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ABSTRACT 

Merkel cell carcinoma (MCC) is an aggressive skin cancer of neuroendocrine origin 

with a high propensity for metastasis via the dermal lymphatic system. In 2008, 

Merkel cell polyomavirus (MCPyV) was discovered monoclonally integrated within 

the host genome of at least 80% of MCC tumours. MCPyV transforms and 

maintains MCC tumours via the expression of the large and small tumour (LT and 

ST) antigens. Unlike other polyomaviruses, MCPyV ST is thought to be the major 

viral transforming factor required for MCC development. Since the discovery of 

MCPyV, a number of novel functions for ST have been identified which contribute to 

tumourigenesis, but to date, little is known about potential links between MCPyV T 

antigen expression and the highly metastatic nature of MCC.  

Previously, the Whitehouse Laboratory have demonstrated the ability of MCPyV ST 

to enhance cell motility and migration, suggesting a potential role of MCPyV ST in 

the highly metastatic nature of MCC. In this thesis, the link between MCPyV ST and 

MCC metastasis is further explored by focusing on the role of MCPyV ST in 

promoting early events of initiating cell migration and metastatic spread. Results 

show that MCPyV ST expression disrupts the integrity of cell-to-cell junctions, 

thereby enhancing cell dissociation and scatter. Moreover, the functional 

requirement of cellular sheddases is highlighted in this process, specifically the A 

disintegrin and metalloproteinase (ADAM) 10 and 17 proteins. These findings 

therefore suggest MCPyV ST-mediated cell surface accumulation of cellular 

sheddases play a role in the highly metastatic nature of MCC and may also provide 

novel therapeutic interventions for disseminated MCC.  

Furthermore, results explore he potential of MCPyV ST to initiate an Epithelial to 

mesenchymal transition [EMT]. In addition to disruption of the cell junctions, other 

hallmarks of EMT are examined including loss of apical to basal polarity, expression 

of EMT associated Transcription factors and upregulation of Matrix 

metalloproteinases. Results show that MCPyV ST expression leads to phenotypic 

changes suggestive of characteristic EMT mechanisms which may further 

contribute to the metastatic spread associated with MCC. 
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1.1 Viruses and Cancer  

Cancer accounts for approximately 13% of worldwide deaths, with mortality rates 

higher than AIDs, Malaria and Tuberculosis combined. As such, it is a growing 

cause for public concern resulting in massive economic burden due to prevention 

management and treatment costs (Mathers and Loncar 2006). In 2010 alone, the 

associated cost of cancer care in the United states was $124.57 billion, which is 

estimated to grow to $157.77 billion in 2020 (Mariotto et al. 2011). Notably, by 

2040, almost a quarter of people aged 65 are predicted to be cancer survivors  (de 

Martel et al. 2012).  

There are numerous causes of cancer, among them, viruses and other etiological 

agents. Approximately 10-15% of human cancers worldwide are linked to human 

tumour virus infection, with majority of the cases [80%] occurring in developed 

countries (Mesri et al. 2014). Thus, there is a clear role for viruses in the global 

burden of cancer. However, although there is a high incidence rate, suitable 

antiviral vaccines or other antiviral therapies are limited (zur Hausen 2009). Of the 

vast majority of new human tumour virus linked cancer cases, approximately 1.9 

million, worldwide are due to either Hepatitis B and C viruses or human 

papillomavirus [HPV] resulting in mainly liver, cervix/uteri or gastric cancers (de 

Martel et al. 2012).  

The concept of tumour virology began with Peyton Rous in 1911, upon the 

discovery of an avian virus that induced tumours in chickens (Young and Rickinson 

2004). In a seminal experiment, Rous infected a healthy chicken with filtered cell-

free extract form spindle cell tumour cells acquired from a Plymouth Rock Chicken. 

Results showed that the cancer could be transmitted through cell-free tumour 

extracts, signifying that cancer can be caused by a small transmissible agent 

(Padgett et al. 1971; Javier and Butel 2008). It is now known that multiple viruses 

express oncogenes which induce cell growth and hyperproliferation (Moore and 

Chang 2010). They can also modify and inhibit tumour suppressor genes that inhibit 

cell growth (Nakamura et al. 2001). Both of these mechanisms can lead to 

unregulated cell growth and cancer development. 

To date, seven human tumour viruses have been identified [Table 1.1].  Human 

DNA tumour viruses belong to the virus families Herpes, Hepadna, and also 

Papilloma and Polyomaviridae. Specifically, there are five human DNA viruses, two 

members of the Herpes family, Epstein Barr Virus [EBV or HHV4] and Kaposi’s 

sarcoma-associated herpesvirus [KSHV]. High- risk human papilloma viruses [HPV] 
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16 and 18, Merkel cell polyomavirus [MCPyV] and Hepatitis B virus [HBV] (Moore 

and Chang 2010). There are two additional human RNA tumour viruses, Hepatitis C 

virus [HCV] of the flavivirdae family and Human T-lymphotropic virus-I [HTLV-I] of 

the Retroviridae family. As previously stated Retroviruses were initially determined 

to be the tumour inducing agent associated with the first discovered oncogenic 

virus, Rous Sarcoma Virus [RSV] (Moore and Chang 2010). 
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Table 1. 1: Summary of Human Tumour Viruses 

ss: single-stranded, ds: double stranded, (+): positive strand  

 

1.2  Polyomaviruses    

Polyomaviruses are small non-enveloped, double-stranded DNA viruses which 

infect a diverse group of hosts, ranging from mammals and birds. They are very 

species specific in the sense that they only infect the species from which they were 

isolated. The first isolated polyomavirus was Murine Polyomavirus [MPyV], 

characterized in 1958, after the observation that filterable extracts from murine 

Full Name Year of 
discovery 

Family and 
genome 

Oncogenes Cancer 
Association 

Epstein-Barr 
Virus [EBV] 

1964 Herpesviridae 

dsDNA 

LMP1 Including 
Burkitt’s 
lymphoma, 
nasopharyngea
l carcinoma, 
and some other 
lymphoprolifera
tive disorders  

Hepatitis B virus 
[HBV] 

1965  

 

Hepadnaviridae 

ssDNA and 
dsDNA 

HBx Some 
hepatocellular 
carcinomas 

Human T-
lymphotropic 
virus-I [HTLV-I] 

1980 

 

Retroviridae 

ssDNA and 
dsDNA 

Tax Adult T cell 
leukaemia 

Human 
papillomaviruses 
[HPV] 16 and 18  

1983-1984 

 

Papillomavirida
e 

dsDNA 

E5, E6, E7 Most cervical 
cancer and 
penile cancers.  

Hepatitis C virus 
[HCV] 

1989 Hepaciviridae 

[+]ssRNA 

NS5A Some 
hepatocellular 
carcinomas and 
lymphomas 

Kaposi’s 
sarcoma 
herpesvirus 
[KSHV] 

1994 

 

Herpesviridae 

dsDNA 

LANA, vflip, 
and vBcl-2, 
among 
others 

Kaposi’s 
sarcoma and 
primary 
effusion 
lymphoma  

Merkel Cell 
Polyomavirus 
[MCPyV] 

2008 Polyomaviridae 

dsDNA 

T antigens Most Merkel 
cell carcinomas  
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leukaemia could induce tumours in the parotid-gland of neonatal mice (Stewart et 

al. 1958).  

This discovery was followed up two years later, by the identification of Simian Virus 

40 [SV40], isolated from African green monkey kidney cells, which were used in the 

production of the polio vaccine (Sweet and Hilleman 1960; Pipas 2009). Murine 

Polyomavirus and Simian Virus 40 have since served as excellent models for 

investigating polyomavirus replication strategies and how this family of viruses 

cause disease (Stewart et al. 1958; Sweet and Hilleman 1960). Historically, 

polyomaviruses were classified together with papillomaviruses into the papova virus 

family, however, the 7th International Committee on Taxonomy of Viruses [ICTV] 

report published in 2001 reclassified Polyomavirus into a distinct family, termed 

polyomaviridae (Imperiale 2001; Gjoerup and Chang 2010). 

 

1.2.1 Classification of Polyomavirus  

The family of Polyomaviridae are separated into three distinct genera: 

Orthopolyomavirus and Wukipolyomavirus which represent mammalian virus 

species and Avipolyomavirus for bird virus species (Gjoerup and Chang 2010). The 

phylogenetic relationship among polyomaviruses based on whole genomic 

nucleotide sequences can be observed in Figure 1.1. The most obvious difference 

between the genera is the host and cell specificity. Avian polyomaviruses have a 

broad host range. Whereas, their mammalian polyomavirus counterparts have a 

narrow host and cell specificity (Johne and Muller 2007; Gjoerup and Chang 2010; 

Halami et al. 2010). 
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Figure 1. 1: A phylogenetic tree of polyomaviruses developed by analysing whole 
genome sequences. Three large groups are distinguished: Wukipolyomaviruses, 
Avipolyomaviruses and Orthopolyomaviruses. 

 

1.2.2 Human Polyomaviruses 

Thirteen human polyomaviruses have been discovered to date, eleven since 2011 

(White et al. 2013). This explosion in identification is mainly due to improved 

identification technologies such as next generation sequencing and Digital 

transcriptome subtraction.  

 

1.2.2.1 JCPyV 

John Cunningham virus [JCPyV] was initially isolated from the brain of a 

progressive multifocal leukoencephalopathy [PML] patient in 1971  (Padgett et al. 

1971). JCPyV is a pervasive virus capable of infecting nerve cells (Bellizzi et al. 

2013). Approximately 50-90% of adults have been exposed to JCPyV, with a 

quarter of that subpopulation shedding JCPyV in their urine (L'Honneur and 

Rozenberg 2016). JCPyV is a ubiquitous polyomavirus that does not maintain 

exclusive tropism for a single cell type within its host, unlike others. Principally, 
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JCPyV is found within oligodendrocytes but is also found within tissue of the urinary 

tract, spleen as well as bone marrow (Kean et al. 2009).   

JCPyV infects 35-70% of the global population asymptomatically (Egli et al. 2009). 

The virus is predominant in urban sewage systems inferring that the virus is 

contracted and disseminated through the fecal-oral route (Boothpur and Brennan 

2010). The initial site of infection is in the tonsils, while it propagates and replicates 

within lymphoid cells followed by infection in the gastrointestinal tract and kidneys, 

where it establishes a latent infection (Maginnis et al. 2015). JCPyV has also been 

shown to induce human and rodent cell transformation in vitro and in animal 

models, however this phenotype has only been observed in neural cells and 

interestingly neural cells are non-permissive for JCPyV infection (Gjoerup and 

Chang 2010).  

 

1.2.2.2 BKPyV 

BK polyomavirus [BKPyV] was initially identified in 1971 by electron microscopy 

examination of urine from a renal allograft patient (Gardner et al. 1971). Although 

the transmission route associated with BKPyV infection has not been determined, 

healthy and diseased individuals infected with BKPyV transiently shed virus that 

can be detected in various bodily fluids such as urine, blood and faeces. However 

the most likely route of infection is believed to be via the respiratory tract 

(Bialasiewicz et al. 2009) BKPyV has also been suggested to be sexually 

transmitted, as it has been detected in 95% of sperm samples, although this theory 

has been quickly disregarded due to the high rates of infection in children (Shah et 

al. 1973).   

As a result of the increase in organ transplantation, as well as a growing 

dependency on the utilisation of immunosuppressant drugs, the reported incidence 

of disease caused by BKPyV is increasing.  Almost 10% of all renal allografts 

present symptoms of BK-associated nephropathy [BKVAN], with 50-90% of affected 

patients reported to eventually experience graft dysfunction or failure (van Doesum 

et al. 2014).   
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1.2.2.3 Other Human Polyomaviruses 

Since the initial discovery of JCPyV and BKPyV, numerous other human 

polyomaviruses have been readily discovered including Washington University 

polyomavirus [WUPyV] and Karolinska Institute polyomavirus [KIPyV] in 2007. 

Notably, due to the advantages of detection technologies, such as next generation 

sequencing and digital transcript subtraction, more polyomaviruses have been 

discovered in the last few years. As such the study of human polyomaviruses and 

its association with human pathology has again become a major research area. 

Importantly, some human polyomavirus encoded proteins have been linked with 

transforming capabilities in cell culture and animal models suggest they are 

tumourigenic. This is typified in the study of Merkel Cell Polyomavirus, which was 

isolated from patients with Merkel cell carcinoma (Feng et al. 2008).  

Other diseases associated with human polyomavirus are renal infections and 

Trichodysplasia spinulosa (Gjoerup & Chang, 2010; Johnson, 2011). To date 

however, only a subset have been associated with any disease. 13 polyomaviruses 

found in humans are listed in Table 1.2.  
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Table 1. 2: The 13 polyomaviridae members that infect humans and their 
associated clinical complications as a result of their infection. Adapted from 
DeCaprio & Garcia, 2013. 

Full name Host Year of 
discovery 

Disease association  

John Cunningham virus 
[JCPyV] 

Human 1971 Progressive multifocal 
leukoencephalopathy 
[PML]  

BK Polyomavirus 
[BKPyV] 

Human 1971 Polyomavirus associated 
nephropathy [PVAN]/ 
Renal transplant failure/ 
Hemorrhagic cystitis  

Karolinska Institute 
Polyomavirus [KIPyV] 

Human 2007 None 

Washington University 
Polyomavirus [WUPyV] 

Human 2007 None 

Merkel Cell 
Polyomavirus [MCPyV] 

Human 2008 Merkel Cell carcinoma 

Human Polyomavirus-6 
[HPyV6] 

Human 2010 None 

Human Polyomavirus-7 
[HPyV7] 

Human 2010 HPyV associated 
epidermal hyperplasia and 
pruritus 

Trichodysplasia 
spinulosa-associated 
Polyomavirus [TSPyV] 

Human 2010 Trichodysplasia spinulosa/ 
Pilomatrix dysplasia 

Human Polyomavirus-9 
[HPyV9] 

Human 2011 None 

Malawi Polyomavirus 
[MWPyV] 

Human 2012 None 

St. Louis Polyomavirus 
[STLPyV] 

Human 2012 None 

New Jersey 
Polyomavirus [NJPyV] 

Human 2013 None 

Human Polyomavirus-12 
[HPyV12] 

Human 2013 None 

J. C. and B. K.: patient initials, PML: progressive multifocal leukoencephalopathy, KI: 
Karolinska Institute, WU: Washington University, St. Luis, TS: trichodysplasia 
spinulosa, MW: Malawi, STL: St Louis, NJ: New Jersey. Modified from (DeCaprio and 
Garcea 2013). 
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1.2.3 SV40 Polyomavirus  

SV40 serves as a model for understanding polyomavirus DNA structure, replication 

and transcription. SV40 naturally infects wild rhesus macaques in a similar method 

to JCPyV infection in humans (Dang et al. 2008). This generally results in an 

asymptomatic infection, however under immunosuppression, a demyelinating 

disease manifests, similar to PML (Horvath et al. 1992; Axthelm et al. 2004; Dang 

et al. 2008).  

SV40 Small T and Large T antigens are oncogenic proteins and have transforming 

properties, which enhances stimulation of cell division and apoptosis prevention. 

This results in optimisation of the cell cycle driving it into S-phase, which creates an 

ideal environment for viral replication. The study of the SV40 oncogenic proteins 

potentially serves as a model for studying the oncogenicity of Merkel cell 

polyomavirus T antigens.  The SV40 Large T [LT]  antigen is deduced to be the 

major oncogenic protein involved in the formation of new and abnormal growth of 

tissue, while ST is believed to enhance the oncogenic and transformative 

advancement in SV40  (Noda et al. 1987).    

 

1.2.3.1 Genome organization 

The Polyomavirus genome is contained within a non-enveloped icosahedral capsid 

comprising 40-45 nm in size (Gjoerup and Chang 2010). The polyomavirus genome 

comprises approximately 5,000 base pair of circular double-stranded DNA. The 

genome can be divided into three functional regions, comprising a non-coding 

control region [NCCR] bordered by an early gene region and a late gene region. 

The NCCR contains the early and late promoters, their transcription start-sites as 

well as the origin of replication. Figure 1.2 shows the generalised polyomavirus 

genome.  
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Figure 1. 2: A generalised polyomavirus genome, including the non-coding control 
region, the early gene region and the late gene region. The early gene region commonly 
encodes LT, ST, and at least one alternative T antigen product (LT’). The late gene region 
encodes VP1, VP2 and VP3. Taken from (De Gascun and Carr 2013). 

 

The early region encodes regulatory proteins that are involved in DNA replication 

and gene expression. It encodes multiple open reading frames from a single 

transcript, due to alternative splicing events yielding the Small Tumour antigen [ST] 

and the Large Tumour antigen [LT]. In addition, some polyomaviruses have 

additional alternatively spliced LT transcripts, referred to as LT’ or known as 57kT in 

MCPyV (Moens et al. 2011). Interestingly, the MCPyV early region has also been 

found to encode an alternative Large T open reading frame [ALTO] transcript 

(Joseph J. Carter et al. 2013).  

Moreover, the newly-discovered STLPyV may also express a unique T antigen 

identified as 229T. This is a third early transcript that shares the first 190 residues 

of small T antigen with an additional 39 residues from an alternative reading frame 

of LT (Lim et al. 2013). Importantly, human polyomaviruses do not encode a middle 

T antigen, which is present in other mammalian polyomaviruses, such as MPyV 

(Noda et al. 1987). The late coding region encodes capsid proteins essential for the 

formation of non-enveloped icosahedral virions. These structural proteins are VP1, 

VP2 and VP3 (Boothpur and Brennan 2010; Gjoerup and Chang 2010). 
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SV40 also encodes an additional viroporin, termed VP4 (Raghava et al. 2011). The 

reading frames of VP2, VP3 and VP4 are identical, but translation starts at 

successive initiating AUG codons (DeCaprio and Garcea 2013). In addition, certain 

polyomavirus late regions also encode the agno protein, as small protein of 

unknown function (Safak et al. 2001).  

 

1.2.3.2 Polyomavirus life cycle 

The life cycle of the polyomaviruses has been well characterized, using SV40 as a 

model. A generalized life cycle is summarized in Figure 1.3.  

 

 

Figure 1. 3: The life cycle of polyomaviruses. This figure shows the essential steps in 
polyomavirus replication, described in Section 1.2.3.2 Taken from (Knipe, Howley et al. 
2006). 

 

To infect an animal cell, a virus initially binds to specific receptor molecules on the 

cell surface. SV40 entry is mediated by attachment to sialic acid moieties on the cell 

surface. The ganglioside GM1 is a crucial cell surface receptor essential for SV40 

entry however, studies have shown that attachment to the major histocompatibility 

complex [MHC] can also induce cell attachment and entry (Stakaityte et al. 2014). 

Furthermore, MPyV and BKPyV bind to sialylated glycans, e.g. GT1B while JCPyV 

is tropic for α-2-6-linked sialic acids (Crandall et al. 2006; Moens et al. 2007).  

Polyomaviruses enter the cell through endocytosis, but this mechanism varies 
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between polyomaviruses. SV40 entry for example is entirely dependent on 

caveolin-mediated endocytosis. Subsequent to entry, the virus is transported to the 

nucleus in order to replicate its DNA. Studies have demonstrated the VP1 structural 

protein contains a nuclear localisation signal [NLS] which allows for binding of 

cellular importins and entry into the nucleus via the nuclear pore complex [NPC] 

(Qu et al. 2004).  

Polyomavirus DNA is transcribed and replicated within the host cell nucleus. 

Subsequent to entry into the nucleus and uncoating, the early gene region is 

transcribed, with SV40 LT functioning to transactivate the early promoter region, as 

well as binding to the origin of replication to promote the replication of the viral 

genome (Jat et al. 1986). Polyomavirus transcription, translation, and replication is 

contingent on the host cell machinery, including proteins expressed only during the 

S-phase and consequently both LT and ST promote entry of the host cell into S-

phase (Chowdhury et al. 1990). 

Once a sufficient concentration of LT is reached, it functions to inhibit the activity of 

the early promoter and alternatively activates the late promoter to drive the 

assembly of the structural proteins (Bikel and Loeken 1992). Once synthesis of 

structural proteins occurs, they are imported back into the nucleus, where virion 

assembly takes place. Virion assembly occurs by addition and organization of the 

capsid proteins around the viral minichromosome rather than incorporation of viral 

DNA into pre-formed capsids. Every VP1 pentamer binds to a molecule of either 

VP2 or VP3 as a result of strong hydrophobic interactions, suggesting that VP15 - 

VP2/3 are the building blocks for SV40 capsids (Chen et al. 1998; Gordon-Shaag et 

al. 2002).   

 

1.2.3.4 SV40 early proteins  

All polyomaviruses encode the regulatory LT and ST antigens. These T antigens 

function as transacting factors essential for viral replication. It has also been 

demonstrated that the T antigens are oncogenic proteins, with the ability to 

transform cells in vitro and in mouse models (Sugano et al. 1982; Chang et al. 

1985; Gordon et al. 2000; Hahn et al. 2002). Aberrant cell cycle stimulation is the 

major driving force behind T antigen-mediated cellular transformation. 

Polyomaviruses do not encode all of the required replicative proteins, as such the 
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early proteins drive S-phase entry in host cells to promote DNA replication (White 

and Khalili 2004).  

In non-permissive cells, cellular transformation is induced by the viral T antigens as 

a result of the host cell not providing the essential resources for viral replication. 

This is deduced by the lack of late gene expression or viral DNA replication in 

viruses containing mutations in the T antigen (Yang et al. 1991). The molecular 

mechanisms by which polyomavirus early proteins contribute to cellular 

transformation and anchorage independent growth will be discussed in later 

sections.  

 

1.2.3.4.1 Small Tumour Antigen  

1.2.3.4.1.1 Structure and domains 

The coding region of ST comprises 500 base pairs [bp] in length, encoding a 17 

kDa protein of 170 amino acids. ST can localize to both the nucleus and cytoplasm, 

and is highly conserved across Polyomavirus species. For example, JCPyV shares 

96% sequence homology with BKPyV ST and 79% identity with SV40 ST (Moens et 

al. 2007).  

 

Figure 1. 4: Schematic representation of polyomavirus ST. The DNAJ domain is found 
in the common region, which runs between amino acids 1-~90. The common region also 
contains a conserved Cr1 domain. The unique region contains a PP2A binding domain and 
two cysteine rich clusters which enable Zinc binding. Taken from (Kamel Khalili et al. 2008). 

 

The common region, containing the DNAJ domain is located at the N-terminus of all 

T antigens and is believed to have similar functions within host cells. The DNAJ 

domain has a conserved Cr1 domain and binding domain for the cellular heat shock 

protein, Hsc70. Hsc 70 functions as a chaperone protein to prevent protein 

aggregation during viral invasion and stress as shown in Figure 1.4 (Liu et al. 
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2012).  

The middle and C-terminal portions of each ST mRNA are unique from LT mRNA, 

produced by alternative splicing. Hence, functions associated with the J domain are 

ascribed to all T antigens, whereas the remaining C-terminal amino acids form the 

‘unique’ ST regions. Notably, ST unique regions contain a binding domain for the 

major cellular phosphatase, PP2A and a zinc binding domain. The alignment of 

MPyV, BKPyV, JCPyV and SV40 ST amino acid sequences has shown the N-

terminal region is highly conserved, while the middle and C-terminal portions show 

more variation (Kamel Khalili et al. 2008). Current assumption is that the variation 

within the middle/C-terminal regions allows for alternative roles for each individual 

polyomavirus ST, such as mediating virus replication or host cell transformation. 

 

1.2.3.4.1.2 ST interaction with PP2A 

Protein Phosphatase 2A, PP2A, is the major cellular serine/threonine phosphatase. 

The interaction between polyomavirus ST and PP2A is considered to be the major 

role of the viral ST protein (Axthelm et al. 2004). PP2A is a heterotrimeric 

holoenzyme, composed of three subunits with different functional roles. Subunit A 

which is approximately 65 kDa functions as a scaffold protein and its C- terminus 

binds the 32 kDa Subunit C. Subunit C acts as the catalytically active phosphatase 

and together, with Subunit A, form the core heterodimer (Rodriguez-Viciana et al. 

2006a). Subunit B allows for the regulatory specificity of this complex and its 

binding results in the major cellular form of PP2A as a heterotrimeric complex as 

shown in Figure 1.5. Binding occurs via the Subunit B N-terminus which directly 

binds Subunit A (Silverstein et al. 2002). There are multiple B subunits all with 

variability within the N-terminal region, allowing for distinct substrate specificity 

(Janssens and Goris 2001).  
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Figure 1. 5: Inactivation of PP2A by ST.  ST binds to the A subunit and replaces the B 
subunit inactivation PP2A function to its substrates. Adapted from (Kamel Khalili et al. 
2008).  

 

As a result of the diverse range of possible substrates, PP2A is a vital regulator of 

multiple downstream signaling pathways and can influence signal transduction, cell 

cycle regulation, apoptosis and proteolysis pathways (Mumby 2007).  Deregulation 

of this system has been linked to numerous disorders and cancer types, and is an 

important cellular regulator through which ST can subvert multiple cellular 

pathways.  

 The PP2A A subunit is present as two isoforms within the cell – PP2A Aα and 

PP2A Aβ. Interestingly SV40 ST has only been shown to interact with the Aα 

subunit not Aβ, whereas other polyomavirus ST proteins, such as MPyV, have been 

shown to interact with both isoforms (Zhou et al. 2003). Crystallisation studies have 

demonstrated that the SV40 ST Unique region and J domain are essential for ST 

binding to PP2A as shown in Figure 1.6 (Zhou et al. 2003). Both SV40 and JCPyV 

ST have been revealed to directly interact and bind the Aα subunit and through this 

interaction ST is able to make contact with the C subunit (Yeh et al. 2004).  
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Figure 1. 6: SV40 ST binding of PP2A. Small T antigen binds directly to both the A and C 
subunit of PP2A Taken from (DeCaprio and Garcea 2013). 

 

Studies have demonstrated that the SV40 ST-PP2A binding site overlaps the B 

subunit binding site, indicating that ST acts as a competitive inhibitor and competes 

with B subunits for A subunit binding (Ruediger et al. 1994). SV40 ST has been 

shown to hinder the action of PP2A in vitro and in vivo, as well as inhibit binding of 

multiple different substrates to PP2A (Yu et al. 2001).   

There were currently two distinct theories to explain the manner by which 

downstream pathways are regulated by the PP2A complex upon destabilization by 

the ST antigen. The first is that ST may function as a negative inhibitor of the PP2A 

complex and competitively substitute the B subunit, thus impeding 

dephosphorylation of specific downstream cellular targets. The second theory is 

that ST can facilitate the selection of specific substrates and relay PP2A activity to 

alternative cellular targets. Interestingly, polyomavirus ST proteins has been shown 

to act by both mechanisms. For example, SV40 ST is capable of increasing PP2A 

mediated histone H1 dephosphorylation, while inhibiting dephosphorylation by 

PP2A of various other substrates, like relA (Sugano et al. 1982; Yang et al. 1991).  

 

1.2.3.4.1.3 ST and Viral Life cycle 

MPyV and SV40 ST proteins also have in vitro transregulatory activity on promoters 

transcribed by RNA polymerases II and III (Bikel and Loeken 1992; Cicala et al. 

1994). This suggests that ST targets and stimulates cellular promoters essential for 

efficient virus replication. Moreover, mutations which render SV40 ST 

transregulatory-defective display significantly slower growth in tissue culture 

compared to wild type viruses (Sugano et al. 1982; Huang et al. 1999). 

Consequently, while ST has not been shown to be essential for the viral infection 

cycle, it is possible that it enhances replication. This theory has been supported by 
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findings demonstrating that SV40 ST expression increases early viral promoter 

activity and also has a stimulatory effect on LT-mediated activation of the late viral 

promoter (Bikel and Loeken 1992; Cicala et al. 1994; Campbell et al. 1997).  

Studies have also demonstrated that MPyV and SV40 DNAJ domains function as 

chaperones by binding to Hsc70 (Sontag et al. 1993; Huang et al. 1999). Hsc70 is a 

cellular heat shock protein important for protein folding and transport, due to its 

intrinsic ATPase activity (Liu et al. 2012). Mutation studies have determined that it 

plays an essential role in the viral replication cycle (Campbell et al. 1997; 

Rodriguez-Viciana et al. 2006b). However, it is uncertain if this is as a result of any 

direct effects due to Hsc70 binding, or indirect effects that enhance other ST-

mediated mechanisms for induction of S-phase entry.  

Polyomavirus ST inhibition of PP2A activity has been suggested to contribute to 

virus replication indirectly. This is due to disruption the regulation of the cell cycle 

leading to increased G1-S-phase transition (Sontag et al. 1993; Frost et al. 1994). 

The enhanced entry into S-phase enables the recruitment of cellular proteins, as 

well as co-factors that are essential for DNA replication and subsequent virus 

replication. MPyV ST has been shown to induce the MAP kinase cascade in mouse 

cells. This is functionally independent of the DNAJ domain, but completely 

dependent on its PP2A binding domain (K. Khalili et al. 2008). This ST-PP2A 

interaction increases the expression of AP-1, a transcription factor shown to induce 

S-phase entry (Frost et al. 1994; Polyak et al. 1994; Winston et al. 1996).  

Additionally, it has been established that ST affects cell cycle progression through 

decreasing cellular levels of p27/kipI (Kamel Khalili et al. 2008; Larrea et al. 2008). 

Cyclin dependent kinase [cdk] inhibitors, such as p27/kipI, control cell cycle 

progression (Sheaff et al. 1997). p27/kipI binds cyclin D which in turn regulates the 

efficient interaction between CDK4 and pRb (Larrea et al. 2008). Consequently, 

elevated levels of p27/kipI result in pRb-mediated cell cycle arrest at the G1-S 

checkpoint. Numerous studies have reported that human diploid fibroblast cells 

[HDFs] expressing SV40 ST show a significant reduction of p27/kipI expression 

(Kamel Khalili et al. 2008). However, a mechanism for ST inhibition of p27/kipI 

activity has not been established. Although it is possible that ST regulation of PP2A 

could result in reduced dephosphorylation of cyclin E/cdk2, which can regulate 

p27/kipI levels (Sheaff et al. 1997; Kamel Khalili et al. 2008). This provides a 

plausible mechanism for reduced levels of cellular p27/kipI upon ST expression, 

resulting in cell cycle regulation and increased S phase entry. Additionally, multiple 
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proteins associated with cell cycle progression are upregulated upon SV40 ST 

expression including cyclin D1, cyclin B, dihydrofolate reductase and thymidine 

kinase (Moreno et al. 2004; Sablina and Hahn 2008).  

 

1.2.3.4.1.4 ST and Transformation 

Various studies have shown that deletions within the LT and ST DNAJ domain 

inhibit T antigen-mediated transformation (Kamel Khalili et al. 2008). While the 

exact mechanism of how the DNAJ domain promotes cellular transformation is 

uncertain, it is likely to be due to an indirect role of the DNAJ domain in promoting 

S-phase entry in the host cell. This theory is supported by a various studies 

demonstrating that LT and ST J domain deletion mutants are incapable of causing 

cell transformation (Pipas 1992). 

Additionally, the DNAJ domain contains a conserved Cr1 domain, which functions 

in a similar manner to the adenovirus E1A protein, in binding p300, the cellular 

transcriptional co-factor which induces cellular transformation (Peden et al. 1990; 

Pipas 1992). As previously stated, the ST-PP2A interaction is vital for induction of 

cell entry into S-phase, hence promoting viral replication in permissive cells. In 

contrast, in non-permissive cells, aberrant stimulation and entry into S-phase can 

result in cellular transformation. SV40 ST and LT alike are essential for cellular 

transformation in rodent cells, with ST believed to enhance LT activity (Bikel et al. 

1987). Conversely, in human cells, complete transformation requires expression of 

both SV40 T antigens as well as oncogenic H-ras and hTERT. Interestingly, H-ras 

and hTERT expression is dependent on ST (Hahn et al. 2002).  

The interaction between ST and PP2A has also been shown to play a role in 

cellular transformation [Figure 1.7]. Specifically, the interaction affects the 

expression of transcription factors within the host cell. One example is C-myc, an 

important transcription factor, which is activated by phosphorylation and is involved 

in regulating the expression of up to 15% of cellular genes (Miller et al. 2012). 

When activated, it binds numerous promoter/enhancer sequences and recruits 

Histone acetyltransferases [HATs] to these sites enhancing gene expression 

(Martinato et al. 2008).  
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Figure 1. 7: Interaction of ST and PP2A. Polyomavirus ST competes with the PP2A B 
subunit for binding to the structural A subunit and the catalytic C subunit. In SV40, this 
interaction between ST and PP2A A⍺ leads to cell transformation. Although the interaction 
of MCPyV ST with PP2A A⍺ may not be necessary for transformation, interaction with PP2A 
A or the related PP4C may play a role. 

 

PP2A phosphatase activity directly regulates C-myc, and restriction of this process 

by ST binding results in alteration of C-myc-mediated processes, such as cell 

proliferation, growth and apoptosis. Yeh et al have demonstrated that expression of 

a stabilised form of C-myc induces cellular transformation in human cells. 

Therefore, it is believed SV40 ST expression stabilises C-myc leading to 

tumourigenesis due to ST inhibiting PP2A-mediated dephosphorylation of C-myc 

(Yeh et al. 2004). As such, inhibition of PP2A-mediated dephosphorylation of C-

myc results in extended activation of multiple C-myc targeted transcripts which in 

turn regulate vital cellular pathways. Interestingly, C-myc has also been shown to 

be stabilised upon SV40 ST expression in a PP2A dependent manner, however, 

how this mechanism is regulated is unknown (Zerrahn et al. 1993; Tiemann et al. 

1995; Arnold and Sears 2006). 

ST also initiates and activates other cellular transcription factors, such as AP-1, 

Sp1, CREB and NF-KB. These transcription factors have been shown to play vital 

roles in cell proliferation and growth and have also been implicated in 

tumourigenesis (Moens et al. 2007). Also, aberrant expression of these 

transcription factors have been identified in multiple human cancers (Hsu et al. 

2004; Conkright and Montminy 2005; Piva et al. 2006; Ozanne et al. 2007). 

Modifications in the phosphatidylinositol 3-kinase [PI-3K] pathway have also been 

associated to human cancer development. SV40 ST has been demonstrated to 
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initiate aberrant activation of the PI-3K pathway. Interestingly, ST-mediated PI-3K 

activation results in phosphorylation of cellular targets, such as Akt - a 

serine/threonine kinase which plays a vital downstream role in regulation of cell 

survival, angiogenesis and metabolism (Rodriguez-Viciana et al. 2006b; Yuan and 

Cantley 2008). Interestingly, Rodriguez-Viciana et al have shown that SV40 ST 

promotes Akt phosphorylation in a PP2A-dependent manner (Kang et al. 1999). It 

has been reported that overexpression of PI3K effectors initiate human cell 

transformation when interchanged with SV40 ST expression (Zhou et al. 2002). 

Notably, inhibition of PI3K activity prevented ST-induced transformation in cells 

(Hiyama and Hiyama 2004; Rodriguez-Viciana et al. 2006a). Additionally, the ST-

PP2A interaction has also been associated with promotion of cell immortalization in 

vitro and in vivo (Hiyama and Hiyama 2004). Studies have demonstrated that 

telomerase is upregulated upon SV40 ST expression (Yuan et al. 2002).
 

Telomerase activity follows each round of chromosome replication,  preserving 

terminal DNA and constitutive telomerase activity in cells enhances immortalisation 

(Hiyama and Hiyama 2004). Studies have suggested that impeding Akt 

desphosphorylation, by ST-mediated binding of PP2A, may induce an increase in 

telomerase phosphorylation and resulting activity (Kang et al. 1999).  

Moreover, increase and hyperphosphorylation of the mitotic spindle checkpoint 

protein Bub1, is believed to cause aneuploidy within host cells (Poulsen 2004; 

Moens et al. 2007). Again, the SV40 ST-PP2A interaction has been linked to 

hyperphosphorylation of Bub1 via initiation of the MAP kinase signaling pathway, 

which has been shown to induce tumourigenesis and aneuploidy in transgenic mice 

(Guo et al. 2006).  

 

1.2.3.4.2 Large Tumour antigen 

1.2.3.4.2.1 Structure and Domains 

The general structure of polyomavirus large T antigens is displayed in Figure 1.8. 

LT encodes a protein of 708 amino acids in length and comprises multiple domains 

including ATPase domain, host range (HR) domain, J domain, nuclear localisation 

signal domain, origin binding domain, Rb-protein binding (LxCxE) motif, and a Zn 

binding domain (Ahuja et al. 2005). As such, SV40 LT antigen targets multiple 

cellular pathways to elicit cellular transformation and enhance viral genome 

replication (Sullivan and Pipas 2002).  
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Figure 1. 8: Schematic representation of polyomavirus large T antigens. A J domain is 
found in the common region, which runs between amino acids 1- ~90. The common region 
also contains a conserved Cr1 domain. The unique region contains a binding domain for 
pRb, a DNA binding domain and an ATPase domain which interacts with p53. Taken from 
(Kamel Khalili et al. 2008). 

 

Large T antigen is a multifunctional regulatory protein and categorized as a member 

of the helicase super family of proteins. A hallmark of this protein is that it unwinds 

double stranded DNA and RNA (Stahl et al. 1986; Ahuja et al. 2005; Sotillo et al. 

2008). Moreover, SV40 LT targets multiple cellular pathways to elicit cellular 

transformation and promote transcription of late region genes (Sotillo et al. 2008).  

 

1.2.3.4.2.2 LT and Viral Life cycle 

1.2.3.4.2.2.1 LT and DNA binding 

The Large T antigen induces viral genome replication by binding to the origin of 

replication in the NCCR, promoting DNA unwinding and then recruiting cellular 

replication factors. Large T-mediated transformation occurs as a result of its 

interactions with cellular tumour suppressor proteins (Dean et al. 1987). SV40 and 

JCPyV LT can also promote transcription of the late promoter region, which results 

in the inhibition of early gene transcription via an origin binding dependent 

mechanism (Brady et al. 1984).  
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Figure 1. 9: The structure of SV40 LT. SV40 LT contains an N-terminal DnaJ domain that 
binds Hsc70, and multiple domains which recruit many different binding partners, including 
a nuclear localisation signal (NLS), a DNA-binding domain (DBD), and an ATPase/helicase 
domain Taken from (DeCaprio and Garcea 2013).  

  

1.2.3.4.2.2.2 LT and recruitment of cellular proteins 

As previously stated, LT has the ability to induce viral DNA replication and it relies 

on the recruitment of multiple cellular proteins essential for transcription complex 

formation [Figure 1.9]. Nucleolin and topoisomerase I are recruited by LT, to form 

components of the holoenzyme required for DNA unwinding (Sachsenmeier and 

Pipas 2001; Seinsoth et al. 2003). The  SV40 LT J domain and the ATPase domain 

are vital for direct binding of LT to the catalytic subunit of DNA polymerase-α in vivo 

(Dornreiter et al. 1990). Furthermore interaction between LT and replication protein 

A is also essential for DNA polymerase activity and SV40 genome replication 

(Melendy and Stillman 1993). 

 

1.2.3.4.2.3 LT and Cell Transformation 

SV40 LT expression alone is sufficient to initiate cellular transformation in various 

non-permissive cells, such as rat fibroblasts (Ahuja et al. 2005; Moens et al. 2007).  

The key role of LT-mediated transformation is due to interactions with the cellular 

tumour suppressor proteins, p53 and pRb (Saenz-Robles et al. 2001; Sullivan and 

Pipas 2002). Supporting this theory, are results showing specific mutations in LT 

regions known to affect p53 or pRb binding can inhibit its transforming capability 

(Sachsenmeier and Pipas 2001). An alternative role of LT in transformation has 

also been suggested, as BKPyV and SV40 LT proteins have the ability to induce 
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mutagenic effects in the host DNA, through SV40 LT binding to Mre11 (Theile and 

Grabowski 1990). SV40 LT binding to Mre11, results in double stranded break 

repair (Ahuja et al. 2005; Moens et al. 2007).   

 

1.2.3.4.2.3.1 LT/pRB 

LT binds to and sequesters pRb and pRb family proteins [p107 and p130] via the 

LT LxCxE motif, as well as the J domain (Sullivan et al. 2001; Ahuja et al. 2005; 

Moens et al. 2007). LT binding to Rb releases the E2F transcription factor, which 

then enhances the transcription of E2F-regulated genes, resulting in activation of 

DNA replication and repair, cell cycle progression and nucleotide metabolism. 

Importantly, upon LT-mediated Rb sequestration, transcription of E2F-dependent 

genes allow cell cycle progression into S phase leading to hyper proliferation 

(Sullivan et al. 2001; Ahuja et al. 2005; Moens et al. 2007). 

 

1.2.3.4.2.3.2 LT/p53 

The LT antigen also associates with the p53 tumour suppressor protein. p53 is a 

crucial regulator of the cell cycle, apoptosis and DNA damage repair mechanisms. 

Various polyomavirus LT proteins, for example JCPyV and BKPyV, interact with 

p53 in an ATP-dependent manner (Kierstead and Tevethia 1993; Bollag et al. 

2000). LT sequestration of p53 prevents activation of p53-responsive genes, 

resulting in inhibition of apoptosis induction and cellular transformation (Jiang et al. 

1993; Segawa et al. 1993).  

 

1.2.3.4.2.3.3 LT and IRS 

It has been established that expression of polyomavirus LT proteins can impede the 

homologous recombination-direct DNA repair [HRR] response. To this end, SV40 

and JCPyV LT antigens are capable of inducing translocation of Insulin receptor 

substrate I [IRS I] into the nucleus (Lassak et al. 2002; Prisco et al. 2002; Reya and 

Clevers 2005). Upon nuclear translocation, IRS I interacts with Rad51, a DNA 

repair component, resulting in inhibition of homologous recombination-directed DNA 

repair [HRR] (Urbanska et al. 2009). HRR is strongly impeded in JCPyV LT-

expressing cells and it is possible this inhibition plays a role in cellular 
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transformation (Ali et al. 2004; Trojanek et al. 2006).  Supporting this hypothesis is 

results showing that expression of a dominant negative IRS I mutant negates 

anchorage independent growth upon JCPyV LT expression (Lassak et al. 2002; 

Prisco et al. 2002; Reya and Clevers 2005). 

 

1.2.3.4.2.3.4 LT and β-catenin 

β-catenin is a key factor associated with the Wnt signaling pathway. Constitutive 

activation of the Wnt signalling pathway is a major characteristic of various cancers 

(Reya and Clevers 2005).  Studies have shown that JCPyV LT binds to β-catenin to 

form complexes with associated transcription factors, resulting in the induction of 

specific genes, like C-myc and cyclin D1 (Enam et al. 2002). The JCPyV LT- β-

catenin  interaction has been shown to increase β-catenin stability, as well as 

augment activation of its target genes (Gan and Khalili 2004).  

 

1.2.3.4.2.3.5 LT and Cullin 7 

Cullin 7 (cul7) is a major component of the E3 ubiquitin ligase complex, which  

facilitates protein degradation (Fu et al. 2010). Studies have shown that SV40 LT 

interacts with cul7, and expression of LT mutants incapable of interacting with cul7 

negatively affects LT-mediated anchorage-independent growth, as well as cell 

growth in low serum conditions (Ali et al. 2004; Moens et al. 2007) . However, the 

molecular mechanisms associated with this phenotype have not been clearly 

elucidated, although this interaction clearly plays a major role in LT-mediated 

tumourigenesis.  

 

1.2.3.4.2.3.6 LT and other Transcription factors 

LT proteins associate with numerous other cellular proteins. For example, SV40 LT 

interacts with Thyroid Embryonic Factor-1 [TEF-1], a cellular transcription factor 

(Gruda et al. 1993).  This interaction inhibits TEF-1 repression of the viral late 

promoter leading to stimulation of viral replication (Ito et al. 1977; Berger et al. 

1996). Interestingly, this interaction may also play a role in cellular transformation, 

as LT mutants incapable of binding TEF-1 have shown a reduced ability to form foci 

in cellular transformation assays, in comparison wild type LT (Soeda et al. 1979; 
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Novak and Griffin 1981; Dilworth et al. 1986; Zuzarte et al. 2000). Additionally, 

SV40 LT is capable of altering the expression levels of various other transcription 

factors, including AP-1, C-myc, TFIIC and Sp1 (Moens et al. 2007; Fluck and 

Schaffhausen 2009). These transcription factors control the expression of a wide 

variety of genes involved in cellular processes, such as angiogenesis, apoptosis, 

cell proliferation as well as DNA repair (Templeton et al. 1986; Freund et al. 1992; 

May et al. 2004). 

 

1.2.3.4.3 Middle T  

1.2.3.4.3.1 Structure and domains 

Alternative splicing mechanisms in rodent polyomaviruses result in the production 

of the middle T antigen [MT], along with ST and LT antigens. MT is 421 amino acids 

in length producing a protein of approximately of 55 kDa in size (Ito et al. 1977). 

The structure of MT is very similar to the ST structure. As Figure 1.10 shows, all but 

the final 4 C-terminal amino acids from ST are present in MT. Consequently, the 

DNAJ domain and the PP2A binding domains are also expressed in the MT N-

terminal common region. The remaining 230 amino acids located at MT C-terminal 

unique region, contain multiple phosphorylation sites that are essential for MT-

mediated recruitment and activation of cellular components.  MT also has tight 

association with the plasma membrane, and this localisation is essential for its 

putative functions (Soeda et al. 1979; Novak and Griffin 1981; Dilworth et al. 1986). 

Its C-terminal transmembrane domain has a long hydrophobic amino acid 

sequence capable of spanning the lipid bilayer (Fluck and Schaffhausen 2009). 

 

 

 



 
 

 
27 

 

 

Figure 1. 10: The structure of polyomavirus middle T antigens. The indicated N-terminal 
amino acids are shared with the small T antigen. This region is involved in binding of Hsc70 
and PP2A. The N-terminal 220 amino acids are required for binding of Src family proteins. 
The unique region contains a number of phosphorylation sites and a transmembrane 
binding domain.  

 

1.2.3.4.3.2 MT and viral life cycle 

Comparable to ST and LT, the MPyV MT antigen can also bind to the viral origin of 

replication and in turn regulate viral DNA replication. As such, MT is essential for 

productive infection in murine polyomaviruses (Freund et al. 1992). MT also 

mediates viral replication by activation of the AP-1 transcription factors, Ets protein 

families and C-jun promoters (Tyndall et al. 1981; Veldman et al. 1985). 

Additionally, MT is vital in the maturation of the viral capsid as the absence of MT 

expression results in aberrant phosphorylation of the VP1, which in turn hinders 

viral capsid assembly (Garcea and Benjamin 1983; Li and Garcea 1994).  

Similar to the human polyomavirus ST and LT oncogenes, MT also sequesters 

proteins implicated in cell cycle regulation and also activates cell cycle entry to 

facilitate virus replication. As such, MT expression promotes cell growth and can 

result in cellular transformation (Li and Garcea 1994). Interestingly, the transcripts 

that encode MT have not been identified in human specific polyomaviruses, such as 

MCPyV. Hence human polyomavirus LT and ST may compensate for the absence 

of MT by encoding alternative proteins, such as ALTO. This protein will be further 

discussed in a later section [1.4.4.1.2.4].  

 

1.2.3.4.3.3 MT and Transformation 

Uniquely, MT is the major transforming protein of rodent polyomaviruses. MT 

expression alone is sufficient to induce transformation in tissue culture and vital for 
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tumourigenesis, subsequent to viral infection (Fluck and Schaffhausen 2009). The 

hydrophobic region, located at the C-terminus, which mediates MT plasma 

membrane binding is essential for cellular transformation. This was demonstrated 

by replacing key residues with alternative membrane targeting domains (Templeton 

and Eckhart 1984; Elliott et al. 1998; Zhu et al. 1998). Additionally, removal of the 

six amino acids C-terminal of the hydrophobic domain abolishes MT-mediated 

transformation (Zhou et al. 2011). 

 

1.2.3.4.3.3.1 MT and PP2A 

As previously stated, ST and MT have similarities in their N termini coding 

sequence, including the DNAJ domain and the PP2A binding motif. Consequently, 

MT is capable of binding PP2A in a similar manner to ST. Not surprisingly, this 

occurs by MT binding the PP2A A subunit and forming a complex with the C 

subunit. This again results in disruption of B subunit association and PP2A 

functioning (Pallas et al. 1990; Walter et al. 1990). However, alternative to ST, MT 

can bind both isoforms of PP2A [Aα and Aβ] however the functional significance of 

this difference has not been elucidated. Mutations in the PP2A Aβ isoform have 

been associated with numerous cancers (Zhou et al. 2003). As a result, this may be 

associated with MT-mediated transformation. Additionally, MT has been 

demonstrated to also regulate tyrosine kinases and C-jun functioning in a similar 

manner to ST, by means of binding PP2A (Cayla et al. 1993; Mullane et al. 1998). 

 

1.2.3.4.3.3.2 Sequestration of Src family proteins 

MT is also capable of binding a number of Src family tyrosine kinases [TKs] at the 

plasma membrane in a PP2A-dependent manner (Courtneidge and Smith 1983; 

Kornbluth et al. 1987). Once MT is associated with TK proteins, MT is 

phosphorylated at specific tyrosine residues [namely 250, 315 and 322 residues], 

resulting in enhanced MT transforming capabilities (Harvey et al. 1984; Hunter et al. 

1984). These post-translational alterations augment and improve the MT 

transforming ability by enabling it to function as a substrate/mimic in cellular 

signalling pathways [summarised in Figure 1.11].  
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Figure 1. 11. MT phosphorylation influences different cellular signalling pathway. 
Phosphorylation at MT Y250 confers binding to and phosphorylation of ShcA family 
proteins, leading to MAP kinase activation downstream of Grb2 complexes. Phosphorylation 
at Y315 can upregulate PI3 kinase activity (also stimulated by MT-ShcA associations) and 
Y322 phosphorylation may result in PLC-γ activation. Taken from (Fluck and Schaffhausen 
2009). 

 
 
1.2.3.4.4 Additional alternative spliced early proteins 

Additional to the previously described T antigens, SV40 also, as a result of 

alternative splicing, produces an additional protein known as 17kT. It is comprised 

of 131 amino acids [from the LT N-terminus], as well as additional A-L-L-T residues 

at the C-terminus (Zerrahn et al. 1993). The function of 17kT in the viral lifecycle is 

unknown, however, phosphorylation of 17kT has been shown to influence the 

functions of SV40 LT (Moens et al. 2007). Also, expression of 17kT is upregulated 

in SV40-transformed cells, similarly 17kT can immortalise rat fibroblast cells when 

is co-expressed with activated H-ras (Zerrahn et al. 1993; Bollag et al. 2006).   

There is however a disparity between polyomaviruses, such as SV40 and JCPyV in 

expression of alternative T antigens. JCPyV encodes three additional alternatively 

spliced early proteins- T’135, T’136  and T’136 (Frisque et al. 2003). T’135 and T’136 
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contain the N-terminal 132 amino acids of LT in addition to three or four unique C-

terminal residues, respectively. T’165 has similar N-terminal residues as T’135 and 

T’136 however it also includes the last 32 amino acids from the C-terminus of JCPyV 

LT. These alternative T’ proteins are highly expressed upon JCPyV lytic infection 

and are consequently essential for virus DNA replication (Frisque et al. 2003). It is 

possible that these proteins play a similar role to SV40 17kT in cellular 

transformation, as co-expression of the T’ proteins with activated H-ras cause 

immortalisation of rat embryo fibroblasts (Bollag et al. 2006). However, their exact 

role in the JCPyV replication cycle is unknown. 

 

1.3 Merkel cell carcinoma 

1.3.1 Merkel cells 

Merkel cells are mechanoreceptors, initially described by the German histo-

pathologist Friedrich Sigmund Merkel at the end of the 19th century (Moll et al. 

2005). Merkel cells are clear, oval cells of epidermal lineage. They are found in the 

skin of all vertebrates, forming Merkel cell-neurite receptor complexes (Morrison et 

al. 2009). These complexes are present in touch-sensitive areas of the skin, 

including hair follicles as well as epithelial structures known as “touch domes”. 

These touch domes have recently been shown to be a component of the 

somatosensory system and mediate light-touch responses (Maricich et al. 2009). 

 

Figure 1. 12: Skin layers in the context of Merkel cells. All skin layers are shown, as well 
as the Merkel cell-neurite complex at the epidermal/dermal border Taken from  (Stakaityte 
et al. 2014).  
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1.3.2 Merkel cell carcinoma 

Merkel cell carcinoma [MCC] is a rare but highly aggressive skin cancer which 

affects the elderly and immunocompromised patients (Heath et al. 2008). Initially 

described by Toker in 1972, as a “trabecular cell carcinoma”, it has since been 

characterized as to be a neuroendocrine carcinoma of the skin (Soltani et al. 2014).  

 

Figure 1. 13:Appearance and histology of MCC. [A] An MCC tumour section (Jouary et 
al. 2009). [B] MCC tumour cells characterised by large nuclei, a scanty cytoplasm and 
dispersed, granular chromatin Taken from (Kuwamoto 2011). 

 

In 90% of cases, MCC appears in sun-exposed areas of the head, neck and other 

extremities as shown in Figure 1.13. This infers that sunlight; specifically, ultraviolet 

radiation, plays a role in MCC development (Kaae et al. 2010; Soltani et al. 2014). 

Current epidemiological data depicts that older, lighter-skinned individuals and the 

immunocompromised, such as those infected by HIV/AIDS or subjected to organ 

transplantation, are more susceptible to MCC development (Soltani et al. 2014).  

 

1.3.3 Histology and Presentation 

MCC tumours present as a pink nodules less than 2 mm in diameter or a mass 

more than 2 mm in diameter (Goedert and Rockville Merkel Cell Carcinoma 2009). 

Although primary tumours can be located anywhere on the body, the majority arise 

on sun-exposed areas of the skin specifically on the head and neck (Calder et al. 

2007). Additionally, UV exposure is implicated as a strong co-factor for MCC 

tumourigenesis, with higher rates of MCC directly proportional to UV exposure 

(Heath et al. 2008). 

Identification of MCC tumours has often been mistaken for small cell carcinoma of 

the lungs or Ewings sarcoma which present as similar tumours visually. Under the 

microscope, MCC tumours are observed as a lesion of stranded or nested small 
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round cells with a round/oval nucleus, scanty cytoplasm, dispersed granular 

chromatin as well as inconspicuous nucleoli, among infiltrating cells and vascular 

invasions (Bobos et al. 2006). Recently a detection system has been established 

based on Cytokeratin [CK] 20 filaments being rearranged in MCC. CK20 is now a 

specific and sensitive biomarker for MCC, able to clearly distinguish MCC tumours 

from visibly similar malignancies (Goedert and Rockville Merkel Cell Carcinoma 

2009).  

While the majority of MCC tumours are characterised as CK20 positive and CK7 

negative, there are a few rare cases of CK7+/CK20- negative MCCs reported 

(Calder et al. 2007). Other MCC tumour biomarkers include various neuroendocrine 

markers, including chromatogranin, somatostatin as well as neuron-specific enolase 

(Ferringer et al. 2005; Goedert and Rockville Merkel Cell Carcinoma 2009). 

Therefore, MCC tumour diagnosis usually includes reactivity to CK20 and a 

secondary expressed neuroendocrine marker (Agelli and Clegg 2004).  

 

1.3.4 Epidemiology 

Approximately 1500 cases of MCC are diagnosed each year in the United States of 

America. However, the incidence and MCC specific mortality rates within the United 

States has significantly increased since 1986 (Schadendorf et al. 2017). Similar 

trends have been observed in the United Kingdom with the age standardized 

incidence rate of MCC at about 0.9 per 100,000 population. The increase in 

incidence rate is partly due to the recent advances is MCC diagnostic capabilities. 

Melanoma and non-melanoma are the most prevalent causes of skin cancer in the 

United states with approximately 76,000 cases diagnosed annually. However, while 

MCC has an incidence rate 30 times lower than cases of malignant melanoma, it is 

twice as lethal (Schadendorf et al. 2017). These numbers infer that MCC is as 

predominant as HTLV-induced cancers and can affect similar numbers as those 

affected by KSHV-induced cancers which has approximately 4,100 new global 

cases annually in developed countries (de Martel et al. 2012). 

The incidence of MCC is highest in white-Caucasians while occurrences are 

extremely low in black populations. The rate of incidence is intermediate in the 

remaining ethnic groups (Agelli and Clegg 2004).  The higher incidence rate of 

MCC in patients with European ancestry is believed to be due to a deficiency in 

melanin, which provides protection against UV radiation.  
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Although MCC is extremely rare before the age of 50 years, incidence rates 

increase significantly with age, indicative of accumulation of oncogenic events 

(Fernandez-Figueras et al. 2007). However, with an increase in the aging 

population, it can be deduced that the incidence of MCC will also increase in the 

coming years. Also, MCC is more common in males than females, with an 

incidence ratio of approximately 2:1 white-caucasians and a 5:1 in the other 

ethnicities (Allen et al. 2005). 

 

1.3.5 Staging 

Clinical staging of MCC was updated in 2010. Prior to 2010, a four-tiered system 

was employed. Stage I disease was defined as ‘localised tumour, with the tumour 

smaller than 2 mm in diameter’; stage II disease was defined as ‘a tumour still 

localised but greater than 2 mm’; stage III disease is defined as ‘regional 

metastasis’; while stage IV showed ‘distant metastasis’  (Feng et al. 2008; 

Schadendorf et al. 2017).  While this system is still utilized, the 2010 update further 

differentiates regional metastasis for patients with inconsistencies in pathological 

and clinical evaluations  (Feng et al. 2008; Lemos et al. 2010).  

 

1.3.6 Prognosis and Treatment 

MCC tumours are highly malignant and are also considered to be the most 

aggressive primary cancer of the skin (Feng et al. 2008). MCC overall survival rates 

are currently poor, 28% of patients die within the first 2 years (Becker et al. 2009; 

Duncavage et al. 2009; Andres et al. 2010).  45% of MCCs reoccur locally, 70% 

present with early involvement of local lymph nodes, and half result in distant 

metastases. The mortality rate for patients with distant metastases is 80%. This 

high mortality rate for MCC is due to the highly metastatic nature of the tumour 

(Sarnaik et al. 2010). Despite this, there are currently no specific therapeutic 

treatments available for MCC. 

Currently MCC is managed and treated with a wide surgical excision of the primary 

tumour. This includes a pathological verification of complete tumour removal and is 

followed by ionizing radiation therapy to decrease the incidence of local recurrence 

(Goedert and Rockville Merkel Cell Carcinoma 2009; Schadendorf et al. 2017). The 

exact treatment is contingent on several disease characteristics. If the tumour has 
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metastasized to local lymph nodes, treatment involves surgical removal of tumours, 

lymphadenectomy, and radiation therapy at the excision sites and lymph nodes. 

Distant metastasis; however, are treated with chemotherapy regimes including 

cyclophosphamide, anthracyclines and etoposide. Although half of MCC patients 

respond to chemotherapy, prognosis is very poor with a median survival of 21.5 

months (Schadendorf et al. 2017). 

 

1.4 Merkel cell polyomavirus  

1.4.1 Discovery  

In 2008, a novel human polyomavirus was first isolated from MCC tumours by the 

Chang and Moore laboratory of University of Pennsylvania (Feng et al. 2008). They 

utilized a novel technique known as digital transcriptome subtraction [DTS] (Feng et 

al. 2008). DTS involves extracting RNA from tumour cells, converting into cDNA 

libraries and then Pyrosequencing the cDNA. Downstream bioinformatics analysis 

then remove known human transcripts, co-polymers or human repeat sequences to 

identify foreign transcripts. Any remaining foreign sequences are then compared to 

foreign pathogen sequence databases. This DTS approach highlighted novel 

sequences from MCCs with sequence homology to polyomaviruses. 3’ rapid 

amplification of cDNA ends [3’-RACE], followed by viral genome walking then 

identified the complete circular genome of Merkel cell polyomavirus (MCPyV) within 

MCC genomic DNA. Identical RACE products were cloned from the primary tumour 

and the subsequent lymph node metastasis indicating clonal integration of the virus 

within the MCC genome occurred prior to local MCC spread. This provided 

evidence that MCPyV is not a passenger virus, but contributed to MCC 

development and progression (Feng et al. 2008). 

Further analysis by other investigators also validated that MCPyV is monoclonally 

integrated within the genome of MCC tumours (Feng et al. 2008; Spurgeon and 

Lambert 2013). Additionally, a new report using sensitive antibody staining 

techniques has suggested that MCPyV may be present in 97% or more MCC 

tumour samples (Agelli and Clegg 2004).  This validates the need for numerous 

MCPyV screening methods and deduces that MCPyV may be abundant among the 

MCC tumour population. Interestingly, MCPyV is the first human polyomavirus to 

date that has been irrefutably linked to a human malignancy. However, the role of 

MCPyV in the pathogenesis of MCC is still poorly understood. This highlights the 
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importance of elucidating the role of MCPyV in MCC development and 

understanding the MCPyV life cycle.   

 

1.4.2 Seroprevalence 

Serological data detecting the MCPyV viral capsid proteins VP1 and VP2 in patient 

blood has verified that the majority of the general population is seropositive for 

MCPyV.  An estimated 50% of children under 15 years are infected and 

approximately 80% of the adult population are seropositive for MCPyV. As such it is 

believed that MCPyV is a common skin commensal and a common ubiquitous 

childhood infection of the skin. Additionally, there was no age-related reduction of 

antibody titre. This is indicative of a persistent MCPyV infection possibly through 

latent infection (Kean et al. 2009; Tolstov et al. 2009). 

 

1.4.3 Phylogeny 

Multiple phylogenetic studies of human polyomaviruses have been conducted, 

using VP1, VP2 and LT sequences [Figure 1.14]. It was previously believed that 

MCPyV is most closely related to the African Green Monkey Lymphotrophic 

polyomavirus (Dalianis et al. 2009). However, recent analysis have suggested that 

MCPyV is more closely related to MPyV and Chimpanzee polyomavirus (ChPyV), 

as these viruses share high sequence homology of their VP2 and LT genes. 

Additionally, the MCPyV VP1 gene is closely related to that of ChPyV and HPyV9. 

Interestingly, MCPyV LT, VP1, and VP2 have high homology with their counterparts 

in TSPyV. It can be reasoned that this high degree of homology is due to the fact 

that they are both common skin commensals (Siebrasse et al. 2012). MCPyV is 

currently classified under the  Orthopolyomavirus genus of the Polyomaviridae 

family (Johne and Muller 2007).  
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Figure 1. 14: Merkel cell polyomavirus phylogeny. Analysis of whole genome nucleotide 
sequence analysis. Phylogenetic analysis suggests that among human polyomaviruses 
MCPyV is most closely related to TSPyV, HPyV9 and HPyV10 Taken from (De Gascun and 
Carr 2013). 
  

1.4.4 Genome Organization 

1.4.4.1 MCPyV Genome 

The MCPyV genome comprises 5387 base pairs in length. Like all polyomaviruses, 

this includes a non-coding control region (NCCR), containing the bidirectional origin 

of replication, which separates the early and late gene coding regions. This 

separation allows viral gene expression to be temporal. Figure 1.15 illustrates the 

MCPyV genome.  
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Figure 1. 15: MCPyV genome organisation. Non-coding control region (NCCR): bipartite 
origin of replication. Early gene region: Large T antigen [LT], small T antigen [ST], 57 kT 
antigen (57kT), alternative T antigen open reading frame [ALTO], microRNA [miRNA]. Late 
gene region: capsid proteins [VP1-3].  

 

1.4.4.1.1 Origin of Replication 

The MCPyV non-coding control region [NCCR] contains the origin of replication 

which is 71 base pairs in length. Similar to other polyomaviruses well characterized 

NCCRs, the origin of replication has an AT rich region, a LT binding domain to 

initiate viral replication as well as an early enhancer domain. The binding site is 

comprised of ten repeating guanine-rich pentanucleotide sequences. Eight of the 

pentanucleotide sequences correspond to the general polyomavirus consensus of 

5'-GAGGG-3', while the remaining two are distinct: 5'-GGGGC-3' and 5'-GAGCC-3'. 

The number of sequences and their proximity to each other are unlike other 

polyomaviruses (Stakaityte et al. 2014). 

 

1.4.4.1.2 MCPyV T antigen locus 

The T antigen locus is approximately 3000 base pairs in length and due to 

alternative splicing, results in multiple transcripts; the small T antigen [ST], the large 

T antigen [LT], 57 Kilodalton T antigen [57kT] and Alternate frame of the Large T 

Open reading frame [ALTO]. ST, LT and 57kT all share a short amino-terminal 

NCCR

MCPyV
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sequence which includes the J domain. This comprises of the DnaJ [HPDKGG] 

domain, which is essential for binding the cellular heat shock protein, Hsc70, and a 

conserved Cr1 epitope. Figure 1.16 illustrates the different T antigen locus-encoded 

proteins.  

 

 

 

Figure 1. 16: The Merkel cell polyomavirus T antigen locus and its gene products. The 
schematic shows the relative locations of each gene that encode specific protein binding 
domains and splicing patterns associated with differential splicing of the primary early 
transcript. The three T antigens are LT, ST and 57kT. All three encode CR1 [LXXLL] and 
DnaJ [HPDKGG] domains. ST also contains two PP2A A α binding sites (R7 and L142), a 
PP2A A /PP4C binding site [amino acids 97–111] and a large T antigen-stabilisation domain 
[LSD, amino acids 91–95]. LT shares the pRb binding domain with 57kT and has unique 
origin binding [OBD], zinc finger, leucine zipper, ATPase and helicase domains. The 
MCPyV-unique region (MUR) of LT contains the hVam6p binding site. Taken from 
(Stakaityte et al. 2014).  

 

1.4.4.1.2.1 Large Tumour Antigen 

MCPyV LT is a spliced transcript comprising of 2 exons producing a protein 816 

amino acids in size. Its numerous functions include initiation of viral replication and 

controlling the host cell cycle. In comparison to other polyomavirus, MCPyV LT 

antigen contains conserved domains including a nuclear localisation signal [NLS], 

retinoblastoma protein [pRb] binding domain and the origin-binding domain [OBD] 

(Bollag et al. 2000; Cheng et al. 2013). The carboxy-terminal half of MCPyV LT 

induces domains for viral DNA binding and helicase activity (Kean et al. 2009; 

Viscidi et al. 2011; Joseph J. Carter et al. 2013). The presence of a nuclear 
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localisation signal (NLS) results in MCPyV LT localising to the nucleus when 

expressed in mammalian cells (Bollag et al. 2000).  

Certain comparisons can be made regarding the interaction of cellular factors with 

MCPyV LT if structural and functional similarities with SV40 LT are taken under 

consideration. For example, cellular Chaperone Hsc 70 interacts with the DnaJ 

domain, while pRb and members of its family p107 and p130 interact with the 

LXCXCE (Sullivan and Pipas 2002). MCPyV LT OBD and helicase region may also  

recruit similar proteins for viral replication including, but may not be limited to p53 

and CREB binding protein [CBP], a transcription co-activation protein (Lane and 

Crawford 1979). These assumptions however are not conclusive, as MCPyV LT 

shares only 34% sequence similarity with SV40 (Topalis et al. 2013). Moreover, 

MCPyV LT contains a unique region, termed the Merkel cell polyomavirus T antigen 

unique region [MUR], which is 200 amino acids in size. This region serves as a 

binding site for the host cellular factor, Vam6p which is relocated to the nucleus in 

the presence of MCPyV LT. Moreover MUR also encodes a viral miRNA (Liu et al. 

2011).  

Studies have also shown that MCPyV LT is truncated in MCC tumour cells, which 

renders the virus replication disabled (Cheng et al. 2013).  However, the majority of 

reported LT mutations involve truncation of the entire C-terminal domain, as 

opposed to more subtle inactivating mutations. This suggests that there is an 

additional selective pressure upon transforming cells for removal of this region of 

LT. Consequently it has been shown that truncated LT is more efficient at inducing 

cellular proliferation than full length LT (Cheng et al. 2013). However, in contrast to 

SV40, neither full length, nor truncated MCPyV LT can initiate cellular 

transformation in the absence of ST. This proves to be a major difference between 

MCPyV and other polyomaviruses (Shuda et al. 2011).  

 

1.4.4.1.2.2 Small Tumour Antigen 

MCPyV ST, is 186 amino acids in length and has multiple roles in viral replication 

and cellular transformation. ST has a distinctive carboxy-terminal produced by 

means of transcriptional read-through of the exon splice site used by both LT and 

57kT. ST is localized both to the nucleus and the cytoplasm (Moens et al. 2007). 

Like all polyomaviruses, it contains a protein phosphatase 2A [PP2A] Aα subunit 

binding site, which is an important region for viral replication and virus-induced 
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transformation in other polyomaviruses (Pallas et al. 1990; Feng et al. 2008). It also 

has a recently has been shown to contain a PP2A Aβ and/or protein phosphatase 

4C [PP4C] binding site located near the carboxy terminus which may have a role in 

protecting MCPyV from the cellular immune response (Griffiths et al. 2013). 

Moreover, it contains a LT-binding domain [LBD] which plays a role in stabilizes LT 

and assists in the replication of the MCPyV genome. Uniquely the MCPyV ST 

protein is the major oncogenic protein in MCPyV and its transforming properties will 

be discussed in more detail in subsequent sections.  

 

1.4.4.1.2.3 57 kiloDalton T antigen 

MCPyV 57kT transcript encodes a protein of 432 amino acids in size, resulting from 

alternative splicing linking three exons. It shares the DnaJ domain and CR1 epitope 

with ST and LT and it also has a MCPyV unique region as well as a pRB-binding 

domain found in LT. However, little is known about the function of 57kT although it 

may play a role in host cell proliferation as it maybe homologous to the SV40 17kt 

protein (Comerford et al. 2012).  

 

1.4.4.1.2.4 Alternative T open reading frame  

Aside from the three T antigens, the MCPyV early gene locus also encodes a fourth 

protein, the alternative T antigen open reading frame [ALTO]. ALTO is transcribed 

from the 200 amino acid MCPyV unique region within LT. It has been theorized to 

be evolutionarily related to MT antigen of the murine polyomavirus (J. J. Carter et 

al. 2013). Carter et al  2013 showed that  ALTO is encoded by the result of an 

overprinting event with LT, here Open reading frame is +1 frameshifted relative to 

the second exon of LT as shown in Figure 1.17 (J. J. Carter et al. 2013).  
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Figure 1. 17: A schematic to represent the de novo gene birth of ALTO by 
overprinting. ORFs corresponding to the LT and ALTO/MT alternative frame and blue 
shows ALTO/MT region. Stop codons are represented by asterisks. Taken from (J. J. Carter 
et al. 2013). 

 

Carter et al demonstrated that the start codon of ALTO overlaps exactly with the 

YGS/T motif of LT which is located in proximity to pRB binding domain, while the 

function of the YGS/T motif is unknown, it may be required for the correct and 

timely folding of the DnaJ domain. Additionally, ALTO has a hydrophobic C-

terminus [similar to MT] which is essential for the subcellular localisation of ALTO 

when present in mammalian cells. While the functional significance of ALTO in 

relation to MCPyV is yet to be elucidated, data suggests that ALTO may be the twin 

protein of other polyomavirus MT antigens (J. J. Carter et al. 2013).  

 

1.4.4.1.3 Late Proteins 

MCPyV, like other polyomavirus encode three structural proteins associated with 

the virus capsids, encoded from the late region, consisting of viral capsid proteins 

1-3 [VP1, VP2 and VP3]. Both the major capsid protein [VP1] and the minor capsid 
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protein [VP2] have been shown to self-assemble into virus-like particles in vitro. 

However, unlike its contemporaries, VP3 is not conserved and it is unclear whether 

VP3 is actually expressed at all and part of the capsid. (White and Khalili 2004; 

Feng et al. 2008; Gjoerup and Chang 2010; Schowalter and Buck 2013). The 

MCPyV capsid is non-enveloped and is icosahedral, composed of 72 pentamers of 

the major capsid protein, VP1.The overall capsid size is similar to other 

polyomavirus capsids at approximately 40-55 nm, with a VP1:VP2 ratio of 5:2.  

Utilizing crystallography techniques it has been demonstrated that the structure of 

the VP1 monomer is comprised of two antiparallel β sheets, forming a β-sandwich 

structure with a jelly-roll topology. The overall shape of the VP1 monomer is a 

symmetrical, ring-shaped homopentamer organized around a central axis, and 

variable loops creating distinctive interaction surfaces which may be involved in 

viral attachment (Stakaityte et al. 2014).  

The current function of VP2 in the MCPyV lifecycle is relatively unknown, as the 

protein is not essential for entry mechanisms in most cell lines currently studied. It 

also does not affect viral DNA packaging into the capsid, trafficking of viral proteins 

nor is it responsible for binding cellular receptors (Stakaityte et al. 2014). A possible 

function of VP2 may be linked to VP2 myristoylation. This lipidation modification 

enables cellular membrane disruption, however a specific role has yet to be 

elucidated. Interestingly, co-expression of VP1 and VP2 result in translocation of 

VP2 from the cytoplasm to the nucleus, as VP2 alone does not encode a NLS 

signal, hence VP1 may be crucial for the function of VP2  (Schowalter and Buck 

2013).  

 

1.4.4.1.3 MCPyV microRNA  

Various polyomaviruses, including SV40 and BKPyV, encode microRNA [miRNAs] 

which regulate early viral transcript levels (Sullivan et al. 2005; Seo et al. 2009). 

The MCPyV early region also encodes a 22-nucleotide-long miRNA, MCPyV-miR-

M1-5p, is antisense to the LT gene sequence (Seo et al. 2009). The predicted 

function of the MCPyV miRNA is believed to be associated with downregulating 

expression of the early genes, as it has complementarity sequences with the LT 

transcript. Moreover, it may participate in cellular transformation as its expression is 

observed in about half of MCPyV-positive MCC tumours (Seo et al. 2009).  
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1.4.5 Merkel Cell polyomavirus life cycle  

The cellular tropism for MCPyV infection is yet to be fully elucidated, as MCPyV 

was discovered within a tumour rather than within the environment of its natural 

host. The origin of MCC, as well as the fact that MCPyV virions are shed from the 

skin of healthy adults indicate an epidermal source of host cells (Schowalter and 

Buck 2013). However, recent data suggests human dermal fibroblasts as the 

natural host cell for MCPyV, which can also support productive MCPyV infection 

(Liu et al. 2016). Additionally, MCPyV pseudovirions can infect human skin-derived 

primary keratinocytes (HEKa) and transformed melanocytes, but not primary 

transformed keratinocytes (HeCat) or primary melanocytes, or, indeed, sixty human 

tumour cell lines investigated (Schowalter et al. 2012). Regardless, a MCPyV 

genome capable of productive viral infection has been established (Neumann et al. 

2011; Schowalter and Buck 2013).  

Results have shown that a full-length wild-type MCPyV genome is capable of being 

isolated from surface skin swabs of healthy adult volunteers, with the DNA being 

amplified using random hexamer-primed rolling circle amplification [RCA] 

(Schowalter and Buck 2013). As an alternative, a synthetic MCPyV genomic clone 

has been generated from sequence data of MCPyV genomes (Neumann et al. 

2011). Both of these approaches have produced plasmids, such as pR17b, 

containing the full recircularised MCPyV genome.  

In recent studies, it has been demonstrated that efficient replication of the MCPyV 

viral genome, both early and late gene expression and viral particle formation, can 

be observed by transfection of the pR17b plasmid in HEK 293 cells that 

overexpress the MCPyV LT and ST in trans, known as HEK-293-4T cells 

(Schowalter et al. 2011). This viral replication system is key to understanding the 

MCPyV life cycle and viral-host interactions that contribute to MCC pathology. As 

mentioned above, human dermal fibroblasts have been suggested as the natural 

host for MCPyV, allowing a new cell culture model to be developed. MCPyV 

infection of dermal fibroblasts is facilitated by epithelial and fibroblast growth factors 

as well as the β-catenin signalling pathway (Liu et al. 2016). This cell culture model 

will be invaluable in future studies, to understand the MCPyV life cycle and MCPyV-

induced MCC tumourigenesis.  
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1.4.5.1 Attachment and entry 

The majority of polyomaviruses, such as MPyV, SV40, and BKPyV use sialic acid-
containing glycolipids, or gangliosides, to initially attach to cells. MCPyV is an 

exception, as the initial attachment is a result of association with 

glycosaminoglycans, in particular heparan sulphate (Feng et al. 2008). Binding to 

gangliosides, specifically GT1B, is also vital for post-attachment entry (Sapp and 

Day 2009; Schowalter et al. 2011).  

 

Figure 1. 18: MCPyV attachment and entry. MCPyV entry is a two-step attachment-and- 
entry process. MCPyV binds glycosaminoglycan (GAG), specifically heparan sulphate as 
the initial mode of attachment. MCPyV then binds a ganglioside with a Neu5Ac- α2,3-Gal 
motif facilitate viral entry. Taken from (Stakaityte et al. 2014). 

 

X-ray crystallography studies have determined that the MCPyV major capsid 

protein VP1 has a shallow binding site for cellular glycans containing sialic acid with 

a Neu5Ac moiety. In particular there is an interaction with carbohydrates which 

have a linear Neu5Ac-α2,3-Gal motif. Although, mutating this interaction does not 

affect the initial attachment. As a result, it has been postulated there is a two-step 

model for the attachment and entry of MCPyV involving two separate types of host 

cell plasma membrane factors [Figure 1.18] (Neu et al. 2012). 

 

1.4.5.2 Merkel cell polyomavirus replication 

MCPyV is able to complete its replication cycle and form virions without inducing 

tumourigenesis in permissive cells. Like other small DNA viruses, MCPyV relies 

GAG

Neu5Ac
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upon many different host cell factors to replicate its genome. The expression of viral 

T antigens is essential for this function, and they are transcribed immediately upon 

virus entry into the nucleus of the host cell. LT and 57kT are transcribed first, with 

ST shortly afterwards [225]. The T antigens force the host cell to enter S-phase. 

This alters the cellular environment, making it more hospitable to viral replication 

(Stahl et al. 1986). In later stages of viral replication, it is suggested that further 

early gene transcription is inhibited by the MCPyV miRNA, likely by causing the 

degradation of early gene transcripts (Kwun et al. 2013). This then shifts the focus 

to the transcription of the late region and also to the replication of the viral genome 

itself.  

 

1.4.5.2.1 Large Tumour Antigen and replication 

Polyomaviruses require expression of the LT antigen to initiate genome replication. 

LT oligomerises to form hexameric molecules, two of these hexameric molecules 

bind to the ori in a head to head orientation (Wessel et al. 1992). This is followed by 

LT helicase domain-mediate unwinding of the DNA and resulting replication 

proceeds in a bidirectional manner, with the two hexamers progressing in opposite 

directions. The LT OBD interacts with the ori by recognising the GAGGC-like motifs. 

A crystal structure of the ori demonstrates that to initiate replication, three of these 

pentanucleotide sequences are required (Harrison et al. 2011). The number and 

proximity of LT binding sites on the origin likely allows for intermolecular OBD-OBD 

interactions between molecules of LT (Kwun et al. 2009) 

MCPyV LT is believed to function in a similar manner to other polyomavirus LT 

proteins. However, there are several distinctive MCPyV LT-host interactions that 

affect viral replication. For example, in MCPyV, LT binds to the cytoplasmic 

vacuolar sorting protein, hVam6p, via its MUR domain (Liu et al. 2011). hVam6p is 

a member of the homotrophic fusion and protein sorting (HOPS) complex, and it is 

redistributed from the cytoplasm to the nucleus upon MCPyV LT expression. This 

results in disruption of lysosome clustering. Notably, overexpression of hVam6p 

induces reduction in MCPyV virus formation by more than 90%, suggesting an 

inhibitory role (Feng et al. 2011). Moreover, abrogating the hVam6p binding domain 

increases infectious virion production by 4-fold to 6-fold (Feng et al. 2011; Liu et al. 

2011).  The inhibitory function of hVam6p may play a role in diminishing viral 

replication and establishing a persistent infection.  
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Another factor important for MCPyV LT-mediated viral replication is the chromatin- 

associated bromodomain containing protein 4 [Brd4]. Brd4 is a member of the BET 

protein family and plays a role in recruitment of cellular replication factors essential 

for viral replication. The interaction of MCPyV LT with Brd4 helps recruit replication 

factor C [RFC] to MCPyV replication (Wang et al. 2012). RFC facilitates loading of 

the PCNA clamp and tethering of the processive DNA polymerase, allowing for the 

elongation of MCPyV DNA. The importance of the MCPyV LT-Brd4 interaction is 

highlighted by findings showing that expression of dominant negative forms of Brd4 

inhibit MCPyV replication (Feng et al. 2011).  

Additionally, DNA damage response (DDR) factors are also involved in MCPyV 

replication, with both DDR pathways, ATM and ATR, being involved. MCPyV LT 

expression relocalises DDR factors to the nucleus specifically, into the replication 

foci, where they co-localise with LT (Tsang et al. 2014). Interestingly, both DDR and 

Brd4 activation and recruitment have been observed in HPV replication. These 

findings stress the importance of the DDR pathways in viral replication across 

multiple viral families (Gillespie et al. 2012; Wang et al. 2012).   

 

1.4.5.2.2 Small Tumour Antigen and replication 

Although MCPyV LT is the major factor in the replication of MCPyV DNA, it does 

not facilitate replication efficiently independently. MCPyV ST is essential to enhance 

replication, as its depletion leads to inhibition of viral replication (Kwun et al. 2009). 

This contrasts with the typical polyomavirus model observed in SV40 ST, as co-

expression has minimal effect on SV40 LT-mediated viral replication. Interestingly, 

the mechanism by which MCPyV ST enhances viral replication does not depend on 

its ability to bind either PP2A or Hsc70, and the equivalent SV40 ST domains 

cannot enhance MCPyV LT-mediated viral replication (Shuda et al. 2011). This 

suggests an alternative unique mechanism for MCPyV ST enhancement of viral 

replication.  

One possible mechanism by which MCPyV ST could function in replication 

enhancement is by promoting the hyperphosphorylation of the translation regulator 

eIF4E binding protein [4E-BP1]. This leads to increased production of cellular 

proteins, including host factors necessary for viral replication (Shuda et al. 2011). 

Additionally,  MCPyV ST targets the cellular SCF ubiquitin E3 ligase complex, of 

which Fbw7 is the recognition component (Welcker and Clurman 2008). This 
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complex targets MCPyV LT for proteasomal degradation, but binding of MCPyV ST 

to SCFFbw7 , via its LSD region, inhibits MCPyV LT degradation. This prevents the 

turnover of MCPyV LT, whose half-life without MCPyV ST expression is 3-4 h, 

going up to 24 h when the two proteins are co-expressed.  Interestingly, neither 

MCPyV ST nor MCPyV 57kT are sufficient for replication in the absence of MCPyV 

LT. Co-expressing MCPyV 57kT with MCPyV LT shows no increase in replication 

efficiency (Kwun et al. 2013). 

 

1.4.6 Assembly and Egress  

Little is known about MCPyV virion assembly and egress, although more research 

may be forthcoming with the discovery of a potentially permissive cell (Liu et al. 

2016). MCPyV virions tend to cluster in the nucleus and its periphery before egress 

(Neumann et al. 2011). Unlike other polyomaviruses, including SV40, JCPyV, and 

BKPyV, MCPyV does not encode an agnoprotein, which is known to be important in 

virus particle assembly and maturation (Khalili et al. 2005). Nor does MCPyV 

encode an equivalent of the SV40 VP4, which triggers lytic virion release (Daniels 

et al. 2007). Therefore, an alternative mechanism must be utilised by MCPyV. It is 

possible that redistribution of the lysosomal factor, hVam6p, to the nucleus by 

MCPyV LT contributes to egress via lysosomal processing during virus replication 

(Griffiths et al. 2013). 

Polyomavirus virion release is thought to occur primarily through cell lysis, although 

shedding of accumulated viral particles in SV40-infected cells has also been 

observed (Clayson et al. 1989). It is possible that if the natural host of MCPyV is a 

type of skin cell, lysis might not be required for release, as the natural process of 

keratinocyte desquamation may serve this purpose. The newly developed dermal 

fibroblast cell culture model may help to fully address these specific questions 

about the MCPyV life cycle.  

 

1.4.7 Immunity 

In order to establish an infection, viruses need to evade the cellular immune 

response. Host cells use innate immunity as a barrier against invaders, and 

pathogens of all types have evolved mechanisms to evade or subvert it. MCPyV T 

antigens appear to play an intriguing role in overcoming the innate immune 
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response to allow the establishment of viral infection.  

MCPyV ST downregulates the innate immune response by interfering with the NF-

kB family of transcription factors (Griffiths et al. 2013). NF-kB is an important 

regulator of a number genes involved in both the inflammatory and antiviral 

response. It is activated in response to various innate immunity signalling, for 

instance from pattern recognition receptors (PRRs). PRRs detect pathogen 

associated molecular patterns (PAMPs), e.g. proteins or nucleic acids. PAMP 

recognition results in the production of antimicrobial peptides, cytokines, and 

chemokines capable of fighting against and clearing microbial infections (Takeda 

and Akira 2005).  

This recognition also activates a coordinated signalling cascade, leading to the 

activation of the IKK complex (Karin and Delhase 2000; Takeda and Akira 2005). 

The IKK complex consists of two catalytic components, IKK IKKα and IKK IKKβ, 

and a regulator subunit, NF-kB essential modulator (NEMO). NEMO is a molecular 

scaffold which can recruit upstream signalling (Karin and Delhase 2000; Takeda 

and Akira 2005). IKK activation causes the phosphorylation and degradation of IkB, 

which in turn induces the release of NF-kB from the complex. Free NF-kB then 

translocates to the nucleus, where it stimulates the transcription of proinflammatory 

cytokine and type 1 interferon genes [Figure 1.19] (Karin and Delhase 2000; 

Takeda and Akira 2005).  
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Figure 1. 19: NF-κB mediated gene transcription. Recognition of PAMPS by PRRs 
facilitates activation of the IKK complex and subsequent degradation of IκB. NF-κB is 
thereby free to translocate to the nucleus and stimulate transcription of genes involved in 
mounting an innate immune response. Taken from (Stakaityte et al. 2014). 

 

 Many viruses produce proteins that can interfere with NF-kB signalling  (Le 

Negrate 2012), such as HCV core protein and HPV E7 (Joo et al. 2005), both of 

which prevent IkB degradation. Furthermore, murine cytomegalovirus [mCMV] 

(Fliss et al. 2012) and molluscum contagiosum poxvirus (Randall et al. 2012)directly 

target NEMO, disrupting IKK activation. Conversely, SV40 ST upregulates NF-kB 

activation in a PP2A-dependent manner, while some inflammatory targets like 

interleukin-8 (IL-8) are downregulated upon SV40 ST expression (Moreno et al. 

2004). MCPyV ST is able to inhibit IKKα/β phosphorylation via an interaction with 

NEMO, thus preventing NF-kB release and translocation into the nucleus. This 

interaction appears to be dependent on protein phosphatases PP2A Aβ and/or 

PP4C (Griffiths et al. 2013). Moreover, a number of NF- kB target genes are 



 
 

 
50 

 

downregulated upon MCPyV ST expression, e.g. CCL20, IL-8, TANK, and CXCL-9 

(Griffiths et al. 2013). 

Viruses also act upstream of NF-kB to inhibit receptors involved in innate immunity, 

such as Toll-like receptors (TLRs), a subset of PRRs. EBV  (Fathallah et al. 2010),  

HPV (Hasan et al. 2007), and HBV all downregulate TLR9 expression (Vincent et 

al. 2011). TLR9 detects viral or bacterial double-stranded DNA containing multiple 

non-methylated CpG motifs (Takeda and Akira 2005). Upon recognition of 

pathogen DNA, TLR9 activates NF-kB in immune cells, which upregulates the 

production of inflammatory molecules (Tsujimura et al. 2004). MCPyV LT also 

inhibits TLR9 expression (Shahzad et al. 2013) by reducing the mRNA levels of the 

C/EBP transactivator, a positive regulator of the TLR9 promoter. This leads to a 

greatly reduced binding of C/EBP to its response element on the TLR9 promoter. 

Therefore MCPyV LT targeting of C/EBP may be important in establishing viral 

persistence (Shahzad et al. 2013).  

It appears that MCPyV has a complex and multifaceted defence against innate 

immunity, targeting different parts of the various pathways and utilising both major T 

antigen products. This allows the virus to persist, and may even contribute to 

tumourigenesis.  

 

1.4.8 MCPyV and pathogenesis of MCC  

Since the strong association of MCPyV with MCC tumours was established, 

causative links for MCPyV in MCC pathogenesis have been reinforced. The 

monoclonal integration pattern displayed by MCPyV suggests that the viral genome 

integrates within the host cell genome prior to clonal expansion and metastasis of 

the tumour cell (Feng et al. 2008; Sastre-Garau et al. 2009). Moreover, all MCC-

derived MCPyV Large T antigen sequences integrated into MCC genomes contain 

mutations prematurely truncating the helicase domain and also ablating the p53 

binding domain. However, the pRb binding domain remains unaffected in every 

case (Shuda et al. 2008).  These mutations have been shown to render the virus 

replication-defective and unable to re-infect MCC tumours, whilst retaining 

potentially oncogenic ST and LT coding sequences (Shuda et al. 2008). Deletions 

in the VP1 gene of integrated MCC-associated MCPyV have also been reported 

and are linked with incomplete viral integration into the cellular genome (Kassem et 

al. 2008).  
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In support of the current evidence, MCPyV positive MCC cell lines have been 

demonstrated to undergo growth arrest upon siRNA-mediated knockdown of the 

MCPyV T antigens (Houben et al. 2010), indicating that MCPyV positive MCC 

tumours require expression of these T antigens for tumour growth.  Therefore, the 

current evidence confirms the frequent involvement of MCPyV in tumourigenesis of 

MCC and dismisses a passenger role for MCPyV within these tumours [Figure 

1.20]. 

 

 

 
Figure 1. 20: Merkel cell polyomavirus-induced tumourigenesis. MCPyV infection 
occurs in childhood in most cases. Loss of immunosurveillance leads to proliferation of the 
virus prior to tumourigenesis. At least two mutations are needed before MCPyV can 
transform cells. In model A, the first mutation is the integration of the full-length viral 
genome into host DNA, while the second mutation is the truncation of LT. In model B, 
truncation of LT occurs prior to integration. These changes in the virus lead to cellular 
transformation and tumour proliferation. Taken from (Stakaityte et al. 2014).  

 

1.4.8.1 The role of ST in Merkel cell polyomavirus-induced 
tumourigenesis  

Recent studies have shown that unlike most polyomaviruses, such as SV40, where 

LT is the most important protein for tumourigenesis, MCPyV ST is the major 

oncogenic protein. Shuda et al demonstrated that MCPyV ST is more commonly 

expressed in MCC tumour samples than LT, indicative of a significant role in 

tumourigenesis and tumour cell maintenance. Also, siRNA-mediated depletion of 

ST in MCPyV-positive MCC cells leads to cell growth inhibition. Moreover, their 

studies also demonstrated that ST expression leads to a loss of contact inhibition, 
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anchorage independent, rodent fibroblast transformation and serum independent 

cell growth (Knight et al. 2015). These are all hallmarks of an oncogenic viral 

protein. Therefore, it can be deduced that MCPyV ST plays a major role in MCC 

tumourigenesis.   

Unlike SV40, where the ST-PP2A Aα interaction is important for SV40-induced 
transformation and cell proliferation, an alternative mechanism has been described for 
MCPyV ST. This is due to observations using an MCPyV ST mutant which disrupted 

the ST-PP2A Aα interaction [R7A mutants] were fully capable of inducing both rodent 
cell transformation and anchorage-independent colony formation (Shuda et al. 2011). 

One possibility is that SV40 and MCPyV ST proteins affect the PI-3K-Akt-mTOR 

signaling pathway at different stages. This signaling pathway is an important 

regulator of translation in tumourigenesis (Buchkovich et al. 2008). SV40 ST 

activates the pathway by preventing the PP2A Aα-mediated dephosphorylation of 

Akt (Rodriguez-Viciana et al. 2006a). However,  MCPyV ST has little effect at this 

stage of the Akt-mTOR pathway, instead acting downstream, at the level of the 

translation factor 4E-binding protein 1 [4E-BP1] (Shuda et al. 2011). 

This hinted at another mechanism for MCPyV ST in tumourigenesis. Cap 

dependent translation requires the eukaryotic translation factor 4E [eIF4E] to bind 

RNA, which allows ribosome recruitment. This pathway is regulated by 4E-BP1 

which controls binding of eIF4E to RNA. Mammalian target of rapamycin [mTOR] 

phosphorylates 4E-BP1, which releases eIF4E to initiate allowing assembly of 

eIF4F and cap-dependent translation (Shuda et al. 2011). MCPyV ST reduces the 

turnover of hyperphosphorylated 4E-BP1 which results in increased translation as 

shown in Figure 1.21 (Gingras et al. 1999; Shuda et al. 2011). ST also targets the 

cellular ubiquitin ligase SCF[Fwb7, which stabilises MCPyV LT and many other 

cellular oncoproteins,  including c-Myc and cyclin E (Shuda et al. 2011). 
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Figure 1. 21: MCPyV ST promotes cell proliferation downstream of the Akt pathway. 
MCPyV ST targets the translational regulator 4E-BP1, and reduces hyperphosphorylated 
4E-BP1 turnover, promoting eIF4E activity and cap-dependent translation. On the other 
hand, SV40 ST promotes Akt activity by preventing PP2A-mediated Akt dephosphorylation.  

 

1.4.8.2 The role of LT in Merkel cell polyomavirus-induced 
tumourigenesis  

In other oncogenic polyomaviruses, such as SV40, LT has been shown to be the 

major oncoprotein, with ST playing a lesser role. In SV40, overexpression of LT 

allows for transformation of mouse fibroblasts. This is due to the inhibition of major 

tumour suppressor proteins, p53 and Rb (DeCaprio 2009). Like LT from SV40, 

JCPV and BKPV can also bind to Rb and p53 tumour suppressors, however, 

MCPyV LT truncated forms in MCC lose the ability to bind p53 (Harris et al. 1996; 

Bollag et al. 2000; Poulin et al. 2004; Cheng et al. 2013). As such, LT alone is not 

sufficient to induce cell transformation, it however is believed to play a role aiding 

ST in initiating transformation (Shuda et al. 2011).  This is supported by the 

observations that LT and ST proteins are co-expressed in MCC tumour samples.   

MCPyV LT expression also increases the levels of the cellular oncoprotein, 

Survivin. Survivin is a member of the inhibitor-of-apoptosis family of proteins, and it 
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is elevated in a number of cancers (Arora et al. 2012). Survivin mRNA is increased 

7-fold in MCPyV-positive MCC tumours, and MCPyV LT expression alone can 

upregulate survivin, whereas depleting the T antigens decreases both the mRNA 

and protein levels of survivin, leading to cell death. Survivin may be a viable drug 

target for MCPyV-positive MCC treatment, as a small molecule inhibitor, YM155 is 

able to initiate selective MCC cell death (Arora et al. 2012). 

 

1.5 Cancer and Metastasis 

1.5.1 Metastasis   

The dissemination of malignant cells from a primary solid tumour to distant and 

remote sites within the body is one of the biggest problems facing cancer treatment 

as it results in over 90% of cancer-associated deaths (Miller et al. 2013). Despite 

the clinical importance of metastasis, the molecular mechanisms by which this 

phenotype manifests are yet to be fully elucidated (Gueron et al. 2011). This poses 

a significant problem in the analysis of cancer prognosis and treatment of patients. 

As such, it is an area of cancer biology that is yet to be fully understood and is of 

major scientific interest. 

MCC is regarded as a highly metastatic and aggressive form of skin cancer. Poor 

patient prognosis has been associated with the quick progression of MCC to distant 

metastases (Lemos and Nghiem 2007). Novel interactions have been identified that 

implicate MCPyV in the transformation of Merkel cells, however to date very few 

studies have addressed the mechanisms by which MCC tumour cells acquire an 

aggressive metastatic phenotype.  

 

1.5.1.1 The Metastatic cascade 

Metastasis is a complex process, with several discrete steps required for the 

formation of secondary tumour sites: these metastatic hallmarks include loss of cell 

adhesion, gain of cell motility, dissemination via the vasculature, and colonisation of 

distant sites [Figure 1.22]. Cell motility is thus a key stage of cancer metastasis, and 

the metastatic nature of MCC can be potentially linked to the effects of MCPyV ST 

on enhancing cell motility, first observed by the Whitehouse laboratory (Knight et al. 

2015). 
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Figure 1. 22: Steps required for escape from the primary tumour site. Upon 
transformation, some primary carcinoma cells will acquire the capabilities to escape from 
the primary tumour site into the vasculature. This process involves epithelial-to-
mesenchymal transition (EMT) where cells become more motile and express specific 
integrins and MMPs required to invade local tissue and escape through the basement 
membrane into blood and/or lymph vessels Taken from (Ma and Weinberg 2008). 

 

1.5.1.1.1 Loss of cell adhesion  

Solid tumours are based in the Epithelial tissue as it is composed of cell sheets 

separated from the basement membrane by stroma. These cell sheets are 

arranged and organized into highly complex structures that require cell-to-cell and 

cell-to-Extracellular matrix [ECM] adhesion. Upon initiation of metastasis, cells from 

the solid tumour needs to detach, which requires the deconstruction of cell 

adhesion complexes. Unsurprisingly, cancerous cells lose cell adhesive properties 

(Cavallaro and Christofori 2004). For example, invasive tumours of epithelial origin 

show the loss of E-cadherin (Beavon 2000). E-cadherin is a member of the tissue- 

specific cadherin family of transmembrane glycoproteins required to maintain tissue 

integrity. Cadherins localise to cell junctions called zonula adherens and are 

responsible for calcium-dependent cell adhesion and signalling (Lewis et al. 1994). 

A characteristic of many cancers, correlating with increased invasiveness, is a 

process known as “cadherin switching”, i.e. loss of E-cadherin and increased 

expression of N-cadherin (Beavon 2000). This process is part of a wider process, 

known as the epithelial- to-mesenchymal transition (EMT). EMT is characterised by 

a loss of cell polarity and epithelial proteins such as E-cadherin, occludins, claudins, 

catenins, and cytokeratin, all of which are responsible for maintaining cell-to-cell 
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junctions, loss of these proteins result in a gain of a mesenchymal, migratory and 

invasive phenotype (Yang and Weinberg 2008). These will be discussed in later 

sections [1.5.3].  

Human tumour viruses express various oncoproteins which promote the loss of cell 

adhesion molecules.  For example, HPV E6 expression promotes degradation of 

epithelial cell tight junctions through an interaction with E6AP, an ubiquitin ligase, 

which leads to the  proteosomal degradation of cell adhesion molecules, in an EMT-

like manner (Watson et al. 2003). Additionally, the HBV oncoprotein, HBx, 

downregulates E-cadherin expression, inducing the loss of intracellular adhesion 

molecules  (Lee et al. 2005). In addition, SV40 ST promotes, in a PP2A-dependent 

manner, the redistribution and downregulation of E-cadherin, ZO-1, claudin-1, and 

occludin, all proteins involved in cell junctions (Nunbhakdi-Craig et al. 2003). 

Notably, MCC tumours also show a pronounced redistribution of E- cadherin from 

the cell membrane to the nucleus, suggesting MCC possess mesenchymal 

hallmarks that promote the invasive phenotype of this cancer (Han et al. 2000).  

 

1.5.1.1.2 Gain of Cell motility  

A critical aspect of tumour cell metastasis is the ability for cells to acquire a 

migratory phenotype to permit dissemination (Mehlen and Puisieux 2006). Multiple 

studies have investigated mechanisms to initiate cell motility in vitro, using 2D and 

3D matrices and advanced in vitro imaging techniques (Geiger and Peeper 2009). 

These motility studies illustrated three broad categories of cell migration: 

mesenchymal, amoeboid and collective motility. The most characterized of these 

mechanisms is mesenchymal motility, as 10-40% of carcinomas undergoing EMT 

use this mechanism (Sahai 2005). Mesenchymal motility is characterised by a 

polarised, elongated cell body as observed in Figure 1.23 and requires degradation 

of extracellular matrix components [ECM], generally initiated by activation of 

receptor tyrosine kinases [RTK], such as c-Met. Together these changes result in 

directional movement with extended protrusions at the leading edge and retraction 

at the rear (Sahai 2005). 



 
 

 
57 

 

 

Figure 1. 23: The process of mesenchymal, directional cell motility. Key components of 
directional, polarised cell motility using the actin cytoskeleton to form protrusions and 
extracellular matrix degradation to invade local tissue. 

 

Amoeboid motility is similar to leukocyte movement and is generally a feature of 

malignant cells that do not undergo EMT (Sahai 2005). These receptors on the cell 

surface sense chemokine gradients, which stimulate the Rho-ROCK signalling 

pathway. This in turn promotes actin remodelling and cortical actin contraction, 

allowing the invading cells to ‘squeeze’ between other cells and change direction 

rapidly (Geiger and Peeper 2009). In contrast to mesenchymal motility, amoeboid 

movement does not require degradation of the ECM due to the ability of cells to 

‘squeeze’ through gaps, thus no formation of large actin-based protrusions are 

observed, characteristic of mesenchymal motility (Sahai 2005). 

The final form of motility relies on similar mechanisms to mesenchymal motility and 

is termed as collective migration, involving whole sheets of cells moving as one. 

This mechanism has been demonstrated in breast, colon and ovarian carcinomas 

(Sahai 2005). Collective motility requires the cells at the leading edge of movement 

to generate proteases that degrade the ECM thereby creating a path for lagging 

cells to follow (Nabeshima et al. 2002). The main difference between mesenchymal 

and collective forms of motility is that collective motility requires active adhesion 

complexes, whereas mesenchymal motility requires the loss of these complexes 

(Friedl and Wolf 2003). This method is less widely understood due to the lack of 

appropriate in vitro techniques capable of modelling this type of movement.  
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1.5.1.1.3 Epithelial to mesenchymal Transition  

Cells vacillate between epithelial and mesenchymal states during embryonic 

development in a highly dynamic manner (Yang and Weinberg 2008). This shift 

causes modification of the adhesion molecules expressed by the cell giving the cell 

the opportunity to adapt to a migratory and invasive phenotype. While initially 

described as a transformation, this process was ascertained to be reversible due to 

the plasticity and transition between both states (Nieto et al. 2016). The reverse 

state, not surprisingly referred to as the Mesenchymal-Epithelial transition [MET], is 

associated with loss of a motile and migratory phenotype and increase in apical to 

basal cell polarity, as well as cell junction stability. These are known hallmarks of 

Epithelial tissues (Thiery et al. 2009).   

 

1.5.3.1.3.1 Complete EMT  

EMT is observed in numerous pathological processes, such as fibrosis and cancer 

(Lopez-Novoa and Nieto 2009). The majority of signalling pathways and 

transcription factors used in physiological EMT processes are activated in 

pathological EMT, such as tumour invasion and its metastatic dissemination (Strizzi 

et al. 2009). The physiological process of EMT presents a sequence of specialized 

events which occur in succession. This multi-stage process of an EMT includes 

gradual alteration of epithelial cell architecture and functionality. Here cells lose 

their epithelial cell–cell junctions and apical-basal cell polarity (Nieto et al. 2016).   

Next, the underlying basement membrane begins to degrade due to the 

upregulation of Matrix metalloproteinases (Kaufmann et al. 2000). Cell surface 

proteins like E-cadherin and integrins mediate the connections between 

neighbouring epithelial cells and with the basement membrane. With their 

degradation, E-cadherin is replaced with N-cadherin and other groups of integrins. 

This may aid transitioning of an invasive cell phenotype by mediating contact 

inhibition of locomotion and also providing the cell with transitory adhesion essential 

for the mesenchymal phenotype (Stramer and Mayor 2017).  

Finally, independent of their neighbours, transitioning cells develop invasive 

properties and the ability to move across the extracellular matrix. It has been 

suggested that it is during this process that epithelial cell acquire anoikis resistance. 

This is due to resulting loss of contact with the basement membrane and the ability 

to respond to extracellular signals that accurately direct their migration until they 
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arrive at their distant site (Frisch et al. 2013). Once arriving at a distant site, 

Mesenchymal cells perform the inverse process [MET] in other to colonize their 

current location (Frisch et al. 2013).  

 

 

Figure 1. 24: Epithelial mesenchymal transition. Progressive loss of epithelial markers 
and gain of mesenchymal markers 

 

In cancer development, EMT characteristics have been observed in neoplasms 

present in breast, ovary, colon or esophagus tumours to name but a few (Larue and 

Bellacosa 2005). During oncogenic EMT, processes observed include loss of 

apicobasal polarity, the destabilization of tight junctions and Adherens junctions, 

reorganization in the cytoskeleton including upregulation of vimentin synthesis and 

acquisition of a migratory and invasive phenotype [Figure 1.24]. These changes are 

similar to those observed during physiological EMT process that occurs during 

development (Geiger and Peeper 2009; Nieto et al. 2016). Additionally, multiple 

initiators of EMT in neoplastic cell lines have been identified, including but not 

limited to transforming growth factor-β [TGF-β], Wnt, Snail, Slug, Twist, Zeb1 and 

Zeb2. These initiators are also essential during physiological EMT (Peinado et al. 

2004; Mercado-Pimentel and Runyan 2007; Peinado et al. 2007; Moreno-Bueno et 

al. 2009; Diepenbruck and Christofori 2016) 

 

1.5.3.1.3.1 EMT and human tumour viruses  

Known human tumour viruses such as Epstein-Barr virus [EBV], Hepatitis B [HBV], 

Hepatitis C [HCV], Human papillomaviruses [HPV], and Merkel cell polyomavirus 

[MCPyV] are defined as etiological agents in various cancers (Moore and Chang 

2010; Chen et al. 2016). Some of these human tumour viruses have also been 
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found to play important roles in cancer metastasis, specifically in driving the EMT 

process. For example, EBV latent membrane protein-1 and -2A, EBV nuclear 

antigen have both been shown to induce EMT (Chen et al. 2016). Studies have 

shown that LMP1 can downregulate E-cadherin expression by inducing the 

formation of a transcriptional repression complex, comprised of DNA 

methyltransferase [DNMT-1] and histone deacetylase. This complex then locates 

onto the gene promoter of E-cadherin (Tsai et al. 2006). LMP1 can also activate 

cadherin switching of E-cadherin to N-cadherin as well as promote matrix 

metalloproteinase 9 expression (Shair et al. 2009). Additionally, LMP1 regulates 

EMT transcription factors TWIST and SNAIL although the exact mechanism is yet 

to be elucidated (Chen et al. 2016).  

Notably, HPV associated oncoproteins have also been shown to induce EMT. 

HPV16 E6/E7 has been shown to induce Jagged1, a gene upregulated in human 

cervical tumours. Jagged1 upregulation correlates with the rapid induction of 

phosphatidylinositol 3-kinase (PI3-K)-mediated EMT (Veeraraghavalu et al. 2005). 

HPV encoded oncoproteins E6 and E7 induce fibroblast growth factor [FGF] 2 and 

4-induced EMT and cervical tumorigenesis (Chen et al. 2016). HPV16 E6/E7 

expression also been proven to inhibit E-cadherin expression in cervical cancer 

cells causing FGF ligand stimulation which in turn increases invasive ability (Cheng 

et al. 2012).  

HBV encoded X protein [HBx] expression has been linked to decreased E-cadherin 

expression as well as upregulation of mesenchymal markers N-cadherin and 

vimentin (Chen et al. 2016). Additionally, non-structural HCV protein 5A have been 

proven to be involved in the regulation of EMT (Chen et al. 2016). NS5A induces 

phosphorylation of Akt and GSK-3β along with binding to integrin αVβ3 and CD44 

at the cell surface focal adhesion kinase This initates β-catenin activation, leading 

to EMT of hepatocytes, inducing downregulation of E-cadherin as well as 

upregulation of N-cadherin in HCV-infected cells (Iqbal et al. 2014). 
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1.5.1.1.4 Dissemination via the vasculature  

The basement membrane is a barrier for invasive tumours of epithelial origin, which 

must be passed through to access the vasculature. The basement membrane is 

important for epithelial structure and integrity, and consists of a dense network of 

proteoglycans and glycoproteins, including laminin and collagen. The basement 

membrane can be broken down by extracellular matrix proteases, which are 

normally under strict regulatory control by their localisation, inhibitors and auto-

inhibition (Gupta and Massague 2006). Therefore, malignant cells that use the 

mesenchymal mode of migration need to activate these proteases to degrade the 

ECM, which can further lead to the production of bioactive peptides able to mediate 

migration, angiogenesis, and tumour survival (Sahai 2005). One subset of matrix 

proteases are the calcium-activated, zinc-containing matrix metalloproteinases 

(MMPs) (Verma and Hansch 2007). 

DNA tumour viruses can promote matrix degradation and tumour invasion. For 

instance, HPV E7 and HBV HBx induce the expression of matrix transmembrane 

metalloproteinase 1 (MT1-MMP), which is crucial for the degradation of the ECM 

and activation of additional matrix metalloproteinases 2 and 9 (MMP2 and MMP9) 

(Zhu et al. 2015).  MT1-MMP expression also promotes tumour growth and 

angiogenesis by upregulating expression of vascular endothelial growth factor 

[VEGF], which correlates with invasiveness (Sounni et al. 2002). Interestingly, 

induction of MMP gene expression by the WNT/ β-catenin signalling pathway and 

other growth factors stimulates MCPyV infection. These findings further highlight 

the role of MCC risk factors, such as UV radiation and aging, which are known to 

stimulate WNT signalling and MMP expression, and this may promote viral infection 

and pathogenesis (Liu et al. 2016). 

 

1.5.1.1.5 Colonisation and secondary tumour growth  

In order for tumour cells to access remote tissues and organs, they must access the 

vasculature. Angiogenesis is the process of growing new blood vessels, and is an 

important step in cancer malignancy. Angiogenesis prevents hypoxia and necrosis 

of the growing tumour, by providing nutrients as well as removing waste products 

from the hyperproliferating cancer cells (Sahai 2005). VEGF is a key factor in 

angiogenesis, and some virus oncoproteins, e.g. EBV LMP1, can induce hypoxia-

inducible factor 1 alpha (HIF-1α) expression, which in turn promotes the expression 

of VEGF (Wakisaka et al. 2004).   
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Entry into the vasculature is known as intravasation, and is initiated by tumour cells 

orienting towards the vasculature and migrating towards it (Sahai 2005).The vast 

majority of tumour cells are either trapped in the capillary bed or rapidly die in the 

circulatory system. Only a minority of tumour cells that enter the circulation can exit 

the vasculature and establish metastases (Sahai 2005). Exit from the vasculature is 

termed, extravasation and is largely dependent on the principles involved in 

intravasation. Studies have shown that membrane type-4 matrix metalloproteinase 

[MT4-MMP or MMP17], which is highly expressed on breast cancer cells enable 

lung metastasis by disrupting vessel integrity surrounding the primary tumour. This 

in turn facilitates cancer cell intravasation and cell migration (Sohail et al. 2011). 

Another metalloproteinase, ADAM 12, also promotes intravasation however through 

an alternate mechanism, possibly by disrupting the endothelial junction (Sonoshita 

et al. 2011).  

Although intravasation and extravasation of cancer cells both require the 

deregulation of endothelial junctions for cancer cells to cross the endothelium, 

known as transendothelial migration [TEM], these mechanisms are essentially 

different as cancer cells approach the endothelium from alternate sides (Reymond 

et al. 2013). Various integrins on the cell surface of cancer cells have been 

implicated to play a role in extravasation.  Specifically αVβ3 and β1 have been 

shown to facilitate attachment of cancer cells to the endothelium and transmigration 

across the endothelium and attachment to the stromal matrix around the blood 

vessels (Desgrosellier and Cheresh 2010).  

Establishment of tumour cells in new sites and eventual secondary tumour growth 

is not necessarily a random process. For example, breast, lung, and prostate 

cancers preferentially metastasise to bone tissue (Mundy 2002). This suggests that 

the organ must be compatible with the metastasising cells, known as the seed and 

soil hypothesis.  
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1.5.2 Cell adhesion  

1.5.2.1 Cell Junctions 

Cell junctions are sites of intercellular adhesion that maintain the structural integrity 

of epithelial tissue and mediate signalling between cells.  In epithelial tissues, cell-

to-cell interaction is facilitated by numerous junctional complexes. These complexes 

are tight junctions (TJs), Adherens junctions (AJs), desmosomes and gap junctions 

[Figure 1.25], each have a characteristic composition, morphology and function 

(Dejana 2004).  

 

 

Figure 1. 25: Intercellular junctions form the epithelial barrier. Basic schematic of 
intercellular junctions including tight junctions, Adherens junctions, desmosomal junctions 
and gap junctions. Adapted from (Wroblewski and Peek 2011). 

 

1.5.2.1.1 Desmosomes 

Desmosomes are a group of anchoring junctions responsible for establishing an 

intercellular adhesive structure between the cytoskeleton and plasma membrane 

(Garrod and Chidgey 2008). Desmosomes provide mechanical integrity between 

cells by creating an anchorage point between intermediate filaments of the 

cytoskeleton by means of a complex of proteins in the cytoplasmic and extracellular 

regions of the junction (Yin and Green 2004). Desmogleins (DSGs) and 

desmocollins (DSCs) are transmembrane proteins that link adjacent cells and are 

embedded in the cytoplasmic plaques [Figure 1.26]. These proteins have been 

shown to form the dense midline seen in mature desmosomes. A major role of 

desmosomes is the anchoring of cytoskeletal keratin intermediates to the cell 



 
 

 
64 

 

membrane (Yin and Green 2004; Garrod and Chidgey 2008; Brooke et al. 2012). It 

also has been suggested that desmosomal genes are regulated by a transcriptional 

program directed by transcription factors prominent in the EMT process, such as 

Snail, Slug and Twist (Peinado et al. 2007; Chun and Hanahan 2010).   

 

Figure 1. 26: Schematic of Desmosome junction.  Desmogleins [DSGs] and 
desmocollins [DSCs] compose the extracellular link between cells. They form homo- and 
heterodimers, whose intracellular tails bind the proteins plakoglobin [PG] and the 
plakophilins [PKPs]. These tether cadherins to the plakin protein desmoplakin [DSP], which 
in turn connects desmosomes to the intermediate filament network. Taken from (Brooke et 
al. 2012). 

 

1.5.2.1.2 Gap Junctions 

Gap junctions are specialized gated intercellular channels found between 

neighbouring cell plasma membranes. When open, gap junction channels allow 

metabolite exchange between cells. Each channel is composed of two connexons, 

one from each communicating cell as seen in Figure 1.27 (Czyz 2008). These 

connexons float laterally within the plasma membrane until a linkage occurs with a 

complementary proximal connexon in an adjacent cell. When the linkage occurs, 

the membranes of the cells are joined at that locus to create a linking channel 

between the two cells (Defamie et al. 2014). These conjoined cells have their 

metabolic systems partly open to each other and also provide a channel of cell-to-

cell communication. This channel is large enough to allow small molecules like 
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inorganic ions, and other small water soluble molecules <1000 kDa to travel 

between the cells. However, the channel is not large enough for proteins, nucleic 

acids or sugars to pass through (Defamie et al. 2014). Interestingly, reduction in 

functional gap junctions has been associated with tumourigenesis and can be 

linked to the increased growth rate of tumour cells in vivo (Eghbali et al. 1991).  

 

 
Figure 1. 27: Structure and molecular organization of gap junctions.  Gap junctions are 
formed between the opposing membranes of neighbouring cells. Hemichannels on each 
side anchor to one another to form conductive channels between the two cells. Each 
hemichannel or connexon, is comprised of 6 connexin protein subunits that are oriented 
perpendicular to the cells' membranes to form a central pore. Taken from (Bloomfield and 
Volgyi 2009). 

 

1.5.2.1.3 Adherens Junction [Zonula adherens] 

Adherens junctions are a characteristic feature of all epithelial sheets (Fristrom 

1988). Adherens junctions have multifunctional roles, including but not limited to 

initiation and stabilization of cell-to-cell adhesion, regulation of the actin 

cytoskeleton as well as transcriptional regulation (Meng and Takeichi 2009). The 

structural proteins associated with Adherens junction include interacting 

transmembrane glycoproteins of the classical cadherin superfamily like E-cadherin, 

and members of the catenin family like p120-catenin, β-catenin and α-E-catenin 

[Figure 1.28]. The proteins regulate the formation, preservation and function of 

Adherens junctions (Meng and Takeichi 2009). 

Junctional E-cadherin–catenin complexes are essential for precise functioning of 

the epithelia. Homophilic interactions between the extracellular portions of E-
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cadherin molecules provide mechanically strong adhesive connections between 

cells in the tissue. Adherens junctions and tight junctions comprise two modes of 

cell-to-cell adhesion that provide different but complimentary functions. Adherens 

junctions contribute to the definition of an epithelial cell apical–basal axis and 

function in collaboration with tight junctions to coordinate epithelial apical to basal 

cell polarity (Desai et al. 2009; Yadav et al. 2009).  

  

 

Figure 1. 26 Representation of structural components of the Adherens junction. 
Interaction between Catenin and Cadherins [Cadherin-Catenin complex] and possible 
interacting with Actin.  Taken from (Niessen 2007). 

 

α-E-catenin which is localized at the Adherens junction also bind cadherins to actin 

filaments to enable strong cell-to-cell adhesion (Baum and Georgiou 2011). It has 

also been surmised that ZO-1, which is known to bind α-E-catenin (Muller et al. 

2005), functions as a scaffolding protein between transmembrane and cytoplasmic 

proteins, and possibly forms a link between the Adherens and Tight junctions 

(Hartsock and Nelson 2008). Notably, downregulation of E-cadherin and Α-E-
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Catenin have been linked to tumour progression in multiple cancers (Rimm et al. 

1995; Wijnhoven et al. 2000; Bajpai et al. 2009). 

 

1.5.2.1.4 Tight Junction [Zonula occludens] 

Adherens junctions and tight junctions comprise two modes of cell-to-cell adhesion 

that provide different but complimentary functions. Tight junctions [TJ] are identified 

as electron microscopically dense protein particles enclosing individual cells and 

thus sealing the paracellular cleft between two adjacent cells (Anderson et al. 

1993). TJs are composed of a multi-protein complex of up to 30 transmembrane 

proteins, as well as cytosolic scaffolding proteins. These proteins comprise 

transmembrane proteins such as claudins, members of the protein family of Tight 

junction associated MARVEL [MAL and related proteins] proteins [TAMPs]  and 

also cytosolic membrane-associated guanylate kinases [MAGUKs] (Balda et al. 

1993). Importantly, tight junctions are located at the most apical end of the 

junctional complex, forming a physical barrier to free passage of molecules through 

the paracellular pathway. This barrier prevents systemic contamination by microbes 

and toxins present in the immediate microenvironment (Tsukita et al. 2001). 

 

 

Figure 1. 27: Schematic of tight junction complex. Extracellular domains of claudin, 
occludin, or junctional adhesion molecule (JAM) interact with their counterparts in a 
homophilic interaction. Their intracellular domains interact with ZO-1. α-catenin complexes 
links tight junction with cytoskeleton. 

 

Electron microscopy approaches have confirmed the existence of structures typical 

of TJ kissing points in the stratum granulosum of human epidermis. Results showed 



 
 

 
68 

 

expression of Occludin and ZO-1 in human epidermis and cultured human 

keratinocytes as seen in Figure 1.29 (Brandner et al. 2002). Interestingly, 

diminished expression of ZO-1 has also been demonstrated to correlate with 

increased invasiveness in multiple cancers including breast, colorectal, and 

digestive tract cancers (Wu et al. 2017).  

 

1.5.2.2 Sheddases  

Sheddases are membrane-bound enzymes that cleave membrane proteins at the 

cell surface allowing for release of soluble ectodomains causing alteration in their 

localisation and function. Cellular sheddases belong to either the metalloprotease 

family [ADAM and MMP] or aspartic protease [BACE] families (Lichtenthaler et al. 

2011).   

1.5.2.2.1 ADAM Proteins  

A Disintegrin and metalloproteases [ADAM] proteins, are membrane-anchored 

glycoproteins and regulatory enzymes that have been associated with cell adhesion 

and shedding of membrane-bound proteins to soluble forms. ADAM proteins belong 

to the metzincin zinc-dependent metalloprotease superfamily typified by containing 

several conserved domains including a prodomain, metalloprotease domain, 

disintegrin domain, cysteine-rich domain, epidermal growth factor (EGF)-like 

domain, a transmembrane domain, and a cytoplasmic domain [Figure 1.30] 

(Wolfsberg et al. 1995; Moss and Lambert 2002; Edwards et al. 2008). Studies 

have linked ADAM proteins with various biological functions including, but are not 

limited to, neurogenesis and angiogenesis. They have also been associated with 

multiple diseases including cancer (Rocks et al. 2008).   

 

 

Figure 1. 30: ADAM protein.  Basic Schematic of ADAM protein including multiple domains 
– Prodomain, Metalloprotease domain, Disintegrin domain, Cysteine rich region and 
cytoplasmic tail. 
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The Protease domain of ADAM proteins is catalytically inactive until this is modified 

by autocatalysis or removed by a furin-type pro-protein convertase.  Notably, a 

cysteine switch in the protease domain keeps the protease inactive. In contrast, 

some ADAM proteins contain a HEXXH sequence which have protease activity 

(Edwards et al. 2008). As shown in Figure 1.31, only approximately half of known 

ADAM proteins contain a catalytic-Zn binding signature for metalloproteases 

[HExGHxxGxxHD] in their metalloprotease domain and can be catalytically active 

(Giebeler and Zigrino 2016). The disintegrin domain is located downstream of the 

protease domain. It is highly conserved, has approximately 90 amino acids and 

found in all ADAM proteins (Eto et al. 2000; Edwards et al. 2008).  

 

Figure 1. 31: ADAM protein family. The human ADAM proteins grouped by site of 
expression and catalytic activity. 

 

1.5.2.2.2 ADAM protein sheddase function 

ADAM proteins shed the extracellular domains of membrane-bound growth factors, 

cytokines and their receptors. Some receptors, such as ErbB receptors, play an 

essential role in cell signalling and may function as a potential target in cancer 

therapy. ErbB receptors are members of a subclass I of the superfamily of receptor 

kinases. ErbB receptors are also known as Epidermal Growth Factor (EGF) family 

of receptor tyrosine kinases (RTKs) have 4 family members; EGFR/ErbB1/HER1, 
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HER2/ErbB2, HER3/ErbB3, and HER4/ErbB4. Under normal physiological 

conditions, the ErbB receptors play crucial roles regulating cell growth, cell 

migration, cell survival, cell migration and invasion. 

 The ErbB proteins also play a role human tumourigenesis (Kansas 1996). For 

example, EGFR and HER2 has been linked to the formation and development of 

multiple cancer types (Keelan et al. 1994). Some ligands of the HER family include 

amphiregulin, β-cellulin, epiregulin, epigen, EGF and TGF (Clark et al. 2008). 
Knockout studies using mouse embryonic cells have demonstrated that ADAM 17 is 

the major sheddase for amphiregulin, epiregulin and TGF-α. ADAM 10 in contrast is 

primarily responsible for cleavage of EGF and β-cellulin (Khatib et al. 1999). 

However, as ADAM 10 and ADAM 17 do show functional redundancy, as over 

expression of both proteins induce EGF release.  

It has also been shown that TNF-α is shed by ADAM 17 activity leading to this 

particular sheddase to be known as TNF-α converting enzyme [TACE]. TNF-α is a 

pluripotent peptide that is involved in various activities that are important in tumour 

formation and development. It plays a vital role in cancer initiation and progression 

due to its ability to induce angiogenic factors and Matrix mellatoproteinase 

expression, leading to the enhancement of cell migration (Burdick et al. 2003). In a 

breast cancer study, it was shown that overexpression of ADAM 17 increased 

invasion and proliferation in vitro.  Whereas, downregulation of ADAM 17 

decreased both invasion and proliferation (Sahin et al. 2004).  

ADAM 10-mediated shedding also plays a role in increasing cell proliferation and 

migration. Studies have shown that ADAM 10 caused the shedding of E-cadherin, 

causing β-catenin to translocate to the nucleus and increase proliferation. Shed E-

cadherin forms a E-cadherin-HER2-HER3 complex which in turn enhances ERK 

signalling, increasing proliferation and migration (Gout et al. 2006). 
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Figure 1.32: The roles of ADAM-mediated sheddase activity. schematic of ADAM 
protein dual function. The adhesive properties of the disintegrin domain along with the 
catalytic function of the metalloproteinase domain. Modified from (Dreymueller et al. 2015). 

 

Sheddase activity has also been implicated in the Notch signalling pathway. This 

pathway is an evolutionarily conserved pathway important in regulating cell 

proliferation, differentiation and death (Murphy 2008). Notch ligands are integral 

membrane proteins that interact with Notch receptors on adjacent cells. Studies 

have shown that ADAM 10 alone can cleave the Notch receptor near the 

membrane. Subsequent to this cleavage event, γ-secretase cleaves the receptor at 

an intramembrane site. This ADAM 10-mediated cleavage causes the release of 

the intracellular domain into the cytosol, which then translocates to the nucleus 

where it functions as a transcription factor (Murphy 2008; Kopan and Ilagan 2009). 

ADAM10 is essential to the initiation of Notch signalling and is required for stem cell 

maintenance, as well as normal organismal growth and development. Additionally, 

ADAM17 has also been shown to be capable of cleaving the Notch receptors (Brou 

et al. 2000).  

Importantly, ADAM proteins also function as regulatory enzymes implicated in cell 

adhesion. ADAM 10 and 17 are upregulated in activated endothelium and studies 

have shown that they play a role in ectodomain shedding of adhesion molecules 

during leukocyte recruitment (Boulday et al. 2001). Also, CX3CL1 and CXCL16, 

chemokines which act as adhesion molecules are cleaved by ADAM 10 and 17, 

yielding a soluble form (sCXCL16). For example,  CXCL16 is normally expressed 
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on macrophages, dendritic cells, monocytes, and B cells and serves as an 

adhesion molecule for neighbouring cells expressing CXCR6 (Gooden et al. 2014). 

When cleaved by ADAM proteins, CXCL16 yields a soluble form (sCXCL16).  

sCXCL16 has been detected in the serum of various types of cancer patients 

(Gooden et al. 2014). 

There may be a functional role for CXCL16/CXCR6 in cancer however it is yet to be 

elucidated. Although, they have been reported to have pro-metastatic as well as 

anti-tumorigenic functions. For example in prostate cancer, high expression of 

CXCL16 and CXCR6 as well as high serum sCXCL16 levels, were associated with 

a more aggressive tumour (Lu et al. 2008). Furthermore, high serum levels of 

sCXCL16 in colorectal cancer patients were associated with recurrent liver 

metastasis and poor prognosis (Matsushita et al. 2012). Although, a divergent 

prognosis has been observed in a murine model of colorectal cancer, whereas 

expression of CXCL16 appears to inhibit formation of liver metastasis (Kee et al. 

2013). 

CD44, an adhesion molecule associated with inflammatory cells, provides cross-

links to endothelial cell hyaluronan, inducing intracellular signalling cascades. This 

leads to the activation of ADAM 10 and ADAM 17 (Nagano and Saya 2004).  

Consequently, ADAM protein-induced release of soluble ectodomain fragments 

from the adhesion molecules such as L-selectin, CXCL16 and CD44, contribute to 

leukocyte de-adhesion and rolling on activated endothelial cells and their migration 

to the inter-endothelial junction (Nagano and Saya 2004; Ponnuchamy and Khalil 

2008).  
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1.6 Thesis aims 

MCPyV ST antigen has been implicated to play a role cell motility and migration, a 

complex and multi-step process, which is essential to metastasis. Specifically, when 

investigating the role of MCPyV ST in the highly metastatic nature of MCC, the 

Whitehouse laboratory has shown that MCPyV ST affects the microtubule network 

(Knight et al. 2015) and also the actin cytoskeleton to induce filopodia formation 

(Stakaityte et al. 2018), which promotes cell motility.  

 

The aim of this thesis was to further elucidate the role of MCPyV ST in other 

components of the metastatic pathway including disruption of cell junction stability 

and also induction of EMT.  

 

Chapter 3 arose from data observed in the a SILAC -based quantitative proteomics 

dataset. Dataset indicated a down-regulation of cell adhesion-related proteins upon 

MCPyV ST expression.  Following this, the structural integrity of the Adherens and 

Tight junctions were evaluated. Additionally, possible targets responsible for the 

disruption of these cell junctions were considered by reviewing members of the 

ADAM family.  

 

Chapter 4 further explored the role of ADAM 10 and ADAM 17 in cell junction 
breakdown and increased cell dissociation. Further showing an ADAM 10 
dependent disruption of the Adherens and Tight junction. It was established that 
ADAM 10 is important to MCPyV ST-induced cell dissociation and cell motility using 
inhibitory peptides and siRNA-mediated depletion studies. Results show that 
inhibition of ADAM 10 allows for recovery of cell junction stability, reduced cell 
scatter and cell motility in MCPyV ST-expressing cells.  

 

Chapter 5 then investigates MCPyV ST role in inducing an EMT. Previous studies 

have inferred that certain markers associated with EMT are enriched upon MCPyV 

ST expression (Berrios et al. 2016). Hallmarks of EMT where assessed in various 

cell lines and MCPyV-positive MCC tumours. Results, show a downregulation of 

epithelial markers and upregulation of Mesenchymal markers.  
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CHAPTER 2 
MATERIAL AND METHODS 
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2.1 Materials  

2.1.1 Tissue samples.  

MCV tumour sections 

Two samples of fresh MCC tumour were supplied by Professor Julia Newton-

Bishop at St James’ Hospital, Leeds. Upon immediate removal from two patients 

undergoing surgery, these samples were frozen on dry ice and stored at -80 °C. 

 

Skin Samples  

Healthy skin samples were supplied by Professor Alan Melcher. Upon immediate 
removal from patients undergoing surgery, these samples were frozen on dry ice 

and stored at -80 °C. 

 

2.1.2 Chemicals  

All analytical grade chemicals and solvents were provided by Sigma-Aldrich®, 

Melford Laboratories Ltd., and Life TechnologiesTM, unless stated otherwise. 

Solutions were sterilised using 0.22 μm filters (Millex), or by autoclaving (121 C, 30 

min, 15 psi). All water used throughout, unless mentioned otherwise, was deionised 

water sterilised through an ELGA PURELAB ultra machine (ELGA).  

 

2.1.3 Enyzmes  

Restriction enzymes were supplied by InvitrogenTM, New England BioLabs Inc. or 

FermentasTM. Other enzymes and their suppliers are listed in table 2.1. 
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Table 2.1: List of enzymes and their suppliers 

Enyzme Supplier 

Platinum R Pfx DNA polymerase  Life TechnologiesTM  

Superscript R II reverse transcriptase Life TechnologiesTM  

Proteinase K Life TechnologiesTM  

RNase Out  Life TechnologiesTM  

DNA-freeTM DNase I treatment kit  AmbionTM  

2x SensiMixTM SYBR No-ROX Kit Bioline Reagents Ltd 

 

2.1.4 Antibodies 

Primary antibodies were provided by a range of suppliers, detailed in table 2.2. 

Horseradish peroxidase [HRP] conjugated anti-mouse and anti-rabbit secondary 

IgG were supplied by Dako and used for western blotting Alexa-fluor conjugated 

anti-mouse and anti-rabbit Immunoglobulin G [IgG] antibodies were supplied by Life 

TechnologiesTM and used for immunofluorescence microscopy at a dilution of 

1:500. Additionally, a 2T2 monoclonal antibody which identifies a common leader 

peptide present on both ST and LT was utilized as a MCPyV T antigen antibody.  
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Table 2. 2: Primary antibodies, their origins, their working dilutions, and their 
suppliers 

Antibody               
(supplier 
catalogue 
number) 

Origin  Working dilution Supplier 

WB IF IHC FACS 

Anti-FLAG 
(F7425) 

Rabbit 1:1000 1:250 - - Sigma 

Anti-GAPDH 
(ab8245) 

Mouse 1:5,000 - -   

Abcam 

Anti-ADAM10 
(ab1997) 

Rabbit 1:500 1:250 1:100 1:250 

Anti-ADAM17 
(ab2051) 

Rabbit 1:750 1:250 1:100 1:250 

Anti-
Cytokeratin20 
(ab76126) 

Rabbit - - 1:50 - 

E-Cadherin 
(24E10)  

Mouse 1:250 - - 1:250  

Cell Signaling 
N-Cadherin 
(D4R1H)  

Rabbit - - - 1:250 

Claudin-
1(D5H1D) 

Rabbit 1:1000 - - - 

β-Catenin 
(D10A8)  

Rabbit 1:1000 - - - 

ZO-1 (D7D12)  Rabbit 1:1000 - - 1:500 

Snail (C15D3)  Rabbit 1:500 - - - 

Α-E-Catenin 
Antibody 
(#3236) 

Rabbit 1:1000 1:250 - 1:250 

CD71 (D7G9X) Rabbit 1:1000 - - 1:200 

CMB24 Mouse - - 1:50 - Santa Cruz 

anti-TGN46 
(Golgi) antibody 

Sheep - 1:100 - - Dr Vas 
Ponnambalam 

 

 

2.1.5 Mammalian cell culture reagents 

All media used was purchased from Lonza. Culture supplements, selection 

antibiotics and LipofectamineTM 2000 were provided by InvitrogenTM. 
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2.1.6 Oligonucleotides 

Oligonucleotide primers for DNA sequencing and polymerase chain reaction (PCR) 

were supplied by Sigma-Aldrich®. A full list of primers used is shown in Table 2.3 

(Note that primers used for PCR arrays were supplied by SA Biosciences as part of 

the RT2 Profiler PCR Array System). In order to perform reverse transcription, 

Oligo(dT)12-18 was obtained from Promega.  

 
  Table 2. 3: List of primers used and their applications 

Gene name Use Sequence (5’-3’) 

ADAM 10 qRT-PCR F: TTACGGAACACGAGAAGCTGT 
R: GGGTCCTTCTCATCAGCAGTT 

ADAM 17 qRT-PCR F: GAGCCGGCCTTTGGTAAC 
R: CCTAGCCCCTCAATCCTCTTT 

ZO-1 qRT-PCR F: CATGAAGATGGGATTTCTTCG 
R: GCCAGCTACAAATATTCCAACA 

E-CADHERIN qRT-PCR F: CCCATCAGCTGCCCAGAAAATGAA 
R: CTGTCACCTTCAGCCATCCTGTTT 

OCCLUDIN qRT-PCR F: TGCATGTTCGACCAATGC 
R: TGCATGTTCGACCAATGC 

LGL2 qRT-PCR F: TTTAACAAGACGGTGGAGCA 
R:GAGCTTGATGGCTCCAGAAAC 

CRB3 qRT-PCR F: GGCGTTTGGCTTGCCGAT 
R: CACTGCTGGGCCGGTAG 

SCRIBBLE qRT-PCR F:  AGCTGCCCAAGCCTTTTTTC 
R: AACCGCTGGATCTCGTTGTC 

Snail qRT-PCR F: CCAGGAGTGGCCTAACCAG  
R: GCCAGAGTCAGCCTTAAGAGG 

Slug qRT-PCR F: CTCACCTCGGGAGCATACAG  
R: GACTTACACGCCCCAAGGATG 

ZEB1 qRT-PCR F: GCACCTGAAGAGGACCAGAG 
R: TGCATCTGGTGTTCCATTTT 

ZEB2 qRT-PCR F: TTTCAGGGAGAATTGCTTGA 
R: CACATGCATACATGCCACTC 

PAK1 qRT-PCR F: AGTTTCAGAAGATGAGGATGATGA 
R: AATCACAGACCGTGTGTATACAG 

MMP3 qRT-PCR F:AATGCCATCCCCGATAACCT  
R:AGCCTAGCCAGTCGGATTTGAT 

MMP9 qRT-PCR F: CTTTGAGTCCGGTGGACGA 
R: TCGCCAGTACTTCCCATCCT 

N-CADHERIN qRT-PCR F: CACTGCTCAGGACCCAGAT 
R: TAAGCCGAGTGATGGTCC 
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2.1.7 Plasmid constructs 

Table 2.4 lists plasmid constructs, either purchased or supplied by other 
laboratories.  

Table 2. 4: List plasmid constructs and their sources 

Constructs Source 

pEGFP-C1  Clontech 

pEGFP-ST  David Griffiths, University of Leeds, UK  

 

 

2.1.8 siRNA constructs  

siRNA constructs to knock down ADAM 10 and ADAM 17 were obtained from 

Dharmacon. Allstars negative control siRNA was used as the negative control for all 

siRNA knock down experiments and obtained from QIAGEN.   

 

2.1.9 Inhibitors  

Table 2.5 lists small-molecule and peptide inhibitors from a number of different 

suppliers.  

Table 2. 5: Small molecule inhibitors, their working concentrations and 
suppliers 

Inhibitor [Cas number] Working concentration Supplier 

GI 254023X [Cat. No. 
3995] 

 293 - 100 μM 
Cos7 - 100 μM  
 MCC - 100 μM  
 WaGa - 50 μM  
 PeTa  - 50 μM  

Tocris 

TAPI-2 acetate salt 
[SML0420] 

293 - 100 μM 
Cos7 - 100 μM  
 MCC - 100 μM  
 WaGa - 50 μM  
 PeTa  - 50 μM 

Sigma 
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2.2 Methods 

2.2.1 Plasmid Purification 

2.2.1.1 Large scale plasmid purification: Maxi prep  

QIAGEN maxiprep kits were utilized for large scale plasmid purification, in 

accordance to the manufacturer’s instructions. Overnight cultures of bacteria were 

prepared in 250 - 500 ml LB, by shaking incubation at 37 °C for about 18 hours. 

The cells were pelleted by centrifugation at 6,000 x g for 15 minutes at 4 °C, in a 

Sorvall Evolution refrigerated centrifuge, using a Sorvall SLA-1500 rotor. The 

pelleted bacterial cells were resuspended in 10 ml Buffer P1 [50 mM Tris-HCl [pH 

8.0], 10 mM EDTA, 100 ug/ml RNase A, Lyse blue]. The resuspension was followed 

up by addition of 10 ml of Buffer P2 [200 mM NaOH, 1% SDS], with 4-6 vigorous 

inversions until the solution turned blue and incubated at room temperature for 5 

minutes. 10 ml of chilled buffer P3 [3 M potassium acetate, pH 5.5] was added and 

the mixture immediately mixed by 4-6 vigorous inversions until the solution turned 

white and incubated for 20 minutes at 4 °C. 

Lysates were cleared by centrifugation at 13,000 x g for 30 minutes in a Sorvall SS-

34 rotor at 4oC. During this centrifugation step, a QIAGEN-tip 500 column was 

equilibrated by addition of 10 ml Buffer QBT [750 mM NaCl, 50 mM MOPS [pH 7.0], 

15% [v/v] isopropanol, 0.15% [v/v] Triton X-100], the solution was then allowed to 

drain through by gravity flow. The cleared lysate was applied to the column and 

allowed to bind the resin by gravity flow. The resin was then washed twice with 

30ml Buffer QC [1 M NaCl, 50 mM MOPS [pH 7.0], 15% [v/v] isopropanol]. This 

was followed by elution of the DNA from the column by addition of 15 ml Buffer QF 

[1.25 M NaCl, 50 mM Tris-HCl [pH 8.5], 15% [v/v] isopropanol].  

10.5 ml isopropanol was then added to the elution to precipitate the DNA and the 

mixture was centrifuged immediately at 5,000 x g in a chilled Eppendorf 5804 R 

bench-top centrifuge for 30 minutes. The DNA pellet was washed with 5 ml of 70% 

[v/v] ethanol and centrifuged at 5,000 x g for 20 minutes at 4 °C. The DNA pellet 

was air-dried and resuspended in 200 µl dH2O. Concentration and purify of the 

DNA were measured by absorbance at 260 nm, using a NanoDrop ND-1000 

spectrophotometer [NanoDrop Technologies]. The obtained DNA was diluted to a 

stock concentration of 1µg/µl and stored at -20oC. 
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2.2.2 Mammalian cell culture  

2.2.2.1 Cell lines 

The Human Embryonic Kidney 293 Flp-InTM cell line [HEK-293] were from Life 

TechnologiesTM. The i293-ST-flag [by Laura Knight], i293-GFP and i293-GFP-ST 

cell lines [Gabriele Stakaityte] were derived from the HEK-293 cell line. Cos7 cells 

were obtained from Dr. Andrew Mcdonald. The MCC13 cells were purchased from 

Health Protection Agency Culture Collection. MCC13 is a MCPyV negative MCC 

cell line established from a metastatic cervical node which was biopsy confirmed for 

merkel cell carcinoma.  

 

2.2.2.2 Cell maintenance 

All HEK based cell lines [inducible i293-GFP and i293-GFP-ST and i293-ST] along 

with Cos7 cells were maintained in Dulbecco’s modified Eagle’s medium [DMEM, 

InvitrogenTM], supplemented with 10% [v/v] foetal calf serum [FCS] and 1% [v/v] 

penicillin and streptomycin, referred to hereafter as “complete DMEM”, at 37oC in 

the presence of 5% CO2. 293 FlipIn cells were maintained in complete DMEM 

containing 100 µg/ml zeocin [InvitrogenTM]. MCC13 cells were maintained in 

Roswell Park Memorial Institute [RPMI] media, supplemented with 10% [v/v] foetal 

calf serum [FCS] and 1% [v/v] penicillin and streptomycin, referred to hereafter as 

“complete RPMI”, at 37oC in the presence of 5% CO2. 

All cell lines were passaged every 3-4 days when they reached 80% confluence 

approximately. Confluent cell layers were removed from 75 cm3 tissue culture 

vessel [Sigma-Aldrich®] surfaces by kinetic force or by use of Gibco® Cell 

Dissociation Buffer [Thermofisher] and the cells were split 1:10-1:20 into fresh 

flasks, containing complete media.   

For long term storage, cells were re-suspended at 1 x 106 cells/ml in freezing 

medium [10% [v/v] DMSO, 40% media, 50% [v/v] FCS] and aliquoted into 1.8 ml 

CryotubesTM [NUNCTM]. The cells were placed in a polystyrene box at -80 °C for 24 

hours, before being transferred to liquid nitrogen. 
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2.2.3 Mammalian cell culture based protocols 

2.2.3.1 Mammalian cell transfection 

Approximately 5 x 105 HEK 293 Flp In or Cos 7 cells were seeded into each well of 

a 6-well [35 mm diameter] plate prior to transfection, to achieve approximately 70% 

confluency at the time of transfection. All transfections were performed using 

LipofectamineTM 2000, according to the manufacturer’s instructions. Typically, a 

total of 2 µg total plasmid DNA and 4uL LipofectamineTM 2000 were added to 100 µl 

Opti-MEM® [Life TechnologiesTM] and incubated for 5 minutes at room temperature.  

After 5 minutes, the LipofectamineTM solution was mixed with the DNA solution 

andincubated for 20 minutes at room temperature. After 20 minutes, the complete 

DMEM on the cells was replaced with 1 ml serum free DMEM and the transfection 

media was added drop-by-drop onto the cells carefully to avoid cell displacement. 

The cells were incubated at 37 °C for approximately 6 hours and the media 

replaced with complete DMEM, followed by incubation at 37 °C for 24-48 hours, 

unless stated otherwise.  

DNA transfections of MCC13 cells was performed by use of TransIT-X2® Dynamic 

Delivery System [Mirus LLC], in accordance with the manufacturer’s protocol. For 

each well of a 6 well plate 7.5 µl of the transfection reagent was mixed with 2.5 µg 

of plasmid DNA in 250 µl Opti-MEM®, incubated for 30 min and added drop-wise to 

cells in growing in 1 ml of serum free RPMI. Cells were incubated at 37OC 

overnight. Subsequently serum free RPMI was replaced with complete RPMI, 

followed by incubation at 37 °C for 24-48 hours, unless stated otherwise.  

 

2.2.3.2 Induction of inducible cell line 

Approximately 3 x 105 cells [i293-ST-flag, i293-GFP or i293-GFP-ST] were seeded 

per 6-well plate in 2 ml 10% DMEM. 24 h later, 4 µl doxyclycline hyclate [Life 

TechnologiesTM] was added to 2ml 10% DMEM and mixed, resulting in a final 

concentration of 2µg/ml per well. Cells were grown under induction for 24-48 hours 

other otherwise noted.  
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2.2.3.3 siRNA knockdown of protein expression 

A standard siRNA transfection protocol was followed for all assays unless stated 

otherwise. Approximately 3 x 105 cells were seeded into a 6-well plate 24 hours 

before transfection. For each reaction, 10 nM of siRNA and 7.5 µl of Lipofectamine 

3000 [Life TechnologiesTM] were mixed in 200 µl Opti-MEM®, incubated for 30 min 

and added drop-wise to cells in 1 ml per well Serum free DMEM. Cells were 

incubated at 37oC overnight. Subsequently, serum free DMEM was replaced with 

complete DMEM and RNAi was allowed to proceed for at least 72 hours. 

 

2.2.3.4 Addition of inhibitors  

Approximately 5 x	105 cells were seeded into 6-well plates, and transfected and/or 

induced if appropriate. 24 hours before harvesting, appropriate concentrations of 

inhibitors dissolved in DMSO were added. 1 μl/ml of DMSO was also added to 

control cells.  

 

2.2.4 Cell viability assay [MTS assay] 

Approximately 5,000 cells per well were seeded into 96-well plates in quintuplicate 

for each treatment condition. Negative controls of cell-free medium, untreated cells 

and 1 μl/ml DMSO-treated cells were included. In cases of inhibitor assessment for 

cell viability, inhibitors were added in a range of concentrations. Cells were grown 

overnight and appropriately treated the following day. 24 h later, growth medium 

was replaced with 100 μl fresh complete media per well before 20μl of CellTitre 

96®AQueous One Solution Cell Proliferation Assay reagent [Promega] was added 

to each well. Cells were then incubated for approximately 1 h at 37◦C, and 

absorbance was read at 490 nm using the Infinite®F50 absorbance microplate 

reader [Tecan].  

 

2.2.5 Electrophoretic analysis of proteins 

2.2.5.1 Mammalian cell lysate preparation 

Approximately 2 x 106 mammalian cells were harvested from 6 well tissue culture 

dishes by vigorous pipetting with 1 ml of PBS. Cells were then pelleted by 
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centrifugation at 3,500 x g at room temperature for 5 minutes. Cell pellets were 

resuspended in 1ml fresh PBS by mixing and centrifuged as before: three wash 

steps were performed in a similar method. Cell pellets were lysed in 200 µl lysis 

buffer [50 mM Tris base ultrapure, 150 mM NaCl, 1% NP40, pH 7.6] plus 1 x 

Complete®Protease Inhibitor EDTA free (Milla) and incubated on ice for 30 

minutes, with intermittent mixing. Cell lysates were centrifuged at 13,200 x g at 4 °C 

for 20 minutes and the supernatant was then transferred to a fresh eppendorf tube 

before use.  

 

2.2.5.2 Determination of protein concentration 

Protein concentrations were determined by use of the DC Protein Assay Kit (Berx et 

al.), according to the manufacturers’ protocol. Initially, a protein standard curve was 

obtained.  Using a microplate [96-well plate], 5 dilutions of a protein standard [BSA] 

was prepared with concentrations ranging from 0.2 mg/ml to 1.5 mg/ml. The 

standard was prepared in the same buffer that the test protein samples were 

prepared in to ensure accuracy of the standard curve. 

 5 μl of each standard were pipetted into the micro plate in triplicate. Similarly, test 
samples where measured out at 5 μl in triplicate. Following this 20 μl of Reagent S 

was added to 1 ml Reagent A in a fresh eppendorf. 25 μl of the mixed solution was 

then added to each individual well. This was followed by addition of 200 μl Solution 

B. Samples where then mixed on a Microplate shaker for at least 15 minutes and 

the absorbance read at 750 nm using the infinite® F50 Robotic microplate reader 

[Tecan]. Protein concentrations of the test samples were determined by plotting a 

standard curve using the standard dilution series. 

 

2.2.5.3 Tris-glycine SDS-polyacrylamide gel electrophoresis  

Tris-glycine polyacrylamide running gels [Table 2.6] were overlaid with stacking 

gels [per 1 ml: 170 μl acrylamide/bis acrylamide solution 37.5:1 [Severn Biotech 

Ltd], 130 μl 0.25M Tris-HCL [pH 6.8], 10 μl 10% [w/v] SDS, 670 μl miliQ water, 10 

μl 10% ammonium persulfate, 2 μl TEMED].  
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Table 2. 5: Reagents and their volumes to prepare a range of trisglycine 
polyacrylamide running gels 

Reagent  6% 8% 10% 12% 

MillQ water 2.6 ml  2.3 ml  1.9 ml  1.6 ml  

Acrylamide/bisacrylamide (37.5:1)  1 ml  1.3 ml  1.7 ml  2.0 ml  

1 M Tris-HCl (pH 8.8)  1.3 ml  1.3ml  1.3 ml  1.3 ml  

10% (w/v) SDS  50 μl  50 μl  50 μl  50 μl  

10% (w/v) ammonium persuflate  50 μl  50 μl  50 μl  50 μl  

TEMED  4 μl  3 μl  2 μl  2 μl  

 

2× protein solubilising buffer [50 mM Tris-HCl (pH 6.8), 2% (w/v) SDS, 20% (v/v) 

glycerol, 50 μg/ml Bromophenol Blue and 10 mM DTT] was added to protein 

lysates and the samples were denatured by heating at 95◦C for 3–5 min. Heated 

samples were loaded onto appropriate polyacrylamide gels. Samples were loaded 

next to pre-stained protein ladder [Bio-Rad Laboratories, Inc.], as an indicator of 

molecular weight [kDa]. Prior to sample loading, gels were immersed in Trisglycine 

running buffer [0.25 M Tris-base, 192 mM glycine, 0.1% [w/v] SDS]. Gels were run 

at 180 V for 45 min or until the solubilising buffer reached the bottom to the gel. All 

SDS-PAGE was carried out using a Bio-RadTM Mini-PROTEAN 3 cell [Bio-Rad 

Laboratories, Inc.], set up according to the manufacturer’s instructions. Proteins 

were then analysed by western blot.  

 

2.2.5.4 Western blot analysis 

Proteins from SDS-PAGE gels were transferred onto Thermo ScientificTM PierceTM 
Nitrocellulose membranes [Thermo Fisher Scientific Inc.], using the Bio-Rad Mini 

Trans-Blot Electrophoretic Transfer Cell [Bio-Rad Laboratories, Inc.], according to 

the manufacturer’s protocol. 4 pieces of Whatman 3 mm filter paper, 1 SDS-PAGE 

gels and one nitrocellulose membrane were soaked in transfer buffer [25 mM Tris- 

base, 190 mM glycine, 20% [v/v] methanol] and placed in a cassette in sequential 
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order. Proteins were transferred from the gel to the membrane at 100 V for 1–2 h, 

depending upon protein size, followed by incubation of the membrane in 5% TBS-

Tween blocking buffer [500 mM NaCl, 20 mM Tris, 0.1% [v/v] Tween-20, 5% non-fat 

dried milk [Marvel)] at room temperature for 1 h. Subsequently, the membrane was 

incubated in the corresponding primary antibody [Table 2.2] diluted in 1% TBS-

Tween blocking buffer [150 mM NaCl, 20 mM Tris, 0.1% [v/v] Tween-20, 1% non-fat 

dried milk [Marvel]] overnight at 4◦C. The membranes were then washed 3× for 5 

min in 1× TBS-tween buffer [20 mM Tris, 0.1% Tween-20, 150 mM NaCl], and 

incubated for 1 h at room temperature in the appropriate secondary antibody. The 

membranes were then washed 3× for 5 min in 1× TBS-tween solution. Protein 

bands were then visualised by enhanced chemiluminescence using EZ-ECL 

enhancer solutions A and B kit [GeneflowTM] [1:1 ratio] and exposed to ECLTM 

hyperfilm [AmershamTM]. Films were developed using a Konica SRX-101A 

developer. All incubations and washes were done with agitation.  

 

2.2.6 Gene expression analysis by qRT-PCR 

2.2.6.1 RNA extraction 

Total RNA was isolated from cells using TRIzol (InvitrogenTM), according to the 

manufacturer’s instructions. Cells were seeded at a density of 4 × 105 in triplicate 

per condition [uninduced and induced or EGFP and PEGFP-ST]. Cells were then 

directly lysed by addition of 1ml TRIzol reagent (InvitrogenTM) per well, mixed by 

pipetting in an RNase-free microcentrifuge tube, and incubated at room 

temperature for 5 min. Subsequently, 200 μl chloroform was added per sample, and 

samples were vortexed for 15 s and incubated at room temperature for 3 min. 

Samples were then centrifuged at 12,000 × g for 15 min at 4◦C. The top 

aqueous/colourless phase [500 μl] was transferred to a fresh RNase-free 

microcentrifuge tube. RNA was then precipitated by adding 500 μl isopropanol and 

incubating samples at room temperature for 10 min before centrifugation at 12,000 

× g for 10 min at 4◦C. The supernatants were carefully aspirated and the pellets 

washed in 1 ml 75% ethanol and briefly vortexed, followed by centrifugation at 

7,500 × g for 5 min at 4◦C. The supernatants were once again aspirated and the 

pellets air-dried for 5 min. The pellets were resuspended in 16 μl DNase and 

RNase free H2O and  stored at -80◦C or treated immediately with DNase I treated 
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and reverse transcribed. The RNA concentration was measured using a NanoDrop-

1000 spectrophotometer [NanoDrop Technologies] at 280 nm wavelength. 

 

2.2.6.2 DNase treatment 

A DNase I kit [AmbionTM] was used to remove contaminating DNA from extracted 

RNA samples, as per the manufacturer’s protocol. 0.1 volume of DNase reaction 

buffer and 0.5μl Amplification Grade DNase I were added to each sample, gently 

mixed and incubated for 30 min at 37oC. After incubation, 0.1 volume of DNase 

removal agent was added, samples were mixed thoroughly and incubated at room 

temperature for 2 minutes and then the DNase removal agent pelleted at 10,000 x g 

for 2 minutes in a bench top centrifuge.. The supernatant was then taken off and 

stored in a fresh RNase-free microcentrifuge tube. Purified RNA was stored at -

80oC. 

 

2.2.6.3 Reverse transcription 

SuperscriptTM II Reverse Transcriptase [Life TechnologiesTM] was used to 

synthesize cDNA from the total extracted cellular RNA, according to the 

manufacturer’s protocol. Purified RNA was diluted to 500 μg/ml before reverse 

transcription was carried out to synthesise cDNA. The initial sample mixture 

contained 1 μg DNase I treated RNA, 1 μl 10 mM dNTP mix, 1 μl Oligo[dT] 12-18 

primer and made up to a total volume of 12 μl. Samples were then mixed and 

incubated at 65◦C for 5 minutes and then quick-chilled on ice. Following this, 4μl 5X 
First-Strand buffer, 2μl 0.1 M DTT, 1μl RNaseOUTTM and 1 μl SuperscriptTM II 

Reverse Transcriptase were added per sample. Samples were mixed and 

incubated at 42◦C for 50 minutes, followed by enzyme inactivation at 70◦C for 15 
minutes. cDNA was stored at -20oC. 

 

2.2.6.4 Quantitative real-time PCR (qPCR) reaction 

RT-qPCR samples were set up in Corbett tubes and a pre-chilled Corbett tube rack 

[Corbett Life Sciences]. Each primer pair were added in duplicate to RNA samples 
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extracted at different times [biological replicates]. The PCR master mix contained 

the following for each reaction: 10 μl SensiMixPlus SYBRTM No-ROX [Bioline], 1 μl 

primer mix (10 μM of both forward and reverse primers), 5 μl nuclease-free water 

and 4 μl cDNA [10 ng final amount]. The PCRs were performed using a Rotor-

GeneTM 6000 Real-Time PCR machine [QiagenTM] using a 3 Step with Melt 

program. A typical PCR cycle parameter consisted of 95◦C for 10 min and then 35 

cycles of: 95◦C for 15 s, 60◦C for 30 s, and 72◦C for 20 s. Quantitative analysis was 

then performed using the comparative CT method as previously described (Boyne 

and Whitehouse 2006).  

 

2.2.7 Immunofluorescence microscopy 

Coverslips were first briefly immersed in 100% ethanol and air dried, before placing 

in separate wells of a 6 well tissue culture dish. Surface of the coverslip where then 

coated with 0.01% poly-L-lysine solution [Life TechnologiesTM] for 15 minutes at 

room temperature for and washed three times in 2 ml PBS. The coverslips were air 

dried for a minimum of 2 hours before use.  

Approximately 2 x 105 cells [HEK 293 FlipIn or Cos 7 cells] were seeded onto the 

treated coverslips and incubated at 37 °C for around approximately 16 hours. Cells 

were transfected with appropriate constructs [as Section 2.2.3.1]. After appropriate 

incubation, cell monolayers were gently washed 3 times with 2 ml PBS, before 

fixation in 2 ml PBS, 4% [v/v] paraformaldehyde for 10 minutes [all performed at 

room temperature]. The cells were again washed 3 times in 2 ml PBS. Coverslips 

were transferred to a humid chamber [a Petri dish lined with parafilm, containing 

soaked filter paper to prevent cells drying out] and incubated for 1 hour at 37 °C, 

covered with blocking solution [PBS, 1% [w/v] bovine serum albumin [BSA] and 

10% FCS]. 

 After removal of blocking solution, the appropriate primary antibody as seen in 

Table 2.2 [diluted in blocking solution] was applied to the cells, which were 

incubated overnight at 4°C. The cell monolayer was carefully washed 5 times in 

PBS, before an appropriate AlexaFluor conjugated secondary antibody was applied 

to the cells. After 2 hours incubation at room temperature, the secondary antibody 

was removed and the cells were carefully washed 5 times in PBS.   
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Coverslips were mounted onto microscope slides using VECTORSHIELD® with 

DAPI mounting media [Vector Laboratories] and visualised on Zeiss LSM880 

Inverted with Airyscan confocal microscope and Zen 2011 imaging software from 

Zeiss. 

 

2.2.8 Multicolour Immunohistochemistry  

Tissue sections were procured from Origene [CaseID CI0000010366 and SampleID 

PA15477D3E]. Five-micrometre-thick paraffin tissue sections were deparaffinised 

with xylene and graded ethanol.  Antigen retrieval was performed by heating the 

sections in 10 mM sodium citrate buffer, pH 6.0, at 95° C for 20 min in a scientific 

microwave. Samples were then blocked [for non-specific antibody binding] in 

blocking reagent [10% fetal bovine serum and 3% Bovine serum albumin in 1X 

PBS., [all serum was heat inactivated]] for 4 hours at 37oC. Samples were 

incubated with appropriate primary antibodies overnight in a humidified chamber at 

4oC, using FitC conjugated anti-CK20 at 1:50 dilution [Abcam] anti-ADAM 10 or 

ADAM 17 at 1:250 dilution [Abcam] and CM2B4 at 1:50 dilution [Santa Cruz]. 

Subsequently sections were washed three times for 5 minutes each in PBS and 

incubated with the appropriate secondary antibody, labelled with fluorochromes. 

ADAM antibodies where counterstained with Alexa Fluor-546 and CM2B4 antibody 

was countertstained with Alexa Fluor 643 [Abcam]. Sections were mounted with 

coverslip using VECTORSHIELD® mounting media [Vector Laboratories] and 

visualised on Zeiss LSM880 Inverted with Airyscan confocal microscope and Zen 

2011 imaging software from Zeiss. 

 

2.2.9 Cell Scatter assay 

Prior to seeding cells, coverslips were prepared by washing in 100 % ethanol and 

coating with 0.01% poly-L-lysine from Sigma-Aldrich™ for 5 min. 20,000 cells, 

either pEGFP-C1 or pEGFP-ST transfected cells [HEK 293s or Cos7], were seed 

onto coverslips and allowed to adhere. Following adhesions, cells where serum 

starved with DMEM with no FCS supplement to allow for aggregation for 12 hours. 

After the starvation period, cells were induced and coverslips of both EGFP and 

EGFP-ST expressing cells were fixed at specific timepoints or the duration of the 
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experiment. Coverslips where then gently washed 3 times with 1x PBS and 

mounted on microscope slides with DAPI-containing VectaShield™ mounting media 

from VectaShield™. Cells were imaged utilizing Zeiss LSM880 Inverted with 

Airyscan confocal microscope and Zen 2011 imaging software from Zeiss.  

 

2.2.10 Analysis of Cell motility 

HEK 293, Cos7 were seeded at a density of 1 × 105 cells per well in 6-well plates, 
grown overnight. Cells were transfected 2.5 μg of plasmid DNA [pEGFP-C1 or 

pEGFP-ST] per well using the appropriate transfection reagent. Cells were 

incubated for 24 h at 37◦C, and, if applicable, inhibitors were added at appropriate 

concentrations for another 24 h. Cells were then imaged using the IncuCyteTM 

Live-Cell Imaging System [Essen BioScience], as per the manufacturer’s protocol. 

Imaging was performed every 30 min over the course of 24 or 48 h and cell motility 

was then analysed using Image J software.  

 

2.2.11 Flow cytometry 

HEK-293 Flp-In ® cells were seeded at 3 × 105 density in 6-well plates, then mock 

transfected or transfected with 2 μg pEGFP-C1 or pEGFP-ST per well using the 

standard Lipofectamine 2000 protocol for 6 h. 48 hours post-transfection cells were 

harvested using Gibco® Cell Dissociation Buffer, a gentle dissociation buffer which 

is suitable for gentle dissociation when intact cell surface proteins are essential. 

The harvested cells were washed with ice-cold PBS and resuspended at 1–2 × 106 

cells/ml in freshly made staining buffer [PBS, 10% FCS, 3% BSA]. Cells were 

incubated in staining solution [PBS, 10% FCS, 3% BSA] Cells were then incubated 

with appropriate dilutions of primary antibody or staining buffer only for 1 h at room 

temperature in the dark, washed 3× with staining buffer and incubated with Alexa-

Fluor-tagged secondary antibody or staining buffer only for 1 h at room temperature 

in the dark. Cells were then washed 3× with staining buffer and finally resuspended 

in 500 μl of staining buffer. 
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Flow cytometry was performed immediately after staining. During analysis, 100000 

events are initially isolated from the sorted population. Upon discarding of unwanted 

events, 20,000 cells remain in the analysis gate to be quantified using Flow Jo 

analysis software.  All Flow cytometry experiments were performed in triplicate, and 

each experiment included unstained and secondary-only stained controls. Isotype 

controls were also performed for all antibodies. Gating was set according to Isotype 

control for primary antibody staining and untransfected cells for EGFP expression 

as the gating process required Green cells.   

 

2.2.12 Staining for Apical to basal cell polarity  

Cos7 cells were seeded at a density of 5 × 105  in 6 well plates. After 24 hours cells 

were transfected with appropriate DNA plasmid. 6 h pre-fixation, cells were 

scratched using a p1000 tip across the center of each well, washed 3× with media 

and left to move back into the wound gap. Cells were then fixed and stained for the 

Transgolgi network antibody. cells were visualised visualised using the EVOS 

AUTO2FL.  

 

2.2.13 Migration Transwell assay 

WaGa and PeTa cells were seeded in triplicate (per condition) at a density of 3 x 

10
5 

cells per 6 well tissue culture plate. Cells were incubated at 37 
o

C overnight 

before incubation with ADAM 10 specific inhibitor in serum free media. Subsequent 

to cell count using a haemocytometer and seeded in triplicate (per condition) at a 

density of 1 x 10
5 

cell per well, on to pre-coated BD BioCoatTM Angiogenesis 

System: Endothelial Cell Migration (BD Bioscience) tissue culture plates for the 

appropriate time allowance per experiment.  The cells were then analysed for 

migration in triplicate, according to the manufacturers protocol. 750 μl FCS 

containing media was added as a chemoattractant in the bottom wells via the 

sample ports and the plates incubated for 22 hours at 37 
o
C. After incubations, the 

culture medium was removed from the upper chambers and the insert plates were 

transferred to 24 well culture plates containing 4 μg/ml Calcein AMTM (BD 

Bioscience) in 500 μl PBS (per well). The cells were incubated for a further 90 
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minutes at 37 
o

C, 5% Co2. The fluorescence of invaded and migrated cells was 

determined using a fluorescence plate reader at excitation wavelengths of between 

494-517 nM. Each condition was measured in triplicate and from this the 

percentage of invasion/migration compared to the control plate could be calculated, 

as per the manufacturer’s instructions.  
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CHAPTER 3 
The relationship between Merkel Cell Polyomavirus Small 

Tumor antigen [ST] and Cell Adhesion molecules 
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3.1 Introduction  

MCC is a highly metastatic form of skin cancer of neuroendocrine origin. MCC has 

a predisposition to metastasize through the dermal lymphatic system resulting in a 

poor 5-year survival rate (Stakaityte et al. 2014; Liu et al. 2016). It has since been 

established MCPyV is a causative agent of MCC (Chang and Moore 2012). The 

MCPyV genome is monoclonally integrated into the host genome in both primary 

and metastatic cancer forms. This integration has been detected in all MCPyV 

positive MCC tumours (Griffiths et al. 2013). Moreover, assessment of MCPyV LT 

sequences derived from MCC tumour cells include a specific deletion which renders 

the virus replication defective upon integration (Martel-Jantin et al. 2012). 

Observation of the monoclonal integration pattern along with deletion in the large 

tumour antigen provide evidence to dismiss the concept that MCPyV is a passenger 

virus (Wendzicki et al. 2015).  

Currently there are limited studies on the mechanisms by which MCC tumour cells 

acquire there highly metastatic phenotype. Metastasis is the end point of a series of 

biological processes by which a tumour cell detaches from the primary tumour and 

disseminates to a distant site through the circulatory system and establishes a 

secondary tumour (Valastyan and Weinberg 2011). For cancer advancement and 

metastasis, a vital characteristic is an alteration in cell adhesion properties of 

cancer cells (Cavallaro and Christofori 2004). This is essential as cell-to-cell and 

cell-to-matrix adhesion is involved in normal cell processes, such as but not limited 

to cell communication, cell polarity and maintenance of tissue organization. 

However, alteration in these processes are associated with pathologies like tumour 

and cell invasion, as well as metastasis (Wolfsberg et al. 1995; Cavallaro and 

Christofori 2004).  

In healthy cells, loss of essential cell-to-cell connection results in a distinct form of 

apoptosis, termed “Anoikis” (Geiger and Peeper 2009). However, the loss of this 

control mechanism leads to anchorage-independent growth and tissue independent 

apoptosis resistance. This is a key element in cancer progression and metastasis 

(Bogenrieder and Herlyn 2003). The metastatic cascade is a multistep mechanism 

and loss of cell-to-cell connection helps in disaggregation from the primary tumours 

and invasion of the primary tumour cells into the circulation (van Zijl et al. 2011). By 

means of the lymphatic system, tumours cells can then be circulated to the 

secondary site of tumour growth concluding in formation of the secondary tumour 

(Geiger and Peeper 2009; van Zijl et al. 2011).  
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In healthy cells, specialized molecules known as sheddases function predominantly 

in cleavage of cell adhesion molecules and the extracellular domain [ECM] 

(Egeblad and Werb 2002; Moss and Lambert 2002). Cleavage of the ECM allows 

for creation of space within the extracellular space freeing up the surrounding areas 

for cell migration (Reinhard et al. 2015). Notably, sheddases can modify the 

interaction between cell adhesion molecules and components of the extracellular 

matrix. In healthy cells, upon shedding of cell adhesion molecules, cells are 

disengaged from the ECM and their neighbouring cell allowing for local tissue 

modelling. However, in cancer cells, there is a marked increase in the cleavage of 

cell adhesion molecule and once the malignant cell is free, it can migrate, initiating 

metastasis (Egeblad and Werb 2002; Deryugina and Quigley 2006).  

This chapter describes preliminary observations of destabilization in cell junctions 

and cell adhesion markers along with possible cellular participants in these 

cleavage processes, upon the expression of the MCPyV ST protein.  

 

 3.2 Quantitative proteomic analysis shows MCPyV expression affects 
cell adhesion-associated proteins  

Cell adhesion is essential in regulation of cell communication, development and 

tissue maintenance (Tsukita 1993). Cell-to-cell adhesion and cell interaction to the 

extracellular matrix also plays a role in cell migration, cell differentiation and 

preserving tissue structural integrity (Joyce and Pollard 2009). A SILAC-based 

quantitative proteomic approach was previously used to determine possible host 

cell proteome alterations in an inducible cell line, i293-ST, capable of inducible 

expression of MCPyV ST [previously described in (Knight et al. 2015)]. Results from 

this dataset showed that MCPyV ST expression induced differential expression of 

proteins associated with the Microtubule Network and Actin cytoskeleton. 

Specifically, MCPyV ST induced Stathmin, a microtubule associated protein (Knight 

et al. 2015). Similar trends where seen in actin cytoskeletal related proteins such as 

Cofillin, Cortactin and ARP3 (Stakaityte et al. 2018). Interestingly, cell adhesion-

related proteins were also down-regulated upon MCPyV ST expression. These 

proteins are shown in Table 3.1.  
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Table 3. 1 Quantitative proteomic analysis shows a decrease in cell junction 
associated proteins levels upon MCPyV ST expression 

Protein Fold decrease in 
cell adhesion-
related proteins 

Peptide 
hits 

Function 

 

α -E- Catenin  

-5 13 

 

 

binds E-cadherin and       
β-catenin in the cell-to-cell 
adhesion complex and 
regulates filamentous actin 
(F-actin) dynamics 

Zona occludens 
[ZO-1] 

-3 12 Functions as a scaffold to 
bind the raft of Tight 
junction molecules together 
and provide the link to the 
actin cytoskeleton and the 
signaling mechanism of the 
cell 

Protocadherin-7 -10 3 Homophilic cell adhesion 
through plasma membrane 
adhesion molecules  

Desmoplakin  -3 35 organization of the 
desmosomal cadherin-
plakoglobin complexes into 
plasma membrane 
domains. Anchors 
intermediate filaments to 
the desmosomes [a form of 
cell junctions] 

 

To confirm the downregulation observed in these cell adhesion-associated proteins, 

HEK 293 cells were transfected with pEGFP-C1 control and pEGFP-ST expression 

plasmids for 48 hours. The parent vector from which the pEGFP-ST was derived 

from was pEGFP-C1 therefore ST was tagged on the N-terminus. Cell lysates were 

then evaluated by immunoblotting. Figure 3.1 demonstrates that upon MCPyV ST 

expression, there is a significant downregulation of Α-E-catenin and ZO-1 proteins. 
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Figure 3. 1: MCPyV ST promotes downregulation of cell junction marker α-E-Catenin 
and cell adhesion molecule ZO-1 [A] HEK 293 cells were transfected with pEGFP-C1 
control and pEGFP-ST expression plasmids for 48 hours. Immunoblot analysis was 
performed on the cellular lysates and analysed with α-E-Catenin and ZO-1 specific 
antibodies. GAPDH was used as a measure of equal loading, the Tantigen antibody was 
used to confirm MCPyV ST expression. [B] Densitometry quantification of the western blots 
was carried out using the Image J software and is shown a percentage of relative 
densitometry to the loading control, GAPDH. Data analysed using three replicates per 
experiment, n=3 and statistical analysis using a two-tailed t-test with unequal variance. [ns – 
P>0.05, ****– P≤ 0.0001]. 

 

While the inducible and transfected 293 cell lines are useful and robust tools in for 

initial investigations, it was important to validate the quantitative proteomic analysis 

in more relevant cell lines.  Therefore, to demonstrate that MCPyV ST expression 

downregulates cell adhesion related proteins, the MCPyV negative cell line, 

MCC13, was utilized. Figure 3.2 demonstrates that MCC13 cells expressing 

MCPyV ST show a similar decrease in α-E-Catenin and ZO-1 expression. Upon 

quantification by densitometry, MCPyV ST expression results in a significant 

downregulation of these cell adhesion-related proteins.  
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Figure 3. 2: MCPyV ST promotes downregulation of cell junction marker α-E-Catenin 
and cell adhesion molecule ZO-1in MCC13 cell line. [A] MCC13 cells were transfected 
with pEGFP-C1 control and pEGFP-ST expression plasmids for 48 hours. Immunoblot 
analysis was performed on the cellular lysates and analysed with α-E-Catenin and ZO-1 
specific antibodies. GAPDH was used as a measure of equal loading, the T antigen 
antibody was used to confirm MCPyV ST expression. [B] Densitometry quantification of the 
western blots was carried out using the Image J software and is shown a percentage of 
relative densitometry to the loading control, GAPDH. Data analysed using three replicates 
per experiment, n=3 and statistical analysis using a two-tailed t-test with unequal variance 
comparing MCPyV ST samples to EGFP control samples [****– P≤ 0.0001]. 

 

3.3 MCPyV T antigen-positive MCC tumours also show a reduction in 
cell adhesion-associated proteins  

MCPyV has been shown to be monoclonally integrated into MCPyV-Positive 

tumours and MCPyV ST has been implicated in MCC tumourigenesis (Stakaityte et 

al. 2014). To validate whether cell adhesion-associated proteins are downregulated 

in MCPyV-positive MCC tumours, two unrelated samples [Tumour 1 and Tumour 2] 

were compared to a control non-tumour cadaveric skin sample. Samples where 

homogenized, lysed, sonicated and immunoblotting was performed. Tissue 

samples where probed for ZO-1 and α-E-Catenin. Results show both ZO-1 and α-
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E-Catenin are downregulated in both tumour samples in comparison to the healthy 

skin control [Figure 3.3].  

 

Figure 3. 3: Cell adhesion molecule ZO-1 and cell junction marker α-E-catenin are 
downregulated in MCPyV-positive MCC tumours. [A] Healthy skin, Tumour 1 and 
Tumour 2 were crushed using a mortar and a pestle on dry ice, lysed with RIPA buffer for 
30 mins and sonicated to further homogenized the samples. Immunoblot analysis was 
performed on the tissue lysates and analysed with α-E-Catenin and ZO-1 specific 
antibodies. GAPDH was used as a measure of equal loading, the T antigen antibody was 
used to confirm MCPyV ST expression. [B] Densitometry quantification of the western blots 
was carried out using the Image J software and is shown a percentage of relative 
densitometry to the loading control, GAPDH. Data analysed using three replicates per 
experiment, n=3 and statistical analysis using a two-tailed t-test with unequal variance 
comparing MCPyV ST samples to EGFP control samples [*** – P≤ 0.001, ****– P≤ 0.0001]. 

 

Interestingly, downregulation of the cell adhesion associated proteins where higher 

in Tumour 2 sample, which corresponds to a higher degree of MCPyV ST 

expression. This may suggest that higher levels of MCPyV ST expression may lead 

to a more metastatic tumour due to lower levels of cell-adhesion molecules. Overall, 

these results confirm data in the HEK cell line indicating that MCPyV ST expression 

downregulates cell adhesion molecules which may contribute to the metastatic 

phenotype of MCC.  
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3.4 MCPyV ST expression disrupts cell adhesion markers at the cell 
surface 

To determine whether MCPyV ST expression has any effect on the integrity of cell 

junctions, EGFP and EGFP-ST transfected HEK 293 cells were stained with an α-

E-Catenin-specific antibody.  α-E-Catenin is a mediator of Adherens junctions, 

which are predominantly expressed at the cell surface, where it facilitates cell 

adhesion and its breakdown infers a loss of structural integrity at cell junctions 

(Kobielak and Fuchs 2004). Results show a complete staining around the surface 

upon α-E-Catenin staining in control EGFP-expressing cells. In contrast, a reduced 

and incomplete staining is observed in EGFP-ST-expressing cells, indicative of 

diminished cell-to-cell adhesion [Figure 3.4].  

 

Figure 3. 4: MCPyV ST expression promotes disruption of α-E-Catenin expression at 
the cell surface. HEK 293 cells where transfected with pEGFP-C1 or pEGFP-ST 
expression vectors. After 24 hours, cells were fixed and incubated with a specific α-E-
Catenin antibody along with a corresponding secondary antibody.  

 

To validate downregulation of α-E-catenin expression at the cell surface upon 

MCPyV ST expression, Flow cytometry was also used to quantify the levels of α-E-

Catenin in EGFP and EGFP-ST-expressing cells. α-E-Catenin expression at the 

cell surface was then analysed 48 hours post transfection and results demonstrate 

a reduction of α-E-Catenin expression at the cell surface upon MCPyV ST 

expression [Figure 3.5]. 
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Figure 3. 5: MCPyV ST expression promotes a reduction of α-E-Catenin expression at 
the cell surface. [A] HEK 293 cells were transfected with pEGFP-C1 control and pEGFP-
ST expression plasmids for 48 hours. Cells were harvested and spun down gently, blocked 
in 3% BSA and stained with a specific α-E-Catenin antibody along with a corresponding 
secondary antibody. Mean fluorescence intensity of both control EGFP and EGFP-ST cells 
where plotted as a histogram using Flow Jo analysis software. [B] Fold difference was 
calculated using Mean fluorescence intensity. Data analysed using three replicates per 
experiment, n=3 and statistical analysis using a two-tailed t-test with unequal variance 
comparing MCPyV ST samples to EGFP control samples [****– P≤ 0.0001]. 

 

ZO-1 was also used as a secondary cell adhesion marker to confirm disruption of 

cell junctions (Nunbhakdi-Craig et al. 2003). ZO-1 functions as a scaffold to bind the 

raft of TJ molecules together and is utilized as the link to the actin cytoskeleton and 

the cell signaling mechanism (Hoover et al. 1998). Functioning as a critical 

regulator of tight junctions, ZO-1 has been shown to be downregulated in highly 

invasive breast cancer cell lines (Hoover et al. 1997). To validate downregulation of 
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ZO-1 specifically at the cell surface where it is active, Flow cytometry was again 

used to quantify the levels ZO-1 expression in EGFP and EGFP-ST-expressing 

cells. Results demonstrated a reduction of ZO-1 expression at the cell surface upon 

MCPyV ST expression [Figure 3.6]. 

 

Figure 3. 6: MCPyV ST expression promotes a reduction of ZO-1 expression at the 
cell surface. [A] HEK 293 cells were transfected with pEGFP-C1 control and pEGFP-ST 
expression plasmids for 48 hours. Cells were harvested and spun down gently, blocked in 
3% BSA and stained with a specific ZO-1 antibody along with a corresponding secondary 
antibody. Mean fluorescence intensity of both control EGFP and EGFP-ST cells where 
plotted as a histogram using Flow Jo analysis software. [B] Fold difference was calculated 
using Mean fluorescence intensity. Data analysed using three replicates per experiment, 
n=3 and statistical analysis using a two-tailed t-test with unequal variance comparing 
MCPyV ST samples to EGFP control samples [****– P≤ 0.0001].  
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3.5 MCPyV ST induces cell scatter, facilitating cell motility and 
migration 

Loss of cell junction integrity enhances the ability of a cell to migrate as it promotes 

dissociation of cells from its primary site (Tsukamoto and Nigam 1999).  The 

dissolution of cell-to-cell adhesion contributes to cell dissociation,  and in turn cell 

scattering and cell migration (Braga 2000). To determine if MCPyV ST induces cell 

scatter, facilitating cell motility and migration, a cell scatter assay was performed 

(Fram et al. 2011). Here EGFP and EGFP-ST-expressing HEK 293 cells were 

incubated in low serum to induce aggregation, upon reintroduction of serum cells 

were fixed and stained with DAPI at 6 hourly intervals and clusters of cells were 

imaged to quantify the distance between each cell nucleus [Figure 3.7].  

 

 

Figure 3. 7: Quantification of cell dissociation. Schematic for cell scatter assay used for 
the quantification of cell scatter assay. 

 

FIGURE 8

EGFP EGFP-ST 

SEED X104 CELLS ONTO EACH COVER SLIP 

TRANSFECT CELLS WITH EGFP/EGFP-ST 

6 HOURS POST TRANSFECT, CHANGE MEDIA 
TO SERUM FREE MEDIA FOR SERUM 
STARVATION TO CAUSE AGGREGATION 

FIX WELLS AT SPECIFIC TIME POINTS 

IMAGE CLUSTERS OF GFP POSITIVE CELLS 
WITH PHASE CONTRAST MICROSCOPE AND 
QUANTIFY BY IMAGE J BY MEASURING THE 
DISTANCE BETWEEN THE CENTRE OF THE 

NUCLEI 
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Results show that EGFP control cells scarcely dissociate overtime, instead 

remaining in cell clumps. In contrast, MCPyV ST-expressing cells dissociate 

significantly from their initial cell clusters [Figure 3.8A]. Similar results were also 

observed in a secondary cell line COS 7 cells [Figure 3.8B]. These results suggest 

that MCPyV ST expression can lead to the breakdown of cell junctions enhancing 

cell dissociation and scatter.   

 

Figure 3. 8: Quantification of cell scatter. [A] HEK 293 and [B] COS 7cells where 
transfected with pEGFP-C1 or pEGFP-ST expression vectors. Cells where fixed with 4% 
paraformaldehyde at specific time points and stained with a DAPI solution. EGFP positive 
cells clusters where imaged using a ZEISS LSM 880 confocal microscope and quantified by 
measuring distance between the centre of the nucleus of each cell using Image J analysis 
software. n=20 cells per cluster comparing MCPyV ST samples to EGFP control samples at 
T = 48 hours in Figure A and T= 66 hours in Figure B [****– P≤ 0.0001]. 

 

3.6 MCPyV ST induces upregulation of cellular sheddases in relevant 
cell lines  

Cellular sheddases function predominantly in cleavage of cell adhesion molecules 

and the extracellular domain. Analysis of a previous proteomic dataset analysing 

how MCPyV ST expression affects the host cell proteome (Knight et al. 2015), 
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identified that MCPyV ST expression leads to the upregulation of certain cellular 

sheddases, in particular, ADAM 10 and ADAM 17.  To confirm an increase in 

ADAM 10 and 17 protein levels, expression of a selection of ADAM proteins were 

evaluated by western blot analysis in the MCPyV ST inducible flag tagged cell line 

i293-ST, comparing uninduced and induced cell lysates. Results show an increase 

in the expression levels of ADAM 10 and 17 proteins, in contrast to ADAM TS1 

[Figure 3.9A].  Densitometry-based quantification of the immunoblot analysis 

showed an increase in ADAM 10 and ADAM 17 expression of 6 fold and 4 fold 

respectively [Figure 3.9B].  

 

 

Figure 3. 9: MCPyV ST promotes upregulation of cellular sheddases. [A] i293-ST cells 
were left uninduced or induced and cell lysates harvested at 48 hours post-induction. 
Immunoblot analysis was performed on the cellular lysates and analysed with ADAM 10, 17 
and TS1 specific antibodies. GAPDH was used as a measure of equal loading, a Flag 
antibody was used to confirm induction and MCPyV ST expression. [B] Densitometry 
quantification of the western blots was carried out using the Image J software and is shown 
a percentage of relative densitometry to the loading control, GAPDH. Data analysed using 
three replicates per experiment, n=3 and statistical analysis using a two-tailed t-test with 
unequal variance comparing MCPyV ST samples to EGFP control samples [****– P≤ 
0.0001]. 
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Upregulation of ADAM 10 and ADAM 17 was also validated in the MCPyV negative 

cell line MCC13, transfected with either pEGFP-C1 or pEGFP-ST expression 

constructs [Figure 3.10]. These results again suggest that MCPyV ST expression 

leads to the overexpression of specific host ADAM proteins.  

 

Figure 3. 10: MCPyV ST promotes upregulation of cellular sheddases [A] MCC13 cells 
were transfected with pEGFP-C1 control and pEGFP-ST expression plasmids for 48 hours. 
Immunoblot analysis was performed on the cellular lysates and analysed with ADAM 10, 17 
and TS1 specific antibodies. GAPDH was used as a measure of equal loading, the T 
antigen antibody was used to confirm MCPyV ST expression. [B] Densitometry 
quantification of the western blots was carried out using the Image J software and is shown 
a percentage of relative densitometry to the loading control, GAPDH. Data analysed using 
three replicates per experiment, n=3 and statistical analysis using a two-tailed t-test with 
unequal variance comparing MCPyV ST samples to EGFP control samples [** – P≤ 0.01, 
****– P≤ 0.0001]. 

 

3.7 Upregulation of ADAM 10 and ADAM 17 protein in MCC tumour 
samples 

To further investigate the expression of ADAM 10 and ADAM 17 in the context of 

MCC tumours, multicolour immunohistochemistry analysis was performed using 

formalin-fixed, paraffin-embedded [FFPE] sections of primary MCC tumours. 

Tumour sections and isotype-matched negative controls were incubated with the 
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MCC tumour marker, cytokeratin 20 (Bobos et al.), CM2B4 [MCPyV LT specific 

antibody] and ADAM-specific antibodies. Figure 3.11 demonstrated noticeably 

higher levels of ADAM 10 and ADAM 17 expression correspondent with CK20 

positive stained regions of the MCC tumour.  

 

Figure 3. 11: FFPE sections of primary MCC tumours were stained with CK20, MCPyV 
LT and ADAM 10 and ADAM 17-specific antibodies or an isotype negative control. 
Sections were then incubated with Alexa Fluor-labelled secondary antibodies and analysed 
using a Zeiss LSM 800 confocal laser scanning microscope. 

 

Furthermore, immunoblot analysis was performed on the cellular lysates of two 

unrelated MCC tumour samples comparing protein levels against a negative control 

non-tumour cadaveric skin sample. Results again demonstrate a similar increase in 

both ADAM 10 and ADAM 17 protein levels in MCC tumour samples compared to 

control [Figure 3.12]. Together, this provides in vivo evidence that ADAM 10 and 

ADAM 17 levels are increased in MCC tumour cells and supports the previous in 

vitro quantitative proteomic analysis conducted using i293-ST cells.    
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Figure 3. 12: Cellular Sheddases are expressed in MCPyV-positive MCC tumours. [A] 
Healthy skin, Tumour 1 and Tumour 2 were crushed using a mortar and a pestle on dry ice, 
lysed with RIPA buffer for 30 mins and sonicated to further homogenized the samples. 
Immunoblot analysis was performed on the tissue lysates and analysed with ADAM 10 and 
17 specific antibodies. GAPDH was used as a measure of equal loading, the T antigen 
antibody was used to confirm MCPyV ST expression. [B] Densitometry quantification of the 
western blots was carried out using the Image J software and is shown a percentage of 
relative densitometry to the loading control, GAPDH. Data analysed using three replicates 
per experiment, n=3 and statistical analysis using a two-tailed t-test with unequal variance 
comparing control cadaveric skin sample to each individual tumour [** – P≤ 0.01, *** – P≤ 
0.001, ****– P≤ 0.0001]. 

 

3.8 MCPyV ST increases ADAM 10 and ADAM 17 levels at a 
transcriptional level 

Previous immunoblot analysis shows that MCPyV ST increases ADAM 10 and 

ADAM 17 at the protein level. To examine whether MCPyV ST increases ADAM 10 

and ADAM 17 expression at a transcriptional or translational level, Real-Time 

Quantitative Reverse Transcription PCR [qRT-PCR] analysis was performed using 

complementary DNA that was reverse transcribed from Total RNA isolated from 
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cells expressing either EGFP or EGFP-ST. Experiments were performed in a 

variety of cell lines – 293, COS 7 and MCC13. In all cases, MCPyV ST expression 

resulted in an increase in ADAM 10 and ADAM 17 mRNA levels [Figure 3.13]. 

Inferring MCPyV ST induces ADAM 10 and ADAM 17 at a transcriptional level.  

 

Figure 3. 13: Sheddases are upregulated at the transcript level. [A] HEK 293 cells [B] 
COS 7 cells [C] MCC13 cells were transfected for 48 hours with pEGFP-C1 and pEGFP-ST 
expression plasmids. Cellular RNA was extracted using Trizol reagent, reverse transcribed 
and RT-qPCR was performed. Transcript levels were analyzed using the comparative CT 
method [n = 3]. Data analysed using three replicates per experiment, n=3 and statistical 
analysis using a two-tailed t-test with unequal variance comparing MCPyV ST samples to 
EGFP control samples [** – P≤ 0.01, *** – P≤ 0.001, ****– P≤ 0.0001]. 
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3.9 MCPyV ST induces upregulation of ADAM 10 and ADAM 17 proteins 
at the cell surface  

Western blot analysis validated the upregulation of ADAM 10 and ADAM 17 upon 

MCPyV ST expression. However, in order for active ADAM proteins to cleave their 

substrate of interest, they are required to be present at the same subcellular 

location as their substrate (Murphy 2008).  As adhesion molecule receptors are 

localized at the cell surface, it was important to determine whether MCPyV ST 

enhancement of ADAM 10 and ADAM 17 protein levels also led to their 

accumulation at the cell surface (Gumbiner 1996). To this end, 

immunofluorescence studies were performed to examine the effect of MCPyV ST 

expression on cell surface localisation of ADAM 10 and ADAM 17 proteins. 

For immunofluorescent staining, COS 7 cells were utilized as opposed to HEK cells 

as they have a larger cell surface to HEK cells, hence allowing for more distinct 

visualization at the cell surface (Biederer and Scheiffele 2007). COS 7 cells were 

transfected with plasmids expressing either EGFP or EGFP-ST. Non-permeabilised 

cells were then stained for endogenous ADAM 10 or ADAM 17 protein localisation 

and distribution. Results show that endogenous ADAM 10 and ADAM 17 levels are 

increased at the cell surface in MCPyV ST-expressing cells in comparison to the 

EGFP control cells [Figure 3.14].   
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Figure 3. 14: MCPyV ST upregulates ADAM 10 and ADAM 17 at the cell surface. COS 7 
cells were transfected with either pEGFP-C1 or pEGFP-ST expression vectors. After 24 h, 
cells were fixed and GFP fluorescence was analysed by direct visualization whereas 
staining of endogenous ADAM 10 was performed using specific ADAM 10 antibody. [A] 
ADAM 10 [B] ADAM 17.  

 
Further validation of MCPyV ST induction of cellular sheddase cell surface 

accumulation was performed using flow cytometry with ADAM 10- and ADAM 17-

specific antibodies (Figure 3.15). Results again show a similar accumulation of 

ADAM protein at the cell surface. Notably, these multiple assays have highlighted a 

greater accumulation of ADAM 10 compared to ADAM 17 at the cell surface. 

Together, these results suggest that MCPyV ST expression results in the 

accumulation of specific cellular sheddases, primarily ADAM 10, at the cell surface.  
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Figure 3. 15: Flow cytometry analysis of ADAM 10 and ADAM 17 expression at the cell 
surface [A] HEK 293 cells were transfected with pEGFP-C1 control and pEGFP-ST 
expression plasmids for 48 hours. Cells were harvested and spun down gently, blocked in 
3% BSA and stained with a specific ADAM 10 and 17 antibodies along with a corresponding 
secondary antibody. Mean fluorescence intensity of both control EGFP and EGFP-ST cells 
where plotted as a histogram using Flow Jo analysis software. [B] Fold difference was 
calculated using Mean fluorescence intensity. Data analysed using three replicates per 
experiment, n=3 and statistical analysis using a two-tailed t-test with unequal variance 
comparing MCPyV ST samples to EGFP control samples [* – P≤ 0.05, *** – P≤ 0.001]. 
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3.10 Discussion 

Previous studies have shown that MCPyV ST can promote microtubule 

destabilization due to ST-mediated activation of Stathmin (Knight et al. 2015). 

MCPyV ST has also been shown to induce filopodia formation (Stakaityte et al. 

2018). These observed effects on host cell microtubule and cytoskeleton 

components results in an increase in cell motility of MCPyV ST-expressing cells 

which may contribute to MCC metastatic potential. Dissociation of cell-to-cell 

adhesion has also been shown to contribute to cancer metastasis and tumour 

invasion (van Zijl et al. 2011).  

Data presented in this chapter demonstrates that cell-to-cell junctions undergo 

alterations upon MCPyV ST expression. This results in increased levels of cell 

scatter, due to a reduction in α-E-Catenin and ZO-1 at a protein level at the cell 

surface. These changes were detected in multiple cell lines [HEK293, COS 7 and 

MCC13] as well as in MCPyV positive MCC tumour samples.  

Concurrent with these observations, is the identification of an upregulation of 

specific cellular sheddases in the MCPyV ST quantitative proteomics dataset. 

Specifically, we see an increase in ADAM 10 and ADAM 17 expression, which are 

associated with cleavage of cell adhesion molecules and the Extracellular domain 

(Gooden et al. 2014). Results validated the upregulation ADAM 10 and ADAM 17, 

specifically at the cell surface where they can be catalytically active and cleave cell 

adhesion molecules. This may be particularly relevant for the pathogenic and 

metastatic potential of MCC, as cell adhesion requires links between Adherens 

junctions at the plasma membrane and the cytoskeleton (Sheikh et al. 2006).  

α-E-catenin is a subtype of α-catenin proteins and in epithelial cells is concentrated 

at the Adherens junction where it binds cadherins to actin filaments to facilitate 

strong cell-to-cell adhesion (Baum and Georgiou 2011). The interaction of 

cadherins to the catenins is crucial for cadherin function (Aberle et al. 1996).  

Members of the α catenin family function as invasion suppressors. As such, loss of 

catenins in many carcinomas have been linked with increased invasiveness and 

metastatic potential, and reduced expression of α-E-catenin can be related to poor 

tumour differentiation, as well as lymph node metastasis (Tanaka et al. 2003). 

Interestingly, previous studies assessing the status of cell adhesion molecules 

showed downregulation of α catenin in MCC (Tanaka et al. 2004).  
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Tight junctions are a multifunctional entity. While they contribute to cell permeability 

and polarity, in epithelial cells, they also play a role in preventing cell dissociation by 

demonstrating adhesive capabilities (Martin and Jiang 2009). Studies have linked 

losses in cell-to-cell interaction, loss of cell adhesion as well as cell membrane 

degradation to changes in expression of relevant tight junction proteins (Martin 

2014). ZO-1 is a critical regulator of epithelial tight junctions and loss of ZO-1 or its 

dysfunction has been linked to cancer metastasis (Lee et al. 2015). Interestingly, 

studies have highlighted a notable interaction with ZO-1 and α catenin where ZO-1 

binding to α-catenin is essential in connecting tight junction assembly to Adherens 

junction formation providing a strong adhesion state (Imamura et al. 1999; Maiers et 

al. 2013). 

Sheddases such as ADAM 10 and ADAM 17 control cell adhesion and release of 

cytokines growth factors in various diseases (Chow and Fernandez-Patron 2007). 

Specifically ADAM 10 has been shown to localize at the Adherens junction and 

Tight Junction in epithelial cells, which in turn promotes cell migration (Wild-Bode et 

al. 2006). As MCPyV ST has been shown to upregulate ADAM 10 to a greater 

extent, as well as the functionally redundant ADAM 17, at the cell surface, it can be 

inferred that these cellular sheddases access these junctions and promote the 

shedding of these specific adhesion molecules.  
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CHAPTER 4 
Merkel Cell Polyomavirus Small T Antigen induces ADAM 

proteins to enhance cell dissociation and motility 
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4.1 Introduction 

A Disintegrin and metalloproteases [ADAM] family of proteins, are membrane-

anchored glycoproteins and regulatory enzymes associated with controlling cell 

adhesion and shedding of membrane-bound proteins to soluble forms (Wolfsberg et 

al. 1995). The superfamily of these metzincin zinc-dependent metalloprotease 

proteins have similar prodomains, comprising the metalloprotease domain, 

disintegrin domain, cysteine-rich domain, epidermal growth factor [EGF]-like 

domain, a transmembrane domain, and a cytoplasmic domain (Moss and Lambert 

2002; Edwards et al. 2008).  

 Regulation of ADAM catalytic activity by the metalloprotease domain is controlled 

by a cysteine-switch mechanism (Wolfsberg et al. 1995). In this mechanism, a 

prodomain cysteine ligand binds zinc in the active site maintaining it in an inactive 

state. However, disruption of the cysteine-rich domain and zinc binding in the active 

site allows for an active ADAM protein which can then participate in sheddase 

activities (Wolfsberg et al. 1995; Moss and Lambert 2002; Milla 2011).  

The primary substrates cleaved by ADAM proteins are the ectodomain of 

transmembrane proteins (Edwards et al. 2008). Substrate specificity is provided by 

the disintegrin domain positioned downstream of the protease domain. It is highly 

conserved, comprising approximately 90 amino acids and is found in all ADAM 

proteins (Eto et al. 2000). As ADAM proteins are detected on cell membranes, it is 

thought that they are primarily involved in the cleavage of membrane-anchored cell 

surface adhesion molecules, such as Cadherins, Selectins and Integrins (Katto and 

Mahlknecht 2011). 

Studies have linked ADAM proteins with various biological functions including but 

not limited to neurogenesis, angiogenesis and cancer (Rocks et al. 2008). Of note, 

various studies have implicated over-expression of various ADAM proteins 

correlating to the aggressiveness and progression of tumour development (Duffy et 

al. 2009).  This infers that these sheddases could be functionally significant in the 

process of cancer development and the dissemination of metastatic tumour cells 

(Rocks et al. 2008). 

Here we elucidate a potential role of MCPyV ST-induced ADAM 10 and 17 proteins 

in cell junction breakdown and increased cell dissociation. This suggests that 

MCPyV ST can enhance cellular migration and invasion by increasing ADAM 

protein expression. This may provide a novel biomarker of MCC prognosis as 
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vairious ADAMs are emerging as possible cancer biomarkers for aiding cancer 

diagnosis as well as possibly predicting patient outcome. This is as a result of 

various ADAM proteins being detected in the fluids of Cancer patients. (Duffy et al. 

2011).   Moreover, linking sheddases to MCPyV-positive MCC metastasis may 

provide novel therapeutic interventions.  

 

4.2 ADAM 10 is required for MCPyV ST-induced cell junction disruption 

Cell-to-cell adhesion and cell interaction to the extracellular matrix is essential for 

tissue integrity (Joyce and Pollard 2009). Interference of cell-to-cell adhesion 

consequently enhances cell scattering and is vital for the initiation of cell migration 

(de Rooij et al. 2005).  In chapter 3, results showed that MCPyV ST expression led 

to enhancement of cell-to-cell dissociation and cell scatter. This increase in cell-to-

cell dissociation was a result of MCPyV ST-mediated dysregulation of cell-to-cell 

junctions.  

Furthermore, MCPyV ST induced ADAM 10 and 17 upregulation, specifically at the 

cell surface where these cellular sheddases can function in deregulating cell-to-cell 

junctions. Therefore, it was pertinent to analyse the overall structure of cell 

junctions in MCPyV ST-expressing cells with limited sheddases function. In order to 

determine whether ADAM 10 and/or 17 are involved in MCPyV ST-induced cell-to-

cell dissociation, cell scatter and cell motility, two commercially available inhibitors 

were utilized. GI254023X is a small molecule which contains hydroxamate moieties 

which inhibits ADAM 10 by binding zinc at the active site, maintaining it in an 

inactive state (Yiotakis and Dive 2008). Similarly, TAPI-2, is also a hydroxamate-

based broad spectrum inhibitor (Arribas et al. 1996). Initially, non-cytotoxic 

concentrations of these inhibitor were determined by MTS assay in various cell 

lines [Figure 4.1].  
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Figure 4. 1: Cell viability assays using Sheddase inhibitors. MTS assays were 
performed on [A]i293-EGFP-ST [B]COS 7 [C]MCC13 cell lines were incubated with various 
concentrations of [i] GI254023X, and [ii]TAPI-2 for 24 hours. 
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To determine whether ADAM 10 and 17 were required for the previously observed 

MCPyV ST-induced breakdown of cell-to-cell junctions, EGFP and EGFP-ST-

expressing cells were incubated for 24 hours in the absence or presence of each 

ADAM inhibitor at non-cytotoxic concentration, 100μM. Interestingly similar 

concentrations have been shown to inhibit ADAM 10 sheddase activity (Gooden et 

al. 2014; Mullooly et al. 2015). Subsequent to the incubation period, cells were 

fixed, and stained with an α-E-catenin specific antibody, whereas EGFP expression 

was visualised by direct fluorescence. Previous findings in chapter 3 had 

demonstrated that MCPyV ST expression leads to an incomplete staining of the cell 

junctions signifying a decrease in cell-to-cell adhesion, in contrast EGFP expressing 

control cells demonstrated a complete staining on the cell surface. Notably, MCPyV 

ST-expressing cells incubated with both GI254023X and TAPI-2 showed a 

complete staining of the cell surface inferring that ADAM 10 inhibition and possibly 

ADAM 17 prevents MCPyV ST-mediated breakdown of cell-to-cell adhesion [Figure 

4.2]. There was no observed alteration at the cell junction of EGFP control cells 

after incubation with either inhibitors.  
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Figure 4. 2: ADAM protein activity is essential for MCPyV ST-induced cell junction 
disruption. Cell junction staining using a specific α-E-catenin specific antibody, for EGFP 
control and EGFP-ST-expressing cells in the presence of an ADAM protein inhibitors. [A] 
Upper panel shows HEK 293 cells transfected with pEGFP-C1. Second panel shows HEK 
293 cells transfected with pEGFP-C1 incubated in 100μM GI254023X and Third panel 
shows HEK 293 cells transfected with pEGFP-C1 incubated in 100μM TAPI-2. [B] Upper 
panel shows HEK 293 cells transfected with pEGFP-ST. Second panel shows HEK 293 
cells transfected with pEGFP-ST incubated in 100μM GI254023X and Third panel shows 
HEK 293 cells transfected with pEGFP-ST incubated in 100μM TAPI-2.  
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It was also important to validate and quantify recovery of structural integrity by 

assessment of α-E-catenin expression at the cell surface upon MCPyV ST 

expression. Flow cytometry was therefore utilized to quantify the levels of α-E-

catenin in EGFP and EGFP-ST-expressing cells in the presence and absence of 

each ADAM protein inhibitor. Results demonstrated a recovery of MCPyV ST-

mediated downregulation of α-E-catenin at the cell surface in the presence of 

GI254023X and TAPI-2 [Figure 4.3]. Together, these results suggest that ADAM 

proteins are required for the breakdown of cell-to-cell junction upon MCPyV ST 

expression.  
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Figure 4. 3: Sheddase expression is required for MCPyV ST-induced cell junction 
disruption. Flow cytometry was used to quantify recovery of α-E-catenin expression at the 
cell surface upon incubation of Sheddase inhibitors [Ai] α-E-catenin expression – HEK 293 
cells transfected with pEGFP-C1, HEK 293 cells transfected with pEGFP-C1 incubated in 
100 μM GI254023X and HEK 293 cells transfected with pEGFP-C1 incubated in 100uM 
TAPI-2. [Aii] HEK 293 cells transfected with pEGFP-ST, HEK 293 cells transfected with 
pEGFP-ST incubated in 100uM GI254023X and HEK 293 cells transfected with pEGFP–ST 
incubated in 100 μM TAPI-2. Mean fluorescence intensity of both control EGFP and EGFP-
ST cells where plotted as a histogram using Flow Jo analysis software. [B] Fold difference 
was calculated using Mean fluorescence intensity. Data analysed using three replicates per 
experiment, n=3 and statistical analysis using a two-tailed t-test with unequal variance 
comparing incubated inhibitor samples to their designated DMSO incubated control [*** – P≤ 
0.001, ****– P≤ 0.0001]. 

 

 4.3 Sheddases are essential for MCPyV ST-induced cell dissociation 

To confirm that ADAM 10 and/or 17 were required for the enhanced cell 

dissociation observed in MCPyV ST-expressing cells, a cell scatter assay was 

repeated in EGFP control cells and MCPyV ST-expressing cells, in the absence 
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and presence of each inhibitor. Addition of the ADAM 10 specific inhibitor resulted 

in little change in control cells. However, a significant reduction in cell dissociation, 

over the course of 48 hours, was observed when EGFP-ST-expressing cells where 

incubated in GI254023X compared to DMSO-treated MCPyV ST-expressing cells 

[Figure 4.4] 

 

Figure 4. 4: Quantification of cell dissociation of EGFP and EGFP-ST cells in the 
absence or presence of GI254023X – ADAM 10 specific inhibitor. Cell scatter assay in 
EGFP and EGFP-ST cells with cells incubated with ADAM 10 inhibitor GI254023x from 
T=0hr to T=48 hours. Statistical analysis using a two-tailed t-test with unequal variance 
comparing MCPyV ST control samples to MCPyV ST inhibitor incubated sample at T = 48 
hours [****– P≤ 0.0001]. 

 

A similar experiment was also performed with the dual ADAM 10/17 inhibitor, TAPI-

2. A comparable level of cell dissociation inhibition was observed using the 

ADAM10/17 dual inhibitor, TAPI-2 as with the ADAM 10 inhibitor alone [Figure 4.5].  

This infers that no enhancement of inhibition is seen by simultaneously targeting 

both ADAM 10 and 17, which may suggest that the prominent sheddase in MCPyV 

ST functioning is ADAM 10.  
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Figure 4. 5: Quantification of cell dissociation of EGFP and EGFP-ST cells in the 
absence or presence of TAPI-2– Dual ADAM 10/17 inhibitor. Cell scatter assay in EGFP 
and EGFP-ST cells with cells incubated in dual ADAM 10/17 inhibitor TAPI-2 from T=0hr to 
T=48 hours. Statistical analysis using a two-tailed t-test with unequal variance comparing 
MCPyV ST control samples to MCPyV ST inhibitor incubated sample at T = 48 hours [****– 
P≤ 0.0001]. 

  

4.4 ADAM 10 is required for MCPyV ST-induced cell dissociation 

To confirm the precise role of ADAM 10 in MCPyV ST-induced cell dissociation, 

specific siRNA-mediated depletion of ADAM 10 was performed in EGFP and 

EGFP-ST-expressing HEK 293 cells.  ADAM 10 depletion was confirmed by 

immunoblotting, showing a significant reduction in the MCPyV ST-induced levels of 

ADAM 10 protein [Figure 4.6].  
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Figure 4. 6: siRNA mediated knockdown of ADAM 10. [A] HEK 293 cells were 
transfected ADAM 10 specific siRNA and scramble negative control. 48 hours post initial 
transfection, pEGFP-C1 and pEGFP-ST where transfected in the knockdown negative and 
positive cells. 48 hours subsequent to transfection, cells were harvested and lysed. Cell 
lysates were then probed for successful knockdown with a specific ADAM 10 antibody 
GAPDH was used as loading control and T antigen antibody was used to show MCPyV ST 
expression.  [B] Densitometry quantification of the western blots was carried out using the 
Image J software and is shown a percentage of relative densitometry to the loading control, 
GAPDH. Data analysed using three replicates per experiment, n=3 and statistical analysis 
using a two-tailed t-test with unequal variance comparing siRNA knockdown to their 
designated siRNA scrambled control [****– P≤ 0.0001]. 

 

To assess the effect of ADAM 10 depletion on the levels of the Adherens junction 

marker α-E-catenin and Tight Junction marker ZO-1, immunoblotting was 

performed in EGFP and MCPyV EGFP-ST-expressing cells in the presence of 

scrambled or ADAM 10 specific siRNA. α-E-catenin and ZO-1 protein levels were 

previously shown to be reduced upon MCPyV ST expression [Chapter 3]. However, 

here ADAM 10 depletion restored both α-E-catenin and ZO-1 proteins levels to 

control levels in MCPyV ST-expressing cells [Figure 4.7]. 
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Figure 4. 7: siRNA specific knockdown of ADAM 10 leads to recovery of α-E-catenin 
and ZO-1 expression. [A] Cell lysates were probed for successful knockdown with specific 
ADAM 10 antibody as well as ZO-1 and α-E-catenin expression. GAPDH was used as 
loading control and T antigen antibody was used to show MCPyV ST expression. [B] 
GAPDH was used as a measure of equal loading and Densitometry quantification of the 
western blots was carried out using the Image J software and is shown a percentage of 
relative densitometry to the loading control, GAPDH. Data analysed using three replicates 
per experiment, n=3 and statistical analysis using a two-tailed t-test with unequal variance 
comparing siRNA knockdown to their designated siRNA scrambled control [ns – P>0.05, 
****– P≤ 0.0001]. 

 

To determine if the observed rescue of cell junction-associated proteins upon 

ADAM 10 depletion affects MCPyV ST-induced cell dissociation, a cell scatter 

assay was performed as previously described in EGFP control cells or MCPyV ST-

expressing cells, in the presence of either scramble or ADAM 10-specific siRNAs. 

Depletion of ADAM 10 resulted in a similar reduction in cell dissociation levels, as 

observed using the ADAM 10 specific inhibitor, GI254023X [Figure 4.8]. These 

results suggest that ADAM 10 is required for MCPyV ST-mediated cell dissociation.  
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Figure 4. 8 : Quantification of cell dissociation of EGFP and EGFP-ST cells in the 
absence or presence of ADAM 10 specific siRNA. Cell scatter assay in EGFP and 
EGFP-ST cells comparing scramble and ADAM 10 depletion from T=0hr to T=72 hours. 
[****– P≤ 0.0001] Statistical analysis using a two-tailed t-test with unequal variance 
comparing MCPyV ST ADAM 10 siRNA knockdown to designated siRNA scramble control 
at T = 72 hours [****– P≤ 0.0001]. 

 

 

4.5 MCPyV ST induces cell motility in a variety of cell lines 

MCPyV ST-expressing cells have been shown to increase cell motility (Knight et al. 

2015). Using IncuCyte live cell imaging, it has been shown that EGFP-ST-

expressing cells are significantly more motile than EGFP control cells [P<0.0001]. 

Therefore, in order to assess the role of ADAM proteins in cell motility it was initially 

important to set up a reproducible cell motility assay. HEK 293 cells were therefore 

transfected with either pEGFP-C1 or pEGFP-ST expression plasmids. The cells 

were then incubated and imaged in the IncuCyte zoom for 24 hours and cells were 

tracked with the Fiji manual tracking program.  
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Figure 4. 9: MCPyV ST expression promotes cell motility in HEK 293 cells. [A] Cells 
were transfected with either pEGFP-C1 or pEGFP-ST and 24 hours after cell motility was 
analysed using an IncuCyte kinetic live cell imaging system. Images were taken over the 
course of 24 hours every 30 minutes and cell movement tracked using Image J software. 
Red, blue, cyan and green line tracks depict the path of cell movement over the time 
course. [Bi] The average distance moved by transfected cells was measured in μm [n=50]. 
[Bii] Quantification of distance travelled for EGP and EGFP-ST-expressing cells 10 µm 
ranges. Data analysed using three replicates per experiment, n=3 and statistical analysis 
using a two-tailed t-test with unequal variance comparing MCPyV ST samples to EGFP 
control samples [****– P≤ 0.0001]. 

 

Figure 4.9 shows that MCPyV ST-expressing HEK 293 cells travel significantly 

further than EGFP control cells Similar results were observed in COS7 and MCC13 

transfected cells [Figure 4.10].  
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Figure 4. 10: MCPyV ST expression promotes cell motility in alternative cell lines 
cells. Cells were transfected with either pEGFP-C1 or pEGFP-ST and 24 hours after cell 
motility was analysed using an IncuCyte kinetic live cell imaging system. Images were taken 
over the course of 24 hours every 30 minutes and cell movement tracked using Image J 
software [A] COS 7 [B] MCC13 [i] The average distance moved by transfected cells was 
measured in μm [n=50]. [ii] Quantification of distance travelled for EGP and EGFP-ST-
expressing cells 10 µm ranges. Data analysed using three replicates per experiment, n=3 
and statistical analysis using a two-tailed t-test with unequal variance comparing MCPyV ST 
samples to EGFP control samples [ns – P>0.05, ****– P≤ 0.0001]. 

 

4.6 Sheddase inhibitors impedes the ability of MCPyV ST-mediated cell 
motility 

Preceding results have demonstrated the crucial role of ADAM proteins in 

enhancing cell junction breakdown and cell dissociation in MCPyV ST-expressing 

cells. As cell junction integrity has been linked to the initiation of cell migration, it 

was important to investigate if ADAM proteins have any downstream influence on 

the motility and migratory potential of MCPyV ST-expressing cells. Therefore, the 

migratory potential of EGFP control and EGFP-ST HEK 293 expressing cells were 

assessed using IncuCyte kinetic live cell imaging, in the absence or presence of 

non-cytotoxic concentrations of the ADAM 10-specific inhibitor [GI254023X], as 

previously described.  
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Incubation of the ADAM 10 [GI254023X] inhibitor show a minimal, but insignificant 

decrease in the motility of EGFP control cells. In comparison, ADAM 10 inhibition 

resulted in a substantial decrease in the distance travelled of MCPyV ST-

expressing cells, similar to EGFP control cell migration [Figure 4.11].   

 

Figure 4. 11:  Live cell imaging shows MCPyV ST-induced cell motility is dependent 
ADAM 10. [A] The average distance travelled by EGFP and EGFP-ST cells in the absence 
or presence of the ADAM 10 inhibitor [n=50]. [B] Quantification of distance travelled for [i] 
EGFP control cells and EGFP cells incubated with ADAM10-specific inhibitor GI254023X 
and [ii] EGFP-ST control cells and EGFP-ST cells incubated with ADAM10-specific inhibitor 
GI254023X. Motility was compared to each other in 10 µm ranges [n=50]. Data analysed 
using three replicates per experiment, n=3 and statistical analysis using a two-tailed t-test 
with unequal variance comparing incubated inhibitor samples to their designated DMSO 
incubated control [ns – P>0.05, ****– P≤ 0.0001]. 

 

A similar trend was also observed with the dual ADAM 10/17 inhibitor [TAPI-2] 

[Figure 4.12]. Again, this suggests that inhibition of ADAM 10 alone is sufficient to 

repress the MCPyV ST-induced cell migratory phenotype.  
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Figure 4. 12: Live cell imaging shows a dependence of MCPyV ST-induced cell 
motility on sheddases.  [A] The average distance travelled by EGFP and EGFP-ST cells in 
the absence or presence of the dual ADAM 10/17 inhibitor TAPI-2 [n=50]. [B] Quantification 
of distance travelled for [i] EGFP control cells and EGFP cells incubated with dual ADAM 
10/17 inhibitor TAPI-2 and [ii] EGFP-ST control cells and EGFP-ST cells incubated with the 
dual ADAM 10/17 inhibitor TAPI-2. Motility was compared to each other in 10 µm ranges 
[n=50]. Data analysed using three replicates per experiment, n=3 and statistical analysis 
using a two-tailed t-test with unequal variance comparing incubated inhibitor samples to 
their designated DMSO incubated control [ns – P>0.05, *** – P≤ 0.001]. 

 

To validate that the observed downregulation of MCPyV ST-mediated cell migration 

in HEK transfected cells is dependent on ADAM 10 inhibition similar live cell 

imaging experiments were carried in additional cell lines. Live cell imaging was 

carried out in COS 7 and MCC13 pEGFP-C1 and pEGFP-ST transfected cells in 

the absence or presence of either ADAM 10 specific or Dual ADAM 10/17 inhibitors. 

Results validated previous observations in HEK 293 cells showing a decrease in 

MCPyV ST-mediated cell motility upon addition of ADAM protein inhibitors [Figure 

4.13].  
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Figure 4. 13: Live cell imaging shows a dependence of MCPyV ST-induced cell 
motility on ADAM proteins. [A] COS7 [B] MCC13 [i]The average distance travelled by 
EGFP and EGFP-ST cells in the absence or presence of the ADAM 10 inhibitor [n=50]. [ii] 
The average distance travelled by EGFP and EGFP-ST cells in the absence or presence of 
TAPI-2 inhibitor [n=50]. Data analysed using three replicates per experiment, n=3 and 
statistical analysis using a two-tailed t-test with unequal variance comparing incubated 
inhibitor samples to their designated DMSO incubated control [ns – P>0.05, ** – P≤ 0.01, *** 
– P≤ 0.001, ****– P≤ 0.0001]. 

 

4.7 Depletion of ADAM 10 reduces MCPyV ST-induced cell motility 

Previous results have shown that various ADAM 10 inhibitors are sufficient to 

decrease the migration potential of MCPyV ST-expressing cells. It was therefore 

important to corroborate the use of ADAM-specific inhibitors using similar live cell 

imaging motility assays in siRNA-mediated ADAM 10 depleted EGFP and EGFP-

ST-expressing cells. HEK cells were therefore transfected with scrambled or ADAM 

10 specific siRNA and pEGFP-C1 or pEGFP-ST expression plasmids. Subsequent 

to successful knockdown of ADAM 10 [Figure 4.6], cells were then imaged using 

the IncuCyte kinetic imaging system, every 30 minutes for 24 hours. Similar to the 

inhibitor studies, ADAM 10 depletion again resulted in a reduction in the motility of 

MCPyV ST-expressing cells, similar to levels of control EGFP-expressing cells 

[Figure 4.14]. Importantly, ADAM 10 depletion had no effect on the motility of EGFP 
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expressing cells. Taken together, these results suggest that ADAM 10 

dysregulation of the cell junction is required for MCPyV ST-mediated enhanced cell 

motility. 

 

Figure 4. 14: siRNA knockdown of ADAM 10 decreases MCPyV ST-mediated cell 
migration. HEK 293 cells were transfected with ADAM 10 specific siRNA and scramble 
negative control. 48 hours post initial transfection, pEGFP-C1 and pEGFP-ST where 
transfected in the knockdown negative and positive cells. [A] The average distance travelled 
by EGFP and EGFP-ST cells upon ADAM 10 Knockdown [n=50]. [Bii] Quantification of 
distance travelled for scramble EGFP control cells and ADAM 10 Knockdown EGFP cells 
are compared to each other in 10 µm ranges [n=50] [Bii] Quantification of distance travelled 
for scramble EGFP-ST control cells and ADAM 10 knockdown EGFP-ST cells are compared 
to each other in 10 µm ranges [n=50]. [ns – P>0.05, *** – P≤ 0.001]. 

 

To further investigate the role MCPyV ST plays in promoting cell motility and 

migration, cell growth characteristics were analysed using matrigel- and fibronectin-

based transwell migration assays using MCPyV positive MCC cell lines. A transwell 

assay was utilized as known MCPyV positive MCC cell lines are non-adherent cells. 

Subsequent analysis of ADAM 10 inhibition in the context of matrigel-based 

migration assays was conducted, in order to validate the potential of ADAM 10 

upregulation on MCPyV ST-enhanced cell motility and migration. 
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Here, MCPyV positive MCC cell lines PeTa and WAGA-1 cells were assessed in 

the absence or presence of ADAM 10 specific inhibitor GI254023X. Initially, non-

cytotoxic concentrations of these inhibitor were determined by MTS assay in PeTa 

and WAGA cell lines [Figure 4.15A]. Cells incubated in the absence or presence of 

non-cytotoxic concentration of ADAM 10 inhibitor for 24 hours. Following the initial 

incubation period, cells were seeded onto matrigel-coated transwells in the absence 

or presence of the inhibitors. Cells were then allowed to migrate over the course of 

22 hours. This was followed by cell staining and the number of cells that migrated 

was calculated as a fold change of the untreated samples. Figure 4.15B clearly 

demonstrates that ADAM 10 inhibition in cells positive for MCPyV show a 

statistically significant decrease in motility and migration through the trans-wells. 

This confirms that ADAM 10 is a crucial component for MCPyV ST-mediated cell 

motility and migration.  

 

 

 

 



 
 

 
135 

 

 

Figure 4. 15: ADAM 10 is required for MCPyV ST-mediated cell migration in transwell 
assays. [A] Cell vialbility with ADAM 10 inhibitors GI254023x. Cells were grown for 24 h, 
then treated with inhibitors [i] PeTa cells [ii] WaGa cells. [B] PeTa and WaGa cells were 
seeded in the absence or presence of ADAM 10 specific inhibitor. Cells were incubated for 
22 hours and then labelled for 90 minutes with Calcein AM fluorescent dye. The 
fluorescence was measured between 494-517 nM and the relative percentage of cells 
moved through the trans-well was calculated as a fold difference of the untreated cells [set 
at 1]. Data analysed using three replicates per experiment, n=3 and statistical analysis using 
a two-tailed t-test with unequal variance comparing incubated inhibitor samples to their 
designated DMSO incubated control [*** – P≤ 0.001]. 
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4.8 Discussion 

Multiple lines of inquiry and evidence have proven that specific ADAM proteins are 

expressed in malignant tumors and play a role in cancer pathogenesis (Arima et al. 

2007; Mochizuki and Okada 2007). Data herein, demonstrates that MCPyV ST-

mediated upregulation of ADAM proteins promote cell-to-cell dissociation, cell 

scatter and motility in a range of cell lines such as HEK, COS7 and MCC13 cell 

lines.   

Interestingly, in chapter 3 we observed that ADAM 10 and ADAM 17 were found 

upregulated at the cell surface by immunofluorescence studies Flow cytometry in 

MCPyV ST-expressing cells. To validate the role of MCPyV ST in promotion of 

ADAM proteins in cell dissociation, scatter and migration, 2 commercially available 

inhibitors an ADAM 10 specific inhibitor and a dual ADAM 10/17 inhibitor were 

utilized. These inhibitors are utilized to assess the role of these proteins in MCPyV-

related metastasis studies as the ADAM10-specific inhibitor GI254023X has been 

widely used and shown to inhibit cell migration in various breast cancer cell lines 

BT20, MDA-MB-231 and MDA-MB-453 (Mullooly et al. 2015).  

Results in chapter 4 using live cell imaging assay showed that incubation of the 

ADAM 10 inhibitor, GI254023X reduced ST-mediated cell migration. This was 

validated by use of TAPI-2 inhibitor, a dual ADAM 10/17 inhibitor and further 

corroborated by siRNA mediated-depletion of ADAM 10.  Surface expression of 

ADAM10 and ADAM17 have been analysed in previous studies in a variety of 

human T cell and tumour cell lines. These studies have shown that ADAM10 is 

constitutively present at significantly higher levels on the majority of the tested cell 

types. In comparison, in all assessed cell lines, ADAM 17 showed a significantly 

lower constitutive expression (Ebsen et al. 2013). This data verifies the hypothesis 

that ADAM proteases induces ST-mediated cell migration. As ADAM 17 does share 

some substrate redundancies with ADAM 10, it would be important to specifically 

categorize ADAM 17 sheddase activity in MCC cells (Le Gall et al. 2009). 

ADAM10 has previously been shown to correlate with outcome in basal-type breast 

cancer (Mullooly et al. 2015). In a previous study, an alternative ADAM 10 inhibitor, 

INCN3619, has been shown inhibit synergistic growth when combined with dual 

EGFR/HER2 tyrosine kinase inhibitor, GW2974 [Sigma Aldrich] in MCF-7 breast 

cancer cells (Duffy et al. 2011). ADAM 10 has also been shown to be a potential 

therapeutic target for HER2 positive breast cancers. Newton et al. [2010] have 

reported use of INCB7839, a dual ADAM10/17 inhibitor, in combination with 



 
 

 
137 

 

trastuzumab in drug trials.  Along with a high tolerance for the new drug, overall 

response rate in patients with advanced breast cancer were between 40% and 55% 

(Newton et al. 2010).  

The results in this study suggest that ADAM10 may be a new prognostic biomarker 

for MCPyV ST-mediated metastasis. If validated, ADAM 10 selective inhibitors such 

as the one used in this investigation, GI254023X, can be used as a potential 

therapeutic treatment for MCC, once assessed for efficacy and toxicity in animal 

models.  

Interestingly, a similar inhibitor INCB7839 is currently undergoing initial clinical trials 

in HER2-positive advanced breast cancer patients. Preliminary results from these 

clinical trials suggest that this inhibitor is currently tolerated with no negative effects 

for participants.  Additionally, administration of Trastuzumab along with INCB7839 

to over 50 patients with advanced HER2-positive breast cancer induced response 

in 13/26 (50%) evaluable patients. Addition of INCB7839 to Trastuzumab therapy, 

increased efficacy (Duffy et al. 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
138 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5 
MCPyV ST is Sufficient to Drive an Epithelial to 

Mesenchymal Transition 
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5.1 Introduction 

The epithelial to mesenchymal transition [EMT] is a biological process that occurs 

when polarized epithelial cells which customarily interact with basement membrane 

by means of their basal surface, undertake various biochemical alterations and 

modifications leading to a phenotype associated with a mesenchymal cell (Al-

Azayzih et al. 2015; Chen et al. 2016). The hallmarks of EMT include enhancement 

in migratory potential, invasiveness, resistance to apoptosis and degradation of the 

basement membrane (Kalluri and Weinberg 2009).   

The mechanism for epithelial to mesenchymal transition provides mobility to cancer 

cells, allowing cancer cells to invade neighbouring tissues and organs, as well as 

entry to the circulatory system (Gao and Mittal 2012). This is essential for 

metastatic spread as upon intravasation, cancer cells are transported through the 

circulatory system and later exit the blood stream at secondary locations to 

establish metastatic tumours (Geiger and Peeper 2009; Hanahan and Weinberg 

2011). 

Recent studies have shown that that oncoviruses and their associated oncoproteins 

play a role in metastasis and EMT-related mechanisms. For example, HPV16 E6 

and E7 oncoproteins have been shown to repress the expression of the E-cadherin 

protein in cervical cancer cells, inducing FGF ligand stimulation resulting in 

increased invasiveness (Cheng et al. 2012) . EBV oncoprotein, LMP1,  has also 

been proven to induce cadherin switching (Shair et al. 2009), as well as regulate 

transcription factors such as TWIST and Snail thereby increasing a migratory 

phenotype (Horikawa et al. 2011; Chen et al. 2016).  

Although transcriptome analysis has suggested that certain markers associated 

with EMT are increased upon MCPyV ST expression (Berrios et al. 2016), there 

lacks any detailed analysis to confirm if MCPyV ST induces a complete EMT. It is 

important to assess differential expression of EMT markers at the RNA level, as 

well as the protein level, as changes in RNA levels regulate EMT progression due 

to differential splicing and microRNA-regulated mechanisms of EMT markers 

(Lamouille et al. 2014).  

This chapter investigates whether MCPyV ST is sufficient to drive an epithelial to 

mesenchymal transition. Specific steps in the EMT have been investigated herein 

such as: 1) loss of cell-to-cell adhesion mediated by E-cadherin at Adherens 

junctions and ZO-1 and Occludin at tight junctions 2) loss of apical to basal cell 
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polarity, 3) cytoskeletal reorganization 4) degradation of the basement membrane, 

5) The state of Cadherin switching.  

 

5.2 MCPyV ST expression downregulates of Cell adhesion markers 

The epithelial cell phenotype is characterized by strong cell-to-cell interaction at the 

Adherens and tight junctions, observed by the cobblestone morphology (Moreno-

Bueno et al. 2009).  In chapter 3, a downregulation of α-E-catenin and ZO-1 was 

observed upon MCPyV ST expression at the protein level as well as specifically at 

the cell surface suggesting a reduction in cell-to-cell adhesion. In epithelial cells, E-

Cadherin has been identified as a major structural protein of the Adherens junction 

(Furness and Speight 1998). As a known tumour suppressor protein, 

downregulation of E-cadherin is considered to be one of the first essential steps of 

EMT, in both healthy and cancerous cells (Baum and Georgiou 2011). Therefore, it 

was important to assess the transcript and protein level of this cell adhesion 

associated marker. Interestingly however, HEK 293 cells do not express E-

Cadherin, which was confirmed by flow cytometry [Figure 5.1]. HEK 293 cells are 

transformed by sheared adenovirus 5 DNA which may contribute to loss of E-

cadherin expression. Therefore, experiments were performed in COS 7 and MCC13 

along with HEK 293.  
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Figure 5. 1: HEK 293 cells do express E-cadherin. [A] Unstained HEK 293 cells function 
as a negative control for E-cadherin staining. [B] Stained HEK 293 cells illustrating absence 
of staining [C] Secondary only staining to confirm absence of unspecific binding and 
staining.  

 

To assess the levels of cell adhesion-associated proteins upon MCPyV ST 

expression, mRNA levels were evaluated 48 hours post transfection. We assessed 

E-Cadherin, ZO-1 as well as Occludin, an integral plasma membrane protein which 

is specifically localized at the tight junction (Feldman et al. 2005). RT-qPCR 

indicated significant downregulation in the mRNA levels of E-cadherin, ZO-1 and 

Occludin upon MCPyV ST expression in 293, COS7 and MCC13  cells [Figure 5.2].  
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Figure 5. 2: Cell adhesion molecules are downregulated at the transcript level. Various 
cell lines [293, COS7 and MCC13] were transfected for 48 hours with pEGFP-C1 and 
pEGFP-ST expression plasmids. Cellular RNA was extracted using Trizol reagent, reverse 
transcribed and RT-qPCR was performed. Transcript levels were analysed using the 
comparative CT method [n = 3]. [A] E-cadherin [B] ZO-1 [C] Occludin. Data analysed using 
three replicates per experiment, n=3 and statistical analysis using a two-tailed t-test with 
unequal variance comparing MCPyV ST samples to EGFP control samples [P-≤ 0.0001]. 

 

To mediate cell-to-cell adhesion, newly synthesized E-cadherin proteins are 

packaged in the Golgi. The trans-Golgi network is the first main site of E-cadherin 

sorting and differential regulation. E-cadherin is essential for maintaining epithelial 

cell polarity, hence it must be sorted and delivered to the lateral cell surface in a 

polarized manner (Bryant and Stow 2004). It is at the cell surface where they 

function in cell adhesion (Peng et al. 2010). Therefore, it was important to assess 

whether MCPyV ST affects levels of E-Cadherin at the cell surface. Flow cytometry 

analysis was used to determine levels of E-Cadherin in COS 7 cells at the cell 

surface 48 hours post transfection of either pEGFP-C1 or pEGFP-ST expression 

vectors. Results demonstrated a reduction E-Cadherin expression at the cell 

surface upon MCPyV ST expression [Figure 5.3]. 
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Figure 5. 3: Flow cytometry shows E-cadherin downregulation at the cell surface. [A] 
COS7 cells were transfected with pEGFP-C1 control and pEGFP-ST expression plasmids 
for 48 hours. Cells were harvested and spun down gently, blocked in 3% BSA and stained 
with a specific E-cadherin antibody along with a corresponding secondary antibody. Mean 
fluorescence intensity of both control EGFP and EGFP-ST cells where plotted as a 
histogram using Flow Jo analysis software. [B] Fold difference was calculated using Mean 
fluorescence intensity. Data analysed using three replicates per experiment, n=3 and 
statistical analysis using a two-tailed t-test with unequal variance comparing MCPyV ST 
samples to EGFP control samples [****– P≤ 0.0001]. 

 

De novo formation of epithelial markers were also assessed by immunoblotting to 

determine their expression levels upon MCPyV ST expression. Immunoblotting of 

EGFP or EGFP-ST cell lysates confirmed downregulation of a variety cell adhesion-

associated proteins, namely E-cadherin, β-catenin and Claudin upon expression of 

MCPyV ST, in both COS7 and in MCC13 cells [Figure 5.4].  
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Figure 5. 4: MCPyV ST promotes downregulation of cell adhesion molecules. [Ai] 
COS7 and [Bi] MCC13 cells were transfected with pEGFP-C1 and pEGFP-ST expression 
plasmids for 48 hours. Cell lysates were then probed with specific antibodies. GAPDH was 
used as loading control and T antigen antibody was used to show MCPyV ST expression.  
[Aii and Bii] Densitometry quantification of the western blots was carried out using the Image 
J software and is shown as fold change of relative densitometry to the loading control, 
GAPDH. Data analysed using three replicates per experiment, n=3 and statistical analysis 
using a two-tailed t-test with unequal variance comparing MCPyV ST samples to EGFP 
control samples. [* – P≤ 0.05, ** – P≤ 0.01, *** – P≤ 0.001, ****– P≤ 0.0001]. 

 

Additionally, to confirm downregulation of E-cadherin and other cell-adhesion-

associated proteins in the context of MCC tumours, immunoblot analysis was 

performed on the cellular lysates of two unrelated MCC tumour samples along with 

a negative control, non-tumour cadaveric skin sample. Results again demonstrate a 

decrease in E-cadherin and β-Catenin protein levels in MCC tumours compared to 

control [Figure 5.5]. ZO-1 protein levels were shown to be downregulated in MCC 

tumours [Figure 3.3]. Notably as previously shown in Figure 3.3, higher levels of 

MCPyV ST expression in Tumour 2 resulted in a more significant downregulation of 

cell adhesion molecules compared to Tumour 1.   
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Figure 5. 5: Cell adhesion molecules are downregulated in MCPyV-positive MCC 
tumours. [A] Healthy skin, Tumour 1 and Tumour 2 were crushed using a mortar and a 
pestle on dry ice, lysed with RIPA buffer for 30 mins and sonicated to further homogenized 
the samples. Immunoblot analysis was performed on the tissue lysates and analysed with 
E-cadherin and β-catenin specific antibodies. GAPDH was used as a measure of equal 
loading, the T antigen antibody was used to confirm MCPyV ST expression. [B] 
Densitometry quantification of the western blots was carried out using the Image J software 
and is shown as fold change of relative densitometry to the loading control, GAPDH. Data 
analysed using three replicates per experiment, n=3 and statistical analysis using a two-
tailed t-test with unequal variance comparing control cadaveric skin sample to each 
individual tumour [** – P≤ 0.01, *** – P≤ 0.001, ****– P≤ 0.0001]. 

 

5.3 Cadherin Switching  

During EMT, E-cadherin expression is decreased while N-cadherin is upregulated 

(Kalluri & Weinberg 2009). This interchange is commonly known as the E- to N-

cadherin switch. E-cadherin functions in maintenance of epithelial integrity and N-

cadherin has been shown to be involved in invasion (Bremmer et al. 2015).  As 

such, the cadherin switch from E-cadherin to N-cadherin, has been identified as a 

hallmark of EMT (Ye and Weinberg 2015; Chen et al. 2016). As downregulation of 

E-cadherin, had been observed [Figures 5.2 – 5.5], it was important to assess the 

state of the cadherin switch upon MCPyV ST expression.  

Initially, the transcript levels of N-Cadherin were assessed comparing control and 

MCPyV ST-expressing cells.  Surprisingly however, no detectable change in N-
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Cadherin expression was observed upon MCPyV ST expression [Figure 5.6A]. 

Additionally, localisation N cadherin was also assessed upon MCPyV ST 

expression. While there was a significant downregulation of E-cadherin expression 

at the cell surface upon MCPyV ST expression [Figure 5.3], there was no detected 

change of N-cadherin expression at the cell surface [Figure 5.6B] inferring an 

absence of E-N cadherin switching upon MCPyV ST expression.   

 

 

Figure 5. 6: MCPyV ST expression does not induce E-N Cadherin Switching. [A] 
Various cell lines [293, COS7 and MCC13] were transfected for 48 hours with pEGFP-C1 
and pEGFP-ST expression plasmids. Cellular RNA was extracted using a Trizol reagent, 
reverse transcribed and RT-qPCR was performed. Transcript levels were analysed using 
the comparative CT method [n = 3]. [B] COS7 cells were transfected with pEGFP-C1 control 
and pEGFP-ST expression plasmids for 48 hours. [Bi] Cells were harvested and spun down 
gently, blocked in 3% BSA and stained with a specific E-cadherin antibody along with a 
corresponding secondary antibody. Mean fluorescence intensity of both control EGFP and 
EGFP-ST cells where plotted as a histogram using Flow Jo analysis software. [Bii] Fold 
difference was calculated using Mean fluorescence intensity. Data analysed using three 
replicates per experiment, n=3 and statistical analysis using a two-tailed t-test with unequal 
variance comparing MCPyV ST samples to EGFP control samples [ns – P>0.05]. 
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5.4 MCPyV ST expression leads to a loss of apical to basal cell polarity 

Epithelial cells are known to display apical-basal polarity that is essential for 

maintenance of tissue integrity. The epithelial cell polarity is based on the 

relationship between Adherens junctions, tight junctions and cell polarity 

complexes. This relationship contributes to the formation and the maintenance of 

apical and basolateral domain (Campbell et al. 2011; Lamouille et al. 2014). This 

linkage contributes to the structural integrity of epithelial cell sheets (Ye and 

Weinberg 2015).   

The loss of epithelial junctions during EMT results in the loss of apical-basal 

polarity, tissue integrity and importantly, is a hallmark of malignant tumours (Ohara 

et al. 2012). In polarized epithelial cells, the Golgi complex is typically oriented 

toward the apical plasma membrane domain (Pu et al. 2015). Thus, loss of apical to 

basal cell polarity can be observed by loss of the Trans-Golgi network at the leading 

edge of a scratch assay.  

To examine if MCPyV ST leads to loss of apical to basal cell polarity, COS 7 cells 

were transfected with pEGFP-C1 and pEGFP-ST expression plasmids. When the 

transfected cells were confluent approximately 48 hours post transfection, a scratch 

wound was created in the centre of the well. 6 hours post scratch the cells were 

fixed and stained with a TGN specific antibody. Results show that MCPyV ST 

expression leads to a reduction of the Sheet-like structure identified by TGN 

localisation at the leading edge [Figure 5.6], suggesting the loss of apical-basal 

polarity.  
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Figure 5. 7: Loss of apical to basal cell polarity in MCPyV ST-expressing cell. COS7 
cells were transfected for 48 hours with pEGFP-C1 and pEGFP-ST-expressing vectors for 
48 hours. Scratches were made across the surface of the well and cells were then left to 
move into the gap for 6 hours. Cells were then fixed, stained for the Trans-Golgi network 
and imaged using an EVOS Auto2FL. TGN staining was observed at the scratch line 
detecting either solid staining at the scratch line or punctuation at the leading edge which 
infers a loss of apical to basal cell polarity.  

  

Upon this initial observation of the loss of apical to basal cell polarity due to MCPyV 

ST expression, it was next important to assess the expression of specific apical to 

basal cell polarity proteins. Apical-basal cell polarity is controlled by three 

evolutionarily conserved protein complexes - the Crumbs complex, the PAR 

complex and the Scribble complex. The mRNA levels CRB3, a Crumb complex 

marker in addition to SCRIB and LGL2 of the Scribble complex were therefore 

assessed in EGFP control and EGFP-ST-expressing cells. Upon MCPyV ST 

expression, a significant downregulation in SCRIB, LGL2 and CRB3 expression 

was observed validating the initial observation of the loss of apical to basal cell 

polarity [Figure 5.8].  
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Figure 5. 8: Apical to basal cell polarity regulators are downregulated at the transcript 
level. Various cell lines [293, COS7 and MCC13] were transfected for 48 hours with 
pEGFP-C1 and pEGFP-ST expression plasmids. Cellular RNA was extracted using a Trizol 
reagent, reverse transcribed and RT-qPCR was performed. Transcript levels were analysed 
using the comparative CT method. Data analysed using three replicates per experiment, 
n=3 and statistical analysis using a two-tailed t-test with unequal variance comparing 
MCPyV ST samples to EGFP control samples [****– P≤ 0.0001]. [A] CRB3 [B] LGL2 [C] 
SCRIB.  

 

5.5 MCPyV ST upregulates cellular transcription factors associated 
with EMT  

In carcinomas, various extracellular signals, such as HGF, EGF, PDGF, and TGF-

β, which induce EMT in numerous cell types have been identified (Kalluri and 

Weinberg 2009). These extracellular signals induce EMT associated-transcription 

factors such  as ZEB1, ZEB2, TWIST, Snail and Slug,  which function pleiotropically 

to coordinate EMT (Thiery et al. 2009). It is believed these transcription factors act 

as the key molecular switches, responding to various signalling pathways to initiate 

EMT. Therefore, the expression of EMT-associated transcription factors was 

assessed at the transcript level in control and MCPyV ST-expressing cells in 

multiple cell lines. Results show that MCPyV ST expression induces upregulation of 

ZEB 1, ZEB 2, as well as Snail and Slug compared to EGFP control cells [Figure 

5.9].  
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Figure 5. 9: EMT Transcription factors are upregulated at the transcript level. Various 
cell lines [293, COS7 and MCC13] were transfected for 48 hours with pEGFP-C1 and 
pEGFP-ST expression plasmids. Cellular RNA was extracted using a Trizol reagent, reverse 
transcribed and RT-qPCR was performed. Transcript levels were analysed using the 
comparative CT method [n = 3. [A] Snail [B] Slug [C] ZEB1 [D] ZEB2. Data analysed using 
three replicates per experiment, n=3 and statistical analysis using a two-tailed t-test with 
unequal variance comparing MCPyV ST samples to EGFP control samples [** – P≤ 0.01, *** 
– P≤ 0.001, ****– P≤ 0.0001]. 

 

To confirm upregulation of these EMT-associated transcription factors at a protein 

level, as well as the observed transcript induction, Snail protein levels were further 

assessed in EGFP versus EGFP-ST-expressing COS7 and MCC13 lines and in 2 

unrelated MCC tumour lysates in comparison to healthy cadaveric skin as a 

negative control. Snail protein levels were upregulated upon MCPyV ST expression 

in both MCPyV ST-expressing cell lines, as well as MCC tumour samples in 

comparison to the healthy skin sample [Figure 5.10].  
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Figure 5. 10: Snail expression is induced in MCPyV ST-expressing cells and MCC 
tumour samples. [A] COS7 cells and [B] MCC13 were transfected with pEGFP-C1 and 
pEGFP-ST expression plasmids for 48 hours. Cell lysates were then probed with a Snail 
specific antibody. GAPDH was used as loading control and T antigen antibody was used to 
show MCPyV ST expression.  [ii] Densitometry quantification of the western blots was 
carried out using the Image J software and is shown as fold change of relative densitometry 
to the loading control, GAPDH. Data analysed using three replicates per experiment, n=3 
and statistical analysis using a two-tailed t-test with unequal variance. [C] Healthy skin, 
Tumour 1 and Tumour 2 were crushed using a mortar and a pestle on dry ice, lysed with 
RIPA buffer for 30 mins and sonicated to further homogenized the samples. Immunoblot 
analysis was performed on the tissue lysates and analysed with a Snail specific antibody. 
GAPDH was used as a measure of equal loading, the T antigen antibody was used to 
confirm MCPyV ST expression. [ii] Densitometry quantification of the western blots was 
carried out using the Image J software and is shown as fold change of relative densitometry 
to the loading control, GAPDH. Data analysed using three replicates per experiment, n=3 
and statistical analysis using a two-tailed t-test with unequal variance comparing MCPyV ST 
samples to EGFP control samples or comparing control cadaveric skin sample to each 
individual tumour [** – P≤ 0.01, *** – P≤ 0.001, ****– P≤ 0.0001]. 
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Snail is a prominent inducer of EMT. It functions as a key transcriptional repressor 

protein, for example inhibiting E-cadherin expression. It is believed to function by 

recruiting repressive chromatin remodelling factors, such as the Sin3A-HRAC1/2 

complex and PRC2 to repress E-cadherin expression (Herranz et al. 2008). This 

repressive activity requires Snail to be localized in the nucleus, which is regulated 

by PAK-1 mediated phosphorylation of Serine residue 246 on Snail. To determine if 

induction of EMT by MCPyV ST as result of Snail relocalization into the nucleus is 

possible, PAK-1 expression at the transcript levels were assessed in EGFP versus 

EGFP-ST-expressing HEK 293, COS7 and MCC13 cell lines [Figure 5.11].  

 

 

Figure 5. 11: PAK1 is upregulated at the transcript level upon MCPyV ST expression. 
Various cell lines [293, COS7 and MCC13] were transfected for 48 hours with pEGFP-C1 
and pEGFP-ST expression plasmids. Cellular RNA was extracted using a Trizol reagent, 
reverse transcribed and RT-qPCR was performed. Transcript levels were analysed using 
the comparative CT method [n = 3. [A] Snail [B] Slug [C] ZEB1 [D] ZEB2. Data analysed 
using three replicates per experiment, n=3 and statistical analysis using a two-tailed t-test 
with unequal variance comparing MCPyV ST samples to EGFP control samples [*** – P≤ 
0.001, ****– P≤ 0.0001]. 

 

PAK1 expression was also assessed at the protein level in COS 7, MCC13 cells as 

well as 2 unrelated MCC tumour lysates in comparison to healthy skin as a negative 

control. PAK1 was upregulated upon MCPyV ST expression in MCPyV ST 

transfected cells. Similarly, PAK1 was also upregulated in MCC tumour samples in 

comparison to negative control, healthy skin [Figure 5.12].  
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Figure 5. 12: PAK1 Expression in MCPyV ST-expressing cells and MCC tumour 
samples. [A] COS7 cells and [B] MCC13 were transfected with pEGFP-C1 and pEGFP-ST 
expression plasmids for 48 hours. Cell lysates were then probed with a PAK-1 specific 
antibody. GAPDH was used as loading control and T antigen antibody was used to show 
MCPyV ST expression.  [ii] Densitometry quantification of the western blots was carried out 
using the Image J software and is shown as fold change of relative densitometry to the 
loading control, GAPDH. Data analysed using three replicates per experiment, n=3 and 
statistical analysis using a two-tailed t-test with unequal variance. [** – P≤ 0.01, *** – P≤ 
0.001, ****– P≤ 0.0001]. [C] Healthy skin, Tumour 1 and Tumour 2 were crushed using a 
mortar and a pestle on dry ice, lysed with RIPA buffer for 30 mins and sonicated to further 
homogenized the samples. Immunoblot analysis was performed on the tissue lysates and 
analysed with a PAK-1 specific antibody. GAPDH was used as a measure of equal loading, 
the T antigen antibody was used to confirm MCPyV ST expression. [ii] Densitometry 
quantification of the western blots was carried out using the Image J software and is shown 
as fold change of relative densitometry to the loading control, GAPDH. Data analysed using 
three replicates per experiment, n=3 and statistical analysis using a two-tailed t-test with 
unequal variance comparing MCPyV ST samples to EGFP control samples or comparing 
control cadaveric skin sample to each individual tumour [** – P≤ 0.01, *** – P≤ 0.001, ****– 
P≤ 0.0001]. 
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5.6 MCPyV ST induces breakdown in host cell basement membrane  

The basement membrane is a specialized form of extracellular matrix [ECM], 

essential for epithelial structural integrity. It is comprised of a network of 

glycoproteins and proteoglycans, such as Type IV collagen and Laminin and 

provides a barrier from invasion by tumour cells. Therefore, the basement 

membrane must be degraded in order for invasion of tumour cells into the 

circulatory system for metastasis to occur (Horejs 2016).  

Epithelial cells interact with basement membrane via integrins which are located on 

the basal epithelial surface. These integrins bind to various ECM components such 

as Collagens and Laminins (Huang et al. 2012). Studies have shown that when 

inactive, integrins are unable to bind to ECM (Kim et al. 2011) and interestingly 

MCPyV ST has been shown to induce downregulation of Integrin β1 (Stakaityte et 

al. 2018). Various extracellular matrix proteases are employed by malignant 

cancers to degrade the ECM and various components. This plays a key role in the 

migration potential of Mesenchymal cells. Notably, changes in Integrin expression 

have been correlated with expression of proteases during EMT (Deryugina and 

Quigley 2006).  

Matrix Metalloproteinases such as MMP2, MMP3 and MMP9 have been shown to 

enhance ECM degradation and invasion upon expression (Egeblad and Werb 2002; 

Reinhard et al. 2015). Therefore, it was important to determine whether levels of 

metalloproteinases were altered upon MCPyV ST expression. MMP3 and MMP9 

mRNA expression where assessed in a variety of cell lines transfected with pEGFP-

C1 and pEGFP-ST expression vectors.  Results shown that MCPyV ST-expressing 

cells showed an increased level of MMP3 and MMP 9 expression [Figure 5.13].  
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Figure 5. 13: Matrix Metalloproteinases [MMP3 and MMP9] are upregulated at the 
transcript level in MCPyV ST-expressing cells. Various cell lines [293, COS7 and 
MCC13] were transfected for 48 hours with pEGFP-C1 and pEGFP-ST-expressing 
plasmids. Cellular RNA was extracted using a Trizol reagent, reverse transcribed and RT-
qPCR was performed. Transcript levels were analysed using the comparative CT method [n 
= 3. [A] MMP3 [B] MMP9. Data analysed using three replicates per experiment, n=3 and 
statistical analysis using a two-tailed t-test with unequal variance comparing MCPyV ST 
samples to EGFP control samples  [****– P≤ 0.0001]. 

 

5.7 MCPyV ST enhances alteration in the host cell cytoskeleton 

Cell motility is dependent on activity of integrin receptors and Rho-family GTPases 

resulting in the remodelling of the actin cytoskeleton, forming various cellular 

protrusions: such as lamellipodia, filopodia and invadopodia. Current work in the 

Whitehouse laboratory has shown that the MCPyV ST expression can induce the 

formation of filopodia-like structures in a variety of cell lines. MCPyV ST induced 

filopodia formation was assessed in Primary Epidermal Keratinocytes.   

.  
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Figure 5. 14: MCPyV ST expression results in an increase in the numbers and length 
of actin-based protrusions in Primary Epidermal Keratinocytes. [A] Cells were 
transfected with 1-5 mg of either pEGFP-C1 or pEGFP-ST expression vectors. Cells were 
fixed after 24 h and stained with rhodamine-phalloidin. Slides were then analysed using a 
Zeiss LSM 8800 confocal laser scanning microscope [B] The number and length of actin-
based protrusions in each cell line were analysed for 100 cells per condition using ImageJ 
software. Length of protusions were quantified by measuring the from the surface of the cell 
to the end of the protusion (As observed in the zoomed in image) Protrusion length is 
presented as a percentage of total number of protrusions. 

 

To validate the change in phenotype due to reorganization of actin cytoskeleton 

similar experiments were performed primary human dermal fibroblast cells. Results 

also demonstrated an increase in the number and length of actin -based protrusions 

upon MCPyV ST expression.  
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Figure 5. 15: MCPyV ST expression results in an increase in the numbers and length 
of actin-based protrusions in Human Dermal Fibroblasts. [A] Cells were transfected with 
1-5 mg of either pEGFP-C1 or pEGFP-ST expression vectors. Cells were fixed after 24 h 
and stained with rhodamine-phalloidin. Slides were then analysed using a Zeiss LSM 8800 
confocal laser scanning microscope [B] The number and length of actin-based protrusions 
in each cell line were analysed for 100 cells per condition using ImageJ software. Protrusion 
length is presented as a percentage of total number of protrusions. 

 

Further work has shown that Rho-family GTPases are essential for MCPyV ST-

induced filopodia formation and cell motility. The GTPase member of the Rho family 

are a superfamily of signalling molecules and have been implicated the metastatic 

and migratory potential of various cancers.  Specifically, the Whitehouse Laboratory 

has shown that MCPyV ST-induced filopodia formation is reduced upon expression 

of Cdc42 or RhoA transdominant mutants (Stakaityte et al. 2018). This is analogous 

to other oncogenic viruses such as SV40, where SV40 ST is involved in the 

rearrangement of filamentous actin, due to loss of RhoA-dependent stress fibres, 

Cdc42-induced filopodia formation and Rac-induced lamellipodia formation 

(Nunbhakdi-Craig et al. 2003).  
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Therefore, to determine if the activity of Cdc42 and RhoA are altered in MCPyV ST-

expressing cells, an affinity precipitation assay was employed to measure the 

amount of RhoA-GTP or Cdc42-GTP forms. Transfected EGFP or EGFP-ST HEK-

293 cell lysates were incubated with either PAK1 PBD or Rhotekin RBD agarose 

beads. PAK1 PBD Agarose Beads are designed to pull down only the active form 

of Cdc42 while Rhotekin RBD Agarose beads are designed to pull down only the 

active form of RhoA (Stakaityte et al. 2018).These Agarose beads selectively bind 

to the GTP-bound, but not GDP-bound, forms of Cdc42 and RhoA. Upon MCPyV 

ST expression, elevated levels of active Cdc42 and RhoA are observed in 

comparison to the EGFP control cells [Figure 5.16].  This increase in active forms of 

Rho-GTPases enhances actin rearrangement leading to enhanced cell motility.  

  

 

 

Figure 5. 16: MCPyV ST expression enhances the levels of active Rho-family 
GTPases. HEK-293 cells were transfected with 1 µg pEGFP-C1 or pEGFP-ST expression 
plasmids and after 24 hours cell lysates were incubated with either PAK1 PBD or Rhotekin 
RBD Agarose beads. Pulldowns were then immunoblotted with Cdc42 and RhoA-specific 
antibodies and the T antigen antibody was used to confirm MCPyV ST expression. 

 

5.8 Vimentin expression is increased upon MCPyV ST expression 

Vimentin is a type III intermediate filament cytoskeletal protein expressed in 

mesenchymal cells. It regulates cellular shape, adhesion, migration and signalling. 

As such Vimentin has become an important biomarker for EMT. As an important 

participant in the mesenchymal cytoskeleton, its expression has been shown to 

be upregulated in many different cancers upon the onset of EMT (Harner-

Foreman et al. 2017).  While the mechanism has yet to be elucidated, upon the 

transition from an epithelial phenotype to a mesenchymal phenotype, 

intermediate filaments comprised of Vimentin are formed in place of cytokeratin 
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intermediate filaments (Liu et al. 2015). Therefore, if MCPyV ST expression is 

sufficient to induce an EMT, it was important to assess Vimentin expression.  

To confirm upregulation of this key mesenchymal marker, Vimentin protein levels 

were assessed in EGFP versus EGFP-ST-expressing COS7 and MCC13 cells and 

in 2 unrelated MCC tumour lysates in comparison to healthy cadaveric skin as a 

negative control. Vimentin protein levels were upregulated upon MCPyV ST 

expression in both MCPyV ST-expressing cell lines as well as MCC tumour 

samples in comparison to the healthy skin sample [Figure 5.17].  
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Figure 5. 17: Vimentin expression in MCPyV ST positive cells and tumour samples. [A] 
COS7 cells and [B] MCC13 were transfected with pEGFP-C1 and pEGFP-ST expression 
plasmids for 48 hours. Cell lysates were then probed with a Vimentin specific antibody. 
GAPDH was used as loading control and T antigen antibody was used to show MCPyV ST 
expression.  [ii] Densitometry quantification of the western blots was carried out using the 
Image J software and is shown as fold change of relative densitometry to the loading 
control, GAPDH. Data analysed using three replicates per experiment, n=3 and statistical 
analysis using a two-tailed t-test with unequal variance. [** – P≤ 0.01, *** – P≤ 0.001]. [C] 
Healthy skin, Tumour 1 and Tumour 2 were crushed using a mortar and a pestle on dry ice, 
lysed with RIPA buffer for 30 mins and sonicated to further homogenized the samples. 
Immunoblot analysis was performed on the tissue lysates and analysed with a Vimentin 
specific antibody. GAPDH was used as a measure of equal loading, the T antigen antibody 
was used to confirm MCPyV ST expression. [ii] Densitometry quantification of the western 
blots was carried out using the Image J software and is shown as fold change of relative 
densitometry to the loading control, GAPDH. Data analysed using three replicates per 
experiment, n=3 and statistical analysis using a two-tailed t-test with unequal variance 
comparing MCPyV ST samples to EGFP control samples or comparing control cadaveric 
skin sample to each individual tumour [* – P≤ 0.05 *** – P≤ 0.001]. 
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Although Vimentin is a cytoskeletol protein and should be restricted to the cytosol, 

expression of Vimentin has also been observed a the cell surface (Satelli and Li 

2011). For example, cell surface biotinylation experiments, have shown Vimentin is 

detected on the cell surface of cardiomyocytes and vascular smooth muscle (Ise et 

al. 2010). Although, extracellular staining of vimentin shows a punctuate like 

appearance, suggesting that only a small portion of the vimentin is expressed on 

the cell surface.  

 Moisan et al suggest that β3-integrin-mediated recruitment of vimentin to the cell 

surface mediates the adhesion strength of cells binding to the substrate (Moisan 

and Girard 2005). Vimentin depletion is also linked to reduced alterations in the 

cytoskeleton organization, as well as in focal adhesions (Weidle 2011; Liu et al. 

2015). Interestingly, although the majority of epithelial cancers do express vimentin 

during EMT, the extracellular location of vimentin is yet to be elucidated.  

With the previously observed decrease in cell-to-cell interaction upon MCPyV ST 

expression, Vimentin expression was analysed at the cell surface using flow 

cytometry analysis to determine if extracellular vimentin expression was altered 

upon MCPyV ST expression. Results show that MCPyV ST expression leads to a 

decrease in expression of Vimentin at the cell surface, which may suggest a 

possible decrease in Focal adhesion [Figure 5.18].  
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Figure 5. 18: MCPyV ST expression promotes downregulation of Vimentin at the cell 
surface. COS7 cells were transfected with pEGFP-C1 control and pEGFP-ST expression 
plasmids for 48 hours. Cells were harvested and spun down gently, blocked in 3% BSA and 
stained with a specific Vimentin antibody along with a corresponding secondary antibody. 
Mean fluorescence intensity of both control EGFP and EGFP-ST cells where plotted as a 
histogram using Flow Jo analysis software. [B] Fold difference was calculated using Mean 
fluorescence intensity. Data analysed using three replicates per experiment, n=3 and 
statistical analysis using a two-tailed t-test with unequal variance comparing MCPyV ST 
samples to EGFP control samples [*** – P≤ 0.001]. 
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5.9 Discussion 

The underlying mechanism for the high propensity of MCC tumours to metastasize 

is yet to be elucidated. Tumour viruses have been shown to express oncogenic 

proteins that induce an EMT. This resulting EMT provides cells with migratory and 

invasive capabilities and also inhibits apoptosis-related mechanisms (Kyprianou 

2010).  

 Results in this chapter suggest that MCPyV ST induces an EMT which contributes 

to the metastatic potential of MCPyV-associated MCC. Several lines of evidence 

support this finding with several EMT hallmarks induced by MCPyV ST expression. 

Firstly, MCPyV ST expression contributes to the dissolution of tight junctions 

observed by decreased expression of Claudin, Occludin and Zo-1. Moreover, 

Adherens junctions are also destabilised by MCPyV ST, as typified by a reduction 

in E-cadherin.  

Secondly, a major mediator of cell polarity is the formation of new cell-to-

extracellular-matrix adhesion. These extracellular cues contribute to cell polarity, as 

studies have shown that isolated cells with no cell-to-cell contacts do not 

experience cell polarity (Desai et al. 2009). Studies have shown that loss of E-

cadherin contributes to depolarization by preventing contact between SCRIB and 

the lateral membrane (Navarro et al. 2005).  With the observed decrease cell 

adhesion markers E-cadherin, ZO-1, Claudin, Occludin and α-E-catenin, a 

decrease in apical to basal cell polarity was also observed upon MCPyV ST 

expression. This was supported by a marked downregulation of SCRIB, LGL2 and 

CRB3.  This mechanism is important for cell motility as studies have shown that the 

deregulation or redistribution of major polarity complex components, such as CRB3 

and LGL2, causes cells to lose their polarity and progressively assume a 

fibroblastic-like morphology to engage in locomotion (Thiery 2002). Additionally, 

loss of human Scrib has been shown to assist Ras in promoting cell invasion, by 

deregulating MAPK signalling (Dow et al. 2008).   

Thirdly, MMPs are also known to target transmembrane proteins, like E-cadherin, 

contributing to the destabilisation of Adherens junction. Furthermore, another 

pathway by which MMPs contribute to EMT is inducing the expression of RAC1B, a 

splice variant of RAC 1, which results in upregulation of cellular reactive oxygen 

species. This in turn induces an increase in SNAIL expression, which has been 

observed upon MCPyV ST expression. While the matrix metalloproteinase family 

are the primary proteases involved in ECM degradation, studies have also shown 
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that ADAM families also have the ability to degrade components of the ECM 

(Wolfsberg et al. 1995). ADAM 10 has been shown to degrade the Type IV 

collagen, and MCPyV ST has been shown to upregulate ADAM 10 [Chapter 3 and 

Chapter 4]. 

Moreover, as cancer cells undergo EMT, there is a marked change in cell 

morphology which necessitates rearrangement of the cytoskeleton.  Along with the 

reorganization of the actin architecture, cells obtain migratory capabilities by 

forming protrusions such as filopodia, invadopodia and lamelliopodia. MCPyV ST 

has recently been shown to induce filopodia formation (Stakaityte et al. 2018). 

Vimentin, another important component of the cytoskeleton, has also been shown 

to be upregulated in various cancers during EMT, and again is shown to be 

upregulated upon MCPyV ST expression. Studies have shown that Vimentin 

mediates expression of the EMT transcription factor, slug, which augments EMT 

phenotypes and cancer malignancy (Liu et al. 2015). Ras-induced transition to a 

mesenchymal phenotype has also been were shown to be determined on the 

upregulation of vimentin (Satelli and Li 2011). 

However, one classic EMT hallmark, namely the E-N cadherin switch, was not 

observed upon MCPyV ST expression. While E-Cadherin, an identified tumour 

suppressor was downregulated, expression of N-cadherin, which contributes to 

invasion, was not altered. Therefore, an intriguing question is why does MCPyV ST 

expression lead to all the hallmarks of EMT apart from N-cadherin upregulation. 

One explanation may be the multifunctional nature of MCPyV ST. Studies have 

shown that neutralizing N-Cadherin expression using a specific inhibitor, GC-4 mAb 

induced a reduction in filopodia numbers, suggesting that N-Cadherin plays a role 

in filopodia formation. Studies in the Whitehouse laboratory have shown that 

MCPyV ST induces filopodia formation possibly by an alternative mechanism. 

Specifically, MCPyV ST interaction with PP4C, which leads to dephosphorylation of 

Integrin β1. Therefore, it may be the case that MCPyV ST does not need to 

increase N-cadherin levels to induce cell motility. In summary, the results suggest 

that MCPyV ST expression leads to an EMT inducing the majority of classical EMT 

hallmarks.  
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CHAPTER 6 
FINAL DISCUSSION AND FUTURE WORK 
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6.1 Introduction 

MCC is a highly aggressive form of skin cancer of neuroendocrine origin, which 

arises from Merkel cells located within the basal layer of the epidermis (Hodgson 

2005). Merkel cells are touch simulated mechanoreceptor cells forming the Merkel-

cell neurite complex (Haeberle and Lumpkin 2008). As a highly metastatic cancer, 

MCC has a propensity to disperse and spread through the dermal lymphatic system 

and early establishment to distant metastasis. As such, MCC has a poor 5 year 

survival rate (Kaae et al. 2010). MCPyV has been established as the causative 

agent of MCC tumour development. It has been found monoclonally integrated in 

80-90% of both primary and metastatic MCC tumours (Goedert and Rockville 

Merkel Cell Carcinoma 2009).  

MCPyV expresses two oncogenes from its T antigen locus: LT and ST. MCPyV LT 

sequences derived from MCPyV positive tumour samples have been found to 

contain specific LT truncation mutations that render the virus replicate defective 

(Angermeyer et al. 2013).  As a result of the observed monoclonal integration along 

with the specific truncation mutation, MCPyV was determined to be a direct 

tumourigenic agent as opposed to a passenger virus (Feng et al. 2008).  

Several oncogenic viruses have been shown to induce metastasis in infected 

tumour cells.  For example, HPV encoded oncogenic proteins E6 and E7 [E6/E7], 

EBV latent membrane protein-1 and -2A, EBV nuclear antigen, HBV-encoded X 

antigen, as well as nonstructural HCV protein 5A are known to promote cancer 

metastasis (Mesri et al. 2014; Chen et al. 2016). While the overall mechanisms 

differ, they can include modification of cellular adhesion complexes, breakdown of 

the extracellular matrix, changes in gene expression and cytoskeletal remodeling.   

Since the discovery of MCPyV, multiple studies have highlighted a variety of 

functions of the MCPyV T antigens, in viral replication and tumour formation (Liu et 

al. 2011; Demetriou et al. 2012). Studies have shown that MCPyV ST expression 

alone is sufficient to induce a loss of contact inhibition, anchorage independent, 

rodent fibroblast transformation and serum independent growth (Shuda et al. 2011). 

Currently multiple studies addressing the underlying molecular mechanisms that 

promote MCC metastasis and the potential role of the MCPyV T antigens are 

ongoing.  

Previous work in the Whitehouse laboratory utilized high-throughput quantitative 

SILAC-based proteomic analysis to showed that MCPyV ST expression promotes 
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the differential expression of a number of proteins involved in cytoskeletal 

reorganization and cell motility, associated with the microtubule network (Knight et 

al. 2015) and the actin cytoskeleton (Stakaityte et al. 2018). Additionally, MCPyV 

ST expression was found to induce differential expression of cell adhesion and cell 

junction-related proteins. Differential expression of proteins involved in Epithelial to 

Mesenchymal Transition [EMT] were also observed. Together, this suggests that 

MCPyV ST expression may contribute to the highly metastatic nature of MCC 

tumours. This is also supported by recent studies showing that engraftment of MCC 

cell lines into SCID mice results in circulatory tumour cells and metastasis formation 

(Knips et al. 2017).  

 

6.2 MCPyV ST deregulation of cell junctions 

Cell-to-cell adhesion is essential in epithelial cells, playing multiple roles in a variety 

of cellular processes (Hale et al. 2012). One of the major cell-to-cell adhesion 

complexes found in epithelial cells are the Adherens junctions comprised of 

cadherins and catenins. As part of the catenin component, α-catenin is critical for 

the formation of the Adherens junctions (Hirohashi and Kanai 2003). α-catenin has 

three different subtypes present in humans; [α-T-catenin, testis], [α-N-catenin, 

Neural] and  [α-E-catenin, epithelial] (Gumbiner 1996). Initial findings, in multiple 

cell lines, showed that MCPyV ST expression downregulates the expression of cell 

Adherens junction adhesion molecule, specifically α-E-catenin.  

To function in cell adhesion α-catenin has to be localized at the plasma membrane. 

Upon MCPyV ST expression, there is an observed downregulation of α-E-catenin at 

the cell surface, which suggests a breakdown in the structural integrity of the 

Adherens junction, due to the key functional role of α-E-catenin as a mediator of 

structural integrity within the junction.   

Various metastatic cancers, including breast, colorectal and lung cancers, have 

been found to have downregulated levels of α-catenin (Benjamin and Nelso 2008). 

Cells that lack α-catenin adhere poorly to one another even when expressing high 

levels of E-cadherin and β-catenin (Jeanes et al. 2008). While an exact mechanism 

is yet to be elucidated, what is clear is that α-catenin plays a major role in cadherin-

based cell–cell interactions. As such it is an ideal target for MCPyV ST. 

Metastasis is associated with disruption in cell-to-cell communication as numerous 

tumours have been observed to contain defects in multiple cell junctions such as 
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tight junctions (Martin and Jiang 2009).  The relationship between Adherens and 

tight junctions is demonstrated in biochemical interactions between major 

components of each junction. Specifically, α-catenin and ZO-1 form a complex on 

the initiation of junction formation. This complex is recruited to forming junctions, 

thereby linking the assembly of tight and Adherens junctions (Zihni et al. 2016). 

 In epithelial cells the tight junction functions in an adhesive manner and can 

prevent cell dissociation. It has been inferred that the tight junction may be lost with 

the loss of tumour differentiation. This was validated in a mouse model which 

demonstrated the absence of the tight junction in breast adenocarcinomas 

(Weinstein et al. 2016). Maintenance of tight junctions is sustained by anchorage of 

the transmembrane proteins such as ZO-1. ZO-1 functions as a scaffold to bind the 

raft of tight junction molecules and link the actin cytoskeleton an signalling 

mechanism of the cell (Martin and Jiang 2009).  

MCPyV ST expression was shown to downregulate ZO-1 expression in multiple cell 

lines. Additionally, upon MCPyV ST expression, there is a marked decrease of ZO-

1 expression at the cell surface, which infers a loss of structural integrity at the tight 

junction, perhaps in collaboration with MCPyV ST effect on the Adherens junction. 

Interestingly, decreased  expression of ZO-1 has been shown to correlate with 

increased invasiveness in breast, colorectal, and digestive tract cancers (Kaihara et 

al. 2003). As a major tight junction protein, ZO-1 has also been found to be involved 

in tumour invasion-associated EMT (Polette et al. 2007).  

Additionally, diminished expression of α-E-catenin and ZO-1 proteins was observed 

in MCC tumours when compared to MCC-negative healthy skin. Interestingly, these 

tumour samples also exhibited differential expression of MCPyV ST and notably, 

lower expression of cell adhesion molecules α-E-catenin and ZO-1 were correlated 

with higher expression of MCPyV ST. This shows that multiple junctions may be 

targeted by MCPyV ST. 

Results also demonstrate that this MCPyV ST-mediated disruption of cell-to-cell 

adhesion leads to enhanced cell dissociation. This was observed using a 72 hour 

scatter assay in 293 transfected cells. Results showed that upon MCPyV ST 

expression, cells significantly dissociated from each other, presumably as a result 

of disruption of cell-to-cell junctions. Interestingly, previous studies of Simian Virus 

40 have also shown that expression of ST alone prompts intracellular adhesion and 

tight junction breakdown. This observed deregulation of epithelial cell adhesion may 

also contribute to tumour invasiveness (Nunbhakdi-Craig et al. 2003). It would be 
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interesting to perform this scatter assay in MCC cell lines which have depleted 

MCPyV ST, using siRNA lentivirus-based systems. This would confirm a direct role 

of MCPyV ST in cell-to-cell dissociations. However, MCPyV-positive MCC cell lines 

that are currently available are all suspension cultures, therefore there is a limitation 

in the experimental design. Additionally, desmosomes and gap junctions play a role 

in intercellular communication, anchorage and signalling. These types of junctions 

are comprised of proteins and associated molecules that also participate in 

maintaining the integrity of normal cell adhesion. With the observed MCPyV ST-

induced breakdown of the Adherens and tight junction, it will be interesting to 

analyse the state of the gap junction and desmosomes. Recent studies have 

showed that gap junction intercellular communication [GJIC] between tumour cells 

and normal cells can facilitate metastasis and host colonization (Aasen et al. 2017). 

Additionally, low expression of multiple desmosome-associated cell adhesion 

proteins, including but not limited to Dsg2, Dsg3 and Dsc2 have been linked to 

various cancers including gastric and colorectal cancer (Chidgey and Dawson 

2007). 

Results also show that MCPyV ST leads to upregulation of the cellular sheddase 

ADAM 10, which induces cell-to-cell dissociation (Weber and Saftig 2012). MCC is 

a highly aggressive and metastatic cancer, hence upregulation of a cellular protein 

that induces loss of tissue integrity could contribute to the metastatic potential of 

MCC (Tsukita 1993; Geiger and Peeper 2009). ADAM 10 has been shown to be 

overexpressed in various cancer types (Mullooly et al. 2015; You et al. 2015), 

however the mechanism by which it contributes to MCC metastasis is unknown.  

Interestingly, bioinformatics analysis has shown that ADAM10 transcripts are 

significantly increased in MCPyV-positive MCC compared with MCPyV-negative 

MCC [Collaboration between the Whitehouse and Boyne laboratories]. Here, gene 

expression profiles for a total of ninety-four patients were obtained from a publicly 

available data-set [accession number GSE39612 (Huber et al. 2015)]. Expression 

profiles were pre-processed including background correction, normalisation and 

summation of the intensities for each sample using R/Bioconductor (Ritchie et al. 

2015) and the R limma package used to call differentially expressed genes. 

Analysis identified a significant increase (2.5-fold, p=0.03) in ADAM10 expression in 

MCPyV-positive MCC compared with MCPyV-negative MCC control samples. 

These data support our in vitro observations.  
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6.3 ADAM proteins enhance cell dissociation and cell motility  

In chapter 4, the relationship between ADAM 10 and cell-to-cell dissociation as well 

as cell migration, was investigated using two different inhibitors, an ADAM 10 

specific inhibitor and a dual ADAM 10/17 inhibitor. Previously, the ADAM10-specific 

inhibitor GI254023X has been shown to inhibit cell migration in various breast 

cancer cell lines BT20, MDA-MB-231 and MDA-MB-453 (Mullooly et al. 2015). 

Results herein using a Live cell imaging assay showed that incubation of 

GI254023X reduced ST-mediated cell migration. This was validated using TAPI-2, a 

dual ADAM 10/17 inhibitor. As ADAM 17 does share some substrate redundancies 

with ADAM 10, it would be important to specifically categorize ADAM 17 sheddase 

activity in MCC cells using direct siRNA-mediated approaches (Le Gall et al. 2009).   

Interestingly, we observed that ADAM 10 was found to be upregulated at the cell 

surface by immunofluorescence studies and Flow cytometry. Sheddases, such as 

ADAM 10 and ADAM 17, control cell adhesion and release of cytokines growth 

factors in various diseases (Chow and Fernandez-Patron 2007). It is possible that 

the MCPyV ST-mediated upregulation of ADAM 10 at the cell surface is pertinent 

for the shedding of E-cadherin (Tsukita 1993; Cavallaro and Christofori 2004; 

Scholz et al. 2005). This dissociation of cell-to-cell adhesion could contribute to 

MCC metastatic potential and tumour invasiveness. To confirm that ADAM 10 

sheddase activity is required for cell-to-cell dissociation, we repeated our scatter 

assay in the presence of ADAM inhibitors. Results again confirmed cell junction 

breakdown, which was reversed by inhibition of ADAM protein in MCPyV ST-

expressing cells.  

As previously discussed in chapter 4, there is ongoing therapeutic research into 

development of small-molecule inhibitors which target metalloproteinases for the 

treatment of cancer. Alternative options can also involve activation of endogenous 

protease inhibitors that can limit the function of tumour enhancing proteases. Active 

metalloproteinases are inhibited by mammalian tissue inhibitors of 

metalloproteinases [TIMPs]. While TIMPs inhibit all matrix metalloproteinases 

[MMPs], they have a high level of specificity and selectivity for ADAM proteins 

(Jackson et al. 2017).  Specifically, TIMP1 has been shown to reduce ADAM10 

activity shedding of the MET receptor, to maintain MET RTK signalling in models of 

liver metastasis (Jackson et al. 2017). As a natural inhibitor of ADAM 10, TIMP1 

overexpression has been proven to inhibit NOTCH signalling (Amour et al. 2000). 
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However, it is important to be aware of balanced expression of proteases and their 

inhibitors as this a major criterion of homeostasis. While TIMP is a natural inhibitor 

of several endo-metalloproteinases, expression of TIMP in cancer patients is 

negatively correlated with their survival. Kopitz et al have demonstrated that 

overexpression of TIMP-1 induces a pro-metastatic function including scattered 

invasion in liver metastasis (Kopitz et al. 2007).  Hence will be important to further 

elucidate the protease and protease inhibitor networks [endogenous 

metalloproteinases and TIMPs], prior to application in therapeutic studies.  

 

6.4 MCPyV ST induces EMT 

It has been firmly established that EMT supports an aggressive phenotype in 

tumour behaviour, specifically in cancer metastasis. This observation is strongly 

reinforced by studies showing that EMT increases cell migration in vitro and drives 

characteristics of tumour-initiating cells (Yang and Weinberg 2008).  Also, a 

mesenchymal phenotype has been observed in tumour cells that are present in the 

circulatory system of cancer patients (Friedl and Wolf 2003). Moreover, EMT has 

been found to play a role in carcinoma progression (Aigner et al. 2007). 

Mesenchymal cells are able to establish metastasis and are significantly harder to 

target by means of chemotherapy. Hence it was important to assess the state of 

EMT in MCC by characterizing the phenotype of MCPyV ST-expressing cells as 

either Epithelial or Mesenchymal. Specific hallmarks of EMT where assessed, such 

as dissociation of the cell junction, loss of apical to basal cell polarity, expression of 

EMT-TF, breakdown of the basement membrane, changes in the cytoskeleton as 

well as cadherin switching.  

EMT is detected upon examination of cell morphology and assessing the absence 

or presence of epithelial or mesenchymal markers. Known Epithelial markers 

include cell-to-cell contact proteins such as ZO-1 and E-cadherin. In contrast, 

mesenchymal markers include N-Cadherin, Vimentin, and various transcription 

factors like ZEB1, ZEB2, Twist, Snail, and Slug which function as transcriptional 

activators of EMT (Roth et al. 2017).   

 

6.4.1 MCPyV ST downregulates epithelial cell junction proteins 

Interestingly, MCPyV-ST-mediated deregulation of the cell junction was observed in 

our preliminary proteomic studies. MCPyV ST deregulates components of the 
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Adherens and the tight junction, as highlighted by the marked reduction of α-E-

catenin and ZO-1, respectively at the protein level. However, as EMT is regulated 

by changes at the transcript level, further assessment was performed showing 

downregulation of multiple cell adhesion molecules, including previously discussed 

α-E-catenin and ZO-1 as well as E-Cadherin and Occludin levels upon MCPyV ST 

expression. This change in cell junction integrity was also shown to contribute to 

deregulation of Apical to basal cell polarity which together with disruption of cell 

junction integrity, has been shown to enhance cell migration (Ye and Weinberg 

2015; Chen et al. 2016). 

The decrease in expression of E-cadherin, a known tumour suppressor, by MCPyV 

ST is acknowledged as a vital event in EMT(Bae et al. 2013). Repressors of E-

cadherin are known as EMT transcription factors [EMT- TFs]. Notably, the 

exogenous expression of an individual EMT-TF can pleiotropically initiate EMT. Not 

surprisingly, MCPyV ST induce expression of EMT-related transcription factors – 

Snail, Slug, ZEB1 and ZEB 2.  

In vivo models of prostate cancer have demonstrated that cells with low expression 

of E-cadherin along with high Snail expression have a significantly increased rate of 

metastasis (Deep et al. 2014). Snail can also regulate its own expression by binding 

to its promoter through recognition of an E-box motif. This results in downregulation 

of Snail mRNA (Peiro et al. 2006). Altogether, interaction of the EMT-TFs with the 

promoter region of the E-cadherin gene results in epigenetic silencing by various 

histone modifications which result in DNA hypermethylation. Specifically, upon Snail 

expression, the SNAG domain associates with histone deacetylases [HDAC] 1 and 

2, forming a repressor complex with Sin3A, which targets the E-box regions of the 

E-cadherin promoter, resulting in histone H3 and H4 deacetylation (Peinado et al. 

2004). Promoter deacetylation mediates recruitment of the polycomb repressor 

complex 2 [PRC2]. Altogether, this functions to repress E-cadherin expression 

(Herranz et al. 2008). After initial repression of E-cadherin transcript levels, Snail 

induces the expression of ZEB1, which contributes to further inhibition of E-

cadherin, through PRC2-independent mechanisms (Herranz et al. 2008). Future 

work will involve analyzing repressed promoters by ChIP assays and identifying 

which repressor proteins are bound to the repressed epithelial promoters upon 

MCPyV ST expression. 
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6.4.2 MCPyV ST represses Apical-basal cell polarity 

The disruption of the intracellular contacts causes dissociation of cells from the 

basement membrane. As a result, it induces a loss of cell polarity. Definitively, loss 

of apical-basal polarity corresponds with cells adopting a front-rear polarity, which is 

mediated by actin cytoskeleton reorganization and facilitated by localized induction 

of Rho GTPases. One major consequence of the destabilization of intercellular 

junctions is loss of cell polarity.  

MCPyV ST induced a marked downregulation of SCRIB, LGL2 and CRB3. 

Interestingly, in Drosophila, polarity proteins such as Crumbs, Scribble, Dlg and Lgl 

function as tumour suppressor genes (Bilder 2004). Additionally, research in mouse 

tumour model systems demonstrate a similar role wherein loss of expression of 

either CRB3 or SCRIB promotes tumour progression (Karp et al. 2008; Pearson et 

al. 2011). Defect in the actin cytoskeleton and Tight junction disruption have been 

linked to loss of cell polarity. In polarized epithelial cells, expression of SV40 ST 

alone is sufficient to induce deregulation of actin cytoskeleton and intercellular 

adhesion as a result of interaction of ST and PP2A. Hence, it has been suggested 

that viral oncoproteins have various mechanisms which can alter cell polarity 

pathways (Nunbhakdi-Craig et al. 2003; Javier 2008). 

Interestingly, other components of the epithelial cell junction and cell polarity factor 

genes are directly repressed by EMT-TFs (Vandewalle et al. 2005). During EMT, 

EMT-TFs, specifically Snail and ZEB family members, are upregulated to alter 

intercellular contacts and also cell polarity, signalling loops, both feedback and 

feedforward, have been established in the regulation of EMT.  Studies have shown 

that the apical polarity Crumbs complex is destabilized via Snail-regulated 

repression of CRB3 (Whiteman 2008) and basolateral polarity is disrupted by loss 

of Scribble complexes. Additionally, LGL2 is believed to be a direct target of ZEB1 

transcriptional repression (Aigner 2007).  

 

6.4.3 MCPyV ST induces basement membrane breakdown 

EMT progression is also linked to upregulation of matrix metalloproteinases [MMPs] 

and cytoskeletal reorganization. Together, both mechanisms enable cell migration 

and invasion across the basement membrane (Aresu et al. 2011).  For cells to 

travel through their environment, upregulation multiple matrix metalloproteinases 

[MMPs] is essential, to facilitate degradation of the basement membrane and 
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numerous ECM components (Paterson et al. 2013). Specifically, secreted MMPs -

2,-3 -9, as well as membrane-bound MT1-MMP  have important roles in the 

degradation of the ECM as well as disruption of the intercellular junction in order to 

initiate EMT (Bae et al. 2013; Yang et al. 2013).  

MCPyV ST was shown to induce expression of MMP3 and MMP9 as well as ADAM 

proteins (Horejs 2016). Interestingly, Matrigel™ assays utilize a solubilized 

basement membrane preparation to quantify the ability of cells to attach to the 

matrix, invade into and through the matrix, and migrate towards a chemoattractant 

(Hall and Brooks 2014). In chapter 4 [Figure 4.15] ADAM 10 inhibition in cells 

positive for MCPyV showed a statistically significant decrease in motility and 

migration through the trans-well Matrigel™ based assay. This showed that ADAM 

10 is a crucial component for MCPyV ST-mediated cell motility, migration and 

possible, basement membrane breakdown. Future work will involve analysing 

basement membrane associated proteins, like Laminin and Collagen IV upon 

MCPyV ST expression and possible ramification of inhibiting EMT related endo-

metalloproteinases.  

Induction of EMT-TFs expression consequently regulates the expression of MMPs, 

which in turn leads to cell invasion. Slug has been shown to control and regulate 

pancreatic cancer cell migration and invasion, through induction of MMP9 

expression and in turn and rearrangement of F-actin filaments (Zhang et al. 2012). 

Studies have also shown that activation of  EMT-TF Snail results in pro-invasive cell 

phenotype through upregulation of MMP14 (MT1-MMP) and MMP15 (Ota et al.) 

and this phenotype can be reversed upon knockdown of MMP14 or 15 (Ota et al. 

2009). It will also be of interest to determine if MMP14 and/or 15 are also 

upregulated upon MCPyV ST expression.   

 

6.4.4 MCPyV ST-mediated cytoskeleton reorganization 

Transcriptional repression of E-cadherin promotes depolarization by hindering 

contact between SCRIB and the lateral membrane (Navarro 2005). Altogether, loss 

of apical-basal polarity corresponds with cellular adoption of front-rear polarity, 

facilitated by actin cytoskeleton reorganization and mediated by localized induction 

of Rho GTPases. Specifically, CDC42 and RAC1 are activated in the front of the 

cell, resulting in Arp2/3 complex-mediated actin assembly (Rotty 2013), and 

microtubule stabilization by DIAPH1, APC and EB1 complex formation (Wen 2004). 
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In the rear of the cell, RHOA is activated and participates in regulating contractile 

actomyosin filaments which support cell detachment and motility (Ridley 2003). 

Bioinformatics analysis showed that MCPyV ST expression promotes the 

differential expression of a number of proteins involved in the regulation of the 

cytoskeleton and cell motility, both associated with the microtubule network (Knight 

et al. 2015) and with the actin cytoskeleton (Stakaityte et al. 2018). Results from 

multiple cell lines showed that MCPyV ST expression upregulates actin-associated 

proteins filopodia formation. Additionally, expression of actin-associated proteins 

was observed in MCC tumours when compared to MCC-negative healthy skin 

(Stakaityte et al. 2018. Intermediate filament marker Vimentin was also upregulated 

in MCPyV ST-expressing cells as well as in MCPyV positive MCC tumour cells. 

Correlative studies have confirmed that Vimentin expression contributes to cancer 

cell invasion (Wei et al. 2008; Liu et al. 2015). Vimentin intermediate filaments are 

also essential for invadopodia elongation and loss of Vimentin expressing causes 

truncation of invadopodia extension (Schoumacher et al. 2010). Although we have 

shown an increase in Vimentin expression, the ramifications of this induction on the 

host cell need to be further investigated.  

 

6.4.5 Expression of EMT transcription factors 

EMT-TFs can regulate their own expression as well as expression of other EMT-

TFs.  Simultaneously, they also facilitate upstream signalling pathways and 

downstream alterations including loss of E-cadherin and upregulation of MMPs 

which contribute to differential regulation and function of the EMT-TFs also (Onder 

et al. 2008). Interestingly, posttranscriptional regulation via microRNAs [miRNA] 

contribute to EMT progression. Studies have shown that the miR-200 family, targets 

multiple sequences in the 3’ UTR of ZEB2, leading to downstream regulation of E-

cadherin expression (Christoffersen et al. 2007). Additionally, it has been 

demonstrated that ZEB1 is also a target of this miRNA family, and that inhibition of 

miR-200 results in reduced E-cadherin, and increased Vimentin expression (Park et 

al. 2008). It would also be interesting to determine whether MCPyV ST expression 

also affects miRNA expression. Here is a global analysis assay, miRseq, could be 

utilized. Alternatively, a more focused analysis of the miR-200 family could be 

performed.  
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6.4.6 MCPyV ST-mediated Cadherin switching 

The E to N-cadherin switch can be a part of EMT in some carcinomas like 

melanoma and pancreatic carcinoma. MCPyV ST expression did not induce E to N-

cadherin switching. With other hallmarks of EMT being observed, it was important 

to assess what could cause the absence of E to N-cadherin switching.  

Interestingly, studies have shown exceptions to the E- to N-cadherin switch. In 

metastatic cells, there are other cadherin switches that occur and have been linked 

to invasion and metastasis. Examples of other cadherin switches are E- to T-

cadherin and E- cadherin to cadherin 11 or E- to P-cadherin switching (Wheelock et 

al. 2008). Also E- and N-cadherin are not always mutually exclusive as observed in 

colon carcinoma and various endodermal epithelium derived cells (Straub et al. 

2011). As such, these various cadherin switches need to be analysed further in 

MCC cells.  

 

6.5 Final Thoughts 

Additional work is ongoing to further identify mechanisms by which ST induces 

MCPyV-positive MCC metastasis. Previous publications have suggested that the 

JNK signalling cascade is activated, but there is an absence of ERK or p38 MAPK 

cascade activation (Houben et al. 2006; Wu et al. 2016). In contrast, preliminary 

data has shown that MCPyV ST expression induces both ERK and p38 

phosphorylation. The mechanism through which these pathways are activated is yet 

to be elucidated, however the downstream targets of p38, MSK1 and MK2 have 

both been shown to be phosphorylated. Additionally, the use of p38 chemical 

inhibitors are not only able to abrogate phosphorylation, but prevent the motile 

phenotype typically associated MCPyV ST-expressing cells. This could therefore 

provide new potential targets, in addition to those identified previously, to inhibit the 

metastatic nature of MCPyV-positive MCCs [Personal communication]. 

In summary, this thesis explores the role of MCPyV ST in cell junction dissociation 

and the Epithelial to Mesenchymal Transition in MCC metastasis.  Results 

presented herein implicate MCPyV ST in cell junction destabilization at the 

Adherens and tight junctions which promote an increase in cell motility. In addition, 

expression of MCPyV ST induces Epithelial to Mesenchymal transition contributing 

to a highly metastatic phenotype. These findings elaborate our current 

understanding of the function of MCPyV ST as a major oncogenic protein in MCC 
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and propose new potential therapeutic targets, with ADAM 10 providing a potential 

drug target to disrupt the metastatic nature of MCC. 
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