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Abstract

The study of urban soundscapes has gained momentum in recent years as more

people become concerned with the level of noise around them and the negative im-

pact this can have on comfort. Monitoring the sounds present in a sonic environment

can be a laborious and time–consuming process if performed manually. Therefore,

techniques for automated signal identification are gaining importance if soundscapes

are to be objectively monitored.

This thesis presents a novel approach to feature extraction for the purpose of

classifying urban audio events, adding to the library of techniques already estab-

lished in the field. The research explores how techniques with their origins in the

encoding of speech signals can be adapted to represent the complex everyday sounds

all around us to allow accurate classification.

The analysis methods developed herein are based on the zero–crossings informa-

tion contained within a signal. Originally developed for the classification of bioa-

coustic signals, the codebook of Time–Domain Signal Coding (TDSC) has its band–

limited restrictions removed to become more generic. Classification using features

extracted with the new codebook achieves accuracies of over 80% when combined

with a Multilayer Perceptron classifier.

Further advancements are made to the standard TDSC algorithm, drawing in-

spiration from wavelets, resulting in a novel dyadic representation of time–domain

features. Carrying the label of Multiscale TDSC (MTDSC), classification accuracies

of 70% are achieved using these features.

Recommendations for further work focus on expanding the library of training

data to improve the accuracy of the classification system. Further research into

classifier design is also suggested.
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Chapter 1

Introduction

1.1 Research Summary

The focus of the research detailed in this thesis was to develop a stand-alone classi-

fication system capable of differentiating between audio events typically found in an

urban soundscape. The most significant developments were made in how features

were extracted from audio data, these features then being classified by standard

neural networks. The feature extraction methods were purely time–domain, based

and built upon a technique well–established for bioacoustic signal identification.

The presented research also contributed towards work package 2.2 of the project

“Instrument for Soundscape Recognition, Identification and Evaluation” (ISRIE).

This work package aimed to perform analysis and classification of audio signals

found in an urban environment.

1.2 The ISRIE Project

The ISRIE project arose from the EPSRC Ideas Factory ‘A Noisy Future: making

the World sound better’ held in January 2006. The proposed outcome of the ISRIE

project can be described briefly as an intelligent noise metering system. The project

was a collaboration between the universities of York and Newcastle, and the Institute

of Sound and Vibration Research (ISVR) in Southampton.
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1.2.1 Project Collaborators

An overview of the work carried out at each institution is given below:

� Work in Newcastle focused on experimenting with multi-sensor techniques

for source localisation. They also looked at the design and construction of an

ad-hoc wireless sensor network for wide-area localisation, including a review

of various network topologies. Further details and results of this work can

be found in Atmoko, Tian, and Fazenda (2007) and Atmoko, Tan, Tian, and

Fazenda (2008).

� The research at York was split into two projects. One developed methods for

source separation using a B-format microphone which included the calculation

of a source’s direction of arrival to enable separation (Bunting, 2011). The

work detailed in this thesis describes the second project involving the research

of methods for analysis and classification of single–source audio signals.

� ISVR investigated the potential uses of ISRIE with respect to existing noise

legislation. This included liaising with potential beneficiaries of an intelli-

gent noise meter, such as ISRIE, to discover how it could assist their work

and if they thought it should have any particular functions. ISVR’s extensive

knowledge of legislation also aided in the decision of which sounds should be in-

cluded in the classification process (see Section 1.5). Creating and maintaining

a database of audio recordings was also undertaken by ISVR. This database

was made available to the other collaborators via a secure FTP server. Many

of these recordings contributed to the development and testing of the classi-

fication techniques discussed in this thesis. More details of the work carried

out by ISVR can be found in Karatsovis and Dyne (2008).

Collaboration between the three institutions was achieved through regular meet-

ings. During these meetings each institution reported on progress, and discussions

took place to decide how work would move forward.

The ISRIE project group also contributed to the Noise Futures Network (NFN)

through attendance and presenting at meetings. The aim of the NFN is to make

soundscapes a more prominent area of study by facilitating multi–disciplinary re-

search into this field. It is hoped that as a result of the work of the NFN more

aurally-conscious decisions will be made for future urban developments and that

the general public will become more aware of their sonic environment.
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1.2.2 Motivation for the ISRIE Project

At present, noise level measurements, such as those taken by local councils when

investigating noise complaints, are made using the A-weighted sound pressure level

(SPL) at a point over a period of time. This provides the investigator with lim-

ited information, such as the average and peak sound levels at that point, but the

measurement does not give them any information as to the cause of the sounds.

Consequently, a rural village, for example, could be deemed as ‘noisy’ because a

train passes through close to the measurement location once or twice a day giving

a high peak sound level. The village could also be deemed ‘noisy’ due to high peak

levels caused by a dawn chorus from local birds. These two examples illustrate that

both positive and negative sounds can cause an area to be labelled as ‘noisy’ even

though the dawn chorus may not be a particular nuisance to local residents.

One method of overcoming this issue is to make recordings of the environment

under investigation and perform manual analysis of the recordings; this is known

as attended monitoring. If a timecode synchronisation was provided between the

recordings and SPL measurements, the method would supply a detailed report of

which sounds occurred at what time and how loud they were. However, this method

of analysis perhaps introduces more problems than it solves. Firstly, performing such

a recording over a long period of time would require a great deal of data storage;

and secondly, it would require a person to listen to and review all of the recorded

data, which is a time-consuming and laborious process. The ISRIE system would

simplify this task by providing similar data, i.e. what sound occurred when, but

with none of the problems given above.

In a study of the occurrence of over snow vehicles in the Yellowstone National

Park (Burson, 2006), audio samples were recorded in the field and then analysed

in an office environment. Burson described how the volume of playback for some

recordings had to be increased by 10 dB to approximate the audibility that would

have been available in the field. This type of study would benefit from a system

such as ISRIE.

The following section discusses a case study carried out to identify the range of

problems the ISRIE system could overcome.
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1.2.3 Application of ISRIE: Case Study

To illustrate the potential uses of ISRIE, case studies were formulated by colleagues

at ISVR. The aim of these case studies was to demonstrate how using just the

conventional sound level for specific public administration applications is not always

adequate (Bunting et al., 2009). One such case study is briefly described here.

The case study was concerned with a residential development proposal. The area

that was to be developed was in close proximity to a number of noise sources that

could cause problems to the eventual residents. Two of the main noise sources were

local residential roads and a railway line.

The site was surveyed over a 24-hour period using unattended monitoring with

sound level meters. The meters logged data for LAeq and LAmax,s
1 in accordance

with the guidelines set out by Planning Policy Guidance (PPG) 24 (Department for

Communities and Local Government, 1994). This document also sets out a number

of Noise Exposure Category (NEC) bands which determine the outcome of a noise

assessment for a proposed development.

In the case study, one of the meters logged a daytime LAeq level of 65 dB placing

the site into NEC band ‘C’, if the main cause of this reading was road traffic or mixed

noise sources. Band ‘C’ dictates that ‘Planning permission should not normally be

granted ’ (Department for Communities and Local Government, 1994). However,

if the main source of the daytime reading was due to rail traffic, the site would be

placed in NEC band ‘B’ where ‘Noise should be taken into account ’ when considering

the planning application.

Another reading that could have affected the outcome of this site’s NEC place-

ment was LAmax,s which reached 82 dB. According to PPG 24 a site would be placed

into NEC band ‘C’ when there are frequent events that exceed 82 dB LAmax,s. The

sound level meters were configured to make recordings of any such events to allow

further analysis. It was found that out of the 70 events that reached 82 db LAmax,s,

65 of these were due to birdsong. Therefore, these readings would not affect the PPG

24 assessment. It is worth noting that analysis of the recordings took 4 man–hours.

The case study illustrates how an instrument such as ISRIE could aid in legisla-

tive procedures and remove the need for unnecessarily spending time on analysing

1LAeq is the average A-weighted sound pressure level over a given measurement period. LAmax,s

is the maximum A-weighted sound pressure level over a given measurement period based on a slow
weighting.
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recordings of events exceeding a predetermined level. An intelligent noise meter

would have been able to inform the user which sound categories contributed to the

reading of 65 dB LAeq. It would also have been able to indicate which sound cat-

egory was responsible for the events exceeding 82 dB LAmax,s without the need for

an extra four man-hours to analyse recordings.

1.3 Research Aims

The final ISRIE system requires the ability to separate different sound sources in an

acoustic environment and to provide a system that can overcome at least some of the

need for attended monitoring (see above). It was stated that the presented research

contributes towards the identification of sound sources. The acoustic sources present

in the environment will be captured by the ISRIE system via a microphone and

converted into a digital representation of the audio signal. Consequently, the aims

of the presented research were defined as:

1. Perform a comprehensive review of the literature to identify classification sys-

tems that already exist and where contributions can be made to the field of

signal classification.

2. Develop and test a classification system suitable for identifying audio signals

and determining the category to which the signals belong.

By reviewing the work of others and gaining an insight into the status quo of

the field, the first aim allowed the research to become focused on a particular strand

of signal classification rather than attempting to tackle the whole field. Inspiration

was drawn from a range of sources to develop the direction taken in fulfilling the

second aim.

1.4 Classification Systems

A typical classification system is shown in Figure 1.1. The two main parts of a clas-

sification system are evident; a feature extractor and a classifier. Some systems also

use pre- or post-processing. Pre-processing, could include, for example, normalising
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Figure 1.1: Flow diagram showing the basic structure of a classification system.
Adapted from Allegro, Büchler, and Launer (2001).

the audio signal. Post-processing is often used after the classifier to correct for errors

in classification.

When designing a classification system it is important to consider the signals

that are to be classified. This will assist in deciding the most suitable feature

extractor and classifier and also whether any pre- or post-processing is required.

For the classification section of the ISRIE system the input will be an electronic

representation of an acoustic signal. Chapter 2 discusses some of the available

feature extractors and classifiers.

1.5 Audio to be Classified

During the early stages of the ISRIE project, the project partners discussed which

sounds the ISRIE system should aim to classify. A set of audio categories for iden-

tification was developed based on the relevant standards – PPG 24, which relates

to minimising the adverse impact of noise (Department for Communities and Local

Government, 1994) and BS4142, which relates to rating the industrial noise affecting

areas comprising residential housing and industrial units (British Standards Insti-

tute, 1997). It was decided to aim to place the sounds into categories rather than

individual sounds because there is no real need to identify every individual sound,

as highlighted by the case study in Section 1.2.3.

The categories chosen for identification are given in Table 1.1. There are many

other sound categories which could be identified in an urban soundscape, but those

shown in Table 1.1 were determined to be the most important for the ISRIE project

to recognise.

Although the main purpose of ISRIE was always to identify sounds arising in

an urban soundscape, research was also carried out in recognising other biophonic

sounds. This work was undertaken to allow comparisons to be made with prior

work which used similar techniques for feature extraction and classification, and to
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Table 1.1: Sound categories to be identified by ISRIE.

Transportation Mechanical Biophonic

Road Air Conditioning Bird Song
Rail Ventilation
Air Building Works

broaden the scope of potential uses for the final ISRIE system. Further details of

this work are given in Chapter 4.

1.6 Summary of Novel Research

The presented research aimed to develop a classification system capable of discrimi-

nating between signals belonging to different urban sound categories. Persuing this

aim gave way to the following areas of novel research:

� A comprehensive review of the literature pertaining to the study of urban

soundscapes and signal classification. The latter was considered in many fields

of research including general audio classification and bioacoustic signal recog-

nition. From this review, techniques were identified for further investigation

(Chapter 2).

� The development of TDSC to provide a generic codebook suitable for extract-

ing features from urban audio signals. TDSC had previously been used for

bioacoustic and health monitoring applications (Chapter 3).

� The application of the new TDSC codebook in classifying urban audio signals

as well as a bioacoustic application (Chapter 4).

� Seeking inspiration from wavelet analysis to combine the zero–crossings based

analysis methods of TDSC with the dyadic representation of a signal resulting

in a technique called Multiscale TDSC (MTDSC). (Chapter 5).

� The application of MTDSC to classify urban audio events in combination with

MLP and LVQ networks (Chapter 5).

� The application of MTDSC in classifying bioacoustic signals and the recom-

mendations for future uses of MTDSC as a result (Chapter 5).

Publications arising from the presented research are provided in Appendix G.
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1.7 Chapter Summary and Thesis Overview

This chapter has introduced the research detailed in this thesis and set the wider

context of the work. Whilst the experimental data discussed herein is valid as a

stand–alone piece of research, the findings also make a contribution towards the

ISRIE project. The involvement with the ISRIE project influenced the choice of

audio data to be classified and the categories into which signals are classified.

The aims of the presented research were outlined and the reader introduced

to what constitutes a signal classification system. Some of the underlying theory

was presented, particularly in relation to the core parts of a classification system:

the feature extractor and classifier. Details were given of the categories into which

audio was classified. The choice of categories was based on collaboration with ISRIE

project colleagues and the uses of ISRIE with regard to the relevant standards.

Finally, a summary was included of the novel contributions made by the pre-

sented research. Chapter references were provided to guide the reader towards the

details of the novel work.

The remainder of this thesis is organised as follows:

Literature Review Previous work in the fields of urban soundscape analysis and

signal classification are considered in detail in Chapter 2. Prior research rele-

vant to the topic of this thesis is examined and critiqued.

Development of a Generic Codebook Chapter 3 explains the concepts and ori-

gins of TDSC. The limitations of the standard TDSC methods are discussed

and developments made to produce a generic codebook.

Classification using TDSC The generic codebook is used to classify both urban

audio events and bioacoustic signals in Chapter 4. Details of the training and

testing methodology are also provided together with experimental results.

Further Developments to TDSC Inpiration is drawn from wavelets in develop-

ing a novel feature extraction method in Chapter 5. Results are presented for

the training and testing performed with the new technique.

Discussion and Further Work In Chapter 6, the findings of the presented re-

search are discussed in detail including its strengths and limitations. The

possibilities for continuing the research in the future are also considered.
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Conclusions The final chapter draws conclusions on the project.

Appendices Full code listings and additional material referred to throughout the

text are included in the appendices. Also included are several publications

relating to the presented research.
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Chapter 2

Signal Classification

In this chapter, prior work carried out in the field of signal classification will be

discussed. This will provide an overview of both the signal analysis techniques that

can be used for classifying signals and the different areas of research where such

techniques are applied. An intended outcome of this review of previous work was to

identify suitable feature extraction and classifier techniques which could be applied

in the ISRIE system.

First, an overview will be given of research that has previously attempted to

analyse a soundscape. As will be seen, some of these studies have required the

researcher(s) to be present in the soundscape. Their results have either been estab-

lished by simply listening to what sounds are occurring around them or by asking

passers-by what they can hear. These studies provide results that are predominantly

subjective and are based entirely on people’s perception of the sounds they hear.

Ideally, the ISRIE system will provide an output that is objective. That is, the

output will inform the user which sounds or categories of sound were detected in a

soundscape.

A discussion is also given of prior work that has tried to achieve an objective

description of the sound events that occur within a given environment. The aims of

the different studies vary from security implementations to similar aims to ISRIE;

identifying the sources of noises that may be of nuisance to soundscape users.

The field of signal classification is by no means restricted to the identification

of general audio events. Neither is it restricted to audio events. However, for the

purposes of this project the focus will be on studies relating to the identification

of audio. Much signal analysis and classification work has been undertaken in the

10



Signal Classification

fields of health studies (both animal and human), mechanical fault diagnosis, species

identification, and music and speech analysis. The latter of these, speech and music,

will only be discussed very briefly because, as it will be seen, the techniques usually

employed for such tasks often rely on the input signals having an alphabet, something

which most sounds in an urban environment lack.

2.1 Soundscape Studies

There have been studies into both the contents of soundscapes and the importance

of sound in urban environments, relating to both planning and human comfort.

Early studies of soundscapes were performed by the World Soundscape Project,

established by R. Murray Schafer in the 1960s and 70s (The World Soundscape

Project Website, 2007). “The Vancouver Soundscape” (Schafer, 1978) was the first

detailed study performed by the group and focused heavily on the contents of the

Vancouver soundscape and how it had changed in recent years. After giving some

“ear-witness” accounts of how the sonic environment had developed, Schafer de-

scribes the keynote sounds, signals and soundmarks of the soundscape. Schafer

also introduces the notion of Hi-Fi and Lo-Fi soundscapes. In a Hi-Fi one even

the smallest of disturbances can communicate interesting information without be-

ing washed out by background noise (i.e. a high signal-to-noise ratio). Conversely,

in a Lo-Fi soundscape a small disturbance would be lost in an “overdense popula-

tion of sounds”. A Lo-Fi soundscape is therefore an undesirable situation for an

environment.

To combat noise pollution in Vancouver, Schafer proposed the use of large-display

noise meters at certain intersections in the city. These meters would give the ambient

noise levels on a graded system: <40dB being “pleasant”, <60dB being “tolerable”,

>70dB being “annoying” and above 85dB being “dangerous”. Such a system would

only provide an indication for people at or near that intersection of what the level is,

not what to do about it. For such a system to become useful these meters would need

to be monitored and suggestions put forward for ways to combat any “annoying” or

“dangerous” noise levels.

What Schafer illustrated in this soundscape study is that, even in the 1970s

soundscape monitoring was an important part of town planning and development.
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Echoing Schafer’s views in a study examining the influence of sound on landscape

values, Carles, Barrio, and de Lucio (1999) found

“. . . a need to identify places or settings where the conservation of the

sound environment is essential . . . ”

(Carles et al., 1999, p. 191)

This need stems from the fear that a landscape can be negatively altered both by

visual change (buildings and roads) and by a change to the acoustic environment.

Further studies into how users of soundscapes perceive the sonic environment

have been carried out as part of the “Positive Soundscapes Project” (PSP - a sister

project to ISRIE). Cain, Jennings, and Poxon (2011) used data generated by PSP

to determine descriptors for assessing how positive a soundscape was. Soundscapes

were plotted on axes having the labels “calmness” and “vibrancy” - soundscapes

with high values of each were generally seen to be positive. The aim of the work

by Cain et al. (2011) was to develop techniques that can be used to aid soundscape

design.

A related study by Jennings and Cain (2012) applied automotive product design

techniques to analyse soundscapes. In doing so, the authors aimed to define what

is meant by a “positive” soundscape. Jennings and Cain report that this is largely

dependent on the user and the activities they are carrying out within the soundscape.

Yang and Kang (2005) provide a subjective study investigating the effect of the

sonic environment on those situated in it. They performed an evaluation of acoustic

comfort in open public urban spaces through the use of questionnaires and sound

level measurements. Their results found that subjective evaluations of sound levels

correlated well to the measured level. However, considerable differences were found

between the subjective level evaluation and acoustic comfort evaluation. This is

actually a fairly obvious result; loud sounds are not necessarily always unpleasant.

So Schafer’s proposed noise meter system will not always prove valid (for example,

a flock of birds singing could produce sound levels in excess of 70dB and not be

considered annoying). Yang and Kang show that the quality of a soundscape can

only be described as good/bad, pleasant/unpleasant, etc. with considerable human

input. During meetings with the ISRIE project partners it was established that

subjective classification would not be an aim for the ISRIE system as this would

rely too heavily on human perception.
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Other studies have also combined subjective study with accurate measurement,

such as Ge and Hokao (2005) and Raimbault, Lavandier, and Bérengier (2003).

These studies, like that of Yang and Kang (2005), perform their evaluation through

questioning passers-by and attended monitoring, including making recordings of

particular urban areas and measuring sound levels. Hall, Irwin, Edmondson-Jones,

Phillips, and Poxon (2011) compared results from laboratory-based listening tests

with sound level measurements of soundscapes in their study regarding the pleas-

antness of various soundscapes. Hall et al. (2011) report that acoustic and psy-

choacoustic variables contributed little towards the perception of how pleasant a

soundscape was.

Another field that aims to quantify the urban soundscape is that of soundscape

cartography. Kang and Servign (1999) propose a system which provides the user

with an animated map of an urban soundscape for a given time period. It is pro-

posed that the system could also be used for simulated sound impact for new urban

developments.

A recognition tool would aid the evaluation processes in studies such as those

discussed above by providing the researcher with, for example, a list indicating

which sounds or which types of sound occurred and at what time they occurred.

Combining a recognition tool with the animated cartography proposed by Kang

and Servign (1999) could result in a very powerful system providing a great wealth

of information to urban planners, dwellers and researchers. A system such as that

proposed by the ISRIE project would negate the need for the researcher to be in the

soundscape for extended periods of time to manually collect such information.

2.1.1 Audio Identification Instruments

The ISRIE project, as the name suggests, aims to develop an instrument for sound-

scape analysis. Prior studies which have had similar aims to the ISRIE project or

tried to develop a similar instrument are discussed here.

The MADRAS project (Dufournet and Jouenne, 1997; Dufournet, Jouenne, and

Rozwadowski, 1998) aimed to develop an instrument for real-time identification and

quantification of various acoustic sources in a given acoustic environment, and assess

their impact on the environment. The system comprised 5 steps:

detection of a signal (thresholding),
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segmentation to identify sections of interest in the signal,

broad classification into one of 5 categories using Principle Components Analysis

and a neural network,

expert classification from the broad category into a more specific category using

third-octave features and a multilayer perceptron classifier,

post-processing such as calculating the contribution of the signal to the overall

acoustic environment.

The stages of this system relate closely to the more generic stages introduced in

Figure 1.1. However, in this system the classification process is split into two stages.

Dufournet et al. (1998) report that the broad and expert classifiers achieve 80%

accuracy and propose how these results may be improved. At the time of writing, it

has not been possible to find any further information on the MADRAS project be-

yond that given in the cited papers. It is therefore uncertain if the MADRAS project

was successful in implementing the proposed system to develop “a new generation

of acoustics instruments” or if the authors were able to achieve higher accuracies.

A more recent project developed an Ecological and Environmental Acoustic Re-

mote Sensor - EcoEars (Gage, Maher, and Sanchez, 2005). The EcoEars system

was proposed as a stand-alone unit (with portable and permanent variations) for

monitoring noise contributions, environmental data (wind speed, temperature, etc.)

and noise levels in a given location. The main interest of the EcoEars project was

identifying mechanical noise and bird vocalisations in the vicinity of airfields. It

is proposed that by monitoring these categories it could be possible to reduce the

number of birdstrikes on civilian and military aircraft. This could result in cost

savings to the civilian and military aviation industries and fewer endangered birds

being killed.

Gage et al. (2005) propose short-time Fourier analysis for feature extraction and

a pattern matching method for classifying. This combination results in recognition

accuracy for bird vocalisations of 97.5%. However, as acknowledged by Gage et al.,

pattern matching as a means of classification requires a great deal of storage space.

This is not a problem when the application only requires the identification of two

categories. However, if there are more categories to classify into, the storage re-

quirements become too large. Therefore, pattern matching is not an ideal candidate

for the classifier stage of the ISRIE system.
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2.2 General Audio Event Classification

There have been a number of studies that have also sought to accurately identify

audio events that fall into the general sound category. That is, the sounds are

those which might be heard in everyday environments, but not necessarily an urban

environment. Inspiration can be drawn from such studies because they are trying to

identify a number of sounds that, like those of an urban environment, have obviously

different characteristics, either in their frequency components or temporal properties,

or both. This section will discuss some of the studies in this area and identify the

feature extraction and classifier techniques the researchers have chosen to implement.

2.2.1 Audio Event Classification for Security

A comparative examination of various feature extractors and classifiers for the recog-

nition of environmental sounds is provided by Cowling and Sitte (2003). The appli-

cation of their work is focused on a component of a security system. The authors

state that sound recognition systems have an advantage over video surveillance cam-

eras in a security system because line of sight is not required for a sound recognition

system to function correctly. The work of Cowling and Sitte attempts to discover

which feature extractor and classifier (FEC) pair provides the best classification re-

sult of non-speech environmental sounds. They also examine how well the various

FEC pairs can classify speech and musical instrument sounds.

Cowling and Sitte refer to the findings of previous studies to construct com-

parison tables of feature extraction and classification techniques that are suitable

for classifying audio events. They rely on the results of some of these earlier stud-

ies to determine which FEC pairs provide the best results for a particular type of

sound. For example, a Q-cepstral coefficient feature extractor paired with a Gaus-

sian Mixture Model classifier were used for musical instrument recognition, but not

for environmental sounds. The comparison tables showed that some techniques are

not suitable for non-speech sound recognition. In particular, feature extraction tech-

niques which require an alphabet of subword features are not particularly suited to

the classification of environmental sounds. It is pointed out that this is because

environmental sounds do not have the phonetic structure that speech has and that

there is no set alphabet for environmental sounds. Hidden Markov model-based

classifiers are mentioned as being difficult to implement for environmental sound

recognition as they require an alphabet.
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The experiments conducted by Cowling and Sitte consisted of testing eight dif-

ferent sounds. The sounds were chosen for their likelihood of being classified in a

sound surveillance system. All of the possible combinations of FEC pairs are tested

in this study, each FEC pair being tested using a jack–knife method. This is a

method in which a classification system is trained with all data except for the sound

sample that will be tested. This sound sample is then used to test how accurately

the system can classify that particular sound type.

The results of this work show that a Dynamic Time Warping (DTW) classifier

with either Mel Frequency Cepstral Coefficient (MFCC) features or Continuous

Wavelet Transform (CWT) features gave a correct classification rate of 70%. None of

the other classifier models, including Learning Vector Quantisation (LVQ), Artificial

Neural Networks (ANN) and Gaussian Mixture Models (GMM), gave comparable

accuracies for classification.

The work of Cowling and Sitte provides an excellent overview of some techniques

that could be applied in classifying urban audio events. The results produced by

some of the combinations are promising and Cowling and Sitte suggest ways in which

these results could be improved. This study will provide a useful reference when

discussing the techniques that will be tested for use in the ISRIE system and when

establishing the testing methods for any classification systems that are developed.

Cowling and Sitte also provide a further use for the proposed ISRIE system.

Another form of security is the focus of Ghiurcau, Rusu, Bilcu, and Astola

(2012). The authors propose the use of audio classification methods for protecting

wild areas from intruders that may be damaging the areas (through hunting, fishing,

or deforestation). Ghiurcau et al. emphasise that it is difficult to monitor large

reserves with just foot patrols and suggest that remote acoustic sensors could be

used to raise the alarm when an intruder is present.

Ghiurcau et al. (2012) provide a comparison between low-complexity and stan-

dard classification methods. For the low-complexity methods, they extract features

using Time-Encoded Signal Processing and Recognition (TESPAR) - a method

which is of significant importance to the presented research and one that is dis-

cussed in greater detail in Chapter 3. The TESPAR features were classified using

pattern matching with archetypal features stored in a database. For the standard

methods, Ghiurcau et al. use MFCC features and Gaussian Mixture Model (GMM)

and Support Vector Machine (SVM) classifiers.

The purpose of the work of Ghiurcau et al. (2012) is to determine if the low-
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complexity method of signal classification is accurate enough to be used as a remote

acoustic detector of intruders. They conclude that the low-complexity methods are

not as robust as the standard (and more complex) methods. Using TESPAR features

extracted from clean recordings, an accuracy of 97% was achieved, compared to an

accuracy of ∼99% for the more complex standard classifcation methods. However,

Ghiurcau et al. emphasise that the more complex methods are not suitable for

implementation on simple controllers that could be distributed in remote wildlife

areas.

The work of Ghiurcau et al. (2012) is significant in the context of the ISRIE

project because the intended outcome of ISRIE was a remote sensor for classify-

ing acoustic signals. Ghiurcau et al. provide a strong argument for the use of

low-complexity feature extraction methods in a distributed sensor using simple con-

trollers.

2.2.2 Environmental Noise Monitoring

A novel approach to environmental sound recognition (in this case urban sounds)

is presented by Defréville, Roy, Rosin, and Pachet (2006). The authors aimed to

develop a system capable of giving an efficient representation of an acoustic envi-

ronment by computing a noise disturbance indicator based on identification of noisy

sound sources. The goal of the work of Defréville et al. is similar to that of ISRIE in

that the focus is on providing an objective assessment of a urban sonic environment.

Defréville et al. refer in particular to European Directive 2002/49/EC (Council

Directive (EC), 2002) which is still in force.

Defréville et al. adhere to the typical classification system structure introduced

in Figure 1.1 stating that any classification system follows a two-phase scheme: a

feature extraction phase and a classification phase.

Defréville et al. focus on improving the features presented to the classifier by

using only problem-specific features (i.e. features that perform particularly well

for the current problem). For example, a classifier will require a different set of

features to accurately identify a car in comparison to a bird. The decision on which

features are required for a particular recognition task are normally selected by a

signal processing expert or researcher. The authors of this study replaced that

person by using the Extractor Discovery System (EDS).
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EDS was developed by Zils and Pachet (2004) to produce high-level music de-

scriptors for use in a music information retrieval system. According to Defréville

et al., EDS invents

“. . . features as combinations of operators that are specific to the problem

to solve . . . features that a signal processing expert would never have

come up with. . . ”

(Defréville et al., 2006, p. 2)

A typical feature generated by EDS might combine the following mathematical

and signal processing operators: splitting the signal into frames of a given length,

applying a window function (such as a Hanning window), performing a fast Fourier

Transform, finding the square root of the signal, and extracting the MFCC properties

of the signal.

There is no reason for a signal processing expert to come up with this particular

combination of signal processing techniques, or even to combine this many tech-

niques. However, the EDS has all of these techniques available and can combine

them to suit the audio signal under analysis.

Defréville et al. trained and tested the classification system using 2000 audio

samples from 16 categories, with only 6 of these being focussed on for recognition

(cars, mopeds, motorcycles, buses, birds and voices). The authors state that each

audio sample used in the study was arbitrarily fixed at 500ms. The audio samples

were split into 2 groups: 66% for training, and the remaining samples for testing.

Defréville et al. used two types of classifier in their study: Gaussian mixture models

(GMM) and Nearest Neighbours (kNN).

Defréville et al. performed a number of classification tasks to test the validity of

the extracted features in combination with the two types of classifier. These tests

include, amongst others, splitting the data into bird sounds versus other sounds,

moped sounds versus other sounds, mechanical versus non-mechanical sounds, etc.

The authors report average results in the region of 90%. Interestingly, results are

given with a timbre feature added to the set of features generated by EDS. Including

the timbre feature increases the recognition accuracy by as much as 5 to 6% in some

cases.
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Defréville et al. raise two critical issues in the discussion of their work: com-

pleteness and consistency :

� The completeness issue is explained as being the difficulty encountered when

trying to design descriptors that cover every sound category and also differ-

entiate between each category. The authors highlight that this problem will

be encountered whenever trying to perform multiple class classification. To

overcome the completeness issue, Defréville et al. use a hierarchy of classifiers.

Figure 2.1 shows an example of this approach.

� The consistency issue discussed by Defréville et al. relates to the fact that

some categories of sound are not acoustically consistent. Example is given of

the motorcycle category in which the sound of a Japanese four-cylinder engine

sounds very different to the two-cylinder engine of a Harley-Davidson. To a

human it would be obvious that these samples are both motorcycles. However,

a classification system may place them in different (and incorrect) categories.

No solution to the consistency issue is offered by the authors. However, this

is an issue that must be borne in mind in any sound recognition task.

Figure 2.1: Hierarchical classification approach adopted by Defréville et al. (2006).

Botteldooren, Coensal, and Muer (2006) also propose a system for environmental

noise monitoring, drawing on terminology more often used for describing music and

examine the soundscape in terms of its rhythm. Botteldooren et al. examine the

soundscape as a whole rather than the individual constituent parts in their study

of the temporal structure of urban soundscapes. The notion of a soundscape being

rhythmic is not new and this is acknowledged by the authors. Building on this,

it is stated that “. . . interesting, music-like temporal structure may become quite

disturbing or annoying . . . ” (Botteldooren et al., 2006, p. 108).

Determining if a soundscape is music-like is the main focus of the experimental

work and this is achieved by comparing amplitude and pitch spectra of various
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soundscapes to 1/f noise. This is taken further to look specifically at the temporal

structure of traffic noise because the authors believe this to be one of the biggest

disturbances in the urban soundscape.

Their results show that many soundscapes exhibit some level of music-likeness

but traffic noise is often more chaotic. The work of Botteldooren et al. provides

a very different approach to soundscape evaluation when compared to the other

studies in this section.

Another holistic approach to soundscape recognition is presented by Peltonen,

Tuomi, Klapuri, Huopaniemi, and Sorsa (2002). The authors state that auditory

scene recognition could be used to make hearing aids context-aware, thus improving

the users experience of the environment. Peltonen et al. use many different sound-

scapes to train and test a number of combinations of features and classifiers in an

attept to identify the best candidates for the task. The highest accuracy (68.4%)

was obtained using a feature vector consisting of 5 different features fed into a near-

est neighbour classifier. The authors report that this result is comparable to human

listening test results of 70% accuracy.

The work of Peltonen et al. suggests that a complex feature extraction stage is

necessary to achieve reasonably accurate recognition rates for whole soundscapes.

Their approach, as well as that of Botteldooren et al., is perhaps not as useful

to the ISRIE project given that it does not aim to identify the individual sounds

contributing towards the soundscape. Nevertheless, the work of Peltonen et al. and

Botteldooren et al. is important to the field of soundscape research as they both

provide a more holistic method of analysis. Furthermore, these approaches negate

the issues of completeness and consistency given by Defréville et al. (2006).

Krijnders, Niessen, and Andringa (2010) aimed to identify individual sounds

within a soundscape and highlight a problem similar to the consistency issue of

Defréville et al. (2006); some signals will have similar acoustic signatures but in

fact will have very different meanings to a human listener. Krijnders et al. give

the example of screams, singing and speech. To overcome this problem, Krijnders

et al. use a technique they refer to as a “knowledge network” to provide contextual

information for each sound being analysed. Classification results improve by 20%

when the contextual information is combined with the features extracted from the

raw signals for those categories that are very similar to others in their acoustic

signature. The contextual information is applied to the system during a supervised

training stage and relies on commentary of the signals being analysed for training.
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2.2.3 Audio Content Analysis

Umapathy, Krishnan, and Rao (2007) discuss how the ability to classify a wide

range of audio signals can play an important role in day-to-day life. Similar to the

suggestion of Peltonen et al. (2002), Umapathy et al. propose that audio content

analysis can be used to develop hearing aids that can adapt a noise reduction strategy

depending on the noise sources present in the local environment. Such a device could

significantly improve the quality of life for those with hearing impairments. Other

applications of “audio environment detection” discussed by Umapathy et al. include

wildlife conservation and in an educational tool for teaching children about different

environments.

Umapathy et al. do not explicitly state that their work could be applied to

audio event identification for soundscape analysis. However, there are aspects of

this work that could be relevant to ISRIE. In particular, Umapathy et al. propose

a method of heirarchical classification for their sound categories. The top tier of

the heirarchy divides the sounds into artificial and natural sounds. Such a broad

division is applicable in the ISRIE project because the sound categories detailed in

Section 1.5 could also be split in this way; the artificial categories (traffic, building

works, ventilation, etc.) of the ISRIE project are the categories most likely to

be considered a noise nuisance (i.e. a sound that users of the soundscape find

unpleasant). Therefore, one possible classification of sounds which are present in an

urban soundscape could simply be natural vs. artificial, with the sounds identified

as artificial being those causing a noise nuisance in the context of the ISRIE project.

Although this approach would work for many sounds present in an urban envi-

ronment, it would not be suitable if other artificial sources were present which were

not considered a nuisance. Umapathy et al. include a number of musical instru-

ments in their classification tree on the side of artificial sounds. Furthermore, it is

desirable to obtain more detail in terms of the specific category of sound which an

audio event belongs to.

The classification system developed by Umapathy et al. (2007) uses a Local Dis-

criminant Bases (LDB) technique to identify discriminatory time-frequency features.

The time-frequency features are extracted using Wavelet Packets. Time-frequency

features were chosen by the authors due to the non-stationarity of the signals they

were attempting to classify. To validate the results of using the LDB-Wavelet combi-

nation, Umapathy et al. also extracted Mel Frequency Cepstral Coefficient (MFCC)

features. To classify the features, the authors used a Linear Discriminant Analysis
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(LDA) classifier. The testing method implemented is labelled as the leave-one-out

method – one sample is excluded from the dataset during training and is used to test

the trained system. This is repeated for each sample in the dataset. This method

of testing is similar to the jack-knife method of Cowling and Sitte (2003).

Umapathy et al. (2007) tested their system using only the LDB-Wavelet features,

only the MFCC features, and a combination of both sets of features. In general,

the authors found that the results obtained using the LDB-Wavelet features were

comparable to those obtained using the MFCC features. However, the MFCC fea-

tures performed better for the natural sounds, and LDB-Wavelet features performed

slightly better for the artificial sounds. Therefore, Umapathy et al. performed ex-

periments using both sets of features to determine how well the methods complement

each other. Their results show that combining the two methods of feature extraction

did improve the overall classification results.

The authors report classification accuracies of 91% for the top tier of their heirar-

chy (using a combination of LDB and MFCC features). This result is comparable

to the 96% accuracy achieved by Defréville et al. (2006) for their division of me-

chanical and non-mechanical sounds, as discussed above. The result reported by

Defréville et al. was also achieved using a combination of features – EDS features

and timbre. These high classification accuracies for seemingly simple divisions of

sound categories are promising when considering the aims of ISRIE and the case

study discussed in Section 1.2.3. An accurate recognition of natural vs. artificial, as

used by Umapathy et al., or mechanical vs. non-mechanical, as used by Defréville

et al., would give satisfactory results for discriminating between the traffic and bird

song highlighted in the case study.

2.2.4 Further General Audio Classification Studies

The work of Cowling and Sitte (2003), Defréville et al. (2006) and Umapathy et al.

(2007) described above are perhaps the most pertinent of the previous studies into

general audio classification because of the breadth of the research and the areas of

application. There are, however, many other pieces of prior research which aim to

classify general audio, some of which are discussed here.

The work of Norris and Denham (2003) concentrates on the detection of sound

textures which are defined as sound with local structure but no perceptually obvious

long-term structure. Contrary to the typical classification system structure shown
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in 1.4, Norris and Denham do not use a feature extractor per se. Instead, the

audio data is fed straight into a Self-Organising Map (SOM) either 2, 4, 8 or 16

samples at a time. The output from the SOM is used to construct a histogram of

the redundancy of each input sample. The theory behind this approach is that if

the SOM is trained for a particular audio sample, similar audio samples will give

similar probability distributions.

The approach of Norris and Denham results in a SOM that is very good at

recognising a particular type of sound, and each trained SOM could be considered

an expert classifier. A system could be constructed using many SOMs, each SOM

trained to identify a particular category of audio event, the overall system capable

of determining which category an input belongs to. This approach would reinforce

the completeness issue highlighted by Defréville et al. (2006).

Couvreur, Fontaine, Gaunard, and Mubikangiey (1998) discuss how earlier re-

search into environmental noise monitoring have used dynamic feature extraction

techniques (i.e. those which incorporate both time and frequency features) but then

only used a static classifier to process the features. In doing so, much of the useful

information gathered by the dynamic feature extractor is not fully utilised. Cou-

vreur et al. propose a noise monitoring system for environmental sounds, the aim of

the research being to show how classification results for environmental sounds can

be improved by providing a dynamic classifier to complement dynamic features.

Couvreur et al. (1998) perform a frame-wise spectral analysis of the input sig-

nals and convert these to cepstral coefficients. After further data reduction using

vector quantisation, the features are classified using a left-right HMM. The system

was constructed using the Speech Training and Recognition Unified Tool (STRUT),

a speech processing system developed by TCTS-Multitel at the Faculté Polytech-

nique de Mons in Belgium. Without making any significant changes to the speech

processing system, Couvreur et al. achieve a recognition rate of 91%. This figure is

increased to 95.3% after modifying the system.

The results given by Couvreur et al. (1998) contradict the statement given by

Cowling and Sitte (2003), showing that a classifier which allegedly requires an al-

phabet can successfully recognise environmental sounds. Two further investigations

also report excellent results using HMMs:

� Kim, Burred, and Sikora (2004) achieve excellent recognition accuracies using

a continuous HMM in their comparative study of MPEG-7 and MFCC features
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(∼95% accuracy) with 12 sound classes (including 2 speech classes).

� Ma, Milner, and Smith (2006) report accuracies in the range 93 – 96% using

MFCC features and a left-right HMM classifier in their investigation into an

acoustic environment classifier. The locations used to make the recordings were

everyday environments such as an office, city centre street, railway station, etc..

These three studies which use a HMM classifier all outperform the systems pro-

posed by Cowling and Sitte (2003), showing that classifiers typically used for speech

recognition can have a place in the recognition of environmental sounds.

Ruvolo, Fasel, and Movellan (2010) provide a novel method of extracting features

for classification by a Support Vector Machine (SVM). The method used by Ruvolo

et al. extracts Spectro-Temporal Box Filter (STBF) features. These features analyse

a signal over differing framelengths. Ruvolo et al. (2010) highlight that previous

sound classification studies have often analysed signals over very short framelengths

(tens of milliseconds) and then performed longer term analyses after classification

to improve results. The authors provide results showing that their method (using

short-, medium-, and long-term frames for feature extraction) improves classification

accuracy for three different tasks - emotion detection (78.7%), detection of crying

(95%), and music versus speech (98.4%).

2.2.5 General Audio Event Classification Summary

This section has provided a comprehensive overview of the research that has al-

ready been undertaken in the field of general audio event classification. Most of

the reported research conforms to the standard feature extractor-classifier structure

for the classification system. For each of these stages, many techniques have been

identified and tested.

Of the reported results, the most promising are those given by Defréville et al.

(2006) and Gage et al. (2005). However, both of the systems developed by these

authors have their drawbacks. The system proposed by Defréville et al. requires

some very complex feature extraction which would necessitate significant computing

power. Gage et al. achieve high accuracy rates by using a pattern matching clas-

sifier. This type of classifier needs large amounts of data storage if there are many

categories of sound to be classified.

Each of the studies using a HMM classifier report excellent classification accu-
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racies. Contrary to Cowling and Sitte (2003), HMMs should not be ruled out as a

potential candidate for the classifier of the ISRIE system.

One of the most interesting proposals found in the literature is that of expert

classifiers and classifiers that differentiate between low numbers of categories. Uma-

pathy et al. (2007) use a heirarchical classifier arrangement and report accuracies of

up to 99% when selecting between two categories. In discussing the completeness

issue, Defréville et al. suggest that hierarchical classification could be the solution

to overcoming the issue. The idea of expert classifiers is also proposed by Dufournet

and Jouenne (1997); Dufournet et al. (1998). Therefore, the hierarchical method of

classification should be investigated in this thesis if using a single classifier does not

yield acceptable results.

As discussed previously, the work of Ghiurcau et al. (2012) is significant to this

project because they have shown that simple feature extraction methods can yield

robust classification results. Using feature extraction methods with lower complexity

would result in less computational power required for processing signals detected in

the field. Consequently, a processor would have lower power requirements and a

battery-operated sensor would require less maintenance.

The field of general audio event classification has yielded many techniques for

feature extraction and classification. The following section delves into some of the

other areas where audio signal classification is applied, providing an overview of

these areas of application and identifying the techniques used.

2.3 Signal Classification in Other Research Fields

2.3.1 Human Health

Systems for automated classification have been developed for human health analysis.

Their main purpose is to provide an objective and reliable method for assisting

diagnosis. Often their application relates to an illness that requires a great deal

of observation by a specialist to diagnose. An automated system can reduce the

amount of time required from the specialist.

Distinguishing between voluntary and spontaneous cough is the focus of the re-

search conducted by Van Hirtum and Berckmans (2002). Coughs are an important

symptom in many respiratory diseases and often continuous observation of an in-
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dividual is required to determine how the cough is affecting them. The methods

proposed in this research aim to solely distinguish between voluntary and sponta-

neous cough with the eventual aim being to automatically determine if an individual

has a particular disease from their cough. The feature extraction methods used are

power spectral density analysis, principle component analysis and Euclidean spec-

tral distance finding. These are then classified using nearest neighbour methods,

learning vector quantisation, and fuzzy C-means clustering. A classification result

of 96% is stated for distinguishing between the two types of cough but it is unclear

which combination of methods provided this.

Dimoulas, Kalliris, Papanikolaou, Petridis, and Kalampakas (2008) discuss meth-

ods for unsupervised monitoring of bowel sounds captured via analysis of abdominal

surface vibrations. The direction of the research is toward non-invasive methods for

prolonged observation of patients to aid diagnosis of bowel functional disorders.

This work introduces an interesting de-noising method referred to as Wavelet Do-

main Wiener Filtering. This stage of pre-processing is necessary to remove other

sounds picked up by the sensors, such as patient movement and other internal organ

sounds (in particular the lungs and heart). A number of features are extracted from

the signals including temporal power features, spectral features and features gained

from wavelet analysis. A neural network in the form of a multilayer perceptron is

used as the classifier. The combination of wavelet features with the MLP network

gave the best results averaging 95% recognition performance between 5 classes of

illness.

Another application of non-invasive diagnosis is discussed by Güler and Übeyli

(2006). In this study wavelets and probabilistic neural networks are used for clas-

sification of Doppler ultrasound blood flows. The motivation is similar to that of

Dimoulas et al. (2008) in that observation over long periods of time is necessary for

diagnosis.

Linder, Albers, Hess, Pppl, and Schnweiler (2008) propose a method for screen-

ing the voice disorder Dysphonia. Usually this can only be diagnosed at specialised

centres where individuals with a great deal of training and experience can analyse

the patient. Linder et al. aim to develop a portable system that will allow non

voice-specialists in primary care to diagnose voice problems. Four features are used

as inputs to a multilayer neural network: period correlation, jitter (period-to-period

variability), shimmer (peak-to-peak amplitude variability) and glottal to noise exci-

tation ratio. An improved backpropagation training algorithm is used to train the

network and a correct classification result of 80% is achieved.
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The health applications briefly discussed above all share an aim with the ISRIE

project in that they are trying to remove long periods of observation of signals

by humans. They all demonstrate that automated classification has wide-ranging

applications and can help improve many aspects of human comfort. It should be

noted that research also takes place to help diagnose animal illness (for example,

Chedad, Moshou, Aerts, Hirtum, Ramon, and Berckmans (2001) study pig coughs).

2.3.2 Speech Recognition

Speech recognition is a large field of research with much interest. The applications

of speech recognition include security (Dieckmann, Plankensteiner, and Wagner,

1997), improvement of hearing aids (Allegro, Büchler, and Launer, 2001) and spoken

dialogue systems for interacting with users via speech (López-Cózar and Callejas,

2003).

Cowling and Sitte (2003) discussed how hidden Markov Models (HMMs) were

not suitable for environmental sound recognition due to the lack of an alphabet for

these sounds. However, López-Cózar and Callejas (2003) state that most automatic

speech recognition systems use HMMs which are trained for the specific speech units

under consideration - that is, a specific alphabet is developed for the sounds under

consideration. HMMs are also applied in consumer applications, such as converting

speech to text (Takaguchi and Nishimura, 2010).

An extensive discussion of HMM application in speech recognition, and an in-

troduction to the theory of HMMs, is given by Rabiner (1989).

2.3.3 Vehicle Noise

The recognition and classification of vehicle noise has a number of applications. It

is used for monitoring of vehicle health (He, Feng, and Kong, 2007; Rafiee, Rafiee,

and Tse, 2010), assessing vehicle interior noise quality (Wang, Lee, Kim, and Xu,

2007) and for monitoring traffic levels in urban environments (Nooralahiyan, Kirby,

and McKeown, 1998). Vehicle noise classification also has its uses in surveillance

(Evans, 2010).

Schclar, Averbuch, Rabin, Zheludev, and Hochman (2010) recognise different

vehicle types in their surveillance application. They state that vehicle recognition
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often relies on the premise that similar vehicles will emit similar sounds on a given

road surface. These sounds can be used to assign an acoustic signature to a particular

type of vehicle.

The methods of feature extraction used for vehicle noise analysis are as varied

as those discussed in Section 2.2 in relation to general audio event classification.

For example, Rafiee et al. (2010), Schclar et al. (2010), Wang et al. (2007), and Wu

and Liu (2008) all use some form of wavelet analysis to generate their features. He

et al. (2007) use independent components analysis to extract features from gearbox

acoustic signals. Nooralahiyan et al. (1998) rely on Linear Predictive Coding (LPC)

in monitoring road traffic. The work of Mazarakis and Avaritsiotis (2007) relies on

a time-domain feature extraction method which is discussed further in Chapter 3.

2.3.4 Bio-Acoustic Species Identification

Automated recognition is a useful tool for the monitoring of species. A system that

has been trained to recognise or distinguish between different animals or species can

often perform this task more successfully than a human can if the sounds made are

very similar to one another. The use of an automated system for species recognition

also reduces the need for attended monitoring or recording large quantities of audio

data. The work examined in this section looks at how feature extraction techniques

and classifiers have been combined to perform recognition tasks.

Crickets are a regular target for automated classification. Chesmore (2001),

Chesmore and Ohya (2004), Dietrich, Palm, Riede, and Schwenker (2004) and Lee,

Chou, Han, and Huang (2006) all look at ways of classifying different species of

cricket. Each piece of research applies different methods of feature extraction and

classifiers. Chesmore (2001) and Chesmore and Ohya (2004) use time-domain sig-

nal coding for feature extraction and a multi-layer perceptron for the classifier.

Under low-noise conditions this system produces a 100% classification accuracy for

13 species of cricket.

Dietrich et al. (2004) extract six different features from the audio streams (fre-

quency contour, energy contour and temporal structure of the pulses; pulse distance

density, pulse length and pulse frequency). Fusion methods are then used to combine

these features for a more robust system. The classifier used is a fuzzy-k -nearest-

neighbour method. Through the combination of features a classification accuracy of

93.5% is achieved.
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Lee et al. (2006) produce a system which is used for identification of both Crickets

and Frogs. During feature extraction, syllables are segmented and then the Mel-

frequency cepstral coefficients (MFCC) are calculated for each. MFCCs are widely

used in speech recognition tasks as they have the ability to represent the signal

spectrum in a more compact form than traditional methods. A Linear discriminant

analysis (LDA) method is used to derive a lower-dimensional feature vector, and

a number of different classifiers are tested on this data for each species. Average

classification results are 96.8% for 30 different frog calls and 98.1% for 19 different

cricket calls.

Each of these 3 different studies show that it is possible for a classification system

to distinguish between sounds that are very similar to one another. Both time- and

frequency-domain techniques have been used together with a variety of classifiers.

Although these studies are only looking at one particular type of animal with a lot of

prior knowledge assisting system design, the principles can still be carried through

to a more generic classification system.

Selin, Turunen, and Tanttu (2006) study a method of classification of bird sounds

from eight different species. Five of these species produce inharmonic sounds and the

remaining three produce harmonic calls. Wavelets are used as the feature extractor

in this study with both a self-organising map and a multilayer perceptron tested as

classifiers. The motivation for this work is to remove the subjectivity of bird sound

classification when performed by humans through the use of an automated system

and to improve on previous works by developing a system that can cope with inhar-

monicity and transients. The results for this study show a 78% correct recognition

value for the SOM and 96% accuracy for the MLP. The work of Selin et al. (2006)

shows that wavelet analysis can perform as an excellent tool for extracting features

from inharmonic sounds with transients.

Bardeli, Wolff, Kurth, Koch, Tauchert, and Frommolt (2010) also classify bird

sounds to monitor the populations of species that are of conservation interest. The

authors use autocorrelation methods to classify time-frequency representations of

bird sounds for two different species. Bardeli et al. achieve good results for each

species of bird (∼90%). The authors discuss how detectors should be customised for

particular sounds if they are to be used in areas where many sounds will be present.

Bardeli et al. propose that this will increase the recognition accuracy for the target

sounds which can be significant when monitoring species populations.
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The studies discussed above focus their work on discriminating between different

animal vocalisations. Even though some of these sounds are very similar to each

other, systems have been developed that give excellent classification accuracies. This

is a promising result in the context of the ISRIE project as there will undoubtedly

be occurrences of very similar sounds that require classification.

2.3.5 Other Applications

Automated classification of signals is not limited to the areas discussed above. Fur-

ther areas of application include:

� Non-invasive inspection of tile-wall bonding integrity (Tong, Tso, and Xu,

2006);

� Audio fingerprinting for music and sound effect database searching (Haitsma,

Kalker, and Oostveen, 2001; Haitsma and Kalker, 2002; Verfaille, Guastavino,

and Traube, 2006);

� Melody classification with expert networks (Ray and Hsu, 1998); and

� Classification of Chilean wine (Beltrán, Duarte-Mermoud, Bustos, Salah, Loy-

ola, Peña-Neira, and Jalocha, 2006).

This list is by no means exhaustive. However, it does illustrate that the field of

signal classification is very diverse and encompasses many different areas of appli-

cation.

2.4 Techniques Identified

The studies discussed in Section 2.2 use a number of different feature extraction and

classifier techniques to accomplish their goals. Table 2.4 below provides an overview

of the various studies and the techniques used, along with how accurately the overall

system performed. A more detailed discussion of some of the techniques identified

is given below.
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2.4.1 Feature Extractors

A feature extractor in a classification system is concerned with reducing the amount

of data the classifier has to process by finding the important features of the input

data. Beltrán et al. (2006) explain how optimal classification is achieved when

the classifier is kept simple, implying that the complexity of the input data to the

classifier should be minimal. This view is also shared by Defréville et al. (2006).

Methods of feature extraction for audio signals are generally considered in groups

related to the domain in which they operate. For example, spectral profiles are

a frequency-domain (F-D) technique, periodicity can be determined in the time-

domain (T-D) and Wavelet analysis allows access to both time-domain and frequency

domain characteristics (TF-D). Table 2.2 lists some of the techniques that can be

used for analysis in each of the domains. These techniques are discussed in detail

below.

Table 2.2: Feature extraction techniques available and their corresponding domains.

Technique
Domain

t-d f-d tf-d
TDSC •
Fast Fourier •
Short–time Fourier •
Wavelet •
Wigner-Ville •

Time-frequency analysis does have slightly more complex computation than just

time- or frequency-domain. However, this complexity is sometimes out-weighed by

the extra information provided. The type of sounds that will be present in an urban

environment are unlikely to be stationary and there will also be a mix of transient

and steady-state signals. Time-frequency techniques provide detailed information

about how a signal changes over time with respect to frequency and can detect both

transient and steady-state features within the signal.

Time-Domain Signal Coding

Time-Domain Signal Coding (TDSC) is a purely time-domain technique which is

computationally inexpensive. It is based on a speech compression method known as

Time-Encoded Speech (TES). TDSC and TES both exploit the fact that any band-

limited signal can be described by its real and complex zeros (Chesmore, 2001).
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They differ in that TDSC only uses the real zeros for analysis and has added func-

tionality in the form of matrix normalisation and scaling, and automated codebook

generation. TDSC is discussed in much greater detail in Chapter 3 as it was the main

feature extraction technique experimented with, leading to novel implementations

of TDSC.

Disrete and Fast Fourier Transforms

The Fourier transform is a well-established method of signal analysis and the most

often used method for transforming a signal into the frequency domain (Marchant,

2003). Based on the theory developed by J. Fourier, it is used to break up a func-

tion into the frequencies from which it is made, much like a prism will break up

light into separate colours (Hubbard, 1998). The original function is represented by

an infinite sum of sine or cosine functions, each a multiple of the fundamental fre-

quency (Marchant, 2003). Signals are usually discretised before applying a Fourier

transform. Equation 2.1 defines the discrete Fourier transform (DFT) for a finite

duration sequence x(n), 0 ≤ n ≤ N - 1,

X(k) =
N−1∑
n=0

x(n)W nk (2.1)

where W = e−j(
2π
N

) and N is the length of the signal. Given the sequence X(n), 0 ≤
k ≤ N - 1, the inverse-DFT can be found using Equation 2.2.

x(n) =
N−1∑
n=0

X(k)W−nk (2.2)

(Gold and Morgan, 2000)

The standard computation of the DFT takes N2 computations. However, the fast

Fourier transform (FFT) reduces this number to NlogN computations (Hubbard,

1998). While the FFT provides a powerful tool for frequency analysis of signals,

it cannot describe what is happening to the signal over time. This is acceptable

for a signal that does not change over time (a stationary signal) but that situation

is unlikely in an urban setting. A more useful method perhaps is the short-time

Fourier transform.
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Short-Time Fourier Transform

The Short-Time Fourier transform (STFT) is the most widely used method for

analysis of non-stationary signals (Cohen, 1995). It is calculated by performing a

sliding window FFT on a signal (Marchant, 2003), hence the technique is sometimes

known as the windowed Fourier transform. The signal is effectively sliced into small

segments and then each of these has a FFT applied to it. This gives frequency

information about the signal in each segment and a time-frequency picture of the

whole signal can be built up from this. Equation 2.3 describes the STFT:

XSTFT (t, f) =
∫
x(τ)w(τ − t)∗e−j2πft dτ (2.3)

Where t is the point of calculation for the power spectrum, w(τ) is the sliding window

with length τ , and w(τ − t)∗ is the complex conjugate of w(τ − t) (Marchant, 2003).

Although the STFT can provide a computationally efficient method for analysing a

signal in both time and frequency, a compromise must be made. For small changes

to be seen in a signal (i.e. high frequency information) a small window size must

be used and little information is given about low frequency features. But if a larger

window size is used high frequency information is lost. There will always be a trade-

off between time localisation and frequency localisation. In an urban soundscape

sounds will be made up from frequencies all across the spectrum so it is necessary

to use a technique capable of handling a broad range.

Wigner-Ville Distribution

The Wigner-Ville Distribution (WVD - sometimes referred to as just Wigner Distri-

bution) is an approach to time-frequency analysis that defines an “energy density”

for a signal (Hubbard, 1998). It was developed by Wigner to calculate the quantum

correction to the second virial coefficient of a gas to indicate how the gas deviates

from the ideal gas law. For this a joint distribution of position and momentum was

required. Wigner developed such a distribution and this was introduced into signal

analysis by Ville (Cohen, 1995). The WVD can be expressed mathematically in

terms of a time-domain signal, x(t), as

W (t, ω) =
1

2π

∫
x∗(t− 1

2
τ)x(t+

1

2
τ)e−jτω dτ (2.4)

(Cohen, 1995)
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Although the WVD has excellent time-frequency domain properties, its application

is limited by interference cross-terms (Mallat, 1999; Marchant, 2003). To over-

come these it is necessary to average the Wigner-Ville transform and lose some

time-frequency resolution. WVDs also suffer when a signal is subject to significant

noise. The cross-terms can make the time-frequency distribution almost impossible

to analyse (Marchant, 2003).

Wavelet Analysis

The Wavelet, or mathematical microscope as it is sometimes called, can give an ap-

proximate image of a signal but also zoom in on the smaller details (Hubbard, 1998).

Its functionality can be related to that of the Fourier transform where a signal can

be described by adding together different sines and cosines. In a wavelet transform

the same operation can be performed by adding together wavelets of different sizes

and positions (Hubbard, 1998). The transform coefficients describe how the mother

wavelet should be manipulated. These wavelet kernels (the various time-shifted and

dilated mother wavelets) are localised in both time and frequency unlike a Fourier

transform where the sines and cosines are localised only in frequency (Marchant,

2003). The continuous wavelet transform is so called because the signal is studied

at all possible resolutions using wavelets displaced by all values. This would give an

infinite number of wavelet coefficients allowing perfect reconstruction of the signal.

In reality this is not practical so the number of coefficients is usually in the order

of 10,000 (Hubbard, 1998). The continuous wavelet transform introduces a lot of

redundancy because the wavelets overlap each other and therefore some of the same

information is contained in more than one wavelet. The discrete wavelet transform

can describe a signal using a set of translated and scaled wavelets that are orthogonal

to one another and therefore greatly reduces the redundancy (Marchant, 2003).

Wavelet transforms do suffer from some drawbacks. Similar to a windowed

Fourier transform, at the start and end of a signal there may be unwanted arte-

facts appearing simply because the wavelet is being compared to “non-data”. As-

sumptions have to be made as to what the signal will do at its start and end. A

wavelet transform will also suffer from the time vs. frequency resolution trade-off

encountered with the STFT. However, the wavelet transform behaves differently in

that it gives good time resolution and poor frequency resolution for high frequency

components; low frequency components are well defined in terms of frequency reso-

lution but poorly defined in terms of time (Marchant, 2003). This problem can be

38



Signal Classification

overcome using a wavelet packet decomposition1.

2.4.2 Classifiers

In a classification system the classifier will take the output of the feature extractor

and determine which category that set of data belongs to. Classifiers can broadly

be split into two types; those that employ a neural network and those that do

not. Determining if a technique lies in one category or the other can be decided

from whether it uses any form of neuron model to process data (see Beale and

Jackson (1998) for an introduction on neural computing). Figure 2.2 shows a basic

McCulloch-Pitts neuron, one type of neuron model. From this diagram it can be seen

that a neuron has a number of weighted inputs, a summation and a threshold value

(µi). If the sum of the weighted inputs exceeds the threshold value then the neuron

will generate an output signal. The MCP neuron model mimicks the behaviour of

the neurones of the human cerebral cortex.

Figure 2.2: A scematic diagram of a McCulloch-Pitts neuron model. The unit will
generate an output only if the input weighted sum

∑
ωijnj is greater

than or equal to the threshold µi for all inputs units (j). Adapted
from Hertz et al. (1991).

Neural network (NN) techniques can learn to adapt to a problem with minimal

human input. The techniques that do not fall into the NN category often employ

statistical analyis or pattern comparison techniques for classification.

Multilayer Perceptron

The Multilayer Perceptron (MLP) is a neural network consisting of more than one

layer of neurons. This type of network is said to have one or more hidden layers.

That is, these layers do not directly link to the outside world, they only accept an

input and give an output. All neurons in one layer will be connected to all layers in

1For a discussion on the wavelet packet transform see Addison (2002), pages 133–140.
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adjacent layers via unidirectional connections: links that (in a feed-forward network)

can only transmit in the forward direction (Ham and Kostanic, 2001).

A number of studies have achieved successful pattern recognition rates using

MLP networks with a feature extractor. Dimoulas, Kalliris, Papanikolaou, Petridis,

and Kalampakas (2008) achieve results averaging 95% using a combination of time-

domain and wavelet features input to an MLP with one hidden layer.

Self-Organising Map

The Self-Organising Map (SOM — sometimes referred to as a Kohonen Map) was

developed by Tuevo Kohonen and is an unsupervised, competitive learning, cluster-

ing network (Ham and Kostanic, 2001). Whether it can be termed a neural network

or not varies from one source in the literature to another. The main reason for

this is that the units in a SOM do not behave like a perceptron would in an MLP

network, for example. There is no threshold associated with each unit but they do

have weighted inputs.

Learning Vector Quantisation

Vector quantisation is used for the compression of data by producing a codebook

of quantisation vectors (at least one for each class of data) which provide a good

approximation to the input vectors (Ham and Kostanic, 2001). Then any input vec-

tor can be encoded using the codebook. If both transmitter and receiver have the

codebooks then only the codebook(s) for each input vector needs to be transmitted

thus reducing network traffic. Learning Vector Quantisation (LVQ) is a supervised

learning technique (also developed by Tuevo Kohonen) which builds on vector quan-

tisation to classify input data (Hertz, Krogh, and Palmer, 1991). In training an LVQ

network an input vector is given to the network along with its correct class. If the

network classifies it correctly the weight vector associated with that class is updated

according to one rule (which moves the vector towards the input vector). If the net-

work misclassifies the update rule, it moves the weight vector away from the input

vector. According to Kohonen (1990), this is known as LVQ1.
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There are other training methods which can be used with LVQ networks which

are explained by Kohonen (1990). The other training methods improve on the idea

to include neighbourhood functions and move closer to Bayes decision theory (Hertz

et al., 1991).

Time Warping

Time warping is a method of signal analysis often associated with speech processing

and recognition tasks. Linear time warping (LTW) is used to allow comparison of

one signal with another where the signals are of different lengths but the proportions

are similar. According to Gold and Morgan (2000), if the proportions are different

one of the signals will need to be warped dynamically to allow a comparison to be

made. The technique then becomes known as Dynamic time warping (DTW). For

example, imagine a car passing the point where a recording is made from. The

features of the sound (car approaching, brief moment where the car is level and car

moving away) are present in a recording of both the car travelling at 30mph and the

car travelling at 60mph. If the approach rate and moving away rate were the same

for both speeds LTW could be used for analysis. If however the car was accelerating

as it approached and moved away LTW would not allow a comparison of the two

signals but DTW would. In the application of ISRIE it is likely that DTW will

be more useful than LTW as it is unlikely that two similar sounds will be directly

proportional to one another.

2.5 Techniques for Investigation

The available literature relevant to signal classification is extensive. Many of the

techniques identified in the above sections have been tried and tested in a number of

different areas of application including the field of general audio event classification.

The techniques that have been researched previously are mostly well-known tech-

niques and are often found in signal processing texts dealing with signal classification

as a whole.

To avoid repeating work that has already been done by numerous other re-

searchers, the research detailed in the remaining chapters of this thesis are concerned

with developing and applying a TDSC feature extractor to the task of classifying

audio events into the categories identified in Section 1.5.
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There are good reasons for choosing TDSC as a feature extractor for general

audio event classification:

1. as has been identified already, TDSC is a computationally light-weight tech-

nique and would therefore be suited to use in a portable device running on

batteries, for example, and

2. TDSC has not been applied in this context before and therefore this field of

research would benefit from some experimental data which validates TDSC as

a useful technique.

The first of these reasons is an important consideration for the final ISRIE sys-

tem and has been a consideration of other projects developing remote sensors (see

Ghiurcau et al. (2012)). The second reason highlights how the work detailed in this

thesis will contribute to the field as a whole.

2.6 Chapter Summary

This chapter has given a review of research and work carried out previously into the

field of sound identification and soundscape evaluation. The literature has not been

limited to urban or general sound classification but has also included other areas of

signal classification as inspiration for the ISRIE project. A discussion on some of

the techniques for feature extraction and classifying has also been provided to give

the reader some foundation on what is available in this field of research.

Time Domain Signal Coding has been identified as a prime candidate for devel-

oping a signal classification system, and this choice has been justified accordingly.

In the next chapter TDSC is discussed in detail to explain its origins, how it has

previously been used and implemented, and the initial experimental work and de-

velopment carried out to modify TDSC for the task in hand.
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Adapting TDSC for Urban Audio

Event Classification

In the previous chapter, it was discussed how time domain signal coding (TDSC)

was a suitable candidate as the feature extractor for urban audio event classification.

This chapter will expand on the history of TDSC, the processing required in TDSC

analysis and how it was initially applied in this research for classifying urban audio

events.

It will be shown in this chapter how the standard TDSC algorithm required

significant modification for it to be appropriate for urban audio events. This chapter

also details how a generic code book was developed.

3.1 Background and Applications of Time Domain

Signal Coding

Time domain signal coding (TDSC) was introduced in the previous chapter as a

purely time-domain technique based on a speech compression method known as

Time Encoded Speech (TES). TES was proposed by R.A. King in the 1970s as

a simple method of compressing speech data for digital transmission (King and

Gosling, 1978). TESPAR (Time-Encoded Signal Processing and Recognition) is

discussed by King and Phipps in their 1999 paper. TESPAR uses the same processes

as TES to perform a zero-based analysis of signals.
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King and Phipps (1999) propose how zero-based analysis can be used to classify

a variety of signals. The authors use the widely-known Shannon sampling theorem

and work by other authors to develop TESPAR. In their discussion, King and Phipps

provide a history of zero-based signal analysis and highlight how it is a technique that

has been available to mathematicians for a considerable time but has had relatively

little application in the field of engineering. Correcting this disparity between the

fields was started by Voelcker, who brought together the ideas and applied them in

studying the modulation of signals, and continued by Requiche, who demonstrated

the application of zero-based techniques to engineering problems (King and Phipps,

1999).

Zero-based analysis of signals has its origins in the amateur radio community

around the same time that Shannon was developing his sampling theorem (circa

1949). Licklidder and Pollack experimented with removing amplitude information

from waveforms leaving only the zero-crossing information. Licklidder and Pollack

found that the intelligibility of a speech signal was maintained when the signal was

rebuilt from only the zero-crossing information indicating that amplitude informa-

tion was not necessarily required when transmitting speech data (King and Phipps,

1999). Later work by Bond and Cahn formalised the use and application of zero-

based signal analysis, including the synthesis of a band-limited signal from a given

set of zeros, and from this Voelcker and Requiche brought the technique into the

engineering field.

King and Phipps explain how the extraction of zeros from a signal to allow

the signal to be adequately represented is far from trivial. This is mainly because

gathering complex zero information requires very involved calculations. Finding the

real zeros of a signal, however, is very straightforward as these correspond to the

time-domain waveform zero-crossings of the signal, as shown in Figure 3.1.

Figure 3.1: The real zeros of a signal can easily be found from the time-domain
signal.

.
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King and Phipps provide a comprehensive description of how TESPAR coding

is carried out and this is summarised here. The portion of signal between a pair of

successive zero-crossings is termed an epoch. Figure 3.1 shows the epoch divisions

with vertical lines. King and Phipps explain that the perturbations of a signal are

caused by the complex zeros. Therefore, to overcome the difficulty in finding the

complex zeros of a signal, King and Phipps propose that the shape of the signal is

extracted as a feature in TESPAR coding. Each epoch of the signal can be described

by two properties: its duration, D, in samples and its shape, S. It is worth noting

that King and Phipps are keen to highlight that not every complex zero can be

represented through the shape of the signal, and the TESPAR coding technique

only gives an approximation of the complex zeros.

Figure 3.2 gives an example of a signal that has had its TESPAR coding features

highlighted. In this example, as with all TESPAR coding, the shape of an epoch

is determined by the number of positive minima or negative maxima it contains.

Samples in Figure 3.2 are represented by the vertical lines that terminate with a

small circle. These allow the duration of each epoch to be easily seen. In this

example, epoch 2 has 11 samples between its successive zero-crossings and 2 positive

minima, D=11 S=2.

Figure 3.2: A simple example of TESPAR/TDSC analysis.

.

This coding process produces a D-S pairing for every epoch contained in a sig-

nal. Such an analysis would result in a very large amount of data for each signal.

Therefore, King and Phipps (1999) propose the use of a vector quantisation process

which results in an alphabet of symbols, each symbol representing one or more D-S

pairing. A codebook is used to map the epoch D-S pairings on to the symbols con-

tained in the codebook. Table 3.1 shows an example mapping of D-S pairings using

a symbol set. In this example there are 8 codes which are shown in italicised font.

This example shows how more than one D-S pairings can be mapped onto a single

code. For example, code 5 has the D-S pairs 6-1, 7-1, 8-1, 9-1 and 10-1.
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Table 3.1: An example of a codebook that could be used in TESPAR coding.

Duration Shape
(samples) 0 1 2 3 4 5
1 1 – – – – –
2 2 – – – – –
3–5 3 – – – – –
6–10 4 5 – – – –
11–18 6 7 8 – – –

The example in Table 3.1 also shows that there are some D-S pairings which

are not possible. As King and Phipps (1999) put it “...short epochs cannot exhibit

a multiplicity of minima...” (p. 448). King and Phipps relate this statement to

the fact that TESPAR was used for compressing and analysing band-limited signals

and therefore multiple minima in short epochs would suggest there were frequency

components present in the signal that fall outside of the band limits. It is also not

possible for the shortest epochs to exhibit any minima.

At this juncture, the link between TESPAR and TDSC will be made. TDSC (the

focus of this research) is a term coined by Dr. David Chesmore for an adaptation

of TESPAR. TDSC uses the same extraction of D-S pairings as TESPAR discussed

above but TDSC has been further developed to include techniques such as ma-

trix normalisation, matrix scaling and automated codebook generation (Chesmore,

2001).

The output for both TESPAR and TDSC can be either a 1- or 2-dimensional

histogram. The 1-dimensional histogram is referred to as the S–matrix and the

2-dimensional histogram is referred to as the A–matrix.

Figure 3.3 shows an example S–matrix and its associated codebook. In this

example, the D-S pairings are 1-0, 2-0, 3-0, 3-1, 4-0, 4-1, 4-2, 5-0. Each element of

the S–matrix provides the frequency of occurrence of each of the D-S pairings in the

signal under analysis. The A–matrix describes how often an epoch with code i is

followed by an epoch with code j by a lag L in the signal under analysis. Figure 3.4

shows an example A–matrix.

Once a signal is represented by either the S- or A–matrix it can be used as

an input to one of the classifiers discussed in Chapter 2. The outputs of TDSC

and TESPAR analysis are of a fixed size once the dimensions of the codebook have

been decided. In the original band-limited applications of TDSC and TESPAR the

number of codes required depended on the upper and lower frequencies of the signals
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Figure 3.3: An overview of how features are extracted using TDSC. The histogram
shows an example of an S–matrix. The table shows the codes that would
be used to generate the histogram.

Figure 3.4: An example A–matrix.

being analysed. Therefore, the dimensions of the output of these analysis methods

is dependent on the application. King and Phipps (1999) proposes a fixed size of 29

codes and Chesmore (2001) uses a codebook with a size of 28. Having a fixed size

output for a feature extractor, such as TDSC and TESPAR, is common across most
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of the signal analysis and classification techniques discussed in Chapter 2. A fixed

size output of the feature extractor ensures that extracted features from a variety

of signals are directly comparable by a classifier.

3.1.1 Previous Applications of TESPAR and TDSC

It has already been discussed how TES was originally developed to allow the trans-

mission of speech over a channel using a low data rate. King and Phipps (1999)

took the initial TES concept and developed it further to include recognition and

classification of signals, applying TESPAR to speech processing tasks.

Chesmore (2001) cites prior applications of TES in monitoring the condition of

machinery using an acoustic signal and analysis of heart sounds to identify defects.

The work detailed in Chesmore (2001) was discussed in Section 2.3.4: using TDSC

to extract features from recordings of Orthoptera for classification by a multilayer

perceptron neural network.

Farr (2007) extended the TDSC framework in his application which aimed to

develop an automated bioacoustic detection and identification system for insects

larva detection in wood. Farr argued that the need for a small codebook, as pro-

posed by King and Phipps (1999), was no longer required for identification tasks

because of the significant increase in computing power available to identification

systems. Farr found that the codebooks and natural alphabets used by King and

Phipps and Chesmore (2001) were too restrictive for his work and developed the

distributed code matrix or “D–Matrix”. This coding scheme represents every code

that could be generated from a waveform and is therefore scalable according to the

input signal. With this enhanced TDSC algorithm, the features being fed into LVQ

neural networks, Farr achieved species identification rates in excess of 97%.

In an attempt to deliver a more computationally light-weight system, Mazarakis

and Avaritsiotis (2007) applied the methods of TESPAR and TDSC in a wireless

sensor network vehicle classification application. Mazarakis and Avaritsiotis used

customised codebooks for the signals they aimed to classify, focusing on both the

acoustic and seismic signals generated by vehicles. By customising the codebooks,

the authors were able to minimise the number of symbols needed. Mazarakis and

Avaritsiotis achieved classification results comparable with existing methods but

highlight that the computational cost is greatly reduced.
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Moca, Scheller, Mureşan, Daunderer, and Pipa (2009) implemented the TESPAR

feature extraction algorithms for their investigation into automated depth of anes-

thesia (DOA) estimation based on electroencephalogram (EEG) recordings. Moca

et al. used A–Matrices derived from the EEG signals to train multilayer percep-

trons to map the EEG signals to different DOA classes. The classification results

of the artificial system were compared with classifications made by anesthesiologists

(human experts). An example of the S– and A–Matrices used by Moca et al. is

shown in Figure 3.5. There is a clear distinction between the S– and A–Matrices for

the two different states of anesthesia shown in the figure. Moca et al. found a close

match between the classifications made by the system they had developed and the

human expert classifications (a 2% difference is reported).

Figure 3.5: Examples of the S- and A–matrices used by Moca et al. (2009).

The prior applications of TESPAR and TDSC discussed here (and earlier in the

thesis) show that these time-domain methods are valid tools for analysing a variety

of signals and have been applied in many fields. Many of the authors (Chesmore,

2001; Chesmore and Ohya, 2004; Farr, 2007; Mazarakis and Avaritsiotis, 2007; Ghi-

urcau et al., 2012) emphasise how computationally inexpensive TESPAR and TDSC

are. Whilst this may not be of benefit in a system implemented on a modern desktop

or laptop computer, it can certainly benefit a portable module designed to spend

significant amounts of time out in the field, possibly running from a battery power

source. Chapter 1 introduced the ISRIE system and explained that the eventual

aim for the project was to have a self-powered module capable of performing iden-

tification tasks and communicating wirelessly with other devices. This is similar to
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the aims of Mazarakis and Avaritsiotis (2007) who state that the low computational

cost of time-domain feature extraction techniques are of clear benefit.

3.2 Implementing TDSC using MATLAB®

3.2.1 Mathworks MATLAB®

All development work discussed in this thesis was undertaken using MATLAB®1.

This software allows for quick development of algorithms without the need of com-

pilation at run time (unlike languages such as C, C++, Java, etc.). So if small

changes are made to a function it is not necessary to recompile a whole function

which could be a time consuming process. Programs and functions written in the

conventional languages are often able to process data more quickly than a higher-

level language such as MATLAB® but for the purposes of development this would

be an unnecessary advantage.

MATLAB® contains many powerful functions built into it for the purposes of

data manipulation and signal processing, and these can be added to through the

use of toolboxes. However, it is necessary to write functions for a particular pur-

pose which MATLAB® will not cover. Functions are straightforward to write in

MATLAB® if the purpose of the function is known, and decisions simply need to

be made on the inputs and outputs. The MATLAB® Neural Network Toolbox was

used extensively for designing, training and testing a variety of classifiers.

The following section provides an overview of the process involved in designing

and writing the functions created for the presented research. All of the functions

are presented in full in Appendix C.

3.2.2 Designing and Implementing MATLAB® Functions

The process of designing and implementing a piece of code to perform a function in

any programming language often differs from one person to the next. This section

will describe the skeleton process used to write MATLAB® functions for the pre-

sented research. MATLAB® functions can be written and tested in a relatively short

amount of time because there is no need to compile the functions. Consequently, the

1Mathworks MATLAB® version 7.3.0.267 (R2006b)
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functions presented in Appendix C are the final versions arrived at after a number

of iterations. The iterations will have come about as a result of immediate testing

and the realisation that additional functionality was required.

To illustrate the process of design and implementation, the multiSMatReturn.m2

function is used as an example, taken from conception to the final code listing.

Initial conception of the function

The function sMatReturn.m analyses individual WAV files to return an S–matrix for

each file. Given that there were over 60 files used for training networks, analysing

each WAV file individually to generate the training data would have been a laborious

and time-consuming process. Therefore, it was decided that a function should be

written that could accept a path to a folder on a computer hard disk and analyse

all of the WAV files located in that folder.

Identifying the purpose of the multiSMatReturn.m function allows some initial

requirements to be determined: the function needs a path as an input, the func-

tion should return S–matrices for all of the WAV files as its output, and at some

point in the function sMatReturn.m needs to be called. Therefore, the input to

multiSMatReturn.m will be a path to the WAV files and the output will be a col-

lection of S–matrices.

Having determined the purpose of the function and what it will take as its input

and output, how the function will achieve its purpose can be considered.

Function flow diagram and code specifics

A flow diagram for a function gives an overview of the individual processes that

need to take place for the function to achieve its goal. The flow diagram devised for

multiSMatReturn.m is presented in Figure 3.6. Each stage of the flow diagram is

discussed in detail below.

2All developed functions used a naming convention similar to that used in the Java program-
ming language: the first letter of a function is lowercase and subsequent whole or part–words are
capitalised. This allowed the functions written for the purposes of this research to be differentiated
from the functions included with MATLAB®

51



Adapting TDSC for Urban Audio Event Classification

Figure 3.6: The function flow diagram devised for multiSMatReturn.m.

Function declaration All MATLAB® functions must start with a line of code

similar to that shown below:

function SmatData = multiSMatReturn(path, framelength)

The first word of this line informs MATLAB® that this is a function (as opposed

to a script). The second word defines what the output of the function is. At some

point in the function a variable must be declared with this name and it must be set

to a value. After the equals sign the name of the function is given (this must be the

same as the name of the file where the function is saved) along with the inputs to

the function in parentheses.

Initialise output data store There are many options in the MATLAB® environ-

ment for storing data. One of these options is a structure array which allows specific

fields to be defined when creating the array. A key benefit of using a structure array

is that any type of variable can be stored in a structure array (e.g. integers, floating
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point numbers, vectors, matrices, other arrays, etc.). For this particular function,

it was desirable to store the name of each file being analysed together with the S–

matrix data for that filename. The initialisation code for the structure array is as

follows:

1 % Create the output Struct with 2 fields; "filelist" − a list

2 % of the filenames, and "sMat" − the S−matrix.
3 SmatData = struct('filename',[],'sMat',[]);

Lines one and two of this code begin with an ampersand which denotes a com-

ment. When a function is used, any lines that begin with an ampersand are ignored.

It is good practice to include commentary in code to provide guidance for future

users and adapters of the code. The above code snippet also shows the naming

convention used for structure arrays in the presented research. Most variable and

function names begin with a lower case letter but structure arrays always started

with a capital letter to differentiate them from other variables. The code shows the

fields for each item in the array: the first is a string that simply says filename to

indicate that the second field contains the filename of the WAV file whose S–matrix

is stored in the fourth field.

Retrieve a list of files in the directory specified by the input path Func-

tions built-in to MATLAB® allow easy retrieval of a list of files in a specified direc-

tory. After retrieving a list of the files, it was found to be necessary to remove the

first two entries of the list as these entries are references to parent directories and

not names of files to be analysed.

1 % File handling

2 filesTemp = dir(path);

3 % The first 2 of these are "." and ".." respectively. I.e. not

4 % wav files. Remove.

5 files(1:length(filesTemp)−2,1) = filesTemp(3:length(filesTemp),1);

6 % Matrix to store filenames

7 filenames = [];

Lines two and six actually perform the file handling, storing the list of files in

a matrix called files. Line 7 creates a matrix in which to store the filenames. This

matrix was used for development purposes only.
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Analyse each file using sMatSorter.m To analyse all of the files in the specified

directory, the function is made to repeat a section of code by using a for loop.

1 for i = 1:length(files)

2 ...

3 end

Line one of the above code shows the start of the for loop. A for loop repeats

the code contained within it as many times as specified. In this case, the loop is

repeated as many times as the number of files listed in the variable files. Another

feature of the way the loop is initiated is the use of index variable i which will

increment from a value of 1 to the total number of files listed in the variable files.

The variable i can be used throughout the loop to address the i th item in a matrix,

for example. The number of files is obtained by using the MATLAB® function

length on the variable files.

Use sMatSorter.m to return an S–matrix Prior to calling the function sMatSorter.m,

a number of checks are performed on each file to be analysed. These are illustrated

in the following code:

1 % Check that the file is a file and not a directory

2 if files(i,1).isdir == 0

3 % Generate string for wav file to analyse

4 filename = strcat(path,files(i,1).name);

5 % Check that this file is in fact a wav file

6 [p,n,e,v]=fileparts(filename);

7 if strcmp(e,'.wav')

8 % Perform TDSC analysis using sMatReturn

9 datasmat = sMatReturn(filename,framelength);

10 ...

11 end

12 ...

13 end

Line two of the code performs a check to see if the filename located in position

i of the files matrix is a file and not a directory. The code contained within the if

statement (lines 3 to 12) will only run if the filename is not a directory. Otherwise,

the function skips straight to line 13.
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Line four uses a MATLAB® function which concatenates the string variables

given in the parentheses into a single string. In this case, the path of the files being

analysed is concatenated with the name of the file located at position i in the files

matrix. This step is necessary because sMatReturn.m requires the full address of a

WAV file to analyse it.

Lines six and seven are used to check that the i th filename in the matrix files is

the name of a WAV file. Passing a non-WAV file to sMatReturn.m would cause an

error to occur. If the file is not a WAV file lines 8 to 10 of the code will be skipped

over.

Line nine of the above code calls the sMatReturn.m function, passing over two

variables - the full location and name of the file to be analysed (generated from within

this function), and the framelength to be used during TDSC analysis. At this junc-

ture, a correction is needed to the input requirements of the current function being

written. It was stated earlier that the input to the function multiSMatRetun.m was

a string containing the path of the files to be analysed. However, if sMatReturn.m

requires a framelength variable and is called from within multiSMatRetun.m, a

framelength variable must be specified as an input to multiSMatRetun.m. The

S–matrix returned by sMatReturn.m is stored in the variable datasmat.

S–matrix into data store The S–matrix returned from sMatReturn.m for the

i th filename in the variable files is now stored in the structure array. The S–matrix

is inserted into the structure array at the i th position along with the filename of the

corresponding WAV file.

1 % Add the S−matrix to the output data structure

2 SmatData(i).sMat = datasmat;

3 % Add the filename to the output data structure

4 SmatData(i).filename = n;

5 % Add the filename to a matrix of filenames (for test purposes)

6 filenames(length(filenames)+1:length(filenames)+length(n)) = n;

Return the data store as the output of the function After all of the WAV

files contained in the variable files have been analysed, the structure array SmatData

will contain S–matrices for each file. This structure array is the output of the

function. There is no need to write any code to inform MATLAB® that this is the

returned data as it was specified in the function declaration discussed earlier.
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Writing functions summary

In this section there has been a discussion of the procedure followed during the

presented research for designing and writing MATLAB® functions. All of the func-

tions presented in Appendix C were designed in this manner. It has been mentioned

that most functions will have been through a number of iterations before arriving

at the presented code. The reasons for having iterations of code are numerous -

in the case of multiSMatReturn.m if the inputs to sMatReturn.m were altered for

whatever reason, where this function is called from within multiSMatReturn.m a

further alteration would be required.

It is hoped that this overview of designing and implementing a function will allow

the reader to gather an insight into one possible method of writing MATLAB®

functions if they are unfamiliar with the program. The commentary given in the

code listings should also assist the reader in following how the functions are laid out

and what the purpose is of each line of code.

3.2.3 Basic TDSC Feature Extraction

Figure 3.7 gives an overview of how TDSC feature extraction is performed. A signal

is presented as a whole to the TDSC analysis system. The signal is split into frames

of the same length and each frame is analysed to extract features, as described in

Section 3.1. It is often helpful to consider each frame of the whole signal as the

waveform shown in Figure 3.2.

Figure 3.7: S–matrix generation using TDSC.
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In a basic implementation of TDSC, each frame will have an S–matrix produced

describing the frequency of occurrence of each D-S pair in the predetermined code-

book. The data collected for each frame can be used to examine the time-domain

features of the signal as time varies, or they can be summed together to represent

the signal as a whole. The S–matrix is developed according to Equation 3.1.

s(i) =
N∑
j=1

x(j) 1 ≤ i ≤M (3.1)

where: s(i) = element i of matrix s ; N = number of epochs in the signal; M =

number of codes in the codebook; x(j) = 1 if x(j) = j, 0 otherwise (Chesmore and

Ohya, 2004).

The MATLAB® function developed for the purpose of controlling and perform-

ing TDSC analysis is called sMatReturn.m. Figure 3.8 shows the functions which

are invoked for the purpose of extracting S–matrix data from a signal. The function

sMatReturn.m takes as its inputs a path for the location of a signal to be analysed

(normally this will be a WAV3 file) and the framelength to be used during TDSC

feature extraction. The function returns a M×N matrix of D-S pair frequencies;

where M is dependent on the number of D-S pairs in the codebook, and N is the

number of frames in the signal. The following section discusses development of the

codebook used in TDSC analysis.

Figure 3.8: Function dependencies for basic TDSC analysis. The function
sMatSorter is adorned with an asterisk to denote that it can be one of
three different functions which each have “sMatSorter” in their name.
These functions are discussed throughout this chapter.

3Waveform Audio.

57



Adapting TDSC for Urban Audio Event Classification

3.3 Classification Methodology

Figure 3.9 shows an overview of how a network was trained and tested with features

extracted using TDSC. The first box of the diagram in Figure 3.9 is representative

of the TDSC feature extraction shown in Figure 3.7 and described in Section 3.2.3.

Figure 3.9: Flow diagram of training and testing a network

The output of the TDSC feature extractor is a matrix of S–matrices, each S–

matrix representing one frame of audio data. The function sMatReturn.m will return

a matrix of S–matrices for a single WAV file. To simplify the process of analysing

multiple WAV files, the function returnSMatrices.m was developed to accept as

an input a path for a folder of WAV files. Each of the WAV files are analysed

sequentially by returnSMatrices.m and a matrix of S–matrices for all of the WAV

files is returned.

As well as returning a matrix of S–matrices, returnSMatrices.m also returns a

vector containing a target for each S–matrix. The target is a number representing

which output of a classifier the corresponding S–matrix should be associated with.

For example, if the S–matrix located at position 30 belongs to an audio sample

from the building category and the building is to be associated with output 5 of a

classifier, then the target at position 30 will be a 5.

A target vector is required for networks that employ supervised training such as

Learning Vector Quantisation (LVQ) and Multilayer Perceptron (MLP) networks.

The target vector allows the training algorithm for such a network to adjust the

weight vectors of the internal network connections. A simplified explanation of

training for an LVQ network is as follows:

� Present the network with an input dataset (one S–matrix) and a target vector.

The target vector will contain all zeros except for a 1 at the location of the

winning output (e.g. a target vector for a 6-output network with a target

winning unit of 5 would be [0 0 0 0 1 0]).

� Allow the network to classify the input dataset. If the winning output unit

corresponds to the target vector (e.g. output unit 5 is the winner and the target
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vector specifies that the output should be unit 5) then the weight vectors of the

network are adjusted to move the input dataset (and similar datasets) towards

unit 5. However, if the winning unit does not correspond to the target vector

(e.g. unit 3 is the winning unit) the weight vectors are adjusted to move the

input dataset (and datasets that are similar) away from unit 3.

� This process is repeated for all input datasets.

� One training cycle of the network is completed once all input datasets have

been passed through the network and weight adjustments have been made. A

training cycle is termed a training epoch, which should not be confused with

an epoch as used in TDSC feature extraction.

� A network can repeat the training process for a specified number of training

epochs or until a training target is reached.

The training process described above is very similar for MLP networks and other

types of network that require supervised training. Detailed explanations of training

methods for various networks can be found in Abdi (1994), Hertz et al. (1991) and

Kohonen (1990).

After training of a network was complete, the network could then be tested using

S–matrix data extracted from the test audio data. These features were extracted

using multiSMatReturn.m, a function that will return S–matrices for all of the WAV

files located in a given folder. These S–matrices are not returned with a target vector

because a target is not required for simulation of a network. MATLAB® uses the

term simulation to mean presenting a network with some data for the network to

classify. Network weights are not adjusted during simulation of a network.

The output of a simulation of a network with N outputs for a single dataset is

a N-by-1 vector. The values of the network outputs are presented in this vector.

For each test WAV file there were 15 S–matrices representing 15 frames of audio

data (3 seconds / 0.2 seconds per frame = 15 frames). Therefore, the output of

the simulations for each WAV file returned an N-by-15 matrix containing network

output values for each frame of TDSC data. From this matrix, the mean values for

network outputs was calculated to give an N-by-1 vector.

Throughout the research detailed in this thesis, the approach adopted for classi-

fying audio data was similar to the approaches seen in the literature. From a set of

audio samples the majority are used for training a network and the remaining few
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are used to test the network. Cowling and Sitte (2003) use a jack–knife method in

which all sound samples are used to train a network except for one sample which is

used to test the network. Similarly, Umapathy et al. (2007) use the leave–one–out

training and testing method which is similar to the method used by Cowling and

Sitte.

A final point worthy of discussion in relation to the classification methodology

is the number of hidden units used in each network. There is little guidance in

the literature as to how many hidden units a network should have in relation to

the number of inputs and outputs. Hawickhorst, Zahorian, and Rajagopal (1995)

recommends that the number of hidden units in a network is less than the number

of inputs to the network. This recommendation was followed in the experimental

work detailed in this thesis.

3.3.1 Audio Data

Details of the audio files used for training and testing can be found in Appendix A.

In total, 82 samples of urban audio events were used for training and testing. Of

these, 62 were used for training and the remainder were used for testing. All audio

samples were encoded at a sampling rate of 44.1 kHz and a bit depth of 16.

Each WAV file used for training and testing was 3 seconds in length. This length

of sample was arrived at after consulting the literature and performing some brief

initial tests. Many of the previous studies discussed in Chapter 2 do not provide any

details of the length of the audio samples used. Of those that do provide details,

Defréville et al. (2006) used a sample length of 0.5 seconds, Umapathy et al. (2007)

used 5 seconds, and Norris and Denham (2003) used 6 seconds. No reasoning was

given in these earlier works as to why these sample lengths were used.

3.4 Early Codebook Development

In the previous applications of TDSC, the codebook was tailored to suit the signals

being analysed. The size of the codebooks were relatively small (∼30 codes) because

the range of signals being analysed did not require anything larger. That is, the

signals under analysis were bandlimited and could therefore be described by a small

number of codes.
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King and Phipps (1999) recommend the use of 29 codes, this being a sufficient

number of codes for any bandlimited signal. Adjusting the frequency band capable

of being represented by a TESPAR/TDSC algorithm is achieved by changing the

rate at which the signal is sampled (Farr, 2007). By examining the codebook used by

Chesmore (2001) to identify different species of Orthoptera (presented in Table 3.2)

this aspect of TESPAR/TDSC can be examined more closely.

Table 3.2: The codebook used by Chesmore (2001) in his work identifying different
species of Orthoptera.

Duration Shape
(samples) 0 1 2 3 4 5

1 1 – – – – –
2 2 – – – – –
3 3 – – – – –
4 4 – – – – –
5 5 – – – – –
6–7 6 – – – – –
8–10 7 8 – – – –
11–13 9 10 – – – –
14–18 11 12 13 – – –
19–23 14 15 16 17 – –
24–30 18 19 20 21 22 –
31–33 23 24 25 26 27 28

The codebook illustrated in Table 3.2 allows a minimum and maximum epoch

duration of 1 and 33 samples respectively. The duration of an epoch in seconds

(Dseconds) can be found by dividing the duration in samples (Dsamples) by the sam-

pling frequency (fs):

Dseconds =
Dsamples

fs
(3.2)

Chesmore (2001) used fs = 44.1 kHz. Using Eq. 3.2 gives a possible Dseconds

range of 2.3× 10−5 s to 7.5× 10−4 s.

Finding the minimum and maximum frequencies that can be represented by this

codebook can be accomplished using Eq. 3.3. This is a standard formula for finding

the frequency, f , of a wave given its period, T , where T is equal to 2(Dseconds).

f =
1

T
Hz =

1

2×Dseconds

Hz (3.3)
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In the present example, Eq. 3.3 gives a frequency range of 666 Hz to 22 kHz for

the codebook illustrated in Table 3.2. This frequency range is acceptable for the

application of TDSC by Chesmore (2001).

In using the techniques of TESPAR/TDSC in the research detailed in this thesis,

a broader range of duration and shape pairs was required because a much broader

range of sounds and more complex sounds exist in an urban environment. This was

verified through analysis of sample audio signals from the various categories shown

in Table 1.1 and is discussed further in Section 3.7.

During the early stages of TDSC development, the use of different codebooks for

each category of sound was considered. These codebooks would be tailored to the

category, only using the D-S pairs found in audio files of that category. However,

this was discounted as an option for two reasons:

� even within a single category there are considerable variations in the various

signals that could be present – recall the consistency issue highlighted by

Defréville et al. (2006) in Chapter 2; and

� having different codebooks for each category of different sizes introduces un-

necessary complexity at the classifier stage because the classifier will need to

be able to accept any size of codebook and make comparisons between these.

Consequently, a generic codebook was sought which could be used to represent

a signal from any of the sound categories given in Table 1.1. The first stage in

developing a generic codebook was to determine the maximum epoch duration and

shape values that would be needed to adequately represent the sound categories.

3.4.1 Duration and Shape Pair Distribution

In developing a generic codebook capable of being used with all of the sound cate-

gories, it was important to first establish the distribution of D-S pairings for signals

from the different categories. Analysing the distributions reveals the most significant

D-S pairings that should be included in a generic codebook. Mazarakis and Avar-

itsiotis (2007) performed a similar procedure in their work to develop codebooks

suitable for the signals they were analysing.

Equation 3.4, adapted from Mazarakis and Avaritsiotis (2007), shows how the

distributions were constructed:
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Lij =
N∑
n=1

x(Dn, Sn) (3.4)

with

x(Dn, Sn) = 1 if i = Dn and j = Sn

x(Dn, Sn) = 0 otherwise

where Lij = (i, j+ 1) element of the D-S distribution (j+ 1 is used because a shape

of 0 cannot be used as an index), N = the total number of epochs in the signal(s)

being analysed, n is the nth epoch of the signal, Dn is the duration of the D-S

pairing ij of the nth epoch, and Sn is the shape of the D-S pairing ij of the nth

epoch. Once the D-S distribution matrix had been completed, it was normalised to

the highest value of Lij.

Figure 3.10 shows a selection of D-S distribution plots for a variety of sounds.

The D-S distributions are plotted using the MATLAB® image function with a

1−bone colourmap. The image function plots the data contained in a matrix di-

rectly. Therefore, the darker areas show a higher concentration of that D-S pairing

being present in the signal.

Figure 3.10(a) does not appear to show any dark areas, which would indicate

that there are few repetitions of epochs with identical D-S characteristics. However,

when the plot is magnified close to the origin (Figure 3.10(b)), it is possible to see

that the D-S pairings with the highest frequency of occurrence are very close to the

origin. The reason for the plot in Figure 3.10(a) being plotted with a maximum

duration of ∼1000 and a maximum shape of ∼300 is that the signal may have had

a single epoch with either or both of these values as one of its D-S pairings. The

plots of 3secRail004.wav in Figures 3.10(c) and 3.10(d) also exhibit this property

of the D-S distribution for that signal.

Figure 3.11(a) shows a D-S distribution plot for all of the WAV files labeled as

training files4, with Figure 3.11(b) showing a magnified portion of the distribution

close to the origin.

The D-S distribution data matrix used to generate the plot shown in Figure 3.11(a)

had a maximum duration value of 5236 and a maximum shape value of 981. If all

possible D-S pairs were used in a codebook using these figures, the codebook would

have ∼4.5 million codes. Clearly this would not have been an appropriate size for

4see Appendix A for a summary of the audio files used for experimentation.
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(a) Air transport (3secAir001.wav) (b) Air transport (3secAir001.wav) – magnified

(c) Fast train passing by (3secRail004.wav) (d) Fast train passing by (3secRail004.wav) –
magnified

Figure 3.10: D-S distribution plots for example signals from various sound cate-
gories.

an input to a classifier, particularly when recalling that a feature extractor should

help to minimise the complexity of a classifier (see Section 1.4).

It was therefore decided to reduce the maximum duration, Dmax,to 1000 and the

maximum shape, Smax, to 75. Also, rather than use every duration value, a set of

duration ranges were devised (see Appendix B for a table of the ranges used). With

these reductions to the possible codes, the output of TDSC analysis had only 1716

codes.
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Figure 3.11: D-S distribution plots for all training WAV files – normal and magni-
fied.

3.5 Classifying S–matrices with Dmax=1000 and

Smax=75

3.5.1 Classification Using Self–Organising Map Networks

During the initial stages of the presented research, it was necessary to determine the

viability of the generic codebook described in Section 3.4. In the first instance, a

Self–Organising Map (SOM) network was selected for training with TDSC features.

Self–organising maps were introduced in Chapter 2 as an unsupervised classifier.

Previous studies that made use of SOMs were also introduced in Chapter 2. In

particular, the work of Selin et al. (2006) and Norris and Denham (2003) showed

that SOMs can produce good classification results. These prior results and the ease

of implementing SOM networks provided good reason for using SOMs in the first

instance.

A SOM network shares many similarities with other classifier networks in that it

has input and output units, and weight vectors associated with these. The difference

between a SOM and other types of network (for example, a multi-layer perceptron)

is that SOMs are unsupervised during network training, making their own decisions

as to how input patterns become associated with output units. This is in contrast

to a supervised network where the user informs the network of which input patterns

should be associated with which output units.

The experimental work during the early stages of the presented research is dis-
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cussed in detail in the conference proceedings included in Appendix G. A summary

of that work is included here.

Two types of audio signal were tested using TDSC features and SOM networks;

general audio recordings and field recordings of Tibicen cicada. The aim of the ex-

perimental work was to see how well SOM networks could form associations between

the different categories of sound and the outputs of the networks.

It was found that for the cicada recordings, a SOM network was easily able

to form clear associations between different species of cicada and groups of network

outputs. For example, with a 10–output SOM network, outputs 1 to 3 were primarily

associated with T. flamatus, outputs 4 to 6 with T. japonicus, and outputs 8 to 10

with T. bihamatus. It would have then been possible to apply a simple decision rule

to the output of the SOM to form a final classification for the cicada recordings.

Overall classification accuracy using cicada recordings was 95%.

Classification results using general audio sounds were not as promising during

the early stages of the presented research. It was found that SOM networks were

unable to form consistent associations between signals from each sound category

and specific output units or ranges of output units. Unlike the cicadas, it would not

have been possible to use simple decision rules on the outputs of a SOM network.

Using visual analysis of SOM output plots over time, classification accuracies were

achieved only as high as 30 to 40%.

After the low classification accuracies were encountered using the SOM networks,

it was decided to try the same classification task using a network having supervised

training. Learning Vector Quantisation (LVQ) networks were selected for this task

as a logical progression from SOM networks. An LVQ network has two stages to its

processing - a self–organising stage, which functions very much like a SOM, and a

linear stage that forms associations between the first stage and the network outputs,

based on the output targets specified by the user (Demuth, Beale, and Hagan, 2008).

The results of using LVQ networks are discussed in the next section.

3.5.2 Classification Using Learning Vector Quantisation Net-

works

An LVQ network was trained using TDSC features extracted from the training

audio data given in Appendix A. The codebook in use at this stage was the code-
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book described in Section 3.4. TDSC analysis was controlled from the function

returnSMatrices.m which repeatedly calls sMatReturn.m to assemble S–matrices

for all of the training data.

Referring to Figure 3.8, it can be seen that one of the sMatSorter* functions are

required during TDSC feature extraction. For the codebook based on Dmax=1000

and Smax=75, the function sMatSorter1716.m was called by sMatGen.m.

The function multiLVQTrainer.m was developed to train four different LVQ

networks, each with a different number of hidden units. This was done to determine

how the number of hidden units affected the classification results. The networks

had 10, 50, 100 and 300 hidden units, 1716 inputs (as the codebooks represented

1716 D-S pairs), and 6 output units. Table 3.3 shows the assignments for the output

units.

Table 3.3: The output unit assignments used for the LVQ networks.

Output Sound Category

1 Air transport
2 Air conditioning \Ventilation
3 Birds
4 Building works
5 Rail transport
6 Road transport

3.5.3 Dmax=1000 and Smax=75 Results

The classification results for the four different LVQ networks are presented in Ta-

ble 3.4. Also included in this table is the time taken to train each network for 50

epochs.

These results show that for the codebook with 1716 D-S pairs, an LVQ network

with 300 hidden units (300HU) produces the most accurate results with an accuracy

of 55%. The other networks only managed to achieve an accuracy of 15%. When

inspecting the results in detail, the 10HU, 50HU and 100HU networks had the same

winning output unit for all test audio data meaning these networks were not able

to differentiate between the sound categories at all. The 300HU network classified

all of the category 1 (air transport), 3 (bird) and 6 (road transport) test recordings

accurately but did not classify any of the other categories successfully.
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Table 3.4: LVQ classification results for TDSC analysis using Dmax=1000 and
Smax=75.

Number of hidden
units

Time taken to train
(seconds)

Overall accuracy (%)

10 350 15
50 1260 15
100 2649 15
300 6960 55

The most accurate network (300HU) is also the network that took longest to

train. Given the nature of training a network (calculating new weight vectors after

each training dataset) it is not surprising that more hidden units resulted in longer

training times. However, it took nearly 2 hours to train the 300HU network to

achieve an accuracy of only 55%. Requiring this amount of time to train a network

for this low an accuracy was not acceptable. Further experimentation using the 1716

D-S pair codebook would have resulted in long periods of waiting for networks to

train with no guarantee of an improvement in accuracy. Therefore, it was decided

to determine if the codebook size could be reduced further.

3.6 Further Codebook Development

In determining how the large codebook with 1716 D-S pairs could be reduced in size,

all of the S–matrices used for training the LVQ networks were manually examined.

It was noted that all of the S–matrices were mostly empty, containing a large amount

of zeros in comparison to non-zero values. An average was calculated for how many

non-zeros there were in each S–matrix. This value was less than 2% meaning that

on average each S–matrix contained ∼1680 zeros. This provided a reason as to why

the LVQ network struggled to differentiate between the various sound categories –

i.e. all of the input data appeared to be very similar to the network.

3.6.1 Codebook Size Reduction

The D-S distributions shown in Figures 3.10 and 3.11 were re-examined to determine

how the codebooks, and hence the S–matrices, could be reduced in size. Looking

again at Figure 3.11, which shows the D-S distribution for all training files, there

are no D-S pairs with a significant frequency of occurrence in the area above D≈200
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and S≈30. Closer inspection of the frequency distribution revealed that 93.6% of

all D-S pair data points are within the area D≤150 and S≤15. Using the values

Dmax=150 and Smax=15 the codebook was reduced in size to only 343 codes.

The new codebook also made use of duration ranges to reduce the total number

of codes. Appendix B shows the duration ranges for the original codebook with

1716 codes. The new codebook, with 343 codes, used the same duration ranges but

only went up to duration range 28 (101 ≤ D ≤ 150).

3.6.2 Classification Results for Dmax=150 and Smax=15

Training and testing of four LVQ networks was carried out in exactly the same way

as that described in Section 3.5. To generate TDSC features using the reduced-size

codebook, the function sMatSorter343.m was called from sMatGen.m (see Figure 3.8

for function dependencies). Again, multiLVQTrainer.m was used to train the four

LVQ networks, each with a different number of hidden units, and the output as-

signments were identical to those shown in Table 3.3. Table 3.5 shows the overall

classification results for the test audio files as well as the time taken to train each

network.

Table 3.5: LVQ classification results for TDSC analysis using Dmax=150 and
Smax=15.

Number of hidden
units

Time taken to train
(seconds)

Overall accuracy (%)

10 220 15
50 418 45
100 583 55
300 1658 50

The results show a distinct improvement compared to the results achieved with

the previous, larger 1716 codebook. The highest accuracy is 55%, which is the

same as the 1716 codebook. However, this was achieved with fewer hidden units,

and there was also significant improvement in the 50HU network. The time taken

for the networks to complete training with the 343 codebook data is significantly

shorter than with the 1716 codebook data. This is to be expected because there are

considerably fewer network weights to be adjusted during training.

Overall, the results were satisfactory for the 343 codebook feature extraction.

Although the accuracy using the 343 codebook was not an improvement over the
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1716 codebook, the training times were significantly lower. The following section

discusses how further developments were made to the codebook with the aim of

improving the network accuracy and lowering the time taken to train the network.

3.6.3 Empty Band Discovery

Figures 3.12 shows two plots which demonstrate a banding phenomenon encountered

when inspecting S–matrices generated using the 343 codebook. These plots show

black where a value greater than zero was found in the resultant S–matrix. Fig-

ure 3.12(a) shows all 930 S–matrices generated for all of the test data (62 WAV files,

each 3 seconds long using a framelength of 0.2 seconds). The plot shows distinctive

banding of non-zero data in the S–matrices. The banding is more clearly shown in

Figure 3.12(b) which is a normalised plot of a summation of all 930 S–matrices.
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(a) Plot showing all 930 S–matrices for the test
data files.
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(b) Normalised plot of a summation of all 930
S–matrices.

Figure 3.12: Plots showing the banding phenomenon found in S-matrices generated
using the 343 codebook. Where the plots are black indicates that the
S–matrix contained a value greater than zero.

In Section 3.6.2 it was mentioned that sMatSorter343.m was used to generate

S–matrices with the 343 codebook. Durations were grouped together into ranges to

help with minimising the total number of codes in the codebook (see Appendix B).

The durations from 2 through to 20 are not grouped with any other durations. For

2 ≤ D ≤ 20, the code number is generated using Equation 3.5.

Code number =
(D − 1)2 + (D − 1)

2
+ S (3.5)

The first element of this summation is the formula for calculating the triangle
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number of duration, D. This method of calculating the code number was originally

chosen because it guarantees a minimum allocation of codes for a given duration.

For example, if D=5, codes 10 through to 14 are all used for D-S pairs where D=5;

if D=10, codes 45 through to 54 are all used for D-S pairs where D=10.

Equation 3.5 was used because it was originally assumed that an epoch could

have a maximum shape of D − 1. However, as demonstrated in Figure 3.12, this is

not the case. Table 3.6 shows durations 2 ≤ D ≤ 20 and the maximum shape found

in the data used to produce the plots in Figure 3.12.

Table 3.6: Maximum shape values found for 2 ≤ D ≤ 20 upon close inspection of
S–matrices.

Duration Max. Shape Duration Max. Shape

2 0 12 5
3 1 13 6
4 2 14 7
5 2 15 7
6 3 16 7
7 3 17 8
8 4 18 8
9 4 19 8
10 4 20 8
11 5

From Table 3.6 it can be seen that the maximum shape in any epoch for 2 ≤ D ≤
20 never exceeds D

2
. The function sMatSorter262.m was written to take advantage

of this knowledge. No formula was available for generating the correct code number

given the duration for 2 ≤ D ≤ 20. Therefore, the code allocation for a given

duration in this range was hard-coded into the function.

TDSC feature extraction using sMatSorter262.m resulted in S–matrices with

262 codes, a reduction of 81 codes from the 343 codebook.

3.6.4 Classification Results using the 262 Codebook

To verify if the further reduction in codebook size improved classification accuracy,

LVQ networks were trained and tested in the same manner as that described in Sec-

tion 3.5 and Section 3.6.2 using the 262 codebook during TDSC feature extraction.

Table 3.7 shows the classification results for the four different LVQ networks and
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the time taken to train each network. As was observed with the 343 codebook, there

was a reduction in the time taken to train each network because there were fewer

network weights to be calculated during training.

Table 3.7: LVQ classification results for TDSC analysis using the 262 codebook.

Number of hidden
units

Time taken to train
(seconds)

Overall accuracy (%)

10 188 20
50 317 45
100 499 60
300 1395 55

The classification accuracies for the 262 codebook show an improvement over

those achieved with the 343 codebook: the 10HU, 100HU and 300HU are all 5%

more accurate. As with the 343 codebook, the 100HU network is the most accurate.

These results show that close inspection of the S–matrices to determine how further

reductions could be made were worthwhile. The 262 codebook was used for further

classification tasks which are discussed in detail in Chapter 4.

3.7 Practical Considerations for TDSC Analysis

3.7.1 Framelength

The experimental work detailed throughout this chapter used audio files that were

3 seconds in length, as discussed in Section 3.3.1. It was mentioned that when

performing TDSC the signal under analysis is segmented into frames. The length

of these frames used in the experimental work was 0.2 seconds. This length was not

selected arbitrarily.

During the early stages of the presented research, initial classification experi-

ments were carried out, using the 262 codebook and an LVQ network, to determine

how long each frame should be. A summary of these experiments is given in Ta-

ble 3.8. The results show that there was little change in the classification accuracy

for most framelengths. Nevertheless, the highest accuracy was achieved using a

framelength of 0.2 seconds and this framelength was used for the rest of the experi-

mental work.
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Table 3.8: Results from testing the effect of framelength on classification accuracy.

Framelength (seconds) Accuracy (%)

0.1 51
0.2 55
0.3 51
0.4 51
0.5 50
0.6 51
0.7 52
0.8 49
0.9 49
1.0 48

3.7.2 Processing Time

Throughout this chapter, and in the proceeding chapters discussing experimental

work, the time taken to train classifier networks is often stated. These times allow

comparisons to be made on the performance of each network during training. The

experimental work was undertaken on a laptop computer running the Microsoft

Windows® XP operating system. The laptop computer was not a dedicated machine

for running experimental work. It was also used to perform other computing tasks.

Therefore, there was a possibility that experimental work could have been performed

with varying levels of demand on the processors of the laptop, depending on the other

tasks the laptop was being used for. This may have resulted in large variations in

the time taken to train networks.

To overcome this obstacle, the dual-core nature of the computer processor was

exploited. Under the Microsoft Windows® XP operating system it is possible to

assign one core of the processor to a specific task using the Task Manager. Whenever

experimental work was being carried out (such as training a neural network), one

core of the processor was assigned to MATLAB® . To further minimise disruptions,

the laptop was left unused whilst experimental work was running in MATLAB® .

3.8 Chapter Summary

In this chapter the purely time-domain feature extraction techniques TESPAR and

TDSC have been discussed. An overview of the techniques has been provided to-

gether with their history and some of the previous signal processing applications of
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TESPAR and TDSC. The prior research using these techniques have demonstrated

excellent classification accuracies. Although the prior works have been in different

fields to the present application, their results are encouraging.

The process of designing and implementing a function in MATLAB® has been

discussed, using one the functions written for the presented research as an example.

An explanation of how TDSC has been implemented in MATLAB® was also given,

including flow diagrams to show the different stages in TDSC analysis. All of the

functions discussed throughout the chapter are reproduced in Appendix C.

The classification methodology adopted for the presented research was discussed

to show the reader that the procedures used did not differ from the methodologies

found in the literature. In particular, using a training data set and a testing data

set is similar to the jack–knife and the leave–one–out methods used by Cowling and

Sitte (2003) and Umapathy et al. (2007) respectively.

The remainder of the chapter discussed the early work carried out to arrive at a

generic codebook which could be used with any one of the audio categories which the

presented research aims to identify. The various iterations of this generic codebook

were discussed along with some initial classification results. The 262 codebook

showed the most promising results with an accuracy of 60% when combined with a

100 hidden unit LVQ network.

The next chapter discusses the more extensive classification tasks carried out

using the 262 codebook. Experimental work using both an MLP and an LVQ clas-

sifier, in conjunction with the 262 codebook, is presented. The different classifier

structures which were experimented with are described together with classification

results. A bioacoustic classification problem is also discussed to allow comparison

with the original uses of TDSC.
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Chapter 4

Classification Using TDSC

S–Matrices

The previous chapter introduced TDSC as a relatively new, but established feature

extraction technique, which has had success in a variety of classification problems.

Throughout the previous chapter the developments made to the generic codebook

were discussed culminating in a codebook with 262 codes down from 1716.

In this chapter, experimental work carried out with the 262 codebook will be

presented. The classification problem focused on is that of differentiating between

the 6 urban audio sound categories using two classifier structures. The 262 codebook

is also applied in a bioacoustic classification problem.

The discussion begins by examining the two different classifier structures used

in the experimental work. An overview of Multilayer Perceptron (MLP) networks

is then given along with the results of initial testing with MLP networks to identify

the optimum design for the task at hand.

4.1 Classifier Design

In designing a classifier for an identification or classification task, there are many

factors to be taken into consideration. Three factors will be discussed here: the

classifier structure, the network architecture used for the classifier, and the network

topology.
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The classifier structure is how the classifier is arranged. A single classifier may be

employed with multiple outputs, each output corresponding to a different category.

This was the approach taken with the experimental work in the previous chapter. An

alternative is to use multiple classifiers with fewer outputs, each classifier attempting

to differentiate between broader categories. Defréville et al. (2006) implemented the

latter approach in their work, as discussed in Chapter 2. Defréville et al. also

implemented classifiers which were trained to identify only a single category, so

called expert classifiers. The other prior pieces of research discussed in Chapter 2

either used slight variations on the structures mentioned above or do not report the

structure.

The term network architecture is used to mean the type of network (MLP, LVQ,

Radial Basis Function, etc.) being used. Closely linked to the architecture is the

topology of the network. The architecture used in the prior works discussed in

Chapter 2 is as varied as the structures described above. However, the authors of

the prior works do not discuss the network topologies used.

It should therefore be clear that there are many options for the structure, archi-

tecture and topology of a classifier in a classification system. Unfortunately, there is

little in the literature to assist in deciding on a classifier structure prior to starting

a classification task. Some authors report results based on trying a number of dif-

ferent classifier structures and different architectures (for example, see Hawickhorst

et al. 1995, Cowling and Sitte 2003, Umapathy et al. 2007 and as already mentioned

Defréville et al. 2006). Books on neural network design (such as Hagan et al. 1995)

go into great detail of how a particular type of network can be optimised, in terms of

topology, for various tasks but provide little in the way of advice on selecting a struc-

ture to use. However, even determining a network topology is not straightforward.

Under the heading ’Selecting a topology for an MLP network’ Rafiq, Bugmann, and

Easterbrook (2001) state that

“Every stage of any [Neural Network] project requires a little trial and

error to establish a suitable and stable network. . . ” (p.1545)

The advice of Rafiq et al. (2001) has already been observed in the experimental

work presented in Chapter 3 where a variety of LVQ topologies were trialled as it

was not previously known which would provide the best classification accuracy. For

the 262 codebook, it was observed that an LVQ network with 100 hidden units gave

the best results. Later in this chapter results from similar topology testing with

MLP networks is presented.
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4.1.1 Classifier Structures

Two different classifier structures were used in the work presented in the rest of this

chapter. These two structures are shown in Figure 4.1.

(a) Using a single multiple–output classifier.

(b) Using multiple single–output expert classifiers.

Figure 4.1: The two classifier structures used during experimental work.

Figure 4.1(a) shows a classifier structure which employs a single network. The

network is trained to differentiate between the classes C1,C2...Cn. Recalling that

the input audio file is analysed in frames, an S–matrix is generated for each frame

and the classifier is trained to map S–matrices for the different categories of audio

to one of C1,C2...Cn. The ideal result for this structure is that for a given S–matrix

belonging to a signal from class C1, for example, the output for C1 comes out as a

‘1’ and the rest of the outputs come out as ‘0’.

The structure shown in Figure 4.1(b) employs a series of single-output classifiers,

each trained to identify only a single class from the set C1,C2...Cn. For this struc-

ture, an ideal result would be for only one of the single-output classifiers to score a

‘1’ on its output and all others to score a ‘0’. In this configuration the collection of

networks performs as the overall classifier stage of the classification system.

Using these two different classifier structures allows the experimental work from

the presented research to be compared with earlier works where authors have trialled
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a number of classifier architectures, topologies and structures.

4.2 Multilayer Perceptron Theory

MLP networks were introduced in Chapter 2 as a neural network having more than

one layer of neurons. A standard neural network unit (such as the McCulloch-

Pitts model shown in Figure 2.2) or group of units are usually called a perceptron.

Perceptrons consist only of inputs and output unit(s), as shown in Figure 4.2, and

have 2 layers. A simple perceptron can learn the association between an input

data set and its outputs if the output is a linear transformation of the input (Abdi,

1994). An example problem often quoted in the literature to show the capability

of a simple perceptron is that of the logical OR operation because it is a linearly

separable function (Abdi provides an excellent account of this example).

Figure 4.2: A simple perceptron network. The network has two layers - the inputs
and the output layer. The inputs are connected to the outputs via a set
of weighted connections.

Many classification problems do not present a linearly separable relationship be-

tween input and output. The logical XOR operation is an example of this (the reader

is again directed toward Abdi (1994) to see this example). For a perceptron network

to be able to build associations between inputs and outputs for non-linearly sepa-

rable relationships, a hidden layer of neurons must be introduced into the network.

Figure 4.3 shows a perceptron network which includes a hidden layer.
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Figure 4.3: A perceptron network with one hidden layer. In this network there are
no direct connections between the inputs and the output layer. The
inputs are connected to the hidden layer units with a set of weighted
connections and the hidden layer units are connected to the output layer
units with another set of weighted connections.

In both of the network topologies shown in Figures 4.2 and 4.3 the connections

between the layers are weighted. To illustrate the purpose of the weighting, let Yi be

the output value of output unit i in the network of Figure 4.2, wij is the connection

weight from input unit j, Xj is the input fed into unit j, and g(fi) is the activation

function of Oi. The output of unit i can be expressed as:

Yi = g(fi) = g

∑
j

wijXj

 (4.1)

Equation 4.1 shows that each connection in the network can have a different

weighting and will therefore have different effects on the values being passed between

units. For example, input 1 may have a weighting of 0.5 for its connection to output

unit 1 but a weighting of 0 for its connection to unit 2. The value of input 1 will

have a greater effect on the output of output unit 1 than that of output unit 2.

During training of a network the weights are optimised such that a particular input

pattern to the network will trigger a particular output pattern.

The calculations and equations which back up the theory of MLP computation

are very well documented in the literature covering the subject of neural networks.

See, for example, Hertz et al. (1991), Abdi (1994) and Ham and Kostanic (2001).
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4.3 Implementing MLP Networks with MATLAB®

The MATLAB® Neural Network Toolbox (NNT) includes many different network

architectures. The LVQ networks discussed in Chapter 3 were generated using the

NNT. As well as offering many architectures, the NNT offers many options which

affect the internal behaviour of a network during training and simulation.

In the MATLAB® ‘Neural Network Toolbox User’s Guide’, Demuth, Beale, and

Hagan (2008) provide excellent explanations for many of the network options. This

reference was consulted extensively throughout the experimental work reported here.

The MLP network architecture comes under the title of “Backpropagation” in De-

muth et al. (2008), this being a particular method of training an MLP network1.

Backpropagation learning is so called because it involves back-propagating the net-

work error (the difference between the expected and actual outputs) through the

network and adjusting the weights accordingly (Rafiq et al., 2001). Backpropaga-

tion is a form supervised training, and for it to work successfully the network needs

to know the expected output for each input dataset.

When creating MLP networks with MATLAB®, the following options were con-

sidered carefully prior to choosing a particular network design:

� topology,

� layer transfer functions,

� training function, and

� performance function.

Choosing the number of inputs and output units for each network is usually deter-

mined by the size of the input data and the number of classes the network was to

differentiate between. For the presented research, the size of the input data was

262×1 for each frame of TDSC data. The number of output units depended on the

network structure under consideration (see Section 4.1.1).

4.3.1 Network topology

The subject of network topology has already been discussed in terms of whether an

MLP network has a hidden layer or not. The number of units in the hidden layer is

1More specifically a feed-forward MLP network which are the only MLP networks the presented
research is concerned with.
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one of the options available when creating an MLP network as well the number of

hidden layers.

With regard to the number of hidden layers, Hertz et al. (1991) offer a non-

rigorous proof that two hidden layers are enough. Rafiq et al. (2001) state that

“. . . a single [hidden] layer with an optimum number of neurones will be sufficient

for modeling many practical problems” (p.1545).

In Chapter 3 a variety of LVQ topologies were tested to determine the optimal

number of hidden units. A similar series of tests were carried out with MLP networks

which are discussed further in Section 4.4. The exact number of hidden units used

in LVQ and MLP networks varied depending on the classification problem. For

example, in classifying urban audio data using a multiple–output MLP network, it

was found that 100 hidden units gave the highest accuracy.

4.3.2 Layer transfer functions

Each neuron in an MLP network will have a transfer function associated with it.

The transfer function of a unit determines the scalar output of the unit for a given

weighted input. The NNT offers a selection of different transfer functions that can

be used. When creating a network, the transfer functions for the hidden layer(s)

and output layer are selected and applied to all units in those layers. Figure 4.4

shows the most common transfer functions used with MLP networks according to

Rafiq et al. (2001).

Figure 4.4: Common transfer functions that are used in MLP neural networks.
Taken from Rafiq et al. (2001).

The sigmoid transfer function (logsig in the NNT) will transform an input with
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a value between plus and minus infinity into a number in the range 0 to +1. The

tanh function (tansig in the NNT) performs a similar operation but its output

range is -1 to +1. The output of a linear transfer function (purelin in the NNT) is

identical to its input and can have any value.

4.3.3 Training function

The training function for a network is selected when the network is created. The

chosen function determines the algorithm used during training. In the basic back-

propagation training algorithm “. . . the weights are moved in the direction of the

negative gradient. . . ” (Demuth et al., 2008, p.5-15). The gradient referred to here

is the gradient of the performance function and is used to determine how the weights

are adjusted.

For an MLP network, the NNT offers 13 different training functions. The training

function can have a significant effect on the network, both in terms of its accuracy

after training and the time taken to train the network. A table summarising the

different training functions is provided in Appendix D.1.

4.3.4 Performance function

The performance function acts as a target for the network. The weights are adjusted

during training to try and minimise the performance function (Demuth et al., 2008).

There are two options for performance functions discussed by Demuth et al. un-

der the topic of backpropagation. The standard performance function is mse – the

mean square error between the network outputs and the target outputs. The other

performance function option is msereg – a modified mean square error calculation

which takes into account the mean of the sum of the squares of the network weights

(Demuth et al., 2008). The latter of these functions is used for improving generalisa-

tion and is more useful for function approximation problems as opposed to pattern

recognition problems. Therefore, the standard mse performance function was used

during experimental work.
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4.3.5 Selecting Network Options

To determine which network options were most suitable for the present classification

task, a series of tests were carried out with different network configurations, making

changes to the transfer and training functions used in each. Trialling all of the

possible combinations of transfer and training functions would have been a needless

and time-consuming task.

Highlighting the issue of the complexity of choosing network options, Demuth

et al. (2008) provide a speed and memory comparison for nine of the training func-

tions detailed in Appendix D. In their comparison they present results for six

classification problems: three pattern recognition problems and three function ap-

proximation problems. The pattern recognition problems are relevant to the pre-

sented research so these were focused on. In summary, Demuth et al. state that

trainrp, a resilient backpropagation training algorithm, provides the fastest re-

sults for pattern recognition problems. Another training algorithm of note from

the authors is the Levenberg-Marquardt algorithm (trainlm) which demonstrated

excellent results and fast training but only for function approximation problems.

Studying the results allowed some preliminary decisions to be made on the de-

sign of the MLP networks that would be tested. Three training algorithms were

identified that would be suitable for the present application; variable learning rate

with momentum (traingdx), resilient backpropagation (trainrp), and scaled con-

jugate grading (trainscg). These training functions were chosen based on their

performance across the different pattern recognition problems presented by Demuth

et al.. Also, according to Kurt, Ture, and Kurum (2008), any of the training func-

tions with variable learning rate and momentum will generally perform better than

standard gradient descent algorithms.

It was also noted from the results of Demuth et al. (2008) that the MLP networks

used for pattern recognition all used sigmoid transfer functions in both the hidden

and output layers. This echoes the design suggestions from Rafiq et al. (2001). For

the output layer, it was decided to use a log–sigmoid function because the desired

response from each output was a 0–1 value for ease of comparison.

A summary of the network options used throughout this research is given in

Table 4.1.
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Table 4.1: Summary of the network options used throughout the presented research.
During the preliminary testing for each classification task, all of the
possible topologies were tested for MLP and LVQ networks. Prelimi-
nary testing for MLP networks also included all possible combinations of
transfer function and training function.

Topology (no.
of hidden
units)

Transfer
function

Training
function

Performance
function

10 log–sigmoid traingdx mean squared error
50 tan–sigmoid trainrp

100 trainscg

300

4.4 Preliminary MLP Testing

In order to determine the most appropriate network design for classifying the audio

signals detailed in Appendix A.2, preliminary testing was carried out on the network

designs shown in Table 4.2.

The data used to train and test the networks used audio from only the air

conditioning/ventilation, bird and road categories. Complete results of the testing

are presented in Appendix D.2 and are summarised in Table 4.2.

The MLP networks were created, trained and simulated in the same manner

as that described in Section 3.3. Each network was trained with S–matrix features

extracted from the training audio set and simulated with S–matrix features extracted

from the test audio set.

Each network was given a maximum number of training epochs of 4000. This

figure was based on short initial tests. Each network had a performance goal of

0.001 meaning that when the mean squared error (mse) reaches this value, training

will stop. The value of 0.001 was chosen based on the example networks used by

Demuth et al. (2008). The learning rate chosen for all networks was 0.05. This was

the default value for each network and was left unchanged because Demuth et al.

comment that for the faster networks the default learning rate is usually adequate.
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Table 4.2: Summary of results from preliminary testing with MLP networks. The
top performing network for each topology is presented in bold typeface.

Topology Training
function

Hidden layer
transfer
function

Training time
(seconds)

M–value
mean

10–3 traingdx tansig 35.95 0.751
logsig 49.72 0.748

trainrp tansig 2.06 0.776
logsig 1.00 0.748

trainscg tansig 8.95 0.501
logsig 6.25 0.793

50–3 traingdx tansig 133.24 0.762
logsig 133.59 0.725

trainrp tansig 2.10 0.754
logsig 2.15 0.764

trainscg tansig 21.23 0.761
logsig 23.72 0.518

100–3 traingdx tansig 243.06 0.769
logsig 250.07 0.735

trainrp tansig 5.91 0.790
logsig 4.41 0.773

trainscg tansig 46.83 0.753
logsig 43.41 0.749

300–3 traingdx tansig 750.08 0.734
logsig 749.51 0.709

trainrp tansig 16.22 0.791
logsig 13.57 0.764

trainscg tansig 164.42 0.786
logsig 167.38 0.745

The results presented in Table 4.2 show that the resilient backpropagation algo-

rithm is the fastest to train with all network topologies, training in as little time as

1 second for a 10–3 network2. It was observed with the LVQ networks in Chapter 3

that as the number of hidden units increased the time taken to train also increased.

This was also true for the MLP networks, as the results show.

The right–most column of Table 4.2 shows the mean of the slope gradients for

post–simulation regression calculations for each network output. If the slope is

2The h–o nomenclature is used throughout the thesis to describe the layers of the network,
where h denotes the number of hidden units and o denotes the number of output units. A 10–3
network has 10 hidden units and 3 output units.
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represented by y = mx+c, then the slope is given by m. Hence, the regression slope

values are referred to as M–values. The regression was performed on the simulated

network output for the S–matrices extracted from the test audio data and the targets

(the expected outputs) for each of the S–matrices. The slope gradient from the

regression analysis in MATLAB® (with the function name postreg) provides an

indication of how close the simulated output of a network is to the expected output.

If the slope gradient is a 1 there is a perfect match between the simulated and

expected outputs.

The results in Table 4.2 indicate that the network with the closest match between

the simulated outputs and the expected outputs was the 10–3 SCG network (scaled

conjugate gradient). There is a noticeable difference between the results for the two

10–3 SCG networks, with the logsig hidden layer network performing much better

than the tansig one. Such a difference in results was not expected and it will be

seen later in this chapter that such a difference is not always observed.

Although the 10–3 SCG logsig network had the highest overall accuracy, the

RP (resilient backpropagation) networks were more consistent in their results. The

100–3 RP tansig network had a mean slope gradient which was only 0.003 lower

than that of the 10–3 SCG logsig network, a negligible amount. The training times

of all of the RP networks were much lower than those of the other two networks.

To determine which network design was to be used in the experimental work

involving the complete audio data set, the network designs were considered in topol-

ogy groups and mean accuracies were calculated. The 100–3 topology group had the

highest mean accuracy of 0.762. Given the relatively short training times of the MLP

networks (compared to the LVQ networks presented in Chapter 3), it was decided

that all six of the designs with 100 hidden units would be used for experimental

work.

4.5 Urban Audio Event Classification

This section presents classification results obtained from experimental work using

various network structures. Both LVQ and MLP networks were generated for each

of the classifier structures shown in Figure 4.1 resulting in four experiments being

carried out for the urban audio data (see Appendix A).

The results presented here are summaries of the results obtained during the
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experimental work. Full results can be found in Appendix E.

4.5.1 Experiment 1: Multiple–output MLP Network

In Section 4.4 results were presented of the preliminary testing performed to deter-

mine the optimal MLP network structure. It was seen that an MLP network with a

100–3 topology outperformed all other topologies. Presented below are the experi-

mental results for MLP networks of this topology in all 6 combinations of training

and transfer functions.

Training and testing was repeated 5 times with a new network initialisation for

each run. This method of validation is recommended by Demuth et al. (2008) as each

initialisation results in different initial weight vectors for the networks. Repeating

the training and testing process also provides more robust results for the accuracy of

the networks because the results from each session all contribute towards the mean

results.

Mean regression M–values were calculated for each network design. A summary

of these is presented in Table 4.3. The full results for all 5 training and testing

sessions can be found in Appendix E.1.

Table 4.3: Summary of performance results for 100–6 MLP networks classifying
urban audio data. The training times and regression slope means are the
averages for 5 training and testing sessions.

Training
function

Hidden layer
transfer function

Training time
(seconds)

M–value mean

traingdx tansig 431.10 0.668
logsig 427.86 0.669

trainrp tansig 13.01 0.624
logsig 12.07 0.607

trainscg tansig 229.83 0.707
logsig 235.92 0.671

Table 4.3 shows that the MLP network trained using a trainscg (conjugate

gradient backpropagation) training function with a tansig hidden layer transfer

function produced the best regression results. This contrasts the results observed

during the preliminary testing in which the networks trained using resilient back-

propagation were the best performers. The mean of the regression M–values are

overall considerably lower than the M–values seen in the preliminary testing. The
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increase in categories (and hence outputs) is the most likely cause of this reduction

in network accuracy.

Whilst the regression M–values provide an indication of how the network is per-

forming, further tests were carried out to determine how well the trainscg-logsig

100–6 network could identify individual sounds. The data used for this testing com-

prised longer audio files than those used for training and testing. The audio files

did not contain any of the same data that had been used to train the networks.

The winning output of the network was retrieved for each test file. Results

for these tests are presented in Table 4.4. The trainscg-tansig network from the

second training and testing session was used during this process as it had the highest

overall M–value.

Table 4.4: Individual WAV file classification results for the multiple–output 100–6
MLP network. The fourth column shows how many frames of the audio
data were correctly classified as a percentage.

Sound category File Desired output % correct
desired output

Air transport AirTrans002 1 90
Air conditioning AirCon001 2 73
Bird Soundrec036 Bird 3 81
Building works digger drill 4 100
Rail transport train idle 5 50
Road transport Soundrec024 Road 6 93

Mean 81

The results in Table 4.4 show that the combination of the 262 S–matrix feature

extraction and the 100–6 trainscg-tansig network can accurately classify audio

data that it has not previously encountered. The poorest result was achieved when

classifying a recording of rail transport. The variety of sounds encompassed in

each category can be quite large so achieving an accuracy of only 50% for the rail

transport category is not wholly unexpected.

4.5.2 Experiment 2: Multiple Single–output MLP Networks

The results presented in this section relate to using an MLP network with only one

output for each of the six sound categories, as shown in Figure 4.1(b). The intention

was to train the MLP networks to become expert classifiers for only one category:
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an output of a 1 indicating that the input frame of audio belongs to the category

for which the classifier has been trained; an output of a 0 indicating that the input

data does not belong to the category.

Preliminary Tests

Prior to initialising, training and testing six networks, preliminary tests were carried

out to determine which network architecture was most appropriate for this applica-

tion. The tests were of a similar vein to the preliminary tests that had been carried

out for the other network architectures (i.e. networks of all combinations of training

and transfer functions were trialled with a reduced data set). Appendix E.2 presents

the results of the preliminary tests.

The preliminary test results (presented in Table E.2) showed that the best per-

forming network overall across all of the three test categories was a 100–1 network

trained using the conjugate gradient algorithm with logsig transfer functions in

the hidden layer (M–value mean 0.7817). Therefore, training and testing of MLP

single–output networks for all six sound categories was carried out using this network

architecture.

Test Results for All Categories

Training and testing was repeated five times with new network initialisations for each

session, as with the 100–6 network discussed earlier. Regression analysis results for

all networks in all five training sessions are presented in Appendix E.3. Summarised

results are presented in Table 4.5. It is to be noted that the results from the fourth

training and testing session were omitted when calculating the mean values presented

in Table 4.5. The results from the fourth session were considerably different from

all of the other sessions and were therefore considered anomalous results.

Table 4.5 shows that after training with the training audio data (detailed in

Appendix A), all of the single–output networks achieved at least a mean M–value of

0.55 across all training sessions. The networks were choosing between two possible

results so this result is better than would be achieved through guesswork.
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Table 4.5: Summary of results for six 100–1 MLP networks. Each network was
trained as an expert classifier to recognise only one category of urban
audio event and reject all others.

Category Time to train (s) M–value mean

Air transport 7.23 0.824
Air conditioning 17.98 0.589
Bird 10.76 0.701
Building works 17.46 0.702
Rail transport 10.63 0.551
Road transport 30.79 0.719

Results were presented earlier of how well the 100–6 MLP network performed

with audio data it had not previously seen. To carry out similar tests with six 100–1

MLP networks, a function was written to analyse the outputs of all six networks

and determine the winner (see the function singleOpNetTest.m in Appendix C).

Table 4.6 shows the results of the tests performed with previously unseen audio

data. The audio files used were the same as those from the 100–6 MLP network tests

to allow a comparison to be made. It is clear to see from the results in Table 4.6 and

Table 4.4 that the classifier constructed from the single–output networks did not

perform as well as the multiple–output network. In most categories the percentage

of correctly classified frames is lower for the single–output network classifier. Only

the bird category is higher, and the air conditioning category is identical.

Table 4.6: Individual WAV file classification results for the six single–output 100–1
MLP networks. The fourth column shows how many frames of the audio
data were correctly classified as a percentage.

Sound category File Desired
winning
network

% correct
desired winning
network

Air transport AirTrans002 1 87
Air conditioning AirCon001 2 73
Bird Soundrec036 Bird 3 85
Building works digger drill 4 97
Rail transport train idle 5 48
Road transport Soundrec 024 Road 6 88

Mean 80
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4.5.3 Experiment 3: Multiple Output LVQ Network

In Chapter 3 a multiple–output LVQ network was developed and implemented for

the initial codebook development. In particular, Section 3.6.4 discusses the initial

test results achieved using LVQ networks with different numbers of hidden units and

six output units. The results showed that an LVQ network with 100 hidden units

had the best overall performance. Therefore, an LVQ network of this topology was

used to generate the experimental results presented below.

As with earlier experiments, training and testing was repeated five times with

a new network initialisation each time. A summary of the results is presented in

Table 4.7. Full results for all five training and testing sessions can be found in

Appendix E.4.

The fourth column of Table 4.7 shows the M–value mean across all six outputs of

the LVQ network. Recalling that an M–value of 1 indicates a perfect match between

the simulated network outputs and the desired outputs, the results displayed for the

100–6 LVQ network are very poor. The full results for the five sessions show that

outputs four and five always had an M–value of 0 indicating that none of the building

or rail category test files were correctly classified. This correlates with the results

observed during the initial testing discussed in Section 3.6.4. None of the building

or rail category test files were correctly classified during those tests either.

Table 4.7: Mean results for all five training and testing sessions for a 100 hidden
unit, 6 output LVQ network.

Session Topology Time to train
(s)

M–value mean

1 100-6 501.48 0.372
2 511.03 0.262
3 489.03 0.314
4 484.94 0.383
5 496.80 0.413

Mean 496.66 0.349

To verify the M–values from the regression analysis post–training, individual

audio files previously unseen by the network were analysed and classified. The

number of frames accurately classified was calculated for each sound. The results of

this test are presented in Table 4.8. The classifier was not able to correctly classify

any frames of audio data from the building works or rail transport categories. The

results for the air transport, air conditioning and road transport categories are all
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very high. However, the overall accuracy of this network is only 52% due to poor

results in three of the categories.

Table 4.8: Individual WAV file classification results for the multiple–output 100–6
LVQ network. The fourth column shows how many frames of audio data
were correctly classified as a percentage.

Sound category File Desired
winning
network

% correct
desired winning
network

Air transport AirTrans002 1 90
Air conditioning AirCon001 2 87
Bird Soundrec036 Bird 3 38
Building works digger drill 4 0
Rail transport train idle 5 0
Road transport Soundrec 024 Road 6 99

Mean 52

4.5.4 Experiment 4: Multiple Single–output LVQ Networks

The aim of this experiment was to test a classification system having the structure

shown in Figure 4.1(b) where each output was an individual LVQ network with only

one output. Each LVQ network was to be trained as an expert classifier for only

one category.

In accordance with previous experiments, preliminary testing was performed to

determine the most suitable network topology for the application. The results of the

preliminary testing are not presented here because all of the networks tested gave

an M–value very close to zero (of the order 1× 10−15).

A modification of the classifier structure was tested in an attempt to improve

the accuracy. The modification involved using two–output LVQ networks instead of

single output networks. If the first output of a network was the winning output then

the input data belonged to the category associated with that network. If the second

output of a network was the winning output then the input data did not belong

to the category associated with that network. Preliminary tests with the modified

classifier also yielded M–values very close to zero (again, of the order 1× 10−15).

Given the very poor results achieved during the preliminary tests, it was decided

not to carry out training and testing with the full data set.
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4.5.5 Urban Audio Event Classification – Results Summary

In this section results for experimental work using the 262 codebook with a variety

of classification system structures have been presented. For all of the structures

preliminary testing was first carried out to determine the most suitable classifier

topology and, in the case of the MLP networks, the most suitable training/transfer

function.

The highest accuracy (81%) was achieved with an MLP network having 100

hidden units and 6 outputs (one for each of the sound categories) which was trained

using the trainscg algorithm and used a tansig output layer transfer function.

Using single–output MLP networks also presented promising results (80% accuracy).

Using LVQ networks as classifiers was less successful with the highest accuracy

of 52% being achieved by an LVQ network with 100 hidden units and 6 outputs.

No results were gathered using single–output LVQ networks as the preliminary test

results indicated they would perform poorly.

Overall, the results were very positive when using MLP networks to classify

urban audio data that has had features extracted using the 262 codebook. In the

next section the 262 codebook is used as a feature extractor in a classification system

which attempts to classify bioacoustic audio data. One of the original uses of TDSC

was to identify bioacoustic signals. Therefore, it was decided to investigate how

TDSC using the 262 codebook compares to standard TDSC.

4.6 Bioacoustic Signal Classification

Time-Domain Signal Coding has previously been used successfully to identify bioa-

coustic signals. Some of these applications were discussed in Chapter 2. In partic-

ular, the work of Dr. David Chesmore (Chesmore, 2001) demonstrated that TDSC

can extract features which allow 100% classification accuracy of Orthoptera sounds

under low–noise conditions. The work of Farr (2007) showed that TDSC has its uses

in identifying insect bites inside wooden materials.

The experimental work discussed in this section relates to an identification prob-

lem previously studied by E. Ohya (Ohya, 2004). In this study, the author aimed to

discriminate between the songs of three species of Japanese cicada: Tibicen bihama-

tus, T. flammatus and T. japonicus. These particular species of cicada are known
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to be difficult for humans to distinguish between due to their very similar sounding

songs and their habit of singing high in trees.

Ohya (2004) extracted the peak and mean frequencies of each song recording

and used Principal Components Analysis (PCA) to compare these features to those

of a training set. The training set consisted of three known recordings. Ohya’s

results showed PCA to be a reliable method of classifying the songs. However, of 22

recordings made by Ohya, 10 suffered from low signal–to–noise ratios and leakage

from other noise sources so were not used in his study.

Chesmore (2004) used a data set of 25 cicada recordings (made by Ohya) to

test an MLP network. The test data set included five low–quality recordings. The

network had been trained using the same three known recordings used by Ohya.

Chesmore’s results showed the trained network was capable of correctly classifying

the training data. With the test data, 17 of 25 recordings were correctly classified.

The same data set used by Chesmore (2004) was used to test how accurately

a classification system using the 262 codebook could identify Tibicen cicada songs.

The classifier structures shown in Figure 4.1 were implemented using both MLP and

LVQ networks.

4.6.1 Preliminary Testing

Preliminary tests were performed to identify the network topologies which suited

the identification problem. These tests were performed in the same manner as the

preliminary tests carried out for the urban audio signals. That is, MLP and LVQ

networks with different topologies were tested using both classifier structures shown

in Figure 4.1.

The data used for the preliminary testing was the same as the data used to gen-

erate the actual test results presented below. There was not enough data available

to allow a reduced–size data set to be made for the preliminary tests. Details of the

Tibicen recordings can be found in Appendix A.3.

Full results from preliminary testing with 3–output MLP networks are presented

in Appendix E.5. The results show that an MLP network with 10 hidden units

trained using a conjugate gradient descent algorithm (trainscg) with a tansig

hidden layer transfer function had the highest percentage (86.41%) of correctly clas-
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sified TDSC frames3.

Preliminary tests were also performed to find the ideal topology for a 3–output

LVQ network. A table of these results can be found in Appendix E.6. The results

show that an LVQ network with 100 hidden units had the highest percentage of

correctly classified TDSC frames (86%).

Further preliminary tests were performed to identify network topologies for MLP

and LVQ networks with only single outputs, as shown in Figure 4.1(b). However,

the preliminary results showed accuracies that were very low for both the MLP

and LVQ networks tested, based on regression M–values. Percentages for correctly

classified frames were calculated and these were also very low (∼5%). Therefore,

full tests were not carried out with either MLP or LVQ single–output networks.

4.6.2 Experiment 1: Multiple Output MLP Network

The preliminary testing showed that the MLP network with the highest performance

results had 10 hidden units and was trained using the trainscg algorithm using

a tansig output layer transfer function. Full testing was carried out using an

MLP network of this architecture. As with previous tests, training and testing

was repeated five times with a new network each time, thus allowing a new set of

network weights to be established each time. The results of the five training and

testing sessions are presented in Table 4.9. The performance for the network is based

on the percentage of correctly classified frames3.

Table 4.9 shows that over the 5 sessions the MLP network architecture achieves

a mean correct percentage of 69.02%. To allow a more thorough analysis of the

classifier accuracy, the network from session 5 was used to generate accuracy results

for each test file individually. That is, the network was simulated with TDSC data

for each test file and the simulation results were directly compared with the target

values. Table 4.10 presents the results of this analysis.

3For all of the Tibicen tests, the percentage of correctly classified TDSC frames was used to
determine the best performing topology/network. In previous tests regression analyses were used
for this purpose. The mean M–values produced by the MATLAB® postreg function were in the
region of 0.25–0.35 indicating that all of the network topologies were performing poorly. However,
the postreg function always output M–values of 0 for output 2 (T. flammatus) because none of
the test files belonged to this category. It was therefore decided that the percentage of correctly
classified frames would be a more reliable indicator of network accuracy.

95



Classification Using TDSC S–Matrices

Table 4.9: Performance results for a 10–3 MLP network classifying Tibicen record-
ings.

Session Topology Time to train
(s)

Frames
correctly
classified (%)

1 10-3 0.39 56
2 0.32 73
3 0.39 65
4 0.29 71
5 0.38 80

Mean 0.36 69

The results in Table 4.10 show that 14 out of the 25 (56%) test files have 100%

of their frames correctly classified. If the highest percentage of correctly classified

frames for each test file is taken as the winning category, then 22 out of the 25 (88%)

test files are classified into the correct category. Using the 262 codebook with a 10–3

MLP network outperformed the results presented by Chesmore (2004).

4.6.3 Experiment 2: Multiple Output LVQ Network

Based on the preliminary test results, an LVQ network with 100 hidden units was

used to perform full tests on the Tibicen data. Like all of the previous experiments,

training and testing was performed five times with a new network initialised for each

session. The results are presented in Table 4.11 and show that the mean number of

frames correctly classified was 72%. This result is an improvement over the mean

for the MLP network discussed above.

To allow further comparisons between the results achieved with the MLP and

LVQ networks and the work of Chesmore (2004), all of the Tibicen test files were

analysed individually by an LVQ network. The network from session 4 had the high-

est percentage of frames correctly classified and was therefore used for the individual

file analysis. The results are presented in Table 4.12.

The results presented in Table 4.12 show that the LVQ network was able to

correctly identify 19 out of 25 (76%) of the test files when the highest percentage

of correctly classified frames is used as the winning category. This is fewer than

was achieved with the MLP network. However, the LVQ network achieves a higher

number of correct classifications with 100% of the frames correctly classified (15 out
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Table 4.10: Individual classification accuracy results for Tibicen test files using a
10–3 MLP network. To identify where mis–classifications occurred, the
percentage of frames classified in all three categories were calculated.
Results for the training files are also included to show how well the
classifier can differentiate between the categories.

File Target Frames
classified as BH
(%)

Frames
classified as FL
(%)

Frames
classified as JP
(%)

Test files

1.wav JP 25.00 6.25 68.75
2.wav BH 66.67 33.33 0.00
3.wav BH 80.00 0.00 20.00
4.wav BH 6.25 93.75 0.00
5.wav BH 0.00 31.25 68.75
6.wav BH 100.00 0.00 0.00
7.wav BH 75.00 12.50 12.50
8.wav BH 100.00 0.00 0.00
9.wav BH 100.00 0.00 0.00
10.wav BH 100.00 0.00 0.00
11.wav BH 100.00 0.00 0.00
12.wav BH 100.00 0.00 0.00
13.wav BH 100.00 0.00 0.00
14.wav BH 100.00 0.00 0.00
15.wav BH 100.00 0.00 0.00
16.wav BH 68.75 25.00 6.25
17.wav BH 0.00 93.75 6.25
18.wav BH 100.00 0.00 0.00
19.wav BH 93.75 6.25 0.00
20.wav BH 100.00 0.00 0.00
lq1.wav BH 60.00 26.67 13.33
lq2.wav BH 100.00 0.00 0.00
lq3.wav BH 100.00 0.00 0.00
lq4.wav BH 93.75 0.00 6.25
lq5.wav BH 100.00 0.00 0.00

Training files

BH.wav BH 100.00 0.00 0.00
FL.wav FL 0.00 100.00 0.00
JP.wav JP 0.00 0.00 100.00

of 25 compared to 14 out of 25 for the MLP network). It is interesting to note

that the LVQ network did not identify any frames as belonging to the T. japonicus

category. This includes the training file frames. The MLP network was able to

identify both the test and training T. japonicus files.
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Table 4.11: Performance results for a 100–3 LVQ network classifying Tibicen
recordings.

Session Topology Time to train
(s)

Frames
correctly
classified (%)

1 100–3 54.91 70
2 52.86 72
3 54.43 72
4 54.09 74
5 53.87 71

Mean 54.03 72

4.6.4 Bioacoustic Signal Classification – Results Summary

In this section results have been presented of experimental work using the 262 code-

book in a variety of classification system structures for a bioacoustic classification

problem. Preliminary testing was carried out to find the most suitable network

topology.

The highest overall accuracy was achieved with an LVQ network having 100

hidden units and 6 output units (71.80%). An overall accuracy of 69.02% was

achieved using a multiple–output MLP network (100 hidden units, trainscg train-

ing function, tansig hidden layer transfer function). No results were achieved using

single–output LVQ or MLP networks because preliminary testing results indicated

that the overall results would be very poor.
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Table 4.12: Individual classification accuracy results for Tibicen test files using a
100–3 LVQ network. To identify where mis–classifications occurred, the
percentage of frames classified in all three categories were calculated.
Results for the training files are also included to show how well the
classifier can differentiate between the categories.

File Target Frames
classified as BH
(%)

Frames
classified as FL
(%)

Frames
classified as JP
(%)

Test files

1 JP 25.00 75.00 0.00
2 BH 0.00 100.00 0.00
3 BH 93.33 6.67 0.00
4 BH 0.00 100.00 0.00
5 BH 0.00 100.00 0.00
6 BH 100.00 0.00 0.00
7 BH 68.75 31.25 0.00
8 BH 100.00 0.00 0.00
9 BH 100.00 0.00 0.00
10 BH 100.00 0.00 0.00
11 BH 100.00 0.00 0.00
12 BH 100.00 0.00 0.00
13 BH 100.00 0.00 0.00
14 BH 100.00 0.00 0.00
15 BH 100.00 0.00 0.00
16 BH 43.75 56.25 0.00
17 BH 6.25 93.75 0.00
18 BH 100.00 0.00 0.00
19 BH 93.75 6.25 0.00
20 BH 100.00 0.00 0.00
lq1 BH 53.33 46.67 0.00
lq2 BH 86.67 13.33 0.00
lq3 BH 100.00 0.00 0.00
lq4 BH 100.00 0.00 0.00
lq5 BH 100.00 0.00 0.00

Training files

BH BH 100.00 0.00 0.00
FL FL 0.00 100.00 0.00
JP JP 75.00 25.00 0.00
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4.7 Discussion of Results

There have been many results presented in this chapter for a variety of classification

problems and classifier architectures. The salient results are presented in Table 4.13

to allow ease of reference when they are being discussed.

Table 4.13: Summary of experimental results using the 262 codebook.

Classification
problem

Network architecture Frames correctly
classified (%)

Urban audio events MLP 100–6 trainscg--tansig 81
MLP six 100–1 trainscg-logsig 80
LVQ 100–6 52.33
LVQ six single–output no result

Tibicen songs MLP 10–3 trainscg--tansig 69
LVQ 100–3 71.80
MLP three single–output no result

LVQ three single–output no result

4.7.1 Urban Audio Event Results

For the multiple–output MLP network (100–6 topology — see Figure 4.1(a)), it

was found that the conjugate gradient descent backpropagation training function

(trainscg) with a tansig hidden layer transfer function gave the most accurate

results with a mean M–value across five training and testing sessions of 0.707. When

tested with individual audio files that were previously unseen by the network, 81.2%

of frames of audio data were accurately classified.

The classifier structure shown in Figure 4.1(b) was also tested using MLP net-

works. A set of six single–output MLP networks were trained to identify only one

category of audio data each. For this topology (100–1) it was found that the con-

jugate gradient backpropagation method was again the better training function but

was paired with a logsig output layer transfer function. Across five training and

testing sessions, a mean M–value of 0.681 was achieved. The tests using novel au-

dio data carried out with the multiple–output MLP network was performed using

the single output networks. In this test the six 100–1 networks achieved an overall

accuracy of 79.7% which is not very different to that of the 100–6 MLP network.

Test results using LVQ networks were not as promising as those using MLP
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networks. The multiple–output LVQ network only achieved an overall M–value of

0.349 across five training and testing sessions, much lower than the results achieved

with the MLP networks. The highest performing 100–6 LVQ network was only able

to accurately classify 52% of audio frames from novel data. The poor results for the

overall accuracy were due to the LVQ network being unable to correcly classify any

frames of data from the building works and rail transport categories.

Results for tests using six single–output LVQ networks were not retrieved due to

very poor preliminary testing results. All of the single–output LVQ networks used

during preliminary testing had M–values very close to zero indicating that they were

unable to correctly classify any of the input data.

4.7.2 Bioacoustic Results

The results achieved with both the MLP and LVQ multiple–output network struc-

tures (as shown in Figure 4.1(a)) are very promising for classifying Tibicen cicada

songs. The MLP network achieved an overall accuracy of 69.02% and the LVQ net-

work achieved an accuracy of 71.80%. Compared to earlier works of Ohya (2004)

and Chesmore (2004), the combination of the 262 codebook with either an MLP or

LVQ network offers an improvement in the classification accuracies and ability to

work with low–quality recordings.

The MLP network topology with the highest performance had 10 hidden units,

used the tansig hidden layer transfer function and was trained using the conjugate

gradient descent backpropagation algorithm (trainscg). With this network topol-

ogy, 22 out of the 25 test files were correctly classified (using the highest percentage

of correct frames as the winning output), 14 of which had 100% of their frames

correctly classified.

An LVQ network having 100 hidden units and three outputs gave the highest

performance overall for the percentage of correctly classified TDSC frames. How-

ever, this network was only able to correctly classify 19 out of the 25 test files.

Nevertheless, this is still an improvement over the results reported by Chesmore

(2004).

It was observed with the urban audio event classification problem that the single–

output MLP networks had similar performance results to the equivalent multiple–

output MLP network. However, for the bioacoustic classification problem presented
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here, neither of the single–output network architectures were able to produce suffi-

cient results in the preliminary tests to warrant further testing being carried out.

It is to be noted that performing post–regression analyses of results was not a

reliable method of determining network accuracy with the Tibicen recordings. The

MATLAB® postreg function returned M–values of 0 for output 2 of the networks

(T. flammatus) for all of the test files. This is because none of the test files belonged

to that category so regression analyses could not be performed. The postreg func-

tion also returned 0 for output three (T. japonicus) for many of the test files because

only one test file belonged to that category.

4.8 Chapter Summary

In this chapter, results have been presented for the extensive testing of the 262 code-

book carried out to determine how well it performs as a feature extractor. Results for

both urban audio events and bioacoustic signals were presented. The results for both

of these classification problems were promising. These are summarised throughout

the chapter and presented in full in Appendix E, showing that the simple S–matrix

output of TDSC is suitable to the task in hand.

The results also showed which classification system structures and classifier

topologies are best–suited to each classification problem. Multiple–output MLP

networks were the classifiers of choice in the majority of cases.

The importance of preliminary testing was demonstrated throughout the work

presented in this chapter. When using an MLP network, the difference that topology,

training function and even transfer function can make to the final results was evident.

Little guidance on network design was found in the literature, and using systematic

trial-and-error methods for the preliminary tests allowed the most suitable network

architectures to be found.

The next chapter provides a discussion of a completely novel addition to the

TDSC arsenal of techniques. Termed “Multiscale–TDSC”, the method of sorting

and presenting data to the input of networks is inspired by Wavelets and allows a

further reduction to the size of the feature set.
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Chapter 5

Further Development of TDSC

Features

The results presented in Chapter 4 showed that Time-Domain Signal Coding can

be applied quite successfully to the classification of urban audio events. The 262

codebook has been shown to be generic enough to allow a wide range of audio signals

to be identified. The codebook has also been shown to be capable of discriminating

between bioacoustic signals to determine the species of an animal, this being one of

the original applications of TDSC.

This chapter discusses development work which attempted to improve the ac-

curacy of the classification system using TDSC as its feature extractor. The work

was centred on reducing the size of the output from the TDSC algorithm to fur-

ther simplify the data input to a classifier. The codebook developments discussed

in Chapter 3 focused on finding redundant sectors of the codebook to reduce the

amount of data presented to a classifier. The developments discussed in this chapter

were inspired by wavelet analysis.

The chapter begins by explaining the codebook developments. The latter part of

the chapter presents and discusses the data gathered from carrying out experimental

work with the new TDSC features.
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5.1 Modifying the Output of TDSC

In Chapter 3 the procedure carried out for codebook modification and reduction was

discussed. This process involved a large amount of manual analysis of the codebook

to identify any redundancies in the features being generated. Early analyses revealed

that most of the D–S pairs (∼90%) for the types of signal being examined did not

have a duration larger than 150 samples or a shape larger than 15. Further manual

analyses revealed large areas of zero data caused by impossible combinations of

duration and shape. The removal of the gaps and the limits placed on the durations

and shapes resulted in the 262 codebook being developed.

The output of TDSC analysis using the 262 codebook is an S–matrix for each

frame of data. The S–matrix is one of the original representations of D–S pairs as

discussed in the work of King and Gosling (1978). The length of each frame of TDSC

data is predetermined by the user. The framelengths used in earlier applications

of TDSC, such as Chesmore (2001), were chosen dependent on the signal under

analysis. The signals studied in these earlier works were very similar in nature and

the use of equal framelengths for each signal was not unreasonable.

All of the results presented in Chapter 4 used a fixed framelength of 0.2 seconds

during TDSC analysis; an S–matrix based on the 262 codebook was generated for

each 0.2 seconds of signal. Whilst this framelength allowed satisfactory classification

accuracies for both urban audio signals and bioacoustic signals, the question arose as

to whether different framelengths for different signals could improve the achievable

accuracies.

A significant hurdle in using a variable framelength for the application of urban

signal identification is that the ideal framelength for each signal is unknown because

of the stark differences in the signals. It would be unreasonable to expect the system

to analyse each signal to find the ideal framelength prior to extracting features for

classifying.

The solution to this problem was to set the framelength to a fixed number of

epochs rather than a fixed amount of time in seconds. The duration of each epoch

will be dependent on the prominent frequency features at any given point in a signal.

Therefore, the framelength used during analysis will also vary with the signal.

In deciding how many epochs should be used per frame, consideration was also

given to how the extracted data would be best represented and delivered to a classi-
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fier. Inspiration was sought from outside the realms of TDSC resulting in wavelet-

inspired data representation.

5.1.1 Wavelet–Inspired Data Representation

The wavelet transform was introduced in Chapter 2 as a mathematical microscope

which can give an approximate image of a signal, but also zoom in on the smaller

details (Hubbard, 1998). Through the work of Bunting (2011), a member of the

ISRIE project team working at York, exposure was gained of how wavelets decom-

pose the time–frequency plane. Figure 5.1 shows the dyadic representation of the

time–frequency plane which results from wavelet decomposition.

Figure 5.1: Dyadic representation of an idealized time–frequency plane. Adapted
from Hubbard (1998).

The dyadic representation reveals one of the key features of wavelets: low-

frequencies are examined with windows which are precise in frequency but vague

about time, and high-frequencies are examined using windows which are vague about

frequency but more precise about time. It was decided to mimic this behaviour of

wavelets using TDSC data. For each TDSC frame, epochs become grouped together

according to their duration.

There is a similarity between wavelets and TDSC in that both analyse signals in

a frame–wise manner. The nature of the dyadic wavelet decomposition of a signal

shown in Figure 5.1 is such that a frame must have 2n elements (usually the elements

are samples of audio). It was discussed above that no such restriction had yet been

applied in TDSC and the framelength had been selected by the user and given in

seconds. It was decided to apply the 2n elements per frame restriction to TDSC

analysis, using epochs as the elements, resulting in Multiscale TDSC.
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5.2 Multiscale Time–Domain Signal Coding

5.2.1 Dyadic Representation of TDSC Features

Figure 5.2 shows the dyadic representation of one frame of Multiscale TDSC (MTDSC)

features. Time is represented on the X–axis and the frame shown comprises 2n

epochs. The Y–axis represents a set of duration levels (discussed further below)

with duration reducing as the Y–axis increases. A single frame of MTDSC features

was originally termed an epochlet when MTDSC analysis was first published (Stam-

mers, 2009). However, a more descriptive term is now used for a frame of MTDSC

features - an MTDSC packet.

Figure 5.2: A single frame of dyadic Multiscale TDSC features. Each frame com-
prises 2n epochs.

Each window of the MTDSC packet (the individual boxes in Figure 5.2) contains

shape data for at least one epoch. The level of each window on the Y–axis shows

which duration level the window contributes towards. The smallest of the boxes

represent the shortest duration epochs and will contain data for the fewest number of

epochs (2n-6). The largest of the boxes represent epochs with the longest durations

and will contain data for 2n epochs. Therefore, precision in time decreases with

duration. This is similar to the wavelet representation of a signal where the precision

in time increases as frequency increases.

5.2.2 Constructing an MTDSC Packet

Figure 5.3 show a flow diagram describing the process of constructing an MTDSC

packet. The first two stages of the process, finding the epochs and calculating D
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and S, are identical to the methods used in standard TDSC analysis. However, the

order in which the signal is divided into frames and analysed differs in MTDSC, as

does the way in which data is represented. Stages 3 to 6 of Figure 5.3 are discussed

in further detail below.

Figure 5.3: Flow diagram to show the stages of constructing an MTDSC packet.

Stage 3: Arrange the epochs into frames

In standard TDSC the input audio signal is divided into frames, each having a length

given in seconds. The MTDSC process differs in that the segmenting of the signal

occurs after the epochs have been found and the length of each frame is 2n epochs.

A problem with this process of segmenting the signal is that many signals will

not have a number of epochs that is exactly divisible by 2n. In solving this issue,

the following approaches were considered:
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1. remove any epochs at the end of the signal that go beyond X × 2n, where X

is a whole number and represents the number of frames in the signal;

2. increase the number of epochs at the end of the signal until the total number

of epochs is a multiple of 2n and set the additional epochs equal to zero; or

3. increase the number of epochs at the end of the signal until the total number of

epochs is a multiple of 2n and set the additional epochs equal to other epochs

from the same signal.

Approach 1 was discounted because there is the possibility of losing a large

proportion of the signal being analysed. For example, if the number of epochs per

frame was set to 512 and a signal had 1023 epochs, using approach 1 would dispose

of 511 epochs – nearly half of the signal.

Approach 2 was also discounted as a viable option because there is the possibility

that a large proportion of the signal represented by MTDSC packets will consist of

zero values. For example, if the number of epochs per frame was again set to 512

and a signal had 513 epochs, the signal would be increased to 1024 epochs using

zero values. This would result in nearly half of the signal being equal to zero and

would not provide a fair representation of the actual signal.

Therefore, it was decided to use approach 3. The epochs used to enlarge the

signal are taken from the very beginning of the signal. The epochs are essentially

wrapped around back to the beginning of the signal. Figure 5.4 illustrates this

process.

Figure 5.4: How MTDSC handles signals that do not contain m(2n) epochs. In this
example m = 2 and n = 3, meaning the signal is required to have 16
epochs. As the signal only contains 11 epochs, epochs from the beginning
of the signal are used as filler epochs at the end of the signal.

Stage 4: Find the Dlevel to which each epoch will contribute

The next stage in the process of constructing an MTDSC packet requires the Dlevel of

each epoch to be found. Dlevels are illustrated in Figure 5.2. As the Dlevel increases,
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the number of epochs represented by each window reduces. The Dlevel which an

epoch contributes towards is determined using Equation 5.1:

Dgroup = blog2(D)c (5.1)

where b c denotes an arithmetic floor operation (the mapping of a real number to

the largest previous whole number). Using a base–2 logarithm allowed for seven

duration levels to be defined – recall that Dmax = 150, giving blog2(150)c = 7.

Table 5.1 presents the levels and their associated duration ranges.

Table 5.1: Duration levels and associated duration ranges using base–2 logarithms.

Dlevel Duration range
(samples)

Number of epochs
per window

Number of windows
per packet

1 2 – 3 2n−6 64
2 4 – 7 2n−5 32
3 8 – 15 2n−4 16
4 16 – 31 2n−3 8
5 32 – 63 2n−2 4
6 64 – 127 2n−1 2
7 128 –255 2n 1

Table 5.1 also shows the number of epochs which contribute to each window on

a given Dlevel. The smallest windows are associated with Dlevel 1 where the shortest

duration epochs will contribute to the data. The lowest number of epochs that can

be present in a window on Dlevel 1 is one (20). Therefore, the lowest number of

epochs that can be used to construct a whole MTDSC packet is 64 (26). The final

column of Table 5.1 shows how many windows will be present in an MTDSC packet

on each Dlevel.

Stage 5: Store S in the appropriate Dlevel

After the Dlevel has been found for a given D–S pair, using Equation 5.1, the shape

data for that pair can be stored in the appropriate location of the MTDSC packet.

This location will be on the calculated Dlevel in the window which encapsulates the

position of the epoch under consideration.
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Stage 6: For each window, calculate S̄

When the data for all of the epochs in a given MTDSC packet has been collated into

the packet, the final stage of processing is to find the mean of S for each window,

S̄window, given by Equation 5.2:

S̄window =

p∑
S

p
(5.2)

where p is the number of epochs in the window.

5.3 Implementing MTDSC in MATLAB®

In Chapter 3, standard TDSC was explained and an overview of the functions written

in MATLAB® to perform TDSC was given. Some aspects of the analysis were

the same for MTDSC, as mentioned above. However, a different set of functions

were required to perform the overall MTDSC analysis outlined in Figure 5.3. The

functions invoked to construct MTDSC packets for a given signal are shown in

Figure 5.5. Full listings for the functions are given in Appendix C. The function

mPacketStackReturn.m takes the path of a WAV file as its input and returns an

MTDSC packet (shortened to MPacket in the code listings) which has been stacked

to be presented to a network for classifying.
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Figure 5.5: Function dependencies for MTDSC analysis.

5.3.1 Stacking MTDSC Packets

The input to the classifiers that were used throughout the presented research (MLP

and LVQ networks) require an N-by-1 input. Each frame of MTDSC data (an

MTDSC packet) is a 7-by-64 matrix and is incorrectly sized for input to the networks

being considered. It was therefore necessary to stack the MTDSC data for each frame

to give a 127-by-1 matrix. The process of stacking is shown in Figure 5.6.

Figure 5.6: The process of stacking an MTDSC packet. The diagram shows a much
simplified MTDSC packet with only 3 Dlevels to illustrate how stacking
is performed.
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5.3.2 MTDSC Examples

To illustrate the capabilities of MTDSC in terms of representing input data, exper-

imental work was carried out using swept–frequency cosine signals. The data was

generated using the MATLAB® function chirp.m and written to a WAV file ready

for input to mPacketStackReturn.m.

The first cosine generated was a linear sweep from 100Hz to 20kHz. Figure 5.7(a)

shows a spectrogram of the signal. Figure 5.7(b) shows the MTDSC packets for each

frame of the data. A framelength of 256 epochs was used.

A second cosine was generated to produce a logarithmic sweep from 100Hz to

20kHz. The logarithmic chirp oscillates between the upper and lower frequencies

towards the end of the chirp. This can be seen quite clearly in the spectrogram of

the sweep in Figure 5.8(a). Figure 5.8(b) shows the MTDSC packets for each frame

of the logarithmic chirp. Again, a framelength of 256 epochs was used.

The plots of MTDSC data presented in Figures 5.7 and 5.8 show some of the

features discussed above as well as others:

� On the right–most side of the MTDSC plots for both sweeps the repetition of

the start epochs can be seen.

� As the frequency of the sweep increases, data is only present in the MTDSC

plots at the numerically lower Dlevels.

� The MTDSC packets can track rapid changes in a signal quite accurately. The

fluctuations in the logarithmic sweep are also clearly present in the MTDSC

plot.

After seeing the above results, it was decided to test the performance of classi-

fication systems using MTDSC features. The process and results of the tests are

discussed below.
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(a) Spectrogram of a linear cosine sweep from 100Hz to 20kHz.

(b) Plot of the MTDSC packets for the linear sweep.

Figure 5.7: MTDSC analysis of a linear swept–frequency cosine. The shade of the
data points corresponds to the value of S̄ for each window of the MTDSC
packets.
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(a) Spectrogram of a logarithmic cosine sweep from 100Hz to 20kHz.

(b) Plot of the MTDSC packets for the logarithmic sweep.

Figure 5.8: MTDSC analysis of a linear swept–frequency cosine. The shade of the
data points corresponds to the value of S̄ for each window of the MTDSC
packets.
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5.4 Urban Audio Event Classification with MTDSC

In Chapter 4 results were presented of experimental work using the 262 codebook

to generate the TDSC S–matrices. The series of experiments trialled two different

classifier structures using two different classifiers (MLP and LVQ networks).

Presented in this section are results from similar experimental work using MTDSC

as the feature extractor. For each classifier structure and type, preliminary tests were

carried out to determine the optimum classifier topology (i.e. the number of hidden

units and, in the case of an MLP network, the training and transfer functions).

Summaries of the preliminary results are included here and full sets of results are

presented in Appendix F.

The data used for the experimental work is the same data used to generate the

results discussed in Chapter 4. Details of the audio data can be found in Appendix A.

For the preliminary tests, a reduced data set was used, comprising only the audio

from the air conditioning/ventilation, bird and road categories.

Each network was trained and tested with MTDSC features extracted from

the audio data set (either the reduced set or full set). The MATLAB® function

postreg.m was used to compare the actual simulation results of the trained net-

works with the target results (where possible1). The M–value output of the postreg

function provides a value indicating how close the simulation results are to the target

results.

The two classifier structures that were tested are multiple–output single networks

and groups of single–output networks. The design of these two structures can be

seen in Figure 5.9 (this is a copy of Figure 4.1 presented again for ease of reference).

5.4.1 Number of Epochs per MTDSC Packet

Prior to commencing any testing with MTDSC features, it was necessary to deter-

mine the ideal number of epochs used to create each MTDSC packet for any given

signal. Tests were carried out using five different numbers of epochs: 64 (the lowest

number possible), 128, 256, 512 and 1024.

1It was found during the experimental work presented in Chapter 4 that the output of the
postreg function was not always a reliable indicator of network accuracy. This was discussed
further in Section 4.7.
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(a) Using a single multiple–output classifier.

(b) Using multiple single–output expert classifiers.

Figure 5.9: The two classifier structures used during experimental work.

A 100–3 MLP network was used as the classifier for the tests. The network train-

ing function used was trainscg and the hidden–layer transfer function was tansig.

Furthermore, the number of hidden units was 100. This particular combination

was chosen because it was the highest performing multiple–output MLP network

from the 262 codebook experiments. The data used for training and testing was the

reduced set of audio files. Table 5.2 presents the results of the test.

Table 5.2: Test results to determine the optimum number of epochs per MTDSC
packet. The results shown in a bold typeface indicate the highest perfor-
mance.

Epochs per
M–packet

Time to train
(s)

Training epochs
completed

M–value mean

64 351.50 556 0.684
128 146.54 445 0.751
256 28.06 119 0.765
512 10.13 99 0.819
1024 4.80 71 0.798

The results in Table 5.2 show that using 512 epochs per MTDSC packet produced

the highest M–value mean. Therefore, all of the experimental work discussed below

used 512 epochs for each MTDSC packet.

116



Further Development of TDSC Features

5.4.2 Experiment 1: Multiple–output MLP Network

Using the classifier structure shown in Figure 5.9(a) preliminary tests were carried

out using the reduced data set to find the optimal multiple–output MLP network

topology. A summary of these results is presented in Table 5.3, with full results

available in Appendix F.1.

Table 5.3: Summary of results for preliminary testing with multiple–output MLP
networks and MTDSC data. The entries with a bold typeface indicate
the networks with the highest mean M–value.

Topology Training
function

Hidden–layer
transfer function

Time to train (s) M–value
mean

10-3 traingdx tansig 4.55 0.854
logsig 6.81 0.851

trainrp tansig 2.53 0.831
logsig 1.64 0.815

trainscg tansig 1.60 0.797
logsig 3.40 0.859

50-3 traingdx tansig 8.80 0.811
logsig 16.01 0.825

trainrp tansig 2.28 0.786
logsig 2.32 0.819

trainscg tansig 3.01 0.837
logsig 6.64 0.846

100-3 traingdx tansig 20.50 0.799
logsig 38.36 0.800

trainrp tansig 3.47 0.839
logsig 3.70 0.782

trainscg tansig 8.96 0.500
logsig 23.04 0.846

300-3 traingdx tansig 104.42 0.803
logsig 315.07 0.798

trainrp tansig 19.87 0.802
logsig 11.01 0.830

trainscg tansig 30.65 0.827
logsig 42.78 0.839
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The results in Table 5.3 show that a network having 10 hidden units trained with

the trainscg algorithm produces the highest M–value mean (0.859). To ensure that

there was consistency across each network topology, a mean of the mean M–values

was calculated for each topology2. This calculation showed that the MLP network

having 10 hidden units consistently outperformed the other network topologies.

Based on the results from the preliminary tests, training and testing with the

full set of audio data was performed using an MLP network having 10 hidden units.

As with the experiments presented in Chapter 4, given the very short time required

to train the MLP networks, all six combinations of training function and hidden

layer transfer function were tested.

Training and testing was carried out five times in total with new network initial-

isations for each session. Repeating the training and testing allows a mean accuracy

to be calculated. The networks are re-initialised for each session to give different

initial weight vectors (these are randomly assigned when a network is initialised).

Repeated training and testing sessions is recommended by Demuth et al. (2008).

Mean results across all five session are presented in Table 5.4. The results show

that the networks trained with the conjugate gradient descent function trainscg

with a logsig hidden–layer transfer function had the highest overall M–value mean.

The result shown in Table 5.4 for this network has two values shown. The value

in parentheses (0.557) includes the M–value mean from the first training session,

whereas the value shown in bold typeface (0.683) does not.

The M–value mean for the trainscg--logsig network in the first training ses-

sion was 0.053, significantly lower than the M–value means for all of the other

training sessions. The result for the first training session was therefore treated as

anomalous and not used to calculate the final M–value mean. Full results for all five

training and testing sessions can be found in Appendix F.2.

2This step was performed after all preliminary tests to determine which network topology gave
a consistently high M–value mean. For example, a traingdx-logsig 50–3 network might have an
M–value mean of 0.9 but the rest of the 50–3 network may have M–value means of 0.7. This would
indicate that the 50–3 topology does not consistently perform well.
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Table 5.4: Summary of performance results for 10–6 MLP networks classifying
MTDSC features of urban audio data. The training times and M–value
means are the averages for five training and testing sessions.

Training
function

Hidden–layer
transfer function

Training time
(seconds)

M–value mean

traingdx tansig 34.55 0.651
logsig 42.35 0.666

trainrp tansig 8.05 0.589
logsig 6.96 0.618

trainscg tansig 17.19 0.666
logsig 20.16 0.683 (0.557)

To further validate the results, the 10–6 trainscg--logsig network trained

during session five was used to classify MTDSC data for individual audio files (the

network from session five had the highest M–value mean of all the trained networks).

The data used for this testing comprised longer audio files than those used for

training and testing. The individual audio files did not contain any of the same

data that had been used to train the networks. Table 5.5 presents the results of the

tests.

Table 5.5: Individual WAV file classification results for the multiple–output 10–6
MLP network classifying MTDSC features. The fourth column shows
how many frames of the audio data were correctly classified as a percent-
age.

Sound
Category

File Desired output % correct
desired output

Air transport AirTrans002 1 67
Air conditioning AirCon001 2 95
Bird Soundrec036 Bird 3 63
Building works digger drill 4 69
Rail transport train idle 5 73
Road transport Soundrec024 Road 6 55

Mean 70

The results presented in Table 5.5 show that the combination of MTDSC features

and an MLP classifier correctly classifies 70% of all data presented to it. Overall,

the results for each category are satisfactory with most achieving over 60%. The

only category falling below this threshold is road transport.
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5.4.3 Experiment 2: Multiple Single-output MLP Networks

The results presented in this section relate to using a classifier structure such as that

shown in Figure 5.9(b). For this structure, each network is trained as an expert in

determining if the presented data belongs to its category or not. The results of all

of the single–output networks are compared to determine the winning category.

The results from the preliminary tests are presented in Appendix F.3. The tests

showed that the highest performing single–output network across all three prelim-

inary test categories had 10 hidden units. Furthermore, the networks having 10

hidden units performed over all training and transfer functions. Therefore, training

and testing of the full audio data set was performed using six single–output MLP

networks each having 50 hidden units.

Five training and testing sessions were performed with new network initialisa-

tions for each session. All training functions were tested across all sessions because

of the very short time required to train the single–output networks. Full results of

the sessions can be found in Appendix F.4. A summary of the results is presented

in Table 5.6.

Table 5.6: Summary of results for six 50–1 MLP networks classifying MTDSC fea-
tures for urban audio data. The M–values given are the mean values
across five training and testing sessions.

Category Time to train (s) M–value

Air transport 0.95 0.883
Air conditioning 4.25 0.709
Bird 6.39 0.816
Building works 5.05 0.478
Rail transport 6.97 0.317
Road transport 8.57 0.594

The results show that both the building works and rail transport categories

caused problems for the networks in terms of accuracy. The air transport, air con-

ditioning and bird categories all had consistently high M–values.

Further validation of the trained networks was carried out using the individual

WAV files seen in Section 5.4.2. The function singleOpNetTest.m (see Appendix C)

was used to analyse the outputs of all six networks and determine the winning

category.
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The results show that overall 65% of the MTDSC frames extracted from the

individual WAV files were correctly classified. The network trained to classify audio

from the building works category had the poorest accuracy with only 44% of MTDSC

frames being correctly classified. This correlates with the M–value mean achieved

by the network which was also very low. Conversely, the rail transport network

managed to correctly classify 73% of the MTDSC frames whilst having the lowest

M–value mean. This could have resulted from the network developing a bias to one

particular type of sound from the rail transport category (in this case a train idling

at a station).

Table 5.7: Individual WAV file classification results for the six 50–1 MLP networks
classifying MTDSC features. The fourth column shows how many frames
of the audio data were correctly classified as a percentage.

Sound
Category

File Desired output % correct
desired output

Air transport AirTrans002 1 67
Air conditioning AirCon001 2 90
Bird Soundrec036 Bird 3 56
Building works digger drill 4 44
Rail transport train idle 5 73
Road transport Soundrec024 Road 6 59

Mean 65

5.4.4 LVQ Network Experiments

Preliminary testing was carried out in the same way as discussed above using LVQ

networks as the classifiers instead of MLP networks. The results for both the

multiple–output network and the single–output networks are discussed together be-

cause the results were, overall, quite poor.

A summary of the preliminary test results is given in Table 5.8 for the multiple–

output classifier structure. The networks were trained and tested using the reduced

data set.
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Table 5.8: Preliminary results summary for multiple–output LVQ networks classi-
fying MTDSC data.

Topology Time to train (s) M–value mean

10–3 76.02 0.393
50–3 124.60 0.469
100–3 161.04 0.475
300–3 365.65 0.404

Recalling that an M–value of 1 indicates a perfect match between the simulated

data and the target data, the M–value means for all of the network topologies are

much lower than desired. Nevertheless, training and testing using the full data set

was performed. The 100–3 network had the highest M–value mean during prelim-

inary testing. Therefore, the networks used for classifying during full testing had

100 hidden units. The results of testing using the full data set are presented in

Table 5.9.

Table 5.9: Summary of results for five training and testing sessions using a 100–6
LVQ network to classify MTDSC data.

Session Time to train (s) M–value mean

1 151.21 0.275
2 170.30 0.338
3 150.29 0.324
4 160.22 0.287
5 148.02 0.290

Mean 0.303

It was expected to see accuracies as low as those presented in Table 5.9 given the

low M–value means from the preliminary testing. Outputs 1, 2 and 5 (categories air

transport, air conditioning and rail transport respectively) had an M–value mean of

zero for all five training and testing sessions.

Individual WAV files were then used to test the combined system using the

network from the session with the highest M–value mean (session 2). The mean of

the correctly classified frames of MTDSC data for all six of the individual WAV files

(listed in Table 5.7) was 37%. This result confirmed the poor performance of the

multiple–output LVQ network.

Preliminary testing using single–output LVQ networks classifying MTDSC data

produced similar results to those achieved using the 262 codebook. All networks
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had an M–value mean of the order 1 × 10−15. No further testing was carried out

using single–output LVQ networks based on the performance during the preliminary

tests.

5.4.5 MTDSC Urban Audio Event Classification – Results

Summary

Experimental results using MTDSC features for urban audio events have been pre-

sented in this section. Preliminary testing provided an indication of the network

topologies and training/transfer functions that would give the best performance

with the full data set of audio files.

Using a multiple–output MLP network with 50 hidden units, a log–sigmoid trans-

fer function and the conjugate gradient descent training algorithm gave the highest

accuracy: 70% of correctly classified frames of MTDSC data. Switching to single–

output MLP networks (one network per sound category) resulted in a lower overall

accuracy of 65%. These are promising results for the classification of features ex-

tracted using a completely novel method.

The LVQ networks were less successful in their results. The multiple–output

LVQ network (100–6) only managed to correctly classify 37% of the MTDSC frames

presented to it. The single–output LVQ networks failed to produce adequate results

during preliminary testing to warrant further experimentation.

5.5 Bioacoustic Signal Classification with MTDSC

Data

Multiscale TDSC is a novel method of extracting and presenting the time–domain

features of a signal, allowing satisfactory classification results with urban audio data.

Experimental work continued with MTDSC in applying it to bioacoustic signals to

determine if similar success could be had. This section discusses the work carried

out. The objective of the bioacoustic testing was to be able to differentiate between

the Tibicen cicada songs discussed in Chapter 4.

Prior to fully training and testing MLP and LVQ networks to classify the cicada

songs, tests were performed to determine the number of epochs per MTDSC packet
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that would produce the best results. Four network topologies were tested with both

MLP and LVQ classifiers (10, 50, 100 and 300 hidden units with three outputs) as

well as five different numbers of epoch per MTDSC packet.

During this very early stage of testing, it became apparent that the classification

results using MTDSC features would be very poor. The highest result achieved

during the epoch number tests was 7% of MTDSC frames correctly classified (us-

ing 1024 epochs per MTDSC frame and a 10–3 trainscg-tansig MLP network).

Results using single–output and LVQ networks were even lower (∼3.5%). However,

both MLP networks (single– and multiple–output) and the multiple–output LVQ

network were capable of achieving 100% accuracy for each of the cicada training

files.

To investigate why the classification accuracies were so poor, MTDSC packets

were visualised for some of the cicada recordings. Figure 5.10 shows the visualised

MTDSC packet data for the training files. Figure 5.11 shows visualised plots for

four of the test files including one of the very low–quality recordings.

The plots of the training files in Figure 5.10 show clear differences between the

signals from the three species of Tibicen cicada. The D–S data extracted from T.

bihamatus is concentrated in the windows of Dlevel = 1. For T. flammatus Dlevel = 2

has the highest concentration of data, and for T. japonicus there is an even spread

across Dlevel = 1 and Dlevel = 2. Visually the differences are obvious between the

training files. It is therefore unsurprising that the classifiers were able to differentiate

between the training files with 100% accuracy.

Conversely, three of the test file plots in Figure 5.11 do not display any obvious

allegiance to one particular category. Test files 1, 2 and LQ1 (Figures 5.11(a), 5.11(b)

and 5.11(d) respectively) all had classification accuracies of 0%. An accuracy of 25%

was achieved with test file 10 which shows a concentration of data on Dlevel = 1 in

Figure 5.11(c). The plot for test file LQ1 shows why this file was labelled as low–

quality. The plot shows significant levels of data on almost all Dlevels.

All of the test file plots show data present in the longer duration windows (higher

Dlevels). This suggests that the test files had low frequency artifacts in them. These

artifacts had a significant impact on the MTDSC representation of the signals and

consequently on the classification accuracies achieved.
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(a) T. bihamatus training file. (b) T. flammatus training file.

(c) T. japonicus training file.

Figure 5.10: Plots of the MTDSC packets for the Tibicen cicada training files.
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(a) Test file 1 – T. japonicus (b) Test file 2 – T. bihamatus

(c) Test file 10 – T. bihamatus (d) Test file LQ1 – T. bihamatus

Figure 5.11: Plots of the MTDSC packets for four of the Tibicen cicada test files.
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5.6 Discussion of Results

Results have been presented in this chapter for classification experiments using

MTDSC features extracted from both urban audio signals and bioacoustic signals.

Table 5.10 presents the salient results of the chapter. Also presented in Table 5.10

is a summary of the results achieved using the 262 codebook to allow comparisons

to be made.

Table 5.10: Summary of experimental results using MTDSC features. Also shown
are the results using the 262 codebook for the same classification prob-
lems.

MTDSC features

Classification
problem

Network architecture Frames correctly
classified (%)

Urban audio events MLP 50–6 trainscg-logsig 70
MLP six 50–1 trainscg-tansig 65
LVQ 100–6 37
LVQ six single–output no result

Tibicen songs All no result

262 codebook features

Classification
problem

Network architecture Frames correctly
classified (%)

Urban audio events MLP 100–6 trainscg-tansig 81
MLP six 100–1 trainscg-logsig 80
LVQ 100–6 52
LVQ six single–output no result

Tibicen songs MLP 10–3 trainscg-tansig 69
LVQ 100–3 72
MLP three single–output no result

LVQ three single–output no result

For classification of MTDSC features of urban audio signals, the highest accuracy

was achieved with a multiple–output MLP network having 50 hidden units, trained

using the conjugate gradient descent training function (trainscg) and with a log–

sigmoid hidden layer transfer function. This structure of classifier achieved an M–

value mean across four of five training and testing sessions of 0.683 (results from

one of the sessions were discounted as anomalous). In classifying previously–unseen

data from individual WAV files, the network correctly classified 70% of all MTDSC

frames extracted from the data.

127



Further Development of TDSC Features

Using a set of six single–output MLP networks (50–1 topology, trainscg training

function, tansig hidden layer transfer function) achieved an M–value mean of 0.633

across all networks and training sessions. This translated to 65% of all MTDSC

frames being correctly classified for the previously–unseen individual WAV files.

Classification with LVQ networks was poor. Using a multiple–output LVQ net-

work (100–6 topology) achieved a mean M–value of 0.303 across five training and

testing sessions. Only 37% of MTDSC frames were correctly classified for the in-

dividual WAV files. Once again, no results were gathered for single–output LVQ

networks due to very poor preliminary results.

For the classification of bioacoustic signals, no significant results were achieved

using MTDSC features. The cause of this became apparent when the MTDSC

features were visualised in Figures 5.10 and 5.11.

In comparison to the results achieved using the 262 codebook features, the

MTDSC results are lower for the urban audio signals and non–existent for the Tibi-

cen songs. The results achieved with the 262 codebook were very promising but it

was thought they could be improved on with a new approach to generating time–

domain data. The results from this chapter have shown that MTDSC features were

satisfactory for urban audio signals but not as good as the 262 codebook features.

It is worth noting that the time taken to extract features from a signal using

MTDSC is significantly lower than the time taken to extract 262 codebook features.

For example, to analyse all 62 of the urban audio training data (each three seconds

long) using the 262 codebook takes ∼210 seconds. This reduces to only ∼20 seconds

using MTDSC. Furthermore, network training times using MTDSC features are also

lower. This benefit of MTDSC could be of relevance to a classification system that

needs to be able to learn on–the–fly and cannot spend large amounts of time doing

so.

Chapter Summary

In this chapter a new method of representing time–domain features was introduced.

Multiscale TDSC is a completely novel feature extraction technique inspired by the

dyadic nature of wavelet decomposition of signals. MTDSC allows frames of data

to have a length that is dependent on the content of the signal rather than on a

framelength pre–selected by the user. Hence it is multiscale.
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Summaries of results were presented for the classification of urban audio data

using MTDSC features for both of the classification structures shown in Figure 5.9.

The highest accuracies were achieved using MLP networks and in particular the

multiple–output MLP networks. Performance from LVQ networks was poor with

the single–output LVQ networks failing to provide any significant results.

Classification of bioacoustic signals was attempted using recordings of Tibicen

cicada songs. Classification accuracies using MTDSC features were disappointingly

low (∼7%) but analysing plots of the MTDSC data revealed why the networks

struggled to classify the data.

Comparisons of the MTDSC results and the 262 codebook results were given

showing that the 262 codebook features allow for better classification accuracies.

However, the feature extraction and training times using MTDSC are significantly

lower.

The next chapter draws together the research of this thesis in the discussion and

presents some of the possibilities for taking the research further.
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Chapter 6

Discussion and Further Work

In this chapter the work that has been carried out is considered and reviewed.

Results from the experimental work are discussed and compared with prior work.

Suggestions are made for further work that could be conducted following on from

the results presented here.

6.1 Signal Classification in Urban Soundscapes

Chapter 2 gave a comprehensive review of the literature related to the field of urban

soundscape analysis as well as signal classification. The literature revealed that

studying the audio content of the urban sonic environment is not a recent trend but

dates back to the 1970s with the work of R. Murray Schafer (1977; 1978). Recent

studies of urban soundscapes have focused more on the comfort of the users of the

environment and studying the audio content from a psychology perspective (Ge and

Hokao, 2005; Yang and Kang, 2005; Cain et al., 2011). It was noted that many of the

more recent soundscape studies often used attended monitoring to further evaluate

an environment. The proposed ISRIE system would negate the need for laborious

analysis of recordings. The classification methods developed in this thesis could

provide users with indicators of the audio content of a soundscape, particularly if

combined in the proposed ISRIE system.

Prior applications of signal classification were discussed in detail. The focus of

the discussion was primarily on recognition of general audio, and some key pieces of

research were identified. Given the plethora of alternatives when it comes to feature

extractors and classifiers, the work of Cowling and Sitte (2003) was particularly
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beneficial. The authors provide an excellent overview of many different methods of

extracting salient features and how they can be classified. The application of their

work was in recognising general sounds for a security system and their methods

of training classifiers was very influential during the testing phase of the presented

research.

The work of Defréville et al. (2006) was also highly relevant because the au-

thors raise the critical issues of completeness and consistency that are faced when

developing a classification system for such a broad range of sounds. In particular,

the consistency issue was encountered in the present work when classifying MTDSC

features of audio from the rail transport category (see Section 5.4.3).

There was little existing work in the field of general audio classification or sound-

scape analysis that had considered the use of a time–domain zeros–based method

of feature extraction. One such technique, time–domain signal coding (TDSC), was

selected for further investigation for its prior successes in bioacoustic signal identifi-

cation (Chesmore, 2001; Farr, 2007). Furthermore, TDSC has very low computation

costs, an important factor for the presented research as a contributor to the ISRIE

project given the proposed stand–alone portable system. Ghiurcau et al. (2012) used

TESPAR (a predecessor to TDSC) for the detection of intruders in wild areas. Ghi-

urcau et al. chose to test a time–domain method for a stand–alone acoustic sensor

specifically because of the simplicity of the feature extraction and the consequently

low computational costs.

6.2 Time–Domain Signal Coding

The original applications of TDSC (and time–encoded speech, from which TDSC

was derived) only sought to extract features from band–limited signals and required

only 29 codes (each code representing a D–S pair). In the case of bioacoustic iden-

tification (see Chesmore, 2001; Farr, 2007) this was not an issue as the sounds were

limited in their bandwidth already. However, for TDSC to be applicable to more

general audio signals it had to be adapted to allow for a wider bandwidth of signal.

The initial version of a generic codebook with 1716 codes was very sparse. Low

preliminary classification accuracies, combined with network training taking too

long, resulted in in–depth analyses of the duration and shape properties of the test

data. The analyses revealed that the maximum duration and shape required for most
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signals was much lower than the 1716 codebook allowed for. The next iteration of

the generic codebook had 343 codes. Again, there were redundant codes and the

size was further reduced to give the 262 codebook. This reduction resulted in higher

classification accuracies during preliminary tests.

The 262 codebook was tested rigorously using different classifiers and different

types of audio. The results were very promising with overall accuracies as high

as 81% for urban audio signals. The codebook was also used to extract features

from bioacoustic signals (Tibicen cicada songs) resulting in network accuracies that

outperformed previous studies using the same signals (Chesmore, 2004; Ohya, 2004).

To further improve the features extracted using a time–domain method, other

ways of representing the data were investigated. Inspiration was gained from wavelets,

a technique seen throughout the literature and also used by a colleague. The

dyadic representation of wavelet data led to the development of Multiscale TDSC

(MTDSC), a completely novel zeros–based feature extraction technique.

The standard TDSC method requires the user to select a length in seconds for

each frame of TDSC data. Where the signals are similar, such as in bioacoustic

applications, a preselected frame length is not an issue. However, where there are

signals from various categories the preselected frame length may not be optimal.

MTDSC uses the number of epochs to determine frame length, and the length of

each epoch (in samples or seconds) will depend on the signal. Therefore, the frame

length can adapt to the signal being analysed.

Classification results using MTDSC features were satisfactory (70%). However,

the network accuracies achieved were not as high as the accuracies achieved using

the 262 codebook. A probable reason for this is the grouping of durations into only

seven Dlevels. This number of levels was arrived at using Log2 calculations with the

durations and provided a rapid method of reducing the total number of codes. An

improvement may be seen if the number of Dlevels is increased.

Using MTDSC features to classify the Tibicen cicada songs exposed a limitation

of the MTDSC method. The classifiers were able to distinguish between the training

files with 100% accuracy because each category dominated a particular Dlevel. How-

ever, all of the test files had significant artifacts appearing in other Dlevelss leading

to classification accuracies of ∼7% (see Figure 5.11, page 126).

The results achieved using both the 262 codebook features (highest = 81%)

and the MTDSC features (highest = 70%) are comparable with the results seen
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in the literature. Cowling and Sitte (2003) report accuracies of 70% using discrete

wavelet transform features with a dynamic time warping classifier. In classifying

acoustic environments, Dufournet et al. (1998) report an accuracy of 80%. The

results reported by Defréville et al. (2006) and Ma et al. (2006) are higher than

those of the presented research. However, the feature extraction and/or classification

methods used by Defréville et al. and Ma et al. are arguably more complex, and

hence more computationally expensive, than those used by the presented research.

It will not have gone unnoticed by the reader that a significant amount of this

thesis is dedicated to the development of the feature extractor. This is a reflection on

the causative potency that the quality of features can have on classification results.

The same network designs were used to classify the features extracted using the

262 codebook and MTDSC, but the results vary significantly between the two. In

particular, classification of bioacoustic signals was significantly improved using the

262 codebook features over the MTDSC features. The suggestions made later in this

chapter for further work focus on additional development of the MTDSC technique

and on experimenting with other classifiers.

6.3 Evaluation of Experimental Work

The focus of the presented research was to develop a classification system capable of

determining which category an audio signal belonged to. Much of the development

work was concentrated on the feature extraction methods, and it was important to

validate how sufficiently each method represented a signal. The experimental work

undertaken rigorously tested each of the feature extraction methods, combining

them with different classifiers and network designs to determine the optimal system

structure.

The methodology for testing each feature extractor and classifier (FEC) combi-

nation was to first establish the internal architecture of the classifier. It was found

that there existed a paucity of guidance in the literature on methods for designing

classifier networks. The focus tended to be on the internal workings and optimi-

sation of the networks rather than where to begin with each classifier. This had

not gone unnoticed by other authors, with Rafiq et al. (2001) commenting on the

necessity for trial–and–error.
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Therefore, preliminary testing was performed for each FEC combination. When

using an LVQ network the tests merely established the network topology (i.e. how

many hidden units were required). However, in the case of MLP networks, testing

was required to determine the ideal training and transfer functions as well as net-

work topology. The preliminary tests provided results allowing the full testing to

concentrate on a small number of FEC combinations.

The full tests themselves were devised to provide reliable sets of results, with the

training and testing of each network design being repeated five times. This allowed

mean results to be calculated and any anomalies to be discarded.

Overall, the results achieved were very satisfactory and, as already mentioned,

were comparable with the results presented in previous works by other authors.

Using the 262 codebook features produced the highest classification accuracies when

combined with a multiple–output MLP network (81%) for the urban audio signals.

Using the MTDSC features did not produce as high a result but still achieved an

accuracy of 70% when combined with a multiple–output MLP.

In general, the MLP networks outperformed the LVQ networks. There was a

tendency for the LVQ networks to anchor onto signals from particular categories,

achieving high accuracies for those categories (∼90–99%) but having very poor ac-

curacies for all others. Nevertheless, the results achieved with both the MLP and

LVQ networks are very satisfactory because the focus of the research leaned towards

the development of novel feature extraction methods rather than classfier develop-

ment. The classifiers used were tailored slightly to meet the needs of the present

application but more robust experimentation and customisation of classifiers could

lead to improvements in the results. This is considered further in Section 6.6.

As a system for classifying bioacoustic signals, the LVQ networks out–performed

the MLP networks. The combination of the 262 codebook and a multiple–output

LVQ network achieved an accuracy of 72% including some very low–quality record-

ings of the Tibicen songs. This result is an improvement over previous studies using

the same data (see Chesmore, 2004; Ohya, 2004).

MTDSC features were not very well suited to classifying the Tibicen songs.

Except for the training files where 100% accuracy was achieved, the highest overall

accuracy using MTDSC features was 7%. Visual examination of the MTDSC packets

revealed that artifacts in the test signals were very well represented where it would

have been better for them to be ignored. This is both a strength and a limitation

of MTDSC which is considered more fully in Section 6.5.
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The final area of the experimental work that warrants discussion is the urban

audio data used for training and testing. Features were extracted from 62 training

WAV files and the networks were tested with 20 WAV files to give the network

M–values. Further testing was performed with individual WAV files that were not

pre–formatted for training or testing.

The accuracies varied across each category and there are a number of reasons

for this. Firstly, there is the issue of consistency in the sounds for that category, as

highlighted in the literature by Defréville et al. (2006). Secondly, some categories

of audio had more training files than others, meaning the networks were exposed

to more variations in the possible signals. Both of these points are very closely

related and their relationship is discussed in more detail in Section 6.5. Here the

issues are considered individually against the classification accuracies achieved with

the individual WAV files. Table 6.1 provides a summary for the accuracies achieved

with all of the FEC combinations for each category.

To discuss the consistency issue, the variation in the training files must be con-

sidered. Details of the recordings are given in Appendix A. The file descriptions

show that there were considerable variations within each category thus exposing the

classification system to a range of sound files. However, whilst this could provide

the system with the ability to recognise more sounds, it also reduces the amount of

training data for each particular type of sound in each category. For example, the

Bird category contains 14 training files providing a mixture of songbirds and wa-

terfowl in varying mixtures and different distances. A network exposed to features

extracted from this data set would have a wide and varied experience of possible

bird sounds but would have no in–depth experience of a chorus.

With regard to the number of training files for each category and the effect of

this on accuracies, Table 6.1 includes a column to show how many training files

were used for each category. There does not appear to be any direct correlation

between the mean number of frames correctly classified for each category and the

number of files used for training. Both the bird and road transport categories had

14 training files available but their mean accuracies are 60% and 82% respectively.

Air transport had 6 fewer training files than the bird category yet overall had a

higher mean accuracy. Of course, the consistency issue re–enters the discourse here

because the air transport recordings were arguably more consistent than the bird

recordings.

135



Discussion and Further Work

Table 6.1: Individual WAV file classification accuracies for all feature extrac-
tion and classifier combinations. To denote whether the network had
multiple–outputs or if a set of single–output networks were used, the ab-
breviations mo and so are used respectively.

Category Number
of files

Mean
%

262 codebook MTDSC

correct
frames

MLP
mo

MLP
so

LVQ
mo

MLP
mo

MLP
so

LVQ
mo

Air
transport

8 67 90 87 90 67 67 0

Air condi-
tioning

10 70 73 73 87 95 90 0

Bird 14 60 81 85 38 63 56 38

Building
works

9 67 100 97 0 69 44 91

Rail
transport

7 41 50 48 0 73 73 0

Road
transport

14 82 93 88 99 55 59 95

In summary, the experimental work was sufficient in testing the FEC combina-

tions and determining which of these were suitable for the applications considered.

It would be a jactitation to say that there are no avenues for improvement in the

experimental work, and some of the possibilities have been discussed.

6.4 Satisfaction of Project Aims

In Chapter 1 the project aims were stated as follows:

1. Perform a comprehensive review of the literature to identify classification sys-

tems that already exist and where contributions can be made to the field of

signal classification.

2. Develop and test a classification system suitable for identifying audio signals

and determining the category to which the signals belong.

The first aim was satisfied by the literature review presented in Chapter 2. Many

fields were examined to discover how signal classification had been implemented, and
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the techniques used therein were discussed. Inspiration was eventually drawn from

bioacoustic signal analysis. TDSC was identified as a feature extraction technique

that had not been used widely outside of bioacoustics but had the potential for

application in the presented research.

The work detailed in Chapters 3 to 5 fulfilled the requirements of the second aim.

TDSC was developed beyond its original realm and applied to the classification of

urban audio as well as being tested against a bioacoustic problem. The basic zero–

crossings principle of TDSC was further advanced resulting in the completely novel

approach to signal representation that was Multiscale TDSC.

6.5 Strengths and Limitations of the Research

The most significant outcome of this research is the development of a system that

is capable of distinguishing between sounds belonging to six different categories of

urban sounds. The 81% accuracy achieved using the 262 codebook and an MLP

network is a very satisfactory result.

The case study presented in Chapter 1 introduced the need for a robust system

capable of categorising audio events for the purposes of town planning. The analysis

methods developed and tested in the presented research could be applied in the

processes outlined in the case study. A classification system capable of deciding

if a sonic event was caused by transportation noise or from other sources would

negate the need for manual analysis of recordings – so called attended monitoring.

It is believed that the 262 codebook and an MLP network would contribute towards

such a system.

A further important outcome of the presented research is the development of a

completely novel zero–crossings based feature extractor, MTDSC. Using MTDSC

features, 70% of frames were correctly classified for urban audio events, a result

which is comparable with prior research in the field. The technique of constructing

MTDSC features lends itself to further development. Shape information is currently

the only descriptor used for generating the MTDSC packets. It would be possible to

include other signal descriptors in the windows of the MTDSC packet, such as the

signal energy of each epoch or the relative amplitude of the positive and negative

minima which form the shape information.
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When used to extract features from the Tibicen recordings, a limitation of the

MTDSC method was observed. Anomalies in the signal, such as noise or overspill

from other sources, become distinct features of the MTDSC packet. As a result it

was only the MTDSC features from the clean Tibicen recordings that were correctly

classified. The aim of the classification problem was to determine if the test signals

belonged to one particular species and in this task the MTDSC features failed.

However, if the classification task was to check that a signal was as clean as possible

with no artifacts or overspill, MTDSC features could be an excellent choice. Fault

diagnosis classification tasks, either in machines or in human health, is an example

of an application for MTDSC. If all is well with a system, then the MTDSC features

of the monitored signals should be identical to those with which the classifier has

been trained. If a fault occurs resulting in an anomaly in the monitored signal, this

would be detected in the MTDSC features.

Both of the techniques developed in the presented research, the 262 codebook

and MTDSC, are computationally lightweight methods. There is no requirement

to transform to another domain when the signals are presented to the system as

time–domain waveforms. It was also noted that feature extraction using MTDSC is

particularly fast – ∼22 seconds to analyse 62 three–second WAV files.

It was briefly mentioned in Section 6.3 that the presented research would have

benefitted from having a larger library of audio data for training and testing pur-

poses. The breadth of the audio data could also have been expanded to further

encompass each of the categories of urban audio. Having more training files with

which to train networks should result in the networks having a high accuracy for a

broader range of audio events.

However, there is the possibility that having more training files encompassing a

broader range of sounds could lead to a reduction in classification accuracy. The

trained networks may become too generic and only able to classify a large number

of sounds with a low accuracy as opposed to a lower number of sounds with a high

accuracy. An intricate combination of classifiers could overcome this problem, with

each being trained to classify one particular sound or group of sounds into their

associated category.

The number of categories of urban sounds used in the presented research was

adequate for the aims of the project. The categories arose from meetings with

collaborators on the ISRIE project and fulfilled the requirements outlined by the

project. It is not thought that the presented research would have benefitted from
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having many more categories of sound for the urban audio event classification tasks,

with the exception of an alarm/siren class to encompass security alarms and sirens

from emergency vehicles.

The presented research provided a proof of concept of applying time–domain

based methods of feature extraction to classifying urban audio events. This was

achieved using only two types of classifier: MLP networks and LVQ networks. Ex-

perimentation with other classifiers could have revealed a more robust feature ex-

tractor and classifier combination resulting in higher classification accuracies. Some

of the possibilities for further research in this field are commented on in Section 6.6.

A review of the options available for training MLP networks using the MATLAB®

Neural Network Toolbox (NNT) was undertaken and a summary is presented in Ap-

pendix D. The preliminary tests carried out with varying combinations of training

function and hidden layer transfer function were a necessity of the experimental work

in determining the design of the MLP networks. Although an unintended outcome

of the research, it is hoped that the summary and preliminary test methodology will

be of use to future researchers in deciding which MLP designs to investigate with

the NNT.

6.6 Further Work and Future Applications

This chapter has discussed the presented research, highlighting the salient areas of

the project. The strengths and limitations of the work have also been considered.

This section will present suggestions for taking the project forward and provide

some ideas for future applications of an identification tool as proposed by the ISRIE

project.

6.6.1 On–Screen Analysis Tool

At present, analysis of an audio signal or batch of audio signals must be performed

manually from the MATLAB® command line. Controlling functions are provided

to minimise the amount of manual function calling, but it is not an ideal system for

other users. Therefore, it is envisaged that the next stage for this research would

be to develop a graphical user interface (GUI) which allows users for whom the

MATLAB® environment is a foreign land to control the analysis of signals using
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the techniques developed in the presented research.

In the first instance, such a GUI could be produced using the MATLAB® GUI

Development Environment tool (GUIDE). A user interface constructed with GUIDE

would have direct access to the functions that have been developed in MATLAB®

already. The GUI could have drop–down menus and selection boxes, which will be

familiar to all PC users, for selecting the type of analysis to use and the network

for classification. A library of pre–trained networks could be provided as well as the

option of training (or re–training) a network with new data. The networks could

be trained for specific classification tasks such as urban audio event identification or

bioacoustic signal analysis.

Farr (2007) developed an on–screen analysis tool such as that described above.

Referred to as the Waveform Analyser and Sound Profiler, or WASP, the tool al-

lowed the uploading of signals for analysis and identification. WASP was developed

using GUIDE, exploiting the option of keeping the analysis functionality in the

MATLAB® environment.

Developing a screen–based tool would also move the project towards the ISRIE

goal of a stand–alone intelligent noise meter, as the concepts applied in a software

environment can often be adapted to work on a hardware platform.

6.6.2 Network Retraining

In any classification system there will be occasions where the classifier cannot make

an accurate decision on the category of a sound (e.g. all six outputs of a 100–6 MLP

have a value of 0.167). The reasons for this indecision are numerous: the signal could

have a very low signal–to–noise ratio, there may be over–spill from other sources, or

the sound may be completely new to the network.

When such a signal is encountered, rather than let the system misclassify or

effectively ignore the signal, an option could be included for the system to make a

recording of the signal, or flag the signal if it is part of a pre–recorded set, for human

intervention. The signal can then be identified by a user and used to retrain the

classifier. Consequently, if a similar signal is encountered again the classifier will be

better equipped to accurately recognise it.

The proposal outlined above would be well suited to the on–screen analysis tool

discussed previously. An option for retraining could easily be built into the GUI
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allowing the user to quickly retrain a network with any misclassified signals.

6.6.3 Classifier Design

Two types of classifier were investigated in the presented research project and these

have been discussed in some detail already. It has also been mentioned that the

research would benefit from experimental work using types of classifier beyond MLP

and LVQ networks. There is a myriad of networks to choose from, some having

only subtle distinctions between them with others employing completely different

methods of analysis.

Another option for investigating classifier design is to consider a hierarchical

approach. That is, the classification task is broken down into stages, with each stage

having a classifier that is designed to choose between a small number of outputs.

Defréville et al. (2006) discuss this concept in relation to the completeness issue

(i.e. the difficulty of designing descriptors to differentiate between every sound

category) and suggest that hierarchical classification is one possible solution. A full

investigation into hierarchical classification of urban audio events would need to

analyse the possibility of using different types of classifier (e.g. MLP, LVQ, etc.) for

each stage. It may be the case that certain types of classifier are better suited to

differentiating between particular categories.

In their discussion on network optimisation, Hansen and Salamon (1990) propose

the use of network ensembles. The authors highlight that standard practice when

performing a classification task is to find a suitable architecture and tuning of a

network “. . . and then trust all future classifications to the best network we find.”

This was certainly the approach adopted in the presented research and the approach

seen in much of the literature. Hansen and Salamon (1990) explain how the set of

networks developed during the trial–and–error phase of development should be kept

and all used to produce a classification for a given input. A consensus from all of

the networks is then used to reach a final decision. This method of classification

could be further adapted to again use a variety of network types (rather than just

the trial–and–error rejects) and a consensus decision for each of the presented data.
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6.6.4 Real–world Applications

All of the further work discussed so far has related to immediate advancements that

could be made to the presented research. The suggestions detailed here look much

further into the future and encompass the overall vision of the ISRIE project: to

develop an intelligent noise monitoring system. The classification methods developed

in this thesis would have their place in any such monitoring system because it

has been shown that the methods are capable of accurately classifying a variety of

signals.

The ISRIE project proposed to develop a system capable of informing the user

of the content and nature of the sounds heard in a particular environment. The

focus was on the urban environment and sounds relating to PPG 24 and BS 4142.

The following proposal builds on this idea to include other potential areas where an

identification tool could be used, and is illustrated by way of a fictional case study.

Airport expansion is a pertinent current affair at present. One of the

arguments against expansion is the increase in traffic noise, both air

traffic and road traffic. Tonshude airport received the backing of local

residents by promising that there would be no increase in noise levels as

a result of its expansion, neither during nor after the building process. To

ensure accurate records were kept of the noise levels before, during and

after the expansion process, a number of intelligent noise monitoring

devices (INMDs) were installed in the area surrounding the airport.

The INMDs had the capability to identify the signals they detected and

place the source of the signal into one of a number of categories. The

devices could also estimate the direction of arrival of each signal source.

The INMDs could communicate with each other wirelessly thus allowing

triangulation of the direction of arrival data to provide source localisation

of a signal. The wireless communication also allowed the classification

and source localisation results to be collated on a central server. Classi-

fication accuracies were compared automatically on the central server to

arrive at a consensus decision for the audio content of the soundscape.

The data on the server was analysed periodically by a sound consultant

whose role included manual classification of the few signals that could

not be classified by the system.

After the airport expansion was completed the INMDs remained in place
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to monitor the impact of the expansion on air and road transport noises.

The data generated during the expansion was compiled into a report which

presented the contributions to the overall noise level of the different sound

categories.

At a later date, the planes taking off from Tonshude airport started hav-

ing problems with bird strikes, resulting in many emergency landings. To

determine the best method of controlling the bird populations, the INMDs

were reprogrammed, via the wireless network, to detect the species of bird

present in the vicinity of the airport. The classifiers in the INMDs were

replaced with networks that had been pre–trained with a selection of bird

calls from species often associated with the land surrounding airports.

This fictional case study illustrates how a system such as ISRIE could be used

in the future. All of the elements described do not yet exist but the vision of ISRIE

is captured in the example.
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Chapter 7

Conclusions

The presented research was focused on developing a classification system capable

of differentiating between urban audio events. The most significant developments

were made in how features were extracted from a signal and presented to classifiers.

Classification accuracies of 82% were achieved using the developed feature extraction

methods. The research made valid contributions to the field of signal classification on

its own but also collaborated with other researchers in a larger project in developing

an intelligent noise monitoring system.

A review of the literature revealed the vast array of signal classification tech-

niques that have been used in other works. The review was not confined to prior

works classifying the types of signal present in an urban environment. Inspiration

was sought from many other fields including bioacoustic species recognition. Time–

domain signal coding (TDSC), a purely time–domain feature extraction method, was

identified as a candidate for further investigation within the scope of the presented

research. It was chosen because it had been used successfully in bioacoustics and

was presented as a computationally light–weight method. There was no indication

in the literature that a similar method of feature extraction had been applied in

the realm of general audio classification. Therefore, by investigating and developing

TDSC further, the presented research has made a contribution to the field of general

audio classification.

Initially, the techniques involved in extracting TDSC features were adapted to

allow analysis of more generic signals. Previously, TDSC had only been used with

bandlimited signals and the codebooks used for that were not sufficient to represent

the broadband signals present in an urban environment. After two initial iterations
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of generic codebooks, the 262 codebook was developed. The features produced using

the 262 codebook comprised duration and shape information about the epochs of a

signal. Despite its heavily reduced size (from 1716 codes initially), the 262 codebook

encapsulated ∼93% of the total D–S pair combinations possible in the urban audio

data analysed.

The 262 codebook underwent rigorous testing to determine how well it repre-

sented the input signals. In doing this, the 262 codebook feature extractor was

combined with both a multilayer perceptron (MLP) network and a learning vector

quantisation (LVQ) network. In the process of testing the 262 codebook, the intrica-

cies of MLP design using the MATLAB® Neural Network Toolbox were established

and a summary of the all possible training functions was produced.

Classification accuracies of urban audio events into six categories (air transport,

air conditioning, bird, building works, rail transport and road transport) reached as

high as 82% when the 262 codebook features were classified with a multiple–output

MLP network. The generic 262 codebook was also used to extract features in a

bioacoustic classification problem. This task aimed to identify recordings of Tibicen

cicada songs recorded in environments with varying amounts of background noise.

The system achieved an accuracy of 72% with an LVQ classifier. This result was a

distinct improvement over previous studies using the same audio data.

The results from the testing showed that TDSC using the 262 codebook is a

satisfatory feature extraction method for the classification of urban audio events.

Despite the generic nature of the 262 codebook, it proved to also be an excellent

feature extractor for bioacoustic signals.

Further investigation of the basic TDSC method was influenced by the dyadic

wavelet decomposition of a signal. Multiscale TDSC was developed as a completely

novel zero–crossings based method of signal analysis. Classification results for urban

audio events were good with accuracies of 70% achieved in combination with an MLP

classifier.

Bioacoustic signal classification using MTDSC features produced very low ac-

curacies for the test recordings. This was due to there being significant artifacts

present in the test recordings. This result suggests that MTDSC would not be a

suitable classifier of signals that have a low signal–to–noise ratio. However, this

discovery led to the conclusion that MTDSC would be suitable in fault diagnosis

systems because it can accentuate artifacts in the signals that should not be there.

145



Conclusions

Of the feature extraction methods developed through the presented research, the

262 codebook showed the most promise as a feature extractor suitable for classifying

urban sound events and bioacoustic signals.

Recommendations for further work were centred on expanding the training data

available, to make the classifiers more accurate, and on experimentation with other

classifier designs. The case study outlined in the further work, although fictional,

provides a good indication of how signal classification equipment, such as ISRIE,

could be used in the future.

It is considered unlikely that a computer–based system will be able to work com-

pletely independent of a human observer in the near future in identifying the entire

gamut of sounds present in a soundscape. Nevertheless, the methods developed and

tested in this thesis contribute towards the evolution of a system which lessens the

need for laborious and time–consuming manual analysis of recorded signals.
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Appendix A

Audio Data Summary

A.1 Urban Audio Training Data Summary

Table A.1: Summary of the urban audio files used for training the classification
system configurations.

File Description

3secAir001.wav Light aircraft in distance, some birds
3secAir002.wav Light aircraft passing overhead
3secAir003.wav Helicopter in distance
3secAir004.wav Helicopter in distance
3secAir005.wav Light aircraft high revs
3secAir006.wav Light aircraft with birds in foreground
3secAir007.wav Light aircraft (Doppler pitch change)
3secAir008.wav Distant heavy aircraft

3secAirCon001.wav Close mic A/C unit
3secAirCon002.wav Close mic A/C unit w/ bird tweet
3secAirCon003.wav Close mic fan heater
3secAirCon004.wav Close mic A/C unit
3secAirCon005.wav Close mic A/C unit
3secAirCon006.wav Close mic acoustic louvres
3secAirCon007.wav Close mic acoustic louvres
3secAirCon008.wav Distant A/C with some bird calls
3secAirCon009.wav Distant A/C
3secAirCon0010.wav Close mic clean room air supply

3secBird001.wav Mixture of different birds, some background road noise
3secBird002.wav Blackbird singing
3secBird003.wav Mixture of birds singing with light aircraft in background

continued on next page. . .
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Table A.1

. . . continued from previous page

File Description

3secBird004.wav Mixture of birds singing
3secBird005.wav Blackbird singing
3secBird006.wav Mixture of singing birds and Barnacle geese
3secBird007.wav Greylag geese
3secBird008.wav Barnacle geese close
3secBird009.wav Canadian geese flying by
3secBird010.wav Coot, distant with reverb
3secBird011.wav Ducks quacking quietly
3secBird012.wav Ducks quacking quietly with adolescent ducks
3secBird013.wav Bird tweeting, close mic
3secBird014.wav Chorus of birds

3secBuilding001.wav Distant digger
3secBuilding002.wav Close by digger with scoop movement
3secBuilding003.wav Close by digger
3secBuilding004.wav Close by pneumatic drill
3secBuilding005.wav Close by angle grinder
3secBuilding006.wav Close by angle grinder with other site noises
3secBuilding007.wav Distant digger
3secBuilding008.wav Digger pneumatic drill startup
3secBuilding009.wav Digger pneumatic drill

3secRail001.wav Fast train approaching
3secRail002.wav Fast train passing
3secRail003.wav Fast train engine passing
3secRail004.wav Fast train passing
3secRail005.wav Fast train passing distant
3secRail006.wav Train idling at station
3secRail007.wav Train revving at station

3secRoad001.wav Car passing
3secRoad002.wav General road noise
3secRoad003.wav Motorbike revving
3secRoad004.wav Tractor approaching
3secRoad005.wav Truck pulling away
3secRoad006.wav Car passing
3secRoad007.wav Car passing (distant)
3secRoad008.wav Low frequency vehicle passing
3secRoad009.wav Bus passing
3secRoad010.wav Dual carriageway/motorway
3secRoad011.wav Busy dual carriageway/motorway

continued on next page. . .
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Table A.1

. . . continued from previous page

File Description

3secRoad012.wav Car passing quite fast
3secRoad013.wav Distant traffic noise
3secRoad014.wav Distant traffic noise
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A.2 Urban Audio Test Data Summary

Table A.2: Summary of the urban audio files used for testing the classification sys-
tem configurations.

File Description

3secTestAir001.wav Light aircraft in distance
3secTestAir002.wav Helicopter in distance
3secTestAir003.wav Light aircraft with birds in foreground
3secTestAir004.wav Distant heavy aircraft

3secTestAirCon001.wav Close mic A/C unit
3secTestAirCon002.wav Close mic fan heater
3secTestAirCon003.wav Distant A/C unit

3secBird001.wav Chorus of birds
3secBird002.wav Lakeside recording of a mixture of wa-

ter fowl and tweeting birds
3secBird003.wav Blackbird singing

3secTestBuilding001.wav Close by digger
3secTestBuilding002.wav Angle grinder
3secTestBuilding003.wav Digger using large pneumatic drill

3secTestRail001.wav Fast train passing
3secTestRail002.wav Fast train approach
3secTestRail003.wav Train idling at station

3secTestRoad001.wav Large vehicle passing, some low fre-
quencies

3secTestRoad002.wav Dual carriageway/motorway
3secTestRoad003.wav Car passing quite fast
3secTestRoad004.wav Distant traffic noise

150



Audio Data Summary

A.3 Tibicen Cicada Audio Data Summary

Table A.3: Summary of the Tibicen cicada audio files used for training and testing
the classification system configurations.

File Description

Training files

BH.wav T. bihamatus
FL.wav T. flammatus
JP.wav T. japonicus

Test files

1.wav T. japonicus
2.wav T. bihamatus
3.wav T. bihamatus
4.wav T. bihamatus
5.wav T. bihamatus
6.wav T. bihamatus
7.wav T. bihamatus
8.wav T. bihamatus
9.wav T. bihamatus
10.wav T. bihamatus
11.wav T. bihamatus
12.wav T. bihamatus
13.wav T. bihamatus
14.wav T. bihamatus
15.wav T. bihamatus
16.wav T. bihamatus
17.wav T. bihamatus
18.wav T. bihamatus
19.wav T. bihamatus
20.wav T. bihamatus
lq1.wav T. bihamatus (low quality)
lq2.wav T. bihamatus (low quality)
lq3.wav T. bihamatus (low quality)
lq4.wav T. bihamatus (low quality)
lq5.wav T. bihamatus (low quality)

151



Appendix B

Duration Ranges Used in Initial
TDSC Analysis

Table B.1: Table showing the ranges of durations used during initial TDSC analysis
with the 1716 codebook.

Duration Range Durations Included Duration Range Durations Included
1 2 21 31–40
2 3 22 41–50
3 4 23 51–60
4 5 24 61–70
5 6 25 71–80
6 7 26 81–90
7 8 27 91–100
8 9 28 101–150
9 10 29 151–200
10 11 30 201–250
11 12 31 251–300
12 13 32 301–350
13 14 33 351–400
14 15 34 401–450
15 16 35 451–500
16 17 36 501–600
17 18 37 601–700
18 19 38 701–800
19 20 39 801–900
20 21–30 40 901–1000
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Appendix C

MATLAB® Code Listings

C.1 Standard TDSC Analysis Code

sMatReturn.m

1 function [datasmat] = sMatReturn(wavfile,frameLength)
2

3 % Created: 23rd April 2008
4 % This function will perform TDSC analysis, retrieve the ...

s−matrix and
5 % return it.
6

7 % Tdsc analysis
8 Data = tdscAnEps(wavfile,frameLength,1,1);
9

10 % Extract s−matrix
11 for i=1:length(Data)
12 datasmat(:,i) = Data(i).sMat(:,3);
13 end

tdscAnEps.m

1 function [Frames] = tdscAnEps(wavFile,L,type,dRange)
2

3 % Controlling function to perform TDSC analysis of a WAV file ...
to be used

4 % for testing.
5 % WAV file is broken into L−second segments of data for ...

analysis. Each
6 % L−second lump, or 'frame', is stored in the data structure ...

Frames.
7 % dRange is used for codebook generation and determines the ...
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duration range
8 % for each code (1−5,6−10,11−15,etc.)
9

10 % Read in WAV file − separate variables for data, sample rate and
11 % bit−depth.
12 [input,inFs,inB] = wavread(wavFile);
13

14 % Find length of file in L−second segments. If file is less ...
than 1 L−second

15 % lump, increase it's size to L*Fs. This should avoid any ...
errors later

16 % involving non−whole numbers.
17 [inR,inC] = size(input);
18 if L*inFs ≤ inR
19 numberL = ceil(inR/(L*inFs));
20 else
21 input(inR:inFs,:) = 0;
22 numberL = 1;
23 end
24

25 % Predefine data structure for epoch storage
26

27 Frames = struct('Data',{},'sMat',{});
28 % Perform epoch analysis on each L−second segment of the WAV data.
29 for i=1:numberL
30 Epochs = struct();
31 tempS = ceil((i*L*inFs−(L*inFs−1)));
32 tempF = ceil(i*L*inFs);
33 % If tempF is greater than the length of the input data ...

increase the
34 % size of the input data by filling it to tempF with zeros.
35 if inR < tempF
36 input(inR+1 : tempF,:) = 0;
37 end
38

39 tempDat = input(tempS:tempF,:);
40 dat = tempDat';
41

42 [Epochs,unused] = epochFinderBeta(dat,type);
43

44 % Add current epoch data to Frames IF current epoch data ...
contains

45 % information.
46 if size(Epochs,1) 6= 0
47 Frames(size(Frames,2)+1).Data = Epochs;
48 end
49 end
50

51 % Employ sMatGen to generate output s−matrix data for each frame.
52 for i=1:length(Frames)
53 Frames(i).sMat = sMatGen(Frames(i).Data);
54 end
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epochFinderBeta.m

1 function [Epochs,epochMat] = epochFinderBeta(sound,type)
2

3 % This function performs analysis on each epoch in the data ...
input 'sound'.

4 % Depending on the value of 'type' different accompanying data ...
to the epoch

5 % duration can be found.
6 %
7 % Notes: Only shape information extracted at present.
8

9 % Check if data is a wav file or an array and read data in ...
accordingly.

10 if ischar(sound)
11 wav = wavread(sound);
12 else
13 [row,col] = size(sound);
14 if row<col
15 wav = sound;
16 else
17 wav = sound';
18 end
19 end
20

21 % Use "greater−than" function to find positive and negative ...
epochs of the

22 % data.
23 posNeg = wav>0;
24 % Create an indexer for going through the data
25 n = 2:(length(posNeg));
26 % Generate a matrix of 0s and 1s denoting where the ZCs are. ...

Abs is
27 % used so all results are +ve.
28 zeroCross = abs(posNeg(n) − posNeg(n−1));
29 % Find all the non−zero locations using the find() function.
30 NZ = find(zeroCross);
31 % Start values
32 epochMat = NZ';
33

34 % Find end values
35 epochMat(1:length(epochMat)−1,2) = NZ(1,2:length(NZ));
36 % Add 1 to all epoch start locations except the first epoch.
37 epochMat(2:length(epochMat)−1,1) = ...

epochMat(2:length(epochMat)−1,1)+1;
38 % Find durations
39 epochMat(:,3) = epochMat(:,2)−epochMat(:,1);
40

41 % Remove epochs that have a duration of less than 1.
42 lto = epochMat(:,3) ≤ 1;
43 m = find(lto);
44 epochMat(m,:) = [];
45

46 % Place all epochMat data into a Data Structure with the form
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47 % Data.Epoch(n).start
48 % .end
49 % .dur
50 % .(this will eventually be the result of the ...

following
51 % algorithms)
52

53 Epochs = struct('start',mat2cell(epochMat(:,1), ...
54 [ones(size(epochMat(:,1),1),1)],[1]), ...

'end',mat2cell(epochMat(:,2),...
55 [ones(size(epochMat(:,2),1),1)],[1]),'dur',mat2cell(epochMat(:,3),...
56 [ones(size(epochMat(:,3),1),1)],[1]));
57

58

59 % The features extracted from the input data are dependant on ...
the input

60 % 'type'.
61 % Find relevant features and set Epochs. Only 1 option at present.
62 if type==1;
63 Epochs = minFinderSimple(Epochs,wav);
64 end

minFinderSimple.m

1 function Epochs = minFinderSimple(Epochs,wav)
2

3 % This function very simply finds the number of minima (+ve or ...
−ve) in

4 % each epoch contained within the data structure input ...
'Epochs'. It performs

5 % this using simple logical operations on the epoch data ...
gathered from the

6 % input 'wav'. Shape information is added to the data structure ...
Epochs.

7

8 % For each epoch...
9 for i = 1:length(Epochs);

10 % Get data for the current epoch
11 epoch = wav(Epochs(i).start : Epochs(i).end);
12 % Top and tail the epoch with a zero
13 epoch(2:length(epoch)+1) = epoch;
14 epoch(1) = 0;
15 epoch(length(epoch)+1) = 0;
16 % abs this data − shape data is unsigned so this does not ...

affect
17 % anything else.
18 epoch = abs(epoch);
19 % Create some index variables.
20 n = 1:length(epoch) − 1;
21 m = 2:length(epoch);
22 % Find where the data in the epoch is ascending
23 ascEpoch = epoch(n) > epoch(n+1);
24 % Make the length of this new data the same as that of the ...
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epoch.
25 ascEpoch(length(epoch)) = 0;
26 % The following operation makes transitions from descending to
27 % ascending appear as a 1, and vice−versa as a −1.
28 shArray = ascEpoch(m−1) − ascEpoch(m);
29 % Sum all of the 1s to get the shape (i.e. ignore the −1s) and
30 % substract 1 for end of epoch anomaly.
31 shape = sum(shArray>0);
32 if shape > 0
33 Epochs(i).shape = sum(shArray>0) − 1;
34 else
35 Epochs(i).shape = sum(shArray>0);
36 end
37 end

sMatGen.m

1 function sMat = sMatGen(Epochs)
2

3 % Takes in Epochs data structure and returns a "codebook"
4

5 % Get data out of Epochs into a matrix
6 for i = 1:length(Epochs);
7 dsMatrix(i,1) = Epochs(i).dur;
8 dsMatrix(i,2) = Epochs(i).shape;
9 end

10

11 % Sort data according to d
12 dsMatrix = sortrows(dsMatrix);
13

14 % Initialise d x s matrix
15 if max(dsMatrix(:,1))>150
16 dSize = max(dsMatrix(:,1));
17 else
18 dSize = 150;
19 end
20

21 if max(dsMatrix(:,2))>15
22 sSize = max(dsMatrix(:,2)+1);
23 else
24 sSize = 16;
25 end
26 freqMatrix = zeros(dSize,sSize);
27

28 % Generate a d x s matrix with frequency of pairs in each location
29 for i = 1:size(dsMatrix,1);
30 freqMatrix(dsMatrix(i,1),dsMatrix(i,2) + 1) = ...
31 freqMatrix(dsMatrix(i,1),dsMatrix(i,2) + 1) + 1;
32 end
33

34 % Sorting algorithm to create a n x 3 matrix containing ...
duration, shape

35 % and frequency data to output.

157



MATLAB® Code Listings

36 [d,s] = size(freqMatrix);
37 count = 1;
38 for i = 1:16
39 for j = i:150;
40 if i < j
41 dsfData(count,1) = j;
42 dsfData(count,2) = i−1;
43 dsfData(count,3) = freqMatrix(j,i);
44 count = count + 1;
45 end
46 end
47 end
48

49 % Sort this data out using sMatSorter1716, sMatSorter343 or ...
sMatSort262

50 % Comment out as necessary.
51 %sMat = sMatSorter1716(dsfData); % 1716 s−matrix
52 %sMat = sMatSorter343(dsfData); % 343 s−matrix
53 sMat = sMatSorter262(dsfData); % 262 s−matrix
54

55 % Normalise sMat − unless max is zero.
56 if max(sMat(:,3)) 6= 0
57 sMat(:,3) = sMat(:,3) / max(sMat(:,3));
58 end

sMatSorter1716.m

1 function [sMat] = sMatSorter1716(dsfData)
2

3 % Initialise s matrix
4 sMat = zeros(1793,3);
5 % Initialise a counter
6 count = 1;
7 % For each row in dsMatrix
8 for i = 1:length(dsfData)
9 % Comparing value

10 c = dsfData(i,1);
11 % Switch/case statements...switch is logical value true
12 switch logical(true)
13 case {c>1 && c≤20}
14 dRange = c−1;
15 indexD = (((c−1)ˆ2 + (c−1))/2) + dsfData(i,2);
16 case {c>20 && c≤30}
17 dRange = 20;
18 indexD = 210 + dsfData(i,2);
19 case {c>30 && c≤40}
20 dRange = 21;
21 indexD = 249 + dsfData(i,2);
22 case {c>40 && c≤50}
23 dRange = 22;
24 indexD = 298 + dsfData(i,2);
25 case {c>50 && c≤60}
26 dRange = 23;
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27 indexD = 357 + dsfData(i,2);
28 case {c>60 && c≤70}
29 dRange = 24;
30 indexD = 426 + dsfData(i,2);
31 case {c>70 && c≤80}
32 dRange = 25;
33 indexD = 502 + dsfData(i,2);
34 case {c>80 && c≤90}
35 dRange = 26;
36 indexD = 578 + dsfData(i,2);
37 case {c>90 && c≤100}
38 dRange = 27;
39 indexD = 654 + dsfData(i,2);
40 case {c>100 && c≤150}
41 dRange = 28;
42 indexD = 730 + dsfData(i,2);
43 case {c>150 && c≤200}
44 dRange = 29;
45 indexD = 806 + dsfData(i,2);
46 case {c>200 && c≤250}
47 dRange = 30;
48 indexD = 882 + dsfData(i,2);
49 case {c>250 && c≤300}
50 dRange = 31;
51 indexD = 958 + dsfData(i,2);
52 case {c>300 && c≤350}
53 dRange = 32;
54 indexD = 1034 + dsfData(i,2);
55 case {c>350 && c≤400}
56 dRange = 33;
57 indexD = 1110 + dsfData(i,2);
58 case {c>400 && c≤450}
59 dRange = 34;
60 indexD = 1186 + dsfData(i,2);
61 case {c>450 && c≤500}
62 dRange = 35;
63 indexD = 1262 + dsfData(i,2);
64 case {c>500 && c≤600}
65 dRange = 36;
66 indexD = 1338 + dsfData(i,2);
67 case {c>600 && c≤700}
68 dRange = 37;
69 indexD = 1414 + dsfData(i,2);
70 case {c>700 && c≤800}
71 dRange = 38;
72 indexD = 1490 + dsfData(i,2);
73 case {c>800 && c≤900}
74 dRange = 39;
75 indexD = 1566 + dsfData(i,2);
76 case {c>900 && c≤1000}
77 dRange = 40;
78 indexD = 1642 + dsfData(i,2);
79 otherwise
80 dRange = 41;
81 indexD = 1718 + dsfData(i,2);
82 end
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83 % Store relevant data in sMat
84 sMat(indexD,3) = dsfData(i,3);
85 % For dev purposes, let's see what the D−S data is...
86 sMat(indexD,1) = dRange;
87 sMat(indexD,2) = dsfData(i,2);
88 % Remove any rows after row 1717 as we're not too concerned ...

with them.
89 sMat(1717:length(sMat),:) = [];
90 end

sMatSorter343.m

1 function [sMat] = sMatSorter343(dsfData)
2 % Adapted sMatSorter to use a smaller number of ranges by ...

limiting D to 150
3 % and S to 15.
4 % Initialise s matrix
5 sMat = zeros(344,3);
6 % Initialise a counter
7 count = 1;
8 % For each row in dsMatrix
9 for i = 1:length(dsfData)

10 % Comparing value, "Duration"
11 c = dsfData(i,1);
12 % Switch/case statements...switch is logical value true
13 switch logical(true)
14 case {c>1 && c≤20}
15 dRange = c−1;
16 % This is a triangle number calculation
17 indexD = (((c−1)ˆ2 + (c−1))/2) + dsfData(i,2);
18 case {c>20 && c≤30}
19 dRange = 20;
20 indexD = 200 + dsfData(i,2);
21 case {c>30 && c≤40}
22 dRange = 21;
23 indexD = 216 + dsfData(i,2);
24 case {c>40 && c≤50}
25 dRange = 22;
26 indexD = 232 + dsfData(i,2);
27 case {c>50 && c≤60}
28 dRange = 23;
29 indexD = 248 + dsfData(i,2);
30 case {c>60 && c≤70}
31 dRange = 24;
32 indexD = 264 + dsfData(i,2);
33 case {c>70 && c≤80}
34 dRange = 25;
35 indexD = 280 + dsfData(i,2);
36 case {c>80 && c≤90}
37 dRange = 26;
38 indexD = 296 + dsfData(i,2);
39 case {c>90 && c≤100}
40 dRange = 27;
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41 indexD = 312 + dsfData(i,2);
42 case {c>100 && c≤150}
43 dRange = 28;
44 indexD = 328 + dsfData(i,2);
45 otherwise
46 dRange = 29;
47 indexD = 344 + dsfData(i,2);
48

49 end
50 % Store relevant data in sMat
51 sMat(indexD,3) = sMat(indexD,3) + dsfData(i,3);
52 % For dev purposes, let's see what the D−S data is...
53 sMat(indexD,1) = dRange;
54 sMat(indexD,2) = dsfData(i,2);
55 % Remove any rows after row 343 as we're not too concerned ...

with them.
56 sMat(344:length(sMat),:) = [];
57 end

sMatSorter262.m

1 function [sMat] = sMatSorter262(dsfData)
2 % Adapted sMatSorterSmall to use a smaller number of codes by ...

eliminating
3 % those codes that do not get used. MaxS has been seen to never ...

exceed D/2.
4 %
5 % In the switch case statements below, it is the case for c>1, ...

c≤20 that
6 % needed changing. Obviously the indexD for all further codes ...

also needs
7 % adapting.
8

9 % Initialise s matrix
10 sMat = zeros(263,3);
11

12 % For each row in dsMatrix
13 for i = 1:length(dsfData)
14 % Comparing value, "Duration"
15 c = dsfData(i,1);
16 % Switch/case statements...switch is logical value true
17 switch logical(true)
18 case {c==2}
19 indexD = 1;
20 case {c==3}
21 indexD = 2 + dsfData(i,2);
22 case {c==4}
23 indexD = 4 + dsfData(i,2);
24 case {c==5}
25 indexD = 7 + dsfData(i,2);
26 case {c==6}
27 indexD = 10 + dsfData(i,2);
28 case {c==7}
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29 indexD = 14 + dsfData(i,2);
30 case {c==8}
31 indexD = 18 + dsfData(i,2);
32 case {c==9}
33 indexD = 23 + dsfData(i,2);
34 case {c==10}
35 indexD = 28 + dsfData(i,2);
36 case {c==11}
37 indexD = 34 + dsfData(i,2);
38 case {c==12}
39 indexD = 40 + dsfData(i,2);
40 case {c==13}
41 indexD = 47 + dsfData(i,2);
42 case {c==14}
43 indexD = 54 + dsfData(i,2);
44 case {c==15}
45 indexD = 62 + dsfData(i,2);
46 case {c==16}
47 indexD = 70 + dsfData(i,2);
48 case {c==17}
49 indexD = 79 + dsfData(i,2);
50 case {c==18}
51 indexD = 88 + dsfData(i,2);
52 case {c==19}
53 indexD = 98 + dsfData(i,2);
54 case {c==20}
55 indexD = 108 + dsfData(i,2);
56 case {c>20 && c≤30}
57 indexD = 119 + dsfData(i,2);
58 case {c>30 && c≤40}
59 indexD = 135 + dsfData(i,2);
60 case {c>40 && c≤50}
61 indexD = 151 + dsfData(i,2);
62 case {c>50 && c≤60}
63 indexD = 167 + dsfData(i,2);
64 case {c>60 && c≤70}
65 indexD = 183 + dsfData(i,2);
66 case {c>70 && c≤80}
67 indexD = 199 + dsfData(i,2);
68 case {c>80 && c≤90}
69 indexD = 215 + dsfData(i,2);
70 case {c>90 && c≤100}
71 indexD = 231 + dsfData(i,2);
72 case {c>100 && c≤150}
73 indexD = 247 + dsfData(i,2);
74 otherwise
75 indexD = 263 + dsfData(i,2);
76 end
77 % Store relevant data in sMat
78 sMat(indexD,3) = sMat(indexD,3) + dsfData(i,3);
79 % For dev purposes, let's see what the D−S data is...
80 sMat(indexD,1) = 0;
81 sMat(indexD,2) = dsfData(i,2);
82 % Remove any rows after row 263 as they are irrelevant.
83 sMat(263:length(sMat),:) = [];
84 end
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returnSMatrices.m

1 function [retSMat,targetVec] = returnSMatrices(path, ...
framelength, type)

2 % Returns a matrix of S−matrices for a given folder of WAV files.
3

4 % Declare our overall matrix.
5 resMatrix = [];
6

7 % First some file handling is required to get a list of files ...
contained

8 % in the directory
9 filesTemp = dir(path);

10

11 % The first 2 of these are "." and ".." respectively. I.e. not ...
wav files.

12 % Get rid.
13 files(1:length(filesTemp)−2,1) = filesTemp(3:length(filesTemp),1);
14

15 % Analysis and construction of output matrix.
16 for i = 1:length(files)
17 % Check that the file is a file and not a directory
18 if files(i,1).isdir == 0
19 % Generate string for wav file to analyse
20 filename = strcat(path,files(i,1).name);
21 % Check that this file is in fact a wav file
22 [p,n,e,v]=fileparts(filename);
23 if strcmp(e,'.wav')
24 % Perform TDSC analysis using sMatReturn
25 datasmat = sMatReturn(filename,framelength);
26 % Check what type of audio is being classified and ...

generate a
27 % target for the WAV file.
28 % Cicadas
29 if strcmp(type,'cicadas')
30 if ¬isempty(findstr('BH',n))
31 datasmat(size(datasmat,1)+1,:) = 1;
32 elseif ¬isempty(findstr('FL',n))
33 datasmat(size(datasmat,1)+1,:) = 2;
34 elseif ¬isempty(findstr('JP',n))
35 datasmat(size(datasmat,1)+1,:) = 3;
36 end
37 end
38 % Single output networks − Cicadas
39 if strcmp(type,'s BH')
40 if ¬isempty(findstr('BH',n))
41 datasmat(size(datasmat,1)+1,:) = 1;
42 else datasmat(size(datasmat,1)+1,:) = 0;
43 end
44 elseif strcmp(type,'s FL')
45 if ¬isempty(findstr('FL',n))
46 datasmat(size(datasmat,1)+1,:) = 1;
47 else datasmat(size(datasmat,1)+1,:) = 0;
48 end
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49 elseif strcmp(type,'s JP')
50 if ¬isempty(findstr('JP',n))
51 datasmat(size(datasmat,1)+1,:) = 1;
52 else datasmat(size(datasmat,1)+1,:) = 0;
53 end
54 end
55 % Sine Mixtures − for testing purposes
56 if strcmp(type,'sinemix');
57 if ¬isempty(findstr('SineM4.wav',n))
58 datasmat(size(datasmat,1)+1,:) = 1;
59 elseif ¬isempty(findstr('SineM7.wav',n))
60 datasmat(size(datasmat,1)+1,:) = 2;
61 end
62 end
63 % General Audio
64 if strcmp(type,'gen')
65 if ¬isempty(findstr('Air0',n))
66 datasmat(size(datasmat,1)+1,:) = 1;
67 elseif ¬isempty(findstr('AirCon0',n))
68 datasmat(size(datasmat,1)+1,:) = 2;
69 elseif ¬isempty(findstr('Bird0',n))
70 datasmat(size(datasmat,1)+1,:) = 3;
71 elseif ¬isempty(findstr('Building0',n))
72 datasmat(size(datasmat,1)+1,:) = 4;
73 elseif ¬isempty(findstr('Rail0',n))
74 datasmat(size(datasmat,1)+1,:) = 5;
75 elseif ¬isempty(findstr('Road0',n))
76 datasmat(size(datasmat,1)+1,:) = 6;
77 end
78 end
79 % General Audio inc Cicada
80 if strcmp(type,'geninc')
81 if ¬isempty(findstr('Air0',n))
82 datasmat(size(datasmat,1)+1,:) = 1;
83 elseif ¬isempty(findstr('AirCon0',n))
84 datasmat(size(datasmat,1)+1,:) = 2;
85 elseif ¬isempty(findstr('Bird0',n))
86 datasmat(size(datasmat,1)+1,:) = 3;
87 elseif ¬isempty(findstr('Building0',n))
88 datasmat(size(datasmat,1)+1,:) = 4;
89 elseif ¬isempty(findstr('Rail0',n))
90 datasmat(size(datasmat,1)+1,:) = 5;
91 elseif ¬isempty(findstr('Road0',n))
92 datasmat(size(datasmat,1)+1,:) = 6;
93 elseif ¬isempty(findstr('Cic0',n))
94 datasmat(size(datasmat,1)+1,:) = 7;
95 end
96 end
97 % Reduced data test set
98 if strcmp(type,'test')
99 if ¬isempty(findstr('AirCon0',n))

100 datasmat(size(datasmat,1)+1,:) = 1;
101 elseif ¬isempty(findstr('Bird0',n))
102 datasmat(size(datasmat,1)+1,:) = 2;
103 elseif ¬isempty(findstr('Road0',n))
104 datasmat(size(datasmat,1)+1,:) = 3;
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105 end
106 end
107 % Single output networks − full general
108 if strcmp(type,'s air')
109 if ¬isempty(findstr('Air0',n))
110 datasmat(size(datasmat,1)+1,:) = 1;
111 else datasmat(size(datasmat,1)+1,:) = 0;
112 end
113 elseif strcmp(type,'s ac')
114 if ¬isempty(findstr('AirCon0',n))
115 datasmat(size(datasmat,1)+1,:) = 1;
116 else datasmat(size(datasmat,1)+1,:) = 0;
117 end
118 elseif strcmp(type,'s bird')
119 if ¬isempty(findstr('Bird0',n))
120 datasmat(size(datasmat,1)+1,:) = 1;
121 else datasmat(size(datasmat,1)+1,:) = 0;
122 end
123 elseif strcmp(type,'s build')
124 if ¬isempty(findstr('Building0',n))
125 datasmat(size(datasmat,1)+1,:) = 1;
126 else datasmat(size(datasmat,1)+1,:) = 0;
127 end
128 elseif strcmp(type,'s rail')
129 if ¬isempty(findstr('Rail0',n))
130 datasmat(size(datasmat,1)+1,:) = 1;
131 else datasmat(size(datasmat,1)+1,:) = 0;
132 end
133 elseif strcmp(type,'s road')
134 if ¬isempty(findstr('Road0',n))
135 datasmat(size(datasmat,1)+1,:) = 1;
136 else datasmat(size(datasmat,1)+1,:) = 0;
137 end
138 end
139 % Single output networks − network testing (half ...

files)
140 if strcmp(type,'st ac')
141 if ¬isempty(findstr('AirCon0',n))
142 datasmat(size(datasmat,1)+1,:) = 1;
143 else datasmat(size(datasmat,1)+1,:) = 0;
144 end
145 elseif strcmp(type,'st bird')
146 if ¬isempty(findstr('Bird0',n))
147 datasmat(size(datasmat,1)+1,:) = 1;
148 else datasmat(size(datasmat,1)+1,:) = 0;
149 end
150 elseif strcmp(type,'st road')
151 if ¬isempty(findstr('Road0',n))
152 datasmat(size(datasmat,1)+1,:) = 1;
153 else datasmat(size(datasmat,1)+1,:) = 0;
154 end
155 end
156 % Single output *LVQ* networks − network testing ...

(half files)
157 if strcmp(type,'dt ac')
158 if ¬isempty(findstr('AirCon0',n))
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159 datasmat(size(datasmat,1)+1,:) = 1;
160 else datasmat(size(datasmat,1)+1,:) = 2;
161 end
162 elseif strcmp(type,'dt bird')
163 if ¬isempty(findstr('Bird0',n))
164 datasmat(size(datasmat,1)+1,:) = 1;
165 else datasmat(size(datasmat,1)+1,:) = 2;
166 end
167 elseif strcmp(type,'dt road')
168 if ¬isempty(findstr('Road0',n))
169 datasmat(size(datasmat,1)+1,:) = 1;
170 else datasmat(size(datasmat,1)+1,:) = 2;
171 end
172 end
173 % Add this S−matrix with its target to the overall ...

matrix.
174 resMatrix(: , (size(resMatrix,2)+1) : ...

(size(resMatrix,2)...
175 + (size(datasmat,2)))) = datasmat;
176 end
177 end
178 end
179

180

181 % Extract the target vector (i.e. the last row of the matrix).
182 targetVec = resMatrix(size(resMatrix,1),:);
183 resMatrix(size(resMatrix,1),:) = [];
184

185 % Return the results
186 retSMat = resMatrix;

multiSMatReturn.m

1 function SmatData = multiSMatReturn(path,framelength)
2

3 % This function returns a Data structure of S−matrices for all ...
of the WAV

4 % files located in "path" using a framelength of "framelength" ...
seconds.

5

6 % Create the output Struct with 2 fields; "filelist" − a list ...
of the

7 % filenames, and "sMat" − the S−matrix.
8 SmatData = struct('filename',[],'sMat',[]);
9

10 % File handling
11 filesTemp = dir(path);
12

13 % The first 2 of these are "." and ".." respectively. I.e. not ...
wav files.

14 % Remove.
15 files(1:length(filesTemp)−2,1) = filesTemp(3:length(filesTemp),1);
16
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17 % Matrix to store filenames
18 filenames = [];
19

20 % Analyse.
21 for i = 1:length(files)
22 % Check that the file is a file and not a directory
23 if files(i,1).isdir == 0
24 % Generate string for wav file to analyse
25 filename = strcat(path,files(i,1).name);
26 % Check that this file is in fact a wav file
27 [p,n,e,v]=fileparts(filename);
28 if strcmp(e,'.wav')
29 % Perform TDSC analysis using sMatReturn
30 datasmat = sMatReturn(filename,framelength);
31 % Add the S−matrix to the output data structure
32 SmatData(i).sMat = datasmat;
33 % Add the filename to the output data structure
34 SmatData(i).filename = n;
35 % Add the filename to a matrix of filenames
36 filenames(length(filenames)+1:length(filenames)+length(n)) ...

= n;
37 end
38 end
39 end

C.2 MTDSC Code

mPacketStackReturn.m

1 function mPacketStack = mPacketStackReturn(wavFile, mean, ...
noOfEpochs)

2 % Given an input wavFile, this function returns a stacked ...
mPacket ready

3 % for input to a neural network. If "mean" is true then the ...
mean of the

4 % mPackets is found and returned.
5

6 % Get the mPackets for the wavFile
7 mPacket = wavMPacketGen(wavFile,noOfEpochs);
8

9 % Stack the mPackets.
10 mPacketStack = mPacketStacker(mPacket,mean);

wavMPacketGen.m

1 function wavMPacket = wavMPacketGen(wav, noOfEpochs)
2

3 % Generates a stitched together matrix of M−Packet data for a ...
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whole wav
4 % file. The number of epochs used is trimmed down to be a ...

multiple of
5 % noOfEpochs.
6

7 % Create minNoOfEpochs, the number of epochs used in the ...
smallest segments

8 % of the M−packet. This is always noOfEpochs / 64. There are 7 ...
levels to

9 % each M−packet. The 64 comes from 2ˆ(7−1). Catch errors with ...
noOfEpochs

10 % that are not a multiple of 64.
11 minNoOfEpochs = noOfEpochs / 64;
12 if rem(noOfEpochs,64) 6= 0
13 error('Number of epochs must be a multiple of 64');
14 end
15

16 % Read in the WAV file.
17 wavData = wavread(wav);
18

19 % Find all of the Epochs
20 TempEpochs = epochFinderBeta(wavData, 1);
21

22 % If the number of epochs in TempEpochs is not an exact ...
multiple of

23 % noOfEpochs then TempEpochs will be enlarged so its size is an ...
exact

24 % multiple of noOfEpochs. The additional data will be identical ...
to the

25 % first X epochs contained in TempEpochs (where X is the number ...
of epochs

26 % that TempEpochs is short of being an exact multiple).
27 if rem(length(TempEpochs),noOfEpochs) 6= 0
28 % If length(TempEpochs) is less than noOfEpochs/2, repeat ...

TempEpochs
29 % within itself before finding FillerEpochs
30 while length(TempEpochs)/2 < noOfEpochs
31 TempEpochs(length(TempEpochs)+1 : length(TempEpochs) + ...
32 length(TempEpochs)) = TempEpochs;
33 end
34 FillerEpochs = TempEpochs(1:(noOfEpochs − ...
35 rem(length(TempEpochs),noOfEpochs)));
36 Epochs = TempEpochs;
37 Epochs(length(Epochs)+1 : length(Epochs) + ...

length(FillerEpochs)) = ...
38 FillerEpochs;
39 else
40 Epochs = TempEpochs;
41 end
42

43 % Initialise output matrix
44 wavMPacket = zeros(7, 64 * (length(Epochs) / noOfEpochs));
45

46 % Generate all the data and fill up the output matrix
47 for i = 1:length(Epochs)/noOfEpochs
48 % Generate mPacket data for each noOfEpochs epochs

168



MATLAB® Code Listings

49 mPacket pre = mPacketGen(Epochs((i*noOfEpochs)−...
50 (noOfEpochs−1):(i*noOfEpochs)),minNoOfEpochs);
51 mPacket = mPacketRearrange(mPacket pre);
52 % Add mPacket to the output matrix
53 wavMPacket(:,(i*64)−63 : (i*64)) = mPacket;
54 end
55

56 % Normalise mPacket to itself
57 wavMPacket = wavMPacket / max(max(wavMPacket));

mPacketGen.m

1 function mPacket pre = mPacketGen(Epochs,div)
2

3 % This function will take in a number (power of 2) of epochs ...
stored in a

4 % data structure. The output will be a data matrix, an mPacket.
5

6 % Create the empty mPacket.
7 mPacket pre = zeros(7, (length(Epochs) / div));
8

9 % Create an empty temporary storage matrix.
10 storage = zeros(7, length(Epochs));
11

12 % Using a for loop, insert data into the storage matrix. Find
13 % floor(log2(Epochs(i).dur)) to calculate which row the data ...

should go
14 % into.
15 for i = 1:length(Epochs);
16 storage(floor(log2(Epochs(i).dur)), i) = Epochs(i).shape + 1;
17 end
18

19 % For every "div" epochs, find the mean of the shape and store ...
this in

20 % mPacket pre.
21 for i = 1:length(Epochs)/div
22 for j = 1:7
23 mPacket pre(j,i) = sum(storage(j, (div*i)−(div−1) : ...

(div*i)),2);
24 end
25 end

mPacketRearrange.m

1 function mPacket out = mPacketRearrange(mPacket)
2

3 % Re−arranges mPackets into the dyadic form.
4 % Very simply, matrix locations are set to the same value for a ...

given span
5 % of 2, 4 , 8, etc. values.
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6

7 % Find noOfEpochs based on length of input
8 noOfEpochs = length(mPacket);
9

10 % Initialise mPacket out
11 mPacket out = zeros(7,64);
12

13 % Mean of 1*noOfEpochs epochs
14 mPacket out(7,:) = mean(mPacket(7,:));
15

16 % Mean of 2*(noOfEpochs/2) epochs
17 for i = 1:2
18 mPacket out(6,(32*i)−31:(32*i)) = ...

mean(mPacket(6,(32*i)−31:(32*i)));
19 end
20

21 % Mean of 4*(noOfEpochs/4) epochs
22 for i = 1:4
23 mPacket out(5,(16*i)−15:(16*i)) = ...

mean(mPacket(5,(16*i)−15:(16*i)));
24 end
25

26 % Mean of 8*(noOfEpochs/8) epochs
27 for i = 1:8
28 mPacket out(4,(8*i)−7:(8*i)) = mean(mPacket(4,(8*i)−7:(8*i)));
29 end
30

31 % Mean of 16*(noOfEpochs/16) epochs
32 for i = 1:16
33 mPacket out(3,(4*i)−3:(4*i)) = mean(mPacket(3,(4*i)−3:(4*i)));
34 end
35

36 % Mean of 32*(noOfEpochs/32) epochs
37 for i = 1:32
38 mPacket out(2,(2*i)−1:(2*i)) = mean(mPacket(2,(2*i)−1:(2*i)));
39 end
40

41 % Mean of 64*(noOfEpochs/64) epochs − data already exists
42 mPacket out(1,:) = mPacket(1,:);

mPacketStacker.m

1 function mp stack = mPacketStacker(mPackets,mean)
2

3 % Returns a stacked mPacket ready for classification. If "mean" ...
is "true"

4 % then the mean of the mPackets is used as the stack and ...
"mp stack" is a

5 % 1 x 127 matrix. If "mean" is "false" then "mp stack" will be a
6 % NoOfMPackets x 127 matrix.
7

8 % If "mean" is true, find the mean mPacket
9 if mean
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10 mPackets mean = zeros(7,64);
11 for i = 1:length(mPackets)/64
12 mPackets mean = mPackets mean + ...
13 mPackets(:, (i*64) − 63 : (i*64) );
14 end
15

16 mPackets = mPackets mean / (length(mPackets)/64);
17 end
18

19 % Now stack the mPacket(s). If "mean" is true then "mPackets" ...
should now

20 % only have a length of 64 so there will only be 1 'stack' in ...
the output

21 % variable "mp stack".
22 % Number of mPackets
23 noOfMPackets = length(mPackets)/64;
24

25 % Create the output stack
26 mp stack = zeros(127,noOfMPackets);
27

28 % Go through all of the mPackets
29 for mp = 1 : noOfMPackets
30 % Create a temporary copy of the current mPacket
31 curr mPacket = mPackets(:,((mp*64) − 63):mp*64);
32 % Create the stack for this mPacket
33 curr stack = mPackets(1, (mp*64) − 63 : (mp*64) );
34 % Perform the stacking for each mPacket
35 for i = 2:7 % Rows to be stacked
36 for j = 1:(64 / 2ˆ(i−1)); % Columns, effectively
37 curr stack(length(curr stack) + 1) = ...
38 curr mPacket(i, (j * 2ˆ(i−1)));
39 end
40 end
41 % Transform the stacked mPacket and add it to the output ...

"mp stack"
42 mp stack(:, mp) = curr stack';
43 end

C.3 Utility Code

multiLVQTrainer.m

1 function multiLVQTrainer(dataMat,targets,PR,PC,savename)
2

3 % Function for training a number of networks with different ...
numbers of

4 % hidden layer units. Each network is saved after training.
5

6 % First declare all of the networks and their values before ...
training (this

7 % is where most typo errors can be caught!).
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8

9 % PR & PC − same for all networks.
10 % Change these if using different training data sets.
11 % PC is the typical class percentages (i.e. percentage of how ...

many of the
12 % training data files belong to each class).
13 % PR is the min and max values for the input elements. As the ...

inputs are
14 % normalised these will always be between 0 and 1. The size of ...

PR will vary
15 % depending on the number of frames/WAV files being analysed.
16

17 % net300 − 300 units
18 net300 = newlvq(PR,300,PC);
19 net300.trainParam.epochs = 50;
20 net300.trainParam.show = 10;
21

22 % net100 − 100 units
23 net100 = newlvq(PR,100,PC);
24 net100.trainParam.epochs = 50;
25 net100.trainParam.show = 10;
26

27 % net50 − 50 units
28 net50 = newlvq(PR,50,PC);
29 net50.trainParam.epochs = 50;
30 net50.trainParam.show = 10;
31

32 % net10 − 10 units
33 net10 = newlvq(PR,10,PC);
34 net10.trainParam.epochs = 50;
35 net10.trainParam.show = 10;
36

37 % Create a directory and file names to save data to. If month ...
is less than

38 % 10 add a '0' in before it.
39 % Clock returns a date vector. c(1:3) are year, month, day
40 c = clock;
41 if c(2) < 10
42 savepath = strcat('C:\Phd\Matlab\Results\',...
43 strcat(num2str(c(1)),'0',num2str(c(2)),num2str(c(3))),' ',savename);
44 else
45 savepath = strcat('C:\Phd\Matlab\Results\',...
46 strcat(num2str(c(1)),num2str(c(2)),num2str(c(3))),' ',savename);
47 end
48 mkdir(savepath);
49 savefile10 = (strcat(savepath,'\',savename,' LVQ 10Hidden'));
50 savefile50 = (strcat(savepath,'\',savename,' LVQ 50Hidden'));
51 savefile100 = (strcat(savepath,'\',savename,' LVQ 100Hidden'));
52 savefile300 = (strcat(savepath,'\',savename,' LVQ 300Hidden'));
53

54 % Training
55 % Each network will be saved after training.
56 tic
57 [net10,tr10] = train(net10,dataMat,targets);
58 save(savefile10,'net10','tr10','dataMat','targets','PR','PC');
59 '10 Hidden Units'
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60 toc
61

62 tic
63 [net50,tr50] = train(net50,dataMat,targets);
64 save(savefile50,'net50','tr50','dataMat','targets','PR','PC');
65 '50 Hidden Units'
66 toc
67

68 tic
69 [net100,tr100] = train(net100,dataMat,targets);
70 save(savefile100,'net100','tr100','dataMat','targets','PR','PC');
71 '100 Hidden Units'
72 toc
73

74 tic
75 [net300,tr300] = train(net300,dataMat,targets);
76 save(savefile300,'net300','tr300','dataMat','targets','PR','PC');
77 '300 Hidden Units'
78 toc

singleOpNetTest.m

1 function [simRes,res,category] = singleOpNetTest(net air, ...
net ac, ...

2 net bird, net build, net rail, ...
3 net road, testData, framelength)
4

5 % Function for testing a group of single−output MLP networks.
6 %
7 % Takes in 6 trained networks, the path of the test data and a ...

framelength.
8 % TDSC features are extracted for the file and each network is ...

simulated
9 % with the results. The network with the highest simulation ...

output value
10 % is considered the winner.
11

12 % Perform TDSC analysis on test data
13 sMat = sMatReturn(testData,framelength);
14

15 % Simulate each network with sMat
16 simRes(1,:) = sim(net air,sMat);
17 simRes(2,:) = sim(net ac,sMat);
18 simRes(3,:) = sim(net bird,sMat);
19 simRes(4,:) = sim(net build,sMat);
20 simRes(5,:) = sim(net rail,sMat);
21 simRes(6,:) = sim(net road,sMat);
22

23 % Find mean of simulation results for each network
24 simResMean = mean(simRes,2);
25

26 % Find max value of mean simulation results
27 [v,category] = max(simResMean);
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28

29 % Find max results for each S−matrix and create a vector of ...
which output

30 % had the highest output value for each frame.
31 for i=1:length(simRes)
32 [v,ind] = max(simRes(:,i));
33 res(i) = ind;
34 end
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Appendix D

MATLAB® Neural Network
Toolbox Training Functions and
Testing Results

D.1 Training Function Summary

Table D.1: Table summarising the training functions provided for MLP networks
by the MATLAB® Neural Network Toolbox. Taken and adapted from
the information provided in Chapter 5 of ‘The Neural Network Toolbox
User’s Guide’(Demuth et al., 2008)

Training function MATLAB®

code
Description

Batch Training train Weights and biases are updated only after
the entire training set has been applied to
the network.

Batch Gradient De-
scent

traingd Steepest descent training function. Weights
and biases are updated in the direction of the
negative gradient of the performance func-
tion.

Batch Gradient De-
scent with Momen-
tum

traingdm Often gives faster convergence than the pre-
vious functions. Momentum allows the net-
work to respond to both the local gradient
and to recent trends in the error surface. Mo-
mentum acts like a low pass filter, allowing
the network to ignore minor features in the
error surface. This can help prevent the net-
work getting stuck in a local minimum.

continued on next page. . .
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Table D.1

. . . continued from previous page

Training function MATLAB®

code
Description

If the learning rate is too high, a network can oscillate and become unstable.
If the learning rate is too low, the algorithm takes too long to converge. The
optimal learning rate can vary during training so it is not practical to determine
the optimal learning rate prior to training.

Variable Learning
Rate Backpropaga-
tion

traingda Solves the issue of finding the ideal learning
rate by changing the learning rate as training
is carried out. After a training epoch, if the
new network error exceeds the old error the
learning rate is decreased. If the new error
is less than the old error, the learning rate is
increased. The increases and decreases to the
learning rate are determined by multiplying
the old learning rate by a constant (either
greater or less than 1 depending on the error
difference).

Variable Learn-
ing Rate Back-
propagation with
Momentum

traingdx Similar to traingda but uses momentum to
prevent the network getting stuck in a lo-
cal minimum on the error surface and ignore
small errors.

Resilient Backprop-
agation

trainrp Eliminates the problem of only small changes
being made to weights and biases even
though the weights and biases may be far
from optimal. This problem can be caused by
using sigmoid transfer functions. Generally
converges faster than previous algorithms.

Conjugate Gradient Algorithms: Basic backpropagation adjusts weights in the
direction of the steepest descent (negative of the gradient), the direction in which
the performance function is decreasing most rapidly. This does not always produce
the fastest convergence. Conjugate gradient algorithms perform searches along
conjugate directions producing generally faster convergence.

Fletcher-Reeves
Update

traincgf Each of these algorithms take a slightly dif-
ferent approach to calculating the direction

Polak-Ribiere Up-
date

traincgp of the conjugates in which to search. Line
searching is used by several of these

Powell-Beale
Restarts

traincgb algorithms, as well as some of the quasi-
Newton algorithms.

Scaled Conjugate
Gradient

trainscg

continued on next page. . .
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Table D.1

. . . continued from previous page

Training function MATLAB®

code
Description

Quasi-Newton Algorithms: Newtonian algorithms make use of the Hessian matrix
(second derivative) of the performance index at the current values of the weights
and biases. These algorithms often converge faster than conjugate methods but
the Hessian matrices are complex and expensive to compute. Quasi-Newton meth-
ods use an approximate Hessian matrix that is updated. This is less complex and
expensive. Quasi-Newton methods are more computationally complex and expen-
sive than Conjugate methods.

BFGS Algorithm trainbfg Uses the Broyden, Fletcher, Goldfarb, and
Shanno (BFGS) update.

One Step Secant Al-
gorithm

trainoss Bridges the gap between the conjugate and
BFGS algorithms by reducing the storage
and computation requirements of a quasi-
Newton algorithm.

Levenberg-
Marquardt

trainlm Similar to a quasi-Newton method, this al-
gorithm was designed to approach the faster
training speed of Newtonian methods but
without having to compute the Hessian ma-
trix. The Levenberg-Marquardt algorithm
uses a Jacobian matrix as an approximation
to the Hessian matrix.

D.2 Preliminary Testing Results

Table D.2 presents the results from testing 24 neural networks, each using a different
combination of topologies, training functions and hidden layer transfer functions.

The four right-most columns show the slope from a regression analysis of the
network for each output and a mean across all outputs. The regression analysis is
performed between the network response to a test dataset and the corresponding
targets for that data. The slope, represented by m, informs of how well the network
response matches the targets: a 1 would signify a perfect match.
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Appendix E

Experimental Results Using the
262 Codebook

E.1 Multiple–output MLP Network – Urban Au-

dio Data
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E.2 Multiple Single–output MLP Networks – Pre-

liminary Testing

Table E.2 presents a summary of results for the initial testing of the single–output
MLP networks. In total 72 single–output MLP networks were trained; three cat-
egories, six combinations of training function and transfer function, four different
topologies.
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Table E.2: Mean performance results for single–output MLP networks arranged by
topology and training and transfer functions.

Topology Training
function

Transfer
function

M–value mean

10-1 traingdx tansig 0.7400
logsig 0.7494

trainrp tansig 0.7520
logsig 0.7405

trainscg tansig 0.5074
logsig 0.7634

50-1 traingdx tansig 0.7288
logsig 0.7408

trainrp tansig 0.7471
logsig 0.7573

trainscg tansig 0.7448
logsig 0.5044

100-1 traingdx tansig 0.7543
logsig 0.7597

trainrp tansig 0.7595
logsig 0.7597

trainscg tansig 0.7591
logsig 0.7817

300-1 traingdx tansig 0.7623
logsig 0.7689

trainrp tansig 0.7755
logsig 0.7070

trainscg tansig 0.7685
logsig 0.5054
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E.3 Six Single–output MLP Networks – Urban

Audio Data
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E.4 Multiple–output LVQ Network – Urban Au-

dio Data
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Experimental Results Using the 262 Codebook

E.5 Multiple–output MLP Network – Preliminary

Testing with Tibicen data

Table E.5: Full performance data for preliminary testing of MLP networks with
Tibicen audio data.

Topology Training
function

Hidden
layer
transfer
function

Time to
train (s)

Frames
correctly
classified
(%)

10-3 traingdx tansig 5.10 80.77
traingdx logsig 1.18 72.56
trainrp tansig 0.39 13.85
trainrp logsig 0.39 4.36
trainscg tansig 0.61 86.41
trainscg logsig 0.47 71.03

50-3 traingdx tansig 1.28 67.44
traingdx logsig 1.67 70.00
trainrp tansig 0.35 47.18
trainrp logsig 0.48 20.51
trainscg tansig 0.65 52.31
trainscg logsig 0.84 68.97

100-3 traingdx tansig 1.99 70.77
traingdx logsig 3.68 71.54
trainrp tansig 0.53 4.87
trainrp logsig 0.60 42.31
trainscg tansig 1.01 65.13
trainscg logsig 0.92 68.21

300-3 traingdx tansig 9.38 68.21
traingdx logsig 35.57 68.21
trainrp tansig 1.72 34.62
trainrp logsig 1.43 35.13
trainscg tansig 4.30 71.79
trainscg logsig 4.14 69.79
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Experimental Results Using the 262 Codebook

E.6 Multiple–output LVQ Network – Preliminary

Testing with Tibicen data

Table E.6: Full performance data for preliminary testing of LVQ networks with
Tibicen audio data.

Topology Time to train (s) Correctly classified
frames (%)

10–3 10.02 74.10
50–3 17.89 50.51
100–3 27.73 86.15
300–3 72.39 0.00
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Appendix F

Experimental Results Using
MTDSC

F.1 Multiple–output MLP Network – Preliminary

Testing
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Experimental Results Using MTDSC
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Experimental Results Using MTDSC

F.2 Multiple–output MLP Network – Urban Au-

dio Data
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Experimental Results Using MTDSC

F.3 Multiple Single–output MLP Networks – Pre-

liminary Testing

Table F.3 presents the results of the preliminary testing for single–output MLP net-
works classifying MTDSC data. In total, 72 different MLP networks were initialised
and tested to cover the different categories, topologies, training functions, and trans-
fer functions. The M–values shown in Table F.3 are the mean of the M–values from
all three categories.

Table F.3: Mean performance results for single–output MLP networks classifying
MTDSC data arranged by topology and training and transfer functions.

Topology Training
function

Transfer
function

M–value mean

10-1 traingdx tansig 0.808
logsig 0.782

trainrp tansig 0.788
logsig 0.794

trainscg tansig 0.849
logsig 0.808

50-1 traingdx tansig 0.790
logsig 0.840

trainrp tansig 0.819
logsig 0.792

trainscg tansig 0.835
logsig 0.813

100-1 traingdx tansig 0.821
logsig 0.765

trainrp tansig 0.835
logsig 0.794

trainscg tansig 0.836
logsig 0.793

300-1 traingdx tansig 0.785
logsig 0.770

trainrp tansig 0.799
logsig 0.708

trainscg tansig 0.776
logsig 0.783
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Experimental Results Using MTDSC

F.4 Multiple Single–output MLP Networks – Ur-

ban Audio Data
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Appendix G

Publications

The following publications are included here for reference:

� Stammers, J. and Chesmore, D. Instrument for soundscape recognition, iden-

tification and evaluation (ISRIE): signal classification. In Proceedings of the

Institute of Acoustics Spring Conference: Widening Horizons in Acoustics, Vol

30(2), Reading, UK, 2008

� Stammers, J. and Chesmore, D. Instrument for soundscape recognition, iden-

tification and evaluation (ISRIE): signal classification. In Proceedings of the

2nd ASA-EAA Joint Conference, Acoustics ’08, Paris, France, 2008

� Bunting, O., Stammers, J., Chesmore, D., Bouzid, O., Yun Tian, G., Karatso-

vis, C., and Dyne, S. Instrument for soundscape recognition, identification and

evaluation (ISRIE): technology and practical uses. In Proceedings of Euronoise

2009, Edinburgh, Scotland, 2009
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Proceedings of the Institute of Acoustics 

Vol. 30. Pt.2 2008 

INSTRUMENT FOR SOUNDSCAPE RECOGNITION, 
IDENTIFICATION AND EVALUATION (ISRIE): SIGNAL 
CLASSIFICATION 
 
J Stammers Department of Electronics, University of York, York, YO10 5DD 
D Chesmore Department of Electronics, University of York, York, YO10 5DD 
 
 
 

 

1 INTRODUCTION 

The ISRIE project is a collaboration between the universities of York and Newcastle, and ISVR in 
Southampton. Work at York is split between two projects; one focusing on signal separation and the 
other on identification. This paper describes the current work being undertaken on the latter of these 
two subjects and begins by briefly describing how the ISRIE project arose and its intended 
outcome. A review of the related literature is given which covers previous projects dealing with 
signal classification. There will follow a brief discussion of the types of sound ISRIE will aim to 
classify. The current techniques being investigated will be described along with preliminary results. 
Finally, conclusions are drawn and the proposed plans for the future of this research are presented. 
 

1.1 ISRIE 

The ISRIE project arose from the EPSRC Ideas Factory ‘A Noisy Future’. The proposed outcome of 
the project can be described briefly as an intelligent noise metering system able to determine the 
direction and source from which a sound originated. It will also be able to provide other details such 
as the time at which the sound occurred and how loud the sound was. If a number of these 
instruments are used as a network of sensors it should be possible to estimate the location from 
which a sound originated. 
 
The primary motivation for such an instrument is to assist in urban noise level measurements, 
whether for research or for legislative purposes. At present detailed investigation of a sonic 
environment involves either attended monitoring or long-duration recordings and analysis of this 
data. Both of these methods are very time consuming and require the full attention of an individual 
and introduce the problem of subjectivity. An instrument such as that proposed by the ISRIE project 
would perform listening and evaluation in-the-field removing the requirement for an individual to be 
present or recording of large quantities of data. The instrument would also be capable of delivering 
a highly objective analysis of the soundscape. An example of where ISRIE could have been of use 
is an analysis of the occurrence of oversnow vehicles in Yellowstone National Park

1
. In this study 

audio samples were recorded in the field and then analysed in an office environment. Burson 
describes how the volume of playback for some recordings had to be increased by 10dB to 
approximate the audibility that would have been available in the field. ISRIE would remove both the 
need for level boosting and the need for time consuming analysis of large quantities of recorded 
audio. 
 

1.1.1 ISRIE and Noise Legislation 

It is thought that ISRIE will be of great benefit to those whose work is concerned with noise 
legislation, namely Planning Policy Guidance (PPG) 24 and BS 4142. PPG 24 is concerned with 
evaluating noise exposure to noise-sensitive developments and BS 4142 is concerned with rating 
industrial noise affecting both residential and industrial areas. When a noise complaint needs to be 
investigated ISRIE could be used in place of a person collecting data manually. 
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PPG 24 uses four noise exposure category (NEC) bands to describe a sound. Where a 
measurement is placed within these bands is dependant on the contribution of each of the four 
noise categories; road traffic, rail traffic, air traffic and mixed noise sources. Currently the 
contribution of each of these categories to determine where a measurement is placed is performed 
by a person and could therefore be quite subjective. ISRIE would be able to provide a purely 
objective NEC band recommendation. Analysis for BS 4142 would also benefit from ISRIE as it 
would remove the excessive labour in performing the numerous measurements required. 
 

1.2 Sound Categories 

As part of the signal classification research it was deemed necessary to develop an acoustic 
taxonomy into which sounds would be categorised. Initially it was thought that the quantity of 
categories would be very high (given how many different sounds can be observed in an urban 
environment). However, as a result of discussing analysis of PPG 24 and BS 4142 with the project 
partners from ISVR (Southampton) the categories given in Figure 1 have been decided upon as the 
most important to be identified. 

 

 
 
These sounds have been grouped into the main categories anthrophony (sounds related to human 
activities), geophony (sounds caused by nature), and biophony (sounds caused my animals). There 
are some sounds that may be seen as missing from this diagram. Under the Geophony category 
other natural based sounds, most of which are caused by the wind, could also be included. 
However, it was pointed out that when wind speeds are in excess of 5 m/s an acoustic consultant 
would often not perform a measurement as the noise induced on the sensor by the wind is too 
great. This situation will also apply to ISRIE so wind-induced sounds are not included. Other sounds 
considered missing from this diagram are not included because they are simply not loud enough to 
have an impact on a soundscape. The incidental sounds made by humans and animals are a good 
example of this. There is little in the literature regarding categorisation of urban audio signals. The 
reason for this may be that many sound classification projects focus on a small set of sounds or a 
particular species of animal. There are 2 good examples of categorisation in the literature. 
Raimbault and Dubois

2
 use a tree-like structure which broadly splits the categories into 

transportation/works and people presence. These are then further subdivided to include some of the 
typical sounds found in an urban soudscape. It is somewhat strange to find the subcategories of 
running water and birds singing under people presence as these are not strictly due to the presence 
of humans. The other categorisation found in the literature is very similar to the idea generated at 
York

3
 (Figure 1). The approach that Gage et al. use assigns specific frequency bands to each of 

anthrophony, geophony and biophony. This may cause a mis-categorisation because there are 
biophonic sounds that will fall below the 2.5 kHz low-end frequency of the biophony category. 

Figure 1: Acoustic taxonomy. The categories were derived from the sounds seen 
as having most influence on PPG 24 and BS 4142 measurements. 
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Figure 2: Flow diagram showing the basic structure of a classification system. 
Adapted from 

5
. 

Table 1: Some examples of feature extractors and classifiers often seen in the 
literature 

 

2 CLASSIFICATION SYSTEMS 

A classification system is typically a 2-stage process and consists of a feature extractor and a 
classifier

4
. The flow diagram in Figure 2 describes the basic structure of a classification system. 

Some systems also use post-processing after the classifier to correct for any errors in classification. 
 

 
 
 

 
 
 
 
There are many feature extraction techniques and classifiers to choose from and the selection of 
each of these is usually based on the intended application and any prior knowledge. Table 1 gives 
examples of both feature extractors and classifiers found in the literature surrounding the topic of 
audio signal classification. 
 

Feature Extractor Classifier 
Fourier transform (Fast/Short) Multilayer Perceptron 
Wavelet transform Self-Organising Map 
Wigner-Ville distribution Learning Vector Quantisation 
Time-Domain Signal Coding Time Warping 

 
 
 
 

2.1 Previous Studies of Sound Classification 

There are many studies to be found in the literature which aim to perform classification of signals, 
whether they are audio signals or some other wave-based signals, such as an ECG signals. There 
are numerous studies which look at identifying different species of animal based on the sounds they 
emit, both incidental and deliberate sounds are considered. Some examples of animals identified 
are wood-boring insects

6
, crickets

7
, frogs

8
, and birds

9
. Each of these studies show that it is possible 

to discriminate between very similar vocalisations which gives promise in the context of ISRIE as 
there will undoubtedly be similar sounds occurring in an urban environment. Cowling and Sitte

10
 

provide an excellent comparative examination of various feature extractors and classifiers for the 
recognition of environmental sounds. The aim of the study was to find which feature extractor-
classifier pair provided the best classification results for a sound surveillance system. They found 
that using a continuous wavelet transform for feature extraction with a dynamic time warping 
classifier provided the best results (70% accuracy). In a novel approach to environmental sound 
classification

11
 the goal is similar to that of ISRIE; to develop a system capable of giving an efficient 

representation of an acoustic environment. This is study is novel in that it uses a system based on 
genetic algorithms (GAs) to determine which features to extract from a sound. Using this method in 
combination with 2 different classifiers (a Gaussian mixture model and a k-Nearest Neighbour 
algorithm), classification results between 90% and 95% are achieved. No specific data is given but 
it is suspected that an approach using GAs will be computationally expensive and therefore not 
suited to ISRIE. A study looking at sound textures

12
 uses a Self-Organising Map fed directly by the 

audio data without any feature extractor. The data is fed in 2
n
 (1 < n < 4) samples at a time and the 

SOM produces a histogram output. The theory behind this approach is that for a new input signal 
the trained SOM will produce a similar distribution to the distribution of the signal for which it was 
trained. This approach works very reliably to determine if a test signal is the same or different to the 
training signal but it cannot classify the test signal into a category. 
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Figure 3: Simple example of D-S characteristics extracted using TDSC. The X-
axis shows the sample intervals and the Y-axis represents amplitude. 

All of the studies discussed above show that it is possible to perform accurate classification with a 
variety of audio signals. These can either be animal vocalisations or general audio signals such as 
those which may be found in an urban environment. In the following section the current approach to 
the classification problem being studied at York is described. 
 
 

3 CURRENT APPROACH 

The current approach being adopted at York is to use Time-Domain Signal Coding (TDSC) feature 
extraction and a Self-Organising Map (SOM) classifier. TDSC has been chosen because it is very 
computationally inexpensive and has had excellent success rates when used for classification of 
species

6,13
. A SOM has been chosen for use as an initial classifier partly due to its ease of use but 

also because it is easily expandable. If the SOM receives a signal it has not seen before it could 
potentially create a new output unit (and hence a new output class) for that input so that if a similar 
signal is presented it will be classified accordingly. TDSC is discussed in more detail below. 
 

3.1 Time Domain Signal Coding 

Time Domain Signal Coding is a purely time-domain technique based on a speech compression 
method known as Time Encoded Speech

13
. In TDSC analysis signals are segmented using zero 

crossings of the time-domain waveform. The data between successive zero crossings is termed an 
epoch. Each epoch can then be described by its shape (S - the number of minima) and its duration 
in samples (D) and a whole signal can then be described by its D-S pair characteristics. Figure 3 
shows a simple example of D-S characteristics. 

 
 
 
 
 
In this example the first epoch has duration of 9 samples and a shape of 2. A signal analysed using 
TDSC will often have a large number of D-S pairs. These can be mapped onto a smaller symbol set 
(termed the codebook) to make processing easier. The codebook can then be used to generate 
either a 1- or 2-dimensional histogram describing the occurrence of D-S pairs. The 1-dimensional 
variant is called the S-matrix where the X-axis represents the code and the Y-axis the frequency of 
occurrence for each code.  
 

3.1.1 Duration-Shape Distribution 

In previous studies using TDSC the codebook has been generated manually to suit the application 
containing some 30 codes

6,13
. However, this is not possible for the application to the general sounds 

found in an urban environment (shown in Figure 1) due to the large variation in D-S distributions. To 
identify how much these distributions varied by, plots were generated of D versus S as shown in 
Figure 4. These plots were resized to show the areas containing the most information as the D-S 
distributions form very sparse matrices. The maximum D-S pairings found for each of these sounds 
were: A/C unit D=1468 S=165, Blackbird D=218 S=56, Digger D=434 S=68, and Human speech 
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Figure 4: Distributions showing D (X-axis) versus S+1 (Y-axis). Clockwise from 
the top-left, the plots represent the following sounds: an air conditioning unit, a 
blackbird singing, human speech and a digger. The darker areas represent higher 
frequencies of occurrence for that D-S pair. Recordings of the A/C unit and 
speech courtesy of ISVR, Southampton. All recordings sampled at 44.1 kHz. 

D=1086 S=161. Using the speech recording as an example, there was 1 occurrence of the 
maximum D-S pair whereas the most frequently occurring D-S pair (D=2 S=0) was detected 9813 
times. This illustrates that some sounds have anomalies present in the recordings which may not be 
characteristic of that sound. 

 
 

3.1.2 Generation of a general codebook 

Based on the findings of plotting D-S distributions for a number of sounds it was decided that the 
maximum duration that would be useful to detect would be 1000 (using a sample rate of 44.1 kHz) 
and the maximum shape would be 75. This gave a very large total number of D-S pair combinations 
(>50,000). To reduce this number 40 duration ranges were devised based on the findings from the 
D-S distributions. The first 19 of these ranges had a range of 1 as most D-S data occurs within 
D<20. The subsequent ranges spanned durations of 10, 50 and 100 samples. After calculating 
these ranges the total number of D-S pair combinations was significantly reduced to 1700. 
 

3.2 Classification of the Audio Data 

Initial research has focussed on classifying audio recordings of the sounds given in Figure 1 using 
TDSC for feature extraction and a SOM to classify the resulting time domain data. Each audio 
sample was typically of 2 seconds in duration and analysed in 0.2 second frames. Each frame then 
had an S-matrix associated to it and these were used as the input to the SOM. Figure 5 illustrates 
this process. 
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Figure 5: The classification process 

Figure 6: A plot showing the sparseness of the output for TDSC analysis for a 
recording of a blackbird. The X-axis shows the code number, the Y-axis shows the 
time frame number and the dark areas show which codes occur in each frame. 

 
 
 
 
During training of the SOM it was noticed that the winning unit was consistently either the highest or 
lowest numbered unit in the network. This result was not dependant on the input TDSC data; each 
input gave the same result. The SOM was tested with a smaller, controlled data set consisting of 
only one value and it performed as expected; the weights for one particular unit in the network 
approached the value of the input data after a number of training epochs. This showed that the 
SOM network was functioning as expected. Attention was then turned onto the S-matrices being 
produced by the TDSC algorithm. Figure 6 shows a plot of how the data is spread out through the 
codebook. It is quite clear to see that the arrays containing the code frequencies are very sparse. 
Analysis of the actual data contained in the arrays has shown that the number of cells with a value 
of zero averages 95%. This figure is similar for a variety of audio data typical to an urban 
environment. It is believed that this sparseness is the reason for the SOM continually training its 
weights toward zero and producing the same winning unit even for different initial audio data. 
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Figure 7: The top diagram shows the time-domain waveform of the cricket song. 
The lower diagram shows the pattern of the class output as the signal changes. 

4 CONCLUSIONS AND FURTHER WORK 

This paper has presented the current work on signal classification as part of the overall ISRIE 
project. What the ISRIE project is and what it is aiming to achieve has been described. Via 
discussions with project partners and analysis of PPG 24 and BS 4142 the set of sound categories 
presented in this paper has been defined to classify audio data into. Prior to discussing the current 
approach to signal classification a short description of how a classification system is typically 
constructed was given along with a brief review of previous research in the related areas. 
 
The approach currently being used for signal classification has been described. This consisted of a 
time-domain signal coding (TDSC) feature extractor producing S-matrix data as an input for a self-
organising map (SOM). It was clear to see from the distributions given in Figure 4 how D-S data 
varies from one sound to another showing that TDSC is a useful feature extractor. It is also clear to 
see from these distributions that the majority of D-S data is contained in the region D<25 S<10. It 
was shown that the general codebook generates very sparse arrays of data causing erroneous 
classification by the SOM. It is therefore necessary to review the arrangement of this general 
codebook to better describe the salient features of the D-S distributions in the region given above. 
Other methods of compressing the D-S information into a codebook to reduce the array sparseness 
will be investigated. 
 

4.1 Further Work 

Research will continue using the TDSC and SOM classification system described above. Other 
feature extraction methods are also due to be studied and tested, Wavelet transforms are of 
particular interest. A comparison of the classification accuracies produced will be made to see if any 
improvement can be had by using a different feature extractor. 
 
It is intended that the classification process shown in Figure 5 will be expanded by using the output 
of the SOM as an input to a syntactic pattern recognition system (SPR - see 

14
 for an introduction to 

syntactic methods). The combination of a TDSC feature extractor and SOM classifier can produce 
an output class variation with repeating patterns. This is illustrated in Figure 7 which used a 
recording of a cricket as the input to the TDSC-SOM classifier. The change from class 1 to class 4 
occurs in a repeating pattern throughout in line with the song of the cricket and the silence between 
chirps. It has been proposed that this sort of data could be used as the grammar in a syntactic 
pattern recognition system. Further analysis of the SOM output for various audio recordings will 
demonstrate if a SPR approach is a feasible solution in the context of the ISRIE project. 
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ISRIE is a collaborative project between the universities of York and Newcastle and ISVR in Southampton. The 

work being undertaken at York is in its second year and focuses on signal separation and classification. 

Developing novel methods for classifying urban and other sounds into distinct categories (such as transportation, 

industrial, human, animal, etc.) is the focus of the work detailed in this paper. The classification system will 

initially consist of 2 main parts: a feature extractor and a classifier. Results from this basic system will be 

presented and a discussion given on how the system will be expanded. It is envisaged that eventually the system 

will use some form of syntactic pattern recognition to perform the identification of individual sounds.  

1 Introduction 

The ISRIE project arose from the EPSRC Ideas Factory ‘A 

Noisy Future’. The proposed outcome of the project can be 

briefly described as an intelligent noise metering system 

able to determine the direction and source from which a 

sound originated. It will also be able to provide other details 

such as the time at which the sound occurred and how loud 

the sound was. If a number of these instruments are used in 

a sensor network it should be possible to estimate the 

location of the sound source. Such an instrument would be 

a useful tool in urban noise level measurements, either for 

research or for legislative purposes. This can be a very time 

consuming process when performed manually and can also 

be subjective if soundscape content is also being examined. 

More details on the ISRIE project and its application to 

legislative procedures can be found in [1]. 

1.1 Sound Categories 

The signal classification part of the ISRIE project has 

identified the key sounds that are to be recognised within an 

urban soundscape. These are shown in Fig. 1. The decision 

to focus on these sounds for the final system was based on 

discussions with project partners and current noise 

legislation in the UK. 

 

 

Fig. 1 The relationship between the key sounds to be 

identified. 

The soundscape has been split into 3 main categories: 

Anthrophony, relating to sounds made by humans; 

Geophony, naturally occuring sounds; and Biophony, 

sounds made by animals. Only the most prevalent sounds 

that would be heard in an urban soundscape have been 

included. So under the category of biophony only birdsong 

and the bark of a dog have been included because other 

animal sounds are unlikely to exceed the background noise 

level of an urban environment. Other sounds that could be 

included under geophony are likely to be caused by the 

interaction between an object and the wind (a tree, for 

example).  These sounds are not included in the diagram 

because it was pointed out that when wind speeds exceed 5 

m/s an acoustic measurement is unlikely to be taken 

because of the noise induced on the sensor by the wind. A 

similar method of breaking down the soundscape has been 

seen in [2]. The approach taken by Gage et al. applied 

frequency divisions to separate the 3 main categories. This 

could lead to mis-classification as not all sounds found in 

each of the categories will necessarily adhere to the 

frequency bands. 

2 Classification Systems 

Classification systems typically consist of 2 main 

components – a feature extractor and a classifier [3]. The 

role of the feature extractor is to reduce the complexity of 

the data being input to the classifier to optimise the 

classifying process [4]. There are many examples in the 

literature of classification systems for the analysis and 

classification of both audio and other wave-based signals. 

The range of techniques used and applications vary 

considerably from wavelet feature extraction and multi-

layer perceptron network classifiers for human bowel-

sound monitoring [5] to time-domain and Mel-frequency 

techniques for species identification [6,7,8]. The area of 

environmental sound analysis has also had a lot of 

development. Cowling and Sitte [9] provide an excellent 

overview of techniques as applied to a sonic security 

system. Their research found that a continuous wavelet 

transform feature extractor coupled with a dynamic time 

warping classifier gave the highest recognition accuracy 

(70%). A novel approach to environmental sound 

recognition is found in the work of Defréville et al. [10]. 

Their work focussed on using genetic algorithms to find 

problem-specific features for each individual signal. The 

results of this method are promising (~90% accuracy) but 

the signal processing techniques discovered are very 

complex. 

To date, of the many feature extractor and classifier 

methods available Time-Domain Signal Coding for feature 

extraction and a Self-Organising Map have been 

implemented to make up the classification system.  

Time-Domain Signal Coding (TDSC) is a feature extraction 

technique which focuses purely on the time-domain 

representation of an audio signal. The waveform is 

seperated into epochs (the signal data between two 

consecutive zero crossings) and each of these are analysed 

in terms of shape (S) and duration (D). The shape of an 

epoch is determined by how many positive or negative 

minima it contains and the duration is simply the length of 

the epoch in samples. Further details of how TDSC is 

performed can be found in [6,7]. TDSC has previously been 

used for monitoring of machinery and heart sound analysis 

[6]. In its application to species recognition TDSC has 

achieved 100% classification accuracy for 13 different 

Cricket species.  
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3 Application of TDSC  

It was mentioned above that a TDSC feature extractor was 

coupled with a Self-Organising Map (SOM) classifier for 

the initial system development. Details of SOMs and their 

implementation can be found in [11]. The main focus of 

this work has so far been to produce an output from the 

TDSC algorithm which is suitable for classification by the 

SOM. The duration-shape (D-S) information gathered by 

TDSC is typically organised into a codebook representing a 

range D-S combinations. The S-matrix is an array of data 

which associates a frequncy of occurrence to each of these 

combinations. In previous studies using TDSC the 

codebook has been manually designed for the application, 

typically giving ~30 codes. To generate a suitable codebook 

for containing urban sound data distributions were 

produced of D-S combinations for various sounds. Fig. 2 

shows an example of one such distribution. 

 

Fig. 2: D-S distribution for a recording of a building 

site digger. The x-axis represents D and the y-axis 

represents S. 

The maximum D-S pairing found was for an air 

conditioning unit with D=1468 and S=165. Based on this 

and other results it was decided to limit D to 1000 and S to 

75. Using all possible combinations of these D and S ranges 

would give a codebook with a very large order of 

magnitude (>50,000). This number was reduced to 1700 by 

deviding duration ranges to fit the data into.  

Fig. 3 shows the initial classification system used. The 

audio signal was broken into frames and each of these were 

analysed seperately using the TDSC algorithms. The TDSC 

output data for each frame was then classified by the SOM 

to give a class output for each frame. 

 

Fig. 3: The arrangement of the initial classification 

system. 

Initial results using the codebook discussed above were 

disappointing. The SOM consistently gave the same 

winning units for all sounds. Upon analysis of the TDSC 

output it was found that the S-matrices had an average 

sparseness of 95%. For this reason the SOM was struggling 

to differentiate between the S-matrices generated for 

audibly different signals. 

Further inspection of D-S distributions (Fig. 2) showed that 

further reduction of the maximum D and S values was 

possible without sacrificing significant amounts of data. A 

codebook with a size of 340 was achieved using D=150 and 

S=15. Results using this codebook are presented below 

using recordings of sounds found in an urban setting and 

recordings of some Cicadas. 

3.1 Cicada Classification 

High quality recordings of 3 different species of Cicada 

were made available to test the system. It was decided to 

experiment with these recordings for two reasons: a) the 

Cicadas are difficult to differentiate by ear so it would be a 

good test to see if the system could; and b) there is interest 

in developing a real-time system for the identification of 

different Cicada species. A total of 24 recordings were used 

– 3 in which the species were known (training set) and 21 

unknown (for testing). The framelength used in the TDSC 

analysis was 0.2 seconds. It was decided to use a 10 unit 

SOM for classification. 

Fig. 4 shows a plot of the class outputs for each frame of 

the known recordings. It is clear to see from this plot that a 

very simple decision rule (perhaps based on an LVQ 

method) would allow seperation of the 3 different species 

of Cicada. Flamatus appears only in classes 1-3, japonicus 

in classes 4-6 and biahamatus dominates classes 8-10. Fig. 

4 also shows the class outputs for one of the unknown 

recordings. By visual inspection it is clear that this 

particular recording would be placed in the bihamatus 

category. Overall, the system comprising of a TDSC feature 

extractor and a SOM classifier achieved a classification 

accuracy of 95%. 

 

Fig. 4: Frame-wise representation of SOM class output. 

The different classes are bihamatus (●), japonicus (□), 

flamatus (x) and test data (+). 

3.2 Urban sound classification 

Using the same system as that described above, 

classification of urban sounds was experimented with. The 

recordings used were of some of the sounds given in Fig. 1 
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(air conditioning unit, single motor vehicle, birdsong and 

building works). There were not as many recordings of 

each of these sounds available as there were for the Cicadas 

but the resulting data discussed below is still useful.  

The recordings of each type of sound were seperated into 6 

second sections (of the available data this provided 2 or 3 

different recordings for testing). Initially a framelength of 

0.1 seconds was chosen. As little is known of the 

significance of framelength in this application, 0.1 seconds 

was chosen as a starting value. The same theory applies to 

the number of output classes chosen for the SOM . In this 

instance 40 classes were used.  

A  plot of class output for each frame of a building site 

recording is shown in Fig. 5. The prominent sound in this 

recording was a large caterpillar-track-driven digger 

interspersed with some road noise. 

 

Fig. 5: Framewise SOM class output for a 6 second 

building site recording. 

It is clear to see from this plot that there is no clear banding 

of class output as there was for the Cicada recordings. Plots 

for the other sounds listed above produced very similar 

results, i.e. no obvious class dominance. These 

disappointing results influenced the decision to start 

looking at how framelength affected the SOM class output 

plots. Reducing the framelength had the effect of increasing 

the apparent lack of structure seen in Fig. 5. Increasing the 

framelength to 0.5 seconds produced plots that were more 

promising. Fig. 6 shows the result of using the longer 

framelength with the same recording as used to produce 

Fig. 5 and another recording of a similar soundscape.  

 

Fig. 6: SOM class output for 2 similar building site 

recordings; (●) uses the same audio data as that in Fig. 

5 and (□) is shown for comparitive purposes. 

 

Fig. 7: SOM class output for a blackbird recording. 

Using a longer framelength does seem to have a positive 

affect on the SOM output. Visual analysis of Fig. 6 shows 

that both of the building site recordings mostly produce 

outputs in the 12-20 class region. Figure 7 shows the class 

outputs for a blackbird recording and is included for 

comparison to the building site output. The class range for 

the blackbird recording is mostly 20-27, different ot that of 

the building site.  

Converting the class output data for the building site into a 

histogram shows a distinct tendency for the class range 

stated (see Fig. 8). Similar SOM output histograms were 

achieved for the other urban sounds when analysed using a 

framelength of 0.5 seconds. The Cicada recordings 

produced results in line with those discussed in Section 3.1 

showing that increasing the framelength to 0.5 seconds does 

not have an adverse affect on their classification. 

 

Fig. 8: Histogram of SOM class output for 2 building 

site recordings using a framelength of 0.5s for TDSC 

analysis.  

3.3 Further Classification Work 

The above findings are encouraging for the development of 

a system able to distinguish between various urban sounds 

(and species specific sounds). Further work in this area will 

initially focus on retrieval and analysis of more urban sound 

recordings. This will enable validation of the above results 

and to see if this approach shows promise for a broader 

range of audio data. SOM output class histograms for the 

new recordings will also be generated to discover any 

trends that may be present. It could also be possible to use 

Publications

214



 

these histograms as an input to another classifier to see if a 

clear distinction can be found. 

One direction for development of the classification system 

which is of particular interest would be to implement 

syntactic methods. Syntactic pattern recognition (SPR) 

involves breaking data into its basic building blocks, known 

as pattern primitives, and devising a grammar for a data set 

[12]. In the case of speech analysis (an area in which SPR is 

often used) the pattern primitives and grammar are fairly 

obvious. To use syntactic techniques for urban sound 

classification the pattern primitives will have to be devised 

based on the data available. From the plots given in Figures 

4-6 there seem to be two options for pattern primitives; 

either the actual class outputs and how these follow each 

other, or applying trends to how the classes change with 

time. Once some pattern primitives have been decided upon 

a suitable classifier is then required to analyse these. A 

hidden Markov model (HMM) classifier could be the 

solution. HMMs are based on a state machine structure 

where the transition from the current state to the next has a 

probability associated with it [13]. A HMM will need 

training like any other classifier to determine the state 

transition probabilities. There are other possibilities for 

SPR classifiers but HMMs will be considered in the first 

instance because previous studies have shown they can be 

used for classification of everyday sonic environments [14]. 

The further work described above expands on the system 

structure shown in Fig. 3 by making the TDSC feature 

extractor and SOM classifier combination a preprocessor 

for further classification. 

4 Conclusions 

This paper has discussed the current work on signal 

classification for the ISRIE project. A system has been 

described consisting of a Time-Domain Signal Coding 

feature extractor and a Self-Organising Map classifier. A 

suitable TDSC codebook has been developed for use with 

urban audio signals and the current version of the codebook 

has improved significantly on the original. The effect of 

framelength on the SOM output classes has been 

investigated. From the results given a framelength of 0.5 

seconds has shown the best results so far. Increasing the 

framelength further may have the effect of averaging the 

results too much and there will be no discernible difference 

between sources.  

Suggestions for further work have been made which 

investigate the potential for using syntactic methods in the 

classification process and how the current implementation 

can be improved upon. The current TDSC/SOM 

combination will become a preprocessing unit for any 

expanded system that is developed. 
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ABSTRACT 
Technological advancements in microelectronics and continuing research into signal 
characterisation and classification techniques have lead to promising results in developing an 
advanced sound meter.  This instrument would be capable of characterising a sound field in 
terms of the relative contributions of the different noise sources.  This paper provides an 
overview of this collaborative project, due for completion in October 2009, and the milestones 
that have been reached.  In particular, the consideration and implementation of sensors and 
systems, the signal processing algorithms of source identification and classification, and the 
potential uses of the instrument in specific noise assessments in the UK are discussed. 
 

1. INTRODUCTION 
The collaborative work of three Universities; Newcastle upon Tyne, York and Southampton, 
has led to promising results in the development of an advanced sound meter that could 
provide a powerful measurement platform for many applications ranging from environmental 
noise assessments to the recording and evaluation of a variety of soundscapes. 
 
Partners at the University of Newcastle upon Tyne have developed a multi-sensor technique 
for localising sound sources.  In their particular method, the commercially available 
SoundField microphone probes have been used for 2D and 3D sound source localisation.  
Also, known beamforming techniques have briefly been investigated as an alternative 
technique for source localisation.  Partners at the University of York have made use of a 
single SoundField microphone probe instead for developing a single-sensor technique for 
source localisation, separation and signal classification.  Finally, partners at the University of 
Southampton have investigated the potential uses of ISRIE in existing noise legislation, 
planning and guidance and have also liaised with a wide range of stakeholders that could 
directly benefit from the use of such an advanced sound instrument. 
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2. ACOUSTIC SOURCE LOCALISATION 
Over the course of the ISRIE project the co-authors at Newcastle University implemented an 
acoustic localisation system that is capable of locating a single sound source using at least 
three omni-directional microphones (i.e. 2D linear arrays) in a reverberant indoor environment 
with high accuracy for angle detection and small errors for distance estimation1.  Sound 
source localisation in a 3D environment has been achieved by utilising the commercially 
available SoundField probes. 

 
Figure 1 shows the use of three acoustic sensors in the context of a sound localisation 
system. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Three-microphone array system for acoustic monitoring1. 
 
The three acoustic sensors (omni-directional or 3D SoundField microphones) capture the 
sound simultaneously and the Time Delay Estimation (TDE) is extracted from any two sound 
signals from the three sensors using the Generalized Cross-Correlation (GCC).  This method 
would ultimately derive sound source direction and distance through triangulation and 
geometric parameters.  The three microphones are positioned in a straight line and the sides 
of the triangles formed by the source and each microphone represent the directional 
propagation paths from the source to each microphone.  The direction of each propagation 
path is determined from the time differences between the signals arriving at the microphones.  
GCC is used to increase robustness to the adverse effects of early reflections and 
reverberation. 
 
A. The 3 SoundField Microphone Method 
Three SoundField SPS422B microphones were arranged in a straight line in order to achieve 
source localisation in a 3D environment1.  Each microphone output is formed into a special 
signal format, the B-format, where four channels represent the velocity component in the three 
Cartesian directions; X (front-back), Y (left-right), Z (above-below) and one omni-directional 
signal, W, representing the pressure component.  These signals are then fed into a PC for 
post-processing. 
 
The Y and Z channel will generally be the same due the linear arrangement of the probes.  
The 2D configuration can be used for tilt and yaw estimation of sound direction in 3D.  The X 
and W were therefore used for estimation in the experiment.  With this arrangement, it has 
been possible to locate a single sound source in a reverberant indoor environment with an 
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accuracy of 1° for angle detection and errors less than 4% for distance estimation.  A 
rearrangement of the soundfield array in the Z Cartesian direction was tested in order to 
provide estimates of yaw instead of azimuth angles.  The W and Z microphone outputs were 
used for the estimation and the results were similar.  The SoundField probes could therefore 
potentially be used in a commercial source localisation system, where the sensitivity of these 
microphones to sounds arriving from different directions will be applied to source localisation 
in planes other than that defined by the line of the array. 

 
B. Beamforming Techniques 
In the literature, beamforming is another suggested technique that has extensively been used 
in developing instruments for soundscape recognition, identification and sound source 
localisation2, 3. The beamforming technique is a technique that searches for a peak (or peaks) 
by achieving a full directional scan in order to determine the source(s) direction(s) from this (or 
these) peak(s). This can be achieved by delaying and summing the acoustic emitted signals to 
minimise the noise effects and enhancing (or maximising) the amplitude of the point (or 
direction) that represents the location of the sound source2, 3. The sound source can be 
considered to be in the near-field if the wavefront is modelled as spherical, whereas it is 
considered to be in the far-field if it is assumed to be planar3. The consequences of these 
assumptions are that in the near-field both the range and Direction of Arrival (DOA) can be 
computed, whereas in the far-field, only the DOA can be estimated due to computational 
costs3. Li3 designed a flexible broad-band beamformer using nested Concentric Ring Array 
(CRA) that can be divided into sub arrays, where each sub array can cover a specified 
operating range.  In our study, the acoustic camera, which mainly includes a microphone array 
of Star 36 sensors4, a data-reader device, a laptop computer and the "NoiseImage" software4, 
has been used for the investigation on flexible beamforming techniques and instrument 
validation.  The data from this study is currently under investigation. 
 

3. SOURCE SEPARATION 
The task of automated recognition of audio signals is made considerably more complex by 
multiple sources being present in the audio recording, with a consequent reduction in 
recognition accuracy rates. To provide enhanced recognition accuracy, ISRIE employs a 
source separation algorithm prior to the recognition stages.  The separation method 
developed for ISRIE is based on the assumption of W-disjoint orthogonality. That is, audio 
sources are sparse in a time-frequency domain.   The sensor used is a Soundfield ST350, a 
B-format coincident microphone array5, 6 that offers a more portable microphone system over 
the SPS422B. 
 
A. Model 
Consider a 3-dimensional coincident array comprising of 3 orthogonal sets of figure-of-eight 
microphones and an omni-directional microphone at the centre of the array. Given the location 
of the sources, the B-format mixture of signals in the anechoic case can be expressed as: 
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where x , y , z  are the mixtures observed on the Cartesian axis, w  is the mixture observed 

by the omni-directional sensor, and θ , λ  are the azimuth and elevation for the direction of 

arrival of a particular source. 
 
B. Assumptions 
Separation of a given mixture is subject to two conditions on the source mixture being met. 
These are W-disjoint orthogonality7 and radial sparsity. These are described formally below.  
 
W-disjoint Orthogonality 

Two sources is  and js  are W-disjoint orthogonal if the following condition is met. 

 

0),(),( =τωτω ji SS  ∀ τω,,ji ≠  (2) 

where ),( τωS  represents the time-frequency domain transformation of )(ts . 

 
Radial Sparsity 
This a condition placed on the geographical location of the sources. Each source must have a 
unique direction of arrival at the sensor. 
 

),(),( jjii λθλθ ≠  ∀ ji ≠  (3) 

 
C. Direction of Arrival (DOA) Calculation 
Provided the above conditions have been met, the DOA of the B-format audio signal can be 
calculated in the time-frequency domain using a method from Directional Audio Coding 
Scheme (DirAC)8, 9. 
 

( )( )),(),(),(*),(),( * τωτωτωτωτω ZeYeXeWD zyx

rrrr
++−ℜ= ∀ τω,  (4) 

where xe
r
, ye
r

 and ze
r

 are unit vectors along the Cartesian axes. 

 
D. Source Location Estimation 
Using the calculated DOA vectors, it is possible to perform source localisation using a variety 
of techniques. Perhaps the simplest is to construct a histogram over an arbitrary time period, 
and look for peaks. This method, along with another clustering method based on self-learning 
neural networks, has been looked at to perform this task. 
 
E. Demixing 

For each source location, which is denoted 
iE , 

iM  describes a bit mask in the time-frequency 

domain for each source. 
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where δ  provides a user defined angular margin around the source location. 

 
The sources can then be recovered by using the mask to filter W in the time-frequency 
domain. 
 

),(*),(ˆ τωτω WMS ii =  (6) 

from which iŝ  can be gained by performing an inverse time frequency transformation. 

 
F. Results 
Table 1 shows the results from a signal separation experiment. 

 

Table 1: Results from a signal separation experiment. 

Performance Measure Location Speaker 

Signal-to-Interference 
Ratio 
(SIR) 

in mixture 

SIR 
after masking 

SIR 
gain 

Preserved Signal Ratio 
(PSR) 

after masking 

azimuth elevation 

1 -0.17 dB 12.14 dB 12.32 dB 12.32 dB 120 0 

2 -2.96 dB 12.30 dB 15.27 dB 15.27 dB 280 10 

3 -6.81 dB 10.89 dB 17.70 dB 17.70 dB 340 20 

 
The separation algorithm was tested on a mixture of three male speakers reading passages 
from a novel. Each speaker was recorded independently under anechoic conditions, and the 
mixture created by the summation of the three B-format recordings. The recordings were 
performed in this manner to allow analytical comparison of the separated speakers with the 
original recording.  Speakers one and two show much higher Preserved Signal Ratio (PSR) 
results compared to speaker three. This is perhaps unsurprising, considering that speaker 
three has an initial Signal-to-Interference Ratio (SIR) of −6.81 dB. All the speakers are 
intelligible on listening, although there is an appreciable level of crackling on speaker three. 
The SIR gain for all speakers shows excellent results, showing high suppression of the 
interfering speakers, with an average improvement in SIR of 15 dB. These results compare 
well to those listed for mixtures of two speakers10. 
 
As far as the validity of the assumptions, W-disjoint orthogonality has been shown to be a 
valid assumption for speech signals. Acoustic niche theory also suggests an evolutionary 
pressure for this to be the case in the animal kingdom. However, the authors concede that in 
the general case, the assumptions are not guaranteed to hold true.  Further investigations into 
the applicability of these assumptions to a range of situations need to be performed. 
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4. SIGNAL CLASSIFICATION 
ISRIE will also perform the classification of the separated audio signals which are provided by 
the signal separation as discussed previously. The output of the classification algorithms will 
advise the user of ISRIE which category of sounds a particular signal belongs to. It is 
assumed that the input signal to the classification system contains only one sound source. 
 

A. Sound Categories 
A taxonomy of sound categories has been devised specifically for the purpose of ISRIE. 
Figure 2 illustrates these categories. 
 

 
Figure 2: Urban soundscape categories. 

 
Initially, the soundscape is split into three main categories. Anthropophony relates to sounds 
made or caused by human activity, biophony sounds are those made by animals, and 
geophony encompasses sounds not caused by either of the above. 
 

B. Classification using Time-Domain Signal Coding 
A typical classification system consists of two components: a feature extractor and a 
classifier11. There is sometimes a third component to provide some pre- or post-processing 
either at the input or output to the system. The data that is to be classified will be passed into 
the feature extractor whose role it is to reduce the complexity of the data before it reaches the 
classifier11 thus optimising the classification process. A good overview of a selection of these 
techniques can be found in the comparison made by Cowling and Sitte12. 
 
The feature extraction method that has been used for data reduction in ISRIE is known as 
Time-Domain Signal Coding (TDSC). This is a purely time-domain analysis method which has 
previously shown to be successful in the identification of wood-boring insects13 and in the 
classification of different Orthoptera14.  The data produced by the TDSC algorithm describes a 
waveform by the number of samples (duration - D) and number of minima (shape – S) 
contained within each epoch (signal between 2 consecutive zero crossings) of the waveform. 
The D-S information is stored for a given frame of the waveform by means of a codebook. 
After a signal has been analysed using TDSC, each code within the codebook will have a 
number of occurrences associated with it to describe its D-S characteristics. It is this 
frequency information, the S-matrix, which is then used for classification. A more detailed 
explanation of how TDSC was developed and the other features it can extract from the full 
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bandwidth signal is given by Chesmore14. Figure 3 shows how the TDSC analysis fits into the 
classification system. 
 

 
Figure 3: Proposed classification system. The S-matrices for each frame of the waveform are classified 

individually. 

 
It was decided that a neural network approach in the classification would be adopted. Initially, 
an unsupervised Self-Organising Map (SOM) network was used but this struggled to 
differentiate between the test pieces of audio data. Significant improvements in classification 
were gained by introducing supervised learning into the system. A Learning Vector 
Quantisation (LVQ) network was implemented using the LVQ1 learning rule15, 16. Eight 
different categories of sounds were placed into 4 groups: group 1 contained air traffic, air 
conditioning and ventilation units, and building works; group 2 contained road and rail traffic; 
group 3 contained birdsong and also recordings of crickets; and group 4 contained some 
speech examples. The grouping of the sounds was chosen based on how consistent the 
signal was throughout the duration of the recording. After training was completed using a 
training set of 40 recordings, the network was tested using a 30-second test audio file which 
combined audio from each of the 4 groups. Network accuracy for each of the individual groups 
was poor for all but group 1 (88%). However, when combined results were observed for how 
well the system could recognise non-bioacoustic audio (groups 1 and 2), the accuracy rose to 
93%. This shows that it is possible to perform an initial classification using the relatively simple 
methods discussed above. Work is now focused on developing the system further to 
incorporate classifiers to differentiate between the various bioacoustic and non-bioacoustic 
signals. Feed-forward neural networks with backpropagation training are being experimented 
with and are showing positive initial results. 
 

5. APPLICATIONS 
The uses of ISRIE could range from assisting acoustic consultants and planners in making the 
right decision on the most appropriate control measures in a project where noise concerns 
may arise, through to assisting soundscape artists and sound engineers with the recording of 
isolated sound events for either artistic reasons or for the subjective evaluation of different 
soundscapes.  The usefulness of ISRIE in environmental noise impact assessments, such as 
PPG 2417, BS 414218 and noise nuisance applications have previously been discussed19.  
Over the course of this research project, different stakeholders have also been interviewed in 
order to assess what measurement parameters would be required from such an instrument to 
log and what would be the additional benefits from the use of such an instrument. 
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A. BS 4142 
In BS 4142 assessments, ISRIE could potentially be used to obtain the specific noise level 
LAeq of a source and the background noise level LA90 without requiring the need to measure 
these descriptors separately.  The instrument would offer individual logged values of these 
two environmental noise level descriptors in order to establish the arithmetic difference 
between the intruding mechanical noise level and the typical background noise level without 
the presence of any mechanical plant or industrial noise.  Also, in practice, there are instances 
where it is not possible to obtain separate measurements of these two descriptors, because 
either the mechanical source cannot be turned off in order to measure the background noise 
level, or the mechanical noise cannot accurately be quantified at the receptor’s location due to 
interference from other sources, such as transportation related noise.  ISRIE would be 
capable of deriving these parameters through its discrimination and classification algorithms 
as discussed above. 
 
B. PPG 24 
In PPG 24 assessments, the existing environmental noise levels are established over a 24-
hour measurement period, when planning a new housing development.  The measurements 
are normally unmanned for economic reasons since they cover such an extensive 
measurement period.  Firstly, it is apparent that in mixed soundscapes, where for example 
there is almost an equal contribution of railway and road traffic noise, it is difficult to quantify 
the contributing noise sources, or even determine which is the dominant noise source.  
Therefore, it is not always feasible to establish the most representative noise source category 
in which the noise environment should be assessed in.  ISRIE would be useful in obtaining 
these individual contributions in LAeq terms in order to decide which is the prominent noise 
source in that specific environment.  Secondly, ISRIE would automatically log and classify 
individual events that exceed a certain criterion, such as 82 dB LA,max,S and assess whether 
these transient events are intrusive sources of noise, e.g. mechanical, or non-intrusive, e.g. 
birdsong or sounds from other animal life.  This type of automated assessment is not possible 
with the use of current technology since the noise survey is normally unmanned and these 
individual transient events can only be evaluated and assessed at the post-processing stage. 
 
C. Noise Nuisance 
Environmental Health Officers (EHOs) of Local Authorities in the UK would make use of an 
advanced sound instrument for various reasons.  Firstly, ISRIE would enable them to 
investigate complex noise complaints in the case where it is not clear which mechanical plant 
noise source affects the complainant’s house in a highly built-up area.  Secondly, the problem 
of low frequency noise, potentially originating from tunneling or drilling works, can be an issue 
for some residents in a community. These noise complaints can be difficult to assess with the 
current technology of sound level meters and ISRIE’s characterisation capability would work 
well in these types of problem where the source is of tonal character.  Thirdly, ISRIE would aid 
in monitoring the noise from music events and assist EHOs in reaching decisions upon the 
licensing of commercial premises that may give rise to noise complaints. 
 
D. Other Engineering Consultancy Problems 

The use of a conventional sound level might not be adequate in some cases since there can 
be interference from other noisy equipment when trying to quantify a particular noise source in 
an industrial area.  There are also instances, where the noise of certain installations, such as 
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electrical transformers, cannot easily be quantified because either these installations are near 
sources of transportation noise, e.g. motorways, or because there are other 
electro/mechanical installations nearby that may contribute to the overall measured level.  
Also, as part of the Land Compensation Act, difficulties can arise when trying to establish only 
the road traffic components at houses that are situated miles away from a newly constructed 
or modified road.  ISRIE would be capable of solely measuring the traffic noise components 
from the remaining background noise, something that is not possible with the current sound 
level meters.  Similar measurement problems can arise when trying to quantify noise solely 
emanating from racing tracks that might affect nearby communities. 
 
E. Soundscape Recordings 
Recordings of soundscapes is developing in many applications ranging from creating archived 
sound recordings of a variety of animal sounds through to the recordings of any other types of 
soundscape for recreating experiences in art installations, museums and galleries.  The need 
for carrying out recordings of sounds in isolation is important in many applications. At the 
moment, in order to separate different sounds, noise suppression techniques are used in 
order to filter out the remaining sound, or the recording is delayed until the level of the 
intrusive noise has dropped to such a level that it is not significantly contributing to the overall 
level.  ISRIE would be useful in recording these sounds as isolated events and hence 
providing a reference instrument for sound recording. 
 
F. Future Policy 
ISRIE could enable planners to consider the balance between ‘positive’, e.g. natural sounds 
and ‘negative’ sounds, e.g. mechanical-like sounds in a mixed sound environment as part of a 
regeneration plan for improving the quality of life in urban agglomerations or assist in the 
design of new spaces of personal enjoyment and recreation in metropolitan cities.  The first 
step would be to establish which types of sound are considered ‘wanted’ and ‘unwanted’ in 
that environment.  Then, ISRIE would be used as an instrument to establish the current 
percentage of wanted and unwanted sounds through its source discrimination and 
classification algorithms as presented above.  Finally, the management of these sounds would 
involve standard noise abatement techniques along with the potential introduction of more 
wanted sounds.  In the end, ISRIE could be used to assess whether the desired ‘mix’ of 
wanted and unwanted sounds was achieved. 
 

5. CONCLUSIONS 
The need of a network sensor system with the development of algorithms and techniques for 
automatically characterising sounds in a complex sound environment is more evident than 
ever before.  This paper has presented a number of suggested measurement platforms for the 
measurement of sounds along with promising techniques for signal separation and 
classification.  The use of ISRIE could ultimately revolutionalise the way we currently perceive 
soundscapes and could affect the way we measure, assess and record sounds in the future. 
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