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Abstract

The conventional point of view is that the Lagrangian is a scalar object (or

equivalently a volume form), which through the Euler-Lagrange equations pro-

vides us with one single equation (i.e., one per component of the dependent

variable). Multidimensional consistency is a key integrability property of cer-

tain discrete systems; it implies that we are dealing with infinite hierarchies

of compatible equations rather than with one single equation. Requiring the

property of multidimensional consistency to be reflected also in the Lagrangian

formulation of such systems, we arrive naturally at the construction of La-

grangian multiforms, i.e., Lagrangians which are the components of a form

and satisfy a closure relation.

We demonstrate that the Lagrangians of many important examples fit into

this framework: the so-called ABS list of systems on quad graphs, which

includes the discrete Korteweg-de Vries equation; the Gel’fand-Dikii hierar-

chy, which includes the discrete Boussinesq equation; and the bilinear discrete

Kadomtsev-Petviashvili equation.

On the basis of this we propose a new variational principle for integrable

systems which brings in the geometry of the space of independent variables, and

from this principle we can then derive any equation in the hierarchy. We also

extend the notion of Lagrangian forms, and the corresponding new variational

principle, to continuous systems, using the example of the generating partial

differential equation for the Korteweg-de Vries hierarchy.
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Chapter 1

Introduction

This chapter gives an introduction to the areas of study relevant to the thesis;

it gives an overview of the main results obtained in the past by others in the

field, and provides some motivation and context for the new material in the

following chapters. All of the results found during the course of my PhD studies

lie in the realm of integrable systems (in the main, discrete integrable systems),

so this is where we begin, followed by the theory of variational principles. We

mention briefly in what context Lagrangian forms have appeared previously,

and the attempts to establish a discrete variational complex, before giving a

description of the contents of each chapter in the thesis.

1.1 Discrete integrable systems

In recent years there has been a growing interest in the integrability of dis-

crete systems (systems with the independent variables taking discrete values)

defined on two- or multidimensional lattices. Perhaps initially the study of

such systems was motivated by the search for accurate approximations to con-

tinuous systems. However, it is becoming more and more the accepted point

of view that lattice systems are important in their own right from a theoreti-

cal perspective, and, in fact, are thought to be richer and more generic than

their continuous counterparts. We obtain continuous equations via continuum

limits from discrete equations, and so the former may be regarded as a degen-

1



CHAPTER 1. INTRODUCTION 2

eration of the latter [93]. Indeed, taking derivatives we start with a difference

operation, for example

∆f(x) =
f(x+ ε)− f(x)

ε
, (1.1)

and then take a limit ε→ 0 to obtain the derivative

df

dx
= lim

ε→0

f(x+ ε)− f(x)

ε
, (1.2)

suggesting that the original difference operation is the more fundamental oper-

ation. However, the theory of difference equations is still lagging behind that

of differential equations, despite efforts at the beginning of the 20th century

by mathematicians such as Nörlund[97] and Birkhoff[13]. One reason for this

is that difference equations are essentially non-local, making their study more

difficult. However, they have a wide variety of applications and so it is highly

desirable that the theory is developed further.

1.1.1 Applications of discrete systems

Discrete systems are important from a practical perspective, since they appear

in many real-life situations, in the areas of economics, financial mathematics,

biology; they are vital to numerical analysis and hence any branch of science

where computer calculations are involved, and of course it is possible that on

a very small scale time and space may be discrete rather than continuous.

There is even a growing interest in ultra-discrete systems (where not only the

independent variables, but also the dependent variables, are discrete) which

began with the study of cellular automata in the 1940s, and continued in the

integrable case with, for example, the work of Ablowitz et al. [32, 4], Tokihiro

et al. [115, 74], and Joshi and Lafortune [47, 48], although we will not be

considering ultra-discrete systems here.

Discrete systems have been proposed in physics to model the fundamental
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interactions on the scale of the Planck constant where space and time them-

selves can be thought of as being discrete [59, 114], a possibility on which

many famous physicists, including several Nobel laureates, have speculated.

Gerard ’t Hooft (who won the Nobel prize for physics in 1999), wrote in [114]

that through investigating the quantization of black holes, he was led to the

“suspicion that space at the Planck scale is discrete,” since “the finiteness of

the entropy of a black hole implies that the number of bits of information that

can be stored there is finite and determined by the area of its horizon.”

T.D. Lee, another winner of the Nobel prize in physics (this time in 1957)

wrote a paper with the title Can Time Be a Discrete Dynamical Variable? [59]

which led to several further publications by Lee and others on the formulation

of fundamental physics in terms of difference equations [60, 61]. There he

examined the possibility that time is discrete; note that in the relativistic case

if either space or time is discrete, then both must be, since due to the required

Lorentz invariance space and time have to be treated symmetrically. The usual

continuous theory of mechanics then appears as an approximation.

1.1.2 Integrability of discrete systems

Many people have different views on what the definition of integrability should

be, and already in the theory of continuous systems the notion of integrability

is multifaceted; there was a book published recently entitled What is Integra-

bility? [129]. As a working definition people often take the existence of a Lax

pair[58], the existence of an infinite sequence of conservation laws[77], that a

system is amenable to the inverse scattering transform method[33], or the def-

inition due to Liouville of the existence of a sufficient number of independent

invariants which are in involution[8]. Algorithms have been developed to test

for integrability of a given equation, such as those in [76].

In the discrete realm, one single definition of integrability is even more elu-

sive. There have been attempts to detect integrability, initially for maps[122],

using the techniques of singularity confinement[38], algebraic entropy[12], as-
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sorted algebraic and arithmetic approaches (see [37] for a good review), and

multidimensional consistency [91, 92, 14]; here follows a brief outline of some

of these methods.

• Singularity confinement can be considered to be the discrete analogue

of the Painlevé property; it is the analysis of the singularity structure of

an equation. Essentially the Painlevé property for ordinary differential

equations (ODEs) is the “absence of movable critical points in the general

solution,” the theory being that “the solution of an ODE cannot escape

the structure of singularities of the ODE. Such a structure can be studied

from the equation itself, without any a priori knowledge of the solution,

providing a deep insight into the possibility or not of performing the

explicit integration” [22]. Singularity confinement is the requirement

that movable singularities of mappings are cancelled out after a finite

number of iterations [38].

• The algebraic entropy of an equation is a number defined by the growth

of the degrees of the iterates of a map, and works well as a detector of

integrability: integrable systems have a vanishing entropy, non-integrable

systems have a non-vanishing entropy[12]. It is interesting to note that

in a given dimension there is a minimum for the value of the entropy, i.e.

there exists an interval around zero in which the entropy cannot assume

values. The implication of this is that one cannot get arbitrarily close to

integrability.

• A possible difference analogue of the Painlevé property is that an equa-

tion should admit sufficiently many finite-order meromorphic solutions.

It was suggested by Ablowitz et al in [1] that “the integrability of many

difference equations is related to the structure of their solutions at infinity

in the complex plane and that Nevanlinna theory provides many of the

concepts necessary to detect integrability in a large class of equations.”

(Nevanlinna theory is a branch of complex analysis which deals with the
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value distribution theory of holomorphic functions in one variable).

• Diophantine integrability [40] requires that the logarithmic height of it-

erates of the discrete equation in an appropriate number field grow no

faster than polynomially. It may be equivalent to the algebraic entropy

approach, but it is easier to check numerically for a large number of

iterates.

• Multidimensional consistency was proposed independently by Nijhoff

and Walker[91, 92, 123], and by Bobenko and Suris[14], in the early

years of this decade (although it was already implicit in some pre-2000

work, c.f. e.g. [95, 82, 84, 26]). In brief, it is the property that an equa-

tion can be embedded in a higher dimensional lattice, imposing copies

of the equation (with appropriate lattice parameters) simultaneously in

all possible lattice directions, and no inconsistency or multivaluedness

occurs when the dependent variables are evaluated at any lattice site.

This is analogous to the existence of commuting flows in the continuous

realm, and in some cases provides us with an algorithmic way in which

to construct Lax pairs. The definition will be made more explicit in

Chapter 2.

The work in this thesis is concerned with the Lagrangian structure of systems

which have the property of multidimensional consistency; we regard it as the

key property or criterion of integrability for discrete systems.

1.1.3 Examples of integrable discrete systems

The study of integrable lattice systems is fairly new, and the earliest examples

appear in the mid 1970s and early 1980s, when the research was focused on

discretizing known continuous soliton systems [2, 3, 44, 45, 23, 82, 106]. Most

of the known examples are 2-dimensional equations, probably the most famous

being the lattice potential Korteweg-de Vries (KdV) equation, which was first
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presented in [82] in the form

(p− q + un,m+1 − un+1,m)(p+ q − un+1,m+1 + un,m) = p2 − q2, (1.3)

where un,m is the dependent variable evaluated at the lattice site (n,m), and

p, q ∈ C are parameters. It was derived in [82] via the direct linearization

method, and actually already appeared in numerical methods under the guise

of the ε-algorithm [124], which is an acceleration method for slowly converging

sequences. The lattice potential KdV equation provides an excellent exam-

ple of a 2-dimensional lattice system; it is the simplest known such equation

which still demonstrates all the richness of properties characteristic of these

systems. Also 2-dimensional lattice systems themselves are very easy to visu-

alize; they are obviously more general than 1-dimensional systems, and yet we

only need to go to 3 dimensions in order to easily see the mechanism used to

verify multidimensional consistency (or, equivalently in this case, consistency-

around-a-cube).

The paper [87] contains a nice overview of other examples of discrete inte-

grable lattice systems, we present some of them here.

• There are other integrable lattice systems in the KdV family; there is

a discrete version of the modified KdV equation, related to (1.3) by a

Miura transformation, having the form

p(vn,mvn,m+1− vn+1,mvn+1,m+1) = q(vn,mvn+1,m− vn,m+1vn+1,m+1), (1.4)

where vn,m is the dependent variable.

• Also in the list of those systems of KdV type, there is a lattice Schwarzian

KdV equation

(zn,m − zn,m+1)(zn+1,m − zn+1,m+1)

(zn,m − zn+1,m)(zn,m+1 − zn+1,m+1)
=
p2

q2
, (1.5)

where zn,m is the dependent variable. Equation (1.5) is invariant under
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Möbius transformations, i.e. under transformations of the form

z 7→ αz + β

γz + δ
, α, β, γ, δ ∈ C. (1.6)

• A famous example outside of the KdV family is the lattice analogue of

the sine-Gordon equation, which was first presented by Hirota in [44] and

as such is sometimes called the Hirota equation. This is

sin(θn,m+θn+1,m+θn,m+1+θn+1,m+1) =
p

q
sin(θn,m−θn+1,m−θn,m+1+θn+1,m+1),

(1.7)

where θn,m is the dependent variable.

• Using the property of multidimensional consistency (again, this will be

explained in depth in Chapter 2), a classification of two-dimensional

scalar integrable lattice systems was given, in the affine linear case, by

Adler, Bobenko and Suris [5, 6] (resulting in what is hereafter referred to

as the ABS list). In addition to the known examples of lattice systems of

KdV type, cf. [44, 45, 82, 106], this provided us with some new examples

of integrable scalar lattice equations. More details will appear in the

introduction to Chapter 2, the chapter concerned with 2-dimensional

lattice systems.

• The example of the lattice Gel’fand-Dikii hierarchy comprises an infinite

hierarchy of discrete integrable systems, where each equation higher up

in the hierarchy has a higher number of components. At the lower end

appear the well-known equations of the lattice potential KdV (which

has only one component, and can be considered as a somewhat degener-

ate case here), and lattice Boussinesq equations; higher members of the

hierarchy are coupled systems of partial difference equations.

• The lattice Boussinesq equation deserves special mention, as it has at-

tracted much interest lately, for example with the construction of multi-
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soliton solutions in [43], and with regard to the pentagram map in [103].

It first appeared in [86] along with the rest of the lattice Gel’fand-Dikii

hierarchy; it can be written either as a coupled system of 3 equations, or

as a scalar 9-point equation

p3 − q3

p− q + un+1,m+1 − un+2,m

− p3 − q3

p− q + un,m+2 − un+1,m+1

+(p+ 2q)(un+2,m+1 + un,m+1)− (2p+ q)(un+1,m+2 + un+1,m)

+(p− q + un+1,m+2 − un+2,m+1)un+2,m+2 + (p− q + un,m+1 − un+1,m)un,m

+un+1,mun+2,m+1 − un,m+1un+1,m+2 = 0.

(1.8)

It was shown in [123] to be consistent on a 27-point cube.

• Once we step out of the realm of 2-dimensional integrable lattice sys-

tems, in order to generalize to higher dimensional systems, we have

at present far fewer examples to work with. However, there are still

very important and well-known cases here. Most of the known exam-

ples of integrable 3-dimensional lattice systems are discrete equations of

Kadomtsev-Petviashvili (KP) type [84]. The so-called lattice KP equa-

tion itself can be written

p− r + un,m+1,k+1 − un+1,m+1,k

p− r + un,m,k+1 − un+1,m,k

=
q − r + un+1,m,k+1 − un+1,m+1,k

q − r + un,m,k+1 − un,m+1,k

.

(1.9)

• There is a lattice modified KP equation [84] with the form

p

(
vn,m,k+1

vn+1,m,k+1

− vn,m+1,k

vn+1,m+1,k

)
+ q

(
vn+1,m,k

vn+1,m+1,k

− vn,m,k+1

vn,m+1,k+1

)
(1.10)

+r

(
vn,m+1,k

vn,m+1,k+1

− vn+1,m,k

vn+1,m,k+1

)
= 0,

where vn,m,k is the dependent variable and p, q, r are lattice parameters.
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• There is also a lattice Schwarzian KP equation [83, 27] with the form

(zn+1,m+1,k − zn,m+1,k)(zn+1,m,k+1 − zn+1,m,k)(zn,m+1,k+1 − zn,m,k+1)

(zn+1,m+1,k − zn+1,m,k)(zn+1,m,k+1 − zn,m,k+1)(zn,m+1,k+1 − zn,m+1,k)
= 1.

(1.11)

where zn,m,k is the dependent variable.

• The bilinear discrete KP equation, which we will be dealing with later,

is

Ajkτiτjk + Akiτjτki + Aijτkτij = 0, (1.12)

where τi,j,k is the dependent variable and Aij = −Aji are constants. This

is also known as the Hirota-Miwa [78] equation.

1.1.4 Discrete systems from continuous systems (and

vice versa)

We mentioned earlier that continuous equations may arise by taking limits

of discrete equations. On the other hand, it is often possible to pass from

a continuous equation to a discrete equation via Bäcklund transformations,

which map solutions of an equation into new solutions. In this way, many

new discrete integrable equations have been derived; indeed the most famous

examples are known to be the Bäcklund transformations of famous continuous

integrable systems.

In contrast to the relatively new study of discrete integrable systems, the

theory of continuous integrable systems has been researched since the 19th

century. One of the most famous examples of integrable equations is the KdV

equation, which was derived in 1895 in a study of shallow water waves by

Diederik Korteweg and Gustav de Vries [54] and takes the form

ut = uxxx + 6uux, (1.13)

where u is the dependent variable and x, t are the independent variables cor-
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responding to space and time respectively. It was shown that this equation

possesses an exact solitary wave solution, or soliton, a wave that maintains

its shape while it travels at constant speed. In an oft-repeated story this phe-

nomenon had been observed in 1834 by John Scott Russell [110] in the Union

Canal in Scotland, where he rode on horseback alongside such a wave.

The KdV equation possesses much of the paraphernalia associated with

integrable systems, such as a Lax pair [58], and an infinite sequence of con-

servation laws[77]. A Lax pair is simply an over-determined system of linear

equations, from which the nonlinear equation can be derived through the com-

patibility conditions. The Lax pair for the KdV equation is

ψxx + uψ = λψ, (1.14a)

ψt = 4ψxxx + 6uψx + 3uxψ. (1.14b)

Here, ψ is some function of x and t, and λ is an additional (spectral) parameter.

If these two linear equations are to be compatible, we require (ψxx)t = (ψt)xx,

and this leads to the conclusion that either ψ ≡ 0, or that u solves the KdV

equation (1.13).

The Lax pair is an essential tool in finding exact solutions of a nonlinear

partial differential equation via the inverse scattering transform method, which

first appeared in a famous paper in 1967 by Gardner, Greene, Kruskal and

Miura [33]. Details of this method can be found in many texts; since it is not

relevant to this thesis it suffices here to say that the existence of a Lax pair is

an important indicator of integrability.

If we introduce the variable v ≡ ∂x lnψ, then (1.14a) becomes

u = λ− vx − v2, (1.15)

and on substituting this into (1.14b) and differentiating with respect to x, we
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arrive at the equation

vt = vxxx − 6v2vx + 6λvx, (1.16)

which, when λ = 0, is known as the modified KdV equation. Note that it is

invariant under the transformation v 7→ −v. Making this transformation does

not affect (1.16) at all, however it does change (1.15), changing u to something

new, for instance we may call it ũ, where

ũ = λ+ vx − v2. (1.17)

Thus we have mapped a solution u to the KdV equation (1.13) to another

solution ũ of the same KdV equation, with the aid of the solutions v of the

modified KdV equation (1.16).

From (1.15) and (1.17) we get

ũ+ u = 2(λ− v2), (1.18a)

and

ũ− u = 2vx, (1.18b)

and if we introduce the new variable w for which wx = u, we arrive at a relation

which is the x-dependent part of the Bäcklund transformation

(w̃ + w)x = 2λ− 1

2
(w̃ − w)2. (1.19)

Note that w also satisfies the potential KdV equation

wt = wxxx + 3w2
x. (1.20)

Here is the point at which we make the shift to discrete systems. We now

consider the transformation w 7→ w̃ to be a discrete shift in the variable w,
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and we can also consider another analogous shift w 7→ ŵ given by

(ŵ + w)x = 2µ− 1

2
(ŵ − w)2. (1.21)

Because of the permutability property of the Bäcklund transformations, under

certain conditions it doesn’t matter in which order we compose them; we may

apply the “ ˜ ”-shift first, and then the “ ˆ ”-shift, or the other way around,

we will arrive at the same result, so that that ˜̂w = ˆ̃w. This is a highly non-

trivial property, with a proof relying on the spectral properties lying behind

the equation; it can be expressed using the diagram in Figure 1.1.

w

w̃

ŵ

̂̃w = ˜̂w
BTλ

BTµ BTλ

BTµ

Figure 1.1: Permutability property of Bäcklund transformations.

The exact statement about the permutability of Bäcklund transformations

is as follows: The Bäcklund transformations (1.19) and (1.21) for different

parameters λ and µ generate solutions (with a suitable choice of integration

constants) for which we have the commutation diagram of Fig. 1.1.

The proof of this is computational. In addition to (1.19) and (1.21) we

have also the relations

( ˜̂w + ŵ)x = 2λ− 1

2
( ˜̂w − ŵ)2, (1.22)

( ˆ̃w + w̃)x = 2µ− 1

2
( ˆ̃w − w̃)2. (1.23)

Taking the upper route of Fig. 1.1, we can solve w̃ in terms of w and ˆ̃w:

w̃ =
1

2
( ˆ̃w + w) +

( ˆ̃w − w)x + 2(λ− µ)

ˆ̃w − w
, (1.24)
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and inserting this back into (1.19) we get

λ+ µ = ( ˆ̃w + w)x + ∂2
x ln( ˆ̃w − w) +

1

2

(
∂x ln( ˆ̃w − w)

)2

+
1

8
( ˆ̃w − w)2 + 2

(
λ− µ
ˆ̃w − w

)2

. (1.25)

The relation (1.25) is clearly symmetric with respect to the interchange of λ

and µ (and we can derive a similar relation taking the lower route of Fig. 1.1).

Thus, with appropriate choice of integration constants, starting from an arbi-

trary “seed” w we may find solutions which are symmetric under interchange

of λ and µ, and hence where ˆ̃w = ˜̂w.

The permutability property allows us to eliminate the derivatives in x to

derive from (1.19) and (1.21) a purely discrete equation

(w − ˆ̃w)(w̃ − ŵ) + 4(λ− µ) = 0. (1.26)

This equation is the discrete potential KdV equation. Thus we have travelled

from a fully continuous integrable system through to a fully discrete system.

This discrete system is also integrable, in the sense that it is multidimensionally

consistent, possesses a Lax pair, and soliton solutions [9, 10, 94].

It is easy to see from Figure 1.1 that we can iterate the Bäcklund transfor-

mations to construct an entire lattice, thanks to the permutability property;

this lattice will have the form of Figure 1.2.

Finally, the discrete potential KdV equation (1.26) is truly the discrete

analogue of the potential KdV equation (1.20) by the fact that in taking con-

tinuum limits of (1.26), we arrive once more at the fully continuous equation

(1.20). Thus we are able to pass from the fully continuous equation (1.20)

via Bäcklund transformations to the fully discrete equation (1.26), and then

from there back to the fully continuous equation (1.20) via continuum limits.

This demonstrates the intimate connections between continuous and discrete

integrable systems.
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w

w̃

ŵ

̂̃w
̂̂w

˜̃w
˜̃̃
w

̂̃̃
w

̂̂̃
w

̂̂̂
w

Figure 1.2: Lattice generated by Bäcklund transformations.

1.2 History of variational principles

The theory of variational principles has its origins in the 17th century, when

Leibniz proposed the idea of the vis viva to describe the action of a force[62].

This living force is a scalar quantity closely related to the kinetic energy of a

particle; together with another scalar quantity the work function (which can

be thought of as the potential energy), it is enough to determine completely

the motion of a particle or system. This was in contrast to the Newtonian

approach to mechanics, which relies on finding all the forces acting on every

particle at each instant.

Instrumental in developing the theory were Euler and Lagrange, who ad-

vocated a principle of least action. This principle can be illustrated in the

following way. Suppose a particle is at a point P1 at an initial time t1 with

a given velocity, and it reaches a point P2 at time t2. So far we do not know

what path this particle may have followed to travel between the two points,

but we can make a guess. Of course, in all probability this guess will turn out

to be wrong, but that is irrelevant; we will be able to correct this path in order

to discover that which the particle actually follows.

So we have a particle travelling between the points (P1, t1) and (P2, t2)
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Position
P1 P2

time

t1

t2

Figure 1.3: Tentative path from (P1, t1) to (P2, t2).

along some arbitrary curve, as in Figure 1.3. The constraint we put on this is

that the sum of the kinetic and potential energies is constant, always equal to

the value it had at (P1, t1). This fixes the velocity of the particle at each point

in the path, and thus enables us to calculate the time at which the particle

will pass any given point in the path. We can then work out the time-integral

of the vis viva (the vis viva is in fact simply twice the kinetic energy) between

P1 and P2; this integral is what is called the action.

Action =

∫ t2

t1

vis viva dt. (2.1)

For each path that we choose, this action will take a different value, and the

principle states that it is the path for which the action assumes a minimum

value which is the one we want; it happens to be the one the particle follows

in reality.

As an example of how this works, suppose we have an action to be mini-

mized of the form

S =

∫ t2

t1

L(x, ẋ; t) dt, (2.2)

where ẋ = d
dt
x(t). Varying the path slightly (keeping the end points fixed), for
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small ε we get

δS =

∫ t2

t1

δL(x, ẋ; t) dt

=

∫ t2

t1

L(x+ εφ, ẋ+ εφ̇; t)− L(x, ẋ; t) dt

=

∫ t2

t1

ε

(
∂L
∂x

φ+
∂L
∂ẋ

φ̇

)
dt+ O(ε2). (2.3)

Since we want δS = 0, to first order in ε we must have

0 =

∫ t2

t1

(
∂L
∂x

φ+
∂L
∂ẋ

φ̇

)
dt, (2.4)

which on integrating by parts is

0 =

∫ t2

t1

∂L
∂x

φ dt+

[
∂L
∂ẋ

φ

]t2
t1

−
∫ t2

t1

d

dt

(
∂L
∂ẋ

)
φ dt. (2.5)

The second term will disappear since the variation φ is zero at the end-points

t1 and t2, leaving us with

0 =

∫ t2

t1

(
∂L
∂x
− d

dt

(
∂L
∂ẋ

))
φ dt, (2.6)

and so, since φ is arbitrary,

∂L
∂x
− d

dt

(
∂L
∂ẋ

)
= 0. (2.7)

The equation (2.7) is often called the Euler-Lagrange equation, and is the

equation of motion of the particle.

A great advantage of the use of these variational methods in mechanics is

its independence of the choice of coordinate systems, of particular importance

with regard to theories such as that of general relativity. A possible disad-

vantage is that all forces must be derivable from a scalar quantity (the work

function), and so it cannot deal for example with frictional forces, at least not

until the microscopic forces are taken into account. It is however a much less
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cumbersome, and more beautiful, description than the Newtonian approach.

1.2.1 Hamiltonian versus Lagrangian formulation

Conventionally the Hamiltonian has been the central object in (continuous)

integrable systems [29]. Of course, it is often possible to pass between La-

grangian and Hamiltonian theories via Legendre transforms, although this is

in many (non-Newtonian) cases not a trivial matter. Nevertheless, most inte-

grable partial differential equations seem to admit a Lagrangian description; in

fact, a universal Lagrangian structure for integrable systems admitting a Lax

pair was formulated by Zakharov and Mikhailov [128]. In the discrete case one

can argue that the Lagrangian is the more fundamental object; attempting to

pass from the Lagrangian to the Hamiltonian description does not furnish us

with an invariant Hamiltonian, and so there seems to be little point in doing

so.

We adhere to Dirac’s opinion [24], that the Lagrangian formulation for

classical dynamics, rather than the Hamiltonian, is the more fundamental per-

spective. The action functional is a relativistic invariant, and so the Lagrangian

method can easily be expressed in relativistic form, whereas the Hamiltonian

is one component of an energy-momentum tensor, and so a particular time

variable is singled out. Dirac sought a Lagrangian formulation for quantum

mechanics, and in doing so noted that “we must try to take over the ideas of

the classical Lagrangian theory, not the equations of the classical Lagrangian

theory” [24] mainly due to the fact that the Euler-Lagrange equations involve

partial derivatives of the Lagrangian with respect to the coordinates and veloc-

ities, and it is difficult to assign a meaning to these derivatives in the quantum

realm. Indeed, this was at least in part our motivation for studying the La-

grangian structure of integrable systems, it seems that especially in the case of

discrete systems the most fruitful path to quantization is via the Lagrangian.
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1.2.2 Discrete variational principles

A discrete calculus of variations was first developed outside the scope of inte-

grable systems in the 1970s by Cadzow[17], Logan[68] and Maeda[69]. Cad-

zow’s original motivation was the use of the digital computer in modern sys-

tems and the solution of control problems, and it became clear that the formu-

lation of a discrete calculus of variations was important for numerical methods,

in optimization and engineering problems. In the continuous case the central

object is the action, which is the time integral of a scalar quantity, called

the Lagrangian after one of the founders of the calculus of variations, Joseph

Louis Lagrange (in mechanics this is the difference between the kinetic and

potential energies). Now in the discrete realm instead of an integral we have

a sum over the independent variable(s).

Cadzow derived the discrete Euler equation in [17] for a 1-dimensional

system with independent variable n and dependent variable rn; his approach

was then put into a more formal language by Logan[68], which made it clearer

that the equations are derived via a variational approach. The aim was to find

a sequence {r̄M , r̄M+1, . . . r̄N+1} which would extremize the functional

J [{rn}] =
N∑

n=M

F (n, rn+1, rn). (2.8)

A necessary condition for this is that δJ [{rn}] = 0, i.e.,

0 = δ

N∑
n=M

F (n, rn+1, rn)

=
N∑

n=M

{
∂

∂rn+1

F (n, rn+1, rn)δrn+1 +
∂

∂rn
F (n, rn+1, rn)δrn

}
=

∂

∂rM
F (M, rM+1, rM)δrM +

∂

∂rN+1

F (N, rN+1, rN)δrN+1

+
N∑

n=M+1

{
∂

∂rn
F (n− 1, rn, rn−1) +

∂

∂rn
F (n, rn+1, rn)

}
δrn. (2.9)
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So, defining

F1(x, y, z) =
∂

∂y
F (x, y, z) and F2(x, y, z) =

∂

∂z
F (x, y, z), (2.10)

Cadzow calls the following the discrete Euler equation

F1(n− 1, rn, rn−1) + F2(n, rn+1, rn) = 0, n = M + 1, . . . , N. (2.11)

It should be noted that this holds away from the boundary, since it is valid for

M + 1 ≤ n ≤ N ; at the boundary points we should have instead

F2(M, rM+1, rM) = 0, and F1(N, rN+1, rN) = 0. (2.12)

The later paper by Logan [68] also showed how to obtain conservation the-

orems, or first integrals of the discrete Euler equation, from a direct study of

the invariance properties of the discrete Lagrangian F (n, rn+1, rn). This is in

effect the discrete analogue of the well-known Noether’s theorem in contin-

uous theory (Noether’s theorem first appeared in [96]; it states that to any

differentiable symmetry of the action of a physical system, there corresponds

a conservation law).

Maeda was also instrumental in the development of discrete variational

principles, he sought to find a natural discretization of classical mechanics,

initially by examining the role of the Poisson bracket in the Hamiltonian theory

[69], subsequently studying the Lagrangian formulation of discrete systems

[71].

Much progress has been made since: Lagrangian structures have been es-

tablished for several discrete integrable systems such as Lagrangian mappings

[121, 122, 80]. Furthermore, Lagrangians and/or actions have been constructed

for integrable two-dimensional lattice equations, cf. [20, 86, 5]. Discrete La-

grangian systems on arbitrary graphs were proposed in [98], and a discrete

variational complex was set up in [46].
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The usual point of view is that the Lagrangian is a scalar object (or equiv-

alently a volume form), which through the Euler-Lagrange equations provides

us with one single equation (i.e. one per component of the dependent variable).

In contrast, we take the point of view that in the case of an integrable system,

where due to the multidimensional consistency several equations can be im-

posed simultaneously on one and the same dependent variable, the Lagrangian

should reflect this property; it should be an extended object capable of produc-

ing a multitude of consistent equations from a variational principle. Thus we

propose in this thesis an action in which the key ingredient is a Lagrangian 2-

form (in the case of integrable discrete equations in two independent variables)

or, more generally, a multiform (in the case of a larger number of independent

variables).

Although the notion of a Lagrangian multiform is not new, and goes back

to Cartan and Lepage [21, 63], cf. also [51] for a review, even in those theories

the role of the Lagrangian is that of a volume form producing the equations

of motion in a conventional way.

There have been attempts made to construct discrete analogues of differen-

tial forms, e.g. by Hydon and Mansfield in [46, 73]. They developed a formal-

ism of variational complexes for discrete systems, with the purpose of obtain-

ing conservation laws of arbitrary partial difference equations (a differential-

difference calculus appeared earlier in [56]). Their approach is different to the

one we take; Hydon and Mansfield start from a general principle and then seek

examples on which to apply it, whilst we start with the examples and develop

a general principle on the basis of these examples. It is not obvious how the

abstract notation of [46, 73] should be applied in concrete computations, and

we found that for our purposes it was even unnecessary, as the Lagrangian

forms enter in an entirely natural way.
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1.3 Outline of thesis

Chapter 1 is the introductory chapter, consisting of an overview of the area

of integrable systems and discrete integrable systems in particular, outlining

some key results and trends in the field.

Chapter 2 deals chiefly with 2-dimensional discrete integrable systems.

There is a more in-depth introduction to equations on quadrilateral graphs,

including the recent classification results of Adler, Bobenko and Suris [5]. We

give a Lagrangian formulation of these equations, show that the Lagrangians

satisfy a closure relation, and propose a novel variational principle on that ba-

sis. The Lagrangians now appear in the guise of Lagrangian forms, as opposed

to scalar objects.

Chapter 3 is concerned with an example, or hierarchy of examples, of a 2-

dimensional multicomponent system, the Gel’fand-Dikii hierarchy. We present

a universal Lagrangian structure for this hierarchy, demonstrate that it satisfies

a closure relation and hence fits in with our new variational principle.

Chapter 4 contains a higher dimensional system, the 3-dimensional bilinear

lattice Kadomtsev-Petvishvili equation. Again we present a Lagrangian struc-

ture for this system, demonstrate that it obeys a higher dimensional closure

relation, and is compatible with the new variational principle.

Chapter 5 deals with the continuous analogue of the theory of Lagrangian

forms and the new variational principle, as illustrated by the examples of

the linear and full nonlinear generating partial differential equation for the

Korteweg-de Vries hierarchy, and other generating partial differential equa-

tions.

Chapter 6 is a concluding chapter which contains some discussion, a brief

account of two lines of recent development which could not be incorporated

into the thesis, speculations on the results and future directions of research.



Chapter 2

Lagrangian 2-forms

2.1 2-dimensional lattice systems

A large and important class of discrete systems is that of equations on quad

graphs, i.e., planar graphs with quadrilateral faces. These are equations on 2-

dimensional lattices, which link points defined on the vertices of an elementary

plaquette (a quadrilateral of minimal size, see Figure 2.2). Probably the best-

known example of such equations is the lattice potential KdV equation, already

mentioned in the Introduction, which first appeared in [44].

2.1.1 Notation

To fix the notation we will use throughout this chapter, let n1, n2 be the in-

dependent variables which constitute the coordinates in 2-dimensional space,

u = u(n1, n2) be the dependent variable, and α1, α2 be lattice parameters

corresponding to the lattice directions n1, n2 respectively (these lattice param-

eters can be thought of as measures for the grid size). Shifts in the depen-

dent variable u will be denoted by subscripts, so that u1 = u(n1 + 1, n2) and

u2 = u(n1, n2 + 1), backwards shifts will be shown as u−1 = u(n1 − 1, u2), and

shifts in 2 lattice directions will be written as u1,2 = u(n1 + 1, u2 + 1). This is

all illustrated in Figure 2.1.

22
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α1

α2

u−1 u u1 u1,1

u2 u1,2

u2,2

n1

n2

Figure 2.1: 2-d lattice.

In this notation, equations on quad graphs will have the form

Q(u, u1, u2, u1,2;α1, α2) = 0, (1.1)

for some function Q, so that they involve the 4 points around an elementary

plaquette as shown in Figure 2.2.

u1

u2

u

u1,2

α1

α2

Figure 2.2: Elementary plaquette
.

2.1.2 Multidimensional consistency

Of these equations, we are interested in those that are integrable, a notion

which, as we have discussed, for discrete systems is even more difficult to

define than for continuous systems. However, since its introduction in [91, 14],

multidimensional consistency has come to be regarded as one of the hallmarks

of integrability for discrete systems. To repeat, it is the property that several

copies of an equation may be imposed simultaneously on a higher dimensional

lattice, and no inconsistency or multivaluedness occurs in the evaluation of the
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dependent variables at any lattice site.

For equations of the form Q = 0 where Q is multilinear, i.e., Q is linear

in each of the arguments u and its shifts u1, u2, u1,2 (although not necessarily

linear in the lattice parameters α1, α2), we may solve the equation uniquely

for any argument. Then there is a simple test of multidimensional consistency,

which in this case is equivalent to consistency around a cube, or 3-dimensional

consistency. Start by introducing a third lattice direction associated with

the independent variable n3 and lattice parameter α3, so we now consider

the dependent variable u to depend on n1, n2 and n3. Impose copies of the

equation (1.1) on each elementary plaquette in the 3-dimensional lattice, so

that in addition to (1.1) we have

Q(u, u2, u3, u2,3;α2, α3) = 0, (1.2)

and

Q(u, u3, u1, u3,1;α3, α1) = 0, (1.3)

and all shifted copies of the equations (1.1), (1.2) and (1.3)

Q(u3, u31, u23, u31,23;α1, α2) = 0, (1.4)

Q(u1, u12, u31, u12,31;α2, α3) = 0, (1.5)

Q(u2, u23, u12, u23,12;α3, α1) = 0. (1.6)

Now, given initial data of u, u1, u2, u3, there are in principle 3 different ways to

compute u1,2,3 depending on the order in which we apply the equations (1.1),

(1.2) and (1.3), i.e., depending on which route around the elementary cube

shown in Figure 2.3 we take.

We say that the equation (1.1) is consistent around a cube if the value of

u1,2,3 is independent of the way in which it is computed.
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u1

u2

u3

u1,2,3

u

u1,2

u2,3

u1,3

Figure 2.3: Elementary cube.

As an example, take the discrete (potential) KdV equation:

(u− u1,2)(u1 − u2)− α1 + α2 = 0, (1.7)

which we can rearrange to get an expression for u1,2

u1,2 =
u(u1 − u2)− α1 + α2

u1 − u2

. (1.8a)

In the other pairs of lattice directions, we have also

u2,3 =
u(u2 − u3)− α2 + α3

u2 − u3

, (1.8b)

and

u3,1 =
u(u3 − u1)− α3 + α1

u3 − u1

. (1.8c)

Shifting (1.8a) in the third direction to get u1,2,3 and then substituting in the

values of u2,3 and u3,1 from (1.8b) and (1.8c) respectively gives

u1,2,3 =
u3(u3,1 − u2,3)− α1 + α2

u3,1 − u2,3

= −(α1 − α2)u1u2 + (α2 − α3)u2u3 + (α3 − α1)u3u1

(α1 − α2)u3 + (α2 − α3)u1 + (α3 − α1)u2

, (1.9)

which is clearly invariant under cyclic permutation. Thus we would get the

same expression for u1,2,3 if we started with (1.8b) shifted in the first direction,
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or (1.8c) shifted in the second direction, and so there is no multivaluedness

arising when we evaluate u1,2,3. Hence the discrete KdV equation (1.7) is

consistent around a cube.

Note that for the discrete KdV equation u1,2,3 depends on u1, u2 and u3

but is independent of u, i.e., the equation possesses the tetrahedron property,

so-called because, as can be seen from Figure 2.3, joining the white vertices

u1,2,3, u1, u2, u3 makes a tetrahedron shape. A similar relation exists between

the black vertices of the cube.

2.1.3 ABS list

The equation (1.7) also possesses all the symmetries of the square, i.e., D4

symmetries. This can be seen from the fact that the equation is clearly un-

changed under the transformation u ↔ u1, u2 ↔ u1,2, and is also unchanged

under the transformation u1 ↔ u2, α1 ↔ α2, see Figure 2.4.

u1

u2

u

u1,2

α1

α2

u1

u2

u

u1,2

α1

α2

Figure 2.4: D4 symmetries.

In [5], the classification problem of quadrilateral lattice equations of the

form (1.1) was considered, where Q has the following properties:

1. Multilinearity.

2. D4 symmetry.

3. Multidimensional consistency.

4. Tetrahedron property.
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The result of the classification study of [5] was a list of 9 equations, up to

Möbius transformations, labelled H1-H3, Q1-Q4 and A1-A2. Some of these

were already well-known, e.g. H1 is the discrete KdV equation, and H3 is the

discrete modified KdV equation, but the classification also produced some new

equations. We will refer to the list of equations resulting from the classification

as the ABS list. The tetrahedron property was replaced in a later paper [6]

by certain non-degeneracy conditions; the classification there led solely to the

list Q1-Q4. The original list is as follows:

H1:

(u− u1,2)(u1 − u2)− α1 + α2 = 0;

H2:

(u− u1,2)(u1 − u2)− (α1 − α2)(u+ u1 + u2 + u1,2)− α2
1 + α2

2 = 0; (1.10)

H3:

α1(uu1 + u2u1,2)− α2(uu2 + u1u1,2) + δ(α2
1 − α2

2) = 0; (1.11)

Q1:

α1(u− u2)(u1 − u1,2)− α2(u− u1)(u2 − u1,2) + δ2α1α2(α1 − α2) = 0; (1.12)

Q2:

α1(u− u2)(u1 − u1,2)− α2(u− u1)(u2 − u1,2)

+α1α2(α1 − α2)(u+ u1 + u2 + u1,2)

−α1α2(α1 − α2)(α2
1 − α1α2 + α2

2) = 0; (1.13)



CHAPTER 2. LAGRANGIAN 2-FORMS 28

Q3:

(α2
2 − α2

1)(uu1,2 + u1u2) + α2(α2
1 − 1)(uu1 + u2u1,2)

−α1(α2
2 − 1)(uu2 + u1u1,2)

−δ2(α2
1 − α2

2)(α2
1 − 1)(α2

2 − 1)/(4α1α2) = 0;

Q4:

a0uu1u2u1,2 + a1(uu1u2 + u1u2u1,2 + uu2u1,2 + uu1u1,2)

+a2(uu1,2 + u1u2) + a′2(uu1 + u2u1,2)

+a′′2(uu2 + u1u1,2) + a3(u+ u1 + u2 + u1,2) + a4 = 0,

where

a0 = a+ b, a1 = −α2a− α1b, a2 = α2
2a+ α2

1b,

a′2 =
ab(a+ b)

2(α1 − α2)
+ α2

2a− (2α2
1 −

g2

4
)b,

a′′2 =
ab(a+ b)

2(α2 − α1)
+ α2

1b− (2α2
2 −

g2

4
)a,

a3 =
g3

2
a0 −

g2

4
a1, a4 =

(g2

4

)2

a0 − g3a1

with a2 = r(α1), b2 = r(α2) and r(x) = 4x3 − g2x− g3;

A1:

α1(u+ u2)(u1 + u1,2)− α2(u+ u1)(u2 + u1,2)− δ2α1α2(α1 − α2) = 0;

A2:

(α2
2 − α2

1)(uu1u2u1,2 + 1) + α2(α2
1 − 1)(uu2 + u1u1,2)

−α1(α2
2 − 1)(uu1 + u2u1,2) = 0.

In H3, Q1, Q3 and A1, δ is an extra arbitrary parameter.
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2.2 Lagrangians for 2-dimensional lattice sys-

tems

It was shown in [5] that all these equations admit an action principle, which is

based on the 3-leg form of the quadrilateral equation, a construct introduced

in [14]. The 3-leg form is a way of writing the equation in the following way

ψ(u, u1;α1)− ψ(u, u2;α2) = φ(u, u1,2;α1, α2) (2.1)

so that there are two “short” legs (u, u1) and (u, u2), and one “long” leg

(u, u1,2).

u1

u2

u

u1,2

Figure 2.5: 3 legs.

Remark: In the generic case, the D4 symmetry is not always manifest on the

level of the 3-leg form, e.g. in the case of Q4 where the 3-leg form lives on the level of

the uniformizing variables of the relevant elliptic curve. It is through the connection

with the affine linear form of the equations that the symmetry under reversal of the

shifts becomes apparent.

The actions in [5] were obtained by integrating the terms in the 3-leg form to

create functions L(x, x1;α1) and Λ(x, x1,2;α1, α2), both of which are symmetric with

respect to the interchange of the first two arguments, and x is related to u by the

point transformations

• u = x for H1, H2, Q1 and A1,

• u = x2 for Q2,

• u = e2x for H3, Q3|δ=0 and A2,
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u1

u2

u

u1,2

Figure 2.6: Alternative 3 legs for Lagrangian.

• u = cosh 2x for Q3|δ 6=0, and

• u = ℘(x), where ℘ is the Weierstrass elliptic function, for Q4.

The functions L and Λ are defined as follows

ψ(u, u1;α1) = ψ(f(x), f(x1);α1) =
∂

∂x
L(x, x1;α1), (2.2a)

φ(u, u1,2;α1, α2) = φ(f(x), f(x1,2);α1, α2) =
∂

∂x
Λ(x, x1,2;α1, α2). (2.2b)

Then if E1 denotes the set of edges in the n1-direction, i.e., all those which have the

label α1 associated with them, E2 denotes the set of edges in the n2-direction, i.e.,

all those which have the label α2 associated with them, and E3 denotes the set of

diagonals in the direction x↔ x1,2, the action is defined by

S =
∑

(x,x1)∈E1

L(x, x1;α1)−
∑

(x,x2)∈E2

L(x, x2;α2)−
∑

(x,x1,2)∈E3

Λ(x, x1,2;α1, α2). (2.3)

By summing this in a different way, one can infer 4-point Lagrangians, however,

for our purpose it is more useful to identify 3-point Lagrangians L(u, u1, u2;α1, α2),

defined on the 3 ‘legs’ as in Figure 2.6, which are anti-symmetric with respect to the

interchange of lattice directions. These Lagrangians are obtained from the 4-point

Lagrangians by a reflection in the diagonal term, made possible by the symmetries

of the equation. In terms of these new 3-point Lagrangians the action will take the

form

S =
∑

n1,n2∈Z
L(u, u1, u2;α1, α2), (2.4)

and in this specific form Lagrangians L(u, u1, u2;α1, α2) of all ABS equations can

be established. In some cases, namely lattice equations “of KdV type” (i.e., lattice
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equations equivalent to the KdV, modified KdV, or Schwarzian KdV equations) a

Lagrangian description had been previously established [20, 86].

The discrete Euler-Lagrange equations arising from the variational principle that

δS = 0, under local variations δu(n1, n2) of the dependent variable, are given by

∂

∂u

(
L(u, u1, u2;α1, α2) + L(u−1, u, u−1,2;α1, α2)

+L(u−2, u1,−2, u;α1, α2)
)

= 0. (2.5)

This can easily be seen as follows:

0 = δS

=
∑

n1,n2∈Z

{
∂

∂u
L(u, u1, u2;α1, α2)δu+

∂

∂u1
L(u, u1, u2;α1, α2)δu1

+
∂

∂u2
L(u, u1, u2;α1, α2)δu2

}
=

∑
n1,n2∈Z

{
∂

∂u
L(u, u1, u2;α1, α2) +

∂

∂u
L(u−1, u, u−1,2;α1, α2)

+
∂

∂u
L(u−2, u1,−2, u;α1, α2)

}
δu, (2.6)

which implies (2.5).

Below we list specific examples of ABS lattice equations together with their 3-

point Lagrangians. Although similar formulae can be established for the remaining

cases in the ABS list, we will restrict ourselves here to these particular examples.

It should be noted that the discrete Euler-Lagrange equations (2.5) do not give the

quadrilateral lattice equations themselves, but rather a discrete derivative of the

original equation which is defined on 7 points of the lattice (lattice equations on

7-point stencils have attracted a considerable amount of interest in recent years, cf.

e.g. [81]). The Euler-Lagrange equation actually results in a compound of two copies

of the 3-leg form of the original equation: one reflected in the n1-direction and one

reflected in the n2-direction. For example, the discrete Euler-Lagrange equation for

H1 is

u1 − u−2 −
α1 − α2

u− u1,−2
+ u−1 − u2 −

α1 − α2

u− u−1,2
= 0, (2.7)

which contains two copies of (1.7) defined on the points shown in Figure 2.7. Note
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Figure 2.7: 7-point stencil.

that this is entirely analogous to the continuous case, where the Lagrangian for the

continuous KdV equation produces through the Euler-Lagrange equations not the

KdV equation itself, but a derivative.

The situation is similar for all of the Lagrangians of the systems given below;

through the Euler-Lagrange equations we get a 7-point equation defined on the

points shown in Figure 2.7, consisting of two copies of the original 4-point equation.

2.2.1 H1

This is the discrete potential KdV equation, one of the most fundamental examples

in discrete integrable systems. The Lagrangian was first given in [20].

The original equation is

(u− u1,2)(u1 − u2)− α1 + α2 = 0; (2.8a)

written in 3-leg form this is

(u+ u1)− (u+ u2) =
α1 − α2

u− u1,2
, (2.8b)

and it possesses the Lagrangian

L = (u1 − u2)u− (α1 − α2) ln(u1 − u2). (2.8c)

2.2.2 H2

The original equation is

(u− u1,2)(u1 − u2)− (α1 − α2)(u+ u1 + u2 + u1,2)− α2
1 + α2

2 = 0; (2.9a)
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written in multiplicative 3-leg form this is

u+ u1 + α1

u+ u2 + α2
=
u− u1,2 + α1 − α2

u− u1,2 − α1 + α2
, (2.9b)

where we may take logarithms to obtain the additive 3-leg form of (2.1) (this is also

the case with many of the following equations). It possesses the Lagrangian

L = (u+ u1 + α1) ln(u+ u1 + α1)− (u+ u2 + α2) ln(u+ u2 + α2)

−(u1 − u2 + α1 − α2) ln(u1 − u2 + α1 − α2)

+(u1 − u2 − α1 + α2) ln(u1 − u2 − α1 + α2). (2.9c)

2.2.3 H3

This is also known as the discrete modified (potential) KdV equation.

The original equation is

α1(uu1 + u2u1,2)− α2(uu2 + u1u1,2) + δ(α2
1 − α2

2) = 0; (2.10a)

written in 3-leg form this is

e2x+2x1 + δe2a1

e2x+2x2 + δe2a2
=

sinh(x− x1,2 − a1 + a2)
sinh(x− x1,2 + a1 − a2)

, (2.10b)

where u = e2x and α1 = e2a1 , and it possesses the Lagrangian

L = −Li2

(
uu1

−α1δ

)
+ Li2

(
uu2

−α2δ

)
+ Li2

(
α2u1

α1u2

)
− Li2

(
α1u1

α2u2

)
+ ln

(
α2

1

α2
2

)
ln(u) + ln(α2

2) ln
(
u1

u2

)
, (2.10c)

where Li2(z) is the dilogarithm function

Li2(z) = −
∫ z

0

ln(1− z)
z

dz. (2.10d)
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2.2.4 Q1|δ=0

The original equation is

α1(u− u2)(u1 − u1,2)− α2(u− u1)(u2 − u1,2) = 0; (2.11a)

written in 3-leg form this is

α1

u− u1
− α2

u− u2
=
α1 − α2

u− u1,2
, (2.11b)

and it possesses the Lagrangian

L = α1 ln(u− u1)− α2 ln(u− u2)− (α1 − α2) ln(u1 − u2). (2.11c)

2.2.5 Q1|δ 6=0

The original equation is

α1(u− u2)(u1 − u1,2)− α2(u− u1)(u2 − u1,2) + δ2α1α2(α1 − α2) = 0; (2.12a)

written in 3-leg form this is

(
u− u1 + α1δ

u− u1 − α1δ

)(
u− u2 − α2δ

u− u2 + α2δ

)
=
(
u− u1,2 + α1δ − α2δ

u− u1,2 − α1δ + α2δ

)
, (2.12b)

and it possesses the Lagrangian

L = (u− u1 + α1δ) ln(u− u1 + α1δ)− (u− u1 − α1δ) ln(u− u1 − α1δ)

−(u− u2 + α2δ) ln(u− u2 + α2δ) + (u− u2 − α2δ) ln(u− u2 − α2δ)

−(u1 − u2 + α1δ − α2δ) ln(u1 − u2 + α1δ − α2δ)

+(u1 − u2 − α1δ + α2δ) ln(u1 − u2 − α1δ + α2δ). (2.12c)
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2.2.6 Q3|δ=0

Written in a slightly different form, this equation is known as the Homotopy equa-

tion, and appears in [82]. The original equation is

(α2
2 − α2

1)(uu1,2 + u1u2) + α2(α2
1 − 1)(uu1 + u2u1,2)− α1(α2

2 − 1)(uu2 + u1u1,2) = 0;

(2.13a)

written in 3-leg form this is

(
sinh(x− x1 + a1)
sinh(x− x1 − a1)

)(
sinh(x− x2 − a2)
sinh(x− x2 + a2)

)
=
(

sinh(x− x1,2 + a1 − a2)
sinh(x− x1,2 − a1 + a2)

)
,

(2.13b)

where u = e2x and α1 = e2a1 , and it possesses the Lagrangian

L = −Li2

(
α1u

u1

)
+ Li2

(
u

α1u1

)
+ Li2

(
α2u

u2

)
− Li2

(
u

α2u2

)
+Li2

(
α1u1

α2u2

)
− Li2

(
α2u1

α1u2

)
+ ln(α2

1) ln
(
α2u1

α1u2

)
. (2.13c)

2.2.7 A1

The original equation is

α1(u+ u2)(u1 + u1,2)− α2(u+ u1)(u2 + u1,2)− δ2α1α2(α1 − α2) = 0; (2.14a)

written in 3-leg form this is

(
u+ u1 + α1δ

u+ u1 − α1δ

)(
u+ u2 − α2δ

u+ u2 + α2δ

)
=
(
u− u1,2 + α1δ − α2δ

u− u1,2 − α1δ + α2δ

)
, (2.14b)

and it possesses the Lagrangian

L = (u+ u1 + α1δ) ln(u+ u1 + α1δ)− (u+ u1 − α1δ) ln(u+ u1 − α1δ)

−(u+ u2 + α2δ) ln(u+ u2 + α2δ) + (u+ u2 − α2δ) ln(u+ u2 − α2δ)

−(u2 − u1 + α1δ − α2δ) ln(u2 − u1 + α1δ − α2δ)

+(u2 − u1 − α1δ + α2δ) ln(u2 − u1 − α1δ + α2δ). (2.14c)
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2.2.8 A2

The original equation is

(α2
2−α2

1)(uu1u2u1,2 + 1) +α2(α2
1− 1)(uu2 + u1u1,2)−α1(α2

2− 1)(uu1 + u2u1,2) = 0;

(2.15a)

written in 3-leg form this is

(
sinh(x+ x1 + a1)
sinh(x+ x1 − a1)

)(
sinh(x+ x2 − a2)
sinh(x+ x2 + a2)

)
=
(

sinh(x− x1,2 + a1 − a2)
sinh(x− x1,2 − a1 + a2)

)
,

(2.15b)

where u = e2x and α1 = e2a1 , and it possesses the Lagrangian

L = −Li2(α1uu1) + Li2

(
uu1

α1

)
+ Li2(α2uu2)− Li2

(
uu2

α2

)
+Li2

(
α1u2

α2u1

)
− Li2

(
α2u2

α1u1

)
+ ln(α2

1) ln
(
α2u2

α1u1

)
. (2.15c)

For the Lagrangians of the cases given in the above list, we will next establish

an important new property.

2.3 Closure relation

The main observation central to the thesis is that all these lattice systems, together

with their 3-point Lagrangians as given in the previous section, possess a remark-

able property which we refer to as the closure relation, when we embed both the

equation and the Lagrangian in a 3-dimensional lattice. In order to formulate this

property we introduce the notation of the difference operator ∆i which acts on func-

tions f = f(u) of u = u(n1, n2, n3) by the formula ∆if(u) = f(ui) − f(u), and

on a function g = g(u, uj , uk) of u and its shifts by the formula ∆ig(u, uj , uk) =

g(ui, ui,j , ui,k) − g(u, uj , uk), in which, as before, the suffix i denotes a shift in the

direction associated with the variable ni. The following statement holds true.

Proposition:

All the 3-point Lagrangians given in the ABS list (2.8a)-(2.15c) when embedded in

a three-dimensional lattice, satisfy the following relation on solutions of the quadri-
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lateral lattice system:

∆1L(u, u2, u3;α2, α3) + ∆2L(u, u3, u1;α3, α1) + ∆3L(u, u1, u2;α1, α2) = 0. (3.1)

The relation (3.1) we refer to as the closure relation.

Proof: This can be established in most cases by explicit computation, and has

been directly verified for H1-H3, Q1|δ=0, Q1|δ 6=0, Q3|δ=0, A1 and A2. Below we

demonstrate the computations for these cases. For H1, the computation is relatively

straightforward, relying merely on manipulation of logarithmic terms, but cases such

as that of H3 are somewhat more involved and rely on a number of identities for the

dilogarithm function Li2, see Appendix A for more on the dilogarithm function.

2.3.1 Total derivatives

Before we embark on explicit computations, note that we are free to add total

derivative terms to the Lagrangian, provided these terms are also antisymmetric with

respect to the interchange of the lattice directions n1 and n2. To see this, suppose we

have a total derivative term F (u, u1, u2;α1, α2). By definition, the Euler-Lagrange

equations will be identically zero, so that

∂

∂u
F (u, u1, u2;α1, α2) +

∂

∂u
F (u−1, u, u−1,2;α1, α2) +

∂

∂u
F (u−2, u1,−2, u;α1, α2) = 0.

(3.2)

The last 2 terms do not depend on u1 or u2, so ∂
∂uF (u, u1, u2;α1, α2) cannot contain

either u1 or u2. We must have

∂

∂u
F (u, u1, u2;α1, α2) = f(u;α1, α2), (3.3)

for some function f . Similarly

∂

∂u
F (u−1, u, u−1,2;α1, α2) = g(u;α1, α2), (3.4)

for some function g, and

∂

∂u
F (u−2, u1,−2, u;α1, α2) = h(u;α1, α2), (3.5)
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for some function h. From (3.2) we can see that

f(u;α1, α2) + g(u;α1, α2) + h(u;α1, α2) = 0, (3.6)

and so

f(u;α1, α2) = −g(u;α1, α2)− h(u;α1, α2). (3.7)

Substituting this for f and shifting equations (3.4) and (3.5) in the n1 and n2

directions respectively, we have

∂

∂u
F (u, u1, u2;α1, α2) = −g(u;α1, α2)− h(u;α1, α2), (3.8)

∂

∂u1
F (u, u1, u2;α1, α2) = g(u1;α1, α2), (3.9)

∂

∂u2
F (u, u1, u2;α1, α2) = h(u2;α1, α2). (3.10)

Now suppose we have functions G(u;α1, α2) and H(u;α1, α2) such that

∂

∂u
G(u;α1, α2) = g(u;α1, α2), and

∂

∂u
H(u;α1, α2) = h(u;α1, α2), (3.11)

then up to a constant term we will have

F (u, u1, u2;α1, α2) = −G(u;α1, α2)−H(u;α1, α2) +G(u1;α1, α2) +H(u2;α1, α2).

(3.12)

For the closure relation to hold, we require that

0 = ∆1F (u, u2, u3;α2, α3) + ∆2F (u, u3, u1;α3, α1) + ∆3F (u, u1, u2;α1, α2)

= −G(u1;α2, α3)−H(u1;α2, α3) +G(u1,2;α2, α3) +H(u3,1;α2, α3)

+G(u;α2, α3) +H(u;α2, α3)−G(u2;α2, α3)−H(u3;α2, α3)

−G(u2;α3, α1)−H(u2;α3, α1) +G(u2,3;α3, α1) +H(u1,2;α3, α1)

+G(u;α3, α1) +H(u;α3, α1)−G(u3;α3, α1)−H(u1;α3, α1)

−G(u3;α1, α2)−H(u3;α1, α2) +G(u3,1;α1, α2) +H(u2,3;α1, α2)

+G(u;α1, α2) +H(u;α1, α2)−G(u1;α1, α2)−H(u2;α1, α2), (3.13)
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which implies that

0 = G(u;α1, α2) +G(u;α2, α3) +G(u;α3, α1)

+H(u;α1, α2) +H(u;α2, α3) +H(u;α3, α1)

−G(u1;α2, α3)−G(u1;α1, α2)−H(u1;α2, α3)−H(u1;α3, α1)

−G(u2;α3, α1)−G(u2;α2, α3)−H(u2;α1, α2)−H(u2;α3, α1)

−G(u3;α1, α2)−G(u3;α3, α1)−H(u3;α1, α2)−H(u3;α2, α3)

+G(u1,2;α2, α3) +G(u2,3;α3, α1) +G(u3,1;α1, α2)

+H(u1,2;α3, α1) +H(u2,3;α1, α2) +H(u3,1;α2, α3). (3.14)

So we must have

G(u1,2;α2, α3) +H(u1,2;α3, α1) = k(α2, α3, α1), (3.15)

for some function k. Thus F must have the form

F (u, u1, u2;α1, α2) = −G(u;α1, α2)− k(α3, α1, α2) +G(u;α3, α1)

+G(u1;α1, α2) + k(α3, α1, α2)−G(u2;α3, α1)

= −G(u;α1, α2) +G(u;α3, α1) +G(u1;α1, α2)

−G(u2;α3, α1). (3.16)

Now, F (u, u1, u2;α1, α2) does not depend on α3, so

G(u;α3, α1) = P (u;α1) + q(α3, α1), (3.17)

for some functions P and q, and F becomes

F (u, u1, u2;α1, α2) = −P (u;α2) + P (u;α1) + P (u1;α2)− P (u2;α1), (3.18)

so it is some antisymmetric function. Hence, if F is a total derivative of the form

(3.18), it will obey the closure relation.
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2.3.2 H1

To illustrate the proposition in the simplest case, we perform the following compu-

tation. By explicit form of the Lagrangians we have

∆1L(u, u2, u3;α2, α3) + ∆2L(u, u3, u1;α3, α1) + ∆3L(u, u1, u2;α1, α2)

= (u1,2 − u1,3)u1 − (α2 − α3) ln(u1,2 − u1,3)− (u2 − u3)u

+(α2 − α3) ln(u2 − u3) + (u2,3 − u1,2)u2 − (α3 − α1) ln(u2,3 − u1,2)

−(u3 − u1)u+ (α3 − α1) ln(u3 − u1) + (u1,3 − u2,3)u3

−(α1 − α2) ln(u1,3 − u2,3)− (u1 − u2)u+ (α1 − α2) ln(u1 − u2). (3.19)

Noting that the differences between the double-shifted terms have the form

u1,2 − u1,3 = −(α2 − α3)u1 + (α3 − α1)u2 + (α1 − α2)u3

(u1 − u2)(u2 − u3)(u3 − u1)
(u2 − u3)

= A1,2,3(u2 − u3), (3.20)

where A1,2,3 is invariant under permutations of the indices, the expression (3.19)

reduces to

A1,2,3(u2 − u3)u1 − (α2 − α3) ln
(
A1,2,3(u2 − u3)

)
− (u2 − u3)u

+(α2 − α3) ln(u2 − u3) +A1,2,3(u3 − u1)u2 − (α3 − α1) ln
(
A1,2,3(u3 − u1)

)
−(u3 − u1)u+ (α3 − α1) ln(u3 − u1) +A1,2,3(u1 − u2)u3

−(α1 − α2) ln
(
A1,2,3(u1 − u2)

)
− (u1 − u2)u+ (α1 − α2) ln(u1 − u2)

= 0, (3.21)

where we have tried to organize the succession of terms to make it manifest which

groupings of terms cancel out against each other.
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2.3.3 H2

By explicit form of the Lagrangians we have that

Γ ≡ ∆1L(u, u2, u3;α2, α3) + ∆2L(u, u3, u1;α3, α1) + ∆3L(u, u1, u2;α1, α2)

= (u3 + u31 + α1) ln(u3 + u31 + α1)− (u3 + u23 + α2) ln(u3 + u23 + α2)

−(u31 − u23 + α1 − α2) ln(u31 + u23 + α1 − α2)

+(u31 − u23 − α1 + α2) ln(u31 + u23 − α1 + α2)

−(u+ u1 + α1) ln(u+ u1 + α1) + (u+ u2 + α2) ln(u+ u2 + α2)

+(u1 − u2 + α1 − α2) ln(u1 − u2 + α1 − α2)

−(u1 − u2 − α1 + α2) ln(u1 − u2 − α1 + α2)

+(u1 + u12 + α2) ln(u1 + u12 + α2)− (u1 + u31 + α3) ln(u1 + u31 + α3)

−(u12 − u31 + α2 − α3) ln(u12 + u31 + α2 − α3)

+(u12 − u31 − α2 + α3) ln(u12 + u31 − α2 + α3)

−(u+ u2 + α2) ln(u+ u2 + α2) + (u+ u3 + α3) ln(u+ u3 + α3)

+(u2 − u3 + α2 − α3) ln(u2 − u3 + α2 − α3)

−(u2 − u3 − α2 + α3) ln(u2 − u3 − α2 + α3)

+(u2 + u23 + α3) ln(u2 + u23 + α3)− (u2 + u12 + α1) ln(u2 + u12 + α1)

−(u23 − u12 + α3 − α1) ln(u23 + u12 + α3 − α1)

+(u23 − u12 − α3 + α1) ln(u23 + u12 − α3 + α1)

−(u+ u3 + α3) ln(u+ u3 + α3) + (u+ u1 + α1) ln(u+ u1 + α1)

+(u3 − u1 + α3 − α1) ln(u3 − u1 + α3 − α1)

−(u3 − u1 − α3 + α1) ln(u3 − u1 − α3 + α1). (3.22)
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On rearranging, this is

Γ = u12 ln
(

(u1 + u12 + α2)(u12 − u31 − α2 + α3)(u23 − u12 + α3 − α1)
(u2 + u12 + α1)(u12 − u31 + α2 − α3)(u23 − u12 − α3 + α1)

)
+u23 ln

(
(u2 + u23 + α3)(u23 − u12 − α3 + α1)(u31 − u23 + α1 − α2)
(u3 + u23 + α2)(u23 − u12 + α3 − α1)(u31 − u23 − α1 + α2)

)
+u31 ln

(
(u3 + u31 + α1)(u31 − u23 − α1 + α2)(u12 − u31 + α2 − α3)
(u1 + u31 + α3)(u31 − u23 + α1 − α2)(u12 − u31 − α2 + α3)

)
+u1 ln

(
(u1 + u12 + α2)(u3 − u1 − α3 + α1)(u1 − u2 + α1 − α2)
(u1 + u31 + α3)(u3 − u1 + α3 − α1)(u1 − u2 − α1 + α2)

)
+u2 ln

(
(u2 + u23 + α3)(u1 − u2 − α1 + α2)(u2 − u3 + α2 − α3)
(u2 + u12 + α1)(u1 − u2 + α1 − α2)(u2 − u3 − α2 + α3)

)
+u3 ln

(
(u3 + u31 + α1)(u2 − u3 − α2 + α3)(u3 − u1 + α3 − α1)
(u3 + u23 + α2)(u2 − u3 + α2 − α3)(u3 − u1 − α3 + α1)

)
+α1 ln

(
(u3 + u31 + α1)(u23 − u12 + α3 − α1)(u23 − u12 − α3 + α1)

(u2 + u12 + α1)(u3 − u1 + α3 − α1)(u3 − u1 − α3 + α1)

.
(u1 − u2 + α1 − α2)(u1 − u2 − α1 + α2)

(u31 − u23 + α1 − α2)(u31 − u23 − α1 + α2)

)
+α2 ln

(
(u1 + u12 + α2)(u31 − u23 + α1 − α2)(u31 − u23 − α1 + α2)

(u3 + u23 + α2)(u1 − u2 + α1 − α2)(u1 − u2 − α1 + α2)

.
(u2 − u3 + α2 − α3)(u2 − u3 − α2 + α3)

(u12 − u31 + α2 − α3)(u12 − u31 − α2 + α3)

)
+α3 ln

(
(u2 + u23 + α3)(u12 − u31 + α2 − α3)(u12 − u31 − α2 + α3)

(u1 + u31 + α3)(u2 − u3 + α2 − α3)(u2 − u3 − α2 + α3)

.
(u3 − u1 + α3 − α1)(u3 − u1 − α3 + α1)

(u23 − u12 + α3 − α1)(u23 − u12 − α3 + α1)

)
. (3.23)

Then, using the 3-leg form of equation, we get

Γ = u12 ln
(
u12 + u123 + α3

u12 + u123 + α3

)
+ u23 ln

(
u23 + u123 + α1

u23 + u123 + α1

)
+u31 ln

(
u31 + u123 + α2

u31 + u123 + α2

)
+ u1 ln

(
u+ u1 + α1

u+ u1 + α1

)
+ u2 ln

(
u+ u2 + α2

u+ u2 + α2

)
+u3 ln

(
u+ u3 + α3

u+ u3 + α3

)
+ α1 ln(1) + α2 ln(1) + α3 ln(1). (3.24)

Up to constant imaginary terms resulting from the multivaluedness of the logarithm

function, which can be chosen in such a way that they vanish, this is zero.
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2.3.4 H3

As mentioned earlier, the dilogarithm function is defined by

Li2(z) = −
∫ z

0

ln(1− z)
z

dz. (3.25)

The functional relations involving the dilogarithm that are useful for the following

computations are given below. Proofs of these identities, and some discussion of the

dilogarithm function, appear in Appendix A. The pivotal functional relation is the

five-term identity

Li2(s) + Li2(t)− Li2(st) = Li2

(
s− st
1− st

)
+ Li2

(
t− st
1− st

)
+ ln

(
1− s
1− st

)
ln
(

1− t
1− st

)
. (3.26)

An additional two identities needed are the following, both valid for all real x.

Li2(x) + Li2

(
1
x

)
= −1

2
(
ln(−x)

)2 − π2

6
, (3.27)

Li2(x) + Li2

(
x

x− 1

)
= −1

2
(
ln(1− x)

)2
. (3.28)

Equation (3.27) holds regardless of whether the arguments are positive or negative.

Equations (3.26), (3.28) require additional imaginary terms depending on the sign

of the arguments; however, these cancel out in the course of the closure relation

calculations.

The Lagrangian for H3 is

Lα1α2 ≡ L(u, u1, u2;α1, α2)

= −Li2

(
uu1

−α1

)
+ Li2

(
uu2

−α2

)
+ Li2

(
α2u1

α1u2

)
− Li2

(
α1u1

α2u2

)
+ ln

(
α2

1

α2
2

)
ln(u) + ln(α2

2) ln
(
u1

u2

)
. (3.29)

We make a change of variables similar to those that appear in the 3 leg form of H3.

This will make the computations simpler and easier to follow. With the abbrevia-
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tions

A =
uu1

−α1
, B =

uu2

−α2
, C =

uu3

−α3
, (3.30)

the Lagrangian becomes

Lα1α2 = −Li2(A) + Li2(B) + Li2

(
A

B

)
− Li2

(
α2

1A

α2
2B

)
+ ln

(
α2

1

α2
2

)
ln(u) + ln(α2

2) ln
(
u1

u2

)
, (3.31)

whilst the equations of evolution, written in the variables A,B,C, are as follows:

α2
1

α2
2

1−A
1−B

=
1−B1

1−A2
, (3.32a)

α2
2

α2
3

1−B
1− C

=
1− C2

1−B3
, (3.32b)

α2
3

α2
1

1− C
1−A

=
1−A3

1− C1
, (3.32c)

where for example A1 denotes A shifted in the n1-direction. The definitions of

A,B,C give the relations

α2
1A

α2
2B

=
B1

A2
,

α2
2B

α2
3C

=
C2

B3
,

α2
3C

α2
1A

=
A3

C1
, (3.33)

which, together with (3.32a)-(3.32c), give expressions for A2, B1, etc explicitly in

terms of A,B,C. To write these in a simple way, define the function HA,B ≡

H(A,B;α1, α2) to be

HA,B =
α2

2(1−B)− α2
1(1−A)

A−B
, (3.34)

leading to the following

A3 =
C

α2
1

HC,A, B1 =
A

α2
2

HA,B, C2 =
B

α2
3

HB,C ,

A2 =
B

α2
1

HA,B, B3 =
C

α2
2

HB,C , C1 =
A

α2
3

HC,A. (3.35)

Defining the quantity Γ as below

Γ ≡ ∆3Lα1α2 + ∆1Lα2α3 + ∆2Lα3α1 , (3.36)
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we may now write both the Lagrangians and their shifted versions in terms of A,B

and C, which leads to

Γ = Li2

(
B

α2
1

HA,B

)
+ Li2

(
α2

1A

α2
2B

)
− Li2

(
A

α2
2

HA,B

)

+Li2

(
C

α2
2

HB,C

)
+ Li2

(
α2

2B

α2
3C

)
− Li2

(
B

α2
3

HB,C

)

+Li2

(
A

α2
3

HC,A

)
+ Li2

(
α2

3C

α2
1A

)
− Li2

(
C

α2
1

HC,A

)

+Li2

(
α2

1HB,C

α2
3HA,B

)
+ Li2

(
α2

3HA,B

α2
2HC,A

)
+ Li2

(
α2

2HC,A

α2
1HB,C

)

−Li2

(
HB,C

HA,B

)
− Li2

(
HA,B

HC,A

)
− Li2

(
HC,A

HB,C

)

−Li2

(
A

B

)
− Li2

(
B

C

)
− Li2

(
C

A

)
+ ln

(
α2

3

α2
1

)
ln(HA,B) + ln

(
α2

1

α2
2

)
ln(HB,C) + ln

(
α2

2

α2
3

)
ln(HC,A)

− ln
(
α2

3

α2
1

)
ln(A)− ln

(
α2

1

α2
2

)
ln(B)− ln

(
α2

2

α2
3

)
ln(C)

− ln(α2
1) ln(α2

2)− ln(α2
2) ln(α2

3)− ln(α2
3) ln(α2

1)

+(ln(α2
1))2 + (ln(α2

2))2 + (ln(α2
3))2, (3.37)

where we have we rearranged the terms in a way that suggests which dilogarithm

identities to use and where. Applying the dilogarithm identity (3.27) to the terms

in the dashed-line boxes, the argument of the dilogarithm functions can be inverted.

This enables us to use identity (3.26) on the terms grouped in the solid-line boxes,

using the definition ofHA,B to simplify the outcome. We will gather all the logarithm

terms together at the end.
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Γ = +Li2

(
(A−B)HA,B

α2
1(A− 1)

)
+ Li2

(
A(B − 1)
B(A− 1)

)
+Li2

(
(B − C)HB,C

α2
2(B − 1)

)
+ Li2

(
B(C − 1)
C(B − 1)

)
+Li2

(
(C −A)HC,A

α2
3(C − 1)

)
+ Li2

(
C(A− 1)
A(C − 1)

)

+Li2

(
α2

1(A− 1)(B − C)HB,C

α2
3(C − 1)(B −A)HA,B

)
+ Li2

(
(C −A)(B − 1)
(B −A)(C − 1)

)
−Li2

(
(B − C)HB,C

(B −A)HA,B

)
− Li2

(
C −A
B −A

)
−Li2

(
A(B − C)
B(A− C)

)
− Li2

(
A−B
A− C

)
+ ln

(
α2

2(B − 1)
α2

1(A− 1)

)
ln
(

A−B
B(A− 1)

)
+ ln

(
α2

3(C − 1)
α2

2(B − 1)

)
ln
(

B − C
C(B − 1)

)
+ ln

(
α2

1(A− 1)
α2

3(C − 1)

)
ln
(

C −A
A(C − 1)

)
+ ln

(
α2

2(B − 1)(C −A)HC,A

α2
3(C − 1)(B −A)HA,B

)
ln
(

(A− 1)(B − C)
(C − 1)(B −A)

)
− ln

(
(C −A)HC,A

(B −A)HA,B

)
ln
(
B − C
B −A

)
− ln

(
C(A−B)
B(A− C)

)
ln
(
B − C
A− C

)
−1

2

(
ln
(
−
α2

1HB,C

α2
2HC,A

))2

+
1
2

(
ln
(
−
HB,C

HC,A

))2

+
1
2

(
ln
(
−A
C

))2

+
π2

6
+ ln

(
α2

3

α2
1

)
ln(HA,B) + ln

(
α2

1

α2
2

)
ln(HB,C) + ln

(
α2

2

α2
3

)
ln(HC,A)

− ln
(
α2

3

α2
1

)
ln(A)− ln

(
α2

1

α2
2

)
ln(B)− ln

(
α2

2

α2
3

)
ln(C)

− ln(α2
1) ln(α2

2)− ln(α2
2) ln(α2

3)− ln(α2
3) ln(α2

1)

+(ln(α2
1))2 + (ln(α2

2))2 + (ln(α2
3))2. (3.38)

�

�

Again, using identity (3.27) on the terms in the dashed-line boxes, and subse-
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quently identity (3.26) on the terms grouped in the solid-line boxes, we obtain

Γ = Li2

(
(C −B)HB,C

α2
3(C − 1)

)
+ Li2

(
(A− C)HC,A

α2
1(A− 1)

)
+Li2

(
(B − C)HB,C

α2
2(B − 1)

)
+ Li2

(
(C −A)HC,A

α2
3(C − 1)

)
+ ln

(
α2

2(B − 1)
α2

1(A− 1)

)
ln
(

A−B
B(A− 1)

)
+ ln

(
α2

3(C − 1)
α2

2(B − 1)

)
ln
(

B − C
C(B − 1)

)
+ ln

(
α2

1(A− 1)
α2

3(C − 1)

)
ln
(

C −A
A(C − 1)

)
+ ln

(
α2

2(B − 1)(C −A)HC,A

α2
3(C − 1)(B −A)HA,B

)
ln
(

(A− 1)(B − C)
(C − 1)(B −A)

)
− ln

(
(C −A)HC,A

(B −A)HA,B

)
ln
(
B − C
B −A

)
− ln

(
C(A−B)
B(A− C)

)
ln
(
B − C
A− C

)
+ ln

(
C(A−B)
B(A− C)

)
ln
(

(A− 1)(B − C)
(B − 1)(A− C)

)
+ ln

(
α2

3(C − 1)
α2

1(A− 1)

)
ln
(

(C −A)HC,A

(B −A)HA,B

)
−1

2

(
ln
(
−
α2

1HB,C

α2
2HC,A

))2

+
1
2

(
ln
(
−
HB,C

HC,A

))2

+
1
2

(
ln
(
−A
C

))2

−1
2

(
ln
(
−A(C − 1)
C(A− 1)

))2

− 1
2

(
ln
(
−(B −A)(C − 1)

(C −A)(B − 1)

))2

+
1
2

(
ln
(
−A− C
A−B

))2

+ ln
(
α2

3

α2
1

)
ln(HA,B) + ln

(
α2

1

α2
2

)
ln(HB,C)

+ ln
(
α2

2

α2
3

)
ln(HC,A)− ln

(
α2

3

α2
1

)
ln(A)− ln

(
α2

1

α2
2

)
ln(B)− ln

(
α2

2

α2
3

)
ln(C)

− ln(α2
1) ln(α2

2)− ln(α2
2) ln(α2

3)− ln(α2
3) ln(α2

1)

+(ln(α2
1))2 + (ln(α2

2))2 + (ln(α2
3))2. (3.39)

Using identity (3.28) on the first term of line 1 and the second term of line 2 of (3.39)

leaves the dilogarithm terms which subsequently cancel out. What then remains are

only the logarithm terms, which also cancel out, leaving Γ = 0. This concludes the

proof of the closure relation for H3.
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2.3.5 Q1|δ=0

By explicit form of the Lagrangians we have that

Γ ≡ ∆1L(u, u2, u3;α2, α3) + ∆2L(u, u3, u1;α3, α1) + ∆3L(u, u1, u2;α1, α2)

= α1 ln(u3 − u31)− α2 ln(u3 − u23)− (α1 − α2) ln(u31 − u23)

−α1 ln(u− u1) + α2 ln(u− u2) + (α1 − α2) ln(u1 − u2)

+α2 ln(u1 − u12)− α3 ln(u1 − u31)− (α2 − α3) ln(u12 − u31)

−α2 ln(u− u2) + α3 ln(u− u3) + (α2 − α3) ln(u2 − u3)

+α3 ln(u2 − u23)− α1 ln(u2 − u12)− (α3 − α1) ln(u23 − u12)

−α3 ln(u− u3) + α1 ln(u− u1) + (α3 − α1) ln(u3 − u1)

= α1 ln
(

(u3 − u31)(u23 − u12)(u1 − u2)
(u2 − u12)(u31 − u23)(u3 − u1)

)
+α2 ln

(
(u1 − u12)(u31 − u23)(u2 − u3)
(u3 − u23)(u12 − u31)(u1 − u2)

)
+α3 ln

(
(u2 − u23)(u12 − u31)(u3 − u1)
(u1 − u31)(u23 − u12)(u2 − u3)

)
. (3.40)

Using the equations to substitute in expressions for u12, u23 and u31, and defining

the cyclic invariant

A ≡ −
[
α1(α2 − α3)(u− u2)(u− u3) + α2(α3 − α1)(u− u1)(u− u3)

+α3(α1 − α2)(u− u1)(u− u2)
]
.

[
(α1(u− u2)− α2(u− u1))

(α2(u− u3)− α3(u− u2))(α3(u− u1)− α1(u− u3))
]−1

, (3.41)

we have

u3 − u31 =
−α1(u− u3)(u3 − u1)
α3(u− u1)− α1(u− u3)

, (3.42)

u2 − u12 =
−α1(u− u2)(u1 − u2)
α1(u− u2)− α2(u− u1)

, (3.43)

u23 − u12 = (u− u2)[α3(u− u1)− α1(u− u3)]A, (3.44)
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and of course all cyclic permutations of these expressions. Substituting these in gives

us

Γ = α1 ln
(
−α1(u− u3)(u3 − u1)[α1(u− u2)− α2(u− u1)]
−α1(u− u2)(u1 − u2)[α3(u− u1)− α1(u− u3)]

.
(u− u2)[α3(u− u1)− α1(u− u3)]A(u1 − u2)
(u− u3)[α1(u− u2)− α2(u− u1)]A(u3 − u1)

)
+α2 ln

(
−α2(u− u1)(u1 − u2)[α2(u− u3)− α3(u− u2)]
−α2(u− u3)(u2 − u3)[α1(u− u2)− α2(u− u1)]

.
(u− u3)[α1(u− u2)− α2(u− u1)]A(u2 − u3)
(u− u1)[α2(u− u3)− α3(u− u2)]A(u1 − u2)

)
+α3 ln

(
−α3(u− u2)(u2 − u3)[α3(u− u1)− α1(u− u3)]
−α3(u− u1)(u3 − u1)[α2(u− u3)− α3(u− u2)]

.
(u− u1)[α2(u− u3)− α3(u− u2)]A(u3 − u1)
(u− u2)[α3(u− u1)− α1(u− u3)]A(u2 − u3)

)
= 0. (3.45)
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2.3.6 Q1|δ 6=0

By explicit form of the Lagrangians we have that

Γ ≡ ∆1L(u, u2, u3;α2, α3) + ∆2L(u, u3, u1;α3, α1) + ∆3L(u, u1, u2;α1, α2)

= (u3 − u31 + α1δ) ln(u3 − u31 + α1δ)− (u3 − u31 − α1δ) ln(u3 − u31 − α1δ)

−(u3 − u23 + α2δ) ln(u3 − u23 + α2δ) + (u3 − u23 − α2δ) ln(u3 − u23 − α2δ)

−(u31 − u23 + α1δ − α2δ) ln(u31 − u23 + α1δ − α2δ)

+(u31 − u23 − α1δ + α2δ) ln(u31 − u23 − α1δ + α2δ)

−(u− u1 + α1δ) ln(u− u1 + α1δ) + (u− u1 − α1δ) ln(u− u1 − α1δ)

+(u− u2 + α2δ) ln(u− u2 + α2δ)− (u− u2 − α2δ) ln(u− u2 − α2δ)

+(u1 − u2 + α1δ − α2δ) ln(u1 − u2 + α1δ − α2δ)

−(u1 − u2 − α1δ + α2δ) ln(u1 − u2 − α1δ + α2δ)

+(u1 − u12 + α2δ) ln(u1 − u12 + α2δ)− (u1 − u12 − α2δ) ln(u1 − u12 − α2δ)

−(u1 − u31 + α3δ) ln(u1 − u31 + α3δ) + (u1 − u31 − α3δ) ln(u1 − u31 − α3δ)

−(u12 − u31 + α2δ − α3δ) ln(u12 − u31 + α2δ − α3δ)

+(u12 − u31 − α2δ + α3δ) ln(u12 − u31 − α2δ + α3δ)

−(u− u2 + α2δ) ln(u− u2 + α2δ) + (u− u2 − α2δ) ln(u− u2 − α2δ)

+(u− u3 + α3δ) ln(u− u3 + α3δ)− (u− u3 − α3δ) ln(u− u3 − α3δ)

+(u2 − u3 + α2δ − α3δ) ln(u2 − u3 + α2δ − α3δ)

−(u2 − u3 − α2δ + α3δ) ln(u2 − u3 − α2δ + α3δ)

+(u2 − u23 + α3δ) ln(u2 − u23 + α3δ)− (u2 − u23 − α3δ) ln(u2 − u23 − α3δ)

−(u2 − u12 + α1δ) ln(u2 − u12 + α1δ) + (u2 − u12 − α1δ) ln(u2 − u12 − α1δ)

−(u23 − u12 + α3δ − α1δ) ln(u23 − u12 + α3δ − α1δ)

+(u23 − u12 − α3δ + α1δ) ln(u23 − u12 − α3δ + α1δ)

−(u− u3 + α3δ) ln(u− u3 + α3δ) + (u− u3 − α3δ) ln(u− u3 − α3δ)

+(u− u1 + α1δ) ln(u− u1 + α1δ)− (u− u1 − α1δ) ln(u− u1 − α1δ)

+(u3 − u1 + α3δ − α1δ) ln(u3 − u1 + α3δ − α1δ)

−(u3 − u1 − α3δ + α1δ) ln(u3 − u1 − α3δ + α1δ). (3.46)
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Rearranging, this gives

Γ = u12 ln
(

(u2 − u12 + α1δ)(u23 − u12 + α3δ − α1δ)(u1 − u12 − α2δ)
(u2 − u12 − α1δ)(u23 − u12 − α3δ + α1δ)(u1 − u12 + α2δ)

.
(u12 − u31 − α2δ + α3δ)
(u12 − u31 + α2δ − α3δ)

)
+u23 ln

(
(u3 − u23 + α2δ)(u31 − u23 + α1δ − α2δ)(u2 − u23 − α3δ)
(u3 − u23 − α2δ)(u31 − u23 − α1δ + α2δ)(u2 − u23 + α3δ)

.
(u23 − u12 − α3δ + α1δ)
(u23 − u12 + α3δ − α1δ)

)
+u31 ln

(
(u1 − u31 + α3δ)(u12 − u31 + α2δ − α3δ)(u3 − u31 − α1δ)
(u1 − u31 − α3δ)(u12 − u31 − α2δ + α3δ)(u3 − u31 + α1δ)

.
(u31 − u23 − α1δ + α2δ)
(u31 − u23 + α1δ − α2δ)

)
+u1 ln

(
(u1 − u2 + α1δ − α2δ)(u3 − u1 − α3δ + α1δ)(u1 − u12 + α2δ)
(u1 − u2 − α1δ + α2δ)(u3 − u1 + α3δ − α1δ)(u1 − u12 − α2δ)

.
(u1 − u31 − α3δ)
(u1 − u31 + α3δ)

)
+u2 ln

(
(u2 − u3 + α2δ − α3δ)(u1 − u2 − α1δ + α2δ)(u2 − u23 + α3δ)
(u2 − u3 − α2δ + α3δ)(u1 − u2 + α1δ − α2δ)(u2 − u23 − α3δ)

.
(u2 − u12 − α1δ)
(u2 − u12 + α1δ)

)
+u3 ln

(
(u3 − u1 + α3δ − α1δ)(u2 − u3 − α2δ + α3δ)(u3 − u31 + α1δ)
(u3 − u1 − α3δ + α1δ)(u2 − u3 + α2δ − α3δ)(u3 − u31 − α1δ)

.
(u3 − u23 − α2δ)
(u3 − u23 + α2δ)

)
+α1δ ln

(
(u3 − u31 + α1δ)(u3 − u31 − α1δ)(u1 − u2 + α1δ − α2δ)
(u2 − u12 + α1δ)(u2 − u12 − α1δ)(u3 − u1 + α3δ − α1δ)

.
(u1 − u2 − α1δ + α2δ)(u23 − u12 + α3δ − α1δ)
(u3 − u1 − α3δ + α1δ)(u31 − u23 + α1δ − α2δ)

.
(u23 − u12 − α3δ + α1δ)
(u31 − u23 − α1δ + α2δ)

)
+α2δ ln

(
(u1 − u12 + α2δ)(u1 − u12 − α2δ)(u2 − u3 + α2δ − α3δ)
(u3 − u23 + α2δ)(u3 − u23 − α2δ)(u1 − u2 + α1δ − α2δ)

.
(u2 − u3 − α2δ + α3δ)(u31 − u23 + α1δ − α2δ)
(u1 − u2 − α1δ + α2δ)(u12 − u31 + α2δ − α3δ)

.
(u31 − u23 − α1δ + α2δ)
(u12 − u31 − α2δ + α3δ)

)
+α3δ ln

(
(u2 − u23 + α3δ)(u2 − u23 − α3δ)(u3 − u1 + α3δ − α1δ)
(u1 − u31 + α3δ)(u1 − u31 − α3δ)(u2 − u3 + α2δ − α3δ)

.
(u3 − u1 − α3δ + α1δ)(u12 − u31 + α2δ − α3δ)
(u2 − u3 − α2δ + α3δ)(u23 − u12 + α3δ − α1δ)

.
(u12 − u31 − α2δ + α3δ)
(u23 − u12 − α3δ + α1δ)

)
.

(3.47)
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The equation Q1|δ 6=0 is

(
u− u1 + α1δ

u− u1 − α1δ

)(
u− u2 − α2δ

u− u2 + α2δ

)
=
(
u− u1,2 + α1δ − α2δ

u− u1,2 − α1δ + α2δ

)
. (3.48)

Because of the D4 symmetries of the equation, we are able to make the transforma-

tion u↔ u2, u1 ↔ u12 to get

(
u2 − u12 + α1δ

u2 − u12 − α1δ

)(
u− u2 + α2δ

u− u2 − α2δ

)
=
(
u1 − u2 − α1δ + α2δ

u1 − u2 + α1δ − α2δ

)
, (3.49a)

or alternatively we can transform (3.48) by u↔ u1, u2 ↔ u12 to get

(
u− u1 − α1δ

u− u1 + α1δ

)(
u1 − u12 − α2δ

u1 − u12 + α2δ

)
=
(
u1 − u2 + α1δ − α2δ

u1 − u2 − α1δ + α2δ

)
. (3.49b)

Shifting these equations in the 3rd direction gives

(
u23 − u123 + α1δ

u23 − u123 − α1δ

)(
u3 − u23 + α2δ

u3 − u23 − α2δ

)
=
(
u31 − u23 − α1δ + α2δ

u31 − u23 + α1δ − α2δ

)
, (3.50a)

(
u3 − u31 − α1δ

u3 − u31 + α1δ

)(
u31 − u123 − α2δ

u31 − u123 + α2δ

)
=
(
u31 − u23 + α1δ − α2δ

u31 − u23 − α1δ + α2δ

)
. (3.50b)
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Substituting these, along with their cyclic permutations, into (3.46) gives us

Γ = u12 ln
(

(u2 − u12 + α1δ)(u2 − u12 − α1δ)(u12 − u123 − α3δ)
(u2 − u12 − α1δ)(u2 − u12 + α1δ)(u12 − u123 + α3δ)

.
(u1 − u12 − α2δ)(u1 − u12 + α2δ)(u12 − u123 + α3δ)
(u1 − u12 + α2δ)(u1 − u12 − α2δ)(u12 − u123 − α3δ)

)
+u23 ln

(
(u3 − u23 + α2δ)(u3 − u23 − α2δ)(u23 − u231 − α1δ)
(u3 − u23 − α2δ)(u3 − u23 + α2δ)(u23 − u231 + α1δ)

.
(u2 − u23 − α3δ)(u2 − u23 + α3δ)(u23 − u231 + α1δ)
(u2 − u23 + α3δ)(u2 − u23 − α3δ)(u23 − u231 − α1δ)

)
+u31 ln

(
(u1 − u31 + α3δ)(u1 − u31 − α3δ)(u31 − u312 − α2δ)
(u1 − u31 − α3δ)(u1 − u31 + α3δ)(u31 − u312 + α2δ)

.
(u3 − u31 − α1δ)(u3 − u31 + α1δ)(u31 − u312 + α2δ)
(u3 − u31 + α1δ)(u3 − u31 − α1δ)(u31 − u312 − α2δ)

)
+u1 ln

(
(u− u1 − α1δ)(u1 − u12 − α2δ)(u− u1 + α1δ)(u1 − u31 + α3δ)
(u− u1 + α1δ)(u1 − u12 + α2δ)(u− u1 − α1δ)(u1 − u31 − α3δ)

.
(u1 − u12 + α2δ)(u1 − u31 − α3δ)
(u1 − u12 − α2δ)(u1 − u31 + α3δ)

)
+u2 ln

(
(u− u2 − α2δ)(u2 − u23 − α3δ)(u− u2 + α2δ)(u2 − u12 + α1δ)
(u− u2 + α2δ)(u2 − u23 + α3δ)(u− u2 − α2δ)(u2 − u12 − α1δ)

.
(u2 − u23 + α3δ)(u2 − u12 − α1δ)
(u2 − u23 − α3δ)(u2 − u12 + α1δ)

)
+u3 ln

(
(u− u3 − α3δ)(u3 − u31 − α1δ)(u− u3 + α3δ)(u3 − u23 + α2δ)
(u− u3 + α3δ)(u3 − u31 + α1δ)(u− u3 − α3δ)(u3 − u23 − α2δ)

.
(u3 − u31 + α1δ)(u3 − u23 − α2δ)
(u3 − u31 − α1δ)(u3 − u23 + α2δ)

)
+α1δ ln

(
(u3 − u31 + α1δ)(u3 − u31 − α1δ)(u1 − u2 + α1δ − α2δ)
(u2 − u12 + α1δ)(u2 − u12 − α1δ)(u3 − u1 + α3δ − α1δ)

.
(u1 − u2 − α1δ + α2δ)(u23 − u12 + α3δ − α1δ)
(u3 − u1 − α3δ + α1δ)(u31 − u23 + α1δ − α2δ)

.
(u23 − u12 − α3δ + α1δ)
(u31 − u23 − α1δ + α2δ)

)
+α2δ ln

(
(u1 − u12 + α2δ)(u1 − u12 − α2δ)(u2 − u3 + α2δ − α3δ)
(u3 − u23 + α2δ)(u3 − u23 − α2δ)(u1 − u2 + α1δ − α2δ)

.
(u2 − u3 − α2δ + α3δ)(u31 − u23 + α1δ − α2δ)
(u1 − u2 − α1δ + α2δ)(u12 − u31 + α2δ − α3δ)

.
(u31 − u23 − α1δ + α2δ)
(u12 − u31 − α2δ + α3δ)

)
+α3δ ln

(
(u2 − u23 + α3δ)(u2 − u23 − α3δ)(u3 − u1 + α3δ − α1δ)
(u1 − u31 + α3δ)(u1 − u31 − α3δ)(u2 − u3 + α2δ − α3δ)

.
(u3 − u1 − α3δ + α1δ)(u12 − u31 + α2δ − α3δ)
(u2 − u3 − α2δ + α3δ)(u23 − u12 + α3δ − α1δ)

.
(u12 − u31 − α2δ + α3δ)
(u23 − u12 − α3δ + α1δ)

)
, (3.51)
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which, on cancelling out terms, leaves

Γ = +α1δ ln
(

(u3 − u31 + α1δ)(u3 − u31 − α1δ)(u1 − u2 + α1δ − α2δ)
(u2 − u12 + α1δ)(u2 − u12 − α1δ)(u3 − u1 + α3δ − α1δ)

.
(u1 − u2 − α1δ + α2δ)(u23 − u12 + α3δ − α1δ)
(u3 − u1 − α3δ + α1δ)(u31 − u23 + α1δ − α2δ)

.
(u23 − u12 − α3δ + α1δ)
(u31 − u23 − α1δ + α2δ)

)
+α2δ ln

(
(u1 − u12 + α2δ)(u1 − u12 − α2δ)(u2 − u3 + α2δ − α3δ)
(u3 − u23 + α2δ)(u3 − u23 − α2δ)(u1 − u2 + α1δ − α2δ)

.
(u2 − u3 − α2δ + α3δ)(u31 − u23 + α1δ − α2δ)
(u1 − u2 − α1δ + α2δ)(u12 − u31 + α2δ − α3δ)

.
(u31 − u23 − α1δ + α2δ)
(u12 − u31 − α2δ + α3δ)

)
+α3δ ln

(
(u2 − u23 + α3δ)(u2 − u23 − α3δ)(u3 − u1 + α3δ − α1δ)
(u1 − u31 + α3δ)(u1 − u31 − α3δ)(u2 − u3 + α2δ − α3δ)

.
(u3 − u1 − α3δ + α1δ)(u12 − u31 + α2δ − α3δ)
(u2 − u3 − α2δ + α3δ)(u23 − u12 + α3δ − α1δ)

.
(u12 − u31 − α2δ + α3δ)
(u23 − u12 − α3δ + α1δ)

)
. (3.52)

Unfortunately it appears that there is no neat way in which to demonstrate these

remaining terms vanish, but it can be verified through longer and more tedious

calculations, by substituting in expressions for u12, u23 and u31 in terms of u, u1, u2

and u3 only, that Γ is indeed zero.
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2.3.7 Q3|δ=0

The Lagrangian is

Lα1α2 ≡ L(u, u1, u2;α1, α2)

= −Li2

(
α1u

u1

)
+ Li2

(
u

α1u1

)
+ Li2

(
α2u

u2

)
− Li2

(
u

α2u2

)
+Li2

(
α1u1

α2u2

)
− Li2

(
α2u1

α1u2

)
+ ln(α2

1) ln
(
α2u1

α1u2

)
. (3.53)

We make a change of variables so that the computation is simpler and easier to

follow. Let

A =
α1u

u1
,

B =
α2u

u2
,

C =
α3u

u3
. (3.54)

Then the Lagrangian becomes

Lα1α2 = −Li2

(
A

)
+ Li2

(
A

α2
1

)
+ Li2

(
B

)
− Li2

(
B

α2
2

)
+Li2

(
α2

1B

α2
2A

)
− Li2

(
B

A

)
+ ln(α2

1) ln
(
B

A

)
. (3.55)

The equations of motion, written in the variables A,B,C, are as follows:

α2
1

α2
2

1−A
1−B

=
1−B1

1−A2
, (3.56)

α2
2

α2
3

1−B
1− C

=
1− C2

1−B3
, (3.57)

α2
3

α2
1

1− C
1−A

=
1−A3

1− C1
, (3.58)

where again, for example, A1 denotes A shifted in the n1-direction.
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From the explicit form of the Lagrangian Lα1α2 ,

Γ ≡ ∆3Lα1α2 + ∆1Lα2α3 + ∆2Lα3α1

= −Li2

(
A3

)
+ Li2

(
A3

α2
1

)
+ Li2

(
B3

)
− Li2

(
B3

α2
2

)
+Li2

(
α2

1B3

α2
2A3

)
− Li2

(
B3

A3

)
− Li2

(
B1

)
+ Li2

(
B1

α2
2

)
+Li2

(
C1

)
− Li2

(
C1

α2
3

)
+ Li2

(
α2

2C1

α2
3B1

)
− Li2

(
C1

B1

)
−Li2

(
C2

)
+ Li2

(
C2

α2
3

)
+ Li2

(
A2

)
− Li2

(
A2

α2
1

)
+Li2

(
α2

3A2

α2
1C2

)
− Li2

(
A2

C2

)
− Li2

(
α2

1B

α2
2A

)
+ Li2

(
B

A

)
−Li2

(
α2

2C

α2
3B

)
+ Li2

(
C

B

)
− Li2

(
α2

3A

α2
1C

)
+ Li2

(
A

C

)
+ ln(α2

1) ln
(
AB3

BA3

)
+ ln(α2

2) ln
(
BC1

CB1

)
+ ln(α2

3) ln
(
CA2

AC2

)
. (3.59)

Note now that from the definitions of A,B,C we have the relations

B1

A2
=

B

A
, (3.60)

C2

B3
=

C

B
, (3.61)

A3

C1
=

A

C
. (3.62)

Combining these with the equations of motion give expressions for the appropriately

shifted A’s, B’s and C’s explicitly in terms of A,B,C. To write these in a simple

way, define the function HA,B ≡ H(A,B;α1, α2) to be

HA,B =
α2

2(α2
1 − 1)A− α2

1(α2
2 − 1)B + (α2

2 − α2
1)AB

(α2
1 − α2

2) + (α2
2 − 1)A− (α2

1 − 1)B
. (3.63)

Then we have the following

A3 =
HC,A

C
, B3 =

HB,C

C
,

B1 =
HA,B

A
, C1 =

HC,A

A
,

C2 =
HB,C

B
, A2 =

HA,B

B
. (3.64)
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This means that (3.59) becomes

Γ = −Li2

(
HC,A

C

)
+ Li2

(
HC,A

α2
1C

)
+ Li2

(
HB,C

C

)
− Li2

(
HB,C

α2
2C

)
+Li2

(
α2

1HB,C

α2
2HC,A

)
− Li2

(
HB,C

HC,A

)
− Li2

(
HA,B

A

)
+ Li2

(
HA,B

α2
2A

)
+Li2

(
HC,A

A

)
− Li2

(
HC,A

α2
3A

)
+ Li2

(
α2

2HC,A

α2
3HA,B

)
− Li2

(
HC,A

HA,B

)
−Li2

(
HB,C

B

)
+ Li2

(
HB,C

α2
3B

)
+ Li2

(
HA,B

B

)
− Li2

(
HA,B

α2
1B

)
+Li2

(
α2

3HA,B

α2
1HB,C

)
− Li2

(
HA,B

HB,C

)
− Li2

(
α2

1B

α2
2A

)
+ Li2

(
B

A

)
−Li2

(
α2

2C

α2
3B

)
+ Li2

(
C

B

)
− Li2

(
α2

3A

α2
1C

)
+ Li2

(
A

C

)
+ ln(α2

1) ln
(
AHB,C

BHC,A

)
+ ln(α2

2) ln
(
BHC,A

CHA,B

)
+ ln(α2

3) ln
(
CHA,B

AHB,C

)
.

(3.65)

To be able to manipulate this expression, we will need to use some dilogarithm

identities. The three dilogarithm identities needed for this computation appear in

the appendix; for easy reference they are reproduced below.

Identity I:

Li2(x) + Li2(y)− Li2(xy) = Li2

(
x− xy
1− xy

)
+ Li2

(
y − xy
1− xy

)
+ ln

(
1− x
1− xy

)
ln
(

1− y
1− xy

)
. (3.66)

Identity II:

Li2

(
1
x

)
+ Li2(x) = −π

2

6
− 1

2

(
ln(−x)

)2

. (3.67)

Identity III:

Li2(x) + Li2

(
x

x− 1

)
= −1

2

(
ln(1− x)

)2

. (3.68)

Now, the next step is simply to rearrange the terms in a way which suggests

which identities to use where.
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Γ = +Li2

(
HA,B

B

)
+ Li2

(
B

A

)
− Li2

(
HA,B

A

)
+Li2

(
HB,C

C

)
+ Li2

(
C

B

)
− Li2

(
HB,C

B

)
+Li2

(
HC,A

A

)
+ Li2

(
A

C

)
− Li2

(
HC,A

C

)
−Li2

(
HA,B

α2
1B

)
− Li2

(
α2

1B

α2
2A

)
+ Li2

(
HA,B

α2
2A

)
−Li2

(
HB,C

α2
2C

)
− Li2

(
α2

2C

α2
3B

)
+ Li2

(
HB,C

α2
3B

)
−Li2

(
HC,A

α2
3A

)
− Li2

(
α2

3A

α2
1C

)
+ Li2

(
HC,A

α2
1C

)
+Li2

(
α2

3HA,B
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.

(3.69)

On the first two terms of line 7 and the last term of line 8, use identity (3.67)

to flip over the argument. The logarithm terms will always be collected towards the

end of the expression for neatness.

Γ = +Li2

(
HA,B

B

)
+ Li2

(
B

A

)
− Li2

(
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A

)
+Li2

(
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(
C
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(3.70)

Use identity (3.66) on each of the lines 1 to 8 to convert the three dilogarithm

terms into two.

Γ = +Li2

(
(B −A)HA,B

B(HA,B −A)

)
+ Li2

(
HA,B −B
HA,B −A

)
+Li2

(
(C −B)HB,C
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HB,C − C
HB,C −B

)
+Li2

(
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2HC,A)
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(3.71)

Here we use the definition of HA,B. We shall write Uα1α2 for the numerator of

HA,B and Lα1α2 for the denominator.

Γ = +Li2

(
Uα1α2

(α2
2 − 1)(A− α2

1)B

)
+ Li2

(
(α2

1 − 1)(B − α2
2)

(α2
2 − 1)(A− α2

1)

)
+Li2

(
Uα2α3

(α2
3 − 1)(B − α2

2)C

)
+ Li2

(
(α2

2 − 1)(C − α2
3)

(α2
3 − 1)(B − α2

2)

)
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(
Uα3α1

(α2
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3)A

)
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(
(α2
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2
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(
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(C − 1)Lα1α2

)
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(
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(A− α2
1)Lα2α3
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(
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2)A

(α2
2 − 1)(A− α2

1)B

)
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(

Lα1α2

(α2
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(
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(
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(
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3)

)
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(
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1 − 1)(B − 1)A
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)
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(
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)
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(
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(
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(
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)
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(3.72)

Rearrange the terms again to make it clear what to do next:

Γ = +Li2

(
(α2

1 − 1)(B − α2
2)

(α2
2 − 1)(A− α2

1)

)
+ Li2

(
(α2

3 − 1)(A− α2
1)

(α2
1 − 1)(C − α2

3)

)
+Li2

(
(α2

2 − 1)(C − α2
3)

(α2
3 − 1)(B − α2

2)

)
−Li2

(
(α2

1 − 1)(B − 1)
(α2

2 − 1)(A− 1)

)
− Li2

(
(α2

2 − 1)(C − 1)
(α2

3 − 1)(B − 1)

)
−Li2

(
(α2

3 − 1)(A− 1)
(α2

1 − 1)(C − 1)

)
+Li2

(
Uα1α2

(α2
2 − 1)(A− α2

1)B

)
− Li2

(
Uα1α2

α2
1(α2

2 − 1)(A− 1)B

)
+Li2

(
Uα2α3

(α2
3 − 1)(B − α2

2)C

)
− Li2

(
Uα2α3

α2
2(α2

3 − 1)(B − 1)C

)
+Li2

(
Uα3α1

(α2
1 − 1)(C − α2

3)A

)
− Li2

(
Uα3α1

α2
3(α2

1 − 1)(C − 1)A

)
−Li2

(
−α

2
1(A− 1)Uα2α3

α2
3(C − 1)Uα1α2

)
− Li2

(
−(C − α2

3)Uα1α2

(A− α2
1)Uα2α3

)
−Li2

(
−(B − 1)Lα3α1

(C − 1)Lα1α2

)
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(
−(B − α2

2)Lα3α1

(A− α2
1)Lα2α3

)
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(
(α2
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(α2
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)
ln
(
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(α2
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(
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(
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(
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(
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(
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(

Lα3α1

(α2
1 − 1)(C − 1)

)
− ln
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(3.73)

Use identity (3.67) to flip the arguments of the terms of lines 2,4,5,6 and 7.

Γ = +Li2

(
(α2

1 − 1)(B − α2
2)

(α2
2 − 1)(A− α2

1)

)
+ Li2

(
(α2

3 − 1)(A− α2
1)

(α2
1 − 1)(C − α2

3)

)
−Li2

(
(α2

3 − 1)(B − α2
2)

(α2
2 − 1)(C − α2

3)
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−Li2
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(α2

1 − 1)(B − 1)
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(
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3 − 1)(B − 1)
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(
Uα2α3
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)
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Uα2α3

)
+Li2
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(
α2

3(α2
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)
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1(A− 1)Uα2α3

α2
3(C − 1)Uα1α2

)
− Li2
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−(C − α2

3)Uα1α2
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1)Uα2α3

)
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(
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(
(α2

1 − 1)(B − α2
2)A

(α2
2 − 1)(A− α2

1)B

)
ln
(
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(
(α2

2 − 1)(C − α2
3)B

(α2
3 − 1)(B − α2

2)C

)
ln
(

Lα2α3

(α2
3 − 1)(B − α2

2)

)
+ ln

(
(α2

3 − 1)(A− α2
1)C

(α2
1 − 1)(C − α2

3)A

)
ln
(
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(
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(
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(3.74)

Use identity (3.66) on lines 1&2, 3&4, 5,6,7 and 8.

Γ = +Li2

(
−(B − α2

2)Lα3α1
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(
−α

2
1(A− 1)(B − α2
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(3.75)

Remove any terms which cancel out and rearrange once more.
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(3.76)

Use (3.68) on the first term of lines 2,3,4,5 and 6.
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(3.77)

Clearly lines 4,5 and 6 disappear, and lines 1,2 and 3 will also go with the use

of identity (3.67). So we are left with purely logarithm terms.
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These simplify to

Γ = + ln(α2
1) ln(HC,A)− ln(α2

1) ln(HB,C)− ln(α2
1) ln(A) + ln(α2

1) ln(B)
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2) ln(HA,B)− ln(α2
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2.3.8 A1

The proof of closure is analogous to that for Q1, since A1 is related to Q1 by the

transformation u1 7→ −u1, u2 7→ −u2.

2.3.9 A2

The proof of closure is analogous to that for Q3|δ=0, since A2 is related to Q3|δ=0

by the transformation u1 7→ 1/u1, u2 7→ 1/u2.

2.3.10 Remaining cases: Q2, Q3|δ 6=0 and Q4

For the Lagrangians of the remaining equations in the ABS list (i.e., Q2, Q3|δ 6=0

and Q4), the computations to check they satisfy (3.1) are more troublesome, as the

structure is more implicit. Furthermore, in the case of Q4, if we wished to verify the

closure relation by direct computation we would have to employ functional identities
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for an elliptic analogue of the dilogarithm function, functions of the type

f(z) =
∫

lnσ(z)dz, (3.80)

which as far as we know have not yet been developed. However, following on from

the paper [65], Bobenko and Suris showed through a more indirect method [15] that

the closure relation (3.1), which they refer to as flip invariance, does indeed hold

for all members in the ABS list. Indeed, it has now emerged [125] that the ABS list

admits a universal Lagrangian structure which is antisymmetric with respect to the

interchange of the lattice directions, and obeys the closure relation (3.1) on solutions

of the equation.

2.3.11 Linear case

For completeness, we will also present here an example of a linear case, the lin-

earization of H1. Since zero is not a solution of (1.7), we make the transformation

u(n1, n2) 7→ u(n1, n2) + n1p1 + n2p2, where −p2
1 = α1 and −p2

2 = α2, to get the

equation

(u− u1,2 − p1 − p2)(u1 − u2 + p1 − p2) + p2
1 − p2

2 = 0. (3.81)

Now u = 0 is a solution of (3.81), and we can expand around this solution by

considering u(n1, n2) = εv(n1, n2) for small ε. To first order in ε, we get

(p1 − p2)(v − v1,2) = (p1 + p2)(v1 − v2), (3.82)

which can easily be shown to be consistent-around-a-cube. A Lagrangian for (3.82)

which is antisymmetric with respect to the interchange of lattice directions is

L(v, v1, v2; p1, p2) = (v1 − v2)v − 1
2

(
p1 + p2

p1 − p2

)
(v1 − v2)2, (3.83)

and this Lagrangian can be seen to obey the closure relation (3.1):
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Γ ≡ ∆1L(v, v2, v3; p2, p3) + ∆2L(v, v3, v1; p3, p1) + ∆3L(v, v1, v2; p1, p2)

= (v12 − v31)v1 −
1
2

(
p2 + p3

p2 − p3

)
(v12 − v31)2 − (v2 − v3)v

1
2

(
p2 + p3

p2 − p3

)
(v2 − v3)2 + (v23 − v12)v2 −

1
2

(
p3 + p1

p3 − p1

)
(v23 − v12)2

−(v3 − v1)v +
1
2

(
p3 + p1

p3 − p1

)
(v3 − v1)2 + (v31 − v23)v3

−1
2

(
p1 + p2

p1 − p2

)
(v31 − v23)2 − (v1 − v2)v +

1
2

(
p1 + p2

p1 − p2

)
(v1 − v2)2, (3.84)

which, after substituting in the equations, is

Γ =
[(

p3 + p1

p3 − p1

)
(v3 − v1)−

(
p1 + p2

p1 − p2

)
(v1 − v2)

]
v1 +

1
2

(
p2 + p3

p2 − p3

)
(v2 − v3)2

−1
2

(
p2 + p3

p2 − p3

)[(
p3 + p1

p3 − p1

)
(v3 − v1)−

(
p1 + p2

p1 − p2

)
(v1 − v2)

]2

[(
p1 + p2

p1 − p2

)
(v1 − v2)−

(
p2 + p3

p2 − p3

)
(v2 − v3)

]
v2 +

1
2

(
p3 + p1

p3 − p1

)
(v3 − v1)2

−1
2

(
p3 + p1

p3 − p1

)[(
p1 + p2

p1 − p2

)
(v1 − v2)−

(
p2 + p3

p2 − p3

)
(v2 − v3)

]2

[(
p2 + p3

p2 − p3

)
(v2 − v3)−

(
p3 + p1

p3 − p1

)
(v3 − v1)

]
v3 +

1
2

(
p1 + p2

p1 − p2

)
(v1 − v2)2

−1
2

(
p1 + p2

p1 − p2

)[(
p2 + p3

p2 − p3

)
(v2 − v3)−

(
p3 + p1

p3 − p1

)
(v3 − v1)

]2

, (3.85)

which implies that
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Γ = −1
2

(
p2 + p3

p2 − p3

)[
1 +

(
p1 + p2

p1 − p2

)(
p2 + p3

p2 − p3

)
+
(
p2 + p3

p2 − p3

)(
p3 + p1

p3 − p1

)]
(v2 − v3)2

−1
2

(
p3 + p1

p3 − p1

)[
1 +

(
p2 + p3

p2 − p3

)(
p3 + p1

p3 − p1

)
+
(
p3 + p1

p3 − p1

)(
p1 + p2

p1 − p2

)]
(v3 − v1)2

−1
2

(
p1 + p2

p1 − p2

)[
1 +

(
p3 + p1

p3 − p1

)(
p1 + p2

p1 − p2

)
+
(
p1 + p2

p1 − p2

)(
p2 + p3

p2 − p3

)]
(v1 − v2)2

+
(
p1 + p2

p1 − p2

)(
p2 + p3

p2 − p3

)(
p3 + p1

p3 − p1

)
(v3 − v1)(v1 − v2)

+
(
p2 + p3

p2 − p3

)(
p3 + p1

p3 − p1

)(
p1 + p2

p1 − p2

)
(v1 − v2)(v2 − v3)

+
(
p3 + p1

p3 − p1

)(
p1 + p2

p1 − p2

)(
p2 + p3

p2 − p3

)
(v2 − v3)(v3 − v1), (3.86)

and so

Γ =
1
2

(
p3 + p1

p3 − p1

)(
p1 + p2

p1 − p2

)(
p2 + p3

p2 − p3

)[
(v1 − v2)2 + (v2 − v3)2 + (v3 − v1)2

+2(v3 − v1)(v1 − v2) + 2(v1 − v2)(v2 − v3) + 2(v2 − v3)(v3 − v1)
]

= 0. (3.87)

The equation (3.82) is actually satisfied by the plane wave factors, i.e., discrete

exponential functions,

v =
∏
i∈I

(
pi + k

pi − k

)ni

, (3.88)

where I is some index set. These appear in solutions of each of the lattice equations

H1 through Q3 [82, 106].

2.4 Variational principle for Lagrangian 2-forms

In order to discuss the implications of the closure relation, we need to introduce some

further notation. Let ei denote the unit vector in the lattice direction labelled by i

and let any point in the multidimensional lattice be specified by the vector n whose
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components are the coordinates n1, n2, . . . of the lattice, then elementary shifts in

the lattice can be generated by the action n→ n + ei. If we select a lattice of finite

dimensionality we could write the coordinates on the lattice as n = (n1, n2, . . . ),

where the lattice directions are labelled according to the natural numbers. However

in principle one could also have an infinite dimensional lattice and even a lattice

labelled by an uncountable set.

Specifying an elementary oriented plaquette in this lattice requires the following

data: the position n of one of its vertices in the lattice and the lattice directions

given by the base vectors ei, ej . One way to characterize the oriented plaquette is

by the ordered triplet σij(n) = (n,n + ei,n + ej) (see Figure 2.8). Since the 3-

n

ei

ej

Figure 2.8: Elementary oriented plaquette.

point Lagrangians depend on two directions in the lattice, and when embedded in a

multidimensional lattice at each point can be associated with an oriented plaquette

σij(n), we can think of these Lagrangians as defining a discrete 2-form Lij(n) whose

evaluation on that plaquette is given by the Lagrangian function as follows

Lij(n) = L(u(n), u(n + ei), u(n + ej);αi, αj). (4.1)

Choosing now a surface σ in the multidimensional lattice consisting of a connected

configuration of elementary plaquettes σij(n), such as illustrated in Figure 2.9

(which could be an infinite surface or a compact surface, with or without boundary)

we can define an action on that surface simply by summing up the contributions

Figure 2.9: Example of a surface with boundary.
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Lij from each of the plaquettes on the surface, taking into account the directions

associated with each face, i.e., we perform the sum:

S = S[u(n);σ] =
∑
σ

L =
∑

σij(n)∈σ

Lij(n). (4.2)

The sum in (4.2) is unambiguous for two reasons: first, because all the Lagrangians

considered in the list (2.8a)-(2.15c) have the property of antisymmetry up to a

constant with respect to transformations i ↔ j, i.e., Lij(n) = −Lji(n) + constant;

second, we choose the base point n in such a way that Lij(n), defined on σij(n),

involves u(n) along with its shifts only in the positive i and j directions. We choose

not to use the abstract notation of difference forms, cf. e.g. [73], because we want to

demonstrate on the basis of the examples given that all statements can be established

through concrete computations.

It is obvious from (4.2) that the geometry of the surface σ forms an integral

part of the action functional. The closure relation (3.1) implies the invariance of

the action under local deformations of the surface σ while fixing its boundary. This

we can easily see by considering an elementary variation of a locally flat surface

at a single plaquette as illustrated by Figure 2.10. If S is the value of the action

Figure 2.10: Local deformation of a discrete surface σ to a surface σ′.

functional for the undeformed surface in Figure 2.10, the value for the deformed

surface in Figure 2.10 can be computed as follows

S′ = S − L(u, ui, uj ;αi, αj) + L(uk, ui,k, uj,k;αi, αj) + L(ui, ui,j , ui,k;αj , αk)

+L(uj , uj,k, ui,j ;αk, αi)− L(u, uj , uk;αj , αk)− L(u, uk, ui;αk, αi), (4.3)

taking into account the orientation of the deformation σ → σ′, defined as a transition

between two collections of oriented plaquettes as indicated by Figure 2.10. From this

argument it follows that the independence of the action under such a deformation
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is locally equivalent to the closure relation (3.1). We consider this invariance an

essential aspect of the relevant variational principle underlying multidimensionally

consistent lattice systems.

The aim of a Lagrangian multiform description over the usual scalar Lagrangian

description is that it should provide us with not just one variational equation, but

in principle an arbitrary number of compatible equations. We propose the following

discrete variational principle for integrable lattice systems.

Discrete variational principle for integrable lattice systems: The func-

tions u(n) solving an integrable multidimensional lattice system on each discrete

quadrilateral surface σ are those for which the action S[u(n);σ] of (4.2) is invari-

ant under local deformations of the lattice, as described above, and for which the

action attains an extremum under infinitesimal local deformations of the dependent

variable u(n).

The mechanism that we propose is as follows.

1. Start with a surface as in Figure 2.9.

2. Define an action functional S[u(n);σ] as in (4.2), and impose surface inde-

pendence of this action.

3. This allows us to deform the surface σ as we choose, whilst keeping the bound-

ary in place if there is a boundary. Thus, we can always render it into a locally

flat surface away from the boundary, where we can choose any pair of local

coordinates ni, nj .

4. In that part of the surface we can then apply the usual variational principle

with respect to the field variables u(n), leading in the usual manner to the

Euler-Lagrange equations in those lattice directions.

If these equations subsequently imply the validity of the closure relation for the La-

grangian in terms of which the action is defined, this then ensures that the equations

are consistent with invariance of the action under deformation of the surface, which

in turn allowed the derivation of those equations in the first place. We view this
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circular mechanism as a manifestation of multidimensional consistency on the level

of the Lagrangian.

2.5 Discussion

The discrete variational principle formulated in the previous section brings in the ge-

ometry as a variable of the action functional. This contrasts starkly with the usual

variational principle (reproduced in the Introduction), where the Euler-Lagrange

equations provide information rather on the parametrization of the underlying ge-

ometry than on the geometry itself. For instance, in the elementary case of a me-

chanical system with one degree of freedom the action

S[q(t)] =
∫ T

0
L(q, q̇, t)dt (5.1)

contains hardly any geometry at all, but the relevant Lagrange equation tells us how

the one-dimensional motion is parametrized in a specific way according to the equa-

tions of motion. When we have more than one degree of freedom there is obviously

room for nontrivial phase space geometry, but again the variational equations tell us

more about how the geometry is parametrized rather than bringing in the geometry

as a variational variable. Even in classical string theory [39], the geometry of the

string trajectories (which sweep out a surface in configuration space) plays a role

at the level of the dependent variables of the string action rather than of the inde-

pendent variables which parametrize the surface. In contrast, our proposal involves

the geometry of the space of independent variables which is somewhat reminiscent

of the de Donder-Weyl formalism [51], although in this approach the connection

to integrability is not evident. As far as we are aware, all Lagrangian descriptions

of (continuous) integrable systems so far involve conventional scalar Lagrangians,

even where an attempt is made to give a multi-Lagrangian description of integrable

hierarchies, cf. [99, 100, 16].

This principle goes farther than just providing a variational derivation of equa-

tions of motion from a given Lagrangian, in that in some sense it also imposes

conditions on the Lagrangian. It may even be possible to classify integrable systems

on the level of the Lagrangian, using the closure property as a criterion. What is not
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clear at this stage is to what extent Lagrangians can be constructed by application

of this principle, and we do not yet have a general proof that this procedure will

automatically lead to multidimensionally consistent lattice equations.

Whilst there are many long and technical computations in the course of this

thesis, it is the underlying idea of a fundamentally new variational principle for

integrable systems that is the important message here.

2.6 Chapter summary

In this chapter we presented Lagrangians in terms of 3 points for equations in the

ABS list, which are anti-symmetric with respect to interchange of the lattice direc-

tions, and showed that they obeyed a closure relation on solutions to the equations.

On the basis of this we formulated a novel variational principle for integrable (in

the sense of multidimensional consistency) systems, which brings in the geometry of

the independent variables. Instead of scalar Lagrangians we now have Lagrangian

multiforms, from which copies of the equation in all possible lattice directions can

be derived.



Chapter 3

Lagrangian 2-form for a

multi-component system

3.1 The lattice Gel’fand-Dikii hierarchy

The lattice Gel’fand-Dikii (GD) hierarchy first appeared in [86], where the direct

linearization method was used to find a discrete analogue of the continuous GD

hierarchy, which is a hierarchy of systems associated with higher order spectral

problems [34, 35, 72, 28]. The first members in the hierarchy are the lattice KdV and

lattice Boussinesq equations, higher order members are coupled systems of partial

difference equations in terms of variables u, vj , wj , where 0 ≤ j ≤ N − 2, given by

the following.

v̂j+1 − ṽj+1 = (p− q + û− ũ)̂̃vj − pv̂j + qṽj , (1.1a)

ŵj+1 − w̃j+1 = −(p− q + û− ũ)wj − qŵj + pw̃j , (1.1b)

78
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for 0 ≤ j ≤ N − 3, and

(p− q + û− ũ)(̂̃vN−2 − wN−2)

= (p+ q + u)
[
(p− q + û− ũ)̂̃vN−3 − pv̂N−3 + qṽN−3

]
+
N−3∑
j=0

[
(−p)N−1−j(ṽj − wj)− (−q)N−1−j(v̂j − wj)

−wj
(
(−p)N−2−j ũ− (−q)N−2−j û

)]
−
N−2∑
j=2

N−1−j∑
i=0

wi
[
(−p)N−1−j−iṽj−1 − (−q)N−1−j−iv̂j−1

]
, (1.1c)

identifying v0 = w0 = u. Because we are now dealing with a multi-component

system there is a problem with notation, we already have subscripts denoting the

components. In this chapter we use the notation we find most instructive: the

dependent variables are u, vj , wj for 0 ≤ j ≤ N −2, and we consider them to depend

on two independent variables n,m. The symbol ˜ is used to denote shifts in the

n-direction, and ̂ denotes shifts in the m-direction, so that if u = u(n,m), then

ũ = u(n + 1,m) and û = u(n,m + 1). The lattice parameters p, q are associated

with the n,m-directions respectively. This is illustrated in Figure 3.1.

u ũ ˜̃u
û ̂̃u
̂̂u

n

m

Figure 3.1: 2-d lattice.

The variables vj , wj are evaluated at the same lattice point as u, while ṽj , w̃j are

evaluated at the same lattice point as ũ, and so on.

As noted in [86] the lattice GD hierarchy arises from a Zakharov-Shabat type of

linear problem

(p+ ωk)ϕ̃k = Lk · ϕk , (q + ωk)ϕ̂k = Mk · ϕk , (1.2)
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in which

Lk =



p− ũ 1

−ṽ1 p 1
...

. . . . . .

−ṽN−2 0 · · · p 1

kN + ∗ wN−2 · · · w1 p+ u


, (1.3)

and where the matrix Mk is a similar matrix obtained after the replacements p 7→ q

and ˜ 7→̂ . The term ∗ in the lower left corner of the matrix Lk is such that the

determinant det(Lk) = pN − (−k)N , i.e., we have the expression

∗ =
N−2∑
j=0

(−p)N−1−j (ṽj − wj) −
N−1∑
j=1

N−1−j∑
i=0

(−p)N−1−j−iwiṽj−1 . (1.4)

Because the system is multidimensionally consistent [91, 14], we are free to im-

pose copies of the equations in other lattice directions, with appropriate lattice

parameters. The property of multidimensional consistency arises here essentially by

the construction given in [86]. It was shown to hold explicitly for the Boussinesq

equation in its scalar form in [123] considering an initial value problem on a 27-point

cube, and as a coupled system of 3 equations in [117].

Suppose we have another lattice direction associated with parameter r, where

shifts in this direction are denoted by ¯. Then copies of the equation (1.1a) can be

imposed on each pair of lattice directions, giving

v̂j+1 − ṽj+1 = (p− q + û− ũ)̂̃vj − pv̂j + qṽj , (1.5a)

vj+1 − v̂j+1 = (q − r + u− û)v̂j − qvj + rv̂j , (1.5b)

ṽj+1 − vj+1 = (r − p+ ũ− u)ṽj − rṽj + pvj , (1.5c)

for 0 ≤ j ≤ N − 3.

In particular, summing equations (1.5a),(1.5b) and (1.5c) for j = 0 gives

0 = (p− q + û− ũ)(̂̃u+ r) + (q − r + u− û)(û+ p) + (r − p+ ũ− u)(ũ+ q), (1.6)

which is in fact the lattice Kadomtsev-Petviashvili (or lattice KP) equation [83].
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That (1.6) holds is natural, since members of the lattice GD hierarchy can be viewed

as a special type of periodic reduction of the lattice KP equation. Note that this is

not the bilinear discrete KP equation considered in [66] and in Chapter 4, where a

Lagrangian multiform structure for that system is given. A Lagrangian description

for (1.6) has yet to be found, although one approach may be to consider the limit

of the lattice GD hierarchy as N →∞.

3.2 Lagrangian structure for the lattice GD

hierarchy

Lagrangians for the two lowest order members of the lattice GD hierarchy have

already appeared in the literature, an action for the KdV lattice was first given in

[20], and for the Boussinesq lattice in [86] (these systems arise from the lattice GD

hierarchy by taking N = 2 or N = 3 respectively). In fact, as we show here, it is

possible to write a Lagrangian for the generic member of the hierarchy.

Note first that if we define

γj(p, q) ≡
(−p)j+1 − (−q)j+1

−p+ q
= (−1)j(pj + pj−1q + · · ·+ pqj−1 + qj), (2.1)

then equation (1.1c) can be written in a more convenient form as

γN−1(p, q) + ̂̃vN−2 − wN−2 =
(p− q)γN−1(p, q)
p− q + û− ũ

+
N−3∑
i=0

N−3−i∑
j=0

γN−3−i−ĵ̃vjwi
−

N−3∑
j=0

γN−2−j

(̂̃vj − wj

)
, (2.2)

which enables us more easily to see that the following proposition holds.

Proposition 1: The system consisting of equations (1.1a),(1.1b) and (2.2)
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solves the discrete Euler-Lagrange equations for the following Lagrangian

Lpq ≡ (p− q)γN−1(p, q) ln(p− q + û− ũ)− γN−1(p, q)(û− ũ)

−
N−2∑
j=0

γN−2−j(p, q)(û− ũ)̂̃vj
−
N−3∑
i=0

N−2−i∑
j=1

γN−2−i−j(p, q)wi[v̂j − ṽj − (p− q + û− ũ)̂̃vj−1

+pv̂j−1 − qṽj−1], (2.3)

under independent variation of u, v and w.

Proof: Here we take the usual point of view and consider the action to be the

sum of the Lagrangians over all n,m, i.e.

S =
∑

n,m∈Z
Lpq. (2.4)

The discrete Euler-Lagrange equations arise as a consequence of the requirement

that δS = 0. We have

0 = δS

=
∑

n,m∈Z

{
(p− q)(δû− δũ)γN−1(p, q)

p− q + û− ũ
− γN−1(p, q)(δû− δũ)

−
N−2∑
j=0

γN−2−j(p, q)
{

(δû− δũ)̂̃vj + (û− ũ)δ̂̃vj}
−
N−3∑
i=0

N−2−i∑
j=1

γN−2−i−j(p, q)
{
δwi[v̂j − ṽj − (p− q + û− ũ)̂̃vj−1

+pv̂j−1 − qṽj−1]

+wi[δv̂j − δṽj − (δû− δũ)̂̃vj−1 − (p− q + û− ũ)δ̂̃vj−1

+pδv̂j−1 − qδṽj−1]
}}

, (2.5)

and so
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0 =
∑

n,m∈Z

{(
(p− q)γN−1(p, q)

p− q + ̂̃u− ˜̃u − (p− q)γN−1(p, q)

p− q + ̂̂u− ̂̃u
+
N−3∑
i=0

N−3−i∑
j=0

γN−3−i−j(p, q)(
̂̃̃
vjw̃i −

̂̂̃
vjŵi)

−
N−3∑
j=0

γN−2−j(p, q)(
̂̃̃
vj −

̂̂̃
vj − w̃j + ŵj)

−̂̃̃vN−2 + ̂̂̃vN−2 + w̃N−2 − ŵN−2

)
δ̂̃u

−
N−3∑
i=0

N−3−i∑
j=0

γN−3−i−j(p, q)[v̂j+1 − ṽj+1 − (p− q + û− ũ)̂̃vj
+pv̂j − qṽj ]δwi

+
N−3∑
i=0

N−3−i∑
j=0

γN−3−i−j(p, q)[ŵi+1 − w̃i+1 + (p− q + û− ũ)wi

+qŵi − pw̃i]δ̂̃vj}.
(2.6)

The coefficient of δwi must be zero, which gives us equation (1.1a), the coefficient

of δ̂̃vj must be zero, which gives us equation (1.1b), and the remaining term which

multiplies δ̂̃u is two shifted copies of equation (2.2). Hence the lattice Gel’fand-Dikii

system of equations solve the Euler-Lagrange equations for the Lagrangian (2.3). �

At this point we would like to make several remarks.

1. For clarity we have chosen to label the Lagrangian with the lattice param-

eters p, q to indicate it is defined on a plaquette in a 2-dimensional surface

corresponding to the respective lattice directions.

2. The Lagrangian (2.3) is antisymmetric with respect to the interchange of the

lattice directions associated with the parameters p, q, a property which will

be important when we come to define the multiform structure.

3. Total derivative terms have been included which at first sight may appear

superfluous. They do, however, prove necessary in the verification of the

closure relation below. For the same reason, we do not have the freedom to
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multiply the Lagrangian by constants involving the lattice parameters p, q, we

may only multiply by true constants.

3.3 Closure relation and Lagrangian 2-form

Proposition 2: The Lagrangian defined by (2.3) satisfies the following closure

relation on solutions to the lattice GD hierarchy equations when embedded in a 3-

dimensional lattice.

∆pLqr + ∆qLrp + ∆rLpq = 0, (3.1)

where the difference operator ∆r acts on functions f of u = u(np, nq, nr) by the

formula ∆rf(u) = f(u) − f(u), and on a function g of u and its shifts by the

formula ∆rg(u, ũ, û, ̂̃u) = g(u, ũ, û, ̂̃u)− g(u, ũ, û, ̂̃u).

Proof: Firstly, on equation (1.1a) is is clear that the last term in the Lagrangian

will disappear. This leaves us with

Γ ≡ Lpq + L̃qr + L̂rp − Lpq − Lqr − Lrp

= (p− q)γN−1(p, q) ln
(
p− q + û− ũ
p− q + û− ũ

)
+(q − r)γN−1(q, r) ln

(
q − r + ũ− ̂̃u
q − r + u− û

)
+(r − p)γN−1(r, p) ln

(
r − p+ ̂̃u− û
r − p+ ũ− u

)
− γN−1(p, q)(û− ũ− û+ ũ)

−γN−1(q, r)(ũ− ̂̃u− u+ û)− γN−1(r, p)(̂̃u− û− ũ+ u)

−
N−2∑
j=0

{
γN−2−j(p, q)[(û− ũ)̂̃vj − (û− ũ)̂̃vj ]

+γN−2−j(q, r)[(ũ− ̂̃u)̂̃vj − (u− û)v̂j ]

+γN−2−j(r, p)[(̂̃u− û)̂̃vj − (ũ− u)ṽj ]
}
, (3.2)
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which, on rearranging the terms, is

Γ = −(−p)N ln
((

p− q + û− ũ
p− q + û− ũ

)(
r − p+ ũ− u
r − p+ ̂̃u− û

))
−(−q)N ln

((
q − r + ũ− ̂̃u
q − r + u− û

)(
p− q + û− ũ
p− q + û− ũ

))
−(−r)N ln

((
r − p+ ̂̃u− û
r − p+ ũ− u

)(
q − r + u− û
q − r + ũ− ̂̃u

))
− γN−1(p, q)(û− ũ− û+ ũ)

−γN−1(q, r)(ũ− ̂̃u− u+ û)− γN−1(r, p)(̂̃u− û− ũ+ u)− (û− ũ)̂̃vN−2

+(û− ũ)̂̃vN−2 − (ũ− ̂̃u)̂̃vN−2 + (u− û)v̂N−2 − (̂̃u− û)̂̃vN−2 + (ũ− u)ṽN−2

−
N−3∑
j=0

{
γN−2−j(p, q)[(û− ũ)̂̃vj − (û− ũ)̂̃vj ]

+γN−2−j(q, r)[(ũ− ̂̃u)̂̃vj − (u− û)v̂j ]

+γN−2−j(r, p)[(̂̃u− û)̂̃vj − (ũ− u)ṽj ]
}
. (3.3)

We have already shown that the lattice KP equation (1.6) holds provided that equa-

tion (1.1a) holds. Using this fact, it is clear that the logarithm terms disappear. So

we are left with

Γ = −γN−1(p, q)(û− ũ− û+ ũ)− γN−1(q, r)(ũ− ̂̃u− u+ û)

−γN−1(r, p)(̂̃u− û− ũ+ u)

+u(v̂N−2 − ṽN−2) + ũ(ṽN−2 − ̂̃vN−2) + û(̂̃vN−2 − v̂N−2)

−
N−3∑
j=0

{
γN−2−j(p, q)[(û− ũ)̂̃vj − (û− ũ)̂̃vj ]

+γN−2−j(q, r)[(ũ− ̂̃u)̂̃vj − (u− û)v̂j ]

+γN−2−j(r, p)[(̂̃u− û)̂̃vj − (ũ− u)ṽj ]
}
. (3.4)

Here it is helpful to introduce a new object

εj ≡
1

p− q
(
γj+1(q, r)− γj+1(r, p)

)
, (3.5)

which is invariant under cyclic permutations of p, q, r. This is not immediately

apparent, but is due to the fact that γj obeys the relation

(p− q)γj(p, q) + (q − r)γj(q, r) + (r − p)γj(r, p) = 0, (3.6)
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which allows us to write

εj =
1

p− q

(
γj+1(q, r)− γj+1(r, p)

)
=

1
p− q

(
γj+1(q, r) +

1
r − p

(
(p− q)γj+1(p, q) + (q − r)γj+1(q, r)

))
=

1
r − p

(
γj+1(p, q)− γj+1(q, r)

)
, (3.7)

and this is clearly (3.5) after a cyclic permutation of p, q and r. Hence εj is invariant

under such cyclic permutations. The following identity for εj also holds

εj+1 + rεj = γj+1(p, q), (3.8)

since

γj+1(q, r) + rγj(q, r) =
(−q)j+2 − (−r)j+2

−q + r
+ r

(−q)j+1 − (−r)j+1

−q + r

= (−q)j+1, (3.9)

and similarly γj+1(r, p) + rγj(p, q) = (−p)j+1, so that

εj+1 + rεj =
1

p− q

(
γj+2(q, r)− γj+2(r, p)

)
+

r

p− q

(
γj+1(q, r)− γj+1(r, p)

)
=

1
p− q

((
γj+2(q, r) + rγj+1(q, r)

)
−
(
γj+2(r, p) + rγj+1(r, p)

))
=

(−q)j+2 − (−p)j+2

p− q
= γj+1(p, q). (3.10)

From the definition, ε0 = 1, and so we can write

Γ = −γN−1(p, q)(û− ũ− û+ ũ)− γN−1(q, r)(ũ− ̂̃u− u+ û)

−γN−1(r, p)(̂̃u− û− ũ+ u)

+ε0u(v̂N−2 − ṽN−2) + ε0ũ(ṽN−2 − ̂̃vN−2) + ε0û(̂̃vN−2 − v̂N−2)

−
N−3∑
j=0

{
γN−2−j(p, q)[(û− ũ)̂̃vj − (û− ũ)̂̃vj ]

+γN−2−j(q, r)[(ũ− ̂̃u)̂̃vj − (u− û)v̂j ]

+γN−2−j(r, p)[(̂̃u− û)̂̃vj − (ũ− u)ṽj ]
}
. (3.11)
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For any 0 ≤ k ≤ N − 3, the expression

Λk ≡ εku(v̂N−2−k − ṽN−2−k) + εkũ(ṽN−2−k − ̂̃vN−2−k) + εkû(̂̃vN−2−k − v̂N−2−k)

−
N−3−k∑
j=0

{
γN−2−j(p, q)[(û− ũ)̂̃vj − (û− ũ)̂̃vj ]

+γN−2−j(q, r)[(ũ− ̂̃u)̂̃vj − (u− û)v̂j ]

+γN−2−j(r, p)[(̂̃u− û)̂̃vj − (ũ− u)ṽj ]
}

(3.12)

can be written as

Λk = εku((p− q + û− ũ)̂̃vN−3−k − pv̂N−3−k + qṽN−3−k)

+εkũ((q − r + ũ− ̂̃u)̂̃vN−3−k − qṽN−3−k + r̂̃vN−3−k)

+εkû((r − p+ ̂̃u− û)̂̃vN−3−k − r̂̃vN−3−k + pv̂N−3−k)

−γk+1(p, q)[(û− ũ)̂̃vN−3−k − (û− ũ)̂̃vN−3−k]

−γk+1(q, r)[(ũ− ̂̃u)̂̃vN−3−k − (u− û)v̂N−3−k]

−γk+1(r, p)[(̂̃u− û)̂̃vN−3−k − (ũ− u)ṽN−3−k]

−
N−4−k∑
j=0

{
γN−2−j(p, q)[(û− ũ)̂̃vj − (û− ũ)̂̃vj ]

+γN−2−j(q, r)[(ũ− ̂̃u)̂̃vj − (u− û)v̂j ]

+γN−2−j(r, p)[(̂̃u− û)̂̃vj − (ũ− u)ṽj ]
}
, (3.13)
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where we have made use of (1.1a) to eliminate the terms involving shifts of vN−2−k.

On rearranging,

Λk = [εku(p− q + û− ũ) + εkũ(q − r + ũ− ̂̃u) + εkû(r − p+ ̂̃u− û)

−γk+1(p, q)(û− ũ)− γk+1(q, r)(ũ− ̂̃u)− γk+1(r, p)(̂̃u− û)]̂̃vN−3−k

+ũ[(−qεk + γk+1(r, p))ṽN−3−k − (−rεk + γk+1(p, q))̂̃vN−3−k]

+û[(−rεk + γk+1(p, q))̂̃vN−3−k − (−pεk + γk+1(q, r))v̂N−3−k]

+u[(−pεk + γk+1(q, r))v̂N−3−k − (−qεk + γk+1(r, p))ṽN−3−k]

−
N−4−k∑
j=0

{
γN−2−j(p, q)[(û− ũ)̂̃vj − (û− ũ)̂̃vj ]

+γN−2−j(q, r)[(ũ− ̂̃u)̂̃vj − (u− û)v̂j ]

+γN−2−j(r, p)[(̂̃u− û)̂̃vj − (ũ− u)ṽj ]
}
, (3.14)

and then we can use (1.6) on the very top line to give

Λk = [(rεk − γk+1(p, q))(û− ũ) + (pεk − γk+1(q, r))(ũ− ̂̃u)

+(pεk − γk+1(r, p))(̂̃u− û)]̂̃vN−3−k

+ũ[(−qεk + γk+1(r, p))ṽN−3−k − (−rεk + γk+1(p, q))̂̃vN−3−k]

+û[(−rεk + γk+1(p, q))̂̃vN−3−k − (−pεk + γk+1(q, r))v̂N−3−k]

+u[(−pεk + γk+1(q, r))v̂N−3−k − (−qεk + γk+1(r, p))ṽN−3−k]

−
N−4−k∑
j=0

{
γN−2−j(p, q)[(û− ũ)̂̃vj − (û− ũ)̂̃vj ]

+γN−2−j(q, r)[(ũ− ̂̃u)̂̃vj − (u− û)v̂j ]

+γN−2−j(r, p)[(̂̃u− û)̂̃vj − (ũ− u)ṽj ]
}
. (3.15)



CHAPTER 3. LAGRANGIAN 2-FORM FOR A MULTI-COMPONENT SYSTEM89

Here the identity (3.8) comes into play, to give

Λk = εk+1u(v̂N−3−k − ṽN−3−k) + εk+1ũ(ṽN−3−k − ̂̃vN−3−k)

+εk+1û(̂̃vN−3−k − v̂N−3−k)

−
N−4−k∑
j=0

{
γN−2−j(p, q)[(û− ũ)̂̃vj − (û− ũ)̂̃vj ]

+γN−2−j(q, r)[(ũ− ̂̃u)̂̃vj − (u− û)v̂j ]

+γN−2−j(r, p)[(̂̃u− û)̂̃vj − (ũ− u)ṽj ]
}

= Λk+1, (3.16)

which means that for any 0 ≤ j, k ≤ N − 2 we have Λj = Λk. This allows us to

greatly simplify Γ, since

Γ = −γN−1(p, q)(û− ũ− û+ ũ)− γN−1(q, r)(ũ− ̂̃u− u+ û)

−γN−1(r, p)(̂̃u− û− ũ+ u) + Λ0

= −γN−1(p, q)(û− ũ− û+ ũ)− γN−1(q, r)(ũ− ̂̃u− u+ û)

−γN−1(r, p)(̂̃u− û− ũ+ u) + ΛN−2

= −γN−1(p, q)(û− ũ− û+ ũ)− γN−1(q, r)(ũ− ̂̃u− u+ û) (3.17)

−γN−1(r, p)(̂̃u− û− ũ+ u) + εN−2u(û− ũ) + εN−2ũ(ũ− ̂̃u) + εN−2û(̂̃u− û).

Using once again the equations (1.6) and then (3.8), this is

Γ = −γN−1(p, q)(û− ũ− û+ ũ)− γN−1(q, r)(ũ− ̂̃u− u+ û)

−γN−1(r, p)(̂̃u− û− ũ+ u) + rεN−2(û− ũ− û+ ũ)

+pεN−2(ũ− ̂̃u− u+ û) + qεN−2(̂̃u− û− ũ+ u)

= (rεN−2 − γN−1(p, q))(û− ũ− û+ ũ)

+(pεN−2 − γN−1(q, r))(ũ− ̂̃u− u+ û)

+(qεN−2 − γN−1(r, p))(̂̃u− û− ũ+ u)

= −εN−1(û− ũ− û+ ũ)− εN−1(ũ− ̂̃u− u+ û)− εN−1(̂̃u− û− ũ+ u)

= 0. (3.18)
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Thus the closure relation is verified. �

Note that in the above computation, the only equations used were the equation

involving the vj (1.1a), and the lattice KP equation (1.6), the latter was shown

earlier to be a consequence of copies of (1.1a). It is not clear at this stage why the

proof of the closure relation should rely only on these equations, especially since a

Lagrangian description for (2.9) has, as yet, not been found.

3.4 Special cases: Lattice Boussinesq and KdV

equations

The lattice Boussinesq equation deserves special mention as it has attracted much

interest lately, for example with regard to the Pentagram map [103]. It is a particular

case of the lattice GD hierarchy, taking N = 3, and as such can be written as a

system of equations in the variables u, v1, w1. However, it is possible to eliminate

v1, w1 and express the equation in terms of the variable u only, as follows.

p3 − q3

p− q + ̂̃u− ˜̃u − p3 − q3

p− q + ̂̂u− ̂̃u + (p+ 2q)(̂̃̃u+ û)− (2p+ q)(̂̂̃u+ ũ)

+(p− q + ̂̂̃u− ̂̃̃u)
̂̃̃̂
u+ (p− q + û− ũ)u+ ũ

̂̃̃
u− û̂̂̃u = 0.(4.1)

As mentioned earlier, this was shown to be multidimensionally consistent in [123]

by considering an initial value problem on a 27-point cube.

Starting from the action given in [86], we need to make only minor modifica-

tions in order to arrive at a Lagrangian which satisfies the closure relation (3.1) on

solutions to the lattice KP equation (1.6),

Lpq = (p3 − q3) ln(p− q + û− ũ)− (p2 + pq + q2)(û− ũ) + (p+ q)(û− ũ)̂̃u
+(p− q + û− ũ)û̃u− puû+ quũ. (4.2)

That the above Lagrangian satisfies the closure relation (3.1) can easily be verified
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by direct computation:

Γ = Lpq + L̃qr + L̂rp − Lpq − Lqr − Lrp

= (p3 − q3) ln
(
p− q + û− ũ
p− q + û− ũ

)
− (p2 + pq + q2)(û− ũ− û+ ũ)

+(p+ q)
(
(û− ũ)̂̃u− (û− ũ)̂̃u)+ (p− q + û− ũ)û̃u

−(p− q + û− ũ)û̃u− puû+ quũ+ puû− quũ

+(q3 − r3) ln
(
q − r + ũ− ̂̃u
q − r + u− û

)
− (q2 + qr + r2)(ũ− ̂̃u− u+ û)

+(q + r)
(
(ũ− ̂̃u)̂̃u− (u− û)û

)
+ (q − r + ũ− ̂̃u)ũ̂̃u

−(q − r + u− û)uû− quũ+ rũ̂̃u+ quu− ruû

+(r3 − p3) ln
(
r − p+ ̂̃u− û
r − p+ ũ− u

)
− (r2 + rp+ p2)(̂̃u− û− ũ+ u)

+(r + p)
(
(̂̃u− û)̂̃u− (ũ− u)ũ

)
+ (r − p+ ̂̃u− û)û̂̃u

−(r − p+ ũ− u)uũ− rû̃u+ pûû+ ruũ− puu

= p3 ln
(

(p− q + û− ũ)(r − p+ ũ− u)

(p− q + û− ũ)(r − p+ ̂̃u− û)

)
+q3 ln

(
(q − r + ũ− ̂̃u)(p− q + û− ũ)
(q − r + u− û)(p− q + û− ũ)

)
+r3 ln

(
(r − p+ ̂̃u− û)(q − r + u− û)

(r − p+ ũ− u)(q − r + ũ− ̂̃u)

)
+̂̃u{(p− q + û− ũ)(u+ p+ q) + (q − r + ũ− ̂̃u)(ũ+ q + r)

+(r − p+ ̂̃u− û)(û+ r + p)
}

+u
{

(p− q + û− ũ)(p+ q − ̂̃u) + (q − r + u− û)(q + r − û)

+(r − p+ ũ− u)(r + p− ũ)
}

+̂̃u{−(p+ q)(û− ũ)− rp− p2 + q2 + qr − rû+ rũ
}

+û
{
−(q + r)(u− û)− pq − q2 + r2 + rp− pu+ pû

}
+ũ
{
−(r + p)(ũ− u)− qr − r2 + p2 + pq − qũ+ qu

}
+(p2 + pq + q2)(û− ũ) + (q2 + qr + r2)(u− û) + (r2 + rp+ p2)(ũ− u).

(4.3)
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Using the lattice KP equation (1.6), we find that the first 5 lines disappear, leaving

Γ = (p+ q + r)
{

(p− q + û− ũ)(p+ q − ̂̃u) + (q − r + u− û)(q + r − û)

+(r − p+ ũ− u)(r + p− ũ)
}

= 0, (4.4)

where once more we have used the lattice KP equation (1.6).

The lattice KdV equation, which is the member of the lattice GD hierarchy where

N = 2, is a more degenerate case and needs to be treated separately. Here we do

not have equations (1.1a) and (1.1b) as N is too small, we have only equation (2.2),

which is

(p+ q + u− ̂̃u)(p− q + û− ũ) = p2 − q2. (4.5)

A Lagrangian was first given in [20], which is equivalent to the following Lagrangian

Lpq = −(p2 − q2) ln(p− q + û− ũ) + (û− ũ)(p+ q − ̂̃u). (4.6)

Again, the closure relation holds on solutions of the lattice KP equation (1.6), but

we need to use copies of equation (4.5) in 3 lattice directions to show that (1.6) does

indeed hold. The lattice KdV equation is of course a case already treated in Chapter

2; under its alternative name of H1 it is the simplest system in the ABS list.

3.5 Interpretation of results

Having established a Lagrangian for each member of the lattice GD hierarchy satis-

fying the closure relation (3.1), we now interpret this result in terms of a Lagrangian

multiform structure. In fact, the existence of the closure relation allows us to de-

velop the variational principle proposed in [65] (and in Chapter 2) for this class of

systems. This comprises the following:

Noting that the Lagrangian (2.3) is defined on an elementary plaquette, we can

define an action S for any given surface σ consisting of a connected configuration

of elementary plaquettes σpq in the multidimensional lattice (where the labelling by

the lattice parameters p, q indicates σpq lives on the sublattice corresponding to the
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respective lattice directions) by summing the Lagrangian contributions from each of

the plaquettes in the surface σ, i.e.,

S[u, v1, . . . , vN−2, w1, . . . , wN−2;σ] =
∑
σpq∈σ

Lpq, (5.1)

taking into account the orientation of the plaquette (as noted earlier, Lpq has the

property of antisymmetry with respect to interchange of the two lattice directions,

so this sum is well-defined). Once again, this action depends not only on the depen-

dent variables, but also on the geometry of the independent variables. We follow

the same line of reasoning as in the previous chapter. Imposing independence of the

action under local variations of the surface, keeping the boundary fixed, requires the

closure relation to hold. Furthermore, the surface independence allows us to locally

deform the surface in any way we choose away from the boundary. In particular,

away from the boundary we may render it locally flat so that we have here a regular

2-dimensional lattice on which we can apply the variational principle leading to the

usual discrete Euler-Lagrange equations. It then follows from the proof of Propo-

sition 2 in the previous section that for this specific Lagrangian, the equations of

motion (1.1a),(1.1b) and (2.2) are compatible with the surface independence. This

shows multidimensional consistency on the level of the Lagrangian.

3.6 Chapter summary

In this chapter we have presented a Lagrangian for the generic member of the lattice

GD hierarchy and shown that it can be considered as a Lagrangian 2-form when

embedded in a higher dimensional lattice, obeying a closure relation. Thus the

multiform structure proposed in [65] (and in Chapter 2) has been extended to a

multi-component system.



Chapter 4

Lagrangian 3-form

4.1 The bilinear discrete lattice KP system

Discrete equations of Kadomtsev-Petviashvili (KP) type have been studied exten-

sively since the early 1980s (cf for example [23, 83]), following on from the famous

“discrete analogue of a generalized Toda equation” (DAGTE) introduced by Hirota

in [45] which is a bilinear form for the lattice KP equation. Hirota introduced his

difference equation in a form equivalent to

ατiτı̄ + βτjτ̄ + γτkτk̄ = 0, (1.1)

where τ = τ(ni, nj , nk) is the dependent variable depending on three discrete inde-

pendent variables ni, nj , nk corresponding to lattice directions, and subscripts of τ ,

e.g. as in τi, denote shifts in the ni-direction so that for example τi = τ(ni+1, nj , nk)

and τ̄ = τ(ni, nj −1, nk). Here α, β, γ are constants satisfying α+β+γ = 0. There

are many possible reductions to 2-dimensional equations such as the KdV equation,

modified KdV equation, sine-Gordon equation, nonlinear Klein-Gordon equation

and the Benjamin-Ono equation; the details of these were all given in [45], along

with soliton solutions and a Bäcklund transformation.

Other related KP-type lattice equations were introduced in [84], and appear in

the Introduction. The equation we will refer to as the bilinear discrete KP equa-

tion, in order to distinguish it from equations that actually lead to the original KP

94
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equation in a continuum limit, is taken in the following form

Ajkτiτjk +Akiτjτki +Aijτkτij = 0, (1.2)

where Aij = −Aji are constants. These constants can be removed by a gauge trans-

formation, but we find it more instructive to retain them. Miwa gave the connection

between the KP hierarchy and Hirota’s difference equation in [78], showing how so-

lutions to the KP hierarchy can be transformed into solutions to (1.2), hence it is

often called the Hirota-Miwa equation.

4.2 Lagrangian structure

It is a common feature of Lagrangians for equations of Korteweg-de Vries (KdV)

and KP type (already in the continuous case) that these equations emerge as Euler-

Lagrange equations by varying the action with respect to a dependent variable which

obeys a potential (i.e., integrated) version of the equation. Hence, the variational

equation is typically a “derived form” of the equation obeyed by this canonical

variable, with respect to which the action is minimized. This we have seen already

in Chapters 2 and 3. The same holds true in the case of a Lagrangian structure for

the bilinear discrete KP system, where we will use the τ -function as the canonical

variable. Thus, fixing three directions i, j, k, we introduce the following Lagrangian

L(τi, τj , τk, τij , τjk, τki;Aij , Ajk, Aki)

= ln
(
τkτij
τjτki

)
ln
(
−Akiτj
Ajkτi

)
− Li2

(
−Aijτkτij
Akiτjτki

)
=: Lijk, (2.1)

where Li2 denotes the dilogarithm function defined as before by

Li2(z) = −
∫ z

0

ln(1− z)
z

dz. (2.2)
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The Lagrangian (2.1) produces the following discrete Euler-Lagrange equation

δL

δτ
=

{
ln
(
−
Akiτjk̄τi +Aijττijk̄

Ajkτik̄τj

)
+ ln

(
−
Akiτ̄kτı̄ +Aijττı̄̄k

Ajkτı̄kτj

)
− ln

(
−
Akiττi̄k +Aijτ̄kτi

Ajkτi̄τk

)
− ln

(
−
Akiττı̄jk̄ +Aijτjk̄τı̄

Ajkτı̄jτk̄

)}
1
τ

= 0, (2.3)

which is a consequence of (1.2) through the fact that it is a combination of 4 copies

of the equation shifted in appropriate lattice directions.

Consequently the following functional of the lattice fields τ(ni, nj , nk)

S[τ ] =
∑

ni,nj ,nk

L(τi, τj , τk, τij , τjk, τki;Aij , Ajk, Aki), (2.4)

with L given by (2.1) can be considered to constitute an action for the lattice

equation (2.3) as a derived equation of the bilinear discrete KP equation. However,

we want to go further and take into account that the bilinear KP equation is part of a

multidimensionally consistent system of equations, as has been recognized in recent

years, cf e.g. [127, 7, 105]. In order to incorporate this multidimensionally consistent

system of equations into a single Lagrangian framework we will now proceed to define

the Lagrangian multiform structure for the lattice KP system.

The first step is to introduce a Lagrangian 3-form Lijk where i, j, k denote any

three distinct directions in a multidimensional lattice Λ, whose vertices are labelled

by integer vectors n = (ni)i∈I where I is an arbitrary set of labels, i, j, k taking

values in I. The lattice 3-form Lijk is based on the form of the Lagrangian (2.1),

but we require it to be antisymmetric with respect to the interchange of any two

indices, and we associate with it an elementary oriented cube σijk spanned by unit

vectors ei which are associated with the corresponding lattice direction labelled by i

in the multidimensional lattice Λ. This leads us to define the following Lagrangian

3-form

Lijk =
1
2
(
Lijk + Ljki + Lkij − Likj − Ljik − Lkji

)
,
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which when written out explicitly and simplified is

Lijk = ln
(
τkτij
τjτki

)
ln
(
−Akiτj
Ajkτi

)
− Li2

(
−Aijτkτij
Akiτjτki

)
+ ln

(
τiτjk
τkτij

)
ln
(
−Aijτk
Akiτj

)
− Li2

(
−
Ajkτiτjk
Aijτkτij

)
+ ln

(
τjτki
τiτjk

)
ln
(
−
Ajkτi
Aijτk

)
− Li2

(
−Akiτjτki
Ajkτiτjk

)
−1

2
((

ln
(
τij
))2 +

(
ln
(
τjk
))2 +

(
ln
(
τki
))2 − (ln(τi))2 − (ln(τj))2 − (ln(τk))2

− ln
(
τij
)

ln
(
τjk
)
− ln

(
τjk
)

ln
(
τki
)
− ln

(
τki
)

ln
(
τij
)

+ ln
(
τi
)

ln
(
τj
)

+ ln
(
τj
)

ln
(
τk
)

+ ln
(
τk
)

ln
(
τi
)

+ (ln(Aij))2 + (ln(Ajk))2 + (ln(Aki))2

− ln(Aij) ln(Ajk)− ln(Ajk) ln(Aki)− ln(Aki) ln(Aij) +
π2

2
)
, (2.5)

where the constant terms arise from dilogarithm identities given in Appendix A.

This Lagrangian is antisymmetric by construction. Considered as a usual scalar

Lagrangian defined in the 3-dimensional sublattice of the directions i, j, k, the Euler-

Lagrange equations of the corresponding action would yield an equation combining

12 shifted copies of the original bilinear equation (1.2), namely

δLijk
δτ

=
{

ln
(
−
Akiτjk̄τi +Aijττijk̄

Ajkτik̄τj

)
+ ln

(
−
Akiτ̄kτı̄ +Aijττı̄̄k

Ajkτı̄kτj

)
− ln

(
−
Akiττi̄k +Aijτ̄kτi

Ajkτi̄τk

)
− ln

(
−
Akiττı̄jk̄ +Aijτjk̄τı̄

Ajkτı̄jτk̄

)
+ ln

(
−
Aijτı̄kτj +Ajkττı̄jk

Akiτı̄jτk

)
+ ln

(
−
Aijτik̄τ̄ +Ajkττi̄k̄

Akiτi̄τk̄

)
− ln

(
−
Aijττijk̄ +Ajkτik̄τj

Akiτjk̄τi

)
− ln

(
−
Aijττı̄̄k +Ajkτı̄kτ̄

Akiτ̄kτı̄

)
+ ln

(
−
Ajkτi̄τk +Akiττi̄k

Aijτ̄kτi

)
+ ln

(
−
Ajkτı̄jτk̄ +Akiττı̄jk̄

Aijτjk̄τı̄

)
− ln

(
−
Ajkττı̄jk +Akiτı̄jτk

Aijτı̄kτj

)
− ln

(
−
Ajkττi̄k̄ +Akiτi̄τk̄

Aijτik̄τ̄

)}
1
τ

= 0. (2.6)

Equation (2.6) is actually a 19-point equation, i.e., an equation relating 19 points

on the lattice, existing on a cube as in Figure 4.1. It comprises the 12 shifted copies

of (1.2) as illustrated in Figure 4.2, where to each configuration of 6 points on an
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elementary cube correspond 2 copies of (1.2).

ni

nj

nk

Figure 4.1: The 19-point equation.

Figure 4.2: Copies of the 6-point equation.

4.3 Closure relation and Lagrangian 3-form

The main observation which allows the establishment of the multiform structure is

that the Lagrangian 3-form defined in (2.5) is a closed form on the solution space of

the original bilinear equation (1.2). In fact we have the following closure property

Proposition: The Lagrangian defined by (2.5) satisfies the following closure relation

on solutions to the equation (1.2) when embedded in a 4-dimensional lattice.

∆lLijk −∆iLjkl + ∆jLkli −∆kLlij = 0, (3.1)
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where the difference operator ∆i acts on functions f of τ = τ(ni, nj , nk, nl) by the

formula ∆if(τ) = f(τi)−f(τ), and on a function g of τ and its shifts by the formula

∆ig(τ, τj , τk, τl) = g(τi, τij , τik, τil)− g(τ, τj , τk, τl).

Proof: By explicit computation. The closure relation (3.1) holds on solutions of

the original equation, so we need to make use of (1.2) and its shifted versions. If we

add in a fourth lattice direction, we get the equations

Ajkτiτjk +Akiτjτki +Aijτkτij = 0, (3.2a)

Aklτjτkl −Ajlτkτjl +Ajkτlτjk = 0, (3.2b)

Aliτkτli −Akiτlτki +Aklτiτkl = 0, (3.2c)

Aijτlτij +Ajlτiτjl +Aliτjτli = 0. (3.2d)

When shifted, equations (3.2a) through (3.2d) become

Ajkτliτjkl +Akiτjlτkli +Aijτklτlij = 0, (3.2e)

Aklτijτkli −Ajlτkiτlij +Ajkτliτijk = 0, (3.2f)

Aliτjkτlij −Akiτjlτijk +Aklτijτjkl = 0, (3.2g)

Aijτklτijk +Ajlτkiτjkl +Aliτjkτkli = 0. (3.2h)

We also need the following two key identities for the dilogarithm function

Li2(x) + Li2(y) = Li2(xy)− Li2

(
x− xy
x− 1

)
− Li2

(
y − xy
y − 1

)
−1

2

(
ln
(
x− 1
y − 1

))2

, (3.3a)

Li2(x) + Li2

(
1
x

)
= −1

2
(
ln(−x)

)2 − π2

6
. (3.3b)

Proofs of these identities can be found in Appendix A. Equation (3.3a) is valid

up to imaginary terms which can be chosen to cancel out in the course of the

closure relation computation, whereas (3.3b) is valid for all real x. We will split the
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computation into two parts, considering the dilogarithm terms separately. Let

Γ = ∆lLijk −∆iLjkl + ∆jLkli −∆kLlij (3.4)

with Lijk given by (2.5) and let Γ = Γ1 + Γ2, where Γ1 is the part of Γ omitting

dilogarithm terms from the Lagrangian, and Γ2 consists of only the dilogarithm

terms. We have

Γ1 =
1
2
(
(ln(τijk)2 − (ln(τjkl))2 + (ln(τkli))2 − (ln(τlij))2

+(ln(τi))2 − (ln(τj))2 + (ln(τk))2 − (ln(τl))2
)

− ln(τijk) ln(τkli) + ln(τjkl) ln(τlij)− ln(τi) ln(τk) + ln(τj) ln(τl)

+ ln(τijk) ln
(
−
AijAjkτklτli
AjlAkiτjlτki

)
+ ln(τjkl) ln

(
AjlAkiτjlτki
AjkAklτijτli

)
+ ln(τkli) ln

(
−
AklAliτijτjk
AjlAkiτjlτki

)
+ ln(τlij) ln

(
AjlAkiτjlτki
AijAliτjkτkl

)
+ ln(τi) ln

(
AjkAklτjkτkl
AjlAkiτjlτki

)
+ ln(τj) ln

(
−
AjlAkiτjlτki
AklAliτklτli

)
+ ln(τk) ln

(
AijAliτijτli
AjlAkiτjlτki

)
+ ln(τl) ln

(
−
AjlAkiτjlτki
AijAjkτijτjk

)
+ ln(τij) ln

(
− Ali
Ajk

)
+ ln(τjk) ln

(
−Akl
Aij

)
+ ln(τkl) ln

(
−
Ajk
Ali

)
+ ln(τli) ln

(
−Aij
Akl

)
+ ln

(
τjl
τki

)
ln
(
AijAjkAklAliτijτjkτklτli

A2
jlA

2
kiτ

2
jlτ

2
ki

)
. (3.5)

Now we consider the dilogarithm terms. The dilogarithm terms from Γ are
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Γ2 = −Li2

(
−
Aijτklτlij
Akiτjlτkli

)
+ Li2

(
−Aijτkτij
Akiτjτki

)
− Li2

(
Aklτijτjkl
Akiτjlτijk

)

+Li2

(
Ajkτliτijk
Ajlτkiτlij

)
− Li2

(
Ajkτlτjk
Ajlτkτjl

)
+ Li2

(
Aklτiτkl
Akiτlτki

)

+Li2

(
−
Aliτjkτkli
Ajlτkiτjkl

)
− Li2

(
−Aliτjτli
Ajlτiτjl

)
+ Li2

(
−Aklτijτkli
Ajkτliτijk

)

−Li2

(
−
Ajkτliτjkl
Aijτklτlij

)
+ Li2

(
−
Ajkτiτjk
Aijτkτij

)
− Li2

(
−Aklτjτkl
Ajkτlτjk

)

−Li2

(
−
Aliτjkτlij
Aklτijτjkl

)
+ Li2

(
−Aliτkτli
Aklτiτkl

)
− Li2

(
−
Akiτjlτkli
Ajkτliτjkl

)

+Li2

(
−
Aijτklτijk
Aliτjkτkli

)
− Li2

(
−Aijτlτij
Aliτjτli

)
+ Li2

(
−Akiτjτki
Ajkτiτjk

)

+Li2

(
Ajlτkiτlij
Aklτijτkli

)
− Li2

(
Ajlτkτjl
Aklτjτkl

)
+ Li2

(
−
Ajlτkiτjkl
Aijτklτijk

)

−Li2

(
Akiτjlτijk
Aliτjkτlij

)
+ Li2

(
Akiτlτki
Aliτkτli

)
− Li2

(
−
Ajlτiτjl
Aijτlτij

)

(3.6)

Using (3.3b) on the terms in the dotted boxes, followed by (3.3a) on the terms

in the solid boxes, we obtain the following expression. Here we have also made use

of the equations (3.2a) through (3.2h).
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Γ2 = +Li2

(
τkτijτjlτkli
τjτklτkiτlij

)
− Li2

(
τiτjkτjlτkli
τjτliτkiτjkl

)
− Li2

(
τkτijτliτjkl
τiτjkτklτlij

)
+Li2

(
τkτliτjlτijk
τlτjkτkiτlij

)
− Li2

(
τjτklτliτijk
τlτijτjkτkli

)
− Li2

(
τkτijτjlτkli
τjτklτkiτlij

)
+Li2

(
τiτklτjlτijk
τlτijτkiτjkl

)
− Li2

(
τkτliτjlτijk
τlτjkτkiτlij

)
− Li2

(
τiτjkτklτlij
τkτijτliτjkl

)
+Li2

(
τiτjkτjlτkli
τjτliτkiτjkl

)
− Li2

(
τlτijτjkτkli
τjτklτliτijk

)
− Li2

(
τiτklτjlτijk
τlτijτkiτjkl

)
+Li2

(
τiτjkτklτlij
τkτijτliτjkl

)
− Li2

(
τjτklτkiτlij
τkτijτjlτkli

)
− Li2

(
τiτjkτjlτkli
τjτliτkiτjkl

)
+Li2

(
τlτijτjkτkli
τjτklτliτijk

)
− Li2

(
τkτijτjlτkli
τjτklτkiτlij

)
− Li2

(
τlτjkτkiτlij
τkτliτjlτijk

)
+Li2

(
τkτijτliτjkl
τiτjkτklτlij

)
− Li2

(
τlτijτkiτjkl
τiτklτjlτijk

)
− Li2

(
τkτliτjlτijk
τlτjkτkiτlij

)
+Li2

(
τjτklτliτijk
τlτijτjkτkli

)
− Li2

(
τiτklτjlτijk
τlτijτkiτjkl

)
− Li2

(
τjτliτkiτjkl
τiτjkτjlτkli

)
+Li2

(
τjτliτkiτjkl
τiτjkτjlτkli

)
− Li2

(
τkτijτliτjkl
τiτjkτklτlij

)
− Li2

(
τjτklτkiτlij
τkτijτjlτkli

)
+Li2

(
τjτklτkiτlij
τkτijτjlτkli

)
− Li2

(
τlτjkτkiτlij
τkτliτjlτijk

)
− Li2

(
τjτklτliτijk
τlτijτjkτkli

)
+Li2

(
τlτjkτkiτlij
τkτliτjlτijk

)
− Li2

(
τiτjkτklτlij
τkτijτliτjkl

)
− Li2

(
τlτijτkiτjkl
τiτklτjlτijk

)
+Li2

(
τlτijτkiτjkl
τiτklτjlτijk

)
− Li2

(
τjτliτkiτjkl
τiτjkτjlτkli

)
− Li2

(
τlτijτjkτkli
τjτklτliτijk

)
+

1
2

(
ln
(
Akiτjlτkli
Aijτklτlij

))2

+
1
2

(
ln
(
−
Ajlτkτjl
Ajkτlτjk

))2

+
1
2

(
ln
(
−
Akiτjlτijk
Aklτijτjkl

))2

+
1
2

(
ln
(
Ajlτiτjl
Aliτjτli

))2

+
1
2

(
ln
(
Aijτklτlij
Ajkτliτjkl

))2

+
1
2

(
ln
(
Ajkτlτjk
Aklτjτkl

))2

+
1
2

(
ln
(
Aklτijτjkl
Aliτjkτlij

))2

+
1
2

(
ln
(
Aliτjτli
Aijτlτij

))2

+
1
2

(
ln
(
Ajkτliτjkl
Akiτjlτkli

))2

+
1
2

(
ln
(
−Aklτjτkl
Ajlτkτjl

))2

+
1
2

(
ln
(
−
Aliτjkτlij
Akiτjlτijk

))2

+
1
2

(
ln
(
Aijτlτij
Ajlτiτjl

))2

−1
2

(
ln
(
Akiτjτliτkiτjkl
Aijτiτjkτklτlij

))2

− 1
2

(
ln
(
−
Ajkτlτijτjkτkli
Ajlτjτklτkiτlij

))2

−1
2

(
ln
(
−
Akiτlτjkτkiτlij
Aklτkτijτliτjkl

))2

− 1
2

(
ln
(
Aliτjτklτliτijk
Ajlτlτijτkiτjkl

))2

−1
2

(
ln
(
Aijτkτijτjlτkli
Ajkτjτliτkiτjkl

))2

− 1
2

(
ln
(
Aklτjτklτkiτlij
Ajkτkτliτjlτijk

))2
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−1
2

(
ln
(
Aklτiτklτjlτijk
Aliτlτjkτkiτlij

))2

− 1
2

(
ln
(
Aijτlτijτkiτjkl
Aliτiτjkτjlτkli

))2

−1
2

(
ln
(
Ajkτiτjkτklτlij
Akiτkτijτjlτkli

))2

− 1
2

(
ln
(
−
Ajlτkτliτjlτijk
Aklτlτijτjkτkli

))2

−1
2

(
ln
(
−
Aliτkτijτliτjkl
Akiτiτklτjlτijk

))2

− 1
2

(
ln
(
Ajlτiτjkτjlτkli
Aijτjτklτliτijk

))2

+ 2π2. (3.7)

Using (3.3b) on all the terms in the dotted boxes, all the dilogarithm terms

cancel out leaving only these logarithm terms

Γ2 = +
1
2

(
ln
(
Akiτjlτkli
Aijτklτlij

))2

+
1
2

(
ln
(
−
Ajlτkτjl
Ajkτlτjk

))2

+
1
2

(
ln
(
−
Akiτjlτijk
Aklτijτjkl

))2

+
1
2

(
ln
(
Ajlτiτjl
Aliτjτli

))2

+
1
2

(
ln
(
Aijτklτlij
Ajkτliτjkl

))2

+
1
2

(
ln
(
Ajkτlτjk
Aklτjτkl

))2

+
1
2

(
ln
(
Aklτijτjkl
Aliτjkτlij

))2

+
1
2

(
ln
(
Aliτjτli
Aijτlτij

))2

+
1
2

(
ln
(
Ajkτliτjkl
Akiτjlτkli

))2

+
1
2

(
ln
(
−Aklτjτkl
Ajlτkτjl

))2

+
1
2

(
ln
(
−
Aliτjkτlij
Akiτjlτijk

))2

+
1
2

(
ln
(
Aijτlτij
Ajlτiτjl

))2

−1
2

(
ln
(
Akiτjτliτkiτjkl
Aijτiτjkτklτlij

))2

− 1
2

(
ln
(
−
Ajkτlτijτjkτkli
Ajlτjτklτkiτlij

))2

−1
2

(
ln
(
−
Akiτlτjkτkiτlij
Aklτkτijτliτjkl

))2

− 1
2

(
ln
(
Aliτjτklτliτijk
Ajlτlτijτkiτjkl

))2

−1
2

(
ln
(
Aijτkτijτjlτkli
Ajkτjτliτkiτjkl

))2

− 1
2

(
ln
(
Aklτjτklτkiτlij
Ajkτkτliτjlτijk

))2

−1
2

(
ln
(
Aklτiτklτjlτijk
Aliτlτjkτkiτlij

))2

− 1
2

(
ln
(
Aijτlτijτkiτjkl
Aliτiτjkτjlτkli

))2

−1
2

(
ln
(
Ajkτiτjkτklτlij
Akiτkτijτjlτkli

))2

− 1
2

(
ln
(
−
Ajlτkτliτjlτijk
Aklτlτijτjkτkli

))2

−1
2

(
ln
(
−
Aliτkτijτliτjkl
Akiτiτklτjlτijk

))2

− 1
2

(
ln
(
Ajlτiτjkτjlτkli
Aijτjτklτliτijk

))2

+
1
2

(
ln
(
−
τkτijτliτjkl
τiτjkτklτlij

))2

+
1
2

(
ln
(
−
τjτklτliτijk
τlτijτjkτkli

))2

+
1
2

(
ln
(
−
τjτklτkiτlij
τkτijτjlτkli

))2

+
1
2

(
ln
(
−
τlτjkτkiτlij
τkτliτjlτijk

))2

+
1
2

(
ln
(
−
τlτijτkiτjkl
τiτklτjlτijk

))2

+
1
2

(
ln
(
−
τiτjkτjlτkli
τjτliτkiτjkl

))2

+ 3π2. (3.8)
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This simplifies to

Γ2 =
1
2
(
−(ln(τijk))2 + (ln(τjkl))2 − (ln(τkli))2 + (ln(τlij))2

−(ln(τi))2 + (ln(τj))2 − (ln(τk))2 + (ln(τl))2
)

+ ln(τijk) ln(τkli)− ln(τjkl) ln(τlij) + ln(τi) ln(τk)− ln(τj) ln(τl)

+ ln(τijk) ln
(
−
AjlAkiτjlτki
AijAjkτklτli

)
+ ln(τjkl) ln

(
AjkAklτijτli
AjlAkiτjlτki

)
+ ln(τkli) ln

(
−
AjlAkiτjlτki
AklAliτijτjk

)
+ ln(τlij) ln

(
AijAliτjkτkl
AjlAkiτjlτki

)
+ ln(τi) ln

(
AjlAkiτjlτki
AjkAklτjkτkl

)
+ ln(τj) ln

(
− AklAliτklτli
AjlAkiτjlτki

)
+ ln(τk) ln

(
AjlAkiτjlτki
AijAliτijτli

)
+ ln(τl) ln

(
−
AijAjkτijτjk
AjlAkiτjlτki

)
+ ln(τij) ln

(
−
Ajk
Ali

)
+ ln(τjk) ln

(
−Aij
Akl

)
+ ln(τkl) ln

(
− Ali
Ajk

)
+ ln(τli) ln

(
−Akl
Aij

)
+ ln

(
τki
τjl

)
ln
(
AijAjkAklAliτijτjkτklτli

A2
jlA

2
kiτ

2
jlτ

2
ki

)
. (3.9)

It can easily be checked that adding (3.9) to Γ1 from (3.5) gives zero, verifying the

closure relation. �

The establishment of the closure property enables us to propose a novel varia-

tional principle for the multidimensionally consistent system of bilinear KP equa-

tions, along the same line as in the Chapters 2 and 3. Choosing a 3-dimensional

hypersurface σ within a multidimensional lattice of dimension higher than 3, con-

sisting of a connected configuration of elementary cubes σijk, we can define an action

S on this hypersurface by summing the contributions Lijk from each of the cubes

as follows

S[τ ;σ] =
∑
σijk∈σ

Lijk, (3.10)

taking into consideration the orientation of each elementary cube contributing to

the surface. The antisymmetry of Lijk guarantees that there is no ambiguity in

how each discrete Lagrangian 3-form will contribute to the action. Furthermore, the

closure relation (3.1) allows us to impose the independence of the action on local

variations of the surface away from any boundary that the surface σ may possess.

Thus, whilst keeping the boundary fixed we may locally deform σ in any way we

choose, allowing us in particular to render it locally flat away from the boundary,
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such that we can specify a 3-dimensional hypersurface described in terms of three

local coordinates ni, nj , nk. There we can then apply the usual variational principle,

taking the variational derivative with respect to τ , leading to the Euler-Lagrange

equations (2.6). These equations of the motion are a consequence of the Hirota-Miwa

equation (1.2), as are the closure relations that guarantee the surface independence

of the action under local deformations. This interlinked scheme of variations with

respect to the dependent variables as well as to the geometry of the independent

variables is what constitutes the Lagrangian multiform structure of the lattice KP

system.

4.4 Discussion

There are some remarks to make at this point:

First, one has to qualify what it means for a Lagrangian to be associated with a

given equation, since as we have noted earlier the Euler-Lagrange equations rather

than yielding the original bilinear KP equation only yield a derived equation com-

prising a combination of various copies of the original equation. Nevertheless we

have taken the point of view that since the canonical variable is the τ -function,

i.e., the τ -function is the variable involved in both systems and all solutions to the

bilinear KP equation will automatically solve the derived equation, we consider this

Lagrangian structure to be associated with the bilinear KP equation.

Second, the closure relation which is central to the Lagrangian multiform struc-

ture relies on the bilinear KP equation rather than on the Euler-Lagrange equations.

It is not clear at this stage to what extent the closure property remains to be verified

on all solutions of the Euler-Lagrange equations or only on a subvariety of solutions

that obey the multidimensional systems of bilinear equations.

As far as KP-type systems are concerned, in some recent works in combinatorics

3-dimensional 6-point recurrence schemes have been studied from the point of view

of the geometry of the octahedral lattice, cf e.g.[112, 42]. A classification of multidi-

mensionally consistent 6-point equations has recently been done in [7], but this does

not seem to yield any novel lattice equations (e.g. in comparison with the list in

[84]). It would be of interest to see whether Lagrangian multiform structures can be
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established for all those equations, and whether these structures can be adapted to

the octahedral lattice picture. Alternatively one can consider 3-dimensional lattice

equations of BKP type, i.e. equations of the form

Q(τ, τi, τj , τk, τij , τjk, τki, τijk) = 0, (4.1)

but so far Lagrangian structures for such equations remain to be established. La-

grangian structures for 3d models have been considered in [111], and connections

between the geometry of 3d lattices and 3d quantum systems was explored in [11].

4.5 Chapter summary

In this chapter we have presented a Lagrangian for the bilinear lattice KP system,

and extended it to a Lagrangian 3-form. We have shown this Lagrangian 3-form

obeys a 4-dimensional closure relation on solutions to the equation, and formulated

the variational principle given in the previous chapters in the case of a 3-dimensional

system.



Chapter 5

Continuous Lagrangian forms

So far, we have developed the idea of Lagrangian forms, and the corresponding new

variational principle, for discrete systems. In fact, there is a continuous analogue to

all of this, which appears in [65].

5.1 Linear example

At the continuous level, rather than systems of partial difference equations we are

dealing with systems of partial differential equations. An interesting example of

a linear system of PDEs which are mutually compatible is given by the following

nonautonomous set of equations; this is the linearization of the system given in the

next section. Here the independent variables are pi and pj , we have w = w(pi, pj) as

the dependent scalar variable and the ni, nj are a pair of parameters of the equation,

where we associate the parameter ni with the variable pi, and the parameter nj with

the variable pj .

The system of equations is

∂pi∂pj (p2
i − p2

j )∂pi∂pjw = 4(nj∂pi − ni∂pj )
1

p2
i − p2

j

(njp2
i ∂pi − nip2

j∂pj )w, (1.1)

where i, j run over some index set I. Each of these, for fixed labels i, j, arise as

Euler-Lagrange equations from the Lagrange density

Lij =
1

njni

(
1
2

(p2
i − p2

j )w
2
pipj

+ (n2
jw

2
pi
− n2

iw
2
pj

) +
p2
i + p2

j

p2
i − p2

j

(njwpi − niwpj )2

)
, (1.2)

107



CHAPTER 5. CONTINUOUS LAGRANGIAN FORMS 108

where notably the independent variables pi, pj are on an equal footing. It transpires

that the system of PDEs (1.1), when the labels i, j are assumed to run over some

index set of cardinality larger than 2, is multidimensionally consistent in a similar

way as the lattice equations considered in Chapter 2. Furthermore, the Lagrangian

(1.2) obeys a continuous analogue of the discrete closure relation; this closure relation

is now expressed in terms of differential operators instead of difference operators,

and has the following form

∂piLjk + ∂pjLki + ∂pk
Lij = 0. (1.3)

It holds for (1.2) provided one or the other of the following two relations hold

wpipjpk
= −4

(
njnkp

2
iwpi

(p2
k − p2

i )(p
2
i − p2

j )
+

nknip
2
jwpj

(p2
i − p2

j )(p
2
j − p2

k)
+

ninjp
2
kwpk

(p2
j − p2

k)(p
2
k − p2

i )

)
,

(1.4a)

or
(p2
i − p2

j )wpipj

ninj
+

(p2
j − p2

k)wpjpk

njnk
+

(p2
k − p2

i )wpkpi

nkni
= 0. (1.4b)

It seems somewhat artificial in this example to invoke the additional equations (1.4a)

and (1.4b), the need for which is mainly due to the fact that we are dealing with

higher order PDEs in terms of the derivatives. We note, however, that the PDEs

(1.1), (1.4a) and (1.4b) all hold true on a large class of solutions given by the Fourier-

type integral of the form

w =
∫
C
dk c(k)

∏
i∈I

(
pi + k

pi − k

)ni

, (1.5)

over some suitably chosen curve C in the complex plane and suitably chosen coeffi-

cient function c(k), where I denotes the index set as above. This example is inspired

by the canonical form of the plane wave factors, i.e., discrete exponential functions,

appearing in the solutions of the lattice equations [82, 106], which explains the use

of the notation pi as independent variables for historic reasons.

We define an action this time as being an integral of the Lagrangian over a
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surface, instead of a sum:

S[w;σ] =
∫
σ

∑
i,j∈I
Lijdpi ∧ dpj . (1.6)

Again, as in the discrete case, the closure relation is implied by the action being

independent of the surface σ on which it is defined; this can be understood using

Stokes’ theorem. Recall that Stokes’ theorem states: if ω is an n-form with compact

support on a (oriented, smooth) manifold M of dimension n+1, with boundary ∂M ,

then ∫
M
dω =

∮
∂M

ω. (1.7)

In our case, “ω” is the Lagrangian 2-form, i.e.

ω =
∑
i,j∈I
Lijdpi ∧ dpj , (1.8)

and

dω =
∑
i,j,k∈I

∂pk
Lijdpk ∧ dpi ∧ dpj (1.9)

=
∑
i<j<k

(∂piLjk + ∂pjLki + ∂pk
Lij)dpi ∧ dpj ∧ dpk. (1.10)

If the action S does not depend on the surface, then taking the integral of ω over a

closed surface σc will result in

∮
σc

∑
i,j∈I
Lijdpi ∧ dpj = 0, (1.11)

and if this closed surface σc bounds a volume V , then

0 =
∫
V

∑
i<j<k

(∂piLjk + ∂pjLki + ∂pk
Lij)dpi ∧ dpj ∧ dpk, (1.12)

which, since the volume V is arbitrary, clearly implies the closure relation (1.3).

Hence, the action being independent of the surface implies the closure relation holds.

Now, similar to the discrete case, we may choose a surface, on which we can

define an action as in (1.6). Imposing surface independence, we may locally rectify
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the surface, i.e., deform it locally to a plane in terms of selected independent variables

pi, pj , and then we can derive from the Euler-Lagrange equations in those variables

the system of PDEs. Once again, if the system of PDEs subsequently implies that

the closure relation for the Lagrangians holds, the mechanism is entirely consistent,

and represents multidimensional consistency on the level of the Lagrangian.

5.2 Nonlinear example

The full nonlinear case analogous to (1.1) appeared first in [88], and it represents

the full KdV hierarchy as a so-called generating PDE given as follows

Utititjtj = Utititj

(
1

ti − tj
+
Utitj
Uti

+
Utjtj
Utj

)
+ Utitjtj

(
1

tj − ti
+
Utitj
Utj

+
Utiti
Uti

)
+Utiti

(
n2
i

(ti − tj)2

U2
tj

U2
ti

−
U2
titj

U2
ti

− 1
ti − tj

Utitj
Uti

)
− Utitj

UtitiUtjtj
UtiUtj

+Utjtj

(
n2
j

(ti − tj)2

U2
ti

U2
tj

−
U2
titj

U2
tj

− 1
tj − ti

Utitj
Utj

)
+

n2
i

2(ti − tj)3

Utj
Uti

(Uti + Utj + 2(tj − ti)Utitj )

+
n2
j

2(tj − ti)3

Uti
Utj

(Utj + Uti + 2(ti − tj)Utitj )

+
1

2(ti − tj)
U2
titj

(
1
Uti
− 1
Utj

)
, (2.1)

which represents a generalization of the Ernst-Weyl equation of general relativity

as was shown in [118]. The variables ti are closely related to the pi of the previous

linear example, namely by ti = p2
i . It was argued in [88] that (2.1) constitutes a

multidimensionally consistent system in the same way as the linear equation. It is

considered to be a generating PDE for the KdV hierarchy because upon expansion

in the independent variables

∂ti = − ni√
ti

∞∑
k=1

1
tki
∂sk

, (2.2a)

∂tj = − nj√
tj

∞∑
k=1

1
tkj
∂sk

, (2.2b)

where s1, s2, . . . is the infinite sequence of higher times associated with the KdV

hierarchy, we recover the entire hierarchy of KdV equations. The Lagrangian for
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equation (2.1) is

Lij =
1
2

(ti − tj)
U2
titj

UtiUtj
+

1
2(ti − tj)

(
n2
j

Uti
Utj

+ n2
i

Utj
Uti

)
. (2.3)

This satisfies the closure relation (1.3) provided again that one of two relations hold,

Utitjtk =
1

2UtiUtjUtk

(
UtiUtjtkUtjUtkti + UtjUtktiUtkUtitj + UtkUtitjUtiUtjtk

)
+

n2
i

2(tk − ti)(ti − tj)U2
ti

+
n2
j

2(ti − tj)(tj − tk)U2
tj

+
n2
k

2(tj − tk)(tk − ti)U2
tk

,

(2.4a)

or

(ti − tj)UtkUtitj + (tj − tk)UtiUtjtk + (tk − ti)UtjUtkti = 0. (2.4b)

Once again the additional equations (2.4a) and (2.4b) are invoked solely because

we are dealing with higher order PDEs in terms of the derivatives, which makes it

difficult to verify by direct computation. Equations (2.4a) and (2.4b) are manifesta-

tions of the fact that 1+1-dimensional equations of KdV type can be embedded as

dimensional reductions of 2+1-dimensional equations of KP type [104], which holds

true both for the continuous as well as the discrete case. In fact, the continuous

nonautonomous equation (2.4b) is remarkably similar to the fully discrete Hirota-

Miwa equation and we believe that it plays the role of a generating PDE for the KP

hierarchy. It would be interesting to see how this equation fits in with the results of

[53]. All three equations (2.1), (2.4a) and (2.4b) hold on a large class of solutions of

soliton type and hence they should certainly be compatible between themselves.

5.3 Generating PDEs for ABS equations

In [120], Xenitidis and Tsoubelis derived generating PDEs as coupled systems for

all the ABS equations, through symmetry analysis. As an example, we can mention
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the following system corresponding to H1, H2 and Q1:

∂ui
∂αj

=
ui − uj
αi − αj

(
nj − (ui − uj)

∂u

∂αj

)
+ δ2(αi − αj)

∂u

∂αj
, (3.1)

∂2u

∂αi∂αj
= 2

ui − uj
αi − αj

∂u

∂αi

∂u

∂αj
+

ni
αi − αj

∂u

∂αj
+

nj
αj − αi

∂u

∂αi
, (3.2)

where u is the original dependent variable of the system, and ui, uj can be identified

with the variable shifted in the i-, j-directions respectively. This system with δ = 0

first appeared in [88] in relation to H1, and was derived from a reduction of the

anti-self dual Yang-Mills equations in [118].

The Lagrange structure for the system reads in this case:

Lij =
∂u

∂αi

∂ui
∂αj
− ∂u

∂αj

∂uj
∂αi

−
(
δ2(αi − αj) −

(ui − uj)2

αi − αj

)
∂u

∂αi

∂u

∂αj

−nj
ui − uj
αi − αj

∂u

∂αi
+ ni

uj − ui
aj − ai

∂u

∂αj
. (3.3)

This obeys (on the EL equations) the closure relation

∂αk
Lij + ∂αjLki + ∂αiLjk = 0 . (3.4)

Both the continuous systems and their corresponding Lagrangians can be established

for the entire ABS list, and these Lagrangians can be shown to obey the closure

relation (3.4); the results in this section are due to appear in [125].

5.4 Chapter summary

We have shown that there is a natural continuous analogue to the theory of La-

grangian forms for multidimensionally consistent systems and the corresponding

new variational principle proposed in the previous chapters. The Lagrangians in

this case satisfy a continuous analogue of the closure relation, expressed in terms of

differential operators instead of difference operators, which has an entirely analogous

appearance. We have demonstrated that this holds in important concrete examples

for the linear and non-linear generating PDEs for the KdV hierarchy.



Chapter 6

Conclusion

6.1 Discussion

The key idea put forward in this thesis is that of Lagrangian forms, and a corre-

sponding new variational principle for multidimensionally consistent systems. This

differs from the conventional Lagrangian description in that the Lagrangian is usu-

ally considered to be a scalar object, which through the Euler-Lagrange equations

provides us with one single equation. When we consider systems with the property of

multidimensional consistency, we have not just one equation but an infinite number

of compatible equations all living together on a multidimensional lattice, and in fact

one can consider the integrable system to be this entire family of equations. Then

it should be possible to obtain the whole system from a variational principle, hence

the idea of Lagrangian multiforms. The concept of Lagrangian forms themselves is

not new, in fact it can be traced back to the work of Cartan[21] and Lepage[63],

but there the role of the Lagrangian is that of a volume form, which through the

Euler-Lagrange equations produces one equation per component of the dependent

variable. The Lagrangian forms presented in this thesis are functions which can

be evaluated on elementary plaquettes or cubes, in the case of 2- or 3-dimensional

equations respectively, although the theory can be extended to equations in any

number of dimensions. The important observation about these Lagrangian forms is

that they are closed, i.e., they obey a closure relation, which prompted the proposal

of a new variational principle, through which we can now derive any of the equations

in the infinite family.
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After an introductory chapter outlining the main results relevant to the work in

this thesis in the areas of (discrete and continuous) integrable systems, variational

principles and Lagrangian forms, new results are first presented in Chapter 2. This

chapter is concerned with 2-dimensional systems on quad-graphs, in particular those

given in the classification in [5], the so-called ABS list. Although this class of

equations is subject to many restrictions (e.g. affine linearity, D4 symmetry), it

provides a useful number of equations to study. In this thesis are presented 3-point

Lagrangians for systems in the ABS list, which are antisymmetric with respect to the

interchange of the two lattice directions. The important observation was that these

Lagrangians obey a closure relation on solutions to the equation, which, together

with the antisymmetry, allows them to be interpreted as closed Lagrangian 2-forms.

Choosing a surface consisting of a connected configuration of elementary plaquettes

in a multidimensional lattice, an action on the surface can be defined by summing

up the Lagrangian contribution from each elementary plaquette in the surface. The

fact that the closure relation holding is equivalent to the action being independent

of the surface on which it is defined led us to propose a new variational principle for

multidimensionally consistent systems, which now not only involves variations with

respect to the dependent variable, but also the geometry of the space of independent

variables.

Proving that the closure relation holds by direct computation for some of the

more difficult cases in the ABS list, namely H3 and Q3|δ=0, involves extensive use

of the dilogarithm identities, in particular a 5-term identity. This suggests there

may be connections with the pentagon equation, which appears in connection with

topological quantum field theory [75, 49, 50]. This is certainly worthy of further

investigation to find out what is the underlying structure behind these relations.

This variational principle is not a principle that applies solely to equations in the

ABS list. Indeed, in Chapter 3 it is shown that 2-dimensional multi-component sys-

tems, those in the Gel’fand-Dikii hierarchy, have Lagrangians which obey a closure

relation and hence fit in with this scheme. The Gel’fand-Dikii hierarchy is a par-

ticularly nice example of an integrable system since it has a universal Lagrangian

structure, i.e., one can write down a Lagrangian for an arbitrary member of the

hierarchy. It also contains the discrete potential KdV and discrete Boussinesq equa-
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tions, both of which are important systems. A Lagrangian for the lattice modified

Gel’fand-Dikii hierarchy is not yet known; a Lagrangian for the discrete modified

KdV equation exists, and obeys a closure relation, but as yet not even a Lagrangian

for the lattice modified Boussinesq equation is known. It would be an obvious next

step to find a Lagrangian for the modified system and see if it can be shown to obey

a closure relation (and hence fit in with the new variational principle), and also to

see whether a closure relation holds for the continuous Gel’fand-Dikii hierarchy. The

generating PDE for the Boussinesq hierarchy along with its Lagrangian appeared

in [116, 117]. It can be expected that the Lagrangian structure would also obey a

continuous analogue of the closure relation, in the same manner as the generating

partial differential equation (PDE) for the KdV hierarchy [88] was shown to obey a

continuous analogue of the closure relation in Chapter 5.

In Chapter 4 is presented a Lagrangian for the discrete bilinear KP equation,

which is a 3-dimensional integrable system. The Lagrangian for this system is shown

to obey a 4-dimensional closure relation, thereby extending the variational principle

to higher dimensional systems. Once we are out of the realm of 2-dimensional sys-

tems it becomes more difficult to find examples of integrable systems. A Lagrangian

for the lattice KP equation (1.9) still eludes us; it would be wonderful to find such a

Lagrangian and to verify that it, too, satisfies the 4-dimensional closure relation. It

is expected that a classification of equations in 3 dimensions, subject to some con-

ditions as in the 2-dimensional classification, will soon appear [7]. No new examples

are expected, at least on the level of single-component equations, but it would form

an excellent testing-ground for our theory.

Chapter 5 provides a continuous analogue to the theory presented in the previous

chapters, using the examples of generating PDEs. It is shown that Lagrangians

for these equations also obey a closure relation, which is related to the surface

independence of the action via Stokes’ theorem.

6.2 Recent developments

There are two lines of development which have been progressing during the course of

writing this thesis: one is in collaboration with P. Xenitidis and F.W. Nijhoff [125],
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the other with S. Yoo-Kong and F.W. Nijhoff [126]. Here follows a short summary

of these results, due to appear in the near future.

6.2.1 Universal Lagrangian structure of affine linear quadri-

lateral equations

Recently we have gained a deeper insight into Lagrangian structures for affine-linear

quadrilateral equations (such as those in the ABS list), and have now developed a

universal Lagrangian structure [125], which can be systematically derived from some

basic assumptions. When specializing to the ABS list, it can be shown that these

Lagrangians obey the closure relation, so this gives a more generic description of

Lagrangian structures for affine-linear quadrilateral lattices.

The equations under consideration are of a similar form to (1.1) of Chapter 2;

they are of the form

Q(u, ui, uj , uij) = 0, (2.1)

where u depends on an arbitrary number of independent discrete variables ni, and,

as in Chapter 2, uj denotes u shifted in the nj-direction. We assume a slightly more

relaxed set of conditions than in the classification of [5]: we assume that

1. Q is affine linear and depends explicitly on all of the arguments;

2. Q is irreducible (i.e., it cannot be factorized into a product of two polynomi-

als);

3. Q possesses Kleinian symmetry, i.e.,

Q(u, ui, uj , uij) = εQ(ui, u, uij , uj) = σQ(uj , uij , u, ui) , (2.2)

where ε = ±1 and σ = ±1.

We can define a 3-point Lagrangian for (2.1) by

L(u, ui, uj) =
∫ u

u0

∫ ui

u0
i

ds dt
h(s, t)

+
∫ u

u0

∫ uj

u0
j

ds dt
h̄(s, t)

+
∫ ui

u0
i

∫ uj

u0
j

ds dt
H(s, t)

−
∫ ui

u0
i

ds
∫ w(s,u0,u0

ij)

u0
j

dt
H(s, t)

−
∫ uj

u0
j

dt
∫ z(t,u0

ij ,u
0)

u0
i

ds
H(s, t)

,(2.3)
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where u0 and its shifts are arbitrary functions, w, z are solutions of the equations

Q(u0, s, w, u0
ij) = 0, Q(u0, z, t, u0

ij) = 0 respectively, and h,H are symmetric bi-

quadratic polynomials assigned to the edges and diagonals of the quadrilateral re-

spectively:

h(u, ui) := Duj ,uij (Q) , h(uj , uij) := Du,ui(Q) ,

h̄(u, uj) := Dui,uij (Q) , h̄(ui, uij) := Du,uj (Q) ,

H(ui, uj) := Du,uij (Q) , H(u, uij) := Dui,uj (Q) . (2.4)

Here D is the following double-sided Wronskian operator

Dx,y(f) :=

∣∣∣∣∣∣∣
f ∂xf

∂yf ∂x∂yf

∣∣∣∣∣∣∣ . (2.5)

Further specializing to equations in the ABS list, making slight alterations to

(2.3) it can be shown that the Lagrangian satisfies the closure relation on solutions

to the ABS equation. Thus there is a Lagrangian structure for the generic member

of the ABS list, which obeys the closure relation and so can be interpreted as a

Lagrangian 2-form.

Also presented in [125] is the Lagrangian structure for the system of partial

differential equations associated with the ABS list (the system derived in [120]), and

proof that this obeys the continuous closure relation.

6.2.2 Lagrangian 1-form for the discrete-time Calogero-

Moser system

So far in this thesis we have been concerned with Lagrangian 2-forms and 3-forms,

so it is desirable to have an example of a Lagrangian 1-form. In [126] we present

the Lagrangian 1-form structure for the discrete-time Caloger-Moser system; in the

rational case the Lagrangian follows directly from the Lax equation, and that it

satisfies a closure relation can be directly inferred from the compatibility of the Lax

matrices.

The Calogero-Moser (CM) model [18, 19, 79] is a one-dimensional many-particle
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system with long-range interactions, originally a continuous system with pairwise

inverse square interactions that has been generalized to the elliptic case and to

a relativistic model (the Ruijsenaars-Schneider model [108, 109]). The model has

been extensively studied in both the classical and quantum cases [101, 102], and is

integrable on both of these levels. An interesting point to note is that there is a

connection between the CM model and the KP system through pole solutions of the

KP system [55, 122].

A discrete-time version of the (rational) CM model was presented by Nijhoff and

Pang in [89], where it was also shown to be integrable. With dependent variables

x1, x2, . . . , xN each depending on a discrete independent variable n, the equations

take the form

N∑
j=1

 1
xi − x̃j

+
1

xi − xj˜
− 2

N∑
j=1
j 6=i

1
xi − xj

= 0, (2.6)

where i = 1, ..., N , x̃ denotes x shifted forward in the n-direction, and x˜ denotes x

shifted backward in the n-direction.

Let x = (x1, x2, . . . , xN ). Equation (2.6) can be computed from the variation of

a discrete action given in [89] as

Sp =
∑
n

Lp(x, x̃) =
∑
n

− N∑
i,j=1

log |xi − x̃j |+
N∑
i 6=j

log |xi − xj |

 , (2.7)

where the sum over n represents the sum over all discrete-time “ ˜ ” iterates.

Remarkably, the action (2.7) can be obtained by considering the infinite product of

the Lax matrix M in the following way

Sp = log |det(...Mn−2Mn−1MnMn+1Mn+2....)| . (2.8)

Introducing a second lattice direction associated with a shift “ ̂ ,” a parameter q

and a Lax matrix N , the compatibility relation M̂N = ÑM can be rewritten as

log
∣∣∣det(M̂)

∣∣∣+ log |det(N)| − log
∣∣∣det(Ñ)

∣∣∣− log |det(M)| = 0. (2.9)
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The closure relation of the Lagrangian Lp(x, x̃) in (2.7) takes the form

̂Lp(x, x̃)− Lp(x, x̃)− ˜Lq(x, x̂) + Lq(x, x̂) = 0, (2.10)

which in this case is equivalent to (2.9). Thus the compatibility of the Lax matrices

implies the closure relation.

6.3 Future directions

An interesting question is what is the quantum analogue of this formalism, e.g. in the

context of a path integral framework. The path integral approach to quantization

involves the exponent of the action [24, 30, 31], and for multidimensionally consistent

systems we now have actions which are invariant of the choice of surface on which

they are defined. It has yet to be seen what significance this will have for the path

integral formalism.

Another interesting question is whether it would be possible to classify integrable

discrete and continuous systems on the level of the Lagrangians using the closure

property. That the closure relation places such restrictions on the Lagrangian could

be of relevance in the inverse problem of Lagrangian mechanics, a field of study which

dates back to the 1880s [41], cf. [119] for a review. The new variational principle can

be seen as a scheme which specifies not just the equations, but also the Lagrangians,

since it necessarily picks out those which obey the closure relation. This would

obviously be a major breakthrough in the area, and an ambitious undertaking.



Appendix A

The dilogarithm function

Many of the Lagrangians for systems covered in this thesis involve the dilogarithm

function, and many computations rely on identities for this function. It is defined

as follows:

Li2(z) = −
∫ z

0

ln(1− z)
z

dz. (0.1)

The function actually is useful in many areas of physics, such as quantum electrody-

namics (e.g. vacuum polarization) and electrical network problems. It comes from

multiple integration of certain rational forms of more than one variable [64], for

example, integrating a
1−axy for constant a with respect to x, then with respect to y,

gives Li2(axy). There are also connections with algebraic K-theory, representation

theory of infinite dimensional algebras, and combinatorics [52].

Many functional relations involving dilogarithms are given in the book by Lewin

[64], and in the review paper of Kirillov [52], which also covers some of the quantum

analogues. The pivotal functional relation is the five-term identity as it appears in

[64] is

Li2

(
x

1− y
y

1− x

)
= Li2

(
x

1− y

)
+ Li2

(
y

1− x

)
− Li2(x)− Li2(y)

− ln(1− x) ln(1− y), x, y < 1. (0.2)

For the computations needed to prove that the closure relation holds for H3 and for

Q3|δ=0 it is more convenient to write (0.2) in a slightly different form:

120
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Identity I:

Li2(s) + Li2(t)− Li2(st) = Li2

(
s− st
1− st

)
+ Li2

(
t− st
1− st

)
+ ln

(
1− s
1− st

)
ln
(

1− t
1− st

)
, (0.3)

for s, t, st 6= 1, is true up to imaginary constant terms.

Proof: It is a simple matter to prove this relation using differentiation. Firstly,

differentiating the left-hand side with respect to s gives

∂

∂s

{
Li2(s) + Li2(t)− Li2(st)

}
= − ln(1− s)

s
+ t

ln(1− st)
st

= −1
s

ln
(

1− s
1− st

)
, (0.4)

and differentiating the right-hand side with respect to s gives

∂

∂s

{
Li2

(
s− st
1− st

)
+ Li2

(
t− st
1− st

)
+ ln

(
1− s
1− st

)
ln
(

1− t
1− st

)}
= −

{
1− t
s− st

+
t

1− st

}
ln
(

1− s− st
1− st

)
−
{
−t
t− st

+
t

1− st

}
ln
(

1− t− st
1− st

)
+
{
−1

1− s
+

t

1− st

}
ln
(

1− t
1− st

)
+
{

t

1− st

}
ln
(

1− s
1− st

)
= −1

s
ln
(

1− s
1− st

)
. (0.5)

Clearly (0.4) is equal to (0.5). Similarly, differentiating the left-hand side of (0.3)

with respect to t gives

∂

∂t

{
Li2(s) + Li2(t)− Li2(st)

}
= −1

t
ln(1− t) +

1
t

ln(1− st), (0.6)

and differentiating the right-hand side with respect to t gives

∂

∂s

{
Li2

(
s− st
1− st

)
+ Li2

(
t− st
1− st

)
+ ln

(
1− s
1− st

)
ln
(

1− t
1− st

)}
= −1

t
ln
(

1− t
1− st

)
, (0.7)

and again (0.6) is equal to (0.7). Therefore relation (0.3) holds up to a constant
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term. By letting t = 0, and using the fact that Li2(0) = 0, we easily see that this

constant term must be zero, at least up to imaginary terms coming from the multi-

valuedness of the logarithm function.

An additional two identities needed are the following.

Identity II:

Li2(x) + Li2

(
1
x

)
= −1

2
(
ln(−x)

)2 − π2

6
, (0.8)

for x 6= 0.

Proof: By differentiating the left-hand side we have

d

dx

{
Li2(x) + Li2

(
1
x

)}
= − ln(1− x)

x
+

1
x

ln
(

1− 1
x

)
= − ln(1− x)

x
+

1
x

ln
(

1− x
−x

)
, (0.9)

and differentiating the right-hand side we have

d

dx

{
−1

2
(
ln(−x)

)2 − π2

6

}
=

ln(−x)
−x

. (0.10)

Clearly these are equal, and so (0.8) holds up to a constant term. Letting x = 1,

and using the fact that Li2(1) = π2/6, we see that this constant term must be zero.

Identity III:

Li2(x) + Li2

(
x

x− 1

)
= −1

2
(
ln(1− x)

)2
, (0.11)

for x 6= 1, is true up to imaginary terms.

Proof: By differentiating the left-hand side we have

d

dx

{
Li2(x) + Li2

(
x

x− 1

)}
= − ln(1− x)

x
−
{

1
x
− 1
x− 1

}
ln
(

1− x

x− 1

)
= − ln(1− x)

x
+

1
x(1− x)

ln
(

1
1− x

)
, (0.12)

and differentiating the right-hand side we have

d

dx

{
−1

2
(
ln(1− x)

)2} =
1

1− x
ln(1− x). (0.13)
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Clearly these are equal, and so (0.11) holds up to a constant term. Letting x = 0,

we find that this constant term must be zero, at least up to imaginary terms coming

from the multivaluedness of the logarithm function.

Equation (0.8) holds regardless of whether the arguments are positive or negative.

Equations (0.2) and (0.11) require additional imaginary terms depending on the

sign of the arguments; these however cancel out in the course of the closure relation

calculations, so for the purposes in this thesis they are irrelevant.
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Equations Associated with the Lattice KdV Systems and the Painlevé VI Equa-
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