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Abstract 

 

Microglial cell plays a key role in neuroinflammation induced by diverse danger 

associated molecular patterns (DAMP) molecules, such as Zn
2+

, Aβ42 and TNF-α, and 

strongly implicated in neurodegenerative diseases. The molecular mechanisms for 

neuroinflammation are however not fully defined. Reactive oxygen species (ROS) 

production is critical in DAMP-induced microglial cell activation and cytokine 

production. Studies presented in this thesis aimed to investigate, using 

immunocytochemistry, single cell imaging, cell death and ELISA assays in combination 

with genetic and pharmacological interventions, the role of ROS-sensitive TRPM2 

channel in cell death, cell activation and production of TNF-α in primary microglial 

cells in response to Zn
2+

, Aβ42 and TNF-α as well as H2O2.  

H2O2 (10-300 M) and Zn
2+

 (10-300 M) induced concentration-dependent 

increases in the intracellular Ca
2+

 concentration ([Ca
2+

]i) via Ca
2+

 influx, which were 

prevented by TRPM2 knockout (TRPM2-KO) or treatment with TRPM2 inhibitor 2-

APB or PARP inhibitor PJ34.  Pathological concentrations of H2O2 (100-300 M) and 

Zn
2+

 (100-300 M) induced substantial cell death that was ablated by TRPM2-KO and 

treatment with 2-APB or PJ34. Zn
2+

 also induced ROS production and PARP-1 

activation. All these Zn
2+

-induced effects were suppressed by treatment with PKC 

inhibitor chelerythrine, NOX inhibitors DPI, GKT137831 or Phox-I2.  Zn
2+

-induced 

PARP-1 stimulation, increase in the [Ca
2+

]i and cell death were also inhibited by PYK2 

inhibitor PF431396 or MEK/ERK inhibitor U0126.  

Exposure to Aβ42 (30-300 nM) and TNF-α (10-100 ng/ml) resulted in 

concentration-dependent TRPM2-mediated Ca
2+

 influx and increases in the [Ca
2+

]i, 

microglial cell activation and TNF-α production. Aβ42 and TNF-α stimulated ROS 

production and PARP-1 activation. These effects induced by Aβ42 or TNF-α were 

suppressed by inhibiting PKC and NOX.  Moreover, Aβ42/TNF-α induced PARP-1 

activation, increase in the [Ca
2+

]i, microglial cell activation and TNF-α production were 

attenuated by inhibiting PYK2 and MEK/ERK.  

In summary, studies provide strong evidence to reveal a critical role for the 

TRPM2 channel in Ca
2+

 signalling in microglial cells induced by Zn
2+

, Aβ42 and TNF-

α. TRPM2 channel activation by Zn
2+

, Aβ42 and TNF-α depends on PKC/NOX-

mediated ROS production and PARP-1 activation and is additionally enhanced by the 

PYK2-MEK-ERK signalling pathway. Such mechanisms are critically involved in cell 
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death in response to Zn
2+

, or microglial cell activation and TNF-α production in 

response to Aβ42 and TNF-α. These findings provide novel insights into the role of 

microglial cells in neuroinflammation and in the pathogenesis of neurodegenerative 

diseases.  
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1.1 MAMMALIAN TRP CHANNELS 

 

1.1.1 Discovery and classification  

The transient receptor potential (TRP) protein was initially discovered in genetic 

studies of the photo-transduction signalling mechanism in the fruit fly Drosophila 

Melanogaster. Stimulation of the photoreceptor cells with continuous bright light 

evoked a sustained receptor potential in wild-type (WT) flies, but only a transient 

receptor potential in a mutant fly (Cosens and Manning, 1969; Minke et al., 1975). 

These led to the discovery of the gene responsible, Trp, which encodes a membrane 

protein located in the rhabdomeric membrane of photoreceptor cells (Montell and 

Rubin, 1989).  Years later, patch-clamp recording showed that the Trp protein and its 

homologues, Trp-like (TrpL) and Trp form Ca
2+

-permeable cation channels (Hardie 

and Minke, 1992; Phillips et al., 1992; Xu et al., 1997; Xu et al., 2000).  

Twenty-eight mammalian homologues of the Drosophila Trp proteins were later 

identified, forming the TRP superfamily (Wes et al., 1995; Ramsey et al., 2006; Nilius, 

2007; Venkatachalam and Montell, 2007). The mammalian TRP family can be grouped 

into six subfamilies based on amino acid sequence relatedness; TRPC (canonical or 

classic), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPP (polycystin) 

and TRPML (mucolipin) (Pedersen et al., 2005; Sumoza-Toledo and Penner, 2011) 

(Fig. 1.1). Alternatively, the mammalian TRP proteins can be divided into two groups 

according to sequence similarity to the Drosophila Trp proteins; group 1 includes 

TRPC, TRPV, TRPM and TRPA which exhibit strong homology, with the TRPC 

proteins being greatest, whereas group 2 contains TRPP and TRPML which show less 

similarity (Venkatachalam and Montell, 2007). 

 

1.1.2 Structural properties  

All mammalian TRP proteins have a common membrane topology, comprising 

six α-transmembrane segments (S1-S6) and N- and C-termini both facing towards the 

cytoplasm (Montell, 2005; Ramsey et al., 2006; Pedersen et al., 2005; Venkatachalam 

and Montell, 2007; Nilius, 2007) (Fig. 1.2). As shown in atomic structures of the 

TRPV1 (Liao et al., 2013) and TRPV2 channels (Huynh et al., 2016; Zubcevic et al., 

2016) recently determined using electron cryo-microscopy, TRP channels are 

tetrameric, made of four identical subunits (homomeric channels) or four different 

subunits (heteromeric channels). From each of the four subunits, the fifth and sixth 

transmembrane segments 
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Fig. 1.1 The mammalian TRP superfamily. 

The diagram shows the amino acid sequence relatedness of the human TRP protein superfamily, which comprise of the TRPC, TRPM, TRPV, TRPA, 

TRPP and TRPML subfamilies, except mouse TRPC2, which is a pseudogene in humans (Nilius et al., 2007). 
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 Fig. 1.2 Membrane topology and structural features of the TRP proteins. 

Diagrams showing example TRP proteins in group 1 (A) and group 2 (B). Six 

transmembrane segments (S1-S6) are indicated by vertical oval columns; P, pore loop; 

CC, coiled-coil domain; A; ankyrin repeat; TRP-box; MHD; TRPM homology 

domains; NUDT9-H, NUDT9 homology domain. 
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and the re-entrant pore loop (P loop; Fig. 1.2) between them form an aqueous ion-

conducting canal that allows the flux of cations into or out of the cell.  

The mammalian TRP proteins in group 1 manifest several distinct structural 

features in the N- and C-termini, as illustrated in Fig. 1.2A.  The N-terminus of the 

TRPC, TRPV and TRPA protein contain ankyrin repeats, each composed of 

approximately 33 amino acid residues which are important in forming helix-turn-helix 

structures (Montell et al., 2002; Chang et al., 2004; Clapham, 2003 p. 2; Owsianik et al., 

2006; Hellwig et al., 2005; Phelps et al., 2008).  With the exception of the TRPA 

protein, the TRPC, TRPV and TRPM proteins have a stretch of 23-25 highly conserved 

amino acid residues in the proximal C-terminus immediately after the transmembrane 

domain. This is known as TRP signature box.  Furthermore, coiled-coil motifs, which 

are known to mediate protein-protein interactions, are present in the N- or C-termini of 

the TRPC, TRPM and TRPV proteins. The C-terminal coiled-coil motif in the proteins 

has been shown to be critical in mediating TRPM channel formation (Mei et al., 2006; 

Lepage et al., 2006; Erler et al., 2006; Jiang et al., 2010) (Fig. 1.2A). Finally, the 

TRPM2, TRPM6 and TRPM7 proteins are unique in that they possess an enzymatic 

domain in the distal C-terminus. This part of the TRPM2 protein exhibits significant 

homology to NUDT-9, an ADP-ribose (ADPR) pyrophosphatase, and is thus referred to 

the NUDT9-H domain (Fig. 1.2) (Perraud et al., 2001; Fleig and Penner, 2004a; Jiang et 

al., 2010; Sumoza-Toledo and Penner, 2011). The distal C-terminus in the TRPM6 and 

TRPM7 proteins is an α-kinase domain (Ryazanova et al., 2004; Matsushita et al., 

2005).  

The TRP proteins in group 2, TRPP and TRPML, have an exceptionally large 

loop between the first and second transmembrane segments (Fig. 1.2B), making their 

membrane topology distinct from that of the TRP proteins in group 1.   

   

1.1.3 Activation, expression and function  

While some TRP channels are constitutively active, many others are activated 

by a variety of stimuli through multiple signalling mechanisms. These channels are 

expressed in many cell types and play a major role in numerous physiological and 

pathological functions (Ramsey et al., 2006; Nilius, 2007; Venkatachalam and Montell, 

2007; Dong et al., 2010). Below is a brief introduction of the activation, expression and 

function of the TRP channels, except the TRPM2 channel, which will be discussed in 

detail in a later section. 
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1.1.3.1 TRPC  

TRPC proteins were identified as the first mammalian homologues of the 

Drosophila TRP proteins (Wes et al., 1995; Zhu et al., 1995). There are seven TRPC 

proteins (TRPC1-TRPC7) that can form non-selective Ca
2+

-permeable cation channels. 

This family of proteins can be further divided into four subsets, based on sequence 

homology and functional similarities; TRPC1, TRPC2, TRPC3/6/7 and TRPC4/5 

(Montell et al., 2002; Pedersen et al., 2005; Venkatachalam and Montell, 2007).  

All TRPC channels have been shown to be activated through the G protein-

coupled receptor-dependent phospholipase C (PLC) signalling pathway. Activation of 

various G protein-coupled receptors leads to PLC activation, which catalyses the 

cleavage of the membrane lipid phosphatidylinositol 4,5-biphosphate (PIP2) into 

inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG). IP3 binds to and activates 

the IP3 receptor (IP3R) on the endoplasmic reticulum (ER), resulting in Ca
2+

 release 

from the ER. With the exception of the TRPC2 and TRPC6 channels, all TRPC 

channels are activated by the depletion of ER Ca
2+

 (Philipp et al., 1998; Vannier et al., 

1999; Warnat et al., 1999; Ma et al., 2002; Lockwich et al., 2001; Venkatachalam et al., 

2002). The TRPC2, TRPC3, TRPC6 and TRPC7 channels can be activated by DAG 

(Hofmann et al., 1999; Liman et al., 1999; Lucas et al., 2003; Lievremont et al., 2005; 

Soboloff et al., 2005). Uniquely, the TRPC1 channel has been shown to be activated by 

mechanical stretch (Maroto et al., 2005; Patel et al., 2010). 

TRPC1 is expressed in neurons (Kim et al., 2003), smooth muscle cells 

(Sweeney et al., 2002; Flemming et al., 2003), endothelial cells (Nilius and Droogmans, 

2001; Ahmmed et al., 2004) and lymphocytes (Mori et al., 2002). TRPC1 channel-

mediated Ca
2+

 entry has been proposed to be required for the generation of postsynaptic 

potential in neurons (Kim et al., 2003) and smooth muscle cell proliferation (Sweeney 

et al., 2002). Besides that, the TRPC1 channel is suggested to mediate store-operated 

Ca
2+

 entry in endothelial cells (Ahmmed et al., 2004).  

TRPC2 expression has been documented in neurons (Lucas et al., 2003; Stowers 

et al., 2002) and sperm cells (Vannier et al., 1999; Jungnickel et al., 2001). The TRPC2 

channel has been shown to be involved in the pheromone transduction signalling 

mechanism (Lucas et al., 2003), which is reflective of its expression in sensory neurons. 

There is evidence showing that the TRPC2 channel is critical in the regulation of sexual 

behaviour (Stowers et al., 2002). Furthermore, the TRPC2 channel is also suggested to 
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be important in mediating Ca
2+

 entry into sperm cells upon stimulation by an egg 

(Jungnickel et al., 2001). 

TRPC3 is expressed in neurons (Hartmann et al., 2008; Amaral and Pozzo-

Miller, 2007), lymphocytes (Philipp et al., 2003) and cardiomyocytes (Onohara et al., 

2006). It has been proposed that the TRPC3 channel has a role in a broad spectrum of 

physiological and pathological functions, including neuronal dendritic spine formation 

(Amaral and Pozzo-Miller, 2007), lymphocyte activation (Philipp et al., 2003) and 

angiotensin II-induced cardiac hypertrophy (Onohara et al., 2006).  

TRPC4 is expressed in endothelial cells (Freichel et al., 2001; Tiruppathi et al., 

2002; Ahmmed and Malik, 2005), neurons (Munsch et al., 2003) and interstitial cells 

(Torihashi et al., 2002; Walker et al., 2002). The TRPC4 channel has been shown to be 

important in increasing endothelial cell permeability (Tiruppathi et al., 2002). This 

channel is also implicated in mediating neurotransmitter release from neuronal dendrites 

(Munsch et al., 2003). The expression of the TRPC4 channel in the interstitial cells has 

led to the discovery of its role in mediating pacemaker currents in the small intestine 

(Torihashi et al., 2002; Walker et al., 2002). 

TRPC5 expression has been documented in neurons (Bezzerides et al., 2004; 

Greka et al., 2003) and smooth muscle cells (Xu et al., 2006). The TRPC5 channel in 

neurons has been linked to a role in neuronal cell migration (Greka et al., 2003) and 

neuronal remodelling (Bezzerides et al., 2004). Additionally, this channel is involved in 

mediating Ca
2+

 entry which is essential for smooth muscle cell contraction (Xu et al., 

2006).  

TRPC6 expression has been identified in smooth muscle cells (Jung et al., 2002; 

Weissmann et al., 2006), neurons (Inoue et al., 2001), thrombocytes (Hassock et al., 

2002) and white blood cells (Heiner et al., 2003). Studies using transgenic TRPC6 

knockout mice have shown the importance of this channel in hypoxia-induced 

pulmonary hemodynamics (Weissmann et al., 2006). Furthermore, TRPC6 channel-

mediated Ca
2+

 entry is suggested to have a role in vasopressin-induced smooth muscle 

cell contraction (Jung et al., 2002) and sympathetic nerve activity (Inoue et al., 2001). 

The TRPC6 channel in thrombocytes plays a role in the formation of the store-operated 

Ca
2+

 channels (Hassock et al., 2002).  

Finally, TRPC7 expression has been found in endothelial cells (Yip et al., 2004), 

neurons (Ben-Mabrouk and Tryba, 2010) and myometrial cells (Dalrymple et al., 2004). 

TRPC7, on its own, is involved in relatively few physiological functions. However, 

TRPC7 can interact with TRPC3 and TRPC6 to form heteromeric channels (Yip et al., 
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2004; Dalrymple et al., 2004; Lièvremont et al., 2004; Zagranichnaya et al., 2005). 

There is evidence to suggest the heteromeric channels made of TRPC7 and TRPC3 or 

TRPC6 are involved in mediating the Ca
2+

 entry which influences women’s pregnancy 

and labour (Dalrymple et al., 2004) as well as respiratory rhythm activity (Ben-

Mabrouk and Tryba, 2010). Moreover, studies have shown that TRPC7 is implicated in 

the formation of store-operated Ca
2+

-channels (Zagranichnaya et al., 2005).   

 

1.1.3.2 TRPV  

Of all the mammalian TRP subfamilies, TRPV proteins are most related to the 

TRPC proteins, due to their similarities on highly conserved residues in the fifth and 

sixth transmembrane segments (Montell, 2005; Venkatachalam and Montell, 2007). 

Mammalian cells express six genes encoding six different TRPV proteins, TRPV1-

TRPV6 (Gunthorpe et al., 2002; Pedersen et al., 2005). The TRPV channels exhibit 

significant variation in their selective Ca
2+

 permeability, with the TRPV1-TRPV4 

channels functioning as nonselective Ca
2+

 permeable channels and the TRPV5 and 

TRPV6 channels being highly selective for Ca
2+

. All the TRPV channels except TRPV5 

and TRPV6 are sensitive to activation by temperature, each with a different temperature 

threshold (TRPV1: ≥ 43ºC; TRPV2: > 52ºC, TRPV3: 33-39ºC, TRPV4: 27-42ºC) 

(Smith et al., 2002; Xu et al., 2002; Guler et al., 2002; Ahluwalia et al., 2002; Pedersen 

et al., 2005). The TRPV1-TRPV3 channels can be activated by 2-aminoethoxydiphenyl 

borate (2-APB), with the TRPV1 and TRPV2 channels having the lower sensitivity to 

2-APB than the TRPV3 channel (Chung et al., 2004; Hu et al., 2004). The TRPV1-

TRPV4 channels are also activated by various other stimuli, including vanilloid 

compounds (TRPV1) (Caterina et al., 2000; Pedersen et al., 2005; Valente et al., 2008), 

nicotine (TRPV1) (Liu et al., 2004), growth factor (TRPV2) (Kanzaki, 1999), camphor 

(TRPV3) (Moqrich et al., 2005) and osmotic pressure (TRPV4) (Nilius, Prenen, et al., 

2003). The TRPV5 and TRPV6 channels are also activated by low intracellular Ca
2+

 

concentrations (30-50 nM) (Bödding et al., 2002; Lee et al., 2005).  

TRPV1 is mainly expressed in neurons, and this has led to studies that have 

shown its critical role in the detection of heat and painful stimuli (Caterina et al., 2000; 

Hazan et al., 2015). Also, the TRPV1 channel has been shown to be important in 

feeding behaviour and body weight regulation (Ahern, 2003; Wang et al., 2005). There 

is also evidence to suggest that the TRPV1 channel is expressed in the pancreas and is 

critical in mediating the release of substance P (Nathan et al., 2001).  
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TRPV2 expression has been documented in smooth muscle cells (Kanzaki, 

1999; Kanzaki et al., 1999; Beech et al., 2004), cardiomyocytes (Muraki et al., 2003; 

Iwata et al., 2003; Katanosaka et al., 2014), pancreatic β cells (Aoyagi et al., 2010), 

interstitial cells (Kashiba et al., 2004) and neurons (Shimosato et al., 2005). The TRPV2 

channel is involved in cardiac shortening (Katanosaka et al., 2014) and glucose-induced 

insulin secretion (Aoyagi et al., 2010). Furthermore, there is evidence to show that the 

TRPV2 channel can act as an osmotic-sensitive cation channel in cardiomyocytes 

(Muraki et al., 2003). 

TRPV3 is expressed in keratinocytes (Peier, Reeve, et al., 2002; Smith et al., 

2002; Chung et al., 2005; Pedersen et al., 2005), smooth muscle cells (Xu et al., 2002; 

Murphy et al., 2016) and neurons. The expression of the TRPV3 channel in these cells 

has led to the discovery of its roles in skin sensitisation (Moqrich et al., 2005) and blood 

vessel vasodilation (Murphy et al., 2016). Additionally, it has been reported that TRPV3 

can form a hetero-oligomeric channel with TRPV1 (Hellwig et al., 2005).   

TRPV4 expression has been found in neurons (Alessandri-Haber et al., 2003; 

Delany et al., 2001), hair cells (Liedtke et al., 2000; Strotmann et al., 2000), endothelial 

cells (Nilius, et al., 2003b) and epithelial cells (Andrade et al., 2005; Strotmann et al., 

2000). The TRPV4 channel is additionally involved in hypotonicity-induced 

nociceptive responses (Alessandri-Haber et al., 2003; Delany et al., 2001; Liedtke et al., 

2000). This channel has also been reported to play a role in thermosensing (Guler et al., 

2002) or mechanosensing (Fernandes et al., 2008; Lorenzo et al., 2008; Strotmann et al., 

2000). 

There is highly restricted TRPV5 expression in epithelial cells (Nijenhuis et al., 

2003; de Groot et al., 2008). This directly links to its role in mediating Ca
2+

 

reabsorption in the kidney and intestine.    

Similarly to TRPV5, TRPV6 expression has been documented in epithelial 

(Nijenhuis et al., 2003; Nijenhuis et al., 2005) and interstitial cells (van de Graaf et al., 

2006). The TRPV6 channel has been proposed to be critical in maintaining the Ca
2+

 

homeostasis in the kidney and intestine.  

 

1.1.3.3 TRPM  

The TRPM subfamily was named after melastatin (TRPM1), the first member, 

and is comprised of eight members (TRPM1-TRPM8). The TRPM proteins can be 

further divided into four pairs based on sequence homology; TRPM1/TRPM3, 

TRPM6/TRPM7, TRPM4/TRPM5 and TRPM2/TRPM8 (Fleig and Penner, 2004a; 
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Fleig and Penner, 2004b; Eisfeld and Luckhoff, 2007). All TRPM proteins contain four 

stretches of highly conserved amino acid residues in the N-terminus, named TRPM 

homology domains (MHD) I-IV (Fig 1.2A) (Eisfeld and Luckhoff, 2007). These 

domains, however, have not been assigned with specific channel function. 

 All TRPM proteins can form functional channels, which exhibit significant 

variation in their ion permeability to divalent cations such as Ca
2+

. The TRPM1, 

TRPM3, TRPM6 and TRPM7 channels are relatively more permeable to divalent 

cations (Xu et al., 2001; Oberwinkler et al., 2005; Voets et al., 2004; Li et al., 2006). 

Conversely, the TRPM4 and TRPM5 channels are highly permeable to monovalent 

cations (Hofmann et al., 2003; Liu and Liman, 2003; Launay et al., 2002). The TRPM2 

and TRPM8 channels show an intermediate permeability to divalent cations (Sano et al., 

2001; Perraud et al., 2001; Kuhn et al., 2007; Peier, Moqrich, et al., 2002).  

The TRPM1 channel is constitutively active. The TRPM3 channel can be 

activated by osmotic pressure (Grimm et al., 2003), steroid compounds such as 

pregnenolone sulphate (Wagner et al., 2008) and d-erythro-sphingosine (SPH), a 

lipophilic substance (Grimm et al., 2005).  There is evidence to suggest that both the 

TRPM4 and TRPM5 channels are directly activated by intracellular Ca
2+

 (Launay et al., 

2002; Hofmann et al., 2003; Nilius, Prenen, et al., 2003). In addition, the TRPM5 

channel is activated by PIP2 (Ueda et al., 2003; Liu and Liman, 2003). The TRPM7 

channel can be activated by Mg-ATP (Hermosura et al., 2002), cyclic adenosine 

monophosphate (cAMP) (Takezawa et al., 2004)(McKemy, 2005; Peier, Moqrich, et al., 

2002; Behrendt et al., 2004) and PIP2 (Runnels et al., 2001). The TRPM8 channel is 

activated by cold temperature and cooling agents such as menthol and icilin (McKemy, 

2005; Peier, Moqrich, et al., 2002; Behrendt et al., 2004).  

TRPM1 was first identified in melanocytes, playing role in melanin trafficking 

(Duncan et al., 1998; Miller, 2004; Oancea et al., 2009). Recent studies have shown that 

the TRPM1 channel is expressed in retinal bipolar cells and is important in determining 

cell viability (Koike et al., 2010; Shen et al., 2009).  

TRPM3 expression has been documented in smooth muscle cells (Naylor et al., 

2010), neurons (Vriens et al., 2011; Vandewauw et al., 2013) and pancreatic β cells 

(Wagner et al., 2008; Wagner et al., 2010). The TRPM3 channel has been shown to play 

a functional role in smooth muscle cell contraction and proliferation (Naylor et al., 

2010). Furthermore, TRPM3 channel expression in neurons has led to the discovery of 

its role in chemosensing and thermosensing (Vriens et al., 2011; Straub et al., 2013). 
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Evidence also exists to suggest that the TRPM3 channel is involved in glucose-induced 

insulin secretion (Wagner et al., 2008; Wagner et al., 2010). 

TRPM4 is expressed in dendritic cells (Barbet et al., 2008), smooth muscle cells 

(Isogai et al., 2016) and sperm cells (Kumar et al., 2016). The TRPM4 channel has been 

shown to be important in cell migration (Barbet et al., 2008; Holzmann et al., 2015), 

smooth muscle cell contraction (Isogai et al., 2016) and sperm fertilisation (Kumar et 

al., 2016). 

TRPM5 channel expression has been described in taste receptor cells, leading to 

the discovery of its significant involvement in the taste transduction mechanism 

(Talavera et al., 2005; Ueda et al., 2003; Liu and Liman, 2003; Liman, 2007). The 

TRPM5 channel is also expressed in intestinal cells, where it plays a role in post-

ingestive chemosensation (Pérez et al., 2002). In pancreatic β cells, the TRPM5 channel 

is involved in insulin secretion (Liman, 2010; Brixel et al., 2010).   

TRPM6 is mainly found in epithelial cells and plays a vital role in mediating in 

Mg
2+

 reabsorption in the kidney and intestine (Runnels et al., 2001; Hermosura et al., 

2002; Voets et al., 2004; Nijenhuis et al., 2006).   

TRPM7 expression has been documented in neuroblastosoma cells (Clark et al., 

2006; Su et al., 2006), neurons (Aarts et al., 2003; Nicotera and Bano, 2003) and 

pheochromocytoma cells (PC12) (Brauchi et al., 2008).  The TRPM7 channel is shown 

to have a role in cell adhesion, cell viability and hormone secretion, respectively. 

Furthermore, a study shows a function for the TRPM7 channel in the cell proliferation 

implicated in carcinogenesis (Yee et al., 2011). 

TRPM8 expression is found in epithelial cells (Patapoutian et al., 2003; Zhang 

and Barritt, 2004), neurons (Clapham, 2003; McKemy et al., 2002; McKemy, 2005), 

endothelial cells (Genova et al., 2017) and smooth muscle cells (Mukerji et al., 2006). 

The most remarkable role for the TRPM8 channel is sensing cold temperature 

(Patapoutian et al., 2003; Mukerji et al., 2006). There is evidence to show that the 

TRPM8 channel plays a role in prostate and pancreatic carcinogenesis (Tsavaler et al., 

2001; Liu et al., 2016; Yee, 2015). In addition, the TRPM8 channel is involved in 

endothelial cell migration (Genova et al., 2017) and smooth muscle cell contraction 

(Mukerji et al., 2006). 

  

1.1.3.4 TRPA  

The TRPA subfamily consists only one member, TRPA1. The TRPA1 protein 

can form a Ca
2+

-permeable cation channel which is activated by intracellular Ca
2+
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(Nagata et al., 2005; Zurborg et al., 2007; Doerner et al., 2007). The TRPA1 channel is 

potently activated by proalgesic compounds such as bradykinin, allicin and horseradish, 

and environmental irritants like vehicle exhaust and tear gas (Story et al., 2003; Bandell 

et al., 2004; Macpherson et al., 2005; McKemy, 2005; Bautista et al., 2006). 

Additionally, TRPA1 channel activation can be stimulated by mechanical pressure 

(Corey et al., 2004) and noxious cold temperature (Story et al., 2003; Sawada et al., 

2007).  

Restricted TRPA1 expression is seen in hair cells (Corey et al., 2004; Nagata et 

al., 2005; Wu et al., 2016) and neurons (Story et al., 2003; Bautista et al., 2006). There 

is evidence to suggest that the TRPA1 channel plays a key role in auditory signal 

transduction mechanisms or hearing (Corey et al., 2004; Nagata et al., 2005; Wu et al., 

2016). Besides that, the TRPA1 channel has been proposed to mediate pain perception 

(Voets et al., 2005) and heat sensation (McKemy, 2005; Bautista et al., 2006). 

 

1.1.3.5 TRPP 

There are three TRPP proteins; TRPP2, TRPP3 and TRPP5 (or TRPP2-like), 

which are structurally similar to other TRP proteins in that they have six α-

transmembrane segments (Fig. 1.2B). They can form Ca
2+

-permeable cation channels 

(Inoue et al., 2006). The TRPP2 and TRPP3 channels are activated by intracellular Ca
2+

 

(Koulen et al., 2002; Chen et al., 1999; Li et al., 2002). Additionally, the TRPP2 

channel can be activated by mechanical stimuli (Delmas, 2004; Delmas, 2005), whereas 

the TRPP3 channel activation can be stimulated by voltage, pH and mechanical stress 

(Shimizu et al., 2009).  Molecular cloning has identified TRPP1 and related proteins 

(TRPP1-like) that consist of 11 putative transmembrane segments (Hughes et al., 1995), 

and are therefore not part of the TRP superfamily.  

TRPP2 was first discovered in search for the gene responsible for autosomal 

dominant polycystic kidney disease (AD-PKD) (Mochizuki et al., 1996; Pedersen et al., 

2005; Venkatachalam and Montell, 2007). Subsequent studies showed TRPP2 

expression in renal epithelial cells and its role in the mechanotransduction signalling in 

kidneys (Yoder et al., 2002; Bai et al., 2008; Nauli et al., 2003; Kottgen, 2007; Delmas, 

2004). TRPP2 channel expression has also been documented in cardiomyocytes, smooth 

muscle cells, endothelial cells (Ong, 2000) and sperm cells (Kottgen et al., 2011), where 

it is proposed to be involved in determining cell viability (Kottgen, 2007), cell 

proliferation (Aguiari et al., 2004), asymmetric cell polarization (Pennekamp et al., 

2002) and sperm fertilization (Kottgen et al., 2011). Additionally, studies have reported 
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that the TRPP2 protein can co-assemble with TRPP1-like protein to form a functional 

Ca
2+

-permeable channel mediating mechanotransduction signalling (Delmas, 2004; 

Hanaoka et al., 2000).   

TRPP3 expression has been documented in neurons (Huang et al., 2006; 

Djenoune et al., 2014; Orts-Del’Immagine et al., 2014), retinal cells (Keller et al., 1994) 

and hair cells (Nomura et al., 1998). Studies by genetic deletion or pharmacological 

inhibition of the TRPP3 channel have shown its role in taste sensation (Huang et al., 

2006; Ishimaru et al., 2006; LopezJimenez et al., 2006). The TRPP3 channel has also 

been implicated in cell growth (Keller et al., 1994; Nomura et al., 1998) and hedgehog 

signalling mechanisms (DeCaen et al., 2013; Delling et al., 2013).  

TRPP5 expression is primarily found in sperm cells, where it plays a role in 

spermatogenesis (Guo et al., 2000; Chen et al., 2008; Xiao et al., 2010). The TRPP5 

channel has also been identified in epithelial cells (Xiao et al., 2010) and 

cardiomyocytes (Volk et al., 2003), where it has been suggested to be involved in cell 

proliferation and cell viability.  

 

1.1.3.6 TRPML 

The TRPML subfamily includes three proteins, TRPML1-TRPML3. TRPML1 

and TRPML2 proteins are localised in the lysosomal membrane (Dong et al., 2008; 

Karacsonyi et al., 2007), whereas the TRPML3 protein is present in the plasma 

membrane (Kim et al., 2007). All TRPML proteins have been shown to be able to form 

nonselective cation-permeable channels (Dong et al., 2010).  

The TRPML1 channel is activated by nicotinic acid adenine dinucleotide 

phosphate (NAADP) (Zhang and Li, 2007). In addition, evidence suggests that the 

TRPML1 and TRPML2 channels can be activated by voltage and low pH (Xu et al., 

2007; Dong et al., 2008), whereas TRPML3 channel activation can be induced by 

extracellular Na
+
 (Kim et al., 2007; Kim et al., 2008).  

TRPML1 is expressed in smooth muscle cells (Zeevi et al., 2007), hepatocytes 

(Zhang and Li, 2007) and melanocytes (Xu et al., 2007). Studies have shown the 

importance of this channel in the pathogenesis of lysosomal storage disorder 

mucolipidosis type IV, which is characterised by mental retardation, motor defects and 

retinal degeneration (Sun et al., 2000; Bach, 2001; Bach, 2005). The TRPML1 channel 

is also critical in lysosomal formation and recycling (Piper and Luzio, 2004; Qian and 

Noben-Trauth, 2005). 



14 

 

TRPML2 expression has been shown in hepatocytes, endothelial cells and 

smooth muscle cells (Samie et al., 2009). Similarly to the TRPML1 channel, the 

TRPML2 channel is suggested to have a significant role in lysosomal formation (Di 

Palma et al., 2002). 

TRPML3 is expressed in hair cells (Di Palma et al., 2002; Nagata et al., 2008), 

melanocytes (Xu et al., 2007) and epithelial cells (Kim et al., 2009). Studies using 

TRPML3 knockout mice have demonstrated the importance of this channel in hair cell 

maturation and melanocyte cell death (Di Palma et al., 2002; Nagata et al., 2008; Xu et 

al., 2007). In addition, there is evidence that suggests the TRPML3 channel is involved 

in deafness, pigmentation defects and perinatal lethality (Di Palma et al., 2002).     

 

1.2 TRPM2 CHANNELS 

 

1.2.1 Genes 

TRPM2 genes have been cloned in humans (Nagamine et al., 1998), mice 

(Uemura et al., 2005) and rats (Wong et al., 1993). The human TRPM2 gene is located 

on chromosome 21q22.3, consisting of 32 exons spanning approximately 90 kb. The 

full-length human TRPM2 protein comprises of 1503 amino acid residues and has a 

predicted molecular weight of approximately 171 kDa (Nagamine et al., 1998). The 

full-length rat and mouse TRPM2 proteins are 1507 amino acid residues in length.  A 

recent study has characterised the TRPM2 orthologue from the sea anemone 

Nematostella vectensis (Kuhn et al., 2015). This protein contains 1553 amino acid 

residues and exhibits 31% sequence identity with the human TRPM2 protein.  In 

addition to the full-length isoform, several short alternative splicing variants of human 

TRPM2 have been reported (Jiang et al., 2010), which will be discussed in detail later. 

 

1.2.2 Structural and biophysical properties 

The TRPM2 channel has the same overall structure that is described in section 

1.1.2 (Fig. 1.2A). The TRPM2 channel is distinguished from other TRP channels in that 

its intracellular C-terminus contains the NUDT9-H domain as briefly mentioned above. 

This domain, consisting of approximately 300 amino acid residues, displays sequence 

homology with the human NUDT9 ADPR pyrophosphatase, a mitochondrial hydrolase 

that degrades ADPR into adenine monophosphate (AMP) and ribose 5’-phosphate 

(Perraud et al., 2001; Fleig and Penner, 2004b; Shen et al., 2003). An early study 
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showed that the NUDT9-H domain, when expressed on its own, exhibited low but 

detectable ADPR hydrolase activity (Perraud et al., 2001), which has however been 

refuted in a recent study (Iordanov et al., 2016). The binding of intracellular ADPR to 

the NUDT9-H domain causes the TRPM2 channel to open its ion-permeating pore 

across the membrane, allowing the permeation of cations, including Ca
2+

, Mg
2+

, K
+
 and 

Na
+
 (Perraud et al., 2001; Sano et al., 2001; Mederos y Schnitzler et al., 2008; Xia et al., 

2008). The TRPM2 channel currents display a linear current-voltage (I-V) relationship 

with zero reversal potential, consistent with the fact that it is non-selective cation 

channel. The single channel conductance is approximately 60 pS (Perraud et al., 2001).  

 

1.2.3 Alternative splicing isoforms 

Several alternative splicing isoforms have been reported for the TRPM2 protein. 

TRPM2-∆N and TRPM2-∆C were identified in monocytes and neutrophils (Wehage et 

al., 2002; Kuhn et al., 2009). The TRPM2-∆N isoform has a deletion of 20 amino acid 

residues (538-557 according to the full-length human TRPM2) in the N-terminus. The 

TRPM2-∆C lacks 34 amino acid residues in the C-terminus. The deletion in TRPM2-

∆C includes the ADPR-binding domain, but this mutant can still form a channel (Zhang 

et al., 2003; Wehage et al., 2002; Du et al., 2009). Later studies discovered two further 

alternative splicing isoforms, TRPM2-short (TRPM2-S) and striatum short protein 

(SSF)-TRPM2. The TRPM2-S protein contains only the N-terminus and the first two 

transmembrane segments. This truncated isoform is generated by a stop codon between 

exons 16 and 17 and has been reported to act as a dominant negative inhibitor when co-

expressed with the full-length TRPM2 protein (Zhang et al., 2003). The SSF-TRPM2 

isoform does not contain the first 214 amino acid residues in the N-terminus and has 

been shown to form a functional TRPM2 channel, although the channel activity is 

reduced compared to the full-length TRPM channel (Uemura et al., 2005). More 

recently, studies on melanoma and breast cancer cells have identified the tumour-

enriched TRPM2 (TRPM2-TE) isoform, which lacks part of exon 26 and the entire 

exon 27 (Orfanelli et al., 2008). The deletion in TRPM2-TE includes 34 amino acid 

residues in the NUDT9-H domain; however TRPM2-TE is still able to demonstrate the 

enzymatic activity of TRPM2 channel (Orfanelli et al., 2008). 

 

 1.2.4 Channel Activation 

ADPR and several structure- or metabolism-related compounds, including 2’-O-

acetyl-ADPR (OAADPR), nicotinamide adenine dinucleotide (NAD), cyclic ADP- 
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Fig. 1.3 TRPM2 channel activator structures. 

Diagrams showing the chemical structures of ADPR, OAADPR, NAD, cADPR and NAADP 
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ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) have been 

shown to activate TRPM2 channels in submillimolar to millimolar concentrations (Jiang 

et al., 2010; Sumoza-Toledo and Penner, 2011). Figure 1.3 illustrates the structures of 

the TRPM2 channel activators described in this section.  

 

1.2.4.1 ADPR 

ADPR is the most potent agonist of the TRPM2 channel (Fig. 1.3), with the 

concentration inducing half of the maximal response (EC50) varying from 1 to 90 M, 

depending on the cell types and the methods used to measure the channel activity 

(Perraud et al., 2001; Sano et al., 2001; Wehage et al., 2002; Beck et al., 2006; Lange et 

al., 2008). Site-directed mutagenesis studies suggest that two residues in the NUDT9-H 

domain, Ile
1405

 and Lue
1406

, are critical for TRPM2 channel activation by ADPR 

(Perraud et al., 2003; Kuhn and Luckhoff, 2004).  

 ADPR can be generated extracellularly by the hydrolysis of NAD
+ 

catalysed by 

membrane-bound CD38 ectoenzyme (Lund et al., 1995; Malavasi et al., 2006; Lund, 

2006). Studies using neutrophils from CD38-KO mice showed a decrease in the [Ca
2+

]i 

induced by formyl-methionyl-leucyl-phenylalanine (fMLP) when compared to WT 

neutrophils (Partida-Sánchez et al., 2003). Interestingly, similar results were reported in 

TRPM2-KO neutrophils (Yamamoto et al., 2008). These findings consistently suggest 

that CD38 may play a role in generating the ADPR required for TRPM2 channel 

activation. However, it is still a matter of debate as to how extracellular ADPR 

produced by CD38 reaches the cytosolic NUDT9-H domain of the TRPM2 channel. In 

addition to the ectoenzyme CD38, NAD
+
 hydrolysis resulting in ADPR generation can 

also be induced in the nucleus and mitochondria in response to oxidative stress, which 

will be discussed later.  

 

1.2.4.2 OAADPR 

NAD-dependent deacetylase sirtuin-2 catalyses the deacetylation of acetylated 

substrates by removing the acetyl groups and transferring them to NAD
+
, producing 

OAADPR (Fig 1.3). Studies using patch-clamp recording and binding assays have 

revealed that OAADPR can activate the TRPM2 channel by binding to the NUDT9-H 

domain (Grubisha et al., 2006; Tong and Denu, 2010). OAADPR shows a similar 

binding affinity to ADPR, suggesting that OAADPR can directly gate the TRPM2 

channel. 
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1.2.4.3 NAD 

NAD serves as the precursor for the production of ADPR. Earlier studies 

reported that NAD can gate the TRPM2 channel, although high concentrations of NAD 

are required with, EC50 values of 1-1.8 mM (Hara et al., 2002; Sano et al., 2001; 

Naziroğlu and Lückhoff, 2008). Furthermore, NAD displayed significant synergy with 

ADPR, each increasing channel sensitivity to the other (Beck et al., 2006). Additional 

studies showed that NAD-induced TRPM2 channel currents were significantly smaller 

compared to those induced by ADPR (Heiner et al., 2003; Kraft et al., 2004). 

However, later studies have shown that purified NAD fails to activate the 

TRPM2 channel, therefore refuting the notion that NAD is a TRPM2 channel activator 

(Beck et al., 2006; Toth and Csanady, 2010; Megnone et al., 2012; Toth et al., 2015). 

These suggest that the NAD-induced TRPM2 channel activation observed in early 

studies is likely due to ADPR contamination. Indeed, thin layer chromatography (TLC) 

analysis showed substantial ADPR contamination in commercially available NAD 

(Toth and Csanady, 2010). In addition, Toth et al. have recently shown using inside-out 

patch-clamp recording that purified NAD was ineffective in inducing TRPM2 channel 

activation (Toth et al., 2015).  They have further demonstrated that the purified NAD 

does not compete with ADPR for binding to the TRPM2 channel. Altogether, these 

findings have clarified the earlier contradiction by confirming that NAD-induced 

TRPM2 channel activation was due to the presence of ADPR and also that NAD on its 

own cannot act as a direct activator of the TRPM2 channel. 

 

1.2.4.4 cADPR 

cADPR can be synthesized from NAD by ectoenzyme CD38. When applied 

intracellularly, cADPR at concentrations of above 100 µM can activate the TRPM2 

channel with an EC50 value of 0.4-0.7 mM, which is far less effective than ADPR 

(Kolisek et al., 2005; Beck et al., 2006; Heiner et al., 2006; Lange et al., 2008). cADPR 

at lower micromolar concentrations (10 µM) shows a strong synergy with ADPR, 

causing an increase in the TRPM2 channel sensitivity to each other (Kolisek et al., 

2005).  

High performance liquid chromatography (HPLC) analysis has found a 

considerable amount of ADPR in commercial cADPR (Heiner et al., 2006). 

Additionally, Beck and her colleagues showed that adenosine diphosphate (AMP) 

potently suppresses the TRPM2 channel activation induced by ADPR but not cADPR 
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(Beck et al., 2006; Lange et al., 2008). More recently, a study using patch-clamp 

recording showed that AMP strongly abolished cADPR-induced TRPM2 currents (Toth 

et al., 2014), supporting the notion that cADPR-induced TRPM2 channel activation is 

due to ADPR.  

 

 1.2.4.5 NAADP 

NAADP has been shown to activate the TRPM2 channel with an EC50 value of 

0.73-1 mM (Beck et al., 2006; Lange et al., 2008). There is evidence to show that 

NAADP is capable of directly binding and activating the TRPM2 channel, albeit with a 

very low binding affinity (Toth and Csanady, 2010).  The concentration of NAADP 

required for TRPM2 channel activation is much higher than its physiological 

concentration and it has therefore been suggested that NAADP does not act as an 

agonist of the TRPM2 channel in vivo. Nonetheless, NAADP at low micromolar 

concentrations shows synergy with ADPR in activating the TRPM2 channel (Lange et 

al., 2008).  

 

 1.2.4.6 Ca
2+

  

TRPM2 channel is a Ca
2+

-permeable channel and thus the elevation in [Ca
2+

]i is 

an early downstream event following channel activation. Intracellular Ca
2+ 

itself is 

critical for full activation of the TRPM2 channel. In the absence of Ca
2+

, ADPR is very 

efficient in inducing TRPM2 channel activation (Starkus et al., 2007; Carter et al., 

2006; Lange et al., 2008). Intracellular Ca
2+

 potentiates ADPR-induced TRPM2 channel 

activation by increasing the sensitivity of the channel to ADPR, with a concentration of 

0.3 µM producing half maximal potentiation (Lange et al., 2008; Starkus et al., 2007; 

McHugh et al., 2003). There is evidence to suggest that the minimum intracellular Ca
2+

 

concentration of 30 nM is required to facilitate ADPR-induced TRPM2 channel 

activation (Starkus et al., 2007). In addition, it is suggested that intracellular Ca
2+

 on its 

own can activate the TRPM2 channel in a concentration-dependent manner, with an 

EC50 value of 17 µM (McHugh et al., 2003; Starkus et al., 2007; Du et al., 2009). Ca
2+

-

induced activation of the TRPM2 channel or facilitation of the TRPM2 channel 

activation by other agonists has been shown to result from calmodulin (CaM)-

dependent interaction of Ca
2+

 and the TRPM2 channel via the N-terminal IQ-like CaM-

binding motif (Du et al., 2009).  

 



20 

 

1.2.4.7 Temperature  

Several studies support temperature dependence of the TRPM2 channel 

activation, but there is some discrepancy in terms of the temperature threshold and how 

temperature activates the TRPM2 channel. An early study reported that warm 

temperature (>35ºC) strongly synergises with ADPR, NAD and cADPR in activating 

the TRPM2 channel (Togashi et al., 2006). Further studies showed that heat and cADPR 

evoked the TRPM2 channel activity which is critical in mediating glucose-induced 

insulin secretion in pancreatic β cells (Togashi et al., 2006). Body temperature has been 

reported to enhance H2O2-induced TRPM2 channel activation in microglial cells 

(Mortadza et al., 2017). However, recent studies report that body temperature can 

activate the TRPM2 channel in the absence of agonist (Tan and McNaughton, 2016; 

Song et al., 2016). The mechanism underlying temperature-dependent TRPM2 channel 

activation is still remain to be elucidated. 

 

1.3 ROS-INDUCED ACTIVATION OF TRPM2 CHANNELS 

 

1.3.1 Reactive oxygen species (ROS) 

Molecular oxygen contains two unpaired electrons in its outer electron shell; this 

physiochemical property makes it readily available to generate a group of highly 

reactive chemicals called reactive oxygen species (ROS). These molecules can be 

categorized into two different groups; oxygen radical and oxygen non-radical 

molecules. Oxygen radicals, including superoxide (O2
∙−

), hydroxyl (OH
∙
), peroxide 

(O2
∙−2

), alkoxyl (RO
∙
) and peroxyl (RO2

∙
), contain one or two free unpaired electrons, 

whereas non-radical oxygen molecules, such as hydrogen peroxide (H2O2), 

hypochlorous acid (HOCl), singlet oxygen (O2) and ozone (O3), have electrons in a pair. 

Another group of molecules called reactive nitrogen species (RNS), including nitric 

oxide (NO
∙
), dinitrogen trioxide (N2O3), nitroxyl (HNO), peroxynitrite (ONOO

-
), and 

nitrous acid (HNO2) have similar biologically reactive properties (Martinez and 

Andriantsitohaina, 2009).  

Mitochondria and nicotine adenine dinucleotide phosphate (NADPH) oxidase 

(NOX) are the primary sources of ROS as discussed below. ROS generation also occurs 

in the ER, in which superoxide is produced as a result of electron leakage from 

cytochrome p450 reductase (Cross & Jones 1991). Other sources of ROS include the 
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peroxisome, xanthine oxidase, lipoxygenase and cyclooxygenase (Kamata and Hirata, 

1999).  

ROS is known to have roles in both physiological and pathological functions via 

the activation of intracellular signalling cascades (Allen and Tresini, 2000; Bedard and 

Krause, 2007). Under physiological conditions, ROS maintain cellular processes by 

mediating cytokine production, hormone secretion, neuromodulation and ion 

transportation. However, excessive ROS can result in an increase in the production of 

inflammatory mediators and induction of apoptotic gene expression, leading to 

inflammation and subsequent cell death and disease progression (Allen and Tresini, 

2000; Bedard and Krause, 2007).  

ROS impair or modify cellular functions mainly via oxidation of a number of 

molecules including lipids, protein, carbohydrates and DNA. For example, ROS, 

particularly OH
∙
, oxidizes fatty acids in the plasma membranes, leading to the 

production of aldehydes that causes the loss of structural integrity of the plasma 

membrane (Sohal et al., 2002; Radak et al., 2011). In addition, ROS interact with DNA 

bases, with guanine being most sensitive to ROS, leading to DNA damage (Hirano et 

al., 1996; Hirota et al., 2010). Furthermore, ROS are able to damage proteins by 

oxidizing amino acids, especially sulphur-containing amino acid, resulting in the loss of 

protein functions (Schieber and Chandel, 2014).  

To counteract the overproduction of intracellular ROS, cells are equipped with 

various antioxidant defence mechanisms using enzymatic and non-enzymatic 

molecules, including superoxide dismutase (SOD), catalase, glutathione peroxidase 

(GPx), glutathione and thioredoxin (TRX). For example, SOD converts O2
∙−

 into H2O2 

and water. Catalase, and GPx in conjunction with glutathione, convert H2O2 into water 

(Kamata and Hirata, 1999).     

        

1.3.2 Mitochondrial ROS generation 

Mitochondria have been recognized as the main source of ROS production, where ROS 

is generated as a by-product of the ATP synthesis metabolism. Studies using isolated 

mitochondria were the first to demonstrate the production of H2O2 within this organelle 

(Loschen et al., 1974; Boveris and Chance, 1973) and later studies verified that H2O2 

was generated from O2
∙−

 (Loschen et al., 1974; Forman and Kennedy, 1974). These 
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findings were supported by the discovery of mitochondrial SOD (Weisiger and 

Fridovich, 1973). Energy metabolism processes occur in the mitochondria, depending 

on four complexes, complex I (NADH-ubiquinone oxidoreductase), complex II 

(succinate dehydrogenase (SDH)), complex III (cytochrome c reductase) and complex 

IV (cytochrome c oxidase) (Fig. 1.4). Complex I receives two electrons from the 

electron carrier, nicotinamide adenine dinucleotide (NADH), and transfers them to 

complex III and subsequently to complex IV by coenzyme Q (CoQ), also known as 

ubiquinone, and cytochrome c, respectively (Fig. 1.4).  Each of these electron transfer 

processes is accompanied by translocation of one proton from the mitochondrial matrix 

into the intermembrane space. Additional electrons from a different carrier, flavin 

adenine dinucleotide (FAD), is delivered to CoQ involving complex II as the electron 

transporter (Fig. 1.4). However, unlike the complex I, III and IV, complex II does pump 

protons. Complex IV finally transfers electrons to oxygen, which reacts with protons to 

produce water.  

The main sites of ROS production are complex I (Kudin et al., 2004) and 

complex III (Chen et al., 2003). Complex I is an intermembrane-bound multiprotein 

complex which is exposed to both matrix and intermembrane space (Fig 1.4). Studies 

have proposed that there are two mechanisms which attribute to ROS generation by 

complex I, conventional forward electron transport (FET) and reverse electron transport 

(RET), with RET contributing to a larger amount of superoxide production. FET-

associated ROS production involves the normal process of mitochondrial electron 

transport chain, in which NADH sequentially passes electrons to different redox 

centres, including flavin mononucleotide (FMN), iron-sulphur (FeS) clusters and CoQ 

(Hirst et al., 2003; Sazanov, 2007) (Fig 1.4). The electron carriers are arranged in order 

of increasing redox potential. The process of electron transfer creates a membrane 

potential which produces energy for the movement of protons across the inner 

membrane to generate and maintain the proton motive force (Δp). However, several 

factors, such as Ca
2+

 overload and mitochondrial rupture as well as inhibitors like 

rotenone, can result in an imbalance of the membrane potential that inhibits electron 

transfer and increases the NADH/NAD
+
 ratio to promote superoxide generation 

(Kalogeris et al., 2014; Kudin et al., 2004; Kussmaul and Hirst, 2006; Kushnareva et al., 

2002). RET occurs when an electron is forced backwards from reduced coenzyme Q 

(CoQH2) to NAD
+
 instead of oxygen (Fig 1.4). Normally, the difference in the redox 

potential (ΔE) of the electron carriers in complex I has to be greater than the energy 

required to pump protons against the Δp. However, when the Δp is higher than the ΔE, 
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 Fig. 1.4 Electron transfer and ROS generation in mitochondrial electron transport chain. 

The mitochondrial electron transport chain (mETC) involves a series of redox reactions by transferring electrons (e
-
) to and from different molecules, 

generating a transmembrane proton gradient. Complex I oxidizes nicotinamide adenine dinucleotide (NADH) and serially passes e
-
 to flavin 

mononucleotide (FMN), iron-sulphur (FeS) clusters and finally coenzyme Q (CoQ). Complex II transfers e
-
 from flavin adenine dinucleotide (FADH) 

to CoQ. Reduced CoQ (CoQH2) act as the substrates of complex III in which it transfers its e
-
 to FeS cluster and subsequently to cytochrome c1 (cyt 

c1) in the Qo redox centre. Cyt c accepts e
-
 from complex III and translocates it to complex IV, where oxygen acts as the final e

-
 acceptor and reacts 

with hydrogen to produce water. Each of the electron transfer processes occurrs in complex I, III and IV is accompanied by a proton translocation 

from the matrix into the intermembrane space. Complex I can generate ROS from two different pathways which are forward electron transport (FET) 

and reverse electron transport (RET) processes. In FET, e
-
 are transferred as described above, however, the increase ratio of NADH/NAD

+
 induced by 

mETC inhibitors can lead to ROS production. In RET, e
- 
is transferred against the redox membrane potential gradient, from CoQ to NAD

+
 instead of 

oxygen, causing the accumulation of unstable CoQ
.-
. In complex III, ROS is generated in Qi redox centre through the low reduction potential 

pathway, comprising cyt bL and cytc bH. This mechanism can also cause the accumulation of CoQ
.- 

which is readily converted into superoxide, 

leading to the generation of ROS. Black lines with arrow resemble e
-
 transfer processes. 
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this can disrupt the membrane potential to cause electrons to flow backwards into 

complex I, where NAD
+
 is reduced to NADH (Turrens, 2003; Murphy, 2009; 

Chouchani et al., 2016). This process also leads to the accumulation of unstable CoQ
.-
, 

which are readily converted into superoxide. 

Complex III is capable of generating a large amount of superoxide (Boveris et 

al., 1976; Turrens and Boveris, 1980; Grigolava et al., 1980). In complex III, electrons 

are transferred from CoQ to cytochrome c (cyt c), involving multiple redox reactions, 

which are collectively termed as ‘Q cycle’ (Cramer et al., 2011). Complex III contains 

two redox centres, ubiquinone-oxidation centre (Qo site) and ubiquinone-reduction 

centre (Qi site) (Fig. 1.4). The Q cycle begins with the oxidation of CoQH2; in which 

the first electron in CoQH2 is sequentially transferred to FeS, cyt c1 and cyt c, leaving 

an unstable semi-ubiquinone (CoQ
.-
) in the Qo site. CoQ

.-
 transfers its remaining 

electron to another CoQ in the Qi site, producing another CoQ
.-
 through the low 

reduction potential pathway that comprises of cyt bL and cyt bH (Osyczka et al., 2005; 

Zhang et al., 2007). In order to provide another electron and completely reduce the 

CoQ
.-
 in the Qi site, the Q cycle is repeated (Bleier and Dröse, 2013). The superoxide 

production in complex III has been proposed to result from the CoQ
.-
 generated at the 

Qo site (Turrens et al., 1985; Cape et al., 2007). The unstable CoQ
.-
 is converted into 

superoxide upon the loss of cyt c or imbalance in the mitochondrial redox homeostasis 

(Murphy, 2009). There are three specific inhibitors of complex III, antimycin A, 

myxothiazol and stigmatellin. Antimycin A supresses the delivery of the second 

electron to the Qi site and therefore causes the accumulation of unstable CoQ
.-
. 

Myxothiazol prevents the binding of CoQH2 at the Qo site. Finally, stigmatellin inhibits 

the transfer of the first electron to FeS. Studies using these inhibitors have provided 

evidence to suggest that complex III acts as the source of ROS production (Crofts et al., 

1999; Turrens, 2003; Konstantinov et al., 1987; Korshunov et al., 1997; Raha and 

Robinson, 2000; Starkov and Fiskum, 2001). 

 In addition to complex 1 and complex III discussed above, complex II (Rustin 

and Rötig, 2002; Miwa et al., 2003), a-ketoglutarate dehydrogenase complex (Starkov 

et al., 2004; Chinta et al., 2009), succinate dehydrogenase (McLennan and Degli 

Esposti, 2000) and monoamine oxidases (Kudin et al., 2004; Maurel et al., 2003; Kumar 

et al., 2003), albeit to a lesser extent, can contribute in generating ROS. 
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1.3.3 NOX-mediated ROS generation 

NOX is a multi-subunit enzyme that transfers electrons across the plasma 

membrane to produce superoxide through the oxidation of NADPH to NADP and 

proton H
+
 (Fig 1.5). Unlike other sources, NOX does not produce ROS as a by-product, 

but ROS generation is its primary function. Respiratory burst in phagocytes results in 

the increase of H2O2 production, which was the first evidence leading to the discovery 

of the NOX protein (Iyer et al., 1961; Someya et al., 1999; Mander and Brown, 2005). 

Later studies identified NADPH to be the primary substrate and superoxide the initial 

product in the oxidative-burst generating enzyme system, referring to the NOX enzyme 

system (Rossi and Zatti, 1964; Babior et al., 1973).  

Six NOX2 homologues have been identified, including NOX1, NOX3, NOX4, 

NOX5, DUOX1 and DUOX2 (Suh et al., 1999; Cheng et al., 2001; Geiszt and Leto, 

2004; Shiose et al., 2001; Cheng et al., 2001; Banfi et al., 2001; De Deken et al., 2002; 

Dupuy et al., 1999). All NOX proteins are closely related with highly conserved 

structural features, as illustrated for NOX2 (gp91
phox

) in Fig 1.5A, comprising six 

transmembrane segments (I-VI), four haeme binding sites with two sites located in the 

third and the fifth transmembrane segments, a flavin adenine dinucleotide (FAD)-

binding site in the proximal C-terminus, and an NADPH binding site in the distal C-

terminus (Cheng et al., 2001). However, NOX5, DUOX1 and DUOX2 are distinguished 

from NOX1-NOX4 in that NOX5 has a long intracellular N-terminus carrying an Ca
2+

-

binding EF-hand domain, whereas DUOX1 and DUOX2 consist of an EF-hand domain 

and additional or seventh transmembrane domain at the N-terminus (Banfi et al., 2001; 

De Deken et al., 2002). 

NOXs are reported to be activated by a broad spectrum of stimuli or activators, 

including inflammatory mediators such as tumour necrosis factor alpha (TNF-α) and 

interleukin 1-beta (IL-1β) (Kamizato et al., 2009; Li et al., 2005), heavy metals such as 

lead, zinc and cadmium (Ni et al., 2004; Yeh et al., 2007; Pourrut et al., 2008), organic 

solvents such as ethyl and butyl alcohol (Hasegawa et al., 2002), ionising radiation 

(Tateishi et al., 2008), acidic pH (Abramov et al., 2005) and osmotic pressure (Martins 

et al., 2008). The activation mechanism of NOX1-NOX3 is similar, involving complex 

formation with the cytosolic regulatory subunits, as shown in Fig. 1.5. NOX4 has been 

proposed to be constitutively active (Ellmark et al., 2005).  NOX5, DUOX1 and 

DUOX2 are distinct from other NOX in that they are activated by Ca
2+

 instead of by 

complex formation with the cytosolic subunits (Banfi et al., 2001; Cheng et al., 2001).  
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Fig. 1.5 NADPH oxidase activation. 

The gp91
phox

 and p22
phox

 subunits are primarily localised at the plasma membrane and are separated from the cytosolic subunits, p47
phox

-p67
phox

-p40
phox

 

trimeric complex and RAC in the resting condition (A). Upon activation (B), p47
phox

 is phosphorylated, leading to conformational changes that 

promote the translocation of p47
phox

-p67
phox

-p40
phox

 to p22
phox

. GDP on RAC is changed into GTP, causing the activation of the RAC protein. GTP-

bound RAC allows its interaction with gp91
phox

 and subsequently with p67
phox

. Once assembled, the complex is activated and can transfer electrons 

from NADPH in the cytosol to oxygen in the extracellular space. The small green dots in panel A represent the haeme groups.  
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NOX2 is the prototype NOX that has been subjected to extensive investigation. 

Therefore, the activation mechanisms of NOX2 are best understood.  NOX2 is 

composed of membrane-bound and cytosolic subunits, and the activation of NOX2 

occurs through a complex series of protein-proteins interactions (Fig. 1.5). The 

membrane-bound subunits, gp91
phox

 and p22
phox

, constitute the main catalytic domain of 

the enzyme. These subunits form heterodimeric flavocytochrome b558 (cyt b558), which 

enables electron transfer across the plasma membrane (Segal et al., 1992). FAD and 

haeme groups of the gp91
phox

 subunit play a role as intermediate electron carriers 

(Sheppard et al., 2005). The cytosolic subunits, including p47
phox

, p67
phox

 and p40
phox

, 

and the small protein Rac GTPase are required for the full NOX2 activation (Sheppard 

et al., 2005). In a resting state, p47
phox

, p67
phox

 and p40
phox

 subunits form a trimeric 

complex in auto-inhibitory conformation. Amongst all of the cytosolic subunits, p47
phox

 

has the most crucial role as it controls and facilitates the translocation of the cytosolic 

trimeric complex to the plasma membrane and accurately positions the complex with 

respect to the cyt b558. In response to stimuli, p47
phox

 is phosphorylated, resulting in 

conformational changes in the p47
phox

-p67
phox

-p40
phox

 trimeric complex and subsequent 

localisation of the complex to the plasma membrane. The interactions between cytosolic 

and membrane domains are mediated by the Src homology 3 (SH3) domains of p47
phox

 

and the cytoplasmic tail of p22
phox

 (Shiose and Sumimoto, 2000; de Mendez et al., 

1997; Leto et al., 1994). Once at the membrane, p47
phox

 facilitates positioning p67
phox 

and further induces the conformational changes in the complex allowing interaction of 

p67
phox 

with gp91
phox

 (DeLeo et al., 1995; Paclet et al., 2000). GDP-bound Rac, upon 

phosphorylation, is converted into GTP-bound Rac, promoting its interaction with 

gp91
phox

 and subsequently with p67
phox 

(Diebold and Bokoch, 2001; Koga et al., 1999; 

Lapouge et al., 2000). Once assembled, the NOX2 enzyme is activated and able to 

transfer electrons from NADPH in the cytosol to oxygen bound to gp91
phox

 in the 

extracellular space (Nisimoto et al., 1999; Cross and Segal, 2004).  

The activation of NOX is regulated by multiple signalling mechanisms, 

including protein phosphorylation, lipid-protein interaction, and Ca
2+

-binding 

mechanisms. All NOX subunits, particularly p47
phox

, are phosphorylated during the 

activation process. It is proposed that protein kinase C (PKC) phosphorylates p47
phox

, 

and such a mechanism is required for the translocation of the cytosolic p47
phox

-p67
phox

-

p40
phox

 trimeric complex to the plasma membrane (El-Benna et al., 2005; El-Benna et 

al., 2009). There is also evidence to suggest that PKC is able to phosphorylate gp91
phox
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and p22
phox

, facilitating the interaction of these proteins with p47
phox

 at the plasma 

membrane (Raad et al., 2009; Lewis et al., 2010). In addition to PKC, p-38 mitogen-

activated protein kinase (MAPK)(El Benna, Han, et al., 1996; El Benna, Faust, et al., 

1996; Dewas et al., 2000), p21-activated kinase (PAK) (Knaus et al., 1995), and protein 

B/AKT (Hoyal et al., 2003) have been reported to phosphorylate the 47
phox

 protein. 

Studies also have shown that p47
phox

 and p40
phox

 proteins interact with membrane 

phospholipids through their lipids-binding sites, facilitating interactions between the 

cytosolic and membrane subunits (Ago et al., 2001; Karathanassis et al., 2002; Zhan et 

al., 2002; Stahelin et al., 2003). Furthermore, Ca
2+

 binding to NOX5 is important in 

facilitating the interaction of the N- and C-termini of gp91
phox

, leading to NOX5 

activation (Banfi et al., 2004). Conversely, Ca
2+

 has been demonstrated to inhibit 

DUOX1 and DUOX2 (Wong et al., 2004; Song et al., 2007).  

NOXs play diverse functions depending on the cell types expressing them. 

NOX, particularly NOX2, plays a crucial role in the respiratory burst of phagocytes 

which is critical in host defence (Babior, 2000). Additionally, NOX1 is highly 

expressed in epithelial cells and implicated in cell migration and proliferation (Banfi et 

al., 2003; Suh et al., 1999; Szanto et al., 2005). NOX3 has been documented to be 

expressed in splenocytes and endothelial cells and is important in determining cell 

viability (Kikuchi et al., 2000; Banfi et al., 2004; Cheng et al., 2001). NOX4 is highly 

expressed in vascular smooth muscle cells and plays a role in focal adhesion and cell 

contraction (Hilenski et al., 2004). NOX5 is present in sperm cells and smooth muscle 

cells and is involved in cell migration and proliferation (Banfi et al., 2001; Jay et al., 

2008). DUOX1 and DUOX2 are expressed in fibroblast cells, where they are critical in 

host defence mechanisms (Katsuyama, 2010).  NOX1, NOX2 and NOX4 have also 

been reported to be expressed in microglial cells, astrocytes and neurons in the CNS. 

NOX1 and NOX2 are known to play critical roles in oxidative stress-induced pro-

inflammatory cytokine production (Infanger et al., 2006; Cheret et al., 2008), whereas 

NOX4 has been implicated in glutamate-induced neuronal toxicity (Ha et al., 2010; 

Harrigan et al., 2008; Ambasta et al., 2004).  

Several NOX inhibitors have been identified, with some exhibiting specificity. 

Table 1.1 lists the common NOX inhibitors and their respective concentrations evoking 

50% inhibition (IC50). These include generic diphenyleneiodonium (DPI) and apocynin, 

NOX1/4-specific GKT 137831, and NOX2-specific Phox-I2 which are used in my 

studies. 
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Table 1.1 NOX inhibitors and their specificity, mode of action and potency (IC50). 

Abbreviations: DPI; diphenyleneiodonium; AEBSF, benzo-sulphonyl fluoride; ML171, 2-acetylphenothiazine 

Inhibitors NOX  Mode of inhibition IC50 (µM) Reference 

DPI Generic Removing an electron from the electron 

transporter 

0.003-1 Ellmark et al., 2005; Stuehr et al., 1991; Stolk et al., 

1994 

Apocynin Generic Inhibiting complex assembly 10 O’Donnell et al., 1993; Unger and Patil, 2009; 

Ahmad et al., 2010; Castor et al., 2010 

GKT 137831 NOX1/4 Scavenging ROS 0.1-0.15 Suh et al., 2007; Gray et al., 2013; Zhao et al., 2015 

VAS3947 NOX1/2/4 Inhibiting complex assembly 1-13 Wind, Beuerlein, Armitage, et al., 2010 

VAS2870 NOX2/4/5 Inhibiting complex assembly 1-10 Niethammer et al., 2009; Stielow et al., 2006; Wind, 

Beuerlein, Eucker, et al., 2010 

AEBSF Generic Disrupting the association of p47
phox

 

subunit to the plasma membrane 

300-1000 Citron et al., 1996; Nakabo and Pabst, 1996; 

Diatchuk et al., 1997 

Phox-I2 

 

NOX2 Disrupting  GTPRAC binding to p67
phox

 

subunit at the plasma membrane 

1-6 Bosco et al., 2012 

ML171 NOX1 Scavenging ROS 0.1-5 Gianni et al., 2010 
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1.3.4 TRPM2 channel activation by ROS 

TRPM2 channels are activated by ROS and thus act as a molecular sensor for 

oxidative stress (Wehage et al., 2002; Hara et al., 2002; Kraft et al., 2004; Kolisek et al., 

2005; Buelow et al., 2008; Kashio et al., 2012; Zhong et al., 2013). However, the 

mechanisms of TRPM2 channel activation by H2O2 remain controversial and not fully 

understood. An early study showed that the TRPM2-ΔC isoform, with a C-terminal 

deletion in the NUDT9-H domain, is sensitive to activation by H2O2 but not ADPR, 

indicating H2O2 can activate the TRPM2 channel independently of ADPR (Wehage et 

al., 2002). However, this finding was not confirmed in a subsequent study (Kuhn and 

Luckhoff, 2004).  In addition, H2O2-induced TRPM2 channel activation kinetics is 

slow, suggesting that H2O2 does not activate the TRPM2 channel directly. Indeed, 

accumulating evidence shows that TRPM2 channel activation by H2O2 is dependent on 

ADPR generation. 

As discussed above, several signalling pathways generate ADPR, including 

ROS-induced activation of poly (ADPR) polymerase-1 (PARP-1) in the DNA damage 

repair process (Fonfria et al., 2004; Buelow et al., 2008; Zou et al., 2013). Studies have 

shown that PARP inhibitors, including SB750139-B, (N-(6-oxo-5,6-dihydro-

phenanthridin-2-yl)-N,N-dimethylacetamide) (PJ34) and 3, 4-dihydro-5-[4-(1-

piperidinyl)butoxy]-1(2H)-isoquinolinone (DPQ), are effective in inhibiting H2O2-

induced TRPM2 channel activation (Fonfria et al., 2004; Zou et al., 2013). H2O2-

induced TRPM2 channel-dependent Ca
2+ 

and current responses were not observed in 

DT40 B lymphocytes deficient in PARP expression (Buelow et al., 2008). These 

findings strongly suggest that H2O2 induces TRPM2 channel activation primarily via 

PARP, particularly PARP-1. In the nucleus, PARP-1 and poly (ADPR) glycohydrolases 

(PARG) play a critical role in repairing DNA damage in response to oxidative stress. 

PARP-1 binds to the damaged DNA and catalyses NAD
+
 hydrolysis, leading to the 

production of poly-ADPR (PAR). Once the repair is completed, PAR is degraded by 

PARG into ADPR. There is evidence to suggest that ADPR is generated by 

PARP/PARG enzymes in response to the DNA damage triggered by H2O2 (Caiafa et al., 

2009; Fauzee et al., 2010). PARP activation has also been shown to be important in the 

TRPM2 channel activation induced by Aβ42 and TNF-α (Hara et al., 2002; Fonfria et 

al., 2005; W. Zhang et al., 2006). In a separate study, overexpression of the cytosolic 

NUDT9-H domain ablated H2O2-induced TRPM2 channel activation and more ADPR 

was required to induce TRPM2 channel activation (Perraud et al., 2005).  Furthermore, 
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specific overexpression of the NUDT9-H domain in mitochondria inhibited the ability 

of H2O2, but not ADPR, to induce TRPM2 channel activation. These results lead to the 

notion that mitochondrial ADPR production is also involved in H2O2-induced TRPM2 

channel activation (Perraud et al., 2005). Collectively, these studies suggest that H2O2-

induced TRPM2 channel activation depends primarily on ADPR-generating 

mechanisms in nucleus or in mitochondria.  

 

1.4 TRPM2 CHANNEL INHIBITORS 

Several structurally different inhibitors that block the TRPM2 channel have been 

identified over the past few years. These inhibitors include AMP, 8-Br-cADPR, 2-APB, 

N-(p-amylcinnamoyl) anthranilic acid (ACA), flufenamic acid (FFA), azole compounds 

and curcumin. However, not all of them are TRPM2-specific as they can inhibit other 

proteins including ion channels. Potent and selective TRPM2 channel inhibitors are 

extremely useful in the study of the physiological and pathological functions of TRPM2 

channels, particularly the human TRPM2 channel. The structures of the TRPM2 

channel inhibitors described in this section are shown in Figure 1.6. 

 

1.4.1 AMP 

As mentioned above, AMP is a metabolite of ADPR (Perraud et al., 2001; Shen 

et al., 2003) (Fig. 1.6). AMP inhibits ADPR-induced recombinant TRPM2 channel 

activation with an IC50 value of approximately 76 M (Kolisek et al., 2005). AMP is 

also able to antagonise the activation of the endogenously expressed TRPM2 channels 

by ADPR (Lange et al., 2008). A previous study using a binding assay suggested that 

AMP inhibits the TRPM2 channel by binding to the ADPR-binding site in the NUDT9-

H domain, with a relatively lower binding affinity than ADPR (Grubisha et al., 2006).  

 

1.4.2 8-Br-cADPR 

8-Br-cADPR at concentrations >100 M can inhibit or delay the TRPM2 

channel activation by NAD, cADPR, NAADP and H2O2 (Kolisek et al., 2005; Beck et 

al., 2006; Lange et al., 2008). Interestingly, 8-Br-cADPR shows a synergy with ADPR, 

increasing the sensitivity of the TRPM2 channel to ADPR (Kolisek et al., 2005). These 

findings suggest that 8-Br-cADPR to have a dual mode of action. 
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Fig. 1.6  TRPM2 channel and PARP inhibitors. 

Diagrams showing the chemical structures of compounds that are known to inhibit the TRPM2 channel activity or ROS-induced TRPM2 channel 

activation via inhibiting PARP (PJ34 and DPQ).   
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1.4.3 2-APB 

2-APB was initially identified as a membrane-permeable IP3R inhibitor (Hagenston et 

al., 2009). It is now known that 2-APB can inhibit a wide range of ion channels, 

including TRPM2, TRPC5, TRPM7 and TRPM8 (Chung et al., 2004; Hu et al., 2004; 

Hill, McNulty, et al., 2004; Xu et al., 2005; Togashi et al., 2008; Zholos, 2010). 2-APB 

inhibits ADPR-induced activation of the TRPM2 channel expressed in various cell 

types (Ishii, Shimizu, Hagiwara, et al., 2006; Togashi et al., 2008; Naziroglu et al., 

2011; Zou et al., 2013; Kashio et al., 2012; Chen et al., 2012). 2-APB blocks the 

TRPM2 channel more potently than other ion channels, with an IC50 value of 1.2 M 

(Togashi et al., 2008). The inhibition is reversible and voltage-independent (Togashi et 

al., 2008). There is evidence to suggest that 2-APB inhibits the TRPM2 channel 

extracellularly (Togashi et al., 2008). 2-APB has been used to show the role of the 

TRPM2 channel in mediating ROS-induced cell death, glucose-induced insulin 

secretion, and oxidative stress-induced production of proinflammatory cytokines (Zou 

et al., 2013; Togashi et al., 2008; Naziroglu et al., 2011). 

 

1.4.4 ACA 

ACA was known as an inhibitor of phospholipase A2 (Konrad et al., 1992; 

Harteneck et al., 2007). This compound inhibits ADPR- and H2O2-induced TRPM2 

channel activation, with an IC50 value of approximately 1.7 M (Kraft et al., 2006; Bari 

et al., 2009; Olah et al., 2009). ACA is also capable of blocking the TRPM2 channel 

currents evoked by cADPR and heat (Togashi et al., 2008).  

 

1.4.5 FFA  

FFA is derived from N-phenyl-substituted anthranilic acid and was initially 

identified as a non-steroidal anti-inflammatory drug. FFA can inhibit the TRPM2 

channel, with an IC50 value of 155 M  (Hill, Benham, et al., 2004; Kraft et al., 2006; 

Naziroglu et al., 2007; Guinamard et al., 2013; Klose et al., 2011; Olah et al., 2009; 

Naziroglu et al., 2011). FFA can only inhibit the TRPM2 channel when it is in the open 

state (Hill, Benham, et al., 2004). 

FFA has had its structure modified in order to develop potent and specific 

TRPM2 channel inhibitors. 2-(3-methylphenyl) aminobenzoic acid (3-MFA) is a 

structural analogue of FFA produced by substituting the trifluoromethyl (3-CF3) group 

(Fig 1.6) with meta-methyl (3-CH3). 3-MFA has a higher selectivity towards, and 
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greater potency in inhibiting, the TRPM2 channel, with IC50 value of 76 M (Chen et 

al., 2012).  

 

1.4.6 Azoles 

Azole compounds, which include clotrimazole and econazole, are known as 

antifungal drugs. Clotrimazole and econazole inhibit TRPM2 channels at concentrations 

of 3-30 M (Hill, McNulty, et al., 2004; Togashi et al., 2008; Chen et al., 2012). This 

inhibition is concentration-dependent (Hill, McNulty, et al., 2004). Similarly to FFA, 

clotrimazole and econazole only block TRPM2 in the open state (Hill, McNulty, et al., 

2004). The mechanisms of inhibition are still not well-defined. 

 

1.4.7 Curcumin 

 Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-

dione) is a polyphenol, the main curcuminoid of turmeric (Curcuma longa), and has 

been used as a traditional remedy for oxidative stress-induced liver damage 

(Esatbeyoglu et al., 2012). Recently, curcumin has been shown to be effective in 

suppressing ADPR-induced TRPM2 channel activation with an IC50 of approximately 

50 nM (Kheradpezhouh et al., 2016).  

 

1.4.8 PARP inhibitors 

As discussed above, activation of PARP, particularly PARP-1 in the nucleus, 

results in ROS-induced TRPM2 channel activation via ADPR production. Several 

PARP inhibitors, including PJ34, DPQ, SB750139-B (Lubisch et al., 2001) and 3-

aminobenzamide (3-AB), have been shown to inhibit H2O2-induced TRPM2 channel 

activation, with IC50 values of approximately 7.5 M, 6.7M and 4.8M, for PJ34, 

DPQ and SB750139-B, respectively (Fonfria et al., 2004). However, PJ34, DPQ and 

SB750139-B show no inhibition of ADPR-evoked TRPM2 channel activation (Fonfria 

et al., 2004). 

 

1.5 EXPRESSION OF TRPM2 CHANNELS  

TRPM2 is expressed in various tissues, including the brain, heart, kidney, liver, 

lung, pituitary, stomach, intestine, bone marrow, placenta, adipose, pancreas and spleen 

(Ishii, Shimizu, Hara, et al., 2006; Ishii, Shimizu, Hagiwara, et al., 2006; Togashi et al., 

2006; Lange et al., 2009; Uchida and Tominaga, 2011; Fonfria et al., 2005). As 

summarised in Table 1.2, the TRPM2 channel has been documented in a variety of cell 
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types and plays a role in diverse physiological and pathological processes as discussed 

in the following sections.  

The TRPM2 channel is found on the cell surface in the majority of cell types 

examined, except for dendritic cells and pancreatic β-cells. In dendritic cells, the 

TRPM2 channel is exclusively located in the membranes of lysosomes and functions as 

an intracellular Ca
2+

-release channel (Sumoza-Toledo et al., 2011). In pancreatic β-

cells, the TRPM2 channel is present in both the plasma and lysosomal membranes 

(Lange et al., 2009). The expression of the TRPM2 in different cell types is listed in 

Table 1.2 with the channel major functional roles, which are discussed in the next 

sections (sections 1.6 and 1.7). 

 

1.6 PHYSIOLOGICAL ROLES OF TRPM2 CHANNELS 

Extensive research efforts over the past few years have revealed important roles 

for the TRPM2 channel in multiple physiological functions, including the production of 

cytokines from immune cells, glucose-stimulated insulin secretion from pancreatic β-

cells, antitumor activity, cell maturation and chemotaxis, and protection against 

ischemia-induced heart damage (Table 1.2). In addition to the pharmacological tools, 

the transgenic TRPM2 deficient or TRPM2-KO mice has been effectively utilised in 

numerous studies to provide evidence for the involvement of the TRPM2 channel in 

physiological as well as pathological states. The TRPM2-KO mice express mutated 

alleles without exons 17 and 18 of the trpm2 gene (Zou et al. 2013). The remaining 

sequence of the TRPM2-KO gene, however, can form an open reading frame that 

encodes an internally deleted TRPM2 protein lacking the Leu
843

-Met
931

, resulting in no 

expression of functional TRPM2 channel. The TRPM2-KO mice showed no difference 

in terms of their phenotype compared with the WT mice and therefore, are valuable to 

evolve a full understanding of the TRPM2 channel roles.   

 

1.6.1 Generation of IL-1β and IL-18  

The immune system recognises diverse pathogen-associated molecular patterns 

(PAMPs) molecules derived from microorganisms and bacteria, by expressing the 

pattern recognition receptor (PRR) on the immune cell surface. Immune cells also 

express PRRs for danger-associated molecular patterns (DAMPs) molecules, such as 

Zn
2+

, Aβ, TNF-α, and ATP released by injured or dying cells as ‘danger signals’. The 

innate immune response represents the first line of cellular defence against PAMPs and 

DAMPs. Such responses are supposed to eliminate the PAMPs or DAMPs to heal 
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Table 1.2 A summary of the major functional roles of the TRPM2 channel expression in different cell types. 

Cell type Associated cell functions References 

Macrophage • Activation of the NLRP3 inflammasome and IL-1 maturation in response to charged lipids, 
silica and alum in vitro 

• Zymosan-induced production of CXCL2, G-CSF and IL-1α in vitro 

• Up-regulated HO-1 expression induced by LPS in vitro and CLP in vivo 

• H2O2-induced cell death in vitro 

• Ischemia brain-induced cell migration into ischemic brain tissues 

• Production of CXCL2 and NO in response to carrageenan-induced inflammation or nerve injury 
in vivo  

Zhong et al., 2013          

 

Kashio et al., 2012 

Qian et al., 2014           

Zou et al., 2013 

Gelderblom et al., 2014 

Haraguchi et al., 2012 

Monocyte • LPS-induced production of IL-6, IL-8, IL-10 and TNF-α in vitro 

• TNF-α-induced cell death  

• Production of CXCL2/CXCL8 induced by H2O2 in vitro and CXCL2 in vitro in response to 
dextran sodium sulphate-induced colon inflammation 

Wehrhahn et al., 2010 

W. Zhang et al., 2006 

Yamamoto et al., 2008  

 

Neutrophil • Sulphur mustard-induced priming and production of IL-6, IL-8 and TNF-α in vitro 

• Ischemia brain-induced migration into ischemic brain tissues 

Ham et al., 2012 

Gelderblom et al., 2014 

Spleenocyte • Production of IL-12 and IFNγ in response to Listeria monocytogenes (Lm)-induced infection Knowles et al., 2011 

Dendritic cell • Production of IL-12 in response to Lm-induced infection 

• Chemokine-induced cell maturation and migration in vitro and chemotaxis to E. coli-induced 
infection in vivo 

Knowles et al., 2011 

Sumoza-Toledo et al., 2011                   

Microglial cell  • Production  of CXCL2 in response to nerve injury in vitro and in response to LPS/IFN-γ in vitro 

• LPS/IFN-γ-induced release of NO in vitro 

• Microglial cell activation in the APP/PS1 AD mouse brain 

Haraguchi et al., 2012 

Miyake et al., 2014  

Ostapchenko et al., 2015 
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Pancreatic β cell • Temperature-dependent insulin secretion in vitro 

• Glucose-induced insulin secretion in vitro 

Kashio and Tominaga, 2015 

Uchida and Tominaga, 2011 

Cardiomyocyte • Increase the expression of HIF-1α, FOXOs and SODs 

• H2O2-induced cell death in vitro 

• Contractility dysfunction following I/R injury in vivo 

Miller et al., 2013 

Yang et al., 2006 

Hiroi et al., 2013 

Neurons • Aβ-induced cell death striatal neurons in vitro 

• Aβ-induced endothelial and neurovascular dysfunctions 

• H2O2-induced death of the DA neurons in vitro 

• Burst firing induced in GABAergic neurons 

• Transient ischemia-induced infarction and neurological deficits in vivo 

Fonfria et al., 2005 

Park et al., 2014 

Sun et al., 2016 

Lee et al., 2013 

Alim et al., 2013; Ye et al., 
2014 

Hepatocyte • H2O2- and acetaminophen-induced Ca
2+

 influx in vitro and acetaminophen overdosing-induced 
liver injury in vivo 

Kheradpezhouh et al., 2014 

Endothelial cells  • H2O2-induced endothelial barrier dysfunction Hecquet et al., 2008 

Cancer cells • Prostate cancer cell proliferation in vitro 

• H2O2-induced prostate cancer cell migration in vitro 

• H2O2-induced squamous cancer cell migration and viability in vitro 

Zeng et al., 2010 

Li et al., 2016 

Zhao et al., 2016 

Abbreviations: CXCL, C-X-C ligand; LPS, lipopolysaccharide; ROS, reactive oxygen species; NADPH oxidase, nicotinamide adenine dinucleotide 

phosphate oxidase; IFN interferon ; IL, interleukin; TNF-tumour necrosis factor-; G-CSF, granulocyte colony stimulating factor; HO-1, hem 

oxygenase-1; CLP, cecal ligation and puncture; NO; nitric oxide; HIF-1α, hypoxia-inducible factors; FOXOs, forkhead box transcription factors; 

SODs, superoxide dismutase; DA, dopamine; GABAergic, gamma-aminobutyric acid-containing neurons; I/R, ischemia/reperfusion. 
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injuries but, when they are not resolved in time and become prolonged or persistent, can 

lead to several diseases such as Alzheimer’s disease (AD) (Frederickson et al., 2005; 

Kauppinen et al., 2011), Parkinson’s disease (PD) (Tanaka et al., 2006) and ischemia-

induced brain injury (Clausen et al., 2008).  

IL-1β is a key inflammatory cytokine that is generated in response to PAMPs 

and DAMPs. The generation of the leaderless IL-1β by immune cells commonly 

requires two signals, termed the priming and activation signals. The priming signal 

activates a Toll-like receptor (TLR) such as TLR4 by lipopolysaccharide (LPS) or other 

receptors to stimulate signalling mechanisms leading to the production of biologically 

inactive pro-IL-1β. The activation signal, on the other hand, activates the nucleotide 

binding domain 3-leucine-rich repeat (NLRP3) inflammasome, which is critical in 

converting pro-IL-1β into biologically active IL-1β. The NLRP3 inflammasome is a 

multiple-protein complex composed of the NLRP3 receptor, apoptosis-associated 

speck-like protein containing a CARD domain (ASC), and pro-caspase-1 cysteine 

protease. The NLRP3 receptor is predominantly expressed in immune cells, such as 

microglial cells, macrophages and lymphocytes. Upon sensing PAMPs or DAMPs, the 

NLRP3 receptor interacts with ASC and pro-caspase-1 to assemble the NLRP3 

inflammasome complex. NLRP3 inflammasome activation induces proteolytic cleavage 

of pro-caspase-1 to generate active caspase-1, which in turn converts pro-IL-1β to IL-

1β.  

Recent studies have discovered that production of ROS is required for the 

activation of the NLRP3 inflammasome by structurally diverse activators (Bauer et al., 

2010; Cruz et al., 2007; Dostert et al., 2008). The mechanisms by which ROS activates 

the NLRP3 inflammasome are still a matter of extensive investigation. There is 

evidence to suggest that ROS generation occurs upstream of the NLRP3 inflammasome 

activation (Cassel et al., 2008). In a recent study, Zhong et al. examined the role of the 

TRPM2 channel in NLRP3 inflammasome activation and the maturation of IL-1β in 

macrophage cells treated with crystals such as silica, alum or charged lipids (Zhong et 

al., 2013).  This study demonstrated that the IL-1β secretion in response to the treatment 

with silica, alum or charged lipids was significantly reduced in the TRPM2-KO 

macrophage cells. Furthermore, the removal of the extracellular Ca
2+

 from the culture 

media significantly impaired the aforementioned particulate-induced IL-1β release in 

macrophage cells, suggesting the critical role for the TRPM2 channel-mediated Ca
2+

 

influx in IL-1β release. In addition, the deficiency of TRPM2 in macrophage cells 
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resulted in the reduced of the production of mature caspase-1 and activation of NLRP3 

inflammasome in response to silica, alum and charged lipids.  Together, these findings 

suggest that the TRPM2 channel is critical in coupling ROS to Ca
2+

 influx and the 

subsequent activation of the NLRP3 inflammasome, leading to the production of IL-1β 

(Zhong et al., 2013). 

 

1.6.2 Production of other cytokines and chemokines   

Proinflammatory cytokines other than IL-1 are also released by monocytes and 

macrophages as part of the innate immune response to infection and tissue 

inflammation. A recent study shows that LPS stimulates the production of 

proinflammatory cytokines, including IL-6, IL-8, IL-10, and TNF-α, in THP1 

monocytic cells (Wehrhahn et al., 2010). These effects were significantly reduced by 

knocking down the TRPM2 expression using short hairpin RNA (shRNA). 

Furthermore, LPS-induced Ca
2+

 influx and generation of TNF-α were diminished upon 

removal of extracellular Ca
2+

 using EGTA, a Ca
2+

 chelator.  Treatment with TRPM2 

shRNA resulted in concomitant decreases in LPS-induced Ca
2+

 influx and TNF-α 

generation, consistent with the notion that TRPM2 channel-mediated Ca
2+

 influx is 

crucial in the production of these cytokines. Sulphur mustard (SM), an alkylating agent 

employed in chemical warfare, can destroy immune and other cell types by disrupting 

intracellular organelles and causing DNA damage, thereby inducing the inflammatory 

responses characterised by the infiltration of leukocytes in the site of injury. One study 

showed that SM-induced production of TNF-α, IL-6 and IL-8 in human neutrophils 

requires TRPM2 channel-mediated Ca
2+

 influx that results in activation of the p38-

MAPK signalling pathways and subsequent nuclear transcription of NF-κB (Ham et al., 

2012). It has also been shown that zymosan-induced generation of granulocyte colony-

stimulating factor (G-CSF) and IL-1α from macrophage cells was significantly inhibited 

by TRPM2-KO (Kashio et al., 2012).  

Another recent study has examined the importance of the TRPM2 channel in the 

innate immune response to infection by Listeria monocytogenes (Lm) in a mouse model 

of listeriosis (Knowles et al., 2011). The Lm-infected TRPM2-KO mice survived at a 

reduced rate compared to the Lm-infected WT mice.  Infection with Lm in vitro of cells 

isolated from the spleen or splenocytes in WT mice induced robust production of IL-12 

and interferon gamma (IFNγ), which was significantly attenuated in the splenocytes 

from TRPM2-KO mice.  Consistently, the serum levels of IL-12 and IFNγ present in 



41 

 

TRPM2-KO mice following Lm infection were significantly reduced.  Further analysis 

suggests that activation of the TRPM2 channel is required for the Lm infection-induced 

production of the early inflammatory cytokine IL-12 by dendritic cells and other innate 

immune cells, which elicits IFNγ-mediated innate immune responses.  Similarly, the 

production of IL-12 and IFN was strongly increased in dextran sulphate sodium 

(DSS)-induced colon inflammation, which was significantly decreased in TRPM2-KO 

mice (Yamamoto et al., 2008).  However, there was no difference in the production of 

IL-6 by splenocytes and the serum level of IL-6 between the WT and TRPM2-KO mice 

after Lm infection (Knowles et al., 2011), in contrast with the observation that LPS-

induced production of IL-6 in THP1 monocytic cells strongly depends on TRPM2 

expression (Wehrhahn et al., 2010).  In addition, there was no significant change in the 

production of CXCL2 and the recruitment of neutrophils during Lm infection (Knowles 

et al., 2011), which noticeably differs from the TRPM2-dependent production of 

CXCL2 by monocytes and recruitment of neutrophils in response to DSS-induced colon 

inflammation (Yamamoto et al., 2008).  Currently, the reasons for these discrepancies 

remain unknown. 

 

1.6.3 Regulation of heme-oxygenase-1 expression 

Heme oxygenase-1 (HO-1) plays a role in limiting oxidative stress-induced 

tissue damage during inflammation and sepsis (Angus and van der Poll, 2013; 

Motterlini and Foresti, 2014). A recent study has investigated the role of the TRPM2 

channel in regulating HO-1 expression in sepsis using cecal ligation and puncture 

(CLP)-induced models (Qian et al., 2014).  The expression of HO-1 in mouse 

macrophages was enhanced by treatment with LPS in vitro and CLP in vivo. Both LPS-

induced increase in the [Ca
2+

]i and the HO-1 expression were diminished by removing 

extracellular Ca
2+

 and in macrophages from TRPM2-KO mice.  CLP-induced increase 

in HO-1 expression was also reduced in TRPM2-KO mice. Furthermore, the TRPM2-

KO mice exhibited significantly lower survival rate, accompanied with increased 

bacterial burden, tissue injury and inflammation. Taken together, these results support 

the idea that TRPM2 channel-mediated Ca
2+

 influx is important in up-regulating the 

HO-1 expression and enhancing bacterial clearance during sepsis. 

 

 

 

 



42 

 

1.6.4 Secretion of insulin  

The expression of oxidative stress-sensitive cationic channels has been well 

documented in insulin-secreting cells (Herson et al., 1997; Herson and Ashford, 1999; 

Togashi et al., 2006; Inamura et al., 2003; Hill, McNulty, et al., 2004). In pancreatic β 

cells and insulin-secreting cell lines, an increase in the [Ca
2+

]i induced by body 

temperature in synergy with cADPR has been reported to stimulate insulin secretion 

(Togashi et al., 2006). Such a mechanism was strongly suppressed by treatment with 

TRPM2-specific small interference RNA (siRNA). Consistently, a more recent study 

has shown a substantial decrease in temperature-dependent insulin secretion from 

pancreatic β cells from TRPM2-KO mice (Kashio and Tominaga, 2015). In a separate 

study, Uchida et al. revealed that the blood glucose level was higher in TRPM2-KO 

mice than that seen in WT mice (Uchida and Tominaga, 2011). Additionally, they 

showed that the increase in the [Ca
2+

]i and insulin secretion in response to a high 

concentration of glucose was lower in pancreatic β cells isolated from TRPM2-KO cells 

than in those from WT mice (Uchida and Tominaga, 2011). Collectively, these findings 

provide compelling evidence to suggest a fundamental role for the TRPM2 channel in 

glucose-induced insulin secretion from pancreatic β cells. The mechanisms by which 

TRPM2 channel activation leads to glucose-induced insulin secretion is still a matter of 

investigation. It was initially proposed that glucose-induced TRPM2 channel-mediated 

insulin secretion involved the classical ATP-sensitive potassium channel (KATP) 

mechanism (Leech et al., 2010). Recent investigations suggest that glucose-induced 

TRPM2-dependent insulin secretion may engage the activation of glucagon-like peptide 

1 receptor to stimulate cAMP-dependent protein kinase A (PKA) and phosphorylation 

by PKA of the TRPM2 channel or its associated protein (Togashi et al., 2006; Yosida et 

al., 2014; Kurashina et al., 2015).  

 

1.6.5 Cell maturation and chemotaxis 

The TRPM2 channel was originally found in the plasma membrane. Thus, it was 

surprising to find that the TRPM2 channel is exclusively present in the membrane of 

endolysosomal compartments as a Ca
2+

 release channels in bone marrow-derived 

dendritic cells (BMDCs) (Sumoza-Toledo et al., 2011). It has been further shown that 

the exposure of dendritic cells to chemokines, including CXCL12, CXCL21 and 

CXCL7 increased the [Ca
2+

]i (Partida-Sanchez et al., 2007; Barbet et al., 2008). 

However, genetic depletion of the TRPM2 channel expression significantly reduced 
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chemokine-induced Ca
2+ 

responses in BMDCs and resulted in impaired cell maturation 

(Sumoza-Toledo et al., 2011). Furthermore, the chemokine receptors, including 

CXCR4, CXCR5 and CXCR7, were not up-regulated in BMDCs deficient in TRPM2 

expression, resulting in an impairment in the migration of BMDCs to the site of 

infection induced by subcutaneous injection of E.coli (Sumoza-Toledo et al., 2011).  

 

1.6.6 Protection against ischemia/reperfusion-induced heart damage  

Ischemia can reduce or prevent the oxygen and glucose supply to tissues. 

Reperfusion following ischemia is an inflammatory response essential for healing 

tissues but it can cause substantial injury. The mechanisms for ischemia/reperfusion 

(I/R) injury still remain incompletely understood. Studies have proposed that oxidative 

stress-induced intracellular Ca
2+

 overload and inflammatory processes are critical in the 

early phase of reperfusion (Vinten-Johansen, 2004; Frangogiannis, 2014). There is 

evidence that suggests that the TRPM2 channel is involved in protective mechanisms 

against I/R-induced myocardial injuries (Miller et al., 2013; Hoffman et al., 2015). 

Following I/R, hearts isolated from TRPM2-KO mice displayed decreased ventricular 

shortening and contractility compared to hearts isolated from WT mice (Miller et al., 

2013). In cardiomyocytes subjected to hypoxia followed by re-oxygenation, TRPM2-

KO resulted in significant reduction in the [Ca
2+

]i low expression of hypoxia-inducible 

factors (HIF-1α), forkhead box transcription factors (FOXOs) and SODs leading to a 

higher level of ROS.  A more recent study has shown that I/R-induced TRPM2 channel-

dependent Ca
2+

 influx is required for maintaining mitochondrial function and promoting 

the expression of cell survival proteins such as the receptor for activated C kinase 1 

(RACK1) (Hoffman et al., 2015). Taken together, these studies support a role for the 

TRPM2 channel in the protective mechanisms against I/R-induced cardiomyocyte 

injuries. 

 

1.6.7 Protection against bipolar disorder 

Bipolar disorder (BD) is a psychiatric disease that causes states of depression 

and elevated mood. Genomic analyses have identified the susceptible locus of this 

disease, 21q22.3; which consist of the trpm2 gene (Xu et al., 2006 and 2009). 

Comparative analyses of genomic DNA from BD patients suggest TRPM2 is a 

promising candidate contributing to the vulnerability to BD (Xu et al., 2006; Xu et al., 

2009). In addition, studies have shown the impairment of Ca
2+

 signalling transduction in 

mononuclear leukocytes and platelets from BD patients (Cipriani et al., 2016). The 
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TRPM2 mRNA levels were significantly reduced in B-lymphoblast (BL) from BD 

patients with increased [Ca
2+

]c compared with healthy subjects (Yoon et al., 2001), 

suggesting a role of TRPM2 channel for the disturbance of Ca
2+

 homeostasis. TRPM2 

channel-mediated Ca
2+

 influx in BL isolated from BD patients was remarkably reduced 

by prolonged oxidative stress. This result indicates that oxidative stress alters TRPM2 

channel function during BD (Roedding et al., 2012; Roedding et al., 2013).  

Recent study using anxiety- and depression-related behavioral tests including, 

maze and light/dark transition tasks, showed that TRPM2-KO mice exhibited increased 

anxiety and impaired social behavior (Jang et al., 2015), providing evidence that 

suggest the important role of TRPM2 channel in the pathophysiology of BD. In the 

same study, the authors found a single mutation at position 543 (Asp-543-Glu), which is 

located in the N-terminus of the TRPM2 channel in BD patients. Such a mutation 

results in loss of TRPM2 channel function and phosphorylation of glycogen synthase 

kinase (GSK)-3. The abnormal GSK-3 activity is closely related to BD. Lithium ions 

(Li
+
), the first drug of choice for treating BD, inhibit GSK-3 activity by increasing the 

phosphorylation of the inhibitory serine residues in GSK-3 (Freland and Beaulieu, 

2012). The treatment of Li
+ 

significantly reduced met-amphetamine-induced 

hyperactivity in WT mice, but not in the TRPM2-KO mice (Jang et al., 2015). 

Additionally, an increase in the phosphorylation of the inhibitory serine residues in 

GSK-3 was observed in the TRPM2-KO mice, but not in the WT mice. Overexpression 

of loss-of-function mutant Asp-543-Glu significantly augmented the phosphorylation of 

GSK-3 (Jang et al., 2015). Altogether, these findings suggest that TRPM2 deficiency 

results in the uncontrolled phosphorylation of GSK-3, which may contribute to the 

pathogenesis of BD.  

 

1.7 PATHOLOGICAL ROLES OF TRPM2 CHANNELS 

In addition to the physiological roles discussed above, studies over the past few 

years provide substantial evidence to reveal a critical role for the TRPM2 channel in 

ROS-induced cell death. Such a mechanism contributes to the pathogenesis of various 

diseases, exemplified by Alzheimer’s disease, Parkinson’s disease, I/R-induced damage 

to heart and brain, neuropathic pain, paracetamol overdosing-induced liver damage and 

endothelial barrier permeability.  
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 1.7.1 ROS-induced cell death 

There is evidence to suggest that ROS and a variety of oxidative stress-inducing 

stimuli induce cell death via activating the TRPM2 channel (Sumoza-Toledo and 

Penner, 2011; Jiang et al., 2010; Eisfeld and Luckhoff, 2007). This has been shown in 

different cell types, including neurons, macrophages, monocytes and cardiomyocytes 

(Zou et al., 2013 p. 201; Yang et al., 2006; Kaneko et al., 2006; Fonfria et al., 2005; Bai 

and Lipski, 2010; Sun et al., 2016).  

 Apoptosis and necrosis are the two major forms of cell death. Apoptosis is 

programmed cell death characterised by specific changes, including nuclear 

condensation and fragmentation, cell shrinkage, and membrane blebbing (Ouyang et al., 

2012). Necrosis is, on the other hand, a form of cell injury leading to premature cell 

death, and is characterised by the loss of plasma membrane integrity, resulting in the 

leakage of intracellular contents into the extracellular space (Vanden Berghe et al., 

2014). An early study showed that oxidative stress-induced cardiomyocyte cell death 

was due to the excessive accumulation of intracellular Ca
2+

, leading to loss of 

mitochondrial membrane potential, release of cytochrome c and apoptotic cell death 

(Yang et al., 2006). As has been published recently (Mortadza et al., 2017) and 

described in detail in chapter 4, my studies have shown that TRPM2 channel-mediated 

increase in the [Ca
2+

]i plays a pivotal role in microglial cell death through necrosis 

induced by H2O2 and Zn
2+

. Therefore, H2O2-induced TRPM2 channel-mediated cell 

death can occur via apoptosis or necrosis. 

 

1.7.2 Alzheimer’s Disease 

  Alzheimer’s disease (AD) is a neurodegenerative disease representing the most 

common cause of dementia (Hardy, 2006; Scheltens et al., 2016). Accruing evidence 

from preclinical and clinical studies support the notion that an imbalance between the 

generation and removal of Aβ peptides is an early and initiating factor in AD (Mucke 

and Selkoe, 2012; Hong et al., 2016 p. 201; Selkoe and Hardy, 2016). Aβ is a major 

component of the neuritic and cerebrovascular amyloid plaque. Aβ is derived from the 

cleavage of amyloid precursor protein (APP) by membrane-bound secretases into Aβ 

species 39-43 amino acids in length, including Aβ1-39, Aβ1-40, Aβ1-42, Aβ1-43 and Aβ1-46. 

While Aβ1-40 is the most abundant species in a healthy brain, Aβ1-42 shows a higher 

level toxicity and has been shown to be the predominant species deposited in an AD 

brain (Murphy and LeVine, 2010; Lista et al., 2015). Aβ- and oxidative stress-induced 
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neuroinflammation have been considered to be a major part in the pathogenesis and 

progression of AD (Heneka et al., 2015; Heppner et al., 2015; Alam et al., 2016; 

Colonna and Wang, 2016; Tönnies and Trushina, 2017). Studies have shown that the 

elevation in Aβ peptide levels can lead to the production of neurotoxicity mediators, 

such as ROS, cytokines and chemokines, which increase the susceptibility of neurons to 

oxidative stress-induced neuroinflammation and apoptosis (Yamamoto et al., 2007; 

Bezprozvanny and Mattson, 2008).  

Early studies showed that treatment of primary rat cortical neurons with Aβ40 

caused an increase in the intracellular H2O2 level, leading to cortical neuronal cell death 

(Behl et al., 1994). A separate study found that H2O2 as well as Aβ42 induced substantial 

striatal neuronal cell death (Fonfria et al., 2005). Further investigation showed that 

overexpression of TRPM2-S, the dominant negative inhibitor of the TRPM2 channel, or 

inhibition of the TRPM2 channel by ACA, suppressed both H2O2- and Aβ42-induced 

striatal neuronal cell death (Fonfria et al., 2005). These findings provide initial evidence 

to suggest a potential role of the TRPM2 channel in the pathogenesis of AD. 

The Tg2576 transgenic mouse carrying an APP (K670N, M671L) double 

mutation (Iadecola et al., 1999) and the APPswe/PS1dE9 (APP/PS1) transgenic mouse 

(Jankowsky et al., 2003) are the two most commonly used mouse models of AD. A 

recent study using the Tg2576 transgenic mouse model has shown that TRPM2 

deficiency prevents Aβ-induced brain endothelial cell damage and cerebrovascular 

dysfunction (Park et al., 2014), suggesting a critical role for the endothelial TRPM2 

channel in mediating Aβ-induced disruption of the cerebrovascular regulation leading to  

AD. Another recent study using the APP/PS1 mouse model has shown that TRPM2-KO 

prevents synapse loss and reduces age-dependent cognitive impairment (Ostapchenko et 

al., 2015). An early study showed that genetic disruption of the NLRP3 inflammasome 

activation in APP/PS1 transgenic mice impaired the ability of microglial cells to 

produce mature IL-1β, leading to the enhancement of Aβ clearance (Heneka et al., 

2013). In this recent study, it has been shown that genetic ablation of TRPM2 

expression in the APP/PS1 mice strongly suppresses microglial cell activation 

(Ostapchenko et al., 2015). As described in detail in chapter 5, my studies have shown 

that the TRPM2 channel is important in mediating Aβ42-induced microglial cell 

activation and TNF-α production. Taken together, these findings support a critical role 

of the TRPM2 channel in the pathogenesis of AD and suggest that TRPM2 channel is a 

promising therapeutic target. 
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1.7.3 Parkinson’s Disease 

Parkinson’s disease (PD) is another prominent neurodegenerative disorder 

resulting from the degeneration of dopaminergic (DA) neurons in the substantia nigra 

pars compacta (SNpc). PD is typically manifested by a loss of autonomic movements, 

impaired posture and balance, and mood disturbance (Rodriguez-Oroz et al., 2009; 

Blesa and Przedborski, 2014). Earlier studies show that the activity of mitochondrial 

complex I is reduced in the substantia nigra region of the PD brain (Mizuno et al., 1989; 

Schapira et al., 1989; Keeney et al., 2006). MPTP (1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine) and its metabolite, MPP
+
 (1-methyl-4-phenylpyridinium ions), are 

neurotoxins that selectively destroy the DA neurons and are commonly used to induce 

PD-like syndromes in rodent models (George et al., 2009; van den Berge et al., 2011; 

Tian et al., 2012; Blesa and Przedborski, 2014).  ROS production has been reported to 

be increased in cultured DA neurons following treatment with MPP
+
 (Sun et al., 2016). 

Overall, it is well recognized that the overproduction of ROS is a major contributing 

factor leading to the degeneration of DA neurons (Zhou et al., 2008; Uttara et al., 2009; 

Boll et al., 2011; Bollimuntha et al., 2011; Sun et al., 2016).  The TRPM2 channel is 

expressed in DA neurons in the SN region of human and rat brains (Uemura et al., 

2005; Chung et al., 2011).  In a recent study, the TRPM2 expression in the SN has been 

shown to be up-regulated in the post-mortem brain tissues of PD patients and MPTP-

injected mice (Sun et al., 2016).  Furthermore, DA neuronal cell death induced by H2O2 

and MPTP is reduced by inhibition of the TRPM2 channel with clotrimazole or using 

siRNA-mediated knockdown of the TRPM2 channel expression (Sun et al., 2016), 

suggesting a potential role for the TRPM2 channel in the pathogenesis of PD. 

 

1.7.4 Ischemia/reperfusion-induced damage in the brain and heart  

While reperfusion is essential in preventing brain damage induced by ischemic 

stroke, it is well known that reperfusion results in excessive ROS production and brain 

damage. In the case of ischemia/reperfusion (I/R), free H2O2 concentration in the brain 

can reach approximately 100 µM (Hyslop et al., 1995), at which H2O2 exhibits 

neurotoxic effects and induces striatal and cortical neuronal death (Hyslop et al., 1995; 

Whittemore et al., 1994). Recent studies show that the TRPM2 channel mediates 

neuronal death induced by transient cerebral ischemia (Alim et al., 2013) and transient 

global ischemia followed by reperfusion (Ye et al., 2014), suggesting a role for the 

TRPM2 channel in I/R-induced brain damage. Furthermore, TRPM2-KO mice exhibit 
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reduced infarct volumes compared with WT mice after transient ischemia, but not in the 

absence of reperfusion (Alim et al., 2013). In addition, TRPM2-KO prevents cognitive 

impairment due to transient global ischemia and reperfusion (Ye et al., 2014). These 

findings suggest a critical role for the TRPM2 channel in I/R-induced brain injuries.   

Emerging evidence also suggests the involvement of immune cells in I/R brain 

injury. The infiltration of neutrophils and macrophages into the ischemic brain was 

noticeably reduced in TRPM2-KO mice, suggesting a critical role for the TRPM2 

channel in determining the migration of neutrophils and macrophages into ischemic 

brain tissues (Gelderblom et al., 2014).  Furthermore, TRPM2 deficiency in microglia 

and macrophage improved the neurological deficits induced by cerebral 

ischemia/reperfusion injury (Shirakawa et al., 2014). These studies are consistent in 

supporting a role for post-ischemia activation of the TRPM2 channel in mediating the 

inflammation that contributes to reperfusion-induced brain damages after transient 

ischemia. 

The role of the TRPM2 channel in I/R-induced heart damage has been a matter 

of debate. As discussed above, the TRPM2 channel provides a protective mechanism in 

I/R-induced cardiomyocyte injuries. However, there is also evidence to suggest a role 

for the TRPM2 channel in mediating I/R-induced cardiomyocyte injuries. A study by 

Hiroi et al. showed that TRPM2-KO reduced myocardial infarct and improved cardiac 

contractile functions after I/R, but not ischemia alone (Hiroi et al., 2013). Neutrophil 

activation and migration to the myocardium have been shown to be involved in I/R-

induced heart damage. Neutrophils lacking TRPM2 expression induce the same infarct 

size in both WT and TRPM2-KO hearts (Hiroi et al., 2013), indicating that the TRPM2 

channel in neutrophils is responsible for I/R-induced myocardial injuries. The 

discrepancies in the findings reported by different studies with respect to the role of the 

TRPM2 channels in I/R-induced heart damage have been thought to, at least in part, be 

due to the difference in the age of the animals used, the duration of ischemia and 

reperfusion, and the anaesthesia approaches (Zhan et al., 2016).  

 

1.7.5 Neuropathic pain 

Neuropathic pain is a pathological condition that is associated with peripheral 

nerve injuries. Accruing evidence supports a role of neuron-immune interactions in 

pathological pain (Nieto et al., 2016). As a result of peripheral nerve injuries, peripheral 

immune cells are activated and release inflammatory mediators, a process termed 
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peripheral sensitisation. Extensive evidence has supported a critical role for ROS in the 

development of neuropathic pain induced by nerve injuries (Gao et al., 2007; Z.Q. 

Wang et al., 2004; Park et al., 2006; Kim et al., 2004; Yowtak et al., 2011; Munoz et al., 

2017).  

Haraghuci and colleagues studied the role of the TRPM2 channel in pain, using 

mouse models of inflammatory pain induced by injection of carrageenan and 

neuropathic pain induced by peripheral sciatic nerve ligation (pSNL) and spinal nerve 

transection (SNT) (Haraguchi et al., 2012). Carrageenan and pSNL induced significant 

inflammation and paw swelling in WT mice, which were reduced in TRPM2-KO. 

Carrageenan and pSNL induced an increase in the TRPM2 mRNA expression level, 

dominantly due to the TRPM2 expression in macrophage and neutrophils. The 

mechanical allodynia in WT mice induced by injection of LPS-primed TRPM2-KO 

macrophages was weaker than that caused by injection of LPS-primed WT 

macrophages in WT mice, suggesting the TRPM2 expression in macrophage 

contributes to the generation of mechanical allodynia. Microglial cells in the spinal cord 

also receive signals from injured peripheral neurons and become activated, resulting in 

the excitation of nociceptive dorsal horn neurons, a process known as central 

sensitization (Gao and Ji, 2010). Microglial cell activation in the spinal cord induced by 

pSNL was significantly suppressed in TRPM2-KO mice (Haraguchi et al., 2012). 

Additionally, SNT-induced microglia cell activation in the spinal cord and mechanical 

allodynia were attenuated in TRPM2-KO mice. These observations suggest the TRPM2 

channel in microglia cells plays a critical role in neuropathic pain. Another recent study 

using mouse models of osteoarthritis and diabetic neuropathy pain has shown that the 

mechanical allodynia was significantly reduced by TRPM2-KO (So et al., 2015). These 

studies support a critical role of the TRPM2 channel in a broad spectrum of 

inflammatory and neuropathic pain pathologies.  

 

 1.7.6 Cancer 

An increased level of intracellular ROS has been detected in many types of 

cancer cells (Liou and Storz, 2010). There is an increasing interest in the role of the 

TRPM2 channel in cancer cells. TRPM2 expression has been reported in cells of 

prostate cancer, breast cancer, skin cancer, and tongue and oral squamous cancers and, 

in addition, the expression level in cancer cells is significantly higher than in non-

cancerous cells (Nilius et al., 2005; Bodding, 2007; Orfanelli et al., 2008; Orfanelli et 
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al., 2015; Rah et al., 2015; Zhao et al., 2016). Studies so far demonstrate different 

functional roles for the TRPM2 channel in different types of cancer cells. The TRPM2 

channel has been shown to promote proliferation and migration in cancer cells (Zeng et 

al., 2010; Zhao et al., 2016). For example, siRNA-based knockdown of TRPM2 channel 

expression in PC-3 and DU-145 prostatic cancer cells inhibited cell proliferation (Zeng 

et al., 2010 p. 201). Additionally, knockdown of TRPM2 channel expression by shRNA 

suppressed squamous cancer cell migration (Zhao et al., 2016).  Li et al. have recently 

shown a critical role for the TRPM2 channel in H2O2-induced PC-3 cell migration (Li et 

al., 2016). 

There is evidence that suggests the TRPM2 channel mediates H2O2-induced 

cancer cells survival. Knockdown of the TRPM2 channel expression using shRNA in 

squamous cancerous cells attenuated H2O2-induced cell death (Zhao et al., 2016). 

Collectively, these findings suggest that the TRPM2 channel is important in mediating 

ROS-induced cell migration and cell survival, which may contribute to cancer 

development and progression.   

 

1.7.7 Acetaminophen overdosing-induced liver damage 

Acetaminophen, also known as paracetamol, has been widely used as an 

analgesic drug. Acetaminophen overdosing is well known to induce hepatocellular 

damage, even fatal liver failure (Davidson and Eastham, 1966; Mitchell et al., 1973; 

Larson et al., 2005). In the liver, acetaminophen is mainly converted into non-toxic 

metabolites by glucuronidation and sulfation, but a small amount of acetaminophen is 

metabolised by cytochrome P450 into toxic N-acetyl-parabenzo-quinoneimine (NAPQI) 

and then into non-toxic substances through conjugation by glutathione (GSH). 

However, acetaminophen overdosing can cause accumulation of NAPQI and depletion 

of cellular GSH, leading to the generation of excessive ROS (Kheradpezhouh et al., 

2014). Early studies reported that treatment of hepatocytes with a toxic dose of 

acetaminophen resulted in an increase in the concentrations of intracellular H2O2 and 

ADPR as well as activation of PARP-1 (Lores Arnaiz et al., 1995; Cover et al., 2005; 

Cover et al., 2006). A recent study has shown that the TRPM2 channel mediates H2O2- 

and acetaminophen-induced increase in the [Ca
2+

]i in hepatocytes (Kheradpezhouh et 

al., 2014). Furthermore, the study has demonstrated that acetaminophen-induced liver 

injury was significantly attenuated in TRPM2-KO mice. Altogether, these findings 

strongly support an important role of the TRPM2 channel in mediating acetaminophen-

induced hepatocyte toxicity and liver damage.  
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 1.7.8 Endothelial barrier permeability 

In the cardiovascular system, the endothelium provides a physical barrier 

between the blood vessel and interstitium. Endothelial cells are one of the main sources 

of ROS during pathological conditions, particularly during ischemia (Lounsbury et al., 

2000; Papaharalambus and Griendling, 2007). ROS-induced Ca
2+

 influx into endothelial 

cells results in the formation of inter-endothelial cell junction leading to an increase of 

the endothelial permeability or endothelial barrier dysfunction (Hecquet et al., 2008; 

Hecquet and Malik, 2009; Kwan et al., 2007; Boueiz and Hassoun, 2009). Hacquet et 

al. showed that the TRPM2 channel is functionally expressed in endothelial cells from 

the human pulmonary arteries and that exposure to H2O2 at ≥300 µM increased 

endothelial barrier permeability. Reduction in TRPM2 channel expression using siRNA, 

or inhibition of the TRPM2 channel using an anti-TRPM2 blocking antibody or 

overexpression of the TRPM2-S isoform, attenuated H2O2-induced endothelial barrier 

dysfunction as well as H2O2-induced increase in the [Ca
2+

]i and currents in endothelial 

cells. Altogether, these results provide strong evidence to indicate a significant role for 

the TRPM2 channel in mediating ROS-induced endothelial barrier dysfunction. 

 

1.8 MICROGLIAL CELL ACTIVATION AND NEUROINFLAMMATION 

Microglial cells, first described by Pio Del Rio-Hortega in 1932 (Del Rio-

Hortega et al., 1932), represent the major population of cells in the CNS. Microglial 

cells are considered to be functionally similar to macrophage cells in the systemic 

immune system and are thus often termed the resident macrophage cells in the brain. 

Studies using direct RNA sequencing has examined the transcriptome profiles of 

microglial and macrophage cells in adult mice and found that there is a significant 

number of shared transcript between the cells (Hickman et al., 2013). These include 

CD11b, CD68, TLR2 and TLR4. Furthermore, both microglial and macrophage cells 

share several functions which contribute to the physiological and pathological 

processes. For example, both are involved in sensing exogenous or endogenous signals 

(Miron et al., 2013), migration to the lesion area (Rolls et al., 2008; Shechter et al. 

2009; Saederup et al. 2010), producing reactive oxygen species and promoting the 

secretion of multitude factors including cytokines, chemokines as well as growth factor 

(Miron et al., 2013). There is a significant overlap between microglial and macrophages 

sources, which can be distinguished through the expression patterns of CD45 or C-C 

chemokine receptor 2 (CCR2) (low-to-intermediate CD45 and CCR2
-
 vs. CCR2

+ 
and 
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high CD45 for microglial vs. macrophage cells respectively) (Hickman et al., 2013; 

Miron et al., 2013). 

Microglial cells originate from the mesoderm and migrate into the CNS and 

distribute throughout the brain parenchyma. The colonisation of microglial cells in the 

CNS takes place during the embryonic development stage in rodents (Rezaie, 2003).  

1.8.1 Microglial cell activation 

Microglial cells in a healthy brain remain at the stage of ramification, 

characterised by a small cell body with elongated and branched processes. During CNS 

pathologies, diverse DAMPs can trigger microglial cell activation. The activated 

microglial cells are manifested by changes in the cell morphology; microglial cells 

undergo body enlargement and retract their branching processes. Microglial cells in the 

activated state are able to proliferate, migrate, possess phagocytic properties and release 

pro-inflammatory mediators. 

ROS as well as Zn
2+

, Aβ and TNF-α are DAMPs that can trigger microglial cell 

activation (Kauppinen et al., 2008; Jekabsone et al., 2006; Mander et al., 2006; 

Kauppinen et al., 2011; Diestel et al., 2003). There is evidence to suggest that ROS can 

induce changes in microglial cell morphology (Qin et al., 2004). In the brain, Zn
2+

 is 

mostly concentrated within presynaptic vesicles at the glutamatergic terminal (Beaulieu 

et al., 1992) and is released following neuronal stimulation. Vesicular Zn
2+

 release into 

the extracellular space has been identified as a trigger for the changes in microglial cells 

morphology (Assaf and Chung, 1984; Howell et al., 1984). In addition, the changes in 

microglial cells morphology can be induced following the exposure to extracellular 

Zn
2+

 (Monsonego and Weiner, 2003; Tai et al., 2007; Kauppinen et al., 2008). Aβ 

induces the changes in microglial cell morphology and cell proliferation as well as 

TNF-α and IL-1β production (Ostapchenko et al., 2015; Jekabsone et al., 2006; 

Hanisch, 2002; Xiang et al., 2006). While TNF-α can be produced by activated 

microglial cells following stimulation by PAMPs, TNF-α itself can act as an autocrine 

or paracrine signalling molecule to induce microglial cell activation (Jekabsone et al., 

2006; Mander et al., 2006). Exposure of microglial cells to TNF-α is known to stimulate 

changes in the cell morphology and cell proliferation (Kauppinen and Swanson, 2005; 

Jekabsone et al., 2006). Furthermore, exposure to TNF-α induces migration of 

microglial cells to injury sites in the CNS (Angelov et al., 1998).  
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The underlying signalling mechanisms involved in microglial cell activation 

induced by DAMPs are not fully understood. However, extensive evidence shows that 

ROS production as well as NOX and PARP-1 activation is critical in microglial cell 

activation (Kauppinen et al., 2008; Mander et al., 2006; Diestel et al., 2003; Jekabsone 

et al., 2006).  For example, an increase in the intracellular ROS level has been reported 

to be critical in Zn
2+

-induced microglial cell activation (Kauppinen et al., 2008; Abid et 

al., 2000; Heinloth et al., 2000). It has been proposed that TNF-α stimulates microglial 

cell activation by inducing ROS production (Radeke et al., 1990; Meier et al., 1989). It 

has been shown that the change in cell morphology accompanying microglial cell 

activation triggered by extracellular Zn
2+

 is dependent on NOX (Kauppinen et al., 

2008). In addition, microglial cell proliferation is triggered by ROS from NOX 

following stimulation by TNF-α (Mander et al., 2006). These findings suggest that 

NOX-dependent ROS production is involved in mediating microglial cell activation. 

Furthermore, genetic ablation of PARP-1 inhibited the change in microglial cell 

morphology induced by Zn
2+

 (Kauppinen et al., 2008), Aβ (Kauppinen et al., 2011) and 

TNF-α (Kauppinen and Swanson, 2005), suggesting engagement of PARP-1 in 

microglial cell activation.  

The activated microglial cells exhibit diverse functions in the brain under 

normal conditions. For instance, they induce immune responses upon sensing CNS 

injuries in the healthy brain (Nimmerjahn et al., 2005), scavenging cellular debris by 

phagocytosis (Marin-Teva et al., 2004) and eliminating synapses during normal 

synaptic development (Paolicelli et al., 2011; Schafer et al., 2012). Yet, microglial cell 

activation is also well-recognised to be involved in many neuropathological processes 

that can result in CNS disorders. Activated microglial cells are present in a large 

number of CNS tissues from patients with AD, PD and ischemic stroke (Perry et al., 

2007; Ostapchenko et al., 2015; Wang et al., 2007; Kauppinen et al., 2008). Early 

studies using transgenic mouse models of AD showed an increased number of activated 

microglial cells near the Aβ plaque (Irizarry et al., 1997; Frautschy et al., 1998). Further 

investigations revealed that microglial cells migrate to the Aβ plaque and become 

activated, leading to an increase in the production of pro-inflammatory cytokines 

(Sasaki et al., 1997; Hardy and Selkoe, 2002; Rogers et al., 2002). These studies 

provide strong evidence to support the notion that microglial cell activation is critically 

involved in AD. Microglial cell activation has also been observed in the brain of PD 

patients (Chouchani et al., 2016; Gerhard et al., 2006). Administration of MPTP in mice 

can induce morphological changes in microglial cells (Czlonkowska et al., 1996; 
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Kurkowska-Jastrzebska et al., 1999). In addition, microglial cell activation was found in 

the brain of MPTP-injected monkeys (Hurley et al., 2003; Barcia et al., 2004). There is 

evidence to suggest that DA neuronal loss is accompanied by microglial cell activation 

in PD mouse models (Lee et al., 2009; Qian et al., 2010). These results suggest that 

microglial cell activation acts as an important factor in the pathogenesis of PD. 

Moreover, in vivo studies have demonstrated microglial cell activation following 

transient cerebral I/R (Kauppinen et al., 2008). Altogether, these findings imply that 

microglial cell activation is involved in a broad spectrum of neurodegenerative diseases.  

 

1.8.2 Neuroinflammation 

As discussed above, microglial cells play a significant role in initiating immune 

responses to brain damage. Prolonged or persistent activation of microglial cells can 

cause excessive generation of a number of pro-inflammatory mediators including 

cytokines, chemokines, ROS and NO, resulting in neuroinflammation (Liu and Hong, 

2003; Block et al., 2007; Colonna and Butovsky, 2017; Regen et al., 2017; Wolf et al., 

2017; Weinstein et al., 2010). Microglial cells are the major source of pro-inflammatory 

cytokines in the CNS (Hanisch, 2002; Welser-Alves and Milner, 2013). Pro-

inflammatory cytokines, including TNF-α and IL-1β, are crucial mediators of 

neuroinflammation. High levels of these pro-inflammatory cytokines are associated 

with a variety of neurodegenerative diseases including AD, PD, and I/R induced brain 

injuries (Block et al., 2007; Alam et al., 2016; Colonna and Butovsky, 2017; Regen et 

al., 2017; Wolf et al., 2017)  

TNF-α is one of the major pro-inflammatory cytokines generated by microglial 

cells and is well-known for its neurotoxicity (Liu and Hong, 2003; Block et al., 2007; 

Alam et al., 2016; Krabbe et al., 2017). TNF-α is first synthesised as a transmembrane 

protein, which is then cleaved by TNF-α converting enzyme (TACE) to produce soluble 

TNF-α. TNF-α binds to two different receptors, TNF-α receptor 1 (TNFR1) and TNF-α 

receptor 2 (TNFR2). Such mechanisms lead to a wide variety of physiological or 

pathological functions in cells expressing these receptors (MacEwan, 2002; Kuno et al., 

2005).  TNF-α has been shown to have a critical role in neuroinflammatory responses 

resulting in neurodegenerative diseases. Studies have reported high generation and co-

localisation of TNF-α with Aβ plaques in the brains of AD mice and patients (Wyss-

Coray and Rogers, 2012; Montgomery et al., 2013). It is also suggested that an increase 

in the TNF-α generation occurred earlier than the development of histopathological 
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hallmarks in AD mice and long-term TNF-α expression leading to neuronal death in 

these mice (Liu and Hong, 2003; Kauppinen et al., 2011; Montgomery et al., 2011; 

Wyss-Coray and Rogers, 2012; Montgomery et al., 2013). These findings strongly 

suggest that TNF-α production is critically involved in Aβ-induced neuroinflammation 

in AD pathogenesis. In addition, there is evidence showing the role of TNF-α in PD. 

TNF-α was found to be localised to activated microglial cells in the SN of PD patients 

(Mogi et al., 1994; McGeer, 2008; Nagatsu and Sawada, 2007). Besides, MPTP induces 

an increase in TNF-α production in the mouse brain, leading to DA neuronal death 

(Sriram et al., 2002; McCoy and Tansey, 2008). Further investigation showed that DA 

neuronal death is significantly reduced in mice lacking TNFR1 expression (Sriram et 

al., 2002), suggesting that TNF-α serves as crucial trigger in DA neurotoxicity 

associated with PD. The increase in TNF-α production has also been documented in 

I/R-induced brain injuries. Microglial cell activation induced by cerebral ischemia and 

reperfusion resulted in an increase in the production of TNF-α (Clausen et al., 2008). In 

a seperate study, inhibition of TNFR1 and TNFR2 or TACE can protect neuronal 

injuries induced by cerebral ischemia and reperfusion (Nawashiro et al., 1997; X. Wang 

et al., 2004). Inclusively, these results support the notion that TNF-α production 

following microglial cell activation plays a major role in I/R-induced brain injuries.  

Besides TNF-α, high levels of IL-1β, IL-18 and IL-6 are also observed in the 

neurodegenerative diseases (Brodacki et al., 2008; Clausen et al., 2008; Lambertsen et 

al., 2012; Block et al., 2007 p. 200; Wolf et al., 2017). Aβ-induced microglial cell 

activation has been shown to result in an increase in the level of IL-1β, IL-18 and IL-6, 

which subsequently causes neuronal cell death (von Bernhardi et al., 2010). In addition, 

an increase in IL-1β production by LPS-stimulated microglial cells induces deficits in 

learning and memory (Tanaka et al., 2006).  Furthermore, in vivo studies showed that 

microglial cell activation induced by cerebral ischemia and reperfusion results in a high 

level of IL-1β in the mouse brains (Clausen et al., 2008). Previous studies also showed 

that the change in microglial cell morphology leads to an increase in the production of 

IL-1β and IL-6 following chronic stress-induced brain injuries (Tynan et al., 2010; 

Hinwood et al., 2012; Wohleb et al., 2011). Taken together, the findings suggest that 

IL-1β, IL-18 and IL-6 production by microglial cell activation play a crucial role in 

neurodegenerative diseases. 

Collectively, there is extensive evidence to support the idea that the production 

of pro-inflammatory cytokines, particularly TNF-α, by microglial cell activation is one 
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of the major causative factors in the pathogenesis of multiple neurodegenerative 

diseases. Investigations into the signalling mechanisms responsible for microglial cell 

activation and generation of pro-inflammatory cytokines may offer a promising 

therapeutic target for the prevention of neurological dysfunction in a variety of CNS 

pathologies. 

 

1.8.3 Role of TRPM2 channel in microglial activation and neuroinflammation? 

As discussed above (section 1.7), there is an increasing interest in the TRPM2 

channel in the pathogenesis of multiple neurodegenerative diseases, but the role of the 

TRPM2 channel in microglial cells still remains to be elucidated. Nonetheless, recent 

studies have shown a role for the TRPM2 channel in LPS/IFN-induced increase in the 

[Ca
2+

]i and production of NO in WT microglial cells as well as LPS/IFN-induced 

production of chemokine CXCL2 and NO by microglial cells (Haraguchi et al., 2012; 

Miyake et al., 2014). Furthermore, the TRPM2 channel is also involved in oxidative 

stress-induced production of TNF-α and IL-6 in microglial cells (Lee et al., 2010). A 

more recent study has found that genetic deletion of TRPM2 expression strongly 

attenuates the morphological changes in microglial cells in the brain of APP/PS1 mouse 

model of AD (Ostapchenko et al., 2015). Taken together, these results suggest that the 

TRPM2 channel is highly involved in microglial cell activation and neuroinflammation.  

Further studies are required to elucidate the signalling mechanism of TRPM2 

channel activation in microglial cells, which is crucial in providing mechanistic insights 

into the pathogenesis of neurodegenerative diseases.  

 

1.9 AIMS AND OBJECTIVES  

As discussed above, the expression of the TRPM2 channel in microglial cells 

has been well established, but its functional role remains yet to be fully understood. 

Hence, this project aimed to investigate the role of the TRPM2 channel and the 

signalling mechanisms in microglial cell functions, using a multidisciplinary approach 

including primary microglial isolation, single cell calcium imaging, 

immunocytochemistry, confocal microscopy, computer-aided analysis of cell 

morphology and cell death and ELISA assays.  

I started with using primary microglial cells isolated from WT mice to determine 

whether ROS, Zn
2+

, Aβ42 and TNF-α induced Ca
2+

 signalling, cell death and cell 
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activation. This was followed by experiments using primary microglial cells from 

TRPM2-KO mice to determine the role of the TRPM2 channel in Ca
2+

 signalling, cell 

death and microglial cell activation in response to these stimuli. These results are 

presented in chapter 3. 

Following the findings in chapter 3 that H2O2 and Zn
2+

 induced TRPM2 

channel-mediated microglial cell death, I investigated the signalling mechanisms 

underlying H2O2- and Zn
2+

-induced TRPM2 channel activation and cell death in 

primary microglial cells from WT mice. These results are presented in chapter 4. 

Finally, I investigated the role of TRPM2 in Aβ42- and TNF-α-induced 

microglial cell activation and the production of TNF-α using primary microglial cells 

from WT and TRPM2-KO mice. This was followed by experiments exploring the 

signalling mechanisms involved in TRPM2 channel-mediated microglial cells activation 

and TNF-α production induced by Aβ42 and TNF-α. These results are presented in 

chapter 5 and chapter 6 for Aβ42 and TNF-α, respectively.  
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CHAPTER 2 

MATERIALS AND METHODS 
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2.1 MATERIALS 

 

2.1.1 Chemicals  

General chemicals were purchased at the appropriate grade from Sigma-Aldrich, 

unless otherwise stated. The stock solutions prepared and used are described in Table 

2.1.  

 

2.1.2 Solutions 

All solutions were prepared with Milli-Q deionised water (summarized in Table 

2.2). All solutions used in cell culture were sterilised by autoclaving or syringe filtering. 

 

2.1.3 Antibodies, fluorescence indicators and ELISA kits 

Antibodies and fluorescence indicators were sourced as indicated in Table 2.3 

and Table 2.4, respectively. Mouse tumor necrosis factor-α (TNF-α) ELISA kits were 

purchased from Peprotech.  

 

2.1.4 Cell culture media 

Hank’s Balanced Salt Solution (HBSS), Dulbecco’s Phosphate Buffer Saline 

(dPBS), 0.5% Trypsin-EDTA, Dulbecco’s Modified Eagle Medium (DMEM), foetal 

bovine serum (FBS) and penicillin/streptomycin were purchased from Invitrogen (Table 

2.2). 

 

2.1.5 Animal and genotyping of TRPM2-KO mice 

C57BL/6 (WT) and TRPM2-KO mice were obtained from and maintained by 

the Central Biomedical Service (CBS), University of Leeds. The TRPM2-KO mice 

express trpm2 gene lacking exons 17 and 18 resulting in no expression of functional 

TRPM2 channel (Zou et al. 2013). The genotyping of the TRPM2 transgenic mice was 

performed using both male and female mice, as described previously by Zou et al. (Zou 

et al. 2013). Briefly, the total genomic DNA was isolated from tissue sample obtained 

by 2 mm ear clip. The tissue samples were digested using phenol: chloroform: isoamyl 

alcohol. PCR was conducted using Taq polymerase, foward primer (For1: 5’-CCC TGG 
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TCT GTG GGA GCC TAG  or For2: 5’-GCA GAG GCT GAG GTG GTA CC) and 

reverse primer (Rev: 5’-CCC CCA CTA TCA CCC GGA TAC). The PCR was 

performed under the following conditions: 95ºC for 5 min, 29 cycles of 95ºC for 30 s, 

60ºC for 30 s and 72ºC for 30 s and an additional step of 72ºC for 5 min. The PCR 

products were analyzed by electrophoresis using 1% agarose gel and the deletion was 

confirmed by the expected size and sequencing of the PCR amplicons from genomic 

DNA. All experiments and experimental protocols involving mice were approved by the 

University of Leeds Ethical Review Committee and performed in accordance with the 

University of Leeds guidelines and procedure and conforming to the UK Home Office 

rules and regulations. 
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Table 2.1 Stock solutions  

Compounds Concentrations Sources 

H2O2 10 M Sigma 

ZnSO4 0.3 M Sigma 

A 1 mg/ml in ammonium 

hydroxide (NH4OH) 

Eurogentec 

A 1 mg/ml in DMSO China Peptide 

TNF-α 10 g/ml in water Cell Signalling Technology 

BAPTA-AM 1 g/ml in DMSO Bio-Vision 

PJ34 15 mM in water Santa Cruz Biotechnology 

2-APB 10 mM in DMSO Sigma 

DPQ 10 mM in DMSO Calbiochem 

CTC 10 mM in DMSO Tocris 

DPI 10 mM in DMSO Sigma 

GKT139396 5 mM in DMSO Cayman Chemical 

Phox-I2 10 mM in DMSO Sigma 

PF431396 1 mM in DMSO Tocris 

U0126 5 mM in DMSO Cayman Chemical 

IM-54 5 mM in DMSO Sigma 

Ac-DVED-CMK  10 mM in DMSO Cayman Chemical 

Necrostatin-1 10 mM in DMSO Alfa Aesar 
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Table 2.2 Solutions 

Primary microglial cell culture preparation 

Borate acid buffer 100 mM boric acid, 75 mM NaCl and 25 mM 

sodium in water, pH 8.5 with NaOH 

Dulbecco’s Phosphate Buffer 

Saline (dPBS) 

 
2.7 mM KCl, 1.5 mM KH2PO4, 136.9 mM NaCl, 

8.9 mM Na2HPO4 

Poly-L-lysine (PLL) 10 mg/ml stock prepared in DMSO and 0.1 mg/ml 

used by dissolving in borate acid buffer  

10X Hank’s Balanced Bath 

Solution (HBSS) 

HBSS (1X) freshly prepared by diluting in water 

Planting media DMEM/F12 supplemented with 10 units/ml 

penicillin and 100 µg/ml streptomycin 

10X Trypsin-EDTA 5 g/l trypsin, 2 g/l EDTA●4Na, 8.5 g/l NaCl 

resolved in phosphate buffered saline (PBS) 

For immunofluorescence 

Phosphate Buffer Saline 

(PBS) 

One PBS tablet dissolved in 200 ml water 

Para-formaldehyde (PFA) 

fixative 

4% (w/v) PFA dissolved in water 

Permeabilization buffer  0.1%  (v/v) Triton-X-100 diluted in PBS 

Washing buffer (PBST) 0.5% (v/v)  Tween-20 diluted in PBS 

Blocking and antibody 

dilution buffer 

5% (v/v) goat serum diluted in PBS 

For live cell imaging 

Standard Bath Solution  

(SBS) 

134 mM NaCl, 5 mM KCl, 0.6 mM MgCl2, 8 mM 

glucose, 10 mM HEPES and 1.5 mM CaCl2 in 

water, pH 7.4 with NaOH 

Ca
2+

-free SBS solution 134 mM NaCl; 5 mM KCl; 0.6 mM MgCl2; 8 mM 

glucose; 10 mM HEPES; 0.4 mM EGTA, in water, 

pH 7.4 with NaOH 
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Pluronic acid (PA) F-127  0.1 % (w/v) PA dissolved in DMSO 

 

Table 2.3 Antibodies 

Antibodies Sources Dilutions 

Primary antibodies 

Mouse anti-TRPM2 Bethyl  1:1000 

Mouse anti-PAR Enzo Life Science 1:500 

Rabbit anti-TNF-α Millipore 1:400 

Secondary antibodies 

FITC-conjugated rabbit-anti mouse IgG Sigma 1:1000 

FITC-conjugated goat-anti rabbit IgG Sigma 1:1000 

 

Table 2.4 Stock solutions of fluorescence indicators 

Fluorescence 

indicators 

Sources Live-cell imaging 

Fluo4/AM Thermo Fisher Scientific 1 mM in DMSO  

DCFH-DA Sigma 1 mM in DMSO  

PI Sigma 1 mg/ml in water  

Hoechst 33342 Cell Signalling Technology 1 mg/ml in water 

 

 

 

 

 

 

 

 



64 

 

2.2 METHODS 

 

2.2.1 Preparation of microglial cell culture 

 

2.2.1.1 Preparations of PLL-coated culture flasks 

A stock of 10 mg/ml of PLL was diluted to 0.1 mg/ml with borate acid buffer 

(Table 2.2), and 4 ml of 0.1 mg/ml PLL-coating solution was added into 75-cm
2
 culture 

flask. The flask was tilted to ensure that the PLL-coating solution covered the whole 

surface. This was followed by incubating the flask for 1 hr at 37°C. The PLL-coating 

solution was removed by aspiration and the surface of the flask was rinsed thoroughly 

with dPBS (Table 2.2) for 3 times, using 6 ml each time. The PLL-coated flasks were 

left to dry in the tissue culture hood for 2 hr before they were covered with aluminium 

foil and kept at 4°C. Culture flasks were pre-coated with PLL in advance in order to 

improve the number of cells obtained at the end of the culturing period. 

 

2.2.1.2 Isolation of microglial cells 

Microglia cells were isolated from 1-5 day old mice. The dissecting tools 

(summarized in Table 2.5) was cleaned with ethanol and laid out in the dissecting hood 

prior of the isolation procedure. The brain was removed, after the mice was sacrificed, 

and transferred into a petri-dish containing pre-cooled dissecting HBSS on ice. The 

cerebral hemispheres were separated from the mid-brain before the meninges layers 

were removed under a dissecting microscope using tweezers. It is important to remove 

the meninges layers completely from the brain tissues as this can improve the quality of 

the cell culture and therefore increase the number of microglia cells. Following the 

removal of the meninges layer, the brain tissues were collected into cold planting media 

prior to the incubation in 10 volumes of 0.5% trypsin-EDTA solution for 20 min at 

37°C. After the trypsin-EDTA solution was removed by extensive aspiration, the tissues 

were further dissociated in 4 ml of planting media by triturating using a pipette before 

subsequently filtered into a 50 ml-falcon tube using a 70-µm cell strainer. Cells were 

collected by centrifugation at 1300 rpm for 5 min, and the pellet was re-suspended in 2 

ml of DMEM/F12 supplemented with 10% FBS, 10 units/ml penicillin and 100 µg/ml 

streptomycin. The cell suspension from 2 brains was added to a PLL-coated 75-cm
2
 

flask in total 15 ml of the same culture media.  

Cells were maintained at 37°C in a humidified atmosphere of 5% CO2. 

Following 4 days of incubation, one half of the culture media was collected and 
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centrifuged for 5 min at 1300 rpm and the supernatant was added back into the culture 

flask, while the other half of the culture media was replaced with fresh DMEM/F12 

supplemented with 10% FBS, 10 units/ml penicillin and 100 µg/ml streptomycin. The 

purpose of this step is to reduce the debris and also provide nutrients supplemented by 

the fresh media to the cells. Cells were incubated further for 5-8 days.  

After 12-14 days in culture, the microglial cells were loosely attached and 

separated from the rest of cell culture by shaking the flasks in a rotary platform in a 

tissue culture incubator at 37°C at 180 rpm for 90 min.  The culture media containing 

microglia cells were collected by centrifuging at 1300 rpm for 5 min, re-suspended in 

fresh culture medium and seeded in different cell culture microplates depending on the 

experiment purposes. The type of culture plates, the number of cells and the amount of 

medium used are described in Table 2.6.  

 

2.2.1.3 Treatment of microglial cells 

Microglial cells were routinely incubated for 72 hr before use to ensure the cells 

were in a resting state. Primary microglial cells were treated directly without (Control) 

or with H2O2, Zn
2+

, A42 or TNF- alone at indicated concentrations as detailed in the 

Result chapters. In experiments studying an inhibitor, cells were pre-treated with the 

solvent control DMSO or the indicated inhibitor at 37°C, 30 min before and during 

exposure to H2O2, Zn
2+

, A42 or TNF-. Table 2.3 provides a list of the compounds 

used and also the solvent controls. All compounds were prepared to the final 

concentration (as described in the Result chapters) using fresh media and were directly 

added into the culture plate for the indicated experiment duration. 

 

2.2.2 Immunofluorescence imaging  

Microglial cells were seeded onto 13-mm coverslips with 50,000-65,000 cells 

per slip (Table 2.6), and incubated for 72 hr prior to use. Following the treatments as 

detailed in the Results chapters, cells were fixed with 250 µl of 4% (w/v) 

paraformaldehyde (PFA) for 15 min at -20°C. Cells were permeabilized 3 times, with 

each time using 300 µl PBS containing 0.1% Triton X-100 which was added, left for 5 

min at room temperature (RT), and removed. Following rinsing twice with 300 µl of 

PBST wash buffer (Table 2.2), cells were incubated in 400 µl of blocking solution 

(Table 2.2) for 2 hr at RT. Primary rabbit anti-TRPM2 antibody, mouse anti-PAR 

antibody, or rabbit anti-TNF-α antibody was added into the blocking solution at the 

dilution described in Table 2.3, and cells were incubated overnight at RT. Cells were 
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extensively washed with 300 µl of PBST wash buffer for 3 times, as described in the 

permeabilization step. Cells were then incubated with 400 µl of blocking solution 

containing secondary fluorescein isothiocynate (FITC)-conjugated rabbit anti-mouse or 

goat anti-rabbit antibody (dilutions summarized in Table 2.3) in the dark for 2 hr at RT. 

After rinsing with PBST wash buffer for 3 times as described above, the cover slips 

were mounted onto microscope slides with SlowFade Gold Antifade mounting reagent 

with 4’,6-diamidino-2-phenylindole (DAPI) and stored at 4°C. Images were capture 

using an EVOS FL cell imaging system (Life Technologies). The FITC fluorescence 

intensities were quantified using ImageJ and at least 70 cells were examined from each 

coverslip. 

 

Table 2.5 Dissection tools used for microglia cells isolation 

Dissecting Tools Size Sources 

Straight blunt dissecting scissor 165 mm Thermo Scientific 

Scalpel surgical blade handle No. 3 Swann-Morton 

Surgical scalpel blade No. 10A Swann-Morton 

45° angled delicate forceps 90 mm Fine Science Tools 

Micro-dissecting forceps curved 4 inch Sigma 

Micro-dissecting forceps straight 4 inch Sigma 

Jewelers forceps, Dumont No. 5  4.25 inch Sigma 

Tweezers, No.5 110 mm Sigma 

 

Table 2.6 Preparations of microglial cells 

 

Experiments 

 

 

Culture plate 

 

Number of 

cells/well 

 

Amount of 

media (l) 

Single cell Ca
2+

 imaging 96-well plate 25000 180 

Immunofluorescent staining for 

TRPM2 and PAR 

24-well plate 50000 300 

Immunofluorescent staining for 

TNF-α 

24-well plate 65000 300 
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Cell death assay 96-well plate 15000 180 

Imaging of cell morphology 96-well plate 20000 180 

Measurement of ROS 96-well plate 25000 180 

TNF-α release by ELISA 96-well plate 45000 50 

 

2.2.3 Single cell calcium imaging 

Single cell calcium imaging was performed using Fluo4-acetoxymethyl ester 

(Fluo-4/AM). The measurement of intracellular Ca
2+

 concentrations was performed on 

cells seeded in 96-well plates at densities described in Table 2.6. Following 72 hr 

incubation, the media were removed and cells in each well were rinsed twice with 200 

µl of SBS (Table 2.2), and incubated in 100 μl of SBS containing 5 μM Fluo-4/AM and  

0.01% (v/v) pluronic acid at 37°C for 45 min. Cells were rinsed with SBS for 3 times, 

each time using 200 µl. Following washing, 200 μl of SBS or Ca
2+

-free SBS containing 

either control DMSO or a stimulus (as detailed in the Results chapters) were added into 

each well. The plate was incubated for 2 or 8 hr (as described in Result chapters) at 

37°C. In experiments examining the effect of an inhibitor, cells were pre-treated with 

the inhibitor for 30 min at 37°C prior to exposure to the stimulus. At the end of 

treatment with the stimulus, cells were counter-stained by Hoechst 33243 at a 

concentration of 5 µg/ml by incubating for 15 min at 37°C. The fluorescent images 

were captured using an EVOS FL cell imaging system. The Fluo4 intensities in 

individual cells were quantified using ImageJ and at least 100 cells were examined in 

each well. 

 

2.2.4 Cell death assay 

Cells were seeded as described in Table 2.6 and incubated at 37°C for 72 hr 

prior to use. Solvent control DMSO or stimuli indicated at the concentrations shown in 

the Results chapters, were added to the culture media in each well. The plate was 

incubated at 37°C for 24 hr in a majority of experiments or 2, 4, 8 hr in a small number 

of experiments. PI and Hoechst 33243 were added to a final concentration of 2 μg/ml 

and 5 μg/ml, respectively and the plate was incubated at 37°C in the dark for a further 

30 min prior to imaging. In experiments studying an inhibitor, cells were pre-treated 

with the indicated inhibitor at 37°C, 30 min before and during exposure to the stimulus. 

Cells were imaged using an EVOS FL cell imaging system. The number of PI-stained 

dead cells and the total number of cells identified by Hoechst-staining in three randomly 

chosen areas in each image were counted using ImageJ, and at least 100 cells were 
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examined in each well.  Cell death was presented by expressing PI-stained cells as 

percentage of Hoechst-stained cells. 

 

2.2.5 Characterization of microglial cell morphology  

Microglial cell morphology was examined on live cells. Cells were seeded as 

described in Table 2.6 and incubated at 37°C for 72 hr. Cells were treated with either 

solvent control DMSO or stimuli (described in the Results chapters) for 24 hr at 37°C. 

In experiments assessing the effect of an inhibitor, the inhibitor was added at indicated 

concentrations to the culture media 30 min before and during exposure to the stimulus. 

Images were captured using an Incucyte ZOOM imaging system (Essence Bioscience) 

with a 10x object lens or an EVOS FL cell imaging system with a 40x object lens. The 

change in cell morphology was characterized by computer-assisted analysis (ImageJ) of 

form factor and aspect ratio of individual cells as described in previous studies (Soltys 

et al., 2001; Zanier et al., 2015). The form factor was calculated using the formula of 4 

x area/perimeter
2
, with the highest value of 1.0 indicating a perfect circle and with value 

approaching 0 indicating an elongated shape. The aspect ratio is defined as the length-

to-width ratio, with the minimal value of 1.0 indicating a perfect circle.  

 

2.2.6 Measurement of ROS production 

Cellular ROS production was assayed using 2’,7’-dichlorodihydrofluorescein 

diacetate (DCFH-DA) as described recently (Shen et al., 2014). Briefly, cells were 

plated in 96 well plates, as described in Table 2.6, and incubated for 72 hr prior to use. 

Cells were treated with either solvent control DMSO or stimuli at indicated 

concentrations (described in the Results chapters) at 37°C for 2 or 8 hr. After the media 

was removed, cells were rinsed twice with 200 µl of SBS and incubated in 100 μl of 

SBS containing 20 µM DCFH-DA in the dark at 37°C for 45 min. Cells were washed 3 

times, each time with 200 µl of SBS, and then maintained in 200 μl of SBS. Hoechst 

33243 at a final concentration of 5 µg/ml was added in each well. Cells were incubated 

at 37°C for a further 30 min. In experiments studying the effect of an inhibitor, cells 

were treated with the inhibitor at 37°C 30 min before and during exposure to the 

stimulus. Images were captured using an EVOS FL cell imaging system. The 

fluorescence intensities in individual cells were quantified using ImageJ and at least 100 

cells were examined in each well. 
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2.2.7 Enzyme-linked immunosorbent assay (ELISA) 

Cells were plated as described in Table 2.6 and incubated at 37°C for 72 hr. 

After the culture media were removed, cells were rinsed twice with dPBS, and 50 µl 

fresh culture media containing either solvent control DMSO or stimuli at indicated 

concentrations (described in the Results chapters) were added to each well. Cells were 

incubated at 37°C for 72 hr. In experiments studying the effect of an inhibitor, the 

media were replaced with 50 l of fresh culture media containing the inhibitor at 

indicated concentrations (described in the Result chapter) at 37°C, 30 min before and 

during exposure to stimuli. At the end of treatment with the stimulus, the culture media 

were collected. The TNF-α concentrations in the culture media were determined by a 

TNF-α ELISA kit (Peprotech) according to the manufacturer’s instructions.  

 

2.3 STATISTICAL ANALYSIS 

Experiments were performed in at least triplicate and repeated using three 

different cell cultures prepared independently. All data are presented as mean ± 

standard error of mean (SEM). Statistical analysis was made using Student’s t-test for 

comparison of two groups and one-way ANOVA followed by post hoc Tukey’s test for 

comparison among multiple groups with p < 0.05 being considered to be significant. 

Data was analysed and figures were prepared in Origin (version 9.1). 
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CHAPTER 3 

A ROLE OF TRPM2 IN DAMP-INDUCED MICROGLIAL CELL 

DEATH AND CELL ACTIVATION 
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3.1 INTRODUCTION 

Microglial cells, as discussed in the Introduction chapter, represent the resident 

macrophage cells in the CNS (see section 1.8.1).  It is widely recognized that microglia 

cell plays an important role in neurodegenerative diseases, including AD (Vincenti et 

al., 2016; Wes et al., 2016), PD (Ouchi et al., 2005; Gerhard et al., 2006) and ischemic-

induced brain injury (Wang et al., 2016; Szalay et al., 2016). Microglial cell is a highly 

plastic cell in which it retracts its branched processes upon activation by structurally 

diverse molecules known as DAMPs, including Zn
2+

 (Kauppinen et al., 2008), Aβ 

(Jekabsone et al., 2006) and TNF-α (Kauppinen and Swanson, 2005).  

Elevation of Zn
2+

, Aβ and TNF-α in the brain has been implicated in a diversity 

of diseases conditions in the CNS, in which these molecules promote production of 

toxicity mediators, such as ROS (Yamamoto et al., 2007; Bezprozvanny and Mattson, 

2008; Gloire et al., 2006). Additionally, evidence have suggested that Aβ and TNF-α as 

well H2O2 induce an increase in the [Ca
2+

]i (Kraft et al., 2004; Fonfria et al., 2005; W. 

Zhang et al., 2006) and cell death in neurons, macrophages and monocytes via 

activating the TRPM2 channel (Zou et al., 2013; Fonfria et al., 2005; Kaneko et al., 

2006; Bai and Lipski, 2010; Sun et al., 2016). The high level of TRPM2 expression in 

microglial cells (Kraft et al., 2004; Fonfria et al., 2006; Miyake et al., 2014) raises the 

question of whether TRPM2 channel has a role in mediating cell death in response to 

H2O2, Zn
2+

, Aβ and TNF-α. 

ROS produced from NOX has been shown to induce change in microglial cell 

morphology (Qin et al., 2004). In addition, as mentioned in the Introduction chapter, 

zinc release from glutamatergic neurons as well as exogenous zinc can induce the 

change in microglial cell morphology (Assaf and Chung, 1984; Kauppinen et al., 2008). 

Also, evidence has suggested that Aβ and TNF-α stimulate change in cell morphology 

and cell proliferation in microglial cells (Ostapchenko et al., 2015; Kauppinen and 

Swanson, 2005; Angelov et al., 1998). A recent study reported a critical function of 

TRPM2 channel in mediating Aβ42-induced microglial cell activation (Ostapchenko et 

al., 2015).   

Therefore, the studies presented in this chapter aim to investigate the TRPM2 

channel role in the Ca
2+

 signalling, cell death, and cell activation in microglial cells in 

response to H2O2 as well as Zn
2+

, Aβ42 and TNF-α. Such information is useful for a 

better understanding of microglial cells in oxidative stress-related pathologies. 
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3.2 RESULTS 

 

3.2.1 TRPM2 channel expression and its role in H2O2-induced Ca
2+

 responses  

I started with confirming the TRPM2 expression in microglial cells using 

immunofluorescent confocal microscopy. Positive immunostaining was observed in 

primary microglial cells labelled with an anti-TRPM2 antibody, but not in control cells 

(Fig. 3.1a). Next, I examined the [Ca
2+

]i in cells after exposure to different 

concentrations of H2O2 (10-300 µM) for 2 hr and 8 hr, using single cell calcium 

imaging. There was a significant increase in the [Ca
2+

]i after exposure for 2 hr to 100-

300 µM H2O2 (Fig. 3.1b-c), but not to 10-30 µM H2O2. However, 10-30 µM H2O2 

induced strong Ca
2+

 responses when the exposure duration was prolonged to 8 hr (Fig. 

3.1d-e). These results show that H2O2 induces a concentration- and time-dependent 

increase in the [Ca
2+

]i. In striking contrast with the robust Ca
2+

 responses in WT 

microglial cells, exposure to 100-300 µM H2O2 for 2 hr (Fig. 3.2a) and 10-30 µM for 8 

hr (Fig. 3.2b) induced very small increases in the [Ca
2+

]i in TRPM2-KO microglial 

cells. Taken together, these results provide compelling evidence to support a role for the 

TRPM2 channel in mediating H2O2-induced Ca
2+

 signalling in microglial cells. 

 

3.2.2 TRPM2 channel in mediating H2O2 -induced microglial cell death 

It has been shown that TRPM2 channel plays a crucial role in ROS-induced cell 

death in various cell types including macrophage cells (section 1.7.1). However, it was 

unclear whether the TRPM2 channel has a similar role in microglial cells. Therefore, I 

examined microglial cell death after exposure to 10-300 M H2O2 for 2, 4, 8 and 24 hr, 

using PI staining. Exposure to 10-300 µM H2O2 for 24 hr evoked a concentration-

dependent increase in cell death in WT microglial cells (Fig. 3.3a). H2O2-induced cell 

death was also dependent of exposure duration. For example, cell death induced by 300 

M H2O2, increased from 35.1 ± 3.1% to 68.9 ± 0.5%, 79.3 ± 01.1% and 89.1 ± 1.8% as 

the exposure duration was extended from 2 hr to 4, 8 and 24 hr (Fig. 3.3b). However, 

under these experimental conditions, there was no or modest cell death in TRPM2-KO 

microglial cells (Fig. 3.3c-d). As a positive control, exposure to 3 mM H2O2 in parallel 

experiments caused massive cell death that was not different between WT and TRPM2-

KO microglial cells (Fig. 3.3d). Therefore, these results support that H2O2 can induce  
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Fig. 3.1 TRPM2 expression and H2O2-induced increase in the [Ca

2+
]i in microglial cells. 

(a) Representative images showing TRPM2 immunoreactivity in microglial cells. Cells were counterstained with DAPI. Similar results were 

observed in three independent cell preparations. (b, d) Representative single cell images showing Ca
2+

 responses in microglial cells without (CTL) or 

with treatment of H2O2 at indicated concentrations for 2 hr (b) and 8 hr (d) (top row: Fluo-4 fluorescence; bottom row: counter staining with 

Hoechst). (c, e) Summary of the mean H2O2-induced Ca
2+

 responses under indicated conditions from 4 independent cell preparations using 3 wells of 

cells for each condition in each experiment. Scale bar, 40 µm. *, p < 0.01; ***, p < 0.005 compared to indicated control group. 
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Fig. 3.2 A critical role of the TRPM2 channel in H2O2-induced increase in [Ca
2+

]i in microglial cells. 

(a, b) Left, representative single cell images showing Ca
2+

 responses in microglial cells from WT and TRPM2-KO mice  treated with 100 and 300 µM 

H2O2 for 2 hr (a), and 10 and 30 µM H2O2 for 8 hr (b) (top row: Fluo-4 fluorescence; bottom row: counter staining with Hoechst). Right, summary of 

the mean H2O2-induced Ca
2+

 responses under indicated conditions from 4 independent cell preparations using 3 wells of cells for each condition in 

each experiment. Scale bar, 40 µm. ***, p < 0.005 compared to control group and, ###, p < 0.005 compared between WT and TRPM2-KO cells under 

the same treatment. 
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Fig. 3.3 H2O2 induces TRPM2 channel-dependent microglial cell death. 

(a) Representative images showing microglial cell death upon exposure to H2O2 at indicated concentrations for 24 hr (top row: PI-stained dead 

cells; bottom row: all cells stained with Hoechst). (b) Summary of the mean cell death induced by exposure to H2O2 at indicated concentrations for 

2, 4, 8 and 24 hr from 3 independent experiments, using 3 wells of cells for each condition in each experiment. (c) Representative images showing 

microglial cell death upon exposure to H2O2 at indicated concentrations for 24 hr in the WT and TRPM2-KO cells. (d) Summary of the mean H2O2-

induced cell death under indicated conditions from 3 independent cell preparations using 3 wells of cells for each condition in each experiment. 

***, p < 0.005 compared to indicated control group and, ###, p < 0.005 compared between the WT and TRPM2-KO cells under the same treatment. 
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microglial cell death and the TRPM2 channel plays an important role in mediating 

H2O2-induced microglial cell death.  

 

3.2.3 TRPM2 channel in H2O2-induced microglial cell activation 

As described in the introduction above, previous studies have provided evidence 

to suggest that ROS can induce changes in microglial cell morphology (Qin et al., 

2004). However, it remained unclear whether TRPM2 channel plays a critical role in 

such a mechanism. Therefore, I firstly examined the cell morphology change in the WT 

microglial cells in response to H2O2. Under control culturing conditions, a majority of 

microglial cells displayed a ramified rod-like morphology and a small number of cells 

presented a more ramified morphology with thicker and more extensive processes (Fig 

3.4a and b), indicative of resting or partially activated states. Exposure to 10-30 M 

H2O2 for 24 hr caused microglial cells to retract their processes and develop amoeboid-

like morphology, indicating that H2O2 induced microglial cells into a more activated 

state (Fig 3.4a, top). These changes induced by H2O2 were more observable in images 

captured using an EVOS microscope system with a 40X object lens (Fig 3.4b, top). 

Noticeably, H2O2-treated cells also displayed larger cell bodies compared to untreated 

cells (Fig 3.4a-b, top). To quantitatively evaluate such H2O2-induced effects, I 

performed computer-assisted analysis of the form factor (or circularity) and aspect ratio, 

as described in detail in section 2.2.5. Both parameters exhibited widespread 

distribution in microglial cells (Fig 3.4c, top), indicating heterogeneity in cell 

morphology. Nonetheless, it was evident that the mean value of form factor increased 

(Fig 3.4d, left), whereas the mean value of aspect ratio was progressively reduced, with 

the H2O2 concentration increasing (Fig 3.4d, right). These suggest that H2O2 can induce 

microglial cells to change from elongated with branched processes to circular shape and 

assume rounded morphology.  

In contrast to the significant change in the morphology of WT microglial cells, 

exposure to 10-30 M H2O2 induced no significant change in the morphology of 

TRPM2-KO microglial cells (Fig. 3.4 a-d). These results suggest an important role for 

the TRPM2 channel in determining H2O2-induced microglial cell activation. 
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 Fig. 3.4 A critical role of the TRPM2 channel in H2O2-induced change in microglial cell morphology. 

(a, b) Representative phase-contrast images showing cell morphology of WT and TRPM2-KO microglial cells without (CTL) or with exposure to 

H2O2 at indicated concentrations for 24 hr, using an Incucyte imaging system with a 10x object lens (a) and an EVOS microscope with a 40x object 

lens (b). (c, d) Scatter plot showing the distribution of form factor and aspect ratio values of individual cells (c), and the mean form factor (left) and 

aspect ratio (right) values under indicated conditions, from 4 independent cell preparations using 3 wells of cells for each condition in each 

experiment. Scale bar, 200 µm (a) and 50 µm (b). ***, p < 0.005 compared to control. ###, p < 0.005 compared between WT and TRPM2-KO cells 

under the same treatment. 

 



79 

 

3.2.4 TRPM2 channel in DAMP-induced Ca
2+

 responses 

To demonstrate the role of the TRPM2 channel in microglial cell responses to 

Zn
2+

, Aβ and TNF-α, I investigated whether such stimuli induce the TRPM2 channel 

activation by measuring the increase in the [Ca
2+

]i in microglial cells after exposure to 

these stimuli, using single cell calcium imaging. Application of 10-300 µM Zn
2+ 

for 2 hr 

resulted in a concentration-dependent increase in the [Ca
2+

]i  in WT microglial cells but 

failed to induce any significant increase in the [Ca
2+

]i in TRPM2-KO microglial cells 

(Fig. 3.5a and c). A robust increase in the [Ca
2+

]i  induced by lower concentrations of 

Zn
2+

 (10-30 µM) was observed only following exposure for 8 hr and such Ca
2+

 

responses were also abolished in TRPM2-KO microglial cells  (Fig. 3.5b and d). 

Similarly to Zn
2+

, exposure to 30-300 nM Aβ42 for 8 hr led to a concentration-

dependent increase in the [Ca
2+

]i (Fig.3.6a and c), which  was absent in the TRPM2-KO 

microglial cells (Fig.3.6a and c). Furthermore, exposure to 300 nM Aβ42-1 elicited no 

Ca
2+

 response in WT microglial cells (Fig. 3.6b and d). In addition to Zn
2+

 and A42  

exposure to 10-100 ng/ml TNF-α for 8 hr resulted in a significant increases in the 

[Ca
2+

]i in WT microglial cells, but such Ca
2+ 

responses were strongly attenuated in 

TRPM2-KO microglial cells (Fig. 3.7a-b). Taken together, these findings provide strong 

evidence to suggest that Zn
2+

, Aβ42 and TNF-α can activate the TRPM2 channel in 

microglial cells. 

 

3.2.5 TRPM2 channel in Zn
2+

-induced microglial cell death 

As introduced above, excessive accumulation of Zn
2+

 is cytotoxic. I investigated 

whether microglial cell death occur after exposure to Zn
2+

. Exposure of microglial cells 

to 10-300 µM Zn
2+

 for 24 hr resulted in significant and concentration-dependent cell 

death (Fig. 3.8a). Zn
2+

-induced microglial cell death was strongly dependent of 

exposure duration which occurred at a significant level only after the duration was 

prolonged to 24 hr (Fig. 3.8b). Such 100-300 µM Zn
2+

-induced cell death was largely 

abolished in TRPM2-KO microglial cells (Fig. 3.8c-d), demonstrating that the TRPM2 

channel is critical in Zn
2+

-induced microglial cell death. In contrast to Zn
2+

, exposure of 

WT microglial cells to 30-300 nM Aβ42 (Fig. 3.9a-b) and 10-100 ng/ml TNF-α (Fig. 

3.9c-d) for 72 hr did not induce significant cell death.   
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Fig. 3.5  Zn

2+
 induces TRPM2 channel-dependent increase in the [Ca

2+
]i in microglial cells.  

(a, b) Representative images showing the Ca
2+

 responses in WT and TRPM2-KO microglia cells treated with 10-300 µM Zn
2+

 for 2 hr (a) and 10-

100 µM Zn
2+

 for 8 hr (b) (top row: Fluo-4 fluorescence; bottom row: counter staining with Hoechst). (c, d) Summary of the mean Ca
2+

 responses in 

microglial cells under indicate conditions, from 3 independent cell preparations using 3 wells of cells for each condition in each experiment. Scale 

bar, 40 µm. *, p < 0.01; **, p <0.05; ***, p < 0.005 compared to control. #, p < 0.01; ###, p < 0.005 compared between WT and TRPM2-KO cells 

under the same treatment. 
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 Fig. 3.6 Aβ42 induces TRPM2 channel-dependent increase in the [Ca
2+

]i in microglial cells.  

(a) Representative single cell images showing intracellular Ca
2+

 levels (top row: Fluo4 fluorescence; bottom row: counter staining with Hoechst) in 

WT and TRPM2-KO microglial cells without (CTL) and with exposure to Aβ42 at indicated concentrations for 8 hr. (b) Representative single cell 

images showing intracellular Ca
2+

 levels in WT microglial cells (top row: Fluo-4 fluorescence; bottom row: counter staining with Hoechst) without 

(CTL) or with exposure for 8 hr to 300 nM Aβ42 (top) or 300 nM Aβ42-1 (bottom). (c, d) Mean intracellular Ca
2+

 levels in microglial cells under the 

conditions indicated in (a and b), from 3 independent cell preparations using 3 wells of cells for each condition in each time. Scale bar: 40 µm. *, p 

< 0.05; ***, p < 0.005 compared to control, and ##, p < 0.01; ###, p < 0.005 between WT and TRPM2-KO cells under the same treatment. 
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Fig. 3.7 TNF-α induces TRPM2 channel-dependent increase in the [Ca
2+

]i in microglial cells.  

(a) Representative single cell images showing intracellular Ca
2+

 levels (top row: Fluo4 fluorescence; bottom row: counter staining with Hoechst) in 

WT and TRPM2-KO microglial cells without (CTL) and with exposure to TNF-α at indicated concentrations for 8 hr. (b) Mean intracellular Ca
2+

 

levels in microglial cells under the conditions indicated in (a), from 3 independent cell preparations using 3 wells of cells for each condition in each 

time. Scale bar, 40 µm. ***, p < 0.005 compared to control, and ###, p < 0.005 between WT and TRPM2-KO cells under the same treatment. 
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Fig. 3.8 TRPM2 channel is involved in Zn
2+

-induced microglial cell death.  

(a, c) Representative images showing microglial cell death (top row: PI-stained dead cells; bottom row: all cells stained with Hoechst) in WT cells 

upon exposure to 10 -300 µM Zn
2+

 (a) and in WT and KO cells upon exposure to 100 -300 µM Zn
2+

 (c). (b) Summary of the mean cell death under 

indicated conditions for 2, 4, 8, and 24 hr from 4 independent cell preparations using 3 wells of cells for each condition in each time. (d) Summary 

of the mean cell death under indicated conditions for 2 hr from 3 independent cell preparations using three wells of cells for each condition in each 

time. **, p < 0.05; ***, p < 0.005 compared to indicated control group and, ###, p < 0.005 compared between the WT and TRPM2-KO cells under 

the same treatment. 
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 Fig. 3.9 Exposure to Aβ42 and TNF-α induces no microglial cell death.  

(a, c) Representative images showing microglial cell death (top row: PI-stained dead cells; bottom row: all cells stained with Hoechst) in WT cells 

upon exposure for 72 hr to 300 nM Aβ42 (a) or 100 ng/ml TNF-α (c). (b, d) Summary of the mean cell death under indicated conditions from 3 

independent cell preparations using 3 wells of cells for each condition in each time. 
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3.2.6 TRPM2 channel in DAMP-induced cell activation 

Zn
2+

, Aβ42 and TNF-α, as mentioned above, can induce change in microglial cell 

morphology. However, whether the change in microglial cell morphology induced by 

these stimuli is mediated by the TRPM2 channel still remain unknown. Treatments with 

10-30 M Zn
2+

 for 24 hr caused significant change in the morphology of WT microglial 

cells, including process retraction and cell bodies enlargement that transform the cells 

into amoeboid-like shape (Fig. 3.10a). Consistent with the observations of the change in 

microglial cell morphology, the mean value of form factor increased, whereas the mean 

value of aspect ratio was progressively reduced, as the concentration of Zn
2+ 

were 

elevated (Fig. 3.10b-c). Such changes were not observed in TRPM2-KO microglial cells 

(Fig. 3.10a-c). These findings suggest a critical role of the TRPM2 channel in Zn
2+

-

induced change in the morphology of microglial cells.   

Exposure to Aβ42 (100-300 nM) for 24 hr induces noticeable change in the 

morphology of WT microglial cells. The exposure to an increasing concentration of 

Aβ42 induces more WT microglial cells to have a morphology with amoeboid-like shape 

(Fig. 3.11a). Therefore, the mean value of form factor increased, whereas the mean 

value of aspect ratio was progressively reduced, with the Aβ42 concentration increasing 

(Figure 3.11b-c). In contrast with these remarkable change in the cell morphology 

induced by 300 nM Aβ42, exposure to 300 nM Aβ42-1 resulted in no noticeable change in 

the cell morphology (Fig 3.11d-e). Aβ42-induced changes in the cell morphology were 

not observed in TRPM2-KO microglial cells (Fig. 3.11a-c), suggesting that TRPM2 

channel plays a crucial role in Aβ42-induced change in the morphology of microglial 

cells. 

Like Zn
2+

 and Aβ42, TNF-α at concentrations 10-30 ng/ml resulted in  significant 

change in the morphology of WT microglial cells, with retracted processes and 

noticeably enlarged cell bodies (Fig 3.12a). TNF-α treated WT microglial cells 

exhibited rounded and larger cell bodies and short processes. On average, as the 

concentration of TNF-α were elevated, TNF-α induced progressive increase in the form 

factor whereas progressive reduction in the aspect ratio in WT microglial cells (Fig 

3.12b-c). These changes were however not seen in TRPM2-KO cells (Fig 3.12a-c), 

consistent with the visual observation of the morphological change. These results 

suggest an important role of the TRPM2 channel in TNF-α-induced change in 

microglial cells morphology. 
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Fig. 3.10 TRPM2 channel is required for Zn

2+
-induced microglial activation.  

(a) Representative phase-contrast images showing cell morphology of WT and TRPM2-KO microglial cells without (CTL) or with exposure to 

Zn
2+ 

at indicated concentrations for 24 hr, captured using an EVOS microscope with a 40x object lens. (b, c) Scatter plot showing the distribution 

of form factor and aspect ratio values of individual microglial cells (b), and mean form factor (top) and aspect ratio (bottom) values for microglial 

cells under the conditions indicated in (a), from 3 independent cell preparations using 3 wells of cells for each condition in each experiment. Scale 

bar, 50 µm.  ***, p < 0.005 compared to control, and ##, p < 0.01; ###, p < 0.005 compared between WT and TRPM2-KO cells under the same 

treatment. 
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 Fig. 3.11 TRPM2 channel is required for Aβ42-induced microglial activation.  

(a) Representative phase-contrast images showing cell morphology of WT and TRPM2-KO microglial cells without (CTL) or with exposure to 

Aβ42 
 
at indicated concentrations for 24 hr, captured using an EVOS microscope with a 40x object lens. (b, c) Scatter plot showing the distribution 

of form factor and aspect ratio values of individual microglial cells (b), and mean form factor (top) and aspect ratio (bottom) values for microglial 

cells under the conditions indicated in (a), from 3 independent cell preparations using 3 wells of cells for each condition in each experiment. (d, e) 

Scatter plot showing the distribution of form factor and aspect ratio values of individual microglial cells from WT mice without (CTL) or with 

exposure for 24 hr to 300 nM Aβ42 (left) or 300 nM Aβ42-1 (right), and mean form factor (left) and aspect ratio (right) values for microglial cells 

under indicated conditions from 3 independent cell preparations using 3 wells of cells for each condition in each experiment. Scale bar, 50 µm.  

***, p < 0.005 compared to control, and ###, p < 0.005 compared between WT and TRPM2-KO cells under the same treatment. 
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 Fig. 3.12 TRPM2 channel is required for TNF-α-induced microglial cell activation.  

(a) Representative phase-contrast images showing cell morphology of WT and TRPM2-KO microglial cells without (CTL) or with exposure to TNF-

α
 
at indicated concentrations for 24 hr, captured using an EVOS microscope with a 40x object lens. (b, c) Scatter plot showing the distribution of 

form factor and aspect ratio values of individual microglial cells (b), and mean form factor (top) and aspect ratio (bottom) values for microglial cells 

under the conditions indicated in (a), from 3 independent cell preparations using 3 wells of cells for each condition in each experiment. Scale bar, 50 

µm.  ***, p < 0.005 compared to control, and ##, p < 0.01; ###, p < 0.005 compared between WT and TRPM2-KO cells under the same treatment. 
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3.3 DISCUSSION 

In this chapter, studies examined the effects of TRPM2-KO on the increase in 

the [Ca
2+

]i, cell death and cell activation in microglial cells in response to Zn
2+

, Aβ42 

and TNF-α as well as H2O2. All these DAMP molecules induced concentration-

dependently and time-dependently an increase in the [Ca
2+

]i and cell activation. In 

addition, H2O2 and Zn
2+

, at relatively high concentrations examined induced 

considerable microglial cell death (Table 3.1). Finally, all these effects were abolished 

or strongly inhibited by TRPM2-KO, providing evidence to suggest that the TRPM2 

channel plays an important role in the Ca
2+

 signalling, cell death and cell activation in 

microglial cells in response to H2O2, Zn
2+

, Aβ42 and TNF-α.  

The expression of the TRPM2 channel in microglia cells has been well 

documented (Wehrhahn et al., 2010; Miyake et al., 2014; Kraft et al., 2004). In the 

present study, I confirmed the TRPM2 channel expression in microglial cells using 

immunofluorescent confocal microscopy (Fig. 3.1a). TRPM2 channel is a Ca
2+

-

permeable channel, and an early study reported that H2O2 induced an increase in the 

[Ca
2+

]i in microglial cells (Kraft et al., 2004), but it was not clearly defined how 

important the TRPM2 channel was in such H2O2-induced Ca
2+

 signalling. The present 

study also showed an increase in the [Ca
2+

]i in microglial cells after exposure to 100-

300 µM H2O2 for 2 hr (Fig. 3.1b-c). A significant increase in the [Ca
2+

]i was induced by 

10-30 µM H2O2 after exposure for 8 hr  (Fig. 3.1d-e). Such H2O2-induced time- and 

concentration-dependent increase in the [Ca
2+

]i was almost completely lost in TRPM2-

KO microglial cells (Fig. 3.2a-b). The findings provide strong evidence to support that 

the TRPM2 channel is functionally expressed and plays a major role in ROS-induced 

Ca
2+

 signalling in microglial cells.  

There were significant increases in the [Ca
2+

]i after exposure to 100-300 µM 

Zn
2+

 for 2 hr (Fig. 3.5a and c) and 10-30 µM Zn
2+

 for 8 hr (Fig. 3.5b and d). Such Zn
2+

-

induced time- and concentration-dependent increases in the [Ca
2+

]i were abolished in 

TRPM2-KO microglial cells (Fig. 3.5a-d). These findings provide the first evidence to 

suggest that TRPM2 channel is important in mediating Zn
2+

-induced Ca
2+

 signalling in 

microglial cells. Like Zn
2+

, Aβ42 induced strong and concentration-dependent increase 

in the [Ca
2+

]i in microglial cells which was strongly dependent of  TRPM2 channel 

expression (Fig. 3.6a and c). This finding is consistent with a previous study suggesting  

a critical role for the TRPM2 channel in mediating Aβ42 induced increase in the [Ca
2+

]i 

in striatal neurons (Fonfria et al., 2005). Consistently with a previous study showing 
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that TNF-α induces an increase in the [Ca
2+

]i in monocytes by activating the TRPM2 

channel (W. Zhang et al., 2006), TNF-α induced TRPM2-dependent increase in the 

[Ca
2+

]i in microglial cells (Fig. 3.7a-b). Collectively, these results indicate a crucial role 

of TRPM2 channel in mediating the Ca
2+

 signalling induced by Zn
2+

, Aβ42 and TNF-α 

in microglial cells. 

As introduced above, there is extensive evidence suggesting a crucial role for 

the TRPM2 channel in ROS-induced cell death in diverse cell types. In the present 

study, pathologically relevant concentrations of H2O2 (Coombes et al., 2011) caused 

considerable microglial cell death (Fig. 3.3a-b). Such detrimental effect was abolished 

by TRPM2-KO (Fig. 3.3c-d), indicating a critical role for the TRPM2 channel in 

mediating ROS-induced microglial cell death. It is well-known that excessive Zn
2+

 is 

highly cytotoxic, particularly to neuronal cells (Berry and Toms, 2006; Li et al., 2015; 

Hara et al., 2015). In the current study, Zn
2+

 at concentrations observed in I/R-induced 

brain damage and epilepsy (Sloviter, 1985; Koh et al., 1996), evoked significant 

microglial cell death (Fig. 3.8a-b). Such cell death was absent in TRPM2-KO microglial 

cells (Fig. 3.8c-d), supporting a critical role of the TRPM2 channel in Zn
2+

-induced 

microglial cell death. An increase in the [Ca
2+

]i in microglial cells was observed after 

exposure to Zn
2+

 for 2 hr but cell death occurred after exposure to Zn
2+

 for 24 hr, but 

not 2-8 hr (Fig. 3.8b). These findings suggest possible involvement of additional 

signalling pathways as positive feedback mechanisms that are responsible for such 

delayed cell death, which will be explored in the next chapter. 

As discussed in the Introduction chapter, ROS production is one of the common 

events involved in mediating the change in morphology of microglial cells in response 

to the DAMPs molecules examined in this study. Consistently, the 10-30 µM H2O2 

induced a significant change in the morphology of microglial cells (Fig. 3.4a-d). H2O2-

induced change in the cell morphology was prevented by TRPM2-KO (Fig. 3.4a-d), 

suggesting an important role of the TRPM2 channel in H2O2-induced change in the 

morphology of microglial cells. Previous studies showed that exposure of microglial 

cells to Zn
2+

, Aβ and TNF-α induce change in the morphology of microglial cells 

(Kauppinen et al., 2008; Ostapchenko et al., 2015; Kauppinen and Swanson, 2005). 

Consistently, the studies presented in this chapter have shown that Zn
2+

 (10-30 µM), 

Aβ42 (100-300 nM) and TNF-α (10-100 ng/ml) induced significant changes in the 

morphology of microglial cells. Furthermore, studies here show that such changes in the 

morphology of microglial cells were completely inhibited by TRPM2-KO (Figs. 3.9a-c, 
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3.10a-c, 3.11a-c). Collectively, these findings demonstrate that TRPM2 channel is 

crucial in mediating the change in morphology of microglial cells in response to Zn
2+

, 

Aβ42 and TNF-α.  

In conclusion, the study presented in this chapter provides genetic evidence to 

demonstrate a crucial role for the TRPM2 channel in mediating the Ca
2+

 signalling 

induced by  Zn
2+

, Aβ42 and TNF-α as well as H2O2. The present study has also revealed 

that the TRPM2 channel plays an important role in microglial cell death induced by 

H2O2 and Zn
2+

. Furthermore, the present study suggests that TRPM2 channel is critical 

in mediating microglial cell activation induced by H2O2, Zn
2+

, Aβ42 and TNF-α. The 

next chapters will explore the signalling mechanisms underlying TRPM2 channel-

mediated microglial cell death induced by H2O2 and Zn
2+

 (chapter 4) and TRPM2-

mediated microglial cell activation in response to Aβ42 and TNF-α in the context of 

neuroinflammation (chapters 5 and 6).   

 

Table 3.1 Summary of the TRPM2 channel in microglial cell responses against 

various DAMP molecules. 

DAMP molecules Cell responses 

H2O2 

(10-300 µM) 

 

Increase in the [Ca
2+

]i (10-300 µM) 

Cell death at high concentration (100-300 µM) 

Change in cell morphology at low concentration (10-30 µM) 

Zinc 

(10-300 µM) 

 

Increase in the [Ca
2+

]i (10-300 µM) 

Cell death at high concentration (300 µM) 

Change in cell morphology at low concentration (10-30 µM) 

Aβ42 

(30-300 nM) 

Increase in the [Ca
2+

]i (30-300 nM) 

Change in cell morphology (100-300 nM) 

TNF-α 

(10-100 ng/ml) 

Increase in the [Ca
2+

]i (10-100 ng/ml) 

Change in cell morphology (10-30 ng/ml)  
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CHAPTER 4 

SIGNALLING MECHANISMS FOR H2O2- AND ZN
2+

-INDUCED 

TRPM2-MEDIATED MICROGLIAL CELL DEATH  
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4.1 INTRODUCTION 

Extensive research has reported on Zn
2+

-induced neuronal toxicity. Studies 

presented in the previous chapter showed that Zn
2+

 as well as H2O2 induce microglial 

cell death and further suggest a critical role for the TRPM2 channel in Zn
2+

- and H2O2-

induced microglial cell death. Nevertheless, the signalling mechanisms responsible for 

Zn
2+

- and H2O2-induced TRPM2 channel activation and subsequently cell death in 

microglial cell are still not fully elucidated. Previous studies have shown that Zn
2+

 can 

induce cytotoxicity via activation of multiple key players, including PKC, NOX, PARP 

and extracellular signal-regulated kinase (ERK) (Koh, 2001; Kim and Koh, 2002; Suh 

et al., 2007; Seo et al., 2001). As discussed in the Introduction chapter, PKC activates 

NOX by promoting translocation of the cytosolic subunits to the plasma membrane 

(Benna et al., 1997; Reeves et al., 1999; Min et al., 2004). Moreover, previous studies 

have provided evidence to show NOX as the main source for ROS generation (Qiu et 

al., 2016; Santos et al., 2016).  Zn
2+ 

induces NOX-dependent ROS production has been 

demonstrated in microglial cells (Wu et al., 2012). NOX1, NOX2 and NOX4 are widely 

expressed in the CNS, including microglial cells.  

Similarly to H2O2, Zn
2+

 stimulates PARP-1 activation (Kauppinen et al., 2008; 

Suh et al., 2007) but it remains elusive how this occurs.  An early study suggests that 

the mitogen-activated protein kinase (MAPK) signalling pathway is important in 

mediating oxidative stress-induced cell death (Lander, 1997).  There is evidence from a 

recent study to suggest that ROS can activate PARP-1 via extracellular signal-regulated 

kinase (ERK) (Domercq et al., 2013). In oligodendrocyte and differentiated PC12 

neuronal cells, an elevation in the [Zn
2+

]i stimulates ERK phosphorylation and 

activation (Seo et al., 2001; Y.M. Zhang et al., 2006) and, depending on the severity of 

stimulation and cell types, ERK activation promotes cell death or survival (Seo et al., 

2001; Domercq et al., 2011; Domercq et al., 2013). The MEK, phosphorylates and 

thereby activates the ERK. In addition, it has been shown that the protein tyrosine 

kinase PYK2 can trigger the MEK/ERK signalling pathway (Yao et al., 2009). PYK2 is 

highly expressed in the CNS, including in microglial cells (Rolon-Reyes et al., 2015) 

and sensitive to activation by Ca
2+

.  Furthermore, TRPM2-mediated Ca
2+

 influx or 

increase in the [Ca
2+

]i activates the PYK2/MEK/ERK signalling pathway in monocytes 

(Yamamoto et al., 2008). The experiments presented in this chapter aim to investigate 

the signalling mechanisms by which H2O2 and Zn
2+

 activates the TRPM2 channel 

leading to microglial cell death.   
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4.2 RESULTS 

 

4.2.1 TRPM2 channel in H2O2-induced Ca
2+

 influx in microglial cells 

As shown in chapter 3 (section 3.2.1), genetic knockout of the TRPM2 channel 

expression prevented H2O2-induced increase in the [Ca
2+

]i in microglial cells. In this 

chapter, I further examined the role of TRPM2 channel in mediating H2O2-induced Ca
2+

 

signalling in microglial cells by using single cell calcium imaging to measure H2O2-

induced increase in the [Ca
2+

]i in extracellular Ca
2+

-containing and Ca
2+

-free solutions. 

In contrast with the robust calcium responses in Ca
2+

-containing solution, H2O2 evoked 

negligible increase in the [Ca
2+

]i in Ca
2+

-free solution (Fig. 4.1a), indicating 

predominant origin from extracellular Ca
2+

 influx. The increase in the [Ca
2+

]i in 

microglial cells induced by 300 µM H2O2 was significantly attenuated in cells pre-

loaded with BAPTA-AM, a Ca
2+

 chelator (Fig. 4.1b). Taken together, these findings 

suggest that TRPM2 channel plays a role in H2O2-induced Ca
2+

 signalling via mediating 

Ca
2+

 influx.  

 

4.2.2 Effects of TRPM2 channel inhibitors on H2O2-induced microglial cell death  

H2O2-induced microglial cell death was prevented in TRPM2-KO microglial 

cells (section 3.2.2). Here, I investigated the role of TRPM2 channel-mediated Ca
2+

 

signalling in mediating H2O2-induced microglial cell death. H2O2-induced microglial 

cell death was attenuated by pretreatment with BAPTA-AM at 1 µM, but not at lower 

concentrations (10-100 nM) (Fig. 4.2a). Moreover, H2O2-induced microglial cell death 

was strongly inhibited by 100 µM 2-APB, a TRPM2 channel inhibitor (Fig. 4.2b).  

Therefore, the results from genetic knockout of the TRPM2 channel expression (section 

3.2.1-3.2.2) and pharmacological inhibition of the TRPM2 channel function have 

provided consistent evidence to support a role for the TRPM2 channel, particularly 

TRPM2 channel-mediated Ca
2+

 influx, contributes in mediating H2O2-induced 

microglial cell death. 

 

4.2.3 PARP-1 in H2O2 -induced microglial cell death 

An increase in the PARP activity represents a major mechanism by which 

oxidative stress induces ADPR generation and subsequent TRPM2 channel activation  



99 

 

 

 

 

 

Fig. 4.1 TRPM2 channel is required for H2O2-induced Ca
2+

 signalling in microglial cells.  

(a, b) Top, representative single cell images showing Ca
2+

 responses in microglial cells (top row: Fluo-4 fluorescence; bottom row: counter staining 

with Hoechst). Bottom, summary of the mean H2O2-induced Ca
2+

 responses under indicated conditions for 2 hr from 4 independent experiments, 

using 3 wells of cells for each condition in each experiment. The conditions are as follows: cells treated with 300 µM H2O2 in the presence and 

absence of Ca
2+

 in extracellular solutions (a) and 300 µM H2O2  with treatment of 0.1 and 1 µM BAPTA-AM (b). Cells were treated with BAPTA-

AM for 30 min prior to and during exposure to H2O2. Scale bar, 40 µm. **, p < 0.01; ***, p < 0.005 compared to indicated control group. 
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Fig. 4.2 TRPM2 channel-mediated calcium signalling in H2O2-induced microglial cell death.  

(a-b) Left, representative images showing microglial cell death (top row: PI-stained dead cells; bottom row: all cells stained with Hoechst). Right, 

mean H2O2-induced cell death under following conditions: cells were exposed for 24 hr to 300 µM H2O2 without or with treatment with 0.01-1 µM 

BAPTA-AM (a) or 10-100 µM 2-APB (b). Cells were treated with BAPTA-AM or 2-APB for 30 min prior to and during exposure to H2O2. Cells 

were also treated with each inhibitor at the higher concentration used alone without exposure to H2O2. (a-b) The mean data were from 4 

independent experiments, using 3 wells of cells for each condition in each experiment. Scale bar, 20 µm. **, p < 0.01; ***, p < 0.005 compared to 

control. 
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(Jiang et al., 2010). Therefore, I moved on to firstly examine the effect of PARP 

inhibitors on H2O2-induced microglial cell death, using PI staining. H2O2-induced cell 

death was considerably suppressed by PJ34 (Fig. 4.3a) or DPQ (Fig. 4.3b), two 

structurally different PARP inhibitors, supporting a critical role of PARP in TRPM2 

channel-mediated H2O2-induced microglial cell death. 

To provide direct evidence to show H2O2 induces PARP activation, I performed 

immunofluorescence staining using an antibody that recognizes PAR, the product of 

PARP activity. Exposure to H2O2 for 2 hr stimulated substantial PAR production in 

microglial cells (Fig. 4.3c). Furthermore, the PAR staining was highly concentrated in 

the nucleus, as evidenced by the co-localization with DAPI nuclear staining, highly 

consistent with activation of PARP-1, the major PARP isoform in the nucleus 

(Kauppinen and Swanson, 2005). H2O2-induced PAR production, as anticipated, was 

almost completely inhibited by PJ34 (Fig. 4.3d). These results collectively provide 

strong evidence to support that exposure to H2O2 stimulates the PARP-1 activity which 

is important in TRPM2 channel activation in microglial cells.  

 

4.2.4 Effects of PKC/NOX inhibitors on H2O2 -induced cell death 

Next, I performed experiments to investigate the upstream signalling 

mechanisms, particularly those generating ROS, which stimulates PARP-1. Previous 

studies showed that PKC and NOX are crucial in the production of ROS (Noh and Koh, 

2000; Koh, 2001). It is therefore possible that PCK and NOX play a role in facilitating 

H2O2-induced TRPM2-mediated microglial cell death. The effects of PKC and NOX 

inhibitors on H2O2-induced PARP-1 activity and cell death in microglial cells were 

investigated by PAR immunofluorescence and PI staining, respectively. H2O2-induced 

PAR production and microglial cell death were completely insensitive to chelerythrine 

chloride (CTC), a potent PKC inhibitor (Fig. 4.4a-d) and DPI, a generic NOX inhibitor 

(Fig. 4.4e and g) and GKT137831, a NOX1/4 selective inhibitor (Fig. 4.4f and h).  

These results indicate that H2O2 induced microglial cell death via stimulating the 

PARP-1 activity and subsequently TRPM2 channel activation, independent of the 

PKC/NOX signalling pathway. 
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 Fig. 4.3 PARP-1 activation is critical in H2O2-induced microglial cell death.  

(a-b) Left, representative images showing cell death (top row: PI-stained dead cells; bottom row: all cells stained with Hoechst). Right, mean H2O2-

induced cell death under following conditions: cells were exposed for 24 hr to 300 µM H2O2 without or with prior treatment with 1-10 µM PJ34 (a) 

or 1-10 M DPQ 30 min prior to and during exposure to H2O2 (b),. Cells were also treated with each inhibitor at higher concentration alone without 

exposure to H2O2. (c-d) Left, representative images showing PAR staining (top row) and merged images (bottom row) of cells without (CTL) or with 

exposure for 2 hr to 100 and 300 µM H2O2 (c) and, 300 µM H2O2 alone or together treatment with 10 µM PJ34 for 30 min prior to and during 

exposure to H2O2 (d). Right, summary of the mean PAR fluorescence intensity in microglial cells. (a-d) The mean data were from four independent 

experiments, using three wells of cells for each condition in each experiment. Scale bar, 20 µm (a-b) and 40 µm (c-d). ***, p < 0.005 compared to 

control. 
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 Fig. 4.4 PKC and NOX are not involved in H2O2-induced PARP-1 activation and microglial cell death.  

(a) Representative images showing PAR staining (top row) and counter staining with DAPI (bottom row) of microglial cells exposed for 2 hr to 300 

µM H2O2 alone or together with 3 µM chelerythrine chloride (CTC). (b, e, f) Mean PAR fluorescence intensity in microglial cells exposed for 2 hr to 

300 µM H2O2 alone or together with CTC (b), diphenelyniodonium (DPI) (e) and GKT431397 (GKT) (f) from 3 independent experiments, using 3 

wells of cells for each condition in each experiment. (c) Representative images showing microglial cell death (top row: PI-stained dead cells; bottom 

row: all cells stained with Hoechst) after cells were exposed for 24 hr to 300 µM H2O2 alone or together with 3 µM CTC. (d, g, h) Mean percentage 

of cell death in microglial cells exposed for 24 hr to 300 µM H2O2 alone or together with CTC (d), DPI (g) and GKT (h) from 3 independent 

experiments, using 3 wells of cells for each condition in each experiment. Cells were treated with CTC, DPI and GKT for 30 min prior to and during 

exposure to H2O2. Scale bar, 40 µm (a) and 20 µm (c). 
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4.2.5 Effects of PYK2 and MEK/ERK inhibitors on H2O2 -induced cell death 

As introduced above, there is evidence to suggest a role of the MEK/ERK 

signalling in ROS-induced stimulation of PARP-1 activity (Domercq et al., 2013). It 

also known that the Ca
2+

-sensitive PYK2 can trigger activation of the MEK/ERK 

signalling pathway (Lev et al., 1995; Yao et al., 2009). These findings lead to the 

hypothesis that the initial increase in the [Ca
2+

]i, resulting from H2O2-induced TRPM2 

activation, subsequently activates the PYK2/MEK/ERK signalling pathway and further 

stimulates the PARP-1 activity. Therefore, to test this hypothesis, I examined the effects 

of PYK2 and MEK/ERK inhibitors on H2O2-induced stimulation of PARP-1 activity 

and cell death in microglial cells. Treatments with PF431396, a potent PYK2 inhibitor 

(Fig. 4.5a-b), and U0126, an inhibitor of MEK/ERK (Fig. 4.5c-d), resulted in no 

significant inhibition of H2O2-induced stimulation of PARP-1 and cell death in 

microglial cells. These findings suggest that the PYK2/MEK/ERK signalling pathway is 

not involved in H2O2-induced microglial cell death.  

 

4.2.6 TRPM2 channel in Zn
2+

-induced Ca
2+

 influx in microglial cells 

As described in chapter 3 (section 3.2.4), Zn
2+

-induced increase in the [Ca
2+

]i 

was prevented by genetic knockout of the TRPM2 channel expression in microglial 

cells. Here, I performed single cell calcium imaging using extracellular Ca
2+

-containing 

and Ca
2+

-free solutions to determine the origin of Ca
2+

 resulting in Zn
2+

-induced 

increase in the [Ca
2+

]i in microglial cells. Zn
2+

 failed to induce any increase in the 

[Ca
2+

]i in extracellular Ca
2+

-free solutions, in stark contrast with the strong Ca
2+

 

response in Ca
2+

-containing solution (Fig. 4.6a). These results suggest that extracellular 

Ca
2+

 influx is responsible for Zn
2+

-induced increase in the [Ca
2+

]i. In addition, Zn
2+

-

induced increase in the [Ca
2+

]i was strongly suppressed by pretreatment with BAPTA-

AM (Fig. 4.6b). Taken together, these data suggest that Zn
2+

-induced Ca
2+

 signalling is 

dependent of TRPM2 channel-mediated Ca
2+

 influx.  
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  Fig. 4.5 PYK2/MEK signalling is not involved in H2O2-induced PARP-1 activation and microglial cell death.  

(a, c) Left, representative images showing PAR (top row) and counter staining with DAPI staining (bottom row) of cells exposed for 2 hr to 300 µM 

H2O2 alone or together with 1000 nM PF431396 (PF) (a) or 10 µM U0126 (c). Right, mean PAR fluorescence intensity in cells under indicated 

conditions, from 3 independent experiments, using 3 wells of cells for each condition in each experiment. (b, d) Left, representative images 

showing microglial cell death (top row: PI-stained dead cells; bottom row: counter staining with Hoechst) after cells were exposed for 24 hr to 300 

µM H2O2 alone or together with 1000 nM PF (b) or 10 µM U0126 (d). Right, mean percentage of cell death under indicated conditions from 3 

independent experiments, using 3 wells of cells for each condition in each experiment. Cells were treated with PF or U0126 for 30 min prior to and 

during exposure to H2O2. Scale bar, 40 µm (a, c) and 20 µm (c, d).  
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Fig. 4.6 Zn
2+ 

induces extracellular Ca
2+

 influx in microglial cells.  

(a-b) Top, representative single cell images showing Ca
2+

 responses in microglial cells (top row: Fluo-4 fluorescence; bottom row: counter staining 

with Hoechst). Bottom, mean Zn
2+

-induced Ca
2+

 responses under indicated conditions for 2 hr from 3independent experiments, using 3 wells of 

cells for each condition in each experiment. The conditions are as follows: cells treated with 300 µM Zn
2+

 in the presence and absence of Ca
2+

 in 

extracellular solutions (a) and 300 µM Zn
2+

 without or with treatment of 0.1 and 1 µM BAPTA-AM (b). Cells were treated with BAPTA-AM for 30 

min prior to and during exposure to Zn
2+

. Scale bar, 40 µm. ***, p < 0.005 compared to control.  
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4.2.7 Effects of TRPM2 channel inhibitors on Zn
2+

-induced microglial cell death  

As described in previous chapter (section 3.2.5), studies using a genetic 

knockout approach have revealed a critical role of the TRPM2 channel in mediating 

Zn
2+

-induced microglial cell death. Here, I further examined the role of TRPM2 

channel-dependent Ca
2+

 influx in Zn
2+

-induced microglial cell death. Zn
2+

-induced cell 

death was strongly inhibited by pretreatment with BAPTA-AM, at the concentrations as 

low as 0.01 µM (Fig. 4.7a). These results suggest that TRPM2 channel-mediated Ca
2+

 

influx is critical in Zn
2+

-induced microglial cell death. Consistently, inhibition of the 

TRPM2 channel function with 2-APB significantly attenuated Zn
2+

-induced microglial 

cell death (Fig. 4.7b). These pharmacological results further confirm a critical role of 

the TRPM2 channel in mediating Zn
2+

-induced microglial cell death. 

 

4.2.8 PARP-1 in Zn
2+

-induced TRPM2 channel activation and microglial cell death 

To investigate whether PARP, particularly PARP-1, is critical in activating 

TRPM2 channel and subsequently cell death in microglial cells in response to the 

exposure of Zn
2+

, I examined the effects of PAPR inhibitors on Zn
2+

-induced microglial 

cell death. Zn
2+

-induced cell death was significantly reduced by PJ34 (Fig 4.8a) or DPQ 

(Fig. 4.8b). PAR immunofluorescence showed that exposure to 100-300 µM Zn
2+

 for 2 

hr potently promoted PAR generation in the nucleus (Fig. 4.8c), which was strongly 

suppressed by PJ34 (Fig. 4.8d).  These results provide strong evidence to suggest that 

Zn
2+

 induces TRPM2 channel activation in microglial cells by stimulation of PARP-1 

activity. 

 

4.2.9 Effects of PKC and NOX inhibitors in Zn
2+

-induced ROS production, PARP-1 

activity, TRPM2 channel activation and cell death in microglial cells 

Previous studies showed that PKC and NOX are crucial in Zn
2+

-induced ROS 

generation (Noh and Koh, 2000; Koh, 2001). Therefore, I performed single cell imaging 

to determine whether exposure to Zn
2+

 promoted ROS production in microglial cells, 

using DCF, a fluorescent indicator for ROS generation as described in the Materials and 

Method chapter (section 2.2.6).  Exposure to Zn
2+

 resulted in a massive increase in the 
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 Fig. 4.7 A role of TRPM2 channel in Zn
2+

-induced microglial cell death.  

(a-b) Top, representative images showing microglial cell death (top row: PI-stained dead cells; bottom row: all cells stained with Hoechst). Bottom, 

mean Zn
2+

-induced cell death under the following conditions: cells were exposed for 24 hr to 300 µM Zn
2+

 without or with treatment with 0.01-1 µM 

BAPTA-AM (a) or 10-100 µM 2-APB (b). Cells were treated with BAPTA-AM or 2-APB for 30 min prior to and during exposure to Zn
2+

. The mean 

data were from 4 independent experiments, using 3 wells of cells for each condition in each experiment. Scale bar, 20 µm. **, p < 0.01; ***, p < 

0.005 compared to control. 
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 Fig. 4.8 Zn
2+

-induced PARP-1 activation in microglial cells.  

(a-b) Left, representative images showing cell death (top row: PI-stained dead cells; bottom row: all cells stained with Hoechst). Right, mean Zn
2+

-

induced cell death under the following conditions: cells were exposed for 24 hr to 300 µM Zn
2+

 without or with treatment with 1-10 µM PJ34 (a) or 

1-10 M DPQ (b) 30 min prior to and during exposure to Zn
2+

. (c-d) Left, representative images showing PAR staining (top row) and merged 

images (bottom row) of cells without (CTL) or with exposure for 2 hrs to 100 µM and 300 µM Zn
2+

 (a), and with 300 µM Zn
2+

 alone or together 

with 10 µM PJ34 (b).  Right, summary of the mean PAR fluorescence intensity in microglial cells. Cells were treated with PJ34 for 30 min prior to 

and during exposure to Zn
2+

. (a-d) The mean data were from 4 independent experiments, using 3 wells of cells for each condition in each 

experiment. Scale bar, 20 µm (a-b) and 40 µm (c-d). ***, p < 0.005 compared to control. 
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cytosolic ROS level (Fig. 4.9a), which was strongly inhibited by CTC (Fig. 4.9b). 

Treatment with CTC strongly and concentration-dependently inhibited Zn
2+

-induced 

PAR generation in the nucleus (Fig. 4.9c) and, furthermore, Zn
2+

-induced increase in 

the [Ca
2+

]i (Fig. 4.9d) and cell death (Fig. 4.9e) in microglial cells. Similarly, Zn
2+

-

induced ROS production, PARP-1 activation, increase in the [Ca
2+

]i and cell death in 

microglial cells was strongly and concentration-dependently inhibited by treatment with 

DPI (Fig. 4.10a-d), GKT137831 (Fig. 4.10e-h) and , albeit to less extent, Phox-I2, a 

NOX2 selective inhibitor (Fig. 4.10i-l). Taken together, these results provide clear 

evidence to show a significant role for PKC and NOX, particularly NOX1/4, in Zn
2+

-

induced ROS production and PARP-1 activation, leading to TRPM2 channel activation 

and cell death in microglial cells. 

 

4.2.10 Effects of PYK2 and MEK/ERK inhibitors on PARP-1 activity, TRPM2 

channel activation and cell death in microglial cells 

As shown and discussed in chapter 3 (section 3.2.5), Zn
2+

-induced microglial 

cell death occurred only after exposure to Zn
2+

 for 24 hr, which is significantly later 

than Zn
2+

-induced ROS production, stimulation of PARP-1 and increase in the [Ca
2+

]i 

in microglial cell, which were observed after exposure to Zn
2+

 for 2 hr. These findings 

suggest that additional signalling pathways may be involved as positive feedback 

mechanisms. As mentioned above (section 4.2.5), the PYK2/MEK/ERK can act as a 

signalling mechanism downstream of the TRPM2 channel activation. In order to 

determine whether this is true or not, I performed experiments to examine the effects of 

PF431396 and U0126 on Zn
2+

-induced stimulation of PARP-1, increase in the [Ca
2+

]i 

and cell death in microglial cells. Treatment with PF431396 concentration-dependently 

inhibited but did not completely prevent Zn
2+

-induced stimulation of PARP-1 (Fig. 

4.11a), increase in the [Ca
2+

]i (Fig. 4.11b) and cell death (Fig. 4.11c).  Similarly, 

treatment with U0126 caused strong but incomplete inhibition of Zn
2+

-induced 

stimulation of PARP-1 (Fig. 4.11d), increase in the [Ca
2+

]i (Fig. 4.11e) and cell death 

(Fig. 4.11f). These results are consistent with the concept that the PYK2/MEK/ERK 

signalling mechanism plays an important part in Zn
2+

-induced activation of PARP-1 

and TRPM2 channel, and cell death in microglial cells. 
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Fig. 4.9 PKC in Zn

2+
-induced ROS generation, PARP-1 activation increase in the [Ca

2+
]i and cell death in microglial cells.  

(a-b) Left, representative images showing ROS level (top row: DCF fluorescence; bottom row: counter staining with Hoechst) in microglial cells 

treated for 2 hr without (CTL) and with exposure to 300 µM Zn
2+

 (a) and with 300 µM Zn
2+ 

alone or together with 1 µM CTC (b). Right, mean 

ROS production in microglial cells under indicated conditions from 3 independent experiments, using 3 wells of cells for each condition in each 

experiment. (c) Left, representative images showing PAR staining (top row) and counter staining with DAPI (bottom row) of cells exposed for 2 hr 

to 300 µM Zn
2+

 alone or together with 1 µM CTC. Right, mean PAR fluorescence intensity in cells under indicated concentrations from 3 

independent experiments, using 3 wells of cells for each condition in each experiment. (d) Left, representative single cell images showing Ca
2+

 

responses in microglial cells (top row: Fluo-4 fluorescence; bottom row: counterstaining with Hoechst). Right, mean Zn
2+

-induced Ca
2+

 responses 

in microglial cells under indicated conditions from 3 independent experiments, using 3 wells of cells for each condition in each experiment. (e) 

Left, representative images showing cell death (top row: PI-stained dead cells; bottom row: all cells stained with Hoechst) in microglial cells treated 

with 300 µM Zn
2+ 

alone or together with 1 µM CTC for 24 hr. Right, mean percentage of cell death from 3 independent experiments, using 3 wells 

of cells for each condition in each experiment. In each experiment, cells were treated with CTC for 30 min prior to and during exposure to Zn
2+

. 

Scale bar, 40 m (a, b, c, d) and 20 m (e). *, p <0.05; **, p <0.01; ***, p < 0.005 compared to group exposed to with Zn
2+

 alone. Treatment with 

the highest concentration of CTC (e) alone resulted in no significant cell death. 
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 Fig. 4.10 NOX in Zn
2+

-induced ROS generation, PARP-1 activation increase in the [Ca
2+

]i and cell death in microglial cells.  

(a, b, c, d) Left, representative images showing DCF fluorescence (top row) and counter staining with Hoechst (bottom row) (a), PAR staining (top 

row) and counter staining with DAPI (bottom row) (b), Ca
2+

 responses (top row: Fluo-4 fluorescence; bottom row: counterstaining with Hoechst) 

(c) and cell death (top row: PI-stained dead cells; bottom row: all cells stained with Hoechst) (d) in cells exposed to 300 µM Zn
2+

 alone or together 

with DPI at indicated concentration. Right, mean data from 3 independent experiments, using 3 wells of cells for each condition in each 

experiment. (e, f, g, h) Mean DCF fluorescence (e), PAR staining (f), Fluo-4 fluorescence (g) and PI staining (h) in microglial cells exposed to 300 

µM Zn
2+

 alone or together with GKT at indicated concentrations. (i, j, k, l) Mean DCF fluorescence (i), PAR staining (j), Fluo-4 fluorescence (k) 

and PI staining (l) in cells exposed to 300 µM Zn
2+

 alone or together with Phox-I2 (Phox) at indicated concentrations. Scale bar, 40 m (a, b, c) and 

20 m (d). *, p < 0.05; **, p < 0.01; ***, p < 0.005 compared to group exposed to with Zn
2+

 alone.  Treatment with the highest concentration of 

DPI (d) or GKT (h) or Phox (l) alone resulted in no significant cell death. 
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Fig. 4.11 PYK2/MEK/ERK in Zn
2+

-induced PARP-1 activation, increase in the [Ca
2+

]i and microglial cell death.  

(a, d) Left, representative images showing the PAR level (top row: PAR fluorescence; bottom row: counterstaining with DAPI) in microglia cells 

exposed for 2 hr to 300 µM Zn
2+

 alone or together with 100 nM PF 431396 (PF) (a) or 3 µM U0126 (d). Right, mean PAR fluorescence intensity in 

cells under indicated conditions from three independent experiments, using three wells of cells for each condition in each experiment. (b, e) Left, 

representative single cell images showing Ca
2+

 responses (top row: Fluo-4 fluorescence; bottom row: counterstaining with Hoechst) in microglial 

cells exposed for 2 hr to 300 µM Zn
2+

 alone or together with 100 nM PF (b) or 3 µM U0126 (e). Right, mean Zn
2+

-induced Ca
2+

 responses in 

microglial cells under indicated conditions from three independent experiments, using three wells of cells for each condition in each experiment. (c, 

f) Left, representative images showing cell death (top row: PI-stained dead cells; bottom row: all cells stained with Hoechst) in cells exposed for 24 

hr to 300 µM Zn
2+

 alone or together with 100 nM PF (c) or 3 µM U0126 (f).  Right, mean percentage of cell death from 3 independent experiments, 

using 3 wells of cells for each condition in each experiment. Cells were treated with PF or U0126 for 30 min prior to and during exposure to Zn
2+

. 

Scale bar, 40 m (a, b, d and e) and 20 µm (c and f). *, p < 0.05; ***, p < 0.005 compared to the indicated group exposed to with Zn
2+

 alone. 

Treatment with the highest concentration of PF (c) or U0126 (f) alone resulted in no significant cell death. 
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To seek further evidence to support the hypothesis that the PKC/NOX-mediated 

ROS-generating signalling pathway acts as the trigger for the TRPM2 channel 

activation whereas the PYK2/MEK/ERK signalling pathway serves as a mechanism 

downstream of the TRPM2 channel activation that promote further TRPM2 channel 

activation, I performed further experiments. I firstly examined the effects of inhibiting 

the PKC/NOX signalling pathway with CTC, DPI and GKT137831, and the 

PYK2/MEK signalling pathway with PF431396 and U0126 on PAR production in 

TRPM2-KO microglial cells. Zn
2+

 also induced considerable PAR production in 

TRPM2-KO microglial cells, which was however significantly lower than that in WT 

microglial cells (Fig. 4.12a), suggesting that the PARP-1 activation plays a role as the 

signalling mechanism downstream of the TRPM2 channel activation. Furthermore, 

treatments with CTC (Fig. 4.12b), DPI (Fig. 4.12c) or GKT137831 (Fig. 4.12d) almost 

completely abolished Zn
2+

-induced PAR production. In striking contrast, treatment with 

PF431396 (Fig. 4.12e) or U0126 (Fig. 4.12f) resulted in no significant inhibition. I also 

investigated whether Zn
2+

 induced any significant increase in the [Ca
2+

]i in WT 

microglial cells pre-treated with PF431396 (Fig. 4.13a) or U0126 (Fig. 4.13b) to inhibit 

the PYK2/MEK signalling pathway. As anticipated, in microglial cells with the 

PYK2/MEK signalling pathway being inhibited, Zn
2+

 was still able to induce 

considerable increase in the [Ca
2+

]i and such Zn
2+

-induced increase in the [Ca
2+

]i was 

completely abolished by treatment with CTC, DPI or GKT137831 (Fig. 4.13a-b).  

Taken together, these results provide evidence to support the notion that the PKC/NOX 

signalling pathway is required for Zn
2+

-induced PARP-1 activation and thereby TRPM2 

channel activation, and the PYK2/MEK/ERK signalling pathway is activated 

downstream of the TRPM2 channel activation (Fig. 4.14). 
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 Fig. 4.12 PKC/NOX is required for, and the PYK2/MEK signalling pathway depends on, Zn
2+

-induced PARP-1 activation.  

(a) Left, representative images showing the PAR level (top row: PAR fluorescence; bottom row: counterstaining with DAPI) in the WT and 

TRPM2-KO microglia cells exposed for 2 hr to 300 µM Zn
2+

. Right, mean Zn
2+

-induced PAR fluorescence intensity in the WT and TRPM2-KO 

cells from 3 independent experiments, using 3 wells of cells for each condition in each experiment. (b-f) Left, representative images showing the 

PAR level (top row: PAR fluorescence; bottom row: counter staining with DAPI) in the TRPM2-KO microglia cells exposed for 2 hr to 300 µM 

Zn
2+

 alone or together with CTC (b), DPI (c), GKT (d), PF 431396 (PF) (e) or U0126 (f).  Right, mean PAR fluorescence intensity in microglial 

cells under indicated conditions from 3 independent experiments, using 3 wells of cells for each condition in each experiment. Scale bar, 40 µm. 

***, p < 0.005 compared to WT cells (a) or cells exposed to Zn
2+

 alone (b-f). Zn
2+

-induced residual PAR generation in TRPM2-KO microglial cells 

was strongly inhibited or abolished by treatment with CTC (b), DPI (c) or GKT (d), but not with PF (e) or U0126 (f). Scale bar, 40 µm. ***, p < 

0.005 compared to indicated group exposed to with Zn
2+

 alone. 
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 Fig. 4.13 PKC/NOX is required for, and the PYK2/MEK signalling pathway depends on, Zn
2+

-induced TRPM2 channel activation.  

(a-b) Left, representative images showing the Ca
2+

 responses (top row: Fluo-4 fluorescence; bottom row: counterstaining with Hoechst) in WT 

microglia cells, treated with 1 M PF 431396 (PF) (a) or 3 µM U0126 (b) alone or together with 1 M CTC, 3 M DPI, or 1 M GKT137831 (GKT) 

30 min prior and during 2 hr exposure to 300 µM Zn
2+

. Right, mean Ca
2+

 responses in cells under indicated conditions from at least 3 independent 

experiments, using 3 wells of cells for each condition in each experiment. In the presence of PF to inhibit PYK2 (a) or U0126 to inhibit MER/ERK 

(b), Zn
2+

 induced significant increase in the [Ca
2+

]c in WT microglial cells, which was strongly inhibited by treatment with CTC, DPI or GKT. Scale 

bar, 40 µm. ***, p < 0.005 compared to control group treated with PF or U0126 alone, and ###, p < 0.005 compared to cells exposed to Zn
2+

 and 

treated with PF or U0126. 
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 Fig. 4.14 Summary of the signalling mechanisms mediating Zn
2+

-induced TRPM2 channel activation and cell death in microglial cells.  

Zn
2+

 activates cell surface TRPM2 channel involving multiple-step signalling pathways. Zn
2+

 stimulates PKC and NADPH oxidases to generate 

ROS. ROS activates PARP-1 and PARG in the nucleus leading to ADPR production and subsequent activation of TRPM2-dependent Ca
2+

 influx to 

increase the intracellular Ca
2+

 concentrations ([Ca
2+

]i). Elevated [Ca
2+

]i in turn results in activation of e the PYK2/MEK/ERK signalling pathway as a 

positive feedback mechanism that amplifies activation of PARP-1, leading to TRPM2-mediated Ca
2+

 overloading and cell death. Abbreviations: PRC, 

protein kinase C; NADPH oxidase, nicotinamide adenine dinucleotide phosphate-dependent oxidase; ROS, reactive oxygen species; ERK, 

extracellular signal-regulated kinase; NAD, nicotinamide adenine dinucleotide; pADPR, poly(ADP-ribose) moiety; ADPR, ADP-ribose; PARP-1, 

poly(ADP-ribose) polymerase 1; PARG, poly(ADP-ribose) glycohydrolase; MEK, mitogen-activated kinase; PYK2, protein tyrosine kinase 2. 
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4.3 DISCUSSION 

In the present study, I used pharmacological approaches to examine the 

signalling mechanisms underlying TRPM2 channel-mediated microglial cell death 

induced by H2O2 and Zn
2+

. H2O2-induced stimulation of PARP-1 activity mediates 

TRPM2 channel activation and cell death in microglial cells. Such microglial cell death 

however is independent of the PKC/NOX and PYK2/MEK/ERK signalling pathways. 

Zn
2+

-induced TRPM2 channel activation and cell death are dependent of PKC/NOX-

mediated ROS production and PARP-1 activation. Furthermore, the PYK2/MEK/ERK 

signalling pathway acts downstream of the TRPM2 channel activation as a positive 

feedback mechanism that drives Ca
2+

 overloading and cell death in response to Zn
2+

, as 

illustrated in Fig. 4.14.  

In the previous chapter (section 3.2.1), I have shown the importance of the 

TRPM2 channel in mediating H2O2-induced increase in the [Ca
2+

]i in microglial cells. 

In this chapter I further performed experiments to examine TRPM2 channel-mediated 

Ca
2+

 signalling in microglial cells and its role in microglial cell death induced by H2O2. 

H2O2-induced increase in the [Ca
2+

]i in microglial cells was largely abolished in the 

absence of extracellular Ca
2+

 (Fig. 4.1a) or attenuated by BAPTA-AM (Fig. 4.1b). 

These results provide consistent evidence to indicate that TRPM2 channel plays a role 

in H2O2-induced Ca
2+

 signalling via mediating extracellular Ca
2+

 influx, consistent with 

the finding from a previous study examining macrophages (Zou et al., 2013). H2O2-

induced microglial cell death was attenuated by pretreatment with BAPTA-AM (Fig. 

4.2a) and 2-APB (Fig. 4.2b). These results provide further evidence to indicate a crucial 

role of the TRPM2 channel activation, particularly TRPM2 channel-mediated Ca
2+

 

signalling, is critical in in mediating H2O2-induced microglial cell death.  

As mentioned in the Introduction chapter, oxidative stress-induced PARP 

activation is one of the major signalling mechanisms contributes to the production of 

ADPR leading to the TRPM2 channel activation (Jiang et al., 2010). Consistently, 

H2O2-induced microglial cell death was remarkably inhibited by PJ34 and DPQ (Fig. 

4.3a-b). In addition, immunofluorescence staining examining PAR formation indicates 

that H2O2 stimulated the PARP-1 activity in the nucleus in microglial cells (Fig. 4.3c), 

which was also prevented by PJ34 (Fig. 4.3d). Taken together, these results suggest that 

PARP-1 activity is critical in H2O2-induced TRPM2 channel activation in microglial 

cells.  
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I also attempted to investigate the signalling mechanisms by which H2O2 

stimulates the PARP-1 activity, TRPM2 channel activation and subsequent cell death in 

microglial cells. PKC and NOX signalling pathway is widely known to act upstream of 

ROS generation. However, H2O2-induced PARP-1 activation and microglial cell death 

were completely insensitive to inhibitors of PKC and NOX (Figs. 4.4a-h). Similarly, 

inhibition of the PYK2 and MEK/ERK failed to inhibit H2O2-induced PARP-1 

activation and cell death in microglial cells (Fig. 4.5a-d). These results indicate that 

H2O2 induced microglial cell death via stimulating the PARP-1 activity and 

subsequently TRPM2 channel activation but is independent of the PKC/NOX signalling 

pathway and the PYK2/MEK/ERK signalling pathway.    

My studies presented in the previous chapter reveal an important role of the 

TRPM2 channel in Zn
2+

-evoked Ca
2+

 response and cell death in microglial cells 

(sections 3.2.4 and 3.2.5). In this chapter, I further showed that Zn
2+

-induced increase in 

the [Ca
2+

]i in microglial cells was prevented in the absence of extracellular Ca
2+

 (Fig. 

4.6a) and inhibited by BAPTA-AM (Fig. 4.6b). Taken together, these results suggest 

that Zn
2+

-induced Ca
2+

 signalling results from extracellular Ca
2+

 influx. Zn
2+

-induced 

microglial cell death were strongly suppressed by BAPTA-AM, even at 10-100 nM 

(Fig. 4.7a). In addition, Zn
2+

-induced microglial cell death was prevented by 2-APB 

(Fig. 4.7b). These results support a critical role for not only the TRPM2 channel but 

TRPM2-mediated Ca
2+

 signalling in mediating Zn
2+

 toxicity to microglial cells.  

Zn
2+

-induced PARP-1 activation has been reported in microglial cells 

(Kauppinen et al., 2008) and I have confirmed this finding by demonstrating that Zn
2+

 

stimulates PAR formation in the nucleus (Fig. 4.8c-d). Furthermore, Zn
2+

-induced cell 

death was strongly attenuated by PJ34 and DPQ (Fig. 4.8a-b). These results suggest that 

PARP-1 activation in Zn
2+

-induced TRPM2-mediated microglial cell death. It is known 

that Zn
2+ 

induces NOX-dependent ROS production (Wu et al., 2012) and PKC 

stimulates NOX (Min et al., 2004). Consistently, here I showed that Zn
2+

-induced ROS 

generation were strongly reduced by inhibiting PKC (Fig. 4.9a) and NOX, including 

NOX1/4 (Fig. 4.10a and e) and NOX2 (Fig. 4.10i). In addition, Zn
2+

-induced 

stimulation of PARP-1, the increase in the [Ca
2+

]i and cell death in microglial cells were 

prevented by PKC (Fig. 4.9c-d) and NOX inhibitors (4.10f-h and 4.10j-l). These results 

provide strong evidence to show that PKC/NOX-mediated ROS generation is critical in 

Zn
2+

-induced stimulation of PARP-1 activity, TRPM2 channel activation and cell death 

in microglial cells.  
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In monocytes, TRPM2 channel-mediated Ca
2+

 influx activates the 

PYK2/MEK/ERK signalling pathway, which is important in chemokine generation in 

response to ROS in vitro or in vivo (Yamamoto et al., 2008).  Here, I showed that Zn
2+

-

induced stimulation of PARP-1 activity, increase in the [Ca
2+

]i and cell death was 

strongly suppressed by inhibiting the PYK2/MEK/ERK signalling pathway (Fig. 4.11a-

f). I have provide further evidence to show that the PYK2/MEK/ERK signalling 

pathway constitutes a positive feedback mechanism that amplifies Zn
2+

-induced 

stimulation of PARP-1 and TRPM2 channel activation that ultimately drive microglial 

cell death (Figs. 4.12 and 4.13). 

In conclusion, the studies presented in this chapter provide evidence to show 

TRPM2 channel activation, particularly TRPM2 channel-mediated Ca
2+

 influx, as a 

critical mechanism mediating H2O2- and Zn
2+

-induced cell death in microglial cells. 

H2O2-induced microglial cell death is strongly dependent of PARP-1 but not PKC/NOX 

or PYK2/MEK/ERK signalling pathways. Stimulation of PARP-1 is also critical for 

Zn
2+

-induced TRPM2 channel activation and cell death in microglial cells. Furthermore, 

activation of the PKC/NOX signalling pathway is an important mechanism in Zn
2+

-

induced stimulation of PARP-1 and TRPM2 channel activation. Additionally, activation 

of the PYK2/MEK/ERK signalling pathway acts as a positive feedback signalling 

mechanism that further amplifies Zn
2+

-induced stimulation of PARP-1 and TRPM2 

channel activation. Activation of these signalling mechanisms, in response to prolonged 

exposure to excessive Zn
2+

, ultimately drives Ca
2+

 overloading and cell death in 

microglial cells (Fig. 4.14).  
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CHAPTER 5 

SIGNALLING MECHANISMS FOR Aβ42-INDUCED TRPM2-

MEDIATED MICROGLIAL ACTIVATION AND TNF-α 

GENERATION 
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5.1 INTRODUCTION 

Chronic or dysregulated microglial cell activation and excessive generation of 

neurotoxic mediators including pro-inflammatory cytokines, such as TNF-α, IL-1β and 

ROS, can give rise to neuroinflammation (Liu and Hong, 2003; Block et al., 2007; 

Colonna and Butovsky, 2017; Regen et al., 2017; Wolf et al., 2017). Accruing evidence 

from preclinical and clinical studies support the notion that an imbalance between 

generation and removal of Aβ is an early and initiating factor in AD (Mucke and 

Selkoe, 2012; Hong et al., 2016; Selkoe and Hardy, 2016). 

Studies over the years have widely demonstrated that Aβ induces activation of 

microglial cells and production of inflammatory mediators, particularly TNF-α 

(Jekabsone et al., 2006; Wyss-Coray and Rogers, 2012; Shi et al., 2015). Aβ-induced 

activation of microglial cells as well as TNF-α production have been shown to be 

significantly suppressed by curcumin (Shi et al., 2015), which has recently reported as a 

TRPM2 channel blocker (Kheradpezhouh et al., 2016). A recent study has shown that 

genetic ablation of the TRPM2 channel expression strongly suppressed microglial 

activation in the APP/PS1 AD mouse brain (Ostapchenko et al., 2015), indicating a 

critical role for the TRPM2 channel in Aβ-induced microglial activation and 

neuroinflammation. Consistently, the study presented in chapter 3 shows that Aβ42 

induces microglial cell activation. However, the mechanisms by which Aβ42 activates 

the TRPM2 channel and its relationship to neuroinflammation, including production of 

TNF-α, were not defined. As introduced in the Introduction chapter, NOX in microglial 

cells have a significant role in ROS production in AD (Block et al., 2007; Cheret et al., 

2008; Harrigan et al., 2008). Studies have also proposed that NOX-dependent ROS 

production is important in Aβ-induced microglial cell activation (Jekabsone et al., 2006; 

Brown and Neher, 2010). In addition, PKC and NOX have been reported for 

ganglioside-induced microglial activation (Min et al., 2004). Furthermore, it has been 

shown that genetic ablation of PARP-1 suppresses Aβ-induced microglial activation 

(Kauppinen et al., 2011), indicating PARP-1 activation as part of the signalling pathway 

microglial activation. There is evidence that the activation of ERK is induced in 

microglial cells following exposure to Aβ42 (Sondag et al., 2009; Liu and Bian, 2010). 

In this chapter, I will describe the experiments aimed to investigate the 

signalling mechanisms by which Aβ42 induces TRPM2 channel activation, and the role 

for the TRPM2 channel in mediating Aβ42-induced microglial activation and TNF-α 

generation.  
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5.2 RESULTS 

 

5.2.1 TRPM2 channel role in Aβ42-induced Ca
2+

 influx  

TRPM2 channel activation mediates extracellular Ca
2+

 influx leading to an 

increase in the [Ca
2+

]i in microglial cells, as shown in chapter 4 as well as previous 

studies (Kraft et al., 2004; Miyake et al., 2014; Jeong et al., 2017). I examined whether 

Aβ42 also induced TRPM2-dependent Ca
2+

 influx. Aβ42-induced increase in the [Ca
2+

]i 

was observed in extracellular Ca
2+

-containing solution, but not in Ca
2+

-free solution 

(Fig. 5.1a-b), Furthermore, Aβ42-induced increase in the [Ca
2+

]i in WT microglial cells 

were abolished by treatment with 2-APB (Fig. 5.1c-d). These results, together with the 

loss of Aβ42-induced increase in the [Ca
2+

]i in TRPM2-KO microglial cells (section 

3.2.4), strongly support Aβ42-induced TRPM2 channel activation leading to Ca
2+

 influx 

and increase in the [Ca
2+

]i. 

 

5.2.2 Effects of TRPM2 channel inhibitor on Aβ42-induced microglial cell activation 

Aβ42-induced microglial cell activation was prevented in TRPM2-KO microglial 

cells (section 3.2.6). I further examined the effect of 2-APB on Aβ42-induced microglial 

cell activation. Aβ42-induced change in the morphology of WT microglial cells was 

prevented with treatment, prior to and during exposure to Aβ42, with 2-APB (Fig 5.2a-

c). The results from genetic and pharmacological interventions provide consistent 

evidence to show a critical role for the TRPM2 channel in determining Aβ42-induced 

microglial activation. 

 

5.2.3 Aβ42-induced TNF-α production is TRPM2-dependent 

As already introduced above, TNF-α represents the major pro-inflammatory 

cytokine generated by microglial cells, and Aβ-induced TNF-α production plays an 

important role in AD-related neuroinflammation. I performed immunocytochemistry to 

examine the TNF-α expression in microglial cells after 48 hr exposure to Aβ42 and, 

furthermore, ELISA assay to determine TNF-α released into the culture medium after 

72 hr exposure to Aβ42. Exposure to 10-300 nM Aβ42 induced a concentration-

dependent  
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 Fig. 5.1 Aβ42 induces Ca
2+

 influx through the TRPM2 channel in microglial cells.  

(a, c) Representative single cell images showing intracellular Ca
2+

 levels in microglial cells (top row: Fluo4 fluorescence; bottom row: counter 

staining with Hoechst) after exposed to 100 nM Aβ42 for 8 hr in extracellular Ca
2+

-containing (+Ca
2+

) or Ca
2+

-free (-Ca
2+

) solutions (a) and, 100 

nM Aβ42 for 8 hr alone or treatment with 100 µM 2-APB (c), 30 min prior to and during exposure to Aβ42. (b, d) Mean Aβ42-induced Fluo4 

fluorescence intensity, indicative of the intracellular Ca
2+

 levels in cells under indicated conditions from 3 independent experiments, using 3 wells 

of cells for each condition in each experiment. Scale bar, 40 µm. ***, p < 0.005 compared to control. ###, p < 0.005 compared between cells 

exposed to Aβ42 in the presence and absence of extracellular Ca
2+

. 
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Fig. 5.2 A role of TRPM2 channel in Aβ42-induced microglial cell activation.  

(a) Representative phase-contrast images showing cell morphology of microglial cells after exposure to 100 nM Aβ42 for 24 hr alone or treatment 

with 100 µM 2-APB, 30 min prior to and during exposure to Aβ42, captured using an EVOS microscope with a 40x object lens. (b) Scatter plot 

showing distribution of form factor and aspect ratio of individual WT microglial cells after exposure to 100 nM Aβ42 for 24 hr alone or treatment 

with 100 µM 2-APB, 30 min prior and duration exposure to Aβ42. (c) Mean values of form factor (top) and aspect ratio (bottom) of microglial cells 

under indicated conditions from at least 3 independent experiments, using 3 wells of cells for each condition in each experiment. Scale bar, 50 µm.  

***, p < 0.005 compared to control.  ###, p < 0.005 compared to cells exposed to Aβ42 alone. 
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increase in both TNF-α expression (Fig. 5.3a-b) and TNF-α release (Fig. 5.3c) by WT 

microglial cells. 

In contrast with WT microglial cells, treatment with 30-300 nM Aβ42 induced no 

TNF-α expression in TRPM2-KO microglial cells (Fig. 5.4a-b). Consistently, there was 

no TNF-α release from TRPM2-KO microglial cells after treatment with Aβ42 (Fig. 

5.4c). Aβ42-induced TNF-α release from WT microglial cells was also strongly 

suppressed by treatment with 2-APB (Fig. 5.4d). These results provide compelling 

evidence to indicate a critical role for the TRPM2 channel in Aβ42-induced TNF-α 

generation. 

 

5.2.4 PARP-1 in Aβ42-induced TRPM2 channel activation, cell activation and TNF-α 

production in microglial cells 

Previous studies provide evidence to support that PARP-1 activation is critical 

for Aβ- or traumatic brain injury-induced microglial cell activation (Kauppinen et al., 

2011; Stoica et al., 2014). In order to further test the hypothesis that Aβ42 induced 

PARP activation results in TRPM2 channel activation, I examined the effect of PARP 

inhibitor on the increase in [Ca
2+

]i  in microglial cells. Treatment of WT microglial cells 

with PJ34 prevented Aβ42-induced increase in the [Ca
2+

]i (Fig. 5.5a-b), and strongly 

inhibited Aβ42-induced change in the cell morphology (Fig. 5.5c-f). Furthermore, 

treatment with PJ34 and DPQ significantly inhibited Aβ42-induced TNF-α production 

(Fig. 5.5g). These results suggest that PARP has a critical role in TRPM2-mediated 

Aβ42-induced microglial cell activation and TNF-α production.  

In order to investigate whether Aβ42 stimulated PARP-1 in microglial cells, I 

performed immunofluorescence staining using an anti-PAR antibody. Exposure to Aβ42 

resulted in massive PAR production in microglial cells and that such PAR production 

was predominantly concentrated in the nucleus, as illustrated by the co-localization of 

PAR immunoreactivity with DAPI counterstaining (Fig. 5.6a-b), indicating PARP-1 

activation. Aβ42 also induced considerable PAR production in TRPM2-KO microglial 

cells, which was however significantly lower than that in WT microglial cells (Fig. 

5.6c-d). As anticipated, Aβ42-induced PAR production in both WT and TRPM2-KO 

cells was completely prevented by treatment with PJ34 (Fig. 5.6c-d). Taken together, 

these results support that Aβ42 activates the TRPM2 channel via stimulating the PARP-

1 activity. 
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 Fig. 5.3 Aβ42 induces TNF-α production in microglial cells.  

(a) Representative fluorescent images showing TNF-α immunoreactivity in cells without (CTL) and with exposure to Aβ42 at indicated 

concentrations for 48 hr. Cells were counterstained with DAPI. (b) Summary of mean TNF-α expression in cells under indicated conditions from 3 

independent experiments, using 3 wells of cells for each condition in each experiment. (c) Summary of ELISA assay of TNF-α release by cells after 

exposed to Aβ42 at indicated concentrations for 72 hr from 3 independent experiments, using 3 wells of cells for each condition in each experiment. 

Scale bar, 40 µm.  *, p < 0.05; ***, p < 0.005 compared to control. 
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Fig. 5.4 TRPM2 is required for Aβ42-induced TNF-α production by microglial cells.  

(a) Representative fluorescent images showing TNF-α immunoreactivity in cells from WT and TRPM2-KO mice without (CTL) and with exposure to 

Aβ42 at indicated concentrations for 48 hr. Cells were counterstained with DAPI. (b) Mean TNF-α expression under indicated conditions from 3 

independent experiments, using 3 wells of cells for each condition in each experiment. (c) Summary of ELISA assay of TNF-α release by WT and 

TRPM2-KO cells after exposure to Aβ42 at indicated concentrations for 72 hr from 3 independent experiments, using 3 wells of cells for each condition 

in each experiment. (d) Summary of ELISA assay of TNF-α release after exposure to 100 nM Aβ2 for 72 hr alone or treatment with 100 µM 2-APB, 30 

min prior to during exposure to Aβ42  from 3 independent experiments, using 3 wells of cells for each condition in each experiment. Scale bar, 40 µm. 

*, p < 0.05; **, p < 0.05; ***, p < 0.005 compared to control. #, p < 0.05; ##, p < 0.01; ###, p < 0.005 compared between WT and TRPM2-KO cells 

under the same treatment. 
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 Fig. 5.5 A role of PARP in Aβ42-induced cell activation and TNF-α production in microglial cells.  

(a) Representative single cell images showing intracellular Ca
2+

 levels in microglial cells (top row: Fluo4 fluorescence; bottom row: counter 

staining with Hoechst) after exposed to 100 nM Aβ42 for 8 hr alone or treatment with 1 µM PJ34, 30 min prior to and during exposure to Aβ42. (b) 

Mean Aβ42-induced Fluo4 fluorescence intensity, indicative of the intracellular Ca
2+

 levels in cells under indicated conditions from 3 independent 

experiments, using 3 wells of cells for each condition in each experiment. (c) Representative phase-contrast images showing cell morphology of 

microglial cells after exposure to Aβ42 for 24 hr alone or treatment with 1 µM PJ34, 30 min prior to and during exposure to Aβ42, captured using an 

EVOS microscope with a 40x object lens. (d) Scatter plot showing distribution of form factor and aspect ratio of individual WT microglial cells 

after exposure to 100 nM Aβ42 for 24 hr alone or treatment with 1 µM PJ34, 30 min prior and duration exposure to Aβ42. (e-f) Mean values of form 

factor (e) and aspect ratio (f) of microglial cells under indicated conditions from at least 3 independent experiments, using 3 wells of cells for each 

condition in each experiment. (g) Summary of ELISA assay of TNF-α release after exposure to 100 nM Aβ42 for 72 hr alone or treatment with 1 

µM PJ34 or 10 µM DPQ, 30 min prior to during exposure to Aβ42  from 3 independent experiments, using 3 wells of cells for each condition in 

each experiment. Scale bar, 40 µm (a) and 50 µm (c). **, p < 0.01; ***, p < 0.005 compared to control.  ###, p < 0.005 compared to cells exposed 

to Aβ42 alone. 
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Fig. 5.6 Aβ42 induces PARP-1 activation in microglial cells.  

(a, c) Representative fluorescent images showing PAR staining (top row) and counterstaining with DAPI (bottom row) in cells without (CTL) and 

with exposure to 100 nM Aβ42 for 8 hr in WT cells (a), or after exposure to with 100 nM Aβ42 for 8 hr alone or treatment with 1 µM PJ34, 30 min 

prior to and during exposure to Aβ42, in WT and KO-TRPM2 cells (c). (b, d) Mean PAR fluorescence intensity in cells under indicated conditions 

from 3 independent experiments, using 3 wells of cells for each condition in each experiment. Scale bar, 40 µm. ***, p < 0.005 compared to 

control and, ##, p < 0.01 compared between WT and TRPM2-KO cells under the same treatment. 
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5.2.5 PKC and NOX in Aβ42-induced ROS production, activation of PARP-1 and 

TRPM2 and TNF-α production in microglial cells 

PKC and NOX are crucial in the production of ROS in microglial cells in 

response to Zn
2+

 shown in chapter 4 (see section 4.2.9) or in response to ganglioside 

shown in a previous study (Min et al., 2004). NOX-dependent ROS production is 

important in Aβ-induced microglial cell activation and plays a critical role in AD 

pathogenesis (Jakebson et al., 2006; Brown & Neher 2010). Hence, I examined ROS 

production after exposure to different concentrations of Aβ42 (30-300 nM) for 8 hr, 

using DCF. Exposure to Aβ42 led to a salient and concentration-dependent increase in 

DCF fluorescence intensity (Fig. 5.7a), indicating Aβ42-induced ROS production. In 

addition, treatment with CTC (Fig. 5.7b) and, DPI, GKT or Phox (Fig. 5.7c) strongly 

inhibited or completely prevented Aβ42-induced ROS production. These findings 

suggest that PKC and NOX are involved in Aβ42-induced ROS production in microglial 

cells.  

Next, I examined whether PKC/NOX-mediated ROS production is important in 

Aβ42-induced stimulation of PARP-1, TRPM2 channel activation, cell activation and 

TNF-α production in microglial cells. Treatment with CTC and, DPI, GKT or Phox 

strongly suppressed or completely abolished Aβ42-induced PAR formation (Fig. 5.8a 

and c) and increases in the [Ca
2+

]i (Fig. 5.8b and d). These pharmacological treatments 

also blocked Aβ42-induced change in the morphology of microglial cells (Fig. 5.9a-e) 

and, furthermore, strongly suppressed Aβ42-induced TNF-α production (Fig. 5.9f). 

These results therefore suggest a critical role for PKC/NOX mediated ROS generation 

in Aβ42-induced PARP-1 and TRPM2 channel activation, microglial cell activation and 

TNF-α production. 

 

5.2.6 PYK2 and MEK/ERK in Aβ42-induced activation of PARP-1 and TRPM2-

activation and TNF-α production in microglial cells 

As shown in studies presented in chapter 4, the PYK2-MEK-ERK signalling 

pathway acts as a positive feedback mechanism, downstream of TRPM2 channel 

activation, to stimulate PARP-1 activation in microglial cells following exposure to 

Zn
2+

 (section 4.2.10). Therefore, I investigated whether such a signalling pathway also 

participated in Aβ42-induced stimulation of PARP-1 and TRPM2 channel activation. 
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Fig. 5.7 A role for PKC and NOX in Aβ42-induced ROS production in microglial cells.  

(a-c) Left, representative images showing cellular ROS levels (top row: DCF fluorescence; bottom row: counter staining with Hoechst) in cells 

without (CTL) and with exposure to Aβ42 at indicated concentrations for 8 hr (a) and, in cells after exposure for 8 hr to 100 nM Aβ42 alone or 

treatment with 3 µM CTC (b), 3 µM DPI, 3 µM GKT or 30 µM Phox (c). Right, mean Aβ42-induced ROS production in microglial cells under 

indicated conditions, from 3 independent experiments, using three wells of cells for each condition in each experiment. Scale bar, 40 µm. ***, p < 

0.005 compared to control. ###, p < 0.005 compared to the group exposed to Aβ42 alone. 
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Fig. 5.8 PKC and NOX in Aβ42-induced PARP-1 activation and TRPM2 channel activation in microglial cells.  

(a, c) Left, representative images showing PAR staining (top row) and counter staining with DAPI (bottom row) of microglial cells after exposure 

for 8 hr to 100 nM Aβ42 alone or treatment with CTC (b), DPI, GKT or Phox (e). Right, mean Aβ42-induced PAR staining in microglial cells under 

indicated conditions from 3 independent experiments, using three wells of cells for each condition in each experiment. (b, d) Left, representative 

single cell images showing Ca
2+

 responses in microglial cells (top row: Fluo-4 fluorescence; bottom row: counter staining with Hoechst). Right, 

mean Aβ42-induced Ca
2+

 responses in microglial cells under indicated conditions from 3 independent experiments, using 3 wells of cells for each 

condition in each experiment. Cells were treated with CTC, DPI, GKT or Phox for 30 min prior to and during exposure to Aβ42. Scale bar, 40 m. 

***, p < 0.005 compared between cells without (CTL) and with exposure to 100 nM Aβ42. ###, p < 0.005 compared to the group exposed to Aβ42 

alone. 
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Fig. 5.9 PKC and NOX in Aβ42-induced microglial activation and TNF-α production.  

(a) Representative phase-contrast images showing cell morphology of microglial cells after exposure to Aβ42 for 24 hr alone or treatment with 3 

µM CTC, 30 min prior to and during exposure to Aβ42. (b, d) Scatter plot showing distribution of form factor and aspect ratio values for individual 

cells after exposure for 24 hr to 100 nM Aβ42 alone or treatment with 3 µM CTC (b), 3 µM DPI, 3 µM GKT or 30 µM Phox (d), 30 min prior to and 

during exposure to Aβ42.  (c, e) Mean values of form factor (top) and aspect ratio (bottom) in cells under indicated conditions from 3 independent 

experiments, using 3 wells of cells for each condition in each experiment. (f) Summary of ELISA assay of TNF-α release from cells without (CTL) 

and with exposure to 100 nM Aβ42 alone or treatment with CTC, DPI, GKT or Phox at indicated concentrations from 3 independent experiments, 

using 3 wells of cells for each condition in each experiment. Cells were treated with CTC, DPI, GKT or Phox for 30 min prior to and during 

exposure to Aβ42. ***, p < 0.005 compared between cells without and with exposure to 100 nM Aβ42. ##, p < 0.01; ###, p < 0.005 compared to 

group exposed to Aβ42 alone. 
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Treatment with PF431296 or U0126 strongly inhibited Aβ42-induced PAR production 

(Fig. 5.10a-b) and increases in the [Ca
2+

]i (Fig. 5.10c-d). These results support a role for 

the PYK2-MEK-ERK signalling pathway in Aβ42-induced activation of PARP-1 and 

TRPM2 channel. I also examined the effects of PYK2 and MEK/ERK inhibitors on 

Aβ42-induced microglial activation and TNF-α production. Treatment with PF431396 or 

U0126 largely prevented Aβ42-induced microglial activation (Fig. 5.11a-b), and TNF- 

production (Fig. 5.11c). These results further suggest a critical role of the PYK2-MEK-

ERK signalling pathway in Aβ42-induced microglial cell activation and TNF-α 

production. 

If PKC-dependent NOX activation and the PYK2-MEK-ERK signalling 

pathways act respectively upstream or downstream of the TRPM2 channel activation in 

Aβ42-induced PARP-1 activation, one expects that the residual Aβ42-induced PARP-1 

activity in TRPM2-KO microglial cells is exclusively sensitive to the PKC and NOX 

inhibitors, but not to the PKY2 and MEK/ERK inhibitors. Indeed, Aβ42-induced PAR 

production in TRPM2-KO microglial cells was completely blunted by treatment with 

CTC and, DPI, GKT or Phox (Fig. 5.12a-d), but totally unaffected by treatment with PF 

or U0126 (Fig. 5.12e-f). These contrasting results are consistent with notion that the 

PYK2-MEK-ERK signalling pathway acts downstream of TRPM2 channel activation as 

a positive feedback mechanism to stimulate PARP-1 and TRPM2 channel activation. 
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 Fig. 5.10 PYK2/MEK/ERK in Aβ42-induced PARP-1 activation and TRPM2 channel activation in microglial cells.  

(a, b) Left, representative images showing PAR level (top row: PAR fluorescence; bottom row: counter staining with DAPI) in cells exposed for 8 hr 

to 100 nM Aβ42 alone or together with 1 µM PF 431396 (PF)  (a) or 3 µM U0126 (b). Right, mean PAR fluorescence intensity in cells without (CTL) 

and with exposure to 100 nM Aβ42 alone or together with 1 µM PF (a) or 3 µM U0126 (b) from 3 independent experiments, using 3 wells of cells for 

each condition in each experiment. (c, d) Left, representative single cell images showing Ca
2+

 responses (top row: Fluo-4 fluorescence; bottom row: 

counterstaining with Hoechst) in cells exposed to 100 nM Aβ42 without and with treatment with 1 µM PF (c) or 3 µM U0126 (d). Right, mean Ab42-

induced Ca
2+

 responses in cells under indicated conditions from 3 independent experiments, using 3 wells of cells for each condition in each 

experiment. ***, p < 0.005 compared between cells without (CTL) and with exposure to 100 nM Aβ42 alone and, ###, p < 0.005 compared to group 

exposed to Aβ42 alone. 
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Fig. 5.11 PYK2/MEK/ERK in Aβ42-induced microglial cell activation and TNF-α production.  

(a) Scatter plot showing distribution of form factor and aspect ratio values of individual cells without (CTL) and with exposure for 24 hr to 100 nM 

Aβ42 alone or treatment with 1 µM PF or 3 µM U0126.  (b) Mean values of form factor (left) and aspect ratio (right) in cells under indicated 

conditions from 3 independent experiments, using 3 wells of cells for each condition in each experiment. (c) Summary of ELISA assay of TNF-α 

release by cells without (CTL) and with exposure for 72 hr to 100 nM Aβ42 alone or treatment with PF or U0126 at indicated concentrations from 3 

independent experiments, using 3 wells of cells for each condition in each experiment. Cells were treated with PF and U0126 for 30 min prior to 

and during exposure to 100 nM Aβ42. ***, p < 0.005 compared between cells without (CTL) and with exposure to Aβ42. ###, p < 0.005 compared to 

group exposed to Aβ42 alone. 
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Fig. 5.12 PKC/NOX activation is required for, and PYK2/MEK activation depends on, Aβ42-induced TRPM2 channel activation.  

(a-f) Left, representative images showing PAR level (top row: PAR fluorescence; bottom row: counterstaining with DAPI) in TRPM2-KO 

microglia cells exposed for 8 hr to 100 nM Aβ42 alone or together with 3 M CTC (a), 3 M DPI (b), 3 M GKT (c), 30 M Phox (d), 1 M PF (e) 

or 3 µM U0126 (f), 30 min prior to and during exposure to Aβ42. Right, mean PAR fluorescence intensity in microglial cells under indicated 

conditions from 3 independent cell preparations, using 3 wells of cells for each condition in each experiment. Scale bar, 40 µm. ***, p < 0.005 

compared between cells without (CTL) and with exposure to Aβ42 alone and, ###, p < 0.005 compared to group exposed to Aβ42 alone. 
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5.3 DISCUSSION 

Studies presented in this chapter provide evidence to show that PKC/NOX-

mediated ROS production and PARP-1 activation are required for Aβ42-induced 

TRPM2 channel activation. Furthermore, the PYK2-MEK-ERK signalling pathway, as 

a positive feedback mechanism downstream of the TRPM2 channel activation, 

facilitates activation of PARP-1 and TRPM2 channel. These molecular and signalling 

mechanisms are important in Aβ42-induced microglial cell activation and TNF-α 

production (Fig. 5.13).  

As shown in chapter 3 (section 3.2.4), the TRPM2 channel plays a crucial role in 

mediating Aβ42-induced increase in the [Ca
2+

]i in microglial cells. Here, I  further 

showed that removal of extracellular Ca
2+

 (Fig. 5.1a-b) or treatment with the TRPM2 

channel inhibitor 2-APB (Fig. 5.1c-d) prevented Aβ42-induced increase in the [Ca
2+

]i in 

microglial cells indicating that TRPM2 channel-mediated Ca
2+

 influx leads to  Aβ42-

induced increase in the [Ca
2+

]i.  Consistently with that Aβ42-induced change in the 

morphology of microglial cells was inhibited by TRPM2-KO (section 3.2.6), treatment 

with 2-APB significantly inhibited Aβ42-induced change in the cell morphology (Fig. 

5.2a-c), supporting a critical role for the TRPM2 channel in Aβ42-induced microglial 

activation.  

TRPM2-dependent microglial activation is strongly implicated in Aβ-induced 

neuroinflammation (Ostapchenko et al., 2015), but evidence supporting the role for the 

TRPM2 channel in Aβ-induced neuroinflammation is still lacking. As introduced above, 

it has been well recognized that TNF-α, a major pro-inflammatory cytokine produced by 

activated microglial cells, is potent in inducing neurotoxicity and Aβ-induced TNF-α 

generation significantly contributes to neuroinflammation in AD pathogenesis (Block et 

al., 2007; Heppner et al., 2015; Alam et al., 2016; Krabbe et al., 2017). In this chapter, I 

showed that exposure to Aβ42 induced TNF-α generation by microglial cells (Fig. 5.3a-

c). Interestingly, Aβ42-induced TNF-α generation was deficient in TRPM2-KO 

microglial cells (Fig. 5.4a-c), and strongly attenuated by the TRPM2 channel inhibitor 

2-APB (Fig. 5.4d). It has been shown that ROS-induced TRPM2 channel activation 

caused microglial cell death (section 3.2.2). However, exposure to Aβ42 up to 300 nM 

for 72 hr, a condition used for TNF-α release assay,  induced no significant necrotic 

microglial cell death (section 3.2.5), largely ruling out the possibility that Aβ42-induced 

TNF-α release results from microglial cell death. These results provide compelling 

evidence for the first time to show a critical role of the TRPM2 channel in Aβ-induced 
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TNF-α generation, therefore offering novel insights into Aβ-induced inflammation. 

Furthermore, considering the well-known neurotoxicity of TNF-α, these findings 

suggest a significant role of Aβ-induced neuroinflammation in AD pathogenesis.  

The results described in this chapter also have provide insights into the 

signalling mechanisms by which Aβ42 induces TRPM2 channel activation in microglial 

cells. As introduced above, Aβ-induced PARP-1 activation in microglial cells was 

shown in a previous study (Kauppinen et al., 2011). Consistently, exposure to Aβ42 

strongly increased PAR formation, which was highly concentrated in the nucleus (Fig. 

5.6a-b), suggesting Aβ42-induced PARP-1 activation. In addition Aβ42-induced PAR 

formation was prevented by treatment with PJ34 (Fig. 5.6c-d). Furthermore, Aβ42-

induced increase in the [Ca
2+

]i (Fig. 5.5a-b), change in the cell morphology (Fig. 5.5c-f) 

and TNF-α production (Fig. 5.5g) in microglial cells were prevented by treatment with 

PJ34. These results are consistent with PARP-1 being a critical factor in Aβ-induced 

microglial cell activation (Kauppinen et al., 2011). 

In this chapter, I also showed that the sequential activation of PKC and NOX, 

including NOX1/4 and NOX2, NOX-mediated ROS production, and PARP-1 activation 

are important in Aβ42-induced TRPM2 channel-mediated microglial cell activation and 

TNF-α production (Figs. 5.7, 5.8 and 5.9).  

In the previous chapter (section 4.2.10), TRPM2 channel activation, possibly 

TRPM2 channel-mediated Ca
2+

 influx, triggers the PYK2-MEK-ERK signalling 

pathway as a positive feedback mechanism that enhances PARP-1 activation and 

subsequent TRPM2 channel activation in microglial cell in response to prolonged 

exposure to Zn
2+

. Here, I showed that inhibition of this signalling pathway prevented 

Aβ42-induced PARP-1 activation (Fig. 5.10a-b) and increase in the [Ca
2+

]i in WT 

microglial cells (Fig. 5.10c-d). Genetic deletion of the TRPM2 channel expression 

significantly attenuated, but did not completely prevent, Aβ42-induced PARP-1 

activation (Fig. 5.6c-d), supporting critical involvement of TRPM2 channel in Aβ42-

induced stimulation of PARP-1. Furthermore, the remaining Aβ42-induced PARP-1 

activation in TRPM2-KO microglial cells was totally abolished by inhibiting PKC and 

NOX (Fig. 5.12a-d), but was not altered by inhibiting PYK2 and MEK/ERK (Fig. 

5.12e-f). These differentiating results support the notion that Aβ42-induced PKC/NOX-

mediated ROS production and PARP-1 activation initiates the TRPM2 channel 

activation, which leads to, possibly via TRPM2-mediated Ca
2+

 influx, activation of the 

PYK2-MEK-ERK signalling pathway to further facilitate activation of PARP-1 and 
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TRPM2 channel. Interestingly, Aβ42-induced microglial activation and TNF-α 

production were prevented by inhibition of these signalling mechanisms (Fig. 5.11a-c).  

In conclusion, the studies presented in this chapter provide evidence to show that 

PKC-dependent NOX-mediated ROS production and PARP-1 activation are required 

for Aβ42-induced TRPM2 channel activation and the PYK2-MEK-ERK signalling 

pathway as a positive feedback mechanism further stimulates activation of PARP-1 and 

TRPM2 channel (Fig. 5.13). These novel findings afford mechanistic insights into Aβ-

induced neuroinflammation in AD pathogenesis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.13 Schematic summary of the signalling mechanisms mediating A42-

induced TRPM2 channel and microglial activation as well as TNF- 

generation.  

A42 activates the TRPM2 channel involving multiple-step intracellular signalling 

pathways in microglial cell activation and TNF- generation. A42 stimulates PKC 

and NOX. ROS activates PARP-1 and PARG in the nucleus leading to ADPR 

production and subsequent activation of TRPM2-dependent Ca
2+

 influx to increase 

the cytoplasmic Ca
2+

 concentrations ([Ca
2+

]c). Elevated [Ca
2+

]c in turn activate the 

PYK2/MEK/ERK signalling pathway as a positive feedback mechanism that 

amplifies activation of PARP-1, leading to TRPM2-mediated Ca
2+

 overloading, 

microglial cell activation and TNF- generation.  
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CHAPTER 6  

TNF-α AUTOCRINE/PARACRINE SIGNALLING MECHANISMS 

VIA TRPM2 CHANNEL IN MICROGLIAL CELLS 
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6.1 INTRODUCTION 

It has been long known that TNF-α is involved in initiating and propagating the 

inflammatory responses and in the pathogenesis of multiple neurodegenerative diseases, 

including AD, rheumatoid arthritis (RA) and Crohn’s disease (Van Deventer, 1997; 

Feldmann, 2002; Paouri et al., 2017). Studies have shown promising application of anti-

TNF-α drugs in reducing cognitive impairments associated with AD (Shi et al., 2011). 

Application of TNF-α inhibitor or deletion of the TNF-α receptors in mouse AD models 

results in a significant reduction in Aβ accumulation (Gabbita et al., 2015).  

Microglial cells represents the major source of TNF-α generation in the CNS 

(Krabbe et al., 2017; Paouri et al., 2017). TNF-α, on one hand, is generated by activated 

microglial cells in response to DAMP molecules, such as Aβ42 shown in the previous 

study, and  on the other, acts as a DAMP to stimulate the microglial cell activation 

(Meda et al., 1995). Therefore, TNF-α serves as an autocrine or paracrine signalling 

molecule.  A previous study provides evidence to show that TNF-α stimulates a positive 

autocrine loop as a result from the prolonged activation of microglial cells by LPS 

(Kuno et al., 2005). It is also suggested that TNF-α, when applied exogenously, can 

induce activation of microglial cells (Kauppinen and Swanson, 2005).  

There is evidence to show the activation of TRPM2 channel by TNF-α (Roberge 

et al., 2014). In addition, studies presented in the previous chapter (chapter 3) showed a 

critical role of the TRPM2 channel for TNF-α-induced microglial cell activation. 

However, the signalling mechanisms involved in TNF-α-induced TRPM2 channel 

activation and subsequently microglial cell activation, particularly production of TNF-α 

itself still remain unclear. Genetic deletion of the NOX expression in endothelial cells 

strongly inhibited TNF-α-induced ROS production (Frey et al., 2002), indicating a 

critical role for NOX in TNF-α-induced ROS production. In addition, NOX-dependent 

ROS production is required for TNF-α-induced microglial cell activation (Jekabsone et 

al., 2006). ROS in turn can up-regulate TNF-α expression via activation of MAPK 

signalling pathway (Nakao et al., 2008).  

In this chapter, I investigated the role of the TRPM2 channel in microglial cell 

activation and TNF-α production in response to TNF-α and the signalling mechanisms 

involved in TNF-α-induced TRPM2 channel activation, microglial cell activation and 

TNF-α generation.   
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6.2 RESULTS 

 

6.2.1 TRPM2 channel in TNF-α-induced Ca
2+

 influx and microglial cell activation 

The results presented in chapter 3 show that the TRPM2 channel is critical in 

mediating TNF-α-induced increase in the [Ca
2+

]i (section 3.2.4). To better understand 

the role of the TRPM2 channel in TNF-α-induced Ca
2+

 signalling, I examined TNF-α-

induced increase in the [Ca
2+

]i in microglial cells in extracellular Ca
2+

-containing and 

Ca
2+

-free solutions. TNF-α-induced increase in the [Ca
2+

]i was observed in Ca
2+

-

containing solution, but not in Ca
2+

-free solution (Fig. 6.1a), indicating TNF-α-induced 

TRPM2 channel-mediated Ca
2+

 signalling via Ca
2+

 influx. In addition, treatment of the 

TRPM2 channel inhibitor 2-APB attenuated TNF-α-induced increase in the [Ca
2+

]i (Fig. 

6.1b). These findings consistently support TNF-α-induced TRPM2 channel activation, 

leading to extracellular Ca
2+

 influx and increase in the [Ca
2+

]i.  

 As shown in previous chapter (section 3.2.6), studies using a genetic knockout 

approach have revealed a role of the TRPM2 channel in mediating TNF-α-induced 

microglial cell activation. To further confirm this finding, I examined the effects of the 

TRPM2 channel inhibitor 2-APB on TNF-α-induced microglial cell activation. TNF-α-

induced change in the morphology of microglial cells was prevented by 2-APB (Fig 

6.2a-c). These pharmacological results further support a critical role of the TRPM2 

channel for TNF-α-induced microglial cell activation.  

 

6.2.2 TRPM2 channel in TNF-α induced TNF-α production in microglial cells 

As introduced above, TNF-α is the major pro-inflammatory cytokine generated 

by microglial cells following exposure to various DAMP molecules. Consistently, 

studies presented in the previous chapter show Aβ42 induces TNF-α production in 

microglial cells (section 5.2.3). TNF-α can acts as an autocrine/paracrine signalling 

molecule and mediates microglial cell activation, as shown in chapter 3 (section 3.2.6) 

as well as in previous studies (Kuno et al., 2005). Therefore, it is interesting to 

investigate whether TNF-α-induced microglial cell activation promotes TNF-α 

production. I examined the TNF-α expression in microglial cells after 48 hr exposure to 

TNF-α and, TNF-α released
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 Fig. 6.1 TNF-α induces Ca
2+

 influx through the TRPM2 channel in microglial cells.  

(a, b) Left, representative single cell images showing intracellular Ca
2+

 levels in cells (top row: Fluo4 fluorescence; bottom row: counter staining 

with Hoechst) after exposed to 10 ng/ml TNF-α for 8 hr in Ca
2+

-containing (+Ca
2+

) or Ca
2+

-free (-Ca
2+

) solutions (a) and, 10 ng/ml TNF-α for 8 hr 

alone or treatment with 100 µM 2-APB (b), 30 min prior to and during exposure to TNF-α. Right, mean TNF-α-induced Fluo4 fluorescence intensity, 

indicative of intracellular Ca
2+

 levels, in cells under indicated conditions from 3 independent experiments, using 3 wells of cells for each condition in 

each experiment. Scale bar, 40 µm. *, p < 0.05; ***, p < 0.005 compared to control. ###, p < 0.005 ###, between cells exposed to TNF-α in the 

presence and absence of extracellular Ca
2+

. 
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Fig. 6.2  Activation of TRPM2 channel is required for TNF-α-induced microglial cell activation.  

(a) Representative phase-contrast images showing cell morphology of microglial cells after exposure to 10 ng/ml TNF-α for 24 hr alone or 

treatment with 100 µM 2-APB, 30 min prior to and during exposure to TNF-α, captured using an EVOS microscope with a 40x object lens. (b) 

Scatter plot showing distribution of form factor and aspect ratio of individual WT microglial cells after exposure to 10 ng/ml TNF-α for 24 hr alone 

or treatment with 100 µM 2-APB, 30 min prior and duration exposure to TNF-α. (c) Mean values of form factor (top) and aspect ratio (bottom) of 

microglial cells under indicated conditions from at least 3 independent experiments, using 3 wells of cells for each condition in each experiment. 

Scale bar, 50 µm.  ***, p < 0.005 compared to control.  ###, p < 0.005 compared to cells exposed to TNF-α alone. 
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into the culture medium after 72 hr exposure to TNF-α. Exposure to TNF-α at 10-100 

ng/ml for 48 hr induced significant and concentration-dependent increase in the TNF-α 

expression in microglial cells (Fig. 6.3a-b). Consistently, there was a concentration-

dependent increase in TNF-α release (Fig. 6.3c). These results strongly suggest that 

TNF-α serves as an autocrine/paracrine signalling molecule.  

Next I examined whether the TRPM2 channel is involved in such a positive 

feedback loop signalling mechanism by using genetic and pharmacological approaches. 

In contrast with strong increase in the TNF-α generation seen in WT microglial cells, no 

or very modest TNF-α expression was observed in TRPM2-KO microglial cells (Fig. 

6.4a-b). Consistently, there was no TNF-α release by TRPM2-KO microglial cells 

following exposure to TNF-α (Fig. 6.4c). Furthermore, treatment with 2-APB strongly 

attenuated TNF-α generation in WT microglial cells in response to exposure to TNF-α 

(Fig. 6.4d). These results provide compelling evidence to indicate a critical role for the 

TRPM2 channel in TNF-α-induced microglial cell activation and TNF-α generation. 

 

6.2.3 PARP-1 is required in TNF-α-induced TRPM2 channel activation and TNF-α 

generation in microglial cells 

 Studies presented in the previous chapter have demonstrated a critical role for 

PARP-1 activation in TRPM2 channel-mediated Aβ42-induced microglial cell activation 

(section 5.2.4). So, I further tested the hypothesis that PARP-1 is involved in TNF-α-

induced TRPM2 channel activation and subsequently microglial cell activation by 

examining the effects of PARP inhibitors on TNF-α-induced increase in the [Ca
2+

]i, 

microglial cell activation and TNF-α production. TNF-α-induced increase in the [Ca
2+

]i 

(Fig. 6.5a-b) and microglial cell activation (Fig. 6.5c-f) were strongly inhibited by 

treatment with PJ34. Furthermore, TNF-α generation in microglial cell induced by TNF-

α was significantly inhibited by PJ34 and DPQ (Fig. 6.5g). PAR immunofluorescence 

staining showed that exposure to TNF-α resulted in massive PAR production in 

microglial cells and that PAR was co-localized with DAPI staining (Fig. 6.6a-b). TNF-

α-induced PAR production was detected in the TRPM2-KO microglial cells but lesser 

than that in WT microglial cells (Fig. 6.6c-d). As expected, treatment with PJ34 

strongly inhibited TNF-α-induced PAR production in both WT and TRPM2-KO cells 

(Fig. 6.6c-d). Taken together, these results support that PARP-1 plays a crucial role in 

mediating
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 Fig. 6.3 TNF-α induces autocrine/paracrine action by producing TNF-α in microglial cells.  

(a) Representative fluorescent images showing TNF-α immunoreactivity labelled with an anti-TNF-α antibody in microglial cells without (CTL) 

and with exposure to TNF-α at indicated concentrations for 48 hr. Cells were counterstained with DAPI. (b) Summary of mean TNF-α expression 

in microglial cells under indicated conditions from 3 independent experiments, using 3 wells of cells for each condition in each experiment. (c) 

Summary of ELISA assay of TNF-α release by microglial cells after exposed to TNF-α at indicated concentrations for 72 hr from 3 independent 

experiments, using 3 wells of cells for each condition in each experiment. Scale bar, 40 µm.  *, p < 0.05; ***, p < 0.005 compared to indicated 

control group. 
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 Fig. 6.4 TRPM2 channel is required for TNF-α-induced TNF-α production by microglial cells.  

(a) Representative fluorescent images showing TNF-α immunoreactivity in microglial WT and TRPM2-KO cells without (CTL) and with exposure 

to TNF-α at indicated concentrations for 48 hr. Cells were counterstained with DAPI. (b) Summary of mean TNF-α expression under indicated 

conditions from 3 independent experiments, using 3 wells of cells for each condition in each experiment. (c) Summary of ELISA assay of TNF-α 

release by WT and TRPM2-KO cells after exposure to TNF-α at indicated concentrations for 72 hr from 3 independent experiments, using 3 wells 

of cells for each condition in each experiment. (d) Summary of ELISA assay of TNF-α release after exposure to 30 ng/ml TNF-α for 72 hr alone or 

treatment with 100 µM 2-APB, 30 min prior to during exposure to TNF-α  from 3 independent experiments, using 3 wells of cells for each 

condition in each experiment. Scale bar, 40 µm. *, p < 0.05; ***, p < 0.005 compared to control. #, p < 0.05; ###, p < 0.005 compared between WT 

and TRPM2-KO cells under the same treatment. 
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 Fig. 6.5 Activation of PARP is required for TNF-α-induced microglial cell activation.  

(a) Representative single cell images showing intracellular Ca
2+

 levels in microglial cells (top row: Fluo4 fluorescence; bottom row: counter 

staining with Hoechst) after exposed to 10 ng/ml TNF-α for 8 hr alone or treatment with 1 µM PJ34, 30 min prior to and during exposure to TNF-α. 

(b) Mean TNF-α-induced Fluo4 fluorescence intensity, indicative of the intracellular Ca
2+

 levels in cells under indicated conditions from 3 

independent experiments, using 3 wells of cells for each condition in each experiment. (c) Representative phase-contrast images showing cell 

morphology of microglial cells after exposure to 10 ng/ml TNF-α for 24 hr alone or treatment with 1 µM PJ34, 30 min prior to and during exposure 

to TNF-α, captured using an EVOS microscope with a 40x object lens. (d) Scatter plot showing distribution of form factor and aspect ratio of 

individual WT microglial cells after exposure to 10 ng/ml TNF-α for 24 hr alone or treatment with 1 µM PJ34, 30 min prior and duration exposure 

to TNF-α. (e-f) Mean values of form factor (e) and aspect ratio (f) of microglial cells under indicated conditions from at least 3 independent 

experiments, using 3 wells of cells for each condition in each experiment. (g) Summary of ELISA assay of TNF-α release after exposure to 30 

ng/ml TNF-α for 72 hr alone or treatment with 1 µM PJ34 or 10 µM DPQ, 30 min prior to during exposure to TNF-α  from 3 independent 

experiments, using 3 wells of cells for each condition in each experiment. Scale bar, 40 µm (a) and 50 µm (c). **, p < 0.01; ***, p < 0.005 

compared to control.  ###, p < 0.005 compared to cells exposed to TNF-α alone. 
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Fig. 6.6 TNF-α induces PARP-1 activation in microglial cells.  

(a, c) Representative fluorescent images showing PAR staining (top row) and counter staining with DAPI (bottom row) without (CTL) and with 

exposure to 10 ng/ml TNF-α for 8 hr (a), or after exposure to 10 ng/ml TNF-α for 8 hr alone or treatment with 1 µM PJ34 in WT and TRPM2-KO 

cells 30 min prior to and during exposure to TNF-α (c). (b, d) Summary of mean PAR fluorescence intensity under indicated conditions from 3 

independent experiments, using 3 wells of cells for each condition in each experiment. Scale bar, 40 µm. ***, p < 0.005 compared to control. ##, p 

< 0.01 compared between WT and TRPM2-KO cells under the same treatment. 



160 

 

TNF-α-induced TRPM2 channel activation, microglial cell activation and TNF-α 

generation in microglial cells. 

 

6.2.4 PKC and NOX in TNF-α-induced ROS production, activation of PARP-1 and 

TRPM2 channel, and TNF-α generation in microglial cells 

 Exposure to 10-100 ng/ml TNF-α resulted in a concentration-dependent increase 

in the ROS level in microglial cells (Fig. 6.7a). As discussed above in the introduction, 

it has been reported that NOX is  the main source of ROS production responsible for 

TNF-α-induced microglial cell activation (Jekabsone et al., 2006) and PKC can induce 

NOX action (section 4.2.9 and section 5.2.5). I conducted experiments to examine the 

effects of PKC and NOX inhibitors on TNF-α-induced ROS production. TNF-α-induced 

increase in the ROS production in microglial cells was almost completely inhibited by 

CTC (Fig. 6.7b), or DPI, GKT and Phox (Fig. 6.7c), supporting a critical role for PKC 

and NOX in ROS generation.  

 Next, I examined whether PKC/NOX-mediated ROS generation is important in 

TNF-α-induced stimulation of PARP-1 activity, TRPM2 channel activation, microglial 

cell activation and TNF-α production in microglial cells. Treatment with CTC, DPI, 

GKT or Phox remarkably inhibited Aβ42-induced PARP-1 activity (Fig. 6.8a and c), 

increases in the [Ca
2+

]i (Fig. 6.8b and d), change in the cell morphology (Fig. 6.9a-e) 

and TNF- generation (Fig. 6.9a-e). Taken together, these results suggest that 

PKC/NOX-dependent ROS generation has a critical role in mediating TNF-α-induced 

activation of PARP-1 and TRPM2 channel, microglial cell activation and TNF-α 

generation in microglial cells. 

 

6.2.5 PYK2-MEK/ERK signalling as a positive feedback in TNF-α-induced microglial 

cell activation and TNF-α generation  

The PYK2-MEK-ERK signalling pathway serves as a positive feedback 

mechanism in facilitating TRPM2 channel that is important in Aβ42-induced microglial 

cell activation and TNF-α generation (section 5.2.6). I therefore examined whether such 

a signalling pathway also participates in TNF-α-induced microglial activation and TNF-

α generation. TNF-α-induced microglial cell activation (Fig. 6.10a-b) and TNF-α 

generation (Fig. 6.10c) were strongly inhibited by treatment with PF431396 or U0126.
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 Fig. 6.7 A role of PKC and NOX in TNF-α-induced ROS production in microglial cells.  

(a-c) Left, representative images showing cellular ROS levels (top row: DCF fluorescence; bottom row: counter staining with Hoechst) in cells 

without (CTL) and with exposure to TNF-α at indicated concentrations for 8 hr (a) and, in cells after exposure for 8 hr to 10 ng/ml TNF-α alone or 

treatment with 3 µM CTC (c), 3 µM DPI, 3 µM GKT or 30 µM Phox (d). Right, mean TNF-α-induced ROS production in microglial cells under 

indicated conditions, from 3 independent experiments, using three wells of cells for each condition in each experiment. Scale bar, 40 µm. ***, p < 

0.005 compared between cells without (CTL) and with exposure to 10 ng/ml TNF-α. ###, p < 0.005 compared to the group exposed to TNF-α 

alone. 
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Fig. 6.8 PKC and NOX in TNF-α-induced PARP-1 activation and TRPM2 channel activation in microglial cells.  

(a, c) Left, representative images showing PAR staining (top row) and counter staining with DAPI (bottom row) of microglial cells after exposure for 

8 hr to 10 ng/ml TNF-α alone or treatment with CTC (b), DPI, GKT or Phox (e). Right, mean TNF-α-induced PAR staining in microglial cells under 

indicated conditions from 3 independent experiments, using three wells of cells for each condition in each experiment. (b, d) Left, representative 

single cell images showing Ca
2+

 responses in microglial cells (top row: Fluo-4 fluorescence; bottom row: counter staining with Hoechst). Right, 

mean TNF-α -induced Ca
2+

 responses in microglial cells under indicated conditions from 3 independent experiments, using 3 wells of cells for each 

condition in each experiment. Cells were treated with CTC, DPI, GKT or Phox for 30 min prior to and during exposure to TNF-α. Scale bar, 40 m. 

***, p < 0.005 compared between cells without (CTL) and with exposure to 10 ng/ml TNF-α. ###, p < 0.005 compared to the group exposed to TNF-

α alone. 
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Fig. 6.9 PKC/NOX is critical in TNF-α-induced microglial activation and TNF-α production.  

(a) Representative phase-contrast images showing cell morphology of microglial cells after exposure to 10 ng/ml TNF-α for 24 hr alone or 

treatment with 3 µM CTC, 30 min prior to and during exposure to TNF-α, captured using an EVOS microscope with a 40x object lens. (b, d) 

Scatter plot showing distribution of form factor and aspect ratio values for individual cells after exposure for 24 hr to 10 ng/ml TNF-α alone or 

treatment with 3 µM CTC (b), 3 µM DPI, 3 µM GKT or 30 µM Phox (d), 30 min prior to and during exposure to TNF-α. (c, e) Mean values of 

form factor (top) and aspect ratio (bottom) in cells under indicated conditions from 3 independent experiments, using 3 wells of cells for each 

condition in each experiment. (f) Summary of ELISA assay of TNF-α release from cells without (CTL) and with exposure to 30 ng/ml TNF-α alone 

or treatment with CTC, DPI, GKT or Phox at indicated concentrations from 3 independent experiments, using 3 wells of cells for each condition in 

each experiment. Cells were treated with CTC, DPI, GKT or Phox for 30 min prior to and during exposure to TNF-α. ***, p < 0.005 compared 

between cells without (CTL) and with exposure to TNF-α (f). ##, p < 0.01; ###, p < 0.005 compared to group exposed to TNF-α alone. 
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These results suggest that the PYK2-MEK-ERK signalling pathway is important in 

microglial cell activation and TNF-α production. Furthermore, such treatments strongly 

inhibited TNF-α-induced PARP-1 (Fig. 6.11a-b) and increases in the [Ca
2+

]i (Fig. 6.11c-

d). These results strongly support involvement of the PYK2-MEK-ERK signalling 

pathway in TNF-α-induced activation of PARP-1 and TRPM2 channel. 

To further seek the roles of PKC-dependent NOX activation and the PYK2-

MEK-ERK signalling pathway, I examined the PARP-1 activity in TRPM2-KO 

microglial cells by immunofluorescence staining. As shown in Figure 6.12a-d, TNF-α-

induced PAR production in TRPM2-KO microglial cells was completely suppressed by 

inhibiting PKC and NOX with CTC, DPI, GKT or Phox. In contrast, no inhibition was 

observed in TRPM2-KO microglial cells after treatment with PF431396 or U0126 (Fig. 

6.12e-f). Taken together, these results indicate that PKC-dependent NOX activation 

occurs upstream of PARP-1 activation leading to TRPM2 channel activation. The 

results also suggest that the PYK2-MEK-ERK signalling pathway acts downstream of 

the TRPM2 channel activation as a positive feedback mechanism to stimulate PARP-1 

and thereby TRPM2 channel activation. 
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 Fig. 6.10 PYK2/MEK/ERK is involved in TNF-α-induced microglial cell activation and TNF-α production.  

(a) Scatter plot showing distribution of form factor and aspect ratio values of individual cells without (CTL) and with exposure for 24 hr to 10 ng/ml 

TNF-α alone or treatment with 1 µM PF or 3 µM U0126, 30 min prior to and during exposure to TNF-α.  (b) Mean values of form factor (left) and 

aspect ratio (right) in microglial cells under conditions indicated in (a) from 3 independent experiments, using 3 wells of cells for each condition in 

each experiment. (c) Summary of ELISA assay of TNF-α release by microglial cells without (CTL) and with exposure for 72 hr to 30 ng/ml TNF-α 

alone or treatment with PF or U0126 at indicated concentrations from 3 independent experiments, using 3 wells of cells for each condition in each 

experiment. Cells were treated with PF and U0126 for 30 min prior to and during exposure to 30 ng/ml TNF-α. ***, p < 0.005 compared between 

cells without (CTL) and with exposure to TNF-α. ###, p < 0.005 compared to group exposed to TNF-α alone. 
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 Fig. 6.11 PYK2/MEK/ERK is involved in TNF-α-induced PARP-1 activation and TRPM2 channel activation in microglial cells.  
(a-b) Left, representative images showing PAR level (top row: PAR fluorescence; bottom row: counter staining with DAPI) in cells exposed for 8 hr 

to 10 ng/ml TNF-α alone or together with 1 µM PF (a) or 3 µM U0126 (b), 30 min prior to and during exposure to TNF-α. Right, summary of PAR 

fluorescence intensity under conditions indicated in (a and b), from 3 independent experiments, using 3 wells of cells for each condition in each 

experiment. (c-d) Left, representative single cell images showing Ca
2+

 responses (top row: Fluo-4 fluorescence; bottom row: counter staining with 

Hoechst) in cells exposed to 10 ng/ml TNF-α without and with treatment with 1 µM PF (c) or 3 µM U0126 (d). Right, mean Ca
2+

 responses in cells 

under indicated conditions from 3 independent experiments, using 3 wells of cells for each condition in each experiment. ***, p < 0.005 compared 

between cells without (CTL) and with exposure to TNF-α. ###, p < 0.005 compared to group exposed to TNF-α alone. 
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Fig. 6.12 PKC/NOX activation is required for, and PYK2/MEK activation depends on, TNF-α-induced TRPM2 channel activation.  

(a-f) Left, representative images showing PAR level (top row: PAR fluorescence; bottom row: counter staining with DAPI) in TRPM2-KO cells 

exposed for 8 hr to 10 ng/ml TNF-α alone or together with 3 M CTC (a), 3 M DPI (b), 3 M GKT (c), 30 M Phox (d), 1 M PF (e) or 3 µM 

U0126 (f), 30 min prior to and during exposure to 10 ng/ml TNF-α. Right, mean PAR fluorescence intensity in cells under indicated conditions, 

from 3 independent cell preparations, using three wells of cells for each condition in each experiment. Scale bar, 40 µm. ***, p < 0.005 compared 

between cells without (CTL) and with exposure to TNF-α alone and, ###, p < 0.005 compared to group exposed to TNF-α alone. 
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6.3 DISCUSSION 

 The studies presented in this chapter show that the TRPM2 channel plays a 

crucial role in TNF-α autocrine/paracrine signalling mechanism in microglial cells, in 

which TNF-α induces microglial cell activation and TNF-α production. In addition, 

PKC/NOX-mediated ROS production and subsequent PARP-1 activation are required 

for TNF-α-induced TRPM2 channel activation. Furthermore, the PYK2-MEK-ERK 

signalling pathway acts a positive feedback mechanism downstream of the TRPM2 

channel activation to further enhance activation of PARP-1 and TRPM2 channel (Fig. 

6.13). 

 The findings described in the previous chapter show that genetic deletion of the 

TRPM2 channel expression resulted in loss of TNF-α-induced increase in the [Ca
2+

]i in 

microglial cells (section 3.2.3), suggesting a crucial role of TRPM2 channel in TNF-α-

induced Ca
2+

 signalling. In the present chapter, I further showed that TNF-α induced 

increase in the [Ca
2+

]i in WT microglial cells was largely absent upon removal of 

extracellular Ca
2+

 (Fig. 6.1a). In addition, TNF-α-induced increase in the [Ca
2+

]i was 

almost completely abolished by inhibition of the TRPM2 channel using 2-APB (Fig. 

6.1b). These findings strengthen the notion that suggest the TRPM2 channel-mediated 

extracellular Ca
2+

 influx mediates TNF-α-induced Ca
2+

 signalling in microglial cells. 

Microglial cell activation induced by TNF-α
 
was significantly inhibited in TRPM2-KO 

cells, as shown in the previous chapter (section 3.2.6). Treatment with 2-APB 

significantly inhibited TNF-α-induced microglial cell activation (Fig. 6.2a-c), 

confirming a critical role for the TRPM2 channel in TNF-α-induced microglial 

activation.  

TNF-α is a major inflammatory mediator generated by microglial cells upon 

activation by various DAMP molecules such as Aβ42 as shown in chapter 5, and 

strongly implicated in multiple neurodegenerative diseases (Paouri et al., 2017; 

Feldmaan, et al., 2002). It is also known that TNF-α itself can induce microglial cell 

activation via TNF-α receptor (Kuno et al., 2005). Studies presented in the previous 

chapter show a critical role for the TRPM2 channel in mediating Aβ42-induced 

microglial cell activation and TNF-α generation (see section 5.2.3). However, it was 

unclear whether the TRPM2 channel is critically involved in TNF-α induced microglial 

cell activation and generation of itself. In the present study, treatment of WT microglial 

cells with TNF-α increased the TNF-α expression (Fig. 6.3a-b) and release (Fig 6.3c). 

Such responses were remarkably inhibited in TRPM2-KO microglial cells (Fig. 6.4a-c), 
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and abolished upon inhibition of the TRPM2 channel using 2-APB (Fig 6.4d). PI 

staining assay showed no necrotic cell death after treatment with TNF-α (section 3.2.5), 

strongly suggesting that release of TNF-α is not due to microglial cell death. 

Collectively, the results presented in this chapter provide strong evidence to show an 

important role of the TRPM2 channel in mediating TNF-α-induced microglial activation 

and TNF-α generation.  

So far, studies using genetic and pharmacological approaches have provided 

compelling evidence to show an important role of the TRPM2 channel in TNF-α 

induced cell activation and TNF-α production in microglial cells. However, the 

underlying signalling mechanisms were not clearly defined. Studies presented in chapter 

5 suggest that stimulation of PARP-1 is crucial in Aβ42-induced TRPM2 channel 

activation and microglial cell activation (section 5.2.4). Consistently, a significant 

increase in the PAR generation, which was concentrated in the nucleus, was observed in 

microglial cells following exposure to TNF-α (Fig. 6.6a-b). Such an increase in the PAR 

generation was abolished by treatment with PJ34 (Fig. 6.6c-d). These results suggest 

TNF-α stimulated the PAPR-1 activity. In addition, TNF-α-induced increase in the 

[Ca
2+

]i (Fig. 6.5a-b), change in the cell morphology (Fig. 6.5c-f) and TNF-α generation 

(Fig. 6.5g) in microglial cells were prevented by treatment with PJ34, further suggesting 

that PARP-1 activation is involved in TNF-α-induced TRPM2-mediated microglial cell 

activation and TNF-α generation. 

TNF-α-induced NOX activation has been shown in various cell types to results 

in accumulation of intracellular ROS (Morgan and Liu, 2011; Moe et al., 2006). In 

addition, a previous study suggested a crucial role of PKC in the ROS generation via 

NOX activation following exposure to TNF-α (Frey et al., 2002). As found for Aβ42-

induced microglial cell activation (section 5.2.5), TNF-α-induced ROS production in 

microglial cells (Fig 6.7a) was prevented by inhibiting PKC and NOX (Fig. 6.7b-c), 

suggesting a role of PKC and NOX is also involved in TNF-α-induced ROS production. 

Studies presented in this chapter also showed that PKC/NOX-mediated ROS production 

is important in TNF-α-induced activation of PARP-1 (Fig. 6.8a and c) and TRPM2 

channel (Fig. 6.8b and d).  Activation of these mechanisms is critical in TNF-α-induced 

microglial cells activation (Fig 6.9a-e) and TNF-α generation (Fig. 6.9f). Collectively, 

these results provide compelling evidence to show that PKC/NOX-mediated ROS 

production is critical in TNF-α-induced activation of PARP-1 and TRPM2 channel that 

leads to microglial cell activation and TNF-α generation.   
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A previous study showed involvement of PYK2 in TNF-α-induced ROS 

generation (Zhao and Bokoch, 2005). Furthermore, as shown in the previous chapter, 

the PYK2-MEK-ERK signalling pathway acts as a positive feedback mechanism, 

downstream of the TRPM2 channel activation, to enhance activation of PARP-1 and 

TRPM2 channel in Aβ42-induced microglial cell activation and TNF-α production 

(section 5.2.10). Here, I showed a similar role of such mechanisms in TNF-α-induced 

activation of PARP-1 (Fig 6.11a and b) and TRPM2 channel (Fig 6.11c and d), 

microglial cell activation (Fig. 6.10a and b) and TNF-α production (Fig. 6.10c). As 

shown Aβ42-induced microglial cell activation in previous chapters, the signalling 

mechanisms engaging TNF-α-induced microglial cell activation and TNF-α production 

involve sequential activation of PKC/NOX-mediated ROS production and PARP-1 

activation, which acts upstream of the TRPM2 channel activation, and the PYK2-MEK-

ERK that positively feeds back into activation of PARP-1 (Fig. 6.12). 

Overall, studies described in this chapter have demonstrated an important role of 

the TRPM2 channel in mediating TNF-α-induced autocrine/paracrine signalling in 

microglial cells. PKC-dependent NOX-mediated ROS production and PARP-1 

activation are required for TNF-α-induced TRPM2 channel activation and the PYK2-

MEK-ERK signalling pathway as a positive feedback mechanism further stimulates 

activation of PARP-1 and TRPM2 channel (Fig. 6.13). These novel findings suggest a 

positive autocrine/paracrine loop in the activation of microglial cells via TNF-α and 

therefore, offer new insights into the role of TNF-α as one of the major factors in 

multiple CNS pathologies. 
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Fig. 6.13 Schematic summary of the TNF--induced autocrine/paracrine 

signalling mechanisms via TRPM2 channel in microglial cells.  

TNF-activates the TRPM2 channel involving multiple-step intracellular 

signalling pathways in microglial cell activation and TNF- generation. TNF- 

stimulates PKC and NOX. ROS activates PARP-1 and PARG in the nucleus leading 

to ADPR production and subsequent activation of TRPM2-dependent Ca
2+

 influx to 

increase the cytoplasmic Ca
2+

 concentrations ([Ca
2+

]c). Elevated [Ca
2+

]c in turn 

activate the PYK2/MEK/ERK signalling pathway as a positive feedback 

mechanism that amplifies activation of PARP-1, leading to TRPM2-mediated Ca
2+

 

overloading, microglial cell activation and TNF- generation. 
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CHAPTER 7 

GENERAL DISCUSSION AND CONCLUSIONS 
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7.1 GENERAL DISCUSSION AND CONCLUSIONS  

The studies presented in this thesis have provided valuable insights into the 

critical role of TRPM2 channel in microglial cell functions, including cell death, cell 

activation and pro-inflammatory cytokine TNF-α release, in response to DAMPs such 

as Zn
2+

, Aβ42 and TNF-α as well as H2O2 (Fig. 7.1). In addition, the studies have 

revealed novel signalling mechanisms by which these stimuli activates the TRPM2 

channel (Fig. 7.1). This chapter will summarise the key findings and discuss the future 

direction. 

Studies over the past several years suggest that the Ca
2+

-permeable TRPM2 

channel on the cell surface acts as a major molecular mechanism for ROS-induced Ca
2+

 

signalling in immune cells (Mortadza et al., 2015). Previous studies provide evidence to 

show an increase in the [Ca
2+

]i in response to H2O2, Aβ and TNF-α in different cell 

types (Kraft et al., 2004; Fonfria et al., 2005; Zhang et al., 2006). The studies presented 

in this thesis confirmed that the increase in the [Ca
2+

]i was induced by H2O2, Zn
2+

, Aβ42 

and TNF-α in microglial cells (chapter 3), and further showed that such Ca
2+

 signalling 

was lost in TRPM2-KO microglial cells or largely abolished in the absence of 

extracellular Ca
2+

. These results provide compelling evidence to indicate that the 

TRPM2 channel plays a major role in H2O2- or DAMP-induced Ca
2+

 signalling via 

mediating Ca
2+

 influx. 

The experiments conducted in this thesis further showed that exposure to H2O2 

or Zn
2+ 

evoked substantial cell death in WT microglial cells, which was abolished in 

TRPM2-KO microglial cells (chapter 3) and, in addition, attenuated by 2-APB (chapter 

4). These results indicate a crucial role for the TRPM2 channel in mediating H2O2- or 

Zn
2+

-induced microglial cell death. The signalling mechanisms by which exposure to 

H2O2 and Zn
2+

 induces the TRPM2 channel activation were further investigated in WT 

microglial cells (chapter 4). Similarly to H2O2, Zn
2+

 stimulated PARP-1 dependent PAR 

generation in the nucleus. Further studies demonstrated that H2O2- and Zn
2+

-induced 

microglial cell death was antagonised by PJ-34 and DPQ. Such results suggest that 

PARP-1 is responsible for the TRPM2 channel activation following the exposure to 

H2O2 or Zn
2+

, resulting in microglial cell death. As discussed in section 1.8, microglial 

and macrophage cells share several functions. Study by single cell Ca
2+

 imaging showed 

that the TRPM2 channel in macrophage cells functions as a Ca
2+

-permeable channel 

that mediates Ca
2+

 influx upon exposure to H2O2 (Zou et al., 2013). Such a Ca
2+

 

signalling mechanism is responsible for the H2O2-induced macrophage cell death.  
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Fig. 7.1 Schematic summary of the signalling mechanisms mediating Zn
2+

, 

A42- and TNF--induced TRPM2 channel activation, microglial activation 

and TNF- generation.  

Exposure to Zn
2+

, A42- and TNF- induces activation of protein kinase C (PKC) 

and NADPH oxidases (NOX), including NOX1/4 and NOX2, leading to generation 

of ROS. ROS stimulate activation of poly(ADP-ribose) polymerase-1 (PARP-1) in 

the nucleus to generate ADP-ribose (ADPR). ADPR binds to activates the TRPM2 

channel, resulting extracellular Ca
2+

 influx to increase the cytosolic Ca
2+

 

concentrations ([Ca
2+

]c). Intracellular Ca
2+

 stimulates the PYK2/MEK/ERK 

signalling pathway to further enhance activation of PARP-1 and TRPM2 channel.  

TRPM2 channel activation is required for Zn
2+

-induced microglial cell death as 

well as A42- and TNF--induced microglial activation and generation of TNF-, a 

key proinflammatory cytokine implicated in neuroinflammation. 
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Furthermore, H2O2-induced macrophage cell death was significantly reduced by PJ-34 

and TRPM2 channel deficiency. The results from both previous (Zou et al., 2013) and 

present studies provide consistent evidence to suggest that the TRPM2 channels in 

macrophage and microglial cells functions as a cell surface Ca
2+

-permeable channel and 

TRPM2-mediated extracellular Ca
2+

 influx constitutes the principal mechanism 

resulting in H2O2-induced macrophage/microglial cell death.  

NOX represents an important source for ROS generation in the brain and PKC 

stimulates NOX. Zn
2+

-induced ROS production, PARP-1 activity, increase in the [Ca
2+

]i 

and cell death were strongly reduced by inhibiting PKC and NOX, including NOX1/4 

and NOX2.  These results provide strong evidence to show that PKC/NOX-mediated 

ROS generation is critical in Zn
2+

-induced stimulation of PARP-1 activity, TRPM2-

mediated increase in the [Ca
2+

]i and cell death in microglial cells. Previous studies 

suggest that ROS can stimulate PARP-1 via the MEK/ERK signalling. In monocytes, 

TRPM2 channel-mediated Ca
2+

 influx activates the PYK2/MEK/ERK signalling 

pathway in response to H2O2 in vitro or oxidative stress in vivo, which is important in 

chemokine generation (Yamamoto et al., 2008).  Here, I showed that the 

PYK2/MEK/ERK signalling pathway is important in Zn
2+

-induced stimulation of 

PARP-1, TRPM2-mediated increase in the [Ca
2+

]i and cell death .  

It is worth mentioning many of the inhibitors used in the study are limited in 

their specificity. Nonetheless, the results obtained using pharmacological inhibitors are 

consistent with the hypothesis that the PYK2/MEK/ERK signalling pathway constitutes 

a positive feedback mechanism that amplifies Zn
2+

-induced stimulation of PARP-1, 

TRPM2 channel activation, and increase in the [Ca
2+

]i that ultimately drives cell death. 

Activation of such signalling mechanisms offers a feasible explanation for the 

significant delay in Zn
2+

-induced cell death as compared to Zn
2+

-induced increase in the 

[Ca
2+

]i.   

In striking contrast with Zn
2+

, H2O2-induced effects were completely insensitive to 

inhibitors of the PKC/NOX and PYK2/MEK/ERK signalling mechanisms. Such 

differentiating results could be due to much lower concentrations of ROS produced in 

microglial cells in response to Zn
2+

 than the concentration of exogenous H2O2. It is also 

worth mentioning that when heterologously expressed in HEK293 cells, the TRPM2 

channel in the open state but not in the closed state becomes inactivated upon exposure 

to extracellular Zn
2+

 at concentrations used in this study (Yang et al., 2011). The exact 

reason for the discrepancy in terms of Zn
2+

 inhibition of the endogenous and 
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heterologously overexpressed TRPM2 channels is currently unclear, and may arise from 

the different TRPM2 expression level. Alternatively or additionally, Zn
2+

 has been 

rapidly transported by yet defined Zn
2+

-transporting mechanisms into the cytosol in 

order to induce PKC activation and as a result, extracellular Zn
2+

 concentrations 

insufficiently inhibit the TRPM2 channel. The findings reported in chapter 4, despite 

their relevance to Zn
2+

-related brain damage in vivo remaining to be further explored, 

should help to evolve a better and mechanistic insight into Zn
2+

-induced cytotoxicity. 

This part of the work has been recently published in Scientific Reports (Mortadza et al., 

2017). 

Aβ, a major DAMP inducing neuroinflammation via microglial activation and 

excessive generation of pro-inflammatory mediators, contributes in AD pathogenesis. 

Microglial cell activation and TNF-α production in response to Aβ42 have been of 

particular interest. Emerging evidence supports a role for the TRPM2 channel in Aβ-

induced neuroinflammation. I have examined the role of the TRPM2 channel in 

mediating Aβ42-induced microglial activation and TNF-α generation (chapter 5). Aβ42-

induced microglial activation and TNF-α generation were observed in WT microglial 

cells but were ablated by genetic or pharmacological inhibition of the TRPM2 channel. 

Exposure to Aβ42 raised the [Ca
2+

]i via promoting Ca
2+

 influx, which was prevented by 

TRPM2-KO. Aβ42 induced ROS production and PARP-1 activation.  Aβ42-induced ROS 

production and PARP-1 activation as well as an increase in the [Ca
2+

]i, microglial 

activation and TNF-α production, were suppressed by inhibiting PKC and NOX. 

Furthermore, Aβ42-induced PARP-1 activation, increase in the [Ca
2+

]i, microglial 

activation and TNF-α production were attenuated by inhibiting the Ca
2+

-sensitive PYK2 

and downstream MEK/ERK kinases. These results provide compelling evidence to 

support a critical role for the TRPM2 channel in Aβ42-induced microglial activation and 

TNF-α production. The results also suggest that Aβ42 activates the TRPM2 channel via 

PKC/NOX-mediated ROS production and PARP-1 activation, which is further 

enhanced by the PYK2/MEK/ERK signalling pathway as a positive feedback 

mechanism. These findings provide novel insights into the mechanisms underlying Aβ-

induced neuroinflammation. 

The studies presented in this thesis also showed TNF-α as an autocrine/paracrine 

mediator in microglial cells (chapter 6). TNF-α induced microglial cell activation and 

TNF-α production confirming the finding from a previous study that stimulation of 

microglial cells with TNF-α significantly increases TNF-α production (Kuno et al., 
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2005). The studies presented in this thesis further showed a critical role of the TRPM2 

channel in such TNF-α-induced autocrine or paracrine signalling. TNF-α induced 

TRPM2 channel activation involves ROS production and PARP-1 activation. 

Additionally, the PYK2/MEK/ERK signalling pathway acts as a positive feedback 

signalling mechanism that further amplifies TNF-α-induced activation of PARP-1 and 

TRPM2 channel, and subsequently drives microglia cell activation and TNF-a 

production. TNF-α-induced autocrine/paracrine activation in microglial cells may 

explain the prolonged activation of microglial cells that occurs in the chronic stages of 

inflammatory and neurodegenerative diseases. A limitation of this study is that the data 

of the TNF-α release from microglial cells was analysed based on the total amount of 

TNF-α presents in the culture media without excluding the possible contamination of 

residual exogenous TNF-α. In fact, the amount of TNF-α release by microglial cells was 

much less than the amount of exogenous TNF-α applied. The reason for such 

discrepancy is presently unclear. As such, further investigation is required, to exclude 

the possible contribution of exogenous TNF-α. The findings from such investigations 

would provide clearer evidence to conclude the role of the TRPM2 channel in mediating 

production of TNF-α by TNF-α-stimulated microglial cells.   

In conclusion, the studies presented in this thesis demonstrate that the microglia 

TRPM2 channel is an exciting avenue to enable a better understanding of CNS 

pathologies and selective TRPM2 inhibitors may provide a plausible therapeutic 

treatment for multiple neurodegenerative diseases.   
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