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Abstract

The second 2+ state of the 12C nucleus is of great importance to nuclear astrophysics

reaction rate calculations and also to nuclear cluster structure studies. The triple-

α process, which is responsible for 12C production, primarily proceeds through a

resonance in the 12C nucleus, famously known as the Hoyle state. The cluster nature

of the Hoyle state allows the formation of a rotational band built upon it. The first

member of the band is thought to be in the 9 – 11 MeV excitation energy region,

with Jπ=2+. Further knowledge of this state would help not only to understand the

debated structure of the 12C nucleus in the Hoyle state, but also to better constrain

the high-temperature (> 109 K) reaction rate of the triple-α process. The precise

evaluation of the triple-α reaction rate is required to be able to understand the final

stages of stellar nucleosynthesis and the elemental abundances in the universe.

In the past decade, several experiments have been performed in search for the 2+
2

state of the 12C nucleus. But the results from different measurements have been so

different from each other that it has not been possible to reach a consensus on the

resonance parameters. Due to the significance of the resonance, a reconciliation of

the data from different available probes is highly desirable.

In this work, the first clear observation of the 2+ rotational excitation of the

Hoyle state via a 12N β-decay experiment has been made. The state has been

found at the energy 10.53 (17) MeV with width 1.35 (25) MeV. The experiment,
12N(β)12C(α1)8Be(α2)α3, was performed at the IGISOL facility at JYFL, Jyväskylä,

Finland. The identification of the 2+ strength relative to that of the 0+ in the 9 – 12

MeV energy region has been done through the novel technique of coincident detection

of β-3α particles from the cascade, followed by the β-α1 angular correlation studies.
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Chapter 1

Introduction and Motivation

The Hoyle state is an energy level in the 12C nucleus at an excitation energy of

7.654 MeV. This state plays an essential role in the production of the 12C nucleus

in stellar nucleosynthesis. Hence why it has been of great interest to nuclear

astrophysicists ever since its discovery. The historical account of how this state was

predicted and discovered makes an interesting scientific tale. It has been covered in

section 1.1 which gives a brief description of its role in stellar nucleosynthesis.

The interest in the Hoyle state is not limited to just the field of nuclear astrophysics.

It is also an interesting case to study from a nuclear structure point of view. All the

observations and calculations show that the 12C nucleus exists as a cluster of three

alpha-particles in this state. Section 1.2, gives a brief overview of the phenomenon of

clustering in nuclei and also introduces the rotational excitation of the Hoyle state

which is the central object to the work presented in this thesis.

1.1 Stellar nucleosynthesis

It was early in the 20th century that physicists started working on understanding

the creation of elements in our universe. A popular theory of that period said

that all the elements were created at the time of the Big Bang. It was thought

that at the time of the Big Bang, when the universe was a hot, dense pool of

nucleons, the elements were created in steps of one mass unit by neutron capture
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and subsequent beta decay. But this theory had a major drawback. There are

no stable isotopes corresponding to the mass numbers 5 and 8 (Figure 1.1). So,

the theory could not explain the creation of elements heavier than the mass number 4.

Fig. 1.1 Nuclear chart showing light nuclei with number of neutrons on the x-axis,
number of protons on the y-axis and with the lifetime of nuclei colour coded. It can
be seen here that all the isotopes with mass 5 have lifetime less than 10−15 sec [1].

Another theory, stellar nucleosynthesis, most prominently described in the famous

B2FH publication [2], suggested that the elements heavier than hydrogen and helium

are produced by nuclear fusion reactions at different stages of stellar evolution. Fred

Hoyle, an English astronomer, was a strong proponent of this idea over the Big-Bang

nuclesynthesis theory [3]. According to the stellar nucleosynthesis theory, in the first

stage, in the core of a star where the temperature and the density are high enough

(> 8 MK), hydrogen nuclei fuse together through the coulomb barrier and turn into

helium. This process of conversion of hydrogen into helium goes on for 90% of the

star’s life [4]. Eventually, when the hydrogen in the core is exhausted, the star’s core

starts to collapse under the action of gravity while the H-burning continues in a shell.

This results in raising the temperature and the density of the core further. If the

star is massive enough (>0.4 M⊙), the temperature and density get high enough (>

0.2 GK and 103 g cm−3) to ignite He-burning in the core. During the He-burning

phase, three He nuclei fuse together to form a 12C nucleus. This process bridges the
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mass gap of 5 and 8, and the production of the heavier nuclei can be explained with

nuclear reactions at subsequent stages of burning in stars.

The subsequent stages of hydrostatic burning that follow after the H and He-

burning are C, O, Ne, Mg, and Si-burning. They are all named after the element

that is most abundant in the core at the stage and is burning by fusion with other

lighter nuclei in the core. The onset of each stage requires higher temperatures

than the previous one because the Coulomb barrier becomes larger for the heavier

element. Therefore, different mass stars reach different levels of hydrostatic burning.

Figure 1.2 shows the table taken from the textbook ’Nuclear Physics of Stars’ by

Christian Iliadis [4]. It lists the different stages of burning and the temperature and

density at which they are ignited along with the initial mass of the star required to

achieve those conditions. The last stage of burning ends up forming a core that is

made up of iron and nickel mostly. The hydrostatic burning stops after this stage as

further fusion of charged particles is not energetically favourable.

The iron core continues to collapse under the action of gravity, but at this stage

nuclear fusion is not an option to generate the energy to counteract gravity. This

causes the core-collapse to continue to the point that the density crosses the nuclear

matter density of 1014 g/cm3. The nuclear force being repulsive at short distances

creates a rebound, sending a shock wave through the star leading to explosive burning

in the outer shells.

1.1.1 The triple-α process and the Hoyle state

The triple-α process, as the name suggests, is the fusion of three α particles to form
12C nuclei during the He-burning phase in stars. Although a direct three-body fusion

would be possible at the density and temperature conditions in the core during the

He burning, it would have too low a cross-section to explain the observed abundance

of 12C [5]. It was therefore suggested by Opik in 1951 [6] and Salpeter in 1952 [7],

that the triple-α process must take place in two steps; the resonant formation of 8Be
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Fig. 1.2 Major evolutionary stages for single stars in different mass ranges [4].
Each row represents the evolution of stars in time (from left to right) in a certain
mass-range (given on the left-hand side). The nuclear fuel in a burning phase is
shown in bold, with ’-C’ referring to core burning and ’-S’ referring to shell-burning.
The square bracket labels refer to the burning phase on the H-R diagram (refer
to the textbook [4] for details of the H-R diagram). MS - main sequence, SGB -
subgiant branch, RGB - red giant branch, and HB - horizontal branch. DU refers
to the different dredge-up events. The ’...’ for massive stars indicate that there are
additional overlying burning shells. The labels in the last column are: WD - white
dwarf, CC - core collapse, SN - supernova, NS - neutron star, and BH - black hole.

by fusion of two α-particles followed by radiative capture of a third α-particle on the

intermediate 8Be.

I. 4He + 4He → 8Be

II. 8Be + 4He → 12C∗ → 12C + γ

Although the 8Be has a very short half life of 7 × 10−17 s, Salpeter proposed that

given the conditions (density and temperature) in the core of the star, there would

always be some concentration of 8Be available for the second step reaction [7].

In nuclear reactions, the phenomenon of a resonance plays a critical role. Those

reactions in which the sum of the energies of nuclei in the input channel matches

the energy state of the product, are called resonant reactions and have much higher

cross-section (reaction probability) compared to non-resonant reactions.
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The first step reaction in the triple-α process is known to be resonant with the
8Be nucleus being unbound to two 4He nuclei by 92 keV. But in the second step, the

sum of mass energies of 4He and 8Be is 7.367 MeV more than the mass energy of 12C

in its ground state.

If the calculations on the reaction rate of Helium burning are performed by

considering this second step reaction to be non-resonant, it does not reproduce

the observed abundance of carbon. Following this argument, Hoyle did the reverse

calculations with the conditions of the interior of stars and predicted that a resonance

in the second step reaction should exist at the level 0.31 MeV corresponding to energy

state 7.68 MeV in the 12C nucleus [8]. Motivated by this prediction, experiments

were performed to search for such a state and it was found that a state does indeed

exist at the excitation energy of 7.654 MeV. This second 0+ spin-parity state of the
12C nucleus was named after its discoverer and was called the Hoyle state.

Since 12C is the base of organic life, the energy placement of the Hoyle state in

the 12C level scheme has often been called a lucky coincidence of nature. This state

lies right in the Gamow-window corresponding to the temperature of the He-burning

phase (∼ 2 × 108 K) for the α-capture on 8Be. If the Hoyle state existed at an energy

of a few hundred keV higher or lower, the rate of formation of 12C would have been

lower by 7 orders of magnitude [9].

1.2 2+ rotational excitation of the Hoyle state

Theorists too were intrigued by the Hoyle state. The shell model, which was the

leading model to study single particle excitations, does not predict a state at the

Hoyle state’s energy. This was a clear indication that the state has some different

structure and requires a different modelling. Independent of the research on the Hoyle

state, in 1938, Hafstad and Teller [10] had suggested that in the light α-conjugate

nuclei, even the ground state contains some degree of α-clustering. The motivation

behind this suggestion was the observed linear trend in the binding energy of these

α-conjugate nuclei with respect to the number of α-α bonds. Then in 1968, Ikeda et



1.2 2+ rotational excitation of the Hoyle state 6

al. proposed the emergence of molecule-like structure in the self-conjugate 4n nuclei

near the α-decay threshold [11]. Figure 1.3 shows the famous Ikeda diagram. In this

diagram, the threshold energies have been shown for α-conjugate nuclei up to 24Mg.

Fig. 1.3 The Ikeda diagram. It shows the different decay thresholds for self-conjugate
4n nuclei upto 24Mg [11].

Once it was established that the 12C nucleus has a cluster structure in the Hoyle

state, it was treated as a deformed/non-spherical quantum object in further studies

which resulted in the prediction of a rotational band built upon the Hoyle state. In

the work by H. Morinaga [12], the Hoyle state is assumed to be a linear chain like

rotor and the energy of the first rotational excitation of the Hoyle state, the second

2+ state of the 12C nucleus, is predicted at 9.7 MeV.

Ever since its prediction by Morinaga, there have been numerous attempts to

search for this rotational excitation of the Hoyle state. There are two main things

that motivated the attention this state received from the nuclear physics community;

its role in the triple-α process at higher temperatures (>109 K), and the potential it

holds for revealing the debated structure of the Hoyle state.
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1.2.1 Role in the triple-α process

The triple-α process during hydrostatic He-burning mainly proceeds through the

Hoyle state. But during explosive burning, higher lying broad states with low energy

tails also participate in the triple-α process [13]. Figure 1.4 shows the comparison

of the reaction rate for the triple-α process calculated for a high temperature

environment with and without the inclusion of the second 2+ state of the 12C nucleus.

The figure has been taken and adapted from the PhD thesis of Zimmerman [14]. The

rates shown in the figure have been taken from two different databases. The one

shown in the red line is from NACRE (Nuclear Astrophysics Compilation Reaction

Rates) [15]. This compilation includes the theoretically predicted second 2+ state at

9.12 MeV. The other one, shown with a blue line, has been taken from the JINA

(Joint Institute for Nuclear Astrophysics) REACLIB database [16]. This compilation

took the values from the work by Fynbo et al. [17]. It can be seen from the figure 1.4

that the presence of the 2+ rotational excitation of the Hoyle state can affect the

reaction rate by more than an order of magnitude at temperatures higher than 5 GK.

(Includes 2+ rotational excitation 
of the Hoyle state at 9.12 MeV)

Fig. 1.4 The calculated reaction rate of the triple-α process at high temperatures
(>109 K) with and without including the 2+

2 state of the 12C nucleus [15, 16]. Figure
adapted from the PhD thesis by Zimmerman [14]
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The high temperature triple-α reaction rate can have significant impact on heavy

element production in explosive scenarios [18, 19]. It is therefore required to reconcile

between different datasets on the energy of the 2+
2 state.

1.2.2 Role in determining the Hoyle state’s structure

It has been nearly 60 years since the Hoyle state was discovered. Even though

a significant effort has been put into trying to establish the arrangement of the

α-particles in this state, it still remains ambiguous. Different theoretical frameworks,

predict the structure of the Hoyle state differently. For example, the linear-chain

like arrangement [20], the Bose-Einstein condensate [21], and the obtuse angle or the

bent arm arrangement [22] (see figure 1.5).

(a) (b) (c)

Fig. 1.5 Illustration of the different arrangements of the triple-α cluster in the Hoyle
state. (a) Linear-chain arrangement. (b) Bose-Einstein Condensate. (c) Bent-arm
structure arrangement.

With these different structural arrangements, the Hoyle state as a rotor would

have a different moment of inertia. The energy of the rotational excitation has an

inverse proportionality with the moment of inertia of the rotor object.

Erot = ℏ2

2I J(J + 1)

This means, if the energy of the rotational excitation of the Hoyle state is

measured experimentally, the above formula can be used to extract the moment of

inertia of the Hoyle state and hence it can give the information on the radius of the

state.
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1.3 The experiment: β-delayed α-emission

There are different ways that can be and have been used in the past to study the energy

levels in the 12C nucleus. To list a few different methods, there are: the inelastic

scattering of protons or α-particles on a 12C target [23–26], the gamma-excitation of

the 12C nucleus [27], the charge exchange reactions such as 11B(3He,d)12C [28, 29],

and the β-delayed particle emission method [17, 30].

The main difficulty in the experimental observation of the 2+ rotational excitation

of the Hoyle state is the presence of other strong states in the same energy region as

where it is predicted by theoretical models [22, 31, 32], i.e., 9 – 11 MeV excitation

energy. The 9.64 MeV 3− state and the 10.88 MeV 1− state lie right in the energy

region of interest (see figure 1.6 for the 12C level scheme diagram). There is also

the ∼3 MeV broad 0+ strength at 10.3 MeV. The presence of these states make it

difficult to observe the 2+ strength in the region directly.

In the work presented in this thesis, the β-decay of 12N was used to populate the

states of interest in the 12C nucleus. The decay equation is as follows:

12N →12 C + β+ + νe + 17.338 MeV

The 12N nucleus in its ground state has the spin-parity of 1+. The selection rules

for β-decay are such that they allow only 0+, 1+ and 2+ states to be populated in

the daughter nuclei from the 1+ state in the parent nuclei. Therefore, the β-decay

method provided a better selectivity in populating the states compared to the other

methods such as inelastic scattering. In the work presented, the 9.64 MeV 3− state

and the 10.88 MeV 1− state were not populated at all and hence the spectrum was

relatively cleaner to analyse.

In the experiment, β-triple-α coincidences were detected from the cascade
12N(β+)12C(α1)8Be(α2)α3. Using the measured energies and momenta of three

α-particles from the 12C breakup, kinematics calculations were performed to extract

the properties of the state from which they broke. Using the momenta of α2 and α3,
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Fig. 1.6 The level scheme diagram of the 12C nucleus. On the left hand side the
branching ratios of the β-decay of 12N into different states of 12C has been shown.
The values are taken from reference [33].

the energy of the intermediate 8Be nucleus was calculated to determine the breakup

channel. The different possible breakup channels and their kinematics have been

discussed in detail in chapter 5. The breakup channel information was enough to cut

out the 1+ state component from the data. But to separate out the 0+ component

from the 2+ component, the β-α1 angular correlations were analysed. The β-α

angular correlation is isotropic for the 12C 0+ state, whereas for the 2+ state, the

angular correlation has an anisotropy that depends on the β-decay matrix elements.
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1.4 Outline of the thesis

The following chapters consist of all the details of the presented work. Chapter 2

contains a brief review of the literature on the subject of this work; the first rotational

excitation of the Hoyle state. It lists the experiments that have been performed in

the past to look for the state along with their results. Comparisons have also been

made between the values obtained in different experiments.

In chapter 3 the theory relevant to the present work has been given in sufficient

detail that is required for the complete and coherent understanding of the presented

work and results. These details include the theoretical modelling of clustering in

nuclei, basics of the β-α angular correlation theory, and the overview of the R-matrix

theory.

Chapters 4 and 5 consist of the details of the experimental work (such as, the

beam production, the detector setup, and the electronics) and the data analysis

procedure respectively. In chapter 6, the results from the data analysis have been

presented. Also the R-matrix work done with the data has been shown in this

chapter. Finally, the thesis concludes with chapter 7, which contains the remarks on

the unusually large anisotropy that has been observed in the β-α angular correlations

in this work. This chapter also provides the motivation and suggestions for future

work on the subject.



Chapter 2

Previous work and results

There have been several attempts in the past at searching for the first rotational

excitation of the Hoyle state in the 12C nucleus using various probes. The present

chapter gives a summary of some of those works and their results. In section 2.1,

the results from the previous β-delayed particle emission experiments have been

presented. Section 2.2 contains the results from the inelastic scattering experiments

such as (p,p’) and (α, α′). Lastly, in section 2.3 the most recent results from the

γ-excitation (γ, 3α) experiment have been discussed.

2.1 β-delayed particle emission experiments

The β-decay of 12N and 12B have been used several times before to study the structure

of the 12C nucleus. In this section, the results from the experiments performed at

JYFL, CERN, and KVI over the period of 2001 – 2007 have been discussed.

In the work by Fynbo et al. [17], the data from two experiments were analysed

and presented. The first experiment was performed with the 12N beam at the IGISOL

facility in JYFL in 2001. The second experiment, with a 12B beam, was performed

at the ISOLDE facility at CERN in 2002. Both the experiments used triple-α

coincidence detection. The results from the R-matrix analysis on these datasets have

been shown in figure 2.1, as they were presented in [34]. In the upper plot, they

compared their data with the previous literature value of the 10 MeV 0+ resonance
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assigned in the work [35]. In the lower plot, they showed the R-matrix fit (as the

solid black line) to their data. Their R-matrix fit included the Hoyle state, the broad

10 MeV 0+ resonance, and the 2+ strength. It can be seen that they did not observe

any significant 2+ strength at energies below 12 MeV, hence they concluded the

existence of the 9 MeV 2+ resonance to be doubtful.

Fig. 2.1 The results from the IGISOL (2001) and the ISOLDE (2002) experiment
with β-decay of 12N (red) and 12B (blue) respectively. The lower plot shows the
R-matrix fit (solid black line) to the data [17, 34].

In another set of work by Hyldegaard et al. [30], the combined analysis on the

data sets from two individual β-decay experiments was performed to measure the 0+

and 2+ composition of the broad resonance structure at 10 MeV excitation energy.

The two experiments were performed at IGISOL (2004) and KVI (2006) with 12N

and 12B beams used in both experiments. They performed the R-matrix fitting to

the data using different number combinations of 0+ states and 2+ states. Their best

fit result was obtained with three 0+ states and two 2+ states. This fit result to the
12N decay data has been shown in figure 2.2. In conclusion, they recommended the

2+
2 state’s energy and width to be 11.1 ± 0.3 MeV and 1.4 ± 0.4 MeV respectively.
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Fig. 2.2 The R-matrix fit with three 0+ and two 2+ states to the 12N β-decay data
from experiments performed at IGISOL and KVI. Both plots contain the complete
3α data from the KVI experiment. The upper plot shows the IGISOL data gated on
the breakup channel via the 8Be ground state. The lower plot shows the IGISOL
data gated on breakups via the 8Be excited state. The solid red line shows the total
fit summed over all the channels [30].

2.2 (p,p’) and (α, α′) scattering experiments

Inelastic scattering is another method that has been used multiple times in an

attempt to look for the 2+
2 state of the 12C nucleus. This simple method consists of

a beam of the projectile particle (p or α in the cases presented here), the 12C target,

and the spectrometer to study the energy spectrum of scattered beam particles at

different angles.

Itoh et al. performed the 12C(α, α′) measurements at RCNP, Osaka with 386 MeV

α-particles at forward angles (θ = 0◦ – 10◦) [23]. They performed Multipole Decom-

position Analysis (MDA) to study the relative contribution of different spin states in
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the energy of interest. They reported the observation of the 2+
2 state under the 0+

bump at ∼10 MeV excitation energy. They performed the experiment again in 2011

to gain the statistics and reported the energy and width of the 2+
2 state at 9.84 ±

0.06 MeV and 1.01 ± 0.15 MeV respectively [25].

In 2009, the 12C(p, p′) measurement was performed by Freer et al. [24] with a

66 MeV proton beam at iThemba LABS, South Africa. In this work, by R-matrix

analysis, the 2+
2 state was reported to have been observed at an energy of 9.6 ±

0.1 MeV with a width of 600 ± 100 keV.

Three years later, in 2012, Freer et al. [36] published a combined analysis on

both the experimental data sets; the 12C(α, α′) RCNP experiment [23, 25] and the
12C(p, p′) iThemba LABS experiment [24]. The energy and the width of the 2+

2 state

was reported to be consistent between the two datasets and were found to be 9.75

± 0.15 MeV and 750 ± 150 keV respectively. The R-matrix fit results on 12C(α, α′)

data has been shown in figure 2.3 and the fit result on 12C(p, p′) data has been shown

in figure 2.4. The grey shaded area in both these figures show the shape of the 2+
2

state as extracted from R-matrix fit and calculations.

Fig. 2.3 R-matrix analysis performed by Freer et al. in [36] on 12C(α, α′) data from
the RCNP experiment [23, 25]. The red dashed line shows the calculation with all the
known states in the 12C nucleus. The solid blue line corresponds to the calculations
with the 2+ state included.
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Fig. 2.4 R-matrix analysis performed by Freer et al. in [36] on 12C(p, p′) data from
the iThemba experiment [24]. The red dashed line shows the calculation with all the
known states in the 12C nucleus. The solid blue line corresponds to the calculations
with the 2+ state included.

2.3 γ-excitation experiment

In a recent publication by Zimmerman et al. [27], they presented the results from

the 12C(γ, 3α) experiment that was performed at the HIγS facility of TUNL at

Duke University. The experiment consisted of an Optical Readout Time Projection

Chamber (O-TPC) operating with a mixture of gases CO2 and N2, and γ-ray beams

with energies between 9.1 and 10.7 MeV and intensities of 2 × 108 γ/s.

This method had the advantage that from the 0+ ground state of 12C, the broad

0+ component in the 10 MeV region could not be populated via the γ-excitation.

Therefore, they only had to distinguish the 2+ strength from the 1− at 10.844 MeV.

This was done using the complete angular distribution of the 12C(γ, αo)8Be events

and identifying the E2 strength relative to E1 strength as a function of energy.

In this work, they reported a clear observation of the 2+ resonance at 10.03 ±

0.11 MeV excitation energy with a width of 800 ± 130 keV. The results have been

shown in figure 2.5. There has been some reservation about these results within the
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collaboration recently, and the revised analysis of the data seems to suggest a lower

value for the resonance energy [37].

Fig. 2.5 12C(γ, 3α) experiment results [27]

2.4 Discrepancy between different works

Each of the three different experimental techniques that have been discussed in

this chapter have reached a different conclusion from the others on the resonance

parameters for the 2+
2 state of the 12C nucleus. This discrepancy could be an artefact

of the difference in population mechanism, or it could be due to human error during

the experiment or the analysis. Whatever the reason, there is clearly a need to either

reach an agreement between different experiments, or understand the physics reason

behind the discrepancy. In the work presented in this thesis, a measurement was

made of the 2+
2 state using the β-decay method. But in addition to R-matrix fitting,

the novel technique of β-3α angular correlation has been used for the first time. The

results from different works have been summarised in table 2.1 along with the result

of the present work.
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Experiment Energy (MeV) Width (MeV)
12N, 12B β-decay [30] 11.1 ± 0.3 1.4 ± 0.4

12C(α, α′) [23] 9.84 ± 0.06 1.01 ± 0.15

12C(p, p′) [24] 9.6 ± 0.1 0.6 ± 0.1

Combined analysis of
12C(p, p′) and 12C(α, α′) [36] 9.75 ± 0.15 0.75 ± 0.15

12C(γ, 3α) [27] 10.03 ± 0.11 0.8 ± 0.13

Present work:
β-3α analysis of 12N β-decay 10.53 ± 0.17 1.35 ± 0.25

Table 2.1 Summary of recent literature values of energy and width of the 2+
2 state of

12C nuclues. The results from the present work have also been shown for comparison.



Chapter 3

Theory

3.1 Theoretical modelling of clustering in nuclei

The Hoyle state has been a matter of interest to nuclear theorists ever since its

prediction and discovery. While the shell model calculations work very well to

reproduce the 4.44 MeV 2+ state of the 12C nucleus, it fails to predict anything in

the energy region of the Hoyle state [38, 39]. The shell model fails to reproduce the

Hoyle state because this state does not fall into the single-particle excitation picture,

but has a cluster structure. Different groups of theorists across the world have tried

to reproduce the Hoyle state and its rotational excitation using various models. A

few different models have been discussed briefly in this section.

3.1.1 Bose-Einstein Condensate Model

α-particles consist of two protons and two neutrons, all coupled to a net spin of

zero. This means that asymptotically they can be treated as bosons. Therefore, if

a cluster state has a radius large enough to allow the asymptotic nature to play a

significant role, the α-particles in such a state can form a degenerate condensate.

Such a system can be described by the wave-function,

⟨r1, r2, .., rn|ΦNα⟩ = A[ϕ(α1), ϕ(α2), .., ϕ(αN)], (3.1)
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where ΦNα is the α cluster wave-function describing an alpha particle Bose

condensed state. A is the antisymmetrization operator to take the Pauli Exclusion

principle into account. ϕ(αn) is the internal wave-function of the nth α-particle, given

by a Gaussian wave-packet.

This wave-function is famously known as the THSR wave-function, named after

Tohsaki, Horiuchi, Schuck, and Röpke [21]. Their work was adapted from a more

simplistic Alpha Cluster Model (ACM), developed by Brink [40].

The total wave-function in equation 3.1 has a dependency on two free parameters;

the size of the free α-particle and the size of the total Gaussian distribution. This

dependency makes the importance of the antisymmetrization operator A become

negligible in the limits where the size of the total Gaussian distribution is large. This

leaves the total wave-function as a multiplication of Gaussians. Such a wave-function

describes the system as a gas of free α-particles [41]. On the other hand, if the size

of the total distribution is small (of the scale of the 12C ground state radius), the

antisymmetrization operator A comes into play, and the Bose condensate structure

dissipates.

The BEC model predicts the 2+ excitation of the Hoyle state at 9.4 MeV energy

with the width of 600 keV [31, 42].

3.1.2 Molecular Dynamics: AMD and FMD

The AMD (Antisymmetrized Molecular Dynamics) [43] and the FMD (Fermionic

Molecular Dynamics) [32] are the two different models that use the same approach

but with a small difference. In this approach, the wave-function of the nucleus is

given by the Slater determinant of the Gaussian wave packets of individual nucleons

in the nucleus. The single-particle wave function of a nucleon consists of the spatial,

intrinsic spin, and isospin wave functions. The difference between FMD and AMD

is that in the FMD calculations, the width of the Gaussian wave-packets is left as

a free parameter, while in the AMD calculation a single value for width parameter

is chosen as the optimal value of each nucleus. The Hamiltonian of the system is
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constructed using an effective nucleon-nucleon interaction potential. Finally, the

properties of the nucleus (such as radii, densities, transition strengths) are calculated

by minimising the expectation value of the Hamiltonian for the spin-parity projected

wave-function.

This method is different to the ACM [40] or the BEC [21] (section 3.1.1), as it

does not presume the clustering in the nucleus from the outset. The nucleon-nucleon

interaction in the calculations result in the formation of the cluster structure. These

models have been able to reproduce not only the cluster states such as the Hoyle

state [32, 43], but in [43] they have also successfully reproduced the shell-model-like

state (the first 2+ excitation of 12C nucleus). The 2+
2 state is predicted at 2.33 MeV

above the Hoyle state energy in their calculation [32].

3.1.3 Ab initio calculations

The ab-initio approach is the most fundamental of the all that have been discussed

here in this section. The calculations in this approach are based on the first principle

of nucleon-nucleon interaction and no assumptions regarding the structure or the

wave function of the nucleus are made a priori. The difficulty is such calculations is

the many-body nature of the nuclear forces. The nuclear interaction is thought to

be mediated via meson exchange between two nucleons, and the presence of a third

nucleon can alter the properties of the one of the two original nucleon during the

meson exchange with them and hence affecting the properties of their interaction

with each other.

An ideal model to study the nuclear properties should take into account these

degrees of freedom in calculation, which suggests that the solution lies in the QCD

theory regime. Epelbaum et al. in reference [22] have used the Chiral Effective

Field Theory (ChEFT) on a grid of discretized space and time to address the many

nucleon problem (up to A=12). A review of the theory and the framework has

been given in reference [44]. In the chiral EFT framework the interaction of protons

and neutrons is treated as systematic expansion in powers of nucleon momenta and
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pion mass. For the typical particle momentum Q, the most effective term in the

interaction Hamiltonian is the O(Q0), called the leading order (LO) term. In the work

presented in [22], the terms with power of up to three, Next-to-Leading order (NLO)

O(Q2), and Next-to-Next-to-Leading Order (NNLO) O(Q3), have been included in

the calculations. The discretization of the space and time is a mathematical tool to

numerically solve the Hamiltonian.

They have reported the emergence of the Hoyle state as well as its 2+ rotational

excitation in their calculations at the energy of 9.65 MeV [22].

3.2 Beta Decay

In a β-decay process, a neutron is converted into a proton (or vice versa), emitting

an electron (or positron) along with an anti-neutrino (or neutrino). In this process,

the mass number of the nucleus remains the same, but the atomic number changes

by ± 1 (for β∓-decay). There are three types of radioactive processes that fall under

the β-decay category: the β−-decay of the neutron-rich nuclei, the β+-decay of the

proton-rich nuclei, and the e−-capture of the proton-rich nuclei. These processes can

be expressed as the following equations:

AXZ →A YZ+1 + β− + ν̄e

AXZ →A YZ−1 + β+ + νe

AXZ + e− →A YZ−1 + νe

Where, νe and ν̄e are electron neutrino and anti-neutrino respectively.

Since the β-decay is a three-body process, the energy spectrum of the β-particle

is continuous. The spectrum shape can be derived from the Fermi theory of β-decay.
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For a transition between an initial quantum state, ψi, and a final quantum state ψf ,

the decay constant can be given by the Fermi’s Golden Rule as,

λ = 2π
ℏ

∣∣∣∣ ∫
ψ∗

fV ψi dv

∣∣∣∣2ρ(Ef ) (3.2)

Where, V is the interaction that triggers the transition. It is treated as a

perturbation to the potential in the theory. ρ(Ef ) is the density of states in the exit

channel. While the initial wave function ψi is the total wave function of the parent

nucleus, the final wave function ψf consists of three parts; the daughter nucleus

wave function, the travelling wave of the electron, and the travelling wave of the

corresponding neutrino.

To derive the spectral shape from equation 3.2, the problem is solved in two parts.

In the first part the state density ρ(Ef ) is calculated using statistical mechanics by

calculating the number of ways the Q-value energy can be divided between electron

and neutrino. In the second part, the matrix element, |
∫
ψ∗

fV ψi dv |2 is calculated.

Combining the two, the decay probability as a function of β-particle’s momentum is

calculated as,

λ(pe) dpe = 2
π3ℏ7c3 | Mfi |2 g2 (Q− Te)2 p2

e dpe (3.3)

where pe is the momentum and Te is the kinetic energy of the β-particle. g is the

strength parameter. | Mfi |2 is the nuclear matrix-element and is calculated from

the overlap between the wave functions of the initial and final state. This function is

called the phase space of the decay.

In the function shown in equation 3.3, the Coulomb effect due to the charge of the

β-particle has not been included. To incorporate this effect, the Coulomb-distorted

wave functions for electron and neutrino must be used while calculating the matrix-

element. This was done by Fermi, resulting in the inclusion of a spectrum distorting
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factor called the Fermi function, F(ZD, p3), where ZD is the atomic number of the

daughter nucleus. The final form of the β-spectrum then takes the form,

λ(pe) dpe = (constants) F(ZD, pe) (Q− Te)2 p2
e dpe (3.4)

Integrating equation 3.4 gives the decay constant as,

λ(pe) = g2 | M |2 m5
ec

4

2π3ℏ7 f(ZD, Q) (3.5)

where f(ZD, Q) is the Fermi integral. Finally, rearranging the above equation for

half-life, t1/2, the comparative half-life, ft-value is obtained.

ft1/2 = ln 2 2π3ℏ7

g2 | M |2 m5
ec

4 (3.6)

The range of half-lives for different β-decay ranges from 103 to 1020 s. Therefore,

often the logarithm of ft value is used to show the half-life of a decay [45].

3.2.1 Decay Selection Rules

The conservation of angular momentum and parity set some selection rules in the

β-decay, dividing them into classes; allowed and forbidden. The selection rules for

allowed decays are:

∆I ≡ |Ii − If | = 0 or 1

πiπf = +1

where If and Ii are the total spin, and πf and πi are the parities of the of parent

and daughter nuclei. ∆I is the vector difference of the If and Ii values. The leptons

in the decay together can take away the total spin value of 0 or 1 depending on

whether the β-particle and the ν have antiparallel or parallel spins. The former case

is classified as the Fermi selection rule and the latter is called the Gamow-Teller

selection rule.
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It should be noted that the base for these selection rules is that for ∆I to be

greater than 1, or for πiπf to be -1, the leptons that are generated in a small volume of

the nucleus during the decay would have to carry a unit of orbital angular momentum.

So, while it is rare to observe such decays, they are not entirely forbidden. The

degree to which a decay is forbidden (first, second, ..) is defined by the L value of

the decay.

3.2.2 β-α angular correlation

In the present work, two different approaches have been used to evaluate the theo-

retical expression for the β-α angular correlation for the cascade,

12N(1+) β+
−→ 12C(2+) → 8Be + α1

The first approach is the more fundamental of the two. The starting point in

this approach is the simple expression for the angular distribution of α-decay from

polarized nuclei.

W (θ) =
∑
mi

p(mi) G(mi,mf ) W (θ)mi→mf
, (3.7)

where, W (θ)mi→mf
is the directional distribution function for initial magnetic substate

mi to the final magnetic substate mf transition in α-decay of 12C. It is directly

proportional to the modulus square of the spherical harmonics, |Y m
L (θ, ϕ)|2, where L

is the orbital angular momentum of the α-decay and m is the magnetic substate of

the decaying nucleus. G(mi,mf) is the relative transition probability and is 1 for

all values of mi for the 12C(2+) → 8Be(0+) case. p(mi) is the probability of spin

projection mi in 12C along the z-axis (defined by the momentum vector direction of

β-particle). It is the p(mi) values that are dependent on the polarization effect of

the β-decay.
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The expression for p(mi) has been derived using the β-decay density matrix

elements in the book Alpha-, Beta-, and Gamma-ray Spectroscopy by Siegbahn [46]:

P (m) =
2I∑

k=0

∑
J,J ′

(−1)I+m(2k + 1)1/2(2I + 1)−1/2 ×

 I I k

m −m 0

 bk(J, J ′)Fk(JJ ′IiI),

(3.8)

where I is the spin of the final state after the decay and J is the total spin taken

away by the leptons while J ≤ J ′. bk(J, J ′) are the β-parameters that consist of

the matrix-elements. The full expression for bk(J, J ′) and Fk(JJ ′IiI) coefficients are

given in reference [46] in chapter XIXA, equation 146 and equation 96 respectively.

Usually, in the allowed transition approximation, the values for k ⩾ 2 are neglected

under the assumption that the higher-order corrections and the relativistic correction

on the coordinate type matrix elements and the momentum type matrix elements in

the bk(J, J ′) are negligibly small.

In the first attempt to calculate the p(mi) values for 12N(1+) β-decay to 12C(2+)

from equation 3.8, the k ⩾ 2 values were neglected and the results were a linearly

polarized system with values, p(−2) = 0.2 + 0.2; p(−1) = 0.2 + 0.1; p(0) =

0.2; p(+1) = 0.2 − 0.1; p(+2) = 0.2 − 0.2.

Inserting these values of p(mi) into equation 3.7, the net angular distribution

function comes out isotropic. This result of isotropic distribution for a linearly

polarized system can can be predicted even by just looking as equation 3.7 because

the component for any mi value is proportional to the modulus square of the Y m
L (θ, ϕ),

which is identical for ±m values.

Therefore it is clear that if the β-decay has contributions only from the vector

and axial vector couplings then the β-α angular correlation has to be isotropic.

In the experimental data, however, there was a clear observation of anisotropy in

the angular correlation plots (section 5.7 and 6.1). This prompted an attempt at

calculations with the inclusion of higher order corrections and relativistic corrections.

Such calculations (bk(J, J ′) parameters for k ⩾ 2) are, however, not straightforward
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as they require the values of higher order matrix elements, which in turn require

the complete understanding of the initial and final states’ wave functions. Some

additional insight was therefore needed to calculate the angular correlation function.

A general expression for the angular correlation expression was derived by Morita

and Morita [47] that can be to calculate the W (θ) distribution for the specific case

of 12N(1+) β-decay to 12C(2+). This expression in reference [47] is given by,

W (θ) =
2j1,even∑

n=0

{[ ∑
L⩽L′

(−1)j1−j+nbn
LL′W (j1j1lL

′;nj)(2j1 + 1)1/2
]
×

[ ∑
L1,L′

1

(j2∥L1∥j1)(j2∥L′
1∥j1)Fn(L1L

′
1j2j1)

]}
Pn(cosθ),

(3.9)

with

Fn(L1L
′
1j2j1) = (−1)j2−j1−1[(2j2 + 1)(2L1 + 1)(2L′

1 + 1)]1/2×

(L1L
′
100|n0)W (j2j1L1L

′
1;nj1)

, (3.10)

where the notations are same as used by Morita in [47]. L is the difference between

the total spins of parent and daughter nuclei. Therefore, for the β-decay it is the

rank of the β-decay matrix element and for the α-decay it is the orbital angular

momentum of the α-particle. j’s are the spins of the nuclei in the decay cascade

in the order. Specifically, for 12N(1+) β+
−→ 12C(2+) α−→ 8Be(0+), the j, j1, and j2

are 1, 2, and 0 respectively. L and L1 are 1 and 2. (j2∥L1∥j1) and (j2∥L′
1∥j1) are

the reduced matrix elements for the α-decay. W (j1j1LL
′;nj) and W (j2j1L1L

′
1;nj1)

are the Wigner-6j symbols. (L1L
′
100|n0) is the 3j symbol. Finally, bn

LL′ are the

β-parameters and their values in terms of matrix-elements have been given in the

reference [47].

By substituting the values for all of these variable in equation 3.9, the final

simplified expression for the angular correlation function was obtained as,

W (θ) = 0.023 b0
11

[
1 − b2

11
b0

11
0.3162 P2(cosθ)

]
(3.11)
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From this expression, it can be seen that the anisotropy in the β-α angular

correlations across the excitation energy region of interest in the 12C nucleus is

proportional to the second order Legendre polynomial P2(cosθ). This proportionality

is what was ultimately used in this work to fit the experimental angular distributions.

It should be noted from equation 3.11 that the proportionality constant for

the anisotropy is proportional to the ratio of the β-parameters, b2
11 and b0

11. The

second-forbidden type nuclear matrix elements in b2
11 are of the order of magnitude

(peR)2 ≈ 10−2 as per the most fundamental theory of β-decay [46]. Therefore the

the anisotropy in the β-α or even β-γ angular correlations is normally expected to

be very small (of the order of 0.001 per MeV of β-particle’s energy). However, in the

cases where the allowed transition is inhibited by the structural differences between

the parent and daughter states b0
11 could be small and the interference terms in b2

11

would become large, making the ratio b0
11/b2

11 significant. Table 1 in [48] gives a

complete account of the expected order of magnitude of the matrix elements in the

β-parameters for different ranks of nuclear matrix elements.

A similar calculation for the β-α angular correlation for the 12.71 MeV 1+ state

in the 12C nucleus shows that this distribution function is expected to be isotropic.

3.3 R-matrix Theory

The experimental data should be fitted using a theoretical model to extract a

complete description of the resonances in the observed spectrum of α1-particles in the

cascade 12N(β+)12C(α1)8Be. If it was the case of a reaction that proceeds via a single

isolated resonance, and a single exit channel, the Breit-Wigner formula [49] could

very well describe the observed cross-section. Since that is not the case however,

the R-matrix theory was used to extract the energy and the width of the resonances

that contributed to the spectrum. The R-matrix formalism is the mathematical

description of the theory of resonance reactions that was developed by Wigner and

his collaborators in the 1940s. This section presents a brief introduction of the theory

along with an outline of the mathematics involved.
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The main complication in a nuclear reaction theory that treats the formation of

a compound nucleus, lies in the configuration space which allows multiple alternative

reactions that can lead to the formation of the same compound nucleus or the

multiple alternative ways via which the same compound nucleus can decay. In the

R-matrix theory, the configuration space is divided into two regions: the external

region where the particle pair interact only via the long-range force (the Coulomb

force), and the internal region where the wave function of the system is governed

by the many-body nuclear forces. The external region provides the information on

scattering physics parameters such as collision matrix, phase shifts, or penetration

factor. The internal region provides the nuclear physics parameters such as the level

energy, level width, or reduced widths. With the knowledge of mass, energy, spins

(internal and orbital), and charge of the particles in a reaction, the external wave

function can be solved analytically. This wave function is then matched with the

internal wave function on the channel boundary to solve for the collision matrix.

The detailed mathematical formulation of the R-matrix theory has been reviewed

in several articles [50–52]. Therefore, only a small summary has been given here,

mostly in the same form as in reference [53].

3.3.1 External Wave Function

For channel c = αsl, where α is the particle pair, s is the channel spin, and l is

the relative orbital angular momentum of the particles, the radial component of the

external wave-function is given by the equation,

ϕc =
( 1
vc

)1/2
(ycIc + xcOc), (3.12)

where vc is the relative channel velocity, yc and xc are the amplitudes of incoming

and outgoing waves with wave functions Ic and Oc respectively.
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Equation 3.12 can be rewritten in terms of incoming wave amplitudes as,

ϕc =
( 1
vc

)1/2(
ycIc +

∑
c′
Ucc′yc′Oc

)
, (3.13)

where U is the collision matrix given by equation,

xc = −
∑
c′
Ucc′yc′ (3.14)

The experimentally measured cross section, σ is a measure of this matrix U as

σ ∝ |1 − U |2 (3.15)

3.3.2 Internal Wave Function

The internal wave function is derived by starting from the radial wave equation for

the nuclear potential and adding the boundary condition to it. This results in a

Hermitian eigenvalue problem with the eigenstates Xλ forming the complete base.

With some mathematical manipulation, the radial component of the internal wave

function is derived as,

ϕc =
(
mcac

ℏ2

)1/2 ∑
c′
Rcc′

( ℏ2

mc′ac′

)1/2
[ρc′ϕ′

c′ −Bc′ϕc′ ], (3.16)

where, mc is the reduced mass, ac is the channel radius, ρc = kαac, kα is the wave

number, and Bc is the boundary condition. ϕ′ is the derivative of ϕ with respect to

kαr. Rcc′ in equation 3.16 is the R-matrix, defined as,

Rcc′ =
∑

λ

γλc γλc′

Eλ − E ′ (3.17)
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where γλc is the reduced width amplitude of the level λ. The reduced width amplitude

is a measure of the contribution of a level to the total channel wave function at the

surface. It is given by the expression,

γλc =
( ℏ2

2mcac

)1/2 ∫
dSX∗

λψc, (3.18)

where, ψc is the channel wave function and the quantity X∗
λψc represents the overlap

of the level λ’s wave function with the total channel wave function at the surface.

With this definition of the reduced width amplitude, it can now be stated that the

R-matrix contains all the information regarding the nuclear structure that is relevant

is the reaction.

3.3.3 Matching the internal and external wave functions

By matching the logarithmic derivative of the internal and external wave functions

at the channel surface, the relationship between the collision matrix (Ucc′) and the

R-matrix (Rcc′) is obtained as,

Ucc′ = ρ1/2
c O−1

c (1 −RL)−1(1 −RL∗)Ic′ρ
−1/2
c′ , (3.19)

where, the diagonal matrix Lc is given by the following equation in terms of matrices;

energy shift-function Sc, boundary constant Bc, and the penetrability Pc.

Lc ≡ Sc −Bc + iPc (3.20)

With the formalism described in sections 3.3.1 - 3.3.3, the parameters of the

R-matrix theory, the pole energy Eλ and the reduced width amplitude γλc are

calculated. Which are related to, but are not the same as the observed parameters

from the experimental measurements, resonance energy Ẽλ and the partial width
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Γλc. The observed width can be expressed in terms of physical width, γ̃λc, which is

the reduced width for the boundary condition taken as Sc(Ẽλ).

Γλc ≡ 2Pcγ̃
2
λc

1 + ∑
k γ̃

2
λk(dSk/dE)Ẽλ

(3.21)

When the boundary condition matches the shift function Sc, the pole energy can

be taken as the resonance energy.

The calculations were performed using AZURE2, which is a computer code that

can model low energy nuclear reactions in the multichannel, multilevel R-matrix

framework [53]. It consists of mainly two subroutines. In the first subroutine the code

calculates the parameters like boundary conditions, shifts, penetrability using the

input channel information. In the second subroutine it uses the MINUIT package [54]

to perform the iterative fitting of the cross-section from the R-matrix parameters

while minimising the χ2 value.



Chapter 4

Experimental Setup

The experiment consisted of a 12N ion beam impinging on a carbon stopper foil,

which was surrounded by a silicon detector array. The setup was located inside

a vacuum chamber at a pressure of ∼10−6 mbar. A silicon detector array was

used to detect α and β particles from the cascade 12N(β+)12C(α1)8Be(α2)α3, and a

germanium detector outside the vacuum chamber was used to detect gamma particles.

The details of these components and their associated electronics are discussed in

the following sections, with section 4.1 covering the beam production, section 4.2

describing the stopper foil and detector arrangement, and section 4.3 explaining the

details of electronics setup and the DAQ.

4.1 Beam production at the IGISOL facility, JYFL

The experiment required a beam of 12N ions, which was produced using the Ion-Guide

technique at the IGISOL (Ion-Guide Isotope Separator OnLine) facility at JYFL.

Generally, in the Ion-Guide technique, the ions of interest are produced in a nuclear

reaction between a primary beam of protons or deuterons from the cyclotron and

the (thin) target material nuclei. The target foil is surrounded by a helium buffer

gas located inside a gas cell in the target chamber. The target material is chosen to

produce the desired beam for the experiment; in this experiment, the target material

was 12C. The resulting ions from the nuclear reaction recoil out of the thin target
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foil into the helium buffer gas. In the buffer gas the ions undergo thermalisation,

creating a range of different charge states. Between 1% and 10% of the ions are

produced in a single-charge state [55]. These singly-charged ions are extracted from

the buffer gas and are sent to the mass separator. The extraction process involves

transporting the ions from the buffer gas cell to the high vacuum isotope separator,

which is done using a differential pumped electrode. For the purpose of skimming the

ions, using an electric potential and differential pumping, a double radiofrequency

SextuPole Ion beam Guide (SPIG) is placed between the target chamber and the

extraction chamber. The systematics of the IGISOL setup are shown in figure 4.1.

end
electrode

repeller
electrode

10 1 100 mbar

primary beam target

-6
10

-4

500V10kV30kV

extraction
electrode

SPIG

He buffer
gas

Fig. 4.1 The IGISOL technique mainly consists of the primary beam hitting the
target, the buffer gas thermalising the ions in the ion-guide, the SPIG electrode
to skim the charged ions from the buffer gas, and finally the extraction electrode.
This figure also shows the differential gas pressure and voltage at different stages of
extraction.

For the present work, the 12N ions were produced using a proton beam on a 12C

target in the reaction,

12C + p → 12N + n (4.1)
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The primary beam of protons with 30 MeV kinetic energy was delivered by the

K130 cyclotron. The carbon foil used in the target chamber was 1.7 mg/cm2 thick

on a 4.5 µm Ta backing.

The yield of 12N ions was estimated to be ∼1500 ions/s by monitoring the

β-particle count rate. This was also calculated using the data. The details of the

calculation are covered in section 5.4.3.

4.2 Stopper foil and detectors

The extracted beam of 12N ions with an energy of 29.9 keV/u entered the vacuum

chamber, where it was completely stopped in a 12C foil of ∼22 µg/cm2 thickness.

This thickness is the average of the measured value before and after the experiment.

The details of the technique used to measure foil thickness are covered in section 5.3.

Fig. 4.2 A picture of the detector arrangement taken looking upstream.

The 12N nuclei, completely at rest, underwent β+ decay, populating different

energy states in the 12C nucleus. 12C nuclei with an excitation energy higher than
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Fig. 4.3 A schematic diagram of the top view of the detector set up. The relative
dimensions in this diagram are not to scale.

the triple-α threshold typically breakup into three α-particles. The stopper foil was

surrounded by an array of Silicon detectors for observing the energy and direction

of the β and α particles produced. Figure 4.2 shows a picture of the detector

arrangement looking in upstream. Figure 4.3 shows the schematic diagram of the

setup.

The detectors were placed in a double layered cubical arrangement around the foil.

The inner layer was built with thinner silicon detectors which completely stopped

the α-particles while allowing the β-particles to punch through and hit the outer

layer of silicon detectors. This arrangement was designed to ensure the α-particles

would be easily distinguished from the β-particles. Table 4.1 lists all the detectors

with their respective thicknesses and positions.
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Detectors labelled ‘U’ in Figure 4.3 are W1 type DSSSDs (Double Sided Silicon

Strip Detectors). This type of detector provides high energy resolution charged

particle detection while also providing reasonably good position resolution. The

active area of the W1 silicon wafer is 49.5 × 49.5 mm in dimension. It is segmented

into 16 vertical strips on the front side and 16 horizontal strips on the back side.

Each strip is 3 mm wide and the inter-strip region is 0.1 mm wide. For any particle

that enters the active region, the signal is read from the front strip contact and the

back strip contact, providing the position of the hit within the precision of 3 × 3 mm,

which is the size of a pixel. Appendix A contains the specification of the W1 DSSSD

detectors.

Six W1 detectors were used in the experiment, and their positions can be seen

in Figure 4.3. Five were placed next to the 12C stopper foil in a cubic arrangement

with the top uncovered. These five detectors were used for α-particle detection from

the triple-α breakup events. The sixth W1 detector, named U3, was placed parallel

to and behind the 67 µm thick U2 detector. The thickness of the U2 detector made

it nearly transparent to the β-particles, while still allowing it to completely shield

the U3 detector (DSSSD used for β-particle detection) from α-particles.

The spatial arrangement of the detectors in the setup had a typical efficiency

of ∼2% for the triple-α detection and ∼0.15% for the β-triple-α detection. These

efficiencies have been calculated using a Monte-Carlo simulation of the setup. The

details of the simulation have been described in section 5.5.

The thickness and the (x, y, z) coordinates of the centre of each U detector are

given in table 4.1. The coordinate frame was defined with the origin (0, 0, 0) at the

center of the stopper foil, the z-axis along the beam direction, the y-axis vertically

upwards, and the x-axis orthogonal to the z- and y- axes.

Detectors that have been labelled ’P’ in Figure 4.3 are the Silicon Pad detectors.

They are non-segmented silicon detectors with single-sided readout. They are also

50 × 50 mm in size. They were installed in the setup with the intention of having
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Name Thickness (µm) Position (mm)
x y z

U1 42 24.50 1.00 -29.50
U2 67 24.00 0.30 16.50
U3 1041 34.00 00.45 27.00
U4 524 -26.00 0.50 -24.00
U5 69 4.15 -35.00 -9.00
U6 65 -30.00 00.00 25.00

Table 4.1 The table shows the list of the DSSSDs along with their thickness in µm
and the position coordinates of the detector center in mm. The origin of the system
was defined at the center of the beam spot, the z-axis was along the beam direction,
and the y-axis was along the vertically upward direction.

a larger geometrical efficiency for β-triple-α coincidence detection. But due to the

high level of noise in the detectors, their signals have not been used in the analysis.

An HPGe detector was also used for gamma-ray detection. Its purpose was to

measure the characteristic 4.44 MeV gamma-rays from the 12C nucleus and use the

intensity for beam normalisation. This detector was also used to validate the low

energy calibration of the U3 detector (β-particle detector) by studying the Compton

lines using a 60Co source. The technique has been discussed in details in section

5.1.2.

4.3 Data acquisition system

When a charged particle passes through the Silicon detector, it causes the creation

of electron-hole pairs. The amount of charge generated is proportional to the energy

of the incident particle. The ionisation energy of Si at room temperature is 3.62 eV

[56]. The present section explains the electronic circuit and modules that were used

to process these signals from detectors and convert them to signals that could be

read into the DAQ. The whole circuit and all its components (the modules) work

with one or both of the two types of pulses caused by the incident particle; the linear
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pulse and the logic pulse. A linear pulse carries the information in its amplitude and

shape. However, for a logic pulse it is the instance or timing of its generation that

matters [56].

Figure 4.4 shows a block diagram of the electronic circuit that was used for signal

processing for the DSSSD (U) detectors in this experiment.

Trigger

F (p-side)
B (n-side)

Preamplifier

Preamplifier

HV

Detector 
bias

HV

Amplifier

Amplifier

Coincidence

ADC
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Energy
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Timing

FIFO

DAQ

Same trigger 
circuit from all 
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DAQ 
trigger

Trigger from 
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FIFO

Coincidence

DAQ rate 
Monitor

Start

DSSSD

Fig. 4.4 A flow-chart diagram of the electronics set up for the DSSSDs. The
components in blue show the linear pulse processing chain. The linear pulses carry
information on the energy of the detected event. The orange colour components
show the logic pulse chain. The logic pulses hold the information on the timing of
the events. The logic pulses were also used for setting the trigger to the DAQ.

4.3.1 Shaping and amplification of the linear signal

The signal-processing electronics began with the preamplifiers, the purpose of which

was to prepare the signal generated by charge collection at the detector electrodes

for further amplification and pulse shaping. The output pulse from the preamplifier

was a linear tail pulse and the amplitude was of the order of 250 mV per MeV of

energy of the incident particle. The preamplifiers were also used as the interface to

apply the bias voltage to the detectors.

The output from the preamplifiers was fed into linear amplifiers. The linear

amplifiers (also called shaping amplifiers) were used for the shaping and amplification

of the pulse to the accepted amplitude range of the DAQ. The shaped output
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pulse was finally fed into the ADC (Analogue to Digital Convertor) modules, which

ultimately input the signal into the DAQ.

4.3.2 Timing signal processing

The linear amplifiers generate a logic pulse corresponding to each signal. These logic

pulses were used for determining the timing information for particles incident on

the detectors in any event. The TDC (Timing to Digital Convertor) modules were

used to measure the timing of each detected incident in an event. The clocks for all

TDC modules channels were started simultaneously using the same logic pulse that

triggered the DAQ. A clock would stop for any channel when the logic pulse from

the amplifier arrived at the corresponding channel at the TDC. The time difference

between the start and the stop signal was then recorded as the timing information of

the incident. The timing signal processing and the trigger circuit are shown in orange

in Figure 4.4. The coincidence between the DAQ trigger and DAQ rate monitor was

taken to ensure that the TDC modules’ clocks were started only for the accepted

events.

There were two different types of modules of linear amplifiers that were used in

the experiment; Mesytec MSCF-16 and Mesytec STM-16+. The main difference

between these two modules is the way they generate the logic pulse corresponding to

a signal. One has a constant fraction discriminator (MSCF modules) while the other

has a leading edge discriminator (STM). The timing properties of the modules with

the leading edge discriminator are energy dependent. Therefore, the MSCF modules

were used for the back side channels as the timing information was recorded only for

the back channels of all the detectors except U3. For U3, both front and back side

channels were connected to the TDCs.

4.3.3 Trigger circuit

The DAQ starts to look for the signals from the ADC and TDC modules when it

records any trigger pulse, and it was desired that all real hits be recorded while
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ignoring the non-real signals such as noise in the detectors. To achieve this, the DAQ

trigger generation was set to require a coincidence between signals from the front

and the back of the detectors. All six of the output logic pulses corresponding to the

six DSSSDs from the coincidence unit were fed into a Fan In Fan Out (FIFO) unit.

The FIFO unit is essentially an OR circuit, and the output from this was set as the

trigger to the DAQ.

4.3.4 Thresholds

Trigger threshold

The linear amplifier modules were used to set the discriminator thresholds to reduce

the trigger rate from the low level background and noise signals. The discriminator

threshold determined the lower limit on the height of the linear pulse that would

generate the logic pulse.

MIDAS ADC thresholds

The trigger rate was controlled using the hardware (amplifier) thresholds, but the

low level noise could still be observed in the data through one channel whenever the

DAQ was triggered by another channel. This would have caused a high event rate to

be recorded, filling up the disks unnecessarily. To avoid this, the readout thresholds

were set on each ADC channel individually using the MIDAS software.

The thresholds (both hardware and software) were changed as necessary through-

out the experiment.



Chapter 5

Data Analysis

The data in its most raw form consist of a series of hexadecimal numbers that only

contained the information on the ADC and TDC channel numbers that were fired in

an event and the corresponding digital signals (ADC peak height and timing). The

data analysis that was performed to convert those numbers into physical information

such as energy and momentum of the particles has been detailed in this chapter.

A typical event during the experiment underwent one of the four possible se-

quences;

12N β+,ν−−→ 12C (5.1)

12N β+,ν−−→ 12C∗ α1−→8 Be −→ α2 + α3 (5.2)

12N β+,ν−−→ 12C∗ α1−→8 Be∗ −→ α2 + α3 (5.3)

12N β+,ν−−→ 12C∗ −→ α1 + α2 + α3 (5.4)

In the first sequence, the 12C nucleus was formed in its ground state or in the

first excited 2+ state at 4.44 MeV energy, which is below the triple-α threshold of

7.275 MeV. So, these decays did not result in the triple-α breakup of the nuclei.

In the second, third, and fourth sequences, the 12C nucleus was formed with an

excitation energy above the triple-α threshold, and can decay via triple-α breakup.

In the second and third sequences, the triple-α breakup was sequential, involving the

intermediate 8Be nucleus either in its ground state or first excited state. Whereas,
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in the fourth sequence it was a three-body breakup. The main motivation of the

experiment was to search for the 2+ strength in the 9-11 MeV energy region. Two

main steps were taken in the data analysis to achieve this. The first step was to

construct the excitation energy spectrum of the 12C from the α-particles’ energies.

The energy spectrum was gated on specific breakup channels: either the equation

5.2 breakup channel or the combined equation 5.3 and 5.4 breakup channels. The

second step was to use the β-α angular-correlations to determine the spin-parities of

the resonance strengths observed. But to be able to perform these two steps, the

data had to be sorted into the physical information form by calibrating the setup

first. Figure 5.1 shows a flow chart of the different stages of the data analysis process.

The techniques used in each stage have been explained in detail in the following

sections, with energy and geometry calibration in section 5.1 and 5.2 respectively,

foil thickness measurement in section 5.3, data reduction in section 5.4, Monte-Carlo

simulation in section 5.5, kinematic reconstruction in section 5.6, angular correlation

analysis in section 5.7, and geometrical uncertainties in section 5.8.

Raw Data ADC/TDC Channel Number, Digital Signal Size Sort code

Detector Strip Number, Raw Energy

ADC channel number to strip number mapping. Channel by channel energy calibration

Detector + Pixel, Raw Energy

Data reduction by applying ADC threshold 
and front-back energy matching

Identified ᶔ and ᶓ’s, 
Corrected Energy, 

Position Vector

ᶔ, ᶓ1, ᶓ2, ᶓ3 identification, geometry calibration, 
detector dead layer and foil thickness ᵼE correction

Physical information
12C Excitation Energy, 8Be Energy, Pᶓ1,ᶓ2,ᶓ3, ᶚᶔᶓ

Fig. 5.1 A flow-chart diagram showing the different stages of data analysis.
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5.1 Energy calibration of silicon detectors

To convert the digital signal corresponding to an event into the energy of the incident

particle, it was required to establish the relationship between the energy and the

ADC signal (between 0 - 4096) for each channel. Equation 5.5 shows the linear

equation used to convert the ADC output to an energy using the parameters gain

and offset. The calculation of these parameters is described in this section.

energy = gain × ADC output + offset (5.5)

5.1.1 Calibration of α-particle detectors

The energy calibration was done in two steps. The first step was to obtain the equation

between the input voltage at any preamplifier channel and the corresponding digital

output at the ADC module. This was achieved using the pulser data. As the name

suggests, a pulser is an electronic module that can generate periodic pulses at a desired

voltage. The pulser was connected to the preamplifier input and various values of

pulser voltages were sent through the electronic circuit that a real signal from detector

would go through. The pulser voltage was changed in regular increments starting

from 0 volts and going up to the maximum preamplifier input value corresponding

to the full ADC output range. An example of the pulser spectrum from one ADC

channel has been shown in figure 5.2. Using these spectra for each channel, the

linear equation between pulse number (in arbitrary units) and the ADC output was

obtained as in equation 5.6.

Pulse height (arb) = parameter1 × ADC output + parameter2 (5.6)

In the second step, the equation between pulse height and the energy was

evaluated. This was done using a triple-α source that contained the radioactive

isotopes; 239Pu, 241Am, and 244Cm, which emit α-particles of known energies (see

table 5.1). An example spectrum of the triple-α source is shown in figure 5.3. By



5.1 Energy calibration of silicon detectors 45

ADC channel number
0 500 1000 1500 2000 2500 3000 3500 4000

N
um

be
r 

of
 c

ou
nt

s 
( 

/ c
ha

nn
el

)

0

100

200

300

400

500

600

700

Fig. 5.2 A single ADC channel spectrum of a pulser run. The x-axis values correspond
to the ADC output values (ranging 0 - 4096). On the y-axis is the number of pulses
per channel.

identifying the three main peaks in the spectra, their corresponding ADC outputs

were noted by fitting the peaks. Using those ADC output values in equation 5.6

along with the knowledge of corresponding energies, the relationship between pulse

height and energy was obtained as in equation 5.7.

Pulse height (arb) = constant × energy (5.7)

Finally, using equations 5.6 and 5.7, the calibration parameters; gain and offset (see

equation 5.5) were obtained.

This final relationship between energy and the ADC channel could have been

directly obtained by linear fitting the triple-α peak positions. But the energy of

α-particles from the source was ∼5.5 MeV, whereas the energy of the α particles

in the 12C triple-α breakup data extended down to 70 keV. Therefore, the offsets

obtained using the pulser runs were better suited for this data analysis.

Detector dead layer correction

The DSSSDs used in the experiment had an approximately 100 nm thick layer of

dead material even when fully biased. This meant that α-particles lost some energy
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Fig. 5.3 A single ADC channel spectrum of a triple-α source run. As in figure 5.2,
the x-axis values correspond to the ADC output values (ranging 0 - 4096). The
y-axis is the number of counts per channel.

∆EDL when passing through the dead layer. The stopping power in any material

is dependent on the incident energy of the particle. Therefore, the energy loss,

∆EDL, was different for the α-particles used for the calibration (∼5.5 MeV) and the

α-particles from the 12C breakup in the relevant energy range for this work (∼70 keV

- 4 MeV). This meant that a correction was required for this detector dead layer

effect.

The angle of incidence for particles was different for different strips and for

individual pixels on any one strip. The effective dead layer that was seen by a

particle was dependent on this angle. Therefore, as the first step, the effective dead

layer for each strip was calculated.

In figure 5.4, t is the dead layer thickness, E is the energy of the incident particle,

and θi is the angle of incidence of the particle on the ith pixel. If ∂E/∂x is the

stopping power at energy E then the energy of the particle after passing the dead

layer should be,

Ei = E − t

sin θi

× ∂E

∂x
(5.8)
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Fig. 5.4 A vertical strip of the detector as seen from the side, showing dead layer of
thickness t in grey. An α-particle of energy E, incident on ith pixel enters the active
region of the detector with energy Ei.

Simplifying the weighted average of Ei over solid angle Ωi for all 16 pixels gives,

E’ = E − t × ∂E

∂x
×

16∑
i=1

Ωi

sin θi

× 1∑16
i=1 Ωi

(5.9)

Using equation 5.9, the effective dead layer thickness for each strip was calculated as,

DLeff = t ×
16∑

i=1

Ωi

sin θi

× 1∑16
i=1 Ωi

(5.10)

As the next step, the energy of the α-particles from the triple-α source that reached

the active volume of the detector were calculated by subtracting the corresponding

energy loss in the dead layer. In the calibration process of obtaining gain and offset

parameters for equation 5.5, these corrected energies were used.

The calibration parameters obtained gave the energy of the particles that would

have reached the active material. In the final step, to get the incident energy of the

particles, the estimated energy loss (∂E/∂x×DLeff) corresponding to the energy

was added to the value.
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Foil thickness correction

The energy of a particle from the 12C triple-α breakup that was incident on the

detector was not the energy with which the particle was created. The 12N beam

was implanted in a stopper foil of thickness 118.2 nm. The implantation depth for a
12N ion with 30 keV/u energy in 12C was calculated to be 61 nm using TRansport

of Ions in Matter (TRIM) program calculations. TRIM is a part of the SRIM

(Stopping Range and Energy Loss) package that consists of programs that are used

for calculating the stopping power and range of ions in matter [57]. This meant that

any particle generated in the decay of 12N or in the subsequent breakup of 12C had

to travel through the 12C foil for at least 61 nm or 57 nm depending on which side it

exited. Therefore, to evaluate the real energy of an α-particle from the breakup, the

energy it lost in the stopper foil was added to the energy incident on the detector.

The effective foil thickness was calculated from the angle of emergence of the

particle from the foil. The relationship between the particle energy and the stopping

power of the α-particles in 12C was calculated using the SRIM software.

5.1.2 Calibration of β-particle detector

The β-particle detector was calibrated using the same procedure, but using an electron

source instead of a triple-α source. The radioactive ion in the source was 207Bi, which

emits conversion electrons with energies of 481.69, 553.84, 975.65, and 1047.8 keV

[58]. The spectrum as recorded on one channel is shown in figure 5.5. There was no

need to correct for detector dead layer thickness or the foil thickness while calibrating

the β-particle detector because the β-particles (positrons and electrons) do not lose

a significant amount of energy in such a small thickness of material. An electron of

1 MeV energy would lose about 0.0049 keV in 61 nm of 12C foil, and about 0.0066 keV

in 100 nm of silicon dead layer. These values are based on stopping power calculated

from Electron STopping-power And Range (ESTAR) database [59].
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Fig. 5.5 A single ADC channel spectrum of the 208Bi source run. The x-axis values
correspond to the ADC output values (ranging 0 - 4096). The y-axis is the number
of counts per two channels.

Energy calibration in the low energy region

It was briefly mentioned in chapter 4 that the HPGe detector was used to validate

the low energy calibration of the U3 detector. This was done using the 60Co source

and studying the Compton scattered γ-particles, scattering off the Si detector and

getting absorbed in the HPGe detector. In such events, the particle deposited part of

its energy in the Si detector and the rest of the energy in the Ge detector. The ratio

of the energies deposited in each detector depends on the scattering angle. Therefore,

the source was placed near the bottom right corner of the U3 detector (see figure 4.3)

to maximise the range of scattering angles between the U3 and HPGe detectors.

These events can be very clearly seen in a 2D histogram of energy recorded in Si

vs energy recorded in Ge. The plot is shown in figure 5.6. The diagonal lines in the

plot correspond to the Compton scattering events that were detected. As can be

seen in the plot, there are two such lines, each corresponding to two main γ-lines

from the 60Co source.

This was done in order to check the validity of the low energy calibration of the

U3 detector. This was achieved by checking the intercepts of the aforementioned

diagonal lines in figure 5.6 on the x-axis. These lines should have both x- and y-
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Fig. 5.6 Energy in the U3 DSSSD versus energy in the HPGe detector. The Comton
scattered events can be seen as the diagonal lines where a γ-ray deposited part of its
energy in the U3 DSSSD and the remaining in the HPGe detector.

intercepts as 1173 and 1332 keV, which are the energies of the two γ-lines from

the 60Co source [60]. If the U3 energy calibration was non-linear, the x-axis values

corresponding to the low energy values on the y-axis (the Si energy axis) would have

been wrong. This would have made the intercepts of diagonal lines on the x-axis

vary off the correct values. It can be seen from the plot in figure 5.6 these intercepts

were within 10-20 keV of the correct values of 1173 and 1332 keV. This small offset

was acceptable as it didn’t have any significant impact on analysis as can be seen in

following sections.

5.2 Geometrical calibration of the setup

The coordinates of each detector’s center were measured using a ruler on the PCB

board on which they were mounted. Taking into account the uncertainty in the

beam spot on the stopper foil, and the uncertainty in the position of the stopper foil

itself, these measurements were accurate to within 2 mm.
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The angular correlation measurements (details of which are covered in section 5.7

and 5.8) were sensitive to the geometrical calibration, therefore it was required to

get the detector positions in the data analysis as close to the real values as possible.

To do that, the two physical aspects of the breakup that were most sensitive to

the geometrical calibrations were monitored; the sum of the momenta of all three

α-particles, and the energy state of the intermediate 8Be nucleus calculated using the

momentum of the second and third α-particles. The former was more sensitive to the

detectors’ position in their planes, while the latter was more sensitive to detectors’

distance from the stopper foil. So, together they provided a good handle on the

overall geometrical calibrations of the detector-foil setup. One more thing to mention

here is that due to the breakup mechanism of the 12C energy states that were of

interest in the present work (0+ and 2+ spin-parities), the three α-particles from

the breakup mostly hit the detectors opposite to each other. This made it easier to

perform tests on the geometrical calibrations, as it meant that only two detectors

(either the pair U1 and U6, or the pair U2 and U4) were to be monitored at one

time. See figure 4.3 for the detector setup arrangement.

By the law of conservation of momentum, the sum of momentum of α particles

from a triple-α breakup should be zero. If the geometrical calibration was done

perfectly, histograms of each of the x, y, and z components of the total momentum in

the breakup should be centred around zero. Any offset from zero in these histograms

would be an indication of an offset in the calibrations. Given the geometry of the setup

and the axes definition, the x and z components were coupled, but the y component

was independent. Therefore, for the ease of explaining, the y-coordinate has been

chosen to show how a change in any of the coordinates would have affected the

physical parameters. It can be seen with the help of figure 5.7 how the y-component

of the sum of momenta would change if the defined y-coordinates of the detectors

were different from the actual setup. Any difference in x- or z-coordinate definition

would also affect the y-component of the total momentum, but the effect would be

of second order.
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Fig. 5.7 A schematic diagram of the stopper foil and detectors U2 and U4 from
the side, looking along the plane of the detectors. The diagram shows how the
y-component of the sum of momenta of α-particles from the breakup would change
from zero if there was an error in defining the y-coordinate of the detectors. The solid
lines show the actual trajectory of particles from the break up, and the dotted lines
show the apparent trajectory if the coordinates are defined incorrectly. The diagram
also shows how the measured angle between the second and third α-particles would
change if the detector position was defined closer or farther than the real position.

The second observable that was monitored for checking the geometrical calibration

was the energy state of the intermediate 8Be nucleus. It was calculated using the

relative momentum P⃗23 between the α2 and α3 from the breakup. Therefore, it

depended on the angle between the momentum vectors P⃗2 and P⃗3. The details of

how it is calculated is covered in section 5.5. This quantity was mainly sensitive to

the distance of the detector from the breakup point as is clear in figure 5.7.

The 8Be energy plots were mainly sensitive to the detectors’ distance from

the stopper foil. In the procedure for obtaining the correct peak energy in these

plots, there were two parameters that were varied: the x and z coordinates of the

corresponding detector’s center. For the Py component plots also, there were only

two parameters that affected the distribution: the y components of each of the

detectors in a pair of two facing each other. However, for the x and z component
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momentum distribution plots, there were four parameters (x and z coordinates of

the two detectors in either pair) that affected the Px and Pz simultaneously, because

the x and z coordinates were coupled in the defined coordinate system. But provided

the fact that the detector planes were fixed at a 45o angle to the axes, the x and z

coordinates for the center of a detector were coupled if they were to remain in the

detector plane. This reduced the number of parameters from four to two essentially.

Figure 5.8 and 5.9 show the best results that could be achieved simultaneously for

momentum distribution plots and the plots of reconstructed energy of the intermediate
8Be nucleus. In figure 5.8 the 1st and 2nd column corresponds to the x and z

component of the sum momentum of the α-particles from the breakup. Only x and z

components of the sum momentum have been shown because they were coupled and

therefore more complicated to center around zero simultaneously. These plots show

only those breakup events which took place via the ground state of the 8Be nucleus.

As has been mentioned before, due to the breakup mechanism, the α particles from

such events were mostly recorded in the detectors facing one another. So, only four

detectors are included in these histograms. Which makes all detectors with the

exception of U5 as there was no detector opposite to it. The top row shows the

histograms with all the events. The middle row shows only those events which were

recorded in the detector pair U1 and U6, while the bottom row shows those that

were recorded in the pair U2 and U4.

The histograms in figure 5.9 show the energy of the 8Be nucleus, calculated using

momenta of α particles that the 8Be nucleus broke into; the α2 and α3 in the triple-α

breakup. The ground state energy of 8Be is 91.8 keV [61]. The difference between

the ground state energy values in these plots from the real value comes from any

discrepancy between the defined and real geometrical coordinates of the detectors.

As has been mentioned above, both these observables were monitored together

while tweaking the geometrical coordinates of the detector centres. The ideal values

for these observables are; zero for momentum distribution, and 91.8 keV for the 8Be

ground state energy. These ideal values could not be achieved simultaneously as there
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Fig. 5.8 The figure shows the x and z components of the sum of momenta of α-
particles from the triple-α breakup of 12C via the ground state of the intermediate 8Be
nucleus. The 1st and 2nd column correspond to the x and z component respectively.
The top row plots consist of data from all the α-particle detectors. The middle row
shows the events recorded in the detector pair U1 and U6. The bottom row shows
the events recorded in the detector pair U2 and U4.

seemed to be a trade-off between the two. The explanation behind that observation

could be that the values of implantation depth of the 12N ions in the foil and the foil

thickness used were not accurate. They depend on the stopping power of the 12N

ion in the 12C material, which was obtained using SRIM. Any error in the stopping
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Fig. 5.9 The figure shows the reconstructed energy state of the intermediate 8Be
nucleus in the breakup. The energy was calculated using the momenta of α2- and
α3-particles. Selection of α2 and α3 out of the three detected particles was made
based on the particles’ energies, with the highest energy particle being the first
emitted in the breakup. Clockwise from the top-left, the plots show the events where
α2 and α3 were recorded in U1, U2, U4, and U6 respectively. The peak corresponding
to the energy of the ground state of 8Be should be at 91.8 keV. Any deviation from
this value comes from the discrepancy between the defined and real geometrical
coordinates of the detectors.

power in that database would have lead to a misjudged foil thickness and the ion

implantation depth, which would affect the observables in question. Nevertheless,

the geometrical coordinates were known within ±2 mm accuracy and the effect of

this uncertainty on angular correlations and on further results was calculated. These

uncertainty calculations have been detailed in section 5.8.

5.3 Foil thickness calculation

The thickness of the stopper foil was measured before and after the beam time run.

To measure the foil thickness, the triple-α source was shone onto the U2 detector

through the stopper foil. By calculating the difference between the measured energy
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and the known energy of the α-particles, along with the stopping power of the foil

material, 12C, for the α-particles of ∼5.5 MeV energy, the foil thickness was calculated

using the equation, tfoil = ∆Efoil / stopping power. Detector U2 was selected based

on the convenience given the setup as it was. The results of the measurements and

calculations before and after the beam-run have been given in table 5.1. The growth

in the foil thickness can be attributed to the deposition of beam ions and vacuum

impurities.

Isotope Energy Stopping power Before beam run After beam run
(keV) (keV/nm) ∆Efoil tfoil ∆Efoil tfoil

(keV) (nm) (keV) (nm)
239Pu 5156.6 0.177 18.2 102.6 25.2 142.1
241Am 5485.6 0.170 16.5 96.8 22.8 133.8
244Cm 5804.8 0.164 16.0 97.6 22.3 136.0

Avg: 99.0 Avg: 137.3

Table 5.1 The table shows the calculation of stopper foil thickness using the triple-α
source. The measurements were carried out at the beginning of the experiment
(before the beam-run) and then again at the end of the beam run.

5.4 Data reduction

This section contains the details of the how the data was sifted through different

cuts and gates to ensure the best removal of false (background and noise) events.

Once the total number of true events was identified, using the detection efficiency

as obtained from the Monte Carlo simulation in section 5.4, the 12N ion yield was

calculated.

5.4.1 Real triple-α hits identification

For identifying a real particle hit from the background or noise, a series of cuts and

acceptance criterion were applied to the data.
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ADC threshold: As has been mentioned previously in section 4.3.4, while recording

the data during the experiment, a readout threshold was set for each ADC channel

using the MIDAS data acquisition. In the data analysis, similar or slightly higher

values of thresholds were implemented to cut out the low level noise in each strip.

The ADC thresholds were varied a few times over the course of experiment. The

typical energy equivalent threshold values were between 40 - 250 keV. For the sake

of keeping further analysis less complicated, only one set of values (the highest ones)

was used for all the runs. Figure 5.10 shows the difference between the acceptance

with low and high threshold cutoffs. The spectrum shown is the reconstructed 12C

excitation energy. The details of the reconstruction are covered in the next section.

The curve in blue is accepted data with low cutoffs and the one shown in red is with

the higher cutoffs. The total difference between the statistics in the two cases is of

the order of 10%. As can be seen from the figure 5.10, the effect is most prominent

in the 10 MeV region. However, in this region there is high enough statistics even

with the higher cutoffs, therefore, it was justified to use the higher cutoffs for the

whole dataset analysis.
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Fig. 5.10 The figure shows the comparison between the acceptances when low
(in blue) or high (in red) cutoffs are applied to the data. On the x-axis is the
reconstructed 12C excitation energy and on the y-axis is the number of counts per
5 keV.
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Front-back energy matching: If a particle hits the detector in the middle of a

pixel, i.e., not in the inter-strip region, it must have deposited similar energy in the

two channels corresponding to the front strip and the back strip. The typical energy

resolution of the detectors was 25-30 keV FWHM. Motivated by the resolution, the

acceptance criterion was set to be | EF - EB | < 60 keV.

In some instances, there were two particles of very similar energy that hit the same

detector in two different pixels. In that case, there were two possible pairs identified

by the front-back energy matching criteria. In order to select the true one of the two

pairs, the pair with the lower value for (| EF - EB |particle1 + | EF - EB |particle2) was

chosen.

Minimum three identified hits: Only those events which had at least three

identified α-particle hits were selected for further analysis.

Total energy and momentum: To further cut down the low level noise from the

data, a lower limit of 600 keV was set on the acceptable total energy. Finally, to

ensure that the three identified particles were indeed the three α-particles from a 12C

breakup, the data was gated on the events which had total momentum, Psum < 35

MeV/c2, and had Psum < (Esum/90 + 10). These cuts have been shown graphically

in figure 5.11.

5.4.2 Real β-particle hit identification

The previous subsection explained how the real triple-α hits were identified and how

the noise and background was filtered out from the α-particle detectors. A similar

procedure was followed for the β-particle detector. The first part was the same, i.e.,

applying the readout thresholds and the front-back energy matching. But this time,

since it was the β-particle detection being dealt with, special care was taken while

applying the readout thresholds. The same energy β-particle can deposit a different

amount of energy in the detector depending on the angle of incidence. The apparent

thickness of the detector to the particle is different for different angles of incidence.

Therefore, to avoid an angular dependency on the β-particle acceptance, the readout
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Fig. 5.11 The top figure shows the total energy and total momentum cuts graphically
in the 2D histogram of Psum vs Esum. The bottom figure shows the effects of these
cuts on the total Esum spectrum.

threshold in the analysis was set by considering the spectrum on the strips which

have the smallest angle of incidence, i.e., the strips in the middle of the detector.

The β-particle spectra for the bottom, middle, and top parts of the detector have

been compared in figure 5.12. In blue is shown the spectrum for the middle part, and

it can be clearly seen that the spectrum peak is at a lower energy than compared

to the spectra for the bottom (shown in black) or the top (shown in red) part of

the detector. The readout threshold was set to be at 200 keV to ensure that all the

β-particle events were accepted.

In addition to the readout thresholds and the front-back energy matching, TDC

gates were also applied on the β-detectors. By looking at the TDC data, the peak
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Fig. 5.12 The figure shows the β-particle spectrum as recorded in bottom, middle,
and top parts of the detectors in black, blue and red respectively. The x-axis is the
energy of the particles in keV and the y-axis is the number of counts per two keV.

position corresponding to the real hits was identified. Any hit on a channel with a

TDC value outside of peak range was then discarded as low level noise. Figure 5.13

shows the TDC spectrum for one specific TDC channel.
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Fig. 5.13 A single TDC channel spectrum of the 208Bi source run. The x-axis
corresponds to the TDC output values (ranging 0-4096). The y-axis is the number
of counts per channel.
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5.4.3 Yield estimate

An account of how many events survived after each gate was applied has been given

in table 5.2.

Gate/Criteria Number of events
Raw 353,123,805

ADC threshold 206,901,658
(Front-back energy matching +

real pair identification) 181,248,889
Minimum three identified hits 785,963

Esum < 600 keV 756,267
Psum < 35 MeV/c2 463,319

Psum < (Esum/90 + 10) 457,439
Coincident β-particle detection 33,393

Table 5.2 The table shows the number of events that survive after every step of data
reduction.

To calculate the average yield of 12N ions in the experimental chamber, the total

number of counts in the 12.71 MeV state were used. The number of counts in the

12.7 MeV peak between 12.3 and 12.9 MeV were calculated to be 7.6 × 104 over

∼151 hours of beam time. The overall efficiency of the setup for the 12.7 MeV 1+

state was calculated using the Monte Carlo simulation in the work [62] as 0.076. The

branching ratio of the 12N β-decay to the 12C 12.7 MeV state is 0.12 % [30]. So,

using these numbers, the average yield was estimated to be 1533 12N ions/s.

5.5 Monte Carlo simulation

In the work presented in this thesis, we are dealing with β-triple-α coincidence

detection. The detection efficiency of the setup for this experiment was dependent

on a number of things including the triple-α breakup mechanism. Therefore, it

could not be simply calculated from the detectors’ efficiency combined with the

geometrical efficiency as can be done for single particle detection. Moreover, the
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detection efficiency in the low energy region was dominated by the ADC readout

thresholds and the analysis thresholds. Therefore, a simulation of the experiment

was required in order to calculate the detection efficiency. The simulation was also

required to obtain the geometrical acceptance of the setup, which was crucial for the

β-α angular correlation analysis.

The main base of the simulation was developed by our collaborators at Aarhus

University. This base structure included the specifics of the experiment such as

the beam spot size, the βν recoil from the β-decay, the phase-space of the triple-α

breakup allowed by the energy and momentum conservation laws, the α-particle

detectors’ description, energy losses in the foil thickness and the detector dead layer,

and the detectors’ response to the particles. The detailed procedure of the simulation

have been given in [62].

For the work presented here, an addition of the β-particle detector (U3) was made

to the base simulation. Optimisation of the geometry of the α-particle detector setup

was also added. Specifically, the coordinates of the center of these detectors were

changed to the values obtained by geometrical calibrations as has been discussed in

section 5.2. The coordinates used in the analysis and the simulation have been given

in table 4.1.

To obtain the detection efficiency of the setup as a function of 12C excitation

energy, the simulation was run for eight different triple-α breakup Q-values in the 8 -

12 MeV excitation energy region. The simulated data was analysed using the same

procedure and scripts that were used to analyse the experimental data. For each

Q-value, 107 events were simulated. The ratio of number of events that survived

the whole data reduction routine to 107 was taken as the detection efficiency of the

setup for that Q-value. The final efficiency curve has been shown in figure 5.14. As

can be seen from the figure, efficiency versus energy function had a smooth curve

behaviour. Hence, interpolation was used to get the efficiency for the energies in

between any data points in the plot in figure 5.14.
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Fig. 5.14 Detection efficiency of the setup as a function of 12C excitation energy.
This figure only shows the setup efficiency for the breakup channel via the 8Be ground
state.

The geometrical acceptance of the system for β-α angular correlation was ex-

tracted by plotting the number of β-triple-α coincidence events against the θβ−α,

the angle between the β-particle and the α1-particle. More details on this have been

covered in section 5.7.

5.6 Kinematic reconstruction

Using the measured energies and momenta of the α-particles, it was possible to

perform the complete kinematic reconstruction of the breakup. What is meant

by ’complete kinematic reconstruction’ is the extraction of the excitation energy

of the 12C nucleus and of the intermediate 8Be nucleus in the breakup, as well as

the identification of the breakup channel. This is detailed in the following two

subsections.
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5.6.1 12C energy spectrum and the breakup channels

The excitation energy of the 12C nucleus was calculated using conservation of energy.

To do that, the 12C triple-α threshold was added to the sum of kinetic energies of

the three α-particles from the breakup.

To visually identify the breakup channel, the total energy of the breakup was

plotted against the individual α-particle’s energy. The resulting plot has been shown

in figure 5.15. The main feature which stands out in this 2D histogram is that the

way the energy is distributed amongst the three α-particles in a breakup is very

different for the energy state at 12.7 MeV and the broad resonance at ∼10 MeV. For

the 12.7 MeV state all three α-particles’ energies fall into three separate groups along

the x-axis, while for the broad strength at 10 MeV the highest energy α particle very

distinctly lies on the line of slope 2/3, and the remaining two α-particles’ energies lie

very close to each other’s in the group centred around a line of slope 1/6.
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Fig. 5.15 The figure shows the reconstructed excitation energy of the 12C nucleus
on the y-axis, plotted against the energy of individual α particles from the breakup.
This plot shows the difference between the kinematics of breakup mechanisms from
different breakup channels.
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The strength in the 10 MeV region consists of resonances of spin-parities 0+

or 2+. These spin-parity states breakup mainly via the ground state of the 8Be

nucleus. By simple kinematics, it is therefore apparent that the first α-particle from

such a breakup takes away two-thirds of the available energy, the 12C excitation

energy minus the α-emission threshold. The second and third α-particles shared

the remaining one-third of the energy plus the 91.8 keV, the ground state energy of
8Be. The 12.7 MeV state has the spin-parity 1+. Therefore, due to the conservation

of angular momentum and parity, this state could only breakup via the 2+ excited

state in the intermediate 8Be nucleus which lies at 3.03 MeV energy with 1.5 MeV

width [61]. Therefore, the energy distribution in this breakup looks very different,

with α1 lying in the middle group, and α2 and α3 lying in the groups on the either

side (see figure 5.15).

5.6.2 8Be energy spectrum

For a sequential breakup (eq 5.2 and 5.3), the energy of the intermediate 8Be nucleus

could be reconstructed using the relative momenta of its breakup products, α2 and

α3, by using the equation,

E8Be = 2 p⃗23
2

2mα

(5.11)

where, p⃗23 = 1
2(p⃗2 − p⃗3)

Figure 5.16 shows a histogram of the 8Be reconstructed energy for all the triple-α

events recorded. The very clear peak that shows at 91.8 keV, corresponds to the

ground state of 8Be. For the selective analysis on the breakups that took place via

the ground state of 8Be, the data was gated on the events in the ground state peak

only (i.e., E8Be < 120 keV).

The effect of gating the data on different breakup channels using the 8Be energy

can be seen very clearly in figure 5.17. This figure shows the same plots as the one

in figure 5.15, but with the data gated on one breakup channel or the other. The top

one contains the events gated on the 8Be ground state peak from figure 5.16. While

the bottom plot contains all the other events. As has been explained before, the
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Fig. 5.16 The figure shows the energy of the intermediate 8Be nucleus reconstructed
from the relative momentum of α2 and α3. The peak at 91.8 keV corresponds to the
events where the breakup happened via the ground state of 8Be.

12.7 MeV 1+ state cannot breakup via the ground state of 8Be due to the angular

momentum and parity conservation. Figure 5.17 (top) presents the evidence for this

statement.

5.7 Angular correlation plots

Once the data was cleaned of any possible noise or background, the β − α angular

correlations were analysed as a function of 12C excitation energy. The β − α angular

correlation should be isotropic for the breakup of the 0+ state and any anisotropy

would suggest the presence of a 2+ strength. Therefore, the main idea was to scan

the energy region of interest in small sections (500 keV wide bins), and evaluate the

strength profile of the 2+ state by analysing how the anisotropy in the β −α angular

correlations evolve.

The angular correlations were studied for each breakup channel separately. The

analysis presented in this section was performed on the data gated on the breakup

channel via ground state of 8Be. The β-triple-α data was first divided into regions

of 12C excitation energy. For each energy region, a histogram of θβα (the angle

between the direction vectors of β and α1 particles) was made. One sample of these
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Fig. 5.17 The figure shows the data gated on different breakup channels using the
8Be energy plot. The top plot only contains the events that fall in the 8Be ground
state peak in figure 5.16. It can be seen that the 12.7 MeV 1+ state of 12C does
not show in the top plot as it cannot breakup via the 0+ ground state of 8Be. The
bottom plot shows the events where the breakup took place via the 2+ excited state
of 8Be.

histograms for the energy region 10 - 10.5 MeV is shown in figure 5.18 in blue. The

most noticeable feature of the histograms shown is the three bumps structure. This

structure was mostly due to the geometrical acceptance of the setup, and partly due

to the different ADC thresholds on different detectors. The detector array did not
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have the full 4π coverage, but instead had gaps between the detectors. Those gaps

between the detectors correspond to the dips in the angular correlation histograms.

Therefore, the angular correlation histograms of the simulated isotropic breakup

events showed the same features as the histograms of the experimental data. The

simulated histogram for the same energy region has been shown in red in figure 5.18.

 (radians)αβθ
0 0.5 1 1.5 2 2.5 3

N
um

be
r 

of
 c

ou
nt

s

0

20

40

60

80

100

120

140

160

180

200
Data

Simulation (isotropic)

Fig. 5.18 The figure shows the angular correlation histograms; number of counts
versus θβ−α, for 12C excitation energy 10 - 10.5 MeV. The histogram in blue shows
the real data and the red shows the simulated events. These plots are uncorrected
for geometrical acceptance and setup efficiency.

A quantitative analysis was performed on these these angular correlations for each

energy region to obtain the behaviour of anisotropy as a function of 12C excitation

energy. This analysis involved multiple steps which have been described in detail as

follows.

1. The data was first divided into six regions between 9.0 and 12.0 MeV excitation

energy, and the angular correlation histograms were plotted for each region.

2. The angular correlation plots from the data alone do not give any quantitative

information on the anisotropy as their features are mainly dominated by the

geometrical acceptance and the efficiency of the setup. Therefore, simulations

were performed for all the six energy regions to get a handle on the effect of

geometrical acceptance and the efficiency of the setup on the angular correlation
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plots. The breakup Q-values in the simulation were set as the data weighted

mean of each region (1990, 2480, 2965, 3445, 3905, and 4435 keV).

3. Since the simulated events had an isotropic β − α angular distribution, the

angular correlation histograms produced using those events had the theoretical

behaviour of the 0+ state’s decay. To get the equivalent (theoretical) his-

tograms for the 2+ state’s decay, the isotropic behaviour (or, the 0+ behaviour)

histograms were scaled to the 2+ state’s decay distribution function which has

been derived in chapter 3 in section 3.2.2, equation 3.11,

W (θ) = 1 + A2(β)A2(α)P2(cosθ)

The value of the coefficient A2(β) varies on a case by case basis and for this

case of 12N β-decay, the value of A2(β) was unknown. The value of A2(α) is

calculable, but only with the access to the complete wave function. Furthermore,

it was unnecessary for the main objective of this work, which was to obtain the

relative anisotropy and not the absolute values. Hence, the A2(α) coefficient

was set to be 0.32 as calculated in chapter 3, and the A2(β) coefficient was left

as the free parameter ’A’ in the fitting procedure.

4. For each energy region, the data histogram was fitted to a combination of the

pure 0+ and pure 2+ decay behaviours as obtained from simulations in step 3.

The combination function used was,

f = b× 2+
simulated + (1 − b) × 0+

simulated (5.12)

where, b was the fraction of the 2+ state contribution and (1-b) was the 0+

strength component.
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5. Fitting was done by varying the above described A and b parameters and

minimising the χ2 function,

χ2 =
bins∑
i=1

(fi − yi)2

max(yi, 1)

where, yi was the ith bin’s value in the data histograms.

The above described fitting procedure has been shown for one energy region 10 -

10.5 MeV in figure 5.19. The top panel is showing the comparison of the angular

correlation histograms of data with simulation. The data histogram is shown as a

solid blue line, the original simulation (the 0+ behaviour) is shown as a dotted red

line, and the simulation histogram scaled to the angular correlation function of the

2+ state is shown as a dotted black line. This comparison clearly shows that the real

data does not have an isotropic behaviour, indicating the presence of a 2+ strength

in the region. The middle section shows the χ2 value as a function of the product

b*A. From this plot, the value of b*A corresponding to the minima of the curve was

extracted as the best fit value of the parameters. The 1σ error on the b*A value

was also extracted from these plots by taking the difference between b*A(χ2
min) and

b*A(χ2
min±1). The bottom panel finally shows the data plot as the solid blue line

superimposed with the combined (0+ and 2+) simulated histogram as the dotted

green line. The values of b*A that were obtained from the χ2 minimisation were

used in the combination equation, equation 5.12, to obtain this fit.

Another method was used to visualise the anisotropy in the angular correlation

plots. The experimental data plots were normalised to the simulated data plots. This

normalisation action corrected the plots for the aforementioned effects of geometrical

acceptance and the efficiency of the setup. The normalised data should have a flat

line behaviour for a pure isotropic angular correlation. Again, the excitation energy

region of 10 -10.5 MeV has been used to present a sample of this normalisation.

Figure 5.20 shows the normalised data along with the best-fit. The fitting function
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Fig. 5.19 The figure shows the fitting procedure of the angular correlation histograms
(for the 12C excitation energy region 10 - 10.5 MeV). The top panel shows experimental
data as solid blue line and the simulated histograms for pure 0+ and 2+ state’s as
the dotted red and black lines respectively. The middle panel shows the χ2 values as
a function of the product b*A, where b and A are the parameters used in the fitting
function. The bottom panel shows the real data histogram (solid blue line) along
with the fit obtained by combining the simulated 0+ and 2+ histograms (dotted
green line).
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used was exactly the same as described above with figure 5.19, and gave the same

values of the product b*A.
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Fig. 5.20 The figure shows the angular correlation plot of the experimental data
(for the 12C excitation energy region 10 - 10.5 MeV) normalised to the simulation,
hence, corrected for the geometrical acceptance and the efficiency of the setup. The
best-fit to the data has also been shown with dotted red line.

The values of b*A that were obtained by χ2 minimisation in all the energy regions,

together gave the strength profile of the 2+ state. The details of this strength function

are discussed in the next chapter in section 6.1.

5.8 Geometrical uncertainties

In section 5.2, it was mentioned that the angular correlation plots were sensitive to the

geometrical calibration. To quantify the effect of any uncertainty in the geometrical

coordinates of the detectors on the angular correlation plots, the position coordinates

of detector U3 were changed by 2 mm in both radial and angular directions. The

decision to only tweak U3’s position for this sensitivity study was based on the

argument that being the only β-particle detector, it had the biggest effect on the

β − α angular correlation plots.

Firstly, the direct effect of the difference between the detection setup geometry

and the analysis geometry on the angular correlation plots was measured. For this,

the simulation was performed using one set of geometric coordinates and the analysis
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was done using, first, the same set, and then a different set of geometric coordinates.

The comparison between the two cases has been shown in figure 5.21. The blue

line histogram shows the angular correlation when the simulation and analysis were

done using the same geometry description. In red and black are shown the angular

correlation histograms when in the analysis the U3 detector position was taken to

be 2 mm farther and 2 mm sideways upstream respectively. As can be seen from

figure 5.21, there is no schematic difference between the angular correlation plots for

the different cases. So, from this plot it was concluded qualitatively that the error

due to geometrical uncertainty was overshadowed by the statistical fluctuation.
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Fig. 5.21 The figure shows the β − α angular correlation plots for simulated events
(for the 12C excitation energy region 10 - 10.5 MeV). The blue line histogram was
made by analysing the events using the same geometry that was used for simulation,
while the other two were made by using different coordinates for the U3 detector
center in the analysis than in the simulation. The U3 detector was placed 2 mm
farther and 2 mm sideways (upstream) in the analysis to create the red line and
black line histograms respectively.

To quantify the error on the 2+ state’s strength profile due to geometrical

uncertainties, the change in the value of b*A obtained from fitting the data to

simulation by using different geometries was evaluated. The three different χ2 versus

a*A plots have been shown in figure 5.22. The blue line corresponds to the analysis

with geometrical coordinates that were obtained via the combination of measurements

using a ruler at the experimental setup and the calibration procedure followed in
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section 5.2. The red and black lines correspond to the analysis with the U3 detector

position 2 mm farther and 2 mm sideways upstream respectively. As can be seen

from these plots, the difference in the b*A values corresponding to the χ2 minima of

each curve is less than the 1σ error. So, in conclusion, the geometrical uncertainties

were smaller than the statistical uncertainties in this work.
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Fig. 5.22 The figure shows three different χ2 versus a*A plots (for the 12C excitation
energy region 10 - 10.5 MeV). The blue line corresponds to the analysis with detector
positions as obtained in section 5.2, and listed in table 4.1. The red line was made
with the U3 detector’s position moved 2 mm farther, while the black one was made
with the U3 detector’s position moved 2 mm sideways upstream. The variation in the
x-axis value of the χ2 minima is small enough to be overshadowed by the statistical
uncertainties in the results.



Chapter 6

Results and Discussion

6.1 Strength profile of the second 2+ resonance

To quickly revisit what has already been explained in chapter 3 and chapter 5, here

is a summary of how the anisotropy in the β-α angular correlation in the cascade
12N(β+)12C(α1)8Be(α2)α3 has been used to extract the 2+ resonance strength profile

in the 12C nucleus. The β-α angular correlation function for a 0+ state should be

isotropic,

W (θ)0+ = 1 (6.1)

Whereas, for a 2+ state, this function has the behaviour,

W (θ)2+ = 1 + A× P2(cosθ) (6.2)

where, A is a constant dependent on β-decay and α-decay matrix elements, and

P2(cos θ) is the second order Legendre polynomial. Assuming that the fraction of the

2+ strength in the ith energy bin is bi, the total angular correlation for that energy

region should be,

W (θ)i = [(1 − bi) ×W (θ)0+ ] + [bi ×W (θ)2+ ] = 1 + bi × A× P2(cosθ) (6.3)
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It becomes clear from equation 6.3 that the measured anisotropy in the angular

correlation for an energy region should be equal to bi*A, and therefore is directly

proportional the fraction of 2+ resonance strength (bi) in the region. Therefore, by

measuring the anisotropy in β-α angular correlations for 500 keV wide energy bins

in the excitation energy region of interest (8.5 - 12 MeV), the 2+ resonance strength

profile has been extracted.

The procedure for measuring the anisotropy in the β-α angular correlations has

been explained in detail in section 5.7. Following that procedure, the χ2 minimisation

routine was performed for all six energy regions in the 9 -12 MeV excitation energy

range. The χ2 versus the product bi*A for each energy region is shown in figure 6.1.

The bi*A value corresponding to the χ2
min is highlighted by a solid red line in these

plots. The dashed red line is highlighting the bi*A value corresponding to the (χ2
min

+ 1). The difference between those two values, bi*A (χ2
min) - bi*A (χ2

min + 1), gives

the 1σ error on the bi*A (χ2
min) value [63]. The extracted bi*A values along with

the 1σ error have been given in table 6.1.

Figure 6.2 and 6.3 show the comparison of experimental data to the simulations.

In figure 6.2, experimental data angular correlations (solid blue line) have been

compared with theoretical 0+ (dotted red line) and 2+ (dotted black line) angular

correlations. The theoretical curve for the angular correlation of the 0+ state were

obtained by simulating isotropic β-decay followed by isotropic emission of the α1-

particle in the triple-α breakup. To obtain the theoretical curve for the 2+ state, the

isotropic curve was scaled to the theoretical angular correlation function, W(θ)2+ .

All six values of bi*A in table 6.1 together provided the information as to how the

fraction of the 2+ strength varies across the excitation energy region of 9 - 12 MeV.

By combining those values with the experimental data (which has been corrected for

detection efficiency) in each energy bin, the final 2+ resonance strength profile was

extracted. These steps have been shown in figure 6.4. In the top panel, the blue line

shows the detected β-triple-α coincidence data in the 9 - 12 MeV excitation energy

range, gated on the 8Be ground state breakup channel. This data was then corrected
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bin no., i 12C ex. energy (MeV) Best fit bi*A 1σ error
1 9.0 - 9.5 0.100 0.065
2 9.5 - 10.0 0.165 0.050
3 10.0 - 10.5 0.190 0.045
4 10.5 - 11.0 0.265 0.055
5 11.0 - 11.5 0.425 0.100
6 11.5 - 12.0 0.100 0.165

Table 6.1 The table lists the bi*A values corresponding to the minimum χ2 value for
each of the six 500 keV wide energy regions between 9 - 12 MeV excitation energy.

for the detection efficiency that varied as a function of energy as shown in previous

chapter in figure 5.14. The efficiency corrected data has been shown in the same

figure for comparison as a red line. In the middle panel in figure 6.4, the bi*A values

(table 6.1) have been plotted as a function of the excitation energy. The bottom

panel shows the 2+ resonance strength profile, which is obtained by multiplying the

values in the middle panel and the efficiency corrected values in the top panel (the

red line curve).

6.2 Angular correlation of the 12.7 MeV 1+ state

As a last test to ensure that the observed anisotropy was not an artefact of some

unknown energy-dependent effect in the analysis, the β-α angular correlation of the

12.7 MeV 1+ state was analysed. For this analysis, data was gated on the breakup

channel via the excited state of 8Be. The angular correlation for the 12.7 MeV 11

state is expected to be isotropic. Therefore, the anisotropy parameter, A2, in the

fitting function W (θ) = 1 + A2 × P2(cosθ), was expected to be zero.

A similar χ2-minimisation routine as before was implemented to evaluate the

best-fit value for the A2 parameter. The χ2 value as a function of the A2 parameter

has been shown in figure 6.5, in the top panel. In the bottom panel, the experimental

data angular correlation plot (solid blue line) has been compared with the best-fit

simulated angular correlation plot (dashed green line). It is clear from this fitting
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Fig. 6.1 The figure shows the χ2 values as a function of the product bi*A, where bi

and A are the parameters used in the fitting function. The solid red line corresponds
to the best fit bi*A value. The difference between the solid red line and the dotted
red line is equal to the 1σ error on the best fit bi*A value respectively.
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Fig. 6.2 The figure shows β-α angular correlation plots of experimental data displayed
as the solid blue line and the simulated histograms for pure 0+ and 2+ states displayed
as the dotted red and black lines respectively.
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Fig. 6.3 The figure shows the experimental data β-α angular correlation histogram
displayed as the solid blue line, along with the fit obtained by combining the simulated
0+ and 2+ histograms displayed as the dotted green line.
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Fig. 6.4 The top panel shows the detected β-triple-α coincidence data for the 9 -
12 MeV excitation energy region as the blue line. The red line shows the detection
efficiency corrected data. The middle panel shows the bi*A values, that were obtained
via the χ2-minimisation, plotted against energy. The bottom panel shows the final
result for the 2+ resonance strength that is extracted by combining the values of
bi*A with the efficiency corrected data.
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that the A2 value is consistent with the expected value of zero to within a 1σ error.

This result along with the observed small value of bi*A for the 9 - 9.5 MeV region

where the 0+ component is expected to dominate, rules out the possibility that some

systematic error in the analysis could be the cause of observed anisotropy near the

10 MeV excitation energy.

One other thing to note in the angular correlation plot of the 1+ state is that the

relative size of the dips to the bumps is smaller compared to those in the angular

correlation plots for the 9 - 12 MeV excitation energy region. The reason for that

is, the breakup dynamics of the 1+ state is very different from that of the 0+ or

the 2+ state. The three α-particles from the breakup of the 1+ state are emitted in

all different directions, unlike in the breakup of 0+ or 2+ state, where the direction

of emission of α2 and α3 is almost directly opposite the direction of emission of

α1. Therefore, the geometrical acceptance for the triple-α coincidence detection is

different for the two different breakup channels. If the α1-particle from the breakup

is emitted toward the edge of one detector, the chances of the coincident detection

of α2 and α3 would be higher in the breakup of the 1+ state than the breakup of a

0+ or 2+ state.

6.3 R-matrix fitting

In the previous section, the final experimental result on the observation of the 2+

resonance strength was presented in figure 6.4. In order to extract the resonance

energy and width from those data, R-matrix calculations were performed using the

code AZURE2. In this section, the R-matrix calculation results are presented and

discussed. The details of both, the R-matrix formalism, and the AZURE2 code have

already been discussed in chapter 3, section 3.3.

The incoming channel is defined in AZURE2 by the particle pair (12N, β+), with

the particle spins (1+, 1/2+). The separation energy is taken as the β-decay Q-value,

16.316 MeV, calculated using, Qβ = (M12N − M12C − 2me)c2. The channel radius
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Fig. 6.5 The figure shows the β-α angular correlation fitting for the 12.7 MeV 1+

state. The top panel shows the χ2 versus the parameter A2 of the fitting function.
The bottom panel shows the experimental data compared to the best-fit with the A2
value obtained from the plot above.

was calculated as,

ac = r0(A1/3
1 + A

1/3
2 ) (6.4)

where, A1 and A2 are the mass numbers of the two particles in the pair, and r0 is

chosen arbitrarily large enough to exclude any nuclear interaction in the external

region. Here, r0 was taken as 1.4 fm. This value of r0 is what is typically observed

from the electron-scattering experiments [50]. This gave the value of channel radius,

ac, for the incoming channel as 3.205 fm.

The exit channel particle pair was (8Be, α), with the particle spins (0+, 0+). The

separation energy was taken as the α-threshold in the 12C nucleus, 7.367 MeV [33].
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In the case of the (8Be, α) particle pair, the channel radius, ac, was calculated

to be 5.022 fm, with the r0 = 1.4 fm. But since the Hoyle state has an extended

spatial-distribution, the r0 value had to be taken larger in order to get the calculations

to work without crashing. The process of deciding the optimal value of ac has been

described in detail in subsection 6.2.3. The value of ac was set to be 9.5 fm.

6.3.1 2+ resonance strength fitting

There were only six data points that could be used for the R-matrix fitting to obtain

the 2+ resonance energy and width. Therefore, only single level calculations could be

performed. In practise, more levels at higher energies could have been included, but

the number of free parameters for two levels would have been 6. The number of free

parameters per level is 3: resonance energy, reduced width, and β-decay strength.

Using six free parameters, six data points can be fit perfectly with a reduced χ2 of 1.

But the uncertainty on the parameters obtained would be infinite.

The results of the single level fit have been given in table 6.2 and the fit and

the data have been shown in figure 6.6. The errors on the energy and width were

obtained by performing the MINOS error analysis option in AZURE. The MINOS

error analysis provides the asymmetric errors, but the higher of the two values have

been shown in the table 6.2. The shape of the resonance can be explained via the

β-decay phase space factor. Compared to the reaction probes in the works [25, 36],

the observed short tail in present work is due to the fact that the β-decay phase

space cuts close to the Q-value.

ER (MeV) ΓR (MeV) χ2/N
10.53 (0.165) 1.35 (0.25) 1.44

Table 6.2 R-matrix fit results for the 2+ resonance.

It should be noted that the exit channel where the breakup proceeds via the

excited 2+ state of 8Be has not been included in these calculations. Additionally, the

interference from higher lying 2+ resonances could not be studied here due to limited
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Fig. 6.6 The figure shows the experimentally extracted 2+ resonance strength along
with the R-matrix fit to the data.

statistics. These factors might have an effect on the resonance parameters. This has

been discussed in the next chapter under considerations for future work.

6.3.2 Triple-α data fitting

The triple-α coincidence data, first corrected for the detection efficiency, was used

for fitting the R-matrix parameters using several different combinations of levels for

calculations. The different levels that were used in the calculations and the initial

guess on their energies and widths have been listed in table 6.3.

Level Description Initial guess parameters
ER (MeV) ΓR (keV)

HS0+ The Hoyle state 7.654 0.0085

10+ An identified state in [17] 10.3 3000

20+ An arbitrary, high energy, broad state 15.0 10000

12+ The state from the fit in fig 6.6 10.53 1348

22+ An arbitrary, high energy, broad state 15.0 10000

Table 6.3 The table lists the levels that were used in fitting the triple-α data.
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In order to perform the analysis in a systematic way, first the calculations

were performed with only the Hoyle state and other levels were added to the fits

progressively. All the different level combinations along with the reduced χ2 values

of the fit have been listed in table 6.4.

Fit no. Levels χ2/N
1 HS0+

f 992.00
2 HS0+

f + 10+ 20.23
3 HS0+

f + 10+ + 20+ 1.05
4 HS0+

f + 10+ + 12+
f 16.22

5 HS0+
f + 10+ + 20+ + 12+

f 1.04
6 HS0+

f + 10+ + 20+ + 12+ 0.85
7 HS0+

f + 10+ + 12+ + 22+ 1.10

Table 6.4 The table lists the different fits that were performed on the triple-α data.
The first row is the fit number, the second row is the combination of levels that
were used in the fit, and the third row shows the reduced χ2 values. The f subscript
implies that the physical parameters for the state were fixed at the initial guess
value.

Fit 1: As was mentioned above, the first fit was performed using just the Hoyle

state, and the χ2 value proved that it was a bad fit. But this was as expected as

there is at least one other identified 0+ state in the energy region. The fit results

have been shown in table 6.5 and figure 6.7.

Level ER (MeV) ΓR (keV)

HS0+
f 7.654 0.0085

Table 6.5 R-matrix fit-1 output parameters

Fit 2: This fit was performed with two 0+ states: the Hoyle state and the known

∼10 MeV 0+ resonance. The χ2 value for fit 2 was an improvement over fit 1, but it

was still not a good fit with χ2/N = 20.23, indicating the presence of more states in

the region. The fit results have been shown in table 6.6 and figure 6.8.
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Fig. 6.7 R-matrix fit-1.

Level ER (MeV) ΓR (keV)

HS0+
f 7.654 0.0085

10+ 10.644 1721.9

Table 6.6 R-matrix fit-2 output parameters
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Fig. 6.8 R-matrix fit-2.

Fit 3: The calculations were performed with three 0+ states this time, with the third

0+ being a broad background state lying at high energy. The resulting χ2/N value
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of 1.05 indicated it to be a good fit. The fit results have been shown in table 6.7 and

figure 6.9.

Level ER (MeV) ΓR (keV)

HS0+
f 7.654 0.0085

10+ 10.028 1747.3

20+ 13.612 8125.1

Table 6.7 R-matrix fit-3 output parameters
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Fig. 6.9 R-matrix fit-3.

Fit 4: This fit also was performed with three levels: the Hoyle state, the ∼10 0- 0+

state, and the observed 2+ state instead of the broad background 0+ state. This fit

had a large χ2/N value of 16.22 proving the requirement of the broad background

state. The fit results have been shown in table 6.8 and figure 6.10.

Fit 5 (the best fit): This fit was performed with four states: three 0+’s, same as

the fit 3 with the addition of the observed 2+. The energy and the width of the 2+

state were kept fixed in the calculations. This fit gave the best χ2/N value of 1.04.

The fit results have been shown in table 6.9 and figure 6.11.

The addition of the fixed energy and width 2+ state added one extra degree of

freedom (the β decay strength) to the fit 5 as compared to fit 3. Therefore, an



6.3 R-matrix fitting 89

Level ER (MeV) ΓR (keV)

HS0+
f 7.654 0.0085

10+ 9.933 1572.0

12+
f 10.530 1348.0

Table 6.8 R-matrix fit-4 output parameters
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Fig. 6.10 R-matrix fit-4.

improvement of 0.006 in χ2/N value was expected. But it should be noted that

however the χ2/N improvement between fit 3 and fit 5 was more than expected

(0.008 as compared to ∼0.006), it is not a substantially large difference. That is

to say that for the extraction of the 2+ state’s parameters, the result from the β-α

angular correlation work are more reliable.

Level ER (MeV) ΓR (keV)

HS0+
f 7.654 0.0085

10+ 9.972 1751.2

20+ 12.866 5600.2

12+
f 10.530 1348.0

Table 6.9 R-matrix fit-5 output parameters
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Fig. 6.11 R-matrix fit-5 (the best fit): The figure shows detection efficiency corrected
triple-α data along with the R-matrix fit (solid red line) with four levels: the
Hoyle state (dashed green line), the ∼10 MeV 0+ state (dashed blue line), a broad
background 0+ state (dashed purple line, but hardly visible due to the scale), and
the 2+ state (dashed cyan line). The χ2/N value for this fit was 1.04.

Fit 6: An attempt was made to perform the calculation with the same levels as fit

5 but leaving the 2+ state’s parameters free. The χ2/N value for this fitting was

0.85. But the output parameters were unrealistic with the broad background 0+

state at 55 MeV and the B value (β-decay R-matrix fit parameter that relates to the

branching ratio [64]) of 94. The fit has been shown in figure 6.12.

Level ER (MeV) ΓR (keV)

HS0+
f 7.654 0.0085

10+ 11.133 2027.1

20+ 55.699 16137.1

12+ 11.821 187.6

Table 6.10 R-matrix fit-6 output parameters

Fit 7: The last fit was performed with two 0+ states and two 2+ states. The new

addition in this fit was the second 2+ state that was the broad background state

lying at high energy. The χ2/N value of this fit was 1.06. The fit results have been

shown in table 6.11 and figure 6.13.
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Fig. 6.12 R-matrix fit-6.

The comparison between fit 5, fit 6, and fit 7 has been made in the conclusions

chapter in section 7.2.

Level ER (MeV) ΓR (keV)

HS0+
f 7.654 0.0085

10+ 10.431 3175.7

12+
f 10.530 1348.0

22+ 12.604 2351.8

Table 6.11 R-matrix fit-7 output parameters

6.3.3 The exit channel radius

The channel radius is not a physical parameter, but an auxiliary parameter of the

R-matrix theory. The value for the channel radius can be chosen arbitrarily so long

as it is chosen large enough that there is no strong interaction in the external region.

As was mentioned in the beginning of section 6.2, the physical estimate of the channel

radius can be usually calculated using the values of ro that are obtained from the

electron scattering experiments, in equation 6.4. But in the presented work, the

outgoing channels involve the resonances that have cluster structure. The spatial
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Fig. 6.13 R-matrix fit-7: the total fit (solid red line) consisted of four levels: the
Hoyle state (dashed green line), the ∼10 MeV 0+ state (dashed blue line), the 2+

state (dashed pink line), and a broad background 2+ state (dashed cyan line).

distribution of a cluster state is usually large and therefore, the value of ro as 1.4 fm

does not give a good physical estimate of the channel radius value. Therefore, it was

necessary to investigate the effect of the channel radius on the fit results.

To study the effect of the varying channel radius on the fit outputs, the fit 5 fits

were performed with the various ac values between 5.5 - 10.0 fm (ro = 1.53 - 2.78 fm).

The output results (resonance energies and widths) from the fits with channel radii

smaller than 9.0 fm were physically unrealistic for the broad background states. For

example, the energy for 0+
1 converged to the values -2146 MeV and 3067 GeV for

ac of 6 fm and 8.5 fm respectively. The resonance width for 0+
1 was not returned

for the ac = 6 fm calculations. For the fit with ac = 8.5 fm, the resonance width

for 0+
1 state converged to value 3.4 × 1014 keV. Therefore those fits have not been

discussed any further. The resonance energy and width outputs from fits with ac

= 9.1, 9.5, 10.0 fm have been shown as functions of channel radius in figure 6.14

and 6.15 respectively. It can be seen from these figures that the effect of varying the

channel radius on the resonance parameters is of the order of a few percent. Between

ac=9.1 fm and ac=10.0 fm, the resonance energy varies by less than 1% and the

resonance width varies by approximately 5%. In order to select an optimum value,
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the trend from the figures was used as a guide and the middle value of 9.5 fm (ro =

2.64 fm) was chosen. In the work by Hyldegaard et al. [30], the ro values was taken

as 2.47 fm for the fit shown in figure 2.2 in section 2.1. This ro value of 2.47 fm

corresponds to the channel radius value (ac) of 8.9 fm, which is very close to the

region that has been region that has been assessed to be optimum in the present

work.
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Fig. 6.14 The resonance energy versus channel radii for the broad background 0+

state (top) and the ∼10 MeV 0+ state (bottom).
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Chapter 7

Conclusion and Future Work

7.1 A novel identification of the 12C 2+
2 state

The objective of the present work was to search for the 2+
2 state of the 12C nucleus

in the 9 – 11 MeV excitation energy region. Such a state is predicted by theoretical

models as the first rotational excitation of the Hoyle state. While there have been

claims of the observation of this state in different works, an agreement on the observed

resonance parameters has not been reached between results from different probes.

Previous studies with the β-decay of 12N and 12B recommended the 12C 2+
2 state’s

energy and width at 11.1 ± 0.3 MeV and 1.4 ± 0.4 MeV, while the inelastic scattering

experiments suggest these parameters’ values as 9.75 ± 0.15 MeV and 750 ± 150 keV

respectively. In the γ-excitation experiment this state was measured at 10.03 ±

0.11 MeV1 with the width of 800 ± 130 keV. In the present work we have studied the

resonance using the novel technique of the β-triple-α angular correlation to extract

the 2+ strength in the 12N β-decay experiment. We present, for the first time in a

β-decay study, a clear identification of the 12C 2+
2 state in the experimental data in

the present work.

7.2 Resonance parameters for the 2+ state

The recommended values for the resonance energy and width that are obtained

from R-matrix fitting to the 2+ strength extracted from β-α angular correlation

analysis are 10.53 ± 0.17 MeV and 1.35 ± 0.25 MeV respectively. It should be noted
1The data analysing is being revisited and the new value for resonance might be smaller [37]
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that the R-matrix fitting to the 2+ strength was somewhat limited by the statistics

(figure 7.1a). There are potentially three free parameters per state in the R-matrix

fitting. Therefore, with only six data points available, the interference effects from

the other higher lying 2+ states could not be studied. Also, due to the low statistics,

the breakup channel via the 8Be excited state has not been analysed for the 2+

strength using β-α angular correlation.
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(b) 3α data, fit 5.
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(c) 3α data, fit 6.
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(d) 3α data, fit 7.

Fig. 7.1 Main R-matrix fits discussed in conclusion. Plots shown here are same as
those shown in section 6.3.1 and section 6.3.2.

The triple-α data has similarly been analysed through R-matrix fitting. Fit 6

(figure 7.1c) in section 6.3.2 was performed with fixed parameters for the Hoyle

state and free parameters for the 10 MeV 0+ strength and the 2+ state. Another

broad higher lying 0+ state was included in this fit for the 0+ background. The

resonance parameters for the 2+ state obtained from this fit suggested the energy

and width of 11.8 MeV and 187 keV respectively. This is very different from the
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results obtained from the β-α angular correlation data. Hence, it can be inferred that

a conclusion on the 2+ state’s parameters cannot be reached from just the R-matrix

fitting to the triple-α data. The experiment should be repeated with improved

detector arrangement in the future to gain more statistics.

The R-matrix fits 5 (figure 7.1b) and 7 (figure 7.1d) in section 6.3.2 had fixed

parameters for the Hoyle state and the 2+ state, and free parameters for the 10 MeV

0+ state and the higher lying broad background 0+ state (fit 5) or 2+ state (fit 7).

The comparison between these two presents some open questions. It can be seen

in this comparison that depending on which background is included in the fit, the

relative strength of the 0+ state and the 2+ state can change significantly. While for

fit 5 the 2+ state is rather weak, it contributes almost 50% of the total strength in

the 10 MeV energy region in fit 7. The χ2/N values for the two fits are too close to

each other (1.04 for fit 5 and 1.06 for fit 7) to be able pick the best fit from the two.

But the implications that the relative strength of the 0+ and the 2+ states may have

on the measurement of the anisotropy in the β-α angular correlation make the fit 7 a

stronger candidate because the smaller 2+ component means the larger contribution

from the β-decay to the observed anisotropies. Using the same argument, fit 6

can also be discarded as the 2+ strength is too small to explain the observed large

anisotropy in the 10 MeV energy region.s

7.3 Anisotropy in the β-α angular correlation

The theoretical assessment of the expected β-α angular correlation that was presented

in the proposal [65] for the experiment was incorrect. In the present work, the

theoretical description of the β-α angular correlation has been revised and the correct

expression has been derived. As per this re-evaluated theoretical expression, the β-α

angular correlation can mostly be expected to be isotropic (section 3.2.2). However,

there has been an unambiguous observation of large anisotropy in the β-α angular

correlations in the experimental data. The observed bi*A values (table 6.1) range

from 0.1 to 0.425, where bi is the relative strength of the 2+ component and A is



7.3 Anisotropy in the β-α angular correlation 98

the anisotropy parameter associated with the β-decay. The bi factor can only have

values between 0 and 1, which means that observed values for A are of the order of

magnitude 10−1. This is two orders of magnitude larger than what has ever been

observed before [66]. A possible explanation for this large anisotropy is that this is

due to the combination of two factors that affect these angular correlations. First

is the contribution of the second-forbidden transition to the allowed β-decay which

can happen if the allowed transition is suppressed [67]. The ground state of the
12N is a single-particle state and the 12C resonance that are being studied in this

work are expected to have the cluster structure. This structure difference between

the parent and daughter nuclei could therefore suppress the allowed transition and

enhance the anisotropy factor as has been explained in section 3.2.2. The second

factor that can contribute to the large anisotropy is the effect of the relativistic

momentum type element in the allowed GT transition [46]. Since the Q-value of

the 12N is ∼17 MeV, the β-particles in the decay can be considered ultra-relativistic.

The two factors combined could give rise to such large anisotropies, but for the

complete understanding of the physics behind this observation, in addition to more

data, more input from the theorists is required. Particularly, theoretical values of

the higher-order matrix elements for the transition between the shell-model like 12N

ground state and the expected cluster structure of the 12C 2+
2 state are needed to

obtain the complete theoretical description of the angular correlation function.

In conclusion, we have identified the second 2+ state in 12C for the first time in a β-

decay study. This is done through the novel technique of β-triple-α correlations. The

observed correlation is exceptionally strong, and may originate from contributions of

β-decay higher order matrix elements.



Appendix A

W1 detector specifications

49.5 mm

Front Junction Side

Rear Ohmic Side

49.5 mm

Fig. A.1 Drawing of W1 detector [68]

Number of strips (Junction side):16

Pitch in µm (Junction side): 3100

Number of strips (Ohmic side): 16

Pitch in µm (Ohmic side): 3100

Active area (mm2): 49.50 x 49.50

Thickness range (µm): 40 – 1500
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