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Abstract 

 

The aim of this thesis was to develop a novel cross-linking strategy to prepare 

defined collagen-based hydrogel networks to investigate stiffness-induced cell 

differentiation for skeletal muscle tissue engineering. Volumetric muscle loss 

(VML) occurs with traumatic injury or aggressive tumour ablation and results in 

a diminished natural capacity for repair. Whilst autologous muscle transfer offers 

the gold standard treatment option, the level of success is limited by surgical 

expertise, availability of healthy tissue, donor site morbidity and a loss of muscle 

strength and function due to scar tissue formation. As a result, a clear need exists 

for therapeutic strategies that can enhance the innate ability of skeletal muscle 

to regenerate following VML. 

Thiol-ene photo-click collagen hybrid hydrogels were systematically developed 

and prepared via step-growth reaction using thiol-functionalised type-I collagen 

and 8-arm poly(ethylene glycol) norbornene terminated (PEG8NB). Collagen 

was thiol-functionalised by a ring opening reaction with 2-iminothiolane (2IT), 

whereby up to 80% functionalisation and 90% triple helical preservation were 

recorded in addition to improved solubility of the material. Type, i.e. Irgacure 

2959 (I2959) or lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), and 

concentration of photoinitiator were varied to ensure minimal photoinitiator-

induced cytotoxicity in line with the in vitro study. Gelation kinetics proved to be 

largely affected by the specific photoinitiator and the concentration, with LAP-

containing thiol-ene mixtures leading to 8 times faster gelation times compared 

to I2959-containing mixtures. Photo-click hydrogels with tunable storage moduli 

(G’: 0.54- 6.4 kPa), elastic modulus (Ec: 1.2- 12.5 kPa), gelation time (ԏ: 73- 331 

s) and swelling ratio (SR: 1500- 3000 wt.%) were prepared. Three of these 

hydrogels (Ec: 7, 10, 13 kPa) were taken forward for in vitro tests with a myoblast 

cell line due to their similarity to the elasticity of natural muscle. These three 

hydrogels were shown to support cell attachment, spreading, proliferation and 

maturation/ differentiation of myoblasts into myotubes. A subcutaneous model 

was used to analyse the immune response of these new materials at 1, 4 and 7 

days after implantation using Mucograft® as the control. Mucograft® was shown 

to present a lower immune response and reduced inflammation, whereas, the 

immune response from the hydrogel, promoted angiogenesis, which can be 

more beneficial for muscle regeneration. 
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 - Introduction 

 

1.1 Overview of Tissue Engineering 

Modern techniques of transplanting tissue and organs from one individual to 

another have been revolutionary and lifesaving. However, there is a critical gap 

between the number of patients on the waiting list and the number of donated 

organs available for such procedures [1]. It is within this context that the field of 

tissue engineering has emerged. This interdisciplinary field aims to apply the 

principles of engineering and life sciences towards the development of biological 

substitutes that restore, maintain, and improve tissue function [2].  

Traditional tissue engineering strategies employ a top-down approach to 

manufacture tissue constructs, whereby cells and biomolecules are seeded onto 

a scaffold and allowed to diffuse through the material to create the extracellular 

matrix (ECM) and microarchitecture [3]. In contrast, a bottom-up approach relies 

on the self-assembly or directed-assembly of a scaffold from smaller cellular 

components to form the larger construct [4-6].  

The aim of this project was to design defined collagen-based hydrogel networks 

to investigate stiffness-induced cell differentiation 

 

1.1.1 Skeletal Muscle 

Skeletal muscle is one of the three major muscle types, the others being cardiac 

and smooth muscle. It comprises 40-50% of total body mass and is necessary 

for generating forces for skeletal movement and plays a role in glucose, lipid and 

energy metabolism [7]. The skeletal muscle itself is located inside the epimysium 

layer and is composed of bundles of myofibers surrounded by the endomysium, 

perimysium and an interpenetrating network of blood vessels (Figure 1.1-1) [8]. 

The myofibers are enormous ribbon-like cells that can contain hundreds of nuclei 

and can measure several centimetres in length with diameters varying from 15 

to 20 mm to more than 100 mm in trained power athletes [9, 10]. In order to 

generate and sustain mechanical tension and thereby permit movement, the 

organisation of the myofibers has to be highly structured. The working contractile 

unit of skeletal muscle is the sarcomere and there can be thousands present 
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within the muscle cells along the length of a myoblast-fused myofibril [10]. An 

individual sarcomere contains a matrix of thick filaments of myosin (centre of 

sarcomere) and thin filaments of actin (periphery).  

 

 

 

1.1.1.1 Skeletal Muscle Damage/ Diseases 

The most common skeletal muscle injuries are tears, lacerations and contusions 

which result in physical trauma yet no loss of muscle tissue itself. In sports, 

muscle injuries account for 10–55% of all sustained injuries [11]. In these cases, 

muscle has a robust capacity for regeneration even at a mature age, and can 

undergo a re-building process that involves the formation of new muscle cells, 

ECM and the re-establishment of vascular networks. When loss is associated 

with traumatic injury or aggressive tumour ablation, the repair capacity 

diminishes and if more than 20% of the muscle is lost, the natural repair process 

fails which results in a loss of function and is termed volumetric muscle loss 

(VML) [11-13].  

Loss of muscle mass occurs in many conditions ranging from denervation, 

inactivity, microgravity, or systemic diseases such as cancer, sepsis, AIDS, 

diabetes or dystrophies [10]. Muscular dystrophy refers to a group of inherited 

disorders characterised by muscle weakness and death of muscle cells leading 

Perimysium 

Endomysium 

Myofibril Muscle 
fiber 

Fascicle 

Skeletal 
muscle 

Epimysium 

Tendon 

Figure 1.1-1 Schematic of muscle tissue with the ECM categorised as the 

epimysium, perimysium and endomysium [8]. 
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to variable degrees of mobility limitation, including confinement to a wheelchair 

and/ or respiratory failure [14]. The most common of these inherited disorders is 

Duchenne muscular dystrophy (DMD), which is caused by mutations in the gene 

encoding dystrophin, an integral part of a complex that links the intracellular 

cytoskeleton with the ECM in muscle [15, 16]. 

 

1.1.1.2 Pathobiology of Muscle Injury and Repair 

The healing of injured skeletal muscle can be categorised into three overlapping 

phases: inflammation, repair, and remodelling [17]. During the initial injury, the 

blood vessels of the muscle tissue are torn and thus the blood born inflammatory 

cells such as platelets, gain direct access to the injury site. The platelets are then 

activated which causes a provisional fibrin clot at the site of injury and the release 

cytokines, including platelet-derived growth factor (PDGF), transforming growth 

factor-β (TGF-β), chemokine C-X-C ligand 4, IL-1β and CD47 which contribute 

to the initial repair process via recruitment of neutrophils, macrophages and 

fibroblasts [18-21]. Neutrophils are the first cell type to arrive, these destroy any 

bacteria or remnant cell debris and provide additional signalling for the 

recruitment of macrophages. Two to three days post-injury, macrophages 

dominate the cell population. Further leukocyte recruitment to the site of injury 

allows T lymphocytes to then secrete cytokines and chemokines which modulate 

macrophage polarisation [17, 22, 23]. These secreted cytokines include 

epidermal growth factor (EGF), basic fibroblast growth factor (b-FGF), TGF-α, 

TGF-β and vascular endothelial growth factor (VEGF) which thereafter mediate 

angiogenesis, myoblast proliferation and the deposition of new ECM and the 

formulation of granulation tissue within the wound site [20, 23]. These secretions 

are stimulators for myogenic precursor cell differentiation later in the 

regeneration process [9, 24]. The final remodelling repair phase is the fusion of 

newly formed myotubes with existing myofibers and the damaged muscle begins 

to regain its contractile function [25]. However, in cases of severe volumetric 

muscle loss, the rate of fibrosis (scar tissue formation) can exceed the rate of 

myoblast proliferation and myotube formation; and the thick layer of scar tissue 

prevents fusion with the existing myofibers [25]. 

Repair technologies, such as autologous muscle flaps, are currently limited in 

terms of availability of healthy tissue, aesthetics and muscle functionality and 

could benefit tremendously from advances in tissue engineering. If successful, 

skeletal muscle tissue engineering will be uniquely equipped for the treatment of 
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VML with the ultimate goal being the accurate repair and replacement of skeletal 

muscle defects to restate their pre-existing physical form and function [26]. 

 

1.1.1.3 Current Therapies 

Trauma to the extremities from motor vehicle accidents or the battlefield have 

contributed to an increased need for better treatment options for VML, especially 

for military physicians. While skeletal muscle has an inherent ability to 

regenerate, the magnitude of these defects limits the natural healing 

mechanisms. 

The current standard of care for large-scale VML injuries is either an autologous 

muscle flap or free functional muscle transfer (FFMT), both involve a surgeon 

removing the damaged tissue and grafting healthy muscle from a donor site [11]. 

Flaps are autologous tissues and bring with them an existing vascular network 

and mature nerve-muscle junctions [25, 27]. A variant of this treatment method 

is FFMT, which allows donor tissue to be transplanted by cutting off the arteries, 

veins, and nerves at the donor site, and sewing them back at the defect site [26]. 

However, apart from being prone to multiple complications, FFMT requires 

longer rehabilitation times to account for adequate nerve regeneration and 

restoration of blood perfusion [25]. While autologous tissue transfers offer the 

gold standard treatment option, 10% of these surgeries result in complete graft 

failure due to infection or tissue necrosis [13]. The level of success of these 

procedures is also limited by surgical expertise, availability of healthy tissue, 

donor site morbidity and a loss of muscle strength and function due to scar tissue 

formation [13, 27, 28]. Surgical intervention can also result in alterations of the 

anatomy and biomechanics for both the recipient and the donor site and pre-

injury muscle strength and functionality is difficult to achieve [25]. 

As a result, a clear need exists for therapeutic strategies that can enhance the 

innate ability of skeletal muscle to regenerate following VML, especially in those 

presented by military personnel, where there may be limited donor site 

availability as a result of extensive trauma [11]. Tissue engineering might offer a 

solution. 

 

1.1.2 Skeletal Muscle Tissue Engineering 

Skeletal muscle tissue engineering (SMTE) aims to replicate the structure and 

function of skeletal muscle tissue in vitro and in vivo, in which the ultimate goal 
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is implantation as a therapeutic device [29]. Various cell-based and material-

based approaches have been explored such as delivery of stem cells or 

progenitor cells and growth factors and using a rationally designed biomaterial. 

This biomaterial should be capable of providing chemical and physical cues to 

enhance cell survival, myogenesis and upon implantation, capable to recruit host 

vasculature and nerves into the defect site [28, 30]. These tissue-engineered 

muscle constructs could be designed in vitro with appropriate structural and 

mechanical properties to promote rapid muscle repair before implantation [30]. 

 

1.1.2.1 Biomaterials for Muscle Regeneration 

The design of regenerative devices relies heavily on the use of three-dimensional 

(3D) scaffolds to provide an appropriate environment, mechanical support and 

an initial cell anchorage site for the regeneration of tissues. Biomaterials can be 

made of permanent, biodegradable, naturally occurring, synthetic or hybrid 

materials. They need to be developed to be compatible with cells in vitro and in 

vivo and can be delivered as cellular or acellular matrixes. Cellular would 

incorporate myoblasts, satellite cells or another myogenic precursor cell, 

whereas acellular strategies could deliver growth factors to stimulate the 

recruitment and proliferation of local myogenic progenitor cells to the injury site 

in vivo [13]. 

From a biomimetic perspective, functional engineered tissue constructs should 

exhibit native-like structural properties.  

This can refer to the densely packed, parallel alignment of myofibrils and 

myosin/actin filaments [31]. Their ability to organise myoblasts efficiently, to form 

aligned myotubes in vitro would greatly benefit efforts in muscle tissue 

engineering [32]. Additionally, due to the large tissue defects they would be 

designed to replace, a vascular system would be necessary to provide clinical 

application [29].  

Biomaterials to encourage myotube parallel arrangement could be achieved by 

electrospinning synthetic polymers to create uniformly aligned, densely packed 

fibrous matrices [33]. Additionally, micro-patterning by moulding or printing a gel 

or polymer surface with nanoscale channels could align myotubes and promote 

cell fusion [25]. Mechanical and electrical stimulus which imitates in vivo activity 

has also been studied and shown to influence the proliferation and differentiation 

of cultured myoblasts during myogenesis in vitro [34, 35]. Synthetic scaffolds 

remain the most studied technology in skeletal muscle tissue engineering, 
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however, a major disadvantage is their low cellular adhesion and proliferation 

during construct formation compared to natural materials [25].  

 

1.1.2.2 Cells for Muscle Regeneration 

In order to translate tissue engineered constructs to ‘off-the-shelf’ available 

products, it would be crucial to have a large cell bank composed of 

immunologically transparent cells suitable for any individual, either as myoblasts 

or myogenic stem cells [36].  

Requirements for tissue-specific stem cells are that they proliferate in a self-

renewing manner that yields at least one daughter cell retaining its stem cell 

identity and are capable of differentiating into all the specialised cells in a given 

tissue [37]. Satellite cells (SCs) reside beneath the basal lamina that surrounds 

each muscle fibre and are the muscle stem cells that most prominently contribute 

to physiological skeletal muscle regeneration [38]. Their cell divisions are 

asymmetric, one daughter is produced which forms another SC and is retained 

in the niche beneath the basal lamina and the other goes forward as a myogenic 

cell and fuses with an injured muscle fibre to reconstitute its multinuclear state 

[39]. These cells are self-renewing so meet the definition of a stem cell. Healthy 

adult muscle has a slow and infrequent turnover rate compared to skin or blood, 

with ~ 1-2% of myonuclei replaced weekly, so satellite cells remain mostly 

quiescent unless activated by exercise or injury [37, 38, 40]. Low numbers are 

isolated from muscle so the SCs would have to be expanded in vitro to obtain 

sufficient number for a construct before implantation. Current isolation and 

culturing methods have reported that 30 doublings of SCs can be achieved, with 

the potential to improve to 50-70 doublings [41, 42]. However, expansion of SCs 

in culture for a few days results in severe reduction in their ability to produce 

myofibers upon transplantation in vivo [43, 44]. 

In addition to SCs, other progenitors located outside the basal lamina have been 

shown to have myogenic potential in vitro [15]. Among the most promising new 

approaches of repair include embryonic stem cells (ES cells) and induced 

pluripotent cells (iPS cells). ES cells are derived from the inner cell mass of pre-

implanted embryos and iPS cells can be derived from many adult human cell 

types from direct reprogramming by a limited number of genes or by transfection 

with retroviruses [39, 45]. Other cells linked specifically to muscle differentiation 

include mesenchymal stem cells (MSCs), CD133+ progenitor cells and blood 

vessel-associated pericytes and mesoangioblasts [46-49]. Although these cells 
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may not contribute to physiological muscle regeneration like SCs do, some 

appear to have advantageous characteristics such as MSCs which are readily 

available and have immunomodulatory properties [38, 43]. Many studies focus 

on in vitro generation of muscular tissue cell lines such as C2C12 cells which are 

an established cell line of satellite cells from murine skeletal muscle. These have 

similar characteristics to those of isolated human skeletal muscle cells, although 

this cell line approximates myogenesis less closely than primary myoblasts [31, 

50]. The process of maturation/ differentiation of these cells involves myoblast 

anchorage to the substrate, cell spreading, withdrawal from cell cycle and fusion 

into myotubes. 

Important to success of tissue engineering is that the cells are immune 

acceptable. This comes automatically if the source is autologous, however, if the 

therapy is to become widely available, the source would have to be non-

autologous [36]. 

 

1.1.2.3 Cell Microenvironment  

A cell’s function in vivo is orchestrated by complex signals as a result of the 

surrounding cellular microenvironment. The cues can be in the form of soluble 

factors, ECM proteins, cell-cell interactions, mechanical or shear forces and the 

spatial organisation (2D or 3D) of the microenvironment [51].  

The process of differentiation describes the acquisition of the phenotype of a cell, 

most often identified by the expression of specific proteins achieved as a result 

of differential gene expression, e.g. skeletal muscle cells display highly ordered 

myosin, actin and other contractile proteins within sarcomeres [39]. 

Differentiation and merging of myoblast cells in vitro can be initiated by reducing 

serum concentrations in the medium. 

Most cells are anchorage dependent and require interaction with the ECM to 

maintain viability. When adherent, cells are able to exert contractile forces on 

their environment and sense compliancy that can induce appropriate cellular 

behaviour. The cues from matrix mechanics are thought to occur by the cells 

‘pulling’ on the scaffold and then generating signals based on this force [52]. On 

the whole, tissues in the body are viscoelastic which means they possess elastic 

properties that allow them to return to their original shape after stress is removed, 

and viscous properties which allow the material to be deformed. When a cell 

adheres onto a hydrogel, the gel has low resistance to forces and can easily be 

deformed resulting in a rounded cell. On stiffer materials, cells are less able to 
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contract the matrix and spread out thus resulting in multiple focal adhesion with 

the gel [53, 54]. The overall cellular response to mechanical stimuli is defined as 

mechanotransduction. The stiffness of the ECM is mainly expressed by the 

elastic modulus (or Young's modulus, E), which is in part regulated by ECM 

organisation and composition, although tissue elasticity is altered during aging, 

disease and injury [55].  

It is recognised that stem cell behaviour is dependent on tissue stiffness, typically 

because the cells have to balance the external forces dictated by the mechanical 

properties of its environment. To do this, cells regulate their cytoskeleton tension, 

generating internal forces which in turn exert a mechanical force on each cell 

that is transmitted to the environment by adhesion sites [55]. During the design 

of a construct material, mechanical properties of the scaffold which resemble 

native tissue properties are often sought (Emuscle ~ 8-16 kPa [56]). The 

mechanical properties of the natural ECM are of paramount importance in 

dictating macroscopic tissue functions and regulating cellular behaviour via 

mechanotransduction signalling because variation in the elasticity of substrates 

can play an important role in cell morphology and differentiation [57]. 

 

1.1.3 Interface Tissue Engineering 

Engineering muscle-tendon interfaces has not been extensively studied. 

However, the muscle-tendon-junction (MTJ) is an important interface in the 

musculoskeletal system because it acts as the mechanical bridge and transfers 

considerable forces between muscle and bone [58]. This requires an efficient 

tendon-to-bone and muscle-to-tendon interface to provide suitable load transfer 

to the bone with the strength to withstand large forces. Tissue engineering 

strategies applied to these soft-to-hard interfaces vary in terms of loading 

environment, mineral distribution and the subsequent healing responses are 

different (long time for bone) [58]. In terms of the bone-tendon-muscle bridge, 

tendon and bone scaffolds should be stiff while muscle scaffolds should be 

compliant and should be able to withstand large forces. This would require three 

different mechanical profiles, which could be achieved using a gradient 

biomaterial [59].  
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1.2 Collagen 

The term ‘collagen’ refers to a group of proteins wide-spread in the body which 

form a triple helix structure of three polypeptide chains consisting of 18 amino 

acids per turn [60-62]. The polypeptide chains are predominantly made up of the 

small amino acid, glycine (Gly) which occurs every third position and all collagen 

members are characterised by the repeating motif of (Gly-X-Y) where X and Y 

can be any amino acid [63]. The amino acids proline (Pro) and hydroxyproline 

(Hyp) have high abundance in collagen, so the most common repeating triplet is 

Gly-Pro-Hyp. 

Collagen accounts for over 30% of the total body protein. Tissue-specific, more 

than 90% of all extracellular proteins in the tendon, cartilage and bone, and more 

than 50% in the skin, consist of collagen [64, 65]. Collagen type I is fibrillar and 

is the most abundant structural building block in connective tissues such as bone, 

tendon and cartilage and provides a prominent role in mechanical strength due 

to its architectural arrangement [66]. Fibrillar collagen occurs when the triple 

helical coils assemble into highly orientated aggregates with the characteristic 

fibril-array structure. When examined under a scanning electron microscope 

(SEM) the fibrils are defined by a characteristic ‘d spacing’ which is the periodic 

banding pattern repeating around 69 nm [61]. This type of structure can be 

commonly identified as a white, fibrous tissue which has a high tensile strength 

and is relatively inelastic as a result of its architectural arrangement [66, 67]. 

Other fibril-forming collagens include collagen types II, III, V and XI [61]. Other 

categories of collagen include network-forming collagens, fibril-associated 

collagens with interrupted triple helices (FACITs), membrane-associated 

collagens with interrupted triple helices (MACITs) and multiple triple-helix 

domains and interruptions (MULTIPLEXINs) [63]. Twenty-nine types of collagen 

composed of distinct polypetide chains have been identified in vertebrates (Table 

1.2-1 (A-B)). Collagen is the major supporting tissue of skeletal muscle and 

accounts for 1–10% of muscle mass dry weight [8]. Whilst type I and type III 

predominate in muscle tissue, types IV, V, VI, XI, XII, XIV, XV, and XVIII collagen 

are also expressed during skeletal muscle development [8]. Type III collagen is 

prevalent in tissues with some degree of elasticity including the skin and 

ligaments [68].  
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Table 1.2-1 (A) Vertebrate collagens I- XVI [61, 63, 69-72]  

Type Category α Chains Distribution 

I Fibrillar α1(I), α2(I) Dermis, bone, 

tendon, ligament 

II Fibrillar α1(II) Cartilage, vitreous 

III Fibrillar α1(III)  Skin, blood 

vessels, intestine 

IV Network α1(IV), α2(IV), 

α3(IV), α4(IV), 

α5(IV), α6(IV) 

Basement 

membranes 

V Fibrillar α1(V), α2(V), 

α3(V) α4(V) 

Bone, dermis, 

cornea, placenta 

VI Network α1(VI), α2(VI), 

α3(VI), α4(VI), 

α5(VI), α6(VI) 

Bone, cartilage, 

cornea, dermis 

VII Anchoring Fibrils α1(VII) Dermis, bladder 

VIII Network α1(VIII) Dermis, brain, 

heart, kidney 

IX FACIT α1(IX), α2(IX), 

α3(IX) 

Cartilage, cornea, 

vitreous 

X Network α1(X)  Cartilage 

XI Fibrillar α1(XI), α2(XI), 

α3(XI) 

Cartilage, in 

vertebral disk 

XII FACIT α1(XII)  Dermis, tendon 

XIII MACIT α1(XIII) Endothelial cells, 

dermis, eye, heart 

XIV FACIT α1(XIV) Bone, dermis, 

cartilage 

XV MULTIPLEXIN α1(XV) Capillaries, testis, 

kidney, heart 

XVI FACIT α1(XVI) Dermis, kidney 
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Table 1.2-2 (A) Vertebrate collagens XVII- XXIX [61, 63, 69-72]  

Type Category α Chains Distribution 

XVII MACIT α1(XVII) Hemidesmosome

s in epithelia 

XVIII MULTIPLEXIN α1(XIII) Basement 

membrane, liver 

XIX FACIT α1(XIX) Basement 

membrane 

XX FACIT α1(XX) Cornea (chick) 

XXI FACIT α1(XXI) Stomach, kidney 

XXII FACIT α1(XXII) Tissue junctions 

XXIII MACIT α1(XXIII) Heart, retina 

XXIV Fibrillar α1(XIV) Bone, cornea 

XXV MACIT α1(XV) Brain, heart, testis 

XXVI FACIT α1(XVI) Testis, ovary 

XXVII Fibrillar α1(XVII) Cartilage 

XXVIII FACIT α1(XVIII) Dermis, sciatic 

nerve 

XXIX - - Epidermis 

 

1.2.1 Collagen Type I 

Collagen type I is a natural polymer and as a scaffold material, it benefits from 

good biocompatibility, biodegradability, a natural affinity for biomolecules and is 

a major component in the natural ECM [73]. Its wide applications include sutures, 

cosmetic surgery, dental composites, bone grafts, wound care and tissue 

regeneration templates [74]. The constant basic structure of collagen is a triple 

helix of three left-handed polypeptide chains, usually formed as a heterotrimer 

by two identical α1(I)- chains and one α2(I)-chain. These can self- aggregate to 

form collagen fibrils, fibres and fascicles in vivo and can be cross-linked by 

chemical or physical means to form a hydrogel. [75]. The type I triple helix fibres 

are mostly incorporated with other collagens in vivo, for example a composite of 



 
 

12 

 

type III and type I collagen is found in muscle and skin and a composite of type 

V and type I collagen is found in bone and tendon [61, 76].  

In terms of using collagen type I as a medical product, clinical observations 

indicate that 2– 4% of the population possess an allergy to bovine type I collagen, 

although this can be considered decidedly low,- in comparison, 6% of the 

population are susceptible to latex allergy [77]. 

 

1.2.1.1 Functionalisation 

Collagen functionalisation, or cross-linking can be performed to improve its 

mechanical or biological properties by incorporating new reactive moieties or can 

be used to produce a film or hydrogel network to meet the demands of in vitro or 

vivo applications [75, 78-81]. Cross-linking methods are necessary to stabilise 

collagen in aqueous solutions ex vivo and can be divided into three groups: 

physical interactions (e.g., ionic cross-linking and hydrogen bonds), chemical 

reactions (e.g., with glutaraldehyde [82], diisocyanates [83], carbodiimide-

activated diacids [78], or photochemical polymerisation [84] or enzyme (e.g., 

glutaminase) catalysed mechanisms [65, 85]. 

Collagen can be modified by reaction of its functional groups, more specifically 

the amino acid unit lysine or post modified hydroxylysine which contains a free-

reactive amine group. It has a minor occurrence in the collagen triple helical 

structure which is dependent on the source of collagen, for example, rat tail type 

I collagen exhibits an average (hydroxy) lysine, [Lys] content of 3.24 x 10-4 mol.g-

1 [78]. Functionalisation of this side group can be achieved using a nucleophilic 

substitution or nucleophilic addition reaction, one example is the reaction with 

glutaraldehyde which produces an imine bond. Glutaraldehyde efficiently cross-

links collagen and produces a hydrogel, however, this method is not appropriate 

for creating a biological construct because degradation in vivo could release 

glutaraldehyde into the body which is harmful to tissue [85]. To counteract this 

issue, 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC) can 

be used a zero length cross-linking agent. The efficacy and reaction yield can be 

improved by incorporating EDC with N-hydroxysuccinimide (NHS). The by-

products of NHS/EDC cross-linking are water soluble and therefore could be 

removed from the hydrogel by repeated washing or dehydration [78].  

Functionalisation of the collagen molecule can aid the development of hydrogels 

with complex and delicate microstructures. To achieve tuneable architecture and 

stiffness, the hydrogel would present improved tissue-like hierarchical 
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organisation thus increasing the probability to successfully restore structure, 

properties and function of the tissue. In addition to altering the stiffness and 

mechanical properties, functionalisation also provides a passageway to 

introduce other biochemical moieties such as growth factors.  

Retrosynthetic considerations associated with functionalising collagen are 

representative in terms of solubility, occurrence and availability of functional 

groups and the preservation of the helical conformation.  

 

1.2.1.2 Telopeptides 

Collagen type I is made up of three parts, the triple helix, the N-terminal 

telopeptide and the C-terminal telopeptide. These terminal telopeptides account 

for 2% of the molecule and do not possess the repeating Gly-X-Y motif and 

therefore do not adopt a triple-helical conformation, however, they are involved 

in the covalent cross-linking of the collagen molecules and are critical for fibril 

formation [61, 86]. The molecular arrangement into fibrils is stabilised by the 

formation of covalent cross-links. Initial enzyme-catalysed lysine hydroxylation 

within the telopeptides allows hydroxylysine-derived aldehydes to form stable 

ketoimine bonds and a Schiff base reaction occurs between lysine-derived 

telopeptide aldehydes and adjacent lysine residues, both resulting in formation 

of cross-links [61, 81]. These intermolecular cross-links stabilise the collagen 

fibrils and contribute to their physical and mechanical properties. 

Telopeptides can be cleaved by treating the collagen with proteolytic enzymes 

(e.g. pepsin) to produce atelo collagen consisting solely of the triple helical unit. 

However, since as discussed, the terminal telopeptides play important roles in 

cross-linking and fibril formation, their removal results in an amorphous 

arrangement of collagen molecules, although the induced positively charged 

surface of the atelo collagen results in a significant increase in solubility [77].  

Despite its widespread acceptance as a safe and multifunctional material, the 

status of collagen as an animal-derived biomaterial has always raised concerns 

regarding its potential to evoke an immune response [77]. 

There is little variation in the amino acid sequences of the triple helical region 

between mammalian species, whereas a far greater degree of variability is found 

in the amino acid sequence of the telopeptides. So pepsin-solubilised atelo 

collagen was created to provide a potential immunological benefit compared to 

traditional acid-soluble collagen.  
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Antigenic determinants of collagen have been classified into one of three 

categories [61]:  

1. Helical - recognition by antibodies dependent on 3D conformation  

2. Central - recognition based solely on amino acid sequence and not 3D 

conformation  

3. Terminal - located in the non-helical C- and N- telopeptides  

However, the location of the major antigenic sites on the collagen molecule 

varies depending on the donor/ recipient species pairing. When calf collagen is 

transferred to a rabbit, the major antigenic site is from the terminal telopeptides 

and in comparison, when calf collagen is transferred to a rat, the major antigenic 

site is helical [77, 87]. No study has been made on the major antigenic sites when 

bovine collagen is transferred to humans.  

In general, macromolecular features of a protein not common to the host species 

are more likely to encourage an immune response than shared features and the 

cleavage of the terminal telopeptides could provide collagen with a non-

immunogenic status, although this could also be grossly overstated and more 

research should be produced on the area [77]. 

 

1.3 Collagen Hydrogels 

Hydrogels are three-dimensional cross-linked networks composed of hydrophilic 

components held together by covalent bonds or via physical intra- or 

intermolecular attractions such as hydrogen bonds. Along with their ability to 

encapsulate biological factors, cells and drugs due to their high water affinity, 

they represent a promising material for tissue engineering [88]. They also can 

possess properties such as controllable degradability and the ability to be 

processed or formulated into injectable constructs [89].  

Collagen is a popular option for a natural hydrogel because it is the major 

structural component of the ECM of most tissues, although other naturally 

derived polymers including agarose, alginate, chitosan, fibrin, gelatin and 

hyaluronic acid have been developed [73]. Natural polymers have excellent 

biocompatibility and biodegradability and excellent affinity for biomolecules due 

to their natural cell recognition sites. As a scaffold material, a collagen hydrogel 

would exhibit excellent biocompatibility and would benefit from the ability to 

degrade naturally in the body by enzymes such as metalloproteases, 

collagenase and serine proteases or as a result of hydrolysis [74]. Challenges to 
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consider when using collagen hydrogels include the high costs of manufacturing 

due to the time-consuming process for isolation and purification of collagen from 

its source and the conservative techniques necessary for cross-linking to avoid 

denaturation of the collagen which would eliminate its cell-recognition benefits. 

Classical collagen hydrogels self-assemble under mild conditions with a 

physiological stimulus such as changing the pH to 7 and raising the temperature 

to 37 oC. The properties of these hydrogels are highly dependent on a large 

number of fabrication parameters such as collagen tissue source, solubilisation 

method, pH and temperature, solution components, ionic strength and collagen 

concentration which can cause a degree of variability [90]. Self-assembled 

collagen hydrogels have a degree of control over their mechanical properties in 

terms of the initial collagen concentration. Increasing the concentration from 0.3- 

2 wt.% (3- 20 mg/mL) has been shown to have a comparable increase in the 

elastic modulus from ~30 Pa to ~1800 Pa [91]. The highest concentration is 

limited by collagen’s poor solubility in weakly acidic solutions and therefore, 

alone, these hydrogels have limited scope to mimic 3D tissues. Whilst the highest 

concentration (20 mg/ mL) has an elastic modulus similar to neuronal tissues 

(0.1- 1 kPa [57]), the high fibre structure was reported to be too dense to permit 

cell migration and sufficient viability [90, 91].  

Although collagen hydrogels demonstrate great potential as a candidate for a 

construct material, they suffer from inferior mechanical properties and are not 

appropriate for load bearing application. However, it has been shown that 

mechanical stiffness can be altered by changing cross-link density, cross-linker 

type or from incorporation/ hybridisation with synthetic or other natural materials 

[79, 92, 93]. 

A combination of natural and synthetic hydrogels, also known as a hybrid 

hydrogel, has been used to improve the biological and mechanical properties of 

each material [94]. Synthetic polymers possess tuned mechanical properties and 

can be batch produced, so in combination with collagen, they could benefit from 

each other in terms of viability for cells, degradability, hydrophilicity, stiffness and 

viscoelasticity. Although the disadvantage of hybrid scaffolds is that during 

degradation, it could liberate small residual polymer fragments which would elicit 

inflammation and a host response.  
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1.3.1 Click Chemistry 

‘Click Chemistry’ is a term introduced by Sharpless in 2001 to describe reactions 

that are fast, high yielding, selective, insensitive to ambient oxygen and water, 

possess readily available starting materials, generate inoffensive by-products, 

use mild reaction conditions and require simple product isolation [95]. This class 

of biocompatible reactions is an appealing approach for the preparation of 

hydrogels for tissue engineering. 

Since the initial recognition of the copper catalysed azide-alkyne cycloaddition 

as click chemistry, a number of reactions have now been classified including the 

Diels-Alder cycloaddition, Michael-addition, photo-initiated thiol-ene, nucleophilic 

ring-opening such as epoxides and aziridines and non-aldol carbonyl chemistry 

reactions which include the formation of ureas, oximes and hydrazones [95-97]. 

Two important classes of click reactions are Cu-catalysed azide–alkyne 

cycloadditions (CuAAC) and thiol-X conjugation. Since first reports of CuAAC 

reactions by Sharpless et al, they have been viewed as ideal for chemical 

synthesis, drug discovery, bioconjugation, and biochemistry due to their fast 

reaction rate, high efficiency, excellent regiospecificity (one product formed 

exclusively) and biorthogonality (can occur inside living systems). However, 

concerns about the toxicity of the copper catalyst and the need for additional 

purification have restricted the use of these conjugation reactions in biomaterials 

applications [97]. As a consequence, there has been a strong interest in the 

development of metal-free click reactions that proceed in aqueous media at room 

temperature without the need for a catalyst. The Bertozzi group introduced strain 

promoted azide–alkyne cycloadditions (SPAACs) using cylooctynes as an 

alternative to CuAAC. The superiority of SPAAC in comparison with other click 

reactions is that it proceeds efficiently even in a mild physiological environment 

without the need of a catalyst or UV-light exposure. 

Click chemistry has been incorporated into natural polymers. Guaresti et al 

successfully synthesised a chemically cross-linked chitosan–based hydrogel 

based on the Diels- Alder click reaction. The Diels-Alder reaction required mild 

heating and gelation occurred after 2 hours at 65 oC with no side reactions. Whilst 

this reaction does not require any harmful catalyst, it does require heat, so would 

not be appropriate to apply to collagen or for cell encapsulation [98]. Fu et al 

reported an injectable hyaluronic acid (HA)-based hydrogel cross-linked with 

azide-modified poly(ethylene glycol) (PEG) via SPAAC with gelation times 5- 50 

minutes [99]. The disadvantage of applying this reaction to collagen is that it 

would require modification with bulky azide or cycloocytyne groups, neither of 
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these groups are present in nature and so could disrupt the natural triple helical 

conformation and prove difficult to synthesise. Desai et al reported alginate 

hydrogels formed by norbornene- tetrazine functionalisation, this reaction 

required no heating or catalyst which allowed easy incorporation of cells with 

high post-encapsulation viability although reaction times were ~ 2 hours [100]. 

While these reactions were all incorporated with natural polymers to form 

hydrogels, the reaction times were very slow and could not hold application as 

an injectable device and their classification as click reactions should even be 

questioned. A second major class of click chemistries are the Michael-addition, 

thiol-ene and thiol–yne reactions which have appeared as promising strategies 

for the preparation of hydrogels due to their high reactivity, superb selectivity, 

and mild reaction conditions. 

Table 1.3-1 Click chemistry strategies to form hydrogels [101]. 

Click Reaction Functional Groups Advantages Disadvantages 

CuAAC Alkyne, azide Bioorthogonality Toxic copper 

catalyst 

SPAAC Cyclooctyne, azide No catalyst, 

biorthogonality 

Difficult 

synthesis of 

cylooctyne 

precursors 

Diels-Alder Double bond, 1,3 

diene 

No catalyst, 

accelerated by 

water, 

thermosreversible 

Slow gelation, 

requires heat 

Thiol-ene Thiol, double bond 

incapable of 

homopolymerisation 

Spatiotemporal 

control, fast 

gelation 

Potential toxicity 

from the 

photoinitiator and 

radicals 

Thiol Michael-

addition 

Thiol, electron-

deficient double 

bond 

Reaction can 

take place at pH 

7 with no 

additional catalyst 

Cross-reactivity 

of thiols, easy 

oxidation 
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1.3.1.1 Thiol Michael-Addition 

Michael-type additions have been studied since the 1940s although only recently 

classified as click chemistry [102]. Thiol Michael-addition involves the addition of 

a thiol (Michael donor) across a double bond in an acrylate, acrylamide, vinyl 

sulfone or maleimide (Michael acceptor) with or without the help of a base 

catalyst. The Michael acceptors require an electron deficient carbon-carbon 

double bond and generally possess an adjacent electron withdrawing group 

(EWG) [103]. The base, such as triethylamine, abstracts a proton from the thiol 

generating the thiolate anion, RS-, and the conjugate acid, although adjustment 

of pH, and thiol group with low pKa can generate the nucleophilic thiolate anions 

without the need of a base catalyst. This nucleophilic thiolate anion can then 

attack the electrophilic carbon on the electron-deficient double bond generating 

the intermediate carbon-centred anion. This then abstracts the proton from the 

conjugate acid, yielding the thiol Michael-addition product and the regeneration 

of the base catalyst [103]. After initiation, this propagation is very rapid and 

proceeds without interference from other proton sources (e.g. water) ( 

Figure 1.3-1).  

 

 

 

Figure 1.3-1 The step-growth base-catalysed thiol Michael addition 
reaction pathway. Addition of a thiolate anion across the electron-
deficient double bond. 

Michael-addition reactions are highly efficient, although the rate is dependent on 

several factors including the solvent polarity, pH, base catalyst strength, pKa of 

the thiol group and the corresponding thiolate species, steric bulk of the thiol 



 
 

19 

 

group and how susceptible the carbon double bond is for nucleophilic attack, due 

to the nature of the EWG [103].  

Incorporation of this approach to produce hydrogels based on natural polymers 

has been popular due to its tolerance to a wide variety of functional groups, and 

easy access to thiol and ene functionalised reagents. Li et al reported hybrid 

collagen-hyaluronic acid hydrogels prepared via Michael addition reaction of 

maleilated collagen and thiol modified hyaluronan. The reaction mixture was 

neutralised to pH 7 using beta-glycerophosphate disodium salt as the only base, 

although long reaction times ~8-24 hours were a disadvantage [104]. 

Ravichandran et al reported collagen functionalised with a methacrylate group 

and a Michael-addition reaction with thiol-terminated multi-arm polyethylene 

glycol (PEG). This method also reported very long gelation times ~3-4 hours [80]. 

These reactions are not abiding by the click chemistry requirement of fast 

reaction times and in comparison, papers which only include synthetic polymers 

in the Michael-addition reaction reported gelation times in seconds/ minutes 

[105-107].  

 

1.3.1.2 Thiol-Radical Reaction 

Schlaad et al first identified the thiol-radical reaction as click chemistry which was 

shown to include both the thiol-ene (double bond) and thiol-yne (triple bond) 

reaction [108]. A major advantage of these reactions is their ability to 

photoinitiate, referred to as photo-click chemistry [97]. The thiol-ene 

polymerisation proceeds via a radical step-growth mechanism in which an ene 

group orthogonally forms a covalent bond with a single thiol group, whilst 

conventional polymerisation forms a network by a chain-growth mechanism. The 

addition involves the propagation of a thiyl radical to a carbon-carbon double 

bond, followed by chain transfer to another thiol functional group and eventual 

termination (Figure 1.3-2). Light-initiation holds advantages for small molecule 

synthesis, surface and polymer modification, collagen modification and cell-

encapsulation [103]. To initiate the reaction, an appropriate combination of light 

source and photoinitiator should be used and the rate is significantly improved 

when there is an overlap between the wavelength of the light source and the 

absorption spectra of the photoinitiator, thus allowing the generation of sufficient 

radicals. In addition to photoinitiator and light source, the relative polymerisation 

rates of the thiol-ene systems are fastest for norbornene and vinyl ether moieties 

because the overall conversion is directly related to the electron density on the 

ene, with electron-rich enes reacting faster than electron-poor enes, norbornene 
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> vinyl ether > alkene vinyl ester > n-vinyl amides > allyl ether > acrylate [103]. 

Using double bonds which are incapable of homopolymerisation ensures the 

only reaction occurring is the step-growth thiol-ene reaction, and the carbon-

centred radical is always transferred to a thiol moiety rather than propagation of 

the carbon-centred radical through the double bond [109].  

 

Figure 1.3-2 The step-growth thiol-ene reaction pathway. Addition of a thiyl 

radical across norbornene followed by chain-transfer from a carbon-

centred radical to a thiol group. 

 

One additional advantage of the thiol-ene reaction compared to tradition radical 

chain-growth reactions is its ability to overcome oxygen inhibition and thus be 

performed in a broader range of atmospheric conditions (Figure 1.3-3). This is 

unlike traditional chain-growth polymerisation which often requires an innate 

nitrogen environment to prevent oxygen inhibition of the radical propagation step.  

The thiol-ene reaction has been incorporated into the preparation of synthetic 

and natural hybrid hydrogels. Lin et al reported that hydrogels could be formed 

in less than 3 min from norbornene-functionalised 4-arm PEG (PEG4NB) with a 

dithiol peptide, in which both the mechanical and biochemical properties of 

hydrogels could be controlled by thiol/ene ratio, PEG molecular weight and 

architecture, polymer concentration, or peptide sequences [110]. 
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Figure 1.3-3 Schematic to show the oxygen inhibition of a radical thiol-ene 

reaction. Oxygen reacts with polymerising radicals to form inactive 

peroxy radicals; however, for thiol-ene reactions, the peroxy radical 

abstracts a hydrogen from the thiol to form an active thiyl radical that 

restarts the polymerisation with little change in the reaction rate. 

 

Mũnoz et al reported gelatin-PEG hybrid hydrogels prepared with norbornene-

functionalised gelatin capable of in situ photo-encapsulation of human 

mesenchymal stem cells (hMSCs) [111]. Gelatin is formed by the hydrolysis of 

collagen and as such does not possess the triple helical conformation and is not 

limited to reaction temperatures below 37 oC or poor solubility. The method to 

produce gelatin functionalised with norbornene by Mũnoz et al required a pH 8 

solution, carbic anhydride (20% (w/v)) and reaction temperature of 50 °C which 

could not be transferred to collagen. 

Thiol-ene click chemistry was incorporated into collagen by Russo et al. This 

used a thiol-functionalised collagen solid surface and allyl α-D-glucopyranoside 

with 1 hr exposure to UV light [112]. The issue with this reaction is that it is a 

pseudo-click reaction although it was not reported to be in the paper. Allyl ethers, 

unlike vinyl ethers can react by homopolymerisation so both a chain-growth and 
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a step-growth reaction would be taking place, although granted that allyl ether 

homopolymerisation is slow due to the electron rich ene group. 

 

1.3.2 Injectable Hydrogels 

An interesting feature of hydrogels is their ability to be mixed with, and 

encapsulate cells and molecules prior to gel formation, thus providing a potential 

avenue to deliver cells and bioactive factors in a minimally invasive manner. An 

injectable hydrogel would also be extremely effective at filling irregular spaces 

and could configure the exact shape of a defect. Therefore, it should be capable 

of undergoing gelation in situ after injection and in order to do so, the gelation 

kinetics require the polymer solution to gel and solidify within a clinically 

acceptable timescale. The typical methods to induce gelation, include thermal 

and photochemical polymerisation, enzymatic and ionic cross-linking and click 

chemistry. The majority of these cross-linking techniques require the use of a 

catalyst to proceed which could be toxic to tissues and would therefore be 

inappropriate for in situ gelation. To counteract this issue, thiol click chemistry, 

e.g. Michael-type addition reactions could be used as a method of non-toxic in 

situ gelation via reaction between a thiol and acrylate, so long as the reaction did 

not require the use of a catalyst and the reaction conditions could be tailored to 

allow a fast rate of reaction and gelation time < minutes [113]. Xu et al reported 

an interesting study incorporating the design of an injectable biodegradable 

biomimetic scaffold based on thiolated collagen and the block copolymer 

oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-(oligo(acryloyl carbonate) 

(OAC-PEG-OAC) by means of a Michael-type addition reaction. This reported a 

gel point ranging from 0.4 to 8.1 min and mechanical properties which could be 

tuned by degree of collagen thiolation, the solution pH and polymer concentration 

[114]. 

An attractive solution could involve the introduction of a temperature or pH 

sensitive moiety onto the polymer backbone in order to induce polymer gelation 

in vivo [115]. Although, to successfully shape and fill the irregular defect, it is 

necessary that the hydrogel possesses good mechanical strength, a predefined 

shape or the ability to physically bind to adjacent tissues. 

Injectable hydrogels based on native collagen could promote a matrix for 

improved cell attachment and tissue growth by providing the functionality of the 

ECM. In conjunction as a hybrid hydrogel with collagen, the thermoresponsive 

polymer Poly(N-isopropylacrylamide) (PNIPAM) could produce an injectable 
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scaffold because it undergoes a conformational change at its lowest critical 

solution temperature (LCST) (32 oC) at which point it becomes insoluble in water 

and forms a gel. This is a similar temperature to the body, although in vitro the 

presence of ions in such as magnesium sulphate in cell culture media reduces 

the LCST of the polymer due to competitive hydrogen bonding between water, 

the anions and the PNIPAM, thereby shifting the LCST to a lower temperature 

[116]. The cells could be suspended in the aqueous hybrid polymer solution 

below the LCST and then transferred into moulds or injected in vivo. 

Additional advantages of injectable hydrogels include reduced patient discomfort 

and lower risk of infection from surgery due to the minimally invasive procedure. 

Disadvantages of injectable biomaterials are their current poor mechanical 

strength rendering them too weak for load-bearing applications, the lack of 

control over the pre-polymerised solution, the high degree of viscosity, their 

undefined porosity and low stability due to swelling and subsequent dissolution 

of the polymers, - although gel strength and stability has the capacity to be 

improved by increasing cross-link density or incorporation of inorganic molecules 

[54]. 

 

1.3.3 Cell Encapsulation 

Previously, in situ cell encapsulation has focussed on collagen hydrogels self-

assembled by physical entanglements. The stiffness of these type of hydrogels 

can be controlled by increasing the concentration of collagen in the solution. 

However, it is not feasible to dissolve higher than 2 wt.% (20 mg/mL) of collagen 

in a weakly acidic solution. Cross et al reported that collagen hydrogels at 

concentrations 3, 8, 10, 15, and 20 mg/ml produce hydrogels with stiffness 30 

Pa to ~1800 Pa [117]. These physically entangled hydrogels are prepared by 

neutralising the collagen solution and have long gelation times (20- 60 minutes) 

[117, 118]. Therefore they are not appropriate for use as an injectable device 

and are limited to mimic weak ECM materials. 

Chemically cross-linked hydrogels can be used to mimic stiffer ECM materials, 

although as discussed, it is important that any reagents, photoinitiators or 

reaction conditions be designed in a cytocompatible manner if cell encapsulation 

is to be possible. The thiol-ene photo-click reaction is not oxygen-inhibited and 

requires a lower radical concentration to initiate the reaction than the chain-

growth mechanism which has been shown to yield high initial radical 

concentrations. This would not be ideal for the encapsulation of cells and proteins 
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prone to radical-mediated damage since free-radicals can cause damage to cell 

membranes, nucleic acids, and proteins, which can lead to cell death [111, 119]. 

If the gelation method requires light exposure, the light source and exposure 

times should be tailored to reduce cell cytotoxicity. 

Additionally, to remain viable, encapsulated cells require a constant supply of 

oxygen, nutrients and means to remove metabolic waste products. In vivo this is 

achieved through vasculature and it is understood that cells situated 100 – 200 

µm from an oxygen supply will not survive [120]. A major barrier in the 

development of functional tissue-engineered constructs is vascularisation and 

this is an important feature that should be incorporated into scaffold design by 

way of channels or appropriate pore size [5, 121]. Porosity can warrant apt 

oxygen and mass transfer, however, the pore size has to be large enough for 

cells to migrate into the matrix, although not so large that it hinders cell 

attachment.  

Microchannnels which resemble the vascular system of human tissues have 

been reported using methods such as lithography, micromoulding and bioprinting 

[5]. Microfluidic channels in a 3D hydrogel could provide constructs to mimic and 

flourish similar to natural tissues. Micromoulding is a simple approach to 

construct a patterned cell-encapsulated hydrogel, cells are first suspended in a 

gel and then moulded on a patterned wafer to generate microchannels of 

different shapes and sizes to allow nutrients and oxygen to easily diffuse [94]. 

Hydrogels capable of being cross-linked by exposure to light hold potential for 

photopatterning. This method is fast and highly reproducible and has been used 

to fabricate hydrogel constructs with predesigned microchannels for 

vascularisation or perfusion so long as the hydrogel has sufficient mechanical 

properties to support a shape in vitro [120]. 

Although it should be noted that an organised array of microchannels, does not 

represent the complexity and irregularity of the vascular system present in the 

natural tissue. 

 

1.3.4 Stiffness 

Hydrogel mechanical properties are determined by the type of polymer used, 

concentration, cross-linker type, cross-link density and the physiological 

conditions. Tronci et al demonstrated that mechanical stiffness of collagen 

hydrogels could be varied by incorporating various vinyl-containing chemical 

moieties onto the backbone of the polymer followed by photopolymerisation. 



 
 

25 

 

These methods have achieved collagen hydrogels with higher stiffness than 

previously procured from functionalised collagen hydrogels (> 28 kPa) [79]. 

Plastic compression of collagen hydrogels in vitro is a rapid and reproducible 

technique for the production of scaffolds. Compressive stress is applied to the 

collagen hydrogel so the excess water is removed and the fibre structure 

becomes denser, resulting in the enhanced stiffness of the hydrogel, however 

issues include cell viability and proliferation on these densely fibrillar networks 

[122].  

Work by Wong et al demonstrated that the use of polymeric collagen with acid-

soluble collagen could be used to alter the mechanical properties of collagen 

hydrogels. Polymeric collagen, often found in older, dense tissues of the tendon 

is physiologically cross-linked and is therefore a strong and stable material. 

Collagen-based research predominantly focuses on acid-soluble (“monomeric”) 

collagen which possess weaker mechanical properties than mature, polymeric 

collagen. A stiffer collagen hydrogel was reported by Wong et al by blending 

acid-soluble collagen with the polymeric suspension [123].  

Natural hydrogels exhibit better biocompatibility and cell affinity than synthetic 

hydrogels, although they possess poor control over the mechanical properties, 

water content and degradation rate. Hybrid hydrogels made of natural and 

synthetic polymers seem to be an obvious solution to capitalise on the 

advantages of both [120]. These hybrid hydrogels can consist of a polymeric 

network loaded with inorganic nanoparticles, which are dispersed between the 

polymer chains or obtained from the dispersion of at least two types of polymers 

interconnected via chemical or physical means. Incorporation of hard inorganic 

particles or dendrimers which have been physically trapped in the hydrogel 

network has been shown to improve the mechanical properties and bioactivity of 

collagen hydrogels [124-126]. 

Synthetic polymers are attractive candidates for tissue engineering constructs 

because they can be easily synthesised in large quantities with controlled 

molecular weights, molecular architectures, and depending on the 

polymerisation method, functional groups can be introduced by means of co-

polymerisation or modification of the reactive end-group [124].  

PEG hydrogels are among the most widely used synthetic materials in 3D cell 

culture due to their good biocompatibility, varied molecular weights and their 

wide range of functional end-groups and although non-degradable, they have 

been incorporated with MMP-sensitive peptides to make them physiologically 

degradable [127]. PEG hydrogels have adjustable mechanical properties and 
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allow easy control of the scaffold architecture and have also been approved by 

the Food and Drug Administration (FDA) for various clinical applications [120, 

128].  

 

1.4 Photoinitiators 

Photopolymerisation reactions are driven by chemicals that produce free-

radicals when exposed to specific wavelengths of light. A variety of 

photoinitiators are available capable of dissociation into a high-energy radical 

state after excitation from a light source [129]. 2-Hydroxy-1-[4-(2-hydroxyethoxy) 

phenyl]-2-methyl-1-propanone (Irgacure™ 2959 (I2959)) and Lithium phenyl-

2,4,6-trimethylbenzoylphosphinate (LAP) are two water-soluble type I 

photoinitiators which dissociate into two radicals following photon absorption. 

They are both capable of producing radicals when exposed to ultraviolet (UV) 

light (365 nm). I2959 is a commonly used photoinitiator for encapsulation of cells 

within hydrogels due to its well-established cytocompatibility at low 

concentrations [93, 129]. However, one major drawback is low water-solubility 

which causes difficulties in applications where a higher concentration is required 

(> 0.5% (w/v)). Another drawback is that the absorbance of I2959 peaks at ~280 

nm, this means it can suffer from competing absorbance when used in 

conjunction with collagen due to the aromatic amino acids absorbing at ~265 nm 

[130].  

Visible-light photoredox processes take place under mild conditions with typical 

irradiation sources such as LED torchers or lamps in conjunction with a type II 

initiator system such as the organic dye, eosin Y [131, 132]. A type II 

photoinitiator often requires a co-initiator to generate a sufficient number of 

radicals, and an increased oxidative efficiency is recorded when eosin Y (as the 

photocatalyst) is used in conjunction with triethanolamine (TEOA) [133-135]. 

Eosin Y presents a characteristic peak in the UV/Vis spectrum ~ 512 nm (green 

light) and upon excitation, eosin Y (EY) has increased redox potential. The 

radical cation, EY+• generated can undergo electron transfer with TEOA 

producing TEOA+• and regenerates ground state EY. In the absence of TEOA, 

the lifetime of EY+• is ~345 μs, while in the presence of 1.5 × 10−3 M TEOA the 

lifetime of EY+• is shortened to ~22.9 μs [135]. This process can be used as an 

oxidising agent for organic reactions such as the reduction of nitrobenzene, 

although its potential use as a visible light initiator for photopolymerisation has 

been reported [131, 133]. Visible-light systems hold advantages over traditional 
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UV-photoinitiators. The cytocompatible visible-light would eliminate any potential 

cellular toxicity imparted by UV radiation, which would also reduce the risk of 

peptide denaturation during UV exposure [130]. In addition, costs are reduced 

when the light source is from a LED compared to a UV lamp. 

 

1.5 Immune Response 

The final challenge for tissue engineering is presented in moving a bench-top 

concept into a living system [36]. Before the use of autologous or autogenic cells 

can be challenged, it has to be ensured that the construct is immune acceptable. 

Innate and active immune responses are the two components of this highly 

complex system of host defence. The non-specific innate immune response is 

antigen-independent and activated immediately (~seconds) to provide effective 

initial defence. In comparison the delayed active immune response (~days) is 

antigen-dependent and recognises and reacts to different substances with a 

degree of specificity and more effectively combats the foreign material [17, 136]. 

All materials implanted into a mammalian recipient are subject to response by 

the host’s innate immune system [137]. The cascade of overlapping events that 

take place include blood-material interactions and the deposition of a protein film 

on the biomaterial, provisional matrix formation, acute inflammation, chronic 

inflammation, granulation tissue formation, foreign body reaction and fibrosis and 

capsule development [138]. 

The major biomaterial-associated factors that could influence the host response 

include the chemical composition of the material, hydrophobicity/ hydrophilicity, 

elastic modulus, crystallinity, degradation profile, degradation product toxicity 

and surface topography [18, 139-141]. The patient characteristics are also of 

considerable importance to the immune response and a degree of variability can 

be observed dependent on age, sex, general health, physical mobility and 

general lifestyle features of the patient [141]. 

Surgical implantation is invariably associated with damaged tissue or cells at the 

surgical site which induces an acute inflammatory response mediated by 

neutrophils. Within seconds after implantation, circulating leukocytes and plasma 

proteins, such as fibrinogen, complement cascade (C5), albumin and IgG adsorb 

to the surface of the biomaterials forming a provisional matrix which provides a 

substrate with which inflammatory cells can interact [142]. The adsorption/ 

desorption of the plasma proteins is dependent on the physical and functional 
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nature of the biomaterial surface and the protein-affinity can determine the 

subsequent degree to which the material elicits a foreign body giant cell response 

[140]. Acute inflammation follows the deposition of the provisional protein matrix 

and consists of the emigration of neutrophils to the implant site. The chronic 

inflammation phase is typically characterised by the presence of macrophages 

which become activated and secrete cytokines to recruit leukocytes and other 

cell types involved in the foreign body reaction to the site of the implant. Within 

2 to 4 weeks, unresolved inflammation, marked by macrophage fusion into large 

multinucleated foreign body giant cells (FBGCs) surround the implant in a thick 

layer of fibrotic scar tissue which holds implications in terms of the material’s 

longevity [143, 144]. Although some inflammation may be desirable to mediate 

the healing process, a persistent inflammatory response around the implanted 

device prevents its functional interaction with the surrounding tissue, and will 

eventually lead to device failure [145]. The foreign body response with an 

outcome of tissue encapsulation is an undesirable outcome for tissue 

engineering strategies which seek to promote functional recovery. 

Several mechanisms have evolved to put the brakes on the inflammation. 

Alternatively activated macrophages express more IL-10 than classically 

activated macrophages (macrophages stimulated for tissue remodelling vs 

macrophages stimulated to kill microbes) which inhibits the production of various 

inflammatory cytokines. Growth factor and cytokine delivery have been shown to 

have wide ranging effects upon the success of implantable constructs in vivo 

[143]. 

 

1.5.1 Immune Modulation 

Current strategies to mediate the foreign body reaction focus on reducing protein 

adsorption, initial cell adhesion, inflammatory cytokine secretion and FBGC 

fusion. The biological response of the host focuses on surface interactions 

between the biomaterials and the biological system. Current strategies in the 

design of immunomodulating biomaterials include altering the surface chemistry, 

roughness or geometry of the material to determine the degree to which the 

serum proteins adsorb onto it and cell adhesion [144]. The adsorbed provisional 

protein layer provides binding sites for protein-specific receptors on monocytes 

and macrophages which can thus dictate compatibility of the material that is 

placed in the body [137, 143]. Synthetic coatings such as poly(lactic coglycolic 

acid) (PLGA) or PEG, have been used to render an implant biocompatible due 

to their ability to prevent protein adsorption and thus inhibiting recognition by the 
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immune cells [137]. Additionally, imprinting of a parallel pattern on the surface of 

the polymer has been shown to affect macrophage adhesion in vivo independent 

of the biomaterial surface chemistry [144]. Although adherence to roughened 

materials will trigger a more rapid production of reactive oxygen species 

compared to smooth materials and an exacerbated inflammatory response [146]. 

Another approach for modulating the immune response is incorporation of 

bioactive cues such as adhesion sites, growth factors, anti-inflammatory 

mediators or drugs to mediate material-host tissue interaction, for example, 

coatings that release or generate nitric oxide (NO) reduce thrombogenesis and 

inflammation [143, 144]. 

The immune response has the potential to cause extensive damage; however, 

recent approaches have attempted to modulate tissue response in a manner to 

promote wound healing and improve implant integration. Although chronic 

inflammation and foreign body reactions have to be avoided since they can lead 

to device failure [143]. Whether a material should elicit an immune responses to 

initiate the repair/ regeneration processes or remain ‘invisible’ to the host 

presents a biocompatibility paradigm [141].  

 

1.5.2 What Makes a Good Scaffold? 

Biomaterials are central to many strategies for regenerative medicine. Defined 

as a substance that has been engineered to take a form which is used to direct 

the course of any therapeutic or diagnostic procedure, they provide mechanical 

stability and an initial site for cell adhesion and migration [147]. 

Biocompatibility refers to the ability of a material to perform with an appropriate 

host response in a specific situation, with the definition changing over the years 

to follow the transition of biomaterials science from a subject that was almost 

solely concerned with implantable medical devices, such as hip replacements to 

biomaterials used in tissue engineering. 

For tissue engineered constructs, an increasing number of applications require 

that the material should specifically react with the tissues rather than be ignored 

by them [141]. Implantation of muscle constructs in vivo which provide a foreign 

body reaction can result in angiogenesis and the in-growth of blood vessels than 

enable cell viability in the long-term [35]. Inflammation can also result in 

spontaneous healing through initiation of the natural healing process which 

promotes the activation of resident stem cells [141]. Clearly chronic inflammation 

should be avoided since there is no point in designing a complex system for 
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guiding tissue regeneration if it is ultimately destroyed by the influx of 

inflammatory cells. 

 

1.6 Aims and Objectives 

The aim of this project was to design defined collagen-based hydrogel networks 

to investigate stiffness-induced cell differentiation. The following objectives were 

identified in order to achieve this goal: 

1. Functionalise collagen with either thiols or vinyl groups using facile, cell-

friendly method whilst keeping the triple helical conformation intact to 

accomplish hydrogels.  

2. Examine novel synthetic strategies for cross-linking collagen to prepare 

defined covalent networks with reliable, varied molecular architecture and 

substrate stiffness. 

3. Chemical, physical and mechanical characterisation of hydrogels  

4. In vitro tests with myoblast cell line to examine differentiation and 

proliferation 

5. In vivo subcutaneous model on best performing hydrogel to analyse the 

immune response. 
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 - Functionalisation of Collagen Type I and 

Photoinitiator Comparison 

 

2.1 Introduction 

The aim of this chapter was to extract and characterise type I collagen before 

functionalisation to provide reactive moieties to prepare hydrogels by 

photopolymerisation, physical cues (e.g. temperature) or click chemistry. These 

reactions were developed to abide by synthetic considerations such as low 

reaction temperatures (below 37 oC) to prevent collagen denaturation and the 

use of non-hazardous solvents and/ or chemicals. An analysis of water-soluble 

photoinitiators was also performed as a prerequisite before the development of 

a novel cross-linking strategy in chapter 3. 

Collagen is a naturally occurring polymer and the most abundant structural 

protein in the extracellular matrix (ECM) [148]. Twenty-nine different types of 

collagen have been identified, characterised by their triple helical conformation 

with the largest subgroup comprising of fibril-forming type I collagen [63, 149]. 

The advantages of using collagen as a scaffold material include good 

biocompatibility, permeability, availability, natural affinity for biomolecules and 

good biodegradability [4, 148, 150]. Although drawbacks include poor 

mechanical performance, potential antigenicity and batch to batch variability. As 

a biomaterial, collagen can be used intact, spun into fibres or as a swollen 

hydrogel with a wide range of applications including sutures, tissue replacement 

and skin regeneration templates [74, 151].  

 

2.1.1 Collagen Functionalisation 

Intra- and intermolecular cross-linking takes place in vivo to impart desired 

mechanical stability on collagen fibrils [152]. This enzyme-mediated cross-linking 

does not occur in vitro and consequently, reconstituted forms of collagen suffer 

from poor mechanical performance [153]. Collagen functionalisation, or cross-

linking can be performed to improve its mechanical or biological properties by 

incorporating new reactive moieties or can be used to produce a film or hydrogel 

network to meet the demands of in vitro or vivo applications [75, 78-81]. Several 
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chemical techniques have been developed to functionalise collagen which rely 

on the modification of the amine and carboxyl groups within the molecules to 

produce new covalent bonds [154]. Glutaraldehyde was the most employed 

method to cross-link collagen involving the formation of an imine group from the 

lysine or post-modified hydroxylysine amino acid, although issues arose due to 

toxicity [155].  

Epoxy compounds possess a highly strained three-membered ring which is 

susceptible to a nucleophilic attack predominantly with the amine groups of 

(hydroxy) lysine residues, whose cumulative occurrence counts for ~3.24 x 10-4 

mol.g-1 ([Lys]) of collagen [78, 156-158]. Nucleophilic substitution reactions also 

occur with acyl chlorides or alkyl halides where the electronegative halogen 

group provides a carbon susceptible to nucleophilic attack by the amine in 

conjunction with a base e.g. triethylamine [75, 159].  

Another method for functionalisation is a dehydration reaction between the 

hydroxy (lysine) amine and a chemical (or conversely, carboxy-containing Asp 

or Glu) with an available carboxylic acid group. Carbodiimide 1-ethyl-3-(3-

dimethyl aminopropyl) carbodiimide (EDC) reagent can be used as a zero-length 

cross-linker in this reaction incorporated with N-hydroxysuccinimide (NHS) to 

activate the carboxylic acid group and thereby increase its reactivity for attack by 

the amino group [159]. The by-products of NHS/EDC cross-linking are water 

soluble and therefore can easily be removed by washing [85].   

An advantage of chemical cross-linking is that the mechanical performance of 

the resulting hydrogel can be systematically adjusted via variation in cross-linker 

type and cross-link density, so that controlled tissue-specific ECM analogues can 

be successfully obtained [73, 75, 79]. Limitations include reagent toxicity, side 

reactions and lack of triple helical preservation in resulting cross-linked systems, 

the latter being key to ensure high affinity for cells and mechanical stability in 

physiological conditions. Modification considerations should dictate low reaction 

temperatures and the use of non-hazardous solvents and/or chemicals [160].  

‘Click’ chemistry is a method which invokes high reactivity, selectivity and uses 

mild reaction conditions; two examples being the Michael-type thiol addition 

reaction, which requires an electron deficient double bond and a catalyst and the 

thiol-ene radical addition, which requires the use of an electron rich vinyl group 

incapable of homopolymerisation and a photoinitiator [101].  
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To produce a collagen hydrogel by incorporating thiol click chemistry, it would 

first be necessary to functionalise collagen to contain an available thiol or vinyl 

group. 

 

2.1.2 Photoinitiators  

The preparation of hydrogels by photopolymerisation holds interest due to its 

potential use for injectable devices, 3D printing or for in situ cell encapsulation. 

However, various parts of this process are potentially toxic to cells, including 

exposure to certain wavelengths, free radicals and the photoinitiators themselves 

[132, 161].  

Irgacure-2959 (I2959), lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) 

and eosin Y are an examples of water-soluble photoinitiators that require 

different wavelengths of light to react (Figure 2.1-1). I2959 and LAP are type I 

photoinitiators that release radicals upon exposure to wavelength 365 nm (UV) 

and 405 nm (violet/blue light) respectively [11]. Eosin Y is a dye which acts as a 

type II photoinitiator when used in conjunction with a co-initiator e.g. 

triethanolamine (TEOA) and exposed to visible light, 516 nm (green light). The 

photochemistry of eosin Y is well investigated: upon excitation, eosin Y becomes 

more reducing and more oxidising compared to in its ground state [162]. 

 

 

 

A      B     

 

 

 

C 

Figure 2.1-1 Chemical structures of the initiators (a) I2959, (b) LAP and (c) 

eosin Y 
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2.2 Materials and Methods 

 

2.2.1 Materials 

Rat tails were acquired from the University of Leeds’ animal house. Acetic acid 

(17.4 M), glycidyl methacrylate, 4-vinylbenzoyl chloride, 2,4,6-

trinitrobenzenesulfonic acid, poly(n-isopropylacrylamide), carboxylic acid 

terminated (Mn 10,000) and dulbecco’s phosphate buffered saline were 

purchased from Sigma-Aldrich. N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide 

hydrochloride, 98 +% and tris(2-carboxyethyl)phosphine hydrochloride, 98% 

were purchased from Alfa Aesar. 1,3-Phenylenediacetic acid was purchased 

from VWR International. Triethanolamine, 99+%, eosin Y disodium salt, diethyl 

ether, anhydrous 99 +%, 2-iminothiolane hydrochloride, 98% and n-acetyl-L-

cysteine, 98% were purchased from Fischer Scientific Ltd. 5-norbornene-2-

carboxylic acid, 98%, mix , poly(ethylene glycol) divinyl ether (Mn 250), 

poly(ethylene glycol) diacrylate (Mn 700) and 2-mercaptoethanol were 

purchased from Sigma. Dithiothreitol was purchased from Life Technologies. 2-

Hydroxy-1-(4-(2-hydroxyethoxy)phenyl)-2-methylpropan-1-one (I2959) was 

purchased from Fluorochem Limited. Lithium phenyl-2,4,6-

trimethylbenzoylphosphinate was purchased from Tokyo chemicals industry. 

ATPlite™ Luminescence Assay System, 1000 Assay Kit was purchase from 

Perkin Elmer. LIVE/DEAD Viability/Cytotoxicity Kit for mammalian cells and n-

hydroxysuccinimide were purchased from Thermo Fischer Scientific. Acrylate 

PEG succinimidyl carboxymethyl ester (Mw 2000, 3000) was purchased from 

JenKem Technology USA. 

 

2.2.2 Collagen Type I 

Type I collagen was isolated in-house via acidic treatment of rat-tail tendons. 

Briefly, rat-tails were defrosted in ethanol before the skin was removed using a 

scalpel. The tails were allowed to dry before the exposed tendons (approx. four 

per tail) were removed, placed in acetic acid (17.4 mM) and stirred for 48 hours. 

The solution was centrifuged (11,000 rpm, 40 min) and the pellet removed to 

leave the soluble collagen type I dissolved in the acetic acid. The solution was 

freeze-dried to produce white, acid-soluble collagen type I. 
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2.2.3 Collagen Functionalisation 

Collagen can be functionalised using the long, unhindered amine group (NH2) on 

(hydroxy) lysine [Lys]. This has an occurrence of 3.24 x 10-4 mol.g-1 collagen type 

I. A TNBS assay was used to quantify the functionalisation of the collagen and 

an Ellman’s assay was used to show the presence of thiol groups. 1H NMR and 

ATP FT-IR were not used due to overlapping peaks from the amino acids already 

present in collagen. 

 

2.2.3.1 Dehydration Reaction 

N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)/ N-

hydroxysuccinimide (NHS) can be used together to perform a dehydration 

reaction between an amine group and a carboxylic acid group (COOH) in 

aqueous conditions. 

2.2.3.1.1 Collagen-NAC 

Collagen was dissolved in HCl (10 mM, 0.8 wt.%). N-acetyl-l-cysteine (NAC)) (5-

50 M excess [Lys]) was stirred with EDC (1:3 M NAC: EDC), NHS (1:1 M NHS: 

EDC) in phosphate buffer at 0 oC for 30 minutes. 2-mercapto ethanol (2ME) (1:1 

M NHS: 2ME) was added and stirred for 10 minutes to deactivate the NHS/EDC 

not reacted with NAC so it would not cross-link the amine and carboxylic groups 

on the collagen. The deactivation step allowed confidence that the only reaction 

taking place was between the activated NAC and the amine group. The activated 

NAC solution was added to the collagen mixture and stirred for 24 hours. The 

solution was precipitated into ethanol (20 x excess), stirred for a further 24 hours 

then centrifuged (11,000 rpm, 40 min) and the pellet air dried (Figure 2.2-1). 
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Figure 2.2-1 Activation of n-acetyl-l-cysteine (1) with EDC (2) and NHS (3) 

to produce a semi-stable NHS-ester followed by a substitution 

reaction with lysine. 

 

2.2.3.1.2 Collagen-Norbornene 

A dehydration reaction was performed to attach a norbornene group to the 

collagen back bone. Collagen was dissolved in HCl (10 mM, 0.8 wt.%). 5-

norbornene-2-carboxylic acid (10 M excess [Lys]) was stirred with NHS (1:3 M 

norbornene: NHS), EDC (1:1 M NHS: EDC) in dimethyl sulfoxide (DMSO) (10 

wt.% with respect to norbornene g) at 0 oC for 30 minutes. 2ME (1:1 M NHS: 

2ME) was added to deactivate the non-activated EDC and stirred for 15 minutes. 

Collagen and DMSO solutions were combined and stirred for 24 hours. The 

solution was precipitated into ethanol (20 x excess), stirred for  24 hours then 

centrifuged (11,000 rpm, 40 min) and air dried (Figure 2.2-2). 

 

 

Figure 2.2-2 norbornene-2-carboxylic acid (1) dehydration substitution 

reaction with collagen (EDC/NHS). 
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2.2.3.1.3 Collagen-PNIPAM 

A dehydration reaction was performed to attach thermoresponsive PNIPAM to 

the collagen backbone. Collagen was dissolved in hydrochloric acid (10 mM, 0.8 

wt.%). Poly(n-isopropylamide) (PNIPAm) carboxylic acid terminated (10,000 

g.mol-1) (x 4 M excess [Lys]), EDC (1:3 [COOH]) and NHS (1:1 [EDC]) were 

stirred in PBS at 0 oC for 30 minutes. 2-mercapto ethanol (1:1 [EDC]) was added 

and stirred for a further 10 minutes. Both mixtures were combined and stirred 

overnight. The solution was precipitated into ethanol (20 x excess), stirred for a 

further 24 hours then centrifuged (11,000 rpm, 40 min) and the pellet air dried 

(Figure 2.2-3). 

 

 

 

Figure 2.2-3 Activation of poly(N-isopropylacrylamide), carboxylic acid 

terminated (1) with EDC (2) and NHS (3) to produce a semi-stable NHS-

ester followed by a substitution reaction with lysine. 

 

2.2.3.2 Nucleophilic Addition/ Substitution Reaction 

2.2.3.2.1 Collagen-2IT 

Collagen type I was stirred in acetic acid (17.4 mM, 1 wt.%) until dissolution. The 

pH of the solution was adjusted to pH 7.4 and then 2-iminothiolane (Traut’s 

reagent, 2IT) (10-30 M excess [Lys]) was added with 1,4-dithiothreitol (DTT) (1:1 

[2IT]) to reduce disulphide bonds formed within the collagen-2IT and the solution 

was stirred for 24 hours .The solution was precipitated into ethanol (20 x excess), 
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stirred for a further 24 hours then centrifuged (11,000 rpm, 40 min) and the pellet 

air dried (Figure 2.2-4). 

 

 

 

Figure 2.2-4 Ring-opening nucleophilic addition reaction of Traut’s reagent 

(1) and lysine at pH 7.4. 

 

2.2.3.2.2 Collagen-PEG-Acrylate 

Collagen type I was dissolved in acetic acid (17.4 mM, 0.8 wt.%) the pH was 

adjusted to pH 7.0. NHS-PEG-acrylate was added (0.5-1 M excess to [Lys]) and 

left to react overnight. The solution was precipitated into ethanol (20 x excess), 

stirred for a further 24 hours then centrifuged (11,000 rpm, 40 min) and the pellet 

air dried (Figure 2.2-5). 

 

 

 

Figure 2.2-5 Nucleophilic substitution reaction between lysine and NHS 

ester. 

 

2.2.3.2.3 Collagen-GMA/ Collagen-4VBC 

Two vinyl moieties: Glycidyl methacrylate (GMA) and 4-vinylbenzyl chloride 

(4VBC) were attached to the collagen backbone by a substitution reaction. 

Collagen type I was dissolved in HCl (10 mM, 0.25 wt.%) and then the pH 

adjusted to 7.4. Tween20 (1%) was added to the solution followed by GMA or 

4VBC (10-50 molar excess) and trimethylamine (1:1 to vinyl) and the solution 

was stirred for 24 hours. The solution was precipitated into ethanol (20 x excess), 
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stirred for a further 24 hours then centrifuged (11,000 rpm, 40 min) and the pellet 

air dried (Figure 2.2-6). 

 

 

Figure 2.2-6 Nucleophilic addition reaction of GMA (1) and nucleophilic 

substitution reaction of 4VBC (2) with lysine. 

 

2.2.4 Photoinitiators 

Three commercially available, water-soluble photoinitiators were studied to 

examine their effectiveness with collagen for photopolymerisation: Irgacure 2959 

(I2959) (365 nm), lithium phenyl-2,4,6-trimethyl-benzoylphosphinate (LAP) (365 

nm) and eosin Y (EY)/ triethanaloamine (TEOA) (516 nm). Interpenetrating 

network hydrogels were prepared using collagen type I dissolved in acetic acid 

(17.4 mM, 0.8 wt.%), polyethylene glycol diacrylate (PEGdA) (Mn 700) (10% 

(w/v)) and eosin Y (0.1 mM)/ TEOA (0.75% (w/v) followed by exposure to green 

light. 

 

2.2.4.1 In Vitro Cytotoxicity Assay 

G292 cells (1 x 104 cells in 100 ɥL) cultured in 96-well plates were exposed to 

increasing concentrations of I2959, LAP and eosin Y/TEOA (0.01, 0.05, 0.1, 

0.5% (w/v)). ATPlite assay was used to assess cell viability after 24 hours in 

culture. The absorbance of the experimental groups was normalised with respect 

to the corresponding tissue culture plastic control group to provide relative 

survival [129, 132]. 
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2.2.5 Characterisation 

 

2.2.5.1 Trinitrobenzenesulfonic (2,4,6) acid (TNBS) Colorimetric Assay 

This assay was performed to determine the content of free-available amine 

groups and thereby the degree of functionalisation. Functionalised collagen 

(0.011 g) and a reference sample (0.001 g) were placed in a vial. Sodium 

hydrogen carbonate (NaHCO3) (4%, 1 mL) and TNBS (0.5%, 1 mL) were added. 

Hydrochloric acid (HCl) (6 N, 3 mL) was added to the reference sample. This 

was stirred at 40 oC for 3 hours. HCl (6 N, 3 mL) was then added to non-reference 

sample and stirred at 60 oC for 1 hour to complete the reaction. Dilution in water 

(5 mL) was followed by extraction in diethyl ether (3 x 15 mL). An aliquot (5 mL) 

was removed and diluted in water (15 mL). Absorbance was measured at 346 

nm. 

The degree of collagen functionalisation, F, was determined by TNBS 

colorimetric assay, according to the following equations:  

Equation 2.2.1 

𝑚𝑜𝑙 (𝐿𝑦𝑠)

𝑔 (𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛)
=  

2. 𝐴𝑏𝑠 (346 𝑛𝑚). 0.02 𝐿

1.46 𝑥 104(𝑀−1𝑐𝑚−1). 𝑏. 𝑥
 

 

Where: Abs (346 nm) is the absorbance value at 346 nm, 0.02 is the volume of 

sample solution (in litres), 1.46 x 104 is the molar absorption coefficient for 2,4,6-

trinitrophenyl lysine (in M-1.cm-1), b is the cell path length (1 cm) and x is the 

sample weight.  

Equation 2.2.2 

𝐹 = 1 −
𝑚𝑜𝑙(𝐿𝑦𝑠)𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑧𝑒𝑑 𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛

𝑚𝑜𝑙(𝐿𝑦𝑠)𝑛𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛
  

 

Where: mol(Lys) native collagen and mol(Lys)functionalised collagen represent the total 

molar content of free amino groups in native and functionalised collagen, 

respectively. The nomenclature (Lys) is hereby used to recognise the amine 

contribution of lysines and post-modified hydroxylysines. 
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2.2.5.2 Circular Dichroism (CD) 

This technique was used to evaluate the secondary structure of collagen. CD 

spectra of functionalised samples were acquired with a ChirascanCD 

spectrometer (Applied Photophysics Ltd) using solutions in acetic acid (0.2 

mg.ml-1, 17.4 mM). Sample solutions were collected in quartz cells of 1.0 mm 

path length, whereby CD spectra were obtained with 4.3 nm band width and 20 

nm min-1 scanning speed. A spectrum of the acetic acid (17.4 mM) control 

solution was subtracted from each sample spectrum. To present the data in 

terms of ellipticity (θ), the data is normalised by scaling to molar concentrations 

and Mean Residue Weight (MRW) for the peptide bond (90 Da) [163].  

Equation 2.2.3 

θ𝑚𝑟𝑤,𝜆 =
𝑀𝑅𝑊 𝑥 θ𝜆

10 𝑥 𝑑 𝑥 𝑐
  

 

Where θλ is observed ellipticity (degrees) at wavelength λ, d is path length (1 cm) 

and c is the concentration (0.2 mg.ml-1).  

The ratio of the magnitude of the positive to negative peaks (RPN) was used as 

an indication of the triple helix architecture and for functionalised samples and 

quantification of the triple helix preservation was calculated by normalisation of 

RPN values with respect to the RPN value of native collagen. 

Temperature ramp measurements at 221 nm fixed wavelength were conducted 

from 20 to 60 °C with 20 °C/hour heating rate, so that denaturation temperature 

(Td) was determined as the mid-point of thermal transition. 

 

2.2.5.3 Attenuated Total Reflectance Fourier-transform Infrared (ATR FT-

IR) Spectroscopy 

ATR FT-IR was carried out on dry samples using a Perkin-Elmer Spectrum BX 

spotlight spectrophotometer with diamond ATR attachment. Scans were 

conducted from 4000 to 600 cm-1. Data attained from ATR FT-IR was dismissed 

for functionalised collagen as a result of hidden peaks from the amino acids on 

collagen. 
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2.2.5.4 Nuclear Magnetic Resonance Spectrometry (NMR) 

Solid state NMR was performed on dry samples using Varian VNMRS & Bruker 

Advance III HD. Carbon-13 and H-1 spectra were recorded. This service was 

provided by the solid-state NMR Service at Durham University as part of a 

EPSRC service. 

 

2.2.5.5 Ultraviolet/ Visible (UV/VIS) Spectrometry 

UV/Vis spectroscopy was carried out on solutions (1 μL) using a Thermo 

Scientific NanoDrop Lite spectrophotometer or (1.5 mL) in a quartz vial to use 

JENWAY 6305 spectrophotometer. 

 

2.2.5.6 ATPlite Assay 

A vial of lyophilised ATP standard solution (9.6 μmole) was reconstituted in ATP 

buffer solution (5 mL). The media from cells cultured in a 96 cell well plate was 

removed. Mammalian cell lysis solution (50 μL) was added and the plate was 

shook for five minutes in an orbital shaker at 700 rpm. ATP solution (50 μL) was 

added and shook for a further 5 minutes. An aliquot (50 μL) was removed and 

added to an optiplate. This was dark adapted for 10 minutes inside the machine 

before the luminescence was measured using a Perkin Elmer TopCount [129]. 

 

2.2.6 Statistics 

Data has been expressed as mean ± standard error of the mean (SEM) unless n 

> 20, when it is expressed as mean ± standard deviation. Statistical analysis was 

performed using MiniTab software. Levene’s test was used to test for variance 

in data, t-test for comparison of two different groups, one-way ANOVA followed 

by post-hoc Tukey test on data when Levene’s test showed p ≥ 0.05 and equal 

variances could be assumed and a Welch’s ANOVA followed by a post-hoc 

Games-Howell on data when Levene’s test p ≤ 0.05 and equal variances could 

not be assumed. Statistical significance was determined by p ≤0.05.  

 

2.3 Results and Discussion 

Sample nomenclature used in this work is as follows: functionalised collagen is 

coded as “collagen-X”, where “X” identifies the functional reactive group used. 
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GMA - glycidyl methacrylate (vinyl group), 4VBC -.4-vinylbenzyl chloride (vinyl 

group), NAC - n-acetyl-l cysteine (thiol group) and 2IT - 2-iminothiolane (thiol 

group).  

 

2.3.1 Collagen Type I 

Soluble collagen type I was extracted from rat tail tendons. TNBS assay showed 

an occurrence of (hydroxy) lysine (NH2) of 3.24 x 10-4 mol.g-1 due to 100% 

attachment of TNBS onto the amine groups. CD was used to analyse the triple 

helical conformation of the collagen (Figure 2.3-1). The unique supercoiled 

polyproline type II secondary structure of the protein backbone exhibits distinct 

CD transitions, including a positive peak at 221 nm and a negative peak at 198 

nm which is characteristic of the triple helix conformation [163-165]. The 

magnitude ratio of the positive peak to the negative peak (RPN) can be used as 

an indication of the triple helical structure. This was calculated as 470414: (-

)3739571 =0.126 (literature RPN 0.117 [79]) for collagen type I. Normalisation of 

corresponding RPN value of functionalised collagen with respect to the RPN 

value of native collagen can be used as an indication of the preservation of the 

triple helix [166]. 

 

Changes in the positive peak at 221 nm are indicative of changes to the triple 

helix structure, so this wavelength was monitored in a CD melting curve 

experiment to show the thermal denaturation with increasing temperature (Figure 

2.3-2). The denaturation temperature was measured at the temperature of half 

the initial ellipticity, this was recorded to be 36.5°C with a literature value of RT 

collagen type I Td – 37 oC [167].  
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Figure 2.3-1 CD spectra of collagen type I. 



 
 

44 

 

 

NMR spectroscopy is a technique used for determining the structure of organic 

compounds. Solid-state proton and carbon-13 nuclear resonance spectroscopy 

was performed on collagen type I (Figure 2.3-3). The formation of the collagen 

triple-helix conformation requires the presence of the repeating Gly-X-Y motif, 

with the most common repeating sequence being Gly-Pro-Hyp. Therefore most 

of the peaks arising from NMR on collagen will be due to these major amino acid 

residues, glycine (33%), proline (12%) and hydroxyproline (9%) [168]. 1H NMR 

was shown to only provide moderate information on the collagen structure 

because of many overlaps of the resonances (Figure 2.3-3 B) [169] Figure 2.3-3 

(A) shows a broad peak in the carbonyl carbon chemical shift region (∼170 ppm) 

which is indicative of the peptide bonds in collagen. The peaks in the 30-80 ppm 

aliphatic region are mainly due to the major amino acid residues, Gly, Pro and 

Hyp. The peaks recorded were 70.97, 59.62, 54.56, 49.65, 47.84, 43.07, 38.66, 

32.95, 30.28 and 25.29 ppm. In the literature, Gly Cα is stated to display two 

peaks of relative intensity at 43.37 and 42.60 ppm [169]. The most intensive peak 

in the 13C NMR was at 43.07 ppm. Due to the information from the literature, this 

peak could be indicative of Gly Cα, although sufficient distinction was difficult due 

to spectral resolution. In the aliphatic region of the spectrum, the only other peak 

which could be easily resolved was the Hyp peak due to the hydroxyl group 

attached to the carbon increasing its electronegativity. From the literature, Hyp 

peaks are shown to resonate at 38.9 and 71.1 ppm, so this could be assigned 

as the highest peak in the aliphatic region of 70.97 [170]. The other peaks in the 

aliphatic region are not straightforwardly assigned due to each amino acid 

producing several 13C peaks at overlapping chemical shifts.  
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Figure 2.3-2 Temperature-ramp CD spectra of collagen type I. 
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Figure 2.3-3 Solid-state nuclear resonance spectroscopy of collagen type 

I (A) 13C NMR spectrum (B) 1H NMR spectrum. 
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FTIR spectra of collagen displayed no distinction between the amino acids. 

Although the amide bonds are observed in terms of carbonyl, C=O peak (1650 

cm-1), C-N stretch (1240 cm-1) and N-H stretch (1550 cm-1). Additionally, a broad 

peak was observed at ~ 3300 cm-1 indicative of -OH (3320 cm−1) and NH 

stretching 3020 cm−1 [78, 171].  

 

2.3.2 Collagen Functionalisation 

 

2.3.2.1 Collagen-GMA/ Collagen-4VBC 

Collagen was initially functionalised with vinyl-bearing moieties GMA (flexible) 

and 4VBC (rigid) following protocols by Tronci et al, to produce water-stable 

biomimetic systems with good preservation of the triple helical network [75, 79]. 

As discussed in section 3.2.2.2, hydrogel networks were subsequently obtained 

following UV irradiation of the vinyl-functionalised collagen. The degree of 

functionalisation was calculated by a TNBS assay whereby a lowered molar 

content of free, non-reacted (hydroxy) lysine groups was observed (< 3.24 x 10-

4 g.mol-1 [Lys]). It was shown by Tronci et al that the degree of collagen 

functionalisation could be controlled based on the monomer type and the molar 

excess of monomer with respect to [Lys]. To obtain similar degrees of 

functionality, 50x excess of GMA and 30x excess of 4VBC were used to prepare 

collgen-GMA (F~40%) and collagen-4VBC (F~44%), similar to the literature 

values [79]. As discussed in section 4.2.3.2, the collagen-4VBC material was 

taken forward using a rat calvarial defect model to study it’s in vivo stability. 

 

2.3.2.2 Collagen-PNIPAm 

Poly(N-isopropylacrylamide) (PNIPAm) is a temperature responsive polymer 

which forms a hydrogel when heated above 32 oC. By grafting this polymer onto 

the collagen backbone, it could provide a facile means to encapsulate cells in a 

physical hydrogel at 37 oC without the need of an additional harmful base or 

photoinitiator. Three collagen-PNIPAM papers were identified. Nistor et al 

reported a co-monomer NIPAM mixture being polymerised over a collagen 

support, so no functionalisation with the collagen molecule [172]. Barnes et al 

reported hybrid collagen and poly(N-isoproylacrylamide-co-styrene-graft-NVP) 

(NSN) hydrogels, although this was an interpenetrating hydrogel network of both 

solutions heated to 37 oC [173]. Fitzpatrick et al reported collagen functionalised 
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with PNIPAM using EDC/NHS chemistry to graft PNIPAM amine-terminated onto 

the collagen backbone (COOH groups from Asp and Glu) [174]. The problem 

with this published method (Fitzpatrick) is that when the COOH groups are 

activated on Asp and Glu, they are also susceptible to nucleophilic substitution 

reaction by the amine group on (hydroxy) lysine (in addition to the amine-

terminated PNIPAM). To solve the issue of the unwanted side reactions, in the 

current study, a similar reaction was attempted whereby carboxylic acid-

terminated PNIPAM (Mw 10,000) was activated using EDC/NHS rather than Asp 

or Glu and grafted to collagen by reaction with the (hydroxy) lysine groups. As 

stated in previous work by Tronci et al, the degree of functionalisation is affected 

by both monomer type and the molar excess of monomer, however, due to the 

expense of the PNIPAM-carboxylic acid terminated chemical, an excess of only 

2x or 4x was used. TNBS assay showed functionalisation up to 53.3% and this 

new material was dissolved in acetic acid (1 wt.%, 17.4 mM). However, when 

this new collagen-PNIPAM solution was warmed in the incubator to 37 oC, 

gelation was not achieved, instead the solution turned cloudy and the viscosity 

increased. The characteristic thermoresponsive collapsed structure over 32 oC 

of PNIPAM was observed (cloudy solution), however, no physical hydrogel was 

formed. This was attributed to the overall concentration of the PNIPAM in the 

solution being too low to contribute to the thermal-gelling. Even at a 

functionalisation of 53.3% of the 3.24 x 10-4 mol.g-1 (hydroxy) lysine groups, 

PNIPAM would still contribute a low w/v (%) of the overall collagen-PNIPAM 

solution (1 wt.%). Yan et al reported a PNIPAM hydrogel (20 wt.%) with elastic 

modulus (G’) in the Pa range, however, collagen is limited by its solubility to 

achieve concentrations this high [175]. Ohya et al reported the synthesis of 

PNIPAM-gelatin via a two-step process ending in graft copolymerisation of 

NIPAM. The advantage of using gelatin was that the final concentrations they 

used of the PNIPAM-gelatin for testing were 5 and 20 w/v (%) thereby allowing 

the PNIPAM to surpass its critical gelation concentration [176]. Therefore it was 

acknowledged that grafting PNIPAM onto the backbone of gelatin would be more 

preferential than grafting onto collagen due to the higher concentration that could 

be achieved in a solution. 

 

2.3.2.3 Collagen-PEG-Acrylate 

Acrylate PEG succinimidyl carboxymethyl ester was purchased to provide a 

friendly, facile means to functionalise collagen. The PEG molecule possessed 

an acrylate and an NHS group which could be used in a nucleophilic substitution 
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reaction with hydroxy (lysine). This chemical was very expensive although the 

NHS functionality made it very reactive, an excess of 0.5x provided a degree of 

functionalisation 43.9% and an excess of 1x degree of functionalisation was 

79.1%. 

Unfortunately this acrylate-PEG functionalised collagen had very poor solubility 

in weakly acidic solutions of acetic and hydrochloric acid and would not dissolve 

even when the experiment was repeated several times. Despite the reaction 

taking place in the dark, it was presumed that one step during the process had 

caused some of the vinyl groups to react, thus providing a non-soluble network 

[75]. 

 

2.3.2.4 Thiol Click Chemistry 

Cysteine is a naturally occurring amino acid which contains an available thiol 

group. This amino acid is not present in collagen type I however, it was used as 

biomimetic inspiration when deciding means to functionalise collagen to provide 

an available thiol group. N-acetyl-l-cysteine (NAC) was identified as a derivative 

of cysteine wherein an acetyl group is attached to the nitrogen atom (providing a 

COOH group). This compound is non-toxic and is sold as a dietary supplement. 

A dehydration reaction with NAC and EDC/NHS was devised to successfully 

thiolate collagen (collagen-NAC). NAC like most thiols (RSH), can be oxidised 

by a large variety of radicals and also serve as a nucleophile (electron pair donor) 

to produce both a thiolate anion RS− and thiyl radical (RS•) and can be 

potentially used for thiol click chemistry [177]. The pKa of NAC is 9.51 and is 

relatively high compared to cysteine, pKa 8.18 [177]. 

Additionally, a base-free reaction with Traut’s reagent (2IT) was examined as 

another means to thiolate collagen. Whilst NAC was a more biomimetic approach 

to thiolate collagen, it involved EDC/ NHS activation whereas 2IT would react 

with (hydroxy) lysine using a ring-opening reaction at pH 7.4 without the need of 

an additional, harmful base. This ring opening reaction also maintains the charge 

properties similar to the original amino group. 

The functionalisation of the primary amine groups of collagen was confirmed 

using a TNBS assay and represented as the degree of functionalisation. The 

degree of triple helix preservation (%) of the collagen after functionalisation was 

determined using CD with normalisation against the RPN value of native 

collagen (Figure 2.3-4).  
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Increasing the excess of NAC in the reactant mixture with respect to the available 

primary amine [Lys] showed a comparable increase in the degree of 

functionalisation of the collagen. Using 5 times excess presented 18% 

functionalisation whereas 50 times excess presented 72% functionalisation. 

Triple helical preservation showed a decrease from 90→85% with increasing 

degree of functionalisation of the collagen. The collagen-NAC (50x excess) was 

used for most experiments due to its high degree of functionality (72%) and triple 

helical preservation (85%). It was found that this new material was only soluble 

in acetic acid (17.4 mM) and would not dissolve in hydrochloric acid (10 mM) or 

PBS. 

In comparison, when collagen was functionalised with 2IT, a 5 times excess 

presented a 55% functionalisation, whereas 20 times excess presented 80% 

functionalisation (Figure 2.3-5). The degree of triple helical preservation was 

relatively unaffected by the increased conversion of amine to thiol groups 

(preservation >89 %); this is beneficial to preserve the material’s stiffness and 

natural high affinity for cells [178]. Up to 72% functionalisation (15x excess), triple 

helical preservation remained above 95%. The preservation decreased to 89% 

above 80% lysine functionalisation. For this reason, future experiments used a 

15 times excess (72% functionalisation) to keep triple helical preservation above 

95%. This high degree of triple helical preservation is likely due to the small 

amount of steric hindrance from the small, five-atom spacer 2IT.
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Figure 2.3-4 Degree of functionalisation and triple helix preservation in 
collagen products reacted with NAC at varied [NAC]:[Lys] molar 

ratios. Data presented as means ± SEM. 
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The benefit of the additional 2IT thiol group was the improved solubility of the 

functionalised collagen. Collagen-2IT was soluble in PBS (0.01M). This improved 

solubility was likely due to the 2IT providing charge properties similar to the 

original amino group and due to the added hydrophilicity. Improved solubility of 

functionalised collagen was also reported by Tronci et al, whereby the photo-

active collagen-GMA material was soluble in PBS [75]. 

The preparation of any thiol-containing precursor meant the presence of 

disulphide bonds needed to be considered. When the collagen-2IT 

functionalisation experiment was being designed, it was noted that when the 

collagen solution (1 wt.%) and 2IT were mixed overnight at pH 7.4, a weak gel 

was formed (Figure 2.3-6). This meant that disulphide bonds were formed 

between the thiol-containing 2IT after it was attached to the collagen. This 

mixture was often too gel-like to stir to add a reducing agent. Instead the 

synthesis method was altered to include an equimolar ratio of dithiothreitol (DTT) 

to reduce disulfide bonds. After the 24 hour reaction, the solution had the same 

collagen-like viscosity and there was no gel formation like previously. This 

altered synthesis route meant there were no concerns over the formation of 

disulphide bonds in the synthesis method. It also meant that in later experiments, 

it was apparent whether disulphide bonds were formed because of the gel-like 

structure the solution would take at 1 wt.% concentration (Figure 2.3-6).  
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Figure 2.3-5 Degree of functionalisation and triple helix preservation in 
collagen products reacted with 2IT at varied [2IT]:[Lys] molar ratios. 

Data presented as means ± SEM. 
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Work by Zhang et al reported incorporation of sulphydryl groups by immersing 

collagen scaffolds in 100 μL of 2IT (2.5 mg ml−1) dissolved in PBS with 

ethylenediaminetetraacetic acid (EDTA) (4 mM) (used to prevent oxidation of the 

sulphydryl groups) for 12 hours [179]. This paper provided no quanitification of 

the degree of functionalisation, however this method was employed by the same 

research group in a later paper which used a ninhydrin assay to quanitfy the 

amine groups and reported a 1% conversion [180]. This method of immersing 

pre-formed scaffolds meant that the improved solubility (PBS, 0.01 M) from 

functionalisation of collagen with 2IT was not reported [181]. 

Kommareddy et al reported the synthesis of gelatin functionalised with 2IT. 

Gelatin was dissolved in deionised water (pH 7.4) and 2IT (2x excess) was added 

for 15 hours similar to the design in the current study. Disulphide bond formation 

was desirable in this work to stabilise the nanoparticles so no EDTA/ DTT was 

added [182]. 

A temperature ramp was used to compare whether the thiol-functionalisation of 

collagen-NAC and collagen-2IT affected the degradation temperature (Td) of the 

collagen (Figure 2.3-7). This was taken at half the initial ellipticity and recorded: 

collagen 36.5 oC, collagen-NAC 38.5 oC and collagen-2IT 39.5oC. 

24 hours 

0 hours 

Both solutions of collagen 
(pH 7.4) and 2IT, with or 
without DTT are viscous 

solutions. 

DTT containing solution still 
viscous.  

 

Solution without DTT is a 
very weak gel. 

Figure 2.3-6 Synthesis of collagen-2IT to demonstrate what the presence 
of disulphide bonds looks like in a 1 wt.% solution.  
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For all samples, the 221 nm-molar ellipticity was observed to decrease with 

increasing temperature reflecting heating-related triple helix denaturation and all 

were shown to display comparable Td ~ 35-39 °C. The higher Td for the thiol 

functionalised collagen could be due to triple helix-stabilising hydrogen bonds or 

hydrophilic interactions [75]. 

A literature search has shown no evidence to date of any previous preparation 

of thiol-functionalised collagen using NAC and whilst collagen functionalised with 

2IT has been reported, no identical synthetic method was found nor any that 

reported similar high degrees of functionality to the work in the current study. Xu 

et al reported another means to thiolate collagen which involved a 2-step 

reaction. The first step involved a reaction with succinic anhydride to yield 

carboxylated collagen. This was then further reacted with 2-mercaptoethylamine 

hydrochloride to produce the thiolated collagen and whilst this recorded high 

functionalisation (F ~92%), it could be strongly argued that the methods reported 

using NAC and 2IT were preferable due to their facile means and the use of non-

harmful chemicals [183]. 

 

2.3.2.5 Collagen-Norbornene 

Thiol-ene reactions require a double bond incapable of homopolymerisation. It 

thus followed that once thiol-functionalised collagen had been prepared, it was 

desirable to make collagen functionalised with a double bond incapable of 

homopolymerisation. Vinyl ethers are incapable of homopolymerisation, 
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Figure 2.3-7 Temperature-ramp CD spectra of collagen type I, collagen-2IT 

and collagen-NAC. 
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however, none could be found with a reactive chemical group such as COOH or 

C-X. Norbornene is also incapable of homopolymerisation and 5-norborbornene-

2-carboyxlic acid (norbornene-COOH) was selected. This chemical was not 

water-soluble even when tween20 was added to improve the miscibility, so the 

EDC/NHS activation step was performed in DMSO before being added to a 

collagen solution. High degrees of functionalisation were recorded (F ~60%), 

however this collagen suffered from poor solubility and fell outside of the 

modification considerations set during the start of this work which dictated that 

no hazardous solvents and/or chemicals should be used in the modification of 

collagen. Mũnoz et al, reported gelatin functionalised with norbornene using 

carbic anhydride. This materials decomposes on contact with water and is stated 

to be dangerous. Briefly, GelNB was prepared via reacting gelatin with carbic 

anhydride in aqueous buffer solutions at 50 °C. The reaction time and the buffer 

pH were adjusted to obtain GelNB, F~ 36% [184]. This reaction mechanism 

would have posed difficulties for collagen because it is desirable to keep collagen 

at pH 7.4 for the natural triple helices and collagen should not be heated above 

37 oC because the triple helices will denature [184]. 

 

2.3.3 Photoinitiators 

Once the functionalisation of collagen had been explored, the next step was to 

analyse water soluble photoinitiators in terms of their light excitation 

(wavelength), molar absorptivity and their cytocompatibility at varied 

concentrations. It was noted that direct toxicity of a photoinitiator can be caused 

by either the light source or the chemical photoinitiator [130].  

I2959 is a commonly used water-soluble (< 1 wt.%) photoinitiator (365 nm) and 

is considered to be cytocompatible at low concentrations. LAP is less well-

researched than I2959, however it benefits from higher water-solubility than 

I2959 (< 5 wt.%) and can be used at 365 (UV) or 405 nm (violet light). During 

this work, it was desirable to develop a novel hydrogel synthetic route which 

could enable cell encapsulation. UV light is a well-established genetic mutagen 

at lower wavelengths although the higher 365 nm can be used to mitigate some 

of the mutagenic effects for low exposure times [130].  

A visible light photoinitiated reaction would be more desirable and an extensive 

review of the literature led to the selection of the dye, eosin Y as a type II 

photoinitiator capable of releasing radicals after exposure to visible/green light 

when used with a hydrogen-donating co-initiator e.g. triethanolamine (TEOA) 
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[130, 131, 133, 185, 186]. Further work by Shih et al demonstrated that the 

reaction still worked using only eosin Y when hydrogen-donation could be 

generated from sulfhydryl groups (thus creating thiyl radicals) [131]. A 

cytocompatible visible light photoinitiator would eliminate any potential cellular 

toxicity imparted by UV radiation, especially when long exposure times are 

necessary (> 5 min) [130]. 

Shih et al reported PEGdA hydrogels formed using eosin Y (0.1 mM), TEOA 

(0.75 % (w/v)) and co-monomer, 1-vinyl-2 pyrrolidinone (NVP) (0.1 % (w/v)) 

together with the PEGdA precursor and visible light irradiation [187]. NVP was 

used as a co-monomer (vinyl group), however, if this chemical was used in a 

thiol click reaction, it would result in step and chain-growth photopolymerisation 

reaction rather than just step-growth (as preferable). In a similar reaction, Hao et 

al stated that using 1% (w/v) NVP compared to 0% increased the final gel 

stiffness, likely due to additional cross-links from the chain-growth 

polymerisation. Additionally, they also stated that whilst the inclusion of NVP did 

not affect cell viability, although it did affect cell spreading and osteogenic 

differentiation [185]. It was decided that the type II eosin Y visible light 

photoinitiator would only be incorporated into collagen polymerisation reactions 

if the use of NVP could be avoided. This was because if this visible light 

polymerisation method was incorporated into click chemistry, it could cause a 

pseudo-step growth reaction due to addition homopolymerisation from the NVP 

which would alter the results. 

Precursor solutions were prepared using eosin Y (0.1, 0.5, 1 mM) and TEOA 

(0.5, 0.75, 1% (w/v) dissolved in acetic acid (17.4 mM). The first problem 

encountered was that the collagen would not dissolve in these solutions. This 

was due to TEOA. This material is primarily used as a surfactant and acts as a 

pH-buffer which made the collagen insoluble. It was discovered that if the eosin 

Y/ TEOA solutions were concentrated 100-fold, they could be mixed into a pre-

dissolved collagen solution (acetic acid, 17.4 mM). This had to be added whilst 

the collagen solution was being vortexed to ensure fast mixing of the eosin Y/ 

TEOA concentrate. The visible light type II photoinitiator was first attempted with 

a collagen-PEGdA solution to examine which concentration of the eosin Y/TEOA 

would work since collagen solutions often require more photoinitiator due to 

viscosity, poor solubility or competing absorbance. Due to potential cell 

cytotoxicity, the ideal reaction conditions were to use the lowest concentration of 

eosin Y, and due to issues with pH-buffering and solubility issues, the lowest 

concentration of TEOA as possible. The optimal combination was found to be 
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eosin Y (0.007 % (w/v)) and TEOA (0.75% (w/v)) in terms of solubility and would 

polymerise the collagen-PEGdA solution to form a hydrogel within 60 seconds 

after exposure to green light without the need to incorporate NVP. Bahney et al 

reported that TEOA had a toxic effect at a concentration of 1.5 % (v/v), so it was 

beneficial in the current study that only half of that amount was needed [130]. It 

was also discovered that the presence of TEOA was fundamental to co-initiate 

the eosin Y with visible (green) light in a collagen/ PEGdA solution. This was 

because the reaction worked by the excitation of the eosin Y dye molecules into 

a triplet state (green light, 516 nm) and initial abstraction of a hydrogen atom 

from amine-bearing co-initiators (TEOA). This subsequently abstracts a 

hydrogen from the acrylate group, thus forming carbonyl radicals which 

propagate and polymerise the PEGdA [185, 188].  

The rate of a photopolymerisation reaction is directly proportional to the initiator 

concentration, light intensity, the molar extinction coefficient and photoinitiator 

efficiency [188]. UV-Vis spectra of all three photoinitiators and collagen were 

compiled into one graph (Figure 2.3-8). 

  

The maximum absorption wavelength of LAP was found to be 380 nm, with a 

high absorbance still recorded at 365 nm (molar extinction coefficient (ε): 218 

M−1·cm−1) [132]. In comparison, I2959 had a peak maximum at 285 nm, where it 

also displayed competing absorbance against the peak from the aromatic amino 

acids in collagen, whilst displaying minimal absorbance at 365 nm (ε: 4 M−1·cm−1) 

[132]. Eosin Y displayed no competing absorbance with collagen and showed 
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Figure 2.3-8 UV/Vis spectrum showing the absorbance of collagen, 

I2959, LAP and Eosin Y. 



 
 

57 

 

high molar absorbance at its peak 516 nm (green light) (ε > 100,000 M-1 cm-1) 

[187]. The weak absorbance profile of I2959 and its competing absorbance with 

the collagen severely limits its utility for photopolymerisation reactions performed 

at 365 nm, nevertheless it is commonly used at this wavelength to reduce 

cytotoxicity to cells and for general lab safety [189]. The competing absorbance 

and low molar extinction coefficient (365 nm) also means a higher concentration 

of this photoinitiator can be required to generate sufficient number of radical to 

initiate a reaction, although this again is inhibited due to the poor solubility of 

I2959 in aqueous solutions.  

Photoinitiator toxicity was evaluated using an ATPLite assay on G292 cells 

cultured with an increased concentration of either LAP, I2959 or eosin Y/TEOA 

for 24 hours (0.005, 0.01, 0.05, 0.1, 0.5% (w/v)). TEOA was added to the 

solutions at the same ratio it would occur with the relative eosin Y concentration 

due to its necessary contribution as a co-initiator.  

The relative survival of the cells was calculated by normalising the absorbance 

readings of the samples against the control, which was G292 cells grown on 

tissue culture plastic with five repeats (Figure 2.3-9).  
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Figure 2.3-9 Relative survival of G292 cells cultured in cell culture 
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was quantified using an ATPlite viability assay. Data are presented 
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Minimal initiator induced cytotoxic response is key to enable gelation in situ in 

biological environments in the presence of cells. The results showed that there 

was no detected cell toxicity after culturing the cells for 24 hours in photoinitiator 

concentrations below 0.01% (w/v) for LAP, I2959 and eosin Y/TEOA. 

Photopolymerisation reactions are driven by chemicals that produce free radicals 

when exposed to specific wavelengths of light. Type I photoinitiators (I2959 and 

LAP) commonly use concentrations above 0.1% to ensure efficient generation of 

radicals for the reaction to occur; although it has been reported that when 

incorporated with peptides, I2959 does not initiate photopolymerisation reactions 

as effectively at concentrations below 0.3% [129, 130, 190]. The relative survival 

of comparable photoinitiator concentrations was: LAP 0.1% (w/v): 86% survival, 

LAP 0.5% (w/v): 7.5% survival, I2959 0.1% (w/v): 62% survival and I2959 0.5% 

(w/v): 1.7% survival. The type II photoinitiator eosin Y used in conjunction with 

TEOA has been shown to initiate reactions at lower photoinitiator concentrations 

which is beneficial because at comparable concentrations to I2959 and LAP, it 

is cytotoxic: EY/TEOA 0.5% (w/v): 0.04% survival, EY/TEOA 0.1% (w/v): 0.1% 

survival, EY/TEOA 0.05% (w/v): 13.5% survival, EY/TEOA 0.01% (w/v): 96.2% 

survival and EY/TEOA 0.005% (w/v): 99.4% survival. The concentration of eosin 

Y used in the visible light reactions was 0.007% (w/v) which lies between 96.2 

and 99.4% (no relative toxicity). The relative survival of cells in eosin Y/TEOA 

outperformed LAP and I2959 and it was known that cells would have better 

survival rate when exposed to visible light compared to UV (365 nm). However, 

there were many disadvantages of using eosin Y/TEOA with visible/ green light 

exposure.  

One disadvantage was the visible-light eosin Y hydrogels would remain orange 

in colour even after long incubation periods (>48 hours) in PBS, indicating that 

the dye would not leach out of the hydrogel (Figure 2.3-10). 

 

 

Figure 2.3-10 Visible-light initiated collagen-PEGdA hydrogel (d - 1 cm) 

after 48 hours incubation in PBS. 
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This was unexpected because it was thought unlikely that the eosin Y dye (Mw 

– 691.85 g.mol-1) would be physically ‘trapped’ within the swollen hydrogel, 

however, the long-lasting orange colour was also noted by Shih et al. They 

offered the explanation that a termination step between radical-bearing eosin Y 

and the carbonyl radicals could cross-link the dye to the PEGdA [187]. 

Additionally, a second possibility could be a strong binding affinity between eosin 

Y and the PEG hydrogel leading to difficulty leaching the dye out. The orange-

coloured visible light induced hydrogels are problematic for cell imaging since 

the strongly green-light absorbing dye interferes with traditional LIVE markers 

and Alexa flour 488 (green). Another issue with visible/ green light photoinitiation 

was that most photo-curing rheometers available to study the gelation kinetics 

have inbuilt UV lamps and the 3D printers available in the university also used 

UV curing with no option for visible light/ green lamps.  

Nevertheless, as indicated in the eosin Y/TEOA – collagen development, the 

main issue was the difficulty incorporating this solution with collagen due to the 

pH buffering TEOA. This had been overcome in this work by vortexing the 

collagen solution before adding the eosin Y/TEOA concentrate as proof of 

principle for this visible-light mediated polymerisation method. However, this 

vortexed solution required immediate exposure to light otherwise the TEOA 

would result in clumping of the collagen. This meant that the solution could not 

be stored and in terms of application, cell encapsulation or 3D printing would 

face unnecessary difficulties. 

Accordingly, the decision was made to put aside visible-light photoinitiation using 

eosin Y/TEOA due to TEOA solubility/ dye trapping/ visible light issues and focus 

on the type I photoinitiators, LAP and I2959 until the novel synthetic method had 

been designed and tested. Shih et al, reported that mechanistically, eosin Y 

could be used without TEOA. After excitation by a visible light source, the eosin 

radical could abstract a hydrogen from thiol-containing cross-linkers (such as bis-

cysteine-containing peptide) to create thiyl radicals instead of from a co-initiator 

such as TEOA. These thiyl radicals could then react with a PEG multi-arm 

norbornene terminated macromer. Using eosin Y (0.1 mM) as the only initiator, 

Shih et al reported a gel point of ~100 seconds and shear modulus ~100 Pa, 

both indicative of poor photoinitiator efficacy and inefficient deprotonation of the 

thiol group. This would impede incorporation of a solely eosin Y visible-light 

mediated method into the synthesis of collagen hydrogels in the current study. 

However, Shih reported that when tyrosine was added (1 mM), it improved the 

efficiency of the bis-cysteine- peptide deprotonation to produce a hydrogel with 
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gel point ∼22 seconds and shear modulus ∼1000 Pa with the same system [186]. 

This interesting result implies that chemicals that increase the deprotonation 

efficiency of either collagen-NAC or collagen-2IT could be explored to re-

examine visible light once a synthetic method to produce click chemistry 

hydrogels had been designed. 

 

2.4 Conclusion 

Collagen type I was successfully extracted, characterised and functionalisation 

was examined as a preliminary step to hydrogel formation and to tailor the 

mechanical properties of resultant hydrogels. 

The installation of functional groups at the side chain was examined with focus 

on preservation of the triple helix structure and the use of no hazardous solvent/ 

chemicals. Collagen-PNIPAM was prepared as a thermoresponsive collagen 

precursor material, however, it was discovered that the overall concentration of 

PNIPAM was too low to result in a physical gel because of the low [Lys] available. 

Two thiol modified collagen precursor materials were prepared with the aim to 

use them for a thiol click chemistry reaction to produce a hydrogel. Collagen-

NAC benefitted from its biomimetic design, and no occurrence of collagen 

functionalised with NAC could be found in the literature, so this remained novel. 

Collagen-2IT benefitted from better solubility than collagen-NAC and was soluble 

in PBS. Collagen-2IT also required a lower excess of 2IT compared to NAC to 

achieve the same degree of functionalisation, 72% (15x vs 50x excess 

respectively). Collagen-2IT also benefited from higher degree of triple helical 

preservation, likely due to the small, flexible 2IT moiety. The photoinitiators 

I2959, LAP and eosin Y/TEOA were examined in terms of their absorption and 

toxicity. I2959 was shown to have a significantly reduced absorption at 365 nm 

and it was shown that it could be compromised when used in combination with 

collagen which also absorbs light in the UV range. The relative survival of cells 

in increasing concentrations of these photoinitiators were examined. Eosin Y/ 

TEOA displayed excellent cell compatibility (~100% cell survival) and a high 

extinction coefficient at 516 nm. However, as a visible-light photoinitiator with 

collagen, it would have to be used without TEOA due to solubility. Future work 

could examine chemicals that could improve the efficiency of thiol deprotonation 

for visible light polymerisation. However until a collgen click chemistry reaction 

is designed, LAP and I2959 will be used as water-soluble photoinitiators.  
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 - Collagen Hydrogels and Click-Chemistry 

 

3.1 Introduction 

The aim of this chapter was to develop a novel cross-linking strategy for the 

preparation of collagen hydrogels, ideally to be used for cell encapsulation or as 

an injectable device. This should lead to physical and mechanical 

characterisation before selecting three hydrogels with properties similar to the 

natural muscle (~8-16 kPa) to take forward for in vitro studies.  

The design of regenerative devices relies heavily on the use of three-dimensional 

(3D) scaffolds to provide the appropriate environment, mechanical support and 

an initial cell anchorage site for the regeneration of tissues and organs [191]. As 

a biomaterial, hydrogels provide a 3D hydrated framework with tissue-like 

elasticity for culturing cells. They also possess the ability to encapsulate cells 

and molecules prior to gelation, thus affording a minimally invasive avenue to 

deliver cells and bioactive factors [51, 192, 193]. Collagen type I is a natural 

polymer and is the most abundant structural building block in connective tissues 

such as bone, tendon and cartilage [74, 194].  

As a scaffold material, collagen is inherently biocompatible and bioactive, and is 

a major component of the natural extracellular matrix (ECM), however its use as 

a biomaterial may be limited due to batch-to-batch variability, potential 

antigenicity, time-consuming isolation process and difficulty in tuning features 

such as stiffness, degradation and bioactivity [73]. Self-assembled collagen 

hydrogels are mechanical dictated by the collagen concentration. It is difficult to 

produce pure collagen hydrogels with a stiffness above 1 kPa without extensive 

chemical cross-linking which can fundamentally alter the triple helical 

conformation or degradability of the collagen fibrils. Chemical cross-linking can 

often be performed via covalent modification of lysine and hydroxylysine 

residues and amino termini, cumulatively counting for ~ 3 x 10-4 mol·g-1 of 

collagen [78, 156-158, 195]. An advantage of chemical cross-linking is that 

mechanical performance and degradation can be controlled via variation in 

cross-linker type, cross-link density or hybridisation with synthetic materials, 

regardless of environmental conditions, such as pH or temperature, resulting in 

tissue-specific ECM analogues [73, 79, 196]. Limitations include reagent toxicity, 
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side reactions and lack of preservation of the triple helical conformation of 

collagen.  

 

3.1.1 Click Chemistry 

‘Click’ chemistry is a term introduced by Sharpless in 2001 which has the 

definition: “A click reaction must be of wide scope, giving consistently high yields 

with a variety of starting materials. It must be easy to perform, be insensitive to 

oxygen or water, and use only readily available reagents. Reaction work-up and 

product isolation must be simple, without requiring chromatographic purification” 

[197].  

So ‘click’ chemistry refers to cross-linking methods which invoke high reactivity, 

use mild reaction conditions and small amounts of photoinitiator/ catalyst and 

generate no harmful by-products [101, 198]. As such, click chemistry is an 

appealing approach for the formation of collagen hydrogels.  

Among click reactions, thiol-click chemistry has been shown to be a powerful tool 

for the efficient formation of thioether linkages (i.e., C–S–C) [199]. Examples of 

two thiol-click reactions include: Michael-addition, which requires an electron-

deficient carbon-carbon double bond (vinyl) and a base; and the thiol-ene and 

thiol-yne reaction, which proceed via a radical mediated, step-growth mechanism 

between a thiol and a vinyl group that can be initiated using a light source and a 

photoinitiator (Figure 3.1-1) [103, 200].  

 

 

Figure 3.1-1 Click Chemistry additions to carbon-carbon multiple 
bonds. (1) thiol-ene, (2) thiol-yne and (3) Michael-addition. EWG 

– electron withdrawing group. 
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The thiol-ene reaction requires the use of a double bond incapable of homo-

polymerisation to ensure the only reaction taking place is the thiol-ene click 

reaction, such is the case for vinyl ether or norbornene-based mono-/macromers 

[201].  

Although thiol-ene and Michael-addition hydrogels have been reported, none 

had been prepared using collagen as the precursor material, thus providing the 

opening for a novel cross-linking strategy for the preparation of collagen 

hydrogels [110, 111, 186, 201, 202]. Note that a collagen hydrogel incorporating 

Michael-addition was released in 2016 [80]. 

 

3.1.2 Cell Encapsulation/ Injectable Hydrogels 

As a result of the reaction selectivity and oxygen insensitivity, an interesting 

feature of thiol-click mixtures is their potential to be mixed with cells and 

molecules prior to gel formation, thus providing a potential avenue to deliver cells 

and bioactive factors in a minimally invasive manner.  

Injectable hydrogels are extremely effective at filling irregular spaces and 

configure the exact shape of a defect. In order to do so, the gelation kinetics 

require the polymer solution to gel and solidify within a clinically acceptable 

timescale in vivo [115]. Although to successfully fill the irregular defect, it is 

necessary that the hydrogel possesses good mechanical strength, a predefined 

shape or the ability to physically bind to adjacent tissues. 

The typical methods to induce cross-linking gelation, include thermal and 

photochemical polymerisation, enzymatic and ionic cross-linking and click 

chemistry. The majority of these cross-linking techniques require the use of a 

catalyst or photoinitiator to proceed which could be toxic to tissues and would 

therefore be inappropriate for in situ gelation. Although, as mentioned, a feature 

of click chemistry is that it uses a lower amount of photoinitiator/ catalyst 

compared to traditional reactions. Additionally, traditional homopolymerisation 

which is a chain-growth reaction, has been shown to yield high initial radical 

concentrations which can cause radical-mediated cell damage which would be 

an inappropriate method for cell-encapsulation [184].  

To achieve collagen gelation in situ, a major hurdle for the thiol-click reactions is 

the necessary use of a non-toxic and water-soluble photoinitiator/ catalyst [54, 

203].  
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Upon light exposure, photoinitiators generate free radicals that may cause 

cellular damage at varied extent, depending on the gelation kinetics of the 

reacting mixture [204]. Additionally, most of the commercially-available 

photoinitiators are intended for use in organic solvents or dental resins and are 

therefore mostly insoluble in aqueous solutions of collagen. 

 

3.2 Methods 

 

3.2.1 Materials  

2-Hydroxy-1-(4-(2-hydroxyethoxy)phenyl)-2-methylpropan-1-one (I2959) was 

purchased from Fluorochem Limited. Lithium phenyl-2,4,6-

trimethylbenzoylphosphinate (LAP) was purchased from Tokyo chemicals 

industry. 8-arm PEG Norbornene (PEG-NB) (Mw: 20,000 g.mol-1) was 

purchased from JenKem Technology USA. Collagenase Clostridium 

histolyticum, 4-arm PEG Norbornene (Mw: 10,000 g.mol-1), Glycidyl 

methacrylate, 4-vinylbenzyl chloride, dulbecco’s phosphate buffered saline, 

poly(ethylene glycol) diacrylate (mn 700), tris (2-carboxyethyl) phosphine 

chloride, hexaethyleneglycol dithiol and 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES) were purchased from Sigma Aldrich. 

Photocol was purchased from Advanced BioMatrix. Ellman’s reagent was 

purchased from Cambridge Bioscience. 

 

3.2.2 Gelation Methods 

Collagen hydrogels can be prepared by many methods. In this research, 

hydrogels formed by ionic or physical means are not examined because stronger 

gels were preferential (> 5 kPa) for application as tissue engineered constructs 

[83]. 

 

3.2.2.1 General Design Considerations 

A variety of parameters must be considered when designing materials for use as 

cell-hydrogel constructs, including cytocompatibility of the chemical reagents, all 

the base polymers and chemistries must maintain and support cell viability during 

hydrogel fabrication, modification, and culture. The mechanism for forming 

materials in the presence of cells should not result in significant cell death, DNA 
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damage, or expression of cell stress markers. Furthermore, the resulting material 

must have an appropriate pore size (roughly > 10 nm) to allow for nutrient, waste, 

and soluble factor (e.g. growth factors) diffusion within the matrix, as well as 

potential diffusion of biochemical reagents. For cell imaging, a material that is 

optically clear or does not interfere with light transmission is beneficial [205]. 

 

3.2.2.2 Chain-Growth Photopolymerization 

The initiator, 2-hydroxy-1-[4-(2-hydroxyethoxy) phenyl]-2-methyl-1-propanone 

(I2959) (1%) was dissolved in either PBS (0.01 M) or acetic acid (17.4 mM) 

depending on whether the photopolymerisation was with functionalised collagen-

GMA or collagen-4VBC respectively. The solution was stirred at 37 oC for 2 hours 

until the photoinitiator was completely dissolved and the solution was colourless. 

The solution was cooled to room temperature and then the functionalised 

collagen (0.8 wt.%) was added and stirred for 2 days. The solution was aliquoted 

into cell well plates and exposed to UV light (365 nm) for 30 minutes on both 

sides. 

3.2.2.2.1 PhotoCol® 

Advanced BioMatrix PhotoCol® was sold as a kit including lyphophlilised 

methacrylated collagen, neutralisation solution and I2959. Methacrylated 

collagen type I (0.1 g) and acetic acid (12.5 cm3, 20 mM, 8 mg/ mL) were stirred 

until dissolution at 8-10 oC. Neutralisation solution (1 mL) and I2959-methanol 

solution (0.135 mL, 0.1%) were chilled in an ice bath. These solutions were 

combined and stirred thoroughly, keeping temperature below 10 oC. The solution 

was incubated at 37 oC for 30 minutes until gel formation before exposing to UV 

light (365 nm) for 30 minutes. 

 

3.2.2.3 Click Chemistry 

3.2.2.3.1 Thiol-Ene Free-Radical Addition 

Collagen-SH (1 wt.%) was dissolved in PBS (0.01 M) containing either LAP or 

I2959 (0.1% (w/v) or 0.5% (w/v)). The results from chapter 2 showed there was 

relative cell survival at both these concentrations. PEG-NB (2 -4 % (w/v)) was 

added to the collagen solution. Exposure to UV light (Spectroline, 365 nm) 
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resulted in complete gelation by a thiol-ene step-growth reaction mechanism 

(Figure 3.2-1). 

 

The thiol-ene click reaction was also attempted with: collagen-NAC (40% 

functionalised) and collagen-4VBC (44% functionalised) (1:1); collagen-NAC 

and collagen-GMA (40% functionalised) (1:1); collagen-NAC (40% 

functionalised) and collagen norbornene (70% functionalised) (1:1.75) and 

collagen-2IT (72% functionalised) and collagen-norbornene (70% functionalised) 

(1:1). 

3.2.2.3.2 Thiol Michael-Addition 

Collagen-GMA dissolved in PBS (0.8 wt.%). Hexa(ethylene glycol) dithiol (1:0.5 

M (GMA:SH)) was added followed by tris (2-carboxyethyl) phosphine chloride 

(TCEP) (1:1 M SH:TCEP) and the solution stirred for 10 minutes. TEA (1:1 M 

SH: TEA) was then added. 

Collagen-NAC was combined with collagen-GMA (1:1 40% functionalised) in 

acetic acid (17.4 mM, 0.8 wt%) and the pH was adjusted to either 9.5 or 10.5 

using sodium hydroxide (NaOH, 5M) and gently shook for 24 hours. The pKa of 

n-acetyl-l-cysteine was 9.51 [177]. 

 

 

Figure 3.2-1 Illustration of the thiol-ene photo-click reaction mechanism 

between collagen-2IT (1) and PEG-NB (2). 
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3.2.3 Physical Characterisation 

 

3.2.3.1 Swelling Test 

This was performed to quantify the water-uptake of the hydrogel. A dehydrated 

sample (2 – 5 mg) was placed in distilled water (1 mL) under mild shaking. The 

SR was calculated according to the following equation: 

 

Equation 3.2-1 

𝑆𝑅 =  
𝑀𝑠− 𝑀𝑑

𝑀𝑑
 𝑥 100 

Where Ms is swollen weight and Md is dried weight. Swollen samples were paper 

blotted prior to measurement of Ms. 

 

3.2.3.2 Gel Content 

In addition to the swelling ratio, the gel content was determined to investigate the 

overall portion of the covalent hydrogel network insoluble in 10 mM HCl solution. 

Dried hydrogel networks of known mass (Md) were equilibrated in 10 mM HCl 

solution for 24 hours. Resulting hydrogels were air dried and weighed (Md1). The 

gel content (G) was calculated using: 

 

Equation 3.2-2 

𝐺 =  
𝑀𝑑1

𝑀𝑑
 𝑥 100 

 

3.2.3.3 Degradation Test 

Dried hydrogels (Md) were placed in HEPES-buffered saline (pH 7.4) with 0, 0.2 

or 2 mg/ml collagenase and incubated at 37 oC for 1, 3, 5 and 7 days. At the 

given time point, they were removed, dried and the new weight recorded (Md1). 

Every 2 days, the collagenase solution was removed and fresh collagenase 

solution was added to prevent loss of enzyme activity [206].  
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Equation 3.2-3 

𝑀𝑎𝑠𝑠 𝐿𝑜𝑠𝑠 (%) =  
𝑀𝑑 − 𝑀𝑑1

𝑀𝑑
 𝑥 100 

3.2.3.4 Ellman’s Assay 

This was used to quantify the number of available thiol groups. Ellman’s agent 

(4 mg/mL) dissolved in sodium phosphate buffered solution (pH 8, 0.1 M) was 

added to the collagen sample (1.4 mg) and shook for 15 minutes. Absorbance 

was then measured at 412 nm using a UV/Vis spectrophotometer. 

Equation 3.2-4 

𝑐 =  
𝐴

𝑏𝜀
 

Where, c is the concentration of thiol, A is the absorbance, b is the path length 

and ε is the molar extinction coefficient 14150 M.cm-1. 

 

3.2.4 Mechanical Characterisation 

 

3.2.4.1 Compression Test 

Compression testing was used to calculate Young’s (elastic) modulus (Ec). 

Water-equilibrated hydrogel discs (Ø: 12 mm) were compressed at room 

temperature with a compression rate of 3 mm∙min-1 (Instron ElectroPuls E3000). 

A 250 N load cell was operated up to complete sample compression. Stress-

strain lines were recorded and the compression modulus quantified as the slope 

of the plot linear region up to 20% strain.  

Equation 3.2-5 

𝜎𝑐 =
𝐹

𝐴
 

 

Where σc is stress (Nm-2 or Pa), F is force (N), and A is the cross sectional area 

of the sample (m2). 

Equation 3.2-6 

𝜖 =  
∆𝑙

𝑙0
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Where ε is strain, l0 is the original length (m) and Δl is the difference between l 

and l0 (m). 

Equation 3.2-7 

𝐸𝑐 =  
𝜎𝑐

𝜖
 

 

Where Ec is compressive strength, or Young’s modulus (Nm-2 or Pa). 

 

3.2.4.2 UV-Curing Rheometer 

Rheology curing measurements were performed on the thiol-ene reactant 

mixtures. The measurements were carried out on an Anton Paar MCR 301 

rheometer using a CP50-2 tool with a diameter of 49.97 mm and a cone angle of 

1.996o. UV light (365 nm) curing was initiated after 60 seconds with a light 

intensity of 4450 μW·cm-2 at 25 oC. The gelation time (ԏ) was quantified as the 

temporal interval between UV activation and complete chemical gel, where 

complete gelation was measured at the maximum recorded value of storage 

modulus (G’max). The gel point was taken at the time in which the storage (G’) 

and loss modulus (G’’) equate. Amplitude sweep tests were performed on photo-

cured hydrogels using the PP15 parallel plate tool at an angular frequency of 100 

rad s-1 and a normal force of 1 N. 

 

3.2.5 Structural Properties 

 

3.2.5.1 Scanning Electron Microscopy (SEM) 

Hydrated gels were investigated by cool-stage via SEM (JEOL SM-35). Whereas 

freeze-dried samples were mounted onto 26 mm stubs and placed inside the 

specimen chamber of a Hitachi S-3400N VP-SEM. SEM images were captured 

via backscattered electron detection at 5 kV and 12 – 13 mm working distance. 

 

3.2.6 Statistics 

Data has been expressed as mean ±  standard error of the mean (SEM) unless 

n > 20, when it is expressed as mean ± standard deviation. Statistical analysis 

was performed using MiniTab software. Levene’s test was used to test for 
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variance in data, t-test for comparison of two different groups, one-way ANOVA 

followed by post-hoc Tukey test on data when Levene’s test showed p ≥ 0.05 

and equal variances could be assumed and a Welch’s ANOVA followed by a 

post-hoc Games-Howell on data when Levene’s test p ≤ 0.05 and equal 

variances could not be assumed. Statistical significance was determined by p ≤ 

0.05.  

 

3.3 Results and Discussion 

Sample nomenclature used in this work is as follows: functionalised collagen is 

coded as “collagen-X”, where “X” identifies the functional reactive group used. 

GMA - glycidyl methacrylate (vinyl group), 4VBC -.4-vinylbenzyl chloride (vinyl 

group), NAC - n-acetyl-l cysteine (thiol group) and 2IT - 2-iminothiolane (thiol 

group). Thiol-ene hydrogels are coded as “CollPEGX”, where “Coll” and “PEG” 

refer to 2IT-functionalised collagen and 8-arm norbornene terminated PEG, 

respectively, and “X” identifies the PEG content (2-4.5% (w/v)) in the thiol-ene 

mixture. 

 

3.3.1 Chain-Growth Hydrogels 

Collagen hydrogels were prepared using collagen-GMA and collagen-4VBC 

(Table 3.3-1). Collgen-GMA (50 x excess, 40% functionalised) was found to have 

a swelling ratio of 1220 ± 126 wt.%, similar to the literature value, 1363 ± 70 wt.% 

[79]. Collagen-4VBC (30 x excess, 44% functionalised) was found to have a high 

swelling ratio of 2064 ± 72 wt.% with a literature value of 1996 ± 182 wt.% [79]. 

Table 3.3-1 Chemical, mechanical and physical properties of collagen 

functionalised with 4VBC and GMA. Degree of functionalisation, F, 

compressive modulus, Ec, swelling ratio, SR and gel content, G. 

Represented as means ± SEM. 

Sample ID F (%) Ec (kPa) SR (wt.%) G (wt.%) 

Collagen-

GMA (50 x) 

40 ± 6 n.a 1220 ± 126 94 ± 4 

Collagen-

4VBC (30 x) 

45 ± 4 60.1 ± 11.3 2064 ± 72 97 ± 4 
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Collagen-4VBC and collagen-GMA hydrogels were repeated many times using 

the excess of 50 x and 30 x so that their degree of functionality would be kept 

similar and any difference in the mechanical or physical properties would be due 

to the linker. 

In the literature, collagen-4VBC (25 x, 50 x excess) was stated to have a very 

high compressive modulus (Ec: 150 ± 54– 168 ± 40 kPa) in lieu of its high swelling 

ratio and collagen-GMA (25 x, 50 x excess) (Ec: 30 ± 7– 50 ±18 kPa) [79]. 

Mechanical properties generally are supposed to decrease in hydrogels with 

increased swelling ratio, however collagen-4VBC has a higher compressive 

modulus and swelling ratio compared to collagen-GMA. This difference between 

the methacrylate GMA moiety and the aromatic 4VBC moiety was put down to 

molecular organisation and secondary interactions, such as π-π stacking, 

altering the stiffness of the aromatic collagen backbone [79]. These stiff 

hydrogels would be more suitable for bone tissue engineering rather than muscle 

tissue engineering due to their similarity to the pre-calcified collagen matrix. 

During this research, there has been a significant degree of variability in the 

collagen-4VBC hydrogels, which was put down to either the batch of collagen, 

the cross-linker or the highly concentrated solution of I2959 (1 % (w/v)) which 

could cause issues with solubility due to the high viscosity. There is also a degree 

of user-induced variability since the synthesis steps need to be done very 

precisely to minimise variations. On occasions other than those reported in Table 

3.3-1, after synthesising collagen-4VBC properties have been reported as Ec 

~14.3 ± 5.1 kPa and SR – 600 ± 58 wt.%. 

To counteract these issues, it would be beneficial to have a cross-linking method 

which requires less photoinitiator, since I2959 (1% (w/v)) is very toxic to cells, 

and a functionalised collagen precursor material with increased solubility or 

hybridisation with a synthetic material to overcome issues that may arise from 

batch variability of the collagen. Most importantly, a simple preparation method 

would greatly reduce user-induced variability. 

 

3.3.2 Systematic Development of Click Chemistry Hydrogels 

Click chemistry reactions are intrinsically insensitive to ambient oxygen or water 

and need a lower concentration of free-radicals/ catalyst to initiate the reaction 

compared to traditional chain-growth polymerisation which has been shown to 

yield high initial radical concentrations [110, 184]. This is highly appealing for 

cell-hydrogel devices since it reduces the toxicity of the pre-polymer solution and 
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reduces radical-mediated cell damage [184]. The reduced toxicity was reported 

by Mũnoz et al, which stated that the cell viability in step-growth gelatin-

norbornene (GelNB)-DTT hydrogels (∼97% of counted cells stained green) was 

significantly higher than in chain-growth gelatin-methacrylate (GelMA) hydrogels 

(∼85% of counted cells stained green) both using LAP (1 mM) [184].  

This initial increased viability of the step-growth hydrogels was only 11–12% 

higher than that in the chain-growth GelMA hydrogels, however, Mũnoz stated 

that this difference might affect long-term cell proliferation, spreading, cell–cell 

interactions, matrix deposition, and differentiation. Additional review of the 

literature provided further evidence of step-growth vs chain growth hydrogels and 

the increased cytocompatibility for in situ encapsulation [110, 207]. 

Click chemistry had not been incorporated into collagen, so offered a novel 

method for cross-linking. When systematically developing these novel hydrogels, 

it was important to reiterate that for a cell-hydrogel construct to be used for in 

vitro encapsulation or as an in situ injectable device [208]: 

- All the reagents should be cell-friendly/ bioinert. 

- The precursor materials should be water- soluble for dissolution in PBS 

or basal media. 

- A low concentration of photoinitiator/ catalyst should be used to ensure 

good cell viability and cytocompatible hydrogel formation. 

- Fast gelation times to ensure minimal cell-damage particularly if a UV light 

source is required. 

- Facile, accurate means to provide tunable mechanical/ physical 

properties to represent ECM of different tissues. 

Michael-addition (base-mediated) and the thiol-ene reaction (radical-mediated) 

were the two thiol click chemistry reactions that were taken forward in this work 

for the formation of novel collagen hydrogels. No harmful metal catalyst was 

required for the reaction, unlike the Cu-catalysed azide/alkyne cycloaddition 

(CuAAC) or atom-transfer radical polymerisation (ATRP) click chemistry 

reactions. Additionally, these two reactions are not thermodynamically 

controlled, unlike the Diels-Alder click reaction which requires heat to proceed 

[41].  

Thiol Michael-type addition requires the use of a thiol group, a nucleophile 

catalyst such as triethylamine (TEA) and an electron deficient double bond such 

as a methacrylate or a vinyl sulfone, which both possess an electron withdrawing 

group (EWG) adjacent to the double bond [209].  



 
 

73 

 

Thiol-ene free-radical chemistry requires the use of thiol group, a photoinitiator 

and a light source and a non-sterically hindered terminal double bond which can 

be electron rich or electron deficient. The double bonds utilised in the thiol-ene 

reaction should be non-homopolymerisable, e.g. allyl ether, vinyl ether, 

norbornene to prepare a true step-growth radical reaction. The thiol–ene step 

growth mechanism is based on the addition of a thiol to a vinyl (ene) functional 

group with the thiol radical propagation shown below [210]:  

Equation 3.3-1 The thiol radical propagation. The consumption of the thiol 

radical (1) and the production of the thiol radical (2) 

𝑹𝑺 ∙ +𝑹′𝑪𝑯 = 𝑪𝑯𝟐  
𝒌𝟏
→ 𝑹′𝑪 ∙ 𝑯 − 𝑪𝑯𝟐𝑺𝑹                       (𝟏) 

𝑅′𝐶 ∙ 𝐻 − 𝐶𝐻2𝑆𝑅 + 𝑅𝑆𝐻 
𝑘2
→ 𝑅′𝐶𝐻2 − 𝐶𝐻2 𝑆𝑅 + 𝑅𝑆 ∙          (2) 

Methacrylate-thiol-ene and PEGdA-thiol-ene systems have been reported 

extensively in the literature [211]. However, this is not a true thiol-ene reaction 

and will be hereby referred to as a pseudo thiol-ene reaction, because additional 

kinetic parameters are incorporated into the rate equation for the consumption of 

the double bond [210]: 

Equation 3.3-2 Rate equation if the double bond is capable of 

homopolymerisation and a pseudo thiol-ene reaction occurs 

𝑑[𝐶 = 𝐶]

𝑑𝑡
=  −𝑘𝑆𝑅[𝐶 = 𝐶][𝑆 ∙] − 𝑘𝐶𝑅[𝐶 = 𝐶][𝐶 ∙] 

kSR and kCR are thiol radical propagation, and carbon radical propagation kinetic 

parameters.[210] 

As previously stated collagen-GMA and collagen-4VBC had already been 

synthesised. GMA contains an electron deficient double bond which would be 

appropriate for Michael-addition reaction, so the first thiol click reaction was 

attempted using collagen-GMA and hexaethylene glycol (dithiol) (HEGSH) 

(Figure 3.3-1).  

 

Figure 3.3-1 hexa(ethylene glycol) dithiol. 
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Collagen-GMA and HEGSH were combined (1:1 ene: SH) with triethylamine 

(TEA) (1:1 TEA: SH). This reaction did not work even when an excess of thiol 

(1:10 ene: SH) was used to counteract the difficulties of using a bi-functional 

group to make a hydrogel. Another theory was that disulphide bonds were being 

formed rather than the thiol Michael-addition reaction. To prevent this, TCEP was 

used to prevent disulphide bridges (1:1 SH). However no gelation took place. 

Further experiments were performed varying the excess of ene: SH, TEA: SH 

and SH:TCEP and varying the pH of the solution (pH 7.5, 8, 8.5, 9, 9.5, 10) prior 

to addition of TEA with no success.  

During this period, collagen-NAC was prepared as a different thiol precursor 

group. The focus shifted to a click reaction between collagen functionalised with 

a thiol and collagen functionalised with a double bond or a high molecular weight 

PEG precursor material, whereby similar degrees of functionalisation were 

achieved.  

Michael-addition reaction was attempted using collagen-NAC with either 

collagen-GMA or PEGdA and using NaOH to initially prepare the alkaline 

solution before the base was added (TEA). From a review of the literature, it was 

known that NAC had a pKaSH 9.5, in comparison pKaSH for cysteine is 8.3 [177, 

212]. For this reason, the pH of the solution was always changed to 10 before 

the reaction to create the thiolate anion. However, there was no gelation. There 

was concern that disulphide bonds might have formed due to oxidation of the 

NAC group (reduced availability of S- for reaction), so a reducing agent was 

added. Collagen-NAC was again combined with collagen-GMA in acetic acid (0.8 

wt.%,17.4 mM), this time, TCEP (1:1 M SH:TCEP) was added equimolar to the 

thiol groups and stirred for 10 minutes to reduce disulphide bond formation, the 

pH then buffered to 10 and TEA (1:1 M SH:TEA) was added and the solution 

was shook gently for 24 hours. No gelation occurred using PEGdA or collagen-

GMA using this method. 

To analyse whether the n-acetyl-l-cysteines are joined together between their 

side chains via disulphide bonds (–S–S–), an Ellman’s assay was performed on 

the collagen-NAC samples to quantify the degree of available thiol groups (SH) 

with increasing excess of NAC (Table 3.3-2). 
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Table 3.3-2 Table to show available free thiols (%) calculated from Ellman’s 

assay and the degree of functionalisation calculated from a TNBS 

assay. Means ± SEM (n=3). 

Sample ID Ellman’s (%) TNBS (%) 

NAC (10 x) 6.4 ± 1.2 18.4 ± 1.0 

NAC (15 x) 8.9 ± 0.7 22.0 ± 6.5 

NAC (25 x) 14.6 ± 1.1 37.9 ± 7.9 

NAC (50 x) 13.0 ± 1.7 71.9 ± 1.6 

 

These results for the available thiol groups show that the thiol concentration 

calculated from Ellman’s assay was lower than the thiol concentration known to 

be present due to the TNBS assay. This experiment was repeated with one 

collagen-NAC solution treated with TCEP for 10 minutes to reduce disulphide 

bonds.  

Table 3.3-3 Ellman’s assay performed using TCEP for 10 minutes to reduce 

disulphide bonds. Means ± SEM (n=3). 

Sample ID Ellman’s (%) 

NAC (15 x) untreated 8.2 ± 1.4 

NAC (15 x) TCEP 7.3 ± 0.2 

 

The concentration of thiol recorded was not significantly different for the two 

groups.  

The predominant reagent for protein thiol quantification in Ellman’s reagent is 50, 

50-dithiobis-(2-nitrobenzoic acid) (DTNB) which reacts with thiolate anions in a 

thiol–disulfide exchange reaction, generating the chromogenic product 2-nitro-5-

thiobenzoic acid (NTB) [213]. The limitations of this reaction are discussed in 

many papers, work by Hansen et al and Dingova et al convey that because only 

the thiolate form of the thiol in question reacts with DTNB, the rate of the reaction 

is highly dependent on the pH and the pKa of the thiol group. This means that a 

reaction pH of at least 7.0 is required. However, at this pH the thiolate anion can 

also participate in unwanted side reactions such as alkylation and oxidation 

reactions. Ellman’s assay also suffers from limited sensitivity with a detection 

limit of approximately 3 nmol in a typical 1-ml cuvette. Accordingly, it is unsuited 
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for quantification of samples containing low concentrations of thiols such as 

dilute protein solutions [213]. Unfortunate when attempting to use the Ellman’s 

assay with a collagen solution.  

So despite the fact that Ellman’s assay is cheap and fast, it has limitations when 

used for biological samples [214]. Hansen et al suggested a preferential 4,4- 

dithiodipyridine (4-DPS) (pH 2.5-6) followed by HPLC detection which is 

particularly useful for the sensitive detection of thiols. They state that 4-DPS has 

a great advantage over DTNB due to its hydrophobic nature and somewhat small 

size [213].  

The barriers associated with the thiol/ disulfide exchange reactions pose 

potential pitfalls to determine the concentration on free-available thiols. In 

addressing these challenges, it is important to ensure that the methods selected 

to quantify the redox status of thiols and di-sulphides are the same as the system 

under investigation [215]. One of the requirements for the hydrogel precursor 

material in this work was that it should be water-soluble for dissolution in PBS or 

basal media (pH 7.4). The newly suggested 4-DPS method to quantify thiols is 

not appropriate at this pH.  Due to the balanced thiol/ disulphide exchange, it 

would be necessary that any method to quantify the thiols should be the same 

as the system to which it will be used (pH 7.4), otherwise the concentration of 

free-thiols recorded wold not be accurate. From here on, TNBS assay was used 

as the sole quantifiable measure of thiolation.  

A practical examination of the presence of disulphide bonds was perfomed using 

a swelling test. Collagen hydrogels were formed by neutralisation of collagen-

NAC (10, 15, 25 and 50 x excess) and a swelling test performed with non-

functionalised collagen and chemically cross-linked collagen (EDC/NHS) as the 

controls. In principle, water acts as plasticiser in biopolymers so that specifically 

lowered storage moduli should be expected in materials displaying increased 

swelling ratio [83]. To relate this to collagen-NAC, the presence of disulphide 

bonds should provide an increased storage modulus compared to non-

functionalised collagen hydrogels, and therefore present a lower swelling ratio.  
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Figure 3.3-2 showed that collagen-NAC and collagen hydrogels formed by 

neutralisation and the collagen hydrogels formed from EDC/NHS chemical 

cross-linking all possess similar swelling ratio. The results are all non-significant 

to each other except for collagen-NAC (50 x excess) and collagen which were 

statistically different. This implied that there were additional interactions going on 

to produce hydrogels with higher swelling ratio, although this cannot be 

explained by the presence of disulphide bonds which should provide an 

increased storage modulus and a lower swelling ratio. Instead, this higher 

swelling ratio is more likely due to the increased functionalisation of the collagen-

NAC (50 x excess) providing a hydrogel with increased hydrophilicity (NAC thiol 

group) and therein, a higher swelling ratio. 1H NMR and FT-IR showed too much 

noise from the large collagen biopolymer to recognise a -SH or a S-S bond. 

The reaction kinetics and yield of the thioether product for the thiol Michael-

addition have been shown to depend on multiple factors such as the thiol pKa, 

the steric accessibility of the thiol, the nature of the electron withdrawing group 

coupled to the double bond and strength and concentration of the base catalyst 

[216]. The rate-limiting step of the thiol-Michael addition reaction pathway is the 

nucleophilic attack of the thiolate anion to the double bond and the reaction as 

shown to proceed faster the more electron deficient the double bonds is (Figure 

3.3-3) [105, 216].  
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Figure 3.3-2 Swelling ratio of functionalised collagen-NAC and collagen 

hydrogels using TEOA and EDC/NHS collagen as the control n=4. 
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At the time, the electron deficient double bond and the structure and pKa of the 

thiol group were considered the most important factors impacting the reaction 

rate. Concern was had over the high pKa of the collagen-NAC and it was thought 

that the additional alkyl group gained from functionalisation of NAC with collagen, 

may have further increased the pKa of the thiol hydrogen. This was thought to be 

the reason why the Michael addition reaction was not working and it was rejected 

for the thiol-ene free-radical addition. There was also concern that the 

considerations set out for cell-hydrogel in situ encapsulation were not being 

followed. The TEA base was not cell friendly and neither was the pH 10 

environment and the collagen-NAC was only soluble in weak acetic acid 

solutions and not PBS. This reaction was supposed to be simple, robust, and 

highly effective reaction under facile reaction conditions, however it was 

abandoned because the reaction would not work. 

Further review into the literature showed emphasis on how employing a strong 

nucleophile as a catalyst instead of the base, such as an imidazole, can limit the 

dependence of the reaction on the pKa of the thiol [216]. Although it is noted that 

whilst imidazole is water soluble, it is a dangerous chemical so not appropriate 

for use with cells, however, had this been discovered sooner, it could have been 

used in this reaction. 

A paper by Ravichandran et al reported the successful Michael-addition reaction 

with collagen functionalised with methacrylic anyhydride and a multi-arm PEG 

thiol terminated group at pH 8 almost two years after it had dismissed in this work 

[80]. Although it was noted that the lower pH 8 meant they had a thiol group with 

Reactivity

Maleimides                    Vinyl sulfones                  Acrylates                 Methacrylates

Figure 3.3-3 Commonly used electron-deficient vinyl groups for thiol-

Michael Addition Reactions displaying increasing reactivity. 
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a lower pKaSH. The paper also used a multi-arm PEG thiol (4 arm and 8 arm), 

whereas the only attempt with a thiol functionalised PEG in this work was with 

HEGSH which was bifunctional - the multi-arm thiol groups may have aided the 

synthesis [80]. 

 

The thiol-ene free-radical addition performed by UV polymerisation was 

preferential in terms of biomaterial design, however, it would be difficult to divulge 

whether a thiol photo-click reaction was taking place unless a double bond 

incapable of homopolymerisation was used such as norbornene or vinyl ether. A 

large stock of functionalised collagen-GMA and collagen-4VBC had been made 

during the start of the research (both react by chain-growth homopolymerisation) 

which was why the Michael-addition was the first click chemistry reaction to be 

attempted. 

Collagen-norbornene had been synthesised as a collagen precursor material 

incapable of homopolymerisation. A thiol-ene reaction was attempted using this 

product, collagen-NAC, I2959 and a UV light source. The main issue of this 

reaction was the poor solubility of collagen-norbornene. The addition of the 

conjugated side group had decreased its solubility in weak acetic acid. This was 

not ideal because the focus was on preparing a bioinert prepolymer solution, 

preferably soluble in PBS or basal media for cell encapsulation in situ.  

PEG is a FDA approved material and is considered bioinert when the molecular 

weight is above 3000 gmol-1. Extensive toxicity studies were performed by 

Working et al which confirm this. Intravenous injections of saline or 10% PEG-

3350 in 0.85% NaCl at doses of 10, 30, or 90 mg/kg/day were given to nine 

beagle dogs for up to 178 days. No changes were observed in appetite or body 

weight and there were no clinical signs of toxicity [217].  

Other benefits of PEG is that it’s water-soluble and has end groups which are 

easily chemically modified. For example, it was found that multi-arm PEG 

norbornene terminated compounds were commercially available from select 

companies. It would have been more ideal if biodegradable synthetic polymers 

such as poly(capralactone) (PCL) were available with chemically modified end 

groups. However, the process by which these polymers are formed (cationic or 

anionic polymerisation) make end group termination limited if impossible. 

A water-soluble, high molecular weight multi-arm PEG norbornene had been 

identified and ordered. Before this product arrived, it was noted that interest still 

lay in identifying whether a reaction with collagen-NAC and a vinyl group 
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(capable of homopolymerisation) would proceed via pseudo step-growth reaction 

or by solely a chain-growth reaction of the vinyl group. To briefly investigate this, 

hydrogels were prepared using both a collagen solution and a collagen-NAC 

solution with PEGdA. The collagen solution would be a chain-growth reaction of 

the PEGdA and the collagen-NAC solution could be a pseudo step-growth 

reaction, with the reaction first dominated by the chain-growth 

homopolymerisation and then the step-growth thiol-ene reaction, as was 

previously reported by Cramer et al [210].  

Table 3.3-4 Sample ID, mechanism and PEG concentration to determine 

whether solely a chain growth mechanism is occurring. Presented as 

means ± SEM (n=3). 

 

Mechanical and physical testing of the chain and pseudo step hydrogels showed 

no statistical significance in the results using a Welch’s ANOVA followed by a 

post-hoc Games-Howell .  

Xu et al reported hydrogels prepared from a thiol-ene reaction using PEGdA and 

gel-PEG-Cys (gelatin), similar to this current study. It was stated that since gel-

PEG-Cys could react with PEGdA via the thiol-acrylate reaction and compete 

with the acrylate-acrylate reaction, increasing gel-PEG-Cys concentration would 

increase the probability of thiol–acrylate reaction while decreasing the probability 

of the acrylate- acrylate reaction. Since the thiol-acrylate cross-linker involves 

larger macromolecules that are more flexible than acrylate-acrylate cross-linker, 

hydrogels containing more gel-PEG-Cys would be expected to have less chain 

Sample ID PEGdA 

(w/v) 

Ec (kPa) SR (wt.%) G (wt.%) 

Collagen(0.9) 0.1 569 ± 84 466 ± 14 97 ± 1 

Collagen-NAC (0.9) 0.1 489 ± 36 429 ± 27 96 ± 1 

Collagen(0.88) 0.12 546 ± 71 451 ± 16 96 ± 1 

Collagen-NAC (0.88) 0.12 450 ± 8 399 ± 22 93 ± 6 

Collagen (0.85) 0.15 945 ± 89 358 ± 24 90 ± 0 

Collagen-NAC (0.85) 0.15 625 ± 37 430 ± 17 88 ± 5 



 
 

81 

 

rigidity and higher mass swelling and increasing the PEGdA concentration 

resulted in a lower mass swelling ratio [211]. Gel-PEG-Cys (G) and PEGdA (P). 

In line with the results by Xu et al they did gain significant difference between the 

swelling ratio of the two hydrogels: G5P5 G10P5 where the difference is the 

increased gel-PEG-cys (G) concentration. Although there was no significant 

difference between the swelling ratio of the hydrogels: G10P5 G10P7.5 G10P10 

where the only difference is an increasing PEG (P) concentration similar to the 

results reported in this work. It is doubtful that this is a thiol-ene reaction and 

instead perhaps, similar to the previous experiment in this work (Figure 3.3-2), 

the difference between G5P5 and G10P5 is due to the polar interactions and 

increased hydrophilicity of Gel-PEG-cys [211]. It is in the author’s opinion that 

the only reaction taking place in the aforementioned collPEG results (Table 

3.3-4), and the results by Xu et al was predominantly an acrylate-acrylate 

reaction and not a pseudo step-growth reaction. 

During this work, concerns were raised about collagen-NAC and how it did not 

follow rule 2 of the requirements for cell encapsulation in situ “the precursor 

materials should be water- soluble for dissolution in PBS or basal media”. 

Collagen-NAC was only soluble in weak acetic acid, however a new thiol-

collagen precursor was made using 2-imidothiolane (Traut’s reagent, 2IT). This 

reaction used no harmful catalyst or base and produced collagen-2IT which has 

added benefits compared to collagen-NAC as discussed in chapter 2, but best 

of all, it was soluble in PBS (0.01 M). 

Collagen-2IT with multi-arm PEG-NB was first attempted using 4-arm PEG 

norbornene terminated (PEG4NB) and LAP photoinitiator. By this point it was 

established that LAP was the preferable photoinitiator when used with collagen 

at 365 nm due to its high absorbance at this wavelength and the lower degree of 

cytotoxicity. This reaction was successful however, when attempted with PEG 

divinyl ether, it would not work, predicted due to its bi-functional structure-there 

are more available norbornene groups to incorporate into the reaction and form 

a hydrogel if there are 4 arms. This result is reflected in work by Mũnoz et al, 

which reported a comparison of step-growth (GelNB) and chain growth hydrogels 

(GelMa). Both functionalisation of norbornene and methacrylate were ~ 45%. 

The chain-growth GelMA hydrogel yielded a higher shear modulus (∼0.9 kPa) 

than that in step-growth GelNB-DTT gelation (∼0.4 kPa) [184]. When compared 

with GelMA hydrogels, the lower moduli of GelNB-DTT hydrogels at equivalent 

gelatin content could be a result of the short DTT linker and/or the orthogonal 

cross-links formed after the step-growth gelation. When 4-arm PEG-thiol 
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(PEG4SH) was used as the hydrogel cross-linker, the equilibrium shear modulus 

of the GelNB PEG4SH hydrogel was increased to roughly 5 kPa from 0.4 kPa 

with DTT. The results from Mũnoz et al therefore imply that a small, bifunctional 

cross-linker is not ideal when used with the thiol-ene reaction, which could 

explain why PEG4NB resulted in gelation and PEG divinyl ether did not. It was 

more desirable to have stronger hydrogels, so based on this paper and the 

previous work with bifunctional groups not working, reagents such as divinyl 

ether reagent were no longer used, additional there was no attempt to use a 

bifunctional norbornene reagent [184].  

Further work went into comparing PEG4NB and PEG8NB. PEG8NB was 

predicted to form better hydrogels due the increased number of norbornene 

groups available to react. The concentration of the collagen-2IT solution and the 

concentration of PEG4NB and PEG8NB were varied until a satisfactory 

arrangement was made. DTT was also included and not included to establish 

whether it was necessary to break down disulphide bonds. Hydrogels were 

prepared using PEG8NB and collagen-2IT with either no DTT or equimolar (1:1 

SH) DTT. These hydrogels were tested using compressive tests and a swelling 

ratio. 

Table 3.3-5 Table to show Young’s modulus and swelling ratio of click 

chemistry hydrogels using collagen-2IT and PEG8NB (3%) to examine 

whether DTT should be added. Expressed as mean ± SEM (n=6). 

Sample ID Ec (kPa) SR (wt.%) 

Coll-PEG8NB  5.9 ± 0.6 4224 ± 254 

Coll-PEG8NB DTT 2.9 ± 0.2 1742 ± 119 

 

The difference between the compressive moduli (p< 0.01) and swelling ratio 

(p<0.005) of the two samples were statistically significant. It would appear that 

the DTT has reacted with the PEG8NB preferentially over the collagen-2IT, no 

doubt due to steric hindrance of the collagen. This was not expected, it was 

thought that DTT would break down any disulphide bonds present and an 

increase in Young’s modulus would be observed. The small DTT cross-linker 

reacts preferentially despite its bi-functional nature which disagrees with 

previous work which used PEG divinyl ether and PEGdA to no success. 

What was taken from this experiment was that DTT was not necessary for the 

reaction to proceed using collagen-2IT to break down any disulphide bonds, and 
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since the hydrogel solutions were designed with the idea of cell-encapsulation in 

mind, it was preferable not to include unnecessary chemicals. 

Thiol-norbornene reactions should also limit disulfide bond formation compared 

to thiol Michael-addition reactions due to the radical-mediated disulphide 

cleavage [186]. Additionally, as discussed in chapter 2, a high presence of 

disulphide bonds in a collagen-2IT (1 wt.%) solution would be very apparent 

because a very weak hydrogel would be formed (Figure 3.3-4) prior to addition 

of PEG-NB or gelation. 

 

Table 3.3-6 A-C shows the molar ratio of SH: NB at each collagen-2IT 

concentration and with increasing volumes of PEG8NB and PEG4NB. The 

concentration of the collagen-2IT solution and the concentration of PEG4NB and 

PEG8NB were varied until a satisfactory arrangement was made.  

 

 

24 hours 

0 hours 

Both solutions of 
collagen (pH 7.4) 
and 2IT, with or 
without DTT are 
viscous solutions. 

DTT containing 
solution still 
viscous.  
 

 
Solution without 
DTT is a very weak 
gel. 

Figure 3.3-4 Synthesis of collagen-2IT to demonstrate what the 

presence of disulphide bonds looks like in a 1 wt.% solution.  
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Table 3.3-6 (A) A table to show the concentration of collagen-2IT (1 mL, 0.8 

and 0.9 wt.%, 80% functionalisation) and the molar ratio of SH: NB 

achieved with an excess of either PEG4NB (20,000 g.mol-1) or PEG8NB 

(20,000 g.mol-1). 

Collagen-2IT 

(wt.%) 

Molar ratio (SH: 

NB 1: x) 

PEG4NB (% 

(w/v)) 

PEG8NB (% 

(w/v)) 

0.8 2.5 2.6 1.3 

0.8 3 3.1 1.6 

0.8 3.5 3.6 1.8 

0.8 4 4.1 2.1 

0.8 4.5 4.7 2.3 

0.8 5 5.2 2.6 

0.8 5.5 5.7 2.8 

0.8 6 6.2 3.1 

0.8 6.5 6.7 3.4 

0.8 7 7.3 3.6 

0.9 2.5 2.9 1.5 

0.9 3 3.5 1.8 

0.9 3.5 4.1 2.0 

0.9 4 4.7 2.3 

0.9 4.5 5.2 2.6 

0.9 5 5.8 2.9 

0.9 5.5 6.4 3.2 

0.9 6 7.0 3.5 

0.9 6.5 7.6 3.8 

0.9 7 8.1 4.1 
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Table 3.3-7 (B) A table to show the concentration of collagen-2IT (1 mL, 1 

and 1.1 wt.%, 80% functionalisation) and the molar ratio of SH: NB 

achieved with an excess of either PEG4NB (20,000 g.mol-1) or PEG8NB 

(20,000 g.mol-1). 

Collagen-2IT 

(wt.%) 

Molar ratio (SH: 

NB 1: x) 

PEG4NB (% 

(w/v)) 

PEG8NB (% 

(w/v)) 

1 2.5 3.2 1.6 

1 3 3.9 1.9 

1 3.5 4.5 2.3 

1 4 5.2 2.6 

1 4.5 5.8 2.9 

1 5 6.5 3.2 

1 5.5 7.1 3.6 

1 6 7.8 3.9 

1 6.5 8.4 4.2 

1 7 9.1 4.6 

1.1 2.5 3.6 1.8 

1.1 3 4.3 2.1 

1.1 3.5 5 2.5 

1.1 4 5.7 2.9 

1.1 4.5 6.4 3.2 

1.1 5 7.1 3.6 

1.1 5.5 7.8 3.9 

1.1 6 8.6 4.3 

1.1 6.5 9.3 4.6 

1.1 7 10 5 
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Table 3.3-8 (C) A table to show the concentration of collagen-2IT (1 mL, 1.2 

wt.%, 80% functionalisation) and the molar ratio of SH: NB achieved 

with an excess of either PEG4NB (20,000 g.mol-1) or PEG8NB (20,000 

g.mol-1). 

Collagen-2IT 

(wt.%) 

Molar ratio (SH: 

NB 1: x) 

PEG4NB (% 

(w/v)) 

PEG8NB (% 

(w/v)) 

1.2 2.5 3.9 1.9 

1.2 3 4.7 2.3 

1.2 3.5 5.4 2.7 

1.2 4 6.2 3.1 

1.2 4.5 7 3.5 

1.2 5 7.8 3.9 

1.2 5.5 8.6 4.3 

1.2 6 9.3 4.7 

1.2 6.5 10.1 5.1 

1.2 7 10.9 5.5 

 

It was found that a molar ratio of at least 1:3 SH: NB was needed for stable 

hydrogels to be formed. This is likely due to the large size of the PEG-NB cross-

linkers and small number of available thiol groups, collagen-2IT (0.01 g) 80 Abs% 

functionalised, ~2.6 x 10-6 moles SH (2IT)). If this was used at 1 wt.% (1 mL) the 

thiol groups available would be ~ 2.6 x 10-6 moles.mL-1. This is very low and an 

excess would be needed to ensure the reaction can proceed. Cramer et al stated 

that using a 1:1 stoichiometric ratio of thiol and acrylate lead to incomplete 

conversion of the thiol monomer, instead a 1:4 stoichiometric mixture of thiol to 

acrylate functional groups lead to roughly equivalent conversion of both 

functional groups [218]. Note that this is for pseudo click reaction. 

One way of achieving a tunable cross-link density in step-growth hydrogels is by 

adjusting the concentration of the cross-linker. Mũnoz et al reported a varied 

concentration of bi-functional thiol cross-linker (DTT) to 10, 15, or 20 mM thiol, 

so [SH]: [GelNB] 1:2, 1: 3, or 1: 4 because [GelNB] was fixed at 5 wt%. [184] 

Interestingly, Mũnoz et al reported that the highest storage modulus was 

achieved at 1:3 ratio SH: NB. A statistically reduced storage modulus was then 
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reported for 1: 4. This was likely caused by insufficient orthogonal hydrogel 

cross-linking due to an excess amount of thiol groups. It is worth noting that the 

exact stoichiometric ratio of thiol is only known from TNBS assay, Ellman’s 

assay, as discussed has limitations [184]. 

Collagen-2IT (1.2 wt.%) was slightly more difficult to dissolve in PBS (0.01 M) 

than at the lower concentrations of 0.8 wt.% or 1 wt.%. For this work, it was 

important that the functionalised collagen be capable of dissolving in a cell-

friendly solvent in order to be applicable to cell-encapsulation or injectable 

devices. For this reason, lower concentrations than 1.2 wt.% were explored 

further. From the table, it was clear that to achieve the same molar ratio SH: NB, 

PEG4NB required double the concentration of PEG8NB. This is because it has 

four norbornene groups compared to eight. This could mean that at higher 

concentrations, less of the PEG4NB is held together in a covalent-bound 

network. This was demonstrated using a gel content test (Table 3.3-9).  

Table 3.3-9 Table to show gel content depending on whether PEG4NB or 

PEG8NB was used. Represented as means ± SEM (n =4). 

Sample ID PEG-NB (%) G (wt.%) 

CollPEG8NB 3.5 85 ± 4 

CollPEG4NB 3.5 58 ± 7 

CollPEG8NB 4 85 ± 1 

CollPEG4NB 4 78 ± 7 

CollPEG8NB 4.5 93 ± 3 

CollPEG4NB 4.5 73 ± 3 

 

The gel content was lower for PEG4NB than it was PEG8NB suggesting less 

material held together as a covalent bond. The PEG4NB 3.5% hydrogel had a 

significantly lower gel content, 58 wt.% than the PEG8NB 3.5% hydrogel, 85 

wt.%. This was due to the higher SH: NB excess ratio for PEG4NB compared to 

PEG8NB denotating that some of the large PEG4NB (10,000 g.mol-1) molecules 

could freely escape from the hydrogel network (Figure 3.3-5).  
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A significant difference was only displayed in the 3.5% hydrogels, it was decided 

that a test to compare the modulus of two weak PEG8NB and PEG4NB 

hydrogels should be performed. 

PEG8NB was shown to produce stronger hydrogels at 3.5% compared to 

PEG4NB although not significantly different due to the sample size (n=4) (Figure 

3.3-6).  
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Figure 3.3-5 Graphical representation of gel content depending on 
whether PEG4NB or PEG8NB was used. Represented as means ± 

SEM n =4 ***p<0.005. 
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Figure 3.3-6 Compressive modulus of PEG8NB and PEG4NB (3.5%) and 

collagen-2IT (1 wt.%) n=4. 
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The architecture of the two hydrogels can also be observed in Figure 3.3-7 with 

no difference discernible between using 4-arm and 8-arm PEG norbornene 

terminated. 

However, due to the high excess SH:NB, the lower gel content values and the 

lower recorded compressive modulus, proceeding experiments used PEG8NB. 

This meant that the excess of SH:NB should not exceed 1:8.  

 

 

In regard to the concentration of collagen-2IT to use, Mũnoz et al reported that 

the properties of GelNB hydrogels were tuned by using different weight 

concentrations of GelNB in the precursor solution or thiol-containing linkers with 

different functionality (DTT or PEG-tetra-thiol) [184]. To relate this to collagen-

2IT the concentration of collagen could be altered or the norbornene-containing 

linkers, PEG4NB and PEG8NB. Mũnoz et al reported that increasing the GelNB 

content in the precursor solution from 4, 5, or 6 wt.% resulted in a shear modulus 

of approximately 0.2, 0.4, or 0.8 kPa respectively [184]. However, due to gelatin’s 

denatured state, it is possible to dissolve it at a higher concentration than 

collagen, so while an increase of 1 wt.% of the GelNB had a comparable increase 

in the shear modulus by 200 Pa, it would not be possible to increase the 

concentration of collagen by the same amount. It was also more desirable to 

have varied hydrogels with increasing modulus in the kPa region rather than 

100s Pa, so the concentration of the PEG-NB linker was varied rather than the 

concentration of collagen-2IT.  

 

50  μm 

500 μm  

50 μm  

500 μm  

Figure 3.3-7 SEM images hydrated hydrogels. LHS PEG4NB RHS 

PEG8NB (3.5%). 100 x 1000 x images. 
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3.3.3 Thiol-Ene Photo-Click Collagen-PEG Hydrogels 

Six different collagen-PEG hydrogels were prepared with varied PEG8NB 

content to allow a level of control over the mechanical and physical properties as 

previously deduced from the work by Mũnoz et al. This level of control was also 

reported by Singh et al which showed that varying the concentration of 

PEG4NB in the thiol-ene reaction, achieved shear moduli ranging from 520–

1150 Pa [219].  

 

 

Confirmation of thiol-ene hydrogel formation was obtained via UV-rheology 

curing time sweep measurements during which storage (G’) and loss (G’’) moduli 

were recorded (Figure 3.3-8). Comparable to the liquid state, the collagen-PEG 

mixture was initially found to be predominantly viscous. The UV light was turned 

on 60 seconds after the start of the time sweep, which promptly induced the 

formation of a covalent network, and is clearly indicated by the detection of a gel 

point (the time at which the storage and loss moduli equate) seven seconds after 

the photo-activation (Figure 3.3-9) [220]. 

 
Figure 3.3-8 Photo-curing of thiol-ene hydrogels using a UV-rheometer. 
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The storage modulus was found to increase with time and UV exposure until a 

plateau was reached within 300 s, indicating no further elastic properties 

(complete chemical gel).  

Figure 3.3-10 depicts that G’ and G’’ were independent of the strain amplitude.  

 

This viscoelastic (LVE) region (G’> G’’) is consistent with a solid-like material, so 

therefore the cross-link structure remains intact during deformation. At the 

Figure 3.3-9 Typical gelation kinetics profile of thiol-ene mixture 
CollPEG4 (LAP 0.5% (w/v)). UV light was activated 60 seconds after 
the start of the time sweep measurement, resulting in complete 
gelation after nearly 300 seconds. The inner image presents a 
zoomed-in plot of the initial stage of gel formation, indicating a gel 

point after just 7 seconds of UV activation. 
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Figure 3.3-10 Amplitude sweep of collPEG4 click chemistry hydrogel. 
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highest shear strain ~ 100% the hydrogel exhibits nonlinear viscoelastic 

behaviour and G’ decreased by 0.25 orders of magnitude although the transition 

of G’< G’’ never occurs, so therefore no transition is experienced from solid (gel) 

to liquid (viscous fluid) [221].  

A photoinitiator comparison of LAP and I2959 at two different concentrations was 

characterised by the gelation kinetics of the collagen-PEG thiol-ene mixture. The 

results from Table 3.3-10 showed a significant difference in gelation time (p ≤ 

0.005) depending on choice of photoinitiator, whether LAP or I2959 was used in 

the pre-polymer thiol-ene solution. The I2959-based hydrogel-forming solutions 

took approximately 8 times as long to reach gel completion compared to LAP-

containing thiol-ene solutions, regardless of photoinitiator concentration. 

Fairbanks et al reported similar results when comparing the polymerisation of 

PEGdA using either LAP or I2959. Their results stated that the gelation was one 

order of magnitude (10 times difference) lower for LAP than with I2959 with 365 

nm illumination at comparable photoinitiator concentrations [132].  

Table 3.3-10 Effect of photoinitiator type and concentration on both 

gelation kinetics and storage modulus obtained of thiol-ene mixture 

CollPEG3.5 as investigated via time and amplitude sweeps, 

respectively. Data presented as means ± SEM (n= 5). 

Photoinitiator G’ (Pa) Ԏ (s) 

I2959 (0.1%) 190 ± 22 1496 ± 43 

I2959 (0.5%) 3029 ± 100 1683 ± 33 

LAP (0.1%) 232 ± 39 279 ± 11 

LAP (0.5%) 3360 ± 91 187 ± 6 

 

The slower gelation rate displayed by hydrogel-forming thiol-ene mixtures 

prepared with I2959 compared to LAP could be due to competing absorbance at 

365 nm with collagen and the specific wavelength used (365 nm), LAP absorbs 

more light at this wavelength than I2959 leading to a higher initiation rate as 

discussed previously in section 2.3.3.  

Interestingly, in one graph Fairbanks et al normalised their results to take into 

account the light absorption differences which exist between LAP and I2959 and 

it showed that LAP-photoinitiated polymerisation still gels at earlier times than 

I2959-photoinitiated. This outcome indicates that the faster gelation times with 
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LAP as the photoinitiator was not due only to the higher molar absorptivity of 

LAP, but also due to a higher initiation efficiency or quantum yield [132]. 

Other than the gelation time, the choice of photoinitiator had no comparable 

effect on the storage modulus. At 0.5% (w/v), LAP and I2959 presented an 

average storage modulus of 3360 Pa and 3029 Pa; whilst at 0.1% (w/v) 

photoinitiator, LAP and I2959 presented a storage modulus of 232 Pa and 190 

Pa. Despite the photoinitiator-induced variation in gelation kinetics, this data 

suggests comparable cross-link density among previously-mentioned hydrogel 

formulations, as expected, considering the selectivity and oxygen-insensitivity of 

the thiol-ene click reaction.  

The photoinitiator concentration had a large effect on both the storage modulus 

and the gelation kinetics. During section 2.3.3 of this work, the toxicity of 

photoinitiator supplemented media at increasing concentrations was examined 

using cell viability assays after 24 hours. It was established that photoinitiator 

concentrations below 0.05% (w/v) were not toxic. However, type I photoinitiator 

concentrations this low would not succeed in complete gelation when 

incorporated with collagen due to issues of competing absorbance, viscosity and 

issues with solubility, instead ≥0.1% (w/v) are required. When the photoinitiator 

concentration in cell culture media was increased from 0.1 → 0.5% (w/v), it 

resulted in cell survival LAP: 86 → 8 Abs.% and I2959: 62 → 2 Abs.%. It is 

important to note that these results are from photoinitiator supplemented media 

and the cell survival would be lower when used in conjunction with the hydrogel 

precursor since the radicals released themselves are highly reactive and often 

cytotoxic [132]. Due to these cell survival results at 0.1 and 0.5 % (w/v) and the 

knowledge that this figure would be lower when the cells are exposed to the 

radicals from the thiol-ene reaction; to use this novel photo-click collagen-PEG 

precursor material for cell encapsulation, a photoinitiator concentration of 0.1% 

(w/v) or lower would be needed. Unfortunately, the results showed that 

decreasing the photoinitiator concentration from 0.5% to 0.1% (w/v) in the thiol-

ene mixture resulted in a 15-fold decrease in the storage modulus, for both 

photoinitiators. Compared to 0.5% (w/v), the photoinitiator efficiency at 0.1% 

(w/v) appears to be too low to efficiently release enough radicals to complete the 

click chemistry a reaction, thus resulting in fewer thiol-norbornene cross-links 

and a hydrogel with reduced storage modulus. Concentrations of 0.5% (w/v) 

would be too cytotoxic, so the application of cell-hydrogel encapsulation or in situ 

injectable devices had to be abandoned. It was clear that despite the optimal 

water-soluble photoinitiator (LAP) and the click chemistry cross-linking system, 
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which uses less photoinitiator than traditional chain-growth polymerisation, the 

concentration of photoinitiator needed to gain desirable mechanical properties 

was still too high for cell encapsulation, although at least it was no longer 

necessary to prepare hydrogels with photoinitiator 1% (w/v).  

As a result of the enhanced gelation kinetics and hydrogel storage modulus, the 

remaining rheological studies were carried out on thiol-ene solutions containing 

LAP 0.5% (w/v), aiming to induce further control on gelation kinetics, as well as 

hydrogel mechanical and physical properties. It is noted than a LAP 1% (w/v) 

solution was also attempted but no significant increase in storage modulus was 

observed so it could be concluded that 0.5% (w/v) released a sufficient quantity 

of free-radicals to complete the thiol-ene reaction. 

Six thiol-ene photo-click samples were prepared which displayed a significantly 

increased storage and loss modulus with the increased concentration of PEG-

NB in the thiol-ene solution reported in Table 3.3-11 (p <0.05).  

Table 3.3-11 Mechanical and physical properties of six click chemistry gels 

using LAP (0.5%) Data presented as means ± SEM (n= 5). 

Sample ID G’ (Pa) G’’ (Pa) Ԏ (s) Tan δ ( 10-3) 

CollPEG2 540 ± 23 5.1 ± 1.0 73 ± 3 5.3 ± 0.2 

CollPEG2.5 1150 ± 46 5.8 ± 0.1 110 ± 6 6.3 ± 0.1 

CollPEG3 2040 ± 50 8.6 ± 0.3 133 ± 6 5.7 ± 0.1 

CollPEG3.5 3360 ± 91 11.1 ± 0.6 187 ± 6 5.0 ± 0.1 

CollPEG4 4810 ± 41 13.2 ± 0.8 301 ± 13 3.5 ± 0.1 

CollPEG4.5 6360 ± 72  15.6 ± 0.7 331 ± 14 2.2 ± 0.1 

 

The photo-click gels displayed a G’ in the range of 500 – 6400 Pa depending on 

the thiol-ene formulation, thus indicating a significant degree of tunability in the 

mechanical properties of the hydrogels. Tan δ is a representation of the ratio of 

the viscous (loss) and elastic (storage) moduli (G”/G’). This parameter identified 

how tacky/sticky the hydrogel was [222]. Interestingly, Tan δ was observed to 
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decrease with increasing PEG content, ultimately leading to increased hydrogel 

stiffness and reduced tackiness of the resulting hydrogel. This data provides 

further evidence that PEG is integrated in a covalent network rather than acting 

as secondary plasticising phase, as also supported by respective gelation 

kinetics profiles (Figure 3.3-11). 

 

Shear modulus (G) is represented as: 

Equation 3.3-3 

𝐺 = 𝐺′ + 𝑖𝐺′′ 

 

A significant increase was observed in the shear modulus (p ≤ 0.005) with 

increasing concentration of the cross-linker PEG8NB (0.5%), for the six click 

chemistry hydrogels prepared (Figure 3.3-12).  

 

 

Figure 3.3-11 Curing time sweep measurements of thiol-ene collagen 

mixtures prepared with 0.5% (w/v) LAP and varied PEG content.  
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With the constant [collagen-2IT] at 1 wt.%, the molar ratios of [SH]: [NB] for the 

six photo-click hydrogels are as follows ~ 1: 3, 1: 3.75, 1: 4.5, 1: 5.25, 1: 6, 1: 

6.75.  

Even though it was possible to characterise the degree of substitution on 

collagen-2IT on a reduction in free amine group content (TNBS assay), the exact 

molecular weights of collagen and hence the molar concentrations of norbornene 

groups were difficult to define. However, based on the shear modulus (Figure 

3.3-12) the 1: 6.75 value gave rise to click chemistry collagen hydrogels with the 

highest shear moduli indicating that the stoichiometric ratio of thiol-to-ene at this 

R value could be close to one [184]. 

Figure 3.3-13 depicts the gelation kinetics for the six photo-click hydrogels 

prepared. The gel point was defined as the point where the storage and loss 

modulus equate. This occurred 5-14 s after UV light exposure for all the photo-

click hydrogels. The general pattern showed that the gel point decreases with 

the increasing PEG-NB content in the hydrogels, likely due to the higher excess 

of norbornene compared to the thiol group allowing the reaction to occur faster. 

Figure 3.3 13 B shows the time to complete gelation ( ), taken at G’max and 

showed a general increase with the increasing PEG-NB content in the hydrogels, 

likely due to the higher cross-link density (73- 300 s). 
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Figure 3.3-13 Graphs depicting the time to the gel point A) and the 
time to complete gelation, Ԏ( (B) for the six click chemistry gels. 

Depicted as means ± SEM n= 5. * p < 0.05, ** p < 0.01 *** p < 0.005. 



 
 

98 

 

In comparison, Mũnoz et al reported the gel point of GelNB and DTT hydrogels 

~ 12 s and complete gelation ~ 300 seconds of light exposure [184]. Interestingly, 

the UV light source used by Mũnoz et al was 365 nm, 10 mW cm−2 whereas the 

UV light source used in these photocuring experiments was 365 nm, 4450 

μW·cm-2 (4.45 mW·cm-2). Which was half the light intensity and low enough to 

look directly at it (briefly) (Figure 3.3-14).  

 

The gel points for the thiol-ene experiments by Mũnoz were comparable to the 

results of these photo-click hydrogels despite a lower intensity of light being 

used. A paper by Lin et al used PEG4NB and cysteine modified peptide with 

PEGdA as the control using UV light 365 nm, 5 mW/cm2 (more comparable to 

the UV light used for this experiment), and recorded a gel point of 7 s for the 

thiol-ene reaction and 125 s for the chain-growth PEGdA reaction [110]. These 

figures by Lin et al emphasise the success of the thiol-ene reaction in comparison 

to traditional chain-growth reactions in terms of gelation kinetics. 

It was noted that the light intensity used by Mũnoz et al, Lin et al and in this 

current study for the photocuring experiments was still very low. In comparison, 

cordless dental LED lights are used in the 420-480 nm range and use an intensity 

of 1000 – 5000 mW.cm-2. From the UV-Vis absorption profile of LAP shown in 

chapter 2, LAP would be capable of releasing radicals when exposed to 420 nm 

light. Since dental lamps use a light intensity 1000x higher than the one used in 

this photo-curing experiment, further work could go into repeating it at a different 

Figure 3.3-14 Photo-curing 4 cm rheometry plate with low intensity UV 

light source, 365 nm, 4.45 mW·cm-2 
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wavelength to analyse how fast the gelation kinetics could become with these 

higher dental intensities that are currently used safely in the clinic. 

The rate of production of primary free radicals (Ri) from the photo-sensitised free-

radical initiators can be expressed by [132]: 

Equation 3.3-4 

𝑅𝑖 =
2𝜙𝜀𝑓𝐼𝐶𝑖

𝑁𝑎ℎ𝜐
 

Where Ri is the rate of photoinitiated polymerisation, ɸ is the quantum yield for 

initiation, ε is the extinction coefficient, f is the photoinitiator efficiency, l is the 

incident light intensity(mW.cm-2), NA is Avogadro’s number, h is Plank’s constant 

and ν is the frequency of initiating light.  

The quantum yield for initiation of the photoinitiator efficiency could not be found 

in the literature for LAP. However, from the above equation it is possible to 

deduce that: 

Equation 3.3-5 

𝑅𝑖 = 𝑘𝐼 

 

CollPEG3.5 took 187 seconds to reach complete gelation with 4.45 mW·cm-2. If 

k =Ri/l, for this pre-polymer solution and Ri = 1/(t – complete gelation), k = 0.0012 

s-1m.W-1·cm2. Using the equation and the k value, a lamp intensity of 10 mW 

cm−2, could result in a far lower complete gelation time ~83 seconds, comparable 

to Mũnoz et al. 

 

Viscosity experiments were performed using rheology for the six photo-click thiol-

ene solutions prior to UV light exposure (Figure 3.3-15).  

 



 
 

100 

 

 

Viscosity experiments are important if the gels are to be used as for in situ 

gelation although the flow of these complex materials cannot be characterised 

by a single value of viscosity, instead viscosity changes with changing conditions 

such as shear stress. In order, to do a direct comparison, viscosity can be 
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Figure 3.3-15 Shear rate against viscosity represented with linear scale 
(A) and log10 scale (B) and shear stress against shear rate (C) for 
the six thiol-ene solutions and collagen-2IT (1 wt.%). 
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compared at zero-shear. As expected, the viscosity increases with increased 

concentration of PEG8NB, due to its high molecular weight (Error! Not a valid 

bookmark self-reference.).  

Table 3.3-12 Viscosity of samples at zero-shear rate. Represented as 

means ± SEM (n=3). 

Sample ID Zero-Shear Viscosity (Pa.s) 

Coll-SH (1 wt.%) 4.8 ± 0.6 

CollPEG2 5.5 ± 0.6 

CollPEG2.5 9.0 ± 5.3 

CollPEG3 36 ± 16 

CollPEG3.5 81 ± 12 

CollPEG4 97 ± 24 

CollPEG4.5 104 ± 21 

 

Compression testing was used to calculate the elastic moduli of the six click 

chemistry hydrogels by plotting stress-strain curves (Figure 3.3-16).  

The linear region of the stress-strain curve is known as the elastic region. In this 

region, once the stress acting on the material is removed, the material can return 

back to its original shape. Statistically significant results are observed in the 

elastic moduli of the hydrogels: collPEG3, collPEG3.5, collPEG4 and 

collPEG4.5. The weakest hydrogels showed no significant difference between 

collPEG2 and collPEG2.5. This could be due to the Instron and the load cell 

denotation reduced sensitivity with very weak hydrogels ~1 kPa. 
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Swelling and gel content were quantified to gain insight into the network 

architecture of the six photo-click collagen-PEG hydrogels (Table 3.3-13). Other 

than the swelling ratio providing information on the cross-link density, the gel 

content was used to assess the portion of extractable material not involved in the 

formation of the thiol-ene photo-click covalent network [79]. As observed from 
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Figure 3.3-16 (A) Compressive moduli of the six click chemistry 
hydrogels. Represented as means ± SEM n= 7. (B) Stress-strain 
curve of the six click chemistry hydrogels. Young’s modulus (Ec) 

calculated by the gradient up to 20% strain. 
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the resultsTable 3.3-13 Swelling ratio and gel content of the click chemistry gels. 

Data represented as mean ± SEM (n=4)., high gel content (G > 90 wt.%) was 

found for all the thiol-ene photo-click gels investigated, suggesting all the 

material was held together as a covalent network. 

Table 3.3-13 Swelling ratio and gel content of the click chemistry gels. Data 

represented as mean ± SEM (n=4). 

Sample ID SR (wt.%) G (wt.%) 

CollPEG2 1530 ± 130 90 ± 1 

CollPEG2.5 2130 ± 150 86 ± 3 

CollPEG3 2340 ± 240 97 ± 1 

CollPEG3.5 2640 ± 220 90 ± 2 

CollPEG4 2840 ± 71 91 ± 1 

CollPEG4.5 3010 ± 127 90 ± 1 

 

This observation provided further confirmation that the presented synthetic thiol-

ene approach successfully enabled the rapid formation of defined covalently 

cross-linked collagen-based networks.  

A paper by Xu et al, performed a Michael-addition reaction using thiolated 

collagen, with a gel content of 77 wt.% recorded [114]. This is a lower G value 

than the one obtained in this study using thiolated collagen and a thiol-ene photo-

click reaction, suggesting a higher yield of network formation than the Michael-

type approach.   

Other than the gel content, the swelling ratio increased from 1530 wt.% to 3010 

wt.% from collPEG2 to collPEG4.5, despite the increased storage modulus of 

these samples, although due to the small n=4, the swelling ratios of the six photo-

click hydrogels are not statistically significant (Figure 3.3-17). This increase in 

swelling ratio could be due to the increased content of hydrophilic PEG 

incorporated into the hydrogel and the extended cross-linker chain length 

between the collagen chains. The swelling ratio for these hydrogels was very 

high and in comparison, collagen hydrogels formed using EDC (20 x excess) 

report a swelling ratio of 1595 wt.% [223].  
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Swelling ratio is an important feature for the design of regenerative devices since 

a high swelling ratio is expected to promote increased diffusion of nutrients and 

cellular waste into and out of the collagen hydrogel [224].  

To further analyse the swelling behaviour of the photo-click hydrogels, a swelling 

kinetic experiment was used to assess the amount of time needed for the gels to 

reach equilibrium with water (Figure 3.3-18). The stiffer hydrogels, CollPEG4.5, 

CollPEG4 and CollPEG3.5, were found to reach equilibrium after 10 minutes’ 

incubation in distilled water, whereas the weakest gel, CollPEG2, needed 360 

minutes to reach equilibrium with water. These results further confirm the 

relationship between PEG content in the thiol-ene reacting mixture, and 

previously-observed swelling ratio of the resulting hydrogels.  
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Figure 3.3-17 Swelling ratios of the six photo-click hydrogels. 

Represented as means ± SEM n=4. 
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SEM images were taken in the wet state to analyse the morphology of the photo-

click gels in near-physiological conditions (Figure 3.3-19).  

Pore sizes in the range of 10 – 30 μm were observed. Pores may likely be formed 

in the hydrogels following stirring and casting of the thiol-ene mixture. Pore size 

is an important feature in regenerative devices to allow sufficient material surface 

for cell seeding and cell diffusion. Additionally, pores should be large enough to 

promote vascularisation [225]. Work by Chiu et al stated that when using PEG 

hydrogels, cell and vessel invasion was limited to the external surface of the gels 

with smaller pore size (25 -50 μm), whereas hydrogels with larger pores (50 – 

150 μm) permitted mature vascularised tissue formation throughout the entire 

material volume [226].  

The mesh size of molecular porosity of the hydrogel is correlated to the swelling 

behaviour of the hydrogel and mechanical properties since lower swelling and 

higher elastic modulus indicates a smaller mesh size.  
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Figure 3.3-18 Swelling kinetics profile of thiol-ene collagen hydrogels 

prepared with 0.5% (w/v) LAP and varied PEG content. 
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3.3.4 Hydrogels for Muscle Tissue Engineering 

Three collagen-PEG hydrogels were chosen based on their mechanical 

properties to use as the scaffold materials for skeletal muscle tissue engineering, 

with the aim to establish whether substrate stiffness has a comparable effect on 

the maturation/ differentiation of myoblasts into myotubes and whether hydrogel 

mechanical properties influence cellular mechanotransduction. 

Engler et al used AFM to calculate the Young’s modulus of mouse muscle 12 ± 

4 kPa (n=3) [56]. This agreed with Collinworths et al which calculated an elastic 

moduli 11.5 ± 1.3 kPa for myoblasts and 45.3 ± 4.0 kPa for myofibers [227]. 

Striated muscle elasticity is given as Emuscle ~ 8–17 kPa [57].  

The three strongest hydrogels based on their Young’s modulus (Ec) were 

collPEG3.5, collPEG4 and collPEG4.5 (6.7, 9.5 and 12.5 kPa respectively) to 

examine whether the hydrogel mechanical properties influence cellular 

mechanotransduction.  

500 μm 

50 μm 

A 

B 

Figure 3.3-19 Cool-stage SEM images of hydrated sample CollPEG4. 

Magnifications: A: 1000×; B:  100x 
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Hydrogel mechanical properties are typically reported as either their shear 

modulus (G) or their elastic modulus (E), two values that are related to each other 

as a function of the material’s Poisson’s ratio (ν). 

Equation 3.3-6 

𝐸 = 2𝐺(1 + 𝜈) 

 

Most hydrogels are assumed to have a Poisson’s ratio of around 0.45–0.5, 

meaning that E ≈ 3G [67]. Although a paper by Castro et al and Knapp et al, 

which look into Poisson’s ratio of collagen hydrogels, state that biological 

hydrogels tend to adopt a Poisson’s ratio between 0.20 and 0.30 for the solid 

part so E ≈2.5 [228, 229]. 

However, the shear modulus (G) for these three hydrogels were reported as 3.4, 

4.8 and 6.4 kPa, so E ~ 2G.  

Due to the high degree of statistical significance (p<0.005), the results from the 

rheology were highly believable. The results from the elastic modulus were also 

statistically significant and highly reproducible (Table 3.3-14). So it was 

believable that E= 2G rather than 2.5G/ 3G and ν= -0.015. Although, negative 

Poisson values correspond to auxetic materials which these hydrogels are not.  

Figure 3.3-20 Compressive modulus, Ec of the three photo-click 

hydrogels n=7. 
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Table 3.3-14 Table to show reproducibility of the photo-click hydrogels. 

Expressed as means ± SEM (n=7). 

Sample ID Ec (2016) (kPa) Ec (2017) (kPa) 

CollPEG3.5 6.4 ± 0.4 6.7 ± 0.4 

CollPEG4 8.8 ± 0.3 9.5 ± 0.4 

CollPEG4.5 11.6 ± 0.9 12.5 ± 0.6 

 

A paper by Parma et al reported collagen-mimetic peptide-modifiable hydrogels 

with characterisation using rheology and compression testing. The equilibrium 

storage moduli of all hydrogels ~8 kPa up to strains of 1%. These hydrogels were 

further characterised using confined compression testing. All hydrogel 

formulations had similar compressive moduli of ~2.5 kPa and therefore, E=0.3G 

[230].  

A paper by Kocen et al looked into the viscoelastic behaviour of polysaccharide 

gellan gum hydrogels with increasing content of bioactive glass (BAG) using 

rheology compression testing and dynamic mechanical analysis (DMA) [231].  

The sample for 0 wt.% BAG was stated to have a compressive modulus (E) of 

6.6 kPa and shear modulus from rheology (G*) of ~ 5 kPa. E= 1.3G and again, 

E = 2.5G/ 3G does not apply for this hydrogel.  

Kocen et al stated that although all three techniques, rheology, compression and 

DMA (not performed in this work) describe the mechanical properties of the 

hydrogel composites, they do not provide the same material property and cannot 

be directly connected because types of deformation are different. For example, 

unlike compression deformation, pure shear does not lead to volume changes, 

so it is not sensitive to variations in the Poisson ratio and bulk properties. 

However, it is logical to expect that the stiffest material should have the highest 

modulus value for both methods which is the case for the materials reported in 

this work. CollPEG4.5 was the stiffest material which was reflected in it having 

the highest modulus for both rheological and compression testing.  

 

It was important to examine the degradation of the material. Degradation in vitro 

using bacterial collagenase can correlate with in vivo degradation although 

differences in the cleavage mechanism mean the in vitro analysis should only be 

used as preliminary results for determining degradative behaviour [232].  
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The mass loss was determined at 1, 3, 5 and 7 days using collagenase 0.2 and 

2 mg/mL and HPBS as the control (Figure 3.3-21). The solutions were 

replenished every 48 hours during the degradation experiments to prevent 

reduced collagenase activity. PEG hydrogels are inherently biocompatible and 

non-degradable, so in theory, as a hydrogel they could be rendered 

biodegradable by incorporating collagenase-sensitive material into the 

backbone.  

The results showed no mass loss over 7 days with the hydrogels incubated in 

HPBS at 37 oC. At 0.2 mg/mL, collPEG3.5 had mass loss of 10.8% at day 3 and 

33.8% at day 7, compared to 2 mg/mL where there was 42.7% mass loss at day 

3 and 50.5% at day 7. These results were substantially different for the two stiffer, 

more highly cross-linked hydrogels: collPEG4 and collPEG4.5. At 0.2 mg/mL, 

both collPEG4 and collPEG4.5 had a mass loss of 0% at day 3 and at day 7, 

collPEG4 had mass loss of 6.1% and collPEG4.5 a mass loss of 3.7%. At 2 

mg/mL, collPEG4 had mass loss of 10.1% at day 3 and 10.4% at day 7 and 

collPEG4.5 had mass loss of 6.2% at day 3 and 8.2% at day 7. 
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Figure 3.3-21 Degradation Graphs of collPEG3.5 (A), collPEG4 (B) and 

collPEG4.5 (C). Represented as means ± SEM n=3. 
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Alberti et al used collagenase to analyse the degradation of de-cellularised 

tendon with and without chemical cross-linking using glutaraldehyde. It was 

shown that cross-linking reduced degradation, highly cross-linked showed 1.9% 

mass loss, moderate cross-linking showed 2.1% mass loss, compared to non-

cross-linked samples which showed 33.5% mass loss using collagenase (1 

mg/mL) over 100 hours (4 days) [232]. 

The mass loss in this work appeared to be higher than for Alberti et al. This could 

be due to the higher weight of Alberti’s samples providing reduced margin of 

error when re-weighing the samples. It could also be due to the bacterial 

collagenase. Clostridium histolyticum collagenase, which was used in this 

experiment, has been shown to cleave collagen into several small fragments and 

hence provide difficulty when weighing (Figure 3.3-22).  

 

 

The results do confirm that increasing cross-linking does reduce degradation 

with collagenase. Although a paper by Helling et al stated that a cross-linking 

method/ high resistance to collagenase degradation may be associated with 

elevated foreign body response, although resistance to enzymatic degradation 

should not be used alone as means to assess the efficacy and safety [233].  

Collagenase, in addition to being produced by some bacteria, is made by the 

body as part of its normal immune response and assists in destroying 

extracellular structures. So whilst the concentration of collagenase chosen for 

this work was 0.2 mg/mL and 2 mg/ mL, this would be very different when used 

in an animal model in vivo and would also depend on whether the animal had 

been previously exposed to the material and developed an active immune 

response. 

Figure 3.3-22 Photos of the three hydrogels at day 3. CollPEG3.5 

observed at the top, more degraded with 2 mg/ mL of collagenase. 
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In vitro tests for degradation have to be performed as preliminary results because 

the degradation behaviour should correlate with in vivo degradation behaviour. 

However, the percentage mass loss results would have no comparison in vivo. 

The best way to investigate degradation appeared in a paper by Duan et al, 

which used a fluorescent dendritic star molecule. They implanted PLGA/d-p48 

nanofibrous membranes subcutaneously which could be observed using animal 

fluorescent imaging system at different time points after implantation, thus 

providing live imaging analysis [234]. 

This paper solved the issues faced by incorporating fluorescent molecules for in 

vivo imaging: macromolecule diffusion, fluorescent molecule toxicity, scaffold 

incorporation and using a molecule which can be traced by a non-invasive 

manner for a long time period [234]. 

An experiment was performed prior to cell culture experiments to ensure that the 

cells would experience the same mechanical properties at day 7 compared to 

day 1. Compression testing was performed after 1, 3, 5 and 7 days incubation in 

PBS. The elastic moduli were shown to have no statistical significance between 

the results (Figure 3.3-23).  

 

These newly synthesised photo-click hydrogels demonstrated excellent shape 

memory. After dehydration, they were shown to equilibrate with water and return 

to their original shape and volume (Figure 3.3-24). Compared to the collagen-

4VBC hydrogels which after dehydration, do not regain their initial volume and 
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Figure 3.3-23 Compressive testing of collPEG4.5 after being left in PBS 

for 1, 3, 5 and 7 days. Represented as means ± SEM (n= 7). 



 
 

112 

 

remain as flat disks. In terms of clinical application, the hydrogels could be 

implanted in a sterile, dehydrated state and then expand and to fit a defect.  

 

 

The photo-click hydrogels also report a very high swelling ratio of up to 3000 

wt.%. Another application could be as a wound dressing for wound healing if 

delivered as a dehydrated film. As a hydrogel, it benefits from the ability to 

incorporate small molecules such as growth factors, which in a wound healing 

application, could be further investigated to prevent fibrosis and scarring. 

 

3.3.4.1 Photocol© Hydrogels 

Three kits of methacrylated type I collagen were selected to prepare 

photopolymerised collagen hydrogels as a commercial control for the cell culture 

experiments. The PhotoCol® kit was selected to provide collagen gels with 

varied stiffness based on collagen concentration and cross-linking. The results 

from Table 3.3-15 were taken from the Biomatrix website showed varied stiffness 

(using rheology) when different concentrations were used, with and without 

cross-linking  

 

 

Hydrated               Dried      Rehydrated 

Figure 3.3-24 Pictures demonstrating the shape-memory of the photo-

click hydrogels. 
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Table 3.3-15 Gel stiffness of PhotoCol® at varying concentrations with 

and without UV cross-linking. Taken from: 

advancedbiomatrix.com/photocol/photocolmethacrylated-type-i-

collagen-kit-for-crosslinkable-hydrogels-5201-1ea/ 

Concentration (mg/ mL) UV Cross-Linking Shear Modulus (Pa) 

6 Yes 2020 

6 No 3880 

8 Yes 3320 

8 No 6025 

 

The protocol involved preparing collagen hydrogels by fibrillogenesis, - 

neutralising the collagen solution below 10 oC before warming it up to 37 oC, 

which is when the shear modulus of the non-cross-linked hydrogels was 

measured using the rheometer. After heating up to 37 oC, the hydrogels were 

then exposed to UV light (365 nm) for 5 minutes before the cross-linked modulus 

was measured. 

After receiving the kits, the first issue encountered was that the protocol said to 

use I2959 (0.1% (w/v)), as should be clear by now, this is far too low for a 

collagen solution. The second problem was that they said the hydrogel could be 

photo cross-linked when it was already a hydrogel (from the self-assembled 

neutralisation and fibrinogenesis step), rather than as a solution. Collagen is a 

huge molecule and with 40% of the total lysine residues of the collagen molecule 

methacrylated, when held apart as a self-assembled gel, it would make it more 

difficult for these methacrylate groups to form a network. 

However, the protocol was followed and made very weak hydrogels. These did 

not become more stiff after exposure to UV light as predicted, likely due to the 

material not being in the liquid state and due to the low photoinitiator 

concentration stated to use in the protocol and provided in the kit. 

Two other issues with this product was that no error or ‘n’ number was stated on 

the shear modulus (Table 3.3-15). Additionally, the shear modulus of 8 mg/mL 

solutions (0.8 wt.%) was 3320 Pa. As stated previously, a paper by Cross et al 

produced collagen hydrogels at 3, 8, 10, 15, and 20 mg/ml with a range of elastic 

modulus 30 Pa to ~1800 Pa. Since elastic modulus is meant to be ~ 2.5G/ 3G, 
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the figures for PhotoCol® look far off. In fact, when looking at the other products 

from Advanced Biomatrix, FibriCol® stated that: 

 “The varied gel stiffness (rheology) of type I collagen - FibriCol® collagen was 

tested to determine the stiffness (Young’s modulus) of 3D gels at various 

concentrations (8, 4, 2, 1 mg/ml). At 8 mg/ml, ~950 Pa and at 4 mg/ml ~600 Pa” 

Firstly, they have confused shear modulus with Young’s modulus, and secondly, 

the result using 8 mg/mL was 3x lower than that of PhotoCol®. The addition of 

methacryate groups of ~40% of the lysines would not contribute to the stiffness 

increasing by that amount. 

The PhotoCol® hydrogels were not held together as a polymer network and 

could not be used as the control material for the cell culture experiments. 

However, since three photo-click hydrogels collPEG3.5, collPEG4 and 

collPEG4.5 had already been chosen, it was decided that these could be 

compared to each other with tissue culture plastic as the control rather than using 

another hydrogel with similar mechanical properties (supposedly PhotoCol®). 

 

3.4 Conclusions 

This chapter examined various ways to incorporate click chemistry into the 

preparation of collagen hydrogels and a thiol-ene photo-click reaction was 

systematically designed.  

This method was developed to ensure that all the reagents were cell-friendly/ 

bioinert, the precursor materials were water-soluble, a low concentration of 

photoinitiator/ catalyst was used with resulting fast gelation times and facile, 

accurate means to provide tunable mechanical/ physical properties.  

From this work, it was decided that the best precursor materials for the thiol-ene 

reaction was collagen-2IT and PEG8NB and the gelation kinetics and storage 

modulus were examined using water soluble photoinitiators LAP and I2959 at 

concentrations of 0.1% and 0.5% (w/v). The rheological experiments showed 

that decreasing photoinitiator concentrations had a detrimental (15 fold) effect on 

storage modulus. The I2959 photoinitiator was shown to be the least preferable 

photoinitiator when used at 365 nm, leading to longer gelation times compared 

to LAP. Further work using LAP 0.5% (w/v) showed that photo-click collagen-

PEG hydrogels could be successfully prepared with tunable physical and 

mechanical properties by altering the PEG content and thereby the number of 

thiol-ene cross-links. CollPEG2 to collPEG4.5 presented G= 0.54 – 6.4 kPa and 
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Ec= 1.2 – 12.5 kPa, with SR= 1500- 3100 wt.%. Such soft and highly swollen 

systems offer widespread application for constructs for muscle regeneration and 

wound healing devices. The three hydrogels with mechanical properties closest 

to natural muscle Ec ~ 8-17 kPa were chosen to take forward in the cell culture 

experiments, collPEG3.5, collPEG4 and collPEG4.5. 
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 – Cell Work and Animal Models 

 

4.1 Introduction 

There were three main aims to this chapter. The first was to determine the effect 

of hydrogel stiffness on cell attachment, spreading, proliferation and maturation/ 

differentiation of C2C12 mouse myoblast cells. The second was to analyse the 

immune response of this new material compared to a commercially available 

material for soft tissue repair. The third was to compare the stiff hydrogel, 

collagen-4VBC (30x excess) with a control sample, BioGide® as a purely 

biomaterial-based approach for bone formation in a critical sized bone defect 

model. This could be used as the basis to analyse the potential use of collagen-

4VBC (30x excess) in a gradient hydrogel for interface tissue engineering.  

Skeletal muscle tissue engineering (SMTE) aims to replicate the structure and 

function of skeletal muscle tissue in vitro and in vivo, with the aim for implantation 

as a therapeutic device [29]. Skeletal muscle is a highly organised composite 

structure comprising of bundles of myofibrils, myofibers, blood vessels and 

nerves highly orientated in a parallel alignment [31]. Myofibrils are the elongated 

contractile threads capable of actuating muscle contraction through the relative 

movement of two interlocking macrostructures, the thin actin filaments and thick 

myosin filaments [29]. Myofibers are formed when the undifferentiated muscle 

cells, myoblasts fuse together to form multinucleated myotubes characterised by 

their centralised nuclei [25]. 

In their niche, cells are presented with an array of complex biophysical and 

biochemical signals from the surrounding extracellular matrix (ECM). The 

Young's modulus, E, often referred to as elasticity or stiffness is an intrinsic ECM 

characteristic [235]. Matrix stiffness has been shown to have a profound effect 

on cell spreading, morphology and differentiation [57, 236-238]. Mesenchymal 

stem cells (MSCs) show lineage-specific differentiation when cultured on 

substrates matching the stiffness corresponding to native tissue; soft tissue-like 

matrices (~ 2kPa) tend to induce differentiation into neural cells, whereas, 

matrices with stiffness closest to muscle (~10 kPa) form myocytes and when 

cultured on stiff substrates similar to that of pre-calcified bone (~ 40 kPa) become 

osteoblasts [237]. So soft matrices cause neurogenic differentiation, stiffer 
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matrices cause myogenic differentiation and rigid matrices cause osteogenic 

differentiation.  

Engler et al cultured C2C12 myoblast cells on hydrogel matrices with stiffness’ 

1, 8, 11 and 18 kPa. This work showed a narrowness for the optimum substrate 

stiffness, with a lower percentage of striation on 1 and 18 kPa matrices compared 

to cells on the intermediate matrix stiffness of 8 and 11 kPa [56]. Myoblast 

maturation/ differentiation of the photo-click hydrogels will be examined in the 

current study to examine the narrow variation in substrate stiffness. 

 

4.1.1 Muscle Cells 

The cells primarily responsible for muscle regeneration are satellite cells (SCs), 

which are a specific type of stem/ precursor cell found beneath the surrounding 

basal lamina and outside the myofiber plasma membrane [239]. They can be 

activated in response to muscle injury, which causes their proliferation, fusion 

and differentiation into multinucleated myotubes and then muscle fibres [29]. 

Other cell populations such as mesenchymal stem cells (MSCs) can contribute 

to restoration of muscle functionality, additionally, myoblasts, induced pluripotent 

cells (IPSCs) or embryonic stem cells (ESCs) could be used [25].  

The cell line C2C12 is a subclone, originally obtained by Yaffe and Saxel (1977). 

C2C12 cells consists of a pure population of murine myoblasts that proliferate 

and differentiate rapidly in culture, forming contractile myotubes and synthesising 

characteristic muscle proteins [240]. 

The C2C12 cell line was used in this project because they are already widely 

used for studies of muscle biology and regeneration and have similar properties 

to isolated human skeletal muscle cells [50]. Myogenic differentiation on tissue 

culture plastic is well established in terms of sequence of events and protein 

expression [236]. 

In this work, the clinical application would involve cells administered in muscle 

tissue on a scaffold. For this however, the cells would have to be from an 

autologous or allogeneic setting, be accessible in large numbers, grow 

homogenous in vitro without loss of differentiation potential, reach the sites of 

muscle regeneration and be able to differentiate in situ and give rise to normal 

physiology [43]. Fishman et al conducted a review on the appropriate cell type 

for skeletal muscle tissue engineering conforming to the aforementioned factors. 

SCs were considered to be the obvious candidate, however, they cannot migrate 

extensively within muscle and would require local injection into skeletal muscle 



 
 

118 

 

at a distance of a few mm from each other, additionally, only low numbers can 

be isolated from autologous muscle and expanding in vitro decreases 

regenerative potential [43, 241, 242]. 

 

4.1.2 Myotube Alignment  

Skeletal muscle consists of long bundles of parallel myotubes that are formed by 

differentiation and fusion of myoblast cells. However, when cultured in vitro, 

myoblasts and myotubes lose their innate organisation and instead adopt a 

random distribution [243]. It is an important requirement of engineering functional 

skeletal muscle to possess an in vitro system capable of mimicking the aligned 

actin /myosin filaments of physiological muscle architecture to guarantee the 

generation of longitudinal force after contraction.  

The alignment can be achieved by electrospinning, microchannels, unidirectional 

freeze-drying of hydrogels (collagen matrices with nearly axially oriented pores 

reported by Madaghiele et al [244]), electrical stimulation or mechanical force 

[245]. 

 

4.1.3 Muscle Regeneration  

Skeletal muscle regeneration after tissue damage can be summarily divided into 

several overlapping phases: the inflammation and activation of stem cells, 

differentiation and fusion of satellite cells and deposition of a provisional ECM 

and finally maturation of the newly formed myofibers and remodelling of the 

tissue [4].  

 
Figure 4.1-1 Major events in muscle regeneration. 
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The inflammation phase involves muscle necrosis, invasion of neutrophils (~2 hr 

after injury) which secrete chemotactic signals that recruit macrophages. Pro-

inflammatory macrophages (M1) are responsible for phagocytosis and the 

activation of satellite cells (characterised by the expression of the CD68 surface 

marker (rats) and lacking the CD163 [246]) and anti-inflammatory macrophages 

(M2) contribute to the proliferation and differentiation of these cells to myoblasts 

and myotubes [25]. During this repair phase, fibrosis can occur as well as 

invasion of nerves and blood vessels. The final remodelling repair phase is the 

fusion of newly formed myotubes with existing myofibers, and the damaged 

muscle begins to regain its contractile function [25]. However, in cases of severe 

volumetric muscle loss, the rate of fibrosis (scar tissue formation) can exceed 

the rate of myoblast proliferation and myotube formation and this thick layer of 

scar tissue can prevent the fusion with the myofibers [25]. Thus macrophages 

have a central regulatory role in the muscle response to injury, not only by 

removing necrotic tissue but also by promoting muscle regeneration [246]. 

 

4.1.3.1 Bone Regeneration 

Muscle influences fracture or defect healing due to its proximity to bone and 

abundant vascularity. This can provide an important source of osteogenic growth 

factors and stem cells to stimulate bone healing [247, 248]. Injury to either tissue 

compromises physical function because both are necessary for load-bearing and 

movement. 

In the case of bone, a defect that will not heal without intervention is termed a 

“critical size defect” [249]. Mulliken et al reported a 4 mm critical size calvarial 

defect in Charles River rats [250]. Currently, the gold standard treatment is an 

autogenous bone graft which involves the harvest of ‘donor’ bone from a non-

load-bearing site [251, 252]. However, this leads to donor site morbidity and can 

lead to immune or inflammatory response of the host tissue after implantation. 

Ideally, a purely biomaterial-based approach would be desirable in terms of 

production costs, safety, approval process and availability. Nevertheless, it 

remains a challenge to achieve complete regeneration of a bone defect or 

fracture [251].  
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4.2 Methods 

 

4.2.1 Materials 

C2C12 mouse C3H muscle myoblasts were purchased from Sigma Aldrich. 

ATPlite luminescence assay kit was purchased from PerkinElmer. 

LIVE/DEAD Viability/Cytotoxicity Kit was purchased from Life Technologies. 

Oregon Green 488 Phalloidin was purchased from Fischer Scientific Ltd. 4',6-

diamidino-2-phenylindole (DAPI) and Horse Serum were purchased from Sigma. 

Myosin 4 Antibody Alexa Fluor 488 (MF20), eBioscience TM and Insulin-

Transferrin-Selenium were purchased from Thermo Fischer Scientific. Antibody 

CD68 Alexa Fluor 488 was purchased from Bio-Rad. SD rats (male) were 

purchased from Charles River. Vicryl and Ethilon sutures were purchased from 

Miller Medical. Dental Implant Trephine Bur, Drill TPHB-B4 was purchased from 

amazon. Micro Drill Circular Saw and Mandril were purchased from Fine 

Science. Bio-Gide® and Mucograft® were purchased from Geistlich 

Biomaterials. 

 

4.2.2 Cell Work 

Three hydrogels: collPEG3.5, collPEG4 and collPEG4.5 with elastic moduli (E) 

7, 10 and 13 kPa were selected for biological testing. The hydrogels were gamma 

sterilised in the dry state to prepare for cell culture and were either treated or 

untreated for cell attachment and spreading experiments. Treated hydrogels 

were swollen in DMEM: FCS (50:50) overnight and untreated were not. Treated 

hydrogels were given the nomenclature collPEG3.5 + FCS, collPEG4 + FCS or 

collPEG4.5 + FCS. 

Photocol® was purchased as a commercial, photopolymerisable collagen 

hydrogel with similar elastic moduli to the three photo-click hydrogels, however, 

this product was found not to work. Instead the three hydrogels were compared 

against each other and tissue culture plastic control.  

Cells were grown in cell culture media (Dulbecco's Modified Eagle Medium 

(DMEM), foetal calf serum (FCS) (10%), Penicillin Streptomycin (PenStrep) and 

incubated at 37 oC and 5% CO2. 
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4.2.2.1 Cytotoxicity Studies 

Three types of cytotoxicity test are stated in ISO 10993-5: extract, direct contact 

and indirect contact tests [253].  

4.2.2.1.1 Extract Cytotoxicity 

Dried hydrogel samples (0.001 g) were incubated cell culture media (1 mL) for 

72 hours. After incubation, the sample extract was recovered by centrifugation 

and the incubated cell culture media was applied to 50% confluent C2C12 cells 

cultured on a polystyrene 96-well plate. Dimethyl sulfoxide (DMSO) (50:50 

DMEM) was used as the negative control, whilst cell culture media was used as 

the positive control. Five repeats were used. After 48 hours, cell viability was 

assessed using an ATPLite luminescence assay. 

4.2.2.1.2 Direct Contact Cytotoxicity 

Collagen hydrogels (100 μL) were prepared in 96-well plates. These were air 

dried and sterilised via gamma radiation. The sterilised hydrogels were then 

swollen in cell culture media in the 96-well plate, returning to their original size. 

C2C12 mouse myoblasts (1 x 104 cells) were added to each hydrogel. DMSO 

(50:50 DMEM) was used as the media for the negative control and cells were 

grown on tissue culture plastic as the positive control. Measurements were also 

taken for hydrogels without cells, cell culture media without cells and a blank. 

Five repeats were used. After 1, 3 and 5 days, cell viability was assessed using 

an ATPLite luminescence assay. Due to the ability of cells to migrate and due to 

their ease of attachment onto treated tissue culture plastic, prior to the ATP 

assay, the hydrogels had to be transferred to a fresh well plate to ensure the cell 

viability was not from the cells that had migrated/ initially attached to the tissue 

culture plastic 

4.2.2.1.3 ATPLite Assay 

A vial of lyophilised ATP standard solution (9.6 μmole) was reconstituted in ATP 

buffer solution (5 mL). The media from cells cultured in a 96-well plate was 

removed. Mammalian cell lysis solution (50 μL) was added into each well and 

the plate was shook for 10 minutes in an orbital shaker at 700 rpm. ATP solution 

(50 μL) was added and shook for a further 10 minutes. An aliquot (50 μL) was 

removed and added to an optiplate. This was dark adapted for 10 minutes before 

the luminescence was measured using a Perkin Elmer TopCount [129].  
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To find the relationship between luminescence and cell count, C2C12 cells were 

seeded at increasing known density on tissue culture plastic. These were left for 

3 hours for cell attachment before an ATPLite assay was performed to produce 

a standard curve, the gradient of which provided the relationship between 

luminescence and cell number. All graphs were plotted using cell number. 

 

4.2.2.2 Cell Attachment 

C2C12 cells cultured in a T175 flask were stained with a calcein AM (LIVE). The 

cells were trypsinised and then re-suspended in cell culture media. A low density 

of cells (1 x 105 cells per mL) were seeded onto the treated and untreated 

hydrogels: collPEG3.5, collPEG4 and collPEG4.5 (the samples of each group 

were triplicated: n=3). After 3 hours, three photos were taken from each well (3 

technical repeats) using fluorescent inverted microscopy and cells were counted 

using image-J.  

 

4.2.2.3 Cell Spreading 

C2C12 cells were cultured on treated and untreated hydrogels: collPEG3.5, 

collPEG4 and collPEG4.5 (the samples of each group were triplicated: n=3). 

After 24 hours, three photos were taken from each well (3 technical repeats) 

using fluorescent inverted microscopy and cell surface area was calculated using 

image-J.  

To calculate the area: Image – type – 8 bit. Image – adjust – threshold. Analyse 

– analyse particles – outline thresholds.  

 

4.2.2.4 Cell Proliferation 

C2C12 cell proliferation was assessed by measuring the cell count in each well 

at days 3 and 5 using an ATPLite assay. These readings were normalised to the 

reading of cells at day 0 and divided by the total number of days. 

 

4.2.2.5 Cell Maturation/ Differentiation 

C2C12 cells were seeded onto the tissue culture plastic or the three hydrogels 

(50% confluency) and continually cultured to 70% confluency (2- 3 days) to allow 

the cells to adjust to their environment using normal cell culture media. From the 

previous results it was noted that the hydrogels showed lower cell attachment 
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compared to tissue culture plastic. To overcome this, the hydrogels had to be 

seeded at a higher initial cell density than the tissue culture plastic. To induce 

myotube formation, the media was then changed to a myogenic differentiation 

media (DMEM, 1% PenStrep, 1% FCS and 1% insulin-transferrin-selenium 

(ITS)). This media was replaced every day and the samples of each group were 

triplicated: n=3. 

4.2.2.5.1 Maturation/ Differentiation Evaluation 

Maturation/ differentiation evaluation was performed staining C2C12 nuclei and 

F-actin at the two end points (3 and 7 days). From the fluorescent images 

acquired at low magnification, it was possible to quantify the differentiation grade, 

calculating fusion index and myotube area. Fusion index was calculated by 

dividing the total number of nuclei in myotubes ( ≥ 2 nuceli) by the total number 

of nuclei counted. Clear, distinguishable myotubes were grouped in two 

categories: those with two to four nuclei and those with five or more nuclei. The 

percentage of myotubes in each category was calculated as myotube (%) [254-

256]. For samples stained for myosin and DAPI, percentage differentiation was 

calculated as the number of cells stained positive for myosin heavy chain over 

the total number of cells [257].  

 

4.2.2.6 Cell Staining 

Nikon A1R confocal microscope was used to image the cells. A triangular- and 

line-based image quantification method was designed to reduce bias and 

achieve reproducibility of the results.  

4.2.2.6.1 LIVE/DEAD Stain 

Cells were washed three times prior to the assay with PBS. The LIVE/DEAD 

components of calcein AM (green fluorescence live cells ex/em ~495 nm/~515 

nm) and ethidium homodimer-1 (EthD-1) (red fluorescence dead cells ex/em 

~495 nm/~635 nm) were diluted with PBS to make calcein AM (2 µM) and EthD-

1 (4 µM) respectively. 50 µL of each working solution were added to tissue 

culture plastic control, 200 µL was added to hydrogels to make up for diffusion/ 

3D environment. Incubate at room temperature for 30 minutes, washed three 

times with PBS followed by imaging. 
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4.2.2.6.2 Oregon Green 488 Phalloidin Staining 

Phalloidin selectively stains F-actin (green fluorescence). The stock solution was 

prepared by adding methanol (1.5 mL) to oregon green 488 phalloidin (300 units) 

and freeze in vials (50 μL). The cells were washed three times in PBS and fixed 

with 10% neutral buffered formalin (NBF) for 15 minutes. The cells were washed 

three times in PBS and permeabilised with 0.1% Triton X-100 for 15 minutes. 

The cells were washed three times in PBS then a vial of Oregon green 488 

phalloidin stock (50 μL) was diluted in 450 μL PBS as the working solution, which 

was used for the incubation of cells for 2 hours and counterstained with DAPI. 

4.2.2.6.3 DAPI Stain 

De-ionised water (2 mL) was added to DAPI ( 5mg/ mL) to create the stock which 

can be stored (≤ 6 months). DAPI stock was further diluted in PBS and the DAPI 

solution (300 nm, 100- 400 μL) was added to cover the permeabilised cells and 

incubated at room temperature for 1-5 minutes. Washed with PBS (x3) and 

imaged. 

4.2.2.6.4 Myosin 4 Antibody, Alexa Fluor 488 (MF20) 

The cells were washed three times in PBS and fixed with 10% neutral buffered 

formalin (NBF) for 15 minutes. The cells were washed three times in PBS and 

permeabilised with 0.1% Triton X-100 for 15 minutes. The cells were washed 

three times with PBS and incubated in horse serum (1%) in PBS for 15 minutes. 

Cells were washed three times in PBS and incubated in myosin 4 antibody (5 

µg/mL) for 4 hours at room temperature and counterstained with DAPI [258].   

 

4.2.3 Animal Model 

A subcutaneous model was used to analyse the immune response the new 

photo-click hydrogel. A calvarial bone defect model was used to examine a 

purely biomaterial-based approach for bone regeneration. 

4.2.3.1 Local Innate Immune Response 

The collPEG4.5 hydrogel and Mucograft® samples (1 cm diameter) were 

implanted subcutaneously in six Sprague Dawley (SD) male rats (300-350 g). At 

time points 1, 4 and 7 days, the samples were dissected out and fixed with 10% 

NBF for 24 hours for histological analysis.  

A pilot study had previously been performed to ensure the hydrogel was still 

present after 14 days in vivo. For the formal in vivo study, two rats were used per 
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time point. The rat was placed in a trifluorane chamber and anaesthetised (level 

5 trifluorane and 2.5% oxygen) ~ 2 minutes. After induction, the animal was 

transferred onto a heated mat and anaesthesia was maintained (level 2.5 

trifluorane and 2.5% oxygen) delivered via a nose cone. Anaesthesia was 

assessed by lack of reflex to toe pinch. The upper and lower sections of the back 

were shaved and two full thickness skin incisions were made per section, the 

subcutaneous tissues were then blundly dissected using artery forcepts to create 

spaces/ pockets and four PBS swollen collPEG4.5 hydrogels were implanted 

within these pockets (away from the incision). The wounds were closed using 5-

0 ethilion sutures. Four Geistlich Mucograft® samples were used as the control 

per time point. The wound was cleaned with sterile injection water and the 

triflourane switched off and the oxygen left on until the rats were fully recovered. 

Vertegesic (0.03 mg/mL, 300 μL) injection was given to the rat.  

At the chosen time points, the rats were schedule 1 killed using a carbon dioxide 

chamber for 6 minutes followed by cervical dislocation. The samples and the 

surrounding tissue were then dissected out and fixed in 10% NBF.  

 

4.2.3.2 Critical Size Calvarial Defect Model 

The rat was placed in a trifluorane chamber and anaesthetised (level 5 trifluorane 

and 2.5% oxygen) ~ 2 minutes. After induction, the animal was transferred onto 

a heated mat set to 37 oC and anaesthesia was maintained (level 2.5 trifluorane 

and 2.5% oxygen) delivered via a nose cone. Anaesthesia was assessed by lack 

of reflex to toe pinch. The rat was shaved from the bridge of the snout between 

the eyes to the caudal end of the skull/calvarium using electric clippers. After 

shaving, an alcohol swab was used over the shaved area. Using the scalpel, an 

incision (~1.5 cm) was made down to the periosteum over the scalp from the 

nasal bone to just caudal to the middle sagittal crest or bregma. The periosteum 

was divided and gently pushed laterally using tissue forceps. The calvarium was 

scored with the surgical drill and trephine before applying a gentle pressure to 

prevent dural or brain injury until the defect nears the appropriate thickness (~1-

2 mm). The trephine and calvarium were irrigated with sterile injection water to 

prevent thermal injury. The trephinated portion of bone was able to be displaced. 

The 4VBC (1.2 wt.%) hydrogel swollen in PBS (4 mm diameter) was placed into 

the left defect, whilst the control, Bio-Gide® (swollen in PBS 4 mm diameter) was 

placed in the right-hand defect. Vicryl was used to suture together the periosteum 

and ethilion was used to suture the skin together. The wound was cleaned with 
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water and the triflourane switched off and the oxygen left on. Vertegesic (0.03 

mg/mL) (300 μL) injection was given to the rat. When the rat came around, it was 

transferred to a clean cage. 

At the time point of 2 or 6 weeks, sch 1 of rats using a carbon dioxide chamber 

for 6 minutes followed by cervical dislocation. The rats were dissected in the 

fume hood. A scalpel was used to cut down the centre of the head and the skin 

was pushed back. The scalpel was then used to cut a rectangular shape out of 

the soft tissues with the two defect sites inside. A circular saw was then used to 

cut into the bone following the rectangular shape traced by the scalpel. The 

rectangle containing the bone and the two defect sites was removed (Figure 

4.2-1). This was then cut it half to separate the control Bio-Gide® defect site and 

the 4VBC defect site which were stored in 10% NBF for 24 hours before 

histological assessment.  

 

 

 

4.2.3.3 MicroCT 

Bone samples were scanned for structural analysis by SkyScan-1072 high-

resolution desk-top micro-CT system (source voltage, 60 kV, source current, 135 

mA; exposure, 2702 ms, rotation step, 0.750 deg, frame averaging, 3, image 

pixel size 26.9 μm) (n=3). The scans were oriented so that the bone was upright 

and analysed with ImageJ software. Import – image sequence. Stacks – Reslice. 

Spacing 26.9 μm. Crop circle 4 mm in diameter. Edit – clear outside. Measure 

area. This area had to be multiplied by the spacing (26.9 μm) to find the bone 

volume of one stack. This method of analysis using Image J was chosen because 

it was the most repeatable (n=3).  

Figure 4.2-1 Cranial section with two defect sites. Bio-Gide® defect site at 

the top, 4VBC defect site at the bottom 
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4.2.3.4 Plastic-embedding 

Specimens were infiltrated with Osteo-Bed Resin with 2 changes over 12 hours. 

The infiltrated specimen was placed in an air-tight container and allowed to sit 

overnight at room temperature under a fume hood prior to raising the 

temperature for polymerisation to allow for a secondary infiltration of the 

embedding solution. Polymerisation for 24 hours at a temperature between 31.5–

34.5 °C. The Osteobed kit proved to be very problematic due to its sensitivity to 

oxygen, the need to be in a fume hood and to be kept at a temperature between 

31.5–34.5 °C for the polymerisation reaction (the lab had no nitrogen inlet). This 

had to be attempted many times before the samples were sufficiently embedded 

and even when this was achieved, the resin appeared grainy (Figure 4.3-32 B). 

 

4.2.3.5 De-mineralisation 

X-ray images of the bone samples were taken using a Omnicure 51500 Dental 

X-ray machine and analysed using corestream CS7600 prior to demineralisation. 

The bone samples were then placed in formic acid (10%) and stirred gently for 4 

days. Images were re-taken to ensure complete de-mineralisation (n=3).  

This demineralised bone was then cut in half (Figure 4.2-2) before it was 

dehydrated, fixed and mounted onto slides and stained for H&E, Goldner’s  

Trichrome and Sanderson’s rapid bone stain.  

 

4.2.3.6 Histology 

Specimens were fixed in 10% NBF for at least 24 hours before samples were 

dehydrated, paraffin embedded, sectioned using a microtome (4 μm) and 

4 mm 

Bone Visualisation of New 
Bone 

Centre Cut 

Figure 4.2-2 Demineralised bone sample was cut in half prior to 
dehydration and placed on side when embedding to allow 

visualisation of the new bone formed in the defect. 
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mounted onto glass slides. The specimens were deparaffinised with xylene (10 

minutes), followed by exposure to a series of gradient ethanol solutions (100%–

70%) (5 minutes in each). Bone sections (n=3) were embedded with Osteo-bed 

resin and cut with an accutom (100 μm) embedded bone samples which were 

de-plasticised overnight using Osteo-Bed Bone Embedding Solvent at 37–45 °C. 

4.2.3.6.1 Von Kossa Stain 

This technique was used to demonstrate deposits of calcium or calcium salt so 

it is not specific for the calcium ion itself. Calcium salts appeared black or brown-

black, nuclei appeared red and cytoplasm appeared pink. 

Samples were brought to water and incubated in 1% silver nitrate solution under 

UV light (up to 60 minutes) then rinsed in several changes of distilled water. 

Incubated in 5% sodium thiosulfate (5 minutes) followed by thorough rinsing in 

distilled water. These were then counterstained with nuclear fast red (5 minutes) 

and rinsed in distilled water. Dehydrated to xylene and mounted with Permount 

mounting medium.  

4.2.3.6.2 Hematoxylin and Eosin (H&E) Stain 

This technique was used to demonstrate full cellular detail. Muscle appeared 

deep pink, acidophilic cytoplasm appeared red, basophilic cytoplasm appeared 

purple and nuclei appeared purple/ blue. 

Samples were brought to water and incubated in hematoxylin (3 minutes) 

followed by rinsing in a water bath. These were incubated in Scot’s tap water (30 

seconds) before being stained with eosin (3 minutes). Samples were washed 

thoroughly in a water bath before being dehydrated to xylene and mounted with 

Permount mounting medium.  

4.2.3.6.3 Goldner’s Masson Trichrome 

This technique was used to demonstrate new bone and osteoid formation. 

Cytoplasm appeared brick red, connective tissue appeared green and nuclei 

appeared dark brown to black. 

Samples were brought to water and then incubated in Weigert’s hematoxylin 

solution (10 miinutes). These were then washed thoroughly in a water bath and 

rinsed with distilled water. Stained with fuchsin solution (Biebrich scarlet-acid) 

(15 minutes), followed by thorough rinsing with distilled water before being 

submerged in Phosphotungstic acid (10 minutes) until the red colour from 
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collagen disappears. Incubated with hematoxylin green (1 minute), quickly 

rinsed, dehydrated to xylene and mounted with Permount mounting medium. 

4.2.3.6.4 Sanderson’s Rapid Bone Stain 

This technique was used to demonstrate new bone formation. Osteiod appeared 

blue, nuclei appeared blue, soft tissues appeared blue and mineralised bone 

appeared pink. 

Samples were brought to water and the Sanderson’s rapid bone stain solution 

was heated to 50-60 oC. The samples were incubated in the stain (2 minutes) 

before excess was wiped off and samples were counterstained in fuchshin 

solution (10 seconds). Samples were dehydrated to xylene and mounted with 

Permount mounting medium. 

4.2.3.6.5 Weigert Van Gieson’s Stain 

This technique was used to demonstrate muscle. Collagen appeared bright red, 

muscle appeared yellow/ orange and nuclei appeared dark blue.  

Samples were brought to water and incubated in Weigerts solution (25 minutes) 

followed by rinsing in distilled water. Samples were then submerged in acetic 

acid (10%) and then rinsed in water. Samples were then stained with a solution 

of Weigert’s hematoxylin – solution A and Weigert’s hematoxylin -solution B 

(50:50) (10 minutes) followed by thorough rinsing in water. Samples were then 

stained with Van Gieson’s picrofuchsin solution (5 minutes) before being quickly 

rinsed in water (2 s) and excess stain dabbed away. Samples were dehydrated 

to xylene and mounted. 

 

4.2.3.7 Immunohistochemistry 

CD68 recognises the rat ED1 antigen which is expressed on most macrophages 

populations. Slides were brought to water and blocking solution was prepared. 

This was made of goat serum (0.5 mL), bovine serum albumin (BSA) (0.1 mL) 

and PBS (9.4 mL). Blocking solution (200 μL) was added to each slide and 

incubated for 30 minutes in a humidity chamber. The blocking solution remained 

on the negative control, the positive controls were coated in CD68 AF488 in PBS 

at different concentrations (1/5, 1/10, 1/25) (200 μL) and incubated overnight and 

counterstained with To-Pro-3. 
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4.2.4 Statistics 

Data has been expressed as mean ± standard error of the mean (SEM) unless n 

> 20, when it is expressed as mean ± standard deviation (SD). Statistical analysis 

was performed using MiniTab software. Levene’s test was used to test for 

variance in data, t-test for comparison of two different groups, one-way ANOVA 

followed by post-hoc Tukey test on data when Levene’s test showed p ≥ 0.05 

and equal variances could be assumed and a Welch’s ANOVA followed by a 

post-hoc Games-Howell on data when Levene’s test p ≤ 0.05 and equal 

variances could not be assumed. Statistical significance was determined by p ≤ 

0.05.  

 

4.3 Results and Discussion 

Sample nomenclature used in this work is as follows: thiol-ene hydrogels are 

coded as “CollPEGX”, where “Coll” and “PEG” refer to 2IT-functionalised 

collagen and 8-arm norbornene terminated PEG, respectively, and “X” identifies 

the PEG content (2-4.5% (w/v)) in the thiol-ene mixture. 4VBC hydrogels refer to 

collagen functionalised with 4-vinylbenzyl chloride (vinyl group). 

 

4.3.1 Cell Attachment, Spreading, Proliferation and Maturation/ 

Differentiation on Hydrogels with Varied Elastic Moduli 

 

4.3.1.1 C2C12 Cell Viability 

To confirm the biocompatibility of the hydrogels, an extract and a direct 

cytotoxicity test was performed using C2C12 murine myoblast cells.  

ATP assays are fast and sensitive means to measure cell viability and work on 

the basis that when cells lose membrane integrity and die, they no longer 

synthesise ATP [259]. To find the relationship between luminescence from an 

ATP assay and the number of cells, cells of known densities were seeded in a 

96 cell-well plate and after attachment (3 hours), an ATPlite assay was 

performed. Based on this data, a standard curve was plotted with cell count 

against luminescence, thus quantifying the relationship between luminescence 

and number of cells (Figure 4.3-1).  
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An extract cytotoxicity test is suitable for detecting the toxicity of soluble 

substances of medical devices and can be used to provide an initial first 

impression of the cytotoxicity which is said to be consistent with the results of 

animal toxicity tests [253]. 

The graph (Figure 4.3-2) shows that there was no significant difference between 

the number of cells grown from the extract of the hydrogels compared to the 

positive control (cell culture media) after two days and there were no cells 

present in the negative control. This was an important test to do with the 

hydrogels because even though the materials were all chosen based on their 

bioinert status, the photoinitiator used was still at a high enough concentration to 

cause cell death. 
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Figure 4.3-1 Relationship between luminescence reading from 

ATPlite assay kit and cell count (n=5). 



 
 

132 

 

 

In comparison to the extract, the direct cytotoxicity test was used to examine the 

direct cytotoxicity of the hydrogels on cells in vitro which reflects the biological 

safety of the tested materials.  

Figure 4.3-3 shows the results, whereby the number of cells on hydrogels, cells 

on hydrogels DMSO: DMEM (50:50) (negative control), hydrogels in media, cells 

alone (positive control), media alone and a blank were measured using an ATP 

assay. It was shown that the number of cells on the hydrogel at each time point 

was generally lower than the tissue culture plastic control. However, this is 

predicted to be due to initial cell attachment; tissue culture plastic has been 

specially plasma treated for increased cell attachment, so it has to be assumed 

that cells will preferentially bind do it.  
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Figure 4.3-2 Extract cytotoxicity test. Data represented as means ± SEM 

(n=5). N/S: no significant difference 
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Figure 4.3-3 Direct cytotoxicity graphs for the three hydrogels. 
CollPEG3.5 (A), collPEG4 (B) and collPEG4.5 (C). Data represented 
as means ± SEM (n =5). *p<0.05, **p<0.01, N/S: no significance. 
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Figure 4.3-3 A shows that after 1, 3 and 5 days of culture, the number of cells on 

the CollPEG3.5 hydrogel was significantly lower than that of cells alone group 

(positive control) at the same time points (p ≤ 0.05). There was no significant 

increase in the number of cells on the hydrogel between days 3 and day 1 (p ≥ 

0.05), although the trend showed an increased cell number at day 3. The total 

number of cells on the hydrogels had significantly increased after 5 days of 

culture compared to after 1 day of culture in the same group (p ≤ 0.05). There 

were no cells detected in the media alone, blank, hydrogel alone, and the 

negative control group. These results were also reflected in Figure 4.3-3 B for 

the total number of cells on the CollPEG4 hydrogel. 

Figure 4.3-3 C shows that the total number of cells on the collPEG4.5 hydrogels 

had significantly increased after 5 days of culture compared to after 1 day of 

culture (p ≤ 0.01). There was again no significant increase between days 3 and 

day 1 although the trend showed an increased cell number at day 3 and there 

were no cells detected in the media alone, blank, hydrogel alone, and the 

negative control group. 

A significantly higher number of cells on day 5 compared to day 1 has been 

reported for all three hydrogels. Hassan at el reported that comparable cellular 

activity on day 7 compared to day 1 is indicative of no cytotoxic effect of the 

material, so due to the significantly higher cellular activity on day 5 compared to 

day 1, we can confirm that there was no direct cytotoxic effect as a result of the 

materials [260]. The overall trend shows the cell number increasing from day 1 

to day 3 and 5. This shows that the cells are proliferating on the hydrogels and if 

the materials were cytotoxic, we would expect a negative trend.  

During this work, we aimed to compare all three hydrogels in order to evaluate 

their efficacy as a cell-laden hydrogel device for muscle tissue engineering and 

the dependency on substrate stiffness. A comparison of the cytotoxicity of the 

three hydrogels at 1, 3 and 5 days is shown below (Figure 4.3-4).  

There was no significant difference between the number of viable cells on the 

three hydrogels at either of the three of the time points. There was however a 

significantly higher number of viable cells on the tissue culture plastic, however, 

as discussed this is due to the enhanced attachment of cells on tissue culture 

plastic due it its treatment. 
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4.3.1.2 Cell Seeding/ Spreading/ Proliferation 

Cell adhesion, spreading and proliferation were initially studied as a prerequisite 

for cell maturation/ differentiation. Most cells are anchorage-dependent so it was 

desirable to examine whether the different stiffness’ (7, 10 and 13 kPa) would be 

discernible to the cells and affect the cellular adhesion, spreading or proliferation.  

Scaffolds should be designed in a way that facilitates cell attachment so part of 

the study was to examine whether incubation in a FCS rich media (DMEM 

supplemented with 50% FCS) for 24 hours would significantly impact the ability 

of the hydrogels to encourage adhesion and spreading of the cells. A serum-

containing media should result in the formation of a surface layer (‘coating’) of 

adsorbed proteins. This subsequently mediates interactions with cells because 

among the deposited serum proteins contains the RGD amino acid sequence 

which is recognised by cell-surface integrin receptors [261]. Therefore, overnight 

incubation in FCS rich media prior to cell seeding could encourage cell adhesion 

on the three hydrogels. Although it was noted that the C2C12 cells were cultured 

in 10% supplemented FCS media, so when this media is seeded onto the 
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culture plastic control. Data represented as means ± SEM (n=5). N/S 
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hydrogel, the protein coating may be sufficient to attach the same number of cells 

compared to hydrogels incubated overnight in 50% supplemented FCS media. 

Figure 4.3-5 shows the number of cells attached the three hydrogels (FCS 

treated and non-treated) and the tissue culture plastic control, 3 hours after 

seeding represented as number of cells per mm2. There was very little spreading 

after 3 hours and cells appeared rounded and the C2C12 cells were calculated 

to have a diameter of 21.1 ± 0.5 μm (n=10).  

There was no statistical difference in the number of cells attached onto hydrogels 

after 24 hours incubation in FCS rich media compared to the non-treated 

hydrogels (p ≥ 0.05). However, statistical significance might have been observed 

with a higher n number because the overall trend showed a higher cell 

attachment on the FCS treated hydrogels. CollPEG3.5 31 vs 41 cells per mm2, 

collPEG4 40 vs 50 cells per mm2 and collPEG4.5 46 vs 66 cells per mm2 for 

untreated and FCS treated hydrogels respectively.  

The tissue culture plastic control showed a statistically higher number of cells 

attached to it compared to all three of the hydrogels, FCS treated or non-treated. 

As mentioned, tissue culture plastic is plasma treated to improve cell attachment 

Figure 4.3-5 Cell attachment onto scaffolds after 3 hours. Data 

represented as means ± SEM (n= 3). N/S no significance. 
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by incorporating more oxygen onto the cell culture surface, rendering it more 

hydrophilic. The hydrogels have not been plasma treated so it is expected that 

tissue culture plastic outperforms the hydrogels. The cells which have not 

attached onto the hydrogels would have attached (preferentially) to the 

surrounding plastic. It was noted that tissue culture plastic has an elastic modulus 

of ~3 GPa, rendering it supraphysiological compared to soft tissues like muscle 

yet the cells attached preferentially to it [42]. 

To examine the influence of hydrogel stiffness on cell adhesion, a line graph was 

plotted (Figure 4.3-6). As stated, there was no statistical significant difference 

between the results, however there was a general increasing trend in the number 

of cells attached on the hydrogels collPEG3.5 → collPEG4.5 (7 → 13 kPa) and 

significance may have been observed with a higher sample size. 

 

After 24 hours, most of the cells no longer appeared rounded, indicative that they 

had started to spread and the surface area was measured using image J.   

Figure 4.3-7 shows the effect of different substrates on the surface area of 

C2C12 cells after 24 hours. Unlike the cell seeding experiment where the tissue 

culture plastic outperformed the three hydrogels, the results showed that the 

choice of substrate had no significant effect on C2C12 cell spreading, although 

the highest mean cell spreading area was reported using tissue culture plastic. 

There was also no significant difference in cell spreading between the FCS 

treated and non-treated hydrogels similar to the cell adhesion experiment. For 

this reason, the hydrogels were no longer incubated in 50% FCS for 24 hours 
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Figure 4.3-6 Line graph to show the trend between elastic modulus and 

cell attachment. Data represented as means ± SEM (n=3). 
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prior to cell seeding. This is preferable because this representation would never 

be used in a clinical setting.  

 

 

In order for cells to sense substrate elasticity, they pull against the matrix, which 

will in turn cause cellular mechanical transduction signals based on the force 

required to deform the matrix. Changes in substrate rigidity have been shown to 

effect cell spreading and fibroblasts have been shown to exhibit an increased 

spreading on stiffer substrates [262]. However, the results from this work showed 

that C2C12 cells were not influenced by substrate rigidity and there was no 

significant difference in the cell area after 24 hours between the three hydrogels 

or the control, although the highest mean cell spreading was recorded with the 

tissue culture plastic control, 677 ± 164 μm2 despite its supraphysiological 

nature. 

Engler et al reported that myoblasts (C2C12 cells) spread and elongate more on 

increasingly stiff substrates after just 4 hours using hydrogels with stiffness 2, 3, 

4 and 8 kPa and glass as the control [56]. However, by 24 hours, the results 

showed that the spreading on the stiffest hydrogels and glass were statistically 
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Figure 4.3-7 Cell spreading after 24 hours. Data represented as means ± 

SEM (n=3). N/S no significance. 
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similar in terms of cell area, which indicates that with time, spreading became 

less dependent on substrate elasticity [56]. However, Engler et al did report that 

the highest mean cell area was on the supraphysiological glass control. Both 

these observations are reflective of the results from this work.  

Cell proliferation on each of the materials was examined and the results showed 

no statistical significance between each of the three hydrogels or the control 

(Figure 4.3-8).  

 

However, the tissue culture plastic control showed a larger number of mean 

proliferating cells and it was predicted that statistical significance could have 

been achieved with a higher sample size despite its supraphysiological stiffness. 

This prediction was based on work by Skardal et al. The paper examined 

substrate elasticity on cell proliferation using surfaces of 2, 5, 15, and 50 kPa 

and tissue culture plastic as the control and found a significantly higher degree 

of cell proliferation on tissue culture plastic [263]. 

Tissue culture plastic has been shown to be preferential in terms of adhesion, 

spreading and proliferation for these experiments, however, it was noted that this 

is due to factors other than just the substrate stiffness (control plastic is 

supraphysiological at ~ 3 MPa), such as plasma treatment, chemical composition 

or surface topography which have been researched and evolved in culture plastic 

over decades [263]. The adhesion, spreading and proliferation of the cells on the 
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3D hydrogels should be more representative of in vivo conditions because 

traditional 2D culture using tissue culture plastic does not replicate in vivo elastic 

moduli.  

 

4.3.1.3 C2C12 Maturation/ Differentiation 

The three hydrogels were shown to support the growth of C2C12 cells, likely due 

to the hydrophilic materials they are prepared from: thiol-functionalised collagen 

and PEG (Figure 4.3-9).  

 

Maturation/ differentiation of C2C12 cells is the process the myoblasts take from 

a proliferating state to fusing to form myotubes. This was induced by switching 

to a low serum media to starve the cells. The myoblast maturation/ differentiation 

at 90% confluency (d0) proved to produce myotubes at too high occurrence to 

accurately determine the fusion index and myotube formation. Figure 4.3-10 

shows cells after 3 and 7 days. The actin filaments appear to have been 

remodelled to form the myotubes by day 3, with no clear comparison between 

day 3 myotubes and day 7 at this high confluency. 

 

Figure 4.3-9 Confocal microscopy f-actin staining (green) and nuclear 

staining (blue) showing the edge of collPEG3.5 hydrogel at day 1.  
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Ricotti et al used C2C12 cells grown to 90% confluency on a polyelectrolyte film 

and tissue culture plastic (control) with day 3 and 7 time points and f-actin 

staining (Oregon 488 phalloidin) similar to this work [255]. The images from the 

tissue culture plastic control at day 3 and 7 are shown (taken from the paper by 

Ricotti et al) (Figure 4.3-11).  

 

Day 3                 Day 7  

A B 

C D 

E F 

G H 

Figure 4.3-10 Immunofluorescent images showed C2C12 maturation and 
myogenic differentiation on hydrogels.  F-actin (green) nuclear 
counterstain (blue). Imaged at d3 and d7 after differentiation when d0 = 
90% confluency. CollPEG3.5 (A) and (B), collPEG4 (C) and (D), collPEG4.5 
(E) and (F) and control (G) and (H). Scale bars represent 100 μm. 
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The fusion index was determined by dividing the total number of nuclei in 

myotubes (≥ 2 nuclei) by the total number of counted nuclei. For this work, Ricotti 

et al reported a fusion index of 0.2 at day 3 and 0.27 at day 7 with no statistical 

significance between each time point. Despite the high confluency, it is apparent 

that more than 20% of the cells are in myotubes (≥ 2 nuclei) on day 3 (Figure 

4.3-11). The experiment was performed in triplicate with the error of the 0.2 

fusion index reported as ~ 0.05. The small error means that despite the image at 

day 3, the fusion index was never reported near 1.0 and implies a level of bias 

in the way the total number of nuclei in myotubes was calculated and whether 

the high confluency (~90%)  made it too difficult to be accurate and to produce 

reproducible graphs. 

A paper by Velica et al, describes an un-biased means to quantify C2C12 

myogenic differentiation. In this paper, it was stated that growth media should be 

swapped for differentiation media at d0 when cells are 70% confluent. This then 

provides a sharp increase in fusion index and myotube density after 3 days in 

differentiation media [264]. The paper was designed to prevent bias, so for the 

sake of reproducibility, the experiments in this work took 70% confluency as d0 

(Figure 4.3-12). 

Figure 4.3-11 Nuclei and F-actin staining of C2C12 cells after 3 and 7 days 

of differentiation. Taken from Ricotti et al Figure 3 [255].  
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Figure 4.3-12 Immunofluorescent images showed C2C12 maturation and 
myogenic differentiation. F-actin (green) and nuclear counterstain 
stain (blue). Images taken at day 0, 3 and 7 of differentiation. 
CollPEG3.5 (A), (B) and (C), collPEG4 (D), (E) and (F), collPEG4.5 
(G), (H) and (I) and control (J), (K) and (L). Scale bars represent 100 

μm. 
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The first phase of myogenic maturation/ differentiation is characterised by actin 

filament remodelling. This change in the cell morphology can be visualised in the 

images from day 0 compared to day 3 and 7 as the nuclei begin to fuse together 

(Figure 4.3-12 A, B, C). It was noted that the myoblast cells appeared more 

‘clumpy’ on the hydrogels at day 0 compared to the tissue culture plastic control 

likely due to the surface topography. However, once the cells began to fuse 

together this observation was no longer true and myotube formation was 

observed from day 3 in a random alignment.  

Fusion index was calculated (Figure 4.3-13), however, no statistical significance 

was observed between the fusion index of the three hydrogels or the tissue 

culture plastic control at day 3 or 7 of maturation/ differentiation.

, 

The control displayed the higher mean fusion index at day 3 and day 7, 0.38 and 

0.62 respectively, it is possible that with a higher sample number, the control 

could promote a statistically high degree of myotube formation than the three 

hydrogels. 

Ding et al used an experimental group of satellite cells (SCs) cultured on an 

elastic chitosan/beta-glycerophosphate/ collagen hydrogel (12 kPa) and a 

control group of SCs cultured on standard tissue culture polystyrene plates to 

investigate the influence of a substrate with elastic modulus similar to murine 

muscle tissue [239]. Similar to this work, d0 was determined at 70% confluency 
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Figure 4.3-13 Fusion index as a measure of the number of fused nuclei 
in myotubes ( ≤ 2) to total number of nuclei. Data represented as 

means ± SEM (n=3). N/S, no statistical significance. 
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and differentiation was analysed at day 5 with a fusion index of 0.89 for the 

hydrogel and 0.60 for the tissue culture plastic control. At day 7 in this work, a 

fusion index of 0.62 was reported for the control which is comparable to the work 

by Ding et al, but the hydrogel with similar stiffness, CollPEG4.5 (13 kPa) had a 

lower fusion index (although not statistically lower) of 0.54 at day 7 [239]. The 

importance of matrix elasticity in the efficiency of myogenic differentiation is 

stated in the literature, and although not reflected in this work, it is reported in 

the work by Ding et al. The different results could be due to the different cell type 

used, Ding et al used SCs whereas in this work C2C12 cells were used.  

Figure 4.3-14 shows a comparison of the size of the myotubes from the f-actin 

images. Myotube (%) was calculated in terms of small (2-4 nuclei) or large (≥ 5 

nuclei) myotubes with 30-100 myotubes analysed for each sample.  
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Figure 4.3-14 The effect of different hydrogels on C2C12 myotube 
formation at day (D) 3 and 7. Small myotubes, 2-4 nuclei and large 
myotubes, ≥ 5 nuclei. CollPEG3.5 (A), collPEG (B), collPEG4.5 (C) 
and control (D). Data represented myotube ratio (%) as means ± SEM 
(n= 3). *p ≤ 0.05, **p ≤ 0.01, ***P ≤ 0.005 and N/S, no significant 

difference. 
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A statistical significance is shown between the number of large myotubes (%) on 

day 7 compared to day 3 for collPEG4 (72.4 ± 10.0% to 22.2 ± 12.0% 

respectively) and the control (88.9 ± 7.9% to 41.7 ± 14.4% respectively). At day 

7, these samples were also shown to have significantly higher percentage of 

myotubes with five or more nuclei (large myotubes) compared to smaller 

myotubes (p ≤ 0.05). To provide a direct comparison of the three hydrogels with 

varied stiffness’ and the tissue plastic control, the data for the large myotubes 

(%) on day 7 was compared. However no sample was shown to have a 

significantly higher number of large myotubes on day 7, again implying that the 

increased substrate stiffness of the hydrogel had no effect of myotube formation.  

In comparison, the same representation of myotube (%) was performed by Ding 

et al, which reported a significantly higher difference in the percentage of large 

myotubes for the hydrogel (12 kPa) compared to the tissue culture plastic control 

group at day 5 of differentiation, 79.6 ± 4.9% to 49.4 ± 5.7% respectively [239]. 

Whereas in this work, when the hydrogel of similar stiffness, collPEG4.5 (13 kPa) 

was compared to the tissue culture plastic control group at day 7, there was no 

statistical significance in the percentage of large myotubes, 70.1 ± 11.7 to 88.9 

± 7.9% respectively. 

The work by Ding et al used cells cultured on the hydrogel substrate rather than 

encapsulated, similar to this work, however, their hydrogel outperformed the 

tissue culture plastic control despite similar stiffness’ ~ 7, 10 and 13 kPa 

compared to 12 kPa [239]. It is noted that a necessary condition for the different 

cellular reactions in response to matrices with different stiffness is that the cells 

feel the matrix stiffness, and on the cellular scale, the cells probe elasticity as 

they anchor and pull on their surroundings [239]. This could be easier for the 

cells to do on an alginate gel (Ding et al) rather than a collagen-PEG hybrid 

hydrogel. Additionally, it was also noted that the experiment by Ding et al used 

SCs rather than C2C12 cells which could account for the tissue-appropriate 

hydrogel statistically outperforming the tissue culture plastic for their work. 

The MF20 monoclonal antibody recognises the heavy chain of myosin. This can 

be used as a late stage marker for myogenic differentiation, so whereas f-actin 

(phalloidin) staining was chosen to analyse cell morphology, MF-20 Alexa Fluor 

488 was chosen to examine the phenotype [265].  

Figure 4.3-15 shows the myosin expression after 3 and 7 days of maturation/ 

differentiation as thick green filaments.  
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Interestingly, even though there were myotubes observed using f-actin staining 

on day 3, there was little/ no myosin expression on day 3 compared to day 7 for 

all three hydrogels and the control. This is because the first phase of myogenic 

Day 3   Day 7 

A B 

C D 

E F 

G H 

Figure 4.3-15 Myosin heavy chain (green) nuclear counterstain (blue). 
Images taken at day 3 and 7 of differentiation. CollPEG3.5 (A) and 
(B), collPEG4 (C) and (D), collPEG4.5 (E) and (F) and control (G) and 

(H). Scale bars represent 100 μm. 
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maturation/ differentiation is characterised by actin filament remodelling and 

myosin is used as a late stage marker.  

Similar results were reported by Chen et al with negative staining of myosin 

(conjugated with AF 488) at day 2 and positive staining and the appearance of 

thick myosin filaments reported on day 6 of maturation/ differentiation [265]. Day 

0 was also taken at 70% confluency similar to this work. 

The maturation (%) was calculated for the three hydrogels and the tissue culture 

plastic control at day 3 and 7 (Figure 4.3-16).  

 

At day 3, the control was shown to express significantly more myosin than 

collPEG3.5 (p ≤ 0.05) and whilst collPEG4 and collPEG4.5 were shown to 

express more myosin than collPEG3.5, there was no statistical significance 

between the three hydrogels. 

By day 7, all the groups had significantly promoted C2C12 cell maturation 

compared to the same substrate on day 3 (p ≤ 0.05). The control group was 

shown to express significantly more myosin than collPEG3.5 (p ≤ 0.05) 

Figure 4.3-16 Myosin expression and maturation (%) at day 3 and 7. Data 
represented as means SEM (n= 3). *p ≤ 0.05, **p ≤ 0.01, ***P ≤ 0.005 

and N/S, no significant difference. 
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suggesting that it outperforms this hydrogel in terms of a substrate for C2C12 

maturation at both time points.  

Due to the three varied stiffness’ of the hydrogels, it was expected that that the 

C2C12 cells would form myotubes preferentially on the stiffness closest to that 

of natural muscle, however, similar to day 3, there was no significant difference 

between the three hydrogels, although it was noted that collPEG3.5, the weakest 

hydrogel, expressed less myosin than the other two stiffer hydrogels.  

The tissue culture plastic control showed a higher mean % of myosin expression 

and thereby a higher degree of maturation compared to the three hydrogels on 

both days of the study, which suggests that the hydrogels have comparatively 

inhibited the C2C12 maturation (Table 4.3-1). 

Table 4.3-1 Percentage of myosin positive stained cells on different 

substrates. Data represented as means ± SEM (n= 3). 

Sample ID Myosin positive stained cells (%) 

Day 3 Day 7 

CollPEG3.5 0 ± 0 15.0 ± 2.4 

CollPEG4 0.53 ± 0.38 23.6 ± 4.2 

CollPEG4.5 0.47 ± 0.34 22.8 ± 2.7 

Control 3.3 ± 1.9 33.4 ± 4.8 

 

Romanazzo et al used f-actin (phalloidin) staining to analyse morphology and 

antibody staining with MF-20 Alexa Fluor 488 to examine the phenotype of 

C2C12 cells grown on PCL films and tissue culture plastic similar to this work. 

Tissue culture plastic control was shown to express myosin (%) 8 ± 2% at day 3 

and 51 ± 5% at day 5 similar to the results reported in this work [266]. However, 

the difference was that Romanazzo et al took d0 as 50% confluence to minimise 

the impact of cell-to-cell contact on the results.  

Many papers report that confluency needs to be near 100% at d0 because the 

differentiation of skeletal muscle cells is stimulated by a contact-dependent 

process [267]. The fact that a critical step in skeletal muscle differentiation is cell 

fusion which requires cells to be confluent enough to contact each other cannot 

be overlooked. Cells do have to reach a critical confluence necessary for muscle 

differentiation, however, Romanazzo et al reported that the differentiation media 
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still allowed the cells to proliferate until they were confluent enough to contact 

each other and undergo cell fusion. In comparison, a paper by Liu et al, which 

used C2C12 cells and d0 ~ 100% confluency reported that 20% of nuclei were 

in myosin heavy chain positive cells at day 3 and 50% at day 7, so despite initial 

d0 confluency, the amount of cells expressing positive for myosin heavy chain 

was similar to the final time point reported by Romanazzo et al [266]. 

Myogenic differentiation was found to occur earlier on tissue culture plastic 

compared to collPEG3.5 due to a significantly higher amount of myosin 

expression on day 3. If the maturation/ differentiation of muscle cells is stimulated 

by a contact-dependent process to a higher extent than from the cells 

experiencing their environment (similar elastic modulus to the natural tissue), 

then one way to explain the results would be due to cell proliferation on the 

different substrates. Tissue culture plastic showed a higher mean cell 

proliferation than collPEG3.5 which displayed the lowest mean proliferation. Both 

substrates displayed initial confluency of 70%, however, the cells grown on the 

tissue culture plastic control might proliferate and reach the critical cell-to-cell-

contact faster than the cells grown on collPEG3.5, thus leading to the earlier 

expression of myosin. 

A paper by Yeung et al stated that the stiffness-dependence of fibroblasts was 

no longer evident when they became confluent, and that cell-cell contact may 

have a similar effect to elasticity when cells are grown at a high density [268]. 

This was reflected in the results from this work, despite the varied substrate 

stiffness’, statistically similar fusion index and number of large myotubes (%) 

were reported between the three hydrogels and the tissue culture plastic with the 

similarity laying in the confluency of the cells and thereby the cell-cell 

interactions.  

However, the work by Engler et al showed a very narrow elasticity preference for 

C2C12 cells cultured on hydrogels with varied stiffness’. Engler stated that after 

2 and 4 weeks in culture, striated myotubes doubled in percentage on 

intermediate stiffness gels (8 kPa and 11 kPa) and gels with elastic moduli of 6.5 

and 17 kPa showed a significant but lower percentage of striated cells [56]. 

However, it was noted that the time points of 2 and 4 weeks are far longer than 

any C2C12 differentiation protocol which recommends from 24 hours to 7 days, 

despite the paper stating that myotubes began to form after 2 days. Collinsworth 

et al reported the effect of myotube differentiation on the transverse mechanical 

properties of mammalian myocytes using atomic force microscopy. The apparent 

elastic modulus increased from 11.5 ± 1.3 kPa for undifferentiated myoblasts to 
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45.3 ± 4.0 kPa for myotubes after 8 days of differentiation [227]. With the cells 

remodelling the hydrogels, it is possible that after the formation of myotubes (45 

kPa), the initial elasticity of the hydrogels would no longer be experienced by the 

cells at 2 and 4 weeks and shorter time points should have been used. 

Unlike what was predicted, myogenic differentiation did not occur earlier on the 

softer hydrogels as a result of the cells sensing their surroundings and finding it 

more suitable for myoblast differentiation as described previously [56].  

Out of the three hydrogels, collPEG3.5 was shown to be least preferential in 

terms of myosin expression and it was decided that the subcutaneous model 

would be performed using collPEG4 or collPEG4.5. Out of these, collPEG4.5 

was chosen because it was the strongest hydrogel (~13 kPa) and therefore 

would be easier to handle in surgery. 

 

4.3.2 Subcutaneous Implant Model 

All materials when implanted into living tissue initiate a host response that 

reflects the first steps of tissue repair, including acute or chronic inflammation, 

foreign body reaction and fibrosis/fibrous capsule development. The 

performance of a device implanted in the body is dependent on its interaction 

with the host immune system. However, modern implant design can be directed 

to make use of this immune response to improve implant integration, whilst 

avoiding chronic inflammation [143, 269].  

The photo-click hydrogels developed during this project are new materials and 

for this reason, it was important to analyse the host response to them, especially 

since their development was on a biocompatible basis.  

The collPEG4.5 hydrogel was chosen to take forward with the subcutaneous 

model to analyse the local immune response. Geistlich Mucograft® was chosen 

as the control, this is already commercially available as a collagen matrix for soft 

tissue regeneration (muscle). 

The pilot study for the subcutaneous model was performed to ensure the 

collPEG4.5 hydrogel was still present and did not degrade within 2 weeks in vivo. 

The time points for the real subcutaneous study would be adjusted accordingly. 

This was imperative to do especially with a new material in case it degraded too 

quickly and no results were gained from the animal model. After 14 days the 

samples were still present and the diameter of the scaffold was the same size 

prior to implantation (Figure 4.3-17).  
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The hydrogel could be identified by its dark purple colour using a H&E stain 

(Figure 4.3-18 A). It appears to have pulled away from this tissue, likely due to 

the dehydration and wax embedding process. Chronic inflammation and the 

foreign body reaction (FBR) occur within the first 2 weeks following implantation 

and there appeared to be no sign of foreign body giant cells. A Van Gieson stain 

was also performed on a sample of striated muscle taken from the rat (positive 

control). This allowed the elongated, parallel myofibrils to be visualised (B).   

 

 

Innate immunity is the initial response and defence to an antigen by the host 

pathogens (hours) and does not require prior exposure to the material, whereas 

adaptive immunity is the later response (several days) as lymphocytes are 

activated to an antigen, differentiate and expand [17]. Innate immunity takes a 

matter of hours, whereas adaptive immune response takes at least 4 days. 

Similarly acute inflammation can develop in minutes and last for days, whereas 

chronic inflammation takes over this process if the tissue injury in prolonged. It 

Figure 4.3-17 Gross appearance of collPEG4.5 after 14 days of 
subcutaneous implantation in vivo. 

Figure 4.3-18 Histology stains of samples from a pilot study in vivo after 
14 days of subcutaneous implantation of collPEG4.5 (A) H&E stain of 
collPEG4.5 (H) with attached surrounding tissue (ST), arrows 
indicate blood vessels. (B) Van Giesson stain of striated rat muscle 

sample shows the natural, parallel myofibrils. Scale bars 50 μm. 
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ST 
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was decided that the time points to analyse the subcutaneous model would be 

1, 4 and 7 days. 

Figure 4.3-19 shows the in situ pictures at 1, 4 and 7 days after implantation of 

collPEG4.5. Angiogenesis (formation of new blood vessels) was visible on some 

of the hydrogel sample (D). The hydrogel at day 1 was still translucent (as they 

were before the implantation), compared to day 4 and 7 which appeared a red/ 

pink colour synonymous with healing and integration. Although, the production 

of a provisional matrix around the scaffold has resulted in an inflamed 

appearance in the tissue surrounding the scaffold in response to the foreign 

material.  

A commercially available product - Mucograft® was used as the positive control 

for this study. It is composed of two structures, the compact macro and the 

spongey micro structure. This immediately was more difficult to handle in surgery 

compared to the hydrogel, - because of this dual structure, the collagen matrix 

Figure 4.3-19 In situ images of implanted collPEG4.5 after 1 day (A) & (B), 
4 days (C) & (D) and 7 days (E) & (F) of subcutaneous implantation.  

A 
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almost wanted to slide apart from each other. In comparison, the fact that the 

hydrogel was stiff and had good shape memory (after sterilisation, the hydrogel 

would rehydrate back to its original volume and shape) made it easy to handle. 

Figure 4.3-20 shows the surgical pictures after 1,4 and 7 days after implantation 

of the Mucograft®.  

 

 

In comparison to the collPEG4.5 hydrogel, there appeared to be far less 

integration with the tissue, the white coloured Mucograft® was clearly visible at 

day 4 and the white outline visible on day 7. This implied that there was poor 

tissue integration and poor vascularisation, but also had the advantage that it 

has not been covered by a fibrous capsule. Both materials retained their size and 

volume – although for the hydrogel sample, this could have been due to the 

A B 

C D 

E F 

Figure 4.3-20 Images taken after surgery for the Mucograft® after 1 
day (A) and (B), 4 days (C) and (D) and 7 days (E) and (F) after 
subcutaneous implantation. 
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fibrous capsule and inflammation. There was no premature breakdown for either 

Mucograft® or collPEG4.5 and both presented with tissue integration by day 7. 

During the sample retrieval, the samples had to be cut out from the subcutaneous 

tissue. However, due to the early initial time point of 1 day, the samples did not 

have enough time to integrate/ immune response had not caused fibrous capsule 

development. So rather than being cut out, the material would ‘pop’ out of the 

tissue instead. The number of samples of collPEG4.5 hydrogel or Mucograft® 

which ‘popped’ out was recorded and has been visualised as a graph (Figure 

4.3-21). The production of a provisional matrix around the scaffold, as a result of 

the foreign material as well as a response to the surgical procedure, was a slow 

process with Mucograft® and even at day 4 all the samples ‘popped’ out thus 

indicating no tissue surrounding it, despite it being a foreign material. This was a 

sign of lack of cell ingrowth or good cell-material interface.

 

The first cells present during the innate immune response are the platelets and 

neutrophils which mediate the earliest phases of inflammatory reactions. 

Neutrophils are identifiable by their spherical shape (~15 μm) and multilobed 

nucleus (different from eosinophils which have a dual segmented nucleus) [17].   

Figure 4.3-22 shows a clear differentiation of the Mucograft® and the collPEG4.5 

hydrogel under H&E stain. The hydrogel appears dark purple and the 

Mucograft® appears light purple with a fibrous structure. The Mucograft® 

scaffold appears to have a layer of cells attached to the outside with no infiltration 

and unlike the cells attached to the outside of the hydrogel, they appear just as 

a hemotoxylin stained nucleus and appear to have no surrounding cytoplasm. 
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Figure 4.3-21 The number of samples of hydrogel or the Mucograft® 

control ‘popped’ out when dissected at different time points (n =4). 
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This instantly raised a question of cytotoxicity of the material and a H&E stain 

was performed on wax embedded sections taken from the tissue surrounding 

the Mucograft® (Figure 4.3-23).  

 

From this image, nuclei of the same morphology as the ones surrounding the 

Mucograft® can be observed, however they have a supporting matrix. 

Alternatively, the cells could be in possession of a large nucleus with little 

surrounding cytoplasm similar to lymphocytes. However these cells are part of 

the adaptive immune response which take days to manifest. The rats would not 

have encountered the Mucograft®, or collPEG4.5 hydrogel antigen so the 

lymphocytes are said to be naïve.  

A B 

D C 

Figure 4.3-22 H&E stain of samples after 1 day of subcutaneous 
implantation. Mucograft®  (A) & (B). CollPEG4.5 (C) & (D). 
Magnifications (A) & (C) 10x; (B) & (D) 20x. Hydrogel (H) and 
Mucograft® (M). Scale bars 50 μm. 
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Although the collPEG4.5 hydrogel showed no visible signs of the polynuclear 

neutrophils or eosinophils, the surrounding protective matrix which has been 

secreted around the material is an early sign of the innate immune response - 

which is expected after any implantation of a foreign material. 

 

 

Figure 4.3-23 Tissue surrounding Mucograft® sample day 1. Scale bar 
50 μm. 
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Figure 4.3-24 H&E stain of samples after 4 days of subcutaneous 
implantation. Mucograft®  (A), (B) & (C). CollPEG4.5 (D), (E) & (F). 
Magnifications (A) & (D) 10x; (B) & (E) 20x; (C) & (F) 40x. Hydrogel (H) 
and Mucograft (M) and white arrow indicates macrophage 
debridement. Scale bars 50 μm. 
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Day 4 after implantation and the immune response for the hydrogel was apparent 

from the thick layer of surrounding cells (Figure 4.3-24). Cell infiltration and 

hydrogel debridement was also apparent from the presence of fried egg shaped 

macrophages (white arrow).  

There was still no tissue attachment on the outside of the Mucograft® and whilst 

a small amount of cell infiltration was apparent, they appeared as rounded nuclei 

again rather than with a surrounding cytoplasm. Ghanaati et al evaluated the 

tissue response to this bilayer collagen material in CD-1 mice over 3, 10 15, 30 

and 60 days [270]. At day 3 post implantation, which will be compared to the 

above day 4 results, they also reported that there was no evidence of capsule 

formation around the material. They also stated that tissue ingrowth was already 

observed, indicated by evidence of several infiltrating cells, although these cells 

appeared identical to the results above, just as nuclei [270]. 

 

 

Day 7 after implantation (Figure 4.3-25) and there was still a thick layer of cells 

surrounding the collPEG4.5 hydrogel, although less prominent than day 4 and 

cells also appear to have infiltrated through the material (C). Connective tissue 

can be observed from the spindle-shaped fibroblasts in addition to muscle 

formation near the collPEG4.5 hydrogel. Fibroblasts proliferate at the injury site 
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E F 

Figure 4.3-25 H&E stain of samples after 7 days of subcutaneous 
implantation. Mucograft®  (A), (B) & (C). CollPEG4.5 (D), (E) & (F). 
Magnifications (A) & (D) 10x; (B) & (E) 20x; (C) & (F) 40x. Hydrogel 
(H), Mucograft® (M), black arrows indicate connective tissue and 

white arrows indicate muscle. Scale bars 50 μm. 
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and remodel the local ECM to repair the wound. Whether this period results in 

tissue regeneration or scar formation is partially dependent on the duration of the 

chronic response that contributes to cytokine production and formation of 

granulation tissue [271]. 

Mucograft® has integrated with the surrounding tissue by day 7, with no dense 

surrounding population of cells indicative of the immune response. There are 

blood vessels near the base of the scaffold, although this could either be a 

regenerative response or an immune response to deliver more cells to fight the 

antigen. More cells have infiltrated into the scaffold, but again they appear just 

as nuclei with no surrounding stained cytoplasm. Ghanaati et al reported that at 

the 10 day time point, there was more tissue ingrowth with more cells reaching 

deeper within the scaffold compared to day 3 [270]. The health of the infiltrated 

cells was an issue in this work, however, Ghanaati et al showed that at 60 days 

the infiltrated cells were well integrated and a matrix had been secreted 

throughout the Mucograft® with the material completely invaded by cells and an 

appearance more like connective tissue [270]. These results subsided the issues 

about Mucograft®-induced cell cytotoxicity. 

CD68 recognises the rat ED1 antigen which is expressed on most macrophage 

populations. The immunohistochemical stain to identify CD68+ was based on 

work by Keeler et al [272]. This antibody stain was attempted at 3 different 

concentrations. However, either this antibody did not work or the auto 

fluorescence from the collagen in the collPEG4.5 hydrogel or Mucograft® was 

too strong, so no information about immune response could be taken from the 

antibody-stained images (Figure 4.3-26). 
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The host reaction to Mucograft® was favourable, with minimal inflammation, no 

strong immune response and no degradation or change in shape throughout the 

study, although the health of the infiltrated cells was an initial concern.  

After correspondence with Geistlich, it was discovered the lyophilisation of the 

material can make Mucograft® very hydrophobic, even though it is reported to 

have excellent hydrophilicity. So the material’s surface could modulate protein 

adsorption from the interstitial fluids after the first contact with the tissue. Cell 

adhesion and activation could occur later due to the interaction of adhesion 

receptors with these adsorbed proteins which provide the recognition of the 

foreign biomaterial [143]. Although there are other receptor-ligand interactions 

that activate the immunocompetent cells. The hydrophobicity could also explain 

the reduced immune response and poor health of the infiltrated cells. After 7 

days, the collPEG4.5 hydrogel displayed attached connective tissue as well as 

a dense layer of cells which could be seen infiltrating into the scaffold. These 

A B C D 

E F G H 
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Figure 4.3-26 IHC results to image CD68-AF 488  rat macrophage marker. 
Hydrogel at day 1 (A) and (B) Mucograft® at day 1 (C) and (D), 
hydrogels at day 4 (E) and (F) and Mucograft® at day 4 (G) and (H), 
hydrogel at day 7 (I) and (J) and Mucograft® at day 7 (K) and (L). 

Magnification x10, scale bar 50 μm. 
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observations were consistent with an expected acute foreign body reaction that 

follows implantation [273]. 

An important aspect of biomaterial design is the tailoring of the device to meet 

the needs of the body’s immune system. The photo-click hydrogels were 

designed to mimic muscle tissue in terms of matrix elasticity, and ultimately to 

repair tissue and encourage biomaterial integration [274]. Both materials held 

their own benefits in this study, Mucograft® presented a lower immune response 

and reduced inflammation, whereas the hydrogel, with its immune response 

promoted angiogenesis, which is beneficial later for muscle regeneration. This 

leaves the paradigm of whether to evade or evoke the host immune system and 

to what extent. It is noted that there is no point designing a new system if it is 

ultimately destroyed by the influx of inflammatory cells (chronic inflammation) 

and foreign body giant cells (FBGCs), however, the collPEG4.5 did not show 

signs of chronic inflammation or the macrophage-fused FBGCs (easily identified 

with H&E due to their fused-cell appearance) after 2 weeks of subcutaneous 

implantation (Figure 4.3-27).  

 

 

 

4.3.3 Critical Sized Calvarial Defect Model 

Injury to either tissue, whether muscle, tendon or bone compromises the physical 

function of the trauma-exposed extremity and interest lay in recreating the 

muscle-tendon-bone bridge, conceivably with a gradient hydrogel. CollPEG4.5 

was created to mimic the mechanical properties of natural muscle, whereas 

H 

H 

ST 

ST 

Figure 4.3-27 H&E stain of collPEG4.5 after 2 weeks of subcutaneous 
implantation. Hydrogel (H), subcutaneous tissue (ST), black arrows 

indicate blood vessel. Scale bars 50 μm.  
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collagen-4VBC was a stiff, stable hydrogel which benefited from π-π stacking 

and possessed mechanical properties similar to that of pre-calcified bone. 

A critical size bone-defect model (4 mm) was created on SD rats, which was 

repaired with collagen-4VBC hydrogel as the test material (stiffness similar to 

that of pre-calcified bone ~60 kPa and hereafter referred to as 4VBC) and Bio-

Gide® as the control. No subject experienced complications such as infection 

during this study.  

 

 

The bone defect areas were visualised by photography after schedule 1 (Figure 

4.3-28). Bio-Gide® is pictured on the left hand side (LHS) of the cranium and 

4VBC on the right hand side (RHS). After 2 weeks, the defects could be easily 

detected from either sample (Figure 4.3-28 A), although, the 4VBC appears to 

experience gel shrinkage/ degradation which would impede its use as a template 

for bone formation. The visual representation of Bio-Gide®’s superior bone 

formation is obvious at 6 weeks, where the defect was almost filled in.  

New bone formation was confirmed in all groups and microCT allowed a 3D 

reconstruction of mineralised tissue within the defect and a visualisation of the 

Bio-Gide® 
 

4VBC 

Bio-Gide® 
 

4VBC 

4VBC 
  
Bio-Gide®  
 

Figure 4.3-28 Photographs of the Bio-Gide® and 4VBC after the fibrous 
tissues were removed to expose the bone defect area (A&B) after 2 
weeks and (C&D) after 6 weeks. Bio-Gide® is in the LHS defect and 
4VBC in the RHS defect. The cut-out bone sample after (B) 2 weeks 

and (D) 6 weeks. 
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volumetric and spatial density of bone regeneration of the tissue at 2 and 6 weeks 

(Figure 4.3-29) [249].  

 

Lohmann et al visualised the bone defect using in vivo microCT analysis at 1 d, 

3 d, 3 w, 6 w, 12 w post implantation [251]. This advanced technique was not 

available during this research but would be used preferentially to reduce sample 

variance, although the calculation of bone volume from this advanced technique 

was impeded by the addition of hydroxyapatite in the samples by Lohmann which 

could not be distinguished from newly formed bone.  

The bone samples were scanned for structural analysis by SkyScan-1072 high-

resolution desk-top micro-CT system. Image J analysis provided quantitative 

information about new bone volume (Figure 4.3-30).  

 

Figure 4.3-29 Micro-CT 3D scans of the bone samples. (A) Bio-Gide® 
after 2 weeks (B) Bio-Gide® after 6 weeks (C) 4VBC after 2 weeks 
and (D) 4VBC after 6 weeks. 
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The thickness of the calvarial defect was calculated to be 1.243 ± 0.04 mm which 

was used to calculate the total volume of the empty defect (15.7 mm3) and the 

new bone (%) (Table 4.3-2).  

Spicer et al reported a calvarial thickness of 1 mm in rats, similar to the 1.243 

mm from the microCT results [249]. 

Table 4.3-2 MicroCT analysis of new bone formation after 2 and 6 weeks (2/ 

6 W) of implantation in rat calvaria defect model. Data represented as 

means ± SEM (n = 3). 

Sample ID New Bone Volume 

(mm3) 

New Bone (%) 

4VBC 2 W 2.0 ± 0.5 13.0 

4VBC 6 W 2.8 ± 0.8 17.8 

B/G 2 W 3.1± 0.9 20.1 

B/G 6 W 6.0 ± 1.0 38.2 

 

Bio-Gide® formed twice the amount of new bone compared to the 4VBC 

hydrogel at 6 weeks, 6 mm3 to 2.8 mm3, although the small sample size (n= 3) 

meant that the bone volume of Bio-Gide® 6 W was only significantly higher when 
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Figure 4.3-30 New bone volume determined by microCT analysis. Data 

represented as means ± SEM (n=3). *p < 0.05. 
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compared to 4VBC 2 W. Although both materials supported bone regeneration, 

Bio-Gide displayed a higher mean new bone volume compared to 4VBC for both 

2 W and 6 W and appeared to support bone formation more than the 4VBC 

hydrogel. 

Gielkens et al used Bio-Gide® to repair a 5 mm mandible defect with estimated 

bone volume of the defect of 16.81 mm3. MicroCT results showed that new bone 

formation (%) of Bio-Gide® at 2, 4 and 8 weeks was 8.9, 56.8 and 84.1% 

respectively. These results for new bone (%) are higher at 4 and 8 weeks and 

lower for the result at 2 weeks, (20% to 8.9% respectively) compared to the 

current study. However, it was noted that the blank control used by Gielkens et 

al presented new bone (%) at 2, 4 and 8 weeks of 20.2, 21.3, 27.3% [275]. This 

implied that the bone healing capacity of the animals used in the study was 

higher, potentially because only one defect was used per animal, compared to 

this study where there were two defects per animal [249].   

Huebsch et al used an alginate hydrogel (60 kPa) for their bone defect model 

(Charles River Nude Rats) with the notion that this elasticity would be able to 

support cell migration and proliferation based on in vitro assays [276]. After 12 

weeks, the alginate hydrogel presented a calculated new bone (%) 19.9% 

comparable to the results at 6 weeks for the 4VBC hydrogel (17.8%). 

Additionally, the work showed a statistically significant difference in the new bone 

volume of hydrogels 5 and 60 kPa after 12 weeks model, 7 to 12 mm3 

respectively [276]. This suggests that mechanotransduction pathways that 

regulate stem cell gene and protein expression in vitro might be directly 

transferred to complex in vivo processes such as bone formation. Although whilst 

acknowledging this, the Bio-Gide® has outperformed the 4VBC hydrogel (~60 

kPa) in this work despite the mechanotransduction pathways. 

As discussed in the methods, this bone formation model was performed rather 

than a guided bone regeneration (GBR) model. The principle of GBR uses a 

barrier membrane to prevent soft tissue cells (fibroblastic cells) from colonising 

the defect during healing since osteoprogenitor cells grow relatively slowly. Thus 

serving as a space-maintaining device to allow osteoblast cells to migrate and 

fill the defect/ bone graft material, thus resulting in direct bone regeneration [277, 

278]. For a calvarial model, this would require the barrier to be between the 

periosteum and the defect. There have been several papers showing the 

success of GBR [279, 280]. However, an observation when retrieving the 

samples was that more bone was present on the ‘top’ of the bone where the 
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periosteum was covering it compared to the ‘bottom’ of the bone that had been 

in contact with the dura mater (Figure 4.3-31).  

 

 

The microCT image from the top of the bone where it has been in contact with 

the periosteum, visually looks as though it has greater bone healing. Work by 

Stevens et al involved the design of a bioreactor between the surface of a long 

bone (tibia) and the periosteum, to induce the body’s natural healing mechanism 

and to generate new tissue and provide all the necessary cells and factors in the 

correct temporal and biochemical sequence [281]. This was performed to 

successfully reconstitute living bone. This insight is purely written in argument to 

GBR. As mentioned in the introduction, muscle, tendon and blood vessels 

influence the healing of bone, although the relative contributions of the cells and 

the exact cellular mechanism during the healing of bone has remained an active 

area of ongoing research [247]. Whilst the visualisation of these standalone 

microCT images have no quantitative backing; it is to emphasise that the biology 

of the cells is as of yet, still not thoroughly understood in the complex bone 

healing process.  

The bone samples used for microCT were then embedded in a plastic resin using 

an Osteobed kit and the bone samples that were not used for microCT (n=3) 

were demineralised using formic acid (10%) before paraffin embedding and 

histological analysis. 

Bottom 

Top 

A B C 

Figure 4.3-31 MicroCT images of Bio-Gide® 6 weeks. (A) Top 
represents the side of the bone the periosteum is covering and 
bottom represents the side of the bone in contact with the dura 
mater. (B) Visualisation of the top of the defect and (C) the bottom 

of the defect, 
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The accutom could not cut thin sections and would grind away the top of the 

plastic if the settings were set too small (Figure 4.3-32). However, after de-

plasticising, a Von Kossa stain was attempted where calcium deposits are 

stained black, cytoplasm pink and nuclei red (Figure 4.3-33).  

 

 

Due to the thick sample (as a result of the accutom) and due to the poor Osteo-

bed method of plasticising, the Von Kossa images are not well detailed. 

Although, from the images of Bio-Gide® and 2 and 6 weeks, the increase in 

calcium deposition (black marks) is apparent and hence degree of 

mineralisation.  

 

 

A B 

Figure 4.3-32 (A) Struers Accutom-5 and 9 cm blade (B) plastic-
embedded bone section (100- 200 μm). 

B/G 

B/G 

DE 

DE 

Figure 4.3-33 Von Kossa stain of Bio-Gide® at 2 weeks (A) and 6 weeks 
(B). B/G indicates Bio-Gide®, where the sample is apparent, DE 
indicates defect edge and white arrows indicates calcium 

deposition (black mark. Scale bars 50 μm. 

A B 



 
 

168 

 

Figure 4.3-34 shows that formic acid (10%) can be successfully used to 

demineralise calvarial bone. The x-ray images show the removal of the mineral 

before and after incubation with formic acid. These samples were then 

dehydrated, fixed and mounted onto slides. 

 

 

Figure 4.3-35 shows H&E, Goldner’s Masson trichrome and Sanderson’s rapid 

bone stains for 4VBC at 2 and 6 weeks. The defect edge where the trephine drill 

was used to cut the 4 mm defect is obvious for (A) and (F). As shown in the 

Masson trichrome staining images presented the newly formed bone, and 

mineralised bone, can be easily recognised at different stages (2 weeks vs 6 

weeks) with the white arrows directing towards the immature new bone osteoid.  

Figure 4.3-34 X-ray images to examine mineral content of bone samples. 
A – 4VBC 2 W, B – 4VBC 2 W demineralised, C – 4VBC 6 W, D – 
4VBC 6 W demineralised, E – B/G 2 W, F B/G 2  W demineralised and 
E – B/G 6 W demineralised.  

A 

B 

C 

D 

E 

F 

G 

H 
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Figure 4.3-36 shows the de-mineralised histology stains for Bio-Gide at 2 and 6 

weeks. The biggest difference between the stains for the 4VBV hydrogel and 

Bio-Gide is the appearance of a clear, cut defect edge. No defect edge is obvious 

for Bio-Gide 6 weeks and the new bone appears in lumps attached around the 

old bone.  

CT 

CT 

CT 

DE 

DE 

DE 

DE 

CT 

CT 

CT 

DE 

DE 

B A 

C 
D 

F E 

Figure 4.3-35 Representative histological stained images of 
demineralised samples from the cranial defects of the rats using 
4VBC hydrogels two weeks after surgery (A), (C) and (E) and six 
weeks after surgery (B), (D), (F) with examination using H&E, 
Goldner’s Trichrome and Sanderson’s rapid bone stain 
respectively. In (A-F) CT, indicates connective tissue, DE indicates 
defect edge and white arrows indicate the presence of new bone 

formation. (A-F) Scale bars 100 μm and magnification x10. 
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From the histological evaluation alone, Bio-Gide appears to have better bone 

formation compared to 4VBC and no definitive edges are visualised for Bio-Gide 

and the bone appears surrounded by connective tissue. 

 

  

Figure 4.3-36 Representative histological stained images of 
demineralised samples from the cranial defects of the rats using 
Bio-Gide® two weeks after surgery (A), (C) and (E) and six weeks 
after surgery (B), (D), (F) with examination using H&E, Goldner’s 
Trichrome and Sanderson’s rapid bone stain respectively. In (A-
F) CT, indicates connective tissue, DE indicates defect edge and 
white arrows indicate the presence of new bone formation. (A-F) 

Scale bars 100 μm and magnification x10. 

DE 

CT 

CT 

CT 

CT 

CT 

CT 
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Cells can either grow on top or be encapsulated inside hydrogels due to their 

water-swollen nature. They also possess the ability to incorporate composites 

such as hydroxyapatite or silk [282, 283]. One disadvantage is that they tend to 

be very soft materials, although the 4VBC hydrogels have been shown to have 

good mechanical competence (~ 60 kPa) similar to that of natural pre-calcified 

bone [57]. The properties of the 4VBC hydrogel which might have contributed to 

the reduced bone formation include poor cell penetration, poor mechanical 

properties of hydrogels at both macroscopic and microscopic levels compared to 

the Bio-Gide®, hydrogel shrinkage and a lack of complex microvasculature [88]. 

Additionally, Bio-Gide® contains a unique bilayer structure and been optimally  

developed to allow for the cascade of biologic events leading to regeneration. As 

mentioned in chapter 3, collagen-4VBC hydrogels have poor shape memory, so 

when they are rehydrated they are film-like. This impeded their handleability in 

surgery and they were difficult to place in the defect. Additionally, due to their 

transparent appearance they could often be misplaced or lost entirely. The Bio-

Gide® was far easier to handle and was white in colour so it was always obvious 

that the scaffold was in the correct position in the defect. 

Bio-Gide® has been shown to achieve new bone formation of 38% after 6 weeks 

as a purely biomaterial-based approach with no additional growth factors or cells. 

 

4.4 Conclusion 

The three photo-click hydrogels collPEG3.5, collPEG4 and collPEG4.5 were 

shown to be non-toxic as a result of a direct and indirect cytotoxicity test using 

C2C12 cells. The three hydrogels were shown to support cell attachment, 

spreading, proliferation and maturation/ differentiation of C2C12 mouse myoblast 

cells. Although despite their varied stiffness’ (7, 10 and 13 kPa), there was no 

significant difference between the results for each hydrogel.   

The tissue culture plastic control showed a higher mean % of myosin expression 

compared to collPEG4 and collPEG4.5 and a statistically higher expression 

compared to collPEG3.5 on both day 3 and 7 of the study, which suggested that 

the hydrogels have comparatively inhibited the C2C12 maturation. On the 

cellular scale, the cells probe elasticity as they anchor and pull on their 

surroundings. This could be difficult for the cells to do on the collagen-PEG hybrid 

hydrogel due to the high fibrillar arrangement of the hydrogel – collagen, 1 wt.% 

and PEG8NB 3.5-4.5% (w/v) and because the cells were cultured on top of the 

hydrogel rather than encapsulated inside it. It was possible that rather than 
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migrating inside the hydrogel, the cells remained and grew on top due to the high 

concentration of material. This would mean the cells would ‘feel’ more from their 

cell-cell interactions rather than the cell-substrate interactions. 

The immune response of the new material, collPEG4.5 was analysed at 1, 4 and 

7 days after subcutaneous implantation using Mucograft® as the commercial 

control and presented with a biocompatibility paradigm. From the literature, it 

was discovered that modern implants are designed to create a small immune 

response (steering clear of chronic inflammation) in order to encourage 

integration with the tissue, rather than remain ‘invisible’ to the host. The 

Mucograft® showed reduced inflammation and immune response compared to 

the collPEG4.5 hydrogel which was concluded to be due to the hydrophobic 

nature of the material. The collPEG4.5 hydrogel appeared to induce a greater 

host response with angiogenesis observed on day 4 of the study. The degree to 

which a modern implant should invoke an immune response is not clear, 

however, the pilot study at 2 weeks implantation showed no signs of FBGCs 

(fused macrophages) indicative of no unresolved inflammation chronic 

inflammation which would holds implications in terms of the material’s longevity. 

Collagen-4VBC and BioGide® were compared as a purely biomaterial-based 

approach for bone formation in a critical sized bone defect model. Interface tissue 

engineering (ITE) is an emerging field that aims to regenerate functional tissues 

in order to repair or to regenerate diseased or damaged tissue zones. Due to the 

similarity in elasticity of the collPEG4.5 to muscle and collagen-4VBC to pre-

calcified bone, a gradient hydrogel could have been created to mimic the hard-

soft gradient of natural tissue such as bone, cartilage, muscle, skin, and vessels, 

- this could be formed from a concentration gradient, diffusive mixing of two 

hydrogels or by regulating cross-linking density [282-285]. However, BioGide® 

was shown to support bone formation more than collagen-4VBC, so the 

application of gradient hydrogels for ITE was abandoned.  
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 - Telopeptides and Polymeric Collagen 

 

5.1 Introduction 

The aim of this chapter was to assess the influence of telopeptide removal on 

the structural and physical properties of mature ‘polymeric’ and acid-soluble 

(normal) ‘monomeric’ collagen type I, before the material could be used as a 

means to provide an immunological benefit to the material. It was also of interest 

to prepare collagen-4VBC (coll4VBC30) hydrogels from atelo collagen in order 

to compare whether similar chemical, physical and mechanical properties were 

achievable compared to previous data using RT collagen. 

The biocompatibility and versatility of collagen derived products for medical 

applications has long been recognised and reflected in its wide scale research 

[286]. As a scaffold material, collagen benefits from good biodegradability, 

affinity for biomolecules and exhibits organisational and macromolecular 

properties similar to the natural extracellular matrix (ECM) [73, 74]. Collagen has 

a unique triple helix structure made of three left-handed polypeptide (α-chains) 

chains held together by hydrogen bonds between the peptide bond of a glycine 

residue with the peptide carbonyl (C=O) of the adjacent polypeptide [287]. Each 

chain follows the amino acid motif, -Gly-X-Y-, where X and Y are often proline 

and hydroxyproline [287]. Glycine (Gly) is the smallest essential amino acid, and 

provides the H atom which is able to fit inside the crowded centre of the triple 

helix to form the hydrogen bonds. The fixed angle of the C-N bond is due to the 

high content of peptidyl-proline or peptidyl-hydroxyproline bonds which allow the 

rotational freedom needed to form the tight packaging of the three chains, thus 

organising the triple helix [287, 288]. The short segments of the C- and N- termini 

of the polypeptides (the telopeptides), do not possess the repeating Gly-X-Y 

motif and are therefore non-helical [289, 290]. In human type I collagen, there 

are 38 lysine residues in an α1 chain (36 in the helical domain, one in the C-

telopeptide domain and one in the N-telopeptide domain) and 31 in an α2 chain 

(30 in the helical domain, one in the N-telopeptide domain, and none in the C-

telopeptide domain) [149]. The fibrils are stabilised by covalent aldol cross-links 

between lysine-lysine or lysine-hydroxylysine from the C- terminus to the N- 

terminus of adjacent molecules, thus stabilising the side packing [63, 287]. These 
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self-assemble into cross-striated fibrils (periodic D spacing ~ 67 nm) with high 

tensile strength [85, 287].  

The use of biological material for medical applications requires a distinction 

between immunogenicity and antigenicity. Immunogenicity is about triggering an 

immune response, whilst antigenicity can be determined by macromolecular 

features of an antigen molecule such as three-dimensional (3D) conformation 

and amino acid sequence [77]. 

Collagen, as an animal-derived biomaterial has always raised concerns 

regarding its potential to evoke immune responses [289, 291]. However, the 

interpretation of immunochemical reactions to collagen-containing implants is 

often complicated by the presence of cell remnants, or chemicals from extraction 

or cross-linking treatments [292-294]. 

 

5.1.1 Atelo Collagen 

The collagen molecule can be divided into three domains: the terminal amino (N-

) telopeptide, the triple helix, and the terminal carboxy (C-) telopeptide [295]. 

Treatment of collagen with proteolytic enzymes (e.g. pepsin or ficin) can cleave 

the terminal telopeptides to produce atelo collagen with an intact triple helical 

conformation [287]. 

The antigen determinants of collagen can be classified in three categories: 

helical recognition by antibodies dependent on 3D conformation located within 

the triple helical portion of native collagen, central recognition dependent on the 

amino acid sequence and terminal recognition dependent on the non- helical 

telopeptides of the molecule.  

It has been claimed that the majority of collagen’s antigenicity is attributed to the 

terminal telopeptides and that collagen devoid of terminal telopeptides can 

eliminate its immunogenicity, whereas realistically, the biological effects of atelo 

collagen are not yet fully understood [77, 296]. The removal of telopeptides 

results in an amorphous arrangement of collagen molecules and a loss of the 

collagen fibril pattern in the reconstituted product. This is due to the roles of the 

C- and N-terminus telopeptides in cross-linking and fibril formation [77, 297]. The 

induced positively charged surface of the atelo collagen can significantly 

increase its solubility and therefore the ability to process the collagen as a 

biomaterial. 
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5.1.2 Polymeric Collagen 

All collagenous tissues contain a fraction of soluble ‘monomeric’ collagen which 

is extractable in weak acidic solutions such as acetic acid (17.4 mM) and is the 

material commonly used in research. However, in mature tissues, such as 

tendons, the bulk of the collagen consists of insoluble, highly cross-linked 

polymerised fibres of type I collagen (‘polymeric’ collagen) with a smaller amount 

as acid-soluble monomeric collagen (<10 %) [123, 298]. The natural fibrillar 

cross-links are chemically rearranged with age to form acid-stable aldminine 

cross-links, which provide increased mechanical strength of the tissue and forms 

‘polymeric’ collagen [123, 299].  

 

5.2 Methods 

Hereafter, acid-soluble collagen will be referred to as monomeric collagen and 

mature, acid-stable collagen will be referred to as polymeric collagen as 

distinction between the two types. Atelo collagen has been pepsin treated to 

remove the end telopeptides. 

 

5.2.1 Materials 

The materials were provided as part of an industrial collaboration with Collagen 

Solutions, UK and Southern Lights Biomaterials, New Zealand. Monomeric atelo 

collagen (Collagen Solutions, UK), Polymeric collagen (Southern Lights 

Biomaterials, New Zealand), Polymeric atelo collagen (Southern Lights 

Biomaterials, New Zealand). 4-vinylbenzyl chloride (4VBC) was purchased from 

Sigma, Tween20 and triethylamine (TEA) were purchased from Sigma-Aldrich. 

 

5.2.2 Preparation of Monomeric Collagen Type I 

Type I collagen was isolated in-house via acidic treatment of rat-tail tendons. 

Briefly, rat-tails (RT) were defrosted in ethanol before the skin was removed 

using a scalpel. The tails were allowed to dry before the exposed tendons 

(approx. four per tail) were removed, sliced and placed in acetic acid (17.4 mM) 

and stirred for 48 hours. The solution was centrifuged and the pellet removed to 

leave the soluble collagen type I dissolved in the acetic acid, which was freeze-

dried to remove the solvent to leave the white, acid-soluble collagen type I. 
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5.2.3 Chemical and Structural Characterisation 

Chemical and structural characterisation was used to analyse the influence of 

telopeptides on monomeric and polymeric collagen 

 

5.2.3.1 Circular Dichroism (CD) 

Circular dichroism (CD) spectra of collagen samples (0.2 mg.ml-1) were acquired 

(ChirascanCD spectrometer, Applied Photophysics Ltd) using solutions in HCl 

(10 mM). A homogeniser was used to dissolve polymeric and atelo polymeric 

collagen. Sample solutions were collected in quartz cells of 1.0 mm path length, 

whereby CD spectra were obtained with 4.3 nm band width and 20 nm.min-1 

scanning speed. A spectrum of the HCl (10 mM) solution was subtracted from 

each sample spectrum.  

Equation 5.2-1 

θ𝑚𝑟𝑤,𝜆 =
𝑀𝑅𝑊 𝑥 θ𝜆

10 𝑥 𝑑 𝑥 𝑐
 

 

Where θλ is observed molar ellipticity (degrees) at wavelength λ, d is path length 

(1 cm) and c is the concentration (0.2 mg.ml-1) [163]. 

A temperature ramp was conducted from 20 to 60 °C with 20 °C/hour heating 

rate with ellipticity measurements at 221 nm fixed wavelength. The 221 nm 

coincides with the positive band associated with the collagen triple helix and its 

destruction will be related to a lower value of ellipticity. The denaturation 

temperature (Td) was determined as the mid-point of thermal transition. 

 

5.2.3.2 Differential Scanning Calorimetry (DSC) 

Differential Scanning Calorimetry (DSC) was used in order to investigate the 

thermal denaturation (Tm) of collagen samples (TA Instruments Thermal Analysis 

2000 System and 910 Differential Scanning Calorimeter cell base). DSC 

temperature scans were conducted with 10-200 °C temperature range and 10 

°C.min-1 heating rate. 5-10 mg sample weight was applied in each measurement 

and three scans were used for each sample formulation. The DSC cell was 

calibrated using indium with 10 °C.min-1 heating rate under nitrogen atmosphere. 
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5.2.3.3 High Pressure Liquid Chromatography (HPLC) 

High pressure liquid chromatography (HPLC) was used to investigate the amino 

acid occurrence in collagen samples (Dionex Ultimate 3000 HPLC, Dionex 

Softron GmbH, Germany). This service was paid for by Southern Lights 

Biomaterials and provided by Massey University's Institute of Fundamental 

Sciences. For acid stable amino acids, hydrolysis was performed in HCl (6 M) 

for 24 hours at 110 oC in an evacuated sealed tube followed by fluorescence 

detection. Results were calculated as residues per 1000 residues. 

 

5.2.4 Physical Characterisation 

 

5.2.4.1 Scanning Electron Microscopy (SEM) 

Scanning electron microscopy (SEM) was used for microscopic analysis of 

collagen by gold-coating the samples in order to examine the fibrillary meshwork 

and banding pattern. Samples were mounted onto 10 mm stubs and electron 

micrographs captured (FEI Quanta 600) via backscattered electron detection at 

10 kV and 12 - 13 mm working distance.  

 

5.2.5 Telopeptides and Hydrogel Properties 

To analyse whether medical grade atelo collagen could be used as a 

replacement for monomeric collagen i.e. display similar chemical, physical and 

mechanical properties, collagen hydrogels were prepared by base mediated 

nucleophilic substitution reaction using 4-vinylbenzoyl chloride (4VBC). The 

nomenclature coll4VBC30 was given to collagen hydrogels functionalised with 

30 x excess 4VBC. RTColl and AColl were used to refer to rat tail (RT) and atelo 

type I collagen respectively. 

 

5.2.5.1 Functionalisation of Collagen Type I 

Medical grade atelo collagen type I and in-house isolated monomeric collagen 

were dissolved in HCl (10 mM, 0.25 wt.%). The pH was adjusted to 7.4 and 

Tween20 (1% (v/v)) added to the solution followed by 4VBC (30 molar excess) 

and triethylamine (1:1 to 4VBC). The solution was stirred for 24 hours followed 

by precipitation in ethanol (20 x excess) which was stirred for a further 24 hours. 

The solution was centrifuged to remove the pellet and air dried. 
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5.2.5.1.1 2,4,6-trinitrobenzenesulfonic acid (TNBS) assay 

Functionalised collagen (0.011 g) including a reference sample (0.011 g) were 

placed in a vial. Sodium hydrogen carbonate (NaHCO3) (4%, 1 mL) and TNBS 

(0.5%, 1 mL) were added. Hydrochloric acid (HCl) (6 N, 3 mL) was added to the 

reference sample. This was stirred at 40 oC for 3 hours. HCl (6 N, 3 mL) was 

added to non-reference sample and stirred at 60 oC for 1 hour to complete the 

reaction. This was diluted in water (5 mL), followed by extraction in diethyl ether 

(3 x 15 mL). An aliquot (5 mL) was removed and diluted in water (15 mL). 

Absorbance was measured at 346 nm. 

The degree of collagen functionalisation, F, was determined by TNBS 

colorimetric assay, according to the following equations:  

Equation 5.2-2 

𝑚𝑜𝑙 (𝐿𝑦𝑠)

𝑔 (𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛)
=  

2. 𝐴𝑏𝑠 (346 𝑛𝑚). 0.02 𝐿

1.46 𝑥 104(𝑀−1𝑐𝑚−1). 𝑏. 𝑥
 

 

Where: Abs (346 nm) is the absorbance value at 346 nm, 0.02 is the volume of 

sample solution (in litres), 1.46 x 104 M-1.cm-1 is the molar absorption coefficient 

for 2,4,6-trinitrophenyl lysine, b is the cell path length (1 cm) and x is the sample 

weight.  

Equation 5.2-3 

𝐹 = 100 − 
𝑚𝑜𝑙(𝐿𝑦𝑠)𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑠𝑒𝑑 𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛

𝑚𝑜𝑙(𝐿𝑦𝑠)𝑛𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛
 𝑥 100 

 

Where: mol(Lys)native collagen and mol(Lys) functionalised collagen represent the total 

molar content of free amino groups in native and functionalised collagen, 

respectively. The nomenclature (Lys) is hereby used to recognise the free amine 

groups from (hydroxy) lysine.  

 

5.2.5.2 Preparation of Collagen Hydrogels 

Hydrogels were prepared by dissolving coll4VBC30 in HCl (0.8 wt.%, 10 mM) 

solution containing I2959 (1% (w/v)). After dissolution, the solution was 

dispensed into 12 cell well plates and irradiated with UV light (365 nm) for 30 

minutes on each side. 
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Figure 5.2-1 Reaction of coll-4VBC30 using I2959 and UV light (365 nm) 

 

5.2.5.2.1 Physical Characterisation 

Swelling ratio was determined by placing a dehydrated sample (2 – 5 mg) in 

distilled water overnight. The SR was calculated according to the following 

equation: 

Equation 5.2-4 

𝑆𝑅 =  
𝑀𝑠 − 𝑀𝑑

𝑀𝑑
 𝑥 100 

 

Where Ms is swollen weight and Md is dried weight. Swollen samples were paper 

blotted prior to measurement of Ms, in order to take into account, the contribution 

from bound water only. 

In addition to the swelling ratio, the gel content was determined to investigate the 

overall portion of the covalent hydrogel network insoluble in HCl (10 Mm) 

solution. Dried hydrogel networks of known mass (Md) were equilibrated in HCl 

(10 Mm) solution for 24 hours. Resulting hydrogels were air dried and weighed 

(Md1). The gel content (G) was calculated according to: 

Equation 5.2-5 

𝐺 =  
𝑀𝑑1

𝑀𝑑
 𝑥 100 

5.2.5.2.2 Mechanical Characterisation 

Compression testing was used for mechanical characterisation. water-

equilibrated hydrogel discs (Ø: 12 mm) were compressed at room temperature 

with a compression rate of 3 mm∙min-1 (Instron ElectroPuls E3000). A 250 N load 

cell was operated up to complete sample compression. Stress-strain lines were 

recorded and the compression modulus was calculated:  
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Equation 5.2-6 

𝜎 =
𝐹

𝐴
 

 

Where σ is stress (Nm-2 or Pa), F is force (N), and A is the cross sectional area 

of the sample (m2). 

 

Equation 5.2-7 

𝜖 =  
∆𝑙

𝑙0
 

Where ε is strain, l0 is the original length (m) and Δl is the difference between l 

and l0 (m). 

Equation 5.2-8 

𝐸 =  
𝜎

𝜖
 

 

Where E is Young’s modulus (Nm-2 or Pa). 

 

5.3 Results and Discussion 

Sample nomenclature used in this work is as follows: acid-soluble collagen will 

be referred to as monomeric collagen and mature, acid-stable collagen will be 

referred to as polymeric collagen. 

 

5.3.1 Chemical and Structural Characterisation 

CD is defined as the unequal absorption of left-handed and right-handed 

circularly polarised light. When the chromophores of the amides on the 

polypeptide backbone of proteins are aligned in arrays, their optical transitions 

are shifted or split into multiple transitions [300]. The spectra of proteins are 

dependent on their conformation, so CD is a useful tool to estimate the structure 

of unknown proteins and monitor conformational changes due to denaturation 

[300]. Far-UV CD spectra of monomeric type I collagen displayed a positive band 
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at 221 nm and a negative band at 198 nm, characteristic of the triple helical 

conformation (Figure 5.3-1) [301].  

The magnitude ratio of the positive to negative band (RPN) for the monomeric 

type I collagen spectrum was found to be 0.094, comparable to the literature 

value of native collagen, RPN: 0.117 [79].  

Monomeric atelo collagen displayed a RPN value of 0.189. The positive band at 

221 nm had similar molar ellipticity to monomeric collagen. This represents an 

intact triple helical conformation, despite the removal of the telopetides and the 

covalent inter-strand cross-links they provided. This was beneficial for atelo 

collagen and showed that the structure was not disrupted during pepsin 

treatment. 

Polymeric type I collagen displayed a wide positive band centred at 214 nm, 

characteristic of random coils and no negative band. The change in the 

absorption wavelengths was evidence for alterations in the secondary structure, 

in terms of electronic transitions in the chain backbone or in the helically arranged 

side groups of collagen [302]. The spectra could imply that the natural cross-links 

found in the mechanically stronger polymeric collagen, hinder the coiled 

supramolecular assembly characteristic of monomeric collagen. 

The CD spectrum of polymeric atelo collagen bore no resemblance to the broad 

positive band displayed for polymeric collagen, and instead showed a positive 

band (221 nm) similar to monomeric atelo collagen which displayed a RPN: 1.21 

190 200 210 220 230 240

-3000000

-2000000

-1000000

0

1000000

2000000

3000000

[
] 
( 

d
e

g
 c

m
2
 d

m
o

l-1
)

Wavelength (nm)

 Polymeric Atelo Collagen

 Polymeric Collagen

 Monomeric Collagen

 Monomeric Atelo Collagen

Figure 5.3-1 CD spectra of polymeric atelo, polymeric, monomeric atelo 
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(native monomeric collagen, RPN: 0.117). This could suggest that the enzyme-

catalysed procedure to cleave the telopeptides, also resulted in the destruction 

of the natural cross-links that differentiate polymeric collagen from monomeric 

collagen. Additionally, the difference between the molar ellipticity of the positive 

and negative peak for polymeric atelo collagen suggest some denaturation of the 

triple helical structure. 

A temperature ramp between 20 and 60 oC was used to follow the denaturation 

of collagen triple helices to randomly coiled form. This could not be performed 

on polymeric collagen due to the lack of the characteristic 221 nm band 

maximum. Instead, it was used as a tool to examine the influence of telopeptides 

on the denaturation temperature of monomeric collagen (Figure 5.3-2).  

Denaturation temperature (Td) was measured at half the initial molar ellipticity of 

the characteristic positive band (221 nm). For monomeric collagen, Td was 36.5 
oC and monomeric atelo collagen, Td was 35.5 oC. These differing values could 

be due to the subdomain of collagen, and the roles that the C- and N- 

telopeptides provide for intermolecular covalent cross-links which help to 

stabilise the collagen triple helix; without these additional interactions, the atelo 

collagen triple helices denature at a lower temperature.  

DSC was used to determine shrinkage, indicated by Ts, related to the thermal 

transitions of the collagens on heating and was employed in this study to 

investigate the effect telopeptide cleavage has on the thermal properties [303] 

(Figure 5.3-3).  

Figure 5.3-2 Temperature ramp CD of monomeric collagen and 

monomeric atelo collagen. 

15 20 25 30 35 40 45 50 55 60 65

0

200000

400000

[
] 
(d

e
g

 c
m

2
 d

m
o

l-1
)

Temperature (
o
C)

 Monomeric Collagen

 Monomeric Atelo Collagen



 
 

183 

 

 

Higher shrinkage temperatures (peak maximum) typically indicate a higher 

degree of intramolecular interactions between the collagen molecules. 

Telopeptide cleavage results in a smaller shrinkage temperature for both 

polymeric and monomeric collagen (Table 5.3-1). This can be contributed to the 

covalent aldol cross-links provided by the C- and N- terminus to the adjacent 

molecule. Monomeric atelo collagen possesses a higher peak maximum 

compared to polymeric atelo collagen, despite the additional natural cross-links 

specific to polymeric collagen. This pattern is again portrayed with polymeric and 

monomeric collagen. The reason for this could be due to the loss of the triple 

helical conformation of polymeric collagen which was shown by the CD 

spectrum. 

Table 5.3-1 DSC data from polymeric atelo, polymeric, monomeric atelo 

and monomeric type I collagen. 

Collagen Type I Average Enthalpy 

(W.g-1) 

Average Peak 

Maximum (oC) 

Polymeric Atelo -0.378 44.8 

Polymeric -0.621 62.7 

Monomeric Atelo -0.320 51.4 

Monomeric -0.432 66.5 
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Figure 5.3-3 DSC data for polymeric atelo, polymeric, monomeric atelo 

and monomeric type I collagen. 
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High pressure liquid chromatography (HPLC) was used to determine the amino 

acid content (residues per 1000 residues) in polymeric atelo and polymeric type 

I collagen (Table 5.3-2). Monomeric collagen was not tested due to the 

polymeric-specific interest of Southern Lights Biomaterials. 

Table 5.3-2 HPLC data from polymeric atelo and polymeric collagen 

displayed as residues per 1000 residues. 

Amino Acid Atelo 

Polymeric 

Collagen 

Polymeric 

Collagen 

Aspartic Acid 46.2 47.3 

Threonine 16.2 16.4 

Serine 34.1 33.2 

Glutamic Acid 73.7 72.3 

Proline 123 122.5 

Glycine 337 334 

Alanine 108 108.8 

Valine 22.9 23.5 

Methionine 6.3 6.6 

Isoleucine 12.9 13.7 

Leucine 25.2 26.3 

Tyrosine 3.9 5.3 

Phenylalanine 13.6 13.8 

Histidine 5.7 5.9 

Lysine 22.2 21.4 

Arginine 52.0 52.6 

Hydroxyproline 96.6 96.6 

 

Hydroxyproline is formed intracellularly from the post-translational hydroxylation 

of proline and constitutes 10–14% of the total amino acid content of mature 

collagen [304]. The hydroxyproline content for both collagenous proteins was 
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9.66% of the total amino acid content (96.6 residues per 1000 residues) for 

polymeric collagen confirming to the literature value for mature (polymeric) 

collagen. Tyrosine is only present in the telopeptides of the collagen molecule 

and can be used as a measure of telopeptide cleavage [302]. Existing normally 

as 0.5% of the total amino acid content, a total content below 0.2% (2 residues 

per 1000 residues) is representative of atelo collagen [305, 306]. The amino acid 

sequence of the α(1) telopeptides are shown below for bovine type I collagen 

[307].  

The free α (1) N-terminal telopeptide conformation: 

GLU-LE-SER-TYR-GLY-TYR-ASP-GLU-LYS-SER-THR-GLY-ILE-SER-VAL-

PRO 

The free α (1) C-terminal telopeptide conformation: 

SER-GLY-GLY-TYR-ASP-LEW-SER-PHE-LEU-PRO-GLN-PR-PRO-GLN-GLX-

LYS-ALA-HIS-ASP-GLY-GLY-ARG-TYR-TYR-ARG-ALA  

Polymeric collagen had a tyrosine total content of 0.53% and polymeric atelo 

collagen had a total content of 0.39%. A common misconception is that pepsin 

treatment leads to the complete cleavage of both the N and C-telopeptides, this 

is not true and is why the mark of atelo collagen is 0.2% tyrosine rather than 0%. 

The 3.9/1000 residues for polymeric atelo collagen is higher than the literature 

value, however, the previous data from CD and DSC showed a definitive 

difference between polymeric atelo and polymeric collagen which indicates that 

some telopeptide cleavage has occurred and the terminal cross-links have been 

disrupted. The higher tyrosine occurrence could be explained by means of 

telopeptide docking, whereby the free terminal structure docks onto the triple-

helix chain as a staggered structure, so the tyrosine would still be accounted for 

in HPLC [308].  

 

5.3.2 Physical Characterisation 

SEM images were taken at varying magnifications to examine the internal 

material architecture (Figure 5.3-4)Figure 5.3-4 Fig. 3. SEM images: polymeric 

atelo collagen (A 30 magnification, B 2000 magnification, C 8000 magnification) 

and polymeric collagen ((D 30 magnification, E 2000 magnification, F 8000 

magnification) Different morphologies are observed which shows the amorphous 

arrangement of collagen molecules and a loss of the collagen fibril structure after 

telopeptide cleavage.   
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5.3.3 Telopeptides and Hydrogel Properties 

Both RT and atelo monomeric collagen were functionalised with 4VBC (30 x 

excess) to form RTColl4VBC30 and AColl4VBC30. These were analysed 

chemically by TNBS assay and CD to determine degree of functionalisatoin (F) 

and triple helical preservation (RPN) before photopolymerisation to form 

hydrogels using UV light (365 nm) and I2959 (1% (w/v)). The physical 

parameters of the two collagen types were compared using gel content (G) and 

swelling ratio (SR) and the mechanical properties were compared using 

compression tests (Ec). (Table 5.3-3) [84].   

Figure 5.3-4 Fig. 3. SEM images: polymeric atelo collagen (A 30 
magnification, B 2000 magnification, C 8000 magnification) and 
polymeric collagen ((D 30 magnification, E 2000 magnification, F 

8000 magnification) 
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Table 5.3-3 Chemical, physical and mechanical properties of 4VBC (30 x 

excess) networks using either RT or atelo type I collagen. Data 

presented as mean ± SEM. 

Sample ID F (mol.%) RPN G (wt.%) SR (wt.%) Ec (kPa) 

RTColl-

4VBC30 

45 ± 4 0.14 97 ± 4 2065 ± 191 84 ± 17 

AColl-

4VBC30 

44 ± 1 0.12 100 ± 0 1900 ± 200 81 ± 9 

 

A molar content of primary amino groups of 3 x 10-4 mol∙g-1 was measured via 

TNBS on atelo collagen in agreement with previously reported values despite 

the telopeptide cleavage. The amine content is primarily from the lysine group 

which is more prevalent in the helical domain of collagen. In the α1 polypeptide 

chain for human type I collagen, there are 38 lysine residues, 36 in the helical 

domain and 2 in the telopeptides [149]. Additionally, pepsin-treated atelo 

collagen does not result in full cleavage of the terminal telopeptides and is 

classified by a reduce tyrosine content from 0.5% to 0.2%, so similar TNBS 

results for the quantification of primary amino groups was to be expected [305, 

306]. Functionalisation with 4VBC (30x) resulted in similar degrees of amino 

group conversion for both the RT and atelo collagen ~44%, therefore the 

nucleophilic substitution reaction was unaffected by telopeptide cleavage. 

Far-UV CD analysis indicated typical dichroic spectral patterns of type I collagen 

for AColl4VBC30 in terms of a positive triple helix-related absorption band at 221 

nm, and a negative absorption band around 198 nm, associated with the 

presence of polyproline chains. The ratio of positive and negative peak 

intensities (RPN) for AColl4VBC30 and RTColl4VBC30 were recorded as 0.12 

and 0.14 similar to previous results [75]. 

The functionalised atelo collagen displayed improved solubility compared to the 

functionalised RT collagen as a result of the induced positive charge on the 

surface from telopeptide cleavage. This was beneficial because the high 

concentration of I2959 (1% (w/v) required to initiate the reaction can be 

detrimental to collagen solutions.  

The high G value for both collagen types (97 and 100%) showed that the all the 

material was held together in a strong covalent network. Swollen hydrogels 

exhibited a swelling ratio of ~2000 wt.% and Ec ~80 kPa, confirming comparable 
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macroscopic properties for RT and atelo collagen despite the telopeptide 

cleavage [84]. 

 

5.3.4 Immune Response 

Various biomaterial companies and numerous publications claim that telopeptide 

removal results in collagen that is non-immunogenic, or with low levels of 

immunogenicity due to little inter-species variation in the amino acid sequence 

of the central, helical segment collagen [309].  

A statement from the Koken website reads: “Since the telopeptides are not 

present in atelocollagen, the antigenicity of atelocollagen is even lower than that 

of collagen” 

This is very misleading. 

The location of the major antigenic sites on the collagen molecule varies 

depending on the donor/ recipient species pairing and can be from the terminal 

telopeptides, central (amino acid sequence) or helical (3D conformation). When 

calf collagen was transferred to a rabbit, the major antigenic site was from the 

terminal telopeptides and in comparison, when calf collagen was transferred to 

a rat, the major antigenic site was helical [77, 87]. No study has been made on 

the major antigenic sites when bovine collagen is transferred to humans, and as 

of yet there is no proof that the antigenicity of atelo collagen is lower than that of 

collagen.  

It is also a misconception that pepsin-treatment completely removes the 

telopeptides. In fact, Herman et al, documented that atelo collagen can be 

characterised by a tyrosine count of 2/1000 residues which is the figure still used 

today [305]. This questions whether the antigenic activity of the atelo collagen 

would even be distinguishable compared to non-treated collagen if it was shown 

that the major antigenic site from bovine/ human pairing is the terminal 

telopeptides.  

 

5.4 Conclusions 

The influence of telopeptides on the structural and physical properties of 

polymeric and monomeric collagen was investigated. Monomeric atelo collagen 

displayed the characteristic positive band at 221 nm on the CD spectrum 

associated with the triple helical conformation of collagen. This implies that 
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despite the covalent aldol cross-links provided by the telopeptides, their cleavage 

does not disrupt the natural collagen structure. It was found that polymeric 

collagen did not display the characteristic positive peak at 221 nm, thereby 

implying that the natural cross-links associated with mature collagen disrupt the 

native triple helical structure. The presence of the negative peak in atelo 

polymeric collagen could imply that the harsh pepsin treatment to cleave the 

telopeptides, could be disrupting the mature cross-links and would therefore no 

longer be termed polymeric. The shrinkage temperature was shown to decrease 

after telopeptide cleavage for both monomeric and polymeric collagen, likely due 

to the reduced intramolecular aldol covalent cross-links attributed to the 

telopeptides.  

Whilst atelo collagen is beneficial in terms of increased solubility, it was decided 

that its prevalence in the literature and in collagen-based biomaterial companies 

was far overstated. Macromolecular features of a protein not common to the host 

species is more likely to encourage an immune response than shared features, 

so atelo collagen could provide a mildly lower level of immunogenicity. This is 

because there is little inter-species variation in the amino acid sequence of the 

central, helical segment, although this is unknown and could be grossly 

overstated [77, 87]. 
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 – Discussion and Future Work 

 

6.1 General Discussion 

The aim of this project was to design defined collagen-based hydrogel networks 

to investigate stiffness-induced cell differentiation for skeletal muscle tissue 

engineering. 

The field of tissue engineering and regenerative medicine has evolved rapidly in 

the last two decades. The core aim of the field is to enhance the body’s innate 

healing capacity using a combination of bioactive scaffolds, cells and chemical 

and physical cues to achieve improved clinical outcomes for the patients.  

The general approach requires the development of a material that can support 

cells by providing a surface for adherence, a template for new tissue growth and 

a mechanical environment that can withstand the forces at a given site in the 

body. The influence of the microenvironment in which a cell is situated was 

discussed in chapter 1, whereby cells adhering to the ECM can sense the 

mechanical properties through specific interactions of cell surface integrins and 

from ‘pulling’ on the surface, these interactions influence cytoskeletal tension and 

lead to changes in cell shape, cell proliferation and can be used to direct cell fate.  

Hydrogels represent a rapidly growing niche in tissue engineering because their 

3D water-swollen environment mimics in vivo conditions more than traditional 

cellular monolayers. Collagen-based hydrogels are gaining widespread 

popularity due to the abundance of collagen in the ECM and their natural cell-

recognition sites and biocompatibility. A disadvantage of self-assembled 

collagen hydrogels is that there is a degree of variability depending on the tissue 

source and gelation pH and temperature. They also lack the mechanical 

properties of native tissues (Emuscle ~ 8-16 kPa). One method to address this 

challenge is to chemically cross-link collagen or to incorporate varied natural/ 

synthetic polymers to create a hybrid hydrogel. 

There are many techniques currently being investigated to permit collagen 

hydrogels to be used for cell encapsulation or for injectable devices. 

Fundamentally this would require the use of a non-toxic catalyst or photoinitiator, 
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low temperatures (>37 oC), cell-friendly light source and fast gelation times 

(clinically acceptable time-scale) for an injectable device.  

Click chemistry is a technique that invokes fast reaction times, high yields, is 

insensitive to ambient oxygen or water and typically requires a lower 

concentration of photoinitiator or catalyst than traditional reactions. There have 

been studies that have incorporated click chemistry with natural hydrogels as 

means to create tissue engineered constructs which benefit from the combined 

fast, high yielding reactions with added biocompatibility and natural cell 

attachment sites of the natural polymers [98-100, 111, 183]. Far fewer have 

incorporated collagen, likely due to the retrosynthetic restrictions, and to date, no 

papers could be found which used a thiol-ene reaction to prepare collagen 

hydrogels [93].  

 

6.1.1 Development of Functionalised Collagen Precursor Materials for 

Click Chemistry 

The objective of chapter 2 was to develop a facile, non-toxic means to 

functionalise collagen abiding by retrosynthetic considerations represented in 

terms of solubility, non-harmful reagents/ solvents, low reaction temperatures, 

occurrence and availability of functional groups and most importantly, the 

preservation of the triple helical conformation.  

The rationale for using collagen and the need to modify/ cross-link it prior to its 

use as a biomaterial for skeletal muscle tissue engineering (SMTE) has been 

discussed. Thiol click chemistry appeared to be an appealing and novel route to 

cross-link collagen to form hydrogels with fast gelation times and low catalyst 

concentrations.  

This was an achievable approach and it was easy to access thiol and ene 

reagents that could react with the available amine group on collagen by 

nucleophilic substitution or addition.  

Collagen-2IT and collagen-NAC were two thiol-precursors that were prepared in 

this chapter and it was shown that the degree of functionalisation could be 

controlled by the ratio of [Lys]:[2IT] with good preservation of the triple helix 

conformation. To date, no literature of collagen functionalised with NAC to 

produce collagen-NAC was found and whilst collagen-2IT had been reported, 

the method required the immersion of pre-formed collagen scaffolds with 

resulting low conversions (1%) [179-181]. In comparison, the systematicaly 

developed method from this work reported thiol-conversions of up to 80%. This 
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method of thiol-functionalisation meant the collagen-2IT could be dissolved in 

PBS (0.01 M) and therefore opened the door to the possibility of using it for cell 

encapsulation. 

Collagen-norbornene was synthesised as a non-homopolymerisable thiol-ene 

precursor reagent. This method however, was not facile and due to the poor 

solubility of the norbornene reagent, DMSO had to be used as the solvent. It was 

not desirable to use collagen-norbornene due to the retrosynthetic implications. 

Instead collagen-GMA and collagen-4VBC were considered as potential 

Michael-acceptors in the thiol Michael-addition reaction and multi-arm PEG 

norbornene terminated was selected as a water-soluble precursor material for 

the thiol-ene reaction. PEG benefits from adjustable mechanical properties, the 

ability to maintain high volumes of water, easy to modify end groups and it has 

been approved by the Food and Drug Administration (FDA) for various clinical 

applications.  

An analysis of three water-soluble photoinitiators in terms of relative cell survival, 

light absorbance and collagen suitability was performed as a prerequisite before 

the development of a novel cross-linking strategy. The results showed that LAP 

and I2959 were more suited to the reaction that eosin Y/ TEOA. 

 

6.1.2 Systematic Development of Collagen Click Chemistry Hydrogels 

The objective of chapter 3 was to examine novel synthetic strategies for cross-

linking collagen to prepare defined covalent networks with reliable, varied 

molecular architecture and substrate stiffness. 

Five requirements were set up during the systematic development process to 

allow application as an in situ injectable device or for in vitro encapsulation: 

- All the reagents should be cell-friendly/ bioinert. 

- The precursor materials should be water- soluble for dissolution in PBS 

or basal media. 

- A low concentration of photoinitiator/ catalyst should be used to ensure 

good cell viability and cytocompatible hydrogel formation. 

- Fast gelation times to ensure minimal cell-damage particularly if a UV light 

source is required. 

- Facile, accurate means to provide tunable mechanical/ physical 

properties to represent ECM of muscle tissue. 
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The Michael-addition reaction was attempted with both collagen-NAC and 

hexa(ethylene glycol) dithiol as the Michael-donors, and collagen-GMA and PEG 

diacrylate as the Michael-acceptors. These reactions were attempted using 

varied pH with and without a base catalyst, however, no reaction occurred. This 

could be due to the nature of the thiol group (pKa) and the corresponding thiolate 

species, base catalyst strength, steric bulk of the thiol and how susceptible the 

carbon double bond was for nucleophilic attack (nature of the EWG). Another 

explanation could be due to the slow reaction times for Michael-addition which 

have been reported in other papers (~ hours) [80, 104].  

At the time, the electron deficient double bond and the structure and pKa of the 

thiol group were considered the most important factors impacting the reaction 

rate. Concern was had over the high pKa of the collagen-NAC and it was thought 

that the additional alkyl group gained from functionalisation of NAC with collagen, 

may have further increased the pKa of the thiol hydrogen. Additionally, there 

could be issues due to the viscosity of the collagen solution which could impede 

the Michael-addition reaction. It was also noted that the considerations set out 

for cell-hydrogel in situ encapsulation were not being followed. The base catalyst 

was not cell-friendly and neither was the pH of the solution and the collagen-

NAC was only soluble in weak acetic acid solutions rather than PBS. The cross-

linking method was supposed to be simple, robust, and highly effective under 

mild reaction conditions, so Michael-addition was abandoned. 

Thiol-ene reactions require a double bond incapable of homopolymerisation for 

a true step-growth mechanism. There are many cases in the literature where it 

has been claimed that a thiol-ene reaction, or a mixed step-and-chain growth 

reaction was taking place between PEGdA and a dithiol, when actually the most 

dominant reaction was more likely from chain-growth polymerisation [310].  

As mentioned, collagen-norbornene had been synthesised although this was not 

used due to its harsh reaction conditions and poor solubility. Instead, 4-arm 

(PEG4NB) and 8-arm PEG norbornene (PEG8NB) terminated water-soluble 

macromers were selected.  

The hydrogel properties were compared using both PEG4NB or PEG8NB with 

collagen-2IT (1 wt.%). Lower gel content and lower compressive moduli were 

recorded when used with PEG4NB compared to PEG8NB. It was thought this 

was due to the ratio of SH:NB, and the proceeding experiments used PEG8NB 

in addition to collagen-2IT (due to its solubility in PBS) and either LAP or I2959 

at 365 nm. 
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Photoinitiators had been discussed in chapter 1 and chapter 2 and I2959 and 

LAP were both recognised as water-soluble materials capable of releasing 

radicals when exposed to UV light at 365 nm. The maximum absorption 

wavelength of LAP is 380 nm, with a high absorbance still recorded at 365 nm 

(molar extinction coefficient (ε): 218 M−1·cm−1) [132]. In comparison, I2959 had a 

peak maximum at 285 nm, where it also displayed competing absorbance with 

the aromatic amino acids in collagen, whilst displaying minimal absorbance at 

365 nm (ε: 4 M−1·cm−1) [132]. The competing absorbance and low molar 

extinction coefficient (365 nm) meant a higher concentration of this photoinitiator 

can be required to generate a sufficient number of radicals to initiate a reaction, 

although this again is inhibited due to the poor solubility of I2959 in aqueous 

solutions. This was demonstrated with the work by Tronci et al. Two vinyl 

containing moieties, collagen-GMA and collagen-4VBC were reported to require 

I2959 (1% (w/v) and UV light exposure ~30 minutes for gelation to occur, 

whereas synthetic molecules with no competing absorbance from aromatic 

amino groups require I2959 (≤ 0.1% (w/v)) with complete curing times less than 

5 minutes [75, 79, 130, 189].   

These two photoinitiators were compared using a UV photo-rheometer with 

collagen-2IT and PEG8NB. The time to complete gelation was taken at G’max. 

LAP-initiated reactions were significantly faster the I2959-iniated reactions. The 

gelation time for LAP (0.5% (w/v)) was 187 seconds and LAP (0.1% (w/v)) was 

279 seconds. In comparison I2959 (0.5% (w/v)) was 1683 seconds and I2959 

(0.1% (w/v)) was 1496 seconds. There was an average 7-fold decrease in 

gelation time when using LAP rather than I2959. The competing absorbance 

when used in conjunction with collagen due to the aromatic amino acids 

absorbing at ~265 nm and the light source at 365 nm (I2959, Amax ~ 280 nm) 

made I2959 a poor photoinitiator for this application. 

Interestingly, the success of the step-growth reaction compared to the chain-

grown reaction can be observed in the halved concentration of I2959 required to 

complete the reaction 0.5% (w/v) compared to 1% (w/v) previously reported by 

Tronci et al, likely due to its insensitivity to ambient oxygen or water and therefore 

lower radical concentration required to start the reaction [79].  

In chapter 2, the cell survival results for LAP, 0.1 and 0.5 % (w/v) made it clear 

that for cell-encapsulation to be viable, less than 0.1% (w/v) should be used to 

prevent photoinitiator induced cytotoxicity. However, the results from the 

previous experiment showed a 15-fold decrease in the storage modulus when 

the concentration of photoinitiator was reduced, LAP (0.5% (w/v)) was 3360 Pa 
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and LAP (0.1% (w/v)) 232 Pa. This was likely due to an insufficient release of 

enough radicals to complete the click chemistry reaction, thus resulting in fewer 

thiol-norbornene cross-links and a hydrogel with reduced storage modulus. 

Unfortunately, due to these results, the application of cell-hydrogel encapsulation 

or in situ injectable devices had to be abandoned using LAP and I2959. 

It was still in the interest of this work to develop hydrogels with varied mechanical 

properties to investigate stiffness induced differentiation of myoblasts to 

myotubes. In the literature, it was shown that the mechanical properties of thiol-

click hydrogels could be controlled by the thiol/ene ratio, PEG molecular weight 

and architecture or polymer concentration [110, 184]. Tronci et al also stated that 

mechanical properties could be tuned by cross-linker type and density. 

Previous work in chapter 2 showed that the degree of functionalisation of the 

collagen backbone could be controlled by the ratio of [Lys]:[2IT], thus providing 

a means for the cross-link density to be controlled. The cross-link type had been 

changed by comparing PEG8NB to PEG4NB with Ec recorded as 4.3 and 2.8 

kPa respectively. This could have been used as a way to control the mechanical 

properties but the low gel content of the PEG4NB hydrogels made their use 

undesirable. For the same experiment gel content was 85 and 58 wt.% 

respectively, so all the material for PEG4NB was not held together in a covalent 

network. 

The mechanical properties were shown to be easily tailored by controlling the 

thiol/ene ratio with the PEG8NB concentration. CollPEG2 to CollPEG4.5 were 

shown to have varied mechanical and physical properties G’ 0.5 to 6.4 kPa, Ec 

1.5 to 13 kPa and SR 1530 to 3010 wt.%. 

Of these photo-click hydrogels, collPEG3.5, collPEG4 and collPEG4.5 were 

taken forward in the cell culture experiments due to their similarity to the elasticity 

of muscle (Ec ~ 7,10 and 13 kPa) in order to examine how matrix elasticity effects 

the myoblast cells in terms of spreading, proliferation and maturation/ 

differentiation. The small difference in elasticity ~ 6 kPa was assumed to be 

sufficient to provide statistically significant results due to work by Engler at al 

which reported a narrowness in the optimum substrate compliance for C2C12 

differentiation in culture [56]. 

6.1.3 Cell Attachment, Spreading, Proliferation and Differentiation on 

Hydrogels with Varied Elastic Moduli 

The objective of chapter 4 was to perform in vitro tests with a myoblast cell line 

to examine cell attachment, spreading, proliferation and differentiation when 
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cultured on three photo-click hydrogels with elastic moduli similar to that of 

natural muscle. 

These hydrogels are new materials and the first crucial step was to examine their 

cytocompatibility with cells. This was done using both an extract and a direct 

cytotoxicity test.  

The extract test is often used to provide an initial first impression of the 

cytotoxicity which is said to be consistent with the results of animal toxicity tests, 

there was no significant difference between the three hydrogels and the control 

for this test which was beneficial. 

The direct cytotoxicity test is more reflective of the in vitro success of the device. 

Results showed that the number of cells on the hydrogel at each timepoint was 

generally lower than the tissue culture plastic control, however, this was 

predicted to be due to initial cell attachment. From the results, a significantly 

higher number of cells were observed on day 5 compared to day 1 for all three 

hydrogels which confirmed that there was no direct cytotoxic effects as a result 

of the material.  

Cell adhesion 3 hours after seeding was examined. The tissue culture plastic 

control showed a statistically higher number of cells attached to it compared to 

the three hydrogels. However, tissue culture plastic is plasma treated prior to 

distribution to improve cell attachment by incorporating more oxygen onto the 

surface, rendering it more hydrophilic. The flat tissue culture plastic also provides 

more contact surface. In comparison, the hydrogels have not been plasma 

treated and are more porous than the tissue culture plastic (less contact surface) 

so it is expected that tissue culture plastic outperforms the hydrogels in terms of 

attachment. Despite the varied stiffness’ of the three hydrogels, there was no 

significant difference between the cell attachment after 3 hours with C2C12 cells. 

Cell spreading was examined after 24 hours and unlike the cell seeding 

experiment where the tissue culture plastic outperformed the hydrogels, all 

results showed that no material promoted a statistically higher degree of cell 

spreading after 24 hours. It was assumed that differing elastic moduli would 

effect cell spreading, however, these results were mirrored in work by Engler et 

al. After 24 hours, this work showed that spreading on the stiffest hydrogels and 

the glass control were statistically similar in terms of cell area [56]. This indicated 

that with time, spreading was less dependent on substrate elasticity. Another 

similarity between the results from this work and the results by Engler et al was 

that the highest mean cell area was reported on the control. The control had a 
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stiffness of ~3 MPa rendering it supraphysiological and does not agree with 

previous reports that dictate that substrate stiffness effects cell spreading on 

tissue-like elasticities. 

Cell proliferation was examined and there was no statistical difference between 

the three hydrogels despite the varied stiffness’ of the substrates. The 

proliferation on the tissue culture plastic control was shown to have the highest 

mean result although not statistically higher when compared with the three 

hydrogels.  

Cells were stained with f-actin and the cell morphology was visualised on day 0, 

3 and 7 as the nuclei began to fuse together. It was noted that the myoblast cells 

appeared more ‘clumpy’ on the hydrogels at day 0 compared to the tissue culture 

plastic control likely due to the surface topography. However, once the cells 

began to fuse together this observation was no longer true and myotube 

formation was observed from day 3 in a random alignment.  

Fusion index was calculated, however, no statistical significance was observed 

between the three hydrogels or the tissue culture plastic control at day 3 or 7 of 

maturation/ differentiation. Although at day 7, these samples were shown to have 

significantly higher percentage of myotubes with five or more nuclei (large 

myotubes) compared to smaller myotubes.  

The myosin expression and degree of maturation/ differentiation was statistically 

higher at day 7 compared to day 3 for all of the samples. The tissue culture plastic 

control showed a higher level of myosin expression and a higher degree of 

maturation/ differentiation compared to the hydrogels with a statistically higher 

expression compared to collPEG3.5 on both days of the study. Due to the three 

varied stiffness’ of the hydrogels, it was expected that that the C2C12 cells would 

mature/ differentiate preferentially on the stiffness closest to that of natural 

muscle. However, it would appear that in terms of myosin expression, there was 

no statistical difference between the three hydrogels.  

It has been reported that substrate elasticity plays an important role in cell fate 

and by recapitulating the elasticity of muscle tissues, you can create an 

appropriate microenvironment for in vitro cell culture [56, 57]. The elasticity of 

the hydrogels used during this work were ~ 7, 10 and 13 kPa similar to muscle. 

On the cellular scale, the cells probe elasticity as they anchor and pull on their 

surroundings. This could be difficult for the cells to do on the collagen-PEG hybrid 

hydrogel due to the high fibrillar arrangement of the hydrogel – collagen, 1 wt.% 

and PEG8NB 3.5- 4.5% (w/v) and because the cells were cultured on top of the 
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hydrogel rather than encapsulated inside it. It is possible that rather than 

migrating inside the hydrogel, the cells remained and grew on top due to the high 

concentration of material. This would mean the cells would ‘feel’ more from their 

cell-cell interactions rather than the cell-substrate interactions. 

 

6.1.4 Immune Response to the New Photo-Click Material 

The objective of chapter 4 was to study the body’s immune response to the new 

material using an in vivo subcutaneous model. This work lead into chapter 5 

which examined atelo collagen as a potential non-immunogenic material. 

The photo-click hydrogels developed during this project are new materials and 

for this reason, it was important to analyse the host response to them. Once 

implanted, the innate immunity takes a matter of hours to respond to the material, 

whereas adaptive immune response takes at least 4 days. Similarly acute 

inflammation can develop in minutes and last for days, whereas chronic 

inflammation takes over this process if the injury is prolonged. From this 

knowledge, it was decided that the time points to analyse the subcutaneous 

model would be 1, 4 and 7 days.  

Geistlich Mucograft® was chosen as the commercial control for this study. It is 

composed of a collagen matrix with a dual, macro and spongey microstructure 

and is used for soft tissue (muscle) regeneration. However, the dual structure 

proved difficult to handle in surgery compared to the hydrogel, and the material 

almost wanted to slide apart from each other when handling which made it 

difficult to place. In comparison, the fact that the hydrogel was stiff and had good 

shape memory (after sterilisation, the hydrogel would rehydrate back to its 

original volume and shape) made it easy to handle. The hydrogel was a better 

construct material in this sense. Although if the hydrogel was cell-laden it would 

be more difficult to handle. 

The response to the Mucograft® after 4 days appeared to very minimal in 

comparison the hydrogel (Figure 6.1-1).  
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The hydrogel showed signs of inflammation compared to the surrounding tissue 

and blood vessels have formed to cover the surface (angiogenesis) both 

indicative of the body’s immune response to the material. Inflammatory 

microenvironments can drastically limit the integration of biomaterials with 

surrounding native tissue. In comparison, the Mucograft® sample does not 

appear to have any inflammation in the surrounding tissue and the sample has 

very poor integration, so rather than being cut out, like the hydrogel, the material 

‘popped’ out of the tissue instead.  

At day 4, all four of the Mucograft® samples ‘popped’ out, whereas only one of 

the hydrogel samples did, the rest had to be cut out, thus indicating no tissue 

integration of the Mucograft®, despite it being a foreign material. 

It would be expected that by day 4 the adaptive immunity would have kicked in, 

with a provisional matrix already deposited and blood vessels formed to deliver 

various immune cells to the site. By day 7, the Mucograft® had integrated more 

with the tissue with only one sample ‘popping’ out during sample retrieval. There 

was no dense surrounding population of cells indicative of the immune response 

and blood vessels had appeared near the base of the scaffold. The immune 

reaction to Mucograft® was favourable, with minimal inflammation, no strong 

immune response and no degradation or change in shape throughout the study. 

However, at each time point, the cells which had infiltrated into the scaffold, 

appeared just as nuclei with no surrounding stained cytoplasm which raised 

questions about cytotoxicity. After correspondence with Geistlich, it was 

discovered the lyophilisation of the material can make Mucograft® very 

hydrophobic, even though it is reported to have excellent hydrophilicity. The 

hydrophobicity could explain the reduced immune response and poor health of 

the infiltrated cells because methods of immunomodulating biomaterials include 

Figure 6.1-1 Day 4 after implantation. Left, Mucograft® and right, hydrogel. 
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altering hydrophilic/ hydrophobic and thereby the protein affinity from the 

interstitial fluids.  

The photo-click hydrogels were designed to mimic muscle tissue in terms of 

matrix elasticity, and ultimately to repair tissue and encourage biomaterial 

integration. However, the intended application is heavily affected by the body’s 

response to the material composition, structure and surface properties and there 

is no point in designing a new system if it is ultimately destroyed by the influx of 

inflammatory cells.  

The outcome of biomaterial implantation varies depending on the extent of the 

foreign-body response and subsequent processes of inflammation and wound 

healing. Both materials held their own benefits in this study, Mucograft® 

presented a lower immune response and reduced inflammation, whereas the 

hydrogel, with its immune response promoted angiogenesis, which is beneficial 

later for muscle regeneration and leaves the paradigm of whether to evade or 

evoke the host immune system and to what extent. 

 

Chapter 5 investigated the use of atelo collagen as a potential non-immunogenic 

form of the material. It was decided that whilst atelo collagen was beneficial in 

terms of increased solubility, its prevalence in the literature and in collagen-

based biomaterial companies is overstated. It was also deduced that it was a 

misconception that pepsin-treatment completely removes all collagen 

telopeptides and some remain behind. Herman et al documented that atelo 

collagen can be characterised by a tyrosine count (amino acid present only in 

the telopeptides) of 2/1000 residues which is the figure still used today [305]. The 

leftover telopeptides questioned whether the antigenic activity of the atelo 

collagen would even be distinguishable compared to non-treated collagen if it 

was shown that the major antigenic site bovine/ human is from the terminal 

telopeptides. 

Hydrogels prepared from atelo collagen and RT collagen displayed similar 

chemical, physical and mechanical properties which suggested that collagen 

functionalisation with 4VBC occurs primarily in the helical segment of collagen 

and was not affected by telopeptide cleavage. 
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6.1.5 Biomaterial-Based Approach for Bone Formation 

Injury to either tissue, whether muscle, tendon or bone compromises the physical 

function of the trauma-exposed extremity and interest lay in recreating the 

muscle-tendon-bone bridge. Due to the similarity in elasticity of the collPEG4.5 

to muscle and collagen-4VBC to pre-calcified bone, a gradient hydrogel could 

have been created to mimic the hard-soft gradient of natural tissue such as bone, 

tendon, muscle and skin. Collagen-4VBC hydrogels were tested in a preliminary 

study using a calvarial defect model as a purely biomaterial-based approach for 

bone formation. Time points of 2 and 6 weeks were used with commercially 

available Bio-Gide® as the positive control. Bio-Gide® was shown to encourage 

bone formation to a greater extent than collagen-4VBC with 38.2% new bone 

formation after 6 weeks in vivo compared to collagen-4VBC which displayed 20% 

new bone formation and the application of gradient hydrogels using collagen-

4VBC was abandoned. 

 

6.2 Future Work 

Presented within this thesis is the design of a new cross-linking method to 

prepare collagen hybrid hydrogels using thiolated collagen and multi-arm PEG 

norbornene by a step-growth thiol-ene reaction. 

Future work should employ strategies to allow this cross-linking method to be 

incorporated with in vitro cell encapsulation to provide cells with a 3D 

environment. The main issue with cell encapsulation was with the UV-

photoinitiator required, and whilst this new reaction mechanism meant half the 

previous amount of photoinitiator was required to form collagen hydrogels due to 

the rapid, ambient reaction conditions of the step-growth mechanism, the 

concentration was still too high for practical cell viability. Instead, future work 

should explore using eosin Y as the only visible-light photoinitiator.  

Eosin Y was shown to be non-toxic and uses a cytocompatible visible-light 

source. This was used with a co-initiator, TEOA in chapter 2 to sufficiently cleave 

the hydrogen from a PEGdA group. However, the TEOA was shown to be an 

inappropriate material to use with collagen. Alternatively, it has been shown that 

eosin Y can be used as the sole photoinitiator with the thiol-norbornene reactions 

with appropriate design considerations [131]. Shih et al reported that the gelation 

and cross-linking efficiency of visible light initiated thiol-norbornene hydrogels 

was significantly improved by incorporating soluble tyrosine to mediate the 
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deprotonation of the bisycysteine peptide [186]. It would be beneficial to research 

reagents (e.g. tyrosine) that could increase the efficiency of the eosin Y mediated 

deprotonation of collagen-2IT, so that photo-click hydrogels could be prepared 

in a cytocompatible manner using visible light, thus enabling cell encapsulation.  

As a construct material for SMTE, the photo-click hydrogels need to be improved 

to encourage the parallel arrangement of myotubes. This could be done by 

micro-patterning the surface by moulding or printing to create nanoscale 

channels or micro tunnels. This should firstly encourage the alignment of 

myotubes and promote cell fusion, and secondly, it should enable the recreation 

of the vasculature system needed for the construct material to be viable. 

 

Further work could also focus on improvements to the cell attachment, spreading 

and immune response of the material to encourage their appeal as novel 

biomaterials. It would be more preferable to have a material that significantly 

increased cell attachment and cell spreading. Anseth et al, reported a synthetic 

method to modify PEGdA with the adhesive Arg-GlyAsp (RGD) peptide 

sequence which significantly increased the adhesion and spreading of rat 

osteoblast cells [311]. This was also shown in work by Chadhuri et al which used 

carbodiimide chemistry to incorporate a peptide sequence into an alginate gel. 

Spreading was shown to increase significantly with increased RGD 

concentration for both gels (150 µM compared to 1,500 µM RGD in a 2% wt/vol 

alginate gel) [312]. It has been shown that PEG hydrogels can be used to load 

growth factors such as basic fibroblast growth factor and vascular endothelial 

growth factor during hydrogel formation [313, 314]. These transmit signals to 

modulate cellular activities and it would be very beneficial to incorporate them 

into the hydrogel. In terms of immunomodulation, nitric-oxide releasing hydrogels 

have been shown to reduce thrombogenesis and inflammation following the 

surgical implantation, with sustained release reported with PEG hydrogels [143, 

144, 315].  

 

Collagen-2IT provides a source of type I collagen with an available thiol group 

for facile, high yielding thiol click reactions. It benefited from improved solubility 

and preservation of the natural triple helical conformation. The main applications 

of collagen are for sutures, burn/ wound dressings and bone composites. By 

replacing the collagen for collagen-2IT in these applications, it could provide a 
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facile route for incorporation of drugs, antimicrobial agents or growth factors by 

either click reaction or by coatings due its improved hydrophilicity [194]. 

 

6.3 Conclusion 

The five main objectives for this project were outlined in the introduction (i) to 

functionalise collagen with either thiols or vinyl groups using facile, non-toxic 

method whilst keeping the triple helical conformation intact; (ii) examine novel 

synthetic strategies for cross-linking and the formation of defined covalent 

networks with reliable, varied molecular architecture and substrate stiffness; (iii) 

chemical, physical and mechanical characterisation of hydrogels; (iv) in vitro 

tests with a myoblast cell line to examine differentiation and proliferation; and (v) 

in vivo subcutaneous model on best performing hydrogel to analyse the immune 

response, with the aim to design defined collagen-based hydrogel networks to 

investigate stiffness-induced cell differentiation. 

Collagen was functionalised with several different reactive moieties. Of these, 

the successful new products were collagen-NAC and collagen-2IT which were 

both deemed thiolated collagen and were prepared using novel methods that 

were systematically constructed.  

Thiol click chemistry such as Michael-addition or the thiol-ene reaction was 

examined as the novel synthetic strategy for cross-linking. A thiol-ene reaction 

was successfully incorporated with collagen to form novel photo-click collagen-

PEG hybrid hydrogels. These were easy to perform and highly reproducible. 

Good control was had over the mechanical properties by altering the thiol/ ene 

ratio and six hydrogels with varied mechanical and physical properties were 

prepared with fast gelation kinetics. The downfall was that the concentration of 

photoinitiator required was still too high for cell-encapsulation. As discussed in 

the future work, there could be improvement made with these hydrogels as 

visible-light initiated devices with eosin Y as the photoinitiator. 

In vitro tests were performed with a myoblast cell line to examine cell attachment, 

spreading, proliferation and differentiation of three of these hydrogels. They were 

shown to support cell spreading and were cytocompatible with cells. The surface 

topography of the hydrogels made the cells grow in a more ‘clumpy’ manner than 

on tissue culture plastic, however, when differentiation media was added, they 

fused into myotubes with no issue. The downfall of these experiments was that 

there was no statistical significance between the three hydrogels even though 
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they possessed different elastic moduli (~ 7, 10, 13 kPa). It was concluded that 

the myoblasts were responding to cell-cell interactions more than cell-matrix 

interactions and were growing on top of the hydrogels rather than migrating 

inside of them. This could mean the cells experienced the tissue-mimetic 

elasticity less than if they had been encapsulated inside prior to gel formation. 

An in vivo subcutaneous model was performed which showed a higher degree 

of host immune response to the hydrogel than to the commercial control, 

Mucograft®. However, it was proposed that the focus of modern biomaterial 

design should shift from evasion of the host immune system to an orchestrated 

interaction with it in order to encourage the natural healing process.
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