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Abstract 

HCV infection leads to liver failure.  Genotype 3 (GT3) is known to respond poorly to newly-

developed direct-acting antivirals, especially inhibitors of the multifunctional NS5A protein. 

 This work reports the establishment of efficient transient replication of the S52 GT3 sub-

genomic replicon (SGR) by further culture adaptation of S52 in the context of an optimised 

luciferase reporter.  Also documented is the development of hepatoma cells with immune-

attenuating modifications and expressing the lipid binding factor hSEC14L2 to support 

transient replication of S52.  In parallel, stable replication of S52 in SGR-harbouring cells was 

used to investigate the differences between early and established replication.   

Differences in sensitivity to the NS5A inhibitor Daclatasvir (DCV) in both transient and stable 

S52 were observed compared to other genotypes, and between transient and stable 

replication.  In addition, it is shown here that the resistance-associated substitution (RAS) Y93H 

conferred a significant fitness cost which is not apparent for stable S52 selected with DCV, 

despite this RAS being detected.  This thesis explores the molecular basis of such an 

observation and highlights a potential mechanism which warrants further research. 

The role of RAS in the development of resistance is still unclear though this work reports that 

the presence of a RAS within a mixed population greatly influenced the development of 

resistance to DCV in vitro. 

Moreover, this work identified that a cellular metabolism-regulating factor, AMP-mediated 

protein kinase (AMPK), may be differentially regulated during GT3 infection compared to other 

GTs.  This thesis presents the hypothesis that AMPK regulation by HCV may contribute to 

hepatic steatosis as a direct consequence of viral infection, which is unique to GT3.   

More insight into the propensity of GT3 to develop resistance can aid further antiviral design, 

and an understanding of the molecular basis of steatosis offers a rationale for treating the 

symptoms of HCV in addition to direct targeting of the virus.  
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Chapter 1: General Introduction 
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1.1 Hepatitis C virus 

During the 1970s the term non-A, non-B hepatitis (NANBH) was used to describe the 

transfusion-associated disease of patients which was not attributable to hepatitis A or B 

viruses (HAV, HBV).  50% of patients who were infected went on to develop chronic hepatitis 

with virus antigen detectable in their sera (Vitvitski et al., 1979; Seeff, 2009).  Using an 

antibody capture approach the causative agent was identified and named hepatitis C virus 

(HCV) (Choo et al., 1990).  HCV is the type member of the hepacivirus genus, one of three 

genera within the Flaviviridae (Smith et al., 2014).  The classification of the hepacivirus genus 

has recently been updated, and includes viruses with non-human tropism such as Equine 

Hepacivirus (EqHV) and the primate virus GBV-B.  The Flaviviridae contains related Pegiviruses 

as well as the Flavivirus genus, which includes a number of important arthropod-borne human 

pathogens such as Dengue, West Nile virus, Tick-borne encephalitis virus and the recently re-

emerged Zika virus which is the subject of considerable research, reviewed recently (Wang et 

al., 2017).   

HCV infects an estimated 170 million individuals worldwide and is distributed globally, 

affecting between 0.9 and 14.7% of the population in different countries worldwide, 

depending on region.  The average global seroprevalence is 2.5% (Petruzziello et al., 2016). 

 

1.1.1 HCV genotypes 

The Nonstructural protein 5B (NS5B) RNA-dependent RNA polymerase of HCV is highly error-

prone, making an error in each cycle of genome replication (Martell et al., 1992; Powdrill et al., 

2011).  As a result of this the genetic diversity of HCV is extremely high and the virus exists as a 

quasispecies within the infected individual.  As a result of this diversity, seven genotypes and 

over 65 subtypes have diverged, each with a different geographical distribution (Messina et al., 

2015).  The most prevalent worldwide is genotype 1 (GT1), responsible for 49% of HCV 

infections worldwide.  The graphic in Figure 1-1 shows the distribution of each genotype in 

distinct geographical locations.  Genotype 2 (GT2) is primarily distributed in Asia, genotype 5 

(GT5) is most prevalent in sub-Saharan Africa and genotype 4 (GT4) in northern Africa and the 

Middle East.  Indeed, approximately 15% of the Egyptian population are infected with HCV GT4 

after a treatment program for schistosomiasis involving tartar emetic injections from the 

1950s to 1980s, in which needles were not properly sterilised (Elgharably et al., 2017). 
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Figure 1-1.  Worldwide geographical distribution of HCV genotypes.  Graphic made using 

data from (Petruzziello et al., 2016) and creative commons image. 

 

1.1.1.1 Genotype 3 

Genotype 3 (GT3) is increasing in prevalence in the UK and northern Europe and is currently 

the second most prevalent genotype worldwide.  GT3 is estimated to have diverged as a 

genotype around 460 years ago and a GT3a common ancestor is dated around 78 years 

(Chunhua Li et al., 2014).  It is responsible for approximately 80% of cases in the Middle East, 

India, Syria and Pakistan, and is thought to be increasing in worldwide prevalence due to high 

levels of migration from these regions.  Accordingly, GT3 was estimated, using Bayesian 

evolutionary reconstruction, to have originated in the Indian subcontinent (Choudhary et al., 

2014).   

However, a different study concluded that the increase in GT3 may not be wholly due to 

recent immigration increases.  A greater consensus is that genotype divergence occurred prior 

to the African slave trade establishment and that spread of GT3 occurred during this period 

(May et al., 2015).   
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Figure 1-2.  Phylogenetic analysis of HCV genotypes and subtypes from 129 complete 

genome sequences.  Image from (Smith et al., 2014) 

 

A great number of clinical studies have used histopathological techniques to document an 

increased prevalence of hepatic steatosis in patients with GT3.  HCV infection is not normally a 

causative agent of hepatic steatosis in the absence of other contributing factors such as 

alcohol abuse and high Body Mass Index (BMI) (Rubbia-Brandt et al., 2004).  However, 

infection with GT3 is commonly associated with hepatic steatosis in the absence of these 

major risk factors.  Severity of hepatic steatosis in GT3 patients correlates with viral load and is 

reversed by successful treatment of the virus (Mihm et al., 1997; Rubbia-Brandt et al., 2000; 

Nkontchou et al., 2011).  Work to identify a molecular mechanism for this difference is not 
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extensive, and some minor differences in lipid metabolism and phospholipid signalling have 

been identified which likely combine to produce the hepatic steatosis observed, though these 

may be complemented by an as yet un-identified additional mechanism.  These are discussed 

in more detail in chapter 5.   

 

1.1.2 Transmission routes 

Transmission of HCV is largely lateral.  Historically, before the identification of the infectious 

agent (as well as the HIV epidemic in the 1980s) led to screening of blood products, infections 

were transfusion-associated.  A cohort of Irish women who were exposed to GT1b from 

infusion of contaminated anti-D immunoglobulin identified during a voluntary screening 

program in 1994 have shown fascinating differences in pathology, thought to be due to the 

young age of infection, which have provided an opportunity to study novel aspects of viral 

pathology (Fanning, 2002).  In addition, improper sterilisation of equipment during 

vaccinations has contributed to spread of HCV (Gürtler and Eberle, 2017).  Modern HCV 

infections are occasionally associated with contaminated blood products, tattoos and 

intravenous drug use (IDU) (Pybus et al., 2005; Magiorkinis et al., 2009; Mokhtari et al., 2017).  

IDU is the main transmission route of GT3 (Pawlotsky et al., 1995).   

Vertical transmission of mother to child (MTCT) is rare, accounting for 5% of cases, with a 

higher risk for the infants of HIV-positive mothers.  Suppression of the HIV viral load reduces 

the risk of MTCT (Tovo et al., 2016).  Sexual transmission is also rare, but is of concern as 

transmission rates are higher amongst HIV-positive men who have sex with men (MSM), 

reviewed by (Chan et al., 2016).  A study found that HCV prevalence in MSM who are 

beginning pre-exposure prophylaxis (PrEP) for HIV is higher than previously reported, and 

suggests that this may lead to an increase in transmission between MSM (Hoornenborg et al., 

2017). 

 

1.1.3 Disease progression 

Infection with HCV is frequently chronic, with only 20% of those exposed to the virus 

estimated to spontaneously clear, by an unknown mechanism thought to be related to host 

factors (Gauthiez et al., 2017).  Disease progression rates were reviewed recently (Thrift et al., 

2017) and the reported values are summarised in Figure 1-3. 
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Figure 1-3.  Disease progression rates after infection with HCV.  Sankey diagram generated 

using Sankeymatic Beta (sankeymatic.com) and using data from (Thrift et al., 2017) 

 

Of the 80% of infected individuals who develop chronic hepatitis, progressive fibrosis and 

cirrhosis is the most common cause of death with a survival after 35 years of 84%, compared 

to 91-95% for the uninfected population.  Hepatocellular carcinoma is the third leading cause 

of cancer related death worldwide, and occurs at a rate of 1-3% amongst the HCV-infected 

population; HCV infection increases the risk of HCC 10-fold above the uninfected population.  

The annual rate of HCC amongst patients with cirrhosis rises to 8% (Thrift et al., 2017) 

The classic hypothesis of HCV-induced HCC states that HCV infection causes inflammation of 

the liver and tissue damage, leading to fibrosis and, ultimately, cirrhosis.  Over time this tissue 

is regenerated and transformations of progenitor cells during this process lead to malignancy 

and HCC (Okada et al., 1997; Chen et al., 2014; Pezzuto et al., 2016).  This was recently 

reviewed (Takeda et al., 2017).  Indeed, treatment with direct-acting antivirals (DAAs) 
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(summarised in section 1.3.2) does not reduce the risk of HCC (Reig et al., 2016; Strazzulla et 

al., 2016; Conti et al., 2016; Thrift et al., 2017). 

However, there is a growing body of evidence that the virus causes direct transformation 

events, including the upregulation of NANOG by core, enhancing cell growth and cell cycle 

progression (Zhou et al., 2014); upregulation of OCT4 by core, resulting in increased 

proliferation (Zhou et al., 2016); NS4B interaction with Scribble, a tumour suppressor, inducing 

its degradation (Hu et al., 2016); and induction of TLR4 by NS5A, resulting in upregulation of 

NANOG (Machida et al., 2009).   

Non-hepatic manifestation of HCV disease is usually linked to the propensity of the virus to 

modulate host cell lipids during the course of infection.  Insulin resistance is common (Caronia 

et al., 1999; Gastaldi et al., 2017), mediated by HCV infection and may be a direct effect of core 

upregulating SOCS-3 which causes proteosomal degradation of two proteins involved in the 

insulin response, IRS1 and IRS2.  Alternatively, an indirect pathway has been proposed, 

involving reactive oxygen species (ROS) generated by HCV infection triggering the NFκB 

response.  These have been reviewed by (Douglas and George, 2009; Abenavoli et al., 2014).  

There is also evidence to support an association with carotid atherosclerosis (Ishizaka et al., 

2002; Petta, 2017) due to immune reaction to the circulation of the virus in serum complexed 

with very low-density lipoproteins (VLDLs), lipid and protein complexes which accumulate to 

cause blockages of blood vessels.  Like other aspects of HCV disease this is likely to persist in 

some form after treatment (Bassendine et al., 2017). 

HCV infection has also been linked to systemic health problems which are collectively known 

as CHASM (C Hepatitis Associated Systemic Manifestations) and include diseases of the 

thyroid, eye, kidney, skin and immune system (such as cryoglobulinaemia and lymphoma), 

which are reviewed by (Sherman and Sherman, 2015). 

1.1.4 Molecular biology and replication 

The full life cycle of HCV is not fully defined, though substantial work has implicated host lipids 

and lipoproteins in multiple stages of the replication cycle, discussed in Chapter 5: and 

reviewed by (Alvisi et al., 2011; Popescu et al., 2014; Grassi et al., 2016).   
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Figure 1-4.  The HCV replication cycle, taken from (Grassi et al., 2016) 

 

The HCV particle circulates in the blood of the infected individual complexed with lipoproteins, 

cholesterol and triglycerides as a virolipoprotein, closely resembling a VLDL (Falcón et al., 

2017).  The virus particle is approximately 40-70 nm in diameter and exists as a mixture of 

infectious and non-infectious particles (Zhong et al., 2005; Gastaminza et al., 2010); infectivity 

correlates negatively with buoyant density with the most infectious particles having a very low 

buoyant density of 1.03-1.2 g/cm3.  The complex with lipoproteins and lipids is thought to 

contribute to immune evasion by shielding neutralising epitopes on E1 and E2 glycoproteins 

(Vercauteren et al., 2014b).  HCV is hepatotropic, as evidenced by its reliance upon the 

hepatocyte-specific miRNA-122 for replication (Jopling et al., 2005; Wilson and Huys, 2013), 

and utilisation of hepatocyte-specific entry factors for its ability to gain access to the cell.  A 

great number of cell surface markers have been implicated as entry factors including CD81, 
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Occludin, Claudin, SR-BI, EGFR and the low-density lipoprotein receptor (LDLr) (Lindenbach and 

Rice, 2013; Ding et al., 2011).  Binding of these to HCV triggers activation of Ras and Rho 

GTPase pathways which results in movement of the CD81-HCV complex towards the tight 

junctions for interaction with Claudin, followed by clathrin-mediated endocytosis and 

endosomal fusion (Brazzoli et al., 2008; Lupberger et al., 2011; Farquhar et al., 2012; Zona et 

al., 2013).   

The 9.6kb single-stranded, positive-sense RNA genome is released into the cytoplasm where it 

undergoes direct translation on the ribosome as a single open reading frame (ORF) (Hijikata et 

al., 1991).  The coding region of the virus genome is flanked by untranslated regions (UTRs); 

both are highly structured and the 5’ UTR has been shown to have internal ribosome entry site 

(IRES) activity (Tsukiyama-Kohara et al., 1992; Tanaka et al., 1995; Tanaka et al., 1996; 

Kolykhalov et al., 1996; Hwang et al., 1998; Tang et al., 1999).  RNA structures in the IRES are 

crucial for binding to eIF protein complexes and the ribosome, initiating translation (Lukavsky, 

2009).  The genome is translated as a single polyprotein which is post-translationally cleaved 

by host and viral proteases to liberate the 3 structural and 7 non-structural proteins: the 

functions of these will be discussed in greater detail in sections 1.1.4.2.1 and 1.1.4.2.2 

(Bartenschlager et al., 1995; Shimotohno et al., 1995; Agapov et al., 1999).  The 3 structural 

proteins – core, E1 and E2 – are translocated to sites of assembly and 5 of the 7 nonstructural 

proteins – NS3, NS4A, NS4B, NS5A and NS5B – assemble into the replication complex to 

replicate the viral RNA.  The remaining proteins – p7 and NS2 – have roles in the organisation 

of assembly (Jones et al., 2007; Steinmann et al., 2007; Ma et al., 2011).   

Replication of the genome occurs upon lipid-enriched membranes in a complex structure of 

single-, double- and multi-membrane vesicles derived from the ER and mitochondria.  These 

are induced by the NS3-5B non-structural proteins but primarily by NS4B and NS5A; this 

structure is termed the membranous web (Egger et al., 2002; Romero-Brey et al., 2012).  Sites 

of replication and assembly are separated and translocation between the two is likely 

controlled by NS5A, which shuttles around the cytoplasm using the trans-Golgi network and 

microtubules to deliver the newly-synthesised positive-sense genomes to lipid droplets, where 

core accumulates (Eyre et al., 2014).  Assembly is triggered by the displacement of ADRP by 

core, leading to its degradation and, subsequently, trafficking of cellular components to aid the 

recruitment of other viral and cellular components, including E1 and E2 to ER membranes 

through which nascent particles bud (Boulant et al., 2008; Eggert et al., 2014; Syed et al., 
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2017).  Particles exit via the secretory pathway in a process which is highly dependent on the 

VLDL/LDL transport pathway (Benedicto et al., 2015; Takacs et al., 2017; Syed et al., 2017). 

 

Figure 1-5.  The replication complex, taken from (Alvisi et al., 2011).  The HCV structural 

and non-structural proteins are indicated in genome order, with scissors indicating cleavage 

sites (black and green represent SP and SPP respectively, blue represents NS2 protease, red 

indicates NS3 protease).  Glycosylation sites in E1 and E2 are shown as sugar chain symbols.  

NS5A is shown with P symbols representing phosphorylation 

 

1.1.4.1 Relationship with host lipids 

HCV replication is closely linked to cellular lipids and lipid membranes at every stage of the 

replication cycle (Alvisi et al., 2011).  Proteomic analyses have shown that HCV causes 

differential expression of lipid metabolism and distribution-associated genes, favouring energy 

conservation, and the cell is reprogrammed to favour the pathways required for the virus life 

cycle such as glycolysis as a means of energy production (Diamond et al., 2010).  The virus 

particle resembles a VLDL (Merz et al., 2011) and uses VLDL receptors and Apolipoproteins as 

well as a number of other surface receptors to gain entry into the cell (Agnello et al., 1999).  

The membranous web, at which RNA genome replication occurs, is enriched with cellular lipids 

and lipoproteins (Egger et al., 2002), as outlined in section 1.1.4.2.2.  HCV infection has been 

shown to activate the autophagy response whilst inhibiting maturation of autophagic vesicles 

into autolysosomes where the cargo is degraded, potentially to increase the number of 

double-membrane vesicles as sites of replication (Linya Wang et al., 2015).  Genomes are 

directed to the surfaces of lipid droplets where they associate with core (Barba et al., 1997), 

which is sufficient to cause lipid accumulation in vitro (Abid et al., 2005); virion assembly takes 
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place at lipid-enriched membranes containing Apolipoproteins as well as the envelope proteins 

E1 and E2; and trafficking to the cell surface utilises the VLDL pathway (Appel et al., 2008; Merz 

et al., 2011).  Interestingly, these processes are not likely to cause non-alcoholic 

steatohepatitis (NASH) in the absence of high BMI and other risk factors in HCV GT1 infections 

(Rogers et al., 1992; Rubbia-Brandt et al., 2000). 

1.1.4.2 Encoded proteins 

1.1.4.2.1 Structural proteins 

The core protein is a 177-amino acid nucleocapsid protein with a primary role in forming a 

complex with the viral RNA for packaging into the virus particle.  It is released from the 

polyprotein by signal peptidase (SP) and matured by SP peptidase (SPP).  The structure is not 

known but it has a positively-charged N-terminal domain and a hydrophobic C-terminal 

domain for membrane anchorage (Santolini et al., 1994).  Core has been shown to bind to 5’ 

RNA fragments in vitro, suppressing translation (Shimoike et al., 1999; Tanaka et al., 2000).  It 

is for this purpose that the processes of RNA replication and virus assembly should be 

separated in the cell, and the former compartmentalised in membrane structures.  In addition, 

core was shown to recognise RNA stem loop structures throughout the genome which are 

suggested to be packaging signals to selectively package virus RNA (Stewart et al., 2016), 

though core is also capable of binding non-specifically to ribosomal RNA (Santolini et al., 1994).   

Core also has well documented roles in immune modulation and oncogenesis.  Examples of the 

former include attenuation of JAK/STAT signalling and blocking ISG induction by IFN treatment 

(de Lucas et al., 2005).  The role of core protein in oncogenesis is reviewed (Koike, 2007).  It 

has been shown to modulate the MAPK and AP1 pathways which are involved in cell cycle 

control (Tsutsumi et al., 2003; Katsarou et al., 2010); and to activate NFκB and TGFα leading to 

increased proliferation (Sato et al., 2006).  Although, interestingly, core was also shown to 

activate p53 to suppress cell growth (Lu et al., 1999).  In a parallel mechanism, it has been 

shown to induce oxidative stress leading to the activation of the antioxidant response element 

by NRF2 (Ivanov et al., 2011; Smirnova et al., 2016) and inducing inflammation (Pal et al., 

2010), though core is also capable of blocking apoptosis caused by this same pathway (Seo et 

al., 2015).  This inflammation and resulting tissue damage is considered to lead to 

development of HCC when substitutions in key oncogenes are accumulated during accelerated 

tissue regeneration.  Core protein is widely implicated in pathogenesis due to its ability to 

cause lipid accumulation in the absence of other HCV proteins and to perturb insulin pathways 

and cause insulin sensitivity in transgenic mice (Hui-Chun Li et al., 2014). 
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E1 and E2 are envelope glycoproteins with a pivotal role in cell entry; both are necessary to 

mediate cell entry.  Their structure and function were reviewed by (Tarr et al., 2015).  E2 binds 

to CD81 and SR-BI and both have fusion peptides, mediating the release of viral RNA into the 

cytoplasm to initiate translation (Pileri et al., 1998; Scarselli et al., 2002; Drummer et al., 2007; 

Li et al., 2009).  The receptor binding regions are highly conserved yet structure analysis has 

demonstrated that the CD81 binding face of E2 is conformationally flexible (Meola et al., 

2015).  Broadly-neutralising antibodies to E2 usually target the hypervariable regions which 

explains the difficulty in achieving an effective humoral immune response (Farci et al., 1996).  

Little is known about E1 due to the difficulty in expressing this protein in isolation, but both are 

known to be required for cell entry (Bartosch et al., 2003; Hsu et al., 2003). 

1.1.4.2.2 Nonstructural proteins 

The p7 protein (Madan and Bartenschlager, 2015) is a 63-amino acid protein with two 

transmembrane spanning regions which localises to and forms an ion channel in ER and 

mitochondrial membranes as a multimeric structure (Carrère-Kremer et al., 2002; Griffin et al., 

2003; Clarke et al., 2006; Haqshenas et al., 2007; Wozniak et al., 2010; Foster et al., 2014).  Its 

function is hypothesised to be the increase in pH of acidic membrane compartments 

(Steinmann et al., 2007; Bentham et al., 2013), contributing to viral maturation and egress in a 

mechanism which is not fully understood, but is suggested to involve the prevention of 

premature fusion of membranes by the E1 and E2 glycoproteins in acidic conditions (Wozniak 

et al., 2010).  P7 has an additional role in virus entry, functioning as a signal peptide for 

endocytic fusion (Griffin et al., 2005) and assembly by functioning as a signal peptide to recruit 

NS2 (Boson et al., 2011; Tedbury et al., 2011). 

NS2 has a cysteine protease function to release itself from NS3 and the remainder of the 

polyprotein (Hijikata et al., 1993; Grakoui et al., 1993; Welbourn and Pause, 2007).  It is 

dispensable for RNA replication (Lohmann et al., 1999) and inclusion of NS2 in SGRs lowers 

replication efficiency.  NS2 is known to be capable of inserting into ER membranes and 

colocalises with the ER, and has been implicated in the modulation of cellular gene expression 

in such examples as NFκB and TNFα (Dumoulin et al., 2003).  Aside from its autoprotease 

activity, NS2 primarily functions as a director of the initial stages of virus assembly, with 

interactions with p7, E2 and NS3/4A reported in numerous studies (Jirasko et al., 2010; 

Stapleford and Lindenbach, 2011; Tedbury et al., 2011).   

NS3 possesses serine protease and helicase activities in a single protein as two distinct 

domains separated by a linker (Kim et al., 1996; Kim et al., 1998).  The purpose of the two 
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functions existing as domains of a single protein is not known, but the linker between the two 

is involved in functionality (Aydin et al., 2013).  The N terminal domain consists of a 

hydrophobic membrane anchor which dictates localisation of the protein (He et al., 2012) 

followed by a serine protease domain which contains a zinc-binding active site.  The NS3 

protease is responsible for the cleavage of itself from NS4A and then separation of the NS4B, 

NS5A and NS5B nonstructural proteins, leading to the formation of the replication complex for 

RNA replication (Bartenschlager et al., 1994; Bartenschlager et al., 1995).  The NS3 protease 

active site is dependent on NS4A, which acts as a cofactor, having a hydrophobic membrane 

anchor domain of its own (Failla et al., 1994).  Substitutions destabilising the interaction with 

NS4A impair protease function.  The helicase domain, which also contains ATPase activity, 

participates in assembly through a mechanism which is not fully understood; culture adaptive 

substitutions (CAS) in this region improve particle production whilst having no effect on RNA 

replication efficiency.  Nucleic acid binding to the helicase domain induces a structural change 

in one of the helices of the protein which is likely to be involved in the coordination of multiple 

modes of action (Gu and Rice, 2016).  ATPase and helicase activities are dependent on low pH 

which causes a change in the stability to induce an open conformation for substrate binding 

(Ding et al., 2011; Ventura et al., 2014).   

NS4B is a highly hydrophobic protein of 261 amino acids with a primary role in the formation 

of the membranous web as sites of genome replication (Egger et al., 2002; Gouttenoire et al., 

2009; Cho et al., 2010; Li et al., 2012).  Expression of NS4B alone has been shown to induce 

membrane curvature and the formation of single-membrane vesicles (Egger et al., 2002; 

McMahon and Gallop, 2005; Romero-Brey et al., 2012; Eyre et al., 2014) but requires the 

addition of NS5A to cause membrane rearrangements more similar to the membranous web.  

It has been shown to cause ER stress and activate the NFκB pathway, by interaction with 

CREBP (an ER stress response protein) (Tong et al., 2002; Welsch et al., 2007); ER stress is a 

trigger of autophagy which is induced by viral infection and is thought to increase the pool of 

double- and multi-membrane vesicles as sites of replication (Dreux and Chisari, 2011).  It also 

plays a role in the modulation of lipid metabolism, stimulating the PI3K-Akt pathway leading to 

the upregulation of SREBPs and fatty acid synthase (FAS) (Horton et al., 2002; Waris et al., 

2007; Park et al., 2009).   

NS5A will be discussed in section 1.1.4.2.3. 

NS5B is the RNA-dependent RNA polymerase (Behrens et al., 1996; Sesmero and Thorpe, 

2015).  The structure is of a typical polymerase with fingers and thumb subdomains, though 
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unique amonst RdRPs they encircle the active site (Lesburg et al., 1999).  Binding to RNA is 

thought to induce a conformational change in the protein (Shatskaya and Dmitrieva, 2013).  

The RNA binding capability of NS5B has been demonstrated, with an affinity for the 3’ UTR and 

highly structured regions of RNA (Lohmann et al., 1997; Yamashita et al., 1998; Cheng et al., 

1999; Gouklani et al., 2012; Haqshenas, 2012).  The RdRP function of NS5B is highly error-

prone with a high mutation rate of between 2.7x10-3 and 8.7x100 errors per genome 

(depending on template base).  This leads to the quasispecies nature within an infected 

individual with a variability within a patient of approximately 2.7%, and has given rise to the 

great number of genoytypes and subtypes in circulation.  The polymerase has a propensity to 

make G:U mismatches most frequently, and transitions more commonly occurring than 

transversions (Martell et al., 1992; Powdrill et al., 2011). NS5B stimulates the helicase activity 

of NS3 within the replication complex (Jennings et al., 2008) and recruits the eIF4 complex to 

the IRES to initiate translation (Kyono et al., 2002; Lourenço et al., 2008).  NS5B has been 

demonstrated to play a role in virus assembly by its interaction with p7 and mutagenic analysis 

shows regions with a role in morphogenesis of virions (Aligeti et al., 2015).   

 

1.1.4.2.3 NS5A 

NS5A is a multifunctional protein with roles at various stages of the virus life cycle including 

modification of the host cell environment, assembly of the replication complex and assembly 

of new virus particles (Ross-Thriepland et al., 2015).  

It is a phosphoprotein, composed of three distinct domains, separated by serine-rich low 

complexity sequences (LCS).  Domains II and III are highly flexible, though the structure of 

domain I has been solved by different groups with a consensus on this single structure and the 

identification of a metalloprotein function, with a zinc binding site being crucial for replication 

(Tellinghuisen et al., 2004; Love et al., 2009; Lambert et al., 2014).  NS5A is known to form a 

homodimer and, though the structure of the domain I monomer is agreed the dimer 

conformation has been differentially reported (shown in Figure 1-6).  It is thought that the two 

dimer conformations are both important in the different functions of NS5A in the virus life 

cycle.  The “open” conformation (Love et al., 2009) reveals a positively-charged groove which 

has been postulated as an RNA binding region (Ascher et al., 2015).  Two populations of NS5A 

exist in the cell - large, static structures and smaller, more motile ones (Eyre et al., 2014).  Both 

associate with VAP-A and Rab5A, with smaller ones shuttling across the surface of LDs.  Only a 
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small amount of NS5A colocalises with core at a time, and at LD cap-like structures.  Motility 

and trafficking are dependent on the microtubule network (Eyre et al., 2014). 

 

Figure 1-6.  NS5A dimer structures.  Images created using Pymol software from PDB files 

1ZH1 and 3FQM respectively (Tellinghuisen et al., 2004; Love et al., 2009) 

  

NS5A has been implicated in the direct oncogenesis of HCV due to its effect on the EGFR-Ras-

ERK signalling cascade, affecting control of cell cycle regulation.  The inhibitory effect on EGFR 

internalisation contributes to entry of new virus, since EGFR is a known entry factor for HCV 

(Lupberger et al., 2011).   

NS5A reacts with DDX3, an oncogene, and Y box binding protein 1 (YB1) which is a DDX3 

interacting protein; both have roles in control of cellular proliferation (Wei-Ting Wang et al., 

2015).  The relationship with YB1 is linked to Akt phosphorylation which is in turn associated 

with control of proliferation and apoptosis (Street et al., 2005; Street et al., 2004).  A recent 

proteomics study identified 132 proteins that interact with NS5A, including proteins in 

pathways previously linked to pathogenesis of HCV and other viral pathogens in addition to 

several novel interacting partners (Tripathi et al., 2013).  Roles in cell signalling modulation 

have also been identified: it has been shown that NS5A arrests host cells in G1 phase by 

inhibiting the Ras-ERK-MAPK pathway to favour replication (Street et al., 2004; Kannan et al., 

2011).  NS5A may also interact with mixed lineage kinase 3 (MLK3), which activates MAPK, to 

block apoptosis (Amako et al., 2013).  
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NS5A is crucial in the formation of the membranous web in combination with NS4B.  

Expression of NS5A in the absence of other viral proteins induced multi-membrane vesicles in 

a fashion similar to the redistribution of membranes and the formation of single, double and 

multi-membrane vesicles of ER origin by HCV infection.  NS4B expression alone induced single 

membrane vesicles, indicating a cooperative role (Romero-Brey et al., 2012; Eyre et al., 2014).  

A siRNA screen of the human kinome identified PI4K as an interacting partner.  PI4K silencing 

inhibits replication and stable knockdown inhibits the formation of multi-membrane vesicles.  

NS5A domain I is the region responsible for upregulation of PI4P by activation of PI4K (Reiss et 

al., 2011; Harak et al., 2016). 

NS5A has been shown to interact with TIP47 and Rab18, components of lipid droplets, to 

target the replication complex to these (Salloum et al., 2013; Vogt et al., 2013). 

A further key function of NS5A is its interaction with lipid metabolism and biosynthesis 

pathways.  Increases in lipid droplet formation in cells displaying transient expression of NS5A 

(Parvaiz et al., 2014) and replication of a sub-genomic replicon (SGR) (Qadri et al., 2012) have 

been shown.  HCV NS5A upregulation of key lipid biosynthesis pathway members is well 

characterised, including upregulation of peroxisome proliferator-activated receptor γ (PPARγ), 

sterol regulatory element-binding protein 1c (SRBP1c), fatty acid synthase (FAS) and, indirectly 

through the PI3K pathway, Liver X receptor α (LXRα) (García-Mediavilla et al., 2012).   

NS5A is an RNA binding protein; indeed, all three domains possess RNA binding function 

(Foster et al., 2010).  Domain II has been shown to be required for RNA replication: A study 

identified a number of residues in the C-terminal region of domain II that are required for RNA 

replication but not virus assembly.  The LCS-II contains two polyproline motifs, the first of 

which is required for replication of GT1 but not 2, and the second is not essential for 

replication or assembly.  Mutagenic studies of these motifs highlight roles at different stages of 

the virus life cycle (Appel et al., 2005; Hughes et al., 2009a; Hughes et al., 2009b; Ross-

Thriepland et al., 2013). 

NS5A has a well-defined role in virus assembly, a function which is mostly performed by 

domain III and which is closely linked to its role in earlier stages of replication rather than an 

isolated function (Hughes et al., 2009b).  Deletion of domain III is not lethal to replication but 

does prevent assembly of virus (Hughes et al., 2009b; Appel et al., 2008).  This mutant does not 

colocalise with core and does not release infectious virus; it accumulates intracellular core on 

lipid droplets but not infectious virus, which illustrates a defect in packaging rather than 

release. In addition, GT2 isolates contain a 19 amino acid insertion in domain III, the deletion 
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of which delays replication and assembly (Hughes et al., 2009b).  NS5A colocalises with core 

and has been implicated in targeting the core protein and other non-structural proteins of the 

replication complex to lipid droplets (Masaki et al., 2008; Boson et al., 2017) 

The various functions of NS5A have been shown to be controlled by phosphorylation, since the 

protein has no enzymatic function (Appel et al., 2005; Ross-Thriepland and Harris, 2014; Ross-

Thriepland et al., 2015; Eyre et al., 2016; Chong et al., 2016; Lee et al., 2016).  The protein 

exists in two distinct phosphorylated forms, which resolve as two species by SDS-PAGE – 

basally phosphorylated p56 (apparent M.W. 56 kDa) and hyperphosphorylated p58 (58 kDa).  

It has been hypothesised that the pattern of phosphorylation of key serine residues in the LCS 

1 exerts an effect on the protein’s function, with hyperphosphorylation causing a switch from 

RNA replication to virion assembly (Appel et al., 2005; Ross-Thriepland and Harris, 2014).  

Serines in the LCS-I are phosphorylated by CKIa in a manner controlled by PI4KIIIa, allowing 

downstream phosphorylation of residues in the LCS-II and domains II and III (Eyre et al., 2016; 

Chong et al., 2016).  Serines 146 and 235 have been suggested to form these master controls, 

with downstream phosphorylation controlling motility and distribution of NS5A and other 

replication complex proteins, colocalization of dsRNA and virus assembly.  Phosphomimetic 

substitutions at S225 and S235 both restrict distribution of NS5A to a perinuclear region.  

Similarly, deletion of serines in domain II which are involved in RNA replication abrogates 

hyperphosphorylation (Appel et al., 2005).  Mutation of a serine cluster in domain III impairs 

basal phosphorylation and reduces assembly, with phosphomimetic substitutions capable of 

partly rescuing this phenotype.  Similarly, phosphoablatant substitutions suppress the core-

RNA interaction.  The NS5A at ER membranes is predominately basally phosphorylated (Qiu et 

al., 2011).  It was demonstrated that substitutions which are culture-adaptive abrogate 

hyperphosphorylation of NS5A, and NS4B CAS can also abrogate hyperphosphorylation (Harak 

et al., 2016).  This led to the hypothesis that phosphorylation forms a molecular switch 

between replication and assembly.   

 

1.2 In vitro models of HCV 

1.2.1 Sub-genomic replicons 

The numerous tools for basic research of HCV have been reviewed in detail (Bukh, 2016; 

Ortega-Prieto and Dorner, 2016). 
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The development of the SGR system for studying HCV provided a novel in vitro culture model, 

allowing the non-structural proteins to be characterised, and their roles in RNA replication to 

be determined.  Lohmann et al demonstrated in 1999 that a bicistronic construct containing 

the NS3-5B coding regions from the HCV GT1b genome under the control of an EMCV internal 

ribosome entry site (IRES) and a neomycin phosphotransferase gene under the control of the 

HCV IRES can be assembled and transfected into cultured cells.  Cells supporting the replication 

of this construct could be selected with a neomycin analogue (G418), forming clonal colonies 

of cells able to survive in the presence of G418, after those unable to support replication of the 

SGR had died.  After subsequent replication cycles these SGR constructs had obtained a 

number of CAS, which were identified and cloned back into the original construct, giving one 

capable of greater colony-forming efficiency than the wild-type sequence (Lohmann et al., 

1999).  The functions of CAS are rarely explored in the studies which report their phenotype, 

but suggested mechanisms for the culture adaption phenotype of NS3 substitutions involve 

the altered localisation of NS3 to the ER (Murayama et al., 2017; Yan et al., 2017).  However, 

the S2204I culture adaptive mutation which was identified in Con1 through the approach 

described above, located in the NS5A domain I coding region, abrogates hyperphosphorylation 

of NS5A (a subject described in detail in section 1.1.4.2.3) and the enhanced replication 

capacity it confers is dependent on PI4K function (Harak et al., 2016). 

As well as allowing the identification of culture-adaptive substitutions these selected cells 

which stably harbour the HCV SGR are of great importance in their own right, in the 

development of therapies and investigation of the functions of non-structural proteins (Bukh, 

2016).   

Following this breakthrough, SGR have now been developed for genotypes 2-6 (Kato et al., 

2003; Saeed et al., 2012; Saeed et al., 2013; Yu et al., 2013; Wose Kinge et al., 2014; Yu et al., 

2014; Camus et al., 2018).  The GT2a SGR developed by Kato et al in 2003 was of critical 

importance; this was developed from a clinical isolate from a Japanese patient with fulminant 

hepatitis (termed JFH-1) and was capable of very high levels of transient replication.  This SGR 

was also able to replicate in the absence of CAS, though presence of these did increase 

replication.  These SGRs primarily utilise consensus sequences from databases or from 

sequencing of patient-derived virus isolates, however several groups have demonstrated the 

ability to construct an SGR directly from a clinical isolate, paving the way for investigation of 

particular sequences within a virus quasispecies – a possibility which is of particular use when 
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exploring the relationship between resistance-associated substitutions (RAS) and treatment 

response (further discussed in section 1.3.2.3) (Rajyaguru et al., 2013; Lu et al., 2014). 

Recent work has focussed on the further development of SGRs using further culture 

adaptation or modification of the host cell environment.  SGR experiments are primarily 

carried out in Huh7 cells, an immortalised line of hepatoma cells.  SGR harbouring cells were 

selected and the SGR was subsequently eradicated; it was discovered that the resulting cell 

line, termed Huh7.5, was more permissible to SGR replication (Blight et al., 2002).  

Characterisation revealed that the cells had acquired a mutation in the RIG-I gene, which is 

responsible for intracellular sensing of double-stranded RNA, an intermediate of virus 

replication (Foy et al., 2005; Sumpter et al., 2005).  In addition, the cells have an IFN-L3 locus 

rs12979860 single nucleotide polymorphism (SNP) of CT, which is more commonly associated 

with GT1 infected patients than the general population who more commonly have CC at this 

locus (Rojas et al., 2014)– this is associated with spontaneous clearance of HCV (Rauch et al., 

2010).  This concept has been replicated several times to generate more permissible cell lines 

for SGR-based research (Blight et al., 2002; Zhong et al., 2005; Yu et al., 2013).  Recently a 

cellular gene was identified that increased permissibility of host cells to replication of an 

unadapted SGR or clinical virus isolates – hSEC14L2.  This was found in a cDNA library screen 

and was suggested to assist in the protection of SGRs from lipid peroxidation (Saeed et al., 

2015). 

Genotype-chimeric or hybrid SGRs have been used in a number of studies involving 

development of DAAs and investigation into the functions of NS5A.  In 2006, Lanford et al 

showed that a hybrid SGR could be constructed containing amino acids 87 to 429 of GT3a 

NS5A in a Con1 (GT1b) backbone; this was able to replicate efficiently in a transient system, 

but the study was not able to show a differential sensitivity to pegylated interferon alpha 

(IFNα), leading them to conclude that IFN sensitivity is not determined by the region included 

in the hybrid SGR (Lanford et al., 2006).  Hernandez et al developed a partial hybrid containing 

the first 429 amino acids of a consensus sequence of GT3a NS5A and residues 430-471 from 

JFH-1 NS5A in a JFH-1 SGR backbone.  They used this system to investigate the effect of a 

number of NS5A inhibitor RAS which have been reported for GT1, as well as determining the 

frequency of these substitutions in patients (Hernandez et al., 2013). 

Another partial NS5A-JFH-1 hybrid using the same region of GT3a NS5A from three clinical 

isolates was assembled and used in a study to identify potentially novel RAS in GT3a NS5A 

following selection with an NS5A inhibitor, and to compare the effect of these substitutions on 
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50% effective concentrations (EC50) in a transient system (Wang et al., 2013).  The effects of 

these substitutions beyond conferring drug resistance were not reported.  In addition, a NS5A-

5B hybrid replicon in a Con1 backbone was reported, showing robust transient expression with 

a wild-type sequence, and the Y93H NS5A inhibitor RAS (Kylefjord et al., 2014).   

 

1.2.2 Infectious virus culture systems 

Development of a full-length JFH-1 infectious clone has allowed the in vitro observation of the 

full virus life cycle (Lindenbach et al., 2005; Wakita et al., 2005).  Since then, chimera viruses 

have been reported for a range of different genotypes.  Jens Bukh and colleagues have been 

instrumental in the development of a number of GT3a chimera viruses.  J6/JFH-1 viruses (both 

GT2a) with NS5A from GT1-7 were constructed initially, and tested for differential sensitivity to 

a NS5A inhibitor (Scheel et al., 2011).  Subsequently, chimera viruses containing NS3 and NS5A 

from GT1a and 3a, with the rest of the viral genome from JFH-1 were used to test a 

combination therapy (Gottwein et al., 2013).  Ultimately a GT3a virus was reported, containing 

only the NS5B and 3’ UTR regions of JFH-1 (termed 5-5A), which showed a good correlation of 

treatment response to clinical observations for GT3a for NS5A and NS3 inhibitors (Yi-Ping Li et 

al., 2014).  More recently, however, the same group constructed a full-GT3 virus with efficient 

replication capacity based on the DBN clinical isolate (using the UTRs from S52) and they used 

this to investigate resistance of GT3 to the NS5B inhibitor Sofosbuvir (Ramirez et al., 2016).   

 

1.2.3 Additional model systems 

The initial identification of HCV as the causative agent of NANB Hepatitis was heavily reliant on 

chimpanzees as an animal model.  Chimpanzees are used for studying particle composition and 

in some infection studies with clinical isolates but the immune composition of the chimpanzee 

host is too different as indicated by the knowledge that HCV does not establish chronic 

infection in chimpanzees (Walker, 1997; MacArthur et al., 2012).  Non-human primate 

research is also limited in scale due to the ethics and cost of using these animals. 

HCV has a narrow tissue tropism and host range and so does not readily infect species other 

than humans, although some work has explored the use of humanised chimeric mice (Bukh, 

2012; MacArthur et al., 2012; Tesfaye et al., 2013; Vercauteren, de Jong, et al., 2014).  

Immunodeficient (SCID) mice can be xenotransplanted with human hepatocytes and these can 
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support HCV infection.  In addition, adenoviral delivery of human surface receptors allows the 

investigation of entry inhibitors in rodent models, though the full replication cycle does not 

take place. 

The potential to use primate-tropic GBV-B as a model system has been suggested, since GBV-B 

can form either acute or chronic infection in primates, similar to HCV (Manickam and Reeves, 

2014).  The potential of EqHV in horses has also been suggested due to the similarity of EqHV 

to HCV, but not explored due to conflicting evidence as to whether this virus causes chronic 

disease in its host (Reuter et al., 2014; Pfaender et al., 2015). 

A number of studies have explored the use of primary human hepatocytes (PHH), or 

hepatocytes derived from induced pluripotent or embryonic stem cells (Cheng et al., 2015).  

Recently, it was demonstrated that foetal liver tissue can support the entire replication cycle of 

different genotypes of HCV (Guo et al., 2017).  However due to the ethical and technical 

limitations in handling of these cells and tissues they do not provide a high-throughput 

platform for experimentation or drug discovery.  In addition, PHH are limited in the timescale 

of experiments due to extremely rapid dedifferentiation, and hepatocyte-like cells from stem 

cells rarely progress beyond a progenitor stage and may not express mature cell markers 

required to study replication fully. 

 

1.3 Treatment of HCV 

1.3.1 Historic treatment of HCV 

Treatment for chronic HCV has been in the form of IFNα and Ribavirin (IFN/RBV).  This regimen 

is effective in achieving a sustained virological response at 24 weeks following cessation of 

treatment (SVR24) in approximately 40% of patients with HCV GT1 and up to 80% in patients 

with HCV GT2a or 3a (Manns et al., 2001).  Treatment success rates with IFN/RBV are strongly 

influenced by host factors such as age and gender, with older patients and men less likely to 

respond; race, with African populations less likely to achieve SVR12 than European 

populations; higher levels of ISGs at baseline and presence of cirrhosis (Ge et al., 2009; 

Cavalcante and Lyra, 2015; Enomoto et al., 2015; Yu, 2017). 

A region of the NS5A protein which became known as the Interferon sensitivity determining 

region, ISDR, was found to be associated with response to treatment to IFN: sequences with 

higher rates of mutation at this position are associated with a higher probability of achieving 
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SVR (Enomoto et al., 1996; Frangeul et al., 1998; Pascu et al., 2004; Fukuhara et al., 2010; 

Akuta et al., 2012; Mansoor et al., 2013).  In addition, two residues of core are also found to be 

more frequently mutated in patients who achieved SVR12 and presence of these substitutions 

increases the likelihood of having more substitutions in the ISDR, which increases the 

probability of achieving SVR (Akuta et al., 2007; Abe et al., 2010; Akuta et al., 2012).  A further 

region of NS5A known as the IFN/RBV resistance determining region, IRRDR, dictates response 

to the combination therapy of IFN and RBV and has been shown to have the same pattern of 

higher mutation rates correlating with treatment outcome (El‐Shamy et al., 2008; Qashqari et 

al., 2013).  The ISDR of GT3 sequences is reported as being more conserved than for other 

genotypes, and the ability of substitutions in this region to predict an increased likelihood of 

achieving SVR12 is debated (Bittar et al., 2010; Frangeul et al., 1998; McKechnie et al., 2000; 

Knolle et al., 1998; Yokozaki et al., 2011). 

An additional host factor has been extensively studied and its effect on SVR12 rates is well 

studied.  A single nucleotide polymorphism (SNP) in either of the rs12979860 locus from major 

CC allele to heterozygous CT or homozygous TT, and the rs8099917 locus from major TT allele 

to heterozygous TG or homozygous GG are both associated with lower success rates with IFN-

based therapy.  Interestingly, it has been observed that GT3 patients have a higher incidence 

of a favourable IFN λ genotype whereas GT1b patients have higher incidences of CT or TT 

genotypes (Kadjbaf et al., 2016; Peiffer et al., 2016).  This may contribute to the higher efficacy 

of IFN against GT3, but this is not known.  Similarly unknown is the reason for the link between 

GT3 and CC genotype; it is of note that the CC genotype is more frequent in European 

populations than in African ones, which explains the differential response rates by race, 

however the origin of GT3 has been estimated as the African continent (Chunhua Li et al., 

2014; May et al., 2015).   

The mechanism of action of RBV is highly contentious, and a number of parallel mechanisms 

have been proposed and investigated.  It is thought that, rather than a single mechanism being 

responsible for the efficacy of RBV there may be a combination of effects which exert minimal 

effects in isolation but coordinate to produce an antiviral response.  These have been reviewed 

(Thomas et al., 2012; Nakatsuka et al., 2015).  RBV is a nucleoside analogue of guanosine and 

has hence been postulated to function as a chain terminator, inhibiting the function of the 

NS5B polymerase.  However, once incorporated, RBV can base-pair with either Cytosine or 

Uracil, causing high frequencies of mutations leading to error catastrophe.  It also functions as 

an inhibitor of inosine monophosphate dehydrogenase (IMPDH), which catalyses the rate-



 

23 

 

limiting step in guanosine biosynthesis; this results in a reduction in GTP levels.  It has been 

suggested that the reduction in GTP biosynthesis may work in combination with the error 

catastrophe mechanism, reducing the available GTP pool in the cell so that other bases are 

incorporated instead. 

RBV has been shown to have an effect on the immune response to HCV, following 

observations that it is most effective when administered in combination with IFN.  RBV is 

known to increase type 1 and/or type 2 cytokine production which supports helper T cell type 

1 (Th1) activity.  RBV may also have an effect on ISG activation, which concurs with its 

synergistic effect with IFN. 

IFN/RBV is also associated with a substantial side effects profile: including flu-like symptoms, 

headaches and skin rash in over half of patients; anaemia, neutropenia; and psychiatric events 

in up to 30% such as depression, lethargy, suicide ideation and attempt and even homicidal 

tendencies.  IFN/RBV cannot be given to patients who are pregnant or who will not adhere to 

strict contraceptive measures as it is associated with foetal abnormalities, and cannot be given 

to patients with major psychiatric disorders and renal or vascular problems (Ghany et al., 

2009).   

 

1.3.2 Development of Direct-acting antivirals 

Numerous reviews have been published which explore the scale of DAAs now available to treat 

HCV; almost all stages of the virus life cycle have been explored as potential antiviral targets 

though compounds targeted to a small number of the non-structural proteins (NS3, NS5A, 

NS5B) have been the most successful (Griffin, 2010; Rice, 2011; Pawlotsky, 2013; Colpitts and 

Baumert, 2016; Taherkhani and Farshadpour, 2017).  The first of these compounds were a 

number of NS3 protease inhibitors, licenced in 2011.  These demonstrated excellent potency in 

treating HCV in vitro and were better tolerated by patients than IFN and RBV (Manzano-

Robleda et al., 2015).  Discovered using peptide-based functional screens and refined by 

structure-activity relationship (SAR) analysis, these compounds were targeted to NS3 protease 

activity which is essential for cleavage of the HCV polyprotein and assembly of the replication 

complex (Elbaz et al., 2015; Götte and Feld, 2016; McCauley and Rudd, 2016).  Analysis of 

resistance demonstrated a number of residues which reduce efficacy by reducing affinity of 

the drug with minimal effect on substrate binding (Pawlotsky, 2016; Premoli and Aghemo, 

2016).  However, the first such NS3 protease inhibitors (PI), Telaprevir and Boceprevir were 
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withdrawn for commercial reasons due to their inability to compete with newer therapies.  

Second-generation PIs such as Asunaprevir and Simeprevir are widely used in the United States 

and Japan and have a higher barrier to resistance (a consequence of RAS to these compounds 

being associated with a more severe fitness cost), though are associated with higher 

incidences of adverse events than other classes of DAA (Banerjee and Reddy, 2016; Pawlotsky, 

2016).  Until recently they were not licenced to treat GT3 due to almost complete inefficacy 

(Moreno et al., 2012; Ampuero et al., 2014), however a number of combination therapies now 

exist which are effective against GT3. 

 

Figure 1-7.  A recent summary of direct-acting antivirals against HCV.  Schematic diagram 

of the HCV genome populated with information from (Taherkhani and Farshadpour, 2017).  

Compounds in bold type are stated in the review as being effective against genotype 3. 

 

A parallel approach of in-silico docking screens led to the development of NS5B inhibitors, of 

which there are two types:  Nucleoside analogs (nuc) such as Sofosbuvir (SOF) and non-

nucleoside (non-nuc) compounds such as Dasabuvir.  SOF, developed by Gilead and licenced in 

2014, is a chain terminator which is delivered as a prodrug and as such requires conversion 

into the active compound in hepatocytes (Zeng et al., 2013; Kirby et al., 2015; Yang and Choi, 

2017).  RAS for SOF have been reported in vitro, including S282T, but are rarely identified in 

clinical studies, and SOF exhibits pan-genotypic activity.  The smallest class of DAA, non-nuc 

NS5B inhibitors such as Dasabuvir (Mantry and Pathak, 2016), bind to the palm region of the 

NS5B protein and cause allosteric inhibition by inducing a conformational change to the active 

site of the enzyme.  These have been little explored due to the extraordinary efficacy of SOF 

and the NS5A inhibitors described below. 
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Due to the propensity of each of these classes of inhibitor to be susceptible to resistance, they 

are almost exclusively used in combination therapies.  A great number of these include RBV for 

increased efficacy, however and increasing number do not include IFN; these are known as all-

oral.  A recent summary of the currently-licenced combination therapies with their respective 

marketing names is shown in Table 1-1. 

Combination of compounds Targets Trade name 

Paritaprevir, Ombitasvir, 

Ritonavir, Dasabuvir, 

Ribavirin 

NS3, NS5A, NS5B Viekira Pak (Abbvie) 

Grazoprevir, Elbasvir NS3, NS5A Zepatier (Merck, Sharpe & 

Dohme) 

Daclatasvir, Sofosbuvir, 

Ribavirin 

NS5A, NS5B Sovodak (Beacon 

Pharmaceuticals) 

Ledipasivr, Sofosbuvir, 

Ribavirin 

NS5A, NS5B Harvoni (Gilead) 

Ombitasvir, Ritonavir, 

Paritaprevir 

NS3, NS5A Technivie (Abbvie) 

Velpatasvir, Sofosbuvir, 

Ribavirin 

NS5A, NS5B Epclusa (Gilead) 

Glecaprevir, Pibrentasvir NS3, NS5A Maviret (Abbvie) 

Table 1-1.  A summary of the HCV DAA combination therapies in current use.  This list is not 

exhaustive as there are combinations that have been tested for many compounds that are not 

currently marketed under a brand name.   

 

1.3.2.1 NS5A inhibitors – structure and proposed function 

NS5A has proven to be an attractive target for development of DAAs, due to the extensive 

interactions with host cell processes and multiple putative functions in viral replication.  A 

number of NS5A inhibitors have been developed, all with a symmetrical structure, identified 

during high-throughput replication assays and blind docking screens (Gao et al., 2010; Link et 

al., 2014; Vince et al., 2014; Gao et al., 2016).  The first such inhibitor is Daclatasvir (DCV), 

previously known as BMS-790052, although a great many NS5A inhibitors are now in use with 

increased potency and higher genetic barrier to resistance (a subject discussed in 1.3.2.3).  A 
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recent list of NS5A inhibitors is shown in Figure 1-7 (Taherkhani and Farshadpour, 2017).  DCV 

was identified by performing structure-activity relationship (SAR) analysis on an initial hit 

compound identified in a high-throughput library screen of a million molecules.  The improved 

efficacy of the lead compound, DCV, was reported alongside the prediction that it is an 

inhibitor of NS5A based on two pieces of evidence: the selection of resistance which was 

located in domain I of NS5A and the demonstration that DCV binds to NS5A.  No hypothesis as 

to the mechanism of action was initially presented (Gao et al., 2010).  During the following 

years a great number of studies have begun to elucidate the mechanism of action of NS5A 

inhibitors, a question with numerous answers because of the variety of roles that NS5A plays 

in the infected cell.  DCV is widely used in mechanistic studies as a model compound.  Initially 

the greatest effect of DCV is on assembly of virus particles (Guedj et al., 2013; McGivern et al., 

2014; Nettles et al., 2014; Boson et al., 2017), with short treatments causing a block in the 

delivery of viral genomes from replication complexes to sites of assembly where it would 

associate with core.  This bottleneck causes the accumulation of core, E2 and NS5A within 

punctate structures which are likely failed sites of assembly, from which the accumulating 

structural proteins were never successfully released (Boson et al., 2017).  There is also 

evidence that DCV causes an accumulation of viral RNA for the same reason (Guedj et al., 

2013), and sequesters NS5A in lipid droplets to also prevent particle formation (Nettles et al., 

2014). 

In addition to the effect on assembly NS5A inhibitors have also been shown to inhibit RNA 

replication in SGR assays, which have no assembly pathway.  HCV RNA declines quickly after 

DCV treatment with a half-life of 45 minutes (Guedj et al., 2013).  DCV has also been 

demonstrated to affect the cellular distribution of NS5A, unrelated to protein level and any 

effect upon RNA replication (Lee et al., 2011; Qiu et al., 2011; Chukkapalli et al., 2015; Boson et 

al., 2017).  It has been shown to alter the association of NS5A with Golgi membranes, affecting 

the association of NS5A with trans-Golgi but not ER membranes (Qiu et al., 2011) and altering 

distribution from a cytoplasmic to a perinuclear distribution (Boson et al., 2017).  An effect 

upon replication complex formation has also been demonstrated, with DCV treatment 

inhibiting the redistribution of PI4P which NS5A mediates, but only in a system in which the full 

polyprotein was expressed rather than NS5A alone, suggesting that its effect in this regard is 

upon a cooperative function with another non-structural protein, most likely NS4B 

(Chukkapalli et al., 2015).  The effect of DCV upon replication complex formation, linked to its 

distribution, was demonstrated in a number of other studies (Lee et al., 2011; McGivern et al., 

2014; Nettles et al., 2014), and the hypothesis that DCV treatment acts upon an early stage of 
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polyprotein processing and replication complex formation followed the observation that DCV 

causes the accumulation of an NS4B-5A polyprotein precursor (Lee et al., 2011; Qiu et al., 

2011; McGivern et al., 2014).  It is accepted that the most pronounced effect of DCV is upon 

the formation of new replication complexes rather than those which are already formed, and 

this hypothesis is further supported by in vitro data suggesting that the efficacy of DCV upon 

transient replication is greater than in stable SGR harbouring cells (Fridell et al., 2010).   

These effects are likely to be mediated by the nature in which DCV binds to NS5A.  DCV binding 

is thought to over-stabilise a weak homodimer and preventing the dissociation and 

reformation of dimers of different conformations which are likely to be crucial to the multiple 

functions of NS5A.  It has been demonstrated that the dimeric compound can crosslink two 

NS5A molecules into a more stable dimer and the “half” form of the compound can bind but is 

not sufficient to inhibit (Gao et al., 2010; O’Boyle Ii et al., 2013; Lambert et al., 2014).  In 

addition, the compound has been shown in multiple studies to abrogate or completely inhibit 

hyperphosphorylation, which is also known to be crucial (Lemm et al., 2010).  Abrogation of 

hyperphosphorylation of NS5A at S225 (Ross-Thriepland and Harris, 2014; Goonawardane et 

al., 2017) reduces distribution of NS5A to a perinuclear region; inhibitor treatment, which also 

abrogates hyperphosphorylation (Qiu et al., 2011) has the same phenotype (Boson et al., 2017) 

and affects the association of NS5A with trans-Golgi but not ER membranes.  The NS5A at ER 

membranes is predominately basally phosphorylated (Qiu et al., 2011) which supports these 

findings. 

The working biochemical hypothesis for DCV and other NS5A inhibitors is that these 

symmetrical compounds bind in a groove formed by the head-to-head conformation of the 

NS5A homodimer and can over-stabilise a weak structure to prevent dissociation between 

different conformations (Lambert et al., 2014; Barakat et al., 2015).  Binding of DCV may 

reduce affinity for RNA by allosterically changing the dimer structure (Ascher et al., 2015).  

Compound and RNA binding sites are in different locations of the protein structure, suggesting 

that binding of an inhibitor molecule induces a conformational change which prohibits binding 

of RNA to its own site on the protein (Targett-Adams et al., 2011). 

1.3.2.2 Efficacy of NS5A inhibitors in clinical trials 

NS5A inhibitors have displayed extraordinary efficacy in clinical trials.  For GT1a patients 

without evidence of cirrhosis or experience of prior treatment failure the inclusion of an NS5A 

inhibitor improves treatment outcomes to 95-100% efficacy, represented as SVR12 (Pol et al., 

2016).  However, it is widely reported that GT3 is much less responsive to DAAs of all classes, 
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to a greater or lesser extent (Ampuero et al., 2014; Pol et al., 2016; Johnson et al., 2017).  

Protease inhibitors, the first HCV DAA class to be licenced, are no longer used to treat GT3 due 

to almost complete inefficacy.  NS5B inhibitors such as SOF are slightly less effective against 

GT3, though still effective in clinical trials giving SVR12 rates of over 90% when used in 

combination with RBV and another DAA of a different class (Nelson et al., 2015; Leroy et al., 

2016; Poordad et al., 2016).   

The studies which have recruited GT3 patients for trials of all-oral treatment regimens 

(excluding IFN) are summarised in Table 1-2. 

Single DAAs of any class as a monotherapy, except for phase I dose-escalation studies of new 

compounds, are not widely used in clinical trials due to the risk of treatment failure and 

resistance.  Instead, combination therapies are widely used.  The combination of SOF and RBV 

is associated with SVR12 rates of 30-67% in non-cirrhotic, treatment-naïve GT3 patients 

treated for 12 weeks, increasing to 94% after 24 weeks’ treatment (Jacobson et al., 2013; 

Sulkowski et al., 2014a; Sulkowski et al., 2014b; Zeuzem et al., 2014; Molina et al., 2015; 

Nelson et al., 2015; Wyles et al., 2015; Leroy et al., 2016; Poordad et al., 2016).  Combination 

treatment of DCV and SOF leads to SVR12 rates of 89% (Nelson et al., 2015; Wyles et al., 2015) 

and 91% SVR12 rates were reported for the triple combination of DCV, SOF and RBV (Leroy et 

al., 2016).   

Clinical trials often include a number of patients with compensated cirrhosis, defined as 

cirrhosis without a decompensation or liver failure event.  Patients with cirrhosis are 

commonly reported to have a lesser response rate, with a decrease in SVR12 from 68-92% 

down to 21-83%, depending on the treatment durations and regimens used for the study.  In 

addition, prior treatment failure with IFN/RBV or a DAA is associated with a similar decrease in 

SVR12 rate, from 90-92% down to 86-88%, again depending on the conditions of the trial.  

Patients who have failed therapy with a particular class of DAA are often excluded from a 

subsequent trial which uses that class of compound.  The combination of cirrhosis and 

treatment experience is an especially difficult to treat patient group, with SVR12 rates of 62% 

with 16 weeks’ treatment with SOF and RBV (Zeuzem et al., 2014).  Recently a novel NS5A 

inhibitor, Velpatasvir (VEL) was reported by Gilead, with pangenotypic activity and SVR12 rates 

(as a combination with SOF) of 95% in healthy, treatment-naïve patients, with 89% in patients 

with compensated cirrhosis and prior treatment experience (Foster et al., 2015).   

Adverse events are usually either related to RBV treatment with some discontinuations or 

reductions, or not sufficiently severe (headache, fatigue, nausea) and usually identical to 
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placebo groups, where a placebo arm was included in the trial design.  These are likely to be 

symptoms of liver disease rather than directly related to treatment.  There was some concern 

following a FDA report that the combination Viekira Pak (Paritaprevir/ritonavir, Ombitasvir and 

Dasabuvir) might be associated with an increase in hepatic decompensation events and 

impairment in renal function (US FDA communication, 2015), but this has not been verified in a 

trial designed to test this observation (Butt et al., 2017). Factors influencing response in 

addition to genotype are usually presence of cirrhosis, treatment experience, male gender, 

older age, high baseline viral load and high body mass index (BMI).  Early virological response 

(EVR) or rapid virological response (RVR), defined as a reduction in HCV RNA to below the limit 

of quantification of the assays used in the study at 4 weeks after the start of treatment, often 

correlate with treatment response. 

Compounds 

used 

SVR12 rates in 

all patients 

(averages) 

SVR12 rates in patients 

with cirrhosis & 

treatment experience 

(averages) 

References 

SOF + RBV 61-94% 21-86% (Jacobson et al., 2013; Sulkowski et al., 

2014b; Zeuzem et al., 2014; Molina et 

al., 2015) 

SOF + DCV 72.8-90% 63-86% (Nelson et al., 2015; Wyles et al., 2015; 

Foster et al., 2016) 

SOF + DCV + 

RBV 

88-91% 83-88% (Sulkowski et al., 2014a; Leroy et al., 

2016; Poordad et al., 2016) 

SOF + LDV 61.2-64% 73-82% (with RBV) (Gane et al., 2015; Foster et al., 2016) 

VEL + SOF + RBV 85-95% (50% 

without RBV) 

89-91% (Curry et al., 2015; Gane et al., 2015; 

Foster et al., 2015) 

Table 1-2.  Summary of clinical trials inclusive of GT3 patients from 2013 – 2017.  Ranges 

calculated from data taken from the clinical studies referenced. 

 



 

30 

 

SOF RBV SOF DCV RBV SOF DCV SOF LDV VEL SOF RBV
0

20

40

60

80

100

DAA regimen

%
  S

V
R

1
2

healthy patients

Cirrhosis/treatment experienced
 

Figure 1-8.  Comparison of combination DAA regimens efficacy against GT3.  Graphic 

produced using data from Table 1-2 

 

The careful design of clinical trials to exclude high numbers of cirrhotic patients, those with 

HCC or who have undergone an orthotic liver transplant (OLT), coinfections with human 

immunodeficiency virus (HIV) or hepatitis B virus (HBV) functions as a pure assessment of the 

efficacy of a particular treatment regimen without added complication for data analysis.  

However, it is emerging from cohort based studies that the real-world usage of DAAs is likely 

to report a different outcome (Younossi et al., 2014; Foster et al., 2016), and highly controlled 

clinical trials have provided an unrealistic image of the efficacy of these compounds.  There are 

a number of important social factors which will affect real-world efficacy of DAAs, including 

treatment adherence (Younossi et al., 2015).  Studies using patient reported outcomes (PROs) 

report that health-related quality of life (HRQL) is higher in patients receiving all-oral 

treatment regimens, though all patients who achieve SVR12 have an equal overall HRQL score 

at the end of follow-up regardless of treatment regimen.  In addition, cirrhosis, previous 

experience of an adverse event and baseline mental health scores were shown to negatively 

impact HRQL and as such are likely to affect treatment adherence (Younossi et al., 2014; 

Younossi et al., 2015).   

Cohort studies are currently rare, but are increasingly reporting that real-world use of DAAs is 

resulting in lower SVR12 rates than their clinical trials would suggest.  The NHS early access 

programme (EAP), a compassionate use program designed to treat patients at high risk of 
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death or serious liver damage with DAAs, showed that lower proportions of people in the clinic 

responded to treatment than clinical trials would predict – 72.8% of patients treated with the 

triple DCV/SOF/RBV combination achieved SVR12 – and that treatment of the virus did not 

necessarily reverse the liver damage or development of HCC though most patients reported an 

increase in MELD score as a representation of improvement of liver function (Cheung et al., 

2016; Foster et al., 2016).  Indeed, 7 patients died during treatment or follow-up.  However, it 

should be noted that the patients included in this study were those with severe liver disease, 

extrahepatic manifestations or a previous decompensation event, which are often excluded 

from clinical trials, and hence healthier patients would be predicted to respond to a higher 

degree.  A cohort study in Germany (Steinebrunner et al., 2015) also found lower SVR rates 

than reported in clinical trials when treating patients with SOF/RBV and IFN.  SVR rates for GT3 

were reported as 92%, which exceeds those from the EAP, however this is expected due to the 

inclusion of IFN which is more effective against GT3 infection.  The study reported that 69% 

and 58% of relapsers were cirrhotic and treatment-experienced, respectively.   

 

1.3.2.3 Resistance to NS5A inhibitors 

Despite showing excellent potency in replicon-based screens with EC50 ranging from 5-50pM in 

GT1 (Fridell et al., 2010; Gao et al., 2010), resistance develops readily.  A number of NS5A 

inhibitor RAS have been identified in GT1a, 1b and 3a clinical isolates from treatment failure 

and relapse patients and from in vitro selection assays, clustering around residues 28-31 and 

93 of NS5A domain I, and these have been corroborated in a great number of studies.  The key 

RAS identified during in vitro studies using GT1a, 1b and 3a SGRs and associated culture 

systems is shown in Table 1-3, Table 1-4 and Table 1-5 respectively.  References are contained 

therein.  It is interesting to note that RAS in GT1a and 3a confer a lesser degree of resistance to 

DCV as a fold-change over wild-type, and a much greater degree of resistance in GT1b.  Fold 

changes in resistance for GT3a are much lower than for GT1 which potentially reflects baseline 

resistance.  A double mutation at residue 30 or 31, with a polymorphism at Y93, is associated 

with the greatest degree of resistance, between 4000 (Q30R-Y93C in GT1a to DCV) and over 

500,000 (L31V-Y93H in GT1b to LDV).   

As expected for inhibitors within the same class, RAS which were selected by DCV are cross-

resistant to LDV, but no cross-resistance has been observed for other classes of DAA, IFN or 

RBV.  Indeed, RAS may be slightly more sensitive to IFN than wild-type sequences though the 

reason for this is not known. 
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The prevalence of each RAS is also a popular research area, with a consensus that NS5A RAS 

exist in the population at low frequencies, with some variation based on genotype and 

geographical location, contributing to low-level resistance.  High-level RAS such as Y93H vary 

widely in prevalence based on study up to 31% for a Y93 polymorphism in GT1b (Suzuki et al., 

2012; Paolucci et al., 2013; Miura et al., 2014; Walker et al., 2015; Patiño-Galindo et al., 2016; 

Uchida et al., 2016; Eltahla et al., 2017); combinations of RAS which confer the highest levels of 

resistance such as a double substitution at residues 30 or 31, and 93 – the natures of which 

differ greatly by genotype – found rarely (usually <5%) in untreated populations (Miura et al., 

2014).  Where pre-existing in the population NS5A RAS are stable, while a study found that 

NS3 and NS5B RAS fluctuate over time, emerging and disappearing at different time points 

(Eltahla et al., 2017; Kai et al., 2017).   

Substitution Average EC50 fold 

change [standard 

deviation] (drug) 

Fitness (% of wild-

type) [standard 

deviation] 

References 

Q30R 
860 [470] (DCV).   

630 (LDV) 

41.7 [1.2] (Gao et al., 2010; Fridell et al., 2011; Sun 

et al., 2012; Wang et al., 2012; Wang et 

al., 2013) 

Q30E 
25,000 (DCV).   

950 (LDV) 

130 (Wang et al., 2013; Cheng et al., 2016) 

L31V 
2500 [1700] (DCV) 98 [38] (Gao et al., 2010; Fridell et al., 2011; 

Wang et al., 2012; Wang et al., 2013; Liu 

et al., 2015) 

L31M 
200 (DCV).   

550 (LDV) 

 (Wang et al., 2013) 

Y93H 
3400 [2300] (DCV).   

2500 [1200] (LDV) 

12 [10] (Fridell et al., 2011; Scheel et al., 2011; 

Wang et al., 2012; Wang et al., 2013; Liu 

et al., 2015; Cheng et al., 2016) 

Y93C 1900 (DCV) 211 (Gao et al., 2010) 

Q30R-L31M 200,000 54 (Wang et al., 2013) 

Q30R-Y93H 57,000 6 (Fridell et al., 2011; Wang et al., 2012) 

Q30D-Y93N 22,000 15 (Liu et al., 2015) 

Q30R-Y93C 
4200 (DCV).   

1000 (LDV) 

 (Wang et al., 2013) 

Table 1-3.  Effect of resistance-associated substitutions in GT1a on NS5A inhibitor efficacies 
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Substitution Average EC50 fold 

change [standard 

deviation] (drug) 

Fitness (% of wild-

type) [standard 

deviation] 

refs 

L31F 15 (DCV) 0.1 (Liu et al., 2015) 

L31V 
26 [2.3] (DCV).   

490 (LDV) 

151 [7.5] (Fridell et al., 2010; Gao et al., 2010; 

Fridell et al., 2011; Wang et al., 2012; 

Nitta et al., 2016) 

Y93H 

30 [22] (DCV).  

3500 [3133] (LDV) 

22 [13] (Fridell et al., 2010; Gao et al., 2010; 

Lemm et al., 2010; Fridell et al., 2011; 

Wang et al., 2012; Liu et al., 2015; Nitta 

et al., 2016) 

L31V-Y93H 
22,000 [18,000] (DCV).  

540,000 (LDV) 

40 [14] (Fridell et al., 2010; Nitta et al., 2016) 

Table 1-4.  Effect of resistance-associated substitutions in GT1b on NS5A inhibitor efficacies 

 

Substitution Average EC50 fold 

change [standard 

deviation] (drug) 

Fitness (% of wild-

type) [standard 

deviation] 

Refs 

A30K 52 [11] (DCV).   

12 (LDV) 

14 (Hernandez et al., 2013; Wang et al., 

2013) 

L31F 230 [130] (DCV) 152 (Wang et al., 2013) 

Y93H 1800 [881] (DCV).   

30 (LDV) 

33 [15] (Scheel et al., 2011; Hernandez et al., 

2013; Wang et al., 2013; Kylefjord et al., 

2014; Liu et al., 2015) 

Table 1-5.  Effect of resistance-associated substitutions in GT3a on NS5A inhibitor efficacies 

 

The locations of these residues have been mapped onto putative homodimer structures for 

NS5A domain I, and amino acids 28-30 may form a binding groove into which DCV is predicted 

to bind (Lambert et al., 2014; Barakat et al., 2015), as shown in Figure 1-9.  The precise location 

of the proposed binding groove so as to include the Y93 residue is not universally agreed, 

though Barakat and colleagues predicted using a molecular dynamics simulation that DCV 

binds in the interface contacted by Y93 and R30.  Mutation of residues 27 and 28 would 

change the conformation of the R30 side chain and Y93H would displace the hydrophobic 

linker of DCV and preclude formation of the hydrogen bond with R30.  A different study 

suggests that this residue does not bind directly to the drug but instead is involved in a 

communication link with the residues at locations 28-30, and a change of this residue results in 
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a downstream effect in the ability of the drug to bind to its putative binding site (Lambert et 

al., 2014).  This is in agreement with observations that DCV and similar compounds still bind to 

a resistant variant and that binding of drug to protein is not sufficient for inhibition (Sun et al., 

2015; O’Boyle et al., 2016). 

 

Figure 1-9.  NS5A dimer structures with Y93 shown in red.  PDB structures 3FQM and 1ZH1 

respectively 

 

There is increasing evidence that NS5A RAS can be associated with a fitness cost to replication 

which is not apparent in the presence of the drug but results in a decrease in replication 

capacity in the absence of the drug.  In vitro studies frequently show that such a fitness cost is 

only associated with substitutions of Y93H, with RAS at L31 to V in GT1 increasing replication 

capacity (summarised in Table 1-3, Table 1-4 and Table 1-5 and references therein).  Y93H is 

associated with approximately 20-30% replication capacity of the wild-type, though a single 

study using infectious virus showed that Y93H mutants have a greater infectivity (Nitta et al., 

2016).  Given the effects of RAS on the structure of NS5A which was described above a fitness 

cost is to be expected, however it has also been shown that RAS which emerge on treatment 

are stable after the cessation of therapy for several years (Yoshimi et al., 2015).  A mechanism 

for the stabilisation of RAS in the absence of selection pressure has not been suggested, 

though double combinations of Y93H with a L31 or Q30 RAS tend to have a slightly increased 

replicative fitness compared to the Y93, and a multiple combination of three NS5A RAS 

identified in the BOSON trial was recently demonstrated to have wild-type replication capacity 

(personal communication).  In addition, it has been suggested that the persistence of RAS 

could be linked to the immunological selection pressure within the infected patient (Eltahla et 
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al., 2017).  This is of especial interest following a number of studies which highlight an 

association between Y93H prevalence at baseline and IFNλ4 SNP genotype.  Patients with a 

major genotype (TT at the rs8099917 locus), which is indicative of a favourable response to IFN 

treatment, are more likely to have a Y93H mutation at baseline, and with this a higher baseline 

viral load (Miura et al., 2014; Akamatsu et al., 2015; Peiffer et al., 2016; Uchida et al., 2016).   

Given the quasispecies nature of a HCV population within an infected cell, substitutions which 

confer resistance to NS5A inhibitors will naturally occur within the population, and are 

amplified when the selection pressure of the drug is applied.  The genetic barrier to resistance 

refers to the number of nucleic acid substitutions which results in a RAS, or combination of 

RAS: the barrier to resistance for NS5A inhibitors such as DCV is very low.  For NS5A inhibitors, 

combinations are possible which confer a high level of resistance but the single Y93H 

mutation, generated by a single codon change from TAC to CAC, gives a change in EC50 of 

several thousand-fold.  In addition to being generated by a single nucleic acid substitution, the 

Y93H RAS requires a mismatch of U:G, which is the mismatch made most frequently by the 

NS5B polymerase, resulting in the T to C change – a transition, also more frequently made by 

the NS5B polymerase than a transversion (Powdrill et al., 2011).  Thus, this single RAS has a 

lower genetic barrier than one which would require a less readily-made mismatch of the 

polymerase. 

The role of these RAS in treatment response is complex.  Clinical trials frequently show that 

prevalence of a RAS reduces the likelihood of achieving SVR though the link is not a causal one.  

Patients without a RAS are capable of developing one, or a combination, during therapy and 

patients with a RAS at baseline, including Y93H, have been shown to achieve SVR (Pawlotsky, 

2016).  A study of the role of emergence of resistance and pre-existence demonstrated that 

there are two distinct populations of RAS which occur at the end of treatment – those who 

have a RAS at baseline are likely to maintain it and may acquire additional substitutions, all of 

which are largely stable.  In contrast RAS which emerge on treatment are likely to be more 

transient in nature, and do not persist to the same extent (Kai et al., 2017).  The correlation is 

doubtless complicated by patient factors which are known to affect treatment response such 

as presence of cirrhosis, baseline viral load (though this could be linked to a RAS, as described), 

BMI, gender and race.  However, the reason for the inability of in vitro inhibitor sensitivity data 

to recapitulate clinical trial efficacy is not known, nor is it known whether baseline sequencing 

of patients is of greatest benefit to predict treatment responses.  Also of interest in this 

respect is a study which showed that the passage of HCV 100 times in Huh7.5 cells, in the 
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absence of DAAs, increasing the replication capacity, induced resistance to multiple classes of 

DAA in the complete absence of any RAS (Sheldon et al., 2014).   

During the investigation of RAS and their phenotype an interesting observation was made, 

linked to the demonstration that binding to NS5A is not sufficient to cause inhibition.  A pair of 

studies have identified that the resistant phenotype can be reversed by adding a second 

compound to DCV, one which does not have a pharmacological effect of its own; this is 

suggested to resensitise the RAS (Sun et al., 2015; O’Boyle et al., 2016).  The model for this 

proposed by the authors is that DCV binding to a multi-NS5A structure induces a conformation 

change, inhibiting replication.  Resistant NS5A is not sensitive to this change but the addition 

of the synergistic compound acts with DCV to enhance the effect.  

 

1.4 Thesis aims 

The aim of this project was to use in vitro tools to consider the profound differences which 

exist between GT3 and other genotypes of HCV, primarily where such differences are involved 

in the response to NS5A inhibitors.  This work intended to investigate such differences in NS5A 

inhibitor sensitivity in the hope of identifying why the treatment efficacy against GT3 is so 

profoundly different.  In addition, this work aimed to investigate the molecular mechanisms 

underpinning the development of hepatic steatosis in GT3-infected patients using these in 

vitro tools.  To achieve this, the intention was to exploit and develop existing in vitro culture 

systems, primarily the S52 SGR but also involving full-virus culture systems, where available.   

The initial purpose of the project was to utilise the wealth of resources in the HCV Research UK 

biobank to apply any findings as to the nature of such genotype differences in an 

epidemiological approach.  The quasispecies nature of the infected individual could be 

translated into this in vitro system in the form of chimera SGR and virus constructs to 

investigate the role of genetic diversity in the degree of response to antiviral therapy and to 

begin to address the complexity of NS5A inhibitor resistance and how it impacts treatment 

response.  It is feasible that further insight into the role of RAS could allow the prediction of 

patients who are more likely to respond to treatment, and use this information to guide 

treatment regimens in a personalised approach.  In a similar vein, insight into the molecular 

nature of hepatic steatosis in GT3-infected patients could provide avenues for therapeutic 

intervention, to treat the symptoms in parallel with treatment of the cause.



 

37 

 

Chapter 2: Materials and methods 
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2.1 Materials 

2.1.1 Plasmids 

S52 feo (both AII and SHI variants) SGRs were obtained from C. Rice (Saeed et al., 2012).  Con1 

SGRs with wild-type or CpG/UpA-low luciferase were obtained from P. Simmonds (Witteveldt 

et al., 2016).  Insertion of CpG/UpA-low luciferase into S52 feo required mutation of the last 

three residues of the 19-residue section of core protein, immediately upstream of the 

luciferase start codon, from RRP to RRA to introduce a unique AscI restriction site; translation 

of the reporter was not compromised.  Primer sequences available on request.  Plasmid 

containing hSEC14L2 for lentiviral transduction was obtained from P. Simmonds.   

2.1.2 Cell lines and reagents 

Huh7.5 cells (Blight et al., 2002) were maintained in DMEM containing 4.5g/L glucose, 2mM 

glutathione and sodium pyruvate (Lonza) supplemented with 10% FBS (Sera laboratories 

international), penicillin/streptomycin (Sigma) and non-essential amino acids (Lonza) in a 

humidified 37oC, 5% CO2 incubator.  Huh7.5 cells stably transfected with Parainfluenza virus 5 

(PIV-5) V protein (Huh7.5-V) were obtained from S. Griffin.  Huh7.5-V cells were maintained in 

DMEM as described above with 50 ng/mL G418 (neomycin).  

2.1.3 Antibodies 

Antibodies used for immunoblot and immunofluorescence assays, with corresponding 

concentrations, are shown in Table 2-1. 
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Primary antibody Dilution used Corresponding 

secondary antibody 

Dilution used 

Anti-NS5A serum 1:5000 Anti-sheep 800 1:15,000 

Anti-β-actin (Abcam) 1:20,000 Anti-mouse 680 1:15,000 

Anti-V5 tag (Cell Signalling 

Technologies) 

1:1000 Anti-rabbit 800 1:15,000 

Anti-AMPK-T172(Cell Signalling 

Technologies) 

1:1000 Anti-rabbit 800 1:15,000 

Anti-ACC (Cell Signalling 

Technologies) 

1:1000 Anti-rabbit 800 1:15,000 

Anti-EGFR (Santa Cruz 

Biotechnology) 

1:500 Anti-mouse 680 1:15,000 

Anti-LC3BII (Abcam) 1:1000   

Anti-Akt (Cell Signalling 

Technologies) 

1:1000 Anti-rabbit 800 1:15,000 

Anti-GAPDH 1:10,000 Anti-mouse 680 1:15,000 

    

Table 2-1.  Antibodies used for immunoblot assays 

 

2.1.4 Clinical isolates 

Samples from were obtained from the HCV Research UK Biobank.  Patients with HCV GT3 were 

enrolled in the NHS Extended Access Program (Foster et al., 2016). 

 

2.2 Methods 

2.2.1 DNA and RNA manipulation methods 

2.2.1.1 Plasmid DNA manipulation 

2.2.1.1.1 Amplification and purification of plasmid DNA 

Plasmid DNA was transformed into z-competent DH5α E. coli cells and recovered for 1h at 37°C 

in LB medium before being plated onto agar plates containing the appropriate selection 

antibiotic before being cultured for two days at 30°C.  Single colonies were picked into LB 

medium containing the appropriate antibiotic and cultured overnight at 30°C with 200 rpm 
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agitation.  Cultures were centrifuged at 4000 xg for 15 minutes at 4°C to pellet cells and 

extracted using the GeneJET plasmid miniprep/midiprep alkaline lysis and purification kit 

(Thermo Fisher).  Plasmid DNA was stored as glycerol preparations in 20% (v/v) glycerol in LB 

medium at 80°C, or in water at -20°C. 

2.2.1.1.2 Site-directed mutagenesis 

Site directed mutagenesis (SDM) was performed using the QuickChange protocol from 

Stratagene.  Briefly, 25 ng plasmid DNA was amplified using complimentary primers designed 

to anneal at the mutation site and containing the mutated nucleotide.  Amplifications were 

performed using Pfu Ultra (Agilent) according to the manufacturers’ instructions with the 

following exception: an annealing temperature of 55°C was used for the first five cycles 

followed by 58°C for the following 13 cycles.  The PCR product was digested with DpnI to 

degrade the methylated input DNA and transformed into DH5α cell for screening on antibiotic 

agar plates.  More recently, SDM was performed using the Q5 kit (NEB) according to the 

manufacturer’s instructions.  This involved the design of primers that amplified a linear 

product which was then ligated before DpnI digestion and transformation as described above. 

2.2.1.1.3 Molecular subcloning 

Molecular subcloning was carried out according to standard techniques.  Plasmid DNA was 

digested using NEB restriction enzymes according to the manufacturer’s instructions, with a 

ratio of 2 units of enzyme per 1 μg DNA and digested for 1h for diagnostic digests and 2h for 

subcloning applications.  Digested DNA was resolved on 0.7% agarose gel and DNA fragments 

were purified from excised bands using a commercial kit (Qiagen).  DNA fragments were 

ligated at a 3:1 molar ratio of insert to vector using T4 DNA ligase (NEB).  Ligation reactions 

were transformed into DH5α for screening by antibiotic agar plates as described.  Modified 

SGRs were verified by sequence analysis from Beckman Coulter genomics.   

2.2.1.2 RNA synthesis and SGR electroporation in cultured cells  

SGR plasmids were linearised with XbaI (New England Biolabs) and linear SGR DNA was 

transcribed using a T7 transcription kit (Promega) according to the manufacturer’s 

instructions.  Integrity and concentration of RNA transcripts was verified using 1% MOPS-

agarose-formaldehyde gel.  2 µg RNA transcripts were transfected into 2x106 cells in diethyl 

pyrocarbonate (DEPC)-phosphate-buffered saline (PBS) by electroporation using a square-

wave protocol at 260 V for 25 ms.   
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2.2.1.3 RNA extraction from cells and non-quantitative PCR  

Cells were harvested in TRIZol (Invitrogen Life Technologies) and RNA purified according to 

manufacturers’ instructions.  1 µg RNA was reverse-transcribed using Superscript II (Invitrogen) 

and random hexamer primers.  2 µL of this cDNA was used as a template for PCR amplification 

using Vent polymerase according to the manufacturers’ instructions.  DNA fragments were 

resolved on 1% agarose gel.   

2.2.1.3.1 PCR sequencing of SGR RNA 

For Sanger sequencing of SGR RNA, primer pairs (Table 2-4) were designed to amplify 800-900 

bp overlapping fragments which were sequenced as a single consensus by Beckman Coulter 

Genomics (Genewiz) then aligned on DNA Dynamo (Blue Tractor Software) using the S52 SGR 

sequence as a reference. 

2.2.1.3.2 PCR amplification of NS5A domain I coding region from patient serum 

samples 

Virus RNA from HCV-infected patient serum samples (outlined in 2.1.4) was extracted using 

the Qiagen QIAmp Virus RNA kit, according to the manufacturers’ instructions.  Briefly, 140 µL 

serum was extracted and eluted twice in 30 µL elution buffer.  12 µL of this eluate was reverse 

transcribed using Superscript III (Invitrogen) and gene-specific reverse primer (NS5A_Nest_R, 

detailed in Table 2-2).  2 µL cDNA was used as a template for the first step of a nested PCR 

using Vent polymerase according to the manufacturers’ instructions with the addition of 2 mM 

MgCl2, using the Nest_F and Nest_R PCR primers detailed in Table 2-2.  2 µL of this first-step 

cDNA was used as a template for the second step of nested PCR without the addition of MgCl2, 

using the NS5A_Bsu_F and NS5A_Psp_R primers.   

2.2.1.4 Preparation of shuttle vector for insertion of NS5A domain I from patient 

sequences 

The S52 SGR was modified to contain a pair of unique restriction sites, Bsu36I and PspXI, 

flanking the NS5A domain I coding region to allow insertion of the corresponding sequence 

amplified from patient serum samples detailed in 2.1.4.  The experimental strategy required 

the expansion of SGR DNA containing NS5A from patient sequences as a mixture to maintain 

the quasispecies nature of the clinical NS5A sequence.  To ensure that any carry-over of vector 

from the ligation was not replication competent a short stuffer fragment was inserted.  To 

achieve this, short, complimentary oligonucleotides were designed (Table 2-3), to anneal 

together with overhanging sequences at either end corresponding to the restriction sites at 

the 5’ and 3’ ends of NS5A domain I: Bsu36I and PspXI respectively.  Oligonucleotides were 
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diluted to 50 µM in T4 DNA ligase buffer, mixed in a 1:1 ratio and heated to 95°C in a heat 

block.  The heat block insert was removed from the heating module and left to cool for 

approximately 60 minutes until it had reached room temperature, after which it was ligated 

into the S52 SGR. 

Primer name Sequence Tm (°C) 

NS5A_Nest_F CGCCATACTATCTCCGGGGC 60 

NS5A_Nest_R CCTTCACCCTAGAC 44 

NS5A_Bsu_F CACAAGTCTCCTCAGGCGGTTACACAAG 62 

NS5A_Psp_R GGAGGGGACCCTCGAGCAAGGCGGCGC 73 

Table 2-2.  Primer sequences for reverse-transcription and amplification of NS5A from 

patient serum samples 

 

Olio name Sequence Tm (°C) 

Stuffer_frag_F TCAGGGCGATACGCCGAACGATCGCAC 68 

Stuffer_frag_R TCGAGTGCGATCGTTCGGCGTATCGCCC 68 

Table 2-3.  Sequences of oligonucleotides to produce the stuffer fragment to replace NS5A 

domain I. 
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Primer name Sequence Tm (°C) 

NS3-5B_1F TGCTTTACATGTGTTTAGTCGAGGTTAAAAAAACG 59 

NS3-5B_1R GGTCGGGGCATGAAGGTACCCTACTTGAT 62 

NS3-5B_2F CAGCGGTAAGAGCACAAAGGTCCCGGCCGC 69 

NS3-5B_2R CCCGTACGGCCACGACGTTGGCTGCGGGAAA 71 

NS3-5B_3F TACCGATATGTTGCCCCGGGTGAAAGACC 63 

NS3-5B_3R CCTTGAACTGGTGGGCGATTGCCTGAGC 65 

NS3-5B_4F TAGGACTGCTGCAGCGAGCCACCCAGCAAC 69 

NS3-5B_4R CCGCCGGAGCAGACTTGTGACAGTTAGAGAAC 65 

NS3-5B_5F GAAGACTACCCAAGCCCTTGCAGCGGCGATTGG 68 

NS3-5B_5R GCCGTCTCGGCGGTGATATGAGAAGGGTCTCTC 67 

NS3-5B_6F TCCCCTCCATCAGAGGCAAGCTCATCCGCC 68 

NS3-5B_6R CCCGGCTCTCCCTCGAGAGGAGGCATGG 68 

NS3-5B_7F TCGACACACAGTCCAGCACTACCTCCAGG 64 

NS3-5B_7R CCCCCAGATCAGGGTACACAATGAGGCGA 64 

NS3-5B_8F TGGCGAAGAACGAGGTGTTTTGTGTGGACC 64 

NS3-5B_8R CGTGCTACGGAGACGTTAGAGGAGCAAGATG 63 

NS3-5B_9F GACCAGGTACTCTGCTCCACCCGGAGATGC 66 

NS3-5B_9R GGAGTGTTATCCTACCAGCTCACCGAGCTGGC 66 

Table 2-4.  PCR amplification primers for Sanger sequencing of the S52 SGR.  F and R refer to 

forward and reverse primers to be used in pairs. 

 

2.2.1.5 Next generation sequencing (NGS) 

Viral RNA was extracted from cells stably expressing S52 SGR using the RNeasy plus mini kit 

(Qiagen). PCR amplification and NGS was performed as previously described (Thomson et al., 

2016) with modifications.  Briefly, the SGR was amplified using HCV gt3a genotype specific 

primers for four overlapping amplicons spanning the HCV gt3a non-structural genes.  The 

forward primers for the NS3_4A fragment were redesigned to be complimentary to the EMCV 

IRES region of the SGR (supplementary table – for primers). SGR RNA was amplified by single-

step RT-PCR (Superscript III Reverse Transcriptase, Invitrogen), followed by nested or semi-

nested PCR. PCR products were purified using the QIAQuick kit (QIAGEN) and quantified by 

Qubit® dsDNA Broad Range and High Sensitivity Assay Kits and the Qubit® 2.0 Fluorometer (Life 

Technologies). Alternate amplicons were pooled in two reactions of equimolar amounts and 1 
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ng/μl of the pooled DNA was used for library preparation (Nextera XT DNA sample preparation 

kit; Illumina) according to manufacturer's instructions. Indexed libraries were sequenced using 

Illumina MiSeq deep sequencing reagent kit v2 (Illumina). 

2.2.1.6 Quantitative PCR 

Following extraction and quantification of RNA from SGR-harbouring cells, 200 ng was used as 

a template for a Taqman probe-based, one-step qRT-PCR assay as described previously 

(Takeuchi et al., 1999).  A standard curve of in vitro-transcribed S52 SGR RNA, with a 

concentration verified by MOPS-agarose-formaldehyde gel, was used to convert cycle 

threshold values (Ct) to relative RNA copies; normalised to the amount of input RNA. 

 

2.2.2 Cell culture methods 

2.2.2.1 Selection of stable SGR-harbouring cells 

Selection of stable, SGR-harbouring cells, 106 electroporated cells were seeded into 10 cm2 

dishes and selected with 50 ng/mL G418 (neomycin) from 48 hours post-electroporation.  

Surviving cells were pooled into polyclonal popluations for further analysis.   

2.2.2.2 Transient replication assays 

Electroporated cells were seeded in white 96-well plates at a density of 10,000 cells per well in 

4 assay replicates for each.  Following incubation cells were washed with PBS and lysed in 30µL 

passive lysis buffer (PLB, Promega).  Luciferase activity was measured on a FLUROstar Optima 

plate reader (BMG Labtech) primed with Luciferase Assay Reagent I (LAR I, Promega).   

2.2.2.3 Colony formation assay 

For colony formation assays, 1x105 electroporated cells were seeded in 6-well plates and 

selected with G418 as described above from 48 hours post-electroporation.  After three weeks 

surviving cells were stained with crystal violet (10% crystal violet with 4% PFA in PBS) and 

counted manually. 

2.2.2.4 Lentiviral transduction and maintenance of modified cell lines 

Lentiviruses were generated using a containing hSEC14L2 as reported by (Witteveldt et al., 

2016) and both Huh7.5 and Huh7.5-V cell lines were separately transduced.  Transduced 

Huh7.5 cells were selected with 2 µg/mL puromycin; surviving cells were pooled into a 

polyclonal population and were termed Huh7.5-SEC14 cells.  Transduced Huh7.5-V cells were 

selected with both G418 and puromycin; cells surviving double selection were pooled into a 
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polyclonal population and termed VSEC cells.  Huh7.5-SEC14 cell lines were maintained in 1 

µg/mL puromycin and VSEC cells were maintained in 50 ng/mL G418 and 1 µg/mL puromycin. 

2.2.2.5 Antiviral treatment 

2.2.2.5.1 Antiviral treatment of stable, SGR-harbouring cells 

8x103 cells of each type were seeded into white 96-well plates and treated with indicated 

concentrations of Daclatasvir, Ledipasvir (both SelleckChem), Sofosbuvir (Gilead) or RBV 

(fluorochem ltd) in duplicate with 0.25% (v/v) final DMSO for 48 hours before being harvested 

for luciferase as described above. 

2.2.2.5.2 Antiviral treatment of transiently-replicating SGR 

VSEC cells (described above) were electroporated with 2 µg SGR RNA transcripts and 104 

electroporated cells were seeded into white 96-well plates.  Cells electroporated with Con1 

and JFH-1 were treated with indicated concentrations of each compound in duplicate with 

0.25% (v/v) final DMSO at 4 hours post-electroporation for 72 hours.  Cells electroporated with 

S52 wild-type and Y93H were treated at 24 hours post-electroporation for 72 hours, following 

preliminary observation that replication is not reliably detected until 96 hours post-

electroporation.  This allowed a constant treatment duration of 72 hours for all electroporated 

cells.  Cells were harvested for luciferase after 72 hours treatment as described above.   

2.2.2.6 MTT assay  

Electroporated or stable SGR-harbouring cells were seeded into clear 96-well plates for 

antiviral treatment as described above.  Following the indicated incubation periods drug media 

were aspirated and replaced with MTT reagent (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) at 1 mg/mL (w/v) in serum-free DMEM.  Plates were incubated 

at 37°C for one hour; after this period the MTT reagent was aspirated and cells lysed in 100 μL 

DMSO to dissolve the formazan pigment.  Absorbance was measured at 570 nm. 

2.2.2.7 Treatment with AMPK inhibitors 

SGR-harbouring cells were seeded at a density of 2x105 cells per well of a 6-well plate and 

serum-starved for 24h in DMEM supplemented with penicillin/streptomycin and non-essential 

amino acids.  Cells were then treated with 0, 1 or 10 mM metformin (Sigma) for 48 hours 

before being harvested for western blotting in 200 µL PLB supplemented with protease and 

phosphatase inhibitors.  Western blotting was carried out as described below and luciferase 

activity was measured in 20 µL of the PLB lysate. 

https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Methyl
https://en.wikipedia.org/wiki/Thiazole
https://en.wikipedia.org/wiki/Phenyl
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2.2.2.8 Cell growth assay 

Cells were seeded at a density of 1x105 cells per well of a 6-well plate and cultured for 24, 48 

or 72 hours before being trypsinised from the well and counted using trypan blue exclusion. 

2.2.3 Protein detection and visualisation methods 

2.2.3.1 Immunoblotting 

Cells were washed twice in PBS and lysed in Glasgow Lysis Buffer (GLB; 1% [vol/vol] Triton X-

100, 120 mM KCl, 30 mM NaCl, 5 mM MgCl2, 10% [vol/vol] glycerol, 10 mM PIPES [piperazine-

N,N′-bis(2-ethanesulfonic acid)]-NaOH, pH 7.2, with protease and phosphatase inhibitors), and 

clarified by centrifugation at 2,800 × g for 5 min at 4°C.  Protein concentration was measured 

for normalisation by bicinchoninic acid assay (BCA, Pierce).  Proteins were resolved on 7.5% 

polyacrylamide gel before being transferred to polyvinylidene difuoride (PVDF) membrane.  

Membranes were blocked in 50% (v/v) Odyssey blocking buffer (LI-COR) in Tris-buffered saline 

(TBS) and incubated in primary antibodies overnight at 4˚C and infra-red tagged secondary 

antibodies (LI-COR) at room temperature for one hour.  Membranes were imaged using a LI-

COR Odyssey infra-red imaging system. 

2.2.3.2 Immunofluorescence 

Cells were washed once in PBS, fixed for 10 minutes in 4% (w/v) paraformaldehyde (PFA) and 

permeabilised in 0.1% (v/v) Triton X-100 in PBS.  Fixed cells were immunostained with anti-

NS5A (as described above) at 1:2000 or BODIPY at 1:5000, washed three times in PBS, then 

subjected to a secondary stain of anti-sheep (488 nm, AlexaFluor) before being washed three 

times more.  Cells were mounted using Prolong Gold antifade mountant with DAPI and imaged 

using a Carl Zeiss LSM 700 inverted microscope and Zeiss Zen 2012 software. 

2.2.3.3 Flow cytometry 

Cells were washed once in PBS by centrifugation, fixed for 10 minutes in 4% (w/v) 

paraformaldehyde (PFA) and permeabilised in 0.1% (v/v) Triton X-100 in PBS.  Fixed cells were 

washed in PBS then immunostained with anti-NS5A or BODIPY (as described above) at 1:2000 

and 1:5000 respectively followed by anti-sheep (488 nm, AlexaFluor).  All incubation and wash 

steps were carried out in suspension followed by centrifugation at 1000x G for three minutes.  

Stained cells, and appropriate unstained and monostained controls, were resuspended in PBS 

and analysed using a BD LSR Fortessa flow cytometer.  Cells were gated based on forward and 

side scatter, to eliminate excessively large or small objects, and sensitivity parameters were 

optimised for each cell type using the unstained and monostained controls.  Data were 

analysed using DiVa6 software 
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2.2.4 Infectious virus methods 

2.2.4.1 Culture of infectious virus 

Huh7.5 or VSEC cells were electroporated with 10 µg RNA transcribed from infectious virus 

plasmid DNA as described above.  Electroporated cells were resuspended in 10 mL complete 

DMEM supplemented with 2.5 mM HEPES and virus supernatants were aspirated every 48 

hours for titration. 

2.2.4.2 Titration of infected cells 

Huh7.5 cells were seeded at a density of 8x103 cells in each well of a clear, 96-well plate and 

left to settle for 15 hours.  Virus supernatants were serially diluted 1/2 and 100 µL of each 

dilution including undiluted supernatant was added to the seeded Huh7.5 cells before being 

incubated for 48 hours.  Infected cells were washed with PBS, fixed with 4% paraformaldehyde 

and permeabilised with 0.1% Triton-X 100.  Fixed cells were immunostained with anti-NS5A (as 

described above) at 1:2000 and anti-sheep (594 nm, AlexaFluor) at 1:500.  Immunostained 

cells were imaged using the Incucyte ZOOM system (Essen Bioscience) using a 10x objective 

and the Incucyte software was used to calculate the number of red fluorescent objects from an 

average of four non-overlapping fluorescent images.  This was extrapolated to calculate the 

number of red fluorescent objects in each well and hence as the number of focus forming units 

(ffu) per 100 µL diluted supernatant.  FFU/mL of each undiluted supernatant was calculated by 

adjusting for dilution and calculating an average of each dilution.
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Chapter 3: Development of Cell 

Culture Systems for HCV Genotype 

3 

  



 

49 

 

3.1 Introduction 

Development of new therapies has relied upon the sub-genomic replicon (SGR) system which 

was first reported for GT1b (Lohmann et al., 1999). Subsequently the efficiently-replicating 

GT2a isolate JFH-1 (Kato et al., 2003) has become widely used throughout the field of HCV 

research.  Initially the SGR constructs contained a neomycin phosphotransferase selectable 

marker allowing the establishment of stable cell lines harbouring the SGR. However, critical for 

the development of DAAs was the availability of a transient, luciferase-based, SGR.  Such a 

system does not yet exist for GT3.  Three separate GT3 SGRs derived from two different 

patient isolates have been reported but none of these show robust levels of replication in 

short-duration, transient experiments.  The S52 SGR replicates to high levels during selection 

and generates levels of HCV RNA comparable to JFH-1 but has not been demonstrated to 

robustly replicate transiently using a luciferase reporter (Bukh et al., 1993; Saeed et al., 2012).  

The S310/A SGR has been shown to replicate transiently but luciferase levels were several 

orders of magnitude lower than the input translation (Saeed et al., 2013), and another S52-

based SGR which was culture-adapted in Lunet cells showed detectable levels of replication at 

7 days post-transfection (Yu et al., 2013).   

The majority of studies with GT3 have thus far used chimeric SGRs, in which fragments of GT3 

isolates or consensus sequences were used to replace the corresponding coding regions in 

efficiently-replicating GT1 or GT2 backbones.  These have been used to show differential 

sensitivity to NS5A and NS5B inhibitors in vitro of GT3 sequences compared to wild type 

controls (Lanford et al., 2006; Wang et al., 2013; Kylefjord et al., 2014).  Chimera SGRs are 

limited in that they do not allow study of the cognate interactions between viral proteins in 

the replication complex and this may provide a hindrance to development of combination 

therapies.  An intact (non-chimeric) GT3 SGR that replicates transiently would be of benefit to 

understand the baseline resistance of GT3 to the DAAs, and for development of new DAAs 

with efficacy against GT3. 

Infectious virus systems are immensely important in translating the findings of experiments 

using SGRs into a more clinically relevant format.  SGRs allow the study of genome replication 

in a non-infectious system but cannot take into account the entry, genome uncoating, genome 

delivery, assembly and egress stages of the virus life cycle.  The relationship between HCV and 

host cell lipids, notably the organisation of the membranous web, lipid accumulation and 

influence in autophagy pathways (discussed in chapter 5) is tightly associated with cellular 

lipids (Alvisi et al., 2011).  Though the non-structural proteins play roles in these pathways, it is 
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reported that accumulation of lipids in infected cells requires the core protein, which SGRs lack 

(Barba et al., 1997; Jhaveri et al., 2009; Kim et al., 2009). 

Infectious virus systems for GT3 almost exclusively consist of chimeras, with the GT3 structural 

and nonstructural proteins expressed in various combinations with the remaining genome 

regions from JFH-1, which replicates to much higher levels.  The first of these contained the 

core, E1, E2, p7 and NS2 of S52, to investigate genome differences in protease inhibitor 

efficacies, and was gradually developed to contain all but NS5B and 3’ UTR from S52 (Gottwein 

et al., 2007).  However, the recent DBN3a virus, the first fully GT3 infectious virus, replicates to 

comparable levels to JFH-1 (Ramirez et al., 2016).  This chapter details the work to develop one 

such GT3 virus for use in inhibitor sensitivity studies. 
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3.2 Results 

3.2.1 Establishment of a transient replication assay for HCV GT3a. 

3.2.1.1 The S52 SGR 

The S52 GT3a SGR (Saeed et al., 2012) was assembled from a consensus full-length DNA clone 

of the S52 clinical isolate (Gottwein et al., 2010) and consists of a bicistronic construct 

containing a neomycin phosphotransferase/firefly luciferase (Feo) reporter under the 

translational control of the HCV internal ribosome entry site (IRES) together with the NS3-5B 

coding region under the control of an EMCV IRES. Two variants were received, with different 

CAS:  The AII variant contains (by H77 numbering) T1056A, T1429I, and SHI contains P1220S 

and D1430H, all within NS3.  In addition, both SGR variants contain the S2204I NS5A culture-

adaptive mutation which has shown to be crucial to replication. 

 

Figure 3-1.  Diagram of the S52 SGR.   

Features of the SGR are labelled: Luc/Neo (luciferase-neomycin phosphotransferase fusion) 

and HCV non-structural proteins (NS3, NS4A, NS4B, NS5A, NS5B).  AII (T1056A, T1429I) and 

SHI (P1220S, D1430H) CAS labelled with blue lines, restriction sites labelled with red lines.  

S2204I adaptive substitutions and restriction sites common to both variants 

 

3.2.1.2 Transient replication of the S52 SGR 

To test for transient replication of the S52 SGR, RNA transcribed in vitro from DNA of both 

variants of the S52 SGR was transfected into Huh7.5 cells, which have a defect in innate 

immune sensing due to a mutation in the RIG-I cytosolic sensor (Sumpter et al., 2005; Foy et 

al., 2005).  Replication was compared to the positive control of transient replication, JFH-1 

which replicates efficiently (Kato et al., 2003), and a negative control of JFH-1 and S52 SGR 

with a triple point mutation at the active site of the RdRP of GDD to GNN to render it inactive.  

5’ 3’
Luc NS3 4A 4B NS5A NS5B

HCV 
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EMCV 
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Neo
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Cells were electroporated with in vitro-transcribed RNA and harvested for luciferase assay.  

Luciferase was measured at 4 hpe to assay translation of the transfected RNA and at 48 and 72 

hpe to assay replication.  As shown in Figure 3-2 the S52 SGRs were translated but neither 

were able to replicate to detectable levels in Huh7.5 cells. 
R

LU

4 hpe 48 hpe 72 hpe
102

103

104

105

106

JFH-1 SGR

JFH-1 GNN

S52 AII

S52 SHI

S52 GNN

****

 

Figure 3-2.  The S52 SGR does not replicate in transient assays.  2 µg of the indicated RNAs 

were electroporated into Huh7.5 cells and harvested for luciferase at the indicated time 

points.  Error bars show standard error of the mean of three experimental repeats. 

****p≤0.0001 

 

3.2.1.3 Construction and application of a GT3a NS5A chimera SGR 

A fully GT3 (non-chimeric), transiently-replicating SGR was of the greatest use to my project.  

Nevertheless, a number of additional approaches were explored to establish a functional 

replication assay in the event that the full-length S52 SGR was unable to replicate.  The first of 

these was a chimeric construct with S52 NS5A in a JFH-1 backbone, unique BamHI and AfeI 

restriction sites were engineered flanking the NS5A coding region.  These modifications have 

previously been shown to have no effect on replication of the SGR, which was termed mSGR 

(Hughes et al., 2009b).  Primers were designed to amplify the S52 NS5A coding region as well 

as introduce flanking BamHI and AfeI restriction sites.  The amplified NS5A fragment was 

subcloned into the mJFH-1.  The chimera SGR, named mJFH-1/S52-5A, was confirmed by DNA 

sequencing analysis.   
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Figure 3-3.  A GT3 NS5A chimera SGR does not replicate transiently.  2 µg of the indicated 

RNAs were electroporated into Huh7.5 cells and harvested for luciferase at the indicated 

time points.  Error bars show standard error of the mean of two experimental repeats. 

**p≤0.01 

 

In vitro transcribed RNA from this SGR was electroporated into Huh7.5 cells and cells were 

harvested for luciferase assay at 4, 48 and 72 hpe.  As shown in Figure 3-3 luciferase was 

detected at 4 hpe indicating that the transcript was translated successfully, but no signal at 48 

or 72 hpe was detected indicating that the chimera SGR was not able to replicate transiently. 

3.2.1.4 Colony formation assay to quantify replication 

The other such approach was a colony formation experiment.  The initial replication assays of 

HCV SGRs were in the form of a colony formation assay using the antibiotic resistance marker 

NPT (Lohmann et al., 1999).  This technique was used to assay S52 SGR replication using a S52 

NPT-only SGR (termed S52 neo).  This experiment was carried out as a proof-of-concept using 

the S52 AII SGR only.  To construct this SGR, a second AscI restriction site was inserted to 

accompany the site already present between the luciferase and NPT coding regions of the feo 

reporter.  This required mutation of the last of the 19 residues of core which the SGR contains 

(because the first few residues of core form part of the IRES).  The ability of the reporter to be 

translated in light of this change was ensured using the modified luciferase reporter which was 

inserted for the purposes of the work in 3.2.1.5 and Figure 3-5.  The two AscI restriction sites 

were used to excise the luciferase coding region from the feo SGR.  2µg of RNA transcribed 

from S52 neo was electroporated into Huh7.5 cells and selected with G418 for three weeks.  



 

54 

 

Surviving colonies were fixed and counted and this data is shown in Figure 3-4.  As the data 

shows quantification of replication of the S52 neo SGR was possible using this approach. 
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Figure 3-4.  Colony-formation assay for replication of S52 SGR.  2 µg of the indicated RNAs 

were electroporated into Huh7.5 cells and seeded at a density of 1x105 in a 6-well plate.  48 

hours after electroporation the cells were selected with 50ng/mL G418 for three weeks, re-

treating with G418 every 48 hours.  Following selection, colonies were fixed and stained 

with 10% PFA in crystal violet, then counted manually and expressed as colony forming units 

per 100 ng RNA electroporated. 

 

3.2.1.5 CpG/UpA dinucleotide frequency optimisation 

Luciferase is an insect-derived gene and as such has a higher frequency of CpG/UpA 

dinucleotides than mammalian genes or viruses with mammalian hosts.  It has been previously 

shown (Atkinson et al., 2014; Tulloch et al., 2014) that reduction of the CpG/UpA dinucleotide 

frequency of the luciferase reporter can improve replication efficiency.  The low CpG/UpA 

luciferase reporter (CpGluc) was obtained from P. Simmonds and was inserted into the S52 

SGRs using flanking AscI/PmeI restriction sites matching those inserted at the 5’ end of the 

firefly luciferase coding region and already present at the 3’ end of the NPT coding region, 

respectively.  Replication of these modified SGRs was compared to the GT1b SGR Con1, 

replication of which is significantly increased by the presence of the CpGluc reporter.  As 

evident in Figure 3-5 the CpGluc reporter significantly enhanced replication of Con1 in Huh7.5 

cells but did not exert this same effect on S52.   
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Figure 3-5.  The low CpG/UpA dinucleotide luciferase reporter increases Con1 but not S52 

SGR replication.  The low CpG/UpA dinucleotide luciferase (CpGluc) coding region was 

inserted into the S52 SGR in place of the feo cassette.  2 µg of in vitro-transcribed RNA from 

this construct and Con1 CpGluc controls were electroporated into Huh7.5 cells and 

harvested for luciferase at the indicated time points.  Relative luciferase units are expressed 

as the ratio to 4 hpe.  Error bars show standard error of the mean of two experimental 

repeats. 

 

3.2.1.6 Modification of the host cell environment 

An alternative approach to establish transient replication of the S52 SGR was to modify the 

host cell environment in order to increase the permissibility of the host cell for viral genome 

replication.  To achieve this, two approaches were evaluated: firstly, expression of the V 

protein from parainfluenza virus type 5 (PIV5) – a well characterised interferon antagonist 

(Poole et al., 2002; Andrus et al., 2011). Secondly, expression of the host cell protein SEC14L2 

or Tocopherol-associated protein, TAP1 (Saeed et al., 2015). SEC14L2 has been reported to 

enable replication of non-culture adapted SGRs. 

Therefore, Huh7.5 cells expressing the PIV5 V protein were obtained from S. Griffin, which 

were transfected with an expression plasmid containing the PIV5 V protein coding region 

(Poole et al., 2002) under the control of G418 selection.  In parallel, Huh7.5 cells were 

transduced with SEC14L2 using a lentiviral vector under the control of puromycin selection.  In 

addition, Huh7.5V cells were also transduced with SEC14L2 – these were termed VSEC cells.  

To verify the presence of the respective transfected or transduced genes each cell line was 

analysed by immunoblot for PIV5 V protein expression and RT-PCR for SEC14L2 RNA (due to 
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the lack of a suitable antibody for SEC14L2.  In addition, the additional effect of the PIV5 V 

protein on attenuation of IFN signalling was verified using an IFN-inducible system; this was 

suggested by the reviewers of the publication which reports the work of this chapter to 

address a concern that, since the Huh7.5 cells already have an impaired innate immune 

response, the additional presence of the V protein may not attenuate this further.  The 

experiment was carried out by another author of the publication.  The effect of these two 

proteins on transient replication of a GT1b (Con1) SGR was investigated (Kelly et al., 2017). 

As expected (Witteveldt et al., 2016), the Con1 CpGluc SGR replicated better than a wildtype 

luciferase version in Huh7.5 cells.  In addition, the presence of either PIV5 V or SEC14L2 

enhanced replication of both the wildtype and Con1 CpGluc, and the presence of both proteins 

had an additive effect.  However, the presence of PIV5 V, SEC14L2 or both were not sufficient 

to support replication of the S52 CpGluc SGR.   

A 

 

B 

 

Figure 3-6.  Huh7.5 V, Huh7.5 SEC14L2 and VSEC cells express the corresponding 

transgenes.   (A) Protein lysate from all four cell lines was immunoblotted for V protein and 

β-actin.  (B) RNA extracted from all four cell lines was reverse transcribed and used as a 

template for PCR amplification of SEC14L2 or GAPDH cDNA.   

 



 

57 

 

A 

 

R
LU

 f
o

ld
 o

ve
r 

4
 h

p
e

4 hpe 48 hpe 72 hpe 96 hpe

2

4

6

8

 

B 

4 hpe 48 hpe 72 hpe 96 hpe

1

2

3

4

5

R
LU

 f
o

ld
 o

v
e

r 
4

 h
p

e

 

C 

R
LU

 f
o

ld
 o

ve
r 

4
 h

p
e

4 hpe 48 hpe 72 hpe 96 hpe

10

20

30

40

50

 

 

D 

Huh7.5 Huh7.5 V Huh7.5 SEC VSEC
0.01

0.1

1

10

100

7
2

/4
 h

p
e

Con1 Luc

Con1 CpGluc

Con1 GND

S52 CpGluc

S52 GNN

** ***

** ******* ****

** *****

***
***

 



 

58 

 

Figure 3-7.  PIV5, SEC14L2 and the combination thereof improve replication of Con1 but not S52 

SGR.   (A). 2 µg of the indicated SGR RNA transcripts were electroporated into Huh7.5 expressing PIV 

V protein, (B) Huh7.5 transduced with SEC14L2, and (C) Huh7.5 both expressing PIV V protein and 

transduced with SEC14L2 (termed VSEC cells). (D) For comparative purposes, all data were combined 

on to a single graph.  Cells were harvested for luciferase assay at the indicated time points.  Relative 

luciferase units are expressed as the ratio to 4 hpe.  Error bars represent the standard error of the 

mean of 4 experimental repeats. *p≤0.05; **p≤0.01; ***p≤0.001; ****p≤0.0001. 

 

3.2.2 Selection and characterisation of S52 feo SGR-harbouring cells 

3.2.2.1 Selection of S52 feo SGR harbouring cells 

The S52 SGR contains a NPT antibiotic resistance marker which permits the selection of stable, 

SGR-harbouring cell lines.  It was hypothesised that the S52 SGR might undergo further 

adaptation when SGR-harbouring cells were selected, and additional mutations occurring in 

these stably-replicating SGRs may permit transient replication of the SGR. 

Both S52 feo SGRs were in vitro-transcribed and 10 µg of these transcripts were 

electroporated into Huh7.5 cells.  Electroporated cells were seeded at a density of 1x106 cells 

in each well of a 10 cm dish and selected with G418 from 48 hpe for three weeks.  Surviving 

colonies were pooled into a polyclonal population; five colonies survived of S52 AII-

electroporated cells, and three colonies of S52 SHI-electroporated cells, giving an estimated 

colony-formation efficiency of 0.5 and 0.3 cfu/µg RNA respectively. 

To confirm that the selected cell population were harbouring the S52 SGR, luciferase activity 

was evaluated in a population of these cells (Figure 3-8).  The S52 AII SGR harbouring cells 

express a slightly higher luciferase level than S52 SHI, though this is not significant. 
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Figure 3-8.  Selected, putative SGR-harbouring cell lines possess luciferase activity.  10 µg 

S52 SGR RNA was electroporated into Huh7.5 cells and selected with 0.5 mg/ml G418 from 48 

hpe.  Surviving colonies were pooled into a polyclonal population of SGR-harbouring cells.  

Luciferase activity was measured in 1.1x104 cells. 

 

3.2.3 Characterisation of SGR replication in SGR-harbouring cells 

Due to the higher colony formation efficiency of S52 AII compared to SHI, and the higher 

luciferase expression, it was decided to focus on this variant of the S52 SGR.  This decision was 

also based on an observation that the RNA extracted from S52 AII SGR harbouring cells 

replicates transiently, whereas S52 SHI RNA does not, detailed in Figure 3-13 and section 

3.2.3.2.  The SGR harbouring cells were characterised to quantify the levels of SGR RNA and 

proteins, shown in Figure 3-9.  Luciferase levels were measured and compared to the same 

number of Con1 and JFH-1 SGR-harbouring cells.  Luciferase in S52 SGR-harbouring cells was 

significantly higher than that in JFH-1 cells and approximately 100-fold higher than Con1 SGR-

harbouring cells. 
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Figure 3-9.  S52 SGR harbouring cells express luciferase and NS5A and contain HCV SGR RNA.   (A) 

Assay for luciferase in SGR harbouring cells.  Luciferase activity was measured in 8x103 cells and 

compared to Con1 and JFH-1 SGR-harbouring cell lines.  Error bars show the standard error of five 

experimental repeats. ****p≤0.0001.  (B) Quantification of HCV SGR RNA in SGR harbouring cell 

lines.  Total cell RNA was extracted from SGR-harbouring cells and quantified.  200 ng of total RNA 

from each cell line was used as a template in a one-step RT qPCR reaction and expressed as genome 

copies per 100ng using an in vitro-transcribed SGR RNA as a standard curve.  Error bars show the 

standard error of three experimental repeats.  (C) Western blot analysis of NS5A in SGR-harbouring 

cells.  15 µg of the indicated SGR-harbouring cell lysates were resolved on 7.5% polyacrylamide and 

stained with sheep polyclonal anti-NS5A serum, anti-β actin and respective Infra-red-tagged 

secondary antibodies.  Membranes were visualised using the LiCor Infra-red scanner system   

 

NS5A protein expression and distribution patterns were analysed in these cells, to compare to 

that already known for other genotypes.  NS5A protein, visualised by western blot resolves as 

a single band of approximately 50 kDa.  This is likely to correspond to the p56 species of NS5A, 

since the S52 SGR contains the S2204I culture-adaptive mutation that abrogates 
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hyperphosphorylation.  NS5A expression is similar to that of JFH-1 which indicates that the 

translation efficiency of these two SGRs is broadly similar.  Interestingly, despite such a marked 

difference in luciferase activity between Con1 and S52 SGR-harbouring cells, NS5A protein 

level of Con1 is similar to the other two SGRs.   

HCV SGR RNA was quantified in SGR harbouring cell lines by qPCR.  The data show that the SGR 

RNA level in S52 SGR harbouring cells is lower than for Con1 and JFH-1.  It is noteworthy that 

the abundance of SGR RNA, luciferase activity and NS5A protein expression do not correlate 

between the different genotypes. 

NS5A protein distribution was also visualised using immunofluorescence.  Figure 3-10 shows 

that NS5A protein has a similar distribution to JFH-1 and Con1 as punctate structures 

throughout the cytoplasm of the transfected cell.  As before, the intensity of NS5A within all 

three types of SGR-harbouring cell is broadly similar, and does not seem to correlate to SGR 

RNA copies as quantified by qPCR. 
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Figure 3-10.  SGR-harbouring cell lines have a similar distribution of NS5A to JFH-1.  S52, Con1 

and JFH-1 SGR-harbouring cells were imaged by immunofluorescence for NS5A (green) using a 

sheep polyclonal anti-NS5A serum and nuclei using DAPI.  Images are the same as those used in 

Figure 5-1) 

 

The effect of the SGR’s presence on proliferation of the host cell line was measured using a cell 

growth assay.  Cells from each line were seeded in 6-well plates and counted after 24, 48 and 
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72 hours’ growth under standard conditions.  As shown in Figure 3-11 the presence of the SGR 

did not significantly inhibit growth of the S52 harbouring cells, compared with Con1 or JFH-1.   
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Figure 3-11.  SGR-harbouring cell lines have a higher growth rate than other SGR-

harbouring cell lines.  1x105 of the indicated cell lines were seeded in 6-well plates.  

Following the indicated culture periods the cells were removed from the well and counted 

using trypan blue exclusion.  Error bars show the standard error of three experimental 

repeats. 

 

3.2.3.1 Assay for replication in cured cell lines 

It was plausible that, instead of selecting a population of adapted SGR sequences, the G418 

selection has instead resulted in a population of cells which was better able to support 

replication of the SGR.  A population of SGR cells were treated with 190 nM of the NS5A 

inhibitor DCV and 110 nM of the NS5B inhibitor SOF (both 100-fold EC50 calculated for the SGR 

harbouring cells, detailed in chapter 4) to eradicate the SGR; complete loss of luciferase 

activity to baseline levels confirmed that the SGR was eradicated.  2 µg of the indicated RNAs 

were electroporated into these cells and harvested for luciferase at the indicated time points 

(Figure 3-12).  As the data show, the cured S52 AII cell line was not capable of supporting 

replication of the S52 SGR.  However, interestingly the S52 AII SGR showed a very low 

replication signal in the S52 SHI cured cell line.   
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Figure 3-12.  S52 SGR does not replicate in cured SGR-harbouring cell lines.  S52 SGR 

harbouring cells were cured with 190 nM and 110 nM DCV and SOF respectively, and re-

electrporated with 2 µg of the indicated RNAs.  (A) S52 AII.  (B) S52 SHI.  Cells were 

harvested for luciferase at the indicated time points.   

 

3.2.3.2 Transient replication of SGR feo cell RNA 

It was hypothesised that, if the SGR within S52 SGR harbouring cells had undergone further 

culture adaptation then the RNA extracted from these cells should be capable of transient 

replication.  To test this, RNA was extracted from S52 SGR-harbouring cells and purified.  10 µg 

of this extracted, total cell RNA was electroporated into Huh7.5 cells and harvested for 

luciferase at the indicated time points.  As the data in Figure 3-13 show, the S52 SGR within 

total RNA extracted from SGR-harbouring cells was capable of replication in naïve Huh7.5 cells. 
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Figure 3-13.  Extracted S52 SGR harbouring cell RNA replicates transiently.  Total cell RNA 

was extracted from SGR-harbouring cells.  10 µg of this total RNA was electrporated into 

Huh7.5 cells and harvested for luciferase at the indicated time periods.  Error bars show the 

standard error of three experimental repeats. 

 

3.2.4 Identification of putative culture-adaptive substitutions (CASs) 

The observation that S52 replicates efficiently following selection (Figure 3-9); that SGR RNA 

within these cells replicates transiently (Figure 3-13); and that replication is not as a result of 

selection of a population of cells more permissible for SGR replication indicate that culture 

adaptation has occurred.  In order to identify any other CAS that have arisen, RNA from both 

S52 SGR-harbouring cells was amplified by RT-PCR and subjected to amplicon-based next-

generation sequencing (NGS). Analysis of the data revealed the presence of nine single 

nucleotide substitutions at greater than 20% variant frequency.  Seven of these were non-

synonymous and are detailed in Table 3-1.  CAS present in the input S52 SGR sequence at the 

time of electroporation were maintained following selection at frequencies of 100%.   
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Nucleotide 

substitution  

Amino acid 

substitution 

(individual 

protein 

numbering) 

Amino acid substitution 

(polyprotein 

numbering) [H77 

polyprotein numbering] 

% variant 

frequency 

Location Residue 

in JFH-1 

Residue 

in Con1 

G340C VII3L V1145L [1139] 24 NS3 V V 

A1143C K380N K1412N [1406] 25 NS3 A K 

C1940T A15V A1678V [1672] 33 NS4A A A 

C1978T H28Y H1691Y [1685] 70 NS4A R R 

A2114G E19G E1736G [1730] 34 NS4B S Q 

T3048A N69K N2047K [2041] 41 NS5A L N 

A3998G Q386R Q2364R [absent in H77] 24 NS5A S absent 

Table 3-1.  Substitutions found by next-generation sequencing.   

 

3.2.4.1 Identification of linkage of culture-adaptive substitutions 

Due to the lack of linkage of the short reads obtained by NGS, and the fact that the 

substitutions observed were not present in all reads, it was not possible to determine which 

combination(s) of substitutions might result in enhanced replication.  However, it was 

hypothesised that, since the SGR within SGR harbouring cell RNA can replicate at 96 hpe, the 

most abundant SGR RNA within these electroporated cells should be the combination which is 

best able to replicate transiently.  To test this, further NGS was performed using RNA extracted 

from S52 SGR harbouring cell RNA and harvested at 96 hpe.  However, SGR RNA was not 

sufficiently abundant in these cells to allow sequencing analysis.  Therefore, the naïve Huh7.5 

cells electroporated with S52 SGR harbouring cell RNA were selected once more with G418 

and pooled into a population of SGR harbouring cells which were termed second selection 

cells.  The only substitutions which were detected in this second round of sequencing were 

K1406N in NS3 and A1672V/H1685Y (all by H77 numbering) in NS4A.   
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Figure 3-14.  Location of putative culture-adaptive substitutions on three-dimensional 

structures of NS3 helicase  (A) (Kim et al., 1998) and NS4A shown as a complex with NS3 

protease (B) (Kim et al., 1996). In (A) K1406 is shown in green within NS3 helicase.  Proposed 

spring helix shown in yellow, nucleic acid binding cleft in blue and ATP binding cleft shown in 

red. In (B) H1685 shown in green within NS3-binding region of the NS4A peptide (red) with 

NS3 protease active site shown in blue.  A1672 is within the hydrophobic N terminus (not 

shown on crystal structure). 

 

Figure 3-14 shows the location of these putative CAS in the three-dimensional structures of the 

NS3 helicase and NS4A cofactor peptide bound to the active site of NS3 protease.  The location 

of K1406N within the NS3 helicase domain and H1685Y within the NS4A cofactor peptide are 

highlighted in green; it was not possible to model A1672V as it is within the hydrophobic N-

terminal domain.  It was considered that these CAS might enable higher levels of transient 

replication of the S52 SGR.   

3.2.4.2 Effect of putative culture-adaptive substitutions on S52 transient replication 

To test this hypothesis, the three substitutions described above were introduced into the S52 

CpGluc SGR by site-directed mutagenesis singly and in each combination of two or three 

mutations.  The putative CAS were then screened using the transient replication assay 

described previously and the data are shown in Figure 3-15.  In panel A, the A1672V 

substitution replicated to a very low level in Huh7.5 cells whereas the other substitutions gave 

a replication signal which was indistinguishable from baseline.  However, panel B shows that 
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K1406N and A1672V mutants, and a double mutant of A1672V and H1685Y gave a luciferase 

signal in VSEC cells which, for A1672V, was significantly higher than the signal observed at 4 

hpe corresponding to translation of the input RNA. 
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Figure 3-15.  Putative culture-adaptive substitutions confer transient replication ability 

upon S52 SGR.  The indicated substitutions were introduced back into S52 SGR by molecular 

subcloning, 2 µg RNA transcripts were electroporated into Huh7.5 cells (A) and VSEC cells (B) 

and harvested for luciferase assay.  Error bars show the standard error of the mean of 3 

experimental repeats.  Statistical analyses were carried out compared to the non-replicating 

control and those not shown are not significant.  *p<0.05 
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3.2.5 Optimisation of culture of full-length GT3 infectious clone 

The chimera S52 virus reported by (Yi-Ping Li et al., 2014) was donated by Jens Bukh.  This 

untagged GT3 virus consists of the 5’ UTR, structural proteins and non-structural proteins of 

S52 up to NS5A, recombined with the NS5B and 3’ UTR of JFH-1.  The virus contains seven CAS: 

The combination of LSG (F1416L/A1672S/D2929G) within NS3, NS4A and NS5B respectively, 

was found to be effective across all genotypes.  The two variants contain additional CAS in p7 

and NS4B (GR virus), with an additional pair in the GERA virus in NS3 and NS5A.   

Construct code Transfection Second Passage 

Day with 

>80% cells 

infected 

Peak log10 

FFU/mL 

(day) 

Peak log10 

FFU/mL 

(days) 

Peak log10 

IU/mL 

S52 LSG GR 

(F1416L/A1672S/D2929G/ 

D871G/H1819R) 

13 3.3 (13) 3.7 (8) 8.9 

S52 LSG GERA 

(F1416L/A1672S/D2929G/ 

D871G/V1612E/H1819R/V2417A) 

7 4.0 (11) 4.3 (12) 7.2 

Table 3-2.  S52 virus constructs received from Jens Bukh, adapted from (Yi-Ping Li et al., 

2014).   

 

3.2.5.1 Baseline replication of full-length clone 

Replication of the S52 full virus construct was measured using the Incucyte system developed 

in-house for titration of infectious virus in cell supernatants.  Cells electroporated with S52 

virus RNA were cultured for fourteen days with supernatants harvested for titration every 48 

hours.  In concurrence with the original study which reported this virus, peak infectivity was 

detected approximately 12 dpe, with a peak titre of 5x105 IU/mL.  

 

3.2.5.2 Characterisation of S52-infected cells 

A preliminary experiment was performed to infect naïve cells with MOI=1 S52 virus 

supernatant and detect NS5A protein by immunofluorescence; this is shown in Figure 3-16.  As 

the immunofluorescence shows, the distribution of NS5A in this infected cell is different to 

that observed for SGR-transfected cells and the JFH-1 virus.  NS5A signal intensity in this 
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infected cell was significantly lower than for JFH-1, which correlates with the observation that 

released titres were significantly lower. 

 

Figure 3-16.  NS5A distribution in S52 infected cells is similar to JFH-1.  Huh7.5 cells were 

infected at MOI=1 with S52 virus supernatant for 48 hours before being fixed with 4% PFA.  

Cells were imaged by immunofluorescence for NS5A (green) using a sheep polyclonal anti-

NS5A serum. 

 

S52 virus-infected cells were also treated with increasing concentrations of the NS5A 

inhibitors, as a proof-of concept to determine if this system can be used for inhibitor sensitivity 

studies.  Huh7.5 cells were seeded in 96-well plates and infected with S52 supernatant at an 

approximate MOI=1 (due to low titres higher MOI was not possible) for 48 hours before being 

treated with the indicated concentrations of DCV and LDV for a further 48 hours.  Following 

this treatment period infected cells were fixed and stained for detection using the Incucyte 

instrument.  As the data in Figure 3-17 show, infectivity was very low and a reliable 50% 

effective concentration (EC50) cannot be calculated, however there is an indication of a 

reduction in replication of the S52 virus at higher concentrations of both inhibitor. 
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Figure 3-17.  S52 virus replication can be inhibited using HCV inhibitors.  8x103 Huh7.5 cells 

were infected with S52 at an MOI of 1 for 48 hours before being treated with the indicated 

concentrations of LDV (A) and SOF (B) for a further 48 hours.  Cells were then fixed and 

stained with polyclonal sheep anti-NS5A serum and 594nm fluorescent secondary antibody.  

Stained cells were imaged using the Incucyte system and associated software. 

 

3.2.5.1 Construction of Nluc reporter virus 

Following this preliminary experiment, the possibility of inserting a reporter into the S52 virus 

to enable more sensitive detection of infected cells for the purpose of conducting inhibitor 

sensitivity studies was explored.  Previously a JC1 virus construct, a GT2a chimera of the J6/CF 

and JFH-1 isolates with 100- to 1000-fold higher infectious titres than either parental strain 

(Pietschmann et al., 2006), was modified to insert Nanoluc, a smaller luciferase subunit from a 

deep-sea shrimp species with 100-fold greater bioluminescence (England et al., 2016), 

between the p7 and NS2 coding region (Amako et al., 2015).  A similar approach was utilised to 

insert the Nanoluc gene into the S52 virus, at the same location.  A diagram of the geneblock 

constructed to insert into the S52 genome is shown in Figure 3-18.  Briefly, the first four 

residues of NS2, to allow recognition by virus-specific proteases, were followed by the Nanoluc 

gene and the Foot and Mouth Disease Virus (FMDV) 2A coding region, which has been shown 

to be an efficient separator of protein coding regions, causing the ribosome to skip the 

formation of a peptide bond during translation of a single polyprotein and allowing equal 

translation of the two coding regions which it separates, an established technique reviewed in 

(Luke et al., 2010).  This was then followed by the NS2 coding region as normal.   
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Figure 3-18.  Schematic diagram of the Nanoluc insert for the S52 virus.   

 

However, as the diagram shows, two variants of this geneblock were synthesised: The NS2 

protease recognition sequence upstream of the Nanoluc was either that of S52 or JC1 in the 

two variants.  The reason for this is that the JC1 sequence is known to function as a cleavage 

site, whereas the S52 sequence maintains the GT3 homology of the majority of the virus.  

Genotype-specific sequence specificity may be important for proper cleavage in the context of 

the GT3 virus. 

These two reporter viruses were constructed and in vitro-transcribed RNA was electroporated 

into VSEC cells, with the results shown in Figure 3-19a.   
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Figure 3-19.  S52 Nluc reporter viruses express luciferase.  10 µg of the indicated in vitro-

transcribed virus RNAs were electrporated into Huh7.5 cells and cultured for 72 and 96 

hours before being harvested for luciferase.  (A) 2x105 electroporated cells were seeded in a 

6-well plate and harvested in 200 µL PLB after 72 hours.  Nanoluc was measured in 20 µL of 

this lysate.  (B) Nanoluc activity was measured in 8x103 cells as a proof-of-concept for 

inhibitor sensitivity studies 

 

As the data show, luciferase activity can be detected in infected cell lysates at 72 hpe of the 

Nanoluc reporter viruses, and slightly higher for the reporter virus which was constructed 
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using the genotype-specific p7/NS2 cleavage site (Nluc w/ S52).  However, this was a fraction 

of the signal observed for the JC1 Nanoluc positive control virus.  Indeed the difference cannot 

be reliably calculated since the two samples had to be quantified using different parameters of 

the luciferase activity measurement instrument.  This was to be expected, however it was not 

known whether this difference would prohibit comparison of the JC1 and S52 viruses in 

inhibitor sensitivity assays. 

To test this, VSEC cells were electroporated with JC1 and S52 Nanoluc virus RNAs and assayed 

for luciferase at 72 and 96 hpe.  As shown in Figure 3-19b, luciferase activity in the S52 virus 

was too low to be detected in the number of cells seeded in 96-well plate format for inhibitor 

sensitivity assays.   

In addition, the effect of the Nanoluc gene insertion on S52 replication and release was 

explored.  Insertion of a reporter or tag at this position is tolerated by JC1 (Amako et al., 2015), 

however replication of JC1 is sufficiently high that a reduction in titre of released particles is 

not likely to be severely detrimental.  S52 replicates to much lower levels, so a defect in 

replication of the virus caused by the Nanoluc insert may be more apparent.  Figure 3-21 

shows the titres of released virus over time in culture, and a reduction in released virus can be 

observed with the S52 Nanoluc virus, likely corresponding to a defect in replication capacity.   
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Figure 3-20.  Virus replication in S52 Nluc-electroporated cells is lower than S52 without 

Nluc.  10 µg of the indicated in vitro-transcribed virus RNAs were electroporated into Huh7.5 

cells and cultured for 14 days, with supernatants harvested for titration of infectious virus 

approximately every 48 hours.  S52 Nluc virus supernatants were serially-diluted two-fold 

and applied to naïve Huh7.5 cells for 48 hours.  Following this period infected cells were 

fixed with 4% paraformaldehyde and stained with polyclonal sheep anti-NS5A serum and 

594nm fluorescent secondary antibody.  Stained cells were imaged using the Incucyte 

system and associated software. (A) NS5A stain in electroporated cells.  (B) Calculated 

ffu/mL of released S52 Nluc virus using Incucyte software 
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3.3 Discussion 

Transiently-replicating SGRs have been instrumental in the elucidation of the functions of the 

HCV non-structural proteins, mechanisms of genome replication and development of DAAs.  

The three SGRs which have so far been reported for GT3, derived from two different isolates, 

are limited in their ability to replicate efficiently in a transient system and only replicate 

efficiently following selection with G418 (Saeed et al., 2012).  Transient replication of S310 was 

measured but only showed luciferase levels of several orders of magnitude lower than input 

translation at 4 hpe, and replication of the S52 SGR which was culture-adapted in transfected-

and-cured Lunet cells did not replicate efficiently until 7 days post-transfection (Saeed et al., 

2013; Yu et al., 2013). 

The S52 SGR did not replicate transiently within this project when compared to JFH-1, the 

GT2a SGR which is widely used in HCV research.  In concurrence with the original study which 

reported this SGR, the S52 SGR only replicates detectably following selection with G418.  This 

work has relied upon the luciferase reporter for quantification of replication, however the 

authors of the original publication used quantitative PCR, colony formation and western 

blotting to characterise the SGR.  Luciferase assay is a high-throughput, sensitive detection 

method which would be of greater benefit to drug discovery than the other characterisation 

techniques reported in this thesis and in the 2012 study.   

Stable, SGR-harbouring cells are useful tools in basic research but the effect of the SGR and its 

reporter in a single cell population over an extended period must be considered.  For instance, 

it has been reported (Volker Lohmann, personal communication) that the luciferase reporter is 

toxic to cells.  Indeed, it was observed that the ability of the S52 SGR to form colonies during 

selection with G418 was enhanced by the removal of the luciferase coding region of the feo 

reporter cassette, with a colony-formation efficiency of the S52 feo SGR of 0.5 cfu/µg RNA, 

compared to 110 for S52 neo SGR.  Similarly, the reduction in growth rate of cell populations 

harbouring different HCV SGRs compared to Huh7.5 cells indicates that the presence of the 

SGR has a deleterious effect on growth rates of the host cell, an observation made previously 

(Igloi et al., 2015).  It may be that this effect is partly a consequence of the presence of G418 

and the NPT resistance gene product, which has a metabolic effect on the cell (Yallop and 

Svendsen, 2001).  This effect is, naturally, not a concern over short-term experiments.  In 

addition, stable replicon-harbouring cells are of limited use for development of DAAs and do 

not allow investigation into mechanisms of resistance since the most widely reported RAS for 
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NS5A – Y93H – is associated with a fitness cost (Lemm et al., 2010; Kylefjord et al., 2014).  They 

are not able to model initiation of infection and, as such, are a less representative model of 

HCV replication in vivo.   

Prior to the successful establishment of transient replication of S52 two additional approaches 

were considered to overcome the problem and allow further investigation of unexplored 

aspects of GT3 replication.  The first of these was the colony formation assay which was 

employed as a means of quantifying HCV replication when the SGR was first developed 

(Lohmann et al., 1999).  This allowed quantification of the earlier stages of replication, albeit 

the first three weeks, but is subject to some of the same problems as SGR-harbouring cells, 

such as the effects of G418 and NPT expression on the host cell.  The second approach was the 

use of a chimera SGR containing the NS5A coding region of the S52 SGR in place of that of JFH-

1, within a JFH-1 backbone.  The use of chimera SGRs in drug discovery for GT3 has been 

documented (Lanford et al., 2006; Wang et al., 2013; Kylefjord et al., 2014) and, as a result, the 

inclusion of this work in this thesis is primarily an attempt at the technique rather than to 

report a novel cell culture system for GT3. 

This work shows that, unique for GT3, substantial modification of the host cell environment as 

well as modification of the SGR reporter and additional culture adaptation are crucial for 

efficient transient replication.  A number of approaches were investigated to increase the 

replication fitness of the SGR or to modulate the host cell environment to increase 

permissibility to SGR replication.  DNA from different types of organism differs in CpG and UpA 

dinucleotide frequency, in particular as luciferase is insect-derived it contains a higher 

frequency than mammalian genes. Optimisation of CpG and UpA dinucleotide frequency 

increases replication capacity of a number of viruses (Tulloch et al., 2014).  This effect is 

thought to be mediated by avoiding a yet uncharacterised innate immune recognition of high-

CpG/UpA sequences (Atkinson et al., 2014).  This work demonstrated that replacement of the 

feo reporter cassette with a CpG/UpA-low luciferase does not by itself allow detectable 

replication of S52, despite conferring a 4-fold increase in replication on Con1 SGR.   

The parainfluenza virus type 5 (PIV5) V protein blocks STAT1-mediated immune activation by 

binding directly to STAT1 and inhibiting downstream interferon-α activation (He et al., 2002; 

Poole et al., 2002; Lu et al., 2008).  It has been shown that stable expression of the V protein 

enhances replication of HCV in human foetal liver cells (Andrus et al., 2011).  Recently, the host 

cell protein SEC14L2 or Tocopherol-associated protein, TAP1, was found to allow replication of 

an unadapted SGR or isolates from patient samples including GT3.  This is thought to work by 
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accumulation of vitamin E, which provides protection against lipid peroxidation (Saeed et al., 

2015).  It was demonstrated that expression of either the V protein or SEC14L2 did not allow 

detectable replication of either Feo (with unmodified luciferase) or CpG/UpA-low luciferase 

containing wild-type S52 SGRs.  In addition, a potential additive or synergistic effect of V 

protein and SEC14L2 was investigated (these cells were termed VSEC) and identified an 

additive effect on replication of Con1 CpG/UpA-low luciferase, but no effect on the inability of 

S52 CpG/UpA-low luciferase to replicate.  It would likely be beneficial to combine the PIV5 V 

and SEC14L2 transgenes within a single lentiviral vector, separated by the FMDV 2A coding 

region (as used in the Nanoluc geneblock described in 3.2.5.1), to ensure equal expression of 

both transgenes under the control of a single puromycin resistance marker to eliminate the 

problems with cell growth rate and potential variable expression associated with double 

resistance to both puromycin and G418.  This would also give a user of these cells the option of 

selecting stable SGR to identify culture adaptation.  

Only after selection of stable SGR using G418 did S52 show robust levels of luciferase activity, 

with a slight, albeit significant, increase over JFH-1 SGR harbouring cells.  The SGR RNA, when 

extracted from these cells, was capable of detectable replication at 96 hpe, strongly indicating 

that the SGR within them had undergone further culture adaptation.  This was supported by an 

inability of the S52 SGR to replicate in Huh7.5 cells which were cured of the SGR they had 

previously supported; the selection of a supportive cell line in addition to an adapted SGR is 

well documented, including the development of Huh7.5 cells (Blight et al., 2002; Yu et al., 

2013).   

Two of the substitutions identified in stably replicating SGR by next-generation sequencing 

conferred the ability to replicate upon the SGR when introduced to the CpGluc SGR.  The 

A1672V substitution, which conferred the greatest levels of replication, is located in the 

hydrophobic N-terminal, membrane anchoring domain of NS4A (Kim et al., 1996).  It is not 

clear why a substitution to a broadly similar amino acid side chain in this region proves to be so 

beneficial to replication.  There was no correlation between my CAS and the corresponding 

residues in JFH-1 which replicates at much greater levels, however this substitution site was 

reported by Li and colleagues as a culture adaptive mutation in the chimera S52 virus (Yi-Ping 

Li et al., 2014).  Interestingly, the authors report that a substitution to a polar residue at this 

position confers culture adaptation.  The exact roles of culture adaptive substitutions in 

promoting HCV replication is rarely explored, with the exception of a link between the S2204I 

substitution within NS5A, which the S52 SGR carries, and PI4K activity (Harak et al., 2016).   
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The difference in replication efficiency between the A1672V mutant and the SGR within stable 

SGR-harbouring cells is profound: it may be that additional CASs which were not screened in 

this the course of this work may further enhance replication of the A1672V mutant.  The other 

combinations of two and three mutations did not confer high levels of transient replication on 

the S52 SGR which potentially indicates that these mutations are not linked.  The fact that 

none of the mutations are present as majority populations indicates that there may be two or 

more variants containing different combinations of substitutions that complement each other.  

The identification of these would require long-read NGS or single-genome sequencing.  It may 

also be worthwhile to assess replication of the A1672V culture adaptive mutation in the SGR-

harbouring cells which were cleared, described above.  The adaptation of the A1672V mutant 

may be specific to an additional change in the host cell which was selected for by G418 and the 

presence of the SGR, a combination which was reported by Yu and colleagues (Yu et al., 2013).   

I was unable to make sufficient progress with the infectious S52 virus to enable application of 

any result obtained using the SGR system.  There is a utility for the Nanoluc reporter in full-

virus inhibitor sensitivity studies and characterisation of resistance, however replication of the 

S52 virus is not sufficiently high enough.  Attenuation of the virus by the insertion of the 

Nanoluc reporter reduced replication and infectious virus production to below a level which is 

practical.  The full-GT3 virus reported recently (Ramirez et al., 2016) may well better tolerate 

the insertion of a Nanoluc reporter. 

This work reports on the modifications necessary to confer a transient replication phenotype 

on the S52 SGR in order to develop an efficient assay.  The S52 SGR requires additional culture 

adaptation as well as a modified luciferase reporter, coupled with modification of the host cell 

environment to perturb the innate immune response and alteration of lipid metabolism 

pathways.  A transient replication assay has utility in basic research to investigate genotype 

differences in replication and host cell interaction, and in drug discovery to function as a high-

throughput assay for compound screening.
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Chapter 4: Functional analysis of 

resistance to HCV NS5A inhibitors 
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4.1 Introduction 

Recent years have seen the development of a great number of direct-acting antivirals (DAAs) 

to treat HCV, with vastly improved efficacy over IFN/RBV standard therapy, depending on 

genotype.  Treatment of GT1 infection with these compounds is effective at producing a 

sustained virological response (SVR) in 95-100% of patients in clinical trials (Pol et al., 2016).  

However outside of the highly-regulated, controlled environment of the clinical trial, cohort 

studies are beginning to show different results (Steinebrunner et al., 2015; Foster et al., 2016), 

with real-life use likely to follow suit.  GT3 is widely reported as being more difficult to treat 

with DAAs and patients with cirrhosis and previous experience of treatment failure are less 

likely to achieve SVR.  Given that GT3 patients progress quicker through disease states due to 

higher incidences of hepatic steatosis (described in chapter 5), this pattern is of increasing 

concern.  Patients with GT3 respond better to IFN- and RBV-containing regimens than GT1, and 

to 24 weeks of all-oral therapy containing RBV instead of 12 (Table 1-2 on page 29).  However, 

as well as having strict exclusion criteria for its use, the inclusion of IFN in combination 

therapies and the longer treatment duration with RBV affects health-related quality of life for 

these patients.  This is likely to severely affect adherence to treatment, providing the 

circumstances for the emergence and propagation of resistant strains (Younossi et al., 2014; 

Younossi et al., 2015).  Hence, refinement of all-oral therapies for treatment of GT3 is of great 

importance.   

Resistance to NS5A inhibitors has been well characterised, and substitutions at residues 28-31 

and 93 being implicated in treatment failure in clinical trials and in vitro studies of resistance.  

Y93H in particular is associated with between 30- and 3000-fold changes in EC50 of DCV 

depending on genotype (Table 1-3, Table 1-4, Table 1-5 and references therein).  The 

mechanism of resistance is not known, but as inhibitor binding is thought to involve the dimer 

interface (discussed in chapter 1) it is proposed that mutations in the inhibitor binding region 

itself (Lambert et al., 2014; Ascher et al., 2015; Barakat et al., 2015) or in regions that are 

involved in crosstalk with the dimer interface (Ascher et al., 2015) preclude inhibitor binding.  

It was recently suggested that the Y93H RAS inhibits the ability of DCV binding to cause a 

conformational change, affecting multi-order structures of NS5A (Sun et al., 2015). 

RAS exist in the population at proportions depending on genotype (Suzuki et al., 2012; Paolucci 

et al., 2013; Miura et al., 2014; Walker et al., 2015; Uchida et al., 2016; Patiño-Galindo et al., 

2016) and have a correlative association with treatment response.  Pre-existence of a RAS is 

associated with a lesser chance of achieving SVR but the relationship is correlative rather than 
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causative, as patients with a pre-existing RAS can achieve SVR whereas patients with no pre-

existing RAS can fail treatment (Poveda et al., 2014; Cento et al., 2015; Chayama and Hayes, 

2015).  Pre-existing RAS can expand upon treatment and lead to resistance; conversely RAS can 

arise de novo during treatment (Eltahla et al., 2017; Kai et al., 2017).  The demonstration that 

RAS are common and that the relationship between RAS occurrence and treatment outcome is 

not a causative one adds weight to the complexity of DAA resistance. 

The development of the transient replication assay and stable SGR harbouring cell lines from 

the S52 SGR has afforded the opportunity to investigate NS5A inhibitor resistance in two 

parallel systems.  Stably-replicating S52 SGR within SGR harbouring cells provides insight into 

the maintenance of persistent replication and provides a forward genetic system for selecting 

resistance.  The transient replication assay allows the exploration of early replication events 

and provides a reverse genetic system for assessing the phenotype of any changes identified.  

The aim of the work in this chapter was to apply the parallel systems of transient and stable 

S52 replication to that which is already known about NS5A inhibitor resistance using DCV as a 

model compound.  Initially the work aimed to validate the S52 SGR and its utility in the 

investigation of resistance and to explore the resistance phenotype further in a GT3-specific 

manner. 
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4.2 Results 

4.2.1 Use of stable SGR harbouring cells to investigate efficacy of HCV inhibitors 

The relative efficacies of clinically available NS5A inhibitors have been documented for GT1, 

and for GT3 using chimera SGRs; the consensus shows a significant degree of resistance for 

GT3 in the absence of RAS.  The utility of the S52 SGR harbouring cells in DAA sensitivity 

studies as a culture system comprised entirely of GT3 sequence was explored, as a proof-of-

concept to show a similar pattern of DAA efficacy.  Sensitivity of S52, Con1 (GT1b) and JFH-1 

(GT2a) SGRs to NS5A inhibitors was measured and used to calculate the 50% effective 

concentration (EC50).  SGR harbouring cells were treated with increasing concentrations of 

DCV, LDV (both NS5A inhibitors), SOF (NS5B inhibitor) and RBV (nucleotidic chain terminator 

causing mutation error catastrophe) for 48h prior to harvest for luciferase activity assay, or 

MTT assay for cell viability, which was used to calculate the 50% cytotoxic concentration (CC50).  

The data in Figure 4-1 show the concentration-response curves for the four compounds, with 

the corresponding cell toxicity data shown in Figure 4-2.   

As expected there was a difference in sensitivity to NS5A inhibitors, with an increase in EC50 of 

200-fold for DCV between Con1 and S52.  LDV was significantly more effective against Con1 

than DCV, and significantly less effective against S52, corresponding to a change in EC50 of 

140,000-fold between Con1 and S52.  SOF was approximately 5-fold less effective against S52 

than Con1.  There was no difference in sensitivity to RBV for any of the SGR harbouring cell 

lines.  A summary of the calculated EC50 and CC50 for each SGR harbouring cell line and each 

compound is summarised in Table 4-1.   
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Figure 4-1.  Stably-replicating S52 SGR within SGR harbouring cells is less sensitive to DAAs 

than other genotypes.  8x103 of the indicated SGR harbouring cell lines were seeded in 

white, 96-well plates and treated with the indicated concentrations of DCV (a), LDV (b), SOF 

(c) or RBV (d) for 48 hours before being harvested for luciferase assay.  Relative light units 

were expressed relative to a 0.25% DMSO vehicle control.  EC50 values were calculated using 

Graphpad Prism 7 software.  Error bars represent the standard error of the mean of five 

experimental repeats. 
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Figure 4-2.  DAAs are not cytotoxic except at the highest concentrations.  8x103 of the 

indicated SGR harbouring cell lines were seeded in 96-well plates and treated with the 

indicated concentrations of DCV (a), LDV (b), SOF (c) or RBV (d) for 48 hours before being 

assayed for cell viability using the MTT assay.  Absorbance values were expressed relative to 

a 0.25% DMSO vehicle control. 

 

There was a slight difference in sensitivity to SOF between all three SGR types, indicative of the 

pan-genotypic nature of SOF.  There was no difference in sensitivity to RBV.  Cell viability 

assays indicate that the effect on the SGR is not due to toxicity; indeed, there was no toxicity 

observed at the concentrations used for either DCV, LDV or SOF at the concentrations at which 

antiviral affect was observed.  The 50% cytotoxic concentration (CC50) calculated for RBV was 

80 µM. 
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SGR harbouring cell line DCV LDV SOF RBV 

Con1 EC50 8.1 pM 1.7 pM 0.2 nM 0.99 µM 

Fold over 

Con1 
n/a n/a n/a n/a 

CC50 >10 µM >10 µM >100 nM 87.3 µM 

Therapeutic 

window 
>1x106 >5x106 >1x106 88.18 

JFH-1 EC50 9.2 pM 8.1 nM 0.1 nM 1.19 µM 

Fold over 

Con1 
1.1 5500**** 0.5 1.2 

CC50 >10 µM >10 µM >100 nM 64.6 µM 

Therapeutic 

window 
>1x106 >1000 >1000 54.29 

S52 EC50 1.9 nM 172 nM 1.1 nM 2.21 µM 

Fold over 

Con1 
230**** 140,000**** 5.5 2.2 

CC50 >10 µM >10 µM >100 nM 84.4 µM 

Therapeutic 

window 
>5000 >50 >90 38.18 

Table 4-1.  Comparison of calculated EC50 and CC50 values for DAA treatment of HCV SGR 

harbouring cell lines.  Fold changes to two significant figures.  Statistical significance was 

calculated where sufficient data was available (****p<0.0001, **p<0.005) 

 

4.2.2 Use of SGR cell lines to study development of NS5A inhibitor resistance. 

4.2.2.1 Selection of NS5A inhibitor resistance 

Resistance to NS5A inhibitors by GT3 in clinical studies and in vitro using chimera SGRs has 

implicated two RAS with several thousand-fold resistance when compared to the wild-type 

SGR.  However, there is much that is not known about the development of resistance, the role 

of RAS and the phenotype of RAS in a full-GT3 system.  Thus, the utility of S52 SGR harbouring 

cells in inhibitor resistance characterisation was also explored.  Following calculation of the 

EC50 for each compound (Table 4-1), S52 SGR harbouring cells were selected with DCV at a 

concentration equivalent to 100x EC50 whilst maintaining G418 selection.  After an initial 
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period of cell death most cells survived and the remaining were pooled into a polyclonal 

population which was termed S52 DCV.  These SGR harbouring cell lines were characterised 

and compared to the pre-selection SGR harbouring cells which are wild-type with respect to 

NS5A inhibitor resistance.  As expected the S52 DCV SGR within SGR harbouring cells exhibited 

a decrease in sensitivity to NS5A inhibitors, shown in Figure 4-3.  Selection with DCV increased 

the EC50 of DCV 480-fold, and of LDV 5-fold.  A degree of cross-resistance to LDV was expected 

following DCV selection as these compounds have similar structures and are predicted to work 

by a similar mechanism due to the characterisation of resistance (Table 1-3, Table 1-4, Table 

1-5 and references therein).  It is interesting to note that there is a slight increase in sensitivity 

to both SOF and RBV in the S52 DCV SGR harbouring cells when the data are compared; this is 

not significant, indicating that resistance has been selected rather than altering the cells or the 

SGR. 
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Figure 4-3.  Selection of S52 SGR harbouring cells with DCV generates resistance to NS5A 

inhibitors.  S52 SGR harbouring cells were selected with 100-fold the calculated EC50 of DCV 

whilst maintaining G418 selection for approximately two weeks until cell death was no 

longer occurring.  Surviving cells were pooled into a polyclonal population and termed S52 

DCV.  8x103 of these S52 DCV SGR harbouring cells were seeded in white, 96-well plates and 

treated with the indicated concentrations of DCV (a), LDV (b), SOF (c) and RBV (d) for 48h 

before being harvested for luciferase assay.  Relative light units were expressed relative to a 

0.25% DMSO vehicle control.  EC50 values were calculated using Graphpad Prism 7 software.  

Error bars represent the standard error of five experimental repeats.   
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 DCV LDV SOF RBV 

EC50 910 nM 1 µM 0.8 nM 1.93 µM 

Fold over wild-

type 
480**** 5.8**** 0.7 0.87 

CC50 >10 µM >10 µM >100 nM 77.63 

Therapeutic 

window 
n/a n/a n/a 89.22 

Table 4-2.  Comparison of calculated EC50 and CC50 values for DAA treatment of S52 DCV SGR 

harbouring cell lines.  Fold changes to two significant figures.  Statistical significance was 

calculated where sufficient data was available (****p<0.0001, **p<0.005) 

 

4.2.2.2 Characterisation of resistance following selection 

The effect of resistance selection on the SGR and the cells was calculated using assays 

described in chapter 3.  Figure 4-4 and Figure 4-5C show NS5A expression by western blot and 

distribution by immunofluorescence respectively.  The western blot in the figure is the same 

blot as shown in Figure 3-9.  Interestingly, both are similar to wild-type S52; it has been 

suggested in multiple studies that the resistant phenotype of HCV to NS5A inhibitors is 

associated with a fitness cost which is not apparent in the presence of the compound but 

manifests as an impairment of replication in its absence (Table 1-3, Table 1-4, Table 1-5 and 

references therein).  Accordingly, no such fitness cost was observed in the luciferase activity of 

S52 DCV SGR harbouring cells (Figure 4-5A).  In addition, there was a similar amount of SGR 

RNA detected by qPCR (Figure 4-5B) 
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Figure 4-4.  DCV selection of S52 SGR harbouring cells does not alter NS5A distribution.  

S52 and S52 DCV SGR-harbouring cells were immunostained for NS5A (green) using a sheep 

polyclonal anti-NS5A serum and nuclei using DAPI.  Multiple images shown for each cell 

type. 
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Figure 4-5.  DCV selection of S52 SGR harbouring cells does not alter luciferase activity, 

SGR RNA or NS5A protein levels.   (A) Assay for luciferase activity in SGR harbouring cells.  

Luciferase activity was measured in 8x103 cells and compared to Con1 and JFH-1 SGR-

harbouring cell lines.  Error bars show the standard error of five experimental repeats. 

****p≤0.0001.  ***p≤0.001.  (B) Quantification of HCV SGR RNA in SGR harbouring cell lines.  

Total cell RNA was extracted from SGR-harbouring cells and quantified.  200 ng of total RNA 

from each cell line was used as a template in a one-step RT qPCR reaction and expressed as 

genome copies per 200ng using an in vitro-transcribed SGR RNA as a standard curve.  Error 

bars show the standard error of three experimental repeats.  (C) Western blot analysis of 

NS5A in SGR-harbouring cells.  15 µg of the indicated SGR-harbouring cell lysates were 

resolved on 7.5% polyacrylamide and stained with sheep polyclonal anti-NS5A serum, anti-β 

actin and respective Infra-red-tagged secondary antibodies.  Membranes were visualised 

using the LiCor Infra-red scanner system.   
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4.2.2.3 Investigation of the synergistic effect of multiple NS5A inhibitors 

A series of studies by Bristol Myers Squibb, the pharmaceutical company who developed DCV, 

suggest that NS5A inhibitors may act synergistically.  Therefore, a structurally similar 

compound with the capacity to bind to the same region of NS5A but which individually lacks 

therapeutic activity can, when used in combination with one which is pharmacologically active 

such as DCV, resensitise a resistant SGR or virus to that combination (Sun et al., 2015; O’Boyle 

et al., 2016).   

As a proof-of-concept of the utility of the S52 SGR harbouring cell line and its DCV-resistant 

counterpart in the investigation of the activity of NS5A inhibitors this work was reproduced 

using DCV and LDV, the latter of which has a greatly reduced therapeutic activity against S52.  

This data is shown in Figure 4-6.  S52 DCV cells were treated with a concentration of DCV that 

would have no inhibitory effect, together with increasing concentrations of LDV, to identify a 

difference in EC50 for the resistant S52 SGR due to the presence of the second inhibitor.  The 

single concentrations were chosen to have a maximum difference between wild-type and DCV-

selected: 50 nM for DCV and 500 nM for LDV.  However, as the data show, the presence of LDV 

had no effect on DCV sensitivity.  Inhibition was only observed when LDV was present at 1 μM, 

consistent with the calculated EC50 for LDV.  This experiment was not able to show that the 

combination of NS5A inhibitors increased sensitivity beyond an additive effect of the two 

concentrations administered together. 
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Figure 4-6.  NS5A inhibitors DCV and LDV do not synergise.  S52 wild-type and S52 DCV SGR 

harbouring cells were treated with: 50 nM DCV and the indicated concentrations of LDV (A); 

or 500 nM LDV as a single concentration and the indicated concentrations of DCV (B) for 48 

hours before being harvested for luciferase assay.  RLU values were expressed as a 

percentage of an untreated control.   

 

4.2.2.4 Identification of resistance-associated substitutions 

Resistance to NS5A inhibitors has been well characterised in most GTs, with a cluster of 

substitutions at residues 28-31 and a single substitution at Y93 giving several thousand-fold 

resistance depending on compound and genotype (Table 1-3, Table 1-4, Table 1-5 and 

references therein).  In order to determine what changes were driven by DCV selection of S52, 

sequencing analysis was carried out on RNA extracted from S52 and S52 DCV SGR harbouring 
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cells.  Extracted RNA was reverse transcribed to cDNA, which was then used as a template for 

PCR amplification.  Amplified DNA fragments were analysed by Sanger sequencing and aligned 

to a reference sequence.  Substitution sites were identified by manual identification of mixed 

sequencing traces, however consensus-based Sanger sequencing does not allow analysis of the 

relative proportions of mixed sequences within the population.  Relative heights of the two 

peaks at a particular site are not representative of the proportion of the different nucleotides.   

Figure 4-7 shows the sequence traces at the position corresponding to L31 and Y93.  As the 

image shows a mixed population is visible at both of these locations, with the predominant 

sequence at residue 93 being His rather than Tyr.  As described earlier the relative proportions 

of His and Tyr at this position cannot be accurately inferred, however the dominance of the 

mutation at this position is indicative that the proportion is sufficiently high to be assigned as a 

mutation by the data analysis software.  This indicates that the selection of resistance has 

resulted in the emergence of RAS which are consistent with NS5A resistance in GT3. 
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Figure 4-7.  S52 DCV SGR harbouring cells have acquired resistance-associated 

substitutions.  RNA was extracted from S52 and S52 DCV SGR harbouring cells using TRIzol 

and reverse-transcribed to cDNA.  cDNA was used as a template for PCR amplification of the 

NS5A region and PCR products were subjected to Sanger sequencing.  Sequences were 

aligned to a reference sequence of S52 SGR.  (A) The genome position corresponding to L31.  

(B) The genome position corresponding to Y93.  The first base of the mutated codon is 

highlighted with a black box. 

 

4.2.2.5 Sensitivity of transiently-replicating SGRs to NS5A inhibitors 

The proposed mechanisms of action of DCV as an inhibitor of genome replication are the 

inhibition of NS5A trafficking through the cell and the formation of new replication complexes 

during the early stages of infection.  SGR harbouring cells have proved useful in selection of 

resistance, however they are likely to exhibit different results based on the fact that replication 

has already been established.  Thus, development of DAAs usually involves transient 

replication data.  To evaluate the effects of NS5A inhibitors upon transient replication of full-

GT3 (as opposed to chimera SGRs which most data on inhibitor efficacy and RAS is generated 

from) DAA sensitivity studies were carried out in the transiently-replicating full-GT3 S52 SGR 

described in Chapter 3, with CpGluc and a single point mutation of A1672V (by H77 

polyprotein numbering) in NS4A conferring efficient transient replication ability on the SGR 

when electroporated into VSEC cells.  In addition, since the resistance study using SGR 

harbouring cells identified that the Y93H point mutation confers significant DCV resistance 

upon S52, a Y93H (by NS5A numbering, Y2065H by H77 polyprotein numbering) single point 

mutant was constructed by site-directed mutagenesis to screen alongside.   

As shown in Figure 4-8 the S52 SGR was less sensitive than Con1 and JFH-1 to both DCV and 

LDV, consistent with observations using SGR harbouring cell lines.  The Y93H point mutant was 

highly resistant to both NS5A inhibitors, with a difference in EC50 of 70,000-fold for DCV; EC50 

could not be extrapolated for LDV.   

The data in Figure 4-9 also show that (as expected) stably-replicating S52 wild-type is much 

more resistant to DCV than transiently-replicating S52.  In addition, wild-type transiently-

replicating S52 Y93H is more resistant to DCV than stably-replicating S52 DCV; these data could 

be indicative of a difference in the mechanism of action of DCV at different stages of 

replication.  
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Interestingly, transiently-replicating S52 seems to be more sensitive to SOF than JFH-1; S52 

Y93H also seems to be slightly resistant (2-fold) to SOF when compared to wild-type, though 

this was not statistically significant.  Moreover, there was a difference in sensitivity to RBV 

between S52 and Con1 of 4-fold for which statistical significance was not able to be calculated 

due to the high variability of replication signal for Con1.  There was also a slight difference 

between S52 wt and S52 Y93H (1.7-fold). 

EC50 values for transiently-replicating SGRs and fold changes are shown in Table 4-3.   
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Figure 4-8.  Transiently-replicating S52 SGR is less sensitive to NS5A inhibitors than other 

genotypes.  8x103 of VSEC cells electroporated with the indicated SGRs were seeded in 

white, 96-well plates and treated at 4 hpe (Con1, JFH-1) or 24 hpe (S52, S52 Y93H) with the 

indicated concentrations of DCV (a), LDV (b), SOF (c) or RBV (d) for 72 hours before being 

harvested for luciferase assay.  Relative light units were expressed relative to a 0.25% DMSO 

vehicle control.  EC50 values were calculated using Graphpad Prism 7 software.   
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SGR harbouring cell line DCV LDV SOF RBV 

Con1 EC50 0.98 pM 0.32 pM  8.7 uM 

Fold over 

Con1 
    

JFH-1 EC50 3.9 pM 0.98 nM 51.2 nM 22.9 uM 

Fold over 

Con1 
4 3040  6.3 

S52 EC50 63 pM 0.2 uM 6.3 nM 12.6 uM 

Fold over 

Con1 
64** 610,000  4.3 

S52 Y93H EC50 4.5 uM  22.7 nM 23.9 uM 

Fold over 

Con1 
4,600,000   7.2 

Fold over 

wild-type 
72,000****  3.63 1.7 

Table 4-3.  Comparison of calculated EC50 and CC50 values for DCV treatment of HCV SGR 

harbouring cell lines.  Fold changes to two significant figures.  Statistical significance was 

calculated where sufficient data was available (****p<0.0001, **p<0.005) 
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Figure 4-9.  Stably-replicating wild-type S52 is less sensitive to DCV than transiently-

replicating wild-type S52.  The chart shows sensitivity of stably replicating S52 (S52 feo and 

S52 feo DCV) from Figure 4-1; and transiently-replicating S52 (S52 CpGluc and S52 CpGluc 

Y93H) from Figure 4-8 as a comparison.   

 

4.2.2.6 Analysis of fitness cost of NS5A inhibitor resistance 

Whilst conducting the concentration-response experiments with transiently-replicating S52 

SGRs it was observed that the level of replication of the S52 Y93H mutant was significantly 

lower than the wild-type SGR, shown in Figure 4-10.  This is consistent with reports that NS5A 

inhibitor resistance was associated with a fitness cost to replication (section 1.3.2.3).  

However, as shown in Figure 4-5 and Figure 4-10B no such fitness cost was observed in the 

stable SGR harbouring cell lines.  There was no decrease in HCV RNA, luciferase activity or 

NS5A protein expression levels in the DCV-selected S52 SGR harbouring cells.  This implies that 

the stably-replicating, resistant SGR is capable of similar levels of translation and replication to 

the wild-type. 
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Figure 4-10.  DCV-resistance of S52 SGR is associated with a fitness cost in transient assay.   (A) 2 

µg of the indicated RNAs were electroporated into VSEC cells and harvested for luciferase assay at 

96 hpe.  Error bars show standard error of the mean of five experimental repeats.  (B) 8x103 of the 

indicated SGR harbouring cell lines were harvested for luciferase assay.  Error bars show standard 

error of the mean of five experimental repeats. ****p≤0.0001. ***p≤0.001 

 

A consequence of a fitness cost would be that, in the absence of DAA selection, the RAS would 

revert to wild-type.  To test this, the persistence was investigated of the RAS which were 

identified through sequencing of the DCV-selected S52 SGR.  DCV selection pressure was 

removed from a population of the S52 DCV SGR harbouring cells and these were cultured in 

the presence of G418 to maintain the selection of the SGR itself whilst no longer selecting for 

DCV resistance.  As described in Figure 4-7, a mixed sequence at the genome position 

corresponding to the Tyr93 residue can be identified.  If there was indeed a fitness cost to 

replication then it would only be apparent in the absence of the selecting drug; in the presence 

of the selecting drug then the wild-type sequence would be incapable of replication to any 

level, and the mutant would remain the dominant sequence.  The cells were passaged at 1:3 

and after ten passages, approximately 30 days, there was no evidence of reversion of the 

resistant mutant as evident from the sequence traces shown in Figure 4-11.   
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Figure 4-11.  The Y93H RAS persists following removal of the selection pressure.  RNA was 

extracted from S52 and S52 DCV SGR harbouring cells using TRIzol and reverse-transcribed 

to cDNA.  cDNA was used as a template for PCR amplification of the NS5A region and PCR 

products were subjected to Sanger sequencing.  Sequences were aligned to a reference 

sequence of S52 SGR.  Images show forward and reverse sequences (reverse sequences are 

generated as reverse-complemented which are automatically aligned by the analysis 

software.  This results in the colours used to designate individual bases being reversed).   

 

The observation that RAS are stable in the absence of the selection pressure as shown in 

Figure 4-11 highlighted a further difference between transient and stable replication of S52.   

 

4.2.2.7 Evidence for compensatory mutation in resistance 

One explanation was that the fitness cost of Y93H might be compensated for by additional 

mutation(s).  This was explored using two parallel experiments.  Initially, PCR sequencing data 

were reanalysed to identify any additional mixed sequences which are not present in the wild-

type sequencing traces.  A single additional mutation was identified which showed no evidence 

of a mixed sequence in any wild-type sequencing traces.  This mutation was also identified in 
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the S52 DCV SGR harbouring cells which had been removed from DCV selection (labelled DCV -

10).  This was K41R: close to the cluster of residues at M28-L31; it has not been mentioned in 

in vitro or clinical studies as being a RAS. 

 

Figure 4-12.  An additional substitution. K41R, was selected with DCV resistance.  RNA was 

extracted from S52 and S52 DCV SGR harbouring cells using TRIzol and reverse-transcribed 

to cDNA.  cDNA was used as a template for PCR amplification of the NS5A region and PCR 

products were subjected to Sanger sequencing.  Sequences were aligned to a reference 

sequence of S52 SGR. 

 

This mutation was introduced into the S52 wild-type and Y93H transiently-replicating SGRs by 

site-directed mutagenesis and was screened for a potential phenotype as a stabilising 

mutation.  As the data in Figure 4-13 show the combination of K41R and Y93H, far from 

restoring replication to wild-type levels, is lethal to the SGR.   
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Figure 4-13.  K41R does not confer a stabilising phenotype on S52 Y93H SGR.  2 µg of the 

indicated SGRs were electroporated into VSEC cells and harvested for luciferase assay at the 

indicated time points.   

 

A parallel experiment to investigate the presence of resistance-stabilising mutations within the 

S52 DCV SGR involved re-electroporation of SGR harbouring cell RNA.  As presented in chapter 

3, RNA extracted from SGR harbouring cells will replicate transiently when electroporated into 

naïve Huh7.5 cells (Figure 3-13).  Previously in this chapter it has been shown (Figure 4-5) that 

S52 wild-type and DCV SGR harbouring cells show no difference in the replication and 

expression of SGR-encoded proteins, whereas transient replication of DCV-resistant S52 Y93H 

is subject to a significant fitness cost (Figure 4-10).  The SGR RNA within SGR harbouring cells 

before and after selection with DCV is identical except for a small number of RAS and other 

mutations which are not characterised as RAS (such as K41R, described above).  Hence, if the 

phenotype difference resulted from mutations within the SGR then these two should replicate 

to similar levels when electroporated transiently into Huh7.5 cells.  The results of this 

experiment are shown in Figure 4-14.   
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Figure 4-14.  Transient replication of SGR harbouring cell RNA is subject to a fitness cost.  

Total cytoplasmic RNA was extracted from the indicated cell lines using TRIzol.  10 µg of 

total RNA was electroporated into Huh7.5 cells and harvested for luciferase assay at 96 hpe 

(A).  Average relative light units (RLU) was normalised to average SGR RNA quantified by 

qPCR (B) 

 

As the data show there is a defect in transient replication of the S52 DCV SGR.  This difference 

is only slightly significant (P=0.02) but the trend was preserved in multiple experimental 

repeats.  This indicates that the difference in phenotype between transient and stable S52 

DCV-resistant replication is not solely due to the presence of resistance-stabilising mutations 

which arise upon selection and rescue replication of the resistant SGR.  Indeed, no such 

evidence was observed that any of these mutations exist, as the only other mutation which is 

not a RAS did not confer this phenotype (Figure 4-13). 

 

4.2.2.8 Transcomplementation between late and early replication 

The fitness cost phenotype difference between transient and stable replication of DCV-

resistant S52 could instead be linked to the different functions of NS5A in different stages of 

replication.  NS5A domain I has been shown to adopt different homodimer configurations 

(Tellinghuisen et al., 2004; Love et al., 2009; Lambert et al., 2014).  Although the physiological 

role of these alternative dimers is not clear it is likely that the NS5A homodimer conformations 

are linked to the phosphorylation state of the protein to effect different stages of replication 

(1.1.4.2.3).  In each of these structures Tyr93 is predicted to be close to the dimer interface, 

and may have a crucial role in the switch between the two.  Hence, it is possible that Tyr93 
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may play different roles in the initiation stage of replication and the later stages, once 

replication has already been established.  Therefore, the hypothesis considered is that the 

Y93H RAS fitness cost is no longer apparent once the role of the region containing this residue 

in the initiation of replication is complete.   

To test whether the differential phenotype in transiently-replicating S52 is affected by the 

presence of a stably-replicating SGR, a transcomplementation experiment was carried out.  

Functional NS5A is known to be able to transcomplement non-functional NS5A, and rescue 

replication in a cell which is transfected with both (Appel et al., 2005).  For the purposes of this 

experiment, if a stably-replicating Y93H-containing SGR has overcome the fitness cost by 

establishing stable replication, then it will be able to transcomplement a transiently-replicating 

SGR with the same mutation and restore replication of the latter towards wild-type levels.  S52 

neo Y93H SGR harbouring cells were selected as described previously (section 3.2.2); the 

experiment was designed so as to compare the result of wild-type with Y93H SGR harbouring 

cells, however the S52 neo wild-type cells did not survive in selection and sufficient time to 

complete the experiment before completion and submission of this thesis had passed.  

Presence of the SGR was verified by western blot for NS5A and qPCR to detect the SGR RNA as 

shown in Figure 4-15.  The western blot in this figure is the same shown in Figure 3-9 and 

Figure 4-5.  These do not express luciferase, allowing the electroporation of a luciferase-only 

SGR (S52 CpGluc and S52 CpGluc Y93H) – any resulting luciferase activity is directly as a result 

of transcomplementation of the transient SGR. 

When the S52 CpGluc and S52 CpGluc Y93H was electroporated into these cells, luciferase 

activity was detected as shown in Figure 4-16.  Therefore, transcomplementation must have 

occurred since these SGR harbouring cells are derived from Huh7.5 and not VSEC cells; 

S52CpGluc does not replicate in Huh7.5 cells and requires the expression of PIV5 V protein and 

SEC14L2 (discussed in chapter 3).  However, as the data show, the stably-replicating Y93H 

mutant SGR was able to transcomplement the transiently-replicating Y93H mutant to a lesser 

extent.  It is clear that the interpretation of this experiment requires comparison to the wild-

type SGR harbouring cells, which was not possible in the time available – further exploration of 

this result should involve this as a priority. 
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Figure 4-15.  S52 neo SGR harbouring cells express NS5A protein and contain SGR RNA.   

(A) Quantification of HCV SGR RNA in SGR harbouring cell lines.  Total cell RNA was extracted 

from SGR-harbouring cells and quantified.  200 ng of total RNA from each cell line was used 

as a template in a one-step RT qPCR reaction and expressed as genome copies per 200ng 

using an in vitro-transcribed SGR RNA as a standard curve.  Error bars show the standard 

error of three experimental repeats.  (B) Western blot analysis of NS5A in SGR-harbouring 

cells.  15 µg of the indicated SGR-harbouring cell lysates were resolved on 7.5% 

polyacrylamide and stained with sheep polyclonal anti-NS5A serum, anti-β actin and 

respective Infra-red-tagged secondary antibodies.  Membranes were visualised using the 

LiCor Infra-red scanner system.   
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Figure 4-16.  Stably-replicating S52 Y93H only partially transcomplements transiently-

replicating S52 Y93H.  2 µg of the indicated RNAs were electroporated into S52 Neo Y93H 

SGRs and harvested for luciferase assay at the indicated time points.   

 

4.2.2.9 Selection of double resistance to Harvoni treatment 

The current clinically-licenced therapy for HCV in the United States, which is dominated by GT1 

at 75% (Figure 1-1), is the Harvoni combination therapy licenced by Gilead.  This is a 

combination of LDV and SOF and is licenced for GT1 only.  Clinical use of LDV to treat GT3 is 

not extensive following initial reports that it is less effective against GT3, which was confirmed 

in the NHS EAP (Foster et al., 2016).  Despite the addition of SOF which is effective against GT3, 

Harvoni is not recommended for GT3 patients. 

To investigate whether resistance to SOF/LDV combination therapy can be selected, S52 and 

JFH-1 SGR harbouring cells were selected with 100x the calculated EC50 values of LDV and SOF: 

17.2 µM and 440 nM respectively.  Cells were treated with the aforementioned concentrations 

of HCV inhibitors without G418 for an initial 48 hours to allow resistance mutations to begin to 

accumulate, before G418 selection was reintroduced.  A population of cells survived this 

selection and were termed S52 SOF/LDV.  These cells grew poorly due to the high 

concentrations of inhibitor and characterisation was limited.  However, analysis of resistance 

using concentration-response curves, shown in Figure 4-17, showed that a small degree of 

resistance was selected.   
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Figure 4-17.  Selection of S52 SGR harbouring cells with LDV/SOF generates a population 

which are more resistant to NS5A and NS5B inhibitors.  S52 SGR harbouring cells were 

treated with 100x the calculated EC50 of LDV (17.2 µM) and SOF (440 nM) for 48 hours in the 

absence of G418 to allow resistant mutations to emerge before G418 selection was 

reintroduced.  Surviving cells were pooled into a polyclonal population and termed S52 

LDV/SOF.  8x103 of these cells were seeded in white 96-well plates and treated with the 

indicated concentrations of DCV (A), LDV (B), SOF (C) for 48 hours before being harvested for 

luciferase assay.  RLU values were expressed as percentages relative to a DMSO vehicle 

control.  Error bars show the standard error of the mean of three experimental repeats.   
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 DCV LDV SOF 

EC50 1.33 µM 7.4 µM 2.2 nM 

Fold over wild-type 700 43 2 

Table 4-4.  Comparison of calculated EC50 values for S52 SOF/LDV SGR harbouring cell lines.  

Fold changes to two significant figures. 

 

As shown in Table 4-4 there is a shift in EC50 of 700-fold for DCV but only 43-fold for LDV and 2-

fold for SOF.  It is surprising that the EC50 after selection should not exceed the concentration 

which was used for selection, considering that these cells are maintained in 100-fold the wild-

type EC50 concentrations.  It is likely for LDV that the effect upon the double-resistant SGR at 

the highest concentration is linked to toxicity of the compound –LDV is associated with 

cytotoxicity at the highest concentration and is also affected by solubility in culture medium at 

these concentrations.   
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4.2.2.10 Analysis of sensitivity of HCV SGRs to VEL 

During the course of this project a second-generation NS5A inhibitor (Lawitz et al., 2015), 

Velpatasvir (VEL) was licenced.  VEL has been described as pan-genotypic with a higher barrier 

to resistance and so these reports were investigated using the assays detailed in this chapter.  

As shown in Figure 4-18 and Table 4-5 VEL was more effective against Con1 SGR than S52 and 

DCV-resistant S52 both in stable replication and transient replication assays.  The DCV-

resistant S52 was also resistant to VEL. 

SGR/cell line VEL (transient) VEL (stable) 

Con1 EC50  0.21 pM 

Fold over Con1   

JFH-1 EC50 17.57 pM 0.64 pM 

Fold over Con1  3.1 

S52 EC50 0.079 pM 76.5 pM 

Fold over Con1  370 

S52 DCV/Y93H EC50 2.92 nM 6.24 nM 

Fold over Con1  30,000 

Fold over wild-type 37,000 82 

Table 4-5.  Comparison of calculated EC50 values of VEL HCV SGR and SGR harbouring cell 

lines.  Fold changes to two significant figures. 
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Figure 4-18.  S52 SGR is more resistant to VEL than other genotypes.  8x103 of the indicated 

cell lines were seeded in white 96-well plates and treated with the indicated concentrations 

of VEL for 48 hours before being harvested for luciferase assay (A).  8x103 of VSEC cells 

electroporated with the indicated SGRs were seeded in white, 96-well plates and treated at 

4 hpe (JFH-1) or 24 hpe (S52, S52 Y93H) with the indicated concentrations of VEL for 72 

hours before being harvested for luciferase assay.  Relative light units were expressed 

relative to a 0.25% DMSO vehicle control.  EC50 values were calculated using Graphpad Prism 

7 software 

 

The concentration-response curves for each compound consist of an initial plateau, where 

concentration is too low for any effect to be observed, a linear portion within which the EC50 

lies, and a second plateau, in which the concentrations are higher than that which exerted its 

maximum effect.  This second plateau usually reaches a baseline number of relative light units, 

usually around 100 RLU.  However, the second plateau of the VEL concentration-response 

curve to measure sensitivity of S52 and S52 DCV-resistant SGR did not reach this baseline level, 

and instead reached a plateau of several thousand RLU, as shown in Figure 4-19.   
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Figure 4-19.  Higher concentrations of VEL do not eradicate replication of S52.  Bar chart 

shows the average luciferase activity in SGR harbouring cells treated with 10 µM VEL for 48 

hours. 

 

This effect seems to be unique to the S52 SGR harbouring cells.  S52 SGR harbouring cells do 

indeed have a higher luciferase activity than their JFH-1 counterparts, however the difference 

in RLU at this highest concentration of VEL is 200-fold between S52 and JFH-1 SGR harbouring 

cells, and the difference between untreated RLU values for these same cells is 1.5-fold.  It is 

not known why such an effect occurs when S52 SGR harbouring cells are treated.  In contrast, 

the S52 SGR is highly sensitive to VEL compared to DCV and LDV, when EC50 is calculated.   

4.2.3 Investigation of the emergence of NS5A inhibitor resistance 

Clinical studies of NS5A inhibitor efficacy usually investigate RASs (RAS) in patients who have 

failed therapy.  Those in GT3 patients associated with the highest degree of resistance, and 

correlate with treatment response, are Y93H and L31V (section 1.3.2.3).  However, the link is 

not causative: patients with a pre-existing RAS may go on to achieve SVR, and patients who do 

not present with a pre-existing RAS may go on to fail treatment and develop RAS in the relapse 

or rebound virus sequences.  Thus, the relationship between RAS and treatment response is 

not fully known. 

4.2.3.1 Comparison of replication of Y93H and wild-type S52 by colony formation 

assay 

To investigate this, a colony formation experiment was carried out.  2µg of RNA transcribed 

from S52 neo wild-type and Y93H were electroporated into Huh7.5 cells and selected with 
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G418 for three weeks.  Surviving colonies were fixed and counted and this data is shown in 

Figure 4-20.   
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Figure 4-20.  S52 neo Y93H replication can be quantified by colony formation assay, and 

shows no fitness cost.  2 µg of the indicated RNAs were electroporated into Huh7.5 cells 

and seeded at a density of 1x105 in a 6-well plate.  48 hours after electroporation the cells 

were selected with 50ng/mL G418 for three weeks, re-treating with G418 every 48 hours.  

Following selection, colonies were fixed and stained with 10% PFA in crystal violet, then 

counted manually and expressed as colony forming units per μg RNA electroporated. 

 

As the data show the fitness cost of the transient Y93H mutation was not apparent in this 

system.  Indeed, colony formation efficiency is higher than for wild-type.   

4.2.3.2 Investigation of the effect of pre-existing RAS upon development of DCV resistance 

The consensus of in vitro data is that RAS such as Y93H confer high levels of resistance upon 

SGRs of all GTs.  However, the role of RAS in treatment response is not clear as, upon 

treatment, they can arise de novo or expand from pre-existing low frequencies within patient 

sequences (Kai et al., 2017).  The pre-existence of a RAS within a patient is associated with a 

decreased likelihood of achieving SVR, but patients with a RAS can eradicate the virus and 

those without can fail without a RAS being detected.  The colony formation assay outlined in 

Figure 4-20 was then used to explore the effect of pre-existing RAS on the colony-formation 

efficiency of S52 in the presence of DCV.  Huh7.5 cells were electroporated with different 

ratios of wild-type and Y93H S52 neo RNA and selected with G418 to quantify colony 

formation efficiency.   
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Figure 4-21.  Pre-existence of a RAS strongly correlates with colony formation efficiency in 

the presence of DCV.  2 µg of the indicated RNAs at the indicated ratios were 

electroporated into Huh7.5 cells and seeded at a density of 1x105 in a 6-well plate.  48 hours 

after electroporation the cells were selected with 50ng/mL G418 for three weeks, re-

treating with G418 every 48 hours.  Following selection, colonies were fixed and stained 

with 10% PFA in crystal violet, then counted manually and expressed as colony forming units 

per 100 ng RNA electroporated. 

 

The result of a preliminary experiment is shown in Figure 4-21.  This experiment is highly 

variable but there is a clear association between abundance of a RAS and the capacity to 

replicate in the presence of DCV.  Indeed, there may be an increase in the colony-formation 

efficiency of Y93H SGR in the presence of DCV compared to the absence, though this requires 

verification.   

 

4.2.4 Epidemiological analysis of resistance 

The initial focus of this project was to investigate NS5A inhibitor resistance in sequences 

derived from clinical samples obtained from GT3-infected patients.  The strategy was to 

establish transient replication of the S52 feo SGR then use this system to develop a shuttle 

construct with a pair of unique restriction sites flanking the NS5A coding region.  Once 

constructed, NS5A sequences from clinical samples could then be amplified by PCR using a pair 

of primers to insert the respective restriction sites at either end.  These PCR products could 

then be ligated into the shuttle construct and the resulting chimera SGR plasmid DNA 

propagated as a mixture to maintain the quasispecies of NS5A sequences which existed within 

the patient.  This strategy would lead to the construction of a set of chimera SGRs, one for 
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each original patient sample, in which the variability of NS5A exists as a mixture.  The purpose 

of this would then be to select resistant sequences from this mixture using DCV treatment and 

identify patterns of RAS which emerged using sequencing.  However, the work to establish 

transient replication exceeded its expected timescale and the experiment could not be 

completed.  This section details the initial work to construct the transiently-replicating shuttle 

construct and optimise the amplification of NS5A from clinical samples. 

4.2.4.1 Construction of the S52 shuttle construct  

The S52 SGR already contains a unique PsiI restriction site at the 3’ end of NS5A; it was 

modified to insert a silent Bsu36I restriction site at the 5’ end.  However, it has been shown 

that the S2204I culture-adaptive mutation in the LCS-I of NS5A is essential for replication of 

this SGR and such a mutation cannot be assumed to be present in the clinical sequences.  Thus, 

a second unique site was introduced within the LCS-I downstream of the S2204I mutation site: 

PspXI.  Since the low CpG/UpA reporter which was used to replace the feo cassette contains a 

Bsu36I restriction site, this was removed silently by site-directed mutagenesis (with care taken 

to maintain the CpG and UpA dinucleotide frequency).  The resulting SGR with CpGluc, A1672V 

culture-adaptive mutation and unique restriction sites flanking NS5A domain I was labelled 

S52t, for transiently-replicating S52 (Figure 4-22).   

 

Figure 4-22.  Diagram of the S52t SGR.  Features of the SGR are labelled: CpGluc (low 

CpG/UpA luciferase) and HCV non-structural proteins (NS3, NS4A, NS4B, NS5A, NS5B).  CAS 

(T1056A, T1429I, A1672V) labelled with blue lines, restriction sites labelled with red lines; 

the site of the second Bsu36I site which was removed by site-directed mutagenesis is 

denoted by a crossed-out red line. 

 

Since the experimental strategy involved subcloning and expanding the chimera SGR DNA as a 

mixture, individual bacterial colonies would not be screened as part of the ligation.  Hence, 

there was concern that any religation of vector would result in the inclusion of wild-type SGR 
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sequences which would skew the results of the experiment.  To prevent this from occurring a 

short stuffer fragment of 20 nucleotides was designed to be ligated into the shuttle construct 

in place of NS5A domain I; this would be the vector used for insertion of amplified patient 

sequences.  This was termed S52t-SF (stuffer fragment).  Any religated vector within the 

mixture would be inconsequential since the lack of NS5A domain I should render the SGR 

replication-incompetent. 

The respective replication capacities of S52t and S52t-SF were verified.  All modifications to the 

SGR were silent in terms of the amino acid coding sequence and the CpG/UpA dinucleotide 

frequency of the reporter, however RNA structures are known to be important to the virus and 

so replication of the modified S52t SGR was assayed.  Figure 4-23 shows that the S52t 

replicated to similar levels to the S52 CpGluc A1672V SGR, which contains the additional 

Bsu36I site within the luciferase gene and lacks the PspXI restriction site within the LCS-I.  In 

addition the S25t-SF, which contains the stuffer fragment in place of NS5A domain I, was 

unable to replicate. 
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Figure 4-23.  S52t, containing the modifications required for insertion of NS5A coding 

regions from clinical samples, is capable of transient replication.  2 µg of the indicated 

RNAs were electroporated into VSEC cells and harvested for luciferase assay at the indicated 

time points.   

 

4.2.4.2 Patient sample information 

The samples obtained were from the HCV Research UK Biobank and were from patients with 

chronic HCV GT3 enrolled in the NHS EAP.  The samples selected were from patients who failed 

to respond to DCV treatment; patients treated with LDV were not selected due to the lower 

efficacy of this drug against GT3.  7 sets of paired samples were received, taken at baseline and 
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at time of relapse for each patient.  In addition, samples from ten patients were received who 

achieved SVR – initially the purpose of these samples was for optimisation of the amplification 

protocol since they are more abundant than the 6 pairs of relapse samples which were vital for 

the experiment once the parameters were optimised.  However during the course of the 

experiment it was expected that the SVR samples might provide a valuable control, with the 

potential for differences to be identified which could at least partially explain the response 

rates between the two sets of patients.  The SVR samples were also supplied at a range of 

different viral loads, to provide the opportunity to identify the limit of amplification.  A 

summary of the information for each sample is provided in Table 4-6 and Table 4-7. 

Patient key (last 

four digits) 

Sample barcode 

(last four digits) 

Sample type Viral load (IU/mL) 

4309 1984 Baseline 1.25X106 

1980 Relapse 4.96X105 

1977 Relapse 4.96X105 

1844 1973 Baseline 1.59X106 

1978 Relapse 1.29X106 

1447 1983 Baseline 7.76X105 

1974 Relapse 5.63X105 

8810 1982 Baseline 4.91X105 

1976 Relapse 1.48X104 

0925 1971 Baseline 2.99X105 

1979 Relapse 1.67X105 

4471 1972 Baseline 1.88X105 

1981 Relapse 3.05X102 

1785 1970 Baseline 4.52X104 

1985 Relapse 2.93X102 

1975 Relapse 2.93X102 

Table 4-6.  Clinical samples received from the HCVRUK biobank for the epidemiological 

study: Nonresponder group. 
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Patient key (last 

four digits) 

Sample barcode 

(last four digits) 

Sample type Viral load (IU/mL) 

6456 1935 SVR 5.61X106 

4447 1934 SVR 1.20X106 

7307 1933 SVR 6.63X105 

2355 1932 SVR 2.47X105 

1703 1931 SVR 6.00X104 

4221 1930 SVR 2.00X104 

7980 1929 SVR 1.63X104 

6115 1928 SVR 8.20X103 

6264 1927 SVR 7.91X103 

7228 1926 SVR 4.57X103 

Table 4-7.  Clinical samples received from the HCVRUK biobank for the epidemiological 

study: SVR group. 

 

4.2.4.3 Amplification of NS5A sequences 

I initially designed primers to contain ambiguous bases to reflect the variability of the locations 

at which the restriction sites would need to be introduced.  GT3 sequences from the Los 

Alamos HCV database (Kuiken et al., 2005) were used for primer design.  These were tested 

against plasmid DNA of Con1, JFH-1 and S52 SGR and a no-template control to confirm 

specificity.  As shown in Figure 4-24 there was a single band which resolved at the appropriate 

size of NS5A domain I. 

 

Figure 4-24.  NS5A domain I can be amplified from plasmid DNA using degenerate primers.  

Plasmid DNA of Con1, JFH-1 and S52 SGR was amplified by PCR and resolved on 1% agarose 

gel. 
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However, when these primers were used to amplify NS5A from cDNA reverse-transcribed from 

RNA extracted from the patient sample in the SVR group with the highest viral load, no bands 

were visible.  To address this the primers were redesigned to remove the ambiguous bases.  

Although this would likely bias the amplification of certain sequences, this was considered an 

acceptable risk, compared to failure of amplification.  Nested PCR amplification was repeated 

using these redesigned primers and a weak band was visible when the PCR products were 

resolved.  The reproducibility of this was poor in that on some occasions no amplification was 

visible.  A representative gel of a successful amplification is shown in Figure 4-25.   

 

Figure 4-25.  NS5A domain I can be amplified by PCR from patient samples.  RNA was 

extracted from clinical samples using the QIAmp viral RNA kit and reverse-transcribed to 

cDNA using a gene-specific reverse primer.  cDNA was amplified by nested PCR and resolved 

on 1% agarose gel.  SVR 1, 2 and 3 refer to three high viral load samples from the SVR 

patient group. 

 

To improve the reproducibility and the yield of amplified DNA the addition of magnesium 

chloride (MgCl2) was investigated.  It was found that the addition of MgCl2 to the second 

(nested) PCR reaction greatly improves the yield of the DNA fragment, as well as the 

reproducibility.  A representative gel is shown in Figure 4-26. 
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Figure 4-26.  Amplification of NS5A domain I from patient samples was optimised.  RNA 

was extracted from clinical samples using the QIAmp viral RNA kit and reverse-transcribed to 

cDNA using a gene-specific reverse primer.  cDNA was amplified by nested PCR and resolved 

on 1% agarose gel.  SVR 1933 and 1934 refer to two high viral load samples from the SVR 

patient group, of which four replicate PCR reactions are shown. 

 

In this experiment four reactions were pooled to give a higher amount of cDNA which was 

then precipitated with ethanol.  DNA preparations were then digested with Bsu36I and PspXI 

alongside the S52t-SF plasmid for subcloning, shown in Figure 4-27.  Unfortunately the 

resulting ligation was not successful as the bacterial cultures which grew on the selection plate 

did not contain the correct plasmid when screened.  More work is needed to optimise the 

ligation and propagation of the chimera plasmid DNA. 
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Figure 4-27.  S52t-SF and NS5A domain I fragments amplified from patient samples resolve 

at the correct molecular weights after restriction digest.  5 µg of S52t-SF plasmid DNA was 

digested with 10 units each of Bsu36I and PspXI.  The pooled and precipitated NS5A 

fragments amplified from SVR samples 1933 and 1934 was digested with 5 units of each of 

the aforementioned restriction enzymes.  Digested DNA was resolved on 0.7% agarose gel. 
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4.3 Discussion 

Across all different culture systems and clinical trials, GT3 is less sensitive to DAAs of all classes, 

to a greater or lesser extent.  NS5A inhibitors are significantly less effective against GT3 and 

even those reported to have pangenotypic potency such as VEL are subject to the same trend.  

Interestingly, this work has shown that VEL treatment does not completely eradicate 

replication of a GT3 SGR, even at very high concentrations.  The EC50 calculated supports the 

claim of VEL as pan-genotypic, though selected DCV resistance also confers resistance to VEL, 

and the inhibition of VEL never exceeds 90%.  This is potentially linked to solubility at the 

highest concentration used, though this does not explain the lack of such a phenomenon in 

JFH-1 treatment experiments and the lack of a complete effect upon replication above EC90.  It 

would be surprising to observe that VEL is subject to such solubility issues that it cannot be 

used above EC90. It would be interesting to select resistance with this inhibitor in the same 

fashion as that carried out for DCV.   

It was also observed that DCV is much more effective against transient replication of S52 than 

stable replication, which concurs with what is already known about the mechanism of action of 

DCV and NS5A inhibitors.  DCV is proposed to bind at the dimer interface of an NS5A 

homodimer and stabilise the structure, inhibiting the switch between replication and assembly 

that NS5A is thought to effect (Ascher et al., 2015; Barakat et al., 2015; Lambert et al., 2014).  

It is also hypothesised to bind to a precursor of NS4B and NS5A before the two are cleaved 

(Qiu et al., 2011) which requires the drug to be present at the point of translation of the 

genome.  Such a difference in the efficacy of the drug on different stages of replication must 

partially explain why resistance is so readily acquired.  If the initial effect of the drug is on 

assembly of virus, and later on RNA replication, then continuing replication in the short term 

provides opportunity for RAS to arise. 

Selection of resistance is also associated with significant shifts in EC50 for all NS5A inhibitors.  

The introduction of a common RAS Y93H which is associated with a lesser response to NS5A 

inhibitors in clinical trials showed the same phenotype and in most cases increased the EC50 to 

the same concentrations, if not higher, than those calculated for stable SGR harbouring cells 

which were selected with DCV.  These SGRs which have undergone resistance selection as a 

forward genetic approach also contain a mixture of sequences at L31; a linkage of L31V and 

Y93H is associated with much higher levels of resistance in vitro than either substitution alone.  

That this phenotype was not evident in the S52 DCV-selected SGR harbouring cells is 
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potentially due to the mixture of sequences at each of these positions.  A complete 

substitution of L31V and Y93H is likely to further increase resistance to DCV.   

A difference was identified in the fitness cost of NS5A inhibitor resistance in GT3.  In in vitro 

studies using different genotypes a fitness cost of resistance has been widely reported.  It is to 

be expected that mutation at the proposed dimer interface site should have an effect on the 

normal functioning of the protein.  Interestingly, a study of resistance to the NS5A inhibitor 

Elbasvir identified a fitness cost phenotype which was less apparent in GT3 (Liu et al., 2015).  In 

addition, the persistence of RAS at long-term follow-up in patients who failed treatment has 

been demonstrated.  Accordingly, such a fitness cost was only observed during transient 

replication and not stable.  This was evident in luciferase reporter activity, NS5A protein 

expression and SGR RNA level, as well as persistence of the RAS in the prolonged absence of 

selection pressure.  .  The reason for this is not likely to simply be due to a mixture of wild-type 

and resistant sequences within the cell, since the fitness cost phenotype was not observed in 

the colony formation assay.  This observation was also reported by Scheel and colleagues; the 

fitness cost to Y93H in GT3 at 3 days is lost by days 5 and 7 (Scheel et al., 2011). 

A potential reason for this is that NS5A develops further stabilising mutations which do not 

directly contribute to resistance, however no such mutations within NS5A domain I were 

identified.  NS5A domain I was the primary focus: NS5A domain I is highly structured and is 

likely to form multi-order structures made up of repeating homodimers (Sun et al., 2015).  It is 

possible that such a mutation may exist in other non-structural proteins which interact with 

NS5A such as NS4B, but it is not likely because not every NS5A dimer within the repeating 

structure will interact with a molecule of NS4B – in fact only those at the periphery will form 

such an interaction.  In addition, transient replication of SGR RNA extracted from S52 DCV SGR 

harbouring cells is subject to the same fitness cost as transiently-replicating S52 SGR.  If 

genetic compensation was solely responsible for the differential phenotype between the two 

systems, then the yet unidentified resistance-stabilising mutations would confer wild-type 

replication levels on the S52 DCV RNA.  This was not so, indicating another factor involved.   

This work also demonstrated that the effect is not likely to be solely due to a 

transcomplementation effect of persistent replication upon newly-initiated replication.  NS5A 

is proposed to control the switch between genome replication and assembly, linked to 

hyperphosphorylation of the protein and a conformational change of the homodimer, with 

one of the functions of NS5A being to deliver virus genomes to sites of assembly to associate 

with core and package into new virus particles.  It is feasible that a mutation at the dimer 
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interface should have a more pronounced phenotype early in replication, with such a fitness 

cost overcome by the time replication has already been established.  This is, however, not 

likely to be solely the reason for the difference in phenotype: How, then, would resistance 

spread to other cells?  Persistence of the RAS despite fitness cost may be a consequence of 

both genetic compensation and a complementation effect of persistence upon early 

replication.  It may be possible that K41R, being the only non-synonymous change in NS5A 

domain I which was not directly resistance-associated, is still involved, but in a 

transcomplementation role.  The linkage of K41R and Y93H is lethal to replication but they may 

not necessarily exist on the same genome strand, although this would mean that resistance 

does not readily spread to other cells.   

This work investigated the difference between emergence of RAS and pre-existence within a 

population.  RAS are common in the untreated population (Suzuki et al., 2012; Paolucci et al., 

2013; Patiño-Galindo et al., 2016) and it is known that the presence of a RAS at baseline 

correlates with treatment response, with patients having a RAS before treatment being less 

likely to respond.  However RAS are just as likely to emerge on-treatment and are equally likely 

to affect treatment response (Kai et al., 2017).  In vitro the presence of a RAS as a mixed 

sequence (mimicking the quasispecies of an infected individual) before selection with DCV 

strongly effects the ability of the SGR mixture to replicate in the presence of the drug, however 

there are clearly other factors which affect treatment response in vivo which complicate the 

issue, such as BMI, presence of clinical signs of cirrhosis or non-hepatic disease, and some 

demographic factors including age, gender and race.  Testing for RAS before treatment will not 

necessarily allow prediction of patients who will respond to therapy, although it may identify a 

group of patients who would likely benefit from longer treatment, or the addition of RBV, as 

current recommendations for a new combination therapy of Elbasvir (NS5A) and Grazoprevir 

(NS3) state for GT1a (Bruchfeld et al., 2017). 

This project sought initially to perform these experiments using chimera SGRs containing NS5A 

from clinical samples, as an epidemiological and functional study.  An amplification protocol 

has been established which is sensitive and reproducible, and the tools to construct these 

chimera SGRs and screen them have been developed.  Further work is necessary to optimise 

the digestion and ligation steps in this protocol.  Once completed, patient sequences in S52 

will provide clinical context to this work and may be able to shed light on the complicated 

relationship between resistance-associated variation and treatment response. 



 

126 

 

Chapter 5: Evaluation of 

Genotype-specific differences in 

the perturbation of lipid 

metabolism pathways by hepatitis 

C virus 
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5.1 Introduction 

It has been widely shown that GT3 infection is associated with severe hepatic steatosis that is 

not associated with other risk factors such as BMI.  This steatosis in GT3 patients correlates 

with HCV RNA level in the liver and disappears completely upon achieving SVR (Mihm et al., 

1997; Rubbia-Brandt et al., 2004; Abid et al., 2005; Nkontchou et al., 2011).  Indeed, GT3 core 

causes a greater degree of lipid accumulation than core from other genotypes, (Abid et al., 

2005; Jhaveri et al., 2009) and core domain 3 is sufficient to induce lipid accumulation (Jhaveri 

et al., 2009).  A series of studies using clinical material has shown correlative associations 

between GT3 infection and lipid metabolism perturbation: GT3 infection is associated with an 

increase in hepatic miR-122, a modifier of hepatic lipid metabolism (Oliveira et al., 2016); It is 

also associated with an increase in gluconeogenic genes, contributing to type 2 diabetes 

observed in HCV patients (Sheikh et al., 2015); and a polymorphism in Microsomal Triglyceride 

Transfer protein (MTP) is associated with more severe steatosis in GT3 patients (Zampino et 

al., 2008).  However, greater understanding of the biochemical basis of GT3-specific lipid 

accumulation may identify pathways to exploit for therapeutic purposes, to treat the 

pathogenesis of infection in addition to the virus itself.   
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5.2 Results 

GT3 replication systems developed in chapter 3 allow us to investigate pathways which are 

linked to the steatosis seen in patients, which is more severe and causes quicker progression 

to cirrhosis and further disease states.  The hypothesis to be tested was that the NS3-5B non-

structural proteins play a role in steatosis, following observations that non-structural proteins 

play roles in the organisation of the membranous web and recruitment of lipoproteins; and 

induction of autophagy (Egger et al., 2002; Eyre et al., 2014).  Transient replication of S52 was 

not sufficiently high to cause discernible effects on lipid metabolism pathways so a range of 

experiments were performed using SGR harbouring cells 

5.2.1 Comparison of lipid accumulation and rearrangement in genotype 3 

5.2.1.1 Comparison of lipid distribution by immunofluorescence 

Intracellular lipids are known to be upregulated in HCV infected and SGR-transfected cells in 

vitro.  Lipid content and distribution were compared between Con1, JFH-1 and S52 SGR 

harbouring cells, and naïve Huh7.5 cells.  NS5A was detected by indirect immunofluorescence 

as previously described and total lipids were identified using 594 nm BODIPY labelling.  The 

data in Figure 5-1 show three individual cells for each cell type.  It is clear that these polyclonal 

populations show marked differences in both NS5A and lipid distribution.  It might be expected 

that some degree of lipid accumulation occurs in the S52 SGR harbouring cells, however there 

is no clear difference in lipid distribution between naïve cells and S52; indeed, the SGR 

harbouring cell line with the most striking difference in lipid distribution is that containing 

Con1, which is a GT1b sequence.  GT1b is not associated with hepatic steatosis in the absence 

of other risk factors such as high BMI.  In addition to this it seems from this data that a 

negative correlation can be observed between NS5A and lipid immunofluorescence intensity. 
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Figure 5-1.  S52 SGR harbouring cells do not have a higher intensity of lipid fluorescence 

than other genotypes.  S52 and S52 DCV SGR-harbouring cells were immunostained for 

NS5A (green) using a sheep polyclonal anti-NS5A serum, and stained for lipids using BODIPY-

594 and nuclei using DAPI.  Multiple images shown for each cell type. 

 

Lipid accumulation has been proposed to be mediated by core.  Hence, it was investigated 

whether the lack of any discernible difference in lipid fluorescence intensity and distribution 

between the genotypes was due to the absence of core protein in the SGR harbouring cells.  To 

address this, an experiment was carried out using the S52 chimera virus.  Huh7.5 cells infected 

with JFH-1 or S52 GERA virus (see chapter 3 – the S52 virus is a chimera of 5’ UTR to NS5A of 

S52 and NS5B to 3’ UTR of JFH-1) were imaged for NS5A and lipids; the images are shown in 

Figure 5-2.  The fluorescence images are the same shown in Figure 3-16.  As the data show, 

there is an unusual pattern of lipid fluorescence visible in the S52-infected cell, which appears 

to be a redistribution rather than accumulation.  Due to extremely low infectivity of the S52 

virus supernatant it was not possible to explore this further within this experiment, though it 

may be a promising avenue to explore.  NS5A immunofluorescence intensity in the S52-
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infected cell was also significantly lower than for JFH-1 – the parameters for imaging NS5A 

within the S52-infected cell had to be increased before NS5A punctae were visible which 

makes comparison of the two unrealiable. 

 

 

Figure 5-2.  S52 virus-infected cells have a distinct rearrangement of lipids.  Huh7.5 cells 

were infected at a MOI of 1 with S52 GERA virus supernatant for 48h, fixed and 

immunostained for NS5A (green) using a sheep polyclonal anti-NS5A serum, BODIPY 594 

(red) and nuclei using DAPI 

 

5.2.1.2 Comparison of total lipid content using flow cytometry 

The difference in lipid content between S52 and other SGR harbouring cells was not 

quantifiable, therefore to investigate the subtle differences between them the total lipid 

content within SGR harbouring cells was quantified, and compared to NS5A content between 

each cell line, using flow cytometry.  JFH-1, S52 SGR harbouring cells and Huh7.5 cells were 

fixed and stained in suspension with anti-NS5A serum and BODIPY, before being analysed in a 

flow cytometer, shown in Figure 5-3.  
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Figure 5-3.  S52 SGR harbouring cells have a similar lipid content to JFH-1, and lower NS5A.  

JFH-1, S52 SGR harbouring and Huh7.5 cells were fixed and analysed for NS5A content and 

total lipid using anti-NS5A serum and BODIPY respectively.  Stained cells were analysed 

alongside unstained and monostained controls for gating and optimisation of sensitivity 

parameters using a BD LSR Fortessa flow cytometer and analysed using DiVa6 software. 
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 JFH-1 S52 Huh7.5 

# events % of 

events 

# events % of 

events 

# events % of 

events 

Q1 (high 

NS5A, low 

lipid) 

24 0.1 3 0 2 0 

Q2 (high NS5A 

and lipid) 

18,928 72.8 5,848 26.0 4,089 19.7 

Q3 (negative 

for both) 

825 3.2 449 2.0 289 1.4 

Q4 (high lipid, 

low NS5A) 

6,238 24.0 16,224 72.0 16,349 78.9 

Total events 26,015  22,524  20,729  

Total events 

gated 

20,000 76.9 20,000 88.0 20,000 96.5 

Table 5-1.  Quantification of flow cytometry data from Figure 5-3. 

 

Interestingly there is an increase in lipid content between Huh7.5 and SGR-harbouring cells, in 

that the histograms in Figure 5-3 show that the distribution is towards higher lipid content in 

the SGR-harbouring cells, but no clear difference between JFH-1 and S52.  In addition, the level 

of quantified NS5A intensity is much lower in the S52 cells.  There is evidence of a separate 

population with lower NS5A content in the JFH-1 cells.  It is not known whether these cells are 

suboptimally fixed or stained, or whether there is indeed a population with lower NS5A 

content.  In contrast to the immunofluorescence images showing that the highest number and 

size of lipid droplets seems to be in cells with fewer and smaller NS5A punctate structures, the 

flow cytometry data show a clear correlation between NS5A and lipid content. 
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Figure 5-4.  Bleed-through of signal between channels during flow cytometry analysis was 

addressed.  JFH-1 SGR harbouring cells were fixed in 4% paraformaldehyde and 

permeabilised with 0.1% Triton-X 100 prior to analysis for NS5A or total lipid content using 

anti-NS5A serum or BODIPY respectively on a BD LSR Fortessa flow cytometer.   

 

Analysis of this data required computational correction for a bleed-through of signal between 

channels.  As shown in Figure 5-4 there is a FITC signal (corresponding to NS5A) in the cells 

stained with BODIPY only, and a Cy5 signal (corresponding to BODIPY) in the cells stained with 

NS5A only.  To address this, two different approaches were considered to reduce the overlap 
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of the signal:  The use of a lipid-imaging molecule with a higher wavelength than the 594 nm 

BODIPY; or the use of a secondary antibody for NS5A with a lower wavelength than the 

AlexaFluor 488 secondary antibody used thus far.   

 

Figure 5-5.  Alternative 405 nm secondary antibody for NS5A is not suitable for flow 

cytometry.  S52 SGR harbouring cells, alongside Huh7.5 cells, were fixed in 4% 

paraformaldehyde and permeabilised with 0.1% Triton-X 100 before being analysed for 

NS5A using anti-NS5A serum and AlexaFluor 405 nm secondary antibody.  Stained cells were 

analysed alongside unstained controls for gating and optimisation of sensitivity parameters 

using a BD LSR Fortessa flow cytometer and analysed using DiVa6 software.   
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Figure 5-6.  Lipidtox lipid dye cannot be analysed by flow cytometry.  S52 SGR harbouring 

cells, alongside Huh7.5 cells, were fixed in 4% paraformaldehyde and permeabilised with 

0.1% Triton-X 100 before being analysed for lipids using LipidTox or BODIPY.  Stained cells 

were analysed alongside unstained controls for gating and optimisation of sensitivity 

parameters using a BD LSR Fortessa flow cytometer and analysed using DiVa6 software.   
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Figure 5-5 shows the analysis of NS5A stained with a 405 nm secondary antibody.  As the 

histograms show there is not sufficient uniformity of the signal, and there is also substantial 

crossover of signal from lipid imaging into the Pacific Blue channel.  Figure 5-6 shows that, at 

concentrations up to 1:200 the flow cytometry instrument was not able to detect the Lipidtox 

signal in the Cy7 channel.  These data show that these options are not suitable for the 

purposes of this experiment. 

5.2.2 Comparison of basal and activated AMPK 

5.2.2.1 Comparison of AMPK activation in SGR harbouring cells 

Previous work from this laboratory (Mankouri et al., 2010) has shown that HCV inhibits activity 

of adenosine monophosphate (AMP)-activated protein kinase, AMPK, the energy sensor of the 

cell.  This blocks the ability of the kinase to downregulate lipid synthesis to maintain energy 

production over energy consumption.  This may result in an upregulation of total lipids, adding 

to the enrichment of lipids at sites of assembly.  This work was reproduced and the GT3 SGR 

harbouring cells were applied to the assay.   

To explore whether the effect exerted by HCV on AMPK might be different depending on 

genotype, cells harbouring Con1, JFH-1 and S52 SGR and Huh7.5 cells were treated for 48h 

with metformin, an activator of AMPK.  AMPK activation was measured using antibodies to 

Threonine 172 (T172)-phosphorylated AMPK and Serine 79 (S79) phosphorylated Acetyl CoA 

Carboxylase (ACC), a substrate of AMPK.  Cells were serum-starved for 24h before treatment 

as being in a state of starvation accentuates the induction of AMPK, making any effects on the 

SGR and downstream ACC more readily apparent.  As shown in Figure 5-7 there is a decrease 

in both untreated and metformin-upregulated phosphorylation of both AMPK and ACC in S52 

harbouring cells compared to JFH-1 harbouring cells.  The level of phosphorylated AMPK and 

ACC in S52 SGR harbouring cells treated with 10 mM is approximately equal to that within JFH-

1 harbouring cells before metformin treatment.  However, an increased amount compared to 

both JFH-1 and S52 should have been observed in Huh7.5 cells both basally and following 

metformin treatment, which was not the case.  Treatment with metformin upregulated 

phosphorylated AMPK and ACC in all three cell lines though, interestingly, the level of 

activation in S52 harbouring cell lines is lower than for JFH-1. 
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Figure 5-7.  Metformin activates AMPK by phosphorylation in SGR harbouring cells to a 

lesser extent in S52 harbouring cells than JFH-1.  Huh7.5, JFH-1 and S52 SGR harbouring 

cells were serum-starved for 24h before being treated with the indicated concentrations of 

metformin for 48h.  Cells were then lysed in PLB supplemented with protease and 

phosphatase inhibitors for immunoblot analysis of phosphorylated ACC and AMPK, with 

GAPDH loading control.   

 

The effect of metformin treatment on SGR replication was also explored.  AMPK activation was 

shown in the study to have a negative effect on SGR replication (Mankouri et al., 2010).  Given 

that there seems to be a difference in AMPK activation levels between GT2 and GT3 cells it 

should be expected that a differential effect on replication should also occur. Accordingly, 

there was a greater decrease in replication of S52 compared to JFH-1, indicating that the S52 

cells are more sensitive to the effects of AMPK activation. 
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Figure 5-8.  Metformin attenuates S52 SGR replication to a greater degree than JFH-1.  The 

indicated SGR harbouring cells were serum starved for 24h prior to treatment with the 

indicated concentrations of metformin for 48h.  Cells were harvested for luciferase and data 

show luciferase quantification in equal quantities of cell lysate. 

 

5.2.2.2 AMPK activation in virus-infected cells 

This observation was validated using the chimera S52 virus.  Huh7.5 cells were either infected 

with S52 virus supernatant or electroporated with S52 virus RNA.  Due to the poor yields of 

S52 virus it was not possible to conduct experiments at a higher MOI and there is little 

evidence of infection, and no evidence of a difference in AMPK activation (Figure 5-9).  

However, analysis of AMPK activation in virus-electroporated cells (Figure 5-10) concurs with 

the data generated using SGR harbouring cells.   
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Figure 5-9.  Metformin activates AMPK in S52-infected cells at lower levels compared to 

JFH-1-infected and uninfected cells.  Huh7.5 cells were seeded in 6-well plates and infected 

for 48h with DMEM (mock), JFH-1 or S52 virus supernatants at an estimated MOI of 1.  Virus 

inoculum was then aspirated and cells were serum-starved for 24h prior to treatment with 

the indicated concentrations of metformin for a further 48h.  Cells were then prepared for 

immunoblot as described in chapter 2 and immunoblotted for phosphorylated ACC, AMPK 

and GAPDH.   

 

 

Figure 5-10.  Metformin activates AMPK in S52-electroporated cells at lower levels 

compared to JFH-1-electroporated and mock-electroporated cells.  Huh7.5 cells were 

electroporated with JFH-1, JFH-1 GND (mock) or S52 virus RNA and seeded in 6-well plates 

before being serum starved for 24h and treated with the indicated concentrations of 

metformin for a further 48h.  Cells were then prepared for immunoblot as described in 

chapter 2 and immunoblotted for phosphorylated ACC, NS5A and GAPDH.   
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As Figure 5-10 shows, phosphorylated ACC levels (used as a surrogate for AMPK activation 

level) are higher in mock-electroporated cells than in HCV-electroporated, and both untreated 

and treated phosphorylated ACC is lower in S52-infected cells than JFH-1.  This further 

indicates that S52 downregulation of AMPK is stronger than JFH-1.  Due to low levels of 

replication, NS5A protein in S52-electroporated cells and released virus could not be detected.  

This is not likely to be related to the experiment, however it prevented the measurement of 

the effect of metformin treatment on infectious virus replication or release.   

5.2.2.3 Investigation of additional AMPK activators 

It was considered that a different AMPK activator might produce a more potent result that can 

be further explored.  Recently a more specific AMPK activator known as compound #991 has 

been identified (Xiao et al., 2013).  It is proposed to increase AMPK activity by both increasing 

allosteric activation of AMPK by phosphorylation at T172 and by protecting against 

dephosphorylation at this same residue. 

 

Figure 5-11.  Compound #991 activates AMPK in SGR harbouring cells.  Huh7.5 cells 

harbouring HCV SGRs and control Huh7.5 cells were seeded in 6-well plates, serum-starved 

for 24h and treated with the indicated concentrations of #991 for 48h.  Cells were then 

harvested for immunoblot as described and blotted for phosphorylated ACC and AMPK, 

NS5A and GAPDH.   

 

SGR harbouring cells and Huh7.5 cells were serum starved and treated as described previously.  

Immunoblots for phosphorylated ACC and AMPK as well as NS5A and GAPDH are shown in 

Figure 5-11.  As the data show, there is an effect on phosphorylated ACC after 48h at 

concentrations of #991 above 2.5 mM.  In addition, there is a greater level of activation in 



 

141 

 

Huh7.5 cells compared to the SGR-harbouring cells, though levels in S52 and JFH-1 cells are 

broadly similar, and Con1 has the lowest levels of activation.  However, there is no effect on 

AMPK at any concentration, though untreated AMPK activation seems to be much higher than 

observed previously.  It is of note that the solvent for #991 is DMSO whilst the solvent for 

metformin is water; there may be a higher AMPK activation signal than was observed for the 

previous experiments due to effects of the DMSO vehicle (Mhatre et al., 1983; Syed et al., 

2013).   

There was, in addition, no effect on the levels of NS5A detected by immunoblot in S52 and 

JFH-1 SGR harbouring cells (none was detected in Con1 harbouring cells throughout the 

experiment), which possibly indicated that little or no effect on replication was observed.  To 

investigate this further, luciferase activity was measured in cells treated with #991.  It would 

be expected that #991 treatment reduced replication of the SGRs similar to the effect seen for 

metformin, albeit to a lesser extent considering that it has a less pronounced effect on AMPK 

and ACC.  Interestingly, as shown in Figure 5-12, there was no effect on JFH-1 replication and a 

slight increase in luciferase in Con1 and S52 SGR harbouring cells.  This may be an effect on cell 

viability, since AMPK activation increases the available energy for the cell, however the RLU 

values shown are normalised by protein, so are not due to an increase in the cell number. 
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Figure 5-12.  #991 does not noticeably affect replication of HCV SGRs.  Con1, JFH-1, S52 

SGR harbouring cells and Huh7.5 cells were seeded in 6-well plates, serum-starved for 24h 

and treated with the indicated concentrations of #991 for 48h.  Cells were then harvested 

for luciferase assay in PLB as described.  Luciferase activity was measured and normalised to 

total protein by BCA assay.   
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It was considered that the effect may be more transient in nature, and may be lost by the 48-

hour time point at which cells are harvested for luciferase and immunoblot.  To address this, a 

time course experiment was performed.  Personal communication with David Carling stated 

that the compound is active immediately; luciferase activity was therefore assayed as a read-

out of replication at a range of 5 minutes to 24h treatment with 10 µM #991.   

 

Figure 5-13.  #991 activates AMPK in a transient fashion with an optimal treatment 

duration of 30 minutes.  S52 SGR harbouring cells were seeded in 24-well plates, serum 

starved for 24h and treated with 10µM #991 for the indicated time points.  Cells were then 

harvested for immunoblot as described and blotted for phosphorylated ACC, NS5A and 

GAPDH.   

 

The immunoblots for NS5A and phosphorylated ACC are shown in Figure 5-13.  The blots show 

a modest upregulation in phosphorylated ACC from 10-30 minutes after treatment.  

Interestingly this seems to decrease before reaching peak activation at 24h.  The NS5A signal 

by immunoblot is not strong but there does indeed seem to be a decrease by 30 minutes and, 

in agreement with the hypothesis that the effect of this compound is transient, the effect is 

lost by 24h after treatment.  The data also show that #991 does not seem to be as potent an 

activator of AMPK in my hands than was reported.  In light of this, #991 was deemed 

unfeasible for these experiments. 
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5.3 Discussion 

This chapter documents the application of the S52 SGR harbouring cells which were described 

in chapter 3 to other aspects of HCV biology.  It is well known that GT3 is unique among HCV 

isolates in its direct pathogenesis in the form of hepatic steatosis.  The established dogma 

states that HCV infection causes immune activation leading to cell death and tissue damage, 

which is repaired as fibrotic tissue.  Over time this leads to cirrhosis and, ultimately, 

transformation of hepatocytes or hepatic progenitors and HCC.  However, GT3 infection, and 

the associated steatosis, leads to quicker progression through disease states to fibrosis and 

HCC than other genotypes as well as a lower life expectancy.  There are differences in the 

relationship between this genotype and the host cell which are not comprehensively studied. 

No increase in total lipid content was observed in S52 SGR harbouring cells by flow cytometry, 

and a clear difference in lipid distribution or intensity was not observed by fluorescence.  

There was, however, a marked difference in the distribution of lipids in a cell which was 

infected with infectious S52 virus, which is consistent with the knowledge that lipid 

accumulation requires the presence of the core protein, which the SGR lacks.  Due to 

experimental constraints this was not explored further, but a valid experiment would be to 

subject S52 infected cells to flow cytometry to investigate differences in total lipid content.  

There is also a clear need to validate the observation of an unusual lipid distribution in S52 

infected cells which would be easier with a more infectious virus such as DBN3a (Ramirez et 

al., 2016).  Published studies which document an upregulation of total lipids and the size of 

lipid droplets in cells show a vastly different pattern of lipid distribution to that which is 

reported in this chapter, however these studies mostly use core in isolation, with the 

exception of the S310 virus (Kim et al., 2014).  The pattern of lipid distribution observed in S52-

infected cells, although seemingly of a lesser intensity than the surrounding uninfected cells 

does show a greater number of lipid droplets.  This lipid signal correlates with the intensity of 

NS5A, which could highlight an earlier stage of replication compared to the images shown of 

cells infected with S310.  Also of note is the observation that NS5A and lipids seem to 

colocalise, which was explored by Galli and colleagues, who found that, in GT3, NS5A seems to 

be associated with the ER rather than lipid droplets (Galli et al., 2013). 

This work highlighted a potential difference in the effect upon AMPK activation, which HCV 

downregulates to protect lipid biosynthesis pathways, amongst others, to allow enrichment of 

lipids at sites of replication and assembly (Mankouri et al., 2010).  It is curious that virus 

infection, that most likely generates an energy deficit within the cell, should perturb a pathway 



 

144 

 

which exists to increase energy production, but HCV infection was also shown to increase lipid 

oxidation as well as synthesis (Diamond et al., 2010) which provides evidence that homeostasis 

is maintained to some extent in the presence of metabolism perturbation by the virus.  This 

work presents preliminary evidence that the downregulation of AMPK by HCV GT3a is different 

to JFH-1, which was reproduced in infectious virus experiments.  GT3 may exert a different 

level of control upon AMPK, as evidenced by the lower levels of activation by metformin 

treatment compared to JFH-1; GT3 is also more sensitive to the effects of AMPK activation, as 

evidenced by the greater degree of inhibition of replication after metformin treatment.  It is 

interesting to note that GT3 seems to be more sensitive even to the lesser degree of AMPK 

activation observed in cells harbouring a GT3 SGR.  Differential regulation of AMPK and its 

downstream effector proteins such ACC may contribute to lipid accumulation leading to 

steatosis in the livers of GT3 infected patients. 

However, when Con1 (GT1b) was introduced into these experiments, it became evident that 

the differences observed may not be unique to S52.  Instead it seems that the outlier in these 

experiments is JFH-1, which is consistent with the growing body of data that JFH-1 is distinctive 

amongst HCV isolates and SGRs in aspect such as its outstanding replication capacity and non-

reliance on culture adaptation (Kato et al., 2003).  JFH-1 replication is also unaffected by the 

expression of SEC14L2, a lipid binding factor which allows cells to support higher levels of HCV 

replication (discussed in chapter 3) (Saeed et al., 2015).  The genotype difference which has 

been identified here may provide a candidate for further study as to how different genotypes 

of HCV affect the host, though this may turn out not to be contributing factors in the direct 

pathogenesis of GT3.   

Better understanding of the pathogenesis of HCV and specifically GT3 may highlight areas for 

therapeutic development to target the effects of the virus upon the host in addition to direct 

targeting of the virus by DAAs.  Such treatment of the consequences of HCV infection may 

increase health-related quality of life during treatment and hence increase adherence to 

treatment. 
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Chapter 6: General discussion 
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Development and refinement of all classes of DAAs for different genotypes has relied upon the 

advances of the SGR system (Ortega-Prieto and Dorner, 2016).  Initial identification of NS5A 

inhibitors beginning with DCV utilised a high-throughput screen using replicon cell lines, 

generating hits compounds which were explored in depth and enhanced using SAR (Gao et al., 

2009).  Screening of these compounds against GT3 required the transient replication of 

chimeric SGRs comprising sequences from two different genotype isolates, which were used to 

investigate baseline efficacies as well as fold resistance changes of RAS (section 1.3.2.3).  The 

key limitation of chimera SGRs stems from the inability to model interactions between NS 

proteins in a genotype-specific manner – the interaction between NS5A and NS4B, for 

instance, is vital to the formation of the membranous web (Egger et al., 2002; Eyre et al., 

2014).  NS5A rarely functions in isolation and the efficacy of a compound at inhibiting the 

functions which rely on such interactions cannot be effectively measured in chimera systems 

where a single NS protein is expressed in isolation in a high-replicative backbone.   

The establishment of virus chimeras which consist of almost complete genotype uniformity 

was a major breakthrough in this regard (Scheel et al., 2011; Gottwein et al., 2013; Yi-Ping Li et 

al., 2014), as was the report of a full-GT3 SGR in the form of the S52 SGR (Saeed et al., 2012), 

though these are hindered by a lack of efficient replication capacity.  This thesis documents a 

significant improvement on the S52 SGR which increases transient replication to that which 

exceeds input translation at an earlier timepoint than previously reported Yu et al., 2013).  This 

allowed investigation into the differential sensitivities of different classes of DAA in a full-GT3 

system; this is especially novel for NS5B inhibitors, though this work does not focus on this 

class of DAA. The majority of genotype chimeras retain an NS5B coding region and 3’ UTR from 

an isolate capable of much greater levels of replication.   

However, these improvements to the S52 SGR come at a cost of requiring additional 

modification of the SGR and substantial modification to the host cell environment.  It can be 

argued that the inclusion of the low CpG/UpA luciferase gene represents a step towards a 

more relevant system, since it removes the immunological reaction to the insect-derived 

luciferase gene (Tulloch et al., 2014).  Conversely, the necessity of further impairing the host 

cell environment by exploiting a mutation in an innate immune sensing pathway, RIG-I, and 

the expression of the PIV5 V protein to further attenuate the immune response to the SGR, is 

not an attractive solution to the problem, and invalidates the use of this SGR in any studies 

which may involve an immunological effect (Foy et al., 2005; Sumpter et al., 2005; Andrus et 

al., 2011; Poole et al., 2002).   
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Moreover the selection of cells with puromycin, and especially G418, will have further 

abnormal effects on the host cell, which may impact the interpretation of results (Yallop and 

Svendsen, 2001).  In addition, G418 has been shown to negatively impact HCV replication 

(Ariza-Mateos et al., 2016).  The combination of the two transgenes, V protein and SEC14L2 in 

a single lentiviral vector will improve this issue substantially, allowing the use of G418 as a 

resistance marker to cease (suggested in chapter 3.3 above).  In a similar note, a further 

potential use for this system could be to select stable replication of SGRs which do not 

replicate in any other system; This allows the approach of culture adaptation and identification 

of CAS which resulted in transient replication of S52 SGR (and mirrors the approach initially 

used by the authors of the study which reported the Con1 SGR) (Lohmann et al., 1999) to be 

used for developing new SGRs for other genotypes and potentially related viruses such as 

EqHV.  

The SGR-harbouring cells were treated with DAAs to eradicate the SGR in a similar experiment 

to the work which led to the panel of cells with higher permissibility to HCV replication which 

are commonly used, namely Huh7.5, Huh7.5.1 and lunet cells (Blight et al., 2002; Zhong et al., 

2005; Yu et al., 2013).  In each of these cases selection of SGR-harbouring cells had an 

unintended effect upon the host cell, to dampen the innate immune response (Foy et al., 

2005; Sumpter et al., 2005).  The S52-eradicated cells did not support replication of the wild-

type SGR, though they may support replication of the adapted and reporter-optimised S52 

SGR.  This would eliminate such problems with the effects of selection drug upon the cells, 

though any change which increased permissibility to replication may well involve further 

immune attenuation, which therefore does not eliminate this issue.   

This system was used to explore the differences in the emergence of resistance in a GT3-

specific cell culture system and to investigate an observation that could help to explain the 

unprecedented propensity of GT3 to develop and maintain resistance to NS5A inhibitors.  

However, it is not known if these phenomena are GT3-specific or are a hallmark of HCV, in 

which case a worthwhile experiment would be to repeat these experiments alongside a 

comparator of Con1, JFH-1 or both to investigate if the differences in sensitivity of each 

genotype can be partially explained by these observations.  In addition, different RAS are 

reported to have different effects depending on genotype (Table 1-3, Table 1-4, Table 1-5 and 

references therein) which is likely to impact the results of this work. 

Investigation of the nature of genotype differences is of great importance in the improvement 

of treatment guidance.  The relationship between RAS and treatment response is complicated, 
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with a correlation observed in clinical trials but a direct causative link not established despite 

the substantial differences observed in vitro by single point mutations which are readily 

introduced by the replicase machinery of the virus (Poveda et al., 2014; Cento et al., 2015; 

Chayama and Hayes, 2015).  In vitro, a RAS always develops when an SGR is selected with a 

concentration of NS5A inhibitor which is not sufficient to completely inhibit replication, and a 

RAS engineered into an SGR by site-directed mutagenesis can completely abolish efficacy of 

the compound at concentrations which are not toxic and are practical for laboratory use.  

However, patients with a RAS at baseline can respond to treatment and achieve SVR and, 

similarly patients without a detectable RAS can fail treatment and have a detectable RAS at the 

point of breakthrough or relapse.  The exploration of the origins of resistance in all genotypes 

may provide information to better tailor the treatment regimen prescribed or the structure of 

new drugs in development.  Specifically, the proposed experiment to use sequences from 

clinical isolates in a full-GT3 shuttle vector may provide further information as to the role of 

RAS at baseline and the relationship of these with other residues which may not be directly 

resistance-associated.   

This work has revealed a fascinating observation about the phenotype of RAS in GT3.  The data 

presented show that there is a discrepancy between replication fitness of a single Y93H point 

mutant at different stages of replication, though the nature of this difference was not 

elucidated.  However, the two hypotheses which were explored: genetic compensation which 

stabilises the resistant NS5A protein; or an ability of NS5A to overcome the fitness cost once 

replication has already been established; may still play a role in the fitness cost of resistance, 

or lack thereof for constituent replication.  The presence of compensatory mutations in other 

non-structural proteins may provide a part of the effect, with the smaller degree of fitness cost 

being more readily overcome once replication is established.  It was intended to combine the 

experiments used to investigate these two hypotheses: namely, the next step of the process 

was to assess the replication capacity of the SGR-harbouring cell RNA, in which a defect can be 

observed between S52 wild-type and S52 DCV cell RNA, in the neo SGR-harbouring cells.  In 

parallel the full NS3-5B region would be explored by NGS to identify any other substitutions 

which were not found by PCR sequencing and screen them in the same method used for K41R 

and the combination experiment described above.  It is unlikely, though not impossible, that 

the compensatory mutations should reside without NS5A and exert their effect in the form of 

a protein-protein interaction. 
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The NHS EAP has allowed the treatment of a small number of patients each year who are at 

risk of death or irreparable damage from HCV infection during the following 12 months 

(Cheung et al., 2016; Foster et al., 2016).  This compassionate use programme has allowed the 

investigation of the efficacy of DAAs in extremely ill patients as well as monitoring the 

prognosis of such high-risk patients in the event of achieving SVR.  However, this and other 

cohort studies (Younossi et al., 2014; Steinebrunner et al., 2015) have reported that the 

efficacy of DAAs is much higher when administered to patients who do not have such severe 

disease and, in addition, the deleterious effects of HCV infection are not necessarily reversed 

once SVR is achieved and may be accelerated for an unknown reason (Cheung et al., 2016; 

Conti et al., 2016; Reig et al., 2016; Strazzulla et al., 2016; Jakobsen et al., 2017).  This is of 

concern for GT3, following extensive observation that GT3-infected patients have a higher 

incidence of hepatic steatosis which correlates with HCV RNA (Mihm et al., 1997; Rubbia-

Brandt et al., 2000; Rubbia-Brandt et al., 2004) and is apparent in the absence of other risk 

factors for NASH.  Though studies have shown that the successful treatment of HCV GT3 leads 

to the reversal of GT3-related hepatic steatosis (Rubbia-Brandt et al., 2004), these patients are 

at risk of quicker disease progression and have a higher incidence of HCC (Nkontchou et al., 

2011).  It was recently reported that the risk of HCC in patients with severe cirrhosis does not 

decrease after DAA treatment (Conti et al., 2016; Reig et al., 2016; Strazzulla et al., 2016), 

indicating that the cellular changes leading to transformation of hepatocytes or hepatic 

progenitors are already in place, and disease progression will continue in a proportion of 

patients regardless of the eradication of the virus.  It is of crucial importance, then, to identify 

the molecular causes of GT3-related hepatic steatosis to identify patients who are likely to 

progress much quicker than others, and to slow the pathogenic effects by treatment of the 

modification of these pathways to maintain the healthy state in which DAAs are substantially 

more effective.   

This work has identified two potential avenues for exploration, in addition to those already 

reported.  Previous work has demonstrated that GT3 core expression causes higher lipid 

accumulation, GT3-infected cells have lower levels of PPARα RNA (responsible for glucose 

metabolism) (Abid et al., 2005), and higher levels of miR-122, the hepatotropic miRNA which is 

essential for HCV replication and exerts a post-transcriptional control on lipid metabolism 

(Esau et al., 2006; Oliveira et al., 2016).  This work may form the basis of studies to add to this 

list a differential regulation of AMPK by GT3 and a difference in the level of autophagy 

induction, which increases the pool of double- and multi-membrane vesicles for replication 

complex formation, and has links to fatty liver disease in vivo (Linya Wang et al., 2015; Tanaka 



 

150 

 

et al., 2016).  It is likely that the mechanism of lipid accumulation leading to hepatic steatosis 

in GT3-infected patient liver tissue is not attributable to a single cause, and instead is a 

combination of smaller changes which contribute to a more severe disease state than each 

would be capable individually.  Refined GT3 culture techniques may also permit the 

identification of other genotype differences unrelated to hepatic steatosis or NS5A inhibitor 

resistance which, in the absence of robust experimental systems, are currently unknown.
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