
Unification and Equation Solving in Nilpotent

Groups and Monoids

Edmund Kieran Burke
v

Submitted in accordance with the requirements

for the degree of PhD.

The University of Leeds

School of Computer Studies

June 1991

I riAc+c iäj f xiti$3JVSYIU p ii

Abstract

Unification and equation solving have been considered for

groups [44], semigroups [43], abelian groups [39] and abelian

semigroups [25], [33], [68], [69]. In this thesis we consider

partially commutative groups and monoids. Nilpotency provides us

with a partial commutativity condition in the case of groups.

It is noted that unification in a theory is equivalent to

equation solving in a free model of that theory if such a model

exists.

The unification algorithm for nilpotent groups G of class k

works by passing to the quotient of G by the (k-1) th term of the

lower central series and lifting the solution up the factors

formed from G by the terms of the lower central series. There are

certain unification problems, however, where this does not work

as it stands and special treatment is required involving the

solutions of a certain restricted class of diophantine equations

of degree k.

The unification problem for the theories of nilpotent groups of

class Z5 is shown to be undecidable. This improves the result of

Romankov [60] who showed it for class Z 9. The result is

established by reducing the problem to that of algorithmically

solving an arbitrary diophantine equation of degree 4. It is well

known that this problem is undecidable [50], [60].

A special set of partially commutative monoids is introduced.

An algorithm to solve equations in these monoids relative to

solving certain systems of diophantine equations of degree 2 is

given. These equations have similarities with those that occur

for nilpotent groups of class 2.

Contents

Chapter 1: Introduction
1

1.1 An overview of the thesis
1

1.2 Preliminary definitions and notation.
6

1.3 Related Work
14

1.4 Unification and free models
23

1.5 Some unification results and examples.
26

Chapter 2: Unification in nilpotent groups

of class k. ... -.................... . 39

2.1 Introduction
39

2.2 Preliminaries
41

2.3 Solution of equations in free nilpotent groups

of class k........................ . 49

2.4 Unification in nilpotent groups of class 2....... 62

2.5 Unification in k-sorted theories of nilpotent groups

of class k........................ 70

2.6 Unification in special p-groups. 72

2.7 Examples and Algorithm Outline 0.... 0 . 74

Chapter 3: The undecidability of the unification problem

for nilpotent groups of class Z5.......... . 80

3.1 Introduction
.........

80

3.2 Preliminaries 81

3.3 The undecidability of the unification problem

for nilpotent groups of class 'Z 5........... . 85

3.4 Problems in one variable only 92

Chapter 4: Equation solving in partially commutative

monoids ..,:. ... , ... 95

4.1 Introduction,
95

4.2 Preliminary Definitions 96,

4.3 Equation solving in NeN............... . 101

4.4 Equation solving in Me frt 111

4.5 Extensions of the above work 116

Chapter 5: Conclusion
120

5.1 Summary of results 120

5.2 Open Research Problems
122

References. 124

Acknowlegments

I would like to thank-my supervisor'Dr. J. K. Truss for all the

support and. encouragement he has given me. I would also like to

thank Dr. K. McEvoy and Mr. J. Derrick for their help and advice,

especially in the early days of the project.

1

Chapter 1: Introduction

1.1 An overview of the thesis

In this overview we will take each chapter of the thesis in

turn and give an outline of the contents. Before we do this,

however, we will set out the aims of the project.

1.1.1 The aims of the project:

Unification has been considered for groups and

semigroups. It has also been considered for abelian groups and

abelian semigroups (see [25], [33], [39], [43], [44], [68], [69]). The

main aim of this project is to study unification with respect to

partially commutative groups and monoids. This partial

commutativity is provided, in the case of groups, by the concept

of nilpotency. We cannot use this concept when considering

monoids but we study certain monoids which have "nilpotent like'

character.

1.1.2 Chapter 1

This chapter is an introduction to the thesis and a survey

of the field of unification theory. Although unification has

been considered in higher order theories it has been mainly

concerned with the study of algorithmic methods for solving

equations in first order theories (and their models). In this

chapter the scene is set in 1.2 by introducing and defining

first order languages, theories and structures. We then formally

define the idea of unification and consider it within the

context of logic programming (by considering resolution and

paramodulation). We also introduce the concept of cardinality

type.

1.3 is a survey of the work already carried out in the areas

2

that directly appertain to the research presented in this

thesis.

Unification, as we define it, is a syntactic concept i. e. we

define it for first order theories. It is, however, often easier

to argue semantically. We show in 1.4 that this amounts to

working in the free object, when it exists.

In 1.5 we look at examples of unification in some particular

first order theories.

1.1.2 Chapter 2

In this chapter we consider unification for nilpotent

groups. Section 2.1 is an introduction to the chapter.

In 2.2 we present certain preliminary definitions and

results that will be required later on. We introduce the idea of

basic commutators, so called because they form bases of the

factors of successive terms of the lower central series of a

nilpotent group. We outline a well known method, called the

collecting process, which will algorithmically write a word in

terms of these basic commutators. We also present a

multiplicative commutator identity (Lemma 2.2.7) which is widely

used throughout Chapters 2 and 3. Finally we finish this

preliminary section off by constructing an algorithm which can

test whether or not any word of the last non-trivial member of

the lower central series of a nilpotent group is, or can be made

by variable substitution, into an hth power (for any integer h).

The algorithm determines all such substitutions if they exist.

Section 2.3 presents an algorithm for solving any equation
in a free nilpotent group of class k relative to having an

algorithm which will solve systems of kth power free diophantine

equations of degree k. It is then shown that the theory of

3

nilpotent groups of class 2 is of nullary cardinality type.

Section 2.4 is a more detailed study of unification in

nilpotent groups of class 2. We give a more accurate description

of the square free diophantine-equations-of degree 2 that. occur

and label them T-equations. In section 2.3 we showed that in

general the theory of nilpotent groups of class 2 is nullary. We

now consider a two-sorted theory of nilpotent groups of class 2

where the sorts pick out the elements of the commutator

subgroup. In this two-sorted theory the cardinality type, in

general, becomes dependent upon the cardinality type of-systems

of T-equations rather, than being nullary (it is In any case

infinitary). We then briefly discuss work undertaken by Repin

(see 1.3) which considers problems in just one-variable.

Section 2.5 extends the idea introduced in 2.4 (for

nilpotency class 2) of passing to a two-sorted theory to passing

to a k-sorted theory for nilpotency class k. -

We close this chapter by relating the work done here to work

undertaken by U. Martin on special p-groups (see 1.3). Special

p-groups are a certain kind of nilpotent group of class 2. We

also extend these to higher nilpotency class.

1.1.4 Chapter 3

In this chapter we turn our attention to the-, consideration of

the decidability of the unification problem in nilpotent. groups.

Section 3.1 is an introduction to the chapter.

In 3.2 we introduce a particular free nilpotent group of

class 5 (which we call F). We also construct the six basic

commutators (of weight 5) of F. The collecting process is then

used to derive certain facts (Lemmas 3.2.2 and 3.2.3) about
these basic commutators.

4

We begin 3.3 by recalling the Matiyasevitch result (which

says that the problem of solving arbitrary diophantine equations

is undecidable) in the form in which we require it. We then show

that the unification problem for nilpotent groups of class 5 is

undecidable by considering F and reducing the problem to the

arbitrary diophatine equation problem introduced above. This

result is then extended to nilpotency class > 5.

In 3.4 we close this chapter by briefly discussing the

decidability of the unification problem when restricting to

problems in one variable only. This one variable work was

originally considered by Repin (see 1.3) although he considered

equation solving in free nilpotent groups (it is shown in 1.4

that this is equivalent to the unification problem).

1.1.5 Chapter 4

In this chapter we turn our attention away from nilpotent

groups toward partially commutative monoids. Section 2.1 is an

introduction to the chapter.

In 2.2 the rather complicated systems of diophantine

equations (which we call p-systems), that occur naturally later

on, are introduced. The two classes of structures (which we call

N and n) that we will be considering are then presented.

In 4.3 we first show how to write words lying in a member of

N in a certain canonical form. We then construct an algorithm to

solve equations in any member of N relative to having an

algorithm which will solve p-systems. We then present an example

of the algorithm in action and show that there is no direct way
of proving the equivalence of the problems of solving p-systems

and solving equations in the members of N.

5

In 4.4 we consider solving equations in the members of It.

These structures are 'more' free than those in N but equation

solving in the members of f, is much more difficult than in the

members of N and these difficulties are discussed. It is shown

that they do not arise in the 'smallest' elements of Tt, i. e. the

two three-generator elements, but that they cannot be avoided

when considering more than three generators.

In 4.5 we consider extending the work done in this chapter

in similar directions to those taken in Chapter 2. We mention

the extension of this work to partially commutative monoids that

are less commutative and this corresponds to-the idea of higher

nilpotency class. We also consider the inclusion of the axiom xP

= 1, for some odd prime p. This turns the monoid into a group

and as such has been considered in Chapter 2. We also consider

cardinality type and problems in just one variable.

1.1.6 Chapter 5

This chapter concludes the thesis by providing a summary

of the results obtained and presenting some directions for

future research.

6

1.2 Preliminary definitions and notation:

We introduce here, not only the basic definitions and

notations that we will be using throughout this thesis, but also

some integral concepts that provide the background to the

results presented in the subsequent chapters.

1.2.1 First order languages and theories

Let L be a first order language with equality as described in

[23] or [51]. We will be using the standard definitions of

L-terms and L-formulas which can again be found in [23] or [51].

We will say that an L-formula ý is an L-sentence if every

variable of ý falls under the scope of a quantifier in 0. A set

of L-sentences closed under deduction will be called an

L-theory. An L-theory is called an equational theory if the

equality predicate is the only predicate which appears in the

L-sentences of the L-theory and if it is axiomatized by

universal sentences.

A literal is an atomic L-formula or the negation of an

atomic L-formula.
- A positive literal is simply an atomic

L-formula and a negative literal is the negation of an atomic

L-formula. A clause is a disjunction of literals. A Horn clause

is a clause with at most one positive literal. A program clause

is a Horn clause with exactly one positive literal. A goal

clause is a Horn clause with no positive literals. A logic

program is a set of program clauses.

7

An L-structure A is a quadruple (A, Relk, Fun- 4,, Con'`k) where :

(a) A is a non-empty set of objects which the variables of L

range over.

(b) RelA = {R, 4 :R is a relation symbol of L and R' is a

relation on A which is an interpretation of R (having the

correct arity) }

(c) Fun" ={ fA :f is a function symbol of L and fk is a

function on A which is an interpretation of f (having the

correct arity)}

(d) Conk = {c`4 :c is a constant symbol of L and c' is a

constant in A which is an interpretation of c}.

Let A be an L-structure and let ' be an L-formula. We define

4 being true in A (written A 0) in the standard manner

(again see [23]or [51]). A is said to be a model of an L-theory

E if A4 for every 4E E. We denote the class of all models

of E by Mod (E) .

Now having introduced the idea of a model (of an L-theory E)

we wish to consider certain types of mappings between different

models of E. We will be looking at isomorphisms and, in

particular, homomorphisms. Let A and B be L-sructures. A map

F: A -+ $ is said to be an isomorphism if it maps A 1-1 onto B

and: (a) For each n-place relation symbol R of L

A= R(al, ..., an) a 13 R(F(a,),. ... F(an))

for every al,... , an e A.

8

(b) For each n-place function symbol f of L

a,,)= f$ (F (al) , -..., F (an))

for every (al,..., an) 6 An.

(c) For each constant symbol, c of L

F(CA) = c$.

F is said to be a homomorphism if it maps A into B and (a) is

replaced by

(a') For each n-place relation symbol R of L

R (al, ... ý an) =: > $R (F (al) ý ... ,F (an))

where a1,..., an e A.

F is said to be an endomorphism if it is a homomorphism from

A to A.

As we will show in 1.4, the idea of a-free model is very

important when we wish to consider unification from a semantic

point of view. We now introduce this concept. Let K be a set of

L-sructures and let AeK. - A Is said to be free in K if there

is XcA (called a free basis) such that for any 13 eK and any

map p: X -'B, p extends to a unique homomorphism from A to B.

Suppose we have an L-theory E, then A is said to be a free

model of E if A is free in K= Mod (E) .
Now let us consider the idea of unification in a

particular L-theory.

9

1.2.2 Unification

Let L be a first order language with equality and let E be

an L-theory. A substitution is a mapping from the set of

variables of L to the set of. terms of L. Any substitution is

equal to the identity mapping in all but a finite number of

cases so it can be represented as a finite set {ti/xl,..., tn/xn}

where the xi are variables of L and the ti are L-terms.

Let V be a set of variables of L. Two substitutions a, O

are equal over V, a=E 0IVI, if Vx EV xa=E xO (substitutions will

be written on the right).

We shall consider the following quasi-ordering on

substitutions:

GZE 0 IVI if AX=E Q IVI for some ?,

(from now on when the set of variables V is understood we will

omit the IVI from the notations =E IVI and SE IVI).

This is not a partial ordering but can be made into one in

the canonical way i. e. we factor out by the relation (on the set

of all substitutions) which consists of the pairs of

substitutions which are instances of each other in the theory E.

Suppose we have two L-terms s, t. Ois said to unify s and t

in E if sO=E t0. We denote the set of all unifiers of s and t by

UE(s, t). A complete set of unifiers of s, t is a set cUE(s, t) such

that:

(1) cUE(s, t) c UE(s, t) .

10

. (2) VAe UE (s, t) 30e CUE (s, t) (OZE a Ivariables of st l)

cUE (s, t) is called a set of most general unifiers, written

µcUE(s, t) if and only if, in addition, we have:

(3) Ve, ae cUE (s, t) aZE 0a=0

A unification algorithm for a theory E is an algorithm which

takes as input an arbitrary pair s, t of L-terms and generates a

non-empty subset of UE(s, t), provided s, t are unifiable (and if

not, it reports the fact).

The Unification Problem for a first order theory with

equality E is, 'given any two terms, s and t, of E can we

algorithmically find a substitution of the variables of s and t

which will satisfy s=t in EVi. e. the unification problem

for E asks whether or not there is a unification algorithm for

E.

A minimal unification algorithm is one which generates'some

pUE (S' t) .

The cardinality of pUE(s, t) defines the following classes of

L-theory:

(a) An L-theory is of cardinality type unitary if, for any

unifiable L-terms sit some RUE(s, t) exists and IpUE(s, t)I = 1.

(b) An L-theory is of cardinality, type finitary if for any

unifiable L-terms s, t some µUE (s, t) exists and I JUE (s, t) I is

finite.

(c) An L-theory is of cardinality type infinitary if for any

11

unifiable L-terms s, t some pUE(s, t) exists and there exist

L-terms s', t' such that IµUE(s', t')I is infinite.

(d) An L-theory is of cardinality type nullary if it is not in

(b) or (c) .

We may use similar terms to describe the solution of

equations (with arbitrarily many unknowns) in particular models

of E (see 1.4). Thus we may say that an equation has a, most

general solution provided all other solutions are substitution

instances of it. We may talk about a particular model of E being

unitary if the set of most general solutions of any equation in

the model has cardinality 1, and so on.

We have defined unification for a single pair of L-terms s, t.

Bückert, Herold and Schmidt-Schauss [7] have presented a

specific L-theory such that a set of most general unifiers

exists for all problems of the form s=t?, where s and t are

unifiable, but such that a set of most general unifiers of a

system si = ti ? (1 5 i5 m) does not necessarily exist. 'For this

reason unification problems are defined by means of systems in

some places in the literature. Throughout this thesis we shall,

however, consider unification for a single pair only. In Chapter

4 we are mainly concerned with showing that the problem of

algorithmically solving equations in certain partially

commutative monoids reduces to the problem of algorithmically

solving certain special types of systems of diophantine

equations which we will call "p-systems" (see 4.2.1). If we were

to consider the problem of solving m equations simultaneously in

one of our monoids then we could use exactly the same methods as
in 4.3 to reduce the group-theoretic problem to the

12

number-theoretic problem of solving m p-systems simultaneously.

From a number-theoretic point of view this may be more difficult

but from a group-theoretic point of view the reduction is no

more complicated than the single-equation case.

1.2.3 The Resolution Principle

Suppose tl and t2 are L-terms which are unifiable in the

empty theory (i. e. the theory that does not have any non-logical

axioms) and that 0 is the most general unifier of tl and t2 (the

empty theory is unitary [58)). Suppose also that C1 and C2 are

clauses.

The resolution rule says that from Cl vp (tl) and C2 v -p (t2)

we are allowed to derive C10 v CO (where p is an atomic

L-formula)
.

The way most logic programming systems work is that they add

a goal clause to a logic program, which is the negation of the

formula to be proved, and then they attempt to derive a

contradiction using resolution.

Suppose t1, t2 and t3 are L-terms where tl and t2 are

unifiable in the empty theory. Suppose that '=' is a symbol of L

is the symbol that stands for equality) and that 0 is

the most general unifier of tl and t2.

The paramodulation rule says that that from C1 v p. (tl) and

C2 V 't2 = t3' we can derive C10 IC20 v pO ((t30)) where

pO([t3ej) denotes the replacement of exactly one occurrence of

13

tie by t30 in pe.

This rule arises as part of an attempt to design a logic

programming system which can handle equality. It is used in

conjunction with resolution.

14,

1.3 Related work

One of the most important proof rules proposed in

the-field of automatic theorem proving was the resolution

principle that we defined in 1.2.3 above. This was presented by

J. A. Robinson (58] in 1965. The concept of unification is an

integral part of this resolution principle. Robinson presented

an algorithm which would generate a unique, most general unifier

of two first order-terms if they were unifiable. This algorithm

is for the empty theory. -The resolution principle (and hence

unification) has since proved to be of immense importance in

logic programming., I,

The modern ' computer programming language PROLOG uses

resolution and a unification algorithm for the empty theory. The

unification algorithm normally used, however, omits the occur

check (this is defined in 1.4.2) in an attempt to improve

efficiency and hence makes PROLOG unsound. Another drawback of

PROLOG is that it does not have full first order equality. The

introduction of equality axioms to a logic program creates many

implementation problems. If there are several function symbols

appearing in the program then it is-impractical to introduce the

large number of axioms that would be required to represent the

substitutivity of equality. Also the equality axioms tend to

generate many useless clauses. For example let us consider the

axioms of reflexivity and symmetry as clauses in a logic program

i. e. we have (1) x=x and (2) x=yy=x. Now we can apply

the substitution {x/y} to clause (2) and'resolve with clause

(1). The result of this application of the resolution rule,
however, is the clause x=xi. e. -the axiom of reflexivity that

we already had.

There have been a number of attempts to design a logic

15

programming system which can handle equality. Robinson and Wos

[59] in 1969 proposed the addition of the paramodulation rule

(defined in 1.2.3 above) to resolution. Goguen and Meseguer [19]

presented the language EQLOG which uses 'narrowing' to solve

equations and term rewriting to handle functions ('narrowing' is

the paramodulation rule restricted to constant terms). Malachi,

Manna and Waldinger [45] designed the language TABLOG. This is a

programming language based on first order logic with equality.

It does not use resolution as an inference rule but is still

heavily dependent upon unification. W. A. Kornfeld [37] introduced

'PROLOG with equality' which at first uses the normal

unification algorithm for the empty theory. If two terms are not

unified by this algorithm then the system switches to an

alternative algorithm which attempts to prove the two terms

equal. If this algorithm succeeds then it provides the variable

substitutions.

In 1972 G. Plotkin [55] considered unification for the theory

consisting solely of the associativity axiom (i. e. the theory of

semigroups). The motivation behind this was that the problems

created by the inclusion of certain axioms among the axioms of

the logic program could be removed by omitting the

problem-causing axioms and incorporating them into the

unification algorithm. It was shown here that the theory of

associativity is infinitary i. e. there exist problems in this

theory which have an infinite number of most general unifiers

(see Examples 1.5.5 and 1.5.6). In the mid seventies Siekmann

(65] and Stickel [68], [69] independently produced unification

algorithms for the theory of commutativity and for the theory of

abelian semigroups which is the combination of the theories of

associativity and commutativity. The algorithm for abelian

16

semigroups can be trivially turned into one for abelian monoids. `

These theories were shown to be finitary i. e. any unifiable

problem in these theories has a finite number of most general

unifiers. The late seventies and early eighties saw a massive

increase in the number of special unification algorithms. Such

algorithms were constructed for the theories of idempotence

[56], and commutativity with idempotence [56] both of which are

finitary. The theories of distributivity [71], distributivity

with commutativity [70], distributivity with associativity [70],

and distributivity with both associativity and'commutativity

[70] were all shown to be infinitary.

Many unification problems have arisen which have been

concerned with group theory. This is partly because some of the

originally famous algorithmic problems did arise in group

theory. Examples are the word problem, the conjugacy problem and

the isomorphism problem. Suppose we are given two words lying in

a particular group. The word and conjugacy problems ask if there

is an algorithm to decide whether or not the two words are equal''

or conjugate respectively. The isomorphism problem asks whether

or not two group presentations give isomorphic groups. It is

clear that these problems are essentially computational in

nature. Note the difference between the word problem and the

unification problem. The unification problem asks whether or not

the words can be made equal by variable substitution. A'

substantial number of the early workers in this area were group
theorists, not only because of the existence of these classical

algorithmic problems, but also because group theory provided a

suitable environment in which to set and solve computational

problems. J. Neubuser in 1967 presented a paper [52] which is a

survey of the work carried out in the area of computational

17

group theory up to that time. Although somewhat out of date,

this survey provides a good idea of the many varied

computational problems arising in group theory. This paper

appears in a volume entitled 'Computational Problems in Abstract

Algebra' edited by J. Leech [40]. Most of the papers appearing in

this volume are concerned with groups. It was in this volume

that the Knuth-Bendix completion procedure was first presented

[36]. The construction of this procedure is now an important

landmark in the area of theoretical computer science. Indeed it

is one of the cornerstones of the field of term-rewriting. More

recently, J. Cannon has devised a'software package called Cayley

(9) which is concerned solely with the solving of problems in

groups.

We have already briefly discussed the early work in

unification for semigroups and abelian semigroups. Makanin in

1977 [43] gave an algorithm to decide whether or not any given

word equation has a solution (i. e. whether or not there exists a

solution to a unification problem in the theory of semigroups).

H. Abdulrab and J. Pecuchet (1] have, very recently, presented a

brief survey of the results in this area in which they outline a

simplified version. In this paper they use the pig-pug method

first introduced by Lentin [41] in 1972. This method enumerates

the set of most general unifiers which appear as labels of paths

in a graph. For uncomplicated problems the pig-pug method works

quite well. There are, however, some problems for which the

pig-pug graph is infinite. In this case one has to resort to

Makanin's algorithm. An algorithm to enumerate the set of most

general unifiers, for any problem, was presented by J. Jaffar

[29] in 1990. In 1983 Makanin [44] showed that the unification

problem for the theory of groups was decidable. He uses his

18

algorithm for semigroups, mentioned above, to achieve this.

J. M. Hullot in 1980 [26] provided a minimal unification

algorithm for the theory of quasi-groups and showed that this

theory is finitary. In 1984 Lankford, Butler and Brady [39]

presented a unification algorithm for the theory of abelian

groups. Repin [57] in 1985 constructed an equation solving

algorithm (restricted to problems with just one variable) for

free nilpotent groups of class 2. Repin also shows in the same

paper that such an algorithm does not exist for free nilpotent

groups of class c, where C>1020. This immediately implies that

(when restricting to one variable) there is a unification

algorithm for the theory of nilpotent groups of class 2 and that

the unification problem. is undecidable for nilpotent groups of

class c, where C>1020 (see Theorem 1.4.2). The results presented

in Chapter 2 study the extension of this to problems containing

any number of variables. In Chapter 2 we also consider nilpotent

groups of class
,k

for any integer k. V. A. Romankov [60] in 1977,

showed that the endomorphic reducibility problem is unsolvable

for free nilpotent groups of class Z 9. This again immediately

implies that the unification problem for such groups is

undecidable. A result presented in Chapter 3 reduces this

nilpotency undecidability boundary to, class 5. Romankov [61]

also showed in 1979 that the problem of algorithmically solving

arbitrary equations in a free metabelian group is undecidable.

Hence the unification problem for the theory of metabelian

groups is undecidable. The extension of this result to groups of
higher solubility class is trivial. Herold and Siekmann [25]

extended the abelian semigroup results to allow unification in

abelian semigroups with uninterpreted function symbols (we will
discuss the theory of abelian groups with and without

19

uninterpreted function, symbols in 1.5). We consider nilpotent

monoids in Chapter 4. U. Martin and T. Nipkow [48] showed in 1986

that the theory of boolean rings is unitary i. e. any unifiable

problem in this theory has a unique most general unifier.

U. Martin has recently constructed a unification algorithm for

special p-groups [47]. The relationship between this work and

the work on nilpotent groups of class 2 is discussed in Chapter

2.

In 1966 W. F. Gould [20] showed that there are some

problems in higher order theories where there exists an

infinitely descending sequence of unifiers i. e. there is a

unifiable problem, such that for any unifier 0 there is another

unifier 9' such that 0''< 0. Theories with this property are

called nullary theories. The problem of whether or not first

order nullary theories exist was an open problem for quite some

time. It was not until 1983 that Fages and Huet (17] solved this

by constructing a specific first order theory (i. e. the theory

comprising of the axioms '1. x = x' and 'f(x. y) = f(y)') which

they showed to be'nullary. In 1986 F. Baader (3] showed that the

theory of idempotent semigroups is nullary. We will show in

Chapter 2 that a single-sorted theory of nilpotent groups of

class k is another first order theory which is nullary. We will

also propose a method for getting round this problem by passing

to a many-sorted theory.

There are many other areas of unification theory that are

attracting considerable research activity. Unification and its

applications in many-sorted logics has been considered by

C. Walther [72], A. G. Cohn (12] and M. Schmidt-Schauss (63].

There has been much work recently on the combination of

unification algorithms. Suppose we have a unification algorithm

20

for the theory E1 and one for the theory E2. The problem posed

in this field is to determine-if-we can merge these algorithms

together to produce a unification algorithm for the theory

E1 + E2. Work in this area has been undertaken by K. Yellick

[73], C. Kirchner [33], A. Herold [24] and M. Schmidt-Schauss

[64).

A blossoming research area at the moment is that of

constraint logic programming. It has already been mentioned

above that certain axioms can be taken out of the logic program

and grafted into the unification algorithm as long as we can

solve the unification problem 'for the theory under

consideration. ' However, unification theory has only been

concerned with theories that contain just one predicate (i. e.

the equality' predicate) . Constraint solving goes one step

further and allows us-to introduce inequalities as well as other

specialised predicates. The set of axioms involving these other

predicates, ''as well as equality, is known äs a set of

constraints. In a constraint logic programming system Robinson's

unification algorithm for the empty theory is replaced, in the

resolution step, by an algorithm to solve a 'system of

constraints. Examples of current constraint logic programming

systems are CHIP, which was developed by M. Dincbas et al (16],

PROLOG II (13] and PROLOG III (14], 'which were both developed by

A. Colmerauer. J. Jaffar and J-L. Lassez""in 1987 [30] gave' a

theoretical treatment of logic programming with constraints.

C. Kirchner, H. Kirchner and'M. Rusinowitch [34] have considered

constrained deduction for equational logic and for first order
logic with equality. J. Cohen'(11] has recently presented'a

survey of the work carried out'so far in the field of constraint

21

logic programming. However, constraint solving is not concerned

entirely with logic programming. Some research is currently

taking place to solve more general problems using constraint

solving methods. R. Feldman and M. C. Golumbic [18] have presented

optimization algorithms for the student scheduling problem using

constraint solving.

Many problems in unification theory reduce to the problem

of algorithmically finding solutions for diophantine equations.

The work presented in this thesis gives several examples of such

problems. Lankford, Butler and Brady's algorithm [39] for

abelian groups requires an algorithm to compute a basis for the

solution space of systems of homogeneous linear diophantine

equations as well as an algorithm to give a solution for

arbitrary systems of linear diophantine equations. The

unification algorithms for abelian semigroups and for abelian

semigroups with uninterpreted function symbols ([68], [69], [25])

also rely heavily upon the algorithmic solutions of linear

diophantine equations (see [28] or [35] for a presentation of

these algorithms). In 1970 Matiyasevitch (50) showed that the

problem of the existence of integer solutions for an arbitrary

diophantine equation is undecidable (solution to Hilbert's tenth

problem). The undecidability results of Romankov [60], [61] and

Chapter 3 rest upon this result.

Apart from the uses already mentioned, in logic programming

and equational logic programming, unification theory has other

applications in many varied areas of computer science.
Unification algorithms are used in programming languages,

term-rewriting, natural language processing and in modal and
temporal logics which are gaining importance in the field of
artificial intelligence. In particular unification in

22

commutative theories. has important uses which crop up in several

different fields of computer science. A unification algorithm

for abelian semigroups is used in term rewriting and in a number

of different programming languages. -As has been mentioned, the

main motivation for the research presented in this thesis is

that it may prove very useful to have unification algorithms for

partially commutative. theories. Nilpotency can be viewed as a

partial commutativity condition. The lower. the, nilpotency class

of the theory the more commutative is that, theory. For example,

nilpotent groups of class 1 are abelian groups.

d

,..

23

1.4 Unification and free models

Unification as we have defined it is a syntactic

notion. As can be seen in 1.2.2 it is defined for first order

theories with equality. In many of the results presented in this

thesis we prefer, however, to"argue semantically i. e. in a model

of the, theory. The result of this section allows us to do so in

cases where the appropriate free models exist. However, this

result is of no use if the theory under consideration does not

posess free models. We know [5] that a theory E has a free model

if it is an equational theory and the theory of nilpotent groups

of class k is equational. We shall show, however, in 4.5 that a

free model does not exist for the theory of'nilpotent monoids.

Hence in the case of nilpotent monoids we cannot call upon the

result of this section.

1.4.1 Definitions:

Let L be a first order language with equality, let E be an

L-theory and let A be a free model of E on the set

X= {xl, x2,... } of free generators, where X is a countably

infinite set of distinct elements which are going to be thought

of as variables ranging over A. Let TL be the set of L-terms. We

now define a map 114: TL -. A inductively on te TL as follows:

If t is a variable vi let I, 4(vi)
= xi E X.

If t is a constant symbol c let I' (c) = C4.

If t=f (tl, .., tn) where f is an n-place function symbol and

tl, .., to are L-terms then I''4 (t) = f'4 Wk (tl) , .., IA (tn)).

24

Now consider the unification problem tl = t2 ? in E. The

following theorem allows us to work in A rather than in E:

Theorem 1.4.2:

Suppose a substitution 0 and unification problem tl = t2 ? are

given. Then:

tle =E tee a I' (tle) = IA (tee)
Proof :

From left to right the implication is obvious since A is a

model of E. This is "soundness" (see [23] or [51]).

Conversely assume that I94 (t18) = I-4 (t28) . Then by the Gödel

Completeness Theorem (see [23] or [51]) it suffices to show that

Bk tle = t20 for any 13 e Mod(E) and assignment to members of B

of any free variables occurring. Let u be just such an

assignment.

Now let p: X -* 13 be defined by p (xi) =u (vi) . We know that

because A is free p can be extended to a unique homomorphism

h: A -' $.

Since h is a homomorphism we have that h (I' (tl6)) =h (I"4 (t2A)) .

Now we show that h(I'(t)) = t$ where te TL by induction on the

construction of t.

If t is a variable vi then IA (vi) = xi eX and h (xi) =p (xi) _

u(vi) = t$.

If t is a constant symbol c then I'A (c) = c, 4 and because h is a

homomorphism h (cam) = c$ = t$.

25

If t=f (tl, .., tn)' where f is' in n place p'function symbol and

tl, .., to are members of TL then I4 (t) = f' (I4 (tl) , .., IA (tn)) and

we have that

h(IA(t)) = f$ (h(I'(tl)) ,"", h(I'4(tn)))

(because 'h is a homomorphism)

=0 (tl$,.., t 13) by induction

= tn.

Therefore we have t16$ = t2O in B for any assignment of the free

variables occurring in t1e, t20 to elements of B

i. e. 11 k tle = tee.

26

1.5 Some unification results and examples

We now look at some established results, together with

examples, in order to introduce some of the concepts that we

will be taking as read later on. The most widely used of all

unification. algorithms is the algorithm for the empty theory

which we will denote by 0. This was the first ever unification

algorithm.

Theorem 1.5.1 (c. f [10] or [42]):

There is a minimal unification algorithm for 0.

Moreover, 0 is unitary.

Remark 1.5.2:

Suppose a unification problem tl = t2? in 0 is given. The

algorithm of Theorem 1.5.1 works by attempting to unify each

subterm of ti and t2 from left to right. If upon attempting to

unify two subterms one subterm is a variable`x and the other a

term t then we apply the substitution t/x to the problem. We can

only do this, however, if the variable x does not occur in the

term t. For the unification algorithm to work a check, which is

called the occur check, must be carried out to ensure that this

is the case. The necessity of the occur check can be seen by

considering the problem f(x) = x? in 0 where x is a variable and

f is one-place function symbol. Clearly there is no solution,

but without the occur check the unification algorithm of Theorem

1.5.1 would carry on substituting f(x) for x infinitely many

times.

The algorithm of Theorem 1.5.1 is non-deterministic in the

sense that there may be more than one possible substitution to

27

make when the attempt is made to unify subterms. Different

substitutions will, however, produce the same most general

unifier up to variable renaming. This highlights the remark made

in l. 2'. 2'that -<E "(in this case E is 0) is a quasi-ordering which

can be made into a partial ordering in the canonical way.

Definitions 1.5.3:

Let L be a first order language consisting of just one

two-place function symbol f. We will use the following

notations:

(a) C denotes the theory consisting of the commutativity axiom

only i. e. Vxdy(f (X, Y) =f (y, x)) .
(b) A denotes the theory consisting of the associativity axiom

only i. e. VxVy`dz(f(f(x, y), z) = f(x, f(y, z))).

Note: When this holds we can consistently write xy for f(x, y)

and there is no need to insert brackets.

(c) C+A denotes the theory obtained by combining both of the

above axioms (for the same f).

The following theorem gives us results about the existence of

minimal unification algorithms and the cardinality type of the

theories defined in 1.5.3.

Theorem 1.5.4 ([55], [65], [68], [69]):

(a) There are minimal unification algorithms for each of C and
C+A, and both theories are finitary.

(b) A is infinitary.

28

Let us now look in some detail at the theories we have

introduced:

Example 1.5.5:

Suppose the unification problem f (x, a) =f (a, x) ? -is given

where a is a constant and x is a variable of the language under

consideration. We consider this problem in each of the theories

introduced above:

1.5.5.1: Let us first consider this problem in 0. Here the only

possible solution is 0= {a/x} and this is the most general

unifier.

1.5.5.2: We now consider the problem in C. In this case we can

substitute any term for x and make use of the commutativity

axiom.

So 0 is a unifier'as it was for 1.5.5.1 but here a= {b/x}

(where b is a constant of L) is also a unifier (note that a is

not a unifier in 1.5.5.1). However, a is not a most general

unifier since T, = {t/x} (where t is any term of L) is also a

unifier, ca and r *C a (even up to equivalence in C) . In fact

T is the most general unifier for°this problem in C. Note that

this is a special case of a problem in C where we have one most

general unifier. In general we have finitely many most general

unifiers.

1.5.5.3: We now consider the problem in A. As for 1.5.5.1 we

have that 0 is a unifier. However, the substitutions a, t that

were unifiers in 1.5.5.2 are'not unifiers here. Clearly in this

29

case the set of 'substitutions {an/x: ne N} forms the set of all

unifiers of the problem in A. This is an infinite set of

constant values and thus illustrates the infinitary nature of A.

1.5.5: 4: In C+A for this particular problem we have exactly the

same situation that we had in 1.5.5.2.

We will now consider a more involved problem:

Example 1.5.6:

Suppose we have the unification problem

f(x, f(a, f(b, y))) = f(y, f(b, f(a, x))) ?

where a, b are constants and x, y are variables of the language

under consideration. We can simplify the notation by writing the

problem in the form

x (a (by)) =y (b (ax) .

We will again consider the given problem in each of the

theories introduced above:

1.5.6.1: We will first consider the problem in 0. We can see

that although we can unify the first two subterms from the left

x, y we cannot unify the second two, the constants a, b. Thus

there cannot be a solution of the problem in 0.

We will now show that in C the problem is also insoluble.

1.5.6.2: If we look at the first subterm on the left hand side

of the equation it can be seen that we have the choice of

attempting to unify x with y or (by use of the commutativity

axiom) x with b(ax). It is clear that we cannot unify x and

b(ax). Therefore, if there is a solution to the problem we must

have x=y. We are then left with the problem a(bx) = b(ax). As

30

a, b are constants they will not unify so (by use of the

commutativity axiom again) we have to unify ax with a which is

impossible (without the presence of an identity). Hence the

problem has no solution in C. We will now show that not only do

we get a solution of the problem in A but we get infinitely many

solutions.

1.5.6.3: The problem can be rewritten as xaby = ybax ? because

we are working with-the associtivity axiom. By considering this

problem we show that A is infinitary. The simpler. problem of

1.5.5 shows this but we will still consider problem 1.5.6 in

some detail to provide a non-trivial infinitary problem and to

provide a clearer exposition of the concepts involved.

Claim 1:

The solutions to this are given by On = {an/x, an+i/y},

(n Z 0), (Pn = {bn+l/x, bn/y}, (n ý 0), or if we already have a

solution {u/x, v/y} then ,= {u/x, uabv/y} or r= {vbau/x, v/y}.

Proof :

It is clear that x#y so let us assume first that the length

of x is less than the length of y. We can see that y= xa or

y= xabv for some (possibly empty) v.

If y= xa then we obtain xabxa = xabax. Thus xa = ax which means

that x= an for nZ0, so the solution is 6n. Now if y= xabv

then substituting this into the equation gives xabxabv = xabvbax
i. e. xabv = vbax and {x/x, v/y} is also a solution. Thus the

solution is of the form of yr. c and n can be derived by assuming

that the length of y is less than the length of x. Hence Claim 1
is proven.

31

Claim 2:

There cannot exist a solution in which a2b2 is a subword of

x or y.

Proof:

We use induction on the construction of x and y given by

Claim 1.

For the base case x and y are given by On or q n.

For the induction step x and y are given by

(a) yr = {u/x, uabv/y} for some solutiön {u/x, v/y}

or (b) rj _ {vbau/x, v/y} for some solution {u/x, v/y}.

We will consider cases (a) and (b) in turn :

(a) By the induction hypothesis a2b2 does not occur in u or v

so the only way in which a2b2 can occur in y is if u ends with a

and v begins with b.

Suppose by way of contradiction that u= u'a and v= bv' for

some u' and v'.

.. yr = {u' a/x, u' a2b2v' /y}

Substituting into the original problem we have

u'a2bu'a2b2v' = u'a2b2v'bau'a

u'a2b2v' = bv'bau'a

.. u' = bull and v' = v'' a for some u'' and v''

.. u= bu''a and v= by"a

Now {u/x, v/y} is a solution to the problem so we have

bu'' a2b2v''a = by' ababu'' a

The only way a2b2 can occur on the right hand side of the

equation is if it occurs in u '' or v'' which contradicts the

induction hypothesis.

(b) By the induction hypothesis a2b2 does not occur in u or v so
the only way in which a2b2 can occur in x is if u begins with

32

a2b or v ends with ab2. Having noted this the proof'follows in a

very similar manner to that for (a).

Hence Claim 2 is proven.

Now assume A is finitary. Then we have a finite number of most

general unifiers. However, each most general unifier must be

constant since if a variable occurred we could substitute a2b2

for it which we cannot do by Claim 2. Therefore we only have

finitely many solutions which contradicts Claim 1.

Now because every solution is constant they must all be most

general. Thus A 'is infinitary.

1.5.6.4: We now consider the problem in A+C. We can rewrite it

as xyab = xyab ? and the most general solution in this case is

trivially {x/x, y/y}. Although we have not given an example which

shows the finitary nature of A+C, the example we give for the

theory of abelian monoids (see 1.5.13), which is very similar to

A+C, provides this. The theory of abelian monoids is A+C

together with an identity. However, for the moment let us

consider the theory of abelian groups which we will denote by

AG. This consists of the group axioms + C.

Theorem 1.5.7 ((39]): ,

There is a minimal unification algorithm for the theory of

abelian groups (with free constants).

Example 1.5.8:

Suppose we have the problem x3y2z-la2b-3c-1 =1? in AG where

x, y, z are variables and a, b, c are constants. By Theorem 1.4.2

this is equivalent to solving the equation in a free abelian

33

group of countably infinite rank. We can express the given

problem in additive notation to obtain

3x+2y-z+2a-3b-c=0.

The algorithm of Theorem 1.5.7 makes use of an algorithm (see

[28]) which generates a basis of the solution space of the

homogeneous equation 3x + 2y -z=0:

R=01

10

23

(writing the solutions as columns).

We now use an algorithm (see [35]) to generate a particular

solution:

S= b

-a

-c

Suppose Y= yl where yi, y2 are new variables and V=x

y2 y

z

then a most general unifier (we will show that it is the most

general unifier in the next theorem) 0 is given by { (RY + S)/V}

i. e. rewriting to multiplicative notation

0= {y2b/x, Y1a-1/Y, Y12Y23c-1/z}

We now show that this is the only most general unifier (up to

the relation obtained in the canonical way that was mentioned in

1.2,2) ,

34

Theorem 1.5.9:

AG is unitary.

Proof :

Suppose the problem x1g1... xnqnc1P1... cmPm =1 in AG is given.

Written additively this becomes

glxl +... + gnxn + plcl +... +pmcm =0

where xl,..., xn are variables, cl,..., cm are constants and

qiº"""ºqnºP1º"""ºPm are integers. Now there is an algorithm [28]

which computes R= (T-1 r2 ... xs) where {X-1'-r2'"""'Ms} forms a

basis for the set of solutions of glxl +... +gnxn = 0. A

particular solution P of

glxl +... + gnxn + plcl +... +pmcm =0

can also be computed [35]. The unifier given by Theorem 1.4.6 is

then 0= {(RY + P)/V} where Y= yi and V= 1xl

yS xn

(yi,... ys are new variables).

In an attempt to simplify matters we will let

0= {01/xl, ..., 0n/xn}.

Suppose a= {ai/xl,..., ßn/xn} is any solution of the problem. We

must show that there exists a substitution X such that 0% = a.

Now applying the substitutions 6, a to the problem and subtracting

yields ql (al - 81) +. .. + qn (an -Os) =0.

35

Therefore there exist integers

x1, "".. Xs such that al-el

a2 - e2

an - On

+ ... + ýýrs =). 1T-1 + A-2
-r-2

and so a=0+x, 1 1+ 1212 + ... + XSIS

={ R y1 + X1 + P x1 }.

Ys + xs
_xn

If we let X={ (y1 + X1) /y1, ..., (ys + ? s) /ys} then o% = a, as

required.
r;

Remark 1.5.10:

Lankford, Butler and Brady showed in [391 that the theory of

abelian groups is finitary. They are, however, 'considering the

theory of abelian groups with uninterpreted function symbols

(which we will denote by AG'). As it is defined above AG has

only the group operation function symbol. The following example

will highlight the difference between the two and illustrate the

finitary nature of AG'.

Example 1.5.11:

First of all, suppose the problem xy = ab? is given in AG

where x, y are variables and a, b are constant symbols. Then the

most general solution is 0= {tab/x, t--/y}.

36

Now, suppose the problem f(x)f(y) =f (a) f (b) ? is given in

AG' where f is a one place uninterpreted function symbol. This

problem is not unified by 0. It is, however, unified by

a= {a/x, b/y} and T= {b/x, a/y}.

Clearly a, T are not instances of each other in AG' (but they are

instances of 0 in AG).

We will now close this introductory chapter with a brief look

at the theory of abelian monoids which we will denote by AM.

This is A+C together with an identity. We have the following

theorem.

Theorem 1.5.12 [25]:

There is a minimal unification algorithm for AM.

Moreover AM is finitary.

Example 1.5.13:

Suppose we consider the problem of Example 1.5.8 in AM i. e. we

consider the problem x3y2a2 = zlb3c1? in AM where x, y, z are

variables and a, b, c are constants. We can express the given

problem in additive notation-to obtain

3x + 2y -z + 2a -3b -c=0.
We now use the algorithm of (28] which generates a basis of the

solutions of the homogeneous equation over the positive
integers:

R= 0 1

1 0

2 3

As auxiliary problems the three equations:

3x + 2y -z = -2 for a..... (1)

37

3x + 2y -z =3 for b..... (2)

3x + 2y -z =1 for c..... (3)

arise. There is an algorithm [25] for generating a-basis of the

solutions of (1), (2), (3) over the positive integers:

For (1) this yields { (0,0,2) },

for (2) { (1,0,0) (0,2,1) }

and for (3) { (0,1,1) , (1,0,2) 1.

The product of these three bases is:

{((0,0,2) , (1,0,0) 1 (0, -1,1)), ((0,0 , 2) , (1,. 0,0) 1 (1,0,2)) ",

((0,0,2), (0,2,1), (0,1,1)), ((0,0,2), (0,2,1), (1,0,2)) },

and this provides a complete minimal set of particular

solutions. For instance from the first element of the product we

can derive the matrix

P1 = 0 1 0

0 0 1

2 0 1

and similarly we can derive the matrices P21P3 and P4

corresponding to the other elements of the product.

Let U= lull ,A=a and V= "x '

U2 by

z

then for i =1,.., 4 the most general unifiers are:

ai = {RU +PjA/V}

It is easy to check

(1) that none of these are instances of each other,
(2) that in AG each is an instance of the most general unifier
generated in Example 1.5.8, and

DS Ut4W B UBR X'

38

(3) any unifier is an instance of a member of this set.

Now having introduced the basic ideas and concepts of

Unification Theory and having looked at some of the established

results we can begin to consider the main aim of this research

project which is to investigate unification and equation solving

in partially commutative theories and structures. We start

Chapter 2 by considering nilpotent groups.

39

Chapter 2: Unification in nilpotent groups

of class k

2.1 Introduction:

As we have seen in Chapter 1 unification algorithms have

been constructed for various equational theories. Of particular

interest are varieties of groups and semigroups. We have had a

brief look at abelian groups. The case of groups was discussed ir.

[44]. We study here an intermediate case, that of nilpotent

groups of class k, some fixed k. We remark that in contrast with

the two instances just cited the results presented in Chapter 3

show that unification for nilpotent groups of class k is

undecidable for k 2t 5. Repin [57] showed that the problem of

solving equations in just one variable is undecidable for

k> 1020. For k=2 in the same paper he gave an algorithm to

solve equations in just one variable (by Theorem 1.4.2 this is a

unification algorithm for k. = 2, for problems in just one

variable). Here we extend this by giving relative unification

algorithms, for any k and any number of variables, based on

lifting Lankford, Butler, and Brady's algorithm [39] up the

factors formed from G by the terms of the lower central series.

The algorithms are relative to solving kth power free diophantine

equations of degree k.

Now as we remarked earlier, unification, as we have defined

it, is a syntactic concept. This is, however, one of the many

cases where it is generally easier to argue semantically, and by

Theorem 1.4.2 this amounts to solving equations in an appropriate
free object (in cases where this exists), here a free nilpotent

group of class k and infinite rank. When k=2 we have a
"nullary" theory, i. e. there are certain pairs of unifiable terms

40

which. do not possess a most general unifier (it seems likely, but

has not been proven, that we also have a nullary theory for k>

2). To attempt to correct this we pass to a many-sorted theory

where the sorts pick out the terms of the lower central series.

A related and interesting problem is that of the solution of

equations in groups where we think of the problem semantically

from the word go. Unification then amounts to a version of this

problem where the particular group is free nilpotent of class k

and infinite rank. The methods also apply to solutions of

equations in arbitrary free nilpotent groups of class k (of

finite or infinite rank). We shall formulate the results for

these and the unification results will follow automatically.

It has already been mentioned in 1.3 that related work has

been carried out by Martin [47], who considered unification in

special p-groups and Repin [57] who considered equation solving

in free nilpotent groups of class 2 restricted to problems in

just one variable. We will discuss the relationship between their

work and the work presented in this chapter.

f ..,

41

2.2 Preliminaries:

" We now recall the definitions and basic results that we shall

need:

41

ý{
1

Definition 2.2.1:

The element x ly lxy of a group G is called the commutator of
4:

x and y, written [x, y]. We can define commutators. of higher order

by [xl, """ xn] -I ExV """' xn-1]' xn] . We denote the element

y lxy by xy.

The following lemma follows immediately from these

definitions:

Lemma 2.2.2:

If x, y, z are elements of a group then:

(i) (x, Yz] _ (x, z] [X, YIZ

(ii) [xy, z] _ [X, z] y [Y, Z]

(iii) [X, Y] Z= (z, [x, Yl -l l Ix, Y]

Definition 2.2.3:

Suppose we have a group G generated by a0, .. , ak. These are

the basic commutators of weight 1, i. e. wt (ai) =1 for

i=0,
.., k. We order these by ai Saj if iSJ. If c and d are

commutators of G then [c, d) is a commutator of weight

wt (c) + wt (d) . We order these by d<c if wt (d) < wt (c) : If two

commutators of weight >1 have equal weight then we order them

arbitrarily. The basic commutators of weight n are then the

commutators [c, d] such that :

42

(1) c and d are basic

(2) wt (c) + wt (d) =n

(3) c>d

(4) If c= [e, f] then dZf.

A group G is nilpotent of class k if there exists a normal

series G= Go Z G1 z... 2: Gk-1 z Gk =1 such that Gi_1/Gi lies in

the centre of G/Gi for i=1,2,..., k. If such a series exists

then Gi can be taken to be [Gi_1, G]. This is called the lower

central series. We will denote the theory of nilpotent groups of

class k by NkG.

Lemma 2.2.4 (c. f. [21] or [53]):

The basic commutators of weight k of a free nilpotent group of

class k form a basis for the free abelian group Gk-11

Lemma 2.2.5 ([21]):

Suppose c and d are commutators in a nilpotent group of class

k. Let d0 =d and do+l = [dn, c].

Then (1) dc = cd[d, c]

ý2ý d-1c =c (d, c) -1d-1

Lk-1/2J
(3) dc-1 = c-ld fl ä2n

n=1

Lk/2j
(4) d-1c-1 = c-1 H d2n-1

n=1

Remark 2.2.6:

Lk/2J
(II d2n-1) -1

n=1
Lk-1/2j

fl d2n) -1d
n=1

This lemma defines a collecting process which writes any

element of a nilpotent group of class k in terms of basic

43

commutators of weight Sk that will be ordered from left to right

by the weight ordering introduced above. That is we pick out the

leftmost, -smallest commutator that has not yet been collected and

move it to the left using the above four rules. So if G is a free

nilpotent group of class k and w is a reduced word in Gk_l then w

may be effectively written as a product of the elements of the

free basis of Gk_1 given by Lemma 2.2.4.

The following lemma appears in much of the'literature but we

present a relatively straightforward proof for the sake of

completeness.

Lemma 2.2.7 (c. f. [21] or [53]):

Let G be a nilpotent group of class k. If xl, ... , xk are

elements of G and xi'= a. b for some i then

(x1, ..., a. b, ..., xk] _ (x1, ..., a, ..., xk] . [x1, ..., b, ..., xkj .

Proof :

First let us introduce the notation Cs by induction:

If s=1 then Cs = xi.

If 1<sSk then Cs = (xl, .., xsl .,

We will show that the result holds when 1<i< k-1.

Upon seeing this proof it is easy to see that the result also

holds for i=l, k-1, k. The notation used below is not defined in

these instances and for i=1 we have to initially apply Lemma

2.2.2 (ii) instead of (i) but otherwise the arguments are very

similar. For a word w lying in G we will use 'w (mod G,)' to mean

'w. u' for some u where ue Gi. Before we prove this lemma we make

and prove two claims.

ý1,

44

Claim 1:

If x, y, z, w are elements of G where x, y are of weight 1 then:

[w, xy, z] = [w, x, z] [w, y, z] (mod Gwt (w) + wt (z) + 1)

Proof :

[w, xy, zl =L [w, xy] , z]

_[[w, y] [w, x] y, z] (by Lemma 2.2.2 (1))

=[[w, y] [y, [w, x] -11 [w, x],, z] (by Lemma 2.2.2 (iii)

_[[w, y] [w, x] (mod Gwt (W) + 1) , z] (by Lemma 2.2.5)

= [W, Y, z] [w, x] (mod Gwt(W)
+ 1) [(W, x) (mod Gwt(w) + 1), z]

(by Lemma 2.2.2 (ii))

_ [w, y, z] [[w, x] (mod Gwt (w) +1) , z] (mod G2wt (w)+wt (z)+1)

(by Lemmas 2.2.2 (ii), 2.2.2 (iii) and 2.2.5: Note that some of the

commutators generated by the use of these lemmas are of weight

much greater than 2wt(w) + wt (z) +-2 but this is the smallest of

the weights of those commutators)

= [w,, Y. z] [W, X, z]r[r, z] (mod G2wt(w) + wt(z) + 1)

(by Lemma 2.2.2 (ii) where wt (r) Z wt (w) + 2)

= [w, y, z] [w, x, z] (mod Gwt (w) + wt (z) + 1)

(by Lemmas 2.2.2 (iii), 2.2.5 and the facts that

wt((r, (w, x, z]-1]) Z 2wt(w) + wt(z) +3 and wt((r, z]) Z wt(w)

+wt (z) + 2)

, ý.
{'

.. 1

I,.

Hence Claim 1 is proven.

45

Claim 2:

If 1< i< k-1 then for 15s5 k-2-i:

[[Ci-1, a, Xi+i, ."I Xi+s]

(Ci-1, b, xi+l, ."' xi+s I mod Gi+s, xi+s+l, ""I Xkl

< <Ci-1, a, xi+1, " "' Xi+s, xi+s+l]

Ci-l, b, xi+l, . "' xi+s, xi+s+i] mod Gi+s+1, xi+s+2, " "' Xk]

Proof:

[[Ci-11 a, xi+1, .", xi+s I

" (Ci-1, b, xi+i, . "' xi+s] mod Gi+s, xi+s+l, ""f Xkl

=[[Ci-11 a, xi+l, "" �xi+s, xi+s+l1 [Ci-1'b, xi+lº " "' Xi+s]mod Gi+s

"[[Ci-11b xi+1, " "' xi+s] mod Gi+s, xi+s+l], xi+s+2, "" Xk]

(by Lemma 2.2.2 (i)) ,

= ([Ci-1, a, xi+1, "", xi+s, xi+s+l

" [Ci-1, b, xi+i, ""' xi+s) mod Gi+s, xi+s+l] mod Gi+s+i, xi+s+2, ""x]

(by Lemmas 2.2.2 (iii) and 2.2.5. As in the proof of Claim 1 most

of the commutators generated here are of weight greater than is

required but they are in any case of weight not less than

i+s+2)

< <Ci-1 ,a, Xi+l 1"", Xi+s, Xi+s+l

" [Ci-,, b, xi+i, " "' Xi+s, Xi+s+i] mod Gi+s+l i"" Xk]

(by Lemmas 2.2.2 (i) , 2.2.2 (iii) and 2.2.5. Once again we

generate commutators of weight not less than i+s+ 2)

Hence Claim 2 is proven.

46

Now if 1<i< k-1 then we have that [xl,.., xk]

_[[xiº .. º xi-1l º abº xi+1º .. º xk]

_ ((Ci-1, ab, xi+l], xi+2, .., xk]

[[[Ci-1, a] , xi+1] [[Ci-11 b],, xi+1] mod Gi+1 ý .., Xk]

(by Claim 1)

=[[Xl,
.., a, .. r xk-1] [xl,..

,,
b,

.. i Xk-1] mod Gk-l, Xk]

(by Claim 2)

= xk] [xl,.. , b, ... Xk-11 mod Gk-1

.[
[xi, .., b, .., xk-1 1 mod Gk-1, xk]

(by Lemma 2.2.2 (i))

= (x11.. , a,, .. ' Xk] ((Xl, .. 'bj, 4 .' Xk-1) mod Gk-1, Xk] mod Gk

(by Lemmas 2.2.2 (iii) and 2.2.5 generating commutators of weight

not less than k +1)

= [x�, .., a, .., xkl [[x1, .., b, .., xk] mod Gk

(by Lemmas 2.2.2(i), 2.2.2(iii) and 2.2.5 again generating

commutators of weight not less than k+ 1)

=. .,, a, *.., b, since we are working in a

nilpotent group of class k.

When considering unification for nilpotent groups the terms

arising will be allowed to contain both variables and constants.

For this reason the natural "free object" to consider is as in

the next lemma. In this Lemma (and throughout the rest of the

thesis) we will take Z to be the set of integers and N to be the

set of non-negative integers.

47

Lemma . 2.2.8:

Let G be the free nilpotent group of class k on constants

{an: n EN} and variables {xn: ne N}. Let we Gk_1 and h>1.

There exists an algorithm to test whether or not there is a

substitution for the variables of w under which it becomes an htr

power of a member of Gk_1, and which determines all such

substitutions if they exist.

Proof :

By Lemma 2.2.4, Gk-1 is free abelian. Let Bk be the basis of

Gk_1. By 'lemma 2.2.4 Bk exists and is the set of all basic

commutators of weight k on the generators {an: ne N} v {xn: ne

N}.

Now w may be effectively written as a word in this

basis:. by the collecting process as described in Lemma 2.2.5. and

Remark 2.2.6.

Thus w= b0rp.... bmrm where bi e Bk and ri e Z. Now the only

members of {an: ne N} u {4xn: ne N) occurring in the bi are

those occurring in w. So without loss of generality let aO,... ak

and x0,... xn be the members of {an: n EN) and (xn: ne N}

respectively that occur in w.

Since we Gk the required substitution will be of the form

0= {aoi (0, j) aki (k, j)z mod Gl /x j: j=0, ..., n} where z is a

variable standing for words in the generators not appearing in w.

We now use Lemma 2.2.7 to write wO as a product of basic

commutators. The powers of the commutators are polynomials in

48

1(0, J),..., i(k, j). All substitutions are obtained by inspection of

these polynomials (and the commutators involving z). It is enough

to determine all solutions mod h, and there are only finitely

many of these to test.

2.2.9 Examples:

2.2.9.1: Let w be the word [a, x][a, b]-(where a, b are constants

and x is a variable) lying in G the free nilpotent group of class

k introduced above where k=2.

Suppose we wish to express w as a cube. We make the

substitution , aibJz mod G1/x. This gives us [a, b] J+l [a, z] .

Therefore i is arbitrary, j= 3k-1 and z is a cube.

So all substitutions are given in the format:

aib3k-1z3 mod G1/x

2.2.9.2: Let w be the word [a, x][a, b][a, y] (where alb are

constants and x, y are variables) lying in G the free nilpotent

group of class k'introduced above where k=2. Suppose we wish to

express w as a square. We make the substitution {aibizu/x ,

anbmsv/x}' where u, ve G'.

This gives us [a, b]i+m+1[a, zs].

Therefore i is arbitrary, n is arbitrary, m is arbitrary,

j= 2k -m -1 and zs is a square i. e. z= t2s-1.

So all substitutions are given in the format:

{aib2k-m-lt2s-lu/x
, anbmsv/x} where u, v c G'.

J

49

2.3 Solution of equations in free nilpotent groups of

class k

2.3.1 Remark:

The algorithm that we derive is relative to having an

algorithm which generates the complete, minimal solution set of

any system of nth power free diophantine equations of degree n

for 1SnSk. We will call such an algorithm Ak.

2.3.2 A description of the algorithm to find the

complete, minimal solution set of any equation in a

free nilpotent group of class k:

In this section we show, relative to having some Ak, how to

solve arbitrary equations in G, a free nilpotent group of class

k. Now any equation w1 = w2 in a group can be recast as wlw2-1 =

1, so we let w be any word in G, also including unknowns, and

consider how we may solve w=1. If we take {ai : ai < N} as a

free basis for G (where N is the rank of G, either finite or

K0)

Then w will be a word in the ai, and finitely many variables

x0,..., xn_1 so may be viewed as a word in the free nilpotent

group H of class k on {ai : ai < N} u {xi: ie N} as basis.

To solve the given problem in the free nilpotent group of

class k, and show that (where the word to be unified with 1 does

not lie in G1) each solution is of the form

tOv(0,0)v(0,1) .. v(0, k-1)/x0, .., tn-lv(n-1,0)v(n-1,1) ... v(n-1, k-1)/xn-1

where ti/xi is the general solution of the homogenised

50

abelianized version of w and v ('i, j)/xi, 1 <_ 1S n-1, is a

particular solution of w=1 in the quotient group G/Gj, we use

induction on k.

(Note that the ti are words in constants and variables. We can

assume that the variables of the ti are new ones not already

occurring in ' w) .

For k =. 1 the group is abelian and we can apply. Theoren

1.5.7. This algorithm is relative to having an algorithm which

finds all the solutions to linear diophantine equations. See

[28], [35] for the presentation of such an algorithm.

Considering the form of the solution we note that w will be

of the form:

x0gp... xn-lqn-la0rp... am-lrm-1

where gi, ri is the exponent sum of xi, ai respectively in w.

The most general solution as provided by Theorem 1.5.7 is of the

form:

t0v (0,0) /x0,
... , to-1v (n-1,0) /xn-1

where, in the theory of abelian groups, ti/xi is the most general

solution to the homogeneous equation x040"" "xn-lqn-1 =1 and

v(j, O)/xi is a particular solution to w=1.

For the induction step we first consider the problem w=1?

in G/Gk_l and solve (if possible) using the algorithm given by

the induction hypothesis, since G/Gk_1 is a nilpotent group of

51

class k-1. (If that tells us there is no solution, then there

cannot be a solution in G either). Suppose the algorithm for k-1

gives a complete, minimal solution set Mk_l. We consider each

member of Mk_1 in turn.

Suppose 0e Mk_1. Then we assume inductively that 0 is of

the form

t0V (0,0) V (0,1) .. v (0, k_2) /x0,
.., to-1v (n-1,0) V (n_1,1) ... v (n-1, k-2) /xn-1

where ti/xi is the general solution of the abelianized version of

w and v(i, j) /xi, 1SiS n-1, is a particular solution of

w=1 in the quotient group G/Gj as given by the induction

hypothesis.

Since we have solved the equation in G/Gk_1, for any solution

to the main problem we must have

X0 E t0v(010)v(0,1) .0 . v(O, k-2) Hk-19

X1 E t1v (1,0) v (1,1) 0 .. v (1, k-2) Hk-1,

a

0

0

Xn-1 E to-1v (n-1,0) V (n-1,1) "9"V (n-1, k-2) Hk-1 "

i. e. x0 = tpv(0,, O)V(O, 1)... v(o, k_2) U0

xl = t1V(1, o)V(1,1)... V(1, k-2) ul

0

Xn-1 to-1v (n-1,0) v (n-l, l) ""9V (n-1, k-2) un-1

52

where ui e Hk_l, 05i<n-1.

Therefore we must have

w (t0u0v (0,2) ... v (0, k-2) u0, stn-lun-lv (n-1,2) ... V (n-1, k-2) un-1

, ao,,,,, am_1) =1 in H. But ui e Hk_1 which lies in the centre of

H. Therefore

u040 un-1qn-1

w 1(t0u0v(0,2)
.. v(o, k_2), .., tn-lun-1v(n-1,2) .. v(n_1, k-2), a0º ..., am_l)

The normal way to solve this (as in Theorem 1.5.7) is first,

to determine a "general" solution to the homogeneous equation

u04o.... un-1%-1 = 1,

and second, to determine a "particular" solution of the given

equation. The two solutions are then multiplied together to find

the general solution to the original equation. In this-instance

the general solution to the homogeneous equation is, however,

subsumed in the solution already found as we shall see below

(Theorem 2.3.3) and it suffices to find a particular solution.

We have uogp... "un-1qn-1° w-1 -

Now we calculate h= hcf (q01 """, qn-1)

If h=1 we have a solution determined as follows:

We know that 1=cOg0+c1g1+... +cn-14n-1 for appropriate

integers ci by Euclid's algorithm. Then

uo = w-c0
, ui = w-c1, ... l un-1= w cn-1

provides us with a particular solution.

If h>1 we may or may not have a solution depending upon whether w

is an hth power or can be made into one by substituting for the

53

variables of the ti's.

We can use Lemma 2.2.5 to see if w is an hth power. If so

then w-1= sh for some word s. Once again we find integers ci such

that h= c0g0 + cig1+ ... + cn-lqn-1 and this time we find that

u0 = SCO , u1= S,... , un-1= scn-1 provides a particular solution.

If w is not an hth power we can attempt to make it so by the

algorithm of Lemma 2.2.8 and then apply each resulting

substitution a to obtain v(i, k-1)a/ui. Lemma 2.2.8 gives all

substitutions which can express w as an hth power. If s is the

set of all such substitutions then all the solutions to the

problem are given by xi = (tiv (i, o) v (1, l) """v (i, k-2) v (i, k-1)) a for

every aeS.

If we cannot make w an hth power then there can be no solution.

Once we have a particular solution

v (0, k-1) /u0, ... 0v (n-1, k-1) /un-1

then the general solution to the main problem is given by

X0 = tOv(O, 0) v(0,1) .. . v(0, k_2) v(0, k_1)

9

0

0

xn-1 - to-1v (n-1,0) V (n-1,1) 0""V (n-1, k-2) V (n-1, k-1)

remembering that we still have to show that the "general" part of

the solution in G/Gk_l is subsumed in the "general" part of the

solution of the abelianized version (see Theorem 3.2.2). The form

of this solution is as required to fit in with our inductive

assumption.

54

However, we have so far overlooked the case when

u0g0.... un-lqn-1 is trivially equal to the identity i. e. h=0.

Remark 2.3.2.1:

This occurs when the exponent sums of the ui are zero.

We readily deduce that h=0 if and only if we H1.

Now if h=0 then we have to solve in G the problem

w(tOv(0,0)v(0,1) ... v(0, k-2), ..., tn-1v(n-1,0)V(n-1,1) ... v(n-1, k-2)

ao, ..., am-,) = 1.

We know that tiv (i, 0) v (i, l) .. v (i; k-2) is a word in variables and

constants. Suppose the variables occurring in

w(t0v(0,0)v(0,1) ... v(0, k-2), ..., tn-1v(n-1,0)V(n-1,1) ... v(n-1, k-2)1

a0, ... , am-1)

are {z0, .. , zP_1}. This means that we can assume that the

equation to be solved is of the form

w z0, ... , zp-1l a0, ... , am-1) = 1.

Let B(k) be the set of basic commutators of weight 5k on

{a0, ..., am_1}.

By Lemma 2.2.4 we have that any solution will be of the form

zi = b0z (i, O)
,, . bg-lz(i, g-1) si where z (i, j) is an integer

variable, bi E B(k), g= IB(k)I and si is a variable standing for

all the basic commutators not involving a0,... 'am-1"

If we substitute this into w' (z0, ... , zp_11 a0, ... am-1) = 1, use

F

'-ü

rt
4. ý

till

4+

Lemma 2.2.7 and write as a product of the basis of Gk-1 then the

55

powers of the basic commutators will be kth power free

diophantine polynomials of degree k (there will be no kth powers

since to obtain one there would have to be a commutator of weight

k of the form [a jz (i, j)
,""", a jz (i, j)] and this is trivially the

identity)., A;

Now equating the basic commutators on the left hand side with

i we obtain a system of kth power free diophantine equations of

degree k. We now apply algorithm Ak and obtain all the solutions

to w=1. The conditions for si can be given by inspection of the

commutators in which they appear (see example 2.7.8).

We now justify the claim that we only require a particular

solution for the ui in the algorithm.
4yß i

li{

Theorem 2.3.3:

Suppose we have a minimal algorithm to solve equations in a

finitely generated free nilpotent group of class k-1. Suppose 11

also that we have the problem w (xo, """, xn-1, a0, """, am-3.) 1 in G ;! {

the nilpotent group of class k defined in algorithm 2.3.2 such

that w (x0, ... , xn-1, ao, ... , am-1) e H1.

The general solution to u1g1,
". unqn =1 in the above algorithm

'Hi
kýftt;

is subsumed in the general solution to the abelian case. ; ý±,

Proof:

Apply algorithm 2.3.2 and obtain h= hcf(g0,..., qn-1).

Since w (xo, ... , xn_1, a0, ... , am-1) e H1 we deduce from Remark

2.3.2.1 that h*0.

56

Hence algorithm 2.3.2vgives us a solution set in G of:

s= 10 =1t 0v(0,0) V(0,1) ... v(0, k-1)/x0, ..

... to-lv(n-1,0)v(n-1,1) ... v(n-1, k-1)/Xn-1 }}

where {tov(0,0)v(0,1) ... v(0, k-2) /x0, ...

", to-1v (n-1,0) V (n-1,1) """V (n-1, k-2) /xn-1 }E Mk-1

and (v (0, k-1) IXOI """Iv (n-1, k-1)1Xn-1 } is the particular solution

generated by algorithm 2.3.2.

Suppose-we have that a= {a0/x0, ... ' an-1/xn-1} is another

solution of w=1. We must show that for some 0eS there exists

a substitution X such that 6. X = a.

We construct each

0= {t0v (0,0) ... v (O, k-1) /x0l 0"l to-lv (n-1,0) ... V (n-1, k-1) /Xn-11 as in

Algorithm 2.3.2.

As w (ao, """, an-i, a0º """,, am-1) =1 it follows by the induction

hypothesis that there is a substitution p and

{tOv(0,0) ... v(0, k-2)/x0, .., tn-1v(n-1,0) ... V(n_1, k_2)/xn_1} cMk-1

(corresponding
yto

some 0e S) such that in G/Gk-1

{ t0v(0,0) ... v(O, k-2)/x0, ... stn-1v(n-1,0) ... v(n-l, k-2)/xn-1}P

_ Qn-1/xn-1}

Let cri = ri (tiv (i, 0) ... v (i, k-2))P where ri e Gk-1

,= ri (tiP) . (v(1,0) ... v(i, k-2))P

:. -r0gp ... rn-l%n-iw ((t 00 (V (0 0) .. v (p, k_2)) P0 00

.., (tn-1P) (v (n-1,0) 0. v (n-1, k-2)) p, a0, .. am-1) =1

ý! 'il
ýý,
l il

Also, by the construction of the v(i, k_1) in Algorithm 2.3.2

57

(using the member of Mk_1 introduced above) we have that

(0, k-1)40... v(n-1, k-1)% 1

w(t0v (0,0) """ v (O, k-2) , ..., tn-1v (n-1,0) ... v (n-l, k-2) � a0 f ''' am-1) -1

Applying the substitution p we derive

((v(0, k-1)P)-1r0)gp... ((v(n-1, k-1)P)-lrn-1)qn-1 = 1.

Now ti/xi is the most general solution of the homogeneous

equation xOgp... xn_1%_1 =1 in the theory of abelian groups.

Therefore there is a substitution T such that

(v (i, k-1) P) -1ri = tit

Now cri = ri(tip) (v (j, 0) v(i, 1)... v(i, k_2))P

= v(i, k-1)P. ti(T)ti (P) . (v(i, 0) v(i, 1) ... v(i, k-2))P

= v(i, k-1)P" (tip') " (v(1,0)v(1,1) ... v(i, k_2))P

(where yX =y (t) y (p) for each (new) variable y of the ti.

Notice that 't substitutes only members of Gk-1 for y)

_ (tiv(1ý0)v(iýl)... v(iýk_l))ý,

:. we have constructed % such that 6% = a.

Algorithm 2.3.2 is an algorithm to solve equations in any

finitely or infinitely generated free nilpotent group of class

k. However, if we are considering unification in the theory NkG

then it is the case of infinitely generated free nilpotent groups

of class k which is relevant. We will now show that N2G is

nullary and indicate why it is very likeley that NkG is nullarg.

58

Proposition 2.3.4:

Suppose H is a free nilpotent group of class k generated by the

infinite set { a0, al, a2, ... }v{ xO, xl, x2, ... }. If wi, ... , wn are

finitely many words in Hk_l then there is be Hk_1 which is not

an instance of any wi.

Remark 2.3.5:

The following lemma is a proof of this proposition for case

k=2. We use it to show that N2G is nullary.

It seems very likely that the proposition is true for all k.

If so then it is a straightforward task to show that NkG is

nullary.

Lemma - 2.3.6:

Suppose H is a free nilpotent group of class 2 generated by the

infinite set { a0, al, a2, ... }v{ xý, xl, x2, ... }. If wl, ... , wn are

finitely many words in H' then there is be H' which is not an

instance of any wi.

Proof:

Let k be such that each wi is a product of 5k commutators.

Consider b= (a0, a1] (a2, a3] """ (a2k, a2k+1] 6 H' and suppose, by way

of contradiction that there exists a substitution a such that

b= wß where w= wi some i. Let w= [ul, vl] [u2, v2] ... [uk, vk] . As

before, we may suppose that the words substituted for each xi

contain only constants aj for j5 2k+l and that no other

59

constants appear in w. Let 1(i, j), m(i, j) be the exponent sums of

ai, in uj, vj respectively. Expanding using Lemma 2.2.7 and

collecting like terms (using H' abelian) we find that

[uj, vjIa = r10,5i, i'<_2k+1[ap ai,]l(i, J)m(i'. J)

Equating this with b and comparing coefficients we find that

for i <_ i'

E1: 5j<k(l (i, j)m(i', j) -l (i', j)m(i, j)) =1 'if i is even
and i' = i+l

0 otherwise.

Let lj = 1(O, j)

1(2k+l, j)

and mj = m(0, j)

m(2k+1, j)

We therefore obtain

11m1T - m111T +... + lkmkT - mkTlk =

-1 0000
t 0001000

00 -1 0000

001000

.'0 -1 0000

.............

000100

10 0
."" -1 000

000001
L0 000 -1 0

9

'ý
E

sý

ýý,

a2 (k+l) x2 (k+l) non-singular matrix.

60

Now rank (l jm jT) , rank (m jl jT) 51 for each j, so

rank (11m1T m111T +... + 1kmkT - mklkT) S 2k, a contradiction.

Theorem 2.3.7:

N2G is nullary.

Proof :

By Theorem 1.4.2 we can restrict our attention to free

nilpotent groups of class 2.

Consider the word [x, a0j in G, the free nilpotent group of

class 2 generated by the infinite set {a0, a1,... }.

Now any solution to w=1 may be written in the form x= li airic
iam

where ce G'.

Substituting this into the given problem we deduce that ri =0

for i>0 so that the most general solution to w=1 is

x= a0rc, reZ, CE G' .

Suppose that t/x is any unifier of the problem. Then t= aprc

where c is some product of m commutators. But t is an instance of

another solution t' = a0sc' with c' a product of m+l commutators.

However, by Lemma 2.3.6 t' cannot be an instance of t since c' is

not an instance of c.

Hence [x, a0] =1 has no minimal solution in G.

2.3.8 Remark:

First order nullary theories are few and far between. See 1.3

for a brief survey of the ones that are known. In the above

theorem we showed that N2G can be added to the list of first

61

order nullary theories. We also indicated why it is very likeley

that each member of the infinite class of theories {NkG: 1<k&

ke N} is nullary.

We will now take a closer, more detailed look at nilpotent

groups of class 2:

i
ýý'

62

2.4 Unification in nilpotent groups of class 2

It follows from Definition 2.2.3 that a group G is

nilpotent of class 2 if there exists a normal subgroup N of G

such that G/N is abelian and the members of N commute with all

members of G (N is central) and that N can be taken to be the

commutator subgroup of G, written G'. It also follows that N2G,

the theory of nilpotent groups of class 2, is the group axioms

together with [[x, y), z) = 1.

Now by algorithm 2.3.2 we have an algorithm for finitely

generated free nilpotent groups of class 2 provided we have an

algorithm to generate all the solutions of systems of square free

diophantine equations of degree 2. However, the equations that

actually occur in the algorithm take a very specialised form. We

will call a square free diophantine equation of degree 2 that has

this form a c-equation. We will look at these more closely later

on. In Chapter 3 we show (when showing that the unification

problem is undecidable) that the solution of equations in a

finitely generated free nilpotent group of class 5 is recursively

insoluble. This rests upon the fact that for kZ5 the problem of

algorithmically finding integer solutions to the equations that

occur is insoluble by the result of Matiyasevitch [501. Clearly

the higher the value of k we take (for 2Sk 54) the less likely

we are of constructing a successful complete, minimal algorithm

for finitely generated free nilpotent groups of class k. This is

one of the reasons that we concentrate on k=2. We have already

shown in Theorem 2.3.10 that a first order theory of nilpotent

groups of class 2 is nullary. However, in the following section

we show that by working in a two-sorted theory the cardinality

type of the theory becomes either infinitary or the cardinality

type of any system of T-equations. Finally we take a brief look

I

hi r

63

at problems in only one variable in a nilpotent group of class 2

as looked at by Repin [57]. But firstly we define %-equations:

2.4.1 Definition:

Suppose we have a set of integer variables {z(i, j): 1 Si5n,

1S j5 m} and an integer constant K then ar -polynomial is a

diophantine polynomial of the form:

K±E z(i, j) +E z(i, j)z(k, 1) - z(1,1)z(k, j) .

1<_i<_n irk

1<-Jº L j<I

If p is a T-polynomial then p=0 is a z-equation.

Theorem 2.4.2:

The equations that occur in algorithm 2.3.2 for k=2 are

ti-equations.

Proof:

Suppose G is a free nilpotent group of class 2 on {a0, a,,... }.

Suppose also that we have to solve the problem

'("'0" """, xn-11 a0, """, am-1) =1 in G. As before, w is a word in the

ai, and finitely many variables x0,..., xn_1 so may be viewed as a

word in the free nilpotent group H of class k on

{ai : al < N} u {xi: ie N} as basis.

Algorithm 2.3.2 will generate solutions to the abelianized

version of w of the form

tpu0/x0,..., tn-lun-1/xn-1

where ti/xi, ui/xi are the general and particular solutions

respectively of the abelianized version of w.

64

The problem is first solved in the quotient group G/G' and the

problem is lifted to G by noting that any solution to the main

problem must be of the form xi = tiuivi, 0SiS n-1, where

vi EH'.

we apply algorithm 2.3.2 and the square free diophantine

equations of degree 2 that occur do so only when v040"""vn-lqn-1

is trivially equal to the identity

i. e. h=0.

When h=0 we have to solve in G the problem -i

W (t0u0, ... 1 tn-lun-1, a0, ... , am-1) = 1.

Now ti is a word in variables and constants. Suppose the

variables occurring in w (to, ... , tn_l, ao, ... , am_,) are

{z0, .. ºzk-1}.

Hence we have to solve w' (z0, ..., zk-1, a0, "" "' am-1) - 1. However

W' (z01 """I zk-1 j a0r """,, am-1) can be seen as a word in T the free

nilpotent group of class 2 on, generators

{aý, ..., am_1} v {z0, .. 'zk-1}.

By Lemma 2.2.4, T' is free abelian with basis

{[ailaj]: i> j} u {[ai, zj]: i, je N} t {[zi, zj]: i > i}.

Now since w'(z0,.. 1 zk-1, a0, """Iam-i) E T' it may be written as a

word in this basis. Thus for some N and integers 1(i, j), m(i, j),

n (i, j) we have

n{ [airaj)U, J) 0Sj<i< N}.

II{ [ai, z j]m(i,
1) :05i, j< N} . II{ [zit z jjn(i,

j) :0 5j <i< N} =1

By Lemma 2.2.7 and T' abelian we have that any solution will be

65

of the form zi = a0z (i, 0)
... am_1z U, m-1) si mod G' where z (i, j) is

an integer variable and si is a variable standing for the aj not

occurring in w.

If we substitute this into

n{ [ai, a j]
1(i. i) :0Sj<i< N). fl{ [aj, z j]m(i"

i) :0Si, j< N},

use Lemma 2.2.7 and write as a product of the basis of G' then

the powers of the basic commutators will be linear diophantine

polynomials.

However, we still have to consider II{ [z,, z j] n (i, J) :0 Sj <i< N).

Substituting zi = a0z (i, 0)
.. am_lz (i, m-1) si mod G' yields

Ij{ [aoz U, 0)
... am-1z (i, m-1) sit

a0z(i, 1)
.. . am-1z(J, m-1) Si}nU, i) :0 Sj <i< N}

Now [a0z (i" 0)
.U,.. am-iz (j, m-1) In (i. i) can

be written in the form II{ [ap, aq]c P1): 0Sq<p< N) where

a(p, q) = n(i, J) (z(i, p)z(j, 4) - z(j, P)z(i, q)) "

Hence substituting zi = a0z (i, 0)
,,, am-lz (i, m-1) si mod G' into

n{[ai, aj]1Ur i): 05 j< i< N}.

fl{ [ai, z j]m(i,
i) :0Si, j< N} . fl{ [zi, z j] n (i,, i) :0 Sj <i< N} =1

and equating the basic commutators on the left hand side with i

we obtain a system of c-equations as the square free diophantine

equations of degree 2 that occur in algorithm 2.3.2.

Now by this theorem we know that if we have an algorithm

to generate all solutions of systems of i-equations then we have

an algorithm to generate all the solutions of any equation in G

(a free nilpotent group of class 2 on {a0, al,... I). However, by

66

Theorem 2.3.10 we cannot generate a most general solution. We

now consider a method of getting round this problem by passing to

a two sorted theory where the sorts pick out the elements of the

derived subgroup. This results in the cardinality type being

entirely dependent upon the T-systems rather than being nullary.

2.4.4 Remark:

Suppose we consider the two-sorted theory MN2G constructed by

adding to N2G a new set of variables V'={x1', x2',... } and the

following axioms:

VX1VX23X1' (Xl-1X2-1X1X2_Xl')

VX, Vxl'(x1'X1=x1x1') s

Vx1'VX2'3x3'(x1'x2'-1=x31).

Let G be a free model of MN2G and suppose that we wish to solve

the problem w=1 in G. The added axioms ensure that the

variables of V' stand for the elements of G'. Thus, if we have an

algorithm to find all the solutions of T-systems then we have an

algorithm to find all the solutions to problems in MN2G.

2.4.5 Theorem:

If the cardinality type of The cardinality, type of any system

of c-equations is nullary then MN2G is nullary.

If the cardinality type of any system of t-equations is <

nullary then MN2G is infinitary.

Proof:

Suppose we have the problem w=1 lying in Ga free model of

NN2G where we H' (remember H is the free nilpotent group that

has as generators the generators of G together with the variables

67

of w). We have seen above how to reduce this problem to a system

of T-equations. Also we have seen that for any such solution the

corresponding most general solution (for each variable x of w) is

of the form x= a0rp... am_1 m_lc where a0, ..., am_, are the

generators of G appearing in w, rO,..., rm_l are integers and c is

an arbitrary product of commutators. We saw in Theorem 2.3.10

that the general form of c could not be represented in the single

sorted case. However, here we have a sort available to express

this general form. So the cardinality type of MN2G is dependent

upon the cardinality type of it-systems. However, in example 2.7.4

we present a problem which in MN2G generates an infinite set of

most general unifiers. So the cardinality type of'MN2G is at

least infinitary.

Now let us briefly consider solving equations in just one

variable in a finitely generated free nilpotent group of class 2

as considered by Repin [57]. Repin does not present his work in

terms of unification theory. He works solely in the free object

(which ammounts to the same thing). Also he does not look at the

cardinality type of the particular class of problems under

consideration.

We will present a unification algorithm for nilpotent groups

of class 2 with respect to problems in just one variable.

Although this has, in effect, already been done by Repin we will

present the algorithm in terms of the work presented earlier in

this chapter. Also considered will be the cardinality type of

this restricted class of problems in the theories of nilpotent

i
ib

ý
ý.

{
s.

groups of class 2 that we have introduced above.

68

2.4.6 Remark:

Suppose we have the problem w (a0, ... , am-1, x) =1 in the

free nilpotent group of class 2, G generated by {a'o,..., am_1}

where we G'. We can view w as a word in the free nilpotent

group of class k on {a0,... Iam_1}+u {x}. Thus we can (using Lemma

2.2.4) write w as a product of. the basic commutators generated by

{a0ý"""ýam-1} u {x}. The commutator [x, x] is trivially the

identity so the only basic commutator occuring which involves the

variable is of the form [ai, x]. Therefore, substituting

x a0x(1,0) ., . am-lx(i, m-1) mod G'

where x(i, j) are integer variables and writing as a product of

the basic commutators of G we obtain only linear diophantine

equations as the powers of the basic commutators. Thus the

T-equations never occur for problems in only one variable. This

gives rise to the following theorem.

Theorem 2.4.7:

For problems in only one variable:

(1) The theory N2G is nullary.

(2) The theory MN2G is infinitary.

Proof:

(1) The example used in Theorem 2.3.10 to show that N2G (and

hence NkG) is nullary only used one variable. So restricting to

one variable, as far as this is concerned, does not achieve
anything.

69

(2) This follows from Example 2.7.4, Remark 2.4.6. and, the, fact

that there is always a single most general solution to systems of

linear diophantine equations.

Remark 2.4.8:

Now in a free nilpotent group of class 2, when considering one

variable problems, we have seen that the only basic commutators

appearing, that involve the variable, are of the form tai, x] so

we only obtain linear diophantine equations as the powers of the

basic commutators.

It is easy to see that to solve equations involving only one

variable in a finitely generated free nilpotent group of class k

it is necessary to have some Ak_1. This can be seen by

considering one variable problems in a nilpotent group of class

3. We can construct a problem where the basic commutator [aj, x, xj

occurs and this gives rise to quadratic diophantine equations as

powers of the basic commutators.

We have shown in the last section that N2G is nullary and that

it is likeley that NkG is nullary. We have also shown that in N2G

we can sidestep this problem by considering MN2G thus rendering

the cardinality type of MN2G dependent upon the cardinality type

of systems of T-equations and in any case it is at least

infinitary. We now show that we can similarly get round the

problem (if indeed Proposition 2.3.4 is true) for NkG by

considering a k-sorted theory.

70

2.5 Unification in k-sorted theories of nilpotent

groups of class k

2.5.1 Definition:

In a nilpotent group G of class 3, G1 is taken to be

[G, G] and G2 is taken -to be [G1, G] . N3G is the group axioms

together with [[w, x, y], z] = 1. Let MM3G be the many-sorted theory

constructed by adding to N3G two new sets of variables

V' = {X1 '1 X2' , ... It '(x i'" , x2'' 1 ... } and the fol lowing axioms:

Vxl`dX23X1' (Xl-1X2-1x1X2-X1 ')

Vx1'VX23x, 11(X1t-Zx2-lxl'x2-X111)

VX1VX1''(X1', X1_X1Xlt')

Vxl' Vx2' 3x3' (xl' x2' -1=x3')

Vx''VX2'13x3' '(x1''X2'' 1_X3'').

In an obvious manner we can define a k-sorted theory of

nilpotent groups of class k, MNkG.

2.5.2 Theorem:

If we have an algorithm to find all solutions of systems of kth

power free diophantine equations of degree k then we have an

algorithm to find all the solutions to problems in MNkG.

Moreover, the cardinality type of MNkG is at least infinitary.

Proof :

The sorts pick out the terms of the lower central series

rendering the solution of problems in a free model of MNkG

entirely dependent upon the solution of systems of kth power free

71

diophantine equations of degree k. The algorithm works by first

solving in the corresponding free abelian group and then lifting

the solution to the corresponding free nilpotent group of class 2

and so on until the solution has been lifted, to the free

nilpotent group of class k. The algorithm at the nth stage (i. e.

in the free nilpotent group of class n) is dependent upon finding

a complete, minimal solution set of a given system of nth power

free diophantine equations of degree n. Each element of this set

must be considered when lifting the solution to class n+l. Thus

the cardinality type of MNkG is infinitary (due to example 2.7.4)

or nullary (if the cardinality type of sytems of kth power free

diophantine equations of degree k is nullary).
f

We now relate this work to the work done by U. Martin [47) on

special p-groups. We also extend the results to consider

nilpotent groups of class k and exponent p.

72

2.6 Unification in Special p-groups

2.6.1 -Definition:

Let p be any prime number. A special p-group is a nilpotent

group of class 2 together with the
'identity

xP =1 (i. e. a

nilpotent group of class 2 of exponent p). So the theory of

special p-groups pN2G is N2G together with the axiom dx (xp = 1)

We can similarly define pMN2G, the 2-sorted theory of special

p-groups. we can also consider pNkG (i. e. NkG together with the

axiom dx(xP = 1)) and we can turn this into a k-sorted theory to

obtain pMNkG. We will now consider kth power free diophantine

equations of degree k where the variables range over finite

subsets of N and therefore the cardinality type of systems of

these equations is either 1 or co.

2.6.2 Remark:

U. Martin has recently considered unification in special

p-groups [47). Results about special p-groups can, however, also

be derived from the above work. The crucial point about special

p-groups is that the identity xP =1 means that we have a finite

number of possible solutions of the equations occurring. An

algorithm is obtained simply by substituting in every possible

solution and checking it. Hence we can easily prove the following

theorems.

Theorem 2.6.3:

pNkG is nullary.

Proof :

the proof follows by Theorem 2.3.10.

7 3`

Theorem 2.6.4:

pMNkG is finitary.

Proof :

We cannot have an infinite number of solutions since the p

imposes a bound on the power of any element of the group.

We now close this chapter by considering. some examples of

algorithm 2.3.2 being applied to actual problems.

74

2.7 Examples and algorithm outline

2.7.1 Outline of the algorithm:

(1) Given a problem w (xl, ... xn, al, ... , am) =1 lying in Ga

nilpotent group of class k we first solve for nilpotent of class

k-1 to obtain solutions of the form ti/xi, if they exist (if no

solutions exist for k-1 then there can be no solutions for k

either). We then note that solutions to the main problem must be

of the form tiui/xi where ui e Gk_1.

(2) Substituting this into the main problem we obtain

ulgl ... unqn =w (t1, ... tn, a1, ... , am) -1

Now we calculate h = hcf (q1, """ , pqn)

(3) If h=0 we have w (tl, �1 . tn, al, ... , am) = 1. For every

variable occurring we make the substitution in the form given

earlier to, obtain a system of kth power free diophantine

equations of degree k. We must solve this system to obtain the

solutions.

(4) If h=1 we find a particular solution for ui and this

suffices since a general solution is subsumed into the general

solution for the abelian case.

(5) If h>l we check whether or not w is an hth power.

If w is an hth power we can find a solution in a similar manner

to (4).

If w is not an hth power then we check whether or not it can be

made into one. If so then we find. all the possible'substitutions

75

and obtain a solution in a similar manner to (4). If w cannot be

made into an hth power then there can be no solution.

2.7.2:

Suppose we have the problem xaby[b, a] =1 in G, a free

nilpotent group of class 2, where a, b are constants and x, y are

variables. The first step of the method is to abelianize and

solve using Theorem 1.5.7. We obtain x= to 1, y= t-lb-1.

Therefore any solution in G will be of the form

x= to lu, y= t-1b-1v

where u, v E G'.

Substituting this into the problem we obtain tbt-lb-1[b, a]uv = 1.

Therefore we have uv = [a, b] [b, t] .

We let u= [a, b][b, t] and v=1 and all solutions are given by

8= {x = to 1 [a, b] [b, t], y= t-ib-11

Now note that we could have let u= [a, b] and v= [b, t] (or any

other combination). A natural question at this point is whether

or not this would generate another most general unifier. We

showed in Theorem 2.3.3 that a general solution in'G' is subsumed

into the general solution for the abelian case. We can see this,

in this example, by substituting u= [a, b], v= [b, t]. This

yields

a= (x = to-1 [a, b] ,y= t-lb-1 [b, t]}.

However, if we let X= {t [t, b] /t } then 0% = a. Also if we let X

{t[b, t]/t} then a) = 0. i. e. we have 0 =N2G a.

2.7.3:
1

Now let us consider the same problem but when G is a free

nilpotent group of class 3. We first obtain the solution in the

76

class 2 case as above. Then any solution in G is of the form

x= to 1 [a, b] [b, t] u, y= t-lb-lv

where u, v e G2.

Substituting this into the problem we obtain

to 1[a, b][b, t]abt-lb-1[b, a]uv = 1.

Therefore we have u= [a, b]btb-1a 1[t, b][b, a]at-l, v=1

and all solutions are given by

0= {x = to 1 [a, b] (bit] [a, b]btb-1a 1 [t, b] [b, a] at-1, y= t-lb-1}.

2.7.4:

Suppose we have the problem x2[a, x]y-2 =1 in G, the free

nilpotent group of class 2 generated by {a, b}. Abelianizing we

obtain x=t, y=t where t is a new variable.

Thus any, solution in G is of the form x= tu, y= tv.

Substituting this into the problem we obtain u2v 2= [t, a].

We now have to consider substitutions of t to make the RHS into a

square. Let t= aibi mod GI. This gives us u2v-2 = [b, a] J.

Therefore i is arbitrary and j is even. So t= aib2k r (where r

E G').

We let u= [b, a]k ,v=1 and we have all solutions given by

x= aib2k[b, a]kr, aib2kr (where re G'). Notice that in a single

sorted structure there does not exist a most general unifier

(because we can have arbitrarily long products of commutators.

However, in a two sorted structure such as the ones we have been

considering there is an infinite number of most general unifiers.

2.7.5:

Suppose we have the problem x2a2 [y, b] =1 in G, a free

nilpotent group of class 2, where alb are constants and x, y are

variables. Abelianizing we obtain x= a-1, y=t where t is a new

77

variable.

Thus any solution in G is of the form x=a -1u, y= tv.

Substituting this into the problem we obtain u2 = [b, t].

We now have to consider substitutions-of t to make the RHS into a

square. We let t= zbJ mod G'. A most general solution is given

by z being a square and j being arbitrary. Therefore we let t=

z2bi mod G' and u= [b, zj, v is an arbitrary member of G'.

Thus all solutions are of the form x= a-1 [b, zj, y= z2bir

(where re GI).

Note that we can obtain more than one most general unifier in the

two-sorted, structure (by letting j=0 and j= 1).

2.7.6:

Suppose we have, the problem x3z6b6 [y, b] =1 in G, a free

nilpotent group of class 2, where a, b are constants and x, y, z are

variables. We abelianize and solve to obtain x= t2, y=s, Z=

t-lb-1 where s, t are new variables.

Therefore any solution in G will be of the form

x= t2u, y- = sr z= t-1b-lv

where u, r, vE G'.

Substituting this into the problem we obtain

t5 b-1 t-lb-1 t-1b-1 t-lb-1 t-lb-1 t-1b5 (s, bju3v6 _1

i. e. u3v6 = [t, b]15[b, s] by Lemma 2.2.5.

Since [t, b] 15 is already a cube we have to consider substitutions

of s to express [b, s] as a cube.

Let s= zbl mod G'. Substituting this in we obtain as a general

solution that 1 is arbitrary and z is a cube (i. e. let z q3).

Therefore u3v6 = [t, b]15[q, s]3.

So u= [t, b]5[q, s] and v=1.

Therefore all solutions are given by

78

x= t2 [t, b) 5 [Q, s] ,y= g3blr (where re G') ,z= t'lb-1.

2.7.7:

Suppose we have the problem [x, a][b, y][x, y] =1 in G, a free

nilpotent group of class 2 generated by {a, b}.

Note that [x, a] (b, y] (x, y] e G' . The problem is trivial in the

abelian case (the most general solution is {x/x, y/y}. If we use

the method of the previous examples (i. e. consider {xu/x, yv/y}

where u, v e G') the u, v cancel out and we are left with the

problem we started with. This is an example where h=0 and we

have to solve a T-system of diophantine equations.

Let x= aebfr and y= agbhs (where r, s c G'). Substituting

this into the problem we obtain [b, a]f[b, a]g[b, a]fg-he = 1.

Thus the solutions are obtained from the diophantine

equation f+g+ fg - he = 0.

2.7.8:

Suppose we have the problem [a, b][a, x][a, y] =1 in a free

nilpotent group of class 2.

Note again that we have a member of G' to be unified with 1.

Let x= aebfz r and y= agbht s (where r, s e G'). Substituting

this into the problem we obtain [a, b]f+h+1[a, zt] = 1.

Thus the solutions are obtained from the T-system f+h+l =0

and the fact that zt = 1. Therefore all solutions are given by:

x= aebf zr and y= agb-f-lz-1 s (where r, sc G') .

In the next chapter we consider decidability problems in

nilpotent groups with respect to unification. We also briefly

consider the decidability of problems containing only one
variable in nilpotent groups of class k as considered by Repin

79

[57]. As we have seen problems in, nilpotent groups of class k and

exponent p are always decidable because there is always a finite

number, of possible solutions to the kth power free diophantine

equations of., degree k that may occur.

80

Chapter 3: The Undecidability of the Unification
Problem for Nilpotent Groups of Class ?5

3.1 Introduction:

We are considering the unification problem for the theories of

nilpotent groups of class Z 5. By Theorem 1.4.2 this is

equivalent to the problem of constructing an algorithm which

will solve any equation in a free nilpotent group of class Z 5.

V. A. Romankov [60] in 1977 showed that the endomorphic

reducibility problem is undecidable for free nilpotent groups of

class z 9. Hence the Unification Problem for the theories of

nilpotent-groups of class Z9 is undecidable. We will reduce

this number to 5. Our result will follow from the proof that

there cannot exist an algorithm which will solve any equation in

a free'nilpotent group of class 5. This is established by

reducing the problem to that of algorithmically solving an

arbitrary diophantine equation of degree 4. The result then

follows by appeal to the well known result that the solution of

arbitrary diophantine equations of degree Z4 is undecidable

[50].

81

3'. 2 Preliminaries

The necessity of the reults we present in this section will

become apparent in the proof of the main theorem (Theorem 3.3.2)

of this chapter. Firstly, however, we will introduce a

particular free nilpotent group of class 5 which we will call F.

3.2.1 Definition:

Let F be the free nilpotent group of class 5 on the two

generators a0, al. It follows from Definitions 2.2.3 that the

basic commutators of weight 5 in F are [al, a0, a0, a0, a0] ,

Cal, ap, ap, ap, al] , [al, ap, ap, a1,. al] , -, - [al, ap, al, al, al],

[[al, ao, ap], (all ap]Ir and ([al, a0, all ,[al, ap]]. We will write

these as bi, b2, b3, b4, b5 and b6 respectively. We already know

by Lemma- 2.2.4 that these basic commutators form a basis of the

free abelian subgroup F4.

The following lemmas which are applications of the collecting

process allow us to isolate bl in a certain expression of F that

occurs in the proof of Theorem 3.3.2.

82

Lemma 3.2.2:

Suppose we have the commutator [al, ao, a j, a j, ak] in F4

where i, j, k e {0,1}. If we write this in terms of the basic

commutators of Definition 3.2.1 then b1 does not occur in the

expression unless i=j=k=0.

Proof :

Since bl, b2, b3 and b4 are linearly independent the only

commutators we have to consider are:

(1) [al, ap, ap, al, a0)

(2) [alpaptal. a0, ap]

t3) [a,, a01a,, a,, a0]

(4) (a,, a0, a,, ap, a,]

We will prove the result for (1) . The proofs for (2) 1 (3)

and (4) follow similarly.

To ease the computation of the collecting process defined in

Lemma 2.2.5 and Remark 2.2.6 we will consider [al, a0, ap, all a0] -1.

In order to keep track of the proof the following terminology

will be introduced. Suppose we have an expression C= cl... cn

where ci (for 1SiS n) is a basic commutator of F. When

discussing the basic commutator in the ith position of C we mean

the commutator ci.

We have (ai, a0, a0, a1, a0] -1

= a0 lal-1 [al, ap, apl -lal [al, ap, apl ap [al, ap, a0, all (a)

by the definition of a commutator.

Now using the collecting process to move the a0 in the sixth

83

position of expression (a) to the left to cancel out with the

ap-1 in the first, position we obtain

". [a1, aol -la1-1 [a1, a0, ao, aol -1 [a1, ao, aol -la1(a1, a0I ßa1, a0, a0]

(al, a0, ap, ap] [al, a0, gip, al) (b)

We now use the collecting process again to bring the al-1 in the

second position of expression (a) to the first position. This

gives us

a1-1 [al, a0, all [a1, ap, a,, a1, all [a1, ao, a1, all -1 [a1, aol -1

[al, a0, a0, ao] -1 [al, a0, ao]'la, [al, ao] [al, ap, a0] [al, ap, ap, ap]

[al, ao, a0, al] (c)

we now use the same method to move the al in the eighth position

of expression (c) to the left to cancel out with the al in the

first position to obtain

-1 [a1, aol-1 [a1, a0, a0, a0, all-1 [a1, a0, a0, a01-1(alp a0, a0, all

... (d) [alp a0, a0] -1 (al, a0] (al, a01 a0] [al, a01 a0º a0] [al, a0, a0, all

Once again we use the same method to move the (al, a0] in the

sixth position of expression (d) to the left to cancel with the

[al, a0] in the first position. The resulting expression involves

only commutators of weight 3,4 or 5. We then use the fact

(derived from Lemma 2.2.5) that in a nilpotent group of class 5

such commutators will commute with each other. Thus we obtain

[a1, a0, a0, a0, a1]-1[[alpa0. a0] [alpap] 1 -1

Hence [äl, a0, a0, al, a0] = b2b5 .

84

Lemma 3.2.3:

[[al, ap, apal] , [al', gip]]=[[al, a0, ap] , [al, ap]][[al, ap, ap] , [al, ap]]

Proof :

We expand [[a,, ap, a0al], [a,, a0]] and apply the collecting

process as in Lemma 3.2.2.

Now having considered the above preliminaries we can consider

the main result of this chapter.

85

3.3 The undecidability of the unification problem for

nilpotent groups of class Z5

The work presented in this chapter rests upon the following

theorem:

Theorem 3.3.1 (c. f. [50],. [60]):

There is some diophantine polynomial D of degree 4 in a

finite number of variables xl, .. , xn and constants cl, .. , cm

such that the question of the existence of integer solutions of

D=0 (where D contains a parameter) is undecidable.

We now state and prove the main result of this chapter.

Theorem 3.3.2:

The Unification Problem for the theory of nilpotent

groups of class 5 is undecidable.

Proof :

We will first show that there cannot exist an algorithm

which will solve equations in the group F introduced in

Definitions 3.2.1 above.

Consider D as given by Theorem 3.3.1. Then D can be

written as a sum of monomials of the form;

Cr1 crX(i, 1); crx(i, 1)X(i, 2), Crx(i, l)X(i, 2)X(i, 3) and

Crx(1,1) x(1,2) x(1,3) x(1,4)

where (i, j), e {1, .. , n} and rE {1, .. , m}.

Let Dm be the set of all such monomials occurring in

D and let f: Dm -' F be the function defined as follows:

86

f(Cr) = [alcr, ao, aO, aO, ao]

f (crx (i, 1)) = (alcr, aO, a0, ao, y (i, 1) 1

f (Crx (i, l) x (i, 2)) = [alter, ap, ao, Y (i, l) ,Y (i, 2)]

f (CrX(i, l)X(i, 2)X(i, 3)) = [alcr, aO, Y(i, l)lY(i, 2) Y(i, 3)l

f(CrX(i, 1)X(i, 2)X(i, 3)X(i, 4)) = Ialcr. Y(i, l). Y(i, 2), Y(i, 3),, Y(i, 4)l

where (i, j) e (1, .., n} and yl, .., yn are new variables

standing for elements of F.

Now consider the following equation in F:

[a1" apº apºt1º all [a1" a0, a1º a1º t2] [[a, I apºt3] º [alº ap]] IIf (Dm) =1

where t1, t2 and t3 are new variables standing for elements of F

but not occurring in f(Dm).

Any solution in F will be given by y (i, j) =, alz (i, j)aoX (i, j)mod Fl

and tP = alupa0V mod F1 where up, vP and z(j, j) are new integer

variables and pe {1,2,3}.

So substituting for y(i, j) and using Lemmas 2.2.7,3.2.2 and

3.2.3 we have

[a1, ao, a0, t1, a1] [a1, a0, all a1, t2] [Calf apº t3] , [a1º a0]]

. [al, a0, a0, a0, a0) D

TH [a,, ao, a j, a j,, ak] E (i, j, k) : i, 7, ke{0,1 }, not all 0) =1

where E (i, j, k) is a diophantine polynomial of degree 4 in z (i, j)

and xýi, j)'

By Lemma 2.2.4 and Lemma 3.2.2 we have

[a11 a01 a01 t11 a1] [a11 a0, a1, a1, t2] [[a1, ap, t3] , [a1, ap] b1D b2El b3E2

b4E3 b5E4 b6E5 =1

87

where E1, E2, E3, E4 and E5 are diophantine polynomials of degree

4 in z (i, j) and x (i, j) .

Now if this has a solution then D=0 must have a solution

because when the first three terms are expressed as a product of

basic commutators of weight 5 they do not involve bl by

Lemma 3.2.2.

Conversely, if D=0 has a solution then the equation has a

solution, namely tl = aO-Elal-E2 , t2 = a1 E3, t3 = a0-E4al-E5.

Hence by Theorem 3.3.1 we have a problem w (aO, a1, y1, ""I yn) -1

in F which is recursively insoluble.

Now if we have a unification algorithm for N5G then this

will tell us whether we can solve w=1 in N5G and by Theorem

1.4.2 this is equivalent to being able to solve w=1 in a free

nilpotent group of class 5 on

{ ao, al, a2, } u{ v0, vl, v2, ... }.

The members of {v0, vi, v2, .. .} represent variables.

If we can solve w=1 then the algorithm will produce a

substitution

0= {a0s(0, i)
. . anS(M, i)vot(0, i) . vkt(k, i) mod F1/yi: i = 1, .. n}

such that wO = 1.

Now wA can be written as a product of the basic commutators

of weight 5 generated by {aO, a,, a2, .. . }u{v0, vl, v2, .. . }. For

every basic commutator c occurring in wO, c-1 must occur in w8.

Now only a0 and al occur in w so we can replace the substitution

by a={ aos (O, i) als (1, i) mod F1/yi :i=1, .., n) and wa =1

88

because any basic commutator containing ai (where i> 1) or vi

(where iZ 0) simply cancels away.

Hence the Unification Problem is undecidable for nilpotent

groups of class 5.

The following theorem extends this undecidability result to

nilpotent groups of class Z 5.

Theorem 3.3.3:

The Unification Problem for the theory of nilpotent

groups of class Z5 is undecidable.

Proof :

Let J be the free nilpotent group of class k (k > 5) on the two

generators a0 and al.

As in Theorem 3.3.2 we will first show that there cannot exist

an algorithm which will solve equations in J.

Consider D as given by Theorem 3.3.1. and written as a

sum of monomials of the form given in the proof of Theorem 3.3.2

Let Dm be. the set of all such monomials occurring in D and let

f: Dm -4 F be the function defined as in the proof of

Theorem 3.3.2.

Now let wj be the word introduced in the proof of Theorem 3.3.2

but lying in J. For the moment let us consider the equation

wJ=1 in J.

Any solution in J will be given by

Y (i, j) ` alz (i, j) aox (i, j) es mod Js and tp = alupa0 Pfs mod JS

where up, vp and z(j, 1) are new integer variables, pe {1,2,3},

s=k-4 and es, fs are expressions involving all the basic

89

commutators of weight Ss and z2 on {a0, al} (each basic

commutator in es, fs will have as its power a new distinct

integer variable).

So substituting for y(i, j) and using Lemmas 2.2.7,2.2.4,3.2.2

and 3.3.3 we have

[a1, a0, a0, t1, all [a1, a0, a1, a1, t2] [[a1, a0, t31 [a11 a01 b1D b2El b3E2

b4E3 b5Eq b6E5 =1 (Mod J5)
(1)

where E1, E2, E3, E4 and E5 are diophantine polynomials of degree

4 in z (j, j) and x (i, j) . Let C (k) be the set of basic commutators

of weight 5k and >5 on {a0, al}. Now C(k) is finite so suppose

C (k) _ {c0, .., cq} . This means we have from (1) :

[al, ap, ap, t1, a1] [a1, a0, a1, ai, t2] [[a1, ap, t3] , [a1, ap] b1D b2El b3E2

b4E3 b5E4 b6E5 CoF0.... Cq q=1

where F0,..., Fq are diophantine polynomials in the integer

variables that we have introduced. Now suppose we take each

element ci of C (k) and let ci (ri) be ci with the first a0 from

the left replaced by a new distinct variable ri ranging over J.

Now consider the problem c0(r0)... cq(rq)wj =1

Now if this has a solution then D=0 must have a solution

because when the terms [al, a0, a0, tl, al] , [al, a0, al, al, t2] and

[[al, a0, t3] , [al, a0]] in wJ are expressed as a product of basic

commutators of weight 5 they do not involve bl. Clearly bl is

not involved when the commutators of weight >5 are written in

terms of basic commutators of weight > 5.

90

Conversely, if D=0 has a solution then the equation has a

solution. We can see this by substituting tl = a0'Elal-E2 , t2 =

al-E3, t3 = a0'E4a1 E5. This substitution will give us

co (r0) ... cq (rq) b1D c0F' O cq 'q=1

F'i may differ from Fi because in the manipulation which allowed

us to cancel b2E1 b3E2 b4E3 b5E4 b6E5 we may well have introduced

some commutators of weight >5 (In fact in most calculations we

will have introduced them).

Now the substitution ri = a0'F'i will leave us with b1D = 1.

Hence by Theorem 3.5 we have a problem w (a01 a,, y1, ""I yn) -1

in J which is recursively insoluble.

Now we know that the Unification Problem for nilpotent

groups of class k is equivalent to being able to solve w=1 in

a free nilpotent group of class k on

{ a0, al, a2, ... }u {v0, vl, v2, ... }

where the members of {v0, vl, v2, .. .} represent variables. By a

very similar argument to that employed in the proof of Theorem

3.3.2 we can consider substitutions involving only ao and al.

Hence the Unification Problem is undecidable for nilpotent

groups of class Z 5.

3.3.4 Remark:

We gave a proof of this undecidability result by constructing

a problem in a free nilpotent group of class 5 which reduced to

the problem of solving an arbitrary diophantine equation of
degree 4. We then appealed to Theorem 3.3.1. This showed the
result holds for class 5. We then considered a very similar

91

problem lying in a free nilpotent group of higher nilpotency

class and established the result for class > 5.

An alternative proof would have been to construct a problem

in a nilpotent group of class k which reduces to the problem of

solving an arbitrary diophantine equation of degree k-1. The

proof of Theorem 3.3.3 would then follow from Theorem 3.3.1 and

the fact that an arbitrary diophantine equation of degree >4 is

equivalent to one of, degree 4 (see (60)).

We now briefly discuss the work done-by Repin (57] on the

undecidability of the unification problem for nilpotent groups

when considering problems containing only one variable.

a'

92

3.4 Problems in one variable only

In 2.5 we presented a unification algorithm for nilpotent

groups of class 2 with respect to problems containing only one

variable. As was seen in Remark 2.5.9 matters were simplified

considerably because when we restrict the unification problem in

this. way the troublesome diophantine equations of degree 2 do

not occur. So in this particular case we do not have a relative

algorithm but an outright one.

However, we also saw in Remark 2.4.8 that the restriction to

problems in just one variable for nilpotent groups of class k (k

>, - 3) means that we have to solve diophantine equations of degree

k-1. So although we can construct an outright algorithm for

this restricted class of problems for nilpotency class 2 the

unification algorithm for nilpotent groups of class k is

relative to solving certain diophantine equations of degree

k-1. This would suggest that the unification problem is

undecidable for nilpotent groups of class 5 when restricting to

one variable (as we showed it to be for an arbitrary number of

variables in Theorem 3.3.2). However, the method of proof

employed in Theorem 3.3.2 does not work when we restrict to one

variable. In the proof of this theorem we coded up an arbitrary
diophantine equation of degree 4 by-associating a diophantine

monomial c rx (i, 1) x (i, 2) x (i, 3) x (i, 4) in four variables with the

commutator [aicr, y (i, 1) ,y (i, 2) ,y (i, 3) , 'y (i, 4)] in four variables.

The point is that we need the four variables

y (i, 1) 'y (i, 2) ly (i, 3) 1y (i, 4) in the group equation to encode the

four variables x (i, 1) x (i, 2) x (i, 3) x (i, 4) of the arbitrary

diophantine equation. If we restrict to one variable only for
problems in a free nilpotent group of class 5 then we can encode

93

certain diophantine equations of degree 4 but we cannot encode

an arbitrary diophantine equation of degree 4. In fact using the

same method as in the proof of Theorem 3.3.2 the class of

diophantine equations of degree 4 that we obtain are of the form

ax4-+ bx3 + cx2 + dx +e=0 where x is an integer variable and

a, b, c, d, e are integer constants. If the problem of

algorithmically solving any member of this class of diophantine

equations was undecidable then we could establish the

undecidability of the unification problem for nilpotent groups

of class 5 when restricting to the use of one variable only.

Unfortunately the algorithmic solvability of this class of

diophantine equations is decidable. So to establish an

undecidability result for this restricted class of problems we

have to turn away from the methods already developed and

consider something new.

Repin's result [57] is that for kZ 1020 there is no

algorithmic way of solving equations containing just one

variable in a free nilpotent group of class k. The proof of this

result rests upon a theorem of number theory as do Romankov's

results (in [60) and [61]) and as do the proofs of Theorems

3.3.2 and 3.3.3. Repin, however, does not use the Matiyasevitch

theorem [50]. He uses a theorem presented by J. P. Jones [30]

which says that there exists a class M of diophantine

polynomials of degree 2.105 containing fourteen variables such

that given peM the problem of algorithmically finding a

solution to p=0 is undecidable. As we have seen when we

consider unification for nilpotent groups there is a direct

correlation between the degree of the diophantine equations that

occur and the nilpotency class of the group. The dependency upon
diophantine equations of degree 2.105 results in obtaining the

94

undecidability theorem for nilpotency class k> 1020.

A research problem that has been left open and that is

prompted by Remark 2.5.11 is to show that the unification

problem when considering one variable only is undecidable for

nilpotent groups of class k for some k< 1020.

0

95

Chapter 4: Equation Solving in Partially Commutative
Monoids'

4.1 Introduction:

The manipulation of strings is an important tool in many

areas of computer science. This is the main reason why

unification for the theory of semi-groups, and abelian

semi-groups in particular, has attracted such attention. The aim

of this chapter is to consider equation solving with respect to

partially commutative monoids (semigroups with an identity).

In the title of the thesis we referred to 'nilpotent

monoids' since the structures we study are a natural analogue of

those considered in Chapter 2. However, the word "nilpotent" is

generally not applied to monoids since it implies the use of

quotient structures. We therefore adopt the less contentious

term "partially commutative monoid" to capture what we have in

mind.

We define a class N of partially commutative monoids that we

shall present and study in some detail. We also define another

class rL of partially commutative monoids whose members have less

relations than the members of N. We will show that there is an

algorithm to solve equations in the structures belonging to N

relative to having an algorithm which will solve certain systems

of quadratic diophantine equations over the positive integers,

which we will call p-systems (we will begin this chapter by

taking a close look at these p-systems). We also outline the

difficulties involved when solving equations in n.

96

4.2 Preliminary Definitions:

4.2.1 Definitions of p-polynomials and p-systems

We now introduce the certain special types of polynomials and

equations mentioned above that arise naturally when considering

unification and equation solving in partially commutative

monoids. These correspond to the T-equations and 'c-systems that

occurred when we considered unification for nilpotent groups of

class 2 in Chapter 2. Their use in solving equations in

partially commutative monoids will be illustrated in 4.3.

Let X and Y be disjoint finite sets of distinct

non-negative integer variables. Ap -polynomial is a polynomial p

of the form
mn

p= K+E ciyi +Ed jx j+ E (i. j) xix j
i=1 j=1 15i<j<_n

where (1) yie Y, xjCX

(2) ci, d j, e (j, j) eZ and not all ci are zero .

We shall consider finite sets P= (pl,..., pt) of p-polynomials

where
mn

PS = KS +Z
1(S,

i)y(S, i) +, Z1 d(S, j)x($, j) + Y,
j-(i,

i)x(S, i)x(S, i)

We say that a set of p-polynomials P is a valid set if no

y(s, i) occurs in more than one member of P. Let P be a valid set

of p-polynomials and let us associate with each ps ePa pair of

distinct linear diophantine polynomials Ls = {L (5,1) 1 L(S, 2) 1

where L (S, 1) is of the form

e(S, 1)x(s, l) +... + e(s, q)x(s, q)

and L(S, 2) is of the 'form

97

eýSýq+l) x(s, q+l) +... + e(S, n) x(S, n)

where e (S, 1), ... ,e (S, n) are integer constants and if a variable

occurs in L(s, j) (i = 1,2) it does not occur in any other member

of L1 u L2 u... u Lt.

Note: For r*s the elements of L. and Ls need not be distinct.

Indeed in the cases we require later on (for t> 1) there will

always exist L. and Ls (r * s) such that ILr v LSD < 4.

Now let us associate with each pS eP another p-polynomial

Pis of the form

mn
p's = K's + Sc' (s, i)y' (s, i) + Id' (s, J)x(s, J) + Ze' (i J)x(s, i)x(s, J)

i=1 j=1 1Si<jgn

where (1) y' (s, l) ,""", yl (s, m) are distinct from y (s, 1) ,"""ly (s, m)

and any variable occurring in P'r for r*s.

(2) K's, c' (S, l), ..., C' (s, m), d' (s, 1), ..., d' (s, n), E' may or

may not be the same as Ks, c(s, 1), ..., c(s, m), d(s, 1)' """, d(s, n), e-

(3) The variables x (s, 1) 1 ... Ix (s, n) are the same as those

that appear in PS.

Note: P' is a valid set of p-polynomials.

We define a p-system to be a system of diophantine equations

consisting of some {P1 - P'1 = 0, .. , Pt - pit = 0} (where P=

{Pi: 1 <_ i5 t} and P' = {Pi': 1 _< i5t} are valid) together

with the set of linear diophantine equations formed by putting

each element of some corresponding L1 Li L2 u... u Lt equal to

zero.

98

Later on in this chapter we will be assuming that we have an

algorithm to findýall the solutions (over the positive integers)

of any given p-system. A p-system consists of linear diophantine

equations and square free diophantine equations of degree 2. The

algorithm for solving systems of equations in the members of N

presented in 4.3 could simply be presented as relative to the

algorithmic solution of such systems of diophantine equations.

However, the diophantine equation algorithm used would actually

solve a larger class of systems of diophantine equations than is

required. Obviously the more specialised the class of systems of

diophantine equations considered the greater the chance of

constructing an algorithm to solve them. It is for this reason

that we have presented the definition of p-systems in such

detail. The p-systems presented above are precisely the systems

of diophantine equations that occur when considering equation

solving in the members of N.

4.2.2 The structures we will, be working, with:

Now we will introduce certain structures that we will be

attempting to solve equations in. These structures are monoids

(i. e. semigroups with identity). First, however, let us define

the notion of a block. Let A= {ai: 15i5 n} and suppose we

have a word over A of the form:

w= a(P, 1)91 a(P, 2)92.... a(p, k)gk

where (p, i) E {1,.., n}, gi is a non-negative integer and

(p, i) * (p, i+l) for i=1, .., k. We will call each subword

a(p, j)9j of wa block. We now present a formal definition of the

structures that we will be working in.

99

4.2.2.1 Definition of the structures belonging to N:

Let A= {aj: 1.: 5 iS n}, B= {b (i, j) :15i<jS n} and

B' = {b'(i, j): 15i<j5 n} be disjoint sets of generators and

let N be the set of all monoids given by a finite presentation

of the form:

N=< AvBu BI: b(i, j) x= xb(i, j) (x eAuBu B')

bý(i. j)x = xb'(i, j) (x eAuBu B')

aia j= ajaib (i, j) (i < j)

aiajb' (i, j) a jai (i < ý) >

To define a nilpotent structure we have to use the concept of

a quotient structure, which we cannot use when considering

monoids. The motivation for looking at the monoids defined above

is that they have nilpotent like character.

4.2.2.2 Definition of the structures belonging to fl:

For this class of structures we will be considering the

disjoint sets of generators A= {ai: 1SiS n} and B=

1 <_ i<j <_ n). We let Tt be the set of all monoids given by a

finite presentation of the form:

M=< Au B: b ýiý ýý x= xb (i, j)

aia j= ajaib (i, j)

(x EAuB)

(i < j, (i, ý) E Y)

aiajb (i, j) = ajai (i < j, (i, J) 0 Y)

where Y is any fixed subset of { (i, j) : 15i<j S n}

The motivation for studying rt is that its members are

100

partially commutative monoids which are, in a certain sense,

"more free" than the members of N. That is each member of TL has

a corresponding member of N with "more" relations. However, we

will show that the format of the substitutions that are required

strongly suggest that the equation solving problem for the

members of ? -G is not decidable.

Before we consider these structures, however, we will first

turn our attention to the problem of constructing an algorithm

to solve equations in the structures defined in 4.2.2.1.

101

4.3 Equation solving in NeN:

Now before we consider solving equations in NeN let us

first prove the following Lemma about words lying in N:

Lemma 4.3.1:

Let w be a word over AuBu B'. Then w can be written in N

in the form: w= alul... an n II {b (i, j) v (i, j) :b (j, j) E B}

. II{b' (i, j)VI (i, j) : b' (i, j) E B' }

where ui, v (i, j) and v' (i, j) are non-negative integers.

Proof :

Suppose we have w in the form

w= alf1... anfn aigiaj9j... akgk II{b(i, j)V(i. j) : b(i, j) e B}.

fl{b' (i, j) VI (i, J) : b' (i. j) E B' }

where fi and gl are non-negative integers, alfl... anfn is ordered

and aigiaj j... akgk is unordered. We prove the result by inductior.

on the number of blocks of aigiajgj.. "akgk"

The base case is trivial.

For the induction step we first note that in the monoid N we

have the following relations:

aigianf n= anf naigib (i, n)f ngi (a)

aigianfnb' (i, n)fngi = anfnaigi (ß)

(we know that i<n so we know that the corresponding elements

of B, B' are b (i, n) , b' (i, n) and not b (n, i) , b' (n, i) which will

not even exist in N)

Now we have the choice of using either (a) or (ß) to move aigi

102

past 'anfn. We can, however, only use (a) if b (i, n) occurs in w

with power at least fngi because otherwise we would introduce a

negative power into a monoid. It is always possible to use (ß).

In general any algorithm which writes w in the required form

will at this point be faced with deciding which of the two

relations to use. We can, however, write the word in a canonical

form by always using the relation which takes away a b(i, n)
if

there are any occurrences, of b(i, n) to take away. If not we use

the relation which introduces a b'U, n)-

Having moved aigi past anf n we can now move it past an-lf n-1

and so on until it is in the correct position in the ordered

subword alfl... anfn. Since ajgj... akgk is shorter than

aigiajgj... a k the result then follows by induction.

Note: As we are only making moves to the left we cannot go into

an infinite loop.

4.3.2 Definition:

We are attempting to solve equations in any NeN. For every

variable x in a particular equation we will be applying the

substitution:

x= alxl... anxn II{b(j, j)Y(i, j): (j, j) e B}

. II{b' (i, j) yl (i, j) : b' (i, j) e B' }

where xi, y (i, j) and y' (i, j) are non-negative integer variables

i. e. our substitutions will have the format suggested by Lemma
4.3.1. This prompts the following definition and lemma:

Let V be a word over the alphabet

103

AuB ti B' u {ajtj: tj is a non-negative integer variable}

i {b(i, j)gk: qk is a non-negative integer variable}

u {b'(i, j)gIk: q'k is a non-negative integer variable}.

When non-negative integers are assigned to the distinct

variables tj, gkq'k V then becomes a word in AuBu B'. Now

because Bu B' is central V can be written in the form

(a,, ..., an) II{b(j, j)P(i, j) :
-b(j, j) e B}

B' }
. II{b' (i, j)Pf (i, j) : b' (i, j) 6

where Y(a,,..., an) is a word over Au {aitj: tj is a non-negative

integer variable} and p(j, j), p'(j, j) are non-negative linear

diophantine polynomials in the q's.

Lemma 4.3.3:

V can be written in N in the form:

V= a1rl ... anrn fl{b (i, j) s (i, j) :b (i, j) E B}

. II(b' (i, j)S (i, j): b' (i, i) to B'}

where (1) ri is a unique non-negative linear diophantine

polynomial over the non-negative integers.

(2) s (j, j) is a p-polynomial.

(3) S' (j, j) is a p-polynomial.

Proof :

Suppose we have V in the form

V= aldl ... andn aieia je j ... akek II{b (i, j) S (j, j) :b (j, j) E B} .

II{b' (i, j)Sr (i, j)' br (i, ý) E B'}

where aldl... andn has already been ordered and aiejajej... akek is

104

unordered. The d's and the e's are either non-negative integers

or non-negative integer variables with non-negative integer

coefficients. In a similar way to the proof of Lemma 4.3.1 we

can show that we can write the word in the intended order by

induction on the number of blocks of aieiajej... akek. For the

induction step in this case we use the relations: -

aieiandn = andnaieib (in)
dnei

..... (a)

aieiandnb' (i, n)
dnei = andnaiei (ß)

Now as before we can use either (a) or (ß) to move aigi past

anfn and we can only use (a) if we have a sufficiently large

power of b(i, n) . This means that when we come to substitute

values for the variables of s(i, n) the result cannot be negative.

We can, however write the word in the canonical form introduced

in the proof of Lemma 4.3.1.

Now clearly (1) ri is a unique non-negative linear diophantine

polynomial over the non-negative integers.

Also (2) s (i, j) is a p-polynomial.

We show this by induction on the number 1 of moves made. Let

s(j, j) (0) = p(j, 1) and s(j, j) (1) be the power of b(i j) after 1

moves.

We know that p(i, j) is a linear non-negative diophantine

polynomial over the non-negative integers (it is in fact the

E ciyi of Definition 4.2.1 together with some constant). Hence
i=1

the base case is trivially true.

For the induction step suppose that s (i, j) (1) is a p-polynomial

105

and that move 1+1 involves moving aiei past akek. Without loss of

generality assume i<k.

We can use

ajejakek = akekaieib(i, k) ekei dal+1)

or aieiakekb' (i, k) eke j= akekaiei

(the subscript in (al+l) and (ßl+l) is introduced to indicate the

number of moves made)

j) (1) . If we use (ßl+l) then s (j, j) (1+1) =s (i,

If we use (a1+1) then s (j, j) (1+1) =s (i, j) (1) + eiek

Now ej and ek are either non-negative integers or non-negative

integer variables (distinct from those occurring in p(i, j)) with

non-negative integer coefficients.

i. e. eiek is either (a) a constant

or (b) a variable with constant coefficient
n

(this would be part of the E djxj of Definitions 4.2.1)
j=1

or (c) a product of two distinct variables with constant

coefficient (this would be a part of the Ec (i, j) xix j
1<_i<j<_n

of Definitions 4.3.1).

Hence by induction the result holds.

Note: s(i, j) is not a unique p-polynomial because we are writing

the word in a certain way, the canonical way defined in the

proof of Lemma 4.3.1. Writing the word using a different choice

of relation would result in a different p-polynomial.

The proof that (3) s'(jj) is a p-polynomial follows by a

106

similar argument to the one used for s (i, j). It is not unique for

the same reasons.

Now having the necessary preliminary results at our disposal

we can look at an algorithm to solve any given equation in N.

4.3.4 An algorithm to solve equations in NEN

Suppose we are given the problem wl = w2 ? in NeN. Now

wl, w2 can be written in the following forms since Bu B' is

central:

wl = ul (al, ... , an, xi, ... , xm) .

IIl{b(i, j): b(i, j) e B} IIl{b' (j, j): b' (j, j) e B'}

and wl = u2 (al, ..., an, x1, ... , xm) .

112{b(i. j): b(i, j) e B} r12{b' (i, j): bI (j, j) E B'}

where xl,..., xm are variables standing for any word in N.

Now for each variable xk occurring in the problem we let

Xk = alc(1, k) ... an (n, k) II(b(j, j)y(i, j, k) : b(i, j) e B}.

11 {b' (i, j) Y1 (i, j, k) : b' (i, j) e B' }

where x (i, k),, Y (i, j, k) 1 Y' (i, j, k) are distinct non-negative

integer variables. We can do this because we know by Lemma 4.3.1

that every word in N can be written in this form.

Having substituted these values of xk (for k=1,..., m) we

write the left hand side of the equation in the form:

a1rl... anrn II3{b(i, j)S(i, j): b(i, j) e B}

113 {b' (i, j)s (i. j): b' (i, j) E B'}

by Lemma 4.3.3. In applying this Lemma we use the canonical

107

method of rewriting the word introduced in the proof of Lemma

4.3.1

We can also write the right hand side of the equation in the

form:

alt, ... ari n r14{b(i, j)q(j, j): b(i, j) E B}

114 {b' (i, j)qI (i, j) : b' (i, j) E B' }

by using the same canonical method.

If we now equate the powers of the independent generators and

use parts (1) , (2), (3) of Lemma 4.3.3 we see that we have derived

the following p-system:

{ri - ti = 0} u {S(i, j) q(i, j) (s1 (1, j) qI (i, j)} = 0}

Note: {ri - ti }= Ll u L2 u... u Lt, {s (i, j) - q(i, j)} =P and

P' where Ll u L2 u... u Lt, P and P' are the

notations used in Definitions 4.2.1. It is easy to check that

{s (j, j) - q(j j) } and {s' (i, j) - q' (i, j) } are valid.

Now we are only interested in positive solutions to these

p-systems because we are working in monoids. The following

theorem tells us that if we have an algorithm to find all the

solutions (over the positive integers) of any p-system then we

have one to solve the given problem wl = w2 ?:

Theorem 4.3.5:

We have a (positive) solution to this p-system if and only if

we have a solution to the problem wl = w2 ?

Proof :

The implication from left to right is obvious.

Conversely assume that we have any solution

108

a= {sk(a,, " .. an)II{b(i, j)P(i, J, k) b(j, j) e B}

III b' (i, j)P, (i, J, k) : b' (i, j) e B' }/xk: k=1, .., n}

to the problem wl = w2 ?

By Lemma 4.3.1 we can write this in the form:

a= {alu(1, k) ... ari (n, k)11{b(j, j)v(i, J, k) : b(j, j) e B}

(i, J)V' (i. j. k)' b' (i, j) e B'}/xk.. k=1,.., n} II{b'

Now let us consider w1a and apply Lemma 4.3.1 (using the

canonical method defined there). We do the same for w2a.

Since a is solution of wl = w2 ? we have that

X (i, k) =u (i, k) IY (i, j, k) =v (i, j, k) I Y' (i, J, k) = V' (i, J, k) is a

solution to the p-system.

We can summarise the results of this section so far in the

following theorem:

Theorem 4.3.6:

If there is an algorithm to solve (over the positive integers)

any p-system then we have an algorithm to solve any equation in

NEN.

Proof :

The proof follows immediately from algorithm 4.3.4 and Theorem

4.3.5.

A natural question arising at this point is whether or not

the converse of Theorem 4.3.6 is true i. e. is the solving of

p-systems equivalent to the solving of equations in NeN? The

following example shows that there is no direct way to derive

equations in N from p-systems. The example also provides an

109

illustration of the equation solving method introduced above.

Example 4.3.7:

We showed in Algorithm 4.3.4 and Theorem 4.3.5 that for every

equation in N there is a corresponding set of p-systems.

Suppose we have the monoid

L=<a, b, c, c' : ac = ca, be = cb,

ac' = c'a, bc' = c'b,

ab = bac, abc' = ba >EN.

Now consider the problem axb = ya ? in L. If we let

x= axabxbcxcctxcs and y= ayabybcycc'yet

(where xa, xb, xc, xc 1, Ya, Yb, Yc, Yc' are non-negative integer

variables) we obtain

axa+l bXb+l cxc c'xc, = aya btb a cyc c'ycr

This means that we can derive one of the following two

p-systems:

{xa-ya=0, xb-yb+1=0, xc+yb-yc=0, xcv -yc, =0}

{xa-ya=0, xb-yb+1=0, xc -yc =0, xc, -y b-y c, = 0}

Clearly if we were given either of these two p-systems we

could work backwards and find the corresponding problem in L.

However, this p-system can be slightly altered to create a

p-system that has no corresponding equation in N.

Suppose that we were given the p-system:

{2xa - Ya = 0, xb - Yb +1=0, xc + Yb - Yc = 0, xc, - Yc' = 0} .

Working backwards we would derive in L:

axa+lxb = ya ?

Now if we had b%, cxc, c'xc, occuring in this equation then we

could present it as an equation of the monoid by replacing

110

axabxbcxcc'Xc, with the variable x. However, we have only axa

occurring on its own. Because a variable standing for any

element of L must involve more than a power of the single

generator a there is no way, to mop up the extra axa. Hence the

p-system does not have a corresponding problem in L (or any

other member of N).

Now having shown that equation solving in NEN is

dependent upon solving p-systems let us consider the structures

defined in 4.2.2.2.

111

4.4 Equation solving in MEn:

We will show that the format of the substitutions required

suggests that the equation solving problem in the members of fl

is not decidable. However, the results presented in 4.3 emerged

from first looking at these structures.

Suppose, we have NEN as defined in 4.2.2.1. In the proof

of Lemma 4.3.1 we gave a method for writing any word w of N in a

certain form which used the given relations of N to collect all

the generators together. Given any two generators ai and aj of N

(i < j) there is always a corresponding b(i, j) 6B together with

a relation ala2 = a2alb(j, j) and there is always a corresponding

b' (i, j) E B' together with a relation ala2b' (i, j) = a2a1. This

means that given a subword a2a1 of w we can always move the al

past the a2 using one of the given relations regardless of

whether or not the appropriate members of Bu B' occur in w.

However, a corresponding member of rt contains the set B

instead of Bu B' and will contain the relation ala2 = a2alb(i, j)

or the relation ala2b(j, j) = a2a1 but not both. Thus given a

subword a2a1 of w and the given relation we can always move the

al past the a2 using that relation provided we have an

occurrence of b(j, j) in w. There is of course no guarantee that

we always'have such an occurrence. To highlight the point we

will construct two examples of words in certain members of 7`t

which cannot be rewritten in the desired form. The first will

be a simple case and for this case*we will show a way round the

problem. We will see that there is no way round the second

112

problem. For every member of rt there is a corresponding member

of N. We will compare the problems we look at in, particular

members of 7t, with the same problems in the corresponding member

of N.

Example 4.4.1:

Suppose we are given the monoid

M= <a, b, c: ab = bac, ac = ca, be = cb>.

It is easy to check that ME 1"L (comparing this with Definition

4.2.2.2 we have that A= {a, b} and B= {c}).

Now suppose that we are given the word abababc3 and that we

wish to rewrite it in the form aPbecr (as we did for the members

of N in 4.3). Then using the relations of M we can rewrite this

3 as a3b.

However, if we are given the word ababab then there is no way

in M that we can write the word in the desired form.

The corresponding monoid in N is

<a, b, c, c' : ab = bac, abc' = ba, cx = xc (x e {a, b, c, c' }) ,

cl x= xc' (x e {a, b, c, c' })>.

Comparing this with Definition 4.2.2.1 we have that A= {a, b},

B= {c} and B' = {c'}.

We can see that in this monoid the word ababab can be

rewritten as a3b3ci3.

We could, however, get round the problem in M by changing the

order in which we wish to rewrite the generators. That is we

could always rewrite any word in m in the form bPagcr. This

provides us with the following Lemma:

113

Lemma 4.4.2:

If we have an algorithm to solve any p-system then we have

an algorithm to solve any equation in a three generator element

of It.

Proof :

There are just 2 three generator elements of t. One is the

monoid presented in Example 4.4.1. We have seen that we can

write any word in this monoid in the form bPagcr.

The other three generator element of l is the monoid

<a, b, c: abc = ba, ac = ca, be = cb>

Any word in this monoid can be rewritten in the form aPbecr.

With the ability to write any word in either of the

monoids in the forms given we can now apply exactly the same

methods as in 4.3. Although, in both cases, we are 'missing' a

relation the 'missing' relation is never required.

We now consider an example in a six generator element of M.

We will see that in this case we cannot get round the problem by

changing the order in which the words are rewritten.

Intuitively, there are too many 'missing' relations.

Example 4.4.3:

Suppose PEn is defined as follows:

P= <a, b, c, d, e, f: abd = ba, ace = ca, bcf = cb,

dx = xd (x e {a, b, c, d, e, f}),

ex = xe (x E {a, b, c, d, e, f}),

fx = xf (x e {a, b, c, d, e, f}) >

Now'suppose that we are given any word of P then using the

relations of P we can rewrite it in the form aPbecrdsetfu. For

114

example if w= abcabcabc then we can rewrite it as

w= a3b3c3d3e3f3.

However, let us now consider the monoid Qe1, constructed by

replacing the relation 'ace = ca' in P by the relation

'ac = cae'. In Q the word abcabcabc cannot be rewritten in the

form aPb4crdsetfu because we cannot move the a's past the c's.

It is easy to see that in this case, although we cannot write

a word in the form aF'becrdSetfu, we'can write any given word in

the form aPlbq1crl aP2bq2cr2 ... aPnbgncrn dSetfu. This is

because if we attempt to employ the method used in Example 4.4.1

(of changing the order in which the words are rewritten) we

readily see that a must go to the left of b, b must go to the

left of c and c must go to the left of a. i. e. we have to write

any word in terms of aPibgicri as above (or a cyclic alternative

such as b41criaPi, criaPib41).

This means that given any equation of Q the development of

a method to solve that equation must involve the substitution of

words of the above form, aPlbglcrl ap2bg2cr2 ... apnb%crndsetfu,

for each variable. This suggests that we would have to

substitute aPbecrdsetfu for each variable and check for a

solution, then we would have to substitute aPlb41cr1 ap2bg2cr2

dsetfu and so on. If a solution exists we may be able to find it

but the format of the substitutions strongly suggests that in

general the problem will be undecidable.

The corresponding monoid in N is

N= <a, b, c, d, e, f, d' , e' , f' : abd = ba, ace = ca, bcf = cb,

abd' = ba, ace' = ca, bcf' = cb,

115

dx = xd (x e {a, b, c, d, e, f}),

ex = xe (x e (a, b, c, d, e, f }) ,
fx = xf (x e {a, b, c, d, e, f }) >

We can see that the problem does not occur in this structure by

rewriting abcabcabc as a3b3c3d3e3f3.

We now briefly discuss the extension of the work presented

in this chapter in the same directions that we extended the work

for nilpotent groups in Chapter 2.

116

4.5 Extensions of the above work

4.5.11 Equation solving in partially commutative monoids

of higher class

In 4.3 we presented an algorithm for solving equations in the

members of N relative to having an algorithm to solve p-systems.

AnyN eN is a three sorted structure (any generator belongs to

the set A, B or B'). These correspond to the "idea" of a

nilpotent monoid of class 2. Although as we'have indicated the

word "nilpotent" involves the use of quotient structures which

we are not allowed to use when considering monoids.

It is a straightforward task to consruct similar many

sorted structures which would correspond to the "idea" of higher

nilpotency class. The construction of equation solving

algorithms in such structures has been left as an open research

problem. This is because of time constraints on the research

project rather than the difficulty of the problem.

4.5.2 Addition of the axiom xP =1

In Chapter 2 we discussed special p-groups as studied by

U. Martin (47]. We saw that the inclusion of the axiom xP =1 to

the theory'of nilpotent groups of class 2 made the search space

of the it-equations finite. Thus we had an outright algorithm

rather than a relative one.

If we attempt to use the same idea here and include the

relation. xP =1 (x eAiBv B') to the elements of N to create

a new class of structures, P say, then we see that the elements

of P are actually groups and as such have been covered in
Chapter 2. The inverse of any element x is xP-1.

117

4.5.3 Problems in just one variable

Repin (57] studied algorithmic equation solving for problems

in only one variable for nilpotent groups of class 2. It was

seen in Chapter 2 that restriction to this class of problems

resulted in only linear diophantine equations occurring. As

there is an algorithm to solve systems of linear diophantine

equations this means that there exists an algorithm to solve

this restricted class of problems. The question of whether or

not the same thing happens when restricting to problems in just

one variable in the members of N arises naturally. The answer to

this question is that the above algorithm is an outright

algorithm for this class of problems. The reason is because the

linear diophantine, equations that occur as part of a p-system

are in one variable only thus giving a constant solution (if one

exists).. This can be substituted into the p-equations of the

p-system to give a solution. We will illustrate this by

considering the following example:

Example 4.5.3.1:

Suppose we have the same monoid that we considered in

Example 4.3.7: L=<a, b, c, c': ac = ca, be = cb,

ac' = c'a, bc' = c'b,

ab = bac, abc' = ba >EN.

Now consider the problem xbx = ba4 ? in L.

If we let x= aXabxbcXcc' xc i (where xa, xb, xc, xc l are non-negative

integer variables) we obtain

axa b%+l Oa bxb c2xc C, 2xc, = ba4

Hence we have

a2xa b2xb+1 c2xc-xa(xb+1) c12xcl = ba4

118

or a2xa b2xb+1 c2xc cr2xct+xa(xb+1) = ba4

This means that we can derive one of the following two

p-systems:

(1) {2xa = 4,2xb +b=b, 2xc - (xb +1) xa = 0,2xct = 01

(2) (2xa = 4,2xb +b=b, 2xc = 0,2xct + (xb +1) xa = 01

For (1) we have xa = 2, Xb = Of xc = 1, and xCt = 0.

For (2) we have xa = 2, xb = Of xc = 0, and xct _ -1 (not

allowed) .

:. the solution to the equation is x= a2c

4.5.4 The cardinality type of any member of N

As can be seen in 4.3 the solution of equations in any

.. member of N is dependent upon solving p-systems. Thus the

cardinality type of the members of N is dependent entirely upon

the cardinality type of p-systems. In Example 4.3.7 we saw that

the p-system that occurred was in fact a system of linear

diophantine equations. Also in Example 4.5.3.1 we derived a

system of linear diophantine equations. When this occurs there

is a single most general solution. The following example shows

the reduction of an equation in L (the monoid considered in

examples 4.3.7 and 4.5.3.1) to a 'proper' p-system i. e. one

containing non-linear p-equations.

Example 4.5.4.1:

Recall that L is the following member of N

< a, b, c, c': ac ca, be = cb, ac' = c'a, bc' = c'b,

ab = bac, abc' = ba >.

Suppose we have the problem axyzb = a3b5c7ci2 ? in L.

119

Applying the usual variable substitutions we have

axa+l bxb aYa byb aza bzb+1 cxc+Yc+zc c'Xc, +Yc, +zc' = a3b5c7c, 2

Using the algorithm we obtain

axa+ya+za+l bxb+yb+zb+l cxc+yc+zc ctxct+yct+zcl+yaxb+za(xb+yb)

= a3b5c7c'2

This provides us with the following non-linear p-system

xa+ya+za = 2, xb+yb+zb = 4, xc+yc+zc = 2,

xcl+yct+zce+yaxb+za(xb+yb) = 2.

In the case of groups the troublesome diophantine equations only

occurred under certain conditions (i. e. when the word to be

unified with 1 lies in the commutator subgroup). The conditions,

in members of N, when the troublesome p-equations occur have not

been specifically characterised in this way. This has been left

as an open problem. Again the reason is time constraints on the

project rather than the difficulty of the problem.

The next chapter concludes the thesis by providing a summary

of the results presented and by indicating some open research

problems that have arisen from this research project.

120

Chapter 5: Conclusion

5.1 Summary of Results

The main aim of this thesis was to study unification and

equation solving with respect to partially commutative theories

and structures. As we have seen, this partial commutativity was

provided by the concept of nilpotency in the case of groups. The

group theoretic problems have been reduced to number theoretic

problems. The number theory has been left as an open research

problem. We-will now consider each chapter of the thesis in turn

and highlight the main results that have arisen out. of this

research project.

5.1,. 1 Chapter 1

It has been indicated earlier that Chapter 1 is an

introductory survey of the area. Having said this Theorem 1.4.2,

although a known result, is not stated and proved explicitly in

the unification literature. Indeed in some of the literature

there appears to be some confusion over unification in a theory

and equation solving in a model of the theory. For this reason

the proof has been included.

5.1.2 Chapter 2

A unification algorithm was constructed for the theory of

nilpotent groups of class k by constructing an equation solving

algorithm for the free nilpotent group of class k. This

algorithm depends upon the existence of an algorithm to solve

certain kinds of diophantine equations of degree k. The main

points of this chapter are:

121

5.1.2.1:, If we have an algorithm to solve nth power free

diophantine equations of degree n for 15 n5k then we have an

algorithm to find all solutions to any unification problem in

the theory of nilpotent groups of class k.

5.1.2.2: N2G is nullary.

5.1.2.3: In general the cardinality type of MNkG is dependent

upon the cardinality types of nth power free diophantine

equations of degree n for 25nSk. It is in any case

infinitary.

5.1.3 Chapter 3

In this chapter we concerned ourselves with the question of

the decidability of the unification problem in nilpotent groups.

The main result of this chapter is that this problem is

undecidable for the theory of nilpotent groups of class k where

kZ5.

5.1.4 Chapter 4

In this chapter we turned our attention to partially

commutative monoids and in particular to the class N. The main

result of this chapter is:

If we have an algorithm to solve p-systems then we have an

algorithm to solve any equation in any member of N.

At

122

5.2 Open Research Problems

There are many avenues of research that have been opened

up by the work presented in this thesis. Some of these have been

outlined already. However, we will collect all the most obvious

open problems-together in this section whether or not they have

already been mentioned. Some of these problems appear reasonably

straightforward and, as has also been indicated, have not been

tackled because of time constraints on the research project.

This research project has given, in Chapters 1 and 4,

various equation solving algorithms which are relative to having

algorithms that can solve particular systems of diophantine

equations. An obvious open problem is to solve the number

theoretic problems that arise from this research. By the results

of Chapter 3 we are only interested in. solving the nth power

free diophantine equations of degree n that occur in Chapter 2

for 2Sn54. Another problem is to characterise the systems of

equations occurring for class 3 and 4 in the way that we

characterised the 'v-equations for class 2.

The decidability of the unification problem for nilpotent

groups of class 2,3 and 4 depends upon the decidability of the

corresponding systems of diopohantine equations. Similarly the

decidability of the equation solving problem for members of N

depends upon the decidability of p-systems. If such algorithms

could be constructed then the relative algorithms presented in

this thesis would become actual ones. Another possible research

problem would be to consider the complexity of the algorithms

presented in this thesis.

We saw in Chapter 2 that we have an outright unification

algorithm for one-variable problems in a free nilpotent group of

class 2 (Repin [57]).. This is not the case for free nilpotent

123

groups of class 3. Here we are dependent upon certain

diophantine equations of degree 2. A possible direction of

research is to investigate further the type of equations that

occur here (in the way that we developed the c-equations for the

general case in class 2). It is also feasible to investigate

one-variable problems in nilpotent groups of higher class. In

Chapter 3 we considered another result established by Repin [57]

which says that the problem of solving any equation, involving

only one variable, in a free nilpotent group of class k for k2

1020 is undecidable. It is extremely likely that the value of k

in this result can be reduced. It may be possible to do this by

employing some of the methods developed in this thesis.

In Chapter 4 we considered equation solving in members of N

i. e. certain partially commutative monoids. These correspond to

nilpotent structures of class 2. A natural extension of this

work would be to consider equation solving in similar partially

commutative monoids corresponding to structures of higher

nilpotency class. Also it would be interesting to investigate

the conditions, in members of N, when the troublesome

p-equations occur.

124

References

(1] H. Abdulrab, and J. P. Pecuchet, Solving Word Equations, Journal

of Symbolic Computation 1990.

(2] H. Ait-Kaci and M. Nivat (editors), Resolution of Equations in

Algebraic Structures, Academic Press 1989.

(3] F. Baader, Unification in Idempotent Semigroups is of Type

Zero, Journal of Automated Reasoning Vol. 2 (1986),

pages 283-286.

(4) F. Baader, Unification in Commutative Theories, Journal of

Symbolic Computation 1989.

[5] G. Birkhoff, On the Structure of Abstract Algebras,

Proceedings of the Cambridge Phil. Soc. Vol. 31 (1935),

pages 433-454.

[6] H-J. Buckert, A. Herold, D. Kapur, J. Sielmann, M. Stickel,

M. Tepp and H. Zhang, Opening the AC-Unification Race, Journal

of Automated Reasoning Vol. 4 (1988), pages 465-474.

(7] H-J. Buckert, A. Herold and M. Schmidt-Schauss, On Equational

Theories, Unification and Decidability, Proceedings of the

2nd International Conference on Term Rewriting Techniques

and Applications, Springer L. N. C. S. Vol. 256 (1987),

pages 204-215..

125

.,

[8] W. Buttner, Unification in Finite Algebras is Unitary,

Proceedings-of C. A. D. E. 9, Springer-Verlag 1987, '

pages 205-368.

[9] J. Cannon, An Introduction to the Group Theory, Language

Cayley, in Computational Group Theory (edited by

M. D. Atkinson), Academic Press 1984, pages 145-183.

[10] C. Chang and R. C. Lee, Symbolic Logic and Mechanical Theorem

Proving, Academic Press 1973.

[11] J. Cohen, Constraint Logic Programming Languages,

Communications of the A. C. M. Vol. 33 No. 7 (1990),

pages 52-68.

[12] A. G. Cohn, A More Expressive Formulation of Many Sorted

Logic, Journal of Automated Reasoning Vol. 3 (1987),

pages 113-200.

[13] A. Colmerauer, A Prolog ii Reference Manual and Theoretical

Model, Rep. Group d'Intelligence Artificielle (1982),

Universite d'Aix-Marseille ii, Luminy.

[14] A. Colmerauer, An Introduction to Prolog III, Communications

of the A. C. M. Vol. 33 No. 7 (1990), pages 69-90.

[15] D. DeGroot and G. Lindstrom (editors), Logic Programming:

Functions Relations and Equations, Prentice-Hall 1986.

126

[16] M. Dincbas et. al., The Constraint Logic Programming

Language CHIP, Proceedings of the International

Conference on 5th Generation Computer Systems,

Ohmsha (1988), pages 693-702.

[17]"F. Fages and G. P. Huet, Complete Sets of Unifiers and

Matchers in Equational Theories,. Proceedings of the

Colloquium on Trees in Algebra and Programming,

Springer L. N. C. S. Vol. 159 (1983).

(18] R. Feldman and M. C. Golumbic, Optimization Algorithms for

Student Scheduling via Constraint Satisfiability, The

Computer Journal Vol. 33 No. 4 (1990), pages 356-364.

[19] J. Goguen and J. Meseguer, EQLOG: Equality, Types and Generic

Modules for Logic Programming, in [151 pages 295-363.

(20] W. E. Gould, A Matching Procedure for ca-Sorted Logic,

Scientific Report no. 4, Airforce Cambridge Research

Laboratories, Bedford, Massachusetts (1966).

[21] M. Hall, The Theory of Groups, Macmillan 1964.

[22] P. Hall, Some Word Problems, J. London Math. Soc. 33

(1958), pages 482-496.

(23) A. G. Hamilton, Logic for Mathematicians, Cambridge

University Press 1988.

127

[24] A. Herold, Combination of Unification Algorithms,

Proceedings of the 8th Conference on Automated

Deduction 1986, Springer L. N. C. S. Vol. 230, pages 450-469.

[25] A. Herold and J. Siekmann, Unification in Abelian Semigroups,

Journal of Automated Reasoning Vol. 3 (1987),

pages 247-283.

(26] J. -M. Hullot, Canonical Forms and Unification, Proceedings

of the 5th Conference on Automated Deduction, Springer

L. N. C. S. Vol. 87 (1980), pages 318-334.

(27] S. Holldobler, Foundations of Equational Logic Programming,

L. N. A. I. Vol. 353 Springer-Verlag 1989.

[28] G. Huet, An Algorithm to Generate the Basis of Solutions to

Homogeneous Linear Diophantine Equations, Information

Processing Letters Vol. 7 (1978), pages 144-147.

[29] J. Jaffar, Minimal and Complete Word Unification, Journal of

the Association for Computing Machinary 1990.

[30] J. Jaffar and J-L. Lassez, Constraint Logic Programming,

{ Proceedings of the 14th POPL Conference 1987,

pages 111-119.

[31) J. P. Jones, Universal Diophantine Equations, Journal of

Symbolic Logic Vol. 47 (1982), pages 549-571.

128

(32] J. -P. Jouannaud and C. Kirchner, Solving Equations in

Abstract Algebras: A Rule-Based Survey of Unification,

preprint.

[33) C. Kirchner, From Unification in a Combination of Equational

Theories to a New AC-Unification Algorithm, in [2],

pages 171-210.

[34] C. Kirchner, H. Kirchner and M. Rusinowitch, Deduction with

Symbolic Constraints, preprint.

[35] D. E. Knuth, The Art of Computer Programming Vol. 2

(2nd edition), Addison-Wesley 1981.

[361 D. E. Knuth and P. B. Bendix, Simple Word Problems in Universal

Algebras, in [40], pages 263-298.

[37] W. A. Kornfeld, Equality for Prolog, in [15], pages 279-293.

[38] E. F. Krause, On the Collection Process, Proceedings of the

American Mathematical Society Vol. 15 (1964), pages 497-504.

(39] D. S. Lankford, G. Butler and B. Brady; Abelian Group

Unification Algorithms for Elementary Terms, Contemporary

Mathematics Vol. 29 1984.

[40] J. Leech (editor), Computational Problems in Abstract

Algebra, Pergamon Press 1970.

129

[41] A. Lentin, Equations dans le Monoide libre,

Gauthier-Villars 1972.,

[42] J. W. Lloyd, The Foundations of Logic Programming,

2nd edition, Springer-Verlag 1987.

[43] G. S. Makanin, The Problem of Solvability of Equations in a

Free Semigroup, Akad. Nauk. SSSR Vol. 233 (1977).

(44] G. S. Makanin, Equations in a Free Group, Math. USSR

Izvestiya Vol. 21 No. 3 (1983), 483-546.

[45] Y. Malachi, Z. Manna and R. Waldinger, TABLOG: A New Approach

to Logic Programming, in [15], pages 365-394.

(46] A. Martelli and U. Montanari, An Efficient Unification

Algorithm, ACM Transactions on Programming Languages and

Systems Vol. 4 (1982), pages 258-282.

[47] U. Martin, Unification in Special p-groups, preprint 1990.

[48] U. Martin and T. Nipkow, Unification in Boolean Rings,

Proceedings of the 8th International Conference on

Automated Deduction, Springer LNCS Vol. 230 (1986),

pages 506-513.

[49] U. Martin and T. Nipkow, Boolean Unification - The Story So

Far, Journal of Symbolic Computation Vol. 7 (1989),

pages 275-294.

130

[50] Yu. 'V. Matiyasevitch, Enumerable Sets are Diophantine,

Dokl. - Akad. Nauk SSSR 191, No. 2 (1970), pages 279-282.

[51] E. Mendholson, Introduction to Mathematical Logic,

D. Van Nostrand Company 1966.

[52] J. Neubuser, Investigations of Groups on Computers, in [40],

pages 1-20.

[53] H. -Neumann, Varieties of Groups, Springer-Verlag 1967.

[54] U. Nilsson and J. Matuszynski, Logic, Programming and Prolog,

Wiley 1990.

(55] G. Plotkin, Building in Equational Theories, Machine

Intelligence Vol. 7 (1972), pages 73-90.

(56] P. Raulefs and J. Siekmann, Unification of Idempotent

Functions, Internal Report MEMO SEKI-78-I, Universitat

Karlsruhe (1978).

(57] N. N. Repin, The Solvability Problem for Equations in One

Unknown in Nilpotent Groups, Math. USSR IZV. 25 (1985),

pages 601-618.

(58) J. A. Robinson, A Machine Orientated Logic Based on the

Resolution Principle, Journal of the Association for

Computing Machinary Vol. 12 (1965), pages 23-41.

131

(59] J. A. Robinson and L. Wos, Paramodulation and Theorem Proving

in First Order Theories with Equality, Machine Intelligence

Vol. 4 (1969), pages 135-150.

[60] V. A. Romankov, Unsolvability of the Endomorphic Reducibility

Problem in Free Nilpotent Groups and in Free Rings, Algebra

and Logic Vol. 16 (1977), pages 310-320.

[61] V. A. Romankov, Equations in Free Metabelian Groups,

Siberian J. Math. Vol 20 Part 1 (1979), pages 469-471.

(621 M. Schmidt-Schauss, Unification Under Associativity and

Idempotence is of Type Nullary, Journal of Automated

Reasoning Vol. 2 (1986), pages 277-282.

[63] M. Schmidt-Schauss, Unification in Many Sorted Equational

Theories, Proceedings of the 8th International Conference

on Automated Deduction, Springer LNCS Vol. 230 (1986),

pages 538-552..

[64] M. Schmidt-Schauss,. Combination of Unification Algorithms

for Equational Theories with Free Function Symbols,

SEKI-Report, University of Kaiserslautern (1987).

(65] J. H. Siekmann; Unification of Commutative Terms,

Proceedings of the International Symposium on Symbolic

and Algebraic Manipulation 1979, Springer LNCS Vol. 72,

pages 531-545.

132-

[66) J. H. Siekmann; Unification Theory, Proceedings of the 8th

European Conference on Artificial Intelligence Vol. 2

(1986), pages 6-25.

(67] J. H. Siekmann; Unification Theory, Journal of Symbolic

Computation Vol. 7 (1989), pages 207-274 (this is an

updated version of [66]).

(68] M. E. Stickel, A Complete Unification Algorithm for

Associative Commutative Functions, Proceedings of the 4th

International Joint Conference on Artificial Intelligence

(1975), pages 71-82.

[691 M. E. Stickel, A Unification Algorithm for Associative

Commutative Functions, Journal of the Association for

Computing Machinary Vol. 28 (1981), pages 423-434.

[70] P. Szabo, Theory of First Order Unification, Ph. D. Thesis

(1982), Universitat Karlsruhe.

(71] P. Szabo and E. Unvericht, The Unification Problem for

Distributive Terms, Internal Report SEKI-78-05, Institut

fur Informatik I, Universitat Karlsruhe.

(72] C. Walther, A Many-Sorted. Calculus Based on Resolution and

Paramodulation, Research Notes in Artificial Intelligence,

Kauffman 1983.

133

[73] K. Yellick, Combining Unification Algorithms for Confined

Regular Theories, Proceedings of the 1st International

Conference on Rewriting Techniques and Applications,

Springer L. N. C. S. Vol. 202 (1985), pages 365-380.

