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I 

ABSTRACT 

   Alumina thick and thin films can be used for a variety of purposes, including the 

semiconductors, electronics,  dielectric, piezoelectric and ferromagnetic devices. The films 

can be produced by conventional methods such as tape casting and roll compaction from 

ceramic slurry. However, these methods offer limited part geometries and cause defects in 

the film structure. Plasma electrolytic oxidation (PEO) is a surface engineering technique 

that converts the surface of light metals and alloys into oxide ceramics layers. In this study, 

ceramic alumina films were produced by conversion of different shapes aluminium foil (50 

µm) substrate using PEO technique.  

    The influence of processing conditions, such as (treatment time, electrolyte composition, 

current density and sample shape), on the formation, growth behaviour and properties of 

PEO coatings were investigated. Optical emission spectroscopy was used to investigate the 

composition of plasma discharge and evolution of its main components during the PEO 

process. The plasma electron temperature was calculated using two independent peaks of 

aluminium in the near ultraviolet band.  

    COMSOL Multiphysics software was used to model the distribution of electric field in the 

electrolyser and investigate a possibility of achieving a uniform coating thickness on complex 

shape in several electrode configurations. The surface morphology and phase composition of 

ceramic coatings were analysed using SEM and XRD techniques. The breakdown voltages, 

thickness of ceramic coatings in different electrolyte were comparatively studied.  

    Depending on the treatment parameters the metal-to-ceramic conversion ratio varies 

from 10 to 80 %. However, after a treatment for 12 min, complete conversion of aluminium

foil into alumina was successfully achieved. 

   The shape of working electrodes  strongly influenced the coating thickness. Gamma 

alumina was the prominent phase in thin coatings, however formation of alpha-alumina was 

observed when treatments lasted longer than 6 min. Correlations have been studied between 

characteristics of plasma discharge, such as plasma electron temperature, and phase 

transitions in the surface layer to develop in situ diagnostic methods for the PEO processes. 



II 

The L and U shaped thin-walled 3D ceramic-metal composite structures were successfully 

fabricated using PEO treatments in specific electrolyte with uniform PEO coatings without 

cracks grown on the edges and corners at outer surfaces of L and U shape Al foil samples. 

However, the coating thickness at the inner surfaces was around 30 % lower. 
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Chapter 1 

Introduction 

    In industry ceramics, such as thick and thin alumina films, are considered one the most cost 

effective materials [1-4]. These are commonly used for a variety purposes in precision 

applications. A thin film is a layer of material which varies from fractions of a nanometre 

(monolayer) to a number of micrometres in thickness (although some references refer to 0.1 

µm or less) while the thick films usually range from < 5 to 500 µm [5, 6]. Thin and thick alumina 

films have low cost productivity due to the small amounts of material used [6]. Such films can 

be produced from ceramic slurry by conventional methods, including tape casting and roll 

compaction. However, these methods offer limited part geometries and cause defects in the 

film structure [1, 7].  

     Plasma electrolytic oxidation (PEO) is a novel surface engineering technology, allowing 

relatively thin and thick oxide coatings to be formed on light metals [8-12]. It is used not only 

to avoid the drawbacks of traditional techniques such as flow forming or deep drawing, but 

also because the PEO process employs less material, so costs are reduced and their 

mechanical and chemical properties in many cases superior to the materials in a bulk form. 

PEO also allows implementation of design and microstructures with properties unavailable 

in bulk materials. PEO coatings can be formed on aluminium with a variety of thicknesses, 

offering attractive combination of chemical and thermal stability, good strength, wear 

resistance and interfacial adhesion, which makes them attractive for many engineering 

applications [9, 13, 14].  

 Aims and objectives 

 The principal aim of the present work is to explore a novel approach to fabricate a thin-

walled 3D alumina structure with low thickness and various shapes by conversion of 

aluminium foil using a plasma electrolytic oxidation technique, with emphasis on the 

structural characteristics of produced layers including morphology, phase component, and 

composition. To achieve this aim, the following specific objectives have been identified. 
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1. Analysing the effect of process parameters such as treatment time and electrolyte

composition on the characteristics and properties of the coatings formed in different regions 

of the foil substrate.  

2. Study the degree of conversion of Al into its oxide and identify possible limitations in

obtaining uniform coatings in different locations of thin-walled complex-shape substrates, 

such as inner and outer faces, edges and corners.  

3. Study the characteristics of PEO process and coating formation on regular workpieces such

as flat rectangular samples and complex geometry workpieces such as L and U shapes. 

4. Study the effects of electric field and current density distribution over the surfaces of

working electrodes during the PEO process on the characteristics of growth, microstructure 

and phase composition of resulting coatings.  

5. Identify the composition of plasma discharge and monitor evolution of its main

components during the PEO process in different electrolytes. 

Thesis organisation 

    The dissertation is divided into nine chapters. Chapter 1 gives introductory information on 

thin and thick alumina films, usage and production techniques and the aim of this work.  

Chapter 2 covering the entire scope of the thesis. It provides a review of background literature 

on the PEO processes and its mechanisms, including the composition and morphology of PEO 

coatings, effects of electrolyte composition, treatment time and the current regimes, plasma 

discharge phenomena, chemical reactions during the PEO process, and the dielectric 

breakdown phenomena, effects of electric field and current density distribution over the 

working electrode on the PEO coatings. Also the mechanical properties of PEO coatings were 

reviewed. 

Chapter 3 describes the experimental procedures and instrumentation used for PEO process. 

Also it was introduces the methods used to fix the samples during the PEO process. A 

COMSOL-Multiphysics software used for modelling the current density distribution during the 

PEO process is introduced. 

Chapter 4 provides discussion of the main experimental results and analysis of the effects of 

treatment time on the PEO process and produced coatings. These include analysis of current 
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transients during the PEO process, studies of coating thickness, morphology and evaluation 

of oxide film growth efficiency. The mechanical properties of the oxide ceramic coatings 

produced by PEO process are evaluated by nanoindentation techniques. 

Chapter 5 discusses the effects of electrolyte composition on the PEO process of Al foil. Nine 

different electrolytes compositions were formulated according to the design of experiments 

method. Influences of electrolyte characteristics on current density during potentiostatic PEO 

treatments and resulting coating characteristics are discussed. Statistical analysis is applied 

to model the relationship between the concentrations of electrolyte components and coating 

thickness, roughness and porosity.  

Chapter 6 discusses electrochemical behaviour of Al in alkaline silicate/phosphate electrolyte. 

The processes accompanying the growth of PEO coatings and resulting in non-uniform 

thickness distributions of the oxide layer and residual aluminium along the sample length are 

studied. The distributions of electric field in the electrolyser and in the reaction layer at the 

electrode surface are investigated by combining experimental and modelling approach, with 

attempts made to link the results of theoretical and experimental studies of the PEO 

treatment of aluminium.  

Chapter 7 presents an approach of electromagnetic modelling that considers nonlinear 

current-voltage diagrams which successfully developed to predict the current distribution on 

the surface of electrode ( thin Al foil) in electrolyser. The results of the simulation have been 

validated by comparison to the experimental results and can be suggested as description of a 

new physical phenomenon.  

Chapter 8 presents the results of the experiments on fabrication of 3D thin-walled ceramic-metal 

shapes using the PEO process. This chapter also discusses the effects of the shape of working 

electrode on distribution discharge characteristics, coating thickness and morphology across 

the complex shape substrates. Results of numerical simulations of electric field and current 

density distributions over the surface of working electrodes are discussed. 

Finally Chapter 9 provides the main conclusions derived from the work discussed in this thesis 

and suggestions for future work, which is followed by the list of References.
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Chapter 2 

Literature review 

Alumina films 

   Alumina or aluminium oxide is a chemical compound with the chemical formula Al2O3. It has 

several forms in nature such as corundum, diaspore, and gibbsite (Al2O3.3H2O). High chemical 

stability of ceramic alumina components makes them resistant to chemical corrosion and 

wear even at elevated temperatures and attains many other properties important for various 

applications. Alumina appears in several allotropic types different from each other in the 

crystal structure, physical and chemical properties [15, 16]. These properties depend on the 

degree of purity and porosity. Impurities also play crucial role in the performance of alumina 

ceramics. For instance alumina has melting point of about 2040 oC, however impurities and 

some alloying elements form secondary phases can melt at lower temperatures [15, 17]. 

There exists in a number of crystalline phases depending on purity and mechanical and 

physical properties, three of the most important being γ, θ, and α [17, 18]. The structures of 

hydrated alumina and alumina are shown in table 2.1 and 2.2. Corundum or α-phase alumina 

is transparent, uncoloured and it is the most suited phases for use in many high-temperature 

applications due to its thermodynamic stability. However α phase is stable at high 

temperatures while the other phases do not always exist in stable phase. For instance, at 

certain temperatures, γ and θ phases are transformed to the corundum phase. Shackelford 

and Doremus [19] when discussing the alumina structure stated that the α-phase is the only 

phase which is stable at all temperatures and ambient pressure of 1 atm. In addition there 

are a number of other interesting characteristics, for instance high hardness, wear resistance, 

chemical inertness and high-temperature diffusion barrier properties, that have made α 

alumina thin films important [20]. Selected physical and mechanical properties of alumina are 

collected in Table 2.1. 

Table 2.1. Hydrated alumina phases [4]   

Phase Structure Lattice parameters (Å) 
a b c 

Bayerite β-Al(OH)3 Monoclinic 4.72 8.68 5.06 

Gibbsite α-Al(OH)3 Monoclinic 8.64 5.07 9.72 

Boehmite α-AlOOH Orthorhombic 2.87 12.23 3.70 

Diaspore β-AlOOH Orthorhombic 4.40 9.43 2.84 
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 Table 2.2. Stable and unstable alumina phases [21] 

Designation Structure Lattice Parameters (Å) 
a b c 

Corundum Hexagonal 4.758 12.991 

Eta Cubic (spinel) 7.90 

Gamma Tetragonal 7.95 7.79 

Delta Tetragonal 7.97 23.47 

Theta Monoclinic 5.63 2.95 11.86 

Kappa Orthorhombic 8.49 12.73 13.39 

Table 2.3. Selected properties of α -, β -, and γ alumina [21] 

α- Al2O3 θ-Al2O3 γ- Al2O3 

Density (kg/m3) 3390-3980 3560-3600 3200-3700 

Elastic modulus (GPa) 409-441 - 

Hardness (GPa) 28 - 

Bulk modulus (GPa) 239 - 

Band gap (eV) 8.8 7.4 

Melting point (°C) 2051 θ  to α : 1050 γ to δ:700-800 

   Many attractive engineering properties along with availability and abundance have made 

alumina required for processes and industrial applications. [7].  

Fig. 2.1 (a) Alumina thick film substrate, (b) Chip resistor, (c) Ceramic -based 
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   Thick and thin alumina films are widely used in large-scale integrated circuits, hybrid IC, 

semiconductor packages, networks resistors, focusing potentiometers, chip resistors and 

other related areas of electronic industry (Fig 1.1(a , b)) [21]. In addition, thick alumina films 

are used as substrates in automotive engine control modules, as components exposed to 

elevated temperatures, typically from 105 ⁰C to 125⁰C (Fig 2.1( c ))   

   H. Dong states that ‘‘the physical properties of thin films are most strongly related to their 

morphology. Thermal and electrical conductivity, permeability, colour, toughness, and 

hardness properties are all very much dependent on morphology and to a lesser extent on the 

chemistry of the coating.’’ [18]. So that, based on the technique used to produce alumina films 

it is very important to have a better understanding the effects of processing parameters on 

the morphology and growth rate of the alumina analysed. This will be taken into account in 

subsequent analyses.  

Manufacturing methods of thin and thick alumina films 

      Over the last decade alumina thick- thin film has been actively studied and their fabrication 

has grown significantly due to their applications in semiconductors, telecommunication, 

electronic industries, energy storage, and dielectric substrates. Several techniques have been 

developed to produce aluminium oxide thick -thin substrates. These techniques may 

produce high-purity alumina substrate. However, these techniques are considered complex 

and need expensive tools. Moreover the associated manufacturing methods offer 

insufficient flexibility. These techniques contain many stages to produce alumina films such 

as grinding, mixing, rolling, trimming, sintering and drying. Therefore the time for processing 

will be high. In addition ceramic property values changes during the stages of the processing 

[7]. With a simplified explanation in this introduction, we will present some examples of 

these techniques. 

2.2.1. Roll compaction 

     Roll compaction Fig 2.2 is a method of fabricating continuous thin sheets of ceramic 

materials by compacting flowable ceramic powders in a rolling mill. CoorsTek roll compaction 

substrate technology incorporates three basic steps: spray dried powder preparation, tape 

fabrication by roll compaction and sintering [6, 22]. Initially, the raw materials (which consist 

of high purity ceramic powders) are ball-milled with dispersants, organic binders and 
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plasticizers to achieve proper particle size distribution and slurry rheology. The slurry is then 

spray dried to form a flowable powder that can be fabricated into a tape when roll compacted 

[23].  

Fig. 2.2. Schematic of the roll Compaction Process 

   The roll compaction process is related to dry pressing in that it uses spray dried alumina 

powders as feedstock. However, the process differs in the type and amount of binders and 

plasticizers used in order to fabricate a flexible, continuous sheet or tape. The process consists 

of a powder feed system which is controllably presented to roll where it is compacted to sheet 

of tape. This tape is then trimmed. Tungsten carbide tooling is used to mechanically punch 

the tape, producing parts of the desired green size and shape. Following the tape punching 

process, the parts are sintered by passing them through a high-temperature tunnel kiln. The 

sintering process brings about several significant changes in the ceramic part: total surface 

area is reduced, bulk volume is reduced and strength increased. [23]. 

2.2.2. Tape casting 

     Tape casting is ceramic forming method used in the fabrication of thin sheets of flexible 

tape. This is the method of choice in manufacturing for a variety of purposes containing the 

production of electronic elements such as ceramic capacitor, substrate and dielectric, 

piezoelectric and ferromagnetic materials [24, 25]. Products which are produced by this 

method are in the range of 100 µm to 1mm thickness [26]. Basically this method produce a 

flat sheet or layer by spreading the slurry over a surface covered with removable sheet using 
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controlled blade known as doctor blade Fig 2.3 which can be sintered subsequently into a 

hard ceramic substrate layer [27-29]. 

Fig. 2.3. Schematic diagram of the tape casting process 

Plasma electrolytic oxidation 

      Plasma electrolytic oxidation (PEO) process is derived from conventional anodising, where 

direct current (DC) is used, usually being controlled at a constant cell voltage. However unlike 

traditional anodising, PEO treatments are usually performed under high voltage conditions 

spanned from tens to hundreds of volts [18, 30]. They provide a relatively new 

electrochemical surface modification method which has gained a lot of interest among 

researchers in industry and academia due to great potential as an eco-friendly surface 

engineering solution for those lightweight metals [31]. This treatment is employed to improve 

the wear, corrosion resistance and creep properties of the materials that are important for 

automotive, marine, refinery and, oil and gas industry applications.  

    In 1880s, a discharge phenomenon discovered by Russian scientist, Sluginov [32]. 

He looked into the behavior of metal electrodes in aqueous electrolytes under high voltages. 

Fifty years later, a more detailed research in this topic was carried on by 

Günterschultze and Betz [33]. The mechanism of the deposition on aluminium using an spark 

discharge also studied by Markov [34]. In 1999, Yerokhin et al studied electrochemical 

treatment processes and categorised the PEO under plasma electrolytic deposition (PED). 

Since 1980s, a different of PEO processes have been patented in different places. To name a 

few, Gnedenkov et al in Russia [35], Hsing in USA [36], Hishamoto in Germany [37], Jain Sun 

in Canada [38], Curran in UK [39], A. Yerokhin in UK [40].  
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   In this chapter, the fundamental concepts and characteristics of the PEO process, as well as 

recent developments in PEO coatings on Al and its alloys are discussed.  

2.3.1. PEO processes and associated mechanisms 

      Several studies have been conducted to better understand the process mechanism and 

chemical reaction kinetics [9, 11-13, 41-45]. One of the most cited paper in this field of work 

is prepared by Yerokhin et al in 1999 [8]. They introduced the process in depth based on 

current-voltage (I-V) characteristics of the electrochemical systems involved in the plasma 

electrolytic oxidation process. Two types of plasma electrolytic deposition methods have 

been studied. One type is the plasma electrolytic saturation (PES), which employs a high 

voltage used on the electrolytic cell to result in the metal surface to be saturated with ions, 

this method is established depending on the mechanisms of heating in electrolytic plasmas, 

which results in activation of thermal diffusion.  

        Fig. 2.4 Two types of current-voltage diagram for the processes of plasma  
electrolysis a) near the electrode area,  b) in the dielectric film on the electrode surface [8]  

   While the other type is the plasma electrolytic oxidation (PEO), which is utilises an elevated 

potential difference between the working electrode (anode) and counter electrode in the 

electrolyte to form the oxide film on the surfaces. As the voltage raising, the current density 

increases leading breakdown voltage and the sparking appear at the surface of the working 

electrode, which influence the oxide film formation.  
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    Fig. 2.4 show the processes affect the characteristics current-voltage of the electrochemical 

system. During the initial stages 0-U1 and 0-U4, where the voltage is low, kinetic of the 

electrode process corresponds Faraday’s law. Current oscillation can be observed near the 

electrode due to the increase in voltage, while the gas products, such as oxygen and 

hydrogen, partially over the electrode surface, controlling the increasing in current. As 

increasing in current density, ebullition of the electrolyte around the electrode occurred. 

Thereafter, the electrode is totally covered by a gas layer with low conductivity.  Here, all 

voltage across the cell is dropped near the electrode area. This produces about 106 V/m of 

electric field strength which generate the ionisation process in the vapour envelop. In U3 

(critical voltage) Sparks are then followed by a steady luminosity that is distributed 

throughout the vapour plasma envelope.  

   Studying the current – voltage behaviour of systems where dielectric surface oxide layers 

are formed is more complex than in the vapour layer. Here, as the increasing voltage arrives 

at the electrochemical breakdown potential, the anodic oxide layer formed prior to U4 begins 

to dissolve. As a result of repassivation process from U4 to U5 a porous layer was formed. The 

electric field strength proceeds to raise until it arrives at a critical value of dielectric 

breakdown of the film at U5. Very small bright sparks surround the surface of the oxide film 

and enhance the coating growth. In region U6-U7, thermal ionisation is affected by oxide film 

and micro-arcs form. After that, the elements existing in the electrolyte are combined into 

the oxide coating and the oxide layer.  

   Oxygen evolution which requires an appropriate potential can proceed via different 

pathways, starting from conventional electrochemical water splitting and finishing by the 

radiolitic and plasma-assisted chemical reactions similar to those shown in Fig 2.5 [8].   
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Fig. 2.5 Probable chemical reactions leading to oxygen liberation [4]. 

Plasma electrolytic oxidation is usually performed on a wide range of treatment time based 

on the required characteristics of resulting coatings. The overall current efficiency of the 

oxide layer creation has been estimated to be in the range of 10 to 30 % [46].  If the electrolyte 

solution is alkaline, such as aqueous solutions of KOH, the film formation, dissolution and 

oxygen evolution follow the reactions below [47]: 

At aluminium-oxide interface: (anodic process) 

2Al + 3O2− → Al2O3 + 6e−  (1) 

 Al → AL3+ + 3e−        (2) 

At Oxide–electrolyte interface: a- (anodic process) 

4OH− → O2 ↑ +2H2O + 4e−         (3) 

 2 2 +    
− →   − +   

 2 +    
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−
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    In the final stage of the process, Al injected into the electrolyte through discharge channels 

and then precipitated as a hydroxide on the working electrode surface. A further increase in 

the coating thickness occurs due to the subsequent plasma discharges which causes 

dehydration and recrystallisation oxide [46]. In the same context, some researchers 

categorised the process into four sequential stages [47, 48]; anodising, spark discharge, 

microarc discharge and arc discharge. At first stage, as the anodic voltage increases across the 

sample a highly porous coating is formed. While the discharge and intensity shapes is the 

main difference between the second and third stage. However the mechanism of discharge 

and thickness growth are same for both stages. In stage four high energy is needed to create 

larger spark on the surface of the working electrode and also into the electrolyte. Because 

when the plasma escape into the electrolyte rather than on the as the first and second stage 

coating surface, this leads to the creation of local microdefects in the coatings which is 

unacceptable from the point of view of mechanical properties of coatings   [47, 48]. 

2.3.2. PEO coatings on aluminium alloy substrates 

      As mentioned in introduction, several of studies on production of PEO coatings were 

performed. Lightweight metals has the most interest in the studies of the formation of the 

PEO coatings on its surfaces [12, 13, 42, 49-54]. Because this thesis is focused on Al foil, the 

literature review is mostly focused on PEO coatings on aluminium substrates. 

      One of the important publications was produced by Snizhko et al [46] on anodic process 

in PEO treatment on an aluminium alloy in KOH electrolyte. In this work, the rates of chemical 

dissolution of the working electrode and anodic gas liberation were determined. It was 

assumed that the partial anodic processes of oxide layer growth, dissolution and gas evolution 

on the working electrode surface follow the Faraday’s law. Therefore, the balance equation 

for current yields of the partial electrode processes on the working electrode surface has the 

following form: 

𝜂𝐴𝑙2𝑂3 + 𝜂𝐴𝑙𝑠𝑜𝑙 + 𝜂𝑂2= 100 % [46] 

Where; 𝜂𝐴𝑙2𝑂3 , 𝜂𝐴𝑙𝑠𝑜𝑙  and 𝜂𝑂2  are current yields of partial anodic products of alumina,

dissolved aluminium and oxygen respectively. The weight loss of Al sample was measured by 

an analytical balance. Weight of coating grown was calculated from cross-sectional SEM 

images assuming that the alumina density is around 3.1 gr/cm3 due to the presence of 
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porosity. For 1 g/l concentration of KOH, the oxygen evolution was the main the 

electrochemical process and its current efficiency was 63.9 %. While the current efficiency of 

the coating growth and aluminium dissolution were 28.9 % and 7.2 % respectively. Increasing 

the concentration of KOH resulted higher dissolution and less oxidation, however the gas 

evolution rate remained the same. It is also found that the increase in the current density 

causes an increase in gas liberation, which means that the amount of gas liberation is 

independent of electrolyte concentration and dependent on current density. 

   Parameters of PEO process were studied from many researchers to provide the 

fundamentals for comprehensive understanding of the PEO technique. Power supply mode is 

one of the crucial factors effecting the PEO process and playing a key role in the preparation 

of coatings. Various types of power sources capable of producing different current modes, 

such as alternating current (AC), direct current (DC) and pulsed DC, and bipolar regime as 

shown in Fig 2.6, have been used to form oxide layers on lightweight metal alloys. The authors 

of ref [55] analysed the effects of using pulsed bipolar current regime to produce oxide 

ceramic coatings on aluminium alloy. It was observed that appropriate combination of the 

coating growth rate and energy consumption can be obtained in the pulse frequency range 

between 1 and 3 kHz. The thickness and porosity of produced coatings ranged from 50 to 70 

µm and from10 to 15% respectively. 

  Fig. 2.6 Main electric modes used in the PEO process, (a) DC, (b) AC, (c) pulsed unipolar 
(PUP), (d) pulsed bipolar (PBP). 
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Also evidence of δ-Al2O3 phase was found compared to the coating produced using a 50 Hz 

AC process. R.O. Wei Li et al [56] also investigated the influence of the anode pule-widths on 

the microstructure of coatings produced by a PEO treatment of an aluminium alloy. They 

observed that the hardness and wear resistance of PEO coatings reduced as the anode pulse 

width increased. The PEO process using pulsed unipolar and bipolar DC current regimes 

analysed by Hussein et al [57]. The influence of current frequency and other current 

parameters such as period of positive and negative pulses and resting time between the 

positive and negative pulses on coating formation was studied. It was found that the PEO 

coating morphology and microstructure were significantly different under different current 

modes. A unipolar condition is capable of creating a dense coating morphology only if positive 

to negative ratio of pulse current is determined properly. Appropriate control over these 

conditions results in elimination of high temperature spikes and strong troublesome plasma 

discharges. The bipolar current regime might improve the characteristics coating compared 

with the unipolar current regime, with respect of surface morphology and cross-sectional 

microstructure. Additionally a thick coating might be obtained by adjusting positive to 

negative current ratio and their timing to remove or reduce the strongest plasma discharges 

and thus the high temperature spikes. In general, oxides ceramic layers produced under the 

bipolar current mode exhibits a significantly more porous morphology with higher surface 

roughness values (Ra) mostly in longer treatment times [51, 57].  

    Current density is one of the most important parameters influencing the coatings 

characteristics and should be applied in an optimum range to achieve the environments 

required for PEO process. A range from 1 to 30 A/dm2 have been stated in several publications 

[8]. Changing the current density can influence the phase composition content, 

microstructure, growth rate, and physical and chemical properties of coatings produced [8, 

58]. Zhenwei Li et al [59] investigated the effects of cathode current density using pulsed 

bipolar current to produce oxide ceramic coatings on 2024–T4 aluminium alloy. They 

observed that the surface roughness and coating thickness increased as the cathode current 

density increased. Khan et al. [60], in discussion of the residual stresses in PEO coatings on Al 

alloy formed in the pulsed unipolar current mode stated that the increase in current density 

leads to a decrease in the residual stresses in the coatings. The reason is that a higher current 

density means higher plasma micro discharge which promotes stress relaxation by formation 



Chapter 2 Literature review 

15 

of micro cracks on the surface of the coating. They found that the normal stress ranges from 

111 MPa to 818 MPa depending on the PEO current pulse parameter.   

    Porosity and its size in PEO coatings on 6082 aluminium alloy was studied by Curran and 

Clyne [61] using SEM. The results show that the coatings are approximately 20 % porous and 

the porosity is largely surface connected. Also it is noticed from these measurements that the 

average pore size is around 30 nm and that most of the pores fall in the range of 5 nm to 1 

µm. This porosity is expected to influence many properties, such as the low stiffness, the low 

thermal conductivity and the low friction and good wear resistance under lubricating 

conditions. Many of these property variations are advantageous. Also, during the PEO oxides 

formation the porosity may form vacancies in the molten alumina. This may allowing the 

electrolyte penetrate through the pore network and enhance the coating growing.   

   Optimisation of the thermal properties of the PEO coatings can make these coatings an 

excellent choice for thermal barrier layer in electronics applications. Curran and Clyne [62] 

investigated the thermal conductivity of PEO coatings on aluminium using a steady state 

thermal method. It was found that the thermal conductivity value was around 1.6 W/mK for 

the coating thickness of 100 µm. This is significantly lower than the thermal conductivity of 

the bulk material which is around 30 W/mK°. 

    In many fields, aluminium and its alloys are progressively more used due to their physical 

properties such as low density and high specific strength that make them suitable for different 

applications. However, the low mechanical properties such as hardness and wear resistance 

of aluminium reduce their application niche to the areas where friction is mainly absent [63]. 

This drawback can be avoided by surface treatments of Al alloys using a number of processes, 

with PEO treatment being the most promising [8]. Malayoglu et al [63] evaluated the adhesion 

strength of the coatings using a scratch test method. Results of test indicate that the PEO 

treated specimens display more desirable mechanical properties compared to hard anodised 

samples. Due to the presence of α-Al2O3 and γ-Al2O3 crystalline phases in the coating 

structure, the elastic modulus and hardness of PEO coatings are 2–3 times greater than those 

of anodic aluminium oxides and subsequently, a higher wear resistance of PEO coatings has 

been obtained. This is consistent with the results reported by Khan et al [9]. As the total 

thickness of PEO coatings increases with increasing treatment time, the coating 



Chapter 2 Literature review 

16 

microhardness varies with its thickness. For example X. Nie et al [64], who used a PEO process 

to produce thick oxide ceramic layer on BS Al-6082 aluminium alloy, have found that the 

position of the maximum hardness (which could reach up to 2400 HV) moves away from the 

coating-substrate interface with increasing coating thickness.  

     Most of the studies of PEO processes had been performed on regular shape samples such 

as rectangular or disk coupons; however, very little attention have been paid to complex 

shapes such as U, E or L shapes. Chao Gu et al [65] focused on PEO processing of long tubes, 

in order to achieve uniform thickness of ceramic coatings on inner surfaces. The results show 

that the thickness distribution of PEO coating in the inner surface is non-uniform due to the 

effect electric field and current density distribution. An auxiliary counter electrode was used 

inside the tube to eliminate the shielding effect of electric field, which was effective to obtain 

more uniform coatings on the inner surfaces of the tubes. Shrestha et al [66] produced and 

studied the oxide coating on aluminium AA2219 alloy using the PEO process. The process was 

capable of depositing a uniform coating at edges and tight corners with a typical coating 

thickness of about 60-70 µm, see Fig 2.7. The coating seemed well retained over the edge 

with no noticeable cracking over the tight radius. 

Fig. 2.7 SEM image showing a well-adhered and uniform PEO coating at the edge of Al alloy 
substrate [66]. 
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  The review of PEO process on aluminium and its alloys discussed above provide a significant 

information on the parameters of PEO process were studied from many researchers. It is also 

gathers the results and discussions of the effects of different variables on characteristics of 

the coatings. 

2.3.3. Effect of treatment time  

     Many studies have been carried out on the influence of treatment time on the PEO process, 

with the times varied from a few minutes up to a few hours. In general, increasing in 

processing time causes thicker coatings, with more intense and larger micro-discharges 

occurring, which leaves larger discharge channels in the coating [11, 12, 52, 67-70]. Gun Lee 

et al  [70] investigated the effects of time variation on formation of oxide layers on Al 7075 

alloy using PEO process. The results showed that the thickness of the coating increases with 

the increase in treatment time. However, the ceramic coatings formed for 45 min and 60 min 

have more porous morphology than those formed for 30 min (Fig. 2.8) and the highest value 

of coating microhardness, 1790 HV was obtained at the process time of 30 min. 

   In the same context, Sundararajan and L. Rama [11] investigated the properties of oxide 

coatings produced at different periods of time. The density of discharge channels decreases 

exponentially with increasing oxidation time while the diameter of the discharge channels 

increase linearly with the increasing time of oxidation (Fig.2.9). Micro-discharges are created 

as a result of dielectric breakdown through weak spots in the PEO coating and the number of 

weak spots is reduced in thicker coatings.  
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Fig.2.8. SEM image showing surface morphology on Al [70] 

      

 

                       Fig. 2.9 Variation in diameter of the microarc discharge channels vs  PEO processing 
time [11]. 

 

Bajat et al. [75] evaluated the corrosion performance of PEO coatings on aluminium produced 

at treatment times varied from 2 min to 1 hr and found that the corrosion behaviour 

depended on the treatment time. Initially the corrosion resistance increased to a maximum 

before it decreased for longer treatment times. They found that the coating deposited for 2 
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min was produced before the breakdown potential was reached, while the 3 min deposition 

was formed just after reaching the breakdown potential (Fig. 2.10).  

Fig. 2.10 (a) Time variation of voltage during galvanostatic aluminium anodization in 0.01 M 
Na2WO4·2H2O at 15 mA/cm2. (b) Microdischarges appearance at various stages of PEO process: (i) 3 

min, (ii) 15 min, (iii) 45 min [71] 

So, it can be assumed that coating formed before the breakdown potential point does not 

have sufficient thickness to provide an efficient barrier to a corrosive agent. On the side, the 

coating produced for 3 min was neither thick enough nor dense, so the electrolyte easily 

penetrated through the pores of the coating and even after 1h of exposure to a corrosive 

agent reached the aluminium substrate. 

A brief review of the effect of processing time on the PEO coatings properties explored above 

provide some ideas for understanding the changes in the coating properties occurred. 

Analysing the effect of process parameters such as treatment time will be discussed in details 

in results and discussion chapter.  
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2.3.4. Effect of electrolyte composition 

      Electrolyte components play essential role in the PEO treatment and many studies have 

been focused on optimisation of the electrolyte composition to obtain required coating 

characteristics [72-74]. A suitable electrolyte not only acts as a medium to conduct current 

and transmit the energy required to initiate and sustain the PEO process as well as provide 

oxygen required for the oxide formation process, but also promotes metal passivation and 

produces an insulating layer, which is essential to trigger the dielectric breakdown 

responsible for the onset of plasma discharge events. Components of the electrolyte 

solution influence coating characteristics, including surface morphology, thickness and 

phase composition and causing to different structure and performance coatings. Yerokhin et 

al [8] classified the electrolyte components which can be used to produce oxide coatings in 

aluminium alloy in the PEO process as follows:  

1. Electrolytes that provide fast dissolution of aluminium such as NaCl, NaClO3, NaOH,

and NaNO3.

2. Electrolytes that provide slow metal dissolution as H2SO4, Na2SO4.

3. Electrolytes that promoting metal passivation in close range of voltage such as H3PO4.

4. Electrolytes characterised by complex behaviour such as potassium fluoride and

sodium fluoride.

5. Electrolytes promoting weak passivation of the metal.

6. Electrolytes promoting strong metal passivation, e.g. H3BO3, H2CO3, H3PO4

Fig. 2.11 shows typical polarisation curves of Al between the current and voltage in the 

six groups of electrolytes considered for the PEO treatment [8].  

   The electrolyte solutions from groups 4-6 make sparking voltage easy to obtain, which 

is highly helpful for production of ceramic coatings using PEO process. 
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Fig. 2.11 Different electrolytes solutions tested for PEO treatment of aluminium alloy [7]. 

            

    The last groups of electrolytes were categorised into four sub-groups regarding to their 

contribution to the coating composition as follows; 

i. Electrolytes that include only oxygen into the coatings;  

ii. Electrolytes including anionic and cationic components that incorporate other 

elements into the coating; 

iii. Suspensions that provide transportation of particles which contribute to the coating 

composition  

   Electrolytes from sub-group (ii) provide possibilities to change the coating properties and 

enable coating formation by substrate oxidation and electrolyte substances depending on the 

substrate surface. So, these electrolytes are considered to be the most promising in PEO 

processing for different applications. Therefore, to assist the conditions required for dielectric 

breakdown, electrolyte additives such as silicates and phosphates which promote metal 

passivation are widely used as the basic ingredients of the PEO electrolytes. The solutions may 

include components which increase the electrolyte conductivity and provide the coating 

stabilising materials, such as potassium hydroxide (KOH) or sodium hydroxide (NaOH). Several 
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studies [8, 74-78] have analysed the effects of electrolyte composition, concentration and pH 

on the PEO treatment of aluminium. Kai Wang et al. [74] produced PEO coatings on Al alloy 

in silicate and aluminate solutions with and without sodium fluorosilicate, and found that 

main phases are γ-Al2O3 and α-Al2O3; furthermore, mullite particles were generated around 

the plasma discharge channels, especially in silicate electrolytes. Also the surface 

morphologies of PEO layers produced in aluminate electrolytes resulted pancake structures 

while the volcano structures formed in the layer prepared in silicate electrolytes.  Alhosseini 

et al [77] studied PEO treatments of 6061 Al alloy in electrolytes with two concentrations of 

KOH, 2 and 4 g/l and similarly for Na2SiO3. It was observed that the increase in concentration 

of KOH causes augmentation of the electrolyte electrical conductivity and consequently 

reduces the sparking voltage, which promotes formation of PEO coatings with finer features. 

Higher concentrations of Na2SiO3 in the PEO electrolyte result in increased Si content in the 

coating, which causes to increase in the coating thickness and corrosion potential. Guohua  et 

al. [79] produced ceramic coatings on aluminium substrate by PEO in two kinds of electrolytes 

(silicate and phosphate solutions). Alpha, gamma and mullite phases were found in the 

coatings. Silicon located mainly in the outer region of the coating, while phosphorus 

distributed homogeneously across the coating.  

    Investigations into the influences of different processing parameters such as treatment 

time, electrolyte concentration and current mode on the PEO coating characteristics provide 

significant amount of detailed information. However, there are specific requirements in the 

direction with the required applications that give a range to control the process parameters. 

For instance, many studies reported that the coating porosity and average pore diameter can 

be increased by either increasing the supplying energy density (high voltage/current density, 

longer pulse time) or by increasing the electrolyte conductivity or by increasing PEO 

treatment time.  

    Appropriate electrolytes not only enhance metal passivation which is necessary to induce 

discharge events via dielectric breakdown but also affect, as a conductive medium, the 

current distribution during the PEO process and provide essential oxidising agents to form the 

coating [47]. Alkaline electrolytes containing phosphate and silicate anions in presence of 

potassium hydroxide are commonly used in PEO process to produce oxide layers on 
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aluminium [80-83]. Table 2.4 shows some of electrolyte compositions which used in PEO 

process.  

Table. 2.4 Electrolyte compositions used to create PEO coatings on aluminium alloys and coating 
phases formed. 

    

   The electrolyte components and their concentrations change during the treatments, 

strongly influencing the properties of resulting coatings [89]. For instance, Wang et al. [74], 

in discussion of electrolyte effects on the characteristics of PEO coatings stated that the 

addition of Na2SiF6 may accelerate the growth of the oxide films and substantially increase 

the hardness by enhancing the density of the coating. Lee et al. also reported that the 

dielectric breakdown voltage of the oxide layer decreases with increasing of sodium silicate 

and the time to reach dielectric breakdown be shortened on the time-voltage curve. On the 

other hand, it has been reported that the breakdown voltage was found to be higher in 

electrolyte containing phosphate than in silicate electrolyte [47]. Also Polat et al. in [76] 

reported that both dense and porous layer of coatings thickness increase with increasing of 

sodium silicate concentration in the electrolyte, However the increase in the thickness of the 

dense layer is less than that in the outer layer of the coatings. Due to the incorporation of 

silicon into the oxide, it has been found that increasing concentration of sodium silicate leads 

to an extension of the inner dense layer, which is composed mostly of γ and α-Al2O3 phases, 

with some complex Al-Si-O phases [8]. These results also consistent with Jong Kim et al. [78] 

who studied PEO coatings formed on Al alloy in solutions of KOH with different concentrations 

of Na2SiO3, and found that the thickness and roughness of the ceramic oxide was markedly 

increased by silicate additions. Extensive research of these effects has been performed for to 

obtain PEO coatings on Al alloys with specific phase compositions [8, 46, 76, 79, 90, 91].  

Substrate Electrolyte composition Phase composition of coating 

Al [84] 30 g/l Na2SiO3; 10-40 g/l NaOH α-Al2O3, γ- Al2O3, mullite, Al2SiO5 

Al 2024 [85] 
2-5 g/l Na2SiO3; 3-5 g/l NaOH; 

1 g/l organic agent 
α-Al2O3, γ- Al2O3 

Al 2017A [86] 0-8 g/l Na2SiO3; 2 g/l KOH α-Al2O3, γ- Al2O3, mullite 

Al 2024 [87] 20 g/ l Na2SiO3 γ- Al2O3 dominant, α-Al2O3, mullite, δ- Al2O3 

Al 6082 [88] 1 g/l KOH α-Al2O3, γ- Al2O3 
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    Alumina exists in a number of crystalline phases, with α, γ, and θ polymorphs being most 

abundant. The α phase of alumina is a thermodynamically stable phase and possesses good 

mechanical properties. Combined with chemical inertness, this makes it one of the most 

technologically important ceramic materials [92, 93]. However alumina is normally 

considered brittle below ∼ 1000°C [94, 95].  

Earlier literature on PEO of aluminium alloy is summarised in Table 2.5. The scientific studies 

include characterisation of growth and corrosion behaviour of PEO coatings on aluminium 

produced in different electrolytes under different current modes. Therefore, from the above 

it’s concluded that the composition of the electrolyte plays a very important role in the PEO 

process. It can effect a wide range of coating properties such as the morphology and 

microstructure, growth rate and composition, strength of adhesion to the substrate, micro-

hardness, and tribological properties. Although published studies on PEO electrolytes has 

been on the development of composition and concentration to achieve desirable coating 

properties, still extensive researches on the effects of the electrolytes compositions 

nowadays. As treatment time parameter the electrolyte composition effects on the PEO 

process of AL foil will be discussed in details next chapters.  
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Table 2.5. Conditions of PEO treatment of aluminium reported in literature. 

Ref. Author Substrate Electrolyte Parameters Study aim and results of electrolytic 
characteristics  influences 

[46] Snizhko et al 6082 Al alloy 0.5–2.0 g/l solutions of 
KOH 

Current density applied is 46.7-140.7 mA/cm2 
 

Overall current efficiency of the oxide film growth 
ranges within the 10–30% and reduces significantly 
with increasing KOH concentration. Achievement of 
high voltage. Lower electrolyte concentration 
promotes oxide film formation and hinders Al 
dissolution. 

 

[70] 

Dong –Gun et al 7075 Al alloy 8 g/l Na2SiO3 
2 g/l Na2SiF6 
2 g/l NaOH 

AC voltage at 50–Hz frequency (200 V) with constant 
260 V DC.  
Four different treatment time; 5, 30,45 and 60 min. 

Increase the pore size with the increase of time. 
Ceramic coatings mainly consist of mullite, α-Al2O3 
and γ-Al2O3 phase.  
The thickness of the coating increases with the 
increase in time. However, the ceramic 
coatings formed in 45 min 60 min have more porous 
coatings than coatings formed in 30 min. 

 
[74] 

K. Wang et al 6061 Al alloy 0-8 g/l Na2SiO3 
0-8 g/l Na2AlO2 
0-0.5 g/l Na2SiF6 
2 g/l NaOH 

Applied voltage; 200 V AC; (60 Hz), 260V DC- 
treatment time; 5 min- 

γ-Al2O3, α-Al2O3 and mullite the main phase. 
Addition of Na2SiF6 can accelerate the growth of the 
oxide layers and increase the microhardness by 
enhancing the layer density. 

 

 

[86] 

Aytekin Polat  et al 2017A Al alloy - 2 g/l KOH, dis. water 
- 4 g/l ·Na2SiO3·5H2O, 2 
g/l KOH, dis. water 
- 8 g/l Na2SiO3·5H2O, 2 g/l 
KOH, dis. Water 

Current density 0.150 A/cm2 
Treatment time; 150 min. 
Conductivity (mS/cm); 7.74, 11.2, 18.1 

Increasing the sodium silicate concentration in the 
electrolyte leads to increase both the thickness of the 
dense and porous outer layer of the coatings. The 
coating produced in the electrolyte with low sodium 
silicate concentration has higher microhardness 
values and better wear resistance than the one 
formed in the electrolyte with high sodium silicate 
concentration and in the electrolyte without sodium 
silicate. 

 

[42] 

A L Yerokhin  et al H30T Al alloy Na2SiO3 Applied voltage -160 to 600V 
Current density 125 mA/cm2 
Treatment time; 0.5-65 min. 
Conductivity (mS/cm); 5.2 and PH = 11.3 

γ-Al2O3 and α-Al2O3 are the main phases. Discharge 
characteristic in PEO of Al, and evolution of 
phase composition are discussed 
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[96] 

R O Hussein  et al 1100 Al alloy 8 g/l Na2SiO3, with KOH Constant DC and unipolar pulsed DC regimes 
Frequencies varied from  0.2 to 20 kHz 
Current density 0.15 A/cm2 
Treatment time; 0.5-65 min. 
Conductivity (mS/cm); 5.2 and PH ;12 

The plasma was characterized by OES, and the 
aluminium oxide coating morphology for different 
current modes was determined using SEM. 

 

[97] 

Wei-Chao Gu  et al Al foil 0.033M Na2SiO3 
0.008M Na6P6O18 
0.025-0.5M NaOH 

DC power source (600 V, 20 A)  
Current density 50 A/dm2 
Treatment time; 30-60 min. 
Temperature ; 303 K  

Analyse the influence of electrolyte concentration 
and composition on PEO coating properties. The high 
discharge voltage also results in higher content of α-
Al2O3 phase in the coating prepared in the phosphate 
electrolyte than that in the coating prepared in the 
silicate electrolyte. 

 

[98] 

Shifeng liu et al 5005 Al alloy An aqueous alkaline 
electrolyte, i.e 4 g/l KOH. 
Red mud as additive.  
 

-150 to 500V, (200Hz) 

Current density 50 A/dm2 
Treatment time; 60 min. 
 

Possible to produce complex ceramic coating on 5005 
Al alloy using PEO with red mud as an electrolyte 
additive. The coating surface was the colour of red 
mud. Thickness 80 µm was formed. 

 
 

[99] 
 

J.A. Curran   et al 6082 Al alloy 3-5 Na2SiO3 
3-5 g/l Na4P2O7 
1-2 KOH 

 

AC power was applied with a 50 Hz 
The voltage was in the 400–600 V in the anodic 
half-cycle. 150–250 V in the cathodic half-cycle. 
Current density; 1 KA/m2   

Coatings were produced on Al substrate and 
characterised using profilometry, scanning electron 
microscopy, X-ray diffraction and nanoindentation. 

 

[100] 

X Nie et al  6082 Al ally 2-10 g/l Na2SiO3 Voltage;400-600 V, current density; 100 mA/cm2, 
treatment time; 90-150 min, Temp.; 343-353 K 

α-Al2O3 and γ-Al2O3 were formed ; α-Al2O3 is the 
dominant phase in these coatings. PEO coatings 
appear excellent resistance to abrasive wear and 
corrosion. 

 

[101] 

C.B. Wei et al 2024 Al alloy Na2SiO3 in distilled water 
with other additives. 

Pulsed DC, node voltage was sustained at 260 V 
during the measurement. Treatment time 25 min. 

The current flowing through the anode plate was 
monitored to investigate the distribution of the 
anode current and the effects of distance between 
the cathode and specimen. 

 

[102] 

YongJun Guan et al 2024 Al alloy 20 g/L Na2SiO3  The ratio of positive current to negative current is 
set to one with a current density of 0.3 mA/mm2. 

Transient signal gathering system is used to study the 
current, voltage, and the transient wave during the 
PEO process. SEM, OM, XRD and EDS are used to 
study the coatings evolution of morphologies, 
composition and structure. 

[103] C.S. Dunleavy et al 6082 Al ally    3-5 Na2SiO3 
3-5 g/l Na4P2O7 
1-2 KOH 

 

Current density; 1500 A/m2 ; treatment time 20 min.  
 

The composition, temperature and electron density 
of the plasma formed during PEO processing are 
inferred from characteristics of the emission spectra. 

 

[104] 

Hongping et al 6061 Al alloy 10-20 Na2SiO3 
1-5 KOH 

 

The ratio of positive current to negative current is 
set to one with a current density of 8 A/dm2. 
 

Reveal the growth process of PEO coatings on 
aluminium alloy by analysing conducting behavior 
and V-I characteristics of an aluminium electrode. 
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2.3.5. Optical emission spectroscopy of PEO process on aluminium 

     Understanding the microdischarge phenomena is an important for characterisation of the 

PEO process. Distribution and types of microdischarges have crucial influence on the 

formation mechanism, composition, morphology, and various properties of the resultant 

oxide coatings. Optical emission spectrometry (OES) is the best available technique of 

chemical analysis that uses the intensity of light emitted from a flame, plasma, spark or arc at 

a particular wavelength to determine the quantity of an element in a sample [105]. Long years 

ago, Sluginov [32] was observed the light emission (discharge events) during electrolysis of 

aqueous solutions. However, the first step of a scientific research of the discharge 

phenomena was carried out during Al anodising in the 1930s by Gunterschultze and Betz [33], 

who emphasised to the appearance in the optical emission spectra (OES) of characteristic 

lines matching both metal electrode and electrolyte species. These results are consistent with 

earlier observations of optical emission from aluminium in many electrolytes [106]. 

    During PEO treatment, significant amount of sparks moves rapidly on the sample surface. 

However, the evolution of sparks depends on many parameters such as applied power mode, 

current density, electrolyte composition and substrate materials [107]. Plasma electron 

temperature during PEO treatment was evaluated by Kharitonov et al [108]. It was found that 

discharge consists of two microregions, the hot core with temperatures up to 8000 to 10 000 

K and a relatively cold (2000 K) bubble separating the core from the electrolyte.  

    In a discharge model based on optical emission spectroscopy measurements, Hussein et al. 

[109] determined the elements contained in the plasma and evaluated the Plasma electron 

temperature. They proposed a model in which three different types of discharge, A, B and C 

occur (Fig. 2.12). The A- and C-type discharges are related to gas discharges occurring in 

micro-pores of the oxide layer at the oxide/electrolyte interface: type A is in small holes near 

surface micro-pores, and type C is in relatively deep micro-pores within the coating. While 

the B-type discharge is related to the dielectric breakdown in a strong electric field at the 

metal/oxide interface, which propagates throughout the oxide film.  
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Fig. 2.12 Schematic diagram of the discharge characteristics during the PEO of 
aluminium substrate. [109] 

   

    During these discharges, the Plasma electron temperature raises considerably to an 

amount enough to excite the aluminium species. It was determined by the line intensity ratio 

and was found to be in the range of 4500 to 10000 K. Xuan Yang et al. [110] analysed the 

optical emission spectra during PEO process on 7075 Al alloy. They found that the dissolution 

rate of Al, Zn, Cu, and Mg elements from the working electrode into solution is fast at the 

initial stage of PEO process. Then the sparks become weak and less populous.  

2.3.6. Mechanical properties of PEO coatings 

     Oxide coatings produced by the PEO process can provide significant strengthening to 

aluminium substrates, especially for sheet substrates. This effect can increase the effective 

Young’s modulus of the composite to twice value of the metal substrate [8, 111]. The 

substrate and coatings thicknesses play important roles in this effect. Phase composition is 

also an important factor affecting the mechanical properties and tribological performance of 

coatings produced using PEO process [8, 112, 113].  

   Usual ranges of elastic properties of engineering alumina are summarised in Table 2.6. 

These properties are frequently needed to provide adequate mechanical or other response 

of the material to external factors during manufacturing and in service [114].   
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Table 2.6 Typical values of elastic properties for engineering Al2O3 ceramics [114] 

Al2O3 / Porosity % 
Young’s Modulus 

GPa 
Shear Modulus 

GPa 
Poisson’s Ratio 

≥ 99.6/0-2 410-380 164-158 0.27-0.24 

≥ 99.0/1-5 380-340 145-130 0.26-0.24 

96.5-99.0/1-5 375-340 140-120 0.25-0.24 

86.0-94.5/2-5 330-260 130-100 0.25-0.22 

80.0-86.0/3-6 330-260 130-100 0.25-0.22 

      Earlier studies of PEO treatments of aluminium in alkaline electrolytes [9, 58, 115-117] 

established that the coatings consist mainly of α-Al2O3 and γ-Al2O3. For silicate based 

electrolytes, mullite (3Al2O3.2SiO2) can also appear in the PEO coatings. Alpha alumina is a 

stable phase with a melting point of 2050 °C, while gamma alumina is a metastable cubic 

phase which can transform into α-Al2O3 in the temperature range of 800 to 1200 °C [79, 118]. 

It has been observed that the contact of electrolyte with molten oxide formed during 

discharge leads to the formation of γ-Al2O3 instead of α-Al2O3, which is due to the high cooling 

rate and lower critical energy for nucleation of γ-Al2O3 [11]. Because gamma phase is 

metastable, by controlling process parameters, such as current density, it would be possible 

to control transformation of gamma to alpha phase. Curran and Clyne [99] characterised the 

surface hardness, local stiffness and global elastic constants of the PEO coatings on 6082 Al 

alloy using nanoindentation, beam bending and curvature measurements. They found that 

the coating hardness (20 GPa) and stiffness (300 GPa) were both similar to those of dense 

alumina. This means that the mechanical properties are not in most cases influence by the 

defects such as porosity an cracks. The effect of structural variations through the PEO coatings 

on hardness studied by Yerokhin et al [8] (Fig. 2.13). It was found that the structural 

differences tend to cause nonuniform hardness distributions through the oxide coating. 
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 Fig. 2.13 Microhardness profiles through oxide coatings based on (1) α-Al2O3, (2) γ-Al2O3 
and (3) mullite. From Yerokhin et al [8]. 

    The hardest region exists at around 20 to 30 µm from the coating–substrate interface and 

relates to the maximum content of high temperature alumina phases in the dense inner 

coating region. For oxide coatings based on α-Al2O3 phase, the surface hardness was in the 

range from 17 to 22 GPa. While, it was from 10 to 15 GPa for coatings based on γ-phase and 

from 4 to 9 GPa for coatings based on mullite. 

   The subsection above introduced some principles of the mechanical properties of the PEO 

coatings. It is analyse the effect of the oxide coatings and how strengthening the aluminium 

substrate. Also mentioned about the properties which may have an effect on increasing or 

lowering the mechanical properties such as Young’s modulus and stiffness.  

Summary 

    As reviewed above, although alumina films can be produced using a variety of methods, 

PEO process is an effective technique to produce ceramic films with combination of good 

mechanical and electrical properties and good price/performance ratio, leading to a wide 

range of applications. The earliest studies in the area of plasma electrolytic oxidation (PEO) 

were focussed on evaluating the microstructure, the mechanics, and the thermo-mechanical 

characterisation of these films. In the following chapters, investigations and analyses for 

improving the alumina films formed on Al foil using PEO will be discussed and analysed. 
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Chapter 3  

Experimental Procedures 

     In this work, regular 2D (rectangular) and irregular 3D (L and U) shapes of 50-µm thick 

aluminium foil samples were used. The studies aimed to convert Al foil to a higher proportion 

of alumina ceramic by plasma electrolytic oxidation technique, to reveal effects of processing 

parameters on the degree of conversion and to explore possibilities of obtaining uniform 

coatings on complex shape substrates that can meet specifications for specific applications. 

To obtain essential information about the properties of PEO coatings formed on the Al foil 

samples, it was necessary to study the distribution of the formed oxide layer over the sample 

surface. For this purpose analyses of the characteristics of PEO coatings such as thickness, 

porosity, roughness, phase composition, hardness and elastic modulus, as well as 

composition of plasma discharge, degree of conversion of Al to alumina and evaluation of 

oxide film growth efficiency during PEO process were carried out on different regions on the 

sample (edge region, centre region and near the metal part). This chapter contains common 

details of experiments carried out on the above substrates and outlines materials, 

experimental procedures, and analytical instruments utilised to achieve the objectives of this 

research. 

Samples materials 

    A 50 µm thick foil 1050 aluminium alloy  (0.05% Mg; 0.05% Mn; 0.25% Si; 0.07% Zn; 0.4% 

Fe; 0.05% Ti and Al balance) samples of three different shapes (rectangular, L and U shapes) 

with surface area (  ̴ 900, 1000, 1500 mm2) respectively used in most of experiments. The 

samples cut into the required size (see, Fig. (3.1(a)(b)) were used to convert to a higher 

proportion of alumina by plasma electrolytic oxidation technique. The samples were cleaned 

in distilled water and acetone and dried by air before the PEO treatment. 
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Fig. 3.1. Regular and irregular Al foil (50 µm thickness) samples; (a) Rectangular shape (b) L-shape 
and U-shape before PEO treatment 

Fixing the samples 

 Prior to the PEO treatment, due to the very small thickness of the samples during the PEO 

process, it may move following the movement of the electrolyte solution caused by cooling 

system and this could cause damage to the samples affected by the uneven electric field and 

discharges during the process as can be seen in Fig 3.2. Therefore to make it fixed inside the 

bath during the PEO treatment, it was suggested that rectangular foil samples are fitted using 

two methods. 
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Fig. 3.2 Example of damage incurred due to sample mishandling after the PEO treatment 

The first one, it was proposed that foil samples are fixed in a rigid plastic frame holder from 

four corners as shown in Fig. 3.3 then it is connected from one bolt side by metal holder. 

However, by using this method still there were some difficulties to connect the samples.  

Fig. 3.3 Samples of Al foil fixed in plastic holder. 

Another method to fix the specimens during the PEO treatment was proposed and provided 

better results. This method depends on fixing the Al-foil specimens between two insulated 

metal holders which are fixed by four jig rods from both sides as shown in Fig. 3.4 and the jig 

rod was then clamped to the busbar which runs across the electrolyte bath. 
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Fig. 3.4 Sample of Al foil stretched between two metal rods. 

    Furthermore, based on the same idea, irregular samples of L and U shapes were fixed using 

plastic material from both sides which covered the edges and corners. Then the samples were 

clamped to the insulated strip of aluminium connected to the power supply. Fig. 3.5 show 

how the irregular samples are fixed. The samples were fixed by using small rigid plastic pieces 

and screws.  

Fig. 3.5 Samples of Al foil fixed in plastic holder (a) L shape (b) U shape. 

Electrolyte solution 

The electrolytes were prepared from deionised water and high-purity chemicals. They 

were prepared by dissolving chemicals, such as potassium hydroxide (KOH), sodium 

pyrophosphate (Na2P2O7), and sodium silicate (Na2SiO3), with different concentrations 

depending on the requirement in 2 litres glass beaker of distilled water and kept stirring by a 

magnetic stirrer for around 30 min to ensure the complete dissolution for the chemicals. Then 

Sample 

Jigs Metal  holders 

(a) (b)
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the conductivity and pH of the electrolyte were measured using a conductivity meter (HANNA 

HI9835) and a pH meter (HANNA-pH211), respectively. The resulting electrolyte pH and 

conductivity were varied from 11.65 to 12.45 and 3.71 to 7.1 mS/cm respectively also depending 

on concentration. During the treatment the electrolyte was maintained at room temperature.  

PEO treatment 

    PEO treatments were performed in a 2 litre steel beaker equipped with electrolyte stirring and 

cooling system. The plasma electrolytic oxidation processes were carried out in a pulsed 

bipolar mode (Fig. 3.6) and the process parameters are listed in table 3.1. The treatment time 

was varied from 2 to 12 min depending on the requirement of a particular experiment. The 

variations of voltage and current verses treatment time were recorded with a digital 

oscilloscope linked to a PC. The cooling system maintained the electrolyte temperature below 

30℃. 

Fig. 3.6. Schematic wave form of the pulse generation. 
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Fig. 3.7 Schematic of PEO process equipment. 

Fig. 3.7 shows the overview experimental setup. The process can be briefly described as 

follows: 

I. The working electrode and the counter electrode were connected to the positive and 

negative outputs of the power supply respectively. Then it was placed at the middle of the 

steel tank to enhance the equal current distribution during the PEO process. 

II. The frequency (f = 1/(ton++toff++ton-+toff-)) applied was set at 2.74 kHz, with 37 % duty

cycle (δ = ton/(ton++toff++ton-+toff-)×100%) for both positive (530 V) and negative (-180

V) voltages.

III. After the PEO treatment, the samples were rinsed thoroughly in water and dried with hot

air.

IV. The samples then undergo morphology, thickness, and phase compositions analysis.

Preparation of mounted samples 

     For microstructural analysis, the samples were sectioned as appropriate depending on 

their geometry. Because thin samples, a care should be taken during the cutting process, 

especially at the edge regions, for which the scissors were used. To prevent the produced 

oxide layer from damage during handling, copper coating up to 5 µm thickness was applied 

on the samples by PVD method. 

     After sectioning, the samples were washed by immersion it in an ultrasonically agitated 

bath containing acetone and then mounted in resin. The mounting provides convenience in 
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handling and protection to the edges of the specimen being prepared during polishing 

operations. In this work, the samples were mounted using a cold moulding method at room 

temperature. A mixture of epoxy resin with hardener 4:1 by volume was poured over the 

sample positioned face down in a cold-mounting ring. Then the samples were polished first 

with a SiC abrasive paper of gradually decreasing grit size from (400-800). Finally, polishing with 

an alumina suspension was carried out.  

   For the complex shape samples, the cutting process done when the samples inside the 

mount with its holder (see Fig. 3.8). This was done to avoid any damage to the coating 

during handling and analysis.  

Fig. 3.8. Example of how the L-shape samples were sectioned 

   Because of the low conductivity of coatings, the samples were also sputter coated with 

carbon to avoid any surface charging, due of the low conductivity of the ceramics coatings. 

Additionally, silver paint was used to enhance electrical connection between the Al foil 

samples and the SEM stage. 

Coating characterisation methods 

      To develop understanding of correlations between processing parameters, resulting oxide 

structure, desired properties and performance of composite materials, it was crucial to 

analyse the coating characteristics. These studies were undertaken utilising different 

experimental techniques which are described in the following sub-sections. 

3.6.1. Scanning electron microscopy 

    SEM is designed for direct observation of the surfaces of solid objects to study their chemical 

composition, microstructure and topography. In scanning electron microscope, the electron 
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beam produced by a biased filament is concentrated by electromagnetic lens towards into 

sub-micrometre sized spot on the sample and traverses over each point of the specimen. Then 

the electrons are reflected from each point and collected by a detector which transfers the 

current into colour intensity [1]. These signals are very sensitive to characteristics of surface 

morphology such as porosity, roughness (Ra), and cracks.  

    In this work, the morphology of the alumina layers produced by the PEO method has been 

studied by a JEOL JSM 6400 and an Inspect F50 scanning electron microscopes (SEM) operated 

at an acceleration voltage of 10 – 15 kV under vacuum environment. The magnification 

ranged between 500X to 3000X, in both secondary electron (SE) and back-scattered electron 

(BSE) modes.  

    Surface plane and cross-sectional SEM images were analysed using MountainsMap 7.2 

software to evaluate the coating porosity, pore size distribution and surface roughness. 

MountainsMap is a software platform created by Digital Surf Company compatible with most 

surface imaging, analysis and metrology instruments. It is designed to receive a rich choice of 

options and provide profile curves and many filtering selections. Coating characteristics such 

as thickness, porosity, pore size, surface roughness and current efficiency of aluminium 

dissolution (ηAl) in PEO process were analysed by using these programmes.  

    Surface roughness is extremely important characteristic describing homogeneity of the 

coating. It has direct effect on mechanical and corrosion behaviour of the coating. A 

roughness value can be calculated using either a profile (line) or a surface area. Among many 

different roughness parameters in use, Rz is a universally recognised and the most often used 

parameter of roughness.  

Fig. 3.9 Definition of Rz. 
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   According to JIS B 0031(1994), the surface roughness is defined as the distance between the 

top profile peak line and the bottom profile valley line of the sampled line measured in the 

longitudinal magnification direction of roughness curve and the obtained value is expressed 

in micrometre, (µm) as shown in Figure 3.9. 

3.6.2. Coating thickness measurements 

       Mechanical properties are very important for the applications of the thick and thin films 

and are influenced by the coating thickness. To determine the thickness of PEO coatings in the 

SEM images, a MountainsMap 7.4 software was used. Combining SEM with image analysis has 

been used in many studies. References [1], [2] reported measurement of the oxide layer 

thickness distribution and its relation to print quality and micro roughness of the base paper. 

Chinga and Helle [3,4] studied the influence of different coating methods and compositions 

on the coating characteristics. The density distribution under different conditions was studied 

by Ratto et al. [5]. These analyses and studies provide good examples of evaluation of coating 

properties based on microscopy and image analysis.  

    Figure 3.10 shows an example of the cross sectional image of a coated sample, where the 

coating thickness is denoted as A. To evaluate coating thickness, twenty measurements were 

taken based on vertical lines in each SEM image. However, in some conditions more than 

twenty measurements were made to obtain more accurate readings. The results of the 

measurements were statistically analysed, and the arithmetic average was taken for the 

coating thickness. The distribution of coating thickness was evaluated to quantify morphology 

properties of PEO coatings created under different conditions  
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Fig. 3.10 An example of the coating cross section 

3.6.3. X-ray diffraction analysis 

      For further analysis, it was important to detect the alumina phases present and their relative 

proportions in the produced PEO coatings. X-ray diffraction (XRD) analysis was used to obtain 

details of phase composition of PEO alumina coatings. This technique is based on constructive 

interference of monochromatic X-rays and a crystalline sample. The X-rays are generated by 

a cathode ray tube and filtered to produce monochromatic radiation, then collimated to 

concentrate, and directed toward the sample. The interaction of the incident rays with the 

sample produces constructive interference (and a diffracted ray) when conditions satisfy 

Bragg’s Law: 

2𝑑𝑠𝑖𝑛𝜃 = 𝑛𝜆 

Where 𝑑 is the crystal lattice plane spacing, 𝜃 is the diffraction angle and 𝝀 wavelength of 

electromagnetic radiation. This equation shows the relationship between the diffraction 

patterns observed when X-ray is diffracted through the crystal lattice and the atomic plane 

spacing. These diffracted X-rays are then detected, processed and counted. By scanning the 

sample through a range of 2θangles, all possible diffraction directions of the lattice should be 

attained due to the random orientation of the powdered material. Conversion of the 

diffraction peaks to d-spacing allows identification of the mineral because each mineral has a 

set of unique d-spacing. Typically, this is achieved by comparison of d-spacing with standard 

reference patterns [119]. 
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Fig. 3.11 Schematic illustration of XRD principle 

 

   In the present study, the XRD experiment was performed using a D2 PHASER X-ray 

Diffractometer operated at 40 kV and 30 mA with CuKα radiation (wavelength λ=0.15418Å) 

in the range 35ο to 55 ο with 0.2 s per step collection time and the total time was 255.2 s. The 

obtained diffraction patterns were analysed using OriginLab software. 

3.6.4. Nanoindentation tests 

Measures of the Young’s modulus (E) and hardness (H) of the PEO coatings were obtained 

by nanoindentation testing using Berkovich indenter with maximum load 10000 µN. AFM 

Dimension 3100 equipped with Triboscope Nanomechanical test instrument was used. The 

measurements were taken on cross-sections of PEO coatings. Surface roughness is extremely 

important in instrumented indentation testing [7], therefore the samples were grinded using 

2500 grit sandpaper and subsequently polished using alumina suspension of fine particles 0.3 

micron size. 

    A typical experiment according to the Oliver and Pharr method [120] including controlled 

loading and unloading of a diamond indenter against the sample surface, at the same time 

measuring the penetration depth. During unloading, it is assumed that only the elastic 

displacement is recovered; it is the elastic nature of the unloading curve that facilitates the 

analysis. For this reason, the method does not apply to the materials in which plasticity 

reverses during unloading. 

    The earlier experiments [120] was suggests that, the reduced modulus (Er) can be 

determined from unloading data collected through the following equation; 

                                                              
1

𝐸𝑟
=

(1−𝜈𝑠
2)

𝐸𝑠
+

(1−𝜈𝑖
2)

𝐸𝑖
                     (2.1) 
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Where νs and νi are the Poisson’s ratios for the sample and indenter and have values 0.07 and 

0.3 respectively, while 𝐸𝑖 is the Young’s modulus of indenter has value 1141 GPa. A schematic 

representation of a typical data set obtained with a Berkovich indenter is presented in Fig. 

3.12 [120].  

  Fig. 3.12 Schematic illustration of indentation load–displacement data 
showing important measured parameters 

This was then analysed according to the equation; 

𝑆 =
𝑑𝑝

𝑑ℎ
=

2

√𝜋
𝐸𝑟√𝐴 

Where 𝑆 is the experimental measured stiffness of the upper portion of the unloading data, 

A is the projected area of the elastic contact. Oliver and Pharr’s in their analysis stated that 

the mean contact pressure or (hardness) H, was then determined from the maximum load 

(Pmax) and the corresponding projected contact area (A):  

H= 
𝑃𝑚𝑎𝑥

𝐴

   In the present work, this was indented three areas per specimen by 3x4 grid with an indent 

spacing of 3 µm.   
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Fig. 3.13. Schematic of load-time curve during each indent; Peak load = 10000μN 

      

    All indentation measurements were done on PEO coatings followed a load-time cycle 

provided in Figure 3.13. As can be seen, a three-step load function was programmed to 

achieve the nanoindentation loading cycle. The first segment comprises a peak loading in 5 

sec, followed by a 5 sec holding at the peak load in the second segment. The third segment 

retrieved the indenter tip from the sample in 5 sec before reloading for the next cycle. During 

the measurements, attempts were made to avoid the porosity or large cracks and neglect any 

indents measured on the coating defects.  

3.6.5. Optical emission spectroscopy 

         Optical emission spectroscopy (OES) study was performed with FloTron XHR spectrometer 

with effective range of 300 to 900 nm to collect the spectra over duration of 6 min treatment 

time on L and U shape Al foil samples. To ensure that the maximum light was collected by an 

optical fibre for both inner and outer surfaces, the lens was placed at around 5 mm in front 

of the sample. The collected spectra were analysed to identify characteristic plasma species 

and monitor emission intensity of corresponding spectral lines as a function of processing 

time. 

 COMSOL-Multiphysics modelling 

    COMSOL Multiphysics software is a powerful finite element (FEM), partial differential 

equation (PDE) solution engine which is widely used in many fields. It has several modules 

that enhance the abilities of the basic software into the several application areas such as 
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AC/DC, chemical engineering, heat transfer and structural mechanics. The COMSOL 

Multiphysics software also has other supporting software, such as the CAD import module 

and the material library [8]. 

   To achieve better understanding about the electric field and current density distribution in 

the electrolyser during the PEO process which strongly influenced the treatment uniformity, 

a COMSOL MULTIPHYSICS 4.4 [121]modelling software package was used. A simple model 

was considered to investigate the distributions of the magnitude and direction of the electric 

field and current density in the electrolyser during the PEO treatment of irregular shape 

samples. The model description and some considerations for building up the current density 

and electric potential distribution model in the electrolyser during PEO treatment is 

introduced in Section 7-5-1. 

Summary 

    This chapter looked at the research methodologies used in this study. The use of these 

procedures allows understanding of the properties of PEO coatings analysed in the present 

work to be achieved. Besides it presents useful means to fulfil the aims stated in Chapter 1. 

Detailed information on the using of these methods is given and discussed in the following 

chapters (Chapter 4-8), as particular experimental parameters and analytical methods may 

differ based on specific conditions, such as different shape of samples, current mode and PEO 

coating properties.    
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Chapter 4  

Effects of treatment time on formation of PEO coatings on 
regular shape aluminium foil substrates  

 Introduction 

     One of the important variables needs to be taken into consideration during creation of a 

PEO coating, is the time of the process. The time affects the morphology and thickness of the 

PEO coatings which change the coating characteristics [11, 12]. Therefore, the oxidation time 

for PEO treatment should be investigated and optimized. 

     Natural brittleness of oxide ceramics become the main obstacle for their extensive use. 

However, the presence of residual aluminium from the substrate not converted to the oxide 

may enhance the flexibility of structures based on alumina films [122]. 

   Several parameters have an effect on the PEO process such as current mode, electrolyte 

and substrate composition as well as electrolyte temperature. Treatment time is one of the 

main factors influencing the characteristics of PEO coatings [8, 42, 123]. Different treatment 

times varying from a few minutes to several of hours have been used in research to 

understand characteristics and properties of the formed coatings [8, 51, 123, 124]. The 

thickness and morphology of the coatings are affected primarily, which can change the 

properties. Commonly, increasing the treatment time results in thicker coatings produced 

under more powerful and larger micro-discharges causing bigger discharge channels in the 

oxide layer as reported by Sundararajan et. al.[11]. However, this increase in thickness may 

have different effect on coating behaviour. It has been recognized that when using a pulsed 

bipolar current (PBC) mode for the PEO treatment of aluminium alloys [55], the optimal 

combination of the coating growth rate and energy consumption can be obtained at a pulse 

frequency between 1 and 3 kHz. In addition, the PBC PEO process showed improvement in 

coating morphology, when growing uniform surface layers of 50 to 70 μm in thickness.  

   Many studies of the PEO coatings formed in alkaline silicate-phosphate electrolytes 

concluded that the oxide layer thickness initially follows a direct relationship with treatment 

time, and after reaching the highest point, the film thickness begins to decrease because 

chemical dissolution starts taking over the coating formation [12]. Dun Lee et. al and Hussein 

et. al. [10, 70] reported a linear dependence of the coating thickness on treatment time, 
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whilst non-linear behaviour was reported by Al Bosta et. al. [12]. Treatment time of the PEO 

process not only influences oxide layer thickness but also surface roughness. The linear 

increase in coating roughness is directly related to the fact that the mean average diameter 

of discharge channels also increases linearly with coating time. Crystalline phases such as γ- 

and α-alumina formed during the PEO process are strongly affected by volcano-like features 

and the accumulated particles in the coating, which in turn is influenced by the treatment 

time, and this is consistent with the results reported by Yerokhin et. al [8]. The main objectives 

of this part of the study are: (i) to analyse the effect of PEO processing time on the 

characteristics and properties of the coatings deposited in different regions of a regular shape 

aluminium foil substrates; (ii) estimate the coatings growth efficiency during PEO processes 

(ii) find out the acceptable PEO processing time to get a relatively high degree of conversion 

of Al into its oxide and the limitations to create uniform coatings on the surface substrates. 

Experiments 

Rectangular samples of aluminium foil (0.05% Mg; 0.05% Mn; 0.25% Si; 0.07%Zn; 0.4%Fe; 

and Al balance) with dimensions of 30 mm × 15 mm × 0.05 mm and surface roughness of Ra 

≈ 0.1- 0.2 µm were used. The exposed working area of the samples measured using a vernier 

calliper was 4.5 cm2. The experimental setup is shown in Fig. 4.1. The PEO rig consisted of a 

30 KW power unit and a 2-L stainless steel tank equipped with magnetic stirring and cooling 

by continuous pumping via cold water heat exchanger to maintain the temperature between 

25 to 35 οC.  

Fig. 4.1. Schematic of PEO processing equipment. 
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    Before the PEO treatment, the samples were cleaned in distilled water and acetone and 

dried by air. The aqueous electrolyte contained 1.0 g/L KOH, 2.0 g/L Na4P2O7, 2.0 g/L Na2SiO3 

with pH value of 12.05 and conductivity 6.0 mS/cm-1. The electrical parameters of the PEO 

process are presented in Table 4.1. To keep the same distribution of electric field on the 

sample surface during the treatment, the working electrodes were suspended and positioned 

centrally using an isolated metal holder, in the middle of the tank. The treatment was carried 

out in a PBC PEO mode with frequency 2.74 kHz. The voltage was controlled at +530V and -

180V. The variations of voltage and current versus treatment time were recorded with a 

digital oscilloscope linked to a PC. In order to make comparisons between the samples treated 

in different experimental conditions, five treatment times were selected (2, 4, 6, 8, 10 min). 

After the PEO treatment, the samples were rinsed thoroughly in water and dried.

 Table 4.1. Electrical parameters of the PEO process. 

Samples analysis 

To understand the properties and characteristics of PEO coatings formed on the Al foil 

samples, it is an essential to understand the nature of the formed oxide layer. For this 

purpose, the analysis of PEO coating characteristics such as thickness, porosity, surface 

roughness, phase composition, degree of Al conversion to alumina, hardness and elastic 

modulus as well as evaluation of oxide film growth efficiency during PEO process were 

performed on different regions on the sample (edge region, centre region and near the metal 

part) (Fig 4.2).  

Cross-sectional and surface scanning electron microscopy analyses were performed using 

ImageJ and MountainsMap 7.2 software to determine the characteristics of PEO coating. 

Further details of the facilities, equipment used and how the samples were fixed are described 

in Chapter 3.  

Mode Voltage (V) 

Pulse parameters (s) 

Ton
+ Toff

+ Ton
- Toff

- 

Bipolar +530 -180 130 10 210 10 
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Fig. 4.2 Typical sample appearance after the PEO process showing regions selected for surface and 
cross-sectional morphology analysis. 

Characterisation of current density during plasma electrolytic 
process 

The current density–time response for the PEO coatings produced for various treatment 

times are shown in Fig.4.3. At the first stage, an initial linear increase in current density 

occurred through a short period of time to values from 0.32 A/cm2 to 0.4 A/cm2 based on the 

ramp time setting up for the voltage raise to the pre-set values, which are 530 V and -120 V 

in our work. Before the required voltage is reached, there were similarities in the shape of 

curves for all conditions, whatever the current density value is reached. This rising is similar 

to the creation of the conventional anodic oxidation as well as the thin aluminium oxide film. 

This appears to be similar to the results in references [12, 52, 55, 125-127]. This stage is 

controlled by the hydrogen and oxygen reactions products over the working electrode 

surface, which means the increasing of current is limited by a partial shielding action of 

hydrogen and oxygen [8]. 



Chapter 4 Effects of treatment time on formation of PEO coatings on regular shape aluminium foil substrates 

49 

Fig. 4.3. The plot of current density versus PEO treatment time. 

   A comparison of the curves showed no considerable difference in current density behaviour 

during the treatments for 6, 8 and 10 min. However, the maximum value achieved in the 

sample treated for 2 min process time due to the lower electrical resistance gaseous vapour 

envelope. At this point, the electric field strength on coating reaches the maximum value, 

which is sufficient to initiate ionisation phenomena at the electrode-electrolyte interface. This 

corresponds to the breakdown voltage of the oxide film formed on the specimen surface. 

Then, the current density slowly reduces with time. The major change occurs during the first 

160 to 170 s as can be seen in the curves of samples treated for 6, 8 and 10 min. This indicates 

that the coating thickness changes considerably during this period of time. During the 4-min 

treatment, it took around 70 sec to reach the steady state, while the sample treated for 2 min 

did not reach it at all. The duration of this period depends on the critical thickness of oxide 

film, which in turn depends on the values of current. In our work the treatments were carried 

out at constant voltages, however the current density varied for different samples. The reason 

could be related to the fact that the voltage drop in the electrolyte depends on the sample 

surface area, since during fixing the samples we used insulation tape, so the active surface 

area during the process maybe differ on each other. Another reason which is related to the 

changing of the electrical conductivity of the electrolyte during different runs. The time of 

reaching the steady state wherein the thicknesses of the oxide layers show no insignificant 

changes was 100, 110, 200, 210 seconds during the treatments carried out for 4, 6, 8 and 10 
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min respectively. According to visual observations of the PEO process, a disparity in changing 

the colour and density of the microdischarges occurred during all PEO treatments. The colour 

of the micro-discharges changed from bluish white to yellow and finally to orange while the 

discharge intensity increased and density decreased. It is believed [128] that the strong and 

long-lasting sparks could have a detrimental effect on the coatings. 

Thickness measurements 

   The thicknesses of coatings formed in side A at different regions on the working electrodes 

is shown in Fig. 4.4.   

Fig. 4.4 The PEO coating thickness as a function of treatment time in the edge region, at the centre 
region and near the metal part. 

     Fig. 4.4 show the thickness of the PEO coatings in the centre and edge regions is often a 

linear function of the treatment time and the data shows it is possible to obtain coatings with 

thickness more than 32 µm at one side in the central region. It can be noticed that, as the 

treatment time of the PEO process increases the coating thickness increases too. This relation 

between the thickness and treatment time is consistent with the observations by Dunleavy 

et. al.[125], who conducted PEO treatment of an aluminium alloy in a similar electrolyte. To 

compare the coating thickness between the three regions, the thicker oxide films under all 

treatment conditions were formed in the edge regions, except samples processed for 8 and 

10 min, where the coatings in the central region were slightly thicker than at the edge. This 

difference may be significant in some application which needs a degree of stiffness in one 

side. The difference in coating thickness between the edge and centre region for all conditions 
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ranges from 3 to 5 µm except sample treated for 4 min where the difference reached around 

7 µm. This is because the PEO coating formation is strongly dependent on the primary electric 

field distribution and the sample might not have been in the centre of the tank [129, 130]. 

From the thickness measurements in various regions of the samples, it appears that the 

coating thickness is distributed unevenly on both sides, except for the central region of the 

sample treated for 10 min, which displays difference of up to 9 µm due to the effect of current 

density at the edges of the working electrode. However in the regions near the metal part, 

the thickness on both sides along the sample length shows differences varying from 1 to 3 µm 

from the beginning of the coating formation to around 40 µm as well as high porosity.  

      Fig 4.5 show the oxide growth rate at different process times. As can be seen in Fig 4.5 the 

growth rate of the oxide layer formed for 2 min was 0.04 µm/sec and it continues increasing 

until reaching around 0.06 µm/sec for the coating formed for 8 min. After that the growth 

rate decreases to 0.05 µm/sec for the coating formed for 10 min. The same logics underlies 

the decrease in residual aluminium thickness with PEO treatment time. For instance, no 

significant difference in residual aluminium thickness between samples treated for 8 and 10 

min. This means, with an increase in treatment time the dissolution of aluminium becomes 

very low and the growth of thickness becomes toward the inner direction of the substrate 

and the removal (ejection) of Al3+ ions from the oxide film towards the solution generating 

the aluminium vacancies in the oxide layer which causes a porous structure [131]. From data 

of aluminium residual thickness (Fig 4.6), it can be said that the fraction of aluminium foil 

consumed was around 5 % after 2 min, while it reaches to 80 % for after 10 min of treatment. 

Fig. 4.5 Coating growth rate at different treatment times. 
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Fig. 4.6 SEM images of a cross section of PEO coating on Al foil treated for 10 min, showing residual 
aluminium thickness. 

Due to the aluminium dissolution process during formation of PEO coatings, it’s difficult to 

identify the direction of the oxide layer growth, however taking into account a very small 

difference in the total thickness for whole sample after the PEO process carried out for 8 and 

10 min, in the final stages the PEO process, the coating appears to grow mainly toward the 

aluminium substrate. R.O. Hussein et. al. [10] in discussing the ceramic layer growth 

mechanism during the PEO treatment stated that the oxide layer grows inwards and outwards 

concurrently. However during the first stages, the oxide layer grows mainly outwards and 

after a certain thickness is reached the growth towards the substrate becomes faster. 

However at the same time, the oxide layer thickness remains increasing on both sides with 

different degree of growth.  

     In order to achieve a better understanding about the mechanism of the coating formation 

and the conversion of Al to alumina, the treatment time was increased to 12 min to achieve 

the full conversion to alumina. The total thickness of the resulting oxide layer was 75 ± 1.5 

µm and the full conversion to alumina occurred except for a small area not exceeding 1.0 % 

from the total area of bulk material (aluminium foil) distributed in different area along the 

sample length as shown in Fig 4.7.  
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Fig. 4.7 SEM micrographs of cross-sections of PEO coatings on the sample treated for 12 min 
showing full conversion and a small area of residual aluminium. 

SEM morphologies 

       Figures 4.8 presents the SEM micrographs of surface morphology of oxide coatings in 

different regions of Al foil samples treated for different periods of time. All samples showed 

a number of “pancake” like features, with discharge pores of irregular shape were located on 

the coating surface, which is a common feature of PEO coatings. In central regions of the 

samples treated for 6 and 8 min, a centre of each pancake featured a pore formed by the 

discharge channel through which the molten aluminium surged out, reacted with oxygen and 

quickly solidified leaving pores and distinct boundaries [12, 74]. In the sample treated for 6 

min, the size of the pores in the central region ranged from 3 to 6 m, with some areas on 
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the surface occupied by volcano-like structures created by discrete localised micro-discharge 

events. The volcano-like features indicate the surface temperature during the PEO process 

was high, which explains the high strength of the microdischarges [11, 99, 115]. Relatively 

large holes in the centre of the pancake for all samples suggested that there were strong 

localized discharges and such holes penetrate in the coating thickness. As shown in Fig 4.8, 

some microcracks exist in the coating at the central region of the sample treated for 8 min, 

as indicated by the white circle. This is maybe due to the temperature difference between the 

coating and the electrolyte, which is caused by the rapid cooling. During the PEO treatment 

the temperature in the discharge channels was very high, reaching thousands degrees Celsius, 

and the electrolyte temperature ranged from 30 to 40 οC rate. Therefore, subsequent thermal 

shocks led to the appearance of cracks in the oxide layer [74, 132]. At the edge regions in the 

samples treated for 2 and 4 and min, some cracks can also be seen. These cracks could have 

been caused by handling the thin delicate samples. 

     SEM micrographs in Fig 4.9 show cross-sectional morphology of the coatings formed in 

different regions of aluminium foil samples at different processing times. For all samples, the 

oxide layers appeared to have a significant amount of porosity, holes, and discharge channels 

within the coating and near the coating substrate interface, in all sample regions. Such defects 

and porosity were likely to be caused by powerful discharges developed at the sample 

surface. During the PEO coating growth, the porosity was formed as a result of localized 

oxygen trapping in molten aluminium in the vicinity of plasma discharges. So it will possible 

that the pore network helps the creation of relatively high thickness oxide layers by allowing 

the electrolyte to penetrate deep into the growing layer during the treatment [61].  

      A comparison of cross-sectional images (Fig 4.10) indicates that the coatings formed for 6, 

8 and 10 min comprise two regions, the outer porous and the inner dense region. Most of the 

pores and defects in the outer region are caused by localised discharges. 
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Fig. 4.8. SEM micrographs of surface morphology of oxide films in different regions at different treatment times 
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Fig. 4.9 SEM micrographs of cross-sectional morphology of oxide films formed in different regions and for different periods of time.
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Fig. 4.10 SEM images of PEO coatings on Al foil treated for 8 and 10 min showing the outer and inner 
regions. 

 
The inner dense region of the coating formed is composed of γ and α alumina phases. It may 

be subdivided into intermediate dense region and inner barrier layer which is probably the 

main contributor to the chemical properties of the coating. As mentioned in the methodology 

chapter, the software MountainsMap 7.2 was used to estimate the coating porosity. Fig 4.11 

(a) and (b) show SEM images of surface morphology of the oxide film on the sample treated 

for 6 min before and after estimation of porosity, depending on the colour variation. As seen 

in Fig (4.10(a)) the pores in dark are easily distinguishable from other microstructure, which 

can be identified. Fine pores exist in some regions such as centre region in samples treated in 

8 min as seen in Fig 4.9. However, it is unsurprising if not appear, where it could be filled or 

deformed during the micropreparation of samples. These fine pore network may be cause a 

limitation of using this method. The highest porosity was present in the edge region in the 

sample treated for 2 min. While the sample treated for 10 min was characterised by lowest 

porosity in both regions. Thus porosity decreased steadily with processing time. Also from the 

cross-sectional images, it can be seen that, for all treatment times, the coatings in the near 

the metal part regions (Fig 4.12) have higher levels of porosity compared to the other regions. 

This is because the area close to the metal part displays the beginning of the coating 

formation which is characterised by lower thickness.  
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Fig. 4.11 (a) SEM surface morphology micrograph of PEO coating produced for 6 min (b) coating 
porosity identified using MountainsMap 7.2 software. The required area was determined based on a 

threshold value. 
 

 

Fig. 4.12. SEM surface and cross section morphology of PEO coatings on the sample treated for 8 min 
near the metal-coating region. 

  

 

 

Fig. 4.13 PEO coating porosity in different regions of the sample. 
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Percentage of surface porosity of PEO coatings in edge, central and near metal part regions 

of Al foils formed at different treatment times is shown in Fig 4.13. The results obtained 

indicate that the morphology of oxide films on aluminium foil produced by the PEO process 

in different regions is significantly different. It can be seen clearly that the porosity at the 

edges was found to be greater than that at the central region, however in both regions the 

percentage of porosity on the surface decreases with increase the treatment time. On other 

side, no relation appear between the treatment time and percentage of porosity in the area 

near the metal part. Figure 4.14 and 4.15 show the coating thickness and pore size 

distributions respectively.  

 

Fig. 4.14 Thickness distribution in different regions of Al foil samples: (a) central region, (b) edge 
region, (c) near the metal part. 
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From the coating thicknesses data, it follows that the thickness uniformity in central regions 

is always greater than at the edge regions, due to a number of factors such as effect of edges 

on electrolyte concentration gradients and current density distributions during the PEO 

process. Thus, in the central region of the sample treated for 4 min, the highest probability 

density of thickness lies in the range of 8-12 µm, while at the edge and near the metal part, it 

was in the range of 4-8 µm. Fig 4.16 shows a high magnification image of the coating on the 

sample treated for 10 min in the central region, with the inset illustrating the measurement 

of the pore size in the top coating layer. 

 

Fig. 4. 15 Effect of treatment time on pore size distribution. 
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Fig. 4.16 Typical example of a cross-sectional image of the sample treated for 10 min. 

The image shows the measurement of pore size using MountainsMap7.2 software. There is 

strong correlation between the mechanical properties of the PEO coatings and their structure 

[58, 64]. Porosity can effects on the coating properties, such as hardness, dielectric strength 

and corrosion resistance. For the lowest porosity, the highest coating hardness, chemical 

stability and dielectric strength can be expected. However, the combination of good coating 

adhesion with surface-connected porosity provided by moderated surface roughness confers 

good tribological performance of PEO coatings in many applications.  

     Surface roughness is important parameter that may influence the characteristics of 

morphology. Krishna et. al. in his study of the tribological performance of ultra-hard ceramic 

coatings states that the surface roughness of the PEO coatings is a linear function of the final 

coating thickness [133]. An increase in processing time provides adequate opportunity for the 

build-up of the PEO coating, which leads to an increase in the coating thickness. However with 

an increase in treatment time, the discharges become more energetic and violent, which 

causes the formation of non-uniform coatings with higher roughness [134]. The results of 

surface roughness (Rz) analysis are shown in figure 4.17, indicating that the surface roughness 

increased with the increasing processing time.  



Chapter 4 Effects of treatment time on formation of PEO coatings on regular shape aluminium foil substrates 

 

62 

 

 
Fig. 4.17. (a) The surface roughness values in the central region of PEO coatings produced at 
different processing times and (b) an example of corresponding line scan profile of surface 

roughness on the Al foil sample PEO treated for 10 min. 

 

 Phase composition analysis 

Figure 4.18 displays X-ray diffraction patterns of ceramic coatings on the samples treated 

for 6, 8 and 10 min.  From positions of diffraction peaks, the phases were identified by 

comparison with the reference pattern of γ-Al2O3 (PDF# 50-0741), α- Al2O3 (PDF# 46-1212) 

and Al substrate (PDF# 04-0787) [79, 135]. Analysis of the diffraction patterns indicates that all 

studied PEO coatings are mainly composed of γ-Al2O3 and α-Al2O3 the ratio of which 

characterised by the heights of (400)γ and (113)α peaks located at 46.2o and 43.1o 2θ 

comprises approximately 6:1, 7:1 and 5:2 for the samples treated for 6, 8 and 10 min 

respectively. It is found that the intensity of (200)Al peak at 45.10o 2θ decreases as the 

treatment time increases. However, the highest intensity of (113)α peak is observed in the 

sample treated in 10 min. These phase profiles resemble those previously reported by 

Sundararajan et al [11], Xue et al [136], and Guangliang et al [58]. It is known that the PEO 

coatings are produced by plasma thermal chemical reactions in the discharge channels. The 

α-Al2O3 phase is thermodynamically stable at high temperatures and posesses very good 

mechanical properties, whereas γ-Al2O3 which hardness is inferior to that of alpha phase is a 

metastable phase. The content of γ-Al2O3 phase is high in the outer porous layer and 

decreases towards the inner layer of the coating. 
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   Gamma alumina can transform into alpha alumina if heated up to 800-1200 οC [71, 115]. 

The α-Al2O3 content in the PEO coatings rises gradually with increasing coating thicknesses 

that can be related to the higher thermal energy accumulation in a thicker coating. Therefore 

it can be inferred that the deposition process of a relatively thinner coating is dominated by 

the growth of γ-Al2O3, while that of a thicker coating is dominated by the growth of α-Al2O3. 

Fig. 4.18 XRD pattern of PEO coatings produced for different process times
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 Evaluation of oxide film growth efficiency during PEO process 

 Usually, during anodising the current density (i) passed through the coating layer can be 

written as the sum of the partial processes of coating layer formation (𝑖i) dissolution (𝑖d) and

oxygen evolution ( 𝑖e) at the anode surface as  

𝑖 =  𝑖i + 𝑖e + 𝑖d 

where 𝑖i is the ionic current of the oxide film growth, 𝑖d is the anodic dissolution current and 

𝑖e is the current caused by oxygen evolution. 

    PEO process is typically performed from a couple of minutes to 3-4 hours at current density 

up to 2000 A/m2 and voltage up to 1000 V [8, 47]. This process is actually associated with high 

discharge temperature and gas evolution due to the plasma thermochemical reactions in the 

microdischarges [8, 42, 46]. As a result, the PEO process which combines oxide film formation, 

dissolution and dielectric breakdown consumes high energy, and under this situation the 

processes efficiency becomes very important. In research paper published by Bakovets et. al. 

[137] the current efficiency in PEO process of Al in electrolyte solution 40 g/l Na2O.3SiO3 for 

treatment time 6 min was 9.1%. Yerokhin et. al. [46] evaluated the current efficiency for the 

partial processes of oxide film formation, dissolution and oxygen evolution in the PEO process 

of Al in aqueous solutions of KOH with 0.5-2.0 g/l. In this work, the estimations of the PEO 

process efficiency for the coatings formed in different treatment times are carried out 

assuming that current yields of the partial processes of oxide layer growth (𝜂𝐴𝑙2𝑂3),

dissolution (𝜂𝐴𝑙𝑠𝑜𝑙) and gas evolution (𝜂𝑂2) on the surface of working electrode are

dominated by the Faraday's law. So, on the anode surface the balance equation for the 

current yields of the partial processes can be written as follows [46]: 

𝜂𝐴𝑙2𝑂3+ 𝜂𝐴𝑙𝑠𝑜𝑙+ 𝜂𝑂2 = 100%     (1) 

The equations used in current efficiency calculations for the main reactions of the plasma 

electrolysis are given in Table 4.3 [46].  
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Table 4.2 Current efficiency correlations for the main products of the PEO process [34]. 

Reaction Electrochemical equivalent (q) Current yield (η) 

Anodic oxidation 

2𝐴𝑙 + 3 2−  → 𝐴𝑙2 3 + 6 −
𝑀

6𝐹
= 1.76 × 10−4  (g/C-1) 

𝛿𝐴𝜌

𝑄 𝐴𝑙2𝑂3
 (2) 

Anodic dissolution 

𝐴𝑙 → 𝐴𝑙𝑠𝑜𝑖𝑙𝑑
3+ + 3 −

𝑀𝐴𝑙

3𝐹
= 9.32642 × 10−5 (g/C-1) 

𝑚𝐴𝑙
𝑠𝑜𝑙

𝑄 𝐴𝑙
 (3) 

Oxygen evolution 

2 2 + 4 −  →  2 + 4 +

𝑉𝑂2
𝑜

4𝐹
 = 0.058  (ml C-1) 

𝑉𝑂2

𝑄 𝑂2
 (4) 

Where the MAl is the molar mass of aluminium, F is Faraday’s constant, δ coating thickness, A 

is the sample area, 𝜌 density, Q is the total charge (I.t), 𝑞𝐴𝑙2𝑂3, 𝑞𝐴𝑙  𝑎𝑛𝑑 𝑞𝑂2 is the 

electrochemical equivalents of alumina, aluminium, and oxygen, VO2 gas molar volume.  

   In our results, the effect of treatment time on the coating thickness is obvious, where the 

oxide film thickness increases with increasing the treatment time (Fig 4.4), however the 

growth rate decreases at longer times and the dissolution of aluminium becomes low. To 

achieve better understanding in oxide film growth and to assist the optimisation of the 

process efficiency, the current efficiency of the partial electrode processes during the PEO 

treatment was evaluated. For different treatment times, the mass of lost aluminium 𝑚𝐴𝑙
𝑠𝑜𝑙 and

the coating thickness were evaluated from the thickness measurements on the samples cross-

section using scanning electron microscope techniques (section 3). The thickness of residual 

aluminium was subtracted from the foil thickness before the PEO treatment and, knowing the 

aluminium density (2.7 g/cm3), amount of Al consumed during the process can be estimated. 

Table 4.3 Coating thicknesses, dissolved Al and total charge of PEO process in 1 g l-1 KOH, 2 g L-1 
Na2SiO3, and 2 g L-1 Na4P2O7 solution for different treatment times. 

Treatment time (min) Charge, Qtot (C) Coating thickness, (μm) Al lost, 𝒎𝑨𝒍
𝒔𝒐𝒍 (g) 

2 425.4 10.0 0.1215×10-2 

4 728.5 20.0 8×10-3 

6 1036.8 32 0.122×10-1 

8 1285.5 52 0.023 

10 1291.4 64 0.024 
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The total charge (C) passed during each treatment was calculated by integrating 

instantaneous current values over processing time. The calculated values and processing 

parameters are presented in Table 4.3. 

Assuming the alumina density 𝜌 = 3.1 g/cm3 and based on reference data given in table 4.3 

the results of current efficiency for the products of partial anodic processes in PEO of process 

of aluminium foil in different treatment times presented in fig 4.19  

 

Fig. 4.19. XRD pattern of PEO coatings produced for different process times. 

 

From fig 4.19 it can be seen that the current efficiency of the oxide layer growth ranges from 

19-36 %, and increasing with treatment time. Similarly, the aluminium loss increases with 

treatment time. Although the current efficiency of oxygen evolution decreases with time, the 

fraction of total current spent on the oxygen evolution is always more than a half of the total 

current for all conditions, i.e. oxygen evolution remains the dominant electrochemical 

process.  

 Nanoindentation test results 

    To provide a simple conceptual picture of mechanical properties of produced PEO coatings 

and associated effects of treatment time, the values of elastic modulus and hardness were 

estimated. Nanoindentation experiments were performed on mounted cross-sections of PEO 

coatings produced for 6, 8 and 10 min. Typical load versus displacement curves for the three 

coatings are shown in Fig. 4.20, with derived values of hardness and elastic modulus 

presented in Table 4.5. 
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Fig. 4.20 (a), Nanoindentation Load–displacement curves of PEO coatings of samples for different 
treatment times. (b), Scanning probe Microscopy imaging of the nanoindentation for condition 10 

min. 

Table 4.3 Coating thicknesses, dissolved Al and total charge of PEO process in 1 g l-1 KOH, 2 g L-1 
Na2SiO3, and 2 g L-1 Na4P2O7 solution for different treatment times. 

Treatment 
time (min) 

One side 
coating 

thickness 
(µm) 

Porosity 
% No. of 

indents 

Av. Young’s 
modulus 

(GPa) 

Av. Hardness 
(GPa) 

Al-foil 
substrate 

- 
- 

- 69 0.3 

6 17 9 29 182 ± 29.0 14.2 ± 3.0 

8 27 8.5 22 191 ± 15.0 15.3 ± 2.2 

10 32 5 31 211 ± 19 16.6 ± 1.8 

    From the above results, it has been noticed that the Young’s modulus rise to 200% and this 

is also applies to the hardness measurements. However, the experimental measured stiffness 

was relatively low, compared with the expected for dense alumina (~370 GPa). This may 

provide some flexibility to the ceramic-coated structures, which would be advantageous for 

many engineering applications such as dielectric substrates in semiconductor and electronics 

instruments. 
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    It can be clearly seen that the maximum hardness observed in the coating on the sample 

treated for 10 min, which has higher thickness (32 µm). These results are consistent with 

those reported by Yerokhin et al. [8] who stated that the PEO coating can provide a significant 

strengthening influence to the aluminium substrate. Also it was reported that the hardness 

of coatings based on gamma phase corresponded to 10-15 GPa, and 17-22 GPa for the coating 

based on alpha phase. Such observation was also consistent with the results of 

nanoindentation measurements reported by Curran et al. [99]. Although the values of 

hardness and Young’s modulus smaller than those expected for PEO alumina were rejected, 

some scatter in these data can be observed in Fig 4.21. This is not really surprising when 

account is taken of the network of micro-cracks and micro-pores present in the coatings. This 

is clear, if we see adjusted R2 values provided in Fig 4.21 which mainly has good correlation in 

sample treated in 8 min, however in sample treated in 10 min showed that the Young’s 

Modulus has relation with around 51 % of the difference in hardness.  
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 Fig. 4.21 Cross-section tests of coating hardness versus Young’s modulus of samples treated for 
different periods of time. 

Some scattered data may be considered for the case when indenter contact with pore which 

act on the value of hardness. So fine grain size could be enhance the hardness, while porosity 

can significantly reduce it. Similar observations have been reported in other references [8, 14, 

99, 138]. The coatings produced under all studied conditions (treatment time 6, 8 and 10 min) 

show a fine pore size (0-3 µm) and porosity of 9.5, 8 and 5 % respectively. So the improved 

hardness is thought to be the result of a reduced porosity and a presence of a considerable 

proportion of crystalline material, particularly α-phase as described by the Curran et al. [61]. 
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    Several studies discussed the effects of porosity on the mechanical properties of PEO 

coatings [61, 139-141]. Curran and Clyne [61] in discussion of the effect of porosity in PEO 

coatings produced by PEO process stated that the fine porosity can be reduces the stiffness 

for the coatings. Also Mackenzie in [142] observed that 20% porosity might to be reason for 

reduce the stiffness of around 30%. In the same context in our study, it was observed that the 

hardness and Young’s modulus increase with decrease the porosity. The correlation between 

the porosity percentage with the stiffness and hardness can be seen in Fig 4.21.  

 Fig. 4.22 Show the relationship between porosity vs hardness and Young’s Modulus.
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 Summary 

In this chapter, ceramic coatings were prepared on aluminium foil surfaces by PEO 

treatments at different durations.  

     No significant differences in values of current density, which ranges from 0.32 to 0.4 A/cm2 

depending on treatment time from 2 to 10 min.  

     During the PEO process the period of time required for current density to reach a steady 

state was estimated, and found to be longer for the samples treated for 6, 8 and 10 min 

compared to those treated for 2 and 4 min. 

     The results indicated that the oxide layer thickness increases with increasing in treatment 

time. However in the last stage, the coating growth rate was reduced due to the anodic 

dissolution and recrystallisation of the coating.  

     By the treatment for 12 min with resulted in the coating thickness of 75 ± 1.5 µm, complete 

conversion of aluminium foil into alumina was successfully achieved, except for a very small 

area that does not exceed 1 % of the sample volume. However such sample showed high 

brittleness. 

     According to the results obtained, in the central and at the edge regions, the coating 

porosity decreased and the surface roughness increased with treatment time. While in the near 

metal part of the sample, where the PEO coating only started formation, these characteristics 

showed a non-linear behaviour. The pore size distribution analysis indicated that the pores 

are mainly smaller than 6 µm under all treatment conditions. However the results in coating 

of sample treated for 6 min having a more uniformly distributed porosity with smaller pore 

size.   

    Treatment time affected the gamma to alpha alumina transformation. Both γ and α - 

alumina are observed after 6 min varying in relative proportion through the coating thickness. 

However in coating on the sample treated for 4 min composed almost only of gamma 

alumina.  

    The surface mechanical properties of Al foils, such as hardness and stiffness were improved 

by PEO coatings. However, the substrate flexibility after the treatment should be carefully 

considered, i.e. when the PEO treatment was applied for a desired period of time, the 
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produced substrate should exhibit both excellent stiffness and good hardness for practical 

applications. This could be achieved by controlling the thickness of the residual aluminium. 

For example, high brittleness of the coatings produced was observed on samples treated for 

10 and 12 min. 

    During the PEO process for all conditions, the oxygen evolution was the main major 

electrochemical process and it is current efficiency ranged from 78 to 41 % and decreased 

with increasing treatment time. In the meanwhile, the current efficiency of the coating 

formation ranged from 19 to 36 % and increases with increase in treatment time. 
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Chapter 5  

Effects of electrolyte composition on the process of 
conversion of aluminium foil in to alumina ceramics by 
plasma electrolytic oxidation 

 Introduction 

   To analyse the mechanisms underlying the PEO coating formation, a number of parameters 

are usually considered, containing treatment time, electrolyte and electric field distribution 

in the electrolyser. From the results in Chapter 4, it follows that although almost full 

conversion of aluminium foil to alumina can be obtained using a PEO technique, the 

composite materials shows signs of brittleness. It is also concluded that the coating of sample 

treated for 6 min in the PEO process having a more uniformly distributed porosity with smaller 

pore size, and shows a moderate values of stiffness.  

   On other hand, the importance of the electrolyte in the PEO process and its influences on 

the coating characteristics has been highlighted in Chapter 2. It has been cited that electrolyte 

composition can influence the coating growth rate, morphology and microstructure, phase 

composition formation mechanism, adhesion to the substrate. Therefore, the principal 

objective of the present part of the project is to study the influence of the electrolyte 

constituents on the coating thickness, morphology and phase composition of the process 

conversion of aluminium foil in to alumina ceramics to obtain alumina ceramics with a 

moderate degree of flexibility.    

 Experiments setup  

    Rectangular samples of a 50-µm thick  AA1050 aluminium alloy foil with dimensions 30 mm 

× 15 mm and surface roughness of Ra ~ 0.1- 0.2 µm were used as substrates. The samples 

were PEO treated to convert to a higher proportion of alumina. The PEO coatings were 

produced following the procedures described in Chapter 3. The PEO processes were carried 

out in a bipolar pulsed current (PBC) mode with frequency 2.74 kHz. The voltage was 

controlled at +530 V and -180 V.  

   During the treatment, the electrolyte temperature was maintained below 30 ◦C, by cooling 

the electrolyte in the electrolytic cell. All the samples to be converted to alumina ceramics 
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were treated for 6 min. Voltage and current transients during the PEO treatment were 

recorded with a digital oscilloscope linked to a PC.  

   The electrolytes prepared from different concentrations of potassium hydroxide (KOH), 

sodium pyrophosphate (Na4P2O7), and sodium silicate (Na2SiO3) and denoted by E1, E2, 

E3,…and E9 as shown in Table 5.1. Electrolytes conductivity was determined by HI 9835-

conductivity/TDS meter.       

Table 5.1. Design table of factor (concentration) varied in the experiments. 

   Nine different electrolyte compositions were formulated according to the design of 

experiments (Taguchi Method) [143] with full factorial 23. The basic factors varied in the 

design are given in Table 5.2.  

Table 5.2. Ranges of factors varied in the experiments. 

    After the PEO treatment, the samples were washed in running water and dried.  An FEI 

InspectF scanning electron microscope was used to study coating thickness and morphology. 

Sixty images were taken at ×2000 magnification on each sample for statistical study. A 

Electrolyte code Factor level 
Concentration (g/l) 

KOH Na4P2O7 Na2SiO3 

E1 -1 -1 -1 0.75 0 0 

E2 -1 -1 +1 0.75 0 2 

E3 -1 +1 -1 0.75 2 0 

E4 -1 +1 +1 0.75 2 2 

E5 1 1 1 1 1 1 

E6 +1 -1 -1 1.25 0 0 

E7 +1 -1 +1 1.25 0 2 

E8 +1 +1 -1 1.25 2 0 

E9 +1 +1 +1 1.25 2 2 

Factors
Value at encoded 

Level 

-1 0 +1 

KOH g/l 0.75 1 1.25 

Na4P2O7 g/l 0 1 2 
Na2SiO3 g/l 0 1 2 
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MountainsMap 7.1 [144] software was used to evaluate the PEO coating thickness and pores 

size in the SEM images. Twenty measurements were taken at each SEM image. The probability 

density of pore size and coating thickness were obtained to quantify morphology 

characteristics of PEO coatings produced from different electrolytes. The surface roughness 

(Ra) was measured using a Veeco Dektak 150 profilometer. Three scans for every sample were 

taken to calculate the average values. Porosity and pore morphology were determined from 

SEM images by ImagJ and MountainsMap 7.1 software. 

From the application point of view, it was deemed important to determine crystallinity, 

relative proportions of alumina phases present and chemical states of aluminium and 

phosphorus. Phase analysis of the alumina ceramics samples were carried out using Bruker 

D2 Phaser X-ray diffractmeter with a Cu Kα radiation and nuclear magnetic resonance (NMR) 

techniques. The 27Al MAS NMR spectra were recorded at 104.20 MHz using a Varian VNMRS 

spectrometer and a 4 mm (rotor o. d.) magic-angle spinning probe. They were obtained using 

direct-excitation with a 1 μs pulse (equivalent to an approximate pulse angle of 20o), a 0.2 s 

recycle delay, at ambient probe temperature (~25 °C) and at a sample spin-rate of 12 KHz. 

Between 3000 and 5000 repetitions were accumulated. The solid-state 31P spectra were 

recorded at 161.87 MHz using a Varian VNMRS spectrometer and a 4 mm (rotor o. d.) magic-

angle spinning probe. They were obtained using direct-excitation with a 3.6 μs pulse and a 30 

and 300 s recycle delay, at ambient probe temperature (~25 °C) and at a sample spin-rate of 

12 s-1   Between 40 and 180 repetitions were accumulated. To create the powder, the samples 

were dissolved in hot (80oC) 2.5M NaOH for 30 min to form sodium tetrahydroxyaluminate 

(NaAl(OH)4). After cooling, the solution was carefully neutralised with 20 % H2SO4 until pH 

becomes close to 7 to prevent the oxide from re-dissolving. Gelatinous Al(OH)3.nH2O was then 

filtered out from the solution. The filter was washed with distilled water and dried at 150 to 

200oC for 10 min [145].  
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Current transient behaviour during PEO treatment 

    Current density–time responses during PEO treatment of Al-foils in electrolytes with 

different compositions are shown in Fig.5.1. All experiments exhibited a typical current 

density-time response that can be easily categorised into three stages. Consistent with [4, 8], 

at the initial stage ranging from 18 to ~ 25 s, a relatively quick anodic reaction proceeds, with 

the rate linearly increasing to the maximum which varies form 0.23 A/cm2 to 0.52 A/cm2 

depending on electrolyte composition. Changes in discharge characteristics resulting from the 

addition of Na2SiO3 can be observed similar to [76, 78]. At the second stage, a decrease in the 

current density with time occurs due to the fast growth of the oxide film and within this 

process, a transport of Al3+ ions and their ejection to the electrolyte result in a slow increase 

in current density. Thereafter, the current growth rate becomes much slower until an 

equilibrium is achieved between the oxide layer formation and Al3+ ejection, which leads to 

the achievement of an almost steady-state (stage III). The fast reaction at the first stage may 

be comparable to conventional anodising process at the beginning of formation of the oxide 

layer according to the Faraday’s law and controlled by the hydrogen and oxygen reactions 

products over the working electrode surface. The highest value 0.5 A/cm2 was found for the 

process carried out in electrolyte E9, while the lowest value 0.23 A/cm2 was found in 

electrolyte E2. 
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Fig. 5.1. The plots of current density versus PEO treatment time in electrolytes with different 
compositions 

    Usually current density ranging between 0.01 A/cm2 to 0.3 A/cm2 is required to achieve 

conditions suitable for PEO process and increasing the current density may enhance the 

coating growth rate whilst raising the relative content of α-Al2O3 [8]. Several researchers [8, 

78] declared that when Na2SiO3 is added in electrolyte solutions for PEO of Al alloys, it is
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possible to achieve improved discharge characteristics, such as high spatial density, frequency 

and short duration of micro-discharges. It is therefore not surprising that the time required 

to reach the discharge point was shorter in all electrolytes containing silicate, such as (E2 and 

E7) compared to those without it.  

   As shown in Fig. 5.1, the value of current density in the final stage of processing in the silicate 

containing electrolytes E2 and E7 tends to decrease compared to those without silicate, such 

as E1 and E6. Also, it is particularly noticeable that higher current densities in the range 

between 0.32 A/cm2 to 0.50 A/cm2 developed in electrolytes with higher KOH content, while 

this is reduced to 0.2 A/cm2 to 0.30 A/cm2 in the electrolytes that contain less KOH. This is 

due to the effect of potassium hydroxide and sodium silicate on electrolyte conductivity which 

significantly affects the current density during the PEO process.  

Coating Surface Morphology 

    Figures (5.2-5.4) show the surface and cross-sectional morphologies of the oxide coatings 

formed in the studied electrolytes (Table 5.1). All coatings appear to be not very dense in

some regions; however, some show less porosity in the inner regions, such as coating 

produced in electrolytes E1, E6 and E9. As can be seen, the coating surfaces feature 

randomly distributed pores with various size and shapes, appearing as dark circular spots. 

Such defects and porosity were likely caused by strong discharges occurring at the electrode 

– electrolyte interface. The porous features strongly depend on discharge characteristics [8,

76] and may arise from oxygen evolution, which can be generally held responsible for the

formation of more obvious macroscopic pores near the PEO coating surface. It is worth 

mentioning that the substantial temperature and pressure are likely to result in significant 

concentrations of dissolved oxygen in the molten oxides. Because of the limited duration of 

discharges which is about 10 µs [61, 146], this evolved oxygen is likely to become trapped in 

the molten oxide. This could help create electrolyte and escape through very fine 

interconnected porosity as the melt is fast cooled. It has been verified that the widely 

interconnected networks is not an issue [147] however the existence of the very fine 

interconnected porous networks such as created in coating produced in electrolyte E4 (Fig 

5.3 d) could be help to explain the stability of the oxide growth which is reflected in 

increasing the thickness of coating without destructive powerful discharges and 

prohibitively high dielectric resistance developed [61]. The electrolytes can go 
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through the thickness of the oxide layer via such networks, and the discharges may occur 

across the thin layer near the interface with the substrate.  

It is also apparent that the PEO coatings formed in the alkaline solutions with no silicate 

additions such as in electrolytes E1, E3, and E8 (see table 5.1) are much smoother than 

those formed in presence of silicate, indicating participation of silicate ions in the coating 

formation during PEO process. Moreover, increasing of silicate concentration in the coatings 

produced in electrolytes E4, E7 and E9 (see table 3) leads to formation of coarse-grained 

coating structure, which is consistent with observations of changing discharge 

characteristics and development of intense sparking in silicate-reach electrolytes. This is 

based on the fact that the discharging nature involved in phosphate electrolyte is higher 

than that in silicate electrolyte. There for, coatings produced in electrolytes containing 

phosphate have more melted materials and cracks and these phenomena are attributed to 

the higher discharging voltage in the phosphate electrolyte.  Higher discharging voltage 

results in more violent discharge and hence a larger amount of melted materials and 

sputtered out to form large pores, cracks and pan-like structure. This was consistent with 

the results of current density vs time (see Fig. 5.1) and can be concluded that the 

breakdown voltage is higher in phosphate electrolyte than in silicate electrolyte. 
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Fig. 5.2 SEM surface and cross-sectional morphologies of PEO coatings on the samples treated in 

different electrolytes:  a; E1; (b) E2; (c) E3 
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Fig. 5.3. SEM surface and cross-section morphologies of PEO coatings on the samples treated in 
different electrolytes:  (a) E1; (b) E2; (c) E3. 
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Fig. 5.4 SEM surface and cross-section morphologies of PEO coatings on the samples treated in 
different electrolytes:  (g) E8; (h) E9; (i) E5. 
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Fig. 5.5 SEM images cross-section of PEO coatings produced in different electrolytes. 

     

     Fig. 5.5 (a, b) shows cross-sectional morphologies of oxide coatings formed in silicate and 

phosphate electrolytes (E2 and E3). As can be seen from Fig 5.5, the coating produced in 

electrolyte E3 contains many randomly distributed pores, more than coating produced in 

electrolyte E2, which is also applicable on coatings deposited at electrolytes E7 and E8. This 

is based on the fact that the discharging nature involved in phosphate electrolyte stronger 

than that in silicate electrolyte. Therefore, coatings produced in phosphate electrolytes may 

form large pores, cracks and pancake-like structure. This was consistent with the results of 

current density vs time (see Fig. 5.1) and can be concluded that the discharging voltage is 

higher in phosphate electrolyte than in silicate electrolyte. 

    The cross-sectional micrograph of PEO coating produced in electrolyte E9 is shown in Fig 

5.6. It reveals that the coating consists of three layers: a porous outer layer (1), a dense inner 

layer (2), and a thin interfacial layer (3). However it seems to lose the outer layer of the coating 

(Fig 5.6). This can depend upon the point where extreme microdischarges arise on the thick 

coating produced in electrolytes with higher silicate concentration. This may leads to 

structural defects causing to a loose and coarse-grained structure [8, 61, 76]. Therefore, 

coating damage occurred in the regions surrounded by the cracks in the loose outer layer. 

The dense coating layer exhibits better mechanical properties than the porous layer. This is 

consistent to the results of evaluation of the hardness and Young modulus of coatings in 

Chapter 4. 

(a) Cross-section of coating produced in silicate electrolyte solution (E2)  

(b) Cross-section of coating produced in phosphate electrolyte solution (E3)  

a

b
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           Fig. 5.6 Cross-section of PEO coating produced in electrolyte E9 (1.25KOH,2 
Na4P2O7,2Na2SiO3). 

     

   The PEO coatings obtained in the alkaline solutions with no sodium pyrophosphate, such as 

E1, E2 and E6 (see table 3) were thin and uniformly porous due the unstable and 

discontinuous sparking. The porosity of produced PEO coatings is ranged between 10 to 18.5 

%, as shown in Fig. 5.7. The highest porosity was present in the coating produced in the 

electrolyte E9 (1.25 g/l KOH, 2.0 g/l Na4P2O7, 2.0 g/l Na2SiO3), while the coatings produced in 

electrolytes E1 (0.75 g/l KOH) and E6 (1.25 g/l KOH) were characterised by lowest porosity 

11% and 10% respectively. 
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Fig. 5.7 Porosity in the PEO coating in different electrolytes compositions. 

 

   It can be seen that the porosity increases with increasing concentrations of sodium silicate 

and pyrophosphate additions. The reason for this is that increasing in sodium silicate 
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concentration leads to the appearance of powerful discharges and the sparking voltage can 

be easily reached in presence of phosphates [8, 79].  

   Probability density distributions of the coating porosity shown in Fig. 5.8 indicate that the 

pores with size ranging from (0~3μm) are present in the coatings obtained from all electrolyte 

solutions E1 to E9. Moreover substantial amounts of pores with size ranging from 1 to 2 µm 

are present in the coatings produced in electrolytes E8 and E9. While the pores with size 

ranging from 0 to 1 µm were present in the coatings produced in electrolytes E1 (1.25 g/l 

KOH) and E3 (1.25 g/l KOH, 2.0 g/l Na4P2O7).  

 

Fig. 5.8 The pore size distribution for coatings produced in different electrolytes. 

 

  The pore size distributions in coatings produced in different electrolytes were obtained using 

image processing software developed by Digital Surf (MountainsMap 7.4). This software 

allows quite accurate determination of pore size and other statistics by converting the grey 

scale image to a binary image. Fig 5.9 shows some examples of the estimation of overall pore 

mean diameter of coatings produced in electrolyte E5 and E4.   
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Fig 5.9 Original and binary thresholding SEM images showing the pores identified in coatings 

produced in (a)1 KOH, 1 Na4P2O7, 1 Na2SiO3 g/l (b)0.75 KOH, 2 Na4P2O7, 2 Na2SiO3 

 

    In a detailed study of porosity, Curran and Clyne [61], state that the pores arise from the 

oxygen evolution during the PEO process. A dense coating, free from pores and defects could 

be a good candidate for corrosion protection, However in many applications it is considered 

that the pores of PEO coatings are beneficial [148], for instance dye-sensitized solar cells, 

large pore size may be also a positive factor, since the formation of pores will cause an 
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increase in surface roughness and specific surface area that assist light absorption. Typical 

commercial coatings are commonly reported to have porosity levels of less than 3 %, as 

estimated by image processing of SEM micrographs [149]. However, the acceptable value may 

be higher depending on a particular application. 

 Coating thickness and roughness        

    The thickness of PEO coatings produced in electrolytes with compositions from E1 to E9 

(table 3) were found to be in the range 1.0 to 27.0 μm Fig. 5.10. The thicknesses of these 

coatings changes depending on concentrations of sodium silicate and pyrophosphate and 

presence of potassium hydroxide. Increasing sodium silicate and pyrophosphate 

concentrations in the solution leads to increase both thickness and roughness of the coatings. 

The highest coating thickness in one side, 27 μm was achieved in the electrolyte E9 (1.25 g/l 

KOH, 2.0 g/l Na4P2O7, 2.0 g/l Na2SiO3) which corresponds of about 80 % of Al foil consumed 

for whole process of conversion to alumina ceramics. The lowest value, 1.1 μm was found for 

the coating produced in the electrolyte E1 (0.75 g/l KOH). However the thickness of the 

coatings produced in electrolytes E3 (0.75 g/l KOH, 2.0 g/l Na4P2O7) and E8 (1.25 g/l KOH, 2.0 

g/l Na4P2O7,) which contain a sole addition of pyrophosphate were higher than those 

produced in electrolyte solutions E2 (0.75 g/l KOH, 2.0 g/l Na2SiO3) and E7 (1.25 g/l KOH, 2.0 

g/l Na2SiO3) that contain only silicate addition. The influence of silicon is discussed in more 

details in Ref. [8]. It is found that increasing the silicate concentration in the electrolyte results 

in accelerated coating growth, because of incorporation of Si into the oxide structure and 

formation of complex Al-Si-O phases. Beside the silicate, sodium pyrophosphate (Na4P2O7) 

may also promote oxide layer growth. 
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Fig. 5.10. Characteristics of coatings produced from different electrolytes. 

          

    Previous studies [9, 150-152] investigated the influence of the current density and 

electrolyte concentration on oxide film growth on aluminium during PEO treatment in 

solutions of KOH. They found that the coating thickness increases with increased KOH from 

0.5 to 2 g l−1, since the rate of anodic dissolution increases and oxygen evolution is shown to 

be the main electrochemical process at the potentials corresponding to the plasma stages of 

the electrolysis. From table 5.10, it can be seen that the PEO coatings prepared at the same 

parameters in a solution with 0.75 g l−1 KOH were thinner than those prepared in a solution 

with 1.25 g l−1 of KOH. 

Surface roughness is also another characteristic which may be affected by the coating 

morphology. Addition of sodium silicate leads to increased discharge intensity which 

contributes to the accumulation of oxidation products and forms a coarse-grained coating 

structure with high surface roughness [76]. Table 5.4 shows the results of surface roughness 

measurements for the oxide layers produced in different electrolytes. As can be seen form 

table, the surface roughness increased with both sodium silicate and pyrophosphate 

concentrations. 
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         Table 5.3. Design table of factor (concentration) varied in the experiments. 

 
 

  Table 5.4 shows the average roughness Ra of PEO coatings formed in the electrolyte E6 is 0.8 

μm and E5 is 1.2 μm compared with 1.6 μm for the electrolyte E9. Furthermore, the PEO 

coatings prepared from phosphate and silicate sodium solutions have a higher total coating 

thickness and roughness than those prepared from low and without sodium phosphate 

solutions.  

   Fig. 5.11. Shows the coefficient of paired correlation measures the strength and direction of 

the relationships between thickness, roughness and porosity in different electrolytes 

composition. In comparison, strong correlation was observed between roughness and 

thickness of PEO coatings produced in different electrolytes. With increasing the thickness, 

the surface of alumina ceramic coating is gradually roughened as a result of the reducing the 

pore number as well as the increasing pores size. This observation is in agreement with earlier 

studies [76, 99, 153]. After increase potassium hydroxide concentration to 1.25 g/l in 

electrolytes E2 to E9, the trend in the surface roughness and thickness of the coatings increase 

slightly with increasing the sodium silicate and pyrophosphate concentrations. This may be 

due to the large discharges occurring on the surface of thick coatings. Because higher power 

dissipated in larger discharges larger molten pools can be formed resulting a coarser 

morphology of solidified products and leading to a higher surface roughness.  

 

 

 

 

Electrolyte 
KOH 

g/l 

Na4P2O7 

g/l 

Na2SiO3 

g/l 

Thickness 

(µm) 

Porosity 

% 

Roughness 

Ra (µm) 

E1 0.75 0 0 1.1 10.7 0.15 

E2 0.75 0 2 8.8 11.8 0.6 

E3 0.75 2 0 9.6 14.0 0.65 

E4 0.75 2 2 13.9 18.0 0.71 

E5 1 1 1 17.2 14.5 1.2 

E6 1.25 0 0 9.0 10.0 0.8 

E7 1.25 0 2 12.2 13.0 0.91 

E8 1.25 2 0 15.0 10.7 0.96 

E9 1.25 2 2 27.0 11.8 1.6 
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Fig. 5.11. Shows the coefficient of paired correlation evaluated in different electrolytes composition. 

Phase Composition 

    Fig. 5.12 show the XRD patterns of produced PEO coatings. Strong diffraction peaks of Al 

are detected in all coatings because the oxide layers are thin and the X-rays can penetrate 

them easily. It is seen also that both γ and α alumina are present in the coatings. However 

characteristic diffraction peaks of γ-Al2O3 phase in the coating produced in electrolytes which 

contain sodium pyrophosphate (E3 and E8) are stronger than those in electrolytes containing 

sodium silicate (E2 and E7). While the intensity peaks of α-Al2O3 phase in the coating produced 

in E9 solution is stronger than those produced in other solutions. This appears to be consistent 

with the results of Polat et al. [76]. 
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               Fig. 5.12. XRD patterns of the oxide coatings deposited on Al foil in the different solutions; 
E1 to E9. 

 

They suggested as Na2SiO3 concentration in the electrolyte increases, the intensity of 

diffraction peaks of alpha and gamma alumina decreases. This is due to the incorporation of 

silicate into the oxide layer. From the XRD results it can be seen that for electrolytes E1, E2 

and E7 the coatings are mainly composed of γ-Al2O3. While the coatings produced in 
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electrolytes containing pyrophosphate, such as E4, E6, E8 and E9, have undergone γ to α 

alumina transformation and therefore contain increased amounts of α -Al2O3. Due to the high 

cooling rate during the contact of the oxide ejected out of discharge channels with the 

electrolyte, γ-Al2O3 is mainly formed. However, as a result to the low thermal conductivity of 

alumina the temperatures and pressures in the channels of plasma micro-discharges rise as 

the process continues, which leads to transformation of γ-Al2O3 to α-Al2O3. Thus, the 

fabrication of γ- and α- alumina and several other compounds on Al have previously been 

reported [8, 11, 132, 154].  

   The phase composition of PEO coatings depends on coating thickness and changes from 

surface to the coating substrate barrier [76]. As can be seen from Fig 5.12, this the case for 

PEO coatings formed in electrolytes E8 and E9 which have thickness 15.4 and 27 µm 

respectively where the intensity peaks of alpha alumina phase increases from the surface to 

the coating/substrate interface.  
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     Fig. 5.13 NMR spectra of alumina ceramics in different electrolytes composition for (a) 27Al and 
(b) 31P. 

 

    Fig. 5.13 shows the 27Al MAS NMR and 31P MAS NMR spectra obtained from the powder 

samples produced from the coatings formed in different electrolyte solutions. From Fig. 5.13 

(a) it can be seen that the aluminium spectra show two resonances, near 0 ppm from 

octahedrally coordinated aluminium and near 60 ppm from tetrahedral coordination [155]. 

For PEO coatings produced in E2, E3 and E4 electrolytes the octahedral peak has a similar 

shape and position, while for the coating produced in E1 electrolyte the peak is narrower and 

has less asymmetry, so this coating appears to be more ordered. Similarly, it can be seen that 

the phosphorus spectra show relatively week signals [155]. The signal appears have two 
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components, one peaking at ~ -13 ppm in coating produced in electrolyte E3 (0.75 g/l KOH, 

2.0 g/l Na4P2O7) and a broad and less frequency of the first in coating produced in electrolyte 

E4 (0.75 g/l KOH, 2.0 g/l Na4P2O7, 2.0 g/l Na2SiO3). While no phosphorus signals in coating 

produced in electrolyte E1 (0.75 g/l KOH) and electrolyte E2 (0.75 g/l, 2.0 g/l Na2SiO3).  

 Correlations between processing parameters and coating 
characteristics 

 To understand how the electrolyte composition affects thickness, surface roughness and 

porosity of produced PEO coatings, a multiple linear regression (MLR) analysis was applied to 

the data obtained in the experiments discussed. MLR builds up models by fitting to linear 

equations the relationship between concentrations of electrolyte components, as 

independent variables, and the observed coating characteristics (thickness, roughness and 

porosity), as response functions. These models reveal how the independent variables 

influence its response and predict at what extent the value of one variable could influence 

the response when the other variables are known. Previous studies have used the MLR 

method to analyse the influence of some parameters such as electrolyte temperature and 

treatment time of PEO ceramic coating on Al-alloy [12, 81, 141, 156, 157]. The general form 

of a linear equation with three independent variables takes the following form [141, 158-160]: 

Y = ao + a1X1 + a2X2 + a3X3 + ... + ai Xn 

where Y; is a target property (thickness, roughness and porosity); X1, X2, X3 … Xn  are 

concentrations of electrolyte components (CKOH, CNa4P2O7 and CNa2SiO3) varied as basic factors 

of the experiments (table 5.2); ao is the constant where the regression line intercepts the Y 

axis, representing the amount the dependent Y will be when all the explanatory variables are 

at level; ai is the standard partial regression coefficient, representing the extent the response 

variable Y; (i.e. the thickness, roughness or porosity) changes when the explanatory variable 

changes at level (table 5.2). So, the thickness can be expressed in the form of PEO parameters 

as given below: 

                            𝐓𝐡𝐢𝐜𝐤𝐧𝐞𝐬𝐬 (ħ) =  𝐚𝐨 + 𝐚𝟏𝐂𝐊𝐎𝐇 + 𝐚𝟐𝐂𝐍𝐚𝟒𝐏𝟐𝐎𝟕 + 𝐚𝟑𝐂𝐍𝐚𝟐𝐒𝐢𝐎𝟑           (2) 

Similar equations can be provided for roughness and porosity. The Analysis of Variance 

(ANOVA) test was conducted for the three responses and the results are shown in Table (5.4 

(a, b and c)).  
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Table 5.4. The output multiple linear regression analysis (ANOVA results) for (a) thickness, (b) 
roughness and (c) porosity data. 

 

    Obtained MLR equations that optimise, on the basis of the results presented in Table 5.4, 

the models for the relationships between thickness, roughness and porosity and electrolyte 

composition, in terms of encoded levels, and corresponding statistics calculated are shown 

below: 

Thickness (µm) = -9.52 + 14.57 CKOH + 4.2175 CNa4P2O7 + 3.3 C Na2SiO3 
 

Adjusted R2 = 0.78;    N = 9  

F = 0.013;     P < 0.03 

Roughness (µm) = -0.268 + 0.9 CKOH + 0.14 CNa4P2O7 + 0.112 C Na2SiO3 
 

Adj. R2 = 0.52;    N = 9  

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.92951

R Square 0.86399

Adjusted R Square 0.78238

Standard Error 3.25484

Observations 9

ANOVA

df SS MS F Significance F

Regression 3 336.49 112.16245 10.5873 0.0132

Residual 5 52.97 10.594014

Total 8 389.46

CoefficientsStandard Error t Stat P-value Lower 95%Upper 95% Lower 95.0% Upper 95.0%

Intercept -9.52056 5.0014 -1.903592 0.11533 -22.377 3.335861 -22.3769719 3.3358608

X Variable 1 14.57 4.603 3.1652956 0.02495 2.73749 26.40251 2.737494566 26.402505

X Variable 2 4.2175 1.1508 3.6649648 0.01452 1.25937 7.175626 1.259373642 7.1756264

X Variable 3 3.3175 1.1508 2.8828739 0.03447 0.35937 6.275626 0.359373642 6.2756264

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.8401

R Square 0.7058

Adjusted R Square 0.5293

Standard Error 0.2341

Observations 9

ANOVA

df SS MS F Significance F

Regression 3 0.6575 0.2192 3.9986 0.0849

Residual 5 0.2741 0.0548

Total 8 0.9316

CoefficientsStandard Errort Stat P-valueLower 95%Upper 95%Lower 95.0%Upper 95.0%

Intercept -0.268 0.3597 -0.744 0.4901 -1.193 0.657 -1.193 0.657

X Variable 1 0.9 0.3311 2.7183 0.0419 0.0489 1.7511 0.0489 1.7511

X Variable 2 0.1375 0.0828 1.6612 0.1576 -0.075 0.3503 -0.075 0.3503

X Variable 3 0.1125 0.0828 1.3591 0.2322 -0.1 0.3253 -0.1 0.3253

SUMMARY OUTPUT

Regression Statistics

Multiple R0.9735

R Square 0.9477

Adjusted R Square0.9163

Standard Error0.0084

Observations 9

ANOVA

df SS MS F Significance F

Regression 3 0.0063 0.0021 30.201 0.0013

Residual 5 0.0003 7E-05

Total 8 0.0067

CoefficientsStandard Errort Stat P-valueLower 95%Upper 95%Lower 95.0%Upper 95.0%

Intercept 0.0937 0.0128 7.3 0.0008 0.0607 0.1267 0.0607 0.1267

X Variable 10.0075 0.0118 0.6349 0.5534 -0.023 0.0379 -0.023 0.0379

X Variable 20.0244 0.003 8.2539 0.0004 0.0168 0.032 0.0168 0.032

X Variable 30.0139 0.003 4.6983 0.0053 0.0063 0.0215 0.0063 0.0215

(a)

(c)

(b)



Chapter 5 Effects of Electrolyte Composition on the Process of conversion of aluminium foil in to alumina 
ceramics by plasma electrolytic oxidation 

 

95 

 

F = 0.08;       P < 0.04 

Porosity (%) = 0.09 + 0.0075 CKOH + 0.0244 CNa4P2O7 + 0.014 C Na2SiO3 
 

Adj. R2 = 0.91;    N = 9  

F = 0.001;   P < 0.0004 

 

  From the above results, it is clear that the adjusted R2 for the thickness, roughness and 

porosity are 0.78, 0.52 and 0.91 respectively. Also the F-value for the models is 0.013, 0.08 

and 0.001. This suggests that the models are significant, however roughness model can 

explain just 52 % variability of the response data.  

   Polycondensation of SiO4
- is an important process of the oxide growth diffusion during the 

PEO process [161], and an increase in sodium silicate helps polycondensation of silica at 

sample edges. In addition, an increase in concentration of KOH may leads to local dissolution 

of the oxide layer. This means when alkali and silicate are in balance, the polycondensation 

process stops oxide dissolution, which is reflected in the coating thickness distribution which 

becomes more uniform. According to the MLR models, a strong correlation was observed 

between thickness and porosity with electrolyte concentration. It follows that the 

concentration of potassium hydroxide CkOH has the most significant effect on the oxide 

ceramic layer growth which is the main component which provides electrolyte conductivity. 

Therefore the higher coating growth rate explained by the increase in coating thickness 

results in increase in electrolyte conductivity. Taking into account the other studied factors, 

the MLR analysis shows that the sodium pyrophosphate has the strongest effect on the 

coating porosity.
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 Summary 

 Addition of potassium hydroxide (KOH) into the electrolyte provides the electrolyte 

conductivity and increase the rate of anodic dissolution and oxygen evolution which leads to 

the increase in the current density during the PEO process and resulting coating thickness. 

Multiple linear regression modelling confirms the strongest effect of KOH on the coating 

thickness and roughness, whilst porosity is most strongly affected by Na4P2O7. 

 The PEO coatings prepared from sodium pyrophosphate- and silicate-containing solutions 

have higher total thickness and surface roughness than those prepared from solutions with 

low concentrations of these additions and without sodium phosphate. 

 The thickest coating corresponding to conversion of about 70% of Al foil to alumina ceramics, 

with residual aluminium foil thickness of around 20 µm, has been achieved in electrolyte E9 

(1.25 g/l KOH, 2.0 g/l Na4P2O7, 2.0 g/l Na2SiO3). The presence of some residual Al may enhance 

the flexibility of the ceramic-metal composite as explained in Chapter 4. 

 The introduction of sodium silicate into the electrolyte significantly affects the characteristics 

of plasma discharge during the treatment. This contributes to the accumulation on the surface 

of oxidised products and promotes formation of coarse-grained coatings structure with high 

surface roughness. 

 The coatings comprise mainly γ-Al2O3 and an amorphous component. Octahedral and 

tetrahedral coordination of Al in alumina are affected by additions of silicate and 

pyrophosphate to the electrolyte. Whereas the coatings produced in presence of sodium 

silicate and pyrophosphate, the octahedral peak has a similar shape and position, for the 

coating produced in electrolyte E1 (1.25 g/l KOH), the peak is narrower and has less 

asymmetry, so this coating appears to be more ordered.  

 Among the three electrolyte constituents investigated, potassium hydroxide is found to be 

the predominant factor affecting coating thickness and surface roughness; this is followed by 

sodium pyrophosphate and sodium silicate. 
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Chapter 6 

Cyclic voltammetry studies of PEO processes in alkaline and 
silicate/phosphate electrolytes and resulting coatings 

Introduction 

    Plasma electrolytic oxidation is electrochemical conversion of a metal surface to produce 

an oxide ceramic layer [150, 162]. The PEO process is a complex process including concurrent 

partial processes of oxide layer formation, dissolution and dielectric breakdown. For example 

several researchers used a number of considerations to define the breakdown voltage. They 

found, in addition of type of working electrode the sparking voltage depends on 

concentration, composition and temperature of electrolyte and current density.  

     The CV method was used to understand and identify the potential variations corresponding 

to differential behaviour of Al foil electrodes during the process which is very helpful in 

clarifying the mechanisms of the coatings formation.  

Although, there are several factors that affect coating thickness uniformity, such as 

current mode and density, electrolyte pH, composition and concentration as well as chemical 

composition of the substrate, the of electrolyte plays a very important role in the PEO process. 

Electrolytes used usually promote metal passivation by forming a thin insulating surface layer 

which provides a prerequisite for the dielectric breakdown to induce spark discharge [8, 74, 

80, 86]. 

Some additives such as silicates, phosphates and aluminates are widely used as basic 

ingredients of the electrolytes to enhance metal passivation and facilitate sparking. These 

additives may increase either electrolyte conductivity, thus reducing the breakdown voltage, 

or the quality of the ceramic coating. This is reflected in current and voltage transients which 

have been widely studied to reveal the electrode surface state and underpinning 

electrochemical processes, such as anodic dissolution and film growth [8, 150]. For instance, 

an increase in alkaline electrolyte solution concentration of KOH from 0.5 to 2 g/L was found 

to lead to decreases the film growth rate and increases in the rate of anodic dissolution due 

to the chemical attack by hydroxide ions OH−  [82, 150]. 

Often in the literature, the PEO process has been subdivided into two to four different 

stages [150, 163-165]. However, the explanations are not always  consistent and not all of 
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these stages are always clearly identifiable in the electrical transients. In the presence of oxide 

film on aluminium surface, the anodic dissolution of aluminium may be categorised into two 

types. The first one is a direct metal dissolution reaction by movement of aluminium ions 

through the oxide layer, while the second is an indirect metal dissolution reaction by 

consecutive electrochemical film formation at the metal/oxide interface, owing to the 

movement of OH− through the film towards aluminium, and chemical film dissolution due to 

OH− attack at the film/solution interface [164, 166]. It is also often assumed that OH- could 

also get deprotonated at the oxide-electrolyte interface and O2- ions would then provide a 

much greater fraction of the anionic flow. Discussing the mechanism of anodic dissolution of 

aluminium in alkaline media, Moon and Prabhu stated that the direct metal dissolution, which 

involves direct ejection of aluminium ions from the film into the solution definitely does not 

occur in alkaline solutions, due to the instability of aluminium ions because aluminium ions 

are not stable thermodynamically in alkaline solution [164, 166]. Therefore, for analyse the 

dissolution mechanism of pure aluminium in alkaline solution, it will be sufficient to consider 

indirect working electrode dissolution by consecutive oxide layer formation. 

   Thickness variations of PEO coating on Al are often observed. Although the chemical 

composition and microstructure including (crystal structure, crystalline size, orientation, 

defects and density) are the factors affecting mechanical properties of the coatings, these are 

also strongly influenced by the coating thickness. Several authors discussing the importance 

of the coating thickness in the mechanical properties of PEO coatings stated that thicker 

coatings usually show better mechanical properties [167, 168], however this is not always 

true as the defects such as porosity may play crucial rule in the mechanical performance of 

thick PEO coatings [168]. Design engineers specify thickness for various reasons, including 

some applications which need specific aim, such as the need of a degree of flexibility which 

influence by the residual metal in the component [169]. The primary objective of this part of 

the study is to provide better understanding of the electrochemical behaviour of Al in an 

alkaline electrolyte with and without silicate and pyrophosphate additives under the 

potentials corresponding to those applied in PEO treatments, using cyclic voltammetry (CV) 

technique. This is also used to understand the coating formation process during the PEO 

treatment such as the underlying metal-electrolyte interactions. Cyclic voltammetry is 

commonly utilised to investigate mechanisms and kinetics of electrochemical processes [170-
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172]. In our work, CV method is adapted to understand the complexity of the coating 

formation mechanism involved during the PEO process. 

Experiments 

      Rectangular shape samples of 50 µm thick aluminium foil with dimensions 30 mm × 18 

mm × 0.05 mm and surface roughness of Ra ~ 0.1 to 0.2 µm were used as substrates. Prior to 

the treatment, the samples were cleaned in distilled water and acetone and dried by air. The 

cleaned samples were suspended in the electrolyte using an insulated metal holder. The 

process was carried out in two different electrolytes (1.25 g/l KOH) and (1.25 g/L KOH, 2.0 g/L 

Na4P2O7, 2.0 g/L Na2SiO3) with conductivities of 0.55 and 0.70 S/m and pH values of 11.88 and 

12.10 respectively, denoted as K and KSi2P2 electrolytes. The voltage was ramped with a 

scan rate of 2.44 V sec-1 over the range of 0-550 V, corresponding to the conditions of PEO 

treatment. Fig. 6.1 shows the geometry of the electrolytic cell used in the experiment. It 

consists of a working electrode sample connected to the positive output a 30 kW DC power 

supply and a 2-L cylindrical stainless steel tank with inside diameter of 130 mm and height of 

145 mm, which served as a cathode with surface area of 8.57×10-2 m2, equipped with a stirring 

and cooling system. The electrolyte temperature was kept within the range of 30 to 35 οC. In 

order to correlate optical emission and physicochemical processes on the sample surface 

during the PEO treatment, optical emission spectroscopy (OES) study was carried out using a 

FloTron XHR spectrometer operated in the range from 300 to 900 nm wavelength range with 

a resolution of 1.8 nm.  
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Fig. 6.1 The electrolytic cell used in the studies of the PEO process. 

     To evaluate the distribution and thickness of the PEO coating on the Al foil, SEM images 

were taken along the length of the whole sample. The Images were obtained at 2000× and 

5000x magnification using an Inspect F50 SEM operated at a 15 kV accelerating voltage and 

10.8 mm working distance. The size of the images was 1024×943 pixel. A MountainsMap 7.1 

and ImagJ software were used to analyse the SEM images. 

Results and discussion 

Formation mechanism of PEO coatings 

Fig. 6.2 shows the current density-voltage responses obtained from CV experiments 

corresponding to the conditions of PEO treatment in the K and KSi2P2 electrolyte. 
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Fig. 6.2 Current density-voltage characteristics of PEO process of aluminium foil in K and KSi2P2 
electrolytes. 

Often in the literature, the PEO process has been subdivided into two to four different 

stages [150, 163-165]. However, the explanation of the different stages is not always the same 

and not always clearly identifiable in the voltage-time response diagrams. The anodic reaction 

on the surface of aluminium foil sample treated in K electrolyte is considered as indirect metal 

dissolution and the hydroxide film formation starts electrochemically on the surface of 

aluminium by migration of hydroxide ions through the aluminium/film interface. The 

following reactions are suggested to explain the mechanism of dissolution and formation of 

the PEO coating:  

𝐴𝑙 + 3  − = 𝐴𝑙(  )3 + 3 
−     (1)

The aluminium hydroxide film which formed electrochemically will be dissolved chemically by 

an attack of   − ions at the film/solution interface and form aluminate ions  𝐴𝑙(  )4
− as:

𝐴𝑙(  )3 +   − → 𝐴𝑙(  )4
−      (2)

Additionally, as a result of aluminium anodic dissolution, hydrogen evolution takes place as 

(Eq 3): 

𝐴𝑙 + 3 2 +   − →
3

2
  2 + 𝐴𝑙 (  )4

− (3) 
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The curve K in Fig.6.2 appears to be composed of three stages. The first stage I (0-380V) 

corresponds the steep climb of current density to the peak of about 1550 mA/cm2. Certainly, 

that the increase of the current density in the first stage is due to the anodic dissolution 

occurred on the surface of aluminium (Eqs. 1&2). Pyun and Moon [164] stated in that the 

increasing rotation rate of the sample causes fast supply of OH− ions to the film/solution 

interface and rapid removal of aluminate ions  Al(OH)4
− away from the film solution interface.

At the oxide/electrolyte interface, the oxygen evolution is quite common for aluminium 

anodising in alkaline solution. Also the potential is very high and the water splitting potential 

is already passed. Therefore, it may either have another reactions due to the water splitting 

which is caused by high voltage where the OH− anions are absorbed on the surface, (Eqs. 1) 

and direct combination of Al and O atoms in plasma state under the effect of spark discharge, 

(Eqs. 4-6 ) [173, 174]. 

 4  − →  2 ↑  +2 2 + 4 − (4) 

2𝐴𝑙𝑒𝑗𝑒𝑐𝑡𝑒𝑑 + 6   − → 𝐴𝑙2 3 + 3  2 + 6 − (5) 

In reaction Eq. 6 a multistep process will happened, where Al hydroxide would have formed 

first and then either progressively dehydrated to form alumina or transformed into alumiate 

ion which would dissolve in the solution. This would then precipitate back on the surface if 

the solubility limit of aluminate is reached locally  

The stage II Fig.6.4 shows a more complex behaviour, where reaction rates may be affected 

by mass transport, in particular, how fast the species can depart from the surface of the 

sample. That means, if the species depart slowly this will hold the reactions and dissolution is 

offset by transport limitations, not by the barrier-type anodic film formed. So the current 

eventually becomes reduced as seen in Fig. 6.2, and even independent of potential. When the 

electric field strength was strong enough, the breakdown voltage and dielectric breakdown 

take place across the oxide film at around ~535V, accompanied with numerous of spark 

discharges. Hereafter, the current density climbed steadily as seen in stage III (535-560V). 

During this stage, the main reactions that occur on the aluminium electrode are associated 

with transformation of the hydrated anodic oxide to ceramic alumina and combination of 

aluminium and oxygen atoms in plasma state under the influence of spark discharge, also to 

form alumina [8, 46] . 
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    According to Fig. 6.2, addition of 2 g/l for both Na2SiO3 and Na4P2O7 to 1.25g/l KOH 

electrolyte shows completely different current-voltage behaviour. Adding silicates and 

pyrophosphates to alkaline electrolytes is commonly used to promote metal surface 

passivation due to the formation of insoluble compounds and allow the sparking voltage to 

be easily reached which is the most beneficial for the coating production by the PEO process. 

The cyclic voltammetry curve for KSi2P2 electrolyte in Fig.6.2 does not actually show evidence 

of anodic dissolution, although it also displays three distinguished stages according to the 

applied voltage. Stage I (0-150V), indicating no significant current density change due to the 

fact that the formation rate of the passive oxide layer takes control over the metal dissolution 

rate on the surface. The second stage II (150-425V) corresponds the slight increase in current 

density with applied voltage to peak at about 100 mA/cm2. At around ~425V, the current 

increases and the electric field strength in the oxide film reaches a critical value which causes 

dielectric breakdown of the oxide film. In the stage III (425-550V), the current density 

increases sharply with increasing voltage. As shown in Fig. 6.2, addition of sodium silicate 

leads to production of SiO2 due to the transport of SiO3
2- anions towards the 

coating/electrolyte interface during the PEO process. The silica produced may inhibit the 

release of Al3+ cations, leading to a decrease in breakdown voltage. In other side, the 

electrolyte may include substances which enhance to decrease the electrolyte resistivity such 

as sodium hydroxide or potassium hydroxide (1-50 g/l) [8]. This according to Ikonopisov 

equation [175] could be cause the decreasing of breakdown voltage. The following reactions 

are suggested for the formation of such silica.  

 SiO3
2- + 2H+ → SiO2 + H2O  (6) 

 SiO3
2- + 2H+ + (n-1) H2O → SiO2nH2O  (7) 

Relationships between OES and current-voltage behaviour 

      Figure 6.3 displays the recorded spectrum of optical emission from the exposed area of 

the plasma discharge during the PEO process in K and KSi2P2 electrolytes which contain 

aluminium (Al 309 and Al 396 nm) from substrate and potassium, soduim, and hydrogen α 

and β (K-765, Na-589, Hα-656 nm and Hβ) lines from electrolytes. 
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Fig. 6.3 Optical emission spectrum during the PEO process on Al foil in K and KSi2P2 electrolytes. 

      In this experiment, OES signal with the wavelength shorter than 300 nm cannot be 

registered, because it is absorbed by the electrolyte. As seen in Fig.6.3, for samples treated in 

both electrolytes, the strongest observed lines correspond to aluminum (Al-396 nm) and (Hα-

656 nm). While the relatively low intensities were recorded from potassium (K-765 nm) and 

(Hβ- 486 nm). In addition, sodium line (Na-589 nm) arises in the spectra of microdischarges on 

the sample treated in the KSi2P2 electrolyte.  
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Fig 6.4 Typical time variation of the emission line intensity during CV studies of the PEO processes in 
(a) K and (b) KSi2P2 electrolytes. 

   Evolution of emission line intensities with the treatment time in CV mode is presented in Fig 

6.4-6.5. Differences OES signal during treatments in K and KSi2P2 electrolytes are attributed 

to the additions of silicate and phosphate to the electrolyte. The OES signals of samples 

treated in K electrolyte become visible after about 205 sec to reach voltage 525 V for 0.8 

A/cm2 and ended after around 255 sec to reach voltage around 460 V for 0.1 A/cm2. While 

signals of samples treated in KSi2P2 electrolyte started after 175 sec with voltage 425 V for 

0.1 A/cm2 and ended at the same time as for the sample treated in K electrolyte with voltage 

480 V for 0.01 A/cm2. The time to reach the breakdown voltage was significantly shorter in 

K electrolyte 

KSi2P2 electrolyte
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the electrolyte solution containing silicate compared with that without, which is consistent 

with the analysis of the electrical breakdown phenomenon reported by R.K. Nigam et al [176]. 

Results Figure 6.5 shows the atomic line intensity - voltage diagrams plotted in the same scale 

as the current density - voltage diagrams of Al foil in (a) K and (b) KSi2P2 electrolytes. 

Fig.6.5. Plots of intensity versus voltage during the PEO process at same scale with current density 
versus voltage of Al foil in (a) K and (b) KSi2P2 electrolytes. 

    A comparison of the curves in Fig. 6.5 (a&b) showed dissimilar behaviour of emission 

intensity lines and a considerable difference in values of current densities at the discharge 

ignition during the two PEO treatments at the same voltages. Generally the discharge in PEO 

process takes place when the applied voltage reaches a specific value corresponding to the 

breakdown of the oxide layer formed on the sample surface, which causes a generation of 

intense light emission at the microdischarge sites [109]. However as seen in Fig. 6.5 (a) the 

OES signals of the species generated from the sample treated in K electrolyte recorded in the 

period before the breakdown voltage (535 V) occurs. It is noticed that after the current is 

fallen and dissolution is offset by transport limitation (not by barrier type), the optical 
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emission observed started prior to the current starts increasing. The ignition and extinction 

voltages were around 500 V voltage and 460 V respectively, while in K2P2Si2 electrolyte, the 

OES signal originated at the breakdown voltage (around 425 V) and the extinction voltage is 

higher (470 V). From Fig. 6.5, it can also be seen that the breakdown voltage of the sample 

treated in KSi2P2 is shifted about 110V towards lower values in respect to that of the sample 

treated in K electrolyte, however corresponding values of current densities show opposite 

trend, 0.8 𝐴 𝑐𝑚−2 versus 0.085 𝐴 𝑐𝑚−2 for the samples treated in K and KSi2P2 electrolyte 

respectively.  

    In K-electrolyte condition at voltage 425 V there was a fluctuation in the electron plasma 

temperature (4800 to 5200 K) which is corresponding to the early period of discharges as seen 

in Fig. 6.5 (a&b). While in K2P2Si2 electrolyte at the same voltage the fluctuation was less at 

the early stage of sparking (6100-6300). The previous difference could be related to the 

different in electrolyte conductivity, where the voltage drop at higher electrolyte resistance 

would means less driving force for the coating to grow, so it means less sparks, less energetic 

discharge and less plasma temperature. This analysis reflects with what we have from our 

results in Fig. 6.5 (a&b).      

    Fig. 6.5 (a&b), also displays the hysteresis of plasma temperature (K) versus voltage (V) in 

both conditions. Despite a lot of PEO research, how the plasma temperature hysteresis 

remains not have a good size of analysis and discussion. As can be seen in Fig. 6.5 (a&b) 

sample treated in K- electrolyte shows a smaller width of Te - V hysteresis than sample treated 

in KSi2P2 which is not easy to observe. The reason could be related to the substances added 

to electrolyte K2P2Si2, where the presence of silicate causes substrate passivation by 

inhibition anodic dissolution of the Al. So the above results provided a connection between 

the electrolyte concentration, plasma temperature and the plasma discharge behaviour.   

Thickness and uniformity of the coating layer 

     The thickness distribution of the PEO coating layer along the Al foil was calculated based 

on the area comprised by the coating layer in the cross-section and the length of the image. 

However, the same region (cross sectional coating area) can be approximated by scanning 

vertical lines for thickness evaluation. These lines should scan across the oxide film randomly 

in order to obtain a representative value of the full sample length. Figure 6.6 (a)-(b)), displays 
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a sketch diagram of the coating thickness measurement. Further details of the methods used 

to identify the thickness and distribution of the coating layer based on the scanning electron 

microscopy images are discussed in References [177-179]. 

Fig. 6.6 (a)-(b)) Schematic representation of thickness measurements of the coating layer (a) with 
scanning vertical lines (b) based on the PEO coating cross-sectional area and image length. 

      Cross-sectional SEM images of the PEO coatings and residual aluminium layer on the 

samples treated in K and KSi2P2 electrolytes are shown in figure 6.7 (a)-(b)), respectively. 

Results show that the PEO coating layer thickness grown in K electrolyte varies from 1.2 ±0.2 

µm at edges to 0.6 ±0.2 µm at the middle region of sample. While it ranges from 2±0.2 μm at 

edges to 1.7±0.2 µm in the middle of the sample treated in KSi2P2 electrolyte.  

Fig. 6.7 (a)-(b)). SEM cross-sectional micrographs of the PEO surface layer on the samples treated in 
(a) K and (b) KSi2P2 electrolytes 
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   The results show variation in thickness over all surfaces of both samples. However, the 

coating layer on the sample treated in KSi2P2 electrolyte shows a more uniform coating 

thickness distribution than that produced in K electrolyte (Fig. 6.8 and 6.9).  

     The thicknesses of the PEO coating and residual aluminium were determined at each 

millimetre (mm) along the specimen length. Then, in respect to the sample length, it becomes 

possible to determine the aluminium lost for anodic dissolution and ejection in electrolyte as 

well as Al consumed for the coating during whole the PEO process by formula; 

ħ =  
𝑚

𝐴 × 𝜌
 (1) 

Where; 

ħ = thickness (μm) 

m = mass (g) 

A = total area, (cm2) 

ρ = density, (g/cm3) 

ρ (Alumina) ≈ 3.1 g/cm3 

    So, for the sample treated in K electrolyte, at each mm of length, the residual aluminium 

thickness of 34 µm has been subtracted from the 50 µm of foil thickness before PEO 

treatment to obtain 16 µm of the thickness of aluminium lost during the PEO process. This 

value corresponds to around 8×10-4 g (obtained by sample volume multiplication by Al density 

of 2.7 (g/cm3). The difference between the mass of Al lost during the whole process and Al 

consumed for the coating is the mass of Al lost for anodic dissolution and ejection in 

electrolyte, which is equal around 6.0×10-4 g per mm length and 0.02 g along whole sample. 

According to Eq [1], this is equal to 0.21 µm of sample thickness.  

   Residual thicknesses of coating and aluminium, as well as mass of aluminium consumed for 

dissolution and ejection, all are presented in Table 6.1. In spite of previous calculated values 

seem to agree well with the logic impression one get from the SEM, it has to be considered 

only as an approximation, due to possible errors, such as the true density of the oxide layer 

forming phase due to present of porosity that can differ significantly from aluminium or its 

oxide. 
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Table 6.1 Results of thicknesses over the length of sample. 

sample 

length 

point 

(mm) 

Samples treated in K electrolyte Samples treated in KSi2P2 electrolyte 

Total 

coating 

thickness 

(µm) 

Al 

residual 

thickness 

(µm) 

Al consumed 

for whole 

process 

(g) 

Al 

consumed 

for 

dissolution 

and 

ejection 

(g) 

Total 

coating 

thickness 

(µm) 

Al 

residual 

thickness 

(µm) 

Al consumed 

for whole 

process 

(g) 

1 2.4 34.0 8.0×10-4 6.0×10-4 4.0 41 4.0×10-4 

3 2.0 35.0 8.0×10-4 7.0×10-4 4.0 43 3.0×10-4 

6 1.6 37.0 6.0×10-4 5.4×10-4 3.5 45 3.0×10-4 

9 1.4 37.0 6.0×10-4 5.1×10-4 3.5 47 2.0×10-4 

12 1.4 39.0 4.0×10-4 4.1×10-4 2.0 47 2.0×10-4 

15 1.4 37.0 4.0×10-4 6.0×10-4 2.0 46 2.0×10-4 

     As can be seen from Fig. 6.8, the thicknesses of oxide layer showed a sharp fall until 

reaching around 0.6 µm at 7 mm distance from the edge of the sample and before moving 

steady between 10 and 15 mm, with almost no thickness increase. Then the thickness grows 

linearly between around 20 mm to 30 mm distance of the sample length. This fluctuation in 

oxide film thickness also appeared in the thicknesses of residual aluminium and that lost for 

dissolution during the process along the whole sample, as shown in Fig. 6.8 and 6.9.   

Fig. 6.8  Thickness distributions of PEO coating and residual Al along the length of the sample treated 
in K electrolyte. 
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Fig. 6.9. Thickness of Al lost for anodic dissolution and ejection for the sample treated in K 
electrolyte. 

     In general, the relationship between the PEO coating layer thickness and the charge density 

passed through the sample surface is direct [150], however, in our results the character of 

this trend differs for the thickness of oxide film and residual aluminium along the sample 

length. The non-linear rate distribution of anodic dissolution reaction obtained from such 

analysis of the sample treated in K-electrolyte (Fig.7) could be of great help in investigation 

why the variations in residual thicknesses of coating and aluminium occurred. In particular, 

when the current falls sharply from 1550 to 650 mA/cm2 at the breakdown voltage, before it 

starts gradually increasing and following this trend. Also it should be noted that the OES signal 

commenced before the minimum current is achieved (Fig.6.5). This changing behaviour may 

influence the distribution of the rates of dissolution and precipitation processes over the 

sample length, which would affect the thickness distribution of the oxide film.  

     In the other hand, the sample treated in KSi2P2 electrolyte showed less variation in coating 

thickness than that treated in K electrolyte. The decline in the coating thickness from the 

sample edge to the middle was around 25% while of sample treated in K electrolyte was 50% 

(Fig. 6.10 and 6.11). As stressed previously the cyclic voltammetry curve in this case does not 

show evidence of anodic dissolution. This indicates surface passivation dominates over 

dissolution due to the presence of silicate and phosphate. It has been reported that the 



Chapter 6 Cyclic voltammetry studies of PEO processes in alkaline and silicate/phosphate electrolytes and 
resulting coatings  

112 

addition of sodium silicate into KOH solution can promote formation coating layer and 

increase both the thickness of coating and adhesion strength [77, 78]. 

Fig. 6.10. Distribution of PEO coating and residual Al thicknesses along the length of the sample 
treated in KSi2P2 electrolyte. 

Fig. 6.11. Oxide layer thickness produced in K and KSi2P2 electrolytes. 
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 Summary        

        A cyclic voltammetry (CV) method was employed to clarify the electrochemical behaviour 

of Al in alkaline silicate/phosphate electrolytes over a voltage range of 0 to 550V and study 

the growth process of PEO coatings on rectangular shape Al foil samples. 

     The non-linear behaviour of the current – voltage curve reflects a combination of three 

processes, including dissolution, passivation and formation of PEO coating under discharge 

conditions. 

      Different thickness distributions of oxide layer and residual aluminium along the sample 

length were observed. Similarly, the total Al consumed for the coating process at the edge of 

sample was more than in the middle.  

     Silicate addition obstruct anodic dissolution of Al, which enhanced the oxide growth. While 

phosphate, in addition of promoting α-Al2O3 phase formation it is also enhancing strong 

metal passivation and allow the breakdown voltage to be easily obtained. 

      Breakdown voltage depends on the concentration and electrolyte composition. Under the 

studied conditions, we can also conclude that the sparking voltage decreases when 

electrolyte resistivity decrease which is consistent with Ikonopisov equation [175]. However 

which’s more surprising and unexpected in K electrolyte, is the earlier emission starting prior 

to the current starts increasing.  

     There are a number of considerations used to determine the breakdown voltage such as 

reaching of maximum voltage, rapid voltage fluctuation. However, the appearance of visible 

sparking is not a criteria for detecting the dielectric breakdown as concluded in our study 

although many literatures considered this as criteria.
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Chapter 7 

Electric Field Modelling during Plasma Electrolytic Oxidation 
of Al foil substrate 

 Introduction 

    For complex shape components made from advanced materials, it is a vital to model a 

treatment process before full scale prototyping. Neglecting this important step could lead to 

a waste of expensive materials, deterioration of equipment and excessive labour costs. 

   To predict thickness distribution of electrodeposited coatings over a complex shape 

component, electromagnetic field simulation can be applied. For the PEO process, such 

modelling is partially hindered due to the lack of appropriate methodology that would allow 

the coating uniformity on the complex shape parts to be estimated. In conventional 

electrochemistry this methodology is well- established and has been successfully applied to 

simulate processes and optimise electrolysers before physical tests  [8]; it supports simulation 

and structural optimisation of electrolysers before physical tests. Modern software offers 

electrochemical modules which allow introducing electrochemical reactions, kinetic, 

thermodynamic or mass transport equations.  However, this software has limited capability 

to simulate systems, such as PEO, wherein significant voltage drop occurs over a very thin 

layer near the working electrode. The modelling of PEO processes is also affected by complex 

behaviour of current-voltage diagram, reflecting characteristics of plasma discharge and 

electrolytic gas evolution. Another complication is the coating growth which proceeds both 

inwards and outwards of the original surface. Therefore, it is vital to develop a methodology 

for accurate estimation of PEO coating thickness distribution over complex geometry 

components. 

   A very limited number of publication discuss PEO process modelling in terms of current 

density distribution (CDD) and resulting oxide layer thickness; however, this is a topical area 

for advanced research [180]. The surface oxide layer formed on the part subjected to the PEO 

treatment is usually considered as a component of the system with the highest electrical 

resistance in the circuit [8] and the voltage drop over the electrolyte is often neglected. 

Consequently, the current density at the oxide-electrolyte interface is averaged and 

considered constant [180, 181]. Such level of approximation is applicable only when using the 
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simplest electrode shapes and layouts, e.g. coaxial cylindrical cells. Any deviation in the 

electrode shape or position can lead to the uneven coating growth, which must be taken into 

account in modern technological processes [6]. 

   Therefore, the objective of this part of research is to develop a modelling methodology 

which considers nonlinear current-voltage diagrams and becomes applicable for relatively 

complex cell layouts. A plate in a conductive cylinder configuration was chosen as an example 

for theoretical calculations. A thin aluminium foil was selected as a working electrode for 

experimental assessment, since it has stable and known thickness that allows calculation of 

both coating thickness distribution and metal losses following the treatment [182].  

 Electric field modelling 

7.2.1. General approach 

      This part of the research attempts to join the results of theoretical and 

experimental studies of PEO treatment of aluminium. A closely related 2D electric field 

modelling problem has been successfully solved using mesh method for electrolytic plasma 

polishing process [182] where a vapour gaseous envelope was described as a lumped 

nonlinear element. A similar general approach, boundary conditions and assumptions are 

used here. A specific interest was paid to the mesh surrounding the anode in order to 

represent the oxide layer and the discharges along the sample surface. The method also 

employs three adjustment parameters that allow to bring the 3D problem to be reduced to 

the 2D model due to symmetry along the axis and provide an estimation of uneven coating 

growth over the sample perimeter. 

7.2.2. Assumptions 

     The following assumptions have been made  before modelling:  

1. The problem is solved for the case of the PEO treatment during anodic regime under 

potentiostatic conditions. 

2. The electrolyte is stirred and its temperature 𝑇 is constant. 

3. The electrolyte is considered as a linear homogeneous conductive medium with 

constant specific conductivity γ. 

4. The system nonlinearity is introduced by the resistance of the oxide layer through the 

current-voltage diagram. 
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5. The CDD is obtained for longitudinally invariant field in 2D model and then adapted to 

3D model by using effective length z3. 

7.2.3. Boundary conditions 

The boundary problem concerns 3D current density distribution in the electrolyte. This 

corresponds to a rectangular sample placed in a conductive cylinder (Fig. 7.1). This setup is 

commonly used in both research and industrial applications but should be simplified for 

further calculations.  

 

Fig. 7.1 Electrode layout for the electric field analysis 

 

   The 2D field distribution in the conductive medium is obtained by numerically solving the 

Laplace equation 

 ∇2𝜑 = 0 (1) 

in Castesian coordinates (𝑥, 𝑦, 𝑧) with respect to the electric potential 𝜑 [183]. Based on 

assumption (5), the 2D problem (Fig. 7.1) is solved for the longitudinally invariant field 𝜑 =

𝜑(𝑥, 𝑦). A thin rectangular anode is placed in the centre of the system at a position (𝑥1; 𝑦1) 

and the cathode with diameter 𝑥3 = 𝑦3 forms the perimeter of the system. Dirichlet 

boundary conditions  

 𝜑 =  0 𝑎𝑛𝑑 𝜑 =  𝑈 (2) 

are adapted at the cathode and anode respectively. In order to create a round cathode in 

Cartesian rectangular matrix field, the potentials of all points placed outside this diameter 
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were taken as 𝜑 =  0.  As result, the distribution of the current density can be assessed along 

the perimeter of the anode cross-section parallel to the 𝑥 𝑦 plane. 

The Laplace equation adapted to this case is: 

 
𝜕2𝜑

𝜕𝑥2
+
𝜕2𝜑

𝜕𝑦2
= 0 (3) 

This can be solved using a finite difference or finite element method for a mesh covering the 

area of interest, so that for each node with coordinates (𝑖, 𝑗) of the mesh, the potential 𝜑𝑖,𝑗  is 

calculated. This solution can be achieved using any electric field modelling software, e.g. 

COMSOL, ElCut and other. 

7.2.4. Equivalent circuit of the electrolyser 

     A simplified equivalent circuit of the PEO process is presented in Fig. 7.2. There are the 

linear electrolyte resistance R1 and the nonlinear oxide layer resistance R2. When the voltage 

U is applied to the system, the current I produces voltage drops U1 and U2 across these two 

resistances respectively. 

 
Fig. 7.2 DC equivalent circuit of the electrolyser: 

 

 
Kirchhoff’s voltage law:      𝑈 = 𝑈1 + 𝑈2 

Electrolyte voltage drop:      𝑈1 = 𝑅1 × 𝐼 

7.2.5. Current density distribution along the sample perimeter 

     A Laplace problem for the primary electric field distribution in the electrolyser with U = 1 

V for boundary conditions (2) is solved. The result is a 𝑚 × 𝑛 matrix of potentials 𝜑𝑖,𝑗. This 

solution corresponds to a given voltage U without taking into account the voltage drop over 

the oxide layer. Since the electrolyte is assumed to be a linear conductive medium, this 

R1 

R2 

𝐼 

U

a 
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voltage can be adjusted according to the experimental measurements of the potential in 

certain points within the electrolyte. The adjustment is made by multiplying the matrix of 

potentials by K1. This scaled value is the voltage drop over the electrolyte U1 = K1∙(1 V) which 

represents linear resistance R1. 

Then, the adjusted matrix of potentials is used for calculation of cell current Icalc1 by the line 

contour integral along the anode perimeter. The resulting potential distribution is used for 

obtaining the electric field 𝐸⃗  using a gradient operator: 

 𝐸⃗ = −∇𝜑 (4) 

and further the current density 𝛿  via Ohm’s law: 

 𝛿 = 𝛾𝐸⃗  (5) 

where 𝛾 is the specific conductivity of the electrolyte.  

Both 𝐸⃗  and 𝛿  are obtained as numerical derivatives and stored as paired matrixes 𝑚 × 𝑛 of 

their projections (e.g. 𝛿(𝑥)𝑖,𝑗 and 𝛿(𝑦)𝑖,𝑗) to 𝑥 and 𝑦 axes. 

The integration of the current density over the anode surface 𝑆  provides current through the 

electrolyte: 

 𝐼𝑐 𝑙𝑐1 = ∮ 𝛿 

𝑆𝑎

𝑑𝑠⃗⃗⃗⃗  (6) 

which, for the chosen mesh and four sides of the anode, becomes 

 
𝐼𝑐 𝑙𝑐1 = (∑|𝛿(𝑥)𝑚1,𝑗|∆𝑦

𝑛

𝑗=1

+∑|𝛿(𝑥)𝑚2,𝑗|∆𝑦

𝑛

𝑗=1

+∑|𝛿(𝑦)𝑖,𝑛1|∆𝑥

𝑚

𝑖=1

+∑|𝛿(𝑦)𝑖,𝑛2|∆𝑥

𝑚

𝑖=1

)

∙ 𝑧3 

(7) 

where 𝑧3 is the longitudinal size of the system along axis 𝑧, 𝑚1 = 
𝑚

𝑥3
𝑥1, 𝑚2 = 

𝑚

𝑥3
𝑥2, 𝑛1 =

 
𝑛

𝑦3
𝑦1, 𝑛2 = 

𝑛

𝑦3
𝑦1. This value is different from 𝐼𝑒𝑥𝑝 and represent the longitudinally invariant 

cell current with only conductive cylinder’s wall around the sample. To meet the 3D 

requirements effective system depth must be changed in order to take into account 

conductive bottom as well as the upper and lower parts of the wall in the steel tank for a real 

experiment. The correction is made via multiplication of the matrix of potentials by coefficient 

K1 > 1 so that the cell current Icalc1 is equal to the experimental cell current Iexp, measured by 

an ammeter. 
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After the potential adjustment, a primary CDD over the anode surface can be calculated via 

equation (5) by using electric field at the last mesh step around the anode. 

7.2.6. Nonlinearity. Oxide layer 

 

 

Fig.7.3. Electrode layout for the electric field analysis with anodic inset structure 

 

   In order to describe the nonlinear resistance R2, an inset around the anode was introduced 

(Fig. 7.3). The inset encloses the anode which potential is set equal to the cell voltage (having 

cathode potential equal to zero) and a small surrounding rectangle 𝑆𝑖𝑛𝑠𝑒𝑡 (bounded by 

𝑥4, 𝑥5, 𝑦4, 𝑦5) in order to account for the input of vapour-gaseous media, microdischarges and 

the oxide layer input into the electric field distribution. The boundary conditions are selected 

as 𝑈  = 550 V and 𝑈𝑐 = 𝑈𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒, where 𝑈𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 is the electrolyte potentials at the 

boundary between the potential matrix and the inset. To comply with the boundary 

conditions imposed on the Laplace equation (3), the potentials within the inset must be 

recalculated.  

Before calculation of the secondary CDD, the following two adjustment steps need to 

be made. Firstly, the integral cell current Icalc2 along the undercut loop selected inside the 

anodic inset must be calculated by using equation (6). The perimeter Sa1 is defined by the 

points  𝑚𝑖𝑛𝑠1 = 
𝑚

𝑥3

𝑥5−𝑥2

∆𝑥5
𝐾2, 𝑚𝑖𝑛𝑠2 = 

𝑚

𝑥3

𝑥1−𝑥4

∆𝑥4
𝐾2, 𝑛𝑖𝑛𝑠1 = 

𝑛

𝑦3

𝑦5−𝑦2

∆𝑦5
𝐾2, 𝑛𝑖𝑛𝑠2 =

 
𝑛

𝑦3

𝑦1−𝑦4

∆𝑦4
𝐾2 where 0 < K2 < 1 is position of the loop. The coefficient K2 represents a 

percentage of anodic inset enclosed by Sa1 loop and used for current calculation. Secondly, 
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the resulting current is usually overestimated and must be brought in agreement with the 

experimental current Icalc2 = I exp by adjusting the effective inset conductivity 𝛾𝑜𝑥𝑖𝑑𝑒 = 𝐾3 ∙ 𝛾, 

where 𝐾3 < 1. 

7.2.7. Nonlinearity. Connection to the current-voltage diagram 

     The next stage in description of the system nonlinearity is the introduction of an 

experimental current-voltage curve. Polarisation curves for the PEO process can vary 

depending on electrolyte, substrate material and electrical mode.For instance, a typical 

current-voltage diagram of PEO of aluminum in an alkaline electrolytes is presented in Fig. 7.4 

(a). Three regions can be easily distinguished, the first showing showing surface, the second 

– intensive anodic dissolution followed by a region of negative differential resistance due to 

deposition of reaction products and the third – dielectric breakdown of the passive film 

resulted in current rise with voltage. A typical current-voltage diagram of Al in the alkaline 

electrolyte with addition of sodium silicate is presented in Fig. 7.4 (b). It has only two different 

regions where the first one shows a strong surface passivation and the second one shows 

dielectric breakdown at relatively high voltages, with sharp increase in current. 

 

 

 
   
      

 

 

 

 

 

 

 

 

 
 

The aforementioned nonlinearities and differences in current-voltage behaviour can 

significantly influence the final coating thickness distribution because the voltage drop at the 

electrode-electrolyte interface and corresponding secondary CCD over the sample surface 

would vary differently. 

I
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U
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Fig. 7.4 Current voltage diagrams for PEO of Al simple in (a) alkaline and (b) 
alkaline-silicate electrolytes  

(b) (a) 
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Oxide voltage drops calculation : 

    Further, a voltage drop in the oxide layer is calculated from the matrix of potentials 

obtained in section 7.2.5. Potentials along the sample are subtracted from the cell voltage 

and shifted down to its mean value to keep the average current equal to Iexp. Then the 

resulting voltage distribution is applied to the selected current-voltage diagram. Finally, this 

distribution is used for obtaining the secondary CDD via equation (5). 

The secondary CDD can be used for qualitative estimation of the coating thickness distribution 

through the Faraday’s law: 

𝑚 =
1

𝐹
∙
𝑀

𝑧
∙ 𝛿 ∙ 𝑠 ∙ 𝑡 ∙ 𝜂 

where 𝐹=96484 C·mol–1 is Faraday constant; 𝑧 is the number of electrons in the 

electrochemical reaction; 𝑀 is the molar mass of oxide; 𝛿 is the anode current density; 𝑡 is  

treatment time, 𝜂 is  current efficiency. 

   To adjust the secondary CDD in order to tune the model to meet the experimental data, 

three inset parameters can be used; cell voltage Ua, area of the inset La and position of the 

loop K3 for the current integration according to p. 7.2.6. 

7.2.8. Nonlinearity. Connection to the current-voltage diagram 

   The order of calculation is presented in the block diagram (Fig. 7.5). 
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Data input for primary CDD:  

 electrolyser 

size, mm 

 experimental electrolyte 

conductivity γ 

 number of 

iterations 

 sample size, 

mm 

 experimental points for 

electrolyte voltage drop 

Uexp.i 

 initial step 

 sample 

position 
 experimental current Iexp 

 number of 

cascades 

 calculation 

error ε 

 initial approximation for 

electrolyte voltage drop Ua 

 

 

Solve Laplace problem for the primary electric field 

distribution in the electrolizer with zero boundary conditions 

Start 

Yes 

No Increasing 
electrolyte 

voltage drop Ua 

Calculate cell current Icalc1 by line contour integral along the 

sample perimeter 

Yes 

Increasing 
effective system 

depth by K1 

Interpolate the current-voltage diagram 

|Uexp.i – Ucalc.i| ≤ ε  
? 

Data input for secondary CDD (initial approximation):  

 treatment voltage Utop  integration loop position K2 

 anodic inset effective conductivity 

K3 
 anodic inset width Linset 

 experimental current-voltage diagram 
 

|Iexp – Icalc1| ≤  ε  
? 

No 

Place an anodic inset in the middle of the electrolyser 

Calculate the primary CDD along the sample perimeter 

Solve Laplace problem for the secondary electric field 

distribution in the anodic inset with nonzero boundary 

conditions 

 

2 

1 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 
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Fig. 7.5. Block diagram for the current density calculation 
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sample perimeter 
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No 
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effective 
conductivity 

K3 

Calculate the oxide layer voltage drop distribution 
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? 

Shifting the voltage drop mean value to the treatment voltage 
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Appling the voltage drop distribution to the interpolated 
current-voltage diagram 

Yes 

No 
Correct 
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Calculate electric charge and estimation of thickness 
distribution by Faraday law 

Calculate the secondary CDD along the sample perimeter  
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 Experimental 

7.3.1. PEO treatment 

           The PEO coatings were produced on Al foil as the base layer following the 

procedures described in Chapter 6. The PEO rig consisted of a 30 kW DC power supply and a 

cylindrical stainless steel tank (130 mm inside diameter, 130 mm liquid height), equipped with 

a water cooling system and a magnetic stirrer and served as the cathode. The working 

electrode was positioned in the middle of the steel tank. The distance from the centre of 

working electrode to the inner face of the tank was 65 mm, and the depth distance from the 

electrolyte surface was 65.0 mm (see Fig.7.6) . The temperature of the electrolyte was kept  

range from 25 to 35 C ° 

 
Fig. 7.6. The electrolytic cell used in the PEO process

 

 

7.3.2. Electric field measurements 

  To evaluate distribution of the voltage drop in the electrolyte, voltage probe 

measurements were carried in the same setup. Firstly, a voltage probe represented by an 

insulated metal wire with the open end was immersed in the electrolyte at the same depth 

as the middle of the sample. The top view of voltage probe positions and their values are 

shown in Fig.7.7 and Table 7.1 respectively. The dry end of the probe was connected to the 

positive terminal of Fluke 15B digital voltmeter. A negative terminal of the voltmeter was 

connected to the steel tank. Further, the aluminium foil sample was treated in DC mode at 

Electrolyte

130 mm

13
0
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m
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(cathode)
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m

Jig rods
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550 V for 3 minutes. Once the steady state conditions were achieved, the voltage probe was 

consequently moved from position 1 to 6. After each shift the power supply was shortly 

switched on for 3 seconds and the voltage reading was recorded. 

 
Fig. 7.7. Voltage probe positions in the electrolyser for voltage distribution measurements 

 

              Table 7.1. The values of voltage drop in the electrolyte 

            Number of voltage probe position 
 

Distance from the tank wall, mm 
 

1 12.5 

2 25 

3 37.5 

4 48.8 

5 32.5 

6 16.3 

 

7.3.3. Surface characterisation 

   To evaluate the thickness distribution of the PEO coating across the Al foil samples, cross-

sectional images were taken along the length of the whole sample using an Inspect F50 SEM. 

The images were generated using a 15kV accelerating voltage, 10.8 mm working distance and 

2000x and 5000x magnification. The size of the images was 1024×943 pixel. A MountainsMap 

7.2 and an ImageJ software were used to analyse the SEM images.  

The thickness distribution of the PEO coating on the Al foil was calculated based on the 

area comprised by the coating layer in the cross-section and the length of the image. These 

lines should scan the oxide film randomly in order to obtain a value representative of the full 

sample length. A diagram sketch of thickness measurements of the coating layer was 

presented in Fig. 6.6 section 6-5.  
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7.3.4.  Calculation details  

  To meet the experimental conditions, the system parameters for calculations were 

introduced with electrolyser diameter 130 mm, anode size 30 x 0.05 x 18 mm. The solution of 

the Laplace equation was obtained by finite differences method using originally developed 

program in MATLAB environment. The program solves the Laplace equation for a uniform 

mesh with boundary conditions Uc = 0 V and Ua = 1 V (step 2 in Fig. 7.5). The mesh step was 

∆x5 = ∆y5 = 0.0625 cm. The voltage drop in the electrolyte was found by increasing Ua until 

potentials in the six specific points of the electrolyser coincided with the experimental values 

within 5% tolerance. For the E1 electrolyte that value was Ua=40 V (steps 3-5 in Fig. 7.5).  

The cell current Icalc1 was calculated and brought into correspondence with the experimental 

current Iexp =3.45 A by increasing the effective system depth 𝑧3 = 𝑧 𝑛𝑜𝑑𝑒 ∙ 𝐾1 = 18 𝑚𝑚 ∙

3.753 = 67.55 mm (steps 6-9 in Fig. 7.5). 

Due to the complexity of the mathematical model, a computational experiment was 

conducted in order to determine optimal values of the most significant parameters so that an 

accordance with the measurements was achieved. The computational experiment was 

performed by varying 3 parameters (Table 7.2) - inset area width Linset, cell voltage Ua, current 

integration loop position coefficient K2 (steps 14-22 in Fig. 7.5). The first parameter stands for 

a shift from the anode side towards the medium of the surrounding rectangular inset 𝑆𝑖𝑛𝑠𝑒𝑡 

in section 6.2.6, and it was varied within 3 to 9% range of the electrolyser diameter. The value 

of Ua was selected within the range of voltages from 510 to 550 V commonly used for PEO 

treatment of aluminium and the value of K2 was varied from 0.05 to 0.955. At each iteration 

of the experiment, the cell current Icalc2 was brought into correspondence with the 

experimental current Iexp=3.45 A by adjusting the effective conductivity of oxide and 

surrounding medium 𝛾
𝑜𝑥𝑖𝑑𝑒

=  𝛾 ∙ 𝐾3 (steps 14-16 in Fig. 7.5). 

   To obtain the secondary CDD steps 17-23 of the algorithm were performed (Fig. 7.5).  

 

 

 



Chapter 7 Electric field modelling during plasma electrolytic oxidation of AL foil substrate 

127 

  Table 7.2. Design of the computational experiment 

Factor Ua (V) Linset, % K2 

Higher 
level 

550 9 0.95 

Lower 
level 

510 3 0.05 

Step size 20 3 0.05 

Coating thickness distribution 

  Typical cross-sectional SEM images of the PEO coatings for samples treated in E1 and E4 

electrolytes are shown in section 6-5 (Fig. 6.7 (a)-(b)), whereas Fig. 7.8 shows corresponding 

coating thickness distributions over the sample length. It can be seen that for electrolyte E4, 

the coating thickness has one minimum in the middle of the sample.  

Fig. 7.8 Oxide layer thickness produced in electrolytes E1 (a) and E4 (b). 

Such thickness distribution is typical for most coatings electrodeposited on flat electrodes in 

electrolysers without auxiliary counter-electrodes, which is due to similar primary current 

density distributions. In contrast, for the coating formed in electrolyte E1, a peak in the middle 

of the sample can be observed. Although this appears to be a rather unusual feature, the 

significance of this peak has been verified by repeated experiments. If the thickness of the 

coating formed in electrolyte E1 varied from 1.2±0.1 μm at the edges to 0.6 ±0.1 μm in the 

middle region of the sample, for the sample treated in electrolyte E4, it ranged from 2.0 ±0.1 

μm at the edges to 1.7 ±0.1 μm in the middle of the sample. 
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Current density evolution during PEO process 

Experimental current-voltage diagrams (CVD) for PEO treatments of Al in in electrolytes E1 

and E4 electrolytes are presented in Fig.7.9. 

The main feature of the diagram (a) is the region of a negative differential resistance between 

410 and 500 V and electric breakdown at approximately 500 V.  In the diagram (b), there is a 

wide passivity region lasting up to 400 V followed by a breakdown at approximately 410 V 

and sharp current increase afterwards. 

Current density distribution 

      The results of computational experiments on evaluation of electric field and 

corresponding CDD for E1 and E4 electrolytes are presented in Fig.7.10 - 7.15. The 2D field 

distribution in electrolyte E1 (see section. 7.2.8, steps 3-5 in Fig.7.5) is presented in Fig.7.10. 

It shows a max imum value of 40 V; red dots indicate voltage probe positions in the 

electrolyser (see section. 7.3.2). The rectangle in the centre indicates the loop used for the 

anodic inset (see section. 7.2.8). In Fig. 7.11, the resulting potential distribution bounde by 

the loop is presented for experimental conditions Ua = 550 V, Linset = 6 %. These two plots 

show rapid potential decrease from anode to cathode; the most part of the voltage (510 V) 

drops across a relatively thin oxide layer and surrounding vapour-gaseous medium with 

microdischarges. 
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Fig. 7.9 Current voltage diagrams: a- for alkaline electrolyte, b-  for alkaline silicate electrolyte. 
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Fig. 7.10. Potential distribution in electrolyte E1 

Fig. 7.11. Potential distribution within the anodic inset in electrolyte E1. (Ua = 550 V, Linset= 6%) 

   Following the experimental design (Table 7.2), optimal conditions providing the closest 

similarity of the secondary CDD and the experimental coating thickness distribution (Fig.7.8 

 were selected as follows. The integration loop position was determined to be K2 = 0.5

corresponding to the middle of the anodic inset for all cases. Then, an optimal anodic inset 

surface area Linset was selected at maximum cell voltage 550 V. Corresponding plots for 
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electrolyte E1 are shown in Fig.7.12. Fig.7.12a shows the voltage drop within the inset; 

Fig.7.12b shows the primary CDD in the electrolyte; Fig.7.12c shows the mean voltage drop 

within the inset on the current-voltage diagram (points (1), (2) and (3), Fig.7.12d shows 

secondary CDD within the inset. The secondary CDD curve (2) in Fig.7.12d with Linset =  6% 

was selected for further calculations as providing the closest shape approximation to the 

coating thickness distribution is presented in Fig.7.8a.  

Fig. 7.12. Modelling plots for electrolyte E1 with different anodic inset area width 

Next, the inset area width Linset = 6%, K2 = 0.5 were fixed and cell voltage Ua was varied. In 

this case, the secondary CDD curve (1) with Ua = 510 V was selected as optimal because it 

has the highest current density on the edges and moderately increases in the middle of the 

sample. 
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Fig. 7.13. Modelling plots for E1 electrolyte with different treatment voltages 

    Fig. 7.13 shows the secondary CDD around the anode in electrolyte E1 with the optimal 

parameters Ua = 510 V, La = 6% and K2 = 0.5. This distribution has the closest correlation with 

the coating thickness distribution, and it can be used for estimation of the coating thickness 

distribution over the surface of complex shape substrates treated in electrolyte E1. 

 Fig. 7.14. Secondary CDD for E1 electrolyte calculated for optimal computational parameters: 
Ua = 550 V, La = 6%, K2 = 0.5 
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   Compared to E1, in electrolyte E4 with relatively smooth current-voltage diagram, the 

calculation process is much simpler. Plots in Fig. 7.15 show the CDDs for various voltages Ua 

in electrolyte E4. For E 4 electrolyte show the CDDs for various voltage Ua. Curve (2) was 

chosen as the optimal due to moderate differences between the current density on the edges 

and in the middle of the sample. 

  Fig. 7.15. Modelling plots for electrolyte E4 with different cell voltage 

   Comparison of modelling results for electrolytes for E1 and E4 provides a clear evidence of 

significant nonuniformity introduced in the secondary CDD by the shape of the current-

voltage diagram 

Summary 

   A calculation methodology of nonlinear current-voltage diagrams was developed. It 

provides secondary current distribution that qualitatively differs from primary current 

distribution. The results was confirmed by experimental data and can be suggested as 

description of a new physical phenomenon.  
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Chapter 8  
Studies of PEO processes for fabrication of 3D thin-walled 
ceramic structures  

 Introduction 

    As shown in Chapter 4, PEO coatings were formed under bipolar current mode in 1 g/l KOH, 

2 g/l Na4P2O7 , 2 g/l Na2SiO 3 electrolyte with various treatment times. It was concluded 

that the coatings produced for 6 min presented the best degree of flexibility compared with 

the coatings produced at other treatment times. Also, as discussed in Chapter 6, the electric 

field and current density may influence the thickness distribution of the PEO coatings. The 

thickness uniformity is one of the important factors influencing the performance of PEO 

coatings on complex shape substrates. It affects the overall performance of the engineered 

coating which’s  not only helps make that good first impression but the overall evaluation of 

the product throughout its life cycle. However, difficulties are generally encountered in 

producing uniform coatings on substrates having irregular shapes. Edges, corners and holes 

are particularly troublesome [184]. 

   Electrochemical cells are known to be characterised by the relation of the current the cell 

passes to the voltage across it, and the current density may not be uniformly distributed on 

the working electrode surface during PEO process which leads to poor performance due to 

uneven coating thickness and low degree of coatings uniformity [185]. In addition, complex 

physical and chemical process occur during the PEO process. Therefore, monitoring the 

evolution of spectral signal could be helpful in understanding the mechanism underlying PEO 

process of irregular shapes and provide a correlation between the oxide formation and 

growth rate and thickness with diffusion of oxygen and its effect on the coating formation 

[186].  

To produce PEO coatings with uniform thickness on complex shapes it is necessary to 

analyse the effect of edges and corners existing in such substrates. In this chapter two 

irregular shapes, L and U, were produced using a pulsed bipolar current PEO mode with the 

process time of 6 min in different electrolytes. The characterisation of the PEO coatings, 

including coating morphology was performed by the methods discussed in Chapter 3. The 

coating thickness variations on the inner/outer surfaces and at edges were determined and 
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compared. The plasma discharge behaviour during the PEO treatment of complex shapes was 

investigated. The plasma electron temperature was evaluated by analysing characteristic lines 

of Al in the optical emission spectra. Before all these analyses, to achieve better 

understanding of the current distribution in the electrolyser during the PEO process of 

irregular shapes, numerical modelling was used.  

 Problem statement 

      Most research studies focused on the plasma electrolytic oxidation (PEO) processes for 

workpieces of regular shapes such as rectangular and circular samples, and little paid 

attention is paid to more complex samples such as E, U, L and star shapes.  

     It is common that the PEO coatings may have varied thickness and morphologies at the 

surfaces of the electrodes [8, 167]. This indicates the current density during the process 

changes from place to place along the electrode surface.  Also, the potential difference at the 

electrode- electrolyte interface can be site dependent. The thickness and morphology of the 

coatings would be non-uniform at various points across the sample if the current density is 

not uniformly distributed when the working electrode is irregular [187]. The reaction rate is 

directly proportional to the current density and its surface distribution significantly affects the 

electrochemical process [58, 188]. The current density during the electrochemical process 

depends on several factors such as electrolyte conductivity, electrode surface area, and 

geometry as well as cell layout.   

     Many studies addressed the current density distribution using empirical and analytical 

methods, however there is a growing use of numerical and computational methods. COMSOL 

package is the one of the most popular software used to model and represent the current 

distribution in the cells. The basics of numerical modelling using COMSOL software are provided 

in (Chapter 3).     

    Morphology and thickness of PEO coatings are important in all applications of protective 

finish to ensure optimum performance is obtained [189]. Recently, studies have analysed the 

formation mechanisms [70, 83, 190-192], and tribological properties [63, 86, 133, 193, 194] 

of PEO coatings formed on different Al alloy substrates of regular shape. However, very rare 

studies paid attention to the growth process, characteristics and properties PEO coatings on 

irregular shape substrates. Essential work is therefore required to achieve better 
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understanding regarding the characteristics of discharge phenomena and their effect on the 

mechanisms of the coating formation at the edges and on the inner surfaces of complex shape 

substrates. Therefore, the specific objectives of this part of the project have been defined as 

follows: 

 Fabrications of 3D thin-walled ceramic structures (L and U shapes) by achieving a

uniform thickness of ceramic coatings on edges and inner surfaces of samples.

 To attain a better understanding of the PEO coating formation on Al foil samples of

irregular shape by comparing characteristics of PEO coatings produced on inner and

outer surfaces of irregular shape samples.

 Investigate effects of the shape of working electrode on characteristics of plasma

discharge during the PEO process and resulting coatings.

 Study effects of primary current density distribution in the cell on the characteristics

of the PEO process and coating growth behaviour.

Experiments set-up 

8.3.1. Materials and PEO process  

       A 50-µm thick irregular-shape aluminium foil samples (L and U shapes) of dimensions 

(25 × 10 × 0.05 mm) as can be seen in Fig. 8.1,  and surface roughness of Ra ~ 0.1- 0.15 µm 

were used as substrates for conversion to alumina using PEO process. 

Table. 8.1. Different solutions of electrolytes used for PEO coating process of irregular Al foil 
samples. 

Electrolyte code 
Concentration (g/l) 

KOH Na4P2O7 Na2SiO3 

E1 0.75 0 0 

E2 0.75 0 2 

E3 0.75 2 0 

E4 0.75 2 2 

E5 1 1 1 

E6 1.25 0 0 

E7 1.25 0 2 

E8 1.25 2 0 

E9 1.25 2 2 
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Fig. 8.1. Irregular shape Al foil (50 µm thickness) samples; (right) L-shape and (left) U-shape 
before treatment using PEO process 

The samples were cut to the required shapes, formed as appropriate, with all angles being 

around 90o, and fixed on the holders by plastic fittings as described in section 3.1. The 

electrolytes prepared from different concentrations of potassium hydroxide (KOH), sodium 

pyrophosphate (Na4P2O7), and sodium silicate (Na2SiO3), denoted E1 to E9 in Table 8.1.  

   The PEO processes were carried out in a 2.0 L cylindrical stainless steel cell, also served as 

the counter-electrode, equipped with a cooling coil. Figure 4.1 in Chapter 4, shows a 

schematic of PEO processing equipment, with details of electrical setup and the current 

mode used presented in Chapter 3. During the treatment, the electrolyte temperature was 

maintained below 35 ±5.0 ◦C, by cooling the electrolyte in the electrolytic cell. However, due 

to the relatively large area and irregular shape of the samples, the temperature was 

expected to rise during the PEO process. The samples were treated for 6 min. To maintain 

similar distribution of electric field on the surface of the working electrode during the PEO 

process, the samples were suspended and positioned centrally in the middle of the steel 

tank using an isolated metal holder and plastic holders. SEM images were taken with an 

InspectF50 SEM. The images were generated using 15kV accelerating voltage, 10.8 mm 

working distance and 1000× and 2000x magnification. 
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Optical emission spectroscopy 

      The OES study was carried out using a FloTron XHR spectrometer to collect the spectra 

over the period of 6 min in the wavelength range from 300 to 900 nm. To ensure that the 

maximum light is collected by the optical fiber, the lens was located at around 5 mm in front 

of the sample for both inner and outer surfaces. Collected OES spectra were monitored and 

analysed as a function of time. Fig. 8.2 shows a schematic diagram of the sample geometries 

used in the experiments and position during PEO process for the measurements of optical 

emission spectra. 

Fig. 8.2 Schematic diagram shows the position of samples (U and L) shapes inside the cell. 

Sample analysis 

     In this study, we investigated the effects of current density distribution on the growth 

behaviour and properties of PEO coatings formed on complex geometry samples. The 

characteristics of PEO coatings such as thickness and phase composition were studied in 

different regions on the samples – in central parts of inner and outer surfaces and near the 

edges. The surface SEM images were analysed using ImageJ and MountainsMap 7.2 software 

to determine the characteristics of PEO coating. In addition, characteristics of 

microdischarges that appear at the surfaces of irregular shape substrates during PEO process 

were studied using OES to determine plasma composition and electron temperature. A more 

detailed description of the experimental equipment used and how the samples were 

positioned in the electrolyser is provided in Chapter 3. 
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Modelling of electric field and current density distribution in 
the electrolyser    

     Numerical simulation provides a capability for evaluation of the current distribution in a 

particular configuration of electrolyser and coating conditions. However, for predictive design 

and scale‐up analytical models that represent the dependence of the current distribution on 

the process parameters are more advantageous. 

PEO coatings can have different thickness and morphologies at the surface of the aluminium 

foil, which means that the current density during the process varies from place to place on 

the sample surface [187, 195] due to the sample shape, size and position in respect to the 

counter-electrodes. Substrate geometry of is one of the key factors that affect the current 

density values in the electrochemical cells [196, 197]. Although a brief review provided in this 

study does not allow a comprehensive explanation of electrochemical theory, a discussion of 

the electric field distribution in the electrolyser during the PEO treatments of complex shape 

samples may offer sufficient understanding of how it affects the current density distribution 

in the electrolyser, which, in turn, influences the formation of PEO coatings on such 

substrates.   

     To achieve better insights into the current density distribution at the edges and on the 

inner surfaces of the working electrode during the PEO treatment and corresponding effects 

on the coating formation, a numerical model was developed based on a COMSOL-

Multiphysics software [121].  

8.6.1. COMSOL model generation 

       When building up a model in the COMSOL environment, several aspects need to be 

considered [121, 198]. The following guidelines have been followed when building up the 

model of current density and potential distribution in the electrolyser during the PEO process. 

The most important is model simplification due to system symmetry should be used as much 

as possible to reduce the simulation run time. Fig. 8.3 shows the 2D geometry of the L and U 

shapes samples model. In this illustration, we used L-shape substrate as an example, with 

similar considerations being also applied to the U-shape.  
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Fig. 8.3 2D geometry of working electrodes (L and U) shapes. 

Definition of geometry. In 2D or 3D, the geometry of the structures can be defined in the CAD 

window. Due to the symmetry along the samples, the 3D geometry can be reduced to a 2D 

cross section. The main objects, such as the L- shape Al foil, the stainless steel tank and the 

electrolyte, were drawn using a SolidWorks software and imported in 2D CAD as show in Fig. 

8.3. 

Fig. 8.4 Screen shot showing how the geometry of a simulation is defined and how the material 
parameters can be adjusted. 

The red box in Fig. 8.4 outlines the definition of cell geometry in the model builder. The circle 

and the L-shape represent the stainless steel tank cathode and the Al foil sample anode 

respectively, separated by the electrolyte highlighted by the light blue colour.  
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Assignment of materials properties. In this step, we used predefined materials which 

properties were stored in the COMSOL library and then adjusted as necessary. The electrolyte 

domain of was assigned to water from the material library with electrical conductivity 

changed to 0.55 S/m to reflect the actual property. The highlighted blue box in Fig. 8.4 shows 

that the conductivity was changed for this model. AISI 304 stainless steel and A1050 Al alloy 

were chosen for the boundaries representing the tank (cathode) and the sample (anode) 

respectively.   

Definition of components and selection of appropriate conditions. Prior to solving the 

model, it is necessary to define domains (volumes in 3D, surfaces in 2D) and the boundaries 

(surfaces in 2D, edges in 2D) on the geometry used. The boundary conditions used are electric 

insulation, ground, and electric potential. The two-dimensional numerical model used in this 

study is incorporated from the AC/DC module with the following built-in equations: 

 −∇. 𝐽 =  𝑄𝑗  (7.1) 

 𝐽 =  𝜎𝐸 + 𝐽𝑒  (7.2) 

 𝐸 =  −∇𝑉       (7.3) 

Where J is current density, Qj, is current source, σ is electric conductivity of electrolyte, E is 

electric field, Je
  

is external current density, and V is voltage. In this work, the tank surface was 

set to the electric ground and the electric potential of Vο = 500 V was imposed on the sample. 

Mesh. The finite element mesh is shown in Fig. 8.5. At the domain area (electrolyte) the mesh 

consists of 18224 elements and the mesh area 17660.0 mm2. It was generated by using the 

automatic mesh creator with option [fine].   
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Fig. 8.5 Finite element mesh for the boundaries on the sample (anode)/electrolyte boundary 

    In the primary current distribution, it was assumed that no overpotential accompanies the 

activation of the reaction. The cell can be presented as a simple circuit model for the PEO 

process. A constant resistance represents the electrolyte which is a conductive medium with 

constant conductivity and the current distribution is controlled by the resistivity of the 

electrolyte between the working electrode and the cathode (Fig.8.3).  

    To take into account the fact that the non-uniform electric field distribution around the 

working electrode causes the local current density at the edges to increase, which may 

according to the current–voltage diagram, lead to the redistribution of the coating growth 

rate along the sample surface, we suggested to apply a floating potential electrode for a 

boundary condition with the same shape as the working electrode but positioned 1 mm 

beside it (Fig. 8.3). The floating potential electrode (Qo=0) was chosen from the (COMSOL 

library) for applying a boundary condition, and it has same material type of the cathode. 

Electric field and current density distribution 

       Fig. 8.6 (a) and 8.7 (a) display the distributions of electric field and current density on the 

surface of L and U shape working electrodes respectively. The contour lines represent the 

distribution of electric field and the arrows – the distribution and direction of current density 

that clearly show differences between the outer and inner sides on the working electrodes. 

Irrespective of the working electrode shape, the electric field strength is the highest near the 

edges and between the working electrodes and the floating potential electrode for all 

conditions. 
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Fig. 8.6 COMSOL modelling results of current density (A/m2; arrows) and electric field (V/m; contour 
lines) distributions in the electrolyser for the PEO treatments of L-shape electrode (a) without 

floating potential electrode (b) with floating potential 

(a)

(b)
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Fig. 8.7 COMSOL modelling results of current density (A/m2; arrows) and electric field (V/m; contour 
lines) distributions in the electrolyser for the PEO treatments of U- shape electrode (a) without 

floating potential electrode (b) with floating potential electrode. 

    The electric field strength at the surfaces of L and U shape electrodes in the cell 

arrangements with floating potential electrodes is higher than in those without them. In both 

cases, the values of current density at edges are nearly 6 times higher than at the middle 

(Fig.(8.5 )(8.6)). This difference is due to the effect of electrode edges and corners (outside 

angles) on electric field distribution. The arrows indicate that the current density at edges and 

(a)

(b)
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outside angles of the samples in the cells with floating potential electrodes is higher than in 

those without them. The difference in the distribution of electric field between the inner and 

outer surfaces around L and U shapes can be visualised from the modelling results, which is 

another way that may provide a knowledge to investigate the coating thickness.  

Fig. 8.8. Shows the appearance of the coated samples (L and U) shapes after PEO treatment. 
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Uneven electric field and current density in the electrolyser induced by the shape of 

electrodes causes different in thickness along the samples. This was explained why the 

thickness of PEO coatings at edges was higher than that near the edges or at middle of 

samples as well as why poor coatings were formed at the corners. Examples of PEO treatment 

of samples with poor coating at the corners and in the edges are presented in Fig. 8.8. 

Therefore, solving the problem of current density distribution at the edges would help 

increasing coating uniformity.  

    On the other hand, the electrolyte compositions studied in Chapter 5 have considerable 

influence on the characteristics of produced coatings. For instance, the introduction of 

sodium silicate in the electrolyte leads to the increase in the thickness of the coatings, with 

the increase in the thickness of the outer layer being higher than that of the dense inner layer. 

This was clearly observed in the PEO coatings produced in electrolytes (1-1-1) and (1.25-2-2) 

(see Fig 8.8 and 8.13). In addition, increase of potassium hydroxide (KOH) into the electrolyte 

leads to increases in the electrolyte conductivity which leads to the raise of the current 

density during the PEO process and resulting coating thickness. 

   In order to visualise the simulated distribution of current density (A/m2) across the sample 

surface, a cross-section was considered between two points of sample adjacent its outer and 

inner surfaces (Fig. 8.9 (a)(b)). 
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Fig. 8.9 Simulation results of current density as a function of sample length for PEO process at inner 
and outer surface, with and without floating potential electrode (a) L-shape and (b) U-shape. 

     It is clear that when the floating potential electrode was used beside the working electrode 

in both cases, the current density along the inner surfaces increased and became more 

uniform. Thus, the simulation of electric field and current density distributions over irregular 

shape working electrodes during PEO process can help understanding the reasons behind the 

differences in coating morphology and thickness. Moreover these results provide a guideline 

on how to improve coating thickness uniformity and morphology at the edges and in the 

corners of irregular shape substrates to enable their use in specific applications that might 

require a higher coating thickness on one side. 
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Fig. 8.10. Calculated current density distributions across the length of L-shape working electrode 
when a floating potential electrode was placed at various distances from it. 

    For further understanding of current density distribution during the PEO process, an 

application of the floating potential counter-electrode was considered at various distances 

from the L- shape working electrode. Results of calculation of the current density distribution 

along the inner surface of the L-shape electrode presented in Fig. 8.10 show how the values 

of current density change with changing distance between the floating potential electrode 

and working electrode. In general, the current density increases when the distance decreases 

due to the effect of increasing potential resulted from the application of the floating 

electrode. 

Current transient behaviour during plasma electrolytic process 

 The variations of current density with the time of potentiostatic PEO treatments of 

irregular shape samples in different electrolytes are shown in Fig. 8.10. For the in L-shape 

samples, the current density initially increases sharply to reach the maximum of 0.3 A/cm2 to 

0.6 A/cm2 depending on the type of electrolyte solution. While for U-shape samples, these 

values decrease to 0.18 A/cm2 to 0.3 A/cm2, also depending on the type of electrolyte used. 

Then for both types of samples, the current density asymptotically converges to the steady 

state values with some fluctuations observed for the samples treated in the silicate 

electrolyte. 
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From the experimental observations, the PEO process can be divided into three stages. In all 

conditions, the current density increases at the first stage according to the voltage increase 

to the pre-set values of 530 V and -180 V. Then, at stage two, a significant drop in current 

density occurs because of rapid formation of the PEO coating which increases the system 

resistance, restricting the current flow. Within this stage, the white sparks are sparse and local 

coarse arcs are occasionally produced. After that, in the third stage, only fine micro arcs occur 

on the surface of the samples and the reactions proceed steady with some distinctive changes 

in current density. These results are consistent with previous observations [4, 12, 52, 55, 125, 

126, 199, 200]. The current density-time curves were different from each other at the stages 

due to the different electrolyte concentrations (see Chapter 4). Comparing transient 

behaviour of current density during PEO treatments of L and U shape samples (Fig.8.11), it 

can be seen that, in spite of the clear symmetry in current density curves between the two 

conditions, the values of current density at the three stages of U-shape treatment are less 

than those in L-shapes. This is due to the sample geometry effect, where shielding of the 

substantial fraction of inner surface area of the U shape electrode affects the net current 

density. 
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Fig. 8.11. The plots of current density versus PEO treatment time in different electrolyte 
compositions for L and U shapes 
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Coating thickness distribution 

       Coating thickness is one of the important factors that influence the micromechanical and 

tribological behaviour in both regular and irregular shapes. In certain applications, a relatively 

soft coating can assist sample bending and enhance its flexibility. This means a substantial 

value of residual aluminium may play a crucial role for the stuffiness of the composite 

material. 

    To obtain better knowledge about the nature of PEO coatings and their thickness 

distribution on or near edges and corners of irregular shape substrates (see Fig. 8.10), the 

coating thickness was evaluated using MountainMap7.4 software using SEM images of 

sample cross-sections prepared in these regions (Fig 8.12).  

 Fig. 8.12 Regions selected to measure thicknesses of PEO coatings for (a) L-shape sample, (b) U-
shape sample treated in different electrolytes. 

The thicknesses of coatings formed in outer and inner sides at different regions on the 

working electrodes are shown in Table 8.2. The thickness of PEO coatings produced from 

different electrolytes in different regions of irregular shape substrates, is presented in Table 

8.2. It is clear that for both shapes there is a disparity values of coatings thickness measured 

on inner and outer surfaces. 
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Fig. 8.13 Details of PEO coating thickness measurement using SEM cross-sections of the corner 
regions of samples treated in the electrolyte E2 and E6 for (a) and (b) L-shape and E4 and E8  (c) and 

(d) U-shape. 
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Table. 8.2. Different solutions of electrolytes used for PEO coating process of irregular Al foil 
samples. 

As can be seen in Fig. 8.12 and 8.13, in region (1), the coatings thickness on outer corner is 

higher than that in the inner corner due to the edge effect. However, samples treated in 

electrolyte solutions with higher concentrations, such as E4 and E9, exhibit more uniform 

coverages and appreciable coating growth on inner surfaces (Fig 8.14).  While in the flat area 

(region 2), the coating thickness on the outer surfaces is mainly the same as that produced 

on regular shapes. This is consistent with the results of modelling of electric field and current 

density distributions on the surfaces of such working electrodes discussed in section 8.7.   

Electrolyte composition 
g/l 

L-shape 

Outer surface 

U-shape 

Outer surface 

Region 1- 
On corner 

Region 2 
Region 1- 
On corner 

Region 2 

0.75 KOH      (E1) 10.1 ± 0.7 10 ± 0.8 10.0 ± 0.7 9.2± 0.8 

0.75 KOH, 2.0 Na2SiO3   (E2) 9.1 ± 0.8 8 ± 0.7 11.0 ± 1.3 9.0 ± 0.9 

0.75 KOH, 2.0 Na4P2O7  (E3) 12.3 ± 1.2 11.55 ± 0.9 13.3 ± 1.2 11.55 ± 0.9 

0.75 KOH, 2.0 Na2SiO3,2.0 Na4P2O7  (E4) 17.8 ± 1.9 15.0 ± 1.9 14.4 ± 1.2 13.1 ± 1.7 

1.0 KOH, 1.0 Na2SiO3,1.0 Na4P2O7  (E5) 16.6 ± 0.81 15.3 ± 0.9 15.1 ± 0.6 13.6 ± 0.8 

1.25 KOH  (E6) 12.6 ± 0.41 12.7 ± 0.7 11.5 ± 0.8 10.7 ± 0.9 

1.25 KOH, 2.0 Na2SiO3  (E7) 16.4 ± 1.2 14.9 ± 1.2 13.7 ± 1.2 12.9 ± 1.3 

1.25 KOH, Na4P2O7   (E8) 13.2 ± 0.9 13.8 ± 0.8 15.9 ± 0.9 14.5 ± 0.2 

1.25 KOH, 2.0 Na2SiO3,2.0 Na4P2O7  (E9) 32.3 ± 1.3 29.3 ± 1.1 29.3 ± 1.3 29.6 ± 1.1 
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Fig.  8.14 SEM image of a cross section of the PEO coating formed on inner and outer surfaces of the 

corner region of a U-shape Al foil sample treated for 6 min in electrolyte (1.25-2-2). 

 
Considering the effects of other factors such as electrolyte concentrations and treatment time 

type, the more irregular shape the more difference there is in current density. Edges and 

corners are cites of high current density that attract additional current and therefore more 

developing thicker coatings. While central areas of flat walls exhibit lower current densities 

and will have thinner coatings. In modelling, we suggested to use a floating potential 

electrode beside the internal surfaces and inner corners to increase the current density, thus 

promoting thicker coatings. However, in real systems this would require further studies due 

to the difficulties of placing the counter electrode near the working electrode. It is obvious 

that in practice, irregular shapes are unavoidable due to the function of the parts; however, 

components with less sharp angles would facilitate PEO treatments and provide uniform 

coating growth. Many other factors would also have to be considered for surface finishing of 

irregular shapes using PEO process to reconcile requirements from design and processing 

aspects.   

 Optical emission characterisation  

     Owing to the involvement of electrochemical and thermal reactions, the mechanisms of 

oxide layers formation by PEO treatment are complex [10, 55]. Throughout the PEO process, 
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a large amount of sparks moves quickly on the surface of the working electrode. However, 

there are many parameters such as treatment time, electrolyte compositions and current 

mode affecting the evolution and characteristics of sparks. The emission intensity signals of 

the species can be used to specify whether the plasma generates conditions required for a 

certain coating process. Although the amount of experimental data on microdischarge 

phenomena is rapidly expanding, there are still many uncertainties [201]. The geometrical 

shapes of samples and their dimensions is a crucial issue for understanding the coating growth 

mechanisms during PEO processing. This section of the work is focused on the study of the 

behaviour of the plasma micro-discharges during PEO treatments of irregular shape samples, 

in particular the effects of internal and external surfaces. 

    Fig.8.13 and 8.14 display the typical optical emission spectra of microdischarges at inner 

and outer surfaces of an L-shape aluminium foil substrate during PEO processing carried out 

in different electrolytes, collected in the wavelength range from 300 nm to 900 nm at the 

processing time of 6 min. For both inner and outer surfaces, it is found that PEO plasma 

contains aluminium from the substrate and sodium, potassium and hydrogen β Balmer lines 

from the electrolyte. Spectral lines recorded at 486.1 nm (Hβ), 589.5 nm (Na I), 765 nm (K I) 

correspond the electrolyte species and lines from the sample substrate are 304.1 nm (Al I), 

396.1 nm (Al I), as identified by NIST atomic spectra database are collected in Table 8.3 [202]. 

Table 8.3 Observed spectral lines with wavelength, transition, statistical weights of the upper and 
lower states gk, and gi respectively, energy difference and the transition probabilities (Aki ). 

Line λ (nm) Transition gk gi Energy (eV) Aki (108 S-1) 

Hβ 486.1 4d 2D → 2p 2P 4 2 2.55 0.172 
Na I 589.5 3p 2P → 3s 2S 3 3 1.36 0.64 
K I 765 3p64S → 3p6 4P - - - 3.2 
Al I 304.1 3s23d 2D → 3s23p 2P 6 4 4.0 0.732 
Al I 396.1 3s24s 2S → 3s23p 2P 2 4 3.13 0.982 

 

   It is clear that, for both inner and outer surfaces of the samples treated in all electrolytes 

except E6 containing only KOH, the most intense line belongs to sodium. The active species 

in the plasma may give the high temperature condition needed to melt and sinter the oxides 

produced by the electrochemical reactions, thus forming the ceramic layers.    

   Figures 8.15 and 8.16 show optical emission spectra of plasma discharge recorded from 

inner and outer surfaces during PEO treatments of L-shale Al foil samples. The general trend 
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of the emission spectral lines of all species at the inner surfaces are stronger than those at 

the outer surfaces, although the difference in emission intensity not high. This appears to be 

consistent with the modelling and the experimental results of current density, which in turn 

is reflected in thicknesses and morphology of PEO coatings. 

 
Fig. 8.15 Emission spectra of microdischarges during PEO of Al-foil (L-shape) at inner surface in 

different electrolyte compositions. 
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Fig. 8.16 Emission spectra of microdischarges during PEO of Al-foil (L-shape) at outer surface in 
different electrolyte compositions. 
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    The geometrical shapes of samples and their dimensions play an important role in current 

density distribution during PEO process. However the discharges can be influenced by many 

other factors such as treatment time and type of electrolyte [109]. In our experiments, if we 

drew attention at the inner surfaces of L shape samples by positioning focusing lens of the 

OES system in front of them as shown in (Fig 8.17 a). The inner surface consists of two internal 

faces two longitudinal edges, four transverse edges and the corner, while the outer surface 

consists of just two longitudinal edges and two transverse edges. These edges and corners 

may contribute to the output spectrum produced [65, 203]. Effects of edges and corners in 

complex shapes on thickness distribution and morphology of PEO coatings can be 

demonstrated in (Fig 8.17 b), which provides an example of the appearance of L-shape sample 

treated in electrolyte E2 (0.75 g/l KOH, 2.0 g/l Na4P2O7). A thicker and more uniform white 

coating can be clearly observed at the edges and on the corner of the sample compared with 

the other regions on the sample. This is also confirmed by the results current density 

distribution modelling (Fig 8.5-8.6 and 7.8) and coating thickness measurements using cross-

sectional SEM images (Table 8.2) 

 

Fig. 8.17 (a) L-shape Al foil sample assembly and its position in the cell during the PEO process and 
(b) after treatment 

 

(a)

(b)
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   The intensity variation of species emission lines with treatment time of Al-foil (L-shape 

samples) at inner (in front of lens) and outer surfaces in different electrolytes during the 

PEO processes presented in (Fig 8.18 (a) (b) (c)).   

 

Fig 8.18 (a) Variations of the intensity of spectral lines during the PEO processing of L-shape Al foil 
sample at inner and outer surfaces in different electrolytes. 
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Fig. 8.18 (b) Variations of the intensity of spectral lines during the PEO processing of L-shape Al foil 
sample at inner and outer surfaces in different electrolytes 
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Fig. 8.18 ( c ) Variations of the intensity of spectral lines during the PEO processing of L-shape Al foil 
sample at inner and outer surfaces in different electrolytes. 

 

As the PEO process continues, the discharge appearance varies and emission intensities of 

species in the plasma change for all conditions at both inner and outer surfaces. In both cases 

(inner and outer surfaces), Na-589 line shows strong intensity signals that have a similar trend. 

This also applies to other species, however in some cases, there are signal fluctuations at later 

stages, such as during treatments in electrolytes (0.75-2-2), (1.25-0-2) and (1.25-2-2). Hussein 

et al. [109] stated that strong discharge may cause irreversible damage to the coatings. In 

spite of the intensities of most lines at inner surfaces being stronger, the trends in their 

behaviour at both surfaces are mainly similar, however it is not quite true for the treatments 

in (125-0-2) and (125-0-0) electrolytes. For the sample treated in electrolyte (1.25-0-0) the 

signals recorded at the outer surface show Na-589, which is strange, the only reason may just 

be a noise in the system rather than a defined spectral line. In the other side, the location of 

plasma discharge concentrated around the edges due to the effects of high voltage and strong 
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electric field, which led to the higher current density. This influences the coating growth and 

could cause relatively uneven coating thickness distribution compared to the flat regions. 

 Electron concentration and temperature 

        The relative intensities of spectral lines of the same atomic species were applied to 

compute the plasma electron temperature (Te). Once relative intensities are known, the 

temperature corresponding to a given line ratio [203] then the following relation was used to 

determine the plasma electron temperature; 

𝐼 (1)

𝐼 (2)
=

𝐴𝑚𝑛(1)𝑔𝑚(1)𝜆о(2)

𝐴𝑚𝑛(2)𝑔𝑚(2)𝜆о(1)
  𝑥𝑝 − {

𝐸(𝑚2)−𝐸(𝑚1)

𝑘𝑇
}    

Where kT is the thermal energy, 𝐼 (1)and 𝐼 (2)are relative line intensities of lines of the same 

species in question, Amn(i) are the transition probabilities, m the upper and n the lower level 

of the respective lines, gm(i) the statistical weight of the upper levels, Em(i) energies of the 

upper levels of lines and 𝜆о(𝑖) the wavelengths of the peak centres in vacuum. In this work, 

the intensity ratio of the lines of Al recorded at 396.1 nm and 304.1 were used to determine 

instantaneous values of plasma electron temperature. Fig. 8.19 ((a), (b), (c)) show the plasma 

electron temperature as a function of treatment time for different electrolytes. Hussein et al. 

[109] stated that the Te profile during the PEO process depends strongly on the type of 

discharge. From the results presented, there appears to be no substantial differences in Te of 

discharge at the inner and outer surfaces of L-shape samples. For example, in the case of the 

sample treated in electrolyte E2, (0.75 g/l KOH, 2.0 g/l Na4P2O7) the plasma electron 

temperature increased from 4000 ± 300 K at the earlier stages to 5000 ± 450 K by the end of 

process, while in the outer surface it changed from 5500 ± 300 K to 5000 ± 450 K. The 

difference in temperature is significant at the earlier stages of the coating growth. However 

the outer surface shows higher electron temperature for most samples. At the initial stage of 

the process, the current rapidly reaches the set limit and as the resistance of the growing 

coating increases the current decreases. The discharges at this stage are characterised by 

optical emission with well-defined spectral lines. Gradually, soft sparking is initiated on the 

edges of the samples where local current density is higher. This means that the samples which 

have more edges are exposed a significant amount of discharges than less edges which leads 

to higher electron plasma temperature. This is consistent with the data of Fig. 8.18-8.19.  
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Fig 8.19 (a) Plasma electron temperature as a function of PEO process time at the inner and outer 
surfaces of L-shape Al-foil samples treated in different electrolytes 
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Fig 8.19 (b) Optical emission spectroscopy of plasma discharge and current density during PEO 
treatments in electrolytes E4 and E9 
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Fig. 8.19 ( c ) Optical emission spectroscopy of plasma discharge and current density during PEO 
treatments in electrolytes E4 and E9 

       

    To achieve better understanding about how discharge appearance changes and the plasma 

intensities vary during PEO treatments of irregular shape samples and monitor the evolution 

of the main treatment parameters, Fig 8.20 presented evolutions of absolute and relative 

emission intensities as well as plasma electron temperature on the outer surfaces of samples 

in comparison with current density evolution during PEO treatments in electrolytes E4 and 

E5. 

    As discussed in Section 8-6, the current distribution is among the most significant 

parameters characterising the operation of the electrochemical cell. The current density on 

the electrodes is directly proportional to the reaction rates and its distribution critically affects 

the electrochemical process. [185]. 
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Fig. 8.20 Optical emission spectroscopy of plasma discharge and current density during PEO 
treatments in electrolytes E4 and E9 

     

    As can be seen from Fig. 8.20, the higher extinction of Al lines occurred between 4 and 5 

min in sample treated in electrolyte E4 and between around 2 and 5 min in electrolyte 9. 

During these periods of time, the current density decreased to the steady state stage in both 

electrolytes and the plasma temperature showed high fluctuation. The thicknesses of these 

two layers change relatively each other with the potassium hydroxide concentration. 
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Increasing the KOH as discussed in Chapter 5 leads to an increase the coating thickness. The 

thickness of the coating produced in electrolyte E9 was around 29.0 µm while that in E4 was 

15.0 µm. Fig. 8.20 shows the amount of consumed aluminium during the treatment in 

electrolyte E9 is more than that in electrolyte E4.  

 Summary 

       Distribution of electric field in the electrolyser is an important factor, affecting formation 

of PEO coatings on complex shape substrates. To study effects of electric field on current 

density distribution on the surface of the working electrode at various electrolyser layouts, 

numerical modelling was used.  

     The modelling results showed that the shape of sample strongly influences the current 

density due to the primary electric field distribution in the electrolyser. Numerical solutions 

indicated that the electric field strength and current density at the edges and on the outer 

corners of L and U shape electrodes are higher than in the flat surfaces. In both cases, the 

values of current density at edges are nearly 6 times higher than those at the middle. 

The L and U shaped thin-walled 3D ceramic-metal composite structures were successfully 

fabricated using PEO treatments in electrolytes containing 0.75 to 1.25 g/l KOH, 2.0 Na2SiO3 

and 2.0 g/l Na4P2O7, with uniform PEO coatings without cracks grown on the edges and 

corners at outer surfaces of L and U shape Al foil samples. However, the coating thickness at 

the inner surfaces was around 30 % lower. 

     The PEO process is capable of forming a uniform coating at the edges and around sharp 

corners, with typical coating thickness ranging from about 10 to 30 µm for both L and U shape 

substrates, depending on the electrolyte composition used. 
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 Chapter 9 

Conclusions and future work  

 Conclusions 

       In this research, ceramic alumina films were produced by conversion of different shapes 

aluminium foil substrate using PEO technique. The key point is that the Plasma electrolytic 

oxide coatings are formed by substrate oxidation in an aqueous electrolyte via a series of 

localized electrical discharge events which allow oxide growth to proceed so as to produce 

ceramic films. 

       Control of PEO process parameters such as current regime, treatment time and 

electrolyte composition and understanding current distribution in the electrolyser help 

avoiding poor composite performance, such as mechanical and dielectric response, caused by 

differential thicknesses of ceramic and residual Al layers. So, the degree of conversion of the 

Al foil into its oxide and the limitations to create uniform coatings on regular and complex 

shapes were studied after a series of different analyses. Based on these studies, the following 

conclusions could be drawn from this research.  

1. In first stage of analyses, treatment time was the only variable parameter during the PEO 

process. The findings of this part are summarised as follows:  

a) In general the PEO coatings grow thicker with longer process time and higher current 

densities, however it is crucial to select the appropriate setting for current density and 

treatment time according to the application.  

b) Complete conversion of Al foil specimen to alumina ceramic with thickness of 75 ± 1.5    

µm successfully achieved, except a very small area that does not exceed 1 % of the 

sample volume. However such sample showed high brittleness. 

c) The highest degree of surface roughness and coating growth rate were observed in 

the later stages of the PEO process. While the minimum porosity was observed after 10 

min of the PEO treatment. 
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d) Treatment time strongly affected the gamma to alpha alumina transformation. Both γ 

and α - alumina are observed after 6 min varying in relative proportion through the 

coating thickness. 

e) Alumina films created after 6 min of process time with thickness 17 ± 1.4 µm from one 

side show a good degree of flexibility compared with other produced oxide films. The 

nanoindentation yields an elastic modulus was 182 ± 30 GPa which is consistent with the 

measured phase proportion and porosity percentage. 

f) The current efficiency of the oxide layer growth ranges from 19-36 %, and increasing 

with treatment time. Similarly, the aluminium loss increases with treatment time. While 

the oxygen evolution was the main electrochemical process for all treatment times and 

the current efficiency of oxygen evolution decreases with time.   

g) According to the results achieved, regions on the Al foil surfaces (edge, centre and 

near the metal part) affected the coatings growth rate. The edges regions had undergone 

higher coating growth than in centre regions. 

2.  Electrolyte constituents in any electrolysis process is an important factor because it is able 

to influence with the included chemical reaction such as anodic oxidation and hydrogen 

evolution the structure of the coatings. A series of different electrolytes compositions are used 

to study these influences on the coatings characteristics during the PEO process. The conclusions of 

these studies are listed as follow: 

a) The electrolyte solution with addition of potassium hydroxide provides the 

conductivity and raise the rate of anodic dissolution and oxygen evolution which causes 

to increase the current density of PEO process and coating thickness. Multiple linear 

regression modelling confirms the strongest effect of KOH on coating thickness and 

roughness. Whilst porosity is most strongly affected by Na4P2O7. 
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b) Among the three components investigated, potassium hydroxide is found to be the

predominant factor effecting on thickness and roughness, followed by sodium pyrophosphate 

and sodium silicate. 

c) The thickest coating achieved in electrolyte E9 (1.25 g/l KOH, 2.0 g/l Na4P2O7, 2.0 g/l

Na2SiO3) corresponds to conversion of about 70 % of Al foil to alumina ceramics, with 

residual aluminium foil thickness around 20 µm. This may enhance the flexibility of foil 

after treatment as explained in last chapter. 

d) The coatings include mainly γ-Al2O3 and an amorphous component. Octahedral and

tetrahedral coordination of alumina are affected by additions of silicate and 

pyrophosphate to the electrolyte. 

3. For further investigations of mechanisms and kinetics of the electrochemical processes,

alkaline silicate/phosphate electrolytes are selected over a range voltage during cyclic 

voltammetry analysis. The CV method provided us a useful information about the oxide 

film formation, dissolution and dielectric breakdown which is very helpful in clarifying the 

mechanisms of the coatings formation and the main conclusions are outlined as follow: 

a) The non-linear behaviour of the current – voltage curve was observed when using

electrolyte without silicate/phosphate. It reflects a combination of three processes, 

including dissolution, passivation and formation of PEO coating under discharge 

conditions. 

b) Silicate addition obstruct anodic dissolution of Al, which enhanced the oxide growth.

While phosphate, in addition of promoting α-Al2O3 phase formation it is also 

enhancing strong metal passivation and allow the breakdown voltage to be easily 

obtained. 
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c) Under the studied conditions, we can also conclude that the sparking voltage 

decreases when electrolyte resistivity decrease which is consistent with Ikonopisov 

equation. However which’s more surprising and unexpected in K electrolyte, is the 

earlier emission starting prior to the current starts increasing. 

4. A simulation of the electric field and current density using a COMSOL Multiphysics package 

has provided us beneficial information about the magnitudes and directions of the current 

density and electric field in the electrolyser during the PEO process, taking into account the 

shapes and positions of the working electrodes. 

5. Thin-walled 3D ceramic structures were successfully produced using PEO method for 

samples treated in electrolytes (0.75 g/l KOH, 2.0 Na2SiO3 2.0 g/l Na4P2O7) and (1.25 g/l KOH, 

2.0 Na2SiO3 2.0 g/l Na4P2O7). Inner and outer uniform PEO coatings at edges and corners 

were created, however the coating thickness at inner surface was less than the outer by 

around 30 %. 
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 Future work 

 

 In the short term future, new experiments using controlled processing 

parameters,  e.g. current regime, type, shape and thickness of working electrodes 

and understanding current distribution in the electrolyser help avoiding poor 

composite performance, such as mechanical and dielectric response, caused by 

differential thicknesses of ceramic and residual Al layers. 

 Electrochemistry module has been added recently to COMSOL Multiphysics which 

is a finite element software designed for a wide range of physical phenomena. 

This model focuses on electroanalysis and demonstrates the modelling of mass 

transport, current density and electrochemical reactions. This will give a direct 

support for investigation of the chemistry at the electrode-electrolyte interface 

during PEO.     

 A study should be directed towards current and prospective future applications 

suitable for thin ceramic-metal composites produced using PEO technique.  
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Activities during PhD Study 

Conferences attendance 

1) 14th International Conference on Plasma Surface Engineering (PSE 2014), Germany, 

September, 2014, Poster presentation. 

2) Department Poster Competition, Sheffield University, May 2015, Poster presentation. 

3) 42nd International Conference on Metallurgical Coatings and Thin Films (ICMCTF 2015), 

USA, April 2015, Oral presentation. 

4) Department 3rd Year PhD Student Seminar, Sheffield University, March 2016, Oral 

presentation. 

5) "Sustainable Functional Materials" conference- Scarborough-UK, poster presentation. 

6) 5th International Conference "Electrochemical and Plasma Electrolytic Modification of 

Metal Surfaces", Russia, May 2016, oral presentation 
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[163] M. Schneider, K. Kremmer, and S. Höhn, "Corrosion protection of thickness reduced 
plasma electrolytic layers on AZ31," (in English), MACO Materials and Corrosion, vol. 
67, no. 9, pp. 921-928, 2016. 

[164] S.-I. Pyun and S.-M. Moon, "Corrosion mechanism of pure aluminium in aqueous 
alkaline solution," Journal of Solid State Electrochemistry, journal article vol. 4, no. 5, 
pp. 267-272, 2000. 

[165] V. P. Parkhutik, J. M. Martinez-Duart, J. Perrière, A. Climent, Y. E. Makushok, and J. 
M. Albella, "Electrochemical and plasma anodic oxidation of CdxHg1 − xTe," Thin 
Solid Films, vol. 200, no. 1, pp. 129-138, 1991.  

[166] P. Deepa and R. Padmalatha, "Corrosion behaviour of 6063 aluminium alloy in acidic 
and in alkaline media," Arabian Journal of Chemistry. 

[167] Z. Han, J. Tian, J. Lao, G. Li, and J. Dai, "Effects of thickness and substrate on the 
mechanical properties of hard coatings," (in English), Journal of Coatings Technology 
and Research, vol. 1, no. 4, pp. 337-341, 2004. 

[168] A. L. H. W. S. X. Nie, A. Yerokhin, S.J. Dowey, A. Matthews, "Thickness effects on the 
mechanical properties of micro-arc discharge oxide coatings on aluminium alloys," 
(in English), Surface and Coatings Technology, pp. 1055-1060, 1999. 

[169] C. Xiaozhou, W. Chao, X. Xiangxin, and C. Gongjin, "Effect of ti addition on the 
residual aluminium content and mechanical properties of the B4C-al composites 
produced by vacuum infiltration," (in English), Arch. Metall. Mater. Archives of 
Metallurgy and Materials, 2015. 

[170] D. V. Heyd and D. A. Harrington, "Platinum oxide growth kinetics for cyclic 
voltammetry," Journal of Electroanalytical Chemistry, vol. 335, no. 1, pp. 19-31, 
 1992.  

[171] B. Liu et al., "The redox behavior of vanadium in alkaline solutions by cyclic 
voltammetry method," Electrochimica Acta, vol. 76, pp. 262-269, 2012/08/01/ 2012. 

[172] O. Makhotkina and P. A. Kilmartin, "The use of cyclic voltammetry for wine analysis: 
Determination of polyphenols and free sulfur dioxide," Analytica Chimica Acta, vol. 
668, no. 2, pp. 155-165, 2010.  

[173] R. L. Doyle, I. J. Godwin, M. P. Brandon, and M. E. G. Lyons, "Redox and 
electrochemical water splitting catalytic properties of hydrated metal oxide modified 
electrodes," Physical Chemistry Chemical Physics, 10.1039/C3CP51213D vol. 15, no. 
33, pp. 13737-13783, 2013. 

[174] H. Duan, Y. Xia, S. Chen, and Y. Li, "Transient voltage-current characteristics: New 
insights into plasma electrolytic oxidation process of aluminium alloy," (in English), 
Int.J.Electrochem.Sci. International Journal of Electrochemical Science, vol. 7, no. 8, 
pp. 7619-7630, 2012. 

[175] S. Ikonopisov, Electrochimica Acta, vol. 20, no. 783, 1975. 
[176] R. K. Nigam, K. C. Singh, and S. Maken, "Electrical breakdown phenomenon and 

electronic conduction during the anodic growth of Nb 2 O 5," Can. J. Chem., vol. 65, 
no. 3, pp. 512-517, 1987. 



References  

184 

 

[177] G. J. Williams and J. G. Drummond, "Preparation of Large Sections for the 
Microscopical Study of Paper Structure," (in English), JOURNAL OF PULP AND PAPER 
SCIENCE, vol. 26, pp. 188-193, 2000. 

[178] R. Allem, "Characterization of Paper Coatings by Scanning Electron Microscopy and 
Image Analysis," (in English), JOURNAL OF PULP AND PAPER SCIENCE, vol. 24, no. 10, 
pp. 329-336, 1998. 

[179] G. Chinga, & Norges Teknisk-Naturvitenskapelige Universitet, Fakultet For 
Naturvitenskap Og Teknologi, Institutt For Kjemisk Prosessteknologi. (2002). 
Structural Studies of LWC Paper Coating Layers Using SEM and Image Analysis 
Techniques. 

[180] X. Ma, C. Blawert, D. Höche, M. L. Zheludkevich, and K. U. Kainer, "Investigation of 
electrode distance impact on PEO coating formation assisted by simulation," Applied 
Surface Science, vol. 388, pp. 304-312, 2016. 

[181] R. R. Nevyantseva, S. A. Gorbatkov, E. V. Parfenov, and A. A. Bybin, "The influence of 
vapor–gaseous envelope behavior on plasma electrolytic coating removal," Surface 
and Coatings Technology, vol. 148, no. 1, pp. 30-37, 2001. 

[182] E. V. Parfenov, R. G. Farrakhov, V. R. Mukaeva, A. V. Gusarov, R. R. Nevyantseva, and 
A. Yerokhin, "Electric field effect on surface layer removal during electrolytic plasma 
polishing," Surface & Coatings Technology, vol. 307, pp. 1329-1340, 2016. 

[183] W. Zimmerman, Multiphysics Modeling with Finite Element Methods,  2006. 
[184] W.-C. Gu, G.-H. Lv, H. Chen, G.-L. Chen, W.-R. Feng, and S.-Z. Yang, "PEO protective 

coatings on inner surface of tubes," Surface and Coatings Technology, vol. 201, no. 
15, pp. 6619-6622, 4/23/ 2007. 

[185] E. Dickinson, "Theory of Current Distribution," in Comsol web log [online], ed, 2014. 
[186] R. O. Hussein, D. O. Northwood, and X. Nie, "The effect of processing parameters and 

substrate composition on the corrosion resistance of plasma electrolytic oxidation 
(PEO) coated magnesium alloys," Surface and Coatings Technology, vol. 237, no. 0, 
pp. 357-368,  2013.  

[187] K. Popov, P. Zivkovic, and N. Nikolic, "A mathematical model of the current density 
distribution in electrochemical cells," (in English), J. Serb. Chem. Soc. Journal of the 
Serbian Chemical Society, vol. 76, no. 6, pp. 805-822, 2011. 

[188] V. S. Bagockij, V. S. Bagockij, V. S. Bagockij, and V. S. Bagockij, Fundamentals of 
electrochemistry. Hoboken, N.J: John Wiley, 2006. 

[189] J. O. Dukovic, "Computation of current distribution in electrodeposition, a review," 
(in No Linguistic Content), IBM J. Res. & Dev. IBM Journal of Research and 
Development, vol. 34, no. 5, pp. 693-705. 

[190] R. Arrabal, E. Matykina, P. Skeldon, and G. E. Thompson, "Coating formation by 
plasma electrolytic oxidation on ZC71/SiC/12p-T6 magnesium metal matrix 
composite," Applied Surface Science, vol. 255, no. 9, pp. 5071-5078, 2009.  

[191] S. V. Gnedenkov et al., "Formation and electrochemical properties of the 
superhydrophobic nanocomposite coating on PEO pretreated Mg–Mn–Ce 
magnesium alloy," Surface and Coatings Technology, vol. 232, no. 0, pp. 240-246, 
2013.  

[192] P. Huang, K.-W. Xu, and Y. Han, "Preparation and apatite layer formation of plasma 
electrolytic oxidation film on titanium for biomedical application," Materials Letters, 
vol. 59, no. 2–3, pp. 185-189, 2005.  



References  

185 

 

[193] P. Zhang, X. Nie, H. Henry, and J. Zhang, "Preparation and tribological properties of 
thin oxide coatings on an Al383/SiO2 metallic matrix composite," Surface and 
Coatings Technology, vol. 205, no. 6, pp. 1689-1696, 2010.  

[194] Y. S. Zou, K. Zhou, Y. F. Wu, H. Yang, K. Cang, and G. H. Song, "Structure, mechanical 
and tribological properties of diamond-like carbon films on aluminum alloy by arc ion 
plating," Vacuum, vol. 86, no. 8, pp. 1141-1146, 2012.  

[195] C. T. J. Low, E. P. L. Roberts, and F. C. Walsh, "Numerical simulation of the current, 
potential and concentration distributions along the cathode of a rotating cylinder 
Hull cell," Electrochimica Acta, vol. 52, no. 11, pp. 3831-3840, 2007.  

[196] U. M. F. Lima, and H. Reinecke, "Simulation of Current Density for Electroplating on 
Silicon Using a Hull Cell," Conference: 2012 Comsol Conference in Milan, October 
 2012.  

[197] M.-H. Wang, "Effect of Electrode Shape on Impedance of Single HeLa Cell: A COMSOL 
Simulation," (in English), Effect of Electrode Shape on Impedance of Single HeLa Cell: 
A COMSOL Simulation, 2015. BioMed Research International  

[198] C. M. v. 4.4. Available: www.comsol.com. 
[199] Y. Gu, S. Bandopadhyay, C.-f. Chen, C. Ning, and Y. Guo, "Long-term corrosion 

inhibition mechanism of microarc oxidation coated AZ31 Mg alloys for biomedical 
applications," (in English), JMAD Materials and Design, vol. 46, pp. 66-75, 2013. 

[200] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, "Plasma electrolysis 
for surface engineering," Surface and Coatings Technology, vol. 122, no. 2–3, pp. 73-
93, 1999.  

[201] A. B. Rogov and V. R. Shayapov, "Correlations between the optical emission spectra 
and microstructure of microplasma coatings on aluminum 2024 alloy," (in English), 
APSUSC Applied Surface Science, vol. 258, no. 11, pp. 4871-4876, 2012. 

[202] P. American Institute of, "Journal of physical and chemical reference data," (in 
English), Journal of physical and chemical reference data., 2004. 

[203] R. O. Hussein, X. Nie, and D. O. Northwood, "A spectroscopic and microstructural 
study of oxide coatings produced on a Ti–6Al–4V alloy by plasma electrolytic 
oxidation," Materials Chemistry and Physics, vol. 134, no. 1, pp. 484-492, 2012.  

 

 

 

www.comsol.com



