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Abstract

This thesis concerns the set-up and application of a state space model
to medical time series. Considering medical count time series (such
as number of asthma patients or a number of sudden infant death
syndrome recorded over time), we discuss and propose non-linear
and non-Gaussian state space models, in particular dynamic general-
ized linear models (DGLMs). Sequential Monte Carlo methods, also
known as particle filters are employed for tracking a posterior state
distribution. We assess the proposed methodology by way of an ex-
tensive simulation experiment. In the first simulation study, we found
that the results from the Liu and West particle filter algorithm have
shown better performance over the Storvik particle filter algorithm
in terms of precision of the estimation of hyper-parameters and ac-
curacy of forecasting. Beside, the obtained results from the Liu and
West particle filter algorithm are quite similar from the ones that were
obtained by the MCMC. In addition, in the second simulation study,
we found the Liu and West particle filter algorithm with the Poisson
model still does better than the other proposed models, even if it is
incorrectly specified. The Smith (1985) method for model diagnostics
is used. The results obtained from simulation studies showed that
this methodology was successful. Finally, we developed a Bayesian
monitoring model for evaluating the performance of the fitted model
in a sequential way by using the Bayes factors and nonparametric bi-
nomial control chart with proposed runs rules. The novelty of this
approach is to exploit the results obtained from the PSR or INTPSR

for the model diagnostics to calculate the values of the Bayes factors.
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We found that the proposed control procedure provided an effective

way of detecting out-of-control signals of the process.
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Chapter 1

Introduction

1.1 Problem statement and motivation

Time series analysis is considered as an important statistical method which can
be used to explain behaviour occurring during a specific period of time, where the
time series data of this phenomenon are collected over time. This analysis aims
to obtain an accurate description of the time series data through interpreting the
dependence structure between the successive observations of the phenomenon. A
suitable model can be built based on this dependence structure for explaining
the behaviour of the phenomenon. This model can then be used to forecast what
changes will be happening to the underlying phenomenon behaviour in the future.
The process that is used to generate the time series under investigation might
satisfy the stationarity requirement: this means that the features of the process,
such as a mean and variance, do not change over time. However, in practice,
especially in medical applications, the time series under consideration may not

satisfy this requirement. Therefore, the difference method on the original time



series is used in order to delete the effects of the trend and seasonality components
from the time series. Thus, the time series process will be stationary with a

constant mean and variance over time.

In medical research, there are many time series methods that focus on Gaus-
sian models whose observations are continuous and follow a normal distribution.
However, in practice, there are several medical time series data under study com-
prising counts. These count data are discrete and they follow one of the discrete
distributions — for instance, the count data may be the daily hospital contacts for
patients who suffer from particular diseases or the occurrence of rare infections
over time. Data analysis in medical research is often required whether by regres-
sion methods, such as multiple regression models or generalised linear models,
or by classical time series models. However, not much work has taken place in
medical research when model parameters change over time as the following point
of view “The class as so far defined is basically static but there are many applica-
tions that require a dynamic formulation, in which parameters change over time,
and covariance structures characteristic of time-series are needed. We have as yet
no practical experience of fitting these dynamic Hierachical Generalized Linear
models (HGLMs), and much work remains to be done; the prospects, however,
are exciting” (Nelder] |1998| p.2752). For these reasons, the purpose of this thesis
is to apply the Bayesian dynamic models with their recursive estimation methods

for unknown parameters to medical time series count data.

The state space model (SSM) has become one of the standard parametric
modelling forms with parameters changing over time in the Bayesian time series
framework (West and Harrison, 1997)). It is defined as a class of probabilistic
graphical models that describe dynamic relationships between the observed vari-

able and the unobserved (latent, state or hidden) variable using two parallel linked



equations. The first equation is called the observational equation, and describes
the relationship between a sequence of time series data and states at specific time
points. The second equation is a state equation, which describes an evolution in
the latent states between current and previous times. The structure of the tran-
sition equation is based on the Markovian property, where the vectors of states
change linearly over time. The SSM provides a unified and flexible framework
for describing, modelling and forecasting a wide array of time series data whose
parameters change over time. Moreover, given the state at a specific time point,
the observation at this specific time point is independent of all other observations
at different times. In other words, the state at a specific time point carries all the
known information about the future of the observation at the same time point.
Therefore, it is not necessary to describe the whole of the model from the start
until the end for all time; rather, only the conditional distribution of observations
given the state at a specific time moment is needed in order to make a forecast.

This is a very attractive reason for using the SSM.

In terms of modelling the data by the Gaussian SSM, a recursive Bayesian
method, based on a Kalman filter algorithm by |[Kalman| (1960), provides an op-
timal solution of the state inference when a new observation is available. This
means that the expression of the posterior distribution of the hidden variable can
be obtained in a closed form. However, in some situations when the process of
the data is neither linear nor Gaussian, there is no exact analytic expression of
the state posterior distribution. In this case, other Bayesian algorithms can be
used to construct an approximate solution of the conditional posterior distribu-
tion of the state. West et al. (1985) introduce the dynamic generalised linear
model (DGLM) as an extension of the Gaussian SSM where the probabilistic
distribution of the observed variable is a member of the exponential family. The

sequential Monte Carlo (SMC) methods, also known as particle filters (PF), are

3



an alternative class of recursive Bayesian algorithms that can be used to infer the
states and hyper-parameters in the non-linear and non-Gaussian SSMs (Durbin:
and Koopman), 2000; Doucet et al., 2000; Kitagawa, |1996; |Liu and Chenl, 1998]).
They are defined as simulation-based methods. The key idea behind the particle
filter is to recursively over time provide an approximate solution of the posterior
distribution of the current value of the state when a new observation arrives. This
can be achieved by using a set of particles with associated weights that are simu-
lated from a convenient importance density. The crucial issue when implementing
the PF is to choose the importance density that plays a key role in the prediction
efficiency. |Gordon et al.| (1993) suggested using the transition distribution as the
suboptimal choice of the importance density in order to generate the particles.
This choice often leads to poor performance because it does not take into consid-
eration the current value of the observations. The conditional distribution of the
current value of the state given the previous state and the current observation
is defined as the optimal choice of the proposed density. The optimal choice is
designed for minimising the variance of importance weights (Doucet et al., 2000)).
Thus, the effective sample size, which is used as a measure to monitor the prob-
lem of particle degeneracy in the algorithm, will be maximised.

This thesis is concerned with recursive Bayesian estimation methods of the pa-

rameters of time series for count data in medical research.

1.2 Aim and objective of the thesis

The preliminary aim of this thesis is to apply the DGLM to fit a univariate
counting medical time series data related to asthmatic children in order to produce

one-step-ahead forecasting. In addition, the DGLM is applied to investigate



the effect of environmental temperature on the sudden deaths of infants. The

following objectives have been determined in order to achieve the required aims:

e The Liu and West (2001) and |Storvik| (2002) particle filter algorithms are
used as recursive Bayesian methods for estimating the marginal posterior

distributions of the latent state and static parameters for the DGLM.

e A model diagnostic with |[Smith| (1985) method including the P-scores resid-
uals and the inverse transformed P-scores residuals which are calculated
based on an one-step-ahead predictive distribution for the fitted model is

applied to evaluate the proposed fitted model.

e We will develop the Bayesian monitoring model in order to assess the accu-
racy of the fitted model in a recursive manner. Bayes factors and statistical

process control are used as tools to achieve this target.

1.3 Outline of the thesis

The remaining five chapters of the thesis are organised as follows:

e Chapter 2 provides the literature review relevant to the work in this thesis
in two main sections. In the first section the background literature on
classical time series analysis, SSMs and DGLMs are presented. It also
presents recursive Bayesian methods for estimating the value of the state,
including the Kalman filter and extended Kalman filter. In the second
section, the background theory related to basic sequential Monte Carlo
methods that can be used for approximating the posterior distribution of the

state and the hyper-parameters is provided. A brief review of the Markov



chain Monte Carlo (MCMC) methods with the Metropolis-Hasting and the

Gibbs sampler algorithms are also given in this chapter.

Chapter 3 presents necessary aspects of the principal concepts concerning
online Bayesian approaches which are based on the Liu and West PF and
the Storvik PF, to learn about the joint posterior distribution of the state
and the hyper-parameters in the DGLMs. In the rest of this chapter, we
apply these algorithms to simulated data and two medical datasets related
to medical contacts for school children who suffer from asthma and sudden

infant death syndrome in the UK.

Chapter 4 focuses on a methodology of the diagnostic checks of the non-
Gaussian time series models. It presents the details of the Smith method by
using the p.score residuals and the inverse transformed P-scores residuals
as a tool for the model diagnostic analysis. The applications of the model
diagnostics of the proposed fitted models on both the simulated data and

the medical data are provided.

Chapter 5 provides a background and literature review for the related
fields of the Bayesian monitoring model, including statistical process con-
trol, control charts and Bayes factor (BF). The applications of automatic
diagnostic methods on both the simulated data and the medical data are

offered in this chapter.

Chapter 6 presents a summary and concludes the main results of the
thesis. Additionally, some possible directions for future work regarding the

topics assessed in this thesis are suggested.



Chapter 2

Background and relevant

literature review

2.1 Introduction

This chapter aims to review the literature relevant to the thesis in two main
sections. This first section provides background literature on classical time series
analysis and the state space models. It also includes inference about parameters,
using an approximate Bayesian method, the Kalman filter, and extended Kalman
filter. In the second section, the literature review focuses on estimating the latent
variables (states) in the non-Gaussian state space models by using sequential
Monte Carlo methods. A brief review of the Markov chain Monte Carlo (MCMC)
methods with the Metropolis-Hasting and the Gibbs sampler algorithms are also

provided in this chapter.



2.2 Classical time series analysis

Time series analysis is considered an important technique in statistics. It is used
to study the behaviour of a particular phenomenon over specific time periods. The
objective of time series analysis is to obtain an accurate description of process
features that can be used to generate the time series under study. This leads to a
model used to explain the behaviour of the time series. Hence the created model
can be used to predict the series behaviour in the future based on a previous time
series of the observed data. Additionally, the time series analysis can be used
to control the process, by examining what happens when certain parameters in
the model are changed and then generating the series. In order to achieve this,
a thorough analytical study is required of time series models based on statistical

and mathematical methods.

A time series is defined as a collection of observations describing a certain
phenomenon recorded over time. Any type of time series may be described in
terms of three components: trend, seasonal component, and irregular fluctuation.
There are two kinds of time series: continuous and discrete according to the
determination of time. In order to implement the analysis of classical time series
by using Box and Jenking (1976)), a stationarity condition of the time series is
required. This means that probabilistic properties of the process, such as the
mean and the variance, do not change over time and the covariance depends
only on lag. This kind of stationarity condition is called stationarity of order
two, or weak stationarity. The time series is said to be a weak stationary if its
mean and variance do not change over time. A stationarity assumption is a basic
requirement for applying a time series analysis. In practice, however many time

series are not stationary, particularly with respect to economic and medical data.



In this case, taking a difference of an original time series may remove the effect of
trend and the impact of the seasonal variations. As a result, the first two moments
of time series data, the mean and the variance, become constant over time. The
time series model is defined as a function that connects the value of the time series
with its previous values and its error. The classical time series analysis consists
of four sequential phases, beginning with the identification of the model, which is
the most important stage. The second step is an estimate of the parameters of the
model selected in the first step. Diagnosing the checking of the appropriateness of
the fitted model, by using analysis of residuals, is the third step. The generated
residuals by the fitted model must be achieved under the following assumptions:
independence, not correlated, and normally distributed. The final stage, the main
target of applying the time series analysis, is a prediction of future values of the
phenomenon under study. For more details, the following informative sources
should be consulted: Box and Jenkins (1976), Anderson| (1976), Priestley] (1981)),
and Montgomery et al.| (1990).

2.3 Time series applications in medicine

2.3.1 Asthma and related work

Asthma is a chronic lung disorder that leads to inflammation in the airways. This
disease is characterised by bouts of difficult breathing. These bouts can be more
difficult at night, and they are often associated with a cough. Asthma attacks
are common when there is a viral disease in the respiratory system as well as in
particular seasons, especially autumn, and for some patients during the spring

time. A family history is considered to be the main factor for developing asthma;



and it is the most common chronic disease for school-aged children. One child
out of every ten experiences asthma during childhood and there continues to be
an increase in cases of asthma throughout the world. However, most cases of
childhood asthma improve and are rectified as the child grows older. According
to statistics from the World Health Organization, globally there are 300 million
people currently suffering from asthma. As a result, asthma is classified as one
of the most serious public health problems. Several studies have described the
seasonal pattern of admission to hospital for children with asthma, and have also
explained the relationship between unscheduled medical contacts and the end
of the summer holidays (Campbell et al. [1997; Storr and Lenney, 1989; |Kimes
et al., 2004} \Grech et al., [2004; Johnston et al., [2005; [Lincoln et al., [2006; Julious
et al., [2007, 2011)). Lincoln et al. (2006) used time-series analysis to describe the
seasonal pattern of admissions to hospital for school-aged children who suffered
from asthma in Sydney, Australia over a seven-year period between 1994 and
2000. They also verified whether there was a relationship between the end of
the summer break and hospital admissions. The authors found that there was a
strong relationship between the end of summer break and the return of children

to their schools and the increase of hospital admissions for children with asthma.

Julious et al| (2007)) illustrated peaks in the daily hospital admissions for
school-aged children with asthma in two UK cities (Aberdeen and Doncaster) in
early autumn. They provided strong evidence that there is a relationship between
an entry of children to the hospital for treatment and their return to school after

the summer holiday.

Julious et al.|(2011)) used a linear regression model to investigate whether there
is a relationship between the daily unscheduled medical contacts for children, who

either suffer or do not suffer from asthma, after their return to school after their
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summer holiday in England and Scotland. In addition, they used the Lowess
curve for both datasets in order to identify the trends. They discovered that
the unexpected medical contacts for both data sets are increased when students
come back from summer holiday to school in both England and Scotland. This
is probably due to a decline in the use of preventive medicine such as inhaled

corticosteroids over the summer period (Julious et al., [2011]).

2.3.2 Medical time series analysis by state space model

The state space models (SSMs), which fall under the Bayesian time series frame-
work, have been widely used to describe a dynamic mechanism in systems. They
can be efficiently used as an attractive statistical tool in terms of modelling and
prediction for phenomena that exhibit a dynamic behaviour. The SSMs were
initially designed in research related to aerospace science. Their applications
were then subsequently developed to include several disciplines such as engineer-
ing, economics, and finance. With respect to medical studies, there is a lack of
current research focusing on the Bayesian time series and their estimation meth-
ods (Nelder, |1998). However, the state space approaches with Kalman recursive
estimation methods have been adopted as a powerful tool to model the differ-
ent medical data. Several medical studies, using this approach in the statistical

analysis, are summarised below.

Hulin| (2000) suggests the use of a state space framework to model the HIV
epidemic. The purpose of his research was to use data on the homosexual popu-
lation in San Francisco to estimate the number of incidences of AIDS cases. The
number of people with infection at different phases was taken into consideration.

The recursive Bayesian estimation technique based on the Kalman smoothing ap-
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proach was used. This aims to obtain the optimal estimate of the latent variable
(state) at each time point. [Hulin| (2000 concluded that the SSM can successfully
provide an accurate estimation of HIV incidences. This means that the predicted
case numbers of HIV are very close to the actual case numbers. Another finding
was that the estimated numbers of infected homosexuals with the AIDS virus at

different stages was a high percentage in San Francisco.

Wonga et al.| (2006) adopted state space methodology to model a time se-
ries process related to electroencephalogram (EEG) data. A linear autoregressive
model was employed to represent a non-stationary EEG time series within the
framework of the state space. The objective of their study was to describe a
transition stage of a clinical case of the electroencephalogram for patients from a
state of consciousness to an anaesthesia state. To achieve this, they used the same
EEG data as in [John| (2002). A maximum likelihood method and the Kalman
recursion approach were applied to determine hyper-parameters and optimal fil-
tering of the state of the dynamic linear model. Researchers concluded that a
real-time monitoring of the anesthesia status of patients during surgery can be

accurately determined by using the dynamic linear models.

Myers et al.| (2007)) proposed using the SSM to correct corruptions of optical
imaging data. In their study, the data, collected by Seong-Gi Kim’s research
group at the University of Pittsburgh’s Magnetic Resonance Research Center in
the Department of Radiology, is concerned with the signal of the activations of
the brain. The corruption of the data is caused by artifacts such as the difficulty
of interpreting a signal of brain activity. The cycles of respiration and heartbeat
are considered the main causes of signal corruption in the optical imaging of the
brain. The unknown parameters of the dynamic linear model are estimated by the

maximum likelihood method. Additionally, the recursive Kalman filter approach
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is employed to track the brain activity level in each pixel of the video data. This
is referred to as the unobserved variable. In terms of assessing the performance
of the fitted model, the analysis of residuals is applied. The resulting residuals
of the pixel data suggest that there is no evidence that respiration and heartbeat
cause corruption in video data of the brain. Myers et al| (2007) concluded that
the dynamic linear model with the Kalman filter are beneficial and powerful tools
that help to correct data corruption caused by extraneous physiological processes

such as respiration and heartbeat.

The dynamic generalised linear model (DGLM) is adopted by |Christensen
et al.| (2012)) to model the rate of hospitalisation for patients who suffered from
strokes in a Danish hospital between 1977 and 2011. The aim of this study was
to describe any variation of seasonality in stroke occurrences. The hospitalisation
rates data are assumed to follow a Poisson distribution. In this case, the iterated
extended Kalman smoothing, based on the first two derivatives of the observa-
tion process, was used in order to linearise the DGLM, as suggested by [Durbin
and Koopman| (2012)). Therefore the Kalman recursion approach can be used to
estimate the state variables. The expectation maximisation algorithm (Demp-
ster et al., [1977) is used to estimate the model hyper-parameters. The authors
concluded that the DGLM is a useful technique for investigating the seasonal
variations of the hospitalisation rates of patients who suffer from strokes. They
found that the hospital admissions rate for patients increases in the winter and

summer of each year.

Ullo et al.| (2015]) used an SSM to model the structure of the electrode connec-
tivity of microscopy images. A novel data encoding regarding brain tractography
was used. The particle filter approach was used to track the path of the unknown

neurite on the image of brain fibres (neuron). In the context of the state space
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framework it is referred to as the latent variable or the state. The approximate
posterior distributions of the neurite paths on the image can be estimated. In
terms of addressing the different problems in the bioimage analysis, Myatt et al.
(2006), [Pontabry and Rousseau| (2011)), [Yang et al. (2013), Yap et al. (2011)),
and Yuan et al.| (2012) are adopted, i.e. the concept of the particle filter for
tracking the hidden variable of interest was used. Researchers concluded that the
SSM with the particle filter algorithm was able to capture the neural network of
the brain fibre in order to construct the electrode connectivity of the microscopy

images.

2.4 State space model

The state space model (SSM) is an important development of time series anal-
ysis. It is considered to be a flexible and attractive methodology in a statistical
framework for integrating a dynamic model and data for modelling dynamic time
series processes. This model is given by two parallel linked processes that evolve
over time and are represented as conditional distributions. It is useful to describe
the dynamic system in the time series data. The term ‘dynamic’ is defined as a
change which occurs in a process due to changes in time. The SSM was initially
designed in research related to aerospace science, and subsequently developed its
applications to include several areas such as engineering, economics, finance and

medicine.

The SSM, in general, can be written in term of three probability distributions

as follows:

Tl ey ~ p(e]ae-1) (2.4.1)
Y|zt ~ p(ye|xy) (2.4.2)
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o ~ p(o) (2.4.3)

Equation is known as the state (system, evaluation, transition) equa-
tion that describes an evolution in the states between time ¢ and previous time
t — 1. Additionally, the structure of the system equation is based on a Markovian
property. This means that the state x; at time ¢ depends only on the previous
state at time ¢t — 1. In other words, given x;_1, x; is conditionally independent
of ;9,24 3,.... That is the current state x; given the previous state x; 1 is
independent of the state histories, p(z¢|z14-1 = {x1, ..., x:_1}) = p(x¢|z41). The
second equation is an observational equation that describes the relation-
ship between a sequence of time series data {y;} and states {x;} at the same
time ¢t. The prior distribution of the initial state is given by Equation ([2.4.3)).
The SSM is completely defined through specifying the prior distribution of this
initial state, x¢. In addition, a probabilistic approach is used to describe both
the available data and the evolution of the states. A graphical form of the SSM
is given in Figure[2.1] It shows the dependence between the observations and the
states in the SSM.

Figure 2.1: Graphical representation of the state space model.

Figure provides a graphical view of the dependence relationship between
the unobserved state and observed data in the SSM. It shows the conditional
construction between the state and observation over time — i.e. that observation

Y, at time t depends only on the state z; at the same time. As a result, given
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the current state x;, the current observation g, is conditionally independent of
the rest of the observations and the history of the states. In other words, the
state x; at time ¢ conveys all the required information concerning the future of
the observation y;. In addition, the Markovian structure of the states and the

conditional independence structure of the observations can be easily noted from

the graphical model. A popular subclass of model ([2.4.1)—(2.4.3) is the following:
Ty = G(I‘t_l) + Wt (244)

Yy = F(xy) + vy, (2.4.5)

where F(.) and G(.) are defined as state and observation functions respec-
tively, w; is known as the state noise process and 14 is defined as the observation
noise process. For more details on this subject, refer to Harvey| (1989); [West
and Harrison (1997); Shumway and Stoffer| (2006); Durbin and Koopman| (2012);
Kitagawa and Gersch| (1996)).

2.4.1 Gaussian state space model

The Gaussian SSM is also referred to as the dynamic linear model (DLM). It
is a class of SSM, a type of Bayesian time series model whose parameters vary
with time. It can be obtained from the general SSM when the functions f(.) and
g(.) are linear, and both noise processes w; and v, are Gaussian. In other words,
when the relationship between observation and states, and between states, are
linear. The class of Gaussian SSMs is deemed to be helpful in regression and
time series analysis. They are able to supply a flexible and unified framework to
describe and model a wide range of time series and other types of longitudinal
data in different disciplines. According to [Migon et al.| (2005) the DLM can be

seen as a generalisation of regression models, which enable changes in parameter
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values throughout time by the introduction of an equation governing the temporal
evolution of regression coefficients. The form of the Gaussian SSM is defined by

the following set of equations:

yt:Ft/xt—i_Vt; VtNN(O,‘/t), t= 1,...,T (246)
Ty = th‘t_l + Wt Wt ~ N(O, Wt) (247)
To ~ Np(mo, C(]), (248)

where

y; is a scalar (univariate) sequence of observed variables at time t,
e 1, is a p x 1 vector consisting of unobserved variables (states) at time t,
e F;is apx 1 design vector consisting of covariates at time t,

e (5, is a p x p transition matrix which describes the evolution in the states

at time t,

e w; is the term of evolution error. It describes the stochastic changes in the
unobserved variable (state); and follows a normal distribution with zero

mean and covariance variance matrix Wy, and

e 14 is a term of observational noise. It represents a measurement and sam-
pling error corrupting the observation of y;, assumed normally distributed

with zero mean and variance V.
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The error terms v; and w; at any time point ¢ are defined as the white noise
process: the two terms are mutually independent and are assumed not to be
correlated with the state vector x; . The initial information of the state xy pro-
vides the expert prior beliefs about state zy: this is assumed to have a Normal
distribution with mg mean and variance Cy. Thus from this preliminary informa-
tion a modeller can determine the prior distribution of the initial state. [Harrison
and Stevens| (1971) and Harrison and Stevens (1976|) define the Gaussian SSM
as in Equations (2.4.7)-(2.4.8). The four quantities {F}, Gy, Vi, Wi} are used for
completely determining the DLM. The algorithm of the recursive Kalman filter
is used for analytically inferring the states when the value of these quantities is

known. West and Harrison| (1997) describe this procedure in greater detail.

The analytical approach within DLMs is not available when the hyper-
parameters {V;, W;} are not known. This issue can be solved by using several
proposals for performing approximate inference in DLMs using Bayesian meth-
ods based on simulation approaches, such as Markov chain Monte Carlo (MCMC)
methods and sequential Monte Carlo (SMC) methods, also known as particle fil-
ters (Gordon et al.| [1993). The DLMs can be employed to model univariate time
series. In addition, the ARIMA process, defined within the linear time series
models by Box and Jenkins (1976|), can be represented as a special case of the
SSM when assuming the quantities {F}, Gy, Vi, W;} do not change with time. The
SSM is called a Hidden Markov model when the variables of state are discrete

(Rabiner;, [1989)).

2.4.2 The dynamic generalised linear model

West et al.| (1985)) introduce the dynamic generalised linear model (DGLM) as an
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extension case of the dynamic linear model where observations in a time series
follow a parametric non-Gaussian distribution, but the probabilistic distribution
of the observations is a member of the exponential family. In addition, the DGLM
is defined as an extension of the generalised linear model (GLM), which is pro-
posed by Nelder and Wedderburn| (1972)), when its parameters are changed over
time. The equation of the state transition retains the features of the linear Markov
model of order one. Conversely, it can be assumed that the DGLM is an extension
of the generalised linear model that assumes the parameters vary stochastically
over time. However, the state posterior distribution of the DGLM is not analyt-
ically available. Hence [West et al.| (1985) use an approximate Bayesian method
with conjugate prior in order to obtain the recursive estimation of the posterior
distribution of state. Simulation-based approaches such as MCMC and particle
filter are also used for approximating the state posterior distribution. |Gamerman
(1998) employed MCMC for inference. Fahrmeir| (1992) also defines the exponen-
tial family of the dynamic linear model, using the approximation of conditional

modes based on the observations for estimating the unobserved states.

Suppose that the equation of observation of the univariate time series {y:},
which is generated from a probability distribution belonging to the exponential

family, is defined as follows:

b ) = expf =0y, ), 249

where v, is a natural parameter, and ¢(y;, ¢;) is a known function of the obser-
vation y; and the dispersion parameter ¢;. The function d(.) is either represented
as a simple linear function of the response ¥, or, in many cases, as the identity

function. The function b(~;) is considered to be known and twice differentiable.
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According to [McCullagh and Nelder| (1989), the expectation and the variance
of d(y,) given the natural parameter 7; are defined as the first and the second

derivative of the function b(vy;):

pe = E{d(ye) v} = 0b(ve) /O (2.4.10)

Var{d(y,)|v} = a(gbt)a%(%)/ﬁﬁ. (2.4.11)

The distribution of the observations is known as the standard or canonical
system when d(y;) = y;. The link function g(.) which is used to connect the
expectation of y; and the linear predictor 7, is known as the continuous monotonic

function. In addition, the link function is called the canonical link when g(u;) =

Vt-

The linear predictor 7, in the GLM is considered as a linear model, while in

the DGLM it is defined as an SSM, i.e.

g() = m=Fx (2.4.12)

Ty = Gtxt—l + Wy, Wt ~~ (O, Wt), (2413)

where F} is a p x 1 design vector of covariates, (G; is a p X p transition matrix
and w, is a vector of innovation which follows a distribution that has zero mean

and known variance W;. The W, is defined as the state variance.

The linear Bayesian approach is one of the first estimation methods used in
the inference problem of the DGLM. It is considered as an approximate method
for estimating the first and the second moments of the posterior state distribution
in a sequential manner (West and Harrison, 1997)). [Triantafyllopoulos (2008) and
Triantafyllopoulos (2009) presented diverse applications of the problems estima-

tion and forecasting for several continuous and discrete response distributions
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such as Poisson, Weibull, Gamma, and negative binomial in the DGLM frame-

work.

2.5 Parameter estimation approaches

Statistical estimation methods are used in statistical inference to estimate un-
known parameters x in the statistical models. There are two different kinds of
estimation techniques, namely, a frequentist and a Bayesian approach. In the
maximum likelihood estimation (MLE) method, considered as a classical fre-
quentist estimation technique, the parameter z is assumed to be a constant. The
concept of the MLE method is to estimate the unknown parameter z by max-
imising the joint probability density function of the observations with respect to
x:

jzargmaX(H p(ye]x)), t=1,...,T (2.5.1)

t=1

In the Bayesian estimation method, however, the parameter is assumed to
be a random variable with a specific probability distribution. The aim of the
Bayesian estimation method is to infer the uncertainty of the parameter. This
uncertainty can be formulated in terms of the posterior probability distribution

of the parameter by using Bayes’ theorem as follows:

plalys, .. ye) = p<y;’@'1' f?fla;/)f;(x), (2.5.2)

where p(z|y;.¢) is known as a posterior probability density function of the param-
eter of the interest, p(y, ..., y|x) is called the likelihood function, and p(z) is
defined as the prior probability density function of the parameter x which repre-
sents the initial information or the prior beliefs about the parameter before seeing

the data. The term in the denominator of Equation (2.5.2)) is called a normalising
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term. It does not depend on the parameter x . Thus it is often neglected in the
calculation of the posterior of interest. In other words, the posterior density of
interest is only known up to a normalising term. Therefore, in the Bayesian ap-

proach, the posterior distribution of the parameter can be formulated as follows:

p(xlyr, - ) X plyr, .. yz)p(x). (2.5.3)

In the next section, we provide a methodology of the recursive Bayesian method

for calculating the posterior distribution of the state in the SSM.

2.5.1 Recursive Bayesian inference procedure in param-

eter estimation problem of the state space model

As mentioned above, the recursive Bayesian method can be involved in the
methodology of the SSM in terms of the state estimation problem. It is considered
as an online estimation method when the observations are available sequentially
over time. The purpose of the Bayesian method within the SSM is to construct
recursively in time the posterior distribution of the states given the observations

up to time t, p(zo.|y1). On the whole, the full posterior distribution of the states

is given by
p(ylzt|x0:t)p(x0:t)
P\To:t|Y1:t) = 2.54
oclnd) == ) (254)
where 24 = {xo,...,2:} and y1., = {1, ...,y }, and the other parameters are de-

fined as above. In this thesis, interest lies in estimating the conditional marginal
posterior distribution of the state p(z;|y;) at a time instant ¢ in a recursive tech-
nique. This estimation method is referred to as Bayesian filtering, and consists of

two basic steps, the prediction and update steps (Ristic et al.,|2004). At the time
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instant ¢ — 1, the posterior distribution of the state P(z;_1|y1.;—1) is assumed to
be available. In this step, the knowledge of the state at time step t — 1 is used to
estimate the same state at the next time t. Additionally, the transition equation
p(z¢|xi—1) is involved in the prediction step for obtaining the prior (predictive)

probability density function of the state, as follows:

P(Te|y14-1) = /p($t|17t—1)p($t—1|y1:t—1)d$t—1. (2.5.5)

After acquiring a new state by using the prediction step, the next step is
to correct and update this prediction when a new observation arrives. Bayes’
theorem is used to do so by estimating the posterior probability density function

of the state as follows:

p(yl:t|$t)p($t ’ylzt—l)
P(yt|y1:t—1)

p(@ely1e) = ; (2.5.6)

where the denominator represents the normalising term and is calculated as

Pyelyre-1) = /p(ytliﬂt)p(aft|y1:t_1)dxt. (2.5.7)

As noted above, the posterior distribution of the state can be estimated only

up to the normalising term, and therefore it can be calculated as follows:

P(@e|yr:e) o< p(yrelze) p(2e|yre—1)- (2.5.8)

After acquiring the marginal posterior distribution, the next task is to calculate
the optimal estimation of the state. They can be formulated respectively as

follows:

Ty = E(It|ylzt) = /xtp(xtwl:t)dxt (2-5-9)

T = arg max p(xt|y1), (2.5.10)
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where E(x;|y1.¢) is referred to as the conditional mean of the current state based
on the observations y;.;, and 7; in Equation (2.5.10) is that z; which maximizes

the posterior density, p(z:|y1.¢)-

The main task in dealing with SSMs is an inference problem relating to the
state and hyper-parameters. The objective is to estimate the posterior probability
density function of the state given the available observations. In practice, the
sequence of the observations y;.; is known, whereas the sequence of the states
21, and the hyper-parameters are unknown. There are several recursive Bayesian
filtering algorithms that can be used to compute the posterior mean and variance
of the state, such as the Kalman, the extended Kalman and a particle filter. In
the following section, the focus is on background knowledge regarding recursive
Bayesian estimation methods used in inferring the posterior distribution of the
states for linear SSMs, and includes the Kalman filter and an extended Kalman

filter.

2.5.2 Kalman filter

The Kalman filter is one of a number of recursive Bayesian estimation methods
used in the problem of tracking the latent variables (states) of linear dynamic
models. This is achieved by calculating the posterior distribution of the state.
The Kalman filter, introduced by Kalman| (1960) and Kalman and Bucy| (1961)),
is a recursive and sequential algorithm consisting of a set of mathematical equa-
tions. It is used to infer the posterior distribution of the unobserved state given
the observed information of the response variable. The Kalman filter is consid-
ered as an optimal filter when both equations in the SSM are linear and Gaussian.

The posterior distribution obtained by the Kalman filter is to be Gaussian be-
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cause of the assumptions of the dynamic linear model and the Gaussian prior
distribution of the initial state xy. Therefore, it is parameterised by the mean
and the covariance of state. It aims to provide an optimal estimate of the state
by minimising the mean square error (MMSE) of the estimate. The Kalman filter
is widely employed in several fields such as statistics, economics and engineering.
The reason for this is its simplicity in application, its robustness and the opti-
mality of its estimate. There are two kinds of methodology in terms of solving
the problem of estimation in the SSM: filtering and smoothing (Kitagawa and
Gersch, 1996). The Kalman filter and Kalman smoother have different ways of
dealing with an observation when performing the estimation. The Kalman filter
takes into account for implementing the previous and the current observations,
whereas the Kalman smoother also takes into account the future observations.
West and Harrison| (1997), (in Chapter 4), defined the Kalman filter as a filter

for updating the states in the Gaussian state space model.

At each time point, the Kalman filtering algorithm consists of two steps,
namely a prediction and an update step. In the prediction step, the mean Z;;,_; =
E(2¢|y1:4—1) and the variance Cy;—1 = Var(x|yi4—1) of the prior distribution of
state p(z;|y1.4—1) are calculated. In the second (update) step, the observation
y; is used to correct the prior mean given in the first step and then estimate
the first two moments of the posterior distribution of the current state p(x;|yi.).
These moments can be expressed in the form of the mean &y, = E(z¢|y1.¢) and

the variance Cy, = Var(z|y1.).

Under the observation Equation (2.4.6)), the system Equation (2.4.7)), and the
initial information of the prior state (2.4.8), the recursive sequential Kalman filter

equations with prediction and updating steps are described as follows.
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(a)

It is assumed that the posterior distribution of the vector of state z;_; at
time ¢ — 1 based on the set of information y1, 1 = {y1, .....ys_1} follows the

Normal distribution with some mean m;_; and C;_; as the variance matrix,

1| Y11 ~N(xe—1;me—1, Ceq). (2.5.11)

The distribution of prior (predictive distribution) for the state vector z; at
time t follows a Normal distribution with a; and R; as the mean vector and

the variance matrix respectively,

Telyre-1~N (2 ag, Ry), (2.5.12)
where

ar = Gtmt_l (2513)

Rt — GtC’t_lG;—i—Wt. (2514)

Given the set of information ¥;.;_1, the distribution of the one step forecast

(predictive distribution) also follows the Normal distribution:

Ye|y14-1~N(fr, Q¢), (2.5.15)
where

fi = Fa (2.5.16)

Qi = FRF;+ Vi (2.5.17)

After acquiring a new observation, the next step is to update the prior
distribution in order to obtain the posterior distribution for state x. The
posterior distribution for state x at time ¢, given the data y1.4 = {y1, ..., ys }

can be obtained by using Bayes’ theorem through combining the likelihood
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of the data and the prior of the state. Therefore, the posterior for the state

x; based on the set of information gy, is

xt|y1:tNN(mt7 Ct)a

with
my = at—i—Atet (2518)
Ot - Rt—AtQtAé, (2519)

where
A = RFQ; (2.5.20)
€ = yt_ft- (2521)

Here A;; (0 < A; < 1) is defined as the Kalman gain or adaptive coefficient.

As noted in Equation , the mean of the posterior distribution of a
state is calculated by the previous one and corrected by the predictive error. A
closed-form solution to the posterior distributions of state is an attractive fea-
ture extracted from the Kalman filter algorithm. This means that the posterior
distribution of the state is exactly Gaussian without the need for numerical ap-
proximations, due to the assumptions of the linear Gaussian model. Therefore the
Kalman filter is considered the natural choice to provide the optimal solution of
estimation through online inference in a Bayesian framework. For more details on
a sequential inference for the state and parameters of the online Bayesian method
with the Kalman filter, Harrison and Stevens) (1971)), [Harrison and Stevens (1976)),
West and Harrison| (1997)), Petris et al.| (2009), Triantafyllopoulos and Montana,

(2011), and Durbin and Koopman| (2012) are useful sources. Table [2.1| provides
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a summary of a sequential updating by the Kalman filter algorithm of the state

in the dynamic linear model.

Table 2.1: Kalman filter algorithm

At time point t-1:

Assign the posterior state mean vector m;_;, and covariance matrix C}_1.

For time instant t =1,...,T"
Prediction:
Calculate the prior state mean vector a; and covariance matrix R,
a; = Gymy_y,
R, = G,C,1G, + W,
Update:
Compute posterior state mean vector m;, and covariance matrix C}
when a new observation is available.
ft = Ft’ Gy mg—q,
Q= Ft/RtFt + Vi,
A= RFQ;
my = a; + Ay(ye — fi),
Ci = Ry — AQ A}

The question here is whether one or both functions f(.),g(.) in Equations
(2.4.4)— (2.4.5) are nonlinear. If one of them is nonlinear, the Kalman filter may
fail to give a reasonable estimation of the posterior distribution to the states.

For this reason, it is necessary to resort to using another filter to overcome this
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problem. The extended Kalman filter and the particle filter have been adopted

to achieve this aim.

2.5.3 The extended Kalman filter

As described in the previous section, the basic Kalman filter with linearity of the
observations and evolution equations, and under the assumption of the Gaussian
model, can be applied to obtain the optimal estimate of the state associated
with the dynamic linear model. However, in most applications of interest, either
the observation equation or the system process is nonlinear. In this case, to
overcome these problems, the common alternative method to the Kalman filter
is an extended Kalman filter (EKF). It is employed in order to overcome the

problems of nonlinear functions through using numerical approximation methods.

The SSM with nonlinear equations can be written as:

zp = f(r-1) + wi, w ~ N(0, W) (2.5.22)

yo=9g(x) + v, v~ N(0, V), (2.5.23)

where z; and y; are the vectors of the state and the observations respectively,
f(.) and g(.) are nonlinear functions, and v; and w; are the error terms with the
zero mean white noise processes for the observation and state equations. The
EKF is employed to avoid the linearity assumption of the model. However, it is
considered as a sub-optimal approach for tracking the states in order to obtain an
approximate estimate of the posterior probability density function. The analytic
solution to the filtering problem in the nonlinear and non-Gaussian state space
is not, however, available. The first order of the Taylor approximation around
the current state mean is used to linearize the nonlinear model. The Jacobian

of the nonlinear equations is used to implement this approximation. Therefore
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the equations of the basic Kalman filter can be adopted for sequential updating.
With respect to linearising the nonlinear functions f(.), ¢(.), the first-order Taylor

expansion can be defined as follows:

f(-rt—l) ~ f(-i't—l) + Gt(.fft_l — -i't—l) (2524)
g9(zy) >~ g(2y) + Fe(zy — 24), (2.5.25)
where
~ Of(wy1) ~ 0g(xy)
Gt - 8%_1 |.Z‘t71:$t717 ]Ft - aflft |J3t:$z7 (2526)

21 = E(ia|yr:e-1), and & = E(x|y14-1).

The EKF is considered as a minimum mean square error (MMSE) estimator
of the state of the nonlinear model. To be able to implement the EKF, the
observation and state equations are required to be differentiable. This means
that the first and second derivatives of both equations in the model are available.
In this way, the required Jacobian matrices can be calculated. The EKF ensures
that the posterior distribution of the state, p(x|y1.¢), will be approximated by
Gaussian, x|y1.; =N(z|my, C’t) In this case, due to this approximation, the EKF
does not provide the closed-form solutions to the posterior distribution of the
states. This is why it is known as a sub-optimal filter. If the equations in the
model are highly nonlinear and the assumption of linearity breaks down, the
approximation to Gaussian which has been made will lead to large errors in the
posterior mean and variance of the state. This may result in divergence or a slow
convergence of the EKF. (For further details see (Jazwinski, 1973; Anderson and
Moore, |1979; Ristic et al., [2004). A summary of the EKF algorithm is offered in
Table 2.2
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Table 2.2: Extended Kalman filter algorithm

At time point t-1:
Assign the posterior state mean vector m;_;, and covariance matrix C}_.
For time instant ¢t =1,..., 7"
Prediction:
1. Calculate the Jacobian matrix G;, and evaluate it
at £i—1 = Ty—1 = E(zi—1|y1:0-1)
2. Calculate the prior state mean vector a; and covariance matrix Ry,
ar = f(jt—l)a
Ry = GCy Gy + W,
Update:
1. Calculate the Jacobian matrix F;, and evaluate it
at xy = &y = E(24|y1.4-1)
2. Calculate the posterior state mean vector m;, and covariance
matrix C; when a new observation is available.
Qi = FiRyFy + V3,
Ay = RF,Q7,
my = ar + A(ye — g(24)),
C, = Ry — AQiA,.
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2.6 Particle filter

2.6.1 Introduction

The Kalman filter approach provides an estimation framework to determine the
posterior distribution of a state and its features recursively when the observation
and system equations in the SSM are linear. However, it is no longer a suitable
method if the assumptions fail to hold. This means the closed-form of the dis-
tribution of interest may be impossible to calculate. The EKF algorithm is a
modification to the Kalman filter that allows nonlinear and non-Gaussian mod-
els. It provides an approximate inference of the mean and the covariance of the
states. Therefore, it fails to give reasonable estimates when the models are far

from linear and Gaussian assumptions.

A sequential Monte Carlo method (SMC), also known as particle filter, is an
alternative to the recursive Bayesian filter approach for inference of the states
and unknown parameters in the SSMs when the assumptions of the Kalman fil-
ter do not hold. The particle filter and Kalman filter are Bayesian estimation
methods. The particle filter consists of simulation-based techniques that can be
used to approximate the posterior distribution of the states based on observa-
tions in nonlinear and non-Gaussian SSMs. This approximation is obtained by
drawing a set of random samples with associated weights from a target distribu-
tion p(z¢|y1.+). These random samples are termed ‘particles’. In other words, the
key point of the SMC method is to use Monte Carlo simulation to approximate
the posterior filtering distribution by generating a set of weighted samples. The
estimation results using the particle filter are more accurate than those produced

by other approximate filters. When the number of generated samples is large,
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the SMC method provides the equivalent representation to the true posterior dis-
tribution. The SMC algorithms are designed to estimate the states sequentially

when new observations are available.

The first use of Monte Carlo methods in nonlinear filtering in SSMs was by
Handschin and Mayne|(1969) and Handschin and Mayne| (1970), in which only the
posterior mean and covariance of the state were estimated by Monte Carlo meth-
ods. Several different particle filters are used for online estimation in DGLMs.
The standard and easiest is called sequential importance resampling (SIR), and
was first proposed by (Gordon et al.| (1993)). [Pitt and Shephard| (1999) proposed
the auxiliary particle filter for improving the performance of the standard parti-
cle filter. Here the auxiliary variable is used instead of the importance function
to generate the particles sequentially. |Liu and West| (2001)) and [Storvik (2002)
suggested particle filter algorithms for online estimation of the state and the

hyper-parameters simultaneously.

Kitagawa| (1996)), [Liu and Chen| (1998), [Liu (2001), Doucet et al.| (2001)),
Andrieu and Doucet| (2002), Fearnhead and Clifford| (2003) and DelMoral et al.
(2006) present an extensive amount of literature regarding the methodology of

online and offline filtering by using the particle filter.

2.6.2 The basis of a particle filter

The particle filter represents a popular tool for obtaining, through Monte Carlo
simulations, the approximate solution of the recursive Bayesian estimation prob-
lem in DGLMs. It aims to infer recursively at each time point the required joint
posterior distribution of the states p(xo.|y1.), or the required marginal distribu-

tion of the state at the current time given the historical observations p(z¢|yi.),
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by a set of weighted random samples. It then calculates their features such as

the expectation based on these weighted samples (Doucet et al., 2000)).

Bayes’ theorem is used to find the filtering posterior distribution of state

p(¢|y14) as follows:

p<xt’y1:t71) = /p(%‘l't1)P($t1’y1:t1)d$t1 (2-6-1)

P(yt |$t)p($t|y1:t—1)
fp(yt’xt)p(xtwl:t—l)dxt

p($t|y1:t) X p(yt|$t)/p(l't|$t—1)p($t—1|y1:t—1)d$t—1a (2-6-2)

p($t|y1:t)

where x; is referred to as the current state and y,., denotes the observation up
to time t. Due to difficulties in calculating the intractable integrals of Equations
and , the particle filter can be used to solve these intractable inte-
grals numerically. To achieve this, importance sampling is used sequentially in
order to approximate the intractable integrals. Using the core idea of the SMC

method, the approximation of the marginal posterior distribution of the state in

Equation (2 can be written as
p(xelyre) = Zwt S(zy — 2™y, t=1,...,T (2.6.3)

where wy) denotes the weight of the i particle at time ¢, §(.) is known as
a Dirac delta function and azgi) is the " particle at time t. The problem in
the implementation of this approximation lies in the difficulty of drawing the
samples from the desired posterior probability density function p(x;|y;). This
issue is treated by resorting to another convenient probability distribution ¢(.)
so that the samples can be taken from it. As a result, these samples are used

to estimate the true posterior probability distribution. The proposed convenient
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function is defined as the importance function (IF) and the sample is called the
importance sampling (IS), which is widely used in sampling techniques. This

concept is similar to the prediction step in the Bayesian estimation method.

2.6.3 Importance sampling

The idea behind importance sampling (IS) is that when there is a difficulty in
sampling directly from a target (true) distribution p(z|y1.), a proposal distribu-
tion q(x¢|y1.1) can be used instead for generating identically and independently
distributed samples (x;, ¢ = 1,..., N). In other words, IS is referred to as the
estimation process about the underlying distribution of interest using the set of
observations that are generated from a different distribution. This proposal den-
sity is chosen so that it should have the same support as the target density, i.e.
p(z¢|y14) > 0 whenever q(z;|y;.4) > 0. Generally speaking consider the posterior

distribution q(z|y1.;) as the IF.

The expectation of any function A(.) of the state posterior distribution can be

calculated as

I = Eh(z)] = / h(w)p(alye)de,

-/ h(aso%q(xt\ymdxt, (2:6.4)

where the first part is the expectation of h(x) from the true (target) state posterior
distribution, p(x|y1.1), and the second part is the expectation with respect to
the IF, q(z¢|y14). In the second part of Equation , the true state posterior
probability density function is replaced by the IF. Consequently, we are able to
use it for generating sequentially independent and identically distributed samples.

The second integral in the expectation formula can be approximated by the Monte

35



Carlo method and the particles as follows:

>

N
1
~ NZ@ Dh (! t=1,...,T (2.6.5)

4 ()
where wf) - p—(sz'ylft)
q(@y” ly1:)

are called the importance weights, representing the ratio
between the distributions. These importance weights are employed to re-adjust
the error that is produced by drawing the samples from the IF; sz\il wt(i) =1,
and xy) is sampled from the target density q(z¢|y1+). According to the central
limit theorem the expectation based on the IF converges to the expectation of the
actual posterior distribution of the state when increasing the number of particles
(asN — o0); (see (Geweke, [1989)). This convergence is an attractive feature of
Monte Carlo methods for obtaining asymptotically consistent estimates of the
true posterior state distribution (Doucet and Johansen, 2009). If the normalising
factor of the target distribution is not known, we can evaluate the importance

) 0
weights up to a normalising constant; hence @ o M
g

tion in Equation (|2 can be rewritten as:

Nz“ In(at”)

N Zj:l wt])

N
I =Y wn?) (2.6.6)
=1

Thus the expecta-

. (@)
where w!”) = —+—7 are called the normalised importance weights. The advan-

Z;‘V:1 Wy
tage of IS is that it reduces the variance of Monte Carlo estimators. In addition,
the generated samples from the proposal density q(z;|y;.¢) with the associated

weights {xf), wgi) N | can be considered as an approximation of the target den-

sity p(@¢|y1.e).

36



2.6.4 Sequential importance sampling

Sequential importance sampling (SIS) is defined as a repeat of applications of IS
at each time instant. It maintains the posterior density of interest in the form
of the weighted samples {xgi),wf) :4 =1,...,N} for approximating the state
posterior distribution recursively. Therefore this approximate distribution can be
employed to compute the expectation of an arbitrary function h(z;) as a weighted

sample mean as follows:

E(h(z)|y11) = Zwtz)h (2.6.7)

In other words, SIS uses the principal concept of IS to construct sequentially the
posterior distribution of interest (Doucet et al., 2000)). The joint states posterior
distribution, p(xo.¢|y1.¢), is considered to derive the algorithm of the SIS filter. To
evaluate an operation for computing recursively the particle weights, Bayes’ the-
orem is used to calculate in a recursive manner the desired posterior distribution

of states in the approximation form as follows:

p($0:t|?j1:t) X p(yt|$0;t7ylzt—1)p($0:t|y1:t—1)

= pyelros, i) {P(we|To:t—1, y1:e-1)P(To:e—1|y1:0-1) }. (2.6.8)

By using the Markovian assumption, the posterior distribution in Equation
(2.6.8) can be rewritten as follows:

(oY1) = pyelze)p(@e|Te-1)D(T0:0-1]Y1:0-1)- (2.6.9)

If the importance density is chosen so that it can be decomposed as a recursion

form as follows:

Q(xO:t ’yl:t) = Q(ﬁﬂt‘iUo:tA, yl:t)q(xO:tfl ‘3/1:1:71), (2610)
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then the un-normalised importance weights of the particles can be updated re-

cursively with the following expression:

~ () p(l"(()i’ylt)
RGN
il

Q(ﬁg yu)
p(ueloi)p(t” o Dp(al) o lyre)
(:Bt ‘th 1 Y1 t)q(x(()?f—lwl:t—l)
. (@),
IDt(l) — t_)lp(yt|x ) (|2, 1)7 (2.6.11)
( |x0t 17y1t)

where wt(i)1 is referred to as the normalised importance weights at previous times,

and 2l eee)
a(ey” a1 1)
tance weights can be then computed as

is known as the incremental weight. The normalised impor-

()
(i) Wy
Wy = N = (2.6.12)
Z] 1 wlgj)
Thus, the expression in Equation (2.6.11]) allows us, based on the importance
function, to update the importance weights of the particles in a sequential way.

Note that it is important to select a convenient form of the importance function

so that it satisfies the Markovian assumption, q(afgi) |:E82,1, Yi:t) = q(afgi) |x§?1, Yi:t),

(i) (i)),.(9)

i i X x Ty~

q(z” |22 1, yrse)
Therefore, to apply the algorithm of the filter it is only necessary to store the
current state instead of the history of all the states. Table[2.3] shows the SIS

algorithm used to obtain the recursive form for updating the importance weights.
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Table 2.3: Sampling importance sampling filter(SIS) algorithm

Initialisation: At t=0, for i=1,...,N

Sample particles from the prior density :v(()i) ~ p(xg).

Assign the initial importance weight as w{’ = N1,
For ¢t > 1 and i=1,...,N
Prediction:

Sample particles from the importance density 959 ~ q(xt\x,@l, Yt).

Update:

Compute the unnormalised importance weights according to,
o Pl 2,)
R GG -
q(xy |2 21, yr) 0

; w
Normalise the importance weights, wt(z) = ﬁ

2.6.4.1 The degeneracy issue of the SIS algorithm

The main problem facing the use of SIS is known as particle degeneracy. This
problem occurs when the variance of the importance weights increases as time
increases (Doucet et al., 2000). As a result, the distribution of the importance
weights will have a large variance. In other words, after a few iterations few
particles have high weight, whereas most of the particles have low weight, tending
to zero. So when the Monte Carlo simulation is used to calculate the average of
the posterior distribution of interest, it will be an inefficient estimate. This is
because this calculation is based only on the particles with high weights and

the effects of the particles with small weights are ignored. Therefore the SIS
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algorithm fails to provide an adequate description of the posterior distribution of

the states.

To avoid this problem, a resampling step can be added to the particle filter
algorithm to reduce the effect of particle degeneracy. The main point of the con-
cept of the resampling procedure is to focus on the particles with large weights
and exclude the particles with small weights. In other words, in the resampling
step, the particles with low weights will be discarded and replaced with repli-
cating particles with high weights and set the weights equal. This means that,
after doing the resampling step for each time, the weights of the new set of par-
ticles become uniform. Therefore this unweighted sample can be employed in
the next step of the particle filter algorithm to approximate the posterior distri-
bution of interest. Various types of resampling approaches are used to resolve
the problem of particle degeneracy — for example multinomial resampling, strat-
ified resampling, systematic resampling, and residuals resampling. Since there
is no significant difference in the impacts that the different resampling methods
have on the performance of the particle filter algorithm (Hol et al., [2006), the
multinomial resampling (Gordon et al.; |1993) technique is used in this thesis.
The difference between the methods lies only in their computational complexity
(Hol et al., [2006). In multinomial resampling, the discrete approximation dis-

tribution of p(x; = asgl)) = w,gi) is used to generate with replacement a sample

of N independent random variables, and the weights w,@ are set as equal, i.e.

(@ _ 1

w; ~: ¢ = 1,...,N. Therefore the unweighted sample is still used as an

approximation of the posterior distribution of the state, p(z¢|y1.4).

The effective sample size (ESS) introduced by |[Kong et al.| (1994) is used as a

measure to monitor particle degeneracy. It is defined as a function of the variation
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coefficient of the importance weights as follows:

N

BSS = (Y (w”)) ™. (2.6.14)

i=1
The ESS is the number of available effective particles from the target distribution
that are used to approximate the posterior distribution of interest using the Monte
Carlo approach. In other words, the ESS is a measurement to determine the
algorithm efficiency which is calculated based on the weight variable. The range
of the ESS is between 1 and N. Particle degeneracy is severe when the value of
the ESS is small and vice versa. Therefore the resampling step is needed when

the value of the ESS is lower than a predefined threshold value.

2.6.4.2 Choosing the importance function

The selection of the importance function is a crucial task in the particle filter
methodology (Doucet et al., [2000). The choice of the IF has a significant effect
on the performance of the particle filter algorithm for obtaining an accurate
estimate of the state posterior distribution, p(x¢|y1.;). There are two options
in terms of selecting the IF, namely, a suboptimal choice and an optimal choice.
In the suboptimal choice, the prior distribution of the state in the SSM is used
as the importance function: q(z¢|zo.t—1,v1.t) = p(x¢|ri—1). As a result the weight

updating equation referred in Equation (2.6.13]) can be simplified as follows:
) = wy plylay”). (2.6.15)

Although the suboptimal importance density is known as the simplest one to
calculate, it suffers from two disadvantages. First, the particle filter algorithm
will provide a poor estimation of parameters of interest. This is because the

construction of the IF does not take into account the knowledge of the current
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value of an observation. Therefore the particles used to calculate the posterior
distribution of interest will be obsolete. The second drawback is that, as time

increases, the importance weights variance will be quite large.

The optimal choice of the importance function is expressed as the conditional
distribution of the state given the state at a previous time and the current obser-
vation. The IF can be written as q(z¢|xo4—1, y1.¢) = p(z¢|xi—1,9:) (Arulampalam
et al., 2002). The optimal choice method is designed to reduce the importance
weights variance. Therefore the ESS will be maximised. The expression of the
updating of the unnormalised importance weights in Equation can be

expressed with the optimal choice as follows:

‘ , (4) (@),.(0) ' ,
B = @ Pyl )P)xt |7:°1) (i) (yt|$§?1)- (2.6.16)
t—

= Wiy N (i = Wy p
p(xgl)’xt()l 17y1:t)
The importance weight is obtained from the previous equation based on the

following relationship of the optimal importance function:

p(ye|)p(we 20 -1)
p(yt|xt_1) .

p(xe|e—1, ye) = (2.6.17)

Note that the calculation of the updating of the weight wt‘“ relies only on the
state at previous time x;_1, not on the current time x,;, and this is a characteristic

feature of this selection.

2.6.5 Sampling importance resampling filter

The sampling importance resampling filter (SIR), also called the Bootstrap filter,
was introduced by Gordon et al.| (1993). It is considered as the simplest sequential
Monte Carlo method for propagating and updating the particles in order to obtain
the posterior filtering distribution of interest. This is because the prior density of

the state is selected as the importance function, i.e. q(xt|x£i_)1, Y1) = p(xt|x§i_)1).
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Therefore at time point t, the sequential updating of the importance weights,
wy, can be done in a simple form. This updating is based on only the previous
importance weight w; 1 and the likelihood of a new observation, p(y:|z:(7)), as
follows:

o) = wl ply|”). (2.6.18)

The difference between the SIS and SIR algorithms lies in the implementation of
the resampling step. In the SIR (Bootstrap) filter algorithm, the resampling step
is performed at each time instant regardless of the value of the ESS, whereas in
the SIS filter algorithm it is only needed at a time point when the value of the
ESS is less than a threshold. The SIR algorithm is summarised in Table 2.4]

Table 2.4: Sampling importance resampling filter(SIS) algorithm

Initialisation: At t=0, for i=1,...,N

Sample particles from the prior density 3 ~ p(o).

Assign the initial importance weight as w(()i) = N1
Fort > 1 and i=1,...,N
Prediction: Sample particles from the importance density azgi) ~ p(wt|:z:§i_)1).
Update: Compute the unnormalised importance weights according to,
@y = wplyle).

; w
Normalise the importance weights, w” = ﬁ
> j=1 Wt

2.4 Resampling step
2.4.1 Simulate a new sample sets {a”:?)} with size N from the sets {azgl)}
according to the importance weights wt(?l.

; 1
2.4.2 Set w§?1 =¥ fore=1,...,N
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2.7 Auxiliary particle filter (APF)

As mentioned in Section [2.6.4.2] the performance of the particle filter depends
on the selection of the importance function. In the recursive Bayesian estimation
framework by the particle filters in the SSMs, obtaining an efficient importance
function is considered difficult. However, an inappropriate choice of the impor-
tance function (IF) produces a problem of severe degeneration of the weights,
and this leads to a poor performance of the algorithm. Pitt and Shephard| (1999)
introduced an extension of the generic particle filter, called an auxiliary particle
filter (APF), to overcome this issue. They incorporate a discrete auxiliary vari-
able (k), called the latent variable, to the SIR particle filter to help the simulation
process. This also allows the particle filter to be adapted in a more efficient way.
The key idea behind the APF is using an auxiliary variable as an extra dimension
in the importance function, g(z, k|y1), so that the particles {z\”, k®}Y, can

be generated easily.

Assuming the set of particles {x,@l, wgi_)l}fil is available from the state filtering
distribution p(x;_1|y1.4—1) at time point t—1, then the Monte Carlo approximation
for the state prior density is obtained as follows:

N
P(ze|yr14-1) = Zp(a:t\xﬁ?l)wt(i)l. (2.7.1)

i=1

Our target is to calculate the state posterior distribution p(x|y1..) by up-
dating p(x|y1..—1) when a new observation arrives. Using Bayes’ theorem, the
approximation of the state posterior distribution at time instant ¢ can be cal-

culated by combining the likelihood of the observations p(y;|z;) with the prior
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approximation of the state in Equation (2.7.1]) as follows:

13(13t|y1:t) 08 P(Z/t’iit)ﬁ(ﬂ%‘yl;tfl)
N

= plylre) Y plaela? wi?,
=1
N

= Zp(yt|xt)p<xt’x£i)1)w£?l‘ (2.7.2)

i=1
Pitt and Shephard (1999) suggested introducing the auxiliary variable k, de-
fined as the natural number k£ € {1,..., N}, to the approximation in Equa-
tion (2.7.2]). Therefore the expression of the posterior approximation in Equation
(2.7.2) becomes the approximation of the joint posterior distribution of the state

and the auxiliary variable and it can be written in the following form:

ﬁ(fEt, k= i|y1:t) X p(yt|1‘t)p($t, k= ilylzt—l)

= p(yt|$t)p($t‘k = ’ia yl:t—l)p(k = ’i|y1;t—1)
= plyelae) pladal)_)) w?”
N

= > plwlat?) pladai?y) wi?), (2.7.3)

i=1
where the auxiliary variable k is the latent variable representing the particles
index at time point t —1 so that p(k = i) = wf_)l, and for deriving the importance
function. The joint importance function of the state and index variable proposed

by [Pitt and Shephard| (1999)) is defined as the factorisation formula up to the

normalised factor as below:

q(@e, k= ilyre) o q(@li, yr:e)q(ilyie)
= p(yel @) plaal?)) w?,, (2.7.4)
where if) is a representative feature of the predictive density of the state, such

as the mean or the mode. The mean is the most common selection: @ﬁ” =

45



E(xﬂxil_)l) Thus the marginal posterior distribution of the auxiliary variable k;,

where (j = 1,...,N), can be obtained from Equation (2 as follows:

Q(kj =ilyie) = /Q(l’t,k = i|ly1.)dx,

Q(kj =ilye) = /p(yt@gi))p(xt’xgi)l)wt 1dz
o plyldw,.  i=1,...,N (2.7.5)

Consequently, the auxiliary variable k; is selected based on the density in

Equation (2 and then this auxiliary variable is used to simulate the state ng )

(4) ()

) Np(xt|xtz—1)> and set $§ D= = (g 1, 7,).

from the transition density, x;

Using Equations [2.7.3]and[2.7.5| the second stage of the unnormalised impor-

tance weights of the j** draw can be updated recursively as follows:

a9 _ P(we, k= i|y1s)
! ( —i|y1t)

; 1p<y o)p(a )
wij)lp(yt |=’Ut )P(xgj) |$1(t]—)1)

o ~ (kj) T
p(ye| ")

Finally, the resampling step is implemented when the effective sample size
(ESS) falls below a specified threshold as with the SIR particle filter algorithm
in Table2.4l

The main feature of the APF compared to the generic particle filters (as
mentioned in Chapter [2)) is that it allows the use of the predictive (prior) distri-
bution of the state to generate the particles without losing much efficiency. The

construction of the APF algorithm is provided in Table[2.5]
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Table 2.5: The auxiliary particle filter algorithm

1. Initialisation: At t=0, for i=1,... N
Sample particles from the prior density a:(()i) ~ p(xo).
Assign the initial importance weight as w{’ = N1,
2. Fort > 1 and i=1,...,N
2.1 For j=1,... N
2.1.1 Calculate £” = ]E(a:t\:v,@l)

2.1.2 Sample an auxiliary variable k; with probability

p(k; = i) o p(y|2)w”,

2.1.3 Based on k; generate new particle 2 from p(zt\xt 1))

and set 2 = (z{)_,, 2.

2.1.4 Computing the unnormalised importance weights
o) _ Pz
T )
p(yelzy )
2.3 Normalise importance weights
(i)
- Z;Vﬂ wng)
2.4 Resampling step is needed if Ngss < Nypre

2.4.1 Simulate a sample set with size N from the discrete distribution

p(aos) = )

and relabel this sample xélt) . x(()]\t[)

2.5 Set p(zot|y1) = Zwt p$0t|$0t)
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2.8 Markov Chain Monte Carlo Methods
(MCMC)

In some situations, the posterior distribution of interest is hard to characterise
analytically. In such a case, sampling from that distribution is needed in order
to make inferences about the unknown parameters and latent variables. Thus,
numerical methods are needed in order to deal with complex Bayesian inference.
Markov chain Monte Carlo (MCMC) methods are Bayesian estimation techniques
which can be used for estimating the posterior distribution of interest. In other
words, MCMC is a class of algorithms for generating samples from a posterior
probability distribution based on constructing a Markov chain whose stationary
distribution is the desired probability distribution. Simulation from this chain
with a large number of iterations is then used as a sample to approximate the
posterior distribution of interest. Summaries of the sample, such as its mode,
median, histogram etc, can be used in order to explore the posterior distribution,
which is approximated by the Markov chain. For a detailed relevant to MCMC
methods the reader is referred to, see (Gamerman and Lopes| (2006),Robert and
Casella (2010), [Robert and Casella (2013) and |Gilks et al.| (1993). There are
different MCMC algorithms which can be used to generate the Markov chain. The
Metropolis-Hastings and the Gibbs Sampler are common algorithms for obtaining
the Markov chain. Below we provide a brief discussion of the Metropolis-Hastings

algorithm and the Gibbs Sampler.
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2.8.1 Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm was first introduced by [Metropolis et al.
(1953)) and then this algorithm was extended later by Hastings| (1970). The idea
of the MH algorithm is to generate a sequence of samples from a suitable proposal
density ¢(0]0®), where %) is the current state of the chain. These samples are
then used to approximate the posterior distributions of unknown model param-
eters p(f|x),where x is data. Because the mechanism of the MH algorithm is to
construct a Markov Chain, the current sample of the sequence is only dependent
on the previous sample value. Thus, the previously accepted sample value is ex-
ploited in order to construct the Markov chain. After a number of iterations, this
Markov chain will converge to a desired probability distribution. The MH algo-
rithm is used when the marginal distributions of the unknown parameters cannot
be obtained analytically. However, we can easily draw samples from them. For
using the MH algorithm, a normalising constant is not needed. The proposal
density is used to generate a new candidate state, (6* ~ ¢(6|0®)) and a decision
should be taken whether to accept it or not. The decision to accept or reject the
candidate state for next state in the MH chain is made based on a value of an

acceptance rate. This acceptance rate is defined as a ratio of importance weights

0 e (1 p(0)q(0D]6%)
0.0 =win (1. Gl )

as follows:

. Thus, if the candidate state is accepted with the acceptance rate a/(6®),6*),
then the M-H chain will move and set 8(t1) = #*, otherwise the chain remains at
the current state and we set 8¢+ = (). Table [2.6 provides the pseudo-code for

the Metropolis-Hastings algorithm to show how to generate a chain.
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Table 2.6: The Metropolis-Hastings Algorithm

1. Generate a starting point from the initial distribution, 6° ~ py(.)
2. Fort=1,....T

2.1 Generate a candidate point 6* given #*~! from a proposal distribution ¢(#*|0®¢~)

p(6*)q(8~1|9*) }
(07=D)q(6*[6(—D)

2.2 Calculate an acceptance rate o = min {1, 5
2.3 Generate a value U ~ U(0, 1), a uniform distribution on [0, 1]
24 If U < a, set 81) = §*; otherwise set () = (t-1)

2.5 Take the sequence {92 ... 9}

The choice of the proposal density and its relationship with the target density
play a key role in influencing the performance of the MH algorithm for estimating
the posterior distribution of interest. A poor proposal density leads to a poor
exploration of the posterior distribution. In such a case, a large number of samples
in the Markov chain are required in order to reach the convergence which results
in obtaining a good approximation of the posterior distribution. The proposal
distribution is chosen based on the point that the irreducibility and aperiodicity
conditions are satisfied. This is achieved when the proposal is a positive density
and has the same domain as the target density. A part of the Markov chain
generated from the first state until the chain reaches its equilibrium is called
burn-in and in any inference, burn-in should be removed from the chain, and
the remaining should be used. To reduce the correlation between the successive
states in Markov chain, thinning which means taking every m'® (m > 2) state is

used.

50



2.8.2 The Gibbs Sampler

The Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm for gen-
erating a Markov chain from the full conditional distributions of parameter when
this full conditional is in a known distribution form. Namely, the Gibbs sam-
pling scheme is used only when the full conditional distributions of interest are
known distributions and we can easily sample from them. The idea behind the
Gibbs sampling is that given parameters of interest § = (6, ...,#6,), conditional
distributions p(6;|6—_;) = p(0:|6s,...,0i—1,0i41,...,0,) are used for getting sam-
ple from the target distribution. In other words, the conditional distribution of
each parameter p(6;|0_;),i = 1,...,q is used to update the parameter state given
the current values of the rest of the parameters. The Gibbs sampler was first
introduced by |Geman and Geman, (1984) where it has been used in the field of
Bayesian image processing. The Gibbs sampler is considered as a special case of
the Metropolis-Hastings algorithm. In the Gibbs sampler, the proposal densities
are the full conditional distributions and the acceptance rate is 1. As a result,
all proposed samples are always accepted. Table provide the Gibbs sampling

algorithm.
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Table 2.7: The Gibbs sampler Algorithm

1. Generate a starting point from the initial distribution, 8° = (6Y, . .. 792)
2. Fort=1,...,T
Generate «99 from p(91|9§t*1), N 79((;71))

Generate Hét) from ]9(92|g§1t)7 gét—1)7 o 7glgt—1))

Generate 64" from p(9q\6§t), Hét), 00 )
Set 80 = {6\ 6 . 6P}

2.9 Summary

This chapter has aimed to present the literature review in terms of the classical
and Bayesian time series methodology used throughout this thesis. The classical
time series and state space model applications in various disciplines in medicine
have also been provided in this chapter. With respect to the methodology of the
Bayesian time series models, linear and nonlinear SSMs have been discussed in
detail. The online Bayesian techniques used to track the dynamic state process
in the SSMs, such as the Kalman filter and the extended Kalman filter (EKF),

have been presented in a brief review.

In the latter part of the chapter, the literature review focused on an approx-
imation solution of the estimation problem for the SSMs based on sequential
Monte Carlo methods. These simulation based methods, which are also called

particle filters, use the principle of sequential importance sampling (SIS). The

52



aim is to track the latent variables (states) in non-Gaussian SSMs. Therefore the
approximation of the posterior distribution of the state can be estimated numeri-
cally using different particle filter algorithms. The degeneracy problem of the SIS
algorithm and how it can be addressed, and choosing the importance density, have
also been discussed in this chapter. A brief review of the Markov chain Monte
Carlo (MCMC) methods with the Metropolis-Hastings and the Gibbs sampler

algorithms was also offered in this chapter.
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Chapter 3

Particle filter-based estimation

3.1 Introduction

In Chapter [2| background material for the state space models (SSMs) and recur-
sive Bayesian estimation methods based on the particle filter was provided. The
main purpose of using sequential Monte Carlo methods is to estimate sequentially
the posterior filtering distribution of the current state when a new observation is
collected. Generic particle filter algorithms such as sequential importance sam-
pling (SIS), sequential importance resampling (SIR),and auxiliary particle filter
(APF) were also discussed in Chapter . This chapter provides a survey of the
principal concepts concerning different Bayesian estimation techniques. The aim
is to address shortcomings in the inference of hyper-parameters in the generic
particle filter algorithms. We discuss background preliminaries of the |[Liu and
West, (2001)) and [Storvik| (2002) algorithms used for estimating the states and
learning about the hyper-parameters simultaneously. With respect to evaluating

the performance accuracy of estimating the hyper-parameters and forecasting, a
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simulation study using the Liu and West and Storvik particle filter algorithms
with the Poisson model will be implemented. Moreover, the estimated posterior
distributions of the hyper-parameters for both algorithms at the last time point
will be compared with those obtained from the MCMC run using a huge number
of iterations. The second simulation study investigates what happens when the
proposed fitted model is misspecified. To perform this study, the Liu and West
(2001)) particle filter algorithm with Poisson, negative binomial and mixture Pois-
son models will be applied. In addition, after investigating the proposed models

in the simulation studies, they are applied to the different medical datasets.

3.2 Sequential hyper-parameters estimation in

state space models

3.2.1 Overview

In a statistical modelling framework, the statistical models are defined through
their parameters. In the methodology of the SSM, when the vector of the hyper-
parameter 6 is known, then the sequential Monte Carlo algorithms are consid-
ered effective approaches to estimate sequentially the posterior distribution of the
states. In this case, the optimal solution of the filtering problem can be obtained
by using the particle filter methods. If the vector of the hyper-parameters is
also time-varying, it can be included in the same vector of the state x;. Thus
the sequential Monte Carlo algorithms can be applied effectively to estimate si-
multaneously both elements via the joint posterior distribution of the state x;
and hyper-parameters 6, giving the observations up to time ¢, p(x¢, 0;|y1..). How-

ever, the particle filter algorithms do not provide an efficient solution for the
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estimation of the joint posterior probability density function of the state and
hyper-parameters when the hyper-parameter vector is an invariant. The cause
of this issue lies in the lack of the dynamic availability of the hyper-parameter,
which leads to the problem of the degeneracy of the particle filter algorithm. As
a result, the particle filter methods provide a poor performance of the estimation.
In practical time series applications with SSMs, the hyper-parameters are always
unknown. Therefore it is necessary to make an inference of the unknown param-
eter vector before performing the sequential Monte Carlo method, see |Andrieu

et al. (2005).

In the literature on off-line statistical Bayesian estimation methods, the
Markov Chain Monte Carlo (MCMC) approach is thought to be a successful
technique to estimate the static parameters of the model when the data is avail-

able beforehand (Liu|, 2001).

In the methodology of the DGLMs, there are several ways of estimating the
static parameters in the model based on the implementation of the particle fil-
ter. |Liu and West| (2001)) introduced a way that treats the shortcomings of the
unknown static parameters estimation by adding a small noise to the fixed param-
eters so that they become time-varying. They have quoted this idea from |(Gordon
et al.|(1993). The new hyper-parameters can be added to the state vector. Thus,
the joint posterior distribution of both can be calculated simultaneously in the
same particle. Another technique for tackling the estimation problem of unknown
static parameters has been suggested by |Storvik (2002). He proposed a particle
filter algorithm to simulate the latent state variables along with the static pa-
rameters in a sequential manner based on a low dimensional vector of sufficient

statistics.

In the next two sections, we introduce the principal idea of estimating the
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hyper-parameters by using the artificial evolution method by Gordon et al.| (1993))
as well as the kernel smoothing method by West (1993), which are considered the

cornerstones of the construction of the |Liu and West| (2001)) algorithm.

3.2.2 Artificial evolution method of static parameters

To counter the problem of the degeneracy of the state particles in the recursive
Bayesian estimation method for DGLMSs, |Gordon et al.|(1993) proposed making a
modification to the state particles by adding small random perturbations to these
particles of the state over time. This idea has been extended by |Liu and West
(2001) to accommodate the problem estimation of the static parameter model.
The hyper-parameters 6 are indexed by time and replaced by #;. Thus the static
parameters with the artificial dynamic can be included in the augmented state
vector (zy,0;). The resulting evolution model of the static parameter of interest
with an additional artificial dynamic can be expressed according to a random

walk as follows:

9,5 = 9{/71 + &5, (321)

where &, is a random disturbance which follows a normal distribution, & ~
N(0,¢;), with mean zero and variance ;. The principal motivation of the idea
of the artificial evolution method lies in providing a mechanism to generate new
values of the static parameters at each time instant. With the artificial dy-
namic of the static parameters, the particle filter algorithm can be implemented
to obtain the approximation of the joint posterior distribution of the state and
static parameters p(xy, 0|y1.;). The resulting marginal filtering distribution of
the hyper-parameters, p(6|y1.1), will be very diffuse. This is because of the loss
of information. In other words, the use of the artificial dynamic for the static

parameters leads to a distortion of the resulting posterior distribution of the es-
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timated hyper-parameters compared to the marginal filtering distribution of the

true static parameters in theory.

3.2.3 Kernel density estimation method

In statistical literature, a kernel density estimation method (KDEM) is defined
as a non-parametric way of estimating the distribution of a random variable. In
addition, for the SSMs, West| (1993)) suggested a different technique to solve the
filtering problem of the static parameters p(€|y;.1) based on the concept of kernel

smoothing, with the idea of a neat shrinkage.

In SSMs, suppose the particles of the static parameters with their associated
weights {0§?17w§?1 N at time instant ¢ — 1 are available so they can be used to
obtain the approximation of the posterior distribution of the static parameter as

follows:
P(Olyri-1) Zwt 80 —0). (3.2.2)

Note that the subscript ¢ of the parameter 6;_; does not denote time-varying, but
is only used for indicating the posterior distribution that is employed to generate

the samples at this time.

West| (1993)) proposed modifying Equation by replacing the dirac delta
function 6(6;_4 —9751_)1) with the kernel smoothing density. To calculate the filtering

density function of the hyper-parameter, the following applies:

P(0]yr:1-1) Zw N(Om? | h2V,_1), (3.2.3)

where N(.|m,X) is defined as a multivariate normal distributions with mean m
and variance Y. This multivariate Normal distribution is weighted by the sample

weights wt(?l. Therefore the discrete approximation of the posterior of the static

58



parameter 6 becomes a continuous distribution. mgl)l are kernel locations of

the " mixture Normal component and h € [0,1] is known as the smoothing
parameter which is used to control the over-dispersion of the resulting filtering
distribution of #. This is based on the standard kernel method via the multivariate

Normal distribution, as we will discuss later. Additionally, V;_; is the Monte

Carlo posterior variance of p(f|y;.4—1) which is given by:

N
Vi =Y w0, = 0i) (0, — 0,1)" (3.2.4)
=1

In the standard kernel method, the kernel locations m§?1 are determined as

existing sample values of the static parameter GEi_)l, ie. mf_)l = 9§i_)1. However, in
this context, the resulting posterior variance from this kernel density (1+h?)V;_,
will always be larger than the Monte Carlo posterior variance, V;_;. This leads
to the loss of information. This means that the approximate posterior density
function of the static parameter #, which is calculated based on the standard

kernel density via the mixture Normal, will be away from the desired posterior

probability density function of the true fixed parameter (Liu and West}, 2001)).

The issue of over-dispersion for the posterior density resulting from the stan-
dard kernel density will be exacerbated as the approximation operation of the
filtering distribution is repeated over time. In other words, the approximation of
the posterior p(0|y;.441) distribution at time ¢ 4+ 1 will be affected by the over-
dispersed approximation of the filtering p(f|y;.¢) density at time t (Liu and West,
2001). This problem is considered a serious blemish in implementing the sequen-
tial simulation. For this reason, West| (1993)) suggested a solution to this issue
of variance increasing by using the shrinkage concept for specifying the kernel

locations mffjl as follows:

mi?, = c6" + (1= )1, (3.2.5)
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where ¢ = /(1 — h?) and ¢ € (0,1) is a shrinkage (tuning) parameter which is
defined as the efficiency particle measurement. The smoothing parameter A is

determined using a discount factor as follows:

(3.2.6)

e {35—1}2

20
where the discount factor ¢ range is typically specified as around (0.95-0.99)
(Doucet et al.l 2001). This will lead to the range of the shrinkage parameter ¢
being (0.974-0.995). The specification of these kernel locations by the shrinkage
rule ensures the stability of the resulting mean ,_; is retained and makes a
correction of the resulting variance from the mixture normal so that it becomes

the same as the Monte Carlo posterior variance, V,_;.

3.3 Liu and West particle filter (LWPF)

The estimation of the static parameters in SSMs is represented as a challeng-
ing task. Different algorithms based on simulation within the recursive Bayesian
framework exist for online learning of the hyper-parameters. The principle of
the artificial evolution of the static parameters by (Gordon et al.| (1993)) has been
adopted here to make parameters time-varying. Thus, when using an artificial
dynamic for the static parameters, they can be added to the state vector and
estimated simultaneously in a sequential way. In this context, the joint posterior
distribution of the state and static parameters, p(zy, 0|y1.¢), can be approximated
sequentially by using the sequential Monte Carlo algorithms when the new obser-
vation y; at time point¢ becomes available. Liu and West| (2001)) provided their

particle filtering algorithm to achieve this target.

The key idea behind the Liu and West| (2001)) approach is to construct the
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joint target filtering distribution of the state and static parameters by making
an extension to the APF of Pitt and Shephard (1999) which was introduced in
Section [2.7] Incorporating the APF and the kernel smoothing approximation by
West| (1993) leads to a better estimation of the posterior distribution of the fixed
parameters posterior probability density function, p(0|y;.;), using mixture Normal
distributions. In addition, the shrinkage concept is included in this algorithm
in an effort to counter the problem of over-dispersion in the resulting filtering

distribution created by pretending that the parameter is time-varying.

At time point t—1, suppose the approximation of the joint filtering distribution

p(z_1,0|y14—1) is available, and it is in the form of

N
_mxtbemun:szguﬁhqdzﬁmgxtbey (3.3.1)

Then the discrete approximation of the marginal distribution of the static param-

eter 6 can be obtained from the joint distribution in Equation (3.3.1]) as follows:
p0l) = [ Do Oy i)does
N . .
~ Y wa0 - o). (3.3.2)
i=1

The Monte Carlo estimation of the mean vector # and the variance matrix of the

discrete approximation p(f|y;.,_1) are given by

N

Oy = Y w0 (3.3.3)
=1

Vi = D w07 — 06— 6ima) (3.3.4)
i=1

As mentioned above, the subscript t — 1 of the parameter 6;,_; does not denote
time-varying, but is only used to indicate the posterior distribution employed to

generate the samples at this time. By replacing each point mass of the dirac
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delta function §(6 — Ht(i)l) in Equation (3.3.2) with the kernel estimation via a
Gaussian density as [Liu and West| (2001) proposed, the resulting approximation
of the static parameter distribution p(f|y;.4—1) will be a continuous distribution

in the following form:
P(Oly1:-1) Zwtl)lN e‘mt 17h2Vt 1) (3.3.5)

where mizjl are kernel locations of the 7" mixture Normal component, and h €

[0,1] is known as the smoothing parameter. As mentioned before in Section
3.2.3| setting the kernel locations m§?1 as existing particles (9?_)1 ensures the
preservation of the mean 6,_; that is calculated by both of the approximations
distributions. However, the resulting variance of p(6|y;.,—1) is always bigger than

the variance of p(0|y;4—1). This leads to the degeneracy problem of the particles

used to approximate the filtering distribution of the static parameter of interest.

To see the resulting case of this issue, let us calculate the mean and the vari-
ance of the static parameter ¢ under the approximation distribution p(0]y;..—1)
in Equation (3.3.5). The mixture Normal components in this approximation are

indexed by the auxiliary latent variable k. So we have

E(0) = E(E(9]k)) = E(0)

N

=Y w0 =0, (3.3.6)

Var(0) = E(Var(0|k))+ Var(E(0|k))
= E(r*V,_,) + Var(6®)

= BV, 1 +Vii=0+0)V, >V, . (3.3.7)

To avoid the problem of loss of information and to overcome the increase in

the resulting variance, [West| (1993) suggested the idea of shrinkage to specify the
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kernel locations. In this context, the kernel locations are given by
() _ @) AV
my_y =02 + (1 — )0, (3.3.8)

where ¢ = /(1 — h?), ¢ € (0,1) is a shrinkage (tuning) parameter and ¢* + h? =
1. As a result, the definition of p(0|y;.,—1) in Equation (3.3.5) will be altered to

PO)yra_r) ~ Zwt—l N(B|c6?, + (1 = )81, h>V,_1). (3.3.9)

Thus with this setting of the kernel locations as in Equation (3.3.8]), the
resulting variance of p(f|y;.4—1) has been corrected so that it becomes the same

as the resulting variance of p(€|y1..—1), and retains the same mean:

E(6) = E(E@|k) =E(c8® + (1 - c)f)

= cO+(1—-c)f=40 (3.3.10)
and the variance is

Var(9) = E(Var(0|k))+ Var(E(0|k))
= E(h*Vi_1) + Var(cd® + (1 - ¢)f)
= RV, +¢ Var(Q(k)) =KV, +3AV,,

= (KP+AV, 1=V, (3.3.11)

The importance of the choice of the shrinkage parameter, c, lies in deriving the
smoothing parameter, h, which is included in the Normal mixture approximation
of the static parameter distribution. As a result, the performance of the Liu and
West algorithm is affected by this choice. In practice, the shrinkage parameter
is determined based on the discount factor, as |Liu and West| (2001)) proposed, as

= (36 — 1)/(29), so that the smoothing parameter can be obtained as

h?=1- {Er (3.3.12)



Generally, the range of the discount factor ¢ is specified as (0.95-0.99), which

results in the shrinkage parameter range ¢ of (0.974-0.995).

The approximation form of the joint filtering distribution of the state and the
static parameter at time instant ¢ —1 in Equation (3.3.1]) can be expressed based

on p(zy_1,0ly14-1) as follows:

N
P, Olyr—1) = > W N(cD + (1= )0, h*Vi1).0(zeos — 21”y). (3.3.13)
=1

Hence, performing the Bayesian approach in two stages, prediction and up-
date, the approximation of the target joint distribution of interest, p(z,0|y1.),

can be acquired when a new observation ¥, is made, as follows:

p(%,e‘yl:t) X p(xt>9>yt‘y1:t—1)
= p(yt|xt7Hvylzt—l)p(xtaekyl:t—l)

= p(yt|$t, e)p($t|xt—1, 0, y1:t—1)p(It—1, 9’91:1&—1)

Q

p(yt|xt7 e)p(mt‘xtfb 9)]5(3%717 elylztfl)
N

= plyle, O)p(zelre1,0) Y w, N(OIm®, (1 - A)V,_1)d(w1 — 21;)

=1

N
= > plyilre O)padat’y, OON @MY, (1 — A)Vio)d(@-y — 21”)
=1

By introducing the auxiliary variable as defined in Section[2.7] the target joint
distribution of the state and the static parameter based on this auxiliary variable

can be formulated in the following form:

plae, 0.k = ilyre) = wiip(yelwe, O)p(ae|at’,, 0)

N@mD, (1= A)\V,_1)d(ze g — ). (3.3.14)

A suitable choice of the importance function proposed by |Liu and West, (2001))

with the introduction of the auxiliary variable can be expressed in the following
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form:

4,0,k = ilyra) oc wi p(ylw = 30,0 = mO)p(arfei?,, 0)
NOmD B2V, )6(zy — 2\7)),  (3.3.15)

where i:gi) is determined as the mean or the mode of the predictive density of the

state given the static parameter via the kernel location, p(z|z,_1 = xl@l,Q =
m) . To obtain the sample with size N of the pair (xy), 0@) from the auxiliary
joint importance q(xy,0,k = ily;4) density in Equation (3.3.15]), the following

three stages will be iterated for 7 = 1,..., N at each time point.

(a) Draw an auxiliary variable k; with

plky = i) oc wyplysle, = 21,0 = m®), i=1. N

(b) Based on k; = 7, sample the static parameter from the Gaussian density,

09 ~ N(@mD, (1 —c*)V,_1), and set §9) = 0.

¢) Based on k; = i and 89 = 0, sample 2% ~ p(z;|z,1 = 27,0 = 60)).
j t -1

Using Equations (3.3.14)) and (3.3.15)), the unnormalised importance weights

can be updated recursively as follows:

k) _ Pl b,k =iy
q(ze, 0,k =ilyi)
w i p(yle, = 2”0 = 09)p(af |z, 09N (B]m*), (1 = A) Vi)
Wi p(ylz, = £, 0 = mED)p(a 2, 00N (0lm®), (1 - )V, )
p(ye|wy = x?’)) 0 = e(j))

= _ . (3.3.16)
plyila, = 2,0 = mk))

Thus at time point ¢, the approximation of the joint filtering distribution of

the state and static parameter can be obtained after a normalising step of the
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importance weights as follows:

P, Oly14) = E wt (2D 60 (24, 0).

Similar to the case of the generic particle filter algorithm described in Chapter 2,
the resampling step is performed based on the multinomial approach when the
number of efficient particles falls below a specified threshold. The ESS measure-
ment is used to determine how many particles with a high frequency are used
for obtaining the approximation distribution of interest. According to [Liu and
West| (2001)), the approximation posterior distribution of the static parameter of
interest must be supported by an appropriate mixture distribution, so that the
expression of the static parameter is then consistent with the selected mixture
distribution. In other words, the distributions of the mixture components and
the unknown static parameter must have the same support of the entire real line.

A summary of the Liu and West particle filter algorithm is provided in Table [3.1]
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Table 3.1: Liu and West’s particle filter algorithm

1. Initialisation: Suppose, at time ¢ — 1, for i=1,... N

Sample pair particles (xi?l, 0™) independently from

the prior densities [E(()i) ~ p(zi—1) and 09 ~ p(h)

Assign the initial importance weight as wf_)l = N~', and
(i1, 0ly14-1) = Zi\il wt(i)15(x§i_)l,g(z‘>)($t—la 0)
2. Fort > 1 and i=1,... N
2.1 calculate 6, = val 9§ 1, and

Vi =28 w00, - 6,.)0", —6,1)7,
m’ = c0” + (1= )1,

+ (%)

T, = E($t|$t—1 = xﬁ)p 0 = ng,i)l)‘

2.2 For j=1,... N

2.1.1 Sample an auxiliary variable k; with probability

p(k; = i) oc p(y|2t, 0 = m{? Hwl?,.

2.1.2 Based on k; sample ) ~ N(0lm@ (1 —c?)V,_,).
2.1.3 Based on k; and 09 = 6, sample 2\ ~ p(z,|zy = 2,0 = 89)).

2.1.3 Compute the unnormalised importance weights

a9 pylzl?, 0 = 0))

T AT =)
2.3 Normalise importance weights wEi) = %

Zj:l Wy

2.4 Resampling step in needed if Nggs < Nipre

2.4.1 Simulate a sample set with size N from the discrete joint distribution

plae, 0 = 21", 0(0) = w”
and relabel this sample (xf), oWy, .., (ZL‘EN), o)
2.4.2 For i=1,. N reset the weights w'” = N(—1)

2.5 Set p(xo4|yie) = Zwt p$0t|$0t
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3.4 Storvik particle filter (SKPF)

Incorporating a vector of static parameters as a part of the state vector, in the
context of the recursive Bayesian estimation method and the DGLMs, is consid-
ered as a usual approach for dealing with unknown static parameters. However,
for a special class of DGLM, |Storvik| (2002) suggests an alternative particle-based
technique to determine the hyper-parameters and the latent state variables. The
concept of the Storvik particle filter algorithm is to use low dimensional sufficient
statistics, denoted by s, rather than kernel smoothing densities as described in
Liu and West| (2001)). Storvik (2002) employs these sufficient statistics to simulate
sequentially the unknown static parameters and the state variables. He utilises
the fact that the vector of the sufficient statistics can be updated sequentially
when a new state, x;, is generated from its posterior density and a new obser-
vation, y,, is created via mapping s; = S(s;_1, %, y:). Therefore, for the static
parameters, 6;, is also tracked by the sufficient statistics in a sequential manner.
For the Gaussian system process, in particular, the particle set of the sufficient
statistics at time instant ¢t — 1 can be updated sequentially to a new particle set
at time point ¢ by using a class of equations of the Kalman filter as introduced by
Storvik| (2002)). Thus, the marginal posterior distribution of the static parameter,

p(0¢|xs, y1.4), can be defined conditionally on sufficient statistics in the form

P(Oi|xe, yra) = p(6:lse). (3.4.1)

Furthermore, in Storvik’s algorithm, only the particle of sufficient statistics,
{39 N ., needs to be stored, instead of the state particles ,{xii) N ., at each

iteration.

At time point ¢t — 1, the assumed approximation of the posterior of the state

distribution p(z;_1|y1.4—1) is available. In this case, using Bayes’ theory, the joint
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filtering distribution of the state and the static parameters given the observation

up to time ¢ according to the Storvik (2002)) approach is given as:

p('xt70|y1:t) X p(wt787yt|y1:t—1)
= P(yt|96t,y1;t—1,e)p($t|$t—17’y1:t—1,9)p(ml’t—hy1:t—1)p($t—1|y1;t—1)

= pyelze, 0) p(ae] i1, 0) p(0]5i—1)p(@1—1|Y1:0-1)- (3.4.2)

In Storvik’s algorithm at each time step, conditional on the existing hyper-
parameters, the proposal density function is used to generate new particles of

states, and is given in the following manner:

:Bii) ~ q(xt|$§i_)1, Ys, 0). (3.4.3)

New hyper-parameter particles are also simulated from their importance function

conditional on sufficient statistics as follows:

0 ~ q(0lzy, yre). (3.4.4)

Thus the un-normalised importance weights can be updated recursively pro-
portional to p(y:, x4, S¢, 0) and both proposal densities as follows:

o (0] (|22, 0) pys|2l”, 6)
_1 Z- i .
Q<9|x£217 yl:t) Q<xt|x§217 Y, 6))

@) = @y

(3.4.5)

For a special case of dynamic linear models, called the Gaussian system pro-
cess, [Storvik (2002)) proposed a technique for updating sufficient statistics in a
recursive way according to a special class of the Kalman filter updating equations.
In this model, assuming an observation process is arbitrary, a transition process

is assumed to be Gaussian and satisfies
=7, 5+ &, e~ N(0,0%p), (3.4.6)
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where Z, = Z(x4_1) is a matrix of elements that might be nonlinear functions of
x;_1,and 3, 0? are unknown parameters with prior distributions 8 ~ N(my, 02Cy)
and 02 ~ IG(vy/2,dy/2), and ¢ can be determined as a known value. In line with
the standard theory by West and Harrison| (1997), the unknown parameters can

be simulated based on sufficient statistics vector s; = (my, Cy, vy, d;) as follows:

d
oty ~ IG <%, é) (3.4.7)
Bilwe, yra, 0~ N(my,o°Cy). (3.4.8)

The vector of sufficient statistics s; = (my,Cy, vy, d;) can be updated by using a

special class of Kalman filter equations as follows:

D, = Z/Ci1Zi+ (3.4.9)
C, = C1—CZD7'ZIC (3.4.10)
m, = my 1 +C 17D 7] (v — Zmy_) (3.4.11)
di = diy— vy — Zimy_ ) D72y — Zmy_;) (3.4.12)
v = U1 +0b, (3.4.13)

where b is the dimension of z;. A summary of the [Storvik (2002) particle filter
algorithm is provided in Table [3.2l The main benefit of Storvik’s algorithm is
that, in a simulation procedure at each iteration, the current simulated particles
of the hyper-parameters, {QS) N |, do not depend on the simulated particles in a

previous time, {Hgi_)l}fil . Consequently, the problem of the impoverishment of

the hyper-parameters particles is avoided.
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Table 3.2: Storvik’s particle filter algorithm

1. Initialisation: Suppose, at time t — 1, fori=1,..., N
Sample state particles (xgl_)l) from the prior density x(()i) ~ p(zi1)

Assign the initial vector of sufficient statistics as s,@
Assign the initial importance weight as wﬁ)l =N-!
2. Fort=1,....,Tandi=1,...,N
2.1 Simulate ) and (x,ﬁ”) from their importance functions as
0@ ~ q(elfv@l,ytl
xgi) ~ Q($t|37£i—)17yt79)

2.2 Evaluate the unnormalised importance weights

) PO plaf’ |2y 0) plunlt”, 0)

=) _ (i
Wy = Wy 7 i
Q(0|I5217 yl:t) Q(xt|x§217 Yt 8)
A @
2.3 Normalise importance weights wt(z) =t
ZN w(])
j=1 Wt

2.4 Resampling step in needed if Ngggs < Nipre

2.4.1 Simulate a new sample sets {#\”, 0@} with size N from the sets {z\”, 00}

according to the importance weights wti).

; 1
2.4.2 Set wt(l) =¥ fore=1,...,N
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3.5 Dynamic models for count time series

This section discusses some dynamic models for time series count data used in
this study. These dynamic models are dynamic Poisson model, dynamic negative

binomial model, and dynamic mixture Poisson model.

3.5.1 Dynamic Poisson Model

The dynamic Poisson model is defined as an extension of the Poisson regression
model when its parameter is time-varying. Assume {y;, t = 1,...,T} is the time
series for count data that follow a Poisson distribution. Then the DGLMs, with
an observation process and a transition process, can be expressed as follows:

e Observation model

Y| \¢ ~ Pois(\)) = Pois(exp(xy))

e Link function

log(Ar) = m Xy

e State model

xt_ﬂz¢(xt—1 _M)+wt7 Wt ~ N(07 W)7

where ¢ is defined as first-order autoregressive coefficient and w; is an evolution
error that follows Normal distribution with mean zero and variance W. Note
that the kernel smoothing densities with multivariate Normal and multivariate
gamma are used in implementing the LWPF’s algorithm as a supporting distri-

bution for the autoregressive coefficient and state error respectively. In addition,
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when applying Storvik’s algorithm with the dynamic Poisson model, the EKF,
described in Section [2.5.3, was used to calculate the approximation of the im-
portance function. Therefore the proposal distribution will be approximated to

Gaussian with mean m; and variance C; in the following form:

exp(p(l — @) + ¢pwp—1) W [y — exp(u(l — @) + ¢x4-1))]

e = MO b= 0) + G )P W+ explu(l — 0) + 11 + i)

Where w; ~ N(0, W)

Ci=W — lexp(u(1 — @) + pay—1)])? W] .
lexp(u(1 — @) + ¢dx—1)? W + exp(pu(l — @) + -1 + wy)

The derivation of the calculation of the Gaussian approximation of the im-

portance function by using the EKF is given in Appendix [A]

3.5.2 Dynamic negative binomial model

Let {y;, t = 1,...,T} be the negative binomial observation process of the time
series count data. The observation process and the state process, in the non-

Gaussian SSM, can therefore be represented as:

e Observation model

1
~ NB =NB\ 7, -
p(ye| 7, 7) ) <T’ 1+ exp(%))

e Link function




e State model

Ty — o= Q(x4—1 — p) + wy, wy ~ N (0, W),

where 7 denotes the dispersion parameter, ¢ is the first-order autoregressive co-
efficient and wy is an evolution error that follows Normal distribution with mean

zero and variance W;.

In the LWPF algorithm, at each time point, the kernel smoothing densities
with multivariate Normal are used for simulating autoregressive coefficient parti-
cles. The kernel multivariate gamma is used to generate state error and dispersion

parameter particles.

3.5.3 Two-component dynamic mixture Poisson model

Suppose {y1, t = 1,...,T} and {yo, t = 1,...,T} denote two different time
series for count data where each follows a Poisson distribution with parame-
ters Ay, Agz. A two-component dynamic mixture Poisson model can be obtained
through mixing two single dynamic Poisson models. In particular, for the SSM,
the observation and the state processes of the two-component dynamic mixture

Poisson model can be represented as follows:

e Observation model

P(ye| e Aar) = Up(ynAie) + (1 — 9)p(yae| Aar)

= YPois(yi|\¢) + (1 — 9) Pois(yar| Aar)
e State models

Ty — 1 = G1(T14-1 — 1) + Wit wye ~ N(0, W)

Top — o = Po(Toy—1 — o) + Wy wy ~ N (0, Wy),
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where (¢, ¢o) are defined as first-order autoregressive coefficients for each state
model, wy;, wyy are evolution errors of the two state models that follow a Normal
distribution with mean zero and variances Wy, W5 respectively, and ¥ is a mixing
parameter which represents the probability of an observation belonging to the
first distribution (component). In this study, only the two-component dynamic
mixture Poisson model is used with the LWPF algorithm, for both the second
simulation and asthma data. A distribution which has support (0,1) is used to
sample the mixing parameter, ©). The multivariate Beta distributions are assumed

for that.

3.5.4 Numerical implementation by MCMC

In order to conduct the MCMC method for estimating the posterior distribu-
tions of the Poisson model parameters in the first simulation study, the following

independent prior distributions of the autoregressive coefficient ¢ and the pro-

2

cess mean g are employed: ¢ ~ N(¢\¢0,a§,), p~ N(plpo, o

). In terms of the
state variance W, we use an independent Inverse Gamma as the prior distribu-
tion. Beside, in the MCMC applications, we work with the precision parameter
(1p = W1) rather than the state variance. A Gamma distribution will be used as
the prior with the shape and rate parameters respectively as follows: 1) ~ I'(a, 3).
After working with the precision parameter, we used its reciprocal to obtain the
variance (W = ¢~!). In updating the state of the unknown model parameters,
the Bayes formula is used for computing the full posterior density for each pa-
rameter. The Gibbs sampler and Metropolis-Hastings Algorithms are used for

generating a Markov chain based on whether the full conditional distribution of

each parameter is in a known form or not.
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With respect to the DGLM with generated Poisson data, the joint conditional
posterior distribution of the states and the unknown parameters up to propor-

tionality can be written as follows:

T T
(¢, 1,0, wralyra) o [ [ pwilwe 6, 11, 0) [ [ pl@ilwics, &, ) p(8)p(1)p()p (1)
t=1 t=2
(3.5.1)
Then the full conditional posterior distributions for (¢ and p) given the states

(1,...,2r) are presented as follows:

p(¢lrre) o p(e) Hp(ilftmfl)

H-

T
= N(¢loo, o3) [[ N(@ilu(1 — ¢) + ¢z1-1, ) (3.5.2)
t=2

p(pler) o P(M)Hp(iﬂtll’tfl)

T
= N(ulpo, o2) [ [ N(@ilu(l = ¢) + ¢zi1,¢) (3.5.3)
t=2

Similarly, we can see that the full conditional posterior distribution of v, given

the states x1. is given by

T
(¢|$1t HP $t|$t 1
t=2

T
x T(@le, B) [[ N(@ilu(l — ) + dxi1, )
t=2

x F(Wg +a, B+ % Z(xt — (1l — @) — dx,1)*)  (3.5.4)
t=2

With respect to Equations (3.5.2)—(3.5.4]), the full conditional distribution

for the precision parameter ¢ is in a known form which is proportional to the
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Gamma distribution whereas, the full conditional distributions for the autore-
gressive coefficient ¢ and the process mean p are not. Therefore, we use the
Gibbs sampler algorithm for generating a Markov chain of the precision parame-
ter ¢ and the Metropolis-Hastings Algorithm is used to generate a Markov chain
for both the autoregressive coefficient ¢ and the constant mean p. In terms of
applying the M-H algorithm, candidate values for the autoregressive coefficient ¢
and the constant mean p are sampled using a re-scaled beta and normal proposal

distributions respectively.

3.6 Simulation experiments

A simulation study is an important technique of statistical analysis. It enables
researchers to evaluate the performance of the proposed methods in achieving
the desired results. This section has two simulation studies. In the first simu-
lation study, we will first investigate whether the |Liu and West (2001) particle
filter algorithm or the [Storvik (2002)) algorithm with a Poisson proposal model
provides more accurate estimates of unknown hyper-parameters. It will also pro-
vide robust forecasts: these should be closer to the true values of the simulated
data. In addition, the approximations to the posterior distribution of the hyper-
parameters will be compared with a good approximation to the true posterior
distributions. This posterior distribution can be obtained by running the MCMC
algorithm using a huge number of iterations. A purpose of the second simulation
study is to see what happens when the fitted model is misspecified. In this study,
the |Liu and West| (2001)) algorithm will be applied. We consider three cases,
depending on whether the data have been simulated from the Poisson, negative

binomial, or mixture Poisson distributions.
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3.6.1 Simulation description

3.6.1.1 Simulation study when the fitted model is correct

For this simulation scenario, the dynamic Poisson model, including the obser-
vation and state process with the link function, as described in Section [3.5] is
applied. A sample of 100 observations was generated from true models with
response observations following the Poisson distribution. The dynamic Poisson
model with two proposal particle filter algorithms described in Sections and
[3.4] will be applied to determine how they deal with both state and sequential
parameter learning efficiently with the simulated data. We will compare the
estimated posterior distributions of hyper-parameters by two proposal particle
filter algorithms with the results obtained by the MCMC using a large number

of iterations.

In terms of the dynamic Poisson model, the simulated data are generated by
using the true parameters ¢ = 0.75, W = 0.135 and p = 0.85. For two algorithms,
the Liu and West and Storvik particle filters, we assume the initial values of hyper-
parameters having the same prior. The prior distributions are represented as
follows: Wy ~ IG(vo/2,dy/2), o ~ N(mg, WyCo), and o ~ N(mg, WoCy). The
sufficient statistics are set up as follows: vg =2, dy = 1, mg =0, Cy = 10, Dy =
1. In addition, the prior distribution of the initial value of state in both algorithms
is zg ~ N(0,4). Regarding the use of the Liu and West algorithm, the value of
the shrinkage parameter is determined as ¢ = 0.975. In Storvik’s algorithm, In
order to calculate the importance function by using the EKF, the following setup

for the state prior mean and variances was used: mg = 0, Cy = 100.

A Monte Carlo study with 100 runs is performed to obtain a new set of obser-
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vations at each run. The proposed algorithms are demonstrated by the simulated
data from a Poisson distribution in order to observe the algorithm performance
in tracking the latent variable (state). Also observed is how accurately the pa-
rameters are estimated. A multinomial resampling step is used if needed for each
particle of the state and hyper-parameters at each time point. A square root of
mean square error (RMSE) is used to distinguish between the performance of the
proposed algorithms for obtaining an accurate forecast. In two proposed models,

a sample of 1000 particles (N = 1000) is used at each time point.

Table 3.3: Summary of the performance of the LW and Storvik algorithms with

Poisson model

Filter
LW .Poiss STK.Poiss
Mean/SD (¢f) 0.6293/0.0933 | 0.5638/0.1868

Mean/SD (W)

0.1229/0.1174

0.4121/0.0998

Mean/SD ()

0.7487/0.1406

0.6271/0.1312

Mean RMES Pred 1.4913 2.988

Mean SD Pred 1.373 2.8951

Table provides a summary comparison of the performance accuracy of the
Liu and West particle filter with a Poisson model (LW.Poiss) and the Storvik
particle filter with a Poisson model (STK.Poiss). According to the estimation of
the hyper-parameters, we can see the average Monte Carlo of the posterior mean

~

for the autoregressive coefficient by the LW.Poiss algorithm (¢ = 0.6293) is closer

to the true value than that of the STK.Poiss algorithm (¢ = 0.5638). In addition,

the LW.Poiss algorithm provides a good estimation of the average Monte Carlo of
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A

the posterior mean for the state variance (W = 0.1229), which is closer to the true
value compared to the value generated by the STK.Poiss algorithm (W = 0.4121).
In terms of one-step-ahead forecasting, the average Monte Carlo of the root mean
squared error (RMSE) of prediction by the LW.Poiss algorithm (RMSE= 1.4913)
is smaller than that of the STK.Poiss algorithm (RMSE=2.988).In addition, the
LW .Poiss algorithm provides an average Monte Carlo standard deviation of pre-
diction error of (1.373) which is smaller than the STK.Poiss algorithm equivalent
(2.8951). Therefore the Liu and West particle filter offers the best result for
forecasting accuracy, compared with the Storvik particle filter. From this com-

parison part of the simulation study, we can conclude that the LW algorithm with

a Poisson model outperforms the Storvik particle filter algorithm.

With respect to the MCMC implementation, we used the same prior distribu-
tions of the hyper-parameters as in the particle filters. These prior distributions
are suggested by Storvik| (2002). The prior distributions are represented as fol-
lows: ¢g ~ N(mg, WoCy), and po ~ N(mg, WyCp), where my = 0 and Cy=100.
We used the gamma prior with shape parameter vy/2 and rate parameter d;/2
for the precision parameter v = W=, where vy = 2 and dy = 1. We set the total
number of iterations to 50000 and the first 10000 samples are set for burn-in. The
trace plots of the model parameters is shown in Figure [B.I] which is provided
in the appendix These plots provide evidence of convergence of the chain,

although the trace plot of the mean parameter p includes some autocorrelation.

Figure [3.1] shows histograms of the samples of the approximation of the pos-
terior distributions of the hyper-parameters at the last point of time (T=100)
obtained from the two proposal particle filter algorithms and the MCMC. The
histograms displayed in the top panels of Figure provide the approximate pos-

terior distributions of the hyper-parameters obtained by MCMC. The histograms
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of the posterior distributions for the hyper-parameters obtained by the LW.Poiss
particle filter are provided in the middle panels. In the bottom panel, the his-
tograms of the posterior distributions for the hyper-parameters obtained by the

STK.Poiss particle filter are exhibited.

Now, we are going to compare the posterior distributions of each hyper-
parameters obtained using the two online methods (LW.Poiss and STK.Poiss
particle filters) and one offline method (MCMC). A visual inspection of the graphs
for the parameter ¢ indicates that the shapes of the posterior distributions in both
MCMC and LW.Poiss particle filter have some similarity whereas STK.Poiss par-
ticle filter produced a posterior distribution which appears to be further apart
from that of MCMC. Similar comments apply for the estimation of the param-
eters W and p. Furthermore, we note that for p both LW.Poiss and STK.Poiss
particle filters provide distributions with smaller tail probability compared to the
MCMC. In conclusion, Figure [3.1] suggests that both LW.Poiss and STK.Poiss
particle filters appear to approximate reasonably the shape of the posterior dis-

tribution produced by MCMC.
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3.6.1.2 Simulation study when the fitted model is misspesified

The second simulation study investigate what happens when the fitted model is
misspecified. In this study, the |Liu and West| (2001)) algorithm will be applied.
Three cases are considered, depending on whether the data have been simulated
from the Poisson, negative binomial, or mixture Poisson distributions. With re-
spect to compare the performance of the Liu and West algorithm with a Poisson
model, different distributions for a response variable such as a negative binomial
and mixture Poisson are proposed. In the simulation study using the Poisson and
negative binomial model, the true parameters in the simulation study are defined
as follows: ¢ = 0.75, W = 0.135 and p = 0.85. In additional, We set up 7 = 1
for a true value of a dispersion parameter in negative binomial model. Moreover,
when applying the LW algorithm with Poisson and negative binomial model, the
prior distributions of the initial value of the hyper-parameters are specified as fol-
lows: ¢ ~ N(0,0.25), W ~ Unif(0,2),pu ~ N(0,0.25). The prior distribution of
the initial value of state is 2o ~ N(0,4), and the value of the shrinkage parameter
is determined as ¢ = 0.975. In addition, the prior distribution of the dispersion
parameter is determined as 7 ~ Unif(0,2). In terms of the mixture Poisson
model, the data is simulated with the true value as follows: ¢; = 0.75, ¢y =
0.65, Wy = 0.135, Wy = 0.235, p; = 0.85, us = 0.75, ¢ = 0.6. Furthermore, the
prior distribution for the static parameters and the initial states are set up as fol-
lows: ¢ ~ N(0,0.25), ¢o ~ N(0,0.5), Wy ~ Unif(0,2), Wo ~ Unif(0,1), g ~
N(0,0.25), pg ~ N(0,0.5), ¥ ~ Beta(2,1), xg; ~ N(0,4), xg2 ~ N(0,2).

In the second simulation study, the accuracy of the estimation of hyper-
parameters as well as the one-step-ahead forecasting, when the fitted model is
misspecified, are investigated. In other words, if there is simulation data from a

Poisson distribution and the wrong model, such as the negative binomial or mix-
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ture Poisson is applied, what then is the precision of the parameter estimation
and prediction?. As in the first simulation study, the different 100 datasets from
each proposed distribution are simulated. The misspecified models are applied to
fit the simulated datasets to estimate the state and the hyper-parameters. The
output results from using the wrong models are compared with the estimated pa-
rameters and the one-step-ahead prediction by the correct model. Tables (3.4
provide a summary comparison for an accuracy performance of the Liu and West
algorithm with a correct model and the misspecified models. As can be observed
from Table [3.4] the LW.Poiss algorithm appears to provide a reasonable inference
mechanism for estimating the posterior mean of all unknown hyper-parameters,
even if it is considered as the wrong model. In other words, the estimation of
the posterior mean of the hyper-parameters is quite close to the true parameters

= 0.75, W = 0.135 and g = 0.85. Furthermore, in terms of prediction, the
average Monte Carlo of the RMSEs of one-step-ahead forecasting by applying
the LW.Poiss algorithm are small, whether is it the correct model or the wrong

model (1.1561,1.3752,1.2086) and quite similar.

Table 3.4: Summary comparison of a Monte Carlo study of LW.Pois algorithm

for different simulated data

Simulated Data
Sim.Poiss Sim.NB Sim.MPoiss
Mean/SD (ngS) 0.6447/0.0199 | 0.5941/0.0714| 0.5622/0.0415
Mean/SD (W) 0.1213/0.0563 | 0.1137/0.0318| 0.1071/0.0492
Mean/SD (f1) 0.7411/0.0537| 0.7103/0.0711 | 0.7056/0.0783
Mean RMES Pred 1.1561 1.3752 1.2086
Mean SD Pred 1.1320 1.3645 1.2008
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This means that the LW.Poiss algorithm offers a more precise estimation and
efficient predictions, regardless of whether under the correct or wrong models.
Further, the average Monte Carlo standard deviation of residuals calculated by
LW .Poiss is small. With respect to forecasting, Figure shows a comparison
between Poisson simulated data versus one-step-ahead prediction by applying

LW .Poiss as a current model and LW.Neg.bin and LW.MPois as wrong models in

one run.

Observations

Simulated versus Predicted

Sim.pois
Pred.pois
Pred.NB
Pred.Mpois

12

Time

Figure 3.2: Comparison between Poisson simulated data versus forecasting by

correct and wrong models in one run

A summary comparison of the posterior means of applying the LW.NB, both

as a correct or wrong model, is provided in Table |3.5. The resulting estimates

indicate that the estimated posterior means for the autoregressive coefficient (¢),

state variance (W), and location parameter (u) are reasonable estimates. In
addition, the algorithm offers a reasonable estimate for the dispersion parameter

(7). This means that they varied considerably from the true values. Moreover,
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the average of Monte Carlo for RMSE and the standard deviation of residuals

are quite similar.

Table 3.5: Summary comparison of a Monte Carlo study of LW.NB algorithm for

different simulated data

Simulated Data
Sim.Poiss Sim.NB Sim.MPoiss
Mean/SD (ngS) 0.5322/0.0247| 0.5117/0.0716 | 0.5156,/0.0513
Mean/SD (W) 0.1054/0.0431 | 0.0996,/0.0535 | 0.1008,/0.0622
Mean/SD (f1) 0.6311/0.0471| 0.5922/0.0421 | 0.5956,/0.0539
Mean/SD (7) 0.8125/0.0752 | 0.8713/0.0205 | 0.7803,/0.0332
Mean RMES Pred 2.176 2.033 2.243
Mean SD Pred 2.055 2.004 2.125

Figure|3.3|shows a comparison between negative binomial simulated data ver-
sus one-step-ahead prediction by applying LW.NB as a right model and LW.Poiss
and LW.MPois as misspecified models in one run. It can be seen that when the
LW .Poiss filter is used as a misspecified model, it provides the predicted values

close to the real values.
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Simulated versus Predicted

1\2

Sim.NB
Pred.pois
Pred.NB

Pred.Mpois

Observations

Time

Figure 3.3: Comparison between negative binomial simulated data versus forecast-

ing by correct and wrong models in one run

Table 3.6 presents a summary comparison for parameter estimation and fore-
casting accuracy by applying the LW.MPoiss, both as a ‘correct’ or a ‘wrong’
model. The resulting estimates indicate that the algorithm provides a reasonable
estimate of the posterior mean for the autoregressive coefficients, state variances,
the location parameters, and the mixing parameter. Moreover, the average of
Monte Carlo for RMSE and the standard deviation of residuals are large and
quite similar. Figure shows a comparison between mixture Poisson simu-
lated data versus one-step-ahead forecasting by applying LW.Poiss and LW.NB

as wrong models and LW.MPois as a current model in one run.
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Table 3.6: Summary comparison of a Monte Carlo study of LW.MPois algorithm

for different simulated data

Simulated Data

Sim.Poiss Sim.NB Sim.MPoiss
Mean/SD (gzgl) 0.5211/0.0527 | 0.4002/0.0326 | 0.535/0.0192
Mean/SD ((;52) 0.4735/0.0512 | 0.4822/0.0221 | 0.4656,/0.0335
Mean/SD (WW;) 0.1301/0.0425 | 0.1299/0.0854 | 0.1382/0.0452
Mean/SD (WW3) 0.1921/0.0259 | 0.2001,/0.0432| 0.1775/0.0277
Mean/SD (fi1) 0.5922/0.0442 | 5236/0.0155 | 0.6008/0.0585
Mean/SD (fiz) 0.4778/0.0512| 0.4412/0.0559 | 0.5301/0.0228

~

Mean/SD (¥)

0.7094/0.0854

0.5014/0.0649

0.5288/0.0845

Mean RMES Pred

2.823

2.682

2.551

Mean SD Pred

2.651

2.484

2.436
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Figure 3.4: Comparison between mizture Poisson simulated data versus forecast-

ing by correct and wrong models in one run

Overall, based on this simulation study, the sample output results from the
proposed models illustrate that the Liu and West particle filter with Poisson
model (LW.Poiss) provides a more precise estimation of unknown parameters

and provides efficient one-step-ahead forecasting.

3.7 Analysis of asthma data

After testing the performance of the LW particle filter with different proposed
algorithms and the STK.Poiss algorithm on the simulated data, we want to apply
these different proposed algorithms to the medical data. The dataset in this study

originates from the General Practice Research Database (GPRD) in England.

This medical dataset is the same as in |Julious et al.| (2011)) and it consists of the
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daily medical contacts for schoolchildren aged between 5 and 16 years old who

suffered from asthma over a seven-year period between 1999 and 2005 in England.

Figure shows the daily and weekly total medical contacts for asthmatic
children. Since the preliminary goal of this study is forecasting, weekly totals
of medical contacts were used instead of daily medical contacts; since weekly
forecasts are sufficient. The goal of this study is a one step ahead forecasting.
So this is a reason why we dealt with the weekly data instead of daily data. In
other words, in daily data it is quite difficult to see what happened and give an
advice for a short time (one day). However, in weekly data, there is enough time
(one week) for people to do something for increasing of medical contacts. It can
be seen from the Figure that the weekly data does not seem to be stationary.
Therefore, adding a constant mean (x) would not be appropriate. Thus, the
state model for all proposed models will not contain the location parameter (u).
However, we will keep the autoregressive coefficient as it is in order to verify this

effect.
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Figure 3.5: Daily and weekly total medical contacts for asthmatic children

In this section the Liu and West and Storvik particle filter algorithms are
applied to asthma time series data with the proposed models as in the simula-
tion study without including the process mean within the proposal models. We
use the number of particles as N=1000. In terms of the Poisson and Negative
binomial models, the prior distributions of the hyper-parameters and the initial

value of the state are specified as follows: ¢ ~ N(0,0.25), W ~ Unif(0,2)
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and xg ~ N(0,4). Beside,the prior distribution of the dispersion parameter is
determined as 7 ~ Unif(0,2). With respect of the mixture Poisson model,the
prior distribution for the static parameters and the initial states are set up as fol-
lows: ¢; ~ N(0,0.25), ¢ ~ N(0,0.5), Wy ~ Unif(0,2), Wy ~ Unif(0,1), 9 ~
Beta(2,1), g1 ~ N(0,4), and x¢2 ~ N(0,2). The value of the shrinkage param-
eter is determined as ¢ = 0.975 for all proposal models. Figure [3.6] exhibits the
final 105 observations of the real data together with one-week-ahead forecasting
by using the Liu and West algorithm with all different proposed models. As
shown by this plot, the LW with Poisson model gives a high number of forecasts
closer to the real data than does the negative binomial. This means the Poisson

model can successfully be used to capture dynamic variations in the data.

Real data versus forecasts

40

Total weekly medical contacts (per 100)
5

Time (weeks)

Figure 3.6: Real data (black solid line with bullet) against one step ahead forecasts
by LW.poisson model (red dashed line with cross), by LW. negative binomial model

(blue dotted line with circle), and LW.poisson model (green dashed line with star)

Since the objective of this study is to make a forecast, the performance of
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the different proposed algorithms is evaluated based on a RMSE value of the
one-step-ahead prediction error. The residuals sequence is used to calculate the
measurement. This is defined as a difference between a real and predicted value
at each time. Table [3.7] provides a summary comparison for the accuracy of these
proposed models. The mean absolute deviation (MAD) and the standard devia-
tion of residuals are also shown. According to these figures, the LW.Poiss algo-
rithm exhibits the smallest RMSE (1.082) followed by the LW.MPoiss algorithm
(2.226), and the LW.Neg.bin algorithm (3.340). However, the error prediction by
Storvik’s algorithm with Poisson model (STK.Poiss) is the highest (6.440). In
terms of the standard deviation of the residuals, the LW.MPoiss algorithm has
the lowest value compared to other models. Moreover, the standard deviation of
the residuals by the STK.Poiss algorithm again is the highest. Furthermore, per-
formances with respect to the MAD of all the models shows a similar behaviour
as the RMSE. From this comparison, it is proposed that the LW.Poiss algorithm
outperforms the other models. Therefore, it may be considered as an appropri-
ate model for capturing the dynamic behaviour in asthma time series data or

describing the dependency structure in asthma time series data well.

Table 3.7: Performance summary of all algorithms

Filter RMSE | SD.resduals | MAD
LW.Poiss 1.082 0.972 0.822
LW.Neg.bin | 3.340 3.270 2.659
LW.MPoiss | 2.226 0.727 2.116
STK.poiss | 6.440 6.141 5.108

The output results of the estimated marginal posterior means of the static pa-

rameters by the LW.Poiss, LW .Neg.bin, and LW.MPoiss particle filter algorithms
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are shown in Figures 3.7H3.9 A dynamism in the time series of the estimated
posterior mean of the state and the autoregressive parameter ¢ and the state
variance W by the LW.Poiss model are shown in Figure [3.77 The histograms
of the posterior distributions of the autoregressive parameter ¢ and the state
variance W at the last time point (T=365)are also provided in Figure As
shown by the plot in the lift panels, the sequence of the posterior means for both
parameters estimation converge rapidly to the fixed value after 20 weeks. This
means that the system only required twenty weeks of training data. As a result,
the estimated sequence of the hyper-parameters has become constant over time.
The histograms of the posterior distributions of the autoregressive parameter ¢
and the state variance W at the last time point (T=365) are shown in the right

panels.
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Figure 3.7: The estimated mean of the state process and hyper-parameters and
the posterior histograms of hyper-parameters at the last time point (t=365) by
LW.Poiss model

The estimated posterior mean of the states and all model parameters by the
LW.Neg.bin particle filter are exhibited in the left panels in Figure 3.8 The
histograms of the posterior distributions of the model parameters at the last time
point (T=365) are also shown in the right panels in Figure . It can be seen
from the plot that he estimated posterior mean of the autoregressive parameter

¢ and the state variance W and the dispersion parameter 7 are converging to
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the fixed values. As can be observed from Figures the fluctuations in
the estimated states by applying the LW.Poiss and LW.Neg.bin particle filter

algorithms are quite similar, oscillating between 3.2 and 4.2.
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Figure 3.8: The estimated posterior mean of the state process and hyper-
parameters and the posterior histograms of hyper-parameters at the last time point

(t=365) by LW.Neg.bin model

96



Figure displays the output results of the sequential parameter learning
by applying the LAW.MPoiss particle filter algorithm to the asthma data. The
posterior means of the vector of the model parameters 6 = (¢1, po, Wy, Wo, 1)
are presented in the left panels in Figure 3.9 As can be seen from the graph,
there are obvious fluctuations in all sequences in the beginning, except for ¢,,
before converging to the fixed value. Moreover, they required more training
approximately 100 weeks more than other algorithms to achieve a convergence. In
terms of the mixing parameter we can see from Figure that the mean posterior
of the mixing parameter ¢ is very small which is close to zero (0.035). In addition,
the posterior mean of ¢ is large, whereas, the posterior mean of ¢; is small (-0.11).
These indicate that the second component has significant influence, dominating
the mixture model. Therefore, in this case the mixture model is almost reduced
to one component model. The histograms of the posterior distributions of all
model parameters at the last time point (T=365) are also provided in the right

panels in Figure |3.9]

97



Parameter estimation Parameter estimation

5 )
3 c
- g1 o o
> n
N o _ — | ]
<] T T T T Lo I T 1
0 100 200 300 0.3677960 0.3677965 0.3677970 0.3677975
Time (weeks) Wl
Parameter estimation Parameter estimation
>
- U |
& 7 g o —
s S 3 g g i ]
8 o _ 1 _ ]
<) T T T T L T T T 1
0 100 200 300 0.9600890 0.9600891 0.9600892
Time (weeks) W2
Parameter estimation Parameter estimation
2 - g
s 71 S 8
< ] g
- _] —_
? T T T T - ° I T T 1
0 100 200 300 -0.08978 -0.08976 -0.08974 -0.08972
Time (weeks) (]
Parameter estimation Parameter estimation
>
o <
o o)
SR S 8
- g —
8 bt —
2 T T T w ° I T T T 1
0 100 200 300 0.9780045 0.9780045 0.9780045
Time (weeks) (V]
Parameter estimation Parameter estimation
o >
o : o
R . ] qg)_ a
] =
S T T T T w ° T T 11
0 100 200 300 0.036555 0.036557 0.036559

Time (weeks) 9

Figure 3.9: The estimated posterior mean of the hyper-parameters and the poste-
rior histograms of hyper-parameters at the last time point (t=365) by LW.MPoiss

model

98



Figure |3.10] presents the comparison of the histograms of the predictive parti-
cles from both models against the real values at different time points. As can be
observed from this figure, the histograms from three proposed algorithms show
that the actual value lies in the highest probability of the predictive particles. In
other words the majority of the predicted values are closer to the maximum of

frequency with a high bar probability.
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In the model for the asthma data, we used the autoregressive model of order
one for the state equation as follows: x; = ¢x;_1 +w;. Because the asthma data is
not stationary, we expected the estimate ¢ will be very high which is closer to 1.
Alternatively, we can take the first order differences in order to make the process
as stationary and then we can apply the model (z; — 2y 1) = ¢(z4-1 — 24_2) + wy.
In that case, we expect the estimate ¢ will be small. Below we will show that

these two approaches provide a similar result for the estimate ¢.

With respect to clarify the nature of the results obtained for asthma data, we
will provide some comments through experimental study with simulated data .
To illustrate this, we will simulate some nonstationary time series data from a
random walk model. Then we will take the first differences of the data in order
to have a stationary time series as follows: z;, — ;1 = o(x1 — 242) + w.
The second step is to fit this stationary data and estimate the autoregressive

parameter ¢.

On the other hand, we can rearrange the stationary model with the first
differences as follows: z; = (¢ + 1)xy_1 — ¢pxy_o + wy, which the second part ¢x; o
can be neglected (assuming ¢ is small). Therefore, the above model will become
Ty = ¢*ry_1 + wy, where ¢px = (¢ + 1). We will fit the nonstationary data and
estimate the autoregressive parameter ¢*. This estimated parameter ¢ will be
equal to the estimated parameter ¢+ 1 by using (z; —z_1) = ¢(24-1 — x4_2) +w;.
From here we can conclude that two estimated parameters ¢+ and ¢ will be

similar.

In order to illustrate this we generated a nonstationary time series data with
size 100 from the random walk and we fitted the data by using x; = ¢ *x;_1 + w;.
The obtained result for the estimated parameter was ¢x = 0.978. On the other

hand we used the stationary model with the first differences to fit the data and
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we found the estimated parameter ¢ = —0.0037 which is small. By adding 1 to
the estimated parameter ¢, (-0.0037 + 1= 0.996) we found that the two estimates

¢ and ¢* are similar.

3.8 Analysis of Sudden Infant Deaths Syndrome

data (SIDS)

The purpose of this section is to apply the methodology of SSMs and a recursive
Bayesian estimation method based on the Liu and West| (2001) particle filter algo-
rithm with a Poisson model. The aim is to identify the impact of environmental
temperature on the sudden deaths of infants. To achieve this purpose, the same
medical dataset used by |Campbell (1994) was considered. This dataset is sourced
from the Office of Population Censuses and Surveys (OPCS) in London. It gives
the daily SIDS figures in England and Wales over a three-year period from 1981
to 1983. Daily temperature records for the same period were obtained from the

London Weather Centre.

In this section of the study, an extension to the previous model is made by
adding a set of covariates within the SSM. This set of covariates includes the
environmental temperature z;, trend and seasonal components. The linear pre-
dictor can therefore be defined as an aggregation of all elements within this set
of covariates. A time series of environmental temperature was considered as co-
variate, since exposure to this environmental temperature can increase the risk
of SIDS (Campbell, [1994)). The daily and weekly total of sudden deaths in the
infant data and an average daily and weekly average temperature are plotted in

Figure[3.11, The figure shows that there was a negative relationship between the
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environmental temperature and the sudden death of infants. This suggests that
increasing numbers of infant deaths were due to a decrease in average tempera-
tures in the previous three days, and vice versa. To examine the dynamic in the
data: the graph shows that the dataset fluctuates around a mean with a clear

evidence of evolution over time.
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Figure 3.11: Data description of sudden infant deaths syndrome

Figure |3.11| shows that the SIDS data exhibit seasonality. There may also
be a dependence on temperature in addition to the seasonal effects. Another
interesting finding is that the weekly total sudden deaths of infants in each year

during three years exhibited a similar pattern of seasonality, but the level differed.
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Therefore, the trend-seasonal DGLM with a Poisson model can be adopted to deal
with the SIDS time series data. Thus, in this case, the model will consist of a
component of trend, a seasonal component, and covariate as environmental tem-

perature.

The seasonal components, which are responsible for fluctuations in time series
data, depend on the number of their harmonic components. These harmonics are
used to describe a variation in the SSM. In the weekly total data, the seasonal
cycle is considered to be equal to 52 weeks. To describe the seasonality in the
SIDS data, a reduced model with five harmonic components is used. This is
similar to the [Triantafyllopoulos| (2009)) example for tourist arrival data, where
only five rather than all harmonic components are used. This results in an SSM
with a 13-dimensional state process. It is difficult to implement the full seasonal
form DGLM, which needs 52 harmonic components. Furthermore, a transition
matrix, which is responsible for an evolution of the states corresponding to the
trend, the seasonal components, and the covariate, will have a large dimension of
107 x 107. It is therefore difficult to apply. In any case, the first harmonic has

the most information required to obtain the desired results.

As noted in the previous section, the Liu and West particle filter Poisson out-
performs the negative binomial observations for providing accuracy of predictions
and precise estimations of the hyper-parameters. Subsequently, the DGLM with
a Poisson distribution for a response variable was used in order to achieve the
target. The formulation of the extension of the SSM with a 13-dimensional la-
tent process, including a temperature, seasonality components, and a first-order

polynomial trend is:
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e Observation model

Yt| A = ye| exp(ne) ~ Pois(exp(n:)),
where the linear predictor 7 is given by

m = ‘F;E/Xt = [Zt7 17 07 ]-7 07 17 07 ]-7 07 17 07 ]-7 O][xl,taxlta s 7x13,t !

e State model

o 0 0 0 0 T1t-1 Wit
0 J; 0 0o 0 - 0 Tot—1 wo ¢
=10 0 J2<T7T/26) 0 0 0 T3t—1 + Ws.t
0 0 0 e e 00 Jy(rm/26) Z13,t—1 W13t

where Jy, responsible for the variation of trend, is referred as a Jordan block.
Furthermore, J(¢) denotes the component of the harmonic which is responsible
for the seasonal variation in the time series data. The general form of the Jordan

block and harmonic component are given in the following:

1 1 CoS sin
g = Cand D) = () (¢)

0 1 —sin(p) cos(p)

where ¢ = 2rm/c, ¢ € (0,7) is known as a frequency of the time series data, and
rth r =1,...,5 is the number of harmonic components in the model. Moreover,
¢ is a cycle period of the data. The class of the SSM described above is referred

to as the trend-seasonal model for seasonal variation.

The |Liu and West| (2001)) particle filter algorithm was applied to estimate the
states and determine the hyper-parameters, including the covariate coefficient

and the state variances. To implement this algorithm, the prior distribution of
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the initial value of the temperature coefficient is given by ¢ ~ N(0,0.25), and all
initial values of the states errors are determined with the same prior as a uniform
distribution as follows: wy ~ Unif(0,2), (k=1,...,13). Additionally, the prior
distribution of the vector of the initial states, xq, is specified with a multivari-
ate normal distribution with the mean vector, my, and covariance matrix, Co,
as follows: x ~ MV N(my, Co)wheremy = (0,0,0,0,0,0,0,0,0,0,0,0,0),and
Co = 1000 x diag(13). The number of particles at each time is specified as
N=1000, and the shrinkage parameter is set as ¢ = 0.975. In this analysis, we
suggested a change in temperature affects the sudden mortality rate for infants
after 3 days. In this case, time-lag with 3 days has been assumed between a

change in temperature and a sudden mortality rate for infants.

The performance of the Liu and West algorithm is demonstrated in Figures
3.12H3.13] The time series trajectories of the mean of the approximation of the
marginal posterior distributions of the environmental temperature coefficient and
the state error are described in Figure [3.12) and Figure [3.13] As can be observed
from these plots, the estimated posterior mean of the temperature coefficient
converges to the negative value ($ = —0.0354). This negative value for the esti-
mation of covariate coefficient indicates the presence of the negative relationship
between temperature and the sudden mortality rate for infants. This suggests
that increases in the rate of infant mortality are caused by temperatures decreases
and this often happens in the winter. This result for the coefficient of the average
of the temperature is close to the results obtained by Campbell| (1994)) using the
method from [Zeger| (1988) which gave (¢ = —0.041), and the generalised Poisson
model by Nelder and Wedderburn| (1972), which resulted in (¢ = —0.045).
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Figure 3.12: Estimation of covariate (temperature) coefficient

In terms of the estimation result for the temperature coefficient ¢, there are
two features that should be observed from the plot. The first finding is that
the LWPF algorithm requires only the first forty observation from the dataset
to reach this estimation. However, the whole dataset has been used in other
methods by |(Campbell (1994)). Another finding is that, as the model parameter is
assumed to be a constant, the plot shows the estimated coefficient of temperature
is changing a lot in the first period of time before becoming stable at a constant
value, perhaps at time point (t=40). This implies that the posterior mean of
the coefficient changes over time. Nevertheless, the other methods only offer an

estimate without knowing whether the coefficient was constant or time varying.
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Figure 3.13: Estimation of state variances

To conclude this result with respect to the medical aspect, “The observed time-
lag of 2-6 days implies that the fall in temperature was not a direct cause of an
infant’s death, i.e. the infants were not dying of hypothermia. The most obvious
explanation is that the temperature decrease rendered the infants susceptible to
other agents that subsequently may have caused death, and an obvious agent is
a virus” (Campbell, 1994, p. 205). As can be noted from Figure all the
means of the state errors posterior distribution approximation are also converging
to their fixed values at around the same time point (t=30). In addition, they are

seen to have the same behaviour as the temperature coefficient.
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3.9 Summary

In this chapter, background material on the recursive Bayesian methodology for
online estimating of the state space models (SSMs) has been provided. Two
different techniques based on the concept of the particle filter were proposed.
The goal of these methods is to tackle the problem of deficiencies in generic
particle filters, such as the SIS and the SIR algorithms, in the estimation of
the static parameters of the SSM. The key point of the Liu and West algorithm
is to track the posterior distribution of the hyper-parameters by combining the
auxiliary particle filter (APF) and the kernel smoothing approximation with the
concept of the shrinkage method. The principal idea of the artificial evolution
of the static parameters is adapted by the Liu and West algorithm in order to
make parameters time-varying. As a result, it can be added to the dynamic
state vector and can be estimated simultaneously in a sequential manner. In the
Storvik particle filter algorithm, low dimensional sufficient statistics are used to
simulate sequentially the hyper-parameters and the state variables. In addition,
a class of the Kalman filter equations is used to update the sufficient statistics

vector sequentially.

The simulation study described in this chapter was designed to evaluate the
performance of all algorithms. Different distributions of the observations were
proposed. Regarding the first simulation experiment, the Liu and West and
Storvik particle filter algorithms were used to fit the simulated Poisson data. In
order to test the performance of both particle filter algorithms, the MCMC pos-
terior approximation with a large number of iterations is used as a benchmark
of the model parameters estimation. The results obtained by the Liu and West

particle filter algorithm with the Poisson model outperformed the Storvik algo-
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rithm in terms of estimating the unknown parameters and accuracy of forecasting.
Moreover, the LW particle filter and MCMC provided a better estimation of the
unknown model parameters. In the second simulation study, we investigated the
performance of the Liu and West algorithm with regards to the parameter estima-
tion and the accuracy of forecasting, when the fitted model is misspecified. Based
on the results from the Monte Carlo simulation, the Liu and West algorithm with
Poisson model still does better than the proposed models, even if it is specified

as a wrong model.

We applied these suggested particle filter algorithms to two medical datasets.
The first dataset comprised the weekly total medical contacts for school children
in England who suffer from asthma. The preliminary objective of this study is
a forecasting. The LW particle filter algorithm with different proposal models
and the STK particle filter algorithm with a Poisson model were applied to fit
asthmatic data. The results obtained by applying the proposed models showed
that the Liu and West algorithm with Poisson model (LW.Pois) offered accurate
predictions when compared to actual weekly total medical contacts for asthma
patients. Moreover, it has the smallest value of the RMSE compared with other
proposed fitted models. This result is similar to the results in the simulation

study.

The second dataset comprised the weekly total of sudden infant death syn-
drome (SIDS) in England and Wales between 1981 and 1983. The purpose of
this study was to examine any impact that environmental temperature may have
on increasing the risk of SIDS. A set of covariates including the temperature and
trend and seasonal components was added in the construction of the SSM. The
Liu and West particle filter algorithm with Poisson model was applied to estimate

the posterior mean of the temperature coefficient. The estimated posterior mean
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by our model (-0.0354) is quite close to the result by Campbell (1994 that was

obtained using different methods.
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Chapter 4

Model diagnostic and model

checking

4.1 Introduction

Diagnostic checking, using generalised linear models and linear and nonlinear time
series models, is considered a significant phase in statistical model building. Its
purpose is to help researchers assess the adequacy of the chosen model. In other
words, model diagnostic analysis is defined as a measurement of the goodness
of fit used to investigate whether the selected model adequately describes all
features of the data. In linear time series methodology several diagnostic tests
can be conducted to determine how the data series is modelled. If the data series
is modelled well, the fitted model can then be used to predict future values of the
phenomenon under study. In the statistics literature several diagnostic techniques
are described that can be used to examine the quality of the chosen model in terms

of fitting the data. In the context of linear time series and generalised linear
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models, the sequence of residuals play a vital role in the model diagnostic for the
fitted model. In terms of the linear time series analysis, if the chosen model is
appropriate for fitting the data, then the residuals from this model should satisfy
the assumptions of a white noise process. During the model diagnostic testing of
the GLM, the fitted model can be evaluated by a special class of residuals called
the Pearson residuals and deviance residuals. However, in the case of linear time
series models, the model criticism is based on the residuals. There have been
few studies based on a residual analysis in the model diagnostic literature on
the nonlinear time series models. Therefore, a class of residuals called P-score
residuals proposed by [Smith| (1985)) is used here as diagnostic tools for adequacy
of the fitted model.

The organisation of this chapter is as follows. Section 4.2 provides a method-
ology of the diagnostic checks of the DLMs. The model diagnostic analysis of
DGLMs is offered in Section 4.3. The applications of the model diagnostics of
DGLMs on both the simulated data and the medical data are offered in Section

4.4. A brief summary of the chapter is presented in the final section.

4.2 Model diagnostics for dynamic linear mod-

els

A main objective in time series analysis is forecasting of the future values of
the phenomenon under study. Therefore finding an appropriate model which
adequately describes the correlation structure between successive observation over
time is deemed a desirable end by researchers. When the fitted model of the time

series data is created, the next step is to examine whether the chosen model
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satisfies the linear model assumptions. To do this, the model diagnostic can
be applied. The diagnostic analysis is considered a crucial step in assessing the
adequacy of the estimated DLM being used to describe the data under study. A
method proposed by Box and Jenkins (1976) is to implement a model diagnostic
for an autoregressive integrated moving average model, ARIMA (p,d,q) model. In
the context of DLMs, several standard quantitative and graphical tools are used
as in classical time series models. The raw residuals from a chosen model, which
are defined as the differences between the real and predicted data, are used as
a general tool for implementing the diagnostic testing. This aims to evaluate
the adequacy of the estimated model for describing the correlation structure of
the time series data. According to Box and Jenkins (1976), if a chosen model is
correctly estimated, the sequence of residuals generated by the estimated model
should satisfy the assumptions of the white noise process. A summary of some
standard techniques of the model diagnostic for dynamic linear and standard time

series models is given below.

With respect to the model diagnostic, residuals analysis is referred to as a
general tool for checking the adequacy of the fitted model of time series data.
There are two methods based on the residuals which can be adopted to investi-
gate whether the fitted model adequately represents the data under study. They
are visual inspection and nonparametric test of the residuals. A scatter plot of
the generated residuals against time is used to examine whether there are any
outliers, and to determine if the residuals are randomly distributed. To investi-
gate whether the residuals series follows a normal distribution, the histogram and
the normal probability plot can be employed. The Kolmogorov-Smirnov (K-S)
test and the Shapiro-Wilk (S-W) test, which are known as nonparametric tests,
can be used as alternative numerical methods for normality testing. In order to

determine whether the residuals are uncorrelated, a simple autocorrelation func-
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tion (ACF) of the residuals can be used. In terms of testing the significance of
the autocorrelation of the residuals series, there are several numerical diagnostic
tools which can be used instead of the visual inspection. The Ljung and Box
(1978)) test, which is the modified version of the Box and Pierce (1970) test, is re-
ferred to as the Portmanteau test and is the most common to be applied. Model
diagnostic testing for time series analysis, which follows the generalised linear
models, is implemented with respect to a class of residuals, namely the Pearson
and deviance residuals. [Kedem and Fokianos (2002) discuss in more detail the

diagnostic analysis for the GLM based on the Pearson and deviance residuals.

4.3 Model diagnostic analysis for dynamic gen-

eralised linear models

As mentioned in Section [4.2] the raw residuals play a key role in the implemen-
tation of the model diagnostic checks in the framework of the dynamic linear
and standard time series models. However, literature on model diagnostics indi-
cates only limited use of a standard residual analysis on the nonlinear time series
models. [Smith| (1985) suggests a measure of goodness of fit for nonlinear and
non-Gaussian time series models. He proposes a class of recursive residuals for
continuous time series data, known as P-score residuals (PSR), which are denoted
by Uy, t =1,...,T. They are used to assess the adequacy of the fitted model in
terms of the distributional assumptions of the conditional one-step-ahead predic-
tive cumulative distribution. In other words, the PSR are applied to assess how
well the predictive distribution is able to clarify a dependence construction in the
time series data. The PSR are also known in some statistics literature as the prob-

ability integral transformation (PIT)(Dawid} |1984)),(Czado et al., 2009),(Diebold
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et al., [1998). With respect to the continuous distributions, the PSR are defined
as random variables. They are calculated by using a continuous predictive cu-
mulative density function (CDF) of the particular model, which is evaluated at
each value of the actual time series data. The one-step-ahead predictive CDF of
the continuous value y; given the observations up to time point ¢ — 1 is defined

in the following manner:
F(y) = Pr(Y: < yelyre-1), t=1,...,T (4.3.1)

Using the form of the one-step-ahead predictive CDF in Equation (4.3.1)), the
PSR(U;) and the inverse transformed P-scores residuals (INTPSR) (B;) at each
time point are defined as in |Smith| (1985), and [Frithwirth-Schnatter (1996) in the

following forms:

Ui = F(y:) (4.3.2)
B, = 1), (4.3.3)

where ®(.) is the CDF of the standard normal distribution. When the time
series data follow a continuous distribution, the predictive density function is
also continuous. If the fitted model is well estimated, it means it adequately
explains the dependence structure of the time series data. According to the
theory, this leads to the sequence of the PSR being independent and identically
distributed (i.i.d) following a uniform distribution on the interval [0,1](Smith,
1985), (Frithwirth-Schnatter, [1996). Moreover, the transformed PSR B, are i.i.d
random variables following a standard normal distribution (Rosenblatt] 1952)).
The power of the INTPSR by Smith| (1985), is that instead of having a test for
a uniform distribution, we have a test for a normal distribution. Therefore, the
Shapiro-Wilk test can be used. The objective of this kind of diagnostic check
is to examine whether the distribution of a sequence of the PSR satisfies the

assumptions of being independently and uniformly distributed on the interval
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[0,1]. To find out whether this is so there are several graphical and quantitative
diagnostic tools for time series data available. The empirical cumulative density
function (ECDF) of the PSR can be employed in a model diagnostic. The plot of
the ECDF of the PSR can be compared with the CDF of a uniform distribution.
In addition, the histogram plot and the Kolmogorov-Smirnov test can be used to
examine the behaviour of the PSR. To investigate whether the PSR are correlated,

a simple ACF can be used as a visual check of sample independence.

In the context of a time series for count data, the predictive CDF is a dis-
crete distribution. As a result, under the null hypothesis of ideal predictions, the
distribution of a sequence of the PSR, which has been directly calculated from
Equation , is not exactly a continuous uniform distribution. In addition,
the PSR does not satisfy the statistical properties of i.i.d of the uniform distribu-
tion (Smith, |1985)). However, the resulting PSR will have a discrete distribution
on the interval [0,1] (Frihwirth-Schnatter, 1996). With respect to clarify this
concept, the cumulative distribution function (CDF') of a continuous distribution
includes all values between 0 and 1, and any value in (0,1) corresponds to a value
of the random variable. Therefore, the CDF follows the uniform distribution on
the interval (0,1). However, the CDF of a discrete distribution does not include
all values between 0 and 1 as there is a gap between point steps. In other words we
can find a value in (0,1) which does not correspond to a value of the random vari-
able. Hence, the CDF can not be a uniform distribution. For this reason, some
amendments to the main method used to the calculation of the PSR are required.
To tackle this issue, [Smith (1985)), [Frithwirth-Schnatter| (1996) and several oth-
ers adopt a modified method for computing the PSR from the one-step-ahead
predictive density function via randomisation. Using the predictive distribution,

the modification of the PSR, proposed by [Smith| (1985), can be obtained in the
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following manner:
Ut = (1= 2)Pr(Ys <y — Yyr—1) + 2ePr(Ye < welyre-1), (4.3.4)

where z;, t = 1, ...,T is sequence of i.i.d random draw from a uniform distri-
bution on the interval [0,1]. Furthermore, Pr(Y; < y:|yi..—1) is a one-step-ahead
predictive cumulative distribution. As in a continuous distribution, if the fitted
model is well estimated, the sequence of U, is i.i.d and has a uniform distribution

on the interval [0,1].

In the framework of the DGLMs, the predictive CDF can be approximated as

follows:
N

Pr(Y, < yilyies) = Y Pr(Y; < sl )y’ (4.3.5)
=1

(%)

where x;’ is a particle of estimated states and wéi)

are associated particle weights

at time ¢.

Typically, the diagnostic test is based on both the uniform distribution of the
PSR and a transformation of a uniform to the normal distribution INTPSR. In
this case, a test for a uniform and a normal distributions, such as the K-S and

S-W test, can be used.

4.4 Application of diagnostic models to simu-

lated and medical data

In this section, diagnostic checking based on the PSR and INTPSR as discussed
in the previous section is applied to the simulated and medical data. The aim of
the model diagnostics is to assess the accuracy of a fitted model in terms of the

predictive distribution.
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4.4.1 Simulation experiments

The simulation experiments aim to use the PSR and INTPSR as diagnostic tools
to determine whether the fitted model is perfectly estimated. Furthermore, it
aims to demonstrate the ability of the model diagnostics to detect a misspecifi-
cation of the proposed fitted models. The purpose of the simulation study is to
understand the behaviour of the PSR when the fitted model is correctly specified.
To do this, we will generate different datasets from different proposed distribu-
tions as in the simulation study in Section |3.6.1.2] These simulated datasets will
then be fitted by the correct model and misspecified models. The Liu and West
algorithm is used with different proposed models. The purpose of this study is to
determine the expected behavior of the PSR and INTPSR when the fitted model
is correctly estimated. It is also interested in examining their behaviours when
the selected model is misspecified. For the simulation studies, in this section, we
use the same simulated datasets with the same true parameters and the prior
distribution of the initial value of the state and hyper-parameters as described
in Section [3.6.1.2] In addition, the Monte Carlo study is used to investigate the

consistency of the output results.

In the first experiment, the dataset with 100 observations is simulated from
a Poisson distribution. In this case, the Liu and West algorithm is applied to fit
this simulated data by an LW.Pois algorithm as a correct model and by LW.NB
algorithm and M.Pois algorithm as misspecified models. The summary compar-
ison of results, based on a Monte Carlo study, is given in Table 1.1, As can be
observed in Table[4.I] the Monte Carlo average of the means of the P-scores resid-
uals (AMPSR) by the correct model and wrong models are quite similar (0.509,

0.478, 0.545). In addition, they are close to the mean of a uniform distribution
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on the interval [0,1], which is equal 0.5. The small value of the standard devi-
ation over the Monte Carlo study for all models indicates that the AMPSR is
more accurate. The Monte Carlo average of the variances of the P-score residuals
(AVPSR) by both the correct model and misspecified models are quite similar
(0.077, 0.71, 0.062), and they are close to the theoretical variance of the uniform
distribution, which is equal to 0.08. To judge the distributional assumptions for
the PSR and the INTPSR, the K-S test for a uniform assumptions and the S-W
for a normality test are used. The average of P-value of the K-S test (APVPSR)
over Monte Carlo runs by correct and wrong models were (0.469, 0.281, 0.2106).
This confirms that the PSR for all models has a uniform distribution. The fig-
ures of the average of P-value (APVINTPSR) over Monte Carlo samples obtained
from the S-W test(0.557, 0.312, 0.257) confirm that the BMT for all models has
a standard normal distribution. From the results reported in Table it can
be concluded that there are no significant differences in terms of applying the

correctly and incorrectly specified models.

Table 4.1: Summary comparison of a Monte Carlo study of different proposed

LWPF algorithms for simulated Poisson data.

Different proposed LW algorithms
LW .Pois LW.NB LW .MPois
AMPSR/SD 0.5092/0.024 | 0.478/0.056 | 0.545/0.087
AVPSR/SD 0.077/0.008 | 0.071/0.006 | 0.062/0.074
APVPSR/SD 0.469/0.304 | 0.281/0.211 | 0.2106/0.207
APVINTPSR/SD| 0.557/0.225 | 0.312/0.271 | 0.257/0.232

With respect to model diagnostics, Figures [4.1] and [£.2] show a graphical com-

parison between the LW.poiss algorithm as a correct model and LW.NB and
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LW.MPois algorithms as misspecified models in one run. Different diagnostic
tools based on histograms and the ECDF are shown in the Figure 4.1l The his-
tograms displayed in the top panels of Figurel4.1]indicate that the PSR calculated
by the proposed models seem to be close to the histogram of the uniform distribu-
tion. This result can be confirmed by the ECDF and the K-S test: the p-value by
the LW.Pois filter as the correct model is (0.6994) and by the misspecified models
are (0.2106,0.2106). The resulting histograms, the S-W test and the ECDF plot,
which are provided in the bottom panels, indicate that the INTPSR by both a
correct model and by misspecified models have a standard normal distribution.
In other words, under the correct and incorrect model, therefore, the resulting
histograms of the INTPSR indicate acceptance of the fitted model. In addition,
the resulting S-W test with p- values (0.5536, 0.1998, 0.375) support that the
INTPSR have the normal distribution. In terms of the independence test, the
ACF for the diagnostic tools are provided in Figure .2 As can be seen from the
ACF of the PSR and INTPSR for the LW.Pois and LW.MPois models, all the
autocorrelation coefficients lie inside the standard bounds +1.96/y/n. However,
for the LW.NB, there are some small peaks at different lags which lie outside,

and hence they can be ignored.

Finally, from this simulation study we can deduce that even if the fitted model
is misspecified, the diagnostic tools based on the PSR and INTPSR calculated by

using the predictive distribution have the same behaviour as the correct model.
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The goal of the second simulation study is to generate a dataset from a neg-
ative binomial model and then see what happens when it is fitted by using the
LW.NB algorithm as a correct model and by using LW.Pois and LW.MPois algo-
rithms as wrong models. Table provides a summary of a Monte Carlo study
for the PSR and INTPSR resulting from fitting all proposed models. As can be
observed from the Table the output results based on the PSR and INTPSR
for different proposed models appear to be quite similar. The average means
(AMPSR) and variances (AVPSR) of the Monte Carlo study of the PSR, which
have been calculated from both correct and misspecified models, are closer as in
a uniform distribution on the interval [0,1]. This result can be supported by the
K-S test with p-values (APVPSR) of (0.5086, 0.467, 0.2507) by the correct model

and misspecified models respectively.

Regarding the model diagnostic, based on the INTPSR, the S-W test for all
models does not indicate rejection of the null hypothesis of the normal distri-
butional assumption: the average of the p-values (APVINTPSR) of the LW.NB
filter as a correct model is 0.359 and p-values of of the LW.Pois and LW.MPois
as misspecified models are 0.3358 and 0.112.

Table 4.2: Summary comparison of a Monte Carlo study of different proposed

LWPF algorithms for simulated Negative binomial data.

Different proposed LW algorithms

LW.Pois LW.NB LW.MPois
AMPSR/SD 0.4845/0.0259 | 0.515/0.0421 | 0.462/0.037
AVPSR/SD 0.074/0.0075 | 0.082/0.009 0.087/0.0112

APVPSR/SD 0.5086/0.379 | 0.467/0.312 0.2507/0.217

APVINTPSR/SD| 0.3358/0.283 | 0.359/0.284 | 0.112/0.135
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Overall, the results provided in Table suggest that, even if data generated
by the negative binomial model is analysed by misspecified models, i.e, LW.Pois
or LW.MPois algorithms, the behaviour of the PSR and INTPSR is similar to
the behaviour of the PSR and INTPSR when using a correct model (LW.NB).

Figures and show a comparison between the LW.NB algorithm and
the LW.Pois and LW .Mpois algorithm in terms of various diagnostic tools in one
simulation run. Histograms of the PSR and the INTPSR and the ECDF plot
are provided in Figure [£.3] As can be seen from the top panels in the figure, the
histograms of the PSR for all models satisfy the uniform distributional assump-
tion. In addition, the means and variances for all models are closer to a uniform
distribution on the interval [0,1]. However, it is clear from the PSR histograms
that the performance of the LW.Pois algorithm is much better compared with the
performance the LW.NB and LW.MPois algorithms. This result can be supported
by the ECDF and the K-S test, where the p-value by the LW.Pois model is (0.713)
and by the LW.NB and LW ,MPois models are respectively (0.381, 0.367). The
graphical diagnostics, based on the INTPSR for both a correct and misspecified
models, are depicted in the bottom panels of Figure4.3] The resulting histograms
and the ECDF chart with p-values of the S-W test (0.3164, 0.517, 0.141) provide
evidence that the INTPSR for all models have a standard Normal distribution.
To test the dependence structure for the PSR and INTPSR, the ACF plots are
shown in Figure 4.4, The top and bottom panels of the figure show that nei-
ther ACF of the PSR nor the ACF of the INTPSR, for the LW.Pois and LW.NB
models display any evidence of correlation structure. This means that all the au-
tocorrelation coefficients exist inside the standard bounds +£1.96/+/n. However,
for the LW.MPois, there is one small peak at one lag which lies outside, and hence
it can be ignored. This leads to the sequences of the PSR and INTPSR for all

models seeming to be uncorrelated.
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Overall, we conclude from the results from diagnostic devices that the LW.NB
algorithm (correct model) and LW.Pois and LW.Mpois algorithms (misspecified

models) provide the same behavior in terms of a distributional assumption.

In the third experiment, we simulate the dataset from a mixture Poisson dis-
tribution. The different Liu and West algorithms are applied to fit this simulated
data. In terms of fitting, the LW.MPois algorithm is applied as a correct model
and M.Pois and LW.NB algorithms are used as models misspecified. A compar-
ison summary for all models, based on a Monte Carlo study, is offered in Table
[4.3] In addition, different diagnostic tools, based on histograms, the ECDF and
the ACF of the PSR and INTPSR for one run, are shown in Figures [4.5] and
[4.6] This simulation experiment provides the same conclusion obtained from the
Monte Carlo study in the previous simulation experiments with respect to the

diagnostic model.

Table 4.3: Summary comparison of a Monte Carlo study of different proposed

LWPF algorithms for simulated mixture Poisson data.

Different proposed LW algorithms

LW.Pois LW.NB LW.MPois
AMPSR/SD 0.5358/0.0239 | 0.485/0.0324 | 0.473/0.0224
AVPSR/SD 0.076/0.0068 | 0.069/0.0081 | 0.071/0.0095
APVPSR/SD 0.3287/0.2008 | 0.221/0.204 0.2619/0.2011
APVINTPSR/SD| 0.3687/0.284 | 0.211/0.197 | 0.281/0.225

Overall, in terms of the above simulation experiments, it is concluded that
the obtained results of diagnostic checking tools by using misspecified models
demonstrate similar behavior to the obtained results as in a correct model. In

addition, the ACF charts of the PRS and INTPSR values do not show any ev-
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idence that they are correlated. In this case the K-S and the S-W test can be
used to investigate whether the PRS and INTPSR agree with the distributional

assumption of the uniform and normal distribution respectively.
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4.4.2 Analysis of Asthma data

The simulation study in the previous section aimed to understand the expected
behaviour of the PSR and INTPSR when the fitted model to the simulated data is
correctly or incorrectly determined. In this section, we will apply the diagnostic
checking technique to the asthma patients’ data. The objective of the model
diagnostics is to evaluate the performance of the proposed fitted model in terms
of a one-step-ahead predicted distribution. According to the theory, when the
model is perfectly specified, the distribution of the PSR and the INTPSR should
be standard uniform and normal distribution respectively. The Liu and West
particle filter algorithm with the different models as in Section is used. The
proposed fitted models are LW .Pois, LW.NB and LW.MPois. In this case, a one-
step-ahead cumulative predictive distribution, which is evaluated at the actual

date and the estimated parameters, is used to compute the PSR values.

The results of the model diagnostics for all proposed models of the last 105
observations of asthma data are shown in Figures Figure [4.7 shows the
histogram, ACF, and the ECDF chart of the PSR and INTPSR for the LW.Poiss
particle filter algorithm. As can be observed from plots of the PSR in the top
row panels, the K-S test with a p.value of 0.0002 indicates a mis-specification of
the distributional assumption of a uniform distribution. However, the mean and
variance of the PSR is close to the mean of a uniform distribution, (0.404, 0.056).
In addition, the ACF does not show any evidence of correlation structure: all of
the autocorrelation coefficients lie inside the standard bounds +1.96/y/n. This

means that the sequence of the PSR is independent.

To help judge the distributional assumption of the INTPSR, the bottom row

panels in Figure[4.7|show the results from running diagnostic tools on the INTPSR
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by a LW.Poiss particle filter algorithm for the asthma data. The histogram and
the ECDF indicate that there is a departure from a standard normal distribution.
This is confirmed by the S-W test, which has a p-value of (1.67¢7%). However,
the ACF of the INTPSR shows that they seem to be uncorrelated.

PSR pois PSR pois

¢ 3
B ‘ i ‘ ‘ | ‘ ‘ Lot ‘ ‘ | ‘ il
T 1 Tl T T T T T ° T
o 1o o s w0 s 2 o

nnnnnnnn

INTPSR Pois INTPSR.Pois

ssssssss

Figure 4.7:  Histograms, ACFs and ECDFs of the PSR and INTPSR from

LW.Pois algorithm for asthma data

We deduce from this diagnostic analysis that the LW.Poiss algorithm with a
Poisson model provides a poor performance in terms of applying different diag-
nostic tools. However, according to the RMSE value (1.082), of one-step-ahead
forecast, as reported in Section [3.7, the LW.Pois algorithm offers a good per-
formance regarding the prediction of future values of an asthma patients data.
Additionally, the estimation of the mean and variance of the PSR for the fitted
model was quite close to the mean of the uniform distribution on the interval

[0,1].
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The obtained results of diagnostic analysis using LW.NB and LW.MPois par-
ticle filter algorithms on the last 105 observations of asthma data are shown in
Figures [4.8 and [4.9] Similar to the LW.Pois particle filter algorithm, we observe
from the graphs that the resulting histograms of different diagnostic tools of the
PSR and INTPSR calculated by both particle filter algorithms have significant
deviations from the shape of a uniform and normal distribution. In addition,
the ECDF and the S-W test with p-values (9.135¢e7'!,0.00066) provide evidence
indicating departure from the distributional assumptions of the diagnostic tools.
However, the mean of the PSR for both particle filter algorithms (0.6438, 0.4558)
is close to 0.5. But, the variance of the PSR of the LW.NB particle filter algo-
rithm is very small (0.003) compared to the variance of the uniform distribution

(0.08).

NNNNNNNN

Figure 4.8: Histograms, ACFs and ECDFs of the PSR and INTPSR from LW.NB

algorithm for asthma data
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Regarding the ACF, it can be noted that there is no evidence of the correlation
in sequence of the PSR or the INTPSR for the LW.MPois particle filter algorithm.
But, the ACF for the LW.NB particle filter algorithm shows some correlations at

different lags.

Overall, based on the output results of the diagnostic checks by the PSR and
INTPS, the overall performance of all the proposed models is not good. With
respect to this result, there is a possibility that the proposed model did not fit
asthma data well. As can be seen from simulation studies, however, the diagnostic
tools still work even if the model is misspecified. In addition, the means of the
PSR for all proposed models of asthma data (0.404,0.6438,0.456) are quite close
to 0.5. This accurate estimation of the means of the PSR is reflected by the
values of the RMSE of one-step-ahead forecasting for all proposed fitted models,
as provided in Table 3.7} which were satisfactory (1.082,3.340,2.226).
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Figure 4.9: Histograms, ACFs and ECDFs of the PSR and INTPSR from
LW.MPois algorithm for asthma data
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With respect to the results of the RMSE, we can speculate that even if the
distribution of the data is mis-specified, the forecast will be adapted. This is
because this misspecified distribution is used to simulate the predicted observa-
tions based on the estimated parameters. Therefore, from time to time, even if
the distribution is wrong, the proposed fitted model will correct itself. Figure
[3.6] shows how well the predicted values by the proposed fitted models with LW

particle filter algorithms are close to the actual values of asthma data.

To understand why the PSR and INTPSR provide poor results of a model
diagnostic for all proposed models for the asthma data, we provided a clarification
below with some further justifications. Assuming we have iid data from a classical
generalized linear model (GLM) with a Poisson distribution with parameter A as
following: y; ~ Poiss(A),7 = 1,...,n with a linear predictor, n = log(\) = Xp.
Because the data are iid, the parameter X is believed to be the same for all data.
Therefore, we can look at the histogram for whole data in order to see whether
this histogram is similar as in the Poisson distribution. Suppose now, we have
some time series data from a dynamic generalized linear model (DGLM) with
a Poisson distribution as follows: y; ~ Poiss(\),t = 1,...,T, with a linear
predictor, n;, = log(A\;) = X;5;. Because the parameter \; here is time varying,
at each time point we have the same form of the Poisson distribution but with
different value of the parameter )\;. This means that, at each time point there is
possibly a different shape of the Poisson distribution. From this point on, if we

plot the histogram for the whole of data as in the GLM that could be invalid.

Turning now to asthma data, there might be some parts of the time series that
the proposed model fits well and there might be other parts the model does not
fits well. Therefore, we need some kind of time varying application for monitoring

of the uniform distribution on the interval (0,1). One possibility is to use control
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charts based on the normal distribution of the residuals.

With respect to asthma data we divided the time series into 36 groups. Figure
provides histograms of 36 groups with their means and variances. As can
be seen from this graph, the shape of the distribution of the groups changed
over time: some are negatively skewed, some are positively skewed, some are
symmetrical, and some are approximately uniformly distributed. There is not a

specific shape of the distribution that can be adopted for all groups.
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4.4.3 Analysis of SIDS data

In this section, the model diagnostics with different tools are applied to the SIDS
data. In Section [3.8] this dataset was represented in the form of a DGLM. A
set of covariates (such as the environmental temperature, trend component, and
seasonal component) were included in this model. The reduced model with five
harmonic components was used to describe the seasonality in the SIDS data.
In addition, the LW.Pois particle filter algorithm was applied to estimate the
joint posterior distribution of the state and hyper-parameters. The aim of this
study focused on identifying the impact of environmental temperature on the
sudden deaths of infants. Figure shows three rows of graphs associated
with different diagnostic tools, based on the PSR and INTPSR, for the LW.Pois
particle filter algorithm applied to the SIDS data. As can be seen from the
graphs, the obtained results of all diagnostic tools when applied to the SIDS data
have the same behaviour as with the asthma data. In other words, we observe
from Figure that the resulting histograms of different diagnostic tools of
the PSR and INTPSR calculating by the one-step-ahead predictive distribution
of the LW.Pois particle filter algorithms have remarkable departures from the
shape of a uniform and normal distribution. This issue occurred because the
variance of the PSR is very small (0.0005), which reflects negatively on the shape
of the PSR histogram. Thus, it departs from the histogram shape of a uniform
distribution on the interval [0,1]. In addition, the ECDF and the S-W test with
p-values (0.0288) for the INTPSR provide evidence indicating departure from the
distributional assumptions of the diagnostic tools. However, the mean of the PSR
is close to the mean of a uniform distribution, (0.512). In terms of the correlation,
the ACF of the sequence of the PSR or the INTPSR shows that they seem to

be uncorrelated. As a result, the overall explanation concerning the diagnostic
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tools for data asthma as discussed in the previous section can be generalised to

the SIDS data.

PSR.pois PSR.pois

ssssssss

INTPSR.Pois INTPSR.Pois

eeeeeeee

Figure 4.11: Histograms, ACFs and ECDFs of the PSR and INTPSR from
LW.Pois algorithm for SIDS data

4.5 Summary

In this chapter, background material on model diagnostics with different tools
for classical time series models and the DLMs was described. In addition, a
diagnostic test based on the PSR and INTPSR as proposed by |Smith| (1985))
for the non-Gaussian time series models was presented. The aim of using the
diagnostic tests was to assess the adequacy of the proposed fitted model with

respect to the predictive distribution.

The simulation experiments described in this chapter were designed to apply a
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diagnostic analysis to determine the expected behaviour of the PSR and INTPSR
when the proposed model is correctly or incorrectly specified. Based on Monte
Carlo studies, it was concluded that the obtained results of the diagnostic checking
tools, by using mis-specified models, exhibit similar behaviours to the obtained

results as in a correct model.

The suggested procedure of the model diagnostics was applied to the asthma
and sudden infant death syndrome data. The obtained results of the model diag-
nostic indicated that all the proposed models for both medical datasets provided
a poor performance regarding the shape of the PSR and INTPSR histograms.
In addition, The deviation of a distributional assumption of the PSR and the
INTPSR were confirmed with the ECDF chart and the K-S test with a p-value.
These results, however, were based on the shape of the histograms of the whole
of the PSR and INTPSR over time. In terms of the DGLM, because the model
parameters are time varying, at each time point there is possibly a different shape
of the desired distribution. From this point on, if we plot the histogram for the
whole of data as in the GLM that could be invalid. In this case, it is therefore
necessary to investigate the distributional assumption of the PSR and INTPSR
sequentially at each time point. Therefore, we need some kind of time varying
application for monitoring of the uniform distribution on the interval (0,1). The
control charts based on the normal distribution of the residuals are one possibility

to use.
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Chapter 5

Monitoring and Adaptation

5.1 Introduction and Motivation

In Chapter [4, model diagnostics were used to assess the performance of the pro-
posed fitted model. The diagnostic analysis is a crucial step towards deciding
whether the fitted model describes the dependence structure of the time series
for count data successfully. The principle idea of the model diagnostics, in Chap-
ter [, is based on the one-step-ahead cumulative predictive distribution. The
objective of using the model diagnostics is to evaluate the accuracy of the fore-
cast calculated by using the fitted model. The PSR and INTPSR, proposed by
Smith| (1985)), are used as diagnostic tools. If the fitted model adequately ex-
plains a dependence structure of the time series data, then the PSR, being i.i.d.
random variables, follows a uniform distribution. In addition, the INTPSR is
i.i.d. random variables having a standard normal distribution with mean zero

and variance one.

This diagnostic approach is an off-line method. However, there is a problem
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in using this model diagnostic when data are collected sequentially over time. In
this case, in order to do model diagnostics an estimation of unknown parameters,
one-step-ahead forecasting, and diagnostic tools, are required to be calculated at
each time point when a new observation is available. Therefore, this diagnostic
approach is not effective as time goes on. The approach can go further if, at a
given time point, the fitted model is good and, at another time point, the fitted
model is not. In this case it is necessary to have an effective way of checking con-
tinuously whether the fitted model is good or not. Bayesian monitoring methods
based on the Bayes factors (BFs) and statistical process control (SPC) can be
used to carry out sequential monitoring. These methods are considered as online

approaches for model diagnostics.

In this chapter a background and literature review for the related fields of the
Bayesian monitoring, including a statistical process control, control charts and
BF's are provided. The applications of automatic diagnostic methods on both the
simulated data and the medical data are offered in this chapter. A brief summary

of the chapter is presented in the final section.

5.2 Bayesian monitoring model

The monitoring technique is considered as a crucial step in the applications of time
series analysis. It is used as a diagnostic tool to evaluate the performance of the
predictive ability of the proposed fitted model to the data. The model monitoring
is concerned with detecting and assessing discrepancies between actual data and
their predictions calculated from the proposed fitted time series model. The

occurrence of outliers and structural change in the series are major sources of the
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deterioration of such time series models and may prevent their forecasting (West|,
1986). In Bayesian methodology for Gaussian time series models, West| (1986)
proposed a general monitoring approach to assess an adequacy of the model in a
sequential manner. The recursive monitoring scheme is based on the Bayes factors
(BF), where the calculation of the BF is based on the standardized one-step ahead
forecasting error. The details of the methodology of the BF will be provided later.
(West and Harrison, 1997, Chapter 11) developed the monitoring algorithm by
using the cumulative BF. The cumulative BF can be calculated by replacing the
predictive density with a joint distribution of the forecasting error in the standard
formulation of the BF. |Gargallo and Salvador| (2003)) introduced the sequential
monitoring approach in order to detect deteriorations in the performance of the
one-step ahead forecast of a DLM due to the presence of residual autocorrelations.
Relevant literature on Bayesian monitoring for Gaussian time series models can

be found in West and Harrison! (1997)

5.3 Statistical process control

Statistical process control (SPC) is a common application of statistics in man-
ufacturing and industry. It is a widely used in statistical practice for process
monitoring and change detection in the production processes. The objective of
SPC is to detect the presence of defective products and to make sure that the
final product is of a high level of quality. In the framework of SPC, control charts
are considered essential for monitoring. They are defined as a graphical repre-
sentation used to monitor the behaviour of the processes under investigation in a
sequential manner. They can also be used to follow up the progress of the process

over time to identify any aberrant change in the process. Therefore, an early in-
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tervention can be made to correct the process and help us to determine the cause
of the change. The first control chart was proposed by [Shewhart| (1931)). He
suggested an X-bar chart as a common tool in an application of SPC. The goal
of using this chart is to monitor an averages process. Page| (1954) and Roberts
(1959)) introduced two effective alternative control charts to detect a small shift
instead of the Shewhart charts. They are called the cumulative sum (CUSUM)
control chart and the exponentially weighted moving average (EWMA) control
chart respectively. The advantage of using these control charts instead of the
Shewhart chart is that the decision about the process at each time is based on

all information in the sequence of the observations.

A violation of these assumptions (i.e. that the observations of the process
under consideration should be independent and normally distributed) may lead to
the wrong calculation of the control chart limits and thus the adoption of a wrong
decision about the process. Satisfaction of the assumptions of the independence
and normal distribution of the data is necessary for the monitoring process to
make a correct decision and avoid a false alarm caused by a wrong decision
(Alwan and Roberts, (1988 |Zhang), (1997} |Stoumbos and Reynolds, [2000; Bisgaard
and Kulahci, 2005} [Castagliola and Tsung, 2005). In the case of autocorrelated
data, |Alwan and Roberts (1988),Montgomery and Mastranglo| (1991)) and [Singh
and Prajapati (2011) reported that the presence of the autocorrelation within the
process data will affect the performance of the standard control charts. However,
these traditional control charts can be used as monitoring tools for detecting the
process change with autocorrelated data by making some modifications to them.
In the applications of time series analysis, |Alwan and Roberts (1988) proposed
a control chart for the autocorrelated data. The design of this control chart is
based on the residuals, which are calculated from an adequate fitted time series

model, instead of using the original autocorrelated data.
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To evaluate the performance of the standard control charts, such as the
CUSUM and EWMA charts, the average run length, denoted by ARL, can be
used. The in-control ARL is defined as the expected number of the plotted obser-
vations within the lower and upper limits of the control chart until a false alarm
occurs. The quality of the control charts is measured by how quickly the change
of the process is detected. When the process is in the in-control state, where
all plotted signals lie between the control limits, the value of the ARL will be
very large. The meaning of the ARL is to be infinity is that, in the in-control
state, the alternative density is exactly the same as the null density. Therefore,
the value of the BF is always equal to 1. Thus, there is no chance to issue an
out-of-control signal. This is of theoretical interest only, whereas in practice the

alternative density will always be different from the null.

5.4 Bayes factor

The Bayes factor (BF) is a mathematical tool that can be used within Bayesian
model monitoring to assess the performance of the fitted model. In addition,
it can also be used to compare the performance of two models, based on their
predictive performance, in a recursive manner. In Bayesian framework, the ap-
plication of the BF can play a similar role as that in hypothesis testing in fre-
quentist statistics. Within a Bayesian framework, |Jeffreys (1935,1961) developed
a methodology of hypothesis testing, based on the BF, to quantify the evidence,

by the observed data, in favour of two competing scientific theories.

Suppose we have two competing statistical models, M; and M, that have
been used to fit the same observed data y;.; under study. These two fitted models

have the same mathematical structure but they have different values of model
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parameters. After estimating the unknown parameters in each fitted model, the
predictive density for each model can be calculated by integrating out the pa-

rameters 0; as follows:

p(yu\Mi) = /p(ylzt’Mbei)p(ei’Mi)dGiy 1=1,2, (5-4-1)

where p(y1..|M;,0;) represents the marginal likelihood function of a vector of
parameters ¢; under the model M; and p(6;|M;) is the prior distribution of the
parameters vector 6;. Using Bayes theorem and given observations up to time t,

Y1.t, the formulation of the BF for M; versus M, is given by:
t=1,....T (5.4.2)

Note that the BF in Equation (5.4.2) is defined as the ratio of the integrated
likelihood functions for two models. In the context of a Bayesian approach, |Jet-
freys (1961)) proposed a guidelines for interpreting the value of the BF to evaluate
the strength of evidence for one model relative to another. This interpretation
of the BF is presented in Table . Kass and Raftery (1995) suggested some
modification on a scale proposed by Jeffreys| (1961) for interpreting the value the
BF.

BF; Evidence against Mo

1-3.2 Not worth more than a bare mention

3.2-10 Substantial
10 - 100 Strong
> 100 Very strong

Table 5.1: Evidence categories for the interpretation of the Bayes factor proposed

by Jeffreys (1961)

In this thesis, alternative models (My) of the INTPSR are used. These alter-
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native models can be expressed in terms of distributions of the INTPSR deviating
from N(0,1). This is found to be more convenient than specifying alternatives in
terms of distributions for the PSR deviating from U(0,1). The alternative distri-
bution on the INTPSR scale could, of course, be transformed to a distribution
on the PSR scale and this would result in the same Bayes factor. From this defi-
nition, given the observation up to time ¢t — 1, the BF for comparing M, against
M, at time point ¢ is given by:

_ p(INTPSRt’ylztA?MA)
P(INTPSRHQLFMMO) ’

BF, t=1,...,T (5.4.3)

where p(INTPSR;|y1.4—1, Ma) is the one-step-ahead predictive density based on
the alternative model and p(INTPSRy|y1.4—1, M) is the one-step-ahead predic-
tive density by the fitted model. In the Equation , the formulation of the
Bayes factor is designed to compare between the null model and alternative mod-
els with some deviations while in the Equation it compares between two
different models. A Bayes factor greater than 1 is evidence in favour of M4 over

M.

5.5 Non-parametric control chart

As mentioned above, in the context of the SPC the standard control charts are
used in a recursive way to monitor the behaviour of the process. The most com-
mon assumption in the literature of the SPC is that the distribution of the process
under consideration is normal. In this case, when the normality assumption is
satisfied, the traditional control charts provide effective performance monitoring.
However, in many applications, the process under investigation does not follow
a normal distribution. As a result, the statistical properties of standard con-

trol charts, such as control limits, false alarm rate, and the in-control average
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run length can be highly affected. To remedy the shortcomings of the statisti-
cal properties of charts, nonparametric or distribution-free control charts can be
used for achieving this purpose. The idea behind the nonparametric control chart
is that there is no particular assumption on the distribution for the underlying
process, such as the normal distribution. In addition, the in-control probability
calculations and associated conclusions remain valid for any continuous distribu-
tion (Chakraborti et al., 2004). An extensive overview of the literature on non-
parametric control charts has been provided by Chakraborti et al.| (2001). They
listed several practical reasons for using distribution-free control charts. For more
detail on the nonparametric control charts literature |Amin et al. (1995), Bakir
(2012)), Chakraborti and Graham| (2007)), and Chakraborti et al.| (2011) are useful

resources.

In this thesis, the proposed nonparametric control chart is based on the clas-
sification of the value of the BFs. These values are used, in Phase II monitoring,
for constructing the in-control situation or out-of-control state of the process.
The reason for using the nonparametric chart here is that we do not know the
distribution of the BFs. A binomial control chart using the threshold rules of
the BFs with the runs-rules is adopted as a proposed procedure to monitor the

process under consideration at each time point.

The binomial control chart, also known as a P-chart, is considered a valuable
tool used to detect the proportion of defective units in a sample. The proportion
of the nonconforming units is defined as the ratio of the number of defective units
to the sample size. Since the construction of the binomial chart is based on the

binomial distribution, the assumptions of the binomial distribution are required.

Nonparametric tests are tests that do not assume a specific distribution of

the data, so they are called distribution-free tests. In other words, nonpara-
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metric tests can be used when there are no assumptions about the population
distribution. This means that, if the assumption of normality of the data under
study is available, then parametric tests such as T and F tests can be imple-
mented, but if this condition is not available, we should resort to nonparametric
tests. In the literature the most frequently used nonparametric tests are given
as the Chi-square test, run test, Wilcoxon signed rank test, Mann-Whitney test,

and the Kruskal-Wallis test.

Using the interpretation rules of the BF by |Jeffreys| (1935,1961)) in Table ,
the proposed control chart is constructed into three categories in terms of the
classification of the value of the BF. The statistical formula of the BF is based
on the INTPSR as in Equation , where the process described by the null
model M, is considered to be in control state, whereas the alternative model M4

describes the process out of control. The proposed control with three classification

categories is provided in Table [5.2]

Table 5.2: The proposed procedure of the control process based on the Bayes

factor
Category | BF; Interpretation
0 0-3.2 In control state
1 3.2 -10 | Substantial evidence that the process is out of control state
2 > 10 Strong evidence that the process is out of control state

As can be seen from this table, when the BF at a specific time point is less
than 3.2, the process lies in category 0. Therefore, the process is considered as
being in an in-control state. In the case of the out-of-control state, in this thesis,
the following composite rules are proposed: the process is considered as being

in an out-of-control state when the value of the BF leads to category 2, or two
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consecutive values of the BF in a window of length k = 4 are assigned to category
1. The window length is defined as the control procedure parameter, which can be
specified by the modeller in terms of a desired sensitivity set-up in the procedure.
A small sensitivity of the procedure can be obtained by using a smaller value
of the window length, while larger values of the length of the window lead to
an increase in the sensitivity of the control procedure (Triantafyllopoulos and

Bersimis, 2016)).

5.6 An illustration for the interpretation of the
ARL

As noted above, the average run length (ARL) is considered as a measurement
to assess the quality of the control chart through how quickly the system detects
an out-of-control signal in the process under investigation. In the context of the
SPC, the ARL is defined as the expected number of the plotted points within the
lower and upper limits of the control chart before the first out-of-control signal is
detected. In this section, we perform a simulation study in order to discuss the
behaviour of the ARL. We consider the in control and out of control ARL. The
calculation of the ARL is based on the values of the BF with different scenarios
of deviations from the mean and variance for the alternative model. The aim
of this experiment is to see what effect taking a small or a big shift from the
mean or variance for the alternative model has on the value of the ARL. In this
simulation experiment, we will use the model, Mg which is used to simulate the
data. This Mg model could be either the null model, My, in the case of the in
control ARL, or some other models which measure shifts from the M, in the case

of the out of control ARL. The alternative model, which is called My, will be
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used in order to calculate the Bayes factors as described in Equation . In
each experiment with different scenarios, we will use a different Mg while the M4
will be the same. In addition, the null model for all simulation experiments will
be the same, My ~ N(0,1). To do this a Monte Carlo simulation with 100 runs

of size 1000 observations is used.

State MS MA Mo ARL

In-control state | N(0,1) | N(1,1) | N(0,1) | 21.82

N(0.5,1) | N(1,1 6.76

Mean shifts from | N(1,1) | N(1,1 2.92

Y

in-control state | N(1.5,1) | N(1,1 1.29

1,1

1,1 0.17

Y

N(2.5,1) | N

N(3,1) | N(1,1 0.08

)

1,1

(1,1) | N(0,1)

(1,1) | N(0,1)

(1,1) | N(0,1)
N(2,1) | N(1,1) | N(0,1) | 0.39

(1,1) | N(0,1)

(1,1) | N(0,1)

(1,1) | N(0,1)

N(3.5,1) | N 0.02

Table 5.3: ARL when the process are affected by mean shifts

Table [5.3| shows the different proposed models Mg, the same proposed al-
ternative model M4, and the null model. The values of the ARL, which were
corresponding to a different Mg are also presented in Table [5.3] The different
simulated data have been generated by taking different means-shifts for the model
Mg. The Bayes factors have been calculated based on the same alternative model
M, ~ N(1,1) in every experiment. The table shows in the first row that the value
of the ARL under the in-control state which is defined as the numbers of points in

the control state before facing the first out of control point, is large (ARL=21.82)
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compared to the rest of the ARL values. Another finding from the Table [5.3] is
that, when the mean shifts of the model Mg depart increasingly from the mean of
the null model, N ~ N(0, 1), then the process enters an out-of-control situation,
and the ARL diminishes steeply from higher to smaller values. In addition, when
the model Mg has a large mean shift, e.g. 3, the proposed procedure was very

fast for identifying a shift from the null model (ARL=0.08).

Table[5.4] exhibits the values of the ARL in terms of taking different deviations
of the variance shifts from the in-control state of the proposed models Mg. We
used the same alternative model M4 ~ N(0,2) for calculating the Bayes factors.
With respect of the in control state, the table shows that the value of the ARL
(40.15) was large compared to the ARL values with variance shifts from the
in control state. This table also provides that the ARL values decrease as the
variance shifts for the model Mg increase (for variance shifts of 1.5 or 9 the ARL
is equal to 7.01 or 0.36 respectively). As we can also see, the proposed procedure
was very fast (ARL=0.36) for identifying a shift from the null model when the

alternative model Mg has a large variance shift, e.g. 9.
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State Mg My M, ARL
In-control state N(0,1) | N(0,2) | N(0,1) | 40.15
N(0,1.5) | N(0,2) | N(0,1) | 7.01

variance shifts from | N(0,2) | N(0,2) | N(0,1) | 3.05
in-control state N(0,2.5) | N(0,2) | N(0,1) | 1.69
N(0,3) | N(0,2) | N(0,1) | 1.37

N(0,4) | N(0,2) | N(0,1) | 0.81

N(0,6) | N(0,2) | N(0,1) | 0.44

N(0,9) | N(0,2) | N(0,1) | 0.36

Table 5.4: ARL when the process are affected by variance shifts

The ARL values of the in-control state and both mean and variance shifts from
the in control are shown in Table 5.6, The different models Mg and the same an
alternative model My ~ N(2,2) are also shown in Table [5.6] From this table,
we can conclude that the ARL values are small compared to the ARL calculated
through only shifts from the mean or variance. Moreover, the behaviour of the
ARL is identical as in the mean or variance shifts, where the ARL value decreases

as increasing both shifts from the mean and variance.
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State Mg My M, ARL
In-control state N(0,1) | N(2,2) | N(0,1) | 39.09
N(1,2) | N(2,2) | N(0,1) | 2.23

Both Mean and variance | N(2,2) | N(2,2) | N(0,1) | 0.83
shifts from in-control | N(3,2) | N(2,2) | N(0,1) | 0.26
state N(1,3) | N(2,2) | N(0,1) | 1.41

N(2,3) | N(2,2) | N(0,1) | 0.79

N(3,3) | N(2,2) | N(0,1) | 0.34

N(1,6) | N(2,2) | N(0,1) | 0.48

N(2,6) | N(2,2) | N(0,1) | 0.36

N(3,6) | N(2,2) | N(0,1) | 0.29

N(1,9) | N(2,2) | N(0,1) | 0.36

N(2,9) | N(2,2) | N(0,1) | 0.28

N(3,9) | N(2,2) | N(0,1) | 0.26

Table 5.5: ARL when the process are affected by both mean and variance shifts

The conclusion from the above results of the simulation study is that the
proposed scheme performs satisfactorily at identifying the deterioration in the fit

of the process.

5.7 Application of Bayesian monitoring to sim-

ulated and medical data

In this section, diagnostic checking based on Bayesian monitoring as discussed in

the previous sections is applied to the simulated and medical data. The objective
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of the model diagnostics is to assess the accuracy of a fitted model in a sequential
way. The BF is used as a proposed tool of a model comparison to implement this
task of continuous diagnostics. In addition the nonparametric control chart, based
on the values of the BF and the runs-rules, is also used to examine whether the
process is in an in-control or out-of-control state. The one-step-ahead cumulative
predictive distribution and the INTPSR from the fitted model are used in order
to calculate the BF. The idea of doing the model comparison based on the BF
is to compare and contrast the performance of the fitted model under the null
hypothesis and some alternative proposed models. These alternative models can
be obtained by shifting the values of the mean, variance, or both of the INTPSR

generated by the fitted model.

5.7.1 Simulation experiments

The goal of this section is to illustrate the mechanism of a Bayesian monitoring
of the simulated data carried out to assess the performance of the proposed fitted
model. The diagnostic procedure consists of two phases. In Phase I, when the
fitted model describes the time series well in terms of its estimated parameters
and its forecasts then the process is assured to be in the in-control state. In Phase
I, we will use a recursive Bayesian monitoring approach, which is based on the
BF as a diagnostic tool, in order to see whether the process is in the in-control
state or not. In Phase I, the fitted model for the simulated data was optimised
and the state variables and the hyper-parameters were estimated from the his-
torical observed data by using the Liu and West particle filter (PF) algorithm.
To evaluate the performance of the fitted model with respect to the cumulative
predictive distribution, the PSR and the INTPSR were used as diagnostic tools

for a goodness of fit. In Section [4.4.1] with respect to the simulation experiments,
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we obtained a good results for the PSR and the INTPSR. This means that, in
Phase I, the process of the time series is considered as being in the in control
state. In Phase II, the BF is used as a diagnostic tool as in a methodology of a

recursive Bayesian monitoring.

In the first step of the monitoring study, we will adopt to use the uniform
distribution as the null model. Therefore, the values of the Bayes factors (BF)
can be calculated based on the PS residuals of the fitted model and the proposed
alternative models. From Chapter |4, where the proposed model fitted the data
well, then the PS residuals are i.i.d random variables following a uniform distribu-
tion over the interval (0,1). The alternative model could be like some distribution
measuring the deviation from the null model. The alternative model must be in
some way similar to the null model. Thus, one possibility is that the alternative
model can also be chosen as a uniform, but with different parameters than the

null model parameters; i.e: U(aa,ba).

Below we express the uniform parameters, a,b as a function of the mean gy
and variance o7 of the uniform distribution. This allows us to consider shifts of
a, b in the alternative distribution by considering shifts in the mean and variance.
It can also provide information on the departure of the alternative distribution
in terms of location (mean) and dispersion (variance) which are more commonly

discussed in the monitoring literature.

The mean pp and variance of of the uniform distribution with parameters

(a,b) are defined as follows:

a+b
2

bh— 2
, and of = % (5.7.1)

MU =

Therefore, the parameters of the uniform distribution (a,b) can be obtained by
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solving the mean and variance is Equation for (a,b) as follows:

2

a= py — — oy, and b=y + oy (5.7.2)

2

Under the null model, the PS residuals have the uniform distribution over the

interval (0, 1) with the mean and variance equal to % and % respectively. In
terms of calculating the BF, the alternative model can be selected by taking the

shift from the null model within three scenarios as follows:

e Mean shift: The first scenario to define the alternative model is to have
the shift (s) from the mean of the null model and keeping the variance

constant as follows:

1 1
pa =3 +s, and o4 = D (5.7.3)

Then, the alternative model parameters (a4, b4) can be calculated by com-

pensating the values of the alternative model mean and variance in Equation

in the formulas of (a,b) in Equations as follows:
1 v12 1 1 V12

and by = —+s+

1
gy = -+s——.— =5, —_ ==
479 2 V12 2 2 V12

Therefore, the alternative model is defined as a uniform on the interval

s+1 (5.7.4)

(s,s+1).

e Variance shift: The second scenario for defining the alternative model is
to have the shift (k) from the variance of the null model and keeping the

mean constant as follows:

1
and o3 = —k (5.7.5)

1
Ha =735 12

Then, the alternative model parameters (a4,b4) can be calculated by com-

pensating the values of the alternative model mean and variance in Equa-
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tions in the formulas of (a,b) in Equations as follows:

1—Vk 1+VEk
5 and by = 5

aps — (576)

Therefore, the alternative model is defined as a uniform on the interval

(1—¢E 1+\/E)
2 2 :

Both shift: The third scenario for defining the alternative model is to have

both shifts (s), (k) from the mean and variance of the null model as follows:

1 1
pa =5+ s, and 0% = Ek (5.7.7)

Then, the alternative model parameters (a4,b4) can be calculated by com-

pensating the values of the alternative model mean and variance in Equa-

tions in the formulas of (a,b) in Equations as follows:

1—Vk 1+Vk
9

ap = s+ 5 and ba =5+ (5.7.8)

Therefore, the alternative model is defined as a uniform on the the interval

(3 + 1*2‘@,3 + 1+2\/E).

With respect to the simulation studies in this section, the implementation of

the sequential model monitoring in Phase II is applied on one run of the same

simulated data as in Section [£.4.1 In Phase I, the LW particle filter algorithm

was applied to this simulated data by using a LW.Pois model as a correct model

and by LW.NB and LW.MPois models as wrong models (see subsection [3.6.1.2]).

The values of the BF have been calculated based on the predictive distribution

of the PSR. The obtained results of the PSR and INTPSR for all proposed fitted

models were provided in Figures [4.1] and [£.2] In Phase I, the results of the PSR

and INTPSR for all models assured that the process of the simulated data is in an
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in-control state. Regarding the first scenario, Figure |5.1| shows the behaviour of
the resulting BFs with several proposed shifts on the mean of the null model PSR
~ U(0,1) for the LW.Pois particle filter algorithm, which is defined as a correct
model, with a Poisson simulated data. Figures show the behaviour of
the BFs based on three different scenarios of the alternative model of the PSR

the LW.Pois particle filter algorithm. These figures are provided in the appendix
B
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Figure 5.1: The behaviour of the Bayes factors for the LW.Pois particle filter
algorithm to a Poisson simulated data based on some proposed alternative models

through the first scenario with mean shifts.
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The different shifts of the mean from the null model of the PSR are provided
along with the alternative model parameters and an average of BF's for the first
scenario in Figure[5.1] As can be observed from this figure, all values of the BFs
with different shifts from the mean of the null model, which will lead to shifts
on the alternative model parameters, are less than the threshold value 3.2. This
result actually does not provide support on the null model. The reason of this
is that the threshold 3.2 is not appropriate for us to make a decision. This is
because the value of the BF at each time point is either equal to 1 when the PSR
is within the range of the alternative model parameters or 0 if not. Therefore,
the alternative model will be accepted when the BF is equal 1, whereas it will be
rejected when the BF is equal 0. In terms of using the uniform distribution for the
null model, we observed that the behaviour of the BF's for three different scenarios
and all proposed fitted models, which are correctly or incorrectly specified, gave
identical results as here in the first scenario. However, there is a problem in using
the uniform distribution as a null model for calculating the BF's. This is because;
the domain of the density function of the uniform distribution depends on its
parameter range. This means that, the value of the BF at any time point equals
either the difference between the alternative parameters if the value of the PSR
is within the range of the alternative parameters or zero if not. In addition to
that, using this specification, the shift of the variance is not independent of the

mean.

The difficulty caused by the support of a U(aa,ba) not being the same as the
of U(0,1) can be avoided if we use a Beta(aa,bs) distribution as an alternative
instead. We can be reparameterise this by setting ay = mapa and by = (1 —
ma)pa. Then the mean is simply m4 and the variance is ma(1 —ma)/(pa + 1).

We can then look at the effect of varying m, and pa.
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As an alternative to using a beta distribution for the PSR under M4 we can
use a probit-normal distribution. That is, if R; is the PSR at time ¢, then we give
Q¢ = ®'(R;) a normal N(m, k?) distribution where ®() is the standard normal
distribution function. Thus, under My, @Q; ~N(0,1). Under M, we set m = my
and k = k4, which are chosen appropriately. Of course, this is equivalent to using
the INTPSR with its standard normal distribution under My and a N(m4, k%)

distribution under M 4.

Although the uniform and beta distributions can be used for the calculation
of the Bayes factor (as discussed above) there is still some advantage in using the
normal distribution instead. This approach seems to be adopted in the literature,
see Smith (1985)and Thode| (2002). There are available informal and formal tests
for the normal distribution; for a discussion related to our models sees Smith
(1985) and more generally Thode (2002). In Gaussian time series literature the
theory of residuals-based model selection and monitoring is well established. By
using the normal distribution in the context of the models considered in this
thesis, the theory of residuals-based monitoring is extended to the non-Gaussian

case.

In terms of the implementation of the monitoring in Phase II, the calculation
of the BF is based on the predictive distribution of the INTPSR. Under the null
hypothesis, when the process is in control in Phase I, the INTPSR is considered
to be following a standard normal distribution with mean zero and variance one.
The alternative models are suggested with the deviations of the null model N (0,1)
in three different scenarios as before. Therefore, the proposed alternative models
will follow a normal distribution, N(m.4, k%) where ma, k% can be determined by
the modeller. Note that if the deviations are selected so that they are close to

the mean and variance of the standard normal distribution N(0,1), then it will be
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difficult to separate the two models. On the other hand the monitoring process

may fail to detect small changes in the process when large deviations are selected.

Figure [5.2] shows the behaviour of the resulting BFs with several proposed
shifts on the mean or the variance of the null model for the LW. Pois particle
filter algorithm, which is defined as a correct model. The different positive shifts
of the mean and two proposed shifts on the variance from the null model of the
INTPSR are provided along with the alternative model parameters and an average
of BF's in Figure 5.2l The results of the BFs with all proposed shifts of the mean
and variance are given in Figures and which are shown in the appendix
As can be seen from Figure [5.2] the average of the BFs with different shifts
of the alternative model for the correct model is less than 3.2, (0.8242-1.0796).
This result provides evidence through the INTPSR that supports the null model
rather than the alternative. Therefore, the process is in-control state. Besides,
with a small shift of the mean, we can see that all values of the BF's are located
under the threshold value 3.2. This is because a small shift is quite close to
the mean of the null model. Therefore, the two densities for the null and the
alternative are similar. However, when the mean shift is large, several values of
the BF are larger than the threshold. That means that the distribution of these
outliers given the alternative model has more weights. In this case, the model is
defined as out of control state at these time points. In terms of the variance shifts,
when we have a small shift (k4 = 0.1), there are some values of the BFs which
exceed the threshold. In addition, with variance shift of 0.2, the last plot in the
bottom panels indicates the same behaviour of the BF but with less magnitude.
Based on the results obtained, the mean shifts provide the similar behaviour of
the BF, but with variance shifts are not. Regarding to the behaviour of the BF's
for all simulation experiments, the mean shifts and variance shifts are suggested

to be quite small. This is because as we observed from the plots of the BFs with a
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normal distribution, the outliers were detected when the shifts are quite small. In
addition, with the big shift the model does not have the probability. Therefore,

it will always be accepted.
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Figure 5.2: The behaviour of the Bayes factors for the LW.Pois particle filter
algorithm to a Poisson simulated data based on some proposed alternative models

with different shifts from the mean and the variance of the INTPSR N(0,1).

Table [5.6| exhibits the average of the BFs with different shifts of the mean and
the variance of the null model, and the percentage of the BF's which is more than
the threshold value. As can be seen from Table [5.6] for both different shifts, the
percentage of the BF, which is larger than the threshold, is varying according to

our choice of alternative models.
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State Mean | Variance | MBFs | % > Threshold
mean shifts 0.1 1.00 0.99 0.0 %
0.3 1.00 0.963 0.0 %
0.5 1.00 0.924 0.0 %
0.75 1.00 0.862 0.0 %
1.00 1.00 0.784 1%
1.5 1.00 0.595 3%
2.00 1.00 0.395 1%
2.5 1.00 0.224 1%
variance shift | 0.00 0.1 0.864 9 %
0.00 0.2 1.003 13 %
0.00 0.3 1.054 5%
0.00 0.5 1.069 0.0 %

Table 5.6: The output results of the BFs for the LW.Pois particle filter algorithm
to a Poisson simulated data based on the different shifts of the mean or variance

of the null model.

Figure |5.3| presents the behaviour of the BFs with the alternative model with
the mean shift, INTPSR N (1.5, 1) in the top panel. The forecasting plot of the
same simulated data is also provided in the bottom panel. As can be seen from
the BF plot, there are three values which exceed the threshold 3.2. In addition,
one of them has an extreme value which can be indicated as an outlier. Therefore,
the model is out of control state at these time points. Besides, the model might
be overall acceptable, but sometimes it might be not. This is caused by the

existence of the outliers, and the BF helps us to detect these outliers.
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Figure 5.3: The behaviour of the Bayes factors for the LW.Pois particle filter
algorithm to a Poisson simulated data based on the proposed alternative model

with mean shift; INTPSR~ N(1.5,1).

To determine whether the process is in an in-control or out-of-control state,
Bayesian monitoring by a nonparametric control procedure based on binomial-
type and runs-rules is used. This control procedure is based on the BF. In ad-
dition, the proposed control procedure is constructed using the classification of
the three categories. These categories are based on the rules interpretation by
Jeffreys (1935,1961) of the BFs. If the resulting value of the BF at a specific time
point is less than 3.2, this leads to the Bayes factor lying in category 0. Therefore,

the process is considered as being in an in-control state. The process is consid-
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ered as being in an out-of control state when the value of the BF is assigned to
category 2, or two consecutive values of the Bayes factor in a window of length

four are assigned to category 1.

Based on the Jeffreys suggestion for the control process provided in Table [5.2]
the results of the control chart of the BF with the alternative model INTPSR
~ N(1.5,1) indicate that all signals are in control state. However, if we want
to have a last conservative point of view, then we can lower the threshold to 5
instead of 10. Therefore, the process is considered as being in an out of control
state to category 1 when the value of the BF is between 3.2-5, or to category 2
when the BF is more than 5. Thus, the value of the BF in category 2 can be
expressed as outliers. The obtained results of the proposed control procedure of
the BFs with alternative model INTPSR ~ N(1.5,1) for the LW.Pois particle
filter algorithm with the Poisson simulated data is provided in Tables [5.7, The
result from Table illustrates that the process is considered as being in an
out-of-control state to category 2 at time point 90. For all other time points the

process is considered as being in an in-control state.

In the second and third simulation experiments, the behaviour of the BF's
based on the uniform and normal distributions and the proposed control proce-
dure provided the quite similar results as here in the first simulation experiment

when the LW.Pois particle filter algorithm was used as a correct model.
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Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Category /O 0 0O O O O O O O O O O O O

Time 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Category [ 0 0 o o o o o o o o0 0 0 0 0

Time 29 30 31 32 33 34 35 36 37 38 39 40 41 42
Category (O O O O O O O O O O O O 0 O

Time 43 44 45 46 47 48 49 50 51 52 53 H4 55 56
Category /O 0 O O O O O O O O O 1 0 O

Time 57 58 59 60 61 62 63 64 65 66 67 68 69 70
Category /O 0 O O O O O O O O O O O O

Time 172 73 74 75 76 77T 78 79 80 81 82 83 84
Category |/O 0 O O O 1 O O O O O O O O

Time 8 8 87 88 89 90 91 92 93 94 95 96 97 98
Category [O O O O O 2 0O O O O O O 0 O

Time 99 100

Category | 0 0

Table 5.7: Control classification for Phase II of the INTPSR of LW.Poiss algo-
rithm and a Poisson simulated data using the Bayes factor with alternative model,;
INTPSR ~ N(1.5,1). In-control signals are referenced by 0 and out-of-control

are referenced by 1.

5.7.2 Analysis of asthma data

The aim of the simulation study in the previous section was to apply the Bayesian
monitoring model using a BF to assess the performance of the fitted model in a

recursive way and, in addition, to understand the expected behaviour of the BF,
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which is calculated based on whether the PSR or INTPSR, when the proposed
fitted model is correctly or incorrectly determined. In this section, the diagnostic
checking, based on the BF and the proposed control procedure, is applied to the
asthma patients’ data. The objective of the model diagnostics is to assess the
performance of the proposed fitted model in terms of a one-step-ahead predicted
distribution. According to the theory, when the model is perfectly specified,
the distribution of the PSR should be uniform over the interval (0,1) or the
distribution of the INTPSR should be a standard normal distribution. The BFs
for all proposed fitted models are calculated based on Equation , where
the INTPSR under the null model follows N(0,1) and the alternative model can
be selected based on the shape of the histogram of the INTPSR from each fitted

model of the asthma data.

In terms of calculating the BFs with the uniform distribution, Figures [B.7}-
[B.9 show the behaviour of the BFs based on the last 104 observations of the
asthma data through three different scenarios (mean shifts, variance shifts or
both shifts). These figures are provided in the appendix . As can be seen
from these figures all values of the BF for three different scenarios are less than
the threshold 3.2. This result does not provide an evidence in favour of the null
model against the alternative model and this is what we have clarified before in

the simulation study.

On the other hand, Figure [5.4] presents the behaviour of the BFs when using
the normal distribution as the null model and proposed alternative models of the
INTPSR with different mean shifts. The values of the BF with all proposed shifts
for the first and the second scenarios are shown in Figures which are
provided in the appendix [B.I As can be seen from Figure [5.4 with small shifts

on the mean, all values of the BF are less than the threshold 3.2. This means
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that the null model will not be rejected. However, when the mean shifts are

larger, the BF plot indicates some values exceed the threshold. These values can

be expressed as outliers and the null model will be rejected at these time points.

This variable behavior of the BF indicates that the proposed fitted model may be

suitable for asthma data at some time points, and is inappropriate at other time

points. This recursive test for checking the fitted model cannot be implemented

by other tests such as in a [Smith (1985) approach.

Bayes factors / LW.Pois Bayes factors / LW.Pois

Bayes factors /LW.Pois

08 10 12 14

0 20 40 60

mu= 0.1 ;k= 1 ;MBFs=0.971

mu= 1.5 ;k= 1 ;MBFs= 1.229

Bayes factors / LW.Pois Bayes factors /LW.Pois

Bayes factors / LW.Pois

07 09 11 13

20

0 5 10

mu=-0.1 ;k= 1 ;MBFs= 1.028

mu= 0.3 ;k= 1 ;MBFs= 0.914

0
S
- ° a
4 . . o o E 2
R T A~ P :
400 e ° g - aog oo
] ° R o el
e o z o o
T T T T T T o T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Time Time
mu=-0.75 ;k= 1 ;MBFs=1.168 mu= 1 ;k= 1 ;MBFs=0.861
)
g o
ER
e
2 ° % S 0% Bo%ao w ©
Bl lnnmsaps ), Fo T g _ ] s
T T T T T T o T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Time Time
mu=-1.5 ;k= 1 ;MBFs= 1.255 mu= 2 ;k= 1 ;MBFs= 2.237
a
g
2
5 84
°
g ,
3
° £ B A
o o g
| Rt e s s PO I g ° : - : - -
o

0 20 40 60 80 100

Time

Bayes factors / LW.Pois

Bayes factors / LW.LW.MPois

Bayes factors / LW.Pois

02 46 8 0.5

0 10 20 30

mu=-0.3 ;k= 1 ;MBFs= 1.08

mu= -1 ;k= 1 ;MBFs= 1.202

o °0 L4

o ° o M
SpSpnSemeingte e o'y Y,
T T T T T T
0 20 40 60 80 100

Time

mu= -2 ;k= 1 ;MBFs= 1.279

Figure 5.4: The behaviour of the Bayes factors for the LW.Pois particle filter algo-

rithm to a asthma data based on some proposed alternative model of the INTPSR

with mean shift

Figure [5.5| shows the behaviour of the BFs for the last 105 observations with

the alternative model with the mean shift, INTPSR N (0.75, 1) in the top panel.

The forecasting plot of the real asthma data against forecasts for the last 105

observations by applying the LW.pois particle filter algorithm is also provided in
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the bottom panel. As can be observed from the BF plot, three values exceed the
threshold 3.2, and one of them has an extreme value which can be indicated as

an outlier. Therefore, the null model at these time points will be rejected.
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Figure 5.5: The behaviour of the Bayes factors for the LW.Pois particle filter
algorithm to the last 105 observations of a asthma data based on the proposed

alternative model with mean shift; INTPSR~ N(0.75,1) and the forecasting .

On the other hand, based on the shape of the histogram of the INTPSR,
which is shown in Figure[4.7/in Chapter ] the proposed fitted model was rejected.
However, using the BF, the proposed fitted model was accepted. In addition, the
forecast plot, which is presented in the bottom panel of Figure |5.5, provides a

good predication for the real asthma data. This result leads us to conclude that
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the proposed model fitted the asthma data well.

To investigate whether the process is in an in-control or out-of-control state,
the proposed control procedure based on binomial-type statistics with the runs-
rules as in the simulation experiments is used, where the control procedure has
been based on guidelines for the BF. The control procedure of the classifica-
tion of the BF values with proposed alternative model and mean shift, INTPSR
~N(0.75,1) is provided in Table 5.8 As can be seen from Table 1 out of 105
signals is out-of-control signals and it is allocated to category 2 whereas the rest
of the signals are in control state. As a result, the process is considered as being

in an in-control state at these time points while it is out-of-control at time point

02.
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Time 1 2 3 4 5 6 7 § 9 10 11 12 13 14
Category | 0 0 0 0 0 0 0 o 0 0 0 0 0 1
Time 5 16 17 18 19 20 21 22 23 24 25 26 27 28
Category | 0 0 0 0 0 0 0 o 0 o o 0 0 O
Time 29 30 31 32 33 34 35 36 37 38 39 40 41 42
Category | 0 0 0 0 0 0 0 o 0o o o0 0 0 O
Time 43 44 45 46 47 48 49 50 51 52 53 54 55 56
Category | 0 0 0 0 0 0 0 o 0 2 0 0 0 0
Time 57 58 59 60 61 62 63 64 65 66 67 68 69 70
Category | 0 0 0 0 0 0 0 o 0 o o o0 0 0
Time 7172 73 74 75 76 77T 78 79 80 81 82 83 84
Category | 0 0 0 0 0 0 0 o 0 o o 0 0 O
Time 8 8 87 88 89 90 91 92 93 94 95 96 97 98
Category | 0 0 0 0 0 0 0 o 0o o o0 0 0 O
Time 99 100 101 102 103 104 105

Category | 0 0 0 0 0 1 0

Table 5.8: Control classification for Phase II of the INTPSR of LW.Poiss algo-

rithm and a Poisson simulated data using the Bayes factor with alternative model,;

INTPSR ~ N(0.75,1). In-control signals are referenced by 0 and out-of-control

are referenced by 2.

With respect to applying the LW.NB particle filter algorithm on the asthma

data, the behaviour of the BF's of the last 105 observations of the asthma data with

the uniform distribution through three different scenarios are presented in Figures

B.14] These figures are shown in the appendix For three scenarios, all

values of the BF do not exceed the threshold 3.2. This result actually does not
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provide support on the null model as we clarified before in the simulation study.

In terms of using the normal distribution as the null model, Figure [5.6 shows
the behaviour of the BF with some proposed alternative model of the INTPSR
with different mean shifts. The values of the BF with all proposed shifts for
whether the mean or the variance are shown in Figures which are
provided in the [B.I] As can be seen from Figure [5.6] all values of the BF are
less than the threshold 3.2. This is because the null and alternative models are
unlikely to follow the normal distribution and this is what we observed from the
shape of the histogram of the INTPSR in Figure in Chapter [d Therefore,
the probability density function of that normal distribution will be low. Thus,
when we obtain the alternative model from the null model, it will shift from the
low distribution. So, the value of the BF does not change much. This means
that both the probability density functions of the null and alternative models
have comparable values. Therefore, for this result of the BF, the null model
will not be rejected. With respect to investigating whether the process is in an
in-control or out-of-control state, the control procedure based on the BF with
different proposed alternative models of the INTPSR with mean shifts provides

that the process is in-control state at all time points.
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Figure 5.6: The behaviour of the Bayes factors for the LW.NB particle filter algo-

rithm to a asthma data based on some proposed alternative model of the INTPSR

with different mean shift

Poisson model (LW.MPois) on the asthma time series data, Figures B.1

Based on applying the Liu and West particle filter algorithm with the mixture

B.19

present the behaviour of the BFs of the last 105 observations of the asthma data

with three scenarios of the alternative model of the PSR. These figures are shown

in the appendix[B.1} As can be noted from these figures that all values of the BF

for three different scenarios do not exceed the threshold 3.2. This result actually

does not provide support on the null model as we clarified before in the simulation

study.

In contrast, Figure presents the behaviour of the BFs when using the

normal distribution as the null model and proposed alternative models of the
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INTPSR with different mean shifts.

The values of the BF with all proposed

shifts for the first and the second scenarios are shown in Figures |[B.20HB.21| which

are provided in the appendix [B.I} The conclusion to be drawn from Figure

is that with small shifts on the mean, all values of the BF are less than the

threshold 3.2. However, when the mean shifts are larger, the BF plot indicates

some values exceed the threshold. These values can be expressed as outliers and

the null model will not be accepted at these time points.
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Figure 5.7: The behaviour of the Bayes factors for the LW.MPois particle fil-

ter algorithm to a asthma data based on some proposed alternative model of the

INTPSR with mean shift

Figure [5.8| shows the behaviour of the BFs for the last 105 observations with

the alternative model with the mean shift, INTPSR N (0.75, 1) in the top panel.

The forecasting plot of the real asthma data against forecasts for the last 105
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observations by applying the LW.pois particle filter algorithm is also provided
in the bottom panel. It can be seen through the BF plot, there are four values
exceed the threshold 3.2, and one of them has an extreme value which can be
indicated as an outlier. Therefore, the null model at these time points will be

rejected.
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Figure 5.8: The behaviour of the Bayes factors for the LW.MPois particle filter
algorithm to the last 105 observations of a asthma data based on the proposed

alternative model with mean shift; INTPSR~ N(0.75,1) and the forecasting .

With respect to examining whether the process of BF's is in an in-control or
out-of-control state, Table [5.9 offers the results of the proposed control scheme
based on the classification of the BFs via the proposed alternative model, INTPSR
~N(0.75,1). From this table we observe that 1 out of 105 signals is an out-of-

control signal and it is allocated to category 2 whereas the rest of the signals
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are in the in-control state. As a result, the process is considered as being in an

in-control state at these time points while it is out-of-control at time point 52.

Time 1 2 3 4 ) 6 7 § 9 10 11 12 13 14
Category | 0 0 0 0 0 0 0 o 0o o0 o0 0 0 1

Time 5 16 17 18 19 20 21 22 23 24 25 26 27 28
Category [ 0 0 0 0 0 0 0 o 0o o o0 0 0 O

Time 29 30 31 32 33 34 35 36 37 38 39 40 41 42
Category (/O O O O O O O O O O O 0 O0 O

Time 43 44 45 46 47 48 49 50 51 52 53 54 55 56
Category (/O O O O O O O O O 2 0 0 0 O

Time 57 58 59 60 61 62 63 64 65 66 67 68 69 70
Category [ 0 0 0 0 0 0 0 o 0o o o0 0 1 O

Time 172 73 74 75 76 7T 78 79 80 81 82 83 84
Category (/O 0 O O O O O O O O O O 0 O

Time 8 8 &7 8 89 90 91 92 93 94 95 96 97 98
Category (/O 0 O O O O O O O O O 0 0 O

Time 99 100 101 102 103 104 105

Category | 0 0 0 0 0 1 0

Table 5.9: Control classification for Phase II of the INTPSR of LW.Poiss algo-
rithm and a Poisson simulated data using the Bayes factor with alternative model,;
INTPSR ~ N(0.75,1). In-control signals are referenced by 0 and out-of-control

are referenced by 2.

The overall conclusion, according to the above results of the Bayesian moni-
toring model using the BF's in a sequential way, is that the null model of the PSR

and INTPSR is accepted for all proposed fitted models to the asthma data. To
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investigate whether the process is in-control or not, the proposed control proce-
dure for the LW.Pois and LW.MPois particle filter algorithm illustrated that the
process of the BFs via the proposed alternative model of the INTPSR ~N(0.75,1)
are overall in an in-control state over time. However, for all proposed fitted mod-
els, the process of the BFs is out-of-control at some time points. In addition,
based on the BF for the LW.NB particle filter algorithm, the model was accepted

as in the in-control state for all proposed alternative models with mean shifts.

5.7.3 Analysis of SIDS data

In this section we will use the same diagnostic approach as we did for the asthma
data to test the performance of the proposed fitted model for the SIDS data.
The BF and the control chart were adopted as the Bayesian tools to achieve this
purpose. The aim of this examination is to monitor the behaviour of the BF's
of the process of the SIDS data in a recursive manner. In Phase I, in order to
fit the SIDS data, the LW.MPois algorithm was used to estimate the posterior
distribution of the hidden variables and the hyper-parameters of the DGLM.
With respect to the implementation of the Bayesian monitoring model for the
proposed fitted model, Figures provide the behaviour of the BFs via
three different scenarios of the alternative model of the PSR. These figures are
presented in the appendix B.I] As can be observed from all figures, all values
of the BF are less than the threshold value 3.2. This result does not provide an
evidence in favour of the null model against the alternative model and this is

what we have clarified before in the simulation study.

Based on using the normal distribution as the null model, Figure shows

the behaviour of the BF with some proposed alternative model of the INTPSR
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with different mean shifts. The values of the BF with all proposed shifts for the
first and second scenarios are shown in Figures |B.25HB.26| which are provided in
the appendix As can be seen from Figure [5.9] all values of the BF are very
small and less than the threshold 3.2. This is because the null and alternative
models are unlikely to follow the normal distribution and this is what we observed
from the shape of the histogram of the INTPSR in Figure in Chapter []
Consequently, for this result of the BF, the null model will not be rejected at all
time points. In order to investigate whether the process is in an in-control or out-
of-control state, the control procedure based on the BF with different proposed
alternative models of the INTPSR with mean shifts provides that the process is

in-control state at all time points.
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Figure 5.9: The behaviour of the Bayes factors for the LW.Pois particle filter al-
gorithm to a SIDS data based on some proposed alternative model of the INTPSR

with different mean shift
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5.8 Summary

This chapter has introduced and given the motivation for using Bayesian moni-
toring. In addition, the background material on the Bayesian model diagnostics
including a statistical process control, control charts and a Bayes factor (BF)
have been provided. The purpose of the simulation experiments in this chapter
was to apply a methodology of the Bayesian diagnostic analysis to determine the
expected behaviour of the BFs of the process of the simulated data over time,
when the proposed fitted model is correctly or incorrectly specified. The BF's are
used to compare the null model to several alternative models of the PSR or the
INTPSR in order to evaluate how much evidence the BF provides in favour of
one model rather than the other. In addition, a nonparametric control chart with
runs-rules has been used to investigate whether the process of the BF's is in an
in-control or out-of-control state. The same simulated data in one run as in Sec-
tion was used to achieve this objective. It is concluded from the simulation
experiments based on the PSR with a uniform distribution that the BF values
are less than the threshold 3.2. We obtained this result regardless of whether the
fitted model is correctly or incorrectly determined. However, this result does not
provide evidence in favour of the null model against the alternative model. In
contrast, the behaviour of the BF with the INTPSR and the normal distribution
with larger mean shifts provides some outliers. Moreover, with respect to the
simulation study, the suggestion of the mean and variance shifts should be quite
small so that the sequential monitoring way using the Bayes factor will be effec-
tive in order to detect the outliers. In terms of applying the SPC, the proposed
control scheme provided effective monitoring and was able to detect whether the

process was in an as in-control or out-of-control state.
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We applied the suggested procedure of the Bayesian monitoring model to both
asthma and sudden infant death syndrome (SIDS) data. The obtained results
of the behaviour of the BFs for all the proposed fitted models of both medical
datasets showed that all the BF's values are less than the threshold 3.2. Moreover,
the proposed control chart explains that the process of the BFs is in an in-control
state. But when the BFs is calculated based on the INTPSR with a normal
distribution, some outliers were detected for the LW particle filter algorithms
with Poisson and mixture Poisson models with asthma data. However, the fitted

models overall were accepted.
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Chapter 6

Conclusions and further work

6.1 Conclusion

This thesis focuses on applications of Bayesian dynamic models in medical re-
search. The principal aim is to provide a forecasting framework for count medi-
cal time series data. Sequential Monte Carlo techniques based on Liu and West
and Storvik particle filter (PF) algorithms have been developed to address the
problem of estimation of the hidden state and hyper-parameters for the dynamic
generalised linear models (DGLM) when a new observation arrives. PF algo-
rithms have a powerful theoretical foundation within the recursive Bayesian esti-
mation framework, where they provide an effective method for approximating the
marginal posterior distribution of interest in the DGLM. The aim of this chapter

is to summarise what has been discussed in the thesis.

The literature on Bayesian time series models including the state space model
(SSM) and the DGLM were introduced in Chapter 2} In addition, novel recursive

Bayesian methods for tracking the state process of the DLM and the DGLM by
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using the Kalman Filter (KF), the extended Kalman Filter (EKF) or the basic

PF were presented.

In terms of handling the inference of the latent variable and the hyper-
parameters of the DGLM, Chapter [3| presented two novel Bayesian algorithms
based on PFs. The Liu and West and Storvik algorithms were proposed to learn
about the joint posterior distribution of the state and hyper-parameters of the
DGLM. We have applied these algorithms to the simulated and real medical data.
With respect to the first simulation study, the tracking results of the model pa-
rameters showed that the LW.Pois algorithm outperformed the STK.Pois where
the estimated unknown hyper-parameters are closer to the true values. In addi-
tion, the LW.Pois algorithm provided more accurate one-step-ahead forecasting
compared to the STK.Pois algorithm, where the performance of the algorithms
were evaluated based on the smaller value of the average Monte Carlo of the root
mean squared error (RMSE). Beside, the obtained results by using the LW.Pois
particle filter algorithm of the approximation posterior distribution of the hyper-
parameters at the last time point are quite similar from the ones that were ob-
tained by the MCMC. The second simulation experiment focused on investigating
the performance of the Liu and West algorithm in terms of quality of parameter
estimates and the accuracy of forecasting when the fitted model is correctly or
incorrectly specified. Monte Carlo simulation results showed that the best results
were obtained from the application of the LW. Pois algorithm, even if it was

specified incorrectly.

The two proposed PF algorithms were applied to two medical datasets. With
respect to the asthmatic dataset, the main target is to make a one-step-ahead
forecast of weekly total medical visits for school aged children who suffer from

asthma. The overall results calculated by applying all proposed fitted models
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showed that the LW.Pois algorithm outperforms the other proposed models in
terms of the performance accuracy of the prediction, where the predicted values
calculated by the LW. Pois algorithm were closer to the actual values. This leads

to the model having the smallest value of the RMSE compared to the others.

The objective of the second application was to examine if there is any effect
of the environmental temperature on increasing the rate of sudden infant death
syndrome (SIDS). In order to achieve this objective, we extended the DGLM so
that it contains a set of covariates such as temperature and trend and seasonal
components. The obtained result, based on applying the LW.Pois algorithm
was a temperature coefficient estimate of -0.0354. This means that there is a
negative impact of the environmental temperature on increasing the risk of SIDS.
Additionally, this result was quite close to the result of (Campbell (1994 which
was computed using the Zeger| (1988) method and the generalised Poisson model

by Nelder and Wedderburn, (1972).

In Chapter [4, the methodology of the model diagnostics of the non-Gaussian
time series models by |[Smith (1985) was presented. This method is used to as-
sess the performance of the fitted model based on the P-score residuals (PSR),
which are calculated from the one-step-ahead predictive distribution of the fitted
model. The inverse transformed P-scores residuals (INTPSR) for obtaining the
i.i.d normally distributed random variable was discussed. The proposed diagnos-
tic procedure was applied to the simulated data and two real medical datasets.
In terms of the results obtained from the Monte Carlo study for the different
simulation experiments, the behaviour of the P-score residuals (PSR) and the in-
verse transformed P-scores residuals (INTPSR) for both correctly and incorrectly
specified models is quite similar. In addition, the PSR and INTPSR satisfy the

assumption of a uniform distribution and standard normal distribution respec-
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tively. With respect to the asthma and SIDS data, the obtained results of the
model diagnostics for all the proposed models for both medical datasets showed
a poor performance regarding the histogram shape of the PSR and INTPSR.
This result has been extracted by looking at the histogram shape of the PSR
and INTPSR over time. However, in the DGLM, the distribution shape of all
observations over time does not reflect on the shape distribution of each single
observation at each time point. In this case, it is therefore necessary to investigate

the distributional assumption of the PSR and INTPSR at each time point.

In Chapter 5] we provided a Bayesian monitoring model for assessing sequen-
tially the performance of the proposed fitted models. The Bayes factors (BFs)
and nonparametric control chart were used as tools for achieving this target. The
BF is used as a comparison measurement for providing evidence to support ei-
ther the null model or the alternative model. The guideline of Jeffreys (1961)
has been used to interpret the behaviour of the BF values. The proposed control
procedure is designed based on the BFs. We adopted the binomial-type control
chart with the proposed runs-rules with a window of length 4 and the guidelines
of |Jeffreys (1961) for detecting whether the process is in an in-control or out-of-
control state. The BFs are calculated based on the PSR and INTPSR and the
important feature of this chapter is where we combine the results obtained from
Chapter [4] with monitoring with a nonparametric control chart. The suggested
procedure of the Bayesian monitoring model was applied to simulated data and
both real medical datasets. With respect to the obtained results of the BFs based
on the PSR for both simulated and medical data, all values of the BFs through
three different scenarios are shown under the threshold 3.2. This result does not
provide an evidence in favour of the null model against the alternative model
and this is because the threshold is not appropriate for us to make a decision.

However, when the INTPSR with the normal distribution were used to calcu-
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late the BF's, some outliers were detected at different time points, but the fitted
model overall cannot be rejected. Beside, the mean shifts and variance shifts are
suggested to be quite small in order to detect outliers. In terms of applying the
nonparametric control chart, the proposed control scheme provided an efficient

way of monitoring and detecting out-of-control signals of the process.

6.2 Further research directions

Based on our work in this thesis, we suggest some possible directions for future

research that relate to this study as follows:

e A response distribution other than one belonging to the exponential family
can be considered. This is a useful consideration, as other distributions may
describe the count data more accurately, and hence may be more capable

forecasts.

e In terms of model parameters inference, it is interesting to develop PF
algorithms by involving MCMC step within the Liu and West algorithm.
This incorporation probably leads to improve the performance of the Liu
and West algorithm in order to provide accurate estimations of the unknown

static parameters in the DGLM.

e Further to the work of the Bayesian monitoring presented in Chapter 5, it
will be interesting to evaluate a performance of the proposed control proce-
dure for investigating whether the process is considered as in-control state
or not. This might be done by studying comparisons between our approach
and more standard statistical process control methods for autocorrelated

time series data.
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e Although this research is focused on medical applications and our aim is to
show how Bayesian time series analysis can be used in medical time series
data, the methods that we have discussed here are general and they do not
require any assumptions about the medical data; it is only collecting time
series count data. Therefore, these methods can be applied in other kinds

of count data in different disciplines.
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Appendix A

Derivation of the mean and

variance of the importance

function of Equations (3.5.1)—(3.5.1))

This appendix provides the derivation of the mean and variance of the importance
function using the EKF. The DGLM is completely defined through the state
model together with the observation model and the link function. The observation
model can be expressed as

v = g(xy) + 1y, v~ N(0,02),

where the mean and variance of the observation model are given by F(y;|z;) =

g(z;) and Var(y;|z;) = o?. The link function for a Poisson model is defined as
At = exp(x;). The State model is given by

Ty = ,u(l — ¢) + ¢$t_1 + wy Wy ~ N(O, Wt),
where the mean and variance of the observation model are given by

E(zizi—1) = p(l — @) + dpxpy = a4 (A.0.1)
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Var(a?t\:ct,l) = Wt = Rt (A02)

In the context of the DGLM, the observation model is expressed as follows:
Y|z ~ Pois(exp(xy)), where E(y;|x;) = exp(x;) and Var(y|z;) = exp(xy).
Matching both formulas of the mean and variance of the observation model, we

can obtain the following:

E(ylx) = f(x) = exp(y)

Var(y|z,) = of = exp(x)

In order to linearize the observation equation, the first order Taylor expansion

around the current state mean, &; = E(x;|z;_1) is used to achieve that.

Y = 9(2t) lur=2, +%§t> |leos, (¢ — &) + 11, (A.0.3)
where
9(2t) = 9(21) |o=s= exp(Z:) = exp(u(1l — @) + dz4-1)
and

a%(;:) |oi=3.= exp(Z¢) = exp(u(l — @) + dxs-1)

Therefore, the linear observation equation in Equation (A.0.3)) can be written as
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follows:

ye = exp(u(l — @) + dxi—1) + exp(p(l — @) + ¢mp—1 [z — p(l = ¢) — 1] + 14

= exp(u(l — @) + ¢w—1) +exp(u(l — @) + dxi—1)ze — p(1 — ¢) exp(u(l — @) + dz4-1)
—¢ze1 exp(pu(l — ¢) + ¢mi1) + vt

= exp(u(l — @) + ¢xi1) +exp(u(l — @) + gae1)[u(l — ¢) + Pae1 + wi] —
(1 = @) exp(p(l — @) + dzy-1) — dz—1 exp(p(l — @) + dz—1) + 1y

= exp(u(l — @) + ¢wp—1) +exp(u(l — @) + dze—1)pu(l — ¢) +
exp(p(l — @) + ¢z—1)dzi1 + wrexp(u(l — @) + dri1)
—p(1 = @) exp(u(l — @) + ¢wi1) — pzirexp(u(l — @) + dwi-1) + 14

Yy = exp(u(l — )+ ¢zi1) +exp(u(l — @) + dz—1)wr + 14

Thus, the mean and variance of the linear observation process are given by:

E(ylri1) = exp(u(l — @) + ¢ai1) = fi
Var(ylze—1) = [exp(pu(l — @) + daer)PW, + 0”
Var(ylei1) = [exp(pu(l — @) + dpa1)]*Wi + exp(u(l — ¢) + 1 +wi) = @
Where 02 = exp(z;) = exp(u(l — @) + dxs_1 + wy).
Given a previous state x;_1, the calculation of a covariance between current state

x; and current observation y; is given by:

59(%)96 B ag(a:t)j )
ox, " ox, "
ag(xt>ast) _ dg(xy)

Cov(xy, ye|lri—1) = Cov(wy, g(2y) +

= Cov(xy, o, o, Cov(xy, xy)
0
- %V(M’(m) = exp(u(l — @) + dz_)W, = A,
t

From above results, the importance function, in this case, follows a normal dis-
tribution z|x; 1,y ~ N(my, C;) where the mean and variance can be calculated

as follows:
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m =a; + %(yt — fi)

exp(p(l — @) + ¢z 1) Wi [yr — exp(p(l — @) + dpxy1)]

me = p(1—¢)+ w1+ lexp(u(1 — @) + dxy—1)]2 Wy + exp(p(l — @) + pap—1 + wy)

Where w; ~ N(0, W)

A AT AA)T
L=hmg @ =Ry,

lexp(u(l — ¢) + pay_1)]* [W]?
lexp(p(1 — @) + ¢ai 1) ]2 Wi +exp(pu(l — ¢) + dpxpy +w)

Ct:Wt—

Therefore z;|xy_1,y; ~ N(my, Cy)
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Appendix B

Graphs

B.1 Resulting Graphs of The MCMC Algo-
rithm and The Behaviour of The Bayes Fac-

tors for Simulation Experiments
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Figure B.1: The trace plot for the MCMC method of the Poisson model parameters
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