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Abstract 

The ability of bones to concentrate material where the body needs most of its 

strength and the ability of trees to spread roots in search of  moisture rich 

locations are only a few amongst the many examples of nature’s way of 

building adaptive “structures”. Even though civil engineering structures often 

appear inefficient, static and cumbersome, a new era of structural design aims 

to alter the status quo by mimicking nature’s way. This suggested adaptation 

process in civil structures often takes the form of passive, active and semi-

active control. Through direct comparison of these methods, semi-active 

control is shown to combine the benefits of both active and passive systems 

and can be arguably considered the next step in improving dynamic structural 

performance; however the applicability of this exciting and novel for the 

structural engineering field technology, is not all-embracing. In order to 

enhance the development of this promising technology and contribute on the 

creation of a new era of “smart & thinking” structures that encompass an 

unconventional form of performance based design, this study aimed to 

develop enabling technologies and tools that enhance the selling strengths of 

semi-active and smart control using tuned-mass dampers. 

The original contributions to knowledge in this work are divided in three 

aspects. Firstly, the investigation of the influence of control algorithms on 

smart tuned-mass damper equipped high-rise structures, for which practical 

limitations have been taken into account. Leading to conclusion on the 

conditions for which each algorithm exhibits superior performance over the 

other. Secondly, the development of a fail-safe novel semi-active hybrid 

device configuration that enables performance gains similar to the active 

mass damper at considerably lower actuation and power demands. Finally, 

the development of a simple and robust at all gains control algorithm based 

on the modification of one of the most widely used controller in the engineering 

industry, namely the proportional-integral-derivative controller. 
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Chapter 1 
Introduction 

1.1 Background and Motivation 

Substantial improvements in the field of structural engineering at the 

beginning of the 20th century, allowed engineers to design tall residential and 

office blocks based on the concept of “Unresponsiveness”. These high-rise 

“unresponsive” structures comprised super-rigid structural frames and stiff 

infills for their protection against lateral sway. Great examples of such 

structures are the Empire-State in New York and Sears Towers in Chicago. 

As opposed to these conventionally, strength-based designed structures, 

modern high-rise structures for the purposes of economy of space, material 

and foundation requirements, speed of erection and elegance as well as the 

associated desire for ever-improving sustainable and efficient structural 

designs, are designed with slender sections and lightweight materials. The 

increased flexibility and low damping associated with modern high-rise 

structures generally implies attendant problems such as excessive and long 

pertaining vibrations under dynamic loading which in turn negatively affect the 

structure’s serviceability in terms of structural integrity, material fatigue, and 

comfort of its operators and occupants (Irwin, 1978).  

In order to fully satisfy both the additional serviceability and sustainability 

requirements, for more than half a century, alternative approaches are 

constantly being investigated. In this regard, many studies have been 

undertaken examining the possibility of incorporating passive, active and 

semi-active control devices in high-rise structures so as to alleviate their wind 

and seismic response. Passive control, which mobilises devices such as 

viscoelastic dampers, base isolation systems and tuned mass dampers 

(TMDs), is an adequately understood and widely accepted method for 

mitigating excessive vibrations in structures, with many on-site applications in 

Japan, USA and Europe. Their acceptability in the civil engineering field is 

primarily linked to their high reliability and ability to successfully mitigate 

excessive vibrations. Unfortunately, such purely passive systems because of 
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their fixed energy dissipation capacity lack adaptability to ever-changing 

loading conditions and parametric variation in the structural system.   

The strategy developed to deal with the problem of adaptability is known as 

active control and acts by directly modifying the energy of the system through 

the application of control forces in a prescribed and controlled manner using 

actuators. The additional energy allows the structure to adjust its dynamic 

characteristics making it behave favourably under different environmental 

conditions. Although such systems are indubitably the most effective in terms 

of vibration attenuation performance, they suffer from high power demands, 

relevant implementation hurdles and potential unstable operation. 

Furthermore, from a cost perspective, when a new structural control system 

is designed, the designer needs to make appropriate choices so that the extra 

costs associated with the introduction of the control system will subsequently 

reduce costs of different nature or increase the global reliability of the system. 

For active control solutions, however, most of the codes state that the 

structural system upon failure of the active component must still be able to 

survive a foreseeable hazardous events (Casciati et al., 2012). Consequently, 

while the designer might accept the additional costs for promoting innovation, 

active control solutions might be outside strict market reasoning. 

A combination of the advantages of both passive and active vibration control 

strategies gave birth to one of the most promising control techniques known 

as semi-active vibration control. Semi-active control achieves its objective 

through the use of a passive device working in conjunction with actively 

controlled elements. When this is the case, a large degree of adaptability can 

be achieved. Owing to the fact that a portion of the control objective is met by 

the passive device, the power demand is considerably lower and also the 

problem of reliability is addressed by the provision of a “fail-safe” mechanism. 

In other words, failure of the semi-active system will result in a purely passively 

controlled system, which for the case of civil engineering structures inherent 

stability is guaranteed (Casciati et al., 2006). For example a semi-active tuned 

mass damper (STMD) upon failure of its active elements (that being either 

variable stiffness or damping elements) will take the role of a purely passive 

tuned mass damper (TMD). On the contrary, a purely active system upon 

active component failure can either seize operation and remain unproductive 
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(i.e. the actuator driving the mass of an active mass damper (AMD) stops 

driving the mass) or work in an unexpected manner (i.e. the actuator puts the 

mass in-phase to the structural vibrations, resulting in larger response 

amplitudes and also carry the possibility of a global instability).  

Due to the aforementioned reasons, semi-active control can be arguably 

considered the next step in improving the performance of civil engineering 

structural systems. However, as it is evident from recent constructions of 

super-tall and evidently technologically high-end structures, which among 

others include the famous Burj-Khalifa and Taipei 101, such structures are still 

constructed on the basis of strength/ductility and in some rare cases using 

passive control. As a matter of fact, according to a 2009 study, from the year 

1990-2006 in Japan only 20 buildings have been constructed incorporating 

semi-active control devices (Ikeda, 2009). It would be therefore reasonable to 

conclude that the applicability of semi-active control in the construction and 

civil engineering fields is still at its infancy, suggesting the need for further 

work emphasising on the aspects that hinder the practical applicability of semi-

active control technologies in structural systems. 

From a practical applicability perspective, the major factors impeding the 

application of semi-active control in the civil engineering field are linked to the 

specific challenges that are not typically encountered in other areas of the 

control industry. For instance, when considering the processes involved in 

control system design as depicted in Figure 1, for the case of structural control 

of high-rise structures, disturbances are often unmeasurable particularly for 

the case of wind excitations, systems to be controlled are often unknown or 

contain a large degree of parametric uncertainty, sensors are often limited due 

to the large number of degree-of-freedoms (DOF) and force delivering devices 

often cannot meet the large force and power demands.  

To this end, and taking into account the obstacles impeding the application of 

semi-active and smart control, this study is interested in investigating methods 

for enhancing the selling strengths of semi-active control to the structural 

engineering community. 
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Figure 1. The various steps involved in control system design (Astrom and 
Hagglund, 1995) 

 

1.2 Thesis Objectives 

This research is undertaken with the aim of enabling the construction of 

slender and lightweight high-rise structures through the use of semi-active 

control technology and in particular semi-active (smart) tuned mass dampers 

(STMDs). En route to the attainment of this objective, an evaluation of the 

efficacy of this exact control strategy in high-rise structures is necessary. At 

an initial stage, this is achieved by the comparison of the relative 

performances of the traditional optimised tuned-mass damper in its passive 

and semi-active states under different loading conditions. Once the semi-
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active control strategy is shown to be suitable for use in high-rise structures, 

the study is then focused on dealing with the complexity associated with 

practical control implementation, emphasising in the following three areas: 

1. Algorithm selection and implementation:  
In literature, a large volume of advanced control algorithms has been 

developed and reviewed for the case of semi-active control (Datta, 2003, 

Liedes, 2009). Most of these algorithms when compared with traditionally 

developed algorithms based on classical optimal and robust control theory 

have shown improved performance both in terms of disturbance rejection and 

robustness. While, it would be reasonably anticipated that the large number 

of newly developed and advanced algorithms would revolutionise the 

structural control field, the same time, classical conventional, robust and 

optimal controllers (LQR, 2H , fH ) remain the prevalent algorithms used in 

industrial applications. For this reason, categorising and comparing the control 

algorithms for both the control device and the problem specific (high-rise 

structures) case can be considered the next step in practical control system 

implementation. In this regard, questions such as: What is the effect of 

different algorithms in high-rise structures comprising STMDs? Is it worth 

using advanced and complex algorithms in STMD controlled systems or will 

conventional controllers perform satisfactory? Which algorithms can be 

applied to high-rise structure (at which limited state measurements are 

available)? need to be answered. By answering these questions, crisp 

information regarding the implementation of semi-active control algorithms in 

STMD controlled high-rise structures will be provided, thus the structural 

control engineering community both in research and practicing level will be 

facilitated in terms of selecting and implementing the most appropriate 

algorithm, focusing future efforts in the most promising directions.  

2.Novel smart device configuration: 
With the aim of promoting further the applicability of semi-active control, this 

study also aims to investigate the potential of reconfiguring the conventional 

design of the STMD to one that has the potential to achieve performance gains 

close to an active control system at considerably lower actuation and power 

demands while at the same time satisfying practical constraints and stringent 
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limitations governing the design of the structure and the control device, 

including but not limited to space availability, weight limitations and actuator 

strokes. Clearly, for such a novel configuration to be viable for use on civil 

engineering applications, the crucial provision of a fail-safe mechanism needs 

to be also satisfied. 

3.Simple robust control option for smart damper configurations 
Ensuring the robust stability of a smart tuned-mass damper configured system 

is a non-trivial procedure that typically causes unwanted delays in the design 

of such systems. In this study an effort will be made to develop a simple and 

robust control method for use in control system configurations encompassing 

such devices via the modification of one of the most widely used controllers, 

namely the proportional-integral-derivative (PID).  

1.3 Readership and Organisation of the Thesis 

In writing this thesis, the author had in mind that its potential end users will be 

civil engineers, consultants, and postgraduate students interested in the field 

of structural control and more specifically structural control of high-rise 

structures using smart tuned-mass dampers. It has been assumed that the 

reader is familiar with the concepts governing structural dynamics but only 

some basic knowledge on structural control and control theory concepts is 

acquired. For this reason, the thesis is set out in a way that it progressively 

covers most of the features of structural control design (Figure 1). When an 

in-depth knowledge is required to progress through the different design steps 

or whether the reader wants to enhance further their understanding, they can 

follow the references provided throughout the text.  

With that in mind, this thesis is structured as follows: The current introductory 

chapter briefly laid down the motivation of the research along with the aims 

and objectives. The immediately following chapter presents a critical literature 

review on the aspects governing control system design, namely control 

strategy selection, control system formulation (modeling), etc. giving all the 

background information necessary for following the numerical work later 

presented. Chapter 3 introduces the different control algorithms along with the 

majority of mathematical models used throughout the thesis. The relative 
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performance of the control algorithms and in turn the investigation of the first 

objective is found in chapter 4. Chapter 5 introduces a novel configuration for 

STMD equipped structural systems. Chapter 6 presents a modified robust 

control method for use with conventional hybrid and novel semi-active hybrid 

configurations. The final chapter of the thesis summarises the findings of the 

research including recommendations for future work. A schematic 

representation of the thesis structure is shown in Figure 2. 

 

Figure 2. Organisation of thesis 
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Chapter 2  
Literature Review 

 

2.1 Problem Definition 

It is justifiable to say that the construction of high-rise structures became a 

viable solution to the problems associated with urban society. However, the 

safety of such structures and their contents as well as the comfort of their 

occupants under external forces such as earthquakes and winds remains a 

significant engineering concern (Chai and Feng, 1997). 

From a structural point of view, the increased height of structures is usually 

accompanied with low damping (Cheng et al., 2008, Kulkarni et al., 2012), 

which in turn reduces the ability of the structure to restrict lateral movements. 

As a result, flexible systems and particularly high-rise engineering structures, 

opposed to conventional low-rise rigid structures become more vulnerable 

under dynamic loading, increasing their failure possibilities and problems 

associated with their serviceability (Kulkarni et al., 2012).  

Traditional design methods for mitigating the vulnerability of high-rise 

structures under dynamic loading, based on ‘solidity’ and ‘massiveness’ have 

often been equated to safety and reliability (Soong, 1990). However, this 

approach typically tends to overlook the serviceability of the structure and the 

comfort of its occupants (Kareem et al., 1999). Conventional low-rise 

structures designed to deal with the “physical design problem” by complying 

with code requirements, will typically satisfy with ease the serviceability 

criteria. As structures become taller, more flexible, complex and costly, 

serviceability criteria and performance requirements become increasingly 

stringent and more difficult to satisfy. These serviceability criteria are selected 

in a way that human comfort and structural safety is not compromised. More 

specifically, lateral deflections, accelerations and stresses must be kept low 

at all times in order to allow proper functioning of structural and non-structural 

components. Doing so, will help minimise the fatigue experienced by the 

structure, prevent excessive cracking, increase the structural lifespan and 
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preserve the comfort of the structure’s occupants and operators (Islam et al., 

2012). 

2.2 The Civil Engineering Challenge 

Protecting high-rise structures from serviceability or collapse failure, 

preserving human life as well as improving occupant’s comfort, are all factors 

of paramount importance. Traditionally protecting structures from the dynamic 

effects of wind and earthquakes was achieved through structural stiffening of 

framing members and plastic deformation allowances (ductility). Designing for 

strength and ductility, however, does not necessarily ensure the serviceability 

of the structure and the comfort of its occupants (Housner et al., 1997, Kareem 

et al., 1999). The reason underlying the limited capacity of conventional ‘rigid-

unresponsive’ structures in satisfying serviceability and collapse requirements 

is two-folded. Firstly, such structures rely solely on their inherently small 

material damping for energy dissipation. Secondly, they fail to adapt to ever-

changing environmental excitations owing to their fixed capacity of load 

resistance and energy dissipation (Soong, 1990, Cheng et al., 2008). 

In practice the limited capacity of conventionally designed structures was put 

in test during the late major earthquakes of Northridge in 1994 and Kobe in 

1995, where the performance of the intended stiff and ductile structures was 

proved to be unsatisfactory and far below expectation, with extensive large-

scale damages on many modern nominally earthquake-proof buildings 

(Housner, 1996). The limitations of the traditional design approach along with 

the urge to enhance structural safety and further resilience, led to the 

development of more reliable and effective techniques based on structural 

control concepts. The concept of structural control and its notion as an 

alternative approach for addressing the safety problem in structural 

engineering was first introduced by Yao (1972). Structural control aims to 

control the response of engineering structures through the modification of their 

rigidities, masses, damping or shape, or by modifying the energy in the system 

through the action of passive or active counter forces (Housner et al., 1997). 

Based on this concept, in the last decades considerable research has been 

undertaken for the development of passive, active, and semi-active control 

into workable technology, aiming to improve the dynamic performance of 
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structures (Housner et al., 1997, Spenser and Nagarajaiah, 2003, Cheng et 

al., 2008). The following subsections present a review of the range of 

techniques that can be used to mitigate wind and earthquake response in 

high-rise structures. In this context, the key topics of passive, active and semi-

active control are discussed below followed by a brief discussion of the 

advantages and disadvantages of each technique. In order not to deviate from 

the initial scope of the study, in the following sections the effectiveness of 

different control methods is illustrated by focusing on examples and studies 

that examine the performance of tuned dynamic vibration absorbers (DVAs) 

in their passive, active and semi-active states.  

2.2.1 Passive Control 

Passive control is an adequately understood and widely accepted method for 

mitigating excessive vibrations in structures (Soong, 1990, Kwok and Samali, 

1995, Cheng et al., 2008) with a large number of passive control devices being 

currently incorporated successfully in many high-rise structures for their 

protection against wind and earthquake excitation (Kulkarni et al., 2012). A 

passive system, consisting of one or more devices, is designed to alter the 

dynamic characteristics of the structure in a desirable manner without the 

requirement of an external power source or measurement of the structural 

response (Kulkarni et al., 2012). The fact that a passive control system does 

not require any external power implies that no energy can be added to the 

system, thus altering its mechanical properties for adaptability to ever-

changing conditions is impossible (Hudson, 2013). While other control 

approaches make use of mechanical actuators for energy dissipation 

purposes, a passive control system uses the motion of the structure so as to 

produce relative motion within its damping devices that in turn dissipate 

energy. The basic configuration of a passive vibration control system is shown 

in Figure 3.  
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Figure 3. Passively controlled structure 
 

Typical passive devices that can be attached on a structural system include 

mass and liquid dampers, viscous fluid and viscoelastic dampers, impact 

dampers and isolation systems. All of these auxiliary devices are 

characterised by their ability to dissipate energy either by conversion of kinetic 

energy to heat or by transferring energy among vibrating modes (Housner et 

al., 1997). Beyond the addition of damping to the system, passive devices can 

be also designed to alter the stiffness and strength of the structure, thus 

increase its energy storage capacity and/or avoid resonance through the 

application of forces generated in response to the movement of the structure 

(Soong and Spencer, 2002). Examples of such control schemes include base 

isolation systems that are designed to lengthen the fundamental period of a 

structure through modification of the structural stiffness at a particular location. 

Such systems, however, although being shown to be effective for low to 

medium rise structures and high frequency vibrations, the increased flexibility 

associated with slender high-rise, long period buildings would lead to large 

amplitude motions that would most likely be objectionable. 

Due to the lack of effectiveness and practicality of passive structural control 

schemes based on the modification of mass and stiffness in high rise-

structures, structural control schemes based on damping control are typically 

the preferred approach for structural response reduction (Cheng et al., 2008). 

For this reason, tuned mass dampers (TMDs) , tuned liquid dampers (TLDs) 

and other auxiliary damping devices of similar energy absorbing nature are 

considered more suitable for tall and super tall structures (Cheng et al., 2008). 

Excitation Structure Response 
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device 
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Examples of famous buildings employing auxiliary damping devices include 

the Crystal Tower in Osaka, the John Hancock Tower in Boston, the CN tower 

in Toronto, the Citicorp Centre in New York City and the Sydney tower in 

Australia. The reader is referred to Kwok and Samali (1995) for explicit design 

details of the passive devices employed in these structures.  

The effectiveness of the application of passive damping devices in high-rise 

structures and towers has been a subject of study by many researchers who 

suggest that passive vibration control is an effective method for reducing 

structural response under both wind and earthquake loading. A good example 

of such study is found in Xu et al. (1992). In this study the authors conducted 

parametric analyses on a 76-story, 306 m tall building and a 370m TV 

transmission tower equipped with TLDs and TMDs. The systems were 

modeled as lumped mass multi-degree-of-freedom (MDOF) systems 

representing the wind-sensitive slender structure. The authors showed that 

both devices when tuned to the fundamental frequency of the structure, 

managed to reduce base moments by 33%, top displacements by 20%, as 

well as top floor accelerations by 42%. On the other hand, through the 

frequency response functions of the structural system, they observed that 

neither of the damping devices had any beneficial effect on reducing the 

responses of higher modes. In a similar study, Kawaguchi et al. (1992) 

investigated the response of a 12-storey TMD equipped structure under wind 

excitation. While the authors observed a significant response reduction from 

the incorporation of a TMD in the structural system, ranging 45-60 % 

depending on the mass ratio chosen, they state that the TMD has virtually no 

effect on frequencies lower than the primary vibration frequency or on high-

mode vibration of the building. Both studies suggest that care must be taken 

when dealing with high-rise slender structures since force and acceleration 

type responses of such structures may involve more vibration modes than the 

fundamental. Suggesting that taking into account only the first mode of 

vibration may lead to nonconservative errors.  

In another study, Cao et al. (1997) studied the effect of the application of a 

TMD on a 340 m communication tower in Nanjing, China. The authors 

investigated the behaviour of the structure under both earthquake and wind 

excitation. Additionally, physical constraints and implementation issues such 
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as space availability, weight limitations, power-force relations and frictional 

effects were taken into account for obtaining accurate and realistic results. 

The study showed that the incorporation of a TMD in the structural system 

indeed reduced the structural response. However, they note that the target 

comfort limit of 15 mg acceleration was never achieved. 

More recently, Liu et al. (2008) examined the effectiveness of  a TMD at 

reducing structural vibrations of a 40-storey structure subjected to both along-

wind and across-wind excitation. The authors investigated the sensitivity of 

the structure to different soil types by accounting for soil structure interaction. 

The presented results suggest that the TMD is successful at reducing the 

amplitude of oscillations of the high-rise structure. Furthermore, they observed 

that TMD suppress vibrations more effectively as the soil stiffness is 

increased.  

In regards to controlling the vibratory motion of slender and low-damped 

structures, Casciati and Giuliano (2009) numerically investigated the dynamic 

response of a suspension bridge towers equipped with multiple TMDs. While, 

the authors observed that multiple TMDs are effective at attenuating wind 

vibration response, they also noted that such devices are intrinsically non 

robust owing to their sensitivity to mistuning. They also observed that 

supplementary provision of robustness by enlarging the operating frequency 

range results to a drop in the effectiveness of the control system.  

Overall, reviewing literature suggests that passive control of high-rise 

structures and in particular TMD control of such structures is an effective 

method for alleviating structural response under generic dynamic loading. 

However, it is important to highlight some of the most important limitations of 

the use of this technique in high-rise structures. Firstly, TMDs being tuned to 

a single mode of the structure’s vibration are limited to a narrow band of 

operating frequencies (Connor, 2003). Referring back to what has already 

been mentioned earlier, for high-rise structures excited in a mode other than 

the first this may lead to non-conservative errors. Secondly, at the presence 

of parametric variation in the structural system, a purely passive TMD 

unavoidably becomes de-tuned resulting in reduced vibration attenuation 

capacity and in some cases can even increase the levels of vibration in the 
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system (Sun et al., 1995, Nagarajaiah and Sonmez, 2007, Nagarajaiah, 

2009). 

2.2.2 Active Vibration Control 

Active vibration control dates back in the 18th century. One of the early notions 

of active control is contained in Mallock (1905) who reported the application 

of active control on steam ships through synchronisation of the engines in 

opposite phase (Tokhi and Veres, 2002). Later, Hort (1934) reported the 

reduction of roll motion of ships by an actively driven Frahm tank where the 

water is pumped between tanks located on the two sides of the ship. In 

another study, Allan (1945) examined the roll stabilisation of ships by 

buoyancy control with activated fins. These gyroscopically controlled auxiliary 

rudders had the capacity to change their angle of attack to counteract roll 

caused by wind or waves acting on the ship. 

Active control research in the field of civil engineering was not established until 

1972 when Yao (1972) laid down a more rigorous control-theory based 

concept of structural control. In civil engineering structural systems, active 

vibration control technology makes use of sensors for measuring structural 

response or external excitations, real-time processing devices for calculation 

of control forces and mechanical actuators serving as force delivery devices. 

A schematic representation of an active control system is shown in Figure 4.  

 

 

 

 

 

 

 
 

Figure 4. Schematic representation of active control, after Spencer and 
Soong (1999) 

 

Sensors Computer 

Controller 
Sensors 

Actuators 

Control 

forces 

Excitation Structure Response 



- 15 - 

The main difference between an active system and its simpler yet more 

reliable passive predecessor is the reliance of the first on external energy 

sources for operation. The ability of a control system to add energy to the 

structural system implies time-varying energy dissipation capacity which in 

turn results into enhanced adaptability to ever-changing loading conditions. 

The adaptive nature of active vibration control systems also allows it to behave 

favourably under unpredictable dynamic situations and multiple loading 

conditions such as low frequency winds and high frequency earthquakes, a 

limitation often observed in purely passive systems which tend to be more 

effective when dealing with a particular frequency range of vibrations, 

depending strictly on the tuning of the device.  

Active control systems often employ devices such as active mass drivers 

(AMDs), active tendons, active bracings or active isolators which are often 

driven by hydraulic, pneumatic, electromagnetic or motor-driven ball-screw 

actuation. While there are many studies examining the performance of such 

systems e.g. (Reinhorn et al., 1992, Preumont and Bossens, 2000, Spenser 

and Nagarajaiah, 2003), reviewing these devices is outside the scope of this 

thesis. For the purposes of this study, AMDs which represent the purely active 

version of the TMD will be considered. Such active devices consist of masses 

driven by mechanical actuators at the absence of which the masses will 

remain idle. A typical uniaxial AMD device is depicted in Figure 5a. In order to 

visualise the difference between a TMD and an AMD the mathematical model 

of an AMD controlled system is depicted in Figure 5b. It is worth noting that 

the values of dK  and dC   represent the inherent stiffness and damping of the 

‘purely’ active device, which can be also ignored in the analysis due to their 

small influence when compared to the actuator force, aF .  
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Figure 5 (a) Typical uniaxial AMD device (IHI Infrastructure Systems CO., 
2013) (b) Model of SDOF structure equipped with AMD  

 
The Kyobashi Seiwa building in Tokyo constructed in 1989 is believed to be 

the first building fitted with an AMD (Kwok and Samali, 1995, Spenser and 

Nagarajaiah, 2003) as well as the first ever practical application of active 

structural control in civil engineering (Ikeda et al., 2001). In this structural 

system, the two masses comprising the AMD device (one in each horizontal 

direction) are suspended by wire ropes and driven using servohydraulic 

actuators. This device, unlike a passive TMD is not tuned to a specific 

frequency of the structure. For this reason, a controller, in this particular case 

a linear quadratic regulator (LQR) was used to calculate corrective actions 

based on the relative velocity of the masses and the structure. According to 

Kwok and Samali (1995) , the performance of the structure was put in practice 

under both earthquake and typhoon wind conditions. From the obtained 

measurements, it was shown that the incorporation of the AMD in the system 

helped reducing the system’s acceleration response by approximately 50-

60% compared to the uncontrolled structure (Koshika et al., 1992, Kwok and 

Samali, 1995).  

In 2003, Ricciardelli et al. (2003) compared numerically the performance of 

SDOF and four-DOF structures equipped with a TMD and an AMD under 

white noise excitation. Interestingly enough the authors observed that 

although an AMD is effective at attenuating vibration response, its 

performance is constrained by large strokes, large control forces and power 
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requirements. Similar observations have been made by Boujari et al. (2012). 

In their study, the authors examined the response reduction of a PID-ATMD 

controlled three-DOF structural system under seismic excitation. It was 

observed that both acceleration and displacement responses were greatly 

reduced, however, the authors state that the values of active control force 

maybe so high that its realisation be non-economic. 

In 2006, Al-Dawod et al. (2006) developed a five-storey experimental model 

equipped with an AMD and examined its behaviour under four earthquake 

excitation records. While, the fuzzy logic controlled device was shown to be 

effective at reducing the displacement responses of the structure under the 

four earthquakes, the authors reported that acceleration responses have been 

reduced for most loading cases but also increased for a few other cases. 

Additionally, the authors observed while the AMD device was able to reduce 

the responses of the fifth storey, lower floor responses were shown to be 

reduced by a different percentage or even larger for some cases. This 

suggests that attempting to control a certain mode of the overall system, 

spillover can occur increasing the amplitude of higher modes. To the author’s 

understanding, due to the different frequency content of the four earthquake 

records the effectiveness of active control is reasonably not evident in every 

loading case. 

Recently, Casciati and Chen (2012) investigated both numerically and 

experimentally the behaviour of a proportional-integral-derivative (PID) 

controlled AMD for suppressing the vibrations of a three-storey structure 

under sinusoidal movement of a shake table at a frequency of 1.25 Hz. The 

excitation frequency was selected such that it matches the fundamental 

frequency of the structure, thus at the absence of an AMD the frame would 

resonate until the amplitude of the top floor acceleration would reach a 

maximum steady state amplitude. In order to avoid destroying the frame, the 

shake table was stopped when the acceleration amplitude approached 0.5g. 

The authors observed that when the excitation stopped, the frame was 

damped in a very slow manner. On the contrary, for the AMD equipped 

structure, the acceleration amplitude was stabilised at approximately 0.2g and 

the structural system quickly damped its response when the excitation 

stopped. From these observations, the authors suggested that the PID 
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controlled AMD was successful at mitigating vibration responses.   

The presented studies are a few amongst the many showing that incorporating 

active control (AMDs) in high-rise structures can be considered a promising 

method for alleviating dynamic vibration response. On the other hand, one 

needs to consider factors such as the apparent complexity of implementing 

active control in structural systems, reliability, cost, and safety. While the 

reliability, design and implementation complexity can be easily realised, a cost 

benefit analysis of such devices cannot be easily made. Additionally, due to 

code requirements and limitations, fully actively controlled systems have to be 

backed up by sufficient capacity in the uncontrolled system. Subsequently, the 

presence of the active device will have a performance enhancement role 

without allowing structural systems to be made with less material as 

suggested by the aforementioned researchers. Consequently, while in theory 

significant cost savings can result from the incorporation of active devices in 

the structural system, in practice, significant advances in technology need to 

be made so that codes accept that active component failure will not occur 

beyond any reasonable doubt. 

2.2.3 Semi-Active Vibration Control 

Semi-active control technology dates back in the 1920s when the first patents 

were issued for shock absorbers utilising power operated valves for directing 

flow (Symans and Constantinou, 1999). Semi-active control in structural 

engineering was not exploited until 1983 when Hrovat et al. (1983) suggested 

a semi-active tuned mass damper (STMD) for controlling structural vibrations. 

It is evident that his work was vastly influenced by work done in other 

engineering fields and particularly work undertaken in automotive vibration 

control. Since the introduction of this novel technology in the civil engineering 

community, a large amount of research has been undertaken establishing 

semi-active control as a viable alternative for mitigating structural vibrations. 

Semi-active vibration control systems are fundamentally controllable passive 

systems, which achieve their control objective through the indirect application 

of energy on the structure as shown schematically in Figure 6. In such 

systems, power is used to vary the mechanical properties of a passive device 

i.e. through varying the fluid discharge through an orifice, or by varying the 



- 19 - 

magnetic field around a ferrofluid piston (i.e. Magnetorheological (MR) 

damper). Depending on the varying parameter, semi-active devices are 

divided in two categories namely, variable stiffness and variable damping. 

Examples of such devices include electrorheological and magnetorheological 

dampers, viscous and tuned mass or liquid dampers. The reader is referred 

to Symans and Constantinou (1999) for a comprehensive state-of- the-art 

review on these devices.  

 

 

 

 

 

 

Figure 6. Schematic representation of a semi-active control scheme (Soong 
and Spencer, 2002) 

Beyond the adaptability achieved in the system by the variation of the 

parameters of the semi-active device, a semi-actively controlled system is also 

benefitted by a considerably lower power demand compared to an active 

system (of the order of Watts as opposed to kWatt) owing to the ability of its 

devices to achieve a large portion of the control objective through their passive 

components, allowing such systems to be operated on small external power 

sources such as batteries (Nagarajaiah and Varadarajan, 2005). As a result, 

at the event of power failure e.g. during an earthquake, the reliability of the 

system will not be compromised. It is noteworthy that the reliability and low-

energy consumption of these systems are amongst the primary factors that 

directed the attention from active systems to semi-actively controlled ones.  

Referring back to the first application of semi-active control in civil engineering 

structures, Hrovat et al. (1983) demonstrated through numerical simulations 

that the use of variable-damping STMDs (VD-STMDs) controlled by an LQR 

algorithm is an effective method for controlling the wind induced motion of tall 

buildings. As a matter of fact, from the comparison of the VD-STMD with the 
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purely passive TMD and an active ATMD, the VD-STMD was shown to 

outperform the TMD exhibiting similar behaviour to the ATMD.  

Validating the observations of Hrovat and his colleagues, Pinkaew and Fujino 

(2001) examined the behaviour of a VD-STMD attached to a SDOF structure 

subjected to free and harmonic excitation. The authors observed that the LQR 

controlled VD-STMD was able to substantially improve the steady-state 

response of the structure around the tuning frequency when compared to the 

TMD. It was also observed that the performance improvement is equivalent to 

an increase of the T  ’s mass by about four times, suggesting that a V -

STMD configuration can be used to replace part of the TMD vibrating mass, 

achieving a lightweight vibration control solution or can be even used to 

improve the performance of the TMD given a certain mass. 

Along the same lines, Setareh (2001) used an on-off control algorithm, where 

the damping of the mass damper was switched between maximum and 

minimum level depending solely on the direction of motion of the structure in 

regards to the direction of the damper’s force. For example, if the structure 

and the damping force are in the same direction, the variable-damping 

component of the STMD is set to a high state, otherwise is set to a low state. 

The author observed that through this control method, the seismic response 

of a SDOF structure was successfully reduced, suggesting that there is still 

room for the improvement of the control effect on the VD-STMD structural 

system. A year later, Runlin et al. (2002) examined the behaviour of a five and 

a ten-storey structure equipped with a STMD. As opposed to the previous 

studies that used the LQR and on-off algorithms for the calculation of the 

corrective actions the authors used an off-towards-equilibrium (OTE) 

algorithm. Comparing the responses of the structures using both the on-off 

algorithm (used by Setareh (2001)) and the OTE algorithm the authors 

observed an additional (approximately 10%) response reduction using the 

latter algorithm.  

Most recently, Demetriou et al. (2014) examined the behaviour of a 

benchmark three-DOF structure equipped with a VD-STMD under various 

earthquake excitation records. As opposed to the previous studies, the semi-

active device was controlled using a PID controller. From the numerical 
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simulations, an increase of 5- 0% in the system’s vibration attenuation 

capacity was evident in terms of rms values when compared to the optimally 

designed TMD. The authors suggest that this increase in performance may 

not be enough to justify the use of sophisticated equipment; however, they 

note that with the development of cost effective control solutions this should 

be considered as part of the future civil engineering design agenda. 

Additionally, examining the long term performance of both the TMD and the 

VD-STMD by accounting for material degradation and damage in the system, 

it was observed that the latter devices are relatively insensitive to parametric 

variations in the structural system. 

In terms of controlling structural systems with variable stiffness (VS)-STMD 

devices, Nagarajaiah and his colleagues launched a series of studies 

examining the performance of VS-STMD in structural systems. As opposed to 

damping variation in STMD controlled systems that exploit energy dissipation, 

VS-ST   controlled systems are associated with moving the system’s natural 

frequency outside the resonance range and in a sense retune the STMD 

depending on the excitation frequency. A method for capturing the 

instantaneous localised timed-varying frequency content of any given signal 

is thus essential for the variable stiffness device to make appropriate 

adjustments. It will be therefore, reasonably anticipated that control algorithms 

which are applicable in VD-STMD will not be applicable to VS devices. As a 

matter of fact, most of the VD-STMD controlled systems use classical control 

methods for the derivation of the required actions, whereas VS-STMD 

systems use real time tuning algorithms based on Hilbert transform (HT) and 

short time Fourier transform (STFT).  In this context, Nagarajaiah and 

Varadarajan (2005) examined the behaviour of a 76-Storey benchmark 

building using a VS-STMD demonstrating the robustness of the system to 

parametric uncertainty. The performance of the VS-STMD was shown to have 

similar performance to an ATMD but with an order of magnitude less power 

consumption. Along the same lines, Nagarajaiah and Sonmez (2007) 

proposed the application of single and multiple STMDs for response control 

of multi-storey structures (one and five-DOF) under harmonic, stationary and 

nonstationary excitation. It was observed that the VS-STMDs are superior to 

their passive counterparts at reducing structural responses under both force 
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and base excitations. Another remarkable observation was that at the 

presence of damage or deterioration, the TMD controlled system quickly 

became de-tuned losing significant vibration attenuation performance, 

whereas, the VS-STMD was shown to be insensitive to the parametric 

variation. 

Summary: So far, each of the different control methods has been discussed. 

The effectiveness and the limitations of passive, semi-active and active control 

methods on mitigating the vibration response oh high-rise structures were 

demonstrated through specific studies. A summary of the findings is presented 

in Table I. 

Table I . Summary of the advantages  
and disadvantages of each control method 

 

Control 
method 

Advantages Disadvantages 

Passive: 
• Relatively inexpensive 
• No need for energy 
• Inherently stable 
• Effective in low-medium rise 

structures 
 

• Not adaptable to 
conditions 

• Relatively unsuitable 
for high-rise structures 

 

Active: 

 

• Effective for all conditions and 
structural configurations 

• Less invasive than structural 
stiffening when retrofitting is 
required 

• Insensitive to parametric 
variation/ flexibility in tuning 

• May introduce 
instability 

• Spillover may occur on 
higher modes 

• Reliance on external 
power / Vulnerable to 
power failure 

• Its adaptability is 
limited by large stroke 
and control forces 

Semi-active: 

 
• Significantly lower 

consumption than active 
methods 

• Ensured bounded input/output 
stability 

• More adaptable than passive 
methods/ closer performance 
to active methods 

• Less expensive than active 
control 

• Insensitive to parametric 
variation/ flexibility in tuning 

• Fail-Safe mechanism 

 
• Lower vibration 

attenuation 
performance than 
active control methods 

or 

Variable 
damping 

Variable 
Stiffness 

Actuator 
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2.3 Principles of Structural Control 

The basic concept of response control of vibrating systems can be illustrated 

using a simple single-degree-of-freedom (SDOF) structural model and the 

equations governing its motion. The motion of a SDOF system subjected to 

earthquake excitation is governed by: 

 � �  �( ) ( ) ( ) ( )gmx t cx t kx t mx t   (2.1) 

where , ,m c k  is the structural mass, damping coefficient and linear elastic 

stiffness respectively. ( ), ( ), ( )x t x t x t  are the response variables 

displacement, velocity and acceleration of the SDOF system when subjected 

to an external acceleration ( )gx t  . Dividing all terms by m , substituting 

Z  /n k m  and / 2 nc m] Z  , Eq.(2.1) can be written as: 

 ]Z Z� �  �2( ) 2 ( ) ( ) ( )n n gx t x t x t x t   (2.2) 

where, ]  is the damping ratio as defined earlier and Zn is the undamped 

natural frequency. Using the theory of structural dynamics (Meirovich, 1990, 

Clough and Penzien, 1995) the response of the SDOF system subjected to 

ground acceleration ( )gx t  can be calculated by: 

 ]Z ]Z WZ Z W Z W W
Z
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t t

d d g d
d

x t e C t C t x e t d   (2.3) 

where,Zd is the damped natural frequency, and 1C , 2C  are constants derived 

from initial conditions. The response of the same SDOF system under a single 

sinusoidal excitation TsinP t  is: 
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where,  
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1

2 2

2tan ( )n

n

  (2.5) 

In which T  is the frequency of the excitation. Eq.(2.3) and Eq.(2.4) show that 

structural response can be altered either by reducing the magnitude,P , of the 
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external excitation, either by increasing the damping ratio ] or by avoiding 

resonance through enlarging the difference of Zn   and T  (Cheng et al., 2008). 

This can be achieved through a variety of techniques such as modification of 

rigidities, masses, damping, or through the provision of passive or active 

counter forces (Housner et al., 1997). 

Using Eq.(2.1) and the same SDOF system, Spencer and Soong (2002) 

demonstrated the effect of structural (passive and active) control on response 

reduction. Through the addition of active or passive elements (similar to the 

one depicted in Fig. 5) Eq.(2.1) becomes: 

 � � � �*  � �( ) ( ) ( ) ( ) ( ) ( ) ( )gm m x t cx t kx t x t m m x t   (2.6) 

where; m  is the mass of the active or passive element, * ( )x t  is the force 

corresponding to the device, and *  represents an integrodifferential operator. 

The specific form of ( )x t*  must be specified before analysing Eq.(2.6). A 

typical linear model of ( )x t*  can be expressed as: 

 ( ) ( ) ( )x t cx t kx t*  �  (2.7) 

where 𝑐̅ and �̅� are the damping coefficient and stiffness of the control device 

respectively. Eq.(2.6) becomes: 

 � � � � �  � �( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )gm m x t c c x t k k x t m m x t   (2.8) 

Eq.(2.8) shows that the application of a passive or active control force modifies 

the dynamic properties of the system in such a way so as to respond more 

favourably to the external excitation. For a purely active control system, the 

terms in Eq. (2.7) and Eq. (2.8) c  and k  characterise the control gains, which 

can be chosen in such a way that the structural response can be in principle 

eliminated (Datta, 2003). As it will be extensively discussed in the following 

chapters, the choice of gains depends on the control algorithm selected. Like 

any other engineering design process, the selection of control gains will be a 

compromise between different performance variables. In the case of structural 

control systems these performance variables are typically the robust stability 

and vibration attenuation capacity of the control system. It is also noteworthy 

that systems that are stable for some gain values become unstable after a 
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certain threshold. Identification of this threshold is thus of major importance. 

Traditionally structural control of high-rise and large-scale structures is 

achieved through the addition of damping to the system as opposed to the 

alteration of the system’s mass and stiffness (Cheng et al., 2008). This is 

primarily linked to performance and practical limitation associated with the 

latter two techniques. Mathematically, the impracticality of altering the 

stiffness and mass of high-rise structures through structural control is 

demonstrated using the same SDOF described previously. Using Eq. (2.4) the 

response amplitudes of the SDOF system to a resonant excitation sin nP tZ  

can be derived as: 

 
] Z ] Z ]

   2 , ,
2 2 2n n

P P Px x x
m m m

  (2.9) 

From which the amplitudes of the restoring fore, R  , the damping force, D  , 

and inertia force, I  , are extracted as:  

 
] ]

   , ,
2 2
P PR D P I   (2.10) 

It can be seen that the magnitude of the restoring force R   and the inertial 

force I  (associated with the stiffness and the mass of the SDOF respectively) 

is substantially larger than the magnitude of the damping force (approximately 

50 times for a lightly damped system with 𝜁 ≈ 1%). The same can be also 

observed by studying the root-mean-square (rms) response of the SDOF 

system under a white noise excitation (Cheng et al., 2008) validating the 

presented argument. The above observations suggest that controlling the 

magnitude of the inertia or restoring force would require numerous sizeable 

force-generating devices, which in turn implies a larger control effort and 

impracticality. Therefore, controlling the damping in the high-rise structural 

system would be typically the preferred approach. Damping, on the other 

hand, unlike mass and stiffness does not relate to a unique physical 

phenomenon, making it impossible to engineer without the addition of external 

damping devices (Kulkarni et al., 2012). What is more, inherent material 

damping cannot be estimated with accuracy; however, known levels of 

supplementary damping can be introduced using either passive or active 

devices (Housner et al., 1997).  
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The effect of the provision of additional damping on a SDOF structure can be 

also illustrated through the transmissibility of the system. Transmissibility is 

calculated as the ratio of the amplitude of vibration measured in the system to 

the amplitude of vibration entering the system and is measure of how much 

vibration energy can be transmitted through the structure. By plotting the 

transmissibility of the SDOF system at different damping ratios,] , and 

frequency (of the excitation to the structural frequency / nZ Z ) ratios,E , as 

shown in Figure 7a, it can be seen that provision of additional damping will 

reduce the transmissibility around the system’s natural frequency but will 

subsequently increase its response at higher frequencies relative to other 

control methods. This suggests that passively controlling the system through 

the provision of damping may have adverse effects on its performance, 

especially during transient response (Pinkaew and Fujino, 2001). By attaching 

an active or semi-active device on the purely passive system, the designer 

can make use of control algorithms in order to adjust its damping 

appropriately. In the example shown in Figure 7a, using a simple on-off control 

algorithm, the damping could be reduced to its minimum value at frequency 

ratios larger than 2 . Figure 7b summarises the concept by illustrating the 

relative performance of a passive, active and semi-active control equipped 

system. The shaded area between the passive and active curves shows the 

possible operating range of a semi-actively controlled system, highlighting the 

potential of such configuration. 

 
Figure 7. Transmissibility of a SDOF at (a) Different values of supplemental 

damping, (b) and the addition of a PID calculated active force 
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Summary points: In practice vibration control of structures is achieved in 

many different ways depending on the problem. Most common methods 

include stiffening, damping and isolation. Stiffening the structure allows 

shifting its resonance frequency beyond the frequency band of excitation, 

isolation prevents the propagation of disturbances to sensitive parts of the 

system and damping reduces the resonance peaks by dissipating energy 

(Preumont and Seto, 2008). Additionally, through investigation of Eq.(2.10) it 

is demonstrated that controlling the damping requires much less control effort 

than controlling stiffness particularly in high-rise low damped structures.  

Structural vibration control in the form of stiffness, damping and isolation can 

be introduced in the system through structural modification, albeit considered 

the most structurally invasive and inefficient method, or through the provision 

of passive/active or semi-active forces as demonstrated in Eq.(2.8). In this 

regard semi-active and active control methods can be used to enhance the 

performance of passive control schemes through the modification of damping 

and/or stiffness when necessary. Furthermore, semi-actively controlled 

systems, when designed properly have the potential of achieving attenuation 

performance similar to active systems. 

2.3.1 Structural control using semi-active and active dampers 

  single mass damper’s operational principle can be easily explained when 

considering a simple MDOF structure as the one shown in Figure 8. The 

dynamic behaviour of such a system when subjected to an arbitrary 

disturbance is fully captured by its matrix equation of motion: 

 � �  �( ) ( ) ( ) ( ) ( )Mx t Cx t Kx t Bu t Dd t   (2.11) 

where ,M C  and K are the n nu  mass, damping, and stiffness matrices 

respectively; ( )x t  and ( )d t  are in order the displacement, and external force  

u1n  column vectors; ( )u t  is the single scalar control force and B  and D  are 

the u1n  influence matrices assigning the control and external force 

contributions respectively to the individual DOFs.  For each DOF in ( )x t  being 

the displacement of the  �( 1 )thi i n  mass, M  trivially becomes diagonal, while 
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for the pure viscous damping considered (and connections as in Figure 8) the 

damping matrix C  attains a form  identical to the symmetric stiffness matrixK

. Without any loss of generality the mass damper device is attached to the 

�( 1)thn  DOF and its motion constitutes the thn  DOF. 

 

Figure 8. Idealised n-DOF structural system equipped with a dynamic 
vibration absorber (DVA) 

 
The matrix Eq.(2.11) could describe a system equipped with any type of 

viscous dynamic absorbing device. The difference between passive, active 

and semi-active schemes would exclusively be captured by the nature of the 

control force ( )u t . It would be probably more appropriately for this case to 

term ( )u t interaction force, yet for economy in presentation the term control is 

used throughout. To facilitate the derivation of a semi-active control force, it 

would be beneficial to first consider the case of a purely passive TMD. When 

the TMD is attached to the system of interest, the ( )u t , takes the form of a 

purely passive action, ( )pu t , resulting solely from the motion of the absorber’s 

mass .This passive force which couples the damper to the rest of the system 

can be mathematically expressed as:  

 ( ) ( ) ( )p p r p ru t c x t k x t �  (2.12) 

In the equation above, pc  is the constant scalar damping coefficient and pk   is 

the constant scalar spring stiffness of the TMD, while ( )rx t  and ( )rx t  are 

respectively the relative velocity and displacement between the nth and (n-1)th 

DOFs (i.e. the structural and damper motion variables). It should be also noted 

that the n-element B becomes [0…   -1]T. Next step towards the derivation of 

the semi-active control force is to formulate an equivalent control force 

provided by a purely active-TMD (ATMD) (Pinkaew and Fujino, 2001). When 

an active control system is considered, the control force takes the form of a 
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desired action ( )au t  ,determined by a control algorithm such as a Linear-

Quadratic-Regulator (LQR), PID or similar. For an ATMD, the desired force is 

the summation of the passive forces generated by the mass damper’s motion 

and an additional external force provided by means of mechanical actuation. 

Because the dynamic characteristics of the mass damper remain unaltered 

and the desired interaction force, ( )au t  , has been already calculated by the 

control algorithm, the required actuation force, ( )af t , can be readily determined 

from: 

 ( ) ( ) ( ) ( )a p r p r au t c x t k x t f t � �  (2.13) 

The final step of the derivation of the semi-active control force involves the 

calculation of a force that can be physically realised by the semi-active device. 

In this regards, because of the fact that no energy should be added directly to 

the system, the semi-active device will produce control forces only when 

required i.e. when the damper is to “consume” energy. Having already 

obtained an equivalent active force from Eq.(2.12), the final step is to apply 

semi-active force saturation limits such that the semi-active control force, 

( )sau t , is calculated by (Hrovat et al., 1983): 
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The product of  ( ) ( )a rf t x t  is the power, aq  , of the whole active system device. 

Similarly, the power of just the semi-active component is defined as the product 

of the force that can be physically translated by the device, ( )sau t , and its 

relative velocity, ( )rx t  : 

  �( ) ( ) 0sa sa rq u t x t   (2.16) 

A schematic representation of the power time histories of both an actively and 

a semi-actively controlled devices is shown in Figure 9. It can be observed that 

the active device has the advantage of both producing and consuming power 

while the semi-active device only consumes power. This verifies the fact that 
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an active control scheme can add energy to the system while a semi-active 

scheme can only dissipate energy.  

 

 

Figure 9 Indicative power demand of an (a) Active device and (b) Semi-
active device 

 
 o far, the principle of obtaining a “desired” control force to be provided by a 

semi-active device has been discussed. When a VD-STMD is considered, the 

chosen way of achieving optimum performance, is by appropriately timely 

adjusting the damping coefficient of the device within bands, in order for the 

required control force to be reached. By referring back to the system presented 

in Figure 8, one can express the semi-active damping force contribution as

( ) ( )sa rc t x t . Inspection of Eq.(2.16) easily leads to ( ) 0sac t � . Updating 

Eq.(2.13), the resulting overall control force provided at each time instance by 

a VD-STMD can be expressed mathematically as:  

 k � �( ) ( ( ) ) ( ) ( )a sa p r p ru t c t c x t x t   (2.17) 

In Eq.(2.17) the time varying semi-active damping coefficient, ( )sac t , is the only 

unknown. Therefore, calculating the real-time variation of the damping 

coefficient is straight forward.  
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2.4 Control Strategies 

Semi-active and active vibration control in engineering systems is divided 

primarily in two strategies, namely, feedback and feedforward. The 

classification of a control system in either of the two categories depends 

strictly on the type of information processed by the controller (data passed to 

the control algorithm). In structural engineering systems, feedback controllers 

measure structural response, whereas, feedforward controllers measure the 

external excitation for the calculation of control forces. It can be easily realised 

that vibration control of civil engineering structures is typically limited to 

feedback control strategies due to the apparent limitations of measuring the 

external excitation.  

When referring to feedback control systems, the term closed-loop is 

commonly used. A system is considered a closed-loop system if its sub-

systems are interconnected in a cycle. Figure 10a, demonstrates the idea of 

a closed-loop system characterised by two sub-systems and their transfer 

functions H(s) and G(s). It is worth noting that in a structural control system 

one might  need to make use of a greater number of sub-systems to 

adequately capture the dynamic behaviour of sensors, actuators etc. In the 

closed-loop system of Figure 10a, the output signal y(t) is compared to the 

reference (desired) signal, r(t), for the calculation of an error e(t)=r(t)-y(t). The 

error signal is then passed to H(s) which is designed to minimise its magnitude 

through modifying the input signal u(t)  to the plant G(s). The sub-system H(s) 

which is known as the controller of the system, will simply generate a control 

command u(t) aiming for an output y(t) closer to the reference signal r(t).  

The aforementioned observations indicate that the dynamics of the sub-

systems in a feedback control system are strongly coupled. Additionally, it can 

be also observed that even though a controller represents only a fraction of 

the overall system, it has a major influence on its overall performance. If the 

link between the output signal y(t) and the reference signal, r(t) , is removed, 

the resulting system would be termed as an open-loop system as shown in 

Figure 10b.  In the latter case, the output, y(t) , of system 2 will not have any 

influence on the input signal of system 1. 
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Figure 10. Control strategies (a) Closed-loop system and                                                                                         
(b) Open-loop system (Astrom and Murray, 2012) 

 
Beyond the apparent performance advantages of using a feedback control 

strategy, potential disadvantages may also arise. Feedback control systems 

are susceptible to dynamic instability which will be the result of oscillations 

with negative damping. Another drawback is that unwanted sensor noise can 

be introduced in the system, requiring careful filtering of the signals (Astrom 

and Murray, 2012). The engineering challenge is to find an appropriate 

controller-compensator (H(s)) for achieving a certain desired behaviour 

characterised in terms of both performance and reliability (stability and 

robustness) of the closed-loop system.  

2.4.1 Evaluation of Control Strategy 

The most obvious performance specification in a structural engineering control 

system is the rejection of external disturbances which will cause the system 

to deviate significantly from its equilibrium position, compromising the 

serviceability of the structure and the comfort of its occupants. Like all design 

problems, the controller synthesis problem involves trade-offs. The most 

obvious trade-off is that of performance and robust stability. In general, the 

more robust a system against variations or uncertainties in the system model, 

the less performance can be achieved (Dyke et al., 1996, Dietz, 2008). A 

successful controller would be the one that achieves the desired performance 

r(t) e(t) u(t) y(t) System 1 
H(s) 

System 2 
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r(t) u(t) y(t) System 1 
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level while at the same time being tolerant to variations in the system 

maintaining the system’s stability at all times.  

The evaluation of a controller and its effectiveness on the physical system can 

be performed with and without the use of mathematical models. Without the 

use of mathematical models, one would require to assess the controller 

effectiveness and ultimately the structural performance (both in terms of 

disturbance rejection and robustness) by repeated trials on the physical 

system (i.e. through trial and error tuning of the controllers) until an answer 

that satisfies intuitive reasoning is obtained (Housner et al., 1997). The 

impracticality of this method and its inability to capture the infinite number of 

feasible events and disturbances, acts as a major limitation prohibiting its use 

in practical applications. On the contrary, the use of mathematical models 

which are derived either from first principles or system identification 

techniques (i.e. input/output data, black box techniques) allows an 

approximation of the dynamics of the physical system. The resulting system 

model which includes the mathematical models of the actuators, the sensors, 

the compensator and the plant can be used to make analytical predictions 

which are not limited to individual events. For these reasons, in this thesis, the 

control objective is achieved using pure mathematical descriptions of the 

control systems.  

2.5 Dynamics of High-Rise Structures 

Modelling the structural system can be viewed as the first step involved in 

control system design. Flexible high-rise structures, due to their physical 

characteristics, can be often described as continuous or distributed parameter 

systems. Such systems have an infinite number of DOF and exact analytical 

solutions even for the case of the simple flexible beam are impossible to obtain 

(Cavallo et al., 2010, Rahimi and Nazemizadeh, 2014). Additionally, in terms 

of control implementation purposes, the infinite number of degrees of freedom 

can impose severe constraints on the design of controllers (Theodore and 

Ghosal, 1995). For these reasons, it is useful, advisable and sufficient 

(Preumont and Seto, 2008, Thorby, 2008, Cavallo et al., 2010) to replace the 

distributed parameter system by a discrete one. 



- 34 - 

In the literature three discretisation methods are presented for modelling 

flexible systems namely; the Lumped Parameter Method (LPM), the Finite 

Element Method (FEM) and the Assumed Modes Method (AMM). The 

simplest of the three, the LPM is an approach based on modelling the 

structural system as lumped masses at each floor location connected by 

spring and dampers, representing the column’s behaviour under dynamic 

loading. Reviewing the literature shows that this method does not provide a 

powerful modelling tool when dealing with flexible structures due to its inability 

to handle the complexity and non-linearity associated with such structures 

(Rahimi and Nazemizadeh, 2014). The second discretisation method, AMM, 

makes use of the principle of virtual work or the Lagrange equations for 

obtaining the approximate solution. The suitability of the AMM for modelling 

flexible structures with complex cross sectional geometries, similarly to the 

LPM was deemed objectionable by various researchers (Theodore and 

Ghosal, 1995, Yousefi-Koma, 1997) and is recommended only for simple 

structures with uniform geometry. The universal application of the FEM which 

is based on a discrete approximation of the distributed parameter system by 

a finite dimensional system governed by a set of ordinary differential equations 

covers most of the practical tasks in structural dynamics (Thorby, 2008).  Once 

the finite DOF system is constructed from a pure description of its geometric 

features and structural properties such as stiffness, damping and mass, the 

eigenproblem can be solved and the dynamic properties (natural frequencies, 

damping ratios and mode shapes) can be derived in great accuracy.  

Whatever the discretisation technique adopted, the accuracy of the analysis 

can be improved by increasing the number of DOF. The constructed many-

degree of freedom system is widely referred in literature as a full-order system 

(FOS). For control implementation purposes and computational 

considerations, however, the FOS needs to be further reduced to a smaller 

number of DOF. The reduced system is referred in literature as a reduced-

order system (ROS). Whenever a ROS is used in control design, inevitable 

errors such as control and observation spillovers and possible instability may 

be introduced (Balas, 1978, Soong, 1990, Preumont and Seto, 2008). Dealing 

with spillover with ways such as locating sensors and actuators at the same 

location (collocated setup) will be examined in subsequent chapters.   
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An alternative to the three discretisation methods presented above is 

experimental modal analysis (EMA). Using this technique, the structure is 

excited with a known force and its response is measured using sensors at 

specified locations. The time-variant structural response (acceleration, 

displacement or velocity) and input force are used to construct graphical 

relationships in the time domain (i.e. acceleration vs. time etc.). These 

graphical relationships provide useful information to the control engineer, 

however, their representation in the frequency domain using techniques such 

as the fast Fourier transform (FFT) allows the computation of the system’s 

frequency response functions (FRFs) which can be then used to determine 

the dynamic behaviour of the structure under excitations of various frequency 

components. 

Summary points: Distributed parameter systems are not feasible to solve 

and their infinite number of DOF will impose severe constraints on the design 

of controllers. ROS are more appropriate but they might give rise to problems 

such as control and observation spillover and possible instability. 

FEM has been shown to outperform AMM and LPM for the case of flexible 

and complex structural systems. However, attention should be paid when 

dealing with structures with a high number of DOF particularly when model 

reduction of the FOS is necessary for control implementation. EMA can be 

used as an alternative tool to verify experimentally the simulation results as 

well as a method used for model updating. 

2.6 Control System Formulation 

In engineering and applied sciences, the behaviour of dynamic systems is 

captured by sets of differential equations governing their motion. Each 

engineering discipline, however, formulates these differential equations in a 

way that facilitates manipulation, analysis and control implementation. 

Although the detailed analysis of the differential equations provides countless 

abilities to the control engineer to manipulate the system of interest in great 

accuracy, such methods become complex and impractical to use when 

dealing with high-order systems. To counteract the limitations of dealing with 

the second order differential equation of motion in a structural system, transfer 
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functions and state space representations are widely used in the control 

engineering community for system formulation and control implementation.  

2.6.1 State Space Formulation 

State space representations allow the structural dynamics system which is 

described by sets of second order differential equations to be decomposed to 

a set of first order differential equations. This set of first order differential 

equations will contain unknown variables which are necessary to describe the 

state of the system at any given time. For the case of a structural system, 

these states (variables) are typically the displacements and velocities of the 

system. 

Decomposing the second order differential equation to a set of first order 

differential equations, one can take advantage of the algorithms developed for 

first order equation solution. For control implementation purposes the state 

space approach becomes even more important since it is central to the 

development of modern control theory (Soong, 1990). The adaptability of this 

approach to computer simulation and computation, its straightforward 

extension from single input singe output (SISO) to multiple input-multiple 

output (MIMO) systems, from time-invariant to time variant, as well as from 

low-order to high-order systems are all factors that make this approach 

attractive to the structural control engineer. 

The state space representation of any mechanical system can be derived by 

considering the second order differential equation governing the motion of any 

SDOF or MDOF system when it is subjected to a control force, u(t) , ground 

acceleration, ( )gx t  , and wind excitation, ( )w t , mathematically expressed as: 

 ( ) ( ) ( ) ( ) ( ) ( )gMx t Cx t Kx t Lu t Mx t Dw t� �  � � �   (2.18) 

where ( )x t  is the 1nu  displacement vector, , ,M C K are the n nu  mass, 

damping and stiffness matrices respectively, n is the number of DOFs, L is the 

Dun  actuator location matrix,D is the number of actuators, D is the un n  

disturbance matrix. In order to present the dynamic system of Eq.(2.18) in 

state space, it is important to define the state variables: 1X x  and 2X x   

.So that 1X x  and 2X x .Therefore, 1 2X X x  . Eq.(2.18) becomes: ((𝑡) 
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omitted for simplicity) 

 2 2 1 gMX CX KX Lu Mx Dw� �  � � �   (2.19) 

 1 2X X   (2.20) 

Writing Eq.(2.19) and Eq.(2.20) in matrix form: 

 � � � �

§ · § ·ª º ª º ª º ª º
 � � �¨ ¸ ¨ ¸« » « » « » « »� � � � �¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼© ¹© ¹

11
1 1 1 1

22

0 0 0 0
( ) ( ) ( )g

XIX
u x w

XM K M C M L D M DX
  (2.21) 

where �1M is the inverse mass matrix. Eq.(2.21) can be written in a generalised 

matrix notation form as:  

  � � �c e g wX AX B u B x B w   (2.22) 

In which: 

 � �

§ ·§ ·ª º § ·
    ¨ ¸¨ ¸¨ ¸« »� �¬ ¼ © ¹ © ¹ © ¹

1 1
1 1

2 2

0
, ,

XI x X
A x X

XM K M C x X
  (2.23) 

And, 

 1 1

0 0 0
, ,c e wB B B

M L D M D� �

ª º ª º ª º
   « » « » « »� � �¬ ¼ ¬ ¼ ¬ ¼

  (2.24) 

where I is the un n  identity matrix and 0 is the compatible null matrix so that 
u� 2 2n nA , 2n

cB Du� , u� 2 1n
eB , u� 1n

wB . Eq.(2.22) can take the general 

form of: 

 X AX BF �   (2.25) 

where vector X   represents the first order change of the state of the system, 

X  contains the displacements and velocities, matrix A  contains the system’s 

parameters, B   is referred as the locator matrix, indicating where the 

actuators are acting and vector F  contains all internal and external 

excitations. It is worth noting that in Eq.(2.18) the vectors ( )gx t  and ( )w t  are 

stochastic in nature, whereas the vector ( )u t  is determined through 

optimisation and control. The form of Eq.(2.22) and its generalised form 

Eq.(2.25) are referred as state-space representation. 
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Once the nature of the input force and control gains have been established, 

the control engineer can obtain the information derived from the state space 

model through the use of the equation:  

  �Y CX DF   (2.26) 

where, Y  is the output vector, C  is the output matrix and D  is the feedthrough 

(or feedforward matrix). In cases where the model does not have a direct 

feedthrough, D  can be taken as a null matrix. Eq.(2.26) through manipulation 

of C  and D  matrices allows the engineer to observe the output of interest i.e. 

velocities and/or displacements.  

2.6.2 Transfer Function Formulation 

Transfer functions are a compact description of the input-output relation in a 

linear time invariant (LTI) system. They provide a complete representation of 

the LTI system in the frequency domain. In control design and implementation, 

transfer function formulations represent a powerful tool because of their ability 

to easily describe, manipulate and analyse linear feedback systems 

mathematically through algebraic manipulations of the differential equations 

governing the system or experimentally through system identification 

techniques. Decomposing the complex system into smaller and simpler 

pieces, one can use transfer functions to capture the dynamic behaviour of 

each component of the feedback loop and then combine them together using 

block diagrams so as to form the bigger and more complex system (Astrom 

and Murray, 2012).  

Considering the simple case of the undamped oscillator subjected to an 

arbitrary input of ( )f t  , the equation of motion can be derived as:  

 ( ) ( ) ( )mx t kx t f t�    (2.27) 

The impulse response of the system can be found by setting the input, 

( ) ( )f t tG  , where ( )tG  is the Dirac delta function so that:  

 G�  ( ) ( ) ( )mx t kx t t   (2.28) 

The second order differential equation can be transferred in the Laplace 

domain through the generalised form of the Laplace transform: 
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f

� ³
0

( ) stL f t e dt   (2.29) 

For the simple case of the undamped oscillator Laplace transform tables can 

be used: 

Table 2. A simple Laplace transform table 
( )f t   ( )F s   

( )tG   1  
( )x t   ( )x s   

( )x t   ( ) (0)sx s x�   

( )x t   2 ( ) (0) (0)s x s sx x� �   

 

Assuming zero initial conditions ( (0) (0) 0x x  ), Eq.(2.28) becomes: 

 2 ( ) ( ) 1ms x s kx s�    (2.30) 

Rearranging the above equation in terms of the output x(s): 

 2

1( )x s
ms k

 
�

  (2.31) 

The right hand term of Eq.(2.31) is known as the transfer function of the 

system (Note for the case of unit impulse input, the impulse response is the 

same with the transfer function of the system). Once the transfer function of 

the system is derived, the response of the system to arbitrary inputs can be 

obtained using simple multiplication of the transfer function and the Laplace 

transform of the input. For example: Assuming a ramp input of the form 

  ( ) ( )f t u t t , its Laplace transform can be derived from: 

 
f

� ³
0

stL te dt   (2.32) 

Integrating by parts results: 

  2

1L
s

  (2.33) 

Therefore the response function of the system to a ramp input can be given 

by a simple multiplication of the transfer function and the Laplace transform of 
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the input function: 

 
§ · ¨ ¸�© ¹2 2

1 1( )x s
ms k s

  (2.34) 

 

The same procedure can be followed to obtain the response of the system to 

any type of loading condition. It is also noteworthy that transfer functions and 

Laplace transformations are a powerful tool for engineers, at the absence of 

which the procedure would be required to be carried out in the time domain. If 

that was the case, obtaining the response function of the system would involve 

the convolution integral which can be difficult and computationally inefficient 

to solve. Finally, it should be kept in mind that if the engineer decides to use 

state-space formulation for control implementation and then choses to revert 

to transfer function formulation, they can easily do so by defining a transfer 

function x(s) as a function of the state space matrices (Gu et al., 2005): 

 

 1( ) ( )x s C sI A B D� � �   (2.35) 

2.7 Model Order Reduction 

In a structural engineering system, it can be realised that the number of 

possible states grows exponentially with the system’s size and the number of 

elements comprising it. Using state-of-the-art structural mechanics, 

sophisticated numerical models (such as FEM, which here are regarded as 

full order systems) can be constructed capturing the behaviour of the 

continuous system in great accuracy. The need to simplify the numerical 

simulation of such systems for the purposes of attaining a solution in the most 

time efficient manner as well as not exceeding the current capabilities of 

verification tools, requires the adoption of model reduction techniques. The 

underlying principle of these techniques is to project the original high-

dimensional system by a smaller system having similar properties and thus 

not compromising the accuracy of the simulation. 

In structural systems such as high-rise structures and long-span bridges, 

where there is one dominant dimension a preliminary form of model reduction 

can take the arrangement of masses concentrated at floor levels linked by 
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springs and dampers (Casciati and Faravelli, 2014). The system’s partial 

differential equations describing the distributed system can be represented 

(as shown in earlier sections) using the state space formulation, such that: 

 X AX BF �  (2.36) 

 Y CX  (2.37) 

Using the state space representation, further model reduction can be 

achieved. Doing so the following relationships will be obtained: 

 R R R R RX A X B F �  (2.38) 

 R R RY C X   (2.39) 

In which the subscript R accounts for the reduced matrices and vectors. For 

all model reduction techniques, there is a relationship between the primary 

degrees of freedom and the secondary (i.e. the one’s to be deleted), which 

can be written in general terms as. 

 ^ ` > @^ `b
n b

a

x
x T x

x
 ½

  ® ¾
¯ ¿

 (2.40) 

In which subscript n denotes all the dof of the system, b denotes the primary 

dof and a denotes the secondary or omitted dof. The nature of the 

transformation is defined by the adopted reduction technique. Using one of 

the most popular techniques, known as static condensation, the global 

stiffness matrix is  partitioned and rearranged such that: 

 ª º ª º
 « » « »

¬ ¼ ¬ ¼
aa ab a a

ba bb b b

k k x F
k k x F

  (2.41) 

Multiplying the first matrix equation gives: 

 aa a ab b ak x k x F�   (2.42) 

Solving for ax : 

 � �1
a aa a ab bx k F k x� �  (2.43) 

If no force is applied on the secondary dof, 0aF  , Eq.(2.43) becomes: 

 � �1 1
a aa ab b aa ab bx k k x k k x� � �  �  (2.44) 
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Rewriting the displacement vector in terms of bx  only: 

 
�� ª ºª º �ª º �

   « »« »« »
¬ ¼ ¬ ¼ ¬ ¼

11
a aa ab baa ab

b
b b

x k k xk kx x
x xI

  (2.45) 

Defining a transformation matrix for brevity: 

 
�ª ºª º ª º�

    « »« » « »
¬ ¼ ¬ ¼¬ ¼

1
a aaa ab

b b b
b b

x Tk kx x x Tx
x xI

  (2.46) 

where,  

 1
ab aa abT k k� �  (2.47) 

 abT
T

I
ª º

 « »
¬ ¼

 (2.48) 

Substituting back into the original static equilibrium equation: 

 ( )bkx k Tx F   (2.49) 

Multiplying both sides by TT  to reduce the number of dof from (a+b) to b: 

 ( )T T
bT kT x T F  (2.50) 

The reduced stiffness matrix can be obtained by expanding the parenthesis 

such that: 

 * 1aa ab abT T
bb ab bb ba aa ab

ba bb

k k T
k T kT T I k k k k

k k I
�ª ºª º   �« »¬ ¼ ¬ ¼

 . (2.51) 

 

Summary: This chapter has presented a generalised literature review, 

progressively capturing the concepts and principles required for structural 

control implementation. The immediately following chapter presents the 

specific details of different control algorithm configurations along with the 

mathematical models to be used in the subsequent chapters of this thesis.  
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Chapter 3 
Control Algorithms 

 3.1 Background 

Even though the principle of control has been intuitively understood since 

antiquity, the development of controllers based on a well-established theory 

has more recent origins. The establishment of classical control theory as a 

result of extensive work carried out during and after the Second World War 

laid down a rigorous step-by-step approach for solving the control problem.  In 

classical control schemes, the design involved by-and-large single-input 

single-output (SISO) systems that can be adequately captured by linear, 

single-variable, time-invariant and low order models. The simplicity and ease 

of physical implementation of classical control systems makes them the 

preferred choice in most industrial applications (Kappos, 2002). However, the 

limitations associated with classical controllers generate the need for 

development of more advanced ones able to deal with more sophisticated 

design problems.  Such controllers are based on the newly developed modern 

control theory. In modern control theory, the subsystems comprising the main 

system can be multivariable, high-order, time-varying and poorly modelled 

(i.e. systems with large parametric uncertainty) allowing engineers to develop 

controllers with enhanced performance, stability and less control effort. 

In structural vibration control literature both classical and modern feedback 

controllers are classified in two broad categories: (1) fixed parameter and (2) 

adaptive controllers. The former category of controllers, as their name 

suggests, have fixed parameters and control gains during the control stage, 

while the latter allows for some adaptation or training during control.  Fixed 

parameter controllers are further divided in two subcategories namely: direct-

output feedback (DOFB) and model based (MB) controllers. The main 

difference of the two subcategories of fixed parameter feedback controllers is 

that the latter one requires an accurate model of the system for determination 

of precise controller properties (Hudson, 2013). Adaptive controllers are also 

categorised as MB controllers. However, such MB controllers are modified in 

order to apply to systems with varying parameters, or systems that are initially 
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uncertain.   

To avoid confusion and further enhance understanding, in this thesis the 

controllers are only divided in two main categories: fixed parameter and 

adaptive controllers. In the category of fixed parameter controllers, both DOFB 

and MB controllers exist, whereas in the category of adaptive controllers only 

the special case of MB controllers exists. A schematic diagram of control 

classification is presented in Figure 11.  

 

Figure 11. Classification of feedback controllers 
 

3.2 Fixed parameter controllers 

In classical single-input-single-output (SISO) systems, satisfactory 

performance both in terms of disturbance rejection and robust stability can be 

easily achieved through simply ensuring good gain and phase margins. 

Various frequency domain techniques for analysis and controller design (such 

as Bode plots, Root-locus, pole placement etc.) dominate SISO   control 

system theory. Most industrial control systems, however, cannot be captured 

using the principles of SISO systems (Gu et al., 2005). The inevitable 

extension of SISO systems to multiple-input-multiple-output (MIMO) systems 

in the 1960s entailed the development of modern multivariable techniques. 

Such multivariable techniques are based on linear quadratic performance 

criteria and Gaussian disturbances. These methods, commonly referred as 

linear quadratic Gaussian (LQG) methods, which are bounded in the category 

Feedback  ontrollers 

 daptive  arameter Fixed  arameter 

 odel  ased  irect  utput 
 pecial  ase of    

 pecial  ase of     ptimal  obust  onventional 
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of optimal controllers, although being successfully implemented in aerospace 

applications, they exhibited poor robustness in industrial applications (Gu et 

al., 2005). In an effort to address the issue of robustness, substantial research 

has been undertaken for the development of robust controllers. The theory 

developed based on this concept is the well-known fH  optimal control theory. 

This section presents the most popular fixed parameter algorithms developed 

to date for the response reduction of structural systems incorporating active 

and semi-active control devices.  

3.2.1 On-off Controllers  

On-off controllers are amongst the simplest controllers found in classical 

control theory. When incorporated in semi-active control systems, such 

controllers are used to vary the parameters (stiffness or damping) of the 

auxiliary device between two states (maximum and minimum) so that the 

vibration response of the system is alleviated. Determination of whether a high 

state or a low state is required to be achieved by the device depends 

exclusively on the choice of control algorithm. Most common algorithms 

incorporated in semi-active control systems are based on skyhook, 

groundhook and bang-bang control. 

3.2.1.1 Skyhook Control 

Karnopp and Crosby (1974) in an attempt to reduce the response of vehicles 

using semi-active suspension systems developed the famous skyhook control 

scheme, the operational principle of which can be demonstrated through the 

SDOF semi-actively controlled system shown in Figure 12a. As a first step, 

the semi-actively controlled system is idealised by the hypothetical system 

shown in Figure 12b.  n a skyhook control scheme, the system’s mass is 

assumed to be “hooked” on a notional damper that is fixed on the “sky”. The 

idea is that the semi-active damper shown in Figure 12a matches the ideal 

skyhook force of the hypothetical system shown in Figure 12b, however this 

is true only if both the skyhook and semi-active forces act in the same 

direction. If they do not act in the same direction, the damper force should be 
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unconditionally set to a minimum value. The force provided by the skyhook 

damper, skF   is calculated by: 

 1sk skF C v   (3.1) 

where, skC  is the damping coefficient of the skyhook damper, and 1v  is the 

velocity of the suspended mass. The force that can be provided by the “real” 

damper is calculated by: 

 d sa rF C v   (3.2) 

where, saC  is the damping coefficient of the semi-active damper, and rv  is the 

relative velocity of the suspended mass and the base (i.e. 1 2v v� ). In order for 

the semi-active damper to emulate the ideal groundhook force, the skyhook 

force is set equal to the force provided by the semi-active damper, such that: 

  1
sa sk

r

vC C
v

  (3.3) 

By multiplying the damping coefficient, saC  , of the semi-active device by the 

relative velocity of the masses, the semi-active force, saF , calculated with 

respect to the groundhook control law is obtained by: 

   1
1sa sk r sa

r

vF C v C v
v

  (3.4) 

 ccording to the system’s motion, the directionality condition of the forces 

needs to be examined in order to determine whether a high-state (i.e. 

1sa saF C v  ) or a low state (typically zero even though some damping is 

present in the system) is required. Depending on the motion of the mass and 

the base, four cases can be identified and damper forces can be calculated 

accordingly: 
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Figure 12. Skyhook control of a variable damping device (a) Semi-active 
variable damping control model (b) Ideal configurations 

 

1) The mass moves away from the base (i.e. 0rv ! ) with a positive velocity 

(i.e. the mass moves upwards). As it can be observed, the mass moves away 

from the equilibrium. Since the notional skyhook damper is in compression, 

the force applied to the suspended mass is in the negative direction. Referring 

back to the “real” system of Figure  2a, when the system is subjected to the 

same motion, the non-notional semi-active damper will be put in tension, thus 

the force, dF , acting on the suspended mass will still be in the negative 

direction, thus the force should take the maximum value. 

2) The mass still moves away from the base (i.e. 0rv !  ) with negative velocity 

(i.e. the mass moves upwards). In this case, the skyhook force will be applied 

in the positive direction. On the other hand, the semi-active damper of the real 

system will remain in tension, thus the semi-active force will be in the negative 

direction. Since the skyhook and semi-active forces are in opposite directions, 

the best it can be achieved by the semi-active device is to minimise the 

damping force, thus a minimum state is required.  

3) The mass and base are moving towards each other (i.e. 0rv � ) and the 

suspended mass has a positive velocity. In this case, the skyhook damper is 

put in compression thus it subjects the mass to a negative force. On the 

contrary, the semi-active damper which is also in compression will exert a 

    

        

                   

Base 

Mass 

Mass 

Base 

     

                    

 

                     

  

(a) (b) 



- 48 - 

positive force. Since the two forces are in opposite direction a minimum 

(damping) state is required. 

4) The mass and base are moving towards each other (i.e. 0rv � ) and the 

suspended mass has a negative velocity. In this case, the skyhook damper is 

put in tension thus it exerts a positive force on the mass and the semi-active 

damper is put in compression also subjecting the mass to a positive force. 

Therefore, a high state is required. 

Summarising the four cases, the skyhook control algorithm can be directly 

derived by the product of the velocity of the suspended mass relative to the 

base, rv , and its velocity, 1v  . This can be mathematically expressed as: 

 1 10r sa sav v F C vt o    (3.5) 

 1 0 0r sav v F� o    (3.6) 

3.2.1.2 Groundhook Control 

With reference to Figure 12, It can be realised that skyhook control in civil 

engineering applications could be potentially used to control semi-active 

damping or stiffness devices such as magnetorheological and 

electrorheological dampers placed between floors, but would not be of any 

particular use when a tuned vibration absorber such as a STMD is used for 

vibration mitigation in structural systems. This is due to the fact that the effort 

is placed on controlling the mass that the vibration absorber is mounted on 

(i.e. the base now represents the structural system and the sprung mass the 

vibration absorber). To overcome this limitation and extend the application of 

the control scheme to civil structures equipped with STMD devices, Koo et al. 

(2004) altered the original skyhook controller design. The resulting scheme is 

known as Groundhook control. This control scheme follows a similar 

operational principle to skyhook control, however, the latter controller primarily 

aims to control the sprung mass (i.e. the suspended mass shown in Figure 

12a) as opposed to the unsprung mass (i.e. the base of the system shown in 

the same figure. 
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Figure 13, illustrates how the semi-active damper emulates the behaviour of 

an ideal passive damper “hooked” between the ground and the mass to be 

controlled. Using the same procedure followed for the determination of 

whether a high-state or a low-state of damping is required in the skyhook 

scheme, the same four cases depending on the motion of the masses need 

to be defined. To avoid repetition and enhance clarity, the four cases are 

summarised in Table 3.  

Figure 13. Groundhook control of a variable damping device (a) Semi-active 
variable damping control model (b) Ideal configuration 

 

Table 3. Groundhook Control Logic 
Sign Conventions Damper Condition Desired Damping State 

! �1 0, 0rv v   Extension Off 

! !1 0, 0rv v  Compression On 

� �1 0, 0rv v  Extension On 

� !1 0, 0rv v  Compression Off 

Note* rv  is defined similarly to the skyhook scheme as �1 2v v  . 

Groundhook control can be mathematically expressed by: 

 1 1 max0 ( ) ( )r sa sa sav v F C t v C t ct o  ?   (3.7) 

 1 1 min0 ( ) ( )r sa sa sav v F C t v C t c� o  ?   (3.8) 
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When the velocity of the unsprung mass, 1v  is used for the calculation of the 

controlling actions (Eq.(3.7) and Eq.(3.8) ), the resulting groundhook logic is 

termed velocity based groundhook (VBG). Alternatively, it is possible to 

replace the velocity of the unsprung mass by a primary system displacement 

term, resulting to a displacement based groundhook (DBG) control, 

mathematically expressed as follows: 

 1 1 max0 ( ) ( )r sa sa sav v F C t v C t ct o  ?   (3.9) 

 1 1 min0 ( ) ( )r sa sa sav v F C t v C t c� o  ?   (3.10) 

Great examples of studies that highlight the performance advantage of both 

DBG and VBG algorithms over the optimal passive TMD can be found in (Koo 

et al., 2004, Liedes, 2009, Viet et al., 2014, Ji et al., 2005, Kang et al., 2011). 

A typical acceleration and displacement frequency response of an STMD 

controlled structure regulated by these two groundhook controllers is shown 

in  Figure 14a and Figure 14b respectively.  

Figure 14. Typical (a) Acceleration response and (b) Displacement 
response of a groundhook controlled STMD equipped structure 

 

Following the conclusions in the aforementioned studies, as well as the 

observations made by the author of this thesis (and the findings of Figure 14) 

it can be evidently said that the performance of the VBG groundhook algorithm 

is far inferior that its displacement based counterpart. Additionally, it can be 

observed that the VBG exhibits a poor performance in the low frequency part 
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(<1 rad/s) of the vibration response. To improve the performance of the 

arguably under-performing VBG algorithm, Liedes (2009) and Viet et al. 

(2014) examined the potential of combining the two algorithms to create an 

improved form of Groundhook control. In the first study, the authors made use 

of weighting coefficients so as to define how the displacement and velocity 

signals contribute to the combined signal. The resulting algorithm, termed 

displacement and velocity based groundhook (DaVBG), was shown  to 

provide better performance and robustness against parameter variations in 

the system. In the second study, Viet et al. (2014) demonstrated analytically 

that if they combine three forms of groundhook control, including the DBG, 

VBG and the inverse of VBG termed IVBG (i.e. max force given when d1 0rv v

,effectively being a mirror image of the VBG response in the frequency 

domain), the effectiveness of each algorithm at different frequency ranges can 

be exploited and enhanced performance can be achieved.   

3.2.2 PID controllers 

The PID which stands for Proportional-Integral-Derivative controller is one of 

the most widely used control loop mechanisms in the industry because of its 

remarkable effectiveness and simplicity of implementation (Astrom & 

Hagglund 1995, Etedali et al. 2013).  Like most classical controllers, the PID 

calculates the required corrective actions based on the feedback error

( ) ( ) ( )e t r t y t � . Once the feedback error is calculated, the controller attempts 

to minimise it (for the next iteration) by appropriately adjusting the inputs ( )u t   

to the plant at each time step in order to bring the output y(t) as close to the 

reference signal ( )r t .  Using the “textbook” version of the     controller, the 

inputs to the plant that minimise the feedback error are calculated by (Astrom 

and Hagglund, 1995): 

 
§ ·

 � �¨ ¸
© ¹

³
0

1 ( )( ) ( ) ( )
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where, pK  is the proportional gain, iT  is the integral time and dT  is the 

derivative time. Using simpler notation, the above equation can be written as: 
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In this equation, /i p iK K T  is the integral gain and  ud p dK K T   is the 

derivative gain. It can be observed from the above expressions that the (plant) 

input signal ( )u t  is the summation of three terms: The proportional (P) term 

( )pK e t  , the integral (I) term  
0

( )
t

iK e t dt³   and the derivative (D) term ( )
d

de tK
dt

. It can be also seen from the above relationships, that an accurate model of 

the plant is not necessary for control implementation in a PID control scheme. 

This is the main differentiation of conventional DOFB (PID) controllers to other 

MB controllers. The engineering challenge is to ad ust “tune” the control gain 

, ,p i dK K K   in such a way that given a feedback error ( )e t  at any instance in 

time, the controller outputs will generate desirable plant inputs making it 

behave in accordance to predefined performance objectives such as rise time, 

overshoot ,settling time, steady state error etc. Using different tuning methods, 

the performance of the system in terms of the aforementioned objectives can 

be compared by subjecting the system to step inputs and examining its 

transient response as shown in Figure 15. 

Figure 15. Second order system subjected to step input 

Like any other design procedure, PID controller tuning involves trade-offs 

between performance and robust stability objectives. For example, reducing 
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the steady state response would require large proportional gains at which 

instability may be introduced. Therefore, tuning the controller to achieve the 

aforementioned time domain objectives, robust stability is not necessarily 

guaranteed. For this reason both time-domain performance and frequency 

domain robustness should be considered (Tan et al., 2006). The reader is 

referred to Tan et al. (2006) for a comprehensive comparison of different PID 

tuning strategies in terms of performance and robustness.  

Although PID controllers occupy a big portion of industrial controllers, their 

use in structural control applications is scarce (Etedali et al., 2013). As a 

matter of fact, there are only a few studies regarding vibration control of 

structures using PID controllers, highlighting the fact that MB controllers are 

preferred in structural control applications (Korkmaz, 2011). This rejection of 

classical controllers might be primarily attributed to the fact that complex 

structural systems with uncertain and varying parameters subjected to 

unknown loading conditions cannot be captured through these schemes 

(Yang et al., 2006). For these reasons, a number of researchers suggest that 

robust control methods are offered for achieving the control objective.  

Despite the drawbacks of conventional controllers, various studies have been 

undertaken examining their performance in structural engineering 

applications. Guclu and Sertbas (2005) examined the performance of a five-

DOF structure incorporating ATMD subjected to earthquake excitation. The 

control actions were determined using a PID controller tuned using the 

Ziegler-Nichols method. They observed in their numerical analysis no valuable 

improvement in frequency response, suggesting that since structural systems 

have uncertainties and their parameters are subject to changes, robust 

controllers are preferable because of their robust character and applicability 

to nonlinear systems (Guclu and Sertbas, 2005). They validate their 

arguments in the same study by comparing the PID controller with a sliding 

mode controller (SMC) and demonstrated that the latter controller is much 

more effective. 

Later, Guclu and Yazici (2007) examined the performance of a PID controller 

for vibration suppression of a fifteen-DOF structure using an active isolator. 

The results show an improved reduction in the displacement response but 
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only minimal effects on the acceleration responses of the top storey. 

Casciati and Chen (2012) developed a PID controller for implementation in a 

three storey experimental structure incorporating an active mass damper 

(AMD). The experimental results clearly indicated reduction in top floor 

accelerations. In another similar study, Boujari et al. (2012) examined the 

performance of a three-storey structure subjected to four ground acceleration 

records. The structure was controlled by an ATMD and the control forces were 

calculated by a PID controller and its modified version – the 2DOF PID. In 

their numerical simulations, they observed a significant increase in 

performance both in terms of acceleration and displacement response of the 

actively controlled structure using both PID controllers. In this numerical study, 

however, the authors highlight the fact that the values of active control forces 

might be so high that the realisation of such a scheme might be non-economic. 

In other words, the machine saturation limits (i.e. the capacity of the hydraulic 

jack providing the required forces) have not been considered in the analysis. 

For this reason conclusions cannot be easily drawn in regards to the 

applicability of PID or 2DOF PID in such structural systems.   

In another study, Chen et al. (2012) examined numerically and experimentally 

the reduction of floor vibrations using a prototype variable stiffness and 

damping ATMD controlled by a PID controller. The results obtained suggest a 

significant reduction in floor accelerations.   

3.2.3 Riccati Optimal Controllers  

The category of optimal controllers includes among others: the famous linear 

quadratic regulator (LQR) and linear Gaussian regulator (LGR). All these 

controllers work on the basis of minimising a quadratic performance index J   

through manipulation and optimisation of the control vector ( )u t . The 

performance index J used in structural control applications when working with 

the state space formulation is defined as (Soong, 1990): 

 ª º �¬ ¼³
0

( ) ( ) ( ) ( )
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T TJ x t Qx t u t Ru t dt   (3.13) 

In the above equation, u� 2 2n nQ and D Du�R are referred as the weighting 
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matrices relating to the trade-off between control effectiveness and control 

energy consumption respectively, ft  is the control period of consideration. 

Manipulating the magnitudes of Q   and, R   better disturbance rejection can 

be achieved at the expense of control effort and vice versa. For example, a 

better disturbance rejection and minimisation of the state error could be 

achieved by increasing the magnitude of the elements of the Q   matrix relative 

to the R matrix. In contrast, increasing the magnitude of the R  relative to the 

Q  matrix would yield smaller control forces thus less control effort as well as 

reduced disturbance rejection. It is noteworthy that the values of elements of 

Q  and  R matrices are selected such as Q  is a positive semi-definite matrix 

and R  is a positive definite matrix. Doing so, it is ensured that Eq.(3.13) will 

never yield a negative result (Hudson, 2013). 

As already mentioned, minimising the performance index J  is achieved 

through manipulation and optimisation of the control vector ( )u t . This control 

vector ( )u t , for a closed-loop system comprising an optimal controller is 

described by: 

 �  � 11( ) ( ) ( ) ( ) ( )
2

Tu t G t X t R B P t X t   (3.14) 

where G(t) is the control gain and P(t) is the Riccati matrix defined as the 

matrix that satisfies the algebraic Riccati equation (ARE) which at the absence 

of an external excitation function is given by: 

 �� � � �  11( ) ( ) ( ) ( ) ( ) 2 0
2

T TP t P t A P t BR B P t A P t Q   (3.15) 

Soong (1990) observed that in structural control applications in which the 

matrices Q andR  are weighted arbitrarily, the Riccati matrix remains constant 

over the control interval, suggesting that ( )P t  in most cases can be 

approximated by a constant matrix P   without compromising the effectiveness 

of the control system (Yang et al., 1987, Soong, 1990, Cheng et al., 2008). As 

a result, Eq. (3.15) reduces to: 

 �� � �  11 2 0
2

T TPA PBR B P A P Q   (3.16) 

The control gain G(t) becomes also a constant matrix described by: 
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Eq.(3.17) indicates that the constant gain G matrix can be precalculated for a 

structure with given parameters (i.e. A matrix known) and weighting matrices 

Q and R. It can be also observed that Eq.(3.13)-(3.17) are coupled and it can 

be realised that obtaining the optimal performance through the selection of 

appropriate control gains, can be achieved through iterations. Substituting 

Eq.(3.14) back in the state space formulation of the second order systems 

(Eq.(2.22)), the behaviour of the optimally controlled structure and the 

subsequent closed-loop system is described by: 

 � �c e g wX A B G X B x B w � � �   (3.18) 

In this equation, the closed-loop plant matrix is defined as c cA A B G �  and 

its eigenvalues define the closed-loop modal damping and natural 

frequencies. Throughout the years, the potential of optimal control has been 

explored by many researchers who through modifications of the basic 

algorithm aim to improve control performance by incorporating  in the 

algorithm various factors such as non-linearity, external excitation, time delay 

etc. All of the developed algorithms, however, work on the same basic 

principle of optimal control. 

3.2.3.1 Optimal and suboptimal Bang-Bang control 

Similarly to optimal controllers, the objective of bang-bang control is to 

minimise a quadratic performance index  of Eq.(3.13) (Wu and Soong, 1996). 

According to the Pontryagin Maximum Principle, the optimal control action is 

obtained by: 

 max( ) sgn[ ( )]Tu t u B tO �   (3.19) 

where ( )tO  is the costate vector obtained by solving: 

 ( ) ( ) ( )Tt A t Qx tO O � �  (3.20) 

It is worth noting, that the optimal control action, is of bang-bang nature, i.e. it 

moves from a maximum to a minimum value when  ( )TB tO changes sign. It is 

also easy to realise that obtaining the control actions, one needs to solve 
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online the differential equation ( ( )tO ) which will most likely increase the delays 

in the system and potentially degrade its performance. Alternatively, the 

control actions can be obtained by minimising the time derivative of a 

Lyapunov function of the system. Firstly a quadratic function of the state 

variable is defined as: 

 ( ) TV x x Sx  (3.21) 

where S is the solution of the Lyapunov matrix equation: 

 �  �TA S SA Q   (3.22) 

Once the solution to the Lyapunov matrix is found, the control actions can be 

then calculated from: 

  � max( ) sgn[ ( )]Tu t u B Sx t   (3.23) 

The law used in Eq.(3.23) for the calculation of the control action is called 

suboptimal bang-bang control. It is evident that using this approach no on-line 

evaluation of the differential Eq.(3.20) is required.  

3.2.4 Pole Placement Algorithms 

Pole placement algorithms also commonly referred to as pole assignment 

methods are amongst the most traditional algorithms found in modern control 

theory (Cheng et al., 2008) . Such algorithms perform on the simple basis of 

altering the eigenvalues of the system in such a way that either its damping 

capacity is increased or its frequencies move out of the resonant range. 

As discussed in the previous sections, the plant matrix A captures the open-

loop system dynamics. In the closed-loop system, however, the plant matrix 

A which initially contained all the modal characteristics of the structural system 

(i.e. damping ratios and frequencies) is now modified and takes the form of

c cA A B G � . The fact that the eigenvalues of cA are different from those of A 

raises the question whether the selection of an appropriate feedback gain 

matrix G can give the closed-looped system matrix cA  prescribed eigenvalues 

(or poles as commonly referred in the control community) which will in turn 

yield desirable modal damping ratios and frequencies. The algorithms 

developed to achieve this objective are known as pole placement algorithms 
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and have been widely accepted and extensively used for many years in the 

mechanical and electrical engineering fields (Cheng et al., 2008). 

In the structural engineering field, these algorithms can be very promising and 

convenient because of the fact that conventional engineering structures have 

only a few significant modes of vibration (Cheng et al., 2008). This suggests 

that the closed-loop eigenvalues can be easily selected for achieving the 

control objective. On the other hand, it is important to note that pole placement 

methods would not be acceptable in cases where high-order structural 

systems excited in more than the first few modes are considered (Soong, 

1990, Datta, 2003). An additional important prerequisite of this technique is 

that the system is fully controllable (i.e. available force is sufficient to bring the 

system from any initial state to any desirable state).  Lastly such controllers 

require trial and error for tuning while at the same time there is no measure of 

how close the performance is to optimal (Hudson, 2013) in which case optimal 

controllers might be the preferred option. For the aforementioned reasons, 

particular care should be taken when using the pole assignment method since 

it can be cumbersome for complex structures comprising many degrees-of-

freedom (Yang et al., 1987). 

Chang and Yu (1997) examined the performance of two structures, the first 

modelled as a SDOF subjected to a white noise ground excitation and the 

second one modelled as an eight-DOF structure subjected to the South-East 

component of the El-Centro earthquake of 1940. The selected control devices 

were an active mass driver and an active tendon system. The numerical 

simulations suggested that the pole placement technique can be successfully 

applied for mitigating the structural response due to earthquake excitation.  

In another study, Pan et al. (2011) designed a universal pole placement 

controller for structures with known frequencies, damping ratios and mode 

shapes. The performance of the controller was evaluated by simulation using 

the dynamic model of a flat steel plate estimated from experimental data. 

Beyond the reduction in vibration, the authors also highlighted some 

issues/observations arising from the use of this technique: 

1. An accurate model of the structure is required for the implementation of this 

method. 
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2. The selection of pole locations is a compromise between the speed of the 

response of the error vector and the sensitivity to disturbance and 

measurement noises. 

3. A large control effort might be required in high-order problems. If the effort 

is too large, actuator saturation might occur which may lead to undesirable 

performance and even instability. 

More recently, Rahman and Darus (2012) examined the response reduction 

of a flexible plate stabilised by a feedback controller using the pole placement 

method. They observed that pole placement algorithms have the ability of 

ensuring the stability of the system while at the same time alleviate its vibration 

response. Other studies including those of (Manning et al., 2000, Bu et al., 

2003, Pan et al., 2011) successfully implemented pole placement control for 

controlling the first dominant modes of flexible beams. 

3.2.5 Instantaneous optimal control: 

From the above presented relationships it can be observed that the 

optimisation procedure performed for the derivation of appropriate control gain 

matrices does not take into account the external excitation component (see 

Eq.(3.15). It is therefore arguable that the control Riccati closed-loop algorithm 

(i.e. Procedure described in Eq.(3.16)-(3.17)is not truly optimal (Datta, 2003). 

As a matter of fact, most of the optimal control algorithms are not optimal in 

this sense since the external excitation is not known a priori. Yang et al. (1987) 

developed a “truly” optimal control algorithm named Instantaneous Optimal 

Control (IOC) which incorporates the earthquake excitation component as 

sensor acceleration measurements at any particular time interval. This 

algorithm, however, was demonstrated numerically (in the same study) and 

experimentally (Yang et al., 1987, Soong, 1988) to be only slightly more 

effective than the traditional Riccati closed-loop controller. On the other hand, 

the authors highlight the fact that unlike the Riccati control procedure, which 

requires a full structural parametric knowledge for the solution of the Riccati 

matrix, instantaneous control is independent of the uncertainty in structural 

identification. 
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3.2.6 Robust Controllers/ The 𝑯𝟐 and 𝑯∞ compensator 

As the name suggests, these control laws account for some degree of 

uncertainty in the plant and/or the external perturbation. Being able to deal 

with uncertainty, signifies the importance of such controllers in the civil 

engineering domain, in which both an accurate dynamic model of the plant is 

not always available, and also the external perturbation is stochastic in nature 

(Stavroulakis et al., 2006). In this field, the work of Zames (1981) entailed the 

development of two key controllers, namely, the 2H  and Hf  which are 

predominantly based in the frequency domain (Gu et al., 2005). Such 

controllers aim to minimise the rms power of the error signal from a 

generalised plant as shown in Eq.(3.24) (Suhardjo et al., 1992) : 
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where wzF  is the transfer function between the exogenous signals,Z  , and the 

error signals, z .()* denotes the complex conjugate transpose of (). It is 

noteworthy, that it is possible to formulate a Riccati optimal controller from the 

generalised 2H  formulation by appropriately defining the error and the input 

signal (Skogestad and Postlethwaite, 2005, Montazeri et al., 2009). 

3.3 Adaptive controllers  

For the cases for which the uncertainty in the structural system and/or the 

external perturbation is so great that a fixed parameter controller cannot 

achieve the desired performance, an adaptive parameter controller might be 

more appropriate (Casciati et al., 2012). Adaptive controllers are often based 

on a fixed controller design in which a mechanism is added so as to evaluate 

and adjust controller parameters. The mechanism is thus designed to employ 

a real time evaluation of the controller’s performance based on a predefined 

performance index and a mode through which the controller’s parameters are 

adjusted (Housner et al., 1997). This adjustability mechanism, can either 

measure directly the error between the measured and desired outputs and 

update control parameters, or indirectly via updating the model of the 

uncertain structure and base the new controller parameters on this new model 
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(Housner et al., 1997). Regardless the approach, the control objective is to 

find a control force that satisfies: 

 > @ > @l im ( ) ( ) l im ( ) 0mt t
x t x t e t

of of
�     (3.25) 

In which, ( )x t  and ( )mx t  are the measured and desired (model) outputs 

respectively. Two of the most widely, used methods of adaptive control that 

can use both direct and indirect approaches are model-reference adaptive 

(MRAC) and self-tuning controllers (STC).  In the latter category of adaptive 

controllers, an on-line plant parameter estimator is added in the control loop 

for simultaneous parameter identification. The controller parameters are then 

computed from the estimates of the plant parameters as if they were the true 

ones. In the former category, MRAC control synthesis entails the choice of 

adaptive laws(on-line parameter updates) such that the time-derivative of the 

Lyapunov function decreases along the error dynamics trajectories. 

Another category of adaptive controllers identifies the frequency bands for 

which different control algorithms (or tuning of a particular algorithm) work 

better than an alternative one. Using short-time Fourier transformations the 

operating frequency can be thus obtained in real time, and an appropriate 

predesigned algorithm can be selected. A great example of an adaptive 

controller based on a series of fixed semi-active control laws is found in the 

study of Viet et al. (2014). In this study, the authors examined the potential of 

combining three versions of the groundhook controller (DBG, VBG and 

inverse VBG (IVBG) in a single mixed-groundhook control. This adaptive 

controller, exploits the effectiveness of each individual controller at different 

frequency response ranges.  

Summary: Having presented, the principles of structural active and semi-

active control and the mathematical models associated with different control 

algorithm configurations, the next chapter focuses on the first objective of the 

thesis. 
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Chapter 4 
Control System Design-Influence  

of the control algorithm 

 

This chapter introduces a novel and more ‘transparent’ approach for the 

selection and use of control algorithms that significantly influence the 

performance of systems equipped with STMD devices of variable damping. 

To this end, both a SDOF system excited using mono-harmonic loading and 

a benchmark high-rise structure subjected to wind excitation are used in the 

investigation. It has been demonstrated that when realistic constraints are 

taken into account the algorithms that increase significantly the performance 

of the controlled structure do so at the expense of damper strokes. When the 

maximum damper strokes are capped to progressively lower limits, the 

efficacy of different algorithms, measured through a number of performance 

objectives, drastically alters, totally changing the performance ranking of them 

and pointing out the need for an extensive study of the interplay between 

loading, control algorithm and allowable stroke within the design of semi-

active tuned mass dampers devices. The contents of this chapter are an 

adapted form of the conference papers presented in the 6th International 

Conference of Structural Control and the 8th International Conference on the 

Behaviour of Steel Structures, and finally a journal paper published in the 

Journal of The structural Design of Tall and Special Buildings. Details of these 

papers are as follows: 

 

Demetriou, D. et al. 2014. Performance of Proportional-Integral-Derivative 
Controlled Variable Damping Tuned Mass Dampers. In: 6th International 
Conference of Structural Control, 15-17 July, Barcelona, Spain. 
 
Demetriou, D. et al. 2015. Performance of Fixed-Parameter Control 
Algorithms on High-Rise Structures Equipped With Semi-Active Tuned Mass 
Dampers. In: 8th International Conference on the Behavior of Steel Structures 
in Seismic Areas, July 1-3, Shanghai, China. 
 
Demetriou, D. et al. 2016. Performance of fixed-parameter control algorithms 
on high-rise structures equipped with semi-active tuned mass dampers. The 
Structural Design of Tall and Special Buildings. 25(7), pp.340-354. 
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4.1 Introduction 

Since the introduction of the dynamic vibration absorber (DVA) to the 

engineering community by Frahm in 1911 (Frahm, 1911), a large number of 

studies have been published validating the applicability and effectiveness of 

passive TMDs on high-rise and slender structures (Kawaguchi et al., 1992, Xu 

et al., 1992, Cao et al., 1997, Liu et al., 2008, Casciati and Giuliano, 2009, 

Sadek and Mohraz, 1998). In an attempt to improve further the effectiveness 

and flexibility of the device, researchers across the world have successfully 

altered the original design by incorporating sophisticated passive, semi-active 

and active elements. While the approach of upgrading the performance of the 

TMD using enhanced and innovative passive elements is reasonable from a 

technological, practical and economical perspective (Pinkaew and Fujino, 

2001, Marian and Giaralis, 2014), this might not be always  the case for semi-

active and active control of structures because of the costs associated with 

the requirement of expensive actuators and specialised control components 

(such as electrorheological and magnetorheological dampers), which can be 

considered prohibitive for use on structural applications (Casciati et al., 2012). 

Due to such limitations, over the years an attempt has been made to improve 

the performance of actively and semi-actively controlled systems via the 

relatively easier design and selection of appropriate control algorithms, 

suitable for implementation in full-scale civil structures.  

In literature, most of the algorithms adopted for use on STMD equipped 

structures are based on finding optimal control forces through the minimisation 

of some cost function or performance index such as in the case of the linear 

quadratic regulator (LQR) and linear quadratic Gaussian ( 2H /LQG) control. 

Hrovat et al. (1983), were the first to suggest the use of variable damping 

dynamic absorbers on civil structures. They proposed an optimal control 

method for reducing the wind induced vibration of a model two degree of 

freedom structure, demonstrating the superiority of the proposed system over 

a relevant traditional passive. Later, on a similar study Pinkaew and Fujino 

(2001) demonstrated the gains of the LQR controlled STMD variable damping 

device on reducing the response of structures under harmonic excitations. 

They reported substantial improvements on the steady-state response of the 
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structure around the tuning frequency but only minor gains for the transient 

component of the vibration. Over the same years, another class of optimal 

control laws, the so-called “bang-bang” control method has been investigated. 

Wu and Soong (1996), and Jansen and Dyke (2000) investigated the 

performance of optimal and suboptimal bang-bang controllers on semi-

actively controlled structures comparing their effectiveness against other 

algorithms on the benchmark of earthquake excited structures.  Later, Koo et 

al. (2004) developed a semi-active control algorithm, termed “groundhook 

control” for use on  T   variable damping devices. This algorithm was 

developed as an extension to the “skyhook control” algorithm proposed by 

Karnopp and Crosby (1974) for use on vehicle suspension systems. The 

flexibility of the former lies on its simplicity of implementation, its computational 

efficacy and its demand for only two sensors in order to achieve the calculation 

of control actions. Validating the effectiveness of the groundhook control 

scheme, Kang et al. (2011) examined the performance of different semi-active 

device configurations on wind excited tall structures, demonstrating that 

(displacement based) groundhook controlled STMD devices can substantially 

reduce the response of the structure when compared to passive TMD  

solutions. These authors also observed that using an optimally tuned 

displacement based groundhook (DBG) controller, the predefined stroke 

limitations could not be satisfied, thus an additional passive damper was 

required for satisfying the stroke limitations. Most recently, Demetriou et al. 

(2014) demonstrated that PID controllers can also be tailored for use on VD-

STMD equipped structures subjected to earthquake excitations and outlined 

the benefits from the use of such a control strategy. 

Even though all the quoted studies inarguably drew conclusions on the 

enhanced performance of the STMD equipped system over its conventional 

passive analogue, it is evident that the once small and meaningless damper 

strokes (i.e. not being translated to practical applicable values) arising either 

due to the nature of the external perturbations (harmonic, white noise or short 

earthquake) and the system’s geometric and dynamic properties (low-rise and 

high-frequency structures) cannot be overlooked when it comes to high-rise 

structures subjected to long term wind actions. For these reasons, no truly 

conclusive argument can be made regarding the relative performance of 1) 
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STMD over TMD equipped structures and 2) the gains arising from different 

algorithms on high-rise structures equipped with STMD variable damping 

devices; particularly when the main performance limiting factor is the stroke 

of the damper this evidently needs to be taken into account for reaching any 

performance verdict.    

Adding to the aforementioned arguments, in the studies referenced above, the 

design of the control system (i.e. both the control algorithms and control 

device/actuator) is based on the assumption that all the components behave 

linearly. However, for real structures equipped with dynamic vibration 

absorbers (DVAs) this is not always the case. Even though the structure to be 

controlled is assumed to be linear, in other words its mechanical 

characteristics remain unaltered in time, the control device will inflict non-

linearity as a result of the device’s force and stroke saturation limits (Rohlfing 

et al., 2011b). In this regard, force saturation occurs when the current in the 

coil exceeds the allowable limits, whilst stroke saturation occurs when the 

movement of the  V ’s mass exceeds the allowable displacement, which in 

practice will cause the device to hit the stops on either side of the static 

component of the actuator, which in turn can impart destabilising impulses into 

the structure and even permanently damage the actuator (Rohlfing et al., 

2011a).  It is noteworthy, that stroke saturation is generally only a problem at 

low frequencies because of the large displacements required in order to 

generate forces at these frequencies (Hudson, 2013).  Consequently, for the 

case of low frequency high-rise structures for which the DVA is an attractive 

control option, stroke saturation needs to be taken to account in every step of 

the control design process.   

Typical measures taken to avoid saturation and its non-linear adverse effects 

on the performance of control systems, involve the use of command limiters 

and high pass filters (Hudson, 2013). Using a command limiter, the maximum 

force that can be generated by the actuator(s) is limited by capping the voltage 

to the device, whereas the high pass filter is used to remove the low frequency 

components from the command signal (i.e. the signal used as the controller 

input). Obviously, removing the low frequency components of the command 

signal reduces the controllers ability to affect the first (lower) modes of 

vibrations (which arguably are the most important to control for the case of 
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high-rise structures). For these reasons, this thesis negates the use of high 

pass filters and additional passive damping that degrade performance and 

add to the life-time cost of the control system, through a novel approach for 

limiting actuators strokes based on the selection of appropriate algorithms.  

Figure 16. Conventional 2-step control design approach for a) Selecting 
appropriate control algorithm and (b) accounting for force and stroke 

saturation 
 

With reference to Figure 16, the control design procedure requires the 

selection of (any) active/semi-active control algorithm, followed by iterative 

analyses that would aid the selection of damping (min/max) coefficients, 

based solely on the predetermined performance objectives, that typically 

involve (as in the case of the aforementioned studies) minimisation of the 

structural response quantities (acceleration and/or displacement). If no stroke 

saturations are taken into account, a comparison of different control 

algorithms based exclusively on the structural response quantities can be 

considered fair. Still, for the case of low frequency, high-rise structures 

equipped with DVAs stroke saturations cannot be overlooked. For this reason, 

in the second step of the control design procedure (Figure 16b), the designer 

takes into account stroke saturation limits based on one of the two 

performance degrading methods described earlier (additional damping and 
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high pass filtering).  For example, the iterative process of Figure 16a, 

suggested that the best algorithm for a particular structural system is the DBG 

with variable max-min damping coefficients 30 Ns/m and 1Ns/m respectively. 

At this configuration the resulting damper stroke at a particular excitation time 

history exceeds the assumed allowable limit of 80cm. Therefore, the designer 

caps the stroke by either increasing the max and/or min damping coefficients 

until the stroke of the damper satisfies the limit. Generally speaking, the more 

the deviation of the max/min damping coefficients from the optimal damping 

coefficients (30Ns/m and 1Ns/m for this example) the more the performance 

degrades. Alternatively, a high pass filter could be employed, rendering the 

control system ‘unresponsive’ to the low frequency components of the 

vibration, defeating the purpose of using a DVA as a control device. 

This thesis exploits the potential of making stroke limits an integral part of the 

performance objectives, through which the selection of variable damping 

coefficients at different stroke saturation limits is achieved.  In other words, 

each given control algorithm is optimised (damping coefficient wise) at 

different stroke saturation limits.  Therefore, depending on the stroke 

saturation required, the control algorithm of choice will always have optimal 

max/min damping coefficients. Consequently, there might be a case that what 

was traditionally considered to be the most ‘effective’ control algorithm for 

controlling the response of STMD equipped structures under wind vibration, 

underperform at lower stroke saturation limits. 

Naturally in this study, the effectiveness of a variable damping STMD device 

on alleviating dynamic response of both a simplified SDOF system and a 

benchmark high-rise structure is investigated and the relative performance of 

five of the most popular fixed parameter feedback algorithms, namely the 

groundhook (DBG and VBG), clipped optimal, bang-bang (BANG), and PID 

controls, is reassessed. The dynamic input takes the form of a wind buffeting 

type load, always of interest to high-rise buildings. Discussions on both 

quantitative and qualitative gains arising from the use of each control 

algorithm are sought, while at the same time the fairness of all comparisons 

is explicitly preserved. As a novel feature, the possibility of switching to an 

appropriate algorithm for improving performance at the expense of low 

damper strokes is exploited in an attempt to avoid performance deterioration, 
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and cost due to the addition of an auxiliary damper when limited strokes are 

imposed. 

4.2 Numerical investigation 

The steps followed in the construction of the numerical simulation model and 

its evaluation at different algorithm and control devices configurations are 

presented. For clarity, each of the steps involved in the design procedure is 

described in the following subsection as illustrated in the flow chart of Figure 

17. Clearly, for the case of passive control, there is no need for sensors and 

computer controllers, therefore the design procedure is limited to the bottom 

half of the diagram (below red dotted line). Whereas, for the case of semi-

active control, the arrangement of sensors and the choice of appropriate 

control algorithms is an integral part of the design process.   

 

Figure 17. Control system design procedure 
 

As a first step, the investigation initiates with the analysis of a SDOF system 

coupled with an optimally designed passive (TMD) and semi-active (STMD) 

dynamic vibration absorber. From this, the frequency response functions of 

the resulting systems are  examined at different mass and stiffness uncertainty 

ratios. Following this, the analysis extends to a 76-storey high-rise structure 

on which practical constraints such  force, stroke as well as DVA mass 

constraints been taken to account.  
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4.2.1 Frequency domain analysis of simplified SDOF system 

In order to enhance the understanding on the design and optimisation of 

different algorithms, as well as aiding the establishment of fair criteria for the 

comparison of the different control algorithm configurations, this section of the 

thesis initiates with the investigation of the response of an equivalent SDOF 

system in the frequency domain. In this regard, a series of sinusoidal waves 

have been used as external input until the system reached steady state 

response. Arguably for non-linear systems the response magnification factor 

may depend on the type and magnitude of the excitation and the resulting 

structural response might be of random non-periodic nature. Yet, following the 

proof of Hac and Youn (Hac and Youn, 1992, Pinkaew and Fujino, 2001), the 

response of piecewise linear second order systems (such as the ones 

presented herein) to periodic excitation, is also periodic and the amplitude 

ratio is independent of the excitation amplitude. In other words, exciting the 

structure using a periodic wave of notional amplitude allows for meaningful 

performance information in the frequency domain for such piecewise linear 

systems. 

4.2.2 Description of the SDOF and 2DOF (DVA equipped) system 

The SDOF system has a mass of 1000 Kg and stiffness of 1000 N/m. When 

coupled with a DVA designed using Den Hartog’s equations (Eq.(4.1)) 

(Hartog, 1956) for optimal TMD design, the resulting system attains an 

additional DOF (2DOF system) and is described by the matrices shown in 

Eq.(4.2). 

 � � � �1 , 3 / 8 / 1
1p opta ] P P

P
  �

�
 (4.1) 

In which pa   and ]opt  is the optimal stiffness tuning and damping ratio for mass 

ratio /dm mP   respectively.  

 
0

, ,
0

s d d s d d

d d d d d

m k k k c c c
M K C

m k k c c
� � � �

   
� �

  (4.2) 
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In Eq.(4.2), sk  and sc  is the spring stiffness and damping coefficient of the 

SDOF respectively. The optimum values of damper stiffness dk and  damping 

coefficient dc  of the auxiliary damper are calculated by: 

 Z 2
d p nk a m   (4.3) 

 ] Z 2d opt nc m   (4.4) 

4.2.3 Development of models/ state space representation 

Having already obtained the mechanical properties (M, C, K) of the system, 

the next step is to incorporate (mathematically) a semi-active DVA. In order to 

do so, consider the dynamic behaviour of a generic, linear, controlled building 

structure modelled as a sway n-degree-of-freedom lumped mass system 

when subjected to an arbitrary disturbance through its matrix equation of 

motion: 

 ( ) ( ) ( ) ( ) ( )Mx t Cx t Kx t Bu t Dd t� �  �   (4.5) 

where  ( )x t  and ( )d t   are in order the displacement, and external force n-

element vectors; ( )u t  is a single scalar control force (for the case of a single 

DVA) calculated using an appropriate control algorithm, and B and D are the 

u1n   influence matrices assigning the control and external force contributions 

respectively to the individual DOFs. For each DOF in ( )x t being the 

displacement of the thi ( 1,..,i n  ) mass, M  trivially becomes diagonal, while 

for the specific viscous damping considered the damping matrix C is assumed 

to have a form identical to the symmetric stiffness matrix K  (i.e. classical 

damping approach). Without loss of generality, the system considered is 

equipped with a mass damper system attached to its ( 1)thn �  DOF, with the 

devices motion variable constituting the thn  DOF. Adopting a state-space 

formulation, Eq.(4.5) becomes: 

 ( ) ( ) ( ) ( )z t Az t Fu t Ed t � �   (4.6) 

where, ( )z t  represents the first order time-change of the states   

> @� �( ) ( ) ( ) Tz t x t x t of the system,  A  is the system block matrix containing 
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the system’s mass, damping, stiffness properties, F is the control force locator 

block matrix, and E is the external perturbation locator block matrix, such that  

 � � � �

ª º ª º ª º
   « » « » « »� �¬ ¼ ¬ ¼ ¬ ¼

1 1 1 1

0 0 0
, ,

I
A F E

M K M C M B M D
  (4.7) 

with I   being the identity matrix of appropriate dimensions (i.e. un n  ).  Unlike 

a conventional passive TMD equipped system that produces an unregulated 

control force as a result of the relative motion ( ( )rx t , ( )rx t ) of its mass against 

its supports (i.e. between the thn  and th( 1)n �  DOFs) such that, 

 ( ) ( ) ( )p pu t k x t c x t �r r   (4.8) 

where, pc  and pk  is the passive damping and stiffness coefficients of the 

TMD; a VD-STMD can be modulated damping-wise between two values, 

referred to as passive maximum max( )c  and passive minimum min( )c  as 

depicted in Figure 18. By employing a chosen control algorithm, the 

calculation of the appropriate maximum and minimum damping coefficients 

either directly or through the calculation of a desired active force ( )au t  , one 

allows for enhanced overall energy dissipation capacity for the damper and 

improved performance of the vibration control system.  

 

Figure 18. Force-velocity relationship for the performance bands of a 
variable damping device 
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For the cases where a purely active algorithm such as the LQR or the PID is 

used for the calculation of maxc   and minc  , the desired active force ( )au t    

needs to be calculated and tailored to an equivalent semi-active force which 

can be physically realisable by the device. To this respect, because a semi-

active device can, by definition, only consume energy, functioning criteria 

need to be applied on the active control force. Namely the semi-active force 

( )sau t    is calculated by: 

 
1 sgn[ ( ) ( )]( ) ( )

2
a r

sa a
u t x tu t u t �§ · ¨ ¸

© ¹
  (4.9) 

 > @sgn ( ) ( ) sgn( )a r au t x t q   
1 0

1 0

a

a

for q

for q

d
°
®
°� !¯

   (4.10) 

From this, the relevant power “dissipation” of the semi-active device saq  can 

be calculated by: 

 ( ) ( ) 0sa sa rq u t x t �   (4.11) 

where, the negative sign is only indicating the flow of energy from the structure 

to the semi-active control device. Having obtained the physically attainable 

semi-active force, the time-varying semi-active damping coefficient ( )sac t  can 

be directly calculated as: 

 
( )( )
( )

sa
sa

r

u tc t
x t

  , where min max( )sac c t cd d   (4.12) 

4.2.4 Optimisation of algorithms/PID Gains and LQR control effort 

A numerical response optimisation procedure  based on Nelder-Mead simplex 

search algorithm (Nelder and Mead, 1965) is followed for deriving the 

controller parameters (such as gains and control effort matrices r for the cases 

of PID and full state feedback LQR control respectively). Similarly to Den 

Hartog’s optimisation approach for the passive DVA design, in this thesis, the 

optimisation is based on reducing the rms acceleration response of the 

structure in the frequency band of interest. To this end, the less the area under 
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the acceleration response curve, the lower the rms acceleration over the 

frequency band of interest. 

4.2.4.1 Full state feedback controllers, LQR. 

With reference to Figure 19, It is evident, that decreasing the magnitude of the 

scalar quantity r (weighting variable of the controller effort) and hence 

increasing the controller effort, the performance of the LQR controlled semi-

active system drastically improves. This is illustrated by the reduced 

magnitude of both the displacement and acceleration response quantities. It 

is also noteworthy that with increased effort, the relative phase of the two 

masses approaches the optimal 90 degree phase difference. In order to 

maintain the fairness of the comparison between the different control 

algorithm configured semi-active systems, the controller parameters that 

achieve lower response at the frequency range of interest are selected. 

As already mentioned, lower response over the wider range of frequencies is 

indicated by the area under the response curves. In this regard, Figure 19e 

and Figure 20e demonstrate how the area under the acceleration response 

curve is progressively reduced with increased controller effort, to a point that 

no more response can be alleviated. Therefore, with reference to Figure 20e 

the optimum performance(always with respect to rms acceleration response) 

is achieved when the control effort quantity r attains a value between 0.0025-

0.006. 

 

 

 

 

 

 

 

 

 



- 74 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19.  (a) Acceleration response, (b) Displacement response, (c) 
Damper stroke, (d) Relative phase, (e) Area under acceleration 

response curve (f) Peak acceleration response with varying controller 
effort r ranging from 0.1-10. 
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Figure 20. (a) Acceleration response, (b) Displacement response, (c) 
Damper stroke, (d) Relative phase, (e) Area under acceleration 

response curve (f) Peak acceleration response with refined controller 
effort r ranging from � �55 0.01e . 
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4.2.4.2 PID optimisation 
Owing to the absence of a rigorous approach for the optimisation of semi-

active PID controlled structures, in this section of the study, eleven trial PID 

and PD controllers have been investigated. The control gains of the different 

trial controllers have been selected such that the controller response time is 

progressively reduced (the exact value of the controller gains can be seen in 

the appendix). Following that, an optimal PID controller was derived through 

numerical optimisation which requires the gains to achieve maximum rms 

acceleration reduction over the whole frequency band of interest. The 

resulting performance of the optimised, optPID , controller compared with the 

remaining ten trial controllers and the DBG baseline controller is illustrated in 

Figure 21. 

Figure 21. (a) Displacement response,(b) Extracted energy ,(c) Maximum 
stroke ,(d) Relative phase of the eleven trial PID and PD controllers and 

their comparison with the baseline DBG controller 
 

Figure 21, shows that PID and PD control of STMD devices allows for some 

flexibility when it comes to PID gain tuning. In this respect, it is observed that 

it is possible to select appropriate gains such that desired performance is 

achieved in the frequency band of interest (either in the low frequency region 

<1 Hz, or the higher frequency region >1Hz). Theoretically, the existence of a 

rigorous approach for the design of linear controllers for non-linear systems 
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such as the one presented herein, would allow for controllers to be designed 

with performance variations between the limits of the least aggressive PID 

controller, termed 5PID   and the most aggressive PD controller, termed 1PD . 

Nevertheless, as the tuning becomes more aggressive (and the integral 

component of the PID controller is eventually dropped, resulting to an ultra-

aggressive PD controller), it is observed that performance gains similar to that 

of a baseline DBG controller are achieved. Because of this, from an 

active/adaptive control perspective, the tuning flexibility of the PID controller 

over the baseline DBG controller could signify tremendous performance gains 

particularly when gain scheduling is performed (i.e. selection of controller 

gains depending on the operating frequency). 

4.2.5 Semi-active maximum damping optimisation 

Having optimised the algorithms, the next step in the semi-active controller 

design procedure  is the selection of maximum damping coefficients. To this 

end, the acceleration response of each control configuration was examined at 

damping ratios (] ) ranging from 1%-100% of the critical damping. From this 

the maximum damping coefficient maxc  can be readily calculated using:  

 max 2 d nc m Z ]   (4.13) 

Figure 22. Acceleration response of the different control configurations as a 
function of the damping ratio (] ) 
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Figure 22 shows that for the passive TMD case with P  1% , the optimal 

damping values range between  5%-10% ( . % using  en Hartog’s equations 

for optimal design with mass ratio of 1%). At higher damping ratios, it is 

observed that the TMD does not create the desirable side-lobes that split the 

response around the tuning frequency, but act as an additional (unresponsive) 

mass, moving in-phase with the structural system. Similar to the passive TMD 

case, the semi-active BANG configuration requires low damping ratios 

(approximately 5%-15%) for optimal behaviour. On the contrary the remaining 

semi-active control configuration algorithms improve system performance with 

increasing damping ratio.  

4.3 Effect of mass ratio and stiffness uncertainty  

In this section of the thesis, the effect of mass ratio ( /dm mP  ) and stiffness 

uncertainty ( %sk u uncertainty) on the frequency response functions of the 

system is investigated. For the purposes of realism and clarity of the results, 

the selected mass ratios ranged between 1%-10%, while the stiffness 

uncertainty ratio was varied between 80% and 120% (indicating reduction and 

increase in stiffness respectively). Figure 23 shows that as the mass of the 

TMD increases, so does the reduction in response at the frequency that the 

TMD is tuned to. Additionally, as the mass ratio increases the distance 

between the side-lobe peaks also increases. In regards to the stroke of the 

auxiliary mass, it is shown that damper strokes reduce with increased mass. 

With respect to the uncertainty in stiffness and Figure 24, as expected 

optimum performance is achieved when no parametric  uncertainty is found in 

the system ( u%ks uncertainty=1), thus the auxiliary device remains in-tune to 

the structural system. For the cases that the structural stiffness is over-

predicted ( u%ks uncertainty <1), the response of the system in the lower 

frequency range (<1Hz) amplifies. Similarly, when the stiffness of the system 

is under-predicted ( u%ks uncertainty>1) the response of the system in the 

higher frequency range (>1Hz) amplifies. These observations, are a clear 

illustration of the sensitivity of the TMD device to tuning.  
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Figure 23. (a) Acceleration response, (b) Displacement response, (c) 
Maximum stroke, (d) Peak acceleration as a function of the mass ratio 

for the TMD case 
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Figure 24. (a) Acceleration response, (b) Displacement response, (c) 
Maximum stroke, (d) Peak acceleration as a function of the stiffness 

uncertainty for the TMD case 
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4.3.1 Frequency response comparison 

Similar procedure to the one presented in the former section has been 

followed for the comparison of the different semi-active control algorithms. The 

results (and three-dimensional plots) of the analysis can be found in Appendix 

A.  For clarity and ease of comparison, this section presents the two-

dimensional contour plots of the different control and algorithm configurations. 

Similarly to the passive TMD case, the acceleration response (being the 

tuning/optimisation parameter) of the semi-active controlled systems reduces 

with increasing mass ratio. Although the distance between the peaks of the 

side-lobes increases with increasing mass ratio for both the passive and semi-

active configurations, it is clear that semi-active configurations push the side-

lobe peaks further apart from the tuning frequency. In the same figure, it is 

observed that the semi-active configuration implemented with a BANG control 

becomes effective at higher mass ratios (>5-6%). For a mass ratio of 5%, the 

comparison of the algorithms in terms of acceleration, displacement, peak 

stroke and peak acceleration as a function of frequency is shown in Figure 26. 

Arguably, from the five semi-active control algorithm configurations the BANG 

control and VBG are shown to be the least promising, while the DBG, LQR 

and PID show significant response reduction.   
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Figure 25. Acceleration response as a function of the mass ratio for the 
different control and algorithm configurations 

Figure 26. (a) Acceleration response, (b) Displacement response, (c) 
Maximum stroke, (d) Peak acceleration of different algorithms for 5% 

mass ratio and 1/1 stiffness uncertainty ratio. 



- 83 - 

 

Figure 27. Acceleration response as a function of stiffness uncertainty for 
the different control and algorithm configurations for 5% mass ratio 

 
By observing the effectiveness of the different control configurations at varying 

stiffness uncertainty, it is illustrated in Figure 27 that the LQR is the 

configuration that is better at dealing with parametric uncertainty, particularly  

when the structural stiffness is underestimated ( u%ks uncertainty>1). 

Additionally, it can be observed that for the case of the passive TMD, an 

increase of acceleration by 45% for the extreme case of 20% under-prediction 

in stiffness( u%ks uncertainty=1.2) occurs, while for the DBG and PID 

counterpart only 26% increase occurs. 

4.4.1 Description of the benchmark structural system 

To illustrate the effectiveness of different algorithms at alleviating structural 

response based on the new suggested procedure that accounts for damper 

stroke saturation, the 76-storey and 306m tall benchmark wind-sensitive 

structure proposed by Yang et al. (2004) is considered. This office tower 

building proposed for construction in the city of Melbourne, Australia, has a 

square 42m x 42m cross-section, with a height to width aspect ratio of 7.3 and 
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a low natural frequency that lends it the wind sensitivity attribute. The 

structural system is comprised by a concrete core located in the centre and a 

concrete frame located at the perimeter of the structure. For such structural 

designs, the stiff core acts as the main mode of resisting the lateral loads, 

whereas the concrete frame is primarily designed to carry the gravitational 

loads and only part of the lateral loads. The structural configuration can be 

seen in Figure 28. The total mass and volume of the building is 153,000 metric 

tons and 510,000 3m  respectively, resulting in a mass density of 300 kg/m3 , 

typical for concrete structures. 

 

Figure 28. (a) Plan view and (b) elevation view of the 76-story benchmark 
structure (Yang et al., 2004) 

 
A simplified planar finite element model of the structure is constructed by 

considering the portion of the building between two adjacent rigid floors as a 

classical beam element of uniform thickness, leading to 76 rotational and 76 

translational degrees of freedom. From these, all the rotational degrees of 

freedom have been removed using static condensation, leading to a lumped 

mass sway model with 76 degrees of freedom, representing the displacement 

of each floor in the lateral direction. The resulting simulated structure has a 

total mass of 153,000tons, with the first six frequencies at 0.16, 0.765, 1.992, 

3.790, 6.395 and 9.45 Hz, and corresponding modal structural damping ratios 

of 1% calculated using  ayleigh’s approach. The mode shapes corresponding 

to the six first frequencies of the building are shown in Figure 29. 
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Figure 29. Mode shapes of the first six modes of the building 

4.4.2 The excitation 

The wind excitation input is derived from wind tunnel tests performed on a 

rigid model of the 76-storey benchmark structure constructed and tested in 

the Department of Civil Engineering, at the University of Sydney, Australia. 

The wind velocities used in the tests were derived from ASS1170.2-1989 

(Australian Wind Code (Australian, 1989)) for winds with return period of 10 

years.  32 pressure panels (16 panels on either side of the test structure) were 

combined to give a single pressure coefficient at the centre of each panel. The 

combined pressure coefficients are converted into across wind forces using: 

 2
Pr( ) 0.5 ( ) panF t U C t AU   (4.14) 
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where U  is the density of air (kg/m3), U is the mean wind speed at the top of 

the building (m/s), panA  is the corresponding single panel area (m2) and Pr ( )C t  

is the dimensionless instantaneous combined pressure coefficient. For more 

information on the exact details used for the derivation of the wind forces, the 

reader is referred to Samali et al. (2004). Indicatively, Figure 30a) and Figure 

30b) illustrate the resulting dynamic part of the wind force for the first and last 

occupied floors along with the frequency content of each loading case. 

Evidently any motion correlated component is excluded from this wind force 

description (i.e. no interaction of the motion with the wind force is enabled). 

 

Figure 30.  (a) Dynamic wind force time histories of last and first occupied 
floor, (b) frequency content of the wind excitation fluctuation 

4.4.3 Sensor arrangement 

In order to enforce practical and realistic constraints on the numerical model, 

a maximum limit of six sensors is imposed. In other words, at most six output 

variables can be used for feedback. For the cases where full state feedback 

is required (such in the case of LQR control), Kalman filtering is applied in 

accordance to (Kalman, 1960). For the assumed acceleration sensors used 

in this numerical model, the measurement noises are modelled as Gaussian 

rectangular pulses with pulse width of 0.001s and two sided spectral density 

of 10-9 m2 /s4 /Hz. This corresponds to a diagonal covariance matrix in which 

each diagonal element is 9 2 310 ( ) /m sG W�  , where W  is the time interval 

between two time instants considered. The resulting noise corresponds to 

approximately 1-5% of the uncontrolled acceleration response of the building. 
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4.4.4 Tuning and optimising the passive and semi-active devices 

In the analysis, two structural configurations are considered: 1) Structural 

model with an optimally designed TMD, and 2) with a STMD at different control 

algorithm configurations. A schematic representation of the two different 

structural configurations is found in Figure 31. Both the TMD and VD-STMD 

devices comprise an inertial mass of 500tons that corresponds to 0.356% of 

the total structural mass. Because of the long period of the structural system 

and the associated motion generally governed by the first modal response, it 

was deemed appropriate to tune both the devices on the fundamental 

frequency of the structure (i.e. ≈1rad/s ≈0.   Hz). 

 

Figure 31. Ensemble of the structural configurations; left TMD equipped 
structure and right VD-STMD equipped structure 

 

Obviously, optimising the min/max damping coefficients for the case of semi-

active control as well as the passive damping coefficient for the case of 

passive control, will have substantial effects on the performance of the control 

system. To this date, most of the tuning of the mechanical parameters of a 

TMD device is achieved via closed-form expressions derived from the 

minimisation of the rms acceleration response of a SDOF subjected to white 

noise or harmonic excitation (see section 4.2.2). While this approach is 

broadly accepted, representing civil engineering structures with an equivalent 

SDOF system can lead to significant errors in the estimation of their dynamic 

response. The problem amplifies when one considers the probabilistic nature 
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of the knowledge of the system’s properties and the fact that the estimated 

properties can vary with time (e.g. amplitude dependence, fluid-structure 

interaction etc.). Moreover, obtaining TMD mechanical parameters through 

the use of harmonic or flat spectrum inputs may not always yield optimum 

values (Ricciardelli et al., 2000). For these reasons, in this thesis and due to 

the fact that the motion of long period structures is generally governed by the 

first modal response, both the TMD and STMD are tuned to the fundamental 

frequency of the structure. On the other hand, tentative damping values are 

given to the damping devices based on existing formulas found in literature 

(Hartog, 1956, Ghosh and Basu, 2007) validated and adjusted when 

necessary through numerical/response optimisation on the MDOF system. 

Following this principle, and maintaining consistency between the 

comparisons, the numerical optimisation procedure is based on minimising 

the rms structural acceleration response. Figure32a shows the frequency 

response of the TMD equipped structure under mono-harmonic excitation 

around the tuning frequency of 1rad/s for different damping ratios of the 

device, while Figure32b shows the rms acceleration response of the structure 

at different floors, under wind excitation at the range of different damping 

ratios considered within Figure 32a. 
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Figure 32. (a) Power spectral density of the acceleration of the 7th floor 
under harmonic loading and (b) rms acceleration response of different 

floors under the across wind loading derived from the static wind-tunnel 
tests 



- 90 - 

 
From these two figures, it is evident that under both harmonic and wind 

excitation, the TMD equipped structure has a better performance when the 

damping ratio is between 3-5%. By employing a simplex search algorithm for 

iterative/numerical response optimisation of the rms acceleration response of 

the wind excited 76-storey structure, a damping ratio of 4.7% was selected for 

the later analysis. Similar to obtaining the appropriate fixed damping ratio for 

the TMD device, numerical optimisation using the Nelder-Mead simplex 

search algorithm (Nelder and Mead, 1965) was employed for deriving the 

maximum and minimum damping ratios for the STMD device. The 

implementation of the simplex algorithm was performed using MATLAB 

response optimisation toolbox.  It is worth noting that similarly to the 

optimisation of the TMD the optimisation of the STMD device is carried out 

solely on the basis of reducing the rms structural acceleration response of the 

last occupied floor (75th). Figure 33a and Figure 33b, demonstrate how the 

algorithm alters non-uniformly the maxc  and minc  values at each of its iterations 

in an attempt to minimise the rms acceleration metric. 

Figure 33. Numerical response optimisation using the Nelder-Mead simplex 
method; (a) damping band convergence and (b) rms response 

convergence 
 

Figure 34, shows the resulting damping ratios for each algorithm configuration 

on the VD-STMD equipped system, along with the damper strokes obtained 
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from the response optimisation procedure. It is important to notice that the 

device stroke was implemented as an additional variable to the problem in 

order to study the stroke limitations and interactions with the overall vibration 

mitigation performance it enables. The same scale was used throughout for 

comparative assessments. 

 

 

Figure 34. Optimal damping max-min ranges and damper strokes for the 
different VD-STMD control scenarios for the cases (top to bottom) of 
uncapped damper strokes, strokes capped at 95cm, 80cm and 75cm 
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It can be observed that as the stroke of the damper is progressively reduced, 

some of the algorithms could not achieve enhanced performance compared 

to the TMD equipped system in respect to the optimisation variable (rms 

acceleration). The phrase “not-attainable” in Figure    is used to graphically 

illustrate the aforementioned argument.  n this respect “not-attainable”, 

demonstrates that the optimisation of the LQR-STMD ensemble for strokes ≤ 

80cm, both minimum and maximum damping ratios converge to that of the 

TMD. Similarly, the DBG, LQR and PID control STMD ensembles for damper 

strokes ≤ 75 cm converge to the same minimum and maximum damping ratios 

of the passive TMD. In addition to the aforementioned observations, the 

results of the optimisation suggest that two categories of algorithms can be 

distinguished. In this respect, a category of algorithms requiring a large 

high/low damping ratio (i.e. max min/c c ) with a high maxc  coefficient, and a 

category of algorithms that requires a small high/low damping ratio with 

relatively low maxc  coefficient. In the former category, the DBG, PID and LQR 

algorithms are found, while the latter category contains the remaining two 

algorithms, the VBG and BANG.    

4.4.5 Evaluation criteria 

The comparison of the different control algorithms is based on the stationary 

response properties of the different controlled structures. In order to capture 

the participation of different modes to the structural response, the rms and 

peak accelerations and displacements at different storeys are extracted from 

the associated time-histories. From the obtained values, twelve performance 

criteria were identified and described for the benchmark wind-sensitive sway 

structure proposed by Yang et al. (Yang et al., 2004). The first criterion, 1J , 

appraises the ability of the control strategy to reduce rms accelerations at 

different building heights:    

 1 1 30 50 55 60 65 70 75 75max( , , , , , , , ) /x x x x x x x x x oJ V V V V V V V V V  (4.15) 

where,  is the rms acceleration of the thi  storey and V 75x o  is the rms 

acceleration of the 75th floor (last occupied floor) without any control action. 
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The second performance criterion evaluates the average performance of six 

floors above the 49th floor: 

 2
1 ( / )
6 xi xio

i
J V V ¦ for   50,55,60,65,70,75i    (4.16) 

where, xioV is the rms of the thi  floor without control. The third and fourth 

performance indices assess the ability of the control system to reduce top floor 

displacements: 

 3 76 76/x x oJ V V   (4.17) 

 4
1 ( / )
7 xi xio

i
J V V ¦ , for  50,55,60,65,70,75i     (4.18) 

where, xiV is the rms displacement of the thi floor, xioV is the rms displacement 

of the thi  storey without control and 76x oV  is the rms displacement of the 76th 

floor without control. The fifth and sixth indices take into account the rms 

stroke of the damper and the average power respectively: 

 5 76/xm x oJ V V  (4.19) 

 
1/2

2
6

0
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m
f

J x t u t dt
t

 ½° ° ® ¾
° °¯ ¿
³  (4.20) 

In which, xmV  is the rms stroke of the damper, ( )mx t  is the damper velocity 

and ft  is the total time of integration. Similarly to the first performance indices, 

the next four criteria (i.e. 7J  to 10J ) evaluate the performance in terms of peak 

response quantities: 

 7 1 30 50 55 60 65 70 75 75max( , , , , , , , ) /p p p p p p p p p oJ x x x x x x x x x  (4.21) 

 8
1 ( ,/ ,)
6 pi pio

i
J x x ¦ , for   50,55,60,65,70,75i    (4.22) 

 9 76 76/p p oJ x x  (4.23) 

 10
1 ( / )
7 pi pio

i
J x x ¦ , for   50,55,60,65,70,75,76i     (4.24) 
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where, pix is the peak absolute acceleration of the thi  floor with control and 
piox

is the peak acceleration of the thi  floor without control. Similarly, 
pix is the peak 

displacement of the thi  floor and 
piox is the peak displacement of the thi  floor 

without control. The 11th criterion assesses the ability of the control strategy 

to minimise the stroke of the damper: 

 11 76/pm p oJ x x  (4.25) 

in which, xpm  is the peak stroke of the actuator. The last criterion examines the 

control effort by calculating the maximum required power by: 

 12 max ( ) ( )mJ x t u t  (4.26) 

From the above defined criteria, it can be observed that the better the 

performance, the smaller the performance indices 1 2 12, ,..,J J J (Yang et al., 

2004). Table 4, summarises the 12 performance criteria introduced by the 

creators of the published benchmark case in hand (see ref. Yang et al., 2004). 

Table 4. Summary of performance criteria 
Index Description 

1J  Maximum floor rms acceleration (among a floor selection) 

2J  Average rms acceleration for selected floors 

3J  Maximum rms displacement of top floor 

4J  Average rms displacement for selected floors 

5J  Rms actuator stroke 

6J  Rms control power 

7J  Maximum floor peak acceleration (among a floor selection) 

8J  Average peak acceleration for selected floors 

9J  Maximum peak displacement of top floor 

10J  Average peak displacement for selected floors 

11J  Peak actuator stroke 

12J  Peak control power 

 

4.5 Simulation results 

Two structural configurations consisting of passive and semi-active control 

devices are used for investigating the performance of five different control 

algorithms on semi-actively controlled high-rise structures. Numerical 
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optimisation of the damping ratios for the TMD and STMD is carried out at 

different damper stroke states. The optimised devices are incorporated to the 

benchmark problem for numerical simulation. From this, the obtained 

structural response properties are used to calculate the 12 predefined 

performance indices for four different damper stroke cases. Figure 35–Figure 

38 present the results of the comparison. In these figures, the performance 

indices 1J  to 4J  and 7J   to 10J  are associated with rms and peak response 

properties, respectively, while the remaining four performance indices 5J  , 6J

, 11J   and 12J   are associated with the stroke and the power consumed by the 

device. 

 

Figure 35. Scaled (over the TMD performance) performance indices  for 
uncapped damper strokes 

 

Figure 36. Scaled (over the TMD performance) performance indices 1J ,.., 4J  
, 7J ,.., 10J for damper strokes ≤ 95 cm. 
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Figure 37. Scaled (over the TMD performance) performance indices 1J ,.., 4J  
, 7J ,.., 10J for damper strokes ≤ 80 cm. 

Figure 38. Scaled (over the TMD performance) performance indices 1J ,.., 

4J  , 7J  ,.., 10J for damper strokes ≤ 70 cm. 

 
As probably expected, when the stroke of the damper is unrestrained the 

performance of the STMD equipped structure at any control algorithm, 

configuration is superior on the majority of the performance objectives to that 

of the TMD-equipped one. This is illustrated through the lower values attained 

by performance indices 1J  to 4J   and 7J   to 10J  excluding 9J   . Note that for 

illustrative purposes, a scaled form was opted for all later graphs whereby the 

performance is scaled over the TMD performance. 

For the comparison between the different semi-active control configurations, 

the results from the uncapped damper stroke case indicate that it would be 

appropriate to divide the control algorithms into two categories. The first 

category contains the more ‘aggressive’ algorithms, indicated by a higher 
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performance index 11J  , and the second category of less ‘aggressive’ or more 

conservative algorithms that achieve performance gains at the expense of 

lower damper strokes (see also Figure 34 in its uncapped variant). In this 

regard, the    ,  Q  and     controllers are termed ‘least-conservative’, 

while the   N  and V   controllers are termed ‘conservative’.  ubsequently, 

when considering rms response properties (indicated by 1J  to 4J ), there is a 

noticeable difference between conservative and least conservative 

algorithms. As a matter of fact, the latter category of algorithms achieves rms 

response reduction ranging from 6% to 8% when compared with the TMD-

equipped structure and from 3% to 5% when compared with the STMD-

equipped structure coupled with conservative algorithms. On the other hand, 

when peak response properties are considered (indicated by 7J  to 10J ), 

conservative algorithms better match the performance of least conservative 

ones and even show superior performance when peak top floor displacements 

are considered (indicated by 9J ).  t can be also observed that ‘aggressive’ 

tuning of the PID controller, makes the system behave identically to the 

system ensemble with a DBG controller. Nevertheless, different PID tuning 

methods for optimal behaviour are not exploited in this chapter; thus, 

conclusions on the similarity of PID to other control algorithms cannot be 

definitive. By restraining the damper stroke to a maximum allowable value of 

95 cm as suggested by Yang et al. (2004), with reference to  

Figure 36, it can be observed that conservative algorithms succeed in 

reaching the performance of least conservative algorithms and even 

noticeably surpassing it in the case of peak response values, with the only 

exception of the LQR that appears to be more robust to the drop of damper 

strokes, maintaining better rms and peak response performance than every 

other algorithm.  y further reducing the stroke to ≤80 cm (Figure 37), similar 

observations can be made. However, the LQR that initially showed to be 

robust to the reduction of damper strokes failed to produce control actions that 

reduce the rms response of the structure without exceeding the stroke limit. 

This is evident from the fact that during the optimisation, both damping 

coefficients maxc  and minc   of the STMD device converged to a value of 4.7%, 

which is the optimum damping coefficient for the TMD device. In other words, 
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at these (low) damper strokes, the LQR ensemble STMD cannot exceed the 

performance of a passive TMD with respect to the tuning property (rms 

acceleration). From the two conservative algorithms, the VBG shows better 

performance when compared with BANG both in terms of rms and peak 

responses For damper strokes ≤ 70 cm, none of the least conservative 

algorithms is able to produce control actions that will reduce the performance 

objective. From the two remaining conservative algorithms, VBG remains 

preeminent, while the BANG-STMD ensemble demonstrated inferior 

performance compared with the TMD system with respect to peak 

acceleration response properties indicated by performance index 7J  and 8J . 

From the above findings and with reference back to Figure 34, it is evident 

that regardless of the damper stroke, all three of the least conservative 

algorithms require high maxc  damping ratios for achieving optimum 

performance, while their minc  coefficient is set to a relatively low value. This 

observation suggests that least conservative algorithms make better use of 

the minimum damping ratio for increasing stroke (and thus optimally increase 

the velocity of the damper so that the damping force is also increased), and 

thoroughly use their high damping only when necessary. This is similar to 

reducing the damping ratio of the passive device (thus increasing the stroke) 

up to a point where no more performance can be gained. Supporting this 

observation, the results obtained from the optimisation of minimum and 

maximum damping ratios for the cases of damper strokes ≤95 cm, least 

conservative algorithms restrain the stroke by increasing the minc  coefficient 

while at the same time attempt to maintain the maxc  coefficient close to the 

optimal. Undoubtedly, in order to maintain the performance of least 

conservative algorithms close to the optimal, the resulting large maxc  dictates 

the requirement of large forces (and in turn control power indicated by 

performance index 6J   and 12J ), which in turn influence the size and number 

of devices required for control. 

4.5.1 Remarks 

A variety of fixed parameter control algorithms proposed for semi-actively 

controlled structural systems have been evaluated for use on high-rise 
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structures incorporating STMD devices, through numerical simulations on a 

simplified SDOF system and a wind-excited 76-storey benchmark structure. 

The implementation of each algorithm was conducted based on available 

measurements of the structural system including absolute accelerations, 

displacements and velocities. The STMD-equipped structure at each of the 

algorithm configurations resulted in an improved performance when 

compared with the best passive case, with only exception the case of peak 

displacements in which the passive system was superior to the semi-active 

one. Still, for the semi-active case, the response of the structure varied 

significantly, depending on the choice of algorithm. In this regard, it is found 

that when no consideration is given on the damper strokes, three of these 

algorithms are found to be most suited for use with STMD on wind-excited 

structures. The LQR, the DBG and the PID that maximise damper strokes, 

thus termed ‘least-conservative’, achieved significant response reductions. 

On the other hand, it has been demonstrated that by progressively reducing 

the damper strokes, the remaining two algorithms, the VBG and BANG, the 

algorithms that significantly restrain the damper strokes and thus termed 

‘conservative’ managed to reach and even surpass in some cases the 

performance of previously ‘best’ algorithms. From the category of least 

conservative algorithms, the LQR was shown to be more effective for use on 

the structure of interest, yet the requirement for full state feedback that 

translates to additional state measurements and computational burdens 

suggests that DBG and PID might be practically superior. From the category 

of conservative algorithms, the VBG is shown to be unconditionally superior 

to the BANG. From this, it has been demonstrated that appropriate selection 

of a control algorithm can be considered as an alternative method of limiting 

damper strokes while maintaining expedient performance without the 

requirement of an external auxiliary damping device or high pass filtering for 

limiting the damper’s stroke. Finally, by investigating the tuning of the damping 

ratios for the different configurations, it is found that the main difference of the 

two categories of control algorithms is the requirement of the least 

conservative algorithms for high damping ratios for achieving optimal 

behaviour, whereas conservative algorithms require significantly lower values. 

As a matter of fact, for relatively similar performance gains, a DBG would 
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require a maximum damping ratio of 16% as opposed to 8% required by a 

VBG. This suggests that the choice of an algorithm from the latter category 

would translate to a reduced size/number of auxiliary devices used, control 

forces and power, which in turn relate back to the practical applicability and 

cost of the STMD device on high-rise structures. 
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Chapter 5 
A Novel Semi-active Hybrid Configuration 

 

In this chapter of the thesis, a novel, energy and cost efficient ‘smart’ hybrid 

semi-active mass damper configuration for use on structural applications has 

been developed. For this task, an arrangement of both active and semi-active 

control components coupled with appropriate control algorithms are 

constructed and their performance is evaluated on both single and multi-

degree of freedom structures for which practical constraints such as stroke 

and force saturation limits are taken into account. It is shown that under both 

free and forced vibrations, the novel device configuration outperforms its more 

conventional passive and semi-active counterparts, while at the same time 

achieving performance gains similar to the active configuration at considerably 

less energy and actuation demands, satisfying both strict serviceability and 

sustainability requirements often found to govern most modern structural 

applications. The contents of this chapter are an adapted form of the 

conference paper presented in the proceedings of the IJSSD symposium on 

progress in structural stability and dynamics, and a journal paper published in 

the Journal of Applied Sciences. Details of these papers are as follows: 

Demetriou, D.; Nikitas, N.; Tsavdaridis, K.D. A Novel Hybrid Semi-active 
Tuned Mass Damper for Lightweight Steel Structural Applications. In 
Proceedings of the IJSSD Symposium on Progress in Structural Stability and 
Dynamics, Lisbon, Portugal, 21–24 July 2015. 
 
Demetriou, D.; Nikitas, N. A Novel Hybrid Semi-Active Mass Damper 
Configuration for Structural Applications. Appl. Sci. 2016, 6, 397. 
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5.1 Introduction 

Alleviating the vibration response of tall and slender structures under wind 

action becomes an increasingly challenging task. Generally speaking, the 

response of such structures subjected to wind excitation can be thought of as 

the summation of three components, namely static, background aerodynamic, 

and resonant dynamic, in the relevant modes of vibration. Mitigating the static 

and background aerodynamic response can be achieved through 

supplemental structural stiffness and/or reduction of the mean excitation 

forces through manipulation of the structural aerodynamics (shape). Still, as 

structures become taller and more slender, resonant contributions become 

more and more significant and eventually dominate (Holmes, 2007). 

One method of successfully and conveniently mitigating the resonant 

response of structures is by modifying their dynamic properties (frequencies 

and damping). Amongst the most popular devices used for resonant response 

reduction are the dynamic vibration absorbers (DVAs), which can be found in 

passive, active, hybrid and semi-active forms. The passive form of the DVA, 

the tuned mass damper (TMD), has been studied for more than a century and 

is shown to be effective and reliable at alleviating structural response under 

generic dynamic loading; however, this device being tuned to a single 

vibration mode of the structure thus has performance limited to a narrow band 

of operating frequencies that in turn compromise the system’s attenuation 

capacity when excited beyond the targeted mode. Overcoming the limitations 

of the passive TMD, the active version of the DVA, the active mass damper 

(AMD), achieves resonant response reduction by generating control forces via 

acceleration and deceleration of auxiliary masses using actuators in a way 

that at any given time and independent of the excitation and system’s 

characteristics, maximum energy is absorbed. Clearly, while the flexibility and 

adaptability of active devices allows for better vibration response reduction, 

this performance enhancement is achieved at the expense of considerable 

power-force demands and reliability. Adding to the limitations of the purely 

active AMD configuration, the performance of such devices on high-rise 

structures is typically limited by the capacity of the installed actuator and the 

auxiliary mass strokes (Ricciardelli et al., 2003, Yang et al., 2004, Zhang  and 

Ou, 2015). Despite the attempts made to overcome these limitations, either 
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by using different, more efficient and novel-at-the-time AMD configurations 

such as the swing-style AMD presented in (Haertling, 1994), or the 

electromagnetic device with semi-active control properties presented in 

(Scruggs and Iwan, 2003), amongst many other configurations (Zhang  and 

Ou, 2015, Zhang et al., 2016), the crucial absence of a fail-safe mechanism 

limits the options to structural engineers to an approach that is based on the 

hybridisation of the AMD device with a component able to prevent instability 

upon active component failure. To this extent, most practical structural control 

configurations comprising a form of active DVA are found in an active-passive 

hybrid state (Ikeda, 2009), with an inspiring recent application on the 101-

storey Shanghai World Financial Centre, highlighting the prospects of hybrid 

control.  

The conventional hybrid configuration of a DVA, entitled as active-tuned mass 

damper (ATMD), is one that requires a passive TMD device to work in 

conjunction with active control elements such as hydraulic, motor, ball-screw 

actuators, etc. Such devices are shown to achieve a compromise between 

performance and reliability at the expense of lower strokes and actuator 

demands. Studies such as those found in (Fujinami et al., 2001, Nakamura et 

al., 2001, Watakabe et al., 2001, Mitchel et al., 2012) are a few amongst the 

many illustrating the performance gains arising from the use of ATMDs on 

structural systems under both earthquake and wind excitations. Pushing the 

boundaries of hybrid control and innovation, Tan et al. (2012) proposed a 

hybrid mass damper configuration for Canton Tower in Guangzhou China. 

This configuration requires an AMD to work in parallel with a two-stage TMD, 

demonstrating significant vibration attenuation under strong wind and 

earthquake excitations. Following the same path, Li and Cao (2015) later 

proposed a hybrid configuration that uses two interconnected ATMDs for the 

supply of the control action. More recently, Tso et al. (2016) proposed an 

alternative approach to the design of the hybrid vibration absorber that 

incorporates detached passive and active parts, resulting in a non-colocated 

setup that was shown to achieve better performance than the traditionally 

bundled ATMD. In the field of mechanical engineering and away from DVA 

applications, but following the same logic, Khan et al. (2016) proposed a hybrid 

configuration that requires a magnetorheological semi-active damper to work 
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in conjunction with an active actuator placed at the base of the structural 

system, claiming the first-ever hybrid semi-active/active configuration. The 

aim of the study was to show how an active actuator can assist the semi-active 

device in a non-colocated configuration, in an attempt to achieve performance 

as close to that of a fully active system as possible. Prior to the publication of 

Khan et al. (2016) , a different configuration that still makes use of semi-active 

and active elements has been proposed by the authors of this chapter in 

(Demetriou et al., 2015a). The fundamental novelty of the configuration and 

the main difference to any prior hybrid configuration is the use of collocated 

semi-active and active elements for the supply of control power directly to the 

DVA that in turn controls the structural system. In this chapter, boundaries of 

innovation and the limitations of the TMD, AMD and ATMD are surpassed and 

the idea proposed by Demetriou and Nikitas (Demetriou et al., 2015a) is 

extended through the use of a novel semi-active hybrid mass damper (SHMD) 

configuration proposed in this chapter. This device extends the conventional 

ATMD logic, by employing semi-active dampers working in conjunction with 

actively controlled elements in a way that, by combining the two components 

using appropriately designed control algorithms, the potential of timed 

maximum energy extraction is exploited. To this end, the operating principle 

of the novel SHMD configuration requires the semi-active elements to be 

designed such that maximum kinetic energy is extracted from the system at 

the expense of low energy demands required to control: power operated 

valves, the fluid discharge through orifices, the magnetic field around a ferrous 

fluid piston, etc., and then allowing for energy addition to the system using 

active (hydraulic) actuators, that in turn enhance the system’s adaptability to 

ever-changing loading conditions. In other words, the active control 

components of the hybrid device are restricted to add energy while the semi-

active components perform as usual by extracting energy. Critically, the 

control algorithm needs to be designed such that when energy is added to the 

system (and  V ’s mass is accelerated), the semi-active component drops to its 

minimum value such that it does not counteract the action of the active 

component.  

In order to demonstrate the performance gains from the use of this novel 

SHMD device, comparative studies on a low frequency single-degree-of-
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freedom (SDOF) system subjected to free and forced vibrations are carried 

out. The selection of the input conditions was performed in an attempt to 

quantify the performance gains of the novel configuration over a wider band 

of operating conditions, through capturing a broader band of excitation 

frequencies. The study naturally extends the application of the novel 

configuration on a more realistic 76-storey benchmark structure on which 

realistic wind loading, actuation and damper stroke limits are applied. 

5.2 Modeling Principles 

5.2.1 General Dynamic Vibration Absorbers Modeling Approach 

Modeling the novel SHMD device requires a thorough understanding of the 

modeling principles and procedures followed in the design of passive, active 

and semi-active systems. In order to do so, the dynamic behaviour of an n-

DOF system coupled with a DVA (as depicted in Figure 39) under a random 

dynamic loading needs to be considered through its equation of motion:  

 ( ) ( ) ( ) ( ) ( )Mx t Cx t Kx t Bu t Dd t� �  �  (5.1) 

 

Figure 39. Structural configuration and mathematical models for (a) tuned 
mass damper (TMD); (b) semi-active tuned mass damper (STMD); (c) 
active mass damper (AMD); (d) active-tuned mass damper (ATMD); 

and (e) semi-active hybrid mass damper (SHMD) systems. 
 

In Eq.(5.1), each overdot declares single differentiation with respect to time, 

M , C  and K  are the n nu  mass, damping, and stiffness matrices, 

respectively; ( )x t and ( )d t  are in order of the displacement, and external force 

1nu  column vectors; ( )u t is the single scalar control force and ( 1)B nu  and 
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( )D n nu  are the influence matrices assigning the control and external force 

contributions, respectively, to the individual degree of freedoms (DOFs). For 

each DOF in ( )x t  being the lateral displacement of the ith ( 1,..., )i n  mass, 

M becomes diagonal, while for the classical viscous damping considered the 

damping matrix C  attains a form identical to the symmetric stiffness matrixK

. Without any loss of generality, the DVA is attached to the (n −  )th   F and 

its motion constitutes the nth DOF. For control implementation purposes, 

Eq.(5.1) can be represented in the state space domain using a first order 

differential equation, such that: 

 ( ) ( ) ( ) ( )z t Az t Fu t Ed t � �  (5.2) 

where, ( )z t  represents the first order time-change of the states 

> @( ) ( ) ( ) Tz t x t x t  of the system, A is the system block matrix containing the 

system’s mass, damping, stiffness properties, F is the control force locator 

block matrix, and E  is the external perturbation locator block matrix, such 

that: 

 1 1 1 1

0 0 0
, ,

I
A F E

M K M C M B M D� � � �

ª º ª º ª º
   « » « » « »� �¬ ¼ ¬ ¼ ¬ ¼

 (5.3) 

5.2.1.1 Passive Tuned Mass Damper (TMD) Control 

A TMD device produces control actions as a result of the relative motion of its 

mass against the structural mass such that the control force term, ( )u t  in 

Eq.(5.2) is calculated at each time step by: 

 ( ) ( ) ( )p r p ru t k x t c x t �   (5.4) 

In this equation, ( )rx t and ( )rx t  are respectively the relative velocity and 

displacement between the nth and (n −  )th   Fs and pc  and pk , are the 

passive damping and stiffness coefficients respectively. To this date, most of 

the tuning of the mechanical parameters pc  and pk  of a TMD device is 

achieved via closed-form expressions derived from the minimisation of the 

rms acceleration response of a single degree of freedom (SDOF) subjected 

to white noise or harmonic excitation. While this approach is broadly accepted, 

representing civil engineering structures with an equivalent SDOF system can 
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lead to significant errors in the estimation of their dynamic response. The 

problem amplifies when one considers the probabilistic nature of the 

knowledge of the system’s properties and the fact that the estimated 

properties can vary with time (e.g., amplitude dependence, fluid–structure 

interaction, etc.). Moreover, obtaining TMD mechanical parameters through 

the use of harmonic or flat spectrum inputs may not always yield optimum 

values (Ricciardelli et al., 2000). In this chapter, because the motion of long 

period structures is generally governed by the first modal response, the 

stiffness coefficient of the auxiliary device is selected just as the mass damper 

is tuned to the fundamental frequency of the structure, whereas the damping 

coefficient is obtained using the expressions found in (Hartog, 1956, Ghosh 

and Basu, 2007), and validated and adjusted when necessary through 

numerical optimisation based on (Nelder and Mead, 1965, Demetriou et al., 

2015b) for the case of the more complex, wind-excited multi-degree of freedom 

(MDOF) structural system. 

5.2.1.2 Active Mass Damper (AMD) Control and Hybrid Active-Tuned 
Mass Damper (ATMD) Control 

For a purely active system, the passive control force takes the form of a 

desired action, ( )au t  determined via a control algorithm such as the Linear-

Quadratic-Regulator (LQR), proportional-integral-derivative (PID) controller or 

similar. With reference to Figure 39c, for the case of AMD control, the force is 

delivered solely by means of mechanical actuation; thus the actuation force ( )af t  

is equal and opposite to the calculated desired action: 

 ( ) ( )a au t f t �  (5.5) 

Obviously, for the purpose of limiting the stroke and the requirement of a fail-

safe mechanism, an ATMD is found in most practical applications (Yang et al., 

2004, Ikeda, 2009). To this end, and with reference to Figure 39d, for an 

ATMD, the desired force is mathematically expressed as the summation of 

the passive forces generated by the motion of the mass damper and an 

additional external force provided by means of mechanical actuation. Because 

the dynamic characteristics of the mass damper remain unaltered and the 
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desired interaction force has been already calculated by the control algorithm, 

the required conventional hybrid actuation, _ ( )a atmdf t  is determined from: 

 _( ) ( ) ( ) ( )a p r p r a atmdu t c x t k x t f t � �  (5.6) 

In Eq.(5.6), the mechanical properties pc , pk  of the device can be selected 

similarly to a purely passive device. Still, typically a higher damping coefficient 

pc  is used along with the ATMD device for stroke-restraining purposes (Yang 

et al., 2004, Demetriou et al., 2015b).  

5.2.1.3 Semi-Active Tuned Mass Damper (STMD) Control 

Similar to an active system, the semi-active counterpart makes use of control 

algorithms for the selection of appropriate control actions. The first step in the 

calculation of the semi-active control forces is the calculation of an equivalent 

active force using active algorithms and Eq.(5.5). Next, the active force is 

tailored so that it can be physically realised by the semi-active device. In this 

regard, because of the fact that no energy can be added directly to the system, 

the semi-active device will produce control forces only when required, i.e., 

when the damper is requested to “consume” energy. This is achieved by 

applying semi-active force saturation limits such that the semi-active control 

force, ( )sau t is calculated by (Hrovat et al., 1983): 
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The product of ( ) ( )a rf t x t  is the power, ( )aq t , of the whole active system 

device. Similarly, the power of just the semi-active component, ( )saq t , is 

defined as the product of the force that can be physically translated by the 

device, ( )sau t , and its relative velocity, ( )rx t : 

 ( ) ( ) ( ) 0sa sa rq t u t x t �  (5.9) 

A schematic representation of the power time histories of both an actively and 

a semi-actively controlled device is shown in Figure 40. It can be observed 
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that the active device has the advantage of both adding and dissipating 

energy, as indicated by positive and negative powers, while the semi-active 

device only consumes power (indicated by only negative power—and its 

integral energy is also negative). 

Figure 40.   ndicative example of the “power” scheme/demand practised in 
(a) Active; and (b) Semi-active control. 

 
When a variable damping (VD) STMD is considered, the method of achieving 

enhanced performance is by appropriately and in a timely fashion adjusting 

the damping coefficient of the device within bands, in order for the required 

control force to be reached. By referring back to the system presented in 

Figure 39, the semi-active damping force contribution can be expressed as

( ) ( )sa rc t x t . Inspection of Eq.(5.9) easily leads to ( ) 0sac t � . Updating Eq.(5.6), 

the resulting overall control force provided at each time instant by a VD-STMD 

can be expressed mathematically as: 

 ( ) ( ( ) ) ( ) ( )sa sa n r p ru t c t c x t k x t � �  (5.10) 

In Eq.(5.10), nc  is a small damping coefficient representing the inherent 

damping of the connection of a semi-active device and the structural system. 

In this equation, the time-varying semi-active damping coefficient, ( )sac t , is 

the only unknown, making the calculation of the real-time variation of the 

damping coefficient straightforward. 

5.2.2 Modeling the Semi-Active Hybrid Mass Damper 

Through the use of an SHMD, the energy-dissipation capacity of a semi-active 

device is exploited and energy is added only when required through force 
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actuators. The main difference between an ATMD and the novel SHMD 

configuration lies in the fact that the actuators of the ATMD both add and 

dissipate energy, whereas the forcing provision of the SHMD can only add 

energy. To this end, it can be realised that when the actuators of the ATMD 

are required to add energy to the system, sufficient power should be provided 

so that the “braking” force acting on the  V ’s mass by the passive damping 

elements of the ATMD is surpassed for the mass to be accelerated, and 

sufficient control force can then be applied to the system. On the contrary, the 

novel SHMD configuration lowers the active actuation demands by lowering 

the semi-active damping component to its minimum value throughout the 

period of active actuation. The steps required for the implementation of this 

configuration and the calculation of the envisaged control action, ( )shmdu t , are 

explicitly introduced below and summarised in Figure 41: 

(1) Design of a semi-active controller based either on an active controller that 

is clipped using Eq.(5.7) for semi-active control purposes or using direct 

output feedback control algorithms such as the ones found in the 

groundhook control scheme for alleviation of the online computational 

burden of Eq.(5.7) and Eq.(5.8). 

(2) Design an active controller using active control algorithms such as LQR, 

PID or similar designed to satisfy performance and robustness 

specifications of the non-linear system (i.e., system including the semi-

active controller). 

(3) Limit the capacity of the active actuator to only add power to the system: 

 ( ) ( ) ( ) 0a a rq t f t x t !  (5.11) 

(4) Incorporation of both active and semi-active forces to the system using: 

 ( ) ( ) ( )shmd sa au t u t f t �  (5.12) 

(5) Optimisation of maximum and minimum damping ratios of the semi-active 

control device for the case of on-off control. 
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Using the steps described, the resulting control signals relative to the active 

control counterpart should attain the form shown in Figure 42(b),(c). Evidently, 

the active control component of the novel device configuration (Figure 42(c)) 

can only supply force in the 0aq t  regions, whereas the semi-active control 

component is able to only supply force in the 0aq d  regions. With reference 

to Figure 42(b), the fifth and final step of the SHMD design procedure, the 

optimisation of the maximum and minimum damping coefficients of the semi-

active component determines the slope and the magnitude of the control signal 

which in turn severely influence the performance of the hybrid system.  

 

Figure 41. A schematic representation of the procedure followed for 
modeling the semi-active hybrid mass damper. 

Figure 42. Control signals as a function of relative velocity for the (a) Purely 
active system; (b) Semi-active component; and (c) Active component of 

the hybrid configuration subjected to a white noise excitation. 
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5.3 Control Methods 

Obtaining the semi-active and active forcing components is achieved via the 

use of control algorithms. In this study, for the purely active control case, the 

algorithm of choice is the optimal LQR that was proven suitable in a series of 

studies (Yang et al., 1987, Soong, 1990, Yang et al., 2004, Cheng et al., 2008) 

for use on flexible structural applications. The design of the controller (i.e., the 

determination of the weighting matrices which are required in the 

determination of the control gains) is based on the performance index defined 

in (Soong, 1990). For the case of semi-active control, the displacement based 

groundhook algorithm that belongs to the category of direct output feedback 

controllers (i.e., the control actions are calculated based on a limited number 

of measurements) is selected. The choice of this direct output feedback 

controller for the case of semi-active control is based on the reduction of the 

computational effort required for the online calculation of Eq.(5.7) and Eq.(5.8), 

requirement of minimum state measurements as well as its enhanced 

performance over other conventional direct output feedback controllers as shown 

in the studies of (Viet et al., 2014, Demetriou et al., 2015b). The mathematical 

expressions describing the control algorithm used in the derivation of the 

control actions are found in (Koo, 2003, Koo et al., 2004). 

With reference to Section 2.2, and because of the fact that semi-active control 

precedes the design of the active controller, the incorporation of semi-active 

control to the system results in a configuration that is no longer linear but 

piecewise linear, generating the need for linearisation before a purely active 

controller is designed. In this study, the linearisation of the piecewise linear 

system is performed via input/output subspace SSARX identification using 

  T   ’s (  TLAB2016a, The MathWorks Inc., Natick, MA, USA, 2016) 

system identification toolbox. To this end, a purely harmonic signal with known 

frequency and amplitude is used as the external input to the system. The 

displacement of the structural mass was used as the output. From this, a four-

state equivalent linear system is constructed and the state matrices are extracted 

for use in the active controller design procedure. 
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5.4 Numerical Investigation 

5.4.1 Single Degree of Freedom (SDOF) Structural Configuration 

In order to quantitatively capture the performance gains of the proposed 

system on both the transient and steady-state components of the vibration 

response, four alternatives, namely passive (TMD), semi-active (STMD), 

active (ATMD) and semi-active hybrid (SHMD)-equipped (low-damped) SDOF 

structures, are investigated. For the simulations, the mass and stiffness of the 

SDOF structure is selected such that the resulting mass ratio of the structural 

mass to the mass of the damper is 1% and the frequency of the system is 

approximately 1 rad/s, typical for high-rise structural applications. The 

resulting mass, stiffness and damping matrices used in the simulations are: 

 

1000 0 1009.9 9.9
Kg Ns/m

0 10 9.9 9.9

51.22 1.22 50.04 0.04
Ns/m Ns/m

1.22 1.22 0.04 0.04w

M K

C C
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  (5.13) 

In Eq.(5.13), C  is the damping matrix used for the case of TMD control, and 

wC is the damping matrix used for the case of STMD, ATMD and SHMD 

control. It is evident that for the case of passive control, a damping ratio of 

6.1% and stiffness tuning ratio of 0.9 derived using  en Hartog’s expressions 

found in (Hartog, 1956) are used for optimal passive behaviour and maximum 

rms reduction at steady state. For the remaining three control cases, a minimal 

damping ratio of 0.2% is used in order to capture the inherent damping of the 

connection of the damper and the structural mass. 

5.4.1.1 Variable Damping Coefficient Configuration 

For the fairness of the comparison and consistency with the optimisation 

procedure followed for the case of passive TMD control, the selection of the 

variable damping coefficients for the case of the semi-active and hybrid 

controlled SDOF systems is performed via examination of the rms 

acceleration response of the system at steady state. To this end, an 

investigation of the acceleration response for maximum damping ratios (
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max max / 2 d nc m] Z ) ranging from 1% to 100% of the critical damping is carried 

out, the results of which are presented in Figure 43 and Figure 44. With 

reference to Figure 43a, for the STMD-equipped system, at higher damping 

ratios, the acceleration response of the structural mass reduces and the 

distance between the side lobes increases. On the contrary, for the SHMD-

equipped system (Figure 43b), it can be observed that at low damping ratios, 

it has a performance inferior to its STMD-equipped counterpart. Nevertheless, 

as the damping ratios increase beyond the value of 0.3, the performance of 

the SHMD-equipped system drastically improves, reducing the acceleration 

response while at the same time pushing the side-lobes of the response 

further apart. The comparison of the two systems as a function of the damping 

ratio is shown in Figure 43c which presents the difference of the acceleration 

responses of the two systems (i.e., ( ) ( )shmd stmdx xZ Z� ). Owing to the selected 

sign convention, negative values in Figure 43c indicate performance gains of 

the SHMD over the STMD system, while positive values indicate performance 

loss. For clarity, the two-dimensional acceleration response of the STMD and 

SHMD controlled systems for maximum damping ratios of 0.3, 0.5, 0.75 and 

1 is presented in Figure 44. The average response of the systems over the 

wider range of frequencies is captured by the area under the response curves 

as illustrated in the same figure. 

Figure 43. Acceleration response of (a) STMD; and (b) SHMD; and their (c) 
Difference at different damping ratios. (Units of acceleration response 

in  2 3/ /m s rad  ). 
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Figure 44. Acceleration response at steady state for damping ratios of (a) 

0.3; (b) 0.5; (c) 0.75; and (d) 1. Shaded area illustrates average system 
response. 

 
For the case of the SDOF, the performance of the novel hybrid configuration 

is investigated at the average maximum damping ratio of 0.5. Similar to the 

passive (TMD) optimisation procedure, when practical constraints are applied 

such as force and stroke saturation limits (for the case of the MDOF system), 

further numerical optimisation is carried out and appropriate values of 

maximum damping coefficients are selected. For the fairness of the 

comparison, the SDOF the STMD configuration is also designed with a 

maximum damping ratio of 0.5. 

5.4.1.2 Free vibration analysis 

For the first set of simulations, the SDOF is given an arbitrary initial 

displacement of 10 cm and is allowed to vibrate freely. Figure 45(a),(b) 

illustrate the system’s displacement along with the active and semi-active 

forces required by the SHMD system.  
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Figure 45. (a) Displacement response time history of different control 
configurations; (b) Control signal of active component and semi-active 

component of the hybrid configuration. 
 

 learly, the rate of decay of the system’s response is a good primary indication 

of its effective damping. In this regard, it is shown that at the absence of a 

DVA, the low damped structure requires a much longer settling time. On the 

other hand, once a DVA is employed in the form of TMD, STMD, ATMD and 

SHMD the settling times drastically decrease, thereby demonstrating the 

effective damping of each of the five structural configurations. More 

specifically, out of the four DVA configurations, the SHMD and ATMD seem 

to be superior to their purely passive and semi-active counterparts. As a 

matter of fact, it is evident that the system coupled with an SHMD device 

follows closely the trajectory of the AMD-equipped, one particularly at the late 

part of the vibration response.  

5.4.1.3 Forced vibration 

Systems equipped with devices such as STMD (and also SHMD) are no 

longer linear but piecewise linear. For many non-linear systems, the response 

magnification factor may depend on the type and magnitude of the excitation 

and the resulting structural response might be of random non-periodic nature. 

Yet, following the proof of Hac and Youn (Hac and Youn, 1992, Pinkaew and 
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Fujino, 2001), the response of piecewise linear second-order systems to 

periodic excitation is also periodic, and the amplitude ratio is independent of 

the excitation amplitude. In other words, exciting the structure using a periodic 

wave of notional amplitude allows for meaningful performance information in 

the frequency domain. Figure 46 exhibits the time history response of the 

structural configurations under harmonic excitation with frequency equal to the 

structural frequency. For clarity, only the response time histories for the cases 

of STMD, ATMD and SHMD and TMD are presented. Complementing these 

results, Figure 47 illustrates the continuous (running) displacement rms for 

each of the different structural configurations. 

 

Figure 46. Transient and steady-state response of the different control 
device configuration under harmonic loading at tuning frequency 

(excitation frequency 1 rad/s). 
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Figure 47. Transient and steady-state Crms response of the different control 
device configuration under harmonic loading at tuning frequency 

(excitation frequency 1 rad/s). 
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It is evident that under resonant forced vibration, the ATMD, STMD and SHMD 

clearly outperform the more conventional passive TMD under both the 

transient and steady-state parts of the vibration. Additionally, under the 

transient component of the vibration, the ATMD and SHMD devices are 

superior to the STMD. On the other hand, under steady state, the STMD is 

shown to be significantly better than the ATMD configuration, achieving 

steady-state response closer to the system equipped with the novel SHMD 

configuration. Similar remarks can be made after investigating the steady-

state and peak frequency response functions (the response of the system at 

different frequencies, shown here as the ratio of the frequency of the external 

perturbation, eF and the natural frequency, nF of the structure) of the systems. 

Figure 48a,b illustrate that the novel device configuration achieves the best 

compromise between steady-state and transient performance.  

5.4.2 Effect of mass and stiffness variation 
In this section of the thesis, the effect of mass ratio ( /dm mP  ) and stiffness 

uncertainty ( %sk u uncertainty) on the frequency response functions of the 

novel structural configuration is investigated. For the purposes of realism and 

clarity of the results, the selected mass ratios ranged between 1%-10%, while 

the stiffness uncertainty ratio was varied between 80% and 120% (indicating 

reduction and increase in stiffness respectively). In contrast to the parametric 

analysis run in section 4.3, the purpose of this parametric study is to illustrate 

the performance of the control system for the case where a baseline optimal 

controller is applied. Clearly, if optimal performance is desired, system 

identification based on the procedures described in section 5.3 and optimal 

control design at each mass ratio should be carried out. It is reasonable 

however that such parametric analyses are important in showing the trends of 

the novel configuration at different mass ratios and stiffness uncertainty. 

Additionally, it is believed that such parametric analyses serve as a good first 

indication on the robust stability of the novel configuration.  
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Figure 48. (a) Steady-state; and (b) Peak frequency acceleration response 
of the different structural configurations. 
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Figure 49. (a) Acceleration response, (b) Displacement response, (c) 
Maximum stroke, (d) Angular phase, (e) Control signal, and (f) Peak 

acceleration as a function of the mass ratio( P ) and frequency. 
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Figure 50. (a) Acceleration response, (b) Displacement response, (c) 

Maximum stroke, (d) Angular phase, (e) Control signal, and (f) Peak 
acceleration as a function of stiffness uncertainty percentage and 

frequency( 0.05P  ). 
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With respect to Figure 49 and Figure 50 some remarks can be made. Firstly, 

for given control gains, at increasing mass ratios an improvement in 

performance is observed, while the stability of the system is maintained 

(indicated by the angular phase of the system ( Figure 49d). In addition to this, 

as the mass ratio is increased, the active control system attains less and less 

importance as indicated by the reduction in the control force ( Figure 49). This 

is to compliment the arguments made earlier, suggesting the need for system 

identification. The reduced contribution of the active control force to the 

response of the system is also shown in Figure 51b. In this figure, at increasing 

mass ratios, the energy consumed by the novel configuration converges to 

the energy consumed by the conventional STMD device. With regards to 

parametric stiffness uncertainty and for given mass ratios (5%), the device 

maintains stability (Figure 51a) while also maintaining expedient performance 

over the STMD and TMD devices. 

 

Figure 51. Energy dissipation as a function of (a) Stiffness uncertainty and 
(b) Mass ratio for the different structural configurations 

5.4.2 High-Rise Structural Configuration 

In order to establish the robustness of the novel device and its ability to reduce 

wind vibration response, it is important to evaluate its performance on realistic 
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high-order systems for which constraints such as actuator force-power 

demands and damper strokes can be taken into account. To achieve this, the 

76-storey benchmark wind-sensitive sway structure proposed by Yang et al. 

(Yang et al., 2004) is used in this study. The building has a square 42 m × 42 

m cross-section, with a height to width aspect ratio of 7.3 and a low natural 

frequency that lends it the wind sensitivity attribute. A simplified planar finite 

element model of the structure is constructed by considering the portion of the 

building between two adjacent rigid floors as a classical beam element of 

uniform thickness, leading to 76 rotational and 76 translational degrees of 

freedom. From these, all the rotational degrees of freedom have been 

removed using static condensation, leading to a lumped mass sway model 

with degrees of freedom, representing the displacement of each floor in the 

lateral direction. The resulting simulated structure has a total mass of 153,000 

tons, with the first five frequencies at 0.16, 0.765, 1.992, 3.790 and 6.395 Hz, 

and corresponding modal structural damping ratios of 1% calculated using 

 ayleigh’s approach.  n this study, four alternatives, namely  passive (TMD), 

semi-active (STMD), active (ATMD) and semi-active hybrid (SHMD) controlled 

structures are used for the establishment of the comparison metrics. The 

assemblage of the different control configurations is depicted in Figure 52. 

Figure 52. Ensemble of all the different control options (a) TMD; (b) STMD; 
(c) ATMD; (d) SHMD studied herein for the model 76-storey structure of 

Yang et al.(Yang et al., 2004). 
 

In every control configuration, the dynamic absorber comprises an inertial 

mass of 500 tons that corresponds to 0.356% of the total structural mass, 

limited by realistic structural design constraints. For DVA configurations that 

require tuning of the device (i.e., TMD, SHMD and STMD), appropriate spring 
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stiffness, pk , is chosen such that the device is tuned to the fundamental 

frequency of the structure (i.e., ≈ 0.   Hz).  n order to ensure the fairness of 

the comparison, it was deemed necessary to restrain the maximum damper 

stroke of each of the alternatives by increasing the damping coefficient of the 

device appropriately so as to limit strokes to a maximum of 95 cm. Because 

control configurations that damper strokes are not a cause of concern, such 

as the case of the TMD, the damping ratio is numerically optimised (and kept 

low, approximately to the value calculated using  en Hartog’s equations 

(Hartog, 1956)) for maximum rms acceleration response reduction. The 

resulting damping coefficients that equalise the maximum strokes at maximum 

rms acceleration response reduction are outlined in Table 5 below: 

Table 5. Damping coefficients.  
Control 
Strateg

y 

Max Damping 
Coefficient 

(kNs/m) 

Min Damping 
Coefficient 

(kNs/m) 

Equivalent 
Damping 

Ratio 
TMD 47 47 4.7% 

STMD 163.4 2.61 16%–2.6% 
ATMD 100 100 10% 
SHMD 168 39 16.8%–4% 

 

5.4.3 Evaluation Criteria 

For the evaluation of the relative performance of the different structural control 

configurations the same 12 evaluation criteria defined earlier in section 4.4.5 

and summarised below in Table 6 are used.  
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Table 6. Summary of evaluation criteria 
Index Description 

1J  Maximum floor rms acceleration (among a floor selection) 

2J  Average rms acceleration for selected floors 

3J  Maximum rms displacement of top floor 

4J  Average rms displacement for selected floors 

5J  Rms actuator stroke 

6J  Rms control power 

7J  Maximum floor peak acceleration (among a floor selection) 

8J  Average peak acceleration for selected floors 

9J  Maximum peak displacement of top floor 

10J  Average peak displacement for selected floors 

11J  Peak actuator stroke 

12J  Peak control power 

 

5.4.4 Simulation Results and Discussion 

Four structural configurations consisting of passive, semi-active, hybrid active 

and semi-active hybrid control devices were considered for investigating the 

efficacy of the SHMD device for the vibration control of high-rise structures. 

Figure 53 summarises the peak and rms (displacement and acceleration) 

responses at every floor. The results of the evaluation for the different 

performance criteria 1 2 12, ,..,J J J  are presented in Figure 54. 
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Figure 53. Illustration of the performance of different control measures in 
terms of (a) rms acceleration; (b) rms displacement; (c) Absolute 

acceleration; and (d) Absolute displacement at different floor levels. 
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Figure 54. (a) Normalised; and (b) Non-normalised performance indices 
(lower index indicates better performance). 
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The results indicate that, for approximately the same damper strokes( 11J ), the 

SHMD-equipped structure is able to achieve similar performance as the 

ATMD-equipped one, while clearly outperforming the passive and semi-actively 

controlled alternative.  

 

Figure 55. Power and its time integral energy for (a) ATMD; and (b) SHMD 
configuration. Positive stands for energy addition and negative for 

energy dissipation. 
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With reference to Figure 54 and Figure 55, it is evident that the SHMD device 

requires much less energy and actuation demands for achieving the 

aforementioned performance increase. As a matter of fact, the SHMD device 

requires approximately 26% of the total energy required by the ATMD device 

(1245 kJ compared to 4863 kJ). This is due to the large control effort and 

consequently the large amount of energy required to be added by the active 

actuators (approximately 4125 kJ or 82% of the total required active energy) 

in order to effectively accelerate the mass so that sufficient control force is 

provided in order to overcome the “braking” force acted by the passive 

component of the ATMD. Conversely, in the SHMD configuration, while the 

actuators are accelerating the mass, the semi-active damping component 

attains its minimum value, minimising the “braking” force needed to be 

counteracted by the actuators, thus requiring a lower control power (Figure 

55b top). The energy required to be added in the SHMD configured structure 

is only 1245 kJ compared to 4125 kJ (which accounts for the 82% of the total 

energy required) (Figure 55). On the other hand, for energy dissipation 

purposes (Figure 55a,b bottom), the ATMD configuration is required to supply 

only a fraction (737 kJ and the remaining 18% of the total energy) of energy, 

while the SHMD-equipped structure requires consumption of a staggering 

4600 kJ. However, since energy dissipation in the SHMD configuration occurs 

exclusively in the semi-active elements, the required energy depends solely 

on the selected semi-active device. Still, regardless of the device, the energy 

required for semi-active control is not expected to exceed the order of a few 

watts (Nagarajaiah and Varadarajan, 2005).  

For more tolerant damper stroke limits, a lower passive damping ratio can be 

chosen for the ATMD which will reasonably lower the actuation demands for 

energy addition. On the contrary, lower damping ratios of the damping device 

will require the actuators to work harder in dissipating energy by decelerating 

the mass (and essentially work as an energy-expensive passive damper). The 

aforementioned arguments are illustrated in Figure 56, in which the power 

required by a purely active AMD device (i.e., absence of passive damping 

component) is investigated. As can be observed, the AMD is required to 

expend most of its energy for dissipation (4500 kJ as opposed to the 720 kJ 

required by the ATMD counterpart), while only a small fraction of that energy 
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is required for energy addition (approximately 1100 kJ). It should be clarified 

that no further comparisons can be made with the purely active AMD system, 

as its performance is theoretically uncapped (the larger the control effort, the 

lower the response). 

 

Figure 56. Power and its time integral (dotted line) energy of a purely active 
mass damper (AMD) system (no passive damping component) along 

with the corresponding performance indices. Positive stands for energy 
addition and negative for energy dissipation. 
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5.5 Conclusions 

In this chapter of the study, a novel hybrid control device configuration termed 

semi-hybrid mass damper (SHMD) has been proposed as an alternative 

design to the traditional hybrid active-tuned mass damper (ATMD) for vibration 

suppression of dynamic structural systems. The fundamental novelty of this 

configuration is that it enables modulation of the instantaneous effective 

system damping via the successive and appropriate action of active and semi-

active elements. For this case, the active components of the SHMD device 

are regulated by an optimal Linear-Quadratic-Regulator (LQR) controller, 

while the semi-active components are controlled via a direct output feedback 

displacement based groundhook (DBG) controller. A numerical step-by-step 

procedure for the calculation of the control actions and the coupling of the 

devices has been proposed in this chapter. Under vibration analyses run on 

both single degree of freedom (SDOF) and multi-degree of freedom (MDOF) 

SHMD configured structures, it is shown that the device is effective in reducing 

both the steady-state, as well as the peak frequency responses of the 

structural system, achieving similar performance gains to that of an ATMD-

equipped structure. However, its achievement is not only the use of this novel 

hybrid mass damper configuration as a vehicle for enhancing vibration 

attenuation performance or providing a fail-safe mechanism, it is also shown 

that the successive action of active and semi-active elements allows an 

improvement in efficiency both in terms of power and actuation demands. By 

providing a feasible, reliable, effective and efficient alternative structural 

control approach, this novel hybrid configuration allows the concept of active 

control of structures to be extended to one of “active” structures for which both 

active and semi-active components are integrated and simultaneously 

optimised to produce a new breed of slenderer, longer and taller structures 

and structural forms.  
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Chapter 6 
In Search of a Suitable Method for SHMD Control 

 

In this chapter of the thesis, an assessment of the correlations between 

performance and control algorithm selection is performed seeking to optimise 

the “software” part of the novel SHMD control solution, paying particular 

attention on the stability of the control system which has not been discussed 

to this date. In this context, a recently proposed robust control algorithm for 

implementation with hybrid mass dampers has been tailored for the control of 

the novel SHMD configuration. The conditions for which this robust controller 

is applicable in the case of SHMD control have been identified and explicitly 

stated in this section of the thesis. As an additional step, a modification of the 

conventional PID controller and robust tuning of its parameters has been 

proposed in order to provide a more rigorous procedure for the design of active 

and hybrid (semi-active) control systems using simple and widely used control 

system architectures. The contents of this chapter are an adapted form of the 

paper submitted to be included in the Proceedings of Eurodyn 2017 

Conference (abstract accepted). 

Demetriou, D.; Nikitas, N. Hybrid Semi-Active Mass Dampers in Structures; 
Assessing and Optimising Their Damping Capacity. X International 
Conference on Structural Dynamics, EURODYN 2017, Rome, September 
2017. (Submitted) 
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6.1 Introduction 

 

One of the main limitations of active control is the inability of the system to 

ensure safe operation upon active component failure. In a more generalised  

context, active component failure is described by the failure of active elements 

to provide feedback forces to the structure, rendering the control system 

unable to guarantee neither performance nor stability. To overcome this 

limitation and as a minimum stability warrantee, the provision of a fail-safe 

mechanism via the addition of auxiliary passive devices, as in the case of 

hybrid (ATMD) mass dampers is considered necessary and appears to govern 

most practical applications (Ikeda, 2009, Fisco and Adeli, 2011, Hiramoto and 

Grigoriadis, 2014). Despite ATMDs sharing the property of being fail-safe, 

they do not always satisfy another aspect of active control design, that is the 

stability of the system at varying gains, arising either from system parameter 

variation (due to deterioration of the system, uncertainty in the model etc.) or 

controller gains.  

The traditional approach of examining robust stability of single-input-single-

output systems (SISO) using root-locus diagrams is a good indication of the 

system’s ability to maintain stability at varying gains. With reference to Figure 

57  which presents a conventionally controlled direct velocity feedback (DVF) 

ATMD system subjected to a random input, it is observed that as the control 

gains increase, the low-frequency poles of the mass damper which follow 

closely the trajectories of the loci (the coloured lines in the root-locus diagram) 

tend to rapidly destabilise (move in the right-hand plane of the pole-zero map, 

attaining negative damping values, even at low gains. As a consequence, 

lowering the feedback gains of the controller to ensure stability will result in a 

reduction of the effective damping in the actuator, suggesting that the force 

output (stroke of the mass damper) will be increased. 
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Figure 57. Root locus diagram of the ATMD-SDOF configuration described 
in Chapter 5 

 
It is understood that the absence of a zero between the pole of the damper 

(low-frequency pole) and the first pole of the structure is the reason why the 

loci of the system move rapidly in the right-hand plane. This limitation of rapidly 

destabilising poles at increasing gains, as well as the associate increase in 

damper strokes at low gains is believed to be the primary reason why many 

elaborated control strategies have been introduced for the case of ATMD 

control. To this end, over the years classical (Burgos et al., 2004), fuzzy 

(Battaini et al., 1997, Movassaghi, 2012, Zhijun et al., 2014), pole placement 

(Chang and Yu, 1997, Pan et al., 2011, Rahman and Darus, 2012), Lyapunov 

(Kim et al., 2004), optimal (Amini et al., 2013), H-infinity (Baoya and 

Chunxiang, 2012), slide mode (Guclu and Sertbas, 2005) controllers have 

been presented in literature. Still, none of the aforementioned control 

strategies is able to guarantee the robust stability of the system at all gains. 

To overcome this limitation, most recently Collette and Chesné (2016) 

proposed a robust direct velocity feedback controller based on the principle of 
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hyperstability for the control of hybrid tuned-mass dampers. To this end, the 

authors of this publication identify  hyperstability as the ability of the system to 

attain stable poles irrespective to the feedback gain provided. In order to 

achieve this,  they address the root cause of the problem via the placement of 

a pair of zeros at the right locations of the pole/zero map assuring the closed-

loop stability of the system.   

In this chapter of the thesis, the control solution proposed by (Collette and 

Chesné, 2016) is tailored for application with the novel SHMD configuration, 

discussing whether such control approach and under which conditions can be 

useful. Following this, the concept of hyperstability is extended in the 

modification of the conventional PID controller in an attempt to provide a 

simple and robust (at all control gains) method for the control of both ATMD 

and SHMD systems. As a comparison metric, the robust stability of the 

resulting systems and their performance relative to the LQR-SHMD 

configuration presented in Chapter 5 is investigated. 

6.2 Robust ATMD control design (a-ATMD) 
The proposed robust controller is designed as the assemblage of two filters in 

the ‘s’ domain. The first filter is responsible for the placement of zeros in the 

appropriate locations, whereas the second filter is a high-pass filter that 

prevents a constant component in the feedback loop. The resulting control 

action ( )U s  is calculated by: 

 ( ) ( ) ( ) ( )c HpU s G s G s x s  (6.1) 

In which, ( )cG s , ( )HpG s  is the controller and high pass filter respectively and 

( )x s  is the velocity of the unsprung mass (structural mass).  Since the velocity 

of the structural mass is used as the control variable, the resulting scheme is 

a modified version of the simplest form of active control, termed direct velocity 

feedback. To this end, the controller and high-pass filter are defined as: 

   
2

2
( )( ) , ( ) , ( )c Hp c

c

g s a sG s G s f a
s s

Z
Z

�
   

�
  (6.2) 

In which a  is the tuneable parameter that makes the controller hyperstable 

(i.e. the poles of the system attain positive damping values irrespective to the 



- 137 - 

gain), g is the controller gain, the tuning of which depends on the objectives 

of the controller, and cZ  is the cut-off frequency of the high-pass filter. For the 

tuning of the a  parameter, the frequency of the poles of the system post-

application of the TMD must  be determined. In this regard, the low frequency 

pole of the system has a frequency aZ  and a structural frequency bZ . The 

robust controller entails that as long [ ; ]a ba Z Z�  the branches of the root locus 

go immediately in the left hand-plane satisfying  the Routh- Hurwitz criterion 

(Collette and Chesné, 2016). Figure 58 illustrates how the application of the 

two filters on the SDOF system(2-DOF post-ATMD application) described in 

chapter 5 alters the root-locus diagram, moving the loci in the left-hand plane. 

6.3 Application of robust control to SHMD device (a-SHMD) 

By definition a transfer function is a representation in terms of spatial or 

temporal frequency, of the relation between the input and output of a linear 

time-invariant system. Therefore, constructing the transfer functions of the 

semi-active (STMD) system for application of the robust controller filters and 

performing stability analyses on the resulting a-SHMD system, necessitates 

the linearisation of the non-linear STMD system. To this end, and as a first 

step, system identification is required for the attainment of the linearised state 

matrices. Following the same procedure described for the tuning of the LQR 

controller in section 5.3, input/output subspace SSARX identification using 

  T   ’s (  T    0  a, The  athWorks  nc., Natick,   , U  , 2016) 

system identification toolbox has been performed. In this case and for 

consistency with literature, the velocity of the structural mass is used as the 

output variable (direct feedback output control). The resulting input/output 

transfer function of the linearised plant is given by: 

 
3 11 2 12 11

4 3 2

0.001 1.32 3 1.32( )
0.05 2 0.0495 0.99p

s e s e s eG s
s s s s

� � �� � �
 

� � � �
 (6.3) 

Solving for the roots of the denominator, the poles of the open loop system 

are obtained as: 
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1

2

3

4

  P =-0.0138 + 1.0471i
  P -0.0138 - 1.0471i
  P =-0.0112 + 0.9501i
  P =-0.0112 - 0.9501i

 
 (6.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 58. Root-locus diagram of the hybrid ATMD (left) and robust hybrid 
a-ATMD(right) configurations 
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From this, 0.95aZ   rad/s and 1.047bZ   rad/s. Since parameter a  has to 

satisfy [ ; ]a ba Z Z�  in order to ensure stability, a value of 1a   is selected. 

Obviously, for cases such as the SHMD, the designer might elect to use some 

form of online system identification (similar to the methods used by of self-

tuning adaptive controllers) in order to ensure that the side lobes ,a bZ Z  of the 

system are correctly identified throughout the life-span of the system.  From 

this, the transfer function of the closed loop system is constructed by: 

 
( ) ( )

( )
1 ( ) ( ) ( )

c p
cl

c Hp p

G s G s
G s

G s G s G s
 

�
 (6.5) 

With reference to Figure 59, for the robust a-SHMD controller similarly to the 

a-ATMD case the loci stay in the left hand plane (for any given value of

[0; ]g� f ). It is worth noting however, that this condition is satisfied only for 

the case where active forces can both add and dissipate energy from the 

system. Still, revisiting the definition of the SHMD device, the application of 

active forces are capped to only add energy to the system with no ability to 

extract energy, rendering the system non-linear. For this reason, multiplication 

of  the equivalent linear plant transfer function with the transfer functions of 

the filter and the robust controller is not possible. It is therefore fair to say that 

the designer has to select between a system that guarantees either robust 

stability independent to the gain variation by retaining the output of the linear 

controller (i.e. the uncapped case), or a system that minimises energy 

consumption via capping the actuation capacity to only add energy to the 

system (i.e. capped case). 
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Figure 59. Root-locus diagram of the SHMD (left) and a-SHMD (right) 
system 
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Figure 60. (a) Acceleration response (b) Control energy and (c) 
Force/velocity relationship for the case of the capped a-SHMD configuration 
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Figure 61. (a) Acceleration response (b) Control energy and (c) 
Force/velocity relationship for the case of the uncapped a-SHMD 

configuration 
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With reference to Figure 60 and Figure 61 a few observations can be made. 

Firstly, and as expected the ability of the uncapped SHMD configuration to 

also extract energy through its active components, further enhances the 

performance of the control system. This is indicated by reduction in 

acceleration response (Figure 60a-Figure 61a) across the frequency band of 

interest. Secondly, validating the initial hypothesis of lower energy 

consumption owing to the capping of the actuation capacity, the uncapped 

system is shown to require a fraction more energy for active control (Figure 

60b-Figure 61b). At the same time the dissipation of energy through the active 

elements, alleviates some of the semi-active control burden. This is illustrated 

by the lower maximum semi-active force required by the uncapped system 

(Figure 60c-Figure 61c) 

6.4 Modification of PID to aPID 

Based on the same concept, a modification of the conventional PID controller 

via the addition of a first order filter (integrator) and appropriate tuning of the 

controller's gains has been proposed. This modification, ensures that the 

resulting closed-loop poles always remain in the left-hand plane of the 

pole/zero map, satisfying the Routh-Hurwitz criterion for

[0; ] [ ; ]a bg a Z Z� f l � . The control architecture considered is shown in 

Figure 62 (the corresponding Simulink block diagrams are shown in Figures 

A11 and A12 in the appendix): 

 

Figure 62. aPID control system architecture 
 

For the particular control system architecture, ( )H s  is defined as a second 

order filter described by the transfer function:  
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� � int

1( ) ( ) ( )
/ 2 / 2 Hp

c c

s sH s G s H s
as s s asZ Z

  u  
� �

 (6.6) 

The second order filter is designed such that the high-pass filter of Eq.(6.2) is 

connected in series with an integrator of the form: 

 int
1( )
/ 2

H s
as

  (6.7) 

The     controller’s transfer function is defined by  

 
2 11( ) 1 i d ii

p d p d p
i i

TT s T sKC s K K s K T s K
s T s T s

§ · � �
 � �  � �  ¨ ¸

© ¹
   (6.8) 

In which, pK , iK  and dK  are respectively the proportional, integral and 

derivative gains of the PID controller, and /i p iT K K  and /d d pT K K  are the 

integral and derivative time constants respectively. In order to achieve 

hyperstability (via the placement of the zeros between the poles of the 

structural system and the absorber), the following parameter tuning is 

proposed. 

 
3

2 ,
2 2p i d

a g agK a g K K    (6.9) 

where, [0; ]g� f  is the constant gain of the controller and the hyperstability 

parameter [ ; ]a ba Z Z� . 

6.4.1 Proof of stability at varying a  and g  parameters 

Due to the fact that the resulting closed-loop system is of high-order, it is 

impractical to determine stability from the solution of the characteristic 

polynomial at different values of a  andg . For this reason, the Routh-Hurwitz 

stability test can be used to determine whether the roots of the characteristic 

polynomial have negative real parts. In this method, tables are constructed 

from the coefficients of the characteristic polynomial. The number of sign 

changes in the first column of each table indicates the number of non-negative 

poles. To this end, the characteristic polynomial of the PID controlled ATMD 

system (aPID-ATMD) must be first extracted from the closed loop transfer 

function of the control system architecture depicted in Figure 62. 
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 ( ) ( )( )
1 ( ) ( ) ( )cl

C s P sG s
C s P s H s

 
�

 (6.10) 

In Eq.(6.10) the only unknown is the transfer function ( )P s  of the plant. To 

obtain ( )P s , first Consider the  2-dof lumped parameter ATMD controlled 

system of Figure 63: 

 

Figure 63. ATMD configuration 
 

And its state space representation: 

 
( ) ( ) ( )
( ) ( )

x t Ax t Bu t
y t Cx t

 �
 

 (6.11) 

In which: 

> @

0 0 1 0 0
0 0 0 1 0

1, , 0 0 1 0

1

d d d d
c

d d d d
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k k c c
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ª º
« »
« »
« »� �   � � « »
« »
�« »� � « »¬ ¼

  (6.12) 

From which the transfer function ( )P s  is obtained by: 

 1( ) ( )P s C sI A B D� � �  (6.13) 

Substituting Eq.(6.6) and Eq.(6.13) in Eq.(6.10) the 7th order characteristic 

polynomial of the closed loop transfer function is derived as: 
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 (6.14) 

Clearly, for the case of SHMD control, the equivalent linear transfer function 

of the system must be obtained using identification techniques similar to the 

ones described earlier. In this regard, substituting Eq.(6.3), Eq.(6.8) and 

Eq.(6.6) in Eq.(6.10) the characteristic polynomial of the closed loop transfer 

function is obtained by: 

 7 6 5 4 3 2
7 6 5 4 3 2 1c s c s c s c s c s c s c s� � � � � �  (6.15) 

In which: 

 11 2 12 2 11
21 1.32 , 3.02 2.65 0.99 ce a g c e ga ec ga Z� � � � �  (6.16) 

 11 2 12 11
3 1.3 6.30 1.32 0.05 0.99cc e ga e ga e g Z� � � � � � � �  (6.17) 

 12 11 3 2
4 3.02 2.65 1 2 0.05cc e g e ag e a g Z� � � � � � �  (6.18) 

 3 11 3
5 6  +  + 2 1.33 0.05 0.0g 52, 1c cc e ag e g c eZ Z� � � � � �   (6.19) 

 7 0c   (6.20) 

Example: Solving Routh matrix for 1a g   and / 50c aZ  : 

As a first step, the first two rows of the Routh matrix need to be filled with the 

coefficients of the characteristic polynomial. The next entry, is determined 

from the pattern shown in the matrix of Eq.(6.21) 
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  (6.21) 

 

Substituting for 1a g   and / 50c aZ  : 

 

0 2.00 0.99 1.32e-11
0.07 0.09 0.02 0
2.00 0.99 1.32e-11 0
0.06 0.02 0 0
0.27 1.32e-11 0 0
0.02 0 0 0

1.32e-11 0 0 0
0 0 0 0

mR    (6.22) 

It is shown that the sign of all numbers in the first column of the matrix does 

not change, suggesting no unstable poles. The same procedure is followed 

for all the values of [0; ] [ ; ]a bg a Z Z� f l � . For convenience and clarity, the 

values of the first column of the Routh matrix are plotted in Figure 64. 
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Figure 64. Values in the first column of the Routh matrix for 

[0; ] [ ; ]a bg a Z Z� f l �  

With reference to Figure 64, it is evident that for [0; ] [ ; ]a bg a Z Z� f l �  , all 

the values in the first column of the Routh matrix attain positives value (i.e. no 

sign change) which suggest no unstable poles validating the robust stability 

of the system irrespective to the control gains. 

 

Figure 65. (a) Bode plot and (b) Nyquist plot for the aPID-SHMD system 
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Similar observations can be made from observation of the Bode-plot and 

Nyquist diagrams of Figure 65. It is evident that the system, post-application 

of the robust controller, has infinite gain and phase margins. 

6.4.2 Trial aPID controllers 

In this section of the study, the performance of the aPID equipped SHMD 

system (aPID-SHMD) is examined at increasing values of constant gain, g ,for 

which [0; ] [ ; ]a bg a Z Z� f l � . At each gain interval, the PID robust control 

gains are calculated using Eq.(6.9). A second order filter with cut-off frequency 

/ 50c aZ  , is then applied in accordance to Eq.(6.6) and the robust controller 

parameter, a  , is selected as unity ( [ ; ]a ba Z Z� ). It is noteworthy that for a 

robust controller parameter 1a   the proportional gain of the PID attain the 

value of the constant gain g ,while the integral and derivative gains of the PID 

are equal (Eq.(6.9)).  As an additional demonstration of  robust stability, the 

constant gain parameter varied from low to extremely large values. The results 

of the analysis are presented in Figure 66.  

 
Figure 66. aPID-SHMD configured system response as a function of gain  

With reference to Figure 66, the first observation to be made is the location of 

the peaks in the frequency response diagrams (Figure 66a-b). The location of 
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each peak indicates the location of the system poles in the pole/zero map. As 

anticipated from the design, and the corresponding root locus diagrams 

(Figure 59), at increasing gains the poles of the system move away from each 

other going left (into the negative values) and away of the imaginary axis. 

Moving away from the imaginary axis suggest increasing damping ratio in the 

system. The increased damping ratio of each pole is indicated by the spread 

of the peaks in the response diagrams of figure(Figure 66a-b)(for clarity refer 

to the 2-D version in Figure 68). With respect to Figure 66c-d, it is observed 

that as a consequence of the increasing gain, the stroke of the actuator also 

increases. Still, as the stroke increases the relative phase of the mass-damper 

and the structure remains unaltered, signifying the robustness of the system. 

To complement the results of Figure 66, Figure 67b presents the total 

percentage response reduction (area under the curve) as a function of the 

gain. It is observed that the response reduction trend follows a curvilinear 

trajectory, suggesting that the rate at which the overall performance improves 

reduces at larger gains. Similarly, the rms force (Figure 67a) follows a similar 

curvilinear trajectory. It can be observed, that beyond a value of 120 150g | �

, the rms force values hit a plateau, while the maximum force keeps 

increasing. This suggests isolated spikes occurring in the actuation. 

Regarding the control energy supplied in the system, Figure 67c illustrates 

that total supplied energy follows a bilinear trend. A correlation between the 

point of which the rms force  and the total energy hit the plateau is also 

observed( 120 150g | � ). 
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Figure 67. (a) Supplied maximum and rms force, (b) Total acceleration and 
displacement response reduction,  and (c) Total control energy 

supplied by the aPID-SHMD system 
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Figure 68. (a) Acceleration response, (b) Displacement response, (c) 
Damper stroke, (d) Relative phase, (e) Control energy and (f) Peak 

acceleration response for the aPID-SHMD at low control gains  
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6.5 Comparison  with optimal LQR controllers 

In this section, a LQR controller has been designed for comparison with the 

proposed robust controller. The design of the LQR is based on the linearised 

semi-active system following the description found in (Demetriou and Nikitas, 

2016). In this approach, the Q  and R  weighting quantities have been 

iteratively selected such that maximum performance (i.e. vibration 

attenuation) has been extracted from the system with no regards to the control 

effort. This performance-wise optimised LQR allowed the establishment of a 

performance based comparison reference with the a-SHMD counterpart. The 

response of the LQR system in terms of acceleration, control energy and force 

demands is shown in Figure 69.   

 

Figure 69. (a) Acceleration response (b) Control energy and (c) 
Force/velocity relationship for the case of the performance optimised 

LQR-SHMD system 
 

For the fairness of the comparison, an aPID robust controller has been 

designed with gains selected such that similar actuation and control energy 

demands to that of the LQR-SHMD are achieved. To this end, the resulting 

aPID- H   system’s response in terms of acceleration, control energy and 

force is shown in Figure 70. 
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Figure 70. (a) Acceleration response (b) Control energy and (c) 
Force/velocity relationship for the case of the a-SHMD system gains 

matching control effort of LQR-SHMD 
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Figure 71. (a) Acceleration response, (b) displacement response, (c) 
damper stroke, (d) relative phase, (e) Control energy and (f) peak 
acceleration response for the aPID-SHMD and LQR-SHMD systems 
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Direct comparison of the two algorithms (Figure 71)) based on similar 

actuation and  control energy demands, demonstrates a clear superiority of 

the a-SHMD over the LQR-SHMD configuration in almost every control design 

aspect, with only exception the higher strokes required by the aPID-SHMD. 

But it is not only the enhanced performance of the aPID-SHMD in terms of 

vibration response reduction that make it superior to the LQR-SHMD. The 

requirement of the latter configuration for system identification for deriving the 

state matrices to be used in the solution of the Riccati matrix, make it a 

complex and non-trivial task. Additionally, using a LQR, full state feedback is 

required either from direct measurement of all the states (one sensor at each 

DOF) or using state observers (Kalman filters etc.) further increasing the 

complexity and practicality. On the other hand, an aPID is based on simple 

direct velocity feedback control principles, capable of providing control actions 

using the measurement of only one state. 

6.6 Conclusions 

In this chapter of the thesis, a new robust algorithm proposed for the control 

of hybrid vibration absorbers has been applied to the novel SHMD 

configuration. This robust control law which belongs to the class of 

hyperstable controllers is shown to be suitable for use in conjunction with 

SHMD devices. Importantly, it has been shown that modification of the SHMD 

device to allow for energy dissipation using active actuation  is essential in 

order for the robust controller to be hyperstable. The steps required for the 

design of the controller have been presented and guidelines on how to choose 

the tuning parameters of the controller have been proposed. 

Additionally, one of the most widely used controllers in the control industry, 

the PID, has been modified based on the principle of hyperstability in an 

attempt to provide a simple and effective solution for the control of hybrid 

ATMD and SHMD devices. To this end, hyperstability conditions have been 

identified and tuning of the resulting robust aPID controller has been 

proposed. Proof of stability of the resulting aPID-SHMD system has been 

demonstrated using Routh-Hurwitz tests, bode plots, Root-locus and  Nyquist 

diagrams. Finally, a comparison with the performance-wise optimised LQR-
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SHMD system presented in Chapter 5, showed that beyond the simplicity in 

design and need for a single state measurement of the aPID-SHMD system, 

the latter system is shown to be superior to the LQR-SHMD configuration in 

almost every control design aspect, with only exception the higher strokes 

required by the aPID-SHMD. 
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Chapter 7 
Conclusions and Future Work Recommendations 

 

The primary goal of this thesis was to deal with some of the most important 

obstacles impeding the application of semi-active and smart control in the 

structural field with particular emphasis on high-rise structural applications 

using mass dampers. To this end, a number of key research aims were 

provided in Chapter 1. The research detailed in this thesis has worked towards 

meeting these aims, and as such a number of conclusions can be drawn. This 

chapter draws concluding remarks based on the previously described work, 

and provides recommendations for where future work could be focused. 

7.1 Summary of contributions and impact 

A comparison of different control algorithms on semi-actively controlled 

structural systems for which practical constraints such as stroke and force 

saturations can significantly affect their performance has been carried out. For 

consistency with literature and as an initial step, the performance of the 

different algorithms has been investigated on a SDOF harmonically excited 

system at the absence of practical constraints. Control system performance 

in terms of disturbance rejection and robustness to parametric uncertainty has 

been evaluated and a primary ranking/rating of the algorithms has been 

established. In this regard, the LQR and DBG algorithms which have been 

consistently shown in literature to outperform algorithms such as the VBG and 

  N  are also shown in the first part of this study to be the ‘best’ algorithms. 

However, when the study progressed to the investigation of a wind excited 

high-rise structure on which practical constrains have been applied, It has 

been shown that different control algorithms have different stroke operating 

ranges, signifying the importance and interplay between performance and 

damper strokes. To this end, it has been found that when no consideration is 

given to damper strokes, some of the investigated algorithms are found to be 

more suitable for use with STMD devices. The LQR, the DBG and the PID 

algorithms that maximise damper strokes, thus termed ‘least-conservative’, 
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achieve significant response reductions. On the other hand, it has been 

demonstrated that the remaining of the investigated algorithms, the VBG and 

the BANG, the algorithms that significantly restrain the damper strokes, thus 

termed ‘conservative’ , can reach and even surpass in some damper stroke 

restrained scenarios the performance of the previously thought ‘best’ 

algorithms. As a result, it can be realised that making the damper strokes an 

integral part of the performance objectives, appropriate control algorithm 

selection can be performed as an alternative method of limiting damper 

strokes while maintaining expedient performance without the requirement of 

external auxiliary damping devices, command limiters or high-pass filters. 

In addition to this, through investigation of the tuning of the damping ratios for 

different configurations, it is found that the main difference of the two 

categories of control algorithms is the requirement of the least conservative 

algorithms for high damping ratios for achieving optimal behaviour, whereas 

conservative algorithms require significantly lower values. As a matter of fact, 

for relatively similar performance benefits, a DBG would require a maximum 

damping ratio of 16% as opposed to 8% required by a VBG. This suggests 

that the choice of an algorithm from the latter category would translate to a 

reduced size/number of auxiliary devices used, control forces and power, 

which in turn relate back to the practical applicability and cost of the STMD 

device on high-rise structures.  

In the second part of the study, the research was  focused on dealing with the 

limitations of existing smart damper devices in terms of power and force 

actuation demands. In this regard, a novel semi-active hybrid mass damper 

(SHMD) configuration has been proposed. The novel configuration makes use 

of active and semi-active components coupled with appropriate control 

algorithms for achieving the desired control objective. In the proposed 

configuration, the active elements of the damper are designed to only add 

energy to the system, whereas the semi-active components are responsible 

for energy dissipation. This sequential action of the semi-active and active 

components ensures that energy dissipation occurs at considerably lower 

energy demands, while the energy addition whenever necessary is not 

hindered by forces acting in the opposite direction by the passive elements. 

Based on these concepts, it is shown that for approximately the same damper 
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strokes, the SHMD configuration is able to achieve similar performance to the 

conventional ATMD counterpart, while clearly outperforming the passive and 

semi-actively controlled alternative. Most importantly, it has been shown that the 

novel device configuration requires much less energy and actuation demands 

for achieving the aforementioned performance increase. As a matter of fact, 

the SHMD device requires only 26% of the total energy required by the ATMD 

device. This is due to the large control effort and consequently the large 

amount of energy required to be added by the active actuators ( approximately 

82% of the total required energy), necessary for overcoming the “braking” 

force acted by the passive components of the ATMD.  Apart from the 

aforementioned benefits arising from the use of such low energy demand 

configurations, the SHMD device could potentially make novel energy 

regenerative force actuation technologies viable in the structural engineering 

field. 

Even though the gains from appropriate configuration selection are evident, a 

successful control system does not rely exclusively on the individual 

performance of the hardware, but it is the combined action of both hardware 

and software that make a control system superior to another. For this reason, 

the final part of the thesis attempted to integrate software and hardware 

performance via the suitable selection of a control algorithm for SHMD 

devices. To this end, a recently proposed robust controller has been tailored 

for application to the novel configuration, showing great potential both in terms 

of vibration attenuation and stability. Based on the concept of hyperstability, a 

modification of the conventional PID controller and robust tuning of its 

parameters has been proposed in search of a more rigorous procedure for the 

design of hybrid control systems using simple and widely used control system 

architectures. The resulting robust aPID control algorithm is shown to satisfy 

all stability requirements regardless the control gain, as long as the robustness 

parameter is selected appropriately.  

7.2 Future work recommendations  

An interesting observation from the simulations performed in chapter 4, is that 

aggressive tuning of the PID controller, results in a control system similar to 

the one equipped with the baseline direct output feedback DBG algorithm. 
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Investigating how mathematically different algorithms produce exactly the 

same results is intriguing for future work. With reference to the same chapter, 

the potential of creating an adaptive control scheme by switching to an 

appropriate algorithm so that performance is improved at the expense of low 

damper strokes should be also investigated. To achieve this, the proposed 

adaptive control scheme could potentially use ‘conservative’ algorithms when 

stroke limitation is required and ‘least conservative’ algorithms for maximising 

the performance gain. The challenge is to identify the conditions for which 

switching of algorithm occurs. 

Secondly, it is understood that the work in this thesis is based exclusively on 

simulations and it is important to verify the conclusions of this work through 

experimentation. To the author’s opinion the key experiment to be conducted 

is implementing the SHMD configuration on a scaled model and subjecting it 

to various types of excitations. Additionally, different algorithms (including the 

modified aPID) should be implemented on the scaled structure so that the 

conclusions drawn in this thesis are experimentally verified. Although it is 

understood that there are practical limitations to this, i.e. the availability of 

suitable structures, availability of shaking table equipment, expense of setting 

monitoring systems etc. the potential benefit that could be derived through this 

work is significant. To complement this, a life-cycle analysis of the SHMD 

configured system should be performed. 
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Appendix A 

Appendix A presents the  performance of the different control algorithms as a 

function of the selected mass ratio and stiffness uncertainty. The figures 

presented herein are used to complement the statements made in chapter 4. 

 

Figure A1.(a) Acceleration response, (b) Displacement response, (c) 
Maximum stroke, (d) Peak acceleration as a function of the mass ratio 

for the LQR case 
 

 

Figure A2.(a) Acceleration response, (b) Displacement response, (c) 
Maximum stroke, (d) Peak acceleration as a function of the stiffness 

uncertainty for the LQR case 
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Figure A3.(a) Acceleration response, (b) Displacement response, (c) 
Maximum stroke, (d) Peak acceleration as a function of the mass ratio 

for the DBG case 

 

Figure A4.(a) Acceleration response, (b) Displacement response, (c) 
Maximum stroke, (d) Peak acceleration as a function of the stiffness 

uncertainty for the DBG case 
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Figure A5.(a) Acceleration response, (b) Displacement response, (c) 
Maximum stroke, (d) Peak acceleration as a function of the mass ratio 

for the PID case 

Figure A6.(a) Acceleration response, (b) Displacement response, (c) 
Maximum stroke, (d) Peak acceleration as a function of the stiffness 

uncertainty for the PID case 
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Figure A7.(a) Acceleration response, (b) Displacement response, (c) 
Maximum stroke, (d) Peak acceleration as a function of the mass ratio 

for the VBG case 

Figure A8.(a) Acceleration response, (b) Displacement response, (c) 
Maximum stroke, (d) Peak acceleration as a function of the stiffness 

uncertainty for the VBG case 
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Figure A9.(a) Acceleration response, (b) Displacement response, (c) 
Maximum stroke, (d) Peak acceleration as a function of the mass ratio 

for the BANG case 

 

Figure A10.(a) Acceleration response, (b) Displacement response, (c) 
Maximum stroke, (d) Peak acceleration as a function of the stiffness 

uncertainty for the BANG case 
 

 

 

Frequency(rad/s) 



- 176 - 

Table A1. PID Controller Coefficients 

Controller ID P I D 

PID1 1.99 e8 4.23 e5 5.34 e6 

PID2 2.19 e8 5.51 e5 8.04 e6 

PID3 3.25 e8 6.22 e5 3.76 e6 

PID4 4.53 e8 8.01 e5 5.44 e6 

PID5 5.12 e8 4.01 e6 6.34 e6 

PIDopt 5.07 e8 3.01 e6 6.04 e6 

PD1 7.14 e8 N/a 4.13 e6 

PD2 8.00 e8 N/a 4.2 e6 

PD3 6.33 e9 N/a 5.55 e6 

PD4 7.87 e9 N/a 6.12 e6 

PD5 8.32 e9 N/a 7.25 e6 
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Figure A11. Simulink block diagram associated with the control architecture 
considered for the robust control of SHMD devices. 
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Figure A12. Simulink block diagram associated with PID Controller and the 
control architecture described in figure 62 

 


