
Entrainment of free-stream vortical disturbances in the

entrance region of confined flows

Claudia Alvarenga

A Thesis submitted for the degree of Doctor of Philosophy

Department of Mechanical Engineering

University of Sheffield

September 2017





A mia madre,

nella speranza di essere una donna all’altezza

dell’esempio che mi dà tutti i giorni.
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tunnel experiments. In all cases, û∞1,2,± = 1.0, û∞3,± = ∓1.0, hence

κ2 = κ, which is equivalent to λ∗y = λ∗z. . . . . . . . . . . . . . . . 82

3.2 Change of streamwise wavelength for a water channel case and

λ∗z = 15mm, Rλ = 1500. . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1 Schematic of the theoretical framework to date. . . . . . . . . . . 118





ACKNOWLEDGEMENTS

I wish to thank the Department of Mechanical Engineering at the University of

Sheffield and the Insitute of High Performance Computing (IHPC) in Singapore

for funding this work.

This thesis may have been written under my name, but it certainly belongs

to all the people who have contributed to make this work possible. My most

sincere gratitude goes to my supervisor Dr Pierre Ricco, who has been a patient,

consistent guide and a true example of a passionate and motivated scientist. I

wish to thank Dr Vinh-Tan Nguyen for his help during my attachment programme

in Singapore. My thanks also go to Prof. Xuesong Wu for his useful insights on

the work concerning the channel flow, to Dr Ashley Willis, who patiently shared

his thoughts and expertise on pipe flows, and to Dr Laurette S. Tuckerman for

her advice on polar coordinates problems.

This PhD has literally been a journey across Italy, Sheffield and Singapore.

I have been blessed to meet fantastic people on both sides of the world, who

have accompanied me during my ups and downs. I am amazed by how certain

friendships resist all sorts of change. My lifelong friends Alice, Cristina, Cristina,

Francesca and Linda have found a way to always be by my side. I want to thank

my fellow PhD students Elena and Eva, whom I now call friends. To my Botannia

flatmates Carola, James and Rebecca and Costanza, Kat and Maria, for being

my home away from home, my rocks and the most adventurous and funny bunch

of people I could ever have wished to have shared this tropical experience (and

brunches) with.



My family has accompanied me during this journey every day with all sorts

of expressions of love: a message, a voice note, an emoji, a flight, a picture or a

Skype call. I have no doubt in asserting my dog knows more fluid dynamics than

the average human.

I wish to thank my brother for each and every song and my parents for raising

me as a curious individual, for teaching me to always ask questions.

Alessandro has had to share life with me on a daily basis. I can’t even begin

to express my gratitude for all the superpowers he had to use to embark on such

a mission. He’s a true hero.



ABSTRACT

The entrainment of free-stream vortical disturbances in the entry region of devel-

oping pressure-driven confined flows is studied analytically and numerically, as a

contribution to the understanding of laminar-to-turbulent transition.

The topic has attracted wide and long-lasting attention since the work of

Reynolds (1883), as the understanding of transition is a crucial aspect in the

successful design of ducts and pipes. Given the analytical difficulties that it

poses, the transition mechanism is also a topic of fundamental interest per se.

The focus is on low-frequency/long-wavelength disturbances, which, for a flat-

plate boundary layer, evolve into streamwise elongated structures known as Kle-

banoff modes or laminar streaks. It is assumed that the amplitude of the oncom-

ing fluctuations is much smaller than the amplitude of the mean flow, so that the

relevant equations can be linearized. The streaks dynamics is governed by the

linear unsteady boundary region equations, that is the rigorous asymptotic limit

of the Navier-Stokes equations for low-frequency perturbations. They are derived

here for the first time for non-parallel plane channel and pipe flows. Physically

realistic initial conditions at the inlet are derived rigorously by the method of

matched asymptotic expansions.

The relevant equations are solved analytically, when possible, and by finite

differences when an analytical solution cannot be found. Theoretical and an-

alytical results are shown for channel flows for physically realistic disturbances

representative of low-speed water channels and wind tunnels. Theoretical results

are shown for pipe flows.
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1. INTRODUCTION

Estrema temerità mi è parsa sempre quella di coloro che voglion far la capacità

umana misura di quanto possa e sappia operar la natura, dove che, all’incontro, e’

non è effetto alcuno in natura, per minimo che e’ sia, all’intera cognizion del

quale possano arrivare i piú specolativi ingegni.

It always seems to me extreme rashness on the part of some when they want to

make human abilities the measure of what nature can do. On the contrary, there is

not a single effect in nature, even the least that exists, such that the most

ingenious theorists can arrive at a complete understanding of it.

Galileo Galilei, Dialogue concerning the two chief world systems, 1632

Laminar-to-turbulent transition is a phenomenon that has puzzled scientists

since the pioneering experimental work of Reynolds (1883), who studied the be-

haviour of water at different flow rates by injecting dyed fluid in a pipe and was

the first to report the change from ordered (laminar) to chaotic (turbulent) flow

as a response to an increase in the dimensionless mass flow rate that now car-

ries his name (figure 1.1). This change was intermittent rather than sharp, i.e.,

the breakdown to turbulence was observed after the appearance of patches of

turbulent flow alternated to areas of laminar flow.
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Fig. 1.1: First observations of the abrupt transition from laminar to turbulent flow. From

Reynolds (1883).

In some cases, such as the rotating disk boundary layer, the flow past a circular

cylinder or a sphere and natural transition in flat-plate boundary layers, there is

a critical fluid velocity at which the flow is linearly unstable and the flow regime

changes from laminar to turbulent. This is not the case for pressure-driven wall-

bounded flows, such as pipe flow and plane Poiseuille and Couette flows. All

theoretical and numerical works show that pipe and Couette flows are always

linearly stable (Drazin and Reid, 2004), while transition phenomena in plane

Poiseuille flows are observed at mass flow rates much smaller than expected from

linear stability theory.

Since then, shared endeavours have been devoted to solving this conflict be-

tween theory and the observed phenomena. The problem is relevant from a

practical and fundamental point of view. In engineering applications, most chan-

nel and pipe flows are turbulent even at moderate flow rates. Flows in oil and

gas pipelines, for instance, are often run inefficiently turbulent to overcome the

large pressure fluctuations typical of transitional flows. Given the mathematical

difficulties that it poses, transition to turbulence is also a topic of fundamental

interest per se. The ultimate objective of the comprehension of transition is the

ability to control turbulence.

Much progress has been done in the past century with these regards, and some
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light has been shed on the phenomenon, thanks to the advancement of research

tools such as the development of computational resources, which has rendered

possible, for instance, the visualization of typical flow structures.

Most of the research efforts on confined flows focus on the fully developed

flow regime, i.e. the region where the streamwise mean flow is independent on

the streamwise coordinate and has reached its typical parabolic profile and the

wall-normal velocity profile is null. Less attention has been given to develop-

ing confined flows in the entrance region, where the mean flow is evolving along

the streamwise direction. However, the developing region is associated with the

growth of the boundary layers, until they are merged once the flow is fully devel-

oped. The understanding of how outer disturbances penetrate and interact with

the boundary layer in pipe and plane Poiseuille flows is therefore fundamental.

This thesis is concerned with the entrainment of free-stream vortical disturbances

in developing pressure-driven incompressible plane and pipe flows. It is theoret-

ical and numerical in nature, meaning that the governing equations are derived

under suitable assumptions and solved analytically, when possible, and by finite

difference methods when an analytical solution cannot be derived.

It would be impossible, if not pretentious, to cite each and every paper on the

subject. The most relevant research efforts are reported, to put the work herein

presented in a broader context and to outline the state of the art and the aim of

current research efforts.

A survey of the previous works regarding pre-transitional flows is reported in

this introductory chapter. The starting point is the explanation of free-stream

initiated transition phenomena for flat plate boundary layers, outlined in §1.1,

by experimental, numerical and theoretical works. This work was inspired and

is based on the seminal work by Leib et al. (1999), hereinafter referred to as
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LWG and outlined in §1.1.3, who rigorously analyzed the effects of free-stream

turbulence on a flat-plate boundary layer. The previous works on transition

phenomena for confined flows are described in §1.2. The aims of this work are

outlined in §1.3.

1.1 Flat plate boundary layer

Laminar-to-turbulent transition on an infinitely thin plate is affected by acoustic,

kinematic or entropic disturbances of the oncoming stream, often referred to as

free-stream turbulence (FST). The turbulence level (denoted in the following as

Tu and defined as the root mean square of velocity fluctuations) plays a funda-

mental role in transition (Dryden, 1955). It has become widely accepted that

at low turbulence intensity levels (Tu ≤ 0.1%) transition occurs via the classical

scenario where the amplification of small oscillatory disturbances results in the

formation of Tollmien-Schlichting (TS) waves, excited through receptivity, i.e.

the mechanism by which disturbances penetrate the boundary layer (Reed et al.,

2015). TS waves slowly amplify downstream until non-linear interactions may

occur, resulting in the formation of turbulent spots that eventually lead to the

breakdown to turbulence. For higher turbulence levels, in a range between 0.1%

and 1%, TS waves might still be observed, but their usual features might have

been altered and not predicted by linear stability theory. For turbulence levels

higher than 1% transition occurs earlier, bypassing the ordinary scenario. This

phenomenon is referred to as bypass transition (Morkovin, 1984) and is character-

ized by the appearance of streamwise-elongated flow structures of low and high

speed.
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1.1.1 Experimental works

Experimentally, laminar-to-turbulent boundary layer transition is typically inves-

tigated by introducing a controlled disturbance in the free stream, often by means

of a grid or a vibrating ribbon located upstream the leading edge and analyzing

the following development of the disturbance in the boundary layer usually by

means of flow visualizations and hot-wire measurements.

Earlier observations by Dryden (1936) and Taylor (1939) suggested the pres-

ence of low- and high-speed streamwise-elongated regions, but their work did not

receive much attention until Klebanoff (1971) studied the effect of free-stream tur-

bulence for the first time, prompting other studies by Arnal and Juillen (1978)

and Kendall(1975; 1985; 1990; 1991). Klebanoff observed that when the bound-

ary layer fluctuations attain a certain amplitude, the boundary layer undergoes

a low frequency thickening and thinning process, resulting in the formation of

longitudinal streaky structures, nowadays widely referred to as Klebanoff modes

(Kendall, 1991) or breathing modes. Klebanoff’s results were confirmed by Ar-

nal and Juillen (1978), who also observed a growth in the streamwise velocity

fluctuations before the onset of transition and found that at FST levels higher

than 0.5− 1% disturbances different from TS waves play a significant role in the

boundary layer. They found that the maximum of the velocity fluctuations is

located in the middle of the boundary layer and reaches a value of about 5− 7%

of the free-stream velocity, whereas in the case of TS waves breakdown to turbu-

lence occurs when the amplitude reaches values of 1%, the maximum amplitude

being much closer to the wall.

A disturbance at the leading edge causes the development of unstable flow

structures, which, given that the perturbation is strong enough, result into incip-

ient spots i.e., areas in which the streaky turbulent structures begin appearing,

corresponding to a dramatic increase in wall shear stress.
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These earlier studies were later confirmed by the detailed experiments at

the Stockholm’s Royal Institute of Technology (KTH) research group. Westin

et al. (1994) performed experiments on a flat-plate boundary layer subject to

free-stream turbulence levels up to Tu = 1.5%. They observed that, although

the Blasius velocity profile is only slightly modified, the velocity fluctuations at-

tain values as high as 11% of the initial velocity, and that the maximum value

of the velocity fluctuations grows linearly with the Reynolds number Re. They

also observed that most of the energy within the boundary layer is concentrated

at lower frequencies, meaning that the disturbed flow is stretched as it travels

downstream, as well as grown in amplitude. The same authors (see Boiko et al.

(1994)) studied the role played by TS waves in transition and found that, unlike

supposed by other studies (e.g. Morkovin (1984); Suder et al. (1988)), it is possi-

ble to identify TS waves in a perturbed boundary layer at a free-stream turbulence

level > 1%. It is also observed that the detected waves become more and more

three-dimensional as they advance downstream, leading to an increased number

of incipient spots, which eventually causes transition to occur earlier than un-

der only free-stream turbulence conditions. Surprisingly, they also observed that

free-stream turbulence decreases the growth rate of the TS waves, which nev-

ertheless foster transition. Westin et al. (1998) created a localized free-stream

disturbance to follow the development of a single streaky structure and found

that the free-stream perturbation penetrates the boundary layer and acts as a

pair of counter rotating streamwise vortices whose intensity decays as they travel

downstream. The streamwise velocity perturbation is therefore caused by the dis-

placed wall-normal flow. However, they observed that although the disturbance

length increases downstream, its amplitude also decays. Hence, the streak must

be undergoing a secondary instability in order for transition to occur. A follow-

up study (see Bakchinov et al. (1998)) showed that one of the possible secondary
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instabilities undergone by a streak is the interaction with a TS wave, which

causes incipient spots to appear, promoting transition. The extensive study by

Matsubara and Alfredsson (2001) shed some light on the transition phenomenon.

Observations of the mean flow have shown that in the surroundings of the leading

edge the base flow behaves like a Blasius profile, but starts to deviate from such

behaviour further downstream, where a velocity increase in the inner part of the

boundary layer (i.e., closer to the wall), together with a decrease in the outer

(towards the free stream) layer is observed, both effects due to non-linearity. It

is also observed that the maximum value of the velocity fluctuations urms,max

is initially attained in the middle of the boundary layer, but once the flow be-

comes turbulent it is shifted towards the wall, as a result of the increase of skin

friction near the wall. Flow visualizations, presented in figure 1.2, show that a

laminar streak experiences spanwise oscillations of relatively short wavelength as

it moves downstream and that the wave amplitude progressively increases until

it eventually breaks up into a completely turbulent structure.

Fransson et al. (2005) performed several experiments varying the FST level

between 1.4% and 6.7%. They found a proportional relation between the distur-

bance energy (E = u2rms/U
2
∞) and Tu2Re. They also report that the transitional

Reynolds number is proportional to Tu−2 and that the length of the transitional

area is linearly proportional to the transitional Reynolds number. In order to

understand the secondary instability mechanism, Asai et al. (2002) introduced

small disturbances in the boundary layer. The disturbances were of two kinds:

symmetric (or varicose) and anti-symmetric (or sinuous). It was found that the

former instability grows and forms hairpin-shaped vortices, whereas the latter

mode leads to the formation of travelling quasi-streamwise vortices. Moreover,

they observed that if the streak width is comparable to the boundary layer thick-

ness, the streak is more unstable to the sinuous modes than the others. The
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Fig. 1.2: Streak breakdown as seen from the x − z plane shown in Matsubara and Al-

fredsson (2001). The free-stream velocity is 2 m/s, pictures are taken every

20 ms and 40 mm < x < 600 mm.

varicose and sinuous instability modes are clearly shown in the flow visualiza-

tions by Mans et al. (2005), who observed a natural breakdown process in a

water channel through dye-visualization at a FST level of 6.7%. They pointed

out how, regardless of the type of the secondary instability, the framework in

which transition occurs is the same: when the amplitude of the spanwise oscilla-

tion of the primary instability reaches a threshold value, roll-up structures arise

and continue to evolve until they eventually interact and join to form a turbulent

spot. In the symmetric mode, the roll-up structures are found in a staggered

pattern on the side of the streak, whereas in the antisymmetric mode the roll-up
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structures only appear on one side of the streak, as clearly shown in figure 1.3.

Fig. 1.3: Streak breakdown in the sinuous (left) and varicose (right) secondary instability

modes as seen from the x− z plane. Mans et al. (2005). The sequence rate and

free-stream velocity are 7.5 Hz and 0.13 m/s for the sinuous instability mode

and 5 Hz and 0.11 m/s for the varicose instability mode, respectively.

Hernon et al. (2007) verified experimentally a phenomenon explained theo-

retically by Jacobs and Durbin (1998) and observed numerically by Jacobs and

Durbin (2001), who termed it shear sheltering, meaning that the ability of a dis-

turbance to penetrate the boundary layer depends on the turbulence level: the

higher the turbulence level, the higher the penetration depth of the disturbance.

As a result, the transitional Reynolds number decreases, together with the shear

stress near the boundary layer edge, not able to shield the layer from external

disturbances.
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1.1.2 Numerical works

Very significant progress in the understanding of the transition phenomena has

been gained in the last two decades thanks to the increasingly improved power

of direct numerical simulations (DNS). Computer simulations of transition have

been carried out since the 1980s, but the available resources were rather limited,

which made it difficult to obtain relevant results. The review by Kleiser and Zang

(1991) reports many early attempts of DNS, pointing out that the main problem

was that, despite temporal (i.e. marching in time) simulations gave acceptable

results, spatial (i.e. marching in space) simulations were still poor, making it

impossible to take into accout the boundary layer evolution in space. The first

spatial simulation was performed by Rai and Moin (1993). Despite improper grid

spacing, they were able to show some of the main characteristics of transition such

as an increase in skin friction and the appearance of counter rotating streamwise

vortices. Rist and Fasel (1995) were able to detect the emerging of turbulent

structures such as hairpin vortices.

As a result of the improvement of the computational resources, DNS has be-

come a very important tool since the 2000s. Jacobs and Durbin (2001) were able

to validate their results through several grid refinements. They simulated bypass

transition by prescribing free-stream turbulence as continuous Orr-Sommerfeld

modes, as proposed by Grosch and Salwen (1978). They reported an increase

in skin friction when transition occurs, pointing out that the transition length

in their study is shorter than reported by Rai and Moin (1993), probably due

to inapproriate grid resolution in the previous study. They observed streamwise

streaks of negative streamwise velocity perturbation upon which turbulent spots

start to develop. These structures are identified with the Klebanoff modes. They

also illustrate the shear sheltering phenomenon (Jacobs and Durbin, 1998; Hunt

and Durbin, 1999), interpreting the boundary layer as a filter which only allows
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the penetration of low frequency disturbances from the free stream, then ampli-

fied by the mean shear. Since this mechanism of frequency selection happens

inside the boundary layer, they concluded that streaks are an implicit charac-

teristic of the layer. This transition scenario is referred to as continuous mode

transition and occurs as a result of the interaction between the low speed streak

extended in the vicinity of the boundary layer edge and high-frequency distur-

bance in the free stream. Continuous mode transition was later studied by Zaki

and Durbin (2005), who introduced a coupling coefficient to be able to measure

mode interaction and penetration depth in the boundary layer. They found that

transition takes place when a strongly and a weakly coupled mode interact. The

Klebanoff streaks are generated by a low frequency disturbance that penetrates

the boundary layer according to shear sheltering. The streak then lifts away

from the wall according to the lift-up mechanism, described by Landahl (1980),

whereby streamwise vortices “pull” the mean velocity gradients away from the

wall towards the boundary layer edge, where they become sensitive to the insta-

bilities caused by the high-frequency free-stream disturbance. The development

of these instabilities leads to the appearance of turbulent spots. In their follow-

up work, Zaki and Durbin (2006) investigated the effects of pressure gradient on

transition and found that an adverse pressure gradient enhances shear sheltering,

as a result of an increased shear due to velocity gradients in the wall normal

direction. Thus, favourable pressure gradients accelerate the flow and have the

opposite effect. They also studied the relationship between the intensity of the

streaks and the location of transition and found that in conditions of adverse

pressure gradient, intense jets are more unstable and transition occurs earlier.

In the context of continuous mode transition, Liu et al. (2008) investigated the

effects of the interaction between discrete (associated with TS waves) and contin-

uous (representative of laminar streaks) modes and found that if the continuous
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and discrete modes appear independently, transition does not occur within the

computational domain. It is when the two modes interact that two mechanisms

are at play: on one hand, the streaks seem to have a stabilizing effect on TS waves

(associated with discrete modes) as they suppress their growth rate, on the other

hand though, the streaks are observed to excite a secondary instability of TS

waves. The dominance of one of the two mechanisms determines the location of

transition.

Other studies were focused on the secondary streak instability mechanism

that eventually leads to transition. As already reported in previous studies (such

as Matsubara and Alfredsson (2001)), the appearance of Klebanoff modes solely

does not lead to transition, therefore a secondary instability must occur. Fasel

(2002) modelled transition initiated by TS waves and found that two types of

turbulent structures emerge: vorticity tubes related to the Klebanoff modes and

Λ-shaped structures related to the fundamental breakdown, also reported by Rist

and Fasel (1995). Brandt and Henningson (2002) performed DNS of transition

arised by a secondary instability of sinuous type. The main structures observed

during this type of transition are elongated quasi-streamwise vortices found on

the side of the streak. These vortices, unlike the Λ-shaped structures that appear

in TS waves initiated transition, are staggered in the streamwise direction and

do not merge. Instead, they are inclined downstream and turned away from

the wall. Brandt (2007) reproduced numerically the experiment by Asai et al.

(2002) and was able to confirm the experimental findings. He investigated both

kinds of instabilities and found that the sinuous one is sustained longer in the

streamwise direction than the varicose. Flow visualizations have shown that

the main features of the varicose breakdown are the Λ-structures which grow

downstream until their tip becomes a ring-like structure straightened up in the

wall-normal direction. These structures are often referred to as Ω-vortices and are
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also found in transition initiated by TS waves (Borodulin et al. (2002)). Sinuous

breakdown is characterised by harmonic antisymmetric oscillations of the streak.

Examining the distribution of kinetic energy production, it is found that both the

instability mechanisms are mainly driven by the work of the Reynolds stresses

against the wall-normal shear. Schlatter et al. (2008) also performed DNS of the

secondary instability and showed that it consists of a wave packet forming on

the low speed streak, whose amplitude increases downstream until breakdown.

They focused on the sinuous breakdown as this is most likely to occur. They

found that the instability has a wavelength one order of magnitude larger than

the boundary layer thickness, a velocity of about 80% of the free-stream velocity

and that its growth rate is a few percent of U∞/δ. The quasi-streamwise vortices

on the flanks of the low speed region appear in a staggered pattern.

More studies were focused on receptivity and other aspects of flat plate bound-

ary layer transition. Brandt et al. (2004) varied the turbulence intensity and in-

tegral length scale and observed that, at a constant FST level, the smaller scales

could penetrate more easily in the boundary layer, but their growth rate would

soon decay. The larger length scales cause earlier transition. They also com-

pared two different receptivity mechanisms: linear (Bertolotti, 1997; Andersson

et al., 1999; Luchini, 2000) and non-linear (Berlin and Henningson, 1999; Brandt

et al., 2002) and found that the former occurs when the free stream contains

mainly low-frequency disturbances, whereas the latter occurs for high-frequency

disturbances in the free stream. They also report that the sinuous-like transition

scenario is more likely to occur than its varicose counterpart. Nagarajan et al.

(2007) studied the role of the leading edge in transition and observed that for a

sharp leading edge and low levels of free-stream turbulence, transition occurs as

a result of instabilities developing on the low speed streak as observed by Brandt

et al. (2004) and Jacobs and Durbin (2001). At higher levels of FST and lower
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leading edge aspect ratio, on the other hand, transition occurs after the appear-

ance of localized wavepacket-like oscillations, whose amplitude grows downstream

until breakdown. Brandt and de Lange (2008) simulated streak interaction, mo-

tivated by the fact that for high levels of free-stream turbulence, many streaks

are created and may interact with one another. They found that, depending on

the kind of interaction between two streaks, symmetric or asymmetric breakdown

might occur without any additional disturbance.

1.1.3 Theoretical works

Along with experiments and numerical simulations, many studies are focused on

studying the transition phenomenon from an analytical point of view, searching

for the most suitable mathematical/physical model to understand the boundary

layer transition mechanism.

Linear stability theory

Some studies use the Orr-Sommerfeld and Squire equations to study transition.

These linear equations are eigenvalue problems respectively for the normal ve-

locity and for normal vorticity and govern the evolution of small disturbances

in a viscous flow. They are based on the assumption that the base flow is par-

allel. The solution to the Orr-Sommerfeld and Squire equations can be divided

into continuous and discrete eigenmodes. Because the continuous modes attain

a finite value in the free-stream, whereas the discrete modes decay exponentially

as y → ∞, Jacobs and Durbin (1998) argued that the free-stream disturbance

can be imposed as only consisting of continous modes and presented a method

to numerically implement them. They discuss shear sheltering and show that

penetration depth depends on the frequency and the Reynolds number. This ap-

proach has been followed by a number of numerical studies mentioned above (see
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for example Jacobs and Durbin (2001); Zaki and Durbin (2006); Liu et al. (2008)).

In their recent works, Dong and Wu (2013) and Wu and Dong (2016) cast some

doubt on the suitability of this approach, highlighting some non-physical features

that arise when representing the vortical free-stream disturbances and their pen-

etration in the boundary layer through continuous Orr-Sommerfeld and Squire

modes. In particular, they condemn the neglection of non-parallelism, which is a

leading order effect that must be included.

Transient and optimal growth theory

A great deal of attention has been given to the so called transient growth mech-

anism to study the stability of a boundary layer flow.

Stewartson (1957) and Libby and Fox (1964) investigated the effects of a two-

dimensional perturbation on a two-dimensional flow. By linearizing Prandtl’s

equation about a small perturbation, they found that the complete set of eigen-

modes depends on x−n and that the least damped eigenmode has n = 1. Later

studies investigated the effects of three-dimensional perturbations. Ellingsen and

Palm (1975) and Landahl (1980) found that a perturbation might grow in time

despite that the eigenvalue analysis would guarantee stability. Landahl (1980)

also found that the kinetic energy of a disturbance with non-zero wall-normal

velocity component of an inviscid parallel shear flow grows linearly in time. This

result is valid even when the shear flow is stable according to stability analy-

sis. This kind of instability is referred to as algebraic growth. Three-dimensional

disturbances will therefore generate forward and backward jets observed in ex-

periments and numerical simulations. The combination of inviscid amplification

and viscous dissipation is referred to as transient growth.

Later, Luchini (1996) investigated the effects of small spanwise wavenumber

perturbations in a boundary layer that develops downstream. He extended the
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analysis by Libby and Fox (1964) and solved an eigenvalue problem. He found

that the first eigenvalue is positive, leading to the key result that the perturbation

is not damped and instead grows as x0.213. Therefore, the instability mechanisms,

which depend on the competition between inviscid algebraic growth and viscous

dissipation, are very different depending on whether the flow is parallel or non-

parallel. For a parallel flow, viscous dissipation plays a major role and turns

exponential growth into exponential decay, whereas in a non-parallel flow the

viscous effects do not counterbalance algebraic growth. This kind of instability is

also independent on the Reynolds number of the unperturbed flow, as the analysis

is based upon Prandtl’s equation, where the Reynolds number has been scaled

out.

In order to find the optimal perturbation, that is the perturbation that max-

imises the energy growth of the disturbance, Luchini (2000) extended his previous

analysis, which was carried out under the assumption of small spanwise wavenum-

ber. A similar study was carried out separately by Andersson et al. (1999). In

both analyses, it was found that the maximum amplification factor implies an

energy amplification of 220 − 2200 in the Reynolds number range where bypass

transition occurs, that is 105 − 106. The maximum amplification rate arises at a

spanwise wavenumber of 0.45.

The formulation of optimal growth theory requires the perturbation to vanish

outside the boundary layer, and naturally occurring free-stream turbulence and

its relationship with the boundary layer are not taken into account in this model.

Initial conditions are not prescribed as an input, but instead they are the output

of the optimization procedure. According to this theory, the free stream flow

features are not related to the downstream growth of the streaks. This casts some

doubt about the appropriateness of such model, first of all because penetration

of disturbances is not included and, secondly, because bypass transition is caused
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by FST in the first place, as pointed out by Wundrow and Goldstein (2001) and

Ricco et al. (2016).

Goldstein and co-workers asymptotic approach and recent works

The interaction of a flat-plate boundary layer and the free stream turbulence

was studied rigorously by Leib et al. (1999). They employ the Linear Unsteady

Boundary Region equations (Kemp, 1951) to describe the streaks dynamics.

These are the rigorous limit of the Navier-Stokes equations for small-amplitude

and low-frequency disturbances. Assuming that the streamwise wavelength of the

disturbance is larger than its wall-normal and spanwise counterparts is consistent

with experimental findings and allows to neglect of the streamwise perturbation

pressure gradient and viscous terms.

The specification of initial and boundary conditions here is rigorous and un-

ambiguous, hence the Klebanoff modes dynamics is uniquely described. The

initial conditions describe the interaction of the oncoming perturbation and the

leading edge, and the boundary conditions analyze the outer flow at the bound-

ary layer edge. Initial and boundary conditions are related by the principle

of matched asymptotic expansion, through which the interaction between free

stream turbulence and the boundary layer is fully and consistently explained.

They found that the wall-normal and spanwise components of the outer pertur-

bation play a key role in the creation and development of the boundary layer

streamwise streaks.

Based on LWG’s work, Ricco (2009), hereinafter denoted as R9, computed

the second-order terms of the laminar streaks and found that these are domi-

nant in the outer portion of the boundary layer through a balance with pressure

fluctuations, in good agreement with the experiments by Westin et al. (1994).

The mathematical framework employed by LWG and R9 is the most complete
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among all the available theories because it takes into account leading order fea-

tures such as non-parallel effects, streak unsteadiness, spanwise viscous diffusion

and the role of free-stream fluctuations. The theoretical framework described

by LWG and R9 has been recently corroborated by the experiments of Ricco

et al. (2016). The incompressible analysis was extended to compressible flows by

Ricco and Wu (2007). Ricco et al. (2011) generalized the problem of LWG to

the case of oncoming perturbations whose amplitude is comparable to that of the

mean flow, thus without neglecting non-linear effects. The dynamics of the streak

is governed by the Unsteady Nonlinear Boundary Region Equations (UNBREs)

with appropriate far-field and upstream boundary conditions. They solved the

problem numerically for the case where the disturbance is represented by a pair

of oblique modes having the same frequency but opposite spanwise wavenumbers.

The main effect of non-linearity is to attenuate the fluctuations, therefore creat-

ing a stabilizing effect on the streaks. Marensi et al. (2017) extended their work

to the compressible case.

1.2 Confined flows

The stability of pressure-driven wall-bounded flows has been one of the most

intriguing subjects in fluid mechanics research since the pioneering work by

Reynolds (1883). Pressure driven Hagen-Poiseuille flow, plane Poiseuille flow and

shear-driven plane-Couette flow are the cases most commonly investigated. This

work is concerned with the first two. The basic features of laminar-to-turbulent

transition may be gleaned from the work of Reynolds.

The first and perhaps most striking observation is that as the flow rate is in-

creased, turbulent patches start to appear, rendering the flow motion disordered.

The intermittent nature of transition was thus already observed by Reynolds,

who described how “the disturbance would suddenly come on through a certain



1.2. Confined flows 19

length of the tube and pass away and then come again, giving the appearance

of flashes[...]”. There is a critical value of the ratio of viscous and inertial forces

ν/(Ud), whose inverse is now defined as Reynolds number, where ν is the kine-

matic viscosity, U is the mean velocity and d is the pipe diameter. Below the

critical value Rec ≈ 2000 all perturbations decay and the perturbed flow returns

to the laminar state.

1.2.1 Entry flow development

When a flow enters a channel or a pipe, the fluid particles near the wall are slowed

down owing to the no-slip condition. Because of viscous effects, the retardation of

the flow near the walls spreads inwards and, because the cross-sectional mass flow

rate is constant, the flow in the core region accelerates. Moving downstream, the

flow reaches its fully developed status, i.e. the mean flow distribution is parabolic

and independent of the streamwise direction. The approximate streamwise loca-

tion where this occurs is referred to as hydrodynamic entrance length.

The flow development has been widely studied. Most approximate solutions

involve Prandtl’s boundary-layer approximation (Prandtl, 1904). The first inves-

tigation was that of Schlichting (1933), who expressed the flow in the inviscid

core as a series expansion. Collins and Schowalter (1962) used the same methods

with refinements. A plethora of studies followed aimed at the understanding of

the velocity and pressure distributions. Roidt and Cess (1962) used the method

developed by Schlichting to study the laminar flow of a conducting fluid entering

a channel and subject to a transverse applied magnetic field. Despite that their

study is in a slightly different field from the present work, it is interesting to

observe how they divided the domain into three regions, i.e. the upstream and

downstream regions and the fully developed region. Upstream, where the bound-

ary layer thickness δ ≪ 1, the mean flow is governed by the usual Blasius solution.
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The earliest numerical simulations were performed via finite differences by Bodoia

and Osterle (1962) for channel flows and by Hornbeck (1964) for pipe flows, using

a uniform initial velocity profile at the channel mouth and the boundary-layer

hypothesis.

Wang and Longwell (1964) formulated the problem in terms of the full Navier-

Stokes equation and found that the boundary-layer approximation is not valid

near the leading edge, where neither the streamwise viscous terms and the wall-

normal pressure gradient are negligible. They also reported large wall-normal

velocity components near the entrance. The work by Vrentas et al. (1966) is the

counterpart of the analysis by Wang and Longwell (1964) for pipe flows. They

analysed the entry pipe flow both with and without the boundary-layer assump-

tion with particular attention to the vorticity distribution near the entrance and

found that if the Reynolds number is high enough the boundary layer approach

adequately describes the flow field.

A detailed analysis was proposed by Van Dyke (1970) and Wilson (1970), who

tackled the problem theoretically by means of asymptotic analysis. Taking into

account several types of initial conditions, they found that the first order solution

in the upstream region corresponds to the usual Blasius solution confirming the

findings by Roidt and Cess (1962) and proposed a second order expansion for

the flow due to displacement. Their work was later confirmed and extended to

a wider range of Reynolds numbers (Morihara and Cheng, 1973) and geometries

(Rubin et al., 1977).

The development length depends on the Reynolds number and a linear re-

lationship between the ratio of length and diameter and the Reynolds number

L/D = CRe is typically proposed (see, among others, Collins and Schowalter

(1962); Lundgren et al. (1964); Hornbeck (1964); Vrentas et al. (1966); Fried-

mann et al. (1968); Mohanty and Asthana (1978)). The paper by Durst et al.
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(2005) reviews the previous works and shows the quantitative uncertainty on the

numerical value of the constant C. Prompted by the scatter in literature data

concerning C, shown in figure 1.4, they suggest the following non-linear relation-

ships

Pipe flow:
L

D
=
[

(0.619)1.6 + (0.0567Re)1.6
]1/1.6

,

Channel flow:
L

D
=
[

(0.631)1.6 + (0.0442Re)1.6
]1/1.6

,

that reduce to L/D = CRe for Re ≫ 1, which is usually the case of interest

as most engineering applications are valid at high values of Re.

Fig. 1.4: Scatter in the data of previous experimental, analytical and numerical investi-

gations regarding the entrance length coefficient C, that is the ratio of pipe’s

length and diameter and the Reynolds number (Durst et al., 2005).

1.2.2 Transition to turbulence

According to linear stability analysis, channel flow becomes linearly unstable at

R = 5772 (Orszag, 1971). In practice, however, transition is observed at much
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lower Reynolds numbers (below 2300, Carlson et al. (1982); Rozhdestvensky and

Simakin (1984); Keefe et al. (1992); Tuckerman et al. (2014); Xiong et al. (2015)).

The transition scenario for channel flows is qualitatively similar to that of the

flat plate. The first thorough experimental investigation of the stability of a plane

channel flow was carried out by Nishioka et al. (1975), who studied the down-

stream development of sinusoidal perturbations generated upstream by means of

a vibrating ribbon. They were able to maintain laminar flow for Re up to 8000 by

carefully controlling the inlet turbulence level, reduced to 0.05%. They found that

the dynamics of small disturbances is in agreement with laminar stability theory

and they detected linear instabilities in the form of Tollmien-Schlichting waves.

If the inlet disturbances have a small but finite amplitude, secondary nonlinear

subcritical instability occurs, that is perturbations grow below the Reynolds num-

ber predicted by linear stability theory. The breakdown scenario they observed is

qualitatively similar to the one described by Klebanoff et al. (1962) for a flat plate

boundary layer, characterized by the appearance of three-dimensional Λ- shaped

structures similar to Klebanoff modes, which then undergo local secondary in-

stabilities (Nishioka et al., 1975; Herbert, 1983; Kozlov and Ramazanov, 1983).

Despite long known as a key component of the transition scenario, the inter-

action of Tollmien-Schlichting waves and the turbulent structure in plane shear

flows and its role in breakdown to turbulence is still an area of active research

(Dempsey et al., 2016).

The transition scenario of plane Poiseuille flow cannot be applied to pipe

flow, which is always linearly stable according to linear stability theory (Salwen

et al., 1980; Schmid and Henningson, 1994; Drazin and Reid, 2004). With these

regards, of particular relevance are the numerical simulations up to Re = 107 by

Meseguer and Trefethen (2003). Channel and pipe flow, together with Couette

flow, share a transition scenario that cannot be satisfactorily explained by linear
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stability theory. Thus, the transition phenomena observed in experiments and

numerical simulations are believed to be essentially non-linear and unrelated to

the local base flow stability properties.

From a theoretical point of view, an idea that gained general consensus is

that many transition phenomena can be described with the aid of concepts of dy-

namical system theory. A shear flow can be considered as a nonlinear dynamical

system du/dt = f(u, Re) defined by the Navier-Stokes equations with appropri-

ate boundary conditions and pressure-gradient forcing. The laminar state is then

a linearly stable point to which all initial conditions are attracted to if Re is

lower than a certain critical value Rec, hence a global attractor. As Re increases,

the basin of attraction of turbulence grows, thus finite amplitude disturbances of

lower and lower intensity are attracted to the turbulent state. Then, if Re≫ Rec,

nearly all initial conditions undergo transition, hence the laminar state becomes

a local attractor (Hof et al., 2003, 2004). This framework has gained much in-

terest in the past decades as it describes most of the phenomena observed in

experiments and numerical simulations of transitional flows.

Remarkably, the prominent features of transition to turbulence were observed

by Reynolds. One of the features that seemed to emerge consistently since the first

studies is a strong sensitivity of transitional flow to initial conditions. Reynolds

was able to maintain laminar flow at high flow rates by carefully controlling the

inlet conditions. The upper bound Rc = 100000 was later reported by Pfenninger

(1961).

In modern times, sensitivity to initial conditions was reported by Darbyshire

and Mullin (1995) in their systematic experimental study aimed at the iden-

tification of the critical perturbation amplitude required to trigger transition.

They provoked finite amplitude disturbances by injection of fluid at a stream-

wise position where to flow is fully developed, that is approximately 70 diameters
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downstream of the inlet, and checked their status 120 diameters further down-

stream. They repeated the experiment with identical initial conditions and found

that sometimes transition did indeed occur, sometimes it did not, with no sharp

threshold between the two outcomes, as shown in figure 1.5. They performed

the same experiment with different forms of disturbances and found the same

scenario with no definite distinction between the outcomes. Moreover, the initial

conditions that triggered transition did not give any information regarding the

behaviour of neighboring conditions, which either decayed or became turbulent.

Fig. 1.5: Experiments by Darbyshire and Mullin (1995). Circle symbols indicate whether

transition occured, while square symbols show the cases where transition was

not observed.

They found that a critical amplitude of the perturbation is required to trig-

ger transition. If Re < 1700, all initial perturbations were observed to decay

regardless of their amplitude. However, for Re > 2100, the critical amplitude

is a function of the Reynolds number, i.e., the higher the Reynolds number, the

lower the critical amplitude. This result suggests that two thresholds have to be

overcome for transition to occur: the finite-amplitude entry disturbance should
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be strong enough, and the Reynolds number high enough. Eliahou et al. (1998)

carried out experiments at three different amplitudes of the initial condition.

Small-amplitude disturbances were observed to decay downstream. Intermediate-

amplitude perturbations showed an initial amplification, associated with the ap-

pearance of higher armonics, and then decayed. At larger amplitudes, transition

was observed. They observed that transition is associated to a mean velocity

distortion, an idea that was reinforced by the simulation of such mean velocity

distortion by the introduction of four stationary jets from the wall, which caused

transition to occur at smaller amplitudes. A number of papers followed inves-

tigating the scaling of the turbulence transition threshold, i.e. a relationship of

the kind ε = Ren. The experiments of Draad et al. (1998) and Hof et al. (2003)

show n = −1 for Reynolds numbers between 2000 and 20000, while Peixinho

and Mullin (2007) report −1.3 < n < −1.5 for Reynolds numbers up to 23000.

Numerically, sensitivity to initial conditions was studied by Faisst and Eckhardt

(2004), who suggested that transition phenomena reflect the dynamical system

concept of a transient chaotic saddle. A simple example of a transient chaotic

saddle is that of a particle in a box with curved walls and a small hole: the

particle will bounce chaotically, but its dynamics is transient and ends when the

particle escapes through the hole. According to this analogy, the motion in the

box represents the turbulent state, while the escape from the box is associated

to relaminarization.

Sensitivity to initial conditions was reported more recently by Wu et al.

(2015), who carried out DNS of the Osborne Reynolds pipe flow and performed

a systematic study varying the location of the inlet disturbance along the pipe

radius, together with the Reynolds number. They found a strong dependence

on both the Reynolds number and the radial location of the prescribed inlet dis-

turbance. Their observations are in agreement with dynamical system analysis
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by Faisst and Eckhardt (2004) for pipe flow and Skufca et al. (2006) for channel

flow.

Another feature of transition that is sensitively dependent on initial conditions

is the turbulence lifetime, or the relaminarization of the flow. The understanding

of the turbulence lifetime paves the way for ultimate turbulence control, hence it

is an argument of deep interest in the fluid dynamics community. The turbulent

state has often been observed to decay without prior indication (Darbyshire and

Mullin, 1995; Faisst and Eckhardt, 2004). Faisst and Eckhardt (2004) reported

strong fluctuations in the lifetimes for a given Reynolds number and various initial

perturbation amplitudes and viceversa. This fractal behaviour is also observed

in plane Couette flow (Schmiegel and Eckhardt, 1997) and is consistent with the

dynamical system idea of the turbulent state being linked to a chaotic saddle,

rather than being an attractor (such as the laminar state for Re < Rec). This

idea was later supported by the work of Schneider and Eckhardt (2008). The

lifetime is usually expressed as the probability that turbulence is observed for a

certain time. For Re > 1760, in agreement with the experiments by Darbyshire

and Mullin (1995) the probability that the turbulence state persists increases

with the Reynolds number (Faisst and Eckhardt, 2004; Peixinho and Mullin,

2006; Mullin and Peixinho, 2006). The same authors observed that the lifetime

diverges above this Reynolds number, meaning that the turbulent state would

persist indefinitely. The paper by Hof et al. (2006) offers a different point of

view and shows that the lifetime does not diverge, but exponentially increases

with the Reynolds number instead. Thus, the turbulent and laminar states are

connected and localised turbulence is only a transient event: relaminarization will

eventually occur. They estimate that the turbulent decay of a flow in a garden

hose at Re = 2400 would require a pipe length of 40000 km and an observation

time of five years, which would explain why this behaviour had not been detected
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earlier.

Another general feature of transition to turbulence is the abrupt and inter-

mittent appearance of flow structures as spots and patches.

The most extensive experimental work was carried out by Wygnaski and co-

workers (Wygnanski and Champagne, 1973; Wygnanski et al., 1975; Rubin et al.,

1979). They performed experiments in a Reynolds number range between 1000

and 50000 for a constant pressure gradient flow. They identify two main tran-

sitional flow structures. Their appearance is Reynolds number dependant. The

transitional states were termed “puffs” if appearing for 2000 < Re < 2700 and

“slugs” for Re > 3500. Puffs originate by large perturbations at the critical

Reynolds number, while slugs are generated by instabilities of the flow at the

inlet. Puffs seemed to have a neat upstream interface between their structure

and the laminar flow around it. Slugs were observed to occupy the entire pipe

cross section and to elongate as they move downstream. Darbyshire and Mullin

(1995) extended this work to a constant mass flux flow and observed the same

transitional structures reported by Wygnanski and co-workers for constant pres-

sure gradient flows. No structures could be sustained for Re < 1760 regardless

of the magnitude of the initial perturbation. These structures are more regular

solutions to the flow equations, embedded in the turbulent dynamics. Coherent

structures have been consistently detected as precursors of turbulence in both

plane (Waleffe, 1998, 2001; Xiong et al., 2015) and pipe (Eliahou et al., 1998;

Faisst and Eckhardt, 2003) flows, as well as plane Couette and Taylor-Couette

flows (Nagata, 1990; Clever and Busse, 1997; Faisst and Eckhardt, 2000). In par-

ticular, solutions in forms of travelling waves have been first detected by Faisst

and Eckhardt (2003), Wedin and Kerswell (2004) and Hof et al. (2004) and are

found to exist to Reynolds number below those pertaining of transition. The

typical coherent structure consists of a low speed streak flanked by staggered
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vortices (Waleffe, 1998). The presence of coherent structures is of fundamental

importance in the understanding the mechanism by which turbulence maintains

itself against viscous decay.

The formation and dynamics of coherent structures reflects a self-sustaining

process first elucidated for plane Poiseuille and Couette flows by Waleffe and co-

workers (Hamilton et al., 1995; Waleffe, 1995, 1997). The process consists of three

phases, each dominated by three flow components: streamwise rolls, streaks and

waves. If isolated, these structures would perish to viscous decay. Instead, they

sustain each other in that the streamwise rolls play the crucial role of spanwise

modulating the mean flow so that slower fluid flow is moved into regions of faster

flow, which is in turn pulled to slower near-wall regions. This is essentially the

lift-up mechanism described by Landahl (1980) and discussed in section 1.1.2

and is responsible for the generation of streamwise oriented streaks. These are

inflectionally linearly unstable, thus they generate wavy-like disturbances that

interact with the initial roll, completing the cycle, and are reminiscent of the

large scale motions observed in fully developed turbulent flow (Baltzer et al.,

2013; Dennis and Sogaro, 2014; Hellström and Smits, 2014; Hellström et al.,

2015).

As outlined at the beginning of this chapter, much less attention has been

devolved to the entrance region, where the base flow is still developing. As men-

tioned by Duck (2005), some studies concerning the effect of flow development

(Huang and Chen, 1974a,b; Abbot and Moss, 1994; da Silva and Moss, 1994)

are based on the Orr-Sommerfeld approach, but neglect to include the effects

of non-parallelism, which might be important in the stability analysis. Includ-

ing non-parallel effects, Duck (2005) studied transient growth in entry plane and

Poiseuille flows and showed that the resulting base flow is indeed sensitive to

to flow disturbances that initially amplify before decaying downstream due to
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viscosity. Nishi et al. (2008) performed experiments of transition in pipe flows

initiated by disturbances at the inlet and observed the formation of slugs, which

amplify downstream until the flow is fully developed. More recently, Buffat et al.

(2014) performed DNS of bypass transition in developing channel flows. They in-

duced transition by disturbing the upper plate near the entrance by distributing

obstacles on the wall and leaving the lower wall undisturbed. They report the

generation of streaks and their subsequent transient growth and eventual break-

down in the entry developing region. The interaction of the upper and lower

boundary layers ultimately cause turbulence to fill the whole channel.

1.3 Objectives

The aim of the work reported in this thesis is to investigate the entrainment

and linear response of laminar pressure-driven plane and pipe incompressible

Poiseuille flows to free-stream perturbations of the convected gust type, as a con-

tribution towards a better understanding of the interaction between entry distur-

bances and developing entrance flows. The work of Goldstein and co-workers and

of Ricco and co-workers, in particular LWG and R9, provides a solid basis for such

investigation and is extended to take into account the mean pressure gradient ef-

fects that render the mean flow non self-similar. The focus is on the entrance

region, i.e., where the mean flow is still developing and has not yet reached the

fully developed status. A thorough mathematical framework for the treatment of

this problem is, to the author’s knowledge, still absent. The interest is in studying

how the initial disturbance evolves and how the developing mean flow affects the

streaks dynamics. As a result, the initial conditions deserve special attention. It

is believed that initial conditions are here specified uniquely and unambiguously

for the first time, in that the link between entry disturbances and the growth of

streaks is taken into account, together with the effects of non-parallelism. The
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dynamics of the streaks is described by the boundary region equations and the

effects of the developing mean flow are retained.

Chapter 2 describes the investigation of the entry channel flow and shows the

analytical results obtained, including the derivation of the governing equations

for the entry base and perturbation flows, with particular regards to the compu-

tation of the initial conditions. The computational procedures used to solve the

governing equations are outlined in chapter 3, together with the numerical results

of the computations for physically realistic disturbances, suitable for water chan-

nel and wind tunnel experiments. The mathematical difficulties associated with

the polar coordinates system make the treatment of pipe flows particularly chal-

lenging. The resulting efforts in the analytical investigation of the entrainment

of external perturbation in pipe Poiseuille flow are reported in chapter 4.

It is believed that this fundamental, rigorous and thorough mathematical

and physics-based approach provides a solid basis for the understanding of the

relationship between the transitional Reynolds number and the role of free stream

turbulence in laminar-to-turbulent transition for confined flows.



2. ENTRY CHANNEL FLOW: MATHEMATICAL FORMULATION

AND ANALYTICAL RESULTS

This chapter describes the linear response of an incompressible laminar devel-

oping Poiseuille flow to free-stream vortical disturbances of the convected-gust

type. The free-stream turbulence level is assumed to be strong enough to induce

boundary-layer streaks typically observed in bypass transition in the downstream

location where the boundary layer thickness is of the same order of the spanwise

wavelength of the disturbance.

The mathematical approach follows closely that by LWG and R9 in that the

boundary region equations are employed to describe the streaks dynamics and the

method of matched asymptotic expansions is used in the derivation of the initial

conditions. The mathematical formulation is described in §2.1, together with

the scaling, the assumptions and a description of the asymptotic regions. The

equations governing the dynamics of the disturbance are presented in §2.2. They

are derived following a wall-normal velocity/vorticity approach whereby pressure

is eliminated by the proper manipulation of the Navier-Stokes equations. This

approach closely follows the milestone paper by Kim et al. (1987). The main

difference from the flow over a flat-plate boundary layer is that the flow is not

self-similar like Blasius flow (where U = {U(η), V (η), 0}). Differently from a

fully developed turbulent flow, where U = {U(y), 0, 0}, the mean flow has non-

negligible streamwise and wall-normal components, both functions of the axial

and wall-normal coordinates, i.e. U = {U(x, y), V (x, y), 0}.

Attention has been given to the specification of initial conditions, with the
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scope of including all the physical features of the interaction between the distur-

bance and the spatially-developing boundary layers. Such a thorough derivation

of the initial conditions is carried out here for the first time. Mathematically, the

initial condition is prescribed rigorously by the method of matched asymptotic

expansions as a composite solution of the boundary layer flow close to the walls

and the inviscid flow near the centreline. The boundary-layer displacement effect

is expressed by the second order expansion of the mean inviscid stream function,

computed analytically and numerically. Details of the treatment of the initial

conditions are found in §2.3.

2.1 Mathematical formulation

The mathematical formulation of the problem is presented in this section. It

follows closely the one by LWG and R9, extended and adapted for a confined

flow. An incompressible flow of uniform velocity U∗
∞ between two parallel plates

is considered, as sketched in figure 2.1. Dimensional quantities are hereafter

denoted by the superscript ∗. Superimposed on U∗
∞ are convected gust-type

turbulent vortical fluctuations advected by the mean flow. The flow is de-

scribed by means of a Cartesian coordinate system, that is by a position vector

x = x̂i + ŷj + zk̂ = x1̂i + x2̂j + x3k̂ where x, y and z (or, equivalently, x1, x2

and x3) represent the streamwise, wall-normal and spanwise directions. Lengths

are scaled by the spanwise wavelength of the gust λ∗z, implying that the scaled

spanwise wavenumber is k3 = 2π. The free-stream turbulence is generated by a

grid at the inlet. A major difference from the open flow case is that there is a

restriction on the wall-normal disturbance wavelength λ∗y, that is λ∗y,max = 2h∗

where h∗ is the half-channel width, because the flow is confined between two flat

plates. Disturbances with a wall-normal wavelength λ∗y > 2h∗ would not be able

to enter the channel. Velocities are made dimensionless by U∗
∞, pressure is scaled
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by ρ∗U∗2
∞ , where ρ∗ is the density, and time by λ∗z/U

∗
∞.

It is assumed that the amplitude of the oncoming vorticity fluctuations is

much lower than the amplitude of the mean flow, so that the problem can be

linearized. The inlet vorticity fluctuations can be expressed mathematically as

a superposition of a pair of vortical disturbances with equal and opposite wall-

normal wavenumber ±k∗2,

u = î+ εu∞(x− t, y, z) = ε(û∞
+ e

ik2y + û∞
− e

−ik2y)ei(k1x+k3z−k1t) + c.c., (2.1)

where c.c. stands for complex conjugate, ε ≪ 1 is the amplitude of the gust,

û∞
± = {û∞1±, û∞2±, û∞3±} with û∞1±,2±,3± = O(1) and k = {k1, k2, k3}. A simi-

lar choice was employed by Ricco et al. (2011) and Marensi et al. (2017), who

prescribed the vorticity fluctuations as a pair of modes with equal and opposite

spanwise wavenumbers for the open flat plate case. These are physically realistic

disturbances that may be generated, for example, by a vibrating ribbon at the

channel mouth. The continuity equation is expressed as

k1û
∞
1,± ± k2û

∞
2,± + k3û

∞
3,± = 0. (2.2)

The focus is on low-frequency (i.e. long-wavelength) disturbances with a stream-

wise wavenumber k1 = 2π
λ∗x
λ∗z ≪ 1, as they are able to penetrate the boundary

layer and generate the laminar streaks (Ricco and Wu, 2007; Ricco, 2009). The

Reynolds number is defined as

Rλ =
U∗
∞λ

∗
z

ν∗
(2.3)

and is assumed to be asymptotically large, i.e., Rλ ≫ 1 (although the flow re-

mains laminar). The laminar streaks evolve on a lengthscale comparable to the

streamwise wavelength of the gust. Hence, a distinguished scaling for the stream-

wise direction is k1 = O(R−1
λ ), or x = k1x = 2πx∗/λ∗x. Because of the disparity

between the streamwise and spanwise scales, free-stream disturbances of ampli-

tude O(ε) may generate streamwise velocity perturbations O(ε/k1) in the viscous
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layer. It is further assumed that the amplitude of the velocity disturbance is much

smaller than the amplitude of the mean flow, so the Navier-Stokes equations may

be linearized. This condition implies that ε/k1 ≪ 1 or εRλ ≪ 1.

I
II

III

IV V

δ∗

h∗

εu∞(x − t, y, z)

y

x x ≪ 1 x = O(1)

Fig. 2.1: Channel flow configuration. The region of interest is the boundary region V,

where δ∗/λ∗z = O(1). The boundary-layer thickness is out of scale for clarity.

The flow domain can be divided into five asymptotic regions. Regions I to

IV are used to compute the initial conditions, and the region of interest in the

analysis of the streaks dynamics is region V, or the boundary region.

In region I, the inviscid flow approaches and interacts with the leading edge

of the plates, where the flow field can be adequately described by rapid distortion

theory. The solution here is expressed in terms of a velocity potential, in a similar

fashion as LWG, but taking into account the presence of the upper plate through

the specification of appropriate boundary conditions. Details of the treatment of

region I are found in section §2.3.

Region II is a viscous region underneath region I, where the boundary layer

thickness is δ∗ ≪ λ∗z, thus allowing the spanwise viscous terms to be neglected

when compared to the wall-normal viscous terms. Here, the unsteady perturba-

tions are governed by the linearized unsteady boundary-layer (LUBL) equations.

In region III, the boundary layer thickness has grown, hence the viscous terms

in the wall-normal and spanwise directions are of comparable magnitude. The

mean flow in regions II and III is of the Blasius type, because x ≪ 1, therefore
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the mean pressure gradient effect is negligible. The dynamics of the streaks in

regions II and III is fully described in LWG. Their solution is herein used to com-

pute the inner part of the composite solution used as initial condition to start

the downstream marching, as described in more details in section 2.3.

Region IV is the inviscid region above region III. Here, the flow is influenced by

the increased boundary layer thickness. In the derivation of the initial conditions,

the solution in region IV and its limits as the walls are approached are used in

the computation of outer and common solutions respectively.

The region of interest is region V, at downstream locations where the boundary-

layer thickness and the spanwise wavelength of the disturbance are of comparable

order, i.e., δ∗ = O(λ∗z), or x/Rλ = O(1). This means that the spanwise viscous

effects are of the same order of the wall-normal viscous effects. When λ∗z = O(δ∗),

the dynamics of the streaks is described by the linear unsteady boundary-region

(LUBR) equations, that is the rigorous asymptotic limit of the Navier-Stokes

equations for long-wavelength/low-frequency disturbances. The boundary region

is defined from the lower to the upper wall. Here, the mean flow pressure gra-

dient has a significant effect. Differently from the flat-plate case, the mean flow

is not self-similar. Furthermore, it should be observed that the mean flow is

non-parallel, i.e., the interaction of the incoming perturbation and the spatially-

evolving boundary-layer is fully taken into account.

2.2 Governing equations and boundary conditions

The derivation of the equations that govern the mean and perturbation flow dy-

namics is presented in this section. The mean flow is governed by the streamwise

momentum equation and by the continuity equation. A further requirement is

imposed on the mean flow, i.e. the mass flow rate is constant. Starting from the

incompressible Navier-Stokes and continuity equations, the perturbation flow is
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expressed in terms of wall-normal velocity and vorticity. Through this procedure,

the degree of the system is reduced from seventh to sixth, because the perturba-

tion pressure does not appear in the equations for the wall-normal velocity and

vorticity. This greatly simplifies the treatment of the governing equations, as

it is not required to specify the pressure fluctuation at the wall as a boundary

condition. The only boundary conditions used are thus the no-slip boundary

conditions.

The flowfield u is governed by the non-dimensional incompressible Navier-

Stokes and continuity equations

∂u

∂t
+ (u · ∇)u = −∇p+ 1

Rλ
∇2u, (2.4)

∇ · u = 0. (2.5)

u is expressed as the superposition of the mean flow U(x, y) = O(1) and the

perturbation flow εu′ = ε(u′, v′, w′, p′) = O(ε) as follows

{u, p} =













U(x, y)

k1V (x, y)

0

P (x)













︸ ︷︷ ︸

U,P

+ε













u0(x, y)

k1v0(x, y)

w0(x, y)

k1p0(x, y)













ei(k3z−k1t)

︸ ︷︷ ︸

u′,p

, (2.6)

where

{u0, v0} =
(

û∞1 + ik1
γ û

∞
2

)

{u(0), v(0)}+ ( ik3k1 ){u, v},

w0 = w,

p0 = k1

(

û∞1 + ik1
γ û

∞
2

)

p(0) + ik3p,







(2.7)

and γ =
√

k21 + k23. Substituting expression (2.6) into equations (2.4) - (2.5) and

collecting the terms of O(1) yields the equations governing the mean flow

U
∂U

∂x
+ V

∂U

∂y
= −dP

dx
+

1

k1Rλ

∂2U

∂y2
, (2.8)
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∂P

∂y
= 0, (2.9)

∂U

∂x
+
∂V

∂y
= 0, (2.10)

used together with the integral form of the continuity equation, that is

1

h

∫ h

0
Udy = 1, (2.11)

subject to the no-slip condition at the wall and the symmetry condition at the

centreline

U = V = 0 at y = 0, (2.12a)

∂U

∂y
= V = 0 at y = h. (2.12b)

The mean flow is computed numerically by solving the Navier-Stokes and conti-

nuity equations by a finite-difference scheme according to a procedure similar to

that found in Bodoia and Osterle (1962). The details of the discretization and

numerical solution of equations (2.8)-(2.11) are discussed in section 3.1.1.

Because the pressure perturbation p′ at the wall is unknown, it is common

practice in the analysis of confined flows (Kim et al., 1987; Schmid and Henning-

son, 2001; Quadrio and Luchini, 2004) to eliminate the pressure from equations

(2.4) - (2.5) by reducing them to a fourth-degree equation for v′ and a second-

degree equation for the wall-normal component of vorticity ω′
y by proper manip-

ulations of the Navier-Stokes and continuity equations. Details of the derivation

of the wall-normal velocity and vorticity LUBR equations from the Navier-Stokes

equations are found in Appendix A. The problem is thus expressed in terms of

velocity components only, which eliminates the issue of the pressure. Using the
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compact notation of Kim et al. (1987), the equations for wall-normal velocity and

vorticity read

∂

∂t
∇2v = hv +

1

Rλ
∇4v, (2.13)

∂ωy
∂t

= hωy +
1

Rλ
∇2ωy, (2.14)

where

hv = − ∂

∂y

(
∂H1

∂x
+
∂H3

∂z

)

+

(
∂2

∂x2
+

∂2

∂z2

)

H2, (2.15)

hωy =
∂H1

∂z
− ∂H3

∂x
, (2.16)

H1 = −
(

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)

, (2.17a)

H2 = −
(

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

, (2.17b)

H3 = −
(

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)

. (2.17c)

The wall-normal vorticity perturbation is defined as

ω′
y =

(
∂u′

∂z
− ∂w′

∂x

)

=

[
(ik3)

2

k1
u− k1

∂w

∂x

]

ei(k3z−k1t) =

(

−k
2
3

k1
u− k1

∂w

∂x

)

ei(k3z−k1t) =
1

k1
︸︷︷︸

≫1

(

−k23u− k21
∂w

∂x

)

︸ ︷︷ ︸

O(1)

ei(k3z−k1t) =

1

k1
ωy(x, y)e

i(k3z−k1t).

(2.18)

Because the perturbation is elongated in the streamwise direction, vorticity is

mostly created by the streamwise component of the perturbation and the contri-

bution of the spanwise velocity can be neglected. Thus, the wall-normal pertur-

bation vorticity and the streamwise perturbation velocity are both of O(k−1
1 ) and
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the wall-normal vorticity perturbation is only expressed in terms of streamwise

velocity, i.e.,

ωy = −k23u. (2.19)

The LUBR equations are derived substituting expression (2.6) into (2.13) and

(2.14) and collecting terms of O(ε)

(

ik23 − k23
∂V

∂y
+
∂3V

∂y3
− k23κ

2

)

v +

(

−k23V +
∂2V

∂y2

)
∂v

∂y

+

(

−i+ ∂V

∂y
+ 2κ2

)
∂2v

∂y2
+ V

∂3v

∂y3
+ U

∂3v

∂x∂y2
− 1

k1Rλ

∂4v

∂y4

+

(

−k23U − ∂2U

∂y2

)
∂v

∂x
−
(

k23
∂V

∂x
− ∂3V

∂x∂y2

)

u− 2
∂2U

∂x∂y

∂u

∂x

− 2
∂U

∂x

∂2u

∂x∂y
− ∂V

∂x

∂2u

∂y2
= 0,

(2.20)

(

−i+ ∂U

∂x
+ κ2

)

u+ U
∂u

∂x
+ V

∂u

∂y
− 1

k1Rλ

∂2u

∂y2
+
∂U

∂y
v = 0. (2.21)

Equations (2.20) and (2.21) are solved numerically, subject to the no-slip con-

ditions at the walls. Two further conditions are computed by ensuring that the

continuity equation is satisfied at the walls. The boundary conditions of equations

(2.20) and (2.21) read

u = v =
∂v

∂y
= 0 (2.22)

at y = 0 and y = 2h. It should be observed that equation (2.21) coincides with

the x momentum LUBR equation, as a consequence of (2.19). The solution is

thus obtained in terms of u and v. The spanwise component w can be computed

from the continuity equation

w = −
(
∂u

∂x
+
∂v

∂y

)

. (2.23)
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Pressure can be computed a posteriori from the Navier-Stokes equations. Sub-

stituting expression (2.6) into the spanwise momentum equation and collecting

terms of O(ε) yields

p = k−2
3

[
(
−i+ κ2

)
w + U

∂w

∂x
+ V

∂w

∂y
− 1

k1Rλ

∂2w

∂y2

]

. (2.24)

2.3 Initial conditions

The mean flow and LUBR equations are parabolic and solved through a down-

stream marching procedure. Hence the specification of appropriate initial con-

ditions as x → 0, outlined in this section, is of crucial importance and great

attention has been devolved to the formulation of robust and physically mean-

ingful initial conditions. Initial conditions are usually specified as the continuous

spectrum of the Orr-Sommerfeld equations (Jacobs and Durbin, 2001; Brandt

et al., 2004) or by selecting special, i.e. optimal perturbations as those described

by Andersson et al. (1999) and Luchini (2000) (Brandt and Henningson, 2002;

Buffat et al., 2014). The work by Biau et al. (2008) casts some doubts regarding

the effectiveness of using such optimal perturbations as initial conditions to study

transition in channel flows and show that a more suitable initial profile for their

non-linear simulations is provided by imposing linear travelling waves at the inlet.

This thesis provides a new perspective with these regards. An initial condition

cannot be imposed at x = 0 because the wall-normal mean velocity profile is

singular here and because in the immediate surroundings of the leading edge

the flowfield is governed by the full Navier-Stokes equations, hence an analytical

solution is not possible. Therefore, initial conditions are imposed at upstream

locations x0 ≪ 1. The downstream marching procedure must be started at

upstream locations x0 where the mean flow pressure gradient effects are not

significant and the mean flow is of Blasius type, i.e. at upstream locations where
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the mean centreline velocity is well approximated by an appropriate inviscid

stream function ψ. The computation of ψ is useful for the derivation of the

initial condition for both the mean and perturbation flows. The analysis of the

inviscid stream function is outlined in the next section.

2.3.1 Mean flow composite solution

The initial conditions for the computation of the mean flow are expressed as a

composite solution of the flowfield in the viscous layer (inner solution) and the

flowfield in the inviscid core (outer solution). A similar approach is used by Rubin

et al. (1977). According to the method of matched asymptotic expansions, the

composite solution reads

U = Uin +Uout −Uc, (2.25)

where the subscripts in, out and c stand for inner, outer and common, respec-

tively. The inner solution is valid near the wall, where the inner variable η is

defined as

η = y

(
Rλ
2x

)1/2

= O(1), (2.26)

Provided that the Reynolds number is large, because the boundary layer thickness

is very small near the inlet, the inner solution corresponds to the Blasius flow

(Wilson, 1970; Rubin et al., 1977; Duck, 2005; Buffat et al., 2014), hence the

inner mean flow satisfies the Blasius equation

F ′′′ + FF ′′ = 0, (2.27)

where the prime here indicates differentiation with respect to η, with F (0) = 0,

F ′(0) = 0, and F → η−β as η → ∞, with β = 1.217 . . . (Schlichting and Gersten,

2001) as x→ 0. The inner inlet mean flow reads
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Uin = F ′, (2.28)

Vin =

(
1

2xRλ

)1/2
(
ηF ′ − F

)
. (2.29)

The outer solution is valid in the inviscid core, where the flow is described

by means of an inviscid stream function ψ, expressed as the superposition of a

uniform and displaced flow as

ψ(x, y) = y +R
−1/2
λ ψ2(x, y). (2.30)

The common part of the velocity field is defined as

Uc = lim
y→0

Uout = lim
η→∞

Uin (2.31)

and must be subtracted from the inner and outer solutions, otherwise it would

be considered twice.

The inviscid entry flow is irrotational. The effects of the upstream vorticity

have been studied in literature (Vrentas et al., 1966; Van Dyke, 1970; Morihara

and Cheng, 1973) and are discussed in more detail in section 3.2.1. This work

is based on the assumption that Rλ ≫ 1, thus mean flow viscous effects at

the entrance is negligible, which is consistent with the use of the boundary-

layer approximation of the Navier-Stokes equations. Hence, the inviscid stream

function ψ satisfies the Laplace equation. The second order expansion of the

stream function ψ2 represents the flow due to the boundary-layer displacement

and is computed as

∇2ψ2 = 0, (2.32)

subject to
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ψ2 = −β
√
2x at y = 0, x > 0 (2.33a)

ψ2 = 0 at y = 0, x < 0 (2.33b)

ψ2 = β
√
2x at y = 2h, x > 0 (2.34a)

ψ2 = 0 at y = 2h, x < 0 (2.34b)

∂ψ2

∂x
= 0 as x→ −∞, (2.35)

∂ψ2

∂x
= 0 as x→ +∞. (2.36)

As x → −∞, the flow is uniform, thus −∂ψ2

∂x = 0. As x → ∞, the mean flow

tends to the fully developed status, where the wall-normal velocity component

is null, hence boundary condition (2.36). Boundary conditions (2.33)-(2.34) are

found by asymptotic matching, considering that near the walls the wall-normal

component of the mean outer velocity must match the limit of the vertical inner

mean velocity






Vc,l

Vc,u




 = lim

y→0






Vout,l

Vout,u




 = lim

y→0
∓∂ψ
∂x

= lim
η→∞

±Vin =

lim
η→∞

±
(

1

2xRλ

)1/2
(
ηF ′ − F

)
= ±β

(
1

2xRλ

)1/2

,

(2.37)

where the subscripts l and u indicate the lower and upper plates, respectively.

Then

ψ2(x) = ∓
∫

(2x)−1/2dx = ∓
√
2x, (2.38)
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as y → 0 and y → 2h. A thermal analogy is useful here, as the two channel walls

might be thought of as being equally heated and cooled, ψ2 being representative of

the temperature. Alternatively, because of the symmetry condition with respect

to the centreline, the wall normal mean velocity at y = h is null, implying ψ2 = 0.

The solution to equation (2.32) together with boundary conditions (2.33)-

(2.36) is found on page 166 in Carslaw and Jaeger (1959) by separation of variables

and reads

ψ2(x, y) =
1

2h
sin
(πy

h

)∫ ∞

0

−β
√
2σ

cosh[π(x− σ)/h]− cos(πy/h)
dσ

+
1

2h
sin
(πy

h

)∫ ∞

0

β
√
2σ

cosh[π(x− σ)/h] + cos(πy/h)
dσ.

(2.39)

The mean flow is only computed in the lower half domain, therefore ψ2 = 0 is

used instead of boundary condition (2.34) and the second order stream function

is expressed as the first term of the above expression and the velocity components

read

Uout = 1 +R
−1/2
λ

π

2h2

{

cos
(πy

h

)∫ ∞

0

−β
√
2σ

cosh [π (x− σ) /h]− cos (πy/h)
dσ+

sin2
(πy

h

)∫ ∞

0

β
√
2σ

{cosh [π (x− σ) /h]− cos (πy/h)}2
dσ

}

,

(2.40)

Vout = −R−1/2
λ

π

2h2
sin
(πy

h

)∫ ∞

0

sinh [π(x− σ)/h]β
√
2σdσ

{cosh [π (x− σ) /h]− cos (πy/h)}2
. (2.41)

The wall-normal common solution is computed as expression 2.37 and the stream-

wise solution is found as

Uc = lim
y→0

Uout = lim
η→∞

Uin = lim
η→∞

F ′ = 1 (2.42)
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Thus the composite initial profile reads






U

V




 =






F ′

(2xR)−1/2(ηF ′ − F )






︸ ︷︷ ︸

Uin

+






∂ψ
∂y

−∂ψ
∂x






︸ ︷︷ ︸

Uout

−






1

β(2xR)−1/2






︸ ︷︷ ︸

Uc

. (2.43)

Figures 2.2 and 2.3 show the inner, outer, common and composite solutions for

the mean flow for x = 0.05 and Rλ = 500, 2000, respectively.
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Fig. 2.2: Composite solution for the mean flow streamwise (left) and wall-normal (right)

initial conditions. x = 0.05, Rλ = 500.
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Fig. 2.3: Composite solution for the mean flow streamwise (left) and wall-normal (right)

initial conditions. x = 0.05, Rλ = 2000.

It is observed how the initial streamwise velocity profile agrees very well with

the inner (Blasius) solution, whereas the wall-normal mean velocity component

agrees with the viscous solution near the wall, but deviates from this behaviour

in the inviscid core, where the composite profile coincides with the outer solution.

The velocity at the wall is not exactly zero, i.e. there is a slip component. This

is due to Uout and Uc not being exactly equal at y = 0. This effect is more

significant for the wall-normal component than for the streamwise component

and decreases as the Reynolds number increases.
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2.3.2 Leading order components u, v, w

For the leading order disturbance components, three types of initial conditions

have been used in this work and are sketched in table 2.1 and described in details

in this section.

(i) 10−4 (ii) 10−3 (iii) 10−2 x0

P
er
tu
rb
at
io
n
fl
ow

M
ea
n
fl
ow

Linear inviscid

solution,

Analytical

Uniform flow,

Analytical

Composite with LWG

initial condition,

Semi-analytical

Composite with

channel stream

function,

Numerical

Composite with LWG

region III,

Semi-analytical

Composite with

channel stream

function,

Numerical

Tab. 2.1: Schematic of different initial conditions used for the mean and perturbation

flows, depending on the order of magnitude of the streamwise location where

the downstream marching is started, i.e. x0 ≪ 1

The initial conditions may be prescribed as either

(i) Linear inviscid solution for the perturbation flow computed by solving the

flowfield in region I and uniform flow for mean flow.

(ii) Composite solution where the inner boundary layer solutions are given by

the initial conditions found by LWG for a flat plate. A composite solution

is used for the mean flow as well, where the inner solution is of Blasius

type and the outer solution is computed by means of the inviscid stream
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function ψ(x, y).

(iii) Composite solution where the inner boundary layer solutions are given by

the numerical solution of the flowfield in region III, which is given in LWG.

The initial condition for the mean flow is the same as in (ii).

Initial condition (i): linear inviscid solution

The simplest initial condition that may be specified is obtained analytically by

studying the interaction of the unsteady oncoming perturbation and the channel

walls. In the upstream region I, where the inviscid uniform mean flow approaches

the channel, the flow can be adequately described by rapid distortion theory. The

velocity is expressed as (Goldstein, 1978)

u = î+ ε (∇φ+ u∞) , (2.44)

where the perturbation potential φ satisfies Laplace equation

∇2φ = 0, (2.45)

subject to

φ→ 0 as x→ 0, (2.46a)

φ = 0 at y = 0, x < 0, (2.46b)

∂φ

∂y
+ u∞2 = 0 at y = 0, (2.46c)

∂φ

∂y
+ u∞2 = 0 at y = 2h. (2.46d)

Boundary conditions (2.46c)-(2.46d) are the no-penetration boundary conditions

and they are imposed by matching the inviscid solution with the viscous boundary-

layer solution valid very close to the lower and upper walls. Because the wall-
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normal perturbation velocity in the boundary-layer is proportional to the boundary-

layer thickness, i.e. to x1/2, there is no wall-normal velocity perturbation gener-

ated by the boundary-layer at leading order, hence the no-penetration boundary

conditions.

The solution to equation (2.45) with boundary conditions (2.46) can be found

by means of the Wiener-Hopf method (Choudhari, 1996), but the interest here is

in the solution at x ≫ 1 and the solution is found more easily by separation of

variables and reads

φ =
û∞2+

γ (e2γh − e−2γh)

[(

e−2γh − 1
)

eγy +
(

e2γh − 1
)

e−γy
]

ei[k1(x−t)+k3z]. (2.47)

The derivation of expression (2.47) is found in Appendix B.1. The flowfield in

region I is computed as

u = î+ εu(1)ei[k1(x−t)+k3z] =

(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)

(2.48)

where

u
(1)
i =

ikiû
∞
2+

γ (e2γh − e−2γh)

[(

e−2γh − 1
)

eγy +
(

e2γh − 1
)

e−γy
]

+ û∞i+e
ik2y,

(2.49)

for i = 1, 3 and

u
(1)
2 = û∞2+

(
e−2γh − 1

e2γh − e−2γh
eγy +

1− e2γh

e2γh − e−2γh
e−γy + eik2y

)

. (2.50)

Therefore, initial condition (i) is expressed as

v → û∞2+
ik3

(
e−2γh − 1

e2γh − e−2γh
eγy +

1− e2γh

e2γh − e−2γh
e−γy + eik2y

)

eix (2.51)

as x→ 0.
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Initial condition (ii)

Expression (2.51) does not take into account viscous effects and therefore is only

valid at very small values of x0, that is where the boundary-layer thickness is very

small. A more accurate and physically significant initial condition that takes into

account the near-wall viscous effects can be imposed at slightly higher upstream

values by using a composite solution matching the viscous near-wall and the outer

inviscid flow solutions. That is

ub = uin,l + uin,u + uout − (uc,l + uc,u), (2.52)

where the subscript indicates the previous grid point in the streamwise direction,

uin,l and uin,u are the inner viscous solutions valid in the lower and upper walls

boundary layers respectively, uout is the outer inviscid solution and uc,l and uc,u

are the common solutions valid in the overlapping regions between the inner and

outer regions for the lower and upper walls, respectively. The expressions for the

outer and common velocities are derived analytically by computing the flowfield

in the inviscid region IV. Here the velocity field is written as

u =

(
∂ψ

∂y
,−∂ψ

∂x
, 0

)

+ εu(0)ei(k3z−k1t), (2.53)

where ψ is given by expression (2.30). Substituting in the Navier-Stokes equations

and collecting the terms of O(ε), the disturbance velocity field u(0) is governed

by

(

−i+ ∂

∂x
− ∂ψ

∂x

∂

∂y
− 1

k1Rλ

∂2

∂y2
+ κ2

)

u(0) = 0 (2.54)

which becomes

(

−i+ ∂

∂x
− 1

k1Rλ

∂2

∂ψ2
+ κ2

)

u(0) = O(k1) (2.55)
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after changing the independent variable to ψ. The solution to (2.55) that is

bounded, matches the gust upstream and satisfies the continuity equation is found

by separation of variables and reads

u(0) = û∞ei(x+k2ψ)−(κ2+κ22)x = uout, (2.56)

where the parameters

κ =
k3

(k1Rλ)1/2
=

1

λ∗z

√

2πν∗λ∗x
U∗∞

= O(1), (2.57)

and

κ2 =
k2

(k1Rλ)1/2
=

1

λ∗y

√

2πν∗λ∗x
U∗∞

= O(1) (2.58)

represent the spanwise and wall-normal viscous effects, respectively. Expression

(2.56) is the outer solution. Its limits as the lower and upper walls are approached

are the lower and upper common solutions. The limits of the mean inviscid stream

function ψ near the walls are

ψ →
(

2x

k1Rλ

)1/2

(η − β) , (2.59a)

ψ →
(

2x

k1Rλ

)1/2

(η + β) , (2.59b)

The expressions for the common velocity profiles for the lower and upper walls

are found respectively as

uc,l = lim
y→0

uout = û∞ei[x+κ2(2x)
1/2(η−β)]−(κ2+κ22)x (2.60)

and

uc,u = lim
y→2h

uout = û∞ei[x+κ2(2x)
1/2(η+β)]−(κ2+κ22)x. (2.61)
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The computation of the inner velocity profiles can be carried out in two ways:

one way is to use the initial conditions in LWG as the inner solution, i.e. initial

condition (ii) with reference to table 2.1, or by use of LWG’s region III solution,

that is initial condition(iii).

As outlined above, the inner velocity profiles may be computed as the initial

conditions in LWG for the lower plate. This involves the computation of yet

another composite solution between the upstream limit of the flat plate boundary

region equations, expressed as a power series, and the solution at the boundary

layer edge. The analysis of the upper plate flowfield is carried out introducing a

new variable η̃ as

η̃ = η2h − η, (2.62)

where

η2h = 2h

(
k1Rλ
2x

)1/2

. (2.63)

The inner velocity profiles for the lower plate then reads

uin,l = 2x(û∞3+ + iû∞2+)U0,l + (2x)3/2U1,l, (2.64)
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vin,l =(û∞3+ + iû∞2+)V0,l + (2x)1/2V1,l+

i(û∞3+ + iû∞2+)

(κ2 − i|κ|)(2x)1/2
{

eiκ2(2x)
1/2(η−β)−(κ2+κ22)x − e−|κ|(2x)1/2(η−β)

}

−
[
3

4
β
(
û∞3+ + iû∞2+

)
− g1,l

2
|κ|(2x)1/2

]

e−|κ|(2x)1/2(η−β)+

(
û∞3+ + iû∞2+

)
[

(η − β) +
3β

4

]

−

(2x)1/2(û∞3+ + iû∞2+)

{[

− i

2
(κ2 + i|κ|)

]
[
(η − β)2 + 1

]
+

3β|κ|
4

(η − β)

}

−

(2x)1/2
|κ|g1,l
2

,

(2.65)

win,l =(û∞3+ + iû∞2+)W0,l + (2x)1/2W1,l+

(û∞3+ + iû∞2+)

(κ2 − i|κ|)
[

κ2e
iκ2(2x)1/2(η−β)−(κ2+κ22)x − i|κ|e−|κ|(2x)1/2(η−β)

]

−

3β

4
|κ|(û∞3+ + iû∞2+)(2x)

1/2e−|κ|(2x)1/2(η−β)−

(û∞3+ + iû∞2+)

{

1 + (2x)1/2
[

i(κ2 + i|κ|)(η − β)− 3β

4
|κ|
]}

(2.66)

where U0,l, U1,l, V0,l.V1,l,W0,l and W1,l are computed solving equations (B1)-(B8)

in LWG, and

g1,l =
2c1,l
|κ| + (û∞3+ + iû∞2+)

[
3

2
β2 +

i

|κ|(β
2 + 1)(κ2 + i|κ|)

]

, (2.67)

where c1,l is a constant computed from the numerical solution of V1,l.

The inner velocity profiles for the upper plate are computed as

uin,u = 2x(û∞3+ − iû∞2+)U0,u + (2x)3/2U1,u, (2.68)
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vin,u =(û∞3+ − iû∞2+)V0,u + (2x)1/2V1,u−
i(û∞3+ − iû∞2+)

(κ2 + i|κ|)(2x)1/2
{

e−iκ2(2x)
1/2(η̃−β)−(κ2+κ22)x − e−|κ|(2x)1/2(η̃−β)

}

−
[
3

4
β
(
û∞3+ − iû∞2+

)
− g1,u

2
|κ|(2x)1/2

]

e−|κ|(2x)1/2(η̃−β)+

(
û∞3+ − iû∞2+

)
[

(η̃ − β) +
3β

4

]

−

(2x)1/2(û∞3+ − iû∞2+)

{[
i

2
(κ2 − i|κ|)

]
[
(η̃ − β)2 + 1

]
+

3β|κ|
4

(η̃ − β)

}

−

(2x)1/2
|κ|g1,u

2
,

(2.69)

win,u =(û∞3+ − iû∞2+)W0,u + (2x)1/2W1,u+

(û∞3+ − iû∞2+)

(κ2 + i|κ|)
[

κ2e
−iκ2(2x)1/2(η̃−β)−(κ2+κ22)x − i|κ|e−|κ|(2x)1/2(η̃−β)

]

−

3β

4
|κ|(û∞3+ − iû∞2+)(2x)

1/2e−|κ|(2x)1/2(η̃−β)−

(û∞3+ − iû∞2+)

{

1 + (2x)1/2
[

−i(κ2 − i|κ|)(η̃ − β)− 3β

4
|κ|
]}

,

(2.70)

where g1,u is defined by equation (C.28) in Appendix C. Outside of the viscous

layer, the streamwise component of the perturbation velocity field ul,u is O(k1),

whereas in the boundary layer ul,u = O(1). In other words, ul,u = O(1) → 0 as

y → h.

Initial conditions (ii) are more physically realistic than initial conditions (i)

as they take into account the boundary layer displacement and viscous effects

and they are valid at higher downstream values.

Initial condition (iii)

The initial condition can be further improved by using LWG solution in region III

as the inner lower solution and by computing the flowfield in the upper boundary
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layer at streamwise locations where the boundary layer thickness has slightly

increased. This is a more general initial condition that can be applied slightly

downstream. The lower plate inner solution is computed numerically solving the

flowfield in region III, expanded as

u =













F ′(η)
(

1
2xRλ

)1/2
(ηF ′ − F )

0

−1
2













︸ ︷︷ ︸

U

+ε













ik3
k1
u
(3)
l (x, η)

ik3
k1

(
2xk1
Rλ

)1/2
v
(3)
l (x, η)

w
(3)
l (x, η)

iκ
(
k1
Rλ

)1/2
p
(3)
l (η)













ei(k3z−k1t)

︸ ︷︷ ︸

u′

, (2.71)

where the superscript (3) refers to region III, where the equations governing the

dynamics of the streaks are equations (5.2)-(5.5) in LWG and they are derived

by inserting expression (2.71) into equations (2.4)- (2.5) and collecting terms of

O(ε). They are reported here for clarity and read

− iu
(3)
l + F ′∂u

(3)
l

∂x
− F

2x

∂u
(3)
l

∂η
− ηF ′′

2x
u
(3)
l + F ′′v(3)l =

1

2x

∂2u
(3)
l

∂η2
− κ2u

(3)
l , (2.72)

− iv
(3)
l + F ′∂v

(3)
l

∂x
− F

2x

∂v
(3)
l

∂η
− 1

(2x)2
[
η(ηF ′)′ − F

]
u
(3)
l +

(ηF ′)′

2x
v
(3)
l =

− 1

2x

∂p
(3)
l

∂η
+

1

2x

∂2v
(3)
l

∂η2
− κ2v

(3)
l ,

(2.73)

− iw
(3)
l + F ′∂w

(3)
l

∂x
− F

2x

∂w
(3)
l

∂η
= κ2p(3) +

1

2x

∂2w
(3)
l

∂η2
− κ2w

(3)
l , (2.74)

∂u
(3)
l

∂x
− η

2x

∂u
(3)
l

∂η
+
∂v

(3)
l

∂η
+ w

(3)
l = 0. (2.75)

They are solved together with initial conditions (2.64)-(2.66) and mixed boundary

conditions



56 2. Entry channel flow: mathematical formulation and analytical results

u
(3)
l → 0, (2.76)

∂v
(3)
l

∂η
+ |κ|(2x)1/2v(3)l → −(û∞3 + iû∞2 )ei(x+κ2(2x)

1/2)(η−β)e−(κ2+κ22)x, (2.77)

∂w
(3)
l

∂η
+ |κ|(2x)1/2w(3)

l → (û∞3 + iû∞2 )iκ2(2x)
1/2ei(x+κ2(2x)

1/2)(η−β)e−(κ2+κ22)x,

(2.78)

∂p
(3)
l

∂η
+ |κ|(2x)1/2p(3)l → 0. (2.79)

The upper plate boundary region solution uin,u is derived rigorously starting from

the edge solution (2.61). It involves the solution of the upper-plate boundary re-

gion equations starting from the different expression for the edge solution ((2.61)

instead of LWG’s (2.60)). This is reflected in both the initial and boundary con-

ditions for the upper-plate LUBR equations. The boundary region solution for

the upper plate is derived rigorously. Details are found in appendix C.

Figures 2.4 and 2.5 show the composite solution for initial condition (iii) in

terms of v and w for the parameters reported in table 2.2.

û∞ k κ, κ2 x Rλ ηh

(0.97,−1.0,−1.0) (0.08,−2π, 2π) 1,-1 0.012337 500 40

Tab. 2.2: Simulation parameters for the computation of the initial conditions for a given

incoming disturbance of amplitude û∞ and wavenumber k.

It is observed that near the lower wall the outer (loosely dashed line) and

common lower (plus symbols) solution profiles overlap, implying that the com-

posite (solid lines) solution tends to the inner lower (dash dotted line) solution,
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thus verifying the limit

lim
y→0

vb = vin,l ⇒ vc,l ∼ vout, near the lower wall, (2.80)

Similarly, near the upper wall, the outer and the common upper (square symbols)

curves overlap, i.e., the composite solution agrees with the inner upper (dashed

line) profile, according to

lim
y→2h

vb = vin,u ⇒ vc,u ∼ vout, near the upper wall. (2.81)

As the centreline is approached from the lower plate, the lower and upper inner

and lower and upper common velocity profiles overlap. Therefore, the outer and

composite profiles overlap. This verifies expression

lim
y→h

vb = vout ⇒ vin,l ∼ vc,l,vin,u ∼ vc,u near the centreline. (2.82)
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Wall-normal initial velocity profile
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Fig. 2.4: Initial condition (iii): Plots of the asymptotic matching between inner, common,

outer and composite initial wall-normal velocity profiles. R and I indicate the

real and imaginary parts respectively.
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Spanwise initial velocity profile
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Fig. 2.5: Initial condition (iii): Plots of the asymptotic matching between inner, common,

outer and composite initial spanwise velocity profiles.

Figure 2.6 shows a comparison between wall normal profiles of initial con-

ditions (i), (ii), (iii). As expected, the differences between the three curves are

mostly observed near the walls. Initial condition (i) (solid line) is imposed at

x0 = 0.0009 and does not include the boundary layer, whereas initial condi-

tion (iii) (dash dotted line) is specified at x0 = 0.012337, where the boundary
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layer thickness has slightly increased with respect to initial condition (ii) (dashed

line). Condition (ii) imposed at the intermediate value x0 = 0.006612, therefore

the spanwise viscous effects are slightly more significant.
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Fig. 2.6: Plots of the three different kinds of initial conditions tested. The solid line rep-

resents the analytical initial condition computed by the analysis of the flowfield

in region I, the dashed line indicates the composite solution where the inner

flowfield is given by LWG’s initial conditions and the dotted line shows the

composite initial condition with LWG’s region III as inner solution.
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2.3.3 Initial conditions for u(0), v(0) components

The initial conditions for the lower order components
{
u(0), v(0)

}
are outlined in

this section, recalling expression (2.7)

{u0, v0} =
(

û∞1 + ik1
γ û

∞
2

)

{u(0), v(0)}+ (ik3/k1){u, v},

w0 = w,

p0 = k1

(

û∞1 + ik1
γ û

∞
2

)

p(0) + ik3p,







These are the components that in the work of R9 are significant in the core

region.

A composite solution is used to specify the initial conditions. It will be shown

in section 3.2.2 that the effect of the initial condition for the first-order compo-

nents u, v, w is only felt near the inlet, therefore it is legitimate to compute the

inner profile using regions I and II and not region III. Such initial condition may

be improved in a fashion similar to the derivation of the initial condition for the

first-order components involving the initial and boundary conditions in R9. The

inner velocity component is the solution in region II for both plates, given as

equation (4.13) in LWG. The outer velocity component is the inviscid solution in

region I. The perturbation flow in region II is expressed as

u
(0)
in =







1

2

[
(ηF ′)′ + F ′] û∞1

︸ ︷︷ ︸

O(1)
(
2xk1
Rλ

)1/2 û∞1
4x

[
η(ηF ′)′ − F

]

︸ ︷︷ ︸

O(k1)

.







(2.83)

Because the wall-normal velocity component is of O(k1), the initial condition

only needs to be specified in terms of the streamwise velocity component. The

outer solution is given by equation (2.49), written here again for convenience
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u
(0)
out =

ik1û
∞
2+

γ (e2γh − e−2γh)

[(

e−2γh − 1
)

eγy +
(

e2γh − 1
)

e−γy
]

︸ ︷︷ ︸

O(k1)

+û∞1 e
ik2y.

The composite solution is found by taking the limit of the inner solution as the

inviscid region is approached and, viceversa, the limit of the outer solution as the

viscous region is approached

u(0)c = lim
η→∞

u
(0)
in = lim

y→0
u
(0)
out = û∞1+. (2.84)

The composite solution then reads

u(0) → û∞1+

{
1

2

[
(ηF ′)′ + F ′]+ eik2yeix − 1

}

, (2.85)

as x→ 0.

Figure 2.7 shows the streamwise inner solution (2.83) (dash dotted lines),

the outer solution (dashed lines), the common solution (round symbols) and the

composite solution (2.85) (solid lines).
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Fig. 2.7: Initial condition for u(0) expressed as a composite solution (solid line). The dot

dashed line represents the inner solution, the dashed line indicates the outer

solution and the circle symbols shows the common solution.

2.4 Summary

This chapter presented the linear response of an incompressible developing lam-

inar flow between two parallel plates to vortical disturbances convected by the

free stream. The focus is on free-stream disturbances with a low frequency and

long wavelength, as these have been observed to penetrate and amplify in the

boundary layer to generate the laminar streaks (or Klebanoff modes), a feature

of bypass transition. The amplitude of the perturbation is assumed to be much

smaller than the amplitude of the mean flow, so that the relevant equations can

be linearized. Thanks to the assumption of low-frequency and long-wavelength

disturbances, the mathematical framework of the Linear Unsteady Boundary Re-

gion (LUBR) equations is employed. These are the Navier-Stokes equations with

the streamwise derivative neglected in the pressure and viscous terms. This work

is based on the previous papers by Leib et al. (1999)(LWG) and Ricco (2009)(R9)

and is extended to take into account the effects of flow confinement. The main
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differences from the flat-plate boundary layer can be summarised as

• The mean flow is not self-similar: U = (U(x, y), V (x, y)). This is different

from the Blasius boundary layer, where the mean flow is solely a function

of a similarity variable η.

• The initial conditions must be specified from the lower wall (y = 0) to the

upper wall (y = 2h). The inviscid region near the centreline is included.

For the flat-plate case, the initial conditions are specified over the region

y(0) = (2x)1/2(η − β), with η = O(1), i.e. the inviscid core is not included.

• Boundary conditions are prescribed at both walls (y = 0 and y = 2h).

In the works by LWG and R9, the boundary conditions are specified at

the wall (η = 0) and in the free stream (η → ∞). Here, because the

flow is confined, the no-slip condition is employed at both walls. This

simplifies the specification of the boundary conditions, but also implies

that the analytical approach is different from the flat-plate case, where the

flowfield was expressed in terms of the primitive variables u′, v′, w′, p′. Here,

because the pressure perturbation p′ at the wall is unknown, the pressure

perturbation is eliminated through the proper manipulation of the Navier-

Stokes and continuity equations and the problem is solved by a wall-normal

velocity/vorticity approach. The pressure perturbation is then computed a

posteriori from the z- momentum equation.

The key point of this chapter is the specification of the initial conditions

for the mean and perturbation flows. The relevant equations are parabolic and

are solved through a downstream marching procedure, hence the specification of

proper initial conditions is fundamental. For the mean flow, the initial conditions

are specified as a composite solution between the viscous near-wall flow and the

inviscid flow in the core. The inviscid flow is expressed through a stream function
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ψ, whose expression is computed analytically and numerically by means of the

Laplace equation. The same stream function is used in the computation of the

initial conditions for the perturbation flow. The flowfield is divided into five

asymptotic regions: regions I to IV are used for the derivation of the initial

conditions, and region V is the boundary region, where the LUBR equations

are valid. Three types of initial conditions have been derived for the first-order

perturbation components (u, v, w, p). Their robustness is shown in chapter 3,

where it is also shown that the influence of the initial condition is only felt near

the inlet. Hence, only one kind of initial condition is given for the second-order

perturbation flow components u(0), v(0).



3. ENTRY CHANNEL FLOW: COMPUTATIONAL PROCEDURES

AND NUMERICAL RESULTS

This chapter presents the computational procedures used to solve the equations

presented in chapter 2, together with the numerical results. Finite difference

methods, discussed in §3.1, are used to express the linear system of partial differ-

ential equations as a linear system of algebraic equations. Results for both the

mean and perturbation flows are shown in §3.2.

3.1 Numerical methods

The mean flow equations (2.8)-(2.11) are solved along the half channel width. The

convective terms of the streamwise momentum mean equation are linearized and

the validity of this procedure is established via an iterative predictor-corrector

method. The inviscid stream function (2.39) is computed semi-analytically by

quadrature and by solving Laplace equation (2.32) with boundary conditions

(2.33)-(2.36) numerically by means of Gauss-Seidel method. After introducing

an auxiliary variable, the fourth-order wall normal perturbation velocity equation

(2.20) is reduced to second order, and the resulting system (from (2.20)-(2.21))

is solved by Thomas algorithm for block tridiagonal matrices.

3.1.1 Mean flow

Equations (2.8) and (2.10) are discretized by finite differences using the grid

shown in figure 3.1.



3.1. Numerical methods 67
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Fig. 3.1: Computational domain for the mean flow equations. The white dots repre-

sent locations where the flowfield is known, either in terms of velocity or its

derivatives. Black dots represent locations where the flowfield is unknown.

The streamwise momentum equation is discretized as follows

U
∂U

∂x
= Ub,j

(
Uj − Ub,j

∆x

)

, (3.1a)

V
∂U

∂y
= Vb,j

(
Uj+1 − Uj−1

2∆y

)

, (3.1b)

dP

dx
=
P − Pb
∆x

, (3.1c)

∂2U

∂y2
=
Uj+1 − 2Uj + Uj−1

(∆y)2
, (3.1d)

where the subscript b refers to the value at the previous x. The subscript j is

omitted in the pressure terms as these are a function of x only.

Substituting (3.1) in the x momentum equation and re-arranging, leads to

[

− Vb,j
2∆y

− 1

k1Rλ(∆y)2

]

Uj−1 +

[
Ub,j
∆x

+
2

k1Rλ(∆y)2

]

Uj+

[
Vb,j
2∆y

− 1

k1Rλ (∆y)
2

]

Uj+1 +
P

∆x
=
U2
b,j + Pb

∆x
,

(3.2)

where the unknowns are Uj−1, Uj , Uj+1, and P .

The integral form of conservation of mass is discretized using the trapeizodal rule

∫ h

0
Udy =

1

N − 1

(

U0 + UN−1

2
+
N−2∑

k=1

Uj

)

= 1, (3.3)
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where N is the number of grid points between the lower wall and the centreline.

Using the no-slip condition at the wall, expression (3.3) becomes

UN−1

2
+

N−2∑

k=1

Uj = N − 1. (3.4)

The discretized Neumann boundary condition at the centreline implies:

(
∂U

∂y

)

N−1

=
UN − UN−2

2∆y
= 0 ⇒ UN = UN−2, (3.5)

where the fictitious ghost line outside of the computational domain, defined by

the points j,N , is used. Equations (3.2) and (3.4) are solved simultaneously

through a downstream marching procedure, using the values at the previous x

location as known quantities. Starting from the first streamwise position, the x

momentum and integral form of the continuity equations are solved simultane-

ously for Uj−1, Uj , Uj+1 and P . The wall normal velocity Vj is then computed

through the continuity equation, discretized as follows:

∂U

∂x
=
Uj+1 + Uj − Ub,j+1 − Ub,j

2∆x
, (3.6a)

∂V

∂y
=
Vj+1 − Vj

∆y
. (3.6b)

Therefore,

Vj =
∆y

2∆x
(Uj+1 + Uj − Ub,j+1 − Ub,j) + Vj+1, (3.7)

for j = N − 2, N − 1, ..., 1.

Once the flowfield (U, P ) across the channel has been computed, the proce-

dure is repeated at the next streamwise location for the whole streamwise com-

putational domain.

Linear code validation: predictor corrector for non-linear terms

To verify the robustness of the linear code, an iterative procedure based on a

predictor corrector method for the treatment of the non-linear terms is employed.
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The computation of Uj−1,Uj ,Uj+1 and P for a given streamwise position is refined

by using the predicted value as a known term instead of the value at the previous

streamwise location. In other words, if n indicates the n-th iteration step at each

x, Ub,j and Vb,j in expressions (3.1a)-(3.1b) are replaced with Un−1
j and V n−1

j ,

that is with the values computed at the same x, but at the previous iteration.

The equations are then discretized as follows

U
∂U

∂x
= Un−1

j

(
Unj − Ub,j

∆x

)

, (3.8a)

V
∂U

∂y
= V n−1

j

(
Unj+1 − Unj−1

2∆y

)

, (3.8b)

dP

dx
=
Pn − Pb

∆x
, (3.8c)

∂2U

∂y2
=
Unj+1 − 2Unj + Unj−1

(∆y)2
, (3.8d)

at each streamwise location x. Re-arranging, leads to

[

−
V n−1
j

2∆y
− 1

k1Rλ(∆y)2

]

Unj−1 +

[

Un−1
j

∆x
+

2

k1Rλ(∆y)2

]

Unj +

[

V n−1
j

2∆y
− 1

k1Rλ (∆y)
2

]

Unj+1 +
Pn

∆x
=
Ub,jU

n−1
j + Pb

∆x
.

(3.9)

The integral and differential discretized forms of the continuity equation are then

UnN−1

2
+

N−2∑

k=1

Unj = N − 1. (3.10)

V n
j =

∆y

2∆x

(
Unj+1 + Unj − Ub,j+1 − Ub,j

)
+ V n

j+1. (3.11)

The numerical procedure consists of the following steps

1. Predictor step: linear x momentum and the integral continuity equations

are solved for Unj−1, U
n
j , U

n
j+1, P

n using the discretization scheme 3.1.

2. Corrector step: new values Unj−1, U
n
j , U

n
j+1 P

n are computed via (3.9)-(3.10)

and the values with the subscript n− 1 are updated.
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3. Step 2 is repeated iteratively until convergence is reached. The convergence

criterion is that the wall normal velocity gradient at the wall ∂U∂y |y=0 between

two consecutive iterations is lower than a set tolerance (10−5).

4. Once Unj−1, U
n
j , U

n
j+1, P

n have been computed, V n
j is calculated through the

continuity equation (3.11).

5. Once convergence at a given x has been reached, steps 1-4 can be carried

out at the next x value.

Figure 3.2 shows a comparison between the mean centreline velocity Uc computed

via the linear and non-linear code for different values of ∆x. Provided that the

grid is fine enough, the use of the linear code is appropriate.
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Fig. 3.2: Comparison of the centreline velocity computed by means of the linear and

non-linear code at different grid resolutions.

Figure 3.3 shows ∆g = ∂Un

∂y

∣
∣
∣
∣
y=0

− ∂Un−1

∂y

∣
∣
∣
∣
y=0

. The decrease of ∆x results in a

decrease in ∆g and in the number of iterations needed to reach the set tolerance.
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Fig. 3.3: Convergence of the difference between wall-normal mean velocity gradients at

the wall between two consecutive iterations, for different grid resolutions.

Inviscid stream function

Expression (2.39)

ψ2(x, y) =
1

2h
sin
(πy

h

)∫ ∞

0

−β
√
2σ

cosh[π(x− σ)/h]− cos(πy/h)
dσ+

1

2h
sin
(πy

h

)∫ ∞

0

β
√
2σ

cosh[π(x− σ)/h] + cos(πy/h)
dσ

is integrated numerically through Cavalieri-Simpson rule. The robustness of the

computation is verified by solving Laplace equation (2.32) with boundary con-

ditions (2.33)-(2.36) numerically via Gauss-Seidel method and comparing the

solution with that obtained via numerical integration. The Laplace equation is

discretized through a second order central finite difference scheme, referring to

the sketch in figure 3.4

ψn2,i+1,j − 2ψn+1
2,i,j + ψn+1

2,i−1,j

(∆x)2
+
ψn2,i,j+1 − 2ψn+1

2,i,j + ψn+1
2,i,j−1

(∆y)2
= 0, (3.12)

where n is the iteration step.
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i− 1, j i, j i+ 1, j

i, j + 1

i, j − 1

x

y

∆x

∆y

Nx

Ny

Fig. 3.4: Sketch of the computational domain. The solution is known at points (1, j),

(Nx, j), (i, 1), (i,Ny). The iterative procedure (3.13) is carried out in all the

internal points (i, j).

The solution is found explicitly as

ψn+1
2,i,j =

(∆x)2(∆y)2

2(∆y)2 + 2(∆x)2

(

ψn2,i+1,j + ψn+1
2,i−1,j

(∆x)2
+
ψn2,i,j+1 + ψn+1

2,i,j−1

(∆y)2

)

. (3.13)

Convergence is reached when the difference between the value of ψ2 at two suc-

cessive iterations is lower than a certain set tolerance. Figure 3.5 shows the maxi-

mum residualRmax of equation (3.13) as a function of tolerance T ∈ [10−10, 10−4].

The maximum residual decreases linearly with tolerance.
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Fig. 3.5: Maximum residual as a function of tolerance.

3.1.2 Perturbation flow

The boundary region equations (2.20)-(2.21) are solved implicitly by a finite

difference scheme and discretized on the stencil sketched in figure 3.6:

∂u

∂y
=
uj+1 − uj−1

2∆y
(3.14a)

∂2u

∂y2
=
uj+1 − 2uj + uj−1

(∆y)2
(3.14b)

∂u

∂x
=
auj + bub,j + cubb,j

∆x
, (3.14c)

∂2u

∂x∂y
=
auj+1 + bub,j+1 + cubb,j+1 − (auj−1 + bub,j−1 + cubb,j−1)

2∆x∆y
, (3.14d)

with a = 1.5, b = −2, c = 0.5.

bb, j b, j
j

j + 1

j − 1

Fig. 3.6: Stencil used to discretize the boundary region equations.
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The degree of equation (2.20) is reduced from fourth to second by defining an

auxiliary variable s as

s =
∂2v

∂y2
, (3.15)

thus

∂3v

∂y3
=
∂s

∂y
, (3.16a)

∂3v

∂y2∂x
=
∂s

∂x
, (3.16b)

∂4v

∂y4
=
∂2s

∂y2
. (3.16c)

At the boundary points j = 0 and j = N , where N = 2N − 1 the solution is

known: the no-slip conditions imply that u0 = uN−1 = v0 = vN−1 = 0 and

the no-penetration boundary condition is implemented using the ghost points

outside the computational domain, j = −1 and j = N , to express s at the

boundary points in terms of v as follows

s0 =
2v1

(∆y)2
, (3.17a)

sN−1 =
2vN−2

(∆y)2
, (3.17b)

The discretization of the LUBR equations results in a system that may be written

in the form of a block tridiagonal matrix as









Aj−1 Cj−1 0

Bj Aj Cj

0 Bj+1 Aj+1

















uj−1

uj

uj+1









=









rj−1

rj

rj+1









, (3.18)

where Aj ,Bj ,Cj are 3× 3 matrices with the coefficients of the equation for the

wall-normal velocity, the equation for wall-normal vorticity and the discretized

form of equation (3.15), uj is the unknown vector i.e., uj = {uj , vj , sj}, and

rj is the right hand side of the boundary region equations and equation (3.15).

System (3.18) is inverted for j = 1, 2, ..., N − 2 at each x position by means of
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the block tridiagonal matrix (Thomas) algorithm, a simplified form of Gaussian

elimination. The algorithm consists of a forward sweep that reduces the coefficient

matrix to an upper diagonal matrix, and a backward sweep to compute the

solution by backward substitution. The equations may be implemented in any

order, as long as the matrix A0 is non-singular, as the first step of the forward

sweep consists of the inversion of A0. Further details of the computation can be

found in Cebeci (2002).

3.2 Results and discussion

The numerical results of the mean flow and LUBR equations are herein reported.

The mean flow is discussed in section 3.2.1, where the streamwise and wall-normal

flow developments are shown as a function of the wall-normal coordinate for given

values of x and viceversa, as a function of x for fixed values of y. A discussion

about the implications and the justification of the use of the boundary-layer

approximation of the Navier-Stokes equations is made, as well as a comparison

with previous works, in particular those by Wang and Longwell (1964), Van Dyke

(1970), Morihara and Cheng (1973) and Durst et al. (2005). The boundary layer

thickness and its upstream and downstream limits are computed. It is shown that

the mean centreline velocity can be well approximated by the inviscid expansion

of the stream function computed as described in section 2.1. This approximation

is more accurate for higher Reynolds numbers, as the displacement effect due to

viscosity is initially smaller.

3.2.1 Mean flow development

The mean velocity streamwise and wall-normal velocity profiles across the chan-

nel are shown in figure 3.7 for various streamwise positions. As the flow travels

downstream, the mean velocity attains the fully developed status and the stream-
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wise mean velocity has the typical parabolic distribution, while the wall-normal

component decreases to zero.
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Fig. 3.7: Streamwise (left) and wall-normal (right) mean flow development across the

channel for various streamwise locations.

The mean flow velocity components are also plotted along the streamwise

position for various y coordinates in figure 3.8. The wall-normal velocity is sin-

gular at x = 0 and null at the centreline, indicating the presence of significant

gradients in the surrounding of the leading edge, as also reported by Wang and

Longwell (1964). The analysis of the region in the surroundings of the leading

edge is beyond the scope of this work. To avoid the small region surrounding the

leading edge, where an analytical solution is impossible, computations are started

at a small but finite x0 6= 0. Interesting discussions of the region in the vicinity

of the leading edge are found in Wang and Longwell (1964), who solved the full

Navier-Stokes equations numerically, i.e. without neglecting the streamwise vis-

cous terms and the y momentum equation, assuming a vorticity-free flow at the

entrance. The role of upstream vorticity was later discussed by Van Dyke (1970)

and Morihara and Cheng (1973), who concluded that for low Reynolds numbers

vorticity and wall-normal pressure gradients at the entrance are indeed not neg-

ligible because they result from the upstream influence of the viscous flow. This
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also results in near-wall bulges in the mean streamwise velocity profiles, more sig-

nificant for lower Reynolds numbers. However, as the Reynolds number increases,

the fluid particles near the centreline are not immediately influenced by the pres-

ence of the walls and they are slowly accelerated by the displacement effects of the

viscous flow. This work is concerned with the case Rλ ≫ 1, therefore the use of

the boundary layer approximation of the Navier-Stokes equations and the neglec-

tion of vorticity at the entrance are justified (Morihara and Cheng, 1973; Rubin

et al., 1977). The choice of using the boundary-layer formulation is dictated

mainly by two reasons: first of all, for Rλ ≫ 1, the partial differential equations

are parabolic and not elliptic, therefore they are solved via a marching procedure.

The marching may be carried out for several downstream locations without the

need of defining a boundary condition as x → ∞. Wang and Longwell (1964)

refer to this issue as awkward and define a new independent variable so that the

boundaries are finite. Here, thanks to the assumption Rλ ≫ 1, there is no need

to change coordinates and the problem is straightforward to solve. Secondly, the

LUBR equations are parabolic in the streamwise direction too. Hence, the mean

flow U, V is computed at each x and then used as a known quantity in the matrix

coefficient to solve the perturbation equations. Therefore, it is believed that the

employment of the boundary-layer equations is computationally beneficial. Near

the entrance, the inviscid centreline velocity Uc can be well approximated by the

inviscid stream function (2.30), as shown in figure 3.9, a reproduction of figure

3 in Van Dyke (1970) for Re = 75 (left) and Re = 500 (right). Clearly, this

approximation is only valid near the centreline, upstream and for high Re, as

the stream function formulation includes the confinement and the displacement

effect due to the Blasius boundary layer at the plates (through boundary condi-

tions (2.33)-(2.34) ), but does not take into account the near-wall viscous effects

nor the mean streamwise pressure gradient effects. Thus, the agreement between
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Fig. 3.8: Streamwise (left) and wall-normal (right) mean flow development along the

channel for differe wall-normal positions.

the inviscid and viscous centreline velocities inevitably deteriorates downstream,

where the mean streamwise pressure gradient plays an important role. On the

other hand, the solution found solving the Navier-Stokes equations is not valid

at x = 0 because the boundary layer approximation does not hold. Therefore,

in order to start the downstream marching procedure, x0 must be in a range

where the inviscid and viscous profiles overlap. This depends on the Reynolds

number. For the higher Reynolds numbers, the region of agreement between the

two curves is larger, as the upper wall is not immediately felt and the effect of the

streamwise pressure gradient is still negligible. For the lower Reynolds number,

the region where the two profiles overlap is shorter as the viscous effect are more

significant.
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Fig. 3.9: Centreline velocity plots for different values of Re = 75 (left) and Re = 500

right. The solid line represents the inviscid solution computed by means of the

stream function, while the dot-dashed line indicates the viscous solution com-

puted via the Navier-Stokes equations with the boundary layer approximation.

Plots of the boundary layer thickness are shown in figure 3.10 (solid line), in

comparison with the flat plate displacement thickness δLWG employed by LWG

(dashed line) and the 99% boundary layer thickness (dot dashed line), i.e. the

wall normal location where U = 0.99Uc, where Uc refers to the streamwise velocity

at the centreline.

The boundary layer thickness δ is computed so that its upstream limit matches

the boundary layer thickness of LWG

lim
x→0

δ = δLWG =

(
2x

Rλ

)1/2

. (3.19)

It follows that

δ = χ

∫ h

0

(

1− U(x, y)

Uc(x)

)

dy, (3.20)

where χ = β−1 ≃ 0.822. It is also observed that the downstream limit of the 99%

boundary layer thickness is the half channel width.
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Fig. 3.10: Streamwise development of the boundary-layer displacement thickness (solid

line), the Blasius boundary-layer displacement thickness (dashed line) and the

99% boundary-layer thickness (loosely dashed line).

A comparison between the numerically computed entry length and the pre-

diction given by equation 23 in Durst et al. (2005) as

x∗

2h∗
=
[
(0.631)1.6 + (0.0442Re)1.6

]1/1.6
(3.21)

is shown in figure 3.11. The entry length is defined as the distance from the

leading edge where the centreline velocity has reached 99% of its fully devel-

oped value, i.e. the location where Uc = 0.99 × 3/2 = 1.485. The computed

values are in good agreement with (3.21) for the higher range of Re. At lower

Reynold numbers, axial diffusion and the wall-normal pressure gradient are not

negligible, and the boundary-layer approximation of the Navier-Stokes equations

herein employed does not accurately describe the flowfield. Thus, for low Re, the

discrepacy between the computed values of the development length and those

predicted by (3.21). The results are also compared with the limit of (3.21) as

Re ≫ 1 is higher and the development length is better predicted by the linear
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relation

x∗

2h∗
= CRe (3.22)

with C = 0.0442.
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Fig. 3.11: Comparison between computed (symbols) and predicted entrance lengths. The

solid line represents the non-linear relationship proposed by Durst et al. (2005),

valid for all Reynolds numbers, and the dashed line represents its limiting value

as Re→ ∞.

3.2.2 Perturbation flow development

The results of the perturbation flow are reported and discussed in this section.

The scaled amplitudes of the free-stream turbulence have been taken as û∞1,2,± =

1.0, û∞3,± = ∓1.0. Through continuity, this leads to k1 ± k2 ∓ 2π = 0. Hence,

κ = κ2, which implies that the spanwise and wall-normal wavelengths of the

disturbance are the same, i.e. λ∗y = λ∗z. It is important to note that û∞2,± have to be

equal, otherwise the velocity potential (2.47) is null. The free-stream parameters,

shown in table 3.1, are chosen to be representative of low-speed water channel

and wind tunnel experiments. The most interesting aspect is the development

of the amplitude of the first order component of the streamwise velocity |u|,
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Case U∗
∞ h∗ ν∗ R∗

1∞ λ∗z, λ
∗
y λ∗x κ Rλ k1

[ms−1] [m] [m2s−1] [m−1] [m] [m]

×103 ×106 ×10−3 ×103

1a 0.1 15 1.0 100 15 0.8 0.47 1500 0.118

1b 0.1 15 1.0 100 7.5 0.4 0.66 750 0.118

1c 0.1 15 1.0 100 5.0 0.27 0.82 500 0.118

2a 4.0 20 15.7 254.78 20.0 1.25 0.27 5095 0.100

2b 4.0 20 15.7 254.78 10.0 1.0 0.49 2548 0.063

2c 4.0 20 15.7 254.78 6.67 1.0 0.74 1700 0.042

Tab. 3.1: Estimated channel flow parameters for water channel and wind tunnel experi-

ments. In all cases, û∞1,2,± = 1.0, û∞3,± = ∓1.0, hence κ2 = κ, which is equivalent

to λ∗y = λ∗z.

representative of the dynamics of the velocity streaks. The other flow components

and the second order flowfield u(0) are shown as well. Unless otherwise stated,

initial condition (iii) is employed for the first order velocity components u, v, w,

as it is regarded as the most physically realistic. All simulations are run up to

downstream locations where the mean flow is fully developed. Figure 3.12 shows

the downstream development of the streaks for different initial conditions at four

downstream locations for case 1a. For smaller x values, the effect of the initial

condition is slightly felt, mostly in the core region. For x > 4.8 the profiles

overlap, indicating that the effect of the initial condition is no longer significant.

This result serves to show the robustness of the initial conditions. Figures 3.13

and 3.14 show the amplitude of the streamwise, wall-normal and spanwise velocity

profiles, together with the pressure perturbation, for cases 1a and 2b respectively,

at the indicated values of x.

In both cases, the amplitude of the streamwise perturbation initially increases
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Fig. 3.12: Comparison between the downstream development of the streaks when differ-

ent initial conditions are employed. The solid line represents streamwise ve-

locity profiles obtained with the analytical inviscid initial condition (i), dashed

lines show velocity profiles computed with the composite solution in terms of

LWG’s initial conditions for both plates (ii) and dot-dashed lines indicate re-

sults obtained with the composite solution in terms of the solution in region

III for both plates (iii).
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Water channel
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Fig. 3.13: Amplitude of the streamwise (top left and right), wall-normal (middle left),

spanwise (middle right) velocity and pressure (bottom) perturbation profiles

across the channel at the indicated streamwise positions for case 1a, κ = 0.47.
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Fig. 3.14: Amplitude of the streamwise (top left and right), wall-normal (middle left),

spanwise (middle right) velocity and pressure (bottom) perturbation profiles

across the channel at the indicated streamwise positions for case 2b, κ = 0.49.
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Fig. 3.15: Peak streamwise velocity for water channel cases at the indicated values of κ.

and then ultimately decays downstream, as also shown in figure 3.15, where the

peak value of u is shown along the channel. Perturbation with lower values

of κ have higher amplitudes and survive at higher downstream locations before

decaying due to the effect of viscosity. This is consistent with the previous works

of LWG and R9. A difference from the open channel case, however, is that the

mean flow is now developing due to the mean streamwise pressure gradient, which

is null for a flat plate. As a result, the peak amplitude streamwise velocity for

the flat plate case does not depend on the wall-normal coordinate and is always

observed as a given η instead. Here, the effect of the mean flow development

results in a shift of the peak of the streamwise velocity perturbation closer to

the core of the channel as the streamwise mean flow accelerates. This effect is

more significant for the water channel case than for the wind tunnel case. The

amplitude of the wall-normal and spanwise perturbation flows decreases as the

flow moves downstream.

The streamwise mean flow development of cases 1a and 2b is shown in 3.16

for reference.

For the same free-stream conditions, perturbation with lower κ have stronger

intensity and survive at higher x values. This is shown in figures 3.15, where
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Fig. 3.16: Mean flow development for the water channel case 1 (top) and wind tunnel

case 2 (bottom) cases at the indicated values of x.
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the value of κ changes due to a change in λ∗x and λ∗z, according to table 3.1, and

in figure 3.17, where the effect of changing λ∗x only is shown, according to the

parameters shown in table 3.2. In this case, λ∗z = 15mm and λ∗x is varied.

λ∗x[m] κ k1

1.0 0.52 0.094

0.5 0.37 0.188

0.25 0.26 0.377

Tab. 3.2: Change of streamwise wavelength for a water channel case and λ∗z = 15mm,

Rλ = 1500.
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Fig. 3.17: Comparison of peak streamwise velocities for different wavenumbers as a func-

tion of x (left) and x (right).

For larger values of κ, LWG observed that the streaks dynamics coincides to

the steady solution and that κ2|u|max is proportional to κ2x. For the streaks in

a channel flow, as shown in figure 3.18, it is found that for larger κ the unsteady

solution does indeed overlap the steady solution, but the same conclusion as LWG

for the scaling of |u|max cannot be inferred, as the mean flow is not self similar.

Figures 3.19 and 3.20 show the amplitude of u(0), v(0), w(0) and p(0) across
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Fig. 3.18: Development of peak streamwise velocities for κ = 2, 3 (solid and dashed lines,

respectively) and comparison with the steady streaks (symbols)

the channel for cases 1a and 2b respectively, at various x locations. In the core

region of the channel, the streamwise and spanwise components show significant

oscillations, which are dampened downstream and ultimately decay. Differently

from the first order components, and consistently with R9, the second order

streamwise velocity does not undergo the same initial growth as the first order

streamwise component. Instead, u(0), v(0), w(0) decay downstream.

The correctly weighted amplitude of the streak velocity profiles are shown in

figure 3.21 for cases 1c and 2c at two indicated values of x. Near the entrance,

|u(0)| is comparable to |u| and the second-order components u(0) play a significant

role in the streaks dynamics in the inviscid core, in line with the findings in R9.

This effect tends to fade as the flow moves downstream and the second order

components quickly decay due to viscosity. However, consistently with R9, their

contribution to the total velocity field is not negligible and the second order

components are important in the outer core. From figure 3.21 it can also be

observed that due to the disparity between the scales in the inner and outer
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Fig. 3.19: Amplitude of the streamwise (top left and right), wall-normal (middle left),

spanwise (middle right) velocity and pressure (bottom) second-order perturba-

tion profiles across the channel at the indicated streamwise positions for case

1a.
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Fig. 3.20: Amplitude of the streamwise (top left and right), wall-normal (middle left),

spanwise (middle right) velocity and pressure (bottom) second-order perturba-

tion profiles across the channel at the indicated streamwise positions for case

2b.
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streamwise velocity components, the amplitude of the streaks reaches significant

peaks, the highest amplitude being the one for the lowest streamwise wavenumber

k1. This is a further confirmation of the key role that the low-frequency/high-

wavelength disturbances play.

One-mode simulations and comparison with LWG

As outlined in section 2.1, the gust is prescribed as a pair of vortical disturbances

with equal and opposite wall-normal wavenumbers. This is done to take into

account the presence of the upper plate and to ensure symmetric disturbances at

the entrance. Figure 3.22 shows the amplitude of the streamwise velocity profile if

only one mode, with either positive or negative k2, is used to specify the upstream

turbulence, i.e. if the gust is expressed as

u− î = εû∞
+ e

ik2yei(k1x+k3z−k1t) + c.c., (3.23)

instead of equation (2.1)

u− î = εu∞(x− t, y, z) = ε(û∞
+ e

ik2y + û∞
− e

−ik2y)ei(k1x+k3z−k1t) + c.c.,

Defining the gust as in expression (3.23) allows the comparison with LWG. In

order to ensure symmetrical perturbations, the combination of modes with equal

and opposite wall-normal wavenumbers is used.

However, expressing the gust as (3.23) is useful to compare the results with

those by LWG as x → 0. Figure 3.24 shows a comparison between a one-mode

simulation and LWG solution at x = 0.025 for κ = 1, κ2 = −1. As expected, the

two profiles are in good agreement within the boundary layer and in disagreement

in the channel inviscid core.

Figure 3.23 shows a comparison of the peak streamwise velocity development

along the streamwise direction for the flat plate and one-mode channel cases. For
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Fig. 3.21: Amplitude of the streamwise first and second order velocity profiles |u(0)|

(dashed lines) and (k3/k1)u (solid lines) and of their sum |u0| (dash-dotted

lines) at the indicated streamwise locations, for water channel (top) and wind

tunnel (bottom) cases. κ = 0.82, 0.74, respectively.
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Fig. 3.22: Plots of the amplitude of the streamwise velocity perturbation if only one

mode is used, at x = 0.5 (left) and x = 3.3 (right) for k2 = 2π (solid lines)

and k2 = −2π (dashed lines). κ = 0.66

lower values of x the profiles agree, until the entry development effects become

significant and the peak streamwise velocities decay at different rates.
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Fig. 3.23: Comparison of the peak streamwise velocity development along x for a flat

plate (solid line) and a one-mode channel simulation (dashed line).
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3.3 Summary

This chapter described the computational procedures used to solve the relevant

flowfield equations numerically, and presented the numerical results obtained.

The mean flow and LUBR equations are parabolic partial differential equations

in the streamwise direction, hence they are solved using a downstream marching

procedure. The convective non-linear terms in the mean x momentum equation

are linearized and the validity of this procedure is verified via a predictor-corrector

method. Provided that the streamwise resolution is high enough, the linearization

procedure may be employed. The inviscid stream function ψ is computed numer-

ically integrating expression (2.39) and by solving Laplace equation by means of

the Gauss-Seidel iterative method. The fourth-order wall-normal velocity pertur-

bation equation is reduced to second order by introducing an auxiliary variable s.

After discretization, the resulting block tridiagonal system is solved via Thomas

algorithm. The mean inviscid flow in the core is slowly accelerated, and Poiseuille

flow is recovered downstream. The entrance length, defined as the downstream

location where the mean streamwise flow attains 99% of its fully developed value

is in good agreement with the analytical formulation proposed by Durst et al.

(2005).

The robustness of the initial conditions presented in chapter 2 is verified in this

chapter by observing that the effect of the initial condition is only felt at small

downstream distances, i.e. all the initial conditions tested result in the same

flow. The laminar streaks typically observed in bypass transition are detected:

initially (for relatively low values of x) they are confined near the wall within the

boundary layer, and for x = O(1) the perturbation diffuses in the channel due to

viscous effects. The maximum streamwise perturbation umax initially increases

in the streamwise direction and then decays. One-mode, small x simulations are

performed to verify that results compare with LWG within the boundary layer.



4. ENTRY PIPE FLOW: MATHEMATICAL FORMULATION AND

ANALYTICAL RESULTS

This chapter includes the analysis of the entrainment of vortical disturbances con-

vected by the mean flow in an incompressible pipe flow. The chapter is organized

as follows: §4.1 describes the formulation of the problem and the assumptions

taken in order to carry out the analysis, together with the scaling and a descrip-

tion of the asymptotic regions and a discussion of the effects of curvature and

displacement in relation to the distance from the wall. The linear inviscid solu-

tion is presented in §4.2. The analysis of the core region near the pipe centreline,

where the curvature effects are significant, is presented in §4.3. The boundary

region is studied in §4.4, where the LUBR equations are derived in polar coor-

dinates. The boundedness of the solution at the axis is ensured by the use of

appropriate boundary conditions. The initial conditions to start the downstream

marching to solve the boundary region equations are described in §4.5.

4.1 Mathematical formulation

An incompressible flow through a straight pipe is considered. The upstream flow

consists of a uniform base flow of velocity U∗
∞, together with a convected gust of

order ε≪ 1

u− î = εu∞(x− t, r, θ), (4.1)
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where x = xêx + rêr + θêθ and x, r, θ are the streamwise, radial and azimuthal

coordinates respectively. The polar coordinate system poses greater difficulties

than its cartesian counterpart. It is assumed that he upstream turbulence is

generated by a circular grid shown in figure 4.1.

θg

Fig. 4.1: Sketch of the turbulence generating grid.

The gust is expressed as a Fourier-Bessel series

u∞ =
∞∑

j=−∞

∞∑

l=−∞

∞∑

n=1









û∞x,j,l,nJl(ζl,nr)

û∞r,j,l,n
r Jl(ζl,nr)

iû∞θ,j,l,nζl,nJ
′
l (ζl,nr)









ei[jkx(x−t)+lθ] (4.2)

where Jl is the Bessel function of order l, ζl,n are the n roots of the equation

Jl(r) = 0. Jl satisfies the bessel equation

r2
∂2Jl
∂r2

+ r
∂Jl
∂r

+ (r2 − l2)Jl = 0 (4.3)

It is assumed that j = l = n = 1.

The upstream gust is required to satisfy the continuity equation, which is
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ensured through the following relation between modes

û∞r = lû∞θ . (4.4)

It is important to observe that the azimuthal wavelength λ∗θ is a function of r,

i.e., it grows as the radius of the pipe increases. It may be defined as

λ∗θ = θgr
∗, (4.5)

where θg is the angle, expressed in radians, of the turbulence-generating grid,

shown in the inset of figure 4.1.

At the pipe wall r∗ = R∗

λ∗θR = θgR
∗. (4.6)

The wavelength along the wall-normal direction λ∗r is not properly a wavelength,

because the Bessel function is not periodic. It is defined as the first intersection

between the Bessel function and the r∗ axis. It is assumed that the radius of the

pipe R∗ is of the same order of the streamwise wavelength of the disturbance,

which is much larger than the wavelength in the wall-normal and azimuthal di-

rections, of comparable order

R∗ ∼ λ∗x ≫ λ∗θR ∼ λ∗r ⇒ kx =
2πλ∗θR
λ∗x

≪ 1,

where kx is the wavenumber in the streamwise direction.

The Reynolds number Rλθ is based on λ∗θR and is asymptotically large

Rλθ =
U∗
∞λ

∗
θR

ν∗
≫ 1.

Lengths are made non-dimensional by λ∗θR. An important point to discuss is the

role played by curvature, outlined in the next section.
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4.1.1 Curvature effects

The assumption that the azimuthal wavelength of the disturbance λ∗θR is much

lower than the pipe radius R∗ allows some simplifications in the treatment of the

problem. As a consequence of this assumption, the inlet flow near the wall may

be treated as its cartesian counterpart, because the curvature effects do not play

a key role in the near-wall region. If the azimuthal wavelength of the disturbance

were of the same order of its streamwise wavelength as shown in figure 4.2, then

curvature would be felt locally even near the wall. However, the assumption

that λ∗θR ∼ λ∗x would be at odds with another fundamental hypothesis made

throughout this work, i.e. that kx = 2πλ∗θR/λ
∗
x ≪ 1. Instead, assuming that

λ∗θR ≪ R∗ ∼ λ∗x implies that curvature effects are not significant near the wall,

as shown in the following.

Near the inlet, the mean flow is governed by the boundary layer and continuity

equations

U
∂U

∂x
+ V

∂U

∂r
=

1

Rλθ

(
1

r

∂U

∂r
+
∂2U

∂r2

)

, (4.7)

∂U

∂x
+
V

r
+
∂V

∂r
= 0. (4.8)

Through a change of coordinate, y is used as the independent variable

y = R− r, (4.9)

recalling that

y =
y∗

λ∗θR
= O(1), (4.10)

and

R =
R∗

λ∗θR
= O

(
λ∗x
λ∗θR

)

≫ 1. (4.11)
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Then

U
∂U

∂x
︸ ︷︷ ︸

O(1)

+V
∂U

∂y
︸ ︷︷ ︸

O(1)

=
1

Rλθ







− 1

R− y

∂U

∂y
︸ ︷︷ ︸

O(kx)

+
∂2U2

∂y2
︸ ︷︷ ︸

O(1)







, (4.12)

∂U

∂x
︸︷︷︸

O(1)

− V

R− y
︸ ︷︷ ︸

O(kx)

+
∂V

∂y
︸︷︷︸

O(1)

= 0. (4.13)

Neglecting the terms of O(kx) returns the Cartesian equations, hence near the

inlet the boundary layer flow is of Blasius type. A similar approach is used for

the perturbation flow, introducing z = θr. The boundary layer x momentum

equation in polar coordinates reads

∂U

∂t
+ V

∂U

∂r
+
W

r

∂U

∂θ
+ U

∂U

∂x
=

1

Rλθ

(
1

r

∂U

∂r
+
∂2U

∂r2
+

1

r2
∂2U

∂θ2

)

. (4.14)

Changing coordinates and expressing the flow as a mean and perturbation com-

ponent of O(ε), indicated by a prime subscript

∂u′x
∂t

+ V
∂u′x
∂y

+ u′r
∂U

∂y
+ U

∂u′x
∂x

+ u′x
∂U

∂x
=

1

Rλθ






− 1

R− y

∂u′x
∂y

︸ ︷︷ ︸

≪1near wall

+
∂2u′x
∂y2

+
∂2u′x
∂z2






.

(4.15)

Following the same rationale, the radial and azimuthal disturbance momentum

equations in (x, r, θ) coordinates read

∂u′r
∂t

+ u′r
∂V

∂y
+ V

∂u′r
∂y

+ U
∂u′r
∂x

+ u′x
∂V

∂x
=

− ∂p′

∂y
+

1

Rλθ







− 1

(R− y)

∂u′r
∂y

︸ ︷︷ ︸

≪1 near wall

+
∂2u′r
∂y2

+
∂2u′r
∂z2

− u′r
(R− y)2
︸ ︷︷ ︸

≪1 near wall

− 2

(R− y)

∂u′θ
∂z

︸ ︷︷ ︸

≪1 near wall







,

(4.16)
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∂u′θ
∂t

+ V
∂u′θ
∂y

+ U
∂u′θ
∂x

− V u′θ
(R− y)
︸ ︷︷ ︸

≪1 near wall

= −∂p
′

∂z
+

1

Rλθ







− 1

R− y

∂u′θ
∂y

︸ ︷︷ ︸

≪1 near wall

+
∂2u′θ
∂y2

+
∂2u′θ
∂z2

− 2

R− y

∂u′r
∂z

︸ ︷︷ ︸

≪1 near wall

− u′θ
(R− y)2
︸ ︷︷ ︸

≪1 near wall







,

(4.17)

together with the continuity equation

− 1

R− y
u′r

︸ ︷︷ ︸

≪1 near wall

+
∂u′r
∂y

+
∂u′θ
∂z

+
∂u′x
∂x

= 0. (4.18)

Therefore, curvature is not significant at y = O(1), nor for the mean flow or the

perturbation flow. This implies that, as shown in figure 4.3, cartesian coordinates

are employed to describe the flowfield when y = O(1), whereas use of polar

coordinates is made where r = O(1).
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Fig. 4.2: Left: λ∗θR ≪ R∗, right: λ∗θR ∼ R∗. In the insets it may be observed how, for

the case λ∗θR ≪ R∗, locally the pipe wall is perceived as a flat plate, whereas

the same cannot be inferred for the case λ∗θR ∼ R∗ (inset on the right).

The domain is divided into six asymptotic regions, sketched in figures 4.3 and

4.4.

I
II

III
IV

V

δ∗

R∗

y

x

r

x

y = O(1)

r = O(1) C

Fig. 4.3: Flow configuration seen from the (x, y) plane.
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Fig. 4.4: Flow configuration seen from the (y, z) plane. When y = O(1), cartesian co-

ordinates are used, whereas polar coordinates are employed when r = O(1).

Moving away from the wall, displacement effects vanish and curvature effects

start playing a significant role.

Region I is an inviscid region around the leading edge, where the flow is consid-

ered as a linear perturbation of a uniform flow. The flowfield here is conveniently

expressed in polar coordinates by means of a velocity potential.

Region II is the boundary layer, where δ∗ ≪ λ∗θR and the spanwise viscous

terms are negligible when compared to the wall-normal viscous terms and the

pressure gradient in all directions can be neglected. As the boundary layer thick-

ness increases, region III is encountered, where the spanwise viscous terms are

more significant.

Region IV is the boundary layer edge, above regions II and III, where the

mean flow is inviscid. In regions II, III and IV the flowfield can be described by
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the cartesian equations of LWG, because close to the wall (y = O(1), i.e. y∗ =

O(λ∗θR)) nor the mean flow or the perturbation flow are affected by curvature, as

shown in section §4.1.1. Instead, curvature becomes significant in region C, close

to the centreline, where r = r∗/λ∗θR = O(1). Regions I, II, III, IV and C are close

to the pipe entrance and are used for the prescription of the initial conditions.

The mean flow here is of the Blasius type.

Region V, or the boundary region, extends from the pipe wall to the centre-

line and is downstream enough for the streamwise pressure gradient to play a

significant role, as the flow in the core accelerates and the viscous forces need

to be balanced. Here the flowfield is described by the Navier-Stokes equations

in cylindrical coordinates. There is an overlap region where y ≫ 1 and r ≫ 1,

that is where the curvature effect becomes significant and the displacement effect

becomes less and less important, as shown in the sketch in figure 4.5.

r
y

y ≫ 1
r = O(1)

Curvature
No displacement

Region C

y ≫ 1
r ≫ 1

No curvature
No displacement

Overlap region

y = O(1)
r ≫ 1

No curvature
Displacement

Region III

Fig. 4.5: Curvature and displacement effects as a function of the wall-normal coordinate.
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4.2 Linear inviscid solution - region I

As done for the channel case, the flow in region I is expressed with the aid of the

velocity potential as

u = i+ ...+ ε(∇φ+ u∞), (4.19)

The perturbation potential satisfies Laplace equation in polar coordinates:

∇2φ =
1

r

∂φ

∂r
+
∂2φ

∂r2
+

1

r2
∂2φ

∂θ2
+
∂2φ

∂x2
= 0, (4.20)

subject to boundary conditions:

φ→ 0 as x→ −∞, (4.21a)

φ = 0 at r = R, x < 0, (4.21b)

φr + u∞,r = 0 at r = R, (4.21c)

φ = 0 at r = 0, (4.21d)

Laplace equation with boundary conditions (4.21) is solved by separation of vari-

ables, seeking a solution of the form

φ = φ̂(x, r)ei(θ−kxt) = A(x)B(r)ei(θ−kxt). (4.22)

The perturbation potential is found as

φ = −r ûr
R
J1(ζ1,1R)e

i[jkx(x−t)+lθ] = O(1), (4.23)

The details of the derivation of expression (4.23) for the velocity potential are

found in Appendix B.2.



4.3. Entry inviscid core - region C 107

4.3 Entry inviscid core - region C

Region C is the region around the centreline, where r = O(1). Here, it is natural

to describe the flowfield in cylindrical coordinates, as curvature effects are signif-

icant. The mean flow is inviscid and uniform in the streamwise direction. It may

be expressed in terms of the Stokes stream function as

ψ =
r2

2
⇒







Ux = 1
r
∂ψ
∂r = 1,

Ur = −kx
r
∂ψ
∂x = 0.

(4.24)

The perturbation flow is given by

u = ǫu
(0)
l ei(lθ−kxt). (4.25)

The governing equations are

x momentum

(

−i+ ∂

∂x
−
κ2cyl
r

∂

∂r
− κ2cyl

∂2

∂r2
+
κ2cyl
r2

)

u
(0)
x,l = 0, (4.26)

r momentum

(

−i+ ∂

∂x
−
κ2cyl
r

∂

∂r
− κ2cyl

∂2

∂r2
+
κ2cyl(l

2 + 1)

r2

)

u(0)r +
2κ2cylil

r2
u
(0)
θ,l = 0, (4.27)

θ momentum

(

−i+ ∂

∂x
−
κ2cyl
r

∂

∂r
− κ2cyl

∂2

∂r2
+
κ2cyl(l

2 + 1)

r2

)

u
(0)
θ −

2κ2cylil

r2
u
(0)
r,l = 0. (4.28)

Continuity equation

�
�

�
�
�

rkx
∂u

(0)
x,l

∂x
︸ ︷︷ ︸

kx≪1

+
∂

∂r
(ru

(0)
r,l ) + ilu

(0)
θ,l = 0, (4.29)

where κcyl =
1√
kxRλ

Equation (4.26) is decoupled and can be solved by separa-

tion of variables. The solution that is not singular at r = 0 and that matches

asymptotically the gust upstream is
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u
(0)
x,l = û∞x,l,ne

(i−ζ2l,nκ2cyl)xJl(ζl,nr). (4.30)

Equations (4.27) and (4.28) can be decoupled through the continuity equation, so

that the wall-normal component of the velocity field can be found and, through

continuity, the azimuthal component can be computed as well. The result is

u
(0)
r,l =

û∞r,l,n
r

e(i−ζ
2
l,nκ

2
cyl)xJl(ζl,nr), (4.31)

u
(0)
θ,l = iû∞θ,l,ne

(i−ζ2l,nκ2cyl)xζl,nJ
′
l (ζl,nr), (4.32)

where use of (4.4) has been made. Expressions (4.30) - (4.32) explain the partic-

ular form used for the upstream gust. Details of the analytical computation of

equations (4.30)-(4.32) are found in Appendix D.

4.4 The boundary region - region V

The flowfield in the boundary region is expressed as

u =













U(x, r)

V (x, r)

0

P (x)













+ ε













i
kx
ux(x, r)

iur(x, r)

uθ(x, r)

ikxp(x, r)













ei(lθ−kxt). (4.33)

Substituting expression (4.33) into the Navier-Stokes and continuity equations

in polar coordinates and collecting terms of O(1) the mean flow equations are

obtained

U
∂U

∂x
+ V

∂U

∂r
= −dP

dx
+

1

kxRλθ

(
1

r

∂U

∂r
+
∂2U

∂r2

)

, (4.34)
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∂U

∂x
+

1

r

∂

∂r
(rV ) = 0, (4.35)

subject to

U = V = 0, (4.36)

at r = R and

V = 0,
∂U

∂r
= 0 (4.37)

at r = 0. The oncoming flow is assumed to be uniform. Equations (4.34) and

(4.35) are used together with the integral form of the continuity equation. Re-

calling the definition of average velocity, starting from dimensional quantities

U∗
∞ =

1

πR∗2

∫ R∗

0
2πu∗r∗dr∗, (4.38)

in non-dimensional terms the integral form of the continuity equation reads

∫ R

0
Urdr =

R2

2
. (4.39)

The mean flow equations (4.34)-(4.35) and (4.39) are discretized according to

the scheme proposed by Hornbeck (1964) and solved numerically via the proce-

dure described in chapter 3 for the channel flow. Figure 4.6 shows the mean flow

development along the pipe for given values of y and across the pipe for fixed

values of x. When the flow is fully developed, the centreline velocity is equal to

2.
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Fig. 4.6: Streamwise mean flow development across the pipe (left) and along the pipe

(right).

Figure 4.7 shows the numerically computed entry length and the analytical

non-linear and linear predictions found in Durst et al. (2005) and repeated here

for clarity

x∗

2R∗ =
[
(0.619)1.6 + (0.0567Re)1.6

]1/1.6
(4.40)

The entry length is defined as the downstream location where the centreline

velocity Uc attains 99% of its fully developed status, i.e. where Uc = 1.98. As in

the channel flow case, the computed values are in good agreement with (4.40) for

higher values Rλθ, whereas at lower Reynold numbers, the entry length is better

predicted by the linear relation

x∗

2R∗ = CRe (4.41)

with C = 0.0567.
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Fig. 4.7: Comparison between computed (symbols) and predicted entrance lengths for

pipe flows. The solid line represents the non-linear prediction proposed by

Durst et al. (2005), valid for all Reynolds numbers, and the dashed line shows

its limit as R→ ∞.

The LUBR equations in polar coordinates are derived collecting the terms of

O(ǫ)

(

−i+ ∂U

∂x
+
l2κ2cyl
r2

)

ux + U
∂ux
∂x

+

(

V −
κ2cyl
r

)

∂ux
∂r

− κ2cyl
∂2ux
∂r2

+
∂U

∂r
ur = 0,

(4.42)

(

−i+ ∂V

∂r
+

2l2κ2cyl
r2

)

ur + U
∂ur
∂x

+

(

V −
κ2cyl
r

)

∂ur
∂r

− κ2cyl
∂2ur
∂r2

+
∂V

∂x
ux+

2l2

r2
κ2cyluθ +

∂p

∂r
= 0,

(4.43)

(

−i+ V

r
+
l2κ2cyl
r2

)

uθ + U
∂uθ
∂x

+

(

V −
κ2cyl
r

)

∂uθ
∂r

− κ2cyl
∂2uθ
∂r2

−

2il

r2
κ2cylur −

p

r
= 0

(4.44)
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∂ux
∂x

+
ur
r

+
∂ur
∂r

+
luθ
r

= 0. (4.45)

The boundary region equations are subject to no-slip boundary conditions at

the pipe wall r = R

ux = ur = uθ = 0. (4.46)

The nature of the coordinate system imposes symmetry conditions at the centre-

line r = 0, which means that the velocity components are either odd or even with

respect to the axis depending on the azimuthal mode l. For l odd, this implies

that ux and p are odd, whereas ur and uθ are even. Symmetry conditions also

ensure that the solution is continuous at the axis.

4.5 Initial conditions

The LUBR equations must be provided with appropriate initial conditions as

x → 0. As for the channel flow, the initial profile is a composite solution, where

the inner profile is given by the sum of all the cartesian modes in LWG’s region III,

the outer solution is the expression of the flowfield in region C, that is expressions

(4.30)-(4.32). The key idea here is that, in order to generate the inlet condition,

only one cylindrical modes is used for the computation of the solution near the

centreline, whereas the spectrum of the cartesian disturbance is used near the

walls. This is proven by the analysis of the effects of curvature reported in §4.1.1.

The common part of the initial velocity profile is found imposing that the limit

of the outer solution (4.30)-(4.32) near the wall is equal to the limit of the inner

solution near the centreline.

lim
r→∞

uout = lim
y→∞

uin, (4.47)
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where uout is given by expressions (4.30)-(4.32) and the inner solution is computed

as the sum of the boundary layer solution in LWG’s region III.

The common part of the velocity field is

uc =
∑

n̂

∑

l̂

e−ζ
2
1,1κ

2
cylxein̂k2yeil̂k3z

1

λy

1

λz

∫ λz
2

−λy
2

∫ λy
2

−λz
2

ûx,cyl,1,1

√

2

πζ1,1R

cos
[

ζ1,1 (R− y)− π

4

]

e−in̂k2yei(1/R−l̂k3)zdydz.

(4.48)

vc =
∑

n̂

∑

l̂

e−ζ
2
1,1κ

2
cylxein̂k2yeil̂k3z

1

λy

1

λz

∫ λz
2

−λz
2

∫ λy
2

−λy
2

ûcyl,r,1,1

√

2

πζ1,1R3

cos
[

ζ1,1(R− y)− π

4

]

e−in̂k2yei(
1
R
−l̂k3)zdydz,

(4.49)

wc = −
∑

n̂

∑

l̂

e−ζ
2
1,1κ

2
cylxein̂k2yeil̂k3z

1

λy

1

λz

∫ λy
2

−λy
2

∫ λz
2

−λz
2

iûθ,cyl,1,1

√

2ζ1,1
πR

sin
[

ζ1,1(R− y)− π

4

]

ei(
1
R
−l̂k3)ze−in̂k2ydydz.

(4.50)

The details of the derivation of expressions (4.48) - (4.50) are given in Ap-

pendix E.

The choice of expressing the polar gust only using one Fourier component and

using all the modes in the cartesian formulation is dictated by the nature of this

problem, which is intrinsically polar, so it is reasonable to express the wall-normal

component of the gust in a Fourier-Bessel series and only choosing one Fourier

mode.

It is possible to appreciate another important result here. It is observed that

that the exponential decay of the solutions in regions IV and C respectively is

different in that the effects of spanwise and wall-normal viscous terms can be

separated in the cartesian solution, thanks to the separable nature of the Fourier

series. The same cannot be inferred for the polar case, where dissipation by

viscous forces in both directions is expressed only by the term −ζ21,1κ2 in the
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exponential. Nevertheless, looking at expressions (4.48) - (4.50) it is noted that

the cartesian common velocity decades exponentially at the same rate of its polar

counterpart, as by definition of overlap region, the two mechanisms are somehow

blended and co-exist within each other.

4.6 Summary

This chapter presented the analysis of the entrainment of free-stream vortical

disturbances in incompressible pipe flows. The work herein presented is the polar

counterpart of the channel problem. The polar coordinate systems makes the

analytical treatment of the problem particularly challenging. It is assumed that

the free-stream turbulence is generated by a circular grid and that the upstream

gust can be expressed as a superposition of Fourier-Bessel modes. Because the

problem is linear, only one mode is considered. The domain of the problem is

divided into six asymptotic regions, depending on the role of viscosity and on the

role played by curvature. The key assumption is that the azimuthal wavelength

of the perturbation is much smaller than the radius of the pipe. Thanks to

this assumption, the effects of curvature are not felt locally near the wall. The

LUBR equations in polar coordinates are derived, together with suitable initial

and boundary conditions. The mean flow equations are solved numerically and

the entry length compares well with the analytical formula proposed by Durst

et al. (2005).



5. CONCLUSIONS AND FUTURE WORKS

The entrainment of free-stream vortical disturbances in the entry region of incom-

pressible plane and pipe flows has been investigated theoretically and numerically.

The mathematical framework follows closely the one developed by Leib et al.

(1999) and Ricco (2009) for a flat plate. In that case, the mean flow is only a

function of the wall-normal coordinate η, as there is no mean streamwise pres-

sure gradient. On the other hand, previous works concerned with confined flows

assume that the mean flow has already reached the parabolic distribution typ-

ical of the fully developed regime, where U = U(y) and V = 0. To the best

of the author’s knowledge, a thorough mathematical treatment of the entrain-

ment of free-stream disturbances in the entry region (i.e. where U = U(x, y))

of pressure-driven confined flows is still absent. The focus is on low-frequency

perturbations, as these evolve into the typical pre-transitional flow structures

widely known as Klebanoff modes or streamwise streaks. Assuming that the

amplitude of the fluctuations is much smaller than the amplitude of the mean

flow, non-linear effects are neglected and the dynamics of the streaks is described

thoroughly by the linear unsteady boundary region equations, derived here for

the first time for pressure-driven confined flows. The prescription of the initial

condition is a crucial aspect of this analysis: they are derived rigorously with the

method of matched asymptotic expansions, which allows to take into account all

the physical features of the interaction between the oncoming perturbation and

the developing boundary layer.

The first part of this thesis is concerned with channel flows. The mean flow
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equations are solved numerically by finite differences, and the entry length is com-

puted. Results show excellent agreement with previous works. Through proper

manipulation of the Navier-Stokes and continuity equations, the perturbation

equations are written in terms of wall-normal velocity and vorticity, thus elim-

inating pressure. Pressure fluctuations can be computed a posteriori by means

of the linearized spanwise momentum equation. Three kinds of initial conditions

have been tested and are shown to be consistent.

The second part of the thesis is focused on pipe flows. The cylindrical geom-

etry poses greater difficulties compared to the plane channel case. The oncoming

perturbation is expressed as a Fourier-Bessel series. Assuming that the azimuthal

wavelength of the disturbance is much lower than the radius of the pipe allows

to neglect the curvature effects near the wall in the entry region. It follows that

the initial conditions are prescribed as a composite solution of the sum of all the

cartesian modes near the wall and a single Fourier-Bessel mode near the centre-

line. The boundary conditions are derived taking into account that the solution

must be smooth and bounded as the pipe axis is approached.

The rigorous mathematical approached used in this study places itself amongst

the several works by Ricco and co-workers, listed in table 5.1, and paves the way

for further investigations within that framework, in terms of

• Compressibility: effects of compressibility may be taken into account to

investigate the thermal streaks found in the work by Ricco and Wu (2007).

• Non-linearity: starting from the framework provided by Ricco et al. (2011),

non-linear effects may be included to study the interaction of the perturba-

tion flow and the mean flow and study the secondary instability mechanism

that eventually leads to transition.

• Effect of spanwise wall-forcing, hydrophobic surfaces, or blowing and suc-
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tion.

It is believed that this work provides a contribution to the overall understand-

ing of the entrainment of free-stream vortical disturbances in confined flows by a

rigorous mathematical approach.
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C
on

clu
sion

s
an

d
fu
tu
re

w
ork

s

Authors Non-linearity Compressibility Mean dP/dx Other features

Leib et al. (1999) No No No No

Ricco and Wu (2007) No Yes No No

Ricco (2009) No No No Second order components

Ricco and Dilib (2010) No No No Suction/blowing

Ricco et al. (2011) Yes No No No

Ricco (2011) No No No Spanwise wall forcing

Ricco et al. (2013) No Yes No Suction

Hicks and Ricco (2015) No No No Spanwise oscillations

Papadakis et al. (2016) No No No Closed-loop control

Marensi et al. (2017) Yes Yes No No

Present work No No Yes No

Tab. 5.1: Schematic of the theoretical framework to date.
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A. DERIVATION OF THE CHANNEL LUBR EQUATIONS

The derivation of the LUBR equations for plane Poiseuille flow is shown in the

following.

The flowfield u = (u, v, w) is governed by the incompressible Navier-Stokes and

continuity equations

x momentum

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
+

1

Rλ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)

, (A.1)

y momentum

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+

1

Rλ

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)

, (A.2)

z momentum

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+

1

Rλ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)

, (A.3)

Continuity

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (A.4)

Taking the divergence of the Navier-Stokes equations,

∂

∂x

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+
∂p

∂x
− 1

Rλ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)]

+

∂

∂y

[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+
∂p

∂y
− 1

Rλ

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)]

+

∂

∂z

[
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
+
∂p

∂z
− 1

Rλ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)]

= 0,

(A.5)

together with the continuity equation yields the Poisson equation for pressure
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∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
+

(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2

+

2
∂v

∂x

∂u

∂y
+ 2

∂u

∂z

∂w

∂x
+ 2

∂w

∂y

∂v

∂z
= 0.

(A.6)

Applying the Laplace operator ∇2 to y momentum equation results in

∂

∂t
(∇2v)+∇2

(

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

+
∂3p

∂x2∂y
+
∂3p

∂y3
+

∂3p

∂z2∂y
− 1

Rλ
∇4v = 0, (A.7)

where ∂3p
∂x2∂y

+ ∂3p
∂y3

+ ∂3p
∂z2∂y

can be expressed in terms of velocity only through

expression (A.6).

Expanding expression (A.7) yields a fourth-order equation for the wall-normal

velocity v

∂

∂t
(∇2v) + u

(
∂3v

∂x3
+

∂3v

∂y2∂x
+

∂3v

∂z2∂x

)

+ v

(
∂3v

∂x2∂y
+
∂3v

∂y3
+

∂3v

∂z2∂y

)

+

w

(
∂3v

∂x2∂z
+

∂3v

∂2y∂z
+
∂3v

∂z3

)

+
∂u

∂x

(

2
∂2v

∂x2
− 2

∂2u

∂x∂y

)

+

∂v

∂x

(
∂2u

∂x2
− ∂2u

∂y2
+
∂2u

∂z2
+ 2

∂2v

∂x∂y

)

+
∂w

∂x

(

2
∂2v

∂x∂z
− 2

∂2u

∂y∂z

)

+

∂v

∂y

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)

+
∂v

∂z

(

−∂
2w

∂y2
+
∂2w

∂x2
+ 2

∂2v

∂z∂y
+
∂2w

∂z2

)

+

∂u

∂z

(

2
∂2v

∂x∂z
− 2

∂2w

∂y∂x

)

+
∂w

∂z

(

2
∂2v

∂z2
− 2

∂2w

∂y∂z

)

− 1

Rλ
∇4v = 0.

(A.8)

Substituting expression (2.6)

u =













U(x, y)

k1V (x, y)

0

P (x)













︸ ︷︷ ︸

U

+ε













u0(x, y)

k1v0(x, y)

w0(x, y)

k1p0(x, y)













ei(k3z−k1t)

︸ ︷︷ ︸

u′

,

into equation (A.8) and collecting the terms of O(ε) yields the wall-normal LUBR

equation (2.20).

The equation for wall-normal vorticity (2.21) is found by substituting (2.6) in
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∂

∂z

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+
∂p

∂x
− 1

Rλ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)]

−

∂

∂x

[
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
+
∂p

∂z
− 1

Rλ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)]

= 0

(A.9)

and collecting terms of O(ε).



B. LINEAR INVISCID SOLUTION

B.1 Channel flow

The solution to the Laplace equation (2.45) subject to boundary conditions (2.46)

φ→ 0 as x→ 0,

φ = 0 at y = 0, x < 0,

∂φ

∂y
+ u∞2 = 0 at y = 0,

∂φ

∂y
+ u∞2 = 0 at y = 2h.

is found by separation of variables, expressing the velocity potential φ as

φ(x, y, z, t) = φ̂(x, y)ei(k3z−k1t) = A(x)B(y)ei(k3z−k1t). (B.1)

Substituting into the Laplace equation, dividing by AB and equating both sides

to a constant C leads to

A′′

A
= −B

′′

B
+ k23 = C2, (B.2)

The axial solution then reads

A(x) = A1e
Cx +A2e

−Cx. (B.3)

It is noted that R(C) = 0, otherwise the solution would be unbounded at x≫ 1,

then C = iCi, where the subscript i denotes the imaginary part. The wall-normal

equation is then
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B′′ − (k23 + C2
i )B = 0 ⇒ B(y) = B1e

√
k32+C2

i y +B2e
−
√
k32+C2

i y, (B.4)

yielding

φ̂(x, y) =
(
A1e

iCix +A2e
−iCix

) (

B1e
√
k23+C

2
i y +B2e

−
√
k23+C

2
i y
)

. (B.5)

Boundary condition (2.46c)-(2.46d) require







(
A1e

iCix +A2e
−iCix

) (

B1

√

k23 + C2
i −B2

√

k23 + C2
i

)

+ û∞2 e
ik1x = 0

(
A1e

iCix +A2e
−iCix

) (

B1

√

k23 + C2
i e

2
√
k23+C

2
i h −B2

√

k23 + C2
i e

−2
√
k23+C

2
i h
)

+

û∞2+e
ik1x = 0,

(B.6)

thus

A2 = 0, (B.7)

Ci = k1, (B.8)

C1 = B1A1 =
u∞2+
γ

e−2γh − 1

e2γh − e−2γh
, (B.9)

C2 = B2A1 =
u∞2+
γ

e2γh − 1

e2γh − e−2γh
, (B.10)

with γ =
√

k21 + k23. Substituting in (B.5) yields the the velocity potential in

region I, that is expression (2.47).

B.2 Pipe flow

To solve equation (4.20) subject to boundary conditions (4.21), a solution of the

form
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φ =
∞∑

j,l=−∞
φ̂j,l(x, r)e

i(lθ−jkxt) =
∞∑

j,l=−∞
Aj,l(x)Bj,l(r)e

i(lθ−jkxt) (B.11)

is sought. Substituting in (4.20)

1

r

∂φ̂

∂r
+
∂2φ̂

∂r2
− l2

r2
φ̂+

∂2φ̂

∂x2
= 0, (B.12)

that is

Aj,lB
′
j,l

r
+Aj,lB

′′
j,l −

l2

r2
Aj,lBj,l +A′′

j,lBj,l = 0, (B.13)

dividing by Aj,lBj,l,

1

r

B′
j,l

Bj,l
+
B′′
j,l

Bj,l
− l2

r2
+
A′′
j,l

Aj,l
= 0, (B.14)

equating both sides of the above expression to a separation constant −γ2j,l leads

to

−
A′′
j,l

Aj,l
=

1

r

B′
j,l

Bj,l
+
B′′
j,l

Bj,l
− l2

r2
= −γ2j,l. (B.15)

The ODE in x is

A′′
j,l − γ2j,lAj,l = 0 ⇒ Aj,l(x) = A1,j,le

γj,lx +A2,j,le
−γj,lx. (B.16)

Upon noting that γj,l is complex, i.e., γj,l = γr,j,l+ iγi,j,l, it follows that γr,j,l = 0

otherwise φ is unbounded as x→ ∞.

The ODE in r is

B′′
j,l

Bj,l
+

1

r

B′
j,l

Bj,l
− l2

r2
+ γ2j,l = 0, (B.17)

which becomes, upon multiplication by r2Bj,l,
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r2B′′
j,l + rB′

j,l − l2Bj,l + r2γ2j,lBj,l = 0, (B.18)

that is

r2B′′
j,l + rB′

j,l + (γ2j,lr
2 − l2)Bj,l = 0. (B.19)

As γj,l = iγi,j,l (γi,j,l ∈ R), it follows that

r2B′′
j,l + rB′

j,l − (γ2i,j,lr
2 + l2)Bj,l = 0, (B.20)

or

r2B′′
j,l + rB′

j,l − (r2 + l2)Bj,l = 0. (B.21)

where r = γi,j,lr and the prime hereinafter indicates partial differentiation with

respect to r. Equation (B.21) is the modified Bessel equation of order l.

The solution is:

Bj,l(γi,j,lr) = B1,j,lIl(γi,j,lr) +B2,j,lKl(γi,j,lr), (B.22)

where Il andKl are the l-th order modified Bessel functions of the first and second

kind respectively. The velocity potential is

φ̂j,l =
(
A1,j,le

iγi,j,lx +A2,j,le
−iγi,j,lx) (B1,j,lIl(γi,j,lr) +B2,j,lKl(γi,j,lr)) . (B.23)

Boundary condition (4.21d) requires the solution to be bounded, which leads to

B2,j,l = 0 as Kl(r) → ∞ as r → 0.

φ̂j,l =
(
C1,j,le

iγi,j,lx + C2,j,le
−iγi,j,lx) Il(γi,j,lr), (B.24)

where C1,j,l = A1,j,lB1,j,l and C2,j,l = A2,j,lB1,j,l.
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Deriving the expression of the velocity potential with respect to r to apply

boundary condition (4.21c)

∂φ̂j,l
∂r

=
(
C1,j,le

iγi,j,lx + C2,j,le
−iγi,j,lx) γi,j,lI

′
l(γi,j,lr), (B.25)

boundary condition (4.21c) is expressed as

∂φ̂j,l
∂r

∣
∣
∣
∣
r=R

=
(
C1,j,le

iγi,j,lx + C2,j,le
−iγi,j,lx) γi,j,lI

′
l(γi,j,lR) =

− Jj,leijkxx,
(B.26)

where

Jj,l =
ûr,n
R

Jl(ζn,lR). (B.27)

Then, comparing the exponentials

γi,j,l = jkx, (B.28)

C2,j,l = 0, (B.29)

and

C1,j,l = − Jj,l
jkxI ′l(jkxR)

. (B.30)

Hence,

φ̂j,l(x, r) = − Jj,lIl(jkxr)
jkxI ′l(jkxR)

eijkxx = O(1). (B.31)

It is observed that that kx ≪ 1. However, expression (B.31) is of O(1), as

shown in the following. The asymptotic behaviour of the modified Bessel function

for “small” arguments is (Abramowitz and Stegun, 1964)
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Il(r) ∼
1

Γ(l + 1)

(r

2

)l
(l 6= −1,−2, ...), (B.32)

where the following property of the modified Bessel function is used: I−l(r) =

Il(r) for l ∈ N. Therefore

Il(jkxr) ∼
1

Γ(l + 1)

(
jkxr

2

)l

, (B.33)

I ′l(jkxR) ∼
l

Γ(l + 1)

(
jkxR

2

)l−1

⇒ jkxI
′
l(jkxR) =

l

Γ(l + 1)

(
jkx
2

)l

Rl−1,

(B.34)

and

Il(jkxr)

jkxI ′l(jkxR)
∼ 1

Γ(l + 1)

(
jkxr

2

)l Γ(l + 1)

l

(
jkx
2

)−l 1

Rl−1
=

rl

Rl−1l
. (B.35)

Therefore, φ̂j,l(x, r) can be re-written as

φ̂j,l(x, r) = − rl

lRl−1
Jj,leijkxx = O(1). (B.36)

Hence,

φ = −
∞∑

j,l=−∞

rl

lRl−1
Jj,lei[jkx(x−t)+lθ] = O(1). (B.37)

It should be noted that expression (B.36) could be obtained upon finding γi,j,l =

jkx ≪ 1. Then, equation (B.21) becomes Euler equation

r2B′′
j,l + rB′

j,l − l2Bj,l = 0. (B.38)

The solution to equation (B.38) is

Bj,l = B1,j,lr
l +B2,j,lr

−l = B1,j,lr
l, (B.39)
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where B2,j,l = 0 because of boundary condition (4.21d). Hence, the velocity

potential is expressed as

φ̂j,l =
(

A1,j,le
ijkxx +A2,j,le

−ijkxx
)

B1,j,lr
l, (B.40)

which, derived with respect to r, becomes

∂φ̂j,l
∂r

=
(

A1,j,le
ijkxx +A2,j,le

−ijkxx
)

B1,j,llr
l−1, (B.41)

then

∂φ̂j,l
∂r

∣
∣
∣
∣
r=R

=
(

C1,j,le
ijkxx + C2,j,le

−ijkxx
)

lRl−1, (B.42)

and boundary condition (4.21c) becomes

∂φ̂j,l
∂r

∣
∣
∣
∣
r=R

=
(

C1,j,le
ijkxx + C2,j,le

−ijkxx
)

lRl−1 =

− Jj,leijkx .
(B.43)

Therefore, C2,j,l = 0 and

C1,j,l = − Jj,l
lRl−1

(B.44)

and expression (B.36) is found again:

φ̂j,l(x, r) = − rl

lRl−1
Jj,leijkxx = O(1), (B.45)

and therefore expression (4.23)

φ = −
∞∑

j,l=−∞

rl

lRl−1
Jj,lei[jkx(x−t)+lθ] = O(1). (B.46)



C. UPPER PLATE ANALYSIS

The derivation of the upper plate solution u
(3)
u , v

(3)
u , w

(3)
u is outlined here through

a rigorous and unambiguous mathematical approach that follows that by LWG

step-by-step, but takes into account that the analysis is for the upper plate.

C.1 Change of coordinates, gust expression and linear inviscid solution

To compute u
(3)
u , v

(3)
u , w

(3)
u , the analysis of LWG is carried out in a new set of

coordinates (x, ỹ, z) = (x, 2h − y, z). The gust in the new set of coordinates is

expressed as

u− î = εu∞(x− t, y, z) = ε(û∞
+ e

ik2(2h−ỹ) + û∞
− e

−ik2(2h−ỹ))ei(k1x+k3z−k1t) + c.c.,

(C.1)

where the assumption k2 = nπ, n ∈ Z has been used. Physically, this reflects the

constriction that the maximum wall-normal wavelength of the gust is the channel

width 2h, i.e., λy,max = 2h. The gust must satisfy the continuity equation. For

convenience, when changing to ỹ coordinates, the sign of the wall-normal velocity

component is changed too. The continuity equation then reads

k1û
∞
1,± ∓ k2û

∞
2,± + k3û

∞
3,± = 0. (C.2)

The linear inviscid solution as the upper wall is approached reads

u(1)σ =

(

û∞σ+e
−ik2ỹ +

ik1
γ
û∞2+e

−γỹ
)

eik1(x−t)+ik3z for σ = 1, 3, (C.3)
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u
(1)
2 = û∞2+

(

e−ik2ỹ − e−γỹ
)

eik1(x−t)+ik3z. (C.4)

At the upper wall, the inviscid perturbation velocity is then

u
(1)
1 (0) = û∞1+ +

ik1
γ
û∞2+, (C.5)

u
(1)
3 (0) = û∞3+ +

ik3
γ
û∞2+. (C.6)

The boundary region equations in the new coordinates are the same as those in

the lower boundary layer, i.e. expressions (2.72)-(2.75) in terms of

η̃ = η2h − η = 2h

(
Rλ
2x

)1/2

− y

(
Rλ
2x

)1/2

= ỹ

(
Rλ
2x

)1/2

. (C.7)

As x→ 0 and η̃ → ∞

u(3)u → 1

2

(

û∞3+ + i
k3
γ
û∞2+

)

xη̃F ′′, (C.8a)

v(3)u → 1

4

(

û∞3+ + i
k3
γ
û∞2+

)
(
η̃2F ′′ − 3η̃F ′ − F

)
, (C.8b)

w(3)
u →

(

û∞3+ + i
k3
γ
û∞2+

)

F ′. (C.8c)

C.2 Upper boundary layer edge and far-field solutions

In the new set of coordinates, the upper boundary layer edge solution (2.61),

found as the limit of the solution in region IV as the upper wall is approached,

reads

u(0)
u →û∞ei[x+κ2(2x)

1/2(η+β)]−(κ2+κ22)x = û∞ei[x+κ2(2x)
1/2(η̃2h−η̃+β)]−(κ2+κ22)x =

û∞ei[x−κ2(2x)
1/2(η̃−β)]−(κ2+κ22)x,

(C.9)

where
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exp
[

iκ2(2x)
1/2η2h

]

= exp

[

i
k2

(k1Rλ)
1/2

(2x)1/2h

(
k1Rλ
2x

)1/2
]

= exp (ik2h) = 1.

Expression (C.9) provides the outer boundary condition for the far-field boundary

region equations, i.e. the limit of equations (2.72)-(2.75) as η̃ → ∞ (equations

(5.16)-(5.19) in LWG)

− iu(3)u +
∂u

(3)
u

∂x
=
∂2u

(3)
u

∂ỹ(0)2
− κ2u(3)u , (C.10)

− iv(3)u +
∂v

(3)
u

∂x
+

1

2x
v(3)u − β

(2x)2
u(3)u = − 1

(2x)1/2
∂p

(3)
u

∂ỹ(0)2
+
∂2v

(3)
u

∂ỹ(0)2
−κ2v(3)u , (C.11)

− iw(3)
u +

∂w
(3)
u

∂x
= κ2p(3)u +

∂2w
(3)
u

∂ỹ(0)2
− κ2w(3)

u , (C.12)

∂u
(3)
u

∂x
− β

(2x)1/2
∂u

(3)
u

∂ỹ(0)2
+ (2x)1/2

∂v
(3)
u

∂ỹ(0)
+ w(3)

u = 0, (C.13)

where

ỹ(0) = (2x)1/2(η̃ − β). (C.14)

The solution of equations (C.10) - (C.13) that is bounded and matches the edge

solution as as ỹ(0) → ∞ and the linear inviscid solution as x→ 0 is

u(3)u = 0, (C.15)

v(3)u =
−ieix
(2x)1/2

[
û∞3+
κ2

e−iκ2y
(0)−(κ2+κ22)x − û∞2+

|κ| e
−|κ|y(0)

]

+

κ

(2x)1/2
eix−|κ|y(0)

∫ x̌

0
g(x̌)e−ix̌dx̌,

(C.16)

w(3)
u = eix

[

û∞3+e
−iκ2y(0)−(κ2+κ22)x + iû∞2+e

−|κ|y(0)
]

+ κ2eix−|κ|y(0)
∫ x̌

0
g(x̌)e−ix̌dx̌,

(C.17)

p(3)u = g(x)e−|κ|y(0) . (C.18)
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Expressions (C.9) and (C.3) for σ = 3 are recovered asymptotically by taking

the limits of expressions (C.15)-(C.18) as ỹ(0) → ∞ and x →, observing that

y(0) → (k1Rλ)
1/2ỹ as x → 0, i.e. the displacement effects can be neglected

upstream.

C.3 Initial and boundary conditions

The initial conditions for the solution of the upper plate boundary region equa-

tions is found by matched asymptotic expansions. The inner solution, valid for

x→ 0 and η̃ = O(1) is expressed in terms of LWG’s series expansion (expression

5.24 in their paper)

{u(3)u , v(3)u , w(3)
u , p(3)u } =

∞∑

n=0

(2x)1/2
{

2xUn,u(η̃), Vn,u(η̃),Wn,u(η̃), (2x)
−1/2Pn,u(η̃)

}

,

(C.19)

and satisfy equations (B1)-(B8) equations on page 199 in LWG, expressed in η̃

U ′′
0,u + FU ′

0,u + (η̃F ′′ − 2F ′)U0,u − F ′′V0,u = 0, (C.20a)

P0,u = 0, (C.20b)

W ′′
0,u + FW ′

0,u = 0, (C.20c)

2U0,u − η̃U ′
0,u + V ′

0,u +W0,u = 0, (C.20d)

U ′′
1,u + FU ′

1,u + (η̃F ′′ − 3F ′)U1,u − F ′′V1,u = 0, (C.21a)

P ′
1,u = V ′′

0,u + FV ′
0,u − (η̃F ′)′V0,u + [η̃(η̃F ′)′ − F ]U0,u, (C.21b)

W ′′
1,u + FW ′

1,u − F ′W1,u = −κ2P0,u (C.21c)

3U1,u − η̃U ′
1,u + V ′

1,u +W1,u = 0, (C.21d)



C.3. Initial and boundary conditions 135

where the prime indicates differentiation with respect to η̃. These are solved

subject to the no-slip condition at η̃ = 0. The far-field boundary conditions are

computed by matching with the limit of (C.15) - (C.18) as x→ 0 and η̃ = O(1).

The outer solution is given by the limit of the edge solution (C.16) - (C.17) as

x → 0 with ỹ(0) = O(1). The expressions for the common parts of the velocity

to start the downstream marching v
(3)
c , w

(3)
c are found as follows.

The starting point consists of taking the limit of expressions (C.16) - (C.17) as

x→ 0

v(3)u → −iû∞3+
(2x)1/2κ2

[

−η̃(2x)1/2 (iκ2 − |κ|)− x
(
κ2 + κ22

) (

η̃
2
+ 1
)]

+
κ

(2x)1/2

(

1− |κ|η̃(2x)1/2
)∫ x̌

0
g(x̌)e−ix̌dx̌,

(C.22)

w(3)
u →

[
(
û∞3+ + iû∞2+

)
− η̃(2x)1/2i(κ2 + κ22)

û∞3
κ2

]

+ κ2
∫ x̌

0
g(x̌)e−ix̌dx̌, (C.23)

The expression for U0,u, V0,u and W0,u is given by (C.8) and a suitable expression

for g(x) as x→ 0 is found by matching with (C.22)

g(x) = −3

4

β

|κ|(2x)1/2
(
û∞3+ + iû∞2+

)
+ g1,u, (C.24)

and

P0,u = −3

4

β

|κ|
(
û∞3+ + iû∞2+

)
, (C.25)

Substituting (C.24) into (C.23) and matching with the series solution, gives the

far-field boundary condition for the equations governing U1,u, V1,u,W1,u as

W1,u → −η̃i(κ2 + κ22)
û∞3+
κ2

− 3

4
β|κ|

(
û∞3+ + iû∞2+

)
, (C.26)

as η̃ → ∞. Using the continuity equation, an expression for V1,u in the far field

is derived
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V1,u → i

2
(κ2 + κ22)

û∞3+
κ2

(η̃2 − 2η̃β) +
3

4
β|κ|

(
û∞3+ + iû∞2+

)
η̃ + c1,u, (C.27)

where c1,u is determined by the numerical solution, after observing that a bound-

ary condition for V1 is not needed as η̃ → ∞. An expression for g1,u is found by

matching (C.27) with the terms of O((2x)1/2) in (C.22) with the aid of (C.24)

g1,u =
2c1
|κ| +

3

2
β2(û∞3+ + iû∞2+)−

iû∞3+
|κ|κ2

(κ2 + κ22)(β
2 + 1). (C.28)

The velocity common parts are found substituting expression (C.24) in (C.22)-

(C.23) and collecting the terms of O(1) and O(2x)−1/2

v(3)c,u =
iû∞3+
κ2

η̃(iκ2 − |κ|)− 3

4
β(û∞3+ + iû∞2+)+

(2x)1/2
[
iû∞3+
2κ2

(
κ2 + κ22

) (
η̃ + 1

)
+
g1,u|κ|

2
+

3

4
|κ|β(û∞3+ + iû∞2+)η̃

] (C.29)

w(3)
c,u =

(
û∞3+ + iû∞2+

)
+ (2x)1/2

[

− iû
∞
3+

κ2

(
κ2 + κ22

)
η̃ − 3

4
|κ|β(û∞3+ + iû∞2+)

]

.

(C.30)

The initial conditions then read

u(3)u → 2x(û∞3+ + iû∞2+)U0,u + (2x)3/2U1,u, (C.31)

v(3)u → (û∞3+ + iû∞2+)V0,u + (2x)1/2V1,u−
i

(2x)1/2

[
û∞3+
κ2

e−iκ2(2x)
1/2(η̃−β)e−(κ2+κ22)x − û∞2+

|κ| e
−|κ|(2x)1/2(η̃−β)

]

−
[
3β

4
(û∞3+ + iû∞2+)−

g1,u|κ|
2

(2x)1/2
]

e−|κ|(2x)1/2(η̃−β) − v(3)c,u,

(C.32)

w(3)
u → (û∞3+ + iû∞2+)W0,u + (2x)1/2W1,u+

û∞3,+e
−iκ2(2x)1/2(η̃−β)e−(κ2+κ22)x + iû∞2+e

−|κ|(2x)1/2(η̃−β)−
3β

4
(û∞3+ + iû∞2+)(2x)

1/2e−|κ|(2x)1/2(η̃−β) − w(3)
c,u,

(C.33)

as x→ 0.
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The boundary conditions read

u(3)u → 0, (C.34)

∂v
(3)
u

∂η̃
+ |κ|(2x)1/2v(3)u → −(û∞3+ + iû∞2+)e

i(x−κ2(2x)1/2(η̃−β))e−(κ2+κ22)x, (C.35)

∂w
(3)
u

∂η̃
+ |κ|(2x)1/2w(3)

u → −iκ2(2x)1/2(û∞3+ + iû∞2+)e
i(x−κ2(2x)1/2(η̃−β))e−(κ2+κ22)x,

(C.36)

∂p
(3)
u

∂η̃
+ |κ|(2x)1/2p(3)u → 0, (C.37)

as η̃ → ∞.



D. REGION C SOLUTION

The solution of the governing equations in region C is found in this appendix.

The solution of the axial momentum equation is found by separation of variables,

whereas the wall-normal and azimuthal velocity components can be found via

two different procedures, outlined in the following.

The x momentum equation is solved expressing u
(0)
x = A(x)B(r) and equating

both sides of the resulting equations to a separation constant −λ2:

− i+
A′

A
= κ2cyl

B′′

B
+
κ2cyl
r

B′

B
−
κ2cyll

2

r2
= −λ2,

the axial solution is

A′ − (i− λ2)A = 0 ⇒ A(x) = A1e
(i−λ2)x,

and the radial solution is, upon multiplication by r2B
κ2cyl

r2B′′ + rB′ +

(

λ2

κ2cyl
r2 − l2

)

B = 0,

the solution is

B = C1Jl

(
λ

κcyl
r

)

+

✟✟✟✟✟✟✟

C2Yl

(
λ

κcyl
r

)

,

therefore

u(0)x = Ge(i−λ
2)xJl

(
λ

κcyl
r

)

,
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where G = A1C1. Constants G and λ2 are found by matching the solution with

the upstream gust, thus

G = û∞x ,

ζl,n = λ
κcyl

⇒ λ = ζl,nκcyl,

therefore, the solution is

u(0)x = û∞x e
(i−ζ2l,nκ2cyl)xJl(ζl,nr). (D.1)

D.1 Solution from Navier-Stokes equations

The radial momentum equation is solved with the aid of the continuity equation.

Using continuity, it is found that

ilu
(0)
θ = − ∂

∂r

(

ru(0)r

)

,

which is then substituted in r momentum, which then reads

(

−i+ ∂

∂x
− 3

κ2cyl
r

∂

∂r
− κ2cyl

∂2

∂r2
+
κ2cyl(l

2 − 1)

r2

)

u(0)r = 0, (D.2)

which can be solved by separation of variables with the same steps followed to

solve x momentum equation. Boundary conditions are found by matching the

solution with the upstream gust. The solution reads

u(0)r =
û∞r
r
e(i−ζ

2
l,nκ

2
cyl)xJl(ζl,nr). (D.3)

From the continuity equation, the θ component of velocity is found as

u
(0)
θ = iû∞θ e

(i−ζ2l,nκ2cyl)xζl,nJ
′
l (ζl,nr), (D.4)

where the continuity equation between the amplitude of the modes has been used.
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D.2 Solution from axial vorticity

The radial and azimuthal velocity components derived above can be computed

from vorticity equation as well. The starting point it vorticity equation in the

axial direction in cylindrical coordinates

∂ωx
∂t

+ ux
∂ωx
∂x

+ ur
∂ωx
∂r

+
1

r
uθ
∂ωx
∂θ

= ωx
∂ux
∂x

+ ωr
∂ux
∂r

+
1

r
ωθ
∂ux
∂θ

+

1

Rλ

(
1

r

∂ωx
∂r

+
∂2ωx
∂r2

+
1

r2
∂2ωx
∂θ2

)

.

(D.5)

As usual, the flowfield is split into a mean and a perturbation component. Be-

cause the mean flow is irrotational, vorticity is only made of the perturbation

component

ω = ǫ









ω′
x

ω′
r

ω′
θ









(D.6)

and

u =









Ux

Ur

0









+ ǫ









u′x

u′r

u′θ









. (D.7)

Collecting terms of O(ǫ)

∂ω′
x

∂t
+ Ux

∂ω′
x

∂x
+ Ur

∂ω′
x

∂r
= ω′

x

∂Ux
∂x

+ ω′
r

∂Ux
∂r

+
1

Rλ

(
1

r

∂ω′
x

∂r
+
∂2ω′

x

∂r2
+

1

r2
∂2ω′

x

∂θ2

)

.

(D.8)

Taking into account that the flowfield can be expressed as
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U =









1

0

0









,ω = ǫ









ω
(0)
x

ω
(0)
r

ω
(0)
θ









ei(lθ−kxt), (D.9)

the equation governing the dynamics of the axial vorticity perturbation is

(

−i+ ∂

∂x
−
κ2cyl
r

∂

∂r
− κ2cyl

∂2

∂r2
+
κ2cyll

2

r2

)

ω(0)
x = 0, (D.10)

which is the same found for the axial velocity perturbation. Its solution is

ω(0)
x = ω̂∞

x e
(i−κ2cylζl,n)xJl(ζl,nr). (D.11)

To find the radial and azimuthal velocity components, use of the continuity

equation is made to express u
(0)
θ as a function of u

(0)
r , substitute that in the defini-

tion of axial vorticity, solve for u
(0)
r and then find u

(0)
θ . It will be shown here, that

the result is the same as that derived from Navier-Stokes equations. Nevertheless,

deriving the velocity components in terms of the axial vorticity spectrum would

involve the computation of the vorticity spectrum from the velocity components.

Through continuity, it is found

ilu
(0)
θ = − ∂

∂r

(

ru(0)r

)

, (D.12)

and the definition of axial vorcity reads

ωx =
1

r

[
∂

∂r
(ruθ)−

∂ur
∂θ

]

⇒ ω(0)
x =

1

r

[
∂

∂r
(ru

(0)
θ )− ilu(0)r

]

=
u
(0)
θ

r
+
∂u

(0)
θ

∂r
− il
r
u(0)r .

(D.13)

Substituting expression (D.12) into the definition of axial vorticity

i

l

1

r

(

u(0)r + r
∂u

(0)
r

∂r

)

+
i

l

∂

∂r

(

u(0)r + r
∂u

(0)
r

∂r

)

− il

r
u(0)r = ω̂∞

x e
(i−κ2cylζ2l,n)xJl(ζl,nr),
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that is, rearranging and multiplying by l/i,

r
∂2u

(0)
r

∂r2
+ 3

∂u
(0)
r

∂r
+

1

r

(
1− l2

)
u(0)r = −ilω̂∞

x e
(i−κ2cylζ2l,n)xJl(ζl,nr). (D.14)

The homogeneous equation is the Euler-Cauchy equation, upon multiplication

by r

r2
∂2u

(0)
r

∂r2
+ 3r

∂u
(0)
r

∂r
+ (1− l2)u(0)r = 0. (D.15)

Its solution is

u
(0)
r,h = C1u

(0)
r,1 + C2u

(0)
r,2 = C1r

−1+l + C2r
−(1+l). (D.16)

To compute the particular solution, (D.14) is divided by r and the method of

variation of parameters applied. The equation to solve is

∂2u
(0)
r

∂r2
+

3

r

∂u
(0)
r

∂r
+

1

l
(1− l2)u(0)r = − il

r
ω̂∞
x e

(i−ζ2l,nκ2cyl)xJl(ζl,nr). (D.17)

The particular solution is found as

u(0)r,p = −u(0)r,1
∫ r f(t)u

(0)
r,2

W (t)
dt+ u

(0)
r,2

∫ r f(t)u
(0)
r,1

W (t)
dt, (D.18)

where

f(t) = − il
t
ω̂∞
x e

(i−κ2cylζ2l,n)xJl(ζl,nt),

and W (t) is the Wronskian, i.e.

W (t) = det

∣
∣
∣
∣
∣
∣
∣

u
(0)
r,1 u

(0)
r,2

∂u
(0)
r,1

∂r

∂u
(0)
r,2

∂r

∣
∣
∣
∣
∣
∣
∣

= −2lr−3.

The particular solution is then
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u(0)r,p = − iω̂
∞
x

2
e(i−κ

2
cylζl,n)x

[

r−1+l

∫ r

t−l+1Jl(ζl,nt)dt− r−1−l
∫ r

tl+1Jl(ζl,nt)dt

]

.

(D.19)

The integrals in the square brackets are solved for l = 1 with the aid of the

following substitution

u = ζl,nt⇒ t =
u

ζl,n
, du = ζl,ndt, dt =

du

ζl,n
,

and use the following properties of the Bessel function Jl(x) is made

d

dx

[

xlJl(x)
]

= xlJl−1(x),

and

d

dx

[

x−lJl(x)
]

= −x−lJl+1(x),

then

∫ r

J1(ζ1,nt)dt = − 1

ζ1,n
J0(ζ1,nr),

∫ r

t2J1(ζ1,nt) =
r2

ζ1,n
J2(ζ1,nr),

and the particular solution is then found as

u(0)r,p =
iω̂∞
x

2ζ1,n
e(i−κ

2
cylζ

2
1,n)x [J0(ζ1,nr) + J2(ζ1,nr)] =

iω̂∞
x

ζ21,n

J1(ζl,nr)

r
e(i−κ

2
cylζ

2
l,n)x,

where another property of the Bessel function has been used, namely

2l

x
Jl(x) = Jl+1(x) + Jl−1(x).

The complete solution is then
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u(0)r = C1u
(0)
r,1 + C2u

(0)
r,2 + u(0)r,p ≡ u(0)r,p ,

as matching the solution upstream implies C1 = C2 = 0. The radial and

azimuthal components of velocity in region C then read

u(0)r =
iω̂∞
x

ζ21,n

J1(ζ1,nr)

r
e(i−κ

2
cylζ

2
1,n)x,

u
(0)
θ = − ω̂

∞
x

ζ1,n
J ′
1(ζ1,nr)e

(i−κ2cylζ21,n)x.



E. VELOCITY FIELD COMMON SOLUTION (PIPE)

This section includes the steps taken to perform the asymptotic matching between

the cartesian solution and the polar solution. The ultimate aim is to find the

common part of the velocity field and provide the equations in region V with

appropriate initial conditions to start marching in x.

The key point here is that a mode-by-mode matching cannot be done. All

modes need to be considered when deriving the inner solution. The starting

point then, is

lim
r→∞

ucyl = lim
y→∞

ucar. (E.1)

Using the asymptotic form of the Bessel function for large arguments, i.e.,

Jl(ζl,nr) =

√

2

πζl,nr
cos

(

ζl,nr −
lπ

2
− π

4

)

=

√

2

πζl,n(R− y)
cos

(

ζl,n(R− y)− lπ

2
− π

4

)

≃
√

2

πζl,nR
cos (ζl,n(R− y)− φl) ,

(E.2)

φl =
lπ

2
− π

4
. (E.3)

x matching
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∑

n̂

∑

l̂

û∞
x,n̂,l̂

e−(l̂2κ2+n̂2κ22)xein̂k2yeil̂k3z =

∑

l

∑

n

ûcyl,x,l,ne
−ζ2l,nκ2cylx

√

2

πζl,nR
cos [ζl,n(R− y)− φl] e

ilθ.

(E.4)

Picking one cylindrical mode on the right hand side on the above expression, i.e.,

we set n = l = 1 and obtain

∑

n̂

∑

l̂

û∞
x,n̂,l̂

e−(l̂2κ2+n̂2κ22)x

︸ ︷︷ ︸

An̂,l̂

ein̂k2yeil̂k3z =

û∞cyl,x,1,1
︸ ︷︷ ︸

=1

e−ζ
2
1,1κ

2
cylx

√

2

πζ1,1R
cos
[

ζ1,1 (R− y)− π

4

]

ei
z
R .

(E.5)

In the above expression, the left hand side is the complex Fourier series represen-

tation of the function on the right hand side, as in

f(y, z) =
∑

n̂

∑

l̂

An̂,l̂e
in̂k2yeil̂k3z, (E.6)

where An̂,l̂ are the coefficient of the series. By definition

An̂,l̂ =
1

λy

1

λz

∫ λz
2

−λy
2

∫ λy
2

−λz
2

f(y, z)e−in̂k2ye−il̂k3zdydz =

1

λy

1

λz

∫ λz
2

−λy
2

∫ λy
2

−λz
2

ûx,cyl,1,1

√

2

πζ1,1R
cos
[

ζ1,1 (R− y)− π

4

]

e−ζ
2
1,1κ

2
cylxe−in̂k2yei(1/R−l̂k3)zdydz =

û∞
x,n̂,l̂

e−(l̂2κ2+n̂2κ22)x,

(E.7)

It follows that the amplitude of the cartesian modes is

û∞
x,n̂,l̂

= e(l̂
2κ2+n̂2κ22−ζ21,1κ2cyl)x 1

λy

1

λz

∫ λz
2

−λy
2

∫ λy
2

−λz
2

ûx,cyl,1,1

√

2

πζ1,1R
cos
[

ζ1,1 (R− y)− π

4

]

e−in̂k2yei(1/R−l̂k3)zdydz.

(E.8)
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Then, the common part of velocity in the streamwise direction is

u =
∑

n̂

∑

l̂

e−ζ
2
1,1κ

2
cylxein̂k2yeil̂k3z

1

λy

1

λz

∫ λz
2

−λy
2

∫ λy
2

−λz
2

ûx,cyl,1,1

√

2

πζ1,1R
cos
[

ζ1,1 (R− y)− π

4

]

e−in̂k2yei(1/R−l̂k3)zdydz ≡ uc.

(E.9)

Following the same rationale for the wall normal and azimuthal components:

Wall normal matching

Cartesian mode amplitude

ûy,n̂,l̂ = e(l̂
2κ2+n̂2κ22−ζ21,1κ2cyl)x 1

λy

1

λz

∫ λz
2

−λz
2

∫ λy
2

−λy
2

ûcyl,r,1,1

√

2

πζ1,1R3
cos
[

ζ1,1(R− y)− π

4

]

e−in̂k2yei(
1
R
−l̂k3)zdydz.

(E.10)

Physical velocity common part

v =
∑

n̂

∑

l̂

e−ζ
2
1,1κ

2
cylxein̂k2yeil̂k3z

1

λy

1

λz

∫ λz
2

−λz
2

∫ λy
2

−λy
2

ûcyl,r,1,1

√

2

πζ1,1R3
cos
[

ζ1,1(R− y)− π

4

]

e−in̂k2yei(
1
R
−l̂k3)zdydz ≡ uy,c.

(E.11)

Azimuthal matching

Cartesian mode amplitude

û∞
z,n̂,l̂

= −iûθ,cyl,1,1e(−ζ
2
1,1κ

2
cyl+l̂

2κ2+n̂2κ22)x

√

2ζ1,1
πR

1

λy

1

λz

∫ λy
2

−λy
2

∫ λz
2

−λz
2

sin [ζ1,1(R− y)−

π

4

]

ei(
1
R
−l̂k3)ze−in̂k2ydydz

(E.12)
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Physical velocity common part

w =
∑

n̂

∑

l̂

−iûθ,cyl,1,1e−ζ
2
1,1κ

2
cylxein̂k2yeil̂k3z

√

2ζ1,1
πR

1

λy

1

λz

∫ λy
2

−λy
2

∫ λz
2

−λz
2

sin [ζ1,1(R− y)−

π

4

π

4

]

ei(
1
R
−l̂k3)ze−in̂k2ydydz ≡ uz,c.

(E.13)
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