Unification and Equation Solving in Nilpotent

Groups and Monoids

Fdmind Kieran Burke
-2

Submitted in accordance with the requirements

for the degree of PhD.
The University of Leeds

School of Computer Studies

June 1991

YAACHL YTzaaving «Gil)

Abstract
Unification and equation solving have been considered for
groups [44], semigroups [43], abelian groups [39] and abelian
semigroups [25], [33], [68]‘, [69]. In this thesis we consider
partially commutative groups and monoids. Nilpotency provides us

with a partial commutativity condition in the case of groups.

It is noted that unification in a theory is equivalent to
equation solving in a freemodél of that theory if such a model
exists.

The unification algorithm for nilpotent groups G of class k
WOrks by passing to the quotient of G by the (k-1)th term of the
lower central series and lifting the solution up the factors

formed from G by the terms of the lower central series. There are

certain unification problems, however, where this does not work
as it stands and special treatment is required involving the

solutions of a certain restricted classfofadibphantine equations

of degree k.

The unification problem for the theories of nilpotent groups of
class 2 5 is sﬁown to be undecidablé. This imﬁroves the result of
Romankov [60] who showed it for claés* 2 9. The result is
espéplished‘by reducing the problemwto that of algorithmically
solving;aq arbitrary diophantine equation of degree 4. It ié wgll
known1that this problem is undécidable [S0], [60].

A specilal set of partially coﬁmutétiveﬁonoids is introduced.
Ah algorithm to solve equations in these monoids relative to
solving certainﬂsysteqﬁhof diophantine equations of degree 2 is

given. These equations have similarities with those that occur

for nilpotent groups of class 2.

Contents

Chapter 1: Introduction« ¢ ¢ ¢ ¢ ¢ ¢ &« « « o 1
1.1 An overview of the thesis. « « « ¢« ¢ ¢« « ¢« ¢ ¢« « 1
1.2 Preliminary definitions and notation. . . . « « + + « « . ©
1.3 Related WOork . v v v v ¢« v ¢ v o o o o o o o o o « o « o+ 14
1.4 Unification and free modelsS. . . « « ¢ « « « o o« o o o« o 23
1.5 Some unification results and examples. . . « « « « « o o+ 26

Chapter 2: Unification in nilpotent groups

OFf Class K. & v & ¢ v o o o o o o o o o o o o o o o« o« o« o 35
2.1 IntrodUuction. . v cv o o ¢ o o o o o o o o s 4 e o o « & 39
2.2 Preliminaries « v« v v vt b b e e e e e s e e s e e s s .41

2.3 Solution of equations in free nilpotent groups

of class k . s e e e e e e e e e e e e e e e e e . W49

2.4 Unification in nilpotent groups of class 2 02

2.5 Unification in k-sorted theories of nilpotent groups

of class k. P 1 0

2.6 Unification in special p-groups. Y

2.7 Examples and Algorithm Outline.

Chapter 3: The undecidability of the unification problem
for nilpotent groups of class 25 « .+80

3.1 INtroduction & & v vt bt te e e e e e e e e e 80

3.2 Preliminaries . .

® o ¢ L L @ 9 ¢ @ ¢ 9 ¢ ® ¢ ¢ o o ’ o I81

3.3 The undecidability of the unification problem

for nilpotent groups of class 25 . . e« « o o« « o 85

3.4 Problems in one variable only. . « + + « ¢ ¢ ¢ « « o o . 92

T
i r *
4 “r!*ﬁﬁ ¥

Chapter 4: Equation solving in partially commutative
MONoids . . v 4 . 4t e ee e e e e e e e e e e e s IO
4.1 Introduction.... . .. v v 4 v 4 v v v e e e e e e e e 0 9D

4.2 Preliminary Definitions . . . «. v v ¢« ¢ ¢« ¢« o 0 o o« o « 296

4.3 BEquation solving in N e N. v ¢ ¢ v ¢ ¢ o o o o o o o o .101

4.4 Equation solving in M e M. + « v « ¢ o « o « « o o o « 111

4.5 Extensions of the above WOTK . v v v o o o o o o « o« o« 2116

Chapter 5: Conclusion
5.1 Summary of resultS. .+ + v o 4 o o o o o o o o o o o+ <120

5.2 Open Research ProblemsS. . « « « « o « o

References . . .

Acknowlegments

I would like to thank.my supervisor Dr.J.K.Truss for all the
support and. encouragement he has given me. I would also like to

thank Dr.K.McEvoy and Mr.J.Derrick for their help and advice,

especially in the early days of the project.

Chapter 1: Introduction

1.1JAn overview of the thesis

In this overview we will take each chapter of the thesis in

turn and giveian outline of the contents. Before we do this,

however, we wiil set out the aims of the project.

1.1.1 The aims of the oroject:

"h'

#Unification has been considered for groups and

semigroups. It has also been considered for abelian groups and
abelian semlgroups (see [25]}, [33],[39], [43],[44] [68], [69]). The
main aim.of thlS'prOJGCt is to study unlflcation with respect to
partially commutative groups .and monoids. This partial
commutativity is provided, in the case of groups, by the ooﬁcept
ofﬂﬁilpotency. We cannot ose this concept whehioonsidering

moﬁoids buﬁ we study certain monoids which have 'nilpotent like'

character.

1.1.2 Chapter 1

This chapter is an introduction to the thesis and a survey

Of the field of unification rheory..Although unificationihas
been considered in higher order theoriesit has been mainly
concerned with the study of aigorithmic methods for solving
equations in first order theories (aod their models) Inlthis
chapter the scene is set in 1.2 by introducing and defining
first order languages, theories and structures, We then formally
define the idea of unification and consider it within the

context of logic programming (by'consrdering resolution and

paramodulation). We also introduce the conoepthof cardinality

type.

1.3 is a survey of the work already carried out in the areas

that directly appertain to the research presented in this

thesis.
Unification, as we define it, is a syntactic concept i.e. we

define it for first order theories. It 1is, however, often easier
to argue semantically. We show in 1.4 that this amounts to

working in the free object, when it exists.

In 1.5 we look at examples of unification in some particular

first order theories.

1.1.2 Chapter 2

In this chapter we consider unification for nilpotent
groups. Section 2.1 is an introduction to the chapter.

In 2.2 we present certain preliminary definitions and
results that will be required later on. We introduce the idea of
basic commutators, so called because they form bases of the
factors of successive terms of the lower central series of a
nilpotent group. We outline a well known method, called the
collecting process, which will algorithmically write a word in
terms of these basic commutators. We also present a
multiplicative commutator identity (Lemma 2.2.7) which is widely
used throughout Chapters 2 and 3. Finally we finish this
preliminary section off by constructing an algorithm which can
test whether or not any word of the last non-trivial member of
the lower central series of a nilpotent group is, or can be made
by variable substitution, into an hth power (for any integer h).
The algorithm determines all such substitutions if they exist.

Section 2.3 presents an algorithm for solving any equation
in a free nilpotent group of class k relative to having an
algorithm which will solve systems of kth power free diophantine

equations of degree k. It is then shown that the theory of

nilpotent groups of class 2 is of nullary cardinality type.
Section 2.4 is a more detailed study of unification in
nilpotent groups of class 2. We give a more accurate description
of the square free diophantine equations-of degree 2 that occur
and label them t-equations. In section 2.3 we showed that in
general the theory of nilpotent groups of class 2 is nullary. We
now consider a two-sorted theory of nilpotent groups of class 2
where the sorts pick out the elements of the commutator
subgroup. In this two-sorted theory the cardinality type, in
general, becomes dependent upon the cardinality type of systems
of t-equations rather than being nullary (it is in any case
infinitary). We then briefly discuss work undertaken by Repin
(see 1.3) which considers problems in just one-variable.
Section 2.5 extends the idea introduced in 2.4 (for
nilpotency class 2) of passing to a two-sorted theory to passing

to a k-sorted theory for nilpotency class k.

We close this chapter by relating the work done here to work
undertaken by U.Martin on special p-groups (see 1.3). Special

PTgroups are a certain kind of nilpotent group of class 2. We

also extend these to higher nilpotency class.

l1.1.4 Chapter 3

In this chapter we turn our attention to the. consideration of

the decidability of the unification problem.in nilpotent groups.

Section 3.1 is an introduction to the chapter.

™

In 3.2 we introduce a particular free nilpotent group of
class 5 (which we call F). We also construct the six basic
commutators (of weight 5) of F. The collecting process is then

used to derive certain facts (Lemmas 3.2.2 and 3.2.3) about

these basic commutators.

We begin 3.3 by recalling the Matiyasevitch result (which
says that the problem of solving arbitrary diophantine equations

is undecidable) in the form in which we require it. We then show

that the unification problem for nilpotent groups of class 5 is
undecidable by considering F and reducing the problem to the
arbitrary diophatine equation problem introduced above. This
result 1s then extended to nilpotency class > 5.

In 3.4 we close this chapter by briefly discussing the

decidability of the unification problem when restricting to
problems in one variable only. This one variable work was
originally considered by Repin (see 1.3) although he considered
equation solving in free nilpotent groups (it is shown in 1.4

that this is equivalent to the unification problem).

1.1.5 Chapter 4

In this chapter we turn our attention away from nilpotent

groups toward partially commutative monoids. Section 2.1 is an

introduction to the chapter.

In 2.2 the rather complicated systems of diophantine

equations (which we call p-systems), that occur naturally later
on, are introduced. The two classes of structures (which we call
N and M) that we will be considering are then presented.

In 4.3 we first show how to write words lying in a member of

N in a certain canonical form. We then construct an algorithm to

solve equations in any member of N relative to having an

algorithm which will solve p-systems. We then present an example
of the algorithm in action and show that there is no direct way

Of proving the equivalence of the problems of solving p-systems

and solving equations in the members of N.

In 4.4 we consider solving equations in the members of M.
These structures afe 'more' free than those in;N but eéﬁation
solving in the members of M is much more difficult than in the
members of N and these difficulties are discussed. It is shown

that they do not arise in the 'smallest' elements of M, i.e. the
two three-generator elements, but that they cannot be avoided
when considering more than three generators.

In 4.5 we consider extending the work done in this chapter
in similar directions to those taken in Chapter 2. We mention
the extension of this work to partially*cdmmutative monoids that
are less commutative and this corresponds to-the idea of higher
nilpotency class. We also consider the inclusion of the axiom xP
= 1, for some odd prime p. This turns the monoid into a group
and as such has been considered in Chapter 2. We also consider

cardinality type and problems in just one variable.

1.1.6 Chapter 5

This chapter concludes the thesis by providing a summary

of the results obtained and presenting some directions for

future research.

1.2 Preliminary definitions and notation:

We introduce here, not only the basic definitions and

notations that we will be using throughout this thesis, but also
some integral concepts that provide the background to the

results presented in the subsequent chapters.

1.2.1 First order languages and theories

let [be a first order language with equality as described in

(23] or [51]. We will be using the standard definitions of
L-terms and L-formulas which can again be found in [23] or [51].

We will say that an L-formula ¢ is an L-sentence 1if every

variable of ¢ falls under the scope of a quantifier in ¢. A set

of L-sentences closed under deduction will be called an

L-theory. An L-theory is called an equational theory 1if the

equality predicate is the only predicate which appears in the

L-sentences of the L-theory and if it is axiomatized by

universal sentences.

A literal is an atomic L-formula or the negation of an

atomic L-formula. A positive literal is simply an atomic
L-formula and a negative literal is the negation of an atomic

-formula. A clause is a disjunction of literals. A Horn clause

is a clause with at most one positive literal. A program clause
is a Horn clause with exactly one positive literal. A goal

clause is a Horn clause with no positive literals. A logic

program is a set of program clauses.

An L-structure A is a quadruple (A, Rel’a, Fun”d ,Con’l) where:

(2) A is a non-empty set of objects which the variables of L

range over.

(b) Rel? = {RA :R is a relation symbol of L and RA is a

relation on A which is an interpretation of R (having the

correct arity)}

(c) Fun? = {fR :f is a function symbol of L and fR is a

function on A which is an interpretation of f (having the

correct arity)}

(d) Con? = {(c? : ¢ is a constant symbol of L and c? is a
constant in A which i1s an interpretation of c}.

Let A be an L-structure and let ¢ be an L-formula. We define
¢ being true in A (written A E ¢) in the standard manner
(again see [23]or [51]). A is said to be a model of an L-theory

E if A E ¢ for every ¢e E. We denote the class of all models
of E by Mod(E) .

Now having introduced the idea of a model (of an L-theory E)

we wish to consider certain types of mappings between different

models of E. We will be looking at isomorphisms and, in
particular, homomorphisms. Let A and B be L-sructures. A map

Fi:A - B is said to be an isomorphism if it maps A 1-1 onto B

and: (a) For each n-place relation symbol R of L

A |k R(al,‘...,an) B E R(F(a;),...,F(ag))

for every Ay1s+++78, € A,

(b) For each n-place function symbol f of L

F(f2 (a3, ...,ay)) = £B (F(a;),.:.,F(ay))

for every (a;,...,a,) € A",

(c) For each constant symbol ¢ of L

F(c?) = B.

F is said to be a homomorphism if it maps A into B and (a) 1s

replaced by

(a') For each n-place relation symbol R of L

A E R(ay,...,a;) =B E R(F(ay),...,Flay))
Where al'---pan = A-

F is said to be an endomorphism if it is a homomorphism from

A to A.

As we will show in 1.4, the idea of a-free model is very
important when we wish to consider unification from a semantic

point of view, We now introduce this concept. Let K be a set of

L-sructures and let A € K. A is said to be free in K if there
1s X ¢ A (called a free basis) such that for any B € K and any
map p: X -»B, p extends to a unique homomorphism from A to B.

Suppose we have an L-theory E, then A is said to be a free

model of E if A is free in K = Mod (E) .
Now let us consider thé idea of unification in a

particular L-theory.

1.2.2 Unification

Let L be a first order language with equality and let E be
an L-theory. A substitution is a mapping from the set of

variables of L to the set of terms of L. Any substitution is

equal to the identity mapping in all but a finite number of

cases so it can be represented as a finite set {ty/Xy,...,tp/%q)

where the x; are variables of L and the t; are [~terms.

Let V be a set of variables of L . Two substitutions 6,0

are equal over V, o=g 6 |V|, if Vx €V xo=g %6 (substitutions will

be written on the right).

We shall consider the following quasi-ordering on

substitutions:

c2g 6 |V]| 1f 6A=p o |V| for some A
(from now on when the set of variables V 1is understood we will
omit the |V| from the notations =; |V| and < V).

This is not a partial ordering but can be made into one in

the canonical way i.e. we factor out by the relation (on the set
of all substitutions) which consists of the pairs of

substitutions which are instances of each other in the theory E.

Suppose we have two L-terms s,t. 6is said to unify s and t

in E if sb=p t6. We denote the set of all unifiers of s and t by

Ugp(s,t) . A complete set of unifiers of s,t is a set cUg (s,t) such

that:

(1) cUg(s,t) © Up(s,t).

10

(2) V8eUgp(s,t) 3oecUg(s,t) (62 olvariables of s,tl).
cUg(s,t) 1s called a set of most general unifiers, written

ucUp (s,t) if and only if, in addition, we have:

(3) VBoecUg(s,t) o2 6 =0 = 6

A unification algorithm for a theory E is an algorithm which

takes as input an arbitrary pair s,t of L-terms and generates a
non-empty subset of UE(s,t),provided“s,t are unifiable (and if

not, it reports the fact).
The Unification Problem for a first order theory with

equality E is, 'given any tﬁo terms,“s and t, of E can we
algorithmically find a substitution of the variables of s and t

which will satisfy s =t in E ?' i.e. the unification problem

for E asks whether or not there is a unification algorithm for

E.

A minimal unification algorithm is one which generates’ some

Wz (s, t) .
The cardinality of uUz(s,t) defines the following classes of
L-theory:

1 :

(a) An L-theory is of cardinality type unitary if for any
unifiable L-terms s,t some pUg(s,t) exists and |pUgp(s,t)| = 1.
(b) An L-theory is of cardinality type finitary if for any

unifiable L-terms s,t some pUgp(s,t) exists and |pUgp(s,t)| 1s

finite.

(C) An L-theory is of cardinality type infinitary if for any

11

unifiable L-terms s,t some pUp(s,t) exists and there exist

L-terms s',t' such that |uUp(s',t')| is infinite.

(d) An L-theory is of cardinality type nullary if it is not in
(b) or (cC).

We may use similar terms t‘c'j) describe the solution of
equations (with arbitrarily many unknowns) in particular models

of E (see 1.4). Thus we may say that an equation has a most

general solution provided all other solutions are substitution

instances of it. We may talk about a particular model of E being
unitary if the set of most general solutions of any equation in

the model has cardinality 1, and so on.

We have defined unification for a single pair of L-terms s,t.

Biickert, Herold and Schmidt-Schauss [7] have presented a

specific L~theory such that a set of most general unifiers

exists for all problems of the form s = t ?, where s and t are

unifiable, but such that a set of most general unifiers of a
System sy =ty ? (1 £ iS m) does not necessarily exist. For this

reason unification problems are defined by means of systems in

some places in the literature. Throughout this thesis we shall,

however, consider unification for a single pair only. In Chapter
4 we are mainly concerned with showing that theiproblem of
algorithmically solving equations in ceftain parftially
commutative monoids reduces to the problem of algorithmically
solving certain special types of systems of diophantine
equatiops which we will call "p-systems" (see 4.2.1). If we were
to consider the problem of solving m equations siﬁultaneously in
one of our monoids 'then we could use exactiy the same methods ag

in 4.3 to reduce the group-theoretic problem to the

12

number-theoretic problem of solving m p-systems simultaneously.
From a number-theoretic point of view this may be more difficult

but from a group-theoretic point of view the reduction is no

more complicated than the single-equation case.

l1.2.3 The Resolution Principle

Suppose t, and t, are L-terms which are unifiable in the

empty theory (i.e. the theory that does not have any non-logical

axloms) and that 6 is the most general unifier of t; and t, (the

empty theory is unitary ([58]). Suppose also that C; and C, are

clauses.

The resolution rule says that from C; v p(t;) and C, v ~p(ty)
we are allowed to derive C;0 v C,0 (where p is an atomic

[~-formula).

The way most loglc programming systems work is that they add
a goal clause to a logic program, which is the negation of the

formula to be proved, and then they attempt to derive a

contradiction using resolution.

Suppose tj, t, and t5 are L-terms where tq and t, are

unifiable in the empty theory. Suppose that '=' is a symbol of L
(1.e. '=' is the symbol that stands for equality) and that 0 is

the most general unifier of t, and t,.

The paramodulation rule says that that from Cq v p(t,) and
Co v 't2 = t3' we can derive Cle VC29 \Y, pe([t39]) where

PO([ts0]) denotes the replacement of exactly one occurrence of

13

This rule arises as part of an attempt to design a logic

programming system which can handle equality. It is used in

conjunction with resolution.

1k4,

1.3 Related work

One of the most important proof rules proposed in

the -field of automatic theorem proving was the resolution
principle that we defined in 1.2.3 above. This was presented by
J.A.Robinson [58] in 1965. The concept of unification 1is an
integral part of this resolution principle. Robinson presented
an algorithm which would generate a unique most general unifier
of two first order terms if they were unifiable. This algorithm

is for the empty theory. The resolution principle (and hence
unification) has since proved to be of immense importance in
logic programming. -

The modern computer programming language PROLOG uses
resolution and a unification algorithm for the empty theory. The
unification algorithm normally used, however, omits the occur
check (this is defined in 1.4.2) in an attempt to improve
efficiency and hence makes PROLOG unsound. Another drawback of
PROLOG 1s that it does not have full first order equality. The
introduction of equality axioms to a logic program creates many
implementation problems. If there are several function symbols
appearing in the program then it is impractical to introduce the
large number of axioms that would be required to represent the

substitutivity of equality. Also the equality axioms tend to

génerate many useless clauses. For example let us consider the

axioms of reflexivity and symmetry as clauses in a logic program
l.e. we have (1) x = x and (2) x =y = y = Xx. Now we can apply

the substitution {x/y} to clause (2) and resolve with clause
(1) . The result of this application of the resolution rule,

however, is the clause x

li

X 1,e.the axiom of reflexivity that
we already had.

There have been a number of attempts to design a logic

15

programming system which can handle equality. Robinson and Wos
[59] in 1969 proposed the addition of the paramodulation rule

(defined in 1.2.3 above) to resolution. Goguen and Meseguer [19]
presented the language EQLOG whidh uses 'narrowing' to solve
equations and term rewriting to handle functions ('narrowing' 1is
the paramodulation rule restricted té constant terms). Malachi,
Manna and Waldinger [45] designed the language TABLOG. This 1is a
programming language based on first order logic with equality.

It does not use resolution as an inference rule but is still

heavily dependent upon unification. W.A.Kornfeld [37] introduced

'PROLOG with equality' which at first uses the normal
unification algorithm for the empty theory. If two terms are not
unified by this algorithm then the system switches to an
alternative algorithm which attempts to prove the two terms
equal. If this algorithm succeeds then it provides the variable
substitutions.

In 1972 G.Plotkin [55] considered unification for the theory
consisting solely of the associativity axiom (i.e. the theory of
semigroups) . The motivation behind this was that the problems
Created by the inclusion of certain axioms among the axioms of
the 1logic program could be removed by omitting the
problem-causing axioms and incorporating them into the
unification algorithm. It was shown here that the theory of
assoclativity is infinitary i.e. there exist problems in this
theory which have an infinite number of most general unifiers
(see Examples 1.5.5 and 1.5.6). In the mid seventies Siekmann
[65] and Stickel [68], [69) independently produced unification
algorithms for the theory of commutativity and for the theory of
abelian semigroups which is the combination of the theories of

assoclativity and commutativity. The algorithm for abelian

16

semigroups can be trivially turned into one for abelian monoids.
These theories were shown to be finitary i.e. any unifiable
problem in these theories has a finite number of most general
unifiers. The late seventies and early eighties saw a massive
increase in the number of special unification algorithms. Such
algorithms were constructed for the theories of idempotence
[56], and commutativity with idempotence [56] both of which are
finitary. The theories of distributivity [71], distributivity
with commutativity [70], distributivity with associativity [70],
and distributivity with both associativity and commutativity
[70] were all shown to be infinitary.

Many unification problems have arisen which have been
concerned with group theory. This is partly because some of the
originally famous algorithmic problems did arise in group
theory. Examples are the word problem, the conjugacy problem and
the isomorphism problem. Suppose we are given two words lying in
a particular group. The word and conijugacy problems ask if there
1s an algorithm to decide whether or not the two words are equal
or conjugate respectively. The isomorphism problem asks whether
Or not two group presentations give isomorphic groups. It is
clear that these problems are essentially computational in
nature. Note the difference between the word problem and the
unification problem. The unification problem asks whether or not
the words can be made equal by variable substitution. A
substantial number of the early workers in this area were group
theorists, not only because of the existence of these classical
algorithmic problems, but also because group theory provided a
suitable environment in which to set and solve computational
Problems. J.Neubuser in 1967 presented a paper [52] which is a

Survey of the work carried out in the area of computational

17

group theory up to that time. Although somewhat out of date,
this survey provides a good idea of the many varied
computational problems arising in group theory. This paper
appears in a volume entitled 'Computational Problems in Abstract
Algebra' edited by J.Leech [40]. Most of the papers appearing in
this volume are concerned with groups. It was in this volume
that the Knuth-Bendix completion procedure was first presented
[36] . The construction of this procedure is now an important
landmark in the area of theoretical computer science. Indeed it
1s one of the cornerstones of the field of term-rewriting. More
recently, J.Cannon has devised a software package called Cayley

[9] which is concerned solely with the solving of problems in

groups.

We have already briefly discussed the early work in

unification for semigroups and abelian semigroups. Makanin in
1977 [43] gave an algorithm to decide whether or not any given
word equation has a solution (i.e. whether or not there exists a

solution to a unification problem in the theory of semigroups).

H.Abdulrab and J.Pecuchet [1) havé, very recently, presented a
brief survey of the results in this area in which they outline a
simplified version. In this paper they use the pig-pug method
first introduced by Lentin [41)] in 1972. This method enumerates
the set of most general unifiers which appear as labels of paths
in a graph. For uncomplicated problems the pig-pug method works

quite well. There are, however, some problems for which the

Pig-pug graph is infinite. In this case one has to resort to

Makanin's algorithm. An algorithm to enumerate the set of most

general unifiers, for any problem, was presented by J.Jaffar

[29] in 1990. In 1983 Makanin [44] showed that the unification

pProblem for the theory of groups was decidable. He uses his

18

algorithm for semigroups, mentioned above, to achieve this.,

- J.M.Hullot in 1980 [26] provided a minimal unification

algorithm for the theory of quasi-groups and showed that this
theory is finitary. In 1984 Lankford, Butler and Brady [39]

presented a unification algorithm for the theory of abelian
groups. Repin [57] in 1985 constructed an equation solving
algorithm (restricted to problems with just one variable) for
free nilpotent groups of class 2. Repin also shows in the same
paper that such an algorithm does not exist for free nilpotent
groups of class ¢, where ¢>1040, This immediately impl;}'.es that
(when restricting to one variable) there is a unification
algorithm for the theory of nilpotent groups of class 2 and that
the unification problem is undecidable for nilpotent groups of

class c, where c>1040 (see Theorem 1.4.2). The results presented
in Chapter 2 study the extension of this to problems containing

any number of variables. In Chapter 2 we also consider nilpotent
groups of class k for any integer k. V.A. Romankov [60] in 1977
showed that the endomorphic reducibility problemlis uﬁsolvable
for free nilpotent groups of class 2 9. This again immediately
lmplies that the unification problem for such groups is
undecidable. A result presented in Chapter 3 reduces this
nilpotency undecidability boundary to class 5. Romankov [61]
also showed in 1979 that the problem of algorithmically solving
arbltrary equations in a free metabelian group is undecidable.
Hence the unification problem for the theory of metabelian
groups 1s undecidable. The extension of this result to groups of
higher solubility class is trivial. Herold and Siekmann [25]
extended the abeliantsemigroup results to allow unification in
abelian semigroups with uninterpreted function symbols (we will

discuss the theory of abelian groups with and without

19

uninterpreted function symbols in 1.5). We consider hilpotent
monoids in Chapter 4. U.Martin and.T.Nipkow [48] showed inT1986
that the theory of boolean rings is unitary i.e. any unifiable
problem in this theory has a unique most general unifier.
U.Martin has recentlfﬁconstructed a unification algorithm for
special p-groups [47). The relationship betwéén this work and

the work on nilpotent groups of class 2 is discussed in Chapter

2.

'In 1966 W.F.Gould [20] showed that there are SONE

problemsr in highewr order theories where there exists aﬁ
infinitely descending sequence of unifiers i.e. there is a
unifiable problém, such that for any unifier 0 there is another
unifier 6' such that 6' < 6. Theories with this property are
called nullary theories. The proﬁiemEOf whether or not first

order nullary theories exist was an open problém.for quife some
time. It was not until 1983 that Fages and Huet (17] solved this
by constructing a specific first order theory (i.e. the theory
comprising of the axioms ‘1l.x = k' and ‘f(x.y) = £(y)') which
they showed to be nullary. In 1986 F.Baader [3] showed that the
theory of idempotent semigroups is nullary. We will show in
Chapter 2 that a single-sorted theory of nilpotent gfoups of
class k is another first order theory which is nullary. We will
also propose a method for gettiné round this problem by passing

to a many-sorted theory.

There are ﬁany other areés“of unification theory that are
attracting considerable research activity. Unification and-its
applications in many-sbrted logicsrhas been considered by
C.Walther [72], A.G.Cohn [12] and M.Schmidt-Schauss [53].

There has been much work recently on the combination of

unification algorithms. Suppose we have a unification algbrithm

20

for the theory E; and one for the theory E,. The problem posed

in this field is to determine if we can merge these algorithms

together to produce a unification algorithm for the theory

Eq + E». Work in this area has been undertaken by K.Yellick

[73], C. Kirchner [33], A.Herold [24] and M.Schmidt-Schauss
[64] .

A blossoming research area at the moment is that of
constraint logic programming. It has already been mentioned
above that certain axioms can be taken out of the logic program
and grafted into the unification algorithm as long as we can
solve the unification problem for the theory under
consideration. However, unification theory has only been
concerned with theories that contain just one predicate (i.e.
the equality predicate). Constraint solving goes one step
further and allows us to introduce inequalities as well as other
specialised predicates. The set of axioms involving these other
predicates, as well as equality, is known as a set of
constraints. In a constraint logic programming system.Robinsoﬂ's

unification algorithm for the empty theory is replaced, in the

resolution step, by an algorithm to solve a system of
constraints. Examples of current constraint logic programming
systems are CHIP, which was developed by M.Dincbas et al [16],
PROLOG II [13] and PROLOG III [14],‘which.were'both developed by
A.Colmerauer. J.Jaffar and J-L.Lassez in 1987 [30] gave a
theoretical treatment of logic programming with constraints.

C.Kirchner, H.Kirchner and M.Rusinowitch [34] have considered

Survey of the work carried out so far in the field of constraint

21

logic programming. However, constraint solving is not concerned
entirely with logic programming. Some research is currently
taking place to solve more general problems using constraint

solving methods. R.Feldman and M.C.Golumbic [18] have-presented

optimization algorithms for the student scheduling problem using

constraint solving.

Many problems in unification theory reduce to the problem
of algorithmically finding solutions for diophantine equations.
The work presented in this thesis gives several examples of such
problems. Lankford, Butler and Brady's algorithm [39] for
abelian groups requires an algorithm to compute a basis for the
solution space of systems of homogeneous linear diophantine
equations as well as an algorithm to give a solution for
arbitrary systems of linear diophantine equations. The
unification algorithms for abelian semigroups and for abelian
semigroups with uninterpreted function symbols ([68], [69], [25])
also rely heavily upon the algorithmic solutions of linear
diophantine equations (see [28] or [35] for a presentation of
these algorithms). In 1970 Matiyasevitch [50] showed that the
problem of the existence of integer solutions for an arbitrary
diophantine equation is undecidable (solution to Hilbert's tenth

problem) . The undecidability results of Romankov [60], [61] and
Chapter 3 rest upon this result.

Apart from the uses already mentioned, in logic programming

and equational logic programming, unification theory has other

applications in many varied areas of computer science.
Unification algorithms are used in programming languages,
term-rewriting, natural language processing and in modal and

temporal logics which are gaining importance in the field of

artificial intelligence. 1In particular unification in

22

commutative theories has important uses which crop up in several
different fields of computer science. A unification algorithm

for abelian semigroups is used in term rewriting and in a number
of different programming languages. As has been mentioned, the
main motivation for the research presented in this thesis is
that it may prove very useful to have unification algorithms for
partially commutative theories. Nilpotency can be viewed as a
partial commutativity condition. The lower the nilpotency class
of the theory the more commutative is that theory. For example,

nilpotent groups of class 1 are abelian groups.

23

1.4 Unification and free models

Unification as we have defined it is a syntactic
notion. As can be seen in 1.2.2 it iswdefined for first order
theories with equality. In many of the results presented in this
thesis we prefer, however, to argue semantically i.e. in a model -
of the.theory. The result of this section allows us to do so 1in
cases where the appropriate free models exist. However, this

result i1s of no use if the theory under consideration does not
posess free models. We know [5] that a theory E has a free model
if it is an equational theory éhd.the theory of niipotent gioups
of{class'k is equational. We shall show, howéver, in 4.5 that a
free model does not exist for”the theory of nilpotent monoids.

Hence in the case of nilpotent monoids we cannot call upon the

result of this section.

1.4.1 Definitions:

Let L be a first order language with equality, let E be an

[L-theory and let A be a free model of E on the set

X = {X1/X9,...} of free generators, where X is a cdﬁntably

infinite set of distinct elements which are.going to be thought
of as variables ranging over A. Let T, be the set of L-terms. We

now define a map 1A T, — A inductively on t € T, as follows:
If £t is a variable vy let I'a-(vi) = Xy € X,
If t 1s a constant symbol ¢ let IA(c) = A,

It t = £(t;,..,ty) where f is an n-place function symbol and

24

Now consider the unification problem t, = t, ? in E. ‘The
followihg theorem allows us to work in A rather than in E:
Theorem 1.4.2:

Suppose a suﬁgtitution 6 and unification problem tq = t, ? are
given. Then:
£10 =p t.0 & I(t;0) = 12(t.0)

Proof:

From left to right the implication is obvious since A is a

model of E. This is "soundness" (see [23] or [51]).
Conversely assume that I'a‘(tle) = I'a'(tze) . Then by the Godel

Completeness Theorerﬁ (see [23] or [51l]) it suffices to show that

B E t10 = t,0 for any B € Mod(E) and assignment to members of B

of any free variables occurring. Let u be just such an

assignment.

Now let p:X —» B be defined by p(xy) = u(vy). We know that

because A is free p can be extendéd to a unique homomorphism

h: A = B.

Since h is a homomorphism we have that h(I’a‘(tlB)) = h(I'a'(tge)) -
Now we show that h(I?(t)) = t® where t ¢ T, by induction on the
construction of t.

If t 1s a variable vy then I'q-(vi) = Xy € X and h(xy) = p(xy) =
u(vy) = tB,

IT t is a constant symbol c then I'a-(c) = ¢? and because h is a

homomorphism h(c’q) = cB = tB.

295

If t = £(ty,..,t,) where £ is an n place function symbol and

/.. ,tni are membersl of 'i‘L th;n 12 (t) = f’a‘(IA(tlﬂ) ree I’i(tn)) énd
we have that
h(1A(t)) = 8 (ty))), .., h(IR)))

(because h is a homomorphism)

= £B (t,B, .. ,£.P) by induction

+B

Therefore we have t193 = tZBB in B for any assignment of the free

variables occurring in t16,t,0 to elements of B

i.e. B l: t19 - t29-

26

1.5 Some unification results and examples’

We now look at some established results, together with
examples, in order to introduce some of the concepts that we
will be taking as read later on. The most widely used of all

unification. algorithms is the algorithm for the empty theory

which we will denote by @. This was the first ever unification

algorithm.

Theorem 1.5.1 (c.f [10] or [42]):
There is a minimal unification algorithm for ©.

Moreover, @ is unitary.

Remark 1.5.2:

Suppose a unification problem t; = t,? in @ 1s given. The

algorithm of Theorem 1.5.1 works by attempting to unify each
subterm of t, and t, from left to right. If upon attempting to

unify two subterms one subterm is a variable x and the other a

term £t then we apply the substitution t/x to the problem. We can
only do this, however, if the variable x does not occur in the
term t. For the unification algorithm to work a check, which is
called the occur check, must be carried out to ensure that this
1s the case. The necessity of the occur check can be seen by
considering the problem f(x) = x? in @ where x is a variable and
f is one-place function symbol. Clearly there is no solution,
but without the occur check the unification algorithm of Theorem

1.5.1 would carry on substituting f(x) for x infinitely many
times.

The algorithm of Theorem 1.5.1 is non-deterministic in the

Sénse that there may be more than one possible substitution to

27

make when the attempt is made to unify subterms. Different
substitutions will, however, produce the same most general

unifier up to variable renaming. This highlights the remark made
in 1.2.2 that <+ (in this case E is @) is a quasi-ordering which

can be made into a partial ordering in the canonical way.

Definitions 1 .5.3:

Let L. be a first order language consisting of djust one

two-place function symbol f£. We will use the following

notations:

(a) C denotes the theory consisting of the commutativity axiom

only i.e. VxVy(f(x,y) = £(y,x)).
(b) A denotes the theory consisting of the associativity axiom
only i.e. VxVyVz(£f(f(x,y),2z) = £(x,£(y,2))).

Note: When this holds we can consistently write xy for f(x,y)

and there is no need to insert brackets.

|

(c) C+A denotes the theory obtained by combining both of the

above axioms (for the same f).

The following theorem gives us results about the existence of

minimal unification algorithms and the cardinality type of the
theories defined in 1.5.3.

Theorem 1.5.4 ([55],[65], [68],[69]):

(a) There are minimal unification algorithms for each of C and

C+A, and both theories are finitary.

(b) A is infinitary.

28

Let us now look in some detail at the theories we have

introduced:

Example 1.5.5:

Suppose the unification problem f(x,a) = f(a,x) ?“ié given
where a is a constant and x is a variable of the language under
consideration. We consider this problem in each of the theories

introduced above:

1.5.5.1: Let us first consider this problem in @. Here the only

possible solution is ©

{a/x} and this is the most general

unifier.

1.5.5.2: We now consider the problem in C. In this case we can

substitute any term for x and make use of the commutativity

axiom.

So 6 is a unifier as it was for 1.5.5.1 but here o = {b/x)

(where b is a constant of L) is also a unifier (note that o is

not a unifier in 1.5.5.1). However, o is not a most general
unifier since 1t = {t/x} (where t is any term of L) is also a

unifier, ©t &, ¢ and t #c ¢ (even up to equivalence in C). In fact

T 1s the most general unifier for this problem in C. Note that
this is a special case of a problem in C where we have one most

general unifier. In general we have finitely many most general

unifiers.

1.5.5.3: We now consider the problem in A. As for 1.5.5.1 we
have that 6 is a unifier. However, the substitutions ¢t that

‘were unifiers in 1.5.5.2 are not unifiers here. Clearly in this

29

case the set of substitutions {al/x: n e N} forms the set of all
unifiers of the problem in A. This is an infinite set of

constant values and thus illustrates the infinitary nature of A.

1.5.5.4: In C+A for this particular problem we have exactly the

same situation that we had in 1.5.5.2.

We will now consider a more involved problem:
Example 1.5.6:
'Suppose we have the unification problem
f(x,£(a,f(b,y))) = £(y,£(b,f(a,x))) ?
where a,b are constants and X,y are variables of the language
under consideration. We can simplify the notation by writing the
problem in the form
X(a(by)) = y(b(ax).
We will again consider the given problem in each of the

theories introduced above:

1.5.6.1: We will first consider the problem in @. We can see
that although we can unify the first two subterms from the left
X, Yy we cannot unify the second two, the constants a,b. Thus
there cannot be a solution of the problem in @.

We will now show that in C the problem is also insoluble.

1.5.6.2: If we look at the first subterm on the left hand side
of the equation it can be seen that we have the choice of

attempting to unify x with y or (by use of the commutativity

axiom) x with b(ax). It is clear that we cannot unify x and
b(ax). Therefore, if there is a solution to the problem we must

have X = y. We are then left with the problem a(bx) = b(ax). As

30

a,b are constants they will not unify so (by use of the
commutativity axiom again) we have to uﬁify ax with a which 1is
impossible (without the presence of an identity). Hence the
problem has no solution in C. We will now show that not only do

we get a solution of the problem in A but we get infinitely many

solutions.

1.5.6.3: The problem can be rewritten as xaby = ybax ? because
we are working with the associtivity axiom. By considering this
problem we show that A is infinitary. The simpler problem of
1.5.5 shows this but we will still consider problem 1.5.6 in
some detall to provide a non-trivial infinitary problem and to

provide a clearer exposition of the concepts involved.

Claim 1:

The solutions to this are given by 0h = {an/x,an*'l/y}:

(n20), 9o = {bn"'l/x,bn/y}, (n 2 0), or if we already have a

solution {u/x,v/y) then'w'= {u/x,uabv/y} or n = {vbau/x,v/y}.

Proof:ﬁ

It 1s clear that x # y so let us assume first that the length

of x is less than the length of y. We can see that Yy = Xa or

y = xabv for some (possibly empty) v.

If vy = Xxa then we obtain xabxa = xabax. Thué Xa = ax which means
that x = a® for n 2 0, so the solution is 6,. Now if y = xabv

then substituting this into the equation gives xabxabv = xabvbax

i.e. xabv = vbax and {x/x,v/y} is also a solution. Thus the

solution is of the form of . ¢n and n can be derived by assuming

that the length of y is less than the length of x. Hence Claim 1

is proven.

31

Claim 2:

There cannot exist a solution in which ab? is a subword of
X Oor Y.

Proof:

We use induction on the construction of x and vy given by

Claim 1.

For the base case X and y are given by 6, or ¢p.

For the induction step x and y are given by
(a) y = {u/x,uvabv/y} for some solution {u/x,v/y}
or (b) n = {vbau/x,v/y} for some solution {u/x,v/v}.
We will consider cases (a) and (b) in turn:
(a) By the induction hypothesis a’b? does not occur in u or v
so the only way in which a®b? can occur in y 1s if u ends with a
and v begins with b. -

Suppose by way of contradiction that u = u'a and v = bv' for

some u' and v'.
SOy o= {u‘a/x,u'azbzv'/y}

Substituting into the original problem we have

u'azbu'azbzv' = u'a‘b?v'bau’a
. u'acbly! = bv'bau'a
“ u' =bu'' and v' = v''a for some u'' and v''

“~ U =Dbu''a and v = bv''a
Now {u/x,v/y} is a solution to the problem so we have
bu''a’b?v''a = bv''ababu''a
The only way ab? can occur on the right hand side of the

equation is if it occurs in u'' or v'' which‘contradicts the

induction hypothesis.

(b) By the induction hypothesis a?b? does not occur in u or v so

the only way in which a2b? can occur in x is if u begins with

32

a’b or v ends with ab?. Having noted this the proof follows in a

very similar manner to that for (a).

Hence Claim 2 is proven.

Now assume A is finitary. Then we have a finite number of most

general unifiers. However, each most general unifier must be
constant since if a variablé occurred we could substitute a’b?
for it which we cannot do by Claim 2. Therefore we only have
finitely many solutions which contradicts Claim 1.

Now because every solution is constant they must all be most

general. Thus A is infinitary.

1.5.6.4: We now consider the problem in A+C. We can rewrite it
as Xyab = xyab ? and the most general solution in this case is

trivially {x/x,y/y}. Although we have not given an example which

shows the finitary nature of A+C the example we give for the
theory of abelian monoids (see 1.5.13), which is very similar to
A+C, provides this. The theory of abelian monoids is A+C

together with an identity. However, for the moment let us

consider the theory of abelian groups which we will deﬁote by

AG. This consists of the group axioms + C.

Theorem 1.5.7 ([39]):

There is a minimal unification algorithm for the theory of

abelian groups (with free constants).

Example 1.5.8:

Suppose we have the problem x3y22'1a2b‘3c‘1 = 1 ? in AG where

X,¥,2 are variables and a,b,c are constants. By Theorem 1.4.2

this is equivalent to solving the equation in a free abelian

33

group of countably infinite rank. We can express the given
problem in additive notation to obtain
3x + 2y =z + 2a -3b - ¢ = 0.
The algorithm of Theoremkl.5.7_makes use of an algqrithm.(see

[28]) which generates a basis of the solution space of the

hbmogeneous equation 3x +’2y -2z = 0:

R =160 1
1 0
2 3

(writing the solutions as columns).

We now use an algorithm (see [35]) to generate a particular

solution:
S =| b
-a
-C
Suppose Y = |y, | where y,,Y, are new variables and V = |X
Y2 Y

Z

then a most general unifier (we will show that it is the most
general unifier in the next theorem) 6 is given by {(RY + S)/V}

i.e. rewriting to multiplicative notation

0 = {YZb/X: yla-l/Yp y12y23C'1/Z}

We now show that this is the only most general unifier (up to

the relation obtained in the canonical way that was mentioned in
1.2.2).

—— —— —_m— -_—
—_—— —

—_— -

34

Theorem 1.5.9:
AG 1s unitary.

Proof:
Suppose the problem x,9...xX,9,CqP1...CcpPp = 1 in AG is given.
Written additively this becomes
QX te..t GuXp * P1Cy te . P Cp = 0

where Xq,...,X, are variables, ¢3,...,C, are constants and

A1reeerTnrPyr e« Py are integers. Now there is an<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>