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Abstract 

DNA is an important biological structure necessary for cell proliferation.  The origins of cell-

like structures and the building blocks of DNA are therefore also of great concern.  As of yet 

the prebiotic origin of 2-deoxy-D-ribose, the sugar of DNA, has no satisfactory explanation.  

This research attempts to provide a possible explanation to the chemical origin of 2-deoxy-

D-ribose via an aldol reaction between acetaldehyde 1 and D-glyceraldehyde D-2 (Error! 

Reference source not found.).  The sugar mixture is trapped with N,N-diphenylhydrazine 3 

for ease of purification and characterisation.  The reaction is promoted by amino acids, 

amino esters and amino nitriles consistently giving selectivities in favour of 2-deoxy-D-

ribose.  This is the first example of an amino nitrile promoted reaction. 

 

Potential prebiotic synthesis of 2-deoxy-D-ribose and subsequent trapping with N,N-diphenyl 

hydrazine 3. 

The research is developed further by exploring the formation of 2-deoxy-D-ribose in a 

“protocell” environment – a primitive cell.  Here we suggest that primitive cells may have 

been simple hydrogel systems.  A discussion of the characterisation and catalytic ability of 

small peptide-based supramolecular structures is included. 
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1. Introduction 

 

1.1. The Origin of Life and the RNA World hypothesis 

One of the biggest unanswered questions of our time is the origin of Life.  There is little 

evidence surrounding the composition of the prebiotic atmosphere, the temperature of the 

Earth or the initial building blocks at hand.1  Despite the lack of evidence, scientists   have 

developed some fascinating theories backed-up with experimental research on this topic 

but nevertheless we will never know unequivocally how Life began.1, 2 

 

The central dogma of molecular biology, first proposed by Crick, explains the flow of genetic 

information in a biological system (Figure 1.1).3  In this model, DNA, the genetic storage 

system of the cell, can undergo replication to copy genetic information.   

 

 

Figure 1.1. Central dogma of molecular biology. 
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DNA is composed of a double helix structure held together by hydrogen bonding between 

nucleic bases on opposite strands, known as complementary base pairing.  Each strand is 

made of a phosphate polymer backbone made up of a string of nucleotides.  Each 

nucleotide consists of a sugar (2-deoxy-D-ribose), a phosphate group and a base.  The four 

bases of DNA are; guanine, cytosine, adenine and thymine and it is these recognition 

elements that allow genetic information to be transferred.  DNA can undergo replication to 

copy the genetic information but can also undergo transcription and translation which leads 

to protein synthesis.  Transcription starts in the nucleus where a section of the DNA is 

unravelled exposing the bases of the DNA strand.  mRNA nucleotides then bind to the 

complementary exposed base and the enzyme RNA polymerase catalyses the 

polymerisation of the phosphate backbone effectively making a single strand mirror image 

(Figure 1.2).  This strand then leaves the nucleus and moves to the ribozyme where the 

information is translated into an amino acid sequence which forms the primary structure of 

a peptide.  Astoundingly the sequence of four base pairs selects for 20 different amino acids 

in the human body. 

 

Figure 1.2. The processes of transcription and translation that occur within a mammalian cell.4 
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It is a daunting task for the prebiotic community to take the complex biological process of 

genetic information transfer and strip this back to a primitive form that may have occurred 

on the early Earth.  The general idea that RNA replication proceeded the appearance of 

proteins and that DNA was a later evolutionary adaption of RNA is a commonly accepted 

theory amongst the origins of Life community, the so-called “RNA world hypothesis”.5,6,7,8  

Although the RNA world theory means different things to different researchers it includes 

three basic assumptions: (i) Genetic information was passed on by the replication of RNA.  

(ii) Specific base pairing between uracil / adenine and cytosine / guanine was essential for 

replication. (iii) Genetically encoded proteins did not play a catalytic role.9 

 

There has been a great deal of work into the synthesis of RNA nucleosides under potentially 

prebiotic conditions.  There are two approaches to synthesising RNA nucleotides.  The first 

is a modular approach; building the sugar, phosphate and base as three separate elements 

and then attempting to construct the nucleoside.  The approach may seem optimistic as the 

DNA and RNA base cytosine can be synthesised by condensation of urea and 

cyanoacetaldehyde, however, this approach has met with little success.10  Orgel attempted 

to form the glycosidic link between ribose and the purine/pyrimidine bases.  A 3% mixture 

of adenosine isomers were obtained but no trace of guanidine, uridine or cytidine were 

detected when the synthesis was attempted with the relevant bases (Scheme 1.1.).11   The 

failure of this reaction can be explained in terms of the equilibrium between the 5-membered 

furanose sugar ribose and the more favoured 6-membered pyranose sugar, 

thermodynamically the reverse hydrolysis reaction is more favoured than the desired 

condensation reaction in water.  Secondly, the relevant nitrogen lone pair on the 

nucleosides are not available due to delocalisation.12 
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Scheme 1.1. Orgel’s attempt at forming the glycosidic linkage between ribose and nucleic bases.11 

 

The condensation of nucleic base and ribose was not plausible, however, Hud et al showed 

how the condensation of ribose 2 with a pyrimidinone base 1 was possible to give the 

glycoside zebularine 3 in a 12 % yield by a drying and heating process (Scheme 1.1.).  The 

group postulated that the nucleosides cytosine 4 and uracil 5 could be a further modification 

of zebularine.13 

 

Scheme 1.2. Synthesis of zebularine 3 and postulated post-modification to uracil 5 and cytosine 4. 
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An alternative approach to the construction of nucleotides is to the build the molecule as 

one entity avoiding the need to force building blocks together in unfavourable conditions.  

Powner and Sutherland have successfully demonstrated this approach.12,14  Starting from 

the simple prebiotic molecule cyanoamide 6 they built up a sugar base molecule using 

aqueous conditions and small building blocks such as glycolaldehyde 7, glyceraldehyde 9 

and cyanoacetylene 11.  The intermediate oxazoline 10 was found to crystallise out of 

solution as a single diastereomer.  Oxazoline 11 and cyanoacetylene 12 were then reacted 

in phosphate buffer to give 13 in high yield.  The reaction of 13 with pyrophosphate and 

urea in the dry state followed by an intramolecular rearrangement gave uradine 14 in a 46 

% yield for the final step.  Access to the cytidine nucleotide 15 was obtained from uracil by 

irradiating in phosphate buffer for three days. 

 

Scheme 1.3. Sutherland's synthesis of cytidine and uridine from small molecules under potential 

prebiotic conditions.12 
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The research into a prebiotic origin of RNA is impressive and great progress has been made 

in the last few decades.  However, the origin of DNA as a separate entity to RNA has had 

far less exposure.  Other routes to the synthesis of DNA should be explored as it is possible 

that DNA may have originated in a number of pathways.  DNA, after all, contains our genetic 

information and therefore to truly understand the origin of Life and cells all synthetic routes 

to DNA should be explored.  In this thesis the work towards a synthetic route for the 

synthesis of 2-deoxy-D-ribose, the sugar of DNA, will be discussed.  As this work is at its 

very beginning the synthesis of DNA will not be discussed, however, forming glycosidic 

linkages with nucleic bases is a further milestone to consider.  The synthesis of RNA has 

shown this to be challenging and indeed the same challenges would apply to the prebiotic 

synthesis of DNA nucleotides. 

 

 

1.2. The Origin of Sugars 

It is widely believed that the first sugars arose from the formose reaction; the autocatalytic 

reaction of small carbonyl building blocks to form larger sugar polymers.15,16,20  This reaction 

was first reported in 1861 involving the calcium hydroxide promoted polymerisation of  

formaldehyde leading to a complex mixture of “sweet tasting” products of which ribose was 

found in < 1 %.15,16  The mechanism of the reaction was elucidated by Breslow and is shown 

in Scheme 1.4 below.20,21  The first step of the reaction mechanism is not fully understood. 

To form glycolaldehyde 7 two molecules of formaldehyde 16 must undergo an unfavourable, 

“umpolung”, self-condensation initiation step. Basic dicationic salts such as calcium 

hydroxide have been found to be essential to stabalise the ene diol intermediates in the 

reaction pathway.17  However, Weiss et al. found that the formation of glycolaldehyde 7 from 

a pure aqueous alkaline solution of formaldehyde was not possible which has led to the 
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suggestion impure formaldehyde 16, contaminated with glycolaldehyde 7 is needed for the 

formose reaction.18  However, Lambert has argued that formaldehyde obtained in a number 

of ways (through cracking of paraformaldehyde and commercial formaldehyde) provided 

the same kinetic profile, also, in the absence of calcium hydroxide the reaction did not 

occur.23  Further to this Kopetzki and Antonietti have shown under hydrothermal conditions 

(up to 200 ºC and 100 bar) the intitation step of the formose reaction occurs at a greater 

rate in the presence of glycolaldehyde 7 but still occurs in the absence of glycoladehyde 

but in the presence of a dicationic species, calcium acetate, and at an even slower rate with 

mono cationic sodium acetate.19 

 

 

Scheme 1.4. Reaction pathway for the formose reaction conceived by Breslow.21 
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Upon the addition of a third molecule of formaldehyde 16, glyceraldehyde 9 is formed.   A 

series of hydride shifts and formaldehyde additions can lead to the formation of tetrose 

products.  These products can undergo retro aldol reactions producing two molecules of 

glycolaldehyde 7 from one molecule of 19 and the cycle can occur again.  An alternative 

pathway is further addition of formaldehyde to the sugar chain leading to higher linear and 

branched products.20,21.  Efforts to stabalise the products of this reaction using mineral 

additives such as borates22,23 and silicates24 has met with some success, particularly as 

stabilsers for the formation of ribose.25 

 

 

1.3. Prebiotic Relevance of Amino Acids 

The origin of amino acids has evoked a lot of interest in recent years dating back to the 

pioneering work of Miller and Urey.26  In an attempt to mimic reducing conditions on the 

primitive Earth, boiling water containing methane, ammonia and hydrogen was continuously 

circulated through an electrical discharge for one week.26  The researchers were able to 

identify amino acids such as glycine 20, α-alanine 21 and β-alanine 22 and inferred other 

amino acids are probably formed in smaller quantities.  Further investigation revealed many 

other small molecules such as formic, acetic and lactic acids to be present.27  The significant 

findings of this experiment in a prebiotic context has led to further studies into the formation 

of molecules via electrical discharge.  For example, a very recent study compared 

hydrogen-containing starting materials with deuterium-containing starting materials in the 

Urey-Miller experiments and found notable differences between the range and types of 

products produced between the two sets of conditions.28 However, the validity of a reducing 

atmosphere on the early Earth has since been questioned and instead a more neutral 

atmosphere, made up of carbon dioxide, water and nitrogen has been suggested.29  Under 

these more oxidizing conditions the electrical discharge experiments were much less 

efficient,30,31 however, a reassessment of this work, buffering the reaction to pH 7 and using 
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oxidation inhibitors, gave increased yields of amino acids by 2-15 times compared to the 

original Miller-Urey experiment.32, 

 

   

 

Figure 1.3. Miller-Urey experimental set-up and amino acids synthesised. Reprinted with 

permission from J. Am .Chem. Soc., 1995, 77, 2351. Copyright 2017 American Chemical Society. 

 

A second scenario, is that amino acids may have arisen from hydrothermal vents in the 

seas and oceans.  Processes such as the reduction of carbon dioxide to methane at high 

temperature (150 ºC) when in contact with minerals such as pyrite or magnetite to achieve 
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equilibrium, are known to take place in such systems.33  One study tried to replicate these 

conditions by conducting experiments in one litre autoclaves at 150 ºC and 10 atm with an 

aqueous phase consisting of potassium cyanide, formaldehyde 16, ammonium chloride, 

and HCl.  There was also a mineral phase containing pyrite/magnetite or illite and a gaseous 

atmosphere of hydrogen and carbon dioxide (1:3).  After 54 hours samples were acidified 

with HCl and analysed by GC and HPLC.  A number of amino acids (asparagine, serine, 

glutamic acid, glycine, alanine, cysteine, methionine, isoleucine) were found to be present 

in milimolar concentrations.34  The group noted that the concentrations of amino acids were 

higher than those from the electrical discharge experiments.  However, the lack of D-

enantiomers of amino acids has led to scrutiny and suggestions that the experiment was 

contaminated.35  Other studies based on samples taken from hydrothermal vents in the 

Pacific Ocean and Toyoha mine, Japan, showed nanomolar and micromolar levels of 

common amino acids again with some selectivity for L over D.36,37 Additionally, Yoshino et 

al. have tried to mimic the conditions of hydrothermal vents starting from CO, hydrogen and 

ammonia at temperaures of 200-700 ºC and were able to demonstrate the presence of 

several amino acids via Fischer Tropsch chemistry, albeit in very small 0-0.1 % yields.38 

 

Sutherland and coworkers developed a further alternative to the emergence of amino acids 

as part of their remarkable origins of life systems chemistry.  The chemistry stemmed from 

simple building blocks such as ammonia and hydrogen cyanide and focused around the 

photoredox reactions of simple copper salts.  The copper salts could facilitate the oxidation 

of hydrogen cyanide (HCN) to cyanogen ((NC)2) to generate the reduction power required 

for the conversion of HCN to formaldehyde imine, which could then be hydrolysed to 

formaldehyde 16.39  This sparked a series of high yielding iterative conversions to possible 

amino acid precursors “amino nitriles” shown in Scheme 1.5.   
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Scheme 1.5. Reaction pathway from formaldehyde to amino acids.39 

 

Sutherland also showed simple copper-catalysed cross-coupling of acetylene 34 and HCN 

followed by addition of water and ammonia can lead to more amino nitrile precursors 

(Scheme 1.6).40  This review only shows a couple of the amino acids that Sutherland alludes 

to and pathways towards many more amino acids are described in his paper published in 

2015.40  
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Scheme 1.6. Reactions pathway from acetylene to amino acids.40 

 

Three theories of the origin of amino acids have been discussed so far.  Although intriguing, 

none of these theories discuss one major issue, the origin of chirality of the amino acids, 

i.e. none of the theories show a preference for the natural L-amino acid over the D-

enantiomer. 

 

Another possible origin of amino acids is an extraterrestrial one.  Amino acids may have 

been brought to the Earth on chondritic meteorites during the meteoritic bombardment 

period of the Earth around 3.5 billion years ago.  Evidence for this theory came from a 

number of meteorites that fell to the Earth in recent years and have been analysed for amino 

acids amongst other potential small chemical building blocks.  An example of this was the 

Paris meteorite which was found to contain a range of natural and unnatural amino acids 

albeit at part per billion (ppb) levels.41  However, the most extensively studied meteorite was 

the Murchison meteorite, which was found to contain many natural amino acids such as 
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proline, valine, glycine and glutamic acid in significantly higher concentrations (μg / g of 

meteorite).42  In meteoritic studies it has been argued that some degree of biological 

contamination of the sample could occur.43  A counter argument to this is that the high 

abundance of 13C and 15N present in the samples and the very small ee in favor of L-amino 

acids supports the hypothesis of an extraterrestrial origin.44  

 

Within the Murchison meteorite, some α-methyl amino acids were also found.45,46 The α-

methyl amino acids contain a methyl group in place of the α-H found in natural amino acids.  

Figure 1.4 shows five α-methyl amino acids (46-50) found in the Murchison meteorite all 

with slight ee.s in favour of the L enantiomer.  The ‘unnatural’ structure of these amino acids 

suggests an extraterrestrial origin. 

 

 

Figure 1.4. Five methyl-α-amino acids found in fragments of the Murchison meteorite. 

 

The extraterrestrial origins of amino acids has received much speculation.  A plausible 

theory for the formation of these non-terrestrial amino acids is through Strecker reactions in 

space on the surface of interstellar dust particles.  The reaction, named after Adolph 

Strecker, who first published the reaction in 1850 demonstrated how the condensation of 
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an ammonia and an aldehyde in the presence of HCN could form an amino nitrile.  

Subsequent hydrolysis of the nitrile formed amino acids (Scheme 1.7).47, 48 

 

 

Scheme 1.7. Amino acid formation via the Strecker reaction. 

 

A popular theory is that the feedstocks came together to form amino acids in the Kuiper belt 

from where asteroids or meteorites originate.49  The racemic amino acids then passed 

through a sector of right-handed polarized light destroying a small amount of the D-

enantiomer.50  There is of yet, no evidence of right-handed polarized light in our section of 

the universe and many astronomers debate over its origin.51,52  Nevertheless, this theory 

has been demonstrated experimentally through the irradiation of a racemic mixture of amino 

acids with right-handed circularly polarized light, from a laser source, which resulted in a 

small excess of the L-enantiomer.53  The problem with this theory is that, in space the amino 

acids may have undergone proton extraction and addition leading to racemization via 

epimerization.  Epimerization, however, cannot occur with α-methyl amino acids as the 

methyl group cannot be spontaneously lost and hence the small ee created by polarized 

light would remain.54 Breslow et al have shown how α-methyl amino acids can be used to 

form α-H amino acids using L-α-methylvaline 48 as an example.  They heated four 

equivalents of L-α-methylvaline 48 with one equivalent of sodium pyruvate 51 in the 

presence of one equivalent of cupric sulfate gave L-phenylalanine 55 in 37 % ee hence, in 

part, transferring chirality (Scheme 1.8).55 The stereochemical outcome was explained 

through DFT calculations of the copper complex intermediate 56 which showed only one 

face to accessible for protonation.  The stereochemical outcome could also be explained 

by a concerted mechanism shown in Scheme 1.8. 
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Scheme 1.8. Conversion of L-α-methylvaline to L-phenylalanine by Breslow et al.55  

 

This section has briefly looked at four different perspectives to the origin of amino acids.  

The theories of hydrothermal vents, electrical discharge and copper/sulfur photoredox 

chemistry are all feasible under a reducing environment.  If the early atmosphere was of a 

neutral environment then an extraterrestrial origin of amino acids may be more plausible.   

 

 

1.4. Amino acids as catalysts in aldol reactions 

Catalysis is a very important aspect of synthetic chemistry and plays a role in thousands of 

chemical reactions.  The ability of a molecule to reduce the activation energy barrier of a 

reaction without actually getting consumed itself is something chemists have used for 100s 

of years replicating the role of enzymes in biological reactions.  Recently organocatalysis, 
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the use of small organic molecules as catalysts to promote asymmetric organic 

transformations via the transfer of chiral information, has become increasingly popular in 

synthesis.56  The first use of tertiary amines as catalysts was carried out in the late 1800’s 

but it wasn’t until the early 1970’s that amino acid organocatalysis was reported.57  

Independently, Eder, Sauer and Weichert and Hajos and Parish reported the asymmetric 

cyclisation of a cyclic triketone 57 catalysed by the amino acid L-proline L-58 (Scheme 

1.9).58,59  At the time, the mechanism of the reaction was not fully understood and so the 

scope of the reaction was not explored. 

 

 

Scheme 1.9. L-Proline L-55 catalysed synthesis of a bicyclic system. 

 

Amino acid inspired organocatalysis was later revived in 2000 by List et al. which involved 

the natural amino acid L-proline L-58 and derivatives as catalysts for the aldol reaction 

between acetone 61 and para-nitrobenzaldehyde 62 in a 4 : 1 mixture of DMSO : acetone.60 

The reaction gave the aldol product in a moderate yield of 68 % and 76 % ee after only four 

hours (Scheme 1.10). 
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Scheme 1.10. L-Proline catalysed aldol reaction carried out by List et al.60 

 

The same reaction was attempted using a range of amino acids but none gave as high 

yields as L-proline L-58 (Table 1.1).  However, they did find that adding a functional group 

to the 4-position of the pyrrolidine ring gave slightly improved yields but with little difference 

to the enantioselectivity.60  

Entry Compound Yield (%) ee (%) 

1 

 

 

< 10 

 

n. d. 

2 

 

< 10 n. d. 

3 

 

< 10 n. d. 

4 

 

85 78 

5 

 
 

70 74 

Table 1.1. Amino acids and derivatives used to catalyse the aldol reaction of acetone 61 with para-

nitrobenzaldehyde 62 between 4 and 24 hours.  N.d. – ee not determined.60 
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List et al postulated that this reaction was occurring via a condensation reaction of acetone 

61 and L-proline L-58 to form an enamine intermediate, followed by addition to 

benzaldehyde 62 to form the aldol product, after hydrolysis of the enamine.60  Blackmond 

and co-workers conducted a detailed investigation into the L-proline L-58 catalysed aldol 

reaction arriving at the same conclusion that the amino acid promoted the reaction via an 

enamine intermediate.61  The key step in the mechanism was postulated to involve a chair-

like transition state facilitated by hydrogen bonding between the carboxylic acid, the 

nitrogen of the enamine and the carbonyl of the electrophile (Scheme 1.11).61  This step 

determines the stereochemistry of the product by holding the electrophile in a specific 

conformation so the larger R-group on the electrophile is in the pseudo-equatorial position 

of the chair conformation.  Blackmond also found that attack of the electrophile by the 

enamine in the chair-like transition step to be the rate-determining step of the mechanism. 

 

 

Scheme 1.11. Proposed mechanism for the proline-catalysed aldol reaction.  The rate-determining 

step (rds) has been found to be the addition of the electrophile to the enamine.61 
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There are many benefits to organocatalytic reactions.  The catalysts are less expensive 

than precious metals such as palladium, gold or rhodium.  Organocatalysts are also typically 

less toxic, do not require inert conditions and many are water soluble (e.g. amino acids) 

meaning they can readily be removed via aqueous extraction upon work up.   

 

Nature has perfected this enamine catalysed aldol reaction.  Class I aldolase enzymes 

contain a lysine residue in the active site of the enzyme that acts as a catalyst for the aldol 

reaction of hydroxyacetone phosphate 64 and glyceraldehyde phosphate 65 to form 

fructose,1,4-diphosphate 67 with two new stereocentres in a syn configuration (Scheme 

1.12).62  This molecule exists in an equilibrium between the straight chain 67 and furanose 

form 68 in solution.   

 

 

Scheme 1.12. Aldol reaction of the aldolase type I enzyme. 
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There is a second type of aldolase (Type II) that uses a zinc-cofactor bound to an enzyme 

active site.  The zinc acts like a Lewis acid activating the substrate making the α-proton 

more acidic allowing the zinc enolate to form.  An example of this mechanism is shown in 

Scheme 1.13 using dihydroxyacetone phosphate (DAHP) 69 as the substrate.62 

 

 

 

Scheme 1.13. Aldol type II reaction mechanism using a zinc-cofactor. 

 

One of the main differences between the synthetic chemistry shown so far and that of 

Nature is the solvent these reactions occur in.  All biological reactions occur in water, as 

this is the solvent within the human body.  Like-wise, from an origins of life perspective, the 

solvent on the early Earth is likely to have been water.  

 

 

1.5. Organocatalysis in water 

In the first step of an organocatalytic aldol reaction the catalyst, e.g. proline 58, attacks an 

aldehyde to undergo a condensation reaction expelling water.  The resulting imine is in an 

equilibrium with the aldehyde starting material.   Le Chatelier’s principle dictates that the 

addition of water will shift the reaction back towards starting materials.  However, there is 

also a benefit to having water present.  Blackmond et al. investigated the kinetics of a proline 

catalysed reaction of acetone and an aromatic aldehyde (Scheme 1.14).61  Analysis of the 
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reaction mixture at various points in the reaction, through enthalpy measurements of the 

reaction calorimeter, found spectator zwitterion 71 formed through the condensation of 

proline 58 with the aromatic aldehyde.  Zwitterion 71 was in equilibrium with its 

oxazolidinone form 72.  Species 73 could also be formed through irreversible loss of carbon 

dioxide, which was stabilised through conjugation with the aromatic ring.  Blackmond 

concluded that water was beneficial through reduction of the amount of spectator ion 71, 

favouring hydrolysis to L-proline L-58, but also hindered the reaction by reduction of the 

amount of active enamine catalyst.61 

 

 

Scheme 1.14. Formation of oxazolidinone byproducts that can take place during organocatalytic 

aldol reactions.61 
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Based on the mechanism of the aldolase II enzyme, Dabre et al. used Zn(Pro)2 to catalyse 

the aldol reaction between aldehydes and ketones in aqueous medium and found it was 

higher yielding and gave greater ees than proline alone.63  Inspired by this work, Asensio 

and coworkers showed it was possible to use zinc salts as co-catalysts for the aldol reaction 

of acetone using prolinamide.64  The zinc salt coordinated to the enamine in a chair-like 

transition state accounting for the attack at the Re face (Scheme 1.15).  This experiment 

also tackled the problem of the intermediate imidazolidine that Blackmond identified.  The 

zinc ion formed a dimer intermediate (Scheme 1.15) which stabalised the amide part of the 

iminium ion and prevented the cyclization of the “parasitic” imidazolidinone.  Although the 

work of Asensio et al. solved the problem of the imidazolidinone byproduct a metal ion was 

used where as the research decribed in this thesis focuses on the other pathway, Aldolase 

1 type approaches.  The rest of this review will focus on published chemistry that mimics 

metal-free type 1 aldolase enzymes. 
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Scheme 1.15. Zinc cofactor forms a more stable intermediate to prevent the formation of the cyclic 

byproduct.64 

 

 

The presence of water interferes in the six-membered transition state hydrogen bonding 

between enamine intermediate and electrophile, and a consequence of this is loss of 

enantioselectivity.  Nature has managed to overcome this challenge by using enzymes with 

active sites located in a hydrophobic binding pocket reducing the contact between water 

and the reagents/amino acids needed to generate the transition state.65  Barbas III and 

coworkers believed the synthetic alternative to this binding pocket was to modify a catalyst 

by the addition of long alkyl hydrophobic groups to repel water from the site of the reaction.  

Some of the catalysts are shown in Table 1.2.66 
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Entry Catalyst Time (h) Yield (%) anti:syn ee (%) 

1 L-58 96 0 - - 
2 L-77 5 68 84:16 3 
3 L-78 5 78 84:16 22 
4 L-79 5 99 94: 6 1 
5 L-79a 25 99 89:11 94 

 

Table 1.2. Aldol reaction using 75 (2 equiv) and 62 (1 equiv) catalysed by L-proline derivatives. 

(0.1 equiv). a TFA (0.1 equiv) also added. 

 

Barbas III and coworkers studied the reaction of two equivalents of cyclohexanone 75 and 

one equivalent of para-nitrobenzaldehyde 62.  It was found that after four days the reaction, 

catalysed by L-proline L-58, did not yield any product.  Modified L-proline derivatives 78 

and 79, however, gave high yields of aldol product, 78 and 99 % respectively (Entries 3 and 

4).  Barbas reasoned that these long alkyl chains create a hydrophobic environment to 

exclude water so the reaction could occur much like it would in an organic solvent.  The 

problem of the low enantioselectivites was rectified by addition of a Brønsted-Lowry acid 

co-catalyst (Entry 5).  This dramatically increased the selectivity to 94% as the acid additive 

helped coordinate the proline catalyst and reagent into the specific chair like transition state 

similar to the zinc cofactor in Scheme 1.15. 
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Furthermore, Amedjkouh investigated the use of aromatic amino acids on the same 

aqueous aldol reaction as Barbas.  He compared the catalysis of “hydrophobic” amino acid 

L-valine L-80 to those of the aromatic amino acids L-phenylalanine L-55, L-histidine L-81 

and L-tryptophan L-82 (Table 1.3).67  L-Valine L-80 was unsuccessful at catalysing the aldol 

reaction after three days, however, phenylalanine L-55 and tryptophan L-82 catalysed the 

reaction in moderate yields and with high selectivity (Entries 2 and 5).  Amedjkouh explained 

this dramatic increase in yield as an implication of the “polar-π” interaction.  This is the 

electrostatically favorable attraction between a π-system (i.e. aromatic ring) and a cation 

(i.e. protonated iminium ion) more commonly known as a cation-II interaction.  This 

particular interaction has also been shown to occur in proteins.68  However, this could also 

be due to π-π stacking interactions between the aromatic ring of 62 and the aromatic ring 

of the catalyst bringing the active imine catalyst and electrophile into close proximity in order 

for the reaction to occur.  It would be interesting to see if a tangible yield is possible with an 

aliphatic aldehyde. 
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Entry Catalyst Time (h) Yield (%) anti:syn ee anti:syn 
(%) 

1 L-80 72 0 - - 
2 L-55 72 52 19:1 76:- 
3a L-55 72 79 4:1 54:- 
4 L-81 72 60 1:1 62:84 
5a L-81 72 30 1:1 60:80 
6 L-82 25 62 9:1 88:- 

 
Table 1.3. Aldol reaction using two equiv. of 75 and one equiv. of 62. aPhosphate buffer at pH 7.1 

used as solvent. 

 

Switching the solvent from water to pH 7 buffer (Entry 3) increased the yield but decreased 

the selectivity of the products.  Furthermore, changing the catalyst to L-81 changed the 

enantioselectivity with equal formation of anti and syn products.  The author tried to explain 

this in terms of the facial attack of the carbonyl in the transition state, arguing that attack 

from the Si-face may be more likely due to stabilization from the imidazole ring (Figure 1.5) 

rather than stabilization from the carboxylic acid group (that would promote Re-facial 

attack).67 
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Figure 1.5. Proposed transition states leading to Si-facial attack in the L-histidine L-81 catalysed 

aldol reaction.67 

 

In 2010, Bisai and Singh tried to incorporate both the large hydrophobic group of a proline 

derivative with the added benefit of the π- π stacking interactions of aromatic rings to 

catalyse an aldol reaction (Scheme 1.16).69  A binol–type derivative of prolinamide 83 was 

used to catalyse the aldol reaction of benzaldehyde 84 and cyclohexanone 75 with an acid 

cofactor.  The reaction was tested over a range of solvents from organic solvents (DMSO, 

chloroform, THF) to aqueous conditions (water, brine) which all gave high selectivity for the 

anti-product (94:6 and above) and high ees (74 - 84%).  The reactions were also conducted 

in brine and high yields selectivities were observed.  It was believed the binaphthyl groups 

and a salting-out effect created a hydrophobic environment for the active imine catalyst and 

aromatic aldehyde to come together in a chair configuration through hydrogen bonding.69 
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Scheme 1.16. Compound 83 catalyses the aldol reaction in a range of solvents leading to high 

yields and selectivities.69 

 

 

Similarly to Bisai and Singh, Pendatella et al. also constructed an organocatalyst based on 

prolinamide, 86, for the aldol reaction of cycloxhexanone 75 and benzaldehyde derivatives.   

The catalyst was based on glucosanamine, which itself is a poor catalyst in water. An 

effective catalyst was designed through protection of the hydroxyl group in the 2-position 

with a bulky silicon group and addition of L-proline L-58 to the amine (Figure 1.6).70  The 

authors conducted the experiments in brine and believed during the reaction the catalyst 

underwent molecular aggregation, like a surfactant, due to the bulky silyl groups.  This 

created a hydrophobic environment that accumulated the hydrophobic starting materials. 71  

The aldol reaction then occured and the slightly more polar products were squeezed out of 

the binding pockets.  After 48 hours and just 2 % catalyst loading, yields of 96 % and ees 

ranging from 82-99% were achieved. 
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Figure 1.6. Catalyst 86 and relative transition state proposed by Pedatella et al.71 

 

Lipshutz and Ghoria had a similar idea for the modification of L-proline L-58. They made a 

complex L-proline analogue 87 incorporating the same components of hydrophilic and 

hydrophobic regions in order to form a binding pocket for the aldol reaction to occur within 

(Figure 1.7).72  Using para-nitrobenzaldehyde 62 and five equivalents of cycloxhexanone 

75 as their starting materials the anti-aldol product was formed in an excellent yield (93 %) 

and enantioselectivity (96 %).  An added benefit of the reaction was the recyclability.  When 

the reaction was deemed complete all of the products were extracted with ethyl acetate and 

only the solvent and catalyst remained in the aqueous layer.  After three runs of the reaction, 

extracting the products between each run, the authors demonstrated there was no reduction 

in yield or selectivity.72 

86 
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Figure 1.7. Proline derived catalyst 87 synthesised by Lipshutz and Ghorai.72 

 

 

1.6. Peptides in organocatalysis 

So far this review has shown that amino acids are poor catalysts for the aldol reaction in 

aqueous solvents.  However, modified amino acids can successfully catalyse aldol 

reactions of aromatic aldehydes and cyclohexanone in high yields and high selectivities.  

The next section focuses on the use of dipeptides as catalysts in organocatalysis. 

 

A study by Caputo and coworkers investigated the use of modified dipeptides for the 

standard aldol reaction of para-nitrobenzaldehyde 62 and cyclohexanone 75. The 

dipeptides consisted of L-proline L-58 and a β3-L-amino acid (Table 1.4).73 
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Entry Catalyst Solvent Yield (%) dr (anti:syn) ee (%) 

1 88 Water 72 93:7 83 
2 88 Brine 98 94:6 88 
3 89 Water 98 91:9 84 
4 89 Brine >99 89:11 76 
5 90 Water 78 92:8 84 
6 90 Brine 96 93:7 90 
7 91 Water >99 94:6 90 
8 91 Brine 87 93:7 89 

 
Table 1.4. Aldol reactions of para-nitrobenzaldehyde 62 and cyclohexanone 75 catalysed by 88-

91.73 

 

The group increased the hydrophobicity of L-proline L-58 by addition of a second 

hydrophobic amino acid which led to high yields of products all with high selectivity for the 

anti diastereomer.  The results were attributed to the increased hydrophobicity of the 

catalyst and the π-stacking interactions between substrate and catalyst which led to higher 

selectivities with catalysts 90 and 91.73   

 

In a similar vein, Triandafillidi et al. studied dipeptide-like catalysts for the aldol reaction of 

para-nitrobenzaldehyde 62 and 10 equivalents of cyclohexanone 75.  The organocatalysts 

were based on prolinamide with an attached amino acid residue protected at the C-

terminus.  The reactions used 0.2 equivalents of catalyst with reaction time lengths of 24 
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and 72 hours.  An acid co-catalyst of 4-nitrobenzoic acid (4-NBA) (0.2 equivalents) was 

used to increase selectivity and yield.  A selection of the results is shown in  

Table 1.5.74 

 

 

Entry Catalyst Solvent Time (h) Yield (%) dr (anti:syn) ee (%) 

1 92 Toluene 72 95 75:25 74 

2 92 Water 24 100 80:20 80 

3 93 Toluene 48 87 67:33 54 
4 93 Water 24 100 60:40 57 

5 94 Toluene 48 87 76:24 87 

6 94 Water 24 100 90:10 87 

7 95 Water 48 21 93:7 92 
8 96 Water 72 0 - - 

9 97 Water 48 100 93:7 92 

 
Table 1.5. Catalysts and conditions used to catalsye the aldol reaction of  cyclohexanone 75 (10 

equiv.) and para-nitrobenzaldehyde 62 (1 equiv.).74 
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Catalyst 92, with a phenylalanine residue, provided excellent yields and good selectivity in 

both aqueous and organic medium.  Changing from an aromatic side chain to an aliphatic 

side chain, 93 gave similar yields but lower selectivity.  The loss of the π-π stacking 

interaction between substrate and catalyst is a possible explanation for the low selectivity.  

Removal of the R-group (i.e. using a glycine derivative) seemed to increase the selectivity 

even further (Entry 5 and 6) and gave higher selectivity in aqueous solvent compared to 

organic solvent.  The authors hypothesised that addition of an achiral amide bond would 

provide an additional hydrogen bond donor site of the catalyst.  However, in these cases 

low or no yields were obtained (Entries 7 and 8).  Surprisingly when the amide-protecting 

group was changed to a benzyl group, a quantitative yield and high selectivity was obtained.  

This suggests protecting groups of 95 and 96 act to block the proline catalytic site whereas 

the additional CH2 linker is enough to stop the protecting group from blocking the active site.  

The group concluded that if the catalyst has more hydrogen bonding sites there can be 

more interactions between electrophile and catalyst holding the complex in a tighter chair-

like transition state achieving higher enantioselectivity.74 

 

Cordova and coworkers used the same model aldol reaction to test the catalytic ability of 

unprotected dipeptides in water but achieved only low diastereoselectivities (Table 1.6) 

after several days.75  After the previous examples of catalyst modifications it is not surprising 

that Entry 3, with a phenylalanine residue, gave the best enantioselectivity and yield.  The 

best catalyst, Val-Phe, was used in pH 7 buffer (Entries 5 and 6).  Buffering the solvent was 

found to hinder the reaction and after 120 hours the yield was only 27 %, however, the 

selectivity had increased.  The authors do not give a reason for the drop in yield but this 

could be attributed the lack of competing general acid and base catalysed aldol reactions 

which would not take place at pH 7.  This would also account for the increase in selectivity 

as only enamine-catalysed aldol reactions would occur. 
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Entry Catalyst Time (h) Yield (%) dr (anti:syn) ee (%) 

1 L-Ala-L-Ala 68 22 2:1 70 
2 L-Val-L-Val 76 40 2:1 67 
3 L-Val-L-Phe 52 47 3:1 83 
4 L-Val-L-Ala 96 30 2:1 70 
5 L-Val-L-Phea 120 27 2:1 85 
6 L-Val-L-Phea 120 27 2:1 85 

 
Table 1.6. Aldol reaction using 75 (3 equiv.), 62 (1 equiv.), dipeptide catalyst (0.3 equiv.) and SDS 

additive. aPhosphate buffer used a solvent, 40 mM, pH 7.2. 

 

 

1.7. Amino acid-catalysed sugar chemistry in a prebiotic scenario 

So far the origin of amino acids and the use of amino acids as organocatalysts has been 

discussed.  This next section combines these two topics, exploring the recent research into 

the use of amino acids and their derivatives as organocatalysts for sugar synthesis in a 

prebiotic Earth scenario. 

 

In 2004, Northrup and MacMillan showed how proline can be used to catalyse the 

dimerization of protected glycolaldehyde derivatives 98 and 100 in DMF to give L-erythrose 

products L-99 and L-101 in excellent yields and ees (up to 98 %) (Scheme 1.17).76  
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Scheme 1.17. Reactions conducted by Northrup and MacMillan.  Using protected glycolaldehyde 

and L-proline as an asymmetric organocatalyst in DMF gave tetrose products in excellent yields 

and ees.76 

 

Similarly, Pizarello and Weber attempted the dimerisation of unprotected glycolaldehyde in 

aqueous triethylammonium acetate buffer using enantioenriched amino acids 104 and 105 

(Scheme 1.18).  The desired dimer products were obtained but with low ees (5-12 %) and 

yields were not stated.77 It seemed that changing from an organic solvent to water 

dramatically reduced both the yield and stereochemical control of the reaction.  The group’s 

later work showed a vast improvement on these results, using dipeptides as catalysts to 

obtain ees as high as 78 % for D-erythrose D-102 but no selectivity for erythrose over 

threose. The yields were consistently at 20-25 % of tetrose, however, low 

diastereoselectivities were observed (approximately 1.5:1 erythrose:threose).78 
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Scheme 1.18. Early work of Pizarello and Weber on the organocatalytic dimerization of 

glycolaldehyde 7.77 

 

An interesting study by Dickerson and Janda showed that modification of the nicotine 

metabolite, nornicotine 106, with electron withdrawing groups increased the rate of the aldol 

reaction between para-nitrobenzaldehyde 62 and acetone 61 in water (Scheme 1.19).79,80 

Conversely when electron donating groups were added the rate of reaction decreased. 

Janda’s explanation was that the electron withdrawing groups on the ring lowered the pKa 

of the pyrrolidine nitrogen which facilitated the formation of the reactive enamine 

intermediate.  This effectively increased the concentration of the catalyst present in the 

reaction.  
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Scheme 1.19. The nornicotine-catalysed aldol reaction investigated by Janda et al.  Electron 

withdrawing groups (EWG) increased the rate of the reaction.79 

 

Clarke et al. were inspired by Janda’s work and attempted the dimerization of 

triisopropylsilyl (TIPS) protected glycolaldehyde in an aqueous solvent with a range of 

amino esters, where the esters acted as electron withdrawing group.81 Some of the key 

results are shown in Table 5.7. 
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Entry Catalyst Solvent Major 
Product 

Combined 
Yield (%) 

dr ee % 
(anti) 

1 L-108 Water L-99 77 1.5:1 18 
2 L-108 pH 7 buffer L-99 70 1.5:1 47 
3 L-109 Water L-99 49 2:1 10 
4 L-109 pH 7 buffer L-99 52 5.5:1 46 
5 L-110 Water D-99 80 1.5:1 17 
6 L-110 pH 7 buffer D-99 79 1.5:1 57 
7 L-111 Water D-99 33 1:1 31 
8 L-111 pH 7 buffer D-99 40 1.5:1 79 

 

Table 1.7. TIPS protected glycolaldehyde dimerization using amino ester catalysts.81 

 

The results from Clarke et al. showed that L-proline-based catalysts gave L-erythrose L-99 

as the major product but aliphatic amino esters gave the D-isomer D-99 as the major 

product.  The authors were surprised by this result and do not give an explanation for this 

observation.  Changing from water to pH 7 phosphate buffer gave a marked increase in 

enantioselectivity.81  The authors justified this result by arguing that in water there was also 

a degree of general base catalysis which had no selectivity for either enantiomer, however, 

pH 7 buffer should reduce the amount of general acid or general base catalysis and hence 

catalysis by the amino ester should increase which increases the enantioselectivity. 
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Clarke et al. developed the reaction further through the investigation of protecting group-

free glycolaldehyde dimerisation.  To aid analysis, the resulting sugar mixture was reduced 

to tetrols and trapped with acetic anhydride to give protected tetrols 112 and 113 (Scheme 

1.20). The yield of the reaction was reduced considerably to 0-12 % and the d.r. of products 

varied considerably from 1:1 at pH 6 with catalyst 111 to 7:1 in pH 7 buffer with catalyst 

111.   

 

 

Scheme 1.20. Synthesis of unprotected tetrose products and subsequent trapping by Clarke et 

al.81 

 

The prebiotic synthesis of another simple sugar, glyceraldehyde 9, has been achieved in a 

similar way via an amino acid-catalysed aldol reaction.  This reaction, first demonstrated by 

Breslow and Cheng, used 40 equivalents of formaldehyde 16 and 1 equivalent of 

glycolaldehyde 7, both considered interstellar building blocks.82,83,84 The reaction was stirred 

for 3-5 days in deionized water and then trapped with 2,4-dinitrophenylhydrazine 114 

(Scheme 1.21).85  Out of the seven amino acids tested, five gave a very slight excess of 

the D-enantiomer product.  L-glutamic acid L-38 gave an excess 21 % in favour of the D-

enantiomer of glyceraldehyde D-9.  Interestingly the authors found when they used L-proline 

L-58 as the catalyst an excess of L-glyceraldehyde L-9 was found (42 %).   
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Scheme 1.21. Amino acid-catalysed aldol reaction of formaldehyde 16 and glycolaldehyde 7 and 

insitu trapping with 2,-4 dinitrophenyl hydrazine 114.85 

 

Breslow later developed this study further at three different pH ranges, an extract of these 

results is shown in Table.5.8.86  Noticeably at lower pH values (2.9 – 4.2) there was a large 

increase in enantioselectivity.  For example, L-glutamic acid L-38 gave an ee of 35 % in 

favour of D-9 (an increase of 11 % on the previous work with L-glutamic acid L-38).  

However, this study could not repeat the 42 % ee in favour of L-glyceraldehyde L-9 when 

L-proline L-58 was acting as the catalyst (Table 1.8).  Interestingly, the ee of the 

glyceraldehyde 9 product was greatly reduced at higher pH, possibly due to competing 

general base catalysis, in agreement with the suggestions of Clarke and co-workers.81 
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Table 1.8. Glyceraldehyde 9 forming reaction carried out by Breslow et al.86 a Adjusted by addition 

of NaHCO3. b Adjusted by the addition of Na2CO3. 

 

Blackmond and co-workers confirmed that using the same procedure as Breslow, L-proline 

L-58 gave L-glyceraldehyde L-9 with 8 % ee.  In the presence of Bu4N+OAc-, however, the 

reaction gave D-glyceraldehyde D-9 as the major enantiomer in 13 % ee.87  The apparent 

link between pH and enantioselectivity with a proline catalyst was explained by Blackmond 

et al.88 using enamine transition states.  In acidic media the carboxylic acid group of L-

proline L-58 is protonated.  The aldol reaction of enamine and electrophile proceeds through 

a Houk-List transition state due to hydrogen bonding between carboxylic acid, amine and 

electrophile (Scheme 1.22).88  In the presence of base the carboxylic acid is deprotonated 

and the Houk-List transition state cannot occur.  Instead the carboxyanion can attack the 

enamine to form an oxazolidinone intermediate (Scheme 1.22).89  The more stable exo-

oxazolidinone leads to the D-enantiomer of glyceraldehyde D-9.  Therefore acidic media 

favours L-glyceraldehyde L-9 formation and basic media favours D-glyceraldehyde D-9 

Amino acid D-glyceraldehyde hydrazone (ee %) 
        pH 2.9-4.2                  pH 6.6.-7.6a                  pH 8.7-9.8b 

L-glutamic acid 35 ± 2 -3 ± 1 -0.4 ± 0.4 
L-aspartic acid 44 ± 1 -1.5 ± 0.2 -1 ± 1 

L-leucine 16 ± 1 -2.9 ± 0.6 -3 ± 2 
L-valine 19 ± 3 -4 ± 2 -3.0 ± 0.7 
L-proline -20.4 ± 0.3 2.0 ± 0.5 1.5 ± 0.4 
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formation.  The two transitions states explain the ees observed by both Blackmond and 

Breslow for the proline-catalysed aldol reaction of glyceraldehyde at varying pH.86,87    

 

 

Scheme 1.22. Transition state rationale of Blackmond et al. for the organocatalysed formation of 

glyceraldehyde.88 
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1.8. Amplification of a Small Enantiomeric Excess 

In order to truly achieve a homochiral world there needs to be a means of amplifying the 

small initial selectivities discussed thus far.  Breslow and co-workers found that when 

glyceraldehyde 9 with a small ee was dissolved in water, the ee of the solution phase was 

amplified significantly to 94 % ee.85  It was believed that the racemic dimer of glyceraldehyde 

9 is quite insoluble in water leading to its precipitation from solution, hence amplifying the 

ee of the glyceraldehyde 9 remaining in solution. Similarly, Blackmond demonstrated that 

amino acids, with just a slight excess of one enantiomer underwent chiral amplification at 

the so called “eutectic concentration” – the equilibrium point between solid phase and 

solution phase.  If the racemate crystallises out of solution more easily, the molecules left 

in solution became enantiomerically enriched.  Blackmond found this occurred to varying 

extents with many amino acids (Table 1.9).90    

 

Amino acid ee of solution at 
eutectic 

concentration 
(%) 

Amino acid ee of solution at 
eutectic 

concentration 
(%) 

Threonine 0 Methionine 85 
Valine 46 Leucine 87 

Alanine 60 Histidine 93 
Phenylalanine 83 Serine >99 

 

Table 1.9. Solution enantiomeric excess of amino acids at eutectic concentration at 25 ºC.90 

 

Blackmond and co-workers have also achieved amplification of enantiomeric excess by 

adopting Sutherland’s ribonucleotide chemistry.  Sutherland’s research demonstrated a 

prebiotically relevant route to nucleotide precursors from glycolaldehyde 7.91,92  Reacting 

glycolaldehyde 7 and cyanamide 6 together formed amino oxazole 8.  Compound 8 was 

hown to react with glyceraldehyde 9 (either formed via the formose reaction or formed 
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racemically through Sutherland’s photoredox chemistry)39 to form activated pyrimidine 

nucleoside precursor 10 (Scheme 1.23). 

 

 

Scheme 1.23. Synthesis of nucleotide precursors by Sutherland et al.91,92 

 

Blackmond has shown the addition of L-proline L-58 to Sutherland’s two component 

reaction formed adduct 118 (Scheme 1.24).  L-Proline L-58 specifically sequestered L-

glyceraldehyde L-9.  Kinetic studies showed that after 40 minutes a solution of racemic 

glyceraldehyde 9 (1 M), 2-amino-oxazole 8 (1.2 M) and L-proline L-58 (1 M) gave an 

enantiomeric excess of D-glyceraldehyde D-9 of 90 %.87  This kinetic resolution left a close-

to enantiomerically pure solution of D-glyceraldehyde D-9 which reacted with 2-amino 
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oxazole 8 and transferred the chirality to the pyrimidine nucleoside precursor 10 (Scheme 

1.24). 

 

 

Scheme 1.24. Kinetically resolved synthesis of activated pyrimidine nucleosides.92 

 

When dealing with the origins of sugars and amino acids there is a “chicken or egg” 

argument.  Did amino acids help catalyse the formation of enantioselelctive sugars or did 

sugars help catalyse the formation of amino acids with a degree of enantioselectivity?  In 

an attempt to argue the latter case, Blackmond investigated the influence of sugar chirality 

on the synthesis of amino acids.  Many simple sugar-acids have been found with small ees 

in meteorites and interstellar ices.93,94  Blackmond used four sugars, D-ribose 119, D-xylose 

120, D-lyxose 121 and D-arabinose 122, for the conversion of prebiotically relevant amino 

nitrile molecules40 to amino amides.95  The reactions were ran for five to seven days and 

yields of 9 - 29 % were recorded. Through kinetic studies and computer simulations the α 

and β-hydroxyl groups were found to influence the stereochemistry of the products, with the 
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α-hydroxyl group having the greatest influence as shown in Figure 1.8 where the hydroxyl 

groups are highlighted with a ring and their influence of L and D selectivity stated. 

 

Amino amide 
(% ee) 

Sugar 

119 120 121 122 
alanine 65 (D) 45 (D) 83 (L) 58 (L) 

phenylalanine 70 (D) 35 (D) 83 (L) 48 (L) 
tryptophan 33 (D) 11 (D) 59 (L) 38 (L) 

 

Figure 1.8. Conversion of amino nitriles to amino amides using pentose sugars and the resultant  

ee of the products.95 

 

Alternatively, chirality may have arisen due to chance.  An initial excess of one molecule, 

whether amino acid or sugar, could have occurred spontaneously, which then through chiral 

amplification led to exclusively one enantiomer.  This can be compared to tossing a coin.  

The outcome is 50 % chance of getting heads or tails.  Nevertheless if you toss a coin ten 

times one possible outcome is six heads and four tails i.e. six L-amino acids and four D-

amino acids and hence an initial slight excess of L-amino acids. 
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Developing this idea further Frank proposed a scheme to show how a combination of 

autocatalysis and inhibition in a system of self-replicating chiral molecules allowed 

stochastic random fluctuations in a racemic mixture to exponentially lead to one 

enantiomer.96  Here Frank defined the concentration of one enantiomer, n1, and a second 

enantiomer, n2, in terms of two differential equations (Equations 1.1 / 1.2).  Subtracting one 

from the other gave the exponential Equation 1.3.  This showed as long as the initial 

concentration of one enantiomer, n01, is greater than that of the other, n02, then n1 increased 

exponentially in an autocatalytic way. 

 

𝑑𝑛1

𝑑𝑡
=  (𝑘1 − 𝑘2𝑛2)𝑛1  Equation 1.1 

 

  
𝑑𝑛2

𝑑𝑡
=  (𝑘1 − 𝑘2𝑛1)𝑛2       Equation 1.2 

 

 

k1 / k2 are positive constants. Subtracting Equation 1.2 from 1.1 gives Equation 1.3. 

  

                              (𝑛1 − 𝑛2) =  (𝑛𝑜1 −  𝑛02)𝑒𝑘1𝑡        Equation 1.3  

 

Frank’s principles were demonstrated experimentally forty years later by Soai et al.  In this 

experiment the treatment of chiral alcohol 125 (which had a stochastic imbalance of 2 % ee 

of the S-enantiomer) with diisopropyl zinc 124 and pyrimidine 5-carboxylate 123, was 

amplified to 88 % ee of product without the need to dope the reaction (Scheme 1.25).97 

Blackmond later rationalised that it may be the statistical formation of a dimer catalytic 

species vs a heterochiral dimer secies of lower catalytic activity wich accounts for the high 

enantiomeric excess of the resultant alcohol.98   Although the Soai reaction is evidence to 
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support Frank’s theory this experiment cannot be thought of as a reaction that could have 

occurred on the prebiotic Earth. 

 

 

Scheme 1.25. Reaction scheme proposed by Soai et al. showing the autocatalysis of 2-methyl-1-

(5-pyrimidyl)propan-1-ol leading to amplification of the enantiomeric excess starting from just 2 % 

ee.97 

 

1.9. Approaches to 2-Deoxyribose 

When discussing the prebiotic synthesis of pentose sugars, unlike 3 and 4 membered 

sugars, there have been far fewer studies into their origins.  Benner showed how boron 

additives could stabalise the pentose products of the formose reaction leading to mixtures 

of ribulose 127, arabinose 128 and xylulose 129 pentose sugars as well as tetrose sugars.23 

Pizarello and Weber extended their research of tetrose formation to include pentose 

formation.  The aldol reaction of racemic glyceraldehyde 9 and glycolaldehyde 7, catalysed 

by various dipeptides, was found to form pentose sugars (Scheme 1.26).99  The major 

product formed was arabinose 128 but with a very small enantiomeric excess.  D-ribose D-
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119 and L-lyxose L-121 were formed in moderate ee.s (35-60 %) when the dipeptide 

catalysts contained two L-amino acids (L-Val-L-Val and L-Ile-L-Val).  When the dipeptide 

consisted of two D-amino acids enantioselectivity was reversed and L-ribose L-119 and D-

lyxose D-121 were prevalent.  Only a trace amount of racemic xylose 120 was formed. 

 

 

Scheme 1.26. Dipeptide catalysed synthesis of pentose sugars.99 

 

In a similar study Breslow and Appayee investigated the aldol reaction between D-

glyceraldehyde D-9 and glycolaldehyde 7 using potassium cyanide as the catalyst.100  The 

resultant sugar mixture was heated in the presence of 2-nitrophenyl hydrazine and the 

products isolated in their hydrazone forms (Scheme 1.27).  The major product was found 

to be xylulose 129 which was not present in Pizarello and Weber’s study.  Ribulose 127, 

arabinose 128, xylose 120 and ribose 119 were also identified. 
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Scheme 1.27. Synthesis of pentose products by Breslow and Appayee.100 

 

The research described so far has shown possible origins of the pentose sugar ribose, but 

have not shown selectivity for ribose over the other possible pentoses.  The origin of the 

biological relevant pentose sugar, 2-deoxy-D-ribose, is not described.  2-Deoxy-D-ribose is 

the sugar present in DNA.  Oro and Cox first attempted the prebiotic synthesis of 2-

deoxyribose from glyceraldehyde and acetaldehyde. When calcium oxide was used as a 

base 2-deoxyribose was identified.101 Although this was a pioneering study at its time, 2-

deoxyribose was not isolated nor was it synthesised with any selectivity for the natural D-

isomer.  Ritson and Sutherland have also demonstrated a possible route to 2-deoxyribose 

using their photoredox chemistry. 102  The α-deoxygenation of ribose 119 was achieved 
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using ultraviolet light in the presence of copper cyanide and potassium thiocyanate 

(Scheme 1.28).  They proposed that both copper cyanide and thiocyanate are essential to 

form a more efficient catalyst for the photochemical production of hydrated electrons.  The 

reaction yielded 2-deoxyribose 130 in a very impressive 52 % yield, a large improvement 

on the 3 % yield quoted by Oro and Cox.101 Unfortunately the Sutherland chemistry did not 

account for the stereochemistry of 2-deoxy-D-ribose, as the reaction is racemic.  Therefore, 

as of yet, an enantioselective, prebiotically plausible, route to 2-deoxy-D-ribose D-130 has 

not been reported in the literature. 

 

 

Scheme 1.28. Synthesis of 2-deoxyribose from ribose by Ritson and Sutherland.102 

 

 

1.10. Conclusions and Research Objectives 

This literature review has highlighted some of the research that has emerged over the last 

twenty years in organocatalysis.  Many variations and adaptions of amino acids have been 

used to overcome the aqueous solvent challenge of enamine catalysis in an attempt to 

replicate the efficiency of aldolase enzymes, and some of this work has met with great 

success in terms of high yields and good selectivities.   

 

The second half of the review was concerned with discussing recent research into the 

origins of amino acids and sugars much of which builds on organocatalytic methods.  There 

have been multiple theories put forward to explain the origins of amino acids from 
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hydrothermal vents and electrical discharge to photoredox chemistry of simple building 

blocks and extraterrestrial origins.  There has also been a great deal of work in 

understanding the prebiotic origins of sugars.  Most chemists believe sugars originated from 

the formose reaction - the polymerisation of formaldehyde, and a lot of work has centered 

around this reaction.  Several groups have shown the synthesis of the 3-carbon sugar 

glyceraldehyde and 4-carbon tetrose sugars using aldol reactions catalysed by amino acids 

and their derivatives.  Less research has been published in the area of pentose sugars with 

a handful of studies showing the isolation of ribose but with no great selectivity.  Arguably 

the most iconic sugar in biology, 2-deoxy-D-ribose, was synthesised by Oro & Cox and 

Ritson & Sutherland, however, neither of these studies provide any selectivity for the 

biologically relevant D-enantiomer.101,102 

 

The main aims of this research project were to: 

i) Provide an alternative explanation for the prebiotic origin of 2-deoxy-D-ribose. 

ii) Provide a selective synthesis for 2-deoxy-D-ribose over other diastereomers. 

iii) Synthesise 2-deoxy-D-ribose in solution and develop this further into a potential 

prebiotic supramolecular environment or “protocell”. 
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2. A Prebiotic Route to 2-Deoxy-D-Ribose 

 

 

2..1. Initial experimental design 

2-Deoxy-D-ribose is a monosaccharide with a characteristic absence of a hydroxyl group at 

the 2-position of the furanose ring.  The sugar, together with phosphate and the bases 

guanidine, adenine, thymine and cytosine, make up the primary structure of DNA (Figure 

2.1).  Although commonly drawn in its 5-membered furanose form, 2-deoxy-D-ribose D-130 

exists in solution as an equilibrium between its 5-membered furanose, straight chain, and 

6-membered pyranose form (Scheme 2.1). 

 

Figure 2.1. DNA anti-parallelhelix and a magnified region of the primary structure of DNA showing 

deoxyribose, phosphate and a nucleic base.103 

 

Scheme 2.1. Equilibrium of 2-deoxy-D-ribose D-130 in solution existing as the furanose, straight 

chain and pyranose forms. 
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2-Deoxy-D-ribose D-130 is an essential sugar but its prebiotic origin remains a mystery.  

The research in this account focuses around a prebiotically plausible synthesis of 2-deoxy-

D-ribose D-130 via an aldol reaction.  Previously in the literature triose, tetrose and pentose 

sugars have been formed in aqueous environments via aldol reactions catalysed by amino 

acids and their derivatives.85,99  A typical example of this is the reaction of glycolaldehyde 7 

and D-glyceraldehyde D-9 which forms a new carbon-carbon bond between the two 

molecules and generates two new stereogenic centres (Scheme 2.2).  In this example there 

could be up to four different diastereomers formed arising from the two chiral centres 

created. 

 

 

Scheme 2.2. Typical aldol reaction to from larger sugar building blocks. 

 

The same logic was applied to the synthesis of 2-deoxy-D-ribose D-130.  In this case the 

two sugar building blocks for the aldol reaction were acetaldehyde 24 and D-glyceraldehyde 

D-9.  Two possible pentose products can arise from this reaction, the anti diastereomer 2-

deoxy-D-ribose D-130 and the syn diastereomer 2-deoxy-D-threopentose D-131 as only 

one new stereocentre is generated (Scheme 2.3). The initial selection of the catalyst was 

based on the successful work of Clarke et al. who previously used amino acid derivatives, 

amino esters, for the catalysis of aldol reactions to form tetrose products in aqueous 

media.81  These esters should reversibly react with acetaldehyde 24 to form enamine 

intermediates which can then undergo an aldol reaction with D-glyceraldehyde D-9 to form 

2-deoxypentose sugars D-130 and D-131.  
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Scheme 2.3. Initial plan for the synthesis of 2-deoxy-D-ribose D-130 via an aldol reaction. 

 

Prebiotic sugar-forming reactions are notorious for producing a broth of molecules including 

many products in small amounts as well as unreacted starting materials due to the 

inefficiency of the reactions in water. 15,16,23,26,45 Due to the hydrophilic nature of  sugars, 

simple solvent extraction techniques are ineffective making the resulting broth of sugars 

difficult to purify and analyse.  To aid in the isolation and analysis a simple trapping 

procedure was to be applied to the sugar mixture which would allow purification and 

isolation by standard chromatography techniques.  Inspired by the work of Breslow et al.85,86 

(Chapter 5.7, Scheme 5.21) which used 2,4-dinitrophenyl hydrazine 114 as a trap for 

analysis of the formation of glyceraldehyde 9 from formaldehyde 16 and glycolaldehyde 7.  

Therefore 2,4-dintirophenyl hydrazine 114 was proposed as a suitable trap.  This modifies 

the proposed reaction to Scheme 2.4 which should produce trapped hydrazone products 

D-132 and D-133. 
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Scheme 2.4. Modified reaction scheme for the synthesis of 2-deoxy-D-ribose D-130 with additional 

trapping step. 

 

 

1. Synthesis of Standards and Catalysts 

To determine the success of the 2-deoxy-D-ribose D-130 forming reaction, trapped 

standards of starting materials and products were prepared to aid analysis of the reaction 

by thin layer chromatography (TLC) and comparison of isolated products by 1H NMR 

analysis and HPLC.  An overview of the hydrazone standards is shown in Figure 2.2.  

 

 

Figure 2.2. Product and reagent hydrazone standards. 
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The aldehyde precursors of 132, 134 and D-115 were commercially available.  To form the 

hydrazone standards the aldehydes were stirred in either methanol or water with 2,4-

dinitrophenyl hydrazine 114 for 24 hours ( 

Table 2.1).  As can be seen from  

Table 2.1, 134 was obtained in a very good yield and trapped D-glyceraldehyde D-115 was 

obtained in a moderate 46 % yield.  The trapping of 2-deoxy-D-ribose D-130 was fist 

attempted in water and gave D-132 in a 6 % yield after 24 hours.  When the reaction time 

was increased to 72 hours and the solvent changed to methanol the yield was marginally 

increased to 8 %. 

 

 

Starting Material Time Solvent Yield (%) 

Acetaldehyde 24 24 water 80 

D-Glyceraldehyde D-9 24 water 45 

2-Deoxy-D-ribose D-130 72 methanol 8 

 

Table 2.1. Synthesis of hydrazone standards from commercially available aldehydes. 

 

With hydrazone standards D-132, 134 and D-115 to hand the synthesis of hydrazone D-

133 was attempted.  Unfortunately, this sugar was not commercially available and had to 

be synthesised from commercially available L-lyxose L-121 through adaptation of previous 
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literature procedures which ultimately removed the hydroxyl group at the C2 position of the 

molecule (Scheme 2.5).104,105   

 

Scheme 2.5. Synthesis of 2-deoxy-D-threopentose D-131 from commercially available L-lyxose 

121 and the crystal structure of D-131 as 50% eliipsoid. 

 

The first step of the synthesis used sodium bicarbonate as a base with bromine water for 

the oxidation of L-lyxose 121 to lactone 135.  After work-up, the literature procedure 

reported that extraction of the product with boiling acetone gave lactone 135 as a white solid 

in excellent yield.104  In our hands extraction with boiling acetone gave an extremely poor 

yield of lactone, < 2 %.  Extraction with boiling methanol, however, gave 135 as a beige 

solid in excess of 100 % yield.  As the 1H NMR and 13C NMR spectra of the compound were 
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correct and clean it was apparent that inorganic by-products/reagents contaminated the 

product.  Compound 135 was used in the next step of the reaction without further 

purification, where HBA (hydrobromic acid - a commercially available solution of HBr in 

acetic acid) induced an SN2-type reaction which replaced the hydroxyl group at the C2 

position with bromine.  Compound 136 was obtained in a low 14 % yield over 2 steps.  

Reduction of 136 to 137 was achieved in excellent yield by radical mediated de-bromination 

conditions.  

 

With the C2 position now free of heteroatoms the final step of the synthesis was reduction 

of the lactone down to the lactol to give 2-deoxy-D-threopentose D-131.  Initially one 

equivalent of sodium borohydride in water at 0 ºC was used with Amberlite®-120-H resin to 

keep the pH below 6.  After 24 hours only starting material 137 was detected by TLC.  The 

reaction was repeated with 2 equivalents of sodium borohydride and gave the same result 

after 24 hours.  In order to test if the reduction could actually occur the number of 

equivalents of sodium borohydride was drastically increased to 20.  After one hour no 

starting material was detected by TLC, however the compound had over reduced to tetrol 

138.  There was clearly a fine balance between single reduction and over reduction of 

lactone 137.  A greater degree of control was found by reduction of lactone 136 with sodium 

borohydride instead.  Reduction with 0.5 equivalents of sodium borohydride gave 139 in a 

45 % yield with the rest of the mass being a mixture of starting material and over reduced 

tetrol.  Removal of bromine from 139 was then achieved using the same radical conditions 

as before to give 2-deoxy-D-threopentose D-131 in a 99 % yield.  A crystal structure of D-

131 was obtained which verified the stereochemistry, with the molecule crystallising in the 

pyranose form. This is shown in Scheme 2.5.  The final step of the reaction, trapping with 

2,4-dinitrophenyl hydrazine 114, was carried out in methanol and gave the final standard, 

D-133, in a low 14 % yield (Scheme 2.6). 
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Scheme 2.6. Trapping of 2-deoxy-D-threopentose D-131 to give hydrazone standard D-133. 

 

With all the standards synthesised the synthesis of the amino ester catalysts was attempted.  

Two successful amino ester catalysts, previously used by Clarke et al. in their prebiotically 

plausible synthesis of tetrose sugars research, were selected as appropriate candidates; L-

proline benzyl ester L-108 and N-methyl-L-leucine ethyl ester L-111.81  L-Proline benzyl 

ester L-108 was commercially obtained as the hydrochloride salt.  The salt was washed 

with sodium bicarbonate and extracted with dichloromethane (DCM) and upon 

concentration in vacuo, the free amine was obtained as a colourless oil in an 80 % yield 

(Scheme 2.7). 

 

 

Scheme 2.7. L-Proline benzyl ester 108 was obtained by the neutralisation of the hydrochloride 

salt. 
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N-Methyl-L-leucine ethyl ester L-111 was synthesised from commercially available L-

leucine ethyl ester L-140 by Boc-protection of the free primary amine. Deprotonation of the 

resultant secondary amine L-141, methylation with methyl iodide and subsequent 

deprotection of the Boc group gave the desired amino ester catalyst L-111 in an overall 42 

% yield (Scheme 2.8). The same strategy was used for the synthesis of N-methyl-D-leucine 

ethyl ester D-111 which allowed access to both enantiomers. 

 

 

Scheme 2.8. Synthesis of N-methyl-L-leucine ethyl ester L-111. 

 

 

2. Results of the Initial reaction trials 

Due to the nature of prebiotic chemistry no one truly knows the conditions or molecules 

around on the early Earth, however, the building blocks available would have been in low 

concentrations in an aqueous (water) medium. To make the study as robust as possible 

challenging criteria were imposed to attempt to reflect the conditions on the early Earth.  

Firstly, stoichiometries of acetaldehyde 24 (donor) and glyceraldehyde 9 (acceptor) were to 

be as close to 1:1 as possible to remove any dependence on a single starting material. 

Secondly, the amino ester compounds were to be sub-stoichiometric.  To show the reaction 

is not dependent on an abundance of amino ester a maximum of 20 mol % promoter was 

decided.  Water or aqueous buffer was to be used as the solvent as this would likely have 
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been the solvent on the early Earth.  Ideally a reaction time period of 24 hours was set, as 

if products are detectable after just 1 day then one would expect a sufficiently efficient 

process, over a much longer time period giving validity to the reaction in a prebiotic context.  

Finally, as previously described, the target compounds were to be isolated and reported 

with yields, rather than just being detected analytically to show a tangible amount of product 

had been formed. 

 

Before embarking on the study a series of control reactions were carried out to establish 

that any sugar synthesis was indeed a result of amino ester promotion.  Firstly acetaldehyde 

24 and D-glyceraldehyde D-9 were stirred together for 24 hours without a promoter to 

determine whether there was any initial background reaction.  The reaction was stirred for 

24 hours in water then 2,4-dinitrophenyl hydrazine 114 was added and stirred for a further 

24 hours.  Only the hydrazones of the starting materials, 134 and D-115, were detected by 

TLC and 1H NMR spectroscopy.  There was no detectable product formation and therefore 

it was concluded that the reaction does not occur in the absence of a promoter (Scheme 

2.9).  In order to determine whether the reaction conditions were compromising the 

stereochemical integrity, both the glyceraldehyde D-9 starting material and the sugar 

product, 2-deoxy-D-ribose D-130, were stirred under the reaction conditions for 24 hours 

before the solvent was evaporated and the trapping conditions applied. HPLC analysis 

showed no erosion of stereochemistry to either starting material or product. 
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Scheme 2.9. Control reactions carried out on starting material and prospective products. 

 

Having completed the control reactions and determined the reaction criteria the 

investigation into the formation of 2-deoxy-D-ribose D-130 was conducted.  Initially 1 

equivalent (1 mmol) of reactants 24 and D-9 were dissolved in water (3 mL) and L-proline 

benzyl ester L-108 (0.2 equivalents) was added.  The reaction was stirred for 24 hours 

before the solvent was removed in vacuo.  The crude sugar mixture was redissolved in 

methanol (3 mL) and 2,4-dinitrophenyl hydrazine 114 (3 equivalents) was added.  After a 

further 24 hours the solvent was removed in vacuo and the detection of hydrazone products 
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D-132 and D-133 was attempted through ESI mass spectrometry and TLC analysis by 

comparison of the crude mixture with the pre-prepared standards.  ESI mass spectrometry 

was preferred to NMR spectroscopy due to its greater sensitivity.  The initial results are 

shown in Table 2.2.  

 

Entry 24 
(equiv.) 

D-9 
(equiv.) 

L-108 
(equiv.) 

Time 
(h) 

Trap 
(equiv.) 

Trap 
time (h) 

Detection 
by MS 

ESI 

1 
 

1 1 0.2 24 2 24 No 

2 
 

1 1 1.0 24 2 24 No 

3 
 

2 1 0.2 24 2 24 No 

4 
 

20 1 0.2 24 21 24 No 

5 
 

1 1 0.2 72 2 24 No 

6 
 

2 1 0.2 24 3 24 No 

7 
 

1 1 0.2 72 2 72 Yes 

8 
 

1 1 0.2 24 2 72 Yes 

 

Table 2.2. Initial experiments on the synthesis of trapped 2-deoxy-D-ribose D-132. 

 

Table 2.2 Entry 1 shows that no product was detected from the initial run, instead only 

trapped starting materials 24 and D-115 and dimerised acetaldehyde were observed.  When 

the number of equivalents of acetaldehyde 24 were increased to 2 and then to 20 (Entries 

3 and 4) the deoxypentose products were still not observed.  The length of time was also 
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increased to 72 hours and no products were detected (Entry 5).  However, increasing the 

duration of the trapping reaction did seem to have an effect (Entries 7 and 8).  When the 

trapping time length was tripled from 24 to 72 hours the correct mass for 2-deoxy-D-ribose 

132/2-deoxy-D-threopentose 133 was detected in the ESI mass spectrum (Figure 2.3).  

Unfortunately the product could not be detected by 1H NMR or HPLC and hence could not 

be isolated. 

 

The main aims of the experiment were to obtain an isolated yield of 2-deoxy-D-ribose D-

130 and 2-deoxy-D-threopentose D-131 and also to determine the diastereomeric ratio of 

D-130 and D-131.  To achieve these aims it was evident that the current reaction had to be 

modified. The trapping stage was identified as the weakest part of the two-steps.  Trapping 

authentic 2-deoxy-D-ribose D-131 with 2,4-dinitrophenyl hydrazine 114 only gave an 8 % 

yield of the hydrazone product.  The aldol reaction itself may not be particularly high yielding 

due to the reasons discussed in Chapter 5, therefore it was imperative to have an efficient 

trap to maximise the yield of hydrazone products obtained to allow a better opportunity to 

isolate and analyse these compounds.  
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Figure 2.3. ESI mass spectrum for the 2-deoxyribose-forming reaction after 72 hours of trapping.  The correct mass of trapped 2-deoxyribose 132 is present.
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3. N, N-Diphenyl hydrazine trap 

In order for the reaction to be successfully analysed an efficient trap needed to be developed 

to ensure as close to 100 % of the sugar molecules can be accounted for.  The trapping 

ability of 2,4 dinitrophenyl hydrazine 114 was tested against other hydrazines and a 

comparison of 114 with the best candidate, N,N-diphenyl hydrazine 144, as a trap for 2-

deoxy-D-ribose D-130 and starting material D-glyceraldehyde D-9, are shown in Table 2.3.  

Hydrazine 144 was found to be a more efficient trapping agent. This may be due to the 

reduced solubility of 114 in methanol or the addition of the electron withdrawing groups on 

114 reducing the nucleophilicity of the hydrazine nitrogen.  Based on this study hydrazine 

144 was chosen as the replacement trapping agent of choice for the study. 
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Entry 
 

Starting 
Material 

Mass of SM 
(mg) 

 

Trap Solvent Time  
(h) 

Isolated 
Yield 
(%) 

1 D-9 50 114 MeOH 20 45 

2 D-9 50 144 MeOH AcOH (cat.) 1 91 

3 D-9 200 144 MeOH 1 70 

4 130 50 114 MeOH, AcOH (cat). 72 8 

5 130 50 144 MeOH, AcOH (cat.) 1 98 

6 130 29 144 MeOH, AcOH (cat.) 1 84 

Table 2.3. Comparison of the efficiency of 2,4-dinitrophenylhydrazine 114 and diphenyl hydrazine 

144 as trapping agents. 

 

With an improved trapping candidate to hand, new trapped hydrazone standards of starting 

materials and products were synthesised for the purpose of analysis. The trapped starting 

materials and products, in hydrazone form, are shown in Figure 2.4 along with percentage 

isolated yields obtained from the reaction conditions in Table 2.3.  N,N-Diphenyl hydrazine 

144 is commercially available as the HCl salt and was first neutralised before the trapping 

reactions were attempted.  The salt was washed with saturated sodium bicarbonate solution 

and extracted with DCM which gave the free hydrazine as a deep purple oil.  
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Figure 2.4. Trapped hydrazone standards and their yields using N,N-diphenyl hydrazine 144 after 

stirring for 1 hour in methanol and catalytic acetic acid. The crystal structure of 146 is also shown 

as 50 % ellipsoid. 

 

With all standards at hand a method of product analysis needed to be identified.  

Unfortunately the two diastereomers, D-146 and D-147, had identical RF values in a range 

of different solvent systems therefore isolation of each diastereomer was not possible. 

However, analysis of the two standards on a 500 MHz NMR spectrometer showed 

differences in the 1H NMR spectra of the two hydrazone products.  Figure 2.5 shows a 500 

MHz 1H NMR spectrum of a mixture of 2-deoxy-D-ribose and 2-deoxy-D-threopentose 

trapped as diphenyl hydrazones (146 and 147). Figure 2.6 and Figure 2.7 show the 

separate 1H NMR spectra of 2-deoxy-D-ribose hydrazone D-146 and 2-deoxy-D-

threopentose hydrazone D-147 respectively.  An expanded image of the region of 6.61-6.55 

ppm is also shown (inset).  The 2 peaks in this region correspond to the azomethine peaks 

of D-146 and D-147 respectively, as highlighted using blue circles on the spectrum.  As 
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these two triplet signals were resolved the diastereoselectivity of the reaction could be 

calculated based on the integration of the two signals. 

 

Figure 2.5. 500 MHz 1H NMR spectrum of a mixture of hydrazones D-146 and D-147 in methanol 

d4. 

 

Compound D-147 Compound D-146 147 146 
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Figure 2.6.  500 MHz 1H NMR spectrum of 2-deoxy-D-ribose hydrazone D-146 in methanol d4. 

 

Figure 2.7. 500 MHz 1H NMR spectrum of 2-deoxy-D-threopentose hydrazone D-147 in methanol 

d4. 

Compound D-147 

Compound D-146 
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The 2-deoxy-D-ribose D-130 forming reaction was attempt using the modified trapping 

conditions.  As previously stated by Clarke et al. in unbuffered water the enamine catalysed 

aldol reaction could be competing with general acid or general base promoted reactions 

which can lead to a reduction of enantioselectvity.81 To gain a true understanding of the 

diastereoselectivity arising from the enamine promoted aldol reaction the 2-deoxy-D-ribose 

D-130 forming reaction was attempted at pH 7 (which should reduce competing general 

acid or general base catalysis) and pH 6 (which should have reduce competing general 

base catalysis) using phosphate buffers.   Background reactions were again carried out 

without a catalyst present at the various pHs and no product formation was observed.  

Separately, starting material and authentic products were submitted to the reaction 

conditions and no erosion of enantio-integrity was observed.  

 

One equivalent of each starting material (24 and D-9) with 20 mol % catalyst (108 or 111) 

in an aqueous medium was stirred at room temperature for 24 hours. The solvent was then 

removed in vacuo and the new trapping conditions applied.  After 1 hour the reaction mixture 

was concentrated in vacuo and the crude mixture of products was subjected to flash column 

chromatography (5:95 methanol:DCM) followed by preparative thin layer chromatography 

(10:90 ethyl acetate:hexane) which isolated hydrazone products D-146 and D-147 as a 

mixture of diastereomers.  The results of the reaction using both enantiomers of catalysts 

108 and 111 are shown in Table 2.4 below.  The yields and diastereoselectivities of each 

entry were based on three runs of each experiment and an average of the three was taken.  
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Entry Catalyst pH Isolated Yield 
(%) 

Ratio 
(113:114) 

 

1 None 7 
 

0 N/A 

2 L-111 7 
 

2 2.0 : 1 

3 L-111 6 
 

1 1.6 : 1 

4 L-111 Unbuffered 
 

0 N/A 

5 D-111 
 

7 
 

2 1.6 : 1 

6 L-108 7 
 

2 1.8 : 1 

7 L-108 6 
 

2 1.7 : 1 

8 L-108 Unbuffered 
 

2 1.5 : 1 

9 D-108 7 
 

2 1.2 : 1 

Table 2.4. Results of the 2-deoxy-D-ribose D-130 forming reaction.  Each of the entries was based 

on three runs at the same pH (either unbuffered water, pH 6 phosphate buffer or pH 7 phosphate 

buffer) and the yield and d.r. was the average of the three.  The dr was determined using 500 MHz 

1H NMR spectroscopy. 
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From Table 2.4 it is clear that there was some selectivity for 2-deoxy-D-ribose 146 over 2-

deoxy-D-threopentose 147, albeit quite small.  The pH of the reaction did not seem to have 

an effect on the selectivity or the yield of the reaction.  The isolated yields were between (1 

and 2 %).  This is the first time isolated yields have been reported in this field for 

carbohydrate formation of 2-deoxy-D-ribose D-130.  The low yields obtained, and the 

relatively low drs, could be attributed to the loss of the key hydrogen-bonded chair-like 

transition state.  As described in Chapter 5, this key intermediate transition state is thought 

to occur in enamine catalysed aldol reactions in organic solvents, however, in aqueous 

solvents the electrophile and enamine intermediate will most likely form hydrogen bonds 

with the water solvent instead. 

 

Changing the chirality of the catalyst (compare Entries 6 and 9) reduced the 

diastereoselctivity but still showed some selectivity for the formation of 2-deoxy-D-ribose D-

130 over 2-deoxy-D-threopentose D-131.  It can be implied from this observation that the 

reaction was controlled to some degree by the catalyst as reversing the chirality of the 

catalyst reduced the dr of the products.  However, the chirality of the starting material, D-

glyceraldehyde D-9, had a larger impact as aldol reactions tend to favour anti products.  

 

An example 1H NMR spectrum of the reaction ran in pH 7 buffer after purification is shown 

in Figure 2.8.  This demonstrates that the deoxypentose products formed in the reaction 

were isolated and purified to a high degree. 
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Figure 2.8. An authentic 1H NMR spectrum of the reaction assay after column chromatography 

using the N-methyl-D-leucine ethyl ester catalyst D-111. 

 

 

4. Conclusion 

This chapter has shown a refined study into the potential prebiotic synthesis of 2-deoxy-D-

ribose 130, the sugar of DNA, from two smaller prebiotic building blocks acetaldehyde 24 

and D-glyceraldehyde D-9.  Diastereoselectivities of 1.5:1 - 2:1 (2-deoxy-D-ribose 146 : 2-

deoxy-D-threopentose 147) with yields of 1 - 2 % were observed using amino esters as 

catalsyst.  The study suggests that the stereochemistry of the amino ester catalysts have 

limited effect on the chirality of the newly formed stereocentre and the stereoselectivity is 

primarily due to the chirality of the glyceraldehyde 9 starting material.  The low yields and 

relatively low drs of the reaction are typical for aldol reactions in aqueous solvents as shown 

in the literature examples presented in Chapter 5 Sections 5.5 and 5.7. 

 D-146 D-147 
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3. Amino nitriles – possible progenitors to amino acids 

 

3.1. Evidence for amino nitriles as prebiotic molecules 

A route to 2-deoxy-D-ribose D-130 via an aldol reaction using two smaller sugar building 

blocks, acetaldehyde 24 and D-glyceraldehyde D-9, catalysed by amino esters has been 

demonstrated in the previous chapter.  The next aim of the research was to make this 

reaction as prebiotically plausible as possible.  The prebiotic nature of amino esters is 

debatable.  To develop this study further more plausibly prebiotic catalysts were 

investigated.  Chapter 2.3 outlined several possible origins of amino acids.  One of these 

theories involved the formation of non-terrestrial amino acids through Strecker reactions in 

space.  The reaction of an aldehyde, ammonia and HCN could form an amino nitrile and 

subsequent hydrolysis of the nitrile to forms amino acids (Scheme 3.1). 47,48 

 

 

Scheme 3.1.   General Strecker synthesis of an amino nitrile and subsequent hydrolysis to an 

amino acid. 

 

Another possible prebiotic route to amino nitrile compounds comes from Sutherland and co-

workers’ prebiotic systems chemistry which explored the origins of a range of biomolecular 

building blocks including ribonucleotides, lipids and amino acids in reducing environments 

driven by hydrogen sulphide and the use of copper photoredox cycling.40,102  In this pathway 

HCN was added to acetone 61 generating an equilibrium with cyanohydrin 148 (Scheme 

3.2).  Addition of hydrogen sulfide to the reaction mixture gave α-hydroxythioamide 149 via 

nucleophilic attack of HS- which also pushed the equilibrium towards 148.  Irradiation of 149 

caused α-dehydroxylation to give 150 where upon reduction to the aldehyde in the presence 
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of HCN gave cyanohydrin 151.  Compound 151, in the presence of ammonia, was found to 

form amino nitrile 152 which upon hydrolysis of the nitrile would form valine 80.40  

 

 

Scheme 3.2. Prebiotic route to racemic valine 80 from acetone using Sutherland’s systems 

chemistry.40 

 

An issue with both routes to amino nitrile formation is that they are both racemic and of 

course the naturally occurring amino acids all possess L-stereochemistry.  A recent 

publication by Kawasaki and co-workers addressed this problem through spontaneous 

crystallisation.  By performing a Strecker reaction with the achiral substrate p-tolualdehyde 

153, benzhydrylamine 154 and HCN in the presence of DBU led to the spontaneous 

crystallisation of amino nitriles 155 in up to 96 % ee.106  In this paper the group also showed 

how amplification of the crystals in the solid state could occur through processes such as 

attrition-enhanced ripening and Viedma ripening.  Attrition-enhanced ripening is the process 

whereby a small enantiomeric excess of a crystal solution can lead to enantiopure crystals, 

as the enantiomeric crystal grows the imbalance in the racemic solution is addressed by 

converting to more of the depleted enantiomer.107,108,109 Viedma Ripening involves a near 

racemic slurry of crystals in solution whereby the crystals are given enough energy through 

continuous grinding to spontaneously form one enantiomer.110,111 Furthermore, the group 

later showed addition of HCN to the intermediate imine crystal face led to the asymmetric 
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synthesis of amino nitriles in greater than 99.5 % ee.112  The amino nitriles were then 

hydrolysed to the amino acids. 

 

 

Scheme 3.3. Formation of chiral amino nitriles via Strecker synthesis by Kawasaki et al.106 

 

It seems plausible that amino nitrile molecules are possible progenitors of amino acids.  

These molecules are realistically “more prebiotic” than amino esters and with some 

evidence of prebiotic asymmetric synthesis of amino nitriles the decision to test chiral amino 

nitriles as potential catalysts in the 2-deoxy-D-ribose D-130 forming reaction was taken.  A 
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detailed preliminary literature search found no evidence of amino nitriles as catalysts in any 

type of organic reaction.  

 

 

3.2. Synthesis of amino nitriles 

Three amino nitriles were synthesised; L-proline nitrile 156, L-valine nitrile 157 and L-serine 

nitrile 158 (Figure 3.1).  L-Proline nitrile 156 was chosen as this is the only secondary 

amine, of the amino acids, which may be more efficient at catalysing the enamine formation 

with acetaldehyde over primary amines.  L-Valine nitrile 157 was chosen as an aliphatic 

comparison and L-serine nitrile 158 had the added importance as a common and imperative 

residue in many enzyme active sites.113 

 

 

Figure 3.1. Amino nitrile targets to be synthesised. 

 

The synthesis of L-proline nitrile 156 and the subsequent use of this compound as a catalyst 

in the 2-deoxy-D-ribose D-130 forming reaction were carried out by Nicolas Bia, an Erasmus 

student, during a three month placement in the Clarke group under the supervision of 

Andrew Steer.  The synthesis of L-156 began with N-Boc-L-proline L-159 and was readily 

converted to amide L-160 in a good 81 % yield by using ethylchloroformate to form a mixed 

anhydride followed by addition of ammonia (Scheme 3.4).  Conversion of amide L-160 to 

N-Boc-L-proline nitrile L-161 was possible with triflouroacetic anhydride (TFAA) in an 

excellent 94 % yield.  A common problem with this reaction was the condition of the TFAA.  
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Over time TFAA gradually breaks down to form trifluoroacetic acid and hence fresh reagent 

was used to ensure a high yield was obtained.  The final step of the reaction was Boc 

deprotection which was carried out using TFA.  Upon evaporation of solvent the nitrile 

product was isolated as the TFA salt L-162 in a 66 % yield.  Unfortunately it was difficult to 

isolate the free amino nitrile.  Washing with saturated sodium bicarbonate and extraction 

with dichloromethane gave a low (< 50 %) return of the neutral amino nitrile as L-156 was 

very water soluble.  However, dissolving L-162 in DCM and stirring over solid sodium 

bicarbonate did increase the yield of free amino nitrile L-156 to 85 %. 

 

 

Scheme 3.4. Synthesis of L-proline amino nitrile L-156. 

 

The synthesis of L-valine nitrile L-157 was next attempted.  The protecting group strategy 

was changed from Boc to carboxybenzyl (Cbz).  Cbz-L-Valine L-163 or (Z-L-valine) was 

commercially available and had the added benefit of obtaining the neutral amine by 

hydrogenation of the Cbz group in the final step of the synthesis.   The same route for the 

synthesis of L-proline nitrile L-156 was applied to Z-L-valine L-157 (Scheme 3.5).  Amide 

formation proceeded in a good 75 % yield and subsequent dehydration to nitrile L-165 

proceeded in an excellent 93 % yield, after column chromatography.  Nitrile L-165 readily 

formed long colourless crystals allowing an x-ray crystal structure to be obtained. The X-
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ray data and the polarimetry data (-37.3 (c = 0.97 g cm-3 in methanol) compare with literature 

-55 (c = 1.13 g cm-3 in chloroform))114 confirmed that racemisation had not occurred to any 

great extent during amino nitrile formation.  The final step of the synthesis, deprotection of 

the Cbz group, was conducted using Pearlman’s reagent (Pd(OH)2 on carbon).  The 

reaction proceeded cleanly and quickly to give deprotected amino nitrile L-166.  

Unfortunately, due to the low boiling point of L-166 (70 ºC at 0.5 Torr)115 isolation by 

evaporation of the solvent proved difficult.  Alternatively a 4M solution of HCl in dioxane was 

added to the amide following filtration of the reaction mixture.  This caused amine salt L-

166 to precipitate out of solution and a 75 % isolated yield was achieved following filtration. 

 

 

Scheme 3.5. Synthesis of L-valine nitrile L-157. The X-ray crystal structure of L-165 as 50 % 

ellipsoid is also shown.   

 

Potentially the synthesis of L-serine nitrile L-158 could be achieved through a similar 

procedure to L-valine nitrile L-157.  The initial idea was to protect the alcohol of the serine 

side chain with a benzyl group to allow a double deprotection in the final step of the reaction 

to give the free nitrile.  This initial reaction scheme is shown in Scheme 3.6.  The synthesis 

began with the Cbz protection of O-benzyl-L-serine L-167 with benzyl chloroformate which 

produced the doubly protected amino acid L-168 in a moderate 67 % yield.  Standard amide 

formation and subsequent dehydration to nitrile L-170 proceeded in good yields of 89 and 

L-165 
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76 % respectively.   The final double deprotection step was challenging.  Nitrile L-170 was 

stirred in a variety of solvents (such as ethyl acetate, isopropanol, ethanol, methanol) with 

Pearlman’s reagent but only deprotection of the Cbz at the N-terminus occurred.  The 

catalyst was changed to palladium on carbon but this still did not remove the benzyl 

protecting group on the alcohol, nor did changing the solvent.  Longer exposure of L-170 to 

palladium on carbon (> 24 h) resulted in decomposition of the compound indicated by a 

complex 1H NMR spectrum and multiple spots on the TLC plate. 

 

 

Scheme 3.6. Initial synthetic route to L-serine L-158.  The final step of the reaction did not remove 

the benzyl protecting group. 

 

It was clear that the synthetic strategy was flawed and alternative, longer, protecting group 

strategy was employed instead.  The new route (Scheme 3.7) began from commercially 

available N-Z-L-serine L-171.  The first step of the sequence was triisopropyl silyl (TIPS) 

protection of the hydroxyl side chain.  Compound L-171 was dissolved in DMF and stirred 

with TIPS triflate, imidazole and 2,6-lutidine for 22 hours.  This led to, not only, protection 

of the alcohol but also formation of the TIPS ester L-172 in a very good 96 % yield.  

Hydrolysis of the TIPS-ester in 1M NaOH provided the free carboxylic acid L-173 in an 
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excellent 94 % yield.  Standard amide formation, via a two-step process of mixed anhydride 

formation and subsequent attack with ammonia, and dehydration, with TFAA, gave nitrile 

L-175 in a 79 % yield (over 2 steps).  The final steps involved the removal of the protecting 

groups.  The TIPS group was removed using a commercially available 70% solution of 

hydrogen fluoride in pyridine which gave the free alcohol L-176 in a moderate 67 % yield.  

The Cbz group was removed, as before, using Pearlman’s reagent with full deprotection 

achieved after just 10 minutes.  This gave amino nitrile L-158 as the free amine in a 99 % 

yield.  

 

 

Scheme 3.7. Modified synthesis of L-serine amino nitrile L-158. 

 

 

3.3. Amino nitriles as potential catalysts 

With prebiotically plausible amino nitriles L-156 – L-158 in hand the 2-deoxy-D-ribose D-

130 forming reaction was attempted using these molecules as the catalysts.  All other 

variables remained the same i.e. acetaldehyde 24 (1 mmol) and D-glyceraldehyde D-9 (1 
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mmol) were stirred in an aqueous solvent (3 mL) with an amino nitrile (0.2 mmol) for 24 

hours before the solvent was removed in vacuo.  N-N-Diphenyl hydrazine 144 (3 mmol) was 

then added in methanol (5 mL) and acetic acid (catalytic) for 1 hour before the solvent was 

removed in vacuo and crude material was purified by chromatography.  Table 3.1 shows 

the results of these reactions. 

 

 

Entry Catalyst pH Isolated Yield 
(%) 

Ratio 
(146:147) 

1 156 7 2 1.5 : 1 
 

2 156 Unbuffered 0 - 
 

3 157 7 5 1.7 : 1 
 

4 157 Unbuffered 2 1.7 : 1 
 

5 158 7 0 - 
 

6 158 Unbuffered 0 - 
 

 

Table 3.1. Results of the 2-deoxy-D-ribose D-130 forming reaction.  Each of the entries is based on 

three runs at the same pH and the dr is the average of the three.  The dr was determined using 500 

MHz 1H NMR spectroscopy. 
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Table 3.1 shows amino nitriles L-156 and L-157 were successful at promoting the formation 

of 2-deoxy-D-ribose D-130 but L-serine L-158 was not.  L-Proline nitrile L-156 generated a 

ratio of products in very similar yield and ratio to L-proline benzyl ester L-108, however, it 

was unable to catalyse the reaction in unbuffered water (Entry 2) possibly due to protonation 

of the amine.  L-valine nitrile L-157 was the most successful catalyst and gave a slightly 

higher selectivity for 2-deoxy-D-ribose over 2-deoxy-D-threopentose and a much higher 

yield in pH 7 phosphate buffer.  This yield of 5 % is the largest yield of all the nitriles and 

esters tested and shows that a primary amino nitrile is capable at catalysing this aldol 

reaction.  However, L-serine nitrile L-158 was not successful at catalysing the reaction in 

neither unbuffered water nor pH 7 phosphate buffer.   

 

Further investigation of the amino nitriles were undertaken.  A control experiment was 

conducted which involved stirring one equivalent of L-valine nitrile L-157 with one equivalent 

of acetaldehyde 24 for 24 hours. Upon purification a cyclic by-product 177 (Scheme 3.8) 

was obtained in a 16 % yield along with unreacted amino nitrile L-157.  This showed that 

during the 2-deoxy-D-ribose D-130 forming reaction, the acetaldehyde 24 starting material 

could be sequestering the amino nitrile through the alternative mechanism shown in 

Scheme 3.8, reducing the yield of the reaction.  Therefore it may not be correct to call the 

amino nitriles “catalysts” as not all of the nitrile is recovered at the end of the reaction, 

however, despite this they are as efficient if not more so at promoting the reaction than 

amino esters.  For example amino nitrile L-157 gave a 5 % yield of 2-deoxypentose products 

(Entry 3, Table 3.1) compared to amino ester L-108 and L-111 which gave yields of 2 % in 

pH 7 buffer (Entry 2 & 6, Table 6.4). 
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Scheme 3.8. Alternative reaction pathway for the reaction of acetaldehyde with L-valine nitrile L-

157. 

 

With the discovery of the amino nitrile by-product 177, a possible explanation for the lack of 

product formation when using L-serine nitrile 158 could be explained in a similar way 

through further reactions upon the formation of the enamine intermediate (Scheme 3.9). 

Once L-serine 158 has reacted with acetaldehyde 24 to form an iminium ion, the internal 

attack of the serine oxygen could form a cyclic by-product 178 which maybe catalytically 

unreactive.  This is purely speculative as there was not enough time to carry out this reaction 

in the laboratory. 

 

 

Scheme 3.9. Possible alternate pathway to from a potential L-serine by-product L-178. 
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Another possible fate of the amino nitirles is hydrolysis to the amino amide and the amino 

acid as demonstarted by Beauchemin et al who showed this was possible with catalytic 

amounts of aldehyde in basic conditions including formaldehyde 16, glycolaldehyde 7 and 

glycerlaldehyde 9 (Scheme 3.10).116  This is further demonstarted in the recent work of 

Coggins and Powner with amino nitrile phosphates.117   

 

Scheme 3.10. Hydrolysis of amino nitriles to amino amides using catalytic aldehydes.116 

 

 

3.4. Prebiotic formation of glyceraldehyde 

In an attempt to further the prebiotic validity of the 2-deoxy-D-ribose D-130 forming reaction 

attention was turned to the starting materials; acetaldehyde 24 and D-glyceraldehyde D-9.  

Acetaldehyde 24 is known as an interstellar building block, however, D-glyceraldehyde D-

9 is not.118  A further retro-analysis of glyceraldehyde 9 breaks the 3-carbon sugar down 

further into two carbon building blocks, formaldehyde 16 and glycolaldehyde 7.  An amino 

nitrile promoted aldol reaction of 16 and 7 to D-9 would provide a two-step formal synthesis 

from glycolaldehyde 7 to 2-deoxy-D-ribose D-130 (Scheme 3.11). 
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Scheme 3.11. Proposed prebiotically plausible synthetic pathway from glycolaldehyde 7 to 2-

deoxy-D-ribose D-130. 

 

The prebiotic formation of D-glyceraldehyde D-9 from formaldehyde 16 and glycolaldehyde 

7 has been attempted previously as discussed earlier in Chapter 5.85,86,87  Breslow and 

Cheng have previously reported the aldol reaction of formaldehyde 16 and glycolaldehyde 

7 in a prebiotic setting.85 In their procedure the authors dissolved formaldehyde 16 (40 

mmol), glycolaldehyde 7 (1 mmol) and an amino acid (1 mmol) in deionised water (20 mL).  

The solution was stirred for 3-5 days before 2,4-dinitrophenyl hydrazine 114 (41 mmol) was 

added.  The mixture of L and D-glyceraldehyde 9 was trapped in hydrazone form and the 

enantioselectivity of the isolated products determined by HPLC. 

 

Breslow’s experiment was modified to include 1 mmol each of formaldehyde 16 and 

glycolaldehyde 7, compared to Brelsow’s 40:1 ratio, as the relative abundances of 

formaldehyde 16 and glycolaldehyde 7 on the early Earth is unknown.  The length of the 

experiment was also reduced from 3-5 days to 1 day in line with the previous studies on the 

formation of 2-deoxy-D-ribose D-130.  Below, Scheme 3.12, shows a comparison of 

Breslow’s experiment using 1 equivalent of L-valine L-80 compared to the Steer et al. 

procedure which used 0.2 equivalents of L-valine amino nitrile L-157. 
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Scheme 3.12. Comparison of Breslow et al.’s synthesis of D-glyceraldehyde D-9 (above) with 

Steer et al.’s (below). 

 

Breslow’s experiment led to a 4 % ee of D-glyceraldehyde D-9 using L-valine L-80 as the 

catalyst although a yield for this particular example was not stated.  Whereas the Steer et 

al. procedure gave a 6 % ee in favour of D-glyceraldehyde D-9 in a 1 % overall yield.  The 

results with the amino nitrile promoted reaction compared favourably to those of Breslow’s 

early results and suggest that amino nitriles could be viable promoters for the two step 

synthesis of 2-deoxy-D-ribose D-130.  The ee and yield for the reaction was calculated 

based on three runs of the reaction.  An authentic HPLC trace from the reaction is shown 

in Figure 3.2.  It should be noted that this reaction was used to demonstrate a formal route 

from glycolaldehyde 7 to 2-deoxy-D-ribose D-130.  The D-glyceraldehyde D-9 forming 

reaction was not optimised any further. 
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Figure 3.2. (A) Authentic HPLC chromatogram of hydrazone product from the reaction. (B) 

Hydrazone product spiked with D-glyceraldehyde D-9 hydrazone to identify the peaks. 

 

Using the results so far, a picture could be built whereby during the early bombardment 

period, comets brought interstellar sugar building blocks to Earth along with amino nitriles 

that had been previously synthesised in space through Strecker reactions or evolved on the 

early Earth through pathways suggested by Sutherland et al.47,40  Over millions of years 

these promoters could first be used to catalyse the formation of D-glyceraldehyde D-9 in a 

slight excess which through a number of chiral amplification pathways such as eutectic 

concentrations, Viedma ripening or attrition enhance ripening, could lead to enhanced ees.  

In a further step, D-glyceraldehyde D-9 could undergo an aldol reaction with acetaldehyde 

A 

B 
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24 with some selectivity for 2-deoxy-D-ribose D-130 over 2-deoxy-D-threopentose D-131.  

This scenario is shown graphically in Figure 3.3 below. 

 

 

Figure 3.3.  Vision of the synthesis of 2-deoxy-D-ribose D-130 on the early Earth. 

 

 

3.5. Racemic glyceraldehyde 

The next logical step was to investigate the stereochemical outcome of using racemic 

glyceraldehyde rac-9 in place of D-glyceraldehyde D-9 in the 2-deoxy-D-ribose D-130 

forming reaction.  As racemic glyceraldehyde contains molecules of both the L and D 

enantiomers four possible pentose products could potentially arise: 2-Deoxy-D-ribose D-

130, 2-deoxy-D-threopentose D-131, 2-deoxy-L-ribose L-130 and 2-deoxy-L-threopentose 
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L-131.  The ratio of 2-deoxy-L-ribose L-130 to 2-deoxy-D-ribose D-130 was to be analysed 

by HPLC.  A HPLC trace of authentic 2-deoxy-D-ribose and 2-deoxy-L-ribose in their 

hydrazone forms (L-146 and D-147) is shown in Figure 3.4. 

 

 

Figure 3.4. HPLC trace of authentic standards of 2-deoxy-L-ribose L-130 and 2-deoxy-D-ribose D-

130 trapped in hydrazone form. 

 

The reaction was carried out exactly the same as before; acetaldehyde 24 (1 mmol), 

glyceraldehyde rac-9 (1 mmol) and L-amino nitrile (0.2 mmol) were dissolved in pH 7 

phosphate buffer (3 mL) and stirred for 24 hours.  The solvent was then removed in vacuo 

and the crude material redissolved in methanol (5 mL).  The trapping agent, N,N-diphenyl 

hydrazine 144 (3 mmol) and acetic acid (2 drops) were added and stirred for 1 hour before 

concentrating in vacuo and purification via chromatography. The results are shown in Table 

3.2 below. 

L-146 D-146 
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Entry Nitrile pH Isolated 
Yield (%) 

Ratio 
(146:47) 

ee of 2-
deoxyribose 

1 L-157 7 4 1.6 : 1 8 % ee (L) 
2 L-156 7 5 1.6 : 1 Racemic 

 

Table 3.2. Results of the 2-deoxyribose D-130 forming assay with racemic glyceraldehyde rac-9 

and amino nitrile promtoers.  The dr of 2-deoxyribose 146 : 2-deoxythreopentose 147 was based 

on the integration of the azomethine peaks in the 1H NMR spectra and confirmed through HPLC.  

The ee of deoxyribose was calculated by comparing the peak area of L-146 and D-146 from HPLC 

traces. 

 

The HPLC chromatograms of the reactions are shown in Figure 3.5 and Figure 3.6.  A 

sample of products from the reaction with L-valine nitrile L-157 was doped with the 

hydrazone of 2-deoxy-D-ribose D-146 to clarify the peaks.  The peak at 36 minutes 

represented the hydrazone of 2-deoxy-L-ribose L-146 and the peak at 40 minutes was the 

hydrazone of 2-deoxy-D-ribose D-146. The other two inseparable peaks at approximately 

45 minutes belonged to those of the two enantiomers of 2-deoxythreopentose hydrazones 

(D-147 and L-147).  The dr of trapped 2-deoxyribose 146 to 2-deoxythreopentose 147 in 
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the HPLC was 1.6:1 (2-deoxyribose:2-deoxythreopentose) in agreement with that of the 1H 

NMR spectra. 

  

 

Figure 3.5. HPLC chromatogram from L-valine nitrile L-157 run. 

 

 

Figure 3.6.  HPLC chromatogram from L-proline nitrile L-156 run. 

 

Interestingly both reactions with racemic glyceraldehyde rac-9 gave the same ratio of 

products, 1.6:1 (146:147), as using D-glyceraldehyde D-9 as the starting material.  From 

this we inferred that the anti-configuration of the two hydroxyl groups is preferred to the syn-

configuration when forming pentose sugars.  This may be due to an intramolecular 

2-Deoxy-L-ribose    

L-146 

2-Deoxy-D-ribose   

D-146 

 

2-Deoxy-L-ribose L-146 

2-Deoxythreopentose   

147 
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hydrogen bond between the hydroxyl group and carbonyl of the glyceraldehyde 9 

electrophile (Scheme 3.13).  This would prevent rotation of the C2 bond and provide two 

possible trajectorys for attack of the nucleophile.  The nucleophile will prefer to attack from 

the back of the molecule to avoid steric clash with the OH group, hence showing selectivity 

for the resulting anti configuration.  The OH group is not sterically very bulky and so this 

would account for the slight preference for anti over syn geometry.    

 

 

Scheme 3.13.  Rationale for the preferred formation of 2-deoxy-D-ribose D-130 over 2-deoxy-D-

threopentose D-131. 

 

However, in the racemic glyceraldehyde experiment when using L-valine nitrile L-157 as 

the promoter gave a small preference for the formation of 2-deoxy-L-ribose L-130 over 2-

deoxy-D-ribose D-130 which was not seen when using L-proline nitrile L-156 as the 

promoter.  By comparing the two promoters it is possible that L-valine L-157 is of significant 

steric bulk to create a matched-mismatched effect between the promoter-nucleophile 

molecule and the glcyerladehyde 9 starting material.  Hence the chiral enamine complex of 

L-valine nitrile L-157 may react faster with L-glycerladehyde L-9 than D-glyceraldehyde D-

9 leading to a small excess of 2-deoxy-L-ribose L-131.  Unfortunately no further 

experiments were conducted to test this hypothesis and future work should focus on 

computational studies to test the hypothesis as well as experiments involving the reaction 

of racemic glyceraldehyde rac-3 using D-valine nitrile D-157.  If the hypothesis is correct an 

excess of 2-deoxy-D-ribose D-130 should be observed.  Further experiments should also 
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include other bulky amino nitrile promoters to determine if increasing steric bulk could 

influence the selectivity further.  

 

 

3.6. One pot synthesis of 2-deoxyribose 

Having demonstrated the organocatalytic synthesis of glyceraldehyde 9 and 2-deoxy-D-

ribose D-130 separately, in an effort to enhance the prebiotic relevance of the study, the 

next experiments combined all three starting materials, formaldehyde 16, glycolaldehyde 7 

and acetaldehyde 24 in a one pot system to potentially form 2-deoxyribose 130 and other 

pentose products.  For this to be achieved formaldehyde 16 and glycolaldehyde 7 first 

needed to react to form glyceraldehyde 9.  Next, a subsequent aldol reaction needed to 

occur between newly formed glyceraldehyde 9 and acetaldehyde 24 to form 2-deoxyribose 

130.  Considering the yields for the latter reaction alone provided pentose sugars in only 2-

5 %, and the complex number of products that could be produced from this reaction, the 

quantity of pentose sugars, if any, was expected to be very low (< 1 %).   

 

The one-pot reaction was first attempted using 0.2 equivalents of L-proline benzyl ester L-

108 with a 1:1:1 ratio of aldehyde starting materials (formaldehyde 16, glycolaldehyde 7 

and acetaldehyde 24) in pH 7 buffer.  After 24 hours the solvent was evaporated and the 

usual trapping conditions were applied.  Only hydrazine-trapped starting materials were 

recovered.  The reaction was repeated with an increased reaction time of 7 days, again, the 

solvent was removed in vacuo and the trapping conditions applied.  After 24 hours the 

solvent was removed in vacuo once more and the different hydrazone species separated 

via column chromatography.  Each compound was then characterised by ESI mass 

spectrometry and 1H NMR spectroscopy and compared to literature compounds.  In the 

event that the product had not been documented in the literature an authentic standard of 
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the compound was made to verify its identity.  The results of the experiment are shown in 

Table 3.3 using (a) no promoter (b) L-proline benzyl ester L-108 and (c) L-valine nitrile L-

157. 
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Product No Promoter L-ProBn  
(L-108) 

L-Valine 
Nitrile (157) 

179 0.78 mmol 
(17 %) 

0.25 mmol 
(5%) 

0.77 mmol 
(17 %) 

 
180 0.87 mmol 

(22%) 
 

0.70 
(18%) 

0.76 mmol 
(19%) 

181 0.20 mmol 
(6 %) 

0.056 mmol 
(1.7%) 

0.065 mmol 
(0.8 %) 

 
145 0.026 mmol 

(0.8%) 
0.071 mmol 

(1.3 %) 
0.050 mmol 

(1.5%) 
 

184 - 0.037 mmol 
(1.1%) 

0.041 mmol 
(1.3%) 

 
185 0.016 mmol 

(0.5%) 
0.035 mmol 

(1.1%) 
0.041 mmol 

(1.3%) 
186 - Trace - 

 
Total 1.89 mmol 

(47 %) 
1.15 mmol 

(29 %) 
1.73 mmol 

(42 %) 
 

Table 3.3. Products and starting materials recovered from one-pot synthesis reaction in hydrazone 

form.  The quantity of each product is given in mmols and % yield based on the combined mmols of 

the three starting materials. 
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From Table 3.3 it can be seen that the majority of recovered material is trapped starting 

material 179 and 180.  In the absence of a promoter a larger amount of 181 (glycolaldehyde 

7 + acetaldehyde 24) is formed as well as a smaller amount of products 145 and 185.  There 

was no recovered acetaldehyde 24, nor acetaldehyde dimer 182. This is most likely 

because 182 could further eliminate water to from an enone which, along with acetaldehyde 

24 have low boiling points, therefore when removing the solvent after the reaction and 

before the trap, the molecules will be removed in vacuo.  None of product 184 (acetaldehyde 

24 + glycolaldehyde 7) or product 186 was isolated.  As predicted the quantity of compounds 

181, 145, 184 and 185 increased in the presence of a promoter.  In the case of L-proline 

benzyl ester L-108 the crude mass spectrum showed a peak corresponding to the mass of 

trapped 2-deoxyribose 146 to be present.  Unfortunately, isolation of 2-deoxyribose 146 

was not possible due to the small quantity of the pentose product. However, after column 

chromatography, a fraction containing the mass of the tetrose product and the mass of 2-

deoxyribose was isolated.  Further HPLC studies that involved this fraction and this fraction 

doped with authentic 2-deoxy-D-ribose hydrazone D-146 revealed 2-deoxy-D-ribose D-146 

to be present (Figure 3.7).  Intriguingly, when the fraction was doped with a racemic mixture 

of 2-deoxyribose hydrazones it was revealed that 2-deoxy-L-ribose L-146 was not present 

in the sample.  



100 
 

 

Figure 3.7. Mass spectra and HPLC chromatograms of tetrose fraction containing 2-deoxy-D-

ribose hydrazone D-146 and HPLC trace with pure 2-deoxy-D-ribose hydrazone D-146. 

 

Interestingly switching from L-proline benzyl ester L-108 to L-valine nitrile L-157 gave 

similar quantities of products 181, 145, 184 and 185 but did not produce any 2-deoxy-D-

ribose 146 detectable by ESI mass spectrometry.  This may have been due to removal of 

the L-valine nitrile L-157 promoter from the reaction over time through the pathway of imine 

formation and subsequent cyclisation.  In all cases the recovered mass was less than 50 % 

of the total mass.  A large proportion of this may have been due to the loss of unreacted 

starting materials with low boiling points (such as formaldehyde and acetaldehyde) during 

rotary evaporation before the trapping step of the assay or indeed from less efficient 

trapping of the sugar products and starting materials. 

 

In order to confirm the assignment of products 181, 145, 184 and 185 were correct the 

products were to be compared to pure authentic standards.  Compound 181 is known in the 

D-146 

D-146 
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literature and comparison of the 1H NMR data to the literature confirmed the identity of 

181.119  Compound 145 had been synthesised previously as an authentic standard in 

Chapter 6 and the data for 145 was in agreement. Compound 184 and 185 had not been 

reported in the literature and therefore needed to be synthesised.   

 

Compound 184 was synthesised from 3-butenal 187 in a 2-step process (Scheme 3.14).  

Firstly 3-butenal 187 was dissolved in DCM and trapped with N,N-diphenyl hydrazine 144  

which gave the resulting hydrazone 188 in a low 36 % yield.  Hydroxylation of the alkene 

with catalytic osmium tetroxide in the presence of 4-methyl morpholine N-oxide gave the 

diol product 184 in a good 87 % yield.  Comparison of 1H NMR and ESI MS data of the 

authentic standard and compound 184 isolated from the one-pot reaction revealed them to 

be the same compound. 

 

 

Scheme 3.14. Synthesis of 184 from butenal 187. 

 

 

The final compound 185 contained two stereocentres and therefore existed in up to four 

diastereomers: D/L threose 103 and D/L erythrose 102.  As enantiomers have the same 

physical and chemical properties, the 1H NMR spectrum showed this as a mixture of 

threose/erythose diastereomers.  To confirm 185 was the tetrose products it was only 

necessary two synthesise to standards; L or D threose 103 and L or D erythrose 102.  

Commercially available D-erythrose D-102 and L-threose L-103 were trapped with N,N-
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diphenyl hydrazine 144 to produce the hydrazones D-189 and L-190 (Scheme 3.15).  A 1H 

NMR spectrum containing a 1:1 mixture of erythose:threose proved identical to that of the 

1H NMR spectrum of 185 (Figure 3.8). 

 

 

Scheme 3.15. Synthesis of D-erythose and L-threose diphenyl hydrazones 189 and 190 for 

comparison to compound 185. 

 

 

 

A) Mixture of standards 189 and 190 
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Figure 3.8. 1H NMR spectra of; (A) a mixture of authentic threose and erythrose tetrose standards. 

(B) Authentic sample of tetrose products from one-pot synthesis after column chromatography. 

 

This study proved that 2-deoxy-D-ribose D-130, as well as many other small simple sugars, 

can be produced in a one-pot synthesis from interstellar building blocks, acetaldehyde 24, 

formaldehyde 16 and glycolaldehyde 7.  Although L-valine nitrile L-157 (arguably the more 

prebiotically plausible catalyst) could not catalyse the formation of 2-deoxyribose 130 the 

problem may lie in the synthesis of the cyclic by-product and could be overcome by 

increasing the equivalents of amino nitrile or adding further portions of amino nitrile to the 

reaction over the course of the 7 days or increasing the reaction time further. 

 

 

3.7. Conclusions 

Within this chapter amino nitriles have been shown to promote the synthesis of 2-deoxy-D-

ribose D-130 and 2-deoxy-D-threopentose D-131 in an approximate 2:1 ratio from D-

glyceraldehyde D-9 and acetaldehyde 24 in the highest yields yet reported for this reaction 

(5 %). This is the first example of an amino nitrile promoted reaction. L-Valine nitrile L-157 

has been shown to promote the formation of D-glyceraldehyde D-9 from formaldehyde 16 

B) Authentic sample of trapped tetrose 

products from one pot synthesis 
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and glycolaldehyde 7 and hence a formal 2-step amino nitrile promoted synthesis of 

glycolaldehyde to 2-deoxy-D-ribose D-130 has been demonstrated. 

 

Amino nitriles were also used to promote the reaction of racemic glyceraldehyde rac-9 with 

acetaldehyde 24 but L-proline nitrile L-156 gave no selectivity for 2-deoxy-D-ribose D-130 

over 2-deoxy-L-ribose L-130 whereas L-valine nitrile L-157 showed an 8 % ee in favour of 

2-deoxy-L-ribose L-130.  The results suggested that glyceraldehyde 9 needs to be 

somewhat enantiomerically enriched towards the D-enantiomer in order to selectively form 

2-deoxy-D-ribose D-130.  The final part of the study showed that 2-deoxy-D-ribose D-130 

could be formed in a one-pot synthesis from interstellar building blocks using L-proline 

benzyl ester L-108 as a catalyst. 
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4. Prebiotic Protocells 

 

4.1. A Protocell Environment 

Having designed a successful experiment for the potential prebiotic formation of 2-deoxy-

D-ribose D-130 in an aqueous environment, the next step was to develop this chemistry 

further within a primitive cell-like structure, a so-called “protocell”.  The concept of a protocell 

is that of a primitive ancestor of the biological cell.  Researchers in the field of Origins of 

Life have different ideas on what defines a protocell, for detailed reviews see 

references.120,121,122  In its simplest form a protocell could be described as a self-assembled 

compartmentalised system whereby a chemical reaction can take place using energy from 

the environment and containing some type of information system.122  This could include a 

range of supramolecular forms from vesicles to gels systems. 

 

The modern biological cell contains a phospholipid bilayer which is thought to have been a 

later stage evolution of a simpler monomer.  Vesicles are good supramolecular candidates 

as primitive cells and may have been composed of simple single chain fatty acids.  

Scientists have confirmed the presence of simple fatty acids on extra-terrestrial meteorites 

and form a good case for their use as the monomers for simple vesicle structures.123,124  

Fatty acids are amphiphilic molecules composed of a long hydrophobic tail-group and a 

hydrophilic head-group.  When exposed to aqueous medium the monomers arrange 

themselves to minimise the number of unfavourable interactions between hydrocarbon tail 

and aqueous solvent, and maximise the number of interactions between polar-head group 

and solvent.  Above a certain concentration, the monomers will arrange into supramolecular 

structures to help minimise unfavourable interactions.   
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There has been a lot of research into the mechanism of vesicle formation and the 

dependency to form vesicles as opposed to micelles is in large due to pH.  The pH of the 

solution should ideally be approximately the same as the pKa of the fatty acid in the 

aggregated state to allow for a balance between protonated and deprotonated molecules.125  

This allows for hydrogen bonding between pairs of fatty acids and fatty acid salts.126,127  As 

well as this it has been demonstrated that vesicles are sensitive to changes in ionic 

concentrations.128  Obviously a pH specific supramolecular structure is not a very robust 

model for a protocell, however, researchers have overcome this pH dependency by mixing 

fatty acid monomers with alcohols.  The addition of alcohols, such as glycerol, also had the 

added benefit of reducing the critical vesicle concentration (CVC) of the system.129,130,131   

Work from the Szostak lab has developed vesicle research further showing how model 

protocell vessels of oleic acid in the presence of glycerol monooleate can become 

stabilised, and permeable to magnesium ions, which is required for ribozyme activity and 

RNA synthesis.132  Moreover, the group has shown that in the presence of magnesium ions, 

ribozymes can be activated and encapsulated within vesicles.133  Moving towards synthesis 

in vesicle “protocells”, Szostak demonstrated the peptide bond formation of a dipeptide 195 

from lysine amide 192 and phenylalanine amide ester 193 using the dipeptide Ser-His 194 

as a catalyst.  The product would then localise to the bilayer of the vesicle membrane.  The 

group found that vesicles containing 195 in the bilayer would grow in size at the detriment 

of micelles which did not contain 195, which would shrink (Figure 4.1).134 
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Figure 4.1. Synthesis of dipeptide derivative 195 inside a vesicle by the catalysis of Ser-His 194.  

Once synthesised the product moved to the bilayer of the vesicle.  The group found vesicles with 

the product would grow at the detriment to vesicles without the product.134  

 

An alternative supramolecular protocell environment may be a hydrogel.  Supramolecular 

mimetic hydrogels are two-component colloidal systems made up of a network of gelator 

molecules that form nanoscale fibres through weak, non-covalent, intermolecular 

interactions, that become entangled and trap the bulk solvent usually due to some sort of 

physical change (i.e. temperature, pH).  In the case of hydrogels the solvent is water, and 
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in this case hydrogen bonds between gelator molecules tend to be less prevalent and the 

spontaneous nano-fibre assembly often relies more on the hydrophobic effect.  A gel 

possesses characteristics of both a solid and a liquid as it retains a fixed shape which is 

usually demonstrated by inverting the gel sample with the gel being observed to hold its 

form, whilst the liquid molecules within the gel, although mobile on the molecular scale, do 

not exhibit the ability to flow on the experimental timescale.  A gel can be considered to be 

made up of a primary structure, the “molecular recognition aggregate”, which is the way in 

which the monomers assemble – usually as a nanofibril aggregate.135 The secondary 

structure can be defined as the morphology in which the fibres assemble further into 

nanofibres.  The tertiary structure is then the interaction of these fibres to yield a 3-D 

microscale network.  This is summarised in Figure 4.2. 

 

 

Figure 4.2. Primary, secondary and tertiary structure of a self-assembled gel. 

 

Over the last 20 years a lot of advances have been made in the area of hydrogels with a lot 

of the research focusing around enzyme mimics, involving long chain peptides.  For the 

purpose of this chapter, a brief introduction into plausible “prebiotic” hydrogels will be given.  

For more detailed reviews of hydrogels in general please see references 136 and 137.136,137  

A number of hydrogelators involving amino acids rely on large aromatic groups, such as the 

Fmoc protecting group (Figure 4.3, compound 201), for gelation.  The aromatic groups 
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provide key π-π stacking interactions to help order the monomers into fibres.  However, the 

Fmoc group cannot be considered prebiotic.  Compounds 196 and 197 (Figure 4.3) are 

bolaamphiles with polar head groups at either end of a non-polar hydrophobic chain.  This 

allows the monomers to stack up one on top of each other with hydrogen bonding 

dominating between the polar regions and hydrophobic interactions between the greasy 

alkyl chains.  The prebiotic nature of these peptides is up for debate and, for example 196, 

would have been formed from a diacid and two molecules of glutamic acid.   

 

Figure 4.3. Previously reported peptide-based hydrogelators. 

 

Perhaps gelators such as 198 and 199, composed of a long alkyl chain connected to a 

peptide core, are more prebiotically relevant.  In the case of 199 a simple dipeptide is 

connected to a long alkyl chain via an amide bond.  This molecules can form hydrogels in 

water, a big driving force of this being the need to minimize the number of interactions 

between the hydrophobic tails and the aqueous solvent.138  Compound 198 has been used 
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as a catalyst in the aldol reaction of cyclohexanone and para-nitrobenzaldehyde in excellent 

yields and selectivities albeit using an organic solvent to dissolve the starting materials.139 

Monomer 200 is a good prebiotic hydrogel candidate consisting of only two amino acids.  

However, Feng et al. reported that, although the monomer can form a gel in water, it is very 

unreliable and would usually precipitate out of solution.140 

 

Studies are now moving towards combining supramolecular chemistries to design protocell 

systems that demonstrate compartmentalization within a membrane.  The pioneering work 

of Sapara et al showed an aqueous droplet could be stabilized in an oil/lipid mixture, all 

encapsulated within an agarose hydrogel.141 

 

There are many similarities between hydrogels and cells, in fact the cytoplasm itself can be 

considered to be a gel.142  Therefore on the early Earth, it is possible to speculate that, 

before primitive cells developed membranes there could have been isolated gel-like objects.  

Other similarities of primitive cells and hydrogels include:143 

 

 The ability to retain integrity even in the absence of a membrane. 

 Some control over what enters and exits via solute exclusion; for example, if the 

molecule is too large it will not be able to enter the matrix or will become trapped. 

 Capability to do “work” within it through small changes in environment that can lead 

to phase transitions. 

 A closed environment which holds everything in close proximity, enabling 

metabolites from organelles in cells as little distance as possible to travel whilst still 

being isolated from one another. 
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In this concept starting material could represent “food” entering the protocell, a chemical 

reaction could then take place within the gel and then the subsequent products or 

“waste” removed (Figure 4.4).  The next aim of the research project was to apply this 

concept to the formation of 2-deoxy-D-ribose as a possible pre-metabolic pathway. 

 

 

Figure 4.4. Comparison of a chemical reaction taking place in a mammalian cell and a hydrogel. 

 

 

4.2. Proof of concept using agarose 

Before investing time in designing and creating gelator candidates that look prebiotically 

plausible, the theory of using gels as containers for the aldol reaction to take place was 

tested.  The commercially available, but non-prebiotic, gelator agarose was chosen (Figure 

4.6).  Agarose is a polysaccharide well documented in the literature for its gelation 

chemistry.144,145,146  Agarose itself, should not catalyse the aldol reaction thus it is necessary 

to encapsulate an active catalyst within the gel matrix.  Gelation of agarose is trivial and 

achieved by applying a simple heat-cool cycle.  A schematic for the gelation of agarose with 

L-Pro-OBn L-108 trapped inside the gel is shown in Figure 4.5.  Firstly water (1 mL) was 

added to the agarose powder (5 mg), which was then heated until a homogeneous solution 

formed.  This hot solution was transferred to a vial containing the catalyst L-108 (23 mg).  

The mixture was reheated then allowed to rest.  Once the vial had cooled below the Tgel 
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(temperature of gelation), the network of agarose fibres assembled around the solvent and 

catalyst and the gel was formed. 

 

 

 

Figure 4.5. Schematic to show the gelation for encapsulation of L-Pro-OBn L-108 in an agarose 

hydrogel gel. 

 

With the catalyst within the agarose gel the 2-deoxy-D-ribose D-130 forming experiment 

was then attempted.  The experimental set-up was the same as before with the two 

reagents, acetaldehyde 24 (1 mmol) and D-glyceraldehyde D-9 (1 mmol) dissolved in 3 mL 

of aqueous solvent.  The hydrogel was then carefully levered out of the vial it was formed 

in and into the reaction vessel with the reagents.  This set-up is shown in Figure 4.6. 
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Figure 4.6 Agarose gel reaction set-up. 

 

Due to the way the gel was added to the reaction, the hydrogel was in a number of pieces 

in the reaction vessel.  After stirring slowly for 24 hours the gel was filtered through a sinter, 

the filtrate concentrated in vacuo, and the sugar trapping process and purification were 

carried out as previously reported.  2-Deoxy-D-ribose D-146 was indeed formed but in a 

lower yield and similar dr compared with solution (See Table 4.1). 
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Entry Catalyst Solution 
or gel? 

pH Yield 
(%) 

Ratio 
(146:147) 

1 L-Pro-OBn Solution 7 2 1.8 : 1 
3 None Gel 7 0 - 
4 L-Pro-OBn Gel 7 1 1.5 : 1 

 

Table 4.1. Results of the 2-deoxy-D-ribose D-130 forming reaction comparing L-Pro-OBn in gel 

and solution to an agarose hydrogel. Ratios of 146:147 were calculated as usual from the 500 MHz 

1H NMR spectrum. 

 

The method of encapsulation of L-Pro-OBn L-108 within the agarose gel was next 

examined.   It was possible that heating the hot agarose solution with the catalyst inside 

may have hydrolysed the L-proline ester.  A summary of this investigation is shown in a flow 

chart in Figure 4.7.  Some important control experiments were conducted in an effort to 

develop a new method of gelation.  In the first set of conditions (Method 1) hot deionised 

water (1 mL) was poured onto L-Pro-OBn L-108 (23 mg) followed by subsequent heating 

of the mixture for 20 minutes – imitating the current gelation conditions but with no agarose 

present.  This was compared with Method 2, wherein hot deionised water (1 mL) was added 

to the same amount of L-Pro-OBn L-108 (23 mg) but this time instead of additional heating 

the mixture was shaken for 30 seconds. The solvent in both experiments was then removed 

in vacuo over 45 minutes with the temperature of the water bath set to 45 ºC.  Comparison 

of the 1H NMR spectra showed that 44 % of the ester was hydrolysed in Method 1 compared 

with 15 % in Method 2.  A further comparison with a control experiment involving removal 

of water (1 mL) from L-Pro-OBn L-108 (23 mg) at 45 ºC for 45 minutes by rotary evaporation 
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revealed that 15 % of the ester had been hydrolysed.  Therefore we could assign this 

proportion of hydrolysis as being due to the rotary evaporation conditions.  Therefore a true 

estimate of proline-ester hydrolysis during the gelation method is 29 % for Method 1 and 0 

% for Method 2. 

 

 

Figure 4.7. Three separate 1H NMR experiments for the hydrolysis of L-proline benzyl ester in the 

absence of the agarose gel. 

 

The 2-deoxy-D-ribose D-130 forming experiment was run again with gels prepared using 

Method 2.  The same d.r of 1.5:1 was obtained, in a similar yield to the previous examples.  

As the yields of products from both methods were approximately the same it could be 

possible that the hydrolysed L-proline present in gels prepared through Method 1 were also 

catalytically proficient.  To test this theory, agarose gel was prepared again, only 
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encapsulating 20 mol% of L-proline, and the assay was run as previously reported in pH 7 

buffer.  The pentose sugars were synthesised but in a yield of < 1%, with a similar d.r. of 

1.5:1. 

 

Having shown some evidence of L-proline catalysis in a gel the original solution phase 

reaction was run again with L-proline as the catalyst in pH 7 buffer.  L-Proline was indeed 

able to catalyse the formation of 2-deoxy-D-ribose D-130 in similar yields and drs to 

previous solution phase reactions (Table 4.2 Entry 2).  The same reaction was attempted 

in unbuffered water only a trace of the product was formed, interestingly with no selectivity 

for either diastereomer, this was probably the background reaction which did not occur via 

enamine catalysis and hence had no product selectivity.  The difference in reactivity may 

be due to L-proline changing the pH of unbuffered water leading to a higher concentration 

of the zwitterionic form of L-proline.  With the nitrogen protonated the catalyst is inactive 

and enamine formation cannot occur.  The yield is slightly better in solution than in the 

agarose gel possibly due to the catalyst being more accessible to the reagents in solution 

rather than trapped inside the gel. 

 

Entry Catalyst Solution or 
Gel? 

pH Yield  
(%) 

Ratio 
(146:147) 

1 L-proline gel 7 1 1.5:1 

2 L-proline solution 7 2 1.5:1 

3 L-proline solution unbuffered trace 1:1 

 

Table 4.2 Using L-proline as the catalyst for the aldol reaction. 
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4.3. Prebiotic protocells based on dipeptide amphiphile hydrogels 

The agarose gel experiments demonstrated that it was indeed possible to encapsulate 

amino acids and esters in a gel matrix and indicated that the aldol reaction could still occur 

in similar drs and yields to the reactions in solution.  The next step was to attempt the same 

reaction, the formation of 2-deoxy-D-ribose D-130, in a more prebiotically plausible 

hydrogel.  There are only a few examples of small, simple, hydrogel molecules that could 

credibly have existed on the early Earth.  However one recent example, by Escuder et al., 

which consisted of a dipeptide connected to a long alkyl chain via an amide bond was found 

to not only form a hydrogel but could successfully catalyse the aldol reaction of p-

nitrobenzaldehyde 62 with cyclohexanone 75 in excellent yields and drs when the reagents 

were added to the top of the gel predissolved in toluene.139  This molecule could be 

considered prebiotic as it consisted of just two amide bonds.  The catalysis stems from the 

free N-terminus of the L-proline residue (Gelator A, Figure 4.8) allowing the formation of 

the key enamine intermediate of the aldol reaction.  It was decided that this gelator would 

be synthesised and tested as a potential hydrogel catalyst in the 2-deoxy-D-ribose D-130 

forming reaction. As a control, a second non-catalytic gelator (Gelator B) with the amine 

site blocked by a methyl group, was also proposed.  However, it was then envisaged that 

catalysts, such as L-Pro-OBn L-108, could be trapped inside the gel network of B to provide 

a comparison to the agarose system.  This led to the proposal for two different types of 

catalytic gel (Figure 4.8) one in which the catalytic sites are an integral part of the nanofibres 

(Gelator A) and the other in which they are simply encapsulated within the gel (Gelator B). 
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Figure 4.8. The chemical structures of A and B and the resulting gel fibres they should form. 

 

Escuder’s synthetic approach to Gelator A was followed to give the product as a white 

powder.139  The synthesis involved the amide coupling of Z-L-valine 163 to dodecylamine 

202 followed by hydrogenation of the Cbz group.  This fragment, 204, was then coupled to 

L-Pro-OSuc 206 by heating in DME (1,2-dimethoxyethane), with succinimide acting as a 

good leaving group, to give the dipeptide product 207 in an excellent 99 % yield.  Standard 

Boc deprotection with TFA gave Gelator A.  Reductive amination of Gelator A with 

formaldehyde gave Gelator B in an excellent 99 % yield (Scheme 4.1).  Both Gelator A and 

Gelator B were obtained as white flowing powders. 
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Scheme 4.1. Synthesis of Gelators A and B. 

 

Gelation of gelator A was attempted first.  This gel has already been studied in previous 

papers.147  Gelation was attempted through a heat-cool cycle, however, gelation did not 

occur.  After several failed attempts a literature search revealed a recent publication by 

Escuder et al. that detailed the problems the group had encountered regarding the gelation 

of A.148  The paper discussed the factors affecting the gelation and gave a table of all the 

conditions the group attempted.  Unfortunately, in the paper, they only succeeded in gelling 

the hydrochloride salt of the Gelator A, and gelation only occurred in pH 8 buffer.  

Undeterred by this, a detailed investigation into the gelation of A was attempted taking into 
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account all of the variables that may affect gelation such as concentration of gelator, pH, 

sonication time and heating.  A selection of the results is shown in  

Table 4.3. 

 

Entry Solvent 
(mL) 

Mass of 
gelator (mg) 

pH Results 

1 2 2.5 8 Dispersion 

2 2 5.0 8 Dispersion 

3 2 8.4 8 Solid 

4 4 2.5 8 Dispersion 

5 4 5.0 8 Dispersion 

6 4 8.4 8 Weak Gel 

7 2 2.5 7 Dispersion 

8 2 5.0 7 Solid 

9 2 8.4 7 Solid 

10 4 2.5 7 Dispersion 

11 4 5.0 7 Solid 

12 4 8.4 7 Solid 

 

Table 4.3. A selection of the conditions used to attempt gelation of the HCl salt of Gelator A. 

 

Having had no success, and running out of gelator, a second batch of Gelator A was 

synthesised.  Gelation was successfully attempted in water with the free gelator molecule.  

(Gelator A (5 mg) in deionised water (1 mL)).  Previous attempts under these exact 

conditions had failed.  Escuder et al. elude to the fact that this molecule can form different 

polymorphs and that many of these polymorphs do not gel.148  Once a system has formed 

one polymorph it is difficult to convert it to another.  Possibly, this underpins the capricious 

nature of this particular gelator. 

 

The reaction was then conducted under two separate sets of conditions (Figure 4.9).  In 

condition 1, the same procedure as for the agarose gel was used in which the gel was 
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dispersed in the sample.  Again, this used a pH 7 buffer, but it was found after 24 hours the 

gel had completely broken apart to form a dispersion – small blobs of gel in the pH 7 

phosphate buffer, and the solution had changed colour as before from colourless to yellow.  

The second set of conditions, 2, removed any form of agitation from the assay and was 

inspired by the gel reactions of Escuder et al.  The experiment involved forming a gel 

between the gelator and water on a bigger scale than previously used and then adding the 

reagents; acetaldehyde 24 (1 mmol) and D-glyceraldehyde D-9 (1 mmol), in the minimum 

solvent (1 mL) to the top of the gel (15 mg in 3 mL water).  A larger volume of gel is used 

here to increase the surface area in contact between gel and reagents, hence to increase 

the rate of diffusion into and out of the gel.  The idea was that the reagent would diffuse into 

the gel, catalysis could then occur, and then the products diffuse back out into the 

phosphate buffer.  After 24 hours the phosphate buffer layer was decanted and the trapping 

and purification repeated as normal.  

 

 

Figure 4.9. The two sets of conditions used to catalyse the aldol reaction using Gelator A. 

24 D-9 
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Unfortunately, under either set of conditions, no pentose products were isolated in pH 7 

phosphate buffer or unbuffered water (Table 4.4).  It should be noted that in Escuder’s 

hands the aldol reaction carried out in Gelator A involved dissolving the reagents in toluene, 

as opposed to water.139,147  In Escuder’s case the aldol reaction may be occurring at the 

surface of the gel where both reagents are in their favoured organic solvent.  In this work 

no organic solvents were used. 

 

Entry Conditions Gelator 
(%) 

Vol of water 
in gel (mL) 

pH Yield 
(%) 

1 1 4 3 7 0 
2 2 4 3 7 0 
3 2 7 3 unbuffered 0 
4 2 20 8 7 0 
5 2 20 8 unbuffered 0 
6 Solid 

gelator 
20 - 7 0 

 

Table 4.4. Conditions used for the 2-deoxy-D-ribose D-130 forming reaction using Gelator A as the 

catalyst. Conditions 1 and 2 refer to the gel set-ups shown in Figure 4.9. 

 

One explanation for the failure of entries 1 and 2 is the catalyst loading.  In the solution 20 

mol % of catalyst was used compared to just 4 mol % in the gel examples.  The gelation 

was therefore attempted at higher loadings, however, this proved very difficult.  The gelator 

was very insoluble in water and needed to be heated above 100 ºC for the compound to 

dissolve.  Upon leaving the hot solution to cool the compound would usually fall out of 

solution as a precipitate rather than gel.  Even in entries 4 and 5 (Table 4.4) in 8 mL of 

water it was possible to force gelation to occur at higher loadings but not with the entire 20 

ml % of compound; there were still clumps of white solid around the edges of the gel (Figure 

4.10 A).  Therefore the gel still did not contain the full 20 mol% of the catalyst.  In some 
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cases, after 24 hours, the gel had completely broken down (Figure 4.10 B(ii)) which again 

shows how unpredictable this gelator was.  Finally, entry 6 used the powdered gelator and 

was stirred for 5 days in pH 7 buffer with one equivalent of each starting material and also 

gave no product. We can conclude from this study that gelator A does not catalyse the 

reaction. 

 

Figure 4.10 (A) Attempted gelation of Gelator A – not all of the gelator actually gels. (B) Shows the 

gelation reactions after 24 hours with (i) gelator B and (ii) gelator A. 

 

Gelation of B was carried out by adding L-proline L-58 (23 mg) (20 mol % in the aldol 

reaction) to Gelator B (15 mg) in deionized water (1 mL).  Method 2 (Figure 4.7) gelation 

conditions were applied to give an opaque white gel upon resting (Figure 4.10A).  Transition 

electron microscopy (TEM) images were obtained for Gel A and B.  The images (Figure 

4.11) show both gels consisted of similar disordered fibrous networks.  The similarity of 

these networks shows that the free N-H of the L-proline residue in Gel A cannot be very 

important in terms of forming non-covalent interactions responsible for self-assembly of the 

gel nanostructure.  This was a positive feature, as if this amine formed a vital interaction, 

such as a hydrogen bond within the gel network, the gel would weaken, and possibly fall 

apart during enamine formation and reaction catalysis. 

A B (i) (ii) 
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Figure 4.11. (A) TEM image of Gel A. Scale bar = 20μm.  (B) TEM image of Gel B. Scale bar = 2 

μm. 

 

Escuder et al. postulate that the gel fibres ordered themselves with the long alkyl chains 

stacked on top of each other forming many weak hydrophobic interactions.139  The 

hydrophilic head components were believed to orient at alternate ends, keeping the 

hydrophobic tails as protected as possible from the water solvent in an interdigitated bilayer 

assembly mode.  The group also suggested key hydrogen bond interactions between amide 

groups may have helped strengthen the interactions between residues (Figure 4.12).139 

A 

B 
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Figure 4.12. Proposed interactions of Gelator A by Escuder et al.139 

 

To determine whether the L-proline L-58 inside the novel gel was trapped within the gel 

fibres or directly bound to the gel fibres 1H NMR experiments were conducted.  The gel was 

formed again in an NMR tube using D2O instead of water and spiked with a known amount 

of DMSO.  If the catalyst was directly bound to the gel fibres there would have been no 

NMR signal for proline, or for the gelator in the 1H NMR spectrum, as both would be 

immobile on the NMR timescale.  The amount of L-proline L-58 bound to the gel fibres could 

be calculated due to the known amount of DMSO added to the sample which was mobile 

within the gel nanostructure and hence visible.  The 1H NMR spectrum revealed the 

presence of L-proline L-58 (Figure 4.13).  Integration of the proline additive peak compared 

with the DMSO peak revealed 90% of L-proline was mobile within the gel.  This showed 

that L-proline L-58 is not to any great extent involved in the solid-like self-assembled gel 

network. 
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Figure 4.13. The 1H NMR spectrum of the gel containing L-proline L-58.  As the 1H NMR of L-

proline is visible, it is not bound to the gel fibres. 

 

Before attempting the 2-deoxy-D-ribose D-130 forming reaction with Gelator B, a blank gel 

control was attempted where no L-proline L-58 was added.  This revealed that the gel was 

indeed catalytically inactive and no 2-deoxy-D-ribose D-130 nor its diastereomer D-131 

were formed.  The reaction was then attempted gain, with L-proline L-58 (20 mol %), using 

conditions 1 and 2 (Figure 4.9).  The desired product was indeed formed (Table 4.5).  The 

reactions were repeated with unbuffered water and no product was observed. 

 

Entry Gel 
conditions 

pH Yield 
(%) 

Ratio 
(146:147) 

1 1 7 < 2 1.5 : 1 
2 2 7 < 1 1.5 : 1 
3 1 Unbuffered 0 - 
4 2 Unbuffered 0 - 

 

Table 4.5. Reactions using Gelator B containing 20 mol % of L-proline.  Each entry is based on 3 

runs and an average of the three has been taken.  Conditions A and B refer to Figure 4.9. 
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In the case of condition 2 (Entry 2), the gel changed colour from white to yellow over the 

course of the reaction.  The yield was lower using condition 2 but this was probably because 

only the solvent layer was decanted off and further product may be expected to have been 

trapped within the gel fibres.  The ratio and yield of the reactions were the same as using 

L-proline in solution at pH 7 therefore it can be deduced that Gel B does not influence yield 

or selectivity.  One possible explanation for the similarity in results is that the catalyst 

leaches out of the gel into solution.  This theory was easy to test with Gelator B.  A control 

experiment was set up where L-proline (10 mg) was dissolved in D2O (0.6 mL) containing 

DMSO (1.2 μL).  The 1H NMR is shown in Figure 4.14 below.  The ratio between the α-

proton of L-proline and the DMSO signal was 1.0:1.09 (Figure 4.14).  A gel containing 

Gelator B (15 mg), water (3 mL) and L-proline L-58 (23 mg) was made and water (1 mL) 

placed on top of the gel.  These conditions are identical to condition 2 (minus the reagents).  

After 24 hours the water layer was pipetted off, the solvent removed in vacuo and replaced 

with D2O (0.6 mL) containing DMSO (1.2 μL).  If 100 % leaching had occurred a ratio 

between the α-proton of L-proline and DMSO to be 1.0:0.47 would be expected, however, 

it was found to be 1.0:3.11 (Figure 4.15).  This means only 15 % of L-proline had leached 

into the water layer.  Therefore even though leaching was occurring in the gels it was of 

such a small amount that catalysis by L-proline inside the gel must be contributing to the 

synthesis of pentose sugars. 
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Figure 4.14. 1H NMR spectrum of control experiment comparing ratios of a known amount of L-

proline and DMSO. 

 

 

Figure 4.15. 1H NMR spectrum of the leaching experiment.  After 24 hours a ratio of α-proton of L-

proline : DMSO was 1 : 3.11. 
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In an attempt to induce catalysis of the 2-deoxy-D-ribose D-130 forming reaction on the gel 

fibres themselves, a third dipeptide hydrogel was constructed, Gelator C, containing L-

proline L-58 and L-phenylalanine.  It was hypothesised that with the addition of the aromatic 

rings of L-phenylalanine the gelation process would be much more reliable due to π-π 

stacking interactions between phenyl rings.  Indeed this seemed to be the case, and 

gelation of Gelator C occurred instantly after a heat-cool cycle. The synthesis of L-proline-

L-phenylalanine dodecylamide (Gelator C) was carried out as for Gelator A (Scheme 4.1).  

TEM images (Figure 4.16) showed the fibril network formed by Gelator C.  As with Gelators 

A and B, Gelator C formed an opaque hydrogel in deionized water, the gelation being 

significantly more reliable than that of A.  The 2-deoxy-D-ribose D-130 forming reaction was 

attempt using a 20 mol % loading, as before, however, Gelator C failed to catalyse the aldol 

reaction.  

 

  

Figure 4.16. TEM images of Gelator C. Scale bars = (A) 2 μm (B) 5 μm. 

 

As neither gel A nor C could catalyse the aldol reaction the problem may lie with the nature 

of the amino acids.  Both L-valine and L-phenylalanine contain sterically bulky, hydrophobic 

amino acids.  It could be suggested that the R-groups block or repel the hydrophilic starting 

A B 
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material from getting close enough to the amine of the L-proline residue for enamine 

catalysis to occur.  Phenylalanine and valine are both classed as relatively hydrophobic 

amino acids with kd values of 4.2 and 2.8 respectively, based on Kyte and Doolittle’s scale 

of hydrophobicity.149 If this is the case switching amino acid residues to more hydrophilic 

residues, providing gel formation occurs, such as lysine or arginine may facilitate enamine 

formation.  

 

4.4. Conclusions 

In conclusion, in this chapter vesicles and hydrogels have been discussed as potential 

primitive cells.  The hydrogel model implemented, based on that reported by Escuder et al., 

consisted of plausibly prebiotic dipeptide hydrogels with long alkyl chains connected by an 

amide bond.  The two distinct regions; a hydrophilic and hydrophobic region, allow the 

monomers to gel. Catalysis of 2-deoxy-D-ribose D-130 formation has been shown to occur 

provided the catalyst is trapped within a catalytically inactive gel.  Attempts to use the 

hydrogel network itself as the catalyst has proven unsuccessful thus far.  The reason for 

this could have been the hydrophobic nature of the amino acids used in the dipeptide chain.  

This may have resulted in the hydrophilic D-glyceraldehyde D-9 being repelled from the 

imine site preventing the electrophile from getting close enough for the enamine to attack.  

In order to succeed in the gel promoted catalysis of 2-deoxy-D-ribose D-130 more 

hydrophilic amino acids, such as arginine and lysine, should be used in place of valine.  

These amino acids would have the added benefit of another amine functional group for a 

second potential site of catalysis. 
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5. Further investigations into hydrogel catalysis 

 

5.1. A tripeptide hydrogel candidate 

Chapter 4 detailed the degree of success in using Gelator B as a non-catalytic gel within 

which starting material and catalyst could be mixed together carry out the aldol reaction to 

form 2-deoxy-D-ribose D-130.  Unfortunately attempts to use catalytically active gel fibres 

to catalyse the reaction had failed.  This chapter concerns further efforts to develop a 

catalytically active “prebiotic protocell” environment for the 2-deoxy-D-ribose D-130 forming 

reaction. 

 

Continuing the theme of small peptide gelators, a study was published in 2015 by Frederix 

et al. detailing an extensive computational investigation of the gelling potential of a wide 

range of tripeptide molecules based on a number of criteria.150  The highest scoring 

tripeptides were then synthesised and their gelling ability tested.  The lead candidate from 

this study was NH2-L-lysine-L-tyrosine-L-phenyalanine-OH (K-Y-F) with the authors 

suggesting that the π-stacking ability of the tyrosine and phenylalanine aromatic rings plays 

a large part in enabling gelation.  From a prebiotic perspective tripeptides, with just two 

amide linkages, are plausible prebiotic molecules on the early Earth.151  K-Y-F also 

contained two primary amines on the lysine residue and hence two potential catalytic sites.  

 

The synthesis of K-Y-F was carried out via solid phase peptide synthesis (SPPS).  This 

method had the benefit of growing the peptide chain on resin by attaching an Fmoc-

protected amino acid to the resin followed by deptrotection of the Fmoc-group using a 20 

% solution of piperidine in DMF.  This procedure could be repeated to rapidly build up the 

peptide chain, with the key benefit of simplicity of purification.  As the peptide remains bound 
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to the resin beads, purification could be achieved through washing with copious amounts of 

solvent after each synthetic step.  For the synthesis of K-Y-F, commercially available 

chlorotrityl resin was used as the resin of choice.  The peptide was easily cleaved from the 

resin in the final step of the reaction using a strong acid such as TFA.  This allowed for 

deprotection of the t-butyl group on tyrosine and cleavage to occur in the same step. A 

standard solution of 95:5:5 TFA : DCM : TIPS was used for cleavage from resin, and the 

peptide product was filtered into ice cold ether where upon the peptide precipitated out of 

solution as a white powder.  The synthesis of the tripeptide is shown in Scheme 5.1 below 

and the mechanism of cleavage and deprotection is shown in Scheme 5.2. 

 

 

Scheme 5.1. Solid phase peptide synthesis of the tripeptide K-Y-F. 
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Scheme 5.2. Dual usage of TFA for t-butyl deprotection and cleavage from chlorotrityl resin. 

 

As the tripeptide had various ionisable groups the pKa of each group needed to be 

investigated to determine whether at approximately pH 7 either of the lysine N-termini would 

be in the neutral non-protonated “NH2” form and thus able to act as possible catalytic sites 

for the 2-deoxy-D-ribose D-130 forming reaction.  A pH titration was therefore carried out 

using KYF (10 mg) in 12mM NaOH (5 mL).  This was titrated against 0.01 mM HCl and the 

resulting graph of volume of acid added vs pH is shown Figure 5.1. 

(A) Cleavage from chlorotrityl resin 

(B) Cleavage of t-butyl protecting group. 
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Figure 5.1. A pH titration curve of 10 mg of K-Y-F in 12 mM NaOH titrated with 0.01 mM HCl at a 

rate of 0.1 M per min. 

 

Four ionisable groups were expected from K-Y-F; the C-terminus, the two NH2 groups and 

the tyrosine OH.  This is summarised in Figure 5.2 below.  The initial phase of the titration 

was difficult to interpret with no distinct vertical drops in pH.  In this region, between 0 and 

1 mL of acid added, the protonation events of the lysine R group and the tyrosine R group 

occur with relatively similar pKa values.  The next protonation event occured at the N-

terminus which, from the graph, has a pKa of approximately 7.  The final protonation event 

was the protonation of the carboxylate anion represented by the steep drop in pH after the 

addition of approximately 1.8 mL of acid which corresponds to a pKa of around 2.  From this 

data it was proposed that if the gelation conditions were around pH 7 then there should be 

at least one NH2 in the neutral state with the potential to carry out enamine catalysis. 
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Figure 5.2. Protonation events of KYF with increasing acidity. 

 

Gelation of K-Y-F was attempted, as described in the Frederix et al. paper, via a method of 

gelation known as pH switching150, unlike previous gels formed in Chapter 8 where an 

insoluble solid was heated in a solvent until homogeneous and gel formation occurred upon 

cooling. Tripeptide K-Y-F dissolved readily in pH 7 phosphate buffer, where gelation did not 

occur. Dropwise addition of 0.1M sodium hydroxide to this solution caused instant gelation.  

Gelation occurred so quickly that if the sodium hydroxide was applied directly to the surface 

of the solution, gelation would only take place on the surface creating a layer of hydrogel 

with free-flowing solvent trapped underneath (Figure 5.3 B).  In order to achieve full gelation 

of the solution, simultaneous addition of both the gelator in pH7 buffer and 0.1M sodium 

hydroxide was attempted which created a more uniform, translucent gel (Figure 5.3 A).  

Gelation of K-Y-F, therefore, occurred in basic conditions but not at pH 7. 
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Figure 5.3. (A) Gelation of K-Y-F via simultaneous addition of K-Y-F in pH 7 buffer and 0.1M NaOH 

solution. (B) Gelation of K-Y-F by addition of 0.1M NaOH solution into a solution of K-Y-F in pH 7 

phosphate buffer. (C) K-Y-F hydrogel immediately after addition of starting materials to surface of 

gel.  (D) K-Y-F no longer a hydrogel after 1 minute since addition of starting materials. 

 

Unfortunately due to the sensitivity of the hydrogel to pH change, the gel broke down within 

one minute of adding the reagents (acetaldehyde 24 and D-glyceraldehyde D-9) in the 

minimum amount of solvent (0.1 mL) to the surface of the gel (Figure 5.3 C and D).  This 

is probably because the polar reagents interacting with the gelator disturbing key 

interactions between gelator monomers causing the gel to collapse, or lowering the pH of 

the gel and hence reversing the gelation process.  It appeared that the reaction was actually 

catalysing a trace amount of 2-deoxy-D-ribose D-130 formation, however upon completing 

a control experiment with just sodium hydroxide and no gelator, we saw that the same level 

of catalysis occurred indicating that the sodium hydroxide base was catalysing the formation 

of the trace amounts of product and not the tripeptide.  A possible reason for the failure of 

the reaction could be the amount of gelator used.  Only experiments using up to 10 % 

gelator were used.  This is because 0.1 mmol (10 % catalyst loading) was the equivalent of 

40 mg and it was impractical to gelate the usual 0.2 mmol (80 mg) in 3 mL solvent.   
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5.2. Supramolecular structures of a tripeptide amide 

During the project Escuder et al. published a demonstrating som e tripeptide hydrogelators 

as catalysts in aldol reactions.152  These gelators had 12 carbon chains attached by an 

amide bond to the C-terminus of a tripeptide.  This seemed like a logical progression from 

the tripeptide K-Y-F candidate and so the synthesis of these molecules was conducted.  

The first candidate; L-proline-L-glutamic acid-L-phenylalanine dodecylamide 210 (P-E-F 

dodecylamide) (Scheme 5.3) was synthesised by a mixture of solid phase and solution 

phase peptide synthesis.  Firstly, the tripeptide fragment was made, as in the case of K-Y-

F, by using commercially available chlorotrityl resin preloaded with Fmoc-phenylalanine 

using a series of deprotections and couplings (Scheme 5.3).  The next step was to remove 

the tripeptide from the resin.  This time instead of using TFA, which would also remove the 

t-butyl protecting group of glutamic acid and the Boc group of proline, hexafluoroisopropanol 

(HFIP) was used.  HFIP is a much milder acid than TFA with a pKa of 9.8 (compared to -0.3 

for TFA) and therefore was only strong enough to cleave the tripeptide from the resin leaving 

the protecting groups intact.  Purification of the tripeptide was the same as for K-Y-F 

obtaining the compound 208 as a white solid.  The final stage of the synthesis was to attach 

dodecylamine to the peptide C-terminus.  Amide coupling was carried out, as before, using 

ethyl chloroformate to form an anhydride and then subsequent attack with dodecylamine to 

give 209.  This was a rather low yielding step (52 %) due to the difficulty of forming the 

anhydride, with the rest of the starting material recovered.  The final step, double 

deprotection with TFA, gave the desired product as the TFA salt 210. 
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Scheme 5.3. Synthesis of P-E-F dodecylamide 210. 

 

With the hydrogelator candidate in hand a series of gelation experiments were conducted 

varying the mass of gelator, volume of solvent and pH of solvent.  The results of these 

attempts are shown in Table 5.1.  Unfortunately it was not possible to form gels with 210 in 

aqueous media.  At this point Escuder et al. published their gel studies and also found that 
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P-E-F dodecylamide 210 did not gel, but instead formed an opaque solution in phosphate 

buffer.152   

 

Entry Mass 
(mg) 

Volume of 
solvent (mL) 

Solvent Result 

1 10 mg 1 Water Upon heating compound dissolved 
to give a colourless solution 
 

2 20 mg 1 Water Upon heating compound dissolved 
to give a colourless solution 
 

3 10 mg 1 pH 7 
phosphate 

Upon heating compound dissolved.  
Upon cooling gave an opaque 
solution 
 

4 10 mg 2 pH 7 
phosphate 

Upon cooling compound dropped 
out of solution as a white precipitate. 
 

5 10 mg 1 pH 8 
phosphate 

Upon cooling compound dropped 
out of solution as a white precipitate. 
 

6 2.8 mg 1 pH 7 
phosphate 

Upon heating compound dissolved.  
Upon cooling gave an opaque 
solution, eventually solid precipitated 
out. 
 

7 2.8 mg 0.5 pH 7 
phosphate 

Upon heating compound dissolved.  
Upon cooling gave an opaque 
solution, eventually solid precipitated 
out. 

 

Table 5.1. Gelation attempts of P-E-F dodecylamide 210. 

 

Interestingly, in Entries 1 and 2, when deionised water was used as the solvent the TFA 

peptide salt dissolves readily, with 20 mg of the compound dissolving in 1 mL of water.  As 

gelation was not occurring an investigation into possible supramolecular structure 

alternatives was conducted.   
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5.3. Evidence of Micelle Aggregation 

It is a logical hypothesis that P-E-F dodecylamide 210 molecules could arrange themselves 

in aqueous media to form self-assembled micellar structures.  The amide consists of two 

distinctly different sections; a hydrophilic “water-loving” section made up of the amino acid 

residues and a hydrophobic “water-hating” greasy dodecyl tail.  In aqueous medium the 

monomers would arrange in such a way as to minimise the number of interactions between 

the aqueous solvent and the hydrophobic section of the molecule.  One way to achieve this 

is to form a micelle with all of the polar heads pointing out at the solvent as shown in Figure 

5.4. 

 

 

Figure 5.4. Likening of P-E-F dodecylamide 210 to an amphiphile and possible arrangement to a 

micelle in aqueous medium. 
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To probe this hypothesis Dynamic Light Scattering (DLS) was initially used.  This is a light 

scattering technique used to measure the size of supramolecular structures from proteins 

and polymers to micelles and colloids.  In simple terms, a sample, in solution, is illuminated 

with a laser beam and the fluctuations of the scattered light are detected at a specific angle, 

the scattering angle.  This technique can be used to measure structures with diameters as 

small as 1 nm. The results of the experiment are depicted as two different distribution charts.  

The intensity distribution (Figure 5.5) is absolute and measures the amount of light 

scattering.  In this case the largest intensity is around 53 nm.  However, this was not a true 

reflection of the sample as any larger supramolecular structures scatter more light and 

hence will have a greater intensity.  The second chart (Figure 5.6) shows the volume 

distribution which takes the scattering of larger structures into account to give a 

representation of how much of each structure is in the sample.  In this case a maximum 

intensity at around 6 nm was seen with a small shoulder showing a limited number of larger 

supramolecular structures. 

 

 

Figure 5.5. Size distribution by intensity graph created from DLS experiments of P-E-F 

dodecylamide 210 in deionised water.  This graph is based on 5 runs of the experiment. 
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Figure 5.6. Size distribution by volume graph created from DLS experiments of P-E-F 

dodecylamide 210 in deionised water.  This graph is based on 5 runs of the experiment. 

 

The average diameter of 6 nm shown in Figure 5.6 is a good fit for the P-E-F dodecylamide 

210 amphiphiles.  As a rough calculation, if we assumed each bond length takes up 

approximately 0.1 nm of space then the distance from the end of the alkyl chain to the top 

of the L-proline residue would be 23 bonds.  As the diameter of the micelle includes two 

molecules this is 4.6 nm.  Factoring in the solvent shell of the micelle and extra space for 

inefficient packing, 6 nm seemed a reasonable diameter for micelle formation.  The peak at 

larger diameter in the size distribution (Figure 5.5) could arise from larger supramolecular 

structures.  For example, it could be that in solution some cylindrical gel fibres form, however 

this was not the dominant supramolecular structure and hence gelation of the solvent did 

not occur but some long cylindrical fibres may have existed (Figure 5.7).  The ratio of these 

structures would also be expected to depend on concentration. 
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Figure 5.7. Different supramolecular structures and their link between increasing hydrophobicity 

and increasing interior volume. 

 

In order to gain more evidence for formation of self-assembled nanostructures, a Nile Red 

211 (Figure 5.8) encapsulation assay was performed.  This technique has been widely used 

previously by other groups to determine the critical aggregation concentration of 

amphiphiles in aqueous medium – that is the concentration at which amphiphiles 

spontaneously self-assemble to form micelles.153,154  Nile Red 211 is an uncharged 

heterocycle, the fluorescence of which depends on its environment.  In an aqueous, 

hydrophilic, environment the fluorescence is quenched.  In a hydrophobic environment, 

such as the interior of a micelle the fluorescence is enhanced at 635 nm.  Therefore by 

mixing with various concentrations of the monomer in aqueous solution allows 

determination of the concentration in which micelle aggregation takes place. 
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  Figure 5.8. Nile Red 211. 

 

The encapsulation study used phosphate buffered saline (PBS) at pH 7.5 as the aqueous 

medium.  A starting stock solution containing 210 was made and aliquots of this were taken 

and diluted to known concentrations.  Nile Red 211 (1 μL) was dissolved in ethanol (2.5 

mM) and added to the solution of 210 and the fluorescence intensity at 635 nm measured.  

This assay was performed over a range of P-E-F dodecylamide 210 concentrations and a 

plot of the log of the concentration against absorbance was constructed and the critical 

micelle concentration (CMC) determined as the point of inflection.  This is the point at which 

micelles starting forming, encapsulating Nile Red 211, and hence increasing the 

fluorescence intensity observed. (Figure 5.9).  The grey point on the graph was omitted 

from both trend lines as this was the point with maximum curvature; including this in either 

trend line would alter the CMC by approximately 5 μM.  By solving the simultaneous 

equations of the two tend lines the CMC was determined as 27 μM ± 2 μM.  The relatively 

small value showed that P-E-F dodecylamide 210 could efficiently aggregate and forms 

micelles in aqueous media.  
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Figure 5.9. CMC plot of Nile Red 211 assay using P-E-F dodecylamide 210.  The CMC is 

determined as the point of inflection. 

 

The final piece of evidence for micelle formation came from transition electron microscopy 

(TEM) imaging. P-E-F dodecylamide 210 (0.75 mg) was dissolved in deionised water (1 

mL).  The sample was dried and then exposed to uranyl acetate as a means of negative 

staining, and TEM images were taken (Figure 5.10).  Figure 5.10A shows multiple dark 

regions indicating that a supramolecular structure had been stained.  Figure 5.10B shows 

a zoomed in image of one of these structures.  These shapes are larger than the diameter 

of the micelles calculated from DLS and it was assumed that the drying procedure had 

caused the micelles to clump together into large conglomerates. Therefore the size shown 

by the scale bars in Figure 5.10 does not reflect the true diameter of the micelles.  Careful 

inspection of these agglomerates does suggest some sub-structuring consistent with this 

view.  
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Figure 5.10. (A) TEM image of PEF-amide 210 in water at a concentration of 0.75 mg/mL stained 

with uranyl acetate.  Scale bar is 500 μm. (B) A zoomed in version of the TEM image, the scale bar 

is 100 μm. 

 

With evidence to support the view that P-E-F dodecylamide 210 spontaneously forms 

micelles in aqueous solution, the next step was to test if these micelles could catalyse the 

formation of 2-deoxy-D-ribose D-130 from D-glyceraldehyde D-9 and acetaldehyde 24.  The 

reaction was performed as usual but the catalyst was replaced with P-E-F dodecylamide 

210.  Due to the large molecular weight of the hydrochloride salt (595 g / mol), only a 10 % 

catalyst loading was used.  This was equivalent to 60 mg of 210, well above the CMC.  

Following 5 minutes of sonication the majority of the salt dissolved in deionised water (3 

mL).  The reagents were added to the saturated peptidic solution and the reaction stirred 

slowly for 24 hours.  At the end of the experiment the reaction vessel contained an opaque 

orange mixture.  The trapping and purification procedures were carried out as usual but 

unfortunately no product was found.   The reason for this may simply be that 10 % catalyst 

loading was not sufficient to promote the reaction after 24 hours or possibly the proline 

residue was protonated in the deionised water medium preventing formation of the crucial 

imine intermediate, or the site of catalysis may have been sterically blocked by the 

neighbouring R-group of glutamic acid. 

 

 

A B 
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5.4. Changing the amino acid sequence 

At the time of the micelle work, Escuder et al. did show that reversing the glutamic acid and 

phenylalanine residues, to give P-F-E-dodecylamide 216, did form a gel network in pH 7 

buffer.  In an attempt to replicate this, 216 was synthesised.  One limitation of solid phase 

synthesis was the difficulties in scalability to gram quantities with the equipment at hand 

and so a solution phase approach was used instead.  This is shown in Scheme 5.4. 

 

 

Scheme 5.4. Solution phase synthesis of P-F-E dodecylamide 216. 
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The synthesis of P-F-E dodecylamide involved simple repetition of amide coupling and 

deprotection.  For the amide coupling steps ethyl chloroformate was used to form the 

reactive anhydride intermediate.  Each of the steps of the synthesis was high yielding and 

900 mg of the Boc-protected tripeptide amide 215 was made with ease. 

 

When attempting the gelation of 216 a range of conditions were used, varying aqueous 

media (pH 7 buffer and water), mass of gelator and volume of solvent. Unfortunately 

gelation was not possible under any of these conditions.  A pH titration was carried out 

(Figure 5.11) using the same conditions as Escuder et al. who reported pKa values of 9.72 

and 6.85 compared to the experimental values here of approximately 10 and 7 which 

showed no noticeable difference in pKa values.152  It could be that, in the laboratory, a 

different polymorph of the product had formed which did not favour gelation.  This would 

have some precedent as previously noted in a key paper by Escuder.148  The synthesis of 

216 was towards the end of the project and due to lack of time this synthesis was unable to 

be repeated. 



149 
 

 

Figure 5.11. A pH titration curve of 10 mg of PFE-amide 216 in 12 mM NaOH titrated with 0.01 mM 

HCl at a rate of 0.1 M per min. 

 

 

5.5. Single amino amides for supramolecular catalysis 

Whilst attempting the gelation of the tripeptide compounds a serendipitous gelation 

discovery was unearthed.  Three simple amino amides were found to spontaneously 

assemble into supramolecular structures.  The benefit of these systems is that a 20 mol % 

catalyst loading (for the 2-deoxy-D-ribose-forming reaction) could be achieved with a much 

smaller mass of compound, compared to the tripeptide candidates.  Table 9.2 summarises 

the supramolecular properties of L-phenylalanine dodecylamide 217, L-valine 

dodecylamide 218 and L-proline dodecylamide 219. 
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Species Mass 
(mg) 

mmol Vol of water 
(mL) 

Structure 

217 33 mg 0.1 3 mL Opaque gel 

218 30 mg 0.1 3 mL Opaque Gel 

219 56 mg 0.2 3 mL Micelle 
aggregates 

 

Table 5.2. Overview of monopeptidic amides and their supramolecular structures in deionised 

water. 

 

The gelation of 217 and 218 was originally attempted with 0.2 mmol of gelator and 3 mL of 

water, as this would be the ideal conditions to directly test the catalytic ability of 217 and 

218 against the previous conditions used in the 2-deoxy-D-ribose D-130 forming reaction.  

Gelation was attempted using a cycle of heating, sonicating and cooling.  A concentration 

of 0.2 mmol in water (3 mL) proved too concentrated and all of the material could not be 

dissolved.  Also upon cooling 217 and 118 would precipitate out of solution very quickly and 

so gel fibres did not have time to form.  Successful gelation occurred at 0.1 mmol of gelator 

in solvent (3 mL) through a continuous heating, sonicating, cooling and resting cycle that 

could take anywhere between 1 and 7 cycles for gelation to occur.  Figure 5.12A shows 

182 (33 mg) gelled in deionised water (3 mL).  Figure 5.12B is the TEM image of the gelled 

structure.  This TEM image showed that the gel looked rather crystalline with larger micron 

sized aggregates.  As such the gel may be more microcrystalline in nature than true nano-

gels. 
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Figure 5.12 (A) L-Phenylalanine-dodecylamide 217 gelled in deionised water and (B) The TEM 

image of the gel, scale bar = 20 μm. 

 

 

Figure 5.13A shows the many attempts to gelate 217 at various concentrations in deionised 

water.  Compound 217 formed an opaque gel that was particularly strong and sticky.  The 

TEM image of the gel (Figure 5.13B) showed the presence of gel fibres.  These fibres were 

particularly susceptible to the ion beam of the microscope; the fibres on the left hand side 

of the image look blurred as the ion beam had already destroyed them.  The fibres appeared 

significantly narrower than those of 217, although they were again relatively needle-like and 

crystalline in nature.  

 

The 2-deoxy-D-ribose D-130 forming reaction was attempted with both of these gels using 

Condition 2 from Chapter 8 i.e. the gel was made in deionised water (3 mL) and the 

reagents; acetaldehyde 24 (1 mmol) and D-glyceraldehyde D-9 (1 mmol) were dissolved in 

deionised water (1 mL) and added dropwise to the top of the gel.  Unfortunately, in both 

cases, within 5 minutes the gel broke down.  Figure 5.14 shows images of the reaction with 

the L-valine gel at various time points. 

 

A B 
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Figure 5.13 (A) L-Valine dodecylamide 218 gelation attempts in deionised water. (B) TEM image of 

gel, scale bar = 20 μm. 

 

 

 

Figure 5.14. L-Valine amide 218 gel at various time points after addition of D-glyceraldehyde D-9 

and acetaldehyde 24 to the surface of the gel. 

 

Over the course of an hour, the opaque white gel had broken down to give a colourless 

solution and a white precipitate which then turned yellow, and when left for 72 hours turned 

brown.  The contents of the vial were concentrated in vacuo and the trapping and purification 

A B 
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procedure was carried out as before.  No 2-deoxy-D-ribose D-130 or 2-deoxy-D-

threopentose D-131 was formed over the course of the reaction.  The reason for the 

breakdown of the gel can be perhaps attributed to the size of the gelator.  Referring back to 

Escuder’s hypothesis of the key hydrogen bonding interactions of Gelator A (L-proline-L-

valine dodecylamide), these mono-aminoamides lose one of the key hydrogen bond 

interactions leaving just one hydrogen bond between molecules, as shown in the L-valine 

dodecylamide 218 example in Figure 5.15.152,155  As well as this, the site of imine formation 

has been moved closer to the key hydrogen bond interaction and therefore it is possible 

when the primary amine interacts with the aldehyde starting material, the weak hydrogen 

bond may break leading to the disassembly of the gel fibres. 

 

Figure 5.15. Possible assembly of gel fibres in L-valine dodecylamide 218. 

 

The L-proline dodecylamide 219 did not form gel fibres and instead remained dissolved in 

deionised water.  As in the case of P-E-F dodecylamide 210 we assumed supramolecular 

aggregation had occured.  To prove this, DLS experiments were conducted in deionised 

water.  Figure 5.16 and Figure 5.17 show the intensity and volume distributions.  In both 

cases a single scattering peak was observed indicating an average diameter of 143 nm by 

intesntisy and 112 nm by volume.  This was much larger than the 6 nm diameter of P-E-F 

dodecylamide 210 micelles and suggests that simple micelles had not formed here.  In this 

case, either elongated micelles or fibres may have formed, that are much more cylindrical 

in shape leading to a larger dimeter of the supramolecular structure.  It should be noted that 
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DLS does not provide accurate sizes for such structures as they are not spherical – DLS 

reports the average size of an equivalent spherical system.  However, the size distributions 

are relatively narrow which would suggest a relatively well, controlled assembly process 

giving rise to similarly sized nanoscale objects. 

 

Figure 5.16. Size distribution by intensity graph created from DLS experiments of L-proline 

dodecylamide 219 in deionised water.  This graph is based on 8 runs of the experiment. 

 

 

Figure 5.17. Size distribution by volume graph created from DLS experiments of 219 in deionised 

water.  This graph is based on 8 runs of the experiment. 
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The CMC was again calculated using the Nile Red assay.  A plot of log(concentration) vs 

absorbance was made and the point of inflection of the two trend lines identified as the CMC 

(Figure 5.18).  This was an order of magnitude higher than that of PEF-dodecylamide 210 

with a value of 172 μmol ± 2 μmol.  This suggests more L-proline dodecylamide 219 was 

needed in solution to form an elongated micelle or fibre indicative of a less effective 

assembly process.  

 

 

Figure 5.18. Nile Red 211 assay performed on L-proline amide 219.  The CMC is determined as 

the point of inflection calculated as 172 μmol ± 2 μmol. 

 

Unfortunately when tested as a catalyst for the 2-deoxy-D-ribose D-130 forming reaction at 

a concentration of 0.2 mol (20 mol %) in deionised water no pentose sugars were formed.  

Due to time constraints these reactions were not repeated in pH 7 phosphate buffer, which 

may have more active catalyst present and hence turnover product in the 24 hour time 

period. 
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5.6. Conclusions 

The synthesis and characterisation of a number of supramolecular structures has been 

performed.  The hydrogels that have been formed have not been able to catalyse the aldol 

reaction of acetaldehyde 24 and D-glyceraldehyde D-9 and collapsed upon addition of 

starting material to the surface of the gel.  This indicates that the polar starting materials are 

disrupting key interactions that stabilise the gel fibres or that the reaction of the aldehydes 

with the catalytic amine to form the intermediate iminium species disrupts the gelator and 

breaks down the self-assembled nanostructure.  In the cases of P-E-F dodecylamide 210 

and L-proline dodecylamide 219 these molecules preferred to form other nanoscale 

supramolecular aggregates (e.g. micelles) in water.  Unfortunately these molecules could 

not catalyse the formation of 2-deoxy-D-ribose D-130 either.  Further research in this area 

should aim to develop the novel supramolecular structures of the single amino amides.  

Amino acid candidates with R-groups capable of forming additional hydrogen bonds, such 

as lysine, glutamic acid, arginine etc, should be used as gelators. Having the extra hydrogen 

bonding potential may stabilise the gel fibres whilst enamine formation with the aldehyde 

starting material is occurring. 

 

 

 

 

 

 

 

 

 

 

 



157 
 

6. Experimental  

 

 

6.1. General Experimental 

Unless otherwise noted all compounds were bought from commercial suppliers and used 

without further purification. Where a solvent is described as “dry” it was purified by PureSolv 

alumina columns from Innovative Technologies.  Melting points were determined using a 

Stuart SMP3 apparatus. Optical rotations were carried out using a JASCO-DIP370 

polarimeter and [α]D values are given in deg. cm3 g−1 dm−1. Infra-red spectra were acquired 

on a ThermoNicolet Avatar 370 FT-IR spectrometer. Nuclear magnetic resonance spectra 

were recorded on a Jeol ECS-400, a Jeol 500 Avance III HD 500 or a Jeol AV500 at ambient 

temperature. Coupling constants (J) are quoted in Hertz. Mass spectrometry was performed 

by the University of York mass spectrometry service using electron spray ionisation (ESI) 

technique. Thin layer chromatography was performed on glass-backed plates coated with 

Merck Silica gel 60 F254. The plates were developed using ultraviolet light, acidic aqueous 

ceric ammonium molybdate or basic aqueous potassium permanganate. Liquid 

chromatography was performed using forced flow (flash column) with the solvent systems 

indicated. The stationary phase was silica gel 60 (220–240 mesh) supplied by Sigma-

Aldrich.  Preparative Thin Layer Chromatography (PTLC) was carried out on 20x20 2000 

micron silica plates with UV254 purchased from Uniplate. High Performance Liquid 

Chromatography (HPLC) was performed using an Agilent 1100 series instrument using the 

chiral columns indicated and a range of wavelengths from 210-280 nm for detection.  Buffer 

solutions, pH 6 and pH 7 phosphate buffers, were purchased as ready-made solutions from 

Fisher Scientific. 
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6.2. Methods and Characterisation of Compounds 

 

N-Methyl-D-leucine ethylester (D-111) 

 

 

Trifluoroacetic acid (1.12 mL, 14.6 mmol) was added to a solution of Boc-N-methyl-D-

leucine ethyl ester D-142 (200 mg, 0.73 mmol) in DCM (20 mL) and was stirred for 14 hours 

under a nitrogen atmosphere.  The solution was then concentrated in vacuo and partitioned 

between DCM (4 mL) and a saturated solution of sodium bicarbonate (4 mL) and extracted 

two more times with DCM.  The organic layers were combined, dried over magnesium 

sulfate and concentrated in vaco to give D-111 as a colourless oil in a 75 % yield (115 mg, 

0.55 mmol). IR (ATR): νmax 2956 , 1731, 1469, 1368, 1178, 1026 cm-1; [α]D25 (deg cm3 g−1 

dm−1) -1.3 (c = 1.0, CH3Cl); 1H NMR (400 MHz, CDCl3) δ 4.17 (2H, q, J = 7.0 Hz, H-2), 3.81 

(1H dd, J = 7.1, 7.1 Hz, H-4), 2.77 (3H, s, H-8), 1.73-1.65 (1H, m, H-6), 1.47-1.41 (2H, m, 

H-5), 1.26 (3H, t, J = 7.0 Hz, H-1), 0.91 (3H, d, J = 6.5 Hz, H-7), 0.88 (3H, d, J = 6.5 Hz, H-

7); 13C NMR (400 MHz, CDCl3): δ 175.9 (C-3), 61.8 (C-2), 60.6 (C-4), 42.7 (C-5), 34.8 (C-

8), 25.0 (C-6), 22.7 (C-7), 22.5 (C-7), 14.4 (C-1); HRMS (ESI): [M+H]+ HRMS found 

174.1491, C9H20NO2 required 174.1489. 
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N-Methyl-L-leucine ethylester (L-111) 

 

 

N-Methyl-L-leucine ethyl ester (L-111) was prepared in the same way as D-111 from D-142.  

[α]D25 (deg cm3 g−1 dm−1) +1.0 (c = 1.0, chloroform) literature +0.57 (c = 0.74, chloroform);81 

1H NMR (400 MHz, CDCl3) δ 4.28 (2H, q, J = 7.3 Hz, H-2), 3.79 (1H, dd, J = 8.6, 4.9 Hz, H-

4), 2.75 (3H, s, H-8), 1.82 (1H, dd, J = 17.1, 8.6 Hz, H-5), 1.77-1.70 (2H, m, H-5, H-6), 1.30 

(3H, t, J = 7.3 Hz, H-1), 0.96 (3H, d, J = 5.8 Hz, H-7), 0.95 (3H, d, J = 5.8 Hz, H-7); 13C NMR 

(400 MHz, CDCl3): δ 168.9 (C-3), 62.7 (C-2), 59.6 (C-4), 38.2 (C-5), 31.5 (C-8), 24.8 (C-6), 

22.9 (C-7), 21.4 (C-7), 14.0 (C-1); HRMS (ESI): [M+H]+ HRMS found 174.1489, C9H20NO2 

required 174.1496.  Spectroscopic data was in agreement with the literature.81  

 

 

Trans-3-[(2, 4-Dinitrophenyl)-hydrazono]-propane-1,2-diol (D-115) 

 

 

 

D-Glyceraldehyde D-9 (50 mg, 0.56 mmol) and 2,4-dinitrophenylhydrazine 114 (132 mg, 

0.67 mmol) were dissolved in water (2.5 mL) and stirred at room temperature for 24 hours.  

The reaction mixture was concentrated in vacuo to give the crude product as an orange 



160 
 

solid.  Purification via flash column chromotography (1:1 petroleum ether:ethyl acetate) 

gave the desired product, D-115, as an orange solid in a 45 % yield (67 mg, 0.25 mmol); 

Decomposition temperature: 150-152 ºC; IR (ATR): νmax 3301, 3106, 3094, 2929, 1614, 

1586, 1504, 1419, 1320, 1222, 1090, cm-1; [α]D25 (deg cm3 g−1 dm−1) +32.0 (c = 0.1, 

chloroform) literature +36.9 (c = 0.07, chloroform)156;  1H NMR (400 MHz DMSO-d6) δ 11.40 

(1H, br s, N-H), 8.84 (1H, d, 2.7 Hz, H-7), 8.36 (1H, dd, 9.6 Hz, 2.7 Hz, H-6), 7.95 (1H, d, 

6.0 Hz, H-3), 7.91 (1H, d, 9.6 Hz, H-5), 5.35 (1H, br, s, OH), 4.79 (1H, br s, OH), 4.17 

(1H,dd, 6.0, 6.0 Hz, H-2), 3.54 (2H, d, 6.0 Hz, H-1);  13C NMR (400 MHz DMSO-d6) δ 155.2 

(C-3), 145.4 (CNO2), 137.3 (C-4), 130.3 (C-6, 129.7 (CNO2), 123.5 (C-7), 117.1 (C-5), 72.2 

(C-1), 64.5 (C-2); HRMS (ESI): [M-H]- HRMS found 269.0535, C9H9N4O6 required 269.0528.  

 

 

2-Deoxy-D-threopentose (D-131) 

 

 

To a flask containing 2-bromo-2-deoxy-D-threo-pentofuranose 139 (75 mg, 0.35 mmol) in 

dry THF (5 mL), tin tributyl hydride (0.11 mL, 0.43 mmol) and AIBN (9.3 mg, 0.057 mmol) 

were added and the resulting mixture was refluxed for 4 hours.  At that point the reaction 

was deemed complete through TLC analysis and the reaction mixture was concentrated in 

vacuo.  The crude mixture was partitioned between water (10 mL) and ethyl acetate (10 

mL) and the aqueous layer extracted.  The organic layer was further extracted with water 

(3x 10 mL) and the aqueous layers combined and concentrated in vacuo to give the title 

compound D-131 as a colourless oil in an 86 % yield as a mixture of anomers (47 mg, 0.30 

mmol).  IR (ATR): νmax 3327, 2933, 2886, 1648, 1436, 1359, 1263, 1239, 1129, 1060 cm-1; 
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[α]D25 (deg cm3 g−1 dm−1) -10.0 (c = 0.5, water) literature -4.8 (c = 0.5, water)157; 1H NMR as 

a mixture of α and β anomers; 13C NMR (400 MHz CD3OD): α-anomer δ 95.7 (C-1), 72.2 

(C-4), 69.7 (C-3), 63.9 (C-5), 40.7(C-2); β-anomer 93.1 (C-1), 72.1 (C-4), 66.7 (C-3), 63.9 

(C-5), 38.7 (C-2); HRMS (ESI): [M+Na]+ HRMS found 157.0470, C5H10O5 required 

157.0471. 

 

 

(2-S,3-R,E)-5-[(2,4-Dinitro-phenyl)-hydrazono]-pentane-1,2,3-triol (D-132) 

 

 

 

2-Deoxy-D-ribose D-130 (50 mg, 0.37 mmol) and 2,4-dinitrophenyl hydrazine 114 (110 mg, 

0.37 mmol) were partly dissolved in ethanol and stirred at room temperature for 72 hours.  

Concentration in vacuo gave the crude product as an orange solid.  Purification via 

preprative thin layer chromotgpahy (50:50 ethyl acetate:petrol) gave the title compound D-

132 as an orange solid  in a 7 % yield (8 mg, 0.025 mmol).  IR (ATR): νmax 3350, 3287, 

2928, 1616, 1584, 1420, 1327, 1304, 1262, 1215, 1145, 1071 cm-1; 1H NMR (400 MHz 

CD3OD): δ 9.00 (1H,d, 2.8 Hz, H-7), 8.23 (1H, dd, 10.0, 2.8 Hz, H-8), 7.98 (1H, d, 10.0 Hz, 

H-9), 7.79 (1H, dd, 5.8, 5.8 Hz, H-5), 3.85 (1H, ddd, J= 10.4, 8.8, 3.5 Hz, H-3), 3.74 (1H, 

dd, J= 11.4, 4.0 Hz, H-1), 3.60 (1H, dd, J= 11.4, 6.4 Hz,H-1), 3.52 (1H, ddd, J= 10.4, 6.4, 

4.0 Hz, H-2), 2.78 (1H, ddd, 14.9, 5.8, 3.5 Hz, H-4), 2.54 (1H, ddd, 14.9, 8.8, 5.8 Hz, H-4);  
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13C NMR (400 MHz CD3OD): δ 153.0, 146.4, 138.7, 130.6, 130.2, 124.1, 117.6, 76.0, 71.3, 

64.6, 37.8; HRMS (ESI): [M-H]- HRMS found 313.0798, C11H13N4O7 required 313.0790. 

 

 

(2-R,3-,R,E)-5-[(2,4-Dinitro-phenyl)-hydrazono]-pentane-1,2,3-triol (D-133) 

 

 

 

To a solution of 2-deoxy-D-threopentose D-131 (40 mg, 0.30 mmol) in dry methanol (4 mL) 

was added 2,4-dinitrophenyl hydrazine 114 (71 mg, 0.36 mmol).  The reaction mixture was 

stirred for 72 hours at room temperature under an atmospehere of nitrogen.  The mixture 

was concentrated in vacuo and purified by preparitve thin layer chromatography to yield D-

133 as an orange solid in an 11% yield (10 mg, 0.032 mmol). IR (ATR) νmax 3421, 3280, 

3158, 1546, 1409 cm-1; [α]D25 (deg cm3 g−1 dm−1) +1.04 (c = 0.825, methanol); 1H NMR (400 

MHz, CD3OD): δ 8.96 (1H, d, 2.8 Hz, H-9), 8.26 (1H, dd, 9.6, 2.8 Hz, H-8), 7.93 (1H, d, 9.6 

Hz, H-7), 7.75 (1H, dd, 5.5, 5.5 Hz, H-5), 3.96 (1H, ddd, J= 10.1, 10.1, 5.5 Hz, H-2), 3.67-

3.60 (3H, m, H-3, H-1), 2.64-2.61 (2H, m, H-4); 13C NMR (400 MHz CD3OD): δ 151.4 (C5), 

145.0 (CNO2), 137.4 (C-6), 129.4 (C-7), 129.3 (CNO2), 122.7 (C-8), 116.2 (C-9), 73.8 (C-

2), 69.1 (C-3), 62.9 (C-1), 36.6 (C-4);  HRMS (ESI): [M-H]-; HRMS found 313.0795, 

C11H13N4O7 required 313.0790. 
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2-Bromo-2-deoxy-D-lyxono-1,4-lactone (136) 

 

 

D-Lyxose 121 (3.00 g, 22.2 mmol), and solid sodium bicarbonate (2.52 g, 30.0 mmol) were 

dissolved in deionised water (25 mL) and stirred at 0 ºC for 5 minutes.  Bromine was added 

dropwise to the solution every 20 minutes for 1 hour (3 x 0.38 mL, 14.8 mmol) and the 

reaction stirred at room temperature for 4 hours.  Sodium thiosulfate (20 mL) was added to 

destroy the excess bromine and the mixture concentrated in vacuo to give an off-white 

precipitate.  The crude material was purified by extracting with boiling methanol (3 x 50 mL).  

The extracts were combined and concentrated in vacuo to give D-lyxono-1,4-lactone 135 

as an off white solid (4.73 g).  This was used in the next step without further purification.  

 

Crude D-lyxono-1,4-lactone 135 (1.00 g, 6.75 mmol), was added to a solution of 33 % 

hydrogen bromide in acetic acid (10 mL) and stirred for 2 hours at room temperature at 

which point TLC confirmed that all of the starting material had been consumed.  The reaction 

was quenched by the addition of methanol and the reaction mixture stirred for a further 24 

hours.  The mixture was concentrated in vacuo, the residue dissolved in chloroform (10 mL) 

and extracted with water (7 x 10 mL).  The aqueous extracts were combined and 

concentrated in vacuo to give the crude product as a red oil.  Purification via flash column 

chromatography over silica (50:50 cyclohexane:ethyl acetate) gave the title compound 136 

as a yellow oil in a 14 % yield over 2 steps (0.20 g, 0.92 mmol). IR (ATR): νmax 3315, 2991, 

2967, 2949, 1763, 1464, 1372, 1329, 1182, 1145, 1023 cm-1; [α]D
25 (deg cm3 g−1 dm−1) 

+20.1 (c = 1.0, ethyl acetate) literature +26 (c = 0.2, ethyl acetate)104; 1H NMR (400 MHz 

D2O): δ 4.91 (1H, ddd, J= 5.2, 5.2, 4.3 Hz, H-4), 4.77 (1H, dd, J= 5.2, 4.3 Hz, H-3), 4.68 



164 
 

(1H, d, J= 4.3 Hz, H-2), 3.94 (1H, d, J= 5.2 Hz, H-5), 3.93 (1H, d, J= 4.3 Hz, H-5); 13C NMR 

(400 MHz D2O): δ 174.8 (C-1), 83.3 (C-4), 74.3 (C-3),  59.1(C-5), 42.7 (C-2); HRMS (ESI) 

[M+Na]+ found 232.9422 and 234.9397 in a 1:1 ratio, C5H7Br79O4Na required 232.9420 

C5H7Br81O4Na required 234.9399. An artefact of ESI MS through methanolic opening of 

lactone calculated for C6H11Br79NaO5, 264.9682, found 264.9686. 

 

 

2-Deoxy-D-lyxono-1,4-lactone (137) 

 

 

 

To  a flask containing 2-bromo-2-deoxy-D-lyxono-1,4-lactone 136 (200 mg, 0.95 mmol) in 

dry THF (5 mL) under a nitrogen environment was addedd tributyl tin hydride (0.25 mL, 0.95 

mmol) and AIBN (25 mg, 0.15 mmol).  The mixture was refluxed for 3 hours.  At this point 

the reaction was deemed finished through TLC and the reaction mixture diluted with water 

(10 mL) washed with ethyl acetate (10 mL), extracted with water (3 x 10 mL) and 

concentrated in vacuo to give the title compound 137 as a colourless oil (126 mg, 0.95 

mmol).  IR (ATR): νmax 3366, 2939, 1749, 1162 cm-1; 1H NMR (400 MHz, D2O); 4.55 (1H, 

ddd, J= 5.5, 4.0, 1.1 Hz, H-4), 4.53 (1H, ddd,.6.4, 4.0, 4.0 Hz, H-3), 3.78 (1H, d, 4.0 Hz, H-

2), 3.77 (1H, d, 6.4 Hz, H-2), 2.91 (1H, dd J= 18.1, 5.5 Hz, H-5), 2.42 (1H, dd, 18.1, 1.1 Hz, 

H-5); 13C NMR (400 MHz D2O): 179.6 (C-1), 85.7 (C-4), 67.8 (C-3), 59.8 (C-5), 38.7 (C-2); 

HRMS (ESI) [M + H]+ HRMS found 133.0497, C5H9O4 required 133.0495. [M+Na]+ found 

155.0316, C5H8NaO4 required 155.0315. Spectroscopic data was in agreement with the 

literature.104  
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2-Bromo-2-deoxy-D-threo-pyranose (139) 

 

 

2-Bromo-D-lyxono-1,4-lactone 136 (435 mg, 2.06 mmol) was dissolved in water (7 mL) 

and stirred at 0 ºC, amberlite IR-120-H resin was added to reduce the pH to pH 3.  Sodium 

borohydride (39 mg, 1.03 mmol) was added in portions (~10 mg) along with amberlite 

resin to keep the pH of the reaction to approximately 6.  The reaction was then allowed to 

stir for 30 minutes at which time there was no starting material visible by TLC.  The 

reaction mixture was filtered to remove the resin and then concentrated in vacuo to give 

the crude residue.  Purification via flash column chromatography over silica (40:60 

petroleum ether:ethyl acetate) gave the pure title compound 139 as a colourless oil in a 45 

% yield as a mixture of anomers (199 mg, 0.93 mmol). IR (ATR): νmax 3307, 2943, 2836, 

1417, 1353, 1110, 1060, 1016 cm-1; [α]D
25 (deg cm3 g−1 dm−1) +64.4 (c = 1.0, methanol) 

literature +51.5 (c = 0.4, water)104; 1H NMR spectrum showed a mixture of anomers and 

was unassignable, therefore characterisation was based on comparison of carbon NMR 

data with literature values. 13C NMR (400 MHz CD3OD): α-anomer: δ 98.8, 78.9, 72.1, 

67.1, 58.3; β-anomer: 94.2, 74.7, 72.8, 62.6, 55.6; HRMS (ESI) [M+Na]+ calculated at  

232.9420 for C5H9Br79O4Na and 234.9400 for C5H9Br81O4Na, HRMS found 232.9475. All 

data was in agreement with the literature.104  
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Boc-N-Methyl-D-leucine ethyl ester (D-142) 

 

A solution of potassium bis(trimethylsilyl)amide 0.5 M in toluene (20  mL, 9.76 mmol) was 

added to a stirred solution of  N-Boc-D-leucine ethyl ester D-141 (2.3 g, 3.09 mmol) in dry 

THF (20 mL) at -78 ºC.  After 30 minutes methyl iodide (0.61 mL, 9.76 mmol) was added 

dropwise (over 5 minutes) and the reaction stirred for 1 hour at -78 ºC and a further 16 hours 

at room temperature.  The reaction mixture was washed with saturated potassium 

carbonate solution (30 mL) and extracted with DCM (3 x 30 mL).  The combined organic 

extracts were washed with 1 M sodium hydroxide (30 mL), then brine (30 mL).  The organic 

layer was dried over magnesium sulfate, filtered and then concentrated in vacuo to give the 

crude product as a yellow oil.  Purification via column chromatography (10:90 ethyl 

acetate:hexane) gave the title produce, D-142, as a colourless oil in an 83 % yield (700 mg, 

2.56 mmol). IR (ATR): νmax 2962, 1741, 1694, 1390, 1363, 1320, 1148, 1031 cm-1; [α]D25 

(deg cm3 g−1 dm−1) +8.9 (c = 1.0, ethanol); 1H NMR (400 MHz CDCl3):  Apparent 1:1 mixture 

of rotamers  δ 4.84 (1H,dd, J = 8.0, 8.0 Hz, H-4), 4.55 (1H, dd, J= 10.8, 4.7 Hz, H-4), 4.16 

(4H, q, J = 7.1 Hz, H-2), 2.79 (3H, s, H-8), 2.76 (3H, s, H-8), 1.74-1.51 (6H, m, H-5, H-6 

(both rotamers)), 1.45 (9H, s, H-11), 1.44 (9H, s, H-11), 1.27-1.23 (6H, m, H-1), 0.94 (6H, 

d, J= 6.8 Hz, H-7), 0.92 (6H, d, J = 6.8 Hz, H-7); 13C NMR (400 MHz CDCl3): δ 172.4 (C-3), 

156.4 (C-9), 80.0 (C-10), 61.1, 57.3, 56.1, 38.0, 28.5, 24.8, 23.4, 21.5, 21.3, 14.4 (C-1); 

HRMS (ESI):  [M+H]+ HRMS found 274.2000, C14H28NO4 required 247.2013.  [M+Na]+ 

HRMS found 296.1822, C14H27NO4Na required 296.1832. 
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Boc-N-Methyl-L-leucine ethylester (L-142) 

 

Boc-N-Methyl-L-leucine ethyl ester L-142 was prepared in the same way as D-142 from D-

141; [α]D25 (deg cm3 g−1 dm−1) -9.0 (c = 1.0, methanol) literature -8.2 (c = 0.74, chloroform);81 

1H NMR (400 MHz, CDCl3): Apparent 1:1 mixture of rotamers δ 4.83 (1H, dd, J = 7.3, 7.3 

Hz, H-4), 4.55 (1H, dd, J = 10.8, 4.7 Hz, H-4), 4.15 (4H, q, J = 6.9 Hz, H-2 (both rotamers)), 

2.79 (3H, s, H-8), 2.75 (3H, s, H-8), 1.74-1.48 (6H, m, H-5, H-6 (both rotamers)), 1.29-1.28 

(18H, m, H-11 (both rotamers)), 1.27-1.24 (6H, m, H-1(both rotamers)), 0.94 (6H, d, J = 6.9 

Hz, H-7(both rotamers)), 0.92 (6H, d, J = 6.9 Hz, H-7(both rotamers)).  Spectroscopic data 

was in agreement with the literature.81 

 

 

(N,N-Diphenyl-hydrazono)-propane,1-2-diol (145) 

 

D-Glyceraldehyde D-9 (51 mg, 0.56 mmol) was dissolved in methanol (8 mL).  N,N-Diphenyl 

hydrazine 144 (172 mg, 0.93 mmol) followed by two drops of acetic acid was added to the 

solution and stirred for 1 hour before concentrating in vacuo to give the crude product as a 

brown oil.  Purification via column chromatography (10:90 methanol:DCM) yielded 145 as 



168 
 

a crystalline solid in a 95 % yield (145 mg, 0.54 mmol).  Mp 91-93 ºC; IR (ATR) νmax 3281, 

2932, 1589, 1492, 1293, 1052 cm-1; [α]D
25 (deg. cm3 g−1 dm−1) -0.083 (c = 1.0, chloroform) 

literature = -3.3 (c = 3.23, chloroform)158; 1H NMR (500 MHz, CD3OD): δ 7.40-7.34 (2H dd, 

J= 8.5, 7.4 Hz, H-7), 7.14 (4H, tt, J= 7.4, 1.2 Hz, H-6), 7.07-7.04 (4H dd, J= 8.5, 1.2 Hz, H-

5), 6.45 (1H, d, 5.2 Hz, H-3), 4.31 (1H, dt, 6.5, 5.2 Hz, H-2), 3.66 (1H, dd, J= 11.3, 5.2 Hz, 

H-1), 3.60 (1H, dd, J= 11.3, 6.5 Hz, H-1); 13C NMR (500 MHz, CD3OD): δ 145.1 (C-4), 138.6 

(C-3), 130.8 (C-6), 125.5 (C-7), 123.5 (C-5),  73.6 (C-2), 65.8 (C-1); HRMS (ESI):  [M+H]+ 

found 257.1279, C9H11N4O6 required 257.1285.  [M+Na]+ found 279.1100, C9H10N4O6Na 

required 279.1104. 

 

 

(2-S,3-R,E)-5-[(N,N-Diphenyl)-hydrazono]-pentane-1,2,3-triol  (D-146) 

 

 

2-Deoxy-D-ribose D-130 (50 mg, 0.37 mmol) and N,N-diphenyl hydrazine 144 (125 mg, 

0.68 mmol) were dissolved in methanol (5 mL). Two drops of acetic acid were added and 

the reaction stirred at room temperature for 1 hour.  The reaction mixture was concentrated 

in vacuo to give a brown oil.  Upon purification via preparative thin layer chromatography 

(5:95 methanol:DCM) the pure compound, D-146, was obtained as a white crystalline solid 

in a 98 % yield (100 mg, 0.34 mmol).  Mp 114-117 ºC; IR (ATR) νmax 3221, 2926, 2875, 

1586, 1487, 1298 cm-1; [α]D25 (deg. cm3 g−1 dm−1) = -5.1 (c = 0.1, methanol); 1H NMR (500 

MHz CD3OD): δ 7.33 (4H, dd, J= 8.6 Hz, 7.4 Hz, H-9), 7.09 (2H, tt, J= 7.4, , 1,2 Hz, H-8), 
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7.03 (4H, dd, J= 8.6, 1.2 Hz, H-7), 6.64 (1H, dd, J= 5.5, 5.5 Hz, H-5), 3.69 (1H, dd, J= 11.3, 

3.7 Hz, H-1),  3.67 (1H, ddd, J= 10.4, 8.6, 3.8 Hz, H-3), 3.53 (1H, dd, J= 11.3, 6.5 Hz, H-1), 

3.43 (1H, ddd, 10.4, 6.5, 3.7 Hz, H-2), 2.64 (1H, ddd, J= 14.9, 5.5, 3.8 Hz, H-4), 2.41 (1H, 

ddd, J= 14.9, 8.6, 5.5 Hz, H-4); 13C NMR (500 MHz CD3OD): δ 145.7 (C-6), 139.1 (C-5), 

130.7 (C-8), 125.1 (C-9), 123.6 (C-7), 76.0 (C-2), 72.0 (C-3), 64.6 (C-1), 37.5 (C-4); HRMS 

(ESI): [M+H]+ found 301.1543, C17H21N2O3 required 301.1547. [M+Na]+ found 323.1360, 

C17H20N2O3Na required 323.1366.  

 

 

(2-R, 3-R)-5-[(N,N-Diphenyl)-hydrazono]-pentane-1,2,3-triol (D-147) 

 

 

2-Deoxy-D-threopentose D-131 (29 mg, 0.21 mmol) and diphenyl hydrazine 144 (77 mg, 

0.42 mmol) were dissolved in methanol (5 mL). Two drops of acetic acid were added and 

the reaction stirred at room temperature for 1 hour.  The reaction mixture was concentrated 

in vacuo to give a brown oil.  Upon purification via preparative thin layer chromatography 

(5:95 methanol:DCM) the pure compound D-147 was obtained as a white colourless oil in 

a 84 % yield.  (53 mg, 0.18 mmol); IR (ATR): νmax 3351, 3059, 2898, 1588, 1493, 1297 cm-

1; [α]D25 (deg cm3 g−1 dm−1) +8.0 (c = 0.1, methanol); 1H NMR (500 MHz CD3OD); δ 7.36 

(4H, dd, 8.4, 7.4 Hz, H-9), 7.12 (2H, tt, 7.4, 1.1 Hz, H-8), 7.06 (4H, dd, 8.4, 1.1 Hz, H-7), 

6.65 (1H, dd, 5.5, 5.5 Hz, H-5), 3.81 (1H, ddd J= 8.2, 5.1, 3.5 Hz, H-3), 3.66 (1H, dd, J= 

11.1, 5.1 Hz, H-1), 3.58 (1H, dd, J= 11.1, 6.4 Hz, H-1), 3.52 (1H, ddd, J= 6.4, 5.1, 3.5 Hz, 
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H-2), 2.58-2.48 (2H, m, H-4); 13C NMR (500 MHz CD3OD): δ 145.6 (C-6), 138.7 (C-5), 130.7 

(C-8), 125.1 (C-9), 12.5 (C-7), 75.1 (C-2), 71.2 (C-3), 64.3 (C-1), 37.6 (C-4); HRMS (ESI): 

[M+Na]+ HRMS found 323.1366, C17H20N2O3Na required 323.1362,  

 

 

L-Valine nitrile (L-157) 

 

 

A flask containing Z-L-valine nitrile L-165 (400 mg, 1.72 mmol), Pearlman's reagent (20% 

b.w., 119 mg) and ethyl acetate (15 mL) were evacuated and a hydrogen balloon added to 

the top of the flask.  After 1 hour the mixture was filtered through a pad of celite and the 

celite washed thoroughly with ethyl acetate (50 mL). A solution of 4M HCl in dioxane (1.0 

mL) was added and stirred for 10 minutes which turned the solution cloudy. Upon 

evaporation the chloride salt L-166 was isolated as an off-white solid in a 75 % yield (173 

mg, 1.29 mmol). The free, neutral amine was isolated by dissolving in DCM and stirring over 

solid sodium bicarbonate for 10 minutes.  The mixture was then filtered and concentrated 

in vacuo to give the neutral amine L-157 as a pale yellow oil.  IR (ATR): νmax 2960, 2866, 

1727, 1707, 1160 cm-1; [α]D25 (deg cm3 g−1 dm−1) -8.3 (c = 0.83, DCM); 1H NMR (CDCl3 400 

MHz): δ 3.52 (1H, d, J= 5.6 Hz, H-2), 1.93, (1H, dspt, 6.8, 5.6 Hz, H-3), 1.66 (2H, br s, NH2), 

1.07 (3H, d, J= 6.8 Hz, H-4), 1.06 (3H, d, J= 6.8 Hz, H-4); 13C NMR (CDCl3 400 MHz): δ 

121.4 (C-1), 49.9 (C-2), 33.0 (C-3), 19.0 (C-4), 17.7 (C-4); HRMS (ESI): [M+H]+ HRMS 

found 99.0917, C5H11N2 required 99.0917. Spectroscopic data agrees with literature.159 
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L-Serine nitrile (L-158) 

 

 

Z-L-Serine nitrile L-176 (60 mg, 0.27 mmol) was dissolved in ethanol (5 mL).  Pearlman’s 

reagent (20% b.w., 18 mg) was added and the flask evacuated.  A hydrogen balloon was 

added to the top of the flask and the reaction stirred for 10 minutes.  The reaction mixture 

was filtered through a pad of celite and the pad washed with copious amounts of ethanol.  

The solvent was removed in vacuo to give the pure title compound L-158 as a colourless 

oil in a 99 % yield (23 mg, 0.27 mmol).  IR (ATR): νmax 3288, 2935, 2867, 2240, 1595, 1454, 

1361, 1051 cm-1; 1H NMR (CD3OD, 400 MHz): δ 3.81 (1H, dd, J = 5.5, 5.5 Hz, H-2), 3.70 

(1H, dd, J= 10.5, 5.5 Hz, H-3), 3.66 (1H, dd, J= 10.5, 5.5 Hz, H-3); 13C NMR (CDCl3, 400 

MHz): δ 122.0 (C-1), 64.6 (C-3), 46.5 (C-2); HRMS (ESI):  [M+H]+ HRMS found 87.0552, 

C3H7N2O required 87.0553. 

 

 

N-Boc-L-proline amide (L-160) 

 

 

 

To a stirred solution of Boc-L-proline L-159 (100 mg, 0.46 mmol), and triethylamine (46.5 

mg, 0.46 mmol) in dioxane (2 mL) was added ethylchloroformate (0.1 mL, 1.06 mmol) at 
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room temperature. A 35% solution of NH3.H2O (1.53 mL, 2.3 mmol), was added and the 

mixture stirred for 4 hours. Dioxane was removed in vacuo and the crude residue was 

redissolved in water (9 mL). The aqueous layer was partitioned against DCM (8 mL) and 

the organic layer extracted.  The aqueous layer was extracted twice more with DCM (2 x 

8mL), the combined organic layers dried over magnesium sulfate and the solvent removed 

in vacuo to give the title compound L-160 as a  white powder in an 81 % yield (78 mg, 0.37 

mmol). Mp 94-97 ºC; IR (ATR): νmax 3373, 3201, 1669 cm-1;  [α]D25 (deg cm3 g−1 dm−1) -20.1 

(c = 1.0, chloroforn) literature -42.4 (c = 1.0, methanol);160 1H NMR (400 MHz, CDCl3) δ 6.83 

(1H, s, N-H), 5.56-6.13 (1H, m, N-H), 4.36-4.14 (1H, m, H-4), 3.55-3.17 (2H, m, H-1), 2.40-

1.74 (4H, m, H-2, H-3), 1.45 (9H, s, H-8), HRMS (ESI): [M+Na]+ HRMS found 237.1209, 

C10H18N2O3Na  required 237.1215. 

 

 

N-Boc-L-proline nitirle (L-161) 

 

 

 

To a stirred solution of L-160 (1.5 g, 7.0 mmol) and triethylamine (4.85 mL, 35 mmol) in 

DCM (3 mL) at 0 ºC was added trifluoroacetic anhydride (2.0 mL, 14.0 mmol) under a 

nitrogen atmosphere.  After 30 minutes the reaction was warmed to room temperature.  

After a further 5 hours the mixture was washed with saturated sodium bicarbonate solution 

and extracted with DCM (3 x 8 mL).  The combined organic extracts were washed with 

water (8 mL), then brine (8 mL), dried over magnesium sulfate and concentrated in vacuo. 
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The crude residue was purified by flash column chromatography (50:50 ethyl 

acetate:hexane) to give the title compound L-161 as a colourless oil in a 94 % yield (1.29 

g, 6.6 mmol).  IR (ATR): νmax 2976, 2239, 1797, 1692 cm-1; [α]D (deg cm3 g−1 dm−1) -92.2 (c 

= 0.4, chloroform) literature -95.5 (c = 1.3, methanol)160; 1H NMR (400 MHz, CDCl3) δ 4.39-

4.60 (1H, m, H-4), 3.24−3.58 (2H, m, H-1), 1.93−2.30 (4H, m, H-2, H-3), 1.50 (9H, s, H-8); 

13C NMR (400 MHz, CDCl3) δ 153.1 (C-6), 119.3 (C-5), 81.6 (C-7), 47.3 (C-4), 45.8 (C-1), 

31.8 (C-3), 28.4 (C-8), 23.9 (C-2); HRMS (ESI): [M+Na]+ HRMS found 219.1107, 

C10H16N2O2Na  required 219.11040.  Spectroscopic data is in agreement with the 

literature

 

 

L-Proline nitrile trifluoracetic acid salt (L-162) 

 

 

To a solution of L-161 (580 mg, 2.96 mmol) in DCM (10 mL) at 0 ºC was added trifluoroacetic 

acid (5.7 mL, 73.9 mmol).  The solution was stirred for 16 hours and then concentrated in 

vacuo to give the compound L-162 as the TFA salt in a 37 % yield (230 mg, 1.10 mmol).  

Mp 92-94 ºC; IR (ATR): νmax 2992, 2789, 2393, 1674 cm-1, [α]D25 (deg cm3 g−1 dm−1) -16.7 

(c = 1.0, methanol); 1H NMR (400 MHz, CD3OD) δ 4.66 (1H, t, J = 7.4 Hz, H-4), 3.50-3.34 

(2H, m, H-1), 2.54-2.44 (1H, m, H-3), 2.36-2.05 (3H, m, H-2, H-3); 13C NMR (400 MHz, 

CDCl3) δ 116.5 (C-5), 47.9 (C-4), 47.0 (C-1), 31.2 (C-3), 24.5 (C-2); HRMS (ESI): [M+H]+ 

found 97.0757, C5H9N2 required 97.07602.  Spectroscopic data is in agreement with the 

literature.162,,163 The free amine was liberated through dissolution in DCM and the resultant 
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solution stirred over solid sodium bicarbonate for 10 mins.  The mixture was then filtered 

and the filtrate concentrated in vacuo. 

 

 

Z-L-Valine amide (L-164) 

 

 

To a stirred solution of Z-L-valine L-163 (2.0 g, 7.96 mmol) and triethylamine (1.2 mL, 8.8 

mmol) in dry THF (40 mL) at 0 ºC was added ethyl chloroformate (0.76 mL, 7.96 mmol).  

After 30 minutes 7N ammonia in methanol (1.66 mL, 11.9 mmol) was added and stirred at 

0 ºC for 1 hour and a further 19 hours at room temperature.  The resultant white precipitate 

was filtered and washed with ice cold water to give the title compound L-164 as a white 

solid in a 75 % yield (1.5 g, 6.0 mmol). Mp 205-208 ºC; IR (ATR): νmax 3380, 3316, 3063, 

3027, 2957, 2873, 1683, 1645, 1536, 1455, 1305, 1246, 1040 cm-1; [α]D25 (deg cm3 g−1 

dm−1) +25.0 (c = 1.0, dimethyl formamide) literature +24.2 (c = 1.0, dimethyl formamide)164; 

1H NMR (400 MHz DMSO d6) δ 7.37-7.30 (6H, m, H-8, N-H), 7.16 (1H, d, J= 9.0 Hz, N-H), 

7.04 (1H, s, N-H), 5.03 (2H, s, H-6), 3.80 (1H, dd, J= 9.0, 6.8 Hz, H-2), 1.95 (1H, apparent 

oct, J= 6.8 Hz, H-3), 0.86 (3H, d, J= 6.8 Hz, H-4), 0.83 (3H, d, J= 6.8 Hz, H-4); 13C NMR 

(DMSO d6 400 MHz) δ 173.3 (C-1), 156.2 (C-5), 131.2 (C-7), 128.4 (C-8), 127.0 (C-8), 65.4 

(C-6), 60.1 (C-2), 30.2 (C-3), 19.4, (C-4) 18.0 (C-4); HRMS (ESI): [M+H]+ HRMS found 

251.1387, C9H20NO2 required 251.1390. [M+Na]+ HRMS found 273.1217, C13H18N2O3Na, 

required 273.1210.  
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Z-L-Valine nitrile (L-165) 

 

Z-L-Valine amide L-164 (1.5 g, 6 mmol) and triethylamine (1.83 mL, 13.2 mmol) were 

dissolved in dry THF (20 mL) at 0 ºC.  After 30 minutes trifluoroacetic anhydride (1.26 mL, 

9 mmol) was added and stirred at 0 ºC for 1 hour and a further 14 hours at room temperature.  

The solvent was removed in vacuo and the crude oil redissolved in ethyl acetate.  The 

organic layer was washed three times with 2M HCl, then once with brine, dried over 

magnesium sulfate, filtered and concentrated in vacuo to give the crude product as a red 

translucent oil.  Purification via flash column chromatography (5:95 methanol:DCM) gave 

the crude product L-165 as a colourless oil in a 93 % yield (1.3 g, 5.6 mmol), upon trituration 

a colourless crystalline solid was formed. Mp 53-56 ºC; IR (ATR): νmax 3294, 3062, 2980, 

2929, 2243, 1690, 1535, 1467, 1455, 1321, 1303, 1253, 1136, 1028, 1049 cm-1; [α]D
25 (deg 

cm3 g−1 dm−1) -37.3 (c = 0.97, methanol) literature -55 (c = 1.13, chloroform)165; 1H NMR 

(400 MHz DMSO d6): δ 8.22 (1H, br d, J= 8.0 Hz, N-H), 7.39-7.33 (5H, m, H-8), 5.09 (2H, 

s, H-6), 4.40 (1H, dd, J= 8.0, 8.0 Hz, H-2), 1.98, (1H, m, H-3), 1.00 (3H, d, J= 6.8 Hz, H-4), 

0.94 (3H, d, J= 6.8 Hz, H-4); 13C NMR (400 MHz CDCl3): δ 155.5 (C-5), 135.7 (C-7), 128.8 

(C-8), 128.6 (C-8), 128.4 (C-8),117.8 (C-1), 67.9 (C-6), 49.1 (C-2), 31.9 (C-3), 18.6 (C-4), 

18.0 (C-4); HRMS (ESI): [M+Na]+ HRMS found 255.1113, C13H16N2O2Na required 

255.1104. 
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Z-(O-Benzyl)-L-Serine (L-168) 

 

To a solution of O-benzyl-L-serine L-167 (1.0 g, 5.1 mmol) in dioxane (5 mL) and 2M NaOH 

solution (5 mL) was added benzyl chloroformate (1.15 mL, 8.2 mmol) dropwise over 5 

minutes at 0 ºC.  The solution was warmed to room temperature and stirred for a further 2 

hours before concentration in vacuo.  The crude reaction mixture was redissolved in diethyl 

ether (30 mL) and washed with water (30 mL).  The aqueous layer was extracted twice 

more with ether (2 x 30 mL).  The aqueous layer was then acidified to pH 1-2 with 2M HCl 

and extracted with DCM (3 x 30 mL).  The organic layers were combined, dried over sodium 

sulfate, filtered and concentrated in vacuo to give the title compound L-168 in a 67 % yield 

as an off-white solid (1.1 g, 3.4 mmol).  Mp 98–99 ºC; IR (ATR): νmax 3368, 3164, 2949, 

2879, 1748, 1731, 1665, 1539, 1258, 1200, 1108, 1054, 1027 cm-1; [α]D25 (deg cm3 g−1 

dm−1) +11.6 (c = 1.0, methanol) literature +11.3 (c = 1.0 g, methanol);166 1H NMR (400 MHz, 

DMSO d6) δ 12.79 (1H, br s, O-H), 7.59 (1H, d, J = 8.2, N-H), 7.33-7.24 (10H, m, H-6), 5.00 

(2H, s, H-8), 4.99 (1H, d, J = 12.8, H-8), 4.47 (1H, d, J = 12.1, H-4), 4.43 (1H, d, J = 12.1, 

H-4), 4.25 (1H, ddd, J = 4.6, 6.2, 8.2, H-2), 3.67 (1H,dd, J= 10.1, 4.6 Hz, H-3) 3.63 (1H, dd, 

J= 10.1, 6.2 Hz, H-3); 13C NMR (CDCl3 400 MHz): δ 171.7 (C-1), 156.1 (C-7), 138.1 (Ar), 

137.0 (Ar), 128.4 (Ar), 128.2 (Ar), 127.9 (Ar), 127.8 (Ar), 127.5 (Ar), 127.5 (Ar), 127.5 (Ar), 

72.1 (CH2), 69.3 (CH2), 65.5 (CH2), 54.2 (C-2); HRMS (ESI):  [M+Na]+ HRMS found 

352.1145, C18H19NNaO5 required 352.1155. Physical and spectroscopic data is in 

agreement with the literature.167  
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Z-(O-benzyl)-L-Serine amide (L-169) 

 

Ethyl chloroformate (0.29 mL, 3.04 mmol) was added dropwise (0.5 mL per min) to a 

solution of Z-(O-benzyl)-L-serine L-168 (1.0 g, 3.04 mmol) and triethylamine (0.46 mL, 3.34 

mmol) in dry THF (20 mL) at 0 ºC.  After 4 hours the solvent was removed in vacuo and the 

crude material redissolved in ethyl acetate (30 mL) and washed with saturated sodium 

bicarbonate solution (30 mL).  The aqueous layer was extracted twice more with ethyl 

acetate (2 x 30 mL), the organic layers were combined and washed with brine (50 mL), 

dried over sodium sulfate, filtered and concentrated in vacuo  to give the pure title compound 

L-169 as a white powder in a 89 % yield (0.89 g, 2.70 mmol). Mp 129-131 ºC; IR (ATR): νmax 

3446, 3313, 3204, 2864, 1654, 1530, 1240 cm-1; [α]D25 (deg cm3 g−1 dm−1) +5.7 (c = 1.0, 

methanol); 1H NMR (400 MHz, DMSO d6) δ 7.4-7.16 (13 H, m, , H-6, N-H), 5.06 (1H, d, J= 

12.7, H-8), 5.02 (1H, d, J = 12.7, H-8), 4.48 (2H, s, H-4), 4.23 (1H, ddd, J= 8.5, 7.0, 5.0 Hz,  

H-2), 3.59 (1H, dd, J= 10.1, 5.0 Hz, H-3), 3.54 (1H, dd, J= 10.1, 7.0 Hz); 13C NMR (CDCl3, 

400 MHz): δ 171.6 (C-1), 156.0 (C-7), 138.2 (Ar), 137.1 (Ar), 128.4 (Ar), 128.2 (Ar), 128.1 

(Ar), 127.7 (Ar), 127.5 (Ar), 127.5 (Ar), 72.0 (C-8), 70.0 (C-4), 65.5 (C-3), 54.7 (C-2); HRMS 

(ESI):  [M+Na]+ HRMS calculated for C18H20N2NaO4, 351.1315, found 351.1305. 
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Z-(O-benzyl)-L-Serine nitrile (L-170) 

 

Triethylamine (0.68 mL, 4.90 mmol) was added to a suspension of Z-(O-benzyl)-L-serine 

amide L-169 (735 mg, 2.24 mmol) in dry THF (20 mL) and stirred at 0 ºC for 10 minutes 

before trifluoracetic anhydride (0.47 mL, 3.36 mmol) was added dropwise (0.1 mL / min) to 

the suspension.  After a further 6 hours at 0 ºC the solvent was removed in vacuo.  The 

crude material was redissolved in DCM (20 mL) and washed with 2M HCl (20 mL).  The 

aqueous layer was extracted twice more with DCM (2 x 20 mL). The organic extracts were 

combined, washed with brine, dried over sodium sulfate, filtered and concentrated in vacuo 

to give the crude product as a yellow oil.  Purification via flash column chromatography (5:95 

methanol:DCM) gave the title compound L-170 as a white solid in a 76 % yield (530 mg, 

1.71 mmol).  Mp 51–53 ºC; IR (ATR): νmax 3292, 3036, 2871, 2250, 1694, 1684, 1527 cm-1; 

[α]D25 (deg cm3 g−1 dm−1) -19.9 (c = 1.0, methanol); 1H NMR (400 MHz, DMSO d6) δ 8.30 

(1H, d, J = 7.8 Hz, NH), 7.40-7.29 (10 H, m, H-6), 5.09 (2H, s, H-8), 4.85 (apparent dt, J = 

7.8, 6.3 Hz, H-2), 4.56 (2H, s, H-4), 3.67 (2H, d, J = 6.3 Hz, H-3); 13C NMR (CDCl3 400 

MHz): δ 155.2 (C-7), 136.7 (Ar), 135.6 (Ar), 128.8 (Ar), 128.6 (Ar), 128.5 (Ar), 128.4 (Ar), 

128.0 (Ar), 117.4 (C-1), 73.8 (C-8), 68.9 (C-4), 67.9 (C-3), 43.1 (C-2); HRMS (ESI):  [M+Na]+ 

HRMS found 333.1201, C18H18N2NaO3 required 333.1210. 
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Z-(O-triisopropylsilyl)-L-Serine-triisopropyl silate (L-172) 

 

 

To a solution of Z-L-serine L-171 (500 mg, 2.09 mmol) in dimethyl formamide (20 mL) was 

added 2,6-lutidine (0.49 mL, 4.18 mmol) and triisopropylsilyl triflate (0.60 mL, 2.09 mmol).  

After 22 hours the solvent was removed in vacuo and the crude mixture acidified with 2M 

HCl to pH 2 (ca. 20 mL) and extracted with DCM (3 x 50 mL).  The organic extracts were 

combined, washed with brine (20 mL), dried over magnesium sulfate, filtered and 

concentrated in vacuo to give the title compound L-172 as a colourless oil in a 96 % yield 

(1.11 g, 2.01 mmol). IR (ATR): νmax 3446, 2944, 2867, 1719, 1501, 1464, 1343, 1254, 1116, 

1053 cm-1;  [α]D25 (deg cm3 g−1 dm−1) +4.51 (c = 1.38, DCM); 1H NMR (CDCl3, 400 MHz): δ 

7.36-7.30 (5H, m, H-9), 5.63 (1H, d, 8.3 Hz, N-H), 4.40 (ddd, 1H, 8.3, 2.8, 2.2 Hz, H-4), 4.22 

(1H, dd, 9.9, 2.2 Hz, H-5), 4.00 (1H, dd, 9.9, 2.8 H-5), 1.34-1.01 (42H, m, H-1); 13C NMR 

(CDCl3, 400 MHz): 170.3 (C-3), 156.0 (C-6), 136.6 (Ar), 128.6 (Ar), 128.2 (Ar), 66.9 (C-7), 

64.1 (C-5), 57.1 (C-4), 18.0 (TIPS), 17.9 (TIPS), 17.8 (TIPS), 12.0 (TIPS); HRMS (ESI):  

[M+H]+ HRMS found 574.3363, C29H53NNaO5Si2 required 574.3354. 
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Z-(Triisopropylsilyl)-L-Serine (L-173) 

 

 

Z-(Triisopropylsilyl)-L-serine-triisopropyl silate L-172 (948 mg, 1.72 mmol) was dissolved in 

a 1:1 mixture of THF and 1M sodium hydroxide (20 mL) and stirred vigorously.  After 3 

hours the pH was adjusted to pH 2 using 2M HCl and the THF removed in vacuo.  The 

remaining aqueous solution was extracted with DCM (3 x 10 mL) and the combined organic 

extracts washed with brine (20 mL).  The organic layer was dried over magnesium sulfate, 

filtered and concentrated in vacuo to give the crude product as a colourless oil.  Purification 

via flash column chromatography (97:3 hexane:ethyl acetate) was used to remove 

triisopropylsilanol and then adjusted (90:10 DCM:methanol) to elute the pure product L-173 

as yellow oil in a 94 % yield (636 mg, 1.61 mmol).  IR (ATR): νmax 3445, 2943, 2866, 1721, 

1512, 1463, 1246, 1211, 1116, 1063 cm-1, [α]D25 (deg cm3 g−1 dm−1) +21.0 (c = 1.0, DCM); 

1H NMR (CDCl3, 400 MHz): δ 7.37-7.32 (5H, m, H-9), 5.61 (1H, d, 7.6 Hz, N-H), 5.13 (2H, 

s, H-7), 4.46 (1H, ddd, J= 7.6, 4.6, 2.5 Hz, H-2), 4.24 (1H, dd, J= 9.7, 2.5 Hz, H-3), 3.92 

(1H, dd, J= 9.7, 4.6 Hz, H-3), 1.12-1.03 (21H, m, H-5); 13C NMR (CDCl3, 400 MHz): δ 175.1 

(C-1), 155.9 (C-6), 136.0 (Ar), 128.4 (Ar), 128.0 (Ar), 127.9 (Ar), 67.0 (C-7), 63.6 (C-3), 

55.85 (C-2), 17.6 (TIPS), 11.6 (TIPS); HRMS (ESI):  [M+Na]+ HRMS found 418.2034, 

C20H33NNaO5Si required 418.2020. Spectroscopic data was in agreement with the 

literature.168 
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Z-(O-triisopropylsilyl)-L-serine amide (L-174)  

 

 

To a solution of Z-(O-triisopropylsilyl)-L-serine L-173 (4.50 g, 11.3 mmol) and triethylamine 

(1.90 mL, 13.5 mmol) in THF (50 mL) was added ethyl chloroformate (1.20 mL, 12.4 mmol) 

at 0 ºC.  After 60 minutes ammonia in methanol (7N, 1 mL) was added and the solution 

warmed to room temperature.  After 3 hours the solvent was removed in vacuo and the 

crude mixture redissolved in DCM (50 mL).  The organic layer was washed with saturated 

sodium bicarbonate solution (50 mL) then brine (50 mL) extracting each time with DCM (3 

x 50 mL).  The combined organic extracts were dried over magnesium sulfate, filtered and 

concentrated in vacuo to give the pure product L-174 as a white solid in a 96 % yield (4.27 

g, 10.8 mmol).  Mp 70-74 ºC; IR (ATR): νmax 3063, 1656, 1515, 1440, 1182, 1132 cm-1; 1H 

NMR (CDCl3, 400 MHz): δ 7.36-7.31 (5H, m, H-9), 6.59 (1H, br s, NH), 5.70 (2H, m, NH), 

5.12 (2H, s, H-7), 4.25-4.19 (1H, m, H-3), 4.17-4.12 (1H, m, H-3), 3.74-3.71 (1H, m, H-2), 

1.07-1.05 (21H, m, H-5); 13C NMR (CDCl3, 400 MHz): δ 172.7 (C-1), 156.0 (C-6), 136.2 (Ar), 

128.7 (Ar), 128.4 (Ar), 128.3 (Ar), 67.2 (C-7), 63.5 (C-3), 55.6 (C-2), 18.0 (TIPS), 11.8 

(TIPS); HRMS (ESI): [M+Na]+ HRMS found 417.2163, C20H34N2NaO4Si required 417.2180.  

Spectroscopic data was in agreement with the literature.168  
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Z-L-(Triisopropylsilyl) serine nitrile (L-175) 

 

Triethylamine (0.90 mL, 6.36 mmol) was added to a solution of Z-L-(triisopropylsilyl) serine 

amide L-174 (1.14 g, 2.89 mmol) in THF (8 mL) at 0 ºC.  After 30 minutes trifluoroacetic 

anhydride (0.61 mL, 4.34 mmol) was added dropwise (0.1 mL / min) and stirred for a further 

15 hours at room temperature.  The solvent was removed in vacuo and the crude material 

redissolved in DCM (10 mL).  The organic layer was washed with 2M HCl (10 mL), then 

brine (10 mL) extracting each time with DCM (3 x 10 mL).  The combined organic extracts 

were dried over magnesium sulfate, filtered and concentrated in vacuo to give the pure title 

compound L-175 as a light yellow oil in a 82 % yield (0.90 g, 2.38 mmol).  IR (ATR): νmax 

3320, 2944, 2867, 2249, 1806, 1707, 1499, 1463, 1384, 1328, 1250, 1218, 1124, 1027 cm-

1; [α]D25 (deg cm3 g−1 dm−1) -18.4 (c = 1.0, DCM); 1H NMR (CDCl3, 400 MHz): δ 7.40-7.33 

(5H, m, H-9), 5.43 (1H, d, J= 7.6 Hz, N-H), 5.16 (2H, s, H-7), 4.73-4.71 (1H, ddd, J= 7.6, 

4.0, 2.9 Hz, H-2), 4.01 (1H, dd, J= 10.1, 2.9 Hz, H-3), 3.90 (1H, 10.1, 4.0 Hz, H-3), 1.08-

1.05 (21H, m, H-5); 13C NMR (CDCl3 400 MHz): δ 155.3 (C-6), 135.7 (Ar), 128.8 (Ar), 128.7 

(Ar), 128.5 (Ar), 117.6 (C-1), 67.9 (C-7), 63.7 (C-3), 45.1 (C-2), 18.0 (TIPS), 11.9 (TIPS); 

HRMS (ESI):  [M+Na]+ found 399.2062, C20H32N2NaO3Si required 399.2074. 
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Z-L-serine nitrile (L-176) 

 

 

To a solution of Z-L-(triisopropylsilyl) serine nitrile L-175 (700 mg, 1.86 mmol), in pyridine 

(4 mL) was added a solution of hydrogen flouride (70 % bwt in pyridine) (0.50 mL, 19.2 

mmol).  After 5 hours the reaction was washed with saturated sodium bicarbonate solution 

(5 mL) and extracted with ethyl acetate (3 x 5mL).  The organic extracts were combined 

and washed with 1M HCl (2 x 5 mL), then brine (5 mL) and dried over sodium sulfate, filtered 

and concentrated in vacuo to give the pure product L-176 as a colourless oil in a 67 % yield 

(274 mg, 1.25 mmol).  IR (ATR): νmax 3423, 3281, 3064, 2960, 2257, 1698, 1541, 1252, 

1069 cm-1; [α]D25 (deg cm3 g−1 dm−1) -45.3 (c = 1.0, DCM); 1H NMR (CDCl3, 400 MHz): δ 

7.38-7.31 (5H, m, H-7), 5.87 (1H, d, J= 8.5 Hz, N-H), 5.13 (2H, s, H-5), 4.70-4.68 (1H, ddd, 

J = 8.5, 4.2, 3.6 Hz, H-2), 3.89 (1H, dd, J= 11.5, 3.6 Hz, H-3), 3.79 (1H, dd, J= 11.5, 4.2 Hz, 

H-3), 2.74 (1H, br s, O-H); 13C NMR (CDCl3, 400 MHz): δ 155.5 (C-4), 135.5 (Ar), 128.8 

(Ar), 128.7 (Ar), 1284 (Ar), 117.5 (C-1), 68.0 (C-5), 62.6 (C-3), 45.1 (C-2); HRMS (ESI):  

[M+Na]+ HRMS found 243.0738, C11H12N2NaO3 required 243.0740. 
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4-Isopropyl-2-methyl-oxazolidin-5-ylidene amine (177) 

 

 

L-valine nitrile, L-157 (43 mg, 0.44 mmol) was dissolved in water (1 mL) and added to a 

solution of acetaldehyde 24 (19 mg, 0.44 mmol) in water (1 mL).  The solution was stirred 

at room temperature for 24 hours before the solvent was removed in vacuo.  Purification via 

flash column chromatography (95:5 DCM:methanol) gave the title compound 177, as a 

colourless oil in a 16 % yield (10 mg, 0.07 mmol) as a 3:1 mixture of diastereomers. IR 

(ATR): νmax 3239, 2962, 2931, 2872, 1688, 1464, 1432, 1380, 1346, 1292, 1099 cm-1; 1H 

NMR (CDCl3, 400 MHz) major: δ 6.67 (1H, br s, N-H), 4.66 (1H, q, J = 5.6 Hz, H-1), 3.41 

(1H, d, J = 4.2 Hz, H-3), 2.15 (1H, dsept, J = 6.9, 4.2 Hz, H-4), 1.85 (1H, br s, N-H), 1.34 

(3H, d, J = 5.6 Hz, H-2), 1.04 (3H, d, J = 6.9 Hz, H-5), 0.92 (3H, d, J = 6.9 Hz, H-5); Minor 

diastereomer δ 6.76 (1H, br s, N-H), 4.68 (1H, q, J = 5.6 Hz, H-1), 3.42 (1H, d, J = 4.2 Hz, 

H-3), 2.11 (1H, dsept, J = 6.9, 4.2 Hz, H-4), 1.85 (1H, br s, N-H), 1.34 (3H, d, J = 5.6 Hz, H-

2), 1.02 (3H, d, J = 6.9 Hz, H-5), 0.93 (3H, d, J = 6.9 Hz, H-5) 13C NMR (CDCl3 400 MHz): 

As a mixture of diastereomers. Major δ 178.4 (C-6), 65.6 (C-1), 65.2 (C-3), 29.0 (C-4), 23.2 

(C-2), 20.0 (C-5), 17.1 (C-5); Minor δ 178.4 (C-6), 67.1 (C-1), 64.3 (C-3), 30.1 (C-4), 24.0 

(C-2), 20.0 (C-5), 17.4 (C-5); HRMS (ESI): [M+H]+ HRMS found 143.1171, C7H15N2O 

required 143.1179. [M+Na]+ HRMS found 165.0998, required C7H14N2ONa, 165.0998. 
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4-[(N,N-diphenyl)-hydrazono]-butane-1,2,-triol (184) 

 

 

To a flask containing hydrazone 188 (20 mg, 0.085 mmol), 4-methyl morpholine-N-oxide 

(20 mg, 0.17 mmol) and t-butyl alcohol (0.25 mL) was added a solution of osmium tetroxide 

(0.43 mg, 0.0017 mmol) in THF (1.75 mL).  The reaction was stirred for 23 hours before a 

solution of saturated sodium thiosulfate (2 mL) was added to quench the reaction.  After 40 

minutes the product was extracted with ethyl acetate (3 x 3 mL) and the combined organic 

extracts washed with water (1 x 5 mL) then brine (1 x 5 mL), dried over magnesium sulfate, 

filtered and concentrated in vacuo.  Purification via silica filtration gave the title compound 

184 as a colourless oil in an 87 % yield (20 mg, 0.074 mmol).  IR (ATR): νmax 3359, 2923, 

1589, 1494, 1298, 1210 cm-1; 1H NMR (400 MHz, CD3OD) δ 7.33 (4H, dd, J = 7.8, 7.3 Hz, 

H-7), 7.09 (2H, t, J = 7.3 Hz, H-8), 7.02 (4H, d, J = 7.8 Hz, H-6), 6.59 (1H, dd, J = 5.5, 5.5 

Hz, H-4), 3.75 (1H, dddd, J = 7.3, 6.0, 5.5, 4.6 Hz, H-2), 3.48 (1H, dd, J = 11.0, 4.6 Hz, H-

1), 3.42 (1H, dd, J = 11.0, 6.0, H-1), 2.47 (1H, apparent ddd, J = 14.7, 5.5, 5.5 Hz, H-3), 

2.36 (1H, ddd, J = 14.7, 7.3, 5.5 Hz, H-3); 13C NMR (400 MHz, CD3OD): δ 145.6 (C-5), 

138.2 (C-4), 130.7(C-7), 125.2 (C-8), 123.5 (C-6), 71.8 (C-2), 66.9 (C-1), 37.7 (C-3); HRMS 

(ESI): [M+H]+ HRMS found 271.1431, C16H19N2O2 required 271.1441. [M+Na]+ HRMS found 

293.1247, C16H18N2NaO2 required 293.1260. 
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N-But-3-enylidene-N,N-diphenylhydrazone (188) 

 

 

3-Butenal 187 (71 mg, 1.01 mmol) and N-N-diphenyl hydrazine 144 (223 mg, 1.21 mmol) 

were stirred in DCM (1 mL) at room temperature for 17 hours before the solvent was 

removed in vacuo to give a brown solid.  Purification via flash column chromatography (95:5 

petroleum ether:ethyl acetate) gave the pure title compound, 188, as a yellow oil in a 36 % 

yield (84 mg, 0.35 mmol). IR (ATR): νmax 3061, 1589, 1494, 1298, 1208 cm-1; 1H NMR (400 

MHz, CDCl3) δ 7.40-7.35 (4H, m, H-7), 7.15-7.09 (6H, m, H-6, H-8), 6.49 (1H, t, J = 5.5 H.z, 

H-4), 5.88 (1H, ddt, J = 17.9, 9.5, 6.4 Hz, H-2), 5.08-5.07-5.03 (2H, m, H-1), 3.06 (2H, dd, 

J = 6.4, 5.5 Hz, H-3); 13C NMR (400 MHz, CDCl3) δ 143.9 (C-5), 136.9 (C-4), 134.2 (C-2), 

129.5 (C-7), 123.8 (C-8), 122.2 (C-6), 116.4 (C-1), 36.9 (C-3); HRMS (ESI): [M+H]+ HRMS 

found 237.1379, C16H17N2 required 237.1386. [M+Na]+ HRMS found 259.1196, C16H16N2Na 

required 259.1206. 
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(2-R-3-S,E)-4-[(N,N-Diphenyl)-hydrazono]-butane-1,2,3-triol (D-189) 

 

 

D-Erythrose D-102 (20 mg, 0.16 mmol) and N,N-diphenyl hydrazine 144 (35 mg, 0.19 mmol) 

were dissolved in methanol (3 mL) and stirred for 45 minutes at room temperature before 

concentration in vacuo.  Purification via flash column chromatography (95:5 DCM:methanol) 

gave the title compound D-189 as a brown oil in a 57 % yield (26 mg, 0.091 mmol).  IR 

(ATR): νmax 3352, 3061, 2925, 1590, 1494, 1297, 1212, 1040 cm-1; [α]D25 (deg cm3 g−1 dm−1) 

-10.9 (c = 0.85, chloroform); 1H NMR (400 MHz, CD3OD) δ 7.37-7.34 (4H, m, H-7), 7.12 

(2H, t, J = 7.4, H-8), 7.06 (4H, m, H-6), 6.54 (1H, d, J = 6.0, H-4), 4.24 (1H, dd, J = 6.0, 5.9, 

H-3), 3.67-3.60 (2H, m, Ha, H-2), 3.55-3.50 (1H, m, H-1); 13C NMR (400 MHz, CD3OD): δ 

145.2 (C-5), 139.2 (C-4), HRMS 130.7 (C-7), 125.4 (C-8), 123.5 (C-6), 75.5 (C-2), 73.7 (C-

3), 64.3 (C-1); HRMS (ESI): [M+H]+ HRMS found 287, C16H19N2O3 required 287.1390. 

[M+Na]+ found 309.1212, C16H18N2NaO3 required 309.1210. 

 

 

 

 

 

 



188 
 

(2-S-3-S,E)-4-[(N,N-Diphenyl)-hydrazono]-butane-1,2,3-triol (L-190) 

 

L-threose L-103 (20 mg, 0.16 mmol) and N,N-diphenyl hydrazine 144 (35 mg, 0.19 mmol) 

were dissolved in methanol (3 mL) and stirred at room temperature for 1 hour before 

concentration in vacuo.  Purification via flash column chromatography (95:5 DCM:methanol) 

gave the title compound L190 as a brown oil in a 79 % yield (36 mg, 0.13 mmol).  IR (ATR): 

νmax 3353, 3060, 2927, 1590, 1494, 1296, 1212, 1037 cm-1; [α]D25 (deg cm3 g−1 dm−1) -5.2 

(c = 1.1, chloroform); 1H NMR (400 MHz, CD3OD) δ 7.35 (4H, dd, J = 8.4, 7.5 Hz, H-7), 7.18 

(2H, t, J = 7.5, H-8), 7.05 (4H, d, J = 8.4 Hz, H-6), 6.51 (1H, d, J = 5.7, H-4), 4.27 (1H, dd, 

J = 5.7, 4.4 Hz, H-3) 3.63 (1H, ddd, J= 8.0, 5.0, 4.4 Hz, H-2), 3.63 (1H, dd, J= 12.5, 5.0 Hz, 

H-1), 3.50 (1H, dd, J = 12.5, 8.0 Hz, H-1); 13C NMR (400 MHz, CD3OD): δ 145.1 (C-5), 

139.0 (C-4), 130.8 (C-7), 125.5 (C-8), 123.5 (C-6), 75.2 (C-2), 73.4 (C-3), 64.0 (C-1); HRMS 

(ESI): [M+H]+ HRMS found 287.1395, C16H19N2O3, required 287.1390. [M+Na]+ HRMS 

found 309.1210, C16H18N2NaO3 required 309.1210. 
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Z-L-Valine dodecylamide (L-203) 

 

 

 

Triethylamine (2.8 mL, 20 mmol) was added to a stirred solution of Z-L-valine L-163 (5.00 

g, 20 mmol) in THF (50 mL) at 0 ºC.  After 5 minutes ethyl chloroformate (1.90 mL, 20 mmol) 

was added dropwise (0.2 mL/min) to the solution and then stirred for a further 30 minutes.  

Dodecylamine (3.69 g, 20 mmol) was dissolved in THF (10 mL) and added to the mixture 

causing a white precipitate to form.  This was dissolved upon the addition of more THF (50 

mL). The reaction was warmed to room temperature and stirred for a further 14 hours.  The 

resulting white solid was filtered and washed with ice cold 1M NaOH (15 mL), followed by 

ice cold methanol (15 mL) and finally water (15 mL) to give the title compound L-203 as a 

crystalline white solid in a 99 % yield (8.70 g, 20.7 mmol).  Mp 125-127 oC; IR (ATR): νmax 

3291, 2919, 2851, 1687, 1645, 1538, 1293, 1246, 1041 cm-1; [α]D25 (deg cm3 g−1 dm−1) -

11.5 (c= 1.0 g cm-3, chloroform);  1H NMR (400 MHz CDCl3); δ 7.38-7.29 (5H, m, H-1), 5.85-

5.83 (1H, br t, J = 5.5 Hz, N-H amide), 5.35 (1H,br d, J = 9.0, N-H carbamate), 5.10 (2H, s, 

H-3), 3.90 (1H, dd, J= 9.0, 6.3 Hz, H-5), 3.30-3.16 (2H, m, H-9), 2.14-2.09 (1H, sptd, J= 6.9, 

6.3 Hz, H-6), 1.51-1.44 (2H, m, H-10), 1.34-1.22 (18H, m, H-11 - H-19), 0.95 (3H, d, J= 6.9 

Hz, H-7), 0.92 (3H, d, J= 6.9 Hz, H-7), 0.88 (3H, t, J= 6.9, H-20), 13C NMR (400 MHz, CDCl3); 

171.1 (C-8), 156.2 (C-4), 136.0 (Ar), 128.7 (Ar), 128.4 (Ar), 128.2 (Ar), 66.9 (C-3), 60.5 (C-

5), 39.4 (C-9), 31.7 (CH2), 30.8 (C-6), 29.5 (CH2), 29.4 (CH2), 29.3 (CH2), 29.2 (CH2), 29.1 

(CH2), 26.7 (CH2), 19.1 (C-7), 17.7 (C-7), 13.9 (C-20); HRMS (ESI): [M+Na]+  HRMS found 

441.3074 C25H42N2NaO3 required 441.3088. 
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L-Valine dodecylamide (L-204) 

 

 

Methanol (25 mL) was added to a mixture of Z-L-valine dodecylamide L-203 (0.50 g, 1.19 

mmol) and palladium on carbon (0.15 g, 10% b.w.) and the flask was evacuated.  A 

hydrogen balloon was added to the top of the flask and the reaction stirred for 1 hour. The 

reaction mixture was filtered through a pad of celite and the pad washed with copious 

amounts of methanol and the solvent reduced in vacuo to give compound L-204 as a white 

solid in a 99 % yield (0.33 g, 1.17 mmol). Mp 132-133 ºC; IR (ATR): νmax 3295, 2917, 2845, 

1641, 1553, 1472, 1463, 1234, 1160 cm-1; [α]D25 (deg cm3 g−1 dm−1) -27.7 (c = 1.0, 

chloroform); 1H NMR (500 MHz, CDCl3) δ 7.29 (1H, br s, NH amide), 3.29-3.16 (2H, m, H-

5), 3.20 (1H, d, J= 3.7 Hz, H-1), 2.29 (1H, sptd, J= 6.9, 3.7 Hz, H-2), 1.51-1.46 (2H, m, H-

6), 1.26 (18H, m, H-7 – H-15), 0.97 (3H, d, J= 6.9 Hz, H-3), 0.87 (3H, t, J= 6.9 Hz, H-16), 

0.80 (3H, d, J= 6.9 Hz, H-3); 13C NMR (400 MHz CDCl3) δ 174.3 (C-4), 60.3 (C-1), 39.1 (C-

5), 32.0 (CH2), 30.9 (C-2), 29.8 (CH2), 29.7(CH2), 29.7(CH2), 29.7(CH2), 29.6 (CH2), 29.4 

(CH2), 29.4 (CH2), 27.1(CH2), 22.8 (CH2), 19.8 (C-3), 16.04 (C-3), 14.19 (C-16); HRMS (ESI) 

[M+H]+ HRMS found 482.3936 C27H52N3O4 required 482.3952; [M+Na]+ HRMS found 

504.3752 C27H51N3O4Na required 504.3772. 
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N-Boc-L-proline-O-succinimide (L-206) 

 

 

Boc-L-Proline L-159 (1.01 g, 4.46 mmol) and N-hydroxysuccinimide 205 (0.55 g, 4.91 

mmol) were dissolved in dry DMF (20 mL) and stirred at 0 ºC for 30 minutes.  1-Ethyl-3-(3-

dimethylaminopropyl)carbodiimide (1.02 g, 5.35 mmol) was dissolved in dry DMF (10 mL) 

and added dropwise (0.1 mL / min) to the stirred solution.  The reaction was stirred for 1 

hour at 0 ºC and a further 14 hours at room temperature before the solvent was removed in 

vacuo.  The resulting oil was partitioned between ethyl acetate (20 mL) and 2M HCl (20 mL) 

and extracted twice more with ethyl acetate (2 x 20 mL).  The combined organic layers were 

washed with brine (20 mL) then water (20 mL), extracting each time with ethyl acetate (20 

mL).  The organic layers were combined, dried over magnesium sulfate and concentrated 

in vacuo to give the title compound L-206 as a white solid in an 88% yield (1.23 g, 3.94 

mmol).  Mp 132-133 ºC; IR (ATR): νmax 2938, 1817, 1789, 1738, 1698, 1387, 1365, 1199, 

1157, 1079  cm-1; [α]D25 (deg cm3 g−1 dm−1) -57.6 (c = 1.0, chloroform) literature -55 (c = 2.1, 

dioxane);169 1H NMR (400 MHz CDCl3);  δ 4.54 (1H, dd, J= 8.8, 3.7 Hz, H-4), 3.59 (1H, ddd, 

J= 10.1, 7.3, 4.6 Hz, H-1), 3.46 (1H, ddd, J= 10.1, 7.3, 7.3 Hz, H-1), 2.87-2.81 (4H, m, H-

7), 2.43-2.36 (1H, m, H-3), 2.34-2.25 (1H, m, H-3), 2.13-1.84 (2H, m, H-2), 1.46 (9H, s, H-

10); 13C NMR (400 MHz CDCl3); 168.9 (CO), 168.8 (CO), 153.6 (C-8), 81.2 (C-9), 57.3 (C-

4), 46.4 (C-1), 31.5 (C-2), 28.2 (C-10), 25.7 (C-7), 23.6 (C-3); HRMS (ESI); [M+K]+; HRMS 

found 351.0937 C14H20KN2O6 required 351.0953; [M+Na]+; HRMS found 335.1200 

C14H20N2NaO6 required 335.1214. Spectroscopic data was in agreement with the 

literature.170 

 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCYQFjAAahUKEwiMj66r9NDHAhWKRtsKHfqhBH0&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2F1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide&ei=oQTjVcy6J4qN7Qb6w5LoBw&usg=AFQjCNGfYLiRwCLBrc9ORRX5iT48NfOHWg
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N-Boc-L-Proline-L-valine dodecylamide (207) 

 

 

N-Boc-L-proline-O-succinimide L-206 (3.00 g, 9.7 mmol) and L-valine dodecylamide L-204 

(3.30 g, 11.6 mmol) were dissolved in DME (85 mL) and stirred at 50 ºC for 2 hours upon 

which the reaction was deemed complete by TLC.  The solvent was removed in vacuo and 

the resulting colourless oil partitioned between DCM (50 mL) and saturated sodium 

bicarbonate solution (50 mL).  The organic layer was washed with brine (50 mL) and 

extracted three times with DCM (3 x 50 mL).  The organic layers were combined, dried over 

magnesium sulfate and concentrated in vacuo to give 207 as a colourless oil in a 99 % yield 

(4.70 g, 9.7 mmol).  IR (ATR): νmax 3288, 2923, 2853, 1702, 1641, 1547, 1466, 1392, 1365, 

1235, 1162 cm-1; HRMS (ESI) [M+H]+ HRMS found 482.3933, C27H52N3O4 required 

482.3952. [M+Na]+ HRMS found 504.3755, C27H51N3O4Na required 504.3772. The 1H NMR 

spectrum was very broad with no splitting, probably due to rotamers, so the product was 

used in the next step without full characterisation. 
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N-Boc-L-Proline-L- (O-tertbutyl)glutamic acid-L-phenylalanine (208) 

 

 

N-Boc-L-Proline-L-glutamic acid(O-tertbutyl)-L-phenylalanine 208 was prepared using the 

general procedure for one pot peptide synthesis using cleavage method B to remove the 

peptide from resin (Section 10.3.3). The tripeptide was acquired as a white powder (as the 

TFA salt). 1H NMR (400 MHz, CDCl3); δ 7.81 (1H, br d, J= 7.1 Hz, N-H), 7.34 (1H, br d, J= 

7.3 Hz, N-H), 7.25-7.15 (5H, m, H-14), 4.78-4.69 (1H, m, H-11), 4.53-4.32 (1H, m, H-6), 

4.24-4.14 (1H, m, H-4), 3.50-3.31 (2H, m, H-1), 3.26-3.12 (1H, m, H-12), 3.05-2.96 (1H, m, 

H-12), 2.25-2.21 (2H, m, H-8), 2.09-1.78 (6H, m, H-2, H-3, H-7), 1.44-1.37 (18H, m, H-18 & 

H-20); 13C NMR (400 MHz, CD3OD) δ 173.6 (CO), 173.4 (CO), 173.2 (CO), 171.3 (C=), 

155.8 (C-16), 136.6 (C-13), 129.4 (C-14), 128.5 (C-14), 126.9 (C-14), 87.2 (C-19), 81.0 (C-

17), 60.4 (C-4), 53.7 (C-11), 53.3 (C-6), 43.7 (C-1), 37.4 (C-12), 31.6 (CH2) 29.1 (CH2), 28.4 

(CH3), 28.2 (CH2), 28.1 (CH3), 27.0 (CH2), 24.7 (CH2). 
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N-Boc-L-Proline-(O-tertbutyl)L-glutamicacid-L-pheneylalanine dodecylamide (209) 

 

Triethylamine (0.15 mL, 0.91 mL) was added to a stirred solution of N-Boc-L-proline-(O-

tertbutyl)L-glutamic acid-L-phenylalanine 208 (500 mg, 0.91 mmol) in THF (10 mL) at 0 ºC 

followed by ethylchlorformate (0.12 mL, 0.91 mmol).  After 30 minutes dodecylamine (180 

mg, 0.97 mmol) in THF (4 mL) was added and stirred at room temperature for 14 hours.  

The resulting white solid was filtered and washed with ice cold water (10 mL).  The crude 

product was purified via column chromatography (30:70 to 50:50 ethyl acetate:hexane) to 

give the title compound 209 as a white solid in a 52 % yield (340 mg, 0.48 mmol).  Mp 96.5-

98.1 ºC; IR (ATR): νmax 3279, 2926, 2855, 1731, 1702, 1635, 1538, 1391, 1365, 1246, 1151 

cm-1; [α]D25 (deg cm3 g−1 dm−1)  -39.7 (c = 1.0, DCM); 1H NMR (400 MHz, CDCl3) δ 8.33 (1H, 

br d, J= 4.6 Hz, NH amide), 7.32 (1H, br d, J= 9.2 Hz, NH amide), 7.25-7.12 (5H, m, H-14), 

6.86 (1H, br t, J= 5.5 Hz, N-H amide), 4.90-4.80 (1H, m, H-11), 4.19-4.03 (2H, m, H-4, H-

6), 3.65-3.09 (5H, m, H-1, H-15, H-12), 2.84 (1H, dd, J = 14.7, 11.0 Hz, H-12), 2.25-1.72 

(8H, m, H-2, H-3, H-7, H-8), 1.55-1.37 (20 H, m, H-16 – H-25), 1.30-1.15 (18 H, m, H-29 & 

H-31), 0.85 (3H, t, J= 6.6 Hz, H-26); 13C NMR (400 MHz, CDCl3); δ 175.0 (CO), 174.1 (CO), 

170.9 (CO), 155.9 (CO), 138.3 (Ar), 129.4 (Ar), 128.8 (Ar), 128.5 (Ar), 128.3 (Ar), 126.3 

(Ar), 81.6, 81.2, 81.0, 61.5 (CH), 56.8 (CH), 53.6 (CH), 47.4 (CH2), 39.9 (CH2), 37.1 (CH2), 

32.0 (CH2), 32.0 (CH2), 29.8 (CH2), 29.8 (CH2), 29.5 (CH2), 29.4 (CH2), 29.4 (CH2), 28.5 

(CH3), 28.2 (CH3), 27.0 (CH2), 27.0 (CH2), 25.3 (CH2), 24.7 (CH2), 22.8 (CH2), 14.2 (CH3);  

HRMS (ESI): [M+Na]+ HRMS found 737.4795 C40H66N4NaO7 required 737.4824.  

Spectroscopic data was in agreement with the literature.152 
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L-Proline-L-glutamic acid-L-phenyalanine dodecylamide (210) 

 

 

TFA (0.8 mL, 10.9 mmol) was added to a stirred solution of 209 (260 mg, 0.36 mmol) in 

DCM (2 mL).  After 4 hours the solvent was removed in vacuo, and the residue redissolved 

in DCM (3 mL) and washed with 2M HCl (3 mL).  The organic layer was dried over 

magnesium sulfate, filtered and concentrated in vacuo to give the title compound 210 as a 

white solid in a 47 % yield (95 mg, 0.17 mmol).  Mp 116-118 ºC; IR (ATR): νmax 3281, 3069, 

2923, 2853, 1645, 1556, 1177, 1135 cm-1; [α]D25 (deg cm3 g−1 dm−1)  -14.5 (c= 1.0, 

methanol); 1H NMR (400 MHz, CD3OD) δ 7.95-7.91 (1H, NH amide), 7.24-7.17 (5H, m, H-

14), 4.60-4.49 (1H, m, H-11), 4.38-4.24 (2H, m, H-4, H-6), 3.35-2.77 (6H, m, H-1, H-16, H-

12), 2.38-1.81 (8H, m, H-2, H-3, H-7, H-8), 1.36-1.15 (20 H, m, H-17 – H-26), 0.87 (3H, t, 

J= 6.6 Hz, H-27); 13C NMR (400 MHz, CDCl3); δ 176.4 (CO), 172.7 (CO), 169.8 (CO), 138.2 

(Ar), 130.4 (Ar), 130.3 (Ar), 129.6 (Ar), 129.5 (Ar), 127.8 (Ar), 60.9 (CH), 56.1 (CH), 54.4 

(CH), 47.5 (CH2), 40.4 (CH2), 39.3 (CH2), 31.0 (CH2), 30.8 (CH2), 30.7 (CH2), 30.5 (CH2), 

30.4 (CH2), 30.2 (CH2), 28.3 (CH2), 27.9 (CH2), 25.0 (CH2), 23.7 (CH2), 14.5 (C-27); HRMS 

(ESI): [M+H]+ HRMS found 559.3863, C31H51N4O5 required 559.3854. [M+Na]+; HRMS 

found 581.3682, C31H50N4NaO5 required 581.3673 
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L-Glutamic acid (O-tertbutyl)-dodeclyamide (213)  

 

 

Methanol (30 mL) was added to a mixture of Z-(O-tertbutyl)-Glutamic acid dodecylamide 

223 (1.2 g, 2.4 mmol) and palladium on carbon (10% b.w., 225 mg, 0.24 mmol) and the 

flask evacuated.  A hydrogen balloon was added to the top of the flask and the reaction 

stirred for 90 minutes.  The reaction mixture was filtered through a pad of celite and the pad 

washed with copious amounts of methanol.  The solvent was removed in vacuo to give the 

title compound 213 as an opaque oil in a 99 % yield (889 mg, 2.4 mmol).  IR (ATR): νmax 

3301, 2922, 2853, 1727, 1656, 1457, 1367, 1151 cm-1; [α]D25 (deg cm3 g−1 dm−1) +2.5 (c = 

1.0, methanol); 1H NMR (400 MHz, CD3OD); δ 7.16 (1H, apparent br t, J = 6.9 Hz, N-H 

amide), 3.35 (1H, dd, J = 7.3, 5.0 Hz, H-6), 3.22 (2H, apparent dt, J= 6.9, 6.9 Hz, H-8), 2.35 

(1H, ddd, 16.0, 7.3, 7.3 Hz, H-4), 2.31 (1H, ddd, 16.0, 7.3, 7.3 Hz, H-4), 2.07 (1H, dddd, J 

= 14.0, 7.3, 7.3, 5.0 Hz, H-5), 1.79 (1H, dddd J = 14.0, 7.3, 7.3, 7.3 Hz, H-5), 1.50-1.40 

(11H, m, H-1, N-H amine), 1.27-1.24 (18 H, m, H-10 - H-18), 0.86 (3H, t, J = 6.9 Hz, H-19); 

13C NMR (400 MHz, CDCl3); δ 173.3 (C-7), 171.3 (C-3), 81.0 (C-2), 52.0 (C-6), 40.8 (CH2), 

39.3 (CH2), 32.0 (CH2), 29.5 (CH2), 28.0 (C-1), 26.8 (CH2), 22.8 (CH2), 14.0 (C-19); HRMS 

(ESI) [M+H]+ HRMS found, 371.3262 C21H43N2O3 required 371.3268. 
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L-Phenylalanine-(O-tertbutyl)-L-glutamic acid dodecylamide (214) 

 

Methanol (20 mL) was added to a mixture of Z-L-phenylalanine-(O-tertbutyl)-L-glutamic acid 

dodecylamide 224 (1.10 g, 1.69 mmol) and palladium on carbon (10 % b.w., 149 mg) and 

the mixture evacuated. A hydrogen balloon was added to the top of the flask and the 

reaction stirred for 3.5 hours. The reaction mixture was filtered through a pad of celite and 

the pad washed with copious amounts of methanol.  The filtrate was concentrated in vacuo 

to give the pure title compound 214 as a colourless oil in a 97 % yield (0.85 g, 1.64 mmol).  

IR (ATR): νmax 3313, 2924, 2853, 1728, 1650, 1513, 1455, 1367, 1153 cm-1; [α]D25 (deg cm3 

g−1 dm−1)  -8.5 (c= 1.0, methanol); 1H NMR (400 MHz, CDCl3); δ 7.86 (1H, d, J= 8.2 Hz, N-

H amide), 7.32-7.18 (5H, m, H-1), 6.47 (1H, br t, J= 5.5 Hz, N-H amide), 4.36 (1H, ddd, J= 

8.2, 7.0, 6.4 Hz, H-6), 3.60 (1H, dd, J= 9.2, 4.1 Hz, H-4), 3.21-3.16 (2H, m, H-13), 3.18 (1H, 

dd, J= 13.7, 4.1 Hz, H-3), 2.74 (1H, dd, J = 13.7, 9.2, H-3), 2.32 (1H, ddd, J = 16.5, 7.0, 6.4 

Hz, H-8), 2.19 (1H, ddd, J = 16.5, 7.0, 6.4 Hz, H-8), 2.05 (1H, dddd, J = 13.5, 6.4, 6.4, 6.4 

Hz, H-7), 1.85 (1H, dddd, J = 13.5, 7.0, 7.0, 7.0 Hz, H-7), 1.52-1.43 (13H, m, H-11, H-14, 

NH2), 1.25-1.23 (18H, m, H-15 - H-23), 0.86 (3H, t, 6.9 Hz, H-24); HRMS (ESI): [M+H]+ 

HRMS found 518.3943, C30H52N3O4 requires 518.3952. [M+Na]+ HRMS found 540.3740, 

C30H51N3NaO4 required 517.3880. 
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N-Boc-L-Pro-L-Phe-L(O-tertbutyl)-Glutamic acid dodecylamide (215) 

 

Triethylamine (0.22 mL, 1.55 mmol) was added to a stirred solution of N-Boc-L-proline L-

159 (334 mg, 1.55 mmol) in DCM (12 mL) at 0 ºC.   After 30 minutes ethyl chloroformate 

(0.15 mL, 1.55 mmol) was added dropwise (0.1 mL / min).  After a further 1.5 hours a 

solution of L-phenylalanine-(O-tertbutyl)-L-glutamic acid dodecylamide 214 (800 mg, 1.55 

mmol) in DCM (4 mL) was added.  After 19 hours the crude mixture was washed with 2M 

HCl (20 mL) and the aqueous layer extracted with DCM (3 x 20 mL).  The organic layers 

were combined, dried over magnesium sulfate, filtered and concentrated in vacuo to give 

the title compound 180 as a white solid in a 75 % yield (834 mg, 1.17 mmol). IR (ATR): νmax 

3269, 3088, 2926, 2855, 1735, 1705, 1633, 1546, 1390, 1365, 1254, 1152 cm-1; [α]D25 (deg 

cm3 g−1 dm−1) -35.2 (c= 1.0, methanol);  1H NMR (400 MHz, CDCl3); 7.36-7.16 (6H, m, H-9, 

N-H amide), 6.61-6.57 (2H, m, N-H amide), 4.59 (1H, dd, J = 6.0, 6.0 Hz, H-6), 4.47 (1H, 

dd, J = 7.8, 7.8 Hz, H-4), 4.2 (1H, dd, J = 8.5, 5.3 Hz, H-11), 3.39-3.22 (3H, m, H-1, H-7), 

3.18 (2H, m, H-19), 3.05 (1H, dd, J = 14.0, 6.0 Hz, H-7), 2.77-2.14 (4H, m, H-3, H-13), 1.89-

1.86 (1H, m, H-12), 1.81-1.74 (3H, m, H-2, H-12), 1.50-1.20 (38H, m, H-15, H-18, H-20 – 

H-29) 0.86 (3H, t, J = 6.9 Hz, H-30); 13C NMR (400 MHz, CDCl3); 173.1 (CO), 172.2 (CO), 

170.7 (CO), 170.6 (CO), 155.7 (C-15), 135.9 (C-8), 129.1 (C-9), 127.6 (C-9), 81.2 (C-16), 

80.4 (C-16), 61.2 (C-4) 54.3 (C-6), 52.9 (C-11), 47.3 (C-1), 39.7 (C-19), 36.5 (C-7), 31.9 

(CH2), 29.6 (C-17), 28.3 (C-17), 26.9 (CH2), 24.6(CH2), 22.7(CH2), 14.1 (C-30); HRMS 

(ESI): [M+H]+ HRMS found 715.4980, C40H67N4O7 required 715.5004. [M+Na]+ HRMS found 

737.4805, C40H66N4NaO7 required 737.4824. 
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L-Proline-L-phenylalanine-L-glutamic acid dodecylamide trifluoroacetic acid salt 

(216) 

 

N-Boc-L-proline-L-phenylalanine-L(O-tertbutyl)-glutamic acid dodecylamide 215 (350 mg, 

0.490 mmol) was dissolved in DCM (4 mL).  Trifluoroacetic acid (1.2 mL, 15.68 mmol) was 

added and stirred for 2 hours at room temperature before the solvent was removed in vacuo.  

Co-distillation with diethyl ether (5 x 5 mL) gave the title compound 216 as a white solid as 

the TFA salt in an 85 % yield (280 mg, 0.416 mmol).  Mp 154-158 ºC; IR (ATR): νmax 3296, 

2919, 2851, 1728, 1634, 1552, 1394, 1178, 1135 cm-1;  [α]D25 (deg cm3 g−1 dm−1) -27.3 (c= 

1.0, methanoo);  1H NMR (400 MHz, CDCl3); 9.14 (1H, br s, N-H), 8.69 (1H, d, J= 8.2 Hz, 

NH amide), 8.41 (br s, N-H), 8.22 (1H, d, J= 8.5 Hz, NH-amide), 7.78 (1H, br t, J= 5.5, N-H 

amide), 7.26-7.13 (5H, m, H-9), 4.58 (1H, ddd, J= 10.1, 8.2, 4.2 Hz, H-6), 4.18 (1H, ddd, J= 

8.5, 8.0, 5.5 Hz, H-11), 4.06-4.03 (1H, m, H-4), 3.14-2.95 (4H, m, H-1, H-16), 3.00 (1H, dd, 

J= 13.7, 4.2 Hz, H-7), 2.73 (1H, dd, J= 13.7, 10.1 Hz, H-7), 2.26-2.13 (3H, m, H-3, H-

13),1.86-1.66 (5H, m, H-2, H-3, H-12), 1.34-1.31 (2H, m, H-17), 1.20-1.18 (18H, m, H-18 – 

H-26), 0.81 (3H, t, J = 6.9 Hz, H-27); 13C NMR (400 MHz, CDCl3); 173.9 (C-14), 171.0 (CO 

amide), 171.0 (CO amide), 168.1 (CO amide), 137.5 (C-8), 129.2 (C-9), 128.1 (C-9) 126.5 

(C-9), 58.7(C-4), 54.4 (C-6), 52.0 (C-11), 45.7 (C-1), 38.9 (C-7), 37.7 (C-16), 30.0 (CH2), 

29.5 (CH2), 29.1 (CH2), 28.7 (CH2), 27.7 (CH2), 26.3 (CH2), 23.4 (CH2), 22.1 (CH2), 14.0 (C-

27); HRMS (ESI) [M+H]+; HRMS found 559.3846, C31H51N4O5 required 559.3854.  

Spectroscopic data is in agreement with the literature.152  
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L-Phenylalanine dodecylamide (217) 

 

 

Methanol (40 mL) was added to a mixture of Z-L-phenylalanine dodecylamide 220 (1.22 g, 

2.62 mmol) and palladium on carbon (10 % b.w., 0.28 g, 0.26 mmol,) and the flask 

evacuated.  A hydrogen balloon was added to the top of the flask and stirred for 16 hours.  

The mixture was filtered through a pad of celite and the pad washed with copious amounts 

of methanol.  The filtrate was concentrated in vacuo to give the title compound 220 as a 

white powder in an 83 % yield (0.72 g, 2.17 mmol).  Mp 61-63 ºC; IR (ATR) 3287, 2916, 

2850, 1633, 1549, 1523, 1470 cm-1; [α]D25 (deg cm3 g−1 dm−1) -46.1 (c = 1.0, chloroform); 

1H NMR (400 MHz, CD3OD) δ 7.34-7.19 (5H, m, H-1), 3.51 (1H, dd, J= 7.0, 7.0 Hz, H-4), 

3.18-3.11 (1H, m, H-6), 3.07-3.00 (1H, m, H-6), 2.95 (1H, dd, J= 13.3, 7.0 Hz, H-3), 2.82 

(1H, dd, J= 13.3, 7.0 Hz, H-3), 1.38-1.18 (20H, m, H-7-H16), 0.89 (3H, t, J= 6.9 Hz, H-17); 

13C NMR (400 MHz, CD3OD) δ 176.0 (C-5), 138.7 (Ar), 130.4 (Ar), 129.5 (Ar), 127.7 (Ar), 

57.8 (C-4), 42.6 (C-3), 40.3 (C-6), 33.1 (CH2), 30.8 (CH2), 30.8 (CH2), 30.7 (CH2), 30.6 

(CH2), 30.5 (CH2), 30.4 (CH2), 30.3 (CH2), 27.9 (CH2), 23.7 (CH2), 14.5 (C-17); HRMS (ESI): 

[M+H]+ found 333.2901, C21H37N2O required 333.2900. [M+Na]+ found 355.2728, 

C21H36N2NaN2O requires 355.21720. 
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L-Proline dodecylamide (219) 

 

 

 

TFA (4.8 mL, 62.8 mmol) was added to a stirred solution of N-Boc-L-proline dodecylamine 

(1.2 g, 3.14 mmol) in DCM (20 mL).  After 2 hours the reaction was neutralised with 

saturated sodium bicarbonate solution (10 mL) and extracted with DCM (3 x 20 mL).  The 

organic extracts were combined and washed with brine (50 mL), dried over magnesium 

sulfate, flittered and concentrated in vacuo to give the title compound 219 as a white solid 

in a 96 % yield (803 mg, 3.00 mmol).  Mp 47–50 ºC; IR (ATR): νmax 3301, 2918, 2850, 1666, 

1632, 1553, 1523, 1471 cm-1; [α]D25 (deg cm3 g−1 dm−1) -39.3 (c = 1.0, chloroform); 1H NMR 

(400 MHz, CDCl3) δ 7.77 (1H, br t, J= 6.9 Hz, N-H amide), 3.89 (1H, dd, J= 8.7, 5.5 Hz, H-

4), 3.34 (1H br s, N-H), 3.20 (2H, dt,  J = 6.9, 6.9 Hz, H-6), 3.12-3.06 (1H, dt, J = 10.5, 6.9 

Hz, H-1), 3.00-2.94 (1H, dt, J = 10.5, 6.9 Hz, H-1), 2.25-2.15 (1H, ddt, J = 13.0, 8.7, 6.9 Hz, 

H-3), 1.96-1.87 (1H, dtd, J= 13.0, 6.9, 5.5 Hz, H-3), 1.75 (2H, apparent quintet, J = 6.9 Hz, 

H-2), 1.50-1.45 (2H, m, H-7), 1.30-1.24 (18H, m, H-8-H16), 0.87 (3H, t, J = 6.6 Hz, H-17); 

13C NMR (400 MHz, CDCl3); δ 173.8 (C-5), 60.5 (C-4), 47.3 (C-1), 39.3 (C-6), 32.0 (CH2), 

29.8 (CH2), 29.7 (CH2), 29.7 (CH2), 29.5 (CH2), 29.4 (CH2), 27.1 (CH2), 26.1 (CH2), 22.8 

(CH2), 14.3 (C-17); HRMS (ESI)  [M+H]+; HRMS found 283.2748 C17H35N2O required 

283.2744; [M+Na]+ HRMS found 305.2567 C17H34N2NaN2O required 305.2563. 
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Z-L-Pheneylalanine dodecylamide (220) 

 

 

Triethylamine (0.46 mL, 3.34 mmol) was added to a stirred solution of Z-L-phenylalanine 

221 (1.00 g, 3.34 mmol) in THF (20 mL) at 0 ºC.  After 15 minutes ethyl chloroformate was 

added (0.32 mL, 3.34 mmol) followed after 45 minutes by dodecylamine (619 mg, 3.34 

mmol).  The mixture was stirred for 1 hour at 0 ºC before being warmed to room temperature.  

After 16 hours the resulting white solid was filtered, washed with ice cold 1M NaOH (15 

mL), then ice cold deionised water (15 mL).  The product 220 was collected a white powder 

in a 96 % yield (1.50 g, 3.21 mmol). Mp 112-114 oC; IR (ATR): νmax 3301, 2919, 2851, 1686, 

1525, 1285, 1235, 1038 cm-1; [α]D25 (deg cm3 g−1 dm−1) -1.5 (c = 1.0, dimethylsulfoxide);  1H 

NMR (400 MHz, CDCl3) δ 7.36-7.14 (10 H, m, H-1 & H-8), 5.64 (1H, t, J = 4.8 Hz, N-H), 

5.48 (1H, br d, J = 7.5 Hz, N-H), 5.06 (2H, s, H-3), 4.32 (1H, ddd, J= 7.5, 7.5, 7.5 Hz, H-5), 

3.16-3.07 (2H, m, H-10), 3.12 (1H, dd, J= 13.7, 7.5 Hz, H-6), 2.98 (1H, dd, J = 13.7, 7.5 Hz, 

H-6), 1.32-1.12 (20H, m, H-11 – H-20), 0.87 (3H, t, 6.9, H-21); 13C NMR δ 170.6 (C-7), 136.2 

(C-2), 129.4 (Ar), 128.8 (Ar), 128.6 (Ar), 128.3 (Ar), 128.1 (Ar), 127.1 (Ar), 67.1 (C-3), 56.6 

(C-5), 39.6 (C-10), 39.0 (C-6), 32.0 (CH2), 29.7 (CH2), 29.7 (CH2), 29.6 (CH2), 29.6 (CH2), 

29.4 (CH2), 29.3 (CH2), 29.3 (CH2), 26.8 (CH2), 22.8 (CH2), 14.2 (C-10); HRMS (ESI);  

[M+H]+ HRMS found 467.3280, C29H43N2O3 requires 467.3268. [M+Na]+ HRMS found 

489.3109, C29H42N2NaN2O3 requires 489.3088. 
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N-Boc-L-Proline-L-phenylalanine dodecylamide (222) 

  

To a stirred solution of L-phenylalanine dodecylamide 217 (1.2 g, 3.4 mmol) in DME (40 

mL) was added N-Boc-L-proline-O-succinimide 206 (1.06 g, 3.4 mmol).  After 17 hours at 

room temperature the solution was heated to 50 ºC for a further 2 hours.  Upon cooling the 

solvent was removed in vacuo and redissolved in DCM (30 mL) and washed with saturated 

sodium bicarbonate solution (30 mL), then brine (30 mL).  The organic layer was dried over 

magnesium sulfate, filtered and concentrated in vacuo to give the title compound 222 as a 

colourless oil in a 94 % yield (1.70 g, 3.21 mmol). IR (ATR): νmax 3301, 2924, 2854, 1645, 

1548, 1391, 1241, 1162 cm-1; [α]D25 (deg cm3 g−1 dm−1) -56.0 (c = 1.0, chloroform); 1H NMR 

(400 MHz, CDCl3) δ 7.29-7.13 (5H, m, H-11), 6.63-6.53 (1H, m, N-H), 6.34 (1H, br d, J = 

7.3 Hz, N-H), 4.73-4.62 (1H, m, H-8), 4.12-4.16 (1H, m, H-7), 3.39-3.23 (3H, m, H-4, H-9), 

3.20-3.10 (2H, m, H-13), 3.05-2.97 (1H, m, H-9), 2.10-1.95 (2H, m, H-6), 1.88-1.62 (2H, m, 

H-5), 1.45-1.10 (29H, m, H-1, H-14 - H-23), 0.86 (3H, t, J = 6.6 Hz, H-24); HRMS (ESI)  

[M+H]+ HRMS found 530.393738, C31H52N3O4 required 530.395234. [M+Na]+ HRMS found 

552.375035, C31H51N2NaN3O4 required 552.377178. 
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Z-(O-tertbutyl)-Glutamic acid dodecylamide (223) 

 

Triethylamine (0.41 mL, 2.96 mmol) was added to a stirred solution of Z-(O-tertbutyl)-

glutamic acid 212 (1.0 g, 2.96 mmol) in dry THF (40 mL) at 0 ºC.  After 15 minutes ethyl 

chloroformate (0.28 mL, 2.96 mmol) was added dropwise (0.1 mL/min) followed by 

dodecylamine (548 mg, 2.96 mmol) after a further 30 minutes of stirring.  After 3 hours the 

solvent was removed in vacuo and the crude material redissolved in DCM (40 mL).  The 

organic layer was washed with a saturated solution of sodium bicarbonate (40 mL) and the 

aqueous layer extracted with DCM (2 x 40 mL).  The combined organic extracts were 

washed with brine (40 mL), dried over magnesium sulfate, filtered and concentrated in 

vacuo to give the pure compound 223 as a white solid in a 99 % yield (1.48 g, 2.93 mmol). 

Mp 58-60 ºC; IR (ATR): νmax 3293, 2920, 2851, 1720, 1691, 1645, 1534, 1250, 1153, 1049 

cm-1; [α]D25 (deg cm3 g−1 dm−1) -8.4 (c = 1.0, methanol); 1H NMR (400 MHz, CDCl3); δ 7.37-

7.29 (5H, m, H-1), 6.32 (1H, br t, J= 6.5 Hz, N-H amide), 5.72 (1H, d, J= 7.8 Hz, N-H 

carbamate), 5.01 (1H, s, H-3), 4.19-4.14 (1H, ddd, J= 7.8, 6.4, 6.4 Hz, H-5), 3.22 (2H, dt, 

J= 6.5, 6.5 Hz H-12), 2.42 (1H, ddd, J= 16.5, 6.4, 6.4 Hz, H-7), 2.28 (1H, ddd, J= 16.5, 6.4, 

6.4 Hz, H-7), 2.1-2.0 (1H, dddd, J = 13.0, 6.4, 6.4, 6.4 Hz, H-6), 1.97-1.87 (1H, dddd, J= 

13.0, 6.4, 6.4, 6.4 Hz, H-6), 1.46-1.38 (11H, m, H-10, H-13), 1.28-1.25 (18H, m, H-14 – H-

22), 0.87 (3H, t, J= 6.8 Hz, H-23); 13C NMR (400 MHz, CDCl3); δ 173.1 (CO), 171.2 (CO), 

156.4 (C-4), 136.3 (C-2), 128.7 (C-1), 128.3 (C-1), 128.1 (C-1), 81.2 (C-9), 67.1 (C-3), 54.5 

(C-5), 39.7 (C-12), 32.0 (CH2), 29.8 (CH2), 29.7 (CH2), 29.7 (CH2), 29.5 (CH2), 29.4 (CH2), 

29.2 (CH2), 28.2 (CH2), 27.0 (CH2), 22.8 (CH2), 14.2 (C-23);  HRMS (ESI) [M+H]+ HRMS 
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found 505.3621, C29H49N2O5 required 505.3636. [M+Na]+ HRMS found 527.3437, 

C29H48N2NaO5 required 527.3455. 

 

Z-L-Phenylalanine-(O-tertbutyl)-L-glutamic acid dodecylamide (224)

 

Triethylamine (0.30 mL, 2.16 mmol) was added to a stirred solution of Z-L-phenylalanine 

221 (646 mg, 2.16 mmol) in 30 mL THF (30 mL) at 0 ºC.  After 15 minutes ethyl 

chloroformate (0.20 mL, 2.16 mmol) was added dropwise (0.1 mL / min).  After a further 50 

minutes a solution of L-glutamic acid (O-tertbutyl) dodecylamide 213 (800 mg, 2.16 mmol) 

in THF (5 mL) was added to the reaction and stirred for 19 hours before the solvent was 

removed in vacuo.  The crude white solid was redissolved in DCM (30 mL), washed with a 

saturated sodium bicarbonate solution (30 mL), 0.1 M HCl (30 mL) then brine (30 mL).  The 

organic layer was dried over magnesium sulfate, filtered and concentrated in vacuo to give 

the crude product as a white solid.  Purification via flash column chromatography (98:2 

DCM:methanol to 95:5 DCM:methanol) gave the title compound 224 in a 77% yield as a 

white powder (1.09 g, 1.67 mmol).  Mp 100-103 ºC; IR (ATR): νmax 3286, 2921, 2851, 1726, 

1690, 1633, 1535, 1260, 1151 cm-1; [α]D25 (deg cm3 g−1 dm−1) -12.3 (c = 1.0, methanol); 1H 

NMR (400 MHz, CDCl3); δ 7.35-7.08 (11H, m, H-1, H-28, NH amide), 6.39 (1H, br t, J= 6.0 

Hz, N-H amide), 5.24 (1H, br d, J= 6.4 Hz, N-H amide), 5.08 (1H, d, J= 12.4 Hz, H-3), 5.04 

(1H, d, J= 12.4 Hz, H-3), 4.41 (1H, dt, J= 6.4, 6.4 Hz, H-5), 4.33 (1H, ddd, J= 6.9, 7.0, 7.0 

Hz, H-8), 3.25-3.14 (2H, m, H-15), 3.07 (2H, d, J= 6.4 Hz, H-6), 2.34 (1H, ddd, J= 16.9, 7.0, 
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7.0 Hz, H-10), 2.19 (1H, ddd, 16.9, 7.0, 7.0 Hz, H-10), 2.05-1.98 (1H, m, H-9), 1.91-1.83 

(1H, m, H-9), 1.45-1.42 (2H, m, H-16), 1.41 (9H, s, H-13), 1.26-1.23 (18H, m, H-17 - H-25), 

0.86 (3H, t, J = 6.6 Hz, H-26), 13C NMR (400 MHz, CDCl3); δ 173.6 (C-11), 171.1 (CO), 

170.5 (CO), 156.2 (C-4), 136.1 (C-2), 129.3 (C-1), 128.9 (C-Ar), 128.7 (C-Ar), 128.4 (C-Ar), 

128.2 (C-Ar), 127.3 (C-Ar), 81.3 (C-12), 67.3 (C-3), 56.5 (C-5), 53.0 (C-8), 39.8 (C-15), 38.2 

(C-9), 32.0 (C-10), 29.8 (CH2), 29.7 (CH2), 29.5 (CH2), 29.5 (CH2), 28.2 (C-13), 27.0 (CH2), 

22.8 (CH2), 14.3 (C-26); HRMS (ESI) [M+H]+ HRMS found 652.4320, C38H58N3O6 required 

652.4320. [M+Na]+ HRMS found 674.4146, C38H57N3NaO6 required 674.4140. 

 

 

L-Proline-L-valine dodecylamide (Gelator A) 

 

 

 

Trifluoroacetic acid (15.6 mL, 0.2 mol) was added to a stirred solution of 207 (4.92 g, 10.2 

mmol) in DCM (15 mL).  After 2 hours the reaction was deemed complete by TLC and the 

mixture concentrated in vacuo. The resulting yellow oil was redissolved in 20 mL DCM and 

washed with saturated sodium bicarbonate solution (20 mL).  The organic layer was washed 

with brine (20 mL) and extracted three times with DCM (3 x 20 mL).  The organic layers 

were combined, dried over magnesium sulfate, filtered and concentrated in vacuo to give 

the title compound, Gelator A, as a white solid in an 88 % yield (3.43 g, 9.0 mmol).  Mp 98-

102 ºC; IR (ATR): νmax 3292, 2918, 2850, 1637, 1560, 1539, 1463, 1371, 1224 cm-1 ; [α]D25 

-53.14 (c = 1.0, chloroform); 1H NMR (400 MHz, CDCl3) δ 8.17 (1H, br d, J = 9.2 Hz, N-H), 

6.28 (1H, br t, J = 7 Hz, N-H), 4.06 (1H, dd, 9.2, 7.3, H-6), 3.74 (1H, dd, 9.2, 5.0, H-4), 3.25 

(1H, ddt, J = 12.8, 7.0, 6.0 Hz, H-10), 3.14 (1H, ddt, J = 12.8, 7.0, 6.0 Hz, H-10), 3.02 (1H, 
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dt, J = 10.1, 7.0 Hz, H-1), 2.92 (1H, dt, J = 10.1, 7.0 Hz, H-1), 2.18-2.13 (1H, m, N-H), 2.16 

(1H, ddt, J= 12.1, 9.2, 7 Hz, H-3), 2.14 (1H, dspt, J = 7.3, 6.9 Hz, H-7), 1.89 (1H, dtd, J = 

12.1, 7.0, 5.0 Hz, H-3), 1.70 (2H, quintet, J = 7.0 Hz, H-2), 1.50-1.42 (2H, m, H-11), 1.28-

1.20 (18H, m, H-12 – H-20), 0.92 (3H, d, J = 6.9, H-8), 0.89 (3H, d, 6.9 Hz, H-8), 0.85 (3H, 

t, J = 6.9 Hz, H-21); 13C NMR (400 MHz, DMSO d6) δ 173.5 (CO), 170.2 (CO), 60.1 (CH), 

56.6 (CH), 46.7 (C-1), 38.3 (C-10), 31.5 (CH2), 31.3 (CH2), 30.6 (C-7), 26.3 (CH2), 25.8 

(CH2), 22.1 (CH2), 19.2 (C-8), 17.8 (C-8), 14.0 (C-21); HRMS (ESI): [M+H]+ HRMS found 

382.3416, C22H44N3O2 required 382.3428. [M+Na]+ HRMS found 404.3237, C22H43N3NaNO2 

required 404.3237.  Spectroscopic data was in agreement with the literature.139 

 

 

N-Methyl-L-proline-L-valine dodecylamide (Gelator B) 

 

 

Methanol (5 mL) was added to a mixture of L-proline-L-valine dodecylamide (Gelator A) 

(1.0 g, 2.39 mmol,) and palladium on carbon (10 % b.w., 100 mg,).  The flask was evacuated 

and a 40% solution of formaldehyde in water (0.2 mL, 2.63 mmol) was added. A hydrogen 

balloon was added to the top of the flask and stirred for 1.5 hours.  The mixture was then 

filtered through a pad of celite and the pad washed with copious amounts of methanol.  The 

filtrate was concentrated in vacuo to give Gelator B as a white powder in a 99 % yield (0.94 

g, 2.37 mmol).  Mp 76-79 ºC; IR (ATR): νmax 3285, 2918, 2851, 1637, 1558, 1540, 1231 cm-

1; [α]D25 (deg cm3 g−1 dm−1) -67.4 (c = 1.0, chloroform);  1H NMR (400 MHz, CDCl3); δ 7.84 

(1H, br d, J= 9.2, N-H), 6.07 (1H, br t, J= 6.5 Hz, N-H), 4.07 (1H, dd, J= 9.2, 7.8 Hz, H-7),  

3.29-3.16 (2H, m, H-11), 3.12-3.09 (1H, m, H-5), 2.87 (1H, ddd, J= 10.1, 5.0, 5.0 Hz, H-2), 
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2.35 (3H, s, H-1), 2.27-2.17 (1H, m, H-2), 2.20-2.10 (1H, dspt, J= 7.8, 6.9 Hz, H-8), 1.86-

1.70 (4H, m, H-3, H-4), 1.50-1.42 (2H, m, H-12), 1.27-1.21 (18H, m, H-13 – H-21), 0.93 (3H, 

d, J= 6.9 Hz, H-9), 0.90 (3H, d, J= 6.9 Hz, H-9), 0.86 (3H, t, J= 6.9 Hz, H-22); 13C NMR (400 

MHz, CDCl3) δ 175.1 (CO), 171.1(CO), 69.0 (C-1), 58.4 (CH), 56.7 (CH), 41.8 (CH2), 39.6 

(CH2), 32.0 (CH2), 31.4 (CH2), 30.7 (C-8), 29.8 (CH2), 29.8 (CH2), 29.7 (CH2), 26.7 (CH2), 

29.6 (CH2), 29.5 (CH2), 29.4 (CH2), 27.0 (CH2), 24.5 (CH2), 22.8 (CH2), 19.7 (CH3), 18.3 

(CH3), 14.2 (CH3); HRMS (ESI): [M+H]+ HRMS found 396.3586, C23H46N3O2 required 

396.3585. [M+Na]+ HRMS found 418.3417, C23H45N3NaNO2 required 418.3404. 

 

 

L-Proline-L-phenylalanine dodecylamide (Gelator C) 

 

TFA (1.73 mL, 22.7 mmol) was added to a stirred solution of N-Boc-L-proline-L-

phenylalanine-dodecylamide 222 (600 mg, 1.13 mmol) in DCM (10 mL).  After 17 hours the 

solution was neutralised with a solution of saturated sodium bicarbonate (10 mL) and 

extracted three times with DCM (3 x 10 mL).  The combined organic extracts were dried 

over magnesium sulfate, filtered and concentrated in vacuo to give the title compound, 

Gelator C, as a white powder in a 92 % yield (445 mg, 1.04 mmol). Mp 155-157 ºC; IR 

(ATR): νmax 3287, 2918, 2850, 1638, 1558, 1537, 1226 cm-1; [α]D25 (deg cm3 g−1 dm−1) -46.2 

(c= 1.0, chloroform); 1H NMR (400 MHz, CDCl3); δ 8.11 (1H, d, J = 8.2 Hz, N-H amide), 

7.27-7.16 (5H, m, H-9), 6.25 (1H br t, J= 6.5 Hz, H-N-H amide)  4.53 (1H, ddd, J= 8.2, 8.2, 

8.2 Hz, H-6), 3.69 (1H, dd, J= 9.2, 5.0 Hz, H-4), 3.20 (2H, td, J= 7.0, 6.5 Hz, H-11), 3.14 
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(1H, dd, J= 13.7, 8.2 Hz, H-7), 2.99 (1H, dd, J= 13.7, 8.2 Hz, H-7), 2.91 (1H, dt, J= 10.2, 

6.9 Hz, H-1), 2.70 (1H, dt, J= 10.2, 6.1 Hz, H-1), 2.35 (1H, br s, N-H), 2.00 (1H, dddd, J= 

12.7, 9.2, 6.9, 6.1 Hz, H-3), 1.65 (1H, dddd, J= 12.7, 6.9, 6.1, 5.0 Hz, H-3), 1.57 (1H, dtt, J= 

12.7, 6.9 Hz, 6.1 Hz, H-2), 1.41 (1H, dtt, J= 12.7, 6.9 Hz, 6.1 Hz, H-2), 1.39-1.34 (2H, m, H-

12),1.28-1.15 (18H, m, H-13 - H21), 0.86 (3H, t, J= 6.9 Hz, H-22); 13C NMR (400 MHz, 

CD3OD) δ 175.5 (CO amide), 170.9 (CO amide), 137.2 (C-8), 129.3 (C-9), 128.6 (C-9), 

126.9 (C-9), 60.3 (C-4), 54.2 (C-6), 47.2 (C-1), 39.6 (C-11), 37.9 (C-3), 39.6 (CH2), 37.9 

(CH2), 32.0 (CH2), 30.7 (CH2), 29.7 (CH2), 29.4 (CH2), 29.3 (CH2), 26.9 (CH2), 25.9 (CH2), 

22.8 (CH2), 14.2 (C-22); HRMS (ESI):  [M+H]+ HRMS found 30.3407, C26H44N3O2 required 

430.3428.   

 

 

L-Lysine-L-tyrosine-L-phenylalanine (K-Y-F) 

 

L-Lysine-L-tyrosine-L-phenylalanine (K-Y-F) was prepared using the general procedure for 

one pot peptide synthesis using cleave method A (Section 10.3.3) to remove the peptide 

from resin. The tripeptide was acquired as a white powder (as the TFA salt).  Mp 216-219 

ºC; IR (ATR): νmax 3064.9, 1647, 1515, 1444, 1177, 1137 cm-1;  1H NMR (400 MHz, DMSO 

d6) δ 9.28 (1H, br s, O-H), 8.53 (1H, d, J = 9.0 Hz, NH amide), 8.52 (1H, d, J = 8.5 Hz, N-H 

amide), 8.02 (3H, br s, NH3), 7.74 (3H, br s, NH3), 7.25-7.15 (5H, m, H-16), 7.02 (2H, d, J = 

8.2 Hz, H-10), 6.60 (2H, d, J = 8.2 Hz, H-11), 4.47 (1H, ddd, J = 9.0, 9.0, 3.2 Hz, H-7), 4.41 
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(1H, ddd, J = 8.5, 8.5, 4.6  Hz, H-13), 3.66-3.62 (1H, m, H-5), 3.03 (1H, dd, J = 14.0, 4.6 

Hz, H-14), 2.87 (1H, dd, J= 14.0, 3.2 Hz, H-8), 2.86 (1H, dd, J= 14.0, 8.5 Hz, H-14), 2.68-

2.62 (2H, m, H-1), 2.60 (1H, dd, J = 14.0, 9.0 Hz, H-8), 1.64-1.58 (2H, m, H-4), 1.48-1.41 

(2H, m, H-2), 1.26-1.17 (2H, m, H-3); 13C NMR (400 MHz, DMSO d6) δ 172.8 (C-17), 171.1 

(CO amide), 168.4 (CO amide), 158.0, 156.0, 137.5, 130.2, 129.2, 128.2, 127.5, 126.5, 

115.0, 54.4 (C-7), 53.5 (C-13), 51.8 (C-5), 38.0 (C-1), 36.7 (C-14), 30.9 (C-4), 26.5 (C-2), 

20.9 (C-3); HRMS (ESI) [M+H]+ HRMS found 457.2479, C24H33N4O5 required 457.2445.  

[M+Na]+ HRMS found 479.2283, C24H32N4NaNO5 required 479.2265. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



211 
 

6.3. General Procedures 

 

6.3.1. General procedure for 2- deoxy-D-ribose forming reaction 

 

 

 

Acetaldehyde 24 (44 mg, 1 mmol) and D-glyceraldehyde D-9 (90 mg, 1 mmol) were added 

to a flask containing catalyst (20 mol %) and aqueous medium (3 mL) and stirred for 24 

hours at room temperature.  The solvent was removed in vacuo and the residue was 

redissolved in methanol (5 mL). N-N-Diphenyl hydrazine 144 (550 mg, 3 mmol) and acetic 

acid (2 drops) were added and the reaction stirred for 1 hour before being the concentrated 

in vacuo to give a red/brown oil.  The products were isolated by flash column 

chromatography (methanol:DCM 3:97 to 10:90).  Further purification via preparative thin 

layer chromatography (90:10 ethyl acetate:hexane) afforded the product as a mixture of 

diastereomers D-146 and D-147.   

 

The diastereomeric ratio was determined via 1H NMR spectroscopy using the azomethine 

peaks as a reference. There are two examples shown below.  Figure 6.1. is a 1H NMR 

spectrum of the two sugar standards mixed together and the azomethine peak used for 

diastereomeric ratio determination. Figure 6.2. is a 1H NMR spectrum of the assay after 

purification. 
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Figure 6.1. 1H NMR spectrum of the two sugar standards. 

Figure 6.2. 1H NMR spectrum of the deoxyribose forming assay after purification. 
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6.3.2. General procedure for glyceraldehyde forming reaction 

 

 

 

 

 

L-Valine nitrile L-157 (20 mg, 0.20 mmol) and glycolaldehyde dimer (60 mg, 0.5 mmol) were 

dissolved in pH 7 phosphate buffer (1.7 mL).  Paraformaldehyde (750 mg) was dissolved in 

water (25 mL) and heated to 60 ºC for 2 hours. Upon cooling, an aliquot of the solution (1.3 

mL) was added to the reaction mixture and stirred at room temperature for 24 hours.  

Dinitrophenyl hydrazine (510 mg, 2.6 mmol) was added to the reaction mixture and stirred 

for a further 24 hours.  After this time the reaction was concentrated in vacuo to afford the 

crude mixture of hydrazones as an orange solid.  The crude mixture was purified by flash 

column chromatography (5:95 methanol:DCM) followed by preparative thin layer 

chromatography (2:98 methanol:DCM) to yield the glyceraldehyde-trapped hydrazone 

product 115 as a yellow solid (3 mg, 0.01 mmol).  The enantiomeric excess of hydrazone 

product was analysed via HPLC using a chiralpak AD column (15:85 isopropanol:hexane) 

at a flow rate of 1.0 mL/min. 

 

Figure 6.3 and Figure 6.4 below show the chromatograms of (A) the reaction mixture and 

(B) the reaction mixture doped with authentic D-glyceraldehyde hydrazone standard. 
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Figure 6.3. There is a 6% ee in favour of D-glyceraldehyde hydrazone D-115. L-glyceraldehyde L-

115 elutes at ~46 minutes and D-glyceraldehydeD-115 at ~68 minutes. 

 

 

 

Figure 6.4. HPLC run of glyceraldehyde hydrazone products from reaction doped with authentic D-

glyceraldehyde hydrazone D-115. 

 

 

 

 

 



215 
 

6.4. General procedure for peptide synthesis on 2-chlorotrityl resin 

 

Resin loading: Chlorotrityl resin preloaded with the first amino acid in the sequence was 

swollen in DMF (3 mL) and shook for 30 min.  The DMF was then filtered off 

 

Coupling reaction: A solution of Fmoc-protected amino acid (5 equiv), HCTU (5 equiv) and 

DIPEA (5 equiv) in DMF were added to the resin. The reaction was shaken for 1 h. The 

solvent was filtered off and shaken with DMF (3mL) for 2 minutes and the DMF then filtered 

off.  This was repeated twice more with DMF. 

 

Fmoc deprotection: A solution of 20% piperidine in DMF was added to the resin and the 

reaction shaken for 2 minutes and the solvent filtered off.  This process was repeated 5 

times.  The resin was then washed with DMF and shaken for 2 minutes before filtering.  This 

was repeated 3 times. 

 

Final amino acid coupling: The process was repeated the same as above but the amino 

acid used was protected with a Boc group. 

  

Cleavage and Isolation: The resin was washed with DCM (3 × 2 min with rotation) followed 

by methanol (3 × 2 min with rotation). The resin was then dried on a high vacuum line 

overnight.  
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 Cleavage method A – Cleavage and global deprotection 

A 3 mL solution of TFA:H2O:TIPS (95:2.5:2.5) (3 mL) was added to the resin and shaken 

for one hour. The blood red solution was filtered into ice cold ether to produce a white 

precipitate.  The white powder was pressed into a pellet through the use of a centrifuge 

and the ether decanted and fresh ether added (This procedure was repeated 3 times).  

The resultant white pellet was dissolved in water (5 mL) and freeze dried for 48 hours. 

 

 Cleavage method B – Cleavage from resin with protecting groups intact 

A solution of 20 % hexafluoroisopropanol (HFIP) in DCM was added to the resin and 

shaken for 1 hour. The rest of the procedure was the same as cleavage method A. 
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6.5. HPLC traces for 2-deoxyribose reaction 

Below are HPLC chromatograms from various HPLC columns used to identify hydrazone-

trapped products as starting materials of the various sugar-forming reactions. 

 

A) HPLC traces using a chiralpak OD-H column at 1.0 mL / min in a 5:95 

isopropanol/hexane solvent system.  

 

Figure 6.5. HPLC trace of 2-deoxy-D-ribose hydrazone standard D-146.  The compound elutes at 

approximately 35 minutes. 

 

 

Figure 6.6. HPLC trace of 2-deoxy-D-threopentose hydrazone standard D-147.  The compound 

elutes at approximately 49 minutes. 
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Figure 6.7. Genuine run of isolated products from the deoxyribose-forming reaction.  2-deoxy-D-

ribose D-146 elutes at 35.8 mins. 2-deoxy-D-threopentose D-147 elutes at 48.7 mins. 

 

 

 

B) For the investigation of the deoxyribose reaction using racemic glyceraldehyde rac-

9 a chiralpak IC column at 1.0 mL / min in a 5:95 isopropanol/hexane solvent system 

was used. 
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Figure 6.8. HPLC trace of 2-deoxy-D-ribose hydrazone D-146 standard and 2-deoxy-L-ribose 

hydrazone D-147 standard. 

 

 

 

 

Figure 6.9. Products of the reaction of racemic glyceraldehyde rac-9 and acetaldehyde 24 spiked 

with authentic 2-deoxy-L-ribose hydrazone L-146. 2-deoxy-L-ribose hydrazone L-146 elutes at 37 

mins and 2-deoxy-D-ribose hydrazone L-147 elutes at 42 minutes. 
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Figure 6.10. Products of the reaction of racemic glyceraldehyde rac-9 and acetaldehyde 24 spiked 

with authentic 2-deoxy-D-ribose hydrazone D-146. 2-deoxy-L-ribose hydrazone L-146 elutes at 37 

mins and 2-deoxy-D-ribose hydrazone D-146 elutes at 42 minutes. 

 

 

 

6.6. General assay procedures  

 

6.6.1. Dynamic Light Scattering (DLS) experiments of micelles 

Dynamic Light Scattering (DLS) experiments to determine the size of supramolecular 

aggreagtes were carried out using a Zetasizer Nano (Malvern Instruments Ltd., 

Worcestershire, UK), based on the principle of measurement of the backscattered light 

fluctuations at an angle of 173° and the calculation of an autocorrelation function. Data were 

recorded from 5-10 runs per single measurement, each of which was carried out at 25°C 

using folded capillary cells (DTS 1060). The monomer solutions were prepared by 

dissolving the monomer (1 mg) in deionised water (1 mL). All samples were agitated and 

incubated at 25°C for 5 minutes prior to measurement. The data reported in Chapter 9 for 

compounds 210 and 219 are based on both volume distribution and intensity distribution. 
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6.7. General procedure for Nile Red (211) assay 

The monomer (at a concentration of 250 μM for L-proline dodecylamide 210 and 75 μM for 

P-E-F-dodecylamide) was dissolved in phosphate buffered saline (PBS, 0.01 M, endowed 

with NaCl (138 mM) and KCl (2.7 µM)). In a cuvette, an aliquot of this solution was diluted 

by addition of PBS to a total volume of 1 mL before Nile red 211 (1 µL, 2.5 mM in ethanol) 

was added. Following inversion to ensure mixing, fluorescence intensity at 635 nm was 

recorded using a 550 nm excitation wavelength.  The fluorescence intensity was measured 

three times at each concentration and an average of the three results taken.  The logarithm 

of concentration vs. absorbance was plotted and the point of inflection determined as the 

critical micelle concentration. 

 

 

6.8. Transition Electron Microscopy (TEM) imaging 

In the case of the hydrogels, the monomer (20 mg) was gelled in deionised water (3 mL) 

through the cycle of heating, agitation and cooling.  The gel was allowed to rest for 24 hours 

before imaging.  In the case of the micellar aggregates, the monomer (10 mg) was dissolved 

in deionised water (1 mL) (well above the CMC limit).  The samples were agitated at 25 ºC 

before imaging. 
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Figure 6.11. P-E-F-dodecyl amide aggregates.  Scale bar = 500 μm. 

 

Figure 6.12. L-Phenylalanine-dodecylamide hydrogel.  Scale bar = 20 μm. 
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Figure 6.13. L-Proline-L-valine-dodecylamide hydrogel. Scale bar = 20 μm. 

 

Figure 6.14. L-Proline-L-phenylalanine-dodecylamide hydrogel.  Scale bar = 10 μm. 
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Figure 6.15. N-Methyl-L-proline-L-valine-dodecylamide hydrogel. Scale bar = 5 μm. 

 

Figure 6.16. L-Valine-dodecylamide hydrogel. Scale bar = 20 μm.
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Abbreviations 

 

Ac  acetyl 

AIBN  2,2’-Azobis(2-methylpropionitrile) 

Ala  alanine 

Asp  asparagine 

aq   aqueous 

Asp  aspartic acid 

Bn  benzyl   

Boc  tert-butyl oxycarbonyl 

Cbz  Carboxybenzyl 

DAHP  dihydroxyacetone phosphate 

DBU  1,8-Diazabicylo[5.4.0]undec-7-ene 

DCM  dichloromethane 

DLS  Dynamic Light Scattering 

DMAP  4-dimethylaminpyridine 

DMSO dimethylsulfoxide 

DNA  deoxyribonucleic acid 

DNBSA Dinitrobenzyly sulfuric acid 

d.r.  diasteriomeric ratio 

EDC  1-ethyl-3(3’-diemthylaminopropyl)carbodiimide 

e.e.   enantiomeric excess 

ESI  electrospray ionisation 

Eq  equivalents 

Fmoc  Fluorenylmethyloxycarbonyl 

GC  gas chromatography 

Gln  glutamine 

Glu  glutamic acid 

Gly  glycine 
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h  hour(s) 

HBA  hydrobromic acid 

HFIP  hexafluoroisopropanol  

His  Histidine  

HMDS  hexamethyldisilazane 

HPLC  High Performance Liquid Chromatography 

HRMS  High Resolution Mass Spectrometry 

Hz  Hertz 

IR   Infra-red 

Ile  Isoleucine 

Isoval  Isovaline 

IPA  Isopropanol 

J  coupling constant 

MHz  megahertz 

min  minute(s) 

mp  melting point 

MS  mass spectrometry 

NBA  nitrobenzoic acid 

NMR  Nuclear Magnetic Resonance 

PBS  Phosphate Buffered Saline 

Ph  phenyl 

Phe  phenylalanine 

Pro  proline 

RNA  ribonucleic acid 

rt  room temperature 

Ser  serine 

Suc  succinimide 

TBDPS tert-butyldiphenyl silyl 

TEM  Transmission Electron Microscopy 

TFA  Trifluoroacetic acid 
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TFAA  Trifluoroacetic anhydride 

Tgel  Temperature of gelation 

THF  tetrahydrofuran 

Thr  threonine 

TIPS  triisopropylsilyl 

TLC  thin-layer chromatography 

Val  valine 
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