
Glucosylceramide metabolism: from 3D 
structure to the development of 

selective chemical probes 

 

 

Imogen Zofia Breen 

 

 

PhD 

 

 

 

University of York 

Chemistry 

September 2017 

 

  



ii 
 

 

  



iii 
 

Abstract 

Gaucher's disease, the most prevalent of the lysosomal storage disorders, is caused by 

insufficient lysosomal glucocerebrosidase (GBA1) activity. This is the result of point 

mutations in the encoding gene, GBA1. The consequence of this reduction in activity is an 

accumulation of GBA1's substrate, glucosylceramide, in the lysosomes, leading to the 

various pathologies of Gaucher’s disease. Treatment approaches for Gaucher's disease 

range include enzyme replacement therapy, substrate reduction therapy and the use of 

small molecules to stabilise mutant forms of the enzyme – pharmacological chaperone 

therapy. Diagnosis and treatment of Gaucher’s disease requires regular quantification of 

the active GBA1 in a patient's tissues, not just the total GBA1 concentration or total β-

glucosidase activity. Human cells also contain a secondary, non-lysosomal 

glucocerebrosidase, GBA2. The activity of GBA2 can affect the pathology of Gaucher's 

disease, and GBA2 may interact with some chaperones and probes targeted for GBA1.  

Point mutations occurring in GBA2 are also linked to human diseases including hereditary 

spastic paraplegia and cerebellar ataxia.  

In this thesis, I describe the three-dimensional structures of human GBA1 and a bacterial 

homologue for GBA2, TxGH116 – both unliganded and bound to a variety of probe and 

inhibitor compounds. Prior to this work the only structure of GBA1 with a covalently 

bound inhibitor were complexes with conduritol-β-epoxide. Here I describe GBA1 in 

complex with both gluco- and galacto-configured aziridines. The reporting of the structure 

of TxGH116, which was the first GH116 family protein to be structurally characterised, 

lead to the founding of CAZy structural clan GH-O. The structural knowledge of these two 

glucocerebrosidase proteins, especially in complex with covalent inhibitors, can be used to 

aid the design of probes and eventually drugs with improved specificity for GBA1 or GBA2. 
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1. Introduction1 

1.1 The Role of Glucosylceramide 

Amongst the essential structural components of the cell membranes of eukaryotic cells are 

a host of different sphingolipids and glycosphingolipids. These entities have roles both as 

essential cellular structure components and as more biochemically active molecules in 

living organisms.    

Glycosphingolipids are found in all kingdoms of life, in the cells membranes of organisms 

from bacteria to humans. In vertebrate brains, more 80% of glycoconjugates present are in 

the form of a glycolipid (1).  

The first characterisation of a glycolipid, and the identification of sphingosine was 

performed in 1881 by the German physician Johann L. W. Thudichum (2). Thudichum 

isolated multiple compounds from brain extracts that he named cerebrosides.  One of 

these compounds, which he named phrenosin and is now identified as galactosylceramide, 

GalCer, he subjected to acid hydrolysis, resulting in the separation of three distinct 

components (3).  

The galactosylceramide consisted of d-galactose, a fatty acid and a third component of an 

“alkaloidal nature”.  Thudichum felt this component presented “many engimas” and he 

therefore dubbed them “sphingolipids,” in a reference to the Sphinx of Greek mythology, 

famed for their enigmatic nature.  

Later, further glycosphingolipids have been identified as they accumulate to a pathological 

level in various tissues of patients who suffer from lysosomal storage disorders. The sialic 

acid- containing glycosphingolipid was first isolated from the brain of a sufferer of Tay-

Sachs disease by Ernst Klenk in 1942, and called a ganglioside (now identified as GM2-

ganglioside) due to its accumulation within the ganglion of the brain (4) . 

Glucosylceramide was first isolated from the spleen of a Gaucher’s disease patient in 1974 

(5).  

Sphingolipids are made up of a sphingosine backbone with an N-acylated linked 

sphingosine group (Figure1.1). Glucose or galactose is then linked to the primary 

hydroxyl group of the sphingosine with a β-glycosidic bond. A glucose linked in this 

position gives glucosylceramide (GluCer), one of the most common glycosphingolipids (1).  

                                                             
1 Some of the work in this introduction is described in Breen et al, (2018) eLS. 
Wiley on-line library. 
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As a plasma membrane component, the lipid portion is buried in the outer leaflet of the 

membrane while the sugar moiety can project outwards. In this manner, 

glycosphingolipids are able to play important roles beyond providing structural integrity 

in membranes. Ceramide and glycosphingolipids act in many cellular signalling process 

including cell recognition, development and differentiation (6).   

Glycosphingolipid interactions can serve as an initial basis for cell-to-cell recognition, 

independent of cell surface lectin interactions. Some glycosphingolipids may also provide 

an interface for viral and bacterial toxins to interact with the cell surface membrane (7,8).  
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Figure 1.1. The general structures of biological sphingolipids. A) The sphingosine 

backbone (black). B) A ceramide, the fatty acid residue is shown in red. C) A 

sphinogomyelin. The phosphoethanolamine group is shown in blue. D) A 

glucosylceramide with a single sugar residue shown in green. E) An example of a 

ganglioside - the oligosaccharide is shown in green and sialic acid shown in yellow .  
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In mammalian cells, GluCer is formed by the glycosyltransferase enzyme glucosylceramide 

synthase (9) (EC2.4.1.80) by the glycosylation of ceramide using UDP-Glc as the sugar 

donor. Ceramide is itself an active messenger molecule, playing a role in tumour 

suppressing and effecting signalling events to drive apoptosis (10). The regulation of 

internal ceramide concentration therefore must be maintained to prevent adverse effects 

that may result from elevated ceramide levels.  Cells are able to clear excess ceramide 

rapidly by converting it to GluCer (11) and maintenance of the correct amount of the lipid 

inside the cells is vital (12).  This conversion of ceramide to GluCer by glucosylceramide 

synthase is also used by cancer cells to neutralize the downstream cell-death signals that 

are initiated by ceramide (13,14). 

GluCer catabolism is primarily through the lysosome (15) where the β-glycosidic bond is 

hydrolysed to give ceramide and glucose by an acid-β-glucosidase enzyme, GBA1 (Figure 

1.2). As a consequence of amino acid point mutations in GBA1, GluCer can accumulate in 

lysosomes, leading to Gaucher’s disease.   

 

 

Figure 1.2. The reaction catabolised by GBA1, GBA2 and GBA3. Glycosylceramide is 

hydrolysed to D-glucose and N-acylsphingosine. 

 

Human cells in fact contain three acid-β-glucosidases capable of degrading GluCer. The 

lysosomal GBA1 (whose mutations lead to Gaucher’s disease), the non-lysosomal cytosolic 

glucosylceramidase GBA2 and the “Klotho-related protein” GBA3 (16). All three “GBA” 

enzymes are capable of catabolising glucosylceramide to its constituent parts (Figure 1.2). 
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1.2 Lysosomal Storage Disorders and Gaucher’s Disease 

Lysosomal storage diseases, as a group of more than 70 disorders, occur in approximately 

1 in 7,500 live births (17), however the rates of individual disorders are far fewer.  The 

prevalence of Gaucher’s disease, the most common lysosomal storage disorder, is 

estimated at between 1 per 20,000 and 1 per 60 000 live births in the general population, 

although this increases in certain high-risk populations. Sialidosis, the deficiency of α-N-

acetyl neuraminidase, occurs in approximately 1 per 4.2 million live births worldwide 

(18). 

 Although disease phenotypes can differ highly, all lysosomal storage disorders share a 

common characteristic in that a genetic mutation in a gene encoding for a lysosomal 

enzyme leads to a loss of function in that enzyme and the subsequent abnormal build-up 

of substances within the lysosome.  

Philippe Charles Ernest Gaucher, a French dermatologist, first described the disease that 

became known as Gaucher’s disease in his MD thesis in 1882 when he encountered a 

female patient who died of hepatosplenomegaly and cachexia (wasting) (17). By 1912 it 

was recognised that the disease was multi-systemic, chronic and familial although the link 

to the lysosome was not made for another 50-odd years. Gaucher’s disease is 

characterised by the build-up of glucosylceramide (GluCer) within the lysosome resulting 

in enlarged organs, splenomegaly, hepatomegaly and, in some cases, neurological 

disorders.  

The lysosome was discovered in 1955 by Christian de Duve, who, along with others, also 

described the role it played in intracellular digestion (19). Subsequently, Henri-Géry Hers 

and co-workers were the first to identify a genetic lysosomal storage disease, called 

glycogen storage disease type II; now more commonly known as Pompe disease (20). 

 In 1974, Brady et al identified glucocerebrosidase as the key enzyme deficient in 

Gaucher’s disease patients and successfully intravenously administered unmodified, 

purified human enzyme to two patients (21). This treatment approach, enzyme 

replacement therapy, was to become the standard for most lysosomal storage disorders 

throughout the 20th century (22).  

1.3 Gaucher’s disease and GBA1 
Gaucher’s disease is a lysosomal storage disorder linked to mutations in the gene encoding 

for the lysosomal enzyme acid β-glucocerebrosidase, GBA1. Occurring in 1 in 20,000 live 

births worldwide, there are huge phenotypic variations within those suffering from 
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Gaucher’s disease.  This has led to the disease being classified in to three pathological 

types – Type I, II and III (28) (Table 1.1) 

GBA1 (EC 3.2.1.45) is a 497 amino acid membrane-associated glycoprotein belonging 

CAZy family GH30 (CAzy is described later in this thesis). GBA1 degrades GluCer into 

glucose and ceramide within the lysosome, which can then be recycled back into the 

cytoplasm. When mutations in both alleles encoding GBA1 lead to a reduction or loss of 

function in the enzyme, GluCer can build up in the lysosomes and lead to deleterious 

effects. All GBA1 mutations and their resulting disease pheonotypes are grouped together 

as Gaucher’s disease. 

The gene encoding GBA1 is located on chromosome 1q21 and Gaucher’s disease is 

inherited in an autosomal recessive fashion. It is most common in the Ashkenazi Jewish 

population where approximately 6.8% of the population is heterozygous for Gaucher’s 

disease and the expected birth frequency is 1 in 1000. (3) The disease also appears at a 

higher frequency in the Norrbottnian population located in northern Sweden (23).  

In certain high risk populations, pre-marriage genetic carrier tests for Gaucher’s disease 

(and another lysosomal storage disorder, Tay-Sach disease) have been offered (24). 

Commercial genetic analysis companies such as 23andMe, Inc.  

(https://www.23andme.com) (4) also now offer identification of certain common 

mutations that an individual can carry - before they may pass it on to their children.  

There are three distinct pathological phenotypes of Gaucher’s disease(25), characterised 

by clinical appearance; importantly the disease can manifest with neuropathic or non-

neuropathic symptoms (Table 1.1). Different mutations in the GBA1 gene may determine 

the remaining activity level of the β-glucocerebrosidase enzyme, and, to a large extent, 

the phenotype.   

The sub-types of Gaucher’s disease are categorised by a patient’s symptoms or time of 

onset rather than the particular amino acid mutation. A host of other factors appear to be 

able to mitigate the pathological outcome of Gaucher’s disease, from the level of GBA2 

activity, to onset of other disease in the patient (such as type 1 diabetes mellitus)(26). The 

effect described as "synergistic heterozygosity", where partial defects or variations occur 

in a complex metabolic pathway leading to a loss of clear genotype/phenotype correlation 

has been applied to many metabolic diseases, including Gaucher’s (27,28). 

Patients with the same mutations, even family members, are seen to have different 

complications or reactions to treatment. This is due to modifier genes (29), reciprocal 

recombination (30)and the action of GBA2, the second non-lysosomal acid β-

https://www.23andme.com)/
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glucocerebrosidase enzyme. There is at least one recorded case of monozygotic (identical) 

twins, who exhibit very distinct Gaucher’s phenotypes despite carrying the same 

N188S/N188S genotype (26).  
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TABLE 1.1. PATHOLOGICAL OUTCOMES OF GAUCHER’S DISEASE 
 Type 1: Adult, Non-

neuropathic 

Type 2: Infantile, 

Acute Neuropathic 

Type 3: Juvenile, 

Chronic Neuropathic 

Age of onset Young adults to 

early middle age 

Infants Children and young 

adults 

Occurrence in 

populations 

1 in 100 000 in 

general population 

Up to 1 in 450 in 

Ashkenazi Jewish 

population 

1 in 100 000 live 

births, 

No particular 

ethnicity  

1 in 50 000 live 

births, seen in 

Norrbottnian 

population 

Symptoms No CNS 

involvement, liver, 

spleen, bone all 

effected (as in all 

types) 

Early CNS problems 

and brainstem 

abnormalities 

Later onset of CNS 

problems including 

seizures and mental 

deterioration.  

Outcome Dependent on 

residual GBA1 

activity, may be very 

mild  

Death in infancy (<2 

years) 

Progresses slower, 

symptoms become 

more severe later in 

childhood. 

GBA1 activity Some, much reduced Very little Very little 

 

 

In Type I Gaucher’s disease, there is some residual activity of the enzyme(31). Type 1 

makes up over 90% of the cases and is considered non-neuropathic; patients do not 

exhibit central nervous system involvement and disease is typically diagnosed later in life. 

Some Type 1 patients may present no symptoms until very late in life, or may even only be 

diagnosed after a relative is identified as a Gaucher’s patient and they too also undergo 

genetic screening (32).  

Patients with Types 2 (acute infantile onset) and 3 (juvenile or early adulthood onset) 

Gaucher’s disease suffer neurological symptoms, as well as the bone lesions, anaemia and 

other complications seen in Type 1.  Only Type 1 and the rare non-neurological Type 3 
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Gaucher’s disease are treatable with enzyme replacement therapy. This is due to the 

inability of the large protein drug treatment to cross the blood-brain barrier. 

Although there are certain mutations generally associated exclusively with “milder” Type 

1 Gaucher’s disease, mutations such as L444P have been seen in patients with all three 

Gaucher’s types. Patients with heterozygous mutations can manifest unpredictable disease 

phenotypes, although patients with at least one N370S will not develop primary 

neurologic disease (33,34). 

GBA1 is a 536 amino acid protein and more than 400 different mutations in the enzyme 

are known to lead to Gaucher’s disease. Most of these are missense mutations (35), and 

novel mutation are continuously being identified in patients (36). Many of these mutations 

are carried in a single family line (37). The active site amino acids,  the nucleophile E340 

and the acid/base E235, are located in the catalytic domain, consisting of a (β/α)8 TIM 

barrel, however disease causing mutations have been identified throughout the protein 

(38).  

The predominant point mutation is N370S, which accounts for 75% of the disease cases in 

Ashkenazi Jewish populations and 30% in non-Jewish population. Genetic analysis 

suggests that the N370S mutation may have originated with a single progenitor, the 

frequency in modern populations resulting in a severe population size bottleneck between 

1100 CE and 1400 CE  (39). Patients with this N370S mutation will not show neuropathic 

involvement in their disease progression, and are frequently diagnosed later in life (40).  

In vitro studies of 52 recombinantly expressed GBA1 mutants, including the Type 1 N370S 

mutation show that this mutation gene produces a stable enzyme with some activity 

against GluCer. (41) 

Clinical outcome of Gaucher’s disease is dependent on the levels of active GBA1 enzyme 

present in the patient’s lysosome; diagnosis and treatment requiring regular 

quantification of this. Patients with just 15% of normal, healthy GBA1 activity levels are 

normally asymptotic, so if the trafficking of mutant GBA1 to the lysosome can be increased 

and suitably monitored, Gaucher’s disease may be ameliorated  (42). 
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Figure 1.3 The three-dimensional structure of GBA1 (as discussed in Chapter 2) 

showing the location of the six most common missense mutations (magenta. The 

active site amino acids (Nucleophile E340, Acid/Base E235) are shown in blue.  

 

TABLE 1.2 CERTAIN GBA1 MUTATIONS AND GAUCHER DISEASE PHENOTYPE 
Mutation Gaucher’s disease type 

G202R Type 2 (43) 

N370S Type 1 (44) 

V394L Type 1 or Type 3 if heterozygous with L444P mutation (34,45) 

D409H Type 3 or Type 1 if heterozygous with L444P mutation (33,46) 

L444P Type 1, 2 or 3, dependent on heterozygosity (47,48) 

R463C Type 1 or Type 3 if heterozygous with L444P mutation (33) 

R496C Type 1 (49) 
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The human cDNA encoding GBA1 was first cloned in 1984 by Ginns et al (50), which 

eventually lead to the patenting of recombinatly expressed GBA1 from Chinese hamster 

ovary cells (CHO cells) as Cerezyme® in 1994 by Genzyme(22). Identification of the 

sequence has allowed gene knock out experiments and in the last three decades, the use of 

GBA-knockout mouse models (rather than those with chemically induced Gaucher’s 

disease), and even mice with particular point mutations such as N370S have also 

progressed our understanding of the disease (51,52).  

The unliganded three dimensional structure of human GBA1 was initially determined by 

the Sussmann group in 2003 (38). GBA1 was found to consist of three domains, with the 

catalytic site located in domain II. The active-site nucleophile had previously been 

identified as Glu340 by Miao et al in 1994 through the use of a mechanism based inhibitor 

and electrospray tandem mass spectrometry (53). Modelling with other GH30 family 

proteins and subsequent site-directed mutagenesis confirmed Glu235 as the catalytic 

acid/base (54,55). The 3D structure of GBA1 is discussed in further detail in Chapter 2.  

Gaucher’s disease mutations are found across all three domains of the GBA1 enzyme 

(Figure 1.3), not exclusively within the catalytic domain. These mutations can have a 

range of effects on the enzyme, from the disruption of inter-domain interactions to the 

prevention of the correct glycosylation of the GBA1 enzyme.  

Correct glycosylation of GBA1 is necessary for the cell protein processing systems to 

accept  the enzyme and for the function of the fully active enzyme(56).  The development 

of a catalytically active GBA1 enzyme is dependent on it being correctly glycosylated, 

particularly the glycosylation of the Asn19 site (57,58). In fact, GBA1 has five putative N-

glycosylation sites, four of which undergo posttranslational N-linked oligosaccharide 

addition (59,60). 

N-glycan processing of a nascent polypeptide is carried out in endoplasmic reticulum and 

the Golgi body. Oligosaccharyltransferase must recognise the consensus sequence (Asn-X-

Ser/Thr) within the protein and transfer the precursor glycan to the polypeptide in the 

endoplasmic reticulum lumen. If the protein is folded correctly, the three glucose residues 

of the precursor glycan are removed by glucosidase I and II. The removal of the final 

glucose residue signals that the glycoprotein is ready for transit from the ER to the cis-

Golgi.  

If the protein is folded incorrectly and either oligosaccharyltransferase fails to recognise a 

glycosylation site or the final glucose resides are not removed, the GBA1 enzyme will be 

unable to leave the endoplasmic reticulum. Promotion of this correct folding is the 

underlying concept of pharmacological chaperone therapy (see section 1.5) (61).    
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1.4 GBA1 in other disease 
The link between Gaucher’s disease and Parkinson’s disease first was made from a 

diagnostic perspective – patients with certain non- neuropathic forms of Gaucher’s disease 

will develop early-onset Parkinsonism. This suggested that perhaps “non-neuropathic” 

Gaucher’s disease still had implications upon the CNS (62).   

Parkinson’s disease is the second most common neurodegenerative disorder, with a 

lifetime risk of 3 % in the USA (63), whilst 25 % of patients with Gaucher’s disease have a 

family history of Parkinson’s (64).   This carries the  implication that even heterozygous 

Gaucher-carrier status may increase the risk of Parkinson’s (65). 

Between 2.3%–9.4% of patients with Parkinson’s disease (increased to 11%–31% in 

Ashkenazi Jews) carry a GBA1 mutation (66). Two GBA1 mutations, E236K and T369M, 

which do not appear to cause Gaucher’s disease, are more common in patients with 

Parkinson’s (67).  

The key component of Parkinson’s pathogenesis is α-synuclein, an intrinsically disordered 

protein. α-synuclein is abundant in brain and able to interact with lipid membranes (68). 

However it has a susceptibility to aggregation in the form of amyloids in Lewy bodies, one 

of the pathological features of Parkinson’s disease (69). 

There appears to be a relationship between the levels of GCase and the behaviour of α-

synuclein in cells. When GBA1 is inhibited in human neurons in vitro, and GluCer levels 

subsequently increase, α-synuclein accumulated, resulting in neurotoxicity. In purified 

form, GluCer directly influenced amyloid formation in α- synuclein. In a reciprocal 

feedback loop, increased cellular levels of α-synuclein lead to a reduction of lysosomal 

GBA1 activity due to the disruption of intracellular trafficking (70). 

This suggests that treatments that help to promote targeting of GBA1 to lysosomes in 

Gaucher’s patients with presenting with non-neuropathic Type 1 can be expected to 

diminish the formation of toxic amyloids and potentially prevent Parkinson’s onset 

(64,70,71). 

1.5 History of enzyme replacement therapy 

Initially, treatment of Gaucher’s disease was limited to symptom management; 

splenectomy was frequently performed for Type 1 patients and patients with Types 2 and 

3 had poor prognosis (32).  However, by 1965, Dr Roscoe Brady et al had identified that 

Gaucher’s disease was caused by an inherited enzyme deficiency and in 1968 Weinred et 

al identified the lysosomal nature of the enzyme. This gave clinical researchers a clearer 

target for disease treatment.  
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Gaucher’s disease the first lysosomal storage disorder to be successfully treated with 

enzyme replacement therapy (4).   Roscoe Brady and colleges were able to successfully 

treat two patients with purified, unmodified GBA1 in 1974(72). However, although both 

patients showed a reduction in glucosylceramide accumulation in liver biopsies after 

treatment, neither patient was able to be stabilized over a long period of time. 

 Achieving a large enough quantity of purified GBA1 enzyme to viably treat a patient was 

the main hurdle. This was particularly difficult before the production of recombinant 

GBA1 proteins and it took almost two decades from the original two person patient trials 

in 1973 (72) to a commercial GAB1drug being marketed.  

The initial method of purification was from human placenta using affinity column 

chromatography and was developed by Peter Pentchev and colleagues in 1973 (73). As 

well as the production of protein for therapeutic uses, this increased access to GBA1 

allowed researchers to further characterise the enzyme(74).  

Post-purification modification of the carbohydrate structure of the glycoprotein was 

performed, so that it would be better targeted to a patient’s macrophages. This allowed 

physicians to reduce the volume of GBA1 enzyme required per patient. Deglycosylation of 

the purified GAB1 was performed with the enzymatic removal of N-acetylneuraminic acid, 

galactose and N-acetylglucosamine to give a mannose-terminal product, which showed an 

increase liver macrophages in rat models (75). 

The modified β-glucocerebrosidase, termed alglucerase, sourced from large volumnes of 

human placental tissue by the Genzyme Corporation, Cambridge, MA, USA and supplied as 

a citrate buffered solution for intravenous use was called Ceredase®. Ceredase® was 

approved for use in Gaucher’s disease treatment in 1991 but has since been withdrawn 

from the market due to the arrival of recombinant expression systems that are capable of 

producing similar therapeutic proteins without the associated concerns of disease 

transmission during tissue harvesting and with comparatively lowered costs (22).  

By 1992, around 30 percent of all placentas from births in the United States, and tissue 

from around 70 percent of placentas from Europe, were sent to a Genzyme processing 

plant in New England to meet demand for GBA1, among other purified enzymes (76). 

Some patients were forced to travel incredible distances, including internationally, to 

receive treatment. 

Once alglucerase was on the market for Gaucher’s treatment, and successfully treating 

patients with the non-neuropathic Type 1 form of the disease, the effect of enzyme 

replacement therapy was studied on patients with the chronic neuropathic form (Type 3) 
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of the disease(77).  Although high doses of the enzyme treatments (at first Ceredase® and 

later Cerezyme®) would reverse the general symptoms of the disease, it became clear that 

intravenously administered enzyme could not cross the blood-brain barrier and therefore 

would not alleviate the neurological symptoms.  

Imiglucerase is a recombinant Chinese hamster ovary cell produced analogue of human β-

glucocerebrosidase, again treated with exoglycosidases to expose terminal mannoses and 

facilitate macrophage targeting. Imiglucerase also differs from the placental enzyme at 

amino acid position 495 where arginine has been replaced with a histidine(22).  

Imiglucerase was introduced to the market as Cerezyme® (Genzyme Corporation, 

Cambridge, MA, USA), a freeze-dried medication containing imiglucerase to be given 

intravenously for long-term enzyme replacement therapy, in 1995.  This was the first 

recombinant protein treatment for Gaucher’s disease and remains the most commonly 

used. The specific activity of highly purified human enzyme is 890,000 units/mg; a typical 

patient dose being 2.5-5 U/kg biweekly (78). 

There are now three human β-glucocerebrosidase analogues which have been approved 

for use in humans. As well as imiglucerase, there are velaglucerase alfa (VPRIV®, Shire Plc, 

Dublin) which is purified from a human cell line and taliglucerase alfa (Elelyso®, Protalix 

Biotherapeuteutics, Karmiel, Israel) which, purified from carrot cells, was the first plant 

cell-sourced drug to achieve FDA approval.  Elelyso® also has the advantage of being a 

fully kosher medically treament. 

Due to the small number of patients and high cost of manufacture, recombinant human β-

glucocerebrosidase is one of the most expensive drugs sold, with an average annual cost to 

U.S. Gaucher’s patients of $200,000 (79). For many patients, it is necessary that the 

financial burden is covered by charities such as the National Gaucher Foundation’s CARE 

program in the USA.  

Enzyme replacement therapy (ERT) has some major disadvantages. As well as the 

incredibly high cost of treatment, it is ineffective for patients suffering from neurological 

effects. Intravenous injections of the drug treatment must be given once a fortnight, they 

can be painful and leave patients reliant on frequent hospital assess.  

Whilst ERT is generally well tolerated in Type 1 Gaucher’s patients, 13 % report adverse 

reactions to the treatment process itself, especially infections and abscesses at the site of 

injection. Some patients may also develop IgG antibodies to the recombinant enzyme, and 

in less than 1% of patients this can lead to anaphylactic reactions  (80) 
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These factors drive a need to develop Gaucher’s treatments that can be taken orally, 

tolerated by those who are unable to take ERT and are able to cross the blood-brain 

barrier. 

The first alternate treatment to enzyme replacement therapy was the use of the 

iminosugar miglustat (N-butyldeoxynojirimycin, NB-DNJ) which was marketed as 

Zavasca® (Oxford GlycoSciences/Actelion, Allschwil, Switzerland) and first approved for 

use as a Gaucher’s disease treatment in 2002. Miglustat is an inhibitor of the enzyme 

glucosyltransferase, and works by the principal of substrate reduction therapy. By 

reducing the biosynthesis of GluCer, the accumulation in cells is reduced.   

 

 

Figure 1.4. Substrate reduction therapy drugs A) Miglustat (Zavasca) B) Eliglustat 

(Cerdelga) 

 

Although miglustat is licenced for use in Gaucher’s patients who are unable to receive 

enzyme replacement therapy, serious side effects from the treatment are common, 

including diarrhoea and tremors. Many patients given Zavasca do not tolerate the 

treatment well and can either require extensive medical support alongside the medication 

or eventually refuse medication (81,82). 

A second substrate reduction therapy treatment was introduced in 2014. Eliglustat 

(Cerdelga®, Genzyme Corp, Cambridge MA, USA) acts to inhibit glucosylceraminde 

synthase and thus also reduce GluCer accumulation. Unlike miglustat, eliglustat does not 

interact with any intestinal enzymes, thereby avoiding some of the main side effects of 

miglustat that lead to patient non-compliance (83).   

Whilst both these small molecule substrate reduction therapy drugs are able to cross the 

blood-brain barrier, miglustat has some undesirable neuropathic side effects including 

tremors. Eliglustat is transported out of the central nervous system instantly by the 

transporter Pgp-1 and no alleviation of Gaucher’s disease symptoms is seen (83,84).  

As lysosomal storage disorders are monogenic diseases, there has been some 

consideration of gene therapy as a treatment approach.  Sandhoff and Tay-Sachs diseases 

are both fatal lysosomal storage disorders with no effective treatments, however feline 
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and mouse models of each disease have been used to model gene therapy as disease 

treatment (85,86).  Lentiviral gene therapy has been shown to cure Type 1 Gauchers 

disease in mice but it is a long way to human clinical trials (87). 

The use of miglustat as a treatment option for other rare lysosomal storage disorders is 

currently under investigation. The drug has been approved for use in patients with 

Niemann-Pick disease type C and its use has begun in patients with Sandhoff disease (88) 

following success in feline and murine models (89-92). 

 

1.6 Chaperone therapy  

The third therapeutic pathway for Gaucher’s disease is pharmacological chaperone 

therapy (PCT). Gaucher’s disease typically arises when the mutant form of GBA1 is 

recognised as misfolded in whilst still inside the endoplasmic reticulum. Here it is targeted 

for degradation by the endoplasmic reticulum- associated degradation (ERAD) system 

through the proteasome rather than being transported to the lysosome, thus enzyme 

levels in the lysosome are reduced (93). 

In PCT, small molecules are able to stabilise the mutant forms of GBA1 and restore protein 

trafficking (94) (Figure 1.5). As proteins are produced by the ribosomes and secreted in 

to the endoplasmic reticulum they are in an unfolded state. In the ER a quality control 

system ensures that only correctly folded and assembled proteins are able to be 

transported to the Golgi apparatus to be processed further. Improperly processed proteins 

are held in the ER by chaperone proteins such as BiP or calnexin and eventually 

transported back out for degradation by proteasomes (61). 
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Figure 1.5 A general overview of chaperone therapy.  Pharmacological chaperones 

are able to promote correct folding of the active form of the enzyme, leading to 

increased trafficking to the lysosome. 

 

As previously mentioned, many mutant GBA1 forms show activity on GluCer. Often these 

mutants forms exhibit decreased stability at neutral cellular pH, as experienced in the ER, 

but become more stable at the reduced pH conditions of the lysosome (41,95). These 

mutant forms will occasionally fold correctly, and therefore be processed normally by the 

cell, resulting in the low levels of enzyme activity seen in some Gaucher’s patients.  

Chemical chaperones can act to stabilise potentially active proteins against misfolding, 

increasing the probability of their achieving the correct fold. This then avoids protein 

degradation and promotes the correct trafficking through the endoplasmic reticulum to 

the Golgi, with the enzyme eventually arriving in the lysosome. Here, the enzyme can act 

with enough activity to achieve a therapeutic effect (42). 
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Chaperone therapy, sometimes described as enzyme enhancement therapy, makes the use 

of molecules that are small enough to enter the central nervous system, thus able to treat 

the neuropathic symptoms that ERT cannot affect.  The refinement of Gaucher’s disease 

treatment with small molecule chemical chaperones has a huge impact for patients for 

whom ERT has proved unsuitable, especially for those with neuropathic symptoms as the 

small molecules are able to cross the blood-brain barrier and reduce storage cell load in 

the brain (96). 

An active-site specific chaperone, such as a competitive enzyme inhibitor, would bind to 

the catalytic domain of the enzyme and, once the enzyme has been transported to the 

lysosome, be replaced by the substrate. In the lysosome, the substrate is at a very high 

concentration, especially in Gaucher’s disease patients where it has been accumulating. 

However, because of this exchange of inhibitor and substrate, potential chaperone 

treatments given at too high a concentration could lead to a non-reversed binding and 

therefore complete inhibition of the enzyme.  

PCT is therefore very dose dependent, close monitoring of the levels of active GBA1 in a 

patient’s lysosome is necessary for effective clinical treatment. The use of activity based 

probes can allow physicians to quantify only active enzyme at any given time and adjust 

dosage in response to these readings.  

In 2005, Alfonso et al (97) showed that the ceramide-specific glucosyltransferase inhibitor 

miglustat was also able to increase the activity of certain (though not all) GBA1 mutants 

and wild-type GBA1 in monkey kidney cells. This suggested that the varied success of 

miglustat treatment in Gaucher’s disease patients was not only down to glucosylceramide 

synthase inhibition but also the stabilization of the mutant GBA1 protein already present 

in the patients’ cells. 

More recently, the use of other small molecule chemical chaperones as Gaucher’s disease 

treatment has seen some success. The N370S GBA1 mutant (the most common mutation in 

patients with Ashkenazi Jewish ancestry (33)) was shown to be stabilized at neutral pHs 

by N-nonyldeoxynojirimycin (NN-DNJ) leading to a two-fold increase in the enzyme’s 

activity as it was more effectively trafficked to the lysosome and avoided degradation (98). 

Doses of isofagomine tartrate, an acid β-glucosidase active site inhibitor, were given to 

mice homozygous for a variety of Gaucher’s disease mutations (including certain 

neuropathic forms) and the mice were shown to respond positively to treatment over the 

course of several weeks (99). 
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1.7 GBA1 inhibitors 

Glucosidase inhibition can be competitive or covalent – the former being ideal in the 

design of pharmacological chaperones and the latter for activity based probes. The most 

effective GBA1 inhibitors are compounds that mimic functional and/or conformational 

aspects of the parent substrates (i.e. beta-glucosides) (Figure 1.6). 

Numerous glucosidase inhibitors are found in nature, produced by plants, fungi and 

bacteria (100). For example, cyclophellitol first isolated from the mushroom strain 

Phellinus sp in 1990 (101). Deoxynojirimycin (DNJ) can be isolated from brewing certain 

strains of mulberry tea leaves, at concentrations effective to suppress postprandial blood 

glucose levels, by inhibiting intestinal glucose absorption (102,103). 

Many more GBA1-specific inhibitors have since been designed and synthesised in the lab, 

often taking these naturally sourced inhibitors as inspiration. The most well-known GBA1 

inhibitors and potential drug chaperones are imino/aza sugars based around the 

deoxynojirimycin core (104), and isofagomine (105) (Figure 1.6.A).   

As isofagomine is orally available and able to cross the blood/brain barrier, there has been 

a lot of interest in it as a viable GAB1 chaperone (IC50 = ~88 nM for wild type GBA1 (99)). 

isofagomine has been studied as an effective pharmacological chaperone for both the 

L444P neuropathic mutant form of GBA1 in fibroblasts (106) and the V394L form in 

mouse models (96).  The structure of GBA1 in complex with isofagomine was published in 

by Lieberman et al in 2009 (PDB ID: 3GXF) (95). 
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Figure 1.6. An example of some A) inhibitors and B) activity based probes of human 

lysosomal acid β-glucocerebrosidase, GBA1. Adapted from Breen et al, 2017 

(Appendix 7) 

 

DNJ is a reasonably potent inhibitor of both retaining and inverting α- and β-glucosidases; 

this poor selectivity being its main disadvantage. DNJ inhibits both GBA1 and GBA2 (IC50 = 

250 and 21 μM, respectively) and is also an inhibitor of human acid α-glucosidase (IC50 = 

1.5 μM) (107).  Over recent decades numerous studies have been published, exploring 

structural and configurational DNJ analogues with an aim to design compounds capable of 

targeting β-glucosidases alone, and specifically GBA1 (108,109). An important class of 

structural modifications is the addition of N-alkyl chains. 

The SRT drug Zavesca, (N-butyl-DNJ, Figure 1.4, Figure 1.6.A) is in clinical use for the 

treatment of Gaucher disease, with GCS inhibition (IC50 = 50 μM (107)) as the basis of this 

therapy. Zavesca is however also a micromolar GBA1 inhibitor (IC50 = 400 μM (107)) and 

the structure of the co-crystal reveals a nice fit of the glucopyranose mimic within the 

GBA1 enzyme active site. (Figure 1.7.A,B) (110). 

Along with isofagomine, N-nonyl-DNJ (NN-DNJ) has been studied intensively for 

application as a pharmacological chaperone. NN-DNJ has been seen to restore protein 

levels of the N370S mutant GBA1 within fibroblast cells, and binding of the extended N-
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alkyl form protected GBA1 against tryptophan digestion, providing evidence of its 

structural “rigidification” (111). 

 

 

Figure 1.7. The crystal structure of human GBA1, in complex with inhibitors. A) Three 

dimensional structure of GBA1, showing a molecule of Zavesca in the active site. PDB: 

2V3D. B) Active site of GBA1 in complex with Zavesca. Direct interactions between the 

ligand and protein residues are shown. Residue numbers are annotated (a./b. = 

acid/base, nuc. = nucleophile. PBD: 2V3D. C) Active site of GBA1 in complex with 

isofagomine. PDB = 3GXF. D) Active site of GBA1 in complex with conduritol. PDB = 

2VT0. Adapted from Breen et al, 2017 (Appendix 7) 

 

Cyclophellitol, the natural product isolated from mushrooms, was found to be an effective 

and irreversible inactivator of β-glucosidases in 1991 by Withers and Umezawa (112). 

Closely resembling β-glucopyranose in configuration, cyclophellitol is able to neatly 

position its epoxide moiety within a retaining β-glucosidase active site for nucleophilic 

attack by the enzyme catalytic nucleophile. The ester adduct formed upon reaction of 

cyclophellitol with the glycosidase nucleophile is stable, resulting in covalent enzyme 

inhibition. This makes cyclophellitol a useful “base” for the design of activity based probes 

for retaining β-glucosidases (Figure 1.6.B). 

The 3D structures of GBA1 observed with a variety of inhibitors, including potential 

pharmacological chaperones, have been determined, and a full table of the published 
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structures is included in Chapter 2 (Table 2.1). However prior to this work, the only 3D 

structures of GBA1 with a covalently-bound inhibitor was the structure with conduritol--

epoxide (Figure 1.6.A, Figure 1.7.D) (PDB ID: 2VT0) (113). 

Initial insight into the covalent binding of the β-glucopyranose cyclophellitol was gleened 

from the structure of the retaining -glucosidase bacterial homologue TmGH1 from 

Thermatoga maritima (TmGH1) (114) in complex with both cyclophellitol  and 

cyclophellitol cyclopropane (Figure 1.6.A).TmGH1 crystals soaked with the non-

hydrolysable cyclophellitol analogue show the glucose mimicking portion of the ligand 

bound within the enzyme active site in a 4H3 conformation, ‘above’ the enzyme nucleophile 

poised for nucleophilic attack (115). When TmGH1 crystals are treated with cyclophellitol 

itself, a covalent enzyme-inhibitor adduct in 4C1 conformation can be seen, showing that 

the epoxide of cyclophellitol has been opened by nucleophilic displacement by the 

catalytic nucleophile residue (115,116). 

Information on reaction itineraries gathered from the 3D crystal structures can be used 

for the development of conformationally biased competitive inhibitors. Cyclophellitol 

cyclopropane  adopts a 4H3 conformation, thereby resembling the transition state 

oxycarbenium ion conformation in retaining exoglycosidases (Figure 1.9) and by this 

virtue has turned out to be a surprisingly potent GBA inhibitor (115). 

 

1.8 Activity Based Probes  

One of the main limitations of chaperone therapy is that it is only effective on certain 

mutations of the GBA1 enzyme.   It is also very dosing sensitive, as incorrect dosing of the 

chaperone can lead of reduction of enzyme function (98). Therefore in clinical trials it is 

necessary to be able to measure accurately and efficiently the levels of active enzyme in a 

patient’s cells.  

In any disease involving a loss of function of an enzyme, methods of quantifying the 

presence of that enzyme are vital in diagnosis and the monitoring of treatment. Whilst 

techniques such as proteomics and transcriptomics can give a measure of the level of a 

given protein being expressed by a cell, interest lies more in the enzyme’s activity rather 

than sheer quantity of the enzyme in the cell. A protein may not have undergone correct 

the posttranscriptional modifications to function, such as glycosylation or the cleavage of a 

pro-peptide form.  In addition, the enzyme may have failed to locate to the correct target 

cell organelle. 
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Activity based probes (ABPs) offer one solution to the activity of active enzyme, and 

isoforms thereof.  They thus allow for the targeting and quantification of only the 

catalytically active forms for a given enzyme. They can be used in conjunction with 

measurements such as proteomics to give a percentage of functional enzyme within a cell 

as the total produced (117). The use of a mechanism based inhibitor means that only 

active, functioning enzyme is labelled (118) . Alone, the activity based probe will not bind 

to a misfolded, non-functional enzyme and thus can be used to quantify the levels of active 

GBA1 in a cell at any time. 

APBs are built from three constituent parts – a chemically active warhead component that 

is designed to target the enzyme of interest specifically and irreversibly, covalently bind. 

The probe moiety acts as a reporter and may be an affinity tag, for isolation of a specific 

enzyme from a cell lysate or a fluorescent species to allow qualification and visualisation 

of active enzyme with a cell or system.  Probes can be directly attached to the warhead 

(often via a linker)– for single step labelling  or may incorporate chemical tags for two step 

reactions (such as azides for click chemistry with alkynes) (Figure 1.8) (42). 
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Figure 1.8 Schematic diagram for an activity based probe. A) ABPs are made up of 

three moieties, a targeting “warhead”, a linker region and a probe.  B) ABPs can 

selectively target only the active enzyme in a complex system and can be used in 

direct one-step labelling or via two step processes with biorthogonal chemical tags. 

The probe could be a fluorescent group, or a biotin for enzyme capture and 

enrichment.  This thesis focusses on the use of fluorescent probes.  Figure adapted 

from Willems et al (2011) (119) 

 

About two decades ago, the first examples of tagged covalent ABPs for activity-based 

protein profiling studies on serine hydrolase and cysteine proteases in complex biological 

samples were published (120,121).  

The mechanism-based, covalent and irreversible GBA1 inhibitors described earlier are 

ideal starting points for the development of ABPs (122,123). Substitution of the epoxide in 

cyclophellitol for an aziridine yielded cyclophellitol aziridine - a compound at least equally 

potent in its inhibition of GBA1 (124,125).  

In contrast to cyclophellitol, cyclophellitol aziridine can be modified to contain a 

fluorophore (for gel or cell imaging) or a biotin (for chemical proteomics studies) through 

aziridine N-alkylation or N-acylation (Figure 1.6.B; (126)). Whilst grafting a reporter 

moiety onto one of the cyclitol hydroxyls is typically detrimental for reactivity with one 

notable exception: the substituted cyclophellitol ABP turned out to be a highly specific and 

very potent GBA1 probe (127).  
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1.9 Human GBA1 and GBA2 

In humans, GBA1 is not the only retaining β-glucosidase. When the β-glucosidase activity 

in spleen from control subjects and patients with Gaucher's disease was characterized, 

two β-glucocerebrosidases where able to be separated based on their ability, or inability, 

to bind anti-(placental β-glucocerebrosidase) antibodies (128). 

GBA2 belongs to glycoside hydrolase family 116, a family much less well studied than that 

of GBA1 (GH30). Until recently, comparatively little was known about this group of 

enzymes, initial work on the molecular characterisation of a glycoside hydrolase from the 

archaeon Sulfolobus solfataricus led to the classification of CAZy family GH116 in 2010 

(129).  The structure of the GBA2 homologue TxGH116 is described in this thesis. 

Whilst GBA1 and GBA2 both act on the same substrate (GluCer), they can be differentiated 

by their reactions towards particular inhibitor compounds. GBA1 is inhibited by CBE 

whereas GBA2 is comparatively insensitive to it (130). Conversely, GBA2 is more sensitive 

to inhibition by deoxynojirimycin analogues compared to its lysosomal counterpart (IC50 = 

250 and 21 μM, GBA1 and GBA2 respectively) (3).  

GBA2 itself is linked to many medical conditions outside of Gaucher’s disease.   In humans, 

different mutations in GBA2 can lead to series of hereditary diseases such as autosomal-

recessive cerebellar ataxia and hereditary spastic paraplegia (131-133). GBA2 therefore 

seems to be necessary for healthy neuronal development. Unlike Gaucher’s disease, in 

which a variety of mutations in GBA1 all lead to the same disease outcome, various point 

mutations in GBA2 are linked to different clinical consequences.  

Significantly, Gaucher’s disease mouse models show a reduction in symptoms when GBA2  

was knocked out (134). This activity of GBA2 in Gaucher’s disease cells is still not fully 

understood, although it appears it is down-regulated in the absence of GBA1 activity, 

rather than compensating for the loss of the lysosomal β-glucosidase enzyme (135,136). 

Deletion of GBA2 in fact partially relives Gaucher’s disease pathology in mouse models, 

suggesting that one factor of Gaucher’s pathology is the accumulation of the toxic 

sphingosine, produced at the cytoplasmic face of the ER and Golgi apparatus by GBA2 

activity (134)  

The conversion of glucosylceramide to ceramide in excess by overexpressed GBA2 has 

linked GBA2 to ceramide-driven apoptosis of melanoma cells (137). This suggests that 

modulation of the behaviour of GBA2 by specific inhibitors could be useful for the 

treatment of Gaucher’s disease whilst the use of activators could possibly be used to 

combat melanoma, making GBA2 a viable therapeutic target for multiple diseases. 
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There is a third retaining β-glucosidase within human cells that is capable of the 

breakdown of GluCer. GBA3 is also known as the “cytosolic β-glucosidase”. It is a 

predominantly liver enzyme and hydrolyses β-D-glucoside and β-D-galactoside and is 

thought to hydrolyse xenobiotic glycosides. However GBA3 has been shown to have 

significant neutral glycosylceramidase activity (EC 3.2.1.62); this suggests that the enzyme 

may be involved in a non-lysosomal catabolic pathway of glucosylceramide (138).  So far, 

no link has been made with GBA3 activity and Gaucher’s disease phenotype. Carriers of a 

common GBA3 mutation show no modification to their Type 1 Gaucher disease 

manifestation (139).  

GBA3 belongs to CAZy family GH1, and the structure of the human protein was published 

in 2007 (PDB ID: 2JFE) (140).  GBA3 has been involved in research into the use of ABPs to 

identify active site residues in of retaining β-glucosidases and the effect of certain probes 

(including CBE and conduritol aziridines) on GBA enzymes in general (141), but as protein 

is not expressed in most tissues and appears to play no pathogenic role in Gaucher’s 

disease there is less focus on it than GBA1 and GBA2 in published research.  

 

1.10 CAZy and the glycosidase hydrolases 

All carbohydrate-acting enzymes, including glycoside hydrolases, glycosyltransferases, 

and carbohydrate binding modules,  can be classified into families on the basis of their 

amino acid sequences(142). These classifications are make-up the online CAZy database.  

The Carbohydrate-Active Enzymes database (http://www.cazy.org, (143)) was launched 

in 1999 and currently lists 145 families of glycoside hydrolases alone. CAZymes sharing a 

similar 3D structure can be further grouped together in clans. CAZy families are founded 

by an initial enzyme with distinct biochemical characterization, which is joined by those 

with amino acid sequence similarity. However enzymes in the same family may have 

different substrate specificities (114).  

In glycosidase hydrolase enzymes, hydrolysis of the glycosidic bond may occur with either 

retention or the inversion of the anomeric configuration – giving the division of retaining 

glycosidases and inverting glycosidases.  These two general mechanisms were described 

by Daniel Koshland in 1953 (144). GBA1 and GBA2 are both retaining β-glucosidases. 

Hydrolysis of the glycosidic bond is catalysed by two amino acid residues - a proton donor 

(acid) and a nucleophile/base. 

 

http://www.cazy.org/
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Figure 1.9 Retaining glycosides mechanism. A) Retaining β-glucosidases are able to 

hydrolyse β-glucopyranose from β-glucosides in a two-step double displacement 

mechanism, with a net retention of configuration of the anomeric carbon. The 

acid/base is located at the top, the nucleophile below. B) Conformational itineraries of 

retaining β-glucosidase. Only the first half of the two-step mechanism is shown. 

Adapted from Breen et al, 2017 (Appendix 7) 

 

Retaining β-glucosidases are found in many CAZy families, e.g. GH1 (including GBA3), GH2, 

GH3, GH5, GH30 (including GBA1). These GH families can be further sorted into “clans” 

based upon their three-dimensional structure. For example, GH1, GH2, GH5 and GH30 

family enzymes possess (β/α)8-barrel catalytic domains and are sorted into clan GH-A, 

whereas GH3 enzymes are more unusual with an active site between  a  (β/α)8-barrel and  

a β-sandwich  domain. 

An enzyme that has been biochemically characterised will also be given at least one 

Enzyme Commission (EC) number. These numbers are based solely on the reaction that a 

given enzyme can catalyse and therefore many enzymes across difference GH families, 

organisms and structural clans may have the same EC number. For example, as GBA1 and 

GBA2 are both acid β-glucosidases, they are both classified as EC.3.2.1.45. 
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1.11 Summary 

At the start of this thesis, activity-based probes for glycosidases were just emerging as a 

valuable tool, possibly one with direct clinical application.  Major challenges were 

observing how they bind, how probe and tag groups were accommodated and whether 

one could engineer better specificity.  This was particularly important for distinguishing 

between GBA1 and GBA2 in living cells.  The human GBA1 structure had been reported, 

with a variety of inhibitors and potential chaperones (Chapter 2) and the Moracci group 

has performed the first mechanistic and specificity analyses of the GBA2 family GH116. 

The goals of my PhD were: 

• Determine the 3D structure of human GBA1 in complexes with diverse ABPs, in 

order to analyse specificity and aid the design of better, more specific, ABPs. This 

work is described in Chapter 2. 

• Determine the 3D structure of a bacterial homolog of GBA2 from CAZY family 

GH116 and, if possible analyse ligand complexes of the enzyme, again to aid probe 

design and application.  This work is described in Chapters 3 and 4.  

Possible new directions, new probes and methods, resulting from this work are described 

in a final “Conclusions and Perspectives” Chapter 5.  Four publications from this work are 

attached as appendices and cited in the relevant chapters.   

  



30 
 

  



31 
 

 

Chapter 2.  3D structures of human 
glucocerebrosidase GBA1 in complex 
with activity-based probes 

2.1 Abstract 

Gaucher’s disease is a lysosomal storage disorder due to mutation in the gene encoding for 

the lysosomal enzyme acid β-glucocerebrosidase, GBA1. Current treatments involve 

enzyme replacement, or pharmacological chaperone therapy using small molecule folding 

aids. Treatment of Gaucher’s disease ideally demands early diagnosis and subsequent 

monitoring of treatment efficacy.  Two breakthroughs in these regards were the first 3D 

structure of GBA1 in 2003 and the development of activity-based probes (ABPs) of 

enzyme action in 2010. Here, I sought to probe the 3D structure of human GBA1 with 

diverse covalently-bound ABPs to determine the mode of binding, compare with other 

known ligands, and ascertain if 3D insight might lead to better, perhaps more specific, 

probes. Recombinant GBA1 (a gift of Genzyme) was crystallised and the structures solved 

by X-ray crystallography at resolutions up to 1.49Å resolution. 3D structures of complexes 

were obtained for reacted gluco-epoxide “cyclophellitol-derived” probes and their related 

aziridines. A complex with a galacto-configured aziridine revealed how GBA1 can 

accommodate galactosyl ligands. A serendipitously-obtained dual complex, with covalent 

aziridine and non-covalent fluorescent epoxide highlights how the enzyme may 

accommodate these bulky fluorescent groups.  It is clear from inspection of the 3D 

structures that active centre channels extend out beyond the O6-position of the glucosyl 

moiety, explaining in part why GBA1 can tolerate substituents at this point in substrate 

analogues and inhibitors in a way related enzymes cannot. This helps account for the 

specificity and may lead, ultimately, to the development of next generation inhibitors and 

activity based probes.  
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2.2 Introduction 

As described more fully in Chapter 1, Gaucher’s disease is a lysosomal storage disorder 

caused by diverse mutations in the gene encoding for the lysosomal enzyme acid β-

glucocerebrosidase, GBA1(35). Gaucher’s disease is characterised by the build-up of 

glucosylceramide (GluCer) within the lysosome resulting in enlarged organs, 

splenomegaly, hepatomegaly and, in some cases, neurological disorders (32,39). GluCer is 

an abundant glucosylceramide, believed to play roles in cell signalling and immune 

modulation (145). GBA1 (EC 3.2.1.45) is a 497 amino-acid membrane-associated 

glycoprotein belonging to CAZy (www.cazy.org) family GH30 (114). GBA1 degrades 

GluCer into glucose and ceramide in the lysosome, which can then be recycled in the 

cytoplasm. When mutations in both alleles encoding GBA1 lead to a reduction or loss of 

function in the enzyme, GluCer can build up in the lysosomes and lead to deleterious 

effects. GBA1 catalyses the hydrolysis of GlcCer with net retention of anomeric 

configuration,(53) Figure 2.1.  

 

 

Figure 2.1. The reaction catalysed by GBA1; the hydrolysis of GlcCer with net 

retention of anomeric configuration.  

 

Prior to structure solution, the reaction mechanism, was first elucidated by the Withers 

group who demonstrated, in 1994, accumulation of a trapped covalent glycosyl-enzyme 

intermediate using 2-fluoro-2-deoxy glucosides (53). They were then able to propose a 

classic Koshland double–displacement mechanism for GBA1 action, with Glu340 

(identified by LC MS/MS) acting as the catalytic nucleophile, Figure 2.2.  

http://www.cazy.org)/
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Figure 2.2. Double-displacement reaction mechanism for GBA1 (after (53)). The 

active centre nucleophile, Glu340, is central to the reactivity with epoxides and 

aziridines in this chapter.  

 

Building on from this mechanistic breakthrough, in 2010 Herman van Overkleeft and 

colleagues developed activity-based (protein) probes (ABPs) to study GBA1.  Although 

early covalent inhibitors, such as conduritol epoxides had mislabelled the active centre 

(requiring the correction by Maio and colleagues described above (53)), Overkleeft took 

advantage of the better selectivity of cyclophellitol to overcome this problem.   

Cyclophellitol is a natural product, isolated in 1990 from the mushrooms of the Phellinus 

sp. (101,146). It is a is a powerful mechanism-based inhibitor of retaining β-glucosidases 

and was used in 1992 to induce Gaucher-like symptoms in mice; presumably as a result of 

GBA1 inhibition (147). In 2007, Gloster, Madsen and Davies revealed how cyclophellitol 

acted as an irreversible glycosidase inhibitor, Figure 2.3.A, (116). Overkleeft 

subsequently had the foresight to realise that by incorporating additional functional 

groups (biotin capture probes, azides for click chemistry, fluorescent groups etc) at the 6-

position, Figure 2.3.B, he could develop glucosidase selective ABPs (127).   He 

subsequently extended the cyclophellitol ABP concept to aziridine probes (in which 

nitrogen sits in place of oxygen in the three-membered ring) allowing substituents to be 

incorporate on the aziridine nitrogen, Figure 2.3.C (for example, (17,124)).  

In a landmark 2010 paper, the Overkleeft group demonstrated how fluorescent ABPs 

could be used to image the activity of GBA1 in cell extracts, including Gaucher disease 

patients, Figure 2.3.D.  He further showed that the reagents were not diagnostic tools, but 

could also measure the efficacy of pharmacological chaperone approaches in cells, Figure 

2.3.E.  

From this point, it became important to study the 3D structure of GBA1 with these ABPs, 

in order to dissect their mode of action and ultimately – if possible – to aid the design of a 
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new generation of GBA1 probes.  Such work will be described later in this chapter after a 

brief summary of the 3D structure of human GBA1 and its published complexes.  
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Figure 2.3. Development of β-glucosidase-selective ABPs. A) Gloster and colleagues 

demonstrate the specific irreversible action of cyclophellitol; B) Overkleeft extends 

this to make functionalised cyclophellitols and (C) development of aziridine probes in 

which the functionalization can be incorporated at the ring nitrogen. D) Application of 

an epoxide ABP, designated MDW933 (described in Figure 2.6), to measure GBA1 

activity in human fibroblast extracts: a healthy control group, three Gaucher disease 

genotypes and a Cerezyme treated patient. E) Experimental demonstration of the 

molecular chaperone effect of isofagomine, 300nM of which increases GBA1 activity 

2-fold in human fibroblasts. (Panels D and E taken from Witte et al., 2010 (127)).  

 

2.2.1 The 3D structure of human GBA1 
The unliganded 3D structure of GBA1 was initially determined by the Sussmann group in 

2003 using  a mercury heavy atom derivative (38). Subsequently the group published key 

structures with the imino sugars N-butyl and N-nonyl deoxynojirimycin (104). The 

structure was also re-determined by the Petsko group in 2007, in this case in complex 
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with the aza sugar isofagomine (105).  To date, 23 crystal structures have been deposited 

on the PDB (see http://www.cazy.org/GH30_structure.html) as listed in Table 2.1.   

The 3D structure consists of three non-contiguous domains, with the catalytic site located 

in domain II (residues 76–381); a (β/α)8 “TIM” barrel, Figure 2.4.A.  GBA1 is activated by 

lipids, and it is proposed that the “top” surface of the enzyme is the lipid binding face 

(113). Although the function of the two non-catalytic domains is unknown, mutations that 

cause Gaucher’s disease are found in all three domains (see Chapter 1, Figure 1.3). The 

(β/α)8 barrel is a classic CAZY clan GH-A (148) catalytic centre with the putative acid-base, 

Glu235, on strand 4 and the enzymatic nucleophile Glu340 on strand 7, Figure 2.4.B. 

The active centre is made up with classical hydrogen-binding side chains:  Asp127, 

Trp179, Trp381, and Asn396 whilst Tyr313 forms the base of a hydrophobic platform in 

which the lipid leaving group is accommodated (illustrated here with the N-butyl DNJ 

complex; PDB 2V3N).  

 

  

http://www.cazy.org/GH30_structure.html


37 
 

 

Figure 2.4. 3D structure of human GBA1. A) The 3D structure, show in red, with the 

active centre indicated as a cyan surface around the N-butyl DNJ ligand, one N-glycan 

is illustrated using GLYCOBLOCKS (149) and the location of the putative lipid binding 

face is illustrated. B) The active centre as determined through the complex with N-

butyl DNJ (“Zavesca”), PDB ID: 2V3D (104). 

  

GBA1 has been successfully crystallised in two space groups: C2221 (with two copies of 

GBA1 in the asymmetric unit) and a P21 form (with four copies). A table of known 3D 

structures is given overleaf. Table 2.1 They structures reflect a variety of different 

expression systems and degrees of glycosylation. The source of the GBA1 enzyme is 

mainly that used in patient treatment: Cerezyme, Taliglucerase-alfa or Velaglucerase-alfa. 

The former two have a single point mutation (R495H) that is not present in Velaglucerase-

alfa. The first structure of a “Gaucher” mutant form of GBA1, the most common N370S 

mutation, was solved in 2010 using a protein expressed in baculovirus (150).
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TABLE 2.1: PUBLISHED 3D STRUCTURES OF HUMAN GBA1 

PDB Code Source Commercial 

drug name 

Deglycoslyated? Ligand? Resolution Reference 

1OGS CHO Cerezyme Partially No 2.0 Å (38) 

1Y7V CHO Cerezyme Partially Conduritrol-B-epoxide 2.4 Å (151) 

2F61 CHO Cerezyme Partially No 2.5 Å (41) 

2J25 CHO Cerezyme Partially No 2.9 Å (152) 

2NSX CHO Cerezyme Partially Isofagomine 2.11 Å (105) 

2NT0 CHO Cerezyme Partially Glycerol 1.79 Å (105) 

2NT1 CHO Cerezyme Partially No 2.3 Å2 (105) 

2V3D Plant Taliglucerase-alfa No N-Butyl-Deoxynojirimycin 1.96 Å (104) 

2V3E Plant Taliglucerase-alfa No N-Nonyl-Deoxynojirimycin 2.0 Å (104) 

2V3F Plant Taliglucerase-alfa No No 1.95 Å (153) 

2VT0 Plant Taliglucerase-alfa No Conduritol-beta-epoxide 2.15 Å (113) 

2WCG Plant Taliglucerase-alfa No N-Octyl(Cyclic Guanidine)-

Nojirimycin 

2.3 Å (154) 

2WKL Human cell line Velglucerase-alfa Partially  2.7 Å (155) 

2XWD CHO Cerezyme Partially 5-N,6-O-[N′-(n-

octyl)iminomethylidene]nojirimycin 

2.66 Å (156) 

2XWE  CHO Cerezyme Partially 5-N,6-S-[N′-(n-

octyl)iminomethylidene]-6-

thionojirimycin  

2.31 Å (156) 

3GXD CHO Cerezyme Partially No 2.5 Å (95) 
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3GXF CHO Cerezyme Partially Isofagomine 2.4 Å (95) 

3GXI CHO Cerezyme Partially No 1.84 Å (95) 

3GXM CHO Cerezyme Partially No 2.2 A (95) 

3KE0 Baculovirus* No Partially No 2.7 Å (150) 

3KEH Baculovirus* No Partially No 2.8 Å (150) 

3RIL CHO Cerezyme Partially (3S,4R,5R,6S)-azepane-3,4,5,6-tetrol 2.4 Å (157) 

3RIK CHO Cerezyme Partially (3S,4R,5R,6S)-1-(2-

hydroxyethyl)azepane-3,4,5,6- tetrol 

2.48  Å (157) 

 

Table accurate as of 17th July 2017 

*N370S mutant
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Many of the 3D structures of GBA1 have been determined in order to understand the 

binding of inhibitors as potential pharmacological chaperones; key compounds (with their 

PDB codes) are shown in Figure 2.5.  

 

 

Figure 2.5. GBA1 inhibitors observed in published 3D structures.  PDB 2VT0 is the 

only known covalent adduct complex (which corrected an incorrect interpretation, 

with the wrong stereochemistry and conformation; published as PDB 1Y7V).  

 

The most well-known GBA1 inhibitors and potential chaperones are the imino/aza sugars 

based around the deoxynojirimycin core (104), and isofagomine (105).  N-butyl DNJ 

(“Zavesca”) finds clinical use for the treatment of Gaucher’s disease where it acts through 

“substrate reduction” via inhibition of the GlcCer synthase.  All of these compounds also 

stabilise GBA1 and can therefore be considered as pharmacological chaperones allowing 

unstable variants of GBA1 to pass through the secretory pathway. All these compounds, 

including the bicyclic “cyclic guanidine-nojirimycins” (154,156) and the 7-membered 

azapenes (157) bind in the active centre “-1” subsite (nomenclature in Ref. (158)) with the 

pseudo-sugar rings mimicking the binding of glucose.  

Prior to this work, the only 3D structures of GBA1 with a covalently-bound inhibitor were 

the structures with conduritol--epoxide. This was incorrectly interpreted in an early 
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medium resolution paper (151), but subsequently corrected upon collection of higher 

quality data  (113). This paucity of insight into the binding of covalent inhibitors of GBA1, 

especially give their increasing potential as diagnostics, was one of the motivating factors 

for the work in this thesis. 

2.2.2 Aims of the research in this chapter 
The goal of the work described in this chapter, was to solve the 3D structures of human 

GBA1 (material supplied by Sanofi Genzyme, Cambridge, Ma., USA) in complex with 

different ABPs selected to reflect different reactive groups, configurations etc. It was 

hoped that, ultimately, these studies would allow comparison with similar work on GBA2 

and allow the development of selective inhibitors for the two enzymes. Five complexes 

were studied, KY170 and KY353 as representatives of cyclophellitol epoxide and aziridine, 

KY358 as an example of an acyl-aziridine, TB562 as an example of a galacto-configured 

ABP that is believed to react with GBA1. Whilst previous findings had shown that galacto-

configured epoxides do not interact with GBA1 (159), here it is shown that the galacto-

configured aziridine TB562 is able to bind to the enzyme both whilst in solution and in the 

crystal form. MDW933 is a large fluorescent epoxide (used in Figure 2.3) in an attempt to 

see how the GBA1 structure might accommodate the bulky fluorescent group, Figure 2.6.  

 

 

Figure 2.6 Activity-based GBA1 probes studied at a structural level in this thesis 
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2.3 Materials and Methods 

2.3.1 Purification of commercial GBA1 enzyme 
Cerezyme, from expired patient samples, was supplied by Sanofi-Genzyme. The supplied 

lyophilized Cerezyme tablet (containing 5mg active GBA1) was resuspended in phosphate 

buffered saline (PBS) and dialysed overnight against PBS (pH 7.0) to remove excess salts 

and preservatives and then buffer exchanged into 50mM 2-(N-morpholino)ethanesulfonic 

acid (MES) buffer, 100mM NaCl pH 6.6. The contained GBA1 was  partially de-gylcosylated 

using 150 units of N-glycosidase F for 88 h at 25 C following the protocol as defined in Dvir 

et al (38)) .  

Buffer exchanged GBA1 enzyme was concentrated approximately 10 mg/ml and 

centrifuged for ca. 5 min before setting up crystallisation experiments. Crystals of GBA1 

were grown by hanging drop vapour diffusion in Greiner Bio One CELLSTAR 24-well 

plates (set up manually).  Crystallisation conditions was based on previously successful 

conditions (38) varied across four plates. All crystallisation experiments were performed 

at 18 ◦C. 

2.3.2 Crystallisation conditions 

Unless otherwise noted, crystallisation drops were set up as 1:1 ratio of protein to mother 

liquor and GBA1 was added at 9.8 mg/ml.  

 Apo-GBA1 

Mother liquor: 1 M (NH3)2SO4, 0.17 M guanidine HCl, 0.02 M KCl, 0.1 M sodium 

acetate pH 4.6  

 KY170-GBA1 

Mother liquor: 1 M (NH3)2SO4, 0.17 M guanidine HCl, 0.02 M KCl, 0.1 M sodium 

acetate pH 4.6 

 KY358-GBA1 

Mother liquor: 1 M (NH3)2SO4, 0.17 M guanidine HCl, 0.03 M KCl, 0.1 M sodium 

acetate pH 4.6 

 TB562-GBA1 

Mother liquor: 1 M (NH3)2SO4, 0.17 M guanidine HCl, 0.02 M KCl, 0.1 M sodium 

acetate pH 4.8 

 MDW933-GBA1 

Mother liquor: 0.95 M (NH3)2SO4, 0.17 M guanidine HCl, 0.02 M KCl, 0.1 M sodium 

acetate pH 4.6 
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 KY353-GBA1 

Mother liquor: 1.1 M (NH3)2SO4, 0.18 M guanidine HCl, 0.02 M KCl, 0.1 M sodium 

acetate pH 4.6  

2.3.3 Collection of x-ray data  

For initial collection of X-ray data, a crystal of GBA1 was transferred to a cryo-protectant 

solution containing mother liquor supplemented with 20-25% glycerol or ethylene glycol 

and then flash frozen in liquid N2.  Crystals of GBA1 bound with various ligands were 

obtained by either adding a solid powder of the compound directly to a drop containing 

one or more crystals of GBA1 using an acupuncture needle or by adding 1 µl of the 

compound dissolved in either water or reservoir solution to the drop and then resealing. 

After incubation from 30 minutes to overnight, the crystals were removed, cryo-protectant 

containing 15% ethylene glycol and 20-25% glycerol was added and the crystal was 

cooled using liquid N2.  

All crystals were then sent to the Diamond Light Source in Oxfordshire for data collection 

2.3.4 Data processing and structure determination 

Data for each crystal set was processed using XIA2(160,161) and the AIMLESS data 

reduction pipeline through the CCP4i2 software(162).  

The previous GBA1 PDB (2NT0) (163) was used to determine the phases and solve the 

structure of the apo-GBA1 by molecular replacement using MOLREP(164). Coordinates 

from the apo-GBA1 were used directly for determination of the ligand complex structures 

as the space groups were isomorphous.  Rfree sets were assigned from the apo-GBA1 

structure to maintain the integrity of the set throughout. Idealised coordinate sets and 

refinement dictionaries for each ligand were generated using ChemDraw3D and 

JLIGAND(165) or ACEDRG in the CCP4 suite. Idealised coordinate sets and refinement 

dictionaries for each ligand were generated using ChemDraw3D and JLIGAND(165) in the 

CCP4 suite. 

Refinement of all structures was performed using REFMAC (166) and model building 

completed using COOT(167), both programs through the CCP4i2 software. Final models 

for each of the compounds in this chapter were validated using the wwPDB Validation 

service (validate-rcsb-1.wwpdb.org/)  and conformation of sugars were validated using 

Privateer through CCP4 suite (168). 

2.3.4 Labelling with fluorescent probes 
A time course experiment was performed with deglycosylated GBA1 in McIlvaine 

phosphate/citrate buffer pH 6.0, 10% DMSO using the β-galactose aziridine configured 
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probe TB652 and the β-glucose aziridine JJB367 (Figure 2.7). Both probes were used at a 

final concentration of 100 nM with a GBA1 concentration of 700 nM.  

Time points were taken at 30min, 1h, 2h, 4h, 6h, 24h for GBA1-TB652 to confirm the β-

galactose binding. A time point for GBA1-JJB367 was taken at 1h to compare known β-

glucose binding to the enzyme.  

 

 

Figure 2.7. Florescent probes used in this time course experiment to probe the 

anomalous binding of galactosides to GBA1.   
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2.4 Results and Discussion 

GBA1 was successfully crystallised, Figure 2.8, following conditions as described by Dvir 

et al (38). Data reduction and subsequent molecular replacement confirmed the space 

group of the crystals as C2221 allowing me to refine an unliganded “apo” structure of GBA1 

at 1.49 Å. 

 

 

Figure 2.8. GBA1 crystals. A) Crystals of GBA1 B) Crystals of GBA1 after 18 months C 

and D) Diffraction images taken from unliganded GBA1 crystals in-house.  Images 

were taken at 0-0.5 ° and 90-90.5 ° respectively, with a 5 second exposure. 

 

Data tables for all crystals collected at the Diamond Light Source in Oxfordshire are shown 

in Table 2.2 overleaf.  
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TABLE 2.2: DATA COLLECTION AND REFINEMENT STATISTICS FOR HUMAN GBA1 STRUCTURES DESCRIBED IN THIS CHAPTER 
 

 

Cerezyme_apo Cerezyme_KY170 Cerezyme_KY353 Cerezyme_KY358 Cerezyme_TB562 Cerezyme_ 
MDW933 / KY358  

Space group C 2 2 21 C 2 2 21 C 2 2 21 C 2 2 21 C 2 2 21 C 2 2 21 
Cell dimensions       
a, b, c (Å) 109.0, 285.0, 91.0 108.9, 285.8, 91.7 107.4, 286.5, 92.0 110.7, 285.5, 91.9 110.6, 285.3, 91.8 111.2, 285.6, 91.6 
α, β, γ()  90.00, 90.00, 90.00 90.0, 90.0, 90.0 90.0, 90.0, 90.0 90.0, 90.0, 90.0 90.0, 90.0, 90.0 90.0, 90.0, 90.0 
Resolution (Å) 56.28-1.49(1.52-

1.49) * 
68.11-1.70(1.73-
1.70) 

71.62-2.90 (3.06-
2.90) 

47.59-1.76(1.79-
1.76) 

72.09-1.80(1.83-
1.80) 

91.56-1.58(1.62-
1.58) 

Rmerge 0.076(2.08) 0.077(1.61) 0.12(0.53) 0.098(0.85) 0.12(1.36) 0.14(2.10) 
Rpim 0.032(0.88) 0.036(0.74) 0.050(0.22) 0.042(0.37) 0.052(0.62) 0.051(0.79) 
CC(1/2) 0.99 (0.53) 0.99(0.52) 0.99(0.96) 0.99(0.84) 0.99(0.59) 0.99(0.50) 
I /σ (I) 13.4(1.1) 12.1(1.1) 12.2(3.7) 10.0(1.7) 10.9(1.2) 10.7(1.1) 
Completeness 
(%) 

100(99.9) 99.1(99.5) 99.9(100) 99.8(99.9) 100(100) 100(100) 

Redundancy 6.7(6.5) 5.5(5.7) 6.6(6.9) 6.3(6.2) 5.9(5.8) 8.1(7.9) 
Refinement       
Resolution (Å) 56.28-1.49 68.11-1.70 71.62-2.90 47.59-1.76 72.09-1.80 91.56-1.58 
No. reflections 229534/11500 156420/7842 31838/1575 143436/7160 134017/6677 198265/9908 

Rwork / Rfree 0.18/0.20 0.19/0.22 0.20/0.28 0.19/0.21 0.18/0.20 0.17/0.19 
B-factors (Å2)       
   Protein 26 31 76 30 27 25 
   Ligand/ion 51 57 104 56 53 44 
   Water 35 36 N/A 37 37 36 
R.m.s. deviations       
   Bond lengths 
(Å) 

0.011 0.019 0.010 0.013 0.015 0.014 

   Bond angles (°) 1.44 1.84 1.44 1.62 1.65 1.59 
*Values in parentheses are for highest-resolution shell. 
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2.4.1 Unliganded GBA1 Structure  
X-ray images for the unliganded GBA1 model were collected at the I02 beamline to a 

resolution of 1.49 Å, whilst data for ligand complexes (described below) were collected at 

resolutions from 2.4 to 1.58 Å.  X-ray data were scaled to resolution limits based on 

criteria for CC(1/2) of 0.5 in outer resolution shell.  The structure can be traced from 

residues 1-497 in both A and B molecules, although in the latter there are two loop regions 

with weaker ambiguous density at A 317-318 and at around B344-346. N-glycosylation is 

observed at Asn19, where two N-acetylglucosamine can be modelled in both molecules   . 

Indeed, there is diffuse density for the 1,4 linked mannose but this has not been 

modelled.  This glycosylation is consistent with the initial Cerezyme structure by Dvir and 

colleagues in 2003 (38). At Asn 146 in molecule A, both NAGs of the chitobiosyl core can 

be modelled; however there is not sufficient density at Asn 146 in molecule B.  

The unliganded “apo” structure is essentially identical to past Cerezyme structures, 

although at a considerably higher resolution than any previously published analysis.  

Structural similarity searching with PDBeFOLD (http://www.ebi.ac.uk/msd-srv/ssm/cgi-

bin/ssmserver) shows that, using the A molecule as the representative search, a high level 

of overlap with past GBA1 structure solutions, with typical main chain r.m.s deviations of 

just 0.19 Å over all 497 amino-acids (with PDBeFold Q score 1.0 and Z score 29.7).  Having 

secured a good “apo” structure, I then sought to analyse the 3D structures with a variety of 

covalent activity-based probes.  

2.4.2 3D complexes with Cyclophellitol KY170 and cyclophellitol 

aziridine KY353 
The first priority for structure analysis was with the classical cyclophellitol epoxides and 

aziridines.  Data for the 6-azido cyclophellitol KY170 extended to 1.7 Å. A single molecule 

of covalently reacted KY170 is found on both the A and B molecules with clear electron 

density, Figure 2.9A, for the ring-opened species, covalently attached to the nucleophile 

Glu340.  Although it had been hoped that the 6-azido substituent could be observed, the 

electron density at this positon is weak, reflecting disorder or decomposition, and the 

azide could not be modelled with confidence.  A similar absence of azide electron density 

was also recently observed for KY170 bound to an unrelated family GH1 glucosidase 

(see Figure 3B in Ref. (169); again, the reason for the absence of electron density was 

unknown).  The cyclophellitol ring is found in 4C1 chair conformation, and has been 

opened trans-diaxially as expected, Figure 2.9B.   

Binding of KY170 to recombinant GBA1 was recorded by Witte et al in 2010, who also first 

described the synthesis of the ligand (127). KY170 was found to be a far more potent 

http://www.ebi.ac.uk/msd-srv/ssm/cgi-bin/ssmserver)
http://www.ebi.ac.uk/msd-srv/ssm/cgi-bin/ssmserver)
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inhibitor than conduritol B-epoxide (CBE) (Figure 2.5), with Ki values of 0.044 ± 0.007 μM 

for the novel ligand and 53 ± 10.8 for CBE. 

The covalent complex with the aziridine KY353 proved more problematic to obtain. For 

reasons that are unclear, the crystals were often disordered after soaking and credible 

data were only observed to around 2.9 Å.  The electron density shows that the KY353 

covalent adduct complex is indeed bound to the nucleophile, Figure 2.9C, likely also in 4C1 

chair conformation, and has also been opened trans-diaxially, Figure 2.9D, but the density 

is at low resolution and not greatly informative beyond showing covalency.   
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Figure 2.9.  Binding of KY170 and KY353 to GBA1. A) Observed electron density for 

KY170, contoured at 1.2 σ (equivalent to 0.30 electrons / Å3). B) Trans-diaxial ring 

opening (the azide coloured blue has scant electron density in the 3D structure). C) 

Observed electron density for KY353, contoured at 1.2 σ (equivalent to 0.18 electrons 

/ Å3). D) Trans-diaxial ring opening. Protein structure figures  drawn using CCP4MG 

(170). 

 

The challenges with obtaining a complex structure with the “unmodified” aziridine KY353, 

coupled to the opportunity to exploit the hydrophobic channel in which the leaving group 

lipid chain may lie, led us to try and obtain a complex with an acyl aziridine, KY358.  

2.4.3 3D complex of GBA1 with acyl cyclophellitol aziridine KY358 
Acyl aziridine derivatives, with variety of extensions at the aziridine nitrogen have 

recently been shown to be potent GBA1 activity-based probes (17). KY358 has previously 

been shown to be a “better” inhibitor of GBA1 with an apparent IC50 of 0.07M compared 

to the 0.5M for KY353 (124) and acyl aziridine derivatives have indeed found wide use 

beyond the GBA1 area – such as for profiling of plant glucosidases (171).  In order to 
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obtain a complex with an acyl aziridine, GBA1 crystals were soaked with an “butryamide 

aziridine”, KY358.  

KY358 crystals diffracted well and did not appear to suffer the disorder observed with 

KY353. The structure could be refined at 1.76 Å resolution and revealed clear electron 

density for the covalently-bound and reacted ligand, Figure 2.9.  The density for the ring 

is clear, as is density for the N-acyl group and one, possibly two of the pendant carbons, 

but beyond that the chain becomes disordered. Subsequently, better insight into the 

binding of KY358 was obtained in a serendipitous co-complex, so discussion of the 

interactions of KY358 will be considered later in this chapter in light of these additional 

data.  

 

 

Figure 2.10.  Binding of acyl aziridine KY358 to GBA1. Observed electron density for 

KY170, contoured at 1.2 σ (equivalent to 0.30 electrons / Å3).  
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2.4.4 3D complex of GBA1 with a galacto-configured cyclophellitol, 

TB562 
One of the issues surrounding ABPs is their occasional cross reactivity, indeed 

promiscuity. GBA1 is believed to be specific for gluco- and xylo- configured substrates.  

With TB562 we wanted to assess if there were potential for cross reactivity with a galacto-

configured covalent inactivator.  The synthesis of galacto-configured isomers of 

cyclophellitol was reported in 2014 (172) where it was shown that the galacto epoxides 

did not bind to GBA1.  But work on other glycosidases has shown that galacto-configured 

inhibitors can sometime bind to glucosidases; one example (of many) is previous work on 

the bacterial GBA1 homolog TmGH1 (from Thermotoga maritima) by Gloster et al (2007) 

(173) reported binding of the enzyme to a galacto-configured reagent (for example 

galacto-hydroximolactam (PDB ID: 2J79)). 
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Figure 2.11. SDS-PAGE gel showing the labelling of GBA1 by the β-galactose 

configured aziridine TB652. Lanes 3-8 are GBA1-TB652, samples taken after 0.5 h, 

and at subsequent given time points (in hours). Lane 2 is the negative control (GBA1 

with no probe). Lane 10 GBA1 labelled with the β-glucose configured aziridine JJB367 

after one hour. GBA1 has an expected molecular weight of 56 kDa. Lanes 1 and 9 

contain protein weight ladder.  

 

Whilst there was no reported binding of GBA1 to a β-galactose epoxide probe by Willems 

et al (159), the fluorescent β-galactose aziridine ABP, TB652 was seen to readily bind to 

GAB1 in solution (Figure 2.11) with significant labelling occurring even after the 0.5 hour 

time point . The first observation is that, despite the previous lack of reported activity of 

GBA1 on galactosides with shorter reaction times, the compound does make a covalent 

adduct. This immediately highlights the potential cross reactivity of the galactosidase 

probe, at least the aziridine version which appears more reactive, if it is applied to human 

cells, especially over longer incubation periods. This strongly suggests that each ABP – 

whether aziridine or epoxide needs to be seriously analysed for cross reactivity before it is 

interpreted in vivo.  
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A crystal complex using the probe TB562, a “truncated” form of TB652 without the 

fluorescent moiety, can give insight in to the enzyme’s ability to accommodate this 

alternative sugar conformation. As previous, a complex with TB562 could be obtained at 

high resolution (1.8 Å) following a 24 hour soaking experiment.  

As seen in Figure 2.12, the compound is well ordered and, as far as can be judged by 

electron density and refinement; it is present at full occupancy.  TB562 binds essentially 

identically to the gluco-configured reagents, the only difference being the axial O4 of 

TB562 which is still able to make a hydrogen bond to Asp127 (distance 2.6 Å), so this 

residue, as with gluco compounds is still able to make H bonds to both O3 and O4 whether 

the sugar be gluco or galacto configured.   

 

 

 

Figure 2.12.  Binding of galacto-configured isomer of cyclophellitol, TB562 to GBA1. 

A) Observed electron density for TB562, contoured at 1.2 σ (equivalent to 0.31 

electrons / Å3). B) H-bonding interactions (<3.0A) at the active centre. The only 

difference with gluco-configured probes is the interaction of an axial O4 with Asp217 

(coloured red).  Of note is the different position of O6 compared to its position in all 

gluco-ABP complexes 

 

Of note, however, is that in the galacto-aziridine complex O6 has moved, perhaps to 

minimise steric clash with the axial O4, Figure 2.12, 2.13. One possible explanation for 

the strong cross-reactivity of the galacto-aziridine, Figure 2.11, but the non-reactivity of 

the 6-substituted galacto-expoxides reported by Willems (159) is this requirement to 
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displace the O6 hydroxyl for binding. This would not be possible were the O6 substituted, 

especially with a bulky side chain.   

 

 

Figure 2.13.  Binding of TB562 (in pink) to GBA1 superimposed with the binding of 

KY170 (shown in green) . A) Observed electron density for TB562, contoured at 1.2 σ 

(equivalent to 0.31 electrons / Å3). B) Overlay of TB562 and gluco-epoxide KY170 

highlighting the similar interactions but different position for O6.  

 

2.4.5 3D complex of GBA1 with KY358 and MDW933 
The goal of this chapter was to observe how activity-based probes bound, ideally to 

visualise how probe ‘R-groups’ could be accommodated at the 6-position as well as on 

aziridine nitrogens.  Many soaks were performed in addition to those outlined above, often 

resulting in crystal disintegration. One complex, however, does begin to shed light on the 

potential interacting surfaces of GBA1.  Serendipitously, a crystal of GBA1 was soaked with 

fluorescent epoxide MDW933 and data collected to 1. 58 Å and upon structure solution it 

was immediately apparent that the crystal had previously been exposed to / cross-

contaminated by acyl aziridine KY358 allowing fortuitous access to a dual ligand structure.  

The fluorescent probe MDW933 has been shown to effectively label femtomolar levels of 

GBA1, for visualisation on SDS-PAGE gels. This is a 10-fold reduction of protein input 

compared to the levels normally required for detection by Western blot, making the ABP 

ideal for the accurate detection of the relatively small amounts of recombinant enzyme 

expressed by transfected mammalian cells (141).  
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In the KY358/ MDW933 co structure, obtained at 1.58 Å resolution, the acyl aziridine 

KY358 is bound to the active centre nucleophile, as previously.  The electron density is 

clear and unambiguous, Figure 2.14.A and the acyl tail extends through a hydrophobic 

channel with Tyr244 at its base and is better ordered than when observed previously. 

Indeed the N-butyl chain aligns well with the chain in the non-covalent inhibitor N-butyl-

DNJ (104), Figure 2.14.B, the amide carbonyl of this acyl aziridine is also able to make a 

hydrogen bond to the NH2 of Gln284 presumably also adding to the inhibitory potential 

compared to KY353.  

 

 

Figure 2.14. Binding of KY358 to GBA1A) Observed electron density for KY358 

contoured at 1.2 σ (equivalent to 0.34 electrons / Å3). B) Superposition of the 

coordinates of 2V3D (104), shown in magenta, and the structure of Cerezyme_KY358, 

shown in green, atoms are coloured by type.  In 2V3D, N-butyl-DNJ is present, 

unbound, in the active site.  

 

KY358 must have been a cross-contamination prior to addition of MDW933. We were 

therefore fortunate that MDW933 also bound to the structure, close to the active centre 

and partially occupying the dimer interface, Figure 2.15.  The entire length of MDW933 is 

observed and well ordered; the BODIPY fluorescent group, linker, triazole and 

cyclophellitol warhead.  Whilst the binding may be fortuitous, it may give an indication of 

how the bulky fluorescent groups are actually accommodated in GBA1 (where indeed O6 

substituents add to potency) (174)  

Binding of MDW933 to recombinant GBA1 was also recorded by Witte and co-workers  in 

2010, and it was found to surpass both CBE and KY10 as an irreversible inhibitor of GBA1 
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with Ki value of 0.007 ± 0.002  (KY170: Ki = 0.044 ± 0.007 μM). A comparison of the 

relative rate constants demonstrated that the larger MDW933 probe inhibited GBA1 22-

fold better than KY170.  MDW933 was also used to successfully label GBA1 in mouse 

tissue lysate; however the probe was also seen to label the lactase-phloridzin hydrolase, 

LPH (127).  

 

 

Figure 2.15. MDW933 present in the structure of GBA1, A) Observered electron 

density for MDW933 at 1.2 σ(equilvalent to 0.34 electons / Å3 ) B) The surrounding 

region with side chains from amino acids from molecule A presented in red and those 

from molecule B presented in purple, atoms are coloured by type. A guanidinium ion 

from the crystallisation solution is also shown. The catalytic nucleophile and 

acid/base are presented in green, consistent with previous figures.  

 

The BODIPY group sits at the surface of the A molecule, in a hydrophobic pocket formed by 

Tyr244 and Pro245 and Phe246, Figure 2.15.  It is partially “sandwiched” by Trp348 and 

Phe347 from the adjacent B molecule of the dimer. The alkyl chain and triazole like in this 

predominantly hydrophobic channel in which Leu241 and Phe316 also contribute.  A 

guanidinium ion (from the crystallisation solution) bridges the triazole to Asp283 of the 

protein. The epoxide ring sits, surface exposed making no direct H-bonding interactions 

with the enzyme but the hydrophobic face of the cyclophellitol lies above the exposed side 

chain of Leu241.  

The binding of MDW933, across the enzyme surface may be “artefactual”, but lots of 

evidence suggests that it does provide insight into the binding of the BODIPY group.  

Modelling, notably very simply torsional rotation of the linker allows the linker and the 

cyclophellitol to be places through the active centre channel, placing the epoxide in perfect 
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super-position with the trapped aziridine without any movement of the BODIPY group 

itself, Figure 2.16.  This may give a good impression of how GBA1 accommodates, indeed 

prefers, the 6-modified cyclophellitols as activity-based probes.  

Unfortunately, soaking of older GBA1 crystals with MDW933 alone resulted in disruption 

of the crystal lattice, with visible cracking on the crystal surface and no good data could be 

collected of this complex. This may be due to the large fluorescent moiety disrupting the 

molecule interfaces within the asymmetric unit or the age of the crystals at the time of 

testing. It is possible, but untestable, that the presence of the KY358 in the active site of 

GBA1 may be stabilizing the protein preventing any dramatic movement upon exposure to 

the larger MDW933 ligand and thus saving the structure of the crystal lattice. MDW933 

has previously been confirmed to bind to GBA1 in solution unambiguously by mass 

spectrometry by Witte et al (127). 

 

 

Figure 2.16 Rotation of the MDW933 ligand, leaving the BODIPY group in place, 

would allow the binding of the epoxide within the active site of the protein. Original 

placement of MDW933 and KY358 ligands are shown in green, whilst the rotated 

“alternate” position of MDW933 is shown in blue. Observered electon density for 

KY358 and MDW933 are shown at 1.2 σ (equilvalent to 0.34 electons / Å3.) 
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Figure 2.17. A) Surface model GBA1 showing the binding of KY358 in the active site 

of the protein and MDW933 on the dimer surface. B) MDW933 is also able to rotate 

and bind into the active site of GBA1, the BODIPY group remaining in place on the 

surface.  

 

Why is GBA1 able to accommodate substituents at the 6-position (as well as R groups 

attached to an aziridine nitrogen)?  The natural substrate for GBA1 is glucosylceramide, 

Figure 2.1, which has two extended acyl chains that the enzyme needs to accommodate.  

The aglycon (leaving-group) region of the active site therefore needs to be both 

hydrophobic and wide enough for two alkyl chains.  Inspection of the structure certainly 

shows that the site can accommodate two chains and, crucially, the O6 of glucose is fully 

“solvent” exposed and allows free access from the hydroxyl to the hydrophobic surface, 

Figure 2.16, and indeed to the platform occupied by the BODIPY group described above.  
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2.5 Summary 
Crystallographic studies were used to probe the 3D binding of a series of gluco-epoxide 

and gluco-aziridine probes and a galacto-aziridine with the human GBA1 enzyme, this 

latter showing the capability of the enzyme to accommodate galactosyl ligands.  

A complex captured with both a covalently-bound aziridine in the active site and a non-

covalent epoxide with a large florescent group highlight the positions in which the GBA1 

enzyme may accommodate other large substrate analogues. This is a key target in the hunt 

for inhibitor/ABP specificity.   

The GBA1 structures reported here immediately suggest a series of “next-generation” 

inhibitors which could be (a) aziridine-based; allowing hydrophobic chain extension from 

the nitrogen but also (b) substituted at O6 to allow exploitation of the wider hydrophobic 

surface and putative dye-binding region (Figure 2.17).  Such compounds, generic formula 

below, are currently being synthesised in the Overkleeft group and will be discussed in the 

final “Conclusions and Perspectives” chapter at the end of the thesis.  

 

 

Figure 2.18. Design of putative bi-substituted GBA1 probe based upon 3D structure.  

Such compounds are currently being synthesised and assessed by the Overkleeft 

group in Leiden.   

 

The ideal goal for monitoring glucosidase activity in human cells would be to obtain 

specific ABPs for both GBA1 and the cytoplasmic enzyme GBA2; ideally compounds that 

are specific for each enzyme. The work by the Overkleeft group, illustrated here at the 3D 

level, has gone a long way to imaging GBA1. At the start of this thesis, no 3D structure for 

GBA2 or its sequence homologs (CAZY family GH116) were known limiting prospects for 

rational inhibitor / probe design. Such work is described in the following chapters 3 & 4. 

  



60 
 

 

  



61 
 

Chapter 3. Purification and 

crystallisation of a bacterial GH116 

enzyme 

3.1 Abstract 

The human enzyme GBA2 (CAZy family GH116) is responsible for hydrolysis of 

glycosphingolipids on the cytoplasmic membrane surface of the Golgi apparatus and the 

endoplasmic reticulum. In humans, genetic defects in GBA2 may result in hereditary 

spastic paraplegia and autosomal recessive cerebellar ataxia. Modulation of the activity of 

GBA2 has been shown to alleviate Gaucher’s disease pathology in mice. Therefore GBA2 

has become a viable target for treatment pathways. At the start of this thesis, little was 

known about CAZy family GH116 enzymes, and none had been structurally solved. 

Bacterial GH116 homologs of the GBA2 enzyme can be used for structural modelling of the 

human protein and so many were screened for expression. Ultimately two constructs of 

the GH116 family retaining β-glucosidase from Thermoanaerobacterium xylanolyticum 

were purified to homology for structural characterization.  

 

 

 

 

 

 

 

 

*Some of the work described in this chapter has been published in Charoenwattanasatien 
et al., (2016) Bacterial β-Glucosidase Reveals the Structural and Functional Basis of 
Genetic Defects in Human Glucocerebrosidase 2 (GBA2). ACS Chem Biol 11, 1891-1900 
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3.2 Introduction 

3.2.1 GBA2 – non-lysosomal glucosylceramidase 
Many important cell surface markers, such as gangliosides which are vital in cell signalling, 

recognition and play a role in the progression of some infections such as leprosy (8), are 

constantly degraded, recycled and re-synthesised. One of the key outcomes of this process 

is the necessarily constant turnover of glucosylceramide with in the cell.  

Primarily, the catabolic pathway for glucosylceramide is via the lysosome, where the 

glycolipid is broken down by GBA1 into glucose and ceramide (see Chapter 1). Mutations 

in GBA1 can lead to a loss of enzyme activity, and thus results in a build-up of 

glucosylceramide within macrophages, giving them a gritty appearance (described as 

Gaucher cells). In many other cells types of Gaucher’s patients, this build-up is not seen, 

leading to the conclusion that there is a secondary catabolic pathway for 

glucosylceramide(175). 

Although GBA1 is known as the primary enzyme responsible for glucosylceramide 

degradation, human cells in fact contain three acid β-glucosidases; the lysosomal GBA1 is 

the enzyme in which functional mutations can lead to Gaucher’s disease. This enzyme is 

discussed in more detail in Chapter 2.   

The non-lysosomal acid-β-glucosidase, which had previously been described as a “bile acid 

β-glucosidase” (176) until it was recognised as being present in all cells(175) is identified 

GBA2. GBA3 is the neutral, cytosolic beta-glucosidase that is primarily localised to the 

liver. Although GBA3 does have glucosylceramidase activity, it does not appear to play a 

significant role in the modulation of Gaucher’s disease(139). (Table 3.1). 
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TABLE 3.1 GBA ENZYMES AND THEIR ROLES 

 GBA1 GBA2 GBA3 

Alternative names Lysosomal acid β-

glucosidase 

Non-lysosomal 

glucosylceramide, 

Bile acid β-glucosidase 

Cytosolic beta-

glucosidase, 

Klotho-related 

Protein 

EC number EC 3.2.1.45 EC 3.2.1.45 EC 3.2.1.21,  

EC 3.2.1.45 

CAZy family GH30 GH116 GH1 

Location within the 

cell 

Lysosome Cytosolic membrane of 

ER/Golgi 

Cytosol, neutral 

pH 

Associated disease Gaucher’s 

disease(177) 

ARCA, HSP(178) Unknown (138) 

 

GBA2 breaks down glycosylceramide (GluCer) in the cytoplasmic face of the Golgi 

apparatus and the endoplasmic reticulum. The degradation of GluCer by GBA2 may be 

responsible for the lower levels of GluCer in some cells of Gaucher’s patients and the 

resulting modulation of overall disease pathology.  

Whilst GBA1 and GBA2 both act on the same substrate (GluCer), they differ in their 

reactions towards particular inhibitor compounds. For example GBA1 is inhibited by 

conduritol-B-epoxide (CBE) whereas GBA2 is comparatively insensitive to it (130). 

Conversely, GBA2 is more sensitive to inhibition by deoxynojirimycin analogues compared 

to its lysosomal counterpart.  

GBA2 activity is optimal at cytosolic pH 5.5-6.0, in comparison to GBA1 which is functional 

at the lower lysosomal pH 3.5-5.5 (179). Activity of GBA2 is affected by whether the 

enzyme is membrane associated or not. Presence of the membrane can also affect how the 

enzyme is affected by inhibitors – Ridley et al found that GBA2 was apparently more 

sensitive to CBE when associated with the cell membranes (179). 

The two retaining β-glucosidases have distinct amino acid sequences and 3D structures 

and belong in separate CAZy glycosidase hydrolase families; GBA1 in family GH30 and 

GBA2 in family GH116. 

Both GBA1 and GBA2 show activity towards a second natural substrate, bile acid-3-O-β-

glucoside. This was initially thought to be the main substrate of GBA2. However 

deficiencies in humans of either GBA1 or GBA2 do not lead to the accumulation of bile 
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acid-3-O-β-glucoside within the cell, leading to the hypothesis that one enzyme is able to 

compensate for the action of the other (180).  

Potentially of clinical relevance, the drug miglustat (NB-DNJ, Chapter 2, Figure 2.5), used 

for the treatment of Gaucher’s disease, was found to inhibit GBA2, IC50 = 6 nM (130,179). 

The targeted used of miglustat was substrate reduction therapy, with the goal to reduce 

the synthesis of glucosylceramide (inhibition of the enzyme glucosylceramide synthase).  

Miglustat is also a micromolar inhibitor of GBA1 (IC50 = 400 μM(107)), and the active site 

binding of the inhibitor has the secondary effect of stabilising certain mutant forms of 

GBA1, providing the basis of pharmacological chaperone therapy.  However at most 

therapeutic doses miglustat will be completely inhibiting GBA2 activity (181). 

Patients with Niemann-Pick type C1 disease are also prescribed miglustat to reduce 

glucosylceramide synthase activity. In mouse models, miglustat has been shown to be 

acting off-target, as an inhibitor of GBA2, leading to increased CNS glucosylceramide levels 

(182) . 

3.2.2 GBA2 in human disease 
GBA2 itself is linked to many medical conditions outside of Gaucher’s disease.  GBA2-

knockouts in mice show male infertility but no Gaucher’s disease phenotype (175). 

However they do accumulate glucosylceramide in the tissues which most predominantly 

express GBA2, such as the liver, brain and testes. In comparison, mice with Gaucher’s 

disease, which are GBA1 deficient, present with a variety of issues including splenomegaly 

and neurological symptoms, a pathology similar to human Gaucher’s disease. (183). 

Zebrafish with the GBA2 knockout mutation also show some neurological defects. 

However again it is distinct from Gaucher’s disease phenotype. (131) 

 In humans, different mutations in GBA2 can lead to different hereditary diseases such as 

autosomal-recessive cerebellar ataxia and hereditary spastic paraplegia (131-133). GBA2 

therefore seems to be necessary for healthy neuronal development. Unlike Gaucher’s 

disease, in which a variety of mutations in GBA1 all lead to the same disease outcome, 

varies point mutations in GBA2 are linked to different clinical consequences.  

There are five known missense mutations that may occur in human GBA2 leading to 

disease (131-133,178,184), shown in Table 3.2. Whilst many of these mutations can lead 

to the similar pathology in patients, often described as spastic paraplegia and cerebellar 

ataxia, the location of the mutations through the three dimensional protein structure may 

give further insight into the effect that these changes are having on the enzyme’s active 

site as well as protein stability and potential domain interaction.  
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Expression of GBA2 can be upregulated in malignant human melanoma cells in vitro, 

lowering GluCer levels and resulting in higher ceramide levels. This results in decreased 

cell growth and eventually apoptosis (137). GBA2 is down-regulated within melanoma 

cells and could provide a target for cancer treatment.  

Significantly, Gaucher’s disease mouse models show a reduction in symptoms when GBA2  

was knocked out (134), whilst the overexpression of GBA2 was shown to be toxic to 

melanoma cells (137). This suggests that modulation of the behaviour of GBA2 by specific 

inhibitors could be useful for the treatment of Gaucher’s diseases whilst the use of 

activators could possibly be used to combat melanoma. 

The activity of GBA2 in Gaucher’s disease cells is still not fully understood, although it 

appears it is down-regulated in the absence of GBA1 activity, rather than compensating for 

the loss of the lysosomal β-glucosidase enzyme (135,136). Deletion of GBA2 in fact 

partially relives Gaucher’s disease pathology in mouse models, suggesting that one factor 

of Gaucher’s pathology is the accumulation of the toxic sphingosine, produced at the 

cytoplasmic face of the ER and Golgi apparatus by GBA2. (134)  

TABLE 3.2 MUTATIONS IN GBA2 AND THEIR ASSOCIATED PATHOLOGIES  

GBA2 mutation Associated pathology 

F419V Hereditary spastic paraplegia/cerebellar ataxia (SPG46)(133) 

D594H Spastic ataxia (184) 

R630W Hereditary spastic paraplegia(131) 

G683R Hereditary spastic paraplegia (178) 

R873H Hereditary spastic paraplegia/cerebellar ataxia (SPG46)(133) 

 

Following research which showed the roles played by GBA2 in spastic paraplegia and 

cerebellar ataxia (131) as well as the effect that it may have in the modulation of Gaucher’s 

disease (134), understanding and control of the function of GBA2 has become an 

important step for the treatment of these diseases.  

The membrane-associated nature of GBA2 has made it hard to purify the human enzyme. 

Initial study of GBA2 was limited by low volumes of protein and the necessary use of 

detergent. 
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3.2.3 GH116 enzymes 
All glycosidases hydrolyse the bond between a carbohydrate and either another 

carbohydrate or a non-carbohydrate moiety (Figure 3.1). Those with a retaining 

mechanism end their reaction with a net retention of the sugar ring configuration. This is 

done by a two-step process involving a covalent intermediate (Chapter 1, Figure 

1.9.B)(118). 

Human GBA2 belongs to glycoside hydrolase family 116, a family much less well studied 

than that of GBA1 (GH30). Until recently, relatively little was known about this group of 

enzymes. The initial purification of GBA2 from the human liver characterised the enzyme 

as bile acid β-glucosidase in 1996(176) but it wasn’t until 2007 that is was recognised as 

the non-lysosomal β-glucosidase, GBA2  (175). 

 

 

Figure 3.2 A reaction schematic for a retaining β-glucosidase, such as GBA2 or GBA1. 

The catalytic acid/base is shown at the top whilst the catalytic nucleophile is belo w.  

 

Work on the molecular characterisation of a glycoside hydrolase from the archaeon 

Sulfolobus solfataricus P2 (SSO1353, by Cobucci-Ponzano et al in 2010), led to the creation 

and classification of CAZy family GH116 (129).  As of August 2017, there are now almost 

400 enzymes identified as belonging to the GH116 family, although only five have been 

functionally characterised.  

Whilst all GH116 enzymes are retaining enzymes, with a specificity for β-glucosides, the 

GH116 family can be further divided in to three “subfamilies” based on other substrate 

specificities of the enzymes and the sensitivities to the certain competitive inhibitors 

(185). For example, SSO1353 was seen to be sensitive to conduritol β-epoxide (CBE) 

inhibition, in contrast to human GBA2 which is insensitive to CBE (129). 
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GH116 subfamily 1 contains enzymes specific for glucosylceramides, that are sensitive to 

nM levels of NB-DNJ but are insensitive to CBE; this included the human GBA2 (175). 

GH116 subfamily 2 was characterised by an enzyme identified as SSO3039, also from the 

archea Sulfolobus solfataricus P2. SSO3039 is a bifunctional β-glucosidase/N-acetyl-β-

glucosaminidase, with sensitivity to both NB-DNJ and CBE at μM and mM concentrations 

respectively (185).  

SSO1353, the original GH116 enzyme, belongs to subfamily three and was seen to 

hydrolyse β-glucosides and β-xylosides bound to hydrophobic groups. Subfamily 3 

enzymes have mM sensitivity to both NB-DNJ and CBE.  SSO1353 is also capable of the 

transglycosylation of β-D-xylo-oligosaccharides (129).  

Given the absence of a 3D model of any human GH116 family proteins, bacterial homologs 

can be used to produce a structural model.  A Basic Local Alignment Search Tool (BLAST) 

sequence searches produces two bacterial GH116 enzymes with >37 % sequence identity 

to the human GBA2, over 830 residues (Table 3.2)(186). Over the catalytic domain, 

sequence identity is higher still, with the GH116 enzyme from Thermoanaerobacter 

xylanolyticum sharing approximately 40% sequence identity with the human counterpart.  

TABLE 3.3 GBA2 SEQUENCE IDENTITY ACROSS SPECIES 

GH116 Source No of amino acids Sequence Identify to 

Human GBA2 (%) 

Homo sapiens   927 100.00 

Pan troglodyte  927 99.46 

Mus musculus  918 87.58 

Drosophila melanogaster 948 43.91 

Arabidopsis thaliana (L.) Heynh. 947 39.15 

Thermoanaerobacter xylanolyticum 787 37.98 

Caenorhabditis elegans (Bristol N2) 959 37.49 

Arthrospira plantensis 799 37.42 

Bacteriodes thetaiotamicron 825 24.60 

Sulfolobus solfataricus  SSO3039 803 23.61 

Sulfolobus solfataricus  SSO1353 663 22.77 

Sequence search performed using BLAST(186). 

The full sequence alignment is included in Appendix 1. 
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3.2.4 Aims of the research in this chapter 
Here I describe the recombinant expression of three bacterial β-glucosidase GH116 

enzymes. Following conformation of the activity of the enzyme in whole cell lysate was 

performed using activity based probes, a protocol for the production and purification of 

the β-glucosidase GH116 enzyme from the bacterium Thermoanaerobacterium 

xylanolyticum, (TxGH116) was designed. Subsequently, TxGH116 was crystalized and the 

three dimensional structure of the protein solved (described in Chapter 4).  TxGH116 has 

a sequence homology of 38% with GBA2, over residues 63 to 893 in the human enzyme 

(Table 3.2). Expression, purification and subsequent study of this enzyme make it an 

informative homology model for the human protein.   
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3.3 Material and Methods 

3.3.1 Sequence Alignment 
A Basic Local Alignment Search Tool (BLAST) search was performed using the human 

GBA2 protein sequence and five GH116 enzymes (confirmed via the CAZy database) were 

selected from a range of Kingdoms. Also included were the three bacterial enzymes 

studied here and the archaeal GH116 from Sulfolobus solfataricus SSO1353, which led to 

the classification of CAZy family GH116 in 2010 (129) 

A sequence alignment of ten GH116 family retaining β-glucosidases was performed using 

the T-Coffee server (tcoffee.crg.cat) and formatted using Espript (espript.ibcp.fr) 

(187,188). 

3.3.2 Cloning and transformations of bacterial GH116 enzymes 

In order to optimise chances of successful protein, bacterial GH116 homologs the genes 

encoding GH116 enzymes from Thermoanaerobacterium xylanolyticum, Arthrospira 

plantensis and Bacteriodes thetaiotamicron were cloned into pET28a(+) (30 ug/ml 

kanamycin resistant) between NdeI and XhoI restriction sites (clones synthesised by 

Genscript, Inc, codon optimised for E. coli expression). A His6-tag was included at the N 

terminus of the protein sequence, replacing the first 20 amino acid residues, with a 

thrombin cleavage site between the protein and the tag. These protein constructs were 

designated TxGH116N, ApGH116N and BtGH116N respectively. Full sequences of the 

three constructs are in Appendix 2.  

BL21 (DE3) E.coli cells were transformed with the pET-28a(XxGH116) and grown in 5 ml 

LB media containing 30 mg L-1 kanamycin overnight at 37 °C overnight with aeration by 

shaking at 180 rpm. This culture was then used to inoculated a larger (50 ml) volume of 

autoclaved LB media containing 30 mg L-1 kanamycin and expression of the protein 

encoding genes were induced by the addition of 1 mg L-1  isopropyl-β-D-1-

thiogalactopyranoside (IPTG) when the culture reached an OD600 of 0.6. Cells were 

harvested by centrifugation and subsequently lysed by sonication at 14-18 Hz and 

expression of the proteins of interest was confirmed by SDS-PAGE gel. 

3.3.3 Overexpression and purification of TxGH116N 

TxGH116N purification was successfully scaled up. Cells containing pET-28a(TxGH116) 

were cultured in LB media containing 30 mg L-1 kanamycin until an OD600 of 0.6 had been 

reached. Expression of the TxGH116 gene was induced with 0.5 mg L-1 IPTG and the cells 
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further incubated 16 °C for 18 hr. A reduced concentration of IPTG and slower growth was 

found to improve protein production.  

Cells were subsequently lysed by sonication at 14-18 Hz, four runs of 40-50 second 

exposure, in buffer A (50 mM HEPES pH 7.5, 500 mM NaCl, 20 mM imidazole). Cell debris 

were removed by centrifugation for 15 minutes in a Sorvall SS-34 rotor at 38 000g.  

TxGH116N was removed from the resulting soluble fraction using a two-step purification 

procedure, consisting of nickel affinity chromatography of the His6-tagged protein and 

subsequent size-exclusion chromatographic separation. Total soluble cell lysate was 

loaded onto a 5 ml GE Healthcare crude HisTrap column, equilibrated with buffer A. 

Unbound material was removed by washing with three CV of buffer A. Bound protein was 

eluted with a gradient of buffer B (50 mM HEPES pH 7.5, 500 mM NaCl, 500 mM 

imidazole) applied over 20 CV.  

The fractions containing TxGH116N were pooled, concentrated and buffer exchanged into 

buffer GF (50 mM HEPES pH 7.5, 500 mM NaCl) to reduce imidazole concentration.  The 

protein was then loaded onto a Superdex S200 gel filtration column equilibrated in buffer 

GF and the elution of the target protein was performed at 2 ml/min. The fractions 

containing TxGH116N pooled, concentrated to the required concentration and stored at 5 

°C. 

3.3.4 SEC-MALLS 

Size Exclusion Chromatography - Multi-Angle Laser Light Scattering (SEC-MALLS) was 

used to determine the molecular mass of both soluble-state TxGH1116N and TxGH116C. A 

Superdex 20 HR 10/30 column was connected to an HPLC system, which was coupled to a 

DAWN Heleos lighter scattering instrument with a laser wavelength of 658.00 nm (Wyatt 

Technology).  

TxGH116N was run at 125 nM in buffer containing 50 mM HEPES pH 7.5 150 mM NaCl at 

0.5 ml/min.   TxGH116C (Chapter 4) was run separately at 125 nM in buffer containing 

50mM HEPES pH 7.5 150 mM NaCl at 0.5 ml/min. Both samples were centrifuged for ca. 5 

min before being run. 

Data analysis of both experiments was done using ASTRA software interface from Wyatt 

technology. The absolute masses of the particles in the solution could be obtained in real-

time. 

  



71 
 

3.3.5  Activity Based Probes 

Total cell lysate from 5 ml overnight growth cultures of all three bacterial BL21 (DE3)-

pET-28a(XxGH116) constructs were incubated with the activity based probe designated 

KY375 (Figure 3.2) at room temperature for 30 mins at a final concentration of 2 mM. The 

samples were resolved using SDS-PAGE and scanned for fluorescence using BIO-RAD 

Molecular Imager FX using excitation/emission maxima  of 503/512 nm.  

 

 

Figure 3.2 The cyclophellitol-aziridine activity based probed KY375 used in this 

chapter. It is specific towards GH116 enzymes. Red: The “warhead”, chemically active 

targeting moiety. Black: linker. Green: A (boron-dipyrromethene) BODIPY 

fluorescence group. 

3.3.6 Crystallisation of TxGH116N 

Purified TxGH116N was screened for crystallisation hits against various commercially 

available screens using sitting drop vapour diffusion in 96-well plate format. All hits were 

then fine-screened in 48-well plate format to test and improve crystal size and diffraction 

quality. Initial crystals of TxGH116N formed after 9-11 weeks and were used as a seed 

stock to increase the growth speed of TxGH116N crystals. 

Best TxGH116N crystals were grown at 19 °C over a period of six weeks with equal 

volumes of protein (35 mg/ml) and mother liquor solution containing 0.1 M Bistris 

propane pH8, 0.2 M (NH4)2 SO4 PEG 6K (polyethylene glycol, molecular weight 6 kDa) 15% 

(w/v).  
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A selenomethionine variant of TxGH116-N was produced by methionine auxotrophic cells 

(the same line of E. coli BL21 (DE3) cells used) grown in PASM-5052 auto-induction 

media. The purified SeMetTxGH116 was tested both similar crystallisation conditions as 

the native protein and also rescreened from initial trials.  Once the structure of TxGH116C 

was published by Sansenya et al (2015)(189) however, further selenomethionine protein 

growth was deemed unnecessary. 

3.3.7 Data collection 

Initially crystals of TxGH116N were individually transferred to cryoprotectant solution of 

the mother liquor combined with 20 % glycerol (v/v) and immediately placed in liquid N2 

at 100K. However, after seeing some issues with crystals cracking on exposure to 

cryoprotectant, several crystals were frozen without cryoprotectant.  

Diffraction quality of all TxGH116N crystals was initially tested in house using a RUH3R 

rotating anode X-ray generator. Diffraction images were sampled at angles of 0 and 90° 

using 0.5° oscillations. The best diffracting crystals were then sent to the Diamond Light 

Source in Oxfordshire for data collection. 

 

  



73 
 

3.4 Results 

The genes encoding for bacterial β-glucosidases, ApGH116N, BtGH116N and TxGH116N, 

were successfully expressed in E.coli. TxGH116N was successfully purified, and 

crystallised in a form suitable for further structural study.  

3.4.1 Sequence alignment 
BLAST (186) sequence search tool with the Sulfolobus solfataricus β-glucosidase SSO1353 

returns a 23% identity match to the β-glucosidase from Thermoanaerobacterium 

xylanolyticum (TxGH116),  with TxGH116 having a 38% similarity across 830 residues 

when aligned to the human GBA2 enzyme.  

The results from the T-Coffee alignment (Figure 3.3) show that many potentially key 

active site residues and as well as the five known GBA2 disease mutations, shown in Table 

4.1, are conserved between TxGH116 and human GBA2.  

The full protein sequence alignment is included in Appendix 1.   
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Figure 3.3. A section from a multi-alignment of various GH116 β-glucosidase protein 

sequences. Invariant residues are highlighted in red. Areas of high conservation are 

boxed in blue. Identified catalytic residues are marked with a star. Homo is 

NP_065995.1 from Homo sapiens. Pan is XP_001167923.1 from Pan troglodytes. Mus is 

CAM17042.1 from Mus musculus. Drosophila is AA041192.2 from Drosophila 

melanogaster. Caenorhabditis is CAD21661.1 from C. elegans Bristol N2. Arabidopsis 

is BAE.99039.1 from A. thaliana.  Sulfolobus is SSO1353 from S. solfataricus P2. 

SSO3039 is SSO3039 from S. solfataricus P2. ApGH116 is BAI91082.1 from A.platensis 

NIES_39. BtGH116 is AA078014.1 from B. thetaiotaomicron VP1-5482. TxGH116 is 

AEF18218.1 from T.  xylanolyticum. Alignment made using the T-Coffee server 

(tcoffee.crg.cat) and formatted using Espript (espript.ibcp.fr) (187,188). 
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3.4.2 Expression of Bacterial GH116 enzymes 

Initial expression tests were performed with 50 ml culture volumes of BL21 (DE3) cells 

containing pET-28a(XxGH116). Growth conditions (temperature post induction, shaking 

speed), media and IPTG levels were varied to find optimal growth conditions for maximum 

protein production.  

 

 

Figure 3.4 SDS-PAGE gel showing expression of bacterial GH116 enzymes by BL21 

(DE3) E. coli cells. Lanes 1-3) Cell lysate containing pET-28a(ApGH116) pre-

induction, 4 hours post-induction with 0.5 mg L-1 IPTG, soluble fraction in 50 mM 

HEPES pH 7.5, 200 mM NaCl only. Lanes 5-7) Cell lysate containing pET-

28a(BTGH116) pre-induction, 4 hours post-induction with IPTG, soluble fraction only. 

Lanes 8-10) Cell lysate containing pET-28a(TxGH116) pre-induction, 4 hours post-

induction with IPTG, soluble fraction only. Lane 4 contains Bio-Rad Broad Range 

Molecular Weight Standards protein ladder. 

 

The SDS-PAGE (Figure 3.4) shows that, while all three constructs were expressed, only 

BL21 (DE3) cells containing pET-28a(TxGH116) produced soluble protein when induced 

with 0.5-1 mg L-1 IPTG.  Both ApGH116 and BtGH116, although later proved to be active 

protein in whole cell lysate, were not readily soluble when the lysed cell pellet was 

resuspended in a range of buffers and so TxGH116 was selected to scale up protein 

production. 
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3.4.3 Purification of TxGH116N 
Nickel chromatography was used to obtain the His6-tagged TxGH116N protein from the 

cell lysate following sonication (Figure 3.5). The protein was then further purified by gel 

filtration (Figure 3.6) to give a final yield of ~ 7 mg /L of cell culture.  

Gel filtration of TxGH116N consistently gave two peaks (Figure 3.6.A).  However, when 

samples from each of these peaks were run on an SDS-PAGE gel they showed protein of 

equal mass, with no obvious contaminents (Figure 3.6.B).  

A SEC-MALLS run of TXGH116N (3.4.4)  showed that the protein appeared to be behaving 

as a dimer in solution when at lower concentrations, and a dimer/monomer mix at high 

concentrations. The secondary peak resulting from the gel filtration may be the monomer 

protein eluting later than the larger dimer form, that when denatured and resolved on an 

SDS-PAGE gel both appear as the same sized molecule.  
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Figure 3.5 A) Chromatogram showing the elution of the TxGH116N-His6 protein from 

a HisTrap nickel column with an increasing concentration of buffer containing 

imidazole. Protein is measured by the UV absorbance at 280 nm (A280). B) An SDS-

Page gel of fractions taken from the peak between ~45-70 ml (lanes 5 -7). Lane 1 is a 

broad range molecular weight ladder (Bio-Rad), lane 2 is a sample of the total cell 

lysate, lane 3 is a sample of the flow through (1-10 ml) and lane 3 is a sample of the 

total protein that was loaded on to the column. TxGH116N has an expected MW of 91 

kDa. 



78 
 

 

Figure 3.6. A) Chromatogram showing the elution of the TxGH116N-His6 protein from 

an S200 size exclusion gel filtration column. Protein is measured by the UV 

absorbance at 280 nm (A280). B) An SDS-Page gel of fractions taken from the two 

peaks between ~95-120 ml (lanes 2 -3). Lane 1 is a broad range molecular weight 

ladder (Bio-Rad). TxGH116N has an expected MW of 91 kDa. 
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3.4.4 SEC-MALLS 
The results of the SEC-MALLS run of TxGH116N showed that the protein was behaving 

mostly as both a dimer in solution (Figure 3.7.A). This is in agreement with the crystal 

data discussed in Chapter 4¸where two molecules of TxGH116N were seen in the 

asymmetric unit of the P61 crystal form. 

However, the P21212 crystal form of TxGH116C has only one molecule of the enzyme in 

each asymmetric unit. SEC-MALLS of the TxGH116C construct of the protein shows the 

enzyme behaving as a monomer in solution (Figure 3.7.B).  

The presence of the C-terminal His6-tag is likely disrupting the dimer interface of the 

protein. However this has little or no effect on the catalytic activity of the enzyme, as 

measured by Charoenwattanasatien and co-workers (190). 

An earlier SEC-MALLS run of TxGH116N at 250 nM was also run and published in 

Charoenwattanasatien et al 2015 (190). The secondary run at a lower concentration was 

performed to determine whether the dimer behaviour was an artefact of a higher protein 

concentration.  
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Figure 3.7. Results from SECMALLS of 125 nM TxGH116N and TxGH116C. UV 

absorbance is shown in red, molar mass is shown in blue.  A) TxGH116N – There is a 

distinct peak at the equivalent of 198.7 kDa, and minor peak at 92.3 kDa. TxGH116N 

has a predicted mass of 92.7 kDa. B) TxGH116C – there are two distinct peaks, a 

minor peak at approx. 198 kDa and a major peak at 92.5 kDa. 
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3.4.4 Activity based probes 
The use of activity based probe KY375 (Figure 3.2) confirmed the presence of active 

enzymes in the cell lysate of all three test expression cultures.  Successful covalent tagging 

with KY375 shows that both APGH116 and BtGH116 are expressed in active forms by 

BL21 (DE3) E. coli and that loss protein fold and stability is occurring during purification 

stages.  

 

 

Figure 3.8 Tagging of active retaining β-glucosidases in the whole cell lysate. Only the 

GH116 enzyme, with the expected molecular weights of 90-91k Da, has been tagged 

by the fluorescent probe. A) SDS-PAGE gel showing the total cell lysate of E.coli 

transformed with a plasmid containing 1) BtGH116, not exposed to IPTG 2) ApGH116 

4 hours post induction with 1 mg L-1 IPTG 3) BtGH116 4 hours post induction with 1 

mg L-1 IPTG 4) TxGH116 4 hours post induction with 1 mg L -1 IPTG. B) The same gel, 

showing the localisation of the BODIPY fluorescent tag to the GH116 enzymes 

 

The KY375 ABP is a large molecule which the enzyme may have struggled to 

accommodate, but the successful tagging with the KY375 probe (Figure 3.8) also severed 

to confirm TxGH116 as a suitable human protein analogue to pursue further structural 

studies. Binding of KY375 to the TxGH116 protein is discussed further in Chapter 4. 
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3.4.5 Crystallisation and data Collection 
TxGH116N was successfully crystallised in the conditions described above (Figure 

3.9.A,B). Crystals of TxGH116N were suitable for further analysis, data collection and 

structure solution (Figure 3.8.C).  Data reduction and subsequent molecular replacement 

showed that TxGH116N crystallised in space group P61.  Cell dimensions were measured at 

a = b = 187.8 Å, c = 99.3 Å; α, β, γ = 90°, 90°, 120°. 

 

 

Figure 3.9. Crystals of TxGH116. A) Initial crystals from multi 96 well plate screening. 

B) TxGH116 crystals following seeding with earlier crystals to speed growth. C) Initial 

diffraction images, albeit rather weak, taken in-house of the TxGH116N crystal that 

was used for data collection. Images were taken at 0-0.5 ° and 90-90.5 ° respectively, 

with a 5 second exposure. 
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3.5 Summary 

The human enzyme, non-lysosomal β-glucosidase GBA2, plays a role in the pathology of 

human diseases, including hereditary spastic paraplegia, and specific inhibitors of GBA2 

may be useful in the treatment of Gaucher’s disease. At the start of this thesis, little was 

known about the structure of proteins in CAZy family GH116, the family of GBA2. In this 

chapter is described the expression of three bacterial GH116 enzymes, and the purification 

of TxGH116, a bacterial homolog of the human GBA2 enzyme, from E.coli cells.  

Use of a cyclophellitol aziridine activity based probe, designated KY375, to label active 

bacterial GH116 enzymes in solution helps to show that these bacterial enzymes are 

suitable to replicate the human counterpart. These bacterial enzymes are obviously able to 

accommodate the large chemical probes that are being studied, like their human 

equivalent.  

Following initial expression tests and screening of purification buffers, scaling up of the 

initial protein production has provided an efficient protocol for the production of 

quantities of TxGH116N protein. The protein was purified to a standard suitable for 

crystallization. Successful crystallisation of TxGH116N lead to the solution of the three-

dimensional structure of the protein, as described fully in Chapter 4.  
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Chapter 4.  3D structures of bacterial 
glucocerebrosidase TxGH116 in 
complex 

4.1 Abstract 

The previous chapter described the over expression of several candidate bacterial GBA2 

homologs with the successful crystallization of an enzyme from Thermoanaerobacterium 

xylanolyticum, TxGH116.  Here I describe the structure solution of TxGH116. During the 

course of our work, a Thai group also over-expressed and solved the 3D structure using a 

different construct, which we term TxGH116C, and we pooled our results for publication*. 

The TxGH116C construct provided better quality crystals and so was used by me for 

subsequent complexes – notably with cyclophellitol aziridine derived activity based 

probes and the glucosidase inhibitor castanospermine at resolutions up to 1.7 Å. The three 

dimensional structure of the bacterial GH116, TxGH116, gives key insights into the effects 

that pathogenic human GBA2 mutations may have on the protein.  Knowledge of the 

structure of the bacterial protein, both alone and bound to a range of inhibitors and 

ligands, can feed into the design of further probes that aim for specificity for GBA2 over 

GBA1 (or vice versa). 

 

 

 

 

 

 

*The work described in this chapter has been published in Charoenwattanasatien et al., 
(2016) Bacterial β-Glucosidase Reveals the Structural and Functional Basis of Genetic 
Defects in Human Glucocerebrosidase 2 (GBA2). ACS Chem Biol 11, 1891-1900 

Aziridine complex:   Lahev et al., (2017) A Fluorescence Polarization Activity-Based 
Protein Profiling Assay in the Discovery of Potent, Selective Inhibitors for Human Non-
lysosomal Glucosylceramidase. J Am Chem Soc, in press  
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4.2 Introduction 

The lysosomal acid-β-glucosidase that forms the basis of Gaucher’s disease, GBA1 of CAZy 

family GH30, was previous described in Chapter 2. The first X-ray crystallographic 

structure of human GBA1 was solved in 2003 by Dvir et al (38) and since then multiple 

structures have been published.  As described in the introduction and Chapter 3, human 

cells contain a second glucosylcerebrosidase, GBA2 (non-lysosomal glucosylcerebrosidase, 

E.C. 3.2.1.45) 

GBA2 was first identified in humans as a “bile acid β-glucosidase”, distinct from earlier 

identified β-glucosidases, in 1992 by Matern et al (176). A year later, “another” β-

glucosidase was recognised as present in many other human tissues as a “conduritol B 

epoxide (CBE) insensitive β-glucosidase”, that was active on glucosylceramide when GBA1 

was inhibited by CBE(191). It wasn’t until 2007, when Boot et al cloned and expressed the 

full cDNA of GBA2, that these two enzymes were recognised as the same protein species 

(175).  

Whilst the importance of GBA1 and its role in disease has been widely recognised, the 

physiological activity of GBA2 has only comparatively recently been documented, notably 

in male mouse fertility (192), whilst a deficiency of GBA2 has also been linked with the 

accumulation of glycosylceramide in the spleen and impaired liver regeneration in mice 

(136,193). In humans, point mutations in GBA2 lead to neurological disorders such as 

hereditary spastic paraplegia (131). 

Due to this role in both Gaucher’s disease progression and its involvement in other 

pathologies, GBA2 has become a viable therapeutic target for disease treatment. To aid the 

design of new GBA2 probes, three- dimensional structural knowledge of the protein is 

ideal. GBA2 is a large, membrane-associated protein, with a molecular weight of 104 kDa, 

unwieldy to work with in a crystallographic context (194) . Bacterial homologs are usually 

more simply expressed in standard E. coli strains, with the advantage of larger protein 

yields and fewer post-translational modifications such as glycosylation.  

4.2.1 Characterisation of GH116 family enzymes 
GBA2 is a member of CAZY glycoside hydrolase family GH116; a family first described in 

the 2009 paper by Cobucci-Ponzano et al (129) with the biochemical analysis of the 

archaeal β-glucosidase from Sulfolobus solfataricus (SSO1353).  Since then, CAZy family 

GH116 has been populated with 377 identified proteins, from all three domains of life.  

However, as of writing, only 5 have been experimentally analysed and for only one 

(TxGH116, this chapter) has a 3D structure been published.  
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Following their work on founding the GH116 family with the functional classification of 

SSO1353, the Moracci group has further defined three GH116 subfamilies based upon 

GH116 enzyme substrate specificity and inhibitor sensitivity (Table 4.1) (185). 

TABLE 4.1 GH116 SUBFAMILIES 

GH116 Subfamily Subfamily 1 (175) Subfamily 2 (185) Subfamily 3 (129) 

Example GBA2 SSO3039 SSO1353 

Mechanism Retaining Retaining Retaining 

Specificity β-glucosides, 

glucosylceramides 

β-glucosides,  

N-acetyl-

glucosaminides 

β-glucosides, 

β-xylosides 

CBE sensitivity? No mM mM 

NB-DNJ sensitivity? nM μM mM 

 

In Chapter 3, I described the purification of and the crystallisation of a bacterial GBA2 

homologue, TxGH116, a β-glucosidase from Thermoanaerobacterium xylanolyticum. 

TxGH116 is both a β-glucosidase and a β-glucosylceramidase, belonging to GH116 

subfamily 1 (190); a family which acts with net retention of anomeric configuration (129).  

Retaining β-glucosidases, such as GBA2, utilise a catalytic acid/base residue and 

nucleophile residue to hydrolyse a glycosidic substrate through classic Koshland retaining 

mechanism. This is a two-step double displacement with the creation of a glycosyl enzyme 

intermediate (Figure 3.2)(144). Firstly the nucleophile residue must attack the anomeric 

carbon, whilst the acid/base residue is acts as a general acid catalyst, protonating the 

oxygen of the glycosidic bond to allow leaving group departure and allowing the formation 

of a covalent glycosyl-enzyme intermediate. In the second step, a water molecule acts as a 

nucleophile, activated by the acid/base residue which is now acting as a base catalyst, to 

complete the hydrolysis and deglycoslyate the enzyme  (195). 
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The first archaeal GH116 β-glycosidase, SSO1353, was indeed shown to have a retaining 

mechanism (129). The identities of the catalytic nucleophile and acid/base of SSO1353 

were identified by computational sequence alignment with other GH116 family enzymes 

and then site directed mutagenesis of the likely target residues.  

Asp462 was confirmed as the catalytic acid/base of the enzyme by rescuing of the enzyme 

activity with sodium azide (which is able to act as an external nucleophile that does not 

require enzymatic deprotonation for activity). The catalytic nucleophile was identified as 

through the use of the activity-based inhibitor 2,4-dinithrophenyl-β-D-2-deoxy-2-fluoro-

glucopyranoside  (2,4,DNp-2F-Glc)(129), which is able to readily undergo the 

glycosylation step of the enzyme reaction, forming the intermediate, but does not so 

readily undergo the deglycosylation step, due to the presence of a fluorine substituent at 

the C2 position. This has the effect of destabilizing the transition states, and so the 

incorporation of a good leaving group is necessary (in this case 2,4-dinitrophenol) to 

promote the glycosylation step (141).  

As described in Chapters 1 and 2, disruption of this reaction after the first stage can be 

done by exposing the enzyme to an activity-based probe (ABP) that contains an aziridine 

analogue of the cyclophellitol “warhead”. This process results in an enzyme that is 

covalently bound to the ligand at the catalytic nucleophile residue (118,141) (Figure 4.1).  

Utilising an ABP with a warhead linked to a probe that is, for example, fluorescent can 

allow for real time labelling of enzymes in cells with minimal short-term disruption to the 

function of other biological process, and, importantly, only the labelling of the active, 

correctly folded enzyme.  Probes with a reporting moiety that have fluorescent capacity 

can be used multiple ways, from in vivo protein localisation to fluorescence polarization 

assays and the analysis of the potency of small molecule inhibitors.  
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Figure 4.1. Capturing the nucleophile in the active site of the TxGH116 enzyme by 

disruption of the hydrolysis after the first stage with a cyclophellitol aziridine 

fluorescent activity based probe (a fluorescent moiety is represented by the green 

light bulb).  

 

In the human GBA2, the identity of the respective acid/base and nucleophile as Asp 677 

and Glu 527 respectively was confirmed by Kallmeijin et al in 2014, using these highly 

sensitive cyclophellitol-based activity probes, specifically the β-aziridine grafted to a 

BODIPY (boron-dipyrromethene) fluorescent moiety here described as KY375 (Figure 

4.2) (141).   

4.2.2 Aims of the research in this chapter 
The goals of the work described in this chapter were to solve the 3D structure of the 

bacterial GH116 protein TxGH116 from the bacteria Thermoanaerobacterium 

xylanolyticum, both non-liganded and in complex with different ABPs and known 

inhibitors. It is hoped that these studies would give further insight into the structure of the 

human GH116 enzyme GBA2 and allow further development of selective probes more able 

to differentiate between GBA1 and GBA2. 

Five structures were studied, including complexes with the four ligands as shown in 

Figure 4.2. Castanospermine is an indolizidine alkaloid that was first isolated from the 

seeds of the Moreton Bay Chestnut, Castanospermum austral, in 1981 (196) and has 

inhibitor activity against a variety of glucosidase enzymes including other retaining β-

glucosidases such as GH3 enzymes (197) . KY358, previously described in complex with 

GBA1 in Chapter 2, is an acyl-aziridine. KY375, previously described in Chapter 3, is a 

cyclophellitol aziridine functionalised with a boron-dipyrromethene (BODIPY) group. 
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Figure 4.2 Activity-based TxGH116 probes and inhibitors studied at a structural level 

in this thesis  
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4.3 Materials and methods 

TxGH116N was purified and crystallised as described in Chapter 3. 

4.3.1 Data collection of TxGH116N crystals 

Initially crystals of TxGH116N were individually transferred to cryoprotectant solution of 

the mother liquor combined with 20 % glycerol (v/v) and immediately placed in liquid N2 

at 100K. However, after seeing some issues with crystals cracking on exposure to 

cryoprotectant, several crystals were frozen without cryoprotectant.  

Diffraction quality of all TxGH116N crystals was initially tested in house using a RUH3R 

rotating anode X-ray generator. Diffraction images were sampled at angels of 0 and 90° 

using 0.5° oscillations. Best diffracting crystals, crystals were then sent to the Diamond 

Light Source in Oxfordshire for data collection. 

4.3.2 Data processing and structure determination 

Data for each crystal set was processed using xia2(160,161) and the AIMLESS data 

reduction pipeline through the CCP4i2 software(162).  

After collection of the apo TxGH116N native data, we were contacted by the group of Jim 

Cairns (Suranaree University of Technology, Thailand) who were working on the same 

enzyme. Ultimately, they obtained a 3D chain trace, and they kindly provided that to us for 

structure solution. 

The Thai TxGH116C structure (5BVU) (163) was used to solve the structure of the apo-

TxGH116N by molecular replacement using MOLREP(164). Refinement of the structure 

was performed using REFMAC (166) and model building completed using COOT(167), 

both programs through the CCP4i2 software. 

As the “Thai” TxGH116C construct diffracted better, we chose to use that for structures 

solution of subsequent ligand complexes.  Their clone was kindly supplied by James R. 

Ketudat Cairns, Suranaree University of Technology, Institute of Science, Protein Structure, 

Function and Application, Thailand. This construct provided a protein that crystallised 

more readily and at a much lower concentration whilst giving better quality crystal data.  

4.3.3 Overexpression and purification of TxGH116C 

A pET-30a(+) plasmid containing C-terminal His-tagged TxGH116 gene was supplied by 

James Cairns. This was a construct consisted of the TxGH116 protein, lacking the first 18 

amino acids, with the pET30a(+) N-terminal His6-tag, S-tag and enterokinase site. At the C-

terminal end of the protein was a second His6-tag from the plasmid.  

http://www.researchgate.net/profile/James_Ketudat_Cairns
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This construct was designated TxGH116C. A protocol for the purification of TxGH116C 

was adapted from Charoenwattansatien et al (2016)(190). 

Competent E. coli BL21 (DE3) cells were transformed with the supplied plasmid and 

grown in LB media (30 um/ml kanamycin resistance) at 37C until an OD600 of 0.6 had 

been reached.  Expression of the TxGH116C gene induced with 0.5 mM IPTG and the cells 

incubated at 16 °C for 18 hr.  Cells were lysed by sonication at 14-18 Hz, in buffer A (20 

mM NaPO4 pH 7.4, 150 mM NaCl). Cell debris was removed by centrifugation. 

The resulting supernatant was exposed to 65 ◦C for 20 minute and the resulting 

precipitated protein removed by centrifugation. The remaining soluble fraction was 

loaded onto a 5 ml GE sciences crude HisTrap column, equilibrated with buffer A. 

Unbound material was removed by washing with three CV of buffer A. Bound protein was  

eluted with a gradient into buffer B (20 mM NaPO4 pH 7.4, 150 mM NaCl, 500 mM 

imidazole) across 20 CV. The fractions containing TxGH116C were pooled, concentrated 

and buffer exchanged into Digest buffer (20 mM Tris pH 8, 150 mM NaCl) 

The protein was digested with enterokinase (New England Bio Labs) as per the 

manufacturer’s instructions, to remove the N-terminal His6-tag and S-tag, then buffer 

exchanged into GF buffer. The protein was then purified over a Superdex S200 gel 

filtration column, which had been equilibrated with GF buffer (20 mM Tris pH 8, 500 mM 

NaCl) and the fractions containing TxGH116C pooled, concentrated to 20 mg/ml and 

stored at 5 °C. 

4.3.4 Crystallisation of TxGH116C and ligand soaking 

TxGH116C was diluted to ~2 mg/ml and crystallization trials were set up in 48-well plate 

format sitting drop plates at 18 °C, in conditions adapted from Sansenya et al, 2015 (189) . 

Before setting up crystallisation experiments TxGH116C centrifuged for ca. 5 min. 

Unless otherwise noted, crystallisation drops were set up as 1:1 ratio of protein to mother 

liquor and TxGH116C was added at 2 mg/ml.  

 TxGH116C-KY358 

0.2 M ammonium sulfate, 20% (w/v) PEG 3350, 0.1M BisTris pH 6.7 

 TxGH116C-ME594 

0.2 M ammonium sulfate, 20% (w/v)  PEG 3350, 0.1M BisTris pH 5.5 

 TxGH116C-KY375 

0.2 M ammonium sulfate, 15% (w/v)  PEG 3350, 0.1M BisTris pH 6.6 
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 TxGH116C-Castanospermine 

0.2 M ammonium sulfate, 20% (w/v)  PEG 3350, 0.1M BisTris pH 6.0 

2:1 protein to mother liquor 

Crystals of TxGH116C were soaked in KY358 ligand residue resuspended in the 

corresponding mother liquor (0.2 M ammonium sulfate, 20% (w/v) PEG 3350, 0.1M 

BisTris pH 6.7) overnight to allow covalent binding. Crystals of TxGH116C bound with 

various other ligands were obtained similarly, by adding 1 µl of the compound dissolved in 

either water or mother liquor to the drop at a concentration of 2 – 5 mM and then 

resealing. KY353 ligand was added at an unknown concentration due to the nature of the 

ligand supplied. After incubation the crystals were removed and cooled using liquid N2.  

4.3.5 Data collection of TxGH116C crystals 

For initial collection of X-ray data, a crystal of TxGH116C was transferred to a cryo-

protectant solution containing mother liquor supplemented with either 20-25% (v/v) 

glycerol or ethylene glycol and then cooled in liquid N2. After comparison in-house using a 

RUH3R rotating anode X-ray generator and selection of the best diffracting crystals were 

then sent to the Diamond Light Source in Oxfordshire for data collection. 

4.3.6 Data processing and structure determination 

Data for each crystal set was processed using xia2(160,161) and the AIMLESS data 

reduction pipeline through the CCP4i2 software(162).  

The apoTxGH116C PDB structure (5BVU) from Charoenwattanastien et al (2016) (190) 

was used to determine the phases and solve the structure.  Coordinates from the apo-

TxGH116C were used by directly refining against the ligand complex data sets for 

determination of the ligand complex structures.  

Idealised coordinate sets and refinement dictionaries for each ligand were generated 

using ChemDraw3D and JLIGAND(165) in the CCP4 suite.  Refinement of all structures was 

performed using Refmac (166) and model building completed using Coot(167), both 

programs through the CCP4i2 software. Final models for each of the compounds in this 

chapter were validated using the wwPDB Validation service (validate-rcsb-1.wwpdb.org/)  
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4.3.7 Isothermal titration calorimetry (ITC) 
ITC was performed with TxGH116C against castanospermine to get KD. The protein was 

used at a cell concentration of100 μM in 50 mM MES buffer (pH 5.5). Titrations were 

performed with a stock of 2 mM castanospermine over the course of 19 0.5 μL injections.  

The experiment was performed using a Micro-Cal Auto-ITC200 machine at 25 ° C and data 

analysed with the MicroCal PEAQ-ITC analysis software and Excel. Based on crystal 

structure data, stoichiometry was fixed to 1, giving a revised syringe concentration of 2.76 

mM.   

4.3.8 Homology Modelling 
A three dimensional homology model of the human GBA2 enzyme was produced using the 

Phyre2 online server (www.sbg.bio.ic.ac.uk/phyre2)(198) and the coordinates from the 

known and published TxGH116 structures.   
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4.4 Results and discussion 

The purification and successful crystallisation of TxGH116N was previously described in 

Chapter 3. The structure of  TxGH116N was successfully solved using molecular 

replacement following the provision of the alternative TxGH116C structure (PDB ID: 

5BVU)(190).  

The second construct, TxGH116C, was also successfully purified, and crystallised in a form 

suitable for further structural study.  

4.4.1 Overexpression and Purification of TxGH116C 
As with the TxGH116N construct, nickel chromatography was used to obtain the His6-

tagged protein from the cell lysate following sonication (Figure 4.3). The protein was then 

digested with enterokinase to remove the extensive N-terminal His6-tag and S-tag and 

then subsequently heat treated at 65 ◦C.  After removal of the precipitated, non-thermally 

stable protein, the remaining protein was further purified by gel filtration (Figure 4.4) to 

give a final yield of ~ 11 mg /L of cell culture. 

This is a much higher yield per litre of culture than the TxGH116N construct gave, 

suggesting that there was some benefits to the extended TxGH116C construct at the 

protein production stage. 
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Figure 4.3. Purification of TxGH116C. A) Chromatogram showing the elution of the 

TxGH116C-His6 protein from a HisTrap nickel column with an increasing 

concentration of buffer containing imidazole. Protein is measured by the UV 

absorbance at 280 nm (A280). B) An SDS-Page gel of fractions taken from the peak 

between ~30-60 ml (lanes 6 -9). Lane 1 is a broad range molecular weight ladder 

(Bio-Rad), lane 2 is a sample of the total cell lysate, lane 3 is a sample of the  total cell 

lysate after heat treatment, lane 4 is a sample of the total protein that was loaded on 

to the column and lane 5 is a sample of the flow through (1-10ml). There is some 

overloading in the gel. 
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Figure 4.4. Purification of TxGH116C. A) Chromatogram showing the elution of the 

TxGH116 C protein from an S200 size exclusion gel filtration column. Protein is 

measured by the UV absorbance at 280 nm (A280). B) An SDS-Page gel of fractions 

taken from the two peaks between ~95-115 ml (lanes 4-5). Lane 1 is a broad range 

molecular weight ladder (Bio-Rad). Lane 2 is the total protein from the HisTrap 

purification and lane 3 is the total protein after digest with enterokinase. 
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4.4.2 Unliganded TxGH116 structure 
Diffraction images of TxGH116N were collected at the I24 beamline at Diamond. Data 

reduction and subsequent molecular replacement showed that TxGH116N crystallised in 

space group P61. The X-ray data was scaled at a resolution of 2.6 Å cut off based on criteria 

for CC (1/2) of >0.5 in the outer resolution shell. There were two molecules in the 

asymmetric unit.  The full data table for the TxGH116N data set collected at Diamond Light 

Source in Oxfordshire is shown overleaf (Table 4.2).   
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TABLE 4.2 DATA COLLECTION AND REFINEMENT STATISTICS FOR THE TXGH116N 

STRUCTURE DESCRIBED IN THIS CHAPTER 

 TxGH116N 

PDB ID 5FJS 

Space group P61 

Cell dimensions  

a, b, c (Å) 187.8, 187.8, 99.3 

α, β, γ() 90,90,120 

Resolution (Å) 163-2.60(2.67-2.60)* 

Rmerge 3.7(79.4) 

Rpim  0.032(0.27) 

CC (1/2) 0.997(0.807) 

I /σ( I) 51.2(3.0) 

Completeness (%) 100(99.9) 

Redundancy 9.4(10.5) 

Refinement  

Resolution (Å) 162-2.6 

No. reflections 61406/3082 

Rwork / Rfree 0.19/0.25 

B-factors (Å2)  

Protein 68 

Ligand/ion 68 

Water 55 

R.m.s. deviations  

Bond lengths (Å) 0.014 

Bond angles (°) 1.7 

*Values in parentheses are for highest-resolution shell. 
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The TxGH116N structure was solved using molecular replacement following the release of 

the alternate TxGH116C structure (PDB ID: 5BVU) using a SeMet-derivative protein by 

Charoenwattanasatein et al (190). Our TxGH116N structure can be traced from residues 

35 – 803 (of 807) in molecule A in from residues 34 – 803 in molecule B. There is 

unmodelled density between residues 114-125, 200-206, 234-240 for both molecules A 

and B, between residues 299-302 in chain A and between residues 132-135, 166-169 in 

chain B. This is the model of TxGH116N has been with the PDB ID: 5FJS on 2015-10-12. 

The structure of TxGH116N is comprised of an N-terminal domain consisting of β-

sandwiches and a C-terminal α-helix (solenoid) domain Figure 4.5. The catalytic residues 

are located in the C-terminal domain.  The C-terminal domain also contains the binding 

site for a Ca2+ ion.  Further description of the active centre similarity, and basis for genetic 

disease mutations, will be given after description of a different crystal form with higher 

resolution data.  
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Figure 4.5. The 3D-fold structure of TxGH116N. A) The C-terminal domain, 

containing the active site residues shown in purple, consists of 11 α-helices labelled 

H5-H15. These are arranged into six outer helices, surrounding the inner helix pairs, 

with H5 sitting between the two domains. B). The N-terminal domain is comprised of 

β-sheets (sheets 1-3) surrounded by α-helices (H1-4) 
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4.4.3 Crystallisation of TxGH116C 
Following successful purification, TxGH116C was crystallised in the conditions as 

described above, Figure 4.6.  Data reduction and subsequent refinement showed that 

TxGH116C crystallised as P21 21 2 or P212121 , allowing me to refine three liganded 

TxGH116C structures at 1.70-2.19 Å. 

 

 

Figure 4.6. TxGH116C crystals. A and B) Crystal forms of TxGH116C. C) Diffraction 

patterns collected in –house for TxGH116C-KY358 crystal complexes.   Images were 

taken at 0-0.5 ° and 90-90.5 ° respectively, with a 5 second exposure. 

 

Data tables for all the data sets of TxGH116C in this chapter collected at the Diamond Light 

Source in Oxfordshire are shown on the next page (Table 4.3).
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TABLE 4.3 DATA COLLECTION AND REFINEMENT STATISTICS FOR TXGH116C STRUCTURES DESCRIBED IN THIS CHAPTER 
 

 

TxGH116_ 

Castanospermine 

TxGH116_KY375 TxGH116_KY358 

PDB ID   5NCX 

Space group P 21 21 2  P 21 21 21  P 21 2 21  

Cell dimensions    

a, b, c (Å) 180.8, 53.9, 84.7 54.0, 164.0, 179.0 53.6, 83.3. 177.5 

α, β, γ() 90.0, 90.0, 90.0 90.0, 90.0, 90.0 90.0, 90.0, 90.0 

Resolution (Å) 90.38-2.19(2.27-2.19)* 49.31-2.16(2.20-2.16) 60.73-1.70(1.73-1.70) 

Rmerge 0.290(3.03) 0.126(1.05) 0.096(1.00) 

Rpim  0.157(1.77) 0.053(0.49) 0.060(0.62) 

CC (1/2) 0.968(0.623) 0.997(0.651) 0.998(0.584) 

I /σ (I) 5.1(0.5) 10.4(1.5) 12.4(1.7) 

Completeness (%) 96.0(99.7) 99.9(99.8) 99.5(99.2) 

Redundancy 5.6(4.9) 6.5(5.6) 5.7(5.6) 

Refinement    

Resolution (Å) 90.38-2.19 49.31-2.16 60.73-1.70 

No. reflections 47003/2414 86160/4277 87654/4371 

Rwork / Rfree 0.26/0.30 0.18/0.23 0.15/0.18 

B-factors (Å2)    

Protein 28.5 36.1 20.2 

Ligand/ion 23.3 132.6 42.6 

Water 22.0 29.2 27.7 

R.m.s. deviations    

Bond lengths (Å) 0.016 0.015 0.018 

Bond angles (°) 2.03 2.21 1.87 

*Values in parentheses are for highest-resolution shell. 
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4.4.4 Active Centre of GH116 
The catalytic acid/base and nucleophile residues were previously proposed for the 

archaeal Sulfolobus solfataricus SSO1353 β-glucosidase (129) and further insight into the 

active site and the positioning of the catalytic residues was gathered by collection of data 

for TxGH116C in complex with trapped inhibitors and probes.  

Complexes of TxGH116C with 2-deoxy-2-fluoroglucosyl (DNP2FG), deoxynojirimycin 

(DNJ), glucoimidazole (GIM) and β-D-glucose were collected by Charoenwattansatien and 

co-workers and released with the respective PDB IDs: 5BX2-5 (Figure 4.7.A-D).  The 

complex with a trapped intermediate DNP2FG, confirmed the catalytic nucleophile as 

E441, consistent with the equivalent E335 residue previously labelled by DNP2FG in 

Sulfolobus solfataricus β-glucosidase (129) 

The catalytic nucleophile, E441, which is equivalent to the human GBA2 E527, and the 

acid/base D593 (equivalent to D677 in the human GBA2) are located 10.8 Å apart in the 

TxGH116N P61 structure, although this is reduced to 8.5 Å in the P21212 TxGH116C (PDB 

ID: 5BVU) structure. 

This is a longer distance than can be observed in most other retaining β-glucosidases, 

where the distance between acid/base and nucleophile is typically 4.5-6 Å. Both 

subsequent ligand bound structures with TxGH116C and inactive mutations of those 

residues by Charoenwattanasatien et al (190) confirmed them as the catalytic residues.  

The putative acid/base, D593 (equivalent to Asp462 identified by Moracci and colleagues 

based on azide rescue experiments (129)), is located in an unusual position above the 

pyranose ring, rather than in in the plane of the sugar ring which is the typical position for 

configuration-retaining β-glycosidases (199). This location of the acid/base residue 

prevents efficient protonation of GIM (Figure 4.7.C). This explains the lower inhibition of 

TxGH116C by GIM (Ki = 0.34 ± 0.03 μM) in comparison to DNJ (Ki = 0.13 ± 0.01 μM) 

(Figure 4.8.B) (190). 
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Figure 4.7. The active site of TxGH116C in complex, showing potential hydrogen 

bonds between ligands and the surrounding residues. Catalytic residues are shown in 

green and labelled in italics, adjacent residues in purple and the ligand in cyan. A)2-

deoxy-2-fluoroglucosyl (PDB ID: 5BX2, data collected to 1.61 Å) B) Deoxynojirimycin 

(DNJ) (PDB  ID: 5BX3, a collected to 1.96 Å) C) Glucoimidazole (PDB ID: 5BX4, a 

collected to 1.65Å) D)β-D-glucose (PDB ID: 5BX5, a collected to 1.85 Å) (190). 

 

The structure of the enzyme bound to DNP2FG (Figure 4.7.A) enables identification of 

residues interacting with the substrate. The amino acid residues capable of forming 

hydrogen bonding interactions include H507 and D452 at OH3; D452, T591, and R792 at 

OH4; and E777 and R786 at the OH6. In the last case, OH6 appears to mediate a salt bridge 

between E777 and R786.  

These active site glucosyl binding residues are conserved between human GBA2 and 

TxGH116 (Figure 3.3), and the potential impact of disease causing mutations in these 

residues on the human enzyme is discussed later in this chapter.  
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Figure 4.8. Presence of a C6-hydroxymethyl group affects the ability of a ligand of 

inhibit TxGH116. A) β-D-glucose B) Conduritol B epoxide C) Cyclophellitol 

 

These interactions at OH6 may explain why cyclophellitol compounds which have a 

hydroxymethyl group at that position are able to inhibit TxGH116, but CBE, which lacks 

this group, does not (Figure 4.8). The binding of two cyclophellitol aziridine based 

compounds to TxGH116C is described further in later sections of this chapter.  

4.4.5 3D complexes of TxGH116C with castanospermine 
In parallel with the above work on TxGH116 complexes to map the active site, I also 

studied complexes with the inhibitor castanospermine. Castanospermine is a wide acting 

glucosidase inhibitor on a variety of enzymes from GH3 retaining β-glucosidases from 

Aspergillus aculeatus (197) to GH31 α-glucosidases such as rat hepatic lysosomal α-

glucosidases (200). Castanospermine has also been investigated as a potential inhibitor of 

breast cancer cell proliferation (201) and as an inhibitor of Dengue virus infection (202). 

Castanospermine is also an inhibitor of human lysosomal GBA1, (IC50 = 19 μM)(203). It 

was not unknown whether the ligand would bind to TxGH116C crystals. 

Crystals that were soaked with castanospermine showed some surface disruption, 

perhaps due to an overwhelming excess of the ligand added to the drop at a final 

concentration of 5 mM, and the data collected extended to only 2.10 Å, however the 

density for the ligand is clear. 
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Figure 4.9. Castanospermine in the active site of TxGH116C. A) Observed electron 

density for castanospermine is contoured at 1.2 σ (equivalent to 0.37 electrons / Å 3). 

B) Side chains interacting with castanospermine, Active site residues are shown in 

green; other amino acids interacting with the ligand are shown in purple. 

 

The isothermal titration calorimetry performed with TxGH116C and castanospermine 

gave an experimentally measured KD of 103 μM (Figure 4.10), consistent with the protein 

binding at mM concentrations in the crystal soak.  
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Figure 4.10. Isothermal titration calorimetry (ITC) was performed using TxGH116C 

and castanospermine. A) The raw titration data (baseline subtracted) B) Integrated 

data fitted to “One set of sites” model by the MicroCal PEAQ-ITC analysis software 

 

4.4.6 3D complexes of TxGH116C with KY358 

In Chapter 2, there was observed KY358, an “acyl-aziridine”, bound covalently to human 

GBA1. As acyl aziridines make for potent activity based probes for GBA1 (17), cross-talk 

between GBA2 and GBA1 can disrupt labelling or even drug treatment.  

Crystals of TxGH116C soaked with KY358 diffracted well and did not appear to be 

disrupted by the ligand. The data for the TxGH116C/KY358 complex could be refined at 

1.7 Å, with clear electron density for the covalently bound ring (Figure 4.11.A). However, 

although there is limited density until N-acyl group, there is no density around the 

extended carbon chain, and it appears disordered. This is similar to the appearance of 

KY358 as seen bound to GBA1 in Chapter 2, Figure 2.10. 
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Figure 4.11. KY358 bound to the active site of TxGH116C. A) Observed electron 

density shown at 1.2 σ (equivalent to 0.46 electrons / Å3). B) Reaction mechanism for 

an aziridine probe to covalently bind to a retaining β-glucosidase enzyme.   
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4.4.7 3D complexes of TxGH116C with KY375 

As previously discussed in Chapter 3, the fluorescent activity based probe KY375 was 

confirmed to effectively bind to TxGH116N in solution with a short incubation and thus 

was an ideal target for crystal soaking. Although the probe contains a large BODIPY 

moiety, the TxGH116C crystals appeared able to accommodate the ligand upon soaking. 

Data for the fluorescent cyclophellitol aziridine complex extended to 2.16 Å.  However, in 

the crystal data the KY375 ligand appears to have hydrolysed at the acyl linker region and 

there is no density available for any of the ligand beyond the nitrogen atom, (Figure 4.12). 

Previous SDS-PAGE gel labelling of bacterial GH116 proteins in cell lysates had confirmed 

that the KY375 probe was stable and accommodated by all three of the tested bacterial 

enzymes.   

 

 

Figure 4.12. KY375 in the active site of TxGH116C. A) Observed electron density is 

shown at 1.2 σ (equivalent to 0.34 electrons / Å3) The KY375 probe has been 

modelled to the density seen. B) The potential location of the full KY375 probe. The 

interacting side chains are shown in purple, the active site residues in green. C) The 

structure of KY375. 

 

That TxGH116 (and therefore GBA2) can accommodate such large ligands with these 

extended alkyl chains and florescent groups can be shown through the effective tagging of 

the enzymes in solution, and the retention of the tags through the SDS-PAGE gel.  

However soaking of the ABP into the crystal lattice may be disrupting the crystal lattice, at 

the boundary of each molecule, effectively reducing the resolution limits of the data 
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collection. This may also be reflected in the different space group of this data set (P212121 

rather than P21212) due to the shifting of the molecules in the lattice as the enzyme 

accommodates the ligand.  

Nevertheless, the complex of KY375 and TxGH116C does give some insight into how the 

enzyme may bind large substrate molecules in its substrate binding cleft (Figure 4.13). 

Whilst the covalently bound cyclophellitol aziridine warhead remains in place, the linker 

and reporter region of the probe may be able to move around in space in the enzyme’s 

substrate binding cleft, allowing for large, bulky reporter groups to be accommodated by 

the enzyme. 

 

Figure 4.13. Surface view of TxGH116C bound to KY375, showing potential 

positioning of the ABP in the enzyme. A) There is a cleft on the surface of the protein 

in which the ABP may lie. B) A closer view of the substrate binding region.  

 

An understanding of how TxGH116 is able to accomdate these larger ABPs can be applied 

to the human GBA2. KY375 itself has been shown to label GBA2 from whole cell lysates, 

however it also readily labels GBA1 and GBA3 (17). New probe designs would aim to 

target GBA2 selectivly.  
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4.4.8 TxGH116 and other retaining β-glucosidases 
Retaining β-glucosidases are found in many CAZy families, e.g. GH1 (including GBA3), GH2, 

GH3, GH5, GH30 (including GBA1). These GH families can be further sorted into “clans” 

based upon their three dimensional structure. For example, GH1, GH2, GH5 and GH30 

family enzymes possess (β/α)8-barrel catalytic domains and are sorted into clan GH-A, 

whereas GH3 enzymes have an active site between a (β/α)8-barrel and a β-sandwich  

domain (Figure 4.14).  

 

 

Figure 4.14. The structure of TxGH116 compared to other retaining β-glucosidase 

families, active site residues are shown in green. A) The structure of human GBA3, a 

GH1 family enzyme (PDB ID: 2E9L(138)). B) A GH3 family β-glucosidase from 

Aspergillus oryzae (PDB ID: 5FJJ (204) C) A GH5 family β-glucosidase from 

Saccharomyces cerevisiae, (PDB ID: 1H4P(205). D) The structure of human GBA1, as 

described in Chapter 2. E) The structure of TxGH116, GH116. 

 

When TxGH116N is submitted to the PDBe Fold server (206), there is no structural 

similarity seen to any of the other retaining β-glucosidases, Figure 4.13. However, 

superposition of the GH52 β-xylosidase from Geobacillus thermoglucosidasius  (PDB ID: 

4C1O, GtGH52) (207) gives an RMSD (Root Mean Square Deviation) of 3.1 Å across Cα 

atoms within molecule A of the structure Figure 4.15.B.  

Through the PDBeFold server, a direct comparison of chain A from both GtGH52 (PDB: 

4C1O) and TxGH116N (PDB: 5FJS) across 556 matched residues, gives Q score of 0.30 and 
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Z score of 8.1.  There is sequence identity between GtGH52 and TxGH116 of 13 %.  This 

has led to the formation of CAZy structural clan GH-O, containing the GH family 52 and 116 

enzymes with the common (α/α)6 motif. 

 

 

Figure 4.15. The 3D-fold structure of TxGH116N in comparison to that of GH52 

family proteins. A) TxGH116N coloured by secondary structure  C) An overlay of 

TxGH116N (blue) with a Geobacillus thermoglucosidasius β-xylosidase from family 

GH52 (PDB ID: 4C1O)(207). 

 

The GH52 enzyme from Geobacillus thermoglucosidasius (GtGH52) is a thermophillic β-D-

xylopyranosidase that possesses a retaining mechanism to hydrolyse xylo-

oligosaccharides to xylose (208). The catalytic nucleophile in GtGH52 has been identified 

as Glu357, while Asp516 acts as the acid/base through both sequence alignment with 

other Geobacillus family xlyosidases and site-directed mutagenesis (209). 

The active residues in GtGH52 are 6.5 Å apart, which is closer to the distance seen in most 

other retaining β-glucosidases (in comparison to being 10.8 Å apart in the TxGH116N) but 

still further than seen in most other retaining β-glucosidases (Figure 4.16).  In the 

complex of GtGH52 with xylobiose, the substrate can be seen to be making hydrogen 

bonds with three residues, Asp367, Thr515 and Arg715. 
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A GESAMT/SSM (210) overlay of the active sites of GtGH52 (residues 340 to 370) and 

TxGH116N (residues 432 to 462) shows that two of these residues are maintained 

between the two proteins; Thr515/591 and Asp367/452, GtGH52/TxGH116 respectively 

(Figure 4.16.B). Further, the His418/507 residue is also present; this trio of residues have 

been earlier described as vital in hydrogen bonding interactions in the TxGH116 active 

site (Figure 4.8) 

 

 

Figure 4.16. A comparison of the active sites of TxGH116N and GtGH52. A) The active 

site of GtGH52 in complex with xylobiose (coral), PDB ID: 4C1P (207). Active site 

residues are identified in italics. B) The active site of TxGH116N (green and cyan, 

labelled in black) superimposed with that of GtGH52 (purple, labelled in red).  

 

4.4.9 Homology Modelling of the Human GBA2 Enzyme 
TxGH116 shares 38% sequence identity over residues 63 to 893 with the human GBA2 

protein, with notable correspondence in the active site residues with the residues noted as 

conserved across the two proteins. Therefore, an informative homology model of human 

GBA2 can generated from the three dimensional structure of TxGH116. The Phyre2 server 

(198) was used to create a homology model of GBA2 based upon the 3D structure of 

TxGH116. Of the human protein, 75% could be modelled at >90% confidence over 

residues 78-889.  

Human GBA2 has two longer loops, one of which lies adjacent to the enzyme binding site 

and may contribute to the aglycone binding cleft Figure 4.17.A. However, these loops 

cannot be modelled with high confidence, as they are not present in the bacterial protein.  
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This modelling allows the location and implication of known GBA2 pathogenic mutations 

to be mapped onto the GBA2 model and their effects on the protein considered, Figure 

4.17.B. Whilst some GBA2 mutations (D594H, R873H) are located within the protein’s 

active site, and therefore have clear catalytic repercussion for the enzyme, others are 

considerably distant and their implications are less immediately clear (Table 4.4).  

Whilst many of these mutations are associated with hereditary spastic 

paraplegia/cerebellar ataxia (SPG46)(133) in humans, the pathogenic effect of these 

mutation is discussed in more detail in Chapter 3 (Table 3.2).  

 

TABLE 4.4. PATHOGENIC GBA2 MUTATIONS AND THEIR EFFECTS 

GBA2 mutation Corresponding 

TxGH116 residue 

Effect on the protein 

F419V F347 Disruption of domain interface 

D594H D508 Disruption of H-bonding with 

glycosyl 3OH group 

R630W R544 Disruption of salt bridges 

G683R G599 Disruption of cation binding 

R873H R786 Disruption of H-bonding to 

glucosyl 6OH group 
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Figure 4.17. Human GBA2 model and known pathological mutants. Potential 

interactions are shown with dashed lines A) Overall homology model of human GBA2 

(gold) superimposed on TxGH116N (blue). There are two distinct loops (marked with 

arrows) which are notably longer in GBA2. B) The human GBA2 protein homology 

model with residues involved in disease-causing mutations shown as purple spheres 

and labelled. C) Human GBA2 (gold) superimposed on TxGH116N (blue) in the area of 

the R630 residue. Residues are labelled human above/bacterial below, D) Human 

GBA2 (gold) superimposed on TxGH116N (blue) in the area of the F419 residue. E) 

Human GBA2 (gold) superimposed on TxGH116N (blue) in the area of the G683 

mutation, showing the location of the Ca2+ ion, bound in the TxGH116N, respective to 

the residues. Human model generated on the Phyre2 server(198)  

 

In the active site of TxGH116, R786 is potentially able to make two hydrogen bonds to the 

glucosyl 6OH group. This can be shown more clearly in the earlier models of TxGH116C 

bound to ligands (Figure 4.8). In human GBA2, this residue is conserved as R873, and the 

mutation R873H would result in a disruption of this hydrogen bonding.  

Likewise, the human D594H mutation disrupts the hydrogen bonding that is shown as 

TxGH116 from D508 to H507 (conserved as H593 in the human protein), which is then 

able to make H-bond with OH3 (Figure 4.8). These D594H (equivalent to D508) and 

R873H (equivalent to R786) mutations are seen in patients with autosomal recessive 

cerebellar ataxia. Whilst these located in close proximity to the active site, other of the 

more commonly seen human GBA2 mutations are comparatively further away. 
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The GBA2 R630W mutation, which is seen in some hereditary spastic paraplegia patients, 

is conserved residue in the TxGH116 enzyme as R544. This is approximately 15 Å from the 

active site, and is situated between layers of the helices of the (α/α)6- solenoid catalytic 

domain. Here R544 is able to form salt bridge interactions with D545 and E469, residues 

that are conserved in the human protein (Figure 4.17.C). The mutation of arginine to 

tryptophan would disrupt this charge balance due to the loss of a charged residue, and the 

introduction of the larger side chain.  This together can result in the destabilising of the 

protein.  

Also recorded in hereditary spastic paraplegia/cerebellar ataxia patients is the F419V 

mutation, which is located in the N-terminal, β-sandwich domain. It is the only pathogenic 

mutation located in this domain, although it is located at the interface of the two domains. 

Here, F419 can be involved in Van der Waals’ interactions with the neighbouring aromatic 

residues, which are also conserved between the human and bacterial proteins (Figure 

4.17.D). Residue Y534 is located on the long loop between the H5 and H6 helices and 

W603 is coming from the C-terminal domain, on the loop between the H7 and H8 helices. 

Disruption of these interactions, by replacing the phenylalanine with a valine, may 

destabilise the interaction of the two domains.  

The G683R mutation, also seen involved in heredity spastic paraplegia, is located 20 Å 

from the active site, near the surface of the protein, in the outside turn of the loop that 

includes the catalytic acid/base (D677 in GBA2), Figure 4.17.E. The location of G683, very 

close to the neighbouring loop, is such that if it were to be replaced by an arginine this 

would result in a clash with S741 on the neighbouring loop. The G683 residue (equivalent 

to G599) is also neighbouring to the binding site for the Ca2+ ion, and replacement of the 

glycine with a positively charged arginine could disrupt the cation binding.  
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4.5 Summary  

Crystallographic studies were used to discern the three-dimensional structure of 

TxGH116, a bacterial β-glucosidase from Thermoanaerobacterium xylanolyticum, both 

unliganded and in complex with a series of probes and inhibitors.  

At the start of this thesis there were no known structures in the CAZy GH116 family of 

proteins, and the knowledge of the structure of TxGH116 , a bacterial homolog of the 

human β-glucosidase GBA2, may aid the design of probes specific to GBA2 over GBA1. This 

insight into the structure of the human GBA2 protein also allows us to see the potential 

effects of the known pathogenic mutations, both upon the active site of the enzyme and 

with effects on protein stability and domain interaction.  

The structure of TxGH116 bound to the ABPs KY358 and KY375 supports recent work 

looking into distinct probes for the three human β-glucosidases. Knowledge of how the 

TxGH116 enzyme is able accommodate larger probe constructs can be applied to the 

human GBA2 enzyme models. The cyclophellitol aziridine that makes up for the basis of 

each of these probes is also the precursor for the “ABP 4” (Figure 4.18) a probe that 

potently and selectively labels GBA2 (Lahav et al, 2017, accepted for publication).  Such 

specific reagents and the promise of GBA1 specific reagents and their applications will be 

described in the “Conclusions and Perspectives” Chapter 5.  

 

 

Figure 4.18. The activity based probe, designated “APB 4” has been utilised as an 

effective reporter in small molecule inhibitor assays for the human GBA2 enzyme.  
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Chapter 5. Conclusions and perspectives  

 

 

 

At the start of this thesis, there were structures for the human glucocerebrosidase GBA1 in 

complex with diverse inhibitors and putative chaperones. For GBA2 far less was known, 

the human enzyme had been characterised and Moracci had led the way with 

characterization of archaeal GH116 enzymes - notably in terms of mechanism, catalytic 

residues and specificity.   

The field of activity-based probes for glucosidases was also just emerging, following  

pioneering work from Vocadlo and Bertozzi on the human O-GlcNAcase (211)and on 

diverse glycosidases using 2F glycosides (212).  Building on this, Overkleeft introduced the 

cyclophellitol epoxides and later aziridines, notably to the study of the Gaucher enzyme 

GBA1 (127).  

The goals of my PhD, funded as part of a larger European Research Council grant, was to  

 Analyse the 3D structure of human GBA1 in complex with diverse ABPs, in order to 

understand their binding and provide aid to the design of new inhibitors and 

probes 

 To try and solve a 3D structure for a GH116 family enzyme, again to aid the design 

of specific inhibitors and probes. 

In Chapter 2, I described the analysis of GBA1, crystallized using material provided by 

Sanofi-Genzyme. Despite problems with crystal cracking, I was able to solve the structures 

in complex with representative probes. The work highlighted how the key specificity 

feature - bulky substituents - could be accommodated at the O6 position and how 

hydrophobic substituents at the aziridine nitrogen aid potency. An obvious extension of 

this work would be to combine the two features; such work has just started in the 

Overkleeft group, Figure 5.1.  
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Figure. 5.1 Bifunctional GBA1 inhibitors under development in Overkleeft group.  

GBA1 structures suggest that bifunctional reagents might benefit from the specificity 

of the O6 substitutions plus the potency that derives from a functionalized aziridine 

(see Chapter 2, Figure 2.10). The first such species, ME633 has just (Autumn 2017) 

been synthesized and inhibits GBA1 on gel assays. Gel data were provided by Dr 

Martha Artola, University of Leiden, unpublished.  

 

The bifunctional probe shown in Figure 5.1, ME633, effectively inhibits GBA1 (IC50 = 1.32 

nM). Importantly, no labelling of GBA2 was reported by the di-alkylated aziridine probe. 

This does suggest specific, tight binding inhibitors are now a reality; the future will see 

these extended to cellular studies.  

During the course of my work, diverse ABPs have already been synthesized and used to 

label diverse medically-relevant glycosidases - indeed they are now under investigation 

for clinical diagnosis. Probes for many classes of enzyme are now available: 
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 D galactosidases, Willems et al, 2014 (213)  

 L fucosidases, Jiang et al, 2015 (214)  

 amylases, Caner et al, 2016 (215) 

 D glucosidases (Pompe disease) , Willems et al, 2014 (213) 

 galactosidases, Willems et al, 2014 (159) 

 glucuronidases (including heparanase), Wu et al, 2017 (216)  

 D-6-phosphoglucosidases, Kwan et al, 2016 (217) 

Beyond medicine, one future application of these probes could to use them for biomass 

degrading enzyme discovery. The CAZY classification (www.cazy.org, (143)) lists 

hundreds of thousands of ORFs for glycosidases, but industry still struggles to find the 

correct enzymes for the correct substrates under the correct conditions; the rapid pace of 

genome sequencing has given us many genes that are predicted to encode proteins with 

particular activities. The major current barriers are not merely trying to predict activity 

based on sequence alone, but also to be able to assess, rapidly, whether the encoded 

proteins have the predicted activity and are robust enough for industrial applications with 

respect to specific activity, stability, pH optimum, protease sensitivity etc., and ultimately 

to find required enzymes in complex environmental samples without the need for genomic 

data.  Activity-based probes could provide one solution to these problems for rapid 

screening of secretomes from industrially relevant organisms. 

The main drawback with all current activity-based probes is that they demand an 

enzymatic nucleophile and are this only suitable for retaining enzymes.  Clearly much 

needs to be done to find probes that will react, specifically, with inverting enzymes.  

 

In Chapters 3 and 4, I described the 3D structure and complexes of a bacterial GBA2 

homolog, also active on glucosides. I am grateful to Professor Jim Cairns for openly 

sharing and exchanging data to allow a joint publication (190). Ultimately I was able to 

solve the form of the enzyme expressed in York, and to obtain high resolution complexes 

on inhibitors and activity-based probes. We were able to define the fold, establishing a 

"Clan" with the GH52 xylosidases and to map the human genetic disease variants. 

Unfortunately, the TxGh116 isn't active on glucosylceramide and the group, as yet, has 

been unable to crystallize the human enzyme despite successful over-expression. There is 

clearly a need for specific GBA2 inhibitors and substrates. The Vocadlo group have 

recently published on fluorescent-quenched substrates for human GBAases (218). My 

work on the fluorescent ABPs binding to GBA2 is included in a paper accepted at the 

http://www.cazy.org/
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Journal of the American Chemical Society on a fluorescent polarisation assay for GBA1/2 

inhibitors, Figure 5.2.  The principle of this work, well established for drug screening (see 

for example Lea and Simenov, 2012 (219)) is to use the observation that in fluorescence 

polarization assays, a fluorophore is excited at a specific wavelength with linear polarized 

light. The orientation of emitted light and thereby the degree of polarized light depends on 

the movement the excited fluorophore has undergone, which depends on its size: large 

molecules (such as GBA2-bound probes) move and rotate slower than small molecules. If 

binding of probe is competed with small molecule inhibitors, such as from libraries, then 

one can measure binding constants for compounds through loss of the polarized emission, 

Figure 5.2.  Using this technique, we have, through collaboration, started to discover 

GBA2 specific inhibitors (Lahav et al., JACS, in press; see Appendix 8) 
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Figure 5.2.  An exciting new direction for GBA1/2 inhibitor work is to use the ABPs in 

fluorescent polarisation assays, illustrated here with human GBA2 (taken from REF 

Lahav et al., JACS, in press). If the fluorescent group is immobilised, the fluorescent 

output is polarised, whilst a tumbling fluorophore depolarizes the fluorescent 

emission.  Hence, an immobilised fluorescent ABP can be used to screen for tight(er) 

binding inhibitors that compete with probe binding. In the example shown, 

compounds 1 and 2 both compete with the probe (as shown by the gel assay, bottom 

left). In the fluorescence assay these cause a loss of polarised light. Binding curves 

give a direct assessment of Kd.  

 

The GBA2 work, has also led to the very recent discovery of new inhibitor classes.  Seeking 

to improve upon aziridines and epoxides, the Davies and Overkleeft group conceived cyclic 
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sulfates as irreversible glycosidase inhibitors and I used the bacterial GBA2, TxGH116, as 

one of the testbed enzymes, Figure 5.3.  

 

Figure 5.3.  Cyclic sulfates (here a cis "beta" glucose” version compound 6): a new 

retaining glycosidase inhibitor ((125), also see Appendix 6) (a) the reaction of cyclic 

sulfates (b) 3D structures of unreacted cyclic sulfate on TxGH116C (Liang Wu, sho rt 

soak, left) and reacted cyclic sulfate on TxGH116C (Breen, long soak, right).  Figure 

adapted from Artola et al, 2017 (125).  

 

Clearly further work will be needed to establish whether substituted cyclic sulfates have 

application as ABPS, or even as glycosidase inhibitors in a medical context. 

 

To identify further potential ligand targets for TxGH116, a fluorescence-based thermal 

shift assay (TSA) utilising SYPRO orange dye was used in a high-throughput format 

(Figure 5.4).  This allowed the assessment of the effect of ligand binding on protein 

stability with minimal use of protein recourses. Of 22 ligands assayed, 8 were identified as 

raising the Tm of TxGH116C by > 5°C,  These included the known TxGH116 inhibitors,  

isofagomine (Ki = 2.9 ± 0.1 nM (190) ) and DNJ (Ki = 0.13 ± 0.01 μM (190)).  
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Figure 5.4. TSA high throughput screening of TxGH116C against a selection of 

potential ligand compounds. Mean average melting temperature is shown in °C, of 

three repetitions. 
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Unliganded TxGH116 protein has a melting temperature of 80.9 °C, as the bacteria that 

TxGH116 is sourced from, Thermoanaerobacterium xylanolyticum, is native to the Frying 

Pan Springs in Yellowstone National Park. The stabilising effect that certain of these 

ligands (AMP-DNJ, isofagomine, noeuromycin and SYD-169) had on TXGH116 was found 

to push the limits of the TSA. 

To further measure the stabilising effects of the ligands, circular dichroism (CD) was used. 

The CD was programme to run a full scan from λ= 260 nm to λ = 180 nm at 20 °C and then 

every 5 °C from 60-95 °C. The machine also took a reading at λ = 222 nm every 5 °C from 

the start. The machine was able to increase at a maximum of 5 °C per minute, at held each 

temperature for 2 minutes before taking a reading. (Figure 5.5) 
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Figure 5.5. Circular dichroism spectroscopy of TxGH116C and the effects of ligand 

binding on protein stability as CD (mDeg) vs temperature. A) A λ = 222 nm scan of 

unliganded-TxGH116C and TxGH116C in complex with four ligands as per the key. 

Readings taken every 5 °C from 20 – 95 °C. B) CD scan of unliganded-TxGH116C, from 

λ = 180-260 nm. Data has been excluded when HT = >800. Scan temperature is given 

by the key. C) CD scan of isofagimine-TxGH116C. D) CD scan of SYD169-TxGH116C. E) 

CD scan of AMP-DNJ-TxGH116C. F) CD scan of Noeuromycin-TxGH116C . 
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As previously mentioned, isofagomine is a known inhibitor of TxGH116C (Ki = 2.9 ± 0.1 nM 

(190)), and AMP-DNJ has been shown to inhibit human GBA2 within brain membranes 

(IC50 = 0.8 nM) (179). Whislt isofagomine and SYD169 bound TxGH116C appear to “melt” 

from 90 °C, both AMP-DNJ- and noeuromycin-TxGH116C has remained in solution, and in 

the same fold, up to 95 °C.  

Soaking experiments of TxGH116C with all four of the ligands has so far resulted in the 

crystals failing to maintain their order.  Binding of these in the molecule during soaking 

appears to disrupt the crystal lattice. It is possible that co-crystallisation experiments can 

offer better results.  

What effect these ligands are having on overall structure of TxGH116C is unclear, but the 

disruption seen during soaking suggests that there is some rearrangement within the 

crystal lattice. Co-crystallisation experiments will likely offer better results.  

 

Treatments for lysosomal storage disorders, such as Gaucher’s disease, are still mostly 

reliant on enzyme replacement therapy, which are expensive, inconvenient and unable to 

treat neuropathic symptoms. However the use of small molecule drugs in substrate 

reduction therapies has allowed physicians to treat the neuropathic forms of several 

lysosomal storage diseases. Niemann-Pick type C disease, for example, in which 

cholesterol trafficking to lysosomes is disrupted, is treated with the same ceramide 

glucosyltransferase inhibitor (miglustat) as some forms of Gaucher’s disease (220).  

The emerging pharmacological chaperone therapy, in which the correct folding of mutant 

forms of an enzyme is promoted within the ER by small-molecule chaperones, aims to 

further reduce potential drug side effects that can arise from SRT. PCT can also be used to 

increase the efficiency of the recombinant enzymes used in ERT; the aim being to reduce 

the volume of recombinant enzyme required per patient and increase the time between 

injections and thus reduce the cost (both financial and time spent in hospitals) to the 

patient. 

Both these uses of PCTs are very dose sensitive and accurate methods of measuring any 

given enzyme levels in a patients cells are necessary, for these therapeutic approaches and 

all sorts of diagnostic tests (94).  The ideal diagnostic tool would measure only the active 

enzyme within a cell, rather than total, potentially inactive or misfolded, enzyme. 

Screening for potential ligand compounds and knowledge about the effects of molecule 

binding on enzymes can help inspire the design of new ABPs and chaperones for both 
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GBA1 and GBA2. However to get from an enzyme inhibitor to a potential drug compounds 

is a long and gruelling process, the hit to lead to final drug development process will often 

take over a decade and can cost $1 billion  (221) 

For LSD patients, however, there are some emerging therapies that offer hope of, if not a 

cure, treatments that could alleviate symptoms entirely.  Firstly there is ex vivo gene 

therapy, in which a patient’ own cells are harvested, transduced by a viral vector to 

overexpress the lysosomal enzyme of interest and reintroduced to the patient where they 

can restore the healthy phenotype. A clinical trial using stem cells from patients with 

Fabry disease and the retroviral transduction α-galactosidase A cDNA was begun in 2013 

but later withdrawn (222). 

The use of hematopoietic stem cell transplantation for the treatment of Krabbe disease (a 

deficiency of galactosylceramidase) is now the standard treatment.  Healthy donor cells 

are able to infiltrate organs and cross the blood brain barrier. Once established, the donor 

cells excrete the required enzyme. Two clinical trials utilising this approach, for Gaucher 

and Fabry disease have begun (223). 

The use of in vivo gene therapy in human for lysosomal storage disorders has mostly 

explored the use of adeno-associated viral vectors and focus has mainly been on those 

diseases for which no other treatment option is present. Both feline and canine models 

homologues of lysosomal storage disorders including mucolipidosis II (fatal in humans in 

infancy) have been involved in trials of in vivo gene therapy (224). 

The potential for a cure in gene therapy is still several years in the making for Gaucher’s 

disease. In the meantime, there can be hope that small molecule treatments and the 

necessary therapeutic tools can be improved to the point that a patient with the illness can 

live a life free from any symptoms or sickness.  
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Appendix 1. GH116 protein sequence alignment 
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A multi-alignment of various GH116 β-glucosidase protein sequences. Invariant residues 

are highlighted in red. Areas of high conservation are boxed in blue. Identified catalytic 

residues are marked with a star. Homo is NP_065995.1 from Homo sapiens. Pan is 

XP_001167923.1 from Pan troglodytes. Mus is CAM17042.1 from Mus musculus. 

Drosophila is AA041192.2 from Drosophila melanogaster. Caenorhabditis is CAD21661.1 

from C. elegans Bristol N2. Arabidopsis is BAE.99039.1 from A. thaliana.  Sulfolobus is 

SSO1353 from S. solfataricus P2. SSO3039 is SSO3039 from S. solfataricus P2. ApGH116 is 

BAI91082.1 from A.platensis NIES_39. BtGH116 is AA078014.1 from B. thetaiotaomicron 

VP1-5482. TxGH116 is AEF18218.1 from T.  xylanolyticum. Alignment made using the T-

Coffee server (tcoffee.crg.cat) and formatted using Espript (espript.ibcp.fr) (187,188). 
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Appendix 2. Bacterial GH116 sequences 

These are the full length genes from of each of the bacterial GH116 enzyme that was 

cloned into pET28a between NdeI and XhoI restriction sites. The full construct includes N-

terminal His6-tag and vector-added residues; they are codon optimised for E coli. 

A.1.1 Arthrospira platensis (ApGH116) nucleotide 

ATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGCA

GTATCCGTCACCGACCCTGAACATCCCGCCGTACACCTGGAACCGTCCGATTGGCCTGGGCTGGG

AAAAACCGTACACCGTCCGCTATCCGTCCAATCTGGATGACGGTCCGTTTCATGGTATGCCGCTG

GGCGGTTTCGGTGCAGGTTGCATTGGTCGTTCACACCGCGGCGATTTTAACCTGTGGCATCTGG

ACGGCGGTGAACACATCTTCCGTCCGCTGCCGGGTTGTCAGTTTTCTGTGTTCGAAGAAATTGA

TGGCAAACGCCAAGCGTATGCGCTGAGTACGCAGCCGCCGGAAGATGGTAGTCTGTCCACCTGG

AATTGGTACCCGAGCTCTGACCAGCATACCCAAACGGGCACCTATCACGCGCTGTACCCGCGTTC

TTGGTTTGTGTATGAAAACGTTTTCCAGACGCAACTGACCTGCGAACAATTTTCCCCGGTTTGG

GGCGGTAATTATCAGGAAACCTCATACCCGGTTGCAGTCTTCGAATGGATTGCTCATAACCCGA

CCGATAAACTGATTATCCTGAGTATTCTGCTGACGTGGGAAAACACCATCGGTTGGTTTACGAA

TCGTCTGGATACCCCGGCCGTGAAAGTTCGCGATGACGGTTCGCCGGTCTATGAATACCAACCGC

GCTGGGGCGATAGCCAGGACAACTGCAATCATTTTGTTGAAGATTTCCACCGTGTCGGCTGTGT

GATGACCCGCCTGAACATCAATGATCAACTGGGCGAAGGTGACGGCCAGATGGCGATTGCCACG

ATCACCAATCCGGTGGTTGAAGTGTATTGCCATAACCGTTGGCGCCCGTCTGGTAATGGCTATG

ATATTTGGGAATACTTTTCCCAGGATGGTTCACTGATTGACATCCATGATGACGGCCCGGCGCT

GGAAGGTGAACGTATCGGCGCGGCCCTGGCCGTTCGTTGTATTCTGCGCCCGGGTAAAACCCGC

AAAATTCCGTTTTTCATCGCATGGGATCTGCCGGTTACCGAATTTGAAGCTGGCGTCACGTATT

ACCGTCATTATACCGACTTTTTCGGTCGTAACGGCCGCAATGCGTGGTCTATGATCCGTACGGCC

ATGAAACACAGTGATACCTGGCGCGAAAATATTGAAGCGTGGCAAAACCCGATCCTGAATCGTC

AGGACCTGCCGCCGTGGTTTAAAATGGCCCTGTTCAACGAACTGTATCTGCTGACGGATGGCGG

TTCACTGTGGACCGCAATTGACGAAGATGAACCGTGGGGTCGCTTTGCTGTTCTGGAATGCCTG

GATTATCGTTGGTACGAATCGCTGGACGTCCGCCTGTATGGTAGCTTTGGCCTGCTGATGTGGT

GGCCGGAACTGGAAAAATCGGTGATGCGCGCATTCGCTAAAGCGATCGCCACGGATGACGATAC

CCCGCGTATTATCGGCTACAATCAGGCAAGCGCTATTCGCAAAGCAGCTGGTGCAACCCCGCAT

GATCTGGGCGCTCCGAACGAACACCCGTGGGAAAAAACGAATTATACCAGTTACCAGGATTGCA

ACCTGTGGAAAGATCTGCCGTGTGACTTTGTTCTGCAGGTCTATCGTGATTACCTGCTGACCGG

TGCAGACGATATCCAATTCCTGGTGGAATGCTGGCCGGCGATTGTTCAGACGCTGGATTATCTG

AAAACCTTTGACCGTGATCGCGACTGTATCCCGGAAAACGGCGGTGCCCCGGATCAGACCTTCG

ACGATTGGCGCATGATGGGCATTTCCGCATACTGTGGCGGTCTGTGGCTGGCAGCACTGGAAGC

GCTATTGCGATCGCCAATATTCTGCTGTCTCATCACAGTGATATCACCCCGGACACC 
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ACGAAAGCAATTGCTACGTGGACCAACTGGCTGGAAACGGCAAAACCGCTGTATGATCAGACCC

TGTGGAACGGTAGCTATTACAATCTGGACTCACAGTCGGGCAGCGATGTCGTGATGGCCGACCA

GCTGTGCGGTCAATTTTATGCAGCACTGCTGGGTCTGCCGGATATCGTCCCGCATCACCGTGCGC

GCGTGGCACTGCAGACCATTTACCAAGCGTGTTTTCAGAACTTCCATAATGGTAAATTCGGCGC

AGCTAATGGTGTGCGTACCACGGGCGAACCGATTAACCCGCAGGATACGCACCCGCTGGAAGTT

TGGACCGGTATCAATTTTGGTCTGGGCGCGTTCCTGATTCAAATGGGCATGAAAGAAGAAGCCT

TTCAGCTGGCGGAAGCCGTCATCACGCAGGTGTATCAAAACGGTCTGCAGTTTCGTACCCCGGA

AGCAATTACGGCAGCAGGTACCTTCCGTGCAAGCCATTACCTGCGCGCAATGGCTATTTGGGCG

ATGTATTACCAGATCCAACACCCGTAA 

A.1.2 ApGH116 amino acid 
MGSSHHHHHHSSGLVPRGSHMQYPSPTLNIPPYTWNRPIGLGWEKPYTVRYPSNLDDGPFHGM

PLGGFGAGCIGRSHRGDFNLWHLDGGEHIFRPLPGCQFSVFEEIDGKRQAYALSTQPPEDGSLST

WNWYPSSDQHTQTGTYHALYPRSWFVYENVFQTQLTCEQFSPVWGGNYQETSYPVAVFEWIA

HNPTDKLIILSILLTWENTIGWFTNRLDTPAVKVRDDGSPVYEYQPRWGDSQDNCNHFVEDFHR

VGCVMTRLNINDQLGEGDGQMAIATITNPVVEVYCHNRWRPSGNGYDIWEYFSQDGSLIDIHDD

GPALEGERIGAALAVRCILRPGKTRKIPFFIAWDLPVTEFEAGVTYYRHYTDFFGRNGRNAWSMI

RTAMKHSDTWRENIEAWQNPILNRQDLPPWFKMALFNELYLLTDGGSLWTAIDEDEPWGRFA

VLECLDYRWYESLDVRLYGSFGLLMWWPELEKSVMRAFAKAIATDDDTPRIIGYNQASAIRKAA

GATPHDLGAPNEHPWEKTNYTSYQDCNLWKDLPCDFVLQVYRDYLLTGADDIQFLVECWPAIV

QTLDYLKTFDRDRDCIPENGGAPDQTFDDWRMMGISAYCGGLWLAALEAAIAIANILLSHHSDIT

PDTTKAIATWTNWLETAKPLYDQTLWNGSYYNLDSQSGSDVVMADQLCGQFYAALLGLPDIVP

HHRARVALQTIYQACFQNFHNGKFGAANGVRTTGEPINPQDTHPLEVWTGINFGLGAFLIQMGM

KEEAFQLAEAVITQVYQNGLQFRTPEAITAAGTFRASHYLRAMAIWAMYYQIQHP 

A.1.3 Bacteroides thetaiotaomicron (BtGH116) nucleotide 

ATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGA

ACGACATTGACGACGAACGTAACCGCATCTACAACAGCTCCTACAGTGGTAAATACAACAACCG

ATTGCTTTTCCGATTGGTGGTATTGGCACCGGCATGTATTGCCTGGAAGGCACGGGTTACATCT

CACACATGTCGGTGTGGCACCGCCCGGAAGTTTTTCATGAACCGGGCATGTTCGCGGCCCTGTAT

GTTAAAGGCGTCTGTAACGGTGCAAAAGTGCTGGAAGGTCCGGTTAGCGATTGGCGTAAATTCG

GCATGCCGAATTACGGTACCGGCGGTAGCATGGGCTCTATTCTGGGTCTGCCGCGTTTTGACAC

GGTTGAATTCGAAGCGCGCTTTCCGTTCGCCAAAGTCAGTCTGACCGATAAAGACATTCCGGTG

AAAGTTACGATCCTGGGCTGGTCCCCGTTTATTCCGGGTGATCCGGACAACAGCTCTCTGCCGGT

GGGCGGTCTGGAATATAGCCTGGAAAATACCTCTAAAGAAGTTCAGGAAACGATCTTTTCATAC

CACGCACGCAACTTCCTGTCGTGGGGCAAAGGTCTGGATGCTATTAAAACCATGCCGCATGGCT

TTATCCTGAGTCAATCCGGTACCGAAACGGAACCGCACCTGCAGGGCGATTTTGCCATTTTCACC
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ATCAAGACAGCCTGAAAATCAACTATTGCTGGTTTCGTGGCGGTTGGTTCGACTCTCTGACGAT

GGTGTGGAATGCAATTGAAGCTGGTCTGATGCCGCAGTGTCCGGCAATCGAAAAAGGTGCACCG

GGTGCAAGCATGTTTGTCCCGGTGACCCTGATGCCGGGCGAAAAGAAAACCATTCGTATCTATA

CGGCATGGTATGTGCCGAACTCAACGCTGCGCCTGGGTGAAGAACCGGAAGATTGGAATGACAA

CAATGTCGATTCGGCACGTCTGGCTGTGGAAAAAGCGGACAAAGGCAACTATAAACCGTGGTAC

AGTTCCCGCTTTACCGGTGTGAACGAAGTTATCGATTATTTCCTGTCTCATTACAAAATCCTGC

GTAACCAGACCGAACGCTTTACGGACTCTTTCTATCGCAGTACCCTGCCGCCGGAAGTTATTGA

AGCGGTCTCCGCCAATCTGTCAATCCTGAAATCGCCGACCGTGATGCGTCAGTATGATGGCCGCC

TGTGGACGTGGGAAGGTTGCGCAGACAACTGGGGCAGCTGCCATGGTTCTTGTACCCACGTTTG

GAATTACGCGCAAGCCATTCCGCACCTGTTTCCGAGTCTGGAACGTTCCCTGCGCCACACGGAAT

TCGAAGAAGGCCAGGATCTGAAAGGTCACCAAGTCTTTCGTGTGAACCTGCCGATTCGTCCGAC

CCGCCATAATTTCCACAGCGCAGCTGATGGTCAGCTGGGCGGTATCATGAAAGTGTATCGTGAA

TGGCGCATTAGCGGTGAAAACGAATTTCTGATCTCTATGTATCCGAAAGTGAAAAAATCTCTGG

ATTACTGTATCTCCACCTGGGACCCGCGTCGCGTTGGCTCAATTGAAGAACCGCATCACAACACG

TATGATATCGAATTTTGGGGCCCGGACGGTATGCATAATTCCTTCTATTACGGTGCACTGTCAG

CTTTTATCCGTATGTCGGAATTCCTGGATAAAGACGTGACCGAATATAAAAAACTGCTGAAAAA

AGGCCGCAAATTCACCGAAACGGGCCTGTTTAACGGTGAATACTTCATTCAGAAAATCGAATGG

CGTGGTCTGAATGCAAAAGATCCGACCGTGGCTCAAAGCTTTCACTCATCGTATTCTCCGGAAG

CGAAAGAAATTCTGGAAAAAGAAGGCCCGAAATATCAGTACGGCAACGGTTGCCTGAGCGATGG

CGTTCTGGGTAGTTGGCTGTCCCGCATGTGTGGTATGGAAGAAACCCTGAATACGGAAAAAGTT

AAATCACATCTGCTGTCGGTCCACCGTTATAACTTCAAAAAAGATCTGACCGACCATGCGAATC

CGCAGCGCTCACCGTACGCCCTGGGCAAAGAAGGCGGTCTGCTGCTGGGTTCGTGGCCGAAAGG

CGGTAAACTGAGTCTGCCGTTTGTCTATTCCAATGAAGTGTGGACCGGCATTGAATACCAGGTG

GCAAGTCATCTGATGCTGCAAGGCGAAGTGGAAAAAGGTCTGGAAATCGTTCGTGCTTGCCGTC

AGCGCTATGATGGCAGCGTTCGCAACCCGTTTAATGAATATGAATGTGGCCACTGGTACGGTCG

TGCGCTGAGCTCTTACGGTCTGCTGCAAGGCCTGACCGGTGTTCGCTATGATGCCGTCGACAAA

ACGCTGTACATCAACTCTAAAATCGGCGATTTCATCTCATTCATCTCGACCGAAAGCGGCTTTG

GTAATATTGAACTGCGTAGTGGCAAACCGTTCGTCAAAGTGGTTTCCGGTCATATCGAAGTGGA

TCGCTTTGTCGTGAGTGGTAAAGTTGTCGAATAA 

A.1.4 BtGH116 amino acid 

MGSSHHHHHHSSGLVPRGSHMNDIDDERNRIYNSSYSGKYNNRIAFPIGGIGTGMYCLEGTGYIS

HMSVWHRPEVFHEPGMFAALYVKGVCNGAKVLEGPVSDWRKFGMPNYGTGGSMGSILGLPRF

DTVEFEARFPFAKVSLTDKDIPVKVTILGWSPFIPGDPDNSSLPVGGLEYSLENTSKEVQETIFSYH

ARNFLSWGKGLDAIKTMPHGFILSQSGTETEPHLQGDFAIFTDQDSLKINYCWFRGGWFDSLTM

VWNAIEAGLMPQCPAIEKGAPGASMFVPVTLMPGEKKTIRIYTAWYVPNSTLRLGEEPEDWND

NNVDSARLAVEKADKGNYKPWYSSRFTGVNEVIDYFLSHYKILRNQTERFTDSFYRSTLPPEVIE
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AVSANLSILKSPTVMRQYDGRLWTWEGCADNWGSCHGSCTHVWNYAQAIPHLFPSLERSLRHT

FEEGQDLKGHQVFRVNLPIRPTRHNFHSAADGQLGGIMKVYREWRISGENEFLISMYPKVKKSLD

CISTWDPRRVGSIEEPHHNTYDIEFWGPDGMHNSFYYGALSAFIRMSEFLDKDVTEYKKLLKKGR

KFTETGLFNGEYFIQKIEWRGLNAKDPTVAQSFHSSYSPEAKEILEKEGPKYQYGNGCLSDGVLGS

WLSRMCGMEETLNTEKVKSHLLSVHRYNFKKDLTDHANPQRSPYALGKEGGLLLGSWPKGGKL

SLPFVYSNEVWTGIEYQVASHLMLQGEVEKGLEIVRACRQRYDGSVRNPFNEYECGHWYGRALS

SYGLLQGLTGVRYDAVDKTLYINSKIGDFISFISTESGFGNIELRSGKPFVKVVSGHIEVDRFVVSGK

VVE 

A.1.5 Thermoanaerobacterium xylanolyticum (TxGH116) nucleotide 
ATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGG

GCTGCTCAGAAAAAATCAACATCAATGAAGACAAAATCTCGCACAAAATCGACATCCCGGACTC

GGCCTGGACCATCGGTATCGGTGAAAAATTTAAAAACGCCGGTCATCCGAATGTTAAATACCCG

ATGATTGATGACAGCTATGTCCAGGGTGCACCGCTGGGCGGTTTTGGTGCAGGCACCATTGGCC

GTACGTATAACGGCGGTTTCTCCCGCTGGCACCTGGAAATCGGCAAAAACAAATACACCACGGT

GTATGCAAATCAGTTTTCAGTCTTCCAAAAAGTGGAGGGTAACAAAGATGGCGTGGCGCAGGTT

CTGTACGCCGGTGAACCGGAAAATGGCTATCTGAGCTCTTGGAAATGGGATTACCCGAAAGAAT

CTGGCATGTATTACGCGCTGTATCCGAACAGTTGGTATACCTACACGAATAAAGATCTGCCGGT

TCAGCTGGCCGTCAAACAATTTTCCCCGATTATCCCGTATAATTACAAAGAAACGTCATACCCG

GTGGCAGTTTTCAAATGGACCGCTTATAACCCGACGAACAAAAATGTCGATGTGTCGATTATGT

TTACCTGGCAGAATATGATCGGCTTTTTCGGCAAACAAGTTAACGTCAATAGCGGTAACTTCAA

CAAAATCATCAAAGACAAAAGCAAAGATTCTGAAATTGTCGCGGCCGTGATGGGCAACATCTCG

AACGATAATGAAGAATGGAATGGTGAATACAGCATTGGCGTTAAAAAAGTCCCGGGTGTGGAT

ATCTCCTATAAAGCGAAATTTGTGACCACGGGTGACGGCTCGGATCTGTGGCATGAATTCAGCA

AAAACGGCATTCTGGACAATAAAGATGACGAAACCCCGACGAAACAGGATGGTATTGGCTCTGC

AATCGCTGTTAACTTCAAACTGCAGCCGGGCCAAACCATTGAAGTGCCGTTTGCCCTGAGTTGG

GACCTGCCGATCATGAAATTCGGCGGTGGCGATAAATGGTACAAAATGTACACCAAATACTTCG

GTAAAAACGGCAAAAACTCTTTCGCAATCCTGAAAGAAGCTCTGAACAACTACCAGAAATGGGA

AAAAATGATCGATGACTGGCAAAAACCGATCCTGAGTAACAAATCCAAACCGGATTGGTATAAA

ACCGCGCTGTTTAATGAACTGTATTACCTGGCAGACGGTGGCACGGCATGGGAAAACGGTAAAG

TTGGCGAAAAAGATAAACGTACCAACAACATGTTCGGTCTGCTGGAATGCTTCGACTACAATTA

TTACGAAACCCTGGATGTGCGTTTTTATGGCAGTTTCCCGCTGGTTATGCTGTGGCCGGATATT

GAAAAACAGGTGATGCGCCAATTTGCCGACACCATCAACGTTCAGGATAGTTCCGAATTCAAAG

TCGGTAGCAATGGCGCGATGGCCGTTAAAAAAGTCCAGGGTATGATTCCGCACGATCTGGGCTC

ATCGTACGCACTGCCGTGGATTAAAATCAACGCTTATGACTGGCAGAACCCGAATATCTGGAAA

GATCTGAATTCGAAATACGTGCTGCTGGTTTACCGCGACTATGTTCTGACCGGTAAAACGGATA

AAGAATTCCTGAAATACACCTGGAAATCTGTGAAAACGGCACTGGACAAACTGAAAGAAATGG
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ATAAAGACAACGATGGTATTCCGGATAATGAAGGCATCCCGGACCAGACCTACGATACGTGGAG

CATGAAAGGTACCTCTGCGTATTGTGGCAGTCTGTGGCTGGCAGCTCTGAAAGCGGCCCAGGAA

ATTGGTAAAGTTCTGAAAGATAACGAAGCATACATCAAATACAACGAATGGTACAAAATCGCTC

AGCAAAACTTCGAAAAAGAACTGTGGAACGGCGAATATTACAATTTCGATACCGAATCCGACCA

TAAAGATTCAATTATGGCGGACCAGCTGGCCGGTCAATGGTATGCGGATATTCTGCGTCTGGGC

GACATCCTGCCGAAAGATCACGTTCAGAAAGCCCTGAAGAAAATTTACGAATTCAACGTGATGA

AATTCGAAAACGGTAAAATGGGCGCAGTCAATGGTATGCGCCCGGATGGCATTGTGGACGAATC

TGATATCCAGGCTCAAGAAGTGTGGACCGGTGTTACGTATGCACTGGCTAGTTTCATGAAATAC

CGTGGTATGACCGAAGAAGCATATAACACGGCTTACGGCGTGTATAAAATGACCTACGACAAAT

CCGGTAAAGGCTATTGGTTTCGCACCCCGGAAGCGTGGACGAAAGATGGCAATTACCGTGCCTC

AATGTATATGCGCCCGCTGTCAATTTGGTCGATGGAAGTCAACTATAATGAAGTGTAA 

A.1.6TxGH116 amino acid 
MGSSHHHHHHSSGLVPRGSHMGCSEKININEDKISHKIDIPDSAWTIGIGEKFKNAGHPNVKYPM

IDDSYVQGAPLGGFGAGTIGRTYNGGFSRWHLEIGKNKYTTVYANQFSVFQKVEGNKDGVAQVL

YAGEPENGYLSSWKWDYPKESGMYYALYPNSWYTYTNKDLPVQLAVKQFSPIIPYNYKETSYPV

AVFKWTAYNPTNKNVDVSIMFTWQNMIGFFGKQVNVNSGNFNKIIKDKSKDSEIVAAVMGNISN

DNEEWNGEYSIGVKKVPGVDISYKAKFVTTGDGSDLWHEFSKNGILDNKDDETPTKQDGIGSAIA

VNFKLQPGQTIEVPFALSWDLPIMKFGGGDKWYKMYTKYFGKNGKNSFAILKEALNNYQKWEK

MIDDWQKPILSNKSKPDWYKTALFNELYYLADGGTAWENGKVGEKDKRTNNMFGLLECFDYN

YYETLDVRFYGSFPLVMLWPDIEKQVMRQFADTINVQDSSEFKVGSNGAMAVKKVQGMIPHDLG

SSYALPWIKINAYDWQNPNIWKDLNSKYVLLVYRDYVLTGKTDKEFLKYTWKSVKTALDKLKE

MDKDNDGIPDNEGIPDQTYDTWSMKGTSAYCGSLWLAALKAAQEIGKVLKDNEAYIKYNEWYK

IAQQNFEKELWNGEYYNFDTESDHKDSIMADQLAGQWYADILRLGDILPKDHVQKALKKIYEFN

VMKFENGKMGAVNGMRPDGIVDESDIQAQEVWTGVTYALASFMKYRGMTEEAYNTAYGVYKM

TYDKSGKGYWFRTPEAWTKDGNYRASMYMRPLSIWSMEVNYNEV 
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Appendix 3. TxGH116C protein sequence 

ThxGH11C-pET30(+) was kindly supplied by James R. Ketudat Cairns, Suranaree 

University of Technology, Institute of Science, Protein Structure, Function and Application, 

Thailand. The construct encoded the TxGH116 protein lacking the first 18 amino acids 

following the pET30(+) N-terminal tag including a His6 tag, S-tag and enterokinase site. 

The fusion protein also included the C-terminal Hiss-Tag from the plasmid.  

TxGH116C amino acid 
MHHHHHHSSGLVPRGSGMKETAAAKFERQHMDSPDLGTDDDDK(***)AMALTGCSEKININED

KISHKIDIPDSAWTIGIGEKFKNAGHPNVKYPMIDDSYVQGAPLGGFGAGTIGRTYNGGFSRWHL

EIGKNKYTTVYANQFSVFQKVEGNKDGVAQVLYAGEPENGYLSSWKWDYPKESGMYYALYPNS

WYTYTNKDLPVQLAVKQFSPIIPYNYKETSYPVAVFKWTAYNPTNKNVDVSIMFTWQNMIGFFG

KQVNVNSGNFNKIIKDKSKDSEIVAAVMGNISNDNEEWNGEYSIGVKKVPGVDISYKAKFVTTGD

GSDLWHEFSKNGILDNKDDETPTKQDGIGSAIAVNFKLQPGQTIEVPFALSWDLPIMKFGGGDK

WYKMYTKYFGKNGKNSFAILKEALNNYQKWEKMIDDWQKPILSNKSKPDWYKTALFNELYYL

ADGGTAWENGKVGEKDKRTNNMFGLLECFDYNYYETLDVRFYGSFPLVMLWPDIEKQVMRQF

ADTINVQDSSEFKVGSNGAMAVKKVQGMIPHDLGSSYALPWIKINAYDWQNPNIWKDLNSKYVL

LVYRDYVLTGKTDKEFLKYTWKSVKTALDKLKEMDKDNDGIPDNEGIPDQTYDTWSMKGTSAY

CGSLWLAALKAAQEIGKVLKDNEAYIKYNEWYKIAQQNFEKELWNGEYYNFDTESDHKDSIMA

DQLAGQWYADILRLGDILPKDHVQKALKKIYEFNVMKFENGKMGAVNGMRPDGIVDESDIQAQ

EVWTGVTYALASFMKYRGMTEEAYNTAYGVYKMTYDKSGKGYWFRTPEAWTKDGNYRASMY

MRPLSIWSMEVNYNEVLEHHHHHH 

 

(***) designates the enterokinase cleavage site.  
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List of Abbreviations 
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μg Microgram 

μL Microlitre 

μM Micromolar 

μmol Micromole 

ABP Activity based probe 

ABPP Activity based protein profiling 

Ap Arthrospira plantensis 

ARCA Autosomal-recessive cerebellar ataxia 

Arg Arginine 

Asn Asparagine 

Asp Aspartic acid 

BLAST Basic local alignment search tool 

BODIPY Boron-dipyrromethene 

Bt Bacteriodes thetaiotamicron 

C Celsius 

ca Circa 

CAZy Carbohydrate active enzymes database 

CBE Conduritol B epoxide 

CCP4i2 Collaborative Computational Project No. 4 (interface 2) 

cDNA Chromosomal deoxyribonucleic acid 

CHO Chinese hamster ovary (cell strain) 

CNS Central nervous system 

COOT Crystallographic Object-Oriented Toolkit 

CV Column volumne 

Da Dalton 

DNJ Deoxynojirimycin 

DNA Deoxyribonucleic acid 

E.coli Escherichia coli 

EC Enzyme commission (number) 

ER Endoplasmic reticulum  

ERAD Endoplasmic reticulum- associated degradation 

ERT Enzyme replacement therapy  

GBA1 β-Glucocerebrosidase 1 (lysosomal) (Homo sapiens) 

GBA2 β-Glucocerebrosidase 2 (non-lysosomal) (Homo sapiens) 

GBA3 β-Glucocerebrosidase 3 (non-lysosomal) (Homo sapiens) 

GH Glycoside hydrolase family  
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GIM Glucoimidazole 

Glc Glucose 

Gln Glutamine 

Glu Glutamic acid 

GluCer Glucosylceramide 

Gt Geobacillus thermoglucosidasius   

h Hours 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

His Histidine 

HSP Hereditary spastic paraplegia 

Hz Hertz 

IC50 Half maximal inhibitory concentration 

IPTG Isopropyl β-ᴅ-1-thiogalactopyranoside 

ITC Isothermal titration calorimetry (ITC) 

kDa Kilodalton 

Ki Inhibition constant 

L Litre 

LB Lysogeny Broth 

LSD Lysosomal storage disorder 

m Minutes 

M Molar 

MES 2-(N-morpholino)ethanesulfonic acid 

Mg Milligram 

mL Millilitre 

mM Millimolar 

NB-DNJ N-butyldeoxynojirimycin, (miglustat, marketed as Zavasca®) 

nL Nanolitre 

nm Nanometre 

nM Nanomolar 

NN-DNJ N-nonyldeoxynojirimycin 

ORF Open reading frame 

PAGE Polyacrylamide gel electrophoresis 

PCR Polymerase chain reaction 

PCT Pharmacological chaperone therapy 

PDB Protein databank 

PEG Polyethylene glycol 
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PNGase Peptide-N-glycosidase 

RMSD Root-mean-square deviation 

RPM Revolutions per minute 

s Seconds 

SDS Sodium dodecyl sulphate 

SEC-MALLS Size Exclusion Chomatography - Multi-Angle Laser Light Scattering 

SeMet SelenoMethioine 

Ser Serine 

SPG46 Spastic Paraplegia 46 

SRT Substrate reduction therapy  

Thr Threonine 

Tris Tris(hydroxymethyl)aminomethane 

Trp Tryptophan 

TSA Thermal Shift Assay 

Tx Thermoanaerobacterium xylanolyticum 

UDP-Glc Uridine diphosphate glucose 
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