
Unification and Equation Solving in Nilpotent 

Groups and Monoids 

Edmund Kieran Burke 
v 

Submitted in accordance with the requirements 

for the degree of PhD. 

The University of Leeds 

School of Computer Studies 

June 1991 

I riAc+c iäj f xiti$3JVSYIU p ii 



Abstract 

Unification and equation solving have been considered for 

groups [44], semigroups [43], abelian groups [39] and abelian 

semigroups [25], [33], [68], [69]. In this thesis we consider 

partially commutative groups and monoids. Nilpotency provides us 

with a partial commutativity condition in the case of groups. 

It is noted that unification in a theory is equivalent to 

equation solving in a free model of that theory if such a model 

exists. 

The unification algorithm for nilpotent groups G of class k 

works by passing to the quotient of G by the (k-1) th term of the 

lower central series and lifting the solution up the factors 

formed from G by the terms of the lower central series. There are 

certain unification problems, however, where this does not work 

as it stands and special treatment is required involving the 

solutions of a certain restricted class of diophantine equations 

of degree k. 

The unification problem for the theories of nilpotent groups of 

class Z5 is shown to be undecidable. This improves the result of 

Romankov [60] who showed it for class Z 9. The result is 

established by reducing the problem to that of algorithmically 

solving an arbitrary diophantine equation of degree 4. It is well 

known that this problem is undecidable [50], [60]. 

A special set of partially commutative monoids is introduced. 

An algorithm to solve equations in these monoids relative to 

solving certain systems of diophantine equations of degree 2 is 

given. These equations have similarities with those that occur 

for nilpotent groups of class 2. 
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Chapter 1: Introduction 

1.1 An overview of the thesis 

In this overview we will take each chapter of the thesis in 

turn and give an outline of the contents. Before we do this, 

however, we will set out the aims of the project. 

1.1.1 The aims of the project: 

Unification has been considered for groups and 

semigroups. It has also been considered for abelian groups and 

abelian semigroups (see [25], [33], [39], [43], [44], [68], [69]). The 

main aim of this project is to study unification with respect to 

partially commutative groups and monoids. This partial 

commutativity is provided, in the case of groups, by the concept 

of nilpotency. We cannot use this concept when considering 

monoids but we study certain monoids which have "nilpotent like' 

character. 

1.1.2 Chapter 1 

This chapter is an introduction to the thesis and a survey 

of the field of unification theory. Although unification has 

been considered in higher order theories it has been mainly 

concerned with the study of algorithmic methods for solving 

equations in first order theories (and their models). In this 

chapter the scene is set in 1.2 by introducing and defining 

first order languages, theories and structures. We then formally 

define the idea of unification and consider it within the 

context of logic programming (by considering resolution and 

paramodulation). We also introduce the concept of cardinality 

type. 

1.3 is a survey of the work already carried out in the areas 
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that directly appertain to the research presented in this 

thesis. 

Unification, as we define it, is a syntactic concept i. e. we 

define it for first order theories. It is, however, often easier 

to argue semantically. We show in 1.4 that this amounts to 

working in the free object, when it exists. 

In 1.5 we look at examples of unification in some particular 

first order theories. 

1.1.2 Chapter 2 

In this chapter we consider unification for nilpotent 

groups. Section 2.1 is an introduction to the chapter. 

In 2.2 we present certain preliminary definitions and 

results that will be required later on. We introduce the idea of 

basic commutators, so called because they form bases of the 

factors of successive terms of the lower central series of a 

nilpotent group. We outline a well known method, called the 

collecting process, which will algorithmically write a word in 

terms of these basic commutators. We also present a 

multiplicative commutator identity (Lemma 2.2.7) which is widely 

used throughout Chapters 2 and 3. Finally we finish this 

preliminary section off by constructing an algorithm which can 

test whether or not any word of the last non-trivial member of 

the lower central series of a nilpotent group is, or can be made 

by variable substitution, into an hth power (for any integer h). 

The algorithm determines all such substitutions if they exist. 

Section 2.3 presents an algorithm for solving any equation 
in a free nilpotent group of class k relative to having an 

algorithm which will solve systems of kth power free diophantine 

equations of degree k. It is then shown that the theory of 
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nilpotent groups of class 2 is of nullary cardinality type. 

Section 2.4 is a more detailed study of unification in 

nilpotent groups of class 2. We give a more accurate description 

of the square free diophantine-equations-of degree 2 that. occur 

and label them T-equations. In section 2.3 we showed that in 

general the theory of nilpotent groups of class 2 is nullary. We 

now consider a two-sorted theory of nilpotent groups of class 2 

where the sorts pick out the elements of the commutator 

subgroup. In this two-sorted theory the cardinality type, in 

general, becomes dependent upon the cardinality type of-systems 

of T-equations rather, than being nullary (it is In any case 

infinitary). We then briefly discuss work undertaken by Repin 

(see 1.3) which considers problems in just one-variable. 

Section 2.5 extends the idea introduced in 2.4 (for 

nilpotency class 2) of passing to a two-sorted theory to passing 

to a k-sorted theory for nilpotency class k. - 

We close this chapter by relating the work done here to work 

undertaken by U. Martin on special p-groups (see 1.3). Special 

p-groups are a certain kind of nilpotent group of class 2. We 

also extend these to higher nilpotency class. 

1.1.4 Chapter 3 

In this chapter we turn our attention to the-, consideration of 

the decidability of the unification problem in nilpotent. groups. 

Section 3.1 is an introduction to the chapter. 

In 3.2 we introduce a particular free nilpotent group of 

class 5 (which we call F). We also construct the six basic 

commutators (of weight 5) of F. The collecting process is then 

used to derive certain facts (Lemmas 3.2.2 and 3.2.3) about 
these basic commutators. 
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We begin 3.3 by recalling the Matiyasevitch result (which 

says that the problem of solving arbitrary diophantine equations 

is undecidable) in the form in which we require it. We then show 

that the unification problem for nilpotent groups of class 5 is 

undecidable by considering F and reducing the problem to the 

arbitrary diophatine equation problem introduced above. This 

result is then extended to nilpotency class > 5. 

In 3.4 we close this chapter by briefly discussing the 

decidability of the unification problem when restricting to 

problems in one variable only. This one variable work was 

originally considered by Repin (see 1.3) although he considered 

equation solving in free nilpotent groups (it is shown in 1.4 

that this is equivalent to the unification problem). 

1.1.5 Chapter 4 

In this chapter we turn our attention away from nilpotent 

groups toward partially commutative monoids. Section 2.1 is an 

introduction to the chapter. 

In 2.2 the rather complicated systems of diophantine 

equations (which we call p-systems), that occur naturally later 

on, are introduced. The two classes of structures (which we call 

N and n) that we will be considering are then presented. 

In 4.3 we first show how to write words lying in a member of 

N in a certain canonical form. We then construct an algorithm to 

solve equations in any member of N relative to having an 

algorithm which will solve p-systems. We then present an example 

of the algorithm in action and show that there is no direct way 
of proving the equivalence of the problems of solving p-systems 

and solving equations in the members of N. 
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In 4.4 we consider solving equations in the members of It. 

These structures are 'more' free than those in N but equation 

solving in the members of f, is much more difficult than in the 

members of N and these difficulties are discussed. It is shown 

that they do not arise in the 'smallest' elements of Tt, i. e. the 

two three-generator elements, but that they cannot be avoided 

when considering more than three generators. 

In 4.5 we consider extending the work done in this chapter 

in similar directions to those taken in Chapter 2. We mention 

the extension of this work to partially commutative monoids that 

are less commutative and this corresponds to-the idea of higher 

nilpotency class. We also consider the inclusion of the axiom xP 

= 1, for some odd prime p. This turns the monoid into a group 

and as such has been considered in Chapter 2. We also consider 

cardinality type and problems in just one variable. 

1.1.6 Chapter 5 

This chapter concludes the thesis by providing a summary 

of the results obtained and presenting some directions for 

future research. 
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1.2 Preliminary definitions and notation: 

We introduce here, not only the basic definitions and 

notations that we will be using throughout this thesis, but also 

some integral concepts that provide the background to the 

results presented in the subsequent chapters. 

1.2.1 First order languages and theories 

Let L be a first order language with equality as described in 

[23] or [51]. We will be using the standard definitions of 

L-terms and L-formulas which can again be found in [23] or [51]. 

We will say that an L-formula ý is an L-sentence if every 

variable of ý falls under the scope of a quantifier in 0. A set 

of L-sentences closed under deduction will be called an 

L-theory. An L-theory is called an equational theory if the 

equality predicate is the only predicate which appears in the 

L-sentences of the L-theory and if it is axiomatized by 

universal sentences. 

A literal is an atomic L-formula or the negation of an 

atomic L-formula. 
- A positive literal is simply an atomic 

L-formula and a negative literal is the negation of an atomic 

L-formula. A clause is a disjunction of literals. A Horn clause 

is a clause with at most one positive literal. A program clause 

is a Horn clause with exactly one positive literal. A goal 

clause is a Horn clause with no positive literals. A logic 

program is a set of program clauses. 
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An L-structure A is a quadruple (A, Relk, Fun- 4,, Con'`k) where : 

(a) A is a non-empty set of objects which the variables of L 

range over. 

(b) RelA = {R, 4 :R is a relation symbol of L and R' is a 

relation on A which is an interpretation of R (having the 

correct arity) } 

(c) Fun" ={ fA :f is a function symbol of L and fk is a 

function on A which is an interpretation of f (having the 

correct arity)} 

(d) Conk = {c`4 :c is a constant symbol of L and c' is a 

constant in A which is an interpretation of c}. 

Let A be an L-structure and let ' be an L-formula. We define 

4 being true in A (written A 0) in the standard manner 

(again see [23]or [51]). A is said to be a model of an L-theory 

E if A4 for every 4E E. We denote the class of all models 

of E by Mod (E) . 

Now having introduced the idea of a model (of an L-theory E) 

we wish to consider certain types of mappings between different 

models of E. We will be looking at isomorphisms and, in 

particular, homomorphisms. Let A and B be L-sructures. A map 

F: A -+ $ is said to be an isomorphism if it maps A 1-1 onto B 

and: (a) For each n-place relation symbol R of L 

A= R(al, ..., an) a 13 R(F(a, ),. ... F(an)) 

for every al,... , an e A. 
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(b) For each n-place function symbol f of L 

a,, )= f$ (F (al) , -..., F (an) ) 

for every (al,..., an) 6 An. 

(c) For each constant symbol, c of L 

F(CA) = c$. 

F is said to be a homomorphism if it maps A into B and (a) is 

replaced by 

(a') For each n-place relation symbol R of L 

R (al, ... ý an) =: > $R (F (al) ý ... ,F (an) ) 

where a1,..., an e A. 

F is said to be an endomorphism if it is a homomorphism from 

A to A. 

As we will show in 1.4, the idea of a-free model is very 

important when we wish to consider unification from a semantic 

point of view. We now introduce this concept. Let K be a set of 

L-sructures and let AeK. - A Is said to be free in K if there 

is XcA (called a free basis) such that for any 13 eK and any 

map p: X -'B, p extends to a unique homomorphism from A to B. 

Suppose we have an L-theory E, then A is said to be a free 

model of E if A is free in K= Mod (E) . 
Now let us consider the idea of unification in a 

particular L-theory. 
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1.2.2 Unification 

Let L be a first order language with equality and let E be 

an L-theory. A substitution is a mapping from the set of 

variables of L to the set of. terms of L. Any substitution is 

equal to the identity mapping in all but a finite number of 

cases so it can be represented as a finite set {ti/xl,..., tn/xn} 

where the xi are variables of L and the ti are L-terms. 

Let V be a set of variables of L. Two substitutions a, O 

are equal over V, a=E 0IVI, if Vx EV xa=E xO (substitutions will 

be written on the right). 

We shall consider the following quasi-ordering on 

substitutions: 

GZE 0 IVI if AX=E Q IVI for some ?, 

(from now on when the set of variables V is understood we will 

omit the IVI from the notations =E IVI and SE IVI). 

This is not a partial ordering but can be made into one in 

the canonical way i. e. we factor out by the relation (on the set 

of all substitutions) which consists of the pairs of 

substitutions which are instances of each other in the theory E. 

Suppose we have two L-terms s, t. Ois said to unify s and t 

in E if sO=E t0. We denote the set of all unifiers of s and t by 

UE(s, t). A complete set of unifiers of s, t is a set cUE(s, t) such 

that: 

(1) cUE(s, t) c UE(s, t) . 
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. (2) VAe UE (s, t) 30e CUE (s, t) ( OZE a Ivariables of st l) 

cUE (s, t) is called a set of most general unifiers, written 

µcUE(s, t) if and only if, in addition, we have: 

(3) Ve, ae cUE (s, t) aZE 0a=0 

A unification algorithm for a theory E is an algorithm which 

takes as input an arbitrary pair s, t of L-terms and generates a 

non-empty subset of UE(s, t), provided s, t are unifiable (and if 

not, it reports the fact). 

The Unification Problem for a first order theory with 

equality E is, 'given any two terms, s and t, of E can we 

algorithmically find a substitution of the variables of s and t 

which will satisfy s=t in EVi. e. the unification problem 

for E asks whether or not there is a unification algorithm for 

E. 

A minimal unification algorithm is one which generates'some 

pUE (S' t) . 

The cardinality of pUE(s, t) defines the following classes of 

L-theory: 

(a) An L-theory is of cardinality type unitary if, for any 

unifiable L-terms sit some RUE(s, t) exists and IpUE(s, t)I = 1. 

(b) An L-theory is of cardinality, type finitary if for any 

unifiable L-terms s, t some µUE (s, t) exists and I JUE (s, t) I is 

finite. 

(c) An L-theory is of cardinality type infinitary if for any 
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unifiable L-terms s, t some pUE(s, t) exists and there exist 

L-terms s', t' such that IµUE(s', t')I is infinite. 

(d) An L-theory is of cardinality type nullary if it is not in 

(b) or (c) . 

We may use similar terms to describe the solution of 

equations (with arbitrarily many unknowns) in particular models 

of E (see 1.4). Thus we may say that an equation has a, most 

general solution provided all other solutions are substitution 

instances of it. We may talk about a particular model of E being 

unitary if the set of most general solutions of any equation in 

the model has cardinality 1, and so on. 

We have defined unification for a single pair of L-terms s, t. 

Bückert, Herold and Schmidt-Schauss [7] have presented a 

specific L-theory such that a set of most general unifiers 

exists for all problems of the form s=t?, where s and t are 

unifiable, but such that a set of most general unifiers of a 

system si = ti ? (1 5 i5 m) does not necessarily exist. 'For this 

reason unification problems are defined by means of systems in 

some places in the literature. Throughout this thesis we shall, 

however, consider unification for a single pair only. In Chapter 

4 we are mainly concerned with showing that the problem of 

algorithmically solving equations in certain partially 

commutative monoids reduces to the problem of algorithmically 

solving certain special types of systems of diophantine 

equations which we will call "p-systems" (see 4.2.1). If we were 

to consider the problem of solving m equations simultaneously in 

one of our monoids then we could use exactly the same methods as 
in 4.3 to reduce the group-theoretic problem to the 
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number-theoretic problem of solving m p-systems simultaneously. 

From a number-theoretic point of view this may be more difficult 

but from a group-theoretic point of view the reduction is no 

more complicated than the single-equation case. 

1.2.3 The Resolution Principle 

Suppose tl and t2 are L-terms which are unifiable in the 

empty theory (i. e. the theory that does not have any non-logical 

axioms) and that 0 is the most general unifier of tl and t2 (the 

empty theory is unitary [58)). Suppose also that C1 and C2 are 

clauses. 

The resolution rule says that from Cl vp (tl) and C2 v -p (t2) 

we are allowed to derive C10 v CO (where p is an atomic 

L-formula) 
. 

The way most logic programming systems work is that they add 

a goal clause to a logic program, which is the negation of the 

formula to be proved, and then they attempt to derive a 

contradiction using resolution. 

Suppose t1, t2 and t3 are L-terms where tl and t2 are 

unifiable in the empty theory. Suppose that '=' is a symbol of L 

is the symbol that stands for equality) and that 0 is 

the most general unifier of tl and t2. 

The paramodulation rule says that that from C1 v p. (tl) and 

C2 V 't2 = t3' we can derive C10 IC20 v pO ((t30)) where 

pO([t3ej) denotes the replacement of exactly one occurrence of 
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tie by t30 in pe. 

This rule arises as part of an attempt to design a logic 

programming system which can handle equality. It is used in 

conjunction with resolution. 
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1.3 Related work 

One of the most important proof rules proposed in 

the-field of automatic theorem proving was the resolution 

principle that we defined in 1.2.3 above. This was presented by 

J. A. Robinson (58] in 1965. The concept of unification is an 

integral part of this resolution principle. Robinson presented 

an algorithm which would generate a unique, most general unifier 

of two first order-terms if they were unifiable. This algorithm 

is for the empty theory. -The resolution principle (and hence 

unification) has since proved to be of immense importance in 

logic programming., I, 

The modern ' computer programming language PROLOG uses 

resolution and a unification algorithm for the empty theory. The 

unification algorithm normally used, however, omits the occur 

check (this is defined in 1.4.2) in an attempt to improve 

efficiency and hence makes PROLOG unsound. Another drawback of 

PROLOG is that it does not have full first order equality. The 

introduction of equality axioms to a logic program creates many 

implementation problems. If there are several function symbols 

appearing in the program then it is-impractical to introduce the 

large number of axioms that would be required to represent the 

substitutivity of equality. Also the equality axioms tend to 

generate many useless clauses. For example let us consider the 

axioms of reflexivity and symmetry as clauses in a logic program 

i. e. we have (1) x=x and (2) x=yy=x. Now we can apply 

the substitution {x/y} to clause (2) and'resolve with clause 

(1). The result of this application of the resolution rule, 
however, is the clause x=xi. e. -the axiom of reflexivity that 

we already had. 

There have been a number of attempts to design a logic 
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programming system which can handle equality. Robinson and Wos 

[59] in 1969 proposed the addition of the paramodulation rule 

(defined in 1.2.3 above) to resolution. Goguen and Meseguer [19] 

presented the language EQLOG which uses 'narrowing' to solve 

equations and term rewriting to handle functions ('narrowing' is 

the paramodulation rule restricted to constant terms). Malachi, 

Manna and Waldinger [45] designed the language TABLOG. This is a 

programming language based on first order logic with equality. 

It does not use resolution as an inference rule but is still 

heavily dependent upon unification. W. A. Kornfeld [37] introduced 

'PROLOG with equality' which at first uses the normal 

unification algorithm for the empty theory. If two terms are not 

unified by this algorithm then the system switches to an 

alternative algorithm which attempts to prove the two terms 

equal. If this algorithm succeeds then it provides the variable 

substitutions. 

In 1972 G. Plotkin [55] considered unification for the theory 

consisting solely of the associativity axiom (i. e. the theory of 

semigroups). The motivation behind this was that the problems 

created by the inclusion of certain axioms among the axioms of 

the logic program could be removed by omitting the 

problem-causing axioms and incorporating them into the 

unification algorithm. It was shown here that the theory of 

associativity is infinitary i. e. there exist problems in this 

theory which have an infinite number of most general unifiers 

(see Examples 1.5.5 and 1.5.6). In the mid seventies Siekmann 

(65] and Stickel [68], [69] independently produced unification 

algorithms for the theory of commutativity and for the theory of 

abelian semigroups which is the combination of the theories of 

associativity and commutativity. The algorithm for abelian 
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semigroups can be trivially turned into one for abelian monoids. ` 

These theories were shown to be finitary i. e. any unifiable 

problem in these theories has a finite number of most general 

unifiers. The late seventies and early eighties saw a massive 

increase in the number of special unification algorithms. Such 

algorithms were constructed for the theories of idempotence 

[56], and commutativity with idempotence [56] both of which are 

finitary. The theories of distributivity [71], distributivity 

with commutativity [70], distributivity with associativity [70], 

and distributivity with both associativity and'commutativity 

[70] were all shown to be infinitary. 

Many unification problems have arisen which have been 

concerned with group theory. This is partly because some of the 

originally famous algorithmic problems did arise in group 

theory. Examples are the word problem, the conjugacy problem and 

the isomorphism problem. Suppose we are given two words lying in 

a particular group. The word and conjugacy problems ask if there 

is an algorithm to decide whether or not the two words are equal'' 

or conjugate respectively. The isomorphism problem asks whether 

or not two group presentations give isomorphic groups. It is 

clear that these problems are essentially computational in 

nature. Note the difference between the word problem and the 

unification problem. The unification problem asks whether or not 

the words can be made equal by variable substitution. A' 

substantial number of the early workers in this area were group 
theorists, not only because of the existence of these classical 

algorithmic problems, but also because group theory provided a 

suitable environment in which to set and solve computational 

problems. J. Neubuser in 1967 presented a paper [52] which is a 

survey of the work carried out in the area of computational 
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group theory up to that time. Although somewhat out of date, 

this survey provides a good idea of the many varied 

computational problems arising in group theory. This paper 

appears in a volume entitled 'Computational Problems in Abstract 

Algebra' edited by J. Leech [40]. Most of the papers appearing in 

this volume are concerned with groups. It was in this volume 

that the Knuth-Bendix completion procedure was first presented 

[36]. The construction of this procedure is now an important 

landmark in the area of theoretical computer science. Indeed it 

is one of the cornerstones of the field of term-rewriting. More 

recently, J. Cannon has devised a'software package called Cayley 

(9) which is concerned solely with the solving of problems in 

groups. 

We have already briefly discussed the early work in 

unification for semigroups and abelian semigroups. Makanin in 

1977 [43] gave an algorithm to decide whether or not any given 

word equation has a solution (i. e. whether or not there exists a 

solution to a unification problem in the theory of semigroups). 

H. Abdulrab and J. Pecuchet (1] have, very recently, presented a 

brief survey of the results in this area in which they outline a 

simplified version. In this paper they use the pig-pug method 

first introduced by Lentin [41] in 1972. This method enumerates 

the set of most general unifiers which appear as labels of paths 

in a graph. For uncomplicated problems the pig-pug method works 

quite well. There are, however, some problems for which the 

pig-pug graph is infinite. In this case one has to resort to 

Makanin's algorithm. An algorithm to enumerate the set of most 

general unifiers, for any problem, was presented by J. Jaffar 

[29] in 1990. In 1983 Makanin [44] showed that the unification 

problem for the theory of groups was decidable. He uses his 
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algorithm for semigroups, mentioned above, to achieve this. 

J. M. Hullot in 1980 [26] provided a minimal unification 

algorithm for the theory of quasi-groups and showed that this 

theory is finitary. In 1984 Lankford, Butler and Brady [39] 

presented a unification algorithm for the theory of abelian 

groups. Repin [57] in 1985 constructed an equation solving 

algorithm (restricted to problems with just one variable) for 

free nilpotent groups of class 2. Repin also shows in the same 

paper that such an algorithm does not exist for free nilpotent 

groups of class c, where C>1020. This immediately implies that 

(when restricting to one variable) there is a unification 

algorithm for the theory of nilpotent groups of class 2 and that 

the unification problem. is undecidable for nilpotent groups of 

class c, where C>1020 (see Theorem 1.4.2). The results presented 

in Chapter 2 study the extension of this to problems containing 

any number of variables. In Chapter 2 we also consider nilpotent 

groups of class 
,k 

for any integer k. V. A. Romankov [60] in 1977, 

showed that the endomorphic reducibility problem is unsolvable 

for free nilpotent groups of class Z 9. This again immediately 

implies that the unification problem for such groups is 

undecidable. A result presented in Chapter 3 reduces this 

nilpotency undecidability boundary to, class 5. Romankov [61] 

also showed in 1979 that the problem of algorithmically solving 

arbitrary equations in a free metabelian group is undecidable. 

Hence the unification problem for the theory of metabelian 

groups is undecidable. The extension of this result to groups of 
higher solubility class is trivial. Herold and Siekmann [25] 

extended the abelian semigroup results to allow unification in 

abelian semigroups with uninterpreted function symbols (we will 
discuss the theory of abelian groups with and without 
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uninterpreted function, symbols in 1.5). We consider nilpotent 

monoids in Chapter 4. U. Martin and T. Nipkow [48] showed in 1986 

that the theory of boolean rings is unitary i. e. any unifiable 

problem in this theory has a unique most general unifier. 

U. Martin has recently constructed a unification algorithm for 

special p-groups [47]. The relationship between this work and 

the work on nilpotent groups of class 2 is discussed in Chapter 

2. 

In 1966 W. F. Gould [20] showed that there are some 

problems in higher order theories where there exists an 

infinitely descending sequence of unifiers i. e. there is a 

unifiable problem, such that for any unifier 0 there is another 

unifier 9' such that 0''< 0. Theories with this property are 

called nullary theories. The problem of whether or not first 

order nullary theories exist was an open problem for quite some 

time. It was not until 1983 that Fages and Huet (17] solved this 

by constructing a specific first order theory (i. e. the theory 

comprising of the axioms '1. x = x' and 'f(x. y) = f(y)') which 

they showed to be'nullary. In 1986 F. Baader (3] showed that the 

theory of idempotent semigroups is nullary. We will show in 

Chapter 2 that a single-sorted theory of nilpotent groups of 

class k is another first order theory which is nullary. We will 

also propose a method for getting round this problem by passing 

to a many-sorted theory. 

There are many other areas of unification theory that are 

attracting considerable research activity. Unification and its 

applications in many-sorted logics has been considered by 

C. Walther [72], A. G. Cohn (12] and M. Schmidt-Schauss (63]. 

There has been much work recently on the combination of 

unification algorithms. Suppose we have a unification algorithm 
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for the theory E1 and one for the theory E2. The problem posed 

in this field is to determine-if-we can merge these algorithms 

together to produce a unification algorithm for the theory 

E1 + E2. Work in this area has been undertaken by K. Yellick 

[73], C. Kirchner [33], A. Herold [24] and M. Schmidt-Schauss 

[64). 

A blossoming research area at the moment is that of 

constraint logic programming. It has already been mentioned 

above that certain axioms can be taken out of the logic program 

and grafted into the unification algorithm as long as we can 

solve the unification problem 'for the theory under 

consideration. ' However, unification theory has only been 

concerned with theories that contain just one predicate (i. e. 

the equality' predicate) . Constraint solving goes one step 

further and allows us-to introduce inequalities as well as other 

specialised predicates. The set of axioms involving these other 

predicates, ''as well as equality, is known äs a set of 

constraints. In a constraint logic programming system Robinson's 

unification algorithm for the empty theory is replaced, in the 

resolution step, by an algorithm to solve a 'system of 

constraints. Examples of current constraint logic programming 

systems are CHIP, which was developed by M. Dincbas et al (16], 

PROLOG II (13] and PROLOG III (14], 'which were both developed by 

A. Colmerauer. J. Jaffar and J-L. Lassez""in 1987 [30] gave' a 

theoretical treatment of logic programming with constraints. 

C. Kirchner, H. Kirchner and'M. Rusinowitch [34] have considered 

constrained deduction for equational logic and for first order 
logic with equality. J. Cohen'(11] has recently presented'a 

survey of the work carried out'so far in the field of constraint 
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logic programming. However, constraint solving is not concerned 

entirely with logic programming. Some research is currently 

taking place to solve more general problems using constraint 

solving methods. R. Feldman and M. C. Golumbic [18] have presented 

optimization algorithms for the student scheduling problem using 

constraint solving. 

Many problems in unification theory reduce to the problem 

of algorithmically finding solutions for diophantine equations. 

The work presented in this thesis gives several examples of such 

problems. Lankford, Butler and Brady's algorithm [39] for 

abelian groups requires an algorithm to compute a basis for the 

solution space of systems of homogeneous linear diophantine 

equations as well as an algorithm to give a solution for 

arbitrary systems of linear diophantine equations. The 

unification algorithms for abelian semigroups and for abelian 

semigroups with uninterpreted function symbols ([68], [69], [25]) 

also rely heavily upon the algorithmic solutions of linear 

diophantine equations (see [28] or [35] for a presentation of 

these algorithms). In 1970 Matiyasevitch (50) showed that the 

problem of the existence of integer solutions for an arbitrary 

diophantine equation is undecidable (solution to Hilbert's tenth 

problem). The undecidability results of Romankov [60], [61] and 

Chapter 3 rest upon this result. 

Apart from the uses already mentioned, in logic programming 

and equational logic programming, unification theory has other 

applications in many varied areas of computer science. 
Unification algorithms are used in programming languages, 

term-rewriting, natural language processing and in modal and 
temporal logics which are gaining importance in the field of 
artificial intelligence. In particular unification in 
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commutative theories. has important uses which crop up in several 

different fields of computer science. A unification algorithm 

for abelian semigroups is used in term rewriting and in a number 

of different programming languages. -As has been mentioned, the 

main motivation for the research presented in this thesis is 

that it may prove very useful to have unification algorithms for 

partially commutative. theories. Nilpotency can be viewed as a 

partial commutativity condition. The lower. the, nilpotency class 

of the theory the more commutative is that, theory. For example, 

nilpotent groups of class 1 are abelian groups. 

d 

,.. 
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1.4 Unification and free models 

Unification as we have defined it is a syntactic 

notion. As can be seen in 1.2.2 it is defined for first order 

theories with equality. In many of the results presented in this 

thesis we prefer, however, to"argue semantically i. e. in a model 

of the, theory. The result of this section allows us to do so in 

cases where the appropriate free models exist. However, this 

result is of no use if the theory under consideration does not 

posess free models. We know [5] that a theory E has a free model 

if it is an equational theory and the theory of nilpotent groups 

of class k is equational. We shall show, however, in 4.5 that a 

free model does not exist for the theory of'nilpotent monoids. 

Hence in the case of nilpotent monoids we cannot call upon the 

result of this section. 

1.4.1 Definitions: 

Let L be a first order language with equality, let E be an 

L-theory and let A be a free model of E on the set 

X= {xl, x2,... } of free generators, where X is a countably 

infinite set of distinct elements which are going to be thought 

of as variables ranging over A. Let TL be the set of L-terms. We 

now define a map 114: TL -. A inductively on te TL as follows: 

If t is a variable vi let I, 4(vi) 
= xi E X. 

If t is a constant symbol c let I' (c) = C4. 

If t=f (tl, .., tn) where f is an n-place function symbol and 

tl, .., to are L-terms then I''4 (t) = f'4 Wk (tl) , .., IA (tn) ). 
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Now consider the unification problem tl = t2 ? in E. The 

following theorem allows us to work in A rather than in E: 

Theorem 1.4.2: 

Suppose a substitution 0 and unification problem tl = t2 ? are 

given. Then: 

tle =E tee a I' (tle) = IA (tee) 
Proof : 

From left to right the implication is obvious since A is a 

model of E. This is "soundness" (see [23] or [51]). 

Conversely assume that I94 (t18) = I-4 (t28) . Then by the Gödel 

Completeness Theorem (see [23] or [51]) it suffices to show that 

Bk tle = t20 for any 13 e Mod(E) and assignment to members of B 

of any free variables occurring. Let u be just such an 

assignment. 

Now let p: X -* 13 be defined by p (xi) =u (vi) . We know that 

because A is free p can be extended to a unique homomorphism 

h: A -' $. 

Since h is a homomorphism we have that h (I' (tl6)) =h (I"4 (t2A)) . 

Now we show that h(I'(t)) = t$ where te TL by induction on the 

construction of t. 

If t is a variable vi then IA (vi) = xi eX and h (xi) =p (xi) _ 

u(vi) = t$. 

If t is a constant symbol c then I'A (c) = c, 4 and because h is a 

homomorphism h (cam) = c$ = t$ . 
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If t=f (tl, .., tn)' where f is' in n place p'function symbol and 

tl, .., to are members of TL then I4 (t) = f' (I4 (tl) , .., IA (tn)) and 

we have that 

h(IA(t)) = f$ (h(I'(tl)) ,"", h(I'4(tn)) ) 

(because 'h is a homomorphism) 

=0 (tl$,.., t 13) by induction 

= tn. 

Therefore we have t16$ = t2O in B for any assignment of the free 

variables occurring in t1e, t20 to elements of B 

i. e. 11 k tle = tee. 
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1.5 Some unification results and examples 

We now look at some established results, together with 

examples, in order to introduce some of the concepts that we 

will be taking as read later on. The most widely used of all 

unification. algorithms is the algorithm for the empty theory 

which we will denote by 0. This was the first ever unification 

algorithm. 

Theorem 1.5.1 (c. f [10] or [42]): 

There is a minimal unification algorithm for 0. 

Moreover, 0 is unitary. 

Remark 1.5.2: 

Suppose a unification problem tl = t2? in 0 is given. The 

algorithm of Theorem 1.5.1 works by attempting to unify each 

subterm of ti and t2 from left to right. If upon attempting to 

unify two subterms one subterm is a variable`x and the other a 

term t then we apply the substitution t/x to the problem. We can 

only do this, however, if the variable x does not occur in the 

term t. For the unification algorithm to work a check, which is 

called the occur check, must be carried out to ensure that this 

is the case. The necessity of the occur check can be seen by 

considering the problem f(x) = x? in 0 where x is a variable and 

f is one-place function symbol. Clearly there is no solution, 

but without the occur check the unification algorithm of Theorem 

1.5.1 would carry on substituting f(x) for x infinitely many 

times. 

The algorithm of Theorem 1.5.1 is non-deterministic in the 

sense that there may be more than one possible substitution to 
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make when the attempt is made to unify subterms. Different 

substitutions will, however, produce the same most general 

unifier up to variable renaming. This highlights the remark made 

in l. 2'. 2'that -<E "(in this case E is 0) is a quasi-ordering which 

can be made into a partial ordering in the canonical way. 

Definitions 1.5.3: 

Let L be a first order language consisting of just one 

two-place function symbol f. We will use the following 

notations: 

(a) C denotes the theory consisting of the commutativity axiom 

only i. e. Vxdy(f (X, Y) =f (y, x)) . 
(b) A denotes the theory consisting of the associativity axiom 

only i. e. VxVy`dz(f(f(x, y), z) = f(x, f(y, z))). 

Note: When this holds we can consistently write xy for f(x, y) 

and there is no need to insert brackets. 

(c) C+A denotes the theory obtained by combining both of the 

above axioms (for the same f). 

The following theorem gives us results about the existence of 

minimal unification algorithms and the cardinality type of the 

theories defined in 1.5.3. 

Theorem 1.5.4 ([55], [65], [68], [69]): 

(a) There are minimal unification algorithms for each of C and 
C+A, and both theories are finitary. 

(b) A is infinitary. 
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Let us now look in some detail at the theories we have 

introduced: 

Example 1.5.5: 

Suppose the unification problem f (x, a) =f (a, x) ? -is given 

where a is a constant and x is a variable of the language under 

consideration. We consider this problem in each of the theories 

introduced above: 

1.5.5.1: Let us first consider this problem in 0. Here the only 

possible solution is 0= {a/x} and this is the most general 

unifier. 

1.5.5.2: We now consider the problem in C. In this case we can 

substitute any term for x and make use of the commutativity 

axiom. 

So 0 is a unifier'as it was for 1.5.5.1 but here a= {b/x} 

(where b is a constant of L) is also a unifier (note that a is 

not a unifier in 1.5.5.1). However, a is not a most general 

unifier since T, = {t/x} (where t is any term of L) is also a 

unifier, ca and r *C a (even up to equivalence in C) . In fact 

T is the most general unifier for°this problem in C. Note that 

this is a special case of a problem in C where we have one most 

general unifier. In general we have finitely many most general 

unifiers. 

1.5.5.3: We now consider the problem in A. As for 1.5.5.1 we 

have that 0 is a unifier. However, the substitutions a, t that 

were unifiers in 1.5.5.2 are'not unifiers here. Clearly in this 
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case the set of 'substitutions {an/x: ne N} forms the set of all 

unifiers of the problem in A. This is an infinite set of 

constant values and thus illustrates the infinitary nature of A. 

1.5.5: 4: In C+A for this particular problem we have exactly the 

same situation that we had in 1.5.5.2. 

We will now consider a more involved problem: 

Example 1.5.6: 

Suppose we have the unification problem 

f(x, f(a, f(b, y))) = f(y, f(b, f(a, x))) ? 

where a, b are constants and x, y are variables of the language 

under consideration. We can simplify the notation by writing the 

problem in the form 

x (a (by)) =y (b (ax) . 

We will again consider the given problem in each of the 

theories introduced above: 

1.5.6.1: We will first consider the problem in 0. We can see 

that although we can unify the first two subterms from the left 

x, y we cannot unify the second two, the constants a, b. Thus 

there cannot be a solution of the problem in 0. 

We will now show that in C the problem is also insoluble. 

1.5.6.2: If we look at the first subterm on the left hand side 

of the equation it can be seen that we have the choice of 

attempting to unify x with y or (by use of the commutativity 

axiom) x with b(ax). It is clear that we cannot unify x and 

b(ax). Therefore, if there is a solution to the problem we must 

have x=y. We are then left with the problem a(bx) = b(ax). As 
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a, b are constants they will not unify so (by use of the 

commutativity axiom again) we have to unify ax with a which is 

impossible (without the presence of an identity). Hence the 

problem has no solution in C. We will now show that not only do 

we get a solution of the problem in A but we get infinitely many 

solutions. 

1.5.6.3: The problem can be rewritten as xaby = ybax ? because 

we are working with-the associtivity axiom. By considering this 

problem we show that A is infinitary. The simpler. problem of 

1.5.5 shows this but we will still consider problem 1.5.6 in 

some detail to provide a non-trivial infinitary problem and to 

provide a clearer exposition of the concepts involved. 

Claim 1: 

The solutions to this are given by On = {an/x, an+i/y}, 

(n Z 0), (Pn = {bn+l/x, bn/y}, (n ý 0), or if we already have a 

solution {u/x, v/y} then ,= {u/x, uabv/y} or r= {vbau/x, v/y}. 

Proof : 

It is clear that x#y so let us assume first that the length 

of x is less than the length of y. We can see that y= xa or 

y= xabv for some (possibly empty) v. 

If y= xa then we obtain xabxa = xabax. Thus xa = ax which means 

that x= an for nZ0, so the solution is 6n. Now if y= xabv 

then substituting this into the equation gives xabxabv = xabvbax 
i. e. xabv = vbax and {x/x, v/y} is also a solution. Thus the 

solution is of the form of yr. c and n can be derived by assuming 

that the length of y is less than the length of x. Hence Claim 1 
is proven. 
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Claim 2: 

There cannot exist a solution in which a2b2 is a subword of 

x or y. 

Proof: 

We use induction on the construction of x and y given by 

Claim 1. 

For the base case x and y are given by On or q n. 

For the induction step x and y are given by 

(a) yr = {u/x, uabv/y} for some solutiön {u/x, v/y} 

or (b) rj _ {vbau/x, v/y} for some solution {u/x, v/y}. 

We will consider cases (a) and (b) in turn : 

(a) By the induction hypothesis a2b2 does not occur in u or v 

so the only way in which a2b2 can occur in y is if u ends with a 

and v begins with b. 

Suppose by way of contradiction that u= u'a and v= bv' for 

some u' and v'. 

.. yr = {u' a/x, u' a2b2v' /y} 

Substituting into the original problem we have 

u'a2bu'a2b2v' = u'a2b2v'bau'a 

u'a2b2v' = bv'bau'a 

.. u' = bull and v' = v'' a for some u'' and v'' 

.. u= bu''a and v= by"a 

Now {u/x, v/y} is a solution to the problem so we have 

bu'' a2b2v''a = by' ababu'' a 

The only way a2b2 can occur on the right hand side of the 

equation is if it occurs in u '' or v'' which contradicts the 

induction hypothesis. 

(b) By the induction hypothesis a2b2 does not occur in u or v so 
the only way in which a2b2 can occur in x is if u begins with 
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a2b or v ends with ab2. Having noted this the proof'follows in a 

very similar manner to that for (a). 

Hence Claim 2 is proven. 

Now assume A is finitary. Then we have a finite number of most 

general unifiers. However, each most general unifier must be 

constant since if a variable occurred we could substitute a2b2 

for it which we cannot do by Claim 2. Therefore we only have 

finitely many solutions which contradicts Claim 1. 

Now because every solution is constant they must all be most 

general. Thus A 'is infinitary. 

1.5.6.4: We now consider the problem in A+C. We can rewrite it 

as xyab = xyab ? and the most general solution in this case is 

trivially {x/x, y/y}. Although we have not given an example which 

shows the finitary nature of A+C, the example we give for the 

theory of abelian monoids (see 1.5.13), which is very similar to 

A+C, provides this. The theory of abelian monoids is A+C 

together with an identity. However, for the moment let us 

consider the theory of abelian groups which we will denote by 

AG. This consists of the group axioms + C. 

Theorem 1.5.7 ((39]): , 

There is a minimal unification algorithm for the theory of 

abelian groups (with free constants). 

Example 1.5.8: 

Suppose we have the problem x3y2z-la2b-3c-1 =1? in AG where 

x, y, z are variables and a, b, c are constants. By Theorem 1.4.2 

this is equivalent to solving the equation in a free abelian 
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group of countably infinite rank. We can express the given 

problem in additive notation to obtain 

3x+2y-z+2a-3b-c=0. 

The algorithm of Theorem 1.5.7 makes use of an algorithm (see 

[28]) which generates a basis of the solution space of the 

homogeneous equation 3x + 2y -z=0: 

R=01 

10 

23 

(writing the solutions as columns). 

We now use an algorithm (see [35]) to generate a particular 

solution: 

S= b 

-a 

-c 

Suppose Y= yl where yi, y2 are new variables and V=x 

y2 y 

z 

then a most general unifier (we will show that it is the most 

general unifier in the next theorem) 0 is given by { (RY + S)/V} 

i. e. rewriting to multiplicative notation 

0= {y2b/x, Y1a-1/Y, Y12Y23c-1/z} 

We now show that this is the only most general unifier (up to 

the relation obtained in the canonical way that was mentioned in 

1.2,2) , 
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Theorem 1.5.9: 

AG is unitary. 

Proof : 

Suppose the problem x1g1... xnqnc1P1... cmPm =1 in AG is given. 

Written additively this becomes 

glxl +... + gnxn + plcl +... +pmcm =0 

where xl,..., xn are variables, cl,..., cm are constants and 

qiº"""ºqnºP1º"""ºPm are integers. Now there is an algorithm [28] 

which computes R= (T-1 r2 ... xs) where {X-1'-r2'"""'Ms} forms a 

basis for the set of solutions of glxl +... +gnxn = 0. A 

particular solution P of 

glxl +... + gnxn + plcl +... +pmcm =0 

can also be computed [35]. The unifier given by Theorem 1.4.6 is 

then 0= {(RY + P)/V} where Y= yi and V= 1xl 

yS xn 

(yi,... ys are new variables). 

In an attempt to simplify matters we will let 

0= {01/xl, ..., 0n/xn}. 

Suppose a= {ai/xl,..., ßn/xn} is any solution of the problem. We 

must show that there exists a substitution X such that 0% = a. 

Now applying the substitutions 6, a to the problem and subtracting 

yields ql (al - 81) +. .. + qn (an -Os) =0. 
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Therefore there exist integers 

x1, "".. Xs such that al-el 

a2 - e2 

an - On 

+ ... + ýýrs = ). 1T-1 + A-2 
-r-2 

and so a=0+x, 1 1+ 1212 + ... + XSIS 

={ R y1 + X1 + P x1 }. 

Ys + xs 
_xn 

If we let X={ (y1 + X1) /y1, ..., (ys + ? s) /ys} then o% = a, as 

required. 
r; 

Remark 1.5.10: 

Lankford, Butler and Brady showed in [391 that the theory of 

abelian groups is finitary. They are, however, 'considering the 

theory of abelian groups with uninterpreted function symbols 

(which we will denote by AG'). As it is defined above AG has 

only the group operation function symbol. The following example 

will highlight the difference between the two and illustrate the 

finitary nature of AG'. 

Example 1.5.11: 

First of all, suppose the problem xy = ab? is given in AG 

where x, y are variables and a, b are constant symbols. Then the 

most general solution is 0= {tab/x, t--/y}. 
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Now, suppose the problem f(x)f(y) =f (a) f (b) ? is given in 

AG' where f is a one place uninterpreted function symbol. This 

problem is not unified by 0. It is, however, unified by 

a= {a/x, b/y} and T= {b/x, a/y}. 

Clearly a, T are not instances of each other in AG' (but they are 

instances of 0 in AG). 

We will now close this introductory chapter with a brief look 

at the theory of abelian monoids which we will denote by AM. 

This is A+C together with an identity. We have the following 

theorem. 

Theorem 1.5.12 [25]: 

There is a minimal unification algorithm for AM. 

Moreover AM is finitary. 

Example 1.5.13: 

Suppose we consider the problem of Example 1.5.8 in AM i. e. we 

consider the problem x3y2a2 = zlb3c1? in AM where x, y, z are 

variables and a, b, c are constants. We can express the given 

problem in additive notation-to obtain 

3x + 2y -z + 2a -3b -c=0. 
We now use the algorithm of (28] which generates a basis of the 

solutions of the homogeneous equation over the positive 
integers: 

R= 0 1 

1 0 

2 3 

As auxiliary problems the three equations: 

3x + 2y -z = -2 for a..... (1) 
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3x + 2y -z =3 for b..... (2) 

3x + 2y -z =1 for c..... (3) 

arise. There is an algorithm [25] for generating a-basis of the 

solutions of (1), (2), (3) over the positive integers: 

For (1) this yields { (0,0,2) }, 

for (2) { (1,0,0) (0,2,1) } 

and for (3) { (0,1,1) , (1,0,2) 1. 

The product of these three bases is: 

{( (0,0,2) , (1,0,0) 1 (0, -1,1) ), ( (0,0 , 2) , (1,. 0,0) 1 (1,0,2) ) ", 

( (0,0,2), (0,2,1), (0,1,1) ), ( (0,0,2), (0,2,1), (1,0,2) ) }, 

and this provides a complete minimal set of particular 

solutions. For instance from the first element of the product we 

can derive the matrix 

P1 = 0 1 0 

0 0 1 

2 0 1 

and similarly we can derive the matrices P21P3 and P4 

corresponding to the other elements of the product. 

Let U= lull ,A=a and V= "x ' 

U2 by 

z 

then for i =1,.., 4 the most general unifiers are: 

ai = {RU +PjA/V} 

It is easy to check 

(1) that none of these are instances of each other, 
(2) that in AG each is an instance of the most general unifier 
generated in Example 1.5.8, and 

DS Ut4W B UBR X' 
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(3) any unifier is an instance of a member of this set. 

Now having introduced the basic ideas and concepts of 

Unification Theory and having looked at some of the established 

results we can begin to consider the main aim of this research 

project which is to investigate unification and equation solving 

in partially commutative theories and structures. We start 

Chapter 2 by considering nilpotent groups. 
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Chapter 2: Unification in nilpotent groups 

of class k 

2.1 Introduction: 

As we have seen in Chapter 1 unification algorithms have 

been constructed for various equational theories. Of particular 

interest are varieties of groups and semigroups. We have had a 

brief look at abelian groups. The case of groups was discussed ir. 

[44]. We study here an intermediate case, that of nilpotent 

groups of class k, some fixed k. We remark that in contrast with 

the two instances just cited the results presented in Chapter 3 

show that unification for nilpotent groups of class k is 

undecidable for k 2t 5. Repin [57] showed that the problem of 

solving equations in just one variable is undecidable for 

k> 1020. For k=2 in the same paper he gave an algorithm to 

solve equations in just one variable (by Theorem 1.4.2 this is a 

unification algorithm for k. = 2, for problems in just one 

variable). Here we extend this by giving relative unification 

algorithms, for any k and any number of variables, based on 

lifting Lankford, Butler, and Brady's algorithm [39] up the 

factors formed from G by the terms of the lower central series. 

The algorithms are relative to solving kth power free diophantine 

equations of degree k. 

Now as we remarked earlier, unification, as we have defined 

it, is a syntactic concept. This is, however, one of the many 

cases where it is generally easier to argue semantically, and by 

Theorem 1.4.2 this amounts to solving equations in an appropriate 
free object (in cases where this exists), here a free nilpotent 

group of class k and infinite rank. When k=2 we have a 
"nullary" theory, i. e. there are certain pairs of unifiable terms 



40 

which. do not possess a most general unifier (it seems likely, but 

has not been proven, that we also have a nullary theory for k> 

2). To attempt to correct this we pass to a many-sorted theory 

where the sorts pick out the terms of the lower central series. 

A related and interesting problem is that of the solution of 

equations in groups where we think of the problem semantically 

from the word go. Unification then amounts to a version of this 

problem where the particular group is free nilpotent of class k 

and infinite rank. The methods also apply to solutions of 

equations in arbitrary free nilpotent groups of class k (of 

finite or infinite rank). We shall formulate the results for 

these and the unification results will follow automatically. 

It has already been mentioned in 1.3 that related work has 

been carried out by Martin [47], who considered unification in 

special p-groups and Repin [57] who considered equation solving 

in free nilpotent groups of class 2 restricted to problems in 

just one variable. We will discuss the relationship between their 

work and the work presented in this chapter. 

f .., 
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2.2 Preliminaries: 

" We now recall the definitions and basic results that we shall 

need: 

41 

ý{ 
1 

Definition 2.2.1: 

The element x ly lxy of a group G is called the commutator of 
4: 

x and y, written [x, y]. We can define commutators. of higher order 

by [xl, """ xn] -I ExV """' xn-1]' xn] . We denote the element 

y lxy by xy. 

The following lemma follows immediately from these 

definitions: 

Lemma 2.2.2: 

If x, y, z are elements of a group then: 

(i) (x, Yz] _ (x, z] [X, YIZ 

(ii) [xy, z] _ [X, z] y [Y, Z] 

(iii) [X, Y] Z= (z, [x, Yl -l l Ix, Y] 

Definition 2.2.3: 

Suppose we have a group G generated by a0, .. , ak. These are 

the basic commutators of weight 1, i. e. wt (ai) =1 for 

i=0, 
.., k. We order these by ai Saj if iSJ. If c and d are 

commutators of G then [c, d) is a commutator of weight 

wt (c) + wt (d) . We order these by d<c if wt (d) < wt (c) : If two 

commutators of weight >1 have equal weight then we order them 

arbitrarily. The basic commutators of weight n are then the 

commutators [c, d] such that : 
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(1) c and d are basic 

(2) wt (c) + wt (d) =n 

(3) c>d 

(4) If c= [e, f] then dZf. 

A group G is nilpotent of class k if there exists a normal 

series G= Go Z G1 z... 2: Gk-1 z Gk =1 such that Gi_1/Gi lies in 

the centre of G/Gi for i=1,2,..., k. If such a series exists 

then Gi can be taken to be [Gi_1, G]. This is called the lower 

central series. We will denote the theory of nilpotent groups of 

class k by NkG. 

Lemma 2.2.4 (c. f. [21] or [53]): 

The basic commutators of weight k of a free nilpotent group of 

class k form a basis for the free abelian group Gk-11 

Lemma 2.2.5 ([21]): 

Suppose c and d are commutators in a nilpotent group of class 

k. Let d0 =d and do+l = [dn, c]. 

Then (1) dc = cd[d, c] 

ý2ý d-1c =c (d, c) -1d-1 

Lk-1/2J 
(3) dc-1 = c-ld fl ä2n 

n=1 

Lk/2j 
(4) d-1c-1 = c-1 H d2n-1 

n=1 

Remark 2.2.6: 

Lk/2J 
( II d2n-1) -1 

n=1 
Lk-1/2j 

fl d2n) -1d 
n=1 

This lemma defines a collecting process which writes any 

element of a nilpotent group of class k in terms of basic 
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commutators of weight Sk that will be ordered from left to right 

by the weight ordering introduced above. That is we pick out the 

leftmost, -smallest commutator that has not yet been collected and 

move it to the left using the above four rules. So if G is a free 

nilpotent group of class k and w is a reduced word in Gk_l then w 

may be effectively written as a product of the elements of the 

free basis of Gk_1 given by Lemma 2.2.4. 

The following lemma appears in much of the'literature but we 

present a relatively straightforward proof for the sake of 

completeness. 

Lemma 2.2.7 (c. f. [21] or [53]): 

Let G be a nilpotent group of class k. If xl, ... , xk are 

elements of G and xi'= a. b for some i then 

(x1, ..., a. b, ..., xk] _ (x1, ..., a, ..., xk] . [x1, ..., b, ..., xkj . 

Proof : 

First let us introduce the notation Cs by induction: 

If s=1 then Cs = xi. 

If 1<sSk then Cs = (xl, .., xsl ., 

We will show that the result holds when 1<i< k-1. 

Upon seeing this proof it is easy to see that the result also 

holds for i=l, k-1, k. The notation used below is not defined in 

these instances and for i=1 we have to initially apply Lemma 

2.2.2 (ii) instead of (i) but otherwise the arguments are very 

similar. For a word w lying in G we will use 'w (mod G, )' to mean 

'w. u' for some u where ue Gi. Before we prove this lemma we make 

and prove two claims. 
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Claim 1: 

If x, y, z, w are elements of G where x, y are of weight 1 then: 

[w, xy, z] = [w, x, z] [w, y, z] (mod Gwt (w) + wt (z) + 1) 

Proof : 

[w, xy, zl =L [w, xy] , z] 

_[ [w, y] [w, x] y, z] (by Lemma 2.2.2 (1)) 

=[ [w, y] [y, [w, x] -11 [w, x],, z] (by Lemma 2.2.2 (iii) 

_[ [w, y] [w, x] (mod Gwt (W) + 1) , z] (by Lemma 2.2.5) 

= [W, Y, z] [w, x] (mod Gwt(W) 
+ 1) [(W, x) (mod Gwt(w) + 1), z] 

(by Lemma 2.2.2 (ii)) 

_ [w, y, z] [ [w, x] (mod Gwt (w) +1) , z] (mod G2wt (w)+wt (z)+1) 

(by Lemmas 2.2.2 (ii), 2.2.2 (iii) and 2.2.5: Note that some of the 

commutators generated by the use of these lemmas are of weight 

much greater than 2wt(w) + wt (z) +-2 but this is the smallest of 

the weights of those commutators) 

= [w,, Y. z] [W, X, z]r[r, z] (mod G2wt(w) + wt(z) + 1) 

(by Lemma 2.2.2 (ii) where wt (r) Z wt (w) + 2) 

= [w, y, z] [w, x, z] (mod Gwt (w) + wt (z) + 1) 

(by Lemmas 2.2.2 (iii), 2.2.5 and the facts that 

wt((r, (w, x, z]-1]) Z 2wt(w) + wt(z) +3 and wt((r, z]) Z wt(w) 

+wt (z) + 2) 

, ý. 
{' 

.. 1 

I,. 

Hence Claim 1 is proven. 
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Claim 2: 

If 1< i< k-1 then for 15s5 k-2-i: 

[ [Ci-1, a, Xi+i, ."I Xi+s ] 

(Ci-1, b, xi+l, ."' xi+s I mod Gi+s, xi+s+l, ""I Xkl 

< <Ci-1, a, xi+1, " "' Xi+s, xi+s+l] 

Ci-l, b, xi+l, . "' xi+s, xi+s+i] mod Gi+s+1, xi+s+2, " "' Xk] 

Proof: 

[ [Ci-11 a, xi+1, .", xi+s I 

" (Ci-1, b, xi+i, . "' xi+s] mod Gi+s, xi+s+l, ""f Xkl 

=[ [Ci-11 a, xi+l, "" �xi+s, xi+s+l1 [Ci-1'b, xi+lº " "' Xi+s]mod Gi+s 

"[ [Ci-11b xi+1, " "' xi+s] mod Gi+s, xi+s+l], xi+s+2, "" Xk] 

(by Lemma 2.2.2 (i)) , 

= ([Ci-1, a, xi+1, "", xi+s, xi+s+l 

" [Ci-1, b, xi+i, ""' xi+s) mod Gi+s, xi+s+l ] mod Gi+s+i, xi+s+2, ""x] 

(by Lemmas 2.2.2 (iii) and 2.2.5. As in the proof of Claim 1 most 

of the commutators generated here are of weight greater than is 

required but they are in any case of weight not less than 

i+s+2) 

< <Ci-1 ,a, Xi+l 1"", Xi+s, Xi+s+l 

" [Ci-,, b, xi+i, " "' Xi+s, Xi+s+i] mod Gi+s+l i"" Xk] 

(by Lemmas 2.2.2 (i) , 2.2.2 (iii) and 2.2.5. Once again we 

generate commutators of weight not less than i+s+ 2) 

Hence Claim 2 is proven. 
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Now if 1<i< k-1 then we have that [xl,.., xk] 

_[ [xiº .. º xi-1l º abº xi+1º .. º xk] 

_ ((Ci-1, ab, xi+l ], xi+2, .., xk] 

[[ [Ci-1, a] , xi+1] [ [Ci-11 b],, xi+1] mod Gi+1 ý .., Xk] 

(by Claim 1) 

=[ [Xl, 
.., a, .. r xk-1] [xl,.. 

,, 
b, 

.. i Xk-1] mod Gk-l, Xk] 

(by Claim 2) 

= xk] [xl,.. , b, ... Xk-11 mod Gk-1 

.[ 
[xi, .., b, .., xk-1 1 mod Gk-1, xk] 

(by Lemma 2.2.2 (i) ) 

= (x11.. , a,, .. ' Xk] ((Xl, .. 'bj, 4 .' Xk-1) mod Gk-1, Xk] mod Gk 

(by Lemmas 2.2.2 (iii) and 2.2.5 generating commutators of weight 

not less than k +1) 

= [x�, .., a, .., xkl [[ x1, .., b, .., xk] mod Gk 

(by Lemmas 2.2.2(i), 2.2.2(iii) and 2.2.5 again generating 

commutators of weight not less than k+ 1) 

=. .,, a, *.., b, since we are working in a 

nilpotent group of class k. 

When considering unification for nilpotent groups the terms 

arising will be allowed to contain both variables and constants. 

For this reason the natural "free object" to consider is as in 

the next lemma. In this Lemma (and throughout the rest of the 

thesis) we will take Z to be the set of integers and N to be the 

set of non-negative integers. 
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Lemma . 2.2.8: 

Let G be the free nilpotent group of class k on constants 

{an: n EN} and variables {xn: ne N}. Let we Gk_1 and h>1. 

There exists an algorithm to test whether or not there is a 

substitution for the variables of w under which it becomes an htr 

power of a member of Gk_1, and which determines all such 

substitutions if they exist. 

Proof : 

By Lemma 2.2.4, Gk-1 is free abelian. Let Bk be the basis of 

Gk_1. By 'lemma 2.2.4 Bk exists and is the set of all basic 

commutators of weight k on the generators {an: ne N} v {xn: ne 

N}. 

Now w may be effectively written as a word in this 

basis:. by the collecting process as described in Lemma 2.2.5. and 

Remark 2.2.6. 

Thus w= b0rp.... bmrm where bi e Bk and ri e Z. Now the only 

members of {an: ne N} u {4xn: ne N) occurring in the bi are 

those occurring in w. So without loss of generality let aO,... ak 

and x0,... xn be the members of {an: n EN) and (xn: ne N} 

respectively that occur in w. 

Since we Gk the required substitution will be of the form 

0= {aoi (0, j) .... aki (k, j)z mod Gl /x j: j=0, ..., n} where z is a 

variable standing for words in the generators not appearing in w. 

We now use Lemma 2.2.7 to write wO as a product of basic 

commutators. The powers of the commutators are polynomials in 
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1(0, J),..., i(k, j). All substitutions are obtained by inspection of 

these polynomials (and the commutators involving z). It is enough 

to determine all solutions mod h, and there are only finitely 

many of these to test. 

2.2.9 Examples: 

2.2.9.1: Let w be the word [a, x][a, b]-(where a, b are constants 

and x is a variable) lying in G the free nilpotent group of class 

k introduced above where k=2. 

Suppose we wish to express w as a cube. We make the 

substitution , aibJz mod G1/x. This gives us [a, b] J+l [a, z] . 

Therefore i is arbitrary, j= 3k-1 and z is a cube. 

So all substitutions are given in the format: 

aib3k-1z3 mod G1/x 

2.2.9.2: Let w be the word [ a, x][a, b][a, y] (where alb are 

constants and x, y are variables) lying in G the free nilpotent 

group of class k'introduced above where k=2. Suppose we wish to 

express w as a square. We make the substitution {aibizu/x , 

anbmsv/x}' where u, ve G'. 

This gives us [a, b]i+m+1[a, zs]. 

Therefore i is arbitrary, n is arbitrary, m is arbitrary, 

j= 2k -m -1 and zs is a square i. e. z= t2s-1. 

So all substitutions are given in the format: 

{aib2k-m-lt2s-lu/x 
, anbmsv/x} where u, v c G'. 

J 
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2.3 Solution of equations in free nilpotent groups of 

class k 

2.3.1 Remark: 

The algorithm that we derive is relative to having an 

algorithm which generates the complete, minimal solution set of 

any system of nth power free diophantine equations of degree n 

for 1SnSk. We will call such an algorithm Ak. 

2.3.2 A description of the algorithm to find the 

complete, minimal solution set of any equation in a 

free nilpotent group of class k: 

In this section we show, relative to having some Ak, how to 

solve arbitrary equations in G, a free nilpotent group of class 

k. Now any equation w1 = w2 in a group can be recast as wlw2-1 = 

1, so we let w be any word in G, also including unknowns, and 

consider how we may solve w=1. If we take {ai : ai < N} as a 

free basis for G (where N is the rank of G, either finite or 

K0) 

Then w will be a word in the ai, and finitely many variables 

x0,..., xn_1 so may be viewed as a word in the free nilpotent 

group H of class k on {ai : ai < N} u {xi: ie N} as basis. 

To solve the given problem in the free nilpotent group of 

class k, and show that (where the word to be unified with 1 does 

not lie in G1) each solution is of the form 

tOv(0,0)v(0,1) .. v(0, k-1)/x0, .., tn-lv(n-1,0)v(n-1,1) ... v(n-1, k-1)/xn-1 

where ti/xi is the general solution of the homogenised 
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abelianized version of w and v ('i, j)/xi, 1 <_ 1S n-1, is a 

particular solution of w=1 in the quotient group G/Gj, we use 

induction on k. 

(Note that the ti are words in constants and variables. We can 

assume that the variables of the ti are new ones not already 

occurring in ' w) . 

For k =. 1 the group is abelian and we can apply. Theoren 

1.5.7. This algorithm is relative to having an algorithm which 

finds all the solutions to linear diophantine equations. See 

[28], [35] for the presentation of such an algorithm. 

Considering the form of the solution we note that w will be 

of the form: 

x0gp... xn-lqn-la0rp... am-lrm-1 

where gi, ri is the exponent sum of xi, ai respectively in w. 

The most general solution as provided by Theorem 1.5.7 is of the 

form: 

t0v (0,0) /x0, 
... , to-1v (n-1,0) /xn-1 

where, in the theory of abelian groups, ti/xi is the most general 

solution to the homogeneous equation x040"" "xn-lqn-1 =1 and 

v(j, O)/xi is a particular solution to w=1. 

For the induction step we first consider the problem w=1? 

in G/Gk_l and solve (if possible) using the algorithm given by 

the induction hypothesis, since G/Gk_1 is a nilpotent group of 
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class k-1. (If that tells us there is no solution, then there 

cannot be a solution in G either). Suppose the algorithm for k-1 

gives a complete, minimal solution set Mk_l. We consider each 

member of Mk_1 in turn. 

Suppose 0e Mk_1. Then we assume inductively that 0 is of 

the form 

t0V (0,0) V (0,1) .. v (0, k_2) /x0, 
.., to-1v (n-1,0) V (n_1,1) ... v (n-1, k-2) /xn-1 

where ti/xi is the general solution of the abelianized version of 

w and v(i, j) /xi, 1SiS n-1, is a particular solution of 

w=1 in the quotient group G/Gj as given by the induction 

hypothesis. 

Since we have solved the equation in G/Gk_1, for any solution 

to the main problem we must have 

X0 E t0v(010)v(0,1) .0 . v(O, k-2) Hk-19 

X1 E t1v (1,0) v (1,1) 0 .. v (1, k-2) Hk-1, 

a 

0 

0 

Xn-1 E to-1v (n-1,0) V (n-1,1) "9"V (n-1, k-2) Hk-1 " 

i. e. x0 = tpv(0,, O)V(O, 1)... v(o, k_2) U0 

xl = t1V(1, o)V(1,1)... V(1, k-2) ul 

0 

Xn-1 to-1v (n-1,0) v (n-l, l) ""9V (n-1, k-2) un-1 
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where ui e Hk_l, 05i<n-1. 

Therefore we must have 

w (t0u0v (0,2) ... v (0, k-2) u0, .... stn-lun-lv (n-1,2) ... V (n-1, k-2) un-1 

, ao,,,,, am_1) =1 in H. But ui e Hk_1 which lies in the centre of 

H. Therefore 

u040 .... un-1qn-1 

w 1(t0u0v(0,2) 
.. v(o, k_2), .., tn-lun-1v(n-1,2) .. v(n_1, k-2), a0º ..., am_l) 

The normal way to solve this (as in Theorem 1.5.7) is first, 

to determine a "general" solution to the homogeneous equation 

u04o.... un-1%-1 = 1, 

and second, to determine a "particular" solution of the given 

equation. The two solutions are then multiplied together to find 

the general solution to the original equation. In this-instance 

the general solution to the homogeneous equation is, however, 

subsumed in the solution already found as we shall see below 

(Theorem 2.3.3) and it suffices to find a particular solution. 

We have uogp... "un-1qn-1° w-1 - 

Now we calculate h= hcf (q01 """, qn-1) 

If h=1 we have a solution determined as follows: 

We know that 1=cOg0+c1g1+... +cn-14n-1 for appropriate 

integers ci by Euclid's algorithm. Then 

uo = w-c0 
, ui = w-c1, ... l un-1= w cn-1 

provides us with a particular solution. 

If h>1 we may or may not have a solution depending upon whether w 

is an hth power or can be made into one by substituting for the 
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variables of the ti's. 

We can use Lemma 2.2.5 to see if w is an hth power. If so 

then w-1= sh for some word s. Once again we find integers ci such 

that h= c0g0 + cig1+ ... + cn-lqn-1 and this time we find that 

u0 = SCO , u1= S,... , un-1= scn-1 provides a particular solution. 

If w is not an hth power we can attempt to make it so by the 

algorithm of Lemma 2.2.8 and then apply each resulting 

substitution a to obtain v(i, k-1)a/ui. Lemma 2.2.8 gives all 

substitutions which can express w as an hth power. If s is the 

set of all such substitutions then all the solutions to the 

problem are given by xi = (tiv (i, o) v (1, l) """v (i, k-2) v (i, k-1)) a for 

every aeS. 

If we cannot make w an hth power then there can be no solution. 

Once we have a particular solution 

v (0, k-1) /u0, ... 0v (n-1, k-1) /un-1 

then the general solution to the main problem is given by 

X0 = tOv(O, 0) v(0,1) .. . v(0, k_2) v(0, k_1) 

9 

0 

0 

xn-1 - to-1v (n-1,0) V (n-1,1) 0""V (n-1, k-2) V (n-1, k-1) 

remembering that we still have to show that the "general" part of 

the solution in G/Gk_l is subsumed in the "general" part of the 

solution of the abelianized version (see Theorem 3.2.2). The form 

of this solution is as required to fit in with our inductive 

assumption. 
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However, we have so far overlooked the case when 

u0g0.... un-lqn-1 is trivially equal to the identity i. e. h=0. 

Remark 2.3.2.1: 

This occurs when the exponent sums of the ui are zero. 

We readily deduce that h=0 if and only if we H1. 

Now if h=0 then we have to solve in G the problem 

w(tOv(0,0)v(0,1) ... v(0, k-2), ..., tn-1v(n-1,0)V(n-1,1) ... v(n-1, k-2) 

ao, ..., am-, ) = 1. 

We know that tiv (i, 0) v (i, l) .. v (i; k-2) is a word in variables and 

constants. Suppose the variables occurring in 

w(t0v(0,0)v(0,1) ... v(0, k-2), ..., tn-1v(n-1,0)V(n-1,1) ... v(n-1, k-2)1 

a0, ... , am-1) 

are {z0, .. , zP_1}. This means that we can assume that the 

equation to be solved is of the form 

w z0, ... , zp-1l a0, ... , am-1) = 1. 

Let B(k) be the set of basic commutators of weight 5k on 

{a0, ..., am_1}. 

By Lemma 2.2.4 we have that any solution will be of the form 

zi = b0z (i, O) 
,, . bg-lz(i, g-1) si where z (i, j) is an integer 

variable, bi E B(k), g= IB(k)I and si is a variable standing for 

all the basic commutators not involving a0,... 'am-1" 

If we substitute this into w' (z0, ... , zp_11 a0, ... am-1) = 1, use 

F 

'-ü 

rt 
4. ý 

till 

4+ 

Lemma 2.2.7 and write as a product of the basis of Gk-1 then the 
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powers of the basic commutators will be kth power free 

diophantine polynomials of degree k (there will be no kth powers 

since to obtain one there would have to be a commutator of weight 

k of the form [a jz (i, j) 
,""", a jz (i, j) ] and this is trivially the 

identity)., A; 

Now equating the basic commutators on the left hand side with 

i we obtain a system of kth power free diophantine equations of 

degree k. We now apply algorithm Ak and obtain all the solutions 

to w=1. The conditions for si can be given by inspection of the 

commutators in which they appear (see example 2.7.8). 

We now justify the claim that we only require a particular 

solution for the ui in the algorithm. 
4yß i 

li{ 

Theorem 2.3.3: 

Suppose we have a minimal algorithm to solve equations in a 

finitely generated free nilpotent group of class k-1. Suppose 11 

also that we have the problem w (xo, """, xn-1, a0, """, am-3. ) 1 in G ;! { 

the nilpotent group of class k defined in algorithm 2.3.2 such 

that w (x0, ... , xn-1, ao, ... , am-1) e H1. 

The general solution to u1g1, 
". unqn =1 in the above algorithm 

'Hi 
kýftt; 

is subsumed in the general solution to the abelian case. ; ý±, 

Proof: 

Apply algorithm 2.3.2 and obtain h= hcf(g0,..., qn-1). 

Since w (xo, ... , xn_1, a0, ... , am-1) e H1 we deduce from Remark 

2.3.2.1 that h*0. 
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Hence algorithm 2.3.2vgives us a solution set in G of: 

s= 10 =1t 0v(0,0) V(0,1) ... v(0, k-1)/x0, .. 

... to-lv(n-1,0)v(n-1,1) ... v(n-1, k-1)/Xn-1 }} 

where {tov(0,0)v(0,1) ... v(0, k-2) /x0, ... 

", to-1v (n-1,0) V (n-1,1) """V (n-1, k-2) /xn-1 }E Mk-1 

and (v (0, k-1) IXOI """Iv (n-1, k-1)1Xn-1 } is the particular solution 

generated by algorithm 2.3.2. 

Suppose-we have that a= {a0/x0, ... ' an-1/xn-1} is another 

solution of w=1. We must show that for some 0eS there exists 

a substitution X such that 6. X = a. 

We construct each 

0= {t0v (0,0) ... v (O, k-1) /x0l 0"l to-lv (n-1,0) ... V (n-1, k-1) /Xn-11 as in 

Algorithm 2.3.2. 

As w (ao, """, an-i, a0º """,, am-1) =1 it follows by the induction 

hypothesis that there is a substitution p and 

{tOv(0,0) ... v(0, k-2)/x0, .., tn-1v(n-1,0) ... V(n_1, k_2)/xn_1} cMk-1 

(corresponding 
yto 

some 0e S) such that in G/Gk-1 

{ t0v(0,0) ... v(O, k-2)/x0, ... stn-1v(n-1,0) ... v(n-l, k-2)/xn-1}P 

_ Qn-1/xn-1} 

Let cri = ri (tiv (i, 0) ... v (i, k-2) )P where ri e Gk-1 

,= ri (tiP) . (v(1,0) ... v(i, k-2))P 

:. -r0gp ... rn-l%n-iw ( (t 00 (V (0 0) .. v (p, k_2) ) P0 00 

.., (tn-1P) (v (n-1,0) 0. v (n-1, k-2) ) p, a0, .. am-1) =1 

ý! 'il 
ýý, 
l il 

Also, by the construction of the v(i, k_1) in Algorithm 2.3.2 
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(using the member of Mk_1 introduced above) we have that 

(0, k-1)40... v(n-1, k-1)% 1 

w(t0v (0,0) """ v (O, k-2) , ..., tn-1v (n-1,0) ... v (n-l, k-2) � a0 f ''' am-1) -1 

Applying the substitution p we derive 

((v(0, k-1)P)-1r0)gp... ((v(n-1, k-1)P)-lrn-1)qn-1 = 1. 

Now ti/xi is the most general solution of the homogeneous 

equation xOgp... xn_1%_1 =1 in the theory of abelian groups. 

Therefore there is a substitution T such that 

(v (i, k-1) P) -1ri = tit 

Now cri = ri(tip) (v (j, 0) v(i, 1)... v(i, k_2))P 

= v(i, k-1)P. ti(T)ti (P) . (v(i, 0) v(i, 1) ... v(i, k-2))P 

= v(i, k-1)P" (tip') " (v(1,0)v(1,1) ... v(i, k_2))P 

(where yX =y (t) y (p) for each (new) variable y of the ti. 

Notice that 't substitutes only members of Gk-1 for y) 

_ (tiv(1ý0)v(iýl)... v(iýk_l))ý, 

:. we have constructed % such that 6% = a. 

Algorithm 2.3.2 is an algorithm to solve equations in any 

finitely or infinitely generated free nilpotent group of class 

k. However, if we are considering unification in the theory NkG 

then it is the case of infinitely generated free nilpotent groups 

of class k which is relevant. We will now show that N2G is 

nullary and indicate why it is very likeley that NkG is nullarg. 
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Proposition 2.3.4: 

Suppose H is a free nilpotent group of class k generated by the 

infinite set { a0, al, a2, ... }v{ xO, xl, x2, ... }. If wi, ... , wn are 

finitely many words in Hk_l then there is be Hk_1 which is not 

an instance of any wi. 

Remark 2.3.5: 

The following lemma is a proof of this proposition for case 

k=2. We use it to show that N2G is nullary. 

It seems very likely that the proposition is true for all k. 

If so then it is a straightforward task to show that NkG is 

nullary. 

Lemma - 2.3.6: 

Suppose H is a free nilpotent group of class 2 generated by the 

infinite set { a0, al, a2, ... }v{ xý, xl, x2, ... }. If wl, ... , wn are 

finitely many words in H' then there is be H' which is not an 

instance of any wi. 

Proof: 

Let k be such that each wi is a product of 5k commutators. 

Consider b= (a0, a1] (a2, a3] """ (a2k, a2k+1] 6 H' and suppose, by way 

of contradiction that there exists a substitution a such that 

b= wß where w= wi some i. Let w= [ul, vl ] [u2, v2 ] ... [uk, vk] . As 

before, we may suppose that the words substituted for each xi 

contain only constants aj for j5 2k+l and that no other 
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constants appear in w. Let 1(i, j), m(i, j) be the exponent sums of 

ai, in uj, vj respectively. Expanding using Lemma 2.2.7 and 

collecting like terms (using H' abelian) we find that 

[uj, vjIa = r10,5i, i'<_2k+1[ap ai, ]l(i, J)m(i'. J) 

Equating this with b and comparing coefficients we find that 

for i <_ i' 

E1: 5j<k(l (i, j)m(i', j) -l (i', j)m(i, j)) =1 'if i is even 
and i' = i+l 

0 otherwise. 

Let lj = 1(O, j) 

1(2k+l, j) 

and mj = m(0, j) 

m(2k+1, j) 

We therefore obtain 

11m1T - m111T +... + lkmkT - mkTlk = 

-1 0000 
t 0001000 

00 -1 0000 

001000 

.'0 -1 0000 

............. 

000100 

10 0 
."" -1 000 

000001 
L0 000 -1 0 

9 

'ý 
E 

sý 

ýý, 

a2 (k+l) x2 (k+l) non-singular matrix. 
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Now rank (l jm jT) , rank (m jl jT) 51 for each j, so 

rank (11m1T m111T +... + 1kmkT - mklkT) S 2k, a contradiction. 

Theorem 2.3.7: 

N2G is nullary. 

Proof : 

By Theorem 1.4.2 we can restrict our attention to free 

nilpotent groups of class 2. 

Consider the word [x, a0j in G, the free nilpotent group of 

class 2 generated by the infinite set {a0, a1,... }. 

Now any solution to w=1 may be written in the form x= li airic 
iam 

where ce G'. 

Substituting this into the given problem we deduce that ri =0 

for i>0 so that the most general solution to w=1 is 

x= a0rc, reZ, CE G' . 

Suppose that t/x is any unifier of the problem. Then t= aprc 

where c is some product of m commutators. But t is an instance of 

another solution t' = a0sc' with c' a product of m+l commutators. 

However, by Lemma 2.3.6 t' cannot be an instance of t since c' is 

not an instance of c. 

Hence [x, a0] =1 has no minimal solution in G. 

2.3.8 Remark: 

First order nullary theories are few and far between. See 1.3 

for a brief survey of the ones that are known. In the above 

theorem we showed that N2G can be added to the list of first 
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order nullary theories. We also indicated why it is very likeley 

that each member of the infinite class of theories {NkG: 1<k& 

ke N} is nullary. 

We will now take a closer, more detailed look at nilpotent 

groups of class 2: 

i 
ýý' 
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2.4 Unification in nilpotent groups of class 2 

It follows from Definition 2.2.3 that a group G is 

nilpotent of class 2 if there exists a normal subgroup N of G 

such that G/N is abelian and the members of N commute with all 

members of G (N is central) and that N can be taken to be the 

commutator subgroup of G, written G'. It also follows that N2G, 

the theory of nilpotent groups of class 2, is the group axioms 

together with [[x, y), z) = 1. 

Now by algorithm 2.3.2 we have an algorithm for finitely 

generated free nilpotent groups of class 2 provided we have an 

algorithm to generate all the solutions of systems of square free 

diophantine equations of degree 2. However, the equations that 

actually occur in the algorithm take a very specialised form. We 

will call a square free diophantine equation of degree 2 that has 

this form a c-equation. We will look at these more closely later 

on. In Chapter 3 we show (when showing that the unification 

problem is undecidable) that the solution of equations in a 

finitely generated free nilpotent group of class 5 is recursively 

insoluble. This rests upon the fact that for kZ5 the problem of 

algorithmically finding integer solutions to the equations that 

occur is insoluble by the result of Matiyasevitch [501. Clearly 

the higher the value of k we take (for 2Sk 54 ) the less likely 

we are of constructing a successful complete, minimal algorithm 

for finitely generated free nilpotent groups of class k. This is 

one of the reasons that we concentrate on k=2. We have already 

shown in Theorem 2.3.10 that a first order theory of nilpotent 

groups of class 2 is nullary. However, in the following section 

we show that by working in a two-sorted theory the cardinality 

type of the theory becomes either infinitary or the cardinality 

type of any system of T-equations. Finally we take a brief look 

I 

hi r 
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at problems in only one variable in a nilpotent group of class 2 

as looked at by Repin [57]. But firstly we define %-equations: 

2.4.1 Definition: 

Suppose we have a set of integer variables {z(i, j): 1 Si5n, 

1S j5 m} and an integer constant K then ar -polynomial is a 

diophantine polynomial of the form: 

K±E z(i, j) +E z(i, j)z(k, 1) - z(1,1)z(k, j) . 

1<_i<_n irk 

1<-Jº L j<I 

If p is a T-polynomial then p=0 is a z-equation. 

Theorem 2.4.2: 

The equations that occur in algorithm 2.3.2 for k=2 are 

ti-equations. 

Proof: 

Suppose G is a free nilpotent group of class 2 on {a0, a,,... }. 

Suppose also that we have to solve the problem 

'("'0" """, xn-11 a0, """, am-1) =1 in G. As before, w is a word in the 

ai, and finitely many variables x0,..., xn_1 so may be viewed as a 

word in the free nilpotent group H of class k on 

{ai : al < N} u {xi: ie N} as basis. 

Algorithm 2.3.2 will generate solutions to the abelianized 

version of w of the form 

tpu0/x0,..., tn-lun-1/xn-1 

where ti/xi, ui/xi are the general and particular solutions 

respectively of the abelianized version of w. 



64 

The problem is first solved in the quotient group G/G' and the 

problem is lifted to G by noting that any solution to the main 

problem must be of the form xi = tiuivi, 0SiS n-1, where 

vi EH'. 

we apply algorithm 2.3.2 and the square free diophantine 

equations of degree 2 that occur do so only when v040"""vn-lqn-1 

is trivially equal to the identity 

i. e. h=0. 

When h=0 we have to solve in G the problem -i 

W (t0u0, ... 1 tn-lun-1, a0, ... , am-1) = 1. 

Now ti is a word in variables and constants. Suppose the 

variables occurring in w (to, ... , tn_l, ao, ... , am_, ) are 

{z0, .. ºzk-1}. 

Hence we have to solve w' (z0, ..., zk-1, a0, "" "' am-1) - 1. However 

W' (z01 """I zk-1 j a0r """,, am-1) can be seen as a word in T the free 

nilpotent group of class 2 on, generators 

{aý, ..., am_1} v {z0, .. 'zk-1}. 

By Lemma 2.2.4, T' is free abelian with basis 

{[ailaj]: i> j} u {[ai, zj]: i, je N} t {[zi, zj]: i > i}. 

Now since w'(z0,.. 1 zk-1, a0, """Iam-i) E T' it may be written as a 

word in this basis. Thus for some N and integers 1(i, j), m(i, j), 

n (i, j) we have 

n{ [airaj)U, J) 0Sj<i< N}. 

II{ [ai, z j]m(i, 
1) :05i, j< N} . II{ [zit z jjn(i, 

j) :0 5j <i< N} =1 

By Lemma 2.2.7 and T' abelian we have that any solution will be 
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of the form zi = a0z (i, 0) 
... am_1z U, m-1) si mod G' where z (i, j) is 

an integer variable and si is a variable standing for the aj not 

occurring in w. 

If we substitute this into 

n{ [ai, a j] 
1(i. i) :0Sj<i< N). fl{ [aj, z j]m(i" 

i) :0Si, j< N}, 

use Lemma 2.2.7 and write as a product of the basis of G' then 

the powers of the basic commutators will be linear diophantine 

polynomials. 

However, we still have to consider II{ [z,, z j] n (i, J) :0 Sj <i< N). 

Substituting zi = a0z (i, 0) 
.. am_lz (i, m-1) si mod G' yields 

Ij{ [aoz U, 0) 
... am-1z (i, m-1) sit 

a0z(i, 1) 
.. . am-1z(J, m-1) Si}nU, i) :0 Sj <i< N} 

Now [a0z (i" 0) 
.U,.. am-iz (j, m-1) In (i. i) can 

be written in the form II{ [ap, aq]c P1 ): 0Sq<p< N) where 

a(p, q) = n(i, J) (z(i, p)z(j, 4) - z(j, P)z(i, q)) " 

Hence substituting zi = a0z (i, 0) 
,,, am-lz (i, m-1) si mod G' into 

n{[ai, aj]1Ur i): 05 j< i< N}. 

fl{ [ai, z j]m(i, 
i) :0Si, j< N} . fl{ [zi, z j] n (i,, i) :0 Sj <i< N} =1 

and equating the basic commutators on the left hand side with i 

we obtain a system of c-equations as the square free diophantine 

equations of degree 2 that occur in algorithm 2.3.2. 

Now by this theorem we know that if we have an algorithm 

to generate all solutions of systems of i-equations then we have 

an algorithm to generate all the solutions of any equation in G 

(a free nilpotent group of class 2 on {a0, al,... I). However, by 
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Theorem 2.3.10 we cannot generate a most general solution. We 

now consider a method of getting round this problem by passing to 

a two sorted theory where the sorts pick out the elements of the 

derived subgroup. This results in the cardinality type being 

entirely dependent upon the T-systems rather than being nullary. 

2.4.4 Remark: 

Suppose we consider the two-sorted theory MN2G constructed by 

adding to N2G a new set of variables V'={x1', x2',... } and the 

following axioms: 

VX1VX23X1' (Xl-1X2-1X1X2_Xl' ) 

VX, Vxl'(x1'X1=x1x1') s 

Vx1'VX2'3x3'(x1'x2'-1=x31). 

Let G be a free model of MN2G and suppose that we wish to solve 

the problem w=1 in G. The added axioms ensure that the 

variables of V' stand for the elements of G'. Thus, if we have an 

algorithm to find all the solutions of T-systems then we have an 

algorithm to find all the solutions to problems in MN2G. 

2.4.5 Theorem: 

If the cardinality type of The cardinality, type of any system 

of c-equations is nullary then MN2G is nullary. 

If the cardinality type of any system of t-equations is < 

nullary then MN2G is infinitary. 

Proof: 

Suppose we have the problem w=1 lying in Ga free model of 

NN2G where we H' (remember H is the free nilpotent group that 

has as generators the generators of G together with the variables 
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of w). We have seen above how to reduce this problem to a system 

of T-equations. Also we have seen that for any such solution the 

corresponding most general solution (for each variable x of w) is 

of the form x= a0rp... am_1 m_lc where a0, ..., am_, are the 

generators of G appearing in w, rO,..., rm_l are integers and c is 

an arbitrary product of commutators. We saw in Theorem 2.3.10 

that the general form of c could not be represented in the single 

sorted case. However, here we have a sort available to express 

this general form. So the cardinality type of MN2G is dependent 

upon the cardinality type of it-systems. However, in example 2.7.4 

we present a problem which in MN2G generates an infinite set of 

most general unifiers. So the cardinality type of'MN2G is at 

least infinitary. 

Now let us briefly consider solving equations in just one 

variable in a finitely generated free nilpotent group of class 2 

as considered by Repin [57]. Repin does not present his work in 

terms of unification theory. He works solely in the free object 

(which ammounts to the same thing). Also he does not look at the 

cardinality type of the particular class of problems under 

consideration. 

We will present a unification algorithm for nilpotent groups 

of class 2 with respect to problems in just one variable. 

Although this has, in effect, already been done by Repin we will 

present the algorithm in terms of the work presented earlier in 

this chapter. Also considered will be the cardinality type of 

this restricted class of problems in the theories of nilpotent 

i 
ib 

ý 
ý. 

{ 
s. 

groups of class 2 that we have introduced above. 
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2.4.6 Remark: 

Suppose we have the problem w (a0, ... , am-1, x) =1 in the 

free nilpotent group of class 2, G generated by {a'o,..., am_1} 

where we G'. We can view w as a word in the free nilpotent 

group of class k on {a0,... Iam_1}+u {x}. Thus we can (using Lemma 

2.2.4) write w as a product of. the basic commutators generated by 

{a0ý"""ýam-1} u {x}. The commutator [x, x] is trivially the 

identity so the only basic commutator occuring which involves the 

variable is of the form [ai, x]. Therefore, substituting 

x a0x(1,0) ., . am-lx(i, m-1) mod G' 

where x(i, j) are integer variables and writing as a product of 

the basic commutators of G we obtain only linear diophantine 

equations as the powers of the basic commutators. Thus the 

T-equations never occur for problems in only one variable. This 

gives rise to the following theorem. 

Theorem 2.4.7: 

For problems in only one variable: 

(1) The theory N2G is nullary. 

(2) The theory MN2G is infinitary. 

Proof: 

(1) The example used in Theorem 2.3.10 to show that N2G (and 

hence NkG) is nullary only used one variable. So restricting to 

one variable, as far as this is concerned, does not achieve 
anything. 
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(2) This follows from Example 2.7.4, Remark 2.4.6. and, the, fact 

that there is always a single most general solution to systems of 

linear diophantine equations. 

Remark 2.4.8: 

Now in a free nilpotent group of class 2, when considering one 

variable problems, we have seen that the only basic commutators 

appearing, that involve the variable, are of the form tai, x] so 

we only obtain linear diophantine equations as the powers of the 

basic commutators. 

It is easy to see that to solve equations involving only one 

variable in a finitely generated free nilpotent group of class k 

it is necessary to have some Ak_1. This can be seen by 

considering one variable problems in a nilpotent group of class 

3. We can construct a problem where the basic commutator [aj, x, xj 

occurs and this gives rise to quadratic diophantine equations as 

powers of the basic commutators. 

We have shown in the last section that N2G is nullary and that 

it is likeley that NkG is nullary. We have also shown that in N2G 

we can sidestep this problem by considering MN2G thus rendering 

the cardinality type of MN2G dependent upon the cardinality type 

of systems of T-equations and in any case it is at least 

infinitary. We now show that we can similarly get round the 

problem (if indeed Proposition 2.3.4 is true) for NkG by 

considering a k-sorted theory. 
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2.5 Unification in k-sorted theories of nilpotent 

groups of class k 

2.5.1 Definition: 

In a nilpotent group G of class 3, G1 is taken to be 

[G, G] and G2 is taken -to be [G1, G] . N3G is the group axioms 

together with [[w, x, y], z] = 1. Let MM3G be the many-sorted theory 

constructed by adding to N3G two new sets of variables 

V' = {X1 '1 X2' , ... It '( x i'" , x2'' 1 ... } and the fol lowing axioms: 

Vxl`dX23X1' (Xl-1X2-1x1X2-X1 ') 

Vx1'VX23x, 11(X1t-Zx2-lxl'x2-X111) 

VX1VX1''(X1', X1_X1Xlt') 

Vxl' Vx2' 3x3' (xl' x2' -1=x3' ) 

Vx''VX2'13x3' '(x1''X2'' 1_X3''). 

In an obvious manner we can define a k-sorted theory of 

nilpotent groups of class k, MNkG. 

2.5.2 Theorem: 

If we have an algorithm to find all solutions of systems of kth 

power free diophantine equations of degree k then we have an 

algorithm to find all the solutions to problems in MNkG. 

Moreover, the cardinality type of MNkG is at least infinitary. 

Proof : 

The sorts pick out the terms of the lower central series 

rendering the solution of problems in a free model of MNkG 

entirely dependent upon the solution of systems of kth power free 
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diophantine equations of degree k. The algorithm works by first 

solving in the corresponding free abelian group and then lifting 

the solution to the corresponding free nilpotent group of class 2 

and so on until the solution has been lifted, to the free 

nilpotent group of class k. The algorithm at the nth stage (i. e. 

in the free nilpotent group of class n) is dependent upon finding 

a complete, minimal solution set of a given system of nth power 

free diophantine equations of degree n. Each element of this set 

must be considered when lifting the solution to class n+l. Thus 

the cardinality type of MNkG is infinitary (due to example 2.7.4) 

or nullary (if the cardinality type of sytems of kth power free 

diophantine equations of degree k is nullary). 
f 

We now relate this work to the work done by U. Martin [47) on 

special p-groups. We also extend the results to consider 

nilpotent groups of class k and exponent p. 
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2.6 Unification in Special p-groups 

2.6.1 -Definition: 

Let p be any prime number. A special p-group is a nilpotent 

group of class 2 together with the 
'identity 

xP =1 (i. e. a 

nilpotent group of class 2 of exponent p). So the theory of 

special p-groups pN2G is N2G together with the axiom dx (xp = 1) 

We can similarly define pMN2G, the 2-sorted theory of special 

p-groups. we can also consider pNkG (i. e. NkG together with the 

axiom dx(xP = 1)) and we can turn this into a k-sorted theory to 

obtain pMNkG. We will now consider kth power free diophantine 

equations of degree k where the variables range over finite 

subsets of N and therefore the cardinality type of systems of 

these equations is either 1 or co. 

2.6.2 Remark: 

U. Martin has recently considered unification in special 

p-groups [47). Results about special p-groups can, however, also 

be derived from the above work. The crucial point about special 

p-groups is that the identity xP =1 means that we have a finite 

number of possible solutions of the equations occurring. An 

algorithm is obtained simply by substituting in every possible 

solution and checking it. Hence we can easily prove the following 

theorems. 

Theorem 2.6.3: 

pNkG is nullary. 

Proof : 

the proof follows by Theorem 2.3.10. 
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Theorem 2.6.4: 

pMNkG is finitary. 

Proof : 

We cannot have an infinite number of solutions since the p 

imposes a bound on the power of any element of the group. 

We now close this chapter by considering. some examples of 

algorithm 2.3.2 being applied to actual problems. 
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2.7 Examples and algorithm outline 

2.7.1 Outline of the algorithm: 

(1) Given a problem w (xl, ... xn, al, ... , am) =1 lying in Ga 

nilpotent group of class k we first solve for nilpotent of class 

k-1 to obtain solutions of the form ti/xi, if they exist (if no 

solutions exist for k-1 then there can be no solutions for k 

either). We then note that solutions to the main problem must be 

of the form tiui/xi where ui e Gk_1. 

(2) Substituting this into the main problem we obtain 

ulgl ... unqn =w (t1, ... tn, a1, ... , am) -1 

Now we calculate h = hcf (q1, """ , pqn) 

(3) If h=0 we have w (tl, �1 . tn, al, ... , am) = 1. For every 

variable occurring we make the substitution in the form given 

earlier to, obtain a system of kth power free diophantine 

equations of degree k. We must solve this system to obtain the 

solutions. 

(4) If h=1 we find a particular solution for ui and this 

suffices since a general solution is subsumed into the general 

solution for the abelian case. 

(5) If h>l we check whether or not w is an hth power. 

If w is an hth power we can find a solution in a similar manner 

to (4). 

If w is not an hth power then we check whether or not it can be 

made into one. If so then we find. all the possible'substitutions 
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and obtain a solution in a similar manner to (4). If w cannot be 

made into an hth power then there can be no solution. 

2.7.2: 

Suppose we have the problem xaby[b, a] =1 in G, a free 

nilpotent group of class 2, where a, b are constants and x, y are 

variables. The first step of the method is to abelianize and 

solve using Theorem 1.5.7. We obtain x= to 1, y= t-lb-1. 

Therefore any solution in G will be of the form 

x= to lu, y= t-1b-1v 

where u, v E G'. 

Substituting this into the problem we obtain tbt-lb-1[b, a]uv = 1. 

Therefore we have uv = [a, b] [b, t] . 

We let u= [a, b][b, t] and v=1 and all solutions are given by 

8= {x = to 1 [a, b] [b, t], y= t-ib-11 

Now note that we could have let u= [a, b] and v= [b, t] (or any 

other combination). A natural question at this point is whether 

or not this would generate another most general unifier. We 

showed in Theorem 2.3.3 that a general solution in'G' is subsumed 

into the general solution for the abelian case. We can see this, 

in this example, by substituting u= [a, b], v= [b, t]. This 

yields 

a= (x = to-1 [ a, b] ,y= t-lb-1 [b, t]}. 

However, if we let X= {t [t, b] /t } then 0% = a. Also if we let X 

{t[b, t]/t} then a) = 0. i. e. we have 0 =N2G a. 

2.7.3: 
1 

Now let us consider the same problem but when G is a free 

nilpotent group of class 3. We first obtain the solution in the 
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class 2 case as above. Then any solution in G is of the form 

x= to 1 [a, b] [b, t] u, y= t-lb-lv 

where u, v e G2. 

Substituting this into the problem we obtain 

to 1[a, b][b, t]abt-lb-1[b, a]uv = 1. 

Therefore we have u= [a, b]btb-1a 1[t, b][b, a]at-l, v=1 

and all solutions are given by 

0= {x = to 1 [a, b] (bit] [a, b]btb-1a 1 [t, b] [b, a] at-1, y= t-lb-1}. 

2.7.4: 

Suppose we have the problem x2[a, x]y-2 =1 in G, the free 

nilpotent group of class 2 generated by {a, b}. Abelianizing we 

obtain x=t, y=t where t is a new variable. 

Thus any, solution in G is of the form x= tu, y= tv. 

Substituting this into the problem we obtain u2v 2= [t, a]. 

We now have to consider substitutions of t to make the RHS into a 

square. Let t= aibi mod GI. This gives us u2v-2 = [b, a] J. 

Therefore i is arbitrary and j is even. So t= aib2k r (where r 

E G'). 

We let u= [b, a]k ,v=1 and we have all solutions given by 

x= aib2k[b, a]kr, aib2kr (where re G'). Notice that in a single 

sorted structure there does not exist a most general unifier 

(because we can have arbitrarily long products of commutators. 

However, in a two sorted structure such as the ones we have been 

considering there is an infinite number of most general unifiers. 

2.7.5: 

Suppose we have the problem x2a2 [y, b] =1 in G, a free 

nilpotent group of class 2, where alb are constants and x, y are 

variables. Abelianizing we obtain x= a-1, y=t where t is a new 
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variable. 

Thus any solution in G is of the form x=a -1u, y= tv. 

Substituting this into the problem we obtain u2 = [b, t]. 

We now have to consider substitutions-of t to make the RHS into a 

square. We let t= zbJ mod G'. A most general solution is given 

by z being a square and j being arbitrary. Therefore we let t= 

z2bi mod G' and u= [b, zj, v is an arbitrary member of G'. 

Thus all solutions are of the form x= a-1 [b, zj, y= z2bir 

(where re GI). 

Note that we can obtain more than one most general unifier in the 

two-sorted, structure (by letting j=0 and j= 1). 

2.7.6: 

Suppose we have, the problem x3z6b6 [y, b] =1 in G, a free 

nilpotent group of class 2, where a, b are constants and x, y, z are 

variables. We abelianize and solve to obtain x= t2, y=s, Z= 

t-lb-1 where s, t are new variables. 

Therefore any solution in G will be of the form 

x= t2u, y- = sr z= t-1b-lv 

where u, r, vE G'. 

Substituting this into the problem we obtain 

t5 b-1 t-lb-1 t-1b-1 t-lb-1 t-lb-1 t-1b5 (s, bju3v6 _1 

i. e. u3v6 = [t, b]15[b, s] by Lemma 2.2.5. 

Since [t, b] 15 is already a cube we have to consider substitutions 

of s to express [b, s] as a cube. 

Let s= zbl mod G'. Substituting this in we obtain as a general 

solution that 1 is arbitrary and z is a cube (i. e. let z q3). 

Therefore u3v6 = [t, b]15[q, s]3. 

So u= [t, b]5[q, s] and v=1. 

Therefore all solutions are given by 
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x= t2 [t, b) 5 [Q, s] ,y= g3blr (where re G') ,z= t'lb-1. 

2.7.7: 

Suppose we have the problem [x, a][b, y][x, y] =1 in G, a free 

nilpotent group of class 2 generated by {a, b}. 

Note that [x, a] (b, y] (x, y] e G' . The problem is trivial in the 

abelian case (the most general solution is {x/x, y/y}. If we use 

the method of the previous examples (i. e. consider {xu/x, yv/y} 

where u, v e G') the u, v cancel out and we are left with the 

problem we started with. This is an example where h=0 and we 

have to solve a T-system of diophantine equations. 

Let x= aebfr and y= agbhs (where r, s c G'). Substituting 

this into the problem we obtain [b, a]f[b, a]g[b, a]fg-he = 1. 

Thus the solutions are obtained from the diophantine 

equation f+g+ fg - he = 0. 

2.7.8: 

Suppose we have the problem [a, b][a, x][a, y] =1 in a free 

nilpotent group of class 2. 

Note again that we have a member of G' to be unified with 1. 

Let x= aebfz r and y= agbht s (where r, s e G'). Substituting 

this into the problem we obtain [a, b]f+h+1[a, zt] = 1. 

Thus the solutions are obtained from the T-system f+h+l =0 

and the fact that zt = 1. Therefore all solutions are given by: 

x= aebf zr and y= agb-f-lz-1 s (where r, sc G') . 

In the next chapter we consider decidability problems in 

nilpotent groups with respect to unification. We also briefly 

consider the decidability of problems containing only one 
variable in nilpotent groups of class k as considered by Repin 
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[57]. As we have seen problems in, nilpotent groups of class k and 

exponent p are always decidable because there is always a finite 

number, of possible solutions to the kth power free diophantine 

equations of., degree k that may occur. 



80 

Chapter 3: The Undecidability of the Unification 
Problem for Nilpotent Groups of Class ?5 

3.1 Introduction: 

We are considering the unification problem for the theories of 

nilpotent groups of class Z 5. By Theorem 1.4.2 this is 

equivalent to the problem of constructing an algorithm which 

will solve any equation in a free nilpotent group of class Z 5. 

V. A. Romankov [60] in 1977 showed that the endomorphic 

reducibility problem is undecidable for free nilpotent groups of 

class z 9. Hence the Unification Problem for the theories of 

nilpotent-groups of class Z9 is undecidable. We will reduce 

this number to 5. Our result will follow from the proof that 

there cannot exist an algorithm which will solve any equation in 

a free'nilpotent group of class 5. This is established by 

reducing the problem to that of algorithmically solving an 

arbitrary diophantine equation of degree 4. The result then 

follows by appeal to the well known result that the solution of 

arbitrary diophantine equations of degree Z4 is undecidable 

[50]. 
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3'. 2 Preliminaries 

The necessity of the reults we present in this section will 

become apparent in the proof of the main theorem (Theorem 3.3.2) 

of this chapter. Firstly, however, we will introduce a 

particular free nilpotent group of class 5 which we will call F. 

3.2.1 Definition: 

Let F be the free nilpotent group of class 5 on the two 

generators a0, al. It follows from Definitions 2.2.3 that the 

basic commutators of weight 5 in F are [al, a0, a0, a0, a0] , 

Cal, ap, ap, ap, al] , [al, ap, ap, a1,. al] , -, - [al, ap, al, al, al], 

[[ al, ao, ap ], (all ap ]Ir and ([ al, a0, all ,[ al, ap ]]. We will write 

these as bi, b2, b3, b4, b5 and b6 respectively. We already know 

by Lemma- 2.2.4 that these basic commutators form a basis of the 

free abelian subgroup F4. 

The following lemmas which are applications of the collecting 

process allow us to isolate bl in a certain expression of F that 

occurs in the proof of Theorem 3.3.2. 
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Lemma 3.2.2: 

Suppose we have the commutator [al, ao, a j, a j, ak] in F4 

where i, j, k e {0,1}. If we write this in terms of the basic 

commutators of Definition 3.2.1 then b1 does not occur in the 

expression unless i=j=k=0. 

Proof : 

Since bl, b2, b3 and b4 are linearly independent the only 

commutators we have to consider are: 

(1) [al, ap, ap, al, a0) 

(2) [alpaptal. a0, ap] 

t3) [a,, a01a,, a,, a0] 

(4) (a,, a0, a,, ap, a, ] 

We will prove the result for (1) . The proofs for (2) 1 (3) 

and (4) follow similarly. 

To ease the computation of the collecting process defined in 

Lemma 2.2.5 and Remark 2.2.6 we will consider [al, a0, ap, all a0] -1. 

In order to keep track of the proof the following terminology 

will be introduced. Suppose we have an expression C= cl... cn 

where ci (for 1SiS n) is a basic commutator of F. When 

discussing the basic commutator in the ith position of C we mean 

the commutator ci. 

We have (ai, a0, a0, a1, a0] -1 

= a0 lal-1 [al, ap, apl -lal [al, ap, apl ap [al, ap, a0, all ........ (a) 

by the definition of a commutator. 

Now using the collecting process to move the a0 in the sixth 
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position of expression (a) to the left to cancel out with the 

ap-1 in the first, position we obtain 

". [a1, aol -la1-1 [a1, a0, ao, aol -1 [a1, ao, aol -la1(a1, a0I ßa1, a0, a0] 

(al, a0, ap, ap] [al, a0, gip, al) ........ (b) 

We now use the collecting process again to bring the al-1 in the 

second position of expression (a) to the first position. This 

gives us 

a1-1 [al, a0, all [a1, ap, a,, a1, all [a1, ao, a1, all -1 [a1, aol -1 

[al, a0, a0, ao] -1 [al, a0, ao]'la, [al, ao] [al, ap, a0] [al, ap, ap, ap] 

[al, ao, a0, al] ............... (c) 

we now use the same method to move the al in the eighth position 

of expression (c) to the left to cancel out with the al in the 

first position to obtain 

-1 [a1, aol-1 [a1, a0, a0, a0, all-1 [a1, a0, a0, a01-1(alp a0, a0, all 

... (d) [alp a0, a0] -1 (al, a0] (al, a01 a0] [al, a01 a0º a0] [al, a0, a0, all 

Once again we use the same method to move the (al, a0] in the 

sixth position of expression (d) to the left to cancel with the 

[al, a0] in the first position. The resulting expression involves 

only commutators of weight 3,4 or 5. We then use the fact 

(derived from Lemma 2.2.5) that in a nilpotent group of class 5 

such commutators will commute with each other. Thus we obtain 

[a1, a0, a0, a0, a1]-1[ [alpa0. a0] [alpap] 1 -1 

Hence [ äl, a0, a0, al, a0] = b2b5 . 
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Lemma 3.2.3: 

[ [al, ap, apal] , [al', gip] ]=[ [al, a0, ap] , [al, ap] ][ [al, ap, ap] , [al, ap] ] 

Proof : 

We expand [[a,, ap, a0al], [a,, a0]] and apply the collecting 

process as in Lemma 3.2.2. 

Now having considered the above preliminaries we can consider 

the main result of this chapter. 
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3.3 The undecidability of the unification problem for 

nilpotent groups of class Z5 

The work presented in this chapter rests upon the following 

theorem: 

Theorem 3.3.1 (c. f. [50],. [60]): 

There is some diophantine polynomial D of degree 4 in a 

finite number of variables xl, .. , xn and constants cl, .. , cm 

such that the question of the existence of integer solutions of 

D=0 (where D contains a parameter) is undecidable. 

We now state and prove the main result of this chapter. 

Theorem 3.3.2: 

The Unification Problem for the theory of nilpotent 

groups of class 5 is undecidable. 

Proof : 

We will first show that there cannot exist an algorithm 

which will solve equations in the group F introduced in 

Definitions 3.2.1 above. 

Consider D as given by Theorem 3.3.1. Then D can be 

written as a sum of monomials of the form; 

Cr1 crX(i, 1); crx(i, 1)X(i, 2), Crx(i, l)X(i, 2)X(i, 3) and 

Crx(1,1) x(1,2) x(1,3) x(1,4) 

where (i, j), e {1, .. , n} and rE {1, .. , m}. 

Let Dm be the set of all such monomials occurring in 

D and let f: Dm -' F be the function defined as follows: 
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f(Cr) = [alcr, ao, aO, aO, ao] 

f (crx (i, 1)) = (alcr, aO, a0, ao, y (i, 1) 1 

f (Crx (i, l) x (i, 2)) = [alter, ap, ao, Y (i, l) ,Y (i, 2) ] 

f (CrX(i, l)X(i, 2)X(i, 3)) = [alcr, aO, Y(i, l)lY(i, 2) Y(i, 3)l 

f(CrX(i, 1)X(i, 2)X(i, 3)X(i, 4)) = Ialcr. Y(i, l). Y(i, 2), Y(i, 3),, Y(i, 4)l 

where (i, j) e (1, .., n} and yl, .., yn are new variables 

standing for elements of F. 

Now consider the following equation in F: 

[a1" apº apºt1º all [a1" a0, a1º a1º t2] [[a, I apºt3] º [alº ap] ] IIf (Dm) =1 

where t1, t2 and t3 are new variables standing for elements of F 

but not occurring in f(Dm). 

Any solution in F will be given by y (i, j) =, alz (i, j)aoX (i, j)mod Fl 

and tP = alupa0V mod F1 where up, vP and z(j, j) are new integer 

variables and pe {1,2,3}. 

So substituting for y(i, j) and using Lemmas 2.2.7,3.2.2 and 

3.2.3 we have 

[a1, ao, a0, t1, a1] [a1, a0, all a1, t2] [ Calf apº t3] , [a1º a0] ] 

. [al, a0, a0, a0, a0) D 

TH [a,, ao, a j, a j,, ak] E (i, j, k) : i, 7, ke{0,1 }, not all 0) =1 

where E (i, j, k) is a diophantine polynomial of degree 4 in z (i, j) 

and xýi, j)' 

By Lemma 2.2.4 and Lemma 3.2.2 we have 

[a11 a01 a01 t11 a1] [a11 a0, a1, a1, t2] [ [a1, ap, t3] , [a1, ap] b1D b2El b3E2 

b4E3 b5E4 b6E5 =1 
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where E1, E2, E3, E4 and E5 are diophantine polynomials of degree 

4 in z (i, j) and x (i, j) . 

Now if this has a solution then D=0 must have a solution 

because when the first three terms are expressed as a product of 

basic commutators of weight 5 they do not involve bl by 

Lemma 3.2.2. 

Conversely, if D=0 has a solution then the equation has a 

solution, namely tl = aO-Elal-E2 , t2 = a1 E3, t3 = a0-E4al-E5. 

Hence by Theorem 3.3.1 we have a problem w (aO, a1, y1, ""I yn) -1 

in F which is recursively insoluble. 

Now if we have a unification algorithm for N5G then this 

will tell us whether we can solve w=1 in N5G and by Theorem 

1.4.2 this is equivalent to being able to solve w=1 in a free 

nilpotent group of class 5 on 

{ ao, al, a2, .... } u{ v0, vl, v2, ... }. 

The members of {v0, vi, v2, .. .} represent variables. 

If we can solve w=1 then the algorithm will produce a 

substitution 

0= {a0s(0, i) 
. . anS(M, i)vot(0, i) . vkt(k, i) mod F1/yi: i = 1, .. n} 

such that wO = 1. 

Now wA can be written as a product of the basic commutators 

of weight 5 generated by {aO, a,, a2, .. . }u{v0, vl, v2, .. . }. For 

every basic commutator c occurring in wO, c-1 must occur in w8. 

Now only a0 and al occur in w so we can replace the substitution 

by a={ aos (O, i) als (1, i) mod F1/yi :i=1, .., n) and wa =1 
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because any basic commutator containing ai (where i> 1) or vi 

(where iZ 0) simply cancels away. 

Hence the Unification Problem is undecidable for nilpotent 

groups of class 5. 

The following theorem extends this undecidability result to 

nilpotent groups of class Z 5. 

Theorem 3.3.3: 

The Unification Problem for the theory of nilpotent 

groups of class Z5 is undecidable. 

Proof : 

Let J be the free nilpotent group of class k (k > 5) on the two 

generators a0 and al. 

As in Theorem 3.3.2 we will first show that there cannot exist 

an algorithm which will solve equations in J. 

Consider D as given by Theorem 3.3.1. and written as a 

sum of monomials of the form given in the proof of Theorem 3.3.2 

Let Dm be. the set of all such monomials occurring in D and let 

f: Dm -4 F be the function defined as in the proof of 

Theorem 3.3.2. 

Now let wj be the word introduced in the proof of Theorem 3.3.2 

but lying in J. For the moment let us consider the equation 

wJ=1 in J. 

Any solution in J will be given by 

Y (i, j) ` alz (i, j) aox (i, j) es mod Js and tp = alupa0 Pfs mod JS 

where up, vp and z(j, 1) are new integer variables, pe {1,2,3}, 

s=k-4 and es, fs are expressions involving all the basic 
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commutators of weight Ss and z2 on {a0, al} (each basic 

commutator in es, fs will have as its power a new distinct 

integer variable). 

So substituting for y(i, j) and using Lemmas 2.2.7,2.2.4,3.2.2 

and 3.3.3 we have 

[a1, a0, a0, t1, all [a1, a0, a1, a1, t2] [ [a1, a0, t31 [a11 a01 b1D b2El b3E2 

b4E3 b5Eq b6E5 =1 (Mod J5) ......... 
(1) 

where E1, E2, E3, E4 and E5 are diophantine polynomials of degree 

4 in z (j, j) and x (i, j) . Let C (k) be the set of basic commutators 

of weight 5k and >5 on {a0, al}. Now C(k) is finite so suppose 

C (k) _ {c0, .., cq} . This means we have from (1) : 

[al, ap, ap, t1, a1] [a1, a0, a1, ai, t2] [ [a1, ap, t3] , [a1, ap] b1D b2El b3E2 

b4E3 b5E4 b6E5 CoF0.... Cq q=1 

where F0,..., Fq are diophantine polynomials in the integer 

variables that we have introduced. Now suppose we take each 

element ci of C (k) and let ci (ri) be ci with the first a0 from 

the left replaced by a new distinct variable ri ranging over J. 

Now consider the problem c0(r0)... cq(rq)wj =1 

Now if this has a solution then D=0 must have a solution 

because when the terms [al, a0, a0, tl, al] , [al, a0, al, al, t2] and 

[ [al, a0, t3] , [al, a0] ] in wJ are expressed as a product of basic 

commutators of weight 5 they do not involve bl. Clearly bl is 

not involved when the commutators of weight >5 are written in 

terms of basic commutators of weight > 5. 
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Conversely, if D=0 has a solution then the equation has a 

solution. We can see this by substituting tl = a0'Elal-E2 , t2 = 

al-E3, t3 = a0'E4a1 E5. This substitution will give us 

co (r0) ... cq (rq) b1D c0F' O .... cq 'q=1 

F'i may differ from Fi because in the manipulation which allowed 

us to cancel b2E1 b3E2 b4E3 b5E4 b6E5 we may well have introduced 

some commutators of weight >5 (In fact in most calculations we 

will have introduced them). 

Now the substitution ri = a0'F'i will leave us with b1D = 1. 

Hence by Theorem 3.5 we have a problem w (a01 a,, y1, ""I yn) -1 

in J which is recursively insoluble. 

Now we know that the Unification Problem for nilpotent 

groups of class k is equivalent to being able to solve w=1 in 

a free nilpotent group of class k on 

{ a0, al, a2, ... }u {v0, vl, v2, ... } 

where the members of {v0, vl, v2, .. .} represent variables. By a 

very similar argument to that employed in the proof of Theorem 

3.3.2 we can consider substitutions involving only ao and al. 

Hence the Unification Problem is undecidable for nilpotent 

groups of class Z 5. 

3.3.4 Remark: 

We gave a proof of this undecidability result by constructing 

a problem in a free nilpotent group of class 5 which reduced to 

the problem of solving an arbitrary diophantine equation of 
degree 4. We then appealed to Theorem 3.3.1. This showed the 
result holds for class 5. We then considered a very similar 
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problem lying in a free nilpotent group of higher nilpotency 

class and established the result for class > 5. 

An alternative proof would have been to construct a problem 

in a nilpotent group of class k which reduces to the problem of 

solving an arbitrary diophantine equation of degree k-1. The 

proof of Theorem 3.3.3 would then follow from Theorem 3.3.1 and 

the fact that an arbitrary diophantine equation of degree >4 is 

equivalent to one of, degree 4 (see (60)). 

We now briefly discuss the work done-by Repin (57] on the 

undecidability of the unification problem for nilpotent groups 

when considering problems containing only one variable. 

a' 
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3.4 Problems in one variable only 

In 2.5 we presented a unification algorithm for nilpotent 

groups of class 2 with respect to problems containing only one 

variable. As was seen in Remark 2.5.9 matters were simplified 

considerably because when we restrict the unification problem in 

this. way the troublesome diophantine equations of degree 2 do 

not occur. So in this particular case we do not have a relative 

algorithm but an outright one. 

However, we also saw in Remark 2.4.8 that the restriction to 

problems in just one variable for nilpotent groups of class k (k 

>, - 3) means that we have to solve diophantine equations of degree 

k-1. So although we can construct an outright algorithm for 

this restricted class of problems for nilpotency class 2 the 

unification algorithm for nilpotent groups of class k is 

relative to solving certain diophantine equations of degree 

k-1. This would suggest that the unification problem is 

undecidable for nilpotent groups of class 5 when restricting to 

one variable (as we showed it to be for an arbitrary number of 

variables in Theorem 3.3.2). However, the method of proof 

employed in Theorem 3.3.2 does not work when we restrict to one 

variable. In the proof of this theorem we coded up an arbitrary 
diophantine equation of degree 4 by-associating a diophantine 

monomial c rx (i, 1) x (i, 2) x (i, 3) x (i, 4) in four variables with the 

commutator [aicr, y (i, 1) ,y (i, 2) ,y (i, 3) , 'y (i, 4) ] in four variables. 

The point is that we need the four variables 

y (i, 1) 'y (i, 2) ly (i, 3) 1y (i, 4) in the group equation to encode the 

four variables x (i, 1) x (i, 2) x (i, 3) x (i, 4) of the arbitrary 

diophantine equation. If we restrict to one variable only for 
problems in a free nilpotent group of class 5 then we can encode 
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certain diophantine equations of degree 4 but we cannot encode 

an arbitrary diophantine equation of degree 4. In fact using the 

same method as in the proof of Theorem 3.3.2 the class of 

diophantine equations of degree 4 that we obtain are of the form 

ax4-+ bx3 + cx2 + dx +e=0 where x is an integer variable and 

a, b, c, d, e are integer constants. If the problem of 

algorithmically solving any member of this class of diophantine 

equations was undecidable then we could establish the 

undecidability of the unification problem for nilpotent groups 

of class 5 when restricting to the use of one variable only. 

Unfortunately the algorithmic solvability of this class of 

diophantine equations is decidable. So to establish an 

undecidability result for this restricted class of problems we 

have to turn away from the methods already developed and 

consider something new. 

Repin's result [57] is that for kZ 1020 there is no 

algorithmic way of solving equations containing just one 

variable in a free nilpotent group of class k. The proof of this 

result rests upon a theorem of number theory as do Romankov's 

results (in [60) and [61]) and as do the proofs of Theorems 

3.3.2 and 3.3.3. Repin, however, does not use the Matiyasevitch 

theorem [50]. He uses a theorem presented by J. P. Jones [30] 

which says that there exists a class M of diophantine 

polynomials of degree 2.105 containing fourteen variables such 

that given peM the problem of algorithmically finding a 

solution to p=0 is undecidable. As we have seen when we 

consider unification for nilpotent groups there is a direct 

correlation between the degree of the diophantine equations that 

occur and the nilpotency class of the group. The dependency upon 
diophantine equations of degree 2.105 results in obtaining the 
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undecidability theorem for nilpotency class k> 1020. 

A research problem that has been left open and that is 

prompted by Remark 2.5.11 is to show that the unification 

problem when considering one variable only is undecidable for 

nilpotent groups of class k for some k< 1020. 

0 
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Chapter 4: Equation Solving in Partially Commutative 
Monoids' 

4.1 Introduction: 

The manipulation of strings is an important tool in many 

areas of computer science. This is the main reason why 

unification for the theory of semi-groups, and abelian 

semi-groups in particular, has attracted such attention. The aim 

of this chapter is to consider equation solving with respect to 

partially commutative monoids (semigroups with an identity). 

In the title of the thesis we referred to 'nilpotent 

monoids' since the structures we study are a natural analogue of 

those considered in Chapter 2. However, the word "nilpotent" is 

generally not applied to monoids since it implies the use of 

quotient structures. We therefore adopt the less contentious 

term "partially commutative monoid" to capture what we have in 

mind. 

We define a class N of partially commutative monoids that we 

shall present and study in some detail. We also define another 

class rL of partially commutative monoids whose members have less 

relations than the members of N. We will show that there is an 

algorithm to solve equations in the structures belonging to N 

relative to having an algorithm which will solve certain systems 

of quadratic diophantine equations over the positive integers, 

which we will call p-systems (we will begin this chapter by 

taking a close look at these p-systems). We also outline the 

difficulties involved when solving equations in n. 
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4.2 Preliminary Definitions: 

4.2.1 Definitions of p-polynomials and p-systems 

We now introduce the certain special types of polynomials and 

equations mentioned above that arise naturally when considering 

unification and equation solving in partially commutative 

monoids. These correspond to the T-equations and 'c-systems that 

occurred when we considered unification for nilpotent groups of 

class 2 in Chapter 2. Their use in solving equations in 

partially commutative monoids will be illustrated in 4.3. 

Let X and Y be disjoint finite sets of distinct 

non-negative integer variables. Ap -polynomial is a polynomial p 

of the form 
mn 

p= K+E ciyi +Ed jx j+ E (i. j) xix j 
i=1 j=1 15i<j<_n 

where (1) yie Y, xjCX 

(2) ci, d j, e (j, j) eZ and not all ci are zero . 

We shall consider finite sets P= (pl,..., pt) of p-polynomials 

where 
mn 

PS = KS +Z 
1(S, 

i)y(S, i) +, Z1 d(S, j)x($, j) + Y, 
j-(i, 

i)x(S, i)x(S, i) 

We say that a set of p-polynomials P is a valid set if no 

y(s, i) occurs in more than one member of P. Let P be a valid set 

of p-polynomials and let us associate with each ps ePa pair of 

distinct linear diophantine polynomials Ls = {L (5,1) 1 L(S, 2) 1 

where L (S, 1) is of the form 

e(S, 1)x(s, l) +... + e(s, q)x(s, q) 

and L(S, 2) is of the 'form 
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eýSýq+l) x(s, q+l) +... + e(S, n) x(S, n) 

where e (S, 1), ... ,e (S, n) are integer constants and if a variable 

occurs in L(s, j) (i = 1,2) it does not occur in any other member 

of L1 u L2 u... u Lt. 

Note: For r*s the elements of L. and Ls need not be distinct. 

Indeed in the cases we require later on (for t> 1) there will 

always exist L. and Ls (r * s) such that ILr v LSD < 4. 

Now let us associate with each pS eP another p-polynomial 

Pis of the form 

mn 
p's = K's + Sc' (s, i)y' (s, i) + Id' (s, J)x(s, J) + Ze' (i J)x(s, i)x(s, J) 

i=1 j=1 1Si<jgn 

where (1) y' (s, l) ,""", yl (s, m) are distinct from y (s, 1) ,"""ly (s, m) 

and any variable occurring in P'r for r*s. 

(2) K's, c' (S, l), ..., C' (s, m), d' (s, 1), ..., d' (s, n), E' may or 

may not be the same as Ks, c(s, 1), ..., c(s, m), d(s, 1)' """, d(s, n), e- 

(3) The variables x (s, 1) 1 ... Ix (s, n) are the same as those 

that appear in PS. 

Note: P' is a valid set of p-polynomials. 

We define a p-system to be a system of diophantine equations 

consisting of some {P1 - P'1 = 0, .. , Pt - pit = 0} (where P= 

{Pi: 1 <_ i5 t} and P' = {Pi': 1 _< i5t} are valid) together 

with the set of linear diophantine equations formed by putting 

each element of some corresponding L1 Li L2 u... u Lt equal to 

zero. 
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Later on in this chapter we will be assuming that we have an 

algorithm to findýall the solutions (over the positive integers) 

of any given p-system. A p-system consists of linear diophantine 

equations and square free diophantine equations of degree 2. The 

algorithm for solving systems of equations in the members of N 

presented in 4.3 could simply be presented as relative to the 

algorithmic solution of such systems of diophantine equations. 

However, the diophantine equation algorithm used would actually 

solve a larger class of systems of diophantine equations than is 

required. Obviously the more specialised the class of systems of 

diophantine equations considered the greater the chance of 

constructing an algorithm to solve them. It is for this reason 

that we have presented the definition of p-systems in such 

detail. The p-systems presented above are precisely the systems 

of diophantine equations that occur when considering equation 

solving in the members of N. 

4.2.2 The structures we will, be working, with: 

Now we will introduce certain structures that we will be 

attempting to solve equations in. These structures are monoids 

(i. e. semigroups with identity). First, however, let us define 

the notion of a block. Let A= {ai: 15i5 n} and suppose we 

have a word over A of the form: 

w= a(P, 1)91 a(P, 2)92.... a(p, k)gk 

where (p, i) E {1,.., n}, gi is a non-negative integer and 

(p, i) * (p, i+l) for i=1, .., k. We will call each subword 

a(p, j)9j of wa block. We now present a formal definition of the 

structures that we will be working in. 
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4.2.2.1 Definition of the structures belonging to N: 

Let A= {aj: 1.: 5 iS n}, B= {b (i, j) :15i<jS n} and 

B' = {b'(i, j): 15i<j5 n} be disjoint sets of generators and 

let N be the set of all monoids given by a finite presentation 

of the form: 

N=< AvBu BI: b(i, j) x= xb(i, j) (x eAuBu B') 

bý(i. j)x = xb'(i, j) (x eAuBu B') 

aia j= ajaib (i, j) (i < j) 

aiajb' (i, j) a jai (i < ý) > 

To define a nilpotent structure we have to use the concept of 

a quotient structure, which we cannot use when considering 

monoids. The motivation for looking at the monoids defined above 

is that they have nilpotent like character. 

4.2.2.2 Definition of the structures belonging to fl: 

For this class of structures we will be considering the 

disjoint sets of generators A= {ai: 1SiS n} and B= 

1 <_ i<j <_ n). We let Tt be the set of all monoids given by a 

finite presentation of the form: 

M=< Au B: b ýiý ýý x= xb (i, j) 

aia j= ajaib (i, j) 

(x EAuB) 

(i < j, (i, ý) E Y) 

aiajb (i, j) = ajai (i < j, (i, J) 0 Y) 

where Y is any fixed subset of { (i, j) : 15i<j S n} 

The motivation for studying rt is that its members are 
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partially commutative monoids which are, in a certain sense, 

"more free" than the members of N. That is each member of TL has 

a corresponding member of N with "more" relations. However, we 

will show that the format of the substitutions that are required 

strongly suggest that the equation solving problem for the 

members of ? -G is not decidable. 

Before we consider these structures, however, we will first 

turn our attention to the problem of constructing an algorithm 

to solve equations in the structures defined in 4.2.2.1. 
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4.3 Equation solving in NeN: 

Now before we consider solving equations in NeN let us 

first prove the following Lemma about words lying in N: 

Lemma 4.3.1: 

Let w be a word over AuBu B'. Then w can be written in N 

in the form: w= alul... an n II {b (i, j) v (i, j) :b (j, j) E B} 

. II{b' (i, j)VI (i, j) : b' (i, j) E B' } 

where ui, v (i, j) and v' (i, j) are non-negative integers. 

Proof : 

Suppose we have w in the form 

w= alf1... anfn aigiaj9j... akgk II{b(i, j)V(i. j) : b(i, j) e B}. 

fl{b' (i, j) VI (i, J) : b' (i. j) E B' } 

where fi and gl are non-negative integers, alfl... anfn is ordered 

and aigiaj j... akgk is unordered. We prove the result by inductior. 

on the number of blocks of aigiajgj.. "akgk" 

The base case is trivial. 

For the induction step we first note that in the monoid N we 

have the following relations: 

aigianf n= anf naigib (i, n)f ngi ..... (a) 

aigianfnb' (i, n)fngi = anfnaigi .... (ß) 

(we know that i<n so we know that the corresponding elements 

of B, B' are b (i, n) , b' (i, n) and not b (n, i) , b' (n, i) which will 

not even exist in N) 

Now we have the choice of using either (a) or (ß) to move aigi 
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past 'anfn. We can, however, only use (a) if b (i, n) occurs in w 

with power at least fngi because otherwise we would introduce a 

negative power into a monoid. It is always possible to use (ß). 

In general any algorithm which writes w in the required form 

will at this point be faced with deciding which of the two 

relations to use. We can, however, write the word in a canonical 

form by always using the relation which takes away a b(i, n) 
if 

there are any occurrences, of b(i, n) to take away. If not we use 

the relation which introduces a b'U, n)- 

Having moved aigi past anf n we can now move it past an-lf n-1 

and so on until it is in the correct position in the ordered 

subword alfl... anfn. Since ajgj... akgk is shorter than 

aigiajgj... a k the result then follows by induction. 

Note: As we are only making moves to the left we cannot go into 

an infinite loop. 

4.3.2 Definition: 

We are attempting to solve equations in any NeN. For every 

variable x in a particular equation we will be applying the 

substitution: 

x= alxl... anxn II{b(j, j)Y(i, j): (j, j) e B} 

. II{b' (i, j) yl (i, j) : b' (i, j) e B' } 

where xi, y (i, j) and y' (i, j) are non-negative integer variables 

i. e. our substitutions will have the format suggested by Lemma 
4.3.1. This prompts the following definition and lemma: 

Let V be a word over the alphabet 
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AuB ti B' u {ajtj: tj is a non-negative integer variable} 

i {b(i, j)gk: qk is a non-negative integer variable} 

u {b'(i, j)gIk: q'k is a non-negative integer variable}. 

When non-negative integers are assigned to the distinct 

variables tj, gkq'k V then becomes a word in AuBu B'. Now 

because Bu B' is central V can be written in the form 

(a,, ..., an) II{b(j, j)P(i, j) : 
-b(j, j) e B} 

B' } 
. II{b' (i, j)Pf (i, j) : b' (i, j) 6 

where Y(a,,..., an) is a word over Au {aitj: tj is a non-negative 

integer variable} and p(j, j), p'(j, j) are non-negative linear 

diophantine polynomials in the q's. 

Lemma 4.3.3: 

V can be written in N in the form: 

V= a1rl ... anrn fl{b (i, j) s (i, j) :b (i, j) E B} 

. II(b' (i, j)S (i, j): b' (i, i) to B'} 

where (1) ri is a unique non-negative linear diophantine 

polynomial over the non-negative integers. 

(2) s (j, j) is a p-polynomial. 

(3) S' (j, j) is a p-polynomial. 

Proof : 

Suppose we have V in the form 

V= aldl ... andn aieia je j ... akek II{b (i, j) S (j, j) :b (j, j) E B} . 

II{b' (i, j)Sr (i, j)' br (i, ý) E B'} 

where aldl... andn has already been ordered and aiejajej... akek is 
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unordered. The d's and the e's are either non-negative integers 

or non-negative integer variables with non-negative integer 

coefficients. In a similar way to the proof of Lemma 4.3.1 we 

can show that we can write the word in the intended order by 

induction on the number of blocks of aieiajej... akek. For the 

induction step in this case we use the relations: - 

aieiandn = andnaieib (in) 
dnei 

..... (a) 

aieiandnb' (i, n) 
dnei = andnaiei .... (ß) 

Now as before we can use either (a) or (ß) to move aigi past 

anfn and we can only use (a) if we have a sufficiently large 

power of b(i, n) . This means that when we come to substitute 

values for the variables of s(i, n) the result cannot be negative. 

We can, however write the word in the canonical form introduced 

in the proof of Lemma 4.3.1. 

Now clearly (1) ri is a unique non-negative linear diophantine 

polynomial over the non-negative integers. 

Also (2) s (i, j) is a p-polynomial. 

We show this by induction on the number 1 of moves made. Let 

s(j, j) (0) = p(j, 1) and s(j, j) (1) be the power of b(i j) after 1 

moves. 

We know that p(i, j) is a linear non-negative diophantine 

polynomial over the non-negative integers (it is in fact the 

E ciyi of Definition 4.2.1 together with some constant). Hence 
i=1 

the base case is trivially true. 

For the induction step suppose that s (i, j) (1) is a p-polynomial 
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and that move 1+1 involves moving aiei past akek. Without loss of 

generality assume i<k. 

We can use 

ajejakek = akekaieib(i, k) ekei ..... dal+1) 

or aieiakekb' (i, k) eke j= akekaiei .... 

(the subscript in (al+l) and (ßl+l) is introduced to indicate the 

number of moves made) 

j) (1) . If we use (ßl+l) then s (j, j) (1+1) =s (i, 

If we use (a1+1) then s (j, j) (1+1) =s (i, j) (1) + eiek 

Now ej and ek are either non-negative integers or non-negative 

integer variables (distinct from those occurring in p(i, j)) with 

non-negative integer coefficients. 

i. e. eiek is either (a) a constant 

or (b) a variable with constant coefficient 
n 

(this would be part of the E djxj of Definitions 4.2.1) 
j=1 

or (c) a product of two distinct variables with constant 

coefficient (this would be a part of the Ec (i, j) xix j 
1<_i<j<_n 

of Definitions 4.3.1). 

Hence by induction the result holds. 

Note: s(i, j) is not a unique p-polynomial because we are writing 

the word in a certain way, the canonical way defined in the 

proof of Lemma 4.3.1. Writing the word using a different choice 

of relation would result in a different p-polynomial. 

The proof that (3) s'(jj) is a p-polynomial follows by a 
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similar argument to the one used for s (i, j). It is not unique for 

the same reasons. 

Now having the necessary preliminary results at our disposal 

we can look at an algorithm to solve any given equation in N. 

4.3.4 An algorithm to solve equations in NEN 

Suppose we are given the problem wl = w2 ? in NeN. Now 

wl, w2 can be written in the following forms since Bu B' is 

central: 

wl = ul (al, ... , an, xi, ... , xm) . 

IIl{b(i, j): b(i, j) e B} IIl{b' (j, j): b' (j, j) e B'} 

and wl = u2 (al, ..., an, x1, ... , xm) . 

112{b(i. j): b(i, j) e B} r12{b' (i, j): bI (j, j) E B'} 

where xl,..., xm are variables standing for any word in N. 

Now for each variable xk occurring in the problem we let 

Xk = alc(1, k) ... an (n, k) II(b(j, j)y(i, j, k) : b(i, j) e B}. 

11 {b' (i, j) Y1 (i, j, k) : b' (i, j) e B' } 

where x (i, k),, Y (i, j, k) 1 Y' (i, j, k) are distinct non-negative 

integer variables. We can do this because we know by Lemma 4.3.1 

that every word in N can be written in this form. 

Having substituted these values of xk (for k=1,..., m) we 

write the left hand side of the equation in the form: 

a1rl... anrn II3{b(i, j)S(i, j): b(i, j) e B} 

113 {b' (i, j)s (i. j): b' (i, j) E B'} 

by Lemma 4.3.3. In applying this Lemma we use the canonical 
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method of rewriting the word introduced in the proof of Lemma 

4.3.1 

We can also write the right hand side of the equation in the 

form: 

alt, ... ari n r14{b(i, j)q(j, j): b(i, j) E B} 

114 {b' (i, j)qI (i, j) : b' (i, j) E B' } 

by using the same canonical method. 

If we now equate the powers of the independent generators and 

use parts (1) , (2), (3) of Lemma 4.3.3 we see that we have derived 

the following p-system: 

{ri - ti = 0} u {S(i, j) q(i, j) (s1 (1, j) qI (i, j)} = 0} 

Note: {ri - ti }= Ll u L2 u... u Lt, {s (i, j) - q(i, j)} =P and 

P' where Ll u L2 u... u Lt, P and P' are the 

notations used in Definitions 4.2.1. It is easy to check that 

{s (j, j) - q(j j) } and {s' (i, j) - q' (i, j) } are valid. 

Now we are only interested in positive solutions to these 

p-systems because we are working in monoids. The following 

theorem tells us that if we have an algorithm to find all the 

solutions (over the positive integers) of any p-system then we 

have one to solve the given problem wl = w2 ?: 

Theorem 4.3.5: 

We have a (positive) solution to this p-system if and only if 

we have a solution to the problem wl = w2 ? 

Proof : 

The implication from left to right is obvious. 

Conversely assume that we have any solution 
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a= {sk(a,, " .. an)II{b(i, j)P(i, J, k) b(j, j) e B} 

III b' (i, j)P, (i, J, k) : b' (i, j) e B' }/xk: k=1, .., n} 

to the problem wl = w2 ? 

By Lemma 4.3.1 we can write this in the form: 

a= {alu(1, k) ... ari (n, k)11{b(j, j)v(i, J, k) : b(j, j) e B} 

(i, J)V' (i. j. k)' b' (i, j) e B'}/xk.. k=1,.., n} II{b' 

Now let us consider w1a and apply Lemma 4.3.1 (using the 

canonical method defined there). We do the same for w2a. 

Since a is solution of wl = w2 ? we have that 

X (i, k) =u (i, k) IY (i, j, k) =v (i, j, k) I Y' (i, J, k) = V' (i, J, k) is a 

solution to the p-system. 

We can summarise the results of this section so far in the 

following theorem: 

Theorem 4.3.6: 

If there is an algorithm to solve (over the positive integers) 

any p-system then we have an algorithm to solve any equation in 

NEN. 

Proof : 

The proof follows immediately from algorithm 4.3.4 and Theorem 

4.3.5. 

A natural question arising at this point is whether or not 

the converse of Theorem 4.3.6 is true i. e. is the solving of 

p-systems equivalent to the solving of equations in NeN? The 

following example shows that there is no direct way to derive 

equations in N from p-systems. The example also provides an 
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illustration of the equation solving method introduced above. 

Example 4.3.7: 

We showed in Algorithm 4.3.4 and Theorem 4.3.5 that for every 

equation in N there is a corresponding set of p-systems. 

Suppose we have the monoid 

L=<a, b, c, c' : ac = ca, be = cb, 

ac' = c'a, bc' = c'b, 

ab = bac, abc' = ba >EN. 

Now consider the problem axb = ya ? in L. If we let 

x= axabxbcxcctxcs and y= ayabybcycc'yet 

(where xa, xb, xc, xc 1, Ya, Yb, Yc, Yc' are non-negative integer 

variables) we obtain 

axa+l bXb+l cxc c'xc, = aya btb a cyc c'ycr 

This means that we can derive one of the following two 

p-systems: 

{xa-ya=0, xb-yb+1=0, xc+yb-yc=0, xcv -yc, =0} 

{xa-ya=0, xb-yb+1=0, xc -yc =0, xc, -y b-y c, = 0} 

Clearly if we were given either of these two p-systems we 

could work backwards and find the corresponding problem in L. 

However, this p-system can be slightly altered to create a 

p-system that has no corresponding equation in N. 

Suppose that we were given the p-system: 

{2xa - Ya = 0, xb - Yb +1=0, xc + Yb - Yc = 0, xc, - Yc' = 0} . 

Working backwards we would derive in L: 

axa+lxb = ya ? 

Now if we had b%, cxc, c'xc, occuring in this equation then we 

could present it as an equation of the monoid by replacing 
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axabxbcxcc'Xc, with the variable x. However, we have only axa 

occurring on its own. Because a variable standing for any 

element of L must involve more than a power of the single 

generator a there is no way, to mop up the extra axa. Hence the 

p-system does not have a corresponding problem in L (or any 

other member of N). 

Now having shown that equation solving in NEN is 

dependent upon solving p-systems let us consider the structures 

defined in 4.2.2.2. 
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4.4 Equation solving in MEn: 

We will show that the format of the substitutions required 

suggests that the equation solving problem in the members of fl 

is not decidable. However, the results presented in 4.3 emerged 

from first looking at these structures. 

Suppose, we have NEN as defined in 4.2.2.1. In the proof 

of Lemma 4.3.1 we gave a method for writing any word w of N in a 

certain form which used the given relations of N to collect all 

the generators together. Given any two generators ai and aj of N 

(i < j) there is always a corresponding b(i, j) 6B together with 

a relation ala2 = a2alb(j, j) and there is always a corresponding 

b' (i, j) E B' together with a relation ala2b' (i, j) = a2a1. This 

means that given a subword a2a1 of w we can always move the al 

past the a2 using one of the given relations regardless of 

whether or not the appropriate members of Bu B' occur in w. 

However, a corresponding member of rt contains the set B 

instead of Bu B' and will contain the relation ala2 = a2alb(i, j) 

or the relation ala2b(j, j) = a2a1 but not both. Thus given a 

subword a2a1 of w and the given relation we can always move the 

al past the a2 using that relation provided we have an 

occurrence of b(j, j) in w. There is of course no guarantee that 

we always'have such an occurrence. To highlight the point we 

will construct two examples of words in certain members of 7`t 

which cannot be rewritten in the desired form. The first will 

be a simple case and for this case*we will show a way round the 

problem. We will see that there is no way round the second 
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problem. For every member of rt there is a corresponding member 

of N. We will compare the problems we look at in, particular 

members of 7t, with the same problems in the corresponding member 

of N. 

Example 4.4.1: 

Suppose we are given the monoid 

M= <a, b, c: ab = bac, ac = ca, be = cb>. 

It is easy to check that ME 1"L (comparing this with Definition 

4.2.2.2 we have that A= {a, b} and B= {c}). 

Now suppose that we are given the word abababc3 and that we 

wish to rewrite it in the form aPbecr (as we did for the members 

of N in 4.3). Then using the relations of M we can rewrite this 

3 as a3b. 

However, if we are given the word ababab then there is no way 

in M that we can write the word in the desired form. 

The corresponding monoid in N is 

<a, b, c, c' : ab = bac, abc' = ba, cx = xc (x e {a, b, c, c' }) , 

cl x= xc' (x e {a, b, c, c' })>. 

Comparing this with Definition 4.2.2.1 we have that A= {a, b}, 

B= {c} and B' = {c'}. 

We can see that in this monoid the word ababab can be 

rewritten as a3b3ci3. 

We could, however, get round the problem in M by changing the 

order in which we wish to rewrite the generators. That is we 

could always rewrite any word in m in the form bPagcr. This 

provides us with the following Lemma: 
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Lemma 4.4.2: 

If we have an algorithm to solve any p-system then we have 

an algorithm to solve any equation in a three generator element 

of It. 

Proof : 

There are just 2 three generator elements of t. One is the 

monoid presented in Example 4.4.1. We have seen that we can 

write any word in this monoid in the form bPagcr. 

The other three generator element of l is the monoid 

<a, b, c: abc = ba, ac = ca, be = cb> 

Any word in this monoid can be rewritten in the form aPbecr. 

With the ability to write any word in either of the 

monoids in the forms given we can now apply exactly the same 

methods as in 4.3. Although, in both cases, we are 'missing' a 

relation the 'missing' relation is never required. 

We now consider an example in a six generator element of M. 

We will see that in this case we cannot get round the problem by 

changing the order in which the words are rewritten. 

Intuitively, there are too many 'missing' relations. 

Example 4.4.3: 

Suppose PEn is defined as follows: 

P= <a, b, c, d, e, f: abd = ba, ace = ca, bcf = cb, 

dx = xd (x e {a, b, c, d, e, f}), 

ex = xe (x E {a, b, c, d, e, f}), 

fx = xf (x e {a, b, c, d, e, f}) > 

Now'suppose that we are given any word of P then using the 

relations of P we can rewrite it in the form aPbecrdsetfu. For 
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example if w= abcabcabc then we can rewrite it as 

w= a3b3c3d3e3f3. 

However, let us now consider the monoid Qe1, constructed by 

replacing the relation 'ace = ca' in P by the relation 

'ac = cae'. In Q the word abcabcabc cannot be rewritten in the 

form aPb4crdsetfu because we cannot move the a's past the c's. 

It is easy to see that in this case, although we cannot write 

a word in the form aF'becrdSetfu, we'can write any given word in 

the form aPlbq1crl aP2bq2cr2 ... aPnbgncrn dSetfu. This is 

because if we attempt to employ the method used in Example 4.4.1 

(of changing the order in which the words are rewritten) we 

readily see that a must go to the left of b, b must go to the 

left of c and c must go to the left of a. i. e. we have to write 

any word in terms of aPibgicri as above (or a cyclic alternative 

such as b41criaPi, criaPib41). 

This means that given any equation of Q the development of 

a method to solve that equation must involve the substitution of 

words of the above form, aPlbglcrl ap2bg2cr2 ... apnb%crndsetfu, 

for each variable. This suggests that we would have to 

substitute aPbecrdsetfu for each variable and check for a 

solution, then we would have to substitute aPlb41cr1 ap2bg2cr2 

dsetfu and so on. If a solution exists we may be able to find it 

but the format of the substitutions strongly suggests that in 

general the problem will be undecidable. 

The corresponding monoid in N is 

N= <a, b, c, d, e, f, d' , e' , f' : abd = ba, ace = ca, bcf = cb, 

abd' = ba, ace' = ca, bcf' = cb, 
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dx = xd (x e {a, b, c, d, e, f}), 

ex = xe (x e (a, b, c, d, e, f }) , 
fx = xf (x e {a, b, c, d, e, f }) > 

We can see that the problem does not occur in this structure by 

rewriting abcabcabc as a3b3c3d3e3f3. 

We now briefly discuss the extension of the work presented 

in this chapter in the same directions that we extended the work 

for nilpotent groups in Chapter 2. 
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4.5 Extensions of the above work 

4.5.11 Equation solving in partially commutative monoids 

of higher class 

In 4.3 we presented an algorithm for solving equations in the 

members of N relative to having an algorithm to solve p-systems. 

AnyN eN is a three sorted structure (any generator belongs to 

the set A, B or B'). These correspond to the "idea" of a 

nilpotent monoid of class 2. Although as we'have indicated the 

word "nilpotent" involves the use of quotient structures which 

we are not allowed to use when considering monoids. 

It is a straightforward task to consruct similar many 

sorted structures which would correspond to the "idea" of higher 

nilpotency class. The construction of equation solving 

algorithms in such structures has been left as an open research 

problem. This is because of time constraints on the research 

project rather than the difficulty of the problem. 

4.5.2 Addition of the axiom xP =1 

In Chapter 2 we discussed special p-groups as studied by 

U. Martin (47]. We saw that the inclusion of the axiom xP =1 to 

the theory'of nilpotent groups of class 2 made the search space 

of the it-equations finite. Thus we had an outright algorithm 

rather than a relative one. 

If we attempt to use the same idea here and include the 

relation. xP =1 (x eAiBv B') to the elements of N to create 

a new class of structures, P say, then we see that the elements 

of P are actually groups and as such have been covered in 
Chapter 2. The inverse of any element x is xP-1. 
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4.5.3 Problems in just one variable 

Repin (57] studied algorithmic equation solving for problems 

in only one variable for nilpotent groups of class 2. It was 

seen in Chapter 2 that restriction to this class of problems 

resulted in only linear diophantine equations occurring. As 

there is an algorithm to solve systems of linear diophantine 

equations this means that there exists an algorithm to solve 

this restricted class of problems. The question of whether or 

not the same thing happens when restricting to problems in just 

one variable in the members of N arises naturally. The answer to 

this question is that the above algorithm is an outright 

algorithm for this class of problems. The reason is because the 

linear diophantine, equations that occur as part of a p-system 

are in one variable only thus giving a constant solution (if one 

exists).. This can be substituted into the p-equations of the 

p-system to give a solution. We will illustrate this by 

considering the following example: 

Example 4.5.3.1: 

Suppose we have the same monoid that we considered in 

Example 4.3.7: L=<a, b, c, c': ac = ca, be = cb, 

ac' = c'a, bc' = c'b, 

ab = bac, abc' = ba >EN. 

Now consider the problem xbx = ba4 ? in L. 

If we let x= aXabxbcXcc' xc i (where xa, xb, xc, xc l are non-negative 

integer variables) we obtain 

axa b%+l Oa bxb c2xc C, 2xc, = ba4 

Hence we have 

a2xa b2xb+1 c2xc-xa(xb+1) c12xcl = ba4 
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or a2xa b2xb+1 c2xc cr2xct+xa(xb+1) = ba4 

This means that we can derive one of the following two 

p-systems: 

(1) {2xa = 4,2xb +b=b, 2xc - (xb +1) xa = 0,2xct = 01 

(2) (2xa = 4,2xb +b=b, 2xc = 0,2xct + (xb +1) xa = 01 

For (1) we have xa = 2, Xb = Of xc = 1, and xCt = 0. 

For (2) we have xa = 2, xb = Of xc = 0, and xct _ -1 (not 

allowed) . 

:. the solution to the equation is x= a2c 

4.5.4 The cardinality type of any member of N 

As can be seen in 4.3 the solution of equations in any 

.. member of N is dependent upon solving p-systems. Thus the 

cardinality type of the members of N is dependent entirely upon 

the cardinality type of p-systems. In Example 4.3.7 we saw that 

the p-system that occurred was in fact a system of linear 

diophantine equations. Also in Example 4.5.3.1 we derived a 

system of linear diophantine equations. When this occurs there 

is a single most general solution. The following example shows 

the reduction of an equation in L (the monoid considered in 

examples 4.3.7 and 4.5.3.1) to a 'proper' p-system i. e. one 

containing non-linear p-equations. 

Example 4.5.4.1: 

Recall that L is the following member of N 

< a, b, c, c': ac ca, be = cb, ac' = c'a, bc' = c'b, 

ab = bac, abc' = ba >. 

Suppose we have the problem axyzb = a3b5c7ci2 ? in L. 
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Applying the usual variable substitutions we have 

axa+l bxb aYa byb aza bzb+1 cxc+Yc+zc c'Xc, +Yc, +zc' = a3b5c7c, 2 

Using the algorithm we obtain 

axa+ya+za+l bxb+yb+zb+l cxc+yc+zc ctxct+yct+zcl+yaxb+za(xb+yb) 

= a3b5c7c'2 

This provides us with the following non-linear p-system 

xa+ya+za = 2, xb+yb+zb = 4, xc+yc+zc = 2, 

xcl+yct+zce+yaxb+za(xb+yb) = 2. 

In the case of groups the troublesome diophantine equations only 

occurred under certain conditions (i. e. when the word to be 

unified with 1 lies in the commutator subgroup). The conditions, 

in members of N, when the troublesome p-equations occur have not 

been specifically characterised in this way. This has been left 

as an open problem. Again the reason is time constraints on the 

project rather than the difficulty of the problem. 

The next chapter concludes the thesis by providing a summary 

of the results presented and by indicating some open research 

problems that have arisen from this research project. 
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Chapter 5: Conclusion 

5.1 Summary of Results 

The main aim of this thesis was to study unification and 

equation solving with respect to partially commutative theories 

and structures. As we have seen, this partial commutativity was 

provided by the concept of nilpotency in the case of groups. The 

group theoretic problems have been reduced to number theoretic 

problems. The number theory has been left as an open research 

problem. We-will now consider each chapter of the thesis in turn 

and highlight the main results that have arisen out. of this 

research project. 

5.1,. 1 Chapter 1 

It has been indicated earlier that Chapter 1 is an 

introductory survey of the area. Having said this Theorem 1.4.2, 

although a known result, is not stated and proved explicitly in 

the unification literature. Indeed in some of the literature 

there appears to be some confusion over unification in a theory 

and equation solving in a model of the theory. For this reason 

the proof has been included. 

5.1.2 Chapter 2 

A unification algorithm was constructed for the theory of 

nilpotent groups of class k by constructing an equation solving 

algorithm for the free nilpotent group of class k. This 

algorithm depends upon the existence of an algorithm to solve 

certain kinds of diophantine equations of degree k. The main 

points of this chapter are: 
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5.1.2.1:, If we have an algorithm to solve nth power free 

diophantine equations of degree n for 15 n5k then we have an 

algorithm to find all solutions to any unification problem in 

the theory of nilpotent groups of class k. 

5.1.2.2: N2G is nullary. 

5.1.2.3: In general the cardinality type of MNkG is dependent 

upon the cardinality types of nth power free diophantine 

equations of degree n for 25nSk. It is in any case 

infinitary. 

5.1.3 Chapter 3 

In this chapter we concerned ourselves with the question of 

the decidability of the unification problem in nilpotent groups. 

The main result of this chapter is that this problem is 

undecidable for the theory of nilpotent groups of class k where 

kZ5. 

5.1.4 Chapter 4 

In this chapter we turned our attention to partially 

commutative monoids and in particular to the class N. The main 

result of this chapter is: 

If we have an algorithm to solve p-systems then we have an 

algorithm to solve any equation in any member of N. 

At 
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5.2 Open Research Problems 

There are many avenues of research that have been opened 

up by the work presented in this thesis. Some of these have been 

outlined already. However, we will collect all the most obvious 

open problems-together in this section whether or not they have 

already been mentioned. Some of these problems appear reasonably 

straightforward and, as has also been indicated, have not been 

tackled because of time constraints on the research project. 

This research project has given, in Chapters 1 and 4, 

various equation solving algorithms which are relative to having 

algorithms that can solve particular systems of diophantine 

equations. An obvious open problem is to solve the number 

theoretic problems that arise from this research. By the results 

of Chapter 3 we are only interested in. solving the nth power 

free diophantine equations of degree n that occur in Chapter 2 

for 2Sn54. Another problem is to characterise the systems of 

equations occurring for class 3 and 4 in the way that we 

characterised the 'v-equations for class 2. 

The decidability of the unification problem for nilpotent 

groups of class 2,3 and 4 depends upon the decidability of the 

corresponding systems of diopohantine equations. Similarly the 

decidability of the equation solving problem for members of N 

depends upon the decidability of p-systems. If such algorithms 

could be constructed then the relative algorithms presented in 

this thesis would become actual ones. Another possible research 

problem would be to consider the complexity of the algorithms 

presented in this thesis. 

We saw in Chapter 2 that we have an outright unification 

algorithm for one-variable problems in a free nilpotent group of 

class 2 (Repin [57]).. This is not the case for free nilpotent 
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groups of class 3. Here we are dependent upon certain 

diophantine equations of degree 2. A possible direction of 

research is to investigate further the type of equations that 

occur here (in the way that we developed the c-equations for the 

general case in class 2). It is also feasible to investigate 

one-variable problems in nilpotent groups of higher class. In 

Chapter 3 we considered another result established by Repin [57] 

which says that the problem of solving any equation, involving 

only one variable, in a free nilpotent group of class k for k2 

1020 is undecidable. It is extremely likely that the value of k 

in this result can be reduced. It may be possible to do this by 

employing some of the methods developed in this thesis. 

In Chapter 4 we considered equation solving in members of N 

i. e. certain partially commutative monoids. These correspond to 

nilpotent structures of class 2. A natural extension of this 

work would be to consider equation solving in similar partially 

commutative monoids corresponding to structures of higher 

nilpotency class. Also it would be interesting to investigate 

the conditions, in members of N, when the troublesome 

p-equations occur. 
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