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Abstract 
Morphogens are soluble signalling molecules that regulate a broad spectrum of biological 

processes. However, the distances and scales over which this regulation occurs are 

unclear. To date, many studies have highlighted source-sink mechanisms for morphogen 

gradient formation but fail to take the role of the tissue microenvironment into account. 

Using a systems-based approach we show that the chemokine CXCL13 is regulated by 

the B-cell microenvironment on distinct but interconnected levels of biological 

organization. 

 
CXCL13 is a key determinant of humoral immune responses, regulating the localisation 

of lymphocytes within lymphoid tissues. Due to a complex and dynamic interaction 

network occurring over broad spatiotemporal scales, mapping the spatial distribution of 

CXCL13 in situ is challenging.  To address this we have mapped the 3-dimensional 

organisation of CXCL13+ stromal cells in situ using a fluorescent reporter system, 

identifying three distinct but interconnected stromal subsets that are unique in their 

network properties. We quantify CXCL13 dynamics using high-speed narrowfield 

microscopy in collagen matrix and lymph node tissue sections with results suggesting that 

diffusion is highly constrained by local tissue microanatomy.   

 

However, this data alone is insufficient to describe CXCL13 gradient formation. To 

consolidate this data we employ a quantitative modelling approach hybridising different 

techniques into a high fidelity in silico representation of the B-follicle, where immune 

cells can interact with stroma capable of creating and shaping complex physiological 

gradients. Simulation analyses and immunohistochemistry suggest that chemokine fields 

within the follicle are dynamic and non-uniform, with multiobjective optimization 

analysis suggesting that this spatial configuration is designed to promote scanning rates. 

Taken in concert, our data suggests that CXCL13 acts over short distances creating a 

complex landscape of expression. Importantly, this study provides a basis for 

understanding the spatial distribution of morphogens with complex binding behaviours. 
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1. Overview of the Research Context 
	
Through the formation of concentration gradients, morphogens such as chemokines, 

cytokines, and growth factors drive graded responses to extracellular signals, fine-tuning 

cell behaviours to regulate processes such as development, the maturation of adaptive 

immune responses, and tumorigenesis. Despite their fundamental importance, the precise 

mechanisms driving morphogen gradient formation in complex tissues have proven 

enigmatic and controversial, due in part to a dearth of experimental techniques capable of 

manipulating molecular gradients in situ 

 

Recently, a diffusion-consumption scheme has been used to describe the spatial 

distribution of the cytokine IL-2 (Oyler-Yaniv et al., 2017).  Consistent with the source-

sink scheme of gradient formation, ACKR4 expressing Lymphatic Endothelial Cells 

(LECs) lining the ceiling of the subscapular sinus have been implicated in the formation 

of functional CCL21 gradients in the lymph node (Ulvmar et al., 2014). Interestingly, 

both molecules are known to dynamically interact with the extracellular matrix (ECM) 

through carbohydrate binding domains, a property common to many morphogens that 

may limit the capacity to undergo free diffusion, particularly in dense tissues (Barmore et 

al., 2016; Hasan et al., 1999; Wrenshall et al., 2003).  

 

For many molecules, this ability to bind ECM components is a key determinant of 

functionality. In vivo, truncation of the highly charged C-terminus prevents its 

immobilization to high endothelial venules and affects lymphocyte homing to the lymph 

node (Stein et al., 2000). Mice carrying a mutated form of CXCL12 (CXCL12gagtm) where 

interactions with the ECM are impaired show increased amounts of hematopoietic 

precursors, an impaired ability to support revascularization and impaired humoral 

immune responses. The structure of the germinal centre in CXCL12gagtm mice was 

impaired, as well as having fewer somatic mutations in immunoglobulin genes(Barinov et 

al., 2017). The role of the microenvironment in shaping gradients has also been described 

in the context of development. Fibroblastic Growth Factors (FGF) are critical for 

mesoderm induction as well as limb and lung development, modulating the proliferation 

and differentiation of a variety of cells of mesenchymal and neuroectodermal origin. 

Receptor dimerization is a prerequisite for FGF signalling and requires extracellular 

matrix components (Pellegrini et al., 2000). These experimental studies are supported by 
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mathematical analyses predicting that gradient formation is increased when chemokines 

are secreted in matrix-binding form as compared to a non matrix-interacting form (Fleury 

et al., 2006). In this thesis we focus on CXCL13, a chemokine that regulates the induction 

and maturation of antibody-mediated immune responses, seeking to address the following 

research question: 

 

To what extent does the localised tissue microenvironment affect CXCL13 gradient 

formation, and how does the spatial distribution of CXCL13 affect the onset of humoral 

immune responses? 

 

 In the following sections we give a broad overview of antibody-mediated immune 

responses highlighting the key molecules, cell types, and time points of interest. Lastly we 

describe some emerging technologies used to study this pathway, focusing on imaging 

and systems biology approaches that are relevant to the work conducted in this thesis.  
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1.1 Overview of the Humoral Immune Response 
 

The immune system is the collective term given to the cells, molecules, processes, tissues 

and organs that protect the health of an organism. It is responsible for mounting defences 

against pathogens and for clearing tumorous cells. Broadly speaking, the immune system 

can be divided into two main categories: innate and adaptive. 

Innate immunity is of ancient origin with all animals and plants having some form of 

innate defence, such responses occur rapidly and in a non-specific manner upon infection. 

Adaptive responses take longer to develop but are capable of eliminating infections more 

efficiently through highly specific recognition of foreign substances, more commonly 

referred to as antigen (Ag).  Specificity is provided through the immune repertoire; 

diversity in the repertoire is initially introduced via the process of VDJ recombination, 

where lymphocytes randomly assemble different gene segments – known as variable (V), 

diversity (D) and joining (J) genes – in order to generate unique receptors that can 

recognise a diverse array of molecules (Murphy, 2011). 

 
In the following sections we focus on a specific component of adaptive immunity, the 

humoral immune response. Many of the microorganisms that cause infectious disease in 

humans multiply in the extracellular spaces of the body, and most intracellular pathogens 

spread by moving from cell to cell through the extracellular fluids (Murphy, 2011). The 

extracellular spaces are protected by the humoral immune response in which antibodies 

are produced by B-lymphocytes. Antibodies are dimeric proteins combined to protect 

against surface antigens expressed by bacteria, viruses and protozoa (Figure 1.1). This is 

achieved through three main mechanisms: neutralization, opsonisation and activation of 

the complement system (Murphy, 2011). 

 

Given that bacteria and viruses can replicate rapidly, the immune system needs an 

efficient mechanism for creating large amounts of highly specific antibody-producing 

cells capable of dealing with high pathogen titres. During an immune response, the 

amount and affinity of immunoglobulin increases in a process known as affinity 

maturation (Victora, 2014). This process is tightly regulated, occurring in a specialized 

microenvironment known as the germinal centre (GC) where secondary diversification of 

the immune repertoire is achieved through three mechanisms: (i) somatic hypermutation 

(SHM), introducing point mutations into the variable regions to alter antigen affinity; (ii) 
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class switching which increases the functional diversity of the repertoire through 

replacement of the constant (C) region; and (iii) gene conversion which is similar to SHM 

but blocks of codons are donated, usually from an upstream site, instead of point 

mutations (Murphy, 2011).  

 

 

 

	
Figure 1.1: Immunoglobulin structure. On the right is the crystal structure of IgG2 for comparison with 
the basic scheme presented on the left. 

 

 

Following diversification, B cells must compete for survival signals with those bearing 

the highest-affinity receptors surviving the selection process. B cells which pass this 

checkpoint may then contribute to immunological memory through two distinct 

populations of cells: (i) long-lived plasma cells (PCs) which secrete neutralizing 

antibodies long after Ag clearance and (ii) memory B cells that rapidly proliferate and 

differentiate into PCs following recurrent exposure to the initial immunizing Ag (Victora 

and Mesin, 2014).  

 

It is important to note reports of somatic hypermutation occurring at extrafollicular sites 

in the context of T-independent antigens associated with salmonella infection (Di Niro et 

al., 2015). However, this has not been extensively studied and so the role of the localised 

tissue architecture in this context is poorly understood. For the remainder of this thesis we 

focus on the canonical antibody maturation pathway associated with T-cell dependent 

antigen.  

 

 

Light Chain

Heavy Chain

Constant region
Variable region

Heavy Chain 
Heavy Chain
Light Chain 
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1.2 The Induction of Humoral Immune Responses in Lymph Nodes 
	

Dysregulation of affinity maturation can lead to inefficient or inappropriately directed 

immune responses, with most human B cell lymphomas originating from GC B cells 

(Basso and Dalla-Favera, 2015). To regulate the induction of affinity maturation, 

checkpoints must be reached before a B-cell can undergo activation and selection (Figure 

1.2). Specifically, a B-cell must (i) acquire and process antigen; (ii) present antigen to 

CD4+ T helper cells via MHC-II; and (iii) organise into a germinal centre (Pereira et al., 

2010).  For this complex cascade of interactions to occur, a B-cell must navigate 

effectively through dense secondary lymphoid tissues. As few as one in 100,000 B and T 

lymphocytes are specific for a single Ag, yet these cells must come together if an 

effective antibody response is to occur (Murphy, 2011). As T cells and B cells mostly 

occupy two distinct zones in peripheral lymphoid tissues - the T-cell areas and the 

primary lymphoid follicles - there is a need for the precise regulation of cell migration. B-

cell activation is thus highly dependent on the architecture of secondary lymphoid organs 

(Cremasco et al., 2014; Junt et al., 2008; Park et al., 2012). 

 

 

 

 

Figure 1.2 Structure of the B-cell microenvironment and the current model of B-cell activation: (a) 
Lymph nodes have a highly compartmentalised architecture with distinct B-follicles (green) and T-zones 
(red), scale bar 500µm. (b) Before becoming activated a B cell must interact with a specified pathogen. This 
is achieved through CXCL13 mediated scanning of the B-follicle. To undergo full activation, an antigen 
primed B-cell must subsequently respond to CCL19 and CCL21 to migrate to the T-zone to acquire an 
additional signal from antigen specific T-helper cells. Image (a) provided by Dr. A. Thuery 

 
 
 
 
 
 
 

T Cell Zone
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B cell
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500μm
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1.3 Regulation of B-Cell Activation by Lymph Node Architecture 
 
Lymphoid tissues are responsible for the orchestration of functional immune responses. 

This is achieved through the development and maintenance of niches that support the 

retention, activation and proliferation of adaptive immune cells in response to antigenic 

stimulation. Lymph nodes (LNs) are strategically positioned collecting stations for Ags 

present in peripheral tissues of higher animals. A single inguinal murine LN recruits ~2% 

of the recirculating lymphocyte pool per day and displays a circadian rhythm; homing is 

highest at night, with more cells leaving the tissue during the day (Druzd et al., 2017).  

During inflammation, the rates of lymph flow and lymphocyte accumulation are markedly 

increased, promoting antigen recognition and lymphocyte activation (Kumar et al., 2010). 

The dynamics of lymphatic flow patterns in lymph nodes are difficult to assess 

experimentally but have been quantified using a computational flow model (Jafarnejad et 

al., 2015a). This model predicts that about 90% of lymph takes a peripheral path via the 

subcapsular and medullary sinuses and that structural changes in the LN 

microenvironment, as well as changes in inflow/outflow conditions dramatically alter the 

distribution of lymph.  

Naive lymphocytes search for cognate antigen during frequent visits to these local 

‘antigen libraries’ entering via High Endothelial Venules (HEVs) in a chemokine and 

adhesion molecule regulated manner (Coelho et al., 2013).  Upon entering the lymph node 

lymphocytes migrate to their respective niches (Figure 1.3) within the parenchyma to 

scan for antigen (Coelho et al., 2013; Gunn et al., 1998a; Pereira et al., 2010). The key 

niches within the lymph node are: (i) the subcapsular sinus (SCS); (ii) the B-follicle; (iii) 

the T-zone and (iv) the medulla (Chang and Turley, 2015; Junt et al., 2008).  The 

subcapsular sinuses are cavities that drain the afferent lymphatics and are found directly 

beneath the external fibrous capsule of the LN. Macrophages guard the entry of large 

antigen while antigen less than 70kDa can filter into the parenchyma through a conduit 

network of microchannels (Rantakari et al., 2015). The B cell follicles are structures 

responsible for regulating humoral immune responses. The follicles surround a central T-

cell zone, which in turn leads to the medulla. The medulla contains large blood vessels, 

sinuses and medullary cords that contain antibody-secreting plasma cells and 

macrophages.  
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Non-hematopoietic stromal cells, which form the connective tissue required to support the 

function of lymphocytes, are key for creating and maintaining these niches (Junt et al., 

2008).  This support is provided by direct cell contact (supported by adhesion molecules 

such as integrins) or through soluble factors such as cytokines and chemokines. In both 

humans and mice, aged LNs are associated with a decreased number and size of GCs, as 

well as altered stromal cell numbers and chemokine expression patterns (Turner and 

Mabbott, 2017). 

 

Figure 1.3: High level overview of lymph node structure and key cell types. Lymph flows into the 
lymph node via the afferent lymphatic vessels and drains in to the subscapular sinus. Within the lymphatic 
sinus are macrophages that guard the lymph node parenchyma from pathogens. Directly underneath the SCS 
are B-follicles. Primary follicles contain large numbers of B cells and an immature FDC network while 
secondary follicles contain germinal centers and mature FDC networks. T cells, dendritic cells and FRCs 
populate the T-cell zone, while the medulla contains large numbers of macrophages and plasma cells. In the 
context of the humoral immune response B cells enter via HEVs and migrate towards the follicles. Once in 
the follicles they scan for cognate antigen. If they fail to acquire antigen within 16-24 hours they leave the 
lymph node in an S1P dependent manner.  If B cells receive the relevant signals they may go on to seed a 
germinal center reaction and undergo affinity maturation.  
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1.4 Regulation of Lymph Node Architecture by Stromal Cells 
	

Lymphoid tissue architecture is organised by an interconnected network of stromal cells. 

Stromal-lymphocyte interactions are a core feature of lymphoid tissue formation and 

maintenance, and occur irrespective of the tissue type or anatomical location (Butler et al., 

2016b). LNs start to develop at embryonic days 11 and 16 where pre-natal type 3 innate 

lymphoid cells known as lymphoid tissue inducer cells (LTis) are attracted to the 

chemokine CXCL13 produced by fibroblastic Lymphoid Tissue organizer cells 

(LTos)(Finke et al., 2002). LTα1β2 signals from LTi cells promotes LTβR–expressing 

LTos to up-regulate the chemokines CXCL13, CCL19 and CCL21, the cytokine 

Interleukin-7 (IL-7), as well as the adhesion molecules VCAM-1, ICAM-1 and 

MAdCAM-1, leading to an increased recruitment of cells and promoting the expansion 

and differentiation of the stromal network (Fütterer et al., 1998; van de Pavert and 

Mebius, 2010; Schmutz et al., 2009). Marginal Reticular Cells (MRCs) are among the 

first subset of stromal cells to appear, differentiating in response to lymphotoxin that is 

produced by LTi cells and subsequently localizing just below the lymph node SCS. Here, 

they produce CXCL13, facilitating LN colonisation by lymphocytes that drive the 

functional maturation of stromal cells leading to a rapid increase in LN size and to the 

formation of distinct T and B cell areas (Coles et al., 2006; Roozendaal and Mebius, 

2011). 

 

In the adult LN, distinct stromal subsets create and maintain the B-cell niche through the 

provision of key signals that drive lymphocyte migration, differentiation and activation 

(Gross et al., 2000; Gunn et al., 1998a; Moore et al., 1999; Rahman et al., 2003; 

Schneider et al., 1999; Wang et al., 2011a). Increased investigation of these cells has 

shown that they are heterogeneous with unique transcriptional profiles (Table 1) 

(Malhotra et al., 2012). This cross-talk is also a key determinant of B-cell homeostasis 

and ensures that each cell receives the appropriate signal at the appropriate time (Batista 

and Harwood, 2009; Pereira et al., 2010). A key mechanism by which this cross talk 

occurs is through soluble factors such as cytokines and chemokines.  
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Subset Location Function Secretes 
 

Markers 
 

Fibroblastic Reticular 
Cells 

(FRC) 

T-zone Formation of conduit network 
Chemokine production 
APC adhesion 
Antigen presentation 
 

CCL21 
CCL19 
 

CD45 -  
CD31 - 
Gp38 + 
ER-TR7+ 

Follicular Dendritic Cells 
(FDC) 

Follicle Antigen capture and presentation  
Chemokine production 
 
 

CXCL13 
 

CD45 -  
CD31 - 
Gp38 - 
CD21/35 + 
ER-TR7 - 

Marginal Reticular Cells 
(MRC) 

Subscapular 
zone 

Primes innate cells 
Chemokine production 
 
 

CXCL13 
 

CD45 - 
CD31 - 
Gp38 + 
MadCam + 
ER-TR7 + 
RankL+ 

CXCL12+ Reticular Cells 
(CRC) 

GC dark 
zone 
 

Dark zone organisation 
 
 
 
 

CXCL12 CD45 - 
Gp38+ 
CD21/35- 
ER-TR7- 

Lymphatic Endothelial 
Cells (LEC) 

Lymphatics 
 

Transport of lymph, antigens and cells  
Chemokine production  
Formation of chemotactic gradients 
 
 

S1P CD45 - 
CD31 + 
Gp38 + 
ER-TR7+ 

Blood Endothelial Cells 
(BEC) 

Cortex Transport of blood  
Lymphocyte trafficking 
 
 
 

CCL21 CD45 - 
CD31 + 
Gp38 - 
ER-TR7+ 
 

Pericytes Vasculature Regulate blood flow 
 
 
 

CCL21 
CCL19 

CD45 – 
GP38- 
CD31- 
Integrin α7+ 
 

 
Table 1.1 Lymph node stromal cell subsets. The marker is CD45 is expressed by haematopoietic cells, 
and is a member of the protein tyrosine phosphatase family. It is an essential regulator of B and T cell 
receptor signalling. CD31 is an endothelial marker but is also found on the surface of platelets, monocytes, 
neutrophils and some types of T cells. It acts as an adhesion molecule but has been shown to have diverse 
roles in vascular biology(Woodfin et al., 2007). GP38 is a mucin type protein that contributes to the 
contractility of the lymph tissue reticulum (Astarita et al., 2015). Madcam is an adhesion molecule that 
contributes to lymphocyte entry into tissues. CD21/35 are complement receptors that process complement 
opsonised immune complexes. Rank ligand is a member of the tumour necrosis factor cytokine family, mice 
that overproduce RANKL in hair follicles display massive postnatal growth of skin-draining lymph nodes 
(Hess et al., 2012). Alpha-7 integrin mediates cell membrane interactions with the extracellular matrix.   
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1.5 Key Stromal Cell Subsets Within the Lymph Node 
 

Within the developed follicle exists a dense network of Follicular Dendritic Cells (FDCs) 

whereby cell bodies are connected by an intricate mesh of cellular protrusions. Originally 

referred to as “antigen-retaining reticular cells” these cells are now understood to support 

B-cell homeostasis, activation and affinity maturation through the provision of survival, 

activation and migratory factors. Despite the name, these cells are of mesenchymal origin 

and are thought to arise from the clonal expansion and differentiation of MRCs, at least 

during an immune response (Jarjour et al., 2014) . Given their integral role in antibody 

responses it is unsurprising that this cell type has been implicated in many autoimmune 

disorders, contributing to the formation of ectopic germinal centres with sustained auto-

antibody formation (Victoratos and Kollias, 2009).  

 

In the primary follicle, FDCs are immature and exist in relatively low abundance but 

following immunisation or infection undergo maturation, upregulate CXCL13, 

complement and adhesion factors and accumulate in germinal centres (Aguzzi et al., 

2014). During selective ablation of FDCs, follicles remodel into disorganised bands of B 

cells that retain CXCL13-expressing stromal cell populations, indicating that FDCs are 

not the only stromal-derived source of this chemokine (Wang et al., 2011b). 

Consequently, the role of FDCs in regulating migration in the primary follicle has proven 

enigmatic and controversial.  The maturation of follicular stroma is dependent on B-cell 

derived TNFα and lymphotoxin signals that activate the NKkB pathway. Mice deficient in 

either of these signals fail to form both GCs and FDC networks (Wang et al., 2001). 

Components of the innate immune response are also implicated in FDC maturation. FDCs 

express toll-like receptors, with experiments in mice that lack TLR4 expression on 

stromal cells showing lower levels of SHM and high-affinity antibody production. 

Strikingly, immunization of mice with nanoparticles containing TLR4 and TLR7 ligands 

induced GCs that persisted for more than 1.5 years (Garin et al., 2010; Kasturi et al., 

2011).  

 

In the lymph node, the delivery of lymph-borne antigens to FDCs is determined by the 

size of antigen and whether it is opsonized with complement. C3d-coated immune 

complexes (ICs) larger than 70kDa (~5.5nm) are trafficked from CR3+ SCS macrophages 

to CR2+ B cells and finally to the FDC network while smaller antigen filter directly 
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through the conduit system (Batista and Harwood, 2009; Carrasco and Batista, 2007; 

Phan et al., 2007; Rantakari et al., 2015; Roozendaal et al., 2009). Mature FDCs express 

the Fc receptors CD16, CD23 and CD32, the complement receptors CR1 and CR2 (FDCs 

express a longer isoform of the molecule than B cells) and complement components, 

molecules that assist in IC capture and presentation (Aguzzi et al., 2014). ICs are 

expressed periodically on the cell surface; undergoing internalisation within a non-

degradative cycling compartment to promote antigen presentation over extended periods 

(Heesters et al., 2013; Mandel et al., 1981). On the cell surface, ICs are periodically 

expressed along 20-50nm intervals, with live-cell imaging of the IC transfer process in 

vitro identifying a rapid dispersal upon contact with the naive B cell (Heesters et al., 

2013; Mandel et al., 1981; Phan et al., 2009) However, it has not been assessed as to 

whether this spatial distribution of antigen aligns with the clusters of B-cell receptors on 

the surface on B cells to maximise antigen capture.  

 

Marginal reticular cells (MRCs) are located immediately below the LN SCS (Katakai, 

2012). Their expression patterns are distinct to those of FRCs and FDCs but are similar to 

lymphoid tissue organiser cells and during an immune response MRCs have the potential 

to differentiate into FDCs (Jarjour et al., 2014; Katakai, 2012). They secrete CXCL13 and 

express RANK-L and MAdCAM-1 and gp38 but not CR1/CR2 (Katakai, 2012). Given 

their location they may support natural killer cells and SCS macrophages but there is a 

dearth of direct experimental evidence available to confirm this.  

Within the follicle are fibroblastic cells that are morphologically distinct from FDCs and 

MRCs and are responsible for the secretion of CXCL12 within the dark zone of the 

germinal centre (Rodda et al., 2015). They do not express the MRC markers RANK-L or 

MAdCAM-1 and have a distinct chemokine expression profile and are lineage marked by 

CD21 and Ccl19 fluorescent reporter mice (Rodda et al., 2015). CXCL12 reporter mice 

also identify reticular cells at the outer border of the primary (but not necessarily naive) 

follicle but it is not clear if these cells are distinct from dark zone associated CXCL12+ 

stroma. Due to their anatomical location at the outer follicle, these cells may also 

contribute to EBI2 mediated migration as this is a key site of oxysterol metabolism 

(Cyster et al., 2014; Liu et al., 2011).  
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Fibroblastic Reticular Cells (FRCs) are specialised myofibroblasts of mesenchymal 

origin, characterised by their expression of podoplanin (PDPN) and platelet-derived 

growth factor receptor-α (PDGFRA), and their lack of CD45 and CD31 (Fletcher et al., 

2015). They regulate lymphocyte homeostasis and activation through secretion of the 

survival factor IL-7, and the migratory factors CCL19/21. FRCs also have a key 

regulatory role, controlling the expansion of T cells through the regulated release of nitric 

oxide, and promoting peripheral tolerance through presentation of self-Ag (Fletcher et al., 

2011a; Siegert et al., 2011).  

 

FRCs are a key determinant of lymphoid tissue architecture, forming a complex 3D 

network with “small-world” properties, a topological feature that promotes network 

robustness (Novkovic et al., 2016). FRCs are important for maintaining follicular 

architecture while follicular reticular cells promote B-cell homeostasis through secretion 

of BAFF (Cremasco et al., 2014). In addition they stimulate the growth of High 

Endothelial Venules (HEVs) (through secretion of Vascular Endothelial Growth Factor 

(VEGF)), and generate and ensheath a network of collagen fibres known as the conduit 

system (Fletcher et al., 2015; Roozendaal et al., 2008). It is also important to note that the 

architecture of the FRC is highly dynamic; following immunisation and expansion, the 

FRC network expands rapidly in a process induced by the trapping of naïve lymphocytes 

or DCs (Yang et al., 2014).  Under homeostatic conditions, the mucin type protein 

podoplanin is a key regulator of reticulum contractility; mature DCs expressing CLEC-2 

attenuate this contractility relaxing the FRC network to enhance adaptive immune 

responses (Acton et al., 2012; Astarita et al., 2015).  

 

Lymphatic endothelial cells line lymphatic vessels. They express adhesion molecules and 

chemokines, allowing the entry of hematopoietic cells into the lymphatic vessels. On the 

ceiling of the subcapsular sinus LECs express ACKR4, an atypical chemokine receptor 

that scavenges CCL21 facilitating the formation of functional gradients (Ulvmar et al., 

2014). The reason that LECs on the SCS ceiling express ACKR4 has yet to be established 

but computational analysis of lymph flow suggests that there is increased shear stress on 

the ceiling of the SCS in comparison to the floor (Jafarnejad et al., 2015). These cells 

have also been reported to express peripheral tissue Ag, highlighting a role in maintaining 

peripheral tolerance (Cohen et al., 2010). Blood endothelial cells are specialized vascular 

endothelial cells that construct cortical blood vessels and capillaries, including high 
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endothelial venules (HEVs) specialized to attract naïve lymphocytes from the 

bloodstream. This process is further regulated by pericytes that wrap around blood vessels 

controlling the rate of vasoconstriction and vasodilation. 

 

1.6 The Molecular Basis of B-Cell Migration  
 

Cell migration in complex microenvironments comprises an array of interdependent 

biophysical and biochemical processes. The mode of migration is context-dependent; B-

cells use strong forces at the rear to generate forward momentum and display flexible 

morphological adaptation to their environment rather than structurally changing matrix 

architecture as seen in the migration of stromal cells (Tschumperlin, 2013).  

 

One of the main mechanisms by which stromal cells regulate B-cell homeostasis is 

through the secretion of signalling lipids and chemotactic cytokines known as chemokines 

(Pereira et al., 2010). Chemokines are small proteins (~10kDa), named after the number 

and spacing of conserved cysteine residues and transmit their signals through G-protein 

Coupled Receptors (GPCRs). Ligation of the chemokine to its respective GPCR leads to 

modification of the tertiary structure of the receptor, allowing the intracellular component 

of the receptor to bind and activate heterotrimeric G-proteins (Bennett et al., 2011). This 

facilitates downstream signalling cascades leading to the activation of four small 

GTPases: Rac, required for the actin polymerization at the pseudopod; Cdc42, required 

for the establishment of orientation machinery at the pseudopod and thus steering of a cell 

during chemotaxis; Rho, required for the retraction of the uropod; and Rap, required for 

integrin signalling (Rot and von Andrian, 2004). Activation of these molecules leads to 

adhesion via integrins or polarization of the actomyosin cytoskeleton causing migration 

along chemokine gradients (Rot et al., 2013). These factors also dynamically interact such 

that cdc42 inhibits Rho at the leading edge and Rho inhibits Rac at the uropod; thus 

maintaining polarity through the asymmetric distribution of signalling components 

(Maiuri et al., 2015). 

 

The GPCRs that regulate migration are subject to a complex and dynamic layer of 

regulation (Bennett et al., 2011; Sh et al., 1982; Zigmond, 1981). While difficult to assess 

experimentally, mathematical modelling suggests that the dynamic modulation of 
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signalling is essential for effective migration within complex environments such as the 

germinal centre (Chan et al., 2013; Figge et al., 2008). Mechanisms of chemokine 

receptor silencing include: (i) the intrinsic GTPase activity of Gα subunits that acts as a 

built-in shut-off sequence; (ii) desensitization, caused by steric hindrance of G-protein 

activation due to receptor phosphorylation by G-protein-coupled receptor kinases (GRK); 

and (iii) downregulation caused by receptor internalization through clathrin-coated pits or 

the faster lipid raft caveolae pathway; receptors may then be degraded or recycled back to 

the cell surface (Bennett et al., 2011). Desensitization and internalization are regulated 

separately and require the phosphorylation of different residues in the C-terminal tail of 

chemokine receptors (Bennett et al., 2011).  More recently atypical chemokine receptors 

have been described; such receptors do not induce the responses classically associated 

with GPCRs. However, they can impact chemokine availability and function in a wide 

array of molecular and cellular processes (Nibbs and Graham, 2013; Ulvmar et al., 2011, 

2014).  

 

 

	
Figure 1.4 Chemotactic factors that regulate B cell migration and their sites of ligand production in 
lymph nodes. CXCL13 is found within lymph node follicles and germinal centre light zones and regulates 
lymphoid tissue structure and the induction and maturation of antibody-mediated responses. CCL19/21 is 
found in the T-cell zone and is implicated in B cells obtaining access to help from antigen specific CD4 T 
helper cells. 7α,25-Hydroxycholesterol is associated with scanning of the outer follicle regions, CXCL12 
with the dark zone of the germinal centre while S1P is implicated in lymph node egress.  
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1.6.1 CXCL13 
 
CXCL13 is a small globular protein with a molecular mass of 10.3 kDa that binds 

CXCR5, a GPCR (Förster et al., 1996a; Gunn et al., 1998a; Legler et al., 1998). CXCL13, 

like most chemokines, has a carbohydrate binding domain but it has yet to be determined 

if it acts principally in a surface bound way or as a soluble factor (Monneau et al., 2016). 

Expression of CXCL13 is regulated in a positive feedback loop involving CXCR5-

mediated induction of LTα1β2 expression by B cells which in turn contributes to maximal 

CXCL13 production through FDC maturation (Ansel et al., 2000). CXCL13-/- mice 

display poor follicular organization with B-cells observed in separate rings around T-

zones but do not form polarized clusters but do have distinguishable Light Zones and 

Dark Zones. The GC FDC network still forms and expresses markers associated with 

maturation but it is not distal to the T zone as in a normal GC (Ansel et al., 2000). 

CXCR5-/- B cells injected into a WT host are known to have different migration 

characteristics within LN follicles in comparison to WT B cells (Coelho et al., 2013). 

However, CXCR5-mediated B-cell migration appears quite robust to the amount of 

chemokine ligand available (Coelho et al., 2013); this is consistent with studies that 

suggest a difference of 10 signalling receptors across a cell is sufficient to induce 

chemotaxis along a gradient (Herzmark et al., 2007; Zigmond, 1981). Western blotting of 

pooled lymph nodes suggests a concentration of 10-50nM (derivation presented in 

Appendix 5) (Luther et al., 2002) within the B follicle, a measure supported by in vitro 

analyses of B-cell migration in response to varying CXCL13 concentrations and by the 

dissociation constant for CXCR5-CXCL13 and other similar chemokine receptor and 

cognate ligand pairs (Barroso et al., 2012; Gunn et al., 1998a). 

 

CXCR5 may also affect B-cell homeostasis and activation through indirect mechanisms. 

CXCR5 signalling has been shown shape B-cell receptor (BCR) triggered B-cell 

activation. CXCR5 regulated upregulation of LFA-1, an adhesion factor that binds 

ICAM-1, has been reported to lower the threshold for B cell activation through stable 

immune synapse formation (Carrasco et al., 2004; Sáez de Guinoa et al., 2011). It is 

important to note that naïve B-cells not only express CXCR5 but also CCR7, CXCR4 and 

EBI2 (Pereira et al., 2010). However, there are few studies looking at cross-talk between 

these receptors. It has been reported that EBI2 can dimerise with CXCR5 and lower its 
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affinity for ligand on B-cells but the functional consequences of this molecular interaction 

have yet to be investigated (Barroso et al., 2012).  

1.6.2 CXCL12 
	

C-X-C motif ligand 12 (CXCL12/SDF-1) is a chemokine and exists in 6 isoforms α, β, γ, 

δ, ε, and φ that differ in their affinities for CXCR4, CXCR7, ACKR3 and components of 

the extracellular matrix (Yu et al., 2006). The exact function of CXCL12 is difficult to 

discern given CXCL12 deficiency is embryonically lethal and it has different roles in 

different anatomical niches. In the context of the GC CXCL12 is essential for positioning 

CXCR4+ B-cells in the dark zone. The cellular source of CXCL12 within lymph node 

follicles has been attributed to a sparse population of CXCL12 secreting CD45– Gp38+ 

CD21/35- ER-TR7- fibroblasts (Rodda et al., 2015).   

1.6.3 CCL19/CCL21 
	

A third chemokine receptor system that influences B cell migration in the follicle is CCR7 

and its ligands CCL21 and CCL19 (Gunn et al., 1998b; Yoshida et al., 1998). In resting 

LNs both CCL19 and CCL21 are secreted by T-Zone FRCs with bioavailability of 

CCL21 negatively regulated by LECs lining the ceiling of the subscapular sinus (Ulvmar 

et al., 2014). CCL21 differs to CCL19 by a highly charged 40 amino acid extension at its 

C terminus thus altering its ability to bind ECM components (Hirose et al., 2002; Patel et 

al., 2001; de Paz et al., 2007). In vivo, C-terminal truncation of CCL21 prevents its 

immobilization to high endothelial venules and consequently affects lymphocyte homing 

to the lymph node (Stein et al., 2000). This result is complemented by analyses of whole 

lymph node mRNA and extracellular protein on HEVs that reveal a daily oscillatory 

pattern of CCL21 expression that correlated with the kinetics of lymphocyte homing 

(Druzd et al., 2017). Mice, unlike humans, have two isoforms of CCL21 that differ in one 

amino acid; CCL21Ser is expressed by HEVs, whereas CCL21Leu is generated in the 

lymphatic endothelium (Rot and von Andrian, 2004). A mutant mouse strain known as 

plt/plt (paucity in lymph-node T cells) is deficient for CCL21Ser and CCL19. LNs of 

plt/plt mice and CCR7-deficient mice contain few naive T cells, but the B-cell 

compartment is less affected and there are marked numbers of memory T cells (Förster et 

al., 1999; Mori et al., 2001).   
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1.6.4 S1P 
	

The lipid signalling molecule sphingosine 1-phosphate (S1P) is another key molecule 

governing the migration of B cells. S1P signals via GPCRs with 5 distinct receptors 

binding the ligand.  In the context of B-cell migration receptors S1PR1-3 have begun to 

be characterised.  S1PR1 is important for lymphocyte egress via the cortical lymph node 

sinuses as determined by studies using KO mice and pharmacological inhibition (Park et 

al., 2012). The lymphocyte activation marker CD69 inhibits S1PR1-mediated egress 

during an immune response; CD69 binds S1PR1 and the complex is internalised from the 

cell surface (Cyster, 2005). Sphingosine-1-phosphate receptor 2 (S1PR2) binds S1P but 

acts as an inhibitor of migration, promoting recruitment and retention of GC B cells and 

T-Follicular helper cells to the centre of the follicle through signalling via the G-protein 

Gα13. Loss of Gα13 mediated signalling has been shown to cause a lack of confinement 

of GC B cells, allowing egress into the circulation; this pathway is commonly disrupted in 

GC B cell derived lymphomas (Muppidi et al., 2014). In the absence of Gα13 mediated 

inhibition of migration, S1PR3 was shown to dominate the S1P response and allow cells 

that have entered the follicle to be guided into subcapsular or cortical sinuses for LN 

egress (Muppidi et al., 2015).   

1.6.5 7α,25 Hydroxycholesterol 
 
Epstein-Barr virus-induced G-protein coupled receptor 2 (EBI2, GPR183) is a GPCR that 

binds oxysterols (Liu et al., 2011). EBI2 guides B cell movement along the B-T boundary 

as well as the interfollicular and outer follicular regions with expression increasing during 

B cell activation but decreasing during germinal cell development due to the transcription 

factor BCL6 (Gatto and Brink, 2013; Gatto et al., 2009; Kelly et al., 2011; Liu et al., 

2011; Pereira et al., 2009). EBI2-/- B cells prematurely accumulate at the centre of the 

follicle and associated early antibody responses are diminished (Pereira et al., 2009). The 

oxysterol 7α,25-dihydroxycholesterol (7α,25 OHC) is a potent binder to this receptor and 

is synthesized from cholesterol by the two enzymes (CH25H, CYP7B1) and is 

metabolized by another enzyme (HSD3B7) (Yi et al., 2012). The cellular sources of these 

enzymes are unknown but transcriptomic analyses 1  suggest that LECs have high 

expression of HSD3B7 indicating that this cell type might also act as a sink for oxysterols 

																																																								
1 Data available on the Immgen database 
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as well as for CCL21. Collectively, these enzymes control EBI2 ligand concentration in 

lymphoid tissues (Cyster et al., 2014).  

 

 
 
 
 
 
 

 

Gene 
Perturbation Phenotype Reference 

CXCR5 Impaired homing to follicles (Ansel et al., 2000; Förster et al., 1996b) 

CXCR4 Impaired GC formation; lack of light 
zone and dark zone segregation 

(Allen et al., 2004) 

CCR7 Aberrant follicular organisation (Förster et al., 1999) 

CXCL12* Impaired GC formation; lack of light 
zone and dark zone segregation 

(Barinov et al., 2017) 

CXCL13 Aberrant follicular organisation; B cells 
form a ring around the T-cell zone 

(Ansel et al., 2000) 

S1PR2 Increased numbers of GC B cells, 
perturbed LN architecture 

(Green et al., 2011) 

EBI2 Abberant positioning of activated B 
cells; perturbed IgG1 antibody responses 

(Pereira et al., 2009) 

 
 
Table 1.2. Summary of migratory factor KO experiments in mice and their effect on humoral immune 
responses. * CXCL12 deficiency is embryonic lethal so we refer to a study where the authors investigate the 
effects of a mutated form of the protein that cant bind extracellular matrix components. 
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1.7 Emerging Technologies to Study the Immune System 
 
The molecular and cellular processes governing B-cell migration and activation described 

in the previous sections have been studied using a combination of gene knockouts, 

fluorescent reporter mice, gene expression analysis, immunohistochemistry and flow 

cytometry. These experimental studies have unearthed a complex and dynamic regulatory 

network acting over broad spatial and temporal scales. Consequently, the mechanisms by 

which chemotactic gradients form in lymphoid tissues and how cells respond to these 

gradients have proven difficult to assess. Recent technical advances have led to the 

development of new technologies with the capacity to further our understanding of this 

complex biological pathway. In the following sections we discuss emerging technologies 

from two key disciplines relevant to the work undertaken in this thesis: microscopy and 

systems biology.  

 

1.8 Imaging Approaches  
	

The cell types and molecules described in the previous section have been visualised using 

a suite of imaging techniques, with increased biological insight obtained through the 

integration of mathematical (image analysis), physical (multi-photon and super-resolution 

imaging), chemical (bio-compatible probes) and biological (fluorescent reporter animals) 

approaches (Butler et al., 2016a) (Table 3.1). In the following section we discuss 

established and emerging imaging technologies. We illustrate their utility with select 

references and discuss how they can be used to quantify the anatomy and dynamics of the 

lymph node follicle.  

 

Confocal2 and more recently, light sheet microscopy3 have been used to study the spatial 

organisation of the lymph node, highlighting the importance of the immune 

microenvironment in regulating the induction and resolution of immune responses (Junt et 

al., 2008; Qi et al., 2014). Multi-photon confocal microscopy has been used extensively to 

image cell dynamics within the germinal centre and to highlight the role of chemokines in 

naïve B-cell trafficking (Allen et al., 2007; Coelho et al., 2013; Schwickert et al., 2007; 
																																																								
2 In this approach a pinhole is placed at the confocal plane of the lens to eliminate out-of-focus light and 
increase the spatial resolution of the image 
3 The specimen is illuminated only in a single plane reducing phototoxic effects. By moving the sample 
through the light sheet, 3D images of a specimen can be recorded. 
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Shulman et al., 2013). This technique employs long-wavelength infrared lasers that allow 

observation deep into tissues, while their small excitation volume decreases 

photobleaching and phototoxicity. In addition, this technique can be used in the 

generation of second harmonics, which highlight the collagen fibres and the extracellular 

matrix that form the conduit network, the capsule, and structural support in lymph nodes. 

 

Relative to tissue and cellular levels of organisation, molecular processes occur on much 

finer spatiotemporal scales (on the order of nanometres and milliseconds) and often 

require a distinct set of imaging modalities. Transmission electron microscopy and 

scanning electron microscopy use beams of electrons to create an image; because the 

wavelength of an electron is much shorter than light it provides increased resolution.  

These techniques have been used to image the morphological changes induced by antigen 

recognition and to show that antigen is dotted evenly on FDCs (El Shikh et al., 2010). 

Unlike electron microscopy, the spatial resolution of conventional fluorescence 

microscopy is limited by the diffraction of light at ~200nm. In this imaging process, light 

rays from each point on the object converge to a single point at the image plane. 

However, the diffraction of light prevents exact convergence of the rays, causing a sharp 

point on the object to blur. The three-dimensional (3D) intensity distribution of the image 

of a point object is called the point-spread function (PSF). The size of the PSF determines 

the resolution of the microscope: Two points closer than the full width at half-maximum 

(FWHM) of the PSF will be difficult to resolve because their images overlap 

substantially. This has hindered the visualization of molecular level processes where 

proteins may be just a few nanometres in diameter. In recent years, a number of “super-

resolution” fluorescence microscopy techniques have been invented to circumvent the 

diffraction barrier, including techniques that can selectively deactivate fluorophores to 

minimise the area of illumination, such as Stimulated Emission Depletion (STED) 

microscopy (Hell and Wichmann, 1994; Schneider et al., 2015)), as well as techniques 

that are based on the localization of individual fluorescent molecules, such as stochastic 

optical reconstruction microscopy (STORM) (Rust et al., 2006). These methods have 

yielded an order of magnitude improvement in spatial resolution over conventional light 

microscopy facilitating measurements of single molecules. This increased resolution has 

yielded significant insights into lymphocyte biology showing that GC B cells recognize 

antigen through a specialized immune synapse (Nowosad et al., 2016). Fluorescence 

Energy Resonance Transfer (FRET) has been used to look at ligand-induced 
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conformational changes in antigen receptors and early signalling events in lymphocytes.  

Using this technique Tolar et al (2005) showed that the BCR exists as a monomer in 

resting cells but that antigen binding leads to BCR clustering and conformational changes 

to facilitate downstream signalling cascades. 

 

 

 

 

 

 

 

Technique Application Exemplar Study 

 Whole body  

MRI Confirming accurate vaccine delivery (de Vries et al., 2005) 

PET Imaging the infiltration of immune cells into tumours (Rashidian et al., 2015)  

 Tissue  

Confocal  Mapping of the FRC and conduit networks (Novkovic et al., 2016) 

Light Sheet Mapping the volume of the pLN follicle (Irla et al., 2013) 

 Cellular  

Confocal Mapping the expression of CCRL1 on LECs (Ulvmar et al., 2014) 

Multiphoton B-cell interactions with T cells within the GC (Shulman et al., 2014) 

 Molecular  

FRET Studying conformational changes of the B-cell receptor (Tolar et al., 2005) 

TEM Mapping of antigen on FDCs (El Shikh et al., 2010) 

Table 1.3 Exemplar applications of imaging modalities 
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1.9 Systems Biology 
 

Throughout the thesis we will refer to grouped biological entities as a complex system. In 

the context of this work, a complex system is defined as having high-level behaviours that 

cannot be deduced as a simple linear combination of lower level behaviours (P.Andrews 

et al., 2010). Systems-based approaches afford a quantitative perspective from which to 

consolidate large multivariate datasets, inform experimental design, and to assess the 

veracity of competing theories. In the following section, we provide a broad overview of 

systems biology approaches, comparing and contrasting key methodologies through 

published case studies.  

 

 

 

 

	
Figure 1.5 Interaction network for B-cell associated migratory factors and evidence available to 
support their interactions. This network was generated using the String database with protein-protein 
interactions and the type of evidence supporting the interaction highlighted (Szklarczyk et al., 2011). The 
String database assigns a confidence score from 0 to 1 based on the nature of the evidence. All interactions 
in this network have a confidence score greater than 0.9 

 

 

 

 

 

curated database
experimentally determined
gene neighbourhood
textmining



	 34	

Systems biology is an emerging discipline whose focus is to study the design, regulation, 

structure and dynamics of grouped biological entities (Kitano, 2002).  Mathematical, 

statistical and computational analysis and modelling techniques are commonly employed 

to study these four key components. Broadly speaking, systems biology approaches can 

be split into two categories: top-down approaches which aim to discover patterns in 

complex multivariate datasets, and bottom up approaches which consolidate mechanistic 

information to identify knowledge gaps and predict system behaviours. Top down 

approaches are particularly suited to extracting information from datasets generated by 

modern high throughput genomic techniques such as DNA microarrays and RNA-Seq. 

Complex bioinformatics pipelines have been applied successfully to stratify genes into 

functional modules (Segal et al., 2003), to reconstruct interaction networks (Costanzo et 

al., 2016; Szklarczyk et al., 2011) (Figure 1.5) and to study the evolution of 

microorganisms (Brosch et al., 2001). 

 

However, top-down approaches are susceptible to identifying correlations without 

understanding the underlying mechanistic processes. As such, it can be difficult to 

rigorously assess how a system is configured or predicting how it will respond to 

perturbations. Bottom-up modelling techniques are particularly suited to these tasks as 

they allow for biological processes to be represented as a set of mathematical expressions 

such that they can be quantitatively examined (Kitano, 2002). In this context a model is 

an abstraction of a complex system, formally expressed using mathematical concepts and 

language. The process of assembling the model unveils gaps in our knowledge and points 

out new directions for experimental studies that may not have been apparent a priori 

(Butler et al., 2016b). Simulation in the context of this thesis refers to the process of 

imitating the behaviour of a system through a suitably analogous piece of software, in 

order to gain insights into how the system is organized and how it functions. Thus a 

simulator can be considered as an implementation of a model, allowing for extrapolation 

of our current understanding as a means to testing the validity of competing hypotheses, 

examining gaps in our understanding and to obtain insights where experimentation is not 

possible. 
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1.9.1 Bottom-Up Modelling Approaches 
	

To date, a number of mathematical modelling techniques have been used to model 

biological processes. In particular we discuss (i) ordinary differential equations (ODEs) 

that predict changes to components over one independent variable (e.g. time) on a 

continuous scale. (ii) partial differential equations (PDEs) are a technique that predicts 

changes to components over more than one independent variable (e.g. time and space). 

(iii) agent-based models (ABM) a model composed of individual entities, known 

as agents (Figure 1.6). The state of each agent is determined by the agent's attributes and 

location at a specific point in time with state transitions governed by a 

predetermined rule-set (iv) multiscale models which capture phenomena occurring across 

different spatiotemporal scales and (v) hybridised models that integrate different 

techniques to facilitate parsimony and efficiency (Cosgrove et al., 2015; Guo and Tay, 

2008). 

 

Differential equations (DEs) afford many advantages as they can concisely describe large 

amounts of information, can quickly obtain numerical solutions and there exists a number 

of established analysis techniques to evaluate these models (Mirsky et al., 2011). ODEs, 

which abstract interactions occurring in physical space through the use of contact 

frequency terms, are a commonly employed method to model the immune system, 

typically describing how grouped biological entities change over time. This approach was 

used to assess the dynamics of CXCR4 and CXCR5 within the GC (Chan et al., 2013). 

Analysis of the model shows that chemokine receptor expression is oscillatory and 

highlighted the importance of receptor down-regulation as a cell-intrinsic mechanism to 

govern migration patterns. This approach is also commonly employed in studies of viral 

dynamics and associated immune responses (Althaus and Boer, 2008; Elemans et al., 

2011; Perelson and Ribeiro, 2013). Unlike ODEs, PDEs do not assume that space is one 

continuous compartment; consequently, they have been used to model the spatial 

distribution of interferons within the lymph node (Bocharov et al., 2011) and to model 

antigen independent proliferation of CD8+ T cells (Antia et al., 2003).  

 

An agent based modelling approach differs to equation-based systems, as they are 

composed of individual entities, known as agents; each agent exists in a well-defined 

state, determined by the agent’s attributes and location at a specific point in time (Macal 
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and North, 2010). A transition into an alternative state is governed by a rule-set designed 

to capture the agent’s interactions with other agents or the environment. Using these rules, 

agents calculate how to respond to features and stimuli within their local environment. 

The aggregate effects of these individual decisions lead to the emergence of system-wide 

patterns and behaviours that are not explicitly programmed or intuitively understood from 

the rules alone (Macal and North, 2010). 

 

The key advantage of an agent-based approach is the ability to incorporate space, 

heterogeneity and stochasticity within a single model (Bauer et al., 2009; Cosgrove et al., 

2015; Mirsky et al., 2011). Based on constraints obtained from the literature, Meyer-

Hermann et al. (2006) exploited the emergent property of ABMs to test the veracity of 

different hypotheses regarding B-cell selection in the GC, ruling out models that failed to 

reproduce experimentally observed kinetics. Cellular Potts models (CPMs) are considered 

a specialised type of ABM that have also been used to model immune cell migration 

(Meyer-Hermann and Maini, 2005). In this scheme, agents are depicted as a set of 

contiguous lattice sites that can rearrange to produce cell motion and shape changes on 

the basis of a Hamiltonian (or cost function) that determines the probability of lattice 

updates. This can facilitate the incorporation of complex biophysical interactions but may 

be too computationally intensive to model large numbers of cells without the use of a 

parallelised implementation (Chen et al., 2007; Mirsky et al., 2011). 

 

ABMs are designed to directly capture attributes and states of individual components; 

population counts and rates of change emerge during simulation execution rather than 

being explicitly specified. Accordingly, ABMs can be difficult to describe succinctly, 

may require more data to develop, and significant software engineering expertise to 

implement (Guo and Tay, 2008; Macal and North, 2010). Consequently, much research 

focus is being placed on methodologies to describe, design, and implement ABMs 

(discussed further in Chapters 2 and 3).  

 

 

 



	 37	

 

 

 

 

	

Figure 1.6 The capacity for various types of model to capture spatial resolution and cellular 
heterogeneity: When determining the appropriate modelling technique to employ it is important to consider 
the spatiotemporal scales relevant to the system and the heterogeneity of the entities of interest. Ordinary 
Differential Equations (ODEs) and Physiologically Based Pharmacokinetic (PBPK) models cannot capture 
systems with explicit spatial resolution (although compartmentalized systems are possible), relying on the 
abstract notion of well-mixed space. Partial Differential Equations (PDEs), and thereby, coupled systems of 
ODEs, are capable of spatial resolution, but to capture heterogeneous cellular phenotypes is often 
intractable. State-based modelling approaches enable heterogeneous phenotypes among cell populations but 
cannot in themselves capture spatial resolution (although they can model multiple, spatially disconnected 
compartments). ABMs incorporate state-based systems in spatial environments; as such, ABMs can capture 
both heterogeneous cell populations with an explicit notion of space and time. Figure taken from Cosgrove 
et al (2015). 
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1.9.2 Hybrid and Multiscale Modelling 
 

In the previous sections we have detailed experimental efforts to dissect the complexity of 

B-cell activation with particular focus on imaging approaches. However, these techniques 

provide a narrow window of insight into a process that occurs over a timescale of days 

and weeks making it challenging to interpret results in the context of the wider literature. 

Modelling biological processes on diverse time and length scales is known as multiscale 

modelling, an approach well suited to bridging diverse imaging datasets within a single 

modelling framework. A key example of a multiscale model from the existing literature is 

an agent based model to examine the effects of a molecular switch, controlled via 

epidermal growth factor receptor signalling, on tumour spatial dynamics in the brain 

(Athale and Deisboeck, 2006). The model predicted that this switch could affect tumour 

expansion, leading to the development of novel hypotheses on the posttranslational 

regulation of protein expression. 

 

Relative to cells, molecules are smaller, more abundant, have less complex behaviours 

and are well characterized by physical laws and equation based systems. Fick’s laws of 

diffusion (discussed in Chapter 4) and the law of mass action4 can describe molecular 

diffusion and interactions respectively; eliminating the need to model molecules 

individually (Guo et al., 2008b). However, these simplifying assumptions are not 

applicable to B-cell migration as they do not move like molecules, and display a wide 

range of roles and nonlinearly interacting behaviours (Mirsky et al., 2011). ABMs are 

capable of incorporating the stochastic, heterogeneous and spatial considerations of 

migration within a single system, and are thus better equipped to model cell migration. 

 

The differences in scale, relative population sizes and complexity between molecules and 

cells thus warrants the integration of distinct but complementary modelling strategies in a 

process known as hybridisation (Guo and Tay, 2008). Through the hybridization of an 

ABM with other techniques it is possible to quantitatively examine how processes such as 

molecular diffusion, occurring over a timescale of milliseconds, can affect cellular 

motility occurring over minutes and hours (Guo et al., 2008b).  

 

																																																								
4  The rate of a chemical reaction is proportional to the concentrations of the reacting substances. 
	



	 39	

We propose that a hybridised multiscale approach is best suited to describe B-cell 

migration within complex tissues. Furthermore, a hybrid approach allows us to build upon 

previous modelling work in the field that describes the processes of immune cell 

migration (Lin and Butcher, 2008), lymph node architecture (Kislitsyn et al., 2015; 

Novkovic et al., 2016), and physiological gradient formation (Wang and Irvine, 2013).  

However, consolidating these models is a challenging goal, given the dearth of 

quantitative measurements on the spatial organisation of the lymph node and the 

diffusivity of migratory factors within lymphoid tissues; key parameters required to 

accurately model immune responses in lymphoid tissues.  Closer integration of theoretical 

and experimental approaches is thus required to consolidate these distinct modelling 

efforts into a high-fidelity representation of lymph node architecture, where immune cells 

can interact with stroma capable of creating and shaping complex physiological gradients 

(Butler et al., 2016a). 

 

1.9.3 Emulation of Complex Systems Models 
	
The drive to better capture biological complexity leads to more sophisticated simulators, 

it becomes challenging to perform statistical analyses that help translate predictions into 

increased understanding. These analyses may require repeated executions and extensive 

sampling of high-dimensional parameter spaces: analyses that may become intractable 

due to time and resource limitations. Although the composition of stochastic models may 

not be complex or computationally intensive, it can lead to a diverse set outputs for a 

fixed parameter input. This introduces aleatory uncertainty around those outputs that 

requires mitigation with replicate runs (Helton, 2008; Marino et al., 2008). Heterogeneity 

can be captured through modifying the simulation parameters to represent a range of 

individual responses from within a population. As it is common to simulate biological 

systems for which our understanding remains incomplete, values of a range of those 

simulation parameters may remain unknown or poorly constrained, leading to parametric 

uncertainty (Gutenkunst et al., 2007). However, for a model with a high-dimensional 

parameter space, systematic exploration of parameter values requires significant 

computational infrastructure, a particular problem for time-intensive non-deterministic 

models. Consequently, a surrogate tool, or emulator, that is capable of rapidly and 

accurately predicting simulation responses is an attractive option for reducing resource 

requirements associated with model evaluation (emulation is performed in Chapter 5) 
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(Kennedy and O’Hagan, 2001). In saving resources, emulation can serve as a useful 

adjunct to the original simulator, providing insights where complex analyses were 

previously intractable. In the context of systems biology, emulation has primarily been 

achieved through a Bayesian approach where a statistical model, usually a Gaussian 

process, is used to estimate simulator outputs. Such emulators have been applied to aid 

parameter estimation in a stochastic model of mitochondrial DNA population dynamics 

(Henderson et al., 2009), an epidemic model of influenza (Farah et al., 2014), and two 

models of hormonal crosstalk in Arabidopsis root development (Vernon et al., 2016). 
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1.10 Rationale for a Model-Driven Approach to Experimentation 
 
Systematically integrating knowledge into a mechanistically coherent output is an 

important driver for rational experimental design. The benefits of integrating 

experimental and theoretical approaches, herein referred to as model-driven 

experimentation (MDE) are as follows: (i) simulations can capture and consolidate large 

quantities of data from disparate sources, identifying areas where biological knowledge is 

lacking, and assessing the veracity of competing theories (ii) simulations are more 

amenable to designing, conducting and collecting data from experimentation providing 

data at high spatiotemporal resolution (iii) simulation can help in directing wet-lab 

experimentation, permitting preliminary investigations that identify key time points and 

entities of the system under study (Butler et al., 2016b).  

To illustrate the MDE approach we discuss two key case studies. Peyers’ patches (PP) are 

specialised secondary lymphoid tissues of the intestine that develop during a fixed 

window in foetal development and have an essential role in maintaining intestinal 

immunity. Using several different gene knockouts, the key molecular regulators of PP 

formation were identified experimentally (Randall et al., 2008). However, a more 

nuanced view of the system in which the relative contributions of each molecule is 

understood, was lacking. This was addressed using an MDE approach that yielded the 

hypothesis upregulation of VCAM-1 on stromal cells was the key triggering event that 

determined the site of PP formation on the mid-gut while chemokine mediated 

mechanisms became more important at later timepoints (Alden et al., 2012a). Utilising 

this prediction, an in vitro assay was designed whereby foetal mid-gut explants were 

incubated in the presence or absence of anti-VCAM-1 antibodies. This assay verified that 

early upregulation of VCAM-1 was the triggering event that was essential for the 

initiation of LTi/LTin cell clustering (Patel et al., 2012). The MDE approach has also 

been demonstrated by Walker et al. who showed that an in vitro model of calcium-

dependent wound closure could be quantitatively reproduced in silico using simple rule-

based dynamics. Differences between in silico and in vitro models led to predictions for a 

role in wound-induced signalling events in urothelial cell cultures, prompting further 

experimental work (Walker et al., 2004). Experimental studies can thus be complemented 

with mechanistic models designed to consolidate existing information, identify key 

knowledge gaps and drive further experimentation.  
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1.11 Summary, Aims and Objectives 
 

Morphogens are signalling molecules that facilitate cell-to-cell communication without 

the need for direct contact. Despite their fundamental importance, the mechanisms driving 

morphogen gradient formation in complex tissues are unclear, limiting understanding of 

how soluble factors are distributed in vivo. In this thesis we focus on CXCL13, a 

chemokine that regulates B-cell responses. Our key hypothesis is that lymphoid tissues 

are essential for the formation of CXCL13 gradients, and perturbation of the spatial 

distribution of CXCL13 can affect the onset of humoral immune responses. This 

hypothesis yields the following research questions: 

 

1. How is CXCL13 distributed within primary lymph node follicles? 

2. What are the key factors that regulate the spatial distribution of CXCL13 within 

primary lymph node follicles? 

3. How do the dynamics of CXCL13-mediated cross talk between stromal cells and 

B-cells affect the induction of humoral immune responses?  

 

These aims will be addressed with the following objectives: 

 

1. Use visual notations to scope key components of the biological system and 

quantify these components using an ensemble of imaging and cytometry 

approaches. 

2. Consolidate this data through development of a 3D hybrid multiscale simulator, 

CXCL13Sim. 

3. Use CXCL13Sim to simulate CXCL13 gradient formation and associated B-cell 

responses. 
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1.12 Thesis Structure 
	

The thesis addresses these aims and objectives in seven chapters, organised as follows: 

Chapter 2 describes the materials and methods used to quantify key components of the 

biological system and to engineer a multiscale simulator, CXCL13Sim.  

Chapter 3 describes a methodology designed to address challenges associated with 

multiscale model development. It also details the development of a conceptual model of 

CXCL13 mediated cross talk between follicular stromal cells and B cells identifying key 

limitations in our current understanding of the pathway.  

Chapter 4 describes experimental work to address knowledge gaps identified in chapter 

3. Specifically, we quantify the volume and density of the lymph node follicle, the 3-

dimensional organisation of CXCL13+ follicular stroma, and the CXCL13 diffusion 

constant. Using these measures in conjunction with data from the existing literature, we 

derive a quantitative description of CXCL13 within the primary LN follicle.  

Chapter 5 details the consolidation of the results obtained in chapters 3 and 4 into a 

multiscale simulator, CXCL13Sim. Once implemented as an executable piece of software 

in Java we quantify the influence of stochastic and parametric uncertainty on simulation 

behaviours to facilitate interpretation of CXCL13Sim-derived results. We also discuss the 

use of machine learning approaches to enrich the evaluation of multiscale models.  

Chapter 6 details the use of simulation analysis to assess the robustness of B-cell 

migration to perturbations to the spatial distribution of CXCL13 and to the dynamics of 

CXCR5 expression within the follicle. In addition, we enrich our simulation analyses 

through the use of multi-objective evolutionary algorithms and verify key predictions 

using immunohistochemistry. 

Chapter 7 provides a critical review of the work that has been conducted in relation to 

the project aims identified above. Specifically, we highlight contributions to the fields of 

immunology and systems biology and conclude with a perspective on future trends 

emerging in systems biomedicine. 
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Chapter 2 Materials and Methods 
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2.1 Experimental Materials and Methods 
	

2.1.1 Mice  
	
6-8 week old wild type mice (C57BL/6) were housed in BSF at the University of York. 

All mice were housed in microisolator cages with a 12hrs dark/light cycle, and fed on a 

standard diet with autoclaved water. Mice were schedule 1 killed using increasing 

concentrations of CO2 and then cervically dislocated. All experiments conformed to the 

ethical principles and guidelines approved by the University of York Institutional and 

Animal Care Use Committee in accordance with the European Union regulations and 

performed under a United-Kingdom Home Office License. 

2.1.2 Sample Collection and Storage 
	
Popliteal LNs were excised and excess fat or connective tissue removed with forceps. For 

flow cytometry they were placed in Fluorescence Activated Cell Sorting (FACS) wash 

(PBS containing 0.5% Bovine Serum Albumin (BSA) (Sigma Aldrich)). For 

immunohistochemistry, samples were transferred to optimal cutting temperature medium 

(OCT, Tissue-Tek, Sakura Finetek), snap frozen on dry ice and stored at -80°C. Optimal 

cutting temperature medium embedded tissue was sectioned into 20 µm sections using a 

cryostat and collected onto poly-L-Lysine coated microscope slides and stored at -20°C. 

2.1.3 Enzymatic Digestion of Lymph Nodes 
	
Digestion of lymph nodes was performed using an adaptation of a previously published 

protocol (Fletcher et al., 2011b). LNs were pierced with a fine forceps and incubated in 

enzymatic mix comprising 0.2mg/ml Collagenase P (Roche), 0.8mg/ml Dispase (Roche) 

and 0.1mg/ml DNaseI (Roche) in RPMI-1640 media (Life Technologies). Samples were 

incubated at 37°C in a thermomixer in 1.5ml tubes with gentle mixing. After 20 mins LNs 

were pipette mixed, the enzymatic mix was removed and added to 3ml of cold FACS 

wash or cell culture media (αMEM (Life Technologies), 10% Foetal Calf Serum (FCS) 

and 5% L-glutamine) and centrifuged at 300g for 5 mins at 4°C. Larger fragments that 

had not been digested that remained in the original digestion tube settle were pipette-

mixed with enzymatic mix and incubated for 10 minutes at 37°C in a thermomixer with 

gentle mixing. After the incubation, cells were mixed vigorously, after the fragments were 

again allowed to settle, the supernatant was removed and added to the previously spun 

cell pellet and centrifuged again. Cells were filtered through 70µm cell strainers and then 
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used for flow cytometry.  

2.1.4 Surface Marker Antibody Staining for Flow Cytometry 
	
Flow cytometry staining was performed in a V-bottom 96 well plate. Cells were first 

resuspended in 100µl Fc block mix made up in FACS wash and incubated for 10 mins on 

ice. The Fc block mix included TruStain fcX (a rat anti-mouse CD16/32 antibody) used at 

a dilution of 1:200 (BioLegend) and rat IgG, 10µg/ml (sigma). Following the incubation 

the plate was spun for 5 min, 4°C, 300g and supernantant discarded. Cells were then 

resuspended in 100µl of antibody staining master mix containing fluorescent labelled 

monoclonal antibodies (mAbs) in FACS wash and incubated for 25-30 mins on ice (or at 

37°C) in the dark. Single stains and unstained controls were also prepared. Cells were 

washed with FACS buffer, resuspended in 200µl of FACS wash and transferred into 

microtubes (Titertube micro test tubes, Bio-Rad) on ice. Samples were run on a Fortessa 

(BD Biosciences) flow cytometer and data was analysed using the FlowJo (Treestar) 

software package. 

 

2.1.5 Live Cell / Dead Cell Discrimination 
	
Following antibody staining, cells were resuspended in 100µl of PBS containing DAPI 

(1:5000 dilution), and then incubated for 5 min at room temperature in the dark. Cells 

were washed with FACS buffer (3 x 5 mins), resuspended in 200µl FACS wash, 

transferred into microtubes and kept on ice. 

 

2.1.6 Quantifying Lymph Node Cellularity Using Flow Cytometry. 
	
Accucheck counting (Invitrogen) beads were used to calculate total cellularity of samples. 

Following antibody staining, pellets were resuspended in 100µl FACs wash. 100µl of 

counting beads were mixed for 1 min to ensure they were evenly resuspended before 

running on the flow cytometer. Figure 2.1 shows the counting beads on a flow cytometry 

plot. To ensure accuracy the beads are made up of two types of beads that differ in their 

fluorescent intensity, for accurate readings the two populations should be present at 

approximately 50:50 ratio. To calculate absolute cell number, the beads and cells of 

interest were gated on using the gating strategy shown in Figure 2.1. The following 

calculation was then made: 
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Number of cells per µl =  
number of events(beads)

number of events  x number of beads per µl   (2.1) 

Where the number of beads per µl was provided by the supplier and varied with each 

batch. The total cellularity of the lymph node could be calculated using the values of cells 

per µl and final volume of FACS wash that contained the cells. 

 

 

 

	

Figure 2.1 Gating strategy to quantify B-cell numbers. Representative flow cytometry plots showing 
the gating strategy used to quantify B cells. Singlet discrimination was achieved by using the forward 
scatter width. AccuCheck counting beads have a high side scatter (SSC) and a low forward scatter (FSC) 
enabling a distinction between beads and cells. The live-dead stain with DAPI only stains the dead cells as 
they do not have intact membranes. After gating on live cells, B-cells were identified using the marker 
CD19; a cell surface protein that modulates BCR mediated signals.  
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2.1.7 Immunohistochemistry 
	
2.1.7.1 Immunofluorescent Staining of Frozen Tissue 

Frozen lymph node sections on polylysine slides were incubated at room temperature for 

30 mins. A circle was drawn around each section using a wax ImmEdge pen (Vector 

Laboratories), samples were fixed in 4% paraformaldehyde for 10 minutes at room 

temperature then hydrated and washed in PBS for 15 mins in total with changes of PBS 

every 5 mins. To prevent non-specific antibody staining, sections were incubated in a 

blocking buffer of PBS, 0.1% Tween-20 (Sigma-Aldrich), 0.1% Triton X-100 (Sigma-

Aldrich) and 5% serum (the serum of the host the secondary antibody was raised in) at 

room temperature for 1 hour at room temperature. After blocking, sections were incubated 

in the primary antibody mix, made up in blocking buffer for 1 hour at RT. The slides were 

then washed and secondary antibody incubation was performed (if necessary). The slides 

were then washed. A drop of Prolong gold (Invitrogen) was added to each section, and 

then a No 1.5 glass coverslip (Fisher) mounted on top. The slides were incubated 

overnight at 4°C the next day slides were sealed using nail varnish. Stained slides were 

stored at 4°C. 

 
 
2.1.7.2 Confocal Microscopy 

Immunofluorescent stained sections were imaged using the Zeiss LSM 880 confocal 

microscope. Samples were excited with 405,488,561 and 633 nm lasers. Image 

acquisition was performed using the 63X oil objective. Tile scans and Z stacks were 

performed to image large tissue sections at high-resolution.  

For imaging of chemokine gradients we used the Airyscan module to increase spatial 

resolution beyond the diffraction limit of light. On a standard confocal microscope out of 

focus emission light is excluded through use of a pinhole at the focal plane. Image 

resolution is increased by decreasing the pinhole, but with the caveat of losing light 

energy. Airyscan deals with this trade-off between resolution and light efficiency by using 

a hexagonal array of 32 detectors. Each detector acts as a small pinhole with positional 

information, this facilitates increased signal to noise ratio and spatial resolution in 

comparison to a standard confocal microscope (Huff, 2015).  
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Marker 

 
Fluorophore 

 
Supplier 

 

 
Clone 

 
Anti-mouse CD19 Alexa 488 eBioscience eBio1D3 

Anti-Human CD19 Alexa 488 Biolegend HIB19 

Anti-Human CXCL13 unconjugated R&D Biosystems 53610 

Anti-Human CD35 unconjugated Santa Cruz Ber-MAC-DRC 

    
Table 2.1 List of antibodies used for flow cytometry and immunohistochemistry.  

 

2.1.7.3 Quantification of LN topology. 

Images of lymph nodes from Cxcl13-Cre/Tdtomato R26R- (abbreviated as Cxcl13-EYFP) 

mice (Onder et al., 2017) were obtained by laser scanning confocal microscopy (data provided by 

Dr. N. Pikor and Dr. L. Onder). The topological mapping (performed by J.C and Dr. Mario 

Novkovic) of follicular stromal cell network structure was created as an undirected, 

unweighted graph by defining nodes as the EYFP+ centres of mass and edges as physical 

connections between neighbouring nodes. In this analysis images were manually 

annotated using Imaris (Bitplane) such that a straight line is draw between two stromal 

cell bodies that are connected by a protrusion or smaller branching process with no other 

cell body directly blocking this connection. An example graph is provided in Chapter 4 

(Figure 4.3). Analysis of topological parameters (described in section 2.1.7.4) was 

performed by Dr. Mario Novkovic using the iGraph5 package and custom scripts in R.  

 

 

 

 

 

 

 

 

 

 

																																																								
5	Available from https://cran.r-project.org/web/packages/igraph/index.html	
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2.1.7.4 Calculating Topological Parameters 

 

In this study we focus on key metrics to characterise the topological properties of the 

follicular stromal cell network. Although a number of other metrics exist, these metrics 

are sufficient to assess whether the network has small-world properties, to facilitate a 

comparison of different stromal cell subsets and also provide quantitative data to inform 

the algorithmic reconstruction of an in silico stromal network. Specifically, we assess 

whether the network has small world properties (sigma and omega) (Humphries and 

Gurney, 2008; Watts and Strogatz, 1998) as has been reported for FRC networks 

(Novkovic et al., 2016) and assess the distances over which stromal cells interact how 

dense the interaction networks are.  

 

Degree centrality: The number of edges e connected to a given node i.. 

 

Edge length: The length of an edge in microns. i.e. this represents the Euclidean distance 

between two nodes not the total length of interconnected cell protrusions. 

 

Global clustering coefficient (𝑪𝒈𝒍𝒐𝒃𝒂𝒍): The global clustering coefficient is given by the 
ratio of the triangles and the connected triples in the graph whereby a triplet is 3 
connected nodes 
 

    𝑐!"#$%" =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑠𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠        (2.2) 

where 𝛿! represents the number of neighbors of node i. 𝐶 represents the arithmetic mean 
of all nodes in the network. 
 

Average local clustering coefficient (𝑪): The local clustering coefficient 𝑐! of a node i is 
defined as: 

    𝑐! =
2

𝛿! 𝛿! − 1
𝑒!   ,   0 ≤ 𝑐! ≤ 1     (2.3) 

where 𝛿! represents the number of neighbors of node i. 𝐶 represents the arithmetic mean 
of all nodes in the network. 
 
Average shortest path length (𝑳): is defined as the arithmetic mean of all pairs of 
shortest distances between nodes i and j: 
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       𝐿 =
2

𝑛 𝑛 − 1 𝑙!"

!

!!!!!

!

!!!

 ,   1 ≤ 𝐿 < ∞     (2.4) 

where 𝑙!" is the length (number of edges) of the shortest path between nodes i and j, 
namely how many nodes one needs to pass in order to get from node i to node j. The 
maximum distance 𝐿!"# is called the diameter of the network. In case of a complete 
network where all possible connections are present, all the node distances 𝑙!" = 1, thus the 

sum 𝑙!"!
!!!!!

!
!!! = ! !!!

!
, which gives the minimal 𝐿!"# = 1. 

 

Sigma factor (σ) : The small-world measure 𝜎 is defined as: 

        𝜎 =
𝐶 𝐶!
𝐿 𝐿!

 ,   1 ≤ 𝜎 < ∞      (2.5) 

where 𝐶! and 𝐿! are the average clustering coefficient and average shortest path length of 
an equivalent random network averaged across 100 simulation runs. The equivalent 
random network has the same number of nodes and edges and is generated using the 
Erdos-Renyi model. A network has small world properties if 𝐶 ≫ 𝐶! , 𝐿 ≥ 𝐿!  and 
therefore 𝜎 > 1. 
 

Omega factor (ω): The small-world measure 𝜔 is defined as: 

    𝜔 =
𝐿!
𝐿
−
𝐶
𝐶!

 ,   − 1 < 𝜔 < 1      (2.6) 

𝐶! is the clustering coefficient of an equivalent lattice network and 𝐿! is the average 
shortest path length of an equivalent Erdos-Renyi random network. A network will be 
classified as a small world network if: −0.5 ≤ 𝜔 ≤ 0.5,  
	

	

2.1.7.5 Quantification of Spatial Autocorrelation 

To quantify the spatial autocorrelation of fluorescence intensity 2D confocal images were 

acquired on a Zeiss LSM 880 confocal microscope with the same laser settings and post 

processing for each sample. Processed .png files were then analysed in R using custom 

scripts. Briefly, this analysis involved discretising the image into 14.44µm2 bins and 

calculating the spatial correlogram using the correlog function from the ncf6 package. 

Spatial autocorrelation is quantified using Moran’s I statistic with significance assessed 

through permutation testing (Bjørnstad et al., 1999; Moran, 1950).   

 

																																																								
6	Available from https://cran.r-project.org/web/packages/ncf/index.html	
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2.1.8 Sub-Millisecond Single Molecule Imaging 
 
2.1.8.1 Reagents 

Human chemokines (CCL19 and CXCL13) labelled with the far-red fluorescent tag 

AF647 (Almac) were used to image molecular mobility in complex tissues (Figure 2.2).  

 

 

 

 

 

 

	

Figure 2.2. Fluorescently labelled chemokine molecules. The site where the fluorescent tag is added to 
the protein is highlighted in blue. The labelling site is distinct to putative interactions sites obtained from 
docking simulations performed on the ClusPro server (Kozakov et al., 2017).   

 

 

 

 

 

Fluorescent Tag (AF-647)

CXCL13-CXCL13                          CXCL13-Heparin
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2.1.8.2 Preparation of Collagen Matrices 

Type I rat-tail collagen was obtained using the protocol described in (Barnes et al., 2016). 

Briefly, collagen was extracted from sterilized rat-tail tendons by dissolution in acetic 

acid and subsequent lyphophilization on ice. Lyophilized collagen I was dissolved in 

0.02mol dm−3 acetic acid to provide a stock concentration of 6.6mg/ml. 

Samples for fluorescence microscopy were prepared in tunnel slides formed by placing 

two parallel lines of double-sided tape on a standard microscopy slide approximately 

5mm apart. A plasma-cleaned coverslip was placed on top to create a watertight tunnel 

and slides were cooled to 4˚C. Fluorescent chemokines were diluted to a working 

concentration of 111ng/ml and mixed with collagen type I rat-tail collagen diluted in PBS 

to a concentration of 3.3mg/ml and set to pH 7 with the addition of NaOH. Tunnel slides 

were then incubated at 15˚C for 30 minutes, followed by an additional 30-minute 

incubation at 37˚C. Formation of the collagen matrix was verified by second harmonic 

imaging (SHIM) performed on a Zeiss 780 Multiphoton microscope with a plan-

apochromat 63x/1.4 oil objective lens with a shortpass 485 filter (Figure 2.3).  

 

 

	

Figure 2.3 2D SHIM image of collagen network. Scale bar 10µm 
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2.1.8.3 Preparation of Heparan Sulphate Coated Tunnel Slides 

Immobilised chemokine samples were prepared as follows: a plasma-cleaned coverslip 

(plasma-cleaning removed background autofluorescence) was incubated in Heparan 

Sulphate (50mg/ml) (Sigma) in PBS for 30 minutes. Slides were washed with PBS and 

left to dry at RT for 30 minutes before being placed onto a tunnel slide. 10nM 

fluorescently labelled chemokine solution in PBS was introduced to the tunnel slide and 

incubated in a humidity chamber for 15 minutes at 20˚C. Excess unbound chemokine was 

removed with a PBS wash. 

 

2.1.8.4 Preparation of Lymph Node Tissue Sections for Super-Resolution Imaging 

 

LNs were collected and stored as per Section 2.1.2. Frozen lymph node sections on 

polylysine slides were incubated at room temperature for 30 minutes. Samples were 

hydrated in PBS for 5 mins then left to dry and circles were drawn around each section 

with a wax ImmEdge pen (Vector Laboratories). Sections were incubated in a blocking 

buffer of PBS 5% goat serum (Sigma) at room temperature for 1 hour.  After blocking, 

sections were incubated in primary antibody mix (anti-B220 FITC, eBioscience) made up 

in 1:200 blocking buffer for 1 hour at RT. Samples were washed with PBS for 3 x 5 

minutes and 1µM of CXCL13-AF-647 added to the slides. Slides were left to incubate 

overnight at 4˚C after which slides were washed for 30 seconds in PBS and a No. 1.5 

glass coverslip (Fisher) mounted on top. Slides were then sealed and imaged.  

2.1.8.5 Narrowfield Fluorescence Microscopy 
 
Bespoke fluorescence microscopy was performed on an inverted microscope body (Nikon 

Eclipse Ti-S) with a 100x NA 1.49 Nikon oil immersion lens and illumination from a 

supercontinuum laser (Fianium SC-400-6, Fianium Ltd.), controlled with an acousto-

optical tuneable filter (AOTF) to produce a narrowfield excitation light centred on 

619nm. The use of narrowfield imaging permits fluorescent excitation at distance of a few 

hundred nanometres above the coverslip thus mitigating some of the boundary effects 

which may be encountered using Total Internal Fluorescence (TIRF) microscopy where 

only a thin section directly above the coverslip is excited. A 633nm dichroic mirror and 

647nm long-pass emission filter were used to filter the appropriate wavelengths of light 

emitted from the fluorescence images. Images were recorded on an emCCD camera (860 

iXon+, Andor Technology Ltd) cooled to -80˚C. 128x128 pixel images were acquired for 
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1000 frames with 1.98ms exposure times and 128 x 29 pixel image strips were acquired 

with 0.59ms exposure times. When imaging in tissue, sections were stained with an anti-

B220 antibody conjugated to FITC. Samples were imaged at low (1.2µm/pixel) 

magnification with green illumination (470nm) to determine the location of the B cell 

follicles, before switching to high (120nm/pixel) magnification and red illumination to 

image chemokines in these areas. 

 

Analysis of narrowfield microscopy data was performed by H.M. and involved the 

following steps. Single-molecules were identified and processed using ADEMS code, a 

bespoke software package in Matlab (Miller et al., 2015a). The micro-diffusion 

coefficient was calculated for each tracked particle from the gradient of a linear relation 

fitted to the first four steps in a track. The microdiffusion coefficient distributions 

comprised two distinct fractions: a low mobility fraction that had non-specifically adhered 

to the plasma-cleaned coverslip and a diffusive fraction. Consequently, the probability 

distribution of diffusion coefficients was modelled by a two gamma distribution (Qian 

and Elson, 1990): 

 

       𝐹 𝑥,𝐷,𝑁 =
𝑁
𝐷

!
𝑥!!!𝑒!

!"
!

𝑁 − 1 !         (2.6) 

 

where N is the number of independent steps in a track and D is the true diffusion 

coefficient. In fitting this model to the data the solution obtained is sensitive to the initial 

fitting conditions. To optimise these parameters simulated experimental data, with known 

input diffusion coefficient, was used to test that the diffusion constant derived from the 

fitting routine was consistent with this known input value. Specifically, to refine model-

fitting parameters experimental data was simulated with and without noise, tracked, and 

the distribution of diffusion coefficients was fitted with the same constraints as the actual 

data. This process was repeated until the simulation represented the experimental data and 

the fit to the simulation data converged to the diffusion coefficient values simulated. 

Errors for measures of the diffusion coefficients were found by bootstrapping, an 

approach where a random 80% of the data is sampled and fitted as per the entire dataset. 

The standard deviation obtained from 10 repeats of this sampling and fitting was taken as 

the error for the measures obtained for 100% of the data.  
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Figure 2.4 Overview of the super-resolution imaging platform. Single molecule images were obtained 
on an epifluorescent microscope, where illuminated and emitted light travels through the same objective 
lens. A continuous spectra of light was generated using a super continuum laser, this light then passes 
through an acousto-optic tuneable filter (AOTF), an electro-optical device that modulates the intensity and 
wavelength of multiple laser lines. Devices of this type rely on a specialized crystal whose optical properties 
vary upon interaction with an acoustic wave, enabling very rapid wavelength tuning. Using this system a 
narrowfield excitation light centred on 619nm is produced with a 633nm dichroic mirror and 647nm long-
pass emission filter used to filter the appropriate wavelengths of light emitted from the sample. Images were 
recorded on an emCCD camera (860 iXon+, Andor Technology Ltd) cooled to -80˚C. The cooling was 
necessary to increase the signal to noise ratio as at high temperatures you can get thermal fluctuations 
leading to noisier signals. 128x128 pixel images were acquired for 1000 frames with 1.98ms exposure times 
and 128 x 29 pixel image strips were acquired with 0.59ms exposure times. 
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2.1.9 Fluorescence Recovery After Photobleaching (FRAP) 
	
Fluorescence Recovery After Photobleaching (FRAP) images were performed on a Zeiss 

LSM 880 microscope with an APO 110z/1.4 oil immersion lens. Fluorescently labelled 

chemokine diluted in PBS to a working concentration of 100nM were prepared in glass 

bottom petri dishes (1.5 coverglass, MatTek corporation). In these analyses an area of 

4.9±0.1µm square was bleached with a 633nm laser. The bleached area was measured 

with an immobile sample of CXCL13-AF647. Thirty recovery traces (intensity(I) vs time 

(t)) were acquired for BSA-AF647.  Analysis was performed by Helen Miller (H.M.) 

using the Zeiss Zen software to fit the data with the single exponential equation: 

       𝐼 = 𝐼! − 𝐼!𝑒
! !
!!          (2.7) 

 
where the initial intensity I0 and drop in intensity, I1 were fitted along with the decay 

constant T1, from which the diffusion coefficient, D, is calculated via: 

                  𝐷 =
𝜔!

8𝑇!
               (2.8) 

where ω is the full width at half maximum fluorescence intensity value of the bleached 

area. 
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2.1.10 Fluorescence Correlation Spectroscopy 
	
Fluorescence correlation spectroscopy (FCS) was performed on a Zeiss LSM 880 

microscope. Samples were prepared in glass bottom petri dishes (1.5 coverglass, MatTek 

corporation) and illuminated with a 633nm laser. The confocal volume was measured 

using a calibration sample with a known diffusion constant. To perform this calibration 

we measured the diffusion of BSA-AF647 in water and constraining the value to be 

59µm2s-1 (Putnam, 1975a) this allowed the structural parameter (s) to be fixed at 6.6. 

Three repeats of ten experiments were conducted and traces indicating the presence of 

multimeric clumps or proximity to the surface were excluded. Data analysis was 

performed by H.M. and required fitting autocorrelation traces, G(τ), to account for 

transient dark states7 and diffusion using the following equation: 

 

 

𝐺 𝜏 = 1+ 1+
𝑇𝑒!

!
!!

1− 𝑇
1

𝑉!"" 𝐶
1

1+ 𝜏
𝜏!

1

1+ 1
𝑠

! 𝜏
𝜏!

        (2.9) 

 

where T is the fraction of molecules in dark state, τT is the time molecules spend in  the 

dark state, τD is the time constant of diffusion across the confocal volume, Veff, and <C> is 

the average concentration. D was calculated from TD via the equation: 

                  𝐷 =
𝑤!

4𝑇!
        (2.10) 

 

where w is the width of the focal spot (0.322µm).  

 

 
	
	

																																																								
7 The fluorescence properties of a fluorophore can change over the course of an acquisition; the “flickering” 
in fluorescence intensity is the transition of the dye to the first excited triplet state. In this state, the 
chromophore needs more time to return to the ground state, during which time it cannot emit any 
fluorescence. 
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2.2 Computational Methods 

2.2.1 Principled Design Framework 
	
To ensure a principled and transparent design process we employ the CoSMoS (Complex 

System Modelling and Simulation) process, a framework to guide the modelling and 

analysis of complex systems (Figure 2.5) (P.Andrews J. Timmis et al., 2010). As 

suggested by the CoSMoS process, initial stages of model design involve the 

development of a domain model, a non-executable, conceptual model focusing purely on 

current biological understanding, disregarding any consideration of how to implement and 

simulate the conceptual model. The domain model specifies the states, relationships and 

methods of interaction (the rule-set) for the biological entities being captured. The 

platform model is akin to a software specification, as is standard in software engineering, 

and details how the biological processes specified in the domain model are to be 

implemented. The simulation platform is an executable piece of software, which 

implements the underlying conceptual model. The results model provides a structure to 

interpret data obtained from the Simulation Platform. A specification is created that 

documents the output obtained from the simulation, what domain knowledge this is 

compared to, and the statistical methods used to assess this result. Within the York 

Computational Immunology Lab a series of case studies have led to the development of 

an instantiation of the process, particularly suited to modelling the immune system. This 

is discussed further in Chapter 3.  
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Figure 2.5. Overview of the CoSMoS process. In this approach the biological system of interest is referred 
to as the domain. Initial design phases lead to the development of a domain model, a non-executable 
specification focusing on current understanding with respect to the research context. The platform model 
represents a software blueprint while the simulation platform is an executable piece of software that 
implements the conceptual model. The results model summarizes the understanding generated from 
experimentation conducted using the simulator. 
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2.2.2 Modelling Biological Behaviours  
 

The Unified Modelling Language (UML) is a general-purpose visual notation used to 

model the design of a system. While commonly used in software engineering, we use an 

adaptation of the UML as described by Read et al. (2014) to specify low-level behaviours 

of biological systems. 

 

Expected Behaviours Diagram: In this diagram we present the research context within 

which the model is developed. This diagram specifies the research question and the 

observed emergent properties of the system, as well as the biological entities and 

mechanisms hypothesised to give rise to these properties. This approach helps to scope 

the research context, highlighting key model entities and time points of interest. 

State Machine Diagram: For each model entity, states (a set of attributes and behaviours 

associated with a model entity at a specific moment in time) that the entity can exist in 

and the interactions that much take place for the state to change are examined and 

documented. In Figure 2.6 we see that the cell enters the system in State A and if 

conditions P and Q are met the entity transitions into State B. 

Activity Diagram: This diagram is used to specify a sequence of activities associated 

with model entities. For each entity, it details the workflow from an initial state to a finish 

point, detailing the decision paths and interactions with other entities that occur (Figure 

2.7). 
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Figure 2.6. Key for Adapted Unified Modelling Language: State Machine. This is a key for the syntax 
used to describe biological processes as state machine diagrams in both the domain and platform models. 
Rectangles represent actions and agent states; diamonds represent decisions; arrows represent the order in 
which state transitions/activities may occur while a circle represents entry/exit into the system. 
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Figure 2.7. Key for Adapted Unified Modelling Language: Activity Diagram. This describes the syntax 
used to describe biological processes as activity diagrams in both the domain and platform models. 
Rectangles represent actions or activities; diamonds represent decisions; horizontal bars represent the start 
(split) or end (join) of concurrent activities; a black circle represents the start (initial state) of the workflow 
while an encircled black circle represents the end of the activity (final state). 
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2.2.3 Arguing that the Simulation is a Fit for Purpose Representation of the 
Biological System 
 

The design and implementation decisions made when constructing a simulator are 

influenced by the overarching scientific objectives of the work, with simulation results 

interpreted in this context (Alden et al., 2015; Cosgrove et al., 2015). To argue that the 

simulator fulfils its remit, acceptance tests, key design decisions, and information used to 

inform the design, development and validation of the model and simulation are presented 

as arguments over evidence using a visual notation derived from goal structuring notation 

(Figure 2.8) and can be opened using the ARTOO tool8 (Alden et al., 2015). This 

diagrammatic tool facilitates transparency of model design and analysis, capturing the 

reasoning behind the inclusion or exclusion of each biological feature and recording 

assumptions, as well as pointing to evidence supporting model-derived conclusions. 

 

	

Figure 2.8. Key for Argumentation Notation: (i) claim the purpose of the argument we are seeking to 
support; (ii) Evidence that supports the argument made in the attached claim; (iii) strategy the steps that will 
be taken to argue that the claim is supported; (iv) context defines the purpose of the argument and key 
terms; (v) justification provides a reasoning behind the selection of a strategy or claim and  (vi) assumption 
provides an explicit statement of any assumptions made in place of biological understanding. Figure 
reproduced from (Alden et al., 2015). 

 

 

 

 

																																																								
8	Available from: https://www.york.ac.uk/computational-immunology/software/artoo/	
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2.2.4 Software Development and Computer Infrastructure 
	
Within the simulation platform each module was developed using Java and the MASON9 

ABM library version 19 (Luke et al., 2005) in an iterative process of implementation, 

validation and refactoring using Acceptance Test-Driven Development (ATDD) 

(Sommerville, 2010). Tests are continually assessed and refined as the project progresses 

and are incorporated into an automated regression framework using the java library 

JUnit10 (available from http://junit.org/junit4/) to ensure that new code does not disrupt 

existing functionality, expediting the development process. Test coverage was quantified 

using the eclipse plugin eclEmma11. Simulations were executed on a Linux Cluster made 

up of 64 CPU 256GB memory nodes and running Fedora 22 and an Oracle grid engine. 

 

2.2.5 Calibration to Establish Baseline Simulation Behaviours 
	
Model calibration is the process by which parameter values are tuned to reproduce 

experimentally measured behaviours. To constrain each parameter, lower and upper 

bounds were set on the basis of direct experimental measures or derived from indirect 

evidence from the wider literature (described further in Chapter 4).  Parameters were 

systematically changed and compared to experimental datasets using the non-parametric 

Mann-Whitney U-Test given outputs were not normally distributed, as determined by a 

Shapiro-Wilk test for normality (Royston, 1992). To assess the robustness of our baseline 

calibrated parameter values, outputs from best-fit parameter sets were compared to gene 

knockout experiments. Parameter sets that failed to reproduce statistically comparable 

results to both wild type and gene deficient mice were omitted.  

 

2.2.6 Quantification of Model Uncertainty 
	
To quantify sources of uncertainty in the our simulator we used the R software package 

SPARTAN (Alden et al., 2013). This package contains a suite of statistical techniques 

(described in more detail in the following sections) specifically designed to help 

understand the relationship between the simulator and the physical system it describes.  

 

																																																								
9	Available from http://cs.gmu.edu/~eclab/projects/mason	
10	Available from http://junit.org/junit4/	
11	Available from http://www.eclemma.org/download.html	
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2.2.7 Quantification of Aleatory Uncertainty 
	
CXCL13Sim is non-deterministic and therefore can produce different outputs under the 

same parameter inputs. To determine how many runs are required to give a representative 

output for a given parameter set we perform an aleatory analysis (Figure 2.9).  In this 

approach, distributions of simulation outputs generated using a fixed parameter set are 

compared. By varying the number of samples comprising the distributions, the analysis 

determines the minimum number of runs required to obtain statistically consistent 

distributions. Larger sample sizes produce increasingly similar distributions, thereby 

mitigating the effect of simulation stochasticity on results.   

 

To understand aleatory uncertainty, 20 distributions were generated and contrasted for 

each sample size. A distribution of median responses for each simulation run is generated 

for each of the 20 subsets. Distributions 2–20 are contrasted with the distribution from the 

1st set using the Vargha-Delaney A-Test (Vargha and Delaney, 2000), a non-parametric 

effect magnitude test that establishes scientific significance by contrasting two 

populations of samples and returning the probability that a randomly selected sample 

from one population will be larger than a randomly selected sample from the other. 

Values of 0.5 indicate that the medians are the same while values of 1 and 0 mean that 

there is no overlap. In our analyses we set thresholds for small (0.56), medium (0.66) and 

large (0.71) effect sizes based on values suggested by Vargha and Delaney (2000) and 

define a significant behavioural alteration as one where the A-test statistic exceeds the 

medium threshold.  
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Figure 2.9. An illustratory example of output from an aleatory analysis using the R package 
SPARTAN. On the plot the A-score (Y-axis) is shown for each simulation output for a given sample size 
(X-axis). The A-score is the probability that a randomly selected sample from one of the 20 distributions 
will be larger than a randomly selected sample from another. As the number of replicate runs increases the 
value tends to a value of 0.5 suggesting that there is no difference between the distributions. Vargha & 
Delaney provide suggested thresholds for interpreting the effect size results above 0.71 or below 0.29 
indicate a significant difference between the populations. 
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2.2.8 Quantification of Parameter Uncertainty 
 

Prior to using a simulation for in silico experimentation, it is important to appreciate how 

sensitive outputs are to perturbations in parameters. Such an analysis can be performed 

through application of sensitivity analysis (SA) techniques. Through a systematic 

exploration of the parameter space, simulation inputs that have an influential effect on 

simulation behaviour are identified, aiding the biological interpretation of simulation 

results. SA techniques are split into two categories: local and global. Local analysis 

techniques examine how robust the simulation is to a perturbation of a single parameter 

value (herein referred to as an OAT analysis) (Figure 2.10). However, local SA 

techniques cannot reveal compound effects where one parameter's influence is dependent 

on the value of another. Such effects may be elucidated using global analysis techniques 

that perturb multiple parameters simultaneously.  

 
For OAT analysis each parameter is adjusted, with all other parameters remaining at their 

calibrated value. The Vargha-Delaney A-Test described previously implemented in 

SPARTAN is employed to determine if changing the parameter value has led to a 

significant behavioural alteration in contrast to the baseline simulation. We define a 

significant behavioural alteration as one that leads to a medium effect size. Threshold 

values for determining small medium and large effect sizes are discussed in section 2.2.7  

 

This indicates how robust the simulator is to an alteration in the value of each parameter, 

and can indicate the validity of results produced by the simulator when considering results 

over a biologically accepted range of values. In Figure 2.10a we see an example output 

from an OAT analysis, low values of the parameter lead to a significant increase in all 3 

output metrics. Parameter value 6 represents the baseline value (hence no statistically 

significant difference) and values greater than this all model outputs are reduced (shown 

by a high values of A test). In Figure 2.10b there is a large amount of uncertainty around 

this parameter as changing the parameters does not lead to a large difference in any of the 

three model outputs.  

 

 

 

 

 



	 69	

 

 

 

	
Figure 2.10. Example A-test scores when OAT adjusting parameters. These example plots show an 
illustratory example of the results obtained from an OAT analysis performed in SPARTAN. 3 Parameters 
were incrementally changed within their likelihood distributions with significant alteration in simulation 
outputs from baseline behaviours determined using the Vargha-Delaney A-Test. (A) an example output 
from an OAT analysis where low values of the parameter lead to a significant increase in all 3 output 
metrics. Parameter value 6 represents the baseline value (hence no statistically significant difference) and 
values greater than this all model outputs are reduced (shown by a high values of A test). (B) an example 
output showing a that changing the parameter does not lead to a large difference in any of the three model 
outputs. meandering index (MI) Δ; motility coefficient (MC) ¢ ; speed ✚.  
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2.2.9 Global Sensitivity Analysis 
 

To perform a global sensitivity analysis we use two parameter sampling techniques, LHC 

(Latin-Hypercube) (Figure 2.11) and eFAST (Extended Fourier Amplitude Sampling 

Test). Through latin hypercube sampling, values for each parameter are selected with the 

aim of ensuring efficient coverage of the parameter space. Parameters that have 

significant impact on simulation behaviours are identified through calculation of a Partial 

Rank Correlation Coefficient (PRCC), a robust measure for quantifying non-linear 

relationships between an input and output (Marino et al., 2008).  

 

To calculate the PRCC the data are rank-transformed 12, and for each parameter, two 

linear regression models are found, the first representing the input parameter in terms of 

the other parameters and the second represents the output measures in terms of the other 

parameters. A Pearson correlation coefficient for the residuals from those two regression 

models gives the PRCC value for that specific parameter. Thus PRCCs characterise a 

linear relationship between input x and output y after the linear effects of the other inputs 

on y have been discounted. A significance test is performed to assess if a PRCC is 

significantly different from zero (Marino et al., 2008). Each PRCC (y) generates a value 

T, calculated as follows: 

 

              𝑇 =  𝛾
(𝑁 − 2− 𝑝)
1−  𝛾!          (2.11) 

 

where T follows a student’s t distribution with (N-2-p) degrees of freedom. N is the 

sample size and p is the number of parameters whose effects are discounted. In Figure 

2.12 we see PRCC values from an example LHC analysis, the parameter decay constant is 

significantly positively correlated with the output metric while Ka is negatively 

correlated. The parameter Rf is not significantly correlated with the output metric 

however.  
 

 

 

																																																								
12	Inputs and outputs are sorted by magnitude	
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Figure 2.11. Overview of the latin hypercube sampling approach for 2 parameters. Latin Hypercube 
Sampling (LHS) is a type of stratified sampling. It works by controlling the way that random samples are 
generated for a parameter likelihood distribution. In this approach the parameter space is divided into 
subdomains (dotted lines). In this example 6 parameter combinations are taken, with one coming from each 
subdomain to ensure extensive exploration of the parameter space. Figure adapted from (Read, 2011). 

	

Figure 2.12. An example polar plot to visualize PRCCs determined following LHC sampling of the 
parameter space. In this plot the PRCC value is indicated with a line on the polar plot; red lines display 
positive correlations with respect to a given output while blue lines display negative correlations with 
respect to a simulation output.  
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In the previous global analysis approach we use Latin Hypercube Sampling (LHS) and 

Partial Rank Correlation Coefficients (PRCC) to identify parameters that have a 

significant effect on model outputs. This approach facilitates an understanding of what 

parameters should be targeted to achieve a desired response but does not indicate which 

parameter uncertainties have the greatest impact on output variability. Understanding this 

parametric uncertainty can allow for model refinement through directing experimental 

measurements. The extended Fourier Amplitude Sampling Test (eFAST) is a variance 

decomposition method (Figure 2.15) (analogous to ANOVA) that can be used to address 

this issue (Saltelli and Bolado, 1998; Saltelli et al., 2008). In this approach input 

parameters are varied, causing variation in model output. The algorithm then partitions 

the output variance, determining what fraction of the variance can be explained by 

variation in each input parameter.  

 

In this scheme, parameters values are sampled using a sinusoidal function of a particular 

frequency. Each parameter is taken in turn and sampled at a frequency that is much larger 

than the other parameters (Figure 2.13a). Due to the symmetry of a sinusoidal function it 

is possible to choose the same parameter set more than once, therefore a re-sampling 

scheme in which a phase shift is introduced at each frequency is encouraged (Marino et 

al., 2008).  Through Fourier analysis using these frequencies, variation in output can be 

partitioned between the parameters, giving an indication of the impact each has on 

simulation response. This process is repeated for an extra parameter, the ‘dummy’ 

parameter that has an arbitrary value range but no impact on simulation behaviour. This 

enables a comparison between the impact of each parameter and one known to have no 

effect on simulation response.   
 

To quantify the influence of each parameter, two sensitivity indexes are calculated for 

each parameter-response pairing: a first-order (Si) and total order sensitivity (STi) index 

(Figure 2.13b). The first indicates the fraction of output variance in that response that can 

be explained by the value assigned to the parameter. The latter indicates the variance in 

that response caused by higher-order non-linear effects between the parameter and the 

others under investigation. To determine the significance of these metrics, indexes are 

compared to those obtained for the ‘dummy’ parameter using a two-sample t-test.  
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Figure 2.13. Overview of the extended Fourier Amplitude Sampling Test (eFAST). (A) In this scheme 
parameters are varied according to a sinusoidal function based on run number. The frequency is greatly 
increased for the parameter of interest. Figure adapted from Marino et al (2008). (B) Example SPARTAN 
output for an eFAST analysis. The Si (black) represents the fraction of output variance that is attributed to a 
parameter value. The STi (grey) represents the variance caused by higher order non-linear effects between 
that parameter and the others explored. The error bars represent the standard error over three resample 
curves. 
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2.2.10 Simulation Emulation with Machine Learning 
 

The emulation pipeline is described in full in Chapter 5.5 but briefly, involves the 

following: the training dataset for emulator development was obtained using latin 

hypercube sampling, with 1000 parameter sets. Each set was executed 100 times to 

mitigate aleatory uncertainty, and median responses calculated to summarize simulator 

performance under those conditions. The data set was partitioned into training (75%), 

testing (15%) and validation (10%) datasets. 

 

The supervised learning approach used to generate CXCL13emulator was an artificial 

neural network, an approach inspired by the neuronal circuits in the brain, with 

computations structured in terms of an interconnected group of artificial neurons. During 

the learning phase, the weighting of connections between neurons are adjusted in such a 

way that the network can convert a set of inputs (simulation parameters) into a set of 

desired outputs (simulation responses). The ANN-based emulator was developed in the R 

package SPARTAN with supervised learning of the data achieved through 

backpropagation of errors. To determine optimal hyperparameters of the network we 

performed ten-fold cross validation on a selection of structures with thirteen inputs (the 

parameters) and four outputs (speed, meandering index, motility coefficient and 

checkpoints reached), with one to four hidden layers. The accuracy of each fold was 

determined to be the mean squared error between the predicted cell behaviour responses 

and those obtained by the simulator, and the accuracy of the network structure determined 

to be the average of these ten fold root mean squared errors.  
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2.2.11 Multiobjective Optimisation 
 

Multiobjective optimisation (detailed further in Chapter 6.1.2) of the CXCL13emulator 

was performed using the non-dominated sorting genetic algorithm II (NSGA-II), a 

multiobjective genetic algorithm (Deb et al., 2002) (Figure 2.14). This analysis was 

performed in R using the package mco v15.0 13. The four objectives to be assessed by the 

algorithm were to: minimize the root mean squared error between emulator and simulator 

responses for cell speed, meandering index and motility coefficient; and maximize 

scanning rates. Values for generation number, mutation and crossover probabilities 

(Table 2.2) were determined by a global sensitivity analysis whereby values for mutation 

and crossover rates were sampled between 0.1 and 1.0 (intervals of 0.1) and values for the 

number of generations was sampled between 200 and 500 (intervals of 100). We chose 

parameters that performed well on all three objectives and maximized the variance of the 

parameter inputs.  

 

 

 

 

Parameter Value 

Mutation rate 0.4 

Crossover rate 0.9 

Population Size 300 

Generations 200 
Table 2.2 Parameters used for NSGA-II 

 

 

 

 

 

 

 

																																																								
13 Available from https://CRAN.R-project.org/package=mco  
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Figure 2.14. NSGA2 workflow. Step 1: Create a random population of size Z. Step 2: rank the random 
parent population based on non-domination. Step 3: For each non-dominated solution, assign a fitness score. 
Step 4: Create an offspring population using tournament selection, recombination, and diversity operators. 
Step 5: Create the next generation by combining parent and offspring population and sorting this 
population, of size 2Z, to identify all non-dominated fronts. The new parent population is then determined 
by taking the highest ranked (determined using a crowded comparison operator) non-dominated solutions. 
When the total non-dominated solutions exceed the population size Z, reject some of the lower ranked non-
dominated solutions. Then perform the selection, crossover and mutation operations on the newly generated 
parent population, to create the new offspring population, of size Z. Step 6: Step 5 is repeated until the 
maximum number of iterations is reached. 
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Chapter 3 Agile Development of 
Multiscale Models 
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3.1 Introduction 

3.1.1 Multiscale Modelling 
 

The B-cell activation pathway discussed in Chapter 1 is comprised of distinct layers of 

organisation, spanning broad time and length scales (Figure 3.1). Thus a key challenge in 

the field is to understand, in quantifiable terms, how the aggregate effects of molecular-

level interactions manifest at higher levels of organisation. To address this challenge, the 

systems biology community has begun to develop theoretical models that describe 

cellular, tissue, organ and organism level processes concurrently; an approach more 

commonly referred to as multiscale modelling (Vicini, 2010). In this chapter we discuss 

the utility of multiscale models, how they are developed and what the limitations of this 

approach are. Following this, we present a framework to guide the development of 

multiscale models and use this framework to develop a Domain Model of CXCL13-

mediated regulation of B-cell activation in lymph nodes.  

 

 

 

	

Figure 3.1. Biological processes occur across a broad range time and length scales. However, 
experimental methods, particularly imaging modalities, are optimised to measure specific time and length 
scales. This can make interpretation of a single dataset in the context of the wider literature challenging.  
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3.1.2 Multiscale Models: Advantages 
	

	
Recent technological advances in microscopy have led to the unprecedented availability 

of data on the dynamics of B-cell migration and selection.  However, as imaging 

techniques are optimised for a given time and length scale, they become increasingly 

limited in their ability to link molecular, cellular and tissue level processes (Figure 3.1). 

To address this issue, modelling approaches have been used to test the validity of 

different hypotheses for mechanisms controlling B-cell migration derived from 

multiphoton imaging data and to study the dynamics of G-Protein Coupled Receptors 

(GPCRs) responsible for B-cell migration within the Germinal Centre (Chan et al., 2013; 

Meyer-Hermann, 2006; Meyer-Hermann et al., 2012).  

 

Multiscale modelling has also been applied to oncology, where clinical trials have the 

highest failure rate in comparison to other therapeutic areas (Begley and Ellis, 2012). In 

complex processes such as tumour formation, probing targetable mechanisms can be 

difficult owing to heterogeneity arising on multiple scales; cancerous cells adapt at 

genetic and molecular scales to survive in dynamic environments, altering cellular 

phenotypes and therefore treatment efficacy. In this context a hybrid agent-based 

approach incorporating a pharmacokinetic / pharmacodynamics (PK/PD) model was 

developed to explore the dynamics of tumour growth, as well as the penetration of the 

bio-reductive drug tirapazamine (TPZ) (Kazmi et al., 2012). This case study exploited the 

ability of multiscale models to consolidate information across different disciplines, 

affording a quantitative perspective from which to combine insights from cancer biology 

with pharmacological understanding of the therapeutic agent. In this study, a PK/PD 

approach was applied to model factors such as hydrogen ion production, nutrient 

distribution, and drug concentration, while an agent-based approach was used to model 

each individual cell over space and time, capturing interactions between cells within the 

tumour microenvironment. Combining both approaches showed that the drug was 

incapable of reaching the edge of the hypoxic region of the tumour, due to consumption 

of the drug as it diffused into the tumour.  
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3.1.3 Limitations of Multiscale Models: Focus on Uncertainty 

 
The aforementioned case studies demonstrate the efficacy of multiscale models in 

bridging understanding across spatiotemporal scales and scientific disciplines. However, 

multiscale models require significant time and resource investments to engineer and 

evaluate, a core limitation restricting their wider use (Kirschner et al., 2014; Vicini, 

2010). This issue is exacerbated by the lack of standardized practices and a well-defined 

validation and certification framework, without which it is difficult for regulation bodies 

to assess the validity of simulation-derived results.  

 

Consequently, sources of uncertainty arise at all stages of the model development process. 

Datasets and published findings used to inform model development may come from many 

different experimental systems and organisms. This is particularly pertinent to multiscale 

models that require large amounts of data to develop. However, studies conducted by 

Amgen (Thousand Oaks, CA), with a view to confirming published results important to 

their R&D efforts, could only reproduce similar findings in 11% of cases (Begley and 

Ellis, 2012).   

 

As the complexity of scientific software increases, greater emphasis must be placed on 

designing system architecture and testing strategies to avoid implementation errors and a 

code base that is difficult to maintain and repurpose. This is particularly pertinent to 

academia where there is typically: (i) a high turnover of workers; (ii) a wide range of 

scientific skills and coding proficiency; (iii) the need for a maintainable and extensible 

code base that will outlive particular research grants and (iv) changing requirements that 

are driven by new scientific discoveries (Pitt-Francis et al., 2009). Given these challenges 

we note the following features of academic software: (i) they are not generic; (ii) they 

have not been completely tested and validated; (iii) they are not freely available to the 

scientific community and (iv) they do not include state-of-the-art techniques to improve 

performance (Pitt-Francis et al., 2008).  

Lastly, as the dimensionality of the parameter space increases, or it becomes necessary to 

capture stochastic and heterogeneous behaviours, it becomes less tractable to robustly 

evaluate model behaviours within a time frame that can run parallel to laboratory or 

clinical studies. For example, agent-based simulations that capture both stochasticity and 
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heterogeneity can require hundreds of replicates to generate a representative output for a 

single parameter set (Alden et al., 2012b; Read et al., 2013a). In such settings, quantifying 

parametric uncertainty is time intensive, even with significant computational resources 

available. The extended Fourier amplitude sampling test (eFAST) analysis that partitions 

variance in simulation response between parameters of interest (Saltelli et al., 2008). 

However, the characteristics of this sampling technique (detailed in Chapter 2.2.10) give 

rise to a significant number of parameter sets, totalling 1,170 for a six-parameter study. 

Models with a long execution time may therefore limit the application of certain statistical 

analyses necessary to understand simulation behaviours and translate simulation-derived 

results back to the problem domain. 

3.1.4 Limitations of Multiscale Models: Approaches to Address Uncertainty 
	

Although there is currently no clear consensus on a standardized protocol for developing 

multiscale models for the biomedical sciences, some methodologies exist. Grimm et al. 

proposed a “three-block” standard protocol for the development of ABMs termed ODD 

(overview, design concepts, and details). The CoSMoS (Complex System Modelling and 

Simulation) process is a framework for the iterative development of complex systems 

models, in which model development is divided into 5 key phases (detailed in Chapter 2) 

(Alden et al., 2012b; Bown et al., 2012; Read, 2011). Irrespective of the approach-specific 

semantics, three core components remain consistent across most methodologies: (i) 

designing a model, (ii) implementing a model, and (iii) validating a model.  To address 

uncertainty associated with designing a model, increased focus has been placed on closer 

integration of experimental and theoretical approaches, while argumentation structures 

have been applied to document all data used to inform a model as well as key assumptions 

made (Alden et al., 2015). In terms of model implementation, hybridisation has enabled 

researchers to tune model granularity at distinct scales to facilitate parsimony and boost 

performance (Guo and Tay, 2008). Lastly, at the model validation phase, extensive 

research focus has led to the development of a suite of statistical techniques to better 

relate simulator outputs to the research domain (Alden et al., 2013; Read et al., 2012). 

Despite this progress, there is a dearth of studies that look at how uncertainty can arise 

when the developing the computer code associated with a multiscale simulator or 

reducing the time taken to evaluate simulator behaviours. 
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3.1.5 Summary and Aims of the Chapter 
 

Multiscale models afford a quantitative perspective from which to consolidate 

information across broad spatiotemporal scales and scientific disciplines. However, 

development of multiscale models is technically challenging, requiring significant time 

and computational resources.  In this chapter, we aim to adapt the current instantiation of 

the CoSMoS process, to account for the challenges associated with developing multiscale 

models (Chapter 3.1.4). Using this updated instantiation seek we develop a conceptual 

model (herein referred to as a Domain model, as detailed in the CoSMoS process 

(Chapter 2)) of the pathway described in section 3.4.1 using visual notations. In brief our 

aims were: 

 

1. Update the current instantiation of the CoSMoS process to address issues 

associated with developing multiscale models (section 3.2-3.3).  

 

2. Summarise current understanding of CXCL13-mediated regulation of B-cells in a 

Domain Model through visual notations (section 3.4). 

 

3. Use the Domain Model to identify key entities and time points of interest as well 

as knowledge gaps (section 3.4.3). 
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3.2 Incorporating Agile Techniques into CoSMoS 
 

Within the York Computational Immunology Lab, researchers have employed the 

CoSMoS process to design, develop and validate complex systems models (Alden et al., 

2012b; Bown et al., 2012; Read et al., 2013a). While providing a generalised framework 

to build models, application of CoSMoS in a given research context should be tailored to 

suit the criticality and intended impact of the underlying research. Through the 

development of several case studies on the immune system, a novel instantiation of the 

process has evolved (Alden et al., 2012b; Read et al., 2013a). A core feature of this 

instantiation is the incorporation of engineering-derived approaches: (i) the use of visual 

notations to describe models succinctly (Alden et al., 2015; Read et al., 2014) (ii) 

advanced statistical methodologies to deal with issues of domain, parameter and aleatory 

uncertainty (Alden et al., 2013; Read et al., 2012; Williams et al., 2016) and (iii) 

improving model parsimony or computational efficiency through model hybridisation 

(Guo et al., 2008b) and tuneable resolution (Kirschner et al., 2014). 

To extend this instantiation, we incorporate agile development approaches to address 

issues associated with developing software implementations of multiscale models. Core 

terminology relating to this updated instantiation is presented in Table 3.1. Although 

employed sparingly, agile approaches are well suited to the needs of small academic 

teams working within a highly dynamic problem domain (Pitt-Francis et al., 2009). A key 

case-study informing the incorporation of agile approaches is Chaste (cancer, heart and 

soft-tissue environment), a software library and a set of test suites for computational 

simulations of cancer, cardiac physiology and soft-tissue mechanics (Pitt-Francis et al., 

2008). This software platform was developed with contributions from researchers across 

several disciplines with as much code modularity and reuse as possible. An independent 

review of the underlying source code from an industrial collaborator suggested that the 

framework performs very well in terms of code quality, readability, software architecture 

and general software engineering. Another case study for the use of modular design is a 

whole cell computational model of the human pathogen Mycoplasma genitalium (Karr et 

al., 2012a). In this study the authors took a hybrid modelling approach, encapsulating 

functionality into distinct modules to expedite the development process.  
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Entity An independent element of the model, such as a cell or protein. 

Module A self-contained model subunit that can be used to construct a more complex model 

Modular 
Model structure consisting of several standalone subunits that can function 
independently, but may be linked together to form a more complex representation of 
the system. 

Cohesion The degree to which elements of module are directed towards a single focused task 

Coupling The degree of interdependence between modules 

Model A non-executable description of a system, which may be described in an abstract 
manner, or for a platform-specific implementation as a simulation. 

Simulation An executable implementation of a model; a software platform capable of imitating the 
behaviour of a system to study its form and function. 

Hybridisation 
Using a combination of modelling techniques concurrently, to capture aspects of the 
system at different scales in a tractable manner and to overcome the limitations 
associated with using each technique in isolation. 

Multiscale A model combining processes occurring across multiple time and length scales. 

ATDD 

An agile approach to software-development in which testing and code development are 
interleaved. In this approach the functional requirements of the system, are specified as 
acceptance tests. Code is subsequently developed and tested incrementally, not 
proceeding to the next increment until all code passes associated tests. 

Acceptance Test A test conducted to determine if the requirements of a contract or specification are met 

Unit Test A test to verify a specific stand-alone function of a software method or class 

Integration Test A test to verify that modules are compatible, interact correctly and transfer the correct 
data across their interfaces at the correct time with respect to a given acceptance test 

 

Table 3.1. Key definitions pertaining to the agile development workflow 
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Modularisation is a software design technique that emphasizes separating the 

functionality of a program into independent subunits (Table 3.1), with each distinct 

subunit responsible for only one aspect of the desired functionality (Baldwin and Clark, 

2000). Modular design is not itself an agile approach but a fundamental engineering 

principle that can be applied in an agile way.  Hybrid schemes are prone to having highly-

coupled code that can be difficult to validate and to diagnose errors. It is also difficult to 

extend the functionality of highly coupled software; architectural decisions made in the 

past become difficult to change. Applying a modular design approach promotes looser 

coupling and higher cohesion between software subunits (Table 3.1), making code more 

reusable and facilitating model hybridisation (Baldwin and Clark, 2000).  

Through the development of distinct modules, development can proceed in an incremental 

and iterative fashion where each component is designed and tested in isolation. With well-

defined interfaces for how these modules interact they can be successfully integrated and 

separated at later points in time. To increase confidence in the function of each distinct 

module and the integrative system, test-first approaches are warranted.  

Test-driven approaches to software development are characterized by the close integration 

of testing into code development. In this approach, tests are written before the code. Code 

is then developed and tested incrementally, not proceeding to the next increment until all 

tests are passed. Broadly speaking, testing can be split into two categories: validation and 

verification tests. Validation tests check that the specification captures the functional 

requirements of the software, while verification ensures that the software meets the 

specification. An adaptation of TDD, known as acceptance test-driven development 

(ATDD), incorporates both types of test to assess both the functional requirements of the 

software and the underlying code base (Table 3.1). In a multiscale modelling context, the 

ATDD approach affords the following advantages: (i) ATDD can assess both engineering 

and biological aspects of the simulator (ii) ATDD provides a testable definition of fit for 

purpose (iii) argumentation structures can be built around testing data (iv) acceptance 

tests can inform the choice of modelling technique.  

 

Within our ATDD approach are 3 distinct levels of tests (i) unit (ii) module and (iii) 

system/acceptance level (Figure 3.2a).  Unit tests assess a specific stand-alone function of 

a module such as a method or a class with well-defined and simple functionality. Modules 
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involve a set of core data structures that are manipulated by a sequence of methods. 

Modules are tested by inputting a range of values and ensuring that outputs are consistent 

with expected values (examples provided in Appendix 3). System level or acceptance 

tests are designed to ensure that the simulator is a fit for purpose representation of the 

problem domain (Figure 3.2a). This yields a hierarchical testing strategy (Figure 3.2b) 

designed to produce a robust but malleable code base capable of responding effectively to 

changing requirements. 

	

3.3 Development Workflow to Design and Implement CXCL13Sim 
 

Initial stages of model design involve identifying and specifying the research focus 

through an expected behaviours diagram (Read, 2011) and performing a functional 

requirements analysis to identify core functionality that would provide a fit for purpose 

representation of the problem domain. Following these initial scoping exercises, the 

domain and platform models were developed and specified using an adaptation of the 

Unified Modelling Language (UML). Using this approach, we were able to effectively 

describe and communicate low-level behaviours in complex systems (Read et al., 2014).  

 

The Simulation Platform begins with development of a hierarchical testing scheme in 

which unit and module (verification) tests are grouped under an associated acceptance 

test14 (Figure 3.2). Tests are continually assessed and refined as the project progresses 

and are incorporated into an automated regression framework to ensure that new code 

does not disrupt existing functionality, expediting the development process.  

To argue that the simulator fulfils its remit, acceptance tests, key design decisions, and 

information used to inform the design, development and validation of the model and 

simulation are presented as arguments over evidence using a visual notation derived from 

goal structuring notation (GSN) and can be opened using the GSN visualisation tool 

ARTOO (detailed further in Chapter 2) (Alden et al., 2015). In the following section, we 

use this development workflow to detail a Domain Model of CXCL13-mediated B-cell 

migration. 

 

																																																								
14	Acceptance	tests	were	informed	by	the	functional	requirements	analysis	



	 87	

 

 

	

Figure 3.2. Agile Development Workflow. (A) In this instantiation each acceptance test is coupled to a set 
of verification tests at the unit and component level as part of a hierarchical testing framework. Unit tests 
are designed to test the core functionality of a stand-alone module while component tests are designed to 
test if modules are compatible, interact correctly and transfer the correct data across their interfaces at the 
correct time. (B) The workflow for each iteration is as follows: The functional requirements of the software 
are assessed and agreed upon with the Domain Expert. Subsequently, The system is divided into core 
modules, with system architecture mapped through an adaptation of the UML. At the Simulation Platform 
stage of development functional requirements were formalized as a set of acceptance test cases designed to 
validate the system. For each acceptance test, coupled sets of module and unit tests are specified. Code is 
then developed and tested incrementally, not proceeding to the next increment until all tests are passed. 
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3.4 Domain Model Development 

3.4.1 Timeline of B-Cell Activation 
	
Following immunization and infection, complement activation and deposition onto 

microbial antigens contributes to their efficient transport to the LN in a soluble form or 

through active transport by Dendritic Cells (DCs). Within the lymph node, antigen 

smaller than 70 kDa with a molecular radius less than ~4 nm filters into the parenchyma 

through reticular conduits or small pores in the subcapsular sinus (Roozendaal et al., 

2008). The conduit system is guarded by PLVAP, a protein that forms a molecular sieve 

designed to regulate the parenchymal entry of lymphocytes and soluble antigens 

(Rantakari et al., 2015). However, not all lymph-borne molecules have free access to the 

lymphocyte compartment; larger antigen is retained at the subcapsular sinus, where 

macrophages and DCs sample the lymph and remove microorganisms, larger molecules 

and debris (Roozendaal et al., 2009).  

Within the B-zone a dense web-like network of non-haematopoietic stromal cells are 

found. This network comprises 3 distinct but interconnected CXCL13+ cell types: 

Marginal Reticular Cells (MRCs), B-zone Reticular Cells (BRCs) and Follicular 

Dendritic Cells (FDCs). FDCs not only express CXCL13 but also act as an important 

reservoir for trapped antigen that can stimulate naïve B cells (El Shikh et al., 2010).  

 

Concurrently, B cells migrate across the endothelium into the cortex through the HEV at a 

rate dependent on the local vasculature. The arrest of blood-borne B cells in HEVs 

requires binding of the chemokine receptors CXCR4, CCR7 and to a minor extent 

CXCR5, leading to activation of the adhesion molecule LFA-1 that binds to ICAM-1 and 

ICAM-2 (Coelho et al., 2013). Once inside the lymph node, access to the follicle requires 

the G-protein-coupled receptor (GPCR) CXCR5 and is promoted by ICAM-1-expressing 

fibroblastic reticular cells (FRC) of the T-cell area which act as guidance structures 

(Coelho et al., 2013).  

 

As B cells scan the follicle they respond to ligands for the receptors CXCR5 and EBI2; 

this promotes contact with FDCs and cells located around the follicle perimeter, including 

sinus associated macrophages, MRCs and DCs (Batista and Harwood, 2009; Carrasco and 

Batista, 2007; Pereira et al., 2010; Phan et al., 2007). Non-cognate interactions with 
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antigen via complement receptors CR1 and CR2 facilitate the mass transport of opsonized 

antigens from the exposed follicle perimeter to the protected centre for long-term display 

on FDCs, where they are trapped in the form of iccosomes by complement receptors 

present on the dense network of FDC processes (El Shikh et al., 2010). 

 

If lymphocytes fail to recognize cognate antigen within a few hours to days, they return to 

the circulation in a sphingosine-1 phosphate receptor 1 (S1PR1) dependent manner 

through efferent lymph vessels and the thoracic duct (Grigorova et al., 2010; Matloubian 

et al., 2004). Notably, naïve B cells are resident in the LN longer than either CD4+ or 

CD8+ T cells (Tomura et al., 2008). However, if a B-cell does meet its cognate antigen it 

can internalise the antigen through its B-cell receptor. It can then degrade pathogen 

proteins into peptides for display on Major Histocompatibility Complex Class II (MHC-

II) molecules on the B-cell surface. Following antigen priming, a B cell upregulates CD86 

and CD80, proteins that provide co-stimulatory signals for T-cell activation while 

upregulation of the lymphocyte activation antigen CD69 inhibits the egress activity of 

S1PR1, leading to retention in the lymph node (Pereira et al., 2010). To maximise 

encounters with T cells, antigen-primed B cells exhibit a reduction in migration velocity, 

upregulate CCR7, (while CXCR5 expression remains unchanged) distribute themselves 

along the B/T border as a result of the balanced chemoattraction of CCL19/CCL21, 

CXCL13 and 7α,25 hydroxycholesterol (Pereira et al., 2010). 

 

Helper T cells, primed by dendritic cells earlier in the infection, migrate around the T-

zone in a CCR7 dependent manner. A subset of activated CD4+ T cells upregulate 

CXCR5 and reduce CCR7 expression allowing them to migrate towards the edges of 

follicles to provide help to B cells. This activation occurs via CD40 ligation subsequently 

driving the resting B-cell into the cell-cycle and upregulating the transcription factor bcl6, 

therefore reducing the propensity to undergo apoptosis (Kitano et al., 2011). Activated B 

cells migrate to interfollicular and outer follicle regions after receiving T cell help, where 

they can undergo proliferation for 1-2 days before returning to the centre of the follicle in 

an S1PR2 dependent process to initiate GC clustering and acquire a GC phenotype 

associated with, amongst other molecules, the upregulation of the chemokine receptor 

CXCR4 and the glycan moiety GL7 (Allen et al., 2007; Chan and Brink, 2012). If BCs 

fail to acquire this TC help they revert back to a naïve phenotype, downregulating CCR7 

and CD86 (Turner et al., 2017).  
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3.4.2 Characterising Current Understanding Through Visual Notations 
 

To consolidate current understanding of this pathway we develop a Domain Model. The 

aim of this model is to summarise current understanding of the pathway with respect to 

the following question: How does CXCL13 regulate the positioning of cognate B cells 

within primary lymph node follicles? We define the research context using an expected 

behaviours diagram (Figure 3.3) (Read, 2011). This figure summarises the research 

scope, highlighting key entities and interactions hypothesized to give rise to the observant 

phenomena described in section 3.4.1. Using this diagram as a high-level reference, we 

further detail the behaviours of model entities using state-machine and activity diagrams 

(detailed in Chapter 2.2) (Figures 3.4-3.8) (Read et al., 2014). Key design decisions, 

including abstractions made and data used to inform the model, are presented as 

arguments over evidence. A subset of the argumentation structure for the Domain Model 

is presented in Figure 3.9, with the entire structure available online15. 

 

Through specification of the Domain Model we identify a number of key limitations to 

our understanding of the B-cell activation pathway. Specifically, the source of CXCL13 

within the primary follicle is unclear. FDCs are implicated in the secretion of CXCL13 

within the GC but their role within the primary follicle is less clear. In addition, the spatial 

distribution of CXCL13 is poorly understood. Mice deficient in the CXCL13 gene display 

poor follicular organisation but this system does not facilitate more a more nuanced 

understanding of the molecule. Lastly, a quantitative description of lymph node 

architecture is lacking with no quantification of follicular structure, size or cellularity.  

3.4.3 Functional Requirements Analysis and Modularisation of the Pathway 
	

Given the research scope defined in the expected behaviours diagram (Figure 3.3) the 

functional requirements of the system, key objectives required to provide a fit for purpose 

representation of the problem domain, are: (i) to have a high fidelity representation of 

murine popliteal lymph node follicle size and B-cell density; (iii) to have a high fidelity 

representation of CXCL13 secreting stromal cells within the follicle and (iii) median 

values of B-cell migration metrics should display no statistically significant difference to 

those measured in vivo for wild-type or CXCR5-/- mice (Coelho et al., 2013). The 

																																																								
15	https://www.york.ac.uk/computational-immunology/software/cxcl13sim/	
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functional requirements analysis facilitated the identification of three core modules: (i) 

chemokine, (ii) B cells, and (iii) stromal cells.  

 

	

Figure 3.3. Expected Behaviours Diagram for CXCL13Sim. In this diagram we present the research 
context within which the model is developed. This diagram specifies the key emergent properties of the 
system as well as the low level mechanisms reported to give rise to these properties. Lastly, it defines key 
entities in the model and the relationships between them.  
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Figure 3.4. State Machine Diagram for a B cell: A B cell enters the LN at a fixed rate dependent on 
vascular supply, once in the LN a cognate B cell can become MHC expressing if it encounters antigen. Each 
B cell dynamically expresses CXCR5 and EBI2R and through detection of chemokine gradients can decide 
to move chemotactically or randomly if there is sufficient space to move. B-cells continue to express 
LTα1β2 at a fixed level and if 12-24 hours have passed and no interactions have occurred, the B cell exits 
the LN. If however, a BC encounters antigen it becomes antigen-primed, upregulating pMHC-II and CCR7 
to facilitate interactions with T cells.  
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Figure 3.5. State Machine Diagram for a FDC:  FDCs are resident in the system and are antigen 
presenting at time zero. FDCs secrete chemokine and express LTβR, complement receptors and adhesion 
molecules at a rate dependent on maturation status. FDCs also retain and present antigen unless cognate B 
cells capture all antigen 
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Figure 3.6. State machine diagrams for antigen, BRCs and MRCs: Antigen enters the follicle 1-6 hours 
following immunisation. It enters in a soluble or SCS residing form but may be transferred to FDCs if part 
of an immune complex. BRCs/MRCs are resident in the follicle at time zero and secrete CXCL13 at a fixed 
rate. SCS macrophages are in the system at time zero and can present antigen. 
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Figure 3.7. Activity Diagram 1: These diagrams detail the activities performed by each model entity and 
the conditions required for a change of activity to occur.  At the beginning of the activity FDCs exist in an 
immature state but mature if sufficient LTβR signal is received. CXCL13 is secreted at a rate dependent on 
maturation status. Antigen enters the system via the conduits or may be presented by SCS macrophages if 
greater than 70kDa. If antigen is part of an immune complex it may become FDC bound. BRCs and MRCs 
secrete CXCL13 at a fixed rate.  
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Figure 3.8 Activity Diagram 2: Activity diagrams detail the activities performed by each model entity and 
the conditions required for a change of activity to occur.  At the beginning of the activity FDCs express 
antigen unless cognate B cells capture all antigen. Under homeostatic conditions FDCs secrete CXCL13 at a 
fixed rate. If a B cell expresses CXCR5 then it can orientate itself along a CXCL13 gradient, otherwise it 
randomly orientates itself and if there is free space available can migrate. Once proximal to an FDC/SCS 
macrophage a cognate B cell may interact with antigen via its B-cell receptor and express it via MHC-II. 

 

 

 

Naive Cognate B CellFollicular Dendritic Cell 

IMMUNE COMPLEX 
BOUND

SCS macrophage

ANTIGEN BOUND

INTERACTINGINTERACTING

[else]

[else]

NON-CHEMOTACTIC 
MIGRATION

CHEMOTACTIC 
MIGRATION

[diffusion or trafficking 
via non-cognate B cells]

/  upregulates pMHC, 
CD80/86 and CCR7

/  B cell becomes primed

[does not interact with 
antigen within 24 hours]
/exit via the lymphatics

[proximal to macrophage][proximal to FDC]

[proximal to APC]

[detects chemotactic gradient]
[1-3 hrs following 
immunisation]



	 97	

	

Figure 3.9 A subset of the argumentation structure for the Domain Model. The argumentation structure 
contains a central claim arguing that the Domain Model provides a fit for purpose representation of the 
problem domain. To provide arguments over evidence for our central claim we have 4 key strategies that 
have an associated set of claims and evidence nodes (not shown). The fully expanded argument structure is 
available from https://www.york.ac.uk/computational-immunology/software/cxcl13sim/. 
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3.5 Discussion 
	

In this chapter we have discussed some of the key advantages afforded by a multiscale 

modelling approach. However, the need for significant time and resource requirements to 

design, implement and validate multiscale models limits their wider application. A key 

bottleneck in the development pipeline occurs during the implementation of multiscale 

models as executable software platforms. Given the highly dynamic nature of biomedical 

research programmes, multiscale software must be sufficiently lightweight and flexible to 

cope with constantly evolving requirements. Software that is difficult to test, redesign and 

refactor may limit the use of a simulator as a decision-making platform to complement an 

on-going laboratory or clinical study. 

 

To address this issue we have extended an existing instantiation of the CoSMoS process 

through the incorporation of modular design and ATDD. These agile techniques are 

particularly suited to the development of hybridised models in that distinct models can be 

coupled together while promoting loose coupling and high cohesion between software 

subunits. This allows specific elements of the model to be validated in isolation such they 

can be more readily refactored and repurposed. Coupling of module and unit tests to 

acceptance test as part of a hierarchical testing strategy ensures that both engineering and 

biological aspects of the simulator are tested. An additional benefit of the test-driven 

approach is that it provides a means of testing whether the simulator is a fit for purpose 

representation of the problem domain. This feature may be useful in safety-critical 

contexts such as clinical trial design, where clear endpoints and objectives are agreed 

upon before the trial begins and the simulator can only be deemed fit for purpose if it can 

pass tests associated with pre-specified requirements. 

 

Through development of a Domain Model of the pathway we have systematically scanned 

the existing literature. This led to the development of a conceptual model of CXCL13 

mediated regulation of B-cell migration expressed through an adaptation of the UML, an 

expected behaviours diagram and an argumentation structure. The use of visual notations 

facilitated the communication of large amounts of data in a clear and concise manner that 

is accessible to interdisciplinary teams.  
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This process identified 3 core components of the pathway that we have specified as 

modules and has identified a number of key knowledge gaps that limit our understanding. 

Despite the extensive body of literature on this pathway, there are relatively few 

quantitative analyses of how these components interact, particularly in the context of the 

homeostatic follicle. We have found limited measures of follicular architecture and 

cellularity with no direct measures of the cellular sources or kinetics of CXCL13 within 

the follicle. The lack of such measures ultimately limits our ability to predict how 

CXCL13 is implicated in more complex situations such as autoimmune disease or 

following immunization and infection.  In the following chapter we design experiments to 

address these knowledge gaps and further our understanding of the pathway.  
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4.1 Introduction 
 

In the previous chapter we have identified key limitations to our understanding of 

CXCL13-mediated regulation of B-cell activation. In this chapter we focus on imaging 

and cytometry approaches to enumerate key components of the pathway. As imaging 

techniques are adapted and improved over time, they become increasingly specialised for 

a given task; physiological context must often be sacrificed to increase resolution or vice 

versa. One must consider the strengths and limitations of each approach with no single 

technology capable of characterising an entire pathway. To address this issue, imaging 

studies can be enriched through use of an ensemble of techniques, with data consolidated 

through advanced mathematical analyses.  In the following section, we discuss key 

approaches to study the knowledge gaps identified in the previous chapter.  

4.1.1 Imaging and Graph Theory Based Approaches to Study the Architecture of 
Stromal Networks  
 

A key challenge in contemporary biology is to understand how grouped biological entities 

interact to control the behaviours of cells, tissues and organisms. Network theory has 

yielded the insight that despite the diversity of networks that occur in natural systems, 

their form and function is governed by a few simple principles (Barabási and Oltvai, 

2004). Random networks have no underlying organization with edges and nodes 

randomly assigned to one another with degree centralities, the number of edges per node, 

following a Poisson distribution (Barabási and Oltvai, 2004). Random networks can be 

generated using the Erdos-Renyi model but typically do not occur in natural systems 

(Erdős and Rényi, 1960).  Scale-free networks16, are networks whose degree distributions 

follow a power law, containing an abundance of high degree nodes or hubs, this infers 

robustness to the network where random node deletion is unlikely to disrupt the entire 

network (Barabási and Oltvai, 2004). Examples of scale-free networks are the internet and 

protein interaction networks (Albert, 2005) or theoretical networks generated using the 

Barabasi-Albert model (Barabási and Oltvai, 2004). Small world networks are another 

class of networks and are characterized by low shortest path lengths through the network 

and a high clustering coefficient. This leads to localized cliques, and rapid information 

																																																								
16	Called	scale-free	because	power	laws	have	the	same	functional	form	at	all	scales.	I.e.	zooming	in	on	any	
part	of	the	distribution	doesn’t	change	its	shape:	there	are	many	nodes	of	low	degree	and	a	small,	but	
significant	number	of	hubs	at	each	level	of	magnification.		
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transfer through the network; consequently a viral infection can spread more quickly 

through a network with small-world properties (Watts and Strogatz, 1998). Examples of 

small world networks include social networks (Telesford et al., 2011), airline routes 

(Telesford et al., 2011), fibroblastic reticular cell networks (Novkovic et al., 2016) and 

theoretical networks generated using the Watts-Strogatz model (Watts and Strogatz, 

1998). 

 

A preliminary study of FRC architecture exploited network theory to understand the 

migration of T cells. In this study the FRC network was modelled as a graph and in silico 

cell migration was confined to the edges (Donovan and Lythe, 2012). This model 

suggests that cell-turning angles are an emergent property of migrating along FRC 

processes. However a key limitation of this model is the lack of quantitative data 

informing network properties and the assumption that T cells are confined to the network. 

Recently, Novkovic et al (2016) used confocal microscopy in combination with 

fluorescent reporter mice and network theory to understand the spatial organisation of the 

lymph node FRC network. Through topological mapping of the confocal microscopy data 

the authors were able to perform in silico analyses of network robustness to viral attack, 

with simulation predictions that lymph nodes are able to tolerate a loss of approximately 

50% of total FRCs verified experimentally.  

 

4.1.2 Theoretical and Imaging Approaches to Study Diffusion 
 
Studies of diffusion in the physical sciences have led to mathematical descriptions of the 

process in the form of Fick’s laws, developed by Adolf Fick in the 19th century. The first 

law states that the molar flux due to diffusion is proportional to the concentration 

gradient. Mathematically, we can formalize this as: 

 

   𝑁! =  −𝐷!∇𝑐!      (4.1) 

 

Where for species i, Ni is the molar flux and ci is the concentration; the negative sign 

signifies that diffusion occurs towards decreasing concentrations. The second law states 

that the rate of change (first derivative of concentration with respect to time) in 

concentration at a point in space with respect to time is proportional to gradient (the 

second derivative of concentration with respect to space).  
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𝜕𝑐
𝜕𝑡 =  𝐷

𝜕!𝑐
𝜕𝑥!      (4.2) 

 

 
The value D that relates the first and second derivatives is known as the diffusion 

constant. Using the Einstein stokes relation we can predict the value of the diffusion 

constant as follows: 

 

    𝐷 =  
𝑘𝑇
6𝜋𝜂𝑟       (4.3) 

 

Where k is the Boltzmann constant, T is the temperature, 𝜂 is the viscosity of the medium 

in which the molecule is travelling, and 𝑟 is the Stokes radius of the molecule. Once this 

constant is determined we can then predict the mean squared displacement of the 

molecule over time using the following expression: 

  

        𝑥! =  2𝑑𝐷𝑡      (4.4) 

 

Where x2 is the distance squared, d is the number of dimensions. However, to apply this 

model we must assume that the viscosity of the medium in which the molecule is 

travelling is constant and that the molecule is undergoing free diffusion, and therefore no 

transient biochemical interactions. Given the density of the follicle microenvironment and 

the biochemical properties of chemokines this model is not appropriate to describe the 

diffusion of CXCL13 in vivo.  

 
Currently, there are a number of experimental approaches to assess molecular dynamics at 

both the population and single-molecule level (Figure 4.1). Fluorescence Recovery After 

Photobleaching (FRAP) involves rapidly bleaching a sample with a high-intensity laser. 

The movement of unbleached molecules from neighbouring areas into the bleached area 

is then recorded by time-lapse microscopy (Phair and Misteli, 2001a). This method is 

minimally invasive but as an ensemble method lacks the sensitivity associated with single 

molecule approaches.  
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Figure 4.1 Comparison of single molecule and ensemble approaches in detecting heterogeneous 
behaviours. Ensemble approaches that measure the average properties of large concentrations of molecules 
have used extensively to analyse molecular mobility. However, single molecule approaches can identify a 
spectrum of diffusive behaviours within the same sample and thus provide a unique insight into molecular 
heterogeneity.  

 

 

 

 

 

 

 

 

 

Ensemble

Single Molecule

Ensemble

Single Molecule



	 105	

One approach to assess single molecules is Fluorescence correlation spectroscopy (FCS) 

(Dong et al., 2012), a technique characterised by the statistical analysis of the fluctuations 

of fluorescence in a system in order to decipher dynamic molecular events, such as 

diffusion or conformational fluctuations of biomolecules (Gryczynski, 2008; Phair and 

Misteli, 2001a). FCS measures fluctuations of fluorescence signal intensity in a small 

detection volume as molecules diffuse through via Brownian motion. This generates a 

fluorescence intensity profile from which we can determine an autocorrelation function. 

The autocorrelation function represents the correlation coefficient between the intensity at 

time t and all later time points. As the shift in time progresses, the correlation coefficient 

(R) decreases. R as a function of time then represents the probability that the correlation 

decays. This technique is useful as it is a non-invasive with minimal photobleaching, it 

also requires less fluorophores per field of view and thus physiological concentrations of 

proteins can be used.  Using dual-colour fluorescence cross-correlation spectroscopy, 

Lilliemeier et al showed that identified distinct T-cell receptor (TCR) and linker for 

activation of T cells (LAT) domains which appear in distinct clusters on naïve cells come 

together upon TCR activation (Lillemeier et al., 2010). Key limitations for applications of 

FCS are the lack of spatial resolution and the need for robust and fast data analysis. This 

approach is typically used for homogeneous samples; however many molecules comprise 

multiple and diverse species resulting from protein interactions (association/aggregation) 

which increases the complexity of data analysis.   

 

More recently, increased emphasis is placed on single molecule imaging approaches with 

high temporal resolution, given the high speed at which molecular interactions can occur. 

Despite technical advances, the direct visualisation of dynamic molecular interactions at 

the single molecule level is still a challenging imaging frontier. STORM has integration 

times of ~tens of milliseconds for individual image frames with full reconstructions 

taking several seconds.  Scanning fluorescence methods such as STED are limited to 

~1 Hz frame rates with faster imaging up to ~1,000 Hz possible by trading image quality, 

while widefield approaches such providing super-resolution information in living cells at 

~ millisecond timescales(Plank et al., 2009; Reyes-Lamothe et al., 2010).  
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4.1.3 Summary and Aims of the Chapter 
 

Development of a Domain Model (Chapter 3) identified a lack of quantitative measures 

of follicular architecture, cellularity and CXCL13 dynamics. We address this using an 

ensemble of imaging and cytometry approaches in collaboration with specialists in the 

fields of super-resolution imaging (Leake lab, University of York, UK), cell migration 

(Stein lab, University of Bern, Switzerland) and stromal immunology (Ludewig lab, 

Kantonsspital St. Gallen, Switzerland). Consolidating this work, we derive a quantitative 

description of the primary lymph node follicle. Our key aims are summarized as follows: 

 

1. Quantify the network architecture of CXCL13+ follicular stromal cells using 

network theory based analysis approaches (section 4.2) 

2. Quantify the diffusion constant of CXCL13 in collagen matrix and lymph node 

using single molecule imaging approaches (section 4.3) 

3. Derive a quantitative description of the canonical primary lymph node follicle 

(section 4.4). 
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4.2 The Microanatomy of CXCL13 Production in the Primary Follicle 
 

To characterize the anatomy of CXCL13 secretion, we annotate 3D confocal images 

(typically 450µm x 450µm x 35µm) of lymph node follicles (provided by the Ludewig 

lab) taken from Cxcl13-Cre/Tdtomato R26R-EYFP (abbreviated as Cxcl13-EYFP) mice 

(Onder et al., 2017) (Figure 4.2). Briefly, this in vivo reporter strain of mice works as 

follows: CXCL13 promoter activity causes expression of the red fluorescent protein 

TdTomato, this in turn causes activation of a cre recombinase enzyme which removes a 

stop signal ubiquitously expressed on the rosa26 locus inducing expression of the 

fluorescent eYFP protein (Figure 4.2). EYFP thus acts as a lineage marker, being 

constantly expressed in cells that originate from a CXCL13 producing precursor while 

TdTomato expression is confined to cells with current CXCL13 promoter activity.  

 

In this approach, (detailed further in Chapter 2.1.7.3) images are manually curated in the 

IMARIS image analysis software17 package by marking the coordinates of each cell body 

and marking connections with lines if a physical connection in the form of a cell process 

exists between 2 cells bodies and no other cell body blocks the path (Figure 4.3). 

Mapping the stromal network in this way generates a topological mapping which can be 

further assessed using custom scripts in R and the iGraph package (Csardi and Nepusz, 

2006) (detailed further in Chapter 2.1.7.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
																																																								
17	Software	available	from	http://bitplane.com		
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Figure 4.2 The morphology of lymph node follicular stroma. The Cxcl13-EYFP mouse is a reporter 
strain that facilitates visualisation of cells currently expressing CXCL13 (red) and cells that originate from a 
CXCL13 expressing precursor (green).  In this system cxcl13 promoter activity leads to TdTomato 
expression and also activates the cre enzyme that removes the stop sequence in the promoter of the 
ubiquitously expressed rosa26 locus giving constant expression of eYFP. Within the follicle we focus on 3 
distinct stromal subsets (a) MRCs (b) BRCs and (c) FDCs. TdTomato (red), eYFP (green) CD21/35 (white). 
Data for figure provided by Dr. Natalia Pikor. 
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Figure 4.3 Topological mapping of follicular stroma. in this analysis we treat cell bodies as nodes and 
cellular protrusions between cell bodies as edges. FDC subnetwork highlighted in red, BRC subnetwork in 
blue and MRC subnetwork in green. Experiments performed by N.P and L.O, analysis performed by J.C 
and M.N Scale bar = 50µm.  
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From the images we map a network of 256 nodes and 1764 edges (Table 4.1). The 

median edge length through the network was 34.49µm with highest values observed in 

FDCs (Figure 4.4a). The median degree centrality was 9.5 edges for the whole network 

with similar median values and distributions observed for both BRCs and MRCs while 

FDCs were observed to be significantly different (Figure 4.4b, Table 4.1). The high 

density of FDC connections could be attributed to their web-like morphology, which 

served to maximize network connectivity in comparison to both BRCs, and MRCs. 

Stromal subsets were also heterogeneous in their fluorescent reporter expression for 

CXCL13, with highest values recorded for MRCs suggestive of a CXCL13 gradient 

towards the SCS, a major site of antigen entry into the follicle (Figure 4.4e). From this 

analysis we conclude that FDCs are the most topologically distinct cell type within the 

follicle (Figure 4.4).  

 

The global and local clustering coefficients (0.52 and 0.44 respectively) are higher than 

those expected for a random network with the same number of nodes and edges (0.054 

and 0.0541). The mean shortest path length through the follicle network is 3.58 while for 

an equivalent random network we obtain a value of 2.39. The high clustering coefficient 

and low shortest path length suggested that the network may have small world properties, 

as has been reported for fibroblastic reticular networks in the T-cell zone (Figure 4.5). 

This was confirmed by calculating the small world network metrics σ and ω (detailed in 

Chapter 2.7.1.4) (Table 4.1). σ is calculated by comparing clustering and path length of a 

given network to an equivalent random network with same degree on average (Humphries 

and Gurney, 2008). σ values greater than 1 are indicative of small-worldness; in the 

follicle, σ is 6.4 (Table 4.1). ω is another method for quantifying network small-

worldness and compares the clustering of a given network to an equivalent lattice network 

and its path length to an equivalent random network (Telesford et al., 2011). The metric is 

constrained between -1 and 1 with values close to zero indicative of small-world 

properties; in the follicle ω is 0.075 (Table 4.1). 
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Figure 4.4 Network properties of follicular stromal cells. (A) Distributions of edge lengths with distinct 
subsets highlighted. (B) Distribution of shortest path lengths through the entire follicular network. (C) 
Distributions of degree centralities within the network. (D) Distributions of local clustering coefficients 
FDCs shown in red, BRCs in blue and MRCs in green. (E) TdTomato fluorescent reporter expression for 
CXCL13. Experiments performed by N.P and L.O, analysis performed by J.C and M.N 
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Metric Value 
Number of Nodes 256 nodes 

Number of Edges 1764 edges 

Median Degree Centrality 9.5 edges 

Median Edge Length 34.49 µm 

Local Clustering Coefficient 0.52 

Global Clustering Coefficient 0.44 

Shortest Path Length 3.58 nodes 

Sigma 6.4 

Omega -0.075 

Table 4.1 Summary of CXCL13+ stromal cell network properties 
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Figure 4.5 Exemplar illustration of random, scale-free, small world and follicular stromal networks. 
Random networks have no underlying organization with edges and nodes randomly assigned to one another, 
Scale-free networks, for example protein interaction networks have an abundance of high degree nodes or 
hubs, this infers robustness to the network where random node deletion is unlikely to disrupt the entire 
network. Low shortest path lengths through the network and a high clustering coefficient promoting fast 
information transfer characterize small-world networks. These characteristics are also prevalent in follicular 
stromal cell networks as verified through calculation of the small world network metrics σ and ω. 
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4.3 Determination of the CXCL13 Diffusion Coefficient 
 

To measure the diffusion constant of CXCL13 we first assessed 3 distinct imaging 

modalities in collaboration with the Leake group: FRAP, FCS and a bespoke single-

molecule narrowfield imaging approach. The latter is detailed further in the Chapter 2 

but briefly involved adapting a standard inverted epifluorescence microscope to facilitate 

minimally perturbative sub-millisecond super-resolution localization of rapidly diffusing 

fluorescently labelled biomolecules. A key feature of the system is the use of an 

ultrasensitive back-illuminated EMCCD detector (iXon+, Andor) which could be sub-

arrayed to 128 x 29 pixels to enable rapid frame rates up to ~2,270 Hz. Imaging data was 

subsequently analysed in bespoke software (Miller et al., 2015b) written in MATLAB 

(Mathworks), which enabled precise quantification of the underlying molecular 

stoichiometry18  and mobility19  of tracked particles with ~40nm spatial precision and 

sub-millisecond sampling.  

 

To assess how the different techniques compared we measured the diffusion 

characteristics of the previously-characterised Bovine Serum Albumin (BSA) protein 

(Putnam, 1975b) that was conjugated with the far-red fluorophore Alexa-647 (Figure 

4.5). Due to the small size of BSA (66kDa) it was not possible to track diffusion over 

consecutive imaging frames in PBS buffer at the single molecule level, consistent with 

theoretical estimates for the diffusion constant D (> 100 µm2 s-1). To address this, we 

assessed diffusion in 10% Ficoll solution, which increased the fluid viscosity and 

facilitated single particle tracking. Using this experimental assay we then compared our 

empirically derived values for D, with theoretical expectations based on hydrodynamic 

modelling of BSA as a Stokes sphere of radius 3.48nm incorporating Faxens law to 

account for friction encountered in a viscous environment (Table 4.3) (Axelsson, 1978).  

 

Using FRAP and FCS we measure values of D = 7.1 ± 0.3 µm2s-1 and D = 18.8 ± 0.3 

µm2s-1 respectively for BSA-AF647 in Ficoll (Table 4.2). The result for FRAP is lower 

than the theoretical value, even considering boundary effects and temperature fluctuation 

whilst the result from FCS is higher (Table 4.2). The FRAP and FCS results differ by a 

																																																								
18	By	comparing	the	integrated	brightness	with	that	measured	for	a	single	fluorophore	
19	By	determining	the	microscopic	diffusion	coefficient	D	from	the	measured	mean	square	displacement	
(Robson	et	al.,	2013)	
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factor of 2.6, consistent with other published results (Calizo and Scarlata, 2013; Erika M. 

Adkins et al., 2007; Guo et al., 2008a). Differences between the techniques have been 

attributed to the different spatial scales of the two measurements or the high number of 

assumptions required in fitting FRAP data (Macháň et al., 2016). Single molecule 

imaging of BSA-AF647 yielded two distinct populations of molecules. Low mobility 

tracks where molecules interact with the coverslip and a freely diffusing mobile 

population with Dmobile= 9.3 ± 0.4 µm2s-1  (Table 4.2). Thus in addition to the consistency 

between single molecule and theoretically expected values, the approach is capable of 

assessing the underlying heterogeneity of molecular mobility. Consequently, we conclude 

that a single molecule approach is best suited to characterise chemokine mobility.  

 

 

 

 

Condition Diffusion Constant (µm2 s-1) 

Theoretical 12.3 ± 0.1 

FCS 18.8 ± 0.3 

FRAP 7.1 ± 0.3 

Single mol. 9.3 ± 0.4 

Table 4.2. Comparison of diffusion constant measures for BSA-AF647 obtained theoretically, or using 
FCS, FRAP and single molecule imaging. Data preparation and acquisition performed by J.C and H.M. 
Data analysis performed by H.M 
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Figure 4.6 Measurement of the diffusion coefficient of BSA-AF647 in 10% ficoll 400 with three 
techniques. (A) FRAP: schematic of technique and fluorescence intensity recovery trace. (B) FCS: 
Schematic of the confocal volume, section of intensity fluctuation trace and example correlation curve. (C) 
Single-molecule tracking with high speed narrowfield microscopy: Simplified schematic of the stages in 
tracking and the resulting fit with error bounds of one standard deviation. J.C performed sample prep, J.C. 
and H.M. imaged the samples and H.M. performed image analysis 
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Using the single molecule assay we investigated Alexa Fluor 647 (AF647) tagged 

CXCL13, in addition to CCL19, with narrowfield excitation exploring a range of sample 

exposure times between 0.44-2.04 ms per frame, acquiring most data using 0.59 ms per 

frame as a compromise between sampling speed and accuracy of detection. We assessed 

mobility in 3 different extracellular environments: (i) surface-immobilized heparan 

sulphate (ii) collagen gel matrix and (iii) lymph node tissue sections co-stained with anti-

B220 to identify B-follicles.  

 

To assess whether different chemokines were heterogeneous in their diffusion 

characteristics, we measured diffusion in the controlled collagen matrix environment. 

Images of AF647 labelled chemokines were collected at high speed (Figure 4.5a-b), and 

these were confirmed to be single molecules (Figures 4.5). AF647-labelled chemokines 

have a high-affinity for glass, sticking non-specifically to the coverslip surface. This 

population was characterised by tracking chemokine immobilised to the surface of the 

coverslip with heparin sulphate. This produced a distribution of low mobility molecules 

that can be filtered from the mobile fraction, facilitating data filtering and analysis. 

Interestingly, the diffusion rates for CXCL13 and CCL19 differed (6.2 ± 0.3 µm2s-1 and 

8.4 ± 0.2 µm2s-1 respectively, Table 4.3). This relative difference between the molecules 

was anticipated given the differences in the masses of the molecules (CXCL13 = 12.6 

kDa; CCL19 = 10.9 kDa). Theoretically expected values derived for free diffusion in 

water (146 µm2s-1 and 149 µm2s-1) were 23.5 and 17.7 times faster than for those 

measured in collagen (Table 4.3). These values suggest that it would take ~ 45 seconds 

for CXCL13 and CCL19 to diffuse 200µm freely in water, while in collagen it would take 

17.92 and 13.23 minutes for CXCL13 and CCL19 to diffuse the same distance (Table 

4.4).  Analysis of the single particle tracking data from CXCL13-AF647 and CCL19-

AF647 showed broad probability distributions for D under all different conditions 

(Figure 4.7) indicative of underlying heterogeneity in molecular mobility.  

 

Following this analysis, we performed single molecule imaging of CXCL13 in lymph 

node follicles. Within the samples, extracellular matrix components were highly 

autofluorescent and so it was not possible to track as many molecules. The resultant 

distribution of microdiffusion coefficients was broad yielding a bimodal distribution of 

high and low mobility diffusion rates (Figure 4.8). Superimposing these rates on the 

spatial distribution of CXCL13 within the tissue indicates that low mobility chemokines 
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are transiently interacting with extracellular matrix components, while high mobility 

molecules are freely diffusing in spaces between these components. Thus the 

microanatomy of the follicle constrains the rate of diffusion, with the density of the LN 

giving rise to diffusion rates of 7.6 ± 1.0 µm2s-1 substantially lower than for free diffusion 

in water (Table 4.3). This suggests that it would take an average of 14.62 minutes to 

travel 200µm in tissues (Table 4.4).  

 

 

	

Figure 4.7 Tracking single molecules. (A) Localisation of a single particle with tracking indicated by the 
red line. RHS: a fluorescence intensity plot showing a blinking pattern characteristic of single molecules. 
(B) Raw images showing CXCL13 (cyan) and CCL19 (purple) molecules labelled with Alexa-647. Scale 
bar = 1µm 
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Figure 4.8. Comparison of CCL19 and CXCL13 microdiffusion coefficient distributions in collagen 
matrix. Distributions of CXCL13 microdiffusion coefficients are shown in cyan, with CCL19 shown in 
purple. 

 

 

 

 

 Dfree (µm2s-1) Dcollagen (µm2s-1) Error Number of 
mobile tracks 

 
R2 of fit 

 
 

CXCL13 
 

146 6.2 0.3 1930 0.98 

 
CCL19 

 
149 8.4 0.2 4859 0.984 

Table 4.3. Summary of diffusion constants obtained for CXCL13 and CCL19 using the Einstein-Stokes 
relation (Dfree) and in collagen (Dcollagen). Also reported are the error, number of mobile tracks and the R2 of 
model fitting to experimental data. 
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Figure 4.9 Single molecule analysis of chemokine diffusion in lymph nodes. (A) Distribution and fit of 
diffusion coefficients of CXC13-AF647 in tissue, shaded area indicates one standard deviation. (B) 
Comparison of diffusion coefficients for the immobile (blue) and mobile (cyan) populations when tracking 
CXCL13-AF647 in lymph node tissue shown in (C). (C) Sub-pixel super resolution localization precision of 
the immobile fraction tracked in tissue. All scale bars 1µm. J.C performed sample prep, J.C. and H.M. 
imaged the samples and H.M. performed image analysis 

 

 

 

 

Condition Time taken to diffuse 200µm (s) Time taken to diffuse 200µm (min) 

CXCL13water 45.66 0.76 

CXCL13collagen 1075.27 17.92 

CXCL13 tissue 877.19 14.62 

CCL19water 44.74 0.75 

CCL19collagen 793.64 13.23 

Table 4.4 Time taken to diffuse 200µm for a given diffusion constant. Details of the calculation are 
provided in Appendix 1. 
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4.4 The Canonical Homeostatic Murine Popliteal Follicle 

  
Development of a conceptual model prompted experimental work to quantify the 

diffusion of CXCL13 and the anatomy of CXCL13+ stromal cells. However, we can also 

draw upon data from the wider literature to derive additional information that can be used 

to better understand our research context. In the following section, we summarise our 

findings to provide a quantitative description of the homeostatic follicle.  

 

Quantification of pLN follicle size and cellularity: Follicle volume was obtained from 

two publications (Irla et al., 2013; Kumar et al., 2010). Kumar et al determined the mean 

volume of a popliteal LN follicle using OPT scanning on BABB-immersed pLNs in 

conjunction with software based 3D reconstruction and quantification. Their analysis 

shows that typical pLN volume is 1.25mm3, dividing that by 10% (the percentage of 

volume accounted for by follicles) gives a volume of 1.25 x 108 µm3 for all of the B-

zones in one LN and dividing that by the number of follicles (18 [7-35]) gives 6.94 x 106 

µm3. In addition the authors observed a strong correlation (r2 = 0.93) between the size of 

the lymph node and the number of follicles. Values obtained by Irla et al. of inguinal 

lymph nodes suggest that total LN volume is 2.4mm3. Dividing this by 18% gives the % 

follicular volume. We then divide this value by the number of follicles (12.5) to get the 

volume of one follicle (3.46 x 107 µm3). The discrepancy between the two sets of 

measurements can most likely be attributed to differences in lymph node morphology at 

different anatomical sites and different experimental procedures.  

B-cell density was determined by quantifying CD19+ cells using flow cytometry in 

conjunction with Accucheck counting beads (n = 5 mice, 3 separate experiments) and 

averaging total pLN counts by the mean number of follicles per lymph node (Figure 

4.10). Stromal cell densities within a fixed follicular volume were determined from the 

number of nodes obtained from a 400µm x 400µm x 30µm image (Table 2) of a follicle 

obtained from a Cxcl13-EYFP reporter mouse.  

From this data we define a popliteal lymph node as having a volume of 1.25 mm3, 15% of 

which is defined as a B-zone split between 15 follicles. Within this lymph node each 

follicle is spheroidal with a total volume of 1.25 x 107 µm3 (~ 250 x 250 x 350 µm) and 

contains 4.8 x 104 CD19+ B cells (Table 5).  
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Figure 4.10. B cell numbers per popliteal pLN. B-cell density was determined by quantifying CD19+ 
cells using flow cytometry in conjunction with Accucheck counting beads as described in section (Chapter 
2) and averaging total pLN counts by the mean number of follicles per lymph nodes. Grey circles represent 
individual datapoints, black line represents the median value. N= 15 mice, data pooled from 3 separate 
experiments. Experiments and analysis performed by J.C and A.T 
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B-Cell Migration: The migration patterns of B cells were measured by injecting 5 x 106 

purified B cells from C57BL/6 or CXCR5 deficient mice labelled with the fluorescent cell 

staining dyes Carboxyfluorescein succinimidyl ester and CellTracker Orange (5-(and-6)-

(((4-chloromethyl)benzoyl)amino)tetramethylrhodamine) CMTMR into age- and sex-

matched wild type mice and imaged with two-photon microscopy (Coelho et al., 2013). 

This data was provided by the Stein lab. WT B cells have a velocity (expressed as 

median[lower quartile – upper quartile]) of 8.0 [2.3 - 10.3] µm2min-1, a meandering 

index20  of 1.1 [0.1-2.4] and a motility coefficient21 of 15.6 [0.1 – 96.7] µm2min-1.  

 

CXCR5 expression: The number of CXCR5 molecules per naïve B-cells in lymph nodes 

is unknown, however data from similar systems suggests that the amount of receptors is 

in the range of 10,000 – 100,000 receptors (Sklar et al., 1984; Tilo Beyer, 2007). 

 

CXCL13 diffusion constant: A value of 7.6 ± 1.0 µm2s-1 was obtained in LN sections 

using high-speed single-molecule imaging, as discussed in section 4.3. An upper bound 

for this value was determined using the Einstein stokes relation, assuming a Stokes radius 

of 3.48 nm and that the molecule undergoes free diffusion in water (146 µm2s-1). 

 

Affinity Constant (Kd) and CXCL13 secretion rate: The total amount of chemokine 

from pooled lymph nodes (Luther et al., 2002), in vitro migration assays (Gunn et al., 

1998a), and ligand binding constants (Barroso et al., 2012) were used to derive upper and 

lower limits of a likelihood distribution for CXCL13 concentrations in vivo. Taken in 

concert these analyses suggest that the value lies in the range 1 - 50nM with a baseline 

follicle concentration assumed to be 10nM that we set as our binding affinity Kd. This is 

consistent with expected ranges of Kd for CCR7 and CCL19 where similar concentrations 

have been described to sufficiently trigger downstream signalling of CCR7 following 

binding of CCL19 in G-protein loading assays (Kohout et al., 2004), downstream 

signalling assays (Otero et al., 2006) and microfluidic migration assays (Schwarz, 2016).  

 

Ki and Kr: The two rate constants Ki and Kr associated with receptor internalization and 

recycling were estimated from experimental data on receptor desensitization and 

																																																								
20	A	measure	of	the	straightness	or	confinement	of	cell	tracks	
21	Analogous	to	the	diffusion	constant	
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resensitization neutrophils and from mathematical modelling of B-cell migration (Sklar et 

al., 1984; Tilo Beyer, 2007). 

 

CXCL13 Decay Rate: Chemokine's are further regulated in vivo by proteases providing 

rapid enzymatic modulation of bioactivity and availability. Systematic analyses of 

proteomic half lives suggests a broad range of possible values, which we constrain 

between 15 minutes to 48 hours (Eden et al., 2011; Schwanhäusser et al., 2011). 

Assuming a constant decay rate22 this yields rates between 0.015 and 0.0002s-1 (Milo and 

Phillips, 2015) 

 
 
 
 
 
 
 

 

Metric Value 
pLN volume 

 
1.25 mm3 

% B-cell volume 
 

15% 

Number of follicles per LN 
 

15 follicles 

Follicle volume 
 

1.25 x 107 µm3 (~ 250 x 250 x 350µm) 

Number of B cells per follicle 4.8 x 104 CD19+ B cells 

CXCR5 per B cell 10000-100000 receptors 

CXCL13 baseline concentration 10nM 

CXCL13 diffusion constant 7.6 µm2s-1 

Secreted CXCL13 half life 0.25 – 48 hours 

   Table 4.5. Quantitative description of CXCL13 bioavailability in primary lymph node follicles 

 

 

 
	
	
	
	
																																																								
22	Half	life	and	decay	rate	are	related	through	the	following	expression:	t0.5	=	ln(2)/decay	rate	
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4.5 Discussion  
 

In this chapter we have used an ensemble of imaging approaches to address knowledge 

gaps identified in Chapter 3. Specifically, we quantified the topological characteristics of 

CXCL13+ stromal cells in the primary follicle using an adaptation of a previously 

published approach (Novkovic et al., 2016). The authors of this study were key 

collaborators, providing imaging datasets and sharing expertise in image annotation and 

network analysis. This analysis identified an underlying regulation to the spatial 

organization of CXCL13 at the cellular level, with secretion coming from 3 distinct cell 

types organized into a small-world network. Each cell type is unique in its topological 

properties, supporting the idea that the primary B-follicle is compartmentalized into 

distinct niches with distinct functionality as has been established for the germinal center 
23 (Allen et al., 2004). FDCs were the most topologically distinct subset, a property that 

may promote their unique role in antigen presentation. The high connectivity of the FDC 

network creates a labyrinth of single-cell niches, maximizing contact with B cells that 

floss the network for antigen. Topological analysis of the global network identifies 

regions of high connectivity, with long-range connections between these cliques. These 

guidance structures are likely to promote trafficking both within and between the different 

niches of the B-cell microenvironment.  

 

We also note that the highest levels of CXCL13 reporter activity occur in MRCs, which 

lie proximal to a major site of antigen entry. In the lymph node, the delivery of lymph-

borne antigens to FDCs is determined by the size of antigen and whether it is opsonized 

with complement. Lymph-borne antigens larger than 70kDa (~5.5nm) are presented by 

SCS macrophages that bind C3d-coated immune complexes via CR3. Immune complexes 

are subsequently shuttled to the FDC network via CR2 expressing B cells (Batista and 

Harwood, 2009; Carrasco and Batista, 2007; Phan et al., 2007; Rantakari et al., 2015). 

Our data thus provides a unique insight into how the primary follicle is structurally 

organized to promote B-cell homeostasis and activation.  

 

 

																																																								
23 the compartmentalisation of the GC was first described in 1930 following analysis of cat lymph nodes: 
Beitrag zur Cytologie der Keimzentren der Lymphknoten 
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Figure 4.11. Consolidating imaging datasets with multiscale modelling. The research context we assess 
incorporates phenomena across broad spatiotemporal scales. Each distinct model entity: stroma, 
lymphocytes and chemokines, required a distinct imaging modality to visualise and quantify. Subsequently, 
multiscale modelling is employed to consolidate these disparate datasets. Through simulation analysis 
additional insights can be gleaned from the data prompting additional experimentation.  
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To measure CXCL13 mobility, we collaborated with members of the Leake lab to 

develop an assay capable of quantifying chemokine mobility in complex tissues. This was 

achieved by using sub-millisecond narrowfield microscopy, an approach shown to 

outperform both fluorescence recovery after photobleaching (FRAP) and fluorescence 

correlation spectroscopy (FCS) given its high spatiotemporal resolution and ability to 

dissect the heterogeneity of molecular mobility. The ability to assess the heterogeneity of 

molecular mobility in a complex environment is a key advantage as studies of the 

chemokine interactome suggest that chemokines undergo a dynamic array of molecular 

interactions (Hundelshausen et al., 2017). Our analyses show that chemokines display 

distinct mobility patterns, with CCL19 diffusing faster on average than CXCL13. This is 

consistent with theoretical predictions given the relative difference in the masses of the 

molecules. However, the assumptions required to employ the Einstein stokes relation 

make it inapplicable to predict the diffusion of chemokines through complex tissues. This 

is because it fails to account for the density of the local environment or the transient 

molecular interactions that occur in vivo. Further experimental analysis of chemokine 

mobility and biochemical interactions could facilitate adaptations to existing theoretical 

frameworks to better predict diffusivity.  

 

We combine these datasets with flow cytometry measurements of B-cell density within a 

follicle, multiphoton imaging measurements and values derived from the wider literature 

to provide a more complete mapping of the pathway.  However, despite this systematic 

analysis of the pathway a number of key questions remain, due in part to a dearth of 

experimental techniques capable of manipulating molecular gradients in situ. In addition, 

our datasets have been obtained using an ensemble of techniques, making them difficult 

to consolidate and analyse at a systems level. Theoretical models can facilitate better 

interpretation of this data and through simulation-based experimentation can generate 

insights that drive further experimental work (Butler et al., 2016a, 2016b). In the 

following chapters, we aim to extend our CXCL13 case study using an iterative, 

synergistic cycle of modelling and experimentation (Figure 4.11).  
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Chapter 5 Reconstruction of the Primary 
B-Follicle In Silico  
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5.1 Introduction 

5.1.1 Implementing Multiscale Models: Key Technical Considerations 
 

In this chapter we detail the implementation and validation of a multiscale simulator using 

the agile CoSMoS instantiation detailed in Chapter 3. In the following section, we 

highlight some of the key technical considerations associated with designing, 

implementing and validating software implementations of multiscale models.  

Prior to implementation as computer code, biological processes are abstracted into 

mathematical constructs to move from the Domain Model towards a simulator (detailed 

further in Chapter 2.2.1). We refer to this step as the Platform Model, a process 

analogous to a software specification used in software engineering. This is a key step in 

the development process as inappropriate decisions and abstractions can render the 

simulation an inaccurate reflection of the Domain Model (Alden et al., 2012b; Cosgrove 

et al., 2015). At this phase of development, it is important that any explicit references to 

emergent system-level properties are omitted; such properties should emerge from the 

low-level behaviours, validating the simulator as a fit for purpose representation of the 

problem domain.  

Designing the mathematical constructs and architecture underpinning multiscale 

platforms is particularly challenging, in certain research contexts a single modelling 

approach is incapable of accurately describing a biological system. A common approach 

to hybridise different techniques is to model molecules using population-level ordinary or 

partial differential equations, and then solve them on a per-agent basis within an ABM 

(Guo et al., 2008b). At the molecular level, the application of population-based as 

opposed to agent-based approaches can save considerable computational power reducing 

the expense incurred if the highest resolution timescale were to be used for each 

phenomenon. By selectively tuning the granularity at each scale, a single model can 

examine processes across diverse scales (Guo and Tay, 2008; Kirschner et al., 2014).  

The Simulation Platform represents a computer code implementation of the Platform 

model. During this step, low-level behaviours are encoded using control (“if – then”) 

statements. The Object Oriented programming (OOP) paradigm uses classes, templates 

for program components, to separate and encapsulate functionality. This feature lends 

itself well to the implementation of multiagent systems (Johnson et al., 2004). Agile 
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techniques, such as those incorporated into the novel CoSMoS instantiation, may also 

improve the quality of scientific software (discussed further in Chapter 3.2) (Pitt-Francis 

et al., 2008).  

 

Once the code has been developed it is important to identify parameter values that align 

the simulation's behaviour with experimental data, a process referred to as calibration. 

Calibration establishes baseline model behaviours, a benchmark to which all subsequent 

perturbations are compared. This is a challenging step, as the parameters controlling 

mathematical constructs may not translate directly to the biological system, may 

simultaneously account for several biological factors, or the parameter value may be 

unknown. Studies of parameter sensitivities of systems biology models suggest that fitting 

parameters against multiple datasets will often leave many parameters poorly constrained 

while direct parameter measurements would require formidably precise and complete to 

usefully constrain many model predictions (Brown et al., 2004; Gutenkunst et al., 2007). 

Model calibration is thus an active research area, with recent focus on the use of Bayesian 

statistics (Coelho et al., 2011), heuristic optimisation approaches (Read et al., 2013b), and 

advanced sampling schemes (Gilks et al., 1995; McKay et al., 1979) to constrain 

parameter values and efficiently scan high dimensional parameter spaces where values for 

a single parameter can span several orders of magnitude (Read, 2011).  

 

Incorporation of heterogeneity and/or stochasticity within a model can lead to different 

results from the same parameter inputs, leading to aleatory uncertainty (discussed in 

Chapter 2.2.8). Once calibrated, empirical methods exist to assess the effect of 

stochasticity on aggregated results (Read et al., 2012). By comparing simulation 

responses obtained under the same conditions, the influence of stochastic variation on 

simulation outputs can be quantified.  

 

To fully evaluate simulation outputs it is also important to identify critical system 

parameters and quantify their influence on simulation predictions. In a sensitivity analysis 

(SA), the modeller performs a systematic exploration of the parameter space, recording 

the influence of parameter inputs on simulation outputs (discussed in Chapter 2.2.9) (Ray 

et al., 2009; Read et al., 2012). The benefits of SA are two-fold in that they can identify 

key pathways and entities as well as quantifying parameter sensitivities. A SA approach 

was employed by Ray et al to examine the effects of TNF-α on the formation of 
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granulomas24, predicting that multiple TNF-α activities and macrophage activation are 

key contributors to the control of infection within a granuloma (Ray et al., 2009). 

 

5.1.2 Emulating Multiscale Models with Supervised Learning Algorithms 
 

In this thesis, we focus on the use of agile development techniques as a means of reducing 

the time taken to develop multiscale models. However significant bottlenecks may still 

occur at the Results Model phase of development. For non-deterministic models where 

input parameters are poorly constrained, certain analyses may become intractable. For 

example when quantifying parametric uncertainty it is possible to use an OAT analysis to 

look at local sensitivity while using latin hypercube sampling with PRCCs to quantify 

global sensitivity. However, these analyses alone may not be well suited to looking at 

non-monotonic relationships between parameter inputs and emergent outputs of the 

simulator. In addition, the use of PRCCs only looks at correlations between inputs and 

outputs and does not indicate the magnitude of the effect. Consequently, the sensitivity 

score for each parameter will highly depend on the analysis being performed. It is thus to 

use a number of different approaches to understand this parametric uncertainty. For 

example, the extended Fourier amplitude sampling test (eFAST) provides an alternative 

global sensitivity analysis that partitions variance in simulation response between 

parameters of interest (Saltelli et al., 2008). As a variance based approach it is particularly 

suited to looking at non-linear non-monotonic relationships between model inputs and 

outputs (Marino et al., 2008). In addition, it is well-suited to assessing parameter 

interactions through the STi metric (detailed further in Chapter 2.1.10) where as OAT 

analysis looks at each parameter in isolation and PRCCs do not explicitly indicate the 

extent to which the parameter interacts with other parameters. However, the 

characteristics of this sampling technique (detailed in Chapter 2.1.10) give rise to a 

significant number of parameter sets. For an ABM of lymphoid tissue organogenesis 

(detailed in Chapter 1.10) a single eFAST analysis required 585,000 executions (Alden 

et al., 2012b).  Even with the availability of high-performance computing resources, such 

resource-intensive analyses become intractable for simulators with a long execution time. 

This is particularly problematic when one considers that model development is an 

																																																								
24	Granulomas	are	macrophage-rich	aggregates	of	immune	cells	that	can	determine	host	response	to	a	
number	of	infections,	including	mycobacterium	tuberculosis	
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iterative process, with several rounds of analysis and refinement required to fully design, 

develop and validate a model.  

 

Given these issues, we reason that emulation, that is the use of a surrogate tool to rapidly 

and accurately predict simulation responses, has the potential to permit enriched 

evaluation and refinement (introduced briefly in Chapter 1.9.3 and detailed further in 

Chapter 5.5), easing translation of simulator insights into increased biological 

understanding. Although used sparingly in this context, machine learning approaches 

have also shown promise in identifying complex non-linear relationships within large 

multivariate datasets (Inza et al., 2010). Using supervised learning approaches, it is 

possible for a machine-learning algorithm to learn the emergent behaviours of a simulator 

and quickly and accurately predict the simulation response for parameter sets the 

algorithm has yet to observe (Pruett and Hester, 2016). This attribute makes machine 

learning algorithms well placed to emulate simulators of biological systems, as illustrated 

by the use of support vector machines to emulate models of haemorrhage and renal 

denervation, resulting in a 6-fold decrease in computation time (Pruett and Hester, 2016). 

Another key benefit of the approach is that a number of different machine learning 

approaches have been developed (Bishop, 1996; Breiman, 2001; Cortes and Vapnik, 

1995). In particular we focus on Artificial Neural Networks (ANN), a machine learning 

technique inspired by the neuronal circuits in the brain with computations structured in 

terms of an interconnected group of artificial neurons. The weighting of connections 

between neurons are adjusted in such a way that the network can convert a set of inputs 

into a set of desired outputs. This attribute makes ANNs well suited to learn the 

behaviours of a multiscale simulator. 
 
 
Through reducing the time taken to perform sophisticated statistical analyses, emulators 

can inform experiments to quantify sensitive parameters, and identify sections of the 

simulator that are highly influential and may require further refinement. From an 

engineering perspective, the application of emulation may expedite simulator 

development by permitting rapid prototyping and identification of errors in model design, 

parameterization, and software infrastructure. Due to the complexity of scientific software 

it can be challenging to locate errors before running time intensive statistical analyses. 

Errors located late in the development process incur significant time penalties, in contrast 
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with those that could be encountered early by testing an emulation of that simulator.  In 

overcoming some of the resource limitations associated with multiscale simulators, 

emulation permits enriched evaluation and refinement, facilitating translation of simulator 

insights into increased biological understanding. 

 

5.1.3 Summary and Aims 
	
Developing multiscale software platforms is challenging, with many technical 

considerations that affect confidence in simulation-derived results (Chapter 5.1.1). In this 

chapter we develop a hybrid multiscale model designed to address our research 

hypothesis that lymphoid tissue architecture is a key determinant of CXCL13 patterning. 

Given our research context and the associated domain and platform models we require a 

high fidelity representation of follicular architecture to provide a fit for purpose 

representation of the problem domain. In addition, we use this multiscale model to 

showcase the use of agile development methods and statistical analysis techniques within 

the CoSMoS framework to increase confidence in simulation-derived results. 

Specifically, we aim to achieve the following: 

 

1. Develop a modular Platform Model for CXCL13Sim (section 5.2) 

2. Implement a Simulation Platform of CXCL13Sim in JAVA using ATDD (section 

5.3) 

3. Quantify parametric and aleatory uncertainty in CXCL13Sim using the 

SPARTAN package in R (section 5.4) 

4. Develop and validate an emulator of CXCL13Sim using supervised learning 

approaches (section 5.5) 
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5.2 Platform Model 

5.2.1 Overview of the Platform Model 
 

The Domain Model detailed in Chapter 3 describes a set of biological processes 

occurring on molecular, cellular and tissue levels of organization. To provide a fit for 

purpose representation of the domain model while also promoting model parsimony and 

efficiency we hybridise different modelling techniques into a multiscale platform, with 

selection of a given technique informed by a functional requirements analysis (Chapter 

3).  

 

An overview of the scheme (Figure 5.1) is as follows: In silico stromal cells (Module 1) 

are modelled as a series of nodes and edges (Kislitsyn et al., 2015) capable of interacting 

with lymphocytes and secreting CXCL13 (Module 2). CXCL13 diffusion is modelled 

using a discretized PDE (Grajdeanu, 2007). Individual lymphocytes are distinct entities 

displaying heterogeneity in receptor expression and activation status; as such we have 

modelled them as agents that adjust their behaviours with respect to vector and ordinary 

differential equation-based calculations (Module 3). This was achieved through 

adaptation of a published scheme which explicitly accounts for gradient detection and the 

dynamics of GPCR expression on the cell surface (Lin and Butcher, 2008; Wu and Lin, 

2011).  Within this system agents exist within a continuous environment with chemokine 

existing in discrete grid spaces. An analysis of an agent-based model of the number of 

effector T cells leaving the LN suggests that a 3D model is required to adequately capture 

the dynamics of T-cell output from the lymph node during infection. 2D models were 

shown to underestimate lymph node output because the distance between antigen-

presenting cells is overestimated in 2D with respect to 3D (Gong et al., 2013). As such 3D 

was deemed most appropriate to model the efficacy of antigen-mediated encounters by B 

cells. 
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Figure 5.1. Hybrid 3D multiscale representation of a follicle. In this system stromal cells are modelled as 
a graph (Module 1), chemokine diffusion is modelled as a discretised partial differential equation (Module 
2), while B cells are modelled as rich agents which can interact with their local environment through a set of 
coupled differential equations and vector based calculations (Module 3). 
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5.2.2. Module 1: Stroma 
 

In silico stromal networks are generated using an adaptation of the algorithm developed 

by Kislitsyn et al. (2015). The algorithm stochastically builds a network from an initial 

node, picking the nearest non-expanded node and generates a set of vectors that will 

eventually become edges to new nodes. Each vector has a direction and length randomly 

chosen, but conforming to values derived from experimental data, and the directions are 

chosen such that the sum of all the vectors in the set is approximately zero. A new node is 

then created at the end of each vector, and an edge connects them. This process is 

repeated to generate a graph.  

 

However, this algorithm has some limitations in that it can only describe one stromal 

subset yet in the follicle there are 3 distinct subsets with unique morphological features 

(Chapter 4). In addition, our datasets also show that a number of cell protrusions directly 

connect to one another, a property which can affect network topology. To account for 

this, branches between edges are added by creating a vector connecting the midpoints of 

each edge, subject to subtype-specific constraints on the maximum edge length and the 

local density such that the degree centrality matches our in vivo datasets. This approach is 

used to generate BRC and FDC networks while MRCs are stochastically seeded 

underneath the subscapular sinus by random sampling of X and Y values subject to 

density constraints to ensure consistency between in vivo and in silico edge lengths and 

degree centrailities. Edges between MRCs and other subtypes are created stochastically 

subject to distance and local density constraints. To represent the heterogeneity of 

network structures observed in vivo and to ensure no biases were introduced through a 

specific stromal architecture, the algorithm generates a unique network at the beginning 

of each simulation run. A suite of automated tests were developed using the pipeline 

described in Chapter 3.3 to assess whether edge lengths and degree centralities are within 

expected bounds and that there are no overlapping nodes or edges.  

 

Using this approach we generate a unique network at the start of each simulation run. 

Running 250 simulations we find that this approach yields networks with median sigma 

and omega values of 12.00 and -0.097 respectively, confirming that the network has small 

world properties (Figure 5.2). The discrepancy between in vivo and in silico sigma values 

was anticipated as sigma scales with network size and the in silico follicle is 
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approximately 4 times the volume of the tissue section used to perform the topological 

mapping. Comparison of the median values for both edge lengths and degree centralities 

for in silico and in vivo networks shows no statistically significant differences (Figure 

5.3-5.4).  

 

 

 

	

Figure 5.2. Development and validation of the Stroma module. (a) Top figure shows a lymph node 
follicle showing tdtomato (red) and eyfp (green) expression from CXCL13-EYFP mice. FDCs are marked 
with an antibody against CD21/35 (white). Bottom figure shows in silico stromal networks. (b) This figure 
shows the distribution of sigma values obtained under baseline parameter values from 250 simulation runs. 
(c) This figure shows the distribution of omega values obtained under baseline parameter values from 250 
simulation runs. Scale bar = 50µm. Java code was developed by J.C and S.J. 
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Figure 5.3 Comparison of in vivo and in silico edge lengths and degree centralities for the entire 
follicular network. No statistically significant differences were found between the median values for in 
silico and in vivo datasets as determined by a Mann-Whitney test with p < 0.05 representing a statistically 
significant result. Bars represent the median values and error bars represent the I.Q.R. 
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Figure 5.4 Comparison of in vivo and in silico edge lengths and degree centralities for the entire 
follicular network. No statistically significant differences were found between the median values for in 
silico and in vivo datasets as determined by a Mann-Whitney test with p < 0.05 representing a statistically 
significant result. Bars represent the median values and error bars represent the I.Q.R. 
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5.2.3. Module 2: Chemokine 
 

Many different techniques exist to model molecules in silico, each with associated 

advantages and limitations. A common approach to model diffusion is through functions 

that relate molecular concentration to distance from a source (Alden et al., 2012b), or by 

PDEs (Figure 5.5) (Bocharov et al., 2011; Guo et al., 2008). As they describe molecular 

concentrations on a continuous scale at the population level, it can be difficult to 

incorporate complex behaviours such as localised binding effects into PDEs and distance-

concentration functions. At the other extreme, it may also be intractable to model 

molecules (which exist in much larger numbers and move on faster scales than immune 

cells) using individual-based approaches. This limitation can make it difficult to simulate 

the dynamics of chemokine field formation where molecules simultaneously undergo 

production, diffusion, decay, binding and scavenging, key mechanisms required to shape 

functional chemotactic gradients (Rot and von Andrian, 2004). In cases where high model 

granularity is required at the molecular level, soluble factors can be represented as 

floating point values on discretised grids (Figure 5.5). The scheme we implement is a 

discretised form of the heat equation (Grajdeanu, 2007). This mathematical construct is 

capable of isotropic diffusion25, can diffuse to an arbitrary number of neighbours and is 

applicable to linear, planar, spatial and n-dimensional implementations. These attributes 

make it well suited to studies of molecular components of the immune system (Figure 

5.5).  

 

	
Figure 5.5. Different schemes to model diffusion in theoretical models. (A) Functions that relate 
concentration to distance from a source. (B) PDEs predict changes in concentration over time and space on 
a continuous scale. (C) Discrete PDEs in which the environment is binned into discrete gridspaces; within 
each gridspace concentration is homogeneous.  

																																																								
25 Anisotropy is an implementation artifact where diffusion occurs faster in certain directions than others, 
making the diffusion neighborhood look square 
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In this scheme, chemokine molecules diffuses through a discrete 3D environment where 

the number of moles of chemokine molecules in each grid space (x,y,z) is denoted 

𝜑(x,y,z). The change in the spatial distribution of molecules is then subject to the 

following simultaneously occurring processes (i) production (ii) diffusion (iii) decay and 

(iv) consumption. As we are using agents to model individual cells, terms (i) and (iv) 

emerge from the simulation. Chemokine is secreted by each stromal cell at a fixed rate 

and is removed from the grid at a rate that is proportional to its current value 𝜆.  

 

                         𝜑(x, y, z)!!! = 1− 𝜆 𝜑 x, y, z !       (5.1)              

 

where t represents the time step. At each discrete time step chemokine diffuses to the grid 

spaces adjacent and diagonally adjacent to each grid space. The coefficient for the amount 

of chemokine diffused to each grid space is: 

                                       𝐴 φ 𝑥 −  φ y 𝑒! 
!!!

!                 (5.2)   

 

                                                                       𝜇 = 4𝐷𝑡                               (5.3)                  

 

where chemokine in grid space x (𝜑(x)) is being diffused to grid space y, 𝑑!!  is the 

distance squared between x and y, D is the diffusion constant, t is the time step, and A is a 

normalizing constant that ensures the total amount being diffused is less than or equal to 

the amount that exists: 

                                                               𝐴 𝑒! 
!!!

!!
!!! = 1               (5.4)    

 

for an arbitrary grid space where n represents the number of surrounding grid spaces in 

the diffusion neighbourhood, which in CXCL13Sim is a 3D Moore neighbourhood with 

26 neighbouring grid spaces. This approach mitigates an artefact known as anisotropy, 

where diffusion appears “square” because treating each grid space equally would favour 

diffusion diagonally due to the larger distance to the corner neighbours than the lateral 

ones (Figure 5.6). This implementation explicitly takes the distance (𝑑!!)  between 

gridspace x and its adjacent grid space y into account to avoid this effect without the need 

to implement a tessellated hexagonal grid, which can only be done in 2D. The borders of 

the grid follow Dirichlet boundary conditions. 
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When modelling diffusion in discrete space, the speed at which chemokine diffuses is 

limited by the time step and size of the diffusion neighbourhood. Increasing the size of the 

diffusion neighbourhood would allow greater diffusion coefficients without a smaller time 

step, but would significantly increase the time resources required to run the algorithm.  To 

account for this, the time step we use is !
!

!"
 where 𝛿 is the length of an edge of the 

discretized grid spaces, D is the diffusion coefficient, and k is a constant, empirically 

determined in order to match the measured diffusion speed with the mathematically 

derived value for mean-squared displacement for a given diffusion constant. The diffusion 

grid is updated every second while agents are updated once every minute and are assumed 

quasi-static with respect to diffusion. Automated tests were developed to ensure that 

chemokine is conserved when the decay constant is set to zero and no agents are in the 

simulation, that the diffusion coefficient input gives the expected mean-squared 

displacement output and that the rate of diffusion per time step cannot extend beyond the 

diffusion neighbourhood. 
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Figure 5.6. Examples of gradients formed using the Gradjeanu scheme. (A) a chemokine field with low 
diffusion rate and high decay rate leading to a small circle of CXCL13 expression (red) (B) a chemokine 
field with high diffusion rate and low decay rate leading to a larger CXCL13 field (C) shows a complex 
chemokine field generated by a stromal network generated by the algorithm described in section 5.2.2. Java 
code was developed by S.J and J.C. 
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5.2.4. Module 3: Lymphocytes 
	

5.2.4.1. Lymphocyte Migration 

Chemotaxis, and chemokine receptor internalisation and recycling are key mechanisms 

governing the fine-tuning of responses to chemokines in vivo (Bennett et al., 2011; Lin 

and Butcher, 2008; Rot and von Andrian, 2004). In addition, the follicle is a highly dense 

structure and so it is important to account for interactions between cells. To model these 

phenomena in silico, we adapt the scheme developed by Lin et al (Lin and Butcher, 2008; 

Wu and Lin, 2011). In this scheme an agent samples local chemokine concentrations 

using 6 sampling pseudopodia (Figure 5.7). At each pseudopod there are a population of 

receptors on the cell surface [Rf] that are free to bind ligand [L] at a rate Kon. Receptor 

dynamics are controlled by a set of ordinary differential equations solved on a per agent 

basis using a 4th order Runge-Kutta scheme (Press et al., 2007). Ligation of the 

chemokine to its respective receptor [LR] leads to downstream signalling cascades and 

localisation of actin with ligand dissociating at a rate Koff. Following binding receptors are 

desensitized at a rate Kdes, internalised at a rate Ki and are recycled at a rate Kr (Figure 

5.7). The values for Kon and Koff are set so that the affinity constant (Kd), that is the ligand 

concentration at which half of the receptors are bound, is set to 10nM, the baseline 

concentration within the simulator.  

 

To quantify the influence of these parameters on the ODE outputs we performed a global 

sensitivity analysis using latin hypercube sampling and PRCCs (Chapter 2) in ASPASIA, 

a toolkit for evaluating interventions on systems biology markup language (SBML) model 

behaviours (Figure 5.9) (Evans et al., 2017). It is important to note that by looking at the 

rank correlation gives an incomplete understanding of parametric uncertainty as it does 

not take the magnitude of the change of model outputs into account. This is addressed by 

the use of an eFAST analysis in Chapter 5.6. From calculating [LR] at each pseudopod, 

a gradient vector, 𝐿𝑅 is calculated across the cell along 3 axes with ρ representing each 

individual pseudopod. If 𝐿𝑅 exceeds a threshold then the cell will become chemotactic, 

with the overall orientation vector of the cell 𝐿𝑅!"!#$ taken as a sum of 𝐿𝑅 with a leading 

edge vector 𝐿𝑅! that accounts for the orientation of the cell from the previous time step. 

	
	



	 145	

	
𝐿𝑅 = [𝐿𝑅!!]− [𝐿𝑅!!] + [𝐿𝑅!!]− [𝐿𝑅!!] + [𝐿𝑅!!]− [𝐿𝑅!!]       (5.5) 

 

                   𝐿𝑅!"!#$ =
𝛼𝐿𝑅   + 𝐿𝑅!
𝛼𝐿𝑅   + 𝐿𝑅!

                     (5.6)   

 

𝑑 LR
𝑑𝑇 = 𝐾!" 𝐿 𝑅! − 𝐾!"# 𝐿𝑅 − 𝐾!"" 𝐿𝑅      (5.7) 

 

   
𝑑[𝑅!]
𝑑𝑇 = 𝐾! 𝑅! −  𝐾!" 𝐿 𝑅! + 𝐾!""[𝐿𝑅]        (5.8) 

 

                     
𝑑[𝑅!]
𝑑𝑇 = 𝐾! 𝑅!"# −  𝐾! 𝑅!                      (5.9) 

 

                      
𝑑[𝑅!"#]
𝑑𝑇 = 𝐾!"# 𝐿𝑅 −  𝐾! 𝑅!"#               (5.10) 

 

In the presence of chemotactic gradients actin flows polarize at the leading edge of the 

cell thus the relative weighting between 𝐿𝑅 and 𝐿𝑅! is scaled by a constant 𝛼 to represent 

the persistence of the cell; the value of 𝛼 is dependent on the chemotactic state of the 

agent.  As a universal coupling exists between actin flows and cell speed (Maiuri et al., 

2015) and relate the increase in velocity v* observed during chemokinesis to cell 

persistence 𝛼 using the following expression: 

                                     𝑣 ∗  =  
𝐿𝑁 𝛼
𝛾                         (5.11) 

               𝛼 = 𝛼!, 𝑖𝑓 𝑐ℎ𝑒𝑚𝑜𝑡𝑎𝑐𝑡𝑖𝑐
        𝛼!, 𝑖𝑓 𝑛𝑜𝑡 𝑐ℎ𝑒𝑚𝑜𝑡𝑎𝑐𝑡𝑖𝑐         (5.12)                   

 

The value of the scalar term 𝛾 was determined empirically, by fitting the model to WT 

migration data and verifying against CXCR5-/- migration patterns (Coelho et al., 2013). A 

number of automated tests were developed to ensure that total receptor values are 

conserved over time, and that agents move towards high concentrations of chemokines 

when expressing CXCR5.  
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Figure 5.7 Overview of receptor and migration kinetics in CXCL13Sim. Each cell has 6 chemokine 
sampling pseudopods (4 are shown). At each pseudopod, signalling is a function of local chemokine 
concentrations and receptor expression. Receptor expression is dynamic and subject to ligand 
association/dissociation as well as receptor desensitization, internalization and recycling. From the amount 
of receptors signalling at each pseudopod, gradient vectors are calculated along 3 axes. The overall net 
movement vector LRtotal determined by summing these vectors with a polarity vector representing cell 
persistence in a given direction.  
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Figure 5.8. CXCR5 Kinetics for 1nM, 10nM and 100nM CXCL13.  Receptor kinetics with calibrated 
parameter values in response to 1nM show large numbers of free receptors on the cell surface with 
relatively low levels of desensitised, internalised and signalling receptors. As the amount of chemokine 
increases, the amount of free receptors decreases and the number of desensitised receptors increases.  
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Figure 5.9. Parameter sensitivities for ODE parameters performed using ASPASIA (Evans et al., 
2017). The influence of a parameter on model outputs is summarised using a partial rank correlation 
coefficient. 
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5.2.4.2 Lymphocyte Interactions 

 
To account for dense lymph node environment lymphocyte migration must take into 

account interactions with other cell types. As time proceeds in fixed discrete intervals 

(each time step representing 1 minute in the physical system) we treat both the movement 

vector of lymphocytes and the edge of the stromal cell as lines (Figure 5.10). To 

determine if the two agents are interacting we calculate whether the closest point between 

the two lines is less than the sum of their diameters.  To determine the closest point, we 

define the lines L1 and L2 as follows: 

 

       L1(s)   =  P1 +  sd1, where d1 =  Q1 −  P1     (5.13)    
L2(t)    =  P2 +  td2, where d2 =  Q2 −  P2     (5.14)   

  

Then for some pair of values for s and t, L1 (s) and L2 (t) correspond to the closest points 

on the lines, and v(s,t) describes a vector between them.  

 

	

Figure 5.10 Modelling lymphocyte interactions with stroma. In this scheme the movement vector of 
lymphocytes and stromal cell processes are modelled as lines. Each line is defined by two points, Pi and Qi. 
To determine if the two agents are interacting we calculate whether the closest point between the two lines 
is less than the sum of their diameters.  Then for some pair of values for s and t, L1 (s) and L2 (t) 
correspond to the closest points on the lines, and v(s,t) describes a vector between them.  

 

The closest point between the two lines is obtained when the vector is perpendicular to 

both lines (Figure 5.10) i.e. when the dot product of the two vectors is equal to zero or  

 

d1 *  v(s, t) = 0     (5.15)    
d2 *  v(s, t) = 0     (5.16)   

 

P1 

Q1 

Q2 

P2 

v(s,t) = L1(s) - L2(t) 
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Using Cramer’s rule we can then solve this system of equations to determine which 

values s and t where L1(s) and L2(t) correspond to the closest points on the lines.   

Additionally, cells may interact with each other, however cell structure is dynamic and 

cells are observed to slide over one another. To account for this, once an agent has 

determined the direction in which to move, the probability that the cell can move towards 

the target location is determined as 𝑒!!, where 𝛿 is the number of cells in the target 

location. Automated tests were developed to ensure that lymphocytes completely caged 

within a tight network of stromal cell protrusions cannot pass through due to interacting 

with the network, and that the number of agents per gridspace does not exceed a threshold 

value.  

 

5.2.5 Integration of Model Subunits 
	
System architecture is modelled using an adaptation of the UML as per the domain 

model. This specification defines how model subunits interface and details the flow of 

information through the system (Figure 5.11 – 5.15). On the diagrams, the modules are 

specified using: M1, M2 and M3 to represent stroma, chemokine and lymphocytes 

respectively. Key decisions and abstractions made during the development process are 

presented as arguments over evidence26 using an adaptation of goal structuring notation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

																																																								
26	Available from https://www.york.ac.uk/computational-immunology/software/cxcl13sim/	
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Figure 5.11. State machine diagram for a Follicular Dendritic Cell. FDCs are resident in the system at t0 
and are generated using the algorithm described in M1. FDCs secrete chemokine at a fixed rate and once 
secreted, chemokine diffuses as described in M2. Antigen levels are expressed as integers and are decreased 
following interactions with cognate B cells. LTβR mediated stimulation of CXCL13 production is assumed 
constant in homeostatic conditions and is thus not explicitly referenced in the Platform Model.  
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Figure 5.12. State machine diagram for a B cell. B cells are seeded randomly in the follicle at the start of 
the simulation in a cognate or non-cognate state on the basis of antigen specificity. For a cognate cell to 
become primed it must be within 1 cell radius of cognate antigen. With respect to M3, a B cell may change 
into a CXCL13 desensitised state if the magnitude of the cells orientation vector does not exceed a threshold 
value. To migrate, a B cell must determine if there is space to move and will then move either randomly or 
in the direction of a gradient on the basis of it sensitivity to ligand.  

 

 
Figure 5.13. State machine diagram for Marginal and B reticular cells. MRCs/BRCs are resident in the 
system at the start of the simulation and are generated using the algorithm described in M1. They secrete 
chemokine at a fixed rate and once secreted, chemokine diffuses as described in M2 
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Figure 5.14. Activity diagram for B cells: At the beginning of the activity FDCs express a fixed number 
of antigen, specified by an integer value. CXCL13 is secreted by FDCs, diffuses and is removed from the 
grid as specified in M2. If the number of signalling CXCR5 molecules ([LR]) exceeds a threshold value 
then the B cell is capable of detecting a chemokine gradient. When the magnitude of the orientation vector 
LRtotal exceeds a signalling threshold then the cell will orientate towards the gradient otherwise it will 
orientate randomly. Before migrating a B cell must also determine if it has space available and to become 
primed the B cell must interact with antigen. 

 

 

	

Figure 5.15. Activity diagram for stromal cells: At the beginning of the activity FDCs express a fixed 
number of antigen, specified by an integer value. CXCL13 is secreted by FDCs, BRCs and MRCs at a fixed 
rate. 
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5.2.6 Model Outputs 
	
Once a simulation run is complete, the simulator writes a .csv file with the metrics 

detailed in Table 5.1 for each cognate B-cell agent. These metrics facilitate comparison 

with experimental measures of migration and are used to assess the influence of 

parameter perturbations on the emergent cellular behaviours.  

 

 

 
Measure 

 
Description 

 
 

Total Displacement 
 

Record the steps taken by cells and calculate displacement over a fixed  
time period using vector addition. 

 
 

Net Displacement 
 

Euclidean distance between the first and last position of the cell 
 

 
Cell Velocity 

 
Total displacement / time 

 
 

Motility Coefficient 
 

Net displacement2 / 6* time 
 

 
Meandering Index 

 
√Time  * (net displacement / total displacement)  

 
 

checkPointsReached 
 

Number of unique gridspaces reached 
 

Table 5.1 Summary of model outputs. Following each individual simulation run, the following metrics are 
calculated for each B-cell agent. 
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5.3 Simulation Platform 

5.3.1 Model Calibration and Validation  
	
Within the simulation platform each module was developed using Java and the multi 

agent simulation library MASON (Luke et al., 2005). CXCL13Sim passes all associated 

tests with 97% code coverage. A total of 138 tests are incorporated into an automated 

regression-testing pipeline using the eclEmma package (details of how to access the 

package are provided in Chapter 2.2.4). Example code is provided for a small subset of 

tests in Appendix 3.  

To calibrate the simulator, the 13 free parameters were systematically changed and 

outputs were compared to in vivo multiphoton datasets. Fluorescently labelled wild-type 

and CXCR5-/- B cells were adoptively transferred into WT hosts and their distribution and 

migration patterns inside popliteal lymph nodes analysed using selective plane 

illumination microscopy, which preserves the three-dimensional organ structure. The 

median values for 250 simulation runs are 1.15 for the meandering index, 13.28 for 

motility coefficient and 8.11 for speed (Figure 5.16). Comparison of a single In silico run 

with in vivo datasets showed no significant differences between motility coefficients, 

meandering indices and velocities for (a) wild-type or (b) CXCR5-/- B cells; assessed 

using a Mann-Whitney test at a significance level of 5% (Figure 5.17). The additional 9 

parameters were fixed at empirically determined or calibrated values representing key 

attributes such as cell size and the density of the stromal cell network that are not 

designed to change between simulation runs.  
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Figure 5.16. Distributions of emergent cell behaviours under baseline conditions. (A) Distribution of 
meandering index values for baseline parameter values. (B) Distribution of motility coefficient values for 
baseline parameter values. (C) Distribution of speed values for baseline parameter values. 
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Figure 5.17 Calibration of emergent behaviours against experimental behaviours. No significant 
differences were observed between in silico and in vivo motility coefficients, meandering indices and 
velocities for wild type or CXCR5-/- B cells. All datasets were non-normal as determined by a Shapiro-Wilk 
test, subsequently; a Mann-Whitney test was used to determine if datasets were significantly different at a 
significance level of 5%. Bar charts represent the median value with error bars representing the I.Q.R. 
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Parameter Value Unit Range Reference 
B Cell Size 7 µm  

 
Constant (Monroe and Cambier, 

1983) 
Total Number of B cells 6000 cells Constant 

 
Measured 

Total Number of MRCs 100 cells Constant 
 

Measured 

Total Number of FDCs ~200 cells Constant 
 

Measured 

Total Number of BRCs ~450 cells Constant 
 

Measured 

 Proportion of Cognate 
Cells 

5 
 

% Constant - 

Displacement constant 7.4 µm min-1 [1-10] 
 

Calibrated 

Signal threshold 10  ΔLR Constant 
 

(Herzmark et al., 
2007; Zigmond, 1981) 

Maximum turn angle 180 Degrees Constant 
 

(Coelho et al., 2013) 

Total receptor number 48,000 Receptors 
 

[10,000-100,000] (Sh et al., 1982) 

Kon 4.8 x 105 M s-1 [1x105-1x106] 
 

(Barroso et al., 2012) 

Ki 0.0033  s-1 [0.001-0.01] 
 

 (Sh et al., 1982; Tilo 
Beyer, 2007) 

Kdes 
 

0.075 s-1 [0.01-0.1] 
 

(Sh et al., 1982; Tilo 
Beyer, 2007) 

Kr 0.004  s-1  [0.001-0.01] 
 

(Sh et al., 1982; Tilo 
Beyer, 2007) 

Koff 0.0048 s-1  [0.001-0.01] 
 

(Sh et al., 1982; Tilo 
Beyer, 2007) 

FDC secretion rate 0.18 fg min-1 cell-1 
 

[0.1-0.5] (Gunn et al., 1998a; 
Luther et al., 2002)  

MRC secretion rate 0.18 fg min-1 cell-1 
 

[0.1-0.5] (Gunn et al., 1998a; 
Luther et al., 2002) 

BRC secretion rate 0.18 fg min-1 cell-1 
 

[0.1-0.5] (Gunn et al., 1998a; 
Luther et al., 2002) 

CXCL13 decay rate 0.007 s-1 [0.0002-0.05] 
 

(Phair and Misteli, 
2001b; Wang and 

Irvine, 2013) 
CXCL13 diffusion rate 7.6 µm2 s-1 [0-146] 

 
Measured 

Polarity 0.475 - 0-1 
 

Calibrated 

Random Polarity 3.8 - Constant 
 

Calibrated 

Table 5.2. Summary of parameter values. For each parameter the name, baseline value and range used for 
uncertainty and sensitivity analyses is provided. Parameter values were determined experimentally or in 
cases where no direct experimental value exists, upper and lower limits were derived from indirect 
evidence, baseline values were then determined by fitting the model to experimental datasets (calibration). 
The model was further validated against migration data from CXCR5-/- B cells and parameters were 
removed where possible. The values for stromal cells are averaged over 250 runs with individual values 
varying to a small extent between runs due to stochastic network formation. 
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5.4 Understanding Aleatory and Parameter Uncertainty 
 

5.4.1 Mitigation of Aleatory Uncertainty 
 
CXCL13Sim is non-deterministic and therefore, repeat experiments using the same 

parameter set can lead to differing results (Figure 5.16). This variation is termed aleatory 

uncertainty and because of this effect multiple simulation executions must be performed 

to obtain a representative result. To determine how many runs are required to give a 

representative output for a given parameter set we perform an aleatory analysis (detailed 

further in Chapter 2.2.7) (Alden et al., 2013; Read, 2011) (Figure 5.18).  In this 

approach, distributions of simulation outputs generated using a fixed parameter set are 

compared. By varying the number of samples comprising the distributions, the analysis 

determines the number required to obtain statistically consistent distributions (as detailed 

in Chapter 2.2.7). This analysis shows that large differences between parameter sets can 

be detected with 50 replicate run for all outputs while smaller differences require 250 runs 

(threshold values to determine each effect size are detailed further in Chapter 2.2.7).  

 

	

Figure 5.18. Mitigating aleatory uncertainty. An aleatory uncertainty analysis was performed using the 
SPARTAN package in R. This analysis shows that 250 runs are required to provide enough power to detect 
small effects in all model outputs. Based on this analysis parameter sensitivity analyses were run with 50 
replicates while in silico experiments are run with 250 replicates. checkPointsReached (the amount of 
unique grid spaces reached within a simulation run) ✖; meandering index (MI) Δ; motility coefficient (MC) 
¢; speed ✚.  
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5.4.2 Local Sensitivity Analysis 
 

To quantify parameter uncertainty in CXCL13Sim we first perform a local parameter SA 

using the SPARTAN statistical package as follows: each parameter is adjusted within the 

ranges specified in Table 5.2, with all other parameters remaining at their calibrated value 

with 100 replicates used for each parameter set to mitigate aleatory uncertainty. The 

Vargha-Delaney A-Test described previously (section 2.2.8) is employed to determine if 

changing the parameter value has led to significant difference in comparison with baseline 

behaviours (Vargha and Delaney, 2000).  

 

In this analysis we divided parameters into 3 groups. Parameters controlling B cell 

migration (B-cell displacement constant and cell polarity) had a significant impact on 

both cell migration and scanning rates (Figure 5.19). Analysis of parameters controlling 

CXCR5 expression (Kdes, Koff, Kr, Ki, Kon and Rf) (Figure 5.20) show a high level of 

uncertainty around parameters Koff, Kr, Ki with perturbations not leading to a large 

difference in cell migration and scanning rates. However, Kdes, Kon and Rf were influential 

in regulating cell migration. Only perturbed rates of Kdes altered the rate of scanning 

(Figure 5.20). Perturbations to parameters controlling CXCL13 expression (cell secretion 

rates, diffusion constant and decay rate) led to significant changes in both cell behaviours 

and scanning rates (Figure 5.21). 
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Figure 5.19. A-test scores when OAT adjusting parameters which relate to B-cell migration and 
numbers. Parameters polarity (A) and travel distance (B)   were incrementally changed within their 
likelihood distributions using an OAT parameter robustness approach. A significant alteration in simulation 
outputs from baseline behaviours was determined using the Vargha-Delaney A-Test. checkPointsReached ×; 
meandering index (MI) Δ; motility coefficient (MC) ¢; speed ✚.  
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Figure 5.20. A-test scores when OAT adjusting parameters which relate to CXCR5 expression. 
Parameters Kdes (A), Koff (B), Kr (C), Kon (D), Rf (E), and Ki (F), were incrementally changed within their 
likelihood distributions using an OAT parameter robustness approach. A significant alteration in simulation 
outputs from baseline behaviours was determined using the Vargha-Delaney A-Test. checkPointsReached ×; 
meandering index (MI) Δ; motility coefficient (MC) ¢; speed ✚. 
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Figure 5.21. A-test scores when OAT adjusting parameters which relate to CXCL13 bioavailability. 
Parameters cxcl13 emitted (A-C), decay constant (D) and diffusion coefficient (E) were incrementally 
changed within their likelihood distributions using an OAT parameter robustness approach. A significant 
alteration in simulation outputs from baseline behaviours was determined using the Vargha-Delaney A-Test. 
checkPointsReached ×; meandering index (MI) Δ; motility coefficient (MC) ¢; speed ✚. 
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5.4.3 Global Sensitivity Analysis 
 

To assess combinatorial effects of parameter perturbations we performed a global 

sensitivity analysis using latin hypercube sampling that partitions the distribution of each 

input parameter into intervals of equal probability, selecting one sample from each 

interval (Figure 5.22-5.23). LHC sampling generated 1000 parameter sets, 100 

executions per parameter set were performed on a high-performance cluster and the 

influence of each parameter was quantified using a PRCC (detailed in Chapter 2.2.9). 

The parameters polarity, travel distance, and total number of CXCR5 receptors were key 

determinants of cell migration and scanning rates (Figure 5.22-5.23). 
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Figure 5.22. Partial rank correlation coefficients for Motility Coefficient (top) and Speed (bottom). 
Red lines show positive correlations, blue lines show negative correlations. The length of each line 
represents the magnitude of the correlation between a parameter and an output discounting the linear effects 
of other parameters  
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Figure 5.23. Partial rank correlation coefficients for Meandering Index (top) and 
checkPointsReached (bottom). Red lines show positive correlations, blue lines show negative correlations. 
The length of each line represents the magnitude of the correlation between a parameter and an output 
discounting the linear effects of other parameters 
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5.5 Emulator Development and Validation  
 

CXCL13Sim is non-deterministic, capturing the stochastic nature of cell migration and 

the heterogeneity of CXCL13+ stromal networks. Consequently, it required significant 

resources to quantify parametric and aleatory uncertainty. Specifically, it took ~123,000 

simulation runs (each run takes 20 minutes on a macbook pro laptop with a 2.5 GHz Intel 

Core i7 processor and 8 cores 27) to complete a local, global and aleatory analysis for one 

model iteration, with several iterations required. Using a high performance computer 

cluster (specifications are listed in Chapter 2.2.4) it was possible to perform each 

analysis on a timescale of days or weeks. The significant time resources required to 

evaluate the model warrant the use of an emulator to perform experiments where use of 

the simulator is intractable. Thus the emulator serves to complement the simulator as a 

tool to study CXCL13-mediated regulation of B cell migration (Figure 5.24).  

 

 

 

 

	

Figure 5.24 Using emulation to enrich understanding of complex systems models. Issues of time and 
resource limitations incurred in simulator analysis can be addressed by integrating machine-learning 
approaches within the process of simulator development, analysis, refinement, and translation.  
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As an agent based model a number of high-level properties emerge from the simulator 

due to aggregated interactions between agents and their environment (Cosgrove et al., 

2015; Macal and North, 2010). To learn the complex relationship between parameter 

inputs and emergent agent behaviours we employ a supervised machine learning 

approach. Supervised learning involves generating a dataset of inputs (x) and outputs (y) 

and then teaching an algorithm to approximate a mapping function between the two. With 

a sufficiently accurate mapping function it is then possible to predict Y for a set of 

unobserved values of x.  

 

The initial dataset used to teach the algorithm how to map between inputs and outputs is a 

key determinant of performance, effectively acting as a teacher in the learning process. To 

generate this data we used the global sensitivity analysis, that is generating 1000 

parameter sets and associated outputs by LHC sampling in SPARTAN. To map the 

complex relationship between parameter inputs and the emergent properties of the model 

we train an artificial neural network (ANN). ANNs are a technique inspired by the 

neuronal circuits in the brain, with computations structured in terms of an interconnected 

group of artificial neurons organised in layers (Bishop, 1996).  

 

In this scheme parameter inputs are passed into the network and iteratively processed by a 

number of hidden layers. Within each hidden layer the sum of products of inputs and their 

corresponding weights are passed through a sigmoidal activation function28 which is fed 

as inputs into the next layer. This process is repeated until the output layer is reached and 

we have a prediction for the output values. During the learning phase, the weighting of 

connections between neurons is adjusted in such a way that the network can convert a set 

of inputs (simulation parameters) into a set of desired outputs (simulation responses) 

(Bishop, 1996).  

 

A key technical consideration when developing neural networks is how to evaluate 

predictive power. Testing predictive performance on the training data is not useful as it 

can lead to over fitting, whereby the network is poor at predicting previously unobserved 

data. To solve this problem, a proportion of the dataset is omitted from the training 

dataset and used to validate algorithm performance. 
																																																								
28 The activation function confers non-linear properties to the network and allows it to learn complex 
relationships between inputs and outputs. 
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Paritioning the data incurs a cost however, as we reduce the amount of samples used for 

training the model. In addition, the data used to train the model, even if not used in the 

evaluation process, can have a significant impact on predictive performance. To address 

these issues we perform a procedure known as k-folds cross validation. In this scheme the 

data is partitioned into k-folds and the algorithm learns the mapping between inputs and 

outputs using k-1 folds as training data with validation performed on the remaining part of 

the data. This process is repeated until each fold is used as the test set with overall 

performance taking as the average for each fold. This approach can be computationally 

expensive, but does address the aforementioned issues.  

 

To develop our ANN we generate a number of neural network structures with different 

number of hidden layers and nodes within each layer (so called hyperparameters) but 

fixed input and output layers (one node for each distinct input and output respectively. K-

folds cross validation is used to determine which structure best minimises the root mean 

squared error between emulator and simulator responses. The performance of the best 

neural network structure on the validation dataset is shown in figure 5.25. 
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Figure 5.25 Emulator performance on the validation dataset. Each datapoint represents the predicted 
(emulator) vs observed (simulator) output value for a distinct set of parameter inputs.  (A) Predictive 
performance for the output Speed. (B) Predictive performance for the output Meandering Index. (C) 
Predictive performance for the output Motility Coefficient. (D) Predictive performance for the output 
checkpointsReached. 
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5.6 eFAST Analysis using CXCL13emulator 
 
In section 5.4.3 we perform a global sensitivity analysis using latin-hypercube sampling 

and quantifying the non-linear relationship between parameters and responses, correcting 

for the effects of other parameters on the response. This facilitates an understanding of 

what parameters should be targeted to achieve a target response. However, it only 

provides a rank correlation between inputs and outputs and does not indicate the 

magnitude by which outputs change following a perturbation. Consequently a PRCC 

metric does not indicate which parameter uncertainties have the greatest impact on output 

variability. In addition this variance based approach allows investigation of both non-

linear and non-monotonic relationships between model inputs and outputs (Marino et al., 

2008) 

 

To address this we employ the eFAST variance based approach (Chapter 2.2.9). Due to 

time constraints it was intractable to perform an eFAST analysis using the 

CXCL13simulator so we use the CXCL13emulator. In this analysis we find that polarity 

is a key determinant of each output metric with a significant difference between Si and 

STi values (detailed further in Chapter 2.2.9) in comparison with the dummy variable.  

 

Interestingly, eFAST analysis highlights a number of parameters that differ substantially 

between their Si and STi values. From this analysis we see a number of parameters that 

do not contribute highly to the regulation of cell behaviours in isolation but do contribute 

to cell behaviours through non-linear relationships with other parameters, the CXCL13 

diffusion constant being one example. This is consistent with analyses of previous model 

iterations where model configurations with less parameters (data not shown) were unable 

to produce emergent behaviours consistent with our experimental data.  
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Figure 5.26 eFAST analysis using the CXCL13emulator. Si (black) represents the fraction of output 
variance that can be explained by the value assigned to that parameter. STi (grey) represents the variance 
caused by higher order non-linear effects between that parameter and others explored. Bars represent the 
mean value for either Si or STi, with error bars representing the standard error over three resample curves.  
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5.7 Discussion 
 

This chapter detailed the development of a multiscale software tool, designed to assess the 

veracity of our research hypothesis that lymphoid tissues are essential for the formation of 

CXCL13 gradients, and perturbation of the spatial distribution of CXCL13 can affect the 

onset of humoral immune responses. Platform Model development was facilitated by 

modularisation of the domain into distinct subunits. Through modularisation it was 

possible to identify existing modelling techniques that could capture the key features of 

each model subunit at the desired granularity.  This yielded an executable software 

platform where in silico B cells can dynamically detect chemotactic gradients within the 

context of the follicular microenvironment.  

Interestingly, there are limited theoretical studies that combine all 3 components. Guo et 

al. (2008) developed a hybrid model of chemotaxis in a reductionist in vitro assay and did 

not take the lymph node environment or agent interactions into account (Guo et al., 

2008b). Donovan et al (2016) looked at T-cell migration on an FRC network but had 

limited data to inform the properties of the FRC network and had no explicit reference to 

chemokines. The lack of studies looking at migration in vivo can be attributed in part to 

the lack of quantitative information available in the literature and the challenges 

associated with developing multiscale models. To address this we have incorporated the 

data from Chapter 4 into a hybrid scheme to enrich model granularity without becoming 

prohibitively slow or difficult to interpret.  This ultimately provides an executable 

software platform capable of addressing our research question and driving further 

experimentation (Chapter 6). 

 

 

Through incorporation of agile techniques within the CoSMoS framework it was possible 

to create a robust but malleable code base that could cope with constantly evolving 

requirements. Automated tests at the verification level expedited the development 

process, ensuring that changes at later phases of development did not affect the 

functionality of the original code base, while validation tests facilitate translation of 

simulation-derived results back to the biological system. Importantly, the testing process 

identified a number of design and software errors that may not have been encountered 

until late into the development process where errors become more resource costly to 



	 174	

diagnose and address.  

Following development, model parameters were calibrated against experimental data to 

establish a baseline set of behaviours to which all subsequent perturbations are compared. 

This required large amounts of disparate datasets and derivations from the wider literature 

to constrain parameter values and perform fitting and validation. The CXCR5 deficient 

multiphoton experiments were key to ensuring that the model was not overfitted and 

where possible the amount of parameters was reduced.  Subsequently, we quantified the 

effect of stochasticity on baseline simulation behaviours, with a view to determining how 

many replicate runs are required to mitigate this aleatory uncertainty. Parametric 

uncertainty was quantified using both local and global approaches, identifying the 

migration displacement constant, the numbers of CXCR5 receptors on the cell surface and 

cell polarity as key regulators of simulation outputs.  

Key attributes of the simulator include the high speed of data acquisition relative to 

laboratory experiments and the high granularity at which we can observe mechanistic 

processes. Each simulation run takes on average 15-20 minutes to run, and represents 24 

hours. With high performance computing, hundreds of experiments can be run in parallel 

dramatically outcompeting laboratory experiments in terms of the time resources required 

to obtain data. Incorporating equation-based systems within agent-based models 

facilitates single-cell analyses of receptor expression and can facilitate analyses of how 

the local environment can alter molecular phenotypes with high temporal resolution over 

long timescales. Thus the simulation platform may provide a useful adjunct to imaging 

approaches to understand the dynamics and microanatomy of CXCL13, affording single 

cell tracking precision within a complex tissue over a timescale of several hours.  

The analyses performed in this chapter are key to understanding simulation behaviours 

and to fully evaluate simulation-derived results. To facilitate an enriched suite of analyses 

within the project time constraints we employed supervised learning algorithms to 

develop an emulator tool capable of rapidly and accurately reproducing emergent 

behaviours of the multiscale simulator.  In reducing the time taken to evaluate parameter 

sets, the emulator was able to rapidly perform an eFAST analysis (on the order of 10 

seconds) providing a better understanding of parametric uncertainty. In the following 

chapter, we use CXCL13Sim and the CXCL13emulator in combination with experimental 

approaches, to map, perturb and optimise CXCL13 gradients within the primary follicle. 
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Chapter 6 Mapping CXCL13 Gradients 
In Situ 
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6.1 Introduction 

6.1.1 Current Model of Morphogen Bioavailability In Situ 
 

CXCL13 has emerged as a key regulator of follicular architecture and B-cell responses. 

Despite this progress a more nuanced understanding of how the molecule functions is 

lacking. The precise spatial distribution of the molecule is poorly understood and it is 

unclear if the molecule acts principally in a soluble or an immobilised form. 

Consequently, we have a limited understanding of how CXCL13 gradients form within 

complex lymphoid tissues and how B cells respond to them.  

 

To better understand CXCL13 bioavailability, it is beneficial to discuss the behaviours of 

a broader class of molecules known as morphogens. The molecular mechanisms 

governing gradient formation are highly nuanced and context specific with a number of 

prevalent views existing. One such mechanism was first described by Alan Turing, who 

demonstrated that two diffuse morphogens that dynamically influence one another can 

give rise to symmetry breaking and thus the emergence of complex patterns (Turing, 

1952). This work was later extended by Meinhardt and Gierer who produced a number of 

naturally occurring patterns through numerical simulation (Meinhardt and Gierer, 2000) 

and by experimental studies of development (Kondo and Miura, 2010).  

 

In 1969, Lewis Wolpert suggested a scheme of gradient formation where smoothly 

declining gradients were formed by the diffusion of morphogens from a source to a sink. 

The role of the morphogen is then dependent on the concentration which the cell 

perceives – once the localised concentration exceeds a certain threshold genes can be 

switched on or off (Wolpert, 1969). Recently, a secretion-consumption scheme has been 

used to describe the spatial distribution of the cytokine IL-2 (Oyler-Yaniv et al., 2017) .  

Consistent with the source-sink scheme of gradient formation CCRL1 expressing LECs 

lining the ceiling of the subscapular sinus have been implicated in the formation of 

functional CCL21 gradients in the lymph node (Ulvmar et al., 2014). 

 

However, CCL21 is also regulated by the microenvironment. CCL21 is secreted by a 

complex network of T-Zone fibroblastic reticular cells (FRCs) and undergoes interactions 

with ECM components (Hirose et al., 2002; Patel et al., 2001; de Paz et al., 2007). In vivo, 

truncation of the highly charged C-terminus prevents its immobilization to high 
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endothelial venules and consequently affects lymphocyte homing to the lymph node 

(Stein et al., 2000). The ability to bind the ECM is not a CCL21 specific characteristic; In 

vivo studies of CXCL12 using a mouse strain carrying a mutated form of CXCL12 where 

interactions with the extracellular matrix are impaired (CXCL12gagtm mice) show 

increased amounts of hematopoietic precursors, an impaired ability to support 

revascularisation and impaired humoral immune responses. In these mice the structure of 

the GC was impaired, as well as having fewer somatic mutations in Ig genes (Barinov et 

al., 2017).  

 

The role of the microenvironment in shaping gradients has also been described in the 

context of development. Fibroblastic Growth Factors (FGF) are critical for mesoderm 

induction as well as limb and lung development, modulating the proliferation and 

differentiation of a variety of cells of mesenchymal and neuroectodermal origin. Receptor 

dimerization is a prerequisite for FGF signalling and requires extracellular matrix 

components (Pellegrini et al., 2000). Previous studies have identified the secreted serine 

protease HtrA1 as a key mediator of ECM binding, promoting the mobilization of 

FGF/proteoglycan complexes and long-range FGF signalling during mesoderm induction 

and posteriorization in Xenopus embryos (Hou et al., 2007). These experimental studies 

are supported by mathematical analyses predicting that gradient formation is increased 

when morphogens are secreted in matrix-binding form as compared to a non matrix-

interacting form (Fleury et al., 2006) 

 

Given that many soluble factors display complex binding behaviours, interacting with 

components of the extracellular matrix (Hasan et al., 1999; Patel et al., 2001) and other 

molecules (Dyer et al., 2016; Hundelshausen et al., 2017) it is unclear if a source-sink or 

reaction diffusion model can provide a general-purpose description of morphogen 

bioavailability. In terms of a source-sink scheme for CXCL13 we note that the molecule 

is negatively regulated by the internalisation of typical and atypical chemokine receptors 

and by protease-mediated enzymatic degradation (Nibbs and Graham, 2013; Ulvmar et 

al., 2014; Zabel et al., 2006). CXCL13 binds the atypical chemokine receptors ACKR1 

and ACKR4 (ACKR4 binds human but not murine CXCL13) but to date, their role in 

regulating CXCL13 is unknown (Nibbs and Graham, 2013). Due to the density of the B 

follicle CXCR5-mediated scavenging could also contribute significantly to gradient 

formation but the extent to which it contributes is also unclear. 
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Measurements of CXCL13 diffusion show that the ECM constrains mobility (Chapter 

4.3) suggesting that CXCL13 bioavailability is likely to be regulated, at least in part, by 

the localised microenvironment. This result was unsurprising given that chemokines are 

highly basic proteins (the isoelectric point of CXCL13 is 10.5), having a net positive 

charge at physiological pHs. This promotes interactions with components of the 

extracellular matrix such as glycosaminoglycans (GAG), highly negatively charged 

molecules (Handel et al., 2005). All chemokines bind GAGs, but are heterogeneous in 

their binding affinities (Patel et al., 2001; de Paz et al., 2007). An additional layer of 

complexity is added by the heterogeneous distribution of ECM proteins within the 

follicle. An immunohistochemistry study of the murine lymph node shows signal for 

fibronectin and collagen type IV. Positive signal was also observed for the proteoglycan 

perlecan with positive signal highly concentrated around HEVs and just under the 

subcapsular sinus. ER-TR7 was present in the follicle but staining was substantially 

reduced in comparison to the T-zone (Ma et al., 2007). Another factor that may contribute 

to gradient formation is the architecture of CXCL13 stromal cell networks. Data from 

Chapter 4.2 suggests that the small-world network topology is configured to promote B-

cell trafficking but it has yet to be determined how this architecture influences the spatial 

distribution of CXCL13.  

6.1.2 Multiobjective Optimisation of Multiscale Simulators  
 

CXCL13 bioavailability is subject to the following simultaneously occurring processes: 

secretion, diffusion, decay and scavenging. Given the highly dynamic nature of this 

regulatory network, it is unclear what spatial configuration of CXCL13 is best suited to 

promote scanning within the primary follicle. This question requires systematic tuning of 

each process, thus it is intractable to address it experimentally.  

 

However, the mathematical constructs that model these processes can be easily tuned in 

silico through parameter perturbation, with the added benefit that they are much faster to 

evaluate than in the laboratory. As such, CXCL13Sim is well suited to addressing this 

research question. Despite these advantages, this analysis is technically challenging due to 

a: (i) highly complex search space, and (ii) multiple, conflicting objectives.  
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Due to the high dimensional parameter space and the need for replicate runs to mitigate 

aleatory uncertainty it is intractable to evaluate every possible parameter set. 

Consequently it is beneficial to use a search heuristic such as an evolutionary algorithm 

(EA). EAs mimic evolution using biological mechanisms of reproduction, mutation, 

recombination, and selection to iteratively generate, execute and evaluate solutions to a 

complex problem. This allows the algorithm to efficiently scan complex multidimensional 

parameter spaces to find solutions to a given problem.  

 

	

Figure 6.1. Example Pareto front for the bridge problem. This plot shows an example Pareto front, 
populated by solutions where improvement in one objective cannot be obtained without compromising 
performance for another objective. Pareto optimal solutions are highlighted in red while dominated 
solutions are shown in white.  A solution is dominated if there exists another with at least equal performance 
on all objectives and superior performance on at least one. 

 

A certain class of mathematical problems have multiple objectives to optimise. For 

example, the key objectives when building a bridge might be to maximise the strength 

while minimising cost. However, improvements gained in strength may compromise cost 

efficiency and vice versa. For such problems a specialised class of EAs known as 

multiobjective optimisation evolutionary algorithms (MOEAs) are used (Deb, 2001; Deb 

et al., 2002; Zitzler and Thiele, 1998). This class of algorithms uses a heuristic search 

approach to obtain a population of solutions (a Pareto front) where improvement in one 

objective cannot be obtained without compromising performance for another objective 

(Figure 6.1). For the bridge problem the Pareto front represents a set of solutions that are 

best trade-off between cost and strength. Some solutions will have a high cost but also 

high strength; some solutions will have a low cost but a lower strength and so forth.  
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6.1.3 Summary and Aims 
	
The aim of this chapter is to use the in silico tool developed in Chapter 5, in conjunction 

with experimental approaches to examine chemokine field formation and associated B-

cell responses in lymph node follicles. A key advantage of this system is the ability to link 

molecular, cellular and tissue level components to understand how gradients form within 

complex tissues. The key questions we wish to address include: (i) what is the spatial 

distribution of CXCL13 in the primary follicle (ii) how sensitive are scanning rates to 

perturbations to CXCR5 and CXCL13 and (iii) is there an optimal configuration of 

CXCL13 in the follicle with respect to network scanning. The key aims of the chapter are 

summarised as follows: 

 

1. Combine theoretical (modelling and simulation) and experimental 

(immunohistochemistry) approaches to map the spatial distribution of CXCL13 

within the primary follicle (section 6.2-6.3) 

2. Determine the Pareto optimal29 configuration of CXCL13 in silico using a MOEA 

approach in conjunction with the CXCL13emulator (section 6.4) 

3. Assess the sensitivity of B cell scanning to perturbations in CXCR5 in silico 

(section 6.5) and perform single cell tracking to determine spatial and temporal 

patterns of expression within the context of a complex tissue (section 6.7). 

4. Use an MOEA approach in conjunction with the CXCL13emulator to determine 

the Pareto optimal30 configuration of CXCR5 signalling with respect to scanning 

in silico (section 6.8). 

 

 

 

 

 

 

 

 

 

																																																								
29	the optimisation problem is defined in section 2.2.11	
30	the optimisation problem is defined in section 2.2.11	
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6.2. Assessing Cell-Specific Contributions to CXCL13 Secretion 
 

Confocal images of lymph node follicles taken from Cxcl13-EYFP reporter mice 

implicate 3 key stromal cell subtypes in the secretion of CXCL13 within the primary 

follicle; FDCs, MRCs, BRCs (detailed further in Chapter 4). However, the relative 

contribution of each cell type to the regulation of naïve B cells within the primary follicle 

is poorly understood. To address this we systematically perturbed the secretion rate of 

each cell type. Maximal scanning rates were observed for intermediate rates of secretion, 

with perturbations to FDC secretion yielding the biggest changes in agent behaviours 

(Figure 6.2a-c). For both MRCs and BRCs, lower rates of secretion gave improved 

scanning rates. We further assessed cell-specific contributions to CXCL13 bioavailability 

by stopping secretion in each subset (Figure 6.2d). In this analysis, loss of CXCL13 from 

MRCs or BRCs did not significantly alter scanning rates while loss of CXCL13 from 

FDCs did.  

 

In vivo quantification of fluorescent intensity of each cell type suggests that secretion may 

be heterogeneous, with MRCs having the highest levels of reporter expression, followed 

by FDCs and then BRCs (Figure 6.3a). To assess what effect this spatial configuration 

might have on scanning rates we used TdTomato expression from CXCL13-EYFP mice 

as inputs into our simulator and quantified scanning rates. Interestingly, this configuration 

led to a small but significant increase in the scanning of the entire follicle but did lead to a 

more dramatic increase in scanning at the SCS, a major site of antigen entry into the 

primary follicle (Figure 6.3b-c). This result suggests that fine-tuning of CXCL13 

secretion can generate gradients capable of directing B cells to different follicular niches. 

Taken in concert, these analyses identify a complex non-linear relationship between 

CXCL13 concentration and B-cell scanning. 
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Figure 6.2 Assessing cell-specific contributions to CXCL13 bioavailability. (A-C) OAT perturbations of 
cell-specific secretion rates. Dots represent the median values with error bars displaying the I.Q.R (D) In 
this experiment baseline behaviours (WT), were compared to those for follicles where BRCs (BRCs-/-), 
MRCs (MRCs-/-) or FDCs (FDCs-/-) don’t secrete CXCL13. In this plot median values are shown with error 
bars representing the I.Q.R.  Significance assessed using the Mann-Whitney test. 
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Figure 6.3. Mapping fluorescent reporter expression in silico. (A) TdTomato intensity of the different 
stromal subsets based on histological analysis of TdTomato expression. Horizontal lines represent median 
values with boxplot height representing the interval between the 5th and 95th percentile. Figure A provided 
by N.P. and M.N. (B) scanning rates for the entire follicle where relative fluorescent intensity values from 
(A) were used as inputs into the simulator (C) scanning rates for the proportion of the SCS network scanned 
where relative fluorescent intensity values from (A) were used as inputs into the simulator.  For (B) and (C) 
median values are shown with error bars representing the I.Q.R. Significance assessed using the Mann-
Whitney test. 

Scanning the Follicle

Scanning the SCS

A.

B.

C.

***
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6.3. Assessing the Solubility of CXCL13 Within the In Silico Follicle 
 

A question regarding CXCL13 bioavailability is whether it acts in principally an 

immobilized or a soluble form. To assess this we investigate two models: (i) a scenario 

where CXCL13 binds to extracellular matrix components creating short sharp gradients 

proximal to the cells that secrete it; and (ii) a model where CXCL13 is largely soluble and 

diffuses more freely throughout the tissue (Figure 6.4).  

 

Firstly, we assessed the sensitivity of the model to these parameters using an OAT 

analysis where either the decay constant or diffusion coefficient are changed while 

holding all other parameter values held at their baseline calibrated value. This analysis 

suggests that perturbing each parameter in isolation leads to a modest change in scanning 

rates with high values for the decay constant promoting the highest scanning rates 

(Figure 6.5a-b). 

 

Subsequently, we assessed the combinatorial effects of these parameters. Specifically, we 

generate short sharp gradients proximal to the stromal network (model 1) through having 

a low diffusion coefficient and high decay rate (1.0 µm2 s-1 and 0.05 s-1) and diffuse 

gradients (model 2) with a high diffusion coefficient and low decay rate (15 µm2s-1 and 

0.0035s-1). Both parameter sets give a total concentration of ~18nM CXCL13 within the 

follicle. Consistent with results from the OAT analysis model 1 yields higher scanning 

rates than model 2 (Figure 6.5c). The scanning rates obtained using model 1 were greater 

than those achieved through OAT perturbation suggesting a synergistic effect between 

diffusion and decay rates. This synergy between parameters is consistent with results 

from the eFAST global sensitivity analysis (Chapter 5.6). 

 

To map the chemotactic landscape generated by each model we measured the spatial 

autocorrelation of chemokine concentrations in silico (Figure 6.6). This analysis shows 

that with short sharp gradients chemokine concentration is correlated over short distances 

(~60 µm) and then becomes significantly uncorrelated, while for more diffuse 

distributions chemokine concentrations were correlated over distances of 100 µm. 

 

 

 



	 185	

 

 

 

 

 

 

 

 

Figure 6.4 Comparison of two competing models for CXCL13 bioavailability: Model 1 assumes a 
scenario where CXCL13 binds strongly to extracellular matrix components creating short sharp gradients 
proximal to the cells that secrete it and (ii) a model where CXCL13 is largely soluble and diffuses more 
freely throughout the tissue  
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Figure 6.5 Robustness of scanning rates to different spatial distributions of CXCL13. (A) Perturbation 
of CXCL13 diffusion rates holding all other parameters fixed at baseline calibrated values. (B) Perturbation 
of CXCL13 decay rates holding all other parameters fixed at baseline calibrated values.  (C) Comparison of 
scanning rates obtained using model 1 and model 2. In each plot median values are shown with error bars 
representing the I.Q.R. 
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Figure 6.6 Comparison of the spatial autocorrelation of in silico gradients. (A) an example correlogram 
showing how chemokine concentrations are spatially correlated in silico.  (B) The distances at which there 
is no significant spatial autocorrelation in chemokine concentrations. Significance was determined through 
permutation testing using the ncf package in R. Using model (i) we generate spatial distributions where 
chemokine concentrations are correlated over distances of 60 µm, while for model (ii) a more diffuse 
situation we see that chemokine concentrations are correlated over longer distances (~ 100 µm). In figure 
(B) median values are shown with error bars representing the I.Q.R. Significance assessed using a Mann-
Whitney test. 
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6.4. Determining the Optimal Configuration of CXCL13 Within the Primary 
Follicle  
 

Simulation analyses performed in the previous sections favour a model whereby CXCL13 

is less diffuse. However, this data cannot be used to determine what spatial configuration 

of CXCL13 promotes the highest rates of antigen scanning. To address this we perform 

multiobjective optimisation of the CXCL13emulator using the non-dominated sorting 

genetic algorithm II (NSGA-II) ref Deb using the mco package in R. The four objectives 

to be assessed by the algorithm were to: minimize the root mean squared error between 

emulator and simulator responses for cell speed, meandering index and motility 

coefficient; and maximize scanning rates (Figure 6.7).  

 

This analysis shows that our objectives are conflicting, with increased scanning rates 

leading to poorer agreement between emergent cell behaviours in silico and laboratory 

measures (Figure 6.7). Analysis of the parameter distributions corresponding to the 

population of Pareto optimal solutions shows that diffusion constants are highly 

constrained to low values, with FDC secretion rates and decay rates constrained to high 

values (Figure 6.7). This is consistent with previous analyses (section 6.3) that favour a 

model of CXCL13 where diffusion is constrained by the local tissue anatomy.  
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Figure 6.7 Pareto optimal solutions obtained by NSGA-II on CXCL13emulator. (A) Pareto front of 
solutions representing the optimal trade off in performance between cell behaviours (r.m.s.e of motility 
coefficient not shown) and scanning rates, using NSGA-II. (B) Parameter distributions corresponding to the 
Pareto optimal solutions shown in (A).  
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6.5. Experimental Assessment of CXCL13 Solubility 
 

Simulation analysis predicts a model where CXCL13 diffusion is constrained, leading to 

short sharp gradients proximal to the stromal cells that secrete CXCL13. To assess the 

veracity of this prediction we performed an immunohistochemistry analysis of CXCL13 

expression in FDC networks within human tonsils and LNs.  

 

In this experiment we stained frozen tissue sections with antibodies against the FDC-

specific marker CD35 and for CXCL13. This analysis shows that CXCL13 is tightly 

associated with stromal cells (Figure 6.8-6.9) with foci of both high and low 

fluorescence, consistent with model 1. To quantify this observation we perform a spatial 

autocorrelation analysis whereby each image is discretised into 14.4μm2 bins and the 

fluorescent intensity in each is compared to all other bins. Lymph node samples had a 

large proportion of immature FDC networks with little CXCL13 signal detected (Figure 

6.8). Consequently, it was not possible to perform this analysis on lymph nodes, and so 

this analysis was performed on human tonsil sections Figure 6.9. Correlograms show that 

the correlation in fluorescence intensity decays as a function of distance (6.11a), with 

intensities becoming significantly uncorrelated (detailed in Chapter 2.1.8.4) over short 

distances (order of 40 µm). Comparing this result to those obtained for model 1 and 

model 2 shows that model 1 produced a chemokine field with no statistically significant 

difference to human tonsil sections, while model 2 did display a statistically significant 

difference (Figure 6.11b).  
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Figure 6.8 CXCL13 expression in human lymph nodes. The left hand side shows an immature FDC 
network with relatively low expression of CD35 (green) and CXCL13 (red). The right hand side shows a 
mature FDC network with upregulated CD35 and CXCL13. Scale bar = 20 µm.  
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Figure 6.9 3D image of CXCL13 expression in human tonsils. (A) CD35 (green) and CXCL13 (red) 
expression in human tonsils, scale bar = 20 µm. (B) Close up of CXCL13 and CD35 co-expression, scale 
bar = 5 µm (C) Z-stack of CD35 and CXCL13 in human tonsils.  
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Figure 6.10 IHC controls for CXCL13 expression in tonsils.  FMO refers to the fluorescence minus one 
control. Scale bar = 10µm 
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Figure 6.11 Calculating the spatial autocorrelation of fluorescent intensities in the CXCL13 channel 
from confocal images of frozen tonsil sections. (A) Shows the spatial autocorrelations obtained for 5 FDC 
networks taken from the same patient. (B) Indicates the distances at which the spatial autocorrelation is no 
longer statistically significant spatial correlation. No statistically significant difference was found in the 
distances between model 1 and the human tonsil data but was found for model 2. 
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6.6 Perturbing CXCR5 Expression In Silico 
 

In vivo analyses of B-cell migration using multiphoton imaging showed that CXCR5-/- B 

cells had altered migration characteristics compared to wild-type B cells. Analysis of 

turning angle distributions and meandering indices show that CXCR5 deficient B cells 

migrate in a less directed manner while analysis of speed and motility coefficients show 

that cells move more slowly (Coelho et al., 2013). To assess the consequences of CXCR5 

deficiency on the induction of humoral immune responses we quantified scanning rates in 

CXCR5-/- B cells in silico. This analysis predicts that CXCR5 deficiency leads to a 

significant decrease in the ability of cognate B-cells to scan the follicle for antigen (figure 

6.12a). While complete loss of the receptor yielded a strong phenotype, perturbations to 

total numbers of CXCR5 (between 10-100,000 receptors) led to modest changes in the 

baseline rate of network scanning (Figure 6.12b).  

 

Overall scanning rates were robust to one-at-a-time perturbation to both Kon and Koff rates 

suggesting that scanning is robust to the affinity of binding (defined as 1/Kd or Kon/Koff.) 

over the ranges examined, suggesting the scanning can occur over a broad range of 

concentrations (Figure 6.13b & 6.13e). This is consistent with multiphoton 

measurements following viral infection, where despite a 20-fold reduction in chemokine 

expression CXCR5 remained essential for B cells scanning of antigen-presenting cells 

(Coelho et al., 2013) . However, OAT perturbations to the rate of desensitisation did alter 

scanning rates as did perturbation of Ki and Kr rates (Figure 6.13a,c and d). This result, 

and results from an eFAST global sensitivity analyses suggesting parameter synergy 

(Chapter 5.6), led to the hypothesis that the dynamic modulation of CXCR5 signalling is 

a key regulatory mechanism of antigen scanning.  
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Figure 6.12 Robustness of scanning rates to CXCR5 Expression in silico. (A) quantification of scanning 
rates in wild-type and CXCR5 deficient B cells. (B) Quantifying scanning rates when perturbing total 
receptor numbers holding all other parameters fixed at baseline values. Median values are shown with error 
bars representing the I.Q.R. Significance assessed using a Mann Whitney test.  
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Figure 6.13. Perturbing parameters that regulate CXCR5 signalling. (a) perturbing the recycling rate of 
CXCR5 and assessing the effect on in silico scanning rates. (b) perturbing the off rate of CXCR5 and 
assessing the effect on in silico scanning rates. (c) perturbing the desensitisation rate of CXCR5 and 
assessing the effect on in silico scanning rates. (d) perturbing the internalisation rate of CXCR5 and 
assessing the effect on in silico scanning rates. (e) perturbing the on rate of CXCR5 and assessing the effect 
on in silico scanning rates. Median values are shown with error bars representing the I.Q.R. 
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6.7 The Spatiotemporal Dynamics of CXCR5 Expression In Silico 
 

To further explore the hypothesis that the dynamic expression of CXCR5 at the cell 

surface and the dynamic modulation of signal transduction may impact scanning within 

the follicle we follow the temporal (Figure 6.14) and spatial (Figure 6.15) dynamics of 

CXCR5 expression. Each cell was unique in its temporal dynamics (Figure 6.14a). 

Analysis of signalling and free receptors on the cell surface shows an oscillatory pattern 

of expression suggesting that signalling within complex tissues is dynamic (Figure 

6.14b). Analysis of each receptor subset shows that desensitised receptors were the 

highest CXCR5 subset followed by internalised receptors and relatively few free and 

signalling receptors on the cell surface (Figure 6.14c). Interestingly, CXCR5 expression 

was spatially regulated with highest levels of signalling occurring at the subcapsular sinus 

(Figure 6.15). This was associated with low numbers of free receptors and high numbers 

of internalised receptors (Figure 6.15).  
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Figure 6.14 Single cell tracking in silico to assess the temporal dynamics of CXCR5 expression and 
signalling. (A) single-cell tracking of CXCR5 expression on the cell surface for 4 different B cells. Each 
line represents a distinct B cell within the same simulation run. (B) Comparison of free and receptor 
signalling dynamics within a single cell. (C) Comparison of free, signalling, internalised and desensitised 
receptor dynamics within a single cell. 
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Figure 6.15. Spatial dependence of CXCR5 signalling within the follicle. Each dot in the diagram 
represents the X and Y coordinates of a B cell agent in the simulator. The top of each square diagram is the 
subcapsular sinus. Each agent is coloured by the amount of receptors (as indicated by the title of each plot) 
with red representing high values and blue representing low values. (top left) the spatial distribution of free 
receptors within the follicle. (top right) the spatial distribution of signalling receptors within the follicle. 
(bottom left) the spatial distribution of  internalised receptors within the follicle (bottom right) the spatial 
distribution of internalised receptors within the follicle. Under baseline parameter values receptor signalling 
is highest at the SCS (the top of each square diagram). Free receptors on the cell surface are low, signalling 
and internalised receptors are high at the SCS. 
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6.8 Determining the Optimal Configuration of CXCR5 Signalling 
 

Simulation analyses performed in the previous sections suggest that dynamic modulation 

of signalling rather than overall receptor numbers are a key determinant of CXCR5 

efficacy. However, this data cannot be used to determine what configuration of CXCR5 

promotes the highest rates of antigen scanning. To address this we perform multiobjective 

optimisation of the CXCL13emulator as per section 6.4.  

 

This analysis shows that our objectives are conflicting, with increased scanning rates 

leading to poorer agreement between emergent cell behaviours in silico and laboratory 

measures (Figure 6.16). Analysis of the parameter distributions corresponding to the 

population of Pareto optimal solutions shows that Kon, Kdes, Ki and Kr are highly 

constrained at high values, consistent with the hypothesis that dynamic modulation of 

signalling through rapid receptor turnover and desensitisation promotes effective 

migration.  
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Figure 6.16 Optimising CXCR5 signalling in silico. (A) Pareto front of solutions representing the 
optimal trade off in performance between cell behaviours  with scanning rates colour coded, using NSGA-
II. (B) Parameter distributions corresponding to the Pareto optimal solutions shown in A. 
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6.9 Discussion 
 

In this chapter we used the in silico tools (CXCL13Sim and CXCL13emulator) developed 

in Chapter 5 in conjunction with experimental approaches to study CXCL13-mediated 

cross talk between B cells and stromal cells within lymphoid tissues. In section 6.2 we 

assess cell specific contributions to follicular scanning rates and show that FDCs are a key 

determinant of scanning within the primary lymph node follicle. Loss of CXCL13 from 

BRCs and MRCs did not significantly alter scanning rates within the entire follicle. This 

result was consistent with an OAT analysis in which secretion rates were perturbed for 

each cell type. Interestingly, using the fluorescent intensity values for each cell types to 

inform relative secretion rates yielding a CXCL13 landscape which promoted scanning at 

the subcapsular sinus, a site where large antigen enters the LN. This configuration may 

also promote shuttling of antigen by naïve B cells to the FDC network for long-term 

storage. 

 

Following analysis of cell-specific contributions to CXCL13 secretion we assessed the 

sensitivity of scanning rates to perturbations in either the decay constant or the diffusion 

constant. Scanning rates were more sensitive to changes in the decay constant than the 

diffusion constant but this analysis did not look at non-linear effects between these 

parameters. To address this we assessed 2 putative models for CXCL13 bioavailability 

within the follicle (section 6.3). Model 1 describes a situation whereby CXCL13 interacts 

strongly with the ECM yielding a complex patterning at the molecular scale with the 

emergence of non-uniform gradients. Model 2 assumes that CXCL13 is soluble and does 

not interact as strongly with the ECM. Consistent with results from the OAT analysis 

model 1 yields higher scanning rates than model 2 (Figure 6.5c), a prediction that was 

supported by IHC analysis and measures of the spatial autocorrelation of CXCL13 

expression. Our data suggests that chemokine concentrations exist in short sharp gradients 

and are correlated over short distances (on the order of ~60 µm) and then become 

significantly uncorrelated. Using an MOEA approach to determine the spatial 

configuration of CXCL13 that promotes the best scanning rates further supports this 

model, with short sharp distributions making up a large proportion of the Pareto optimal 

set of solutions. This model is supported by additional mathematical analyses suggesting 

that gradient formation is increased when chemokines are secreted in matrix-binding form 

as compared to a non matrix-interacting form. In addition, this spatial profile may explain 
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the sharp bordering between B cell and T cell zones in lymphoid tissues (Figure 6.17) 

and between dark and light zones in GCs.  

 

 

 

Figure 6.17.Bordering between B and T cell zones of murine lymph nodes. Data provided by Dr. Anne 
Thuery 
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Other factors that may also alter gradient formation include the propensity of chemokines 

to form oligomers, and the flow of lymph through the lymph node. The chemokine 

interactome has recently been mapped showing that chemokines have the capacity to form 

homo and heterodimers, which may alter their diffusivity and propensity to bind 

components of the ECM (Bennett et al., 2011; Hundelshausen et al., 2017). The impact of 

lymph flow on chemokine availability has been assessed in tissue engineered lymph node 

models where increased flow leads to increases in fluid pressure and shear stress reported 

to affect the maturation of stromal cells and the secretion rates of CCL21 (He et al., 2002; 

Matsumoto et al., 1990; Swartz et al., 2008; Tomei et al., 2009). Theoretical studies 

suggest that the flow of lymph could affect the spatial distribution of chemokines, with 

subtle flows in lymph driving significant asymmetry in protein concentrations (Fleury et 

al., 2006) 

 

In addition to CXCL13 gradient formation we use CXCL13Sim and CXCL13emulator to 

assess CXCR5 signalling. Our data supports a model where CXCR5 mediated signals are 

dynamically regulated at the cell surface, with rapid desensitisation and turnover of 

receptors affording a high degree of temporal sensitivity. In this MOEA approach our 

objectives are highly conflicting, with improvements in scanning rates gained at the 

expense of fitting experimentally determined migration metrics. In this system good 

consistency with empirical measures yields scanning rates of 31-40 unique gridspaces 

reached within a simulation run representing 24 hours of real time.  

 

Strikingly, as little as 0.1nM difference in concentration across the length of the cell is 

sufficient to induce chemotaxis (Appendix 2); a feature that allows B cells to detect even 

subtle asymmetries in the localized chemotactic landscape. This is consistent with studies 

that suggest a difference of 10 signalling receptors across a cell is sufficient to induce 

chemotaxis along a gradient (Herzmark et al., 2007; Zigmond, 1981), theoretical 

calculations (Appendix 2) and in vitro migration assays (Gunn et al., 1998a).  
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In this thesis we aimed to address the following hypothesis: CXCL13 gradients are a key 

determinant of the onset of humoral immune responses and are determined by the 

localised tissue microenvironment. This hypothesis was tested through the following 

objectives: 

 

1. Use visual notations to scope key components of the biological system and 

quantify these components using an ensemble of imaging and cytometry 

approaches. 

2. Consolidate this data through development of a 3D hybrid multiscale 

simulator, CXCL13Sim. 

3. Use CXCL13Sim to simulate CXCL13 gradient formation and associated B-

cell responses. 

 

This chapter provides a reflection of how the data provided in this thesis addresses these 

objectives in light of our research question. Key contributions to the field of systems 

biology are highlighted, with particular focus on the development of multiscale models. In 

addition, we provide a perspective on future directions for systems-based approaches in 

biomedical research. Finally the results presented in this thesis are placed in the context of 

the wider literature, with an updated schematic for CXCL13-mediated regulation of B-cell 

migration and how this model applies more broadly to morphogens. 
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7.1 Summary of Key Biological Findings and their Relevance 
 

7.1.1 Addressing Objective 1: Quantitative Characterisation of the Homeostatic 
Follicle 
 

To address objective 1 we have developed a conceptual model of CXCL13-mediated 

regulation of B-cell migration in the primary LN follicle as a means of consolidating 

understanding in the existing literature (Chapter 3). This process was used to scope the 

research context, identifying key entities and time points of interest. In addition, the 

process identified a number of knowledge gaps in the literature, namely a lack of 

quantitative analyses of CXCL13-mediated cross talk between B cells and stromal cells. 

 

A key challenge was documenting this specification in a way that it is clear to an 

interdisciplinary team, yet concise enough to be practical. Formal mathematical notation 

is a powerful approach to summarise current understanding but can alienate team-

members who lack formal training in mathematics and can make it difficult to separate 

conceptual models from implementation models. Visual notations are a useful 

intermediary that afford the following advantages: (i) can be interpreted by non-

specialists (provided they are familiar with the syntax); (ii) explicit (can be interpreted 

objectively, not subjectively); and (iii) can concisely describe large amounts of 

information (Cosgrove et al., 2015; Read, 2011). In light of this we describe both Domain 

and Platform models using an adaptation of the UML described by Read et al (2011).  

 

This process of developing a Domain Model and performing a functional requirements 

analysis identified the need to obtain key quantitative datasets to inform and validate our 

theoretical model. These datasets can be technically challenging to acquire, requiring the 

combined expertise of multiple research laboratories, spanning several scientific 

disciplines (Chapter 4). To study the structural organisation of the follicle we 

characterised the key topological properties of CXCL13+ stromal cell networks in 

collaboration with the Ludewig group. Data from the Ludewig group is consistent with 

previous studies showing that follicular stroma, although interconnected, are 

heterogeneous. Using the novel CXCL13-EYFP reporter mouse we find at least 3 distinct 

CXCL13+ subsets: FDCs, BRCs and MRCs. Notably, FDCs have a very unique 
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morphology – maximising their surface area to create single cell niches within which B-

cells floss the network for immune complexes. 

 

Topological analysis of the CXCL13+ follicular stromal cells (Chapter 4) identified some 

of the key structural properties that underpin the B-cell niche. The complete network 

displays a high clustering coefficient and low shortest path length, conferring small-world 

properties that may promote information transfer throughout the follicle (Watts and 

Strogatz, 1998). Within the follicle, information transfer can refer to either antigen, which 

must shuttle from the SCS to the maturing FDC network (Carrasco and Batista, 2007; 

Phan et al., 2007) or B cells which must migrate to different niches within the B-cell 

microenvironment (Pereira et al., 2010). In future work it may be possible to test this 

hypothesis experimentally by comparing the dynamics of ovalbumin acquisition by a B-

cell receptor transgenic strain of mice (Carrasco and Batista, 2007) in homeostatic stromal 

networks or those remodelled through TLR-4 adjuvants using multiphoton imaging. 

 

As the FDC network is much denser with many finer processes it was not possible to 

perform a morphological reconstruction using the IMARIS software package. 

Additionally, we only sample a section of tissue from the centre of the follicle and so our 

samples may not be representative of the entire follicle. To improve the resolution of 

confocal microscope images it may be possible to use an Airyscan detector while to avoid 

sampling biases light sheet microscopy could be used to image an entire follicle. Mapping 

an entire follicle at high resolution could potentially generate datasets that can be directly 

read into a simulator without the need to generate in silico networks algorithmically. 

Future work entails looking at how these topological networks change following 

immunisation and infection, such as in a secondary follicle containing GCs. It is known 

that the primary follicle reorganises during this process to generate the dark zone where 

GC B-cells undergo proliferation and mutation and the light zone where GC B-cells 

undergo selection (Allen et al., 2004, 2007). It is however unclear how the topology of 

stromal cells is implicated in this process. In the context of autoimmune disease it would 

be interesting to assess whether stromal network topology is reconfigured to facilitate the 

sustained presentation of self-antigen (Salomonsson et al., 2003).  

 

While topological mapping provided an insight into the tissue level processes that govern 

CXCL13 bioavailability, a quantitative understanding of chemokine mobility was lacking. 
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To address this we measured the dynamics of CXCL13 diffusion in collagen matrix and 

lymphoid tissues using single molecule imaging (Chapter 4). This was achieved through 

collaboration with the Leake lab, with expertise in combining high-speed narrowfield 

microscopy with bespoke analysis techniques, to develop an assay capable of probing the 

heterogeneity of molecular diffusion in complex tissues. This approach is capable of 

single-molecule sensitivity and tracking across multiple length scales, enabling ~40nm 

spatial precision, quantitative stoichiometry and mobility determination with sub-

millisecond sampling. We show using BSA as an exemplar case study that it outperforms 

competing molecular mobility methods (FCS and FRAP).  Strikingly, empirical values 

were 2 orders of magnitude lower than those derived using the Einstein stokes scheme in 

which we modelled the stokes radius of the molecule and assumed the viscosity equalled 

that of homogeneous intracellular media. This large difference between free diffusion and 

diffusion in tissue can be attributed to biochemical interactions within the localised 

microenvironment that give rise to multimodal diffusion patterns.   

 

Our data demonstrates that single molecule approaches, which afford high spatiotemporal 

resolution, are particularly suited to looking at molecular mobility in complex tissues. 

While we demonstrate the efficacy of the approach on chemokines, this is a proof-of-

concept for a more general scheme that could be applied to lipids and cytokines. In future 

studies it would be interesting to compare the diffusivity of proteins to signalling lipids, 

both of which regulate B-cell migration. Single molecule approaches have already yielded 

significant insights into diffusion of proteins within plasma membranes, identifying 3-5 

distinct modes of diffusion. These observations led to the development of updated 

theoretical tools with older models viewing the membrane as roughly homogenous 

replaced by a fence and picket model where the actin-based membrane skeleton partitions 

the membrane into smaller sub compartments (Ritchie et al., 2003). Increased research 

focus on single molecule measurements of chemokines may also power updated 

theoretical models to understand and better predict chemokine bioavailability.  

 

In addition to quantifying follicular stromal cell network topology and CXCL13 

diffusivity we used flow cytometry to quantify the cellular density of the follicle while 

our collaborators provided multiphoton imaging data to quantify the dynamics of B-cell 

migration. To place these measurements in the context of the wider literature we derive a 

quantitative description of the canonical lymph node follicle to increase understanding of 
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CXCL13 bioavailability at tissue, cellular and molecular levels of organisation. However 

bridging understanding between these diverse scales was challenging, limiting our ability 

to precisely map CXCL13 in situ. To address this, the in silico tool developed in Chapter 

5 was used to investigate the dynamics of CXCL13 gradient and associated B-cell 

responses (Chapter 6).  

7.1.2 Addressing Objective 2: Development of an In Silico Follicle 
 

The work undertaken in chapters 3,4 and 5 culminated in the development of an in silico 

platform to simulate chemokine gradient formation and associated cell migration patterns, 

a process requiring extensive experimental input and the consolidation of a number of 

existing models within the literature. To promote model parsimony and reduce execution 

time, we hybridised a number of different techniques within an agent-based framework. 

Specifically, we extend upon previous models of chemotaxis in vitro, and in vivo models 

of lymph node stromal cells to develop a tool capable of examining the migration of 

heterogeneous cell types within a complex tissue. 

 

The emergent cell behaviours of the simulator are consistent with our in vivo datasets with 

predictive capabilities confirmed through analysis of CXCR5 deficient migration. The 

outputs of the simulator are non-deterministic, producing a diverse set of outputs for a 

fixed parameter input. To mitigate this aleatory uncertainty we empirically determined the 

number of replicate runs required to evaluate a parameter set (Chapter 5). In addition, we 

quantify parametric uncertainty using local and global analyses to facilitate translation of 

simulator-derived outputs to the biological system (Chapter 5). Key design decisions, 

data used to inform model development and test data is provided as arguments over 

evidence to facilitate model evaluation and repurposing.  

 

The system complements experimental work, given the relative speed at which data is 

acquired, the ability to perform single cell analyses, and the ability to assess how 

perturbations at one level of organisation manifest at different scales. The use of ordinary 

differential equations within each agent permits single-cell analyses of CXCR5 

expression with high spatiotemporal resolution. This key advantage allows the tool to 

serve as an adjunct to experimental approaches that are not capable of performing single 

cell analyses in situ. Flow cytometry approaches require cells to be isolated from a tissue, 
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while confocal microscopy takes a static snapshot of a dynamic process. While single-cell 

sequencing is becoming more prevalent, linking this information back to spatial 

positioning within a tissue is challenging, with need for a robust panel of markers that 

differentiate cell subsets on the basis of spatial positioning or the use of micro-dissection. 

Similar issues arise when experimentally measuring CXCL13 within a tissue: fluorescent 

reporter systems cannot be used to tag the molecule itself, as the fluorescent label would 

drastically outweigh the molecule and alter its diffusive and binding characteristics.  

 

This model accounts for one chemokine, a key limitation given CCL19/21, CXCL12 and 

7,25α hydroxycholesterol also regulate the migration of naïve B cells (Pereira et al., 

2010). The decision to omit these factors from the model was influenced by the lack of 

quantitative data for these molecules. Including these factors with little data to constrain 

parameter values and calibrate model behaviours would introduce too much uncertainty to 

create a robust model. Consequently, a design decision was made to focus on one 

chemokine and to spend the additional time making key quantitative measures for 

CXCL13. Future work to incorporate these additional factors would require additional 

data on the stromal cells that secrete these molecules, their concentrations in vivo, and 

their mobility characteristics.  

 

A key unknown in this system is whether a cell’s exposure to simultaneous conflicting 

gradients leads to a balanced amalgamation of signals where each is equally potent, or a 

hierarchical system where dominant signals actively downmodulate others, through 

reduced affinity for ligand or through receptor desensitization and downregulation. This is 

particularly interesting for B cells that respond to both protein and lipid based 

morphogens. We hypothesise that lipids are much more diffuse and thus prone to form 

long shallow gradients in contrast with chemokines. This may alter gradient steepness and 

potentially bias signalling. To address this question it would be necessary to quantify the 

migration profiles of WT, CXCR5-/- and EBI2-/- mice using multiphoton microscopy. If 

sufficient information were available to constrain input parameters then it would be 

possible to develop 3 competing models to explain this data: (i) CXCR5 and EBI2 signals 

are equally potent (ii) CXCR5 signals dominate, and (iii) EBI2 signals dominate. Use of a 

multiobjective evolutionary algorithm could then be used to determine the optimal trade-

off between different migration metrics allowing for assessment of which model can best 

reproduce experimentally measured kinetics, an approach illustrated by (Read et al., 
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2016). Once a model has been selected, it would be necessary to generate predictions that 

can be used to experimentally rule out other competing theories.  

 

7.1.3 Addressing Objective 3: Analysis of Chemokine Gradient Formation  
 

Using CXCL13Sim, we first assessed the cell-specific contributions to gradient 

formation. To address this we systematically perturbed CXCL13 secretion rates using a 

one-at-a-time approach. This analysis suggests that FDCs are a key contributor to 

CXCL13 scanning rates, even within the primary follicle. This result is supported by 

analyses where CXCL13 secretion was blocked in each specific cell type, with FDC-

specific blockade yielding significantly different scanning rates.  

 

Despite this progress, the relative secretion rate of each cell type was poorly understood. 

Interestingly, we noted that CXCL13 reporter expression was not homogeneous between 

the different stromal cell subsets with MRCs showing highest expression, followed by 

FDCs and MRCs. To assess the functional consequences of this spatial configuration of 

chemokine we used fluorescent intensities to inform relative secretion rates. While this 

did not increase overall scanning rates, scanning at the SCS was significantly increased. 

This may be important functionally as the SCS is a major site of antigen entry into the 

follicle.  

 

A key knowledge gap we wished to assess was whether CXCL13 acts in principally a 

soluble or immobilised form. To address this we exploited the emergent properties of 

agent-based models, generating different spatial configurations and seeing which 

configuration yielded the highest emergent scanning rates, assuming that CXCL13 is 

spatially configured to promote scanning in vivo. Specifically, we assessed the veracity of 

two different models: in model 1 we assume that CXCL13 interacts strongly with ECM 

components and is thus limited in its diffusivity. In model 2 we assume that CXCL13 is 

more soluble and diffuses more readily through the tissue. Comparison of these two 

models suggests that model 1 leads to higher scanning rates, in agreement with IHC and 

associated spatial autocorrelation analysis. Interestingly, OAT perturbation analysis 

showed only a modest difference in scanning rates compared to combinatorial 
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perturbations, a result suggesting that there is a synergistic effect between these two 

parameters.  

 

While this analysis shows that short sharp gradients are more efficient in regulating 

scanning than long diffuse patterns it still does not determine the optimal configuration of 

CXCL13 within the primary follicle. To address this we employed a MOEA to determine 

which parameter configurations yielded the highest scanning rates. This analysis was 

consistent with previous findings with parameter sets in the Pareto front heavily skewed 

towards low diffusion constants and high decay rates. Taken in concert our data suggests 

that the mobility of CXCL13 in vivo is constrained and leads to an irregular patterning.  

This unique configuration can be attributed to the topology of the stromal cell networks 

and interactions with the ECM. In addition, the spatial distribution and not just total 

concentration of CXCL13 regulates the induction of humoral immune responses. 

 

In future work we would like to assess the effect that the ECM has in regulating gradient 

formation experimentally. To assess if the ECM alters CXCL13 diffusivity we propose 

treating lymphoid tissue sections with enzymes that can disrupt the extracellular matrix 

and quantifying the mobility of fluorescently labelled chemokine molecules. It may also 

be of interest to assess proteases including matrix metalloproteinases, aminopeptidases 

and members of the cathepsin family which have been reported to cleave chemokines and 

alter their signalling potency (Mortier et al., 2008, 2012; Wolf et al., 2008).  

 

This study also illustrates the complexity of the chemotactic landscapes encountered in 

vivo and the need to better model these landscapes in vitro to better study migration in the 

context of lymphoid tissues. Simulation analyses could be used to calculate the key 

properties of in vivo landscapes to inform in vitro assays. 

 

7.1.4 Addressing Objective 3: Analysis of CXCR5 Dynamics  
 

CXCR5 is a key molecular player in CXCL13-mediated cross talk between B cells and 

stromal cells. In vitro studies of GPCR-mediated migration have highlighted a highly 

dynamic and intricate regulation network at the cell surface that allows immune cells to 

dynamically perceive the localised environment. Translating these findings in vivo is 
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challenging due to the limitations of currently available experimental approaches. To 

address this we explored the robustness of B cell scanning to perturbations in CXCR5 

signalling and expression in silico.  

 

In silico scanning of the LN follicle was robust to changes in total receptor numbers while 

complete loss of the receptor yielded a significant phenotype. This led to the hypothesis 

that the dynamic modulation of CXCR5 signalling through rapid turnover and 

desensitisation of receptors is a key determinant of antigen scanning. To explore our 

prediction we used an MOEA approach to determine what combination of CXCR5 

associated parameters gave rise to the highest scanning rates. Consistent with our 

hypothesis, this analysis supports a model whereby dynamic turnover of receptors and 

modulation of signalling are critical. Parameter sets that gave rise to Pareto optimal 

solutions were characterised by highly constrained values of internalisation, recycling, on, 

and desensitisation rates. In addition, we performed single cell tracking experiments that 

indeed identify surface as oscillatory, an emergent property that has been reported in other 

theoretical studies but has not been verified experimentally (Chan et al., 2013). 

Interestingly, CXCR5-mediated signalling was also spatially regulated – an emergent 

property where highest rates of signalling were observed at the SCS, close to the site of 

antigen entry into the lymph node parenchyma. Given our data, we hypothesise that 

dynamic modulation of receptors at the cell surface leads to fine-tuning of migratory 

responses within the B-cell niche. However, further analyses are required to determine the 

contribution of other chemotactic molecules and adhesion molecules to this phenomenon.  

 

7.2 Summary of Contributions to the Field of Systems Biology 

 

7.2.1 Agile Development of Multiscale Models  
 
For the work conducted in this thesis, we tightly integrated theoretical and experimental 

approaches. Consequently, the simulator was constantly evolving over the course of the 

project; as new data became available from the laboratory or from simulation analysis our 

conceptual understanding of the system was refined. To address these issues, we have 

updated the current instantiation of the CoSMoS process, drawing inspiration from the 

Chaste project to incorporate agile techniques into the development workflow (Chapter 
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3) (Pitt-Francis et al., 2009). Novel features include a modular design and a hierarchical 

testing strategy that facilitates software testing at both the validation and verification 

level. The separation and encapsulation of functionality through modular design allowed 

us to refactor software subcomponents while mitigating disruption to other components. 

This approach was complemented by the use of regression testing, an automated approach 

to assess whether new functionality disrupted the existing codebase. 

 

Through incorporation of agile development approaches, based on the observation that 

project requirements can change over time, we were able to adapt to changing 

circumstances rather than assume that model development is a predictable activity. With 

further case studies and refinement, agile approaches may become industry standard best 

practises for model qualification in the pharmaceutical industry.  

 

7.2.2 Emulation and Optimisation of Multiscale Simulators.  
 

Despite the demonstrated success of our agile CoSMoS instantiation, we encountered 

significant bottlenecks at the Results Model phase of development. Multiscale simulators 

often require repeated execution and extensive sampling of high-dimensional parameter 

spaces to fully analyse and evaluate. While a range of statistical analysis techniques can 

be applied to understand and mitigate parametric and aleatory uncertainty, their 

application becomes limited by time and resource constraints. As the execution time for a 

simulation increases, it becomes less tractable to perform these statistical analyses within 

a time frame that can run parallel to laboratory or clinical studies.  In chapters 5 and 6 we 

employ emulation and heuristic algorithms to address this issue.  

 

Using machine-learning algorithms we were able to emulate the behaviours of 

CXCL13Sim. This significantly reduced the time taken to evaluate the simulator, 

permitting rapid prototyping and identification of errors in model design, 

parameterization, and software infrastructure. Due to the complexity of scientific software 

it can be challenging to locate errors before running time intensive statistical analyses. 

Emulation allowed for early detection of errors reducing the time penalties incurred if 

found at later stages of development. In addition, it was possible to perform an eFAST 

analysis that was previously intractable due to time constraints. In future work it would be 
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of interest to assess different machine learning algorithms and to combine them using an 

ensemble approach. Aside from emulation we note 2 additional technologies which could 

be used to reduce the time taken to evaluate model inputs: (i) tuneable resolution, where 

the granularity of a simulator is dynamically adapted within a single execution run; (ii) 

parallelisation, where distributed computing systems can reduce execution time.  

 

Using CXCL13Sim we wished to determine the optimal configuration of CXCR5 and 

CXCL13 within the primary follicle with respect to scanning. However, two key technical 

challenges had to be addressed: (i) multiple conflicting objectives (ii) a large complex 

search space. To address this we combined our emulator with the MOEA NSGAII. This 

rapid evaluation of parameter sets in conjunction with an efficient search strategy, making 

the analysis feasible. MOEAs	use	a	similar	principle	to	the	germinal	center,	using	mutation	

and	 selection	 to	 determine	 a	 set	 of	 solutions	 (a	 Pareto	 front)	where	 improvement	 in	 one	

objective	cannot	be	obtained	without	compromising	performance	 for	another	objective.	 In	

the	GC	this	trade-off	occurs	because	a	mutation	that	improves	binding	for	one	epitope	on	a	

complex	microbial	antigen	may	reduce	binding	to	other	epitopes,	reducing	overall	binding	

avidity. In sections 6.4 and 6.8 we see that highest scanning rates were obtained at the 

expense of matching with experimentally measured cell kinetics highlighting how our 

objectives are conflicting.While NSGAII has been applied to calibrate model behaviours 

to experimental data this may be one of the first instances of using a MOEA to optimise 

an immune system mechanism. Thus the model acts as a non-linear set of constraints 

within which we seek to obtain a desired response. It would be interesting to explore this 

approach in a therapeutic setting in future work.  

 

Given the success of these approaches we propose that future updates to the agile 

CoSMoS instantiation incorporate techniques that facilitate rapid prototyping and 

identification of errors in model design, parameterization, and software infrastructure. In 

reducing the time taken to evaluate parameter inputs, these techniques permit the 

application of a wider range of analysis techniques to enrich understanding of the 

simulator and to facilitate translation of simulation outputs back to the biological system. 

This ultimately could have a significant impact on the outcomes of a model-informed 

biological research project. 
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7.3 Looking ahead: Emerging Systems Biology Technologies and Applications 
 

In this thesis we showcase the use of systems approaches to consolidate understanding 

across broad spatiotemporal scales in the context of the immune system. However, 

systems biology is a rapidly evolving field, with demonstrated value across a range of 

biological sub-disciplines, such as synthetic biology (Purnick and Weiss, 2009), 

microbiology (Vieites et al., 2009), integrative biology (Karr et al., 2012b), and 

biomedicine (Winter et al., 2012). In the following section we provide a perspective on 

emerging technologies and applications of systems-based approaches in the biomedical 

sciences.  

 

7.3.1 Model-Driven Drug Discovery 
 

The model-driven drug discovery paradigm provides a “quantitative framework centred 

on knowledge and inference generated from integrated models of compound, mechanism 

and disease level data to improve the quality, efficiency and cost effectiveness of decision 

making” (EFPIA MID3 Workgroup et al., 2016). The pharmaceutical industry has been a 

relatively late adopter of model-driven approaches despite the demonstrated value of 

modelling and simulation across a range of industries and disciplines, such as finance, 

aerospace, and weather forecasting.  However, the approach is now gaining significant 

traction in the pharmaceutical industry with key milestones including the use of 

mechanistic modelling approaches to design a post marketing clinical trial by the US 

Food and Drug Administration (FDA) (Peterson and Riggs, 2015), a study showing that 

human in silico modelling outcompetes animal models in predicting drug-induced 

cardiotoxicity (Passini et al., 2017),  and the use of an integrative systems approach to 

quantify anticancer drug synergy in imatinib-resistant chronic myeloid leukaemia (Winter 

et al., 2012).  

 

Increasingly, models are being used in all stages of the drug development process, with 

the capacity to inform experimental design, “go/no‐go” decisions, portfolio prioritization, 

and to bridge understanding between experimental animal models and human disease 

(Allerheiligen, 2010; Lalonde et al., 2007). In the context of drug discovery, modelling 

approaches can be broadly classified as follows: (1) mechanistic “bottom” up approaches 

that integrate existing knowledge to inform mechanistic target evaluation; (2) Data-driven 
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pharmacokinetics and pharmacodynamics modelling (PK/PD) that link drug concentration 

to a therapeutic response, such as the change in biomarker expression and (3) quantitative 

systems pharmacology approaches that combine aspects of the previous 2 categories to 

assess the mechanism of action at a target incorporating physiological processes and 

different dosing strategies to focus further experimental studies (Figure 7.1).  Currently, 

much focus is placed on defining a well-defined set of industry standards for model 

qualification such that regulatory bodies can better assess and evaluate model and 

simulation derived results. With the introduction of standardised practises, pharmaceutical 

companies are now beginning to review, quantify, and report the efficacy of model-based 

strategies (Milligan et al., 2013; Visser et al., 2014).  

 

 
Figure 7.1 Integration of systems-based approaches into the drug development workflow 

 

A key area of drug development where modelling approaches may have significant 

impact is person-centred healthcare. Personalised healthcare approaches use patient 

specific information to (i) accurately diagnose disease and to (ii) tailor treatment plans to 

maximise efficacy (Chan and Ginsburg, 2011). Advances in personalised medicine 

approaches to date have largely been driven by technological advances in –omics 

technologies (Fernald et al., 2011). However, making the transition from the laboratory to 

clinical practise is challenging; relative to experimental animal models, such as age and 

sex matched mice from the same genetic background, patients vary widely. Thus 

modelling approaches are required to analyse noisy multivariate datasets to determine 

what key parameters can aid with diagnosis and tailoring treatment plans.  In this context, 

bottom up approaches have been used to stratify patients on the basis of mechanistic 

understanding of spinal cord (SCI) and vocal cord pathologies. Both diseases display a 
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high degree of patient variability can make it difficult to predict patient-specific disease 

progression and treatment responses. In the context of SCI, simulation analysis predicted 

a higher propensity for ulcer formation in SCI patients, thus identifying a high-risk patient 

subset (Solovyev et al., 2013), while for vocal cord pathology simulation analysis 

identified optimised treatment strategies (Li et al., 2008). Aside from academic studies, 

there are already many examples of systems-based approaches used in clinical practise 

such as use of a pharmacogenetic dosing algorithm for warfarin (Sagrieya et al., 2010) 

and identification of susceptible genotypes to reduce the incidence of hypersensitivity 

reactions to the HIV-1 medication abacavir (Hetherington et al., 2002). 

 

Machine learning is a highly active research area that also has the capacity to significantly 

impact the drug development process. Over the past decades computers have automated 

tasks that programmers could describe with clear rules and algorithms; machine-learning 

techniques allow us to do the same for tasks where such rules are difficult to define. This 

attribute makes machine-learning approaches well placed to impact personalized 

medicine with demonstrated efficacy in the diagnosis of complex diseases. Recently, a 

deep neural network to diagnose skin cancers from clinical images, with performance 

comparable to that of dermatologists (Esteva et al., 2017). However, a limitation of 

machine learning approaches is that they are considered “black-box” and may fail to 

provide mechanistic explanations for the disease-associated patterns that are discovered. 

To address this, closer integration of bottom-up mechanistic based with top-down data-

driven approaches may be required to develop personalized medicine strategies. For 

example, molecular biomarkers could be determined obtained using machine learning 

approaches and subsequently used as inputs to simulate patient-specific disease 

trajectories and/or intervention strategies.  

 

7.3.2 An Executable Lymph Node Atlas  
 

Lymph nodes are highly complex 3D structures supported through networks of 

mesenchymal stroma, vasculature and lymphatics (Junt et al., 2008). As such it is 

necessary to develop an accurate 3D atlas of lymph node microanatomy that incorporates 

current understanding. We argue that this should be an in silico platform acting as an 

executable knowledge repository. This approach allows researchers from different 
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disciplines and geographical locations to have the most up to date understanding of the 

physical system available as an executable software package. The software would serve 

as a useful adjunct to laboratory studies, as resource and ethical constraints ultimately 

limit the amount of experiments that can be performed. Such an approach affords the 

following additional advantages: (i) Quantitative modelling offers a principled framework 

for combining disparate sources of information; (ii) the identification of knowledge gaps; 

(iii) the discovery of new organizing principles of biological systems; and (iv) the 

development of sufficiently accurate computational models to facilitate decision making 

during various phases of drug discovery and bioengineering applications. 

 

However, to realize this ambition there a number of technical considerations to be 

addressed: (i) what data is required to inform and validate such a model; (ii) how to 

describe the underlying conceptual model and implementation blueprint in a way that is 

accessible to a large interdisciplinary consortium; (iii) how should the resultant simulation 

platform be implemented and tested; (iv) what granularity is required for each system 

component; (v) how to deal with processes occurring on different timescales (vi) how to 

reduce computational expense; (vii) how to deal with phenomena that are poorly 

characterized and have no quantitative data available. 

 

Given currently available technologies we propose that the following datasets could be 

incorporated in the first instance:  (i) lymph node size, volume and cell density; (ii) 3D 

organisation of stromal, vascular and lymphatic networks; (iii) concentrations of key 

soluble factors; (iv) cellular mass, volume, shape and migration characteristics; (v) 

transcript data from key cell types; (vi) metabolic fluxes for each key cell type. Key 

considerations in terms of data acquisition include the need for rigorous protocols and 

standards, a non-trivial exercise given that different cell types may not be amenable to 

certain types of analysis: lymphocytes are small and thus are more difficult to analyse 

using single-cell RNA-sequencing; FDCs are a rare cell type and are thus difficult to 

isolate without enzymatic digestion of the tissue. 

 

Following the initial data acquisition phase modelling efforts could then be used to 

determine additional key measures to obtain in subsequent iterations, in line with the 

model-driven approach to experimentation (Butler et al., 2016b). Following 

characterisation of the homeostatic lymph node it may be of interest to perform similar 
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analyses following immunisation, bacterial infection and viral infection. The value of a 

phased approach was illustrated by the Human Genome Project, which defined key 

milestones along the way (genetic maps, physical maps, rough-draft sequence, finished 

sequence). Another key consideration is providing metadata in an accessible format that is 

clear and unambiguous but also accessible to an interdisciplinary team; the use of visual 

notations may assist with this. Focus on improving visualisation of simulation outputs 

through emulation of experimental approaches or GUIs may expedite the process and 

facilitate communication of model-derived results (Butler et al., 2014).  

 

As the complexity of a simulator is dependent on the research context, a lightweight 

modular framework that would allow for researchers to reconfigure the platform to suit a 

particular application is warranted. This is an important point as to be useful; an atlas 

must also be an abstraction—comprehensively representing certain features, while 

ignoring others. Such an approach would allow for models of differing granularities to be 

used for each module with a bespoke architecture created for each research application. 

Such an approach would allow for features to be assessed at different levels of 

magnification, with high-dimensional information collapsed into simpler views. Such an 

approach would require well-defined interfaces and design patterns to link modules 

effectively.  This may also facilitate interfacing with existing tools such as SBML based 

models to enrich cell behaviours and computational fluid dynamics software to assess 

how lymphatic flows may alter the distribution of molecules throughout the tissue and 

how this may influence emergent cellular behaviours. Another interesting extension 

would be to add intelligent agents into the in silico lymph node, where through 

reinforcement learning, pathogen agents and immune cell agents would co-evolve 

strategies to outcompete one another. 

 

Ultimately, such large-scale models must offer fundamentally new insights and 

experimentally testable predictions to justify the resources required to build them.  

Despite the challenges listed above, this approach has already demonstrated value through 

a whole cell computational model of the human pathogen Mycoplasma genitalium (Karr 

et al., 2012b). Despite being a nascent technology, experimental analysis directed by 

model predictions identified previously undetected kinetic parameters and biological 

functions while simulation analyses predicted an inverse relationship between the 

durations of DNA replication initiation and cell replication rates (Karr et al., 2012b). 



	 223	

7.4. Closing Remarks and an Updated Model of CXCL13 Gradient Formation 

 
The data presented in this thesis shows that CXCL13+ follicular stromal cells are not 

randomly orientated but organise into small-world networks. At the molecular level we 

show that CXCL13 diffusion is highly constrained with simulation analyses suggesting 

that this creates a complex patterning at the molecular scale. Perturbation of CXCL13 

bioavailability was shown to affect scanning rates in silico with optimisation analysis 

suggesting that this configuration is designed to promote the onset of humoral immune 

responses. We conclude that this data is consistent with our hypothesis that lymphoid 

tissues are essential for the formation of CXCL13 gradients, and perturbation of the 

spatial distribution of CXCL13 can affect the onset of humoral immune responses. In 

light of our results we propose the following model of CXCL13 bioavailability and 

associated B cell responses in lymphoid tissues (Figure 7.2): 

 

The spatial distribution of CXCL13 is regulated at tissue, cellular and molecular levels of 

organization. At the tissue and cellular level, the topological organization of CXCL13+ 

stromal cells is configured to promote trafficking of B cells and antigen where stromal 

cell processes act as guidance structures for adhesion factor expressing immune cells. At 

the molecular level, this architecture, in conjunction with the localized tissue 

microenvironment, creates a complex patterning. CXCL13 diffusion is highly constrained 

by localized tissue microanatomy, undergoing transient interactions with other 

chemokines, GPCRs and the ECM. This leads to the formation of complex CXCL13 

fields with non-linear gradients regulating the precise localization of CXCR5 positive 

immune cells.  

 

Surface immobilized CXCL13 may require proteolytic processing into a functional form. 

Once liberated, CXCL13 mediated signalling through CXCR5 polarises the actin 

cytoskeleton orientating the cell along a gradient. At the cell surface, CXCR5 mediated 

signals are transient with rapid desensitisation and turnover of receptors affording a high 

degree of temporal sensitivity. Strikingly, as little as 0.1nM difference in concentration 

across the length of the cell is sufficient to induce chemotaxis; a feature that allows B 

cells to detect even subtle asymmetries in the localized chemotactic landscape.  
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Figure 7.2. Updated scheme for CXCL13 bioavailability within lymphoid tissues as described in 
section 7.4. CXCL13 is secreted by a dynamic stromal network that displays a small world-network 
topology. At a molecular level, mobility is constrained by transient molecular interactions giving rise to 
complex non-linear gradients that are largely immobilized. Immune cells rapidly modulate cell surface and 
intracellular signalling components to interpret these signals with fine spatiotemporal sensitivity. In addition 
to signalling based mechanisms, proteolytic processing may be required to liberate chemokine into a 
functional form.  On the figure we highlight a potential cleavage site that would remove the carbohydrate 
binding domain at the heparin-binding C-terminus of the molecule (red) (Monneau et al., 2017).  
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Appendix 
Appendix 1. Derivation of the Diffusion Constant for Chemokines in Water.  
 
 
The diffusion constant of a molecule can be estimated using the Einstein Stokes relation.  

 

𝐷 = 𝑘𝑇/ 6𝜋𝜂𝑟 
 
Where k is the Boltzmann constant, T is the temperature, 𝜂 is the viscosity of the medium 

in which the molecule is travelling, and 𝑟 is the Stokes radius of the molecule. Once this 

constant is determined we can then predict the mean squared displacement of the 

molecule over time using the following expression: 

 
< x! > = 2dDt 

 
Where <x2 > is the mean distance squared, d is the number of dimensions. To estimate the 

radius of the molecule we model it as a sphere (as it is globular) with a MW of 10kDa 

(1.66053 x 10-20 grams).  

Volume = mass / density 

  
The density of a protein can be assumed to be constant at 1.37: 
 

	volume =  !.!!"#$ ! !"!!"

!.!"
= 1.212065 x 10!!" g cm!!	
	

4
3πr

! = 1.212065 x 10!!" g cm!! 
 

r = 1.42 x 10-7 cm = 1.42nm = 1.42 x 10-9 m 
 

D = !"
!"!!

= !.!"# ! !"!!" (!"#)
!"(!.!!"!")(!.!" ! !"!!)

=  1.583596 x 10!!" m! s!! 
 

D = 158.35 µm! s!! 
 
Now that we have an estimate of the diffusion coefficient we can estimate how long on 
average it would take to diffuse a distance of 200µm: 
 

𝑡 =  
𝑥!

6𝐷 =  
200!

(6)(158.35) = 47 seconds  	
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Appendix 2. Deriving a Spatial Limit of Gradient Detection.  
 

Studies have suggested that as little as 10 signalling receptors are sufficient to induce 

chemotaxis. We use this value to derive a detection threshold for immune cells using the 

following expression: 

	
dC
dL =  

number of molecules per cell volume
length of the cell 	

 
Where C is the concentration of chemokines and L is the length of the cell. The volume of 

an immune cell is 206µm3 (or 2.06e7 µl). The mass of a chemokine is 10kDa; the mass of 

10 molecules is 0.00017fg.  

moles of chemokine =  
mass (grams)

molecular weight kDa x 10!	
	

1.7 x 10!" grams
10 x 10! kDa =  1.7x10!!" moles	

 
 

Thus the molarity of 10 molecules per cell volume is 825pM. The Detection threshold of 

an immune cell can then be calculated as such:  

 
dC
dL =  

825pM
7µm = 117pM ≈ 0.1nM µm!!	
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Appendix 3. Example Software Tests 
	
The automated regression testing framework used to develop and validate CXCL13Sim 

employs a number of Java methods that perform tests at the unit, module and system level 

(Chapter 3). Each test involves generating some test inputs, running a method or 

sequence of methods and evaluating the outputs. This is performed internally within the 

testing suite with a test report generated in Java to indicate which tests pass and the extent 

of code coverage. To illustrate how this pipeline works we provide an exemplar test at 

each level of testing.  

	
	
Unit test: This unit test asserts that the method getCollisionClass returns the correct enum 

value for a B cell object. 

	
 
 public void testGetCollisionClass() { 
  assertEquals(bc.getCollisionClass(), CLASS.LYMPHOCYTE); 
 } 
	
	
Module test: This module checks that the correct boolean is returned for B-cell 

interactions with stromal cells. This is achieved by placing a stroma edge at a fixed 

location in space (defined by the variables loc1 and loc2). We then set the location of BC 

at loc1 and expect a true to be returned and then set at a location not on the stromal cell 

and expect a false to be returned.  

 
	
 public void testCollideStromaEdge() { 
 
  BC bc = new BC(); 
 
  Double3D loc1 = new Double3D(0, 0, 0); 
  Double3D loc2 = new Double3D(1, 1, 1); 
  bc.setObjectLocation(loc1); 

StromaEdge se = new StromaEdge(loc1, 
loc2,StromaEdge.TYPE.FDC_edge); 

  bc.getM_d3aMovements().add(new Double3D(loc2)); 
 
  // assert that the stroma and BC collide 
  boolean test = bc.collideStromaEdge(se, 1); 
  assertEquals(true, test); 
 
  // assert that the stroma and BC don't collide 
  Double3D loc3 = new Double3D(5, 5, 5); 
  bc.setObjectLocation(loc3); 
  boolean test2 = bc.collideStromaEdge(se, 1); 
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  assertEquals(false, test2); 
 }	
	
	
	
 

Integration test: In this test we assess whether BCs acquire antigen over the course of a 

simulation.  
	
 public void testShouldAcquireAntigen() {  
  // set up the simulation 
  long steps = 0; 
  long seed = System.currentTimeMillis(); 
  SimulationEnvironment.simulation = null; 
  SimulationEnvironment.simulation= new SimulationEnvironment( 
    seed, 

 
IO.openXMLFile("LymphSimParameters.xml")); 

  SimulationEnvironment.simulation.start(); 
   
  // run the simulation for 400 steps 
  do { 

steps = 
`SimulationEnvironment.simulation.schedule.getSteps(); 
if 
(!SimulationEnvironment.simulation.schedule.step(SimulationE
nvironment.simulation)) 

    break; 
   } while (steps < 400); 
 
  // get all cognate B-cells 
  Bag cells = BC.bcEnvironment.allObjects; 
 
  // counter for the number of primed cells 
  int primedCount = 0; 
 
  // count the number of primed b cells 
  for (int i = 0; i < cells.size(); i++) { 
   if(cells.get(i) instanceof cognateBC){ 
    cognateBC cBC = (cognateBC) cells.get(i); 
 
    if (cBC.type == TYPE.PRIMED) { 
     primedCount += 1; 
    }  
   } 
  } 
  // assert that at least 20 of the cells have been primed 
  assertThat(primedCount, greaterThan(20)); 
 } 
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Appendix 4. Lymphocyte Interactions With Stroma 
 

To account for dense lymph node environment lymphocyte migration must take into 

account interactions with other cell types. To model these interactions we treat both the 

movement vector of lymphocytes and the edge of the stromal cell as lines (Figure X). To 

determine if the two agents are interacting we calculate whether the closest point between 

the two lines is less than the sum of their diameters.  To determine the closest point, we 

define the lines L1 and L2 as follows: 

 

L1(s)   =  P1 +  sd1, where d1 =  Q1 −  P1   
L2(t)    =  P2 +  td2, where d2 =  Q2 −  P2   

 

Then for some pair of values for s and t, L1 (s) and L2 (t) correspond to the closest points 

on the lines, and v(s,t) describes a vector between them. The closest point between the 

two lines is obtained when the vector is perpendicular to both lines (Figure X) i.e. when 

the dot product of the two vectors is equal to zero or  

 

d1 *  v(s, t) = 0   
d2 *  v(s, t) = 0   

 

Using Cramer’s rule we can then solve this system of equations to determine which 

values s and t where L1(s) and L2(t) correspond to the closest points on the lines.   

 
Substituting the parametric equation for v(s, t) gives: 

 
d1 * (L1(s) − L2(t)) =  d1 * ((P1 − P2) + sd1 − td2) = 0 
d2 * (L1(s) − L2(t)) =  d2 * ((P1 − P2) + sd1 − td2) = 0. 

 
This can be expressed as a system of linear equations: 

 
(d1 *  d1)s − (d1 *  d2)t = −(d1 *  (P1-P2)) 
 (d2 *  d1)s − (d2 *  d2)t = −(d2 *  (P1-P2)) 

which we can write in matrix form as: 
𝑎 −𝑏
𝑏 −𝑒  𝑠𝑡  =  

−𝑐
−𝑓   
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We can solve this using Cramer’s rule. Cramer’s rule is an explicit formula for the 

solution of a system of linear equations with as many equations as unknowns, valid 

whenever the system has a unique solution 

 

           s = ( bf −  ce)/ d 
           t = ( af −  bc) / d 

 

 

Appendix 5. Absolute numbers of CXCR5 and CXCL13 molecules in the 
lymph node follicle 
 
To approximate the number of CXCR5 receptors in the follicle we assume that there are 

30,000 [10000-50000] receptors per B cell and 48,000 B cells per follicle then: 

 

Number of CXCR5 molecules per follicle = 1.4 x 109 [4.8 x 108 – 2.4 x 109] 

 

To approximate the amount of CXCL13 we use measures of CXCL13 obtained by 

western blotting suggesting that there is 0.065ng cxcl13 per mg of tissue (Luther et al., 

2002). The mass of a pLN is 1.0124mg ~ 1mg (mean of 5 datapoints) with all CXCL13 

located in the B-zones comprised of 15 follicles then:  

 
0.065ng / 15 = 0.01666 ng per follicle 

 
Molar concentration = moles / Litre = 34.64nM 

  
34.64nM [10-50nM] in a 1.25 x 108 L follicle = 2.6 × 108 [7.5 x 107 - 3.7 × 108 ] 

molecules per follicle 
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Glossary 
	

APC Antigen Presenting Cell 

APRIL A Proliferation-Inducing Ligand 

BAFF B-cell Activating Factor 

Bcl6 B-cell lymphoma 6 

BCR B-cell Receptor 

BEC Blood Endothelial Cell 

BSA Bovine Serum Albumin 

BSF Biological Services Facility 

CR1/CR2 Complement Receptor 1 and 2 

DAPI 4’,6’-diamidino-2-phenylindole 

DC Dendritic Cell 

EDTA Ethylenediaminetetraacetic Acid 

ER-TR7 Reticular Fibroblasts and Reticular Fibres 

FCS Foetal Calf Serum 

FDC Follicular Dendritic Cell 

FRC Fibroblastic Reticular Cell 

FSC Forward Scatter 

GC Germinal Centre 

Gp38 Podoplanin 

HEV High Endothelial Venule 

ICAM Intercellular Adhesion Molecule 

ICOS Co-stimulatory molecule inducible co-stimulator 

IFN Interferon 

IL-7 Interleukin-7 

LEC Lymphatic Endothelial Cell 

LN Lymph Node 

LPS Lipopolysaccharide 

LTa1b2 Lymphotoxina1b2 

LTB2 Lymphotoxin B receptor 

MAdCAM-1 Mucosal Vascular Addressin Cell Adhesion Molecule-1 

MHC-II Major Histocompatibility Complex II 
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MI 

MC 

Meandering Index 

Motility Coefficient 

MRC Marginal Reticular Cell 

OVA Ovalbumin 

PBS Phosphate Buffered Saline 

pLN Popliteal LN 

RANK-L Receptor Activator of Nuclear Factor kappa-B ligand 

S1P Sphingosine-1-Phosphate 

S1PR1 

SBML 

Sphingosine-1-Phosphate Receptor 1 

Systems Biology Markup Language 

SCS Subcapsular Sinus 

SEM Standard Error of the Mean 

SLO Secondary lymphoid Organ 

SSC Side scatter 

SSM Subcapsular Sinus Macrophage 

TLR Toll-Like Receptor 

TNFa Tumour Necrosis Factor a 

VCAM Vascular Cell Adhesion Molecule 

WT Wild-Type 

DE an equation describing how the rate of change of a variable is 

related to other variables and parameters. 

ODE a model that predicts changes to components 

over one independent variable (e.g. time) on a continuous scale. 

ABM Agent based model. A modelling approach in which individual 

entities are explicitly represented and maintain a set of attributes 

ATDD Acceptance Driven Development 

Simulation An executable implementation of a model 

UML A visual notation used in software engineering ,can be adapted to 

describe biological systems 

A-Test An effect magnitude test to examine and quantify the difference 

between two distributions 

PRCC Partial Rank Correlation Coefficient. Assesses the correlation 

between a parameter input and a model output with respect to the 
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other parameters 

Platform 

model 

An intermediate model which describes how a conceptual model is 

to be implemented  

Latin-

hypercube 

A parameter sampling approach to efficiently sample large 

parameter spaces 

In vitro An experimental procedure performed outside of an organism such 

as a test tube 

In vivo An experiment performed on a living organism 

In silico An experiment performed using a simulator 

Domain The biological system under study 

Domain model A description of current understanding of the domain.  

GSN A visual notation designed to present an argument over evidence.  
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