no 

significant differences in infection and nodulation between MtPDLP1 

overexpressing roots inoculated in full nitrate or depleted nitrate conditions. 

Composite plants overexpressing MtPDLP1 did not show developmental 

differences when grown in the presence of nitrate compared to plants expressing 

the empty vector (Figure 6.14), apart from a higher number of nodules. 

Percentage of infected nodules was also higher in MtPDLP1 overexpressing 

transgenic roots in full nitrate (Table 6.2). The results suggest that the protein 

might be part of the signalling process controlling nodulation in full nitrate 

conditions, hence the ectopic expression of the protein is probably alleviating the 

inhibitory effect of nitrate in nodulation.  
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Figure 6.12 MtPDLP1 affects callose regulation upon inoculation in full-

nitrate conditions. M. truncatula roots expressing an empty vector 

(control) (A-B) or p35S- MtPDLP1-YFP (C-D) were grown in 5mM nitrate 

and either mock inoculated (A-C) or rhizobia inoculated (B,D). Samples 

were fixed 24 hpi and callose was localised with monoclonal antibodies and 

detected with a conjugated secondary antibody (Alexa-488). (A-D) shows 

confocal pictures of a section of the root in the green channel where the 

vasculature (v) is indicated. (E) Integrated density was calculated using 

ImageJ for each image in at least 3 biological repetitions. Boxes delimit 

minimum to maximum integrated density values. Note that quantification 

was performed in a pool of z-stack images, quantifying several sections of 

the same root. Notice downregulation of callose after rhizobia inoculation of 

control roots but no effect in p35S- MtPDLP1-YFP roots. The region of 

interests was approximately 100μm2. Symbols in A to F refer to xylem 

vessel (x), pericycle (p), endodermis (e), and cortex (c). A Student’s t-test 

was performed, different letters refer to statistic differences (p<0.05). 
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Figure 6.13- M. truncatula roots constitutively expressing MtPDLP1 do not 

show inhibition of nodulation and infection in full nitrate conditions. 

M. truncatula roots expressing p35S- MtPDLP1-YFP were inoculated with 

a S. meliloti lacZ strain and analysed 7 dpi. Composite plants expressing 

an empty vector (control) were also inoculated as a control. Plants were 

grown in nitrate depleted (no nitrate) and 5mM nitrate (nitrate) conditions. 

(A) Infection thread density is represented for the transgenic in nitrate and 

no nitrate conditions. (B) The nodule density was also calculated. Notice 

that different to control, infection and nodulation do not appear affected by 

nitrate in plants overexpressing MtPDLP1. A Student’s t-test was 

performed, different letters refer to statistic differences (p<0.05).   
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Figure 6.14- Root phenotype of infected M. truncatula transgenic roots 

expressing p35S- MtPDLP1-YFP. Composite plants were grown in FP 

media supplemented with 1 μM of AVG and 5mM nitrate and inoculated 

with S. meliloti. Pictures were taken 14 days post inoculation. Red triangles 

mark nodules. (A) M. truncatula roots expressing the empty vector as a 

control. (B) M. truncatula roots constitutively expressing MtPDLP1. 

 



Chapter 6 

 

168 

 

Table 6.2- Percentage of infected nodules in composite plants expressing 

p35S- MtPDLP1-YFP construct and growing in full nitrate conditions. 

M. truncatula roots were infected with S. meliloti expressing the 

galactosidase gene. 7 days post inoculation plants were fixed and stained 

to localise bacteria within nodules and nodule primordia. The percentage of 

blue nodules in relation to the total number of nodules per plant is 

calculated. A Student’s t-test was performed to the means, showing 

significant differences (p<0.05). 

Composite plant 

expressing vector 

Percentage of infected 

nodules 

Control (empty 

backbone vector) 
80% 

p35S- MtPDLP1-YFP 97% 
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6.3 Discussion 

6.3.1 Overexpression of the receptor-like kinase MtPDLP1 positively 

regulates plant growth 

M. truncatula plants overexpressing MtPDLP1 show a higher biomass compared 

to control plants expressing an empty vector. This difference is only seen when 

plants were transferred to an equal mixture of sand and Terragreen and were 

grown in that substrate for 14 days. We could not see any developmental 

phenotype in plants growing in plates but root and shoot weight were not 

measured in this case. Another reason why differences only appear in soil might 

be because MtPDLP1 affects mature stages of development or because of the 

different growth support systems which mean that different nutrients are 

available. Although transgenic expression was restricted to the root, both root 

and shoot biomass were increased in transgenic plants overexpressing 

MtPDLP1, suggesting a systemic root-to-shoot effect.  

Overexpression of members of the PDLP family protein in Arabidopsis leads to 

strong developmental defects (Thomas et al., 2008; Lee et al., 2011) (reviewed 

in Chapter 1 sections1.3.1 and 1.3.2). Overexpression of PDLP1 and PDLP5 

leads to an over accumulation of callose at plasmodesmata, thus changes in 

symplastic transport probably underlie their effects on plant development and 

growth (Thomas et al., 2008; Lee et al., 2011; Cui and Lee, 2016). Medicago 

transgenic plants expressing the p35S- MtPDLP1-YFP construct did not have 

affected callose deposition. Experiments expressing Arabidopsis’ PDLP in 

Medicago plants (or the other way around) to characterise callose deposition 

could help discern if M MtPDLP1 and PDLPs in Arabidopsis are true functional 

orthologues.  

The role for several PDLPs proteins in the immune response of A. thaliana has 

been largely demonstrated (Lee et al., 2011; Wang et al., 2013; Caillaud et al., 

2014) (reviewed in section 1.3.3.1 of Chapter 1). It remains unknown whether 

MtPDLP1 also plays a role in the immune response to pathogens in M. truncatula 

or if it is involved in the establishment of other symbiotic interactions, such as 

with AMF. Mutated versions of the protein could be used to determine the 
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possible dual role of the protein in deciphering the signalling pathway that 

determines the plant response to different microorganisms. 

 

6.3.2 MtPDLP1 plays a role in signalling responses to full-nitrate 

conditions 

Based on the nature of MtPDLP1 and its expression profile, a role for the protein 

in signalling during the establishment of infection, perhaps influencing the 

development of nodules was hypothesised. Previous research has shown that 

MtPDLP1 is upregulated as early as 4 hpi in the epidermal cell layer (Jardinaud 

et al., 2016), our results suggest that this upregulation is maintained at least until 

24 hpi and in root hairs microarray induction appears at 5 dpi (Figure 6.14) 

(Breakspear et al., 2014) .  

We could not see an effect in the number of nodules and infection threads (either 

7 dpi or later at 14 dpi) when MtPDLP1 was overexpressed in nitrogen depleted 

conditions. Furthermore, overexpression of MtPDLP1 does not regulate callose 

in M. truncatula roots, as Arabidopsis orthologues do (Lee et al., 2011).  

In addition to the systemic AON pathway (autoregulation of nodulation, reviewed 

in Chapter 1, section1.2.3), the number of nodules is also controlled by nitrogen 

availability (Reid et al., 2011a; Reid et al., 2011b). Several research lines in 

different plant systems have proved that control of nodulation by rhizobia 

infection and by nitrate availability act through independent pathways (Jeudy et 

al., 2010; Reid et al., 2011a). Nevertheless, the fact that several supernodulating 

mutants are also nitrate insensitive suggest that they share some genetic 

regulatory mechanisms (Carroll et al., 1985a; Schnabel et al., 2005; Reid et al., 

2011a). In G. max and L. japonicus, for example, nitrate induces a specific CLE 

peptide that is perceived in the root by the same receptor (NARK and HAIR1 

respectively) that perceives the rhizobia-induced CLE peptide in the shoot, (Reid 

et al., 2011a). So far, CLE peptides induced by nitrate have not been identified 

in Medicago species and only two CLE peptides have been characterized in M. 

truncatula to have a role in regulating the number of nodules induced by rhizobia 

but not by nitrate, MtCLE12 and MtCLE13 (Mortier et al., 2010). Expression 

profiles of MtPDLP1 and MtCLE13 peptides were found co-regulated at similar 
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timings post-inoculation in root hairs (Breakspear et al., 2014; Jardinaud et al., 

2016) (Figure 6.4 and Figure 6.15).  

 

 

 

Figure 6.15-Expression pattern of MtCLE13 in response to rhizobia. 

Expression profile in root hairs 1, 2 and 5 days after infection (dpi) with a 

mutant S. meliloti unable to inoculate roots (mock) and 1, 3 and 5 days post 

infection with wild type S. meliloti (dpi). Image adapted from 

http://mtgea.noble.org/v3/. Data published by (Breakspear et al., 2014). 

 

Contrasting with the results obtained in nitrogen-starved conditions, M. 

truncatula transgenic roots overexpressing the newly identified plasmodesmata-

located protein  MtPDLP1 formed infection threads and nodules at a rate that 

resembled wildtype roots in no-nitrate (Figure 6.9). These plants appear to be, 

at least partially, nitrate insensitive in regards of the inhibition of nodulation in 

full-nitrate.  
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In Chapter 3 it was shown that nitrate concentrations as high as 5mM do not 

affect callose deposition in M. truncatula roots in the absence or presence of 

rhizobia. Callose is not downregulated after inoculation of MtPDLP1 

overexpressing roots in full nitrate conditions. The results suggest that MtPDLP1 

plays a role in the regulation of callose post-inoculation and that this pathway is 

important to inhibit the formation of nodules when nitrate is available. Callose 

deposition was not assessed in transgenic plants overexpressing MtPDLP1 

under full nitrate at 7 dpi (when the nodulation phenotype was reported) nor at a 

later stage of the inoculation stage than 24 hpi. Therefore, it is not possible to 

know if callose miss-regulation is compensated at later stages of the process.  

The potential role of MtPDLP1 in the transduction/sensing of nitrate signals is 

supported by its expression profile. The gene is downregulated in full nitrate and 

downregulated even further in the supernodulating mutant sunn, in both nitrate 

depleted and sufficient conditions (Figure 6.16) (Schnabel et al., 2005; Moreau 

et al., 2011). The reduced MtPDLP1 expression suggest that this protein 

contributes to the SUNN-CLE signalling pathway that controls number of nodules 

in response to CLE (or CLE derived) signals induced by nitrate and/or rhizobia 

inoculation and that acts downstream of SUNN.  

Interestingly and consistent with a signalling function, recent research 

demonstrated that SUNN localises at the plasmamembrane, predominantly in a 

punctate pattern resembling plasmodesmata (Crook et al., 2016). Other LRR-

RLKs have been located at plasmodesmata (Lucas and Lee, 2004; Sagi et al., 

2005; Stahl and Simon, 2013) including Arabidopsis’ SUNN orthologue, 

CLAVATA1 (Stahl and Simon, 2013), which has also been identified as a key 

partner  in the response to nitrate by regulating the outgrowth of lateral roots and 

expansion of plant root systems (Araya et al., 2014). 
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Figure 6.16- Expression pattern of MtPDLP1 in response nitrate. Expression 

profile in root in the absence or 10 days-post inoculation with rhizobia and 

in full or depleted nitrate media. Image adapted from 

http://mtgea.noble.org/v3/. Data published by (Moreau et al., 2011). 

 

Together these results suggest that MtPDLP1 plays a role in the control of 

nodulation under full nitrate conditions and that this is mediated by changes in 

callose turnover. Whether it also plays a role in the regulation of nodulation by 

rhizobia remains still to be proven, but expression data of the gene in the sunn 

background and SUNN localisation at plasmodesmata suggest that potentially 

these two receptor proteins (SUNN and MtPDLP1), and/or the pathways that 

they regulate, interact.  

A proposed model of the role of MtPDLP1 is schematised in Figure 6.17. 

Receptor proteins SUNN and MtPDLP1 are located at plasmodesmata when 

both proteins are in homeostasis CLE peptides can be sensed and trigger a 

secondary signal that control nodulation under high nitrate conditions. On the 

other hand, when MtPDLP1 is overexpressed the balance is altered and all 
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SUNN receptors are engaged with a copy of its partner, not allowing the 

receptors to sense CLE peptides, blocking downstream signalling. Alternatively, 

the partner for SUNN in this pathway might be another RLK from the same 

protein family than MtPDLP1 and when the latter is overexpressed does not allow 

SUNN to interact with its true partner, blocking downstream signalling.  

Composite plants used in this work presented a wild type number of copies of 

MtPDLP1 in the shoot and an overexpression in the roots. Little is yet known 

about the control of nodulation by nitrate in Medicago, but if the regulatory system 

is anything like regulatory pathway in G. max, control of nodulation by nitrate 

happens mainly locally and AON systemically (Reid et al., 2011a). Following that 

premise, SUNN/ MtPDLP1 interaction (or SUNN interaction with other RLKs) is 

not affected in the shoot, allowing AON to function normally (Figure 6.17-C). 

Alternatively, MtPDLP1 might not be playing any role in AON, but instead, it plays 

an important role in the root at early stages of inoculation (potentially in the 

transduction of Nod factor signalling).  

Further research to identify the signals controlling the regulation of nodulation by 

nitrate in M. truncatula is required to fully understand the mechanism behind it 

and to determine their role in the hypothetical SUNN/ MtPDLP1 signalling 

pathway. Experiments to explore the potential interaction of both proteins at 

plasmodesmata as part of the control of nodulation (both AON and regulation by 

nitrate) can help to understand the function of this new receptor-like kinase in 

these regulatory pathways. Co-immunoprecipitation, bimolecular fluorescence 

complementation or yeast two-hybrid system could be used to determine if they 

interact. Additionally, the use of mutants, a stable transgenic line overexpressing 

MtPDLP1 and/or grafting experiments are required to understand the possible 

role of the receptor-like kinase in the systemic control of nodulation. 

   

https://en.wikipedia.org/wiki/Bimolecular_fluorescence_complementation
https://en.wikipedia.org/wiki/Bimolecular_fluorescence_complementation
https://en.wikipedia.org/wiki/Yeast_two-hybrid
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Figure 6.17 Schematic proposed model of the role of MtPDLP1 in the 

control of nodulation in M. truncatula. (A) Based on the localisation of 

orthologues, we propose that, upon rhizobia perception or in response to 

nitrogen, SUNN interacts with specific RLKs at plasmodesmata to trigger 

downstream intracellular signalling pathways. (B) Nitrate availability triggers 

the regulation of nodulation by nitrate by inducing a signalling molecule, 

likely a CLE peptide (Nitrate-induced CLE-NiCLE) in the roots that are 

locally perceived by SUNN and/or its homologues to trigger inhibition of 

nodulation. This signal cannot be perceived efficiently when SUNN is 

engaged in interactions with MtPDLP1 (or other RLKs). In transgenic roots 

overexpressing MtPDLP1, the inhibition of nodulation by nitrate appears 

blocked. (C) Rhizobia inoculation induces the expression of MtCLE12 and 

MtCLE13 in the roots. These signals are transported to the shoot where 

they are received by SUNN, triggering the expression of an unknown signal 

Q that stop further nodules and infection threads from developing. In the 

case of composite transgenic plants (where only the roots are transformed), 

and since the autoregulation of nodulation is shoot-dependant, AON would 

not be affected, allowing for an efficient signalling pathway.  
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Chapter 7 -General discussion and conclusions 

7.1 Callose regulates symplastic communication in M. 

truncatula roots upon rhizobia inoculation  

Nodulation and infection are finely tuned processes that are controlled by 

complex mechanisms regulating the amount of nodules generated (Day et al., 

1989; Li et al., 2009; Okamoto et al., 2009; Crook et al., 2016). In this thesis, 

evidence is presented supporting that callose-regulated symplastic 

communication actively controls root colonization by the symbiotic bacteria and 

nodule organogenesis during the establishment of the symbiotic interaction.  

The results indicate that callose levels are downregulated in inner 

pericycle/cortical root tissue as soon as 24 hours after inoculation with the 

bacteria (Figure 3.1), and this downregulation coincides in time and tissue 

localisation with the changes in expression of a newly identified plasmodesmata 

located glucanase MtBG2 (Figure 3.12, Figure 3.13 and Figure 3.15). Based on 

the expression profile, it is proposed that this protein plays a role in creating, 

maintaining and/or modifying symplastic domains to connect the phloem and 

cells undergoing reprogramming for nodule development concomitant with or 

prior to root hair infection. The regulation of symplastic connectivity by callose 

degrading enzymes was previously reported to control lateral root formation and 

patterning in A. thaliana (Benitez-Alfonso et al., 2013). In addition to its regulation 

in nodule primordia, MtBG2 expression was also found in lateral root primordia, 

suggesting a dual role for this protein7, potentially linked to the development of 

post-embryonic organs. The possibility that lateral roots and nodules have a 

common evolutionary past has been proposed by several authors 

(Papadopoulou et al., 1996; Charon et al., 1999; Bensmihen, 2015), and the 

expression pattern of this callose-degrading enzyme opens new research 

possibilities to identify possible shared developmental pathways. 

                                            

7  Personal communication: Martina Beck and Fernanda de Carvalho-Niebel (LIPM, 
Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France) 
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The use of a symplastic tracer (CFDA) also showed that after rhizobia inoculation 

symplastic communication is established between the phloem and inner root 

tissues (Complainville et al., 2003). Using similar tools, it was found by our 

collaborators that, after inoculation, proteins and small molecules can move 

symplastically from epidermal cell layers into outer cortical cells8. In addition to 

its early expression in dividing cells (nodule primordia) MtBG2 expression 

extends to the outer cortex and epidermal cell layers as the symbiotic process 

progress (8 dpi) 7, but the regulation in the symplastic pathway was seen at 

earlier stages of the process (3 dpi). Together these results suggest that these 

changes are potentially regulated by other glucanase(s). In Chapter 3, were 

identified a pool of putative glucanases, among these MtBG2 was also 

upregulated upon inoculation (Figure 3.12). Future experiments characterising 

MtBG2 are required. Callose immunolocalisation of overexpressor lines and 

transport assays in mutants would shed some light into the role of the protein in 

establishing the symplastic continuum seen at 3 dpi. Additionally, 

electromicroscopy experiments could also help to clarify if the changes in 

symplastic permeability are due to callose regulation or a change in 

plasmodesmata structure, such as a change from single to branched 

plasmodesmata (or to both).  

7.2 The ectopic expression of callose degrading enzymes in 

rhizobia infected and nodulating tissues increases the 

number of nodules  

The importance of the symplastic regulation in the symbiotic process was 

assessed by evaluating the infection and nodulation phenotypes in transgenic 

roots constitutively expressing MtBG2 and the expression of the Arabidopsis 

orthologous gene PdBG1 under symbiotic regulated promoters. Both strategies 

lead to an increase in infection threads and nodule number (Figure 4.9 and 

Figure 5.3). Conversely, increasing callose via the expression of cals3m gain-of-

function driven by the ERN1 promoter strongly affected nodule development and 

                                            

8  Personal communication: Martina Beck and Fernanda de Carvalho-Niebel (LIPM, 
Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France) 
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rhizobia colonization7. Although infection was enhanced in transgenic plants 

when callose was down-regulated, infection threads were not affected in the 

opposite case. This suggests that regulation of the symplastic connectivity by 

callose is crucial to control nodule development but is not essential for infection 

thread formation in M. truncatula. It is proposed that this regulatory 

communication system controls the movement of signalling molecules between 

infected root hairs and cortical tissues to activate nodule organogenesis and 

colonization (Figure 7.1).  

The mobile signals, which movement might be regulated by callose-mediated 

symplastic communication, are yet unknown, but gene expression studies in M. 

truncatula transgenic roots expressing pMtERN1-cals3m show that NIN and the 

expression of the genes encoding the regulatory peptides MtCLE12/13 

expression are reduced9. This indicates that blocking the symplastic pathway 

through the over-accumulation of callose affects NIN and MtCLE12/13 

expression, hence the signalling pathways in which they are involved. The 

results support a model where NIN, or regulators of NIN, are transported through 

plasmodesmata from the epidermis to the cortex to promote the expression of 

NIN or downstream factors that initiate nodule organogenesis. It would be 

interesting to study the spatial and temporal regulation of NIN and MtCLE12/13 

(at gene and protein level) in transgenic roots expressing pMtERN1-PdBG1 or 

overexpressing MtBG2. Increased gene expression or changes in protein 

localization will provide insights into the potential molecular mechanism 

underlying the increase in nodule number observed in these plants.  

Future research is required to elucidate the identity of this putative mobile 

factor(s) and establish the molecular mechanism and crosstalk among root cell 

layers that orchestrate nodule organogenesis. For example, complementation 

studies using a nin background transformed with constructs that express NIN in 

the epidermis (for example under the pEXP promoter) could be used to test 

whether NIN acts non-cell autonomously. Co-expression of pMtERN1-cals3m 

                                            

9  Personal communication: Martina Beck and Fernanda de Carvalho-Niebel (LIPM, 
Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France) 
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(induced callose in infected tissues and restricted transport) will indicate if 

symplastic communication is required for nin complementation. Immuno-probing 

these lines with NIN antibodies should be able to discern if NIN itself is the mobile 

signal and if it requires the symplastic pathway for its function. Alternatively, 

using RNAseq and proteomics analysis, the transcriptome and proteome of 

pMtERN1-cals3m and pMtERN1-PdBG1 transgenic roots before and after 

infection can be compared. Genes which are differentially regulated, or proteins 

differently enriched, in these transgenic would potentially belong to a mechanism 

involved in the generation or transmission of the mobile signal orchestrating 

infection and nodulation. 

7.3 A plasmodesmata-located RLK regulated signalling 

affecting nodule number under high nitrate conditions  

Additionally, the study of homologous proteins of Arabidopsis PDLPs (reviewed 

in Chapter 1, sections 1.3.1, 1.3.2 and 1.3.3.1) identified a novel receptor like 

kinase targeted to plasmodesmata, MtPDLP1. The overexpression of this RLK 

in M. truncatula roots did not lead to changes in callose under nitrate depleted 

conditions (Figure 6.8) and, as in control plants, downregulation of the 

polysaccharide after rhizobia infection was also observed (Figure 6.8). Although 

MtPDLP1 was rapidly regulated post-rhizobia inoculation, suggesting an 

infection/nodulation related function (Figure 6.5), transgenic plants did not show 

any infection or nodulation phenotype under nitrate-depleted conditions (Figure 

6.9). On the other hand, callose was not regulated in response to rhizobia in 

MtPDLP1 overexpressing plants grown under high nitrate concentrations, 

suggesting that MtPDLP1 interferes with callose metabolism or with the signals 

that control this response. Surprisingly, these plants were nitrate insensitive, 

meaning that they nodulated as effectively under high nitrate conditions as they 

did in nitrogen depleted media (Figure 6.13). Alternatively, downregulation of 

callose might just be delayed (it didn’t occur at the measured time point) or there 

is an over-production of callose (by activation of CALS, for example) that mask 

the effects of rhizobia in nitrate conditions. Future experiments characterising the 

callose levels of nodulating plants and expression profile of callose modifying 

enzymes under full nitrate conditions are required to fully understand the 
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possible role of callose in this process. In any case, even without considering the 

effects on callose, the fact remains that transgenic plants overexpressing 

MtPDLP1 presented a nitrate insensitive phenotype suggesting that regulated 

expression of this protein is important for proper nitrate responses. 

Based on nodulation phenotypes, MtPDLP1 might be playing completely 

different roles under nitrate-deprived and full nitrate conditions 

In the case of nitrate-depleted conditions, MtPDLP1 is upregulated rapidly in the 

epidermal cell layer upon inoculation with rhizobia (Jardinaud et al., 2016). This 

upregulation might be necessary for a signal transduction necessary for 

infection, maybe involving the induction of MtBG2 in inner root cell layers, leading 

to the downregulation of callose upon inoculation reported in Chapter 3 (Figure 

7.1). No phenotype under nitrate-depleted conditions was seen in plants 

overexpressing MtPDLP1, meaning that either it does not play any role in the 

regulation of nodulation by rhizobia, that the role of the protein in this pathway is 

limited to the shoot (hindering the phenotype in this case) or that MtPDLP1 

requires a partner for proper functioning that is either not present or not present 

at the required levels to produce a phenotype.  

When growing in full nitrate, MtPDLP1 expression is downregulated, and this 

regulation seems to be SUNN-dependent (Figure 6.16). It can be proposed that 

MtPDLP1 plays a role in regulating number of nodules and infection threads 

under full nitrate conditions, and it does so potentially by interacting with SUNN 

in the root (Figure 6.17).  

To discern among these hypotheses, mutants in MtPDLP1 could be generated 

and studied to determine the specific role of this protein in infection or nodulation 

and in the regulation of callose in response to rhizobia or nitrate signal (are these 

plants unable to nodulate/infect? Are the number of nodules affected? Is callose 

deposition regulated upon inoculation?). Additionally, stable lines 

overexpressing MtPDLP1 can be generated to study the role of the shoot on 

nodule number. Grafting experiments combining wild type and MtPDLP1 

(mutant/overexpressor) root and shoot-stocks can also be used to determine the 

role of root-to-shoot-to root signalling.  
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Finally, determining the domain of expression of MtPDLP1 would shed some 

light on the function of the protein and its role in symbiosis. A pMtPDLP1-GUS 

reporter line could be generated to spatially and timely locate MtPDLP1 

expression pattern. Complementarily, immunolocalisation experiments using 

antibodies raised against the protein will also help to determine protein levels 

and localisation. Both approaches would allow the characterisation of the protein 

function at different time points of the symbiotic process and under different 

nitrate conditions. 

7.4 Conclusions 

In conclusion, this work has contributed to the understanding of the role of callose 

and the symplastic pathway in the establishment and control of the mutualistic 

symbiotic interaction between M. truncatula and S. meliloti. Future work has 

been proposed throughout this thesis to address the questions that arise from 

this research, and that will help to dissect the signalling molecules and other 

components using or regulating the symplastic pathway as a medium to 

orchestrate the infection and nodulation processes.  

The results presented in this thesis could be the foundation for more extensive 

work in economically important legumes, such as soybean or common beans. 

This work also directly impacts the agro-industry, since it helps in the search for 

biotechnological tools to improve nodulation and, potentially nitrogen fixation, in 

legumes. For example, collaborations with agro-companies could be established 

to transform PdBG1 in the symbiotic domains in economic and agricultural 

important legumes to tackle the challenge of food security. 
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Figure 7.1-Schematic model of callose-mediated regulation of root nodule 
development in M. truncatula. Early signalling (either in response to rhizobia 
or to nitrogen availability) are perceived in the epidermal cell layer by RLKs 
including MtPDLP1 that will trigger further signalling to control infection and 
nodulation. Callose appears downregulated in pericycle and cortical cell layers 
coincident with a reported increase in symplastic transport. This process is at 
least partially regulated by the expression of MtBG2 in cortical cell layers. 
Altering callose regulation by ectopic expression of MtBG2 affects both nodule 
number and infection thread suggesting interactions between processes 
occurring in the cortex and epidermal tissues. 
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Appendices 

Appendix 1 List of sequences used in the phylogenetic analysis of β-1,3-

glucanases from the GHL17 protein family in Arabidopsis thaliana and 

M. truncatula.  Picea sitchensis sequence was included as an 

outgroup. Table includes predicted domains (See Material and 

Methods)  

 

Organism Sequence  
Identifie

r 
SP 

GP

I 

GHl1

7 
x8 

M. truncatula Medtr8g085720 MtBG_1 X X X X 

M. truncatula Medtr3g083580 MtBG_2 X X X X 

M. truncatula Medtr4g132280 MtBG_3 X X X X 

M. truncatula Medtr5g078200 MtBG_4 X  X X 

M. truncatula Medtr3g065460 MtBG_5 X X X X 

M. truncatula Medtr5g015720 MtBG_6 X X x x 

M. truncatula Medtr8g102340 MtBG_7 X  X X 

M. truncatula Medtr4g010200 MtBG_8 X X X  

M. truncatula Medtr5g081720 MtBG_9 X  X  

M. truncatula Medtr4g069940 MtBG_10 X  X X 

M. truncatula Medtr5g085580 MtBG_11 X  X X 

M. truncatula Medtr3g116510 MtBG_12 X  X X 

M. truncatula Medtr1g007810 MtBG_13   X  

M. truncatula Medtr3g116510 MtBG_14 X  X X 

M. truncatula Medtr7g026340 MtBG_15 X  X X 

M. truncatula Medtr2g034480 MtBG_16 X  X X 

M. truncatula Medtr2g034470 MtBG_17 X  X  

M. truncatula Medtr2g027560 MtBG_18 X X X X 

M. truncatula Medtr4g134280 MtBG_19 X  X X 

M. truncatula Medtr4g076470 MtBG_20 X  X  

M. truncatula Medtr4g076430 MtBG_21 X  X  

M. truncatula Medtr4g076440 MtBG_22 X  X  

M. truncatula Medtr4g076490 MtBG_23   X  

M. truncatula Medtr4g076500 MtBG_24   X  

M. truncatula Medtr4g076570 MtBG_25 X X X  

M. truncatula Medtr2g034480 MtBG_26 X  X  

M. truncatula Medtr2g034440 MtBG_27 X  X  

M. truncatula Medtr7g085390 MtBG_28 X X X X 

M. truncatula Medtr3g108600 MtBG_29 X X X X 

M. truncatula Medtr4g124440 MtBG_30 X X X X 

M. truncatula Medtr4g083500 MtBG_31 X X X X 

M. truncatula Medtr3g095050 MtBG_32 X X X X 
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M. truncatula Medtr8g092070 MtBG_33 X  X X 

M. truncatula Medtr6g032820 MtBG_34   X X 

M. truncatula Medtr7g081350 MtBG_35 X  X  

M. truncatula Medtr3g080410 MtBG_36 X  X  

M. truncatula Medtr2g034440 MtBG_37 X  X  

M. truncatula Medtr5g081720 MtBG_38 X  X  

M. truncatula Medtr4g114850 MtBG_39 X X X  

M. truncatula Medtr7g081370 MtBG_40 X  X  

M. truncatula Medtr8g012400 MtBG_42 X  X X 

A. thaliana At2g05790  X  X X 

A. thaliana At4g26830  X  X X 

A. thaliana At5g55180  X  X X 

A. thaliana At4g18340  X X X  

A. thaliana At1g30080  X X X  

A. thaliana At2g26600  X X X  

A. thaliana At3g15800  X X X  

A. thaliana At2g27500  X X X  

A. thaliana At5g42100  X X X  

A. thaliana At1g32860  X X X  

A. thaliana At5g24318  X  X X 

A. thaliana At3g46570  X  X  

A. thaliana At2g39640  X  X X 

A. thaliana At3g55430  X  X X 

A. thaliana At5g42720  X  X  

A. thaliana At4g34480  X  X  

A. thaliana At2g16230  X  X X 

A. thaliana At3g13560  X X X X 

A. thaliana At1g11820  X  X  

A. thaliana At1g66250  X X X X 

A. thaliana At2g01630  X X X X 

A. thaliana At4g29360  X X X X 

A. thaliana At5g56590  X  X X 

A. thaliana At3g55780  X  X X 

A. thaliana At3g61810  X  X  

A. thaliana At3g07320  X  X X 

A. thaliana At3g23770  X  X X 

A. thaliana At4g14080  X  X X 

A. thaliana At5g58480  X X X X 

A. thaliana At4g17180  X X X X 

A. thaliana At5g64790  X X X X 

A. thaliana At3g04010  X X X X 

A. thaliana At5g18220  X X X X 

A. thaliana At1g64760  X X X X 

A. thaliana At2g19440  X X X X 

A. thaliana At3g24330  X X X X 

A. thaliana At5g20870  X X X X 
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A. thaliana At5g58090  X X X X 

A. thaliana At4g31140  X X X X 

A. thaliana At1g77790  X  X  

A. thaliana At1g77780  X X X  

A. thaliana At5g20390  X  X  

A. thaliana At5g20560  X  X  

A. thaliana At1g33220  X  X  

A. thaliana At5g20340  X  X  

A. thaliana At5g20330  X  X  

A. thaliana At4g16260  X  X  

A. thaliana At3g57270  X  X  

A. thaliana At3g57240  X  X  

A. thaliana At3g57260  X  X  

Picea sitchensis BT070278.1  X  X X 

 

Appendix 2- List of sequences used in the phylogenetic analysis of callose 

synthase protein family in Arabidopsis thaliana and Medicago 

truncatula.   

Organism Sequence  Identifier 

M. truncatula Medtr2g013580 MtGSL1 

M. truncatula Medtr4g078220 MtGSL2 

M. truncatula Medtr2g090375 MtGSL3 

M. truncatula Medtr3g096200 MtGSL4 

M. truncatula Medtr8g093630 MtGSL5 

M. truncatula Medtr2g061380 MtGSL6 

M. truncatula Medtr3g075180 MtGSL7 

M. truncatula Medtr1g116370 MtGSL8 

M. truncatula Medtr3g047390 MtGSL9 

M. truncatula Medtr7g005950 MtGSL10 

M. truncatula Medtr3g075180 MtGSL11 

M. truncatula Medtr1g116470 MtGSL12 

M. truncatula Medtr2g072160 MtGSL13 

A. thaliana AT4G04970 AtGSL1 

A. thaliana AT2G13680 AtGSL2 

A. thaliana AT2G31960.  AtGSL3 

A. thaliana AT3G14570 AtGSL4 

http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr2g013580.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr4g078220.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr2g090375.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr3g096200.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr8g093630.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr2g061380.4&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr3g075180.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr1g116370.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr3g047390.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr7g005950.2&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr3g075180.2&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr1g116470.3&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr2g072160.1&type=subject
http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT2G31960
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A. thaliana AT4G03550 AtGSL5 

A. thaliana AT1G05570 AtGSL6 

A. thaliana AT1G06490 AtGSL7 

A. thaliana AT2G36850 AtGSL8 

A. thaliana AT5G36870 AtGSL9 

A. thaliana AT3G07160 AtGSL10 

A. thaliana AT3G59100 AtGSL11 

A. thaliana AT5G13000 AtGSL12 

 

Appendix 3 List of sequences used in the phylogenetic analysis of PDLP 

protein family in Arabidopsis thaliana and M.truncatula. Picea 

sitchensis was included as an outgroup. Table include predicted 

domains (See Material and Methods).   

 

Organism Sequence  

Identifi

er SP 

Tran

sme

mbra

ne 

DUF26/ Salt 

stress 

response-

antifungal 

Other 

domain

s 

M. truncatula Medtr1g073320 
Mt_PDL

P-like1 
X X X  

M. truncatula Medtr7g098410 
Mt_PDL

P-like2 
X X X  

M. truncatula Medtr1g080350 
Mt_PDL

P-like3 
X X X  

M. truncatula Medtr8g104990 
Mt_PDL

P-like4 
X X X  

M. truncatula Medtr5g078030 
Mt_PDL

P-like5 
X X X  

M. truncatula Medtr3g065370 
Mt_PDL

P-like6 
X X X  

M. truncatula Medtr5g005480 
Mt_PDL

P-like7 
X X X 

pkina

se_tyr 

M. truncatula Medtr5g005530 
Mt_PDL

P-like8 
X X X 

pkina

se_tyr 

M. truncatula Medtr3g064090 
Mt_PDL

P-like9 
X X X 

pkina

se_tyr 

M. truncatula Medtr6g463660 
Mt_PDL

P-like10 
X X X  

M. truncatula Medtr1g104890 
Mt_PDL

P-like11 
X X X 

pkina

se_tyr 

M. truncatula Medtr2g088930 
Mt_PDL

P-like12 
X X X  
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M. truncatula 
Medtr8g04169

0 

Mt_PDL

P-like13 
X X X 

pkina

se_tyr 

M. truncatula 
Medtr1g10565

0 

Mt_PDL

P-like14 
X X X 

pkina

se_tyr 

M. truncatula 
Medtr1g10565

5 

Mt_PDL

P-like15 
X X X 

pkina

se_tyr 

M. truncatula 
Medtr8g04171

0 

Mt_PDL

P-like16 
X X X 

pkina

se_tyr 

M. truncatula 
Medtr2g01073

0 

Mt_PDL

P-like17 
X X X 

pkina

se_tyr 

M. truncatula 
Medtr1g10570

0 

Mt_PDL

P-like18 
X X X 

S_TY

KC 

M. truncatula 
Medtr5g06513

0 

Mt_PDL

P-like19 
X X X 

pkina

se_tyr 

M. truncatula 
Medtr1g10570

0 

Mt_PDL

P-like20 
X X X 

pkina

se_tyr 

M. truncatula 
Medtr1g10580

0 

Mt_PDL

P-like21 
X X X 

pkina

se_tyr 

M. truncatula 
Medtr5g00545

0 

Mt_PDL

P-like22 
X X X 

pkina

se_tyr 

M. truncatula 
Medtr8g02806

5 

Mt_PDL

P-like23 
X X X  

M. truncatula 
Medtr1g10586

0 

Mt_PDL

P-like24 
X X X  

M. truncatula 
Medtr1g10558

5 

Mt_PDL

P-like25 
X X X 

pkina

se_tyr 

M. truncatula 
Medtr8g04187

0 

Mt_PDL

P-like26 
X X X 

SCOP

-

BLAS

T 

M. truncatula 
Medtr1g10582

0 

Mt_PDL

P-like27 
X X X 

S_TY

KC 

M. truncatula 
Medtr5g06826

0 

Mt_PDL

P-like28 
X X X 

pkina

se_tyr 

M. truncatula 
Medtr8g04165

0 

Mt_PDL

P-like29 
X X X 

pkina

se_tyr 

M. truncatula 
Medtr3g07985

0 

Mt_PDL

P-like30 
X X X 

pkina

se_tyr 

M. truncatula 
Medtr8g04166

0 

Mt_PDL

P-like31 
X X X 

pkina

se_tyr 

M. truncatula 
Medtr1g10561

5 

Mt_PDL

P-like32 
X X X 

S_TY

KC 

A. thaliana AtPDLP_1 
 

X X X  

A. thaliana AtPDLP_2 
 

X X X  



Appendices 

189 

 

A. thaliana AtPDLP_3 
 

X X X  

A. thaliana AtPDLP_4 
 

X X X  

A. thaliana AtPDLP_5 
 

X X X  

A. thaliana AtPDLP_6 
 

X X X  

A. thaliana AtPDLP_7 
 

X X X  

A. thaliana AtPDLP_8 
 

X X X  

A. thaliana AT5G48540 
 

X  X  

A. thaliana AT1G63580.1 
 

X X X 
 

A. thaliana AT4G23140 
 

X X X 
S_TYK

C 

Picea 

sitchensis 
PsPDLP-like_1 

 
X X X  
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Appendix 4- Phylogenetic reconstruction using β-1,3-glucanases from 
GHL17 family protein sequences isolated from A. thaliana and M. 
truncatula orthologues generated by Maximum Likelihood algorithm. 
Bootstrap values for 500 repetitions are included.  
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Appendix 5- Phylogenetic reconstruction using β-1,3-glucanases from 
GHL17 family protein sequences isolated from A. thaliana and M. 
truncatula orthologues generated by Neighbour Joining algorithm. 
Bootstrap values for 500 repetitions are included. 
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Appendix 6- Phylogenetic reconstruction using CALs sequences isolated 
from A. thaliana and M. truncatula orthologues generated by 
Maximum Likelihood algorithm. Bootstrap values for 500 repetitions 
are included. 

 

 

 

 



Appendices 

193 

 

Appendix 7- Phylogenetic reconstruction using CALs sequences isolated 
from A. thaliana and M. truncatula orthologues generated by 
Neighbour Joining algorithm. Bootstrap values for 500 repetitions are 
included. 
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Appendix 8- Phylogenetic reconstruction using PDLPs sequences isolated 
and A. thaliana and M. truncatula orthologues generated by Maximun 
Likelihood algorithm. Bootstrap values for 500 repetitions are 
included. 
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Appendix 9- Phylogenetic reconstruction using PDLPs sequences isolated 
and A. thaliana and M. truncatula orthologues generated by Neighbour 
Joining algorithm. Bootstrap values for 500 repetitions are included. 
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Appendix 10- Phylogenetic reconstruction using β-1,3-glucanases from 
GHL17 family protein sequences isolated from A. thaliana and M. 
truncatula orthologues generated by Neighbour Joining algorithm in 
Newick format. Bootstrap values for 500 repetitions are included. 

((((((MtGHL17_27,MtGHL17_37)0.9120,MtGHL17_17)0.9900,(MtGHL17_16,Mt

GHL17_26)0.9980)0.9780,AT4G16260.1,(MtGHL17_24,MtGHL17_25)0.9920,(

AT3G57270.1,(AT3G57260.1,AT3G57240.1)0.5160)0.9140,((MtGHL17_20,Mt

GHL17_23)0.9560,MtGHL17_21,MtGHL17_22)0.9980,((MtGHL17_35,MtGHL1

7_40)0.9960,(AT1G77790.1,AT1G77780.1)0.8000)0.8780,(AT5G20560,(AT5G

20390,(AT5G20330,AT5G20340,AT1G33220)0.6500)0.5060)0.9960)0.5860,(((

MtGHL17_19,AT4G17180)0.7720,MtGHL17_18)0.9580,AT5G58480,MtGHL17

_30,AT5G20870,(MtGHL17_29,AT5G58090,AT4G31140.1)0.7760,(MtGHL17_

32,MtGHL17_33)0.5900,AT3G24330,AT5G64790,((AT3G04010,AT5G18220)0

.9400,(MtGHL17_28,MtGHL17_34)0.6020,(AT2G19440,AT1G64760)0.8980)0.

7460)0.9520)0.5200,(((MtGHL17_12,MtGHL17_14)0.9980,MtGHL17_10)0.624

0,(AT2G16230,AT4G34480)0.6200,AT5G42720)0.8360,(((AT2G39640,AT3G5

5430)0.5480,MtGHL17_15)0.7320,((MtGHL17_13,AT5G24318)0.9580,(MtGHL

17_31,AT3G46570)0.8440)0.5460)0.7100,((MtGHL17_9,MtGHL17_38)0.8800,

AT3G55780)0.6380,AT3G61810,MtGHL17_6,((MtGHL17_42,AT3G07320)0.61

60,(AT3G23770,AT4G14080.1)0.7420)0.7000,((MtGHL17_7,AT5G56590.1)0.5

700,AT4G29360)0.9180,((MtGHL17_3,AT1G11820)0.9820,(((MtGHL17_1,AT3

G13560)0.7160,MtGHL17_2)0.6920,(AT2G01630,AT1G66250,(MtGHL17_4,Mt

GHL17_5)0.7940)0.7480)0.6420)0.9300(((MtGHL17_11,MtGHL17_36)0.5280,

AT2G05790,PsGHL17_1)0.5900,(AT4G26830.1,AT5G55180.1)0.8900)0.8400,

((AT4G18340,AT1G30080)0.8720,AT2G27500)0.5040,(AT1G32860,AT5G421

00)0.5240,((MtGHL17_8,AT3G15800)0.9760,(AT2G26600,(MtGHL17_39,MtG

HL17_41)1.0000)0.8560)0.9900); 

Appendix 11: Phylogenetic reconstruction using β-1,3-glucanases from 

GHL17 family protein sequences isolated from A. thaliana and M. 

truncatula orthologues generated by Maximum likelihood algorithm in 

Newick format. Bootstrap values for 1000 repetitions are included.  

 

((((((((Medtr4g076470,Medtr4g076490)0.7720,(Medtr4g076430,Medtr4g07644

0)0.6860)0.9980,(Medtr4g076500,Medtr4g076570)0.7960)0.8780,AT4G16260.

1,(Medtr2g034480,(Medtr2g034470,Medtr2g034440)0.9940)0.9900)0.6960,(AT

3G57270.1,(AT3G57260.1,AT3G57240.1)0.5280)0.8580)0.9440,(((Medtr7g081

350,Medtr7g081370)1.0000,(AT1G77790.1,AT1G77780.1)0.8080)0.6980,(AT5

G20390,(AT5G20560,(AT5G20330,AT5G20340,AT1G33220)0.6780)0.6160)1.

0000)0.7380)0.5800,(((Medtr2g027560,Medtr4g134280)0.6580,AT4G17180)0.

9980,AT5G58480,AT3G24330,(Medtr4g124440,AT5G20870)0.9780,((Medtr3g

108600,AT4G31140.1)0.8680,AT5G58090)0.7920,(Medtr3g095050,Medtr8g09

2070)0.9740,AT5G64790,(Medtr7g085390,Medtr6g032820,(AT2G19440,AT1G
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64760)0.9900,(AT3G04010,AT5G18220)1.0000)0.7820)0.9840)0.7640,((Medtr

8g012400,AT3G07320)0.7200,(AT3G23770,AT4G14080.1)0.9340)0.9700,Med

tr5g015720,((Medtr5g081720,AT3G55780)0.9920,AT3G61810)0.7080,((Medtr8

g102340,AT5G56590.1)0.7160,AT4G29360)0.9960,(((Medtr8g085720,Medtr3g

083580)0.9020,AT3G13560)0.9960,((Medtr4g132280,AT1G11820)0.9980,(AT

2G01630,(AT1G66250,(Medtr5g078200,Medtr3g065460)0.6140)0.6640)0.8040

)0.7460)0.9960(((((AT2G39640,AT3G55430)0.7480,Medtr7g026340)0.8160,(M

edtr4g083500,AT3G46570)0.7120)0.7420,(Medtr1g007810,AT5G24318)0.950

0)0.9820,(AT5G42720,((Medtr4g069940,Medtr3g116510)0.9940,(AT2G16230,

AT4G34480)0.5780)0.7280)0.9800)0.5560,((((Medtr5g085580,Medtr3g080410)

0.6340,AT2G05790)0.7680,(AT4G26830.1,AT5G55180.1)0.9940)0.6040,PsGH

L17_1)0.9940,(((Medtr4g010200,AT3G15800)0.5300,(Medtr4g114850,AT2G26

600)0.9380)1.0000,((AT4G18340,AT1G30080)0.9960,(AT2G27500,(AT1G328

60,AT5G42100)0.9260)0.7420)0.6900)0.6580); 

 

 

 

 

Appendix 12 Phylogenetic reconstruction using β-1,3-glucanases from 

GHL17 family protein sequences isolated from A. thaliana and M. 

truncatula orthologues generated by Bayesian inference of phylogeny 

algorithm in Newick format. Posterior probabilities are included.  

 

[&u](((((((((('Medtr8g085720 ':0.2451718,'Medtr3g083580 ':0.3567908)100/63/-

:0.1688186,AT3G13560:0.3212505)100/85/67:0.4019434,((Medtr4g132280:0.2

86619,AT1G11820:0.1435538)100/97/98:0.4091283,(((Medtr5g078200:0.1686

494,Medtr3g065460:0.2955645)100/59/78:0.1168971,AT1G66250:0.3421259)

100/-/49:0.1123388,AT2G01630:0.3382803)100/63/77:0.1380525)100/98/-

:0.2344625)100//98:0.4327319,((Medtr8g102340:0.3794693,AT5G56590:0.338

4021)100/79/57:0.2325957,AT4G29360:0.3902925)100/99/89:0.5939619)62:0.

07911399,((Medtr5g081720:1.0579590650000001,AT3G55780:0.7397673)100

/79/72:1.098395,AT3G61810:0.9020489)100//39:0.4649695)99:0.146332,((((((

Medtr2g034480:0.593956632,AT4G16260:0.4746813)100/31/:0.2235576,(((Me

dtr4g076470:0.09123974,(Medtr4g076430:0.114744,Medtr4g076440:0.10452)

100/67/:0.09487228)87:0.08260917,Medtr4g076490:0.2599281)100/95/99:0.4

6304,(Medtr4g076500:0.4639144,Medtr4g076570:0.4951869)95/98/99:0.2281

664)99:0.3263931)77:0.2055857,(AT3G57270:0.5705425,(AT3G57260:0.4471

974,AT3G57240:0.3722345)100//50:0.2403836)99/82/92:0.2437161)100:0.482

4156,(((Medtr7g081350:0.02951908,Medtr7g081370:0.05420437)100/100/99:0

.6107463,(AT1G77790:0.5472504,AT1G77780:0.7087391)100/72/80:0.553836

7)99/79/88:0.2450762,(((AT5G20340:0.09934253,AT5G20330:0.08202446,AT
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1G33220:0.1259088)100:0.1229591,AT5G20560:0.5254377)63:0.0521365,AT

5G20390:0.2866365)100/100/100:0.9051601)100:0.2873382)100:0.3086235,((

(Medtr2g027560:0.255826,Medtr4g134280:0.2761864,AT4G17180:0.343659)1

00//22:0.5361114,(((((Medtr7g085390:0.2102179,Medtr6g032820:0.2339699)1

00/66/53:0.1272722,((AT2G19440:0.141505,AT1G64760:0.08508985)100/95/8

8:0.184707,(AT3G04010:0.1902218,AT5G18220:0.215089)100/99/94:0.25404

44)99:0.08166961)100:0.2477163,((Medtr3g095050:0.3773551,Medtr8g09207

0:0.37521)100//53:0.3190731,AT5G64790:0.7138696)100:0.2361998)100:0.15

70121,AT3G24330:0.7039902)100//22:0.1780755,(((Medtr3g108600:0.367480

3,AT4G31140:0.33413)100//43:0.1310195,AT5G58090:0.4714849)100/80/75:0

.1692552,(Medtr4g124440:0.43931,AT5G20870:0.4419246)100//26:0.3907251

)95:0.1200231)99:0.1907452)100:0.2615124,AT5G58480:0.9034783)100:0.85

10162)100:0.2121045,((Medtr8g012400:0.4214229,AT3G07320:0.4260039)10

0/75/:0.2087235,(AT3G23770:0.1573043,AT4G14080:0.3058904)100/91/:0.42

9232)100/94/:0.6324538)98:0.1636142)96:0.09895947,(((((Medtr4g010200:0.4

7522,AT3G15800:0.4021781)57/79/96:0.1401989,(Medtr4g114850:0.4785849

9000000004,AT2G26600:0.3814075)100/71/87:0.292555)100/99:0.7424901,(A

T4G18340:0.4561857,AT1G30080:0.5399337)100/91/87:0.4750784)72:0.2114

849,((AT1G32860:0.6504422,AT5G42100:0.6488768)100//50:0.2590848,AT2

G27500:0.8256317)100/39/:0.3088017)100:0.2780484,((((Medtr4g069940:0.23

5391,Medtr3g116510:0.23976077):0.2132022,(AT2G16230:0.3079788,AT4G3

4480:0.2070718)100/54/59:0.1664568)96/68:0.1046872,AT5G42720:0.792335

9)100/94/85:0.4393021,((Medtr1g007810:0.6024769,AT5G24318:0.5121537)1

00/99/95:0.197601,((Medtr7g026340:0.4511523,(AT2G39640:0.7036196,AT3G

55430:0.3514873)100/67/59:0.3203555)100/80/:0.2659633,(Medtr4g083500:0.

4171561,AT3G46570:0.5708262)100/56/:0.209823)100:0.1254081)100:0.3219

886)100:0.2772366)97:0.07885147)87:0.1228173,Medtr5g015720:2.587738)1

00:0.3620433,(((Medtr5g085580:0.2951973,Medtr3g080410:0.8314089)61//52:

0.04973965,AT2G05790:0.3423013)100//37:0.1796912,(AT4G26830:0.234361

7,AT5G55180:0.328803)100//87:0.2695614)100:0.1651451):0.20069045,'PsG

HL17 1':0.20069045):0.0;  

 

 

 

Appendix 13- Phylogenetic reconstruction using CALs sequences isolated 

from A. thaliana and M. truncatula orthologues generated by 

Neighbour Joining algorithm in Newick format. Bootstrap values for 

500 repetitions are included. 

((((((((((ATGSL3,ATGSL6)0.9570,ATGSL9)1.0000,Medtr2g061380)0.7330,(AT

GSL12,(Medtr1g116370,Medtr7g005950)1.0000)1.0000)1.0000,(ATGSL4,Medt

r2g072160)1.0000)0.9120,(Medtr3g047390,(ATGSL7,ATGSL11)1.0000)1.0000

)0.9560,(ATGSL2,(Medtr3g096200,Medtr8g093630)1.0000)1.0000)1.0000,((AT

http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr2g061380.4&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr1g116370.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr7g005950.2&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr2g072160.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr2g072160.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr3g047390.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr3g096200.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr8g093630.1&type=subject


Appendices 

199 

 

GSL10,Medtr1g116470)1.0000,(ATGSL8,(Medtr3g075180,Medtr3g075180)1.0

000)1.0000)1.0000)1.0000,(ATGSL1,Medtr2g013580)0.9990)0.9970,ATGSL5,(

Medtr4g078220,Medtr2g090375)0.6640); 

 

Appendix 14-Phylogenetic reconstruction using CALs sequences isolated 

from Arabidopsis thaliana and M. truncatula orthologues generated 

by Maximum Likelihood algorithm in Newick format. Bootstrap values 

for 500 repetitions are included. 

((((((((Medtr4g078220,Medtr2g090375)0.6500,ATGSL5)1.0000,(ATGSL1,Medtr

2g013580)0.9800)1.0000,((ATGSL10,Medtr1g116470)1.0000,(ATGSL8,(Medtr

3g075180,Medtr3g075180)1.0000)1.0000)1.0000)1.0000,(ATGSL2,(Medtr3g09

6200,Medtr8g093630)1.0000)1.0000)0.6820,(Medtr3g047390,(ATGSL7,ATGS

L11)1.0000)1.0000)0.7120,(ATGSL4,Medtr2g072160)1.0000)1.0000,(Medtr2g0

61380,(ATGSL9,(ATGSL3,ATGSL6)1.0000)1.0000)0.6020,(ATGSL12,(Medtr1

g116370,Medtr7g005950)1.0000)1.0000); 

 

 

Appendix 15- Phylogenetic reconstruction using CALs sequences isolated 

from Arabidopsis thaliana and M. truncatula orthologues generated 

by Bayesian inference of phylogeny algorithm in Newick format. 

Posterior probabilities are included. 

(ATGSL1:0.300099,Medtr2g013580:0.2351849,((((ATGSL2:0.1427671,(M

edtr3g096200:0.08205553,Medtr8g093630:0.1094132)100:0.0528233)10

0:0.2121195,(((((ATGSL3:0.04095976,ATGSL6:0.04348255)99:0.017229

26,ATGSL9:0.4151319):0.09709551,Medtr2g061380:0.1796305)100:0.05

406835,(ATGSL12:0.09537064,(Medtr1g116370:0.06044139,Medtr7g005

950:0.07479403)100:0.04659432)100:0.04479113)100:0.2161742,((ATG

SL4:0.2106318,Medtr2g072160:0.3375866)100:0.4615765,((ATGSL7:0.1

735286,ATGSL11:0.1984245)100:0.1139442,Medtr3g047390:0.2776077)

100:0.3558181)100:0.08466711)100:0.1098251)100:0.3509958,((ATGSL

8:0.184856,(Medtr3g075180:6.905382E4,Medtr3g075180:0.0147327)100:

0.1521995)100:0.1856737,(ATGSL10:0.1744449,Medtr1g116470:0.16185

75)100:0.2274695)100:0.6504952)100:0.692501,(ATGSL5:0.2490029,(M

edtr4g078220:0.1006829,Medtr2g090375:0.2317417)100:0.05144233)10

0:0.0642969)100:0.09835613); 

 

Appendix 16- Phylogenetic reconstruction using PDLPs sequences 

isolated and A. thaliana and M. truncatula orthologues generated by 

Neighbour Joining algorithm in Newick format. Bootstrap values for 

500 repetitions are included. 

http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr1g116470.3&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr3g075180.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr3g075180.2&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr2g013580.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr4g078220.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr2g090375.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr4g078220.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr2g090375.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr2g013580.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr2g013580.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr1g116470.3&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr3g075180.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr3g075180.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr3g075180.2&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr3g096200.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr3g096200.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr8g093630.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr3g047390.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr2g072160.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr2g061380.4&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr2g061380.4&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr1g116370.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr1g116370.1&type=subject
http://blast.jcvi.org/Medicago-Blast/getSeq.cgi?db=annotation_dbs/Mt4.0v1_GenesProteinSeq_20130731_1800.fasta&id=Medtr7g005950.2&type=subject
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(((((((((((((((Medtr1g105700,Medtr1g105800)0.6200,Medtr1g105820)0.486

0,Medtr5g065130)0.6560,Medtr5g068260)0.4440,(Medtr1g105700,Medtr1

g105860)0.5320)0.9920,AT4G23140)0.1890,((Medtr1g105585,Medtr3g07

9850)0.8430,(Medtr1g104890,(Medtr1g105615,(Medtr1g105650,(Medtr6g

463660,Medtr8g0280650.8690)0.5710)0.8900)0.2310)0.0550)0.0550,(AT

1G63580.1,(Medtr1g105655,(Medtr5g005480,Medtr5g005450)0.9860)0.5

860)0.1800)0.2340,(Medtr8g041650,(Medtr8g041690,(Medtr8g041710,(M

edtr8g041660,(Medtr2g010730,Medtr8g041870)0.9800)0.7220)0.8350)0.

7810)0.9990)0.3690,Medtr5g0055300.1870,(Medtr2g088930,AT5G48540

)0.3550)0.8530,Medtr3g064090)0.5940,(Medtr7g098410,(AtPDLP1,((Med

tr1g080350,AtPDLP4)0.7350,(Medtr1g073320,(AtPDLP2,AtPDLP3)0.985

0)0.7890)0.6720)0.4360)1.0000)0.3120,(AtPDLP8,(AtPDLP5,((Medtr8g10

4990,AtPDLP6)0.2950,(Medtr3g0653706,(Medtr5g078030,AtPDLP7)0.39

40)0.4930)0.9250)0.7300)0.5500)0.0000,PsPDLP-like_1); 

 

 

 

 

Appendix 17- Phylogenetic reconstruction using PDLPs sequences 

isolated and A. thaliana and M. truncatula orthologues generated by 

Maximun Likelihood algorithm in Newick format. Bootstrap values for 

500 repetitions are included. 

((((((((((((((((Medtr1g105700,Medtr1g105800)0.5220,Medtr1g105820)1.00

00,Medtr5g068260)0.8450,Medtr5g065130)0.8310,Medtr1g105860)0.626

0,Medtr1g105700)0.9890,(Medtr1g105585,Medtr3g079850)0.8290)0.2130

,(AT4G23140,(Medtr1g104890,(Medtr1g105615,(Medtr1g105650,(Medtr6

g463660,Medtr8g028065)0.6600)0.8840)0.9860)0.8470)0.3150)0.1720,(

Medtr1g105655,(Medtr5g005480,Medtr5g005450)1.0000)0.5890)0.2240,(

Medtr5g0055308,(Medtr2g088930,AT5G48540)0.6560)0.5110)0.3850,(M

edtr8g041650,(Medtr8g041690,(Medtr8g041710,(Medtr8g041660,(Medtr2

g010730,Medtr8g041870)1.0000)0.5390)0.4610)0.9770)1.0000)0.3350,A

T1G63580.1)0.9500,(Medtr3g064090,((Medtr1g080350,AtPDLP4)0.7090,(

Medtr7g098410,(AtPDLP1,(Medtr1g0733201,(AtPDLP2,AtPDLP3)0.9950)

1.0000)0.5640)0.9750)0.9980)0.5400)0.8170,AtPDLP8)0.6460,(AtPDLP5,

((Medtr8g104990AtPDLP6)0.6710,(AtPDLP7,(Medtr5g078030,Medtr3g06

5370)0.5910)0.8300)0.9570)0.9760)0.0000,PsPDLP-like_1); 
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Appendix 18- Phylogenetic reconstruction using PDLP sequences isolated 

from Arabidopsis thaliana and Medicago truncatula orthologues 

generated by Bayesian inference of phylogeny algorithm in Newick 

format. Posterior probabilities are included. 

(((((('Medtr1g073320':0.1893951,(AtPDLP2:0.0959477,AtPDLP3:0.1349284)10

0:0.158642):0.2201806,('Medtr7g098410':0.3667274,AtPDLP1:0.3786872

)100:0.1731097):0.1806229,('Medtr1g080350:0.6704144,AtPDLP4:0.7200

153)99:0.2160614):0.4970965,(((((((('Medtr5g005480':0.3348081,'Medtr5

g005450':0.3540556)100:0.302001,(('Medtr1g105585':0.5943211,'Medtr3

g079850':0.6772901)62:0.05071878,AT163580.1:1.361351)99:0.0828642

9)99:0.06504876,'Medtr1g105655':0.5519695)91:0.05710796,(((('Medtr6g

463660':0.5076711,'Medtr8g028065':0.5674215)100:1.098892,'Medtr1g10

5615':0.4537923)84:0.08441025,'Medtr1g105650':0.2841128)95:0.15523

4,'Medtr1g104890':0.4570452,AT4G23140:0.5949421)95:0.08568302)99:

0.08738445,('Medtr1g105700':0.6449607,'Medtr5g065130':0.4414775,((('

Medtr1g105700':0.156555,'Medtr1g105800':0.1027344)100:0.04706876,'

Medtr1g105820':0.03606886)100:0.2648813,'Medtr5g068260':0.3839742)

53:0.03899846,'Medtr5g068260':1.991098)100:0.30058)100:0.1232128,(('

Medtr5g005530':0.7668514,'Medtr2g088930':0.6599428)51:0.07224065,((

(('Medtr8g041690':0.2992259,'Medtr8g041710':0.1956196)100:0.0693817

6,'Medtr8g041660':0.2045865)100:0.04653429,('Medtr2g010730':0.10027

43,'Medtr8g041870':0.3639162)100:0.1363752)100:0.2201923,'Medtr8g0

41650':0.4317114)100:0.3699142)81:0.1310593)91:0.1359005,AT5G485

40:0.8828821)99:0.1948364,'Medtr3g064090':1.273588):0.3984391):0.18

14648,(((('Medtr8g104990':0.3255435,AtPDLP6:0.2706075)99:0.0934141

7,(('Medtr5g078030':0.284187,'Medtr3g065370':0.2953186)100:0.149804

8,AtPDLP7:0.2948461)100:0.1451248)98:0.1163457,AtPDLP5:0.5568149

)100:0.2842443,AtPDLP8:0.5789527)84:0.1427195):0.28969,'PsPDLP-

like 1':0.28969):0.0; 
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